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Abstract 

This thesis aims to improve the effectiveness and efficiency of port state control 

(PSC) inspection, which is one of the most important international shipping policies, 

from the aspects of ship risk prediction and PSC inspector assignment and scheduling 

using data analytics and operations research models. In addition to a comprehensive 

summary and review of ship selection methods applied at ports over the world and 

proposed in existing literature, this thesis comprises three studies. In the first study, 

ship deficiency number, which is a ship risk indicator in the PSC inspection, is 

predicted using a state-of-the-art XGBoost model. The XGBoost model takes shipping 

domain knowledge regarding ship flag, recognized organization, and company 

performances into account to improve model accuracy and fairness. Based on the 

predictions, a PSC inspector scheduling model is proposed to help the ports optimally 

allocate inspection resources. According to the model structure, the concepts of 

inspection template and un-dominated inspection template are further proposed and 

incorporated in the optimization model to improve computation efficiency and model 

flexibility.  

 In the second study, three two-step approaches that match the inspection 

resources with the ships’ deficiency conditions are proposed, aimed at identifying the 

most deficiencies of them. The three approaches combine prediction models with 

optimization models, and the optimization models are equivalent in all the approaches 

while the prediction models differ from each other regarding their prediction targets 

or structure. Specifically, the first approach predicts the number of deficiencies in each 

deficiency category for each ship and then develops an integer optimization model that 

assigns the inspectors to the ships to be inspected. The second approach predicts the 

number of deficiencies each inspector can identify for each ship and then applies an 

integer optimization model to assign the inspectors to the ships to be inspected. The 

third approach is a semi-“smart predict then optimize” (semi-SPO) method. It also 

predicts the number of deficiencies each inspector can identify for each ship and uses 

the same integer optimization model as the second approach. However, instead of 

minimizing the mean squared error as in the second approach, it adopts a loss function 

motivated by the structure of the optimization problem in the second approach. The 

prediction results are then input to PSC officer (PSCO) assignment models such that 
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the PSCOs’ expertise and the ships’ deficiency conditions can be matched, and the 

inspection efficiency can be improved. 

 In the third study, a data-driven ship risk prediction framework using features 

the same as the current ship selection scheme is developed for high-risk ship 

identification and selection based on gradient boosting regression tree (GBRT). Like 

existing ship risk prediction models, the proposed framework is of black-box nature 

whose decision process and working mechanism are opaque. To improve model 

explainability, the explanation of the prediction of individual ships by the Shapley 

additive explanations (SHAP) method with the properties of local accuracy and 

consistency is provided. Furthermore, the local SHAP method is innovatively 

extended to a fully explainable near linear-form global surrogate model of the original 

black-box data-driven model by deriving feature coefficients and fitting curves of 

feature values and SHAP values. This demonstrates that the behaviour of black-box 

data-driven models can be as interpretable as white-box models while retaining their 

prediction accuracy. 

 

Key words: Maritime transportation; Marine policy; Port state control (PSC); Ship 

inspection; Data analytics; Ship risk prediction; Resource assignment and scheduling; 

Explainable artificial intelligence  
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Chapter 1: Introduction 

1.1 BACKGROUND 

Maritime transport is responsible for over 80% of global merchandise trade by 

volume and more than 70% by value (UNCTAD, 2021). Maritime safety is the 

backbone of running a smooth business, as the consequence of an accident can be very 

serious to the vessel and its crew, to the marine environment, and even to the whole 

society. More recently, emissions generated by vessels are receiving increasing 

attention as they may pollute the environment and exacerbate the greenhouse effect. 

To enhance maritime safety, protect the marine environment, and graduate decent 

living and working conditions of the crew, various international regulations and 

conventions are proposed and implemented which the vessels must comply with.  

Generally, a ship is regarded as substandard if its condition is substantially below 

the standards or if the crew does not comply with the safe manning document (IMO, 

2017). Distinguishing substandard ships from all ships in operation is essential. Ship 

flag state bears the main responsibility to inspect the ships under its registration or 

license, and it is regarded as the first line of defence against substandard shipping. 

Unfortunately, flag states cannot perform their duties efficiently due to internal and 

external reasons (Li and Zheng, 2008). As the second line of defence, port state control 

(PSC) inspection, which is the inspection conducted by port authorities targeted at 

foreign visiting ships, is proposed and implemented to ensure that these ships comply 

with various regulations and conventions (Cariou et al., 2007; Heij et al., 2011).  

A typical PSC inspection starts from selecting high-risk foreign visiting ships to 

a port state, which is carried out by each port authority on the morning of a working 

day following the ship selection scheme adopted. Then, ship inspectors, i.e., PSC 

officers (PSCOs), are assigned for ship inspection by the decision makers at the port. 

During PSC inspections, a condition found not to comply with the relevant convention 

is denoted by a ship deficiency. Fatal deficiencies that may put too much danger to the 

sea can lead to detention, which is an intervention action carried out by the port state 

(IMO, 2017). Ship deficiency and detention are seen as the inspection target of the 
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PSC inspection, and they will be recorded in the corresponding database together with 

the ships’ specifications. 

To allow information and experience exchange, avoid multiple inspections of 

one ship within a short period, and apply standard inspection criteria and procedure, 

the regional Memorandum of Understandings on port state control (i.e., MoUs on PSC) 

are signed and established. The Hong Kong port belongs to the Tokyo MoU, which is 

in charge of the Asia-Pacific Region, and there are another eight regional MoUs on 

PSC around the world. Uniform inspection procedures and standards are required to 

be implemented within one MoU, including identifying and selecting high-risk ships, 

assigning inspection resource (mainly refers to PSCOs), deciding onboard inspection 

items and sequence, and recording ship deficiency and detention. Accurate 

identification of substandard visiting ships is the key to improve the effectiveness of 

PSC, as only a small proportion can be inspected among a large number of foreign 

visiting ships due to the limited inspection resources at a port. In addition, effective 

assignment and scheduling of the inspection resources, i.e., the available PSCOs, 

considering their working time and expertise is a foundation for effective PSC 

inspections, as such resources are scarce at a port while the background and experience 

of the PSCOs at the same port can be varied. To achieve both goals, this thesis proposes 

several prediction and optimization models to predict ship risk considering various 

factors and optimize the assignment and scheduling of inspection resources at a port. 

Specifically, predictions of ship overall condition regarding the total number of 

deficiencies and the number of deficiencies under each deficiency category are 

achieved by state-of-the-art machine learning (ML) models considering shipping 

domain knowledge and the downstream optimization model structure, which are 

followed by PSCO scheduling or assignment models. Furthermore, the black-box ML 

based ship risk prediction models are opened by using post-hoc explanation methods 

to achieve model explanation.  

1.2 THESIS OUTLINE 

The remainder of the thesis is organized as follows. Chapter 2 summaries and 

reviews ship selection methods applied at ports and the existing literature on improving 

the efficiency of PSC inspection. Chapter 3 develops a prediction model for the total 

number of deficiencies of a ship where the shipping domain knowledge regarding ship 

operation information is incorporated by modifying the structure and property of the 
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prediction model. The predictions are then input to a PSCO scheduling model to realize 

optimal inspection resource allocation. Chapter 4 proposes several multi-target 

regression models to predict the number of deficiencies under each deficiency category 

for each ship. The regression models are based on the classic random forest model, 

while they differ from each other regarding their structures and prediction targets. The 

predictions then serve as the input to the following PSCO assignment models. Chapter 

5 aims to open up the black-box models for ship risk prediction by first developing an 

accurate prediction model for ship deficiency number, and then using a local post-hoc 

explanation method to explain the prediction results. The local explanation method is 

extended to a global one by developing a near linear-form surrogate model which is 

also fully explainable. Chapter 6 concludes the thesis.  
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Chapter 2: Current Approach and 

Literature Review1 

This chapter first summaries the current ship selection methods used in different 

ports around the world. It then reviews the existing studies on improving PSC 

inspection efficiency, including models for high-risk ship selection and onboard 

inspection efficiency improvement.  

2.1 SHIP SELECTION METHOD AT PORT 

A uniform ship selection procedure is required to be adopted by all the ports in 

one MoU on PSC, and the ship selection models currently used in ports are easy to 

understand and implement. Take the example of the Tokyo MoU, the New Inspection 

Regime (NIR) is applied to determine the inspection priority and time interval between 

inspections of ships by calculating their ship risk profile (SRP) (Tokyo MoU, 2014). 

Ships are divided into three categories based on the SRP: high risk ships (HRS), 

standard risk ships (SRS), and low risk ships (LRS) according to the information sheet 

given in Table 2-1. Particularly, the flag Black-Grey-White list and the RO 

performance list are published by the Tokyo MoU in the annual report considering the 

inspection and detention history of the vessels under the corresponding flag and RO 

over the preceding three calendar years. Ship company performance is the performance 

of a ship’s international safety management (ISM) company which is calculated daily 

on the basis of a running 36-month period considering the detention and deficiency 

history of the company’s fleet. The time windows attached to HRS, SRS, and LRS are 

2–4, 5–8, and 9–18 months, respectively, in the Tokyo MoU.  

  

 
1 Yan, R., Wang, S., Peng, C., 2021. Ship selection in port state control: Status and perspectives. Maritime Policy & Management, 

1–16. 
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Table 2-1. Information sheet of SRP adopted by the Tokyo MoU 

Parameters Values Weighting points Criteria for LRS 

Ship type Chemical tanker, gas 

carrier, oil tanker, bulk 

carrier, passenger ship, 

container ship 

2 \ 

Ship age 

(calculated based 

on the keel laid 

date) 

All types with age > 12y 1 \ 

Flag performance 

in Black-Grey-

White list of 

Tokyo MoU 

Black  1 White, and should be IMO 

Audit 

RO performance 

evaluated by 

Tokyo MoU 

Low/very low 1 High, and should be an RO 

recognized by the Tokyo 

MoU 

Company 

performance 

evaluated by 

Tokyo MoU 

Low/very low/no 

inspection within previous 

36 months [unknown] 

2 High 

Deficiencies 

within previous 

36 months 

Inspections which 

recorded over 5 

deficiencies 

The number of 

inspections which 

recorded over 5 

deficiencies 

All inspections have 5 or 

less deficiencies and has at 

least one inspection within 

previous 36 months 

Detentions within 

previous 36 

months 

3 or more detentions 1 No detention 

Ship risk profile Criteria  Inspection time window 

HRS When the sum of weighting points≥4 2 to 4 months 

SRS Neither HRS nor LRS 5 to 8 months 

LRS All the criteria for LRS are met 9 to 18 months 

For a foreign visiting ship attached with a specific risk profile, its inspection 

priority is determined by the relationship between its last inspection time and the 

inspection time window attached to its SRP. Especially, there are two levels of 

inspection priority: ships with the last inspection time beyond the upper bound of the 

inspection time window are of Priority I and must be inspected; ships with the last 

inspection time within the inspection time window are of Priority II and may be 

inspected. Meanwhile, ships with the last inspection time less than the lower bound of 

the inspection time window have no priority (Tokyo MoU, 2013). 

Other MoUs on PSC have their own methods of ship selection. For example, the 

Paris MoU, the Abuja MoU, and the Black Sea MoU also adopt the NIR for SRP 

calculation and ship selection. However, the NIR used in these MoUs is slightly 

different from that used in the Tokyo MoU. For instance, their information sheet for 

SRP calculation is different from the sheet used in the Tokyo MoU (Abuja MoU 2012; 

Black Sea MoU 2016; Paris MoU 2014). Moreover, the time windows attached to HRS, 

SRS, and LRS are 5–6, 10–12, and 24–36 months, respectively, in the Abuja MoU and 
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the Paris MoU. Some ports adopt simpler ship selection methods. For example, ships 

can be exempted from further inspection if they have been inspected within the last six 

months and found to comply with the regulations of the Mediterranean MoU 

(Mediterranean MoU 2020).  

The ship selection models currently used in ports are easy to understand and 

implement. In particular, risk factors related to ship characteristics and historical 

inspection records are considered in the NIR. However, several drawbacks of the NIR 

would adversely reduce its efficiency in identifying substandard ships. First, the 

parameters considered to calculate ship risk are limited. Only basic ship characteristics 

and rough historical inspection results are considered; other parameters, such as ships 

involved in accidents and incidents, are neglected. Second, the weights attached to the 

parameters are highly dependent on expert judgement, which may lead to inaccuracies 

and inconsistencies. Third, the total ship risk score is calculated by a simple weighted 

sum method and the correlations between the parameters are not taken into account, 

further compromising its effectiveness. Fourth, although the SRP divides ships into 

three risk categories, no specific risk score is attached to an individual ship. This 

further weakens its effectiveness as an indicator of ship risk level. Consequently, the 

European Commission (2017) pointed out that “there is room for improvement in the 

design of the ship selection method” for PSC inspections.  

2.2 STUDIES ON IMPROVING PSC INSPECTION EFFICIENCY 

A recent literature review classified the large body of literature on PSC into four 

main categories: factors influencing PSC inspection results, ship selection schemes in 

PSC, PSC inspection effects, and suggestions for MoU management (Yan and Wang 

2019). In this chapter, we focus on the studies on improving PSC efficiency, which 

develop models for ship selection and onboard inspection efficiency improvement.  

Li (1999) is the pioneer who proposed an innovative risk score system to 

evaluate ship quality in PSC inspection. The author considered several ship generic 

factors: ship age, flag, insurers, classification, and operators. Degré (2007) also 

adopted the risk score concept to select high-risk ships for PSC inspection. The 

developed model considered ship physical factors, i.e., type, size, and age, and the 

selection criteria used in Paris MoU, namely ship flag, recognized organization, and 

company. Xu et al. (2007a) developed a vessel risk assessment system for PSC based 
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on support vector machine (SVM). They further improved the system performance by 

combining web mining technique for extracting new features (Xu et al, 2007b). Gao 

et al. (2008) proposed another ship risk assessment system for PSC. The system 

combined k-nearest neighbor with support vector machine (KNN-SVM) to remove 

noisy training samples and adopted bag of words (BW) to extract new features. All the 

above three papers used ship detention as the prediction target: if a ship was predicted 

to be high-risk and was detained, the prediction was considered accurate. The highest 

accuracy of the three models is about 22% due to the highly imbalanced distribution 

of ship detention in the dataset: the number of detained records is much smaller than 

records without detention. The imbalanced data makes the prediction a complex task. 

Zhou and Sun (2010) implemented a self-evolutional ship targeting system for ship 

detention prediction using generalized additive modeling (GAM). The system was 

designed to relieve the negative Matthew Effect, which was caused by the ship target 

system at Ningbo port as it would unavoidably set ships with bad history into a vicious 

circle by increasing their inspection frequency. 

In 2011, the NIR (and the SRP) first entered into force in the Paris MoU and 

replaced the existing ship target factor system at the time. In 2014, the Tokyo MoU 

also implemented the NIR (and the SRP). The SRP is easy to understand and 

implement. Moreover, it enhances PSC efficiency to improve maritime safety, security, 

pollution prevention, and working conditions to some extent (European Commission, 

2017). It is also recognized that the implementation of the NIR has modernized the 

PSC inspection system. For example, Yang et al. (2020) analyzed the influence of the 

implementation of the NIR on the PSC inspection system and ship quality from 

macroscopic and microscopic perspectives. The authors concluded that the influence 

of the NIR was generally positive, as it prompted ship owners to maintain their vessels 

at a high-quality level.  

In recent years, more advanced and accurate ship selection models have been 

proposed to improve SRP efficiency. Based on the inspection data of bulk carriers in 

the Paris MoU from 2005 to 2008, Yang et al. (2018a) implemented a Bayesian 

network (BN) approach to predict ship detention. The main factors influencing ship 

detention, namely the number of deficiencies, type of inspection, RO, and ship age, 

were also analyzed. The authors proposed a strategic game model incorporating the 

outcomes of the BN model to determine the optimal inspection rate for port states. 
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Recommendations for port authorities were generated based on the results: when port 

authorities have sufficient resources, they should choose the optimal inspection rate; 

otherwise, they should increase the severity of punishment to tackle the poor efforts 

and illegal actions of ship owners (Yang et al. 2018b). Wang et al. (2019) developed a 

BN model to predict the number of ship deficiencies identified during a PSC inspection. 

In addition, they compared the proposed BN model and the current SRP ship selection 

scheme in the Tokyo MoU, demonstrating the superiority of the BN model. Based on 

the static risk factors adopted by the NIR and the SRP, Dinis et al. (2020) developed a 

BN-based ship risk assessment and maritime traffic monitoring model. They 

conducted a quantitative assessment of the predictive validity of the model using 

historical PSC inspection records. The results were consistent with the SRP criteria 

and models developed in other studies.  

In addition to the popular BNs, researchers have proposed various other types of 

models for ship selection for PSC inspection. For instance, Yan et al. (2021b) 

developed a balanced random forest (BRF) model for ship detention prediction which 

can address the problems brought by the highly imbalanced dataset due to low 

detention rate (about 3.55%). An SVM model was proposed by Wu et al. (2021) for 

ship detention prediction. Particularly, input features were selected by analytic 

hierarchy process and grey relational analysis to improve prediction accuracy. Apart 

from generic ship factors and historical inspection factors, some ship selection studies 

also consider ships involved in casualties and incidents, as they could indicate high 

ship risk and possible future accidents (Heij and Knapp, 2019; Knapp and Heij, 2020).  

To improve the efficiency of onboard inspection, association rule mining 

technologies are widely proposed to figure out the relationship between various factors 

in existing literature. The generated rules can offer meaningful insights to onboard 

deficiency and detention identification. Tsou (2019) explored the detention database 

of Tokyo MoU using association rule mining techniques. The author identified the 

correlations between detention deficiencies and the correlations between deficiencies 

and ship-/inspection-related factors. Chung et al. (2020) analyzed the historical PSC 

inspection records in Taiwan Provence of China using Apriori algorithm. The 

correlations between ship characteristics and PSC deficiencies were identified. Yan et 

al. (2021c) also adopted Apriori algorithm to identify the relationship between ship 

deficiencies based on the inspection records at the Hong Kong port. Onboard 
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inspection schemes were then proposed according to the rules identified. Fu et al. 

(2020) analyzed the correlations between ship generic properties and ship deficiency 

and detention conditions using Apriori algorithm based on the inspection records in 

Tokyo MoU. 
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Chapter 3: Shipping Domain Knowledge 

Informed Prediction and 

Optimization in Port State 

Control2 

This chapter addresses one critical issue faced by the port states about how to 

optimally allocate the limited inspection resources for inspecting the visiting ships. It 

first develops a state-of-the-art XGBoost model to accurately predict ship deficiency 

number. Particularly, the XGBoost model takes shipping domain knowledge regarding 

ship flag, recognized organization, and company performance into account to improve 

model performance and prediction fairness. Based on the predictions, a PSCO 

scheduling model is proposed to help the maritime authorities optimally allocate 

inspection resources. Considering that a PSCO can inspect at most four ships in a day, 

we further propose and incorporate the concepts of inspection template and un-

dominated inspection template in the optimization models to reduce problem size as 

well as improve computation efficiency and model flexibility. Numerical experiments 

and sensitivity analysis using practical data and settings at the Hong Kong port are 

conducted to validate model performance and robustness.  

3.1 INTRODUCTION 

In PSC inspection, it is generally believed that accurate identification of high-

risk visiting ships is a pre-requirement while effective assignment and scheduling of 

available PSCOs is a foundation for effective PSC inspections. The reasons are as 

follows. First, it is impossible to inspect all visiting ships as port inspection resources, 

especially the number of available PSCOs, are quite limited. Second, among all 

visiting ships, only a small portion of ships need to be inspected. The annual report of 

Tokyo MoU in Asia-Pacific region shows that only 60% of the inspections conducted 

between 2009 and 2019 identified deficiencies, and no more than 6% inspections were 

with detention (Tokyo MoU, 2020). Third, the proportion of ships inspected is crucial 

in port management. If too few substandard ships are inspected at a port, ship owners 

 
2 Yan, R., Wang, S., Cao, J., Sun, D., 2021. Shipping domain knowledge informed prediction and optimization in port state 

control. Transportation Research Part B: Methodological 149, 52–78. 
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may lack the motivation to intensively maintain ship conditions, which in return 

attracts more substandard ships to the port. On the contrary, if too many qualified ships 

are inspected, the competitiveness of the port may be reduced and consequently leads 

ship owners to turn to other destinations with relaxed inspection policy (Yang et al. 

2018b). Therefore, accurate identification of high-risk ships and rational allocation of 

inspection resources guarantee effective PSC inspections by picking out which ships 

are most worthy of inspection and finishing the inspection tasks efficiently without 

putting too much delay in shipment. They also help the port states to find a balance 

between stringent inspections of substandard ships and reducing un-necessary 

inspections of qualified ships and thus to better fulfill their responsibilities and enhance 

their competitiveness. 

One of the widely adopted and the most advanced ship selection method applied 

by port states is the NIR. It calculates SRP based on ship generic parameters including 

ship type, ship age, flag performance, recognized organization (RO) performance, and 

company performance, and inspection historical factors including deficiency and 

detention conditions (Paris MoU, 2010; Tokyo MoU, 2014). It is noted that all the 

parameters are objective except for flag, RO, and company performance, which is 

calculated by the MoUs. More specifically, ship flag performance is established 

annually by taking its ships’ inspection and detention conditions over the preceding 

three calendar years into account. Black-grey-white ship flag lists are published in an 

MoU’s annual report, where flag performance gets worse from white to grey and to 

black. RO is a qualified organization which has been assessed and authorized by the 

flag state to provide necessary statutory services and certification of ships entitled to 

fly its flag (IMO 2017). The performance of all ROs is established annually 

considering their ships’ inspection and detention history over the preceding three 

calendar years. The RO performance list is published in an MoU’s annual report, 

where the performance of ROs gets worse from high, to medium, to low, and to very 

low. Ship company is the International Safety Management (ISM) company of a ship, 

and its performance is determined by their ships’ detention and deficiency history 

calculated daily on the basis of a running 36-month period. Similar to ship RO 

performance, company performance gets worse from high, to medium, to low, and to 

very low.  
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As ship flag, RO, and company play an important role in ship management, 

operation, and maintenance, they are taken into account in the popular SRP ship 

selection scheme applied at ports. In return, a ship’s performance in PSC inspection 

can influence the reputation of its flag, RO, and company and their performance 

evaluated by PSC MoUs. Under this condition, it is justifiable to conclude that given 

all other conditions being equal, a ship should be estimated to have worse performance 

in PSC inspection (e.g., more deficiencies and higher probability of detention) if the 

performance of its flag/RO/company gets worse. However, such domain knowledge is 

seldom considered in current literature of high-risk ship selection mainly because 

combining domain knowledge with ML models is not a trivial task as it requires 

modifications of the prediction models or finding good properties of them. Besides, 

PSCO assignment and scheduling models, which require allocating the available and 

scarce inspection resources as well as arranging the starting and ending time of the 

required activities, are also rarely proposed in current research. This chapter aims to 

bridge this gap with the contributions summarized as follows.  

First, from a theoretical point of view, we first develop an ML prediction model 

considering proper and adequate domain knowledge to solve problems in maritime 

transportation. Specifically, a state-of-the-art tree-based model called XGBoost is 

developed to predict ship deficiency number in PSC inspection. In the XGBoost model, 

we combine the shipping domain knowledge regarding ship flag, RO, and company 

performance in a natural way. Based on the predictions, a PSCO scheduling model for 

ship inspection is then proposed considering a PSCO’s work and rest time to guarantee 

inspection effectiveness. By taking the properties of the optimization model for PSCO 

scheduling into account, we propose the concepts of inspection template, un-

dominated inspection template, and strengthened constraints to reduce problem size as 

well as improve model flexibility and solving efficiency. 

Second, from a practical point of view, a practical problem in PSC inspection, 

which is one of the most important shipping policies, is addressed in this study. 

Numerical experiments show that the proposed combined model for ship deficiency 

number prediction and PSCO scheduling is more than 20% better than the current 

PSCO scheduling strategy at ports regarding the number of deficiencies identified. 

Meanwhile, the gap between the proposed model and the perfect-forecast policy is 

only about 8% regarding the number of deficiencies identified. The proposed model 
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can help port state authorities to identify higher risk ships and schedule inspection 

resources more efficiently. Especially, it contributes to assisting the port states to 

achieve a balance between effectively identifying and inspecting substandard ships 

and reducing un-necessary inspections of qualified ships and consequently frightening 

them from choosing this port in future shipment. Therefore, the main objectives of 

PSC to eliminate substandard shipping, to promote maritime safety and security, to 

protect the marine environment, and to safeguard seafarers’ working and living 

conditions on board ships can be enhanced. 

3.2 RESEARCH GAP 

Based on the literature reviewed in Chapter 2, several limitations regarding high-

risk ship selection and PSCO scheduling in PSC are summarized as follows. First, 

current studies of high-risk ship selection have failed to consider shipping domain 

knowledge in ship risk prediction, including the monotonicity regarding ship 

flag/RO/company performance in ship risk prediction. It is likely that the prediction 

models ignoring such domain knowledge give opposite prediction results due to model 

inaccuracy and noises in training data (Sill, 1997; Duivesteijn and Feelders, 2008; 

Daniels and Velikova, 2010; Pei et al., 2016). This indicates that only by taking such 

shipping domain knowledge into account in ship risk prediction models can fair and 

reasonable prediction results be generated. Here regarding such prediction results to 

be “fair” is because for ship flag/RO/company which adopt more effective 

management measures on their ships, it can be expected that their ships’ performance 

in PSC inspection should be better than other flags/ROs/companies adopting worse 

management strategies. In return, reducing the inspection frequency of their ships can 

promote them to better fulfill their maintenance and operational duties and attract more 

shippers to choose their services. The reason to regard such prediction results to be 

“reasonable” is that considering monotonicity into an ML model “can be an important 

model requirement with a view toward explaining and justifying decisions” 

(Duivesteijn and Feelders, 2008) to the decision makers. It is also reported by Pazzani 

et al. (2001) that the learned rules with monotonicity constraints were significantly 

more acceptable to experts than rules learned without the monotonicity restrictions 

when experts expect certain monotonicity based on their experience.  

Second, there is little literature aiming to design tailored PSCO assignment or 

scheduling schemes for ship inspection, and thus to validate the superiority of the 
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proposed ship risk prediction models over the current schemes at ports. Indeed, 

prediction model accuracy is figured out in many current studies, and their superiority 

over current ship selection scheme is also presented. However, port inspection 

resources (e.g., the number of available PSCOs) are scarce and the arrival and 

departure time of ships are not fixed. This indicates that not all ships can be inspected 

in practice, and the gap between the proposed and current schemes in practice remains 

to be validated. Formulation and solution techniques for assignment and scheduling 

models are proposed in current literature, and typical modeling approaches include 

column generation (Van Den Akker et al., 2005; Huisman, 2007; Janacek et al., 2017; 

Kulkarni et al., 2018) and Dantzig-Wolfe decomposition (Janacek et al., 2017; 

Kulkarni et al., 2018; Muñoz et al., 2018). Nevertheless, there is no tailored modelling 

approach considering the problem structure and the corresponding properties of PSC 

inspection as well as proposing intuitive solving strategies that are comprehensible to 

the decision makers at port authorities. Therefore, it is of vital importance to develop 

tailored and easy-to-understand PSCO assignment and scheduling modeling approach 

based on ship risk prediction models to figure out their superiority in practice and 

improve the efficiency of PSC inspection. 

To address these issues, this chapter develops a highly accurate XGBoost model 

for ship deficiency number prediction considering shipping domain knowledge. It then 

proposes PSCO scheduling models based on the predictions which are consistent with 

the actual situation at port. Extensive computational experiments and sensitivity 

analysis are conducted to validate the model performance. 

3.3 DATA AND MODEL VALIDATION METRICS 

3.3.1 Data description 

The case dataset of this study contains 1,974 PSC initial inspection records and 

the corresponding ship related factors at the Hong Kong port from January 2016 to 

December 2018. Especially, PSC inspection records are downloaded from the public 

database provided by Tokyo MoU3, and ship related factors are searched from World 

Shipping Register database. The prediction target is the number of deficiencies 

detected in the current PSC inspection. We consider 14 features that are regarded to 

be highly related to ship deficiency number in the current literature and by domain 

 
3 http://www.tokyo-mou.org/inspections_detentions/psc_database.php 
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knowledge, namely ship age, gross tonnage (GT), length, depth, beam, type, flag 

performance, RO performance, and company performance in Tokyo MoU, last PSC 

inspection date in Tokyo MoU, the number of deficiencies in last inspection in Tokyo 

MoU, the number of total detentions in all historical PSC inspections, the number of 

flag changes, and whether the ship has a casualty in last 5 years. Moreover, as required 

by the Tokyo MoU, from the best to the worst, the states of ship flag performance are 

white, grey, and black, the states of ship RO and company performance are high, 

medium, low, and very low, respectively. After data preprocessing, the whole dataset 

contains 1,926 samples. The explanation, method of feature encoding, and the 

descriptive statistics of the prediction target and the 14 features in the whole dataset 

are shown in Table 3-1.  
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Table 3-1. Variable explanation, encoding method, and descriptive statistics 

Variable 

name 

Explanation   Encoding Mean 

value 

Min 

value 

Max 

value 

deficiency 

number 

The number of deficiencies identified in the current PSC 

initial inspection. 

No encoding 4.31 0 51 

age The time interval (in years) between the keel laid date 

and the current PSC inspection date. 

No encoding 10.8 0 47 

GT A nonlinear measure of a ship’s internal volume, with 

100 cubic feet as the unit. 

No encoding 44,908 497 266,681 

length The overall maximum length of a ship (in meters). No encoding 214.88 32.29 400 

depth The vertical distance (in meters) measured from the top 

of the keel to the upper deck at side measured inside the 

plating. 

No encoding 17.79 4.28 36.02 

beam The width of ship hull (in meters). No encoding 31.93 7.38 60.05 

type Ships in the dataset are classified into the following 

types: bulk carrier, container ship, general 

cargo/multipurpose, passenger ship, tanker, and other. 

One-hot encoding: 

is_bulk_carrier: 1 for bulk carrier and 0, otherwise; 

is_container_ship: 1 for container ship and 0, otherwise; 

is_ general cargo/multipurpose: 1 for general cargo/multipurpose and 

0, otherwise; 

is_ passenger_ship: 1 for passenger ship and 0, otherwise; 

is_tanker: 1 for tanker and 0, otherwise; 

is_other: 1 for other ship types and 0, otherwise. 

\ \ \ 

flag 

performance 

Ship flag performance is calculated based on the flag 

Black-Grey-White list provided by Tokyo MoU (Tokyo 

MoU, 2018a). 

Label encoding: 

white->1*; grey->2; black->3. 

\ \ \ 

RO 

performance 

Ship RO performance is calculated based on RO 

performance list provided by Tokyo MoU (Tokyo MoU, 

2018a). 

Label encoding: 

high->1; medium->2; low->3. 

\ \ \ 
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company 

performance 

Ship company performance is calculated based on 

company performance matrix provided by Tokyo MoU 

(Tokyo MoU, 2018a) 

Label encoding: 

high->1; medium->2; low->3; very low->4. 

\ \ \ 

last 

inspection 

date 

The time interval between the last and current PSC 

initial inspections within Tokyo MoU (in months). For 

ships that are inspected for the first time (i.e., with no 

previous inspection records), the state of this variable is 

set to be “−1”. 

No encoding. 10.2 0 180.7 

  

last 

deficiency 

number 

The number of deficiencies identified in last PSC initial 

inspection within Tokyo MoU. For ships that are 

inspected for the first time, the state of this variable is 

set to be “−1”. 

No encoding. 2.46 0 38 

total 

detentions 

The total number of detentions of a ship in all previous 

PSC inspections since the keel laid date. 

No encoding. 0.59 0 18 

the number 

of flag 

changes 

The total number of times of ship flag change from keel 

laid date to the current PSC inspection date. 

No encoding. 0.66 0 8 

casualty in 

last 5 years 

A binary variable indicating whether a ship was 

involved in casualties in the last five years. 

One-hot encoding: 

casualty-in-5-years: 1 for any casualty occurs in the last 5 years and 0, 

otherwise. 

\ \ \ 

Note *: this indicates that the state of “white” is encoded to be “1”.
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3.3.2 Model validation metrics 

The deficiency number prediction models are validated using two common 

metrics for regression problems in ML: mean squared error (MSE) and mean absolute 

error (MAE). Given a total of n  samples in the dataset, the real output iy  and the 

predicted output ˆ
iy  for sample i , 1,...,i n= , the definitions of MSE and MAE are as 

follows: 

 2

1

1
ˆMSE ( )

n

i i

i

y y
n =

= − , (3.1) 

 
1

1
ˆMAE

n

i i
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y y
n =

= − . (3.2) 

3.4 INTRODUCTION AND CONSTRUCTION OF XGBOOST MODEL 

3.4.1 The structure of XGBoost model 

Ensemble models in ML combine the predictions of multiple simpler base 

models to improving the overall model prediction performance (Friedman et al., 2001). 

Two main ensemble models are bagging (bootstrap aggregating) and boosting. 

Bagging builds several base models independently and then average their predictions. 

Boosting builds sequential and dependent base models in the way that one base model 

is built considering the errors of the base models built so far and then produces a 

powerful ensemble (Friedman et al., 2001). In boosting models, a base model is also 

called a weak learner which may be only slightly better than random guessing. 

Meanwhile, the main idea of boosting is to add new weak learners to the ensemble 

sequentially, and in each iteration, the weak learner is trained with respect to the error 

of the whole ensemble learned so far (Natekin and Knoll, 2013). As boosting is purely 

algorithm-driven, a gradient-descent based formulation of boosting methods is derived 

which is called gradient boosting machine (GBM) (Freund and Schapire, 1997; 

Friedman et al., 2000). The principal idea of GBM is to construct new weak learners 

to be maximally correlated with the negative gradient of the loss function associated 

with the whole ensemble.  

XGBoost (short for eXtreme Gradient Boosting) is an implementation of GBM 

that uses tree-structured weak learners (Chen and Guestrin, 2016). It is highly effective 

(which allows parallel and distributed computing) and scalable (which is able to handle 

datasets containing billions of examples in distributed or memory-limited settings). 

The detailed procedure of constructing a XGBoost model is as follows (Chen, 2014; 



 

Chapter 3: Shipping Domain Knowledge Informed Prediction and Optimization in Port State Control

  19 

 

Chen and Guestrin, 2016). Given a dataset with n  samples and m  features, denoted 

by {( , ), 1,..., }i iD y i n= =x , m

i Rx , iy R , a tree ensemble model uses K  additive 

functions to predict the target iy  (the predicted value is denoted by ˆ
iy ) is 

 
1

ˆ ( ),
K

i i k i k

k

y f f F
=

= ( ) = x x , (3.3) 

where F  is a space of functions that contains all regression and classification tree 

(CART) based regression trees. In XGBoost, the learning objective function to be 

minimized, which aims to draw a balance between model accuracy and complexity, is 

as follows: 

 
1 1
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The first term in Eq. (3.4) is the training loss regarding all training samples, and the 

second term is the tree complexity. In regression problems, a common choice for the 

training loss function is half of the MSE, which is given by 
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where the multiplication of 1/ 2  is for the ease of calculation. Eq. (3.5) is also the loss 

function used in this study. As XGBoost is developed based on additive training, the 

prediction value after finishing 0 to 1,...,t K=  iterations can be written as 
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By combining Eqs. (3.4) to (3.6), the objective function in the tht  iteration can 

be given by 
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Eq. (3.7) contains three terms. The first term is the loss function of the tht  iteration. 

The second term is the penalty for tree complexity in the tht  iteration. The last term 

is the sum of penalties for tree complexity of all the first 1t −  iterations. Define 

( 1)
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−=   as the first and second order gradients of the 
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loss function in Eq. (3.7). The concrete expressions for t

ig  and t

ih  can be given if the 

loss function is explicitly defined. As we choose Eq. (3.5) as the loss function in this 

study, we can have ( 1)

( 1) ( 1)

ˆ
ˆ ˆ( , )t

i

t t t

i i i i iy
g l y y y y−

− −=  = −  and ( 1)

2 ( 1)

ˆ
ˆ( , ) 1t

i

t t

i i iy
h l y y−

−=  = . It should be 

mentioned that the values for t

ig  and t

ih  for sample i  of the tht  iteration are fixed 

as they are only related to the output generated in the ( 1)tht −  iteration. The second 

order Taylor expansion at ( 1)ˆ t

iy −  of Eq. (3.7) should be  
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In the first term of Eq. (3.8), ( 1) 2

1

1
ˆ( )

2

n
t

i i

i

y y −

=

−  is the loss of the ( 1)tht −  iteration and 

thus it is a constant. The last term of Eq. (3.8), i.e. 
1

1

( )
t

k

k

f
−

=

 , is the penalty of tree 

complexity of all the first 1t −  iterations and thus is also a constant. All the constants 

can be removed. Therefore, we represent the objective function in the tht  iteration as  

 ( ) 2

1

1
[ ( ) ( ) ] ( )

2

n
t t t

i t i i t i t

i

obj g f h f f
=

= + + x x .  (3.9) 

The goal of the tht  iteration is to construct a tree to minimize Eq. (3.9), which 

requires to decide the outputs of the leaf nodes and the structure of the tree. We first 

assume that the tree structure is fixed and discuss the way to determine the outputs of 

the leaf nodes. Define a tree by a vector of outputs (which are also called weights) in 

leaves, and a leaf index mapping function that maps a sample to a leaf as  

 
( )

( ) , , : {1,2,..., }t
t

Tt t t m

t tq
f w R q R T=  →

x
x w ,  (3.10) 

where tT  is the number of leaves in the tree, t
w  is the vector of outputs in all the 

leaves, and tq  is the function assigning each sample to the corresponding leaf in the 

tht  iteration. We use the following toy example to exemplify the notations used in Eq. 

(3.10).  
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Figure 3-1. A toy regression tree in the t th iteration of a XGBoost model 

Suppose that we have a total of six samples in a toy training set, and the developed 

regression tree in the t th iteration is shown in Figure 3-1. The notations in Eq. (3.10) 

can be exemplified as follows: 3tT = , {2, 1,0.5}t = −w , (ship1) 1tq = , (ship 2) 1tq = , 

(ship3) 1tq = , (ship 4) 2tq = , (ship5) 2tq = , and (ship6) 3tq = . It should be noted that the 

leaf output in XGBoost is different from the leaf output in traditional CART regression 

tree: the leaf output in XGBoost is calculated by optimization models whereas the leaf 

output in CART regression tree is simply the mean of the output of the samples in that 

leaf node in regression problems. The tree complexity in the objective function of 

XGBoost is defined as  

 2

1

1
( )

2

tT
t

t t j

j

f T w 
=

 = +  ,  (3.11) 

where the first term is the penalty on the total number of leaves and the second term is 

the penalty on the sum of squares of the weights in the leaves in the tht  iteration.   

and   are two hyperparameters that need to be tuned and are used to balance model 

accuracy and complexity. Define the sample set in leaf j  on the tree of the tht  

iteration as { | ( ) }t t

j iI i q j= =x , 1,...,i n= , we can regroup the objective function in Eq. (3.9) 

by leaf and combine with Eq. (3.11) to be  
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 (3.12) 

For simplicity, we define 
t
j

t t

j i

i I

G g


=  and 
t
j

t t

j i

i I

H h


= , Eq. (3.12) can be written as  
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 ( ) 2

1

1
[ ( ) ]

2

tT
t t t t t

j j j j t

j

obj G w H w T 
=

= + + + .  (3.13) 

As we have assumed that the tree structure (i.e. tq ) is fixed, and thus t

jG , t

jH , and tT  

are all fixed. The optimal output t

jw  (denoted by *t

jw ) can be found by letting the first 

derivative of ( )tobj  with respect to t

jw  be 0, which is  

 *

t

jt

j t

j

G
w

H 
= −

+
.  (3.14) 

The optimal value of the objective function is  
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= − +
+
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After the outputs in the tree leaves are determined by assuming the tree structure is 

given, the last question is how to decide the tree structure (i.e., split a node into two 

child nodes) in an XGBoost tree. In practice, we grow the tree in a greedy manner by 

splitting nodes from the tree root by enumerating all values (or quantiles of values) of 

all features (or a subset of features) and calculating the reduction in objective function 

after adding a candidate split by 

 

( ) ( ) ( )

2 2 2

( )

1 ( )
,

2

t t t

L R L R

t t t t

L R L R

t t t t

L R L R

gain obj obj obj

G G G G

H H H H


  

+= − +

 +
= + − − 

+ + + + 

  (3.16) 

where ( )t

L Robj + , ( )t

Lobj , and ( )t

Robj  are the objective functions of the node for splitting, 

the objective function of the left child node if adding this candidate split, and the 

objective function of the right child node if adding this candidate split, respectively. 

gain  is calculated for each candidate split of the current node. As t

LG  and t

RG  ( t

LH  

and t

RH ) are the sum of first (second) derivative of the samples contained in left and 

right child leaf respectively, different splits would lead to different values for t

LG  and 

t

RG  ( t

LH  and t

RH ). If 0gain  , the candidate split is not considered. For all positive 

values for gain , we choose the feature and value corresponding to the maximum value 

of gain  to split the node as it could reach the maximum reduction of the objective 

function after the splitting. 

3.4.2 Feature monotonic constraints in XGBoost 

Apart from the state-of-the-art prediction performance, XGBoost also has the 

nice property to enforce monotonic constraint on the feature(s) regarding the 

prediction target (Chen, 2016). Suppose we have a total of m  features and the feature 

vector is denoted by 1 '( ,..., ,..., )m mx x x=x . We put a monotonically increasing constraint 

on feature m , which means that for two samples 1i  and 2i  that have the same feature 
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values except for mx , i.e. 
1 2

' 'm m

i ix x= , ' 1,..., 1m m= − , 1,...,m m+  and 
1 2

m m

i ix x , the predicted 

target for 1i  should be no more than that for 2i , i.e. 
1 2

ˆ ˆ
i iy y . As the monotonic 

constraint works in the context that all the features are equal in the samples except for 

the feature which is enforced to be monotonic (denote the set of samples by I  ), the 

prediction process of the samples in I   in a tree can be simplified to only contain the 

splits on the monotonic feature (as using all other features and values will always lead 

the samples to the same tree nodes and thus have the same output). In this context, the 

work process to impose monotonic constraint on a feature can be illustrated as follows.  

We still use feature m  which we put a monotonically increasing constraint on 

as an example. An illustration of the tree structure is shown in Figure 3-2. The output 

of all samples in the root node is 0W . From splitting the root node, we would expect 

the weight assigned to the right child not to be lower than the weight assigned to the 

left child while using the monotonic feature for splitting. When feature m  is picked 

to split the root node, if a candidate value of m  leads to a higher weight in the left 

child than that in the right child, this candidate value will be abandoned for the current 

node splitting. That is, when enumerating all possible values of feature m  to split the 

root node, only the values leading to no lower weights in right child than in left child 

will be retained for further comparison. If all possible splits lead to higher output in 

the left child than in the right child, the node would not be split any more. If feasible 

splits exist and the optimal splitting point is found, we could have L RW W , where LW  

is the output of the left child node while RW  is the output of the right child node. When 

splitting node L  to left child LL  and right child LR , only the splits that lead to 

LL LRW W  will be considered, where LLW  is the output of LL  and LRW  is the output of 

LR . As the weight of LR  should be no more than the weight of node R , we further 

impose an upper bound for LRW  as mean( , )
2

L R
LR L R R

W W
W W W W

+
 =  . Similarly, apart 

from ensuring RL RRW W , where RLW  is the output of RL  and RRW  is the output of RR , 

we also impose a lower bound for RLW  as mean( , )
2

L R
RL L R L

W W
W W W W

+
 =  . 

Consequently, in this tree level we can guarantee mean( , )LL LR L R RL RRW W W W W W    . As 

a tree is split in a recursive manner, the monotonicity of the whole tree can be 

guaranteed.  
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Root node
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Node L
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weight=WR
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Figure 3-2. Illustration of feature monotonicity in XGBoost 

It should also be noted that as XGBoost allows for feature subsampling when 

constructing each tree, the monotonic feature may not be included in some trees. For 

those trees, as the samples in I   have the same feature values except for the feature 

with monotonic constraint, all the samples will be assigned to the same leaf node and 

thus have the same output. As XGBoost is an additive model, the predicted output of 

each sample is the sum of the outputs in all the trees where the monotonicity constraints 

are preserved. Therefore, the feature monotonicity of the final output in the whole 

model can be preserved. 

3.4.3 Construction of monotonic XGBoost 

The whole dataset is randomly divided into training set (80% samples) and test 

set (20% samples, denoted by test set i), which contain 1,524 samples and 384 samples, 

respectively. The XGBoost model with monotonic constraints enforced on three 

features, i.e., ship flag, RO and company performance, is constructed using the training 

set (which we call monotonic XGBoost). Hyperparameters contained in XGBoost are 

in three categories: a. general parameter, which guides the overall functioning; b. 

booster parameters, which guide the individual booster at each iteration; and c. 

learning task parameter, which guides the optimization performed. We use regression 

decision tree as the weak learner in XGBoost model. The hyperparameters tuned in 

this study are summarized in Table 3-2. 
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Table 3-2. Hyperparameters in XGBoost model 

Hyperparameter*  Meaning 

learning_rate (c**) Step size shrinkage used to update the predicted values after each boosting 

step to prevent overfitting which can be applied to Eq. (3.6). 
n_estimators (a) The number of weak learners (decision trees) in the XGBoost model (i.e. 

K  in Eq. (3.3)). 

max_depth (b) The maximum depth of each tree. 

min_child_weight (b) The minimum sum of sample weight (Hessian) (i.e., t

jH ) needed in a child 

node. In a regression tree with loss function as MSE, the sum of sample 

weight in a node equals the number of samples contained in the node. 

delta (b) The minimum loss reduction required to make a split for a node. 

sub_sample (b) The fraction of samples to be randomly sampled for each tree. 

colsample_bytree (b) The fraction of columns (features) to be randomly sampled for each tree. 

reg_gamma (b) L1 regularization term on tree complexity (i.e.,   in Eq. (3.11)). 

reg_lambda (b) L2 regularization term on tree complexity (i.e.,   in Eq. (3.11)). 

Note*: to avoid ambiguity, we have renamed some hyperparameters. For example, in the XGBoost Module for Python , ‘delta’ is 

called ‘lambda’, and ‘reg_gamma’ is called ‘reg_alpha’.  
Note**: this indicates the hyperparameter category. 

Table 3-2 shows that there are totally nine hyperparameters that need to be tuned 

in an XGBoost model, which can be a huge burden if we apply cross validation with 

grid search to tune the hyperparameter tuple directly. To address this issue, we propose 

a three-step hyperparameter tuning method after giving the initial values of the 

hyperparameters based on experience. In the first step, the hyperparameters are tuned 

in turns according to their categories using grid search based on 5-fold cross validation 

with MSE as the metric, and their initial tuned values can be found. In the second step, 

an extended searching space for all the hyperparameters consisting of the initial tuned 

value and two more candidate values near the tuned value for each hyperparameter is 

formed. Then, grid search based on 5-fold cross validation with MSE as the metric is 

conducted on all hyperparameters simultaneously. In the third step, ‘learning_rate’ is 

further reduced and ‘n_estimators’ is further increased to improve model 

generalization ability. The finally adopted values for the hyperparameters are shown 

in Table 3-3. 

Table 3-3. Finally adopted hyparameter values in monotonic XGBoost 

Hyperparameter n_estimators learning_rate max_depth min_child_weight delta 
value 200 0.02 5 4 0.15 

Hyperparameter sub_sample colsample_bytree reg_gamma reg_lambda  
value 0.75 0.4 0.1 0.1  

After hyperparameter tuning using cross validation on the training set, the final 

monotonic XGBoost model is constructed using the whole training set with the optimal 

hyperparameter values presented in Table 3-3. Its performance is validated by test set 

i. The MAE of the monotonic XGBoost model is 2.372 and the MSE is 12.470. 
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3.4.4 Analysis of monotonic XGBoost 

We form another test set (denote by test set ii) as an extension of test set i to 

validate the monotonicity in the output of the monotonic XGBoost model regarding 

the three monotonic features: flag performance, RO performance, and company 

performance. For each sample in test set i, we form 10 variant samples by setting the 

values for flag performance from 1 to 3 (i.e. from white to black), RO performance 

from 1 to 3 (i.e. from high to low), and company performance from 1 to 4 (i.e. from 

high to very low) respectively while keeping the other features and their values 

unchanged. Totally we can have 3,840 samples ( 3,840 384 10=  ) in test set ii. We use a 

random sample in test set i as an example to show the construction process and the 

predicted results using the normal XGBoost model and the monotonic XGBoost model. 

Sample features except for flag, RO, and company performance are shown in Table 3-

4. The flag, RO and company performance together with the prediction results are 

shown in Table 3-5. 

Table 3-4. Features of an example in test set i except for flag, RO, and company 

performance 

Feature Value 

age 12 

GT 6813 

length 132.6 

depth 9.2 

beam 19.2 

type container ship 

last inspection date 4.3 

last deficiency number 6 

total detentions 0 

the number of flag changes 0 

casualty in the last 5 years 0 

 

Table 3-5. An example of construction variant samples and the prediction results 

Sample flag  

 

RO company Output of 

monotonic 

XGBoost 

Increase 

between  

consecutive 

values 

Output of 

normal 

XGBoost 

Increase 

between  

consecutive 

values 

Original sample 1 1 3 5.3443 

(true: 5) 

\ 5.6563 

(true: 5) 

\ 

variant sample 1 1 1 3 5.3443  \ 5.6563  \ 

variant sample 2 2 1 3 5.9879  0.6437  5.9409  0.2846  

variant sample 3 3 1 3 6.3320  0.3441  5.8450  -0.0959  

variant sample 4 1 1 3 5.3443  \ 5.6563  \ 

variant sample 5 1 2 3 5.5915  0.2473  5.6383  -0.0180  

variant sample 6 1 3 3 5.5915  0 5.6383  0 

variant sample 7 1 1 1 3.9397  \ 3.9384  \ 

variant sample 8 1 1 2 4.6101  0.6703  4.4111  0.4728  

variant sample 8 1 1 3 5.3443  0.7342  5.6563  1.2452  

variant sample 10 1 1 4 7.2423  1.8981  7.5755  1.9192  
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Table 3-5 indicates that in the monotonic XGBoost model, the predicted 

deficiency number increases as the performance of flag, RO and company gets worse, 

respectively. Moreover, increase between consecutive states of company performance 

is most significant in this example: on average, 1.1009 more deficiencies can be 

detected if it gets worse by one state. Meanwhile, change in RO performance is the 

least obvious: when its RO performance change from 1 (high) to 2 (medium), only 

0.2473 more deficiencies will be detected; the number of detected deficiencies remains 

unchanged while the RO performance changes from 2 (medium) to 3 (low). 

Meanwhile, it can also be seen in Table 3-5 that in a normal XGBoost model, the 

monotonicity of the three features cannot be fully guaranteed: when flag performance 

changes from medium to low, and when RO performance changes from high to 

medium, the predicted deficiency number decreases instead, which is against domain 

knowledge.  

We further calculate the average increase between consecutive states of each 

feature over the whole test set as shown in Table 3-6. 

Table 3-6. Increase in predicted deficiency number of consecutive states in test set ii 

State change Flag performance RO performance Company 

performance 

1->2 0.8030 0.2530 0.5312 

2->3 0.2236 0 0.7787 

3->4 \ \ 1.4919 

Table 3-6 indicates that when the states of flag performance change from high 

to medium and from medium to low, the increase of deficiency number gets smaller. 

While the state values increase by 1 in company performance, the increase of 

deficiency number gets larger. On the contrary, when RO performance gets from 2 

(medium) to 3 (low), 0 more deficiency number will be detected as suggested by the 

monotonic XGBoost model. This is because there is only one sample in the training 

set with RO performance as low, which makes it hard for the model to capture the 

change in deficiency number when RO performance gets from medium to low. It 

should also be noted that although in Tokyo MoU the worst performance for RO is 

“very low”, as there are no such inspection records between 2016 and 2018, we only 

form variant samples with RO performance to be high, medium, and low. 
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3.4.5 Comparison with other popular ML models 

We compare the performance of the other popular ML models with the 

monotonic XGBoost model using test set i and the same training set. Especially, we 

compare the performance of normal XGBoost, CART based regression decision tree 

(DT) (Breiman et al., 1984), random forest (RF) (Breiman, 2001), gradient boosting 

decision tree (GBDT) (Friedman, 2001), monotonic light gradient boosting machine 

(LightGBM) (Ke et al., 2017), least absolute shrinkage and selection operator (LASSO) 

regression (Santosa and Symes, 1986), ridge regression (Hoerl and Kennard, 1970), 

and support vector machine (SVM) (Drucker et al., 1996) with the monotonic 

XGBoost model. It should be noted that apart from LightGBM, none of the other ML 

models can guarantee the monotonic constraints of the three features. For SVM, DT, 

RF, LASSO regression and ridge regression, grid search with 5-fold cross validation 

is applied directly for hyperparameter tuning as they have fewer hyperparameters. For 

normal XGBoost, GBDT and monotonic LightGBM, the hyperparameter tuning 

method is similar to that used in the monotonic XGBoost model. The MSE and MAE 

in test set i are shown in Table 3-7.  

Table 3-7. MSE and MAE in test set i of the ML models 

Model monotonic 
XGBoost* 

normal 
XGBoost 

DT RF GBDT monotonic 
LightGBM* 

LASSO 
regression 

ridge 
regression 

SVM 

MSE 12.470 12.779 15.625 13.612 13.322 12.747 15.089 15.765 13.421 

Rank 1 3 8 6 4 2 7 9 5 
MAE 2.372 2.422 2.672 2.459 2.461 2.475 2.806 2.909 2.411 

Rank 1 3 7 4 5 6 8 9 2 

Note*: monotonicity of the three features can be preserved. 

Table 3-7 shows that the prediction performance of monotonic XGBoost ranks 

first regarding both MSE and MAE among all the ML models considered. Regarding 

MSE, monotonic LightGBM ranks second, followed by normal XGBoost. Regarding 

MAE, SVM is slightly worse than monotonic XGBoost, followed by normal XGBoost. 

Ridge regression has the worst performance regarding both metrics. Especially, the 

monotonic XGBoost performs better than the normal XGBoost whose hyperparameter 

values are tuned by the same hyperparameter tuning method regarding both MSE and 

MAE, which is in line with the comment that if reasonable monotonic constraints on 

certain features are enforced, model prediction performance should be improved, 

meaning that the constrained models may generalize better (Sill, 1997; Duivesteijn and 

Feelders, 2008; Daniels and Velikova, 2010; Pei et al., 2016).  
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To conclude, a tree-based gradient boosting machine called XGBoost, where 

shipping domain knowledge regarding ship flag/RO/company performance for ship 

risk prediction in PSC inspection can be incorporated in a natural and rational way, is 

developed and validated in this section. The structure of XGBoost and detailed steps 

to develop an XGBoost model, especially how to incorporate monotonic constraints in 

the model are first introduced. The performance of the developed XGBoost model is 

then validated and compared with other popular ML models. It is shown that the 

XGBoost model considering domain knowledge has the best performance among all 

the ML models concerned. 

3.5 PSCO SCHEDULING PROBLEM 

The PSCO scheduling model aims to assign the available PSCOs to inspect the 

foreign visiting ships that need to be inspected as required (i.e., ships with no previous 

inspection records and ships out of/within the inspection time window). Human and 

time inspection resources, the predicted deficiency condition of the ships, and the 

berthing time of the ships at port should be considered in the model. As there are many 

foreign ships visiting a port for each day while the inspection resources are scarce, the 

PSCO scheduling model aims to decide the set of ships to be inspected and assign the 

selected ships to the PSCOs so as to maximize the inspection benefit, which is 

represented by the total number of deficiencies that can be identified.  

Denote the set of foreign ships that need to be inspected on one day as S  and 

one ship as s S . Denote the set of PSCOs on duty for this day as P  and one PSCO 

as p P . The work time for the PSCOs is stable for each day: they work from 8:00 to 

11:00 in the morning, and 14:00 to 17:00 in the afternoon. They spend one hour for 

lunch break during 11:00 to 14:00, and the other two hours for working. For example, 

if PSCO p  has lunch break during 12:00 to 13:00, his/her work time should be from 

8:00 to 12:00 and from 13:00 to 17:00. A typical PSC inspection takes about 2 hours, 

and thus we assume the duration of a PSC inspection to be two hours for all ships. For 

ship s S , its deficiency number sd  is predicted by the monotonic XGBoost model 

which should be treated as a parameter. Each ship berths at the port for a period in 

each day, and the available time for ship s  during 8:00 to 17:00 (i.e., the daily work 

time for PSCOs) for PSC inspection is reported to the port state in advance. We divide 

the work hours from 8:00 to 17:00 for PSCOs into 18 =  time units with each time 
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unit as 0.5 hour, indexed by  . The relationship between the time periods and the time 

units is illustrated in Table 3-8. 

Table 3-8. Relationship between time periods and units 

Time period Time unit Time period Time unit Time period Time unit 

8:00 to 8:30 1 11:00 to 11:30 7a 14:00 to 14:30 13 

8:30 to 9:00 2 11:30 to 12:00 8 14:30 to 15:00 14 

9:00 to 9:30 3 12:00 to 12:30 9b 15:00 to 15:30 15 

9:30 to 10:00 4 12:30 to 13:00 10 15:30 to 16:00 16 

10:00 to 10:30 5 13:00 to 13:30 11c 16:00 to 16:30 17 

10:30 to 11:00 6 13:30 to 14:00 12 16:30 to 17:00 18 

a: The latest time unit to start inspection before lunch break. 

b: The earliest time unit to start inspection after lunch break. 

c: The latest time unit to start lunch break. 

Based on the ship berthing information reported in advance, we further introduce 

a parameter se  which is set to 1 if ship s  stays at the port in the whole period of time 

unit  . For example, if ship s  stays at the port from 01:00 to 12:00, we should set 

1se = , 1,2,...,8 =  and 0se = , 9,10,...,18 = . We assume that the inspection starting time of 

a ship and the lunch break starting time of a PSCO are at the beginning of one time 

unit. The PSCO scheduling problem aims to select the ships for inspection, to decide 

the inspection starting time of the selected ships, to assign the selected ships to the 

PSCOs, and to decide the lunch break starting time of the PSCOs to maximize the 

inspection benefits. The notation used in the PSCO scheduling problem is listed in 

Table 3-9. 

Table 3-9. Notation used in the problem 

Sets 

S  The set of foreign ships that need to be inspected for one day. 

P   The set of PSCOs on duty for that day. 

  The set of inspection templates. An inspection template is a set of ships which is feasible to 

be inspected by one PSCO while guaranteeing his/her lunch break within the daily work 

time. 

  The set of un-dominated inspection templates. 

Indices 

s   The index for a ship in S . 

p  The index for a PSCO in P . 

  The index for a time unit. 

  The index of an inspection template in  . 
Parameters 

   The total number of time units for a working day. 

s
d  The predicted deficiency number of ship s  using the XGBoost model. 

D   The number of deficiencies that can be detected if inspection template   is adopted. 

se  Binary parameter indicating whether ship s  is available for inspection in time unit  . 

s



  Binary parameter indicating whether ship s  is contained in inspection template  .  

' '' | | | |
[ ]

s s S S
B b


=  Binary matrix indicating the relationship between each of the two ships that need to be 

inspected. 
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3.5.1 PSCO scheduling model M1 

To formulate the PSCO scheduling problem, we define two types of main binary 

decision variables: spx  , which is set to 1 if ship s  is inspected by PSCO p  in time 

unit   and 0, otherwise; and pr , which is set to 1 if PSCO p  has lunch break in time 

unit   and 0, otherwise. Besides, we also introduce three types of auxiliary binary 

decision variables: spy , which is set to 1 if ship s  is inspected by PSCO p  and 0, 

otherwise; sp

 , which is set to 1 if ship s  starts to be inspected by PSCO p  from 

time unit   and 0, otherwise; and p

 , which is set to 1 if PSCO p  starts to have lunch 

break from time unit   and 0, otherwise. To maximize the inspection benefit by 

maximizing the estimated total number of deficiencies that can be detected, an integer 

linear optimization model M1 is proposed as follows. 

[M1] max s sp

s S p P

d y
 

   (3.17) 

s.t. 

 1,sp

p P

y s S


     (3.18) 

 , , , 1,...,s

spx e s S p P T       =   (3.19) 

 1 , , , 1,...,sp px r s S p P T

  −     =   (3.20) 

 1, , 1,...,sp

s S

x p P T 


   =   (3.21) 

 
1

4 , ,
T

sp spx y s S p P

 =

=       (3.22) 

 
3

'

'

4 , , ,1 15sp spx s S p P






 

 
+

=

         (3.23) 

 
1

, ,
T

sp spy s S p P




=

=       (3.24) 

 0, , ,16 18sp s S p P =         (3.25) 

 
12

7

2,pr p P

 =

=     (3.26) 

0, , [1,6] [13,18]pr p P =       (3.27) 

 
1

'

'

2 , , 7 11p pr p P


 

 

 
+

=

       (3.28) 

 
1

1,
T

p p P




=

=     (3.29) 
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 0, , [1,6] [12,18]p p P =       (3.30) 

 {0,1}, , , 1,...,spx s S p P T      =   (3.31) 

 {0,1}, ,spy s S p P       (3.32) 

 {0,1}, , , 1,...,sp s S p P T      =   (3.33) 

 {0,1}, , 1,...,pr p P T    =   (3.34) 

 {0,1}, , 1,..., .p p P T    =   (3.35) 

Objective function (3.17) maximizes the inspection benefits by maximizing the 

estimated total number of deficiencies that can be detected. Constraints (3.18) ensure 

that each ship can only be inspected by at most one PSCO. Constraints (3.19) and 

(3.20) guarantee that a ship can only be inspected when it is at port and when the 

corresponding PSCO does not have lunch break. Constraints (3.21) ensure that a 

PSCO can only inspect one ship in one time unit. Constrains (3.22) to (3.25) guarantee 

that if a ship is inspected, it should be inspected during 4 consecutive time units, and 

the start inspection time unit is between 1 and 15. Constraints (3.26) to (3.30) 

guarantee that each PSCO can have a one-hour consecutive lunch break between time 

units 7 and 12. Constraint (3.31) to (3.35) ensure the domain of the decision variables. 

3.5.2 PSCO scheduling model M2 

As the PSCOs are indifferent from each other, there will be an exponential 

number of optimal solutions to mathematical model M1, which will reduce the 

efficiency to solve M1. As the total work time of a PSCO for one day is 8 hours and 

an inspection would take 2 hours, a PSCO can inspect 0, 1, 2, 3, or 4 ships for one day. 

Therefore, the PSCO scheduling problem can be reformulated as identifying and 

assigning the sets of ships that can be inspected by one PSCO to the available PSCOs. 

Define L  as the number of ships inspected by one PSCO, 0,1,2,3,4L = . Given the 

value for L , the total number of combinations of L  ships from the total S  ships is 

| |

L

SC , | |

| | | | !

!(| | )!

L

S

S S
C

L L S L

 
= = 

− 
. Given a combination of L  ships, denoted by set 'S , 

'S S , 'S L= . we examine whether it is feasible to inspect all the ships in 'S  by one 

PSCO. If it is feasible, then we call set  an inspection template and our aim is to 

choose  inspection templates (each template is assigned to one PSCO) that 

maximize the total number of deficiencies that can be detected while ensuring a ship 

is included in at most one chosen template (i.e., a ship is inspected at most once). Here 

'S

P
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the concept of “template” is similar with the concept of berth template (Zhen, 2015) 

and yard template (Zhen 2016), which have been widely used in some pioneering work 

such as Zhen et al. (2011) in the field of port and shipping management. 

To examine whether it is feasible to inspect all the ships in 'S  by one PSCO, 

'S L= , we note that a PSCO has to carry out 1L +  activities to inspect all the ships in 

'S  between time unit 1 =  (8:00) and 18 =  (17:00), that is, inspecting each of the L  

ships and having lunch break. We define   as an activity, and each activity has a 

duration t , an earliest start time  , and a latest completion time  . If an activity 

  is inspecting a ship, denoted by ship s , then 4t = ,   is the start time of the ship’s 

berthing between 1 =  and 18 =  of the day, i.e., min{ 1,...,18 | 1}se  = = = ,   is the 

ship’s departure time if it departs before 18 =  and otherwise 18 = , i.e., 

max{ 1,...,18 | 1}se  = = = ; if an activity   is having lunch break, then 2t = , 7 = , 

12 = . There are a total of ( 1)!L +  different sequences for the PSCO to conduct the 

activities (note that some, or even all of the sequences may be infeasible). For a 

particular sequence, we denote the activities carried out by 1 2 1... L   +→ → → , that is, 

  is the th  activity, t ,  ,   are the duration, earliest start time, and latest 

completion time of activity  , respectively. To check whether the 1L +  activities can 

be carried out in the above sequence, we define  as decision variable representing 

the start time of carrying out activity  , then the 1L +  activities can be carried out in 

the above sequence by one PSCO if and only if there is a solution , 1,..., 1L= + , 

that satisfies the following constraints: 

 1, ,..., 1L = +   (3.36) 

 1 , 1,..., 1Lt + −  = +   (3.37) 

 1 1,...,Lt+  + = .  (3.38) 

Note that if an activity   with duration t  starts at the beginning of time unit , its 

completion time should be at the end of time unit 1t+ − . 

Proposition 1: For an activity sequence, whether constraints (3.36)–(3.38) have a 

feasible solution can be checked below: for activity 1 , let its start time 
1

*

1 = ; for 

activity l , 2,..., 1l L= + , let its start time 
1

* *

1max{ , }t −−= + , 2,..., 1L= + ; if 
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* 1t  − + , 1,..., 1l L= + , then the activity sequence is feasible; otherwise it is 

infeasible. 

Proof: 

The “if” part of the proposition is straightforward because it is easy to check that 

*( , 1,..., 1)L= +  is indeed feasible to constraints (3.36)–(3.38). To prove the “only if” 

part, suppose that constraints (3.36)–(3.38) have a feasible solution 

# *( , 1,..., 1) ( , 1,..., 1)L L= +  = + . Denote by ˆ  the index of the first different elements 

of vectors #( , 1,..., 1)L= +  and *( , 1,..., 1)L= + , that is # *= , ˆ1,..., 1= −  and 

# *

ˆ ˆ . If ˆ 1= , we define a new vector &( , 1,..., 1)L= +  such that 
1

&

1 =  and 

& #= , 2,..., 1L= + . If ˆ 2,..., 1L= + , we define a new vector &( , 1,..., 1)L= +  such 

that & #= , ˆ1,..., 1= − , 
ˆ ˆ1

& &

ˆ ˆ 1
max{ , }t 

−−
= +  and & #= , ˆ 1,..., 1L= + + . In both 

cases, it is easy to check that &( , 1,..., 1)L= +  is feasible to constraints (3.36)–(3.38). 

We can now set * &( , 1,..., 1) ( , 1,..., 1)L L= +  = +  and repeat the above procedure. It 

can be seen that by repeating the above procedure at most 1L +  times, we will generate 

a feasible solution &( , 1,..., 1)L= +  that is identical to *( , 1,..., 1)L= + . In other words, 

constraints (3.36)–(3.38) have a feasible solution only if *( , 1,..., 1)L= +  is feasible. 

This concludes the proof of the proposition. □ 

We use the following example to illustrate the steps to decide whether an activity 

sequence 1 2 1... L   +→ → →  is feasible. 

Example 1. Given 3L =  and 1 2 3' { , , }S s s s=  for activity sequence 1 2 3 4   → → → . 

Particularly, activities 1 , 2 , and 4  are ship inspections for 1s , 2s , and 3s  

respectively and activity 3  is lunch break. The berthing periods of 1s , 2s , and 3s  are 

during 8:00 to 13:00, 9:00 to 18:30, and 13:00 to 17:30, respectively. Therefore, we 

have 
1

1 =  and 
1

10 =  for activity 1 , 
2

3 =  and 
2

18 =  for activity 2 ,  

3
7 =  and 

3
12 =  for activity 3 , and 

4
11 =  and 

4
18 =  for activity 4 . The 

earliest start time of each activity should be 
1

*

1 1= = , 
2

* *

2 1max{ 4, } 5= + = , 

3

* *

3 2max{ 4, } 9= + = , and 
4

* *

4 3max{ 2, } 11= + = . The earliest start time of each 

activity satisfies 
1

*

1 4 1 7 − + = , 
2

*

2 4 1 15 − + = , 
3

*

3 2 1 11 − + = , and 
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4

*

4 4 1 15 − + = , and thus the activity sequence is feasible and 'S  is an inspection 

template.□ 

Proposition 2: Given a combination of 1,2,3L =  ships denoted by S , if it is not an 

inspection template, any set of 1L +  ships (denoted by Ŝ ) containing all ships in S , 

i.e. ˆS S  cannot be an inspection template.  

Proposition 3: Given an inspection template containing 2,3, 4L =  ships denoted by S , 

all subsets of S  containing ' 1L L= −  ships are inspection templates.  

Proposition 2 and Proposition 3 are the basis of inspection template 

construction. They are intuitive and thus we omit their proof. Based on the two 

propositions, the following two properties of inspection templates can be derived to 

reduce the trials and the total number of generated inspection templates.  

Property 1: If there is a combination with 1L =  ship associated with berthing period 

smaller than 4 time units or from time unit 8 to time unit 11, or with zero predicted 

deficiency number, we can simply ignore it as it cannot be inspected during its berthing 

period or inspecting the ship will not bring benefits. 

Property 2: Candidate 2L   inspection templates can be formulated by combining all  

pairs of 1L −  inspection templates with the first 2L −  items the same. 
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Procedure 1: generation of the set of inspection templates   

Input: the set of foreign ships that need to be inspected S , duration of a PSC inspection, 

ship berthing information se , s S , 1,..., =  , the duration and period of PSCO lunch 

break, the total number of time units  . 

Output: the set of all feasible inspection templates   , binary parameter 
s



  , Ss  , 

   indicating whether ship s  is contained in inspection template  . 

Initialize  = , 
s



 , Ss ,   . 

for 0,1,2,3,4L =  do 

if 2L  : 

Formulate all combinations containing L   ships that can be inspected based on 

Property 1 from S  denoted by . 

else: 

Formulate the combinations containing L  ships as denoted by  such that each 

combination contains two items of 1L −  ships from   and they have the same 

2L −  ship based on Property 2. 

end if 

for each combination Q̂  do 

Initialize feasibility = False. 

Formulate set Q   that contains all permutations (i.e. activity sequences) of the 

activities of inspecting the ships in Q̂  and having lunch break. 

for each activity sequence q Q  do 

Test the feasibility of q  using Proposition 1.   

if q  is feasible: 

Add Q̂  to   by updating Q̂ = . 

Update parameter 1
s



 = , ˆs Q ,   .  

Update feasibility = True. 

break 

else: 

continue 

end if 

end for 

if feasibility = True: 

break 

else: 

continue 

end for 

end for 

Return   and 
s



 . 
 

Property 1 and Property 2 can highly improve the efficiency of inspection 

templates generation. The overall procedure to generate the set of all inspection 

templates (denoted by  ) is shown in Procedure 1. 

After obtaining   and 
s



 , Ss ,    by executing Procedure 1, the estimated 

number of deficiencies that can be detected in inspection template   is 
s s

s S

D d 


= , 

 . To assign the inspection templates to the PSCOs, we introduce binary decision 
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variable z  which is set to 1 if inspection template   is adopted and 0, otherwise. 

The PSCO scheduling problem aiming to maximize the total number of detected 

deficiencies based on inspection templates can be formulated by mathematical model 

M2. 

[M2]               max D z 


                         (3.39) 

s.t. 

 z P


   (3.40) 

 1,s z s S







     (3.41) 

 {0,1},z    .  (3.42) 

Objective function (3.39) maximizes the estimated total number of deficiencies 

that can be detected. Constraint (3.40) ensures that the total number of adopted 

inspection templates should be no more than the total number of PSCOs. Constraints 

(3.41) guarantee that each ship can only be inspected at most once. 

3.5.3 PSCO scheduling model M3 

Model M2 considers all the inspection templates in   indifferently, which is 

time-consuming when | |  is large. Meanwhile, it is noted that if we reformulate 

constraints (3.41) which require that a ship can only be inspected at most once, we 

can only consider the inspection templates that are not contained in any other 

inspection template(s), which we denote by un-dominated inspection templates, as 

inspecting them can always detect more deficiencies than inspecting the inspection 

templates contained in them according to Property 1. In this way, the number of 

inspection templates considered in the PSCO scheduling optimization model can be 

reduced largely. However, one problem is that the number of deficiencies of one ship 

might be calculated several times in the objective function of M2 as it can be contained 

in several inspection templates selected by a solution. To overcome this issue, we 

further introduce binary decision variables s , s S  which is set to 1 if ship s  is 

inspected and 0, otherwise. In addition, we form set   which contains all un-

dominated inspection templates using Procedure 1 by adding only the inspection 

templates with 1,2,3L =  that cannot be further combined with others to generate larger 

valid inspection templates and all the inspection templates with 4L = . Mathematical 

model M3 is developed based on inspection template set   and decision variables s , 
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s S  and z ,    to reduce the number of inspection templates considered in the 

master problem as follows. 

[M3] 

 max s s

s S

d 


   (3.43) 

s.t. 

 ,s s z s S





 


    (3.44) 

 z P



  (3.45) 

 {0,1},z      (3.46) 

 {0,1},s s S    .  (3.47) 

Like Eq. (3.39), objective function (3.43) also maximizes the total estimated 

number of deficiencies that can be detected. Constraints (3.44) indicate the 

relationship between s  and z . Constraints (3.45) require the maximum number of 

un-dominated inspection templates that can be selected. Constraints (3.46) and (3.47) 

guarantee the domain of the decision variables. It should be noted that although M3 

does not require that each ship can only be inspected at most once, the objective 

function only calculates its estimated deficiency number once it is inspected and thus 

model M3 is equivalent to model M2.  

To further improve the efficiency of model M3, we propose the following 

proposition: 

Proposition 4: For two ships 1s  and 2s , if 
1 2s sd d  and 

2 2 1 1{ | 1, } { | 1, }
s s s s

e e e e    =    =   , i.e. ship 1s  has larger estimated number of 

deficiencies than ship 2s  and the set of berthing period of ship 2s  is a sub-set of that 

of ship 1s  (we denote the relationship between 1s  and 2s  by “ 1s  dominates 2s ”), we 

must have 
1 2s s   in an optimal solution. 

Proof: 

Consider two ships 1s  and 2s  with 
1 2s sd d  and 

2 2 1 1{ | 1, } { | 1, }
s s s s

e e e e    =    =   , i.e. 1s  dominates 2s . If an optimal solution 

chooses a set of ships 'S  for inspection, there can be several situations regarding ships 

1s  and 2s : 
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Situation 1: if 1 's S  and 2 's S , 
1 2s s   is satisfied. 

Situation 2: if 1 's S  and 2 's S , 
1 2s s   is satisfied. 

Situation 3: if 1 's S  and 2 's S , 
1 2s s   is satisfied. 

Situation 4: if 1 's S  and 2 's S , we can expect that another feasible set of ships 'S  

formulated by substituting ship 2s  by 1s  in 'S  can increase the value of the objective 

function by 
1 2s sd d−  and thus 'S  should not be an optimal solution, which is 

contradictory to the given conditions. Therefore, Situation 4 cannot be a case in any 

optimal solution, and 
1 2s s   can always be satisfied in the optimal solution(s).□ 

To incorporate Proposition 4 into model M3, we introduce a binary matrix 

' '' | | | |[ ]s s S SB b =  which can be derived directly from ship visiting information and 

deficiency condition to indicate whether ship 's S  dominates ''s S . If 's  

dominates ''s , we set ' '' 1s sb = ; otherwise, ' '' 0s sb = . Especially, we require ' '' 0s sb =  if 

' ''s s= . The following strengthened constraints based on B  can be added to M3 to 

improve its efficiency: 

 
' '' ' '' 1, ' , ''s s s sb s S s S −  −   .  (3.48) 

3.6 COMPUTATIONAL EXPERIMENTS 

We take Hong Kong port as an example to validate the proposed PSCO 

scheduling models M1, M2, and M3. Particularly, we first compare the computing 

performance of the three models in section 3.6.1. Then, comparisons between the 

current and proposed PSCO scheduling models are conducted in section 3.6.2. In 

section 3.6.3, results of extensive sensitivity analysis are presented to further validate 

the proposed models. 

3.6.1 Comparison of computing performance of M1, M2, and M3 

To compare the computing performance of M1, M2, and M3 (including 

generation of all inspection templates, un-dominated inspection templates, and binary 

matrix 
' '' | | | |[ ]s s S SB b = ), we set the number of PSCOs to 4, 6, 8 and 10, and the number 

of ships that need to be inspected to 30, 40, 50, and 60 and combine them one by one 

in several scenarios. Ships for inspection are selected from test set i and the number of 

deficiencies of them is predicted by the XGBoost model developed in Section 3.4. We 
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assume that a ship can arrive at a port at any time during a day, and their staying period 

ranges from 0 to 18 consecutive time units from 8:00 to 17:00. As all the PSCO 

scheduling models M1, M2, and M3 are integer linear programming (ILP) models, 

they are solved by the off-the-shelf optimization solver CPLEX. In addition, we 

compare the performance of PSCO scheduling decisions generated by M1, M2, and 

M3 with the current greedy PSCO scheduling strategy applied at the Hong Kong port, 

whose detailed description is presented in Appendix A. We call the current scheduling 

strategy “random scheduling case”, and it aims to assign as many ships as possible to 

each available PSCO for inspection in a greedy manner. Besides, we present the 

performance of the proposed PSCO scheduling model utilizing the predicted 

deficiency number from a perfect-foresight prediction which knows the actual 

deficiency number of all ships in advance (denoted by “perfect-forecast policy”). The 

identified deficiency number based on the perfect-foresight policy is an upper bound 

in theory which cannot be achieved. 

All experiments are conducted on a laptop (Intel Core i7, 3.40 GHz, 16GB RAM) 

using programming language Python. The inspection templates in M2 are generated 

using Procedure 1, and the un-dominated inspection templates in M3 are generated 

based on Procedure 1. Table 3-10 summarizes the computing performance of the three 

models, including the average computation time (in CPU seconds), the standard 

deviation of computation time, the number of inspection templates generated, the 

number of un-dominated inspection templates generated, the reduction in percentage 

of the number of un-dominated inspection templates compared to that of all the 

inspection templates, the average improvement of M1/M2/M3 over random 

scheduling case, and the average gap between M1/M2/M3 and the perfect-forecast 

policy in all cases of each scenario. 
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Table 3-10. Comparison of computing performance of M1, M2, and M3 

No. of 

PSCOs 

Scenarios Model Number of ships 

30 40 50 60 

4 Average total computation time* M1 5.75  7.80  10.18  13.35  

M2 0.48  2.30  9.11  25.47  

M3 0.46  2.09  7.95  23.89  

Standard deviation of computation time* M1 4.21  2.69  7.98  7.51  

M2 0.18  0.74  3.52  8.65  

M3 0.16  0.64  2.87  8.01  

The number of inspection templates in    
M2 1883.0  5465.8  13834.8  26972.7  

The number of un-dominated inspection 

templates in    

M3 1189.6  3871.7  10456.4  21226.0  

( ) / 100% −      
\ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over 

random scheduling case 

\ 22.10% 34.57% 35.56% 43.72% 

Average gap between M1/M2/M3 and the 

perfect-forecast policy 

\ 9.64% 11.24% 16.28% 17.52% 

6 Average total computation time M1 19.16  30.85  36.26  47.98  

M2 0.47  2.32  8.58  25.06  

M3 0.46  2.07  7.83  23.25  

Standard deviation of computation time M1 10.74  13.49  23.90  28.24  

M2 0.18  0.70  3.37  8.13  

M3 0.15  0.63  3.16  6.61  

The number of inspection templates in    
M2 1883.0  5465.8  13834.8  26972.7  

The number of un-dominated inspection 

templates in    

M3 1189.6  3871.7  10456.4  21226.0  

( ) / 100% −      
\ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over 

random scheduling case 

\ 13.93% 20.17% 24.57% 29.81% 

Average gap between M1/M2/M3 and the 

perfect-forecast policy 

\ 5.88% 7.83% 10.90% 12.95% 

8 Average total computation time M1 31.97  64.18  102.95  195.14  

M2 0.52   2.21  8.22  24.78  

M3 0.49  2.00  7.66  24.04  

Standard deviation of computation time M1 57.54  48.71  70.15  257.11  

M2 0.23  0.67  3.08  7.39  

M3 0.23  0.62  2.83  8.03  

The number of inspection templates in    
M2 1883.0  5465.8  13834.8  26972.7  

The number of un-dominated inspection 

templates in    

M3 1189.6  3871.7  10456.4  21226.0  

( ) / 100% −      
\ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over 

random scheduling case 

\ 6.04% 13.74% 18.32% 24.73% 

Average gap between M1/M2/M3 and the 

perfect-forecast policy 

\ 4.19% 5.94% 7.52% 8.97% 

10 Average total computation time M1 89.53  614.45  295.13  377.39  

M2 0.49  2.24  8.53  25.22  

M3 0.43  2.05  7.46  22.36  

Standard deviation of computation time M1 195.82  1492.04  340.93  366.52  

M2 0.19  0.67  3.39  7.80  

M3 0.17  0.64  2.73  6.44  

The number of inspection templates in    
M2 1883.0  5465.8  13834.8  26972.7  

The number of un-dominated inspection 

templates in    

M3 1189.6  3871.7  10456.4  21226.0  

( ) / 100% −      
\ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over 

random scheduling case 

\ 1.21% 8.07% 13.90% 18.55% 

Average gap between M1/M2/M3 and the 
perfect-forecast policy 

\ 1.40% 3.94% 5.74% 6.47% 

Note*: the computation time of M2 includes the time to generate all inspection templates, and the computation time 

of M3 includes the time to generate matrix B  and all un-dominated inspection templates. 
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For the average computation time, it is indicated in Table 3-10 that in almost all 

the cases, much less time is required to solve M2 and M3 compared to the time used 

to solve M1, except when the number of PSCOs is 4 and the number of ships is 60. 

The difference of the computation time between M1 and M2/M3 becomes larger as 

the number of PSCOs increases. Meanwhile, the difference of the computation time 

between M2 and M3 shows an increasing trend when there are more visiting ships. To 

be more specific, when the number of PSCOs is fixed and the number of ships 

increases, i.e. from left to right in each row of the table, the computation time of all 

the three models shows an increasing trend as expected. When the number of ships is 

fixed and the number of PSCOs increases, i.e. from top to bottom in each column of 

the table, the model computation time increases faster and faster in M1. Meanwhile, 

there are only some minor fluctuations in the model computation time of M2 and M3. 

This is because the number of PSCOs has no influence on the generation of inspection 

templates and un-dominated inspection templates, which occupies most of the 

computation time of M2 and M3, respectively.  

The standard deviation of model computation time of M1 is much larger than 

that of M2 and M3 in most of the cases listed in Table 3-10, and M2 is a little bit larger 

than M3 in most cases. Particularly, in M1, when the number of ships is fixed and the 

number of PSCOs increases, the standard deviation of computation time shows a rapid 

upward trend. There is also a general upward trend in the standard deviation of 

computation time when the number of ships increases while the number of PSCOs 

remains unchanged in M1. Meanwhile, in M2 and M3 with similar pattern, the 

standard deviation of computation time increases dramatically when the number of 

ships increases given a certain number of PSCOs. When the number of PSCOs 

increases with a fixed number of ships, there are many fluctuations in the standard 

deviation of computation time of both M2 and M3.  

When the number of visiting foreign ships increases from 30 to 60, the numbers 

of inspection templates and un-dominated inspection templates grow, while the 

difference between them decreases. On average, the number of un-dominated 

inspection templates considered in M3 is about 72% of the inspection templates 

considered in M2. In addition, M1/M2/M3 perform better than the currently 

implemented random PSCO scheduling strategy at the ports in all cases. When the 

number of PSCOs increases given a certain number of visiting ships, the advantage of 
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M1/M2/M3 over random scheduling and the advantage of perfect-forecast policy over 

M1/M2/M3 are reduce. When there are more visiting ships while the number of PSCOs 

is fixed, both the gap between M1/M2/M3 and random scheduling and the gap between 

perfect-forecast policy and M1/M2/M3 increase. 

To summarize, the average model computation time and its standard deviation 

of M2 are much smaller than those of M1 in most cases, and the average total model 

computation time and its standard deviation of M3 are smaller than those of M2 in 

most cases as shown in Table 3-10. Besides, model computation time of M2 and M3 

is less sensitive to the increase of the number of PSCOs given a fixed number of ships, 

as the process to generate inspection templates and un-dominated inspection templates 

is not influenced by the number of PSCOs. In all scenarios, the proposed M1/M2/M3 

perform better than the current random scheduling strategy, and the gap between 

M1/M2/M3 and the perfect-forecast policy decreases when there are more PSCOs or 

fewer visiting ships. We can therefore conclude that M3 is the most efficient, stable, 

and flexible model among M1, M2, and M3. Especially, M3 is more suitable to be 

applied to the ports where there are a larger number of available PSCOs or more 

visiting ships. 

3.6.2 Comparison of current and the proposed PSCO scheduling strategies 

We compare the performance of current PSCO scheduling strategy applied at 

port and the proposed models in this section. For each day, we randomly select 20 

ships from test set i as the visiting ships that need to be inspected at the Hong Kong 

port. We further assume that the number of PSCOs on duty for that day is 3, and their 

daily work time is fixed as mentioned in section 3.5. As M1, M2 and M3 are equivalent 

and section 3.6.1 shows that M3 is more efficient than M1 and M2, the following 

experiments are only conducted on M3. We randomly generate 30 groups of ships 

from test set i in the experiment. The performance of random scheduling case (average 

of 100 runs), M3, and the perfect-forecast policy solved by M3 and their comparisons 

are presented in Table 3-11. 
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Table 3-11. Performance and comparison of PSCO scheduling models 

Group Actual identified 

deficiency number 

of random 
scheduling case 

Actual identified 

deficiency number 

of M3 

Identified deficiency 

number under perfect-

forecast policy as 
solved by M3 

Improvement of M3 

over random 

scheduling case 

Gap between 

M3 and the 

perfect-forecast 
policy 

1 16  24 30 46.6% 20.0% 

2 59  68 71 15.4% 4.2% 
3 36  37 43 4.0% 14.0% 

4 46  74 78 61.8% 5.1% 

5 56  57 65 2.3% 12.3% 
6 53  58 62 10.4% 6.5% 

7 27  41 41 51.5% 0.0% 

8 65  73 78 12.6% 6.4% 
9 55  71 72 29.6% 1.4% 

10 37  41 51 9.9% 19.6% 

11 43  57 65 33.8% 12.3% 
12 17  25 31 46.6% 19.4% 

13 59  75 79 27.0% 5.1% 

14 42  47 63 12.5% 25.4% 
15 42  54 56 29.6% 3.6% 

16 60  69 75 15.2% 8.0% 

17 59  66 66 11.6% 0.0% 
18 41  48 55 15.9% 12.7% 

19 39  55 59 39.8% 6.8% 

20 55  66 67 20.8% 1.5% 
21 61  64 68 5.4% 5.9% 

22 46  49 54 7.2% 9.3% 

23 34  48 49 42.5% 2.0% 
24 33  45 46 36.2% 2.2% 

25 32  36 37 11.6% 2.7% 

26 63  77 78 22.1% 1.3% 
27 29  39 47 35.4% 17.0% 

28 47  55 58 18.3% 5.2% 

29 51  56 65 9.5% 13.8% 
30 50  61 72 22.2% 15.3% 

Average 45.0067  54.5333  59.3667  21.2% 8.1% 

Table 3-11 shows that the average improvement of M3 with the prediction of 

XGBoost as the input over the random PSCO scheduling case is over 20%. This 

implies that the combination of XGBoost model for ship deficiency number prediction 

and the mathematical models M1/M2/M3 for PSCO scheduling can identify 20% more 

deficiencies than the current PSCO scheduling scheme with the same inspection 

resources. Besides, the gap between the proposed model and the perfect-forecast 

policy is about 8%, which indicates that the proposed combined model can identify 

about 92% of all existing deficiencies. 

3.6.3 Sensitivity analysis 

In this section, we analyze how the number of ships to be inspected, the number 

of available PSCOs for conducting inspection, and ship berthing duration and period 

will influence the performance of M3 (and M1, M2). Four groups of sensitivity 

analysis (SA) are performed: SA1: different numbers of ships for inspection; SA2: 

different numbers of available PSCOs; SA3: different berthing durations of ships; SA4: 

different berthing periods of ships. In each group of SA, the number of deficiencies 

identified is calculated based on 10 runs. 
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SA1: different numbers of ships for inspection 

First, we analyze how the number of ships that need to be inspected would 

influence the performance of M3. We set the number of ships to 15, 20, 25, 30, 35, 40, 

45, and 50, respectively while fixing the number of PSCOs to 3 in SA1G1 to SA1G8. 

The performance of random scheduling case (based on 100 runs), M3, and the perfect-

foresight policy and their comparison are presented in Table 3-12. 

Table 3-12. Performance of the groups in SA1 

Group SA1G1 SA1G2 SA1G3 SA1G4 SA1G5 SA1G6 SA1G7 SA1G8 

Number of ships 15 20 25 30 35 40 45 50 

Random scheduling case 34.1  44.4  48.3  52.9  54.5  55.7  55.9  57.4  
M3 41.2 54.4 58.0 66.8 71.5 78.8 81.2 84.0 

Perfect-foresight policy 44.3 59.1 66.1 76.6 82.9 91.4 97.7 104.8 

Superiority of M3 over 
random scheduling case 

20.9% 22.5% 20.0% 26.2% 31.2% 41.4% 45.3% 46.3% 

Gap between M3 and the 

perfect-foresight policy  

7.5% 8.6% 14.0% 14.7% 15.9% 16.0% 20.3% 24.8% 

Table 3-12 shows that when the number of ships increases from 15 to 50 while 

the number of PSCOs remains unchanged, the numbers of deficiencies identified in 

random scheduling case, M3, and the perfect-foresight policy increase. This can be 

explained as follows. In random scheduling case which aims to assign as many ships 

to each PSCO as possible, a larger number of ships can be inspected by one PSCO as 

the total number of visiting ships increases. For M3 and the perfect-foresight policy, 

although the inspection resources are fixed, more ships with larger number of 

deficiencies can be selected for inspection when the total number of visiting ships 

grows. Meanwhile, Table 3-12 also indicates that both the superiority of M3 over 

random scheduling case and the gap between M3 and the perfect-foresight policy show 

an increasing trend. This is because as the perfect-foresight policy can capture the ships 

with more deficiencies more efficiently than M3, the gap between them became larger 

as the number of visiting ships increases. This explanation can also be applied for the 

changes in the gap between M3 and random scheduling case.  

SA2: different numbers of available PSCOs 

Second, we analyze how the number of available PSCOs to carry out PSC 

inspection would influence the performance of M3. We set the number of ships for 

inspection to 30, and the number of PSCOs to 2, 3, 4, and 5 in SA2G1 to SA2G4, 

respectively. The performance of random scheduling case (based on 100 runs), M3, 

and the perfect-foresight policy and their comparison are presented in Table 3-13. 
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Table 3-13. Performance of the groups in SA2 

Group SA2G1 SA2G2 SA2G3 SA2G4 

Number of PSCOs 2 3 4 5 

Random scheduling case 37.4  53.1  63.9  70.5  
M3 51.8 66.8 77.8 86.4 

Perfect-foresight policy 61.6 76.6 86.1 92.9 

Superiority of M3 over random 
scheduling case 

38.5% 25.8% 21.8% 22.6% 

Gap between M3 and the perfect-

foresight policy  

18.9% 14.7% 10.7% 7.5% 

Table 3-13 indicates that when the number of ships that need to be inspected 

remains to be 30 while the number of PSCOs increases from 2 to 5, the total number 

of deficiencies that can be detected grows as expected. In addition, both the superiority 

of M3 over random scheduling case and the gap between M3 and the perfect-foresight 

policy show a decreasing trend. Particularly, such decreasing trend is more obvious in 

the gap between M3 and the perfect-foresight policy. This can be explained by the fact 

that as the number of available PSCOs increases, more ships can be assigned for 

inspection and thus to reduce the superiority of models with better performance as 

more ships with large number of deficiencies can be captured. Especially, for M3 

which is based on the prediction given by XGBoost, more ships with larger real 

deficiency number can be captured for inspection although the XGBoost model is not 

perfect. As a consequence, the gap between M3 and the perfect-foresight policy gets 

closer more quickly than the superiority of M3 over random scheduling case as the 

number of inspected ships grows.  

SA3: different berthing durations of ships 

Third, we analyze model performance when the berthing duration of ships varies. 

We assume that the number of ships for inspection is 30 and the number of available 

PSCOs is 3. As only when a ship berths at a port for no less than two hours can the 

ship be inspected, we consider eight groups where the berthing duration of all ships is 

2, 3, …., 8, 9 hours respectively denoted by SA3G1 to SA3G8. The consecutive 

berthing time units are randomly generated for all ships in each group. The 

performance of random scheduling case (based on 100 runs), M3, and the perfect-

foresight policy and their comparison are presented in Table 3-14. 
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Table 3-14. Performance of the groups in SA3 

Group SA3G1 SA3G2 SA3G3 SA3G4 SA3G5 SA3G6 SA3G7 SA3G8 

Berthing duration of all 

ships 

2 hours  3 hours  4 hours  5 hours  6 hours  7 hours  8 hours  9 hours  

Random scheduling 

case 

38.3  42.8  48.4  50.7  52.2  45.9  48.8  51.3  

M3 58.9 62.6 66.4 72.4 74.4 72.0 74.2 75.0 
Perfect-foresight policy 71.8 82.9 89.3 94.5 96.0 90.7 95.1 95.0 

Superiority of M3 over 

random scheduling case 

53.6% 46.1% 37.2% 42.9% 42.4% 56.8% 52.0% 46.1% 

Gap between M3 and 

the perfect-foresight 

policy 

21.9% 32.4% 34.5% 30.5% 29.0% 26.0% 28.2% 26.7% 

Table 3-14 shows that as the berthing duration of all ships increases, the total 

number of deficiencies detected also shows an upward trend although there are 

fluctuations due to the randomness in ship conditions. Meanwhile, there is no obvious 

pattern in the change of the gap between random scheduling case and M3 and the gap 

between M3 and the perfect-foresight policy when ship berthing duration increases. 

The superiority of M3 over random scheduling case is maximized at 56.8% when the 

berthing duration of all ships is 7 hours. The gap between M3 and the perfect-foresight 

policy is maximized at 34.5% when the berthing duration of all ships is 4 hours. 

SA4: different berthing periods of ships 

Fourth, we analyze how ship berthing period (during the work time of PSCOs) 

can influence the model performance. We set the number of ships for inspection to be 

30 and the number of available PSCOs to be 3. We consider four groups of berthing 

periods as denoted by SA4G1 to SA4G4, respectively. In SA4G1, the berthing period 

of all ships is only in the morning (from 8:00 to 12:30). In SA4G2, the berthing period 

of all ships is only in the afternoon (from 12:30 to 17:00). In SA4G3, the berthing 

period of one-third of the ships is in the morning, in the afternoon, and both in the 

morning and in the afternoon, respectively. In SA4G4, the berthing period of half of 

the ships is in the morning and the other half is in the afternoon. The berthing duration 

is randomly generated for all ships. The performance and comparison of random 

scheduling case (based on 100 runs), M3, and the perfect-foresight policy are presented 

in Table 3-15. 
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Table 3-15. Performance of the groups in SA4 

Group SA4G1 SA4G2 SA4G3 SA4G4 

Distribution of berthing 

period 

All ships in 

the morning  

All ships in 

the afternoon 

1/3 ships in the morning, 

1/3 ships in the afternoon, 
and 1/3 ships in the 

morning and afternoon 

1/2 ships in the 

morning and 1/2 ships 
in the afternoon 

Random scheduling case 23.1  22.2  47.1  50.5  
M3 41.4 40.8 69.5 66.2 

Perfect-foresight policy 61.1 59.1 88.2 87.1 

Superiority of M3 over 
random scheduling case 

79.4% 83.5% 47.7% 31.0% 

Gap between M3 and the 

perfect-foresight policy 

47.6% 44.9% 26.9% 31.6% 

Table 3-15 shows that the number of deficiencies identified is smaller when there 

is more overlap in ship berthing period (i.e. in SA4G1 and SA4G2) than less overlap 

(i.e. in SA4G3 and SA4G4). Meanwhile, the average gaps between random scheduling 

case and M3 as well as between M3 and the perfect-foresight policy in SA4G1 and 

SA4G2 are much larger than those in SA4G3 and SA4G4. This is also because more 

ships can be inspected when their berthing period is more scattered, which would 

reduce the superiority of prediction models with better performance. 

3.7 CONCLUSION 

PSC inspection is a safeguard of maritime safety, the marine environment, and 

the rights of seafarers. To improve ship selection efficiency, this chapter first proposes 

an accurate XGBoost model to predict ship deficiency number. Particularly, domain 

knowledge regarding ship flag, RO, and company performance is considered in the 

XGBoost model, which improves its accuracy and fairness. Based on the predictions, 

an initial PSCO scheduling model is proposed to assign the PSCOs to inspect the 

predicted high-risk ships which also considers the number of available PSCOs and 

their work and rest time. To reduce problem size and improve model computation 

efficiency and flexibility, concepts of inspection template and un-dominated 

inspection template are further proposed and incorporated in the PSCO scheduling 

models.  

In numerical experiments, we use the real PSC inspection records at the Hong 

Kong port from January 2016 to December 2018 as the case dataset to construct and 

validate the proposed models. Numerical experiments show that the MSE and MAE 

of the XGBoost model is 12.5 and 2.4 in the test set, respectively, which are better than 

the other popular ML models compared in this study. Moreover, when ship flag 

performance gets worse from white to grey and from grey to black, 0.8 and 0.2 more 

deficiency will be detected on average, respectively. When RO performance gets 
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worse from high to medium, 0.3 more deficiency will be detected on average. When 

company performance gets worse from high to medium, from medium to low, and 

from low to very low, 0.5, 0.8, and 1.5 more deficiencies will be detected on average, 

respectively. When combining the predictions with PSCO scheduling models, it is 

shown that the superiority of the proposed PSCO scheduling models over the current 

inspection scheme regarding the number of deficiencies identified is more than 20%. 

The gap between the proposed model and the model under perfect-forecast policy is 

about 8% regarding the number of deficiencies identified. Meanwhile, computation 

efficiency and flexibility of the PSCO scheduling model with inspection templates are 

higher than the initial PSCO scheduling model. Problem size can be reduced and the 

computation efficiency can be further improved in the PSCO scheduling model which 

takes un-dominated inspection templates and the relationship between each of the two 

ships into consideration. Extensive sensitivity analysis shows that when changing the 

numbers of ships for inspection, the numbers of available PSCOs, the berthing 

durations of ships, and the berthing periods of ships, the performance of the proposed 

PSCO scheduling model is stable and it is always better than the current model used 

at ports.  

This chapter addresses an important practical problem in maritime industry. 

Theoretically, it proposes the first ship risk prediction model for PSC inspection 

considering domain knowledge. It also develops the first PSCO scheduling models 

based on the predictions to efficiently allocate scarce inspection resources for ship 

inspection. Moreover, the concepts of inspection template and un-dominated 

inspection template are proposed and incorporated in the PSCO scheduling model to 

improve computation efficiency and model flexibility. Practically, it helps port states 

to identify high-risk ships and assign the PSCOs more efficiently. Therefore, the main 

objectives of PSC to eliminate substandard shipping and safeguard the sea can be 

enhanced. 
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Chapter 4: A Semi-“smart predict then 

optimize” (semi-SPO) Method 

for Efficient Ship Inspection4 

This chapter improves ship inspection efficiency by proposing three two-step 

approaches that match inspection resources with ship conditions so as to identify the 

most deficiencies (non-compliances with regulations) of the ships. It contains three 

combined prediction and optimization approaches. The first approach predicts the 

number of deficiencies in each deficiency category for each ship and then develops an 

integer optimization model that assigns the inspectors to the ships to be inspected. The 

second approach predicts the number of deficiencies each inspector can identify for 

each ship and then applies an integer optimization model to assign the inspectors to 

the ships to be inspected. The third approach is a semi-“smart predict then optimize” 

(semi-SPO) method. It also predicts the number of deficiencies each inspector can 

identify for each ship and uses the same integer optimization model as the second 

approach, however, instead of minimizing the MSE as in the second approach, it 

adopts a loss function motivated by the structure of the optimization problem in the 

second approach. Numerical experiments show that the proposed approaches improve 

the current inspection efficiency by over 4% regarding the total number of detected 

deficiencies. Through comprehensive sensitivity analysis, several managerial insights 

are generated, and the robustness of the proposed approaches is validated. 

4.1 INTRODUCTION 

17 deficiency codes are required by Tokyo MoU as presented in Table 4-1. The 

deficiency items in accordance with the deficiency codes are the inspection targets 

during a PSC inspection. Except for D99, the remaining 16 deficiency codes can be 

grouped into four deficiency categories as follows: C1: ship safety (D4 Emergency 

system, D7 Fire safety, D11 Life saving appliances, and D12 Dangerous goods), C2: 

ship management (D1 Certificates and documentation, D9 Working and living 

conditions, D14 Pollution prevention, D15 International Safety Management (ISM), 

 
4 Yan, R., Wang, S., Fagerholt, K., 2020. A semi-“smart predict then optimize”(semi-SPO) method for efficient ship inspection. 

Transportation Research Part B: Methodological 142, 100-125. 
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and D18 Labour conditions), C3: ship condition and structure (D2 Structural condition, 

D3 Water/Weathertight condition, D6 Cargo operations including equipment, and D13 

Propulsion and auxiliary machinery), and C4: communication and navigation (D5 

Radio communication, D8 Alarms, and D10 Safety of navigation). It should be noted 

that the deficiencies and deficiency categories are of equal importance as they are all 

derived from major international maritime regulations and conventions. 

Table 4-1. Description of deficiency codes 

 

The overall inspection process suggests that the PSCOs play the key role in PSC 

inspection as they are responsible for conducting the inspection and deciding the 

inspection results (Ravira and Piniella, 2016; Graziano et al., 2017, 2018a). A PSCO 

should be an experienced person with both theoretical knowledge and seagoing 

experience. Common backgrounds of PSCOs can be naval architects, merchant marine 

captains, chief engineers, and ratio officers (Ravira and Piniella, 2016). As required, 

during an inspection, a PSCO will use his/her professional judgment to decide whether 

and in what aspects the ship should be further inspected. The PSCO will also use 

his/her expertise to decide what deficiencies should be recorded and whether to detain 

a ship. However, it is indicated that due to discretion, subjectivity, individuality, 

professional judgement, different backgrounds and expertise, PSCOs at the same port 

may have different expertise in identifying different categories of deficiencies (Ravira 

and Piniella, 2016; Graziano et al., 2017; Graziano et al., 2018a). For instance, there 

are two PSCOs on duty for one day, and PSCO 1 used to be a captain who is good at 

dealing with deficiencies related to communication and navigation, while PSCO 2 has 

naval background and is good at addressing deficiencies on the ship condition and 

structure. Assume now that two ships visiting the port are selected to be inspected: 

ship 1 has main deficiencies in structure and ship 2 has many deficiencies in radio 

communication. Ideally, we should assign PSCO 1 to inspect ship 2 and assign PSCO 
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2 to inspect ship 1; otherwise, deficiencies might be missing due to the lack of 

professional backgrounds and knowledge. This example shows that the inspection 

efficiency and effectiveness can be improved if ship deficiency conditions and the 

expertise of PSCOs are matched. To achieve this objective, the deficiency conditions 

of the ships, which can be represented by the number of deficiencies in each category 

(the number can be zero) need to be first predicted. Then, the expertise of PSCOs 

should be considered when assigning them to the ships to be inspected.  

Considering the PSCOs’ different expertise, this chapter proposes three 

approaches for ship deficiency condition prediction and PSCO assignment to improve 

the inspection efficiency. Our key contributions from a theoretical and practical point 

of view are summarized as follows. 

First, from a theoretical point of view, we develop three sequential prediction 

and optimization approaches for the PSCO assignment problem. The first approach 

predicts the number of deficiencies in each deficiency category for each ship in a way 

that minimizes the MSE. The numbers of deficiencies are a natural choice of target to 

predict. The predicted values are subsequently used in a PSCO assignment model 

(model M1 in Section 4.4.1). The second approach predicts, instead of the number of 

deficiencies in each category for each ship, the number of deficiencies each PSCO can 

identify for each ship (also in a way that minimizes the MSE). The predicted values 

are subsequently used in a slightly different PSCO assignment formulation (model M2 

in Section 4.4.2). The prediction models in the first two approaches do not account for 

how the predictions will be used in the optimization models, and this may lead to sub-

optimal decisions (Elmachtoub and Grigas, 2017). Methods that fully integrate 

prediction and optimization, called “smart predict then optimize” (SPO) by 

Elmachtoub and Grigas (2017), are often computationally challenging. Instead of 

ignoring optimization models in the prediction or fully integrating optimization 

models into the prediction, semi-SPO methods partially integrates optimization 

models into the prediction, improving the performance while incurring limited extra 

computational burden (Demirović et al., 2019). The third approach proposed in our 

study is a semi-SPO method. It also predicts the number of deficiencies each PSCO 

can identify for each ship. However, instead of minimizing the MSE as in the second 

approach, this approach adopts a loss function motivated by the structure of the 

optimization problem. It aims to minimize the mean squared difference regarding the 
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overestimates (i.e., predicted value minus actual value) in the numbers of deficiencies 

that can be detected among the PSCOs for each ship (denoted by MSO for short). The 

prediction results are then applied to a PSCO assignment formulation (model M2 in 

Section 4.4.2). We demonstrate, on the basis of the three approaches, that (i) there may 

be different choices of targets to predict in the prediction model and then feed the 

targets into an optimization model and (ii) the structure of the optimization model may 

provide useful information to guide the training of the prediction model, even if the 

overall prediction and optimization procedure is sequential. Therefore, prediction 

models that show worse performance regarding classical regression metric (e.g., MSE) 

would not necessarily generate worse decisions in the following optimization models. 

Besides, we have rigorously proved that the optimization models can be solved in 

polynomial time of the length of its input parameters.  

Second, from a practical point of view, we address a meaningful problem in 

maritime transportation. Improving inspection efficiency and effectiveness is a critical 

measure for PSC MoUs to guarantee maritime safety and protect the marine 

environment. One key point is realizing accurate identification of the deficiencies of 

the coming ships, which benefits from accurate prediction. Based on the three 

prediction models and the optimization model proposed in this study, the expertise of 

PSCOs can be fully utilized in dealing with various deficiency conditions of the ships. 

Particularly, compared with random assignment of PSCOs, the proposed three models 

can help to detect 4.70%, 4.55%, and 4.86% more deficiencies, respectively, after 

inspecting the same groups of ships by using the same PSCO resources. 

Comprehensive robustness analysis shows that even if there may be some uncertainties 

in measuring the expertise of PSCOs, the PSCO assignment scheme generated by the 

third proposed model can still identify more than 90% of the real deficiencies and 

significantly outperforms random PSCO assignment. From the perspective of 

application, as reported by Tokyo MoU, there were totally 31,589 PSC inspections and 

the total number of deficiencies detected was 73,441 in 2017 (Tokyo MoU, 2018a). 

This indicates that the average number of deficiencies of one ship in one PSC 

inspection is about 2.32. If our models are applied, about 3,569 more deficiencies can 

be detected (as 4.86% more deficiencies can be identified compared with random 

PSCO assignment), which can be viewed as inspecting about 1,538 more ships with 
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the same inspection resources. Therefore, human, material and financial resources 

could be saved if the inspection efficiency is improved. 

4.2 RESEARCH GAP 

Although the effectiveness of PSC inspections in improving the safety level of 

maritime transport has been widely recognized by industry and academia, there are 

still critical challenges faced by port state authorities. One of the biggest challenges is 

the discrepancy in the inspection process and criteria among different PSC MoUs, port 

states of the same MoU, and even PSCOs at the same port. More specifically, 

variations in the treatment of vessels across the MoUs were identified and reported by 

Sampson and Bloor (2007), Knapp and Franses (2007), and Knapp and van de Velden 

(2009), and the differences in inspections within the same MoU were found by 

Bateman (2012), Graziano et al. (2018b), and Şanlıer (2020), while the different 

treatment caused by different backgrounds and expertise of the PSCOs was 

investigated by Ravira and Piniella (2016) and Graziano et al. (2017, 2018a). It is of 

vital importance to achieve harmonization in PSC inspections, or the ship operators 

will recognize that they no longer necessarily gain a great deal from efforts to comply 

with regulations and thus substandard ships will “port shop”, i.e., choose to call the 

ports with looser PSC inspection criteria.  

The models proposed in this paper could help to address the problems brought 

about by the diverse backgrounds and expertise of PSCOs at the same port by matching 

the ship deficiency conditions with PSCOs’ expertise. Besides, the phenomenon of 

“port shop” can also be alleviated by improving inspection efficiency. 

Based on the literature review in this chapter and in chapter 2, it can be seen that 

although there are a large number of studies on improving PSC inspection efficiency, 

to the best of our knowledge, there is no literature on developing PSCO assignment 

schemes to improve inspection efficiency by considering the expertise and 

backgrounds of PSCOs and the deficiency conditions of the ships. 

4.3 DATA DESCRIPTION AND THE PSCO ASSIGNMENT PROBLEM 

The Asia Pacific Computerized Information System (APCIS) provided by the 

Tokyo MoU and World Register of Ships (WRS) database are used in this study. 

APCIS is a public website-based database of PSC inspections conducted by the 
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member authorities of the Tokyo MoU. It contains ship generic information and 

historical PSC inspection records within the Tokyo MoU (including the specific 

deficiencies detected for each inspected ship). WRS is a comprehensive database 

providing hundreds of features on ship construction, engine, dimension, registration, 

ownership, fixtures, and class, etc. We select the most relevant features of PSC 

inspection from WRS based on the literature. The features selected from APCIS and 

WRS are combined by ship IMO number, and there are 15 input features in total. The 

description of the features and their statistical information used in this study are 

provided in Table 4-2. For ships that have never had any inspection within Tokyo MoU, 

the values for “last inspection time”, “last deficiency number” and “follow-up 

inspection rate” are set to be “none” (not included in Table 4-2). 

Table 4-2. Description of input features 

 

* Note: Ship flag performance, RO performance, and company performance are calculated based on flag Black-

Grey-White list, RO performance list, and company performance list provided by Tokyo MoU, respectively. The 

performance of the flags on white-list is better than those on grey-list, and much better than those on black-list. For 

RO and company, the performance gets worse in the sequence of “high”, “medium”, “low”, and “very low”. If the 

performance of the ROs and companies is not shown on the lists, the performance state is recorded as “not listed”. 
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We use a total of 2,000 inspection records at the Hong Kong port in 2016 (638 

records), 2017 (641 records) and 2018 (721 records) in our study. We use the PSC 

inspection records at the Hong Kong port because we have visited the Marine 

Department of Hong Kong Special Administrative Region (HKSAR) and discussed 

with the PSCOs here for several times. We learned that the PSC Section of Hong Kong 

Marine Department has four PSCOs who are all experienced experts in all aspects of 

PSC. Besides, it is required that a PSCO should participate in strict trainings and 

assessments before becoming a qualified PSCO according to the requirements of the 

Hong Kong Marine Department, and the PSCOs also need to attend regular training 

programs and seminars. Therefore, we suppose that the PSCOs at the Hong Kong port 

can identify all the deficiencies in each category for each inspected ship. Nevertheless, 

it should be noted the PSCOs at some ports may not be that experienced, and thus the 

Tokyo MoU has developed several co-operation programs to enhance consulting, 

cooperating and exchanging information among the authorities (Tokyo MoU, 2018a). 

The models proposed in our study aiming to match the ship conditions with the PSCOs’ 

expertise can also be viewed as a type of cooperation and thus are more suitable for 

those ports with PSCOs of divergent expertise. We randomize the whole dataset and 

divide it into training set, validation set and test set with each containing 70%, 15% 

and 15% of all data entries, i.e.,1400, 300 and 300 data entries, respectively. 

According to the working process of the PSC authorities, in the morning of each 

day, a set of ships (denoted by S ) to be inspected will be selected among all the ships 

coming to the port state on that day. A total of P  PSCOs will then be assigned for 

ship inspection. It is not uncommon that some PSCOs have limited expertise in some 

aspects of PSC because of limited work experience and training. It is, therefore, 

valuable to leverage historical inspection data and predict the number of deficiencies 

in each category for each ship, and based on the predicted number, to assign PSCOs 

with the relevant expertise to inspect the ships. Let 4C =  be the number of categories 

of deficiencies (i.e., ship safety, ship management, ship condition and structure, and 

communication and navigation mentioned in Section 4.1). The expertise of PSCO p  

for inspecting deficiency category c  is denoted by pcu , 1,...,p P= , 1, 2,3,c C= . pcu  is 

actually the percentage of deficiencies of category c  that can be detected by PSCO 

p , and 0 1pcu  . The smaller pcu  is, the more deficiencies in c  are likely to be 

ignored by PSCO p . The expertise (which is represented by percentage) can be 
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evaluated by tests, questionnaires, and interviews. Considering the workload for the 

PSCOs, we further require that the maximum number of ships that a PSCO can inspect 

for each day is  . We try to assign the available PSCOs to the selected ships in a way 

that maximizes the total number of deficiencies in all the C  categories of all the ships 

that can identified. 

The prediction and optimization models proposed in this study work in the 

following way: deficiency prediction models with three different targets/model 

structures are first developed. Based on the prediction results, optimization models for 

PSCO assignment to maximize the inspection efficiency are then proposed. Several 

comparisons are made and comprehensive sensitivity analyses is conducted to generate 

managerial insights and validate the robustness of the models. 

4.4 PREDICTION AND OPTIMIZATION APPROACHES 

In our prediction and optimization approaches, a prediction model is first 

developed to predict the key unknown parameters in the optimization model. Based on 

the predicted values, an optimization model is then constructed to generate decisions. 

The main difference between the prediction models proposed in this chapter from that 

proposed in Chapter 3 is that the output is of multi-dimension in this chapter, while 

that in Chapter 3 is of one-dimension. The reason for choosing random forest-based 

prediction model instead of XGBoost is that CART-based decision tree and random 

forest are widely used in developing SPO frameworks in existing literature as they are 

intuitive and easy to be modified. To split each node, all features and values are 

enumerated to find the best split that can reduce the MSE the most in a greedy manner, 

and the output of a leaf node is just the mean value of all the samples contained in that 

node. Therefore, it is not a difficult task to change the loss function in node splitting 

to satisfy tailored needs. In contrast, although the XGBoost is generally believed to be 

more accurate than random forest, its working mechanism is much more complex, 

especially the derivative calculation and regularization are required in the loss function. 

Therefore, it might be very hard to modify its loss function while considering the 

properties and structure of the following optimization model. Therefore, we choose 

random forest consisting of CART regression tree in the SPO framework. Particularly, 

we propose three prediction models denoted by MTR-RF1, MTR-RF2, and MTR-RF3 

and two assignment models denoted by M1 and M2 with details provided in Table 4-

3. 
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Table 4-3. Prediction and optimization models 

Model Prediction targets Splitting 

criteria  

Decision 

trees 

Assignment 

model 

Assignment 

decision 

MTR-RF1 Number of deficiencies under 

each deficiency category 

MSE ( )MTRf x  M1 A1 

MTR-RF2 Number of deficiencies 

identified by each PSCO 

MSE ( )MTRf  x  M2 A2 

MTR-RF3 Number of deficiencies 

identified by each PSCO 

MSO ( )MTRf  x  M2 A3 

4.4.1 Prediction of natural targets and optimization 

It is natural to predict the number of deficiencies in each category for each ship 

based on historical records. Therefore, we first develop random forest regression 

model (denoted by MTR-RF1) to predict the number of deficiencies in each category 

for each ship based on the features in Table 4-2. 

4.4.1.1 Prediction model 

We use random forest (RF) as the prediction model. RF is a state-of-the-art ML 

model with high accuracy and is widely used (Friedman et al., 2001; Liaw and Wiener, 

2002; Breiman, 2017). We first present the construction procedure of a decision tree, 

and then the RF.  

Decision tree (denoted by DT for short) is a popular supervised ML model. At 

the beginning, all the training examples are stored in the root node. Then, the root node 

is recursively split into successive nodes which contains subsets of the training set until 

coming to the preset stopping criterion or the current node cannot be further split (i.e., 

all the examples are of the same output value). Each split of the nodes in the decision 

tree aims to reduce the variance among the records in the successive nodes. According 

to the target, decision trees that predict categorical target are called classification trees 

while decision trees that predict numerical target are called regression trees. The target 

is one-dimensional in traditional decision tree while the targets can be multi-

dimensional in multi-target regression (MTR) tree (Blockeel and De Raedt, 1998). In 

this study, the outputs are four-dimensional (either the number of deficiencies under 

the four categories or the number of deficiencies detected by the four PSCOs), and 

thus the MTR trees are constructed by using CART algorithm (Friedman, 2001; 

Harrington, 2012; Breiman, 2017). The procedure is as follows (Blockeel, 1998; 

Friedman et al., 2001). 
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The input information for decision tree construction contains the training dataset 

and termination conditions. We denote the set of J  input features as 
1 2( , ,..., )Jx x x  and 

the set of K  targets as 
1 2( , ,..., )Ky y y . An input feature is denoted by 

jx , 1,...,j J= , 

and the value set of this feature is denoted by 
j . A specific value of this feature is 

denoted by 
jw , 

j jw  . For example, for the variable ship-flag-performance which 

has four states: white, grey, black, and not listed, the states are first changed to numbers, 

with 1 representing white, 2 representing grey, 3 representing black, and 4 representing 

not listed. Then, we can have {1,2,3,4}j = . A target is denoted by 
ky , 1,...,k K=  and 

4K = . In addition, we denote the training dataset containing N  data entries as 

{( , ), ( , ),..., ( , )}1 1 2 2 N ND = x y x y x y . We use 1,...,e N=  to refer to both an inspection record 

and the ship in the current record. Notably, if a ship is inspected several times, its 

inspection records are treated independently. A data entry is denoted by ( , )e e
x y  with 

1,...,e N= , where = ( , ,..., ,..., )e e1 e2 ej eJx x x xx  contains J  features and 

= ( , ,..., ,..., )e e1 e2 ek eKy y y yy  contains K  targets. The construction process of a CART-

based MTR tree requires finding the best split pair * *

*( , )jj w , *

* *j jw   of the nodes that 

minimizes the total within-subset variation in the two successive nodes when splitting. 

Denote the set of I  termination conditions as 
1 2 3( , , ,..., )I    = . The main steps to 

construct an MTR tree are presented as shown in Appendix B.1. 

In our problem, we choose the 15 features in Table 4-2 as x  ( 15J = ) and the 

number of deficiencies in each category as y  ( 4K = ). For each ship in record 

1,...,e N= , the input features are = ( , ,..., ,..., )e e1 e2 ej eJx x x xx . Because we have several ML 

models, in this model we represent the targets by 3= ( , , , )e e1 e2 e eC   α  instead of using 

y , where ec  is the number of deficiencies in category c , 1,...,c C=  (we use C  to 

represent the number of deficiency categories instead of using K ) of ship e , and then  

1 2

1 1 1 2 2 2

2 2

* *

*
( ,..., ) ( , ) 1 ( , ) ( , ) 1 ( , )1 2

1 1
( , ) arg min

| ( , ) | | ( , ) |J 1 j j j j
j j

C C
e c e cec ec

j
j x x e R j w c e R j w e R j w c e R j wj j
w

j w
R j w R j w

   
  =   = 


    
  − + −   

        

           (4.1) 

where 
0( , ) { | }ej

1 j jR j w e R x w=    and 
0( , ) { | }ej

2 j jR j w e R x w=   . 

Like traditional DTs, the MTR trees can also be ensembled by using bagging 

(Breiman, 1996) and bootstrapping (Breiman, 2001) to reduce overfitting and increase 

prediction accuracy. In this study, we adopt random forest (which is based on bagging) 
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to ensemble MTR trees proposed in Section 4.4.1.1. Compared to a single decision 

tree, the decision trees contained in the RF have two layers of randomness: a new 

training set generated by bootstrapping (i.e. randomly selecting a certain number of 

samples from the whole dataset with replacement) in the original training set is used 

to construct each decision tree, and a subset (with a preset fixed size) of all features is 

used to split each node in each decision tree (Friedman et al., 2001). A detailed 

construction procedure of MTR tree based random forest (MTR-RF) model is provided 

in Appendix B.2 (Breiman, 2001; Kocev et al., 2007). 

4.4.1.2 Optimization model 

Among all the foreign ships visiting the port, the ships to be inspected are 

selected based on guidelines provided by the Tokyo MoU (2018). For each ship s S  

selected to be inspected, we can only obtain its input features, while the number of 

deficiencies under deficiency category c  is unknown. With a little abuse of notation, 

we denote the unknown number of deficiencies in category c  of ship s  by sc , s S , 

1, 2,3,c C=  ( ec  is the known number of deficiencies in category c  of ship e  in the 

training set, 1,...,e N= ). The predicted values of sc , denoted by ˆ sc , s S , 

1, 2,3,c C= , can be obtained by using the RF model proposed in Section 4.4.1.1. To 

achieve the maximum inspection efficiency, the sum of the product of the estimated 

deficiency number of each deficiency category and the corresponding inspection 

expertise of that deficiency category of the assigned PSCO (denoted by “inspection 

expertise” for short) should be as large as possible. The justification for matching the 

deficiency categories with the expertise of PSCOs is as follows. The decision (outcome) 

of a PSC inspection contains ship deficiency (specific deficiency types and total 

deficiency number) and ship detention. During a PSC inspection, the PSCO gets 

onboard and inspect the condition of the ship. For any condition that is not in 

compliance with the related regulations and conventions, it will be recorded as a 

deficiency. On the contrary, ship detention is not directly observed; instead, it is 

determined by the detected deficiencies and the PSCOs’ judgement. Therefore, if the 

deficiency condition of the ships can be matched with the expertise of the PSCOs, the 

most proper PSCO (who can identify the existing deficiencies as many as possible and 

make rational detention decision) can be assigned to inspect the ship for better ship 

deficiency identification and detention decision making. Following this idea, we 

define binary decision variable psz  that is set to 1 if PSCO p  is assigned to inspect 
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ship s  and 0, otherwise, and the PSCO assignment model can be expressed by 

mathematical model M1.  

[M1]  

 1

ˆmax
P C

sc

pc ps

p s S c=1

u z
= 


  (4.2) 

subject to 

 
, 1,...,ps

s S

z p P


  =
  (4.3) 

 1

1,
P

ps

p

z s S
=

= 
  (4.4) 

 {0,1}, 1,... , .psz p P s S =    (4.5) 

Objective (4.2) maximizes the inspection expertise of the PSCOs by maximizing the 

sum of the product of the estimated deficiency number under each deficiency category 

and the expertise of the selected PSCO for that corresponding deficiency category for 

all inspected ships. Constraints (4.3) limit the maximum number of ships that can be 

inspected by a PSCO for one day. Constraints (4.4) guarantee that each ship is 

inspected by one PSCO. Constraints (4.5) ensure the domain of the decision variable.  

Although model M1 is an integer program, it has the following nice property, 

whose proof is in Appendix B.3. 

Proposition 1: Model [M1] can be solved in polynomial time of the length of the input 

parameters.   

Proposition 1 implies that the PSCO assignment model [M1] is an easy problem: even 

if there are hundreds of ships and tens of PSCOs, [M1] can be solved efficiently (e.g., 

in less than 1 second). 

4.4.2 Prediction of coefficients in the objective function of optimization model 

4.4.2.1 Prediction model 

In model M1, the coefficients of the decision variables in the objective function 

are ˆ
C

sc

pc

c=1

u , s S  and 1,...,p P= . Therefore, instead of predicting sc  (i.e. the 

number of deficiencies in category c  for ship s ), we can directly predict 
C

sc

pc

c=1

u  

(i.e. the total number of deficiencies of ship s  that can be detected by PSCO p ). 
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Define 
C

sp sc

pc

c=1

u = , s S  and 1,...,p P= . For ship s , 1= ( ,..., ,..., )s s sp sP  β  

denotes the number of deficiencies that can be detected by assigning PSCO 1,...,p P= . 

The values for sp  (and thus s
β ) can be predicted by using the RF models developed 

in Section 4.1.1.2, and the prediction model is denoted by MTR-RF2. The predicted 

values generated by MTR-RF2 are denoted by ˆ sp . The procedure of constructing the 

MTR trees ( )MTRf  x  in MTR-RF2 is slightly different from the ( )MTRf x  in MTR-RF1: 

a data entry ( , )e e
x β  represents ship s , where the input features are 

= ( , ,..., ,..., )e e1 e2 ej eJx x x xx , 15J = , and the targets are 1= ( ,..., ,..., )e e ep eP  β . Both MTR-

RF1 and MTR-RF2 generate multi-dimensional targets: MTR-RF1 has C  targets for 

the deficiency numbers under C  deficiency categories while MTR-RF2 has P  

targets for the deficiency numbers identified by the P  PSCOs. In particular, the 

choice of the best split in Step 1 in Procedure 1 for constructing an MTR tree should 

be revised as   

1 2

1 1 1 2 2 2

* * 2 2

*
( ,..., ) ( , ) 1 ( , ) ( , ) 1 ( , )1 2

1 1
( , ) arg min ( ) ( )

| ( , ) | | ( , ) |J 1 j j j j
j j

P P
e p e pep ep

j
j x x e R j w p e R j w e R j w p e R j wj j
w

j w
R j w R j w

   
  =   = 


 
 − + − 

  
       (4.6) 

where 
0( , ) { | }ej

1 j jR j w e R x w=    and 
0( , ) { | }ej

2 j jR j w e R x w=   . 

4.4.2.2 Optimization model 

 Based on the predicted values ˆ sp , optimization model M1 can be reformulated 

as 

[M2]  

 ˆmax
P

sp

ps

p=1 s S

z


   (4.7) 

subject to constraints (4.3) to (4.5). The structure of [M2] is the same as that of [M1] 

and hence [M2] can also be solved as a linear program. 

4.4.3 Prediction of fundamental parameters that are fed into the optimization 

model 

It is common that to predict the values ˆ sp  in [M2], we try to minimize the sum 

of squared errors between the predicted value and the actual value, as shown in Eq. 

(4.6). However, a closer examination into the structure of the optimization model [M2] 

reveals that if the predicted number of deficiencies the P  PSCOs can identify for a 
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ship are overestimated or underestimated by the same value, the final optimal 

assignment decision will not be influenced. We use the following example to illustrate 

this finding: 

Example: For any ship that is selected to be inspected, if the actual numbers of 

deficiencies four PSCOs can identify are 6, 7, 8, and 9, but the predicted numbers are 

8, 9, 10, and 11 (i.e., all four outputs are overestimated by “2”), then the optimal 

assignment is not changed and we should assign PSCO 4 to inspect the ship. If the 

predicted number are 5, 6, 7, 8 (i.e., all four outputs are underestimated by “1”), then 

the optimal assignment is also not changed and we should assign PSCO 4 to inspect 

the ship.  

Generally, if the actual numbers of deficiencies the P  PSCOs can identify for a 

ship are 
1n , 

2n , …, 
Pn , but the predicted numbers are 

1n + , 
2n + ,…, 

Pn +  ( R  ; 

if 0  , 
1 2| | min( , ,..., )Pn n n  ), then the resulting prediction errors do not adversely 

affect the PSCO assignment decision, because it is the difference in the predicted 

numbers among the PSCOs, rather than the absolute prediction values, that affects the 

assignment decision. Based on this observation, the third approach (denoted by MTR-

RF3) minimizes the squared difference regarding the overestimates (i.e., predicted 

value minus actual value) in the predicted numbers of deficiencies among the PSCOs 

and then uses the prediction in a PSCO assignment formulation (model M2 in Section 

4.4.2.2). The prediction model is revised as follows. 

Decision trees contained in MTR-RF3 is denoted by ( )MTRf  x . Splitting criterion 

of ( )MTRf  x  is changed to minimize the sum of variance of the predicted deficiencies 

that can be detected by each PSCO for each ship. More specifically, in Procedure 1, 

the best split pair * *

*( , )jj w  of the current splitting node is calculated by  

1 1

1 1 1 1

1
2 2

2 2 2 2

1
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. (4.8) 

The predicted numbers of deficiencies that can be detected by each PSCO given 

by MTR-RF3 based on Eq. (4.8) are then input to optimization model M2 to generate 

PSCO assignment decisions.  
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4.5 COMPUTATIONAL EXPERIMENTS 

4.5.1 Construction of MTR-RF 

4.5.1.1 Introduction of hyperparameters in RF 

A hyperparameter in ML is a parameter used to control the learning process and 

whose value is set before the learning process begins. As RF is an ensembled ML 

model which contains DTs as weak learners, an RF model has hyperparameters to 

control the overall structure and properties of the RF as well as those for its DTs. 

Hyperparameters for DTs are mainly used to control the complexity and serve as the 

regularization of the model. The hyperparameters for RF are summarized below. 

(a) n_estimators: the total number of DTs contained in an RF model. As the main 

principle underlying bagging is that more trees are better while too few trees can lead 

to unstable performance, this hyperparameter should be set to the largest 

computationally manageable value and do not need to be tuned (Breiman, 2001; Probst 

and Boulesteix, 2017).  

(b) max_features: the number of features considered for each split. The value range of 

this hyperparameter is from 1 to the total number of features in the dataset and it is an 

integer. Too small value will negatively affect the average performance of the trees, 

while too large value will reduce the randomness of each tree and thus badly influence 

the overall performance. Denote the total number of features as n_features, 

n_features = J =15 . It is suggested setting max_features= n_features / 3    for regression trees 

(Friedman et al., 2001; Probst et al., 2019).  

(c) max_depth: the maximum depth of each DT in the RF model. The depth of a leaf 

is the number of splits taken from the root node to that leaf node (Elmachtoub et al., 

2020). The value range of this hyperparameter can be set from one to unlimited and it 

is an integer. Larger value of max_depth leads to more complex single trees. 

(d) min_samples_leaf: the minimum number of examples required to be at a leaf node. 

The minimum value for this hyperparameter is 1 and it is an integer. Smaller value of 

min_samples_leaf leads to more complex single trees. It is recommended to set the 

value of min_samples_leaf to be 5 for regression models by default (Friedman et al., 

2001).  
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Hyperparameters (a) and (b) control the overall structure and the property of 

randomness of RF, while hyperparameters (c) and (d) are related to each DT. It should 

also be noted that in practice the best values for these parameters will depend on the 

problem, and should be treated as tuning parameter (Friedman et al., 2001). 

4.5.1.2 Hyperparameter tuning in RF 

Hyperparameters can have a large impact on model performance and 

generalization ability. Although it has been proved that RF models will not overfit, 

several studies have shown that tuning the hyperparameters in RF would yield slightly 

better performance and generalization ability (Biau and Scornet, 2016; Probst et al., 

2019). In this study, we aim to tune three hyperparameters: max_features, max_depth, 

and min_samples_leaf which can only take integer values by using a training set and 

a validation set. We choose MSE as the performance evaluation measure for MTR-

RF1 and MTR-RF2 and MSO in the predicted ship deficiency number that can be 

identified among the PSCOs as the performance evaluation measure for MTR-RF3. 

To tune the three hyperparameters, we propose a revised grid search method. Denote 

the pre-defined set containing all the possible values for a hyperparameter as its 

constrained value space. Unlike the classical grid search which exhaustively considers 

all hyperparameter combinations in the constrained value spaces to form the grid, the 

revised grid search method could gradually reduce the search space by iteration. The 

procedure to tune the hyperparameters by the revised grid search is presented in 

Appendix B.4. In this study, the default value for max_features should be 5 (recall that 

we have 15 input features) and min_samples_leaf should be 5. To form the constrained 

value space, we extend the value spaces of the two hyperparameters by 

increasing/decreasing the default value to the same extent, i.e. we set the constrained 

value space for max_features as {3,4,5,6,7}  and for min_samples_leaf as 

{2,3,4,5,6,7,8} . For the constrained value space of max_depth, as there is no 

recommended default value, we set it to be a moderate range as {4,5,6,7,8} .  

4.5.2 Performance of the MTR-RF models and PSCO assignment schemes 

4.5.2.1 Experiment settings and hyperparameters in MTR-RF 

The settings in the numerical experiments are in accordance with the real 

situation at the Hong Kong port: there are 4 available PSCOs, and about 10 ships are 

selected for inspection every day with 2 to 3 ships assigned to one PSCO. We further 
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assume that PSCO 1 is good at dealing with deficiency category C1, PSCO 2 is good 

at dealing with deficiency category C2, PSCO 3 is good at dealing with deficiency 

categories C3 and C4, and PSCO 4 is good at dealing with deficiency categories C4. 

The assumed expertise of each PSCO to inspect each deficiency category is presented 

in Table 4-4. After applying the revised grid search method to the three 

hyperparameters under the given constrained value spaces in MTR-RF1, MTR-RF2, 

and MTR-RF3, the best hyperparameter tuples for the three models are shown in Table 

4-5. 
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Table 4-4. Expertise of each PSCO in each deficiency category 

PSCO/deficiency category C1 C2 C3 C4 

PSCO 1 0.8 0.5 0.7 0.6 

PSCO 2 0.7 0.9 0.4 0.5 

PSCO 3 0.7 0.6 0.8 0.7 

PSCO 4 0.4 0.7 0.6 0.7 

Table 4-5. Best hyperparameter tuples for MTR-RF1, MTR-RF2, and MTR-RF3 

Model max_features max_depth min_samples_leaf 

MTR-RF1 4 8 5 

MTR-RF2 4 7 3 

MTR-RF3 6 8 4 

After finding the optimal hyperparameter tuple for each model by using the 

training set and the validation set, in the following experiments we form a new training 

set by combining the current training and validation sets, and thus it contains 1,700 

inspection records at the Hong Kong port. The test set contains another 300 inspection 

records at the Hong Kong port. We randomly and evenly divide them into 30 groups 

where each group contains 10 ships. We assume that the 10 ships in a group come to 

the port on one day and the totally 300 ships come to the port on 30 days. We also 

require that the maximum number of ships that can be inspected by one PSCO is three.  

4.5.2.2 Performance of the three MTR-RF models 

We set n_estimators = 200 for the proposed three MTR-RF models. Each MTR-

RF model is trained by using the new training set and the hyperparameter tuple tuned 

by the revised grid search. Run each of the MTR-RF model 10 times, and the min, 

max, mean, and variance of MSE/MSO on the test set in the 10 runs for the three 

models are shown in Table 4-6. It can be seen that the min, mean, and max values of 

MSE of MTR-RF1 are all much smaller than those in MTR-RF2. The differences are 

caused by the values of the prediction targets in the MTR-RF models: in MTR-RF1, 

the prediction targets are the deficiency number under each deficiency category; while 

in MTR-RF2, the prediction targets are the total number of deficiencies a PSCO can 

detect if she/he is assigned to inspect the ship. Besides, it is shown that the min, mean, 

and max values of MSE of MTR-RF2 are all smaller than those of MTR-RF3, which 

indicates that MTR-RF2 performs better than MTR-RF3 as a regression model 

evaluated by MSE. The differences in MSE between MTR-RF2 and MTR-RF3 are 

caused by the property of the MTR-RF models: the splitting criteria in MTR-RF2 is to 

reduce the MSE in successive nodes while those in MTR-RF3 is to reduce MSO. In 
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addition, the variance in each model is small, which implies that the performance of 

MTR-RF containing 200 MTR trees is stable. 

Table 4-6. Prediction performance of MTR-RF1, MTR-RF2, and MTR-RF3 

Model Metric Min Mean Max Variance 

MTR-RF1 MSE  3.9756  4.0173  4.0762 0.0009 

MTR-RF2 MSE 15.4953 15.8342 16.1237 0.0437 

MTR-RF3 MSE 16.7775 17.1684 17.5571 0.0443 

MTR-RF3 MSO  3.0242  3.0513  3.0863 0.0002 

Table 4-6 shows that compared to the prediction outputs of MTR-RF3, the 

outputs of MTR-RF2 have less variability. Meanwhile, even if the differences in the 

prediction targets of MTR-RF1 and MTR-RF2 are considered, the variability of MTR-

RF1 is less than MTR-RF2. The reasons are as follows. For the difference between the 

variance of MTR-RF2 and MTR-RF3, the splitting criterion of the DTs is to minimize 

the MSE of ship deficiency number detected by each PSCO in MTR-RF2, whereas the 

splitting criterion of the DTs in MTR-RF3 is to minimize the MSO of ship deficiency 

number detected by each PSCO. Therefore, the target of the prediction generated by 

MTR-RF2 is to make the outputs as close as to their real values, while the target of the 

prediction generated by MTR-RF3 is to make the differences of the overestimates of 

each two of the outputs as small as possible. As a result, MTR-RF3 generates more 

flexible prediction results and when evaluating the variance of the outputs, the variance 

of the outputs of MTR-RF3 is larger than MTR-RF2. For the difference between the 

variance of MTR-RF1 and MTR-RF2, recall that the prediction targets of MTR-RF1 

only consider the deficiency number under each deficiency category while both the 

deficiency number and the PSCOs’ expertise in each deficiency category are 

considered in the prediction targets of MTR-RF2. Due to the nonlinearity of MTR-RF 

models, the impacts of the PSCOs’ expertise on the deficiency number in the outputs 

variability can be magnified. As a result, the uncertainties are propagated to the output 

predictions, which leads to higher variance in MTR-RF2 compared to MTR-RF1. 

4.5.2.3 Performance of the combined prediction and optimization model 

We assign PSCOs based on the prediction results (10 runs) in Section 4.5.2.1 to 

the 30 groups of ships in accordance with the settings. The assignment decisions 

generated by assignment models based on MTR-RF1, MTR-RF2, and MTR-RF3 are 

denoted by A1, A2, and A3, respectively. Apart from making comparisons among the 

three models themselves, we also compare them with random assignment scheme and 
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best assignment scheme in theory. The performance of random assignment scheme is 

the mean inspection expertise of 10,000 times of random PSCO assignment. The best 

assignment scheme in theory is making PSCO assignment decisions under the 

assumption that there is a perfect ML model that could predict the parameters for the 

optimization model totally accurate. However, this is an ideal situation that never 

exists because the generalization error cannot be zero. The comparison results are 

shown in Table 4-7. We further analyze the randomness of A1, A2, and A3 by 

calculating the min and max values of the inspection expertise and the variance of 

inspection expertise among the 30 groups of PSCO assignment. The results are 

presented in Table 4-8. 
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Table 4-7. Mean inspection expertise of the three models 

Group Inspection 

expertise of 

random PSCOs 

assignment  

Mean 

inspection 

expertise of 

A1 

Mean 

inspection 

expertise of 

A2 

Mean 

inspection 

expertise of 

A3 

Best 

inspection 

expertise in 

theory 

1 80.56 84.45 84.00 86.55 89.40 

2 44.03 45.67 46.42 46.18 48.30 

3 49.10 51.20 51.17 51.08 52.40 

4 39.24 39.27 39.65 39.00 43.00 

5 34.11 37.10 37.14 36.72 38.20 

6 25.36 26.86 26.72 27.13 28.30 

7 48.15 50.83 50.92 50.81 51.90 

8 61.70 64.10 63.97 64.21 67.10 

9 32.41 34.35 34.12 34.42 35.40 

10 20.22 20.80 20.74 21.23 23.10 

11 60.19 64.00 64.20 64.19 65.30 

12 33.69 35.11 35.11 34.84 36.80 

13 33.84 34.48 34.43 34.88 37.90 

14 37.98 38.60 38.14 38.20 41.60 

15 22.63 24.43 24.71 24.52 25.70 

16 63.36 66.45 66.22 66.88 69.50 

17 27.67 29.08 28.19 29.14 30.40 

18 38.16 38.82 38.56 38.60 40.80 

19 31.75 34.76 34.95 33.69 36.00 

20 44.36 47.58 47.85 47.67 49.50 

21 32.82 34.26 34.33 34.55 36.20 

22 31.22 34.19 33.80 34.27 35.10 

23 29.67 31.37 31.40 31.49 34.30 

24 33.42 34.09 33.99 34.36 37.00 

25 51.16 52.93 53.00 53.24 55.70 

26 23.23 25.18 24.99 24.07 26.60 

27 25.88 26.50 26.65 26.62 28.70 

28 60.52 61.99 62.02 62.28 65.60 

29 22.75 24.97 24.55 25.22 26.00 

30 27.88 28.50 28.15 27.57 31.10 

Average 38.90 

 

40.73 40.67 40.79 42.90 

Ratio* (90.68%) (94.94%) (94.80%) (95.08%) (100%) 

Note*: calculated by 1
    

    
0%

 
0

Average of mean inspection expertise

The best inspection expertise in theory
 . 
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Table 4-8. Randomness of model performance 

 Min inspection expertise Max inspection expertise Variance of inspection expertise 

Group/ 

inspection 

scheme 

A1 A2 A3 A1 A2 A3 A1 A2 A3 

1 83.4 83.7 83.4 86.3 85.7 87.1 1.4745 0.3600 1.1745 

2 44.3 45.2 45.6 46.5 47.2 46.5 0.6261 0.2456 0.0876 

3 51.2 50.9 50.3 51.2 51.2 51.2 0.0000 0.0081 0.0756 

4 38.7 39.0 38.9 40.2 40.7 39.3 0.2361 0.1925 0.0120 

5 37.1 37.1 35.1 37.1 37.5 37.1 0.0000 0.0144 0.3636 

6 26.3 25.7 26.7 27.7 27.7 28.0 0.2844 0.4556 0.1641 

7 50.7 50.8 50.8 50.9 51.2 50.9 0.0081 0.0096 0.0009 

8 63.1 63.1 63.1 65.0 65.0 65.0 0.4400 0.2181 0.4089 

9 33.6 33.8 34.0 34.8 34.8 34.8 0.2005 0.1216 0.0456 

10 20.3 20.0 20.7 20.9 21.3 21.4 0.0300 0.1544 0.0621 

11 64.0 64.0 64.0 64.0 64.7 64.7 0.0000 0.0940 0.0849 

12 35.1 33.9 33.8 35.2 35.7 35.8 0.0009 0.1989 0.5864 

13 33.2 33.2 34.2 35.7 35.5 35.3 0.5896 0.8121 0.0876 

14 38.0 37.6 37.6 39.6 38.3 39.6 0.4440 0.0504 0.5740 

15 23.9 23.9 24.2 24.8 25.2 25.4 0.0561 0.1049 0.1196 

16 65.4 65.5 66.7 67.2 66.6 66.9 0.4145 0.1416 0.0036 

17 28.1 27.8 28.1 29.4 28.8 29.4 0.2716 0.1029 0.2704 

18 38.7 38.3 37.9 38.9 38.9 38.9 0.0096 0.0404 0.2100 

19 33.6 33.6 32.6 35.6 35.6 34.3 0.5244 0.6585 0.2909 

20 47.2 47.5 47.2 48.0 48.0 48.0 0.0996 0.0525 0.0801 

21 33.8 33.8 33.8 34.7 34.8 35.1 0.1304 0.1161 0.1885 

22 33.4 33.4 33.4 34.6 34.6 35.1 0.2189 0.1800 0.2261 

23 30.5 30.3 31.4 31.6 31.6 31.6 0.0921 0.1420 0.0029 

24 33.8 33.8 33.9 35.4 34.3 35.7 0.2069 0.0289 0.3444 

25 52.7 53.0 52.7 53.2 53.0 53.5 0.0261 0.0000 0.0444 

26 24.6 24.3 23.6 25.3 25.3 24.8 0.0596 0.1509 0.1821 

27 25.7 26.2 25.9 26.7 26.7 26.8 0.1100 0.0225 0.0636 

28 61.3 61.3 61.3 62.7 63.0 63.5 0.2109 0.2316 0.6176 

29 24.5 24.1 25.0 25.2 25.0 25.3 0.0421 0.0565 0.0136 

30 27.1 26.8 27.1 30.3 30.3 29.6 1.9640 1.3205 0.8461 

Average 40.11 40.05 40.10 41.29 41.27 41.35 0.2924 0.2095 0.2411 

Table 4-7 shows that on average, all the three models can realize about 95% of 

the best inspection expertise in theory on average while A3 has the best performance 

regarding mean inspection expertise. Table 4-8 indicates that the performance of A1, 

A2, and A3 are stable. We can draw the following conclusions: 

(a) The performance of all the three newly proposed PSCO assignment schemes is 

stable and is much better than the performance of random PSCO assignment. This 
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shows that the PSCO assignment schemes generated by combining MTR-RF models 

with PSCO assignment models are efficient compared with the currently used random 

PSCO assignment at the port states.  

(b) The performance of A1 is better than A2, although they both use MSE as the 

splitting criterion for constructing the MTR-RFs. The difference between A1 and A2 

is that they have different prediction targets. The prediction targets in A1 are the 

deficiency numbers under each deficiency category which are natural choices. 

Meanwhile, the prediction targets in A2 are the deficiency numbers that can be 

identified by each PSCO which also considers the expertise of PSCs and is determined 

by the parameters of the following optimization model. The difference in performance 

of A1 and A2 indicates that although different targets can be chosen for a combined 

prediction and optimization model, their performance can be divergent. 

(c) The performance of A3 is better than A2, although MTR-RF3 performs much 

worse as a regression model than MTR-RF2 if evaluated by MSE. This indicates that 

when combining ML model (e.g. decision tree and random forest) with optimization 

model, the choices for prediction targets, the properties of ML model (e.g. splitting 

criteria in decision trees), and model evaluation metrics can be varying. High-quality 

decisions are based on either precise prediction generated by the ML model or 

combination of the structure and property of the optimization model with the ML 

model.  

(d) Table 4-8 indicates that A2 has the least variance while A1 has the largest variance 

in the total inspection expertise generated by the optimal assignment among A1, A2, 

and A3. The possible reasons are as follows. Although the splitting criterion of MTR-

RF2 and that of MTF-RF3 is different, the outputs of MTR-RF2 and MTR-RF3 can 

serve as the parameters of the decision variables in the optimization model of A2 and 

A3 directly. On the other hand, the outputs of MTR-RF1 need to be further combined 

with the expertise of the PSCOs to serve as the parameters of the decision variables in 

the optimization model of A1. The further processing might magnify the variability of 

the total inspection expertise in the final optimal assignment decision, which leads to 

highest variance of A1 compared to A2 and A3. Although MTR-RF3 predicts the 

deficiency number detected by each PSCO like MTR-RF2, the splitting criteria in A3 

is not relevant to the values of the prediction targets directly like that in MTR-RF2. 

Therefore, MTR-RF3 has larger variance in the outputs compared to MTR-RF2 as 
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shown in Table 4-6. When combining the prediction results as the input with the 

optimization models, the variability can be magnified. Therefore, A3 has the larger 

variance in the total inspection expertise generated by the optimal assignment decision 

compared to A2. 

An illustration of insights of the superiority of A3 is presented in Appendix B.5. 

We also present the detailed inspection expertise under each deficiency category of 

A1, A2, and A3 as shown in Table 4-9. 

Table 4-9. Inspection expertise under each deficiency category 

Method/ 

deficiency 

category 

C1: ship safety C2: ship 

management 

C3: ship condition 

and structure 

C4: 

communication 

and navigation 

Original test set 630 478 289 407 

Best in theory 459.9 356.5 209.5 261 

A1 447.24 (97.25%) 309.03 (86.68%) 201.81 (96.33%) 263.84 (101.09%) 

A2 446.15 (97.01%) 309.10 (86.70%) 201.25 (96.06%) 263.59 (100.99%) 

A3 446.72 (97.13%) 316.39 (88.75%) 198.89 (94.94%) 261.61 (100.23%) 

It can be seen from Table 4-9 that A1, A2, and A3 can achieve more than 85% 

of the inspection expertise compared to the best situation in theory. Especially, except 

for C2: ship management, more than 95% of the best inspection expertise in theory 

can be achieved by the three combined prediction and assignment models. The results 

further indicate that all the three models that match PSCOs’ inspection expertise with 

ship deficiency condition are effective and accurate. 

4.5.3 Comparison with other state-of-the-art prediction models 

In this section, comparisons of the proposed tree-based prediction models with 

other state-of-the-art and popular prediction models are made. We select three ML 

models for prediction: ridge regression, the least absolute shrinkage and selection 

operator (LASSO) regression, and support vector regression (SVR) for comparison. 

Their performance of predicting the deficiency number under each deficiency category 

is presented in Section 4.5.3.1 and the total inspection expertise realized when 

combining with assignment models is presented in Section 4.5.3.2. 

4.5.3.1 Regression performance  

All the three models are implemented by using scikit-learn in Python with the 

hyperparameter tuples tuned by grid search on the validation set. Like the experiments 

in Section 4.5.2, we also run the three models 10 times with the optimal 

hyperparameter tuples. Their performance is shown in Table 4-10. 
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Table 4-10. Prediction model performance 

Model Metric Min Mean Max Variance 

MTR-RF1 MSE  3.9756  4.0173  4.0762 0.0009 

MTR-RF2 MSE 15.4953 15.8342 16.1237 0.0437 

MTR-RF3 MSE 16.7775 17.1684 17.5571 0.0443 

Ridge regression MSE 15.9990 15.9990 15.9990 0 

LASSO regression MSE 25.0756 25.0756 25.0756 0 

SVR MSE 26.0432 26.0432 26.0432 0 

Table 4-10 indicates that the mean MSE of the outputs of ridge regression is 

smaller than that of MTR-RF3, while the mean MSE of the outputs of LASSO 

regression and SVR is bigger than that of MTR-RF2 and MTR-RF3. Besides, the 

outputs of the ridge regression, LASSO regression, and SVR are determined once the 

hyperparameters of the three models are fixed, therefore their performance is quite 

stable. While in the tree-based models, randomness in the outputs can still exist even 

if the hyperparameters are given.   

5.3.2 PSCO assignment performance  

We combine the prediction results generated by the three regression models with 

optimization model M2 and make comparison with A3 regarding the total inspection 

expertise, as A3 has the best performance in PSCO assignment among the proposed 

models. The assignment decision generated by combining ridge regression with M2, 

LASSO regression with M2, and SVR with M2 are denoted by A4, A5, and A6, 

respectively. Comparison results over the 30 groups of ships based on 10 runs are 

shown in Table 4-11.  

Table 4-11. Comparison of PSCO assignment model performance 

 Random 

assignment 

A3 

(MTR-RF3+M2) 

A4 

(ridge+M2) 

A5 

(LASSO+M2) 

A6 

(SVR+M2) 

Best in 

theory 

Average 38.90 40.79 40.59 40.36 40.48 42.90 

Ratio* 90.68% 95.08% 94.62% 94.08% 94.36% 100% 

Note*: calculated by 1
    

    
0%

 
0

Average of mean inspection expertise

The best inspection expertise in theory
  

Table 4-11 shows that A3 achieves the highest inspection expertise among A3, 

A4, A5, and A6, which indicates the superiority of the combined tree-based prediction 

model with the structure of optimization model.  

4.5.4 Model extension 

In the current prediction and assignment models, the importance of the four 

deficiency categories is viewed as identical. Nevertheless, their importance can be 
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different under certain situations, e.g., in the concentrated inspection campaign (CIC) 

where deficiencies in some categories should be paid more attention to in PSC 

inspections. To extend our models to deal with the situations where the importance of 

the deficiency categories is different, we attach each deficiency category with a 

relative importance score, which is denoted by , 1,2,3,cw c C=  and is no less than 1. The 

larger the value is, the more important the deficiency category is. In the current model, 

1, 1,2,3,cw c C= = . For mathematical model M1, we can combine the importance score 

directly in Equation (4.2) by revising the objective function to be 

1

ˆmax
P C

sc

c pc ps

p s S c=1

w u z
= 

 , while the prediction model MTF-RF1 needs not be revised. 

Then, we denote ˆ
C

sc sp

c pc

c=1

w u = , which can be viewed as the weighted total 

deficiency number identified by PSCO 1,...,p P=  of ship s S  and can be predicted 

by using the MTR-RF models developed in Section 4.1.1. The predicted values for 

sp  are denoted by ˆ sp , and the objective function of mathematical model M2 can be 

revised to ˆmax
P

sp

ps

p=1 s S

z


 . Especially, the total inspection expertise generated by the 

three models where the differences in the deficiency category importance are 

considered is denoted by A1’, A2’, and A3’ respectively. 

We use an example to illustrate the working process and results of the proposed 

models where C1: ship safety is more important than the other deficiency categories. 

The relative importance score can be assigned by the ports in practice. In this example, 

we assume that 1 1.5w =  and 1, 2,3,cw c C= = . Mean inspection expertise of the three 

models is presented in Table 4-12. The performance of random assignment scheme is 

the mean inspection expertise of 10,000 times of random PSCO assignment. The 

inspection expertise under each deficiency category is shown in Table 4-13. 
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Table 4-12. Mean inspection expertise of the three models (considering deficiency 

category importance) 

Group Inspection 

expertise of 

random PSCOs 

assignment  

Mean 

inspection 

expertise of 

A1’ 

Mean 

inspection 

expertise of 

A2’ 

Mean 

inspection 

expertise of 

A3’ 

Best 

inspection 

expertise in 

theory 

1 80.56 83.68 82.72 83.77 89.40 

2 44.03 46.60 46.29 46.54 48.30 

3 49.10 51.47 51.41 51.31 52.40 

4 39.24 39.44 39.29 38.86 43.00 

5 34.11 37.24 37.26 37.17 38.20 

6 25.36 27.23 27.02 26.66 28.30 

7 48.15 50.93 51.10 50.96 51.90 

8 61.70 64.45 64.41 64.23 67.10 

9 32.41 34.60 34.75 34.68 35.40 

10 20.22 19.79 19.85 20.09 23.10 

11 60.19 63.87 63.93 63.81 65.30 

12 33.69 34.56 34.44 34.76 36.80 

13 33.84 34.31 34.60 34.11 37.90 

14 37.98 39.56 39.20 39.70 41.60 

15 22.63 24.23 25.03 24.72 25.70 

16 63.36 66.24 66.60 67.34 69.50 

17 27.67 28.65 28.62 29.01 30.40 

18 38.16 38.90 39.10 38.47 40.80 

19 31.75 33.84 33.77 33.06 36.00 

20 44.36 47.10 47.41 47.00 49.50 

21 32.82 34.13 34.00 34.06 36.20 

22 31.22 33.73 33.64 34.45 35.10 

23 29.67 31.33 31.07 31.02 34.30 

24 33.42 33.87 34.52 34.29 37.00 

25 51.16 53.21 53.04 53.39 55.70 

26 23.23 24.16 24.48 24.63 26.60 

27 25.88 26.70 26.74 26.70 28.70 

28 60.52 62.15 62.44 63.17 65.60 

29 22.75 23.84 23.66 24.02 26.00 

30 27.88 29.73 29.73 29.41 31.10 

Average 38.90 40.65 40.67 40.71 42.90 

Ratio* (90.68%) (94.76%) (94.80%) (94.90%) (100%) 

Note*: calculated by 1
    

    
0%

 
0

Average of mean inspection expertise

The best inspection expertise in theory
 . 
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Table 4-13. Inspection expertise under each deficiency category 

Method/ 

deficiency 

category 

C1: ship safety C2: ship 

management 

C3: ship condition 

and structure 

C4: 

communication 

and navigation 

Original test set 630 478 289 407 

Best in theory 459.9 356.5 209.5 261 

A1 447.24 (97.25%) 309.03 (86.68%) 201.81 (96.33%) 263.84 (101.09%) 

A1’ 449.58 (97.76%) 303.20 (85.05%) 204.27 (97.50%) 262.49 (100.57%) 

A2 446.15 (97.01%) 309.10 (86.70%) 201.25 (96.06%) 263.59 (100.99%) 

A2’ 449.68 (97.78%) 303.30 (85.08%) 203.57 (97.17%) 263.57 (100.98%) 

A3 446.72 (97.13%) 316.39 (88.75%) 198.89 (94.94%) 261.61 (100.23%) 

A3’ 451.95 (98.27%) 307.29 (86.20%) 201.22 (96.05%) 260.93 (99.97%) 

Table 4-12 shows that if different weights of deficiency categories are taken into 

account, the total inspection expertise achieved by the three inspection strategies is no 

larger than the situation when the deficiency categories are of the same importance. 

Moreover, if C1 is regarded to be more important and is attached with a larger 

importance score, the realized inspection expertise under C1 increases in all the three 

inspection strategies as presented in Table 4-13. 

4.5.5 Sensitivity analysis 

In this section, we analyze how the distribution of the expertise of PSCOs would 

influence the performance of the proposed PSCO assignment models. To be concise, 

the sensitivity analysis is conducted on A3 as it achieves the maximum mean 

inspection expertise among A1, A2 and A3. Four groups of sensitivity analyses (SA) 

are performed: SA1: composition of a group of PSCOs; SA2: divergence in expertise 

of a PSCO; SA3: adequacy of PSCO resources; SA4: uncertainty in PSCOs’ expertise.  

4.5.5.1 SA1: composition of a group of PSCOs 

First, we analyze how the composition of a group of PSCOs would influence the 

results. Suppose there are five groups of PSCOs (denoted by SA1G1 to SA1G5, 

respectively) of the same total expertise and different expertise distributions while one 

PSCO has the same expertise to inspect the four deficiency categories. Groups SA1G1 

to SA1G4 contain PSCOs with various expertise, i.e. some of them are experienced 

while some are newcomers. More specifically, the variations of the expertise of each 

PSCO are increasing from SA1G1 to SA1G4. On the contrary, the four PSCOs in 

SA1G5 have the same expertise. The expertise of each PSCO to each deficiency 

category of the five groups is shown in Table 4-14. The analysis results of SA1 are 

shown in Figure 4-1.  
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Table 4-14. Expertise of PSCOs in SA1 

SA1G1 C1 C2 C3 C4 SA1G 2 C1 C2 C3 C4 

PSCO 1 0.775 0.775 0.775 0.775 PSCO 1 0.85 0.85 0.85 0.85 

PSCO 2 0.725 0.725 0.725 0.725 PSCO 2 0.75 0.75 0.75 0.75 

PSCO 3 0.675 0.675 0.675 0.675 PSCO 3 0.65 0.65 0.65 0.65 

PSCO 4 0.625 0.625 0.625 0.625 PSCO 4 0.55 0.55 0.55 0.55 

SA1G3 C1 C2 C3 C4 SA1G4 C1 C2 C3 C4 

PSCO 1 0.925 0.925 0.925 0.925 PSCO 1 1.0 1.0 1.0 1.0 

PSCO 2 0.775 0.775 0.775 0.775 PSCO 2 0.8 0.8 0.8 0.8 

PSCO 3 0.625 0.625 0.625 0.625 PSCO 3 0.6 0.6 0.6 0.6 

PSCO 4 0.475 0.475 0.475 0.475 PSCO 4 0.4 0.4 0.4 0.4 

SA1G5 C1 C2 C3 C4      

PSCO 1 0.7 0.7 0.7 0.7      

PSCO 2 0.7 0.7 0.7 0.7      

PSCO 3 0.7 0.7 0.7 0.7      

PSCO 4 0.7 0.7 0.7 0.7      

 

 

Figure 4-1. Analysis results of SA1 

Several conclusions can be drawn from Figure 4-1. First, as the divergence of 

expertise of the group of PSCOs become larger, both the best inspection expertise in 

theory and the mean inspection expertise achieved by using A3 increase, as the diverse 

conditions of the inspected ships can be better matched with the more varied expertise 

of the group of PSCOs. Second, the superiority of the PSCO assignment scheme 

generated by A3 over random PSCO assignment becomes more obvious when the 

inspection expertise of the PSCOs gets more diverse. Third, the mean inspection 

expertise achieved by A3 is equal to the best inspection expertise in theory when all 

the PSCOs have the same expertise. However, as the expertise of the group of PSCOs 

gets more varied, the gap between mean inspection expertise and the best inspection 

expertise in theory gets larger. This indicates that predicting errors of the prediction 

model (i.e., MTR-RF3) have a larger influence on the final assignment model when 
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the expertise of PSCOs becomes more diverse, as the assignment scheme relies more 

on the predicted number of deficiencies of a ship that can be identified if assigned to a 

PSCO.  

The extreme situation is that when all the PSCOs have the same expertise, the 

mean inspection expertise achieved by A3 equals the best inspection expertise in 

theory and random PSCO assignment, as the PSCO assignment is totally random under 

this condition and has nothing to do with the prediction results of MTR-RF3. 

Nevertheless, it should also be noted that even in SA1G4, where the expertise of the 

PSCOs is most varied, the mean inspection expertise is approaching 95% of the best 

inspection expertise in theory, and the PSCO assignment performance of A3 is 24% 

better than random PSCO assignment. The results indicate that our model is more 

suitable to be applied than random PSCO assignment scheme when the expertise of 

the PSCOs is divergent. When the expertise of all the PSCOs is the same, our model 

is equal to random PSCO assignment. 

4.5.5.2 SA2: divergence in expertise of a PSCO 

Second, we analyze how various expertise of a PSCO in different deficiency 

categories would influence the results. We consider four groups of PSCOs (denoted 

by SA2G1 to SA2G4, respectively) where the total expertise is the same for each 

PSCO and the total expertise to inspect one deficiency category is the same for each 

group (i.e., the sum of each row and the sum of each column are the same in all groups). 

In SA2G1 to SA2G3, the PSCOs have different expertise to inspect different 

deficiency categories, while in SA2G4, all PSCOs have the same expertise in different 

deficiency categories. More specifically, the variations of the PSCOs are increasing 

from SA2G1 to SA2G3: the sum of absolute variations of all PSCOs in SA2G1, 

SA2G2 and SA2G3 is 1.8, 2.2 and 2.6, respectively. The expertise of each PSCO in 

each deficiency category of the four groups is shown in Table 4-15. The results of the 

analyses are presented in Figure 4-2.  
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Table 4-15. Expertise of PSCOs in SA2 

SA2G1 C1 C2 C3 C4 SA2G2 C1 C2 C3 C4 

PSCO 1 0.9 0.8 0.6 0.5 PSCO 1 0.8 0.5 1.0 0.5 

PSCO 2 0.6 0.8 0.7 0.7 PSCO 2 0.9 0.8 0.5 0.6 

PSCO 3 0.5 0.6 0.9 0.8 PSCO 3 0.6 0.7 0.6 0.9 

PSCO 4 0.8 0.6 0.6 0.8 PSCO 4 0.5 0.8 0.7 0.8 

SA2G3 C1 C2 C3 C4 SA1G4 C1 C2 C3 C4 

PSCO 1 0.8 0.9 0.7 0.4 PSCO 1 0.7 0.7 0.7 0.7 

PSCO 2 0.8 0.4 0.8 0.8 PSCO 2 0.7 0.7 0.7 0.7 

PSCO 3 0.8 0.5 0.8 0.7 PSCO 3 0.7 0.7 0.7 0.7 

PSCO 4 0.4 1.0 0.5 0.9 PSCO 4 0.7 0.7 0.7 0.7 

 

 

Figure 4-2. Analysis results of SA2 

As shown in Figure 4-2, when the total expertise of each PSCO is the same and 

the total expertise to inspect one deficiency category for each group is the same, the 

best inspection expertise in theory shows gentle increase when the divergence of the 

PSCOs’ expertise increases. Nevertheless, due to the randomness in the dataset and 

the model performance, the predicted mean inspection expertise does not show this 

trend: when the variations in the expertise of the PSCOs increase, the predicted mean 

inspection expertise can either increase or decrease modestly.  

4.5.5.3 SA3: adequacy of PSCO resources 

Third, we analyze the influence of the adequacy of PSCO resources on the 

inspection results. In our problem, four PSCOs are assigned to inspect 10 ships coming 

to the port state every day (benchmark, denoted by SA4G3). The maximum number of 

ships that can be inspected by one PSCO is three. We consider other situations where 

there are 8 (SA3G1), 9 (SA3G2), 11 (SA3G4), and 12 (SA3G5) ships coming to the 

port state every day while keeping the other settings unchanged and compare the mean 
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inspection expertise of a single ship to identify the influence of PSCO resources. The 

results are shown in Figure 4-3. 

 

Figure 4-3. Analysis results of SA3 

As shown in Figure 4-3, when the number of ships in a group grows while the 

number of PSCOs and the maximum number of ships can be inspected by one PSCO 

remain unchanged, the average inspection expertise of one ship remains stable. This 

indicates that the performance of the proposed models is not heavily influenced by the 

adequacy of the resources of PSCOs, which also shows that the model performs 

robustly. Besides, our model performs much better than random PSCO assignment in 

all situations.  

5.5.4 SA4: uncertainty in PSCOs’ expertise 

Fourth, we analyze the uncertainty in PSCO expertise in each deficiency 

category. Although the expertise of PSCOs could be measured by tests, interviews, 

and questionnaires, uncertainties can exist, which means that the expertise we obtained 

may not be the exact expertise in reality. The expertise values presented in Table 4-4 

are the measured inspection expertise and we suppose that the real inspection expertise 

is within 10% more or less than the measured inspection expertise. For example, the 

expertise of PSCO 1 for deficiency category C1 is 0.8, and we suppose that the real 

inspection expertise is uniformly distributed from 0.72 to 0.88 (accurate to two digits). 

We randomly select a value within this interval for each inspection expertise value and 

form a new expertise table of each PSCO in each deficiency category for ten times, 

and we can obtain ten possible real inspection expertise tables. The inspection 
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expertise of random PSCO assignment, the best inspection in theory, and the mean 

inspection expertise of the ten groups are shown in Figure 4-4. 

 

Figure 4-4. Analysis results of SA4 

Under the assumption that the real inspection expertise of each PSCO to each 

deficiency category is within 10% more or less than the measured inspection expertise 

presented in Table 4-5, the variance of the best inspection expertise in theory of the 10 

groups in SA4 is 0.8298. The range of the best inspection expertise in theory is 3.1 

(the maximum inspection expertise of the 10 groups is 44.68 and the minimum 

inspection expertise is 41.58). Compared with the benchmark, which is generated by 

using the measured inspection expertise shown in Table 4-4, the differences are 

between －3.08% and ＋4.15% and are much smaller than ±10%.  

As for the predicted inspection expertise, the variance of the 10 groups in SA4 

is 0.4999, and the range of mean inspection expertise is 2.6 (the maximum inspection 

expertise of the 10 groups is 42.22 and the minimum inspection expertise is 39.62). 

The differences between the benchmark and the 10 groups range from －2.87% to 

＋3.51% and are also much smaller than ±10%. We also compare the differences 

between predicted mean inspection expertise of the benchmark with the best inspection 

expertise of the 10 groups in SA4. The difference is from ＋1.94% to ＋9.54%, which 

indicates that the proposed models are robust even if there are some uncertainties in 

measuring the inspection expertise of each PSCO to each deficiency category. The 

average best inspection expertise of the 10 groups is 43.646 and the average predicted 

inspection expertise of the 10 groups is 41.237, which indicates that the proposed 

model can identify about 94.5% of the total deficiencies and that it always performs 
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better than random PSCO assignment in all groups of tests as shown in the two lower 

lines of Figure 4-4. 

4.6 DISCUSSION AND FUTURE RESEARCH 

As indicated in Section 4.5.2.1, the inspection expertise of each PSCO in each 

deficiency category shown in Table 4-4 is assumed by the authors as there is no such 

standard tests or questionnaires at the moment in the Tokyo MoU. The assumption of 

the inspection expertise table is that each PSCO has more expertise in one or two 

deficiency categories than the other PSCOs and we just use the assumed inspection 

expertise to illustrate the working process of the proposed models. Although massive 

sensitivity analysis has been conducted to evaluate the performance of the proposed 

models, in future research, accurate assessments would be developed to evaluate the 

real expertise of the PSCOs for different deficiency categories. For example, a test 

consisting of a theoretical part and a practical part of all the four deficiency categories, 

or an interview regarding the background, experience, and self-evaluation of the 

PSCOs, or a questionnaire for collecting the PSCOs’ own preference and expertise can 

be held. The results of the test, interview, and questionnaire can be considered 

simultaneously to comprehensively evaluate the inspection expertise of the PSCOs. 

For the convenience of MoU management, we propose another way to evaluate the 

performance of the PSCOs. Suppose that there are several PSCOs at a port, and we let 

them to inspect a group of ships (say 10 ships or 20 ships) in a certain amount of time. 

Then, we compare the total number of detected deficiencies under each deficiency 

category of the PSCOs regarding all the ships. For the PSCO(s) who can identify the 

most deficiency number of a category, we denote her/his expertise to be “1”. The 

expertise of the other PSCOs regarding this deficiency category is calculated by 

dividing her/his number of detected deficiencies in this category by the largest number 

of detected deficiencies of this category of all PSCOs. For example, the detected 

deficiency number for deficiency category C1 is 20, 18, 16, and 14 for PSCO1, PSCO2, 

PSCO3, and PSCO4, and their inspection expertise for C1 should be 1, 0.9, 0.8, and 

0.7, respectively. In this way, evaluating and updating the inspection expertise of the 

PSCOs can be more convenient for the ports. 

Another thing should be noted is that the expertise of the PSCOs can be updated 

over time and experience. Therefore, reevaluations should be carried out for updating 

the expertise of the PSCOs. We suggest that the reevaluation to be carried out once a 
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year for the following reasons. First, the committee meeting of Tokyo MoU is held 

once a year. In the committee meeting, several important discussions and decisions are 

made, such as the application for co-operating member status, actions relating to 

harmonization of PSC, and approval of the final report of the concentrated inspection 

campaign (CIC) in the 29th committee meeting in 2018 (Tokyo MoU, 2018b). 

Therefore, it should be a good chance to discuss the details of reevaluations at the 

committee meeting. Second, setting the time interval of two reevaluations to be one 

year is a result of a trade-off: for one thing, the inspection expertise for the PSCOs 

could remain unchanged for only a period of time; for another, it can be time-

consuming to prepare for the reevaluations. 

Given the fact that the inspection expertise of the PSCOs can improve over time 

and experience and it is also a goal to improve the PSCOs’ inspection expertise to be 

as close as possible to 1, we propose two ways to achieve the comprehensive 

development of the PSCO if the proposed models are applied. First, except for the 

assigned PSCO who is responsible to conduct the PSC inspection, other PSCOs can 

get onboard during the PSC inspections to learn from the PSCO with more inspection 

expertise in certain deficiency categories to achieve self-improvement. Second, during 

the regular trainings and seminars, the PSCOs can share their experience and expertise 

as well as discuss the difficulties they meet during the inspections with each other to 

achieve co-operation and progress.  

As the main goal of PSC is to identify substandard ships and detain them if 

necessary to protect the maritime safety and protect the marine environment, ship 

detention probability can also be incorporated in the prediction and assignment models 

in the future research for better applicability and practicability. Meanwhile, PSCOs’ 

expertise in targeting ships with high detention probability should also be evaluated 

and considered. 

4.7 CONCLUSION 

Maritime safety and the marine environmental protection are gaining increasing 

concern in recent years. PSC inspection is a widely-believed effective and efficient 

way to safeguard the sea. To improve the efficiency of PSC inspections, one of the key 

points is to identify as many deficiencies as possible using limited inspection resources. 

At the ports with less experienced and divergent PSCOs, this requires matching the 
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PSCOs of different expertise and the deficiency conditions of the inspected ships, e.g. 

the deficiency number under each deficiency category. To achieve this goal, this 

chapter proposes three ML models: MTR-RF1, MTR-RF2, and MTR-RF3 and two 

PSCO assignment models M1 and M2 to match the diverse ship deficiency conditions 

with the expertise of PSCOs. More specifically, MTR-RF1 predicts the number of 

deficiencies in each deficiency category for each ship in a way that minimizes the MSE 

between actual and predicted numbers of deficiencies; MTR-RF2 predicts the number 

of deficiencies each PSCO can identify for each ship by minimizing the MSE between 

actual and predicted deficiency numbers; MTR-RF3 predicts the number of 

deficiencies each PSCO can identify for each ship while adopting a loss function 

motivated by the structure of the optimization problem, i.e. minimizing the MSO in 

the numbers of deficiencies that can be detected among the PSCOs for each ship. 

Numerical experiments show that the performance of combination of MTR-RF3 and 

M2 (i.e., A3) is the best among the three proposed models, while all the three models 

perform much better than the currently used random PSCO assignment as they can 

identify about 95% of all the deficiencies compared to the best inspection expertise in 

theory.  

By conducting sensitivity analyses, several managerial insights can be drawn. 

First, our model is more suitable to be applied when the expertise of the PSCOs is 

divergent as the superiority of the proposed models becomes more obvious when the 

divergence of the PSCOs increases. Second, the adequacy of the PSCO resources 

would not heavily influence the performance of the proposed models. Besides, even if 

uncertainty may exist in measuring the expertise of the PSCOs to each deficiency 

category, the robustness of our model is validated.  

In this chapter, both prediction and optimization are required to generate the 

decision for PSCO assignment. Meanwhile, both prediction and optimization are 

challenging tasks, as errors cannot be avoided in the prediction problem, while the 

unknown parameters in the optimization model are determined by the outputs of the 

prediction model. For A1 and A2, the ML models for parameter prediction totally 

ignore the downstream optimization problem and only aim to minimize the prediction 

error which is evaluated by MSE. Although the objective is to make the predicted 

outputs as close as to the real outputs, inaccuracy always exists, and thus minimizing 

the output error cannot guarantee the best decision in theory generated by the following 
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optimization model or generate the decision as close as to the best decision in theory. 

Moreover, inaccuracy in the predicted results is highly likely to be magnified when 

combining with the downstream optimization model and thus make the final generated 

decision far away from the best decision in theory. On the contrary, MSO used in 

MTR-RF3 (and thus in A3) is highly related to the structure and property of the 

downstream optimization model, as the prediction model is designed to generate 

outputs that make the generated decisions of the following optimization model as close 

as to the best decision in theory by aiming to maintain the property of the parameters 

in the optimization model for generating the best decision in theory. 

Theoretically, the proposed MTR-RF1 and MTR-RF2 treat prediction and 

optimization models as sequential steps while the proposed MTR-RF3 partially 

combines prediction and optimization models by considering the structure and 

property of the optimization model when constructing the ML model. The numerical 

experiments show that although MTR-RF3 performs much worse than MTR-RF2 as a 

regression model evaluated by the metric of MSE, the performance of MTR-RF3 is 

better than MTR-RF2 when combining with the following optimization models. 

Practically, the proposed models help to address a meaningful practical problem in 

PSC inspection. Compared with random assignment of PSCOs, the proposed three 

models can help to detect 4.70%, 4.55%, and 4.86% more deficiencies after inspecting 

the same groups of ships by using the same PSCO recourses. Meanwhile, the 

performance of the three models is stable and their performance would achieve 95% 

of the best inspection expertise in theory. 
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Chapter 5: Efficient and Explainable Ship 

Selection Planning5 

The prediction models proposed in Chapter 3 and Chapter 4 are of black-box 

nature, which means that the prediction results and the working mechanism of the 

prediction models are unexplainable to model users. As a result, their popularity and 

reliability are likely to be weakened. This Chapter aims to develop explainable and 

interpretable prediction models of ship total deficiency number. It first develops a data-

driven ship risk prediction framework using features the same as the current ship 

selection scheme. Like the existing ship risk prediction models, the proposed 

framework is of black-box nature whose working mechanism is opaque. To improve 

model explainability, local explanation of the prediction of individual ships by the 

Shapley additive explanations (SHAP) with the properties of local accuracy and 

consistency is provided. Furthermore, we innovatively extend the local SHAP model 

to a fully-explainable near linear-form global surrogate model of the original black-

box data-driven model by deriving feature coefficients and fitting curves of feature 

values and SHAP values from the SHAP value matrix. This demonstrates that the 

behavior of black-box data-driven models can be as interpretable as white-box models 

while retaining their prediction accuracy. Numerical experiments demonstrate that the 

white-box global surrogate model can accurately present the behavior of the original 

black-box model, shedding light on model validation, fairness verification, and 

prediction explanation, and hence promote their acceptance and application among 

maritime stakeholders. 

5.1 INTRODUCTION 

Given a large number of foreign visiting ships and the limited inspection 

resources at a port, only a small proportion of the ships can be inspected by PSC. For 

example, only 13.05% of all the foreign ships visiting the Hong Kong Port were 

inspected in 2019 (Tokyo MoU, 2020). Meanwhile, globally, less than half of the 

inspected ships were with deficiency detected during 2018 and 2020, while only 2.50% 

 
5  Yan, R., Wu, S., Jin, Y., Cao, J., Wang, S., 2022. Efficient and explainable ship selection planning in port state control. 

Transportation Research Part C: Emerging Technologies, under review. 
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of them were detained (i.e., with very serious deficiency or deficiencies detected) 

during this period (Marine Department, 2021). This indicates that accurate 

identification of substandard ships and rational allocation of the scarce inspection 

resources at port is the key to improve the effectiveness of PSC while reducing the 

delay of the fast turnover of the maritime logistics systems brought about by non-

essential inspections. Moreover, the cost of a PSC inspection can be very high: 

according to Tokyo MoU, the charge of the first hour of follow-up inspection at the 

Hong Kong Port is 3,270 HKD (about 420 USD) and that of the subsequent hours is 

1,115 HKD (about 143 USD) per hour, and the documentation fee is 1,115 HKD 

(about 143 USD) per hour (Tokyo MoU, 2016). Therefore, correct identification and 

inspection of high-risk ships can not only improve inspection efficiency, but also save 

resources and reduce costs.  

This chapter aims to develop and explain a state-of-the-art data-driven ML based 

ship risk prediction model to assist port states in identifying and selecting high-risk 

foreign visiting ships. We use six years’ PSC inspection records at the Hong Kong Port 

to develop a ship risk prediction framework based on a gradient boost regression trees 

(GBRTs) to predict ship deficiency number. Features in the proposed framework are 

the same as those considered in the current ship selection scheme applied by the Tokyo 

MoU. Post-hoc, model-agnostic, and local explanations are then given by Shapley 

additive explanations (SHAP) method, aiming to explain the prediction of individual 

ships. We further extend the local SHAP method to a global explanation method taking 

a near linear form by calculating the average SHAP values of different states for 

categorical features and fitting curves of feature values and SHAP values for integer 

and continuous features. Thorough analysis of model explanations is given to draw 

policy insights and managerial recommendations for both port authorities as well as 

ship owners and managers. To be more specific, this study makes the following 

contributions.  

From theoretical perspective, we extend the local SHAP method to a global 

explanation method in an intuitive and succinct way, showing that the prediction 

behavior of black-box models (e.g., the GBRT models to predict ship deficiency 

number in this study) can be presented by white-box models (e.g., the extended SHAP 

model taking a near linear form) without compromising their prediction performance 

under arbitrary problem setting. The near linear-form global surrogate model is derived 
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directly from local explanations, and thus can illustrate the average contribution of 

each feature value to the final prediction on the whole dataset. Such unification of local 

and global explanations can make the interpretation of black-box model more 

comprehensive and consistent. Furthermore, we demonstrate that the black-box ship 

risk prediction model is of satisfactory accuracy, and the difference between the 

predictions given by the original black-box model and that given by the near linear-

form global surrogate model is minor. In addition, model explanations given by local 

and global feature importance scores, beeswarm plots, and near linear-form global 

surrogate model are comprehensible to port authorities and ship owners, operators, and 

management companies. The explanations are also essential for them to trust and apply 

the proposed frameworks. Therefore, the explanations can be validated to follow the 

‘predictive, descriptive, and relevant’ framework for black-box model explanation 

evaluation (Murdoch et al., 2019).   

From practical perspective, to the best of the authors’ knowledge, this is the very 

first study that explores explanations of black-box prediction models in maritime 

transport and thus paves the way of adopting ML models (which is a typical type of 

black-box model) to address maritime transport problems. Especially, a critical 

problem in a major international shipping policy is addressed in this study, i.e., high-

risk ship selection in PSC. Only the factors considered in the current ship selection 

scheme are used for developing the ship selection framework, making it more 

applicable to port authorities. Thorough explanations of the black-box prediction 

model further make it more comprehensible and acceptable by port authorities as well 

as ship owners and managers. Numerical experiments show that the proposed ship 

selection framework is more efficient in identifying high-risk ships compared to the 

current ship selection scheme.  

From policy making point of view, the comprehensive and consistent 

explanations provided in this study make an initial step to bridge the gap between 

making a prediction and making a decision in maritime transport area from at least 

three perspectives: trustworthiness, fairness, and informativeness. Disclosing the inner 

working mechanism and decision process of a black-box prediction model can help to 

verify whether the predictions given by a black-box model comply with domain 

knowledge. If yes, the proposed black-box prediction model can be expected to be 

more trustable and acceptable by decision makers. Fairness of the recommendations 
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made by black-box prediction models is a main concern of policy makers, which can 

also be validated by investigating the coefficients and curves of the features in the 

global surrogate models developed in this study. Insights extracted from practical data 

can shed light on policy and decision makings in the future, and thus enhance the 

informativeness of model explanation. 

5.2 LITERATURE REVIEW AND RESEARCH GAP 

5.2.1 Explainability of ship risk prediction model 

Based on the literature reviewed in Chapter 2, the dataset used, features 

considered, risk indicators and prediction model developed, and model explainability 

of the studies on ship risk prediction are provided in Table 5-1. 

Table 5-1. Summary of studies on ship risk prediction for PSC inspection 

Literature Dataset  Features considered Risk indicator Risk 

prediction 

model 

Explainability 

Xu et al. 

(2007a)  

5,000 ships with more than 4 

inspection records in the Paris 

MoU from January 2003 to 

January 2007 

Generic factors: ship age, type, tonnage, flag, 

classification society, company,  

History factors: the number of deficiencies, 

outstanding deficiencies, duplicate deficiencies, 

duplicate outstanding deficiencies, and detentions in 

past 4 inspections, time since last initial inspection 

Ship detention SVM No 

Xu et al. 

(2007b) 

The same as Xu et al. (2007a) Numbers of non-lasting and lasting 

equipment/operation deficiencies, number of 

outstanding non-lasting and lasting 

equipment/operation deficiencies, numbers of 

deficiencies/outstanding deficiencies in areas 1 to 8 in 

past 4 inspections and the features considered by Xu et 

al. (2007a) 

Ship detention SVM No 

Gao et al. 

(2007)  

140,000 inspection records in 

the Tokyo MoU 

15 features including ship generic factors, dynamic 

factors, and history factors 

Ship detention KNN-SVM No 

Wu et al. 

(2021)  

Inspection records of general 

cargo ship from 2014 to 2018 

in the Tokyo MoU 

Ship age, number of deficiencies, and 5 types of 

deficiencies selected by AHP and GRA 

Ship detention SVM No 

Yang et al. 

(2018a)  

Inspection records of bulk 

carriers from 2005 to 2008 in 

the Paris MoU 

Ship flag, RO, deadweight tonnage, age, inspection 

type, inspection port, and the number of deficiencies 

detected 

Ship detention BN model Partially 

explainable, 

presented by 

conditional 

probability 

Yang et al. 

(2018b)  

Inspection records of bulk 

carriers from 2015 to 2017 in 

the Paris MoU 

Ship flag, age, company performance, inspection type, 

inspection port, inspection date, and the number of 

deficiencies detected 

Ship detention BN model Partially 

explainable, 

presented by 

conditional 

probability 

Wang et al. 

(2019)  

Inspection records in 2017 at 

the Hong Kong Port in the 

Tokyo MoU 

Ship age, GT, type, flag performance, company 

performance, RO performance, last inspection time, 

the number of deficiencies in last inspection, the 

number of previous detentions, and the number of 

times of changing flag 

Ship deficiency 

number 

BN model Partially 

explainable, 

presented by 

conditional 

probability 

Yan et al. 

(2020)  

Inspection records from 2016 

to 2018 at the Hong Kong 

Port in the Tokyo MoU 

Ship age, GT, length, depth, beam, type, the number of 

times of changing flag, total detention times, 

casualties in last five years, ship flag, RO, and 

company performance, last inspection time, last 

deficiency number, follow-up inspection rate 

Ship deficiency 

number under 

each deficiency 

category 

RF models 

consisting of 

multi-target 

regression 

trees 

No 
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Yan et al. 

(2021b)  

Inspection records from 2016 

to 2018 at the Hong Kong 

Port in the Tokyo MoU 

Ship age, GT, type, depth, length, beam, the number of 

times of changing flag, casualties in the last 5 years, 

total detentions, ship flag, RO, and company 

performance, last inspection time, last deficiency 

number, and follow-up inspection rate 

Ship detention BRF model No 

Yan et al. 

(2021a)  

Inspection records from 2016 

to 2018 at the Hong Kong 

Port in the Tokyo MoU 

Ship age, GT, length, depth, beam, type, ship flag, RO, 

and company performance, last inspection date, last 

deficiency number, total detentions, the number of flag 

changes, and casualty in last 5 years 

Ship deficiency 

number 

XGBoost 

model 

No 

Degré 

(2007)  

IMO casualty records from 

1998 to 2003 

Ship type, size, and age Ship risk 

evaluated by 

the probability 

of the 

occurrence of 

casualties and 

their potential 

consequences 

A statistical 

model  

Yes 

Degré 

(2008) 

Casualty descriptive statistics 

and world merchant fleet 

descriptive statistics 

Ship type, size, and age Black-grey-

white lists of 

categories of 

ships 

A binomial 

calculation 

method 

Yes 

Heij and 

Knapp 

(2019)  

IHS Markit for ship- 

particular data, ship incident 

database from 2010 to 2014, 

and ship inspection database 

from 2010 to 2014  

A total of thirty factors with more than 500 variables, 

such as flag, owner, engine designer and builder are 

contained in the initial model, while only significant 

variables are contained in sub-models  

Ship 

inspections, 

detentions, and 

very serious 

and serious 

incidents 

A logit 

model 

Yes 

Knapp and 

Heij (2020)  

IHS Markit for ship- 

particular data, ship incident 

database from 2010 to 2014, 

and ship inspection database 

from 2010 to 2014 for 

estimating risk formulas and 

probabilities, and quarterly 

data of incidents, inspection 

and ship particular data for 

estimating probabilities 

Over 500 variables are contained in the initial model, 

and 16 to 172 variables are contained in the sub-

models 

Ship 

inspections, 

detentions, and 

very serious 

and serious 

incidents 

A 

combination 

of logit 

model and 

percentage 

rank model 

Yes 

Dinis et al. 

(2020) 

Inspection records of 136 

ships at the port of Lisbon in 

the Paris MoU in 2018, and 

AIS data of 25 ships that have 

entered the same port 

Ship type, age, flag, RO, company, deficiency and 

detention within the last 3 years  

SRP with more 

detailed states 

BN Partially 

explainable, 

presented by 

conditional 

probability 

The above analysis indicates that one of the largest gaps in current literature is 

the lack of model explainability. On the one hand, except for BN, which is partially 

explainable, all the other models for direct ship risk prediction are in a total black-box 

nature. It is also noted that although Naive Bayes, which is the most basic type of BN 

model, can be viewed as a type of interpretable model (Molnar, 2020), its 

interpretability is due to the underlying independence assumption, and thus the 

contribution of each feature towards the prediction target is clearly presented by the 

conditional probability tables. However, as Naive Bayes models usually oversimplify 

the reality, their accuracy is highly compromised. Therefore, none of the BN models 

developed in the abovementioned research is Naive Bayes model. Instead, BNs with 

more complex structures, especially those taking interdependencies among the 

variables into account, were developed for ship risk prediction. Consequently, 

interpretability of these BNs is largely weakened, especially those containing 
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intermediate variables such as Yang et al. (2018a, 2018b) and Dinis et al. (2020). On 

the other hand, although the statistical models employed for indirect ship risk 

prediction are interpretable to a certain degree, their predictive power could be weaker 

than that of the state-of-the-art ML models (Murdoch et al., 2019).  

Another gap in existing literature is the features used for ship risk prediction. 

Table 5-1 indicates that except for Dinis et al. (2020) where only factors in the SRP 

are considered to predict ship risk, external databases with different degrees of 

difficulty in obtaining are used by all the other studies. Consequently, these models 

might be hard to be adopted by the conservative port authorities as such external 

datasets may not be trusted by them and much more time, efforts, and money might be 

spent on obtaining and processing the required data. Meanwhile, although only the 

factors in the SRP were considered to develop ship risk prediction models in Dinis et 

al. (2020), the prediction target of more detailed ship risk profile (a total of 14 risk 

levels) is abstract and might hard to be verified. 

5.2.2 Explainable artificial intelligence in transportation research 

To make the literature review more comprehensive, we also briefly review the 

existing literature on exploring explainable artificial intelligence (XAI) in 

transportation research. ML and deep learning approaches have been adopted by a 

large number of works in the transportation field, but only quite a few have addressed 

model explainability issue (Kalatian and Farooq, 2021), and most of the related studies 

are published in recent three years. These explanation methods can be divided into two 

types: global explanation, which aims to explain the entire model behavior, and local 

explanation, which aims to explain an individual prediction. Features’ relative 

importance to the prediction target is the most common way of global explanation, 

which can be found in Zhang and Haghani (2015) for highway travel time prediction, 

Hagenauer and Helbich (2017) for travel mode choice prediction, and Chen et al. (2017) 

for passengers’ ridesplitting behavior prediction. In addition, Wang et al. (2020) 

developed a decision tree as a surrogate of the black-box prediction model for 

congestion attack prediction. Meanwhile, local explanation is achieved by SHAP in 

Barredo-Arrieta et al. (2019) for traffic flow prediction, Veran et al. (2020) for crash 

prediction, and Kalatian and Farooq (2021) for pedestrians’ wait time prediction. Other 

common methods for local explanation, such as partial dependence plot (PDP), 
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individual conditional expectation (ICE), and accumulated local effect (ALE) were 

used in Khoda Bakhshi and Ahmed (2021) for road crash probability prediction.  

Both global and local explanations are provided by some studies via separate 

approaches. Especially, global explanation was also mainly achieved by deriving 

feature importance or feature interactions, while local explanation was reached by PDP 

in Zhao et al. (2018) for travel mode switching behavior prediction, by SHAP in 

Parmar et al. (2021) for parking duration prediction, by ALE in Kim et al. (2020) for 

passenger transit purpose prediction, and in Kim (2021) for travel mode choice 

prediction, by local interpretable model-agnostic explanations (LIME) in Bukhsh et al. 

(2019) for rail maintenance need prediction and management, and by PDP and ALE 

in Xu et al. (2021) for ridesplitting adoption prediction.  

The studies covered in this subsection so far mainly adopt existing explanation 

methods. Besides, researchers have also proposed innovative explanation methods in 

specific problem settings. Zhao et al. (2019) extended the PDP method to conditional 

PDP and conditional individual PDP for travel mode switching behavior analysis. The 

key idea was to group instances into subpopulations first based on some features, and 

then conduct analysis in each subpopulation. Kim et al. (2020) developed a two-stage 

framework consisting of a linear regression (LR) part for model interpretability and a 

long short-term memory (LSTM) part for model accuracy to predict taxi demand. 

Wang et al. (2020, 2021a, 2021b) tried to explain and extend deep neural networks 

(DNNs) to analyze travel mode choice. Particularly, Wang et al. (2020) demonstrated 

that DNNs could provide economic interpretation as complete as classical discrete 

choice methods (DCMs). Wang et al. (2021a) further substantiated the interpretability 

of DNN by formulating the function approximation loss to measure interpretation 

quality. Considering the shared utility interpretation of DCMs and DNNs, Wang et al. 

(2021b) synergized both models to a unified framework to achieve mutual benefits for 

travel behavior modeling.  

Although some pioneering efforts have been made to disclose the black-box 

prediction models applied in transportation research, there are still some limitations. 

First, although some studies aim to provide more comprehensive model explanations 

by giving both global and local explanations, the two types of explanations are derived 

from separate methods, and thus inconsistency in explanation might occur. Second, 

although there are some extensions of current explanation methods, such extensions 
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are problem-specific, making them hard to be applied to other problems. Third, none 

of these studies are within the context of maritime transport area, where interpretation 

and explanation of black-box models are urgently needed to facilitate their successful 

application in the traditional and conservative shipping industries.  

To bridge these gaps, a highly accurate ML based ship risk prediction framework 

using features from the current ship selection scheme is developed in this chapter. 

Local explanation and analysis are then given by SHAP. To go one step further, we 

extend SHAP to a global method in a near linear form by formulating a global 

surrogate model of the original ML model, and such extension can be applied to 

arbitrary problem other than the ship selection problem in maritime transport. 

Contribution of each feature value to the final prediction can be derived from the 

parameters in the surrogate model similar to a near linear regression model, and thus 

the black-box prediction model can be considered as explainable as white-box models 

while its high accuracy can be fully retained. 

5.3 DEVELOPMENT OF ML BASED SHIP RISK PREDICTION 

FRAMEWORK FOR PSC 

As the domain knowledge based SRP applied by the Tokyo MoU has several 

drawbacks which reduce its effectiveness in high-risk ship identification, data-driven 

ship risk prediction framework based on ML model is developed in this study to 

achieve efficient ship selection. Data sources and features used for model calibration 

are first overviewed, and the data-driven framework for ship risk prediction is then 

introduced, and finally the prediction performance is comprehensively compared and 

analyzed.  

5.3.1 Data 

A total of 3,672 initial PSC inspection records at the Hong Kong Port from 1 

January 2015 to 31 December 2020 constitute the case dataset of this study. The whole 

dataset is randomly split into training set (80%, 2,937 samples) and test set (20%, 735 

samples). To make the ship risk prediction frameworks developed more consistent 

with the current ship selection scheme at the Hong Kong Port, i.e., the SRP, and to 

avoid imposing extra burden of data acquisition and model understanding on the model 

users, we adopt the same parameters and their encoding method used in the SRP within 
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the Tokyo MoU as the features to develop the ML model, which is denoted by T-SRP. 

Detailed parameter decoding method is presented in Table 5-2. 

Table 5-2. Feature processing methods in T-SRP 

Type Parameters in SRP Criteria in SRP SRP T-SRP 

Weighting 

points 

Feature decoding method Feature type after 

decoding 

1 Ship type Chemical tanker, gas carrier, oil 

tanker, bulk carrier, passenger 

ship, container ship 

2 If ship type within the criteria of SRP: 

1_ship_type_concerned = 1; else:  

1_ship_type_concerned = 0 

Binary 

 

2 Ship age All types with age > 12 years 1 If ship age more than 12: 

2_ship_age_12+ = 1; else: 

2_ship_age_12+ = 0 

Binary  

 

3 Flag performance in 

Black-Grey-White list 

of Tokyo MoU 

Black  1 If ship flag performance black:  

3_flag_black = 1; else: 

3_flag_black = 0 

Binary 

4 RO performance in 

Tokyo MoU 

Low/very low 1 If ship RO performance low or very 

low:  

4_RO_low = 1; else: 
4_RO_low = 0 

Binary 

 

5 Company performance 

in Tokyo MoU 

Low/very low/no inspection 

within previous 36 months 
[unknown]   

2 If ship company performance low, 

very low, or unknown:  
5_company_low = 1; else: 

5_company_low = 0 

Binary 

6 Number of 
deficiencies recorded 

in each inspection 

within previous 36 
months 

How many inspections were 
there which recorded over 5 

deficiencies? 

Number of 
inspections 

which recorded 

over 5 
deficiencies 

The number of inspections with over 
5 deficiencies in previous 36 months:  

6_deficiency_no_last_36 

Integer 

7 Number of detentions 

within previous 36 
months 

3 or more detentions 1 If involved in 3 or more detentions 

within previous 36 months: 
7_deficiency_last_36 = 1; else: 

7_deficiency_last_36 = 0 

Binary 

5.3.2 Introduction of GBRT 

Boosting is one of the most powerful learning methods in the ML community 

(Friedman et al., 2001). The basic idea of boosting is to develop a procedure that 

combines the outputs of many less accurate but diverse weak learners in an additive 

manner to produce a power ensembled model (Friedman et al., 2001). Flexible CARTs 

are popular weak learners in boosting models. In GBRT for regression tasks, one 

CART is fit on the negative gradient value of the given loss function in each iteration. 

Denote a dataset with n  samples and m  features by 

{( , ), 1,..., }, ,m

i i i iD y i n R y R= =  x x , and the prediction of sample ( , )i iyx  by 

( )if x . If the squared loss in Eq. (5.1) is used as the loss function, least squares is 

applied,  

 21
( , ( )) [ ( )]

2
i i i iL y f y f= −x x ,  (5.1) 

and the negative gradient value of the loss function for sample i  is the ordinary 

residual represented by 
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The main hyperparameters of a GBRT model are listed in Table 5-3. 

Table 5-3. Main hyperparameters of GBRT 

Hyperparameter Meaning Value space 

n_estimators ( K ) The number of iterations (weak 

learners) constituting a GBRT model 

integer, [1, )+   

learning_rate (  ) This hyperparameter aiming to shrink 

the contribution of each tree to the 

whole ensemble model to reduce 

overfit 

decimal, (0,1]   

max_depth The maximum depth of each regression 

tree 

integer, [1, )+  

min_samples_leaf The minimum number of training 

samples required to be at a leaf node 

integer, 

[1, the number of samples]  

sub_sample The fraction of training samples to be 

randomly selected to construct each 

regression tree 

decimal, (0,1]  

sub_feature The fraction of features to be randomly 

selected to construct each regression 

tree 

decimal, (0,1]  

The detailed procedure to construct a GBRT model is presented in Procedure 1 

(Friedman et al., 2001).  
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Procedure 1. Construction of a GBRT model 

Input Training set D  ; the number of iterations/regression trees K  ; the loss function L  ; 

max_depth and min_samples_leaf as the stopping criteria of one tree; learning rate   ; 

sub_sample; sub_feature 

Output A GBRT model denoted by ( )f x   

Step 1 
Initialize 

00 0

1

( ) arg min ( , )
n

c i

i

f L y c
=

= x , where 
0c  is the initial predicted target value.  

Step 2 for 1,...,k K= : 

Randomly select ' _n sub sample n=    training samples and ' _m sub feature m=   

features to construct the thk  tree. 

Step 2.1 for 1,..., 'i n= :  

 Calculate the residual of sample i  in iteration k  by
1( )ki ki i k ir g y f −= − = − x . Set 

kir  as the new prediction target value for sample i  by updating the thi  sample to 

( , )i kirx . 

Step 2.2 Use the new training set ' {( , ), 1,..., '}i kiD r i n= =x   with 'm   features to train an 

ordinary regression tree using the CART algorithm as the thk   tree in the ensemble. 

Especially, all the 'm  features and their corresponding values should be traversed to 

select the feature value pair leading to the minimum sum of losses in the left and right 

child nodes when splitting one node in the tree. The tree grows in a depth-first and 

recursive manner and stops growing if either of the stop criteria evaluated by max_depth 

and min_samples_leaf is reached. Denote the total number of leaf nodes contained in the 

constructed regression tree by 
kJ , with one leaf node denoted by , 1,...,kj kR j J= .  

Step 2.3 for 1,..., kj J= :  

 Calculate the optimal output value of leaf j   denoted by 
kjc   by 

1arg min ( , ( ) )
kj

i kj

kj c i k i kj

R

c L y f c−



= +
x

x . Under our problem setting, 
kjc  is the mean 

of 
kir  falling in this leaf node.   

Step 2.4 Update the current GBRT model to 
1

1

( ) ( ) ( )
kJ

k k kj kj

j

f f c I R−

=

= + x x x .  

Step 3 The final GBRT model can be expressed by 
1

1

( ) ( ) ( ) ( )
KJ

K K Kj Kj

j

f f f c I R−

=

= = + x x x x .   

 

In the first step, the optimal 
0c  can be obtained by calculating the derivative of 

0

1

( , )
n

i

i

L y c
=

  regarding 
0c  and then set it to zero, i.e. 

 

2

0
0

0

1 1 10 0

1
[ ( )]

( , ) 2 ( ) 0
n n ni

i

i

i i i

y c
L y c

c y
c c= = =

 −


= = − =
 

   , (5.3) 

and we can have 1

0

n

i

i

y

c
n

==


, which is the average target value of all the samples. 

Similarly, 
kjc  is the average target value of all the samples contained in leaf j  in the 

thk  iteration. Recall that the target value of sample i  in the k th iteration is the 

residual kir  instead of the original target value iy .  
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After the construction of the GBRT models, three typical regression model 

performance metrics are used to demonstrate model performance: MSE, root mean 

squared error (RMSE), and MAE. The definitions of the metrics are given as follows. 

 2

1

1
[ ( ) ]

n

i i

i

MSE f y
n =

= − x ,  (5.4) 

 2

1

1
[ ( ) ]

n

i i

i

RMSE f y
n =

= − x ,  (5.5) 

 
1

1
| ( ) |

n

i i

i

MAE f y
n =

= − x .  (5.6) 

5.3.3 A ship risk prediction framework based on GBRT 

A GBRT model is developed for the T-SRP framework for ship risk prediction 

using the features shown in Table 5-2. The searching spaces of the hyperparameters 

are given in Table 5-4, and they are tuned based on 5-fold cross-validation on the 

training set with MSE as the metric.  

Table 5-4. Hyperparameter tuning in T-SRP 

Hyperparameter T-SRP 

Searching space Value adopted 

n_estimators [200, 1000] with 200 as the interval 200 

learning_rate {0.01,0.02,0.05,0.1,0.2} 0.02 

max_depth [3, 13] with 2 as the interval 9 

min_samples_leaf [1, 9] with 2 as the interval 7 

sub_sample {0.4,0.5,0.6,0.7,0.8} 0.4 

sub_feature {0.3,0.4,0.5,0.6,0.7} 0.3 

The framework is finally developed using the hyperparameter values found by 

hyperparameter tuning on the whole training set, and the model performance is 

validated on the test set. The MSE, RMSE, and MAE of the T-SRP is 17.9821, 4.2405, 

and 2.7564, respectively.  

5.3.4 Comparison of the new framework and the SRP for ship risk prediction 

We compare the newly proposed T-SRP framework and the SRP framework 

under three comparison schemes. In scheme I, ship inspection priority in the SRP is 

ignored. In other words, the ship inspection sequence is purely dependent on the ship 

risk scores generated by each framework and the ships are inspected from high risk 

score to low risk score. In scheme II, ship inspection priority in the SRP is considered. 

Specifically, ship inspection priority from the highest to the lowest is as follows: ships 

with no previous inspection (P1), ships with the last inspection time beyond the upper 
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bound of the time window (where the time window attached to each risk profile is 

specified in Table 5-1) (P2), ships with the last inspection time within the time window 

(P3), and ships with the last inspection time below the lower bound of the time window 

(P4). In comparison scheme I and scheme II, we use the total number of deficiencies 

and detentions detected after inspecting a certain number of ships as the performance 

metrics. In scheme III, we first divide the ships in the test set into high-risk, standard-

risk, and low-risk types considering their predicted risk scores in T-SRP with the same 

ratios as those generated by the SRP. Specifically, the number of ships belonging to 

HRS, SRS, and LRS is 225, 337, and 173 in the test set, respectively. Then, we 

calculate the average ship deficiency number and detention within each risk type.  

The ship risk scores given by the T-SRP are represented by the number of 

deficiencies predicted by the corresponding GBRT models. The ship risk score given 

by the SRP is calculated using the risk calculation matrix presented in Table 5-5 (Wang 

et al., 2019). As there might be ties in ship risk scores, we run each framework in each 

comparison scheme 1,000 times and use the mean as the result. The performance of 

each framework in comparison schemes I, II, and III are shown in Figure 5-1, Figure 

5-2, and Figure 5-3. The overall comparison of SRP and T-SRP under each comparison 

scheme is summarized in Table 5-6. 

Table 5-5. Calculation of ship risk score in SRP 

SRP Time window 

(months) 

Relationship between the last inspection time (
lT ) and the time window 

lT  beyond the upper 

bound of the time 

window 

lT  within the time 

window 

lT  below the lower bound 

of the time window 

LRS 9 to 18 

18

lT
  

9

18 9

lT −

−
 

9

lT
 

SRS 5 to 8 

8

lT
 

5

8 5

lT −

−
 

5

lT
 

HRS 2 to 4 

4

lT
 

2

4 2

lT −

−
 

2

lT
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(a) Comparison of deficiency (b) Comparison of detention 

Figure 5-1. Comparison results in scheme I 

  
(a) Comparison of deficiency (b) Comparison of detention 

Figure 5-2. Comparison results in scheme II 

  
(a) Comparison of deficiency (b) Comparison of detention 

Figure 5-3. Comparison results in scheme III 
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Table 5-6. Summary of the comparison of SRP and T-SRP 

Comparison scheme Improvement regarding the number of 

deficiencies detected (represented by 

ratio, a total of 2,992 deficiencies) 

Improvement regarding the number of 

detentions detected (represented by 

absolute value, a total of 23 detentions) 

Scheme I 

T-SRP over SRP 63.71 % 9.36 

Scheme II 

T-SRP over SRP 17.48% 3.36 

Scheme III SRP T-SRP 

Average no. of deficiencies 

among ‘HRS’ 

6.3867 6.8734 

Average no. of deficiencies 

among ‘SRS’ 

3.3264 3.1440 

Average no. of deficiencies 

among ‘LRS’ 

2.5087 2.2309 

Average no. of detentions 

among ‘HRS’ 

0.0711 0.0914 

Average no. of detentions 

among ‘SRS’ 

0.0208 0.0056 

Average no. of detentions 

among ‘LRS’ 

0 0.0031 

It is shown that when the inspection priority in the SRP is considered, the T-SRP 

is much better than the SRP, with over 60% more deficiencies and over 9 more 

detentions detected on average given certain inspection resources. When the inspection 

priority is considered, the superiority of the T-SRP over the SRP is heavily reduced, 

with over 17% more deficiencies and over 3 more detentions detected.  

By comparing Figure 5-1 (a) with Figure 5-2 (a), it can be found that the slope 

of the line representing the performance of the newly proposed framework in Figure 

5-1 (a) gradually reduces as the number of inspected ships increases. This indicates 

that ships with a larger deficiency number can be distinguished from those with less 

deficiencies in the new framework. The line of the newly proposed framework in 

Figure 5-2 (a) is divided into four segments with 40, 241, and 667 inspected ships as 

the splitting points, which are the thresholds of ship inspection priorities from P1 to 

P4. The slope gradually decreases in each segment, which also shows that the newly 

proposed framework is effective within each inspection priority, although its 

effectiveness is highly compromised when considering such inspection priority. In 

addition, the SRP is always much better than the SRP ship selection scheme. A similar 

pattern can be found in Figure 5-1 (b) and Figure 5-2 (b). Among all the 23 detentions, 

19 of them can be identified after inspecting 66 of the 735 ships by the T-SRP, which 

is much more effective than the SRP. In contrast, in scheme II, segmentations of the 

new framework also exist, and the number of detentions identified increases 

significantly at the beginning of each segment, as is the case in Figure 5-2 (a).  
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Finally, Figure 5-3 and Table 5-6 show that the proposed framework is effective 

in classifying ships into HRS, SRS, and LRS types, as the average numbers of 

deficiencies and detentions gradually decrease from HRS to LRS. Particularly, the 

average deficiency number of the HRS identified by the T-SRP is much higher than 

that identified by the SRP, while the average deficiency number of the LRS identified 

by the T-SRP is much lower than that identified by the SRP. This indicate that the T-

SRP framework is more efficient in identifying high-risk ships. Similarly, the average 

detention rate of the HRS identified by the T-SRP is much higher than that identified 

by the SRP, while none of the ships belonging to LRS indicated by the SRP is detained, 

but the detention rate of the LRS identified by the T-SRP is 0.0021.  

5.4 XAI AND ITS IMPORTANCE IN MARITIME TRANSPORT 

In addition to developing the highly-efficient ML based ship risk prediction 

framework for high-risk ship selection in PSC, we further try to explain the predictions 

given by it from various aspects. In this section, we first clarify the definition of XAI 

and common approaches to achieve it as well as its benefits. Factors making XAI 

essential in marine policy making as well as in PSC are then analyzed. 

5.4.1 Introduction of XAI 

Despite the success of ML models to address real-world problems, the most 

significant drawback of ML models is their lack of transparency (Du et al., 2020). As 

a matter of fact, ML models do not explicitly show its internal mechanisms and cannot 

be understood by looking at their parameters. In addition, the intermediate 

computation process of the output is opaque. To make the black-box ML models 

understandable by humans, the area of XAI gained a rapid development in recent years 

(Doshi-Velez and Kim, 2017). One widely used definition of XAI is given by Arrieta 

et al. (2020): “Given a certain audience, explainability refers to the details and reasons 

a model gives to make its functioning clear or easy to understand.” This definition 

covers three key points. First, explainability should be presented to ‘a certain audience’, 

as different audiences pose different requirements for an explainable system due to 

different background knowledge and communication styles. Second, ‘details’ should 

answer a ‘how’ question: the more explainable a model is, the more detailed 

information about its internal structure and working process should be disclosed to an 

audience. Third, ‘reasons’ should answer a ‘why’ question: the more explainable a 
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model is, the easier for a human to understand why certain predictions or 

recommendations have been made.  

Using XAI models brings several advantages. For model developers, XAI 

models can help verify model accuracy and robustness with the assist of domain 

knowledge. If any irrationality is found, the XAI models can further contribute to 

model debugging. For model users, XAI models are more likely to be trusted and 

accepted than black-box models with similar accuracy. Actually, model explainability 

is even considered as a prerequisite for the adoption of AI systems in high stakes or 

traditional and conservative domains where reliability, safety, and fairness are required. 

In addition, explicit decision rules can be extracted from the explanations, and thus 

shed light on future judgments and decisions for the users.  

XAI techniques can be divided into two categories depending on the time when 

explainability is obtained: one is to develop an interpretable ML model directly, and 

the other is to use post-hoc explainability techniques after developing a (usually 

uninterpretable) ML model. Particularly, interpretable ML models are by themselves 

understandable, such as linear/logistic regression, decision trees, k-nearest neighbors, 

rule-based learning, general additive models, and Naive Bayes models. In contrast, 

post-hoc explainability techniques are used to explain the output of an ML model, 

which are further divided into model-agnostic techniques that can be applied to any 

ML model disregarding its inner structures and mechanisms, and model-specific 

techniques that are designed to explain certain ML models considering their internal 

structure. Popular model-agnostic techniques include PDP, ICE, ALE plot, and SHAP 

(Molnar, 2020). Particularly, the first two are global methods considering all samples 

and give a global relationship between a feature and the predicted outcome in one 

explanation. The others are local methods, where only part of the instances is covered 

in one explanation. Model-specific techniques have been designed for neural networks 

and tree-based models.  

The major advantage of interpretable ML models is that their explainability is 

inherent and the prediction and explainability are consistent as both are derived from 

the ML model directly. However, model accuracy and interpretability need to be 

balanced. Usually, the higher the prediction accuracy achieved, the lower the model 

interpretability (Du et al., 2019; Arrieta et al., 2020; Burkart and Huber, 2021). In 

contrast, post-hoc explanation developed after model construction can help to ease this 
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problem by using a white-box surrogate model of the black-box prediction model to 

gain explanation while keeping its high accuracy. Nevertheless, the post-hoc surrogate 

models might cause inconsistency due to their approximation nature (Du et al., 2019; 

Babic et al., 2021). 

5.4.2 The necessity of XAI to facilitate marine policy making 

When black-box ML models are used to assist policy making, a detailed 

understanding of the prediction model and its output are as important as the prediction 

accuracy. According to Doshi-Velez and Kim (2017), explainability of black-box 

model can only be omitted in two situations: 1) no significant consequences will be 

caused by unacceptable prediction results, and 2) the problem is sufficiently well-

studied and the system’s decision are trusted even if it is not perfect. Unfortunately, 

neither condition is satisfied in the context of critical marine policy making. This is 

mainly because there are several heterogeneous and conservative stakeholders 

involving and the decisions are heavily dependent on long-term experience while 

seldom on recommendations given by data-driven models. Consequently, policy 

recommendations generated by black-box models without convincing explainability 

provided are seldom accepted, even if they could be much more efficient than 

recommendations made from naive but transparent rules or expert systems. One 

example is ship selection models in PSC: although various accurate and efficient ship 

selection models for substandard ship identification are proposed in several studies, 

they are rarely adopted by any port authority at the moment. Instead, intuitive and 

comprehensible ship selection schemes based on domain knowledge are preferred.  

In sum, the main reasons for requiring XAI models applied to assist marine 

policy making are as follows: 

a) Trust: conservative practitioners in the traditional maritime industry are reluctant to 

trust any black-box model to guide policy making. Only when they understand and 

verify the prediction model’s internal schemes, working processes, and strengths and 

weaknesses, can they trust and thus use the model.  

b) Transferability: Only when the policy makers know how well the prediction model 

generalizes, or in which context it generalizes well, can this prediction model be put 

in charge of policy making.  
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c) Fairness: As various stakeholders, such as ship owners, operators, management 

companies, port authorities, and shipping service providers, are influenced by 

maritime conventions, fairness is the key to the successful implementation of any 

critical marine policy. Explanations generated by XAI can help to verify the 

recommendations given by black-box models to be fair and compliant to ethical 

standards.  

d) Extensibility: On the one hand, XAI enables the developers to improve the 

prediction model by adjusting its parameters and hyperparameters and by integrating 

domain knowledge. On the other hand, policy makers can extract new knowledge from 

massive data by the XAI models and thus to obtain insights for future decision making.  

The above-mentioned points are also essential for developing XAI models for 

ship selection in PSC (Adadi and Berrada, 2018). Similar to the situation discussed by 

Kleinberg et al. (2015) and Athey (2017), black-box models for ship risk prediction 

without explanation provided are not enough, as they cannot answer more complex 

question of why a certain ship should be given a higher inspection priority or what 

properties would increase ship risk. With the assistance of the tailored explanations 

given to these black-box models, the above question can be addressed to a large extent, 

making the models more likely to be adopted in practice and thus a larger number of 

substandard ships can be inspected by PSC. Therefore, the ports as well as the PSC 

inspection can better fulfill their responsibility to enhance the maritime safety, to 

protect the marine environment, and to guarantee decent living and working conditions 

of seafarers. For ship owners, operators, and managers, they will be more willing to 

accept explainable ship selection methods as both time and monetary costs can be high 

if their ships are frequently involved in PSC inspections. Meanwhile, fair ship selection 

can in turn motive them to keep their ships in satisfactory condition to reduce future 

inspections. For shipping service providers, they can provide tailored services by 

considering a ship’s PSC inspection results, and thus to reduce maritime risks and 

pollutions. 

5.5 BLACK-BOX MODEL EXPLANATION USING SHAP 

Prediction given by the black-box GBRT model in the T-SRP framework is 

explained from both local and global perspectives in this section based on SHAP. We 

first introduce the concept of SHAP and give local explanation for the prediction of 
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individual ships given by the GBRT model. SHAP values in the T-SRP framework are 

also visualized and analyzed. Then, we go one step further to extend the local SHAP 

method to a global method by formulating a near linear-form global surrogate model 

that can closely approximate the output of the GBRT model with full explainability. 

Validation of the explanation performance of the global surrogate model is finally 

presented.  

5.5.1 Introduction of SHAP 

SHAP is proposed by Lundberg and Lee (2017) aiming to explain the output of 

an individual prediction (i.e., local method) of any ML model (i.e., model agnostic) 

and it is applied after model construction (i.e., post-hoc). SHAP is based on the 

Shapley value from coalition game theory first developed by Shapley (1953). It assigns 

an additive importance value (which can be negative, zero, or positive) to each feature 

as its contribution to the prediction. Therefore, the prediction is similar to a near linear 

model by summing the base value, which is the mean of the outputs in the training set 

denoted by y , and the contributions of all the features. In the context of XAI, the ‘game’ 

refers to the prediction task of a sample, the ‘players’ are the features included in the 

model, and the ‘gain’ is the difference between the actual prediction and the base value. 

The basic idea of applying Shapley value to XAI is that the marginal contribution 

of a single feature concerned is determined by the differences in the outputs of the 

possible combinations of features with and without this feature. There are several 

algorithms to calculate SHAP values with different tricks to reduce the computational 

burden. Here we briefly introduce a basic but easy-to-digest one. To begin with, a 

power set of features with different feature coalitions ranging from no feature 

contained to all features contained presented by a tree structure are formulated as 

shown in Figure 5-4, where each node represents a coalition of features, and each edge 

indicates adding a feature excluded in the coalition at the head to the coalition at the 

tail. l  is the depth of the tree. Given the dataset in our problem with m  features, we 

can have a total of 2m  coalitions of features, and thus 2m  nodes in the tree. 
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Figure 5-4. An illustration of feature coalitions 

Suppose we want to explain the prediction of sample 
iD  given by the developed 

ML model. After deciding the feature coalitions, the next step is to decide the predicted 

target value of 
iD  given by the ML model using the feature coalition contained in 

each node. The feature(s) contained in each node is(are) input to the developed ML 

model, while the absent feature(s) is(are) replaced by a random feature value from the 

data. The predicted target value of each of the 2m  feature coalitions is presented on 

the right of or below the corresponding node in Figure 5-4. Particularly, the output of 

the node containing no feature at the root of the tree is f̂ , which is the average target 

values in the training set called the base value. As shown in Figure 5-4, the difference 

between two nodes lies in just one feature. Therefore, the prediction difference 

between these two nodes connected by an edge can be regarded as the effect, or the 

marginal contribution, brought by that additional feature (Lundberg and Lee, 2017). 

For example, if we only consider the first two layers, the marginal contribution of 

feature 
1x  regarding sample 

iD  can be presented by 
1
ˆ ˆif f− .  

One last question is how to combine the marginal contribution of each feature 

presented by different node pairs connected by the edges where the feature is not 

contained in the node at the head but is contained in the node at the tail in Figure 5-4. 

The weights connecting all the node pairs in consecutive layers l  and 1l + , 

[0, 1]l m − , are required to be equal and are denoted by 
, 1l lw +

. For feature 
1x , the 

overall effect of its marginal contribution, which is also called the SHAP value of 

feature 
1x , is denoted by 

1

i  and can be calculated by  
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where the sum of all the weights is 1. The sum of weights connecting each two 

consecutive layers is further required to be equal, and thus the weights connecting layer 

l  and 1l +  is 1 1

, 1 [( 1) ] , [0, 1]l

l l mw l C l m+ −

+ = +   − , where 1 !
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. 

The SHAP value or the feature importance of a feature 'm , ' [1, ]m m  regarding 

sample i , can therefore be calculated by  
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where M  is the set of all features. Finally, according to the ‘local accuracy’ property 

of SHAP indicated by Lundberg and Lee (2017), summing the Shapley values of all 

features of sample 
iD  yields the difference between its predicted output and the base 

value, where the sum of Shapley values can be regarded as the effects of all the features 

on the output of this sample. Therefore, the predicted output of sample 
iD  can also 

be represented in an additive linear function form as follows: 

 
'

' 1

( )
m

i

i m

m

f y 
=

= +x .  (5.9) 

The above algorithm for SHAP value calculation is computationally expensive 

as its needs to predict the targets for a total of 2m  times using different feature 

coalitions. Fortunately, efficient implementations to calculate SHAP values are 

proposed by several studies such as Lundberg and Lee (2017) and Lundberg et al. 

(2019) which can be found from the SHAP API for Python (Lundberg, 2021). The 

SHAP values are calculated based on the implementation of Lundberg et al. (2019) for 

tree-based models in this study. 

5.5.2 Explanation of GBRT via SHAP 

SHAP is originally designed for local explanation, which aims at knowing the 

reasons for a specific prediction (such as why a particular ship is predicted to have a 

certain number of deficiencies). In the following subsections, we first give an overview 
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of local feature effects in the T-SRP framework and the global feature importance 

derived from the local explanations. Then, we explain specific predictions in the test 

set. 

5.5.2.1 Model explanation based on the training set 

Feature SHAP values in the training set and the global feature importance in the 

T-SRP framework are presented in Figure 5-5. 

  

(a) Local explanation summary (b) Global feature importance 

Figure 5-5. Local explanation summary and global feature importance in the T-SRP 

framework 

Figure 5-6 (a) is a set of beeswarm plot with y-axis representing each feature and 

x-axis representing the features’ SHAP values, while each dot in a figure represents a 

single ship in the training set. Feature values from low to high are shown by gradient 

colors as illustrated by the chromatographic on the right side, and the dot’s position on 

the x-axis shows the impact that feature value has on the ship’s predicted deficiency 

number given by the GBRT model, i.e., the SHAP value of the feature value for each 

ship. When multiple dots land at the same x position, they pile up to show the density. 

Figure 5-6 (b) is a bar chart showing the importance of each feature calculated by the 

mean absolute SHAP values of a feature among all the samples in the training set. The 

larger a feature’s mean absolute SHAP value, the greater influence the feature has on 

the prediction as it can change the predicted target more.   

Figure 5-6 (b) shows that in the T-SRP framework, the only integer variable, i.e., 

the number of inspections with over 5 deficiencies within previous 36 months, has the 

highest feature importance. Figure 5-6 (a) indicates that a larger value of this feature 

leads to a larger predicted deficiency number. Especially, the highest feature values 

(e.g., more than 20) can increase the final prediction by more than 6. In contrast, if 

there is no inspection with over 5 deficiencies in previous 36 months, the final 
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prediction will be reduced by 0 to 2. Among the binary features, whether a ship is of a 

certain ship type concerned has the largest feature importance, followed by whether a 

ship has low performance management company. It is interesting to find that if a ship 

is of a type of concern, less deficiencies will be found; otherwise, much more 

deficiencies ranging from 1 to 5 will be found. This finding shows that the other 

features override the feature of ship type when deciding ship risk level.  

Moreover, if the performance of a ship’s management company is evaluated to 

be low, very low, or its performance is not listed by the Tokyo MoU, up to 4 more 

deficiencies can be found compared to the base value. Regarding ship age, it is not 

surprising to find that if ship age is more than 12, much more deficiencies will be 

detected; if not, up to 2 less deficiencies will be found compared to the base value. 

Figure 5-6 also indicates that although features 3_flag_black and 7_detention_last_36 

are less important in the T-SRP framework, if a ship’s flag is on the black-list or it is 

detained 3 times or more within the previous 36 months, its predicted number of 

deficiencies will be increased by 1 to 6 and 1 to 3, respectively. Finally, as there is no 

ship with low or very low RO performance in the training set, i.e., 4_RO_low is 0 for 

all the samples, this feature will not influence the prediction results and thus it has zero 

feature importance.  

The explanations based on feature SHAP values in the T-SRP framework 

indicate that port authorities should pay more attention to ships with worse 

performance in the last 36 months, especially those with a larger number of 

deficiencies detected. In addition, older ships, ships of certain types (e.g., bulk carrier, 

other type, and gas carrier), and ships with worse performance management 

organizations especially the ISM company should also receive more attention. 

5.5.2.2 Model explanation in the test set 

This section aims to explore feature contributions in specific samples. The 

feature values and the SHAP values as well as the prediction results of two samples in 

the test set are shown in Tables 5-7 and 5-8. Visualization of major features’ 

contribution in the T-SRP is given in Figures 5-6 to 5-7. 
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Table 5-7. Feature values and the corresponding SHAP values of sample ship 1 

Parameters Ship 

feature  

Feature in T-SRP Feature value in 

T-SRP 

SHAP value in 

T-SRP 

Ship type Oil tanker 1_ship_type_conc
erned 

1 –0.511285 

Ship age 16 2_ship_age_12+ 1 0.685112 

Flag performance in Black-Grey-White list of 

Tokyo MoU 

White 3_flag_black 0 –0.114320 

RO performance in Tokyo MoU High 4_RO_low 0 0 

Company performance in Tokyo MoU Medium 5_company_low 0 –0.456442 

Number of deficiencies in each inspection 

within previous 36 months 

0 0 8 0 7 3 6_deficiency_no_l

ast_36 

2 1.387823 

Detention condition in inspections within 

previous 36 months 

No no no 

no no 

7_detention_last_

36 

0 –0.033159 

Real deficiency number 4 

Base value 4.112735 
Sum of feature SHAP values 0.957728 

Predicted deficiency number 5.070463 

Difference between real and predicted deficiency number –1.070463 

 

Figure 5-6. Major feature contribution of sample ship 1 in the T-SRP framework 

In the T-SRP framework, compared to the base value at 4.11, the increase of the 

predicted deficiency number is mainly caused by 2 inspections with 5 or more 

deficiencies in the last 36 months and ship age more than 12 by 2.07, while the final 

prediction is mainly reduced by being the type of ship concerned and with ship 

company performance not low, very low, or undefined by 0.97. The sum of all the 

feature SHAP values is 0.96, and thus the final prediction is 5.07.  
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Table 5-8. Feature values and the corresponding SHAP values of sample ship 2 

Parameters Ship feature  Feature in T-SRP Feature value in 

T-SRP 

SHAP value in 

T-SRP 

Ship type Bulk carrier 1_ship_type_conc
erned 

1 –0.349309 

Ship age 6 2_ship_age_12+ 0 –0.377828 

Flag performance in Black-Grey-White 

list of Tokyo MoU 

White 3_flag_black 0 –0.084827 

RO performance in Tokyo MoU High 4_RO_low 0 0 

Company performance in Tokyo MoU Medium 5_company_low 0 –0.357464 

Number of deficiencies in each 

inspection within previous 36 months 

0 0 3 6_deficiency_no_l

ast_36 

0 –0.747952 

Detention condition in inspections 

within previous 36 months 

no no no 7_detention_last_

36 

0 –0.028229 

Real deficiency number 3 

Base value 4.112735 
Sum of feature SHAP values –1.945609 

Predicted deficiency number 2.167127 

Difference between real and predicted deficiency number 0.832873 

 

Figure 5-7. Major feature contribution of sample ship 2 in the T-SRP framework 

Table 5-8 indicates that in the T-SRP framework, there is no feature with 

increasing effects on the predicted number of deficiencies compared to the base value. 

Especially, ship features of no inspection with over 5 deficiencies in previous 36 

months, ship age less than 12, and with company performance not low, very low, or 

undefined (actually medium) contribute the most to the difference between the final 

prediction and the base value. The total contribution of these features is –1.95, and 

hence the final predicted deficiency number is 2.17 given the base value 4.11.  

Several findings can be drawn after analyzing sample ships 1 and 2. First, 

explaining the final prediction of a single ship using feature SHAP values makes the 

decision-making process of the black-box GBRT model transparent. Such explanation 

makes the new ship selection framework more convinced by the PSCOs. Second, the 

same feature value can have quite different effects on different samples, and the 

determinant features of the final prediction are varied among different samples. This 

is mainly because the features considered interact with each other. As the number of 
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features increases, such interaction effects become more complex. Third, as T-SRP 

adopts the same feature encoding method as the current SRP which is in a binary 

manner, the explanation can be intuitive and understandable. However, such 

processing simplifies the original features, and thus there will be many samples with 

the same feature values in the SRP even if the original samples are very different from 

each other. Consequently, the black-box model’s predictive power might be mitigated.  

5.5.3 Development of an interpretable global surrogate model based on SHAP: 

one step further 

The above analysis is focused on generating local model explanation, which is 

the original target of SHAP. To explain the overall performance of the GBRT model 

from a global perspective, we innovatively extend the local SHAP method to a global 

method by fitting a near linear-form global surrogate model where the parameters are 

derived from the SHAP value matrix of the samples in the training set. 

5.5.3.1 Main parts of the interpretable global surrogate model 

As shown in Table 5-2, the T-SRP framework contains 6 binary features and 1 

integer feature. For each binary feature, we calculate the average SHAP values when 

it takes the value 0 or 1 in the training set as its coefficient in the surrogate model. 

Specifically, denote a binary feature by 
m̂b , the value of 

m̂b  in sample i  is 
ˆ

i

mb  and 

the corresponding SHAP value is 
ˆ

i

m . The average Shapely value of 
m̂b  when it takes 

1 (denoted by 
ˆ _1m ) and when it takes 0 (denoted by 

ˆ _ 0m ) in the whole training set 

can be calculated by Eq. (5.10) and Eq. (5.11), respectively: 
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. (5.11) 

For an integer or continuous feature, we fit its feature values and the 

corresponding SHAP values using three types of curves: linear curve, quadratic curve, 

and the mean squared root (sqrt) curve. Specifically, denote an integer feature by 
m̂c  
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and the SHAP value calculated by the three modes by 
ˆ

linear

mc , 
ˆ

quadratic

mc , and 
ˆ

sqrt

mc  which are 

presented by Eq. (5.12) to Eq. (5.14):  

 
ˆ

linear linear linear

ˆmc ma b c = +  , (5.12) 

 
ˆ

quadratic quadratic quadratic quadratic 2

ˆ ˆmc m ma b c c c = +  +  , (5.13) 

 
ˆ

sqrt sqrt sqrt

ˆmc ma b c = +  . (5.14) 

As quadratic curve has the most complex form (three parameters in contrast to 

two parameters in linear and sqrt modes) and thus is more likely to overfit the data, it 

will be selected only when its 2R  is higher than that of linear mode and sqrt mode by 

no less than 0.1. Otherwise, linear or sqrt curve with a higher 2R  will be selected. 

Finally, the prediction of sample i  by the global surrogate model can be presented by  

 
ˆ ˆ

ˆ ˆ

mode mode

ˆ ˆ ˆ ˆ_1 _ 0

mode {linear,quadratic,sqrt}

ˆ [ (1 )] i
m m

m m

i i

i m m m m c c
b B c C

y y b b z  
  

 = +  +  − +    , (5.15) 

where B  and C  are the set of binary features and the set of integer or continuous 

features, respectively, 
ˆ

i

mc  is the feature value of 
m̂c  of sample i , 

ˆ

mode {0,1}
mc

z   

indicates the fitting mode of feature 
m̂c  and 

ˆ

mode

ˆ

mode {linear,quadratic,sqrt}

1,
m

mc
z c C



=   . It should 

also be mentioned that Eq. (5.15) can easily be extended to contain classification 

features taking more than 2 values by treating them as continuous or integer values 

and then fitting the curves of feature values and the corresponding SHAP values. 

Alternatively, the values can also be treated separately by calculating the average 

SHAP value of each feature value of the classification feature. 

5.5.3.2 Construction of an interpretable global surrogate model for T-SRP 

The average binary feature effects of the T-SRP framework are shown in Table 

5-9. The relationship between the feature values and the SHAP values of the integer 

feature 6_deficiency_no_last_36 is shown in Figure 5-8. The fitting curve form and 

the fitting performance are summarized in Table 5-10. 
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Table 5-9. Average SHAP values of the binary features in T-SRP 

Binary feature Average SHAP of value 1  Average SHAP of value 0  

1_ship_type_concerned (
1

Tx ) –0.4454 2.3722 

2_ship_age_12+ (
2

Tx ) 0.8501 –0.4540 

3_flag_black (
3

Tx ) 3.1336 –0.1342 

4_RO_low (
4

Tx ) 0 0 

5_company_low (
5

Tx ) 1.7802 –0.4434 

7_detention_last_36 (
7

Tx ) 2.1108 –0.0307 

 

 

Figure 5-8. Relationship between feature value and SHAP value of feature 

‘6_deficiency_no_last_36’ 

Table 5-10. Curve fitting performance of feature ‘6_deficiency_no_last_36’ 

Integer feature linear mode quadratic mode sqrt mode 

6_deficiency_no_last_36 

(
6

Tx ) 
6

linear

6

0.6036

0.7462

Tx

Tx

 =



− +
 6

quadratic

2

6 6

0.7553

1.0864 0.0403 ( )

Tx

T Tx x

 =



−

+  −
 

6

sqrt

6

0.8871

1.6953

Tx

Tx

 =



− +
 

2R  0.8383 0.9477 0.9200 

The sqrt mode is selected to fit the curve of the feature values and their SHAP 

values of 6_deficiency_no_last_36 in the T-SRP. As the base value of the T-SRP is 

4.112735, the near linear form global surrogate model of the T-SRP framework, which 

is denoted by T-SRP-XAI, can be presented by 

, , , ,

1 1 2 2

, , , ,

3 3 5 5

, ,

7 7 6

0.4454 2.3722 0.8501 ( 0.4540)

4.112735 3.1336 ( 0.1342) 1.7802 ( 0.4434)

2.1108 ( 0.

ˆ

( ) (1 ) (1 )

(

1

1 ) (1 )

( 0307) 0.8871) 91 .6 53

T i T i T i T i

T T i T i T i T i

i

T i T i T

x x x x

y x x x x

x x x

− − +

+ − + − +

 

 + −  +  + − 

=  + −   + − 

 + −  − + −


+

 
 
 
 
 
 

 

,  (5.16)

where the term in the curly brackets is the sum of feature effects. Eq. (5.16) is a fully 

white-box model in a near linear form6  showing the decision process of the T-SRP 

 
6 We are fully noted that strictly speaking, ˆ

T

i
y  does not take a linear form as it contains a squared root item. Nevertheless, the 

squared root item can easily be transformed to a linear item by converting all the values of 
6

T

x  into their arithmetic squared root 

and then feeding to Eq. (5.16). 
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framework, which is basically consistent with shipping domain knowledge, i.e., older 

ships, ships with flag on the black-list, low/very low RO performance, low/very 

low/undefined company performance, larger number of deficiencies and more detentions 

in recent inspections are more likely to lead to a larger number of deficiencies in the 

current inspection. This verification has greatly increased the transparency and credibility 

of the T-SRP framework, and thus makes it more acceptable by shipping practitioners. 

However, it is also noted that the only difference between the T-SRP and the SRP is that 

ships of certain types of concern, i.e., chemical tanker, gas carrier, oil tanker, bulk carrier, 

passenger ship, and container ship are instead with much smaller deficiency number than 

other types.  

Furthermore, the T-SRP-XAI also offers insights into high-risk ship 

identification from a qualitative perspective. For example, ships with flag on black-

list, not of the type concerned, and with no less than 3 detentions in the last 36 months 

should receive more attention. Finally, it is interesting to find that different values of 

the same binary feature can have different effects on the final prediction. For example, 

0.85 more deficiency will be detected if a ship is more than 12 years old, while 0.45 

less deficiency will be detected, otherwise. The absolute difference between the two 

average SHAP values is 1.3. In contrast, for binary feature such as 3_flag_black, the 

difference reaches 3.0, indicating that the situations of ships with flag performance not 

on the black-list is complex and hence their effects can be divergent, that is, ships with 

flag on the white-list and grey-list can be quite different.  

We then apply Eq. (5.16) to predict the deficiency number of the samples in the 

test set. The MSE, RMSE, and MAE on the test is 18.4831, 4.2992, and 2.7909. 

Compared to the T-SRP framework, whose MSE, RMSE, and MAE is 17.9821, 4.2405, 

and 2.7564, the accuracy of the T-SRP-XAI is lower due to the approximation of 

feature effects. However, the sacrifice of model accuracy results in a globally fully-

interpretable model presented in a near linear form, enabling the recommendations 

given by the black-box GBRT model of the T-SRP framework totally transparent and 

verifiable. Further experiments show that the MSE and MAE between the prediction 

of T-SRP and the prediction of T-SRP-XAI are only 0.9262 and 0.6233, respectively. 
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5.5.4 Comparison of the SRP and the global surrogate model 

We compare the performance of the SRP and the T-SRP-XAI regarding the 

number of deficiencies detected and the ship detentions identified on the test set. The 

results are summarized in Table 5-11. 

Table 5-11. Comparison results of SRP and T-SRP-XAI 

Comparison scheme Improvement regarding the number of 

deficiencies detected represented by 

ratio (a total of 2,992 deficiencies) 

Improvement regarding the number of 

detentions detected represented by 

absolute value (a total of 23 detentions) 

Scheme I 

T-SRP-XAI over SRP 65.19% 9.27 

Scheme II 

T-SRP-XAI over SRP 17.46% 3.35 

Scheme III SRP T-SRP-XAI 

Average no. of deficiencies 

among ‘HRS’ 

6.3867 6.8207 

Average no. of deficiencies 

among ‘SRS’ 

3.3264 3.1610 

Average no. of deficiencies 

among ‘LRS’ 

2.5087 2.2665 

Average no. of detentions 

among ‘HRS’ 

0.0711 0.0911 

Average no. of detentions 

among ‘SRS’ 

0.0208 0.0045 

Average no. of detentions 

among ‘LRS’ 

0 0.0058 

 

Tables 5-6 and 5-11 indicate that the difference in the performance between the 

near linear-form global surrogate model and the corresponding black-box model 

regarding the number of deficiencies and detentions detected is minor in Scheme I and 

Scheme II, even though the original black-box model is more accurate than its global 

surrogate model. Regarding the deficiency and detention conditions of the ships in 

three risk levels, results of comparison Scheme III show that T-SRP-XAI can identify 

ships in ‘HRS’ more efficiently as evaluated by both deficiency and detention 

conditions. Based on the above findings, it can be concluded that the near linear-form 

global surrogate model is almost as efficient as its original black-box model regarding 

the ability to identify high-risk ships, although its accuracy is slightly worse than the 

original model. Therefore, it is justifiable to go one step further to extend the local 

SHAP method to a near linear-form global surrogate model. 

5.6 CONCLUSION 

To identify high-risk ships more efficiently, this chapter first proposes and 

validates a ship risk prediction framework based on the state-of-the-art GBRT model, 

namely T-SRP, by using six years’ inspection records at the Hong Kong Port. To make 
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the new frameworks more comprehensible and acceptable by the port authority part 

and the ship part, features used and their processing methods in the T-SRP are the same 

as those in the SRP. In addition, predictions given by the black-box model are 

thoroughly explained from both local and global perspectives using the post-hoc, 

model-agnostic, and local SHAP method by explaining the prediction of individual 

ships, calculating global feature importance scores, and formulating white-box global 

surrogate models in a near linear form of the original ML model denoted by T-SRP-

XAI. The analysis of model explanations is given, and policy implications are drawn 

from various perspectives.  

Comprehensive numerical experiments show that the predictions given by the 

T-SRP are accurate. When applying it to predict ship risk and identify high-risk ships, 

more than 60% more deficiencies and nearly 40% more detentions can be detected by 

the new framework when ignoring ship inspection priority compared to the current 

SRP. When the inspection priority is considered, nearly 20% more deficiencies and 

over 10% more detentions can be detected compared to the SRP. The new framework 

is also more efficient in identifying the type of HRS ship compared to the SRP. 

Meanwhile, its while-box global surrogate model taking a near linear form follows the 

PDR model explanation evaluation framework and can provide accurate and 

comprehensive explanations to decisions makers and practitioners in the shipping 

industry, so as to enhance their applicability to the conservative maritime transport 

area. 

To the best of the authors’ knowledge, this study makes the very first attempt to 

disclose and explain the working process of the black-box prediction models in the 

maritime transport research. It also innovatively extends the local SHAP method to a 

global method by formulating a white-box global surrogate model of the original 

black-box model. From practical aspect, this study addresses the critical ship selection 

issues in PSC, which is one of the most important international marine policies. It can 

help to fulfill IMO’s goal of realizing ‘safe, secure and efficient shipping on clean 

oceans’.  
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Chapter 6: Conclusions and Future 

Research 

6.1 CONCLUSIONS 

This thesis has developed several ship risk prediction models from different 

aspects to facilitate high-risk ship identification and selection in PSC inspection, 

followed by PSCO assignment and scheduling models to rationalize inspection 

resource allocation. It comprises four main parts. In the first part, current ship selection 

methods adopted by different MoUs are summarized, and existing studies on 

improving PSC efficiency, including ship selection and onboard inspection planning, 

are reviewed.  

In the second part, an XGBoost based ML model is constructed to predict ship 

deficiency number, where shipping domain knowledge regarding vessel operation 

conditions is incorporated by modifying model structure and property. The predicted 

deficiency number is then input to the downstream PSCO scheduling model. To 

improve model efficiency, the concepts of inspection template and un-dominated 

inspection template are proposed, and the optimization model is modified accordingly. 

Results of numerical experiments show that the XGBoost model’s MSE is 12.5 and its 

MAE is 2.4 on the test set. The combined ship risk prediction and PSCO scheduling 

model is better than the current inspection procedure by more than 20%, while its gap 

over the model under perfect-forecast policy is about 8%. The PSCO scheduling model 

is stable under various conditions as validated by the extensive sensitivity analysis.  

In the third part, ship inspection efficiency is improved by matching ship 

condition with PSCOs’ expertise by developing three ML models with different 

prediction targets and structures as well as two PSCO assignment models. The first 

two prediction models have normal prediction targets, i.e., the number of deficiencies 

under each deficiency category and the total number of deficiencies of each ship, and 

the objective is to minimize the prediction error compared to the real targets. The third 

prediction model also aims to predict the total number of deficiencies of each ship, 

while it adopts a loss function motivated by the structure of the optimization problem, 

i.e., minimizing the MSO in the numbers of deficiencies that can be detected among 
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the PSCOs for each ship. The two PSCO assignment models are equivalent to each 

other, and their difference is caused by the different prediction targets as the input. 

Numerical experiments show that the combination of the third prediction model and 

the second PSCO assignment model has the best performance, while all the three 

combined models perform much better than the currently used random PSCO 

assignment. Several insights are generated through sensitivity analyses. 

In the fourth part, a ship risk prediction model using the same features as the 

current SRP ship selection method based on GBRT called T-SRP is developed. To 

improved model explainability and transparency, predictions given by the GBRT-

based black-box model are thoroughly explained from both local and global 

perspectives using the post-hoc, model-agnostic, and local SHAP method. The SHAP 

method is further extended to a global method by formulating a white-box global 

surrogate model in a near linear form called T-SRP-XAI. The analysis of model 

explanations is given, and policy implications are drawn from various perspectives. 

Comprehensive numerical experiments show that the predictions given by the T-SRP 

are accurate and is much more efficient than the SRP. Meanwhile, its while-box global 

surrogate model follows the PDR model explanation evaluation framework and can 

provide accurate and comprehensive explanations to decisions makers and 

practitioners in the shipping industry, so as to enhance their applicability to the 

conservative maritime transport area. 

This thesis addresses an important practical problem in maritime industry, i.e., 

improving the efficiency and effectiveness of ship inspection by PSC. The models 

proposed can help port states to identify high-risk ships more accurately and to assign 

and schedule the scare inspection resources more efficiently. It can help to fulfill 

IMO’s goal of realizing ‘safe, secure and efficient shipping on clean oceans’.  

6.2 FUTURE RESEARCH  

First, regarding the problem studied, the three studies all aim to predict ship 

deficiency condition as the risk indicator. Other risk indicators, such as the detention 

probability and future accident involvement or their combinations can be considered 

as the prediction target in future research, which could represent the concept of ‘ship 

risk’ more properly. Furthermore, how to link ship inspection performance with ship 

accidents and incidents could be further explored. In addition, apart from improving 
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the efficiency of PSC from high-risk ship selection and PSCO assignment and 

scheduling, it can also be improved from the aspects of optimizing onboard inspection 

sequence. For example, association rules among ship specification and deficiency 

items can be first mined, and then used to optimize onboard inspection sequence. The 

efficiency of inspection resource assignment can also be improved by conducting joint 

PSCO routing and scheduling planning considering more sophisticated scenarios, such 

as vessel berthing places and periods, the geographical locations of terminals, and the 

sea and weather conditions along the route, etc.  

Second, from the perspective of research data, ship inspection data from only the 

Hong Kong port are used in this thesis. Inspection data from other authorities, such as 

other port states in the Tokyo MoU and even those from other MoUs can be used for 

ship risk prediction, as these inspection results can also provide valuable information 

on ship risk condition. This can be achieved by constructing an inspection profile of 

each single ship in the world merchandise fleet, and then predict the inspection 

performance of a visiting ship based on recommender system. Furthermore, as PSCOs 

can be different even at the same port, how their differences would influence the 

inspection results can be explored by comparing the inspection records from different 

ports and MoUs. Besides, a wider range of data, such as more types of ship 

specification information, data on ship inspection by flag state, recognized 

organization, and management company, can be used for ship risk prediction. For 

model extension, how to apply the prediction models developed in this thesis using the 

inspection data at the Hong Kong Port to other ports around the world can be further 

investigated. 

Third, from the perspective of research method, more advanced prediction 

models especially deep learning models can be adopted. As we only use ship 

inspection records at the Hong Kong Port in recent years where the total number is 

quite limited (actually, only three to five inspections are conducted for one working 

day), the limited data prevents us from using highly complex prediction models where 

the risk of overfitting might be too high. If much more data can be collected, more 

sophisticated models can then be applied. In addition, more tailored models for ship 

risk prediction and resource allocation can be developed. For example, a typical 

situation in ship selection for PSC inspection is that among all the visiting ships to a 

port on one day, a certain number of them can be inspected considering the available 
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inspection resources, and the decision to be generated is which set of them should be 

inspected. To optimize the final decision such that as many ship deficiencies as 

possible can be found, the following ship selection problem can be incorporated in the 

development of the ship risk prediction model by e.g., assigning different weights to 

the trees in an RF model considering the decision quality their prediction results 

generated, or by tailoring the learning rates of a gradient boosting model considering 

the downstream decision quality. 
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Appendices  

Appendix A: Supplementary Material for Chapter 3 

This appendix presents the current PSCO scheduling strategy applied at the 

Hong Kong port. The strategy is in a greedy manner: it aims to assign as many ships 

as possible to one PSCO for inspection on the morning of each workday. The set of 

ships assigned to one PSCO should satisfy that (a) they are berthing at the port when 

inspecting. (b) The PSCO can only inspect one ship in a time unit. (c) The lunch break 

and off work time of the PSCO should be guaranteed. Denote the number of PSCOs 

on duty for that day by | |P  . The procedure of the current scheduling strategy is 

presented in Figure A1. 
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Figure A1. Procedure of current PSCO scheduling strategy 
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Appendix B: Supplementary Material for Chapter 4 

Appendix B1. Procedure of construction of an MTR tree 

This appendix presents the procedure of constructing an MTR tree.  

Procedure 1: Construction of MTR tree 

Input  Training dataset D  and termination conditions 
1 2 3( , , ,..., )I    = .  

Output MTR tree ( )MTRf x : for a new example with input features x , the predicted 

targets are ( )MTRf x . 

Step 0 Construct a root node that contains all the examples in the training dataset (the 

set of indices for the examples in the root node is denoted by {1,..., }N ). The root 

is set as the current splitting node.  

Step 1 Define 
0R  as the set of indices for the examples in the current splitting node. 

Find the best split pair * *

*( , )jj w  of the current splitting node by enumerating of 

all possible values of j  and 
jw . 

1 2

1 1 1 2 2 2

2 2

* *

*
( ,..., ) ( , ) 1 ( , ) ( , ) 1 ( , )1 2

1 1
( , ) arg min

| ( , ) | | ( , ) |J 1 j j j j
j j

K K
e k e kek ek

j
j x x e R j w k e R j w e R j w k e R j wj j
w

j w y y y y
R j w R j w  =   = 



    
  − + −   

        

       

where 
0( , ) { | }ej

1 j jR j w e R x w=    and 
0( , ) { | }ej

2 j jR j w e R x w=   . 

Step 2 Use the best split * *

*( , )jj w  to split the current node into two nodes that contain 

two sub-sets of indices of examples * * * *

* 0 *( , ) { | }ej

1 j jR j w e R x w=     and

* * * *

* 0 *( , ) { | }ej

2 j jR j w e R x w=     with output value for target 
ky   as   

1

* *
1 *

1 * *

( , )*

1

| ( , ) |
1 j

e kk

e R j w1 j

y
R j w




=   and 2

* *
2 *

2 * *

( , )*

1

| ( , ) |
2 j

e kk

e R j w2 j

y
R j w




=  , respectively, 1,...,k K= . 

Step 3 Repeat Step 1 and Step 2 in a depth-first manner until coming to a node that 

reaches one of the preset termination conditions. Then, this node becomes a leaf 

node and a new node for splitting is found by backtracking. 

Step 4 Repeat Step 3 until there are no more nodes that can be split. Finally, the total 

training set is separated into Q  mutually exclusive and collectively exhaustive 

leaf sub-sets , ,...,1 2 QR R R   according to the input variable vector. The decision 

tree model can be presented by 

1

( ) ( )( , ,..., )
Q

MTR 1 2 K

q q q q

q

f I R   
=

= x x , where 
1,

( )
0,

q

q

q

R
I R

R


 = 



x
x

x
. 

In Step 1, we have a tree that may not be completed yet, denoted by T , and one 

of its leaves is the current splitting node. If the current splitting node is split at ( , )jj w , 

we will have a new tree, denoted by , jj wT , which has two new leaves (the left leave, or 

called leave 1, and the right leave, or called leave 2) with sets of indices for the 

examples 0( , ) { | }ej

1 j jR j w e R x w=    and 0( , ) { | }ej

2 j jR j w e R x w=   . The predicted 

value of the thk  target for an example e  in leave 1 ( ( , )1 je R j w ) is 



 

Appendices 133 

1

1 1 ( , )1

1

| ( , ) |
j

e k

e R j wj

y
R j w 

 , which is the average value of the thk  target among all the 

examples in leave 1. Therefore, it can be seen that Step 1 chooses the best split 
* *

*( , )jj w  

that minimizes the sum of squared error. 

 

Appendix B2. Procedure of construction of an MTR-RF 

This appendix presents the procedure of constructing an MTR-RF.  

Procedure 2: Construction of MTR-RF 

Input  Training dataset D , termination conditions 
1 2 3( , , ,..., )I    = , the number 

of trees contained in the RF M , and the maximum number of features 

considered when splitting each node J  , J J  .  

Output MTR-RF ( )MTR RFf −
x : for a new example with input feature x , the predicted 

targets are ( )MTR RFf −
x . 

Step 1: 

For 

1,...,m M=  

Draw a bootstrap sample D  of the whole training set D . 

   Step 1.0 Construct a root node that contains all the examples in D  (the set of 

indices for the examples in the root node is denoted by {1,..., }N ). The 

root is set as the current splitting node.  

   Step 1.1 Among all the J   features, randomly select J    features with each 

selected feature denoted by 'j . Define 
0R  as the set of indices for the 

examples in the current splitting node. Find the best split pair '* '*

'*( , )jj w  

of the current splitting node by solving the following formula: 

1 2

1 ' ' 1 1 ' 2 ' 2 2 '
' '

2 2

'* '*

'*
' ( ,..., ) ( ', ' ) 1 ( ', ' ) ( ', ' ) 1 ( ', ' )1 ' 2 '
'

1 1
( , ) arg min
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K K
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j w y y y y
R j w R j w  =   = 


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  − + −   
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       

where '

' 0 '( ', ' ) { | ' }ej

1 j jR j w e R x w=     and 

'

' 0 '( ', ' ) { | ' }ej

2 j jR j w e R x w=   . 

   Step 1.2 Use the best split * '*

'*( ' , )jj w  to split the current node into two nodes that 

contain two sub-sets of indices of examples 
'* '* '* '*

'* 0 '*( , ) { | }ej

1 j jR j w e R x w=     and '* '* '* '*

'* 0 '*( , ) { | }ej

2 j jR j w e R x w=    

with output value for target 
ky   as   1

*' '*
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1
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
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=  , respectively, 1,...,k K= . 

   Step 1.3 Repeat Step 1.1 and Step 1.2 in a depth-first manner until coming to a 

node that reaches one of the preset termination conditions. Then, this 

node becomes a leaf node and a new node for splitting is found by 

backtracking. 



 

Appendices 134 

   Step 1.4 Repeat Step 1.3 until there are no more nodes that can be split. Finally, 

the total training dataset is separated into mQ  mutually exclusive and 

collectively exhaustive leaf sub-sets , ,..., m1 2 Q
R R R  according to the input 

variable vector in decision tree m . The thm  decision tree model can 

be presented by 

1

( ) ( )( , ,..., )

mQ
MTR 1 2 K

m q q q q

q

f I R   
=

= x x  , where 
1,

( )
0,

q

q

q

R
I R

R


 = 



x
x

x
 . For target 

1,...,k K= , the final predicted value generated for x  by tree m  is 

represented by ˆ m

ky  for short.  
 

Step 2: 

 
For 1,...,k K= , the final predicted value generated by the RF model is the average 

regarding all the predicted values of the M  DTs, i.e. 
1

1
ˆ ˆ

M
m

k k

m

y y
M =

=  . The MTR-RF 

model can be represented by 1
ˆ ˆ ˆ( ) ( ,..., ,..., )MTR RF

k Kf y y y− =x . 

 

Appendix B3. Proof of Proposition 1 

This appendix presents the proof of Proposition 1 in Chapter 3. 

Proof: If | |S  , we can safely set | |S =  in model [M1] without losing optimality. 

Therefore, we can assume that | |S . Since P  PSCOs can inspect a maximum of 

P  ships, we add | |P S −  dummy ships to the model, each of which has 0 deficiency 

in each category. Then model [M1] is equivalent to 

[M1’]  

 ˆmax
P P C

sc

ps pc

p=1 s=1 c=1

z u


   (B.1) 

subject to 

 
1

, 1,...,
P

ps

s

z p P


=

=  =   (B.2) 

 
1

1, 1,...,
P

ps

p

z s P
=

= =    (B.3) 

 {0,1}, 1,..., , 1,...,psz p P s P = =    (B.4) 

where parameters ˆ =0sc , | | 1,...,s S P= +  , 1,...,c C= . 

Define decision vector z ( , 1,..., , 1,..., )psz p P s P= = =  , parameter vector 

 elements  elements

b ( , ..., , 1,...,1 )

P P

=   , and parameter matrix 2( )P P P
A

+   that represents the coefficients in 
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constraints (B.2) and (B.3). Defining  as the set of integers, model [M1’] can be 

written as 

[M1’’]  

 ˆmax
P P C

sc

ps pc

p=1 s=1 c=1

z u


   (B.5) 

subject to 

 
z bA =

  (B.6) 

 
0 z 1 

  (B.7) 

 
2

z .P   (B.8) 

We can see that (i) all of the elements in b  are integers, (ii) all of the elements in A  

are 0 or 1, (iii) each column of matrix A  has exactly two elements whose values are 

1, and (iv) matrix A  can be divided into two sub-matrices: the top P  rows 

constitute one matrix and the bottom P  rows constitute the other matrix, such that 

each sub-matrix has exactly one element of 1 in each column. Consequently, A  is 

totally unimodular and all the extreme points are optimal solutions to the linear 

programming relaxation of model [M1’’] are integral. Hence, the integrality constraint 

in Eq. (B.8) can be dropped. In other words, model [M1’’] can be easily solved as a 

linear programming problem.  

Note that the conversion of model [M1] to model [M1’’] is polynomial because 

| |S . Since a linear program can be solved in polynomial time of the length of its 

input parameters, model [M1] can also be solved in polynomial time of the length of 

its input parameters.  □ 

 

Appendix B4. Procedure of hyperparameter tuning using revised grid search 

This appendix presents the procedure of hyperparameter tuning using the revised 

grid search method. 

Denote the set of hyperparameters (i.e., max_features, max_depth, and 

min_samples_leaf) to be tuned as 
1 2 3{ , , }   =  and one hyperparameter is denoted 

by 
i . The minimum and maximum values each hyperparameter can take are denoted 

by min max[ , ]i i i   , 
i  . The initial constrained value spaces are denoted by 
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min min max max{ , ( ) / 2 , }i i i i iR     = +  ,
i  . The procedure to tune the hyperparameters by 

revised grid search is as follows: 

 

 

Procedure 3: Tuning hyperparameters by revised grid search 

Input  The set of hyperparameters to be tuned 
1 2 3{ , , }   = , the minimum and 

maximum values each hyperparameter can take min max[ , ]i i i   , 
i  , the 

initial constrained value spaces 
min min max max{ , ( ) / 2 , }i i i i iR     = +   for all 

i  .  

Output Hyperparameter value tuple with the best performance on validation set denoted 

by * . 

Step 1 

 
Set the hyperparameter grid   to 1 2 3R R R =   .  

for each   : 

Train MTR-RF model ( )MTR RFf
−

x  using the training set and hyperparameter 

tuple  . Measure its performance by calculating the MSE/MSO score m  

on the validation set. 

Step 2 The hyperparameter tuple that yields minimum MSE/MSO score 
*m   on the 

validation set is denoted by * , * * * *

1 2 3{ , , }   = .  

if min max2i i +   for all i  : 

Return the optimal hyperparameter tuple * * * *

1 2 3{ , , }   =  and terminate the 

program. 

else: 

for i   with min max2i i +  : 

if * min

i i = : 

set 
max min max( ) / 2 1i i i   = + −   , update 

min min max max{ , ( ) / 2 , }i i i i iR     = +  . 

else if * max

i i = : 

set 
min min max( ) / 2 1i i i   = + +   , update 

min min max max{ , ( ) / 2 , }i i i i iR     = +  . 

else: 

set 
min min *( ) / 2i i i   = +    and 

max * max( + ) / 2i i i   =    , update 

min min max max{ , ( ) / 2 , }i i i i iR     = +  . 

Step 3 Repeat Step 1 and Step 2 until termination.  

 

Appendix B5. An illustration of the superiority of A3 

We use a randomly selected group of ships in the numerical experiment to 

illustrate the insights of the superiority of A3. The real inspection expertise of each 

PSCO to each ship (denoted by a ship-PSCO pair) in the selected group and the best 

PSC assignment in theory are presented in Table B5.1. For simplicity, we only 
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compare the performance of A2 (and MTR-RF2) and A3 (and MTR-RF3). The 

predicted inspection expertise of ship-PSCO pairs generated by MTR-RF2 and MTR-

RF3 and the corresponding PSCO assignment are shown in Table B5.2 and Table B5.3.  

 

Table B5.1. Real inspection expertise and best PSCO assignment 

PSCO/Ship PSCO 1 PSCO 2 PSCO 3 PSCO 4 Best PSCO assignment 

1 3.2 2.3 3.7 3.3 3 

2 0.6 0.5 0.7 0.7 4 

3 2.4 2.3 2.8 2.7 4 

4 9.3 10.7 9.3 7.6 2 

5 5.0 4.6 4.9 3.6 1 

6 4.9 3.9 5.2 3.9 3 

7 28.3 34.1 31.9 31.1 2 

8 0.7 0.4 0.8 0.6 1 

9 17.3 17.5 18.8 16.3 3 

10 5.8 7.8 6.4 6.4 2 

Total inspection expertise 89.4 

 

Table B5.2. Predicted inspection expertise and PSCO assignment of A2 

PSCO/Ship PSCO 1 PSCO 2 PSCO 3 PSCO 4 Assigned PSCO 

1 2.71151 2.71333 2.83366 2.37304 2 

2 2.19643 2.16080 2.27956 1.88287 1 

3 1.42442 1.41698 1.47454 1.21828 4 

4 3.16357 3.19042 3.25073 2.66992 2 

5 2.94226 2.93073 3.06017 2.54735 1 

6 3.46248 3.39896 3.59726 2.95980 3 

7 21.94541 22.66446 23.59041 20.79491 3 

8 3.30471 3.29913 3.40618 2.80313 1 

9 6.76287 6.80433 6.97162 5.77351 3 

10 4.58404 4.59511 4.72913 3.90545 2 

Total achieved inspection expertise 85.7 

 

Table B5.3. Predicted inspection expertise and PSCO assignment of A3 

PSCO/Ship PSCO 1 PSCO 2 PSCO 3 PSCO 4 Assigned PSCO 

1 2.28501 2.31229 2.38390 2.00269 2 

2 2.07840 2.06494 2.16828 1.81122 1 

3 1.73917 1.73968 1.81308 1.51692 4 

4 3.23858 3.27633 3.33146 2.74851 2 

5 2.63255 2.61521 2.71647 2.23666 1 

6 3.28039 3.24911 3.40201 2.80859 3 

7 15.68360 17.17298 16.95479 15.32269 2 

8 3.65548 3.67663 3.77489 3.12439 1 

9 7.47597 7.52486 7.73092 6.42257 3 

10 4.61062 4.56776 4.74119 3.88015 3 

Total achieved inspection expertise 86.5 

Tables B5.2 and B5.3 show that the performance of A3 is better than A2 by 0.8 

inspection expertise, while both A2 and A3 can achieve 95% of the total real inspection 

expertise. The main differences between A2 and A3 are that PSCO 3 is assigned to 
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inspect ship 7 in A2 while PSCO 2 is assigned to inspect ship 7 in A3, whereas PSCO 

2 is assigned to inspect ship 10 in A2 while PSCO 3 is assigned to inspect ship 10 in 

A3. Notably, assigning PSCO 2 to inspect ship 7 and PSCO 3 to inspect ship 10 could 

obtain more inspection expertise, as the difference between assigning PSCO 2 and 

PSCO 3 to ship 7 is 2.2 while the difference is 1.4 to ship 10. We further compare the 

squared error of the predicted inspection expertise of each ship-PSCO pair and the 

MSE score in MTR-RF2 and MTR-RF3 are shown Table B5.4 and Table B5.5. The 

squared overestimate of the predicted inspection expertise of each ship-PSCO pair and 

the MSO score in MTR-RF2 and MTR-RF3 are shown in Table B5.6 and Table B5.7. 

Table B5.4. Squared error of MTR-RF2 

PSCO/Ship PSCO 1 PSCO 2 PSCO 3 PSCO 4 

1 0.23862  0.17084  0.75054  0.85925  

2 2.54859  2.75824  2.49501  1.39917  

3 0.95175  0.77972  1.75684  2.19551  

4 37.65583  56.39386  36.59365  24.30566  

5 4.23430  2.78646  3.38496  1.10807  

6 2.06646  0.25104  2.56878  0.88398  

7 40.38078  130.77153  69.04925  106.19480  

8 6.78453  8.40497  6.79218  4.85378  

9 111.03115  114.39728  139.91054  110.80693  

10 1.47855  10.27133  2.79180  6.22278  

MSE (of each pair) 26.4820 

 

Table B5.5. Squared error of MTR-RF3 

PSCO/Ship PSCO 1 PSCO 2 PSCO 3 PSCO 4 

1 0.83721  0.00015  1.73213  1.68302  

2 2.18567  2.44902  2.15584  1.23480  

3 0.43670  0.31396  0.97402  1.39968  

4 36.74080  55.11084  35.62344  23.53698  

5 5.60484  3.93941  4.76782  1.85870  

6 2.62314  0.42366  3.23279  1.19117  

7 159.17366  286.52394  223.35935  248.92341  

8 8.73485  10.73632  8.84997  6.37257  

9 96.51167  99.50336  122.52453  97.56362  

10 1.41462  10.44739  2.75165  6.34964  

MSE (of each pair) 39.4949 

 

Table B5.6. Squared overestimate of MTR-RF2 

PSCO/Ship PSCO 1& 

PSCO 2 

PSCO 1& 

PSCO 3 

PSCO 1& 

PSCO 4 

PSCO 2& 

PSCO 3 

PSCO 2& 

PSCO 4 

PSCO 3& 

PSCO 4 

1 0.81327  0.14277  0.19226  1.63754  1.79637  0.00367  

2 0.00414  0.00028  0.17104  0.00660  0.22842  0.15737  

3 0.00857  0.12242  0.25619  0.19575  0.35845  0.02442  

4 1.88554  0.00760  1.45530  2.13252  6.65386  1.25259  

5 0.15091  0.04749  1.01021  0.02909  0.38022  0.61965  

6 0.87699  0.02730  0.24733  1.21374  0.19286  0.43896  
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7 25.81606  3.82203  15.60644  9.77157  1.27792  3.98201  

8 0.08668  0.00000  0.16127  0.08582  0.48442  0.16245  

9 0.02513  1.66732  0.00011  1.28304  0.02862  1.69492  

10 3.95587  0.20695  1.63481  2.35323  0.50458  0.67845  

MSO (of each ship) 10.0031 

 

 

 

Table B5.7. Squared overestimate of MTR-RF3 

PSCO/Ship PSCO 1& 

PSCO 2 

PSCO 1& 

PSCO 3 

PSCO 1& 

PSCO 4 

PSCO 2& 

PSCO 3 

PSCO 2& 

PSCO 4 

PSCO 3& 

PSCO 4 

1 0.85986  0.16089  0.14617  1.76463  1.71506  0.00035  

2 0.00749  0.00010  0.13482  0.00934  0.20586  0.12749  

3 0.01010  0.10634  0.27274  0.18199  0.38783  0.03848  

4 1.85572  0.00863  1.46392  2.11740  6.61609  1.24779  

5 0.14643  0.03383  1.00824  0.03950  0.38620  0.67272  

6 0.93843  0.03182  0.27900  1.31585  0.19406  0.49927  

7 18.58139  5.42334  9.99131  3.92756  1.32184  0.69238  

8 0.10314  0.00038  0.18583  0.09105  0.56586  0.20295  

9 0.02283  1.55014  0.00285  1.19671  0.00955  1.42003  

10 4.17329  0.22037  1.77015  2.47569  0.50750  0.74139  

MSO (of each ship) 8.0162 

 

Tables B5.4 and B5.5 shows that the MSE of the outputs of MTR-RF3 is much 

larger than that of MTR-RF2, while Tables B5.6 and B5.7 show that the MSO of the 

outputs of MTR-RF3 is smaller than that of MTR-RF2. Especially, for ship 7, the MSE 

is 86.60 for the outputs generated by MTR-RF2 and 229.50 for the outputs generated 

by MTR-RF3. On the contrary, the MSO of ship 7 is 60.28 in MTR-RF2 and the MSO 

of ship 7 is 39.94 in MTR-RF3. The differences in the MSE and MSO of MTR-RF2 

and MTR-RF3 regarding ship 7 indicate that although MTR-RF3 is less accurate in 

the prediction values compared to MTR-RF2, it could better predict the “relative 

relationship” among the four outputs. More specifically, we compare the relative 

relationship of the outputs in the real situation and the predicted values generated by 

MTR-RF2 and MTR-RF3 for ship 7 as shown in Figure B5.1. 

 



 

Appendices 140 

Figure B5.1. Comparison of the predicted inspection expertise of MTR-RF2 and 

MTR-RF3 

Figure B5.1 shows that the relative relationship of the predicted inspection 

expertise of MTR-RF3 and the real situation is quite the same: PSCO 2 has the largest 

expertise, following by PSCO 3. Although the predicted relative inspection expertise 

of PSCO 4 and PSCO 1 is swapped in MTR-RF3, the gap is quite small, and is much 

smaller than that of MTR-RF2. However, the prediction results of MTR-RF2 suggests 

that PSCO 3 has the largest inspection expertise followed by PSCO 2, where there is 

a big gap with the real situation. Therefore, A2 assigns PSCO 3 to inspect ship 7, and 

A3 assigns PSCO 2 to inspect ship 7 which is the same as the optimal assignment in 

the real situation. 




