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Abstract

This thesis is concerned with financial models that incorporate components from the

burgeoning field of behavioral finance. The goal of behavioral finance is to describe

illogical behaviors and anomalies seen in financial markets, as well as to investigate

the patterns that emerge as people make decisions. I present two specific behavioral

financial models: the first one is a portfolio selection problem in continuous time, and

the second one is an optimal insurance design problem. These two models have one

feature in common: they both deviate from the traditional paradigm that is built on

mathematical assumptions like global convexity (concavity) and linear expectation,

resulting in the failure of conventional methods. To tackle them, I reduce them

to quantile optimization problems. Using the relaxation and calculus of variation

methods, the optimal solutions to them are derived and explicit results are obtained

under specific settings.

I begin this thesis by giving a brief historical overview of portfolio selection as well

as a summary of the contributions and organization of the thesis. The storytelling

of the two models is connected by a detailed illustration of decision-making theory

under uncertainty that provides solid grounds and inspiration for modern behavioral

economics. Some important prerequisites are presented in the last section of Chapter

1.

In Chapter 2, I present a return-oriented continuous-time portfolio selection

model under the cumulative prospect theory. The model is considered in a stan-
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dard complete and no-arbitrage market, and it also captures the heuristics and bi-

ases that occur during the agent’s decision-making process. Benchmark and lower

bound constraints are introduced to the model to measure performance and control

the downside risk. The problem turns out to be a non-classical stochastic control

problem, which can be addressed by solving a corresponding quantile optimization

problem. The procedure heavily depends on the concept of quantile, which has long

been used in nonlinear, nonadditive measures. The problem is converted to a lo-

cally concavified optimization problem using the relaxation method, and an optimal

solution is derived. The last part of this chapter focuses on deriving the optimal

portfolio, which boils down to solving a related partial differential equation (PDE).

In particular, explicit expressions are obtained under the Black-Scholes setting.

In Chapter 3, I present an optimal insurance problem where the risk preference

of the insured is characterized by the rank-dependent utility theory (RDUT) and

the premium principle is based on Wang’s class of premium principle. It is required

that the insurance policy should not cause an issue of moral hazard, which means

both the compensation and retention functions are non-decreasing with respect to

the loss. The problem is converted to an equivalent quantile optimization problem.

Using the calculus of variation method, the optimal solution is expressed via the

solution of an ordinary integral-differential equation (OIDE). A numerical example

is provided as well.

This thesis ends up with some concluding remarks and expectations for future

work.
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2.1 The function v when ĉ < eβ−1. . . . . . . . . . . . . . . . . . . . . . 48
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Chapter 1

Introduction

In the last short but brilliant century, the world has witnessed a tremendous growth

in the size of the financial market as well as a massive leap forward in the related

academic research fields. The purpose of this chapter is to situate the thesis in the

picture of the whole discipline. Some fundamental concepts and their backgrounds,

including literature reviews, will be introduced. Such components altogether make

up the motivation for this thesis.

1.1 Portfolio Selection: A View from Two Pre-

dominant Rules

It is critical to figure out what rules decision makers/agents follow in practice, as

well as the underlying patterns of how they make judgements or evaluate outcomes

during investment and other economic activities, before we use models to explore

the interplay between them and the markets. In particular, dealing with risk or

uncertainty is a common and central job throughout the entire evaluation process.

Therefore, a basic question goes down to how people make decisions over choices that

are associated with uncertainties, the so-called risk preference. Unfortunately, the

vast number of normative and descriptive theories and models proposed by social

economists and cognitive psychologists cannot provide a comprehensive picture of
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human behavior and preference for risky choices. However, fortunately, at least

some of them can be treated as good approximations of reality, and indeed, these

rules have been widely adopted in financial modeling. In this section, the skeleton

will be expanded from the perspective of two predominant rules that appear in the

context of portfolio selection.

The first rule traces back to Harry Markowitz’s pioneering paper, “Portfolio Se-

lection”, published in 1952, Journal of Finance, which has been renowned as the

start of modern financial economics. The Mean-Variance (MV) analysis framework,

also known as the MV rule, proposed in the paper has been widely accepted and

practiced as a persuasive philosophy in both the financial industry and the academic

world. Within nearly seventy years, the original model has brought out hundreds of

extensions and variations, making “portfolio selection” a prolonged but flourishing

and fadeless topic in the fields of portfolio management, financial engineering, and

financial mathematics. The essence of the MV rule is simple but extraordinary: risk

cannot be fully eliminated by diversification1, and a trade-off exists between risk and

return. A “suboptimal” option is to find a portfolio that has the minimum risk given

an expected level of return or the maximum expected return subject to a threshold

of risk. At that time, such insightful assertions more or less reshaped the direction

of how people analyzed the market. Readers can refer to Markowitz’s monograph

[92] for a systematic and detailed illustration of this research area.

On the basis of Markowitz’s work, several cornerstones of pricing theories and

models emerged, such as the famous Capital Assets Pricing Model (CAPM) proposed

by Sharpe [111] and Linter [83], Arbitrage Pricing Theory (APT) introduced by Ross

[105]. These models turn out to formulate and promote a specific prototype called the

“Multi-factor” model, which aims at describing the cross-sectional difference between

1 A popular analogy is “putting the eggs into plenty of baskets before we may break them all at
once”
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the average return on different assets. Such a target has been a central problem in

empirical asset pricing. A notable work in this field is the Fama-French three factor

model, introduced by Fama and French [51]. The regression techniques and results

proposed in [51] are highly praised and applied in the real markets. It has directly

led to the fashion of factors-mining in the financial industries. Nowadays, trading

strategies and risk analysis frameworks surrounding the model have become one of

the most prevalent in mutual funds, private equity, and hedge funds.

Despite the influences above, the appearance of the MV rule imposes a threat

to another predominant rule for decision-making under uncertainty. Unlike the MV

rule, the Expected Utility Maximization (EUM) rule, proposed by Daniel Bernoulli in

1738 and later axiomatized as the Expected Utility Theory (EUT) by Von Neumann

and Morgenstern [124], is heavily rooted in the cradle of economics. It provides

an interpretation of St. Petersburg’s Paradox: a gamble with the observation that

most people do not maximize the expected monetary profit or wealth. It is proposed

that people evaluate a gamble using a hypothetical notion of “utility”, which stands

for a personal, subjective measure of satisfaction or well-being. A “utility function”

describes a preference ordering over different risky choices, and the shape of the utility

function (convex or concave) is a good determinant of the individual’s altitude over

risk2. Although the EUT has a comprehensible and appealing structure, how to

choose a person’s utility function is certainly another area of professional expertise

and beyond the scope of this thesis. This limits the implementation of the EUT,

and a debate between the EUM rule and the MV rule exists. In the literature, it

is divided into two parties. On one hand, critiques of the MV rule argue that it is

consistent with the axioms of the EUT only if the agent has a quadratic expected

utility and the asset price follows a Gaussian distribution; see, e.g., [10], [22], [52].

2 A concave utility function indicates a preference for risk aversion, implying that the agent always
prefers a deterministic amount of x over a random variable with an expected outcome of x. The
convex situation is simply the reverse, which means risk-seeking behavior
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On the other hand, supporters of the MV rule believe that it is a good approximation

of the EUM rule and is easy to apply due to its simplicity; see, e.g., [101], [102], [120],

[75], [93].

Putting aside these controversial issues, both rules have been adopted in multi-

period and continuous-time settings. Continuous-time financial models are usually

distinguished by the use of Itô diffusion or other complex processes to character-

ize the randomness of asset prices over time, and most of them involve dedicated

mathematical concepts and tools, such as stochastic analysis, stochastic control, and

differential equation theories. Merton’s seminal works, [95], [96], in which the rates

of return were assumed to be normally distributed, is the foundation for continuous-

time portfolio selection models under the EUM framework. He showed that finding an

optimal policy can be reduced to finding a solution to the corresponding Hamilton-

Jacobi-Bellman (HJB) equation, which bridges descriptive financial ideas with a

rigorous mathematical formulation. However, the formulation of a continuous-time

counterpart of Markowitz’s original model using the MV rule encountered numerous

obstacles. A major difficulty was that the stochastic dynamic programming principle

could not be applied directly to solve the problem because of the variance term in

the objective functional. After an enduring endeavor of thirty years, by means of

an embedding technique introduced in Li and Ng [78], Zhou and Li [139] formulated

the counterpart into an auxiliary stochastic linear quadratic problem and obtained

a closed-form expression of the efficient frontier.

Surprisingly, the continuous-time reformulation of Markowitz’s model has brought

new possibilities to itself. In the past several decades, a considerable number of

academic attempts have focused on incorporating realistic conditions or constraints

into the continuous-time portfolio selection model, including but not limited to, the

prohibition of short-selling [79], [34], [15], no-bankruptcy [18], transaction costs [89],

[37], [84], [114], time-variant coefficients, [81], [85], regime-switching [140], robust
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and ambiguity environments [58], [141], [50], [56], [72], partial information [130],

neural networks [53], reinforcement learning [126], behavioral preference [71], [68]. All

the subdivision directions mentioned above have significantly enriched the world of

portfolio selection, and inevitably, part of this thesis’s work also lies in this category.

Of course, most of the work mentioned is still done within the framework of the EUM

rule3.

A return-rate based portfolio selection model that incorporates behavioral pref-

erence will be presented in Chapter 2 of this thesis. Here, a (non-EU) behavioral

preference literally means a departure from the expected utility preference and ren-

ders that investors are rational, which is a priori assumption of the EUT. At least

two reasons exist for considering behavioral preference. Firstly, an acquiescence in

daily life is that “rational” investors only take up a small proportion of participants

in the markets, and people rarely achieve the maximization of their expected utility.

The EUT has failed to capture the impact of psychological interference when people

face large potential gains and losses. Few people could keep calm and behave ratio-

nally in a complicated and variable mood, not to mention whether anyone is capable

of making perfect strategies at the perfect time with the correct expected utility

calculation for every choice4. It is natural to wonder how “normal” or “emotional”

investors choose their portfolios. Secondly, experimental evidence shows that people

are not entirely risk averse. They are willing to take risks, especially when they are

confronted with a sure loss, and this phenomenon violates the EUT. The EUM rule

as an approximation to reality somehow captures the inner desire of investors, but it

provides limited insight and unconvincing arguments (even wrong) for understanding

a lot of basic facts (such as the Friedman and Savage puzzle [55], the tax evasion

3 We would like to treat the MV criteria as a special case of the EUM criteria, so as to distinguished
it from the behavioral criteria introduced later.

4 There are other issues, including liquidation, short positions, transaction costs, etc
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problem [45], the equity premium puzzle [94], and the stochastic volatility puzzle

[27]) happening in the underlying markets.

In brief, the traditional finance paradigm built on the EUM rule, along with its

implicit philosophy behind, has already received full investigation in academia and

approached its descriptive and predictive limitations. Progress in portfolio selection

has entered a new stage in which it is faced with challenges but also opportunities

brought by the rise of a new branch of finance, behavioral finance. One of the building

blocks of this field is the psychology of characterization of non-EU preferences, which

we introduce in the next section.

1.2 Non-Expected Utility Theory

The dominated EUT, like the eldest son of a big “family”, deals with a quantitative

representation of a decision maker’s preference over risky choices. Such a “family”

has two basic tenets: a non-empty set X for decision and comparison, and an ordered

preference � (or binary relation) between elements in the set X. For a choice a ∈ X

which usually involves with uncertainty, we call a = (y1, p1; · · · yn, pn; · · · ) a prospect

where yi (i = 1, 2, · · · ) denote all the possible outcomes with associated probabilities

pi (i = 1, 2, · · · ) and
∑

i pi = 1. The utility of a proposed by Von Neumann and

Morgenstern [124] is a weighted sum of the utility of outcomes:

U(a) :=
∑
i=1

u(yi)pi (1.1)

where u is the utility function defined on the set of outcomes. In this case5

a � b if and only if U(a) ≥ U(b).

5 For any a, b ∈ X, a � b means the decision maker prefers a than b. We have either a � b or
b � a.
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The existence of u and its cardinality is guaranteed and generalized by the four

known axioms of preference in [124], namely completeness, transitivity, continuity,

and independence.

(Completeness) For a, b ∈ X, either a � b or b � a;

(Transitivity) For a, b, c ∈ X, if a � b and b � a, then a � c;

(Continuity) For a, b, c ∈ X, if a � b � c, then there exist α, β ∈ (0, 1) such that

αa+ (1− α)c � b and b � βa+ (1− β)c;

(Independence) For any a, b, c ∈ X and λ ∈ (0, 1), if a � b, then λa+ (1− λ)c �

λb+ (1− λ)c.

This axiomatization procedure lies at the heart of the EUT as well as other normative

theories of choice introduced in this paragraph. A large amount of work which

aims at generalizing the EUT can be reduced to a relaxation or even sacrifice of

the above axioms. In [124], The axioms of completeness and transitivity together

promise that choices can be ordered, but the latter has been a controversial property,

bringing not only conveniences but also limitations. It may neglect the accumulation

of small differences or vagueness between risky choices. A potential violation is that

choices should be indifferent by applying transitivity, but it actually may not be

indifferent in the decision maker’s mind, and there may exist a cycle of preference6.

A typical example of non-transitive preference can refer to the regret theory proposed

by Bell [12], Fishburn [54], and Loomes and Sugden [86]. In addition, empirical

observations of violations of the independence axiom have been collected since the

1950s. For instance, the well known common ratio effects and common sequence

effects discovered in Allais [4] and the Ellsberg paradox [49], etc. These laboratory

evidences have been the foothold of theories including but not restricted to the

6 It means we may have a � b, b � c, and c � a
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weighted utility theory proposed by Chew and MacCrimmon [30] and its variants

such as Dekel [41] and Chew [31], the lottery-dependent utility of Becker and Sarin

[11], the quadratic utility of Chew, Epstein and Segal [33], the disappointment theory

of Loomes and Sugden [87], Bell [13]. Although the model settings and implicit

motivations behind these theories are quite different, they share a similar structure

for utility calculation, which is essentially a combination of the subjective utility of

an outcome and its objective probability distribution through specific functions.

Another critical characteristic of the EUT that departs from reality is the hy-

pothesis of risk aversion. In order to explain St. Petersburg’s Paradox, diminishing

marginal utility is assumed and leads to a concave utility function that indicates risk

aversion behaviors. However, it is still insufficient to explain risk-taking behaviors

observed in real-life scenarios, such as purchasing lottery tickets and gambling. Even

though one may realize that the objective probability of death or winning is min-

imal, they still buy them in case of “lucky”. A psychological explanation of these

behaviors in the literature is called probability weighting. In other words, people

sometimes do not make decisions based on the objective probability, especially when

some extreme events with small probabilities happen. Emotional feelings such as

fear, aspiration dominate the mind of decision maker, resulting in irrational behav-

iors that violate the EUT. The theory that considers probability weighting is called

decision weighted utility theory. Usually the weight attached to u(yi) in (1.1) is no

longer pi, but mathematically replaced by a transformation of that. Examples are

the rank-dependent expected utility developed by Quiggin [103], Wakker, Erev and

Weber [125] and its variants, such as Chew and Epstein [32], Green and Jullien [64],

Segal [110], Yaari [135].

So far, one common feature of axiomatic models we mentioned above is that

there is always a priori restriction on individuals’ preferences, such as rationality

(the EUT), betweenness ([41], [31]), mixture symmetry ([33]), and comonotonic in-
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dependence ([125]). Normally, these restrictions are the results of backward induction

of a predefined target, which do not conform to the real decision-making progress

which is more flexible and complex. As pointed out in Tversky and Kahneman [121],

“people rarely obey some cast-iron rules in decision-making, they routinely violate

dominance and invariance.” Starmer [115] summarized this typical evidence as viola-

tions of procedure invariance and description invariance, which the axiomatic models

would fail to explain. For example, in the so-called preference reversal phenomenon,

first observed by Linderman [82], Lichtenstein and Slovic [80], participants exhibit

opposite preferences over risky choices that differ slightly in description but are es-

sentially the same from a normative perspective. In other words, how we frame

choices may also influence individuals’ preferences.

Another branch of the non-expected utility theory is represented by the prospect

theory of Kahneman and Tversky [73], the cumulative prospect theory of Tversky

and Kahneman [122]. These theories basically give up an axiomatization procedure.

Instead, they focus primarily on the patterns of how people actually count in the

decision-making process, considering secondarily which conditions need to be speci-

fied. The patterns mainly refer to those mental activities consisting of heuristics and

biases, and they have a close intersection with the context of psychology. Barberis

and Thaler [8] summarized a series of uniform beliefs that people appear to form in

decision-making, such as overconfidence, conservatism, optimism, and wishful think-

ing, etc. Although these descriptive laws learned by psychologists have been well

supported by designed experiments and field data, how to abstract them into math-

ematical structure for further quantitative analysis is an important and challenging

task for financial economists. Next, we give a brief introduction to the cumulative

prospect theory that will be used in our model.
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1.2.1 Cumulative Prospect Theory

Among all the alternatives to the EUT, the prospect theory (PT) may be the most

convincing model which captures experimental results as well as builds a general

mathematical structure. By this theory, the process of making a choice has been

simplified into two stages. The first stage is a valuation process of outcomes based

on heuristics supported by a large scale of experimental data, and the second stage is

a calculation over prospects which inherits the traditional form of decision weighted

utility, namely it involves non-linear probability weighting. The PT has a disadvan-

tage in that it may violate first-order stochastic dominance. To tackle it, Tversky

and Kahneman [122] extended the PT to a revised version called the cumulative

prospect theory (CPT). The model ends up with an analogy to (1.1):

V (x) :=
∑
i=1

v(yi − bi)wi, 7 (1.2)

where bi is the reference point for state i,

wi = π
(∑

j≥i

pi

)
− π

(∑
j>i

pi

)

and π is a probability weighting/distortion function. Besides, it proposed the follow-

ing shape of the valuation function v:

7 In [122], this expression has been divided into a gain part and a loss part, each of which uses
its own probability weighting function. For the sake of simplicity, we assume they are the same in
this thesis.
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Figure 1.1: The function v.

As already mentioned, this S-shaped function is deduced by the heuristics ob-

served in experiments instead of an axiomatization procedure. The first critical

heuristic is a prevalent observation that people usually evaluate outcomes from a

perspective of gain or loss instead of the final wealth. As pointed out by Barberis

and Thaler [8], “it is consistent with the way people think, perceive attributes such as

brightness, loudness, or temperature relative to earlier levels, rather than in absolute

terms”. It explains why the value function and corresponding probability weighting

are divided into the gain part and the loss part. Gain and loss are relative concepts

talked about on the basis of a notion called reference point. The reference point may

be numerous and adaptive. An outcome above (or below) the level of reference point

is regarded as a gain (or loss) situation.

The second heuristic is an observation of over-weighting of probabilities, no mat-

ter it is a gain situation or a loss situation. The over-weighting of sure gains con-

tributes to risk aversion behavior; on the contrary, the over-weighting of sure losses

contributes to risk-seeking behavior. These are the certainty effects and reflection

effects identified in [73]. A psychological ground for the observations is called dimin-
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ishing sensitivity, which means people become less sensitive to the marginal change

as the outcome moves away from the reference point. This heuristic requires that

the utility shape under prospect theory be an S-shape, namely concave above the

reference point (v′′(x) < 0) and convex below that (v′′(x) > 0). The last important

heuristic is called “loss aversion”. It means a certain loss from the reference point

causes a bigger marginal change than an equal gain does. In other words, we have

the condition v′(x) < v′(−x), for x > 0. So the loss part of the utility function is

steeper than the gain part. All these heuristics explain the shape of v in Figure 1.1.

Apart from that, the curvature of probability weighting function has also been

extensively studied in the literature. A widely accepted form is an inverted S-shaped

π displayed in Figure 1.2. There are several reasons for that. Firstly, it is a consensus

p0

1

1

Figure 1.2: The probability weighting function π.

that π should be an increasing function. It should also satisfy π(0) = 0 and π(1) =

1, since people have no disagreement on “extreme” events: events with objective

probability of zero or one. Besides, a critical observation in Kahneman and Tversky

[73] is that people tend to over-weight small probabilities (π(p) > p) near zero and

12



under-weight large probabilities (π(p) < p) near one. This means the shape of

π on [0, 1] shall be concave at beginning and convex in the end. In Tversky and

Kahneman [122], the inverted S-shaped probability weighting functions were found

to fit the experiment results fairly well and later this finding was testified to be

robust in other decision environments; see Abdellaoui [1], Bleichrodt and Pinto [20],

Camerer and Ho [26], Gonzalez and Wu [63], Prelec [100], Wu and Gonzalez [128],

Lattibmore, Baker, and Witte [76]. It is worth noting that such an inverted S-shape

can also be explained by diminishing sensitivity if one treats the “extreme” events

as the reference points. The shape shall be steeper near reference points and flatter

on the intermediate probabilities.

Several parametric forms of the inverted S-shaped probability weighting function

π were proposed in the aforementioned literature. We list them in the following

table:

π parameter(s)

Lattibmore, et. al.[76] π(pi) =
αpβi

αpβi +
∑n
k=1 p

β
i

α, β > 0, k 6= i

Tversky and Kahneman[122] π(p) = pγ

(pγ+(1−p)γ)1/γ
0 < γ < 1

Gonzalez and Wu[63] π(p) = δpγ

δpγ+(1−p)γ δ > 0, 0 < γ < 1

Prelec[100] π(p) = e−δ(− ln p)γ δ > 0, 0 < γ < 1

Table 1.1: Parametric forms of π

1.3 Behavioral Portfolio Selection

Incorporating the concept of behavioral preference into portfolio selection models is

a burgeoning field that started at the beginning of this century. As same as the

old trend, attempts are first conducted in the dimension of one-single period. She-

frin and Statman [112] proposed a behavioral portfolio theory (BPT) on the basis

13



of Lopes’ SP/A theory [88] and the mental accounting (MA) structure introduced

by Thaler [118], [119]. Different from Markwoitz’s model, the risk in BPT is mea-

sured by the probability of ruin (Roy [106]) instead of the variance of return. A

number of studies focus on a comparison between the BPT optimal portfolio and

the mean-variance efficient frontier. Normally, the former does not coincide with the

latter. Das et al. [40] proposed an MA framework which integrates the appealing

structure of the mean-variance model with BPT. The resulting optimal portfolio is

also mean-variance efficient. However, Alexander and Baptista [3], Baptista [7] pre-

sented completely different results if additional conditions (such as background risk

and delegation) are considered.

Berkelaar, Kouwenberg, and Post [16] considered a continuous-time portfolio

choice problem with a loss aversion investor characterized by the piece-wise power

utility. Their solution shows that loss aversion may significantly influence an in-

vestor’s weight on a stock in a short investment horizon. However, the paper does

not involve probability weighting, which is a critical component of behavioral criteria.

Jin and Zhou [71] first established a general continuous-time portfolio selection model

under CPT theory, which captures both the S-shaped value function and probability

distortion. They obtained an analytical result by a “divide and conquer” machinery:

splitting the corresponding optimization problem into three subproblems and solving

them separately. Later, Zhang, Jin and Zhou [138] considered a constrained version

of [71] by imposing an upper bound on the loss. The quantile formulation used in

[71] turns out to be a powerful tool and has been extended by He and Zhou [68] to

a general model with law-invariant performance criteria. The law-invariant criteria

captures the common features of a broad class of models, including the goal-reaching

model of Browne [24], [25], Yaari’s dual model [135], Lopes’ SP/A model [88], and

those involving VaR and CVaR. Shi, Cui and Li [113] constructed a multi-period

CPT model which respectively extended the one-period versions of He and Zhou
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[68], Barberis and Xiong [9], Pirvu and Schulze [99].

A main obstacle that appears in continuous-time behavioral portfolio choice prob-

lems is the failure of traditional approaches. For instance, once a nonlinear proba-

bility weighting is introduced, the target becomes a nonlinear expectation, for which

the well-known conditional tower property in probability may no longer exist. Fur-

thermore, Bellman’s principle of optimality no longer exists either, and consequently,

the dynamic programming principle (DPP), which was first utilized by Merton [95],

[96] to derive a corresponding HJB equation, failed. This situation is also called

dynamic inconsistency, tracing back to Strotz [116]. Under this circumstance, an op-

timal strategy in the long-term may have terrible performance in the short-term, and

investors have the incentives to give up and change their objectives and preferences

in the midway.

The martingale approach becomes inapplicable as well. It was developed by

Harrison and Kreps [65], Harrison and Pliska [66], [67] and extended to the convex

duality method in Cvitanić and Karatzas [36]. Usually, techniques under the tradi-

tional expected utility framework are premised on the global concavity or convexity

assumption. But unfortunately, this desiring property also vanishes due to the non-

concave or non-convex shape of the utility. Apart from that, it may also rise an issue

of well-posedness, which is not common in the traditional paradigm.

One systematic approach developed recently to tackle those non-concave (non-

convex), nonlinear optimization problems is to study their quantile optimization

problems instead. Specifically, rewrite the functionals and constraints by replacing

the decision variables with their quantiles (the inverse of distribution functions).

This procedure is called quantile formulation, which was first utilized by Jin and

Zhou [71] to tackle the intractability raised by the probability weighting function.

He and Zhou [68] illustrated that this procedure is valid as long as the performance

criteria are law-invariant, namely the payoff functional is only related to the distri-
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bution function of the decision variable. To further address the quantile optimization

technique, Xia and Zhou [129] proposed a systematic calculus of variation method,

while Xu [132] alternatively proposed a much simplified change-of-variable and relax-

ation technique. The latter has considerably relaxed the strong conditions imposed

on weighting functions in [71], [68], [129] and cleverly avoided the feasibility, well-

posedness, attainability, and uniqueness issues by embedding it into a traditional

Merton’s problem. This patterned technique will be used to simplify the situations

investigated in Chapters 2 and 3. In exchange, the questions will pose new theoretical

challenges and help to improve existing analysis methods.

1.4 Summary of Contributions of the Thesis

This thesis studies two separate models in the fields of portfolio selection and optimal

insurance contract design. Both of them assume that agents have behavioral prefer-

ences, which leads to quite different theoretical problems compared with traditional

ones. The original contributions are summarized as follows:

Return-Rate Based Portfolio Selection Model

1. To the best of our knowledge, it is the first model that considers a behavioral

investor with the goal of maximizing prospective utility of log-return. Com-

pared with the conventional expected utility of terminal wealth, the model is

more realistic, both psychologically and practically. Under the utility maxi-

mization framework, the optimal terminal wealth presents a slightly different

structure from that of conventional behavioral portfolio selection models. Both

the investors’ risk tolerance level and the benchmark chosen to measure perfor-

mance are found to play a critical role in determining the loss scenarios and the

state of the optimal terminal wealth. In a complete market with deterministic

parameters, we derive an analytical result on the optimal proportional strategy
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given the form of benchmark return.

2. Theoretically, the return-oriented objective involved with behavioral risk pref-

erence brings us a different mathematical structure, causing a failure of tra-

ditional approaches. We propose a relaxation method to solve a constrained

quantile optimization problem. The problem has a non-concave objective func-

tional (M -shaped), which is the major difficulty. It is proved that this non-

concave problem is equivalent to a “locally concavified” problem which can be

solved. A comparison between the return-based objective and a traditional

case is also provided in this model.

Optimal Moral-Hazard-Free Insurance Model

1. We consider a moral-hazard-free insurance problem in which the insurer calcu-

lates the premium based on Wang’s premium principle and the insured’s risk

preference is characterized by the rank-dependent utility theory. This model

generalizes the model in which the insurer is risk-neutral. Moral-hazard-free

means the compensation and retention must be non-decreasing on the loss;

without this requirement, the insured has the incentive to report the loss falsely.

This consideration is more realistic but causes a great theoretical challenge as

the corresponding optimization problem is constrained with a bound on the

derivatives of the compensation and the retention.

2. Theoretically, we solve a constrained quantile optimization problem where the

derivative of the admissible quantile is globally bounded. By means of the

calculation of variation, the solution is characterized by the solution of an ordi-

nary differential equation (ODE) that can be solved numerically. A numerical

example is presented as well.
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1.5 Organization of the Thesis

Chapter 2 introduces the return-oriented portfolio selection model. The inspiration

behind our model’s distinctive features is explained in Section 2.1. Its theoretical

significance stems from observation in practice. In Section 2.2, we define an optimal

control problem. The underlying financial market on which the investor trades is

specified, as well as the risk preferences of the agents in this model. There are

a few assumptions and constraints that will be made. In Section 2.3, we reduce

the optimal control problem to an equivalent solvable problem using tools like the

quantile formulation and relaxation method. Finally, we derive a closed-form solution

and compare it with the conventional result.

Chapter 3 presents the optimal moral-hazard-free insurance model. In Section

3.1, we provide background information, including a literature review and motivation.

The formulation of the optimal control problem is the focus of Section 3.2, and the

original problem is converted to a constrained quantile optimization problem. Section

3.3 and Section 3.4 present a characterization of the optimal solution and a numerical

illustration, respectively.

Chapter 4 summarizes the contribution and discusses the potential future works.
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1.6 Preliminaries

Before looking deeply into the models, we give a brief introduction to the fundamental

concepts about quantile function and list some necessary results that will be used

throughout the thesis.

We consider a canonical probability space (Ω,F ,P) = ([0, 1],B([0, 1]), L), where

L stands for the Lebesgue measure, and B([0, 1]) is the Borel set of [0, 1]. In this

probability space, ξ : Ω → R is called a random variable (r.v.) if its inverse map

ξ−1 : B(R)→ F , which is defined as

ξ−1(B) := {ω ∈ Ω | ξ(ω) ∈ B}, ∀ B ∈ B(R),

is F -measurable. Here B(R) is the Borel set of R. The function

Fξ(x) := P{ξ ≤ x} = P ◦ ξ−1{(−∞, x)}

is called the cumulative distribution function (cdf) of ξ and it maps R to [0, 1]. The

induced probability measure P ◦ ξ−1 is called the law of ξ. Clearly Fξ is increasing8

by definition. Because

Fξ(z) = P{ξ ≤ z} = E[1ξ≤z] ,

by the Dominated Convergence Theorem, we see Fξ is increasing and right-continuous

with limx→∞ Fξ(x) = 1 and limx→−∞ Fξ(x) = 0. Conversely, we will show below any

function with the above properties is a cdf. Hereafter we say r.v.s X and Y are equal,

or X = Y almost surely (a.s.) if P{X 6= Y } = 0. We will not distinguish equal r.v.s.

Lemma 1.1. Given any increasing and right-continuous function F : R → [0, 1]

with limx→∞ F (x) = 1 and limx→−∞ F (x) = 0, let

ξ(ω) = inf{z ∈ R | F (z) ≥ ω}, ω ∈ [0, 1].

Then ξ is a r.v. and its cdf is F .

8 Throughout this thesis, “increasing” means “non-decreasing” and “decreasing” means “non-
increasing”.
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Proof. For any ω ∈ [0, 1], z ∈ R such that F (z) ≥ ω, by the definition of ξ, we have

ξ(ω) ≤ z. On the other hand, if F (z) < ω, then by the right-continuity of F , we

have F (z + ε) < ω for some sufficiently small ε > 0. So

ξ(ω) = inf{z ∈ R | F (z) ≥ ω} ≥ inf{z ∈ R | F (z) > F (z + ε)} ≥ z + ε > z,

by the increasing property of F . Hence, we proved that ω ≤ F (z) if and only if

ξ(ω) ≤ z. Consequently,

P{ξ(ω) ≤ z} = P{ω ≤ F (z)} = F (z).

Therefore, F is the cdf of ξ.

We give the definition of the quantile function for r.v. which plays a critical role

in our analysis. It is the (left-continuous) inverse function of cdf.

Definition 1.1. For a r.v. ξ, the (lower) quantile function of ξ is defined as

Qξ(p) := inf{z ∈ R | Fξ(z) ≥ p}, p ∈ (0, 1),

with the convention that Qξ(0) = Qξ(0+), Qξ(1) = Qξ(1−) and inf ∅ = +∞.

Remark 1.1. In the insurance literature, people also consider the upper quantile

function of ξ, which is defined as

Q+
ξ (p) = inf{z ∈ R | Fξ(z) > p}, p ∈ (0, 1).

This will not make any difference to our portfolio choice and insurance problems

because the two definitions are different at a zero measure set and the integrals in the

target assign the same value for the two definitions.

Lemma 1.2. Given a r.v. ξ, Fξ(Qξ(p)) ≥ p and Qξ(Fξ(p)) ≤ p for any p ∈ [0, 1].

Moreover,

Fξ(z) = inf
{
p ∈ [0, 1] | Qξ(p) > z

}
, z ∈ R .
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Proof. By the increasing property of Fξ and the definition of Qξ, Fξ(Qξ(p) + ε) ≥ p

for any ε > 0. Because Fξ is right-continuous, we see Fξ(Qξ(p)) ≥ p. Similarly

Qξ(Fξ(p)) = inf{z ∈ R | Fξ(z) ≥ Fξ(p)} ≤ p.

Let us show the second conclusion

Fξ(z) = inf
{
p ∈ [0, 1] | Qξ(p) > z

}
.

Suppose there exists c such that

inf
{
p ∈ [0, 1] | Qξ(p) > z

}
> c > Fξ(z).

Then Qξ(c) ≤ z. And by our first conclusion Fξ(z) ≥ Fξ(Qξ(c)) ≥ c > Fξ(z), a

contradiction. Therefore, we have

inf
{
p ∈ [0, 1] | Qξ(p) > z

}
≤ Fξ(z).

Now suppose there exists c such that

inf
{
p ∈ [0, 1] | Qξ(p) > z

}
< c < Fξ(z).

Then Qξ(c) > z. And by our first conclusion Qξ(Fξ(z)) ≤ z < Qξ(c) ≤ Qξ(Fξ(z)), a

contradiction. This proves our claim.

The set of all (lower) quantile functions is denoted by Q. We have the following

characterization.

Lemma 1.3. We have

Q =
{
Q : [0, 1]→ R | Q is increasing and left-continuous

}
.

Proof. Clearly Q is contained in the set on the right hand side.
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To show the reverse implication, suppose Q is increasing and left-continuous. Let

ξ(ω) = Q(ω) for ω ∈ (0, 1) and ξ(0) = ξ(1) = 0. We want to show that the quantile

function of ξ is Q. By definition, Fξ(z) = P(ξ ≤ x) = P(Q(ω) ≤ z), so

Qξ(p) = inf{z ∈ R | P(Q(ω) ≤ z) ≥ p}, p ∈ (0, 1).

By the increasing property of Q, we have P(Q(ω) ≤ Q(p)) ≥ P(ω ≤ p) = p, so

Qξ(p) ≤ Q(p). On the other hand, because Q is left-continuous, for any z < Q(p),

there exists ε > 0 such that z < Q(p− ε). Hence

P(Q(ω) ≤ z) ≤ P(Q(ω) < Q(p− ε)) ≤ P(ω < p− ε) = p− ε < p.

This indicates Qξ(p) ≥ Q(p). This completes the proof.

By the proof we can see

Corollary 1.1. We have ξ(ω) = Qξ(ω) a.s.

If a r.v. U satisfies P{U ≤ p} = p for p ∈ [0, 1]. Then we say U is uniformly

distributed on [0, 1]. Denote U the set of random variables which are uniformly

distributed on [0, 1].

Corollary 1.2. Given any r.v. ξ. If a r.v. U is uniformly distributed on [0, 1], then

Qξ(U) has the same cdf as ξ.

Proof. Given p ∈ [0, 1], we see P{ξ ≤ p} = P{Qξ(ω) ≤ p} by the above Corollary

1.1. Because Qξ is left-continuous, there exists c such that {ω ∈ [0, 1] : Qξ(ω) ≤

p} = {ω ∈ [0, 1] : ω ≤ c}. Therefore, {Qξ(U(ω)) ≤ p} = {U(ω) ≤ c} and

P{Qξ(U(ω)) ≤ p} = P{U(ω) ≤ c} = c = P{ω ≤ c} = P{Qξ(ω) ≤ p} = P{ξ ≤ p}.

It completes the proof.
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Corollary 1.3. For any r.v. ξ, and any increasing continuous function f : R→ R,

we have f (Qξ(p)) = Qf(ξ)(p) for any p ∈ [0, 1].

Proof. For any p0 ∈ [0, 1], let z0 = Qf(ξ)(p0), namely

z0 = inf{z ∈ R | P{f(ξ) ≤ z} ≥ p0}.

By definition, we have P{f(ξ) ≤ z0} ≥ p0, and for h < z0, P{f(ξ) ≤ h} < p0. Note

that f is continuous and non-decreasing, so there exists an interval [b, c] such that

{x : f(x) = z0} = [b, c]. Then f(x1) < f(b) = z0 for any x1 < b. By the definition of

z0, it implies P{ξ ≤ x1} ≤ P{f(ξ) ≤ f(x1)} < p0. Hence

Qξ(p0) = inf{z ∈ R | P{ξ ≤ z} ≥ p0} ≥ b.

On the other hand, f(x2) > f(c) = z0 for any x2 > c. So f(ξ) ≤ z0 implies ξ ≤ c.

Besides, {ξ ≤ c} ⊆ {f(ξ) ≤ z0}. It means {f(ξ) ≤ z0} is equivalent to {ξ ≤ c}, so

P{ξ ≤ c} = P{f(ξ) ≤ z0} ≥ p0, and

Qξ(p0) = inf{z ∈ R | P{ξ ≤ z} ≥ p0} ≤ c.

Therefore, Qξ(p0) ∈ [b, c] and f
(
Qξ(p0)

)
= z0 = Qf(ξ)(p0). The proof is complete.

Next we introduce a very important concept called comonotonicity which char-

acterizes the dependency between random variables. Dhaene, et al [44] gave several

characterizations of comonotonicity. We give the following definition:

Definition 1.2. We say two r.v.s X and Y are comonotonic, if the joint distribu-

tion of (X, Y ) defined by FX,Y (x, y) = P{X ≤ x, Y ≤ y} satisfies FX,Y {x, y} =

min{FX(x), FY (y)} for any x, y ∈ R. We say X and Y are anti-comonotonic if X

and −Y are comonotonic.

We have following basic lemma.

Lemma 1.4. Two r.v.s X and Y are equal if and only if they are comonotonic and

have the same cdf.
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Proof. It is easy to check equal random variables are comonotonic and have the same

cdf. Suppose X and Y are comonotonic and have the same cdf. Then by Corollary

1.1,

P{ω : X(ω) = Y (ω)} = P{ω : QX(ω) = QY (ω)} = 1.

This completes the proof.

Corollary 1.4. Given r.v.s U ∈ U and X. Then X = QX(U), a.s. if and only if X

and U are comonotonic

Proof. It is the immediate consequence of Lemma 1.4 and Corollary 1.2

Corollary 1.5. Given r.v.s U ∈ U and X. Then X is anti-comonotonic with QX(1−

U) if and only if X and U are comonotonic.

Proof. It is an immediate consequence of Corollary 1.4.

To construct a specific U ∈ U such that U is comonotonic with a given random

variable, we have following lemma. We call a r.v. is atomless if its cdf is a continuous

function on R.

Lemma 1.5. If a r.v. X is atomless, then FX(X) ∈ U . Morover, FX(X) and X

are comonotonic.

Proof. Because FX is continuous, we can see {X ≤ QX(p)} if and only if {FX(X) ≤

p} for p ∈ (0, 1). Therefore,

P{FX(X) ≤ p} = P{X ≤ QX(p)} = FX(QX(p)) = p,

where the last equality is also ensured by continuity.

Remark 1.2. For atomic r.v.s, a construction can be found in Xu [131].

Next we give a critical lemma that will be used in the subsequent section. It is

called the Hardy-Littlewood Inequality.
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Lemma 1.6 (Hardy-Littlewood Inequality). Suppose r.v.s ξ1 and η are comonotonic,

ξ2 and η are anti-comonotonic, and ξ1 and ξ2 have the same cdf Q. Then for any

r.v. ξ̃ having the cdf Q, we have

E[ξ2 · η] ≤ E
[
ξ̃ · η

]
≤ E[ξ1 · η] ,

provided that the first and last expectations exist and finite, where the first and second

equalities hold if and only if ξ̃ = ξ2 and ξ̃ = ξ1, respectively.

Proof. Without losing of generality, we only consider non-negative random variables,

as one can use the monotone convergence theorem to prove the general case. For

non-negative variable ξ, we have the following expression

ξ(ω) =

∫ ∞
0

1{ξ(ω)≥t} dt.

By Fubini’s Theorem, we have

E
[
ξ̃ · η

]
= E

∫ ∞
0

1{ξ̃(ω)≥t} dt

∫ ∞
0

1{η(ω)≥s} ds

=

∫ ∞
0

∫ ∞
0

E
[
1{ξ̃(ω)≥t}1{η(ω)≥s}

]
dt ds

=

∫ ∞
0

∫ ∞
0

P{ξ̃(ω) ≥ t, η(ω) ≥ s} dt ds

≤
∫ ∞

0

∫ ∞
0

min{P{ξ̃(ω) ≥ t},P{η(ω) ≥ s}} dt ds

=

∫ ∞
0

∫ ∞
0

min{P{ξ1(ω) ≥ t},P{η(ω) ≥ s}} dt ds

=

∫ ∞
0

∫ ∞
0

P{ξ1(ω) ≥ t, η(ω) ≥ s} dt ds

=

∫ ∞
0

∫ ∞
0

E
[
1{ξ1(ω)≥t}1{η(ω)≥s}

]
dt ds = E[ξ1 · η] .

The inequality is due to that P(A∩B) ≤ min(P(A),P(B)), the last third and second

equalities are due to that ξ̃ and ξ have the same cdf and Definition 1.2 respectively.
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Therefore, E
[
ξ̃ · η

]
≤ E[ξ1 · η]. Using the fact that ξ2 is comonotonic with −η, we

have E[ξ2 · −η] ≥ E
[
ξ̃ · −η

]
, namely E[ξ2 · η] ≤ E

[
ξ̃ · η

]
. The proof is complete.
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Chapter 2

A Return-Rate Based Portfolio
Selection Model

In this chapter, we present a continuous-time portfolio optimization problem captur-

ing behavioral preference agents with the goal of maximizing utility of log-return.

The illustration can be split into three sections. Section 2.1 goes through the motiva-

tion and background, as well as the theoretical significance, behind this problem. In

Section 2.2, we define a market driven by Brownian motion and a risk measure char-

acterized by the CPT, and then formulate an optimal control problem. In Section 2.3,

we first convert the problem into an equivalent quantile optimization problem and

then derive the associated optimal solution using change of variable and a relaxation

method.

2.1 Motivation

One of the tacit rules adopted in continuous-time portfolio optimization problems is

the expected utility hypothesis on the psychology of people’s choice-making. It goes

back to the pioneering work of Merton [95], [96] in which the agent has a portfolio

built upon a simplified market and seeks to maximize the expected utility from

consumption. However, for problems that do not consider consumption behavior

and other injections of income during the investment horizon, the targets are almost
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maximization of the expected utility from terminal wealth or/plus either exogenous

or endogenous penalty terms. The idea is quite natural since the majority of investors

are concerned about how much money they will obtain when they decide to liquidate

their portfolios. But in practice, as one may notice, practitioners and institutions

with long-term investment horizons do not always keep their eyes on the book value

of their portfolios. Moreover, they care about those return-based indexes such as net

return, periodic annual return, and return on investment (ROI), which are adopted as

measurements of the portfolios’ performances. Taking return as a criterion not only

allows for a normalized comparison between wealth managers but also contributes to

capital raising 1for institutions like funds and banks by removing the impact of the

initial endowment. For fund managers, achieving a higher return represents excellent

investment skills and brings fame and fortune at the end of each year. In this light, it

is reasonable to imagine an agent whose purpose is to maximize the expected utility

from return rather than terminal wealth.

In fact, the utility of return is not a fresh terminology and exsits in the litera-

ture. For example, Benartzi and Thaler [14] tried to use prospect theory to explain

the famous equity premium puzzle (Campbell and Cochrane [28]). In their model,

the prospective utility is calculated based on the changes in wealth, namely returns.

Besides, if one treats the Markowitz’s one-period mean-variance analysis as an in-

vestor with quadratic utility, then the utility function has already been imposed on

the return right from the beginning. An important question is, will it be differ-

ent if the target is to maximize the utility of return? Intuitively, one may believe

that the optimal portfolio that maximizes the utility of terminal wealth must also

maximize the utility of return. Theoretically, such equivalence does not exist in

general. Markowitz [93] demonstrated that the equivalence between the utility of

1 For example, advertising a financial product reputed to generate $10,000 in a year is clearly no
better than titling it with a corresponding 20% annual return. The former expression has a chance
of being eclipsed by a billionaire who thinks $10,000 is not attractive at all.
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gross return and the utility of wealth disappears when the utility function is ex-

ponential. Apart from that, using different return indexes may result in different

objection functionals, which makes the problems more challenging. For example, in

this model, we consider log-return, a typical type of return used in financial time

series, which means the return is continuously compounded. It is natural to con-

sider it in a continuous-time setting, and it possesses an additive property on time,

which is convenient for calculating multi-period returns and annualizing. In addition,

those market anomalies, such as the equity premium puzzle and the volatility puzzle

(Campbell [27]), have both found statistical support on the log-return. It conforms

to reality. As we will see, using log-return results in a non-concave utility shape,

which poses the major hurdle to the problem. Recently, Dai et al. [38] investigated

a dynamic mean-variance portfolio choice problem based on log-return (Log-MV cri-

teria). The optimal policies under specific settings are found to be consistent with

several conventional investment wisdoms that are usually contradicted by models

based on terminal wealth.

Furthermore, the situation becomes more complex for behavioral investors. As

most non-expected utility theories (Friedman and Savage [55], Markowitz [91], A.

Tversky and D. Kahneman [122], [73]) have been supported by empirical observa-

tion and experiments, the problem becomes challenging and quite different once we

introduce non-expected utility functions and non-linear decision weights. Incorpo-

rating non-expected utility theory into continuous-time portfolio choice problems has

received much attention in recent years, as already mentioned in the introduction

chapter (See Jin and Zhou [71], He and Zhou [68], Xu [132], Berkelaar, Kouwenberg,

and Post [16]). To our best knowledge, there are fewer than a handful of papers

available in the literature that investigate return-oriented portfolio choice problems

using behavioral performance criteria. We will present a behavioral portfolio choice

model in this chapter to fill this gap. Anyway, it deserves to take a close look at
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return-oriented portfolio selection problems under non-EU preference, theoretically

and practically.

Considering that institutions use prominent indices or portfolios to evaluate

funds’ performance in practice, we will add a benchmark and a performance con-

straint to our model. Apart from that, we will also consider weighted objective

probability rather than itself, to explain those biases and errors appeared in the

decision-making progress. Under this setting, the target of the portfolio choice prob-

lem becomes a non-linear expectation (Choquet expectation) of log-return. An im-

mediate consequence is the failure of Bellman’s optimality, which relies on the tower

property of linear expectation. So, the classical dynamic programming principle is

not applicable to our problem. One possible approach is to rewrite the target by

replacing the decision variable with its quantile, which is the so-called “quantile for-

mulation”. This method is used in Jin and Zhou [71], He and Zhou [68], among many

others. Xu [132] investigated a portfolio choice problem under the Rank-dependent

utility theory (RDUT). He solved the corresponding quantile optimization problem

by using a relaxation method. His optimization problem is a global optimization

problem since there are no constraints on the domain of the decision variable other

than the budget constraint. In our model, the problem becomes a local optimiza-

tion problem due to the performance constraint. Besides, the utility function in Xu

[132] is concave, but in this paper, we find the utility of the corresponding quantile

optimization problem is of concave-convex-concave type (called M -shaped). This

non-concave quantile optimization problem has rarely been considered in the liter-

ature. We prove that it is equivalent to studying its concavified problem. In the

next section, we will give a detailed illustration of our model and formulate the

corresponding optimal control problem.
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2.2 Problem Formulation

Let T > 0 be a fixed known investment maturity throughout this chapter. Let us

introduce our financial market. The underlying market is defined as the filtered

complete probability space (Ω,F ,P, {Ft}06t6T ) on which a standard Ft-adapted, n-

dimensional Brownian motion W (·) ≡ (W 1(·), . . . ,W n(·))′ is defined. We assume

the uncertainty of the market entirely comes from the Brownian motion and define

the information filtration Ft = σ{W (s), 0 ≤ s ≤ t}, which is augmented by all the

P-null sets. Also FT = F .

2.2.1 Market and Portfolio

Suppose the financial market consists of n+ 1 assets which are traded continuously

over the investment horizon [0, T ] without friction (there is no transaction costs, tax

or any other restriction imposed on transaction). One of the assets is a bond (also

called risk-less asset), whose price S0(·) evolves according to the ordinary differential

equation (ODE). {
dS0(t) = r(t)S0(t) dt, t ∈ [0, T ],

S0(0) = s0 > 0,

where r(t) is the instantaneous interest rate of the bond at time t. The remaining n

assets are stocks (also called risky assets), and their prices Si(·), i = 1, 2, . . . , n, are

modeled by the system of stochastic differential equations (SDEs){
dSi(t) = Si(t){bi(t) dt+

∑m
j=1 σij(t) dW j(t)}, t ∈ [0, T ],

Si(0) = si > 0,
(2.1)

where bi : [0, T ] × Ω → R with bi(t) > 0 is the appreciation rate of the stock i and

σij : [0, T ]×Ω→ R is the volatility coefficient of stock i with respect to W j at time

t. Define the volatility matrix σ(t) := (σij(t))n×m : [0, T ]×Ω→ Rn×m and the excess

return vector process µ(t) = (b1(t) − r(t), . . . , bn(t) − r(t))′ : [0, T ] × Ω → Rn. We
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have the following basic technical assumption to ensure an existence and uniqueness

of solution of the above ODE and SDEs

Assumption 2.1. The processes r(t), b(t), σ(t) are progressively measurable with

respect to the filtration {Ft} and satisfy

∫ T

0

|r(s)|ds < +∞, a.s.

and ∫ T

0

[
m∑
i=1

|bi(t)|+
m∑

i,j=1

|σij(t)|2
]

dt < +∞, a.s.

Moreover, the SDEs (2.1) admits a unique strong solution.

Consider an agent with an initial wealth x0 > 0. She invests in the assets in

the market but her action cannot affect the market and assets price. Let πi(t)

denote the proportion of her total wealth invested in the stock i at time t, i =

1, . . . , n. Obviously, the proportion invested in the bond can be derived by π0(t) = 1−∑n
i=1 πi(t). We call the vector process π(t) := (π1(t), . . . , πn(t))′ a portfolio process

and denote Xπ(t) the agent’s related wealth process at time t with the implement

of portfolio π(t). We assume there is no transaction costs, or any other kinds of

withdrawal (consumption) or income (dividend) during the investment horizon [0, T ],

namely the change of wealth process only comes from the change of the assets price

in the market. This is the so-called self-financing trading strategy. Mathematically,

if Nπ
i (t) denotes the number of shares invested in the asset i under a portfolio π,

then

Xπ(t) = Nπ
0 (t)S0(t) +

n∑
i=1

Nπ
i (t)Si(t).
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Therefore, for a self-financing strategy π,

dXπ(t) = Nπ
0 (t) dS0(t) +

n∑
i=1

Nπ
i (t) dSi(t).

Because Nπ
i (t) = Xπ(t)πi(t)

Si(t)
and π0(t) = 1−

∑n
i=1 πi(t), we have the following propo-

sition:

Proposition 2.1 (Self-financing). An {Ft}-progressively measurable portfolio π(t) :

[0, T ]× Ω→ Rn is called self-financed if and only if:

Xπ(t) = x0 +

∫ t

0

Xπ(t)(1−
∑n

i=1 πi(t))

S0(t)
dS0(t) +

n∑
i=1

∫ t

0

Xπ(t)πi(t)

Si(t)
dSi(t), a.s.

For a self-financing strategy π,

dXπ(t) = Xπ(t)(1−
n∑
i=1

πi(t))r(t) dt+
n∑
i=1

Xπ(t)πi(t)
[
bi(t) dt+

m∑
j=1

σij(t) dW j(t)
]

= Xπ(t)
n∑
i=1

πi(t)r(t) dt+Xπ(t)
n∑
i=1

πi(t)
[
(bi(t)− r(t)) dt+

m∑
j=1

σij(t) dW j(t)
]

= Xπ(t)r(t) dt+Xπ(t)
[
π(t)′µ(t) dt+ π(t)′σ(t) · dW (t)

]
.

Therefore, the wealth process Xπ(·) evolves according to the following SDE:{
dXπ(t) = Xπ(t)

[
(r(t) + π(t)′µ(t)) dt+ π(t)′σ(t) · dW (t)

]
, t > 0,

Xπ(0) = x0 > 0.
(2.2)

We call a portfolio π feasible if it is self-financing and (2.2) has a unique strong

solution Xπ(t). From now on, we only consider feasible portfolios.

Applying Itô’s lemma to lnXπ(t),

d lnXπ(t) =
(
r(t) + π(t)′µ(t)− 1

2
‖π(t)′σ(t)‖2

)
dt+ π(t)′σ(t) · dW (t).

Integrating both sides yields
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Xπ(t) = x0 · exp

{∫ t

0

(
r(s) + π(s)′µ(s)− 1

2
‖π(s)′σ(s)‖2

)
ds

+

∫ t

0

π(s)′σ(s) · dW (s)

}
> 0.

Therefore, we have a no-bankruptcy condition inherent in the wealth process.

Another general acquiescence in the financial market is the assumption of no-

arbitrage. Mathematically, an arbitrage means there exists a portfolio π(t) such

that Xπ(0) = 0, Xπ(T ) ≥ 0, and P(Xπ(T ) > 0) > 0 or a slightly stronger condition

that Xπ(0) < 0, Xπ(T ) ≥ 0. The existing of an arbitrage means that one can make

a (potential positive) profit in the market without facing any risk of loss.

In the meanwhile, we assume the market is complete. This means any target can

be perfectly hedged if one is provided with enough initial endowment. Technically,

we assume

Assumption 2.2. There exists a unique essentially bounded risk premium process

θ(t) such that σ(t)θ(t) = µ(t), t ∈ [0, T ].

This assumption indicates that the matrix process σ(t) is invertible.

Let

ρ(t) = exp

(
−
∫ t

0

(
r(s) + 1

2
‖θ(s)‖2

)
ds−

∫ t

0

θ(s) · dW (s)

)
, t ∈ [0, T ].

Then it follows from Itô’s lemma that

dρ(t) = −ρ(t)
(
r(t) dt+ θ(t) · dW (t)

)
.

Denote ρ = ρ(T ). It is called the pricing kernel or stochastic discount factor of the

market in the literature.

For any feasible portfolio π, we have by Itô’s lemma,

d(ρ(t)Xπ(t)) = ρ(t)Xπ(t)
(
π(t)′σ(t)− θ(t)′

)
dW (t). (2.3)
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Hence ρ(t)Xπ(t) is a local martingale, but it is a positive process, so it is a super-

martingale. Hence

E[ρXπ(T )] ≤ x0. (2.4)

This is often called the budget constraint. No matter how the investor trades in the

market, the result must obey this constraint. It is easy to check that for any π with

Xπ(T ) ≥ 0 and P(Xπ(T ) > 0) > 0, we have x0 ≥ E[ρXπ(T )] > 0, so the no-arbitrage

condition is satisfied for any feasible strategy.

One feature of this model is the performance will be measured by return instead

of terminal wealth. Let Rπ(t) = ln(Xπ(t)/x0) be the total logarithmic return of an

portfolio π(·) at time t. The (normalized) return rate over [0, t] is then given by

t−1Rπ(t) for t > 0. By Itô’s Lemma and (2.2), we have{
dRπ(t) =

(
r(t) + π(t)′µ(t)− 1

2
π(t)′σ(t)σ(t)′π(t)

)
dt+ π(t)′σ(t) · dW (t), t > 0,

Rπ(0) = 0.

(2.5)

Notice that Rπ(t) may be negative, meaning the position of wealth slides into a loss.

Compared with (2.2), this expression is irrelevant to the investment initial value x0,

making the model universal (that is, the optimal strategy is for all investors). The

budget constraint can also be written in terms of Rπ(T ) as

E
[
ρeR

π(T )
]
≤ 1. (2.6)

Furthermore, to measure the performance relatively, we introduce a benchmark

process B and denote by Bt its value at time t. It is an {Ft}-adapted stochastic or

deterministic process. Apparently, B must be chosen carefully or at least be set up

not very high. In practice, B can be a short-term return of a stock index or structured

products, a benchmark one-year deposit rate, a personal target, etc. We assume that

the investor will not use any strategies that lead to very poor performance in the

end. Mathematically, we impose the following lower bound constraint

Rπ(T )−BT ≥ −c, (2.7)
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where c > 0 is a given constant risk tolerance level. To exclude the trivial case, we

assume there exists at least one portfolio π0 such that

Rπ0(T )−BT > −c.

Notice that (2.7) is equivalent toXπ(T ) ≥ x0e
BT−c. Combining it with the budget

constraint (2.4), we see x0 ≥ E[ρXπ(T )] ≥ E
[
ρx0e

BT−c
]
, namely ln(E

[
ρeBT

]
) ≤ c.

We list it as a basic assumption to ensure its feasibility.

Assumption 2.3 (feasibility). The trio of the pricing kernel ρ, benchmark B and

lower bound parameter c > 0 satisfies

ln(E
[
ρeBT

]
) ≤ c.

If the above inequality is not satisfied, then there is no feasible strategy to satisfy

both (2.4) and (2.7).

Remark 2.1. If the benchmark is a constant and the interest rate process is a deter-

ministic function, then the above assumption is equivalent to BT − c ≤
∫ T

0
r(s) ds. It

means one can not set up an extremely high target of BT with a specified c, otherwise

the problem may be ill-posed. One can also derive it from the lower bound constraint

(2.7) by taking the trivial strategy: placing all the money in the bond.

Remark 2.2. An implicit fact underlying Assumption 2.3 is that it is impossible to

set a higher benchmark return than BT without accepting the risk of a higher potential

maximum loss than c, which corresponds to the saying “higher return comes higher

risk”.

Finally, we define the set of admissible portfolios. Given a Hilbert space H with

the norm ‖ · ‖H, we can define a Banach space

L2
F(a, b;H) =

{
ϕ(·)

∣∣∣∣∣ ϕ(·) is an {Ft}t>0-adapted, H-valued progressively measurable
process defined on [a, b] and satisfies ‖ϕ(·)‖F < +∞

}
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with the norm

‖ϕ(·)‖F =

(
E
[∫ b

a

‖ϕ(t, ω)‖2
H dt

]) 1
2

.

We call a feasible portfolio π(t) is admissible if it satisfied the aforementioned con-

straints and belongs to the set of admissible portfolios given by

A :=
{
π(·)

∣∣∣ Xπ(·)σ′(·)π(·) ∈ L2
F(0, T ;Rn), Xπ(T ) ≥ x0e

BT−c
}
.

We have following important hedging result.

Theorem 2.1. Suppose ρeξ ∈ L2
F satisfies ξ ≥ BT − c and E

[
ρeξ
]

= 1. Then there

exists an admissible portfolio π such that Xπ(T ) = x0e
ξ a.s..

Proof. Let Y (t) = E
[
x0ρe

ξ | Ft
]
, then Y (t) is a square integrable martingale. By

the martingale representation theorem (Yong and Zhou [136] Chapter 1. Theorem

5.7 PP 38), there exists a unique {Ft}t>0-adapted Z(t) : [0, T ] → Rn such that

E
[∫ T

0
‖Z(t)‖2 dt

]
< +∞ and dY (t) = Z(t) dW (t). Let X(t) = ρ(t)−1Y (t) and

π(t)′ =
(
θ(t) + Y (t)−1Z(t)

)
σ(t)−1. Then X(0) = ρ(0)−1Y (0) = x0. By Itô’s Lemma,

we have

d(ρ(t)−1) =ρ(t)−1
(
(r(t) + θ(t)2) dt+ θ(t) dW (t)

)
and

d X(t) = ρ(t)−1 dY (t) + Y (t) dρ(t)−1 + d〈ρ(t)−1, Y (t)〉

= ρ(t)−1Z(t) dW (t) + Y (t)ρ(t)−1
(
(r(t) + θ(t)2) dt+ θ(t) dW (t)

)
+ ρ(t)−1θ(t)Z(t) dt

= ρ(t)−1Y (t)
((
r(t) +

(
θ(t) + Y (t)−1Z(t)

)
θ(t)

)
dt+

(
θ(t) + Y (t)−1Z(t)

)
dW (t)

)
= X(t)

((
r(t) + π(t)′σ(t)θ(t)

)
dt+ π(t)′σ(t) dW (t)

)
.

Therefore, (X(t), π(t)) is a solution to (2.2) such that X(T ) = ρ−1Y (T ) = x0e
ξ.
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2.2.2 Risk Preference

In our model, we consider a CPT investor rather than an EUT investor. It is

implemented by adding a process of probability weighting and using a non-concave

value function.

Firstly, we call a function w : [0, 1] 7→ [0, 1] a probability distortion (or weighting)

function if it is strictly increasing and continuously differentiable with w(0) = 0

and w(1) = 1. The probability weighting function w is arbitrary chosen but fixed

throughout this paper. Particularly, we are interested in concave w and inverted

S-shaped w. As we introduce the idea of probability weighting into our model, the

mathematical expectation involved w for a random variable ξ becomes nonlinear

Choquet expectation. Here we define the Choquet expectation of ξ as

E [ξ] =

∫ ∞
0

w(1− Fξ(x)) dx+

∫ 0

−∞
(w(1− Fξ(x))− 1) dx, (2.8)

provided that one of the integrals is finite.

Remark 2.3. Tversky and Kahneman [122] used different probability weighting func-

tions for the gain part (when ξ > 0) and loss part (when ξ < 0). For simplicity of the

presentation, in this paper we use the same probability weighting function for both

parts. It is possible to consider different probability weighting functions for the two

cases using the “divide and conquer” machinery developed in Jin and Zhou [71] to

study the corresponding model. We leave the case for the interested readers.

Remark 2.4. When the probability weighting function is the identical function (w(x) =

x), i.e., there is no probability weighting, the Choquet expectation (2.8) reduces to the

classical linear expectation. Therefore our model is a generalization of the classical

case.

Secondly, we adopt the piece-wise power value function in Tversky and Kahneman
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[122]:

u(x) =

{
xα, x ≥ 0;

−κ(−x)β, x < 0,
(2.9)

where 0 < α, β < 1 are risk parameters, κ > 0 represents the degree of loss aversion.2

Notice that it is convex on (−∞, 0] and concave on [0,∞) as well as continuous and

strictly increasing on R, and continuous differentiable except at the point x = 0.

Remark 2.5. Apart from adopting a power-type piece-wise utility function, one can

also consider general case

u(x) =

{
any increasing concave function, x ≥ 0;

any increasing function with Au having the following properties, x < 0,

where Arrow-Pratt’s measure of absolute risk aversion

Au(x) = −u
′′(x)

u′(x)

is large than −1 first and less than −1.

Finally we can now define the CPT risk preference for a r.v. ξ based on (2.8) and

(2.9) as

E [u(ξ)] .

The target of our model is given by

max
π(·)∈A

E [u(Rπ(T )−BT )] . (2.10)

Altogether with (2.7), we can formulate an optimal portfolio choice problem in

terms of logarithmic return variable:

max
π(·)∈A

E [u(Rπ(T )−BT )] (2.11)

2 In this utility function we used 0 as the reference point, it will make no difference to the
subsequent argument if we use a different reference point as we may rename the benchmark of the
investor. Furthermore, the specific parameters simulated in [122] are α = β = 0.88 and κ = 2.5.
We may consider different power indices α, β for the gain and loss situations in the model.
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s.t. Rπ(T )−BT ≥ −c.

As the end of Section 2.2, I would like to distinguish the return-oriented objective

of Problem (2.11) from those objective functionals which specify a logarithmic utility

of wealth.3 The portfolios induced by such targets are also called growth optimal

portfolio (GOP), which traces back to Kelly [74] and have been investigated for more

than half a century in the literature. The conventional objective max
π(·)

E[u(Xπ(T ))]

becomes maximizing the expected value of log-return by taking logarithmic utility,

which looks similar to (2.11). But they are quite different problems.

On one hand, the financial background and motivation behind the targets are

different. The GOP is commonly interpreted as an investor whose purpose is to

maximize the geometric mean value of gross return. Accidentally, it can be explained

as a special example of maximizing the expected log-utility of terminal wealth, rather

than the expected utility of return. Due to the logarithmic utility function, they

become related to our objective. As already mentioned, in Markowitz [93] (see PP.

3), the author gave a detailed discussion of the relationship between utility of gross

return and utility of wealth when the agent has an EU-preference. Although when

the utility function is logarithmic, maximizing the former is equivalent to maximizing

the latter, such an equivalence has not been verified when the agent is characterized

by behavioral risk preference, not to mention that we use log-return rather than gross

return. Intuitively, maximizing the utility of gross return within the framework of

the EUT does not lead to a very different mathematical structure, and perhaps this

is one of the reasons why there was less attention paid to return-oriented objectives

in continuous-time portfolio choice problems before.

On the other hand, portfolio choice problems that adopt the EU-preference are

naturally concave optimization problems. Traditional approaches, including the con-

3 Examples can be found in Akian, Sulem, Taksar[2], Goll, Kallsen [59],[60]
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vex duality method and dynamic programming principle, may be applicable directly.

By contrast, Problem (2.11) is a non-concave optimization problem. The non-EU

preference and a different decision variable make the problem challenging and de-

serves further study.

2.3 Quantile Optimization Problem and its Solu-

tion

This section focuses on solving Problem (2.11). In the definition of Choquet expec-

tation (2.8), there are two elements: the weighting function w(·) and the survival

function P(ξ > x). The latter represents the distribution of the decision variable,

while the former represents a subjective distortion of the distribution. The explicit

form of w(·) proposed in literature (see A. Tversky and D. Kahneman [122]) imposes

big complexity if we try to calculate the nonlinear expectation directly. Writing the

objective in terms of its quantile of the decision variable will enable us to treat the

two elements separately. This is one of the motivations and advantages of the quan-

tile formulation. This technique first appeared in Jin and Zhou [71], and a simplified

version was given by Xu [132]. Here we apply this method to solving Problem (2.11).

2.3.1 Quantile Formulation

Firstly, we still write Problem (2.11) in terms of Xπ(T ), which is

max
π(·)∈A

E [u(ln(Xπ(T )/x0)−BT )]

s.t. ln(Xπ(T )/x0)−BT ≥ −c.

For any admissible portfolio π, it must obey the budget constraint (2.4), that is,

E[ρXπ(T )] ≤ x0. Therefore, this problem is equivalent to

max
π(·)∈A

E [u(ln(Xπ(T )/x0)−BT )] (2.12)
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s.t. E[ρXπ(T )] ≤ x0, ln(Xπ(T )/x0)−BT ≥ −c.

Let ζπ = Xπ(T )/(x0e
BT ) and v(x) = u(lnx). The objective of (2.12) becomes

max
π(·)

E [v(ζπ)] . (2.13)

Note that (2.8) can be rewritten in terms of the quantile of ξ. By partial inte-

gration,

E [ξ] =

∫ 1

Fξ(0)

w(1− p) dQξ(p) +

∫ Fξ(0)

0

(w(1− p)− 1) dQξ(p)

= Qξ(p)w(1− p)
∣∣∣1
Fξ(0)

+

∫ 1

Fξ(0)

Qξ(p)w
′(1− p) dp

+Qξ(p)(w(1− p)− 1)
∣∣∣Fξ(0)

0
+

∫ Fξ(0)

0

Qξ(p)w
′(1− p) dp

=

∫ 1

0

Qξ(p)w
′(1− p) dp.

Therefore, we obtain the identity

E [ξ] =

∫ 1

0

Qξ(p)w
′(1− p) dp.

It will be very useful in the subsequent analysis.

By virtue of the above expression and Corollary 1.3, we have

E [v(ζπ)] =

∫ 1

0

Qv(ζπ)(p)w
′(1− p) dp =

∫ 1

0

v(Qζπ(p))w′(1− p) dp. (2.14)

The budget constraint (2.4) in terms of ζπ reads

x0 ≥ E[ρXπ(T )] = E
[
ρζπx0e

BT
]

or

E
[
ρζπeBT

]
≤ 1.
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Note that ρ represents the market pricing kernel. We call η = ρeBT the adjusted

pricing kernel under target BT . Then we can rewrite the budget constraint as

E[ζπη] ≤ 1.

The following lemma is critical for us.

Lemma 2.1. For any admissible π ∈ A, any optimal candidate ζπ for (2.13) must

be anti-comonotonic with the adjusted pricing kernel η, and

E[ζπη] = 1. (2.15)

Proof. Suppose ζπ
∗

is an optimal solution of (2.13). According to Lemma 1.5, we

can find a r.v. U ∈ U such that U and η are comonotonic, then Qζπ∗ (1 − U) is

anti-comonotonic with η and has the same cdf as ζπ
∗
. By the Hardy-Littlewood

Inequality of Lemma 1.6, we have

E
[
Qζπ∗ (1− U) · η

]
≤ E

[
ζπ
∗ · η

]
≤ 1.

If ζπ
∗

is not anti-comonotonic with η, then the first inequality is strict; or if the

second inequality is strict, then we always have

E
[
Qζπ∗ (1− U) · η

]
< 1.

Let δ =
1−E[Qζπ∗ (1−U)·η]

E[η]
> 0 and ζ̂π

∗
= Qζπ∗ (1−U) + δ. One can check that we have

E
[
ζ̂π
∗
η
]

= 1

and

E
[
v(ζπ

∗
)
]

= E
[
v(Qζπ∗ (1− U))

]
< E

[
v(Qζπ∗ (1− U) + δ)

]
= E

[
v(ζ̂π

∗
)
]
,

where the two equalities are due to the fact that the objective functional is law-

invariant. Thanks to Theorem 2.1, we can find an admissible portfolio π̂ such that

ζ̂π
∗

= X π̂(T )/(x0e
BT ). So ζ̂π

∗
is better than ζπ

∗
, a contradiction.
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Remark 2.6. The similar result can be also found in Theorem 7, Xu [131]; B.1, Jin

and Zhou [71]; Lemma 2.5, He and Zhou [68]. Note that the wealth process in our

model is slightly different from theirs.

In the classical case, i.e., there is no benchmark, then the optimal candidate ζπ

must be anti-comonotonic with the pricing kernel ρ. In our model, by contrast,

ζπ may not be anti-comonotonic with the pricing kernel ρ, since ρ and η may not

be comonotonic. For example, when the benchmark is BT = 1
ρ2

, η = ρeBT =

ρ 1
ρ2

= 1
ρ
; since ζπ is anti-comonotonic with the adjusted pricing kernel η, it is indeed

comonotonic with ρ. Economically speaking, the benchmark may influence how

we judge, the traditional optimal solution which maximizes the utility of terminal

wealth may not be the one that maximizes the utility of relative return. Therefore,

the reference plays a significant role in deciding the optimal strategy.

Let U ∈ U be comonotonic with η. According to Corollary 1.4, we then have

Qη(U) = η, and Qζπ(1−U) is anti-comonotonic with η. So the constraint (2.15) can

be written in a quantile form below:

E[ζπη] = E[Qη(U)Qζπ(1− U)] =

∫ 1

0

Qζπ(p)Qη(1− p) dp = 1. (2.16)

Furthermore, the lower bound constraint (2.7) reads

ζπ = Xπ(T )/(x0e
BT ) = eR

π(T )−BT ≥ e−c := ĉ.

In terms of quantile, it becomes

Qζπ(0+) ≥ ĉ. (2.17)

We note that 0 < ĉ < 1.

Putting the objective (2.14), the budget constraint (2.16) and the lower bound

constraint (2.17) together, we arrive at a quantile optimization problem

max
Q∈Q

∫ 1

0

v(Q(p))w′(1− p) dp (2.18)
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s.t.

∫ 1

0

Q(p)Qη(1− p) dp = 1, Q(0+) ≥ ĉ.

As the end of this section, we present the relationship between the optimal solutions

of Problem (2.18) and Problem (2.12) as well as Problem (2.11).

Theorem 2.2. If Q∗ is an optimal solution of Problem (2.18), then

X∗(T ) = x0e
BTQ∗(1− Fη(η))

and

R∗(T ) = BT + ln(Q∗(1− Fη(η)))

are optimal outcomes of Problem (2.12) and Problem (2.11), respectively.

Proof. Given an optimal solutionQ∗ which is the quantile function of ζπ
∗

= X∗(T )/x0e
BT .

Based on Corollary 1.4, finding the optimal candidate X∗(T ) of Problem (2.12) is

reduced to finding a U ∈ U which is comonotonic with ζπ
∗

such that ζπ
∗

= Q∗(U).

Lemma 2.1 requires that ζπ
∗

must be anti-comonotonic with η, namely Q∗(U) is anti-

comonotonic with η. Base on Corollary 1.5 and Lemma 1.5, we have 1− Fη(η) ∈ U

which is anti-comonotonic with η, then we have Q∗(1 − Fη(η)) is anti-comonotonic

with η. So, we have ζπ
∗

= Q∗(1− Fη(η)), the same goes for R∗(T ).

2.3.2 Change of Variable

To simplify Problem (2.18), we first remove the distortion function w from its objec-

tive functional. Introduce

ν(p) = 1− w−1(1− p), p ∈ [0, 1].

It is also a distortion function, sometimes called the dual distortion of w. Let

G(p) = Q(ν(p)), p ∈ (0, 1).
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The map between Q and G is one-to-one as ν is strictly increasing. Furthermore, G

is a quantile if and only if so is Q.

We rewrite∫ 1

0

v(Q(p))w′(1− p) dp =

∫ 1

0

v(Q(p)) d(1− w(1− p))

=

∫ 1

0

v(Q(ν(p))) d(1− w(1− ν(p)))

=

∫ 1

0

v(G(p)) dp

and∫ 1

0

Q(p)Qη(1− p) dp =

∫ 1

0

Q(ν(p))Qη(1− ν(p)) dν(p) =

∫ 1

0

G(p)ϕ′(p) dp, (2.19)

where

ϕ(p) = −
∫ 1

p

Qη(1− ν(s))ν ′(s) ds, p ∈ [0, 1] (2.20)

is a differentiable increasing function. Notice Q(0+) ≥ ĉ if and only if G(0+) ≥ ĉ.

Therefore, Problem (2.18) is, in terms of G, equivalent to

max
G∈Q

∫ 1

0

v(G(p)) dp (2.21)

s.t.

∫ 1

0

G(p)ϕ′(p) dp = 1, G(0+) ≥ ĉ.

Unfortunately, this problem is not a concave optimization problem as we will show

v is not concave, hence the Lagrange method cannot be applied directly to tackle

it. This is different from the problem in Xu [132] wherein the constraint G(0+) ≥ ĉ

is missing and v is concave. For the above non-concave optimization problem, Xu’s

[132] idea cannot be applied directly.

We now focus on Problem (2.21). Similar to Theorem 2.2, we see if G∗ is an

optimal solution of the Problem (2.21), then

X∗(T ) = x0e
BTG∗

(
ν−1 (1− Fη(η))

)
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and

R∗(T ) = BT + ln
(
G∗
(
ν−1 (1− Fη(η))

))
are the optimal outcomes of Problem (2.12) and Problem (2.11).

2.3.3 Utility of Relative Return

To solve Problem (2.21), the shape of v plays a key role. Observed from (2.13), it

can be regarded as a utility function of the random variable ζπ, hereafter we label it

the utility of relative return.

Notice

v(x) = u(lnx) =

{
(lnx)α, x ≥ 1;

−κ(− lnx)β, 0 < x < 1.

Hence we have

v′(x) = u′(lnx)x−1 > 0

and

v′′(x) = [u′′(lnx)− u′(lnx)]x−2, x > 0.

We see from the above relations that v would be increasing and global concave if so

was u. That happends in EUT and RDUT. By contrast, the shape of v in our model

is essentially different from them. Indeed,

• When x > 1, we have u′′(lnx) < 0 and u′(lnx) > 0, so v′′(x) < 0 and v is

strictly concave.

• When 0 < x < 1, we have

v′′(x) = [u′′(lnx)− u′(lnx)]x−2

= −κβ
(
(β − 1) + (− lnx)

)
(− lnx)β−2x−2

=

{
> 0, eβ−1 < x < 1;

< 0, 0 < x < eβ−1.
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So v is strictly concave on (0, eβ−1] and strictly convex on [eβ−1, 1).

To summarize, the function v is strictly concave on (0, eβ−1] and [1,∞), respectively,

and strictly convex on [eβ−1, 1]. Furthermore, we want to point out that v′ is contin-

uous at x = 1 but v′′ not.

Since ĉ and β are entirely decided by the investor, both the cases ĉ > eβ−1 and

ĉ ≤ eβ−1 can happen. The shape of v is demonstrated in Figure 2.1 and Figure 2.2.

-

6

x
eβ−1ĉ

1

v(x)

Figure 2.1: The function v when ĉ < eβ−1.

-

6

x
eβ−1 ĉ

1

v(x)

Figure 2.2: The function v when ĉ > eβ−1.
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Due to the special shape of v, Problem (2.21) is not a concave or S-shaped

utility optimization problem as in Jin and Zhou [71] and Xu [132]. It is an M -

shaped function. The M -shaped utility has already been proposed in the theory of

decision-making under uncertainty, dating back to Friedman and Savage [55]. The

authors initially proposed such a shape of utility (“F-S” hypothesis) to explain the

purchasing of both insurance and lottery tickets. As demonstrated in Friedman and

Savage [55] (Fig 1 in PP.290), a concave segment indicated a preference for certainty

(insurance) while the convex segment indicated a preference for risk (gambling). In

their paper, the M -shaped utility was endowed with a reasonable interpretation that

a lower socioeconomic class consumer whose income was placed corresponding to the

first concave segment wished to shift himself to a higher socioeconomic class whose

income was placed corresponding to the last concave segment. The convex segment

with increasing marginal utility represented a transitional stage between two classes.

Although the shape of utility v in this paper is also M -shaped, there are some

essential differences we would like to highlight. Firstly, speaking of the meaning of

utility, in the context of [55], it refers to the utility of “income”, a general concept

which may vary subjectively. Whereas the “utility” investigated in our model typ-

ically refers to the utility of the relative return variable ζπ = Xπ(T )/x0e
BT . As

one may note, the form of the utility function relies heavily on the hypothesis of

the piece-wise utility of wealth introduced by Tversky and Kahneman [122]. The

shape of the utility is determined once the parameters α, β, κ are fixed. Besides,

the variable ζπ = Xπ(T )/x0e
BT has standardized the influence of initial wealth x0

and the benchmark return BT . These parameters do not affect the curvature of the

utility in our setting. We may interpret them as a reflection of investor’s economic

status and aspiration level.

More interestingly, as self-explained in [55], the M -shaped utility is only plausible

for consumer units whose level of income is corresponding to the first concave segment
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of the utility shape. If that were so, suppose an investor’s “income” entirely comes

from the return of investment in the market. Then in turn, the “F-S” hypothesis

implies that the investor’s ability to invest, measured by the relative return variable

ζπ = Xπ(T )/x0e
BT , should take values in the first concave segment, namely the

region (0, eβ−1). That is to say, the gross return of investor should be subject to

0 < Xπ(T )
x0

< eBT+β−1. If we take β = 0.88, BT to be the common value of risk-free

interest rate (normally less than 0.05), then these investors typically refer to those

who suffer losses in the market as eBT+β−1 < 1.

After all, we have to admit that so far there lacks empirical experiments or

evidences to support that a utility of return or any other decision variables associated

with wealth could be simply induced by a corresponding transformation from the

utility of wealth, and certainly it is beyond the scope of this thesis. The model

proposed by Tversky and Kahneman [122] is one of the most persuasive suggestions

on risk preference we can count on. What we focus on here is how to deal with this

different non-concave quantile optimization problem when considering a different

decision variable.

2.3.4 Concavified Problems

One naive way to solve Problem (2.21) is to consider its concavified problem. For

this, let us introduce the concave envelope function of v on (0,∞), that is, the small

concave function dominating v on (0,∞), denoted by v̂0. Mathematically it is given

by

v̂0(x) = sup
0<y≤x≤z

y 6=z

(
z − x
z − y

v(y) +
x− y
z − y

v(z)

)
, x > 0.

We have the following lemma:

Lemma 2.2. There are two scalars 0 < a < 1 < b such that the function v̂0 is concave
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on (0,∞), coincides with v on (−∞, a] ∪ [b,∞), and is affine on [a, b]. Moreover, a

and b are determined by the equations

v′(a) = v′(b) =
v(b)− v(a)

b− a
. (2.22)

Proof. Let

f1(β) = min{βx− v(x) : x ≥ 1}

and

f2(β) = min{βx− v(x) : 0 < x ≤ 1}

Then both f1 and f2 are continuous function in its domain in (0,∞).

-

6

x

v(x)

1

βx

f1(β)

f2(β)

Figure 2.3: The functions f1 and f2 in blue dot line.

One can show f1(β) > f2(β) when β is sufficiently large, and f1(β) < f2(β) when

β is small. So for some β > 0, f1(β) = f2(β). Also there exists b > 1 and 0 < a < 1

such that f1(β) = βb− v(b) and f2(β) = βa− v(a). It follows βa− v(a) = βb− v(b).

Since a and b minimize βx − v(x), respectively, on (0, 1) and (1,∞), the first order

condition gives v′(b) = β and v′(a) = β. So we conclude (2.22).
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The positions of a and b are demonstrated in Figure 2.4. The global concave

envelope function v̂0 is different from v on the interval (a, b), in red dot line.

-

6

x

v(x)

1
a

b

Figure 2.4: The function v̂0 in red dot line.

A naive way to solve the problem (2.21) is described as follows. One first tries to

solve the following globally concavified problem

max
G∈Q

∫ 1

0

v̂0(G(p)) dp (2.23)

s.t.

∫ 1

0

G(p)ϕ′(p) dp = 1, G(0+) ≥ ĉ.

And then tries to show that the optimal solution of Problem (2.23) is also an optimal

solution of Problem (2.21). But unfortunately this approach turns out to fail due

to the low bound constraint G(0+) ≥ ĉ in the problem. In fact, one can easily see

from the formulation of Problem (2.21) that its optimal value as well as its solution

are only related to the utility v on [ĉ,∞). Therefore, it makes sense to use the local

concave envelope of v on [ĉ,∞) rather than the global one v̂0 on (0,∞).

The above thinking motives us to consider the concave envelope function of v on

[ĉ,∞), denoted by v̂ĉ. It is the smallest concave function dominating v on [ĉ,∞),
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called the local concave envelope of v and defined by

v̂ĉ(x) = sup
ĉ≤y≤x≤z
y 6=z

(
z − x
z − y

v(y) +
x− y
z − y

v(z)

)
, x ≥ ĉ. (2.24)

We now introduce the locally concavified problem

max
G∈Q

∫ 1

0

v̂ĉ(G(p)) dp (2.25)

s.t.

∫ 1

0

G(p)ϕ′(p) dp = 1, G(0+) ≥ ĉ.

Because the constraints are linear in the decision variable G in this problem, and

the objective functional is concave in it, this is a concave optimization problem. By

contrast, Problem (2.21) is not a concave optimization problem. Generally speaking,

solving a concave optimization problem is easier than solving a non-concave one.

Although the two problems seem different, it however turns out that the optimal

solution of Problem (2.25) is also an optimal solution of Problem (2.21).

Before proving the above claim, let us first study the properties of the local

concave envelope function v̂ĉ. Clearly v̂ĉ ≤ v̂0 on [ĉ,∞). One can easily show that

they are identical on [ĉ,∞) if and only if ĉ ≤ a. If a < ĉ, then the function v̂ĉ

coincides with v on [d,∞) and is affine on [ĉ, d] for some 1 < d < b; moreover,

v̂ĉ < v̂0 on [ĉ, b] and v̂ĉ > v on (ĉ, d). Similar as before, we can find the value of d via

an algebraic equation

v′(d) =
v(d)− v(ĉ)

d− ĉ
.
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-

6

x

v(x)

a
b

ĉ
d

Figure 2.5: The function v̂0 in red dot line and v̂ĉ in blue dot line when ĉ > a.

-

6

x

v(x)

aĉ
d = b

Figure 2.6: The function v̂0 and v̂ĉ coincide in red dot line when ĉ ≤ a.

Economically speaking, the bigger the value of c (equivalently, the smaller the

value of ĉ), the smaller the local concave envelope function v̂ĉ as well as the optimal

value of Problem (2.21).

Because v̂′ĉ is continuous and decreasing on [ĉ,∞), we may define its left-continuous

inverse function as

I(x) = inf
{
y ≥ ĉ | v̂′ĉ(y) ≤ x

}
, x > 0. (2.26)

We have the following important lemma:

Lemma 2.3. The function I is decreasing and left-continuous, and satisfies the

following properties.
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1. If a ≤ ĉ, then

I(x) =

{
(v′)−1(x), if 0 < x < v′(d);

ĉ, if x ≥ v′(d).
(2.27)

where v only takes the positive part, i.e. v(x) = (ln x)α, x > 1.

2. If a > ĉ, then

I(x) =


(v′)−1(x), if 0 < x < v′(b);

a, if x = v′(b);

(v′)−1(x), if v′(b) < x < v′(ĉ);

ĉ, if x ≥ v′(ĉ).

(2.28)

3. For any x > 0,

v̂ĉ(I(x)) = v(I(x)).

4. For any x > 0,

max
y≥ĉ

(v(y)− xy) = max
y≥ĉ

(v̂ĉ(y)− xy) = v̂ĉ(I(x))− xI(x).

Proof. The first three properties are easy to prove, let us prove the last property. In

fact v̂ĉ is concave, so for any x > 0, we have

sup
y≥ĉ

(v̂ĉ(y)− xy) = v̂ĉ(I(x))− xI(x) = v(I(x))− xI(x),

where the last equation is due to the third property. Hence

sup
y≥ĉ

(v̂ĉ(y)− xy) = v(I(x))− xI(x) ≤ sup
y≥ĉ

(v(y)− xy).

But the reverse inequality

sup
y≥ĉ

(v̂ĉ(y)− xy) ≥ sup
y≥ĉ

(v(y)− xy)

is trivial as v̂ĉ ≥ v, so all the inequalities become identities.

From the first three properties, we see that I does not take values in (a ∨ ĉ, d).
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2.3.5 Optimal Solution

We are now ready to use the relaxation method to solve Problem (2.25). This method

was introduced by Xu [132]. The idea is to replace ϕ(p) defined by (2.20) with its

concave envelop.

Let δ be the concave envelope of ϕ on [0, 1], that is,

δ(x) = sup
0≤y≤x≤z≤1

y 6=z

(
z − x
z − y

ϕ(y) +
x− y
z − y

ϕ(z)

)
, x ∈ [0, 1]. (2.29)

Then it satisfies an ODE

min{−δ′′(p), δ(p)− ϕ(p)} = 0, for almost every p ∈ [0, 1], (2.30)

with δ(0) = ϕ(0) and δ(1) = ϕ(1).

Remark 2.7. When w is concave (including the case that there is no probability

distortion), ϕ is concave, so δ = ϕ.

We give the main conclusion.

Theorem 2.3 (Verification Theorem). Suppose∫ 1

0

I(λδ′(p))ϕ′(p) dp = 1 (2.31)

for some λ > 0. Then G∗(p) = I(λδ′(p)) is an optimal solution of Problem (2.25) as

well as Problem (2.21).

Proof. By the definition of I, we have G∗ ≥ ĉ, together with (2.31), we infer that

G∗ is a feasible solution of Problem (2.21) and Problem (2.25). Moreover, it is an

optimal solution of the latter; see Xu [132] or Xia and Zhou [129]. Note

v̂ĉ(I(x)) = v(I(x))
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for any x > 0, so

v̂ĉ(G
∗(p)) = v̂ĉ(I(λδ′(p))) = v(I(λδ′(p))) = v(G∗(p)).

Therefore for any feasible solution G of Problem (2.21), we have

∫ 1

0

v(G(p)) dp ≤
∫ 1

0

v̂ĉ(G(p)) dp ≤
∫ 1

0

v̂ĉ(G
∗(p)) dp =

∫ 1

0

v(G∗(p)) dp,

and hence G∗ is also optimal to Problem (2.21).

Remark 2.8. The verification theorem requires the existence of λ. Let

f(λ) =

∫ 1

0

I(λδ′(p))ϕ′(p) dp.

Since I(x) is decreasing and left-continuous, we can show by the monotone conver-

gence theorem that f(λ) is continuous and decreasing. Moreover,

lim
λ→0

f(λ) = +∞, lim
λ→∞

f(λ) = ĉ

∫ 1

0

ϕ′(p) dp = ĉE[η] .

Thanks to Assumption 2.3, the existence of λ in (2.31) is ensured since ĉE[η] ≤ 1.

Finally, given an optimal solution of Problem (2.25)

G∗(p) = Q∗(ν(p)) = I(λ∗δ′(p)).

Therefore

G∗(ν−1(p)) = Q∗(p) = I(λ∗δ′(ν−1(p))).

Recall Theorem 2.2, the corresponding optimal terminal wealth and optimal returns

of Problem (2.12) and Problem (2.11) are

X∗(T ) = x0e
BTG∗(ν−1(1− Fη(η))) = x0e

BT I(λ∗δ
′
(1− ω(Fη(η))))
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and

R∗(T )−BT = ln(I(λ∗δ
′
(1− ω(Fη(η))))),

which depend on the function I in (2.27) and (2.28). Note that if I ≥ 1, it is regarded

as a gain situation, otherwise it is regarded as a loss situation.

In Berkelaar, Kouwenberg, and Post [16] and Jin and Zhou [71], the authors both

obtained a two-case phenomenon (either a gain or maximum loss) for the optimal

terminal wealth. In our model, one can also observe this phenomenon from (2.27)

when the agent’s risk tolerance level c ≤ − ln a (a ≤ ĉ). A slightly different observa-

tion from (2.28) is that when c > − ln a (a > ĉ), the loss will continuously decrease

from a to ĉ according to the state of the market, not necessarily a sure maximum

loss.

2.3.6 A Comparison under Piece-Wise Power Utility

It is worth noting that Zhang, Jin and Zhou [138] also considered a continuous-

time portfolio optimization problem under the CPT with lower bound constraint

and obtained similar results. Their model is highly related to our model except that

they maximize the utility of terminal wealth and use separated probability weighting

functions for the gain and loss parts. Their results provide an opportunity for us

to compare the differences between using returns and using terminal wealth as the

investment targets. To illustrate it, we consider a parallel model of Problem (2.11),

which is

max
π(·)∈A

E
[
u(Xπ(T )− B̄T )

]
(2.32)

s.t. E[ρXπ(T )] = x0, Xπ(T )− B̄T ≥ −c̄.

Namely, replace the terminal return Rπ(T ) in (2.11) with the conventional terminal

wealth Xπ(T ). Let the other settings remain unchanged. Then, the formulation is
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exactly the problem studied in Zhang, Jin and Zhou [138], in which B̄T and c̄ was

interpreted as the reference point at time T and the upper bound to control the loss.

By letting X̄π(T ) = Xπ(T ) − B̄T , x̄0 = x0 − E
[
ρB̄T

]
, the authors studied the

equivalent problem

max
π(·)∈A

E
[
u(X̄π(T ))

]
(2.33)

s.t. E
[
ρX̄π(T )

]
= x̄0, X̄π(T ) ≥ −c̄.

By means of the “divide and conquer” machinery introduced in Jin and Zhou [71],

Problem (2.33) reduced to a related three-dimensional mathematical programme

problem. For details of it, readers can refer to Zhang, Jin and Zhou [138] (Theorem

5.1). By solving the three-dimension optimization problem and given a corresponding

solution denoted as (d1, d2, x+), the optimal wealth profile is classified to three cases

with respect to the state of pricing kernel ρ

X̄π(T ) =


(u′+)−1(λ ρ

T ′+(Fρ(ρ))
), if ρ ≤ d1;

−x+−x̄0−c̄E[ρ1{ρ>d2}]
E[ρ1{d1<ρ≤d2}]

, if d1 < ρ ≤ d2;

−c̄, if ρ > d2,

(2.34)

where u+ = max{u, 0}, ρ ≤ d1 ≤ d2 ≤ ρ, x̄+
0 ≤ x+ ≤ x̄0+ c̄E[ρ]. ρ, ρ are the essential

infimum and supremum of ρ respectively. T+, T− is the probability weighting function

for the positive outcome and negative outcome. The Largrange multiplier λ satisfys

E
[
ρ(u′+)−1(λ ρ

T ′+(Fρ(ρ))
)1{ρ≤d1}

]
= x+.

Note that the loss scenario has two cases: either a constant moderate loss
x+−x̄0−cE[ρ1{ρ>d2}]

E[ρ1{d1<ρ≤d2}]

or a constant maximum loss −c̄. Zhang, Jin and Zhou [138] (Section 6) demonstrated

two possible analytical solutions when the utility function is piece-wise power type.

It shows that (2.34) may be further reduced to a two-cases (either the moderate loss

or the maximum loss disappear) which depends on the explicit form of T− taken in

the model.
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To make a comparison, we first need to unify the benchmark and lower bound

performance parameter taken in both targets. We assume B̄T = x0e
BT , namely the

benchmark used in both targets should be the same value in terms of terminal wealth

and log-return, B̄T should generate a log-return BT in turn. Similarly, we assume

c̄ = x0e
−c = x0ĉ, then the solution of Problem (2.32) is

Xπ(T ) =


x0e

BT + (u′+)−1(λ ρ
T ′+(Fρ(ρ))

), if ρ ≤ d1;

x0e
BT − x+−(x0−E[ρB̄T ])−x0ĉE[ρ1{ρ>d2}]

E[ρ1{d1<ρ≤d2}]
, if d1 < ρ ≤ d2;

x0e
BT − x0ĉ, if ρ > d1.

(2.35)

But in our result, because w(·), Fη(·) are non-decreasing, δ
′
(·) is non-increasing.

then h(·) := δ
′
(1−w(Fη(·))) is non-decreasing with respect to η. According to (2.27)

and (2.28), the optimal terminal wealth reduces to two scenarios:

If ĉ ≥ a, then

Xπ(T ) =

{
x0e

BT (v′)−1(λ∗δ
′
(1− w(Fη(η)))), if η ≤ d̄2;

x0e
BT ĉ, if η > d̄2,

(2.36)

If ĉ < a, then

Xπ(T ) =


x0e

BT (v′)−1(λ∗δ
′
(1− w(Fη(η)))), if η ≤ d̄3;

x0e
BT a, if η = d̄3;

x0e
BT (v′)−1(λ∗δ

′
(1− w(Fη(η)))), if d̄3 < η ≤ d̄1;

x0e
BT ĉ, if η > d̄1,

(2.37)

where λ∗h(d̄2) = v′(d), λ∗h(d̄3) = v′(b), λ∗h(d̄1) = v′(ĉ).

Comparing it with (2.35), one can see that maximizing the utility of return leads

to a completely different optimal solution. Especially, when we consider environment

coefficients including benchmark and impose an upper bound on the loss. The level

of risk tolerance c plays a critical role in determining the loss scenarios (either a sure

maximum loss or a continuous increase to the maximum loss). Furthermore, whether

the terminal wealth is a gain or a loss is determined by the adjusted pricing kernel η
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rather than ρ being lower or higher above a threshold, implying that the impact of

benchmark BT in our result is more complicated.

Remark 2.9. Note that if BT ≤ −c, namely the benchmark return goes down below

the risk tolerance level, which stands for a “bad” market. Then x0e
BT − x0ĉ ≤ 0,

which means the strategy under target (2.32) may go bankruptcy or even in debt.

Since we use proportional strategy under a return-oriented target, the portfolio will

never go bankruptcy.

Remark 2.10. In Jin and Zhou [71] and Zhang, Jin and Zhou [138], to ensure that

ρ
T ′+(Fρ(ρ))

is non-decreasing with respect to ρ. An assumption that
F−1
ρ (·)
T ′+(·) should be

non-decreasing has been made. As pointed out in Xu [132], one can find

ϕ′(1− w(Fη(η))) = Qη(1− ν(1− w(Fη(η))))ν ′(1− w(Fη(η))) =
η

w′(Fη(η))
,

which means ϕ′(1 − w(Fη(η))) should non-decreasing with respect to η, namely ϕ′

should be decreasing. An important truth which is proved in Xu [132] and our model

is that such an assumption is not necessary if we replace ϕ with its concave envelope

δ. Furthermore, by the definition of δ, we have

δ′(1− w(Fη(η))) =
η

w′(Fη(η))
.

Since δ′′ ≤ 0, we have η
w′(Fη(η))

is non-decreasing with respect to η.

2.3.7 Optimal Controls under Deterministic Parameters

In this section, inspired by Bielecki, Jin, Pliska and Zhou [18], we give an explicit

form of the optimal control under the condition that the parameters and coefficients

are deterministic. Having

X∗(T ) = x0e
BTG∗(ν−1(1− ω(Fη(η)))) = x0e

BT I(λ∗δ
′
(1− ω(Fη(η))))
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and

R∗(T ) = BT + ln(I(λ∗δ
′
(1− ω(Fη(η))))),

where η, BT are FT -measurable r.v.s, X∗(T ) and R∗(T ) could be treated as functions

of η.

To derive the replicating portfolio, it suffices to find a strategy π∗ that satisfies

the following Backward Stochastic Differential Equation (BSDE):{
dX∗(t) = X∗(t)

[
(r(t) + π∗(t)′µ(t)) dt+ π∗(t)′σ(t) dW (t)

]
, t > 0,

X∗(T ) = x0e
BT I(λ∗δ

′
(1− ω(Fη(η)))),

(2.38)

where I is given by (2.27) and (2.28).

Although the existence and uniqueness of such pair (X∗(t), π∗(t)) is promised

by Theorem 2.1. But to find an analytical solution is not so easy. Inspired by

Bielecki, Jin, Pliska and Zhou [18], we present an explicit optimal control when

the parameters are all deterministic and the target is a function of ρ = ρ(T ). In

particular, we assume the benchmark BT is a function of ρ, so η = ρeBT is also a

function of ρ, then X∗(T ) = x0e
BI(λ∗δ

′
(1−ω(Fη(η)))) can be regarded as a function

of ρ as well.

Let X∗(T ) = g(ρ) for some deterministic function g. Then (2.38) becomes{
dX∗(t) = X∗(t)

[
(r(t) + π∗(t)′µ(t)) dt+ π∗(t)′σ(t) dW (t)

]
, t > 0,

X∗(T ) = g(ρ).
(2.39)

Notice that ρ(t)X∗(t) is a martingale, so we have

ρ(t)X∗(t) = E[ρ(T )X∗(T ) | Ft] = E[ρ(T )g(ρ(T )) | Ft] .

The last term can be expressed as a function of t and ρ(t), so is X∗(t).

Theorem 2.4. Suppose all the parameters are deterministic and the benchmark BT

is a function of the pricing kernel ρ. Under Assumption 2.3 and assume
∫ T

0
‖θ(s)‖2 ds >
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0, then there exists a unique optimal portfolio strategy for Problem (2.11). Moreover,

the optimal portfolio strategy and the associated wealth process and log-return process

are respectively given as

π∗(t)′ = −
∂c
∂x

(t, ρ(t))

c(t, ρ(t))
ρ(t)(σ(t)σ(t)′)−1µ(t) (2.40)

and

X∗(t) = c(t, ρ(t)), R∗(t) = ln(X∗(t)/x0), (2.41)

where

c(t, x) =
1√
2π

∫ +∞

−∞
e−

∫ T
t r(s) dsg

(
x · e−

∫ T
t (r(s)− 1

2
‖θ(s)‖2) ds−y

√∫ T
t ‖θ(s)‖2 ds

)
e−

1
2
y2 dy,

(2.42)

∂c

∂x
(t, x)

=
1√
2π

∫ +∞

−∞
e−

∫ T
t (2r(s)−‖θ(s)‖2) dsg′

(
x · e−

∫ T
t (r(s)− 3

2
‖θ(s)‖2) ds−y

√∫ T
t ‖θ(s)‖2 ds

)
e−

1
2
y2 dy,

(2.43)

and c(t, x) is the solution of following second-order parabolic type partial differential

equation:{
∂c
∂t

(t, x) + (‖θ(t)‖2 − r(t))x ∂c
∂x

(t, x) + 1
2
∂2c
∂x2

(t, x)x2‖θ(t)‖2 = r(t)c(t, x),

c(T, x) = g(x).
(2.44)

Proof. Consider the PDE (2.44), according to Feynman-Kac Formula in Yong and

Zhou [136] (Chapter 7. Theorem 4.1.), the solution c(t, x), (t, x) ∈ [0, T ]×R can be

expressed as the conditional expectation of a stochastic process:

c(t, x) = E
[
e−

∫ T
t r(s) dsg(y(T )) | y(t) = x

]
(2.45)

= E
[
e−

∫ T
t r(s) dsc(T, y(T )) | y(t) = x

]
,
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where y(·) is the solution of the following SDE{
dy(s) = y(s)

[
(‖θ(s)‖2 − r(s)) ds− θ(s) dW (s)

]
, s ∈ [t, T ],

y(t) = x.
(2.46)

One can check that

c(T, x) = E
[
e−

∫ T
T r(s) dsg(y(T )) | y(T ) = x

]
= E[g(y(T )) | y(T ) = x] = g(x).

Since y(T ) = y(t)e−[
∫ T
t (r(s)− 1

2
‖θ(s)‖2) ds−

∫ T
t θ(s) dW (s)], thus

c(t, x) =E
[
e−

∫ T
t r(s) dsg(y(t)e−[

∫ T
t (r(s)− 1

2
‖θ(s)‖2) ds−

∫ T
t θ(s) dW (s)]) | y(t) = x

]
=E

[
e−

∫ T
t r(s) dsg(y(t)e−[

∫ T
t (r(s)− 1

2
‖θ(s)‖2) ds−Y ·

√∫ T
t θ(s) ds]) | y(t) = x

]
,

where Y =
∫ T
t θ(s) dW (s)√∫ T

t θ(s) ds
is a centralized normal random variable.

Notice that Y , e−
∫ T
t r(s) ds and e−

∫ T
t (r(s)− 1

2
‖θ(s)‖2) ds are independent of y(t). So we

have

c(t, x) =
1√
2π

∫ +∞

−∞
e−

∫ T
t r(s) dsg

(
x · e−

∫ T
t (r(s)− 1

2
‖θ(s)‖2) ds−y

√∫ T
t ‖θ(s)‖2 ds

)
e−

1
2
y2 dy.

Differentiating it with respect to x, we obtain

∂c

∂x
(t, x)

=
1√
2π

∫ +∞

−∞
e−

∫ T
t (2r(s)−‖θ(s)‖2) dsg′

(
x · e−

∫ T
t (r(s)− 1

2
‖θ(s)‖2) ds−y

√∫ T
t ‖θ(s)‖2 ds

)
e−

1
2

(y+
√∫ T

t ‖θ(s)‖2 ds)2 dy

=
1√
2π

∫ +∞

−∞
e−

∫ T
t (2r(s)−‖θ(s)‖2) dsg′

(
x · e−

∫ T
t (r(s)− 3

2
‖θ(s)‖2) ds−y

√∫ T
t ‖θ(s)‖2 ds

)
e−

1
2
y2 dy.

Furthermore, Let X∗(t) = c(t, ρ(t)) and π∗(t)′ = −
∂c
∂x

(t,ρ(t))

c(t,ρ(t))
ρ(t)θ(t)σ(t)−1. Applying

Itô’s Lemma to X∗(t), one has

d X∗(t) =
∂c

∂t
(t, ρ(t)) dt+

∂c

∂x
(t, ρ(t)) d ρ(t) +

1

2

∂2c

∂x2
(t, ρ(t)) d〈ρ(t), ρ(t)〉
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=
(∂c
∂t

(t, ρ(t))− ∂c

∂x
(t, ρ(t))ρ(t)r(t) +

1

2

∂2c

∂x2
(t, ρ(t))ρ(t)2‖θ(t)‖2

)
dt

−
( ∂c
∂x

(t, ρ(t))ρ(t)θ(t)
)

dW (t).

Based on (2.44), we have the drift term

∂c

∂t
(t, ρ(t))− ∂c

∂x
(t, ρ(t))ρ(t)r(t) +

1

2

∂2c

∂x2
(t, ρ(t))ρ(t)2‖θ(t)‖2

= r(t)c(t, ρ(t))− ∂c

∂x
(t, ρ(t))ρ(t)‖θ(t)‖2.

Notice that X∗(t)π∗(t)′σ(t) = − ∂c
∂x

(t, ρ(t))ρ(t)θ(t), thus

d X∗(t) =
(
r(t)c(t, ρ(t))− ∂c

∂x
(t, ρ(t))ρ(t)‖θ(t)‖2

)
dt+

(
− ∂c

∂x
(t, ρ(t))ρ(t)θ(t)

)
dW (t)

=
(
r(t)X∗(t) +X∗(t)π∗(t)′µ(t)

)
dt+X∗(t)π∗(t)′σ(t) dW (t)

= X∗(t)
[
(r(t) + π∗(t)′µ(t)) dt+ π∗(t)′σ(t) dW (t)

]
.

Combining it with X∗(T ) = c(T, ρ(T )) = g(ρ), we prove that X∗(T ) and π∗(t)′ are

respectively the optimal wealth and portfolio.

Remark 2.11. When there is no probability weighting, the terminal condition in

(2.38) reduces to X∗(T ) = x0e
BT I(λ∗η).

Remark 2.12. Based on (2.27) and (2.28), one can check that

X∗(T ) =x0e
BT I(λ∗δ

′
(1− ω(Fη(η))))

=x0e
BT
(
e−c + [(v′)−1(λ∗δ

′
(1− ω(Fη(η))))− e−c]+

)
=x0e

BT−c +
(
x0e

BT (v′)−1(λ∗δ
′
(1− ω(Fη(η))))− x0e

BT−c
)+
.

Let ḡ(ρ) = x0e
BT (v′)−1(λ∗δ

′
(1− ω(Fη(η)))). Then the optimal terminal wealth is di-

vided into two parts. The first part x0e
BT−c guarantees a return restricted by the lower

bound constraint R∗(T ) ≥ BT−c at maturity, while the second part (ḡ(ρ)−x0e
BT−c)+
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could be regarded as the payoff of a European call option striking at x0e
BT−c, the as-

set it attached has value ḡ(ρ) at time T . Practically, one could interpret the first

part as allocating proportional initial capital x0e
−c on the assets replicate the chosen

benchmark. The potential financial instruments could be the constituent securities

when the benchmark is a prominent index, and a bond when it is an expected con-

stant target or a fund has a return BT , etc. The strategy implied by the second part

is the purchase of European call options. It could be any combination of options as

long as it replicates the payoff (ḡ(ρ)− x0e
BT−c)+ at time T .

Remark 2.13. A random BT was considered in Berkelaar, Kouwenberg, and Post

[16], but BT in their model has been endowed with another motivation: stochastic

reference point. It means people will change their reference point according to the

fluctuation of wealth and market status. The evolution of BT in [16] was defined

by a dynamic updating rule for reference points, which is partly proportional to the

change in wealth. So, in essence the randomness of BT is a replication of the terminal

wealth Xπ(T ), which is why the problem can be reduced to a static case with a fixed

reference point and a shift in loss aversion degree. However, the setting cannot be

directly adopted in our model, since, in practice, no one would use a benchmark that

fluctuates almost synchronously with the portfolio itself. Normally, we expect the

randomness of BT to be highly correlated to market status.

2.4 Conclusion

Portfolio selection, as one of the basic topics in finance, has fascinated academics

and practitioners for almost seventy years. The model presented in this chapter

is an attempt to combine the features of behavioral finance with a return-oriented

portfolio selection problem. Using the cumulative prospect theory to characterize the

agent’s risk preference makes the model psychologically realistic, but brings us new
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theoretical challenges. The results obtained are distinguished from those conven-

tional objectives that aimed at maximizing the utility of terminal wealth. Shifting

the carrier of utility from terminal wealth to return has found its roots in practice

and academia, but somehow its difference may have been underestimated. Espe-

cially when one tries to explore more than just deriving the optimal trading policy

but also the potential relationship within the market coefficients and the possibility

to explain the observations and facts behind individual behaviors and the aggregate

market. The generally observed two-case phenomenon (either a gain or a maximum

loss) on the optimal solution in literature has verified the old saying, “There is no

free lunch, higher return comes higher risk.” In our demonstration, the factor that

determines the gain or loss has changed from the state of pricing kernel ρ to the state

of η. That is to say, the benchmark we choose to measure performance may be more

critical in our investment decisions and influence the final optimal wealth at the same

time. This point will not be observed if we just consider a CPT-investor with the

purpose to maximize the utility of terminal wealth. In Zhang et. al. [138], the role

of benchmark has been wiped out technically, but captured by the return-oriented

objective in this model.

By means of “quantile formulation” and a relaxation method, we solved a dif-

ficult, non-concave quantile optimization problem, which cannot be tackled by tra-

ditional approaches and is rarely seen in the literature. Honestly, the relaxation

method adopted to address the M -shaped utility may no longer be effective for other

shapes of utility. One cannot expect there to be no gap between general non-concave

optimization problems and their locally concavified problems. Finally, we derived

the explicit replicating portfolio under deterministic coefficients, provided that the

benchmark can be expressed as a function of the pricing kernel. In particular, it

covers the case when the benchmark is a specified constant target for individuals.
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Chapter 3

Optimal Moral-Hazard-Free

Insurance Model

Non-EU preference also has its application in the insurance market. In Chapter 3,

we introduce an insurance contract design problem in which the insurer and insured

are both characterized by non-EU preferences. In Section 3.1, we go through the

background and motivation behind our model, including a literature review. In

Section 3.2, we formulate our optimal control problem and convert the problem

into a constrained quantile optimization problem. In Section 3.3, we subsequently

characterize the optimal solution by means of calculus of variation, which boils down

to solving an ordinary-integrated differential equation. The equation can be solved

numerically, and we present an example in Section 3.4.

3.1 Background and Motivation

There are at least two ways to eliminate one’s risk exposure in the financial market.

The first one is to hedge the risk by continuous trading of financial instruments

in a standard liquid market. The other one is called “risk-sharing” which seeks

risk reallocation across individuals and firms. In the literature, risk sharing models

generally explore an equilibrium between two parties, which is significantly different

from portfolio selection problems. A mechanism (contract) is designed to allow the
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beneficiary party to reduce risk by receiving payments from the other when a loss

occurs. The basic risk-sharing problem in the insurance industry is to establish

an insurance contract between the insurer and the insured that achieves Pareto

optimality/efficiency (PO/PE). Pareto optimality means one party cannot increase

its utility without affecting the other one’s.

Mossin [97] showed that the optimal policy for a risk-averse insured is full coverage

when the premium is sold at a fair price. A weakness of Mossin’s model is that the

premium is given. Schlesinger [109] provided a Mossin’s theorem when the insurance

policy is not given but upper-bounded. A more general framework was proposed

by Borch [21], who first demonstrated that the Pareto optimum risk allocation is

possible in a reinsurance market when agents’ preferences are described by the EUT.

Inspired by Borch’s model, Arrow [5] imagined a risk-neutral insurer who calculates

the premium based on the actuarial value of the policy and a proportionate loading.

Given a non-negative reimbursement restriction and the assumption that the insured

and the insurer share the same probabilistic belief about the random loss, the best

policy for a risk-averse insured is a deductible scheme, that is, complete coverage of

the loss above a threshold. Arrow’s classical model has been used as a framework for

optimal insurance design, and it has brought out numerous extensions and variations.

For example, Arrow [6] extended the results of [5] to state-independent utilities.

Raviv [104] expanded on Arrow’s work by taking into account mild assumptions and

constraints such as an upper limit of coverage and multiple risks. The insurance

cost was shown to have a significant impact on the optimality of a deductible policy.

In [104], the Pareto optimal policy for a risk-averse insured is a combination of

deductible and coinsurance. Namely, the optimal coverage function is proportional to

the amount of money lost over a deductible. Schlesinger [107] particularly studied the

connection between aversion degree and the optimal level of coverage for deductible

insurance. It was shown that the greater the insured’s aversion, the lower the level
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they purchased. However, their result no longer holds if the indemnity scheme has

an upper bound limit, as pointed out in Cummins and Mahul [35].

In most cases, the risk covered by an insurance contract cannot be covered by

trading (portfolios) in liquid markets. But it does not mean the risk in liquid markets

can not be hedged by insurance contracts. Brennan and Solanki [23] considered a

portfolio insurance contract wherein the coverage is based on the investment per-

formance of one’s portfolio. Considering that there may not exist an ideal option

to hedge the reference portfolio, this insurance contract can be regarded as com-

plementary to the option market. Leland [77] identified those who will benefit from

purchasing portfolio insurance, such as safety-first investors and those who have their

wealth managed by institutions and are optimistic about a higher return. Black and

Robert [19] provided a simplified and comprehensive strategy for how to design a

portfolio insurance policy and illustrated it with an example.

On the other hand, the insurance market can not hedge all the social risks in

a contract. Most of the works mentioned above isolate the insurance loss from

those uninsurable risks such as natural disasters and wars. A special example of an

uninsurable background risk is a setting of random initial wealth, which has been

investigated by Doherty and Schlesinger [47], [48], Hong et al. [69], Mahul [90].

Doherty and Schlesinger [47] reexamined the optimality of full coverage in an incom-

plete market when there are two risks (one of which is uninsurable) with a two-state

marginal distribution. They found Arrow’s deductible optimal policy is invalid if the

insurable loss is not independent of the uninsurable loss. Gollier [61] investigated an

additively separable dependence between the coverage loss and the background risk.

If the insured is prudent and the increase in insurable losses results in a more risky

distribution of background risk, then the optimal policy is a deductible type. A non-

separable case was explored by Vercammen [123] which observed the opposite result

to Gorllier’s. The optimal policy entails coinsurance above the deductible. Dana and
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Scarsini [39] studied a more general circumstance of stochastic dependence (“stochas-

tic increasing”) between the insured and uninsurable loss, whose results hold for all

risk-averse expected utility maximizers (EU-maximizers).

Apart from using the EUT to characterize the risk preference, it looks more

realistic to consider non-EU preferences in risk-sharing scenarios, as one of the earliest

observations of violations of the EUT is the purchase of insurance and lottery tickets.

In general, the insurer and insured have different probabilistic beliefs to the potential

risk. Doherty and Eeckhoudt [46] reexamined the standard results for optimal policy

when the policy holder’s risk preference follows Yarri’s dual theory. Schlesinger [108]

illustrated the robustness of Arrow’s results and Mossin’s theorem when the insured’s

preference is expressed as a function of mean and standard deviation, not necessarily

an EU-maximizer. Dana et al. [29] established a general equilibrium set-up in

which the agents have a non-additive measure, which involves Chqouet expectation

(CEU-maximizer). The Pareto optimal allocation turns out to be identical with the

classical results for the EU-maximizer if the capacity function is convex. Sung et al.

[117] solved an insurance problem in which the agent’s preference is modeled by the

cumulative prospect theory (CPT). Gollier [62] considered a case in which the policy

holder has an ambiguity aversion and the distribution of loss is also ambiguous.

The author showed that if the ambiguity is concentrated on the realization of small

losses, then it will diminish the demand for insurance. Bernard et al. [17] and

Xu [133] investigated an insurance contract design problem in which the insured

evaluated insurance contracts using the RDU risk measure and the insurer utilizes

the expected premium principle.

In this chapter, we also consider a similar optimal insurance design model with an

insured characterized by the RDU risk measure. But we consider a more general pre-

mium principle, namely Wang’s premium principle. In the conventional paradigm,

the premium is proportional to the expected coverage, which is linear and additive.

72



Non-additive risk measures have also been applied to premium calculation. Deprez

and Gerber [43] generalized the commonly seen premium principle into a convex pre-

mium principle. The authors established the corresponding properties and applied

the principle to optimal reinsurance problems as well as optimal cooperation under

fairly general assumptions. Wang [127] proposed a general premium principle that is

convex and involves distortion of probabilities, related to Yarri’s dual theory. Yong

[137] utilized Wang’s premium principle to study the optimal insurance policy for a

risk-aversion EU-maximizer. Because Wang’s class of premium principles are non-

linear, it becomes a huge technological challenge to overcome. The optimal policy

was shown to be deductible when the distortion function is piece-wise linear, and to

be deductible with coinsurance above when the distortion is power.

Another characteristic of our model is that we use Huberman, Mayers, Smith

Jr [70] and Picard [98]’s incentive compatibility constraint. This constraint requires

that, in an insurance problem, the compensation and retention functions must be

non-decreasing in relation to the loss. Bernard et al. [17] abandoned it, resulting in

a moral hazard contract in which the insured is encouraged to falsely disclose actual

losses. Xu et al. [134] and Xu [133] took the constraint into consideration in Bernard

et al.’s model, and their optimal contracts eliminate the moral hazard issue. While

Ghossoub [57] imposed a state-verification cost to rule out moral hazard contracts.

This study will follow the technological procedure introduced by Xu [133]. The

problem turns out to be a non-concave optimization problem caused by the nonlinear

Choquet expectation. To tackle it, we transform it into a corresponding quantile opti-

mization problem, which is a tractable concave optimization problem. We then apply

the calculus of variations approach to obtain the corresponding optimality condition

from an ordinary integral-differential equation (OIDE) and reduce the OIDE to a

numerically solvable ordinary differential equation (ODE). The equivalency between

the PO contract and the ODE is provided. The rest of this chapter is organized as fol-
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lows. In Section 3.2, we introduce a Pareto optimality insurance problem where the

insured uses the RDU risk measure to evaluate insurance contracts and the insurer

uses Wang’s class of premium principles. A quantile formulation of the insurance

problem has been obtained. We will provide its optimal solution in Section 3.3.

3.2 Problem Formulation

When talking about an insurance contract in optimal insurance problems, we mean

two things. The first is a premium P ∈ R that the insured (“she”) pays to the insurer

(an insurance business) for acquiring the contract, and the second is a compensation

(also known as an indemnity) scheme I in which the insurer reimburses the insured

I(x) in the event of an actual loss x. Throughout this model, we use the same

notation as in Xu [133].

Let X be the random loss that the insured wants to share with the insurer. A

well-known fact in practice is that X is bounded and its probability has a mass at 0.

In most cases, it is impossible for the insured to foresee the occurrence and magni-

tude of a prospective loss x, and it is also unable to hedge it in the financial market.

However, based on sufficient samples, the insurer may occasionally acquire the em-

pirical distribution function of the random loss X, which is a good approximation of

the real one. We denote FX the cumulative distribution function of the random loss

X and impose the following assumption:

Assumption 3.1. The random loss X is bounded with the support [0,M ], and FX(x)

is a continuous, strictly increasing function on [0,M ] with FX(0) = m0 > 0.

Let I(x) and R(x) be the loss borne of the insurer and insured after claim of an

actual loss x, which are both assumed to be functions of x. We must have

I(x) +R(x) = x,
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meaning that the true loss x is shared by the two parties. I(x) and R(x) are called

the compensation and retention functions, respectively, in the literature. It is an

acquiescence to assume both compensation and retention cannot exceed the true

loss x, implying that we have

I(0) = 0, 0 ≤ I(x) ≤ x, ∀ x ∈ R, (3.1)

R(0) = 0, 0 ≤ R(x) ≤ x, ∀ x ∈ R .

When I(x) ≡ x, we say the insurance is full coverage. When I(x) ≡ max{x− d, 0},

the insurance is called deductible.

Furthermore, both I(x) and R(x) should be non-decreasing functions with respect

to x; otherwise, the insured is willing to report a smaller loss in exchange for a larger

compensation I(x) or a larger loss in exchange for a smaller retention R(x), which

are examples of the so-called moral-hazard behaviors. Mathematically, we should

impose the following constraint to prevent such moral-hazard issues:

0 ≤ I(x) ≤ I(y), 0 ≤ R(x) ≤ R(y), ∀ 0 ≤ x ≤ y, x, y ∈ R . (3.2)

Combining with (3.1) together, we give the set of compensation function by

C :=
{
I : [0,∞)→ [0,∞)

∣∣ I is absolutely continuous

with I(0) = 0 and 0 ≤ I ′ ≤ 1 almost everywhere (a.e.).
}
.

Note that the set of retention function R is the same as the set of compensation

function C .

In a traditional fashion, the premium P charged by the insurer should not be

less than the expected value of compensation I(x); otherwise the insurer will face

insolvency due to the law of large numbers. It should also not exceed the maximum

loss; otherwise, no one would buy it. Normally, one has

(1 + θ)E[I(X)] ≤P < M, 1

1 In this model, we assume (1 + θ)H(I(X))) ≤P < M , where H(·) stands for Wang’s premium
principle.
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which is called the participation constraint of the insurer. Here, θ > 0 is called the

safety loading coefficient, which can be regarded as an additional cost built into the

contract to cover unexpected potential loss. For example, if an insured person has

already experienced five car accidents this year, the insurer would charge a higher θ

next year than those who have not, since the person himself becomes a kind of risk

which needs to be added in the insurer’s eyes. In this model, we assume θ to be a

fixed constant.

In addition, we assume the insurer calculates the premium using Wang’s class

of premium principles. In Wang [127], a premium principle H is defined to be a

functional X → [0,∞] as

H(X) =

∫ ∞
0

g(1− FI(X)(x)) dx,

where FI(X) is the cumulative distribution function of I(X), g is an increasing concave

function with g(0) = 0 and g(1) = 1. Note that if g(x) = x, H(X) = E(I(X))

reduces to the classical case.

Based on Wang’s premium principle, we define the value of an insurance contract

(P, I) from the insurer’s perspective:

Uinsurer(P, I) =P − (1 + θ)H(X)

=P − (1 + θ)

∫ ∞
0

g(1− FI(X)(x)) dx. (3.3)

On the other hand, we characterize the insured’s risk preference according to the

rank-dependent utility theory of Quiggin [103]. Let u : R→ R be the utility function

of the insured that is differentiable, strictly concave, and strictly increasing, and let

w : [0, 1]→ [0, 1] be a probability weighting function that is continuous and strictly

increasing with w(0) = 0, w(1) = 1. The RDU risk measure E of an random variable

Y then is defined as follows:

E [Y ] =

∫ 1

0

u
(
F−1
Y (p)

)
d
(
1− w(1− p)

)
. (3.4)
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If there is no probability weighting, namely w(x) = x, then the RDU risk measure

reduces to the traditional expected utility form.

In the utility maximization framework, the insured seeks to maximize the utility

of expected terminal wealth. Denote βinsured > 0 the initial economic status of the

insured. Then the terminal position is expressed by

βinsured −P −X + I(X) = βinsured −P −R(X).

In our model, we do not consider insurance contracts (P, I) that lead to the bankruptcy

of the terminal position, namely βinsured −P −X + I(X) ≥ 0, otherwise we need to

consider a RDU measure with a negative part. To ensure it, we assume βinsured > 2M .

Thus, the value of an insurance contract (P, I) under RDU insured is

Uinsured(P, I) = E
[(
βinsured −P −X + I(X)

)]
.

One can discover that Uinsurer(P, I) is increasing with respect to P and decreasing

with respect to I, while Uinsured(P, I) is decreasing with respect to P and increasing

with respect to I on the contrary. A trade-off exists between Uinsurer(P, I) and

Uinsured(P, I).

In practice, the equilibrium between two parties is achieved by negotiation, which

can be simplified into two steps. Firstly, the insurer calculates the base value of the

insurance contract after examining the market quotation. They offer the potential

choice of an insurance contract (P, I) to the insured. For any (P, I), one has

Uinsurer(P, I) ≥ γ,

where γ > 0.

The problem boils down to the following

sup
P∈R, I∈C

Uinsured(P, I) = E
[(
βinsured −P −X + I(X)

)]
(3.5)

s.t. Uinsurer(P, I) ≥ γ.
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The optimal insurance contract of Problem (3.5) is also called Pareto optimal/efficient

(PO) which means one cannot improve the benefit of one party without hurting the

other’s or improve the benefits of both. Any PO contract (P∗, I∗) must satisfy

Uinsurer(P
∗, I∗) = γ,

namely

P∗ = γ + (1 + θ)

∫ ∞
0

g(1− FI∗(X)(x)) dx.

Because otherwise there exists P ′ < P∗ such that Uinsurer(P ′, I∗) = γ, but

Uinsured(P ′, I∗) > Uinsured(P∗, I∗),

due to the decreasing property of Uinsured on P.

Consequently, Problem (3.5) can be reduced to a one-dimensional optimization

problem:

sup
I∈C

E
(
βinsured − γ − (1 + θ)

∫ ∞
0

g(1− FI(X)(x)) dx−X + I(X)
)
. (3.6)

Note that if I∗γ is an optimal solution to the above problem, then a PO contract is

expressed by (
γ + (1 + θ)

∫ ∞
0

g(1− FI∗γ (X)(x)) dx, I∗γ

)
.

Since Problem (3.6) is highly involved with integral and probability distortion,

making the objective functional a nonlinear Choquet expectation and is difficult to

tackle directly. We use the same method of quantile formulation introduced in the

previous chapters to study its equivalent quantile optimization problem. Change of

variable is adopted to obtain a simplified version.

We use F−1
X to denote the quantile function of FX (or its left-continuous inverse

function). Recall its definition as below
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Definition 3.1. The (lower) quantile function F−1
X is defined as

F−1
X (p) = inf

{
z ∈ [0,M ]

∣∣ FX(z) ≥ p
}
, p ∈ (0, 1),

with the convention that F−1
X (0) = F−1

X (0+), F−1
X (1) = F−1

X (1−) and inf ∅ = +∞.

By this definition and Assumption 3.1, F−1
X (p) = 0 for p ∈ [0,m0] and F−1

X (1) =

M . It is non-decreasing and left-continuous.

Following [133], we have the following technical assumptions on F−1
X .

Assumption 3.2. F−1
X is absolutely continuous on [0, 1] and

(
F−1
X

)′
(p) > 0 for a.e.

p ∈ (m0, 1).

As demonstrated in Corollary 1.4 and Lemma 1.5, one can find a random variable

U uniformly distributed on [0, 1], such that U is comonotonic with X, and F−1
X (U) =

X. Both I(X) and R(X) are non-decreasing functions with respect to X. As a result,

U is also comonotonic with I(X) and R(X). It follows

I(X) = I(F−1
X (U)) = F−1

I(X)(U),

R(X) = R(F−1
X (U)) = F−1

R(X)(U).

Since I(X) +R(X) = X, we have

F−1
I(X)(U) + F−1

R(X)(U) = F−1
X (U). (3.7)

Furthermore, since I(X) and R(X) are comonotonic, their quantiles are additive

(See Denneberg [42]).

Let

G(p) = F−1
R(X)(p), p ∈ [0, 1],

be the quantile function of R(X), then from above

G(U) = F−1
X (U)− F−1

I(X)(U) = X − I(X).
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Let

Y = βinsured − γ − (1 + θ)

∫ ∞
0

g(1− FI(X)(x)) dx−X + I(X)

= βinsured − γ − (1 + θ)

∫ 1

0

g(1− q) dF−1
I(X)(q)−G(U)

= βinsured − γ − (1 + θ)
(
g(1− q)F−1

I(X)(q)|
1
0 −

∫ 1

0

F−1
I(X)(q) dg(1− q)

)
−G(U)

= βinsured − γ + (1 + θ)

∫ 1

0

F−1
I(X)(q) dg(1− q)−G(U)

= βinsured − γ + (1 + θ)

∫ 1

0

(F−1
X (q)−G(q)) dg(1− q)−G(U)

= β − (1 + θ)

∫ 1

0

G(q) dg(1− q)−G(U),

where

β = βinsured − γ + (1 + θ)

∫ 1

0

F−1
X (q) dg(1− q).

Note that Y is anti-comonotonic with U , so the quantile function of Y is given by

F−1
Y (p) = β − (1 + θ)

∫ 1

0

G(q) dg(1− q)−G(1− p), a.e. p ∈ [0, 1].

Since w is strictly increasing and continuous, its inverse w−1 exists. Let χ(p) =

w−1(p), which is also a probability weighting function. Then

E [Y ] =

∫ 1

0

u
(
F−1
Y (p)

)
d
(
1− w(1− p)

)
=

∫ 1

0

u

(
β − (1 + θ)

∫ 1

0

G(q) dg(1− q)−G(1− p)
)

d
(
1− w(1− p)

)
=

∫ 1

0

u

(
β − (1 + θ)

∫ 1

0

G(q) dg(1− q)−G(t)

)
dw(t)

=

∫ 1

0

u

(
β − (1 + θ)

∫ 1

0

G(χ(t)) dg(1− χ(t))−G(χ(s))

)
ds
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=

∫ 1

0

u

(
β + (1 + θ)

∫ 1

0

Q(t) dν(t)−Q(s)

)
ds,

where

ν(t) = 1− g(1− χ(t)), t ∈ [0, 1]. (3.8)

and

Q(s) = G(χ(s)) = R(F−1
X (χ(s))), s ∈ [0, 1]. (3.9)

Note that ν is an increasing function with ν(0) = 0 and ν(1) = 1.

Let

h(p) :=
(
F−1
X

)
(χ(p))′, p ∈ [0, 1].

For R ∈ R, we have 0 ≤ R′ ≤ 1, so

Q′(p) = R′(F−1
X (χ(p)))h(p) ∈ [0, h(p)], p ∈ [0, 1].

Clearly, ∫ p

0

h(t) dt =
(
F−1
X

)
(χ(p)) ≤

(
F−1
X

)
(1) = M,

according to Assumption 3.2.

Thus, we reduce Problem (3.6) to the following problem:

sup
Q∈Q

∫ 1

0

u
(
β + (1 + θ)

∫ 1

0

Q(t) dν(t)−Q(p)
)

dp, (3.10)

where

Q :=
{
Q : [0, 1]→ [0,∞)

∣∣ Q is absolutely

continuous with Q(0) = 0 and 0 ≤ Q′ ≤ h a.e.
}
,

and ν is given by (3.8),

h(p) =
(
F−1
X

)
(χ(p))′, χ(p) = w−1(p), p ∈ [0, 1].
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Because the set Q is convex and the utility function is concave with respect to

Q ∈ Q, we have converted a non-concave optimization problem to a concave one.

The derivatives of the admissible quantiles Q ∈ Q are both lower and upper bounded;

such quantile optimization problems are of the second-type defined in Xu [133].2

We present a relationship between the optimal solutions of Problem (3.10) and

Problem (3.6) as a lemma below.

Lemma 3.1. A quantile function Q∗ ∈ Q is an optimal solution to Problem (3.10)

if and only if

I∗(x) = x−Q∗(w(FX(x))), x ∈ [0,M ],

is an optimal solution to Problem (3.6). And the optimal insurance contract is given

by (
γ + (1 + θ)

∫ ∞
0

g(1− FI∗(X)(x)) dx, I∗
)
,

where γ is decided by the insurer.

Proof. By backward deduction of (3.9), one has

R∗(x) = G∗(FX(x)) = Q∗(w(FX(x))).

Since I∗(x) = x−R∗(x), this completes the proof.

3.3 Characterization of Optimal Solution

The relaxation method introduced in Chapter 3 cannot directly solve the quantile

optimization problem (3.10) in last section. We use calculus of variation to derive

an optimal condition. Problem (3.10) is expressed as:

sup
Q∈Q

∫ 1

0

u
(
β + (1 + θ)

∫ 1

0

Q(t) dν(t)−Q(p)
)

dp,

2 The first-type problems only put one side (upper or lower) constraint on the derivatives of the
admissible quantiles.
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where

ν(p) = 1− g(1− χ(p)), χ(p) = w−1(p), p ∈ [0, 1], (3.11)

β = βinsured − γ + (1 + θ)

∫ 1

0

F−1
X (q) dg(1− q), (3.12)

and

Q :=
{
Q : [0, 1]→ [0,∞)

∣∣ Q is absolutely

continuous with Q(0) = 0 and 0 ≤ Q′ ≤ h a.e.
}
,

and u, g, w are respectively the utility function, the distortion function in the pre-

mium principle, the probability weighting function. Also βinsured, γ, θ are respectively

the insured’s initial wealth position, the lower bound of the insurer’s preference, the

safety loading.

Let

fQ(p) = β + (1 + θ)

∫ 1

0

Q(t) dν(t)−Q(p), p ∈ [0, 1].

Suppose Q∗ is an optimal solution to Problem (3.10). For any Q ∈ Q and

0 < ε < 1, define Qε = Q∗ + ε(Q − Q∗). Since Q is convex, we have Qε ∈ Q and

lim
ε→0

Qε = Q∗. By the optimality of Q∗ and Fatou’s Lemma, we have

0 ≥ lim inf
ε→0+

1

ε

[ ∫ 1

0

u
(
fQε(p)

)
dp−

∫ 1

0

u
(
fQ∗(p)

)
dp
]

≥
∫ 1

0

lim inf
ε→0+

1

ε

(
u
(
fQε(p)

)
− u
(
fQ∗(p)

))
dp

=

∫ 1

0

lim
ε→0

u′
(
fQ∗(p)

)1

ε

(
fQε(p)− fQ∗(p)

)
dp.

Based on (3.11), one has

lim
ε→0

1

ε

(
fQε(p)− fQ∗(p)

)
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= lim
ε→0

1

ε

(
(1 + θ)

∫ 1

0

(Qε(t)−Q∗(t)) dν(t)− (Qε(t)−Q∗(t))
)

=(1 + θ)

∫ 1

0

(Q(t)−Q∗(t)) dν(t)− (Q(t)−Q∗(t))

=fQ(p)− fQ∗(p).

So for Q ∈ Q, ∫ 1

0

u′
(
fQ∗(p)

)(
fQ(p)− fQ∗(p)

)
dp ≤ 0. (3.13)

Reversely, suppose (3.13) holds. Since u(x) is concave, we have u(y) − u(x) ≤

u′(x)(y − x), for y, x ∈ R. Hence for Q ∈ Q

u
(
fQ(p)

)
− u
(
fQ∗(p)

)
≤ u′

(
fQ∗(p)

)(
fQ(p)− fQ∗(p)

)
.

Then∫ 1

0

u
(
fQ(p)

)
dp−

∫ 1

0

u
(
fQ∗(p)

)
dp ≤

∫ 1

0

u′
(
fQ∗(p)

)(
fQ(p)− fQ∗(p)

)
dp ≤ 0,

which proves the optimality of Q∗. Thus (3.13) is an equivalent characterization of

the optimal solution.

Furthermore, let

Φ(p) = −
∫ 1

p

u′
(
fQ∗(t)

)
dt,

then Φ(1) = 0 and Φ′(p) = u′
(
fQ∗(p)

)
. By partial integration and the fact Q(0) = 0,

the left-hand side of (3.13) can be written as

Φ(p)
(
fQ(p)− fQ∗(p)

)∣∣∣1
0
−
∫ 1

0

Φ(p) d
(
fQ(p)− fQ∗(p)

)
=− Φ(0)

(
fQ(0)− fQ∗(0)

)
−
∫ 1

0

Φ(p) d
(
fQ(p)− fQ∗(p)

)
.
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By (3.11), it reduces to

− Φ(0)(1 + θ)

∫ 1

0

(Q(t)−Q∗(t)) dν(t) +

∫ 1

0

Φ(p)
(
Q′(p)− (Q∗)′(p)

)
dp

=− Φ(0)(1 + θ)
[
ν(t)(Q(t)−Q∗(t))|10 −

∫ 1

0

ν(t)
(
Q′(t)− (Q∗)′(t)

)
dt
]
+

∫ 1

0

Φ(p)
(
Q′(p)− (Q∗)′(p)

)
dp

=− Φ(0)(1 + θ)
[
(Q(1)−Q∗(1))−

∫ 1

0

ν(t)
(
Q′(t)− (Q∗)′(t)

)
dt
]
+

∫ 1

0

Φ(p)
(
Q′(p)− (Q∗)′(p)

)
dp

=− Φ(0)(1 + θ)
[ ∫ 1

0

(
Q′(t)− (Q∗)′(t)

)
dt−

∫ 1

0

ν(t)
(
Q′(t)− (Q∗)′(t)

)
dt
]
+

∫ 1

0

Φ(p)
(
Q′(p)− (Q∗)′(p)

)
dp

=

∫ 1

0

(
Φ(p)− Φ(0)(1 + θ)(1− ν(p))

)(
Q′(p)− (Q∗)′(p)

)
dp,

where the first equation is by applying partial integration to
∫ 1

0
(Q(t)−Q∗(t)) dν(t);

the second equation is due to ν(0) = 0, ν(1) = 1; and the third equation is due to

Q(0) = 0.

So an equivalent expression of (3.13) is that for Q ∈ Q,∫ 1

0

(
Φ(p)− Φ(0)(1 + θ)(1− ν(p))

)(
Q′(p)− (Q∗)′(p)

)
dp ≤ 0. (3.14)

Based on the equivalence between (3.10) and (3.13), one can realize that Q∗ is also

the optimal solution to the following problem

max
Q∈Q

∫ 1

0

(
Φ(p)− Φ(0)(1 + θ)(1− ν(p))

)
Q′(p) dp, (3.15)
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where

Φ(p) = −
∫ 1

p

u′
(
fQ∗(t)

)
dt, p ∈ [0, 1].

For any admissible Q ∈ Q, we have 0 ≤ Q′ ≤ h(p), p ∈ [0, 1]. In order to maximize

(3.15), clearly Q∗ must satisfy
(Q∗)′(p) = h(p), if Φ(p) > Φ(0)(1 + θ)(1− ν(p));

(Q∗)′(p) ∈ [0, h(p)], if Φ(p) = Φ(0)(1 + θ)(1− ν(p));

(Q∗)′(p) = 0, if Φ(p) < Φ(0)(1 + θ)(1− ν(p)),

for a.e. p ∈ [0, 1]. (3.16)

We assemble the three cases in (3.16) into the following equation, which is an ordinary

integral-differential equation (OIDE).

Lemma 3.2. For Q ∈ Q, Q is an optimal solution to problem (3.6) if and only if

Q is an optimal solution to the following OIDE:{
min

{
max

{
Q′(p)− h(p), Φ(0)(1 + θ)(1− ν(p))− Φ(p)

}
, Q′(p)

}
= 0, a.e. p ∈ [0, 1],

Q(0) = 0,

(3.17)

where

Φ(p) = −
∫ 1

p

u′
(
fQ(t)

)
dt, p ∈ [0, 1] (3.18)

and

fQ(p) = β + (1 + θ)

∫ 1

0

Q(t) dν(t)−Q(p), p ∈ [0, 1]. (3.19)

Moreover, it turns out OIDE (3.17) can be reduced to an ODE by writing it in

terms of Φ. In subsequent analysis, we show Q′ and Q(0) in (3.17) can be expressed

in terms of Φ. Before that, we prove a lemma.

Lemma 3.3. min{max{a, b}, c} = 0 is equivalent to min{max{ma, nb}, hc} = 0 for

any m,n, h > 0.
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Proof. Given min{max{a, b}, c} = 0, it follows two possible cases

c = 0, max{a, b} ≥ 0; or c > 0, max{a, b} = 0.

In the former case, hc = 0. Since max{a, b} ≥ 0, we have a ≥ 0 or b ≥ 0, then

ma ≥ 0 or nb ≥ 0, namely max{ma, nb} ≥ 0. Thus, min{max{ma, nb}, hc} = 0.

In the latter case, hc > 0. Since max{a, b} = 0, we have b ≤ a = 0 or a ≤ b = 0,

then nb ≤ na = 0 = ma or ma ≤ mb = 0 = nb, namely max{ma, nb} = 0. Thus,

min{max{ma, nb}, hc} = 0.

The proof of the reverse is by letting m = n = h = 1.

Next we turn (3.17) into an ODE. By differentiating (3.18) and taking the inverse,

we have

fQ(p) = (u′)−1(Φ′(p)).

Putting it into (3.19)

Q(p) = β + (1 + θ)

∫ 1

0

Q(t) dν(t)− (u′)−1(Φ′(p)). (3.20)

Differentiating (3.18) twice, we obtain

Φ′′(p) = −u′′(fQ(p))Q′(p).

Combining it with fQ(p) = (u′)−1(Φ′(p)), we see

Q′(p) =
Φ′′(p)

−u′′
(

(u′)−1(Φ′(p))
) . (3.21)

Plugging it into (3.17),

min
{

max
{ Φ′′(p)

−u′′
(

(u′)−1(Φ′(p))
) − h(p), Φ(0)(1 + θ)(1− ν(p))− Φ(p)

}
,

Φ′′(p)

−u′′
(

(u′)−1(Φ′(p))
)} = 0,
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and by Lemma 3.3, one can show it is equivalent to

min
{

max
{

Φ′′(p) + u′′
(

(u′)−1(Φ′(p))
)
h(p), Φ(0)(1 + θ)(1− ν(p))− Φ(p)

}
, Φ′′(p)

}
= 0.

Besides, integrating with respect to ν(p) on both sides of (3.20) gives that∫ 1

0

Q(p) dν(p) =

∫ 1

0

[
β + (1 + θ)

∫ 1

0

Q(t) dν(t)− (u′)−1(Φ′(p))
]

dν(p)

= β + (1 + θ)

∫ 1

0

Q(t) dν(t)−
∫ 1

0

(u′)−1(Φ′(p)) dν(p),

namely

0 = β + θ

∫ 1

0

Q(t) dν(t)−
∫ 1

0

(u′)−1(Φ′(t)) dν(t).

Based on (3.20) and Q(0) = 0, one has

Q(0) = β + (1 + θ)

∫ 1

0

Q(t) dν(t)− (u′)−1(Φ′(0)) = 0.

Comparing the above two equations, we obtain∫ 1

0

Q(t) dν(t) = −
∫ 1

0

(u′)−1(Φ′(t)) dν(t) + (u′)−1(Φ′(0)) (3.22)

and

β = (1 + θ)

∫ 1

0

(u′)−1(Φ′(t)) dν(t)− θ(u′)−1(Φ′(0)). (3.23)

Putting (3.22) and (3.23) back into (3.20), we have

Q(p) =(u′)−1
(
Φ′(0)

)
− (u′)−1

(
Φ′(p)

)
.

We denote by C2−([0, 1]) the set of functions f : [0, 1]→ R which are differentiable

and their derivative functions f ′ are absolutely continuous on [0, 1]. The optimal

solution to Problem (3.10) is completely characterized in the following result.
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Theorem 3.1 (Optimal solution). (1). If Q∗ is the optimal solution to Problem (3.10).

Then

Φ(p) := −
∫ 1

p

u′
(
β + (1 + θ)

∫ 1

0

Q∗(t) dν(t)−Q∗(s)
)

ds (3.24)

is a solution in C2−([0, 1]) to the following ODE:


min

{
max

{
Φ′′(p) + h(p)u′′

(
(u′)−1

(
Φ′(p)

))
, Φ(0)(1 + θ)(1− ν(p))− Φ(p)

}
,

Φ′′(p)
}

= 0, a.e. p ∈ [0, 1],

Φ(1) = 0, β = (1 + θ)
∫ 1

0
(u′)−1

(
Φ′(t)

)
dν(t)− (u′)−1

(
Φ′(0)

)
θ.

(3.25)

(2). If Φ is a solution to (3.25) in C2−([0, 1]). Then

Q∗(p) := (u′)−1
(
Φ′(0)

)
− (u′)−1

(
Φ′(p)

)
and

I∗(x) := x− (u′)−1
(
Φ′(0)

)
+ (u′)−1

(
Φ′
(
w(FX(x))

))
(3.26)

are the optimal solution to Problem (3.10) and the optimal compensation func-

tion to Problem (3.6), respectively.

Proof. For (1), we have illustrated it in the deduction. For (2), given a Φ ∈ C2−([0, 1])

which is the solution of (3.25), Let

Q(p) := (u′)−1
(
Φ′(0)

)
− (u′)−1

(
Φ′(p)

)
.

Differentiate it we have

Q′(p) =
Φ′′(p)

−u′′
(

(u′)−1(Φ′(p))
) a.e. p ∈ [0, 1].

Plugging it into (3.25), since Q(0) = 0, and by Lemma 3.3, we obtain OIDE (3.17).

Since

β =(1 + θ)

∫ 1

0

(u′)−1(Φ′(t)) dν(t)− θ(u′)−1(Φ′(0))
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=(1 + θ)

∫ 1

0

(u′)−1(Φ′(t)) dν(t)− (θ + 1)(u′)−1(Φ′(0)) + (u′)−1(Φ′(0))

=(1 + θ)

∫ 1

0

(u′)−1(Φ′(t)) dν(t)− (θ + 1)

∫ 1

0

(u′)−1(Φ′(0)) dν(t) + (u′)−1(Φ′(0))

=(1 + θ)

∫ 1

0

(
(u′)−1(Φ′(t))− (u′)−1(Φ′(0))

)
dν(t) + (u′)−1(Φ′(0))

=− (1 + θ)

∫ 1

0

Q(p) dν(t) + (u′)−1(Φ′(0)).

where the second equation is due to ν(1) = 1 and ν(0) = 0; the last equation is by

the definition of Q. So

(u′)−1(Φ′(0)) = β + (1 + θ)

∫ 1

0

Q(p) dν(t).

Putting it into Q(p) = (u′)−1
(
Φ′(0)

)
− (u′)−1

(
Φ′(p)

)
, we derive

Q(p) = β + (1 + θ)

∫ 1

0

Q(p) dν(t)− (u′)−1
(
Φ′(p)

)
,

namely

Φ(p) = −
∫ 1

p

u′
(
β + (1 + θ)

∫ 1

0

Q(t) dν(t)−Q(s)
)

ds = −
∫ 1

p

u′(fQ(s)) ds.

This completes the proof

3.4 Numerical Example

So far, we have demonstrated that solving the quantile optimization problem (3.10)

reduces to solving ODE (3.25). But this ODE is difficult to solve directly, since the

boundary condition is on the endpoint and β has a complex form.

In this section, we present a numerical example by assuming g(x) = x, then

ν(p) = 1− g(1− χ(p)) = χ(p) = w−1(p).
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It is the inverse function of probability weighting function w.

The problem reduces to solve the following ODE


min

{
max

{
Φ′′(p) + h(p)u′′

(
(u′)−1

(
Φ′(p)

))
, Φ(0)(1 + θ)(1− ν(p))− Φ(p)

}
,

Φ′′(p)
}

= 0, a.e. p ∈ [0, 1],

Φ(1) = 0, β = (1 + θ)
∫ 1

0
(u′)−1

(
Φ′(t)

)
dν(t)− (u′)−1

(
Φ′(0)

)
θ.

(3.27)

To solve it, we turn to considering the following problem first:

Fix σ < 0, for each $ > 0, we find a numerical solution Φσ,$ to the following

ODE


min

{
max

{
Φ′′(p) + h(p)u′′

(
(u′)−1

(
Φ′(p)

))
, Φ(0)(1 + θ)(1− ν(p))− Φ(p)

}
,

Φ′′(p)
}

= 0, a.e. p ∈ [0, 1],

Φ(0) = σ, Φ′(0) = $.

(3.28)

Based on the comparison theorem for nonlinear ODE, one can check Φσ,$ is non-

decreasing in $, and we can find a $∗ such that Φσ,$∗(1) = 0. In particular, this

trajectory Φσ,$∗ is the solution of (3.27) if

β = (1 + θ)

∫ 1

0

(u′)−1
(
Φ′σ,$∗(t)

)
dν(t)− (u′)−1

(
$∗
)
θ. (3.29)

Namely, different σ will lead to different β via (3.29). For fixed β, ODE (3.27)

admits at most one solution. As a result, if we go through all of the σ < 0, we can

find all the optimal insurance contracts. Assume h is a continuous function, then

Φ′σ,$ is continuous in σ and $. The map σ 7−→ β then is injective and continuous.

So β in (3.29) is a monotone function of σ. Hence, given any feasible β, we can solve

(3.27) by searching for the corresponding σ and Φσ,$∗ .

Hereafter, we present a numerical solution of (3.28). In this example, we consider

a power utility function u(x) = xα

α
with α = 0.5, that is, u(x) = 2

√
x. We construct
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a specific S-shaped (first convex then concave) weighting function w with its inverse

ν defined as below:

ν(p) =


γp+ θ

a2(1+θ)
(2ap− p2), if p ∈ [0, a];

γ
(
p+ c1

3(b−a)
(p− a)3

)
+ θ

1+θ
, if p ∈ [a, b];

γ
(
p+ c1(p− a)(p− b) + c1

3
(b− a)2

)
+ θ

1+θ
, if p ∈ [b, 1].

where γ = − $
σ(1+θ)

, 0 < a < b < 1, and

c1 =
3(1− γ(1 + θ))

γ(1 + θ) ((b− a)2 + 3(a− 1)(b− 1))
.

We set parameters as follows:

a = 0.2, b = 0.4, θ = 0.2, $ = 0.5, σ = −1.

Then γ = 5
12

and c1 = 75
37

.

The pictures of w (S-shaped) and its inverse ν (Inverted S-shaped) are drawn in

Figure 3.1 and Figure 3.2

Figure 3.1: The probability weighting function w.
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Figure 3.2: The inverse of the probability weighting ν = w−1.

We define:

h(p) =


0, if p ∈ [0, a];

−
[
(u′)−1

(
− σ(1 + θ)ν ′(p)

)]′
+
∫ p
a
c2(p− a)(p− b)2 dp, if p ∈ [a, b];

−
[
(u′)−1

(
− σ(1 + θ)ν ′(p) + c3(p− b)(b+ 2− 3p)

)]′
if p ∈ [b, 1].

(3.30)

where c3 = c1
$

3(1−b)2 and c2 = 5000. The picture of h(p) is given in Figure 3.3. One

can observe that it is continuous.
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Figure 3.3: The upper bound h(p).

Note that h(p) =
(
F−1
X

)
(ν(p))′. After integration, we have

F−1
X (ν(p)) =


0, if p ∈ [0, a];

$−2 −
(
$(1 + c1

(p−a)2

b−a )
)−2

+
∫ p
a
c2(p− a)(p− b)2 dp, if p ∈ [a, b];

$−2 − ($(1 + c1(2p− a− b)) + c3(p− b)2(b+ 3− 4p))
−2

+
∫ b
a
c2(p− a)(p− b)2 dp if p ∈ [b, 1].

(3.31)

where c3 = c1
$

3(1−b)2 and c2 = 5000. The picture of F−1
X (p) is given in Figure 3.4.

We can observe from the picture F−1
X (p) = 0 for some [0,m0] which matchs the

assumption we set in the beginning.
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Figure 3.4: The quantile function of loss X.

Under the above settings, the solution Φ(p) turns out to be a three-step shape:
Φ(p) > σ(1 + θ)(1− ν∗(p)), if p ∈ [0, a];

Φ(p) = σ(1 + θ)(1− ν∗(p)), if p ∈ [a, b];

Φ(p) > σ(1 + θ)(1− ν∗(p)), if p ∈ [b, 1].

Furthermore, based on (3.16) and the value of h(p), we have

Φ(p) =


σ +$p, if p ∈ [0, a];

σ(1 + θ)(1− ν(p)), if p ∈ [a, b];

σ(1 + θ)(1− ν(p)) + c3(p− b)3(1− p), if p ∈ [b, 1].

(3.32)

The picture is given in Figure 3.5.
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Figure 3.5: The optimal solution Φσ,$.

The associated optimal retention function is given by

R∗(x) =(u′)−1
(
Φ′(0)

)
+ (u′)−1

(
Φ′
(
w(FX(x))

))
.

We plot it in Figure 3.6.
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Figure 3.6: The optimal retention function R(x).

3.5 Conclusion

In this model, we derive the pareto-efficiency insurance policy, which avoids the

issue of moral hazard. The problem boils down to solving a corresponding ordinary

differential equation numerically. Both the insurer and the policy holder in this

model allow for a probability distortion, which generalizes the conventional expected

utility maximization models. The difficulty of this model is that there is a global

bounded constraint on the derivatives of compensation and retention due to the

moral-hazard-free requirement. Technically, the method can be adopted to solve

other general problems with this type of globally bounded constraint. We can also

consider other behavioral risk preferences, such as non-concave utility, separated
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probability weighting functions for the gain and loss. In those cases, the problem

becomes more challenging.
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Chapter 4

Concluding Remarks

This thesis studies two behavioral finance models: a continuous-time portfolio se-

lection model and a static optimal insurance design model. Mathematically, the

involvement of behavioral preference leads to complicated targets involving time-

inconsistency and non-standard stochastic control problems, in which Bellman’s op-

timality and global concavity no longer exist, resulting in the failure of standard

techniques.

In both models, problems are initially turned into quantile optimization problems

to handle the nonlinear expectations caused by probability weighting. We have

applied alternative ways to deal with the related quantile optimization difficulties.

To tackle the M -shaped utility in the portfolio selection problem, we have applied

a relaxation method to link the non-concave quantile optimization problem to a

concave one and obtained the optimal solution, while the optimal insurance problem

has been connected to a numerically solved ODE via calculus of variation.

In terms of the portfolio selection model, there are several possible directions for

further improvements and generalization. First, interested readers can investigate

more general utility forms, as stated in Remark 2.5. In that way, the induced utility

of relative return may take on a more complicated shape and challenge the relaxation

method we used in our formulation. Besides, in our findings, the benchmark B plays
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an important role in determining the state of the optimal solution. We can further

conduct an investigation into the regularity of how it would influence the gain and loss

numerically. In addition, we can introduce more elements and constraints into the

models, such as no-short positions and ambiguity environments. Another potential

direction is to apply the return-oriented target to other portfolio selection models,

especially those that have targets that maximize the utility of terminal wealth.

Regarding the optimal insurance design problem, we considered Wang’s premium

principle for the insurer, interested readers can conduct an empirical study on the

optimal policy according to different classes of distortion function g, such as VaR,

CVaR, etc. We can also consider other premium calculation principles for the insurer

and behavioral risk preferences for the policy holder under the moral-hazard-free

constraint.
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