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Abstract 

In this study, multispectral colour reproduction methods are investigated using textile 

images. Accurate colour reproduction of textile is crucial for the industry in terms of 

colour communication, colour measurement and quality control. Traditional colour 

measurement and colour communication are usually performed by spectrophotometers. 

The disadvantages of using spectrophotometers are that (1) they only measure a small 

area of the fabric at a time and (2) they lack the spatial reflectance information of the 

fabric. 

The contribution of this thesis can be listed as follows: 

(1) Proposed an improved reflectance reconstruction method based on L1-norm 

penalization. Spectral reflectance reconstruction for multispectral images (such as 

Weiner estimation) may perform sub-optimally when the object being measured has a 

texture that is not in the training set. The accuracy of reconstruction is significantly 

lowered without training samples. Using L1-norm, our method can provide the 

transformation matrix with the favorable sparse property, which can help to achieve 

better results when measuring the unseen samples. We verify the proposed method by 

reconstructing spectral reflection for 4 types of materials (cotton, paper, polyester, and 

nylon) captured by a multi-spectral imaging system. Each of the materials has its own 

texture and there are 204 samples in each of the materials / textures in the experiments. 

Experimental results show that when the texture is not included in the training dataset, 

L1-norm can achieve better results compared with existing methods using colourimetric 

measure (i.e., colour difference) and shows consistent accuracy across 4 kinds of 

materials. 
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(2) Achieved accurate whiteness measurement in textile with the presence of 

fluorescent whitening agents (FWAs). Accurate whiteness measurement is important 

in many industries such as textile, paper and detergent production. With the advent of 

FWAs over the past decades, the general idea of whiteness has been changed from 

measuring reflectance to determining the spectral radiance factor (SRF) of the materials. 

Multispectral Imaging (MSI) system has long been investigated and is known to be an 

advanced technique to measure the reflectance of objects, by which one can use it to 

accurately measure the colour of objects. However, the spectral surface will be heavily 

augmented by the fluorescent materials added to the objects. As a result, measuring 

whiteness does not only depend on reflectance measurement but also SRF measurement. 

A specialized light-source is designed with an ultraviolet (UV) filter to control and 

adjust the illumination system in an integrating sphere. Through the adjustment of the 

position of the UV filter, multispectral images of an object (fabric in this work) are 

captured with different exposures of UV light from the light-source. Then these images 

are processed and combined by our proposed method into a new multispectral image 

with full-range visible spectral information. Besides, based on a theoretical proof, this 

work shows that MSI is spatial uniform for SRF measurement. Through the custom 

light-source with an adjustable UV filter, whiteness metric that is comparable with a 

spectrophotometer can be obtained by MSI. This work shows that MSI can achieve 

high whiteness measurement accuracy and spatial uniformity. 

(3) Implemented a new clustering algorithm for measuring colours and recognizing 

patterns in printed fabrics. There are rich colours and various patterns with different 

sizes and shapes in printed fabrics, which make it difficult for accurate colour 

measurement and pattern recognition by traditional spectrophotometer and digital 

camera. This work proposes a grid-based density peaks clustering (GDPC) algorithm 
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to measure colours and recognize patterns of multispectral image of printed fabrics. A 

custom-developed multispectral imaging system is used to capture the multispectral 

fabric image where each pixel has full spectral information across the visible spectrum 

from 400 nm to 700 nm with an interval of 10 nm. The multispectral image is then 

converted to CIELAB colour space for image processing (clustering) and colour 

measurement. The noise pixels are removed by calculating the local stability of each 

pixel, and then the remaining pixels are clustered by the proposed grid-based density 

peaks clustering algorithm based on the CIELAB colour values. Experiment results 

show that, when compared with conventional colour clustering algorithms, the 

proposed GDPC algorithm can have higher accuracy and efficiency in colour separation 

from multispectral images with complex patterns. 

(4) Proposed a new approach to classify knitted fabrics. Automatic inspection of fabrics 

has tremendous advantage over the manual inspection due to its’ great efficiency. Based 

on BoW (Bag of Word) feature extraction, a new approach for classification of knitted 

stitch was proposed. By this method, the classification of knitted fabrics can be 

significantly improved. To validate the method, we fabricated 58 texture knitted fabrics 

with 5 colours. The result shows our method can reach the best classification accuracy. 

This work will benefit the research of automatic recognition of textile pattern. 

 

Overall, this work has improved the technical aspects in fabric industry using advanced 

computational methods. 
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Chapter 1 Introduction 

1.1 Introduction to textile image analysis and 

multispectral imaging 

This chapter first introduces the background of textile image analysis and multispectral 

imaging. The objective and main contribution of this work are addressed. Finally, a 

general outline of the overall structure of this thesis is presented. 

Accurate colour reproduction of image can facilitate the process of colour 

communication, colour measurement and quality control (Herzog & Hill, 2003). One 

of the most important topics of this work is focused on the colour and whiteness 

measurement. 

Colour and whiteness measurements have always been very important aspects for many 

industries like textile, paper and detergent production (McDonald, 1997; Uchida, 1998). 

For example, a large batch of fabric samples with inconsistent colour would be rejected 

by a client which could incur negative financial impacts on the fabric manufacturer. 

There are currently two main categories of instrument for measuring spectral 

reflectance accurately, i.e., spectrophotometers and multispectral imaging systems. 

Spectrophotometers, like DataColor 650 and X-Rite Ci7860, have proven to be very 

effective in measuring colour and they are used as standard instrument in industries. 

However, the limitation in using spectrophotometers is that one can only measure the 

average reflectance of an area without any spatial resolution. Moreover, 

spectrophotometers cannot measure small objects such as a yarn (Luo, Shao, Shen, & 

Xin, 2013). 
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On the other hand, multispectral imaging technology has shown enormous potential in 

colour measurement because it can provide spectral information as well as spatial 

information (Westland, Ripamonti, & Cheung, 2012). Another advantage of 

multispectral colour measurement is that, by various image processing and machine 

learning technologies, the colour of a very small object or area such as a yarn can be 

measured. 

In the recent years, the advent of Fluorescent whitening agents (FWA) has changed the 

measurement of whiteness (Puebla, 2006b). Fluorescent molecules have the property 

to absorb light in the near ultra-violet (UV) wavelength (i.e., below 400nm) and emit 

light at about 445 nm (Puebla, 2006b). Many spectrophotometers (e.g., DataColor 650 

and X-rite Ci7860) can measure the surface with FWAs by different methods, such as 

one-point-matching and numerical method (Yang, 2017). However, to the best of our 

knowledge, there are no report about the measurement of whiteness by multispectral 

imaging technology in the literature. In this study, we propose to use a special 

multispectral imaging machine to measure the whiteness. A crucial part in whiteness 

measurement is whiteness calibration because the whiteness is highly depended on the 

spectral distribution of light source. A new method for whiteness calibration and 

whiteness measurement is developed in this study, which, from the experimental results, 

achieved high accuracy. 

Multispectral imaging system has been tested to be a very efficient method in textile 

image acquisition. Having the described applications in mind, certain aspects influence 

the design of a multispectral imaging system. 
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1.2 Research Background 

Textile image processing has been an important part of image processing since 1960 

(L. Luo, H. L. Shen, S. J. Shao, & J. H. Xin, 2015b). With the image processing method, 

more and more tasks can be done. Imaging capture devices basically consist of an 

optoelectronic sensor, or analogical photosensor, and a device which converts 

analogical signals into a digital code. Spatial uniformity is very important feature in 

colour measurement. 

In many cases where the accuracy of a colour is a major quality criterion, companies 

do not relay on colour measurement, but make use of visual assessments. Traditional 

colour measurement and communication are based on spectrophotometers. 

Spectrophotometers are the most widely used instruments to measure instrumental 

colours pf fabric samples in textile and garment industries. A spectrophotometer can 

provide accurate and precise spectral resolution for fabric samples. The spectral 

reflectance is independent of characteristics of acquisition systems and illuminates, i.e., 

the measurement results of a spectrophotometer can be transformed to any colour space 

and can be interpreted for any other illuminates. However, there are three limitations 

when spectrophotometers are employed to measure colours of textiles.  

1.3 Research objectives 

This project will investigate into the theory of textile image analysis and its’ application.  

1.     To develop a spectral reflectance reconstruction method. Traditional multispectral 

system usually using Weiner estimation for reflectance reconstruction perform sub-

optimally when the object being measured has a texture that is not in the training 

set. 
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2.     To develop fluorescent whiteness measurement part by using multispectral system. 

Different from general colour metric, fluorescent whiteness does not depend on 

spectral reflectance but on total radiance because fluorescence agents absorb light 

in UV region and emit energy in visual wavelength. 

3.     To investigate and apply appropriate computational technologies to analyze fabric 

images. Fabric classification and pattern detection are important procedures which 

can be benefited from the automatic process enabled by computer algorithms. 

 

1.4 Research Significance and Value 

This project will greatly contribute to the textile and computing vision. The study 

contributes to the literature on textile colour measurement, quality control, colour 

communication, colour management, image processing and retrieval. The outcome of 

this study would make a significant contribution to colour measurement of yarn dyed 

fabrics. The details are as follows. 

(1) Proposed an improved reflectance reconstruction method based on L1-norm 

penalization. Spectral reflectance reconstruction for multispectral images (such as 

Weiner estimation) may perform sub-optimally when the object being measured has a 

texture that is not in the training set. The accuracy of reconstruction is significantly 

lower without training samples. Using L1-norm, our method can provide the 

transformation matrix with the favourable sparse property, which can help to achieve 

better results when measuring the unseen samples. We verify the proposed method by 

reconstructing spectral reflection for 4 types of materials (cotton, paper, polyester, and 

nylon) captured by a multi-spectral imaging system. Each of the materials has its own 

texture and there are 204 samples in each of the materials / textures in the experiments. 
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Experimental results show that when the texture is not included in the training dataset, 

L1-norm can achieve better results compared with existing methods using colourimetric 

measure (i.e., colour difference) and shows consistent accuracy across 4 kinds of 

materials. 

 (2) Achieved accurate whiteness measurement in textile with the presence of 

fluorescent whitening agents (FWAs). Accurate whiteness measurement is important 

in many industries such as textile, paper and detergent production. With the advent of 

fluorescent whitening agents (FWAs) over the past decades, the general idea of 

whiteness has been changed from measuring reflectance to determining the spectral 

radiance factor (SRF) of the materials. Multispectral Imaging (MSI) system has long 

been investigated and is known to be an advanced technique to measure the reflectance 

of objects, by which one can use it to accurately measure the colour of objects. However, 

the spectral surface will be heavily augmented by the fluorescent materials added to the 

objects. As a result, measuring whiteness does not only depend on reflectance 

measurement but also SRF measurement. In this paper, a specialized light-source is 

designed with an ultraviolet (UV) filter to control and adjust the illumination system in 

an integrating sphere. Through the adjustment of the position of the UV filter, 

multispectral images of an object (fabric in this work) are captured with different 

exposures of UV light from the light-source. Then these images are processed and 

combined by our proposed method into a new multispectral image with full-range 

visible spectral information. Besides, based on a theoretical proof, this work shows that 

MSI is spatial uniform for SRF measurement. Through the custom light-source with an 

adjustable UV filter, whiteness metric that is comparable with a spectrophotometer can 

be obtained by MSI. This work shows that MSI can achieve high whiteness 

measurement accuracy and spatial uniformity. 

(3) Implemented a new clustering algorithm for measuring colours and recognizing 

patterns in printed fabrics. There are rich colours and various patterns with different 
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sizes and shapes in printed fabrics, which make it difficult for accurate colour 

measurement and pattern recognition by traditional spectrophotometer and digital 

camera. This work proposes a grid-based density peaks clustering (GDPC) algorithm 

to measure colours and recognize patterns of multispectral image of printed fabrics. A 

custom-developed multispectral imaging system is used to capture the multispectral 

fabric image where each pixel has full spectral information across the visible spectrum 

from 400 nm to 700 nm with an interval of 10 nm. The multispectral image is then 

converted to CIELAB colour space for image processing (clustering) and colour 

measurement. The noise pixels are removed by calculating the local stability of each 

pixel, and then the remaining pixels are clustered by the proposed grid-based density 

peaks clustering algorithm based on the CIELAB colour values. Experiment results 

show that, when compared with conventional colour clustering algorithms, the 

proposed GDPC algorithm can have higher accuracy and efficiency in colour separation 

from multispectral images with complex patterns. 

(4) Proposed a new approach to classify knitted fabrics. Automatic inspection of fabrics 

has tremendous advantage over the manual inspection due to its’ great efficiency. In 

this paper, based on BoW (Bag of Word) feature extraction, a new approach for 

classification of knitted stitch was proposed. By this method, the classification of 

knitted fabrics can be significantly improved. To validate the method, we fabricated 58 

texture knitted fabrics with 5 colour. The result shows our method can reach the best. 

This work will benefit the research of automatic recognition of textile pattern. 
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1.5 Outline of the Work 

There are seven chapters in this report. Chapter 1 mainly focuses on the background of 

this research, as well as the main problems in the current field and the objectives of this 

research. A literature review is provided in Chapter 2, which includes a review on 

multispectral imaging for colour measurement and its applications. Chapter 3 focuses 

on reflectance reconstruction. Chapter 4 describes our proposed method for whiteness 

measurement using multispectral imaging system. Chapter 5 reports the results of 

automatic classification of knitted fabrics. Chapter 6 introduces the textile image 

processing methods in printing fabric colour patten recognition. The last chapter 

(Chapter 7)concludes the thesis and discusses the plans of further work. 
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Chapter 2 Literature Review 

2.1 Introduction  

A detailed literature survey is given in this chapter to provide the background 

information related to faithful colour reproduction of image. The related work is 

reviewed from two perspectives: multispectral imaging theory and its applications. 

Multispectral imaging theory refers to the hardware and software of multispectral 

imaging system while the applications of multispectral imaging system include colour 

measurement, wetness measurement, florescence separation and so on. 

2.2 Multispectral Image Theory 

There are multiple methods for capturing multispectral images, including filter wheel-

based MSI, LCTF based MSI, scan-push hyperspectral imaging system. The methods 

are discussed in this section together with the corresponding advantages and 

disadvantages. 

2.2.1 Multispectral imaging by filter wheel 

 

Figure 2.1 Filter wheel for multispectral imaging 

 



9 

 

 

As it’s shown in the image, the camera is combined by a lens, filter wheel and a camera. 

This has been well investigated by Johannes and Til (Brauers & Aach, 2011; Brauers 

& Aach, 2010; Brauers, Schulte, & Aach, 2008; Chen, Shen, Li, & Xin, 2017; Chen & 

Shen, 2015; Shrestha & Hardeberg, 2014). When the wheel turns to a channel, the 

monochrome camera will take a photo. As a result, the number of channels will be the 

dimension of the multispectral imaging system. For example, if there are 10 filters on 

the wheel, the acquired multispectral images will be a 10-channel image that different 

from the grey images (one channel) and RGB image (three channels). 

2.2.2 Multispectral imaging by LCTF 

Liquid crystal tunable filters (LCTFs) is similar to filter wheel as it can change the 

filters by programming. (Martínez-Domingo et al., 2017; Tominaga & Okajima, 2000) 

The LCTFs have obvious advantage over filter wheel that they can be much faster 

without the physical move of wheels. However, they also have the disadvantages of 

imbalanced transfer rate especially towards the violate region. Figure 2.2 shows the 

difference between a filter wheel and LCTFs. One can observe that the transmission 

rate from 400-450nm is very small. Because of this, many previous research works have 

adopted the filter wheel as their device. LCTF are widely used in the real time required 

imaging environment like medicine imaging. 
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(a) (b) 

Figure 2.2 (a): Typical transmission as a function of wavelength for a ordinary optic 

tunable filter; (b): Typical transmission for a liquid crystal tunable filter. 

 

Colour measurement by multispectral imaging is highly related with reflectance 

reconstruction or spectral reconstruction(Ying Fu, Lam, Sato, Okabe, & Sato, 2013), 

since the resultant colour is dependent on the spectral reflectance (Westland et al., 2012). 

Fluorescence imaging by multispectral imaging technology has been widely researched 

recently(Ying Fu et al., 2013; Sato, Okabe, & Sato, 2012; C. Zhang & Sato, 2013; 

Zheng, Sato, & Sato, 2014), and that has paved the path for this study to measure the 

whiteness of the FWAs added white fabric. Fluorescence material has a special property 

that absorb energy in lower band and reemit it in higher band, namely Stroke Shift, 

which in colour science, will make colour more vivid in that wavelength(Ying Fu et al., 

2013). 

The review of the commercial multispectral system can be summarized in Table 2.1. 

Table 2.1 Review of different multispectral imaging system 
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 Number of 

bans 

Spectral range advantage disadvantage 

LCTF 31 420-700 nm fast Transmission 

rate 

Filter-wheel 16 400-700 nm slow excellent 

Push-scan 

hyperspectral 

96 400-1000 nm slow excellent 

LED 

hyperspectral 

16  fast Unacceptable 

in short 

wavelength 

 

2.3 Multispectral Image Application 

2.3.1 Multispectral Imaging In textile industry 

Luo et al. (L. Luo, H. L. Shen, S. J. Shao, & J. Xin, 2015a; L. Luo, H. L. Shen, S. J. 

Shao, & J. H. Xin, 2015c; Luo, Shen, Shao, & Xin, 2016) have developed significant 

amount of works to apply the multispectral imaging technology in textile industry. 

2.3.2 Multispectral Imaging for Florescence 

Recently, multispectral imaging technology has been widely used in Florence 

appearance revolver. Different from traditional material, it follows the Stork theory 

which means that the material absorb energy from the short wavelength and emit at the 

longer wavelength, which means the radiance not only depend on the material but also 

depend on the power of illumination. 
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Fu et al.(Y. Fu, Lam, Kobashi, et al., 2014; Y. Fu, Lam, Matsushita, Sato, & Sato, 2014; 

Y. Fu et al., 2013; Y. Fu, Zheng, Zhang, & Huang, 2018) proposed to use conventional 

RGB camera and varied coloured illuminations to recover the reflectance and 

fluorescence spectral information. They exploit the illuminant-invariant chromaticity 

of fluorescence to estimate both spectral reflectance and fluorescent chromaticity from 

RGB images. 

Tominaga et al. (Hirai, Osawa, Hori, Horiuchi, & Tominaga, 2018; Tominaga, Hirai, 

& Horiuchi, 2018a, 2018b, 2019; Tominaga & Okajima, 2000) use multispectral 

imaging technology (mainly LCTF) to recover the spectral data of a florescent objects. 

Different from Fu et al. metioned above, Tominaga recover both the reflectance and the 

absorb and emission matrix at the same time.  

2.3.3 Multispectral Imaging for wetness 

Shimano (Okawa et al., 2019; M. Shimano et al., 2017) developed an algorithm for 

wetness detection by multispectral imaging. This research shows that colour change, 

particularly in its spectral behaviour, carries rich information about a wet surface. They 

derive an analytical spectral appearance model of wet surfaces that expresses the 

characteristic spectral sharpening due to multiple scattering and absorption in the 

surface.  

2.4 Multispectral imaging employed in this study 

In this section, the customized MSI and the reflectance reconstruction 

method will be introduce. 
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2.4.1 Customized MSI employed  

A MSI 16-channel filter-wheel MSI system is developed to accomplish this thesis 

called Imaging  Colour  Measurement (ICM). Before capturing the multispectral data, 

ICM need to be calibrated. This  calibration process comprises exposure time estimation, 

illumination balance, autofocusing, channel alignment, ghost elimination, color 

correction, etc. ICM can capture the multispectral data with the spectral reflectance 

from 400nm to 700nm and wavelength interval of 20 nm. The 31 monochrome images 

with wavelength interval of 10 nm can reconstructed from 16 monochrome images 

under the 16 different wave-bands by using spectral reflectance reconstruction method. 

The reconstructed spectral reflectance curves are illustrate. The maximum size of the 

captured fabric sample is 100mm(width) × 80mm(height) and the corresponding image 

size is 1824 pixels (width) ×1344 pixels(height) which has 2,451,456 pixels.  

The ICM system effectively overcomes the problem of the metamerism (i.e., two 

different colours having the same appearance under a specific light source) and offers 

a more rigorous and accurate means of colour management and quality control. This is 

a very important contribution in the textile industry. The specifications of the ICM 

system are shown in Table 2.1, the colour-difference data were obtained under D65 

illumination for a 10° visual field. 

Table 2.1 Specifications of the ICM system 

Repeatability (NIST White Tiles) Mean colorimetric error = 0.03 CMC (2:1) 

Uniformity (NIST White Tiles) Maximum and mean colorimetric errors = 

0.1  

and 0.01 CMC (2:1) units 

Inter-instrument agreement between ICM  

system and benchmark spectrophotometer: 

Maximum and mean spectral reflectance 

accuracy = 0.0089 and 0.0024 RMS errors 

Maximum and average colorimetric 

accuracy = 0.62 and 0.23 CMC (2:1) units 

Measurement time Less than 25 seconds 

Spectral wavelength accuracy ±1 nm 

Optical configuration 45° /10° 

Spectral range 400 nm - 700 nm 
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Measurement sizes 100mm*80mm 

 

2.4.2 Spectral Reflectance Reconstruction 

Spectral reflectance reconstruction in multispectral imaging system (MIS) has attracted 

a lot of attention in recent years (Ville Heikkinen et al., 2007; Heikkinen et al., 2008; 

Y. Murakami, T. Obi, M. Yamaguchi, N. Ohyama, & Y. J. O. c. Komiya, 2001; Shen, 

Cai, Shao, & Xin, 2007; Shen, Xin, & Shao, 2007; N. J. I. T. o. I. P. Shimano, 2006; X. 

Zhang & Xu, 2008). The objective is to obtain a full spectral reflectance image of the 

objects (e.g., fabric) such that accurate colour reproduction can be performed. 

Applications of MIS also include fruit classification(Jiang & Gu, 2012), art archiving(J. 

Y. Hardeberg, Schmitt, & Brettel, 2002), and colour constancy determination(Mosny 

& Funt, 2006) among many others. In this study, multispectral imaging refers to using 

16 narrow band channels to estimate the full spectral which consists of 31 channels, 

similarly as defined in reference (Shen, Cai, et al., 2007). 

In MIS, spectral reflectance reconstruction refers to the process of reconstructing 

spectral reflectance from the response of multispectral image at different narrow-band 

wavelengths (Jon Y Hardeberg, 2001; J. Y. Hardeberg et al., 2002; Shen, Xin, et al., 

2007).  In most of the cases, there is a need to find a mathematical mapping to transform 

a camera's response vector (with dimension c) to a reflectance vector (with dimension 

m), where c is less than m. 

2.5 Whiteness Measurement 

Whiteness is an important property for many industries, such as textile and paper 

production(Aman, 2012; Coppel, Andersson, Neuman, & Edström, 2012; Gärtner & 

Griesser, 1975; Gay, Melo, & Hirschler, 2004; Imura, Imai, Kawabata, & Makino, 1997; 
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Jafari & Amirshahi, 2007; Puebla, 2006a; Uchida, 1998; Vik, Viková, & Periyasamy, 

2015).  

To make the whiteness different from the normal colour is the advent of florescent 

whitening agent (FWA)(Aman, 2012; Coppel et al., 2012). It absorbs energy from the 

short wavelength and emits them on the longer wavelength. That make the colour of 

the appearance not only depends on reflective part, but also on reflective part. It’s very 

normal to find that many spectral factor even much larger than 100% over pure 

illuminant in 450nm wavelength.  

2.5.1 Whiteness calculation 

The calculation of whiteness should begin with the colour calculation. There are several 

whiteness formulas in textile measurement, the most recognized formula is CIE 

whiteness (Schanda, 2007). The formula is ( ) ( )800  1700n nW Y x x y y= + − + −  where 

Y is the Y-tristimulus value of the sample, x and y are the x, y chromaticity coordinates 

of the sample, and nx , ny  are the chromaticity coordinates of the perfect diffuser, all for 

the CIE illuminant D65 and 1964 standard colorimetric observer. Limited to:

40 5 280W Y  − . 

2.5.2 Whiteness calibration 

There are usually two methods for spectrophotometer to calibrate their UV light(Puebla, 

2006b): one-point-matching and adjustable UV filter. One-point-matching method 

means UV filters will continuously move until the measurement reaches the target 

whiteness. The adjustable UV filter tries to combine two radiance factors (radiance with 

UV light and radiance with reduced UV light) to achieve a target value. This work 

extends these two methods in multispectral imaging system and compare the two results. 
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That will be detailly discussed in Chapter 4 Florescent whiteness measurement by 

multispectral imaging system. 

2.6 Textile image analysis 

In this section, some basic textile image analysis methods will be discussed. 

2.6.1 Knitted fabric textile classification 

Conventional yarn-dyed fabric classification often includes angle correction, 

directional projection, yarn segmentation and float point classification (C. F. J. Kuo, 

Shih, & Lee, 2004; Pan, Gao, Liu, Wang, & Europe, 2010; B. J. Xin, Hu, Baciu, & Yu, 

2009; B. G. Xu, 1996; J. Zhang, Wang, Pan, Zhou, & Gao, 2018).  It is not very easy 

for knitted fabric to identify by yarn segmentation and flat point classification since the 

yarns in knitted fabric are too soft and coupled together. 

Although not many, there are two literature directly related to the work of knitted fabric 

classification. Tang-jun Lv and Hai-ru Long have applied the SURF algorithm to 

knitted fabric classification and recognition (Lv & Long, 2015). They first applied 

Gaussian denoise and then select the local feature. They make use of the reparability of 

patterns in the same fabric and use the SURF feature to match these patterns. Kuo and 

Kao have used the co-occurrence feature and SMO (self-organizing map) network to 

classify the knitted fabrics (C. F. J. Kuo & Kao, 2007). The disadvantage of co-

occurrence feature is that it can only detect a small number of classes. For example, in 

Kuo and Kao’s work, there are only 5 classes which are plain weave, twill weave, stain 

weave, single jersey, double jersey, and non-woven fabric. 
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2.6.2 Printing fabric analysis 

Printed fabrics and other valuable textile materials have rich colours and variable 

patterns. Besides the fabric structural parameters (such as fabric densities, weave 

pattern), the colour pattern of printed fabrics is the most significant feature, which can 

be described by the number of colours, colour values, and patterns. Many researches 

have been done to measure fabric densities(Liu, Jiang, Liu, & Chai, 2014; Schneider, 

Gloy, & Merhof, 2014; J. Zhang, Xin, & Wu, 2014) and recognize weave pattern(Li, 

Wang, Deng, & Xin, 2020; Wang, Georganas, & Petriu, 2011). To the best of our 

knowledge, it is the first attempt to recognize colour pattern and measure fabric colours 

of printed fabrics by using multispectral image system. 

The colour pattern recognition is indispensable for the textile and dying industries, 

including colour measurement and pattern segmentation, when reproducing the clients’ 

standard samples or controlling the quality of the batch fabrics in production. Compared 

with manual colour pattern inspection, the automatic recognition method based on 

computer vision is more desirable to improve manufacturing efficiency and reduce the 

labour costs. 

 

2.7 Summary 

In this chapter, the literature about the multispectral imaging and textile images have 

been reviewed, with both perspectives from theory and applications. This thesis extends 

the theory and enrich the applications of using MSI in textile industry. 
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Chapter 3 Spectral reflectance reconstruction using 

L1-norm penalization for colour reproduction 

3.1 Introduction 

The literature of spectral reflectance has been reviewed. In this chapter, a new spectral 

reflectance reconstruction method will be proposed. 

Spectral reflectance reconstruction in multispectral imaging (MSI) system has attracted 

a lot of attention in recent years (Ville Heikkinen et al., 2007; Heikkinen et al., 2008; 

Yuri Murakami et al., 2001; Shen, Cai, et al., 2007; Shen, Xin, et al., 2007; N. J. I. T. 

o. I. P. Shimano, 2006; X. Zhang & Xu, 2008). The objective is to obtain a full spectral 

reflectance image of the objects (e.g., fabric) such that accurate colour reproduction can 

be performed. Multispectral imaging has its advantage over the conventional three-

channel colour imaging because it can provide the full spectral information in the 

visible band (i.e., 400nm - 700nm), which can be used for accurate colour 

measurement(Luo et al., 2015c)   . Applications of MSI also include fruit 

classification(Jiang & Gu, 2012), art archiving(J. Y. Hardeberg et al., 2002), and colour 

constancy determination(Mosny & Funt, 2006) among many others. In this study, 

multispectral imaging refers to using 16 narrow band channels to estimate the full 

spectral which consists of 31 channels, similarly as defined in (Shen, Cai, et al., 2007) 

In MSI, spectral reflectance reconstruction refers to the process of reconstructing 

spectral reflectance from the response of multispectral image at different narrow-band 

wavelengths (Jon Y Hardeberg, 2001; J. Y. Hardeberg et al., 2002; Shen, Xin, et al., 

2007). The transmission rate of a typical set of narrow band filters is shown in Figure 
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3.1. In most of the cases, there is a need to find a mathematical mapping to transform a 

camera's response vector (with dimension c) to a reflectance vector (with dimension m), 

where c is less than m. 

 

 

Figure 3.1 Transmission rate of 16 filters. 

 

In the literature of multispectral imaging, several reflectance reconstruction techniques 

have been proposed, including Wiener estimation (Y. Murakami, T. Obi, M. 

Yamaguchi, N. Ohyama, & Y. Komiya, 2001; Shen, Xin, et al., 2007; N. J. I. T. o. I. P. 

Shimano, 2006), Least-square estimation method (Jon Y Hardeberg, 2001; J. Y. 

Hardeberg et al., 2002), and Kernel-based methods (V. Heikkinen et al., 2007; 

Heikkinen et al., 2008). These methods usually have too many parameters involved in 

estimating the mathematical mapping between the response and reflectance. Take 

Pseudo-Inverse as an example, it has mxc parameters, where m is the dimension of 

reflectance vector and c is the dimension of response vector. The number of parameters 

grow linearly with the value of c. In colour measurement applications(Herzog & Hill, 
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2003)it is not uncommon that the number of channels m and c are as large as 31 and 16 

respectively, so the number of  parameters will be 31 x 16=496. Because of large 

number of parameters, many training samples are needed for parameter estimation, 

otherwise such many parameters may cause overfitting in the reconstruction processing. 

 

In this paper, a L1-norm penalization item is added to Least-square estimation to solve 

the overfitting issue. The L1-norm item can help the target parameter to achieve sparse 

property and overcome the overfitting problem in training. Here we take the Pseudo-

Inverse as an example, if 5 out of the 16 channels contribute to the final reconstruction 

results of each reflectance, the number of parameters will decrease from 496 to 31 x 

5=155, which decrease more than half of the parameters in the Pseudo-Inverse. In order 

to verify the results, we prepared 4 kinds of materials (cotton, paper, polyester, and 

nylon) with a total of 816 samples. The evaluation results verify the L1-norm 

penalization method can help to improve the colour reproduction accuracy compare to 

traditional methods.  

 

The following part are organized as follows: Section 3.2 introduces the basic 

formulations in spectral reflectance reconstruction; Section 3.3 presents the current 

reconstruction algorithms; Section 3.4 discusses the proposed L1-norm method; 

Section 3.5 shows the experiments and the comparing results between our method and 

other methods; Section 3.6 and section 3.7 discuss the reason why the L1-norm works 

and reveal the conclusion of this work. 
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3.2 Formulation of multispectral imaging 

 

In this work, a multispectral imaging system is built as illustrated in Figure 3.2. In the 

system, a monochrome camera is used for capturing the response images of each 

narrow-band wavelength (1 )i i n   using the corresponding filter in the filter wheel. 

Narrow-band wavelength filters (transmission rate illustrated in Figure 3.1 and CCD 

cameras are commonly used in multispectral systems for colour measurement (Herzog 

& Hill, 2003; Luo et al., 2015a). The filter wheel with n filters is placed between the 

lens and the camera to filter the light entering the camera.  

 

 

 

Figure 3.2 schematic diagram of proposed MSI. 

 

The measured response of the camera is proportional to the intensity of light entering 

the sensor and we can formulate this as Equation (3.1). Denote ( )l   to be the spectral 

power distribution of the imaging illumination, ( )r   to be the spectral reflectance of 
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the samples being imaged, ( )s   to be the sensitivity of CCD camera, cb  to be the bias 

response caused by dark current, and finally, cn  to be the noise. In spectral 

characterization of imaging system, spectral sensitivity and bias are recovered by 

training dataset with known reflectance. 

Then these responses uc of the c-th channel can be represented as 

( ) ( ) ( )

( ) ( )

c c c

c c c

u l r s d b n

m r d b n

   

  

+ +

+

=

= +




 (3.1) 

 

The objective in reflectance reconstruction is to recover ( )r  . Note that ( )l  and ( )l 

can be merged together into a single term ( )cm   in Equation (3.1).   

In practice, the filters are narrow-band filters, so we can replace the continuous 

variables to their discrete counterparts and the integral can be replaced to summation. 

If N uniformly spaced samples are used over the visible spectrum, Equation (3.1) can 

be rewritten in vector and matrix notation as 

= + +u Mr b n  (3.2) 

where u  is the c-dimensional vector and b  is a $m$-dimensional vector, M  is a  c x 

m matrix of spectral responsivity and illumination, b  and n  are two vectors. M  can 

be estimated by reference (Shen, Xin, et al., 2007). 

3.3 Preliminaries 

 To make this work self-contained, this section briefly summarizes the formulations of 

typical reflectance reconstruction methods, including Least-square estimation, Ridge 

regression, Wiener estimation and Kernel methods. Our L1-norm based solution is built 
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based on Least-square estimation, and we will compare our method with Ridge 

regression and other methods. 

3.3.1 Least-square estimation 

The subsection provides a brief review of the Least-square estimation method, while 

reference (Jon Y Hardeberg, 2001)has a detailed discussion of the method. The 

estimation of reflectance is to find a c x m matrix W  that can transform the response 

u  into the estimated reflectance r , 

ˆ =r Wu  (3.3) 

A natural thought will be to minimize the difference between the reconstructed r and 

the $Wu$. So we can formulate the cost function as  

1
|| || .

2
E = − 2

FR WU  
(3.4) 

In this equation, R is the matrix form of r and U is the matrix form of u . Note that the 

matrix U  in Equation 3.4 is of size 16 x number of samples. The subscript F refers to 

the Frobenius norm. This equation has a closed-form solution and we can minimize it 

by derivative to W . 

In the Pseudo-Inverse technique, the transform matrix W  is directly solved as  

( ) ,−= T T 1
W RU UU  (3.5) 

where R  denotes the matrix form of reflectance vector r , and U  denotes the matrix 

form of response vector u . 
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3.3.2 Ridge Regression 

Ridge regression can be viewed as adding an L2-norm penalization to Least-square 

estimation Equation 3.4, the cost function of ridge can be written down as  

1
|| || .

2
E = − +2 2

F

1
R WU β

2
 

(3.6) 

The closed form of solution M  can be solved by partial differentiate M  in both sides 

and make it equal to 0. The solution is 

( ) .W −= +T T 1
RU UU βI  (3.7) 

3.3.3 Wiener estimation 

In Wiener estimation (Shen, Cai, et al., 2007), the transform matrix is 

( ) ,−= +T T 1

WE r r nW K M MK M K  (3.8) 

where r
K and nK  are the autocorrelation matrices of reflectance and noise, 

respectively: 

( ),= T

r
K rr  (3.9) 

diag{ , , , }.= 2 2 2

n 1 2 cK σ σ σ  (3.10) 

The noise is assumed to be independent across each channel, so the matrix nk  is a 

diagonal matrix in Wiener estimation. The noise c can be estimated as: 

( )2ˆ || || ,c = − 2

c c Fu m r  (3.11) 

 

where c
u  is the response of the c-th channel, and c

m  is the spectral responsivity of the 

c-th channel.  denotes the operation of expectation. 
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3.3.4 Kernel method 

Kernel method is also widely used in spectral reflectance reconstruction(V. Heikkinen 

et al., 2007; Heikkinen et al., 2008). It regularizes Least-square regression in 

Reproducing Kernel Hibert Space (RKHS). Kernel can be viewed as a function to map 

the vector in Least-square method to a new space. There are many kernels which can 

be used, in the work (Heikkinen et al., 2008), the authors applied Gaussian kernel, 

Polynomial kernel, Spline kernel and Duchon kernel.For example, Guassian kernel can 

be defined by 

2

|| ||
( , ) exp ,

2
k



− 
= − 

 

x z
x z  

(3.12) 

where 0   is a super-parameter. The Gaussian kernel is invariant to rotation and 

translation, so ( , ) (|| ||)k k= −x z x z . The corresponding RHKS space is infinite 

dimensional. 

3.4 Proposed method 

In this work, we propose to apply the L1-norm penalized linear regression method for 

reflectance reconstruction. To the best of our knowledge, it is the first study to use the 

L1-norm penalized linear regression method for this kind of application. The L1-norm 

can provide the constrained variable (in this work the constrained variable is W ) with 

sparsity, and this can help to overcome overfitting (Boyd, Parikh, & Chu, 2011). The 

cost function of L1-norm penalized linear regression in reflectance reconstruction is 

1
|| || || || .

2
E = − +2

F 1R WU α W  
(3.13) 
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In this equation,   is a super-parameter (or a regularization parameter) and can be 

estimated by cross validation. Because the L1-norm is not smooth, we can use 

Alternation Direction Method of Multipliers(ADMM)(Boyd et al., 2011)  to solve it. A 

dummy variable can be introduced to Equation 3.13, and it will be transformed as: 

,, arg min || || || ||

. .s t

= − +

=

2

W Z F 1

1
W Z R WU α Z

2

W Z

 

(3.14) 

 

This is a standard lasso (least absolute shrinkage and selection operator) problem and 

we can solve it by the following iteration(Boyd et al., 2011). 

( )( )+ −= + − +k 1 T k k T 1
W RU μZ T UU μI  (3.15) 

soft( , )






+ += +
k

k 1 k 1 T
Z W I  

(3.16) 

( )+ + += + −k 1 k k 1 k 1
T T μ Z W  (3.17) 

where matrices Z , T  are intermediate variables, which can be initialized with zero 

matrices and   should be set larger than zero and  I  is a unit matrix. 

The operation soft is a soft-thresholding function as: 

soft( , ) sign( )max{| | ,0}u c u u c= −  (3.18) 

Equation 3.13 can be efficiently solved by using the toolbox in (Boyd et al., 2011). 

3.5 Experiments and results 

3.5.1 Data preparation 

Four kinds of materials are prepared for testing and they are polyester, nylon, paper and 

cotton. We use one kind of sample (e.g., polyester) as the training set and all the 4 kinds 
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of materials as testing set (i.e., polyester, nylon, paper and cotton). The objective is to 

test whether the accuracy of spectral reflectance reconstruction is depending on the type 

of the materials used for training / testing. Each texture includes 204 patches and the 

reflectance of the colour patches were measured using a Spectrophotometer DataColor 

D650 with an interval of 10nm. The reason for using the Spectrophotometer is because 

it is the standard for colour measurement(Schanda, 2007). The multispectral images of 

these samples are acquired by a self-made machine as shown in Figure 3.2. We use a 

Xeon lamp and the integral sphere as the illumination light source to make the light 

more uniform. Besides, a high-resolution monochromatic camera is employed to 

capture the multispectral images. 

 

The L*a*b space scatters of each texture are shown in Figure 3.4. The values of this 

samples are computed by computational colour sicence tools(Westland et al., 2012). 

The reflectance of the samples are in the range of 400nm-700nm sampled with 10nm 

intervals. The x-axis indicates the wavelength and the y-axis indicates the reflectance 

measured by the Spectrophotometer. 

 

3.5.2 Evaluation metric 

The colour accuracy of the reflectance reconstruction is evaluated both in spectral and 

colourimetric error. The spectral Root-Mean-Square $RMS$ error between the actual 

reflectance r  and its estimate r  is calculated as 

1/2

( ) ( )T

RMS
m

 − −
=   
 

r r r r
 

(3.19) 
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where m is the dimension of vector r. The colour difference is evaluated by Δ𝐸 

(Schanda, 2007), which is widely used in many industries such as textile and paper 

production.  

 

3.5.3 Super-parameter estimation 

There are 3 super-parameters in our experiments that need estimation, the   in 

Equation 3.6, the   in proposed method in Equation 3.13 and the   in Equation 3.19. 

These parameters are estimated by cotton samples only, 70% percent of 204 cotton 

samples are used for training and the remaining 30% are used for validation. The results 

are plotted in Figure 3.3. The  ,   and   are set to 0.006, 0.074 and 0.0005 

respectively. 

 

Figure 3.3 Super-parameter estimation of  ,   and   in our experiment, the y-axis is the 

colourimetric difference between the reconstructed spectral and ground truth spectral 

reflectance. The black point is the minimum point of the E , which means the value we 

will adopt in the reconstruction. 
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Figure 3.4 The L*a*b scatter of cotton, polyester, nylon and paper. The reflectance are 

measured by DataColor D650 with 10nm interval, gloss include and 9mm spot size. L*a*b 

values are computed by computational colour tools(Westland et al., 2012). 
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3.5.4 Results 

 

Figure 3.5 E  results under illumination D65. (a) is polyester as training; (b) is paper as 

training; (c) is nylon as training and (d) is the cotton as training. 

 

Figure 3.5 illustrates the results when one kind of textures (e.g., cotton) is used as 

training set (204 samples) and others (204 x 3 samples) as testing set. The colour 

difference values under D65 are shown in the figure. In figure 3.5, the L1-norm method 

outperforms the Pseudo-Inverse and other estimation methods in all cases when the 

training set is different from the testing set. The results are consistent when using the 

mean, the median and the maximum of the colour differences after reflectance 

reconstruction for the comparison. The mean and median results reveal the overall 

performance, while the worst case performance is shown in the maximum colour 

difference results. Specifically, the results of L1-norm consistently outperform that of 

the Pseudo-Inverse method using the mean colour difference when the training material 

is different from the testing material. When using the median for the comparison, L1-

norm is better than the pseudo-inverse method in the nylon material for all the testing 
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sets. Similar results are also obtained when using the maximum colour difference for 

comparison in the nylon material. Overall, in the situation when the testing material is 

unseen (i.e., not present in the testing set) which is often in practice, using L1-norm is 

better than using Pseudo-Inverse and Wiener estimation for spectral reflectance 

reconstruction.  

 

 

Figure 3.6 E  results under illumination F2. (a) is polyester as training; (b) is paper as 

training; (c) is nylon as training and (d) is the cotton as training. 

 

 a   b  

 c  d medianmax mean

polyester paper 

nylon cotton
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Figure 3.7 RMS results of spectral reflectance reconstruction. (a) is polyester as training; 

(b) is paper as training; (c) is nylon as training and (d) is the cotton as training. 

 

Figure 3.6 shows the values of the colour difference with illumination F2. The results 

tend to be similar to that of Figure 3.5. Figure 3.7 shows the spectral difference between 

the reflectance measured by Spectrophotometer and MSI using RMS which is not in 

the colour space. From the results, it is interesting to note that the L1-norm method does 

not show significant advantage over Pseudo-Inverse and Wiener estimation when using 

RMS to measure the difference. In practice, colour difference is measured in the colour 

space (D65 and F2 in Figure 3.5 and Figure 3.6 respectively). This reveals that L1-norm 

can be used in practical situations. 
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Figure 3.8 Reflectance reconstruction of a paper sample of the proposed L1-norm 

estimation and traditional estimations when using cotton for training. Tables inside the 

plots are the colour difference and spectral difference. The A, C, D50, D65 and F2 

represents different illumination. The unit of these item is ( (2 :1))E cmc . RMS 

represents the Root-Mean-Square spectral difference metric. In the tables, method "P" is 

the briefcase of method Pseudo-Inverse. "Ours" is the proposed method. "W" is Wiener 

estimation. "K" means kernel method. 

 

 

3.6 Discussion 

This section discusses the reason for the superior results using L1 penalization. 
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As is mentioned in the section 3.4, L1 penalization can overcome the overfitting. Each 

materials has its special property on the reflectance(Shiradkar, Shen, Landon, Heng 

Ong, & Tan, 2014), which also can be confirmed by Figure 3.6.  Figure 3.6 plots the 

first 4 feature vectors of the 4 materials, where we can find the samples have a great 

difference especially for the paper samples.  When using the traditional methods with 

no penalty to reconstruct the spectral reflectance, the internal-texture property is easily 

to learn. What we can do is to prevent the learning system from learning an internal 

property. That's why when using the unseen texture samples as testing, the error is 

larger than the same texture as training. 

 

Figure 3.9 The first 4 feature vectors of 4 kinds samples (cotton, polyester, nylon and paper). 

 

A penalization item can be viewed as an prior knowledge to the object function(Bishop, 

2006). As we using the narrow-band filters in our system, an easy constrain can be 

found, which is the target value can on decided by its neighbour channels. All the 16 

filters are shown in the Figure 3.1. Take the 500nm center filter as an example, the filter 

blocks most of the light in the spectral domain but keeping some of the light from 

490nm to 520nm to pass through. So if we reconstruct the reflectance in 595nm to 
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605nm in our target results, it should have little to no relationship with the response 

from 490nm to 520nm. By adopting the L1 penalization, the weight of this unrelated 

channel can be reduced to 0. 

This sparsity characteristic can also be verified in Figure 3.10, the reflectance curves 

measured by the Spectrophotometer and the response curve captured by MSI share a 

similar shape. It can also be confirmed that the reflectance curve should only be 

constructed by its neighborhood channels during reflectance reconstruction. 

 

Figure 3.10 The reflectance and response of a typical cotton sample. The response is 16-d 

vector measured by a self-made MSI and reflectance is a 31-d vector measured by a 

Spectrophotometer. 

 

Based on sparsity characteristic of reflectance, the superior performance of the L1 

penalization method is reasonable and understandable. It can inhibit the noise 

introduced by the similar textures and only focus on the accuracy introduced by the 

MSI. 
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3.7 Conclusion 

We propose a L1-norm method for reflectance reconstruction which in certain practical 

conditions (when the testing texture is unavailable in training samples), the accuracy of 

the reconstructed reflectance is higher than that using the conventional methods like 

Pseudo-Inverse and Wiener estimation method. Note that this study is mainly focus on 

colour reproduction, therefore other metrics such as shape-distance sensitivity are not 

included. 

In this paper, we also find a very interesting phenomenon that while we are optimizing 

the colour difference by spectral domain, the results of proposed method are better in 

the colour domain. This does not affect practical application of the proposed method 

because colour difference is measured mainly in colour domain. This phenomenon can 

be investigated in future work. 
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Chapter 4 Florescent whiteness measurement by 

multispectral imaging system 

 

4.1 Introduction 

In the previous chapter, the reflectance reconstruction has been studied. Accurate colour 

information can be obtained by various equations depending on light source and 

viewing conditions with spectral reflectance (Westland et al., 2012). Compared to 

spectrophotometer, there is still a disadvantage of the MSI for colour measurement 

which is that it cannot measure whiteness with the device presented in previous chapters. 

 

Whiteness measurement has been an important aspect for industries like textile, paper 

and detergent production. A large batch of fabric samples with inconsistent whiteness 

would be rejected by a client which could incur financial impacts on the fabric 

manufacturer. Traditional whiteness measurement is based on spectrophotometers, 

such as DataColor 650 and X-Rite Ci7860, which are very effective in measuring 

whiteness and they are used as the standard instrument in the industry. However, the 

limitation in using spectrophotometers is that one can only measure the average 

reflectance of an area without any spatial information. On the other hand, MSI has the 

advantage over spectrophotometer due to its ability to capture spatial information. 

However, there are very little study in the literature on the whiteness measurement 

capability of MSI in the presence of fluorescent whitening agents (FWAs). This study 

provides strong evidence that MSI can be used for accurate whiteness measurement as 

well as ensuring spatial uniformity. 
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The major contributions are:  

 (1) A practical and novel multispectral imaging machine for whiteness measurement 

is built by which the accuracy of whiteness measurement is as high as industry standard;  

 (2) An adjustable UV illumination box is designed by which the ratio of UV to visible 

light can be adjusted. The method shows high stability and robustness in colour and 

whiteness measurement, which will greatly contribute to the colour measurement and 

quality control in textile and paper production industry; 

 (3) A theoretical model is developed and applied to the colour measuring process in 

the multispectral imaging machine which can ensure the spatial uniformity for both 

materials with and without FWAs added. 

4.2 Formulation of MSI whiteness measurement 

We will introduce how to calculate the whiteness metric by equations. Besides, by the 

mathematical depicts, the spatial uniformity should be satisfied. 

 

Figure 4.1 Schematic diagram of filter wheel multispectral imaging system 

 

When we want to collect the resp data, we should first sequentially turn the filter wheel 

and in each channel, a raw grey image is acquired. This un-processed image is called 

raw Response in our project as shown in Figure. 
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After we collect the raw response data, the second procedure is pre-processing the data, 

and transform these image data to whiteness metric. We balance the raw response data 

by Equation 4.1. 

( , )
( , )

( , )
o

Resp i j
p i j

White i j
=  

(4.1) 

 

 

Figure 4.2 Dataflow of this processing. 

4.2.1 Spatial uniformity proof 

Colour measurement of whiteness should follow the spatial uniformity, that means the 

same material in different coordinate of the object should be the same. That's a 

challenge to multispectral imaging, in this subsection, we will prove our measurement 

is spatial uniform. 

( ) ( ) ( )o r fp p p  = +  (4.2) 

Where ( )op   is the radiance factor of material, ( )rp   and ( )fp   are pure reflectance 

and florescence part respectively. By definition, ( )fp   can be written as 

'

( ) ( ) ( ) ( )fp l e


    
 

 =  
 
  

(4.3) 

where ( )l  is the illumination in the wavelength   from the light source, ( )   is the 

absorption ratio of the fluorescence material in wavelength '  and ( )e   is the emit 

ratio of the fluorescence material in wavelength . The fluorescence material absorbs 

light in wavelength bands '  which are usually in the UV region and emits light in a 

particular wavelength band   (e.g., 450nm). 

RAW resp Balance resp Reflectance CIE XYZ Whiteness 
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As FWAs absorbing a narrow wavelength band in UV, it can be assumed that ( ) 'l   and 

( )a   are constant across the wavelength bands  (Y. Fu, Lam, Kobashi, et al., 2014; 

Y. Fu, Lam, Matsushita, et al., 2014; Y. Fu et al., 2013; Y. Fu et al., 2018). In this 

project, we denote the light without passing from the filter GG395 as UV100, because 

it includes 100% UV light; we denote the light passing through GG395 as UV0. 

For simplicity, denote fp in UV0 as 0fp ,  fp   in UV100 as 100fp  and fp  in our 

desired light  as fdp . Under our assumption,  

0 0( ) ( )fp l a e =    (4.4) 

and 

100 100( ) ( )fp l a e =    (4.5) 

Similar to reference(Yang, 2017), we can formulate the intensity under our desired light 

source(such as D65 or D50) as 

0 100(1 )od o op p p = + −  (4.6) 

 

The linear combination method enables the relighting of white sample by changing the 

parameters. The one-point-matching method just provide a radiance factor of spectrum 

image, but from the linear combination method we can get the UV ratio of our Xenon 

lamp and relight the sample with a new light. 

4.2.2 Spatial uniformity for pure reflective material 

As reference (Y. Fu, Lam, Matsushita, et al., 2014), we formulate the observed 

spectrum of an ordinary reflection at wavelength   can be expressed as 
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( , , ) ( , , ) ( , , )pr x y l x y s x y  =   (4.7) 

where ( , , )l x y  is the spectrum of the incident light at wavelength   at coordinate

( , )x y . So, the spectrum is linear to the light intensity and ( , , )s x y  is the spectral 

reflectance of the material at wavelength .  

where ( , , )pw x y is the observed spectrum of balance board and the ( , , )sw x y  is 

equal at any coordinates ( , )x y . So, for any coordinates 1 1( , )x y  and 2 2( , )x y . if

1 1 2 2( , , ) ( , , )s x y s x y = ,  then 1 1 2 2( , , ) ( , , )resp x y resp x y = . That means our system 

are spatial uniform everywhere for pure reflective material surface. 

4.2.3 Spatial uniformity for materials with FWAs 

Substitute Equation (4.7) and (4.3) to (4.2), it evident the spatial uniformity for material 

with FWAs. 

Combined the upper equation, we can find the 

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , ) ( , ) ( )

( , , ) ( , , ) ( , , ) ( , ) ( )

( , , )

o r f

uv uv

uv

p x y p x y p x y

l x y s x y l x y a x y e

l x y s x y k l x y a x y e

l x y

  

  

   



= +

= +

= + 



 (4.8) 

 

As only one light used in UV0 and UV100 exclusively, the ratio of UV light to visible 

light should be constant, i.e. ( , , ) ( , )k l x y luv x y = . So, the ( , , )op x y  will be linear 

to ( , , )l x y . That means, by light balance, the spatial uniformity is ensured. In the light 

of UV0, $k$ should be close to 0. 

 



42 

 

4.2.4 Whiteness formula 

There are several whiteness formulas now, according to AATCC 110 in textile industry, 

the well acceptable whiteness formula is CIE whiteness formula. (Schanda, 2007) The 

formula is  

( ) ( )800  1700n nW Y x x y y= + − + −  

Limited to: 40 5 280W Y  − . 

(4.9) 

where Y is the Y-tristimulus value of the sample, x and y are the x, y chromaticity 

coordinates of the sample, and nx , ny  are the chromaticity coordinates of the perfect 

diffuser, all for the CIE illuminant D65 and 1964 standard colourimetric observer. 

4.3 Experimental details 

This section describes the device used in experimentation, the dataset involved, the 

results and corresponding discussion for whiteness measurement and spatial uniformity 

testing. 

4.3.1 Device setup 

A new multispectral imaging system (J. H. Xin, Shen, & Ge, 2020a, 2020b) is built for 

this work. The sketch of the system is shown in Figure 4.3. Unlike conventional 

multispectral imaging systems which often use Tungsten lamp as the illumination 

source, we use a novel integrating sphere illumination system. Moreover, an UV 

adjustment box (shown in Figure 4.3), mounted with two filters, one for blocking UV 

light (GG395, Yellow filter in Figure 4.3) and another for blocking visual light (UG1, 

Violet filter in Figure 4.3) is placed between the Xenon lam and the integrating sphere 

to control the amount of UV light and visible light passing into the sphere. 
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Using the new illumination system, we can have a better control to the ratio of UV light 

to visible light in the light-source to illuminate the object which results in a more 

versatile light-source. Besides, the integrating sphere helps to diffuse the light and 

improves the spatial uniformity of the light-source. 

 

Figure 4.3 Sketch of building machine 

 

 
(a) 
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(b) (c) (d) 

Figure 4.4 Device and samples used in experiment. (a) 64 testing samples with FWAs; (b) 

Calibration samples from AATCC; (c) DataColor 650 for comparison and Ground truth; (d) 

BaSO2 white board for spatial calibration and white calibration. 

 

4.3.2 Dataset 

To investigate the performance of whiteness measurement, 64 white samples which 

cover the full white space in the visible spectrum are used. 10 of them are from factories, 

the others are dyed with different FWAs and cotton fabrics.  

The spectral and whiteness values of these samples are measured by spectrophotometer 

(DataColor 650) as the ground truth. 

Besides, a standard AATCC fluorescence whiteness sample is prepared, and it is used 

to calibrate the MSI for the one-point-matching method(AATCC, 2018).  

4.3.3 Whiteness Calibration 

There are two classical calibration methods in Spectrophotometer for whiteness 

calibration. They are one-point-matching method and numerical method. Both 

calibration operations are conducted in our system. 
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4.3.4 One-point method and numerical method 

One-point-matching measurement method and numerical UV adaption method are 

compared in our experiment. For the one-point-matching method, we continuously 

adjust the position of the UV filter (each step of 2mm) to measure the difference 

between the measured whiteness value and the standard whiteness value (from 

AATCC). The position of the UV filter with the smallest difference is recorded. Then 

we treat this UV filter position as our standard UV position. The procedure of the one-

point-matching method is shown in Figure 4.4. For the numerical UV adaption method, 

we set the fabric in two different position UV0 and UV100, and then combine the two 

images into one.  

 

Figure 4.5 One-Point-Matching Whiteness Calibration Method. The x axis is the motor 

steps and when it slowly moves, the whiteness of the fabric (y axis) decrease slowly. When 

the motor move to the red point, it will stop and set the UV position as the standard 

position. 

 

The results of unicameral UV adjustment and One-Point-Matching calibration method 

comparison is illustrated in Figure 4.5. 
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Figure 4.6 Results of unicameral UV adjustment and One-Point-Matching calibration 

method comparison. 

 

The green diamond point is one-point-matching calibration method results. It is 

continuous less than the ground truth from calibrated spectrophotometer while the 

Numerical method is much closer to the ground truth. An easy explain of this is that: 

the calibration of the one-point-matching method is much longer in calibration step than 

measuring step. 

It will heat the calibration samples in the calibration step, and it takes less time when 

practical measuring a sample. By one-point-measuring calibration method, the 

calibration time consuming is the same as testing step. It will be much accurate for 

numerical method. 

4.3.5 Spatial Uniformity 

In our experiment, we cut a pure white fabric with FWAs and the same material 

everywhere and evenly cut it into 12 parts, as shown in the picture, with 3 rows and 4 

columns. Then calculate the average spectral reflectance for each pixel of the fabric of 

each part, and calculate the whiteness according to the spectral reflectance. We will 

find that the spectral reflectance is almost the same, and the value of whiteness is also 
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very different. This proves that our system is indeed spatial uniform. As shown in 

Figure 4.6. 

 

  

(a) (b) 

Figure 4.8 Camera response and estimated reflectance under UV100 and UV0. (a) 

Camera response. (b) Whiteness difference in percentage. 

 

The result of whiteness measurement experiment is illustrated in Figure 4.8. Figure .4.8 

(a) shows the scatter of ground truth and our machine's result. The red line means their 

number is equal. The scatter are uniformity distribute up and below the red line which 

means the measurement from our machine is very close to the ground truth from 

Datacolor. 
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Figure 4.7 Spatial uniformity experiment result. 
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4.5 Conclusion 

In this chapter, we proposed to use MSI device to measure the whiteness of a flat object 

which is especially useful for textile and paper production. In order to conduct 

measurement, a multispectral imaging system is built by integrating with Xenon light 

and an integral sphere. Different from the ordinary multispectral imaging system for 

fidelity whiteness reproduction only for pure reflective materials, this machine can 

reconstruct the spectral surface for objects which FWAs. To achieve that, the 

conventional Tungsten is replaced by an Xenon light with integrating sphere. Besides, 

a UV light box with two filters is designed to simulate two light sources. A linear 

combination method is extended to combine images under two light sources. At last, a 

theoretical model is build can applied to whiteness measuring process in the 

multispectral machine, which ensures the spatial uniformity. The results show the well 

accuracy and Spatial uniformity for whiteness measurement. 
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Chapter 5 Automatic classification of knitted fabric 

textile based on Bag-Of-Words (BoW) and K-

Nearest-Neighbour (KNN) Algorithms 

5.1 Introduction 

Knitted fabric has the characteristic of having well-defined structures (Lv & Long, 

2015). In handling kintted fabric, it is often difficult to distinguish between different 

kinds of structures and hence negatively affect the quality control process. Manual 

inspection of weft knitted stitch has significant shortcomings such as labour intensive, 

low accuracy and time consuming. It is therefore desirable to apply computer vision 

techniques and imaging devices to recognize the patterns and structures of knitted 

fabrics. 

Automatic inspection of yarn-dyed fabric has attracted research attention for many 

years (C. F. J. Kuo & Kao, 2007; Pan et al., 2010). However, there are little work in 

automatic recognition of knitted fabric. Because 1) there are much more structures of 

knitted fabrics than yarn-dyed fabrics; and 2) The knitted fabrics are more flexible than 

yarn-dyed fabrics which make it very difficult to perform yarn segmentation. Yarn 

segmentation is an important step in the recognition process to identify each individual 

yarn in the fabric. 

The inspection of knitted fabric has changed from the direct recognition to 

classification(Lv & Long, 2015). That means in the database there are a lot of knitted 

fabric samples in various categories. When there is a new knitted fabric, the objective 

is to assign a predicted category to the fabric. 
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In this chapter, the methods to classify the structure of knitted fabrics based on digital 

images are reviewed and examined. A new feature extraction method based on global 

features is also proposed. Using the new method, the classification accuracy of knitted 

fabrics can be significantly improved. In the experiment, 290 knitted fabrics with 58 

different textures and 5 different colours are involved. The result shows that the 

proposed method is superior to the current state-of-the-art method in terms of 

classification accuracy. 

5.2 Related works 

In this section, the work of yarn-dyed fabric recognition is introduced and the reason 

why the method cannot be used in knitted fabric inspection is explained. Several work 

of the knitted fabric classification will also be introduced. 

Conventional yarn-dyed fabric classification often includes angle correction, 

directional projection, yarn segmentation and float point classification (C. F. J. Kuo et 

al., 2004; Pan et al., 2010; B. J. Xin et al., 2009; B. G. Xu, 1996; J. Zhang et al., 2018). 

However, for knitted fabric, yarn segmentation is highly difficult because the yarns are 

more flexible than they are in the yarn-dyed fabrics. 

Although not many, there are two literature directly related to the work of knitted fabric 

classification. Tang-jun Lv and Hai-ru Long have applied the SURF algorithm to 

knitted fabric classification and recognition (Lv & Long, 2015). They first applied 

Gaussian denoise and then select the local feature. They make use of the reparability of 

patterns in the same fabric and use the SURF feature to match these patterns. Kuo and 

Kao have used the co-occurrence feature and SMO (self-organizing map) network to 
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classify the knitted fabrics (C. F. J. Kuo & Kao, 2007). The disadvantage of co-

occurrence feature is that it can only detect a small number of classes. For example, in 

Kuo and Kao’s work, there are only 5 classes which are plain weave, twill weave, stain 

weave, single jersey, double jersey, and non-woven fabric. 

 

In the proposed work, a larger dataset is build and made publicly available. The most 

popular image classification methods are tested with the proposed the global feature 

method. Researchers working in the same field can verify the algorithms and methods 

in the dataset.  

5.3 Classification Method 

A traditional classification task can be depicted in Figure 5.1. It consists of two parts: 

the training phase (left) and the testing phase (right). 

The detailed steps are: 

1. Datasets are separated as training dataset and testing dataset. 

2. Features are extracted on each training sample and stored in the feature database. 

3. Feature database are used as input to train a classification model. 

4. Each testing sample is selected for feature extraction. 

5. Use feature extraction method to extract the feature vector of the testing sample. 

6. Use the trained classification model to predict the category of the testing sample. 

 

From the above steps, the knitted fabric classification task involves two key processes, 

they are feature extraction and data classification. The following passages summarizes 

existing techniques for the two key processes. 
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Grey level co-occurrence matrix (GLCM) is a popular method for texture analysis, it 

estimates image properties related to second-order statistics (Raheja, Kumar, & 

Chaudhary, 2013; Zhu, Pan, Gao, & Zhang, 2015). It defines a distribution of co-

occurring pixel values (greyscale values, or colours) at a given offset. After the matrix 

is build, many physical properties can be obtained using the matrix. In this work, similar 

setting as KJ KUO(C. F. J. Kuo & Kao, 2007) including contrast, entropy, uniformity 

(also called energy) and homogeneity are used for GLCM.  

GIST descriptor is a popular techqniue in feature extraction (Oliva & Torralba, 2001). 

It is based on a low dimensional representation of the scene which is called Spatial 

Envelope. Bag of Word (BoW) is another feature extraction method from the literature 

in natural language processing (NLP) (Sivic & Zisserman, 2008). The advantage of the 

BoW is that the models are invariant to image translation, scaling, and rotation, partially 

invariant to illumination changes and robust to local geometric distortion (Csurka, 

Dance, Fan, Willamowski, & Bray, 2004; Nowak, Jurie, & Triggs, 2006). 

Figure 5.1 Decomposition of the image classification task 
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The two main BOW feature extraction models implemented in the fabric image 

retrieval system are Scale-Invariant Feature Transform (SIFT), Speeded Up Robust 

Features (SURF). In the SIFT model (Lowe, 2004), the key-points are defined as 

maxima and minima of difference-of-Gaussian functions applied in scale space to a 

series of smoothed and resampled images. SURF detects points of interest in an image 

in a multi-resolution representation. The standard version of SURF is several times 

faster than SIFT and is claimed to be more robust than SIFT (Bay, Tuytelaars, & Van 

Gool, 2006). 

 

Finally, Support VectorMachine (SVM) (Bishop, 2006; Scholkopf & Smola, 2001) and 

K-nearest-neighbor (KNN) (Bishop, 2006) are two widely used classification methods 

in machine learning and computer vision. SVM is often used in large scale image 

retrieval and KNN is often used in comparatively small dataset. 

5.4 Experiments 

5.4.1 Data 

Physical knitted fabrics are fabricated by the Shima Seiki knitting machine, with 5 

colour centers including grey, red, green, yellow and blue and 58 texture structures are 

knitted for each colour center. These texture structures are representative of the 

commonly used ones by the knitwear industry. The images are acquired in a VeriVide 

light cabinet and using a Nikon D300 DSLR camera with 450 DPI (Dot Per Inch) 

resolution. 
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Images are captured in the form of RAW data, which can provide more information 

then compressed JPEG files. The obtained RAW data is first converted to DNG format 

and then finally to RGB image with the procedure outlined in (Can Karaimer & Brown, 

2018; Sumner, 2014). Figure 5.2 shows some examples of the knitted fabrics. 

 

Table 5.1 Examples of the knitted fabric samples 

Blue Red Grey Green Yellow 
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MATLAB is used as the software tool to develop this work. There are 58 textures 

(structures) and each structure can be viewed as a class. The process is to select some 

of the samples as training set and the remaining as testing set. There are four sets of 

experiments in this work show that our proposed method is better than the existing ones. 

The difference between the four experiments is the method to divide the training set 

and the testing set. 

 

Experiment 1:  Sample of 4 specific colours in each texture is used as a training set, and 

the remaining one colour is used as a test set. The purpose is to verify the performance 

of the algorithm when the colour is not included in the testing set. 

 

Experiment 2:  Randomly select 4 samples from 5 samples of each texture as testing 

set, in this setting, the colour of the testing set is likely to appear in the training set also. 

 

Experiment 3:  Three specific samples in each texture are selected as the training set, 

and the remaining two colours were used as test sets. In our experiment, we chose blue, 

red and grey samples as the training set. 
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Experiment 4:  Samples of 3 random colours in each texture are used as training set, 

and the remaining two colours are used as test sets.  

By comparing Experiments 1 and 2 / Experiments 3 and 4, the training samples’ effect 

on the result can be obtained. In contrast, by comparing Experiments 1 and 3 / 

Experiments 2 and 4, the training colours’ effect on the result can be obtained. 

5.4.2 Results Analysis 

The results of the experiments are measured by accuracy as forumulated below: 

Accuracy = No. of samples correctly classified / Total no. of samples  

Table 5.2 shows the performance of the implemented classification models described 

in Section 5.3, applied to the images in the dataset.  

Table 5.2 Accuracy for different methods in the 4 experimental settings. The maximum 

accuracy of each experiment is highlighted. 

 
Exp 1 Exp 2 Exp 3 Exp 4 

BoW +SIFT +SVM  0.5345 0.5439 0.5862 0.5948 

BoW +SURF + SVM  0.6034 0.5614 0.5603 0.5431 

BoW +SIFT +KNN  0.6207 0.5789 0.5439 0.5776 

BoW +SURF + KNN 0.5000 0.6491 0.5690 0.5862 

GIST + SVM 0.2931 0.3509 0.4052 0.2845 

GIST+ KNN 0.3448 0.4035 0.3707 0.3448 

GLMC +SVM 0.0172 0.0175 0.0172 0.0172 
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GLMC+ KNN 0.0517 0.0351 0.0431 0.0259 

 

From the results, the BoW feature extractor has better performance over the GIST and 

GLMC. Moreover, it can be seen that the classification method has limited effect on 

the final retrieval result. The highest accuracy of each experiments is appeared in 

feature extraction method BoW. 

Table 5.3  total accuracy for 4 experiments 

 Exp 1 Exp 2 Exp 3 Exp 4 

Average BoW accuracy 0.56465 0.583325 0.56485 0.575425 

 

The accuracy of 4 BoW methods of Table 5.2 are averaged and shown in Table 5.3. 

The correctness of 4 colour is nearly the same as the random 4 training colour while the 

3-training colour is larger than the random 3 training colour. That means when the 

colour is unseen in the database (training set), the performance is still robust. 

Besides, when using 4 colours as training, the result is worse than when using 3 colour 

as training, but the random 4 colour training is better than the random 3 colour training, 

that means, the training data will not change the results too much. 

 

Table 5.4 total accuracy for 6 methods 

BoW +SIFT 

+ SVM  

BoW +SURF 

+ SVM  

BoW +SIFT 

+ KNN  

BoW +SURF 

+ KNN  

GIST + SVM GIST+ KNN 
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2.2594 2.2682 2.3211 2.3043 1.3337 1.4638 

 

Next, the performance of KNN classification and SVM classification method are 

compared. we will find we the extract method is BoW, the results are nearly the same, 

but when the extract method is GIST, KNN has better performance. From above 

analysis, the KNN method can catch equal performance as the SVM. When the training 

data is limited, the KNN method is more recommended due to its efficiency advantage. 

 

Categories effect  

Table 5.5  the effect of categories 

Method/Categories number 10 20 30 40 50 

BOW + SIFT +SVM  0.6 0.55 0.4667 0.55 0.54 

BOW +SURF + KNN  0.9 0.55 0.4667 0.525 0.58 

BOW + SIFT +KNN  0.6 0.55 0.5 0.55 0.5 

BOW +SURF + KNN  0.9 0.55 0.4667 0.525 0.58 

GIST + SVM 0.5 0.4 0.3333 0.325 0.34 

GIST+ KNN 0.7 0.55 0.4 0.4 0.4 

GLMC +SVM 0.1 0.05 0.0333 0.05 0.02 

GLMC+ KNN 0.5 0.25 0.1667 0.125 0.14 
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Intuitively, the number of categories will have a large effect on the final results. But to 

the best of our knowledge, the current literature only involves a small number of 

categories. In our experiment, we randomly selected 10, 20, 30 ,40 and 50 categories 

from our 58 categories samples for evaluation of the effect of categories effect. Then 6 

methods are applied to test the accuracy. 

 

We can find the method BoW is robust with the increasing of the categories and each 

of the accuracy keeps stable with the increasing of the category numbers. The GLMC 

method with the KNN classification method changes most dramatically with the change 

of the category number. The GIST method with the KNN is more stable than the GIST 

with SVM. 

 

Time analysis 

The experimental environment is detailed as following: the CPU of the machine is Intel 

i7-8700K, with Toshiba 256G SSD and 2T Hard Disk for store data. The memory is 

16G.  

 

Table5.6 Time consuming of all kinds of method with Unit second. 

BoW 

+SIFT + 

SVM  

BoW 

+SIFT+ 

KNN  

BoW 

+SURF+ 

SVM  

BoW 

+SURF 

+ KNN  

GIST + 

SVM 

GIST+ 

KNN 

Grey 

+SVM 

Grey

+ 

KNN 

50.74  4.76  22.35  4.56  23.84  7.31  23.00  1.32  
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Due to the results differs a little in accuracy, in the time analysis part, we only test the 

Experiment 1 (4 same colour as training). There are 58 samples tested.  Comparing to 

methods GIST and GLMC, the BOW needs a lot of time for clustering(k-means). But, 

when we acquire an enquire, the clustering will not affect the costing time. Therefore, 

in our results, we will not count in the clustering time cost. Comparing to classification 

KNN, SVM need more time in training part. In consideration of their nearly equal 

performance, KNN is obviously more suitable for this work. 

From the table, the GLMC requires the least running time, since it is very easy in feature 

extraction. However, the performance in accuracy is sub-optimal. Form the time cost 

table, it shows that the SVM classification consistently cost more time than KNN 

method. 

5.5 Conclusion 

To conclude, a recognition method for knitted fabric structure based on bag of virtual 

words is proposed. In this work, the common methods in classification for knitted fabric 

textile are investigated. The KNN classification method cost less time in the experiment. 

In the future, more complicated scenario should be explored. For example, performing 

image retrieval of knitted fabrics. Moreover, since the data and codes are released 

online, researchers can easily re-implement and evaluate the proposed work. After that, 

they can propose their algorithms to boost the research in fabric automatic inspection. 
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Chapter 6 Automatic colour pattern recognition of 

multicolour printed fabrics using multispectral 

image system 

6.1 Introduction  

Printed fabrics and other valuable textile materials have rich colours and variable 

patterns. Besides the fabric structural parameters (such as fabric densities, weave 

pattern), the colour pattern of printed fabrics is the most significant feature, which can 

be described by the number of colours, colour values, and patterns. Many researches 

have been done to measure fabric densities(Liu et al., 2014; Schneider et al., 2014; J. 

Zhang et al., 2014) and recognize weave pattern(Li et al., 2020; Wang et al., 2011). To 

the best of our knowledge, it is the first attempt to recognize colour pattern and measure 

fabric colours of printed fabrics by using multispectral image system. 

The colour pattern recognition is indispensable for the textile and dying industries, 

including colour measurement and pattern segmentation, when reproducing the clients’ 

standard samples or controlling the quality of the batch fabrics in production. Compared 

with manual colour pattern inspection, the automatic recognition method based on 

computer vision is more desirable to improve manufacturing efficiency and reduce the 

labour costs.     

For accurate colour measurement, it is necessary to obtain the spectral reflectance of 

the object surface, as shown in Figure 6.1(c) and (d). The colour values under different 

light sources (e.g., Daylight, CWF, etc.) can be calculated from the spectral reflectance 

curve. Traditionally, the spectral reflectance curve of object colour can be obtained by 



62 

 

spectrophotometer, like DataColor. It can measure the average reflectance of a limited 

area accurately, thereby only suitable for solid-colour fabrics. However, it cannot 

capture the image of the object surface and measure colours in any multicoloured object. 

Although the common industrial cameras are trichromatic rather than multispectral, 

thereby capturing the RGB image of the object surface. However, it cannot obtain the 

spectral reflectance information of the object so that the measured colours are not 

accurate for industrial standard. 

Multispectral imaging (MSI) system is developed that has the potential to measure the 

colours of a multicolour printed fabric. Compared with a spectrophotometer, a MSI 

system can provide not only the spectral information but also the spatial information of 

a multicolour fabric. The MSI can recover multispectral reflectance from 16 grey-

scaled images captured by a monochrome camera with sequentially placing band-pass 

filters of various wavelengths, across the visible spectrum (i.e., 400 -700 nm) for every 

pixel in the image. The MSI can obtain the spectral reflectance of an object and hence 

it can provide colours under any known light source, such as D65, A, CWF, etc. The 

LAB image in the uniform CIE (1976) L*a*b* colour space can be converted from the 

multispectral image for further colour extraction and pattern segmentation. 

 

Figure 6.1 Illustration of multicolour printed fabric sample.  
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(a) The captured multispectral printed fabric image. (b) The magnified local region with clear 

texture. (c) The spectral reflectance curve of one dark blue pixel. (d) The spectral reflectance 

curve of one light blue pixel. 

The previous studies (C.-F. J. Kuo & Kao, 2008; C.-F. J. Kuo & Shih, 2011; C. F. J. 

Kuo, Kao, & Chiu, 2009; C. F. J. Kuo, Shih, Kao, & Lee, 2005; C. F. J. Kuo, Shih, & 

Lee, 2008; Mo, Xu, Ouyang, & Wang, 2017; Ouyang, Xu, & Yuan, 2019) mainly focus 

on the colour extraction and pattern segmentation of RGB printed fabric image that 

have two main steps: (1) Colour clustering, (2) Pattern segmentation. Usually, the 

pattern segmentation of fabric image can be realized easily after the colour clustering 

and extraction in a colour pattern recognition system. They adopt fuzzy c-means (FCM) 

clustering method(C.-F. J. Kuo & Shih, 2011; C. F. J. Kuo et al., 2005; C. F. J. Kuo et 

al., 2008) or self-organizing-map (SOM) based clustering algorithm (C.-F. J. Kuo & 

Kao, 2008; C. F. J. Kuo et al., 2009; Mo et al., 2017; Ouyang et al., 2019) to cluster the 

colour pixels directly. However, there are four main factors affecting the performance 

of colour clustering and extraction. 

1. Uneven colour distribution. It is because of the surface texture and yarn structure 

of the printed fabric, as shown in Figure 6.1(b). The sections of yarns in the fabrics are 

in the form of elliptical shape. The pixels in the interstices and intersection between 

yarns have lower grey levels, whereas the colour pixels around the centre of the warp 

and weft yarns possess higher grey levels. Furthermore, the colours on the regional 

boundaries are affected by the neighboring colour regions interdependently.  

2. Adjacent colour. Some printed fabrics have similar adjacent colours whose 

colour difference is small in the CIELAB colour space, this makes it harder to separate 

and extract them by using clustering method. For example, there are three blues in 

Figure 6.1: dark blue (Figure 6.1(c)), light blue (Figure 6.1(d)) and baby light.   

3. Unequal colour percentages. Some printed fabrics have intricate pattern whose 

colours have different percentage, colours with small percentages are tend to be ignored 

by the clustering algorithm.   
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4. Light Transmission of fabric. The printed fabrics with small fabric densities have 

high transmission of light, in which the platform colour will affect the captured image 

and results in inaccurate colour measurement of the fabric.  

Previous studies do not take these factors into consideration. An image filter should be 

used to remove noise to mitigate the influences of Factor 1 and 4. They adopt the 

clustering method to process the fabric image directly and do not filter the captured 

image at the beginning. Besides, FCM clustering method is a kind of partitional 

clustering method which applies the same weight to all the points in the data set (Xiao 

& Yu, 2012). Moreover, Factor 2 and 3 cannot be solved with the FCM clustering 

method. SOM dose not perform well in cases which are affected by the number of 

variables for the nonoverlapping cases (Mingoti & Lima, 2006), thereby it is also hard 

to deal with Factor 2 and 3. The computing time is also important for the practical 

application. However, the SOM computation is time-consuming because of many nodes 

is used. Furthermore, these methods are just used and tested for traditional 3-channel 

RGB colour images, not the high-dimensional multispectral images. 

 During the multispectral image processing, the colour image in CIELAB colour space 

is converted from the multispectral image and three features of each pixel are calculated 

by applying principal component analysis to reduce the dimensions of the multispectral 

image. The noise pixels are removed by calculating the local stability of each pixel 

firstly, and then the rest stable pixels are clustered by the proposed grid-based density 

peaks clustering (GDPC) algorithm based on the  
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6.2 Machine Vision Algorithms 

6.2.1 Multispectral Image Transformation 

After capturing and reconstructing the multispectral data of the fabric sample, the 

multispectral data should be transformed into the X, Y and Z tristimulus values and 

then the L*a*b* values (Nyström, 2006). The coordinates of the CIE 1976 (L*a*b*) 

colour space (CIELAB) are computed using non-linear transformations from the 

tristimulus XYZ values (Nyström, 2006; Pointer, 1981). Figure 6.2 shows the captured 

16 monochrome images under the 16 different wave bands from 400nm to 700nm with 

the wavelength interval 20 nm by MSI. After spectral reflectance reconstruction and 

multispectral image transformation, the fabric images of three channels in CIELAB 

colour space are illustrated in Figure 6.3.  

 

Figure 6.2. The directly captured 16 monochrome images under the 16 different wave 

bands from 400nm to 700nm with the wavelength interval 20 nm. The wave band increases 

from the left to the right and from the top to the bottom. 
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(a) (b) (c) 

Figure 6.3 Fabric images of three channels in CIELAB colour space.  

L*. (b) a*. (c) b*. 

 

     

6.2.2 Colour Image Filtering 

There are shaded areas in the interstices and intersection between yarns. Furthermore, 

the colours on the regional boundaries are affected by the neighbor colour regions 

interactively. These areal pixels reduce the precise of colour measurement, and 

therefore affect the performance of colour clustering. It is necessary to use an image 

filter to remove noise to mitigate these influences based on the pixel colour and spatial 

information. Meanwhile, the image filter should be designed to not change the original 

pixel colour values. A stable index S is developed as a pixel selector to filter the noise 

and save the stable colour, as shown in Equation (6.1). Si,j is the average of the 

Euclidean distance between the centre pixel and the neighbor four pixels.    

1 1

, , ,

1 1

1
( , )

4
i j i j i m j n

m n

S d P P+ +

=− =−

=    
(6.1) 
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where d(Pi,j, Pi+m,j+n) is the Euclidean distance between the center pixel Pi,j and the 

neighbor pixel Pi+m,j+n in CIELAB colour space, i=1,2,..,H (H is the height of the fabric 

image), j=1,2,…,W (W is the width of the fabric image), m=-1,1, and n=-1,1.  

 The heatmap of the stable index S is shown in Figure 6.4(a). The more smaller 

the stable index Si,j is, the more stable the stable index Si,j is. The pixels with the lager 

stable index can be considered as noise and should be remove for future colour 

clustering. A threshold Ts is a parameter to separate the noise and stable pixels (Ts is set 

as 2 in the experiment). The filtered fabric image is shown in Figure 6.4(b). Most of 

pixels in the regional boundaries and yarn interstices are inspected as the noise shown 

as the black pixels. 

The L*, a* and b* values of all pixels in the fabric sample image are shown in Figure 

6.5(a) which is mixed and hard to distinguish different colour clusters. By contrast, 

these values of the saved stable pixels are shown in Figure 6.5(b) after image filtering 

where the different colour clusters are separated and easier to distinguish them. 

 

  

(a) (b) 

Figure 6.4 Colour image filtering process. (a) Stable index heatmap. (b) Filtered 

fabric image. 
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(a) (b) 

Figure 6.5 Colour distribution. (a) Before image filtering. (b) After image filtering. 

 

6.2.3 Multispectral Feature Reduction 

The previous studies demonstrate that it is beneficial and efficient to use the principal 

component analysis (PCA) technique(Bishop, 2006) as a pre-processing step for the 

classification of multispectral images(Rodarmel & Shan, 2002). The principal 

component analysis is based on the fact that neighboring bands of multispectral images 

(shown in Figure 6.2) are highly correlated and often convey almost the same 

information about the object. Three multispectral principal features can be extracted by 

using PCA method, as shown in Figure 6.6. The cumulative proportion of principal 

component (PC) 1, 2 and 3 are 0.867, 0.963 and 0.992. 

 
(a) (b) (c) 

Figure 6.6 Fabric images of three multispectral PCs. 

(a) PC1. (b) PC2. (c) PC3. 
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6.2.4 Colour Pxiel Clustering  

The stable pixels are clustered by a grid-based density peaks clustering (GDPC) 

algorithm based on the CIELAB colour values and three reduced features. Density 

peaks clustering algorithm (DPC) is proposed by Rodriguez and Laio (Rodriguez & 

Laio, 2014) and it takes advantage of density and delta-distance to find clustering 

centers, and then assigns remaining other examples. Compared with the classical 

algorithms (K-means algorithm(Xiao & Yu, 2012), Fuzzy C-means (FCM) algorithm 

(Bezdek, 2013) and Spectral clustering (SC)(Ng, Jordan, & Weiss, 2002)) , it is efficient 

and robust with only one input parameter and does not require the cluster numbers 

(Cheng, Liu, Huang, & Cheng, 2016). However, it computes the local density by 

calculating the distance between all points, leading to high computational complexity, 

especially for the large-scale data set (Guo, Lin, Guo, & Liu, 2016; X. Xu, Ding, Du, 

& Xue, 2018). To overcome this challenge, a grid-based density peaks clustering 

(GDPC) with a novel distance calculation equation is developed to cluster the large 

colour pixels. Unlike the previous GDPC (X. Xu et al., 2018), we use a novel distance 

calculation equation to compute the minimum distance between the point and any other 

point with higher density based on the L*a*b* colour value and multispectral PCs. 

 

(1) Grid structure creation and cell density caclualtion  

The first stage of the GDPC is grid partition based on the idea of CLIQUE algorithm. 

Only the L*a*b* colour values of the stable pixels are used to partition a 3-dimensional 

grid. Given an 3-dimensional data set P={ }, ,L a bP P P , where the values of PL, Pa, Pb 

range from 0 to 100, -128 to +128, -128 to +128, respectively and the length of T is the 

number of the stable pixels. Let Sn={ }L a bP P P  , the Cartesian product of all three 
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attributes constitutes a three-dimensional data space, and its value interval is 0.5. The 

three dimensions of the data space is divided into NL, Na and Nb equal and disjoint 

intervals respectively: 

Nj=2×(ceiling(max(Pj))-floor(min(Pj))) (6.2) 

 where, j=L, a and b, ceiling(x) and floor(x) are the ceiling and floor integer of x 

respectively, max(x) and min(x) is the maximum and minimum of x. Each interval is 

left closed and right open, so the entire data space is divided into NL×Na×Nb hypercube 

units, that is the grid cell. The ith stable pixel should be mapped into the [nL, na, nb] grid 

cell G:  

ni,j =ceiling(2×(Pi,j- floor(min(Pj))) (6.3) 

where, j=L, a and b, Pi,j is the jth L*a*b* component of the ith stable pixel. All of the 

stable pixels are mapped into the grid cells in sequence:  

, , , , , ,( 1) ( 1) ( 1) ( 1) 1
i L L i a a i b i L L i a a i bn N n N n n N n N ng g−  + −  + −  + −  += +  (6.4) 

The colour information of the [nL, na, nb] grid cell is also recoded in an array C, as the 

colour features of the grid cell. 

Meanwhile, the multispectral PCs are also mapped into the [nL, na, nb] grid cell as the 

multispectral features of the grid cell.   

, , , , , ,( 1) ( 1) , ( 1) ( 1) , ,i L L i a a i b i L L i a a i bn N n N n k n N n N n k i kF F Q−  + −  + −  + −  += +  (6.5) 

 

where k=1,2,3, Qi,k is the kth multispectral principal component of the ith stable pixel. 

Theoretically, the same colours should have the similar or same multispectral principal 

components. Finally, the average multispectral PCs of the grid cells are calculated. 
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=  

(6.6) 

The grid cell density gi is considered as the number of data points that fall into the ith 

grid cell. If the gi =0, the grid cell is empty grid cell; if gi > 0, the grid cell is non-empty 

grid cell. Based on the arrays of gi, Ci,k and Fi,k which indicate the density, the position 

in the 3-dimensional L*a*b* grid and three average multispectral PCs of the grid cell 

respectively, where i=1,2,…,M (M is the number of non-empty grid cell, k=1,2,..,3, the 

clustering method will be implemented to cluster the grid cells. 

 

(2) Sparse cells remove and Density peaks search 

The sparse cells are removed based on the predefined threshold, and the dense cells are 

sorted according to their densities and identify cluster centers. Let Tu be a density 

threshold (Tu is set as 5 in the experiment). If the number of points in a cell is less than 

Tu (gi < Tu), the grid cell is called low cell (sparse cell) and points in a low cell are 

outliers; otherwise, the grid cell is called high cell (dense cell). A cluster is defined as 

a maximal set of connected dense grid cells. Additionally, the high cells will cover most 

points of the data sets. Therefore, the sparse cells are removed, so as to ensure the 

accuracy of the clustering and reduce the computing time. 

The grid cells are sorted according to their density and we should find the grid cell 

that is the nearest around the ith point. 

,1 ,1:

arg min( )
j i

ij
j g g

k dc


=  (6.7) 

 

where dci,j is the Euclidean distance between the grid cell i and j in the 3-dimensional 

L*a*b* grid: 
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( )
2

, , ,i j i h j h

h

dc C C= −  
(6.8) 

 

If the kth point is the nearest around the ith point, δi is measured by computing the 

comprehensive minimum distance between the i grid cell and any other grid cell with 

higher density. The comprehensive minimum distance consists of the left part dc and 

the right part dp. dC is the Euclidean distance between the grid cell i and k in the 3-

dimensional L*a*b* grid, and dp is the Euclidean distance of multispectral PCs 

between the grid cell i and k. 

( ) ( )
2 2

, , , ,i i i i h k h i h k h

h h

dc dp C C F F  = + = − + −   
(6.9) 

 

where h=1,2,3 and γ is the weight of the dp (in this experiment, γ is set as 10 and will 

discussed in section of the Results and Discussion)), because the dp and dc have 

different magnitudes and dp is much less than dc. For the gi grid cell with highest 

density, it conventionally takes δi=max(δj). In order to help users to find the correct of 

colour clusters, the decide index σi is defined to associate gi and δi, as: 

σi= gi δi (6.10) 

 

The scatter plot of count(gi)-distance(δi) of fabric sample 0 is shown in Figure 6.7. In 

Figure 6.7(b), the distance (δi=dci) is calculated just based on the L*a*b* colour 

distance and the gap between the minimum value (around 4) of cluster centers 

(indicated by the blue arrow) and the maximum value (around 15) of cluster members 

(indicated by the red arrow) is about 11. By contrast, in Figure 6.7(a), the distance 

(δi=dci+γdpi) is calculated just based on the L*a*b* colour distance and multispectral 

PCs and the gap between the minimum value (around 20) of cluster centers (indicated 
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by the blue arrow) and the maximum value (around 5) of cluster members (indicated 

by the red arrow) is about 15. The threshold Tδ is set to distinguish the cluster centers 

and members. When the L*a*b* colour distance and multispectral PCs both are 

considered when calculating distance(δi), it is more robust and easier to find the cluster 

centers when setting the threshold Tδ. 

As a result, the cluster centers are founded as grid cells for which the value of δi is 

anomalously large. After the cluster centers have been found, each remaining grid cell 

is assigned to the same cluster as its nearest neighbor of higher density, as shown in 

Figure 6.8(a). Finally, the stable pixels are clustered into six groups, as shown in Figure 

6.8(b). The multispectral reflectance of six colours are the means of that of the stable 

pixels within the same clusters, and the fabric colour values in CIELAB colour space 

are transformed from the mean multispectral reflectance.  

  

(a) (b) 

Figure 6.7 Decision graph based on different distance(δi). (a) dc+dp. (b) dc. 
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(a) (b) 

Figure 6.8 Clustering results. (a) Grid cells. (b) Stable pixels. 

 

  

 

6.2.5 Colour Pattern Segmentation 

 Based on the clustering result of the stable pixles, the corresponding colour 

pattern of the stable pixles is shown in Figure 6.9(a). The k-Nearest Neighbor (KNN) 

alogrithm (Hastie & Tibshirani, 1996) is used to classify the removed noise pixels based 

on the grid cells with known colour clusters. The final colour pattern is shown in Figure 

6.9(b) and the segmented regions of six colours is shown in Figure 6.10. 

  
(a) (b) 

Figure6.9 Colour pattern segmentation result. (a)Colour pattern of the stable pixels. (b) 

Colour pattern of all colour pixels. 
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Figure 6.10 Segmented regions of six colours. 

 

 

6.3 Experimental Results 

6.3.1 Algorithmic Parameter Selection 

In the proposed method, there are four parameters: a threshold Ts to separate the noise 

and stable pixels, a threshold Tu to remove the grid cells with small density, a threshold 

Tδ to distinguish the cluster centers and members and a weight γ in the distance 

calculation equation (δi=dci+γdpi) . The threshold Ts to separate the noise and stable 

pixels is related to the fabric texture and can be set as [2,4].  

Among them, the most important parameters are γ and Tδ. Interestingly, the range 

selection of Tδ is affected by γ. The optimal γ should meet the requirement that the 

minimum value of cluster centers (δc) is enough big and the maximum value of cluster 

members (δm) is as small as possible, which can make the range selection of Tδ bigger. 
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It is necessary to analyze the range of Tδ when different weight γ are used for different 

multicolour printed fabrics.  

 

Figure 6.11 The influence of the weight γ for clustering of colour pixels in different fabric 

samples. 

The fabric sample 0,1,2 and 3 are selected to analyze the influence of the weight γ for 

clustering of colour pixels, as shown in Figure 6.11. The black solid line is the minimum 

value of cluster centers (δc) under different weight γ from 0 to 50 and the black dashed 

line is the maximum value of cluster members (δm). The colour region in each figure is 

the range of Tδ under different weight γ. The black region is the common region of the 

Tδ in these four subfigures, which indicates the selected range of γ and the 

corresponding threshold Tδ to distinguish the cluster centers and members. Figure 6.11 

illustrates that when the weight γ is set as from around 10 to 15, the difference of δc and 

δm is bigger and the threshold Tδ can be set as from around 6 to 8. 

 

6.3.2 Datasets and Results 

To verify the performance of the proposed method, we performed the experiments on 

ten images of multicolour printed fabrics with variable patterns and the number of these 

fabric colours ranges from three to thirteen. The colour pattern recognition results of 

nine fabric samples are shown in Table 1 and the clearer images can be seen in the 

appendix.  
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Based on human vision judgments, it can be found that the recognized colour patterns 

of sample 1 to 8 are consistent with the physical printed fabrics. The threshold Ts is set 

as 4 to separate the noise and stable pixels. The threshold Tδ is set as 7.5 in the decision 

graph and the extracted fabric colours are also illustrated in Table1. However, there are 

misrecognized red and other colours in recognized colour pattern of fabric sample 9. 

The fabric sample 9 have rich colours with adjacent colours and intricate pattern with 

colour lines, which make it hard to extract the colours accurately. 

Table 6.1 colour pattern recognition results of different fabric samples. 

No

. 
Original Image 

Recognized Colour 

Pattern 
Decision graph 

Colour

s 

1 

   

 

 

2 

    

3 
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4 

   

 

5 

    

6 

   

 

7 

   

 

8 

   

 

9 
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6.3.3 Methods Comparison  

We evaluated and compared the colour segmentation results on three fabric images via 

three unsupervised learning algorithms, including the proposed GDPC, Fuzzy C-means 

(FCM) algorithm(Bezdek, 2013), and e kernel-based fuzzy c-means (KFCM) 

algorithm(D.-Q. Zhang & Chen, 2003). Compared with the k-means clustering 

algorithm based on hard assignment that is not applicable for complex data sets which 

contain overlapping clusters or contain some data points that cannot be easily assigned 

to one cluster, FCM algorithm is based on soft assignment and can provide much 

detailed information about the hidden structure of the data (Xiao & Yu, 2012). However, 

Since the original FCM uses the squared norm to measure similarity between prototypes 

and data points, it can only be effective in clustering ‘spherical’ clusters. By contrast, 

the KFCM algorithm is robust to noise and outliers and also tolerates unequal sized 

clusters (D.-Q. Zhang & Chen, 2003). Hence, FCM and KFCM are used to cluster the 

stable pixels after the colour image filtering to make comparison of segmentation 

performance with GDCP. In the KFCM algorithm, the Gaussian function is selected as 

a kernel function i.e. K(x,y)=exp(-||x-y||2/σ2) and the σ is set as 150. The maximum 

iterations of FCM and KFCM clustering algorithms is set as 100 and 200 respectivley.  

In addition to the human vision judgment, the peak signal-to-noise ratio (PSNR) (Chang, 

Xu, Xiao, & Srikanthan, 2005; Kanjanawanishkul & Uyyanonvara, 2005) of the 

segmented colour pattern image is used to assess segmentation performance of 

multicolour printed fabrics. The PSNR is defined as follows: 

( )
2

10lo
 

g
Max Origina

PSNR
MSE

l Image 
=  

 
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(6.11) 
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where Xj and X’j indicate the pixel values of the original and quantized image, and Nt is 

the total number of pixels.  In three-dimensional spaces (RGB), Max(Original Image) 

is equal to 
2 2 2255 255 255+ + . The higher the PSNR value, the higher similarity 

between the original fabric image and the reconstructed colour pattern image. PSNR is 

a good measure for comparing restoration results for the same image, but between-

image comparisons of PSNR are meaningless (Kanjanawanishkul & Uyyanonvara, 

2005). The colour pattern recognition results of fabric samples by using different 

clustering algorithms are shown in Table 2. 

 In Table 6.2, for fabric sample 1, the purple in the region of flower is 

misrecognized as the dark red by FCM and KFCM algorithms; furthermore, the white 

in the region of flower is misrecognized as the light grey by FCM algorithm. For fabric 

sample 2, the white region in the left and bottom is misrecognized as the grey red by 

FCM and KFCM algorithms, because there two similar colours (white and grey) with 

significantly different amount. For fabric sample 3, the yellow in the flower profile is 

misrecognized as the green by FCM algorithm. Besides, the PSNR values of the 

proposed GDPC in three fabric samples are larger than that of FCM and KFCM 

algorithms. The experimental results demonstrate that the proposed GDPC algorithm 

can recognize colour pattern from more intricate multispectral images with higher 

precise, compared with FCM and KFCM algorithms. 

Table 6.2 Colour pattern recognition results of different clustering algorithms. 

No. Original Image Ours FCM KFCM 
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1 

    

t (s) - 15.36 139.59 207.72 

PSN

R 
- 68.81 65.23 65.68 

2 

    

t (s) - 11.18 127.20 226.25 

PSN

R 
- 62.62 62.32 

62.40 

3 

    

t (s) - 12.41 79.70 199.45 

PSN

R 
- 65.89 61.99 63.35 

 

The time complexities of FCM, KFCM, DPC and GDPC are O(nK2i), O(n2Ki), O(n2) 

and O(n)+ O(m2) respectively, where, n is the number of data points, i is the number of 
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iterations and K is the number of clusters. m is the number of nonempty grid cells, 

compared to the number of data points is very small. In the first stage of the DPCG 

algorithm, the complexity in dividing data space into disjoint grid units, mapping the 

data points to the data space and counting the number of cell data points is O(n). It is 

equal to use O(n) time to calculate the local density of each data point (cell). In the 

second stage, the original DPC algorithm is used to cluster the cells, which seen as data 

points. It costs O(m2) time to establish a distance matrix and calculate the local density 

and the high-density distance. Here, compared to the number of data points n, the 

number of nonempty grid cells m is very small. So, the speed of running will be 

significantly faster than the DPC algorithm with the increase of n. Meanwhile, it inherits 

the advantages of the DPC algorithm, which can detect various kinds of shapes and take 

simple input parameters and get better clustering performance compared to classical 

methods (X. Xu et al., 2018). 

All these algorithms are implemented and evaluated in the software MATLAB 2014b, 

and the computer doing experiments is equipped with the Microsoft Windows7 

Ultimate System, CPU Intel® CoreTMi7, and 8.00GB computer memory. The computing 

time of three clustering algorithms for three fabric samples is shown in Table 2. The 

computing time of the proposed GPDC algorithm is less than the FCM algorithm and 

The KFCM algorithm has the largest computing time. 

 

6.3.4 Limitations and Improvements 

It is nearly impossible to segment the colour pattern for all kinds of multi-spectral 

images by the proposed method with constant parameters. There are many factors that 

can hinder the automatic and accurate colour pixel clustering and colour pattern 
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segmentation, such as fabric texture, adjacent colours and so on. As shown in Figure 

6.12(a), the fabric sample has three adjacent reds which is not easy to separate. Besides, 

it has small fabric densities and high transmission of light, thereby having the black 

colour of the holder in the yarn clearances, which make it harder to extract the fabric 

colours precisely.  

 The decision graph of the GDPC algorithm is shown in Figure 6.12(b). All 

potential cluster centers with high distance δ are shown in the decision graph. When the 

threshold Tδ is set as 7.5 to distinguish the cluster centers and members, the recognized 

colour pattern is show in Figure 6.12(c). Three adjacent reds are recognized 

successfully. Unfortunately, one colour indicated by the red arrow in the decision graph 

of Figure 6.12(b) are not recognized. However, when the threshold Tδ is set as 6.0, this 

colour can be extracted successfully.   

Therefore, we also allow the user to select the cluster centers on the decision graph in 

our colour pattern recognition system of printed fabrics to guarantee the accuracy and 

precise. The decision graph can show the colours of all potential clustering centers with 

high density and their distances from the nearest potential clustering center. Compared 

with other clustering algorithms, the GDPC algorithm can provide decision graph to 

realize the interaction of colour center extraction easily and intuitively, which has a 

better user experience.  
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(a) (b) 

  
(c) (d) 

Figure 6.12 Example of user-guided colour extraction. (a) Original fabric sample. (b) 

Decision graph. (c) Recognized colour pattern with Tδ of 7.5. (d) Recognized colour pattern 

with Tδ of 6.0. 

 

 

 Besides, deep learning added a huge boost to the already rapid developing field 

of computer vision. The convolutional neural networks (CNN) have had enormous 

success on image segmentation problems, such as semantic image segmentation 

(Badrinarayanan, Kendall, & Cipolla, 2017; Chaurasia & Culurciello, 2017; Lin, Milan, 

Shen, & Reid, 2017). To obtain a stable and robust CNN, the network must be trained 

by a large-scale data set of multispectral printed fabric images and the corresponding 

ground truth of segmented colour patterns. However, a training data set of multispectral 

printed fabric images may not be always feasible in practical applications and it is 

difficult to obtain a ground truth of segmented colour patterns in the practical colour 

segmentation application. Thus, the corresponding colour pattern still need to be 

recognized manually with the help of the proposed automatic GDPC algorithm and now 

the solution for this practical application is still limited to unsupervised segmentation 

algorithms, such as the proposed GDPC algorithm in this article.  
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6.4 Conclusion 

In this chapter, a multispectral imaging system is developed to capture the multispectral 

fabric image and a grid-based density peaks clustering algorithm is proposed to measure 

colours of multispectral image of printing fabric. The proposed GDPC algorithm is 

based on the CIELAB colour values and three reduced features and can be used to 

colour separation from more intricate multispectral images with higher accuracy and 

less time consuming, compared with some commonly used colour clustering algorithms, 

such as FCM and KFCM algorithms. However, there are many other factors that can 

hinder the automatic and accurate colour pixel clustering and colour pattern 

segmentation, such as fabric texture, adjacent colours and so on. 

Furthermore, the GDPC algorithm can provide decision graph to realize the interaction 

of colour center extraction easily and intuitively, which has a better user experience, 

thereby allowing the user to select the cluster centers on the decision graph in our colour 

pattern recognition system of printed fabrics to guarantee the accuracy and precise.  

In the future, we will attempt to collect a sufficient data set of multispectral printed 

fabric images and use the proposed automatic GDPC algorithm to obtain the 

corresponding colour patterns combined with the human vision judgment, finally use 

develop a deep learning method to improve the accuracy of the automatic fabric colour 

extraction and colour pattern recognition. 
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Chapter 7 Conclusion and Future Work 

7.1 Summary of work 

To conclude, this work proposed and experimented computer vision techniques in the 

fabric image processing with the objectives of having better colour reproduction 

accuracy and higher efficiency in handling fabric data. 

7.1.1 Spectral reflectance reconstruction 

An improved reflectance reconstruction method based on L1-norm penalization has 

been proposed. Using L1-norm, this method can provide the transformation matrix with 

the favourable sparse property, which can help to achieve better results when measuring 

the unseen samples. The work verified the proposed method by reconstructing spectral 

reflection for 4 types of materials (cotton, paper, polyester, and nylon) captured by a 

multi-spectral imaging system. Each of the materials has its own texture and there are 

204 samples in each of the materials / textures in the experiments. Experimental results 

show that when the texture is not included in the training dataset, L1-norm can achieve 

better results compared with existing methods using colorimetric measure (i.e., colour 

difference) and shows consistent accuracy across 4 kinds of materials. 

. 

7.1.2 Whiteness measurement 

The work proposed to use MSI device to measure the whiteness of a flat object which 

is especially useful for textile and paper production. In order to conduct measurement, 

a multispectral imaging system is built by integrating with Xenon light and an integral 

sphere. Different from the ordinary multispectral imaging system for fidelity whiteness 
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reproduction only for pure reflective materials, this machine can reconstruct the spectral 

surface for objects which FWAs. To achieve that, the conventional Tungsten is replaced 

by an Xenon light with integrating sphere. Besides, a UV light box with two filters is 

designed to simulate two light sources. A linear combination method is extended to 

combine images under two light sources. At last, a theoretical model is build can 

applied to whiteness measuring process in the multispectral machine, which ensures the 

spatial uniformity. The results show the well accuracy and Spatial uniformity for 

whiteness measurement compared to standard instruments like spectrophotometer. 

7.1.3 Knitted fabric classification 

In this thesis, a recognition method for knitted fabric structure based on bag of virtual 

words is proposed. In this work, the common methods in classification for knitted fabric 

textile are investigated. The KNN classification method cost less time in the experiment. 

The proposed method shows more accuracy compared to other methods like SVM as 

classification method and GLCM as feature extraction method. 

 

7.1.4 Printing fabric colour measurement 

The proposed GDPC algorithm is based on the CIELAB colour values and three 

reduced features and can be used to colour separation from more intricate multispectral 

images with higher accuracy and less time consuming, compared with some commonly 

used colour clustering algorithms, such as FCM and KFCM algorithms. However, there 

are many other factors that can hinder the automatic and accurate colour pixel clustering 

and colour pattern segmentation, such as fabric texture, adjacent colours and so on. 
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Compared to other methods like FCM, this method show more accuracy and robustly 

when measuring the colour in printing fabric.  

7.2 Future work 

The future research work in the development of the multispectral imaging system 

includes a better light source (e.g., LED) and the extension of  different applications 

using the imaging machine. For example, creating a huge fabric image database for 

retrieval application.  

7.2.1 LED-based multispectral imaging 

Traditional multispectral imaging system often uses tungsten halogen lamp or xenon 

lamp as the illumination source, the disadvantages of these lamps are their high 

temperature during use and long warm-up time for a stable measurement, especially for 

certain dyes and pigments on fabrics, which are sensitive to heat and thus causing 

undesired measurement error. In recent years, the advancement of hight intensity LEDs 

brings advantages such as low energy consumption (i.e., less heat), fast response time 

and low cost to multispectral imaging systems. Moreover, LED can be easily controlled 

using computer programs. These advantages attracted the usage of LED in multispectral 

imaging systems in many areas. 

In contrast to most studies in the literature using an array of LEDs with different colours 

(e.g., red, green and blue) for illumination, this study uses a single white LED together 

with a filter wheel mounted with narrow band filters for capturing monochromatic 

images in different wavelength ranges (i.e., from 400nm to 700nm with 20nm interval). 

The filter wheel is placed between the lens and the camera in order to filter the light 

entering the camera. The measured response of the camera is proportional to the 
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intensity of light entering the sensor. The spectral sensitivity and bias of the system are 

recovered by a training dataset with known reflectance. The measurement process 

involves capturing the raw response (data cube) from the monochromic camera with 

each of the narrow-band filters, performing white balance using pre-defined colours 

and white or grey board, reflectance reconstruction and whiteness estimation. 

7.2.2 Textile image retrieval 

Research in Content-Based Image Retrieval (CBIR) systems draws a lot of attention in 

recent years due to the emergence of large-scale image collections. Instead of being 

manually annotated by text-based key words, images would be indexed by their own 

visual content, such as colour, texture and pattern. Many techniques in this research 

direction have been developed and many image retrieval systems, both research and 

commercial, have been built sophisticated image processing algorithms have been 

designed to describe colour, texture, and shape features. Common colour features 

include colour-covariance matrix, colour histogram, colour moments, and colour 

coherence vector. MPEG-7 has included dominant colour, colour structure, scalable 

colour, and colour layout as colour features. Texture features in image retrieval systems 

include features obtained using Gabor filtering or wavelet transforms. Shape features 

include aspect ratio, circularity, Fourier descriptors, moment invariants, consecutive 

boundary segments. There is also a well-known “sematic gap” between the low-level 

image features with the high-level concepts perceived by humans.  

This study plans to develop of a fabric image retrieval system which is based on the 

techniques of CBIR but with a focus on fabric images which contain fabric-specific 

features such as yarn colour and weave pattern. A retrieval model serves the purpose of 

defining the (1) representation of the data and (2) the search mechanism (i.e., the 
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matching function). Generally, in CBIR, the images are represented as high-

dimensional feature vectors. The features can be extracted using colour information, 

texture information or pattern information contained in the images. For the matching 

function, usually a distance metric is used such as the Euclidean distance measure or 

the cosine similarity measure. 

One possible future direction is to utilize the structure of the fabric images to perform 

retrieval because fabric images usually consist of highly repeated and regular structures. 

The advancement in computer image processing technology enables a higher 

automation in the textile industry. One of the basic problems during the automation 

process is to segment the fabric image into meaningful regions. Region segmentation 

is useful in the design evaluation process, the colour measuring process and also the 

fabric image retrieval process. More studies in fabric image region segmentation 

include fuzzy region competition-based methods for fabric design and recolouring, 

solid-colour and multi-colour region segmentation in yarn-dyed fabric images by 

constructing statistical models, and automatic layout detection of yarn colours by curve 

projection methods. Region segmentation can benefit the retrieval performance in 

fabric image retrieval. It extends the previous works such that clustering of the 

segmented regions is performed for discovering meaningful patterns in the fabric image. 

The objectives of region segmentation are to (1) discover repetitive patterns in yarn-

dyed fabric images after region segmentation; and (2) segment the image into different 

regions where each region contains yarns with identical colours, and then cluster the 

segmented regions into groups such that each group is coherent in colours. The main 

challenge in region segmentation is the non-uniformity problem which is caused by the 

3D shape of the yarns and results in local pixel-intensity oscillations in individual yarns 
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when captured by an imaging system. It is proposed to use texture removal technique 

to solve the non-uniformity problem. 

For a brief description of the proposed method, first texture removal using relative total 

variation technique is performed on the fabric image to obtain the preliminary structure 

by smoothing out texture edge. Total variation techniques allow the separation of 

structure from texture in images. Second, Canny edge detection algorithm is used to 

detect structure edges in the preliminary structure image. Third, a morphological 

operation is performed on the output of the Canny algorithm to close the gaps between 

the line segments. After edge detection, the fabric image can be divided into individual 

segmented regions. The segmented regions are then clustered into groups using their 

colour information such that regions having similar colours are grouped together. 

Figure 6.5 shows an example which is the preliminary result of using structure 

extraction on fabric image. 

7.2.3 Deep Learning 

In our current work, hand-crafted low-level image features such as SIFT and SURF 

models are used to represent the images. However, there is a well-known “sematic gap” 

between the low-level image pixels captured by machines (and represented by those 

low-level features) and the high-level sematic concept perceived by humans. The 

“sematic gap” represents the root challenge in the field of artificial intelligence studying 

methods of building intelligent machines to perform human-like tasks. Deep learning, 

a branch of machine learning, is one of the promising techniques to address this root 

challenge. 

Deep leaning, which uses a family of machine learning algorithms to model high-level 

abstractions from the data, employs a deep architecture with multiple layers of non-
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linear transformations. Using the multiple layers of transformations, deep learning 

algorithms simulates the human brain to learn features at difference level of abstractions 

automatically, it allows a computer program to learn complex functions without the 

hand-crafted features with specific domain knowledge such e.g., SIFT and SURF 

features. 

Deep learning draws tremendous attention recently in various fields which include 

speech recognition, object recognition, natural language processing and image retrieval. 

Researchers have used deep learning algorithms for almost every computer vision tasks 

and it is worth to investigate the use of deep learning in fabric image retrieval. 
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