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Abstract 

In smart grids, the periodical magnitude-based measurement by remote terminal 

units (RTUs) will be gradually replaced by real-time phasor measurement unit (PMU)-

based measurements in the future. The PMU measurements supply synchronous and 

precise measurements of voltage/current phasors, i.e., synchrophasors at a rate of up 

to 60 samples per second. These measurements are widely used for the state estimation 

(SE), power system stability analysis and fault location, thereby improving the 

situational awareness of the grid operators. 

SE plays a vital role in contemporary energy management systems, where 

sufficient measurements must be provided to make the system observable. However, 

in a real power grid with thousands of buses, it is impossible to install PMUs wholly 

as they are costly. Therefore, it is necessary to investigate more economical and 

effective PMU placement frameworks to mitigate voltage estimation uncertainty. In 

addition, various incidents can result in the system unobservability, and SE cannot be 

implemented appropriately via conventional estimators. On the other hand, another 

critical issue is that classical SE methods are inapplicable in distribution systems 

without an ascertained network topology due to frequent reconfiguration actions and 

limited topology measurements. To cope with these challenges, the generative 

adversarial network (GAN)-based deep learning frameworks are proposed for the SE 

tasks of both transmission and distribution systems. The proposed framework is data-

driven, model-free, and has a strong capability of handling missing data, which can 

result in the unobservability of the system per the classical SE method. 

In this thesis, a comprehensive study is carried out to mainly investigate PMU-

based SE where optimal PMU placement as well as deep learning-based SE algorithm 

are considered. The research background and purpose of this thesis are presented in 
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Chapter 1. Chapter 2 proposes a reliability-based probabilistic optimal PMU 

placement approach to ensure minimal voltage magnitude estimation uncertainty 

under various operating scenarios, with supplementary PMUs installed in the power 

grid equipped with the SCADA system. Chapter 3 proposes a data-driven deep 

learning approach for power system static SE based on conditional GAN. Compared 

with classical SE methods, the proposed method does not require any prior knowledge 

of the system model. Without knowing the specific model, GAN can learn the inherent 

physics of underlying state variables purely with historical samples. Once the GAN 

model has been trained, it can estimate the corresponding system state accurately given 

the system raw measurements even with incompletions and corruptions. Chapter 4 

proposes a novel data-driven deep learning approach for distribution system SE based 

on the topology-aware GAN (TAGAN). Compared to conventional methods, the new 

method can effectively estimate system states given contaminated or even missing 

measurements under varying network topology, representing the first effort of 

applying one integral deep learning framework for SE to address the uncertainties 

involved in both measured states and distribution grid topology simultaneously. 

Chapter 5 summarizes the whole thesis with some valuable conclusions drawn.  
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Chapter 1  Introduction 

1.1 Research Background 

Among smart grid monitoring and surveillance technologies, phasor 

measurement units (PMUs) are becoming the most widely used advanced 

measuring equipment for real-time monitoring and control [1, 2]. They are the 

fundamental components of the wide-area measurement system (WAMS). 

With the development of the global positioning system (GPS), it becomes 

possible to directly measure the synchronized and real-time voltage and current 

phasors at widely dispersed locations of smart grids with PMUs [3]. Compared 

to the conventional supervisory control and data acquisition (SCADA) 

measurements, PMUs have the advantages of synchronization, higher 

measurement precision, and higher sampling rates [4, 5]. Considering their 

outstanding advantages, PMUs have been used to provide critical measurement 

data for the power system state estimation (SE), data-driven power system 

stability assessment, fault detection, and system protection, thereby improving 

the situational awareness of the grid operators [6, 7]. 

Anti-aliasing 
filters

Phase-locked 
oscillator

GPS receiver

A/D converter 
(16 bit)

Phasor 
microprocessor

Modem

To MCC

GPS
satellite

Current/Voltage 
phasor input

 

Fig. 1-1. Functional block diagram of PMU. 
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Fig 1-1 depicts the functional block diagram of a PMU, and procedures of 

the measurement are described in the following [8]. First, the GPS receiver 

synchronized by the GPS satellite provides the one pulse-per-second (PPS) 

signal with a time tag. Then, to take the sample of the analog signals, the l-PPS 

signal is divided into the required number of pulses by the phase-locked 

oscillator. The analog signals are obtained from the secondary side of the 

voltage transformer (PT) and the current transformer (CT) filtered out through 

anti-aliasing filters [9]. This will restrict the bandwidth of the signal to satisfy 

the Nyquist–Shannon sampling theorem. The filtered signals are then 

converted to digital with A/D converters. By using Discrete Fourier Transform 

(DFT), phasor values computed from digital signals are fed to phasor 

microprocessor [10] and finally, to the Main Control Center (MCC) by modem. 

A PMU deployed on the system bus is able to measure this bus’s voltage 

phasor and the neighboring branches’ current phasor. With the increase in the 

availability of substation’s PMUs, the performance of various essential 

functions such as monitoring, protection, and control of the associated system 

has been enhanced [11, 12, 13, 14]. Therefore, the PMU-based wide-area 

measurement system (WAMS) has become important to guarantee safety and 

stability in the power system [15]. In this sense, if each bus of the network is 

installed with a PMU, the voltage phasors for the entire system can be directly 

and fully acquired [16]. Nevertheless, it is impossible for a practical power 

system with thousands of buses to cover every bus with a PUM due to the 

heavy cost of PMUs and their networking communication system, which 

makes the current penetration of PMUs far from the desired level [17, 18]. 

Therefore, how to realize economical and effective placement of 
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supplementary PMUs considering the existing SCADA system while ensuring 

minimal voltage magnitude estimation uncertainty deserves careful 

investigations. Meanwhile, the reliability of measurement devices and the 

uncertainty of system operation should also be considered. 

As the main application of PMUs, SE plays a vital role in contemporary 

energy management systems (EMSs) [19, 20]. The accurate SE is essential for 

power system control, optimization, and security analysis [21]. The classical 

SE solves an optimization formulation with raw measurements and a network 

model, of which the purpose is to identify the most likely estimate of the 

system state, i.e., the estimated state [22, 23]. SE assesses whether load-flow 

constraints are met with measurements computed by the network model [24]. 

While the system observability is the prerequisite to the classical SE methods, 

the network is, however, not always fully observable due to malfunction of 

measurement devices, miss of measurement data, or interference by malicious 

attacks [25]. Thus, it is highly desirable to effectively restore all system states 

with corrupted measurements or even missing measurements under 

contingencies when the system is not fully observable.  

The topology of the network can be defined directly by the status of 

switching devices [26]. Nevertheless, the fundamental topology could be 

altered partially by the cause of local events like line outages, switching events, 

and faults [27]. The classical SE involves complicated and separated steps to 

deal with network topology and SE calculation, etc. [28]. In addition, in 

transmission systems, the system topology is generally deemed to be very 

constant [29]. Therefore, many methods premise that the system topology is 

unchanged and completely known based on monitoring devices. However, this 
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assumption is invalid for the distribution systems because it is nearly 

impossible to monitor distribution grids topology of considerable size [30]. 

Therefore, how to deal with distribution system SE with topology changes with 

little or very limited topology monitoring is worthy of investigation. 

 

1.2 Literature Review 

1.2.1 OPP Methods Review 

Actually, the optimal PMU placement (OPP) is essentially regarded as an 

NP-complete problem. In an N-bus power system, the possible solution 

combinations of OPP are 2N [33]. Thus, it is deemed a combinatorial 

optimization problem, and relevant works have been developed within this 

field [34]. The OPP problems can be categorized into two classes according to 

their objectives. The first class aims to deploy a minimum number of PMUs 

on strategic buses to achieve an observable system [21]. The second class is 

widely formulated for specific applications [22]. More details are reviewed in 

the following. 

For the first class OPP problems, conventionally, the basic constraint of 

surveillance infrastructure was the observability of the overall network and 

components, and most OPP methods adopt an optimization constraint based on 

the observability of basic scenarios on networks. These works may adopt a 

dual search algorithm as well as the immunity GA [35], weighted least squares 

algorithm [36], genetic algorithms (GA) [37], recursive Tabu search method 

[38], integer linear programming [39], and simulated annealing [40]. Further 

research suggests that the number of optimal solutions for the OPP problem 

may be more than one, and the optimal solution with the largest redundancy of 
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measurement can be more desirable because this solution leads to a more 

accurate SE as well as greater robustness in opposition to component failure 

[41]. Other works emphasized the increasing reliance on WAMS applications 

for power system operation, as well as making WAMS infrastructure more 

stable and reliable. These efforts solve the OPP problem with groups of 

constraints to ensure that the system is fully observable when the transmission 

line and/or PMU is interrupted [42].  

For the second class OPP problems, they are formulated to achieve 

specific applications or functions. For example, defense against data injection 

attacks [43], parameter error identification [44], minimized SE errors [45], 

fault location observability [46], improved topology error handling [47], 

reduction of SE error variance and improvement local redundancy [48], bad 

data detection in SE [12] and optimizing useful indicators of the power system 

state estimation are three important requirements: observability, performance, 

and convergence [49]. PMUs can also be critically placed in the power grids 

to identify parameter errors on unilateral cut sets (critical branches) or bilateral 

cut sets (critical branch pairs) [11, 50, 51]. 

Among these published works, [36], [39], [41], [44], [45] and [48] 

incorporated conventional SCADA measurements. In these works, 

conventional SCADA measurements have been deployed in the power grid, 

and new PMUs have to be placed in the presence of these SCADA 

measurements. These existing SCADA measurements could be beneficial to 

the system observability or specific applications by decreasing the number of 

needed PMUs [52]. The feasible practice is to deploy PMUs incrementally in 

conjunction with the SCADA measurements [53]. 
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SE utilizes the redundant measurements acquired from power grids to 

filter out the measurement errors and supply the most likely estimation of the 

operating conditions of the system [58, 59]. In [59], it is presented that the 

accuracy of SE can be significantly enhanced by deploying PMUs 

incrementally in conjunction with the SCADA measurements, through which 

the associated uncertainties of voltage magnitude estimation can be 

quantitively measured based on branch-current SE (BCSE) algorithms. Thus, 

in order to improve the accuracy of SE in the system with SCADA 

measurements and the limited number of PMUs, it is highly desired to find an 

OPP solution considering voltage magnitude estimation uncertainty. 

Besides, most of the previous OPP methods have considered the losses of 

the PMU to design a reliable and robust WAMS [54, 55]. However, these 

methodologies do not take into account the random outages of the PMU 

measurement system, including the PMU, the phasor data concentrator (PDC), 

the communication system, and other components that can affect the power 

system observability [56]. The random occurrence of these events may cause 

part of the network to be unobservable, thereby endangering the security of the 

power system [57]. In addition, under varying operating scenarios, the optimal 

PMU placement solution may be different. However, conventional OPP 

methods only concentrate on one scenario to develop the OPP plan that may 

not be fit for other operation scenarios, which might cause biased solutions. 

Thus, it is necessary to comprehensively consider the operating uncertainties 

to obtain an unbiased solution suitable for different operating conditions. 
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1.2.2 SE Methods Review 

The studies of SE with PMU measurements have already been extensively 

carried out, and the approaches are either based on the combination of SCADA 

and PMU measurements [26, 66, 67, 68, 69, 70, 71] or purely PMU 

measurements [64, 72, 73, 74]. The former ones can be further divided into 

two categories: namely hybrid state estimator method and the multi-stage 

method. The hybrid state estimator combines PMU measurements and 

conventional SCADA measurements by using a non-linear transformation to 

connect the traditional state vector in polar form with the voltage phasors in 

the rectangular form [66, 67, 68, 69]. It is proved that incorporation of PMU 

measurements can significantly improve the SE performance as compared to 

that with only SCADA measurements under steady-state conditions. 

Nevertheless, the accuracy of those approaches can be compromised due to 

different time scales between PMUs and SCADA systems [26]. To address the 

issues of time scale inconsistency, the multi-stage approach is adopted by 

processing PMU measurements or SCADA measurements in independent 

stages. A Bar-Shalom-Campo data fusion technique is applied to combine the 

results of different PMU and SCADA stages in [70, 71]. All those methods 

based on the combination of SCADA and PMU measurements adopt various 

principles to enhance the robustness against gross errors. On the other hand, 

the purely PMU-based SE method has shown various benefits compared with 

purely conventional SCADA based or PMU-SCADA-based SE methods [73, 

75, 76]: (i) The measurement function is linear as only current or voltage 

phasors are measured by PMUs, which gets rid of the computationally 

expensive iterative process in traditional SE with SCADA measurements. (ii) 
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No reference bus is needed since the voltage/current phasor phase angle can be 

directly acquired at the same time with time-stamped from the GPS [77]. (iii) 

Real-time SE can be realized due to high sampling rates and low latency of 

PMUs. 

The aforementioned SE methods are all based on weighted least squares 

(WLSs) or their variants. These methods are well-known non-robust, and a 

single outlier can severely alter the estimation results. To overcome this 

drawback, a separate post-estimation bad data processing function is needed to 

detect and eliminate gross errors [23]. In addition, robust SE methods are 

recently proposed to further enhance the robustness against different bad data 

situations by introducing, e.g., adaptive pre-processing steps, etc. [27]. The 

least absolute value (LAV) estimator is an alternative technique. By 

minimizing the L1 norm (rather than L2 in WLS) of measurement residuals, 

the LAV estimator can be executed via linear programming (LP) solvers, and 

it will detect and eliminate gross errors accordingly [78]. The authors in [79] 

formulated a robust LAV estimator by using PMUs to improve the 

computational performance of the LAV estimator. A hybrid state estimator was 

proposed in [80] with the coexistence of PMU measurements and SCADA 

measurements, to determine the states based on the weighted LAV (WLAV). 

Besides, WLAV is also one of the most common robust estimators with high 

performance in the aspect of robustness [81, 82]. Other enhanced estimators 

for robustness include the method of least median of squares (LMS) and least 

trimmed squares (LTS), and they aim to restrain the effects of bad data by 

alternatively using measurements [83, 84]. The LMS method is proposed 

depending on the notion that the median of a set of values can be more effective 
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than the mean in the estimation process though it has got the particular 

disadvantage of rejecting several normal measurements along with the outliers. 

The LTS method calculates the sum of squared errors for the smallest residuals 

only. 

The main issue of the above-mentioned studies, including WLS-based SE 

methods and robust SE methods, is that the system must be pre-assumed to be 

fully observable, and they cannot work effectively when the system is 

unobservable. However, in reality, many contingencies can result in system 

unobservability, including measurement loss, line outage, failure of the data 

concentrator, or failure of the local communication system [24]. The network 

is unobservable if any state variables cannot be uniquely computed for a given 

set of measurements and network topology [25]. In unobservable networks, SE 

cannot be implemented expectedly via WLS-based estimators or robust 

estimators. Hence the system operator cannot monitor any violations or events 

in these unobservable buses, which may lead to catastrophic outcomes. The 

traditional solution for unobservability is to use pseudo-measurements to 

replace the missing measurement. The pseudo-measurements are generated 

based on external processes such as historical data, prediction procedures, load 

curve assessment, or derived from interpolated observations [28]. Due to the 

nature of the pseudo-measurements, the accuracy of SE cannot be guaranteed, 

thus failing to satisfy the SE requirement. Besides, it is difficult to implement 

real-time SE as a result of the sparse data rate of pseudo-measurements with 

finite source data. Other studies are conducted to handle this issue. In [109], 

auto-associative neural networks (NNs) or autoencoders are used to reconstruct 

missing data in SE. In [98] and [106], multilayer perceptron (MLP) based NNs 



10 
 

are applied for SE. Once trained offline using historical data and/or simulated 

samples, NNs can be implemented for real-time SE. Limited by the 

development of AI technology during that period, the accuracy of SE was not 

outstanding, especially for large-scale systems. 

1.2.3 DSSE Methods Review 

When distribution system state estimation (DSSE) was firstly studied in 

[112], a weighted least-squares (WLS)-based DSSE solver was proposed using 

a three-phase nodal voltage formulation. To handle topology issues in DSSE, 

some methods have been proposed to identify the correct topology before 

performing SE. [99] proposes a computationally efficient approach to diagnose 

the lines’ statuses, and the fastest change detection method is applied to 

identify network topology in [100]. These methods are developed to decouple 

the problem into topology identification and state estimation. Nevertheless, 

such implementations might lose the essential information about the system 

topology hidden in the raw measurements [101]. Therefore, the integral 

approaches of topology processing and SE have been developed. To handle 

this problem in decoupled methods, a generalized state estimation (GSE) 

model was proposed in [102], where the status of lines can be determined 

through diagnosing the open breakers and topology error (measurement error 

of switches status) [103]. In [104], the authors proposed the algorithm that can 

deal with two different types of criteria composing the objective function of 

estimation, namely: weighted least absolute value (WLAV) criteria for 

topologically relevant relations and WLS criteria for estimating system states. 

Nevertheless, the computational cost of these methods is high due to many 

iterations involved [105]. Besides, the GSE model is usually required to 
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include the extra branches’ status variables on the SE formulation to identify 

and fix topology errors [15].  

To resolve the aforementioned issues existing in GSE, a number of data-

driven and probabilistic approaches have been developed in DSSE, such as 

auto-encoders [106], probabilistic recursive Bayesian approach [108], 

correlation analysis [109], fuzzy-based pattern recognition [110]. However, 

these approaches generally involve a data-driven search process within a finite 

topology space (i.e., topology library). Due to the various operation needs, 

numerous possible configurations of distribution grid topology exist given 

certain combinations of line switch statues (2N, N is the number of buses). 

Once the input topology is out of the dataset for training, i.e., an out-of-sample 

topology, these DSSE methods perform poorly. 

 

1.3 Purpose of the Thesis 

 

Fig. 1-2. Schematic diagram of the thesis. 

 

Fig. 1-2 illustrates the schematic diagram of the thesis. Considering the 

aforementioned situations, including the need for real-time monitoring of the 

modern power system and the advance of modern monitoring technologies in 
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power grids, more PMUs will be deployed in the transmission system and the 

distribution system [31, 32]. Also, due to the aforementioned deficiencies of 

classical SE methods as well as the rapid development of AI technologies, this 

thesis intends to investigate PMUs based power system state estimation where 

the optimal placement of supplementary PMUs considering the existing 

SCADA system as well as deep learning based SE is considered. Therefore, 

the purpose of the thesis can be summarized in three aspects. The first one is 

to obtain minimal voltage estimation uncertainty with limited PMU numbers 

based on various operating scenarios; the second one is to accurately estimate 

all system states considering the corrupted measurements or even missing 

measurements under contingencies when the system is not fully observable in 

transmission networks; the third one is to apply one integral framework for SE 

to address the uncertainties involved in both measured states and grid topology 

in distribution networks. More details are illustrated as follows: 

Firstly, this thesis aims at proposing a reliability-based probabilistic OPP 

approach to obtain minimal voltage magnitude estimation uncertainty based on 

various operating scenarios, with supplementary PMUs installed in the power 

grid, which is observable via the SCADA system. The reliability of PMU 

measurements should be modeled when estimating the system states. Also, 

their components’ random outages should be considered. Meanwhile, the 

operating uncertainties, including the load patterns and power generations, are 

expected to be taken into account in a stochastic manner. 

Secondly, this thesis aims at proposing a novel deep learning based SE 

approach in transmission networks. On the one hand, the actual correlations of 

system states should be well captured, and the system states should be 
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accurately estimated with corrupted or missing measurements. On the other 

hand, the proposed SE method is expected to be effective even in an 

unobservable network. 

Thirdly, this thesis aims at proposing a novel deep learning based SE 

approach considering the topology changes in the distribution system. On the 

one hand, one integral SE framework should be proposed to stay away from 

the complicated and separated steps in classical SE methods. On the other hand, 

in this framework, the uncertainties consisting of measured states and grid 

topology should be addressed simultaneously. Moreover, the proposed SE 

method should be capable of tackling a variety of out-of-sample topologies, 

are out of the topology library. 

 

1.4 Primary Contributions 

To achieve the research objectives, the main contributions achieved in this 

research are summarized as follows: 

1) A comprehensive study is conducted to develop a cost-effective OPP 

approach that can help to mitigate voltage estimation uncertainty. The 

objectives include a minimal number of PMUs and minimal voltage 

amplitude estimation uncertainty. PMU measurement reliability is 

modeled when estimating the system states. In the modeling of PMU 

measurement reliability, PMU measurement system components’ random 

outages are considered. These random outages may lead to the 

unobservability of a portion of the network, which may endanger the power 

system’s safety. So, in the estimation process, it is important to take these 

random outages into account. Furthermore, probabilistic load flow (PLF) 
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is applied in the study to represent different operating scenarios. In this way, 

the load patterns and power generations are considered stochastically as the 

operating uncertainties such that the obtained PMU placement solution is 

unbiased for planning purposes. With PLF carried out, the OPP scheme is 

more suitable for various operating scenarios as different operating 

uncertainties are accordingly considered. 

2) A novel data-driven and model-free deep learning approach for power 

system SE is proposed. By applying conditional GAN, the actual 

correlations of system states can be well captured, and the system states 

can be accurately estimated without prior knowledge of the system model. 

The PMU-based SE method can effectively restore all system states 

considering the corrupted raw measurements or even missing 

measurements under contingencies. Thus, the SE process can still be 

implemented even in an unobservable network. The influence of data 

contaminations is thoroughly investigated with respect to different data 

contamination ratios and types. The experiment is carried out on a large 

system, i.e., 2746-bus Polish system. The simulation results validate the 

effectiveness of the proposed method, and all estimated system states are 

close to true system states. To the best of the authors’ knowledge, this is 

the first work using deep learning models for power system SE processes 

on a large-scale system. 

3) A novel data-driven TAGAN model is proposed for DSSE, which 

represents the first effort of applying one integrated deep learning 

framework for SE that is capable of addressing the uncertainties involved 

in both grid topology and state measurement simultaneously. Unlike the 
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existing data-driven approaches that can only handle a finite topology 

space, the proposed method by applying conditional GAN with spectral 

normalization is capable of tackling a variety of out-of-sample topologies. 

Besides, a detector and hinge loss function is used in the TAGAN model 

to improve SE accuracy. Extensive experiments have been carried out to 

examine the influence of data contaminations with respect to different 

ratios and types, which are rarely considered by most existing works. Thus, 

the proposed method is proved to be robust to the corrupted measurements 

or missing measurements, making the SE viable even in an unobservable 

network. 

 

1.5 Thesis Layout 

The remainder of the thesis is organized as follows: 

In Chapter 2, provided that the power grid is observable via the SCADA 

system with enough redundancy, a reliability-based probabilistic optimal 

placement of supplementary PMUs approach is proposed to minimize voltage 

magnitude estimation uncertainty in SE based on various operating scenarios. 

In this Chapter, PMU measurement reliability is modeled when estimating the 

system states. In the modeling of PMU measurement reliability, PMU 

measurement system components’ random outages are considered. These 

random outages may cause part of the network to be unobservable, which may 

endanger the power system’s safety. Therefore, in the estimation process, it is 

important to take these random outages as well as PMU measurement 

reliability into account. In addition, unlike the traditional OPP problem, this 

method takes into account operating uncertainties randomly, including power 
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generation and load patterns. In order to better address these uncertainties, PLF 

is applied to represent different operating scenarios and then obtain a PMU 

placement solution for the planning. Finally, the IEEE 9-bus and IEEE 14-bus 

systems are used to verify the effectiveness of the proposed OPP model. 

Chapter 3 proposes a model-free and fully data-driven deep learning 

approach for power system static SE based on conditional GAN. Unlike the 

power grid is observable via the SCADA system in chapter 2, in this chapter, 

all measurements are assumed to be provided by PMUs. Compared with the 

conventional SE approach, e.g., the WLS based methods, any appropriate 

knowledge of the system model is unnecessary for the proposed method. 

Without knowing the specific model, GAN can learn the inherent physics of 

underlying state variables purely relying on historical samples. Once the model 

has been trained, it can estimate the corresponding system state accurately 

based on the system raw measurements, which are sometimes characterized by 

incompletions and corruptions in addition to noises. Case studies on the IEEE 

118-bus system and a 2746-bus Polish system validate the effectiveness of the 

proposed approach, and the mean absolute error is less than 1.2e-3 p.u. and 

5.3e-3 rad for voltage magnitude and phase angle, respectively, which 

indicates a high potential for practical applications. 

Chapter 4 proposes a novel data-driven and model-free TAGAN-SE 

approach considering varying topologies for distribution system SE. In this 

chapter, all measurements are assumed to be provided by PMUs. In the 

TAGAN-SE, the detector is designed to generate a “mask” as GAN’s input, 

and the hinge loss function is applied to enhance the training process. Besides, 

the spectrum normalization is employed in the discriminator enabling the 
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discriminator function to be Lipschitz continuous and solve the problems 

(including vanishing gradients and mode collapse) in the classical GAN, which 

improves the performance with varying topologies, especially for the out-of-

sample topology. Different measurement contamination types and varying 

topologies, including the seen topologies during the training and the out-of-

sample topologies, were examined in the model testing. The effectiveness of 

the proposed TAGAN-SE is verified with IEEE 33-node distribution system 

and IEEE 118-bus distribution systems. 

Eventually, Chapter 5 summarizes this thesis with some valuable 

conclusions drawn. 

 



18 
 

Chapter 2   Reliability-based Probabilistic Optimal PMU 

Placement Considering State Estimation Uncertainty 

2.1 Introduction  

Phasor measurement unit (PMU) is a device used to synchronize wide-

area measurements and record the measurement time with high accuracy in the 

power system, i.e., less than one microsecond [1]. With the assumption that 

PMUs have enough channels, the PMU deployed on the system bus is able to 

measure this bus’s voltage phasor and the neighboring branches’ current 

phasor. With the increase in the availability of substation’s PMUs, the 

performance of various basic functions such as monitoring, protection, and 

control of the associated system has been enhanced [8]. As a result, the PMU-

based wide-area measurement system (WAMS) has become an important 

measure to guarantee safety and stability in the power system. As an essential 

part of any WAMS, PMU has received significant attention for various 

research topics, including optimal PMU placement. 

As the main application of PMUs, SE plays a vital role in contemporary 

energy management systems (EMSs). The accurate SE is essential for power 

system control, optimization, and security analysis [21]. Conventional SE is 

based on supervisory control and data acquisition (SCADA) system with the 

measurements of the remote terminal units (RTUs). Since SCADA 

measurements are less accurate, asynchronous, and have a low sampling rate, 

they are difficult to capture fast changing system dynamics [10]. Thus, in many 

studies, PMUs are placed in the power system to improve the SE process 

benefiting from the advantages of PMUs. The easiest way to be fully monitored 
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and maximum measurement redundancy is that all buses are deployed on 

PMUs. Nevertheless, because of the high expenses of PMU, this is almost 

impossible in practice. Besides, it is expensive to connect many PMUs to the 

communication network of the control center [20]. Thus, the available PMUs 

are limited in power grids. Considering the current situation that the existing 

SCADA measurements are extensively deployed in the system, and the number 

of PMUs is limited, now it has been broadly accepted that the SCADA 

measurements and PMUs can be jointly employed to achieve satisfactory SE 

in the system. Therefore, the optimal PMU placement (OPP) problem can be 

formed into a constrained optimization problem, with supplementary PMUs 

installed in the power grid, which is observable via the SCADA system. 

In this chapter, provided that the power grid is observable via the SCADA 

system with enough redundancy, a reliability-based probabilistic OPP 

approach is proposed to obtain minimal voltage magnitude estimation 

uncertainty based on various operating scenarios, with supplementary PMUs 

installed in the power grid, which belongs to above mentioned the second class 

of OPP problems. PMU measurement reliability is modeled when estimating 

the system states. In the modeling of PMU measurement reliability, PMU 

measurement system components’ random outages are considered. These 

random outages may cause part of the network to be unobservable. Hence the 

system operator cannot monitor any violations or events in these unobservable 

buses, which may endanger the security of the power system. Besides, unlike 

the conventional OPP problem, this method takes into account operating 

uncertainties in a random manner, including power generation and load 

patterns. In order to better address these uncertainties, Probabilistic Load 
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Flows (PLFs) are applied to reflect a variety of practical operating scenarios, 

and then an OPP solution for PMU installation can be investigated. 

 

2.2 State Estimation Uncertainty 

2.2.1 Branch Current State Estimation (BCSE) 

Two main categories of WLS algorithms have been conceived for SE: 1) 

node- voltage (NV) and 2) branch current (BC) estimators. The main difference 

among the available approaches is the choice of the state variables to be used 

within the algorithm. When the same settings of measurements are used, the 

WLS algorithms provide the same accuracy performance despite the choice of 

the state variables. Besides, BC estimators allow achieving fewer average 

execution times than NV estimators. The difference of average execution times 

becomes more significant in the system with PMUs because the gain matrix of 

WLS is constant [60]. Therefore, in this Chapter, the branch-current state 

estimator proposed in [60] (BCSE) is adopted.  

The general measurement model adopted for SE is  

z = h(x) + e                        (2.1) 

where z = [z1 . . . zM]T denotes the vector of the M measurements obtained from 

the system, x = [x1 . . . xN]T denotes the vector of the N state variables, h = 

[h1 . . . hM]T represents the vector of the measurement functions, and e denotes 

the vector of the measurement noise, which is generally set as random variables 

with zero mean and covariance matrix Σz. 

In BCSE, the state vector x needs to comprise a reference bus voltage and 

the rectangular currents in the Nbr branches. If synchrophasor measurements 

are used, the state vector x can be written as 
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1 1[ , , , ]N Nbr br

r r x x T
s sV i i i iθ=x                 (2.2) 

with N = 2 + 2Nbr elements, where Vs and θs are the voltage amplitude and 

phase angle of the slack bus chosen as a reference, while ir and ix are the 

currents’ real part and imaginary part, respectively. It is important to highlight 

that the slack bus can be arbitrarily chosen because it is only necessary to 

complete the state in the BC formulation in order to estimate the voltage profile 

accurately [47]. However, different choices of the slack bus do not affect the 

estimates and their uncertainties. For the case of conventional measurements, 

the slack voltage phase angle is now included and can be estimated. 

Furthermore, all the phase angles can be made a reference to the absolute 

reference given by the Coordinated Universal Time (UTC). 

In the BCSE method, the voltage and current are estimated iteratively 

through alternate forward scanning and WLS steps. Therefore, the SE problem 

can be formulated as a WLS optimization problem [60]: 

iˆ arg m n T=
x

ex We                     (2.3) 

where x̂  is the estimated state vector, and W is the weight matrix. 

During the process of WLS, the estimation of the state vector is updated 

by calculating the normal equation: 

1
1 [ ]T

n n n n n n
−

+∆ = − = −x x x G H W z h(x )               (2.4) 

where xn is the state vector in iteration n, Hn denotes the Jacobian of the 

measurement function concerning the state variable, Gn = Hn
TWHn denotes the 

Gain matrix. Coherently with the known measurement properties, for an 

efficient WLS estimator, W is given as the inverse of the covariance matrix Σz 

of the measurement errors. 
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A forward scan computation tracks the WLS process during each 

estimation algorithm’s iteration. Starting from the final estimate of the branch 

current and slack bus voltage, the forward scan step is able to calculate the 

network voltage for each bus by directly calculating the voltage drop along the 

line. Once the state vector’s updates Δxn are less than the selected tolerance, 

the algorithm will stop. 

2.2.2 Voltage Magnitude Estimation Uncertainty 

By inverting the gain matrix applied at the final iteration during the 

estimation procedure, the estimated state’s covariance matrix is able to be 

acquired. Therefore, the dimension of G−1 is N × N, and its diagonal is the 

estimated state’s variance while the rest is covariance. Especially in 

consideration that the state vector is expressed as (2.2), element G−1 (1, 1) 

represents the variance 


2

sV
σ  with respect to the reference bus voltage 

amplitude estimate V̂ s, while the element G−1 (2, 2) gives the variance 


2

sθ
σ  

of the estimated phase angle. In the following sections, the analysis will 

concentrate on the slack bus voltage, and the result is able to be extended to 

the whole system’s nodes because the reference bus can be selected randomly. 

To analyze the variances of the estimated slack bus voltage amplitude as 

well as phase angle, the Gain matrix is split into four blocks: 

 
 
 

A B
G =

C D
                        (2.5) 

where A denotes a 2 × 2 matrix, B denotes a 2 × Nbr matrix, C = BT (for the 

symmetry of the Gain matrix) has Nbr × 2 size, and D is a Nbr × Nbr squared 

matrix. 
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The inverse of this block matrix is written as follow: 

 
 
 

-1 -1 -1 -1 -1
-1

-1 -1 -1 -1 -1

(A - BD C) -A B(D - CA B)
G =

-D C(A - BD C) (D - CA B)
      (2.6) 

Focusing on the 2×2 covariance matrix of the slack bus voltage phasor Σs, it is 

possible to use the Woodbury matrix identity to obtain 

1,2; 1,2

    
m n= =Σ = =

= +

-1 -1 -1
s

-1 -1 -1 -1 -1

G (A - BD C)

A A B(D - CA B) CA
           (2.7) 

The second block in the main diagonal of (2.6) is the covariance matrix ΣI 

of the rectangular current estimations, thus (2.7) can be expressed as follows: 

2
ˆ ˆˆ ,

2
ˆ ˆˆ ,

s s s

s s s

V V T
I

V

θ

θ θ

σ σ

σ σ

 
 Σ = + Σ
  

-1 -1 -1
s = A A B B A        (2.8) 

where 
 

2
,s sV θ

σ  is the covariance between magnitude and phase angle of the 

slack bus voltage estimation. Equation (2.8) is the generalization to 

synchronized measurements of the expression for conventional ones. 

To understand which terms are involved in the uncertainty expression of 

the voltage estimations, it is necessary to analyze the contributions, pertaining 

to different measurement types, forming the Gain matrix. Three types of 

measurements can be distinguished: 1) voltage magnitude measurements, 2) 

voltage phase angles, and 3) the other measurements (powers or currents). The 

gain matrix is able to be resolved via differentiating augmentations from 

voltage synchrophasor measurements or other measurements. In particular, in 

the BCSE, all power measurements are transformed into the same current 

measurements. As the power measurement’s influence on the voltage state 

vanishes, this results in a slight approximation of the gain matrix. However, 

this approximation exists in the gain matrix only, while it is not in the BCSE 
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results because considering the final estimate of the voltage curve, the 

equivalent measurement value will be perfected in each iteration. The Gain 

matrix can be written as 

[ ]

  

V V
T T T T

V I

I I

T T T
V V V I I I V I

θ θ θ

θ θ θ θ

   
   = =    
      

= + + = + +

W 0 0 H
G H WH H H H 0 W 0 H

0 0 W H

H W H H W H H W H G G G

     (2.9) 

where V, θ, and I indicate voltage magnitudes, voltage phase angles, and the 

other (power and/or currents) measurements. Correspondingly, GV, Gθ, and GI 

are the contributions to the Gain matrix, WV, Wθ, and WI are the weighting 

submatrices, and HV, Hθ, and HI are the associated Jacobians. 

By maintaining the same terminology, it is possible to split the 

contributions of (2.5). Since the current measurements are able to be directly 

represented by using the corresponding current state variable and thus there is 

no derivative term about the slack bus voltage in the Jacobian, AI, BI, and CI 

are null matrices, and it illustrates that 

V V
T T
V V I

θ θ

θ θ

+ + 
 + + + 

A A B B
G =

B B D D D
              (2.10) 

Taking into account the derivative terms appearing in the Jacobians HV 

and Hθ, the following expression for A can be found: 

2
2

2

2
2 2

2

sin sin 2cos ( )
2

sin 2 cos( ) ( sin )
2

i

is i is
Vi is i s Vi

i i

i i is is
s Vi s Vi is i

i i

ww w V w
V V

A
wV w V w w
V V

θ
θ

θ
θ

θ θθ

θ θθ∈Λ

 
+ − 

 =
 

− + 
  

∑  (2.11) 

where i represents the index of the bus with the PMU measurement installed; 

θis is the deviations of the phase angle between bus i and the slack bus; wVi and 
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wθi are, respectively, the weights associated with the voltage amplitude and 

phase angle measurement in node i. 

The voltage phase angles θis are pretty small, and they can be set around 

to zero in the first approximation. With this assumption, the mutual influences 

of voltage amplitude and phase angle are decoupled and, from (2.11), the 

following expression holds for the voltage amplitude uncertainty: 

2 2 2
ˆ 1 12

1 1 [ ]
( )s

T
a b IV

Vi Vii i
w w

σ σ σ= + + Σ
∑ ∑

b b          (2.12) 

where b1 is the transpose of the first row of B. 

From (2.12), it is possible to observe that the overall uncertainty of V̂ s is 

affected by two terms from different sources for the conventional voltage 

measurements. The first item, σa
2, is determined by the amount of PMU voltage 

amplitude measurements as well as their precision. With the assumption that 

voltage measurements have the same standard deviation σVPMU, then we have: 

2
2 1 PMU
a

PMU VPMU PMUM w M
σσ =                   (2.13) 

where MPMU is the entire amount of voltage phasor measurements accessible 

in the system and wVPMU is the weight of all the voltage measurements. 

Concerning the second item σb
2 in (2.12), the elements of b1 with the 

assumptions mentioned above are 

1

   if   
( )

   if   
ji ji Vi bri

ji ji Vi bri

R w j N
j

X w j N

λ

λ

 ≤


>

∑
∑

b              (2.14) 

where i represents the index of the bus with the voltage phasor measurement 

installed; λji represents a logic value, and it is 1 when branch j belongs to the 

route between bus i and the slack bus included in the Jacobian and 0 otherwise; 
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Rji = (−rj cosθi − xj sinθi ) and Xji = (xj cosθi − rj sinθi ) denotes the derivatives 

of the voltage amplitude measurement at bus i concerning the currents’ real 

part and imaginary part at branch j, respectively. Also, rj is the resistance, and 

xj is the reactance at branch j. Thus, it will result in a large number of elements 

closely linked with the voltage drops’ uncertainty between the selected slack 

bus and each measurement bus. As a consequence, changing the slack bus 

impacts on b1 and then on the uncertainty term σb
2, reflecting the different 

ratios of uncertainty achievable on different nodes. It is crucial to recall that 

changing the slack bus will not affect the estimates and the uncertainties of the 

voltage profile; thus, such an approach allows exploiting the presented 

expressions to analyze better where and how uncertainty arises at each node. 

 

2.3 The Proposed OPP Method 

2.3.1 Reliability of Measurement Devices 

The definition of the reliability of a measurement is the probability that 

the measurement is available under these random outages [46]. In the 

transmission network, PMUs are installed at the substations/buses, and 

observability of the substation/bus may be lost under some circumstances, 

including malfunction of the phasor data concentrator (PDC), malfunction of 

the local communication system as well as unavailable of getting voltage or 

current measurements. These random outages may cause part of the network 

to be unobservable. Hence the system operator cannot monitor any violations 

or events in these unobservable buses, which may endanger the security of the 

power system. Moreover, the quality of security analysis and system operation 

is directly affected by the speed, accuracy, and reliability of measurements [47]. 



27 
 

Therefore, in the estimation process, it is highly desired to take these random 

outages into account for a robust solution of the OPP problem, where the 

reliability-based studies might lead to solutions closer to actual voltage 

magnitude estimation uncertainty. 

As mentioned in section 2.1, in this chapter, the power grid is assumed 

observable via the SCADA system with enough redundancy. Thus, in this OPP 

problem, only PMU measurement reliability is considered. Since PMUs are 

installed in the substation and serve as a part of the substation monitoring 

system, the measurements obtained from PMUs for the power system depend 

on the reliable operation of the substation monitoring system. Therefore, the 

reliability of the PMU measurement is actually the reliability of the substation 

monitoring system. The substation monitoring system aims to obtain the 

electrical measurements to send them to the national or regional control center. 

The reliability of the monitoring system at the substation refers to the 

probability when measurements can be collected in the substation and sent to 

the control center. In the substation, the critical elements are the primary 

measurement devices, which can supply the input signal for PMUs. As 

illustrated in Figure 2-1, it presents that the substation monitoring system 

consists of three parts: measurement parts, PDC, and the communication 

system. In particular, measurement parts include potential transformers (PTs), 

current transformers (CTs), and the PMU. PTs and CTs are the primary 

measurement devices, which measure the voltage phase value and current 

phase value, respectively. Both of them supply the input signal for PMUs. PDC 

is another critical element, which collects the measurement data according to 

the time-stamp. Besides, the communication system aims to deliver the 
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measurements data between the PMU and the PDC. The reliable operation of 

the substation monitoring system needs all parts to operate normally. Thus, 

measurement parts, PDC, and the communication system should be considered 

in the reliability of the substation monitoring system. 

 

Fig. 2-1. Measurement system installed in the substation. 

 

Thus, the reliability of the monitoring system at the substation is computed 

as: 

(1 ) (1 ) (1 )sub mea pdc comR Q Q Q= − ⋅ − ⋅ −            (2.15) 

where Rsub is the reliability of the monitoring system at the substation, Qmea is 

the malfunction probability of the measurement parts, Qpdc is the malfunction 

probability of the PDC, Qcom is the malfunction probability of the internal 

communication system. 

There is a malfunction of measurement parts when it is unavailable to take 

the voltage or the current measurement from PTs and CTs in the substation. It 

is expressed by 

1 (1 ) (1 ) (1 )mea pmu vm cmQ Q Q Q= − − ⋅ − ⋅ −           (2.16) 
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where Qpmu is the malfunction probability of the PMU; Qvm, Qcm is the 

malfunction probability of the voltage measurement and current measurement, 

respectively. 

The malfunction probability of the voltage measurement and current 

measurement can be formed by 

1 (1 ) (1 )vm pt plinkQ Q Q= − − ⋅ −                 (2.17) 

1 (1 ) (1 )cm ct clinkQ Q Q= − − ⋅ −                  (2.18) 

where Qpt, Qct is the malfunction probability of PTs and CTs; Qplink, Qclink is 

the malfunction probability of the link between the PTs or CTs and the PMU. 

2.3.2 Probabilistic Load Flow (PLF) 

As under varying operating scenarios, the OPP solution may be different. 

However, conventional OPP methods only concentrate on one scenario to 

develop the OPP plan that may not be fit for other operation scenarios, which 

might cause biased solutions. Thus, it is necessary to consider the operating 

uncertainties to obtain an unbiased solution suitable for different operating 

conditions. In this chapter, in order to better address these uncertainties, the 

PLF is applied to reflect a variety of operating scenarios and then obtain an 

OPP solution for PMU installation. PLF is often used to handle the uncertainty 

caused by the outage rate of generators and the variation of load demands. In 

the PLF approach, the output of the conventional generator is commonly 

assumed to follow a Bernoulli distribution based on the generator’s forced 

outage rate [14]. The load demand is assumed to follow a Gaussian distribution. 

With PLF computing, the probability distribution of power flows can be 

acquired. In addition, the system voltage magnitude’s probability distribution 
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is acquired, which can be applied to compute voltage magnitude estimation 

uncertainty in the whole system. 

Different algorithms like the point estimate method (PEM), cumulant 

method with Gram–Charlier expansion, and first-order second-moment 

method are able to be employed to solve PLF analytically. These analytical 

methods suffer from complicated mathematical computation and low accuracy 

due to different approximations. In contrast to analytical methods, Monte Carlo 

(MC) simulation based PLF involves repetitive simulations sampling the 

uncertainty caused by the outage rate of generators and the variation of load 

demands, which leads to higher accuracy. Therefore, given the high accuracy 

of MC based PLF, MC is applied in this chapter to calculate the voltage 

magnitude estimation uncertainty [14]. 

2.3.3 The Proposed OPP Algorithm 

Based on discussions and analyses in all previous sections of this chapter, 

provided that the power grid is observable via the SCADA system and 

supplementary PMUs are installed in the grid, the OPP problem aims to obtain 

minimal voltage magnitude estimation uncertainty with limited PMU numbers 

based on various operating scenarios considering PMU measurement 

reliability. Also, PLF is applied to reflect a variety of operating scenarios of 

generator output states and load states and then obtain an OPP solution for 

PMU installation. Therefore, the OPP problem is formulated as: 

2
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The objective of (2.19) is to obtain minimum overall system voltage 

magnitude estimation uncertainty σV, which is the average root mean square of 

all PMU buses’ voltage magnitude estimation uncertainty among total MC 

trials in a placement plan. σV represents the average voltage magnitude 

estimation uncertainty in the whole system. σj is voltage magnitude estimation 

uncertainty at the bus j, which represents voltage magnitude estimation 

variance. As introduced in (2.12), σj is from two parts, including PMU 

measurements and voltage drops. nbu is the bus number in the system; n and 

num are PMU placement combinations serial number and PMU number 

respectively; σV
(k) is the overall system voltage magnitude estimation 

uncertainty in k MC trials; MC is the total amount of MC trials. 

Conventional optimization approaches are inapplicable for solving this 

OPP problem since various operating scenarios of generator output states and 

load states are involved. Therefore, in order to solve this OPP problem, an ad-

hoc approach is proposed to obtain minimal voltage magnitude estimation 

uncertainty and PMU placement plans, as shown in Fig. 2-2. The proposed 

reliability-based probabilistic OPP method includes the following steps: first, 

input the test case data. Then, input the number of PMUs and enumerate all 

possible combinations of placement plans. Afterward, for each placement plan, 

10000 trials of Monte Carlo (MC) simulation, which is considered sufficient 

to guarantee the convergence of the PLF, are performed to calculate the overall 

system voltage magnitude estimation uncertainty considering various 

operation scenarios. In the k MC trial, the system generates output states, load 

states, and PMU operational states are sampled, followed by calculating the 

power flow. Next, the estimated voltage magnitude estimation uncertainty at 
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each bus σj can be calculated, which is used to calculate the overall system 

voltage magnitude estimation uncertainty σv
(k). When the MC simulation is 

completed, the overall system voltage magnitude estimation uncertainty in 

10000 scenarios can be obtained, which is used to calculate the average overall 

system voltage magnitude estimation uncertainty σv can be calculated in this 

PMU placement plan. In the same way, the average overall system voltage 

magnitude estimation uncertainty σv can be calculated in every PMU 

placement plan with the given PMU number. Next, determine the minimum 

overall system voltage magnitude estimation uncertainty σv_min among these 

PMU placement plans under the given PMU number. If σv_min meets the overall 

system voltage magnitude estimation uncertainty criterion σ0, then collect the 

minimal overall system voltage magnitude estimation uncertainty σv_min and 

PMU placement plans. Otherwise, add one PMU number and repeat the steps 

as mentioned above until num equals the bus number of the input system. 

 

Fig. 2-2. Flowchart of the proposed reliability-based probabilistic OPP method. 
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2.4 Numerical Results 

The proposed OPP method is tested on IEEE 9-bus as well as IEEE 14-

bus systems. Three comparable experiments are conducted to investigate the 

optimal OPP plan with minimum voltage magnitude estimation uncertainty for 

each system. Firstly, to study the influence of the overall system voltage 

magnitude estimation uncertainty criterion on the OPP plan, in terms of various 

overall voltage magnitude estimation uncertainty criteria, Test 1 is conducted 

to find the minimal PMU number and the optimal OPP solution under this 

minimal PMU number whose overall system voltage magnitude estimation 

uncertainty is minimal. Secondly, to study the influence of PMU number on 

overall system voltage magnitude estimation uncertainty, Test 2 is conducted 

to find the optimal OPP solution with minimal overall system voltage 

magnitude estimation uncertainty under various numbers of PMUs. Thirdly, to 

study the influence of PMU measurement precision on OPP plan, in terms of 

various PMU measurement precision, Test 3 is conducted to find the optimal 

OPP solution with minimal overall system voltage magnitude estimation 

uncertainty under various numbers of PMUs. In these experiments, 10,000 

trials MC simulation is performed with each placement solution. Also, the 

MATPOWER toolbox is employed to compute load flow. 

2.4.1 Parameter Setting 

In the PLF process, the output of the generator is set to follow a Bernoulli 

distribution, and each generator’s forced outage rate is set as 0.03 [14]. Besides, 

load capacity is set to follow Gaussian distribution, which sets the mean value 
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the same as the measured load value, and sets standard deviation as 0.5 times 

of its mean value [14].  

For the settings of measurements, it is supposed that the measurements 

from both PMUs and RTUs follow Gaussian distribution, where the standard 

deviation is assumed as one-third of the precision of measuring equipment [14]. 

As for PMUs, the precision is set as: 0.1% for voltage amplitude and 0.01 rad 

for phase angle, respectively. As for RTU measurements, they have an inferior 

precision of 5% for current amplitude and power flow [14]. In particular, it is 

assumed that generation and/or power injections of entire buses are measured 

by RTUs. 

The malfunction probability of each component in the substation 

monitoring system is also assumed to conform to Gaussian distribution, of 

which the mean values are given in Table 2-1, and the standard deviation is 

0.1% [46]. 

 

Table 2-1 Malfunction probability of each component in the substation 

monitoring system. 

Malfunction Probability 

Qpmu 0.00450232 

Qct 0.00041553 

Qpt 0.00145762 

Qlink 0.001 

Qpdc 0.001 
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2.4.2 Optimal PMU Placement with Different Overall System Voltage 

Magnitude Estimation Uncertainty Criterion 

As the economic criterion in conventional OPP, the number of PMUs to 

be deployed is limited by the financial budget. Likewise, the overall system 

voltage magnitude estimation uncertainty criterion is applied for the decision-

maker to the minimal PMU number and the optimal OPP solution. In the OPP 

solution, minimum voltage magnitude estimation uncertainty cannot exceed 

this criterion. 

Through the proposed OPP method, in terms of various overall system 

voltage magnitude estimation uncertainty criteria, the minimal PMU number 

and the optimal OPP solution are obtained under this minimal PMU number 

whose overall system voltage magnitude estimation uncertainty is minimal. 

The results are presented in Table 2-2. With the corresponding optimal solution, 

each buses’ voltage magnitude estimation uncertainty under different overall 

system voltage magnitude estimation uncertainty criteria is shown in Fig.2-3. 

 

Table 2-2 Optimal PMU placement plans with different overall system voltage 

magnitude estimation uncertainty criterion. 

Overall system voltage 
magnitude estimation 
uncertainty criterion 

Minimum voltage 
magnitude estimation 

uncertainty 

PMU 
number 

Placement plan 
(bus No.) 

0.5% 0.4451% 1 9 

0.4% 0.3495% 2 5,7 

0.3% 0.2346% 3 5,7,9 

0.2% 0.1761% 4 3,5,7,9 
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Fig. 2-3. Each bus’s voltage magnitude estimation uncertainty of optimal PMU 

placement solution under different overall system voltage magnitude 

estimation uncertainty criteria. 

 

From Table 2-2 and Fig.2-3, the stricter the overall system voltage 

magnitude estimation uncertainty criterion, the more PMUs are required to be 

placed in the system. In Fig.2-3, when only one PMU is provided, the optimal 

solution is placing the PMU at bus 9; thus, the voltage magnitude estimation 

uncertainty is minimal among all buses in the system. However, when two 

PMUs are provided, the optimal solution is placing the PMUs at buses 5 and 

7; the voltage magnitude estimation uncertainty at bus 9 is greater than one 

PMU placed in the system. 
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2.4.3 Voltage Magnitude Estimation Uncertainty with Different PMU 

Number 

By utilizing the proposed method, the PMU placement solutions with 

various PMU numbers are acquired. 

From Fig. 2-4 and Table 2-3, it is suggested that the overall system voltage 

magnitude estimation uncertainty decreases with more PMUs installed in the 

system. Generally, the marginal benefit of installing additional voltage 

measuring devices decreases as the number of such measuring devices 

increases. When a few PMUs are installed in the system (like 1-4 PMU 

number), the overall system voltage magnitude estimation uncertainty 

decreases notably. When the PMU number is greater than four, the overall 

system voltage magnitude estimation uncertainty drops slower. Finally, when 

all buses in the whole network are installed PMU, the overall system voltage 

magnitude estimation uncertainty is close to the theoretical limit of uncertainty. 

However, it cannot reach the theoretical limit because each buses’ voltage 

magnitude estimation uncertainty is not only from their own PMU 

measurement but from another buses’ PMU, and the voltage magnitude 

estimation uncertainty is spread via power flow. Table 2-3 gives the detailed 

PMU placement plans with different PMU numbers. 
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Fig. 2-4. Overall system voltage magnitude estimation uncertainty with 

different PMU numbers. 

 

Table 2-3 Optimal PMU placement plans with different PMU numbers. 

PMU number Placement plans (bus No.) Minimum voltage magnitude 
estimation uncertainty 

1 9 0.4451% 

2 5,7 0.3495% 

3 5,7,9 0.2346% 

4 3,5,7,9 0.1761% 

5 3,4,5,7,9 0.1565% 

6 2,3,4,5,7,9 0.1417% 

7 2,3,4,5,6,7,9 0.1293% 

8 1,2,3,4,5,6,7,9 0.1216% 

9 1,2,3,4,5,6,7,8,9 0.1148% 
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Fig. 2-5. Probability distribution of overall system voltage magnitude 

estimation uncertainty. 
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The eight graphs in Fig.2-5 show the probability distribution of overall 

system voltage magnitude estimation uncertainty among all possible PMU 

placement combinations with different PMU numbers. Not all PMU placement 

combinations with more PMUs cause a less overall system voltage magnitude 

estimation uncertainty than PMU placement combinations with fewer PMUs. 

For example, when one PMU is installed in the system, nearly half of PMU 

placement combinations whose overall system voltage magnitude estimation 

uncertainty is less than 0.6%, while nearly 20% of PMU placement 

combinations have 2 PMUs whose overall system voltage magnitude 

estimation uncertainty is less than 0.6%. However, on the whole, the more 

PMUs placed in the system, the overall system voltage magnitude estimation 

uncertainty is more likely to be less. The range of overall system voltage 

magnitude estimation uncertainty with different PMU numbers is presented in 

Fig. 2-6. 

 

Fig. 2-6. The range of overall system voltage magnitude estimation uncertainty 

with different PMU numbers. 
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2.4.4 Voltage Magnitude Estimation Uncertainty with Different PMU 

Precision 

By utilizing the proposed method, the PMU placement solutions with 

various PMU measurement precision are acquired. 

When the PMU precision changes from 0.1% to 0.15%, the overall system 

voltage magnitude estimation uncertainty becomes greater. Under 0.15% 

precision, the minimal overall system voltage magnitude estimation 

uncertainty cannot also reach its theoretical limit (0.15%). Fig. 2-7 shows the 

result. 

 

Fig. 2-7. The overall system voltage magnitude estimation uncertainty with 

different PMU precision. 

 

As introduced in (2.12), the overall system voltage magnitude estimation 

uncertainty consists of two parts: PMU measurement devices’ uncertainty and 

voltage drop uncertainty. If the PMU precision is different, then the proportion 

of the PMU measurement devices’ uncertainty in overall system voltage 
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magnitude estimation uncertainty will be changed. Thus, with different PMU 

precision, the optimal solution with minimal overall system voltage magnitude 

estimation uncertainty will be different. The results that validate this inference 

are in Table 2-4 and Fig. 2-8 and Fig. 2-9. 

 

Table 2-4 Optimal PMU placement plans with different PMU numbers and 

different PMU precision. 

 PMU precision: 0.1% PMU precision: 0.15% 

PMU 
numb

er 

Placement 
plan 

 (bus No.) 

Minimum voltage 
magnitude 
estimation 
uncertainty 

Placement 
plan 

 (bus No.) 

Minimum voltage 
magnitude 
estimation 
uncertainty 

1 9 0.4451% 9 0.5746% 

2 5,7 0.3495% 5,7 0.4662% 

3 5,7,9 0.2346% 5,7,9 0.3382% 

4 3,5,7,9 0.1761% 3,5,7,9 0.2620% 

5 3,4,5,7,9 0.1565% 2,3,4,7,9 0.2335% 

6 2,3,4,5,7,9 0.1417% 3,4,5,6,7,9 0.2125% 

7 2,3,4,5,6,7
,9 0.1293% 2,3,4,5,6,7,

9 0.1939% 

8 1,2,3,4,5,6
,7,9 0.1216% 1,2,3,4,5,6,

7,9 0.1824% 

9 1,2,3,4,5,6
,7,8,9 0.1148% 1,2,3,4,5,6,

7,8,9 0.1734% 
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Fig. 2-8. The overall system voltage magnitude estimation uncertainty of 

different placement under different PMU precision. 

 

 

Fig. 2-9. The overall system voltage magnitude estimation uncertainty of 

different placement under different PMU precision. 
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2.4.5 Results on IEEE 14-Bus System 

The proposed approach is also tested in the IEEE 14-bus system. The PMU 

placement solutions of different overall system voltage magnitude estimation 

uncertainty criteria and different PMU numbers are obtained. The results are 

in Table 2-5 and Fig. 2-10. 

In Table 2-5, it shows that more PMUs are required to be installed in the 

system with the stricter overall system voltage magnitude estimation 

uncertainty criterion. Compared to the results on the IEEE 9-bus system in 

Table 2-2, more PMUs might be needed on IEEE 14-Bus System under the 

same overall system voltage magnitude estimation uncertainty criterion. For 

example, under the criterion of 0.3% and 0.2%, the minimum number of PMUs 

is respectively 5 and 10 while the number is 3 and 4 on IEEE 9-Bus System. 

From Fig. 2-10, it suggests the same trend in the results on the IEEE 9-bus 

system, in which the overall system voltage magnitude estimation uncertainty 

decreases with more PMUs installed in the system. 

 

Table 2-5 Optimal PMU placement plans with different overall system voltage 

magnitude estimation uncertainty criteria and different PMU numbers. 

Overall system voltage 
magnitude estimation 
uncertainty criterion 

Minimum voltage 
magnitude estimation 

uncertainty 

PMU 
number 

Placement plan  
(bus No.) 

0.5% 0.4710% 1 8 

0.4% 0.3856% 2 3,10 

0.3% 0.2918% 5 3,4,8,9,13 

0.2% 0.1990% 10 1,2,3,4,5,9, 
10,12,13,14 
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Fig. 2-10. Overall system voltage magnitude estimation uncertainty with 

different PMU numbers. 

 

2.5 Summary 

In this chapter, a reliability-based probabilistic OPP approach is proposed 

to obtain minimal voltage magnitude estimation uncertainty based on various 

operating scenarios, with supplementary PMUs installed in the power grid, 

which is observable via the SCADA system. PMU measurement system 

reliability is modeled when estimating the system states. In the modeling of 

PMU measurement reliability, PMU measurement system components’ 

random outages are considered. These random outages may lead to the partial 

unobservability of the network and will endanger the power system’s safety. 

Moreover, MC-based PLF is applied to describe a variety of operating 

scenarios. In this way, the load patterns and power generations are considered 

stochastically as the operating uncertainties so that the obtained PMU 
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placement solution is unbiased. Finally, the proposed OPP method is tested on 

IEEE 9-bus as well as IEEE 14-bus systems.  

 



47 
 

Chapter 3  A Novel Approach for Transmission System 

State Estimation Based on PMUs 

3.1 Introduction 

As introduced in chapter 2, SE plays a vital role in contemporary energy 

management systems (EMSs). While the system observability is the 

prerequisite to traditional SE methods, the network is, however, not always 

fully observable due to, e.g., malfunction of measurement devices, miss of 

measurement data, or interference by malicious data attacks [17]. Hence, this 

chapter focuses on proposing a novel approach for transmission system state 

estimation, which is effective even in an unobservable(as by the classical SE 

methods) network considering the corrupted or bad measurements and missing 

measurements under contingencies. 

As discussed in chapter 2, phasor measurement units (PMUs) shows great 

advantages over conventional supervisory control and data acquisition 

(SCADA) measurements on the following aspects: (i) Synchronization. Each 

PMU measurement is time-stamped and synchronized from the global 

positioning satellite system (GPS) [11]. (ii) Higher measurement accuracy. 

This is because network buses’ voltage phasor can be measured direly, and a 

reference bus with a fixed voltage phase angle is not needed to choose anymore. 

(iii) Higher sampling rates (up to 60 samples/s), which can capture fast system 

dynamics while bringing about the huger amount of data as compared with the 

SCADA system (typically around 1 sample/ 5 s) [64]. Owing to these merits, 

the deployment of PMUs makes it possible for real-time monitoring of the 

smart power grid [65].  
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To overcome the unobservability issue and handle corrupted 

measurements as well as missing measurements while providing an accurate 

SE, in this chapter, a novel SE approach using a conditional generative 

adversarial network (GAN) is proposed. GAN is one of the most promising 

generative networks under a deep learning framework and has attracted great 

interest in recent years, especially in computer vision research due to its 

excellent capability in generating realistic images [85] given a collection of 

indistinct or incomplete images. It has several merits: (i) speed of processing. 

Once the model is trained well, it can give the output immediately; (ii) do not 

need any appropriate knowledge of the system model. This method is model-

free and data-driven; (iii) fault tolerant. The output is not likely to have a large 

error even with fault input; (iv) fast and robust. It retains good learning ability 

in the context of bad or missing data [86]. This inspires this thesis to apply 

GAN in the SE process, where the raw system measurements can be regarded 

as corrupted images, and the desired system states correspond to the real 

images that can be directly generated through a fine-tuned GAN. Compared to 

the classical GAN, the conditional GAN (CGAN) is applied to appropriately 

adapt to the SE problem. The proposed method uses the Wasserstein distance 

rather than the Jensen–Shannon divergence proposed in [87], which can 

significantly improve training performance and obtain more accurate SE 

results. In this chapter, by applying conditional generative adversarial 

networks, the actual correlations of system states can be well captured, and the 

system states can be accurately estimated without prior knowledge of the 

system model. The deep learning based SE method with PMUs can effectively 

restore all system states considering the corrupted raw measurements or 
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missing measurements under contingencies. The influence of data 

contaminations is fully investigated with respect to different data 

contamination ratios and types. 

Considering the above discussed, the purely PMU-based SE method has 

shown various benefits compared with purely conventional SCADA based or 

PMU-SCADA-based SE methods, including linear measurement function, 

time-stamped measurements, high sampling rates, and low latency. In the 

future, the periodical magnitude-based measurement in the SCADA system 

will be gradually replaced by real-time PMU-based measurements. To develop 

an accurate SE method for the future smart grid, unlike the power grid is 

observable via the SCADA system in chapter 2, in this chapter, all 

measurements are assumed to be provided by PMUs. 

This chapter presents a comprehensive study of transmission system state 

estimation, and the proposed method can handle different types and ratios of 

contamination measurements and effectively restore all system states even in 

an unobservable network. The case studies are based on two large case systems, 

including the IEEE 118- bus system and the 2746-bus Polish system. 

 

3.2 Problem Formulation 

This section firstly details power system SE models based on PMUs. Then, 

the proposed SE framework based on deep learning is given. 

3.2.1 Power System State Estimation Models based on PMUs 

In the system with M PMUs installed, it is assumed the whole system can 

be observable with the maximum redundancy by deploying all these PMUs for 

all system buses. This corresponds to saying that the voltage phasors 
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, 1, ,j j jy V j Nθ= ∠ = 
, of all buses in the system, can be measured to form a 

raw measurement vector y, which is denoted as 1[ , , ]T
j Ny y y 

. In practice, 

there is a wide range of factors that might lead to corrupted measurements, 

such as impulsive communication noise, the failures of instruments, cyber-

attacks, etc. Missing measurement is another common situation faced by 

system operators. As discussed in chapter 2, the unavailability of getting 

voltage or current measurements from potential transformers (PTs) or current 

transformers (CTs), failure of phasor data concentrator (PDC), and failure of a 

local communication system [33] may all lead to the measurement loss of 

different severity. Especially, the system is more likely to be unobservable 

without enough redundancy when the aforementioned situations occur. 

As discussed in section 2.2.1, the presented BCSE model is based on PMU 

and SCADA measurements. The most commonly used SCADA measurements 

are the line power flows and bus power injections, in which the measurement 

function between the state variables and the measurements is non-linear [16]. 

While for PMUs, the measured quantities are voltage phasors, leading to a 

linear relationship with the state variables. The system states thus can be 

estimated via a linear measurement model. In the BCSE model, the state 

variables consist of the reference bus’s phasors and currents’ real part and 

imaginary part. While for the linear SE model based on PMUs, in an N-bus 

power system, the vector of state variables x is denoted by 

1 1[ , , , , , ]T
j N j NV V V θ θ θ   

, 1, ,j N= 

. jV  and jθ  are the voltage 

magnitude and phase angle of j-th bus, respectively. As the general SE 

formulation presented in section 2.2.1, the measurement function of the linear 

SE model based on PMUs is expressed in a similar form: 
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y = h(x) + e                      (3.1) 

where y represents the measurement vector obtained by PMUs; h (·) is the 

linear vector-valued measurement function established based on the state 

vector x; e is the measurement error vector that is usually assumed to be white 

noise composed by zero mean with a covariance matrix R. 

As discussed in section 2.2.1, the SE formulation is presented in (2.3). As 

discussed before, the classical SE involves complicated and separated steps to 

deal with network topology, observability, SE calculation, and bad data. 

Other models are based on data-driven methods. Such as auto-associative 

neural networks (NNs) or autoencoders and multilayer perceptron (MLP) 

based NNs are applied for SE. Once trained offline using historical data and/or 

simulated samples, NNs can be implemented for real-time SE. The accuracy 

of SE was not outstanding, especially for large-scale systems restricted by the 

development of AI technology during that period. 

3.2.2 The Proposed SE Framework based on Deep Learning 

Due to the poor temporal resolution nature of the pseudo-measurements in 

classical SE methods and the limitation by the development of AI technology 

during that period in data-driven methods based on NNs, the accuracy of SE 

cannot be guaranteed with corrupted measurements as well as missing 

measurements, especially for large-scale systems. Therefore, the proposed SE 

model is developed and includes three parts, i.e., the input, data-driven SE 

module based on deep learning technique, and the output. For the input, in this 

chapter, it is assumed that the system is observed merely by PMUs, i.e., all the 

obtained measurements are voltage phasors with a typical sampling rate at 0.02 

second/sample. The proposed data-driven SE module is based on a deep 
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learning framework, which includes conditional inputs and performs more 

outstanding than previous data-driven methods on handling contamination data 

(including corrupted or bad data and missing data) and will be discussed in 

detail in Section 3.3. The output is the estimated system states (voltage 

magnitudes and angles), whose updating frequency is in line with the PMUs 

and faster than the classical SCADA based SE. The prosed SE model provides 

an integral framework, which stays away from the complicated and separated 

steps in the classical SE methods. 

 

3.3 The Proposed Method 

In this section, to solve SE problems in 3.2, the proposed fully data-driven 

CGAN-SE with Wasserstein GAN is presented. The basic theory of GAN [87] 

will be reviewed first. Then, the section explains how the framework of 

Wasserstein GAN fits into the SE problem. Later, the model establishment 

process for SE by integrating the synthetic PMU measurement will be 

discussed. 

3.3.1 Wasserstein GAN 

As defined before, 
1[ ]T

Nx x=x  


 represents the true system state, ( )
1{ }i m

j ix =
 

denotes the i-th sample of the true system state, and m is the number of samples. 

Let ( )datap x  denote the distribution of the true system state. Suppose a group 

of noise inputs z  follow a known distribution ~ ( )zz p z , e.g., uniform 

distribution or joint Gaussian. The goal of the method is to transform the 

sample z  from the distribution ( )zp z  so that it can follow true system state 

distribution ( )datap x . To this end, two deep neural networks are trained 
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simultaneously. One is the generator network G expressed as ( )( ; )GG z θ , 

which is parametrized by ( )Gθ ; the other is the discriminator network D 

written as ( )( ; )DD x θ , whose function is parametrized by ( )Dθ . The generator 

and discriminator are combined to form the GAN network. 

Generator: When training the generator, a large number of up-sampling 

operations are implemented to the inputs z , and the generator outputs are the 

estimated system states. The training procedure can be expressed as the 

following mapping: 

( )( ; ) : ( )G
GG z z p zθ →                       (3.2) 

where ( )Gp z  is the generated distribution, which provides samples to the 

estimated system state. ( )Gp z  also follows the true system state distribution 

( )datap x . 

Discriminator: The discriminator should be trained with the generator at 

the same time. Both samples from the generated distribution ( )Gp z  and the 

true system state distribution ( )datap x   are served as discriminator inputs. 

After plenty of down-sampling operations, the output is a value realp  which 

is continuous and reflects what extent these inputs belong to the true system 

state distribution ( )datap x . Likewise, the training process of the discriminator 

can be expressed as a mapping: 

( )( ; ) :D
realD x x pθ →                        (3.3) 
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where x is the input vector that can be sampled either from ( )Gp z  or ( )datap x . 

The discriminator is expected to learn to distinguish between ( )Gp z  and 

( )datap x , and to maximize the difference between these two distributions. 

In the training stage, D is trained to maximize its capacity of discernment 

between true system state distribution and estimated state distribution from the 

generator. G and D are trained simultaneously to minimize the difference 

between these two distributions. The weights of G and D are updated to 

minimize generator loss function GC   and discriminator loss function DC , 

respectively. Specifically, a batch of samples collected from distribution 

( )zp z   is fed into G. Meanwhile, a batch of true samples drawn from 

distribution ( )datap x  are fed into D. A small GC  indicates that the generated 

samples are more realistic from the discriminator’s view. That is, with respect 

to the application of GAN for SE in this thesis, the generated system states are 

more similar to the true system states. On the other hand, a small DC  reflects 

the D does well in distinguishing the discrepancy between the generated 

system states and the true system states. Also, it indicates that there is a large 

difference between generated state distribution ( )Gp z   and true state 

distribution ( )datap x . Generator loss function GC   and discriminator loss 

function DC  can be expressed as [89]: 

~ ( )[log(1 ( ( )))]
zG z p zC D G z= −                    (3.4) 

~ ( ) ~ ( )[log( ( ))] [log(1 ( ( )))]
data zD x p x z p zC D x D G z= − − −          (3.5) 

For a given D, as a large output value of discriminator realp  shows the 

generated samples are more realistic, the generator should seek to minimize 
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log(1 ( ( )))D G z−  by altering G to generate more realistic samples, which gives 

the loss function of a generator in (3.4). For a given G, as seen in (3.5), the 

discriminator attempts to minimize log( ( ))D x− , thus giving a large 

discriminator output value realp  . In the meanwhile, the network minimizes 

log(1 ( ( )))D G z− − , which is virtually a reverse of GC . Note that, Eq. (3.4) 

equals to minimize log( ( ( )))D G z− . Hence, the GAN can be formulated by 

combining these two loss functions as a two-player minimax game with the 

value function ( , )V G D : 

~ ( ) ~ ( )min max ( , ) [log( ( ))] [log(1 ( ( )))]
data zx p x z p zG D

V G D D x D G z= + −       

(3.6) 

where ( , )V G D  is the negative of DC . 

At the beginning of training, the performance of generator G is poor, and 

the system state samples generated by G are very different from samples of 

( )datap x . Consequently, the discriminator outputs a small value of realp and 

rejects these ‘fake’ samples with high confidence. Under these circumstances, 

GC  is small, DC  is large and ( , )V G D  is also large. As the training goes on, 

the generator learns to produce more realistic samples and the discriminator 

learns to distinguish these samples from two different distributions. Finally, G 

defeats D, i.e., the samples generated by G are almost as real as true samples, 

also, D fails to distinguish samples from ( )Gp z  and ( )datap x . 

According to the Kantorovich-Rubinstein duality [90], The Wasserstein 

distance (Earth-Mover distance) is the dual of the minimax objective in (3.6). 

x  and y  are two random variables and ( , )r g∏    is the set of all joint 
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distributions ( , )x yγ , whose marginals are r  and g , respectively. Then the 

Wasserstein distance between x  and y  is defined as: 

( , )~( , )
( , ) inf [ ]

r g
r g x yW x yγγ∈∏

= −
 

                    (3.7) 

The Wasserstein distance can be viewed with the “cost” of the optimal plan 

that moves all the “mass” ( , )r g∏    from location x  to location y  in order 

to transform the distribution r  into the distribution g . ( , )x yγ  can be 

described as the quantity of the moved “mass” at one time. 

The objective of GAN is to make the generated sample distribution 

( ( ( )))zp D G z  close to the true system states distribution ( ( ))datap D x . Thus, 

the Wasserstein distance between the true system state and the generated 

sample can be expressed as: 

~ ( ) ~ ( )( ( ), ( ( )) sup [ ( )] [ ( ( ))]
data zx p x z p z

D
W D x D G z D x D G z= −       (3.8) 

When the Wasserstein distance converges, the optimal plan of moving 

“mass” is found, and the optimal generator G∗  is also found. As reported in 

the literature [89], the JS divergence applied in the original GAN cannot reflect 

the extent to which two distributions ( )Gp z  and ( )datap x  are close when they 

are very different from each other, which makes GAN sensitive to the 

parameters. As a result, the generated system states almost follow the pattern 

with the highest occurring probability regardless of the inputs. However, 

applying the Wasserstein distance as the loss function of GAN [91] 

successfully addresses these limits and gives the accurate distance between two 

distributions. Therefore, the generator of WGAN can mimic the true system 
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operating scenarios to generate diversified system states rather than the same 

ones produced by the original GAN. 

3.3.2 Conditional GAN SE 

The classical GAN model uses merely the noise vector as input and has no 

extra limitations for the generated output. The classical GAN can be extended 

to a conditional counterpart where both the generator and discriminator are 

conditioned on some extra information [91]. In conditional GAN (CGAN), the 

generated samples should satisfy this condition y . 

This architecture is more fit to SE problems, where the raw system 

measurement can be regarded as a condition y  , and the generated system 

states should be guaranteed to be as close as possible to the true system states 

while satisfying the corresponding raw measurement. The CGAN is 

implemented by feeding y   into both the generator and discriminator as 

additional inputs. Eventually, Eq. (3.8) can be rewritten as: 

~ ( ) ~ ( )min max ( , ) [ ( )] [ ( ( ))]
data zx p x z p zG D

V G D D x y D G z y= −     (3.9) 

Fig. 3-1 illustrates the CGAN architecture for SE, and the algorithm used 

in the proposed method is described in Algorithm 3-1. 
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Fig. 3-1.  The architecture of CGAN, including the input and output of the 

generator and discriminator, respectively. 

 

In algorithm 3-1, ( )G z  and ( )D x  are neural networks with parameter 

( )Gθ  and ( )Dθ , respectively. Both networks consist of multilayer perceptron 

(MLP), convolution, normalization, max-pooling and Rectified Linear Units 

(ReLU). The parameters are tuned within several training batches. The training 

algorithms for discriminator and generator are slightly different, where the 

former is based on gradient ascend and the latter is gradient descend. Besides, 

the Root Mean Square Propagation (RMSProp) algorithm is applied in both 

generator and discriminator to allow the learning rate to be self-adjustable. 

RMSProp is a method in which the learning rate is adapted for each of the 

parameters. The idea is to divide the learning rate for a weight by calculating 

the average of recent gradients magnitudes [92]. It should be noted that weight 

clipping is applied in discriminator training to meet specific conditions and 

avoid gradient explosion [89]. The model setting for CGAN will be presented 

in Section 3.4.1. 
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Algorithm 3-1 CGAN with Wasserstein Distance for SE 
Require: α , the learning rate; c , the clipping parameter; m , the batch size; 

disk , the number of iterations of the discriminator per generator iteration. 
Require: ( )

0
Dθ  , initial discriminator’s parameters; ( )

0
Gθ  , initial generator’s 

parameters. 
while ( )

0
Gθ  has not converged do 

for 0, , dist k=   do 
• Sample batch of m  noise sample ( ) ( )

1{( , )}i i m
iz y =   

from noise prior distribution ( )zp z . 
• Sample batch of m  examples ( ) ( )

1{( , )}i i m
ix y =   

from the true system state data ( )datap x  
•Update the discriminator by ascending its  
gradient: 

( ) ( )
( ) ( ) ( ) ( )

1
( ) ( ( ))1 [ ]D D

m
i i i i

i
g D x y z y

m
D G

θ θ
=

−←∇ ∑  

( )
( ) ( ) ( )( , )D
D D DRMSProp g

θ
θ θ α θ← + ⋅  

( ) ( )( , , )D Dclip c cθ θ← −  
end for  
• Sample batch of m  noise samples ( ) ( )

1{( , )}i i m
iz y =   

from noise prior distribution ( )zp z . 
•Update the generator by descending its gradient: 

( ) ( )
( ) ( )

1
( ( )1 )G G

m
i i

i
g G z yD

mθ θ
=

← −∇ ∑  

( )
( ) ( ) ( )( , )G
G G GRMSProp g

θ
θ θ α θ← − ⋅  

end while 
 

3.4 Numerical Results 

To validate the effectiveness of the proposed SE method, the experiment 

is carried out on two power systems, namely the IEEE-118 bus system and the 

2746-bus Polish network, respectively. The system data are simulated from 

MATLAB and MATPOWER toolbox by implementing the Monte Carlo 

power flow calculations [93]. To obtain distinct system states, it is assumed the 

system load satisfies the Gaussian distribution with zero mean and standard 

deviation of 0.1. Load samples are then drawn and fed into power flow 

computations to derive true system states. For the IEEE-118 bus system and a 
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2746-bus Polish network, there are 15,000 training examples, respectively. 80% 

of these samples are used for training, and the remaining 20% are used for 

testing. The batch size is 32, and the number of epochs is 300. Therefore, the 

training of the networks took 112,500 iterations (15000 * 80% / 32 * 300) for 

each scenario. All the programs for the conditional GAN-based SE (CGAN-

SE) model are implemented using ‘TensorFlow’ [94] in Python on PyCharm 

IDE with NVIDIA GeForce RTX 2080 Ti GPU and 11GB RAM is 11GB. 

3.4.1 Model Architecture and Training Details 

Table 3-1 The proposed CGAN based SE model structure for the IEEE 118-

bus system. 

 Generator G Discriminator D 

Input 100 2 * 118 

Layer 1 MLP, 1024 Conv, 64 

Layer 2 MLP, 512 Conv, 256 

Layer 3 Conv_transpose, 512 Conv, 512 

Layer 4 Conv_transpose, 256 MLP, 1024 

Layer 5 Conv_transpose, 64  

 

The generator G consists of 2 fully connected multilayer perceptron (MLP) 

and 3 de-convolutional layers. The first 2 MLPs are used for up-sampling, and 

the de-convolutional layers kernel size is 1 5×  and strides size 2 are used to 

up-sample the input noise z . While the discriminator D has a reversed 

architecture, whose 3 convolutional layers are all with a kernel size of 1 5×  

and stride size of 2. Table 3-1 lists the detailed settings of the proposed GAN 

model on the IEEE 118-bus system. 
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The input measurement data are normalized to [-1, 1] in order to match 

with the output range of the tanh activation function in the last layer of the 

generator G. The models are trained by the RMSProp optimizer. Random 

initializations of neuron weights follow a normal distribution with zero mean 

and standard deviation of 0.02. Except for the input layer, the batch 

normalization is employed before each layer to stabilize the inputs to nonlinear 

activation functions. To be specific, it normalizes each layer’s inputs by using 

zero mean and unit variance. Leaky-ReLU activation function is used in the 

discriminator, and the ReLU activation function is used in the generator, 

excluding the output layer. In this chapter, to achieve reliable performance, the 

discriminator D is trained for four times, and the generator G is trained once 

[85]. Thus, disk  is set as 4 in Algorithm 3-1. 

3.4.2 Data Generation 

As mentioned in the preceding sections, the true system states x  are 

generated via the Monte Carlo probabilistic power flow calculations with 

different load scenarios. Then, the raw measurements are created by adding a 

Gaussian noise e with zero mean and standard deviation of 0.001 [112] (PMU’s 

precision) to x . The next section will discuss the creation of abnormal 

measurements considering 3 contamination scenarios, in each of which 

different contamination ratios r% ranging from 0% to 100% will be considered. 

Corrupted measurement data refers to the measurements that significantly 

differ from the normal measurement data due to various reasons such as 

instrument failures, and impulsive communication noise, etc. Corrupted 

voltage magnitude and phase angle measurements are generated by randomly 

choosing r% raw measurements and adding an error with 0.5 mean and 0.05 
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standard deviation [64]. The rest (1 - r%) are still raw measurements with only 

typical PMU measurement noise. 

Missing measurement data are generated by randomly choosing r% raw 

measurement and setting their voltage magnitude and voltage phase angle with 

zeros. 

Mixed measurement data is contaminated with a mixture of bad data and 

missing data. To fabricate this situation, the contaminated data are generated 

equally for each type. i.e., the mixed contamination data accounting for r % of 

the dataset contains (r% / 2) corrupted data and (r% / 2) missing data. 

3.4.3 Performance Evaluation 

The performance of SE is evaluated by the mean average error (MAE) for 

the total SE error [79]: 

( ) ( )

1 1

1 ˆMAE
*

N m
i i

j j
j i

x x
N m = =

= −∑∑                      (3.10) 

where N  is the number of buses, m  is the number of samples, ( )ˆ i
jx  and ( )i

jx

refer to estimated system states and true system states corresponding to the i-

th sample and the j-th bus, respectively. 

A. Overall SE accuracy under different contamination ratios and types 

Different contamination ratios r% ranging from 10% to 90% with 10% 

increment are examined in this section to give the full-scale analysis of the 

model accuracy and robustness. The case with raw measurements (r% = 0%) 

is also tested. Additionally, to ensure the experiment is unbiased, the verified 

model is simulated 10 times for each result. The MAE of the proposed method 

for SE of both voltage magnitude and phase angle under each contamination 

scenario are illustrated in Fig. 3-2 (IEEE-118 bus system) and Fig. 3-3 (2746-
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bus Polish network). Their average SE results of ten runs are represented by 

the blue/orange bars, respectively.  

 

Fig. 3-2.  MAE (e-3) of CGAN-SE on the IEEE 118-bus system over ten runs 

with respect to various contamination ratios under three measurement 

contamination scenarios.  

(a) Corrupted Measurement, (b) Missing Measurement, (c) Mixed 

contamination Measurement 

 

 

Fig. 3-3.  MAE (e-3) of CGAN-SE on the 2746-bus Polish system over ten 

runs with respect to various contamination ratios under three measurement 

contamination scenarios.  

(a) Corrupted Measurement, (b) Missing Measurement, (c) Mixed 

contamination Measurement 

 

From the results shown in Fig. 3-2, the MAE of voltage angle is higher 

than the voltage magnitude under all three contamination scenarios. Especially 

in Fig. 3-2 (c), with mixed contamination measurement, the MAE of phase 
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angle is significantly greater than the voltage magnitude. In the scenario with 

only raw measurement involved (r%=0%), the MAE of voltage magnitude and 

phase angle are 5.1193e-4 and 1.5605e-3, respectively. With the increase of 

contamination ratio from 0% to 90%, the MAE of both voltage magnitude and 

phase angle grows accordingly. Additionally, the MAE of phase angle has an 

obvious rising trend while that of voltage magnitude ascends slowly. The MAE 

under mixed contamination situations is greater than that of the other two cases. 

The MAE with the missing measurement is slightly smaller as compared to 

that with the corrupted measurement. The tendency of model performance for 

the 2746-bus Polish system under all verified contamination ratios is similar to 

that of the 118-bus system, as observed in Fig. 3-3. Yet, the MAE of voltage 

magnitude is larger than that in the 118-bus system, whereas the error of phase 

angle is smaller. 

B. Estimated Distribution Assessment 

To investigate the similarity of the distribution between the generated 

system states and true system states, two load buses are randomly chosen to 

compare their probability density distribution profiles of voltage magnitude. 

Fig. 3-4 and Fig. 3-5 depict the probability density histograms of generated and 

true system states, respectively at bus 30 (118-bus system) under 30% 

contamination ratio. Also, Fig. 3-6 and Fig. 3-7 depict the probability density 

histograms of generated and true system states, respectively at bus 245 (2746-

bus system) under 30% contamination ratio. The probability in these figures is 

represented by the individual rectangle areas multiplied by the width of the 

interval, and the Y-axis value and the cumulative rectangle areas are equal to 

one. The distribution of voltage magnitude is closer to its true distribution than 
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that of phase angle under three contamination scenarios in both tested systems. 

On the other hand, CGAN-SE is more effective in handling either missing or 

corrupted measurement than mixed contamination measurement, as the 

discrepancy of distribution profiles for the former two scenarios is less evident 

than that for the mixed contamination measurement case.  

 

Fig. 3-4.  Probability density histograms of the generated system states and 

true system states with different contamination measurements (30% 

contamination ratio) at bus 30 of the IEEE 118-bus system (voltage magnitude).  

(a), (b), (c) Probability density distribution of voltage magnitude with 30% 

ratio of corrupted measurement, missing measurement, and mixed 

contamination measurement, respectively. 

 

 

Fig. 3-5.  Probability density histograms of the generated system states and 

true system states with different contamination measurements (30% 

contamination ratio) at bus 30 of the IEEE 118-bus system (voltage phase 

angle).  
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(a), (b), (c) Probability density distribution of phase angle with 30% ratio of 

corrupted measurement, missing measurement, and mixed contamination 

measurement, respectively. 

 

 

Fig. 3-6.  Probability density histograms of the generated system states and 

true system states with different contamination measurements (30% 

contamination ratio) at bus 245 of 2746-bus Polish system (voltage magnitude).  

(a), (b), (c) Probability density distribution of voltage magnitude with 30% 

ratio of corrupted measurement, missing measurement, and mixed 

contamination measurement, respectively.  

 

 

Fig. 3-7.  Probability density histograms of the generated system states and 

true system states with different contamination measurements (30% 

contamination ratio) at bus 245 of 2746-bus Polish system (voltage phase 

angle).  

(a), (b), (c) Probability density distribution of phase angle with 30% ratio of 

corrupted measurement, missing measurement, and mixed contamination 

measurement, respectively. 
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To quantify the similarity between the generated system states and true 

system states, the Wasserstein distance between two distributions is calculated, 

and the results are shown in Table 3-2. The Wasserstein distance has been 

introduced in Section 3.3.1 as a natural way to compare two probability 

distributions, and the smaller value means the two distributions are similar. As 

seen from Table 3-2, the smallest Wasserstein distance is observed in the case 

of voltage magnitude on the IEEE 118-bus system with corrupted 

measurement, and the largest distance occurs in the estimated voltage phase 

angle on the IEEE 118-bus system with corrupted measurement. Besides, the 

distance of voltage magnitude is larger than that of voltage phase angle for the 

same system. 

 

Table 3-2 The Wasserstein distance with different contamination 

measurements (30% contamination ratio) on the IEEE 118-bus system and the 

2746-bus Polish system. 

 
Contamination Type (30% ratio) 

Corrupted Missing Mixed 
IEEE 118-bus system (voltage 

magnitude) 1.4903 1.5808 2.0910 

IEEE 118-bus system (voltage phase 
angle) 6.1195 6.8061 8.7550 

2746-bus Polish system (voltage 
magnitude) 2.0592 1.9056 2.4831 

2746-bus Polish system (voltage phase 
angle) 3.9170 4.1434 5.4669 
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C. Spatial Correlation Assessment 

To further validate the quality of generated system states, the correlation 

of buses is studied for voltage magnitude and phase angle, respectively. To 

exhibit the evolving process of correlation during training, the Pearson 

correlation coefficient matrix is computed at several training iterations, i.e., 

200, 2000, and 20000, under 30% mixed contamination scenario. For the 

voltage magnitude of the 118-bus system, as shown in Fig. 3-8(a), both 

generated voltage magnitude and true voltage magnitude show weak spatial 

correlations as the correlation coefficients tend to be zeros. Thus, CGAN-SE 

can yield correlations that are almost similar to the true system state. This is 

also confirmed in Fig. 3-8 (c) on the 2746-bus system. By contrast, the spatial 

correlation of the phase angle between buses is stronger than that of voltage 

magnitude. At the beginning of the training, though the correlation profile of 

phase angles is far from the true ones, with the learning carried on, it can learn 

the spatial interdependency and finally gives a better result. Additionally, the 

dark cross line around bus 70 in both generated phase angles and true phase 

angles means this bus has no spatial correlation with all of the other buses, 

which represents the phase angle of this bus is a constant. This conforms to the 

system model that bus 69 is a slack bus. Therefore, CGAN-SE has the 

capability of learning the spatial correlation of voltage magnitude and phase 

angle between buses. 
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Fig. 3-8.  The spatial correlation coefficients matrix colormap for different 

training iterations. From left to right: 200 iterations, 2000 iterations, 

20000iterations, true system states. All results are tested with 30% 

contamination ratio of mixed contamination measurement (the right color bar 

is the correlation coefficient). 

(a) and (b) are the voltage magnitude and phase angle spatial correlation on 

IEEE 118-bus system, respectively; (c) and (d) are the voltage magnitude and 

phase angle spatial correlation on 2746-bus Polish system, respectively. 
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3.4.4 Accuracy Comparison 

As discussed before, only PMU measurements are considered in the 

network, and the measurement model is linear. Thus, the proposed method is 

compared with a linear WLS state estimator (LWLS-SE) [76]. To investigate 

the robustness of CGAN-SE, the WLAV state estimator (WLAV-SE) is also 

implemented by minimizing the L1 norm between true system states and 

estimated states [82]. The experiments for LWLS-SE and WLAV-SE are 

carried out by comparing the MAE of voltage magnitude and phase angle for 

the IEEE 118-bus system and the 2746-bus Polish system, respectively. 

Especially, three different types of contamination measurement with the ratio 

ranging from 0% to 90% are considered.  

In practice, the unobservable scenarios could occur with any ratio of 

missing input measurements, which can hardly be directly handled by the 

classical SE methods and are handled by using pseudo-measurements to 

replace the missing input measurements. As preliminary experiments, missing 

data ratios ranging from 10%~90% are considered to represent the 

unobservable scenarios. Since the occurrence of the missing measurement data 

is stochastic, r%(10%~90%) raw measurements are randomly chosen and set 

as missing data and assumed as zeros in the experiments. For example, if 10% 

of raw measurements are missing data in an adjacent area of the IEEE 118-bus 

system, some buses would not be monitored, which corresponds to saying that 

the system is unobservable. Besides, with the increased number of missing 

measurements, the system tends to be more unobservable, particularly by 

classical SE methods. The missing data problem is also tangled with the 

possible situation of partial system outages, where the missing input data to SE 
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models could be attributed to the actual outages of system elements. Under 

such situations, the proposed SE method should provide estimated states 

properly, which is worthy of further investigations in the future. 

The same measurement data and the experiments are applied and apply 

LWLS-SE and WLAV-SE to estimate voltage magnitude and phase angle. 

Besides, a comparison study between a deep convolutional neural network-

based SE (DCNN-SE) method and CGAN-SE is conducted to show the 

advantages of CGAN-SE over other neural networks with deep learning 

[95].DCNN is a generator network, which is trained by the same dataset and 

verified via the same contamination ratio from 0% to 90%. 

The comparative results of the proposed CGAN-SE against three 

benchmarks, LWLS-SE, WLAV-SE, and DCNN-SE under both test systems 

are listed in Table 3-3 and Table 3-4, respectively. In particular, the bold 

number in Tables 3-3, 3-4 are the minimum MAE of voltage magnitude and 

phase angle, respectively in each scenario. For the measurements containing 

noises only (r% = 0), the MAE of both voltage magnitude and phase angle for 

LWS-SE and WLAV-SE method has the PMU measuring precision close to 

0.001. In the cases with corrupted measurements for both systems, DCNN-SE 

achieves significant improvements over the traditional LWLS-SE and WLAV-

SE but is inferior to the proposed CGAN-SE method. 

In the context of missing and mixed contamination measurements, the 

proposed CGAN-SE consistently outperforms LWLS-SE, WLAV-SE, and 

DCNN-SE. With increased contamination ratios, the MAE of LWLS-SE and 

WLAV-SE increase dramatically. The reason is that more unobservable 

scenarios occur with a larger number of missing measurements or mixed 
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measurements, especially in the case of measurement loss, where it shows the 

largest MAE. On the other hand, CGAN-SE performs well because it is a data-

driven and model-free approach. By applying the conditional generative 

adversarial networks, the actual correlations of system states can be well 

captured, and the system states can be accurately estimated without prior 

knowledge of the system model. Therefore, even the system is unobservable, 

CGAN-SE can still estimate system states with small errors.  

Especially for robust WLAV-SE implemented on IEEE 118-bus system 

with 10% corrupted measurement, the smallest MAE for voltage magnitude 

and voltage phase angle is 9.032e-03 and 1.115e-02, respectively. While its 

MAE becomes larger as the missing ratio or corrupted ratio increases. In these 

cases, the system operator cannot monitor any violations or events at the buses 

with bad SE results, which may lead to catastrophic outcomes. The large MAE 

owes to a large number of bad data, this is distinct from the experiments in 

most studies that only very little bad data (usually less than 5%) is considered. 

In the latter cases, the system can always be observable, and WLAV-SE can 

perform well with minor errors. 

Besides, the MAE of DCNN-SE grows rapidly, especially for mixed 

contamination measurement. The phenomenon indicates that the method is 

unable to estimate system states accurately. In contrast, the proposed method 

is not significantly influenced and still can maintain the error within the 

acceptable range. The major reason for these results is that the GAN in the 

proposed method consists of a generator and a discriminator, while DCNN 

only has a generator, and the discriminator can enhance the performance of the 
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generator by providing the feedback (Wasserstein distance) between the true 

system states and the generated system states during the training process.  

 

Table 3-3 Performance comparison with benchmarks on the IEEE 118-bus 

system. 

 

 

Table 3-4 Performance comparison with benchmarks on 2746-bus Polish 

system. 
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In the 2746-bus Polish system, the MAE in the DCNN-SE method 

increases sharply, especially for phase angle and mixed contamination cases. 

The MAE of these cases is larger than 1.0e-2, which does not satisfy the 

requirement of SE. In contrast, CGAN-SE can maintain a high degree of 

accuracy for both voltage magnitude and phase angle. 

In summary, the MAE of voltage magnitude for the IEEE 118-bus system 

and 2746-bus Polish system in all scenarios ranges in [5.1e-4, 6.4e-4] p.u. and 

[6.7e-4, 1.2e-3] p.u., respectively. Also, the MAE of phase angle for the IEEE 

118-bus system and 2746-bus Polish system in all scenarios ranges in [1.6e-3, 

5.3e-3] rad and [6e-4, 2.5e-3] rad, respectively. 

 

3.5 Summary 

In this chapter, a model-free and data-driven deep learning based method 

is proposed for the SE of a power system. This method is based on CGAN, 

where the Wasserstein distance is applied as the loss function to improve 

training performance. With the corrupted or missing measurement at different 

contamination ratios, the proposed method can perform better than the 

traditional and state-of-the-art methods, i.e., LWLS-SE, WLAV-SE, and 

DCNN-SE. The proposed method CGAN-SE not only can estimate the system 

states with high accuracy but can also capture the statistical properties of the 

system measurements either from the probability distribution of system states 

or spatial correlation of buses. Moreover, in the case studies, the proposed SE 

method may produce satisfactory SE results for abnormal situations with 10%-

90% missing data. Notably, missing input measurement data can frequently 

occur in practice, where the classical SE approaches have to handle such 
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situations by using pseudo-measurements to replace the missing input 

measurements. It is important to point out that the study is preliminary for the 

proposed SE method to handle the missing data situations. Besides, the missing 

data problem is also tangled with the possible situation of partial system 

outages, where the missing input data to SE models could be attributed to the 

actual outages of system elements. Under such situations, it is very challenging 

to distinguish between the fundamental reasons for missing data due to either 

actual data missing during the data transportation/communication or the 

system outages. This issue is worthy of further investigation in the future but 

out of the scope of this Thesis. The effectiveness of the proposed CGAN-SE is 

validated through testing on the IEEE 118-bus system, as well as a large system 

with 2746 buses. The mean absolute error is less than 1.2e-3 p.u. and 5.3e-3 

rad for voltage magnitude and phase angle, respectively, which is significantly 

better than traditional methods. 
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Chapter 4  A Novel Approach for Distribution System State 

Estimation Based on PUMs Considering Network 

Topology Changes 

4.1 Introduction 

State estimation (SE) is traditionally only applied in transmission systems. 

In recent years, SE based on PMUs or micro-PMUs is also discussed to 

enhance real time monitoring and control of distribution systems with 

increased penetration of renewables and other emerging technologies that 

introduce tremendous uncertainties and risks into system operation. Therefore, 

distribution system state estimation (DSSE) becomes a fundamental part of the 

distribution management systems (DMSs) needed for the monitoring and 

control of the future smart grid [96]. DSSE supplies the real-time system 

operating states to a variety of DMS applications as their inputs [97]. 

The topology of the network can be defined directly by the status of 

switching devices [88]. The classical SE methods involve complicated and 

separated steps to deal with network topology, observability, SE calculation, 

and bad data. In transmission systems, the system topology is generally 

deemed to be very constant. Therefore, many methods premise that the system 

topology is unchanged and completely known based on monitoring devices. 

However, this assumption is invalid for distribution systems, where the branch 

switch statuses may be unknown or doubtful due to frequent reconfiguration 

actions and limited topology measurements [18]. As a consequence, classical 

SE methods are inapplicable without an ascertained topology [32]. In order to 
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estimate system states accurately in distribution systems, the appropriate 

method of DSSE considering the topology changes is essential. 

To handle varying network topology issues in an integral framework and 

improve the SE performance for the out-of-sample topologies, in this chapter, 

based on chapter 3, a novel data-driven SE approach considering topology 

changes and data contaminations for distribution systems based on the 

topology-aware generative adversarial network (TAGAN) model with only 

PMU measurements applied, where a multilayer perceptron (MLP) based 

detector (for measurement data quality assessment and labeling), the spectral 

normalization discriminator and the hinge loss function are considered to 

improve SE performance. TAGAN model is based on the classical GAN, 

which has several merits, including 1) easier to compute than the classical 

GAN method due to its simple mathematical formulation of the loss function. 

2) faster to be trained, since during most of the training epochs, the gradient of 

the loss function is zero, and the network weights do not need to be updated. 

3) more robust against data contaminations due to its nonlinear loss functions 

[115]. This inspires us to apply TAGAN in the DSSE process, which can 

accurately estimate system states without prior knowledge of the system 

topology. The proposed TAGAN based SE method can effectively reconstruct 

the real system states considering the corrupted raw measurements or even 

missing measurements under varying topologies. Especially for the out-of-

sample topologies, the proposed method can still estimate the system states 

accurately because the spectrum normalization is applied in the discriminator. 

The main contribution of this chapter lies in that a novel data-driven 

TAGAN model is proposed for DSSE, which represents the first effort of 
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applying one integrated deep learning framework for SE that is capable of 

addressing the uncertainties involved in both grid topology and state 

measurement simultaneously. Unlike the existing data-driven approaches that 

can only handle a finite topology space, the proposed method by applying 

conditional GAN with the spectral normalization is capable of tackling a 

variety of out-of-sample topologies. Besides, a detector for measurement data 

quality assessment and labeling and the hinge loss function are applied in the 

TAGAN model to improve SE accuracy. Extensive experiments have been 

carried out to examine the influence of data contaminations with respect to 

different ratios and types, which are rarely considered by most existing works. 

Thus, the proposed method is proved to be robust to the corrupted 

measurements or missing measurements, making the SE viable even in a 

traditionally unobservable network. 

The remaining sections of this chapter are organized as follows: Section 

4.2 introduces the problem formulation. Section 4.3 presents the proposed 

TAGAN based SE model. Section 4.4 gives the results and the analysis on the 

IEEE 33-node system and IEEE 118-bus distribution system. Finally, Section 

4.5 concludes this chapter. 

 

4.2 The Proposed DSSE Models Considering Contaminated 

Measurements under Varying Topologies 



79 
 

 

Fig. 4-1.  The overall framework of the proposed DSSE model. 

 

As shown in Fig. 4-1, the proposed DSSE model includes four parts, the 

input, measurement data quality assessment and labeling (detector), deep 

learning data-driven SE module, and the output. For the input, in this chapter, 

it is assumed that the distributed system is observed merely by PMUs, i.e., all 

the obtained measurements are voltage magnitudes while phase angles are 

usually not considered in distribution systems [98]. The data-driven SE module 

cannot fully handle corrupted and missing data when PMU measurements are 

directly input in the SE module. Therefore, it is meaningful to preprocess PMU 

measurements so that the measurement data quality can be well assessed and 

labeled as in the measurement data type vector, which will be input into the SE 

module with PMU measurements simultaneously in order to enhance the 

overall performance of SE. The following sections will give the details. The 

proposed data-driven SE module is based on a deep learning framework 

capable of handling contamination data (including corrupted data and missing 

data), and it will be detailed discussed in Section 4.3. The output is the 

estimated system states (voltage magnitudes), whose updating frequency is in 

line with the PMUs and faster than SCADA measurements. The proposed 
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DSSE model is an integral framework to directly provide SE results, which 

stays away from the complicated and separated steps in classical SE methods.  

For an N-bus distribution system, the vector of state variables x is denoted 

by 1[ , , ]T
j NV V V  , 1, ,j N=  . jV  is the voltage magnitude of j-th bus. 

As the general SE formulation presented in section 2.2.1 and the linear SE 

model with PMUs presented in 3.2.1, the same measurement model is also 

applicable to the distribution system. 

In the proposed DSSE model, the topology change refers to the change of 

the branch switch statuses while the bus number is unchanged. In the DSSE 

model, the number of branches is NB, the topology measurements can be 

represented by the vector of switch statuses sw   and expressed as 

1[ , , ]T
j NBsw sw sw  , 1, ,j NB=  . For jsw , “0” represents that the branch 

j is open, while “1” represents that the branch j is closed.  

In the DSSE model, the raw measurement vector y is composed of the 

measured voltage magnitude jy , 1, ,j N=   of all buses, and this vector can 

be expressed as 1[ , , ]T
j Ny y y   . As introduced in section 3.2.2, the raw 

measurement vector with corrupted system measurements, i.e., bad data, is 

denoted as 1[ ]
C

T
n Ny y y=Cy    , where ync denotes the corrupted 

measurements. Likewise, as introduced in section 3.2.3, the raw measurement 

vector with missing measurements is denoted as 1[ 0 ]T
Ny y=Ly   , where 

the missing measurements jy  , resulting from measurement loss, are 

substituted by zero. 

Besides, the measurement data type vector, which is generated by the 

measurement data quality assessment and labeling module, i.e., the detector 
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based on the raw measurement input, is denoted by 1[ ]T
j Nt t t=t  

 , 

1, ,j N= 

, which is specially introduced to improve SE accuracy. The details 

of the detector and the measurement data type vector will be introduced in 

Section 4.3.1. For jt  , “1” represents normal measurement data, and “0” 

represents corrupted or missing measurement data. 

The objective of this DSSE problem is to train a generative model based 

on TAGAN by using raw measurements and true system states. Let x  denote 

the true system states, i.e., voltage magnitudes in this chapter, and the training 

samples are obtained as the pairs of measurements and true system states

((y, t), x) . In this model, the inputs are voltage measurements and measurement 

data types (y, t) , each of the inputs (y, t)  is stamped with a given label (true 

system states x ) as a condition. Once plenty of ((y, t), x)  pairs are obtained, 

the goal is to train a TAGAN network to generate the estimated system states 

x̂   that are expected to be close to the true system states x   as much as 

possible. Then, this model can be formulated into: 

( )
( )

0

0

ˆ arg min ( , )

( , )

f d

d f

 = −


=

x
x x y t

x y t

              (4.1) 

where f(·) represents the TAGAN model, and it is a value function of the two-

player minimax game; d0 is the value of f(·) with the true system states input. 

The single output of f(·) represents the training process of the TAGAN model. 

The difference between ( )( , )f x y t  and d0 reflects the similarity between x 

and x . The details of the TAGAN and the two-player minimax game value 

function will be presented in Section 4.3.1. 
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4.3 The Proposed Topology-Aware Generative Adversarial 

Network 

The topology-aware GAN (TAGAN) model for SE is presented in this 

section, where the spectral normalization is introduced to handle topology 

variations. This section describes the structure of TAGAN models first. In the 

meanwhile, how the framework fits into the SE problem with varying 

topologies is discussed. Then, the learning procedure of TAGAN for SE by 

integrating the synthetic PMU measurement is presented. 

4.3.1 Structure of TAGAN Model 

In this section, each part of the TAGAN model, including the detector, the 

hinge loss-based conditional GAN and spectral normalization based 

discriminator will be introduced. Then, how the TAGAN model can fit well 

into the SE problem with varying topologies will be discussed in detail. 

A. The Detector 

In computer vision research, image inpainting work is aimed to mend 

damaged images due to pollution or deficiency. In general, as shown in Fig. 4-

2, a mask that the damage region of the image is in white, and the rest is in 

black is applied as a part of the input. The mask of damage region is the 

pretreatment step of the image inpainting, which plays a key role in the ultimate 

effect and improves the inpainting performance [114]. Inspired by this, a 

detector to detect and accordingly “mask” (label) the normal raw measurement 

or missing/corrupted raw measurement is designed to output a measurement 

data type vector like the “mask” applied in image inpainting.  
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Fig. 4-2.  A mask in image inpainting. 

 

Let y  denote the raw measurement from PMUs, which may be corrupted 

or involve missing data. The detector T is designed by a multilayer perceptron 

(MLP) based neural network because of its satisfactory performance on 

detecting/labeling the input measurements and simple architecture. The 

detector is expressed as ( )( ; )T
tT y θ , which is parameterized by ( )T

tθ . The 

detector’s input is the raw measurement from PMUs, i.e., y , and after training, 

the detector’s output is the measurement data type vector t  consisting of 0s 

and 1s. The training procedure can be expressed as the following mapping: 

( )( ; ) :T
tT y y tθ →                        (4.2) 

The measurement data type vector t  corresponds to the classical system 

buses voltage magnitude type, of which 1 denotes normal data, and 0 denotes 

missing/corrupted data. Fig. 4-3 illustrates the structure of the detector. For raw 

measurements y , the color block denotes the voltage magnitude, in particular, 

white blocks represent missing measurements, and black blocks represent 

corrupted measurements. The detector serves for detecting and labeling out 

different types of data, which corresponds to performing a binary classification 

task by the conventional MLP neural network. The detailed architecture of the 

detector is given in the following sections. 



84 
 

 

Fig. 4-3.  The structure of the detector. 

 

B. The Hinge Loss-Based Conditional GAN 

As defined in section 4.2, 
1[ ]T

Nx x=x  


 represents the true system state, 

i.e., voltage magnitude, and ( )
1{ } tmi

j ix =
 denotes the i-th sample of the true 

system state, and tm  is the number of samples. Let ( )datap x  denote the 

distribution of the true system state. Suppose a group of noise inputs z  follow 

a known distribution ~ ( )zz p z , e.g., uniform distribution or joint Gaussian. 

The goal is to transform the sample z  from the distribution ( )zp z  so that it 

can follow true system state distribution ( )datap x . To this end, two deep neural 

networks are trained simultaneously. One is the generator network G denoted 

as ( )( ; )G
tG z θ , which is parameterized by ( )G

tθ ; the other is the discriminator 

network D denoted as ( )( ; )D
tD x θ , which is parameterized by ( )D

tθ . The details 

of classical GAN, including the generator and the discriminator, have been 

introduced in section 3.3.1. 

The classical GAN can be extended to a conditional counterpart, where 

both the generator and discriminator are conditioned on some extra information, 
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i.e., condition. The proposed TAGAN model adopts the conditional GAN 

frameworks, where the condition consists of the raw measurement y  and the 

measurement data type vector t  obtained by the pretreated detector T. Then 

the generator and discriminator of the proposed TAGAN can be rewritten as: 

( )( ( , ) ; ) : ( , ) ( )G
t GG z y t z y t p zθ →              (4.3) 

( )( ( , ) ; ) : ( , )D
t realD x y t x y t pθ →               (4.4) 

where ( , )z y t  and ( , )x y t  denote the inputs to the generator and 

discriminator with the conditions ( , )y t  added, respectively.  

Formally, G and D are playing a two-player minimax game with the value 

function ( , )V G D : 

~ ( )

~ ( )

( ,

]

min max ( , ) [log( ( ))

(

)

( ,

]

[log 1 ( ( ))) )
data

z

x p xG D

z p z

V G D D y

D

x t

z yG t

=

+ −




          (4.5) 

For a given D, since the output value of the discriminator realp  is close 

to 1 indicating that the generated samples are more realistic, the generator is 

expected to minimize log(1 ( ( )( , )))D zG y t−  by changing the parameter of G 

to generate more authentic samples. For a given G, the discriminator tries to 

maximize )(log ,( ( ))D x y t , thus making the output value of the discriminator 

realp  close to 1. At the same time, the discriminator maximizes 

log(1 ( ( )( , )))D zG y t− . 

The hinge loss is based on a soft-margin support vector machine (SVM) 

balancing two competing objectives to maximize the margin while penalizing 

points on the wrong side of the margin [115], which refers to the region 

bounded by two hyperplanes in a high or infinite dimensional input space of 
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SVM. In the TAGAN model, the hinge loss is applied with serval merits 

compared to other loss functions like the cross entropy and the Wasserstein 

distance based ones: 1) easier to compute than other loss functions and the 

same with its gradient due to its simple mathematical formulation. 2) faster to 

be trained, since during much of the training epochs the gradient of the loss 

function is zero, and the network weights do not need to update. 3) more robust 

than other loss functions against data contaminations due to its nonlinear loss 

function [115]. 

Therefore, when integrated with spectral normalization of weights, 

introduced in the next part, the hinge loss can significantly enhance GAN’s 

generative performance [116] and improve the SE accuracy. The numerical 

experiments are conducted in section 4.4.3, where the training performance of 

the proposed TAGAN model with the hinge loss outperforms the training 

performance very much with the cross entropy and Wasserstein distance in all 

data sets. Besides, the TAGAN model with the hinge loss converges faster and 

is more robust against data contaminations than the other two loss functions. 

The hinge loss of the discriminator _D hingeC and the generator _G hingeC can be 

expressed as: 

_ ~ ( )

~ ( )

[min(0,1 ( ))]

            [min(0,1 ( ( ))]
data

z

D hinge z p x

z p z

C D x

D G z

= −

+ +




           (4.6) 

_ ~ ( )[ ( ( ))]
zG hinge z p zC D G z= −                   (4.7) 

In the training stage, D is trained to maximize the ability to discern the 

true state distribution of the system and the generator estimated state 

distribution. G and D are trained at the same time to minimize the difference 

between these two distributions. The weights of G and D are updated to 
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minimize the generator loss function _G hingeC  and the discriminator loss 

function _D hingeC  , respectively. To be specific, the training starts with 

inputting a batch of samples from the distribution ( )zp z  and the conditions 

( , )y t  into G. At the same time, inputting a batch of real samples taken from 

distribution ( )datap x  and the conditions ( , )y t  into D. Small _G hingeC  

indicates that from the perspective of the discriminator, the generated sample 

is more authentic. In other words, the generated system state is more similar to 

the real system state. On the other hand, small _D hingeC  indicates that the 

generator D is excellent in distinguishing the difference between the generated 

system state and the real system state. Moreover, this shows that the generated 

state distribution ( )Gp z   is very different from the real state distribution 

( )datap x .  

C. Spectral Normalization Discriminator Addressing Topology Variations 

In this Chapter, grid topology variation refers to the change of the branch 

switch statuses while the buses in operation remain unchanged in power grids, 

which could often occur due to faults or maintenance works in practice. The 

classical GAN based SE method in Chapter 3 has difficulty in addressing 

power grid topology variations. The main reason is that, firstly, in the classical 

GAN, the overall loss function is cross entropy. For the generator, the 

generator’s loss function can be equivalent to the JS divergence [87]. The JS 

divergence applied as the loss function during training the generator in the 

classical GAN cannot reflect the similarity between the two distributions 

( )Gp z  and ( )datap x  when they do not intersect in the distribution space 
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wherein JS divergence is a constant −2 log 2 rather than a variable varying with 

the similarity between the distributions, the generator may collapse to produce 

limited varieties of samples regardless of the inputs, i.e., mode collapse. 

Especially for DSSE with varying topologies, once mode collapse occurs, the 

generator is more likely to generate the system states corresponding to the 

topologies with smaller training loss among all topologies in the training 

instead of the system states corresponding to its true topology [87]. An 

experiment is conducted at the end of this subsection to prove that mode 

collapse is more likely to occur using the classical GAN only with JS 

divergence in generating system states with varying topologies. Secondly, the 

classical GAN is hard to reach the Nash equilibrium in handling SE 

considering varying topologies, and its generative performance is sensitive to 

its initial values of parameters. Thus, the classical GAN may not converge 

properly during the training with inappropriate initial values of parameters. 

Then, if the discriminator is trained to be too good in the discernment capacity, 

the generator training can fail due to no gradient of the loss function to update 

the loss, commonly referred to as vanishing gradients. Given the above two 

issues, the spectral normalization (SN) is applied in the TAGAN’s 

discriminator to handle these problems and thus the TAGAN can effectively 

estimate system states under varying network topologies. Likewise, an 

experiment is conducted at the end of this subsection to show that vanishing 

gradients is more likely to occur using the classical GAN without spectral 

normalization in generating system states with varying topologies, and the 

application of spectral normalization can mitigate vanishing gradients. 
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According to [87], for a fixed generator, the optimal discriminator for the 

standard form of (4.5) is given by: 

( ( , ))
( ( ( , )))

( ( , )) ( ( , ))
data

G
data G

p x y t
D sigmoid x y t

p x y t p x y t
∗ ∗= =

+
f    (4.8) 

where sigmoid() is the sigmoid activation function and ( ( , ))x y t∗f is the 

optimal discriminator network without activation function. Then, the equation 

can be solved: 

( ( , )) log ( ( , )) log ( ( , ))data Gx y t p x y t p x y t∗ = −f       (4.9) 

Also, its derivative is: 

1( ( , )) ( ( , ))
( ( , ))
1                       ( ( , ))

( ( , ))

x x data
data

x G
G

x y t p x y t
p x y t

p x y t
p x y t

∗∇ = ∇

− ∇

f

       (4.10) 

This derivative is unbounded or even incomputable, and this results in 

above mentioned problems (mode collapse and vanishing gradient) in GANs 

training. Controlling the Lipschitz constant of the discriminator can solve these 

problems, and its effectiveness has been verified in [89]. For the discriminator 

D from the set of K-Lipschitz continuous functions, specifically,  

arg max ( , )
Lip K

V G D
≤f

                     (4.11) 

where 
Lip

f  denotes Lipschitz norm of ( ( , ))x y tf  and it is the smallest 

value P such 1 2 1 2( ) ( ) /x x x x P− − ≤f f  for any x1, x2, with the norm being 

the l2 norm; Lipschitz constant K is a nonnegative real number. 

Once ( ( , ))x y tf  is Lipschitz continuous for a real constant K, then, the 

problems of diminished gradient and mode collapse can be handled. Therefore, 
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the spectral normalization is applied to enable f to be Lipschitz continuous, that 

is, 
Lip

f  can be constrained by K for each layer of the discriminator. 

In the discriminator D, for each layer : i outs s→g . ( )Cσ  is the spectral 

norm of the matrix C (L2 matrix norm of C), 

2

2
20 1

2

( ) : max max
s s

Cs
C Cs

s
σ

≠ ≤
= =                (4.12) 

where ( )Cσ  is equivalent to the largest singular value of C. Therefore, by 

definition of Lipschitz norm, 
Lip

g  is equal to sup ( ( ))s sσ ∇g . 

For a linear layer of neural networks ( )s Ws=g , there is 

sup ( ( ))sLip
sσ= ∇g g  sup ( ) ( )s W Wσ σ= = and it has the inequality:  

1 2 1 2Lip Lip Lip
≤ ⋅g g g g                 (4.13) 

where ‘°’ denotes the product of two linear layer functions, and ‘·’ denotes the 

product of their respective Lipschitz norms. 

If the Lipschitz norm of the activation function l Lip
b  equals 1 (with 

ReLU or leaky ReLU), then have the bound on 
Lip

f : 

1 2
1 1 1

1 1
1

0 0 1 1
1 1

         ( )

L
L L LLip Lip LipLip Lip

L L
l l

l lLip Lip
l l

s W s b s W s b

s W s s W s Wσ

+

+ +

− −
= =

≤ → ⋅ → ⋅

⋅ → = → =∏ ∏

f 

  (4.14) 

Then, the spectral normalization can be applied to normalize the spectral 

norm of the weight matrix W: 

( ) : / ( )SNW W W Wσ=                    (4.15) 
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Therefore, ( ) ( ) / ( ) 1SNW W Wσ σ σ= =  and the function of the 

discriminator 
Lip

f is 1- Lipschitz. 

Rather than using singular value decomposition (SVD) to calculate the 

spectral norm ( )Wσ  at each iteration, which is very computationally heavy, 

the power iteration method [117] is applied to estimate ( )Wσ . This fast 

method is detailed in Section 4.3.2. 

Since the JS divergence is applied as the generator’s loss function in 

classical GAN, the degree of mode collapse is hard to be measured by the loss 

function and needs other metrics to measure. The intra multi-scale structural 

similarity (MS-SSIM) is a prevalent similarity metric to measure the degree of 

mode collapse in generating system states [121]. Typically, the MS-SSIM 

values range between 0.0 and 1.0; higher MS-SSIM values represent more 

similar system states samples, which indicates a higher degree of mode 

collapse [122]. The MS-SSIM is given by [121],  

1

MS-SSIM( ) [ ( )] [ ( )] [ ( )]j jM

M

M j j
j

l c sβ γα

=

= ⋅∏1 2 1 2 1 2 1 2x , x x ,x x ,x x ,x    (4.16) 

where, 

1 2

1 2

1
2 2

1

2
( ) x x

x x

C
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C
µ µ

µ µ
+

=
+ +1 2x , x                             (4.17) 
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σ σ
+

=
+ +1 2x , x                            (4.18) 

1 2
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3

3

( ) x x

x x

C
s

C
σ
σ σ

+
=

+1 2x , x                              (4.19) 

2 2
1 2 2 31 2,( ) , ( )   / 2K L C K CC L C= = =                  (4.20) 
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M is the number of scales; the exponents Mα  , jβ   and jγ   are applied to 

adjust the relative importance of different components; by default, 

j j jα β γ= =  for all j and 
1

1
M

j
j
γ

=

=∑ ; functions l, c and s are three components 

of MS-SSIM; 1x  and 2x  are two samples of system states; 
1x

µ , 
2xµ  are 

the mean of 1 2x , x  , respectively; 
1x

σ  , 
2xσ   are the variance of 1 2x , x  , 

respectively; 
1 2x xσ  is the covariance of 1x  and 2x ; C1, C2 and C3 are small 

constants; K1, K2 are two scalar constants and K1=0.01, K2=0.03 by default; 

MS-SSIM is originally used for measuring the similarity between two images 

in image processing [121, 122]. Higher MS-SSIM scores indicate higher 

similarity between images and a higher degree of mode collapse [122]. In the 

application of image processing, L is defined as the dynamic range of the pixel 

values and is set as 2n-1 (n is a positive integer). Typically, L should be just 

larger than the number of pixels [121]. For the SE problem, the number of 

buses in a system is analogous to the number of pixels in an image. Since L 

should be just larger than the number of buses, e.g., for the 33-bus system, n=6 

and L=63 are adopted.  

To evaluate the effectiveness of spectral normalization in addressing the 

mode collapse, a comparison experiment is conducted using the IEEE 33-node 

distribution system. Classical GAN and TAGAN models with/without spectral 

normalization are trained in this comparison experiment. The training data are 

system states (nodal voltages’ magnitudes) considering different system 

topologies with noises only. 20 topologies are included, and each topology has 

1000 system states samples (the total number of samples is 20000). The batch 

size is 32, and the number of epochs is 625. Therefore, the training of the 
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models takes 400,000 iterations (20000/32*625). The details of data generation 

and training are introduced in the following section 4.4. In the experiment, MS-

SSIM scores between 100 randomly chosen pairs [122] of system states 

samples in each topology are computed to measure the diversity of system 

states with varying topologies. The higher diversity of system states results in 

lower mean MS-SSIM scores. On the contrary, system states samples with 

lower diversity have higher mean MS-SSIM scores, which means mode 

collapse occurs. The mean MS-SSIM score is computed for system states under 

20 topologies in Fig. 4-4. 

 

Fig. 4-4.  Mean MS-SSIM score for system states under 20 topologies 

through training the classical GAN and TAGAN with/without spectral 

normalization (SN). 
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From the results shown in Fig. 4-4, the mean MS-SSIM score is tracked 

during the training process to identify whether mode collapse has occurred. 

The blue circle marker line is the mean MS-SSIM score of system states under 

20 topologies using the classical GAN with the JS divergence as the 

generator’s loss function and spectral normalization implemented in the 

discriminator, while the blue diamond marker line is derived by the classical 

GAN only with JS divergence. The orange lines are the mean MS-SSIM scores 

using TAGAN, wherein the circle marker line indicates the results using 

TAGAN with SN, and the diamond marker line is that without SN. During the 

training process, the circle marker lines decrease and gradually converge to a 

low MS-SSIM score, which indicates high diversity of system states samples, 

and mode collapse does not occur due to the applied spectral normalization. 

On the other hand, the diamond marker lines increase and approach 1.0, which 

indicates a very low diversity of system states samples, and mode collapse 

occurs without SN in the classical GAN or TAGAN. 
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Fig. 4-5.  Mean absolute gradients of the 1st layer in the generator under 20 

topologies through training the classical GAN and TAGAN with/without spectral 

normalization (SN). 

 

To evaluate the effectiveness of spectral normalization in addressing the 

vanishing gradient, a comparison experiment is conducted in the IEEE 33-node 

distribution system. Classical GAN and TAGAN models with/without spectral 

normalization are trained in this comparison experiment. The training data and 

model setting are the same as the experiment for the model collapse. In the 

experiment, the mean absolute gradients of the 1st layer in the generator are 

computed to examine the vanishing gradient problem [107]. The mean absolute 

gradients of the 1st layer in the generator are calculated by: 
1 ( )

11 1

1 NN G

i
i

L
NN w=

∂
⋅

∂∑ . 

NN1 denotes the number of neurons in the 1st layer of the generator; ( )GL  is 

the generator loss function, which is JS divergence in the classical GAN, and 

the hinge loss function in the TAGAN; 
( )

1

G

i

L
w

∂
∂

 denotes the absolute gradients 

of the 1st layer in the generator. The smaller mean absolute gradients indicate 

a higher chance of vanishing gradient occurrence. From the results shown in 

Fig. 4-5, the mean absolute gradients of the 1st layer in the generator are 

tracked during the training process to identify whether the vanishing gradient 

has occurred. The circle marker lines are the mean absolute gradients using the 

classical GAN (blue) / TAGAN (orange) with spectral normalization 

implemented, while the diamond marker lines are derived by the classical GAN 

(blue) / TAGAN (orange) without spectral normalization. During the training 
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process, the diamond marker lines are always at a very low level, which 

indicates that vanishing gradient occurs without spectral normalization in the 

classical GAN or TAGAN. On the contrary, the overall magnitudes of the 

gradients with spectral normalization are significantly greater than those 

without spectral normalization using the classical GAN or TAGAN. Thus, 

spectral normalization is demonstrated to be effective in addressing the 

vanishing gradient. 

 

Fig. 4-6.  The training process of the TAGAN model. 

 

The training process of the TAGAN model and the learning process can 

be illustrated in Fig. 4-6. For raw measurements, they are sampled from the raw 

measurement set with a variety of topologies. The color block denotes the voltage 

magnitude, in particular, white blocks represent missing measurements, and black 

blocks represent corrupted measurements. For the measurement data type vector, 

it corresponds to the system buses voltage magnitude type, of which 1 denotes 

normal data, and 0 denotes missing/corrupted data. Combining raw measurements 

and measurement data type vector becomes the conditions as input for the 

generator and discriminator. The discriminator and generator are trained with the 
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hinge loss _D hingeC and _G hingeC  alternately. In each iteration, the spectral 

normalization discriminator (SN-D) learns from the positive samples from 

( )datap x  and negative samples from ( )Gp z . Adversarial learning between G and 

SN-D enables them to improve their ability until SN-D cannot distinguish the 

generated system states from G and the true system states. 

4.3.2 Procedure of TAGAN 

The algorithm used in the TAGAN model is given in Algorithm 4-1. In 

this algorithm, ( )G
tθ  and ( )D

tθ  are the parameters of the generator ( )G z  

and discriminator ( )D x . They are both neural networks combined by several 

different layers, including multilayer perceptron (MLP) layers, convolution 

layers, normalization layers, max-pooling layers, and Rectified Linear Units 

(ReLU) layers. Especially for the discriminator, its training algorithm is based 

upon the gradient descent and updates each layer of the discriminator with 

spectral normalization by applying the fast power iteration method in 

Algorithm 4-2. Besides, for both discriminator and generator, the optimization 

algorithms are Adaptive Moment Estimation (Adam), which is able to adjust 

the learning rate automatically. Within several training batches, these 

parameters of two neural networks can be well optimized. The detailed model 

parameter settings for the TAGAN for case studies will be given in Section 

4.4.2. 

Algorithm 4-1 TAGAN model 

Require: tα , the learning rate; tm , the batch size; _dis tk , the number of 
iterations of the discriminator per generator iteration. 
Require: ( )

0
D

tθ , initial discriminator’s parameters; ( )
0
G

tθ , initial generator’s 
parameters. 
while ( )

0
G

tθ  has not converged do 
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for _0, , dis tt k=  do 

Sample batch of tm  noise samples ( ) ( ) ( )
1{( , , )} tmi i i

iz y t =  from noise 
prior distribution . 
Sample batch of tm  samples ( ) ( ) ( )

1{( , , )} tmi i i
ix y t =  from the true 

system state data  
Calculate the gradient of discriminator loss: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
1

( ))

max(0,1

[max(0,1 ,1
,( ( )) ])

t

D D
t t

i i im

i i i
i

x y t
g

z y t

D

D Gmθ θ
=

−

+
←∇

+
∑  

Update each layer of the discriminator with spectral normalization 
by applying Algorithm 4-2. 

end for  
Sample batch of tm  noise samples ( ) ( ) ( )

1{( , , )} tmi i i
iz y t =  from noise 

prior distribution . 
Update the generator by descending its gradient: 

( ) ( )
( ) ( ) ( )

1

1 ,( ( ))
t

G G
t t

m
i i i

i
g z y tD G

mθ θ
=

← −∇ ∑  

( )
( ) ( ) ( )( , )G

t

G G G
t t t tAdam g

θ
θ θ α θ← − ⋅  

end while 
 

Algorithm 4-2 Fast power iteration method 
Initialize ld

lu ∈   for 1, ,l L=   with a random vector (sampled 
from isotropic distribution). 
For each update and each layer l:  

1. Apply the power iteration method to an unnormalized weight 
lW : 

2
( ) / ( )l T l T

l l lv W u W u←    

2
( ) / ( )l l

l l lu W v W v←     

2. Calculate l
SNW  with the spectral norm:  

( ) / ( )l l l l
SNW W W Wσ= ,where ( )l T l

l lW u W vσ =    
3. Update lW with Adam: 

( )( ( ), )D
t

l l l l
t SNW W Adam W W g

θ
α← − ⋅  

 

4.4 Numerical Results 

The performance of the proposed TAGAN-SE method is validated on the 

IEEE 33-node distribution system and IEEE118-bus distribution system [118]. 

•

( )zp z

•

( )datap x
•

•

•

( )zp z
•

•

•



99 
 

4.4.1 Data Generation  

The training data are system states (nodal voltages’ magnitude) 

considering different system topologies with or without noises or 

contaminations. Fig. 4-7 shows the flowchart of data generation for numerical 

study via Monte Carlo(MC) simulation. For each test system, the topology and 

system loads are randomly sampled, and then power flow computation is 

executed with convergence check using MATPOWER software package [93] 

for N1 times. Note that different topologies are generated per a set of switch 

status combinations represented by a vector containing 0 or 1, which satisfies 

Binomial distribution with a failure probability of 0.15 [14]. In addition, the 

system loads are assumed to satisfy Gaussian distribution with zero mean and 

standard deviation of 0.1 [14]. 

 

Fig. 4-7.  The flowchart of data generation. 

 

For each generated topology, after the true system states x  are produced, 

raw measurements are generated by adding Gaussian noise with zero mean and 
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standard deviation of 0.001 (in line with PMU’s precision) [112]. In addition, 

abnormal measurements considering 3 types of contamination scenarios will 

be created, where different contamination ratio r% ranging from 0% to 50% is 

considered. For each measurement type, the number of training samples is 

100,000. 

Corrupted measurement data refers to the measurements that significantly 

differ from the normal raw measurement data. For each topology, the corrupted 

voltages are produced by randomly choosing r% raw measurements and adding 

an error with 0.5 mean and 0.05 standard deviation [112]. The rest (1 - r%) 

data are still the raw measurement with normal measurement noise. 

In the case study, missing measurement data are assumed due to the time 

delay or interruption, data package loss, etc., during communication. Missing 

measurement data are produced by randomly choosing r% raw measurement 

and substituting by white noise with zero mean and standard deviation of 0.01. 

Mixed contamination measurement data is contaminated with a mixture of 

bad data and missing data. To create such data, the contaminated data are 

equally generated per type. i.e., the mixed contamination data accounting for 

r % of the dataset contains (r% / 2) corrupted data and (r% / 2) missing data. 

4.4.2 Training Details and Model Architecture 

The case studies are carried on the two test systems. In each test system, 

100 typical different topologies are considered to generate system states 

samples. For each topology, 1,000 samples are generated, and accordingly 

there are 100,000 (100*1000) samples for each test system. As mentioned 

before, the out-of-sample topology refers to the topology which is out of the 

topology library for the training data and unseen during the training, while the 
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trained topology refers to the topology which is included in the training data. 

For 100 considered topologies, 20 of them belong to out-of-sample topologies, 

and 80 of them belong to trained topologies. In these 100,000 samples, the out-

of-sample topologies’ system states samples, i.e., 20,000 (20*1000) samples, 

are used for testing only without being trained by TAGAN, and the set of these 

samples is named as the test set 2. In the remaining trained topologies’ system 

states samples, i.e., 80,000 (80*1000) samples, the training set includes 80% 

of them, i.e., 64,000 (80,000*80%) samples for TAGAN training, while the 

rest 16,000 (80,000-64,000) samples belong to the test set 1, and they are used 

for testing trained topologies. The batch size is 32, and the number of epochs 

is 200. Therefore, the training of the TAGAN takes 400,000 iterations (64000 

/ 32 * 200) for each contamination scenario. All programs for the TAGAN-SE 

model are implemented using ‘TensorFlow’ [120] in Python on PyCharm IDE 

with NVIDIA GeForce RTX 2080 Ti GPU and 11GB RAM. 

In the proposed TAGAN model, the detector T is constructed using 

multilayer perceptron (MLP), which is the most widely employed neural 

network structure [119]. After experimenting with different hidden layers 

(from 1 to 5) and neurons (16, 32, 64, 128, 256), the detector T with single-

layered MLP involving 64 neurons is found efficient to detect measurement 

data type accurately. The grid search method is applied to determine the 

optimal model setting for TAGAN via examining possible hyperparameter 

combinations [120]. The hyperparameters to be tuned consist of the number of 

layers, the number of hidden units, and the filter size. The generator G includes 

2 fully connected MLP and 3 de-convolutional layers. The first 2 MLPs are 

designed for up-sampling, and the de-convolutional layers kernel size is 1 5×  
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and strides size 2 are designed to up-sample the input noise z . Likewise, the 

discriminator D has an inversed architecture, whose 3 convolutional layers are 

all with a kernel size of 1 5×  and stride size of 2. Table 4-1 lists the detailed 

settings of the TAGAN model contracted for the IEEE 33-node distribution 

system. 

Table 4-1 The proposed TAGAN-SE model structure. 

 Detector T Generator G Discriminator D 

Input 33 100+66 33+66 

Layer 1 MLP, 64 MLP, 1024+66 Conv, 64+66 

Layer 2  MLP, 512+66 Conv, 256+66 

Layer 3  Conv_transpose, 512+66 Conv, 512+66 

Layer 4  Conv_transpose, 256+66 MLP, 1024+66 

Layer 5  Conv_transpose, 64+66  

 

4.4.3 Performance Evaluation 

Similarly, the performance of SE is evaluated by the conventional mean 

average error (MAE) for total SE error: 

( ) ( )

1 1

1 ˆMAE
*

t tN m
i i

j j
j it t

x x
N m = =

= −∑∑ 
                      (4.21) 

where tN  is the number of buses, tm  is the number of samples, ( )ˆ i
jx  and 

( )i
jx  refer to estimated system states and true system states corresponding to i-

th sample and j-th bus, respectively. 

A. Overall SE accuracy with different contamination ratios and types under 

varying topologies 
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Different contamination ratio r% including trained and out-of-sample 

topologies ranging from 10% to 50% with 20% increment is tested in this 

section to give a comprehensive analysis of the model accuracy and robustness. 

The case with raw measurements only (r% = 0%) is also examined. In addition, 

to guarantee the case study is unbiased, the proposed model is trained and 

tested 10 times for performance assessment. The MAE of TAGAN-SE on 

IEEE 33-node system for voltage with corrupted measurement, missing 

measurement, and mixed contamination measurement are illustrated in Fig. 4-

8. Results from different contamination types and ratios are contrasted between 

the trained topology situations and the out-of-sample topology situations. Their 

average value of 10 runs is displayed by the green/blue bars, respectively.  

 

Fig. 4-8.  MAE (e-3) of TAGAN-SE on the IEEE 33-node system under the 

trained / out-of-sample topology. The results are tested with various ratios of 

contaminated measurements. 

 

From the results shown in Fig. 4-8, the MAE of voltage with out-of-sample 

topologies is satisfactory and reasonably larger than that with the trained 
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topologies under all three contamination scenarios. In the situations with raw 

measurement only (r%=0%), the MAE of voltage with the trained topologies 

and out-of-sample topologies are 7.834e-4 and 1.6397e-3, respectively. They 

are both less than the MAE with the contaminated measurements. Besides, 

with the growth of contamination ratio from 0% to 50%, the MAE of both 

voltage with the trained topologies and the out-of-sample topologies increases 

correspondingly. The MAE with mixed contamination measurements is larger 

than that of the other two cases for both trained topologies and out-of-sample 

topologies scenarios. In particular, the MAE with the missing measurement is 

a little smaller than that with the corrupted measurement. Thus, the proposed 

TAGAN-SE is robust even under the scenarios with corrupted or missing data. 

This is because that the proposed TAGAN model is able to learn the 

underneath topology between buses based on the input of measurement without 

prior knowledge of the system model and has a strong capability of handing 

corrupted or missing data. Even input with some abnormal data, the model can 

still perform well with the underneath topology learned by analyzing the 

relationship between voltages of buses. The overall results of the IEEE 118-

bus distribution system are presented in Table 4-3 in Section 4.4.4. It is 

important to point out that the missing data experiments here are preliminary 

to assume the system is under normal operation while the communication 

systems for SE cause the missing data due to time delay or data package loss, 

etc. In fact, missing data could also be caused by partial outages of system 

elements, and this should be well detected and handled differently by the 

proposed SE method, which is worthy of further investigations in the future. 

B. Detailed Performance Assessment 
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The previous section only studies the overall SE performance. To study 

the detailed performance, the accuracy of SE on each bus is further evaluated, 

and the distributions between the TAGAN-SE system states and true system 

states are compared. Detailed assessments are studied on different topologies, 

and their performance is similar; thus, from both the trained topology set and 

the out-of-sample topology set, one topology is randomly chosen to present in 

IEEE 33-node test distribution system (denoted as topology 1 and topology 2) 

and IEEE 118-bus test distribution system (denoted as topology 3 and topology 

4), where the branch numbers refer to those of the respective test systems: 

• topology 1 (trained topology on the IEEE 33-node system) with switch-

off branches: {13, 15, 20, 33, 37}. 

• topology 2 (out-of-sample topology on IEEE 33-node system) with 

switch-off branches: {6, 17, 26, 33, 34}. 

• topology 3 (trained topology on IEEE118-bus distribution system) with 

switch-off branches:  

{6,8,21,30,41,51,69,73,81,97,104,121,123,124,130}. 

• topology 4 (out-of-sample topology on IEEE118-bus distribution system) 

with switch-off branches:  

{9,29,31,39,44,53,56,60,72,73,76,102,116,119,129}. 

Fig. 4-9 and Fig. 4-10 are voltage mean and voltage standard deviation 

(std) of each bus under trained topology and out-of-sample topology on each 

test system, respectively. They are tested with 30% mixed contamination 

measurement. The blue dashed line denotes true system states mean, and the 

orange dot-dashed line denotes TAGAN-SE mean, while the light blue dashed 

line denotes true system states std, and the yellow dot-dashed line denotes 
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TAGAN-SE std. As shown in Fig. 4-9 and Fig. 4-10, for each test system, 

under both trained topology and out-of-sample topology, the voltage 

magnitudes estimated by TAGAN are very similar to the true system states and 

deviate slightly on the part of buses. With mixed contamination measurement 

input, the TAGAN-SE is robust to corrupted or missing measurement and even 

effective for out-of-sample topology. 

 

Fig. 4-9.  Voltage mean and standard deviation of TAGAN-SE and true 

system states on the IEEE 33-node distribution system under (a) the trained 

topology (topology 1), and (b) the out-of-sample topology (topology 2). The 

result is tested with 30% mixed contamination measurement. 
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Fig. 4-10.  Voltage mean and standard deviation of TAGAN-SE and true 

system states on the IEEE 118-bus distribution system under (a) the trained 

topology (topology 3), and (b) the out-of-sample topology (topology 4). The 

result is tested with 30% mixed contamination measurement. 

 

To further examine the similarity between two voltage distributions, their 

probability density distribution profiles are compared, and bus 23 of the IEEE 

33-node system is randomly chosen at topology 1 and topology 2. Fig. 4-11 

describes the probability density histograms of generated and true system 

states, respectively at bus 23 with the trained (left subfigure) / out-of-sample 
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topology (right subfigure). Their inputs are with three contamination types of 

measurement under 30% contamination ratio. In these figures, the X-axis value 

is the voltage magnitude (p.u.), and the Y-axis value is its probability density. 

The probability is denoted by the separate orthogon areas multiplied by the 

width of the voltage magnitude interval and its probability density. In particular, 

the cumulative orthogon areas are equivalent to one. Both distributions of the 

true system and TAGAN system states approximately follow the normal 

distribution. Besides, in all scenarios, the distribution of voltage with the 

trained topology (topology 1) is more similar to the distribution of its true 

system states than that with the out-of-sample topology (topology 2). This 

conforms to the results of previous overall assessments, indicating the 

proposed TAGAN-SE performs better to handle either corrupted or missing 

measurement than mixed of them, as the difference of distribution profiles for 

the former two situations is less distinct than that for the mixed situations.  
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Fig. 4-11.  Probability density histograms of true system states and the 

generated system states with the trained (left subfigure) / out-of-sample 

topology(right subfigure). The results are tested with (a) corrupted 

measurements, (b) missing measurements, and (c) mixed contamination 

measurements (30% contamination ratio) at bus 23 of the IEEE 33-node 

system. 

 

C. Spatial Correlation Assessment 

In this part, the correlation of buses for voltage is investigated further to 

test the quality of generated system states by TAGAN-SE. For the IEEE 33-

node system, the Pearson correlation coefficients matrix colormap under the 
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trained topology (topology 1) and the out-of-sample topology (topology 2) are 

depicted in Fig. 4-12 and Fig. 4-13, respectively. 

 

Fig. 4-12.  The spatial correlation coefficients matrix colormap under the 

trained topology (topology 1). All results are tested with 30% ratio of mixed 

contamination measurement. (The right color bar is the correlation coefficient) 

 

 

Fig. 4-13.  The spatial correlation coefficients matrix colormap under the out-

of-sample topology (topology 2). All results are tested with 30% ratio of mixed 

contamination measurement. (The right color bar is the correlation coefficient) 
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All results are obtained with 30% mixed contamination measurements. As 

seen from Fig. 4-12 and Fig. 4-13, both the correlation profiles of systems’ 

voltage are very similar to their ground truth. Hence, TAGAN-SE can learn the 

spatial correlations involved in system buses well. Besides, the correlations 

under the trained topology (topology 1) are more similar to their ground truth 

than those under the out-of-sample topology (topology 2). Therefore, TAGAN-

SE performs better with trained topologies, which confirms the result of 

previous overall assessments. 

D. Loss Functions Comparison 

To examine the merits of the hinge loss compared to other loss functions, 

the MAE of voltage is compared during the training process with the hinge loss, 

the cross entropy, and the Wasserstein distance in Fig. 4-14. This experiment 

is also performed with 30% mixed contamination measurement under out-of-

sample topologies on IEEE 118-bus distribution system. As shown in Fig. 4-

14, the orange line denotes the hinge loss, and it converges faster than the 

Wasserstein distance (blue line) and the cross entropy (red line), respectively. 

Besides, the hinge loss finally converges to the smaller MAE than the other 

two loss functions, reflecting the higher learning performance of the proposed 

TAGAN model through applying the hinge loss. On the other hand, the hinge 

loss curve is smoother than the other two loss curves, indicating that the hinge 

loss is more robust than the Wasserstein distance and the cross entropy. 
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Fig. 4-14.  Learning curves of the TAGAN model regarding different loss 

functions under the out-of-sample topology set on the IEEE 118-bus 

distribution system. 

 

4.4.4 Comparison to other methods 

The comparative study is carried out on the IEEE 33-node distribution 

system and the IEEE 118-bus distribution system by taking into account the 

influence of different contamination ratios. In particular, three different types 

of contamination measurement, including corrupted measurement, missing 

measurement, and mixed contamination measurement with ratios from 0% to 

50% are considered. 

To further validate the effectiveness of the proposed TAGAN-SE, a deep 

convolutional neural network-based SE (DCNN-SE) approach and another 

GAN-based approach, i.e., WGAN-SE, are employed. The same training and 
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testing datasets are applied in DCNN-SE [95] and WGAN-SE [89]. The 

comparative results of TAGAN-SE against the benchmark DCNN-SE and 

WGAN-SE on IEEE 33-node and IEEE 118-bus distribution systems are listed 

in Table 4-2 and Table 4-3, respectively. 

Table 4-2 presents the case of the IEEE 33-node distribution system where 

the inputs are measurements with noise only (r%=0) and measurements with 

different contamination types and ratios. In the same scenarios, the MAE of 

TAGAN-SE is smaller than the other two methods. Besides, with the increased 

contaminated measurements, the final MAE of TAGAN-SE increases slowly. 

Thus, the proposed TAGAN-SE performs better than the DCNN-SE and the 

WGAN-SE. The main reasons may lie in the following aspects. First of all, for 

DCNN-SE, there is only a single network for generating states, while TAGAN-

SE consists of two networks, including a discriminator and a generator. By 

employing GANs in TAGAN-SE, the discriminator is able to improve the 

effect of the generator by giving the proper response between the generated 

states and real states during the training process. Compared to the WGAN-SE, 

the detector of TAGAN-SE improves the performance by generating a “mask” 

as GAN’s input. Besides, the hinge loss function can be easier to compute, 

faster to train, and more robust than other loss functions against data 

contamination. Therefore, it enhances the training process and decreases the 

voltage MAE. 

It is worth noticing that under the out-of-sample topologies for both test 

systems, the MAE of DCNN-SE and WGAN-SE is much larger than the same 

scenarios under trained topologies, while the MAE of the proposed TAGAN-

SE increases less than the above two methods. Besides, the MAE of TAGAN-
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SE grows slowly than DCNN-SE and WGAN-SE with the increase of 

contamination ratio. The reason can be attributed to that the spectrum 

normalization is applied in the discriminator enabling the discriminator 

function to be Lipschitz continuous and solve the problems (including 

vanishing gradients and mode collapse) in the classical GAN which improves 

the performance with varying topologies, especially for the out-of-sample 

topology. Thus, even under the cases with out-of-sample topologies, the 

proposed TAGAN-SE is still viable, giving a smaller MAE as compared with 

DCNN-SE and WGAN-SE. 

In summary, the MAE of voltage for the trained topologies in all scenarios 

ranges in [7.8e-4, 1.3e-3] p.u and [8.7e-4, 1.9e-3] p.u, for IEEE 33-node and 

IEEE 118-bus distribution systems, respectively. Also, the MAE of the voltage 

for out-of-sample topologies in all scenarios ranges in [1.6e-3, 3.2e-3] p.u and 

[1.8e-3, 4.3e-3] p.u for both test systems, respectively.  

 

Table 4-2 Performance comparison with the benchmarks on the IEEE 33-node 

system. 

 Contamination 
Type 

Contamin
ation 

Level r% 

Voltage Magnitude (p.u.) 

Trained Topology Out-of-sample Topology 
DCNN-

SE 
WGAN-

SE 
TAGAN-

SE 
DCNN-

SE 
WGAN-

SE 
TAGAN-

SE 

M
A
E 

Noise only 0% 1.418e-03 1.091e-03 7.834e-04 4.035e-03 2.320e-03 1.640e-03 

Corrupted 

10% 2.433e-03 1.512e-03 9.545e-04 6.944e-03 2.991e-03 1.964e-03 

30% 2.774e-03 1.623e-03 1.054e-03 8.553e-03 3.878e-03 2.316e-03 

50% 3.590e-03 2.109e-03 1.287e-03 1.113e-02 5.624e-03 2.992e-03 

Missing 

10% 2.428e-03 1.501e-03 9.421e-04 6.902e-03 2.955e-03 1.938e-03 

30% 2.751e-03 1.595e-03 1.031e-03 8.497e-03 3.836e-03 2.293e-03 

50% 3.527e-03 2.058e-03 1.232e-03 1.004e-02 5.562e-03 2.961e-03 

Mixed 

10% 2.493e-03 1.575e-03 1.017e-03 7.580e-03 3.405e-03 2.119e-03 

30% 2.878e-03 1.706e-03 1.133e-03 9.246e-03 4.241e-03 2.472e-03 

50% 3.749e-03 2.265e-03 1.350e-03 1.202e-02 5.897e-03 3.263e-03 
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Table 4-3 Performance comparison with the benchmarks on the IEEE 118-bus 
system. 
 

 Contamination 
Type 

Contamin
ation 

Level r% 

Voltage Magnitude (p.u.) 

Trained Topology Out-of-sample Topology 
DCNN-

SE 
WGAN-

SE 
TAGAN-

SE 
DCNN-

SE 
WGAN-

SE 
TAGAN-

SE 

M
A
E 

Noise only 0% 1.611e-03 1.226e-03 8.725e-04 4.738e-03 2.782e-03 1.803e-03 

Corrupted 

10% 2.876e-03 1.838e-03 1.169e-03 7.948e-03 3.882e-03 2.384e-03 

30% 3.351e-03 2.064e-03 1.388e-03 9.813e-03 5.053e-03 2.947e-03 

50% 4.219e-03 2.725e-03 1.751e-03 1.295e-02 7.228e-03 3.912e-03 

Missing 

10% 2.861e-03 1.826e-03 1.155e-04 7.892e-03 3.846e-03 2.368e-03 

30% 3.326e-03 2.040e-03 1.372e-03 9.747e-03 5.003e-03 2.923e-03 

50% 4.280e-03 2.687e-03 1.709e-03 1.182e-02 7.174e-03 3.871e-03 

Mixed 

10% 3.142e-03 2.111e-03 1.347e-03 8.780e-03 4.586e-03 2.793e-03 

30% 2.666e-03 2.462e-03 1.589e-03 1.067e-02 5.690e-03 3.219e-03 

50% 4.724e-03 3.005e-03 1.942e-03 1.399e-02 7.877e-03 4.395e-03 

 
4.5 Summary 

In this chapter, a novel data-driven and model-free TAGAN-SE approach 

considering varying topologies is proposed for distribution system SE. 

Because the spectrum normalization is applied in the discriminator, TAGAN-

SE can handle topology variations. Different measurement contamination 

types (corrupted data, missing data, and mixed contamination data) and 

varying topologies, including trained topology and out-of-sample topology 

scenarios, were examined. Regardless of the corrupted and missing 

measurements under varying topologies due to, e.g., switch faults or 

maloperations, which can make the system even unobservable, the proposed 

TAGAN-SE is able to be robust to estimate the system states accurately. In 

addition, it can learn the statistical properties of the system states well, 

including the spatial correlation of buses and the probability distributions of 

system states. Particularly, for the out-of-sample topologies, TAGAN-SE 

achieves significant improvements over other data-driven based methods, e.g., 

DCNN-SE and WGAN-SE, while the conventional WLS-based method is 
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inapplicable in these scenarios due to lack of the ascertained topology 

information. Thus, TAGAN-SE is convincingly suitable for the distribution 

system, of which the topology frequently changes, where many existing 

topologies are out of the topology library for model training. The effectiveness 

of the proposed TAGAN-SE is verified with the IEEE 33-node distribution 

system and the IEEE 118-bus distribution systems. Besides, the missing data 

experiments are preliminary to assume the system is under normal conditions 

while the communication systems for SE cause the missing data due to time 

delay or data package loss, etc. In fact, missing data could also be caused by 

partial outages in the system, and this should be well detected and handled 

differently by the proposed SE method, which is worthy of future research. 
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Chapter 5  Conclusions and Future Scope 

5.1 Conclusions 

The rapid growing penetration of renewable generations in smart grids 

exerts substantial influences on the normal operation of power systems and 

thus forces the system operators and planners to reconsider the mechanisms of 

their decision-making processes. PMU is becoming one of the most widely 

used advanced measuring equipment serving for real-time monitoring and 

control of power systems. A comprehensive study is carried out in this thesis 

to investigate PMUs based power system state estimation, where the optimal 

placement of supplementary PMUs considering the existing SCADA system 

as well as deep learning based SE is investigated. Specifically, the study is 

investigated in the following aspects, given as follows: 

Firstly, a reliability-based probabilistic OPP approach is proposed in 

Chapter 2 to obtain minimal voltage magnitude estimation uncertainty based 

on various operating scenarios, with supplementary PMUs installed in the 

power grid, which is equipped with the SCADA system. The contribution is 

that the PMU measurement reliability is modeled in OPP, where state 

estimation uncertainty is considered. PMU measurement system components’ 

random outages are considered in the modeling of PMU measurement 

reliability. Besides, the framework applies the PLF in OPP to represent 

different operating scenarios. In this way, the load patterns and power 

generators’ on/off status are considered stochastically as the operating 

uncertainties, so that the obtained PMU placement solution is unbiased for 

planning purposes. With PLF carried out, the OPP scheme is more suitable for 
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different operating scenarios because different operating uncertainties are 

considered. 

Then, a model-free and data-driven deep learning method is proposed in 

Chapter 3 for SE in transmission systems. This method is based on conditional 

WGAN, where the Wasserstein distance is applied to improve training 

performance. With the corrupted or missing measurement at different ratios, 

the proposed method can perform better than the traditional and state-of-the-

art methods, i.e., LWLS-SE, WLAV-SE, and DCNN-SE. The proposed 

method CGAN-SE not only can estimate the system states with high accuracy, 

but can also capture the statistical properties of the system measurements either 

from the probability distribution of system states and the spatial correlation of 

buses. Moreover, the proposed SE method can still be effective even in an 

unobservable network. The experiments validate the effectiveness of the 

proposed method on a large system (2746-bus Polish system), and this is the 

first experiment using deep learning models for power system SE processes on 

a large-scale system. 

Finally, a topology-aware data-driven, model-free approach for 

distribution system SE is proposed in Chapter 4. By applying TAGAN in the 

distribution system, the actual correlations of system states can be well learned, 

and the true states of the system can be estimated precisely by only applying 

one model, which considers the various topologies rather than decoupling the 

SE process into topology identification and state estimation. Regardless of the 

corrupted and missing measurements under varying topologies due to, e.g., 

switch faults or maloperations, the proposed method TCGAN-SE is robust and 

can estimate the system states accurately. In particular, for the out-of-sample 
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topologies, where the conventional WLS-based method is inapplicable without 

an ascertained topology, TAGAN-SE performs much better than other data-

driven based methods, e.g., DCNN-SE and WGAN-SE. Therefore, this method 

well fits the SE of distribution systems since the topology of the distribution 

system changes frequently, and there is countless number of scenarios. 

 

5.2 Future Scope 

This study is preliminary for the proposed SE method to handle the 

missing data situations. Besides, the missing data problem is also tangled with 

the possible situation of partial system outages, where the missing input data 

to SE models could be attributed to the actual outages of system elements. 

Under such situations, it is very challenging to distinguish between the 

fundamental reasons for missing data due to either actual data missing during 

the data transportation/communication or the system outages. This issue is 

worthy of further investigation in the future. 

Besides, in my current work, all test data are from simulation. Although 

these proposed deep learning-based SE methods perform well in the SE 

problem, it is hard to evaluate whether they can outperform existing methods 

in real power grids. Thus, in the future, the deep learning-based SE methods 

are expected to be tested by using actual system’s data and apply it into real 

applications. 

With the development of the performance of computer processors (CPUs 

& GPUs) and larger storage media for retaining huge training datasets, deep 

learning methods have begun to outperform traditional algorithms in many 

areas. There is a trend that researchers try to better handle on how deep learning 
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technologies can be integrated into existing and new critical infrastructures 

while safeguarding and representing important values such as safety, 

sustainability, and equity. In this thesis, deep learning technologies are 

introduced to handle state estimation in power grids. Besides, the proposed SE 

methods present great advantages, especially in aspects of unobservability and 

topology issues. As the power grid is still undergoing transitions and a large 

amount of data such as historical power system operation records, future 

renewables generation, and load forecasts are providing us more information 

and insights of the underlying grids, a critical challenge in distribution grid 

operation and control is that the grid itself may be unobservable and fast-

changing. Based on the achievements of distribution system state estimation in 

this thesis, topology recovery and advanced control algorithms may be further 

developed by deep learning technologies to improve distribution grid 

observability and controllability.
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