

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

POST-PROCESSING AND APPLICATIONS OF

PRE-TRAINED MODELS FOR NATURAL

LANGUAGE PROCESSING

YANG RUOSONG

PhD

The Hong Kong Polytechnic University

2022

The Hong Kong Polytechnic University

Department of Computing

Post-processing and Applications of Pre-trained Models for

Natural Language Processing

Yang Ruosong

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

November 2021

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Yang Ruosong

Abstract

Pre-trained models have enabled a new era in natural language processing. The first-

generation pre-trained models, word embedding, aim to embed syntactic or seman-

tic information into low-dimension and continuous word vectors. While the second-

generation pre-trained models attempt to pre-train large language models and the

architecture can be used to fine-tune various downstream tasks. However, word

embedding models follow distributional hypothesis so that they cannot distinguish

antonyms and rare words cannot learn precise representations. Pre-trained language

models such as RoBERTa ignore coherence information, and text length during train-

ing is much longer than that in applications. Also, training pre-trained models re-

quires powerful hardware. To tackle these issues effectively, we propose to utilize

post-processing to enhance two types of pre-trained models. Besides, we also utilize

two types of pre-trained models to enhance specific applications on text assessment.

In this thesis, we review existing pre-trained models as well as works about text as-

sessment first. Then we conduct four works including two works that post-processing

pre-trained models and two applications on text assessment. More specifically, in

the first work, we explore how to utilize the glossary to enhance word embeddings

so that the post-processed word embeddings can both capture syntactic and seman-

tic information better. In the second work, we utilize pre-trained word embedding

to solve automated post scoring. To better integrate given topics and quoted posts

in forums, we propose a representation model and a matching model. In the third

i

work, we propose to utilize self-supervised intermediate tasks to enhance pre-trained

language models. Meanwhile, we investigate how these intermediate tasks benefit

downstream tasks. In the last work, we use pre-trained language models to learn text

representations and proposed to combine regression loss and ranking loss to enhance

the performance of automated text scoring. In addition, we conclude our work and

addressed future directions.

ii

Publications Arising from the

Thesis

1. Ruosong Yang, Jiannong Cao, Zhiyuan Wen, Youzheng Wu, Xiaodong He, “En-

hancing automated essay scoring performance via fine-tuning pre-trained lan-

guage models with combination of regression and ranking”, in Findings of the

2020 Conference on Empirical Methods in Natural Language Processing (2020).

2. Ruosong Yang, Jiannong Cao, Zhiyuan Wen, “GGP: Glossary Guided Post-

processing for Word Embedding Learning”, in 12th Edition of its Language

Resources and Evaluation Conference (2020).

3. Ruosong Yang, Jiannong Cao, Zhiyuan Wen, Jiaxing Shen, “Automated Post

Scoring: Evaluating Posts with Extra Topics and Quoted Posts in Online Fo-

rum”, World Wide Web Journal (2022).

4. Ruosong Yang, Jiannong Cao, Zhiyuan Wen, Shuaiqi Liu, “Enhancing Pre-

trained Models with Self-supervised Intermediate Tasks for Natural Language

Understanding”, manuscript aims to submit to TACL.

5. Zhiyuan Wen, Jiannong Cao, Ruosong Yang, Shuaiqi Liu, Jiaxing Shen, “Auto-

matically Select Emotion for Response via Personality-affected Emotion Tran-

sition”, in The Joint Conference of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International Joint Conference on

iii

Natural Language Processing: Findings (2021).

6. Shuaiqi Liu, Jiannong Cao, Ruosong Yang, Zhiyuan Wen, “Highlight-Transformer:

Leveraging Key Phrase Aware Attention to Improve Abstractive Multi-Document

Summarization”, in The Joint Conference of the 59th Annual Meeting of the As-

sociation for Computational Linguistics and the 11th International Joint Con-

ference on Natural Language Processing: Findings (2021).

7. Zhiyuan Wen, Jiannong Cao, Ruosong Yang, Senzhang Wang, “Decode with

Template: Content Preserving Sentiment Transfer”, in 12th Edition of its Lan-

guage Resources and Evaluation Conference (2020).

8. Yu Yang, Jiannong Cao, Jiaxing Shen, Ruosong Yang, Zhiyuan Wen, “Learning

Analytics based on Multilayer Behavior Fusion”, in 13th Internation Conference

on Blended Learning (2020).

9. Shuaiqi Liu, Jiannong Cao, Ruosong Yang, Zhiyuan Wen, “Key Phrase Aware

Transformer for Abstractive Summarization”, Journal of Information Process-

ing and Management (2022).

10. Shan Jiang, Jiannong Cao, Hanqing Wu, Ruosong Yang, Yanni Yang, “Dynamic

Ring Signature: Achieving Provable Anonymity in Blockchain-based E-voting”,

manuscript submitted to IEEE Transactions on Dependable and Secure Com-

puting.

11. Hanqing Wu, Jiannong Cao, Shan Jiang, Ruosong Yang, Yanni Yang, Jianfei

He, “TSAR: a fully-distributed Trustless data ShARing platform”, in The Third

IEEE Workshop on Smart Service Systems (2018).

iv

Acknowledgments

I am too overconfident when I get my master degree. So I easily make a decision to

study for a Ph.D. The hard days in PolyU are really beyond my imagination. During

these years, I deeply understood the ”inner peace” that appeared in Kung Fu Panda

2. Simultaneously, I also learned a lot from Prof. Cao and our group mates.

First of all, I appreciate Prof. Cao’s supervision. It is my luck to be one of your

students, and I have learned a lot of methodology from you. From a fresh beginner, I

studied how to select a topic, how to define a problem, how to propose a solution, and

how to tell a good story. With your guidance, I also had a deep thought of writing.

All these skills not knowledge have benefited me until the future.

Besides, I also thank all senior group mates including Wengen Li who helped me to

register my study in PolyU, and gave me lots of suggestions no matter in study or daily

life, Linchuan Xu who recommended lots of academic materials since our directions

were similar, Yuqi Wang, Senzhang Wang, and Jiaxing Shen who helped me to revise

my paper. Qiang Li and Hui Li supervised by other professors also taught me a lot in

the study and daily life. Meanwhile, I express my thanks to Xiulong Liu, Zhuo Li, Jia

Wang, Yu Yang, Yanni Yang, and Shan Jiang, who brought me so much happy time

during these five years. I want to stress my thanks to Zhiyuan Wen and Shuaiqi Liu,

we are the NLP group, and we contributed together to many tasks assigned by Prof.

Cao. Without your help, it is hard for me to imagine how to finish these projects.

In addition, thanks should be also listened to by Xiaoyin Li, Ken Lai, Minjin Zhang,

v

Qianyi Chen, Zhixuan Liang, Jinlin Chen, etc.

Here, I would like to thank my parents, my grandmother, uncles, and aunts, your

support and understanding encouraged me to finish my Ph.D. study. Same thanks

to all my friends in JDAI, and daily life.

Finally, I am grateful to Angie Chiu for your wonderful TV series. No matter your

masterpiece filmed in Taiwan such as the Legend of the White Snake, Moment in

Peking, and Legendary Chien Lung, or that filmed in Hong Kong including The

Bund, Chor Lau Heung, etc. brought me lots of happiness and thinking. Your

experience also inspired me a lot for your perfect balance of work and life as well as

your proper choices at different ages. In general, you are my favorite actress. You are

the light when I am in the dark. Your TV series and your experience encouraged me

to overcome various difficulties and adjust my mentality.

vi

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments v

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Research Challenges . 5

1.4 Research Framework . 6

1.5 Thesis Organization . 7

2 Literature Review 11

2.1 Pre-trained Word Embedding Models 11

vii

2.1.1 Word Embedding Models . 12

2.1.2 Re-training Word Embedding Models 14

2.1.3 Post-processing Word Embedding Models 16

2.2 Pre-trained Language Models . 16

2.2.1 Pre-trained Language Models 16

2.2.2 Intermediate Tasks to Enhance PTLM 19

2.3 Text Assessment . 20

2.3.1 Automatic Short Answer Grading 20

2.3.2 Automated Text Scoring . 21

3 GGP: Glossary Guided Post-processing for Word Embedding Learn-

ing 23

3.1 Introduction . 23

3.2 GGP Model . 26

3.2.1 Sequence to Sequence Auto-encoding 27

3.2.2 Composition of Sense representations 28

3.2.3 Multi-layer Fully-connected Feed-Forward Network 28

3.2.4 Extra Constraint and Joint Objective 28

3.3 Experiment and Discussion . 29

3.3.1 Pre-trained Vectors . 29

3.3.2 Definition Entries . 29

3.3.3 Pre-train Auto-encoding Model 30

3.3.4 Model Parameter Specification 30

viii

3.3.5 Word Similarity . 31

3.3.6 Analysis and Discussion . 32

3.4 Summary . 33

4 Automated Post Scoring: Measuring Post-Topic Relevance and Post’s

Writing Quality in Online Forum Discussion for Learning Perfor-

mance Estimation 34

4.1 Introduction . 34

4.2 Problem Definition and Dataset . 39

4.2.1 Glossary of Online Forum . 39

4.2.2 Problem Definition . 39

4.2.3 Dataset Construction and Pre-processing 40

4.3 Posts Assessment Model . 44

4.3.1 Hierarchical Text Model . 44

4.3.2 Cross Attention Model . 47

4.3.3 Matching Model . 48

4.3.4 Representation Model . 48

4.3.5 Scoring Function . 49

4.4 Experiment . 50

4.4.1 Experiment Setting . 50

4.4.2 Evaluation Metrics . 50

4.4.3 Experiment Results and Analysis 52

4.5 Summary . 64

ix

5 Enhancing Pre-trained Models with Self-supervised Intermediate

Tasks for Natural Language Understanding 65

5.1 Introduction . 65

5.2 Self-supervised Intermediate Tasks 67

5.2.1 Review of BERT and RoBERTa 67

5.2.2 Review of Self-supervised Tasks 68

5.3 Experiment . 71

5.3.1 Dataset Construction . 71

5.3.2 Parameter Settings of Fine-tuning on Intermediate Tasks . . . 71

5.3.3 Evaluation Tasks . 73

5.3.4 Parameter Settings of Fine-tuning on Evaluation Tasks 75

5.3.5 Experimental Results and Analysis 75

5.4 Summary . 81

6 Enhancing Automated Essay Scoring Performance via Fine-tuning

Pre-trained Language Models with Combination of Regression and

Ranking 82

6.1 Introduction . 82

6.2 R2BERT . 85

6.2.1 BERT . 87

6.2.2 Self-attention . 87

6.2.3 Feature Extraction . 88

6.2.4 Regression . 88

x

6.2.5 Batchwise Learning to Rank Model 89

6.2.6 Combination of Regression and Ranking 90

6.3 Experiment . 90

6.3.1 Dataset . 91

6.3.2 Experiment Settings . 91

6.3.3 Evaluation Metric . 93

6.3.4 Baselines and Implementation Details 93

6.3.5 Experiment Results and Analysis 95

6.3.6 Runtime and Memory . 98

6.4 Summary . 98

7 Conclusions and Future Directions 100

References 102

xi

List of Figures

1.1 Research Framework . 7

3.1 Model Framework (an example of one word with three senses) 26

4.1 Illustration of APS . 35

4.2 Framework of our mixture model . 41

4.3 Experimental results of various models with different filter sizes. . . . 61

4.4 Experimental results of LL-AP-MTRQ with different learning rates. . 62

6.1 R2BERT Framework . 86

6.2 Self-attention visualization on examples of Prompt 1 and 7 95

xii

List of Tables

3.1 Dictionary Statistics . 30

3.2 Word Similarity Experiment Results (Spearman’s correlation coeffi-

cient ρ * 100) . 31

4.1 Sample data of ODD, ASAP Dataset, and Semeval 2013 task 7. For

page limit, only part of posts are shown in Post and Quoted Post in

ODD. 37

4.2 The difference between APS, AES/ATS and ASAG. 38

4.3 Statistics of Online Discussion Dataset 40

4.4 Examples of topic extension via recording subtitles of the video or

searching the keywords in wikipedia 43

4.5 Experiment results of the basic text model and four hierarchical text

models. 54

4.6 Experiment results of matching and representation models. 56

4.7 Experiment results of mixture models. 58

4.8 Experiment results of models incorporating topics given by instructors. 60

4.9 Experiment results of models incorporating topics given by instructors. 63

xiii

5.1 Statistics of constructed datasets and accuracy of the corresponding

tasks on valid sets. For NSP, SOP, and SSO, 2, and 4 mean 2 or 4

natural sentences in each text segment respectively. For SPP, 4 and

6 are the numbers of sentences, and the additional 3 refers to three

training epochs. 72

5.2 Experimental results of five fine-tuned models on dev sets of GLUE.

The result on the left and right side of character “/” for task MNLI

represents MNLI-m and MNLI-mm correspondingly; F1 scores are re-

ported for QQP and MRPC, Spearman correlations are reported for

STS-B, and accuracy scores are reported for the other tasks. (4) means

4 sentences in total, and (6) refers to six sentences. 73

5.3 Experimental results of all five fine-tuned models on dev sets of SWAG

and SQuAD. 74

5.4 Experimental results of accuracy on dev sets of the additional senti-

ment classification task (MR). 76

5.5 Experimental results on dev sets of the NSP task and three similar-

ity tasks, NSP* means the newly constructed dataset that sampled

negative samples from different documents. 76

5.6 Experimental results of multi-round fine-tuning on dev sets of part of

GLUE, SWAG, and SQuAD. The evaluation metrics of tasks in GLUE

are similar to Table 5.3.2. 79

5.7 Experimental results of different text segments on dev sets of part of

GLUE, SWAG, and SQuAD. 2 and 4 refer to 2 natural sentences, and

4 natural sentences in each text segment respectively. The evaluation

metrics of tasks in GLUE are similar to Table 5.3.2. 79

xiv

6.1 Statistics of the ASAP dataset; Range means the score range, For

genre, ARG, RES, and NAR map to argumentative essays, response

essays and narrative essays respectively. 91

6.2 QWK evaluation scores on ASAP dataset (* means statistical model) 92

6.3 QWK evaluation scores on Prompt 8 of ASAP Dataset with different

parts of the whole essays . 95

6.4 Comparison of Runtime and Memory. TR means the total training

runtime on the train set and IPS means inference runtime per each

test sample. #Param refers to the number of parameters. 98

xv

Chapter 1

Introduction

1.1 Background

Natural Language Processing (NLP) is an area of Artificial Intelligence (AI) that

explores how machines can understand and manipulate natural language text [18].

There are lots of NLP tasks such as natural language understanding tasks including

text classification, text similarity tasks, text inference tasks, question answering, etc.,

and natural language generation involving machine translation, text summarization,

dialog system, etc. To solve these tasks, corpora or datasets are necessary. With the

development of the Internet, it is easier to collect a larger volume of corpus, and con-

struct larger datasets. Statistic models become possible since statistical probability

will be more accurate with larger datasets.

Statistical NLP methods usually heavily rely on discrete handcrafted features. To get

practical features, feature engineering is an important but difficult step for statisti-

cal models. Neural methods usually use low-dimensional and continuous vectors to

implicitly represent the syntactic and semantic features of the natural language text.

Representations for specific tasks can be easily learned during solving these tasks

automatically. In summary, neural models can learn features rather than manually

1

Chapter 1. Introduction

designing features, therefore, it is easy for researchers to design various neural models

to solve various NLP tasks.

Researchers have designed several neural networks with special architecture such

as Recurrent Neural Networks (RNNs) [62, 40, 16], Convolutional Neural Networks

(CNNs) [50, 47, 45, 37], Graph Neural Networks (GNNs) [48, 99, 83], Transformer

[98, 49], attention mechanisms [80], and memory network [107, 88]. Different types

of neural networks have the ability to capture different information from natural lan-

guage texts. All these models face the same critical challenge, data hungry. Since

deep neural networks usually contain a large number of parameters compared with

statistical models, they are thus easy to overfit and have poor generalization ability

[3, 112] without sufficient training data.

The key difficulty to obtain a large amount of training data is that labeling data is

expensive, time-consuming, and labour-intensive. For example, segmenting images

via crowdsourcing costs about $6.4 per image [59]. To tackle the challenge, self-

supervised learning [59] which labeling the training data by leveraging the relations

between different parts of input is an effective approach. Inspired by this idea, large

unlabelled corpora can be possibly used to train neural models. To make full use

of these data, larger models with much more parameters are necessary. Researchers

attempt to stack multi-layer transformer models, and adopt Pre-LM (Pre-Layer Nor-

malization) [74] or Post-LM [22] to alleviate gradient vanishing and explosion. All

these models are called Pre-trained Models (PTM).

More generally, there are two types of pre-trained models including pre-trained word

embeddings and pre-trained language models. The first-generation PTMs are pre-

trained word embeddings that aim to learn low dimensional, continuous word vectors,

such as Word2vec [63], and GloVe [70]. These models follow Distributional Hypoth-

esis [35] which refers to words with similar context words contain similar semantic

meaning. However, some words have several senses and show different senses in dif-

ferent contexts. Word embedding models only learn one representation for each word,

2

1.2. Motivation

so they cannot tackle the multi-sense issue. These models are also called context-free

word embeddings. The second-generation pre-trained models are pre-trained lan-

guage models (PTLM) which focus on learning contextual word embeddings such as

GPT [74], and BERT [22]. These models attempt to learn model architectures that

are better semantic composition functions of words. With pre-trained language mod-

els, users don’t need to design specific neural networks for specific tasks and train the

models from scratch.

1.2 Motivation

For pre-trained word embedding models, they assume words with similar context

words should learn similar vectors [63]. Antonyms may also occur with similar context

words, but contain opposite semantic meanings [66]. Meanwhile, these models utilize

the distribution of the context words of the target word to represent the semantic

meaning of the target word. In practice, the volume of the corpus will affect the

distribution as well as the representation quality. Also, low-frequency words lack

enough context words so that they usually cannot learn accurate representations.

As for applications of pre-trained embeddings, specific tasks are required for specific

semantic information. Only the pre-trained word embeddings are not enough. For

example, sentiment classification and news classification need different semantic rep-

resentations. So to apply word embeddings to specific applications, researchers also

need to design specific neural networks for specific tasks. Word embeddings can be

only used to initialize the embedding matrix in neural networks.

For pre-trained language models, RoBERTa [22] proves that the coherence task used in

pre-training cannot improve the performance of downstream tasks. It also gains better

performance on downstream tasks than other pre-trained models including BERT [22],

StructBERT [103] that utilized various coherence tasks. However, RoBERTa only

3

Chapter 1. Introduction

models masked language model and misses coherence information which is important

for multi-sentence tasks. All pre-trained language models are trained on general

corpora such as English Wikipedia 1. Downstream tasks come from various domains,

so there is a gap between training corpora and that of downstream tasks. In practice,

the sequence used in training is much longer than that in downstream tasks. The

mismatch will also hurt the performance.

Exploring how to utilize pre-trained language models is also a hot topic. Since pre-

trained language models are only encoder models that encode input sentences into

vector representations. Existing researches only provide simple objectives for each

type of task. How to design suitable objective functions for specific tasks is also a

research problem. Moreover, for all pre-trained language models, the representation

of the special token is used as the representation of the input sequence. Designing

approaches to obtain better representations is also necessary. In addition, existing

models only learn unique representations for input sequences, how to learn multiple

representations for inputs with multiple sentences is still an issue.

In summary, two types of pre-trained models are still facing many drawbacks. So it

is necessary to updated these models to tackle these drawbacks. In general, there are

two ways. The former incorporates extra data, designs new models, and auxiliary

objective functions. However, it is time-consuming and requires high-performance

hardware. The later integrates extra data and designs new objective functions to post-

process these pre-trained models. Since it doesn’t need to re-train these models from

scratch, and the volume of the extra data is much smaller than that of the training

data. Post-processing is much more efficient. We mainly focus on the research of

post-processing. As aforementioned, applying pre-trained models to specific tasks is

not enough, we need to updates these pre-trained models with specific approaches for

them. We also address the difference between post-processing and applications. For

post-processing, we aim to learn better general models so that they can gain better

1https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

4

1.3. Research Challenges

performance on various downstream tasks. For applications, we only focus on the

specific task, and updated models to gain high performance on the specific task.

1.3 Research Challenges

No matter for post-processing or applications, there are three aspects that are required

to be considered including data selection, neural network designing, and objective

function designing. For data selection, post-processing pre-trained models need to

determine the extra data first, since the selected data determine the designing of

neural networks as well as objective functions. For specific tasks, we only consider

how to better use the pre-trained models, we don’t need extra data. So how to design

proper neural networks and objective functions are two key challenges.

Before introducing details of these two challenges, I will show extra data that can

be used to post-process pre-trained models first. For pre-trained word embeddings,

there are usually two types of data. The first type of data is word pairs including

various word pairs extracting from lexical knowledge such as synonyms, antonyms

from WordNet 2, entity pairs from knowledge graphs. The other type of data is word

sequences, for example, the dictionary explanation. For pre-trained language mod-

els, open-domain corpus and domain-specific corpus are two widely used extra data.

Open-domain corpus means the corpus comes from various domains such as English

Wikipedia1. And domain-specific corpus is from a specific domain, for example, the

datasets of specific tasks.

The first challenge is how to design neural networks (with determined extra data).

For post-processing pre-trained word embeddings, word pairs and word sequences are

totally different data format, so they need to design totally different models. For

applications of pre-trained word embeddings, the embeddings only provide initializa-

2https://wordnet.princeton.edu/

5

Chapter 1. Introduction

tion of word vectors, researchers are required to design specific neural networks for

specific tasks. As for pre-trained language models, they contain a large number of

parameters, so complicated extra neural networks will lead to convergence problems.

No matter for post-processing or applications, we only utilize a simple linear layer as

the extra neural network.

The second challenge is how to design suitable objective functions. For post-processing

pre-trained word embeddings, different word pairs illustrate different relationships.

For example, compared with antonyms, synonyms should be more similar. Different

relationships should use different objective functions. Moreover, with several types

of word pairs, how to tackle multiple relationships is also challenging. For applica-

tions of word embeddings, the objective functions are highly dependent on specific

tasks. For post-processing pre-trained language models, designing or selecting proper

tasks is significant. Different tasks are corresponding to different objective functions.

For applications of PTLM, sentence representations learned from PTLM usually are

enough. To further improve the performance of specific tasks, designing more com-

plicated objective functions is more feasible.

I also address the difference between applications for pre-trained word embeddings

and language models. Word embeddings are only the input of the model, so the whole

neural network including encoders and other parts should be designed according to

specific tasks. PTLMs have provided an encoder model, so we usually only need to

design the objective functions.

1.4 Research Framework

In this thesis, I mainly focus on the post-processing of two-generation pre-trained

models and two applications of text assessment.

As shown in Figure 1.1, the aim of this thesis is to learn general models and spe-

6

1.5. Thesis Organization

cific models based on pre-trained models including pre-trained word embedding and

language models. Based on pre-trained word embeddings, both general model and

specific model are required to design new architectures and objectives. While based

on pre-trained language models, only task-specific objectives are necessary for both

general model and specific model. In summary my research works include two general

models and two specific models. All these four works will be introduced respectively.

Data

Architecture

Objective

General Model

Dictionary Online Forum PostsEnglish Wikipedia ASAP

Task-Specific Neural Network Pre-Trained Language Models

Task-Specific Objectives

Word Embedding Language Models

Glossary
Enhanced Word

Embedding(1)

PTWE Enhanced
Post Scoring(3)

Discourse
Enhanced PTLM(2)

PTLM
Enhanced

Essay Scoring(4)

Specific Model

Pre-Trained Model

Figure 1.1: Research Framework

1.5 Thesis Organization

The rest of this thesis mainly includes a comprehensive literature review, the four

tasks namely two post-processing tasks and two text assessment tasks, and future

directions. For the four tasks, we introduce them in the order of enhancing word

embeddings with the dictionary, applying word embedding to post scoring, enhancing

pre-trained language models with coherence tasks, and applying pre-trained language

models to essay scoring.

Specifically, the rest chapters of the thesis are organized as follows:

• In Chapter 2, we present a comprehensive review of pre-trained models and

7

Chapter 1. Introduction

various enhancement works. For word embedding, we introduce several word

embedding models first. Then, there are two types of works to enhance word

embedding models including retraining and post-processing. For each type of

work, we illustrate existing works according to used extra knowledge such as

lexical knowledge, semantic knowledge, knowledge graph. For pre-trained lan-

guage models, we also introduce various pre-trained language models first. To

enhance these models, intermediate tasks are widely used. We classify fine-

tuned models according to whether they are general models or not. And we use

this taxonomy to show existing works. In addition, how to utilize pre-trained

language models on downstream tasks is also a hot topic, we also introduce

various approaches that applying PTLM to specific tasks.

• In Chapter 3, we present our first work that utilizing word definitions to en-

hance pre-trained word embeddings. Existing post-processing models mostly

consider semantic knowledge so that learned embedding models show less func-

tional information. Compared with semantic knowledge sources, the glossary

is a comprehensive linguistic resource that contains complete semantics. The

previous glossary based post-processing method only process words that oc-

curred in the glossary, and did not distinguish multiple senses of each word. To

make better use of the glossary, we utilize the attention mechanism to integrate

multiple sense representations. By measuring the similarity between word rep-

resentation and combined sense representation, we aim to capture more topical

and functional information.

• In Chapter 4, we introduce our second work about how to utilize word em-

bedding to assess students’ posts. Since the designed neural network is more

significant to solve the task, we mainly introduce the designed model. Different

from existing text assessment tasks, we propose a novel task, Automated Post

Scoring (APS), which grading all online discussion posts in each thread of each

student with given topics and quoted posts. APS evaluates not only the writing

8

1.5. Thesis Organization

quality of posts automatically but also the relevance to topics. To measure the

relevance, we model the semantic consistency between posts and topics. We

also utilize supporting arguments extracted from quoted posts to enhance posts

evaluation. Specifically, we propose a mixture model including a hierarchical

text model to measure the writing quality, a semantic matching model to model

topic relevance, and a semantic representation model to integrate quoted posts.

• In Chapter 5, we show our third work which investigating how intermediate

tasks can benefit downstream tasks. Most existing works only investigate su-

pervised intermediate tasks. The study on self-supervised intermediate tasks is

limited to the masked language model (MLM) task on specific domains. We

extend the study to the general domain and other self-supervised intermediate

tasks. We identify what and how these tasks can benefit general tasks without

requiring extra corpora. More specifically, we identify these tasks inspired by

pre-training tasks of existing PTMs. Then, we construct datasets for these tasks

and fine-tune them on PTMs. To conduct a fair comparison of the identified

tasks, we select RoBERTa which was trained only on the MLM task for our

study.

• In Chapter 6, we illustrate our fourth work that utilizing pre-trained language

models to enhance automated essay scoring. To solve the AES task, previous

works utilize shallow neural networks to learn essay representations and con-

strain calculated scores with regression loss or ranking loss, respectively. Since

shallow neural networks trained on limited samples show poor performance to

capture deep semantic of texts. And without an accurate scoring function,

ranking loss and regression loss measures two different aspects of the calculated

scores. To improve AES’s performance, we propose to fine-tune pre-trained

language models with multiple losses of the same task.

• In Chapter 7, we present open challenges and future directions for post-processing

9

Chapter 1. Introduction

pre-trained language models. Open challenges include how to fine-tune PTLM

robustly, how to alleviate forgetting learned knowledge, and how to reduce the

effect of hyper-parameters. There are also several directions. In specific do-

mains such as academic papers, patents, or clinic texts, researchers still utilize

the general pre-trained language models. However, texts from different domains

follow different writing guidelines and contain different characteristics. To learn

knowledge from these domain-specific corpora, it is necessary to design new ob-

jective functions to capture their characteristic.

10

Chapter 2

Literature Review

In this chapter, we will show a brief review of existing pre-trained models, models

enhancing PTMs, and existing works in text assessment. In Section 2.1, we will

introduce several typical word embedding models first such as word2vec and GloVe.

Then two ways to enhancing word embedding models including re-training and post-

processing are introduced. For each way, we will show these models according to

used knowledge, for example, lexical knowledge, semantic knowledge, and knowledge

graph. In Section 2.2, We introduce various pre-trained language models including

GPT, RoBERTa, etc. Also, we classify the enhanced pre-trained language models

into general models and domain-specific models. Each type of enhanced model will

show more details. In Section 2.3, we mainly introduce existing works in automated

text/essay scoring and automatic short answer grading task.

2.1 Pre-trained Word Embedding Models

In this section, we will focus on existing word embedding models as well as various

enhanced models. Specifically, we will introduce typical word embedding models in

section 2.1.1. Then we introduce two types of models enhancing word embeddings

11

Chapter 2. Literature Review

with various knowledge respectively in section 2.1.2 and section 2.1.3.

2.1.1 Word Embedding Models

Unlike signals of speech and images which have specific physical meanings, words

are symbols so that the coding of words in the computer contains no meanings of

words. To support various natural language tasks, it is essential to learn high-quality

word representations. To qualitatively analyze the quality of word representations,

researchers assume that the distance between similar words should be shorter. Re-

searchers proposed several distributed word embedding models referring to the Distri-

butional Hypothesis [35] that words with similar distributions of context words have

similar meanings. Word2vec and GloVe are two typical models that aim to learn low

dimensional and continuous word vectors, we will briefly introduce them respectively.

Word2vec toolkit1 was released by Google in 2013. The toolkit contains two models

namely Continuous Bag-Of-Words (CBOW) and Skip-Gram with Negative Sampling

(SGNS). Both models can learn word representations efficiently from a large corpus.

CBOW assumed that the meaning of the target word can be learned from its context

words so that the model predicts the target word given its context words. Skip-Gram

with Negative Sampling, on the contrary, attempts to learn the representations that

can predict each context word given a target word. In the rest of this section, we will

show more details of these two models.

As shown before, CBOW predicts the center word given a window of context words.

Formally, CBOW predicts the word Wi according to its 2l contexts words as

P (wi|wj(|j−i|≤l,j 6=i)) = Softmax(M(
∑

|j−i|≤l,j 6=iwj)) (2.1)

where P (wi|wj(|j−i|≤l,j 6=i)) is the probability of word wi predicted by its contexts, M

1https://code.google.com/archive/p/word2vec/

12

2.1. Pre-trained Word Embedding Models

is the trainable weight matrix in R|V |×m, |V | is the vocabulary size, and m is the

embedding size.

CBOW minimized the sum of negative log probabilities to learn the parameters as

shown in Formula 2.2.

min−
∑
i

logP (wi|wj(|j−i|≤l,j 6=i)) (2.2)

SGNS utilized the target word wi to predict various context words wj as shown in

Formula 2.3.

P (wj|wi) = Softmax(Mwi)(|j − i| ≤ l, j 6= i) (2.3)

Similar to CBOW, M is the trainable parameters. So as the loss function as shown

in Formula 2.4.

min−
∑
i

∑
j(|j−i|≤l,j 6=i)

P (wj|wi) (2.4)

The calculation of Softmax is highly dependent on the size of the vocabulary. SGNS

is trained on a large corpus, so time efficiency is the key problem. To accelerate

training, negative sampling is an effective approach. It directly samples k words as

negative samples based on their word frequency. Then, it computes σ over each k+ 1

word to predict whether the word is the context word or negative sampled word.

Global Vectors for Word Representation (GloVe) [70] is another successful word em-

bedding model. Word2vec ignored the statistics of the corpus since they focus on

separate local context windows rather than global co-occurrence counts. The authors

proposed a specific weighted least squares model that trained on counts of global

word-word co-occurrence.

13

Chapter 2. Literature Review

More specifically, GloVe models

F (wi, wj, w̃k) =
Pik
Pjk

(2.5)

where w̃ ∈ Rd represents context word vectors, and Pij is the probability of word j to

be in the context of word i , formally

Pij =
Nij

Ni

(2.6)

where Nij is the number of co-occurrences of word j and word i in the same window,

and Ni =
∑

kNik is the number of times any word occurs in the context of word j.

More specifically, the dot product is adopted to model the relationship between wi,

wj, and w̃k, Formula 2.7 is obtained.

F ((wi − wj)T w̃k) =
Pik
Pjk

(2.7)

GloVe utilized F = exp as the solution. Then

wi
T w̃k = logNik − logNi (2.8)

To keep exchange symmetry, logNi is eliminated by adding biases bi and b̃k. The

model becomes

wi
T w̃k + bi + b̃k = logNik (2.9)

The loss function is defined as:

L =

|v|∑
i,j=1

f(Nij)(wi
T w̃j + bi + b̃j − logNij) (2.10)

where f(·) is a weighted function.

2.1.2 Re-training Word Embedding Models

In this section, we will introduce various works that utilize lexical knowledge, categor-

ical knowledge, relational knowledge, and knowledge graph to enhance word embed-

14

2.1. Pre-trained Word Embedding Models

ding models via re-training existing word embedding models with auxiliary objective

functions.

Lexical knowledge, also named morphological knowledge, are basic elements of a

word such as syllables, roots, or affix (prefix and suffix). It can facilitate to identify

semantically related words (e.g. words with the same root). Bian et al. [5] proposed to

utilize context words to predict root, affix, and syllable of target words. Furthermore,

they also use syntactic and semantic knowledge to enhance word embedding models.

Categorical knowledge includes syntactic and semantic properties of words. The syn-

tactic category consists of its part of speech tag, syntactic role, etc. And the semantic

category of a word involves its concept, semantic type, and semantic role. Levy and

Goldberg [56] utilized the result of the dependency parse-trees , and redefined the

context of the target word called syntactic context to train the word vectors based on

skip gram model. RCM [115] mainly considered synonyms, and used the target word

to predict its synonyms. RC-NET [110] extracted word pairs from the same category

in Freebase [7] and assumed these two words to learn similar representations.

Relational Knowledge referred to word pairs with their relationship which is usually

represented as a triplet: (Head H, Relation R, Tail T). RC-NET [110] also referred

to the idea of TransE [8], and transformed the dataset about categorical knowledge

into relational knowledge. SWE [58] proposed to utilize ordinal knowledge constraints

such as synonym antonym rule, semantic category rule, and semantic hierarchy rule

to enhance word embeddings.

The knowledge graph is a rich source of high quality, human-curated structured knowl-

edge. Wang et al. [105] extract structured data from Freebase, and adopted a similar

approach as relational knowledge to enhance word embeddings.

15

Chapter 2. Literature Review

2.1.3 Post-processing Word Embedding Models

Faruqui et al. [28] proposed a graph-based learning approach for using semantic

lexicons from PPDB [30], WordNet [64], and FrameNet [2] to post-process word em-

beddings, which was called “retrofitting.” Jo and Choi [43] proposed extrofitting to

expand more dimensions on all word vectors via filling with transferred semantic

knowledge and project the vector space using Linear Discriminant Analysis. The

Dict2vec [96] model constructed word pairs from both the corpus and dictionary

entries. Especially for negative sampling, it ignored the words in pairs from the sec-

ond part. Then Skip Gram (Word2Vec) is used to learn the word embedding model.

CPAE [9] proposed a LSTM based auto-encoding model to learn word representations

from dictionary definitions which are assumed to be similar to their embedding.

2.2 Pre-trained Language Models

In this section, we will introduce basic pre-trained language models in Section 2.2.1.

Then various approaches that utilizing intermediate tasks to enhance pre-trained

language models are shown in Section 2.2.2.

2.2.1 Pre-trained Language Models

Following the taxonomy shown in [111], we introduce two typical pre-trained language

models namely GPT and BERT first. Then various post-BERT models are shown.

Models combining autoregressive and autoencoding modeling are also illustrated.

GPT was the first model that combines the modern Transformer architecture and the

self-supervised pre-training objective. Practically, GPT achieved significant success

on almost all NLP tasks, including sentence classification, sentence similarity tasks,

sentence inference tasks, question answering, and commonsense reasoning. Given

16

2.2. Pre-trained Language Models

large-scale corpora without annotated labels, GPT attempt to optimize a standard

autoregressive language modeling, namely, maximizing the conditional probabilities

of all the words given their previous words as contexts. Formally, given a corpus con-

sisting of token sequences χ = x0, x1, ..., xn, xn+1, GPT applied a standard language

modeling objective function by maximizing the following log-likelihood:

L(χ) =
n+1∑
i=1

logP (xi|xi−k, ..., xi−1; Θ) (2.11)

where k is the uni-directional window size, the probability P is modeled by the Trans-

former decoder with parameters Θ, x0 is the special token [CLS] which means the

start of the sentence, xn+1 is the special token [SEP] which means the end of the

single sentence or the separation of two sentences.

Unlike GPT, BERT utilized a bidirectional deep Transformer as its structure. BERT

applied autoencoding language modeling rather than autoregressive language mod-

eling that was used in GPT. Specifically, inspired by the cloze task [94], masked

language modeling (MLM) is proposed as the objective function. In MLM, tokens

are randomly masked with a special token [MASK], the objective of this task is to

predict masked words according to contexts. Besides MLM, next sentence prediction

(NSP) is also adopted as the auxiliary objective to capture coherence information

between sentences. NSP adopted a binary classifier to predict whether two sentences

are adjacent.

With two basic models, various post-BERT models that updated BERT to gain better

performance will be introduced.

RoBERTa [60] was one of the success variants of BERT, which mainly made four

simple and effective changes: (1) Removing the next sentence prediction task; (2)

More training steps (epochs), with larger batch size and more corpora; (3) Longer

training sentence segments; (4) Dynamically masking methods which means to mask

different words in different epoch. RoBERTa outperformed BERT by a large margin

on various downstream tasks. Moreover, RoBERTa also pointed out that the next

17

Chapter 2. Literature Review

sentence prediction task is relatively useless during training RoBERTa.

ALBERT [53] was also a significant variant of BERT, which provided several effec-

tive tricks on reducing parameters. The first trick was to factorize the input word

embedding matrix into two smaller ones. Then it proposed to share parameters be-

tween all Transformer layers to significantly reduce parameters. Third, it utilized a

new pre-training task, called the sentence order prediction (SOP) task, to substitute

BERT’s NSP task.

SpanBERT [44] extended BERT by (1) changing the masking method which mask-

ing contiguous random spans rather than random tokens, and (2) proposing new

pre-training tasks that utilizing the representations of span boundary to predict the

entire content of the masked span, without relying on the within representations of

individual tokens.

StructBERT [102] aimed to incorporate language structures into pre-training, so it

proposed two new objective functions. The first objective attempted to endows the

model to reconstruct the right order of intentionally shuffled word tokens. The other

objective extended the sentence prediction task by predicting both the previous sen-

tence and the next sentence.

We also show several models that combining autoregressive and autoencoding mod-

eling.

XLNet [113] proposed the permutated language modeling to combine autoregressive

and autoencoding. To avoid the shortage that the [mask] token won’t appear in

downstream tasks, XLNet permutated tokens’ order during the pre-training and then

adopting the autoregressive prediction paradigm, which helps XLNet to gain the

ability of both understanding and generation.

MPNet [87] amended the XLNet’s discrepancy that in pre-training XLNet does not

know the sentence’s length while in downstream it knows.

18

2.2. Pre-trained Language Models

UniLM [25] proposed to jointly optimize different language modeling objectives to-

gether, namely unidirectional language model, bidirectional language model, and

seq2seq objectives.

Recently, GLM [26] proposed a more elegant way to combine autoregressive and au-

toencoding. Given a variable-length masked span, Transformer blocks were required

to autoregressively generate the masked tokens, instead of providing the number of

[MASK] tokens to model as BERT and SpanBERT [44] done,

2.2.2 Intermediate Tasks to Enhance PTLM

To enhance pre-trained language models, an effective approach is to further train

PTMs on intermediate tasks before fine-tuning them on downstream tasks. Most

existing works investigated the effectiveness of supervised intermediate tasks, and

some works explored how the task of the masked language model adapted PTMs to

specific domains.

For supervised intermediate tasks, some researchers investigated how they benefit

general tasks. Yada et al. [73] performed a large-scale study on the RoBERTa

model with 110 intermediate-target task combinations to investigate when and why

intermediate-task training is beneficial for a given target task. Wang et al. [100]

conducted additional pre-training on ELMo [71], and BERT [22] with many different

intermediate-target task combinations and tested on the GLUE. Phang et al. [72]

proposed to utilize several tasks in the GLUE to fine-tune PTMs and found that

MNLI [108] could improve the performance of other tasks in the GLUE. There are

also some works aiming to improve the performance of specific tasks. Clark et al.

[19] found that fine-tuning BERT on MultiNLI [108] can improve the performance

of BoolQ. Sap et al.[82] proposed to fine-tune BERT with SocialIQA to improve the

performance of CPA [79], WSC [55], and DPR [76]. SKEP [95] proposed sentiment

masking and sentiment knowledge prediction objectives to fine-tune RoBERTa and

19

Chapter 2. Literature Review

achieved better performance for many sentiment classification tasks.

As for self-supervised intermediate tasks, Gururangan et al.[33] proposed to utilize

masked language model (MLM) to fine-tune PTMs on domain-specific corpora such

as biomedical, computer science publication, news, and reviews, or unlabeled corpora

from the datasets of target tasks.

2.3 Text Assessment

In this section, we mainly introduce two application tasks of pre-trained models on

text assessment namely Automatic Short Answer Grading (ASAG) and Automated

Text Scoring. Existing works about ASAG are introduced in Section 2.3.1. While

various models of ATS will be shown in Section 2.3.2.

2.3.1 Automatic Short Answer Grading

ASAG is another popular task in computer-assisted assessment, which attempts to

identify the correctness of the student’s answer according to the correct answer as

well as the given question. There is also a popular open dataset called The Joint

Student Response Analysis which is the 7th task of semeval-2013 2. The key step of

the problem is to learn more accurate semantic matching features. Existing works

mainly consider two types of features namely hand-crafted features and neural fea-

tures. Hand-crafted features are proposed in early works including n-gram features

[38], softcardinality text overlap features [42], graph alignment features [89], aver-

aged word vector text similarity features [89], and other shallow lexical features [67].

Recently, neural network based features are also widely utilized such as the adapted

convolutional recurrent neural network (CRNN) [78], and siamese BiLSTM with earth

mover’s distance pooling [51]. Besides, some works also utilized combined features,

2https://www.cs.york.ac.uk/semeval-2013/task7.html

20

2.3. Text Assessment

for example, sentence embedding, as well as token level hand-crafted features, are

integrated [81].

2.3.2 Automated Text Scoring

Ke and Ng [46] summarized recent works on automated essay scoring. In general,

there are three parts to solve the AES task, namely text representation learning, score

mapping function, and score constraints. Almost all works utilize a linear combination

function to map each text representation to a score. In the rest, we introduce various

score constraints with used approaches for text representation learning.

According to different score constraints, existing works fall into three categories,

namely prediction, recommendation, and reinforcement learning based models.

Prediction is the most general approach, including classification and regression. For

classification, the models directly predict labels that point to different scores. In

comparison, regression models constrain calculated scores to be the same as gold ones.

Generally, hand-crafted features and neural network based features are two popular

methods to learn text representations. Early works mainly focus on the construction

of hand-crafted features such as statistical features and linguistic features. There

are several early AES systems including e-rater [17], PEG (Project Essay Grade)

[84], and IntelliMetric [27]. e-rater utilized ten linguistic features, including eight

representing aspects of writing quality and two representing content. PEG used

a larger feature set with more than 30 elements of writing quality. IntelliMetric

aggregated all the features into five types, namely Focus/Coherence, Organization,

Elaboration/Development, Sentence Structure, and Mechanics/Conventions. Cozma

et al. [21] combined string kernel and word embeddings to extract features. With

the success of deep learning, researchers start to utilize various neural networks to

learn text representations. Taghipour et al. [92] explored several neural networks,

such as Long Short-Term Memory (LSTM) and CNN. Finally, they found that the

21

Chapter 2. Literature Review

ensemble model combining LSTM and CNN performs best. Dong et al. [24] proposed

a hierarchical text model that utilized CNN to learn sentence representations, and

LSTM was used to learn text representations. Yi et al. [93] introduced a model

called SKIPFLOW, which aimed to capture neural coherence features of the text via

considering the adjacent hidden states in the LSTM model.

In the recommendation view, learning to rank approaches is another popular method

to solve this task. Helen et al. [114] firstly addressed this problem as a rank preference

problem. Based on statistical features, RankSVM, a pairwise learning to rank model,

was used as score constraint. Chen and He [14] utilized listwise learning to rank

model to learn a ranking model based on several linguistic features.

Reinforcement learning based models are also possible solutions. Wang et al. [104]

utilized dilated LSTM to learn text representations. Then scores calculation was

guided by quadratic weighted kappa based reward function.

22

Chapter 3

GGP: Glossary Guided

Post-processing for Word

Embedding Learning

3.1 Introduction

Word embedding learning is the task to utilize a continuous vector to represent each

word. With the success of Word2Vec [63] and GloVe [70], which are trained on a

large corpus via a simple neural network or matrix factorization, pre-trained word

representations are widely used in various Natural Language Processing (NLP) tasks,

such as sequence labeling task [52], text classification [47], etc. However, typical word

embedding models including Word2Vec and GloVe, are based on the Distributional

Hypothesis [35], which utilizes the distribution of context words as the target word

representation. In practice, the corpus is always limited, which makes it difficult

to calculate the actual context word distribution of each target word. For example,

synonyms and antonyms are usually hard to distinguish. Meanwhile, the quality of

the word embedding highly depends on the frequency of the word in the corpus, rare

23

Chapter 3. GGP: Glossary Guided Post-processing for Word Embedding Learning

words are usually discarded.

To improve the quality of the word embedding, various knowledge bases such as

WordNet [64], FrameNet [2], and Paraphrase Database [30] are considered. Mean-

while, joint optimization and post-processing are two popular approaches to incorpo-

rate domain knowledge, which have achieved better performance. Joint optimization

based models design extra constraints according to domain knowledge. And they re-

train a new model with integrated objectives on a large corpus and knowledge bases,

which usually require much training time. As for post-processing based models, they

fine-tune pre-trained word embedding models with new constraints on the knowledge

bases, and the data volume of the knowledge bases is much smaller than that of the

corpus. So post-processing is a more efficient way. Besides, as many pre-trained

word vectors exist, e.g., Google News Vectors 1 (based on Word2Vec), GloVe 2, and

FastText 3 [6], post-processing approaches are more effective.

Recent works focus on fine-tuning pre-trained word embedding models with word-to-

word semantic knowledge such as synonyms and antonyms. Retrofitting [28] utilized

semantic lexicons’ relational information and assumed linked words should learn sim-

ilar representations. ER-CNT [32] used a deep neural network to fine-tune word

vectors by adding constraints on synonyms and antonyms. It shows a significant

improvement in topical similarity datasets, while loses the functional information

[56]. There are also some works utilize the glossary to learn word representations

via extending the original corpus with word definitions. The Dict2vec [96] model

constructed word pairs from both the corpus and dictionary entries. Especially for

negative sampling, it ignored the words in pairs from the second part. Then Skip

Gram (Word2Vec) is used to learn the word embedding model. CPAE [9] proposed

a LSTM based auto-encoding model to learn word representations from dictionary

definitions which are assumed to be similar to their embedding. However, Dict2vec

1https://code.google.com/archive/p/word2vec/
2https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/docs/en/english-vectors.html

24

3.1. Introduction

required to retrain the word embedding model, which was time-consuming. CPAE

combined multiple senses of each word into one sense, which is not reasonable. And

in CPAE, the authors also introduced a post-processing model, however, it could only

fine-tune the words having a definition or that occur in definitions.

Glossary is the collection of glosses, and each gloss consists of a word as well as its

definition (a word sequence to explain the word). In common sense, looking up the

glossary (dictionary) is one important way for humans to learn a new word, and

learning from example sentences of the word is another way. However, corpus is

always not enough to estimate the real context words distribution, and there are also

no effective approaches for semantic composition. Combining the corpus and the

glossary is necessary, and they should be modeled in different ways. In Distributional

Hypothesis based word embedding models, word vector represents the distribution

of context words, which combines context words of different senses. Besides learned

word representations are the composition of different senses. So word embedding

should be approximate to the linear combination of its senses’ representations.

We propose GGP (Glossary Guided Post-processing) model, which combines a gen-

eral function to fine-tune all pre-trained word representations, and an auto-encoding

model to learn the representation of each sense. By joint optimization, embedding

learned by GGP exhibits better topical and functional similarity. In addition, to

speed up the convergence of the auto-encoding model, word definitions are also used

to pre-train it.

To evaluate whether our model learns both topical and functional information, we test

our model on six word tpical/functional similarity datasets, i.e., Men, Simverb3500,

RW, Simlex999, WS353 and Mturk. Experimental results show that our model out-

performs rivals by at least 4.1% in all benchmarks. And compared to GloVe, our

model outperforms more than 7%. We also use two glossaries and two pre-trained

word embedding models with different vocabulary sizes to show the effectiveness of

our model. In summary, our contribution are:

25

Chapter 3. GGP: Glossary Guided Post-processing for Word Embedding Learning

• For multi-sense word, we learn sense representation respectively and utilize

attention to integrate them.

• We combine a general post-processing function and sense representation learning

model so that each pre-trained word representation could be post-processed.

• Experimental results show that our model learn both topic and functional in-

formation and performs much better than previous model.

c
v

word

Jointly
Optimize

sense1
sense2
sense3

sense vector
composition

E
nc

od
er

D
ec

od
er

w1 w2 w3 w4 w5

word vector

post-processed
vectorL

S
T

M
L

S
T

M

w1 w2 w3 w4 w5

Figure 3.1: Model Framework (an example of one word with three senses)

3.2 GGP Model

Our model contains two parts as shown in Figure 6.1. The left part is a sequence

to sequence auto-encoding model [57], which is used to transform each sense entry

into a sense vector. The right part is a general mapping function, a multi-layer fully-

connected feed-forward network, to fine-tune each word vector. Besides, we expect

the general function could preserve learned information so that the word embedding

will not change too much. Furthermore, We constrain the linear composition of sense

vectors from the left part to be similar to the post-processed vector in the right part.

26

3.2. GGP Model

3.2.1 Sequence to Sequence Auto-encoding

The auto-encoding model consists of an encoder which transforms a sequence into

a vector, and a decoder which decodes the vector to a new sequence. The encoder

has two layers, the first layer is a bi-directional Long Short-Term Memory (LSTM)

neural network which captures the full context information of each word. The second

layer, a vanilla LSTM network, is used to learn a composition function to transform

a whole sentence into one vector by utilizing word order information. The decoder

is also a two-layer vanilla LSTM neural network which tries to reconstruct the input

sequence from the output of the encoder.

Given a word wt, the definition sequence of ith sense is init = {init,1, init,2, ..., init,ni
},

where ni is the number of words of the sense definition. Encoder(·) and Decoder(·)

are the encoder model and the decoder model respectively. The encoder transforms

the definition sequence into a sequence of hidden states heit = {heit,0, heit,1, ..., heit,ni
}

as shown in Formula 3.1. Meanwhile, heit,ni
is used to represent the ith sense. And

the decoder utilizes the sense representation heit,ni
as the initial hidden state hdit,0,

then generates a new sequence hdit = {hdit,1, hdit,2, ..., hdit,ni
} as shown in Formula 3.2.

he = Encoder(init) = BiLSTM(LSTM(init)) (3.1)

hd = Decoder(heit,ni
) = LSTM(LSTM(heit,ni

)) (3.2)

The reconstruction loss Lr of the auto-encoding part is defined by CrossEntropy loss

shown in Formula 3.3, where nt is the number of senses, init is the input sequence of

the ith sense, and hdit is the output sequence of the decoder.

Lr =
1

nt

nt∑
i=1

CrossEntropy(hdit, in
i
t) (3.3)

27

Chapter 3. GGP: Glossary Guided Post-processing for Word Embedding Learning

3.2.2 Composition of Sense representations

With all calculated sense representations het = {he1t,n1
, he2t,n2

, ..., hent
t,nnt
} of the given

word, additive attention [1] is used to calculate Swt , the composition representation

of all sense vectors, which is shown as Formula 3.4:

Swt =
nt∑
i=1

wi ∗ heit,ni
(3.4)

where heit,ni
is the ith sense representation of the word t, wi is the weight of the

representation of ith sense calculated as Formula 3.5. vwt is the word embedding of

word t, besides, W and b are parameters to be learned.

wi =
tanh(W [vwt , he

i
t,ni

] + b)∑nt

j=1 tanh(W [vwt , he
j
t,nj

] + b)
(3.5)

3.2.3 Multi-layer Fully-connected Feed-Forward Network

To learn a general post-processing mapping function to fine-tune any pre-trained

word vectors, a multi-layer fully-connected feed-forward neural network is adopted.

It maps a vector vwt ∈ Rd∗1 to a new one v′wt
∈ Rd∗1, where d is the dimension size of

the word embedding. Each layer is calculated as:

hn = tanh(Wn−1hn−1 + bn−1) (3.6)

Where W and b are parameters to be learned. And the input h0 is the pre-trained

word vector vwt , the post-processed vector v′wt
is hn. To preserve the information

learned by the pre-trained model, we use F2 norm as the loss Ln shown in Formula

3.7.

Ln = ‖v′wt
− vwt‖

2

F
(3.7)

3.2.4 Extra Constraint and Joint Objective

Given post-processed word vector v′wt
and sense composition representation Swt , we

assume the word representation learned from the corpus and that from the glossary

28

3.3. Experiment and Discussion

should be similar. The loss of the extra constraint Ls is defined as Formula 3.8, where

D means distance measurement.

Ls = D(v′wt
, Swt) (3.8)

All these three objectives are optimized jointly, so the total loss L is defined as

Formula 3.9, where α and β are adjustable weights.

L = Ls + αLr + βLn (3.9)

3.3 Experiment and Discussion

3.3.1 Pre-trained Vectors

GloVe has several pre-trained word vectors with different sizes of corpora, and it

outperforms other word vectors in most word similarity tasks. We select two pre-

trained word vectors trained on two extremely large corpora. One is trained on the

corpus of 840 billion tokens and the vocabulary has 2.2 million unique words. The

other one uses the corpus containing 42 billion tokens and the size of the vocabulary

is 1.9 million. All of the word vectors are in 300 dimensions.

3.3.2 Definition Entries

In our experiment, we construct two dictionaries from WordNet and Opted. We

only extract the definitions explaining the words in the two vocabularies. For the

dictionary from WordNet [64], we extract the word definitions with multi-senses via

the interface provided by NLTK 4. And Opted is from an open project called The

Online Plain Text English Dictionary [34], we parse all the original dictionary files

4http://www.nltk.org/howto/wordnet.html

29

Chapter 3. GGP: Glossary Guided Post-processing for Word Embedding Learning

Vocab Dict NW NSW ALS

1.9M WordNet 51621 1.57 5.39

1.9M Opted 64616 3.49 6.10

2.2M WordNet 47337 1.62 5.33

2.2M Opted 58575 3.68 6.04

Table 3.1: Dictionary Statistics

downloaded from the website 5 and construct a unified dictionary, while each defini-

tion is separated into multiple senses. We also calculate some statistical properties,

including the number of words having senses (NW), the average number of senses for

each word (NSW), and the average length for each sense (ALS), shown in Table 3.1.

We find that Opted contains more words in the two vocabularies of the pre-trained

models, and provides more words to explain senses.

3.3.3 Pre-train Auto-encoding Model

In previous work [41], researchers proposed a pre-trained language model to improve

classification tasks. Motivated by it, we also pre-train the auto-encoding part, then

jointly optimize the auto-encoding part as well as the post-processing part. Further-

more, dictionary entries are used to train the auto-encoding model until the loss on

the validation set increases.

3.3.4 Model Parameter Specification

In all experiments, we adopted softmax as a special distance measurement, which is

approximated by negative sampling [63]. We separate 20% of word and definition

pairs as validation samples. And we use two different word embedding matrices for

5http://www.mso.anu.edu.au/~ralph/OPTED/

30

~

3.3. Experiment and Discussion

Table 3.2: Word Similarity Experiment Results (Spearman’s correlation coefficient ρ

* 100)

Model Corpus Dict SV SL Men RW Mturk WS353 WS-S WS-R

GloVe 42B - 22.6 37.4 74.3 37.4 64.5 63.2 69.8 57.1

ER-CNT 42B - 47.0 61.1 64.7 36.3 56.6 59.5 66.0 49.0

CPAE 42B - 27.5 33.2 52.2 23.0 33.7 40.5 49.5 32.8

GGP 42B WN 28.6 40.6 80.2 42.5 69.8 73.8 76.2 70.2

GGP(PT) 42B WN 29.3 42.4 80.7 42.8 70.3 75.5 78.0 72.7

GGP 42B Opted 30.6 43.8 80.8 43.8 68.2 75.6 78.4 72.4

GGP(PT) 42B Opted 30.5 44.2 81.2 44.6 68.7 75.0 77.8 72.7

Glove 840B - 28.3 40.8 80.5 45.5 69.3 71.2 80.2 64.4

ER-CNT 840B - 47.2 59.0 67.6 43.2 62.3 59.3 70.6 44.6

CPAE 840B - 33.8 39.7 62.3 32.4 41.7 48.7 60.3 39.3

GGP 840B WN 32.0 42.7 82.5 49.0 71.5 73.8 79.0 67.9

GGP(PT) 840B WN 31.9 44.2 82.4 49.5 72.3 75.5 80.2 68.2

GGP 840B Opted 32.7 44.3 82.2 48.6 69.5 73.0 79.4 65.4

GGP(PT) 840B Opted 32.9 44.2 82.1 50.4 70.1 74.7 79.9 68.2

auto-encoding and fully-connected networks respectively, where both the embedding

size are set to 300. In fully-connected networks, we set 3 hidden layers. α and β

are both set to 0.3 for two pre-trained word embedding models. For each word and

definition pair, the number of negative samples is 10. And an Adam optimizer is

used with an initial learning rate as 0.5. Besides, the loss of validation samples is

monitored to know when to stop early.

3.3.5 Word Similarity

We tested our model on six word similarity datasets, including Men [10], Simverb3500

(SV) [31], RW [61], Simlex999 (SL) [39], WS353 [29] and Mturk [75]. Simberb3500 and

31

Chapter 3. GGP: Glossary Guided Post-processing for Word Embedding Learning

Simlex999 are topical similarity datasets [32]. Men, RW, and Mturk are functional

similarity datasets. WS353 consists of a topical similarity part WS-S and a functional

similarity part WS-R. Spearman’s ρ rank correlation between the ground truth and

calculated word similarity from word embedding is used to evaluate the performance.

We show the experimental results on five models including GloVe, ER-CNT [32],

CPAE [9], and our model (GGP), as well as our model with the pre-trained auto-

encoding model (GGP+PT). The former three models are used as baseline models.

For ER-CNT model, the paper only reported the performance on SV and SL datasets,

we run the source code published by the authors 6 to obtain the performance on all

six datasets. CPAE only utilized Word2Vec to evaluate their model and ignored

GloVe, since they said that GloVe performs much better than Word2Vec in their

paper. We also run the source code published by the authors 7 to test the model on

the six datasets. Finally, we tested two pre-trained word embeddings with different

vocabulary sizes and two different dictionaries.

3.3.6 Analysis and Discussion

According to Table 3.2, ER-CNT [32] outperforms other models by a large margin in

SV and SL (two topical similarity tasks), however, on the rest functional similarity

datasets ER-CNT performs worse than GloVe. CPAE [9] shows a little improvement

in SV, and performs worse on all other datasets. Our model enhances GloVe by

around 7% in all datasets, which shows that our model could capture topical and

functional information simultaneously.

The Influence of Distance Measurement Absolute distance and relative dis-

tance are two common distance measurements. Absolute distance including cosine

similarity, Euclidean distance, etc., stresses that two words should be similar enough.

Relative distance, asks two words should be closer than another two words, for exam-

6https://github.com/codogogo/explirefit
7https://github.com/tombosc/cpae

32

3.4. Summary

ple, softmax constrains that the distance between the target word and context word

should be smaller than that between the target word and negative words. In ER-

CNT [32], ”Contrasting Objective” is also a relative distance and shows significant

improvement. In our model, softmax also shows a surprisingly better performance.

The reason is that the relative distance tends to give a partial order to several words

(more than two words), while the absolute distance only constrains two words.

The Influence of the Size of the Corpus GloVe learned from the larger corpus

performs better. When GloVe trained on the small corpus was fine-tuned with the

glossary, it shows a comparable, sometimes even better performance, which shows

the effectiveness of utilizing the glossary. Experiments show less improvement when

incorporating the glossary with the larger corpus, for the overlapping information

between the corpus and the glossary increases. Opted dictionary show better perfor-

mance than WordNet on the small corpus. Since Opted contains more explanations

which provide more extra information.

The Influence of Pre-Trianed AE In most datasets, pre-trained auto-encoding

model shows improvement. Maybe the pre-trained auto-encoding model helps the

total model to be trained from a better initialization.

3.4 Summary

In this paper, we propose a model to incorporate dictionary entries to post-process

word embedding to be more topical and functional. Experimental results show the

effectiveness of our model. To further improve the work, we will combine various

word relationships in a partial order to improve the word embedding models.

33

Chapter 4

Automated Post Scoring:

Measuring Post-Topic Relevance

and Post’s Writing Quality in

Online Forum Discussion for

Learning Performance Estimation

4.1 Introduction

Online education has shown significant growth over the last decade especially under

the pandemic of COVID-19 [69]. As one of the most important features of online

education, discussion forum brings various benefits including boosting learning per-

formance, reducing dropout rates, and increasing course satisfactory [116]. So many

instructors adopt online discussion to assess students’ writing mechanics and knowl-

edge understanding from discussion posts [109]. However, marking numerous posts is

time-consuming and labor-intensive for instructors [92]. Mutual disagreement often

34

4.1. Introduction

occurs when multiple evaluators marking same posts. Even for a single evaluator,

grading consistency is hard to guarantee given numerous posts [85]. Therefore, there

is an urgent need for automated post scoring (APS) to evaluate writing mechanics

and knowledge understanding of students by grading their posts according to given

topics and quoted posts automatically. An illustration of the task is shown in Figure

4.1. It is difficult to assess the knowledge understanding of students directly, so we

evaluate the relevance between posts and given topics instead. In addition, quoted

posts are used as auxiliary features to enhance posts evaluation.

A given topic: “What do think of …?”

Post of A

Post of B

Post of C

Quoted by

APS: grade A, B, C according to their understandings
of the topic and writing quality.

Quoted byQuoted by

Figure 4.1: Illustration of APS

Previous two types of works focused on evaluating either the writing quality or the

correctness of short answers. Automated Text/Essay Scoring (AES) [92] mainly eval-

uates the writing quality of the independent long essays or texts. We refer to ideas

in these works to measure the writing quality of posts. Some works also measure the

relevance between text and prompts. These models utilize simple statistic features

which are difficult to capture deeply semantic matching. They also face difficulties to

align the semantics of multiple sentences. While Automatic Short Answer Grading

Task (ASAG) [65] measures the correctness of the short student’s answer according

35

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

to the correct answer and given question. The semantic matching between long texts

(hundreds of words) is more complicated than that of short texts (one or two sen-

tences). Unlike prompt-relevant AES/ATS, APS is required to utilize extra quoted

posts to enhance the measurement of the posts. And inspired by new neural seman-

tic matching methods [13], advanced semantic matching approaches are necessary.

Compared with ASAG, APS pays attention to the writing quality of long texts, the

relevance between long texts, and the quoted posts. Examples from three typical

dataset corresponding to three tasks are shown in Table 4.1. And the differences

between three tasks are summarized in Table 4.2.

In this paper, we propose different methods to incorporate topics and quoted posts

respectively, since they play different roles in discussion forums. During the discus-

sion, students write posts to respond to the topics, so the relatedness between posts

and topics illustrates their knowledge understanding. It is possible to use semantic

matching to measure relatedness. While students quoted partial arguments of other

students to support or explain their arguments. It is necessary to extract supporting

arguments from quoted posts as auxiliary features.

Our vision, however, entails three challenges when applied to reality. The first chal-

lenge is how to augment topics. They are too short and abstract so that it is difficult to

directly measure the relatedness between abstract concepts and detailed arguments.

The second challenge is how to measure the relatedness between long posts and long

topics. Posts usually introduce several arguments, and the order of the arguments

may be different from that of the concepts in the topics. The last challenge is how to

extract supporting arguments. Quoted posts contain many arguments, however, not

each argument is useful to support the students’ arguments.

To tackle these challenges, we use data augmentation methods to extend the topics,

and propose two different models to integrate topics and quoted posts. More specifi-

cally, we extend the topics with text contents obtained from the hyperlinks contained

in given topics’ description. To map the arguments in posts and concepts description

36

4.1. Introduction

Table 4.1: Sample data of ODD, ASAP Dataset, and Semeval 2013 task 7. For page

limit, only part of posts are shown in Post and Quoted Post in ODD.

APS AES/ATS ASAG

Topic: ”If we could record the activity of all

neurons, we could understand the brain.” Gero

Miesenboeck (2010) @ TED. Based on the ar-

guments presented by Gero Miesenboeck (TED

Video: Hyperlink 1) Partha Mitra (Scientific

American Letter: Hyperlink 2), would you agree

with the above statement? What are your ratio-

nale(s), with reference to your textbook the psy-

chology literature, that support your stand?”

Post: Thanks 2015 1 S202 for taking the role to

summarize our points. It’s nice to see your re-

sponse. I wonder which of the stance you stand

for. As you point out that our discussion is mainly

focusing on the feasibility of the recording method,

I would like to add something to support my ar-

gument. In order to crack the neural code, under-

standing how single neurons and complex networks

process perceptions is a vital factor to understand

the brain.

Quoted Post: What i can conclude from your

discussions is that 2015 1 S57 argued that the

patterns of our brains are complicated and ever-

changing and the insufficiency of recording the ac-

tivity of our brains obstructs the understanding

of our brains. 2015 1 S72 pointed that measuring

the whole brain and then decoding then is not fea-

sible. 2015 1 S292 thought that alternative ways

to understand the brains through psychology.

Score: 15.5

Post: the essay rough

road ahead: do not

exceed posted speed

limit describes a mans

bicycle ride through

california. now, cali-

fornia is very hot dur-

ing the summer, which

is when the cyclist

is riding. this set-

ting greatly affects the

mans journey. it made

it very difficult for him

to finish his ride. he

drank most of his wa-

ter in the beginning

of his ride so he gets

very dehydrated. the

text states, the water

bottles contained only

a few tantalizing sips.

as you can see the set-

ting makes this mans

bikeride very hard.

Score: 2.0

Quetion: Ex-

plain why you

got a voltage

reading of 1.5

for terminal 1

and the positive

terminal.

Correct An-

swer: Terminal

1 and the posi-

tive terminal are

separated by the

gap.

Student An-

swer: because

terminal one

and the positive

terminal are

connected

Label: correct,

contradictory,

incorrect

37

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

Table 4.2: The difference between APS, AES/ATS and ASAG.

Task Typical Dataset Input Data Text Length Labels

APS ODD
posts, topic,

quoted posts
hundreds of words real number

AES/ATS ASAP 1 text hundreds of words real number

ASAG Semeval-2013 2

question,

correct answer,

student answer

one or two sentences several classes

in topics, we propose a matching model which learns sentences’ representations firstly

and calculates the interactions between any two sentences to extract the matching

features. To extract the supporting arguments from quoted posts, we propose a rep-

resentation model which uses an attention model to calculate the weighted sum of

the sentences’ representations of quoted posts. In addition, we also adopt hierarchical

text models to learn the syntactic and semantic information of the posts. We com-

bine these three models as a mixture model and extract features to predict the posts’

scores. We conduct various experiments to verify the effectiveness of topic augmen-

tation, and incorporating topics and quoted posts. Our mixture model outperforms

the hierarchical text model that only assesses the posts by a large margin, nearly 9

percent in Quadratic Weight Kappa.

Our contribution could be summarized as follows:

1. We propose a new task called APS, which evaluates the writing quality and

relevance of posts with extra topics and quoted posts.

2. To solve the task, we propose to measure the relevance by the semantic consis-

tency between the posts and the topics and enhance posts prediction with the

related supporting arguments extracted from quoted posts.

3. Experimental results show that the measurement of relevance and writing qual-

38

4.2. Problem Definition and Dataset

ity can score the posts much more accurately, nearly 9 percent in QWK.

4.2 Problem Definition and Dataset

In this section, we will introduce some basic concepts in the online forum. Then we

give a formal problem definition and show more details about our Online Discussion

Dataset.

4.2.1 Glossary of Online Forum

In this section, we will explain some basic terminologies that are widely used in online

forums, including post, thread, and quoted post.

• Post: A post is a user-submitted text enclosed into a block containing the user’s

details and the date and time it was submitted, which aims to respond to the

given topic.

• Thread: A thread is a collection of posts that respond to the same topic, usually

displayed from oldest to latest.

• Quoted Post: Quoted post is the post that was quoted by another post in the

same thread.

4.2.2 Problem Definition

In this section, we will define the problem from each student’s perspective. In the

online forum, there are several threads. And for each thread, a topic T (si) is given

firstly by the instructors. Then for each students si, he/she is asked to submit ni

posts P (si) = {P (si)1, ..., P (si)ni
;ni ≥ 1} according to the given topic. During the

discussion, the student usually quotes other students’ arguments such as ”Refer to

39

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

Table 4.3: Statistics of Online Discussion Dataset

#Students #Posts AP APL ATL #Quoted AQ Range

694 2542 3.66 270 41.19 405 1.21 [5.0,20.0]

XXX’s point”, so all the posts of quoted students are used as quoted posts. For

each post P (si)j, it quotes several students’ posts q(i, j) = {P (sk) : sk ∈ S(i, j)},

where S(i, j) is the students set quoted by the post. All quoted posts are Q(si) =

{q(i, 1), ..., q(i, ni)}. Instructor marks all posts of each student with a numerical value

G(si). So the proposed task is to learn a mapping function mapping T (si), P (si),

and Q(si) to G(si) as shown in Formula 4.1.

min(G(si)− f(T (si), P (si), Q(si)))
2 (4.1)

4.2.3 Dataset Construction and Pre-processing

We cooperate with the Department of Applied Social Sciences in our university and

get all the online discussion posts from the course ”Introduction to Psychology” in

one academic year (two semesters). Based on these posts, we construct an Online

Discussion Dataset, which contains 86 sub-forums (threads). In each sub-forum,

the instructor gave a topic description first, which is a social science problem with

several keywords and many hyperlinks. With the given topic, students were asked to

write their arguments about the topic with references, which are similar to academic

writing. During writing the posts, students were also encouraged to quote other

students’ arguments to explain their points. Some statistics are given in Table 4.3.

In the table, #Students means the total number of students in our dataset, #Posts

means the total number of posts, and AP means the average number of posts for each

student. Meanwhile, APL is the average number of words of each post, ATL is the

average number of words of each topic, #Quoted is the total number of students who

40

4.2. Problem Definition and Dataset

x
tanh σσσ

x +

x

tanh

x
tanh σσσ

x +

x

tanh

query
key

value

S
elf A

ttention

x
tanh σσσ

x +

x

tanh

x

A
verage P

ooling

P
ost A

w
are Q

uoted
P

ost R
epresentation

P
ost

R
epresentation

quoted post
post

x
tanh σσσ

x +

x

tanh

query
key

value

S
elf A

ttention

query
key

value

S
elf A

ttention

+

+

•

C
N

N

topic
Similarity

Matrix

Hierarchical Text Model

Representation Model

Matching Model

M
atching

F
eatures

Figure 4.2: Framework of our mixture model

41

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

quoted other students’ views, and AQ means the average number of quoted students

for each student. Finally, Range is the score range.

With the raw posts data, our pre-processing mainly includes two parts. Firstly, to

preserve privacy, we need to mask all the student names that appeared in the posts,

and map them to the real students in the sub-forum. To identify the students’ names,

and ignore the names in the references, we use a regular expression to replace all the

references into special tokens, and a tool of Named Entity Recognition is used to find

names in text. Besides, fuzzy string matching is used to map identified names to real

students in the forum. To make sure the complete masking, human verification is also

necessary. Then, there are lots of hyperlinks and references in each post to support

students’ arguments, we replace various hyperlinks and references with special tokens,

similar to replace the names and numbers with special tokens in AES tasks. In the

dataset, each student submits several posts to show his/her arguments and quoted

several students’ posts. We combine all the posts of each student into one, so as the

quoted posts.

Data augmentation is also adopted, since the topic description only consists of several

keywords and hyperlinks. And the abstract concepts are hard to understand by the

machine. We try to enrich the topic with the text provided by the hyperlinks such

as the text content of the web pages or the subtitles of the videos. For those topics

without hyperlinks, we search the abstract concepts in Wikipedia 2 and add the

text content of the web pages into the topics’ description. With the aforementioned

processing, the average topic length is extended from 41.19 to 576.37. Enriching the

topic description also improves the performance of post scoring as shown in Section

5.3.4. In Table 4.4, we show some examples of topic extension.

2https://en.wikipedia.org/wiki/Main Page

42

4.2. Problem Definition and Dataset

Table 4.4: Examples of topic extension via recording subtitles of the video or searching

the keywords in wikipedia

Original Topic Augmented Topic

Based on this discussion on

MBTI types (Hyperlink),

to what extent is preference

towards Anime / Comic /

Game (ACG) being influ-

enced by one’s personality?

Content of Hyperlink: According to an analytical

psychologist, Carl Gustav Jung’s theory of psychologi-

cal types, there are 4 perceiving psychological functions:

A. Introverted sensing This function is affected by hor-

mone levels inside one’s body, and one very often seeks

sense of security there. Such a function forms Keirseyian

temperament called Guardian, and this is commonplace

in all ordinary ACG fans. The relevant MBTI types for

this temper are ISFJ, ISTJ, ESFJ, ESTJ. Some may

call them Pure MK because they seek order on-duty

and break order off-duty. B. Extraverted Sensing This

function allows for originality in production, and this

facilitates conceptualization of ideas as well.

Evidence from psychology

literature suggests that hu-

man memory is far from

being very accurate and we

are prone to process mem-

ory with reference to our bi-

ases. From this perspec-

tive, could we argue that

human memory should be

considered inferior to mem-

ory in computers and other

machines?

Content from Wikipedia: Memory is the faculty

of the brain by which data or information is encoded,

stored, and retrieved when needed. It is the retention

of information over time for the purpose of influencing

future action. If past events could not be remembered,

it would be impossible for language, relationships, or

personal identity to develop. Memory loss is usually de-

scribed as forgetfulness or amnesia. Memory is often

understood as an informational processing system with

explicit and implicit functioning that is made up of a

sensory processor, short-term (or working) memory, and

long-term memory. This can be related to the neuron.

...

43

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

4.3 Posts Assessment Model

In this section, the whole framework is illustrated first. Then, we introduce the hier-

archical text model first. Also, we show the cross attention model which is used in the

latter two models. Finally, we introduce the matching model and the representation

model respectively.

The whole model framework is shown in Figure 6.1. The hierarchical text model is in

the middle of the picture which provides the representations of sentences from posts

to the representation model and matching model. The bottom part is the matching

model capturing the relevance of the topic and post at the sentence level. And a

representation model integrating quoted posts is on the top. All input examples are

two sentences with 3 words in each, LSTM is used as an example to learn sentence

representations and post representations. Cross attention is used to calculate the

similarity matrix in the bottom part, as well as select sentences from quoted posts

in the top part. Finally, the matching feature, post representation, and post aware

quoted post representation are concatenated together to calculate the student score.

4.3.1 Hierarchical Text Model

In general, there are two ways to represent a long text, the first one treats the long

text as a long word sequence, and the latter one constructs a hierarchical model which

regards the long text as a sentence sequence, and for each sentence, it is also a word

sequence. In our scenario, students usually write the first post to introduce their main

argument, and the rest post to explain and add extra references. So we combine all the

posts from the same student into one, and each combined post may have nearly 1000

words on average. In general, there are three sequence models including Long Short-

Term Memory (LSTM), Convolutional Neural Network (CNN), and Transformer.

LSTM always faces some difficulties when coping with very long sequences for limited

44

4.3. Posts Assessment Model

memorization ability. And coping with long sequence, efficiency is always the most

significant problem for transformer, such as BERT, a transformer-based pre-train

language model, sets the maximum sequence length to 512. And CNN model will

lose word order information, which is essential to learn text semantic representation.

Since the text is too long, it is unreasonable to adopt the first representation method.

In this paper, we adopt the second method, the hierarchical text model to learn the

post representation.

In the hierarchical model, a long text is tokenized into several sentences, and each

sentence is tokenized into several words. For efficiency reasons, we use LSTM or

CNN as the semantic composition model to learn the sentence representations from

the word representations. Besides, similar semantic composition models are used to

learn the text representations from the sentence representations. In the rest, we will

mainly introduce how to learn the sentence representation, since the method to learn

the text representation is the same.

To learn the semantic representation of each sentence pi = {wi,1, ..., wi,mi
}, where mi

is the number of words, a word embedding matrix E is constructed first. Then each

word wi,j is mapped into a vector E(wi,j) via the embedding matrix. With obtained

word vectors, LSTM or CNN is used to combine word semantics into the sentence

representation.

LSTM could capture the word order information to learn the syntactic information.

Meanwhile, compared with long text, each sentence only has a pretty small number

of words, and the gate mechanism in LSTM is powerful enough to cope with these

sequences with limited length. To calculate the sentence representation Rs(pi) via

LSTM, we obtain all the hidden states H(pi) = [h0, h1, ..., hmi
] as shown in Formula

4.2, then average pooling or attention mechanism is used to combine these hidden

states.

H(pi) = LSTM({E(wi,1), E(wi,2), ..., E(wi,mi
)}) (4.2)

45

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

The advantage of average pooling is to capture more early information in each se-

quence, which will gradually decrease in RNN based models. However, not each word

contributes equally to the sentence semantic. Unlike average pooling, attention is

proposed to learn different weights for each word. The calculation of the attention

weight is shown in Formula 4.3, where W1 and W2 are projection matrices. And the

sentence representation could be computed by Formula 4.5.

Wt = softmax(W2 · tanh(W1 ·H(pi)
T)) (4.3)

softmax(−→z)i =
ezi∑K
j=1 e

zj
(4.4)

Rs(pi) = Wt ·H(pi)
T (4.5)

CNN can capture phrase information which is useful to identify abstract concepts in

posts. With obtained word embedding sequence E(pi), convolutional layer is com-

puted as Formula 4.6, where W and b are the parameters and shared across all

windows in the sequence. Relu is used as the non-linear activation function and

maximum pooling is added to compress the learned features as shown in Formula 4.7.

Conv(E(pi)) = W · E(pi) + b (4.6)

Rs(pi) = MaxPooling(Relu(Conv(E(pi)))) (4.7)

With learned sentence representations of each post Rs(p) = {Rs(p1), ..., Rs(pm)},

where m is the number of sentences, Formula 4.5 and Formula 4.7 are also used

to learn the post representation R(p) by replacing the words embedding sequence

E(pi) with the sentences representations sequence Rs(p) as shown in Formula 4.8 and

Formula 4.9. Attention mechanism and LSTM could be used together to learn the

importance of different sentences.

R(p) = AvgPooling(H(Rs(p))
T) (4.8)

R(p) = MaxPooling(Relu(Conv(Rs(pi)))) (4.9)

46

4.3. Posts Assessment Model

In this section, we introduced the whole process that how to implement the hierar-

chical text model by various combinations of word representations composition and

sentence representations composition.

4.3.2 Cross Attention Model

Referring to previous work [118], cross attention is a key approach to model the

word-level interaction between two sentences or sentence-level interaction between two

texts. Cross attention is a variation version of self-attention proposed in Transformer

[98].

Cross attention also has three input sequences, namely Q = [Rs(pi)]
nQ−1
i=0 , K =

[Rs(pj)]
nK−1
j=0 , V = [Rs(pk)]

nV −1
k=0 respectively, where nQ, nK and nV denote the number

of sentences in each long text, and Rs(·) stands for the sentence representation model,

nK is equal to nV . The model first takes each sentence in the query text to attend to

sentences in the key text via Scaled Dot-Product Attention [98]. Then those attention

results were applied upon the value text, which is defined as:

Att(Q,K) = [softmax(
Q[i] ·KT

√
d

)]
nQ−1
i=0

Vatt(Q,K, V) = Att(Q,K) · V ∈ RnQ×d (4.10)

where Q[i] is the ith sentence representation in the query text Q and d is the represen-

tation size. Each row of Vatt, denoted as Vatt[i], stores the fused semantic information

of sentences in the value text that possibly have dependencies to the ith sentence in

query text. For each i, Vatt[i] and Q[i] are then added up together, compositing them

into a new representation that contains their joint meanings.

With the detailed implementation of cross attention, the matching model and repre-

sentation model will be introduced respectively.

47

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

4.3.3 Matching Model

Instructors evaluate students’ posts by estimating the relevance between the post

and the topic. In this paper, the matching model attempts to calculate the semantic

matching features to capture the semantic consistency between the post and the given

topic. More specifically, with learned sentences’ representations, a cross attention

model calculates the interactions between any two sentences to obtain the similarity

matrix. Then, CNN is used to extract the matching features.

We utilize cross attention to calculate a similarity matrix Simp,t ∈ Rnp×nt between

post sentences Rs(p) = Rs(P (si)) and topic sentences Rs(t) = Rs(T (si)) via Formula

4.11. Similar to Formula 4.7, a two dimensional convolutional layer and a maximum

pooling layer are used to extract the matching feature as shown in Formula 4.12.

a = Vatt(Rs(p), Rs(t), Rs(t))

b = Vatt(Rs(t), Rs(p), Rs(p))

a = Rs(p) + a

b = Rs(t) + b

Simp,t = a · bT (4.11)

Conv2D(Simp,t) = W · Simp,t + b

R(p, t) = MaxPooling2D(Relu(Conv2D(Simp,t))) (4.12)

In summary, to measure the semantic consistency between posts and given topics, the

cross attention model is used to calculate the semantic matching matrix, then CNN

is used to extract the matching features.

4.3.4 Representation Model

Quoted posts are also important parts to measure students’ posts. Since the quoted

arguments in quoted posts reveal the student’s understanding of the given topics.

48

4.3. Posts Assessment Model

The key idea to incorporate quoted posts is similar to the attention mechanism, we

select the most relevant sentences from quoted posts as the auxiliary post aware

quoted post representation. More specifically, making quoted posts and posts attend

to each other, it is significant to capture dependencies between those latently matched

segment pairs, which can provide complementary information for post representation.

In addition, the cross attention model will not consider the sentence order, we combine

all the quoted posts into one post.

With calculated sentence representation sequence for the post Rs(p) = Rs(P (si))

and that for the combined quoted post Rs(q) = Rs(Q(si)), quoted post aware post

representation R(p|q) is calculated by the cross attention model as shown in Formula

4.13.

R(p|q) = AvgPooling(Vatt(Rs(p), Rs(q), Rs(q))) (4.13)

In this section, the cross attention model is used to select sentences from quoted posts

referring to posts.

4.3.5 Scoring Function

With learned post representation R(p), matching feature R(p, t), and post aware

quoted post representationR(p|q), we get the final representationRf (p) = [R(p), R(p, t), R(p|q)]

via combining the post representation and additional features.

Then a fully connected neural network FCNN(·) is used as the score mapping function.

In addition, σ = Sigmoid(·) activation function is used to normalize the score into

[0,1] as shown in Formula 4.14. More specifically, FCNN is a linear function, W is

the weight matrix and b is the bias. To learn better parameters, the mean score of

all students in training set is used to initialize the bias b.

G(si)
′ = σ(W ·Rf (p) + b) (4.14)

For regression problem, Mean square error is used as the loss of the neural networks.

49

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

With all the gold scores {G(si)|i ∈ [1, N]} and calculated scores {G(si)
′|i ∈ [1, N]}

for each student, the objective function is Formula 4.15.

L = MSE(G(si), G(si)
′) =

1

N

N∑
i=1

(G(si)−G(si)
′)2 (4.15)

4.4 Experiment

4.4.1 Experiment Setting

In this paper, we utilize 5-fold cross-validation to evaluate all models with a 60/20/20

split for train, validation, and test sets. All models are trained for 100 epochs and

the best model based on the performance on the validation set is selected to evaluate

the performance on the test set. We tokenize the text into sentences and words

using NLTK 3, and normalize all scores range to [0,1]. The scores are rescaled back

to the original scale for calculating scores of Quadratic Weighted Kappa, Spearman

Correlation Coefficient, Pearson Correlation Coefficient, and Rooted Mean Square

Error. GloVe 4 [70] is used to initialize the word embedding matrix, and the dimension

is set to 300. Besides, the learning rate is set to 0.00015, and the batch size is set to

16.

4.4.2 Evaluation Metrics

We employ two types of evaluation metrics, namely correlation based measurements

including Quadratic Weight Kappa (QWK), Spearman Correlation Coefficient (SCC),

and Pearson Correlation Coefficient (PCC), as well as residuals based measurements,

Rooted Mean Square Error (RMSE).

3https://www.nltk.org
4https://nlp.stanford.edu/projects/glove/

50

4.4. Experiment

QWK measures the agreement between human raters and machine raters quadrati-

cally. As the calculation shown in [97]. A weight matrix W is constructed firstly as

shown in Formula 6.11, where i and j are the reference rating (the gold ones assigned

by human annotator) and the hypothesis rating (calculated by the machine system)

respectively, and N is the number of possible ratings.

Wi,j =
(i− j)2

(N − 1)2
(4.16)

In addition, a matrix O is also calculated such that Oi,j denotes the number of

students who obtained a rating i by the human annotator and a rating j by our

model. Another matrix E with the expected count is calculated as the outer product

of histogram vectors of the two ratings. The matrix E is then normalized such that

the sum of elements in E is the same as that of elements in O. Finally, with given

matrices O and E, the QWK score is calculated according to Formula 6.12.

κ = 1−
∑

i,jWi,jOi,j∑
i,jWi,jEi,j

(4.17)

SCC and PCC are two popular correlation measurements to compare the orders im-

posed by gold and system scores over all students [?]. More specifically, the Pearson

coefficient, commonly denoted by ρ, is defined as the covariance of the two variables

divided by the product of their respective standard deviations as shown in Formula

4.18. cov(X, Y) refers to the covariance of the two variables, and Σ means the stan-

dard deviation.

ρX,Y =
cov(X, Y)

ΣXΣY

(4.18)

The Spearman coefficient is calculated by applying the Pearson coefficient to rank

transformed data. Both are unaffected by linear transformations of the data. Given

vectors x and y, respectively sampling X and Y and each of length n, the sample

Pearson coefficient rx,y is obtained by estimating the population covariance and stan-

dard deviations from the samples, as defined in Formula 4.19. Here x̄ and ȳ denote

the sample means.

rx,y =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(4.19)

51

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

RMSE is the root of MSE loss we used, which evaluates the residuals between gold

scores and calculated scores as shown in Formula 4.20.

RMSE(y, y′) =

√√√√ 1

n

n∑
i=1

(yi − y′i)2 (4.20)

4.4.3 Experiment Results and Analysis

In this section, we conduct three experiments, the first experiment shows the results

of different text representation models that only utilizing the posts information. The

second experiment shows the effectiveness of integrating given topics or quoted posts.

The last experiment illustrates the results of combining given topics and quoted posts.

Furthermore, we extend the topic description during pre-processing, we also verify

the effectiveness of the extension. Since APS is a new application that considers given

topics and quoted posts during marking students’ online posts, in our experiment, we

only verify the effectiveness of our model to integrate given topics and quoted posts.

In general, we have three types of models including hierarchical text models, mod-

els integrating topics or quoted posts respectively, and models incorporating topics

and quoted posts simultaneously. Names of all models are in the form of A-B for

hierarchical text models, and A-B-D for the last two types of models. A refers to

the word composition model and the sentence composition model including L means

LSTM, LL means LSTM for word composition and sentence composition, LC refers

to LSTM for word composition and CNN for sentence composition, CL means CNN

for word composition and LSTM for sentence composition. B represents the methods

that combine the hidden states calculated by LSTM. AP means average pooling, and

Attn means attention methods. D shows the representation model or/and matching

model used by given topics or/and quoted posts. T means integrating Topics and

Q means incorporating Quoted posts. R refers to the Representation model and

M refers to the Matching model. For example, RQ uses the Representation model

to integrate Quoted posts, MT utilizes the Matching model to incorporate given

52

4.4. Experiment

Topics, RQT means that using the Representation model to integrate Quoted posts

and Topics, and MTRQ refers to incorporating given Topics and Quoted posts by

the Matching model and Representation model respectively.

Baseline Models

In this subsection, we introduce a basic text representation model, four hierarchical

text representation models, and one pre-trained model that only using the posts. The

basic text representation model treats each student’s posts as a long word sequence,

LSTM as well as average pooling is used to learn the text representation. The four

hierarchical text models utilize CNN, LSTM to compose word sequences or sentence

sequences respectively. Meanwhile, average pooling and attention are used to obtain

the sentence or text representations from the hidden states, the output of the LSTM.

In addition, we also adopt a widely used pre-trained model, RoBERTa [60], to learn

text representations. All these models will be adopted as baseline models.

• L-AP LSTM is used to learn the whole text representation, to alleviate the poor

memorization ability, average pooling is used on all the hidden states. More

specifically, a two-layer unidirectional LSTM is adopted, and the dimension of

the hidden state is set to 300.

• LL-AP Two two-layer unidirectional LSTM are used to learn sentence repre-

sentations and post representations. Also, average pooling is utilized to com-

bine the hidden states from the output of word sequences or that of sentence

sequences. And 300 is the dimension size of hidden states.

• LL-Attn Unlike the previous model, the attention mechanism is used to com-

bine all the hidden states of the word representations. We utilize the additive

attention mechanism with an additional linear transformation layer following

calculated attention weights, which has been proved to be useful in representa-

tion learning.

53

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

Table 4.5: Experiment results of the basic text model and four hierarchical text

models.

Model QWK ↑ SCC ↑ PCC ↑ RMSE ↓

L-AP 0.410 0.459 0.459 2.36

LL-AP 0.440 0.436 0.470 2.38

LL-Attn 0.443 0.437 0.475 2.35

CL-AP 0.474 0.518 0.523 2.25

LC-AP 0.426 0.448 0.463 2.47

RoBERTa 0.511 0.494 0.542 2.27

• CL-AP CNN is used to learn sentence representations, and LSTM is utilized to

learn text representations via average pooling. For the CNN model, 100 filters

is used and 2 is the filter size.

• LC-AP LSTM is used to learn sentence representations via average pooling,

and CNN is utilized to learn text representations. 1-D convolutional network

is used to combine adjacent sentences. We set the filter size to 2, 3, 4 and also

use 100 filters.

• RoBERTa RoBERTaBASE is used to learn the semantic representation of each

student’s posts. Since the maximum length of the input sequence is 512 tokens,

we combine all the posts of each student into one and extract the first 510

tokens. More specifically, we set the batch size to 8, and the learning rate to

3E-5. We fine-tune the model for 30 epochs.

The results of these six models are shown in Table 4.5. Firstly, the hierarchical model

LL-AP performs comparatively even better than the pure text model L-AP. The re-

sults show that although the average pooling can alleviate the poor memorization

ability, the hierarchical model can largely avoid the shortage of LSTM coping with

long sequences. CL-AP achieves the best performance on two evaluation metrics

54

4.4. Experiment

namely SCC and RMSE, and outperforms the other three hierarchical models by a

large margin. More specifically, at least 3 percent in QWK, nearly 6 percent in SCC,

and approximately 5 percent in PCC. With the analysis of the posts data, students

usually utilize various terminology to explain and support his/her points, CNN per-

forms better to learn the phrase information. Meanwhile, the posts are required to

be organized logically, LSTM is good at capturing the order information. Pre-trained

models have gained great success in natural language understanding and generation

tasks, since they can capture deeply semantic meaning of the input sequences. With

the only first 510 tokens of each student’s posts, RoBERTa also achieves much higher

performance on QWK and PCC, which outperforms the best hierarchical model, CL-

AP, more than 3 point on QWK, and near 2 point on PCC. The results verified the

significant effectiveness of the pre-trained model on representation learning.

Models using Topics and Quoted Posts respectively

In this subsection, we mainly introduce how the representation model and the match-

ing model utilize given topics and quoted posts respectively. And conducting exper-

iments on these models to verify the effectiveness of incorporating extra texts such

as given topics or quoted posts. Also, we verify that the matching model is more

suitable to use the topic information, and the representation model takes advantage

of integrating quoted posts.

In these models, the hierarchical models are used to learn the representation of posts.

And we only use LSTM to learn the sentence representations of given topics and

quoted posts. With given hierarchical text models, we show how to incorporate given

topics and quoted posts by the representation model and matching model respectively.

Based on the three hierarchical models, LL-AP, CL-AP, LC-AP, there are three repre-

sentation models to use given topics namely LL-AP-RT, CL-AP-RT, LC-AP-RT,

and three representation models to utilize quoted posts including LL-AP-RQ,CL-

55

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

Table 4.6: Experiment results of matching and representation models.

Model QWK ↑ SCC ↑ PCC ↑ RMSE ↓

RoBERTa 0.511 0.494 0.542 2.27

LL-AP 0.440 0.436 0.470 2.38

LL-AP-RT 0.444 0.482 0.504 2.34

LL-AP-MT 0.524 0.539 0.556 2.21

LL-AP-RQ 0.538 0.559 0.572 2.16

LL-AP-MQ 0.517 0.538 0.551 2.26

CL-AP 0.474 0.518 0.523 2.25

CL-AP-RT 0.461 0.507 0.509 2.28

CL-AP-RQ 0.501 0.541 0.559 2.15

LC-AP 0.426 0.448 0.463 2.47

LC-AP-RT 0.446 0.464 0.498 2.33

LC-AP-RQ 0.482 0.511 0.528 2.32

AP-RQ, LC-AP-RQ. Since the LL-Attn model has much more parameters than

the representation or matching models, the combined models are hard to converge.

We did not show the results of LL-Attn based representation or matching models.

The matching models utilize CNN to extract the matching features, if the matching

models are combined with CL-AP or LC-AP, the two CNN models lead to hard

convergence. So for the matching model, we only show the results based on LL-

AP. For all the matching models, the 2-D convolutional network is used to extract

matching features from the similarity matrix, to obtain features from different scales,

we set the filter sizes to 3 ∗ 3, and 4 ∗ 4, and we use 100 filters. LL-AP-MT is the

model to integrate given topics and LL-AP-MQ is the model to utilize quoted posts.

Table 4.6 shows the experimental results of all mentioned models.

By utilizing topic information, all models including LL-AP-RT, LC-AP-RT, and LL-

AP-MT, consistently perform better than corresponding hierarchical text models on

56

4.4. Experiment

all evaluation metrics. Especially, LL-AP-MT outperforms all hierarchical text mod-

els on three correlation metrics by a large margin, more than 4 percent, and also

gains the lowest RMSE score. All these results show that the topic is important to

learn more accurate post scores. Besides, LL-AP-MT also outperforms LL-AP-RT,

CL-AP-RT, and LC-AP-RT, more than 6 percent on the QWK score, 3 percent on

the SCC score, and 4 percent on the PCC score, and obtains the lowest RMSE score.

These results prove that the semantic matching model is more suitable for coping

with the topic information compared with the representation model. Because CNN

based matching model captures sentence-level semantic interactions (the similarity

matrix calculated by cross attention) which are helpful to measure the relevance be-

tween posts and given topics. Compared with the pre-trained model, RoBERTa,

LL-AP-MT also gains better performance on all evaluation metrics. It also proves

the effectiveness of incorporating extra topics via the matching model.

To integrate quoted posts, LL-AP-RQ, CL-AP-RQ, LC-AP-RQ, and LL-AP-MQ,

consistently outperform corresponding hierarchical text models on all evaluation met-

rics. More specifically, CL-AP-RQ correlates better more than 2 percent on the QWK

score, 2 percent on the SCC score, and 3 percent on the PCC score. The rest three

models correlate better more than 5 percent on the QWK score, 6 percent on the

SCC score, and 6 percent on the PCC score. They also gain lower RMSE scores than

that of corresponding hierarchical text models. All these results illustrate that quoted

posts are also important to improve the accuracy of predicting students’ scores. Fur-

thermore, LL-AP-RQ outperforms LL-AP-MQ on all correlation evaluation metrics

by a large margin, more than 2 percent. These results prove that compared with

the semantic matching model, the representation model is more effective to integrate

quoted posts. Since the representation model used cross attention to select relevant

sentences in quoted posts which reveal the student’s understanding of quoted posts.

Compared with the pre-trained model, RoBERTa, LL-AP-RQ also gains much better

performance on all evaluation metrics. It also proves the effectiveness of incorporating

57

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

Table 4.7: Experiment results of mixture models.

Model QWK ↑ SCC ↑ PCC ↑ RMSE ↓

LL-AP-RQ 0.538 0.559 0.572 2.16

LL-AP-RTQ 0.551 0.587 0.584 2.17

CL-AP-RQ 0.501 0.541 0.559 2.15

CL-AP-RTQ 0.492 0.531 0.545 2.16

LC-AP-RQ 0.482 0.511 0.528 2.32

LC-AP-RTQ 0.519 0.540 0.553 2.25

LL-AP-MT 0.513 0.541 0.558 2.22

LL-AP-MTQ 0.528 0.549 0.556 2.23

LL-AP-MTRQ 0.561 0.582 0.612 2.13

extra quoted posts via the representation model.

Mixture Models combining Topics and Quoted Posts

In this section, to verify the effectiveness of combining given topics and quoted posts

simultaneously, we introduce three types of models. Firstly, models use the repre-

sentation model to integrate both texts based on the three basic hierarchical text

models, namely LL-AP-RTQ, CL-AP-RTQ, LC-AP-RTQ. Then, the model uti-

lizes the matching model to integrate both texts based on LL-AP, LL-AP-MTQ.

The last model, LL-AP-MTRQ, incorporates given topics by the matching model

and quoted posts by the representation model. Since in the former experiment, the

representation model performs better to integrate quoted posts, while the matching

model gains better performance in using given topics. In this experiment, we com-

pare the mixture models with LL-AP-RQ, CL-AP-RQ, LC-AP-RQ, and LL-AP-MT

as shown in Table 4.7.

Focusing on the mixture models, LL-AP-RTQ, LL-AP-MTQ, and LC-AP-RTQ show

58

4.4. Experiment

comparable even better performance, while CL-AP-RTQ performs much worse than

CL-AP-RQ. And in Table 4.6, CL-AP-RT also gains lower performance compared

with CL-AP. It seems that integrating given topics with representation models will

decrease the performance of the hierarchical model CL-AP. Since the representation

model calculates the interaction between sentence representations from two texts.

The semantics captured by the CNN model is quite different from that captured by

LSTM. The inconsistency of the two representations hurt the performance. LL-AP-

MTRQ, the model incorporating topics via the matching model and quoted posts

via the representation model, outperforms all other models almost on all evaluation

metrics. It shows the effectiveness of incorporating topics and quoted posts with

the matching model and representation model respectively. As mentioned before,

the representation model is suitable for quoted posts, and the matching model takes

advantage of given topics. The mixture model integrating both topics and quoted

posts performs better.

Extension of Topics

In previous experiments, we extend the topic description. We also run hierarchical

text models on the original topic description as shown in Table 4.8. Models with *

utilized the original topic descriptions. All models integrating extended topics show

better performance than corresponding models integrating original topics. It proves

the effectiveness of extending the descriptions of topics. Compared with all hierar-

chical text models, LL-AP-RT* and CL-AP-RT* perform worse, while LL-AP-MT*

achieves much better performance on all four models. It shows that the matching

model can make better use of topics information than the representation model. LL-

AP-MT* also gains comparable even better performance than the models utilizing

extended topics via the representation model including LL-AP-RT, CL-AP-RT, and

LC-AP-RT. The results also prove that the matching model is much suitable to inte-

grate topic information compared with the representation model.

59

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

Table 4.8: Experiment results of models incorporating topics given by instructors.

Model QWK ↑ SCC ↑ PCC ↑ RMSE ↓

LL-AP-RT* 0.377 0.431 0.436 2.52

LL-AP-RT 0.444 0.482 0.504 2.34

CL-AP-RT* 0.382 0.408 0.448 2.47

CL-AP-RT 0.461 0.507 0.509 2.28

LC-AP-RT* 0.443 0.454 0.505 2.37

LC-AP-RT 0.446 0.464 0.498 2.33

LL-AP-MT* 0.485 0.485 0.518 2.29

LL-AP-MT 0.524 0.539 0.556 2.21

Hyper-parameter Analysis

In this section, we conduct additional experiments to show the effect of hyper-

parameters. We mainly focus on the filter size of the convolutional neural network in

CL-AP, CL-AP-RQ, LC-AP, LC-AP-RQ, LL-AP-MT, and LL-AP-RQMT. Since the

representation model performs better to integrate quoted posts, and matching model

is suitable for given topics. Then we also conduct experiments to see the influence of

different learning rates in LL-AP-RQMT, the best model in our work.

Figure 4.3(a) shows the experimental results of CL-AP with different filter sizes and

evaluation metrics. The results show that with more multi-scale filters, the perfor-

mance decreases. The filter sizes indicate the window size of adjacent words in each

sentence. The reason may be that most key-phrases contain two words.

Figure 4.3(b) illustrates the performance of LC-AP. The filter size refers to the window

size of adjacent sentences. The results show that by considering a proper number of

sentences, we can obtain better text representations.

The influence of different filter sizes with different evaluation metrics of CL-AP-

RQ is shown in Figure 4.3(c). The performance shows similar trends with CL-AP.

60

4.4. Experiment

(2) (2,3) (2,3,4) (2,3,4,5)
Filter Size

42

44

46

48

50

52

54

56

Pe
rfo

rm
an

ce
(%

)

QWK
SCC
PCC

(a) CL AP

(2) (2,3) (2,3,4) (2,3,4,5)
Filter Size

36

38

40

42

44

46

Pe
rfo

rm
an

ce
(%

)

QWK
SCC
PCC

(b) LC AP

(2) (2,3) (2,3,4) (2,3,4,5)
Filter Size

44

46

48

50

52

54

56

Pe
rfo

rm
an

ce
(%

)

QWK
SCC
PCC

(c) CL AP RQ

(2) (2,3) (2,3,4) (2,3,4,5)
Filter Size

46

47

48

49

50

51

52

53
Pe

rfo
rm

an
ce

(%
)

QWK
SCC
PCC

(d) LC AP RQ

(2) (2,3) (2,4) (3,4) (2,3,4)
Filter Size

51

52

53

54

55

56

Pe
rfo

rm
an

ce
(%

)

QWK
SCC
PCC

(e) LL AP MT

(2) (2,3) (2,3,4) (2,3,4,5)
Filter Size

50

52

54

56

58

60

Pe
rfo

rm
an

ce
(%

)

QWK
SCC
PCC

(f) LL AP MTRQ

Figure 4.3: Experimental results of various models with different filter sizes.

61

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

0.00005 0.0001 0.00015 0.0002
Learning Rate

56

57

58

59

60

61

Pe
rfo

rm
an

ce
(%

)

QWK
SCC
PCC

Figure 4.4: Experimental results of LL-AP-MTRQ with different learning rates.

Since using the representation model to incorporate quoted posts will not affect the

representations of posts.

In Figure 4.3(d), we also show the influence of different filter sizes on LC-AP-RQ.

With extra quoted posts, the filter size has more effect on the performance.

In Figure 4.3(e), the experimental results illustrate the influence of different filter

sizes on the matching model, LL-AP-MT. Proper multi-scale filter sizes gain better

performance.

We also show filter sizes’ influence in Figure 4.3(f) of the mixture model, LL-AP-

MTRQ. Since the model is more complex, multi-scale filter sizes do gain better per-

formance.

With the illustration of the influence of different filter sizes, we also conduct experi-

ments to see how learning rate affects the mixture model, LL-AP-MTRQ.

Figure 4.4 shows the performance of LL-AP-MTRQ with different learning rates.

Slightly higher learning rates lead to better performance.

62

4.4. Experiment

Table 4.9: Experiment results of models incorporating topics given by instructors.

Model LL-AP CL-AP LC-AP LL-AP-RQ

#Parameters 1.8M 0.96M 1.17M 1.8M

Runtime (BPS) 14.0 18.0 15.0 7.7

Model CL-AP-RQ LC-AP-RQ LL-AP-MT LL-AP-MTRQ

#Parameters 0.96M 1.17M >1.8M >1.8M

Runtime (BPS) 8.5 8.1 5.2 5.1

Model Parameters Analysis

In this section, we compare the model complexity measured by the number of the

parameters of hierarchical text models, as well as representation models and matching

models. Meanwhile, we also show the running time of different models. All the

statistics are shown in Table 4.9.

We calculate the number of parameters of various models first. For the representation

models, we utilize multiple attention to implement the self-attention, so these models

do not require extra parameters. For the model using convolutional neural networks,

the total number of the parameters highly rely on the multi-scale filter sizes. For

LL-AP-MTRQ, the representation model has no extra parameters, and the matching

model contains several 2-D filters. However, the total number of the parameters of

the filters is significantly less than that of the LSTM. So we use ¿1.8M as the number

of the parameters of the LL-AP-MTRQ model. So as LL-AP-MT. The total number

of parameters of the filters is extremely small than that of LSTM.

To compare the run-time of each model, we utilize Batch Per Second (BPS) as the

metric, which means that how many batches can be trained during one second. Al-

though representation models do not require extra parameters, they still contain com-

plicated calculations. Compared with the three hierarchical models including LL-AP,

CL-AP, and LC-AP, LL-AP-RQ, CL-AP-RQ, as well as LC-AP-RQ have the same

63

Chapter 4. Automated Post Scoring: Measuring Post-Topic Relevance and Post’s
Writing Quality in Online Forum Discussion for Learning Performance Estimation

number of parameters as the corresponding models. However, these models require

more runtime.

4.5 Summary

In this paper, we propose a new task called APS to measure the writing quality and

relevance of the posts with extra topics and quoted posts. To solve the proposed task,

we propose a mixture model including a hierarchical text model to measure the writing

quality, a semantic matching model to utilize topics, and a representation model

to integrate quoted posts. Experimental results show that combining the relevance

measurement via integrating topics and quoted posts can improve the performance

on the correlation metrics by more than 6 percent. The model also performs better

than integrating topics or quoted posts respectively. Furthermore, integrating topics

via the matching model and quoted posts via the representation model achieves the

best performance almost on all evaluation metrics, which proves that the semantic

matching model is suitable to integrate topics and the representation model can make

better use of quoted posts.

64

Chapter 5

Enhancing Pre-trained Models

with Self-supervised Intermediate

Tasks for Natural Language

Understanding

5.1 Introduction

Pre-trained language models (PTMs) can be easily adapted to solve various natural

language processing tasks and gain much higher performance than previous solutions.

So it is a new trend to improve the performance of various tasks based on existing

PTMs. An effective approach is to further train PTMs on intermediate tasks before

fine-tuning them on downstream tasks.

Investigating what and how intermediate tasks benefit downstream tasks becomes

a hot topic. Intermediate tasks include supervised tasks and self-supervised tasks.

Most of the existing works focus on supervised tasks. For example, Pruksachatkun

65

Chapter 5. Enhancing Pre-trained Models with Self-supervised Intermediate Tasks
for Natural Language Understanding

et al. [73] performed a large-scale study on massive supervised intermediate and

target tasks. Supervised tasks are highly dependent on labeled datasets, which is

time-consuming to identify or construct. However, self-supervised tasks can be con-

structed more flexible and do not require human-annotated labels. The current study

on self-supervised tasks only pays attention to adapting the general PTMs to specific

domains. For instance, Gururangan et al. [33] proposed to utilize the masked lan-

guage model (MLM) task to fine-tune PTMs on domain-specific corpora. MLM relies

on extra corpora, which are labor-intensive to collect.

In this paper, we extend the study on self-supervised intermediate tasks to the general

domain without requiring extra corpora. More specifically, we identify four self-

supervised tasks, and then investigate how they benefit downstream tasks. The four

tasks are next sentence prediction (NSP) [22], sentence ordering prediction (SOP) [53],

sentence structural objective (SSO) [102], and sentence position prediction (SPP) [15].

To avoid using extra corpora, we construct new datasets from the English Wikipedia

Corpus1 which are widely used to train existing PTMs. To explore the effectiveness of

identified tasks, it is necessary to conduct a fair comparison so that it is important to

select a PTM that does not contain any discourse-level information. RoBERTa [60]

that was trained only on the MLM task is most suitable. We fine-tune the RoBERTa

model with the four tasks respectively and evaluate the fine-tuned models on three

popular benchmarks namely GLUE [101], SWAG [117], and SQuAD [77] to discover

in what ways the four tasks can benefit tasks in three benchmarks. Besides, with fine-

tuning once, we also explore the effectiveness of multi-round fine-tuning as well as

the task order. We utilize multiple tasks to fine-tune PTMs consecutively in different

orders such as from easy task to hard task or in reverse. Furthermore, existing PTMs

used multiple natural sentences to fulfill text segments to construct training samples.

We also conduct experiments to see the effectiveness of constructed datasets with

different text segments.

1https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

66

5.2. Self-supervised Intermediate Tasks

In summary, we have the following findings: i) Discourse-level information can im-

prove the performance of tasks in the three benchmarks. ii) NSP, the task measuring

the semantic relatedness, performs much better on the similarity and paraphrase

tasks compared with SOP. iii) SOP, the task inferring the sentence order, achieves

higher performance of inference tasks compared with NSP. iv) SSO, the combination

of NSP and SOP, benefits the question answering tasks by a large margin. v) Text

segments with one natural sentence perform much better than those with multiple

natural sentences.

5.2 Self-supervised Intermediate Tasks

Before introducing our identified self-supervised intermediate tasks, we will briefly

review the BERT model and the RoBERTa model.

5.2.1 Review of BERT and RoBERTa

BERT [22] is a multi-layer bidirectional Transformer encoder. To introduce the model

specification, the number of layers (i.e., Transformer blocks) is L, the hidden size is

H, and the number of self-attention heads is A. In general, there are two BERT

models, namely BERTBASE (L=12, H=768, A=12, Total Parameters=110M) and

BERTLARGE (L=24, H=1024, A=16, Total Parameters=340M). BERT utilized two

pre-training tasks including masked language model and next sentence prediction, and

large corpora involving the BooksCorpus (800M words) [?] and the English Wikipedia

Corpus (2500M words)1 to train the model.

RoBERTa [60] claimed that BERT was significantly undertrained and proposed an

improved recipe for training BERT models. The modifications are: a) training the

model with bigger batches, over more data; b) removing the next sentence predic-

tion task during training; c) training on longer sequences; d) dynamically changing

67

Chapter 5. Enhancing Pre-trained Models with Self-supervised Intermediate Tasks
for Natural Language Understanding

the masking patterns and training the model longer. Since RoBERTa did not re-

vise the model architect of BERT. There are also two RoBERTa models namely

RoBERTaBASE and RoBERTaLARGE.

RoBERTa has achieved much better performance than the BERT model and used

only MLM as the pre-training task to capture word-level interactions. However,

discourse-level information is also important. On the one hand, Devlin [22], Mandar

[44], and Wang [102] have illustrated the effectiveness of discourse-level pre-training

tasks. On the other hand, for downstream tasks, there are not only single-sentence

classification tasks but also two-sentence similarity or inference tasks. Furthermore,

referring to [36]’s idea, discourse-level information is important to understand the

semantic meaning of the whole text. So it is necessary to investigate how discourse-

level self-supervised intermediate tasks benefit downstream tasks.

5.2.2 Review of Self-supervised Tasks

In this section, we will introduce details of four self-supervised tasks including next

sentence prediction, sentence ordering prediction, sentence structural objective, and

sentence position prediction.

To implement these tasks, existing PTMs packed multiple sentences into each text

segment to fulfill the whole input sequence (up to 512 tokens). However, longer text

segments mean more context information that reduced the difficulty of the tasks.

And the evaluation tasks consist of natural sentences so that the training process

and testing process is not consistent. So we construct datasets for these tasks with

natural sentences. We also conduct experiments on different text segments with

multiple natural sentences.

68

5.2. Self-supervised Intermediate Tasks

Next Sentence Prediction

Next sentence prediction was proposed in BERT [22]. Given two sentences A and B,

NSP predicts whether B is the next sentence of A. To construct the dataset, in 50%

samples, B is the actual next sentence that follows A. And for the rest 50% samples,

unlike the implementation in BERT which sampled B from the whole corpus, we

randomly sample B in the same document that is not A or the actual next sentence

to obtain more difficult negative samples.

Sentence Ordering Prediction

Sentence Ordering Prediction (SOP) was proposed in ALBERT [53]. The task aims

to predict the order of two sentences (A and B). Similar to NSP, in 50% samples, two

sentences are in the right order, and in the rest 50% samples, two sentences are in

the reverse order.

Sentence Structural Objective

Sentence Structural Objective (SSO) was proposed in StructBERT [102]. For two

sentences A and B, in 1
3

samples, B is the previous sentence of A, in other 1
3

samples,

B is the next sentence of A, and in rest 1
3

samples, B is a randomly sampled sentence

in the same document that is not the previous or the next sentence of A. For two

adjacent sentences A and B, the sample AB that B is the next sentence of A and

sample BA that A is the previous sentence of B will both exist in the dataset and

have different labels. It is similar to SOP. Also, the negative sampling is the same as

NSP. So SSO is a combination of NSP and SOP.

69

Chapter 5. Enhancing Pre-trained Models with Self-supervised Intermediate Tasks
for Natural Language Understanding

Sentence Position Prediction

Sentence Position Prediction (SPP) is proposed by Chen [15]. Different from SOP that

modeling the order of two sentences, SPP can model the order of N sentences (N ≥ 3).

With extracted N consecutive sentences from each paragraph, randomly moving one

of these N sentences to the beginning. The task is to predict the true position of the

first sentence. The challenge is that existing PTMs only support at most two sentences

in the input. In Arman’s work [20], they proposed to add a special token at the end

of each sentence to construct the input of multiple sentences. So we construct new

input sequences for the RoBERTa model as [<s>,S0,</s>,S1,</s>,...,SN ,</s>]2,

and utilize the output representation of each </s> as the representation of each

sentence Si. However, the model is symmetrical so that the computation for each

</s> is the same. Arman [20] proposed to set different segment id for each sentence

so that the special token in each sentence has a different segment representation. For

PTMs, there are only two types of segment id [0,1], since the input contains two

sentences at most. So we regard the multiple input sentences as several two-sentence

pairs, the segment id of the sentence sequence is set to [0, 1, 0, 1, ..., N%2 + 1]. With

obtained sentence representations {r0, r1, ..., rN−1}, we utilize the features as shown

in Formula 5.1 which is the same as Chen’s work [15] to predict the right position of

the first sentence.

feature = [r0, r0 − r1, ..., r0 − rN−1] (5.1)

In summary, there are three types of discourse-level self-supervised tasks referring to

Lan’s view [53]. The first type of task measures semantic relatedness such as NSP, a

topic prediction task. Another type of task models the coherence relation of sentences

including two sentences ordering (SOP) and multiple sentences ordering (SPP). They

are coherence prediction tasks. The rest type of task is a mixture of tasks such as

SSO.

2The input sequence, as well as special token, is referred to the implementation of Transformers

70

5.3. Experiment

5.3 Experiment

5.3.1 Dataset Construction

English Wikipedia1 has been used to train various PTMs, so we adopt it to construct

datasets for NSP, SOP, SSO, and SPP respectively. The corpus is downloaded from

the hyperlink1 and text content is extracted by using the script3. Then ScispaCy 4

is utilized to segment the sentence in each paragraph. We only select a part of the

whole corpus to construct our datasets for the running memory limit. Besides, we

construct datasets with different text segments for NSP, SOP, and SSO. By default,

each segment contains one natural sentence. For SSP, with different total numbers

of sentences, we construct two datasets namely SPP(4) and SPP(6). The statistics

of constructed datasets are shown in Table 5.1. #Samples means the number of the

samples in each dataset. The numbers 2 and 4 behind NSP, SOP, and SSO refer to

different text segments with 2 natural sentences and 4 natural sentences.

5.3.2 Parameter Settings of Fine-tuning on Intermediate Tasks

For the GPU limit, we utilize RoBERTaBASE and adopt the implementation of

Transformers5. For the tasks utilizing one sentence pairs as input such as NSP,

SOP, and SSO, it is similar to the tasks in GLUE, so we set the sequence length

to 128. For the tasks using two-sentence pairs as input including NSP(2), SOP(2),

and SSO(2), the sequence length is set to 256, and 512 is the sequence length of the

tasks consisting of four-sentence pairs, for example, NSP(4), SOP(4), and SSO(4).

As for SPP, we set the sequence length to 256 for both tasks. Since our datasets

are pretty large, the learning rate is set to 5E-6 and we only fine-tune RoBERTa for

3https://github.com/attardi/wikiextractor
4https://github.com/allenai/scispacy
5https://github.com/huggingface/transformers

71

Chapter 5. Enhancing Pre-trained Models with Self-supervised Intermediate Tasks
for Natural Language Understanding

Dataset #Samples Acc on Valid(%)

NSP (one sentence) 7.5M 97.6

NSP (two sentences) 2.7M 98.5

NSP (four sentences) 1.8M 98.3

SOP (one sentence) 7.4M 81.9

SOP (two sentences) 2.7M 87.5

SOP (four sentences) 1.8M 91.2

SSO (one sentence) 6.7M 83.5

SSO (two sentences) 2.9M 88.0

SSO (four sentences) 1.0M 88.6

SPP (four sentences, 1 epoch) 3.2M 65.3

SPP (four sentences, 3 epoch) 3.2M 70.1

SPP (six sentences, 1 epoch) 2.3M 63.2

SPP (six sentences, 3 epoch) 2.3M 64.0

Table 5.1: Statistics of constructed datasets and accuracy of the corresponding tasks

on valid sets. For NSP, SOP, and SSO, 2, and 4 mean 2 or 4 natural sentences in

each text segment respectively. For SPP, 4 and 6 are the numbers of sentences, and

the additional 3 refers to three training epochs.

one epoch for NSP, SOP, and SSO. For SPP, we find that the task is much more

difficult, and training 1 epoch gains lower accuracy on the validation set. So we train

two SPP tasks for 3 epochs. We illustrate the accuracy of the validation set for all

tasks on all constructed datasets as shown in Table 5.1. In this paper, we utilize

+NSP, +SOP, +SSO, +SPP(4), and +SPP(6) to represent the fine-tuned models

that fine-tuning on the corresponding tasks. Also, +NSP(2), +NSP(4), +SOP(2),

+SOP(4), +SSO(2), +SSO(4) are the fine-tuned models that fine-tuned with the

datasets containing different text segments.

Since we use the same model to run different classification tasks, the accuracy could

72

5.3. Experiment

Table 5.2: Experimental results of five fine-tuned models on dev sets of GLUE. The

result on the left and right side of character “/” for task MNLI represents MNLI-m and

MNLI-mm correspondingly; F1 scores are reported for QQP and MRPC, Spearman

correlations are reported for STS-B, and accuracy scores are reported for the other

tasks. (4) means 4 sentences in total, and (6) refers to six sentences.

Model

Single Sentence Similarity Inference -

CoLA SST-2 MRPC STS-B QQP RTE QNLI MNLI-(m/mm) Average

8.5k 67k 3.5k 5.7k 363k 2.5k 108k 392k -

RoBERTa 61.5 94.2 92.5 90.5 88.9 77.3 90.7 87.4/87.2 85.6

+NSP 64.6 94.2 93.1 91.2 88.9 80.3 90.8 87.4/87.3 86.4

+SOP 62.9 94.4 92.6 91.1 88.8 81.3 91.0 87.4/87.4 86.3

+SSO 62.4 94.4 93.0 91.5 88.8 81.8 91.0 87.4/87.2 86.4

+SPP (4) 62.3 94.1 92.2 91.0 88.8 78.1 91.2 87.6/87.2 85.8

+SPP (6) 62.9 94.1 92.0 91.0 88.9 77.2 91.1 87.5/87.4 85.8

partially reveal the difficulty of the tasks. SPP is the hardest task, and NSP is the

easiest task. For two SPP tasks, training more epochs does improve their accuracy.

For the rest three tasks, NSP, SOP, and SSO, larger text segments will reduce the

difficulty of the task.

5.3.3 Evaluation Tasks

In this paper, we test our model on the GLUE [101], SWAG [117], SQuAD 1.0 [77],

and SQuAD 2.0. We will briefly introduce each task.

General Language Understanding Evaluation (GLUE) is a widely used evaluation

board to evaluate the performance of general models across a diverse set of existing

Natural Language Understanding tasks that includes three types and nine tasks.

Single sentence tasks include CoLA [106] and SST-2 [86]; similarity and paraphrase

tasks consist of MRPC [23], STS-B [12] and QQP 6; inference tasks involve MNLI

6data.quora.com/First-Quora-Dataset-Release-Question-Pairs

73

Chapter 5. Enhancing Pre-trained Models with Self-supervised Intermediate Tasks
for Natural Language Understanding

Table 5.3: Experimental results of all five fine-tuned models on dev sets of SWAG

and SQuAD.

Model SWAG
SQuAD 1.0 SQuAD 2.0

EM F1 EM F1

RoBERTa 82.8 82.2 89.6 77.2 80.6

+NSP 83.1 82.3 89.9 78.7 81.9

+SOP 83.2 82.4 89.8 78.6 82.0

+SSO 83.1 82.8 90.2 79.1 82.3

+SPP (4) 82.7 82.5 89.9 79.1 82.3

+SPP (6) 82.6 82.5 90.1 78.8 82.0

[108], QNLI constructed from Pranav’ work [77], RTE [4], and WNLI constructed

from [55]. Similar to BERT [22], we did not report the results on WNLI.

The Situations With Adversarial Generations (SWAG) dataset [117] was used as

an evaluation task in Devlin’s work [22]. It contains 113k sentence-pair completion

examples evaluating grounded commonsense inference. Given a sentence, the task is

to choose the most plausible continuation among the four choices.

The Stanford Question Answering Dataset (SQuAD v1.1) is a collection of 100k

crowdsourced question/answer pairs [77]. Given a question and a passage from

Wikipedia containing the answer, the task is to predict the answer text span in the

passage.

The SQuAD 2.0 task extends the SQuAD 1.1 problem definition by allowing for the

possibility that no short answer exists in the provided paragraph, making the problem

more realistic.

74

5.3. Experiment

5.3.4 Parameter Settings of Fine-tuning on Evaluation Tasks

The parameter settings include three parts for three types of datasets. For fine-

tuning on the GLUE dataset, the sequence length is set to 128. And we set the

learning rate and batch size to 2E-5 and 32 respectively, since our experimental results

show that the RoBERTa model gained much better performance. For each task, we

use 5 random seeds and fine-tune each fine-tuned model for 10 epochs. Then we

select the best performance on the dev set for each seed and report the average

performance. For the SWAG task, parameters recommended by Transformers5 are

used, the sequence length is set to 80, the learning rate is set to 5E-5, the batch size is

64, and we fine-tune each model for 3 epochs. As for the two SQuAD datasets, we also

use the parameters provided by Transformers5, we set the sequence length, learning

rate, document stride, and batch size to 384, 3E-5, 128, and 24 respectively. Also,

we fine-tune each model for 2 epochs. In this paper, we used the RoBERTaBASE

model provided by Transformers5 so that the performance of various evaluation tasks

is slightly different from that reported in the original paper. All experiments are

conducted on 2 GTX 1080 Ti GPU cards.

5.3.5 Experimental Results and Analysis

In this section, we will introduce three experiments. The first experiment aims to in-

vestigate how identified four self-supervised tasks (five datasets, SPP was constructed

two datasets) benefit tasks in GLUE, SWAG, and two SQuAD datasets. For NSP,

SOP, and SSO, each text segment only contains one natural sentence. The second

experiment attempts to explore whether multi-round fine-tuning on multiple tasks is

effective. The last experiment tests the effectiveness of additional text segments with

two sentences and four sentences.

75

Chapter 5. Enhancing Pre-trained Models with Self-supervised Intermediate Tasks
for Natural Language Understanding

Task RoBERTa +NSP +SOP +SSO

MR 89.1 89.3 89.3 89.6

Table 5.4: Experimental results of accuracy on dev sets of the additional sentiment

classification task (MR).

Model NSP MRPC STS-B QQP

+NSP 97.6 93.1 91.2 88.9

+NSP* 98.1 93.1 91.3 88.8

Table 5.5: Experimental results on dev sets of the NSP task and three similarity

tasks, NSP* means the newly constructed dataset that sampled negative samples

from different documents.

Results on General Tasks

In this section, we test our five fine-tuned models namely +NSP, +SOP, +SSO, +SSP

(4) and +SSP (6) on GLUE, SWAG, and two SQuAD datasets. The results on GLUE

is shown in Table 5.3.2, and that on SWAG and SQuAD is shown in Table 5.3.2.

We discuss the experimental results on GLUE first. With fine-tuning on five self-

supervised tasks, these models do gain better average performance compared with the

original RoBERTa. Especially, the NSP, SOP, and SSO tasks improve the RoBERTa

model by more than 0.7 percent on the GLUE dataset. And for the two SPP tasks,

they also gain slightly higher performance. However, it is still a challenging task

to learn multiple consequent sentence representations using PTMs. In our method,

maybe the two tasks are not well implemented so that they do not perform well. All

results verify that the discourse-level information is important for PTMs.

For each task in GLUE, +NSP, +SOP, and +SSO perform comparably even better.

The three fine-tuned models gain larger improvement on the datasets with fewer

samples. With different random seeds, tasks containing more samples gained robust

performance. Perhaps large corpora of large datasets have updated the PTMs largely

76

5.3. Experiment

so that the impact of our intermediate tasks is decreasing.

For two single sentence tasks, our models perform much better on CoLA and only gain

comparable performance of SST-2. CoLA is an acceptability judgments task which

is often employed to evaluate language models [54] since the predicted probabilities

for a pair of minimally different sentences are directly comparable. RoBERTa is a

language model trained on a large corpus. And our discourse-level tasks improve the

performance of the CoLA task so that it seems that our tasks could also improve

language models. As for SST-2, there are two possible reasons that our model does

not perform much better. One reason is that SST is a large dataset since our models

only perform comparable performance on large datasets. The other reason is that the

discourse-level information is less helpful to capture sentiment information. To know

the specific reason, we experiment on a small dataset, MR [68], which contains only

10K samples. The experimental results are shown in Table 5.4. Our method could

slightly improve the performance, both semantic relatedness and discourse relation

are necessary since +SSO obtained the highest performance on the two sentiment

classification datasets.

For the three similarity and paraphrase tasks, +NSP gains better performance com-

pared with +SOP. Since NSP is a topic prediction task, which aims to distinguish

unrelated sentences. As for the three inference tasks, +SOP performs better compared

with +NSP. Since sentence ordering prediction requires capturing implicit discourse

relation that seems to be an inference task. SSO is the combination of NSP and SOP,

so the fine-tuned model performs better on some similarity and inference tasks. In

this work, we still know a few about how the combination task affects PTMs. The

two SPP tasks also gain better performance of inference tasks, which shows the effec-

tiveness of discourse relation of multiple sentences. Since the input sequence is much

longer than the natural sentence in GLUE, and PTMs are not that suitable to learn

multiple sentence representations. Two SPP tasks show pretty lower performance

compared with the other three tasks.

77

Chapter 5. Enhancing Pre-trained Models with Self-supervised Intermediate Tasks
for Natural Language Understanding

For the NSP task, we sampled the sentences in the same document as negative sam-

ples, so that they may have the same topic. To eliminate the effect that the NSP task

may distinguish two sentences with similar topics, we construct a new NSP dataset

(NSP*) that sample the negative sentences from different documents, the experiments

on the three similarity tasks are shown in Table 5.5. For the next sentence prediction

task, +NSP* gains higher accuracy since the negative samples are easier. And on the

three similarity tasks, +NSP* achieved comparable even higher performance. So the

sentence semantic relatedness does improve similarity tasks.

For the SWAG task, +NSP, +SOP, and +SSO gain better performance which shows

the effectiveness of discourse information from two natural sentences. The sequence

length of the task is set to 80, so the input length of each sample from the two SPP

tasks is too long. It may be one of the reasons that these two tasks show lower

performance.

For the two SQuAD tasks, all tasks improve the performance on the two datasets.

Especially, +SSO achieves the best performance. To solve QA tasks, locating the

relevant part of the question and inferring the correct answer from the located part

are two key steps [77]. The first step is similar to a semantic relatedness task, and

the second step is an inference task. So both semantic relatedness and discourse

information are important to solve QA tasks. The two SPP tasks also improve the

performance even better than NSP and SOP. The results show that discourse relations

among multiple sentences are also helpful to solve QA tasks.

Results of Multiple Tasks Fine-tuning

In this section, we investigate whether fine-tuning the PTMs many times with dif-

ferent intermediate tasks in different order is effective. In total, we conduct four

task combinations. The first two task combinations are from easy to hard. SOP is

required to identify sentence ordering which is harder than NSP that distinguishing

78

5.3. Experiment

Table 5.6: Experimental results of multi-round fine-tuning on dev sets of part of

GLUE, SWAG, and SQuAD. The evaluation metrics of tasks in GLUE are similar to

Table 5.3.2.

Model CoLA MRPC STS-B RTE QNLI SWAG
SQuAD 1.0 SQuAD 2.0

EM F1 EM F1

+NSP 64.6 93.1 91.2 80.3 90.8 83.1 82.3 89.9 78.7 81.9

+SOP 62.9 92.6 91.1 81.3 91.0 83.2 82.4 89.8 78.6 82.0

+SSO 62.4 93.0 91.5 81.8 91.0 83.1 82.8 90.2 79.1 82.3

+NSP→SOP 62.1 92.4 91.2 82.1 91.0 83.2 82.2 89.7 78.7 82.1

+SOP→NSP 62.9 92.6 91.4 81.9 91.0 83.1 82.2 89.9 78.4 81.9

+NSP→SSO 63.5 93.0 91.5 81.3 90.9 82.9 82.1 89.8 78.7 82.1

+SSO→NSP 62.7 93.0 91.5 81.3 91.0 83.0 82.3 89.7 78.2 81.7

Table 5.7: Experimental results of different text segments on dev sets of part of

GLUE, SWAG, and SQuAD. 2 and 4 refer to 2 natural sentences, and 4 natural

sentences in each text segment respectively. The evaluation metrics of tasks in GLUE

are similar to Table 5.3.2.

Model CoLA MRPC STS-B RTE QNLI SWAG
SQuAD 1.0 SQuAD 2.0

EM F1 EM F1

RoBERTa 61.5 92.5 90.5 77.3 90.7 82.8 82.2 89.6 77.2 80.6

BEST in Table 5.3.2, 5.3.2 64.6 93.1 91.5 81.8 91.2 83.2 82.8 90.2 79.1 82.3

+NSP(2) 61.1 92.6 91.1 79.1 90.9 82.7 82.6 89.9 78.3 81.7

+NSP(4) 61.5 92.6 91.0 78.1 90.6 82.8 82.6 90.0 77.8 81.1

+SOP(2) 61.6 92.0 90.9 80.5 90.8 83.0 82.1 89.7 78.3 81.6

+SOP(4) 62.6 91.5 91.0 80.3 90.9 82.6 82.1 89.7 78.4 81.5

+SSO(2) 61.6 92.4 91.1 80.4 91.0 82.6 82.3 89.8 78.5 81.7

+SSO(4) 62.3 91.8 91.1 79.2 90.9 82.5 82.5 89.9 78.2 81.5

79

Chapter 5. Enhancing Pre-trained Models with Self-supervised Intermediate Tasks
for Natural Language Understanding

unrelated sentences. We construct two tasks, the first one fine-tunes NSP first and

then fine-tunes SOP shown as +NSP→SOP, the other one fine-tunes SSO followed

the fine-tuning of NSP shown as +NSP→SSO. The rest two task combinations are

in reverse, namely +SOP→NSP, and +SSO→NSP. For the long-running time of the

large evaluation tasks, we only test four task combinations on part of GLUE including

one single sentence task, two similarity tasks, and two inference tasks, SWAG, and

two SQuAD tasks as shown in Table 5.3.5.

In summary, compared with fine-tuning on a single task, fine-tuning the RoBERTa

model on two tasks consecutively did not improve the performance of downstream

tasks significantly. However, for the two inference tasks, the additional information of

sentence ordering could obtain higher performance than only fine-tuning on the NSP

task. It proved that sentence ordering information is important for inference tasks.

Especially for the RTE task, the multi-round fine-tuning on NSP and SOP achieved

the best performance. Besides, for the STS-B task, +SOP→NSP also gained better

performance than +NSP and +SOP respectively.

Observing the results of multi-round fine-tuning in different orders, there is no signif-

icant difference except that on CoLA and SQuAD 2.0. For the CoLA task, different

task combinations rely on different task orders. The two combinations of NSP and

SOP perform lower performance than +NSP and +SOP respectively. As for the

SQuAD 2.0 task, the task order seems to be much important. For four task com-

binations, the two combinations namely NSP→SOP and NSP→SSO that the task

order is from easy to hard achieved much better performance than the rest two task

combinations that the task order is in reverse.

Results of Different Text Segments

In this section, to verify the impact of different text segments, we construct additional

two types of text segments for NSP, SOP, and SSO, namely two natural sentences,

80

5.4. Summary

and four natural sentences. We illustrate the experiment results on part of GLUE

including a single sentence task, two similarity tasks, and two inference tasks, SWAG,

and two SQuAD tasks as shown in Table 5.3.5.

In summary, fine-tuning the RoBERTa model on tasks with larger text segments

did not gain better performance than that with the text segment consisting of one

natural sentence. Since the tasks in GLUE involve samples of natural sentences,

larger segments lead to inconsistency between training and testing.

For the CoLA task, it is interesting that the text segment with four natural sentences

leads to better performance than that with two natural sentences. For the tasks of

MRPC and RTE, larger text segments result in lower performance. As for the STS-B

and QNLI tasks, the results of different text segments show little difference. Another

interesting observation is that on the SQuAD 1.0 task, the NSP task with larger text

segments leads to better performance.

5.4 Summary

In this paper, we extend the study on self-supervised intermediate tasks to the general

domain and other self-supervised tasks. We identify what and how these tasks can

benefit downstream tasks. We also observe some interesting findings through the

experiments.

In another view, we propose a new way to use pre-trained language models, which

is to design specific self-supervised tasks for specific target tasks. Designing new

self-supervised tasks for focused target tasks is one of our future directions.

81

Chapter 6

Enhancing Automated Essay

Scoring Performance via

Fine-tuning Pre-trained Language

Models with Combination of

Regression and Ranking

6.1 Introduction

Automated Essay Scoring (AES) automatically evaluates the writing quality of es-

says. Essay assignments evaluation costs lots of time. Besides, the same instructor

scoring the same essay at different times may assign different scores (intra-rater vari-

ation), different raters scoring the same essay may assign different scores (inter-rater

variation) [85]. To alleviate teachers’ burden and avoid intra-rater variation, as well

as inter-rater variation, AES is necessary and essential. An early AES system, e-rater

[17], has been used to score TOEFL writings.

82

6.1. Introduction

Recently, large pre-trained language models, such as GPT [74], BERT [22], XLNet

[113], etc. have shown the extraordinary ability of representation and generalization.

These models have gained better performance in lots of downstream tasks such as

text classification and regression. There are many new approaches to fine-tune pre-

trained language models. Sun et al. [90] proposed to construct an auxiliary sentence

to solve aspect-based sentiment classification tasks. Cohan et al. [20] added extra

separate tokens to obtain representations of each sentence to solve sequential sentence

classification tasks. Sun et al. [91] summarized several fine-tuning methods, including

fusing text representations from different layers, utilizing multi-task learning, etc. To

our knowledge, there are no existing works to improve AES tasks with pre-trained

language models. Before introducing our new way to use pre-trained language models,

we briefly review existing works in AES firstly.

Existing works utilize different methods to learn text representations and constrain

scores, which are the two key steps in AES models. For text representation learning,

various neural networks are used to learn essay representations, such as Recurrent

Neural Network (RNN) [92, 93], Convolutional Neural Network (CNN) [92], Recurrent

Convolutional Neural Network (RCNN) [24], etc. However, simple neural networks

like RNN and CNN focus on word-level information, which is difficult to capture word

connections in long-distance dependency.

Besides, shallow neural networks trained on a small volume of labeled data are hard to

learn deep semantics. As for score constraints, prediction and ranking are two popular

solutions. From the prediction perspective, the task is a regression or classification

problem [92, 93, 24]. Besides, from the recommendation perspective, learning-to-rank

methods [114, 14] aim to rank all essays in the same order as that ranked by gold

scores. However, without precise score mapping functions, only regression constraints

could not ensure the right ranking order. And only ranking based models could not

guarantee accurate scores. In general, there are two key challenges for the AES task.

One is how to learn better essay representations to evaluate the writing quality, the

83

Chapter 6. Enhancing Automated Essay Scoring Performance via Fine-tuning
Pre-trained Language Models with Combination of Regression and Ranking

other one is how to learn a more accurate score mapping function.

Motivated by the great success of pre-trained language models such as BERT in

learning text representations with deep semantics, it is reasonable to utilize BERT

to learn essay representations. Since self-attention is a key component of the BERT

model, it can capture the interactions between any two words in the whole essays

(long texts). Previous work [91] shows that fusing text representations from different

layers does not improve the performance effectively. For the AES task, the length of

essays approximates the length limit of the BERT model, so it is hard to construct

an auxiliary sentence. Meanwhile, only score labels are available; it is also difficult to

utilize multi-task learning. Summarized existing works in AES, they utilize regression

loss or ranking loss, respectively. Regression loss requires to obtain accurate score

value, and ranking loss aims to get precise score order. Unlike multi-task learning

requires different fully-connected networks for different tasks, we propose to constrain

the same task with multiple losses to fine-tune the BERT model.

In addition, it is impossible to rank all essays in one batch so that the model is

required to learn more accurate scores. During training, the weight of the regression

loss is increasing while that of ranking loss is decreasing.

In this paper, we propose R2BERT (BERT Model with Regression and Ranking). In

our model, BERT is used to learn text representations to capture deep semantics.

Then a fully connected neural network is used to map the representations to scores.

Finally, regression loss and batch-wise ranking loss constrain the scores together,

which are jointly optimized with dynamic combination weights.

To evaluate our model, an open dataset, Automated Student Assessment Prize (ASAP),

is used. With the measurement of Quadratic Weighted Kappa (QWK), our model

outperforms state-of-the-art neural models on average QWK score of all eight prompts

near 3 percent and also performs better than the latest statistical model. Especially

on the two narrative Prompts (7 and 8), only the regression based model performs

84

6.2. R2BERT

comparably even better compared with other models. And our model with combined

loss gains much better performance. To explain the model’s effectiveness, we also

illustrate the attention weights on two example essays (an argumentative essay and

a narrative essay). The self-attention can capture most conjunction words that re-

veal the logical structure, and most key concepts that show the topic shifting of the

narratives.

In summary, our contributions are:

• We propose a new method called multi-loss to fine-tune BERT models in AES

tasks. We are also the first one to combine regression and ranking in these

tasks. The experiment results show that the combined loss could improve the

performance significantly.

• Experiment results also show that our model achieves the best average QWK

score and outperforms other state-of-the-art neural models almost on each

prompt.

• To show the effectiveness of self-attention in the BERT model, we illustrate the

weights of different words on two examples, including one argumentative essay

and one narrative essay.

6.2 R2BERT

In this section, we first introduce the framework of our model, briefly review the

BERT model, as well as self-attention. In addition, we will illustrate the regression

model as well as some useful tricks. Finally, we will show batch-wise learning to rank

model and the combination metric.

Our model, as shown in Figure 6.1, takes a batch of essays as input. With prepro-

cessing (adding a special token, [CLS], at the beginning of each essay), each token

85

Chapter 6. Enhancing Automated Essay Scoring Performance via Fine-tuning
Pre-trained Language Models with Combination of Regression and Ranking

is transformed into its embedding and sent into the BERT model. The representa-

tions of all essays are the output vectors mapping to [CLS]. Essay scores could be

obtained by passing the representations into the Score Mapping Function. They are

constrained by regression loss and ranking loss, which are optimized jointly with the

dynamic combination. As shown in the color bar, the weight of regression loss is

gradually increasing, while that of ranking loss is decreasing.

E[CLS] E1 E2 EN

C T1 T2
… TN

[CLS] Tok 1 Tok 2 Tok N

Sentence 1

…

Score Mapping
Function

Regression Ranking+

BERT

Figure 6.1: R2BERT Framework

86

6.2. R2BERT

6.2.1 BERT

BERT [22] refers to Bidirectional Encoder Representations from Transformers, which

is one of the most popular models in recent years. More specifically, BERT is an

extremely large pre-trained language model, which was trained on enormous cor-

pora, totally more than 3000M words. Meanwhile, two target tasks, namely masked

language model and next sentence prediction, are used to train the model. Many

downstream tasks of natural language processing have gained benefits by utilizing

pre-trained BERT to get text representation such as sentence classification, question

answer, common sense inference, etc. To benefit regression problems, the target task

is replaced by a fully connected neural network. Then the whole BERT model is

fine-tuned on the new dataset.

Generally BERT has two parameter intensive settings:

BERTBASE: 12 layers, 768 hidden dimensions and 12 attention heads (in transformer)

with the total number of parameters, 110M;

BERTLARGE: 24 layers, 1024 hidden dimensions and 16 attention heads (in transformer)

with the total number of parameters, 340M.

6.2.2 Self-attention

Self-attention [98] is the key to the success of BERT, which is a mechanism that a

sequence calculates the word weights with itself. Given a text, we construct a matrix

W with three copies Q, K, V , referring to query, key, and value, in which each

column is the word embedding. The new words’ representations are calculated via

the attention as shown in Formula 6.1, and Formula 6.2, where d is the size of word

embedding, nQ, nK and nV denote the number of words in each text, Q[i] is the ith

word representation in the query text Q.

87

Chapter 6. Enhancing Automated Essay Scoring Performance via Fine-tuning
Pre-trained Language Models with Combination of Regression and Ranking

Att(Q,K) = [softmax(
Q[i] ·KT

√
d

)]
nQ−1
i=0 (6.1)

Vatt(Q,K, V) = Att(Q,K) · V ∈ RnQ×d (6.2)

6.2.3 Feature Extraction

Given a sample essay t = {w1, w2, .., wN} as input, where N is the number of the

words, we preprocess it to a new sequence t′ = {[CLS], w1, w2, .., wN}, where [CLS] is

a special token. Assuming BERT(·) is the pre-trained BERT model, we can obtain

the hidden representations of all the input words, h = BERT(t′) ∈ Rrh∗|t′|, where

|t′| is the length of the input sequence and rh is the dimension of the hidden state.

Finally, the hidden representation mapping to [CLS], r = h[CLS], is used as the text

representation.

6.2.4 Regression

With obtained text representation r, a fully connected neural network FCNN(·) is

used as the score mapping function. More specifically, FCNN is a linear combination

function, where W is the weight matrix and b is the bias as shown in Formula 6.3.

To learn better parameters, the mean score of all training essays is used to initialize

the bias b. In addition, σ = Sigmoid(·), a non-linear activation function is used to

normalize the calculated score into [0, 1] as shown in Formula 6.4.

FCNN(r) = W r + b (6.3)

s′ = σ(FCNN(r)) (6.4)

Mean square error is a widely used loss function for regression tasks. Given a dataset

D = {(ti, si)|i ∈ [1 : m]}, m is the number of samples, and ti refers to the ith essay.

88

6.2. R2BERT

Besides, si is the gold score of the ith essay. The regression objective Lm is shown in

Formula 6.5.

Lm = MSE(s, s′) =
1

m

m∑
i=1

(si − s′i)2 (6.5)

6.2.5 Batchwise Learning to Rank Model

ListNet [11] ranks a list of objectives each time and measures the accordance between

the predicted ranking list and the ground truth label. In our problem, all the essays

are a large list. However, it is impossible to rank all the essays in one batch. We

sacrifice the accuracy and only rank essays in each batch, which we called batch-wise

ListNet.

Before introducing the objective of ListNet, we will give several basic definitions.

Suppose that given a set of essays which are identified with the numbers {1, 2, ...,m}.

A permutation π on the essays is defined as a bijection from {1, 2, ...,m} to itself. The

permutation is written as π =< π(1), π(2), ..., π(m) >, where π(i) refers to the essay

at position i in the permutation. And we also assume any permutation is possible.

The set of all possible permutations is denoted as Ωm. As aforementioned, we assume

the batch size is m, and the calculated score of the essay pointed by π(i) is s′π(i). As

given by the original paper [11], the permutation probability is defined as Formula

6.6. And Φ(·) is an increasing and strictly positive function.

Ps′(π) =
n∏
j=1

Φ(s′π(j))∑n
k=j Φ(s′π(k))

(6.6)

The top one probability Ps′(j) is defined as Formula 6.7, where j refers to each essay

in the batch.

Ps′(j) =
Φ(s′j)∑n
k=1 Φ(s′k)

(6.7)

With the use of top one probability, given two lists of scores s and s′ as aforementioned,

Cross Entropy could be used to represent the distance (batchwise loss function Lr)

89

Chapter 6. Enhancing Automated Essay Scoring Performance via Fine-tuning
Pre-trained Language Models with Combination of Regression and Ranking

between the two score lists as shown in Formula 6.8.

Lr = CE(s, s′) = −
n∑
j=1

Ps(j) log(Ps′(j)) (6.8)

6.2.6 Combination of Regression and Ranking

The key problem of loss combination is to determine the weight of each loss. In the

scoring scenario, teachers always prefer to score each essay rather than ranking all

the essays. Besides, using batch-wise learning to rank approach could not guarantee

precise global order. Referring to the combination method proposed in [?], the weight

of ranking loss is decreasing, and that of regression loss is increasing during training.

The weight calculation is followed by Formula 6.9, where τe is a σ function about e

calculated as Formula 6.10.

L = τe × Lm + (1− τe)× Lr (6.9)

τe =
1

1 + exp(γ(E/2− e))
(6.10)

In Formula 6.10, E is the total number of the epochs, and e is the value of current

epoch, γ is a hyper-parameter which is chosen such that τ1 = 0.000001.

6.3 Experiment

In this section, the ASAP dataset is introduced firstly. Then we illustrate experiment

settings and evaluation metrics. In addition, baseline models, experiment results, and

analyses are shown. Furthermore, we also visualize the attention weights of different

words in two examples.

90

6.3. Experiment

Set #Essays Genre Avg Len. Range

1 1783 ARG 350 2-12

2 1800 ARG 350 1-6

3 1726 RES 150 0-3

4 1772 RES 150 0-3

5 1805 RES 150 0-4

6 1800 RES 150 0-4

7 1569 NAR 250 0-30

8 723 NAR 650 0-60

Table 6.1: Statistics of the ASAP dataset; Range means the score range, For genre,

ARG, RES, and NAR map to argumentative essays, response essays and narrative

essays respectively.

6.3.1 Dataset

The automated Student Assessment Prize dataset comes from a Kaggle competition1,

which contained eight essay prompts with different genres, including argumentative

essays, response essays, and narrative essays. Each essay was given a score by the

instructors. Some statistical information is shown in Table 6.1.

6.3.2 Experiment Settings

Following previous work, we also utilize 5-fold cross-validation to evaluate all models

with 60/20/20 split for train, validation, and test sets, which are provided by [92]. We

implement our model based on the Pytorch implementation of BERT 2 and use the

BERTBASE model due to the limit of GPU memory. Besides, we truncate all the essays

with the max length of 512 words, following the setting of BERT. Also, for the limit

1https://www.kaggle.com/c/asap-aes/data
2https://github.com/huggingface/pytorch-transformers

91

Chapter 6. Enhancing Automated Essay Scoring Performance via Fine-tuning
Pre-trained Language Models with Combination of Regression and Ranking

Table 6.2: QWK evaluation scores on ASAP dataset (* means statistical model)

Dataset/Prompts

ID Model 1 2 3 4 5 6 7 8 Average

1 LSTM(last) 0.165 0.215 0.231 0.436 0.381 0.299 0.323 0.149 0.275

2 BiLSTM(last) 0.226 0.276 0.239 0.502 0.375 0.412 0.361 0.188 0.322

3 LSTM(mean) 0.582 0.517 0.516 0.702 0.604 0.670 0.661 0.566 0.602

4 BiLSTM(mean) 0.591 0.491 0.498 0.702 0.643 0.692 0.683 0.563 0.608

5 *EASE(SVR) 0.781 0.630 0.621 0.749 0.782 0.771 0.727 0.534 0.699

6 *EASE(BLRR) 0.761 0.621 0.606 0.742 0.784 0.775 0.730 0.617 0.705

7 CNN+LSTM 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761

8 LSTM-CNN-att 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764

9 RL1 0.766 0.659 0.688 0.778 0.805 0.791 0.760 0.545 0.724

10 SKIPFlOW 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.764

11 *HISK+BOSWE 0.845 0.729 0.684 0.829 0.833 0.830 0.804 0.729 0.785

12 RankingOnly 0.791 0.687 0.665 0.811 0.797 0.821 0.821 0.651 0.756

13 RegressionOnly 0.800 0.679 0.679 0.822 0.803 0.797 0.837 0.725 0.768

14 R2BERT 0.817 0.719 0.698 0.845 0.841 0.847 0.839 0.744 0.794

of our GPU memory, the batch size is set to 16. Since essays in the ASAP dataset

is much longer than that in GLUE [101], we fine-tune our model for 30 epochs and

select the best model based on the performance on the validation set. We adjust the

fine-tuning learning rate from 1e-5 to 9e-5 with the step 1e-5, and 4e-5 performs best.

And γ in Formula 6.10 is set to 0.99999. For tokenization and vocabulary, we all use

the pre-processing tools provided by the BERT model. We also normalize all score

ranges to within [0,1]. All the scores are rescaled back to the original prompt-specific

scale for calculating Quadratic Weighted Kappa scores. Following previous works, we

conduct the evaluation in prompt-specific fashion.

92

6.3. Experiment

6.3.3 Evaluation Metric

Following previous works, Quadratic Weighted Kappa (QWK) is used as the evalua-

tion metric, which measures the agreement between calculated scores and gold ones.

To calculate QWK, a weight matrix W is constructed firstly, as shown in Formula

6.11, where i and j are gold scores and calculated scores respectively, and N is the

number of possible ratings.

Wi,j =
(i− j)2

(N − 1)2
(6.11)

In addition, a matrix O is calculated, such that Oi,j denotes the number of essays

obtained a rating i by the human annotator and a rating j by the AES system.

Another matrix E with the expected count is calculated as the outer product of

histogram vectors of the two ratings. The matrix E is then normalized such that

the sum of elements in E is the same as that of elements in O. Finally, with given

matrices O and E, the QWK score is calculated according to Formula 6.12.

κ = 1−
∑

i,jWi,jOi,j∑
i,jWi,jEi,j

(6.12)

6.3.4 Baselines and Implementation Details

In this section, we list several baseline models as well as state-of-the-art models.

• *EASE A statistical model called Enhanced AI Scoring Engine (EASE) is an

AES system that is publicly available, open-source3, and also achieved excellent

results in the ASAP competition. EASE utilizes hand-crafted features such as

length-based features, POS tags, and word overlap, as well as different regres-

sion techniques. Following previous works, we report the results of EASE with

the settings of Support Vector Regression (SVR) and Bayesian Linear Ridge

Regression (BLRR).

3https://github.com/edx/ease

93

Chapter 6. Enhancing Automated Essay Scoring Performance via Fine-tuning
Pre-trained Language Models with Combination of Regression and Ranking

• LSTM We use two layers LSTM and biLSTM, as well as mean pooling and last

output to obtain the essay representations. Mean pooling means the average

vector of all the hidden states, while the last output refers to the last hidden

state. Then, a fully connected linear layer, as well as σ activation function, is

used to gain scores. In these four models, GloVe [70] is used to initialize the

word embedding matrix, and the dimension is 300.

• CNN+LSTM This model is proposed in Kaveh’s work [92], which assembled

CNN and LSTM to gain scores. We use the performance reported in the paper.

• LSTM-CNN-att Dong [24] proposed to use attention mechanisms and hier-

archical neural networks to learn the representation of the essays. We also use

the experiment results reported in their paper.

• RL1 Wang [104] proposed a reinforcement learning based model. In that paper,

QWK is used as the reward function, and classification is used to gain the scores.

The performance reported in the paper is used.

• SKIPFlOW Yi [93] proposed the model, which considered the coherence when

learning text representations. Experiment results in the paper are used.

• *HISK+BOSWE Cozma [21] proposed another statistical model. It utilized

string kernel and word embedding to extract text features and gained higher

performance.

Our models We not only show the performance of R2BERT but also the results of the

regression only version (RegressionOnly) and the ranking only version (RankingOnly).

All experiments are conducted on a Linux machine running a single Tesla P40 GPU.

94

6.3. Experiment

ID Model First 512 Last 512

1 RankingOnly 0.657 0.644

2 RegressionOnly 0.724 0.725

3 R2BERT 0.743 0.745

Table 6.3: QWK evaluation scores on Prompt 8 of ASAP Dataset with different parts

of the whole essays

Prompt ID Prompt 1 Prompt 7

Prompt Write a letter to your local newspaper in which you
state your opinion on the effects computers have on
people. Persuade the readers to agree with you.

Write a story about a time when you were patient or
write a story about a time when someone you know was
patient or write a story in your own way about patience.

Attention
Example

dear newspaper, computers have a positive effect on
people because they teach hand-eye coordination, give
people the ability to learn about faraway places and
people and allow people to talk online with other
people. the invention of computers is the single most
important event of the @date1. @person1, a professor
at @organization3 says that "the invention of
computers has led to hundreds even thousands of new
discoveries. this week alone, @caps3 have discovered
@num1 new drugs that could put an end to cancer."

have you ever been in a situation when you know
something good is coming or is going to happen and you
just @caps1t control yourself? you ask your parents,
when and they say, soon just have some patience! well
this has happened to me multiple times, such as when
we were going to @location1 or @location2, but on this
special occasion, getting our new dog. i decided to be a
mature teenager and be patient. it was @date1 @time1,
the day my family was getting a dog and i was so
excited. my stomach was filled with butterflies…

Figure 6.2: Self-attention visualization on examples of Prompt 1 and 7

6.3.5 Experiment Results and Analysis

Table 6.2 shows the empirical results of all deep learning models as well as the statis-

tical models. First, the comparison between LSTM based models is discussed. The

mean pooling performs better than the last output in all LSTM based models. Since

essays in the dataset contain hundreds of words, it is difficult for LSTM to capture

longer dependency. Compared with the last output, average pooling could alleviate

the aforementioned problem. Meanwhile, bidirectional LSTM based models perform

comparably even better than the unidirectional ones. Because the bidirectional mod-

els could capture complete context information. However, these models show lower

performance than that of EASE. It means well-designed hand-crafted features are

95

Chapter 6. Enhancing Automated Essay Scoring Performance via Fine-tuning
Pre-trained Language Models with Combination of Regression and Ranking

more effective than simple neural networks. These models still perform worse than

state-of-the-art models.

Additionally, we firstly compare published state-of-the-art results. RL1 [104], the

reinforcement learning based model, shows pretty lower performance in recent works.

Since it utilizes dilated LSTM to learn essay representations, which ignores sentence-

level structure information. It still outperforms basic LSTM based models, which

shows the effectiveness of the QWK reward function. CNN+LSTM [92] is an ensem-

ble model that shows comparable performance compared with LSTM-CNN-att [24],

the hierarchical model, on Prompt 1,2,4,5,6,7, and even gains much higher perfor-

mance on Prompt 3. Both models outperform LSTM based models. It means that

the ensemble model could make up shortages of single neural networks and performs

comparably with hierarchical models. Besides, LSTM-CNN-att and SKIPFLOW [93]

both are hierarchical models. They capture the explicit structure through model-

ing the relationship of adjacent sentences (semantics) in each essay. So they per-

form better in Prompt 1 and 2, which contain argumentative essays. Especially the

SKIPFLOW model even gains much better performance on Prompt 1. LSTM-CNN-

att also performs better on Prompt 8. However, a well-designed statistical model,

HISK+BOSWE [21], outperforms all previous neural models, which also performs

best on the two argumentative prompts.

Compared with previous state-of-the-art neural models, the RegressionOnly model

outperforms all other neural models on the average QWK score, which shows the

great power of the pre-trained language model (BERT) in capturing deeply semantic

information. Especially on the two narrative prompts (Prompt 7 and 8), the Re-

gressionOnly model outperforms other models by a large margin, which shows that

self-attention is more suitable for narrative essays since it can capture key concepts

in narrative essays as shown in Figure 6.2. RankingOnly model shows much lower

performance on Prompt 8 as well as average QWK score, maybe because it is difficult

to utilize batch-wise order to reconstruct the global order perfectly.

96

6.3. Experiment

R2BERT outperforms RegressionOnly and RankingOnly models on each prompt by

a large margin except Prompt 7. The result means that ranking and regression are

surely two complementary objectives, and a combination via dynamic weights could

improve the performance effectively. In general, R2BERT gains a much higher average

QWK score compared with the aforementioned neural models and almost performs

best on each prompt except Prompt 1. It illustrates a successful way to enhance

BERT on downstream tasks. Only utilizing BERT to learn text representations is

not enough. Suitable auxiliary objectives are also necessary. More importantly, our

model also outperforms HISK+BOSWE, the latest statistical model, which proves

the great power of neural networks.

BERT limits the length of each input text with a maximum of 512 words. In Prompt

8, the average length of all essays is about 650 words, which is larger than the limit.

We use the first 512 words or the last 512 words instead of the whole essay. Table 6.3

shows the experimental results. Our three models achieve similar performance. How

to fully use the whole essays with BERT is a direction in future works. In Table 6.2,

we use the average performance as the result of Prompt 8 in each model.

In Figure 6.2, we visualize the word weights of self-attention of two essays, including

an argumentative essay from Prompt 1 and a narrative essay from Prompt 7. For the

limit of the page, we only demonstrate part of each essay. In the figure, the word in

darker red gains lower attention weight. The argumentative example needs to con-

vince people that computers can benefit our life. Self-attention has identified several

connectors such as ”because”, ”and”, ”even”, and some words indicating arguments

including ”about”, ”that” etc. These words show the explicit logical structure of

argumentative essays. The narrative example uses the example of getting a dog to

show his/her patience. Self-attention capture the story details such as ”dog”, ”par-

ent”, ”family”, ”stomach”, ”butterflies”, as well as the topic words ”patient” and

”patience”. All these words show the topics shifting of narratives.

97

Chapter 6. Enhancing Automated Essay Scoring Performance via Fine-tuning
Pre-trained Language Models with Combination of Regression and Ranking

Model TR IPS #Param

LSTM 2m53s 0.0013s 1.4M

BiLSTM 3m15s 0.0014s 1.4M

R2BERT 22m20s 0.9103s 110M

Table 6.4: Comparison of Runtime and Memory. TR means the total training runtime

on the train set and IPS means inference runtime per each test sample. #Param refers

to the number of parameters.

6.3.6 Runtime and Memory

In this section, we analyze the runtime and memory, which means the total number of

parameters. Since little previous work provided the source code so that it is difficult

to estimate the total number of parameters accurately. Our three models only utilize

different losses, so they have the same number of parameters. In summary, we only

compare LSTM, BiLSTM, and R2BERT model. Firstly, we estimate the total number

of parameters for the three models. Then we record the total training time on all

training samples in Prompt 6. Since simple neural networks need more training

epochs to converge, yet BERT model only needs less training epochs to fine-tune. To

compare the inference time, we record the time for inference per sample. All results

are shown in table 6.4. It is obvious that BERT has more parameters and spends

much more training and inference time. However, the inference time of each sample

is near 1 second, which is practical in the real educational scenarios.

6.4 Summary

From experimental results, we can obtain several conclusions: 1) BERT is a signif-

icantly effective model to improve the performance of downstream natural language

processing tasks. 2) Regression loss and ranking loss are two complementary losses.

98

6.4. Summary

3) Simply fine-tuning on BERT is not enough. Multi-loss objective is an effective

approach to fine-tune the BERT model. 4) Self-attention is useful to capture con-

junction words and key concepts in essays. In the future, we will investigate how to

utilize the whole long text with the pre-trained BERT model.

99

Chapter 7

Conclusions and Future Directions

In this thesis, we mainly focus on post-processing and applications of pre-trained mod-

els for natural language processing. More specifically, we proposed different methods

to enhance different types of pre-trained models. Meanwhile, we also proposed dif-

ferent approaches to utilize pre-trained models to obtain higher performance.

In Chapter 3, we proposed a novel approach to utilize glossary to enhance pre-trained

word embedding models so that these models can capture more topical and functional

information. To apply pre-trained word embedding models to text assessment tasks,

we proposed a new task named Automated Post Scoring in Chapter 4. We proposed

a representation model and matching model to integrate given topics and quoted

posts and enhanced the prediction of students’ posts. In Chapter 5, we proposed

to use self-supervised intermediate tasks to improve pre-trained language models.

Furthermore, we investigated how self-supervised intermediate tasks benefit various

downstream tasks. Finally, we proposed a new method to enhance pre-trained models

on Automated Essay scoring in Chapter 6. Specifically, we combined regression loss

and ranking loss together to get better performance.

Reviewing the development of pre-trained models, word2vec was proposed in 2013

[63], and pre-trained langauge models were propsoed in 2018 [74]. BERT [22] started

100

the era of pre-trained language model. Although pre-trained models have gained

success in various downstream tasks. There are still many challenge issues. The first

issue is how to enhance these models on specific tasks. All existing pre-trained models

are trained on general domain however, general models don’t mean best models on

specific tasks. The second issue is the robustness of these models, various works found

that slightly changes of the input will lead to quiet different results. In addition,

large pre-trained models are also sensitive to hyper-parameters. In our experiments,

we found that improper parameters will lead to hard convergence of these models.

Tacking these challenges will promote the research in pre-trained language models

and benefit more downstream tasks.

101

References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

[2] Collin F Baker, Charles J Fillmore, and John B Lowe. The berkeley framenet

project. In 36th Annual Meeting of the Association for Computational Linguis-

tics and 17th International Conference on Computational Linguistics, Volume

1, pages 86–90, 1998.

[3] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling mod-

ern machine-learning practice and the classical bias–variance trade-off. Proceed-

ings of the National Academy of Sciences, 116(32):15849–15854, 2019.

[4] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth

pascal recognizing textual entailment challenge. In TAC, 2009.

[5] Jiang Bian, Bin Gao, and Tie-Yan Liu. Knowledge-powered deep learning for

word embedding. In Joint European conference on machine learning and knowl-

edge discovery in databases, pages 132–148. Springer, 2014.

[6] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-

ing word vectors with subword information. arXiv preprint arXiv:1607.04606,

2016.

102

References

[7] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-

lor. Freebase: a collaboratively created graph database for structuring human

knowledge. In Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, pages 1247–1250, 2008.

[8] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and

Oksana Yakhnenko. Translating embeddings for modeling multi-relational data.

Advances in neural information processing systems, 26, 2013.

[9] Tom Bosc and Pascal Vincent. Auto-encoding dictionary definitions into con-

sistent word embeddings. In Proceedings of the 2018 Conference on Empiri-

cal Methods in Natural Language Processing, pages 1522–1532. Association for

Computational Linguistics, 2018.

[10] Elia Bruni, Nam-Khanh Tran, and Marco Baroni. Multimodal distributional

semantics. Journal of Artificial Intelligence Research, 49:1–47, 2014.

[11] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to

rank: from pairwise approach to listwise approach. In Proceedings of the 24th

international conference on Machine learning, pages 129–136. ACM, 2007.

[12] Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia.

Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual

focused evaluation. In Proceedings of the 11th International Workshop on Se-

mantic Evaluation (SemEval-2017), pages 1–14, 2017.

[13] Dhivya Chandrasekaran and Vijay Mago. Evolution of semantic similarity—a

survey. ACM Computing Surveys (CSUR), 54(2):1–37, 2021.

[14] Hongbo Chen and Ben He. Automated essay scoring by maximizing human-

machine agreement. In Proceedings of the 2013 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1741–1752, Seattle, Washington,

USA, October 2013. Association for Computational Linguistics.

103

References

[15] Mingda Chen, Zewei Chu, and Kevin Gimpel. Evaluation benchmarks and

learning criteria for discourse-aware sentence representations. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 649–662, 2019.

[16] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. On the properties of neural machine translation: Encoder-decoder ap-

proaches. arXiv preprint arXiv:1409.1259, 2014.

[17] Martin Chodorow and Jill Burstein. Beyond essay length: evaluating e-rater®’s

performance on toefl® essays. ETS Research Report Series, 2004(1):i–38, 2004.

[18] Gobinda G Chowdhury. Natural language processing. Annual review of infor-

mation science and technology, 37(1):51–89, 2003.

[19] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael

Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of

natural yes/no questions. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 2924–2936,

2019.

[20] Arman Cohan, Iz Beltagy, Daniel King, Bhavana Dalvi, and Daniel S Weld.

Pretrained language models for sequential sentence classification. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 3684–3690, 2019.

[21] Mădălina Cozma, Andrei Butnaru, and Radu Tudor Ionescu. Automated essay

scoring with string kernels and word embeddings. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 2:

104

References

Short Papers), pages 503–509, Melbourne, Australia, July 2018. Association for

Computational Linguistics.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding. In

Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the

2019 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, NAACL-HLT 2019, Min-

neapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages

4171–4186. Association for Computational Linguistics, 2019.

[23] William B Dolan and Chris Brockett. Automatically constructing a corpus of

sentential paraphrases. In Proceedings of the Third International Workshop on

Paraphrasing (IWP2005), 2005.

[24] Fei Dong, Yue Zhang, and Jie Yang. Attention-based recurrent convolutional

neural network for automatic essay scoring. In Proceedings of the 21st Con-

ference on Computational Natural Language Learning (CoNLL 2017), pages

153–162, Vancouver, Canada, August 2017. Association for Computational Lin-

guistics.

[25] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jian-

feng Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-

training for natural language understanding and generation. In Proceedings of

the 33rd International Conference on Neural Information Processing Systems,

pages 13063–13075, 2019.

[26] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and

Jie Tang. All nlp tasks are generation tasks: A general pretraining framework.

arXiv preprint arXiv:2103.10360, 2021.

105

References

[27] Scott Elliot. Intellimetric: From here to validity. Automated essay scoring: A

cross-disciplinary perspective, pages 71–86, 2003.

[28] Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard H

Hovy, and Noah A Smith. Retrofitting word vectors to semantic lexicons. In

HLT-NAACL, 2015.

[29] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,

Gadi Wolfman, and Eytan Ruppin. Placing search in context: The concept

revisited. ACM Transactions on information systems, 20(1):116–131, 2002.

[30] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. Ppdb:

The paraphrase database. In Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 758–764, 2013.

[31] Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen.

Simverb-3500: A large-scale evaluation set of verb similarity. arXiv preprint

arXiv:1608.00869, 2016.

[32] Goran Glavaš and Ivan Vulić. Explicit retrofitting of distributional word vec-

tors. In Proceedings of the 56th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 34–45. Association for

Computational Linguistics, 2018.

[33] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,

Doug Downey, and Noah A. Smith. Don’t stop pretraining: Adapt language

models to domains and tasks. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, pages 8342–8360, Online, July

2020. Association for Computational Linguistics.

[34] Project Gutenberg. The online plain text english dictionary. http://www.mso.

anu.edu.au/~ralph/OPTED/, 2009.

106

http://www.mso.anu.edu.au/~ralph/OPTED/
http://www.mso.anu.edu.au/~ralph/OPTED/

References

[35] Zellig Harris et al. Distributional hypothesis. Word World, 10(23):146–162,

1954.

[36] Zellig S Harris. Discourse analysis. In Papers on syntax, pages 107–142.

Springer, 1981.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–778, 2016.

[38] Michael Heilman and Nitin Madnani. ETS: domain adaptation and stacking

for short answer scoring. In Proceedings of the 7th International Workshop on

Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta, Georgia, USA,

June 14-15, 2013, pages 275–279, 2013.

[39] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating seman-

tic models with (genuine) similarity estimation. Computational Linguistics,

41(4):665–695, 2015.

[40] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[41] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for

text classification. In Proceedings of the 56th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers), pages 328–339.

Association for Computational Linguistics, 2018.

[42] Sergio Jiménez, Claudia Jeanneth Becerra, and Alexander F. Gelbukh. SOFT-

CARDINALITY: hierarchical text overlap for student response analysis.

In Proceedings of the 7th International Workshop on Semantic Evaluation,

SemEval@NAACL-HLT 2013, Atlanta, Georgia, USA, June 14-15, 2013, pages

280–284, 2013.

107

References

[43] Hwiyeol Jo and Stanley Jungkyu Choi. Extrofitting: Enriching word rep-

resentation and its vector space with semantic lexicons. arXiv preprint

arXiv:1804.07946, 2018.

[44] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and

Omer Levy. Spanbert: Improving pre-training by representing and predicting

spans. Transactions of the Association for Computational Linguistics, 8:64–77,

2020.

[45] N Kalchbrenner, E Grefenstette, and Philip Blunsom. A convolutional neural

network for modelling sentences. In 52nd Annual Meeting of the Association for

Computational Linguistics. Association for Computational Linguistics, 2014.

[46] Zixuan Ke and Vincent Ng. Automated essay scoring: a survey of the state of

the art. In Proceedings of the 28th International Joint Conference on Artificial

Intelligence, pages 6300–6308. AAAI Press, 2019.

[47] Yoon Kim. Convolutional neural networks for sentence classification. emnlp,

2014.

[48] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[49] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient

transformer. In International Conference on Learning Representations, 2019.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 25:1097–1105, 2012.

[51] Sachin Kumar, Soumen Chakrabarti, and Shourya Roy. Earth mover’s distance

pooling over siamese lstms for automatic short answer grading. In Proceedings

of the Twenty-Sixth International Joint Conference on Artificial Intelligence,

IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 2046–2052, 2017.

108

References

[52] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya

Kawakami, and Chris Dyer. Neural architectures for named entity recogni-

tion. In Proceedings of the 2016 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

pages 260–270, San Diego, California, June 2016. Association for Computational

Linguistics.

[53] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of

language representations. arXiv preprint arXiv:1909.11942, 2019.

[54] Jey Han Lau, Alexander Clark, and Shalom Lappin. Grammaticality, accept-

ability, and probability: A probabilistic view of linguistic knowledge. Cognitive

science, 41(5):1202–1241, 2017.

[55] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema

challenge. In Thirteenth International Conference on the Principles of Knowl-

edge Representation and Reasoning. Citeseer, 2012.

[56] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Pro-

ceedings of the 52nd Annual Meeting of the Association for Computational Lin-

guistics (Volume 2: Short Papers), pages 302–308, 2014.

[57] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hierarchical neural autoen-

coder for paragraphs and documents. arXiv preprint arXiv:1506.01057, 2015.

[58] Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu. Learning semantic

word embeddings based on ordinal knowledge constraints. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pages 1501–1511, 2015.

109

References

[59] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and

Jie Tang. Self-supervised learning: Generative or contrastive. IEEE Transac-

tions on Knowledge and Data Engineering, 2021.

[60] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,

2019.

[61] Thang Luong, Richard Socher, and Christopher Manning. Better word repre-

sentations with recursive neural networks for morphology. In Proceedings of the

Seventeenth Conference on Computational Natural Language Learning, pages

104–113, 2013.

[62] Larry R Medsker and LC Jain. Recurrent neural networks. 2001.

[63] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey

Dean. Distributed representations of words and phrases and their composi-

tionality. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and

Kilian Q. Weinberger, editors, Advances in Neural Information Processing Sys-

tems 26: 27th Annual Conference on Neural Information Processing Systems

2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,

United States, pages 3111–3119, 2013.

[64] George A Miller. Wordnet: a lexical database for english. Communications of

the ACM, 38(11):39–41, 1995.

[65] Michael Mohler, Razvan Bunescu, and Rada Mihalcea. Learning to grade short

answer questions using semantic similarity measures and dependency graph

alignments. In Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies-Volume 1, pages

752–762. Association for Computational Linguistics, 2011.

110

References

[66] Kim Anh Nguyen, Sabine Schulte im Walde, and Ngoc Thang Vu. Distinguish-

ing antonyms and synonyms in a pattern-based neural network. In Proceedings

of the 15th Conference of the European Chapter of the Association for Compu-

tational Linguistics: Volume 1, Long Papers, pages 76–85, 2017.

[67] Niels Ott, Ramon Ziai, Michael Hahn, and Detmar Meurers. Comet: Integrating

different levels of linguistic modeling for meaning assessment. In Proceedings

of the 7th International Workshop on Semantic Evaluation, SemEval@NAACL-

HLT 2013, Atlanta, Georgia, USA, June 14-15, 2013, pages 608–616, 2013.

[68] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sen-

timent categorization with respect to rating scales. In Proceedings of the 43rd

Annual Meeting of the Association for Computational Linguistics (ACL’05),

pages 115–124, 2005.

[69] Pitambar Paudel. Online education: Benefits, challenges and strategies during

and after covid-19 in higher education. International Journal on Studies in

Education, 3(2):70–85, 2021.

[70] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:

Global vectors for word representation. In Alessandro Moschitti, Bo Pang, and

Walter Daelemans, editors, Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014,

Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages

1532–1543. ACL, 2014.

[71] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-

tations. In Proceedings of NAACL-HLT, pages 2227–2237, 2018.

111

References

[72] Jason Phang, Thibault Févry, and Samuel R Bowman. Sentence encoders

on stilts: Supplementary training on intermediate labeled-data tasks. arXiv

preprint arXiv:1811.01088, 2018.

[73] Yada Pruksachatkun, Jason Phang, Haokun Liu, Phu Mon Htut, Xiaoyi Zhang,

Richard Yuanzhe Pang, Clara Vania, Katharina Kann, and Samuel R. Bowman.

Intermediate-task transfer learning with pretrained language models: When and

why does it work? In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 5231–5247, Online, July 2020. Association

for Computational Linguistics.

[74] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-

ing language understanding by generative pre-training. 2018.

[75] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch.

A word at a time: computing word relatedness using temporal semantic anal-

ysis. In Proceedings of the 20th international conference on World wide web,

pages 337–346. ACM, 2011.

[76] Altaf Rahman and Vincent Ng. Resolving complex cases of definite pronouns:

the winograd schema challenge. In Proceedings of the 2012 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, pages 777–789, 2012.

[77] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:

100,000+ questions for machine comprehension of text. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, pages

2383–2392, 2016.

[78] Brian Riordan, Andrea Horbach, Aoife Cahill, Torsten Zesch, and Chong Min

Lee. Investigating neural architectures for short answer scoring. In Proceed-

ings of the 12th Workshop on Innovative Use of NLP for Building Educational

112

References

Applications, BEA@EMNLP 2017, Copenhagen, Denmark, September 8, 2017,

pages 159–168, 2017.

[79] Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of

plausible alternatives: An evaluation of commonsense causal reasoning. In

AAAI spring symposium: logical formalizations of commonsense reasoning,

pages 90–95, 2011.

[80] Alexander M Rush, SEAS Harvard, Sumit Chopra, and Jason Weston. A neural

attention model for sentence summarization. In ACLWeb. Proceedings of the

2015 conference on empirical methods in natural language processing, 2017.

[81] Swarnadeep Saha, Tejas I. Dhamecha, Smit Marvaniya, Renuka Sindhgatta,

and Bikram Sengupta. Sentence level or token level features for automatic short

answer grading?: Use both. In Artificial Intelligence in Education - 19th Inter-

national Conference, AIED 2018, London, UK, June 27-30, 2018, Proceedings,

Part I, pages 503–517, 2018.

[82] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi.

Socialiqa: Commonsense reasoning about social interactions. arXiv preprint

arXiv:1904.09728, 2019.

[83] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg,

Ivan Titov, and Max Welling. Modeling relational data with graph convolutional

networks. In European semantic web conference, pages 593–607. Springer, 2018.

[84] Mark D Shermis and Jill C Burstein. Automated essay scoring: A cross-

disciplinary perspective. Routledge, 2003.

[85] André Smolentzov. Automated essay scoring: Scoring essays in swedish, 2013.

[86] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Man-

ning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic

113

References

compositionality over a sentiment treebank. In Proceedings of the 2013 confer-

ence on empirical methods in natural language processing, pages 1631–1642,

2013.

[87] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet:

Masked and permuted pre-training for language understanding. arXiv preprint

arXiv:2004.09297, 2020.

[88] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-

end memory networks. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,

Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Informa-

tion Processing Systems 28: Annual Conference on Neural Information Pro-

cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages

2440–2448, 2015.

[89] Md. Arafat Sultan, Cristobal Salazar, and Tamara Sumner. Fast and easy short

answer grading with high accuracy. In NAACL HLT 2016, The 2016 Conference

of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, San Diego California, USA, June 12-17,

2016, pages 1070–1075, 2016.

[90] Chi Sun, Luyao Huang, and Xipeng Qiu. Utilizing bert for aspect-

based sentiment analysis via constructing auxiliary sentence. arXiv preprint

arXiv:1903.09588, 2019.

[91] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for

text classification? In China National Conference on Chinese Computational

Linguistics, pages 194–206. Springer, 2019.

[92] Kaveh Taghipour and Hwee Tou Ng. A neural approach to automated essay

scoring. In Proceedings of the 2016 Conference on Empirical Methods in Nat-

114

References

ural Language Processing, pages 1882–1891, Austin, Texas, November 2016.

Association for Computational Linguistics.

[93] Yi Tay, Minh C. Phan, Luu Anh Tuan, and Siu Cheung Hui. Skipflow: Incor-

porating neural coherence features for end-to-end automatic text scoring. In

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,

(AAAI-18), the 30th innovative Applications of Artificial Intelligence, pages

5948–5955, 2018.

[94] Wilson L Taylor. “cloze procedure”: A new tool for measuring readability.

Journalism quarterly, 30(4):415–433, 1953.

[95] Hao Tian, Can Gao, Xinyan Xiao, Hao Liu, Bolei He, Hua Wu, Haifeng Wang,

and Feng Wu. SKEP: Sentiment knowledge enhanced pre-training for sentiment

analysis. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, pages 4067–4076, Online, July 2020. Association

for Computational Linguistics.

[96] Julien Tissier, Christophe Gravier, and Amaury Habrard. Dict2vec: Learning

word embeddings using lexical dictionaries. In Conference on Empirical Methods

in Natural Language Processing (EMNLP 2017), pages 254–263, 2017.

[97] Sophie Vanbelle. A new interpretation of the weighted kappa coefficients. Psy-

chometrika, 81(2):399–410, 2016.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008, 2017.

[99] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In International Conference

on Learning Representations, 2018.

115

References

[100] Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappagari, R Thomas McCoy,

Roma Patel, Najoung Kim, Ian Tenney, Yinghui Huang, Katherin Yu, et al.

Can you tell me how to get past sesame street? sentence-level pretraining

beyond language modeling. In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages 4465–4476, 2019.

[101] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and

Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for

natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

[102] Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao, Jiangnan Xia, Liwei Peng,

and Luo Si. Structbert: Incorporating language structures into pre-training for

deep language understanding. arXiv preprint arXiv:1908.04577, 2019.

[103] Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, Zuyi Bao, Liwei Peng,

and Luo Si. Structbert: Incorporating language structures into pre-training

for deep language understanding. In 8th International Conference on Learn-

ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

OpenReview.net, 2020.

[104] Yucheng Wang, Zhongyu Wei, Yaqian Zhou, and Xuanjing Huang. Automatic

essay scoring incorporating rating schema via reinforcement learning. In Pro-

ceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 791–797, Brussels, Belgium, October-November 2018. Asso-

ciation for Computational Linguistics.

[105] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph

and text jointly embedding. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 1591–1601, 2014.

116

References

[106] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network

acceptability judgments. Transactions of the Association for Computational

Linguistics, 7:625–641, 2019.

[107] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In

Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[108] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage chal-

lenge corpus for sentence understanding through inference. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long Papers),

pages 1112–1122, 2018.

[109] Craig Wishart and Retta Guy. Analyzing responses, moves, and roles in on-

line discussions. Interdisciplinary Journal of E-Learning and Learning Objects,

5(1):129–144, 2009.

[110] Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang Wang, Xiaoguang Liu, and

Tie-Yan Liu. Rc-net: A general framework for incorporating knowledge into

word representations. In Proceedings of the 23rd ACM international conference

on conference on information and knowledge management, pages 1219–1228,

2014.

[111] Han Xu, Zhang Zhengyan, Ding Ning, Gu Yuxian, Liu Xiao, Huo Yuqi, Qiu

Jiezhong, Zhang Liang, Han Wentao, Huang Minlie, et al. Pre-trained models:

Past, present and future. arXiv preprint arXiv:2106.07139, 2021.

[112] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. How neural networks extrapolate: From

feedforward to graph neural networks. In 9th International Conference on

117

References

Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

OpenReview.net, 2021.

[113] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language

understanding. Advances in neural information processing systems, 32, 2019.

[114] Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. A new dataset and

method for automatically grading ESOL texts. In Proceedings of the 49th An-

nual Meeting of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 180–189, Portland, Oregon, USA, June 2011. Asso-

ciation for Computational Linguistics.

[115] Mo Yu and Mark Dredze. Improving lexical embeddings with semantic knowl-

edge. In Proceedings of the 52nd Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short Papers), pages 545–550, 2014.

[116] J Yuan and C Kim. Guidelines for facilitating the development of learning com-

munities in online courses. Journal of Computer Assisted Learning, 30(3):220–

232, 2014.

[117] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-

scale adversarial dataset for grounded commonsense inference. In Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing,

pages 93–104, 2018.

[118] Xiangyang Zhou, Lu Li, Daxiang Dong, Yi Liu, Ying Chen, Wayne Xin Zhao,

Dianhai Yu, and Hua Wu. Multi-turn response selection for chatbots with deep

attention matching network. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, ACL 2018, Melbourne, Australia,

July 15-20, 2018, Volume 1: Long Papers, pages 1118–1127, 2018.

118

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Research Challenges
	Research Framework
	Thesis Organization

	Literature Review
	Pre-trained Word Embedding Models
	Word Embedding Models
	Re-training Word Embedding Models
	Post-processing Word Embedding Models

	Pre-trained Language Models
	Pre-trained Language Models
	Intermediate Tasks to Enhance PTLM

	Text Assessment
	Automatic Short Answer Grading
	Automated Text Scoring

	GGP: Glossary Guided Post-processing for Word Embedding Learning
	Introduction
	GGP Model
	Sequence to Sequence Auto-encoding
	Composition of Sense representations
	Multi-layer Fully-connected Feed-Forward Network
	Extra Constraint and Joint Objective

	Experiment and Discussion
	Pre-trained Vectors
	Definition Entries
	Pre-train Auto-encoding Model
	Model Parameter Specification
	Word Similarity
	Analysis and Discussion

	Summary

	Automated Post Scoring: Measuring Post-Topic Relevance and Post's Writing Quality in Online Forum Discussion for Learning Performance Estimation
	Introduction
	Problem Definition and Dataset
	Glossary of Online Forum
	Problem Definition
	Dataset Construction and Pre-processing

	Posts Assessment Model
	Hierarchical Text Model
	Cross Attention Model
	Matching Model
	Representation Model
	Scoring Function

	Experiment
	Experiment Setting
	Evaluation Metrics
	Experiment Results and Analysis

	Summary

	Enhancing Pre-trained Models with Self-supervised Intermediate Tasks for Natural Language Understanding
	Introduction
	Self-supervised Intermediate Tasks
	Review of BERT and RoBERTa
	Review of Self-supervised Tasks

	Experiment
	Dataset Construction
	Parameter Settings of Fine-tuning on Intermediate Tasks
	Evaluation Tasks
	Parameter Settings of Fine-tuning on Evaluation Tasks
	Experimental Results and Analysis

	Summary

	Enhancing Automated Essay Scoring Performance via Fine-tuning Pre-trained Language Models with Combination of Regression and Ranking
	Introduction
	R2BERT
	BERT
	Self-attention
	Feature Extraction
	Regression
	Batchwise Learning to Rank Model
	Combination of Regression and Ranking

	Experiment
	Dataset
	Experiment Settings
	Evaluation Metric
	Baselines and Implementation Details
	Experiment Results and Analysis
	Runtime and Memory

	Summary

	References

