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Abstract

Escrow protocol for cryptocurrencies is a two-party protocol that enables the fair exchange

of goods or services with digital coins. An escrow protocol allows digital coins to be

escrowed (i.e., locked) in a way that only the seller can claim the coins (when the deal is

completed) or the buyer can claim the coin (when the deal is canceled) with the help of a

trusted third party (TTP).

Existing escrow protocols for cryptocurrencies are built based on various approaches

with various security and efficiency trade-offs. In this thesis, we introduce a new approach

based on verifiably encrypted signature (VES), a specific kind of digital signature whose

validity can be verified in encrypted form. Escrow protocols constructed from our ap-

proach enjoy many desirable features, including (a) round-efficient; (b) privacy-preserving

for participants; and (c) minimal TTP involvement.

ECDSA is the signature scheme adopted by major cryptocurrencies such as Bitcoin and

Ethereum. To construct escrow protocols for these cryptocurrencies based on our approach,

we develop an efficient verifiably encrypted ECDSA, which may be of independent interest.

Besides ECDSA, EdDSA and Schnorr digital signatures are adopted in popular cryptocur-

rencies. To build escrow protocols to fit these popular cryptocurrencies, we generalize the

above signature schemes as an EdDSA-like signature and propose a generic construction

of verifiably encrypted signature scheme for EdDSA-like signature.

We conduct a thorough complexity analysis of the escrow protocol obtained from the

above VES schemes and demonstrate its feasibility.

1



Publications

The following papers and manuscripts are based on the results of this thesis.

• Xiao Yang, Wang Fat Lau, Qingqing Ye, Man Ho Au, Joseph K. Liu and Jacob

Cheng. Practical Escrow Protocol for Bitcoin. IEEE Transactions on Information

Forensics and Security 15:3023 - 3034 (2020)

• Xiao Yang, Mengling Liu, Man Ho Au and Xiapu Luo. Generic Escrow Protocol for

Cryptocurrencies. IEEE Transactions on Information Forensics and Security (under

review).

2



Acknowledgments

First and foremost I would like to express my sincere appreciation to Prof. Man Ho Au,

Prof. Luo Xiapu Daniel, and Dr. Liu Yan Wang Dennis, for offering me the unique oppor-

tunity to pursue cryptography research and their continued support during my PhD study.

In particular, I would like to thank Prof. Man Ho Au, who for many years, steered me

through this research with continuous guidance, illuminating discussions, and considerate

advice. He has greatly inspired me with his rigorous scientific approach, dedicating spirit

for work, and strong sense of responsibility. Without his support and patience, I would not

have completed this thesis.

I am deeply thankful to the joint team of researchers at Hong Kong Polytechnic Uni-

versity and Hong Kong University, for their support and friendship, including Jingjing Fan,

Borui Gong, Peng Jiang, Wang Fat Lau, Kang Li, Xinyu Li, Mengling Liu, Jiazhuo Lv,

Xingye Lu, Yilei Wang, Dongqing Xu, Haiyang Xue, Rupeng Yang, Xiaoyi Yang, and

Zuoxia Yu. I am also grateful to the supporting staff Anna and Karina for all the help. I

wish to take this opportunity to thank all the co-authors of all my research papers, especially

Wang Fat Lau and Mengling Liu.

I wish to thank Prof. Zhe Xia at the Wuhan University of Technology for his encour-

agement and help in this journey.

I would like to thank Mrs. Cammy Wu and Mr. Ka Wai Lee for their accompany in the

past few years.

Finally, but not least, I would like to express my sincere gratitude to my grandma,

3



grandpa, my parents, my sister, my brother, my nephew, and all my family members and

friends for their constant love and support.

4



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Cryptocurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Verifiably Encrypted Signature . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Escrow Protocol for Cryptocurrency . . . . . . . . . . . . . . . . . . . . . 11
2.4 Puzzle-solver Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Optimistic Fair Exchange for Signatures . . . . . . . . . . . . . . . . . . . 16

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Commitment Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Threshold Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Proof System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Verifiably Encrypted Signature Scheme . . . . . . . . . . . . . . . . . . . 29
3.8 Bitcoin Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9 Escrow protocols for Cryptocurrency . . . . . . . . . . . . . . . . . . . . . 35

3.9.1 Desirable Properties of Escrow Protocols . . . . . . . . . . . . . . 35
3.9.2 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Escrow Protocol via VES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5



4.3 Comparison with Existing Schemes . . . . . . . . . . . . . . . . . . . . . 55

5 Verifiably Encrypted ECDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1 The Construction of Verifiably Encrypted ECDSA . . . . . . . . . . . . . . 58
5.2 The Construction of π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Verifiably Encrypted EdDSA-like Signature Scheme . . . . . . . . . . . . . . 67
6.1 EdDSA-like Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 The Construction of Verifiably Encrypted EdDSA-like Signature . . . . . . 68
6.3 The Construction of π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.1 On-chain Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Off-chain Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix A Security Proof of Σ-protocol π1 . . . . . . . . . . . . . . . . . . . . 91

Appendix B Security Proof of Σ-protocol π2 . . . . . . . . . . . . . . . . . . . . 93

6



List of Figures

3.1 Bulletproofs for Pedersen Commitment . . . . . . . . . . . . . . . . . . . 30

3.2 Escrow via 2-of-3 Multisig . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Escrow via Threshold Signature . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Escrow via encrypt-and-swap . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Escrow with Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Group Escrow via 2-of-3 Multisig . . . . . . . . . . . . . . . . . . . . . 49

3.7 Group Escrow via encrypt-and-swap . . . . . . . . . . . . . . . . . . . . . 51

4.1 Escrow via VES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 The construction of π1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 The construction of π2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 The construction of π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 The construction of πΛ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 The construction of πΣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 The Construction of π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 An Escrow Lock Transaction . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 An Escrow Unlock Transaction . . . . . . . . . . . . . . . . . . . . . . . . 80

7



List of Tables

2.1 Signature Algorithms behind Cryptocurrency . . . . . . . . . . . . . . . . 8

3.1 Basic opcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Summary of Escrow Protocols . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Efficiency of the Verifiably Encrypted ECDSA[54] . . . . . . . . . . . . . 65

6.1 Efficiency of the Verifiably Encrypted EdDSA-like Signature Scheme . . . 77

7.1 The Script of the Lock and Unlock Transactions of Our Escrow Protocol
for Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Performance of the On-Chain Phase . . . . . . . . . . . . . . . . . . . . . 79

7.3 Performance of the Off-chain Phase . . . . . . . . . . . . . . . . . . . . . 82

8



Chapter 1

Introduction

1.1 Motivation

With the growing popularity of cryptocurrency, digital payment platforms supporting cryp-

tocurrency, e.g., Coinbase Commerce [28], Electroneum [19], and cryptocurrency spot ex-

changes, e.g., Binance [6], Huobi Global [32], emerged rapidly in the past decade. Digital

payment platforms offer a mechanism for the exchange of digital coins with goods or ser-

vices. Typically, these platforms serve as a trusted intermediary, receiving digital coins

from the buyer; withholding these coins; and releasing them to the seller when the deal is

completed. Cryptocurrency spot exchanges, on the other hand, enable customers to trade

various types of digital currencies. Conceptually, a cryptocurrency spot exchange can be

viewed as a digital payment platform where a kind of digital coins is used to buy digital

coins of another kind.

The platform in the aforementioned scenario has to be fully trusted. However, in some

scenarios, it is difficult, if not impossible, to find an entity trusted by both the buyer and

the seller. Furthermore, as large amounts of assets are being held, these platforms become

the primary targets of cryptocurrency hacks and breaches. For instance, one of the largest

Bitcoin exchange platforms, Bitfinex, suffered from the so-called Bitfinex event in 2016
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and lost 119,756 units of bitcoin, causing bitcoin’s trading price to drop by 20% [52]. In

2020 alone, these hacks cause millions of dollars worth of loss [55].

To reduce the trust placed on these platforms, Goldfeder et al. [24] formalized the notion

of escrow protocol for cryptocurrencies. In an escrow protocol, digital coins from the buyer

are first “locked” (escrowed) in a way that they can only be transferred to the seller or

returned to the buyer eventually. In other words, the escrowed coins cannot be stolen even if

the platform is compromised. Following the terminologies in [24, 54], an escrow protocol

for cryptocurrencies should possess four desirable properties, namely, security, privacy,

minimal TTP involvement, and efficiency. Intuitively, an escrow protocol should be secure,

meaning that the escrowed funds can only be transferred to the buyer or seller. An escrow

protocol offers privacy if a transaction using the escrow protocol is indistinguishable from

a standard transaction (either by the platform or an external observer). In addition, privacy

is also concerned with whether or not the participating parties can be recognised. In terms

of TTP involvement, an escrow protocol should only involve the buyer and seller, and the

TTP is called upon for arbitration when there is a dispute between them. Such a model

would be more scalable in practice since the TTP is idle most of the time assuming most of

the deals are completed without dispute. Finally, the escrow protocol should be efficient.

It is worth noting that privacy receives relatively less attention from academia. While

escrow protocols offering privacy protection exist, they remain theoretical in nature due

to the high computation costs in the use of generic zero-knowledge proofs [24] or involve

many rounds of interactions due to the use of cut-and-choose mechanism [4].

1.2 Summary of the Thesis

In this thesis, we investigate the design of escrow protocols of cryptocurrencies achieving

the above four desirable properties. We focus on blockchain-based cryptocurrencies [53],

e.g., Bitcoin and Ethereum, as it is the most popular kind of cryptocurrencies to date. A
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blockchain is a public and decentralised ledger. The following are typical for blockchain-

based cryptocurrencies. All transactions are recorded on the blockchain. Each transaction

includes a digital signature of the sender to represent its authorization. The ability to sign

a transaction represents the ability to transfer the digital coin.

The main contribution of this thesis is a new approach to build escrow protocol. Ob-

serving that, essentially, the transfer of coins is roughly equivalent to the release of a dig-

ital signature (on the transaction that transfers the digital coins), we consider the use of a

cryptographic primitive, namely, verifiably encrypted signature (VES), to develop escrow

protocol for blockchain-based cryptocurrencies. A VES is an encryption of a standard dig-

ital signature, with the additional property that the encrypted signature is still verifiable. In

other words, given an encrypted signature and a message, everyone can still check if the

ciphertext is an encryption of a valid signature on the given message.

Leveraging VES, an escrow protocol can be developed as follows. Buyer Alice signs

transaction T which authorises the transfer of her digital coins to seller Bob. Let σ be

the signature on T . Instead of sending T to Bob or submitting T to the blockchain, σ is

encrypted under the platform’s public key. Denote the resulting ciphertext as σ′. σ′, along

with T , is sent to Bob. With the verifiability of the VES scheme, Bob can check if σ′ is the

encryption of a valid signature on T . Upon successful validation, Bob delivers the goods to

Alice. Alice then submits (T, σ) to the blockchain, resulting in the transfer of coins from

Alice to Bob and thus completing the transaction. In case Alice does not respond upon

receiving the goods, Bob sends σ′ to the platform for arbitration. If the platform decides

that Bob has delivered the goods, it can decrypt σ′ to obtain σ, and returns it to Bob. Bob

can publish (T, σ) to the blockchain to receive the digital coins.

Looking ahead, the approach has the following advantages. Firstly, the platform’s in-

volvement is minimal. If there is no dispute, it does not need to get involved. Besides, most

of the work is conducted off-chain. The efficiency of the off-chain work depends mainly

on the efficiency of the VES. Finally, we believe the above intuition is simple (and thus
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easy to understand and implement). To the best of our knowledge, we are the first group to

investigate building escrow protocol of blockchain-based cryptocurrencies from VES. The

rest of the thesis contains contributions that tackle the various technical obstacles from re-

alizing the above design idea. Specifically, the contributions of this thesis are summarized

as follows.

• Escrow Protocol from Verifiably Encrypted Signatures. We formalise the above

design idea. More concretely, we give a concrete security model of escrow protocol

for cryptocurrencies, and describe how VES can be used to build protocols fulfilling

our definition. We remark that VES alone is not sufficient as there is still a gap

between the transfer of the coins and the transfer of digital signatures. We bridge

the gap using additional techniques, including time-lock and multi-signature, both of

which are supported by major blockchain-based cryptocurrencies.

• Verifiably Encrypted ECDSA. While verifiably encrypted signatures have been

studied for more than 20 years, we require a way to verifiably encrypt an ECDSA sig-

nature, the signature adopted in major cryptocurrencies such as Bitcoin and Ethereum,

to realise our framework. We propose the most efficient verifiably encrypted ECDSA

to date. We also provide a formal security analysis of our verifiably encrypted

ECDSA.

• Verifiably Encrypted EdDSA-like Signature Scheme. There are many variants of

ECDSA signatures, and different cryptocurrencies support different variants. We de-

velop a framework to categorise these variants (and possibly more), and called this

family of digital signatures EdDSA-like signature schemes. We develop a way to

encrypt EdDSA-like signatures in a way that is still verifiable. We provide two con-

crete instantiations which are very efficient. Combining with the first contribution,

our work results in escrow protocols for blockchain-based cryptocurrencies using

EdDSA-like signatures to endorse transactions.
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• Complexity Analysis. We conduct a thorough complexity analysis of our escrow

protocols and showed that its cost is comparable to the baseline escrow protocol with

a fully trusted platform (which involves two standard transactions, i.e., coins first

sent to the fully trusted platform, then coins are sent from the platform to the seller

or buyer). Our prototype implementation on Bitcoin mainnet confirms our findings.

1.3 Thesis Structure

The rest of the thesis is organized as follows. Chapter 2 describes the related work. Nota-

tions and preliminaries are provided in Chapter 3. In Chapter 4, we develop a framework to

build escrow protocol from VES, demonstrate its security, and provide a detailed compari-

son with the existing approaches. To realize such a framework, a specific VES for ECDSA

is described and thoroughly analyzed in Chapter 5. Chapter 6 gives a generic construction

of VES for all EdDSA-like signatures. Chapter 7 reports the performance of our escrow

protocols. Chapter 8 concludes our thesis and discusses future directions.
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Chapter 2

Literature Review

In this chapter, we give the related work of this thesis. In Section 2.1, we review the

underlying signature scheme adopted by major cryptocurrencies, as well as the time-lock

mechanism and multi-signature mechanism. We focus on verifiably encrypted signature in

Section 2.2. Related works of escrow protocols, puzzle-solver protocols, and optimistic fair

exchange protocols are described in Section 2.3, Section 2.4, and Section 2.5, respectively.

2.1 Cryptocurrency

We review two important concepts in existing blockchain-based cryptocurrencies relevant

to this thesis, namely, digital signatures and conditional payments.

Digital Signatures. In blockchain-based cryptocurrencies, the ownership of coins is rep-

resented by a unique public/private key pair, and the transfer of digital coins is authorized

with digital signatures.

Though the number of cryptocurrencies exceeds 5000, only a few signature algorithms

are adopted. Almost all of these algorithms are based on elliptic curve cryptography. Ta-

ble 2.1 summarises the signature algorithms, along with their underlying elliptic curves,

adopted by the top 10 cryptocurrencies ranked by CoinMarketCap [15]. As shown in the

table, all leading cryptocurrencies adopt ECDSA, EdDSA, and Schnorr signature scheme.
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The only exception is Binance Coin, which exists as a token built on top of another blockchain

(the Blockchain of Bitcoin and Ethereum).

Table 2.1: Signature Algorithms behind Cryptocurrency
Cryptocurrency Signature Algorithm Elliptic Curve

Bitcoin ECDSA secp256k1
Ethereum ECDSA secp256k1

Tether Bitcoin Omni layer / Ethereum ERC-20 token
Cardano EdDSA ed25519

XRP ECDSA, EdDSA secp256k1
polkadot Schnorr signature Ed25519

Binance Coin Bitcoin Omni layer / Ethereum ERC-20 token
Litecoin ECDSA secp256k1

Bitcoin Cash ECDSA, Schnorr signature secp256k1
Chainlink Schnorr signature secp256k1

Conditional Payment. An appealing feature of blockchain-based cryptocurrencies is their

programmability. Specifically, one could specify the conditions under which the coins can

be spent. In Bitcoin and its forks, one could specify the conditions using its scripting

language, the Bitcoin script. There are five standard Bitcoin transaction scripts, namely, 1)

pay-to-public-key-hash (P2PKH), the default type of transaction, which specifies a hash of

some public key and requires a signature under that public key to spend coins, 2) pay-to-

public-key (P2PK), which specifies a public key and requires a signature under that public

key to spend coins, 3) multi-signature (MultiSig), which specifies a list of public keys

and requires multiple signatures under (the subset of) these public keys to spend coins,

4) pay-to-script-hash, (P2SH), which specifies a hash value and requires the pre-image of

that hash value to spend coins, and 5) data output(OP_RETURN), which is used to store

data. Additionally, Bitcoin scripts also support time-lock, which restricts the spending

of bitcoins until a specified future time or block height. For more details, please refer

to Section 3.8. While Ethereum supports Turing-complete smart contracts which allow

arbitrary conditions to be expressed.

Looking ahead, two types of conditions are needed in the construction of our escrow

protocols, namely, multi-signature and time-lock. These two conditions are supported by

the leading cryptocurrencies listed in Table 2.1. For example, in Bitcoin and its forks,

multi-signature and time-lock mechanism can be expressed via OP_ CHECKMULTISIG and
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OP_CHECKLOCKTIMEVERIFY, instructions of the Bitcoin script. On the other hand, these

two mechanisms can be readily specified as Ethereum smart contracts.

2.2 Verifiably Encrypted Signature

The notion of verifiably encrypted signature was formalized in 2003 by Boneh et al. [8]. A

VES scheme involves a signer, a verifier, and a TTP called adjudicator. In such a scheme,

the signer "encrypts" the signature in a way that the validity of the resulting "ciphertext"

can be checked by the verifier and a valid signature can be extracted from the "ciphertext"

by the adjudicator. We use double quotes here because, as pointed out by Calderon et al.

[11], the original definition of VES does not capture the intuition to incorporate encryption.

In other words, it is possible to construct a VES scheme that fits in the algorithm definition

but makes no use of encryption. As a fix, Calderon et al. introduced an additional property

called resolution duplication and proved that VES with resolution duplication implies the

use of public-key encryption. Unfortunately, the converse is not true.

Generally speaking, there are three approaches to construct VES schemes, namely,

zero-knowledge proofs [2, 5], bilinear maps [8, 36, 11, 26], and Merkle authentication

trees [40, 41].

In VES via zero-knowledge proofs, the signer encrypts a signature under the adjudica-

tor’s public key and generates a zero-knowledge proof that the ciphertext is a valid signature

encryption. Based on interactive zero-knowledge proof, Asokan et al. [2] proposed the first

VES scheme for signature schemes with homomorphic-inverse structure (e.g., RSA, DSS,

Schnorr, Fiat-Shamir, Guillou-Quisquater, and Ong-Schnorr signatures) in 1998. However,

the resulting scheme is highly inefficient and interactive due to the use of a cut-and-choose

mechanism. Bao et al. [5] employed the PEDLDLL protocol1 due to [46] to construct more

efficient protocols for the Guillou-Quisquater signature scheme and the DSA-like signature

scheme. The former was eventually broken by Boyd and Foo [5] while the latter remains
1It stands for Proof of Equivalence of Discrete Logarithm to Discrete LogLogarithm.
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secure. We would like to remark that, in principle, Bao et al.’s construction for DSA-like

signature can be extended to include ECDSA. However, the security of their construction

requires that the discrete logarithm problem remains hard in a double discrete log setting,

meaning that the order of the group should be at least one thousand bits and is thus not

applicable to typical ECDSA scheme where the group order is a few hundred bits only.

[36] sketched the first generic construction of VES based on adaptive unbounded NIZKs.

However, adaptive unbounded NIZKs are typically expensive in terms of both computa-

tional costs and bandwidth costs. VES schemes for lattice-based signature schemes with

efficient NIZKs were proposed in [35, 47].

VES via bilinear maps is specific to signature schemes based on bilinear maps. In this

approach, the signer simply encrypts the signature under the adjudicator’s public key. The

validity of the resulting ciphertext can be checked with pairing operations. In 2003, the first

VES scheme from bilinear maps based on BLS signature was proposed by Boneh et al. [8].

Constructions for other signature schemes based on bilinear maps, waters signature [36],

Boneh-Boyen signature [11], and SPS-EQ-R [26], are subsequently proposed.

VES via Merkle authentication trees works only for "maskable" signature schemes.

Roughly, maskability requires signatures can be masked with some masking values in a

way that the "masked" signature is still verifiable and can be unmasked using masking val-

ues. In this approach, the signer and the adjudicator set up one-time masking values and

establish a Merkle authentication tree during key generation phase. To generate a verifiably

encrypted signature, the signer encrypts the pre-defined masking value under the adjudi-

cator’s public key, computes a masked signature, and generates an authentication path to

show that the "masked" signature is correctly generated. In 2009, Rückert introduced the

first VES scheme based on Merkle authentication trees from RSA [40] , which is then for-

malized and generalized by [41] to fit in all signature schemes with maskability property.

In comparison, generic VES via zero-knowledge proofs can be applied to all standard

signature schemes, but the concrete constructions can be very inefficient with respect to
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computation costs and bandwidth. VES via bilinear maps and Merkle authentication trees

are generally more efficient compared with zero-knowledge proof approach. But bilinear

maps and Merkle authentication trees restrict the choice of signature schemes. Moreover,

VES via Merkle authentication trees requires an interactive key set-up.

2.3 Escrow Protocol for Cryptocurrency

Escrow protocol for cryptocurrencies trades digital coins for goods or services between a

buyer (i.e., Alice) and a seller (i.e., Bob) with the help of a TTP in a fair manner. Here,

fairness means either both parties or none of them gets what they want. Moreover, the

TTP is trusted to make a fair decision in the event of disputes. Roughly, escrow protocol

for cryptocurrencies can be divided into three phases, namely, pre-condition, deposit, and

withdrawal. In the pre-condition phase, necessary conditions to conduct an escrowed trans-

action are met. In the deposit phase, coins are locked with some redeem condition. In the

withdrawal phase, either Alice or Bob claims the coins according to the pre-defined redeem

conditions.

Following the characterization of Goldfeder et al. [24], existing constructions are based

on the following approaches. We refer the reader to Section 3.9 for the definition of desir-

able properties of escrow protocols and detailed analysis of each approach.

• 2-of-3 MultiSig[23]. This approach makes use of a standard Bitcoin transaction

Script multi-signature (i.e. m-of-n MultiSig requires presenting m signatures under

m-out-of-n pre-defined public keys to claim coins). In Escrow via 2-of-3 MultiSig,

bitcoins are sent to the "2-of-3 MultiSig" address under the public keys of Alice,

Bob, and the TTP. Under normal circumstances, Bob first performs his duty. Alice

then sends Bob her multi-signature on transferring coins to Bob. And finally, Bob

submits two multi-signatures generated by Alice and Bob and claims the coins. If

Alice (Bob) deviates from the protocol, the TTP will help Bob (Alice) to claim the

10



bitcoins by sending a signature on transferring coins to Bob (Alice).

Escrow via 2-of-3 MultiSig is very efficient in terms of computational costs (two

signing operations). However, it lacks privacy since an external observer might iden-

tify an escrow transaction from the 2-of-3 MultiSig structure. Moreover, the TTP is

partially actively involved in the withdrawal phase (i.e., by partially active involve-

ment, we mean the TTP is involved when Alice or Bob disobeys the protocol). Please

refer to [23] for the source code of Bitcoin escrow transaction via MultiSig.

• Threshold signature. Escrow via threshold signature makes use of the m-of-n thresh-

old ECDSA signature scheme [22], which allows no less than m out of n players to

cooperatively generate a ECDSA signature (i.e., please refer to Section 3.5 for the

formal definition of threshold signature). In Escrow via threshold signature, bitcoins

are sent to a regular public key address whose secret key is shared among Alice,

Bob, and the TTP using a 2-of-3 secret sharing (i.e. with m-of-n secret sharing, any

m-out-of-n players can recover the secret value). Under normal circumstances, Bob

performs his duty. Alice then helps Bob to reconstruct the secret key. And finally,

Bob generates a signature on transferring coins to Bob with the secret key and claims

the coins. If Alice (Bob) deviates from the protocol, the TTP will help Bob (Alice)

to claim the bitcoins by reconstructing the secret key with Bob (Alice).

Unlike escrow via MultiSig, bitcoins are sent to a regular public address, hence is

more private. However, it comes at the costs of round efficiency and TTP involve-

ment. The state-of-the-art threshold signature [22] requires 8 rounds of interaction.

Moreover, the TTP is heavily involved in both the deposit phase and the withdrawal

phase.

• Encrypt-and-swap Mechanism [24]. Escrow via encrypt-and-swap combines the

technique of threshold signature and key exchange. In escrow via encrypt-and-swap,

bitcoins are sent to a public key address whose secret key is shared between Alice and
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Bob using a 2-of-2 secret sharing. Later, Alice and Bob encrypt their secret shares

under the TTP’s public key and send the ciphertexts to each other along with a valid-

ity proof. Under normal circumstances, Bob performs his duty. Alice then helps Bob

to reconstruct the secret key. And finally, Bob generates a signature on transferring

coins to Bob with the secret key and claims the coins. If Alice (Bob) deviates from

the protocol, the TTP will help Bob (Alice) to claim the bitcoins by reconstructing

the secret key with Bob (Alice).

This approach requires less TTP involvement compared to the threshold signature

approach (the TTP is not involved in the deposit phase), while maintaining privacy.

Unfortunately, it still requires an interactive key set-up. Moreover, it requires two

additional zero-knowledge proofs to show the secret share is encrypted correctly,

hence is computationally expensive.

Additionally, there are measures to reduce the trust placed on the TTP and to enhance

its resilience to denial-of-service (Dos) attacks. The first one is bond, which requires the

TTP to deposit a bond. Later in the withdrawal phase, the TTP can retrieve the bonds

only if the transaction between Alice and Bob is settled. This method fully defends against

DoS attacks, but it comes at the cost of privacy, efficiency, and TTP involvement. Another

method is group escrow, where the power of the TTP is distributed among multiple entities.

It can partially defend against DoS attacks and collusion attacks at the cost of efficiency.

These two measures can be combined with the above-mentioned approaches. Campanelli

et al. [12] presented an escrow protocol that embeds bond mechanism into escrow via

2-of-3 MultiSig and two group escrow protocols based on MultiSig and encrypt-and-

swap, respectively. The concrete construction and detailed analysis of the above mentioned

approaches can be found in Section 3.9.
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2.4 Puzzle-solver Protocol

A puzzle-solver protocol is dedicated to selling digital goods over Bitcoin in an automatic

and trustless way [12]. It can be regarded as an escrow protocol where the blockchain fills

the role of the trusted party. ZKCP protocol [7] and RSA puzzle-solver protocol [27] are

two well-known Bitcoin-based puzzle-solver protocols. ZKCP is built upon NIZK. RSA

puzzzle-solver protocol adopts cut-and-choose mechanisms. Both protocols makes use of

a standard Bitcoin transaction script P2SH, which requires presenting a hash pre-image x

of some specified value y to claim coins.

Introduced by Maxwell in 2011, ZKCP allows a party to buy puzzle solutions in bit-

coins [27]. Specifically, Alice offers one bitcoin for a solution to a puzzle. Bob, who knows

the solution, encrypts solution s using secret key k and computes the hash value of key k

such that y = SHA256(k). He then sends Alice the encrypted solution c, the hash value

y, together with a NIZK that c is the encryption of solution s under secret key k and that

y is the hash value of k. After validating the proof, Alice issues a P2SH transaction to

Bob which specifies that Bob can only claim the bitcoins if he provides a preimage of y.

At the end of the protocol, Bob publishes k and claims the bitcoins. Alice obtains s by

decrypting c using k. However, if Bob refuses to publish k, Alice’s coins will be locked

forever. In this case, a refund mechanism is required to transfer bitcoins back to Alice.

Banasik et al. [4] addressed this problem by using time-lock commitments where Alice

can get her funds back by solving a time-lock puzzle. To avoid additional computation

costs, Banasik et al. further described using CHECKLOCKTIMEVERIFY as an alternative so-

lution. CHECKLOCKTIMEVERIFY is a Bitcoin opcode that establishes an absolute time from

when a transaction can be redeemed. Another option is CHECKSEQUENCEVERIFY opcode

[51], which provides the same feature as CHECKLOCKTIMEVERIFY for relative locktime. To

avoid expensive generic zero-knowledge proof, the cut-and-choose technique is employed.

However, it requires an additional set-up phase and multiple rounds of interactions. The
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first reported implementation of ZKCP which allows a buyer to offer bitcoin for a sudoku

solution, called “pay-to-sudoku”, was by Sean Bowe in 2016 [9]. In 2017, Campanelli

et al. [12] showed a practical attack against the ZKCP protocol [27] that allows a buyer to

learn partial information about the digital good before paying for it. This attack is due to the

fact the buyer is allowed to choose common reference string (CRS) that normally should

be selected by a trusted third party. As a fix, Campanelli et al. presented an improvement

protocol known as Zero-Knowledge Contingent Service Payment (ZKCSP) such that the

security of the protocol can still be guaranteed even if the buyer chooses the CRS.

[27] proposed an RSA puzzle-solver protocol as the core component of TumbleBit,

an anonymous payment protocol through an untrusted intermediary. Essentially, an RSA

puzzle is an RSA ciphertext and the solution is an RSA decryption. RSA puzzle-solver

protocol allows Alice to pay one bitcoin in exchange for a solution to an RSA puzzle.

This scheme adopted the cut-and-choose technique and exploited the blinding property of

RSA. How the RSA puzzle-solver works is as follows. To solve an RSA puzzle z, Alice

first creates m blinded RSA puzzles for z, denoted by {zi}mi=1, and n fake RSA puzzles

(i.e., RSA encryptions on random values), denoted by {fi}ni=1. The blinded puzzles and

fake puzzles are randomly permuted to {pi}m+n
i=1 and then sent to Bob. Denote Z the index

set of blinded puzzles such that Z = {i|pi ∈ {zj}mj=1}. Denote F the index set of fake

puzzles such that F = {i|pi ∈ {fj}nj=1}. Bob solves all m + n RSA puzzles, encrypts

each solution si with secret key ki such that ci = Enc(ki, si), computes the hash of ki such

that yi = SHA256(ki), and finally, sends {ci, yi}m+n
i=1 to the buyer. Next, Alice specifies

the index set F and reveals the solutions for fake puzzles {pi}i∈F to Bob. Bob then checks

the correctness of these solutions and, in return, proves to the buyer that {ci, yi}i=1∈F has

been correctly computed by revealing {ki}i∈F . After that, Alice proves that all blinded

puzzles {pi}i∈Z unblind to z and issues a P2SH transaction which specifies that Bob can

only claim the bitcoins if he provides all pre-images of {yi}i∈Z . The point of the proof is to

show that Alice can learn nothing else beyond the solution to z. After validating the proof,
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Bob publishes {ki}i∈Z and claims the bitcoins. Finally, Alice obtains the solution for z by

decrypting ci using ki for any i ∈ Z and unblinding the resulting plaintext.

2.5 Optimistic Fair Exchange for Signatures

Conceptualized by Asokan, Schunter, and Waidner [3] in 1997, Optimistic Fair Exchange

(OFE) is a kind of protocol for fair exchanges of digital items between two parties. OFE

protocol for signatures typically consists of three rounds. In the first round, Alice sends

a partial signature to Bob. Upon receiving Alice’s partial signature, Bob sends his full

signature in response. Finally, Alice sends her full signature to Bob in the third round.

However, if Alice refuses to send her full signature, Bob could ask the TTP to retrieve

Alice’s full signature from the partial signature.

There are three main approaches to construct OFE, namely, verifiable encryption [1],

two-party multi-signature [30], and ring signature [49]. In the verifiably encryption paradigm,

the partial signature is an encryption of a conventional signature signed by Alice under the

TTP’s public key along with a proof which states the partial signature is legally gener-

ated (i.e., also known as verifiably encrypted signature). And the full signature is Alice’s

conventional signature. In the multi-signature paradigm, a two-party multi-signature sign-

ing key is split into two private keys, i.e., the primary signer’s signing key SK1 and the

cosigner’s signing key SK2. Alice holds both keys and the TTP holds SK2. The partial

signature is a conventional signature signed with SK1. The full signature is a conventional

signature signed with SK. In the ring signature paradigm, members of the ring signature

are Alice and the TTP. The partial signature is a conventional signature signed by Alice.

The full signature is a ring signature signed by either Alice or the TTP along with the partial

signature.

In terms of the security model, Dodis and Reyzin [17] considered the case that the

arbitrator could be malicious and proposed a new model to capture this requirement. In
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PKC 2007, Dodis et al. [16] considered OFE in the multi-user setting (i.e. multiple signers

and verifiers, and one arbitrator), while prior work on OFE is developed in the single-user

setting(i.e., one signer, one verifier, and one arbitrator). Furthermore, additional properties

such as accountability [31], ambiguity [29, 48], and collusion-resistance [50] are studied

as well.

While OFE is conceptually similar to an escrow protocol in the sense that both aim to

allow the exchange of digital items by two parties in a fair manner with the help of a third

party, directly applying OFE to escrow protocol for Bitcoin is non-trivial. Firstly, the afore-

mentioned OFE schemes only support signatures designed in a specific way (i.e. it does not

support the exchange of standard signatures such as ECDSA). More importantly, similar to

ZKCP, additional mechanisms are needed to prevent a malicious user from “spending” his

coins before completion of the exchange protocol.
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Chapter 3

Preliminaries

In this chapter, we give the preliminaries that will be used in the subsequent chapters. We

provide the notations used in this thesis in Section 3.1. Definitions of the commitment

scheme as well as the construction of Pedersen commitment and Pedersen vector commit-

ment are given in Section 3.2. Section 3.3 describes the definition of public key encryption

schemes and the construction of the twisted ElGamal encryption scheme. In Section 3.4,

we define signature schemes and provide the construction of EdDSA, Schnorr signature

scheme, ECDSA, ECGDSA, GOST, and SM2. The definition of the threshold signature

scheme is given in Section 3.5. We review the definitions of proof systems and give a brief

description of Σ-protocol and Bulletproofs in Section 3.6. The definition of the verifiably

encrypted signature is presented in Section 3.7. Basic Bitcoin script is listed in Section 3.8.

Finally, we summarize the requirements of the escrow protocol for cryptocurrencies and

analyze the existing approaches yielding escrow protocols in Section 3.9. For readers who

are familiar with the foregoing topics may skip this chapter.

3.1 Notation

Let G be a cyclic group of order q. Gn denotes the vector space of dimension n over G. Let

Zq be the ring of integers modulo q. Zn
q denotes the vector space of dimension n over Zq.
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We use bold front to denote vectors. Let a,b be vectors such that a = (a0, ..., an−1) and

b = (b0, ..., bn−1). We denote ⟨a,b⟩ the inner product of a and b, i.e., ⟨a,b⟩ =
∑n−1

i=0 aibi,

and a ◦ b the Hadamard product of a and b, i.e., a ◦ b = (a0 · b0, ..., an−1 · bn−1). For

k ∈ Zp, kn denotes the vector containing the first n powers of k, i.e., kn = (1, k, ..., kn−1).

Assume two vectors u ∈ Zn
q , h ∈ Gn such that u = (u0, ..., un−1), h = (h0, ..., hn−1). We

define hu =
∏n−1

i=0 hui
i and h[i:j] = (hi, ..., hj) where 0 ≤ i ≤ j ≤ n− 1.

For the following cryptography primitives, we consider a common reference string

model and assume all parties have access to the same string (aka system parameters) gen-

erated in by some trusted party. This captures the real-world scenario that all parties use

the same elliptic curve published by some authority.

3.2 Commitment Scheme

Definition 1. Commitment Scheme. Let SP denote the system parameters of a commit-

ment scheme. A commitment scheme (Com,Open) can be defined as below:

• Com(m; β). Taking as input a message m, this algorithm outputs a commitment c of

m using randomness β.

• Open(c,m, β). Taking as input c,m, and β, this algorithm outputs 1 if c = Com(m; β).

Pedersen Commitment. Let G be a cyclic group of order q and generators g, h. The

system parameters are defined as SP = (G, q, g, h). The commitment scheme, Pedersen

Commitment [38] is described below.

• Com(m; β). Output the commitment c = gmhβ.

• Open(c,m, β). Output 1 if c = gmhβ.

Pedersen Vector Commitment. Let G be a cyclic group of order q and generators

g1, ..., gn, h. Let g = (g1, ..., gn). The system parameters are defined as SP = (G, q,g, h).

The Pedersen vector commitment [10] is described as follows.
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• Com(m = (m1, ...,mn); β). Output the commitment c = gmhβ.

• Open(c,m, β). Output 1 if c = gmhβ.

3.3 Encryption Scheme

Definition 2. Public Key Encryption Scheme. Let SP denote the system parameters of

an encryption algorithm. A public key encryption scheme (KeyGen,Enc,Dec) is defined as

below:

• KeyGen(SP ). Taking as input SP , this algorithm outputs the encryption key and the

decryption key pair (EK,DK).

• Enc(m,EK; β). Taking as input EK and a plaintext m, this algorithm outputs a

ciphertext c of m with randomness β.

• Dec(c,DK,EK). Taking as input DK, EK, and a ciphertext c, this algorithm

outputs m.

n′-bit Twisted ElGamal Encryption Scheme. Below, we review twisted ElGamal

encryption proposed by Yu Chen et al. [14]. Let G be a cyclic group of order q with

generators g1, g2. Let n′ be an integer with n′ ≤ |q|. The system parameters are defined

as SP = (G, g1, g2, q, n
′). The n′-bit twisted ElGamal encryption scheme is described as

follows.

• KeyGen(SP ). Choose t
R←− Zq and compute T = gt2. It sets EK = T and DK = t.

• Enc(m,EK; β0, ..., βl−1). Assume |m| = n and n
n′ = l. Define (m0, ...,ml−1) where

m =
∑l−1

i=0 mi · 2n
′·i. For i = 0, ..., l − 1, compute (ui, vi) = (gmi

1 gβi
2 , T βi). The

ciphertext c is set as c = (u0, ..., ul−1, v0, ..., vl−1).
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• Dec(c,DK,EK). For i = 0, ..., l− 1, compute Mi =
ui

v
1/t
i

and recover mi from Mi
1.

Reconstruct m =
∑l−1

i=0mi · 2n
′·i.

The intuition of the twisted ElGamal Encryption is to switch the role of key encapsula-

tion and the session key of the standard ElGamal encryption. Specifically, the ciphertexts

on some message m with randomness β as a result of the standard ElGamal and twisted

ElGalmal are in the form of (gm1 T
β, gβ2 ) and (gm1 g

β
2 , T

β), respectively.

3.4 Signature Scheme

Definition 3. Signature Scheme. Let SP denote the system parameters of a signature

algorithm. A signature scheme (KeyGen, Sig,Ver) is defined as below:

• KeyGen(SP ). On input SP , this algorithm outputs the signing key SK and the

verification key PK.

• Sig(m,SK,PK; k). On input SK, PK, and message m, this algorithm outputs a

signature σ on m with randomness k.

• Ver(m,σ, PK). On input PK, σ, and m, this algorithm outputs 1 or 0.

Below, we review various digital signature schemes from elliptic curve cryptography

whose security is based on the discrete logarithm problem. Specifically, the cyclic group G

in the system parameters below is always groups of points on a certain elliptic curve, and

the security of these schemes depends on the discrete logarithm problem defined over G.

These schemes have been included in various standards and are widely adopted in various

cryptocurrencies. Following the above definition, each of these schemes, denoted by S, is

a tuple (S.KeyGen,S.Sig,S.Sig) of algorithms.

1By implementing Shanks’ algorithm [44], for |m′| = n′, m′ can be extracted from gm
′

1 in time O(2n
′/2)

using a table of size O(2n
′/2). In practice, n′ will be chosen to be 32 to ensure Shanks’ algorithm remains

efficient.
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ECGDSA [33]. Let G be a cyclic group of order q with generator g1. Define cryp-

tographic hash function H : {0, 1}∗ → {0, 1}b. Let (Qx, Qy) be the coordinates of point

Q ∈ G and function F : F (Qx, Qy) = Qx mod q. The system parameters are defined as

SP = (G, g1, q,H, b).

• S.KeyGen(SP ). Choose d
R←− Zq and compute Q = gd

−1

1 . Set SK = d, PK = Q.

• S.Sig(m,SK,PK; k). Compute h = H(m), R = gk1 , r = F (R), and s = (kr−h)d.

The signature is σ = (r, s).

• S.Sig(m,σ, PK). Compute h = H(m) and output 1 if r = F (gh·r
−1

1 Qs·r−1
).

GOST [18]. Let G be a cyclic group of order q with generator g1. Define cryptographic

hash function H : {0, 1}∗ → {0, 1}b. Let (Qx, Qy) be the coordinates of point Q ∈ G and

function F : F (Qx, Qy) = Qx mod q. The system parameters are defined as SP =

(G, g1, q,H, b, F ).

• S.KeyGen(SP ). Choose d
R←− Zq and compute Q = gd1 . Set SK = d, PK = Q.

• S.Sig(m,SK,PK; k). Chooses k R←− Zp. Compute h = H(m), R = gk1 , r = F (R),

and s = rd+ kh. The signature is σ = (r, s).

• S.Ver(m,σ, PK). Compute h = H(m) and output 1 if r = F (gs·h
−1

1 Q−r·h−1
).

ECDSA [39]. Let G be a cyclic group of order q with generator g1. Define cryp-

tographic hash function H : {0, 1}∗ → {0, 1}b. Let (Qx, Qy) be the coordinates of

point Q ∈ G. Define F : F (Q) = Qx mod q. The system parameters are defined as

SP = (G, g1, q,H, b, F ).

• S.KeyGen(SP ). Choose d
R←− Zq and compute Q = gd1 . Set SK = d, PK = Q.

• S.Sig(m,SK,PK; k). Chooses k R←− Zp. Compute h = H(m), R = gk1 , r = F(R),

and s = k−1(h+ rd). The signature is σ = (r, s).
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• S.Ver(m,σ, PK). Compute h = H(m) and output 1 if r = F (gh·s
−1

1 Qr·s−1
).

SM2 [45]. Let g1 be a base point over elliptic curve E(Fq) defined by two elements

a, c ∈ Fq. Let (Qx, Qy) be the coordinates of point Q ∈ G. Define cryptographic hash

function H : {0, 1}∗ → {0, 1}b. The signer has a distinguishing identifier IDQ of length

entlenQ bits. Denote ENTLQ the two bytes converted from integer entlenQ. The system

parameters are defined as SP = (Fq, g1, H, b, a, c).

• S.KeyGen(SP ). Choose d
R←− Zq and compute Q = gd1 . Set SK = d, PK = Q.

• S.Sig(m,SK,PK; k). Compute m = H(ENTLQ||IDQ||a||c||Q||g1)||m and h =

H(m), R = gk1 , r = h + F (R), and s = (1 + d)−1 · (k − rd). The signature is

σ = (r, s).

• S.Ver(m,σ, PK). Compute m = H(ENTLQ||IDQ||a||c||Q||g1)||m, h = H(m),

and output 1 if r = F (gs1Q
r+s) + h.

EdDSA [34]. Let G be a cyclic group of order q with generator g1. Define hash function

H : {0, 1}∗ → {0, 1}2b. Denote Hi:j(x) the concatenation of the i-th to j-th bits of H(x).

The system parameters are defined as SP = (G, g1, q,H, b). We review the EdDSA scheme

S below:

• S.KeyGen(SP ). Compute d = H1:b(x), k = Hb+1:2b(x). Let Q = gd1 . Set SK =

d, PK = Q

• S.Sig(m,SK,PK; k). Compute r = H(k,m), R = gr1, h = H(R,PK,m), and

s = r + hd. The signature is σ = (R, s).

• S.Ver(m,σ, PK). Compute h = H(R,PK,m) and output 1 if RQh = gs1.

Schnorr Signature Scheme [42]. Let G be a cyclic group of order q with generator

g1. Define hash function H : {0, 1}∗ → {0, 1}b. The system parameters are defined as

SP = (G, g1, q,H, b).
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• S.KeyGen(SP ). Choose d
R←− Zq and compute Q = gd1 . Set SK = d, PK = Q.

• S.Sig(m,SK,PK; k). Chooses k
R←− Zq. Compute R = gk1 , r = H(R,m), and

s = k − rd. The signature is σ = (R, s).

• S.Ver(m,σ, PK). Compute r = H(R,m). Output 1 if Q−rR = gs1.

Original Schnorr signature uses a multiplicative group of integers modulo a large prime

as the cyclic group, while lately group of points of an elliptic curve is more popular in

practice.

3.5 Threshold Signature Scheme

Definition 4. Threshold Signature Scheme. A (t, n)-threshold signature scheme allows

t out of n players to jointly generate a signature. Consider a signature scheme S =

(KeyGen, Sig,Ver) where (PK, SK) ← KeyGen(SP ), σ ← Sig(m,SK,PK), 0/1 ←

Ver(m,σ, PK). The (t, n)-threshold signature scheme for S includes two additional pro-

tocols, namely, ThreshKeyGen,ThreshSig, for the set of n players P1, ..., Pn to jointly gen-

erate the key and signatures respectively. ThreshKeyGen,ThreshSig are defined as follows.

• ThreshKeyGen(SP ). On input SP , this protocol outputs PK to all players and si to

Pi for i = {1, ..., n} such that

– (s1, ..., sn) forms a (t, n)-threshold secret sharing [43] of a certain value SK2.

– The distribution of (PK, SK) is the same as that of KeyGen on input SP , i.e.,

(PK, SK) ∈ {KeyGen(SP )}.

• ThreshSig(s′1, ..., s
′
t′ ,m, PK). On input t′ ≥ t out of n secret shares, i.e., {s′1, ..., s′t′} ⊂

{s1, ..., sn} and t′ ≥ t, message m, and public key PK, this algorithm returns σ such

that Ver(m,σ, PK) = 1.
2In other words, SK can be reconstructed from any subset T ⊂ {s1, . . . , sn} with |T | ≥ t.
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Besides the standard unforgeability requirement, the security of threshold signature

schemes requires that collusion of less than t parties will not be able to generate a valid

signature.

3.6 Proof System

Let R be a polynomial-time decidable relation. We call w a witness for statement u under

Common Reference String (CRS) ck if (ck, u, w) ∈ R. The CRS-dependent language Lck

in the relation R is defined as

Lck = {u|∃w : (ck, u, w) ∈ R}

Consider a probabilistic polynomial-time algorithm G and a pair of interactive proba-

bilistic polynomial-time algorithms ⟨P ,V⟩ defined as below:

• G(1λ). Taking as input security parameter λ, this algorithm outputs the CRS ck.

• ⟨P(w, u, ck),V(u, ck)⟩. Taking as input w, u, and ck, this pair of algorithms output

1 if V accepts.

Definition 5. Proof System. (G,P ,V) is a proof system for relation R in the CRS model if

it satisfies completeness and soundness.

• Completeness. (G,P ,V) is complete if for any (ck, u, w) ∈ R,

Pr

[
⟨P (w, u, ck), V (u, ck)⟩ = 1

]
= 1

• Soundness. (G,P ,V) is sound if for any u ̸∈ Lck and any probabilistic polynomial-

time cheating prover P ∗,

Pr

[
⟨P ∗(u, ck), V (u, ck)⟩ = 1

]
≈ 0
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Definition 6. Argument of Knowledge. (G,P ,V) is an argument of knowledge for rela-

tion R in the CRS model if it satisfies completeness and computational witness-extended

emulation.

• Witness-Extended Emulation. (G,P ,V) satisfies computational witness-extended

emulation if for all deterministic polynomial-time P ∗, there is an efficient extraction

algorithm B such that for any probabilistic polynomial-time adversary A1,A2,

Pr


ck ← G(1λ); (u, s)← A2(ck);

tr ←< P ∗(ck, u, s), V (ck, u) >:

A1(tr) = 1

 ≈

Pr



ck ← G(1λ); (u, s)← A2(ck);

(tr, w)← BO(ck, u) :

A1(tr) = 1

∧ (tr is accepting→ (ck, u, w) ∈ R)


, where the transcript oracleO =< P ∗(ck, u, w), V (ck, u) >, and allows for rewind-

ing with fresh randomness.

Definition 7. Special Honest-Verifier Zero-Knowledge (SHVZK). A proof system (i.e. ar-

gument of knowledge) (G,P ,V) is SHVZK if for every (ck, u, w) ∈ R, there exists a prob-

abilistic polynomial-time simulator S such that for any probabilistic polynomial-time ad-
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versary A1,A2,

Pr


ck ← G(1λ); (u,w, ρ)← A2(ck);

tr ←< P (ck, u, w), V (σ, u; ρ) >:

(ck, u, w) ∈ R ∧ A1(tr) = 1

 ≈

Pr


ck ← G(1λ); (u,w, ρ)← A2(ck);

tr ← S(u, ρ) :

(ck, u, w) ∈ R ∧ A1(tr) = 1


, where ρ is the public coin used by V .

Definition 8. Non-interactive Zero-Knowledge Proof (NIZK). NIZK is a zero-knowledge

proof that requires no interaction between the prover and the verifier. A non-interactive

zero-knowledge proof for (ck, u, w) ∈ R in the CRS model consists of three probabilistic

polynomial-time algorithms (G,P ,V) defined as follows.

• ck ← G(1λ): Taking as input security parameter λ, this algorithm outputs a CRS ck.

• π ← P(ck, u, w): Taking as input (ck, u, w) ∈ R, this algorithm outputs a proof π.

• b← V(ck, u, π): Taking as input (ck, x, π), this algorithm returns a single bit b.

Σ-protocol. A Σ-protocol is a three-move zero-knowledge proof system between a

prover P and a verifier V . We adopt the definition from [25] for Σ-protocol with a common

reference string (CRS). Assume there is a probabilistic polynomial-time setup algorithm G

that generates CRS ck, a Σ-protocol is defined as follows.

• ck ← G(1λ): Generate the CRS on input security parameter λ.

• a ← P(ck, u, w): Given (ck, u, w) ∈ R where w is a witness for a statement u, the

prover generates an initial message a.

• x← {0, 1}λ: The verifier chooses x uniformly at random.
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• z ← P(x): The prover responds to challenge x with z.

• b← V(ck, u, a, x, z): The verifier returns a single bit b.

Σ-protocol satisfies soundness and zero-knowledge in the following sense:

• Special Soundness. (G,P ,V) is sound if there is an efficient extraction algorithm

B such that for any probabilistic polynomial-time adversary A outputting two ac-

cepting transcripts with the same initial message,

Pr

 ck ← G(1λ); (u, a, x1, z1, x2, z2)← A(ck);

w ← B(ck, u, a, x1, z1, x2, z2) : (ck, u, w) ∈ R

 ≈ 1

• SHVZK. (G,P ,V) is SHVZK if there exists a probabilistic polynomial-time simu-

lator S such that for any probabilistic polynomial-time adversary A,

Pr

 ck ← G(1λ); (u,w, x)← A(ck);

a← P(ck, u, w); z ← P(x) : A(a, z) = 1

 ≈
Pr

 ck ← G(1λ); (u,w, x)← A(ck);

(a, z)← S(ck, u, x) : A(a, z) = 1


Σ-protocol can be converted into NIZK proof using the Fiat-Shamir heuristic.

Bulletproofs. Bulletproofs [10] is a ZKAoK with logarithmic proof size (with respect

to the witness size). The core component of Bulletproofs is Bünz’s inner product argument.

In particular, on input (h,k, P, t̂; l, r), where h,k are dependent generators in Gn and l, r ∈

Zn
q , Bünz’s inner product argument allows the prover to convince the verifier that

P = hlkr, t̂ = ⟨l, r⟩

with proof size logarithmic in n. In this thesis, we will use Bünz’s inner product argument
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in a black-box manner. For the concrete construction, please refer to [10]. Bulletproofs can

be converted into a NIZK proof using the Fiat-Shamir heuristic.

Bulletproofs for Pedersen Commitment. Bulletproofs is well-suited for range proofs

for Pedersen commitment and supports efficient proof aggregation. Let G be a cyclic group

of order q and generators g1, g2. The Pedersen commitment u to m is of the form gm1 g
β
2 ,

where β
R←− Zq. Essentially, Bulletproofs for Pedersen commitment proves the following:

L = {u, g1, g2,m, β|u = gm1 g
β
2 ,m ∈ [0, 2n − 1]}

Let mL = (m1, ...,mn) be the bit vector of m where m =
∑n

i=1 mi · 2i−1. The fact that

m is in the range of [0, 2n − 1] can be equivalently expressed as

⟨mL,2
n⟩ = m ∧ mL ◦mR = 0n ∧ ml −mR = 1n (1)

Using the fact that < 0n,yn >= 0 and z2 · 0+ z · 0 = 0 for all integers y, z, (1) holds if

z2 · ⟨mL,2
n⟩+ z · ⟨ml − 1n −mR,y

n⟩+ ⟨mL,mR ◦ yn⟩ = z2 ·m (2)

where y, z
R←− Zq. And (2) can be equivalently transformed into

⟨mL − z · 1n,yn ◦ (mR + z · 1n) + z2 · 2n⟩ = z2 ·m+ δ(y, z) (3)

, where δ(y, z) = (z − z2) · ⟨1n,yn⟩ − z3⟨1n,2n⟩.

Therefore, the proof for m ∈ [0, 2n − 1] is reduced to the proof of (3). We review the

construction of Bulletproofs for Pedersen commitment u = gm1 g
β
2 in Figure 3.1.

3.7 Verifiably Encrypted Signature Scheme

A verifiably encrypted signature scheme involves a signer, a verifier, and a TTP called

adjudicator. At first, the signer encrypts the signature under an adjudicator’s public key.

The verifier then checks the validity of the ciphertext. Later in the scheme, if the signer

refuses to release the signature, the adjudicator decrypts the ciphertexts and releases the
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P(u, g1, g2;mL,mR, β) V(u, g1, g2)
Let h,k two set of independent generators in Gn.

α, ρ
R←− Zq

ρL, ρR
R←− Zn

q

A = gα2h
mLkmR

S = gρ2h
ρRkρL

A,S−−−−→

y, z
R←− Z∗

q
y,z←−−−−

Define l(X), r(X), t(X) as below :
l(X) = (mL − z · 1n) + ρL ·X
r(X) = yn ◦ (mL + z · 1n + ρRX) + z2 · 2n
t(X) = ⟨l(X), R(X)⟩ = t0 + t1X + t2X

2

i.e., t0 = u · z2 + δ(y, z)

α
R←− Zq

τ1, τ2
R←− Zq

T1 = gt11 g
τ1
2 , T1 = gt21 g

τ2
2

T1,T2−−−−→

x
R←− Z∗

q
x←−−−−

l = l(x), r = r(x), t̂ = ⟨l, r⟩
τx = τ2 · x2 + τ1 · x+ z2 · β
µ = α + ρ · x

l,r,τ̂ ,τx,µ−−−−−→

Set k′ = (k1, k
y−1

2 , ..., ky−n+1

n )
Compute a commitment P to l(x), r(x),

i.e., P = A · Sx · h−z(k′)z·y
n+z2·2n

Accept if and only if:
1) gτ̂hτx = uz2g

δ(y,z)
1 T x

1 T
x2

2

// Check that τ̂ = t0 + t1x+ t22.
2) P = gµ2 · hl · k′r

// Check that l, r are correctly formed.
3) τ̂ = ⟨l, r⟩
// Check that τ̂ are correctly formed.

Figure 3.1: Bulletproofs for Pedersen Commitment
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signatures. Let {KeyGen, Sig,Ver} denote a standard signature scheme. We review the

notion and security model of the verifiably encrypted signature as below [8].

Definition 9. Verifiably Encrypted Signature Scheme. Let SP denote the system param-

eters of a verifiably encrypted signature scheme. A verifiably encrypted signature scheme

consists of the following probabilistic polynomial-time algorithms:

• KeyGen, Sig,Ver. Same as a standard signature scheme.

• AdjKeyGen(SP ). Taking as input the system parameters SP , this algorithm gener-

ates the adjudicator’s key pair (APK,ASK).

• VESSig(m,SK,APK). Taking as input signer’s secret key SK, adjudicator’s public

key APK, and message m, this algorithm outputs the verifiably encrypted signature

σ′.

• VESVer(m,σ′, PK,APK). Take as input a public key PK, an adjudicator’s public

key APK, a message m, and a verifiably encrypted signature σ′ on m, this algorithm

outputs 1 if σ′ a valid verifiably encrypted signature on m under PK; otherwise,

outputs 0.

• Adj(m,σ′, ASK,APK). Taking as input an adjudicator’s key pair (APK,ASK),

a public key PK, a message m, and a verifiably encrypted signature σ′ on m, this

algorithm outputs the standard signature σ on m.

We say a verifiably encrypted signature is 2-phase if VESSig can be computed from

a standard signature and an adjudicator’s public key. More formally, VESSig(m, sk, PK)

can be divided into σ ← VESSig(1)(m,SK) and σ′ ← VESSig(2)(σ,APK) such that

VESSig(1) is the same as Sig, and VESSig(2) takes only σ and APK as input.

The security of the verifiably encrypted signature consists of four aspects, namely, va-

lidity, unforgeability, (strong) opacity, and resolution-independence (Optional). We strengthen
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the unforgeability notion by merging the security requirements of abuse-freeness. Specif-

ically, the attacker will be given the adjudicator’s secret key when it attempts to forge a

verifiably encrypted signature.

• Validity requires correctly generated encrypted signatures and adjudicated signatures

being accepted by verifiers. That is,

VESVer(m,VESSig(m,SK,PK,APK), PK,APK) = 1

Ver(m,Adj(m,σ′, ASK,APK), PK) = 1

• Unforgeability requires that it is computationally infeasible for any probabilistic

polynomial-time adversary F to forge a verifiably encrypted signature. We define

the following experiment:

AdjKeyGen(SP )→ (ASK,APK)

KeyGen(SP )→ (SK,PK)

(m,σ′)← FOVESSig(PK,ASK,APK)

success of F :=

 VESVer(m,σ′, PK,APK) = 1

∧ (m) /∈ Query(F , OVESSig)



where the verifiably encrypted signing oracle OVESSig is defined as OVESSig(m) →

(σ′,m), and Query(F , OVESSig) is the set of valid queries issued to the oracle OVESSig.

• Strong opacity requires that it is computationally infeasible for any probabilistic

polynomial-time adversary B to extract a message-signature pair from a verifiably
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encrypted signature. We define the following experiment:

AdjKeyGen(SP )→ (ASK,APK)

KeyGen(SP )→ (SK,PK)

(m∗, σ∗)← BOVESSig,OAdj(PK,APK)

success of F :=

 Ver(m∗, σ∗, PK) = 1

∧ (m∗, σ∗) /∈ Res(B, OAdj)


where the resolution adjudication oracle OAdj is defined as OAdj(m,σ′) → (m,σ),

and Res(B, OAdj) is the set of responses from oracle OAdj.

• Resolution-independence requires that the signatures returned by the adjudicator is

identically distributed with the ordinary signature. That is,

AdjKeyGen(SP )→ (ASK,APK)

KeyGen(SP )→ (SK,PK)

Sig(m,SK,PK) = Adj(m,VESSig(m,SK,PK,APK), ASK,APK)

3.8 Bitcoin Script

Bitcoin Script (or simply Script) is a stack-based scripting programming language for

Bitcoin transactions. It consists of data and opcodes. The data includes, but is not limited

to, hash to public keys, public keys, and signatures. opcodes used in our protocol are listed

in Table 3.1.

The five standard Bitcoin transaction scripts are pay-to-public-key-hash (P2PKH), pay-

to-public-key (P2PK), multi-signature (MultiSig), pay-to-script-hash (P2SH), and data out-

put (OP_RETURN).

• P2PKH allows Bitcoin transactions to the public key hash. It is the most commonly
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Table 3.1: Basic opcodes
opcode Description

If the top stack value is not False, the statements are
OP_IF executed. The top stack value is removed.

If the preceding OP_IF or OP_NOTIF or OP_ELSE was
OP_ELSE not executed, the statements are executed.
OP_ENDELSE Ends an if/else block
OP_DROP Removes the top stack item.
OP_EQUAL Returns 1 if the inputs are exactly equal, 0 otherwise.

The input is hashed twice: first with SHA-256 and then
OP_HASH160 with RIPEMD-160.
OP_CHECKSIG Return 1 if the signature for the public key is valid.
OP_CHECKMULTISIG Return 1 if the signatures for a set of public keys are valid.
OP_CheckLockTimeVerify Allow transaction outputs to be encumbered by a timelock.

used, also the default type of transaction. The script pattern of P2PKH is "OP DUP OP

HASH160 <PUBLIC KEY A HASH> OP EQUAL OP CHECKSIG". To unlock a P2PKH

transaction, a spender must provide the public key that yields the <PUBLIC KEY A

HASH> and a valid signature under the public key.

• P2PK allows Bitcoin transactions to a public key. It is most often used in coinbase

transactions. The script pattern of P2PK is "<PUBLIC KEY A> OP CHECKSIG”. To

unlock a P2PK transaction, a spender must provide a valid signature under <PUBLIC

KEY A>.

• Multisig allows Bitcoin transactions authorized by multiple parties. It is most com-

monly used as a joint account. The script pattern of Multisig, also known as M-

of-N scheme, is “ M <PUBLIC KEY 1> <PUBLIC KEY 2> ... <PUBLIC KEY N>

N OP CHECKMULTISIG”. To unlock a Multisig transaction, the spender(s) must at

least provide M signatures under M-of-N listed public keys.

• P2SH allows Bitcoin transactions to an arbitrary script hash. The most common use

of P2SH is the standard Multisig script. Take the P2SH Script in this thesis

for example, i.e., "OP_HASH160 script hash OP_EQUAL". To unlock such a P2SH

transaction, the spender must provide a Multisig script that yields the script hash

along with the signature that makes the Multisig script evaluate to true.

• OP_RETURN is used to store data rather than make payments. The script pattern is “
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OP RETURN <DATA>”.

3.9 Escrow protocols for Cryptocurrency

3.9.1 Desirable Properties of Escrow Protocols

The desirable properties of escrow protocols fall into four categories, namely, security,

privacy, TTP’s involvement, and efficiency. We follow the definition of [24]. The require-

ments are elaborated as follows.

• Security. An escrow protocol should guarantee (a) the exchange will be accom-

plished if any two parties follow the protocol, and (b) no party gets worse off if the

other party deviates from the protocol. Security can be further classified into three

aspects, namely, Security against Alice, Security against Bob, and Security against

TTP. Furthermore, it is desirable to be resilient against denial-of-service attacks.

– Security against Alice requires that Alice (the buyer) should not be able to ob-

tain Bob’s (the seller’s) goods without paying even if TTP decided to aid Bob.

In other words, Alice should not be able to produce a fake escrow that appears

to be valid but cannot be redeemed even if Bob and TTP cooperate. Further-

more, Alice should not be able to take back coins in the escrow before Bob has

the chance to request the TTP for resolution.

– Security against Bob requires that Bob should not be able to transfer coins in

the escrow without the help of the TTP (or Alice).

– Security against TTP requires that TTP should not be able to transfer any coins

in the escrow without the help of Alice or Bob.

– Denial-of-Service (DoS). An escrow protocol is anti-DoS if the TTP must me-

diate when there is a dispute.

34



• Privacy. An escrow protocol is private if it does not leak information about what

happens to different parties. It can be further classified into three aspects, namely,

Internally-hiding, Externally-hiding, and Dispute-hiding.

– Internally-hiding. An escrow protocol is internally-hiding if the TTP cannot

identify the transactions involved in the escrow protocols if no dispute occurs.

– Externally-hiding. An escrow protocol is externally-hiding if an external ob-

server cannot distinguish the transactions of escrow protocols from the standard

transactions on the blockchain.

– Dispute-hiding. An escrow protocol is dispute-hiding if an external observer

cannot tell if there is a dispute.

• TTP Involvement. It is desirable to keep TTP involvement to be minimal.

– Active on deposit. An escrow protocol is active on deposit if the TTP must

actively participate in the deposit phase of the escrow protocol.

– Active on withdrawal. An escrow protocol is active on withdrawal if the TTP

must actively participate in the coin transfer phase no matter there is a dispute

or not. An escrow protocol is partially active on withdrawal if the TTP must

participate in the coin transfer if the buyer or the seller deviates from the pro-

tocol. An escrow protocol is passive on withdrawal if the TTP must participate

in the coin transfer phase when the buyer deviates from the protocol.

• Efficiency. Efficiency contains three aspects, namely, round efficiency, communi-

cation efficiency, and computation efficiency. In most cases, round efficiency is the

most important metric for efficiency. In particular, round efficiency is considered

under three situations, namely, normal, abort and refund, and adjudication by the

TTP.
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3.9.2 Existing Approaches

Escrow via 2-of-3 Multisig. In this approach, multiple keys are required to authorize a

transaction. Denote T the transaction from Alice to Bob and T′ the refund transaction to

Alice. In the deposit phase, the redeem conditions are set as any two multi-signatures gener-

ated by Alice, Bob, and the TTP, which is denoted by 2-of-3{Signature_A, Signature_B,

Signature_TTP}.

Let S = (S.KeyGen,S.Sig,S.Ver) be a standard signature scheme with system pa-

rameters SPS . The concrete construction of the escrow protocol for Bitcoin via 2-of-3

Multisig is shown in Figure 3.2.

• Security against Alice. Bob can claim the coins with the help of the TTP if Alice

refuses to pay.

• Security against Bob. Alice can claim the coins with the help of the TTP if Bob

refuses to perform his duty.

• Security against TTP. The TTP can only transfer coins by collaborating with Alice

or Bob.

• DoS. Escrow via 2-of-3 Multisig does not offer anti-DoS. The TTP can simply

refuse to mediate.

• Internally-hiding. If no dispute occurs, the TTP is not involved and will not be able

to learn if an escrow transaction has taken place.

• Partially externally-hiding. Due to the 2-of-3 Multisig structure, an external party

may successfully identify an escrow transaction.

• Partially dispute-hiding. An external observer may recognize a dispute through

transaction graph analysis.
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Pre-condition:

• Alice runs (PKA, SKA)← S.KeyGen(SPS).

• Bob runs (PKB, SKB)← S.KeyGen(SPS).

• The TTP runs (APK,ASK)← S.KeyGen(SPS).

The Deposit Phase:

- The redeem condition is set as:

2-of-3{Signature_A, Signature_B, Signature_TTP}.

The Withdrawal Phase:
If Bob fails to perform his duty within block length t,

- The TTP broadcasts its part of multi-signature σ′
TTP on T′, i.e., σ′

TTP ←
S.Sig(T′, ASK,APK).

- Alice broadcasts her part of multi-signature σ′
A on transaction T′, i.e., σ′

A ←
S.Sig(T′, SKA, PKA), and claims the coins.

If Bob completes his duty within t and Alice broadcasts her part of multi-signature σA on
transaction T, i.e., σA ← S.Sig(T, SKA, PKA),

- Bob broadcasts his part of multi-signature σB on transaction T, i.e., σB ←
S.Sig(T, SKB, PKB), and claims the coins.

If Bob completes his duty but Alice refuses to broadcast her part of multi-signature,

- The TTP broadcasts its part of multi-signature σTTP on T, i.e., σTTP ←
S.Sig(T, ASK,APK).

- Bob broadcasts his part of multi-signature σB on T, i.e., σB ←
S.Sig(T, SKB, PKB), and claims the coins.

Figure 3.2: Escrow via 2-of-3 Multisig
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• TTP Involvement. Escrow via 2-of-3 Multisig is passive-on-deposit since the TTP

is not involved in the deposit phase, and is partially active-on-withdrawal since the

TTP will be called upon to handle resolution requests whenever Alice or Bob misbe-

haves.

• Round Efficiency. One round of off-chain communication is required.
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Escrow via Threshold Signature. In this approach, the digital coins are sent to an

address whose secret key is shared among Alice, Bob, and the TTP using a 2-of-3 secret

sharing. Denote T the transaction from the joint account to Bob and T′ the transaction from

the joint account to Alice. In the deposit phase, the redeem conditions are set as signatures

generated under the threshold address PK, which is denoted by {Signature_PK}.

Let S = (S.KeyGen, S.Sig, S.Ver) be the standard ECDSA signature scheme with

system parameters SPS . Let (ThreshkeyGen,ThreshSig) be a (2, 3)-threshold ECDSA

signature scheme of Gennaro al. [22]. The concrete construction of the escrow protocol

via threshold signature is shown in Figure 3.3.

Pre-condition:

• Alice, Bob, and the TTP run (sA, sB, sTTP;PK)← ThreshKeyGen(SPS).

The Deposit Phase:

- The redeem condition is set as: {Signature_PK}

The Withdrawal Phase:
If Bob fails to perform his duty,

- Alice and the TTP generate a signature σ′
PK on T′, i.e., σ′

PK ←
Thresh.Sig(sA, sTTP,T

′, PK).

- Alice broadcasts σ′
PK and claims the coins.

If Bob completes his duty, and Alice and Bob jointly generate a signature σPK on T, i.e.,
σPK ← Thresh.Sig(sA, sB,T, PK),

- Bob broadcasts σPK and claims the coins.

If Bob completes his duty but Alice refuses to pay,

- Bob and the TTP generate a signature σPK on T, i.e., σPK ←
Thresh.Sig(sB, sTTP,T, PK),

- Bob broadcasts σPK and claims the coins.

Figure 3.3: Escrow via Threshold Signature

• Security against Alice. Bob can claim the coins with the help of the TTP if Alice
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refuses to pay.

• Security against Bob. Alice can claim the coins with the help of the TTP if Bob

refuses to perform his duty.

• Security against TTP. The TTP can only transfer coins by collaborating with Alice

or Bob.

• DoS. Escrow via threshold signature does not offer anti-DoS. The TTP can simply

refuse to mediate.

• Not Internally-hiding.The TTP is actively involved in the deposit phase. Therefore,

the TTP can recognize an escrow transaction even if no dispute occurs.

• Externally-hiding. An external party will not be able to learn if an escrow transaction

has taken place since the threshold signature is indistinguishable from a standard

signature.

• Dispute-hiding. An external party cannot identify a dispute because a standard sig-

nature will be published no matter there is a dispute or not.

• TTP Involvement. Escrow via threshold signature is active-on-deposit since the TTP

must participate in the deposit phase to establish the joint account, and is partially

active-on-withdrawal since the TTP is only called upon to handle resolution requests

whenever Alice or Bob misbehaves.

• Round Efficiency. In the pre-condition phase, 4 rounds of off-chain communication

are required to establish the threshold address. In the withdrawal phase, 4 rounds of

off-chain communication are required to jointly generate a valid signature. To sum

up, 8 rounds of off-chain communication are required.
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Escrow via encrypt-and-swap. In this approach, the digital coins are sent to an address

whose secret key is shared between Alice and Bob using a 2-of-2 secret sharing. Alice (i.e.

Bob) then sends the secret share to Bob (i.e. Alice ) under the TTP’s public key. Denote T

the transaction from the joint account to Bob and T′ the transaction from the joint account

to Alice. In the deposit phase, the redeem conditions are set as signatures generated under

the threshold address PK, which is denoted by {Signature_PK}.

Let S = (S.KeyGen, S.Sig, S.Ver) be the standard ECDSA signature scheme with sys-

tem parameters SPS . Let (ThreshKeykeyGen,ThreshSig) be the (2, 2)-threshold ECDSA

signature scheme of Gennaro al. [22]. Let E = (E .KeyGen, E .Enc, E .Dec) be an encryption

scheme with system parameter SPE . The concrete construction of the escrow protocol via

encrypt-and-swap is shown in Figure 3.4.

• Security against Alice. If Alice refuses to pay, the TTP will send Alice’s secret share

of to Bob so that Bob could transfer the coins in the joint account to his own account.

• Security against Bob. If Bob refuses to perform his duty, the TTP will send Bob’s

secret share to Alice so that Alice could transfer the coins in the joint account to her

own account.

• Security against TTP. The TTP can only transfer the coins by collaborating with

Alice or Bob.

• DoS. Escrow via threshold signature does not offer anti-DoS. The TTP can simply

refuse to mediate.

• Internally-hiding. If no dispute occurs, the TTP is not involved and will not be able

to learn if an escrow transaction has taken place.

• Externally-hiding. An external party will not be able to learn if an escrow transaction

has taken place since the signature resulting from the protocol is indistinguishable

from a standard signature.
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Pre-condition:

• Alice and Bob run (sA, sB; yA, yB, PK) ← ThreshKeyGen(SPS) s.t. yA = gsA ,
yB = gsA , PK = yA · yB

• The TTP runs (APK,ASK)← E .KeyGen(SPE).

• Alice computes cA ← E .Enc(APK, sA) and generates a zero-knowledge proof πA

such that cA is an encryption of the discrete log with respect to g of yA. Alice sends
cA, πA to Bob.

• Bob computes cB ← E .Enc(APK, sB) and generates a zero-knowledge proof πB

such that cB is an encryption of the discrete log with respect to g of yB. Bob sends
cB, πB to Alice.

The Deposit Phase:

- The redeem condition is set as: {Signature_PK}

The Withdrawal Phase:
If Bob fails to perform his duty,

- Alice sends cB to the TTP.

- The TTP runs sB ← E .Dec(ASK,APK, cB) and sends sB to Alice.

- Alice broadcasts a signature σ′
PK on T′, i.e., σ′

PK ← S.Sig(sA + sB,T
′, PK), and

claims the coins.

If Bob completes his duty within t, and Alice sends sA to Bob,

- Bob broadcasts a signature σPK on T, i.e., σPK ← S.Sig(sA+sB,T, PK), and claims
the coins.

If Bob completes his duty but Alice refuses to pay,

- Bob sends cA to the TTP.

- The TTP runs sA ← E .Dec(ASK,APK, cA), and sends sA to Bob.

- Bob broadcasts a signature σPK on T, i.e., σPK ← S.Sig(sA+sB,T, PK), and claims
the coins.

Figure 3.4: Escrow via encrypt-and-swap
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• Dispute-hiding. An external party cannot identify a dispute since the signature re-

sulting from the protocol is indistinguishable from a standard signature.

• TTP Involvement. Escrow via encrypt-and-swap is passive-on-deposit since the TTP

doesn’t participate in the deposit phase, and is partially active-on-withdrawal since

the TTP is called upon to handle resolution requests from both Alice and Bob.

• Round Efficiency. In the pre-condition phase, 2 rounds of off-chain communication

are required to generate keys, and 2 rounds of off-chain communication are required

to exchange encrypted key shares. In the withdrawal phase, 1 or 2 rounds of off-chain

communication are required to recover the threshold secret key. To sum up, 5 or 6

rounds of off-chain communication are required.
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Escrow with Bond. In this approach, the TTP is required to put deposits into the es-

crow. Denote T the transaction from Alice to Bob, T′ the refund transaction to Alice, and

T∗ the deposit refund transaction to the TTP. Let H denote the SHA-256 hash function. In

the deposit phase, the redeem conditions are set as, (a) 2-of-3 multi-signatures generated

by Alice, Bob, and the TTP and a preimage of hash value y, which is denoted by 2-of-

3{Signature_A, Signature_B, Signature_TTP} ∧x|H(x) = y, and (b) a signature gen-

erated by the TTP and a preimage of hash value y, i.e., {Signature_TTP} ∧x|H(x) = y.

Let S = (S.KeyGen,S.Sig,S.Ver) be a standard signature scheme with system param-

eters SPS . The concrete construction of the escrow protocol with bond is shown in Figure

3.5.

• Security against Alice. Bob can claim the coins with the help of the TTP if Alice

refuses to pay.

• Security against Bob. Alice can claim the coins with the help of the TTP if Bob

refuses to conduct his duty.

• Security against TTP. The TTP can only transfer coins by collaborating with Alice

or Bob.

• Anti-DoS. Escrow via bond offers anti-DoS. The TTP cannot obtain x and claim the

deposit if it refuses to mediate.

• Not Internally-hiding. The TTP must participate in the deposit phase. Therefore, the

TTP can recognize an escrow protocol even if no dispute occurs.

• Partially Externally-hiding. Due to the 2-of-3 Multisig and hash preimage struc-

ture, an external party may successfully identify an escrow transaction.

• Partially Dispute-hiding. An external observer may recognize a dispute through traf-

fic graph analysis.
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Pre-condition:

• Alice and Bob agree on a value x and compute y = H(x).

• Alice runs (PKA, SKA)← S.KeyGen(SPS).

• Bob runs (PKB, SKB)← S.KeyGen(SPS).

• The TTP runs (APK,ASK)← S.KeyGen(SPS).

The Deposit Phase:

- The redeem condition is set as: Signature_T∗ ∧ x|H(x) = y;
2-of-3{Signature_A, Signature_B, Signature_TTP} ∧ x|H(x) = y.

The Withdrawal Phase:
If Bob fails to perform his duty within block length t,

- The TTP broadcasts its part of multi-signature σ′
TTP on T′, i.e., σ′

TTP ←
S.Sig(T′, ASK,APK).

- Alice broadcasts x, and her part of multi-signature σ′
A on transaction T′, i.e., σ′

A ←
S.Sig(T′, SKA, PKA), and claims the coins.

- The TTP submits x and σ∗
TTP on transaction T∗, i.e., σ∗

TTP ←
S.Sig(T∗, ASK,APK), and claims the deposit coins.

If Bob completes his duty within t and Alice broadcasts her part of multi-signature σA on
transaction T, i.e., σA ← S.Sig(T, SKA, PKA),

- Bob submits x and his part of multi-signature σB on transaction T, i.e., σB ←
S.Sig(T, SKB, PKB), and claims the coins.

- The TTP submits x and σ∗
TTP on transaction T∗, i.e., σ∗

TTP ←
S.Sig(T∗, ASK,APK), and claims the deposit coins.

If Bob completes his duty but Alice refuses to broadcast her part of multi-signature,

- The TTP broadcasts its part of multi-signature σTTP on T, i.e., σTTP ←
S.Sig(T, ASK,APK),

- Bob broadcasts x and his part of multi-signature σB on T, i.e., σB ←
S.Sig(T, SKB, PKB), and claims the coins.

- The TTP submits x and σ∗
TTP on transaction T∗, i.e., σ∗

TTP ←
S.Sig(T∗, ASK,APK), and claims the deposit coins.

Figure 3.5: Escrow with Bond
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• TTP Involvement. Escrow with bond is active-on-deposit since the TTP must partici-

pate in the deposit phase, and is active-on-withdrawal since the TTP must participate

in the withdrawal phase even if no dispute occurs.

• Round Efficiency. One round of off-chain communication is required.
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Group Escrow via 2-of-3 Multisig. Denote T the transaction from Alice to Bob

and T′ the refund transaction to Alice. In the deposit phase, the redeem conditions are

set as, a) two multi-signatures generated by Alice and Bob, or b) one multi-signature

generated by Alice or Bob together with n − out − of − (2n + 1) multi-signatures gen-

erated by the TTPs, which is denoted by 2-of-3{Signature_A, Signature_B, n-out-of-

(2n+1){Signature_TTP0,..., Signature_TTP2n}}.

Let S = (S.KeyGen,S.Sig,S.Ver) be a standard signature scheme with system param-

eters SPS . The concrete construction of the group escrow protocol via 2-of-3 Multisig is

shown in Figure 3.6.

Group escrow via 2-of-3 Multisig improves the anti-DoS of escrow via 2-of-3 Multisig

with the cost of round efficiency. It is partially against the DoS attack since we spare the

power of adjudication. Under normal circumstances, only one round of off-chain com-

munication is required. However, if either Alice or Bob misbehaves, at least n rounds of

off-chain communication are required (i.e. at least n TTPs send their signature to Alice or

Bob).
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Pre-condition:

• Alice runs (PKA, SKA)← S.KeyGen(SPS).

• Bob runs (PKB, SKB)← S.KeyGen(SPS).

• TTP1 runs (APK0, ASK0)← S.KeyGen(SPS).

• ...

• TTP2n runs (APK2n, ASK2n)← S.KeyGen(SPS).

The Deposit Phase:

- The redeem condition is set as:

2-of-3{Signature_A, Signature_B, n−out-of−(2n+1){Signature_TTP0,...,
Signature_TTP2n}}.

The Withdrawal Phase:
If Bob fails to perform his duty within block length t,

- Suppose that TTPi votes for Alice, it broadcasts σ′
TTPi

on T′, i.e., σ′
TTPi

←
S.Sig(T′, ASKi, APKi).

- Alice broadcasts her part of multi-signature σ′
A on transaction T′, i.e., σ′

A ←
S.Sig(T′, SKA, PKA), and claims the coins.

If Bob completes his duty within t and Alice broadcasts her part of multi-signature σA on
transaction T, i.e., σA ← S.Sig(T, SKA, PKA),

- Bob broadcasts his part of multi-signature σB on transaction T, i.e., σB ←
S.Sig(T, SKB, PKB), and claims the coins.

If Bob completes his duty but Alice refuses to broadcast her part of multi-signature,

- Suppose that TTPi votes for Bob, it broadcasts σTTPi
on T, i.e., σTTPi

←
S.Sig(T, ASKi, APKi).

- Bob broadcasts his part of multi-signature σB on T, i.e., σB ←
S.Sig(T, SKB, PKB), and claims the coins.

Figure 3.6: Group Escrow via 2-of-3 Multisig
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Group Escrow via encrypt-and-swap. In this approach, the digital coins are sent

to an address whose secret key is shared between Alice and Bob using a 2-of-2 secret

sharing. Alice (i.e. Bob) will then initiate a n-out-of-(2n + 1) Shamir secret sharing [43]

of her key share with 2n + 1 TTPs, i.e., TTP0, ...,TTP2n. More specifically, Alice (Bob)

generates a random polynomial of degree n− 1 whose integer coefficient is the key share,

and sends Bob (Alice) 2n + 1 different points on the polynomial. Since that n points can

uniquely define a polynomial with degree n− 1, n-out-of-2n+1 TTPs can collaboratively

reconstruct the polynomial and recover the secret share. Denote T the transaction from the

joint account to Bob and T′ the transaction from the joint account to Alice. In the deposit

phase, the redeem conditions are set as signatures generated under threshold address PK,

which is denoted by {Signature_PK}.

Let S = (S.KeyGen, S.Sig, S.Ver) be the standard ECDSA signature scheme with sys-

tem parameters SPS . Let (ThreshKeykeyGen,ThreshSig) be the (2, 2)-threshold ECDSA

signature scheme for S. Let E = (E .KeyGen, E .Enc, E .Dec) be an encryption scheme. The

concrete construction of the group escrow protocol via encrypt-and-swap is shown in Fig-

ure 3.7. In the pre-condition phase, two rounds of communication are required to generate

keys, and two rounds of communication are required to exchange the encrypted key shares.

In the withdrawal phase, depending on whether there is a dispute, one or 2n rounds of

off-chain communication are required to recover the signing key. To sum up, 5 rounds of

off-chain communication if no dispute occurs, and 2n+ 4 rounds otherwise.
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Pre-condition:

1. Alice and Bob run (sA, sB;PK)← ThreshKeyGen(SPS).

2. TTP1 runs (APK0, ASK0)← S.KeyGen(SPS)...

TTP2n runs (APK2n, ASK2n)← S.KeyGen(SPS).

3. Alice shares sA over a random polynomial PA with degree n − 1 whose integer
coefficient is sA,

PA(x) = sA + a1x...+ an−1x
n−1.

4. For i = 0, ..., 2n − 1, Alice computes sA,i = PA(i), cA,i ← E .Enc(APKi, sA,i),
and generates a proof πA,i such that the decryption of cA,i is indeed a Shamir secret
sharing of sA. Alice sends cA = (cA,1,..., cA,2n−1) and πA = (πA,1,..., πA,2n−1) to
Bob.

5. Bob checks πA.

6. Bob and Alice repeat steps 5-7 with input sB.

The Deposit Phase:

- The redeem condition is set as: {Signature_PK}

The Withdrawal Phase:
If Bob fails to perform his duty,

- Alice sends cB to the TTPs.

- Suppose that TTPi votes for Alice, it runs sB,i ← E .Dec(ASKi, APKi, cB,i) and
sends sB,i to Alice.

- Alice recovers polynomial PB(x), extracts sB, and computes signature σ′
PK , i.e.,

σ′
PK ← S.Sig(sA + sB,T

′, PK). Alice broadcasts σ′
PK and claims the coins.

If Bob completes his duty within t, and Alice sends sA to Bob,

- Bob broadcasts a signature σPK on T, i.e., σPK ← S.Sig(sA + sB,T, PK).

If Bob completes his duty but Alice refuses to pay,

- Bob sends cA to the TTPs.

- Suppose that TTPi votes for Bob, it runs sA,i ← E .Dec(ASKi, APKi, cA,i) and
sends sA,i to Bob.

- Bob recovers polynomial PA(x), extracts sA, and computes signature σPK , i.e.,
σPK ← S.Sig(sA + sB,T, PK). Bob broadcasts σPK and claims the coins.

Figure 3.7: Group Escrow via encrypt-and-swap
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Chapter 4

Escrow Protocol via VES

In this chapter, we describe our proposed framework to build escrow protocols from VES.

The concrete construction of escrow via VES is described in Section 4.1. We analyze our

protocol in terms of security, privacy, and TTP involvement in Section 4.2. A detailed

comparison with the existing approaches is given in Section 4.3.

4.1 Construction

As mentioned, using verifiably encrypted signature scheme alone is insufficient for an es-

crow protocol. Specifically, if Alice claims the coins after Bob performs his duty (by

signing a new transaction which also claims the coin), Bob may not be able to claim the

coins even if he obtains Alice’s signature. We use the multi-signature mechanism and the

time-lock mechanism to solve this problem.

Denote T the transaction from Alice to Bob and T′ the refund transaction to Alice. In

the deposit phase, the redeem conditions are set as either (a) Alice and Bob publish multi-

signatures on T, denoted by {Signature_A + Signature_B}, or (b) Alice publishes a

signature on T′ after t blocks, denoted by {Signature_T′ + t}.

Let (KeyGen,AdjKeyGen, Sig,VerVESSig,VESVer,Adj) a VES scheme with validity,

unforgeability, and opacity. The concrete construction of the escrow protocol for Bitcoin is
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provided in Figure 4.1.

Pre-condition Phase:
Alice runs (PKA, SKA)← KeyGen(SP ).
Bob runs (PKB, SKB)← KeyGen(SP ).
The adjudicator runs (APK,ASK)← AdjKeyGen(SP ).
Deposit Phase:
Alice performs the following:

- Time-lock the promised coins with redeem conditions: {Signature_A +
Signature_B} or {Signature_T′+t}.

- Run σ′
A ← VESSig(T, SKA, PKA, APK) and send σ′

A along with block number t
to Bob.

Bob performs the following:

- Accept if 1← VESVer(T, σ′
A, PKA, APK).

Withdrawal Phase:
If Bob fails to perform his duty within block length t,

- Alice submits signature σT′ on transaction T′, i.e., σT′ ← Sig(T′, SKA, PKA), and
claims the coins.

If Bob completes his duty within t and Alice broadcasts her part of multi-signature σA on
transaction T, i.e., σA ← Sig(T, SKA, PKA),

- Bob broadcasts his part of multi-signature σB on transaction T, i.e., σB ←
Sig(T, SKB, PKB), and claims the coins.

If Bob completes his duty but Alice refuses to broadcast her part of multi-signature,

- Bob broadcasts his part of multi-signature σB on transaction T, i.e., σB ←
Sig(T, SKB, PKB), and sends σ′

A to the TTP.

- TTP runs σA ← Adj(m,σ′, ASK,APK) and broadcasts σA on behalf of Alice.

Figure 4.1: Escrow via VES
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4.2 Security Analysis

In the escrow protocol, the TTP is trusted that it will release Alice’s signature only if Bob

proves the accomplishment of his duty. We show below that our escrow protocol is secure,

private (internally-hiding and dispute-hiding but not externally-hiding), and is passive on

withdrawal in terms of TTP involvement. However, it does not achieve anti-DoS.

• Security against Alice. By the validity of the verifiably encrypted ECDSA, a valid

verifiably encrypted signature σ′
A on transaction T can always be reconstructed into

a full signature σ by an honest TTP. Furthermore, the time-lock mechanism prevents

Alice from claiming her coins before block number t and thus give sufficient time for

Bob to file, and for the TTP to handle, the resolution request.

• Security against Bob. By the opacity of the verifiably encrypted ECDSA, it is infea-

sible for any probabilistic polynomial-time adversary to extract the σA on T from σ′
A

without the help of the TTP.

• Security against TTP. By the unforgeability of the ECDSA and the verifiably en-

crypted ECDSA, it is infeasible for any probabilistic polynomial-time adversary to

construct σA without seeing σ′
A.

• Denial-of-Service (DoS). Our scheme does not offer anti-DoS. The TTP can simply

refuse to mediate.

• Internally-hiding. If no dispute occurs, the TTP is not involved and it will not be able

to learn if an escrow transaction has taken place.

• Partially Externally-hiding. Due to the unique format of an escrow transaction, an

external party may correctly identify an escrow transaction.

• Dispute-hiding. An external observer cannot recognize a dispute because the under-

lying verifiably encrypted ECDSA scheme is resolution-independent.
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• TTP Involvement. Our protocol is passive-on-deposit since the TTP is not involved

in the deposit phase. Our protocol is passive-on-withdrawal since the TTP is only

called upon to handle resolution requests from Bob when there is a dispute.

• Round Efficiency. One round of communication is required when Bob deviates from

the protocol. Two rounds of communication are required otherwise.

4.3 Comparison with Existing Schemes

Table 4.1 summarizes the properties of escrow protocols for cryptocurrencies. As shown

in the table, our approach achieves most of the desirable properties at reasonable costs.

Specifically, our escrow protocol is passively involved in both the deposit phase and the

withdrawal phase, internally-hiding, dispute-hiding, and relatively efficient. The main

drawback of our approach is that it is partially externally-hiding due to the 2-of-3 Multisig

structure.

Compared with our approach, escrow via 2-of-3 Multisig is more efficient in terms of

off-chain communication and computational costs, but it is less private and requires more

TTP involvement. Specifically, 2-of-3 Multisig approach is only partially externally-

hiding and partially dispute-hiding due to the 2-of-3 Multisig structure. Moreover, it is

partially active-on-withdrawal.

Escrow via threshold signature is externally hiding, but it is not internally hiding. More-

over, it requires more off-chain messages and the active participation of the TTP in the

deposit phase.

Indeed, our protocol is slightly weaker in terms of privacy compared to the encrypt-and-

swap mechanism proposed in [24]. But escrow via encrypt-and-swap requires additional

key set-up, several zero-knowledge proofs, and five off-chain messages. In contrast, our

protocol is setup-free and only requires a single DL-based zero-knowledge proof and at

most two off-chain messages, hence it is more efficient and practical.
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As mentioned, we can always enhance the resilience to DoS attacks by incorporating

bond or sharing trust among a group of TTPs. But it comes at the costs of efficiency and

TTP involvement. Compared with the 2-of-3 Multisig approach, the TTP is more heavily

involved when it incorporates bond mechanism (i.e., the TTP is actively involved in both

the deposit and the withdrawal phase). The privacy is also diminished due to the pay-to-

script-hash structure. Group escrow protocols, on the other hand, requires more off-chain

communications in the case of disputes.

ZKCP and RSA-puzzle are TTP-free and achieve almost all desirable properties. How-

ever, their application scenarios are limited. ZKCP can only exchange some sort of veri-

fiable solution that the solution provider is capable of generating a zero-knowledge proof

for a pair (y, c) such that y = SHA256(k), c = Enc(s, k) where s is a correct solution.

RSA-puzzle solver protocol is dedicated to trade RSA puzzles.
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Chapter 5

Verifiably Encrypted ECDSA

The verifiably encrypted ECDSA signature can be thought of as an encryption of a stan-

dard ECDSA signature using the twisted ElGamal encryption scheme, together with a

zero-knowledge proof that the plaintext is a valid signature. In this chapter, we present

an efficient verifiably encrypted ECDSA signature scheme. The concrete construction is

described in Section 5.1 and Section 5.2. The security analysis and efficiency analysis are

given in Section 5.3 and Section 5.4.

5.1 The Construction of Verifiably Encrypted ECDSA

Let group G be a cyclic group of order q and generators g1, g2. Define hash function

H : H(x) = SHA256(x) mod q. Let (Qx, Qy) be the coordinates of point Q ∈ G. Define

F (Q) = Qx mod q. Let S = (S.KeyGen, S.Sig, S.Ver) be the standard ECDSA signa-

ture scheme. Let E = (E .KeyGen, E .Enc, E .Dec) be the 1-bit twisted ElGamal encryption

scheme. The system parameters are defined as SP = (G, g1, g2, q,H, F ). The concrete

verifiably encrypted ECDSA scheme is defined as follows:

• KeyGen, Sig, Ver. Same as the S.KeyGen, S.Sig,S.Ver.

• AdjKeyGen(SP ). Choose t
R←− Zq and compute T = gt2. It sets ASK = t, APK =
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T .

• VESSig(m, Sig, APK). Run Sig and obtain σ = (r, s) with |s| = l. From r

get point R whose x coordinate is r. Choose β0, ..., βl−1
R←− Zq and calculate

c = E .Enc(s, APK; β0, ..., βl−1). That is, c = (ui, vi)
l−1
i=0 where {si}l−1

i=0 is the bi-

nary representation of s, ui = gsi1 g
βi
2 , vi = T βi . Generate a non-interactive zero-

knowledge proof π to show that c is the encryption of s under APK. Details of the

construction of π will be presented in Section 5.2. The verifiably encrypted signature

is set as σ′ = (R, c, π).

• VESVer(m,σ′, PK,APK). If π holds, output 1, otherwise, output 0.

• Adj(m,σ′, ASK,APK). Compute s = E .Dec(c, ASK,APK) and r = F (R).

Specifically, parse c = (ui, vi)
l−1
i=0. For each i, if ui/v

1/t
i = g1, set si = 1. Otherwise,

set si = 0. Compute s =
∑l−1

i=0 2
i · si. It returns the ECDSA signature σ = (r, s).

5.2 The Construction of π

Conceptually, π is a Σ-protocol that proves the ciphertext is indeed the encryption on an

ECDSA signature. Note that instead of encrypting the whole ECDSA signature (r, s), we

only encrypt s. Here, including R in σ′ will not affect the unforgeability of the verifiably

encrypted ECDSA signature since it is just a random group element. Our construction of π

can be formalized as:

π = PK


(s, β0, ..., βl−1) :

c = E .Enc(s, APK; β0, ..., βl−1)

∧ S.Ver(m, (r, s), PK) = 1

 .

By the concrete construction of the bit-by-bit ElGamal encryption scheme, c = E .Enc(s,

APK; β0, ..., βl−1) is equivalent to ui = gsi1 g
βi
2 , vi = T βi , si ∈ {0, 1}, where si is the i-th
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bit of s. S.Ver(m, (r, s), PK) = 1 means r = F (gh·s
−1

1 Qr·s−1
), where h = H(m). Recall

that r = F (R), the above equation holds if R = gh·s
−1

1 Qr·s−1 . Rearranging the terms, the

above equation holds if Rs = gh1Q
r. Therefore, the concrete relationship to be proven in π

is:

π = PK


(s0, ..., sl−1, β0, ..., βl−1) :

ui = gsi1 g
βi
2 ∧ vi = T βi ∧ si ∈ {0, 1}

∧ gh1Q
r = R

∑l−1
i=0 si·2

i

 .

We can further decompose π into the following proofs:

π1 = PK

 (s0, ..., sl−1, β0, ..., βl−1) :

ui = gsi1 g
βi
2 ∧ vi = T βi ∧ si ∈ {0, 1}


π2 = PK

 (s, γ) :

u
∑l−1

i=0 2
i

i = gs1g
γ
2 ∧ gh1Q

r = Rs

 ,

using witness γ =
∑l−1

i=0 βi · 2i.

π1 is essentially the Σ-protocol for commitment to m ∈ {0, 1} introduced in [25]. The

construction of Σ-protocol π1 and π2 is described in Figure 5.1 and Figure 5.2 respectively.

We prove that π1 and π2 is complete, sound and SHVZK in Appendix A and B. Using

Fiat-Shamir heuristic [21] (i.e. replacing the challenge with the hashes of the transcripts),

a non-interactive Σ-protocol π is given in Figure 5.3.
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P(g1, g2, T ; si, βi) V(g1, g2, T, ui, vi)

For i = {0, ..., l − 1}, choose ρsi , ρβi
, ρi

R←− Zq.

Compute Ai,1 = g
ρsi
1 g

ρβi
2 , Ai,2 = T ρβi ,

Ai,3 = g
siρsi
1 gρi2 , Ai,4 = T ρi .

Ai,1,Ai,2−−−−−→
Ai,3,Ai,4

x
R←− {0, 1}∗

x←−−−−
Compute zi,1 = six+ ρsi ,
zi,2 = βix+ ρβi

, zi,3 = βi(x− zi,1) + ρi
zi,1,zi,2,zi,3−−−−−−→

Accept if and only if:
Ai,1u

x
i = g

zi,1
1 g

zi,2
2 ,

Ai,2v
x
i = T zi,2 ,

Ai,3u
x−zi,1
i = g

zi,3
2 ,

Ai,4v
x−zi,1
i = T zi,3 .

Figure 5.1: The construction of π1

5.3 Security Analysis

Theorem 1. The verifiably encrypted ECDSA signature scheme is secure against existen-

tial forgery if (a) the ECDSA signature scheme S is existentially unforgeable, and (b) the

soundness and SHVZK of π hold.

Proof. Let A be a verifiably encrypted ECDSA forger algorithm. A makes at most qS

queries to OVESSig, and finally, outputs a verifiably encrypted signature σ′∗ on message m∗.

We construct a forger algorithm F for the underlying ECDSA scheme. F is given the

public key PK, and has access to the ECDSA signing oracle. F simulates the challenger

and interacts with A as follows:

• Setup. F runs AdjKeyGen and generates an adjudicator’s key pair (APK,ASK).

A is given (APK,ASK,PK).
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P(g1, g2, R; s, γ) V(g1, g2, U,R,Q, h, r)

Choose ρs, ργ
R←− Zq.

Compute Y1 = gρs1 g
ργ
2 , Y2 = Rρs .

Y1,Y2−−−−→

Choose x
R←− {0, 1}∗

x←−−−−
Compute z1 = ρs − xs, z2 = ργ − xγ.

z1,z2−−−−→
Accept if and only if
Y1 = Uxgz11 gz22 ,
Y2 = (gh1Q

r)xRz1 .

Figure 5.2: The construction of π2

Generation of π. P performs the following:

1. For i = {0, ..., l − 1}, choose ρsi , ρβi
, ρi

R←− Zq and compute Ai,1 = g
ρsi
1 g

ρβi
2 , Ai,2 =

T ρβi , Ai,3 = g
siρsi
1 gρi2 , Ai,4 = T ρi .

2. Choose ρk, ργ
R←− Zq and computes Y1 = gρs1 g

ργ
2 , Y2 = Rρs .

3. Compute the hash value of the transcripts, i.e., x = H(Y1||Y2||A0,1||...||A(l−1),4).

4. For i = {0, ..., l−1}, compute zi,1 = six+ρsi , zi,2 = βix+ρβi
, zi,3 = βi(x−zi,1)+ρi.

5. Compute γ =
∑l−1

i=0 βi · 2i, z1 = ρk − xk, z2 = ργ − xγ.

6. Parse π as (zi,1, zi,2, zi,3, i = {0, ..., l − 1}, z1, z2) and send it to V .

Verification of π. Upon receiving π from P , V performs the following:

1. For i = {0, ..., l − 1}, compute Ai,1 =
g
zi,1
1 g

zi,2
2

ux
i

, Ai,2 = T zi,2

vxi
, Ai,3 =

g
zi,3
2

u
x−zi,1
i

, Ai,4 =

T zi,3

v
x−zi,1
i

.

2. Compute Y1 = Uxgz11 gz22 , Y2 = (gh1Q
r)xRz1 .

3. Finally, V returns Accept if x = H(Y1||Y2||A0,1||A0,2...||A(l−1),4) holds.

Figure 5.3: The construction of π
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• OVESig Query. A requests a verifiably encrypted signature on m. F queries its

signing oracle with m and obtains σ = (r, s). Let R = (r, y) where y is computed

by plugging r into the ECDSA elliptic curve. F computes c = E .Enc(s, APK) and

generates a proof π. F gives σ′ = (R, c, π) to A.

• Output. Finally,A outputs a valid verifiably encrypted signature σ′∗ = (R∗, c∗, π∗)

on message m∗. F computes s∗ = E .Dec(σ′∗, ASK) and r∗ = F (R∗). By the

soundness of π∗, we have Rs∗ = gh
∗
Qr∗ . That is, R∗ = gh

∗s∗−1
Qr∗s∗−1 . Applying F

function to both sides of the equation, we have F (R∗) = r∗ = F (gh
∗s∗−1

Qr∗s∗−1)).

Define σ∗ = (r∗, s∗). It is easy to see that Ver(m∗, σ∗, PK) = 1. Finally, F outputs

(σ∗,m∗) and wins its own game.

Theorem 2. The verifiably encrypted ECDSA signature scheme is secure against extraction

if (a) the soundness and SHVZK of π hold; (b) the unforgeability of the ECDSA signature

scheme S holds; and (c) the twisted ElGamal encryption scheme E is IND-CPA secure.

Proof. Let B be verifiably encrypted signature extractor algorithm. B makes at total qS

queries to OVESSig, qA queries to OAdj, and finally, outputs a valid ECDSA signature σ∗

on message m∗. Note that B must have queried OVESSig with m∗, otherwise B breaks

the unforgeability of ECDSA. Let Pri[Succ] indicate the success probability of B wins in

Gamei. The proof for opacity is described as below:

• Game0 is the same as the opacity model defined in Section 3.7.

• Game1 is the same as the opacity model defined in Section 3.7 but only B aborts

if m∗ ̸= mi, i
R←− {1, ..., qS}. As mentioned, B must have queried OVESSig with m∗

before outputting σ∗. The probability that m∗ = mi is 1
qS

. Therefore,

Pr1[Succ] =
1

qS
× Pr0[Succ]
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• Game2 is derived by modifying the responses to the OAdj queries. For any adjudi-

cation query on (σ′,m), where σ′ = (R, c, π), run the soundness extractor to obtain

s, compute r = F (R), and finally return σ = (r, s). By the soundness of π, Game1

and Game2 are indistinguishable. Let Sound denote the event breaking the sound-

ness of proof π, we have:

|Pr2[Succ]− Pr1[Succ]| ≤ Pr[Sound]

• Game3 is derived by modifying responses to the i-th OVESSig query. Chooses ki
R←−

Zq, compute Ri = gki , wi = E .Enc(0, APK), and generate a proof πi using the zero-

knowledge simulator. By the SHVZK of π, πi is indistinguishable from a real proof.

For the i-th query to OVESSig, response with σ′
i = (Ri, ci, πi).

We claim that |Pr3[Succ] − Pr2[Succ] is also negligible. Let B′ attacking the IND-

CPA secure encryption scheme E . B′ runs B as follows: B′ sets m0 = σi,m1 = 0 as

the challenge messages. Upon receiving the challenge ciphertext c∗, B′ forwards

σ′
i = (Ri, c

∗, πi) to B as the response to the i-th OVESSig query. Here, if c∗ =

Enc(APK, σ), the view of B is the same as in Game2. While if c∗ = Enc(APK, 0),

the view of B is the same as in Game3. Finally, if B outputs a valid signature on m∗

such that mi = m∗, B′ outputs b = 0. Otherwise, b = 1. Let ZK denote the event

breaking the SHVZK of proof π and IND denote the event breaking the IND-CPA

security of ECDSA, we have :

|Pr3[Succ]− Pr2[Succ]| ≤ |Pr[ZK]|+ |Pr[IND]|

Moreover, given that σ∗ is independent of m0,m1, by the unforgeability of ECDSA,

Pr3[Succ] is also negligible.
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To sum up, we have:

Pr1[Succ] ≤ |Pr1[Succ]− Pr2[Succ]|+ |Pr2[Succ]

−Pr3[Succ]|+ |Pr3[Succ]|

≤ |Pr1[Sound|+ |Pr[ZK]|+ |Pr[IND]|

+|Pr3[Succ]|

Since that |Pr[Sound]|, |Pr[ZK]|, |Pr[IND]|, and |Pr3[Succ]| are negligible, we have

Pr1[Succ] is negligible. As a result, Pr0[Succ] = qS · Pr1[Succ] is negligible. The veri-

fiably encrypted ECDSA scheme is secure against extraction.

5.4 Efficiency Analysis

Let G denote an element in G and Z denote an element in Zq. By E we mean an expo-

nentiation operation. Table 5.1 summarizes the costs of the verifiably encrypted ECDSA

scheme in terms of space complexity, time complexity, and estimated runtime based on

the benchmark of E. For time complexity, we only consider the most expensive opera-

tion, namely, exponentiation operation over G. Using Secp256k1 parameters, which offers

security at 256-bit level, the average runtime of an exponentiation operation is 1.983 ms

(MacBook Pro 2017 with Intel Core i5-7267U CPU and 16 GB of RAM). The estimated

runtime is calculated by multiplying the maximum number of exponentiation operations

and the average runtime of a single exponentiation operation.

Table 5.1: Efficiency of the Verifiably Encrypted ECDSA[54]
Space Complexity Time Complexity Estimated Runtime

Sig 2Z 1E 1.983ms
Ver 1Z 2E 3.966ms

VESSig1 513G 512E 1015.296ms

VESSig2 777Z 1539E 3051.837ms
VESVer 1Z 2310E 4580.730ms
Adj 2Z 256E 507.648ms
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5.5 Summary

This chapter introduces a practical verifiably encrypted ECDSA signature scheme based on

Σ-protocol, which gives rise to a practical escrow protocol for ECDSA-based cryptocur-

rencies. The performance of the escrow protocol for Bitcoin resulting from our verifiably

encrypted ECDSA signature scheme is analyzed and compared in Chapter 7. However, the

main drawback of our scheme is its high bandwidth requirement for off-chain communica-

tion. This is due to its use of a rather inefficient bit-by-bit encryption and its corresponding

zero-knowledge proof in the construction of VES for ECDSA. Furthermore, it is only ap-

plicable to cryptocurrencies adopting ECDSA to authorise its transaction (such as Bitcoin).

As an improvement, Chapter 6 introduces a generic construction of verifiably encrypted

signature scheme covering both ECDSA and its variants (which we refer to as EdDAS-like

signatures) with significantly fewer bandwidth costs.
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Chapter 6

Verifiably Encrypted EdDSA-like

Signature Scheme

We define EdDSA-like signature, an abstraction of many variants of ECDSA, and describe

verifiably encrypted EdDSA-like signature. Similar to the verifiably encrypted ECDSA,

the verifiably encrypted EdDSA-like signature scheme can be thought of as an encryption

of a standard EdDSA-like signature using the twisted ElGamal encryption scheme, together

with a zero-knowledge proof that the plaintext is a valid signature. We describe EdDSA-

like signature in Section 6.1. Section 6.2 and Section 6.3 presents the concrete construction

of the verifiably encrypted EdDSA-like signature scheme. The security analysis and effi-

ciency analysis are given in Section 6.4 and Section 6.5, respectively. Looking ahead, our

construction uses an improved way to encrypt signature component s, and a more efficient

zero-knowledge proof. Thus, the space complexity of the verifiably encrypted EdDSA-like

signature is better than the verifiably encrypted ECDSA presented in the last chapter. Since

ECDSA is also an EdDSA-like signature, the result presented in this chapter can be used to

improve the space complexity of our escrow protocol for Bitcoin described in Chapter 4.
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6.1 EdDSA-like Signature

Definition 10. (EdDSA-like signature scheme). Let G be a cyclic group of order q. Sup-

pose there is a DL-based signature scheme (KeyGen, Sig,Ver) on group G, i.e., SP ←

KeyGen(1λ), σ ← Sig(m,SK, PK; k), 0/1← Ver(m, c, PK, SK). We say such a scheme

EdDSA-like if

1. σ = (σ1, σ2) ∧ σ2 ∈ Zq.

2. There exists probabilistic polynomial algorithms Sig1, Sig2 such that σ1 ← Sig1([m]; k),

σ2 ← Sig2 (SK,m; k).

3. σ can be verified in the form of A = Bσ2 where (A,B) = D(SP, PK, σ1,m) for

some deterministic polynomial-time algorithm D. We call D the base generation

algorithm for the EdDSA-like signature.

EdDSA-like signature schemes include, but are not limited to, EdDSA, Schnorr signa-

ture, ECDSA, ECGDSA, GOST, and SM2. It is obvious that EdDSA, and Schnorr sig-

nature scheme are EdDSA-like. We show that ECDSA is also EdDSA-like. Given an

EdDSA-like signature σ = (r, s), σ can be verified by recovering group element R from its

x-coordinate r and checking if gh1Q
r = Rs. Hence, ECDSA is also EdDSA-like. Similarly,

ECGDSA, GOST, and SM2 are EdDSA-like.

6.2 The Construction of Verifiably Encrypted EdDSA-like

Signature

Let E = (E .KeyGen, E .Enc, E .Dec) denote twisted ElGamal encryption (with 32-bit mes-

sage space ) with system parameters SPE . Let S = (S.KeyGen, S.Sig, S.Ver) be an

EdDSA-like signature scheme with system parameters SPS and D the base generation al-

gorithm for S. The system parameter SP of the verifiably encrypted signature scheme is
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defined as SP = {SPS , SPE}. A generic two-phase verifiably encrypted EdDSA-like sig-

nature scheme (KeyGen, AdjKeyGen, Sig, Ver, VESSig,VESVer,Adj) is defined as below.

• KeyGen, Sig,Ver. Same as S.KeyGen,S.Sig,S.Ver.

• AdjKeyGen(SP ). Run (T, t)← E .KeyGen(SPE). Let APK = T,ASK = t.

• VESSig(m,SK,PK,APK). Run (σ1, σ2) ← S.Sig(m, SKS , PK; k). Assume

|σ2| = n. Let l = n/32. Choose β0, ..., βl−1 ∈ Zq and compute c ← E .Enc

(σ2, T ; β0, ..., βl−1). That is, c = (ui, vi)
l−1
i=0 where σ2 =

∑l−1
i=0 σ2,i · 232·i, σ2,i ∈

{0, ..., 232 − 1}, ui = g
σ2,i

1 gβi
2 , vi = T βi . Generate a non-interactive zero-knowledge

proof π to show that c is the encryption of σ2 under APK. Details of the construc-

tion of π will be presented in Section 6.3. The verifiably encrypted signature is set

as σ′ = (σ1, c, π).

• VESVer(m,σ′, PK,APK). Output 1 if the validity of π holds.

• Adj(m,σ′, ASK,APK). Run σ2 ← E .Dec(c, APK, ASK) and output σ = (σ1, σ2).

6.3 The Construction of π

Conceptually, π is a combination of Σ-protocol and Bulletproofs that proves the ciphertext

is indeed the encryption on an EdDSA-like signature. Note that instead of encrypting the

whole EdDSA-like signature (σ1, σ2), we only encrypt σ2. Our construction of π can be

formalized as:

π = PK


(σ2, β0, ..., βl−1) :

c = E .Enc(σ2, APK; β0, ..., βl−1)

∧ S.Ver(m, (σ1, σ2), PK) = 1

 .

By the concrete construction of the twisted ElGamal encryption scheme, c = E .Enc(s,

APK; β0, ..., βl−1) is equivalent to ui = g
σ2,i

1 gβi
2 , vi = T βi , σ2,i ∈ {0, ..., 232 − 1}, where
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σ2 =
∑l−1

i=0 σ2,i · 232·i. And S.Ver(m, (σ1, σ2), PK) = 1 is equivalent to A = Bσ2 , where

A,B = D(SP, PK, σ1,m). Therefore, the concrete relationship to be proven in π is:

π = PK


(σ2,0, ..., σ2,l−1, β0, ..., βl−1) :

ui = g
σ2,i

1 gβi
2 ∧ σ2,i ∈ [0, 232 − 1]

∧ v2 = T βi ∧ A = B
∑l−1

i=0 σ2,i·232·i

 .

We can further decompose π into the following proofs:

πΛ = PK

 (σ2,0, ..., σ2,l−1, β0, ..., βl−1) :

ui = g
σ2,i

1 gβi
2 ∧ σ2,i ∈ [0, 232 − 1]}



πΣ = PK

 (σ2, γ) :∏l−1
i=0 u

232·i
i = gσ2

1 gγ2 ∧
∏l−1

i=0 v
232·i
i = T γ ∧ A = Bσ2

 ,

using witness γ =
∑l−1

i=0 βi · 2i.

We realize the verifiably encrypted signature scheme by invoking aggregated Bullet-

proof for Pedersen commitment to generate a proof πΛ and Σ-protocol to generate a proof

πΣ [25]. The construction of proof πΣ and πΛ is shown in Figure 6.1 and Figure 6.2. For

the security proof of πΛ, please refer to [10]. We omit the security proof of πΣ, which is

essentially the same as π2 provided in Appendix B. Using Fiat-Shamir heuristic [21] (i.e.

replacing the challenge with the hashes of the transcripts), a non-interactive Σ-protocol π

is given in Figure 6.3.

69



P(g1, g2, {ui}l−1
i=0; {σ2,i}

l−1
i=0, γ) V(g1, g2, {ui}l−1

i=0)

Let h,k two sets of independent generators in Gn.

Choose α, ρ
R←− Zq, ρL, ρR

R←− Zn
q

Set σL ∈ {0, 1}n s.t. ⟨σL[32·j:32·(j+1)−1],2
n⟩ = σ2,i

for j = {0, ..., l − 1}, and σR = σL − 1n.
Compute A = gα2 h

σLkσR , S = gρ2h
ρLkρR .

A,S−−−−→

y, z
R←− Zq

y,z←−−−−
Define polynomials l(X), r(X), t(X) as
l(X) = (σL − z · 1n) + ρL ·X,
r(X) = yn ◦ (σR + z · 1n + ρR ·X)+∑l−1

j=0 z
2+j · (032·j ||232||032·(l−j−1)),

Define t(x) the inner product of l(X), r(X) as
t(X) = ⟨l(X), r(X)⟩ = t0 + t1X + t2X

2,
(i.e., t0 = σ2,0 · z2 + σ2,1 · z3...+ σ2,l−1 · 2l+1 + δ(y, z),

where δ(y, z) = (z − z2)⟨1n,yn⟩ −
∑l−1

j=0 z
j+3 · ⟨132,232⟩)

Choose αi
R←− Zq, τ1, τ2

R←− Zq

Compute T1 = gt11 gτ12 , T2 = gt21 gτ22 .
T1,T2−−−−→

x
R←− Zq

x←−−−−

Set k′ = (k1, k
y−1

2 , ..., ky
−n+1

n ).

Compute l = l(x), r = r(x), t̂ = ⟨l, r⟩,
τ = τ2 · x2 + τ1 · x+

∑l−1
j=0 βj · zj+2,

µ = α+ ρ · x,
P = A · Sx · h−z · k′z·yn ∏l−1

j=0 k
′zj+2·232

[32·j:32·(j+1)−1].

Run Bünz’s inner product argument on(h,k′, P · g−µ
2 , t̂; l, r)

and obtain a proofπipa1.

Set π = (A,S, T, t̂x, τ, µ, πipa).
π−−−−→

Compute
y = H(A,S),
z = H(A,S, y),
x = H(A,S, y, z, T1, T2).
Define u = (u0, ..., ul−1).
Accept if
πipa holds,
and gt̂1g

τ
2 = uz2·zlg

δ(y,z)
1 T x

1 T
x2

2 .

Figure 6.1: The construction of πΛ

70



P({ui}l−1
i=0, {vi}l−1

i=0, g1, g2, T, B;σ2, γ) V(g1, g2, T, A,B)

Choose ρσ2 , ργ
R←− Zq.

Compute Y1 = g
ρσ2
1 g

ργ
2 ,

Y2 = T ργ ,
Y3 = Bρσ2 .

Y1,Y2,Y3−−−−→

x
R←− {0, 1}∗

x←−−−−
Compute
z1 = ρσ2 − xσ2,
z2 = ργ − xγ.

z1,z2−−−−→
Compute
U =

∏l−1
i=0 u

232·i
i , V =

∏l−1
i=0 v

232·i
i .

Accept if
Y1 = Uxgz11 gz22 , Y2 = V xT z2 ,
Y3 = AxBz1

Figure 6.2: The construction of πΣ
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Construction of π. P performs the following:

1. Let h,k two sets of independent generators in Gn. Choose α, ρ R←− Zq and ρL, ρR
R←−

Zn
q . Let σL ∈ {0, 1}n s.t.⟨σL[32·j:32·(j+1)−1],2

n⟩ = σ2,j for j = {0, ..., l − 1}. Set
σR = σL − 1n. Compute A = gα2h

σLkσR and S = gρ2h
ρLkρR .

2. Computes y = H(A, S), z = H(A, S, y).

3. Define l(X), r(X), t(X) as

l(X) = (σL − z · 1n) + ρL ·X ,

r(X) = yn ◦ (σR + z · 1n + ρR ·X) +
∑l−1

j=0 z
2+j · (032·j||232||032·(l−j−1)),

t(X) = ⟨l(X), r(X)⟩ = t0 + t1X + t2X
2,

i.e., t0 = σ2,0 · z2 + σ2,1 · z3...+ σ2,l−1 · 2l+1 + δ(y, z), δ(y, z) = (z − z2)⟨1n,yn⟩ −∑l−1
j=0 z

j+3 · ⟨132,232⟩

4. Choose τ1, τ2
R←− Zq, and compute T1 = gt11 g

τ1
2 , T2 = gt21 g

τ2
2 .

5. Choose ρσ2 , ργ
R←− Zq. Compute Y1 = g

ρσ2
1 g

ργ
2 , Y2 = T ργ , Y3 = Bρσ2 .

6. Compute x = H(A, S, y, z, T1, T2, Y1, Y2, Y3).

7. Define k′ = (k1, k
y−1

2 , ..., ky−n+1

n ). Compute l = l(x), r = r(x), t̂ = ⟨l, r⟩,
τ = τ2 · x2+ τ1 · x +

∑l−1
j=0 βj+1 · zj+2, µ = α + ρ · x, and P = A · Sx · h−z ·

k′z·yn ∏l−1
j=0 k

′zj+2·232

[32·j:32·(j+1)−1].

8. Run Bünz’s inner product argument on (h,k′, P · g−µ
2 , t̂; l, r) and obtain a proof πipa.

9. Output π = (A, S, T1, T2, Y1, Y2, Y3, t̂, τ, µ, πipa).

Veification of π. Upon receiving π from P , V performs the following:

1. Verify πipa.

2. Compute y = H(A, S), z = H(A, S, y), and x = H(A, S, y, z, T1, T2, Y1, Y2, Y3).

3. Define u = (u0, ..., ul−1).

4. Compute U =
∏l−1

i=0 u
232·i
i , V =

∏l−1
i=0 v

232·i
i . Finally, output Accept if Y1 = Uxgz11 gz22 ,

Y2 = V xT z2 , Y3 = AxBz1 , and gt̂1g
τ
2 = uz2·zlg

δ(y,z)
1 T x

1 T
x2

2 ,

Figure 6.3: The Construction of π
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6.4 Security Analysis

Theorem 3. The verifiably encrypted EdDSA-like signature scheme is secure against exis-

tential forgery if (a) the EdDSA-like signature scheme S is existentially unforgeable, and

(b) the soundness and SHVZK of π hold.

Proof. Let A be a verifiably encrypted EdDSA-like signature forger algorithm. A makes

at most qS queries to OVESSig, and finally, outputs a verifiably encrypted signature σ′∗ on

message m∗. We construct a forger algorithm F for the underlying EdDSA-like scheme.

Given the public key PK, F simulates the challenger and interacts with A as follows:

• Setup. F runs AdjKeyGen and generates an adjudicator’s key pair (APK,ASK).

A is given (APK,ASK,PK).

• OVESSig Query. A requests a verifiably encrypted signature on m. F picks a ran-

dom σ1, runs soundness extractor to obtain σ2, and generates a proof π using zero-

knowledge simulator. F gives σ′ = (σ1, c, π) to A.

• Output. Finally, A outputs a valid verifiably encrypted signature σ′∗ = (σ∗
1, c

∗, π∗)

on message m∗. F computes σ∗
2 = E .Dec(σ′∗, ASK). Set σ∗ = (σ∗

1, σ
∗
2). Finally, F

outputs (σ∗,m∗) and wins its own game.

Theorem 4. The verifiably encrypted EdDSA-like signature scheme is secure against ex-

traction if (a) the soundness and SHVZK of π hold; (b) the unforgeability of the EdDSA-like

signature scheme S holds; and (c) the twisted ElGamal encryption scheme E is IND-CPA

secure.

Proof. Let B be verifiably encrypted signature extractor algorithm. B makes at total qS

queries to OVESSig, qA queries to OAdj, and outputs a valid EdDSA-like signature σ∗ on
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message m∗. Note that B must have queried OVESSig with m∗, otherwise B breaks the

unforgeability of transformed EdDSA-like signature scheme. Let Pri[Succ] indicate the

success probability of B wins in Gamei. The proof for opacity is described as below:

• Game0 is the same as the opacity model defined in Section 3.7.

• Game1 is the same as the opacity model defined in Section 3.7 but only B aborts

if m∗ ̸= mi, i
R←− {1, ..., qS}. As mentioned, B must have queried OVESSig with m∗

before outputting σ∗. The probability that m∗ = mi is 1
qS

. Therefore,

Pr1[Succ] =
1

qS
× Pr0[Succ]

• Game2 is derived by modifying the responses to the OAdj queries. For any adjudi-

cation query on (σ′,m) where σ′ = (σ1, c, π), run the soundness extractor to obtain

σ2. Finally, return σ = (σ1, σ2). Let Sound denote the event breaking the soundness

of proof π, we have:

|Pr2[Succ]− Pr1[Succ]| ≤ Pr[Sound]

• Game3 is derived by modifying responses to the i-th OVESSig query. Randomly

choose σ1,i. Compute ci = E .Enc(0, APK) and generate a proof πi using the zero-

knowledge simulator. By the SHVZK of πi, πi is indistinguishable from a real proof.

For the i-th query to OVESSig, return σ′
i = (σ1,i, ci, πi).

We claim that |Pr3[Succ] − Pr2[Succ]| is also negligible. Let B′ attacking the IND-

CPA secure encryption scheme E . B′ runs B as follows: B′ sets m0 = σ2,i,m1 = 0

as the challenge messages. Upon receiving the challenge ciphertext c∗, B′ forwards

σ′
i = (σ1,i, c

∗, πi) to B as the response to the i-th OVESSig query. Here, if c∗ =

Enc(APK, σ), the view of B is the same as in Game2. While if c∗ = Enc(APK, 0),

the view of B is the same as in Game3. Finally, if B outputs a valid signature σ∗ on
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m∗ such that mi = m∗, B′ outputs b = 0. Otherwise, output b = 1. Let ZK denote

the event breaking the SHVZK of proof π and IND denote the event breaking the

IND-CPA of E , we have

|Pr3[Succ]− Pr2[Succ]| ≤ Pr[ZK] + Pr[IND]

Moreover, by the unforgeability of EdDSA-like signature, Pr3[Succ] is also negligi-

ble.

To sum up, we have:

Pr1[Succ] ≤ |Pr1[Succ]− Pr2[Succ]|+ |Pr2[Succ]

−Pr3[Succ]|+ |Pr3[Succ]|

≤ Pr1[Sound] + Pr[ZK] + Pr[IND]

+Pr3[Succ]

Since that Pr[Sound], Pr[ZK], Pr[IND], and Pr3[Succ] are negligible, we have Pr1[Succ]

is negligible. As a result, Pr0[Succ] = qS ·Pr1[Succ] is negligible. The verifiably encrypted

EdDSA-like signature scheme is secure against extraction.

6.5 Efficiency Analysis

Suppose that |σ2| = n. Let G denote an element in G and Z denote an element in Zq. By

E we mean an exponentiation operation. Table 6.1 summarizes the costs of the verifiably

encrypted EdDSA-like signature scheme in terms of space complexity, time complexity,

and estimated runtime based on the benchmark of E. For time complexity, we only con-

sider the most expensive operation, namely, exponentiation operation over G. The space

complexity and time complexity of the scheme are shown in Table 6.1.
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Table 6.1: Efficiency of the Verifiably Encrypted EdDSA-like Signature Scheme
Space Complexity Time Complexity

Sig 2Z 1E
Ver 1Z 2E

VESSig (2log2(n) +
n
16

+ 4)G+ 7Z+ 1G/Z (12n+ 3n
32

+ 12)E

VESVer 1Z ( 65
32

n+ 2log2(n) + 13)E

Adj 1Z 28E

6.6 Summary

This chapter introduces an efficient verifiably encrypted EdDSA-like signature scheme

based on Σ-protocol and Bulletproofs for Pedersen commitment. For the case of ECDSA,

the bandwidth consumption of our verifiably encrypted EdDSA-like signature scheme are

29 times more efficient compared with the verifiably encrypted ECDSA signature scheme

in the previous chapter. The performance of the escrow protocol for Bitcoin resulting from

our verifiably encrypted EdDSA-like signature scheme is analyzed in Chapter 7.

76



Chapter 7

Performance

Overall, an escrow protocol for cryptocurrencies can be divided into two phases, namely,

the on-chain phase and the off-chain phase. Taking Bitcoin as an example, for the on-chain

phase, a Bitcoin lock transaction and a Bitcoin unlock transaction are conducted. In the

off-chain phase, Alice generates a verifiably encrypted ECDSA signature σ′
A = (c, π, r) on

transaction T and sends it to Bob. Bob verifies σ′
A. In the withdrawal phase, if Bob performs

his duties but Alice refuses to publish her part of multi-signature on T, Bob forwards σ′
A to

the adjudicator, who will construct the signature σA on T on behalf of Alice.

In this chapter, we evaluate the performance of our escrow protocol on Bitcoin. In

particular, we focus on the performance of the on-chain phase in Section 7.1. In Section

7.2, we compare the off-chain performance of the escrow protocols based on our verifiably

encrypted signature schemes presented in Chapter 5 and Chapter 6.

7.1 On-chain Phase

As mentioned, simply a lock transaction and an unlock transaction are conducted on the

chain. The on-chain script of the escrow protocol for Bitcoin is shown in Table 7.1.

We evaluate the on-chain performance in Testnet, an alternative Bitcoin blockchain to

be used for testing. The experiment results are shown in Table 7.2. As shown in the table,
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Table 7.1: The Script of the Lock and Unlock Transactions of Our Escrow Protocol for
Bitcoin

Bitcoin Lock Script P2SH Script

OP_IF OP_HASH160
OP_2 script hash

{{PK_A}} OP_ EQUAL
{{PK_B}}

Bitcoin Unlock Script (App 1)
OP_2

OP_ CHECKMULTISIG OP_ 0
OP_ ELSE {{signature_A}}

{{blocknum t}} {{signature_B}}
OP_ CHECKLOCKTIMEVERIFY OP_1

OP_ DROP
Bitcoin Unlock Script (App 2)

{{PK_A}}
OP_ CHECKSIG {{signature_A}}

OP_ENDIF OP_ 0

Table 7.2: Performance of the On-Chain Phase
Lock Transaction (6 confirmation) Unlock Transaction (6 confirmation)

Time Size Fee Time Size Fee
≈ 70 min ≈ 220 B 0.0001 BTC ≈ 70 min ≈ 400 B 0.0002 BTC

after the release of each transaction, the 1st confirmation reaches in around 8 minutes,

and the 6th confirmation arrives in 70 minutes on average. Indeed, the script size of our

protocol is 21% (i.e. 78 bytes ) larger than a standard P2SH Multisig script. But still, the

confirmation time is about the same as a standard Bitcoin transaction. In short, our escrow

protocol for Bitcoin takes approximately 140 minutes to complete a single exchange. This

is about two times to that of a standard transaction, and is the same as the baseline solution

relying on the trusted platform in which Alice transfers her coins to the platform first, and

the platform releases the fund to either Alice and Bob later. The concrete transactions as a

result of our protocol are given in Figure 7.1 and Figure 7.2.

78



Lock Transaction:
Tx: 935033c7e588315f5a7a3deafc6984ed8 3630fdacc81a0b4345bee4
cf86cf0f5
Block: 541377 Size: 223 bytes
Speed: immediate mine in next block
First confirmation: 6 min
Sixth confirmation: 66 min

Figure 7.1: An Escrow Lock Transaction
Unlock Transaction:
Unlock TX (Only use Alice signature after block 541380)
Tx: dd15f268f4f67123d3c1a50756db0a5ee
857727407c1e9eacf6e7e30c0eb2f30
Block: 541381 Size: 372 bytes
Speed: immediate mine in next block
First confirmation: 24 min
Sixth confirmation: 69 min

Figure 7.2: An Escrow Unlock Transaction

7.2 Off-chain Phase

The efficiency of the off-chain phase depends mainly on the VES. In particular, when no

party or Bob deviates from the protocol, simply a VES signature is generated and verified.

An additional adjudication is required if Alice deviates from the protocol.

In Chapter 5 and Chapter 6, we introduce two VES schemes for ECDSA. One is ded-

icated to ECDSA. The other applies all EdDSA-like signature schemes. We evaluate their

performance on Linux DESKTOP-IDMG9KA 4.4.0-19041-Microsoft. The experiment re-

sults are shown in Table 7.3.

Escrow via verifiably encrypted ECDSA takes 4262 ms and 40.63 KB when no par-

ty/Bob deviates from the protocol, and 4505 ms and 57.16 KB when Alice deviates from

the protocol.

Escrow via verifiably encrypted EdDSA-like, on the other hand, takes 265 ms and 1.5

KB when no party/Bob deviates from the protocol, and 306 ms and 2 KB when Alice

deviates from the protocol.
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By comparison, the bandwidth consumption of the escrow protocols resulting from

verifiably encrypted ECDSA is around 27 times larger than that of the verifiably encrypted

EdDSA-like. However, the latter requires the TTP to locally store a check-up table of size

O(216).
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Chapter 8

Conclusion

8.1 Conclusion

In this thesis, we develop the framework to construct escrow protocol via VES. To realize

our framework, we propose an efficient verifiably encrypted ECDSA scheme and prove its

security under an enhanced security model. Furthermore, we develop the framework to

categorize EdDSA-like signature, which includes a set of variants of ECDSA, e.g. EdDSA

and Schnorr signature, and managed to develop a generic VES construction for all EdDSA-

like signature schemes. The resulting verifiably encrypted EdDSA-like signature scheme

yields an escrow protocol for all popular cryptocurrencies. Finally, we conduct thorough

complexity analysis of our escrow protocols and evaluate the feasibility on Bitcoin mainnet.
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8.2 Future Work

Replacing (Twisted) ElGamal Encryption Scheme. In our verifiably encrypted EdDSA-

like signature scheme, σ2 is encrypted by every 32-bit. In the case of ECDSA where

|σ2|=256, a total 8 pairs of ciphertexts and range proofs are needed. We are currently

thinking to replace the ElGamal encryption scheme with the CL encryption scheme [13]

to improve communication and computation efficiency. CL encryption scheme is a lin-

early homomorphic scheme whose message space is the whole set of Zq. Hence σ2 can be

encrypted with a single CL ciphertext and no additional range proof is required.

Payment Channel Network with Atomicity. Payment Channel Network (PCN) [37] is

introduced to mitigate the scalability issue in cryptocurrencies. The main idea is to establish

an off-chain linkage and enable multiple transactions through a single on-chain transaction.

However, same as the standard cryptocurrency transaction, it lacks an atomicity guarantee

(i.e. both or none of the payer and payee receive goods/digital coins). We are currently

thinking to use verifiably encrypted EdDSA-like signature schemes or adaptor signature

schemes [20] to enforce fairness in PCN.
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Appendix A

Security Proof of Σ-protocol π1

We now prove that Σ- protocol π1 is complete, sound, and SHVZK.

• Completeness. By ui = gsi1 g
βi
2 , vi = T βi , and si ∈ {0, 1}, it is easy to verify

that Ai,1u
x
i = g

ρsi
1 g

ρβi
2 (gsi1 g

βi
2 )x =gzi,11 g

zi,2
2 , Ai,2v

x
i = T ρβiT βix = T zi,2 , Ai,3u

x−zi,1
i =

g
(1−si)six
1 g

zi,3
2 = g

zi,3
2 , Ai,4v

x−zi,1
i = T βi(x−zi,1)+ρi = T zi,3 . Hence, Σ-protocol π1 is

complete.

• Soundness. Let zi,1, zi,2, zi,3 be the response to challenge x, and z′i,1, z
′
i,2, z

′
i,3 be the

response to challenge x′. Combining the first and second verification equations of the

transcripts, we have (ux−x′

i , vx−x′

i ) = (g
zi,1−z′i,1
1 g

zi,2−z′i,2
2 , T zi,2−z′i,2). Defining si =

zi,1−z′i,1
x−x′ and βi =

zi,2−z′i,2
x−x′ , we have ui = gsi1 g

βi
2 , vi = T βi . Combining the third and

fourth verification equations of the transcripts, we have (u
x−x′−(zi,1−z′i,1)

i , v
x−x′−(zi,1−z′i,1)

i )

= (g
zi,3−z′i,3
2 , T zi,3−z′i,3). Since si(x− x′) = zi,1 − z′i,1, ui = gsi1 g

βi
2 , and vi = T βi , we

have (u
x−x′−(zi,1−z′i,1)

i , v
x−x′−(zi,1−z′i,1)

i ) = (u
(1−si)(x−x′)
i , v

(1−si)(x−x′)
i ) = (g

si(1−si)(x−x′)
1

g
βi(1−si)(x−x′)
2 , T βi(1−si)(x−x′)). In other words, gsi(1−si)(x−x′)

1 g
βi(1−si)(x−x′)
2 = u

x−x′−(zi,1−z′i,1)

i

= g
zi,3−z′i,3
2 . Equating the exponents (to base g1), we have si(1 − si)(x − x′) = 0,

implying that si ∈ {0, 1}. Therefore the witness si and βi can be computed from two

valid transcripts. Σ-protocol π1 is sound.

• SHVZK. Given x, ui, vi, the simulator chooses zi,1, zi,2, zi,3
R←− Zq and computes
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Ai,1 = u−x
i g

zi,1
1 g

zi,2
2 , Ai,2 = v−x

i T zi,2 , Ai,3 = u
zi,1−x
i g

zi,3
2 , Ai,4 = v

zi,1−x
i T zi,3 . We see

that a polynomial-time simulator is capable of outputting valid transcripts without

the witness. Therefore, Σ-protocol π1 is SHVZK.
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Appendix B

Security Proof of Σ-protocol π2

We now prove that Σ-protocol π2 is complete, sound, and SHVZK.

• Completeness. Suppose that U = gs1g
γ
2 , we have Uxgz11 gz22 = (gs1g

γ
2 )

xgρs−xs
1 g

ργ−xγ
2

= gρs1 g
ργ
2 = Y1. Also, suppose that gh1Q

r = Rs, we have (gh1Q
r)xRz1 = RxsRρs−xs =

Rρs = Y2. Hence, Σ-protocol π2 is complete.

• Soundness. Define z1, z2 as the response to challenge x, and z′1, z
′
2 as the response

to challenge x′. Combining the verification equations of the transcripts, we have

Ux′−x = g
z1−z′1
1 g

z2−z′2
2 and (gh1Q

r)x
′−x = Rz1−z′1 . Defining s =

z1−z′1
x′−x

and γ =
z2−z′2
x′−x

,

we have U = gs1g
γ
2 and gh1Q

r = Rs. Therefore the witness s and γ can be computed

from two valid proof transcripts. Σ-protocol π2 is sound.

• SHVZK. Given U and gh1Q
r, the simulator chooses z1, z2

R←− Zp and computes

Y1 = Uxgz11 gz22 , Y2 = (gh1Q
r)xRz1 . We see that a polynomial-time simulator can

output valid transcripts without the witness. Therefore, Σ-protocol π2 is SHVZK.
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