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Abstract

In this thesis, fundamental properties of a newly introduced tool, projectional coderiva-

tives, are illustrated. Some examples of calculation are also presented. When the

set we refer to is a smooth manifold, the projectional coderivative can be simpli-

fied as a fixed-point expression. Therefore, we extend the generalized Mordukhovich

criterion to such a setting. Moreover, chain rules and sum rules are developed for

projectional coderivatives. Different levels of constraint qualifications are incorpo-

rated to generate upper estimates accordingly and all these upper estimates converge

under the setting of smooth manifolds. By applying the sum rule to parametric sys-

tems, we obtain the upper estimate of the projectional coderivative of the solution

mapping, which is also an implicit mapping, making it possible to analyse the rel-

ative Lipschitz-like property via projectional coderivatives. The difference between

the approach of projectional coderivatives and directional normal cones is illustrated

through an example. Under the framework of parametric systems, we analyse linear

constraint systems, linear complementarity problems and affine variational inequal-

ities. For linear constraint systems with a polyhedral setting, we show that by the

generalized Mordukhovich criterion it enjoys the Lipschitz-like property relative to

its domain automatically. Besides, we derive the corresponding graphical modulus.

For linear complementarity problems with a Q0-matrix, we investigate the sufficient

and necessary condition for the Lipschitz-like property relative to its convex domain.

For affine variational inequality, a generalized critical face condition is obtained to
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characterize the Lipschitz-like property relative to a polyhedral convex set under a

constraint qualification. By exploiting the structure of linear constraint systems, we

investigate the Lipschitz-like property of such systems with an explicit set constraint

under full perturbations (including the matrix perturbation) and derive some suffi-

cient and necessary conditions. Some other approaches like outer-subdifferentials and

error bounds are also taken into scope to characterize such property. The criterion

is later applied on a linear portfolio selection optimization problem.
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Chapter 1

Introduction

Real-world applications often involve input data which comes with fluctuations, like

time delay, rapid change of prices, market frictions etc. Stability analysis aims at

determining a verifiable condition, such that for a region of perturbation, the solution

stays stable with an accuracy quantifiable by the size of the perturbation (Rockafel-

lar and Wets [81]). Among various stability properties, the Lipschitz-like property

(also known as the Aubin property) plays a central role and has deep consequences

with error bounds and metric regularity, which are widely adopted in convergence

analysis of iterative algorithms. The Lipschitz-like property arises from the Lips-

chitzian behavior of the set-valued mappings but focuses on localization around the

reference point rather than all points in the domain of the mapping. By virtue of the

Mordukhovich criterion, such property can be captured by coderivatives, along with

describing the graphical modulus with an outer norm of coderivatives. The coderiva-

tive employed here, provides a geometric perspective on local behaviors of the graph

of the set-valued mapping. The calculus rules of coderivatives offer a bridge to apply

the Mordukhovich criterion to analyze the Lipschitz-like property of parametric op-

timization problems like generalized equations, parametric linear constraint systems,

linear complementarity problems and variational inequalities.

However, one stringent assumption of the Lipschitz-like property is that the ref-
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erence point lies in the interior of the domain of the set-valued mappings. Such an

implicit assumption can be observed by both the definition of the property and the

local boundedness requirement on coderivatives in Mordukhovich criterion. This as-

sumption could hinder the study of this property when the point of interest lies on the

boundary of the domain, or when one wish to study the property relative to certain

directions only. Thus, the relative Lipschitz-like property comes into play. Although

the Lipschitz-like property has been widely studied, the Lipschitz-like property rel-

ative to a set is greatly understudied. Not until recently, a new tool in variational

analysis, projectional coderivative, has been introduced in Meng et al. [59] and em-

ployed to establish a generalized Mordukhovich criterion to characterize the property

relative to a closed and convex set. This verifiable condition also pins down the asso-

ciated graphical modulus of the set-valued mapping relative to the closed and convex

set with the outer norm of projectional coderivatives.

For this newly acquainted tool, only a few properties and examples are presented

due to its complicated nature. It involves interactions between normal cone of the

set-valued mapping and projection onto the tangent cone of the set in the neighbor-

hood. Thus, natural questions can be raised like, when does the projected normal

cone enjoy outer semicontinuity like normal cone or under what conditions can the

expression be simplified. More importantly, can we obtain calculus rules for projec-

tional coderivatives similar to coderivatives and apply them to parametric systems

to characterize the relative Lipschitz-like property? What kind of constraint qualifi-

cations should be imposed? These questions motivate our work.

1.1 Literature review

The early work on stability analysis can be traced back to Hoffman [35] where the

error bound of linear inequality system under right-hand side perturbation was dis-
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cussed. However, the study of stability did not proliferate until recent decades.

Robinson played a leading role in studying the extension of the theorem (see Robin-

son [74]). Later works, Luo and Tseng [58], Azé and Corvellec [3] and Peña et al. [69]

excelled in obtaining the error bound modulus of the linear systems and Van Ngai

et al. [84], Kruger et al. [47, 48] worked on the semi-infinite ones. An outer subdiffer-

ential was used in error bounds: Cánovas et al. [14], Eberhard et al. [20], Fabian et al.

[21], Kruger et al. [47], Ioffe [40], Ioffe and Outrata [43], Li et al. [56]. Related works

on stability analysis are also introduced in monographs by Fiacco [24], Mordukhovich

[66].

In 1984, Aubin [2] originated the definition of ‘pseudo-Lipschitz’ in the format of

inverse function F−1. Such property is later named after the author as the Aubin

property (Rockafellar and Wets [81]), a.k.a. Lipschitz-like property, to capture it as

an extension of Lipschitzian behavior of multifunction (see Mordukhovich [66]).

To characterize the Lipschitz-like property, Mordukhovich criterion was at first

derived directly in Mordukhovich [61] with the estimates for the corresponding graph-

ical modulus represented as the outer norm of the coderivative. The equivalence

between the inverse Lipschitz-like property, openness at a linear rate and metric reg-

ularity is introduced thoroughly later in Mordukhovich [62]. The proof employing

Ekeland variational principle and extremal principle (in Asplund spaces) can also

be found in Mordukhovich [65] and a more direct one utilizing the essential varia-

tional analysis tools in Rockafellar and Wets [81]. The calculus rules of coderivatives

widely adopted were largely initiated in Mordukhovich [63] and introduced in later

monographs by Rockafellar and Wets [81] and Mordukhovich [65] under the assump-

tions of local boundedness and graph-convexity. These rules facilitate analyzing the

Lipschitz-like property of parametric optimization problems. In Mordukhovich [64],

the Lipschitz-like property was analyzed for a parametric system with the sum of two

mappings, where the set-valued one did not involve the decision parameter. Later in
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Levy and Mordukhovich [53], an extended form of the implicit set-valued mapping

was considered, where both mappings involved the decision parameter. The upper

estimate of the coderivative of the solution mapping is guaranteed under some con-

straint qualification and equality is also attainable. Such an estimate not only paves

the way for studying stationary-point set mapping, but also facilitates the work of

Huyen and Yen [38], which made full use of the condition for equality and studied

the Lipschitz-like property and the Robinson metric regularity of a parametric linear

constraint system under full perturbations:

S(A, b) = {x | Ax+ b ∈ K} (1.1.1)

with K being a closed set only. Huyen and Yen [38] also applied the result to

the solution mappings for linear complementarity problems and affine variational

inequalities. A similar result on smooth function with regularity of the set is also

mentioned in [81, Example 9.51] with graphical modulus obtained. Lee and Yen [50]

employed the upper estimate in Levy and Mordukhovich [53] to analyze the Lipschitz-

like property of the solution of the trust region-subproblem under full perturbations.

For more introduction on parametric optimization problems, see monographs by

Bonnans and Shapiro [6], Dontchev and Rockafellar [19], Ioffe [41] and Klatte and

Kummer [46].

Among parametric systems, both linear and nonlinear systems have attracted a

lot of attention on stability analysis due to its wide application. An example on port-

folio selection using minimax rule can be found in Cai et al. [8] and Meng et al. [60].

Under the Robinson constraint qualification, Borwein [7] and Robinson [75] analyzed

the Lipschitz property of the solution mapping of nonlinear inequality system with

a closed and convex cone. Later in Jongen et al. [44], sufficiency for such stablity is

provided with extended Mangasarian-Fromovitz constraint qualification at infinity.

For linear semi-infinite systems, Goberna and López [31] gave some characterizations
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of the Lipschitz-like continuity. In Cánovas et al. [10], complete characterizations of

the Lipschitz-like property of the solution mapping of both linear semi-infinite and

infinite systems were obtained by developing a Mordukhovich criterion in an arbi-

trary Banach space based on coderivative. More recently, Li and Ng [54] used error

bound results for approximate solutions to analyze the Lipschitz-like property of an

abstract inequality system. For other stability results on these types of systems, see

Cánovas et al. [12, 11] for calmness, Cánovas et al. [9] for metric regularity and Li

and Li [55] and Gfrerer and Mordukhovich [26] for Robinson metric regularity.

As Huyen and Yen [38] treated the solution mappings of linear complementar-

ity problems and affine variational inequalities under the framework of (1.1.1), K

becomes a union of polyhedral sets with special structures: graph of a normal cone

mapping of a polyhedral set. In general, calculating the coderivative of this normal

cone mapping requires some effort. Henrion and Outrata [33] considered the normal

cone of finite union of polyhedral cones at the origin. Lee and Yen [50] considered

the coderivative of a normal cone mapping of a Euclidean ball. In Henrion et al. [34],

the coderivative formula was given for normal cone mappings of inequality systems

with different assumptions, like full rank, linear independence constraint qualifica-

tion (LICQ) and Mangasarian-Fromovitz constraint qualification (MFCQ). Gfrerer

and Outrata [28] continued the work with a weaker constraint qualification. Qui

[71] gave some estimates on the coderivative of right-hand side perturbed polyhedral

normal cone mappings.

For a polyhedral normal cone mapping, Dontchev and Rockafellar [18] represented

its coderivative by union of the difference (and its polar) between two critical faces

of the set with a selection rule. In this way, a sufficient and necessary condition for

the Lipschitz-like property of the solution mapping of affine variational inequality
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under linear perturbation,

L(q) = {x | 0 ∈ q + Ax+NC(x)} , (1.1.2)

was derived via a reduction lemma, named ‘critical face condition’. In this work,

the system (1.1.2) is closely related to the following one as the affine variational

inequality can be treated as a linearization of 0 ∈ z + f(w, x) + NC(x) under a

proper setting

S(z, w) = {x | 0 ∈ z + f(w, x) +NC(x)} . (1.1.3)

Moreover, equivalences between single-valuedness along with Lipschitz continuity and

the Lipschitz-like property, both for L and S also established, when differentiability

and Lipschitz continuity of f are assumed. Earlier work on such equivalence can

also be found in Robinson [77] under strongly regularity condition and Robinson [79]

under coherent orientation condition. See also Ralph [73], Scholtes [82] and Ioffe [42]

for more related works.

For the case C in (1.1.2) being a multifunction, the system can be taken as a quasi-

variational inequality. New rules for coderivative calculus for this type of problems

were introduced in Mordukhovich and Outrata [67] and thus efficient conditions for

Lipschitzian stability were derived. Yen [85] considered C as a polyhedral set with

linear perturbation and established that the solution mapping of nonlinear varia-

tional inequality is Lipschitz continuous and single-valued under the Lipschitz and

strong monotonicity assumptions. Lu and Robinson [57] deducted the determinantal

condition for the existence of a single-valued, Lipschitz continuous, piecewise-affine

solution. For the case that C is a linear constraint system with full perturbations

(both left-hand side and right-hand side), Robinson [76] and Cánovas et al. [13] char-

acterized the calmness property for the stationary set mapping in terms of a Slater

condition. Under a positively linear independence assumption, Qui [72] provided a

sufficient condition for the Lipschitz-like property of the solution mapping of a fully
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perturbed affine variational inequality.

For linear complementarity problems, they can be seen as a special type of affine

variational inequality with C being the nonnegative orthant and therefore share the

results above. Gowda and Pang [32] obtained a sufficient condition for calmness

and existence of the mixed linear complementarity problem by degree theory and

extended the result to the nonlinear one. For more applications of variational in-

equality problems and linear complementarity problems, see monographs by Cottle

et al. [16], Kinderlehrer and Stampacchia [45], Facchinei and Pang [22] and Lee et al.

[51]. More introduction on the solution mappings for variational problems and im-

plicit mappings can also be found in the monograph by Dontchev and Rockafellar

[19].

As mentioned before, the Lipschitz-like property has an implicit prerequisite that

the reference point lies in the interior of the domain. In recent years, the relative

stability has gained much attention, most of which employed the tool directional

limiting coderivatives, introduced in Gfrerer [25] with directional limiting calculus

initiated in Ginchev and Mordukhovich [30]. For directionally Lipschitzian single-

valued mappings and generalized directional derivatives, see Clarke [15]. Gfrerer

and Outrata [27] established sufficient conditions for the calmness and the Lipschitz-

like property of implicit multifunctions by using a directional limiting coderivative

along with graphical derivative. The formula for computing the directional limit-

ing coderivative of the normal-cone map with a polyhedral set was also presented

employing the critical face condition framework in Dontchev and Rockafellar [18].

Further extension of critical face condition to the Lipschitz-like property of solution

mapping to a generalized equation can also be found in Gfrerer and Outrata [29]

under the framework of Mordukhovich and Outrata [67]. In Benko et al. [5], suffi-

cient conditions for the Lipschitz-like property relative to a closed set of the solution

map for a class of parameterized variational systems were derived. These conditions
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require computation of directional limiting coderivatives of the normal-cone mapping

for the so-called critical directions. However, these works only provided sufficiency

for the relative Lipschitz-like property, which could still fail when the reference point

lies on the boundary. In Meng et al. [59], a new tool, the projectional coderivative,

was introduced and both sufficiency and necessity were provided for characterizing

the Lipschitz-like property relative to a closed and convex set. For other stability

properties relative to a set, see Van Ngai and Théra [83], Ioffe [39], Arutyunov and

Izmailov [1] and Bonnans and Shapiro [6] for the relative metric regularity, Mor-

dukhovich and Wang [68] for the restrictive metric regularity and Benko et al. [5] for

the relative isolated calmness.

1.2 Organization of the thesis

In this dissertation, we restrict our scope of stability analysis mainly to the Lipschitz-

like property and the relative Lipschitz-like property. The remaining of the current

chapter introduces the tools widely adopted in variational analysis. Our work begins

in Chapter 2 by introducing some properties of projectional coderivatives, mainly

from the perspective of projection. Some connections between coderivatives and

projectional ones are also stated. More specifically, when we consider a smooth

manifold, the complicated expression of projectional coderivative can be fine-tuned

as a fixed-point one. To take advantage of this structure, we extend the generalized

Mordukhovich criterion from the convex setting to a smooth manifold. Similar to

coderivatives, we obtain the chain rules for projectional coderivatives and establish

an equation for smooth manifolds. Some special cases like when inner or outer layer

of the function is single-valued are also discussed. Subsequently, a few sum rules are

analyzed with different levels of constraint qualifications. The differences are mainly

caused by: 1) the fact that a more stringent constraint qualification corresponds to
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a tighter upper estimate, and 2) how we deal with restricting the mappings onto

the set. The first type of differences can be eliminated when the set is a smooth

manifold.

As one useful objective of developing these rules is to analyze the relative Lipschitz-

like property in a broader range, we apply these rules to a parametric system in

Chapter 3. Inspired by Levy and Mordukhovich [53], we consider the parametric

system which involves the sum of a C1 single-valued function and a set-valued one.

Both of these two mappings are perturbed by the same parameter. When the sys-

tem involves only one set-valued mapping, i.e., under the general implicit mapping

setting, with a stricter constraint qualification we can represent the upper estimate

of projectional coderivatives of the system by that of the mapping. We also com-

pare our approach for analyzing relative Lipschitz-like property with that in Benko

et al. [5] under the same setting. An example demonstrates that when a set or a

direction involves part of the boundary of the domain, our approach works better

as it characterizes the property in full. We also show that in some particular cases,

constraint qualifications can be bypassed. Later we apply these results to specific

problems with structures. For linear constraint systems under right-hand side per-

turbations, we first update some characterizations on the Lipschitz-like property by

exploiting the structure of its domain. When the set is a union of polyhedrons, we

give an expression of projectional coderivative of the system relative to its domain

and when the set is one polyhedron, we obtain the graphical modulus relative to its

domain. For linear complementarity problems, we consider a particular case where

M is a Q0-matrix. In this way the domain is convex and we can apply the gen-

eralized Mordukhovich criterion and develop a fixed-point sufficient and necessary

condition for the Lipschitz-like property relative to its domain. The corresponding

graphical modulus is also presented. For affine variational inequalities, to character-

ize the Lipschitz-like property relative to a polyhedral convex set which lies within
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the domain of the solution mapping, we derive a generalized critical face condition

in light of Dontchev and Rockafellar [18].

In Chapter 4, we take a step back to consider the Lipschitz-like property for the

linear constraint system in Huyen and Yen [38]. We observe that for right-hand side

and full perturbations, the Lipschitz-like property are equivalent and thereby give

the relations of the Lipschitz-like property between different types of perturbations.

Particularly for the linear constraint system (1.1.1) with a closed and convex set K,

we establish the equivalences among the Lipschitz-like property of S, the normal cone

and the tangent cone of its domain and the regularity at the candidate point. As

an extension, we consider a linear constraint system with an explicit set constraint

with full perturbations. Characterizations from perspectives of outer subdifferential

and Robinson stability are also presented. Furthermore, we consider a variational

inequality with linear approximation. With nonsingularity assumption of the matrix

and some continuity assumptions on the approximated function f , we construct the

equivalence between the original system and the linearized one. Lastly we consider a

practical problem: linear portfolio selection. The stability analysis is performed both

on feasible set mappings and the optimal solution mapping and some conditions that

are easy to verify are obtained.

1.3 Preliminaries

In this section, we provide backgrounds on notations, tools and corresponding prop-

erties widely adopted in the study of variational analysis. Most of these can be found

in monographs by Rockafellar and Wets [81] and Mordukhovich [65]. Readers who

are familiar with these notations may safely skip this section.

For a nonempty set C ⊆ Rn, the interior, the relative interior, the closure, the

boundary, the convex hull and the positive hull of C are denoted respectively by
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intC, rintC, clC, bdryC, convC and posC := {0} ∪ {λx | x ∈ C and λ > 0}. The

orthogonal complement C⊥, the polar cone C∗ and the horizon cone C∞ are defined

respectively by

C⊥ := {v ∈ Rn | 〈v, x〉 = 0, ∀x ∈ C},

C∗ := {v ∈ Rn | 〈v, x〉 ≤ 0, ∀x ∈ C}, and

C∞ := {x ∈ Rn | ∃xk ∈ C, λk ↘ 0, withλkxk → x}.

The support function σC of C is defined by

σC(x) := sup
v∈C
〈v, x〉.

The indicator function δC of C is defined by

δC(x) :=

{
0 if x ∈ C,
+∞ otherwise.

The distance from x to C is defined by

d(x,C) := inf
y∈C
||y − x||.

The projection mapping projC is defined by

projC(x) := {y ∈ C | ‖y − x‖ = d(x,C)}.

For a set X ⊂ Rn, we denote the projection of X onto C by

projCX := {y ∈ C | ∃x ∈ X, with ‖y − x‖ = d(x,C)}.

If C = ∅, by convention we set that d(x,C) := +∞, projC(x) := ∅, and projCX := ∅.

Let x ∈ C. We use TC(x) to denote the tangent/contingent cone to C at x,

i.e. w ∈ TC(x) if there exist sequences tk ↘ 0 and {wk} ⊂ Rn with wk → w and

x+ tkwk ∈ C, ∀k. It can also be expressed as an outer limit:

TC(x) = lim sup
t ↘ 0

C − x
t

.
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The regular/Fréchet normal cone, N̂C(x), is the polar cone of TC(x), defined by

N̂C(x) =

v ∈ Rn

∣∣∣∣∣∣∣ lim sup

x′
C−→
6=
x

〈v, x′ − x〉
‖x′ − x‖

≤ 0

 .

Here x′ C−→
6=

x means x′ → x, x′ ∈ C, x′ 6= x. The (basic/limiting/Mordukhovich)

normal cone to C at x, NC(x), is defined via the outer limit of N̂C as

NC(x) = lim sup

x′
C−→x

N̂C(x′) :=
{
v ∈ Rn | ∃ sequences xk

C−→ x, vk → v, vk ∈ N̂C(xk), ∀k
}
.

If C is a convex set,

N̂C(x) = NC(x) = {v ∈ Rn | 〈v, x′ − x〉 ≤ 0, ∀x′ ∈ C}.

We say that C is locally closed at a point x ∈ C if C ∩ U is closed for some

closed neighborhood U ∈ N (x). C is said to be regular at x in the sense of Clarke

if it is locally closed at x and N̂C(x) = NC(x). For any x /∈ C, we set by convention

TC(x) = ∅, NC(x) = ∅, N̂C(x) = ∅.

Let C ⊂ Rn be a nonempty convex set. A face of C is a convex subset C ′ of

C such that every closed line segment in C with a relative interior point in C ′ has

both endpoints in C ′. An exposed face of C is the intersection of C and a non-

trivial supporting hyperplane to C. In other words, F is an exposed face of C if

and only if there is some x ∈ Rn such that F = arg maxv∈C〈x, v〉. See the book

[80] for more details. In this thesis, we also use the notion of semi-closed faces,

which originated from Fang et al. [23] with ‘semi-closed polyhedral. The concept

‘semi-closed polyhedral’ is an extension of polyhedron, defined as the intersection

of finitely many closed or open half-spaces. For semi-closed faces F ′, it can be

expressed as the intersection of finitely many closed or open half-spaces and clF ′

must correspond to some closed face F of C.
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Let f : Rn → R := R ∪ {±∞} be an extended real-valued function and let x̄ be

a point with f(x̄) finite. The vector v ∈ Rn is a regular/Fréchet subgradient of f at

x̄, written v ∈ ∂̂f(x̄), if

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(||x− x̄||).

The vector v ∈ Rn is a (general/basic) subgradient of f at x̄, written v ∈ ∂f(x̄), if

there exist sequences xk → x̄ and vk → v with f(xk)→ f(x̄) and vk ∈ ∂̂f(xk). The

subdifferential set ∂f(x̄) is also referred to as limiting/Mordukhovich subdifferential.

The vector v ∈ Rn is a horizon/singular subgradient of f at x̄, written v ∈ ∂∞f(x̄),

if there are sequences xk → x̄ with f(xk)→ f(x̄), λk ↘ 0 and vk ∈ ∂̂f(xk) such that

λkvk → v.

The outer limiting subdifferential of f at x̄ introduced in [43] is denoted and

defined as follows:

∂>f(x̄) :=

{
lim

k→+∞
vk | ∃xk

f−→ x̄, ∀k : f(xk) > f(x̄) and vk ∈ ∂f(xk)

}
.

For a set-valued mapping S : Rn ⇒ Rm, we denote by

gphS := {(x, u) | u ∈ S(x)} and domS := {x | S(x) 6= ∅}

the graph and the domain of S, respectively. S is said to be positively homogeneous

if

0 ∈ S(0) and S(λx) = λS(x) for all λ > 0 and x,

or in other words, gphS is a cone. If S is a positively homogeneous mapping, the

outer norm of S is denoted and defined by

|S|+ := sup
x∈B

sup
u∈S(x)

‖u‖, (1.3.1)

which is the infimum over all constants κ ≥ 0 such that ‖u‖ ≤ κ‖x‖ for all pairs

(x, u) ∈ gphS.
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Consider a point x̄ ∈ domS. The outer limit of S at x̄ is defined by

lim sup
x→x̄

S(x) := {u ∈ Rm | ∃xk → x̄,∃uk → u with uk ∈ S(xk)}.

S is said to be outer semicontinuous at x̄ if

lim sup
x→x̄

S(x) ⊂ S(x̄).

For a sequence of mappings Sν : Rn ⇒ Rm, the graphical outer limit, is given via

the graph:

gph(g-limsupν S
ν) = limsupν(gphSν). (1.3.2)

and therefore has (g-limsupν S
ν) (x) =

⋃
{xν→x}

lim sup
ν→∞

Sν(xν).

The (normal) coderivative and the regular/Fréchet coderivative of S at x̄ for any

ū ∈ S(x̄) are respectively the mapping D∗S(x̄ | ū) : Rm ⇒ Rn defined by

x∗ ∈ D∗S(x̄ | ū)(u∗)⇐⇒ (x∗,−u∗) ∈ NgphS(x̄, ū), (1.3.3)

the mapping D̂∗S(x̄ | ū) : Rm ⇒ Rn defined by

x∗ ∈ D̂∗S(x̄ | ū)(u∗)⇐⇒ (x∗,−u∗) ∈ N̂gphS(x̄, ū).

Therefore with outer semicontinuity of normal cone mappings, by (1.3.2),

D∗S(x̄ | ū) = g-limsup

(x,u)
gphS−−−→(x̄,ū)

D̂∗S(x | u) = g-limsup

(x,u)
gphS−−−→(x̄,ū)

D∗S(x | u).

For a set X ⊂ Rn, we denote by

S|X :=

{
S(x) if x ∈ X,
∅ if x 6∈ X,

the restricted mapping of S on X. It is clear to see that

gphS|X = gphS ∩ (X × Rm) and domS|X = X ∩ domS.
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Definition 1.3.1 (local boundedness relative to a set,[81, Page 162]). For a mapping

S : Rn ⇒ Rm, a closed set X ⊂ Rn and a given point x̄ ∈ X, if for some neighborhood

V ∈ N (x̄), S(V ∩ X) is bounded, we say S is locally bounded relative to X at x̄.

Such definition is equivalent to local boundedness of S|X at x̄, where S|X means the

mapping S restricted to X.

Remark 1.3.2. By definition of local boundedness, if S is locally bounded at x̄, then

S is also locally bounded in a certain neighborhood of x̄. Similarly, if S is locally

bounded relative to X at x̄, then S is also locally bounded relative to X in a certain

neighborhood of x̄.

Similar to definition of regularity in [81, Defnition 6.4], here we introduce a local

version:

Definition 1.3.3. For a set C ⊆ Rn, we say C is regular at around x̄ ∈ C (in the

sense of Clarke) if it is locally closed around x̄ and there exists a neighborhood X of

x̄, such that for any x ∈ X ∩ C, N̂C(x) = NC(x).

Definition 1.3.4 (Outer semicontinuity relative to a set, [81, Definition 5.4]). A

set-valued mapping S : Rn ⇒ Rm is outer semicontinuous (osc) at x̄ relative to X if

x̄ ∈ X and

lim sup
x X−−→x̄

S(x) = S(x̄).

Such definition is equivalent to outer semicontinuity of S|X as

lim sup
x X−−→x̄

S(x) = lim sup
x→x̄

S|X(x) = S|X(x̄).

Next we present some definitions and properties on stability of S, most of which

are borrowed from [81].
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Definition 1.3.5 (Lipschitz-like property relative to a set, [81, Definition 9.36]). A

mapping S : Rn ⇒ Rm has the Lipschitz-like property relative to X at x̄ for ū, where

x̄ ∈ X and ū ∈ S(x̄), if gphS is locally closed at (x̄, ū) and there are neighborhoods

V ∈ N (x̄), W ∈ N (ū), and a constant κ ∈ R+ such that

S(x′) ∩W ⊂ S(x) + κ‖x′ − x‖B ∀x, x′ ∈ X ∩ V. (1.3.4)

The graphical modulus of S relative to X at x̄ for ū is then

lipX S(x̄ | ū) := inf { κ ≥ 0 | ∃V ∈ N (x̄),W ∈ N (ū), such that

S(x′) ∩W ⊂ S(x) + κ‖x′ − x‖B, ∀x, x′ ∈ X ∩ V }.

The property with V in place of X ∩ V in (1.3.4) is the Lipschitz-like property

along with the graphical modulus lipS(x̄ | ū). For the Lipschitz-like property, a

useful test is provided, the Mordukhovich criterion.

Theorem 1.3.6 (Mordukhovich criterion, see [81, Theorem 9.40], [65, Theorem

4.10]). For a mapping S : Rn ⇒ Rm with gphS being locally closed at (x̄, ū) ∈ gphS,

S has the Lipschitz-like property at x̄ for ū if and only if

D∗S(x̄ | ū)(0) = {0}, (1.3.5)

or equivalently |D∗S(x̄ | ū)|+ <∞. In this case lipS(x̄ | ū) = |D∗S(x̄ | ū)|+.

To characterize the relative Lipschitz-like property, in [59], a new tool, the pro-

jectional coderivative, is introduced.

Definition 1.3.7 ([59, Definition 2.2]). D∗XS(x̄ | ū) : Rm ⇒ Rn of S : Rn ⇒ Rm at

x̄ ∈ X for any ū ∈ S(x̄) with respect to X is defined as

t∗ ∈ D∗XS(x̄ | ū)(u∗)⇐⇒ (t∗,−u∗) ∈ lim sup

(x,u)
gphS|X−−−−−−→(x̄,ū)

projTX(x)×RmNgphS|X (x, u).

(1.3.6)
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Figure 1.1: An example of projectional coderivatives

Here we give an example of the calculation on projectional coderivatives.

Given this new tool, a handy test for the Lipschitz-like property relative to a

closed and convex set is developed similarly to the Mordukhovich criterion, and is

named as the generalized Mordukhovich criterion.

Theorem 1.3.8 (generalized Mordukhovich criterion, [59, Theorem 2.4]). Consider

S : Rn ⇒ Rm, x̄ ∈ X ⊂ Rn and ū ∈ S(x̄). Suppose that gphS is locally closed

at (x̄, ū) and that X is closed and convex. Then S has the Lipschitz-like property

relative to X at x̄ for ū if and only if

D∗XS(x̄ | ū)(0) = {0} (1.3.7)

or equivalently |D∗XS(x̄ | ū)|+ < +∞. In this case,

lipXS(x̄ | ū) = |D∗XS(x̄ | ū)|+. (1.3.8)

For a single-valued mapping F : D → Rm where D ⊆ Rn, we say that F is strictly

continuous at x̄ relative to X ⊆ D if x̄ ∈ X and

lipXF (x̄) := lim sup

x,x′
X−→x̄

x 6=x′

‖F (x′)− F (x)‖
‖x′ − x‖

17



is finite. F is strictly continuous at x̄ if x̄ ∈ intD and

lipF (x̄) := lim sup
x,x′−→x̄
x 6=x′

‖F (x′)− F (x)‖
‖x′ − x‖

is finite.
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Chapter 2

Projectional Coderivatives and Chain
Rules

The projectional coderivatives initiated by [59] (see Definition 1.3.6), was invented to

capture the Lipschitz-like property of a multifunction relative to a closed and convex

set in full. Such a definition is derived via the sufficient and necessary condition for

the property (see [59, Theorem 2.3]) with existence of κ > 0:

‖projTX(x)(x
∗)‖ ≤ κ‖u∗‖, ∀x∗ ∈ D∗S|X(x | u)(u∗)

for all (x, u) being close enough to (x̄, ū) in gphS|X . As by definition,

t∗ ∈ D∗XS(x̄ | ū)(u∗)⇐⇒ (t∗,−u∗) ∈ lim sup

(x,u)
gphS|X−−−−−−→(x̄,ū)

projTX(x)×RmNgphS|X (x, u).

the projectional coderivative involves taking limsup of projected normal cones of

points (x, u) tending to (x̄, ū) in gphS|X . When x̄ ∈ intX, the projectional coderiva-

tive becomes coderivatives naturally. Given the osc of normal cone mappings, we

start to explore under what condition will the projected normal cone be osc as well,

i.e.,

lim sup

(x,u)
gphS|X−−−−−−→(x̄,ū)

projTX(x)×RmNgphS|X (x, u) = projTX(x̄)×RmNgphS|X (x̄, ū).
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Based on the fact that the tangent cone of a smooth manifold varies from one point

to another continuously, we are able to express the projectional coderivative in a

fixed-point pattern and develop the equation for the chain rules.

2.1 Projectional coderivatives and properties of smooth
manifolds

We first introduce some properties of projection and some natural observations of

projectional coderivatives. Below we present an observation on the connection be-

tween projectional coderivatives and coderivatives.

Lemma 2.1.1. For a set valued-mapping S : Rn ⇒ Rm, and a closed set X ⊆ Rn,

for any (x̄, w̄) ∈ gphS|X ,

D∗S|X(x̄ | w̄)−1(0) ⊆ D∗XS(x̄ | w̄)−1(0). (2.1.1)

Proof. For w′ ∈ D∗S|X(x̄ | w̄)−1(0), it is equivalent that (0,−w′) ∈ NgphS|X (x̄, w̄). As

projTX(x̄)(0) = 0, we have (0,−w′) ∈ projTX(x̄)×RmNgphS|X (x̄, w̄). Then by definition

of projectional coderivatives, w′ ∈ D∗XS(x̄ | w̄)−1(0).

Next we introduce some properties of projection onto cones.

Lemma 2.1.2. For any nonempty closed convex cone K ⊆ Rn with its polar K∗ =

K⊥, where K⊥ = {v|〈v, x〉 = 0, ∀x ∈ K},

projK(v + y) = projK(y), for any y ∈ Rn and v ∈ K⊥. (2.1.2)

Proof. Let y ∈ Rn and x = projK(y). As K is a nonempty closed and convex set,

[4, Theorem 3.16], it is equivalent that x ∈ K and y − x ∈ NK(x). Then for any

x′ ∈ K, 〈y − x, x′ − x〉 ≤ 0. For any choice of v ∈ K∗ = K⊥ we have 〈v, x′ − x〉 = 0.

Therefore 〈v + y − x, x′ − x〉 ≤ 0 and v + y − x ∈ NX(x). Thus x = projK(v + y).

Then the equation (2.1.2) is proved along with uniqueness of projection.
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Lemma 2.1.3. For a nonempty closed cone C ⊆ Rn, for any y ∈ projC(x), λy ∈

projC(λx) for any λ ≥ 0.

Proof. As λ ≥ 0, y ∈ C and C is a cone, λy ∈ C. If λ = 0, 0 ∈ projC(0). If λ > 0,

suppose λy /∈ projC(λx), i.e., ∃w ∈ C such that d(λx,C) = d(λx,w) < d(λx, λy) =

λd(x, y). Again as C is a cone we can always find y′ ∈ C such that w = λy′.

Then d(λx,w) = d(λx, λy′) = λd(x, y′) ≥ λd(x,C) = λd(x, y), which contradicts our

assumption.

From the expression of (1.3.6) we can see that the calculation of projectional

coderivative also involves neighboring points. When the set we refer to, X, has

special structure, for example, a smooth manifold, such representation can be refined

as a fixed-point expression. Before introducing the exact form, we present some basic

properties of a smooth manifold in the following proposition. In what follows, let

X be a d-dimensional smooth manifold in Rn around the point x̄ ∈ X, in the sense

that X can be represented relative to an open neighborhood O ∈ N (x̄) as the set

of solutions to F (x) = 0, where F : O → Rn−d is a smooth (i.e., C1) mapping with

∇F (x̄) of full rank n − d. This definition is borrowed from [81, Example 6.8]. For

more thorough details of smooth manifold, see the monograph by Lee [52].

Proposition 2.1.4 (Basic properties of smooth manifolds). Let X ∈ Rn be a smooth

manifold at x̄. We have the following basic properties.

(a) X is regular at around x̄. The tangent and normal cones to X at any x being

close enough to x̄ are linear subspaces orthogonally complementary to each

other, namely

TX(x) = {w ∈ Rn | ∇F (x)w = 0} and NX(x) = {∇F (x)∗y | y ∈ Rn−d}.

Moreover,

projTX(x)(x
∗) =

[
I −∇F (x)∗ (∇F (x)∇F (x)∗)−1∇F (x)

]
x∗ ∀x∗. (2.1.3)
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(b) For any x being close enough to x̄ in X and x∗ ∈ Rn, it holds that

TX(xk)→ TX(x) and projTX(xk)(x
∗
k)→ projTX(x)(x

∗),

where {xk} and {x∗k} are two sequences such that xk
X−→x and x∗k → x∗.

(c) For any ε > 0, there exists some δ > 0 such that

∥∥∥∥ y − x
‖y − x‖

− projTX(x)

(
y − x
‖y − x‖

) ∥∥∥∥ ≤ ε

holds for all x, y ∈ X ∩ Bδ(x̄) with x 6= y.

Proof. As F : O → Rn−d is smooth with ∇F (x̄) of full rank n− d, ∇F (x) is also of

full rank n − d for all x close enough to x̄ in X. The properties in (a) then follows

readily from [81, Exercise 6.7, Example 6.8]. Therefore the projection onto TX(x) is

equivalent to projection on the column space of ∇F (x). Given that ∇F (x) has full

rank n− d, by [49, Page 365] we have (2.1.3).

For (b), with regularity, TX(x) = T̂X(x) = lim inf
x′ X−−→x

TX(x′) by [81, Corollary

6.29 (b)]. To prove continuity relative to X, it remains to prove lim sup
x′ X−−→x

TX(x′) ⊆

TX(x). For w ∈ lim sup
x′ X−−→x

TX(x′), it is equivalent that there exist sequences

xk
X−→ x and wk ∈ TX(xk) = {w ∈ Rn | ∇F (xk)w = 0} such that wk → w. Given

∇F (xk)→ ∇F (x) when xk → x and ∇F (xk)wk = 0 , then ∇F (xk)wk → ∇F (x)w =

0 when k → ∞, which shows w ∈ TX(x) and thus TX(·) is continuous at x relative

to X and always convex-valued. By [81, Example 5.35], we have projTX(xk)(x
∗
k) →

projTX(x)(x
∗) for xk

X−→ x and x∗k → x∗.

It remains to show (c). Suppose by contradiction that there exist some ε0 > 0

and some sequences xk, yk
X−→x̄ with xk 6= yk such that

∥∥∥∥ yk − xk
‖yk − xk‖

− projTX(xk)

(
yk − xk
‖yk − xk‖

) ∥∥∥∥ > ε0 ∀k. (2.1.4)
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Without loss of generality, we can assume that xk, yk ∈ O with ∇F (xk) of full rank

n− d for all k, and that there is some w ∈ S such that

yk − xk
‖yk − xk‖

→ w.

It then follows that

∫ 1

0

∇F (τyk + (1− τ)xk) dτ ·
yk − xk
‖yk − xk‖

=
F (yk)− F (xk)

‖yk − xk‖
= 0 ∀k, (2.1.5)

where the integral of a matrix is to be understood componentwise. Applying com-

ponentwise the first mean value theorem for definite integrals, we have

∫ 1

0

∇F (τyk + (1− τ)xk) dτ → ∇F (x̄),

and hence ∫ 1

0

∇F (τyk + (1− τ)xk) dτ ·
yk − xk
‖yk − xk‖

→ ∇F (x̄)w.

In view of (2.1.5), we have

∇F (x̄)w = 0.

As ∇F (xk) is of full row rank, we have

TX(xk) = {w | ∇F (xk)w = 0},

and hence

yk − xk
‖yk − xk‖

− projTX(xk)

(
yk − xk
‖yk − xk‖

)

= ∇F (xk)
∗ (∇F (xk)∇F (xk)

∗)−1∇F (xk)
yk − xk
‖yk − xk‖

→ ∇F (x̄)∗ (∇F (x̄)∇F (x̄)∗)−1∇F (x̄)w = 0,

contradicting to (2.1.4). This completes the proof.
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Proposition 2.1.5 (Coderivatives of a set-valued mapping restricted on a smooth

manifold). Consider S : Rn ⇒ Rm and ū ∈ S(x̄). Suppose that gphS is locally

closed at (x̄, ū) and X is a smooth manifold at around x̄ with x̄ ∈ X. The following

properties hold for all (x, u) close enough to (x̄, ū) in gphS|X :

(a) projTX(x)×RmN̂gphS|X (x, u) = N̂gphS|X (x, u) ∩ (TX(x)× Rm).

(b) projTX(x)×RmNgphS|X (x, u) = NgphS|X (x, u) ∩ (TX(x)× Rm).

(c) D∗XS(x | u)(u∗) = projTX(x)D
∗S|X(x | u)(u∗) = D∗S|X(x | u)(u∗)∩TX(x), ∀u∗.

Proof. In what follows, let (x, u) be close enough to (x̄, ū) in gphS|X such that the

properties in Proposition 2.1.4 (a) and (b) holds.

To prove (a), it suffices to show

projTX(x)×RmN̂gphS|X (x, u) ⊂ N̂gphS|X (x, u) ∩ (TX(x)× Rm) . (2.1.6)

Let (y∗, u∗) belong to the left-hand side of (2.1.6). Then there exists some x∗ such

that y∗ = projTX(x)(x
∗) and (x∗, u∗) ∈ N̂gphS|X (x, u). Then by definition we have

lim sup

(x′,u′)
gphS|X−−−−−−−−−−−→

(x′,u′)6=(x,u)
(x,u)

〈(x∗, u∗), (x′ − x, u′ − u)〉
‖(x′ − x, u′ − u)‖

≤ 0. (2.1.7)

Let z∗ := projNX(x)(x
∗). As NX(x) is a linear subspace, we have ±z∗ ∈ NX(x). This

implies that

lim
x′ X−−−−→
x′ 6=x

x

〈z∗, x′ − x〉
‖x′ − x‖

= 0,

and hence that

lim
(x′,u′)

gphS|X−−−−−−−−−−−→
(x′,u′) 6=(x,u)

(x,u)

〈z∗, x′ − x〉
‖(x′ − x, u′ − u)‖

= 0. (2.1.8)
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Since x∗ = y∗ + z∗, it follows from (2.1.7) and (2.1.8) that

lim sup

(x′,u′)
gphS|X−−−−−−−−−−−→

(x′,u′)6=(x,u)
(x,u)

〈(y∗, u∗), (x′ − x, u′ − u)〉
‖(x′ − x, u′ − u)‖

≤ 0,

which amounts to that (y∗, u∗) ∈ N̂gphS|X (x, u). From the fact that y∗ ∈ TX(x), it

then follows that (y∗, u∗) belongs to the right-hand side of (2.1.6).

To prove (b), it suffices to show

projTX(x)×RmNgphS|X (x, u) ⊂ NgphS|X (x, u) ∩ (TX(x)× Rm) . (2.1.9)

Let (y∗, u∗) belong to the left-hand side of (2.1.9). Then there exists x∗ such that

y∗ = projTX(x)(x
∗) and (x∗, u∗) ∈ NgphS|X (x, u). By definition there are sequences

(xk, uk)
gphS|X−−−−→ (x, u) and (x∗k, u

∗
k) ∈ N̂gphS|X (xk, uk) such that (x∗k, u

∗
k) → (x∗, u∗).

In view of (a), we have for all sufficiently large k,

(
projTX(xk)(x

∗
k), u

∗
k

)
∈ N̂gphS|X (xk, uk).

By Proposition 2.1.4 (b), we have projTX(xk)(x
∗
k) → projTX(x)(x

∗) = y∗. Then by

definition we have

(y∗, u∗) ∈ NgphS|X (x, u).

From the fact that y∗ ∈ TX(x), it then follows that (y∗, u∗) belongs to the right-hand

side of (2.1.9). Let u∗ ∈ Rm. From (b) and the definition of coderivatives (1.3.3), we

get

D∗XS(x | u)(u∗) ⊃ projTX(x)D
∗S|X(x | u)(u∗) = D∗S|X(x | u)(u∗) ∩ TX(x).

To show (c), it suffices to show

D∗XS(x | u)(u∗) ⊂ D∗S|X(x | u)(u∗) ∩ TX(x). (2.1.10)
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Let y∗ belong to the left-hand side of (2.1.10). Then by definition there are some

(xk, uk)
gphS|X−−−−→ (x, u) and x∗k ∈ D∗S|X(xk | uk)(u∗k) such that u∗k → u∗ and y∗k :=

projTX(xk)(x
∗
k)→ y∗. By (b), we have for all sufficiently large k,

y∗k ∈ D∗S|X(xk | uk)(u∗k),

implying that y∗ ∈ D∗S|X(x | u)(u∗). As y∗k ∈ TX(xk), we get from Proposition 2.1.4

(b) that y∗ ∈ TX(x). That is, y∗ belongs to the right-hand side of (2.1.10). This

completes the proof.

Next we give a simple example to for geometric interpretation of the properties.

Example 2.1.6. Consider a multifunction S : R2 ⇒ R2 defined as

S
(
(x1, x2)>

)
=

{
{(0,−x2)>}, x1 6= 0

R2, x1 = 0
.

For X = R× {1} ⊆ domS = R2 and x̄ = (0, 1)>, ū = (0, 0)>, (x̄, ū) ∈ gphS|X . By

calculation we have NgphS|X (x̄ | ū) = R2 × {02}, TX(x̄) = R× {0} and

D∗S|X(x̄ | ū)(u∗) =

{
R2, u∗ = (0, 0)>

∅, u∗ 6= (0, 0)>
.

Then we can see that

projTX(x)×R2NgphS|X (x̄ | ū) = projR×{0}×R2

(
R2 × {02}

)
=R× {03} = NgphS|X (x̄ | ū) ∩ (TX(x̄)× Rm)

and

D∗XS(x̄ | ū)(u∗) = projTX(x̄)D
∗S|X(x̄ | ū)(u∗) =

{
R× {0}, u∗ = (0, 0)>

∅, u∗ 6= (0, 0)>

= D∗S|X(x̄ | ū) ∩ TX(x̄).
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The coming corollary is a natural observation from Propositions 2.1.4 and 2.1.5.

Corollary 2.1.7. Consider S : Rn ⇒ Rm and ū ∈ S(x̄). Suppose that gphS is locally

closed at (x̄, ū), x̄ ∈ X and X is a smooth manifold at around x̄ with X ⊆ domS.

Then the mapping (x, u) 7→ projTX(x)×Rm NgphS|X (x, u) is outer semicontinuous rela-

tive to gphS|X at (x̄, ū) and

D∗XS(x̄ | ū) = g-limsup

(x,u)
gphS|X−−−−→(x̄,ū)

D∗XS(x | u) = projTX(x̄)D
∗S|X(x̄ | ū). (2.1.11)

Proof. By Proposition 2.1.4 (b) and outer semicontinuity of the normal cone mapping

NgphS|X relative to gphS|X at (x̄, ū), we have

lim sup

(x,u)
gphS|X−−−−→(x̄,ū)

projTX(x)×RmNgphS|X (x, u) = projTX(x̄)×RmNgphS|X (x̄, ū).

By definition of projectional coderivative (1.3.6) and the property (c) in Proposition

2.1.5, we have (2.1.11).

Although the generalized Mordukhovich criterion (Theorem 1.3.8) provides a use-

ful tool to examine the relative Lipschitz-like property, we next show by a smooth

function that the calculation of projectional coderivative may not be as simple as the

coderivatives as the projection of normal cone does not enjoy outer semicontinuity.

Lemma 2.1.8 (Projectional coderivatives of a smooth function). For F : Rn → Rm

being smooth and single-valued on Rn and a closed set X ⊆ Rn, for any x̄ ∈ bdryX,

D∗XF (x̄)(y) = lim sup
x X−−→x̄,y′−→y

{
projTX(x) (∇F (x)∗y′ + w) | w ∈ NX(x)

}
. (2.1.12)

If furthermore X is regular at around x̄,

D∗XF (x̄)(y) = lim sup
x X−−→x̄

{
projTX(x) (∇F (x)∗y + w) | w ∈ NX(x)

}
. (2.1.13)
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In particular when X is a smooth manifold at around x̄,

D∗XF (x̄)(y) = projTX(x̄) (∇F (x̄)∗y) . (2.1.14)

Proof. For smooth mapping F defined on Rn, we can always find an open set O ⊇ X

such that F remains smooth on O. In this way, ∇F |X(x) = ∇F (x) for any x ∈ X.

Then for any x ∈ X and [81, Example 8.34],

NgphF (x, F (x)) =
{

(∇F (x)∗y,−y)
∣∣ y ∈ Rm

}
.

By expressing F |X = F + δX and [81, Exercise 10.43],

D∗F |X(x)(y) = NX(x) +∇F (x)∗y, ∀y ∈ Rm.

That is, for all x ∈ X,

NgphF |X (x, F (x)) =
{

(∇F (x)∗y + w,−y)
∣∣ y ∈ Rm, w ∈ NX(x)

}
.

From definition of projectional coderivative (1.3.6),

t ∈ D∗XF (x̄)(y)

⇐⇒ (t,−y) ∈ lim sup
x X−−→x̄

projTX(x)×RmNgphS|X (x, F (x))

⇐⇒ (t,−y) ∈ lim sup
x X−−→x̄

projTX(x)×Rm
{

(∇F (x)∗y′ + w,−y′)
∣∣ y′ ∈ Rm, w ∈ NX(x)

}
.

Therefore we have (2.1.12).

For t ∈ lim sup
x X−−→x̄,y′−→y

{
projTX(x) (∇F (x)∗y′ + w) , w ∈ NX(x)

}
, there exist sequences

xk
X−→ x̄, wk ∈ NX(xk), yk ∈ Rm and tk ∈ projTX(xk) (∇F (xk)

∗yk + wk), such that

tk → t and yk → y. When X is regular at around x̄, TX(x) is convex for all x ∈ X

around x̄. With nonexpansive property of projTX(xk) for sufficiently large k, we have∥∥projTX(xk) (∇F (xk)
∗y + wk)− t

∥∥
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≤
∥∥projTX(xk) (∇F (xk)

∗y + wk)− projTX(xk) (∇F (xk)
∗yk + wk)

∥∥
+
∥∥projTX(xk) (∇F (xk)

∗yk + wk)− t
∥∥

≤‖∇F (xk)
∗ (y − yk)‖+

∥∥projTX(xk) (∇F (xk)
∗yk + wk)− t

∥∥ .
As ‖∇F (xk)

∗ (y − yk)‖ and
∥∥projTX(xk) (∇F (xk)

∗yk + wk)− t
∥∥ both tend to 0 when

k →∞, we have projTX(xk) (∇F (xk)
∗y + wk)→ t as well. Therefore we have

lim sup
x X−−→x̄,y′−→y

{
projTX(x) (∇F (x)∗y′ + w) , w ∈ NX(x)

}
⊆ lim sup

x X−−→x̄

{
projTX(x) (∇F (x)∗y + w) , w ∈ NX(x)

}
.

Given that the inclusion in reverse is obvious by taking yk := y, we arrive at (2.1.13).

If furthermore X is a smooth manifold, TX(x) and NX(x) are linear subspaces

orthogonally complementary to each other for any x ∈ X being sufficiently close to

x̄ ([81, Example 6.8]). By Lemma 2.1.2

projTX(x) (∇F (x)∗y + w) = projTX(x) (∇F (x)∗y) , ∀w ∈ NX(x).

Then the fixed-point expression (2.1.14) is obtained via Lemma 2.1.2.

Example 2.1.9. Consider a smooth, single-valued mapping F : Rn → Rm. By

Lemma 2.1.8 we can obtain some formulas for the projectional coderivatives of F

with respect to sets having simple structures. In the case of an affine set

X := {x ∈ Rn | Bx = b},

where B is an d× n matrix and b ∈ Rd, we have for all x̄ ∈ bdryX,

D∗XF (x̄)(y) = projkerB(∇F (x̄)∗y),

where kerB := {x ∈ Rn | Bx = 0}. While in the case of a closed half-space

X := {x | 〈a, x〉 ≤ β},
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we have for all x̄ ∈ bdryX,

D∗XF (x̄)(y) =

{ [
∇F (x̄)∗y, proj[a]⊥(∇F (x̄)∗y)

]
, if 〈∇F (x̄)∗y, a〉 ≤ 0,{

∇F (x̄)∗y, proj[a]⊥(∇F (x̄)∗y)
}
, if 〈∇F (x̄)∗y, a〉 > 0.

2.2 Lipschitz-like property relative to a smooth man-
ifold

As in the last section, we derived a fixed-point expression for projectional coderivative

of a mapping relative to a smooth manifold (see Proposition 2.1.5). Considering that

the generalized Mordukhovich criterion in [59] are for closed and convex sets, in this

section, we extend the criterion to the setting of a smooth manifold.

First, we give the sufficient and necessary conditions respectively for S to be

Lipschitz-like relative to a smooth manifold. Recall that the Lipschitz-like property

relative to a set is given in Definition 1.3.5.

Lemma 2.2.1 (Necessity). Consider a mapping S : Rn ⇒ Rm, x̄ ∈ X ⊂ Rn where

X is a smooth manifold at around x̄, ū ∈ S(x̄) and κ ≥ 0. If S has the Lipschitz-like

property relative to X at x̄ for ū with constant κ, then the condition

‖projTX(x)(x
∗)‖ ≤ κ‖u∗‖ ∀x∗ ∈ D̂∗S|X(x | u)(u∗)

holds for all (x, u) close enough to (x̄, ū) in gphS|X .

Proof. As X is a smooth manifold around x̄, X is locally closed at x̄. By [59,

Theorem 2.1], we have

max
w∈TX(x)∩S

〈x∗, w〉 ≤ κ‖u∗‖ ∀x∗ ∈ D̂∗S|X(x | u)(u∗)

holds for all (x, u) close enough to (x̄, ū) in gphS|X . As TX(x) is a linear subspace,

we have

‖projTX(x)(x
∗)‖ = max

{
max

w∈TX(x)∩S
〈x∗, w〉, 0

}
.
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This completes the proof.

The necessary condition is a direct application of [59, Theorem 2.1]. For the

sufficient condition, some efforts need to be made to change the set from cl pos(X−x)

to TX(x). We give the proof similar to the one in [59, Theorem 2.2] employing the

property of smooth manifold, Proposition 2.1.4 (c).

Lemma 2.2.2 (Sufficiency). Consider a mapping S : Rn ⇒ Rm, x̄ ∈ X ⊂ Rn where

X is a smooth manifold at around x̄, ū ∈ S(x̄) and κ̃ > κ > 0. Suppose that gphS

is locally closed at (x̄, ū). If the condition

‖projTX(x)(x
∗)‖ ≤ κ‖u∗‖, ∀x∗ ∈ D∗S|X(x | u)(u∗) (2.2.1)

holds for all (x, u) close enough to (x̄, ū) in gphS|X , then S has the Lipschitz-like

property relative to X at x̄ for ū with constant κ̃.

Proof. Observing that all the properties involved depend on the nature of gphS in

an arbitrary small neighborhood of (x̄, ū), without loss of generality, from now on we

assume that gphS is closed in its entirety.

Let 0 < ε′ < κ̃−κ
κ+κ̃

. Then by Proposition 2.1.4 (c), there is some δ > 0 such that

the following holds for all x′, x̃ ∈ X ∩ Bδ(x̄) with x′ 6= x̃:

∥∥∥∥ x′ − x̃
‖x′ − x̃‖

− projTX(x̃)

(
x′ − x̃
‖x′ − x̃‖

) ∥∥∥∥ ≤ ε′. (2.2.2)

Let 0 < ε < min

{
κ̃− κ− (κ+ κ̃)ε′

4κ̃(1 + ε′)
,
1

3
δ

}
. Suppose by contradiction that S does not

have the Lipschitz-like property relative to X at x̄ for ū with constant κ̃, meaning

that there exist x′, x′′ ∈ Bε(x̄) ∩X with x′ 6= x′′, and u′′ ∈ S(x′′) ∩ Bε(ū) such that

d(u′′, S(x′)) > κ̃‖x′′ − x′‖ := β. (2.2.3)
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Clearly, we have 0 < β ≤ 2κ̃ε. Define ϕ : Rn × Rm → R ∪ {+∞} by

ϕ(x, u) := ‖x− x′‖+ δgphS|X (x, u).

Clearly, ϕ is lsc (due to closedness of gphS and X) with inf ϕ being finite, and

ϕ(x′′, u′′) ≤ inf ϕ+
β

κ̃
.

By equipping the product space Rn × Rm with a norm p defined by

p(x, u) := β‖x‖+ ‖u‖,

we apply the Ekeland’s variational principle to obtain some (x̃, ũ) ∈ Rn × Rm such

that

p(x̃− x′′, ũ− u′′) ≤ κ+ κ̃

2

β

κ̃
, (2.2.4)

ϕ(x̃, ũ) ≤ ϕ(x′′, u′′), (2.2.5)

arg min
x, u

{
ϕ(x, u) +

2

κ+ κ̃
p(x− x̃, u− ũ)

}
= {(x̃, ũ)}. (2.2.6)

From (2.2.4), it follows that

(x̃, ũ) ∈ gphS ∩ (X × Rm) = gphS|X (2.2.7)

and hence that

‖x̃− x′‖ ≤ ‖x′′ − x′‖.

Then by the triangle inequality, we have

‖x̃−x̄‖ ≤ ‖x̃−x′‖+‖x′−x̄‖ ≤ ‖x′′−x′‖+‖x′−x̄‖ ≤ ‖x′′−x̄‖+2‖x′−x̄‖ ≤ 3ε. (2.2.8)

From (2.2.4), it follows that

‖ũ− u′′‖ ≤ κ+ κ̃

2

β

κ̃
< β ≤ 2κ̃ε
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and hence by the triangle inequality that

‖ũ− ū‖ ≤ ‖ũ− u′′‖+ ‖u′′ − ū‖ ≤ (2κ̃+ 1)ε. (2.2.9)

So we have x̃ 6= x′, for otherwise we have

d(u′′, S(x′)) = d(u′′, S(x̃)) ≤ ‖ũ− u′′‖ < β,

contradicting to (2.2.3). From (2.2.6) and the generalized version of Fermat’s rule

[81, Theorem 10.1], it follows that

(0, 0) ∈ ∂(ψ + δgphS|X )(x̃, ũ), (2.2.10)

where

ψ(x, u) := ‖x− x′‖+
2

κ+ κ̃
(β‖x− x̃‖+ ‖u− ũ‖) .

Clearly, ψ is convex and Lipschitz continuous and in terms of closed unit balls B1 in

Rn and B2 in Rm,

∂ψ(x̃, ũ) =

(
x̃− x′

‖x̃− x′‖
+

2β

κ+ κ̃
B1

)
× 2

κ+ κ̃
B2. (2.2.11)

Applying the calculus rule for subgradients of Lipschitzian sums [81, Exercise 10.10],

we deduce from (2.2.10) that

(0, 0) ∈ ∂ψ(x̃, ũ) +NgphS|X (x̃, ũ).

This, together with (2.2.11), implies the existence of v1 ∈ B1, v2 ∈ B2 and

(x∗,−u∗) ∈ NgphS|X (x̃, ũ)⇐⇒ x∗ ∈ D∗S|X(x̃ | ũ)(u∗) (2.2.12)

such that

x∗ = − x̃− x′

‖x̃− x′‖
− 2β

κ+ κ̃
v1,
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and

u∗ =
2

κ+ κ̃
v2.

Since x̃, x′ ∈ X ∩ B3ε(x̄) ⊂ X ∩ Bδ(x̄) with x̃ 6= x′, it follows from (2.2.2) that

‖w∗ − w‖ ≤ ε′,

where

w∗ :=
x′ − x̃
‖x′ − x̃‖

and w := projTX(x̃)

x′ − x̃
‖x′ − x̃‖

∈ TX(x̃).

Then we have

〈x∗, w〉 − κ‖u∗‖ = 〈x∗, w∗〉 − κ‖u∗‖+ 〈x∗, w − w∗〉

= 1− 2β

κ+ κ̃
〈v1, w

∗〉 − 2κ

κ+ κ̃
‖v2‖+ 〈x∗, w − w∗〉

≥ 1− 2β

κ+ κ̃
− 2κ

κ+ κ̃
− (1 +

2β

κ+ κ̃
)ε′

≥ 1− 4κ̃ε

κ+ κ̃
− 2κ

κ+ κ̃
− (1 +

4κ̃ε

κ+ κ̃
)ε′

> 0,

where the first inequality follows from the Cauchy-Schwarz inequality, the second

one from the fact that β ≤ 2κ̃ε, and the last one from our setting that ε <

κ̃− κ− (κ+ κ̃)ε′

4κ̃(1 + ε′)
. Therefore, we have

projTX(x̃)(x
∗) = max

w̃∈TX(x̃)∩S
〈x∗, w̃〉 ≥ 〈x∗, w〉 > κ‖u∗‖. (2.2.13)

In view of (2.2.7) - (2.2.9), (2.2.12) and (2.2.13) and the fact that ε could be any

number such that

0 < ε < min

{
κ̃− κ− (κ+ κ̃)ε′

4κ̃(1 + ε′)
,

1

3
δ

}
,

we conclude that condition (2.2.1) cannot hold for all (x, u) close enough to (x̄, ū) in

gphS|X , which forms a contradiction. This completes the proof.
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Next we present the characterization of the Lipschitz-like property relative to a

smooth manifold in full. In [17, Proposition 18], they showed that the condition

(d) in the following theorem provided the sufficiency. We improve this result with

necessity implemented. Recall that the notation |·|+ is the outer norm of a set-valued

mapping (see (1.3.1)).

Theorem 2.2.3 (Lipschitz-like property relative to a smooth manifold). Consider

a mapping S : Rn ⇒ Rm, x̄ ∈ X ⊂ Rn where X is a smooth manifold at around x̄,

and ū ∈ S(x̄). Suppose that gphS is locally closed at (x̄, ū). The following properties

are equivalent:

(a) S has the Lipschitz-like property relative to X at x̄ for ū.

(b) projTX(x̄)D
∗S|X(x̄ | ū)(0) = {0}.

(c)
∣∣ projTX(x̄)D

∗S|X(x̄ | ū)
∣∣+ < +∞.

(d) D∗S|X(x̄ | ū)(0) ∩ TX(x̄) = 0.

(e) D∗S|X(x̄ | ū)(0) = NX(x̄).

(f) D∗XS(x̄ | ū)(0) = {0}.

Furthermore, we have

lipXS(x̄ | ū) =
∣∣ projTX(x̄)D

∗S|X(x̄ | ū)
∣∣+ . (2.2.14)

Proof. It is clear to see that

D∗S|X(x̄ | ū)(0) ⊃ D̂∗S|X(x̄ | ū)(0) ⊃ D̂∗S(x̄ | ū)(0) +NX(x̄) ⊃ NX(x̄), (2.2.15)

and that the mapping projTX(x̄)D
∗S|X(x̄ | ū) is outer semicontinuous and positively

homogeneous. Then the equivalence of (b) and (c) follows immediately from [81,

Proposition 9.23]. The equivalences among (b), (d) and (f) follows readily from

35



Proposition 2.1.4 (c). In view of (2.2.15), we get the equivalence of (b) and (e). It

remains to prove the equivalence of (a) and (b).

[(a) =⇒ (c)] Assuming (a), we will show (c) by proving the inequality

∣∣ projTX(x̄)D
∗S|X(x̄ | ū)

∣∣+ ≤ lipXS(x̄ | ū). (2.2.16)

Choose any κ ∈ (lipXS(x̄ | ū),+∞). Then S has the Lipschitz-like property relative

to X at x̄ for ū with constant κ. Let (u∗, v∗) be given arbitrarily such that v∗ ∈

projTX(x̄)D
∗S|X(x̄ | ū)(u∗). Then there is some x∗ ∈ D∗S|X(x̄ | ū)(u∗) such that

v∗ = projTX(x̄)(x
∗). (2.2.17)

By the definition of the limiting coderivatives, there are some (xk, uk) → (x̄, ū)

with (xk, uk) ∈ gphS|X and x∗k ∈ D̂∗S|X(xk | uk)(u∗k) such that (x∗k,−u∗k) →

(x∗,−u∗). By Lemma 2.2.1, there exists some positive integer k′ such that

‖projTX(xk)(x
∗
k)‖ ≤ κ‖u∗k‖ ∀k ≥ k′. (2.2.18)

Since X is a smooth manifold around x̄, we have

projTX(xk)(x
∗
k)→ projTX(x̄)(x

∗). (2.2.19)

In view of (2.2.17-2.2.19), we have ‖v∗‖ ≤ κ‖u∗‖ and hence

∣∣ projTX(x̄)D
∗S|X(x̄ | ū)

∣∣+ ≤ κ.

Due to κ ∈ (lipXS(x̄ | ū),+∞) being chosen arbitrarily, we get (2.2.16) immediately.

[(c) =⇒ (a)] Assuming (c), we will show (a) by proving the inequality

lipXS(x̄ | ū) ≤
∣∣ projTX(x̄)D

∗S|X(x̄ | ū)
∣∣+ ,

from which the equality (2.2.14) follows as the inequality in the other direction has

been proved earlier.
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Suppose by contradiction that
∣∣ projTX(x̄)D

∗S|X(x̄ | ū)
∣∣+ < lipXS(x̄ | ū). Choose

any κ′, κ′′ as

κ′ ∈
(∣∣ projTX(x̄)D

∗S|X(x̄ | ū)
∣∣+ , lipXS(x̄ | ū)

)
, κ′′ ∈

(∣∣ projTX(x̄)D
∗S|X(x̄ | ū)

∣∣+ , κ′) .
Clearly, S fails to have the Lipschitz-like property relative to X at x̄ for ū with

constant κ′. By Lemma 2.2.2, there exist some sequences (xk, uk) → (x̄, ū) with

(xk, uk) ∈ gphS|X and some x∗k ∈ D∗S|X(xk | uk)(u∗k) such that ‖v∗k‖ > κ′′‖u∗k‖, ∀k,

where v∗k := projTX(xk)(x
∗
k). By Proposition 2.1.5, we have

v∗k ∈ D∗S|X(xk | uk)(u∗k) ∩ TX(xk), ∀k.

Clearly, we have v∗k 6= 0 for all k. By taking a subsequence if necessary, we assume

that there is some v∗ ∈ TX(x̄) with ‖v∗‖ = 1 such that

v∗k
‖v∗k‖

→ v∗.

As we have

‖u∗k‖
‖v∗k‖

<
1

κ′′
∀k,

by taking a subsequence if necessary again, we assume that there is some u∗ with

κ′′‖u∗‖ ≤ 1 such that

u∗k
‖v∗k‖

→ u∗.

Thus, we have v∗ ∈ D∗S|X(x̄ | ū)(u∗) and ‖v∗‖ ≥ κ′′‖u∗‖. So we have

∣∣ projTX(x̄)D
∗S|X(x̄ | ū)

∣∣+ := sup
ũ∗∈B

sup
x̃∗∈D∗S|X(x̄|ū)(ũ∗)

‖projTX(x̄)(x̃
∗)‖

≥ ‖projTX(x̄)(κ
′′v∗)‖

= κ′′‖v∗‖

= κ′′,
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contradicting to the setting that κ′′ ∈
(∣∣ projTX(x̄)D

∗S|X(x̄ | ū)
∣∣+ , κ′). This com-

pletes the proof.

2.3 Chain rules for projectional coderivatives

To broaden the scope of application of the projectional coderivative onto various

systems, one important thing would be developing the corresponding calculus rules

for it, which is also the main goal of the coming two sections. Unlike the chain rule

for coderivatives (see [81, Theorem 10.37]), the one for projectional coderivatives

comes with stricter assumptions as it involves projection.

Theorem 2.3.1 (Projectional coderivative chain rule). Suppose S = S2 ◦ S1 for

mappings S1 : Rn ⇒ Rp and S2 : Rp ⇒ Rm. Let X ⊆ Rn be a closed set with x̄ ∈ X.

Here S1 is outer semicontinuous relative to X and S2 is outer semicontinuous. For

a pair (x̄, ū) ∈ gphS|X = gph(S2 ◦ S1|X), assume:

(a) the mapping (x, u) 7→ S1|X(x) ∩ S−1
2 (u) is locally bounded at (x̄, ū), or equiv-

alently, the mapping (x, u) 7→ S1(x) ∩ S−1
2 (u) is locally bounded relative to

X × Rm at (x̄, ū) (this being true in particular if either S1 is locally bounded

relative to X at x̄ or S−1
2 is locally bounded at ū). In this way, S2 ◦ S1|X is

outer semicontinuous (see [81, Proposition 5.52 (b)]).

(b) D∗S2(w̄|ū)(0) ∩ D∗XS1(x̄|w̄)−1(0) = {0} holds for any w̄ ∈ S1|X(x̄) ∩ S−1
2 (ū)

(this being true in particular if S2 has Lipschitz-like property at w̄ for ū).

Then gphS|X is locally closed around (x̄, ū) and

D∗XS(x̄|ū) ⊂
⋃

w̄∈S1|X(x̄)∩S−1
2 (ū)

D∗XS1(x̄|w̄) ◦D∗S2(w̄|ū). (2.3.1)
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Besides, if (a) and (b) hold, and S1|X and S2 are graph-convex, then S|X is graph-

convex as well and

projTX(x̄)D
∗S1|X(x̄|w̄) ◦D∗S2(w̄|ū) ⊆ D∗XS(x̄|ū), ∀w̄ ∈ S1|X(x̄) ∩ S−1

2 (ū). (2.3.2)

If (a) and (b) hold, and X is a smooth manifold at x̄,

D∗XS1(x̄|w̄) ◦D∗S2(w̄|ū) = projTX(x̄)D
∗S1|X(x̄|w̄) ◦D∗S2(w̄|ū). (2.3.3)

Therefore, when assumptions (a) and (b) hold, S1|X and S2 are graph-convex, and

X is a smooth manifold at x̄, we obtain an equation:

D∗XS(x̄|ū) = D∗XS1(x̄|w̄) ◦D∗S2(w̄|ū),∀w̄ ∈ S1|X(x̄) ∩ S−1
2 (ū). (2.3.4)

Proof. By (2.1.1), we have that the constraint qualification (b) also indicates the

constraint qualification below:

D∗S2(w̄|ū)(0) ∩D∗S1|X(x̄|w̄)−1(0) = {0}. (2.3.5)

Let C = {(x,w, u)|(x,w) ∈ gphS1|X , (w, u) ∈ gphS2} and G : (x,w, u) 7→ (x, u).

Then gphS|X = G(C). With assumption (a), we can obtain ε > 0 such that

G−1(Nε(x̄, ū)) ∩ C is bounded. Then by Theorem 6.43 on gphS|X at (x̄, ū), we

have that gphS|X is locally closed at (x̄, ū) and

NgphS|X (x̄, ū) ⊂
⋃

(x̄,w̄,ū)∈G−1(x̄,ū)∩C

{
(v,−y)

∣∣∣∣ ∇G(x̄, w̄, ū)∗(v,−y) ∈ NC(x̄, w̄, ū)

}

=
⋃

w̄∈S1|X(x̄)∩S−1
2 (ū)

{
(v,−y)

∣∣∣∣ (v, 0,−y) ∈ NC(x̄, w̄, ū)

}
.

Next we try to obtain the expression for NC(x̄, w̄, ū). Let D = gphS1|X×gphS2.

For F : (x,w, u) 7→ (x,w,w, u), we have C = F−1(D). Here the definition of F

ensures the component w of (x,w,w, u) in D belongs to S1|X(x) ∩ S−1
2 (u). Here we

apply [81, Theorem 6.14] on C = F−1(D). The constraint qualification requires that:

∀q ∈ ND(F (x̄, w̄, ū)) with −∇F (x̄, w̄, ū)∗q = 0 =⇒ q = 0,
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which is 
(q1, q2) ∈ NgphS1|X (x̄, w̄)

(q3, q4) ∈ NgphS2(w̄, ū)

(q1, q2 + q3, q4) = 0

=⇒ q1, q2, q3, q4 = 0

due to the product form of D = gphS1|X × gphS2 (see [81, Proposition 6.41]). By

expressing in coderivatives, it becomes

0 ∈ D∗S1|X(x̄|w̄)(q3), q3 ∈ D∗S2(w̄|ū)(0) =⇒ q3 = 0 for all w̄ ∈ S1|X(x̄) ∩ S−1
2 (ū),

which can be reformulated as in (2.3.5). Then we can have the inclusion:

NC(x̄, w̄, ū) ⊂
{
∇F (x̄, w̄, ū)∗q

∣∣ q ∈ ND(x̄, w̄, w̄, ū)
}

=
{

(q1, q2 + q3, q4)
∣∣ (q1, q2) ∈ NgphS1|X (x̄, w̄), (q3, q4) ∈ NgphS2(w̄, ū)

}
.

Next we prove that the constraint qualification (2.3.5) also holds for all (x, u) in

gphS|X sufficiently near to (x̄, ū) by contradiction. Suppose there exist sequences

(xk, uk)
gphS|X−−−−→ (x̄, ū), wk ∈ S1|X(xk) ∩ S−1

2 (uk) , and w∗k ∈ D∗S2(wk|uk)(0) ∩

D∗S1|X(xk|wk)−1(0) (which is a cone) such that w∗k 6= 0. Without loss of generality

we assume ‖w∗k‖ = 1. Note that under assumption (a), wk → w̄ ∈ S1|X(x̄)∩ S−1
2 (ū).

By outer semicontinuity of normal cone mappings, w∗k must converge to some w∗ ∈

D∗S2(w̄|ū)(0) ∩D∗S1|X(x̄|w̄)−1(0) with ‖w∗‖ = 1, which contradicts (2.3.5). As the

assumption (a) and (2.3.5) hold for all (x, u) in gphS|X around (x̄, ū), the inclusion

can be obtained:

NgphS|X (x, u) ⊂
⋃

w∈S1|X(x)∩S−1
2 (u)

{
(x∗,−u∗)

∣∣∣∣ ∃w∗ s.t. x∗ ∈ D∗S1|X(x|w)(w∗),

w∗ ∈ D∗S2(w|u)(u∗)

}
(2.3.6)

for all (x, u) in gphS|X around (x̄, ū). Given the upper estimate of NgphS|X (x, u)

in (2.3.6), we now proceed to exploring the estimate of projectional coderivative
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D∗XS(x̄, ū). Let t∗ ∈ D∗XS(x̄|ū)(u∗), then there are sequences (xk, uk)
gphS|X−−−−→ (x̄, ū)

and (x∗k,−u∗k) ∈ NgphS|X (xk, uk) such that t∗k ∈ projTX(xk)(x
∗
k), t∗k → t∗ and u∗k → u∗.

By (2.3.6), ∃wk ∈ S1|X(xk)∩S−1
2 (uk) and w∗k such that (x∗k,−w∗k) ∈ NgphS1|X (xk, wk)

and (w∗k,−u∗k) ∈ NgphS2(wk, uk).

Given wk ∈ S1|X(xk) ∩ S−1
2 (uk), the outer semicontinuity of S1|X and S−1

2 and

local boundedness of the mapping (x, u) 7→ S1|X(x) ∩ S−1
2 (u) around (x̄, ū), {wk}

must converge to some w̄ ∈ S1|X(x̄) ∩ S−1
2 (ū) (taking a subsequence if necessary).

For (w∗k,−u∗k) ∈ NgphS2(wk, uk) and outer semicontinuity of (w, u)→ NgphS2(w, u) at

(w̄, ū), we have either w∗k → w∗ or λkw∗k → w∗ with λk ↘ 0. For the first case we have

w∗ ∈ D∗S2(w̄|ū)(u∗). Given (x∗k,−w∗k) ∈ NgphS1|X (xk, wk) and t∗k ∈ projTX(xk)(x
∗
k)

with t∗k → t∗, then t̄ ∈ D∗XS1(x̄|w̄)(z̄). Thus t̄ ∈ D∗XS1(x̄|w̄) ◦ D∗S2(w̄|ū)(ȳ) with

w̄ ∈ S1|X(x̄) ∩ S−1
2 (ū).

For the second case, without loss of generality we can assume ‖w∗‖ = 1. Under

the conic nature, λkw∗k ∈ D∗S2(wk|uk)(λku∗k). Given {u∗k} is bounded with u∗k → u∗,

then λku∗k → 0 and we have w∗ ∈ D∗S2(w̄|ū)(0). Similarly we have (λkx
∗
k,−λkw∗k) ∈

NgphS1|X (xk, wk). As TX(x) is a nonempty closed cone for any x ∈ X around x̄,

λkt
∗
k ∈ projTX(xk)(λkx

∗
k) and λkt

∗
k → 0. That is, 0 ∈ D∗XS1(x̄|w̄)(w∗). Thus we

have w∗ ∈ D∗S2(w̄|ū)(0)∩D∗XS1(x̄|w̄)−1(0) = {0} with ‖w∗‖ = 1, which contradicts

the assumption (b). Therefore the case {λkw∗k} → w∗ can be abandoned and the

inclusion (2.3.1) is thus proved.

Note that by definition, projTX(x̄)D
∗S|X(x̄|ū) ⊆ D∗XS(x̄|ū). When gphS1|X and

gphS2 are convex, the inclusion (2.3.6) becomes an equation for every w ∈ S1|X(x)∩

S−1
2 (u) and the union becomes superfluous. Then the inclusion (2.3.2) is obtained

and gphS|X is convex as well. Besides, when X is a smooth manifold around x̄, by

Proposition 2.1.5, we obtain (2.3.3) and further the equation (2.3.4).

Based on Theorem 2.3.1 above, similar to [81, Exercise 10.39, Theorem 10.40],
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we give the following two corollaries when one of the mapping in the composition is

a single-valued one. When the outer layer involves a single-valued one, we can apply

Theorem 2.3.1 directly.

Corollary 2.3.2 (Outer composition with a single-valued function). Let X be a

closed set in Rn and S = F ◦S0 for a mapping S0 : Rn ⇒ Rp being outer semicontin-

uous relative to X and a single-valued function F : Rp → Rm. Let ū ∈ S|X(x̄) and

suppose F is strictly continuous at every w̄ ∈ S0(x̄). Suppose also that the mapping

(x, u) 7→ S0|X(x) ∩ F−1(u) is locally bounded at (x̄, ū). Then

D∗XS(x̄|ū) ⊆
⋃

w̄∈S0(x̄)∩F−1(ū)

D∗XS0(x̄|w̄) ◦D∗F (w̄).

If in addition S0|X is graph-convex, X is a smooth manifold, and F is linear, then

D∗XS(x̄|ū) = D∗XS0(x̄|w̄) ◦ ∇F (w̄)∗.

Proof. This result is obtained directly as a special case of Theorem 2.3.1.

Next we give a simple example for illustration.

Example 2.3.3. Let S0(x) =
[
−
√
|x|,
√
|x|
]
, F (w) = 2w, X = R+. Then S|X(x) =

F ◦ S0|X(x) =
[
−2
√
|x|, 2

√
|x|
]
. For x̄ = 0 and ū = 0 ∈ S|X(x̄) = F ◦ S0|X(x̄).

Then we have w̄ ∈ S0|X(x̄) ∩ F−1(ū) = {0} and

D∗XS0(x̄ | w̄)(z) =

{
R− z = 0

∅ z 6= 0
, ∇F (w̄)∗y = 2y.

Therefore

D∗XS(x̄ | ū)(y) = D∗XS0(x̄ | w̄) ◦ ∇F (w̄)∗y =

{
R− y = 0

∅ y 6= 0
.
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However, when the inner layer of the composition involves a single-valued func-

tion, it varies from direct application of Theorem 2.3.1 in that F is restricted on X

rather than defined on the whole space when we try to derive an equation for the

projectional coderivative. Before that, we illustrate the expression of the coderivative

of F restricted on X.

Lemma 2.3.4. Let X be a closed set in Rn and F : Rn → Rm be strictly continuous

at x̄ relative to X. Then for all z ∈ Rm we have

D̂∗F |X(x̄)(z) = ∂̂(zF |X)(x̄), (2.3.7)

D∗F |X(x̄)(z) = ∂(zF |X)(x̄). (2.3.8)

Proof. For v ∈ D̂∗F |X(x̄)(z), it is equivalent that

〈v, x− x̄〉 − 〈z, F |X(x)− F |X(x̄)〉 ≤ o(‖(x, F |X(x))− (x̄, F |X(x̄))‖).

As F is strictly continuous at x̄ relative to X, we can replace o(‖(x, F |X(x)) −

(x̄, F |X(x̄))‖) with o(‖x− x̄‖), i.e.,

(zF |X)(x) ≥ (zF |X)(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖).

Thus it is equivalent that v ∈ ∂̂(zF |X)(x̄). Given that F is also strictly continuous

at x relative to X for x being sufficiently close to x̄, such equation (2.3.7) also holds

for any x ∈ X ∩ O for some O ∈ N (x̄). Let v ∈ D∗F |X(x̄)(z), then there exist

sequences xk
X−→ x̄ and vk ∈ D̂∗F |X(xk)(zk) with vk → v, zk → z. By (2.3.7),

vk ∈ ∂̂(zkF |X)(xk) ⊆ ∂(zkF |X)(xk) = ∂[zF |X + (zk − z)F |X ]((xk) ⊆ ∂(zF |X)(xk) +

∂[(zk − z)F |X ]((xk). When k → ∞, ∂[(zk − z)F |X ](xk) → {0} as zk → z. Given

F is strictly continuous at x̄ relative to X, zF |X(xk) → zF |X(x̄) when x
X−→ x̄.

Then we have vk → v ∈ ∂(zF |X)(x̄). For the inclusion in reverse for (2.3.8), let

v ∈ ∂(zF |X)(x̄). Then there exist sequences xk
zF |X−−−→ x̄ and vk ∈ ∂̂(zF |X)(xk) such
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that vk → v. Then it is equivalent that x X−→ x̄ and vk ∈ D̂∗F |X(xk)(z) and by

definition of normal cone mappings we have vk → v ∈ D∗F |X(x̄)(z).

Theorem 2.3.5 (Inner composition with a single-valued function). Let X be a closed

set in Rn, and S = S0 ◦ F for an outer semicontinuous mapping S0 : Rp ⇒ Rm and

a single-valued mapping F : Rn → Rp that is strictly continuous at x̄ relative to X.

Let ū ∈ S|X(x̄). If

D∗S0(F (x̄) | ū)(0) ∩D∗XF (x̄)−1(0) = {0}, (2.3.9)

then

D∗XS(x̄ | ū) ⊆ D∗XF (x̄) ◦D∗S0(F (x̄) | ū). (2.3.10)

Still under (2.3.9), suppose that S0 is graphically regular at F (x̄) for ū, and the

function zF |X is regular at x̄ for all z ∈ rgD∗S0 (F (x̄) | ū), and X is a smooth

manifold in Rn. Then S|X is graphically regular at x̄ for ū, and

D∗XS(x̄ | ū) = D∗XF (x̄) ◦D∗S0(F (x̄) | ū). (2.3.11)

Proof. First we prove

D̂∗F |X(x̄) ◦ D̂∗S0(F (x̄) | ū) ⊆ D̂∗S|X(x̄ | ū). (2.3.12)

Let v ∈ D̂∗F |X(x̄)(z) and z ∈ D̂∗S0(F (x̄) | ū)(y). By definition we have:

lim sup

(x,u)
gphS|X−−−−−−→
6=

(x̄,ū)

〈v, x− x̄〉 − 〈z, F |X(x)− F |X(x̄)〉
‖(x− x̄, F |X(x)− F |X(x̄))‖

≤ lim sup
x X−−→
6=
x̄

〈v, x− x̄〉 − 〈z, F |X(x)− F |X(x̄)〉
‖(x− x̄, F |X(x)− F |X(x̄))‖

≤ 0 (2.3.13)

and

lim sup
(F |X(x),u)

gphS0−−−−−→
6=

(F |X(x̄),ū)

〈z, F |X(x)− F |X(x̄)〉 − 〈y, u− ū〉
‖(F |X(x), u)− (F |X(x̄), ū)‖
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≤ lim sup
(w,u)

gphS0−−−−−→
6=

(F |X(x̄),ū)

〈z, w − F |X(x̄)〉 − 〈y, u− ū〉
‖(w, u)− (F |X(x̄), ū)‖

≤ 0. (2.3.14)

As F is strictly continuous at x̄ relative to X, F |X(x)→ F |X(x̄) when x X−→ x̄ and

lim sup
x X−−→
6=
x̄

‖F |X(x)− F |X(x̄)‖
‖x− x̄‖

<∞.

Therefore by (2.3.13) and (2.3.14) we have:

lim sup

(x,u)
gphS|X−−−−−−→
6=

(x̄,ū)

〈v, x− x̄〉 − 〈z, F |X(x)− F |X(x̄)〉
‖x− x̄‖+ ‖u− ū‖

= lim sup

(x,u)
gphS|X−−−−−−→
6=

(x̄,ū)

(
〈v, x− x̄〉 − 〈z, F |X(x)− F |X(x̄)〉
‖(x− x̄, F |X(x)− F |X(x̄))‖

· ‖(x− x̄, F |X(x)− F |X(x̄))‖
‖x− x̄‖+ ‖u− ū‖

)
≤ 0

(2.3.15)

and

lim sup
(F |X(x),u)

gphS0−−−−−→
6=

(F |X(x̄),ū)

〈z, F |X(x)− F |X(x̄)〉 − 〈y, u− ū〉
‖x− x̄‖+ ‖u− ū‖

= lim sup
(F |X(x),u)

gphS0−−−−−→
6=

(F |X(x̄),ū)

〈z, F |X(x)− F |X(x̄)〉 − 〈y, u− ū〉
‖(F |X(x), u)− (F |X(x̄), ū)‖

· ‖(F |X(x), u)− (F |X(x̄), ū)‖
‖x− x̄‖+ ‖u− ū‖

≤ 0.

(2.3.16)

Given that x ∈ X and (F |X(x), u) ∈ gphS0 is equivalently to (x, u) ∈ gphS|X ,

combining (2.3.15) and (2.3.16) we have

lim sup

(x,u)
gphS|X−−−−−−→
6=

(x̄,ū)

〈v, x− x̄〉 − 〈y, u− ū〉
‖(x, u)− (x̄, ū)‖

≤ lim sup

(x,u)
gphS|X−−−−−−→
6=

(x̄,ū)

〈v, x− x̄〉 − 〈z, F |X(x)− F |X(x̄)〉
‖x− x̄‖+ ‖u− ū‖

+ lim sup

(x,u)
gphS|X−−−−−−→
6=

(x̄,ū)

〈z, F |X(x)− F |X(x̄)〉 − 〈y, u− ū〉
‖x− x̄‖+ ‖u− ū‖

≤ 0,
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which means v ∈ D̂∗S|X(x̄ | ū)(y). The inclusion (2.3.10) comes from directly

applying the chain rule for projectional coderivatives, as F |X(·) is locally bounded

and single-valued at x̄. For the equation part, note that (2.3.9) also indicates

z ∈ D∗S0(F (x̄) | ū)(0), 0 ∈ D∗F |X(x̄)(z)= ∂(zF |X)(x̄) =⇒ z = 0.

By [81, Theorem 10.37], we have

D∗S|X(x̄ | ū) ⊆ D∗F |X(x̄) ◦D∗S0(F (x̄) | ū). (2.3.17)

With (2.3.12) and (2.3.17), if we assume that gphS0 is regular at (F (x̄), ū) and

the function zF |X is regular at x̄ for all z ∈ rgD∗S0 (F (x̄) | ū), we have

D∗S|X(x̄ | ū) = D∗F |X(x̄) ◦D∗S0(F (x̄) | ū)) (2.3.18)

and also that S|X is graphically regular at x̄ for ū. Therefore

projTX(x̄)D
∗F |X(x̄) ◦D∗S0(F (x̄) | ū)) = projTX(x̄)D

∗S|X(x̄ | ū) ⊆ D∗XS(x̄ | ū).

Besides, when X is a smooth manifold,

D∗XS(x̄|ū) = projTX(x̄)D
∗S|X(x̄|ū) ⊆ projTX(x̄)D

∗F |X(x̄) ◦D∗S0(F (x̄)|ū))

= D∗XF (x̄) ◦D∗S0(F (x̄)|ū)),
(2.3.19)

where the two equations come from applying Proposition 2.1.5 to S and F and the

inclusion comes from (2.3.17). Combining these two inclusions (2.3.18) and (2.3.19),

we can obtain (2.3.11).

2.4 Sum rules for projectional coderivatives

Next we present four sum rules on projectional coderivatives obtained by different

methods. The differences are mainly caused by restricting X onto different functions:

F (x) = (x, . . . , x) or Si(x) and accordingly, different levels of constraint qualifications
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are taken into consideration. When restricting F onto X (Sum rule-1 and Sum rule-

2), we separate X-related expressions from Si and when restricting Si onto X (Sum

rule-3 and Sum rule-4), the calculation is performed on Si|X . Within each type, two

sum rules are given using different methods: via the corollaries we obtain above or

directly via the sum rule of coderivative, [81, Theorem 10.41]. First, we introduce a

sum rule obtained via Corollary 2.3.2 and Corollary 2.3.5.

Theorem 2.4.1 (Sum rule-1). Let S = S1 + · · ·+ Sp for Si : Rn ⇒ Rm being outer

semicontinuous relative to X and let x̄ ∈ domS ∩ X, ū ∈ S|X(x̄). Assume the

following conditions are satisfied:

• (boundedness condition): the mapping

(x, u) 7→

{
(u1, · · · , up)

∣∣∣∣ ui ∈ Si|X(x), ∀i = 1, . . . , p,

p∑
i=1

ui = u

}
(2.4.1)

is locally bounded at (x̄, ū).

• (constraint qualification):

vi ∈ D∗Si(x̄ | ui)(0), ui ∈ Si(x̄),
∑p

i=1 ui = ū
0 ∈ D∗XF (x̄)(v1, . . . , vp)

}
=⇒ vi = 0 for i = 1, . . . , p

(2.4.2)

holds for (x̄, ū) ∈ gphS|X , where F : Rn → Rnp is defined as F (x) = (x, . . . , x).

Then gphS|X is locally closed at (x̄, ū) and one has

D∗XS(x̄ | ū) ⊆
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

D∗XF (x̄) ◦
p∏
i=1

D∗Si(x̄|ui). (2.4.3)

If in addition X is a smooth manifold, the constraint qualification (2.4.2) can be

simplified as

vi ∈ D∗Si(x̄ | ui)(0), ui ∈ Si(x̄),
∑p

i=1 ui = ū∑p
i=1 vi ∈ NX(x̄)

}
=⇒ vi = 0 for i = 1, . . . , p (2.4.4)
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and the inclusion becomes a fixed-point expression as

D∗XS(x̄ | ū) ⊆
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

projTX(x̄)

(
p∑
i=1

D∗Si(x̄|ui)

)
. (2.4.5)

Moreover, when every Si|X is graph-convex, the union is superfluous and the inclusion

becomes equation.

Proof. First let S ′ = S0 ◦ F where F (x) = (x, · · · , x) (p copies), S0(x1, · · · , xp) =

S1(x1)× · · · × Sp(xp). Then by [81, Proposition 6.43, Example 8.34, Exercise 10.43],

we have

D∗S0 (F (x̄) | u1, · · · , up) (y1, · · · , yp) =

(
p∏
i=1

D∗Si(x̄ | ui)

)
(y1, · · · , yp)

=

p∏
i=1

D∗Si(x̄ | ui)(yi).

For v = (v1, . . . , vp) and v′ = (v′1, . . . , v
′
p) in Rnp,

D∗XF (x̄)(v) = lim sup
x X−−→x̄,v′−→v

projTX(x) (∂(v′F |X)(x))

= lim sup
x X−−→x̄,v′−→v

projTX(x) (∇F (x)∗v′ +NX(x))

= lim sup
x X−−→x̄,v′i−→vi

projTX(x)

(
p∑
i=1

v′i +NX(x)

)
.

(2.4.6)

Then the constraint qualification (2.3.9): D∗S0(F (x̄) | u1, · · · , up)(0, · · · , 0) ∩

D∗XF (x̄)−1(0) = {0} can be written as (2.4.2). Without loss of generality, we can

relax the requirement that S0 being outer semicontinuous to being outer semicon-

tinuous relative to the set X as we restrict our scope only to X here. That is, Si is

outer semicontinuous relative to X for each i. Then by applying Corollary 2.3.5 we
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have for any ui ∈ Si(x̄),

D∗XS
′ (x̄ |u1, · · · , up ) ⊆D∗XF (x̄) ◦D∗S0 (F (x̄) |u1, · · · , up )

=D∗XF (x̄) ◦

(
p∏
i=1

D∗Si(x̄ | ui)

)
.

(2.4.7)

Secondly we write S = F2 ◦ S ′ with F2(u1, · · · , up) =
∑p

i=1 ui, then

S ′|X(x) ∩ F−1
2 (u) =

{
(u1, · · · , up)

∣∣∣∣ ui ∈ Si|X(x), ∀i = 1, . . . , p,

p∑
i=1

ui = u

}
.

Therefore the boundedness assumption can be put as (2.4.1) and we have

D∗XS(x̄ | ū) ⊆
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

D∗XS
′ (x̄ |u1, · · · , up ) ◦ ∇F2(u1, · · · , up)∗, (2.4.8)

according to Corollary 2.3.2 with the boundedness condition satisfied. Combining

(2.1.12), (2.4.7) and (2.4.8), we arrive at

D∗XS(x̄ | ū)(y) ⊆
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

D∗XF (x̄) ◦
p∏
i=1

D∗Si(x̄ | ui)(y)

=
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

lim sup
x X−−→x̄,v′i−→vi

{
projTX(x)

(
p∑
i=1

v′i + w

) ∣∣∣∣ vi ∈ D∗Si(x̄ | ui)(y),

w ∈ NX(x)

}
. (2.4.9)

When X is a smooth manifold, by Proposition 2.1.5(c) and Lemma 2.1.8, we have

D∗XF (x̄)(v) = projTX(x̄)

(
p∑
i=1

vi

)

and further the inclusion (2.4.5) and the constraint qualification expressed as in

(2.4.4). With each Si|X being graph-convex (or each Si being graph-convex together
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with X being convex) the union becomes superfluous and the equation is obtained

as

D∗XS(x̄ | ū) = projTX(x̄)

(
p∑
i=1

D∗Si(x̄ | ui)

)
.

Next we present a sum rule that can be seen as taking an intermediate step as

it is obtained by applying [81, Theorem 10.41] directly and involves the process of

taking limsup.

Theorem 2.4.2 (Sum rule-2). Let S = S1 + · · · + Sp for Si : Rn ⇒ Rm being

outer semicontinuous relative to X and let x̄ ∈ domS ∩ X, ū ∈ S|X(x̄). Assume

the boundedness condition (2.4.1) holds. If the following constraint qualification is

satisfied:

vi ∈ D∗Si(x̄ | ui)(0), ui ∈ Si(x̄),
∑p

i=1 ui = ū
0 ∈

∑p
i=1 vi +NX(x̄)

}
=⇒ vi = 0 for i = 1, . . . , p

(2.4.10)

Then gphS|X is locally closed at (x̄, ū) and one has

D∗XS(x̄ | ū)(y) ⊆ lim sup

(x,u)
gphS|X−−−−−→(x̄,ū)
y′−→y

⋃
u′i∈Si(x)∑p
i=1 u

′
i=u

projTX(x)

(
p∑
i=1

D∗Si(x | u′i)(y′) +NX(x)

)
.

(2.4.11)

When the constraint qualification is strengthened into (2.4.2), the right-hand side of

(2.4.11) is included by that of (2.4.9) (or (2.4.3)).

Proof. Given (2.4.1) and (2.4.10) and that (2.4.10) holds for points (x, u) ∈ gphS|X

around (x̄, ū) (as similar proof is given in Theorem 2.3.1), by [81, Theorem 6.42 and
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Theorem 10.41], we have for all (x, u) ∈ gphS|X around (x̄, ū),

NgphS|X (x, u) ⊆
⋃

u′i∈Si(x)∑p
i=1 u

′
i=u

{(
p∑
i=1

vi + w,−y′
)∣∣∣∣∣ vi ∈ D∗Si(x | u′i)(y′), w ∈ NX(x)

}

and therefore,

lim sup

(x,u)
gphS|X−−−−−→(x̄,ū)

projTX(x)×RmNgphS|X (x, u)

⊆ lim sup

(x,u)
gphS|X−−−−−→(x̄,ū)

⋃
u′i∈Si(x)∑p
i=1 u

′
i=u

{(
projTX(x)

(
p∑
i=1

vi + w

)
,−y′

)∣∣∣∣∣ vi ∈ D∗Si(x | u′i)(y′),

w ∈ NX(x)

}
.

(2.4.12)

Given the definition of projectional coderivative and the upper estimate (2.4.12) we

have (2.4.11). Combining the expression of D∗XF (x̄)(v) in (2.4.6) and Lemma 2.1.1,

we can see that the constraint qualification (2.4.13) is indicated by (2.4.2).

If a stronger constraint qualification (2.4.2) is given, we next prove the set in

right-hand side of (2.4.12) is included by that of (2.4.9), i.e.,

D∗XS(x̄ | ū)(y) ⊆ lim sup

(x,u)
gphS|X−−−−−→(x̄,ū)
y′−→y

⋃
u′i∈Si(x)∑p
i=1 u

′
i=u

projTX(x)

(
p∑
i=1

D∗Si(x | u′i)(y′) +NX(x)

)

⊆
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

lim sup
x X−−→x̄,v′i−→vi

{
projTX(x)

(
p∑
i=1

v′i + w

) ∣∣∣∣∣ vi ∈ D∗Si(x̄ | ui)(y),

w ∈ NX(x)

}
.

For t ∈ D∗XS(x̄ | ū)(y), there exist sequences (xk, uk)
gphS|X−−−−→ (x̄, ū), u′ik ∈ Si(xk)

with
∑p

i=1 u
′
ik = uk, (vik,−yk) ∈ NgphSi(xk, u

′
ik), wk ∈ NX(xk) such that yk → y

51



and tk ∈ projTX(xk)(
∑p

i=1 vik + wk) → t. As Si are outer semicontinuous relative

to X and the boundedness condition (2.4.1) holds, {u′ik} must converge to some

ui ∈ Si(x̄). Given
∑p

i=1 u
′
ik = uk → ū,

∑p
i=1 ui = ū. For (vik,−yk) ∈ NgphSi(xk, u

′
ik),

when {vik} are all bounded for i = 1, . . . , p, then vik → vi ∈ D∗Si(x̄ | ui)(y) and

accordingly t belongs to the right-hand side of (2.4.9). For the case that there

exists at least one j ∈ {1, . . . , p} such that {vjk} is unbounded, then {λkvjk} must

converge to some vj ∈ D∗Sj(x̄ | uj)(0) with vj 6= 0 for λk ↘ 0. For i 6= j, λkvik → 0.

Also, 0 ← λktk ∈ projTX(xk) (
∑p

i=1 λkvik + λkwk). Then vj 6= 0 contradicts the

constraint qualification (2.4.2) and therefore this case is abandoned and the inclusion

is proved.

Remark 2.4.3. When X is a smooth manifold at x̄, the constraint qualification

(2.4.2) turns into (2.4.4), and coincides with (2.4.10) as NX(x̄) = −NX(x̄). In this

case, the upper estimate of D∗XS(x̄, ū), (2.4.11) is the same as (2.4.5).

Comparing the constraint qualification (2.4.10) with the one in [81, Theorem

10.41], we can see that (2.4.10) also serves as a constraint qualification to express

NgphS|X via NgphS and NX . Next we present a sum rule where each Si is restricted

onto X. Unlike in Theorem 2.4.1 where we restrict F onto X, in this sum rule we

restrict each Si onto X and therefore only Corollary 2.3.2 is employed rather than

both Corollaries 2.3.2 and 2.3.5.

Theorem 2.4.4 (Sum rule-3). Let S = S1 + · · ·+ Sp for Si : Rn ⇒ Rm being outer

semicontinuous relative to X and let x̄ ∈ domS ∩ X, ū ∈ S|X(x̄). Assume the

boundedness condition (2.4.1) is satisfied and the constraint qualification holds:

vi ∈ D∗Si|X(x̄ | ui)(0), ui ∈ Si(x̄),
∑p

i=1 ui = ū∑p
i=1 vi = 0

}
=⇒ vi = 0 for i = 1, . . . , p.

(2.4.13)
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Then gphS|X is locally closed at (x̄, ū) and one has

D∗XS(x̄ | ū)(y) ⊆ lim sup

(x,u)
gphS|X−−−−−→(x̄,ū)

y′
i−→y,i=1,...,p

⋃
u′i∈Si(x)∑p
i=1 u

′
i=u

projTX(x)

(
p∑
i=1

D∗Si|X(x | u′i)(y′i)

)
.

(2.4.14)

If in addition X is a smooth manifold, the inclusion becomes a fixed-point expression

as

D∗XS(x̄ | ū) ⊆
⋃

ui∈Si|X(x̄)∑p
i=1 ui=ū

projTX(x̄)

(
p∑
i=1

D∗Si|X(x̄|ui)

)
. (2.4.15)

Moreover, when every Si|X is graph-convex, the union is superfluous and the inclusion

becomes equation.

Proof. First let S ′ = S0 ◦ F where F (x) = (x, . . . , x) (p copies), S0(x1, · · · , xp) =

S1(x1)× · · · × Sp(xp). By restricting each Si onto X, we have

S ′|X(x) = S0|X×···×X (F (x̄)) = S1|X(x)× · · · × Sp|X(x).

By [81, Proposition 6.41], we have

∗S0|X×···×X (F (x̄) | u1, . . . , up) (y1, . . . , yp) =

(
p∏
i=1

D∗Si|X(x̄ | ui)

)
(y1, . . . , yp)

=

p∏
i=1

D∗Si|X(x̄ | ui)(yi).

(2.4.16)

Note that D∗F (x̄)(v1, . . . , vp) =
∑p

i=1 vi. Then the constraint qualification in [81,

Theorem 10.40]: D∗S0|X×···×X(F (x̄) | u1, . . . , up)(0, . . . , 0) ∩D∗F (x̄)−1(0) = {0} can

be written as (2.4.13). Note that this constraint qualification also indicates the

one for any point (x, u′1, . . . , u
′
p) ∈ gphS ′|X being sufficiently close to (x̄, u1, . . . , up)
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(similar to the previous proof of Theorem 2.3.1), therefore by [81, Theorem 10.40]

we have

D∗S ′|X
(
x
∣∣u′1, . . . , u′p ) ⊆ D∗F (x) ◦D∗S0|X×···×X

(
F (x)

∣∣u′1, . . . , u′p ) (2.4.17)

for any (x, u′1, . . . , u
′
p) ∈ gphS ′|X being sufficiently close to (x̄, u1, . . . , up). Then by

definition of projectional coderivative and (2.4.17),

D∗XS
′ (x̄ |u1, . . . , up ) (y1, . . . , yp)

⊆ lim sup

(x,u′
1,...,u

′
p)

gphS′|X−−−−−→(x̄,u1,...,up)

(y′
1,...,y

′
p)−→(y1,...,yp)

projTX(x)D
∗F (x) ◦D∗S0|X×···×X

(
F (x)

∣∣u′1, . . . , u′p ) (y′1, . . . , y′p) .
(2.4.18)

Secondly we write S = F2 ◦ S ′ with F2(u1, . . . , up) =
∑p

i=1 ui, then

S ′|X(x) ∩ F−1
2 (u) =

{
(u1, . . . , up)

∣∣∣∣ ui ∈ Si|X(x), ∀i = 1, . . . , p,

p∑
i=1

ui = u

}
.

Therefore according to Corollary 2.3.2 with the boundedness assumption satisfied,

we have

D∗XS(x̄|ū) ⊆
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

D∗XS
′ (x̄ |u1, · · · , up ) ◦ ∇F2(u1, · · · , up)∗. (2.4.19)

Combining (2.4.16), (2.4.18) and (2.4.19), we arrive at

D∗XS(x̄ | ū)(y) ⊆
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

lim sup

(x,u′1,...,u
′
p)

gphS′|X−−−−−→(x̄,u1,...,up)

y′i−→y, i=1,...,p

projTX(x)

(
p∑
i=1

D∗Si|X(x | u′i)(y′i)

)
.

For (x, u′1, . . . , u
′
p)

gphS′|X−−−−−→ (x̄, u1, . . . , up), it is equivalent that (x, u′i)
gphSi|X−−−−−→ (x̄, ui)

for i = 1, . . . , p. Besides, u :=
∑p

i=1 u
′
i →

∑p
i=1 ui = ū, which means (x, u) ∈
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gphS|X . Therefore we have

⋃
ui∈Si(x̄)∑p
i=1 ui=ū

lim sup

(x,u′1,...,u
′
p)

gphS′|X−−−−−→(x̄,u1,...,up)

y′i−→y, i=1,...,p

projTX(x)

(
p∑
i=1

D∗Si|X(x | u′i)(y′i)

)

⊆ lim sup

(x,u)
gphS|X−−−−→(x̄,ū)

y′i−→y, i=1,...,p

⋃
u′i∈Si|X(x)∑p
i=1 u

′
i=u

projTX(x)

(
p∑
i=1

D∗Si|X(x | u′i)(y′i)

)

and accordingly (2.4.14) holds. Besides, if X is a smooth manifold, by Proposition

2.1.5, we have

D∗XS(x̄ | ū)(y) ⊆
⋃

ui∈Si(x̄)∑p
i=1 ui=ū

projTX(x̄)

(
p∑
i=1

D∗Si|X(x̄ | ui)(y)

)
.

With each Si|X being graph-convex, both the inclusions (2.4.17) and (2.4.19) become

equations respectively and the union in (2.4.15) becomes superfluous and we have

projTX(x̄)

(
p∑
i=1

D∗Si|X(x̄ | ui)(y)

)
⊆ D∗XS(x̄ | ū)(y), ∀ui ∈ Si(x̄),

p∑
i=1

ui = ū.

In next sum rule, a tighter upper estimate is given as we apply directly, [81,

Theorem 10.41].

Theorem 2.4.5 (Sum rule-4). Still under the setting of Theorem 2.4.4, we can also

have

D∗XS(x̄ | ū)(y) ⊆ lim sup

(x,u)
gphS|X−−−−−→(x̄,ū)
y′−→y

⋃
u′i∈Si(x)∑p
i=1 u

′
i=u

projTX(x)

(
p∑
i=1

D∗Si|X(x | u′i)(y′)

)
,

(2.4.20)

where the right-hand side of (2.4.20) is included in that of (2.4.14).
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Proof. By Theorem 10.41, for any (x, u) ∈ gphS|X being close enough to (x̄, ū):

NgphS|X (x, u) ⊆
⋃

u′i∈Si(x)∑p
i=1 u

′
i=u

{(
p∑
i=1

vi,−y′
)∣∣∣∣∣ vi ∈ D∗Si|X(x | u′i)(y′)

}

and therefore

lim sup

(x,u)
gphS|X−−−−−→(x̄,ū)

projTX(x)×RmNgphS|X (x, u)

⊆ lim sup

(x,u)
gphS|X−−−−−→(x̄,ū)

⋃
u′i∈Si(x)∑p
i=1 u

′
i=u

{(
projTX(x)

(
p∑
i=1

vi

)
,−y′

)∣∣∣∣∣ vi ∈ D∗Si|X(x | u′i)(y′)

}
.

By comparing the terms in the right-hand side of (2.4.20) and that of (2.4.14) we

can see that the former is a special case of the latter where each y′i is taken as y′ and

therefore included by the latter.

As both Theorem 2.4.5 and Theorem 2.4.2 are obtained directly from applying,

[81, Theorem 10.41], the difference mainly exists in using different constraint qualifi-

cations. The one in Theorem 2.4.5 carries X in each Si|X in the calculation while the

one in Theorem 2.4.2 separates X from Si. Besides, the difference between Theorem

2.4.5 and Theorem 2.4.4 comes from using a larger estimate in Corollary 2.3.2 with

the form of projectional coderivatives.
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Chapter 3

Relative Lipschitz-like Property for
Parametric Systems

In this chapter, we consider an extended form of parametric system under the frame-

work of [53]:

S(w) := {x ∈ Rn | 0 ∈ G(w, x) +M(w, x)} (3.0.1)

where G : Rm+n → Rd is a C1 mapping and M : Rm+n ⇒ Rd is a multifunction with

a closed graph. We first develop the upper estimates of projectional coderivative of S

under different levels of constraint qualifications accordingly and illustrate how adap-

tive these constraint qualifications can be when applying them to different systems

via some simple examples. As this type of system (3.0.1) also includes the one with

0 ∈ M(w, x), we treat the latter as a special case and compare our result with the

one in [5] for sufficiency on the relative Lipschitz-like property. Structural differences

of these two approaches are demonstrated via an example. When M(w, x) is a mul-

tifunction of x only, i.e., M(w, x) = M(x), this framework can be applied to various

types of problems. For example, when M(x) is a normal cone mapping, then linear

complementarity problems and affine variational inequalities fit in. The discussion

on non-emptiness of S(w) for these cases can be found in monographs [22, 51]. For

the remaining sections, we apply this upper estimate to a wide range of problems

covered by the framework (3.0.1): linear constraint systems, linear complementarity
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problems and affine variational inequalities. For the first two types of problems, we

give exact expression of projectional coderivatives for the solution mappings relative

to their domains with the structure of the union of polyhedral sets and the sufficient

and necessary conditions for their Lipschitz-like property relative to their domain.

For the affine variational inequalities, we consider in general a set within its domain

and obtain an upper estimate of the projectional coderivatives under some constraint

qualification and formulate a generalized critical face condition in view of [18].

3.1 Projectional coderivatives for parametric sys-
tems

First we present the result in [53] on coderivatives of solution maps of (3.0.1). We

slightly tune the statement by switching the position of w and x.

Lemma 3.1.1 ([53, Theorem 2.1]). Consider the implicit mapping S : Rm ⇒ Rn

of the form (3.0.1) with G : Rm+n → Rd a C1 mapping, and M : Rm+n ⇒ Rd a

multifunction with a closed graph. Consider a pair (w̄, x̄) ∈ gphS. If the constraint

qualification holds:

(0m, 0n) ∈ ∇G(w̄, x̄)∗y +D∗M ((w̄, x̄) |−G(w̄, x̄)) (y) =⇒ y = 0d (3.1.1)

then

D∗S (w̄ | x̄) (r) ⊆
⋃
y∈Rd

{
v ∈ Rm

∣∣∣∣ (v,−r) ∈ (∇G(w̄, x̄)∗y +D∗M ((w̄, x̄) | −G(w̄, x̄)) (y))

}
.

(3.1.2)

The inclusion becomes an equation if one of the following conditions is satisfied:

(a) either M is graphically regular at (w̄, x̄,−G(w̄, x̄)), or

(b) M = M(x) and ∇wG(w̄, x̄) has full rank. In this case the constraint qualification
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(3.1.1) holds automatically and one has

D∗S (w̄ | x̄) (r) =
⋃
y∈Rd

{
∇wG(w̄, x̄)∗y

∣∣∣∣ −r ∈ (∇xG(w̄, x̄)∗y +D∗M (x̄ | −G(w̄, x̄)) (y))

}
.

To ease the notations, we omit the dimension m, n and d in the subscripts of the

zero vector 0 whenever it can be obviously derived. Most of the results we obtain for

projectional coderivatives are based on the proposition above with M additionally

restricted on a set W .

Theorem 3.1.2. Consider the implicit mapping S : Rm ⇒ Rn of the form (3.0.1)

with G : Rm+n → Rd a C1 mapping, and M : Rm+n ⇒ Rd a multifunction with closed

graph. Consider a pair (w̄, x̄) ∈ gphS|W where W ⊆ domS is a closed set. If the

following constraint qualification holds:

(0, 0) ∈ ∇G(w̄, x̄)∗y +D∗M |W×Rn ((w̄, x̄) |−G(w̄, x̄)) (y) =⇒ y = 0, (3.1.3)

then we have

D∗WS (w̄ | x̄) (r) ⊆ lim sup

(w,x)
gphS|W−−−−→(w̄,x̄)
r′→r

⋃
y∈Rd

{
projTW (w)(v)

∣∣∣∣ (v,−r′) ∈

(∇G(w, x)∗y +D∗M |W×Rn ((w, x) | −G(w, x)) (y))

}
.

(3.1.4)

If we strengthen the constraint qualification (3.1.3) to

(0, 0) ∈ lim sup

(w,x)
gphS|W−−−−→(w̄,x̄)
y′→y

projTW (w)×Rn (∇G(w, x)∗y′ +D∗M |W×Rn ((w, x) |−G(w, x)) (y′))

=⇒ y = 0

(3.1.5)
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then the limsup in (3.1.4) can be put into the bracket as

D∗WS (w̄ | x̄)(r) ⊆
{
t ∈ Rm

∣∣∣∣∃y ∈ Rd with (t,−r) ∈

lim sup

(w,x,−G(w,x))
gphM|W×Rn−−−−−−−−−−−→(w̄,x̄,−G(w̄,x̄))

y′→y

projTW (w)×Rn
(
∇G(w, x)∗y′

+D∗M |W×Rn ((w, x) | −G(w, x)) (y′)
)}
.

(3.1.6)

If in addition, M |W×Rn is graphically regular at (w̄, x̄,−G(w̄, x̄)) and W is a smooth

manifold at w̄, then

D∗WS (w̄ | x̄) (r) =

{
t ∈ Rm

∣∣∣∣∃y ∈ Rd with (t,−r) ∈ projTW (w̄)×Rn

(
∇G(w̄, x̄)∗y

+D∗M |W×Rn ((w̄, x̄) | −G(w̄, x̄)) (y)

)}
.

(3.1.7)

Proof. Similar to the proof of Theorem 2.3.1, (3.1.3) also indicates that

(0, 0) ∈ ∇G(w, x)∗y +D∗M |W×Rn ((w, x) |−G(w, x)) (y) =⇒ y = 0

for any (w, x) ∈ gphS|W sufficiently close to (w̄, x̄). According to [53, Theorem 2.1],

for any pair (w, x) ∈ gphS|W sufficiently near (w̄, x̄), we have

NgphS|W (w, x) ⊆
⋃
y∈Rd

(∇G(w, x)∗y +D∗M |W×Rn((w, x) | −G(w, x))(y)) . (3.1.8)

Therefore we have

lim sup

(w,x)
gphS|W−−−−−−−→(w̄,x̄)

projTW (w)×RnNgphS|W (w, x)

⊆ lim sup

(w,x)
gphS|W−−−−−−−→(w̄,x̄)

⋃
y∈Rd

projTW (w)×Rn (∇G(w, x)∗y +D∗M |W×Rn((w, x) | −G(w, x))(y))

(3.1.9)
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and accordingly the inclusion (3.1.4) holds.

Now, assume that the constraint qualification (3.1.5) holds. By the definition

of projectional coderivative (1.3.6) and (3.1.9), for t ∈ D∗WS(w̄ | x̄)(r), there exist

sequences (wk, xk)
gphS|W−−−−→ (w̄, x̄), yk ∈ Rd and

(vk,−rk) ∈ ∇G(wk, xk)
∗yk +D∗M |W×Rn ((wk, xk) | −G(wk, xk)) (yk),

such that tk ∈ projTW (wk)(vk) → t and rk → r. Taking a subsequence if necessary,

we have either yk → y ∈ Rd or λkyk → y ∈ Rd with λk ↘ 0. For the first case,

we directly have that t belongs to the right-hand side of (3.1.6). For the second

case, without loss of generality we assume ‖y‖ = 1. With the conic structure we

have λk(vk,−rk) ∈ ∇G(wk, xk)
∗(λkyk) + D∗M |W×Rn ((wk, xk) | −G(wk, xk)) (λkyk)

and accordingly λktk ∈ λkprojTW (wk)(vk) → 0, λkrk → 0, which contradicts the

constraint qualification (3.1.5) with ‖y‖ = 1. Given that (w, x)
gphS|W−−−−→ (w̄, x̄) is

equivalent to (w, x,−G(w, x))
gphM |W×Rn−−−−−−−→ (w̄, x̄,−G(w̄, x̄)) and therefore we have

that t also belongs to the set on the right-hand side of (3.1.6).

If furthermoreM |W×Rn is graphically regular at (w̄, x̄,−G(w̄, x̄)), again by Propo-

sition 3.1.1, we have (3.1.8) as an equation at the reference point (w̄, x̄) and therefore

projTW (w̄)D
∗S|W (w̄ | x̄)(r)

=

{
t ∈ Rm

∣∣∣∣∃y ∈ Rd with (t,−r) ∈ projTW (w̄)×Rn
(
∇G(w̄, x̄)∗y

+D∗M |W×Rn ((w̄, x̄) | −G(w̄, x̄)) (y)
)}

⊆ D∗WS(w̄ | x̄)(r).

(3.1.10)
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Besides, when W is a smooth manifold at w̄, by Proposition 2.1.5(c) and (3.1.8),

D∗WS (w̄ | x̄) (r) = projTW (w̄)D
∗S|W (w̄ | x̄) (r)

⊆
{
t ∈ Rm

∣∣∣∣∃y ∈ Rd with (t,−r) ∈ projTW (w̄)×Rn
(
∇G(w̄, x̄)∗y

+D∗M |W×Rn ((w̄, x̄) | −G(w̄, x̄)) (y)
)}
.

(3.1.11)

Combining the conditions thatM |W×Rn is graphically regular at (w̄, x̄,−G(w̄, x̄))

and that W is a smooth manifold at w̄, (3.1.10) and (3.1.11) turn into equation

(3.1.7).

Remark 3.1.3. The constraint qualification (3.1.3) involves only coderivatives of

G(w, x) + M |W×Rn(w, x) at the reference point while the stronger constraint qualifi-

cation (3.1.5) involves the projected coderivatives. By Lemma 2.1.1 we can see that

(3.1.5) indicates (3.1.3). When the stronger constraint qualification is satisfied, we

can have a tighter estimate, as RHS of (3.1.6) is included by that of (3.1.4). The

connection between the basic constraint qualification and the stronger one is better

revealed in the Corollary 3.1.5 as it involves M(w, x) only.

Here we use a simple example to illustrate how the stronger constraint quali-

fication can be applied in calculating the projectional coderivatives (3.1.7). Note

that in a later example (Example 3.1.9) we will show how that the basic constraint

qualification can be adopted but the stronger one fails.

Example 3.1.4. For S(w) := {x ∈ Rn | Ax+ w ∈ K} where K ⊆ Rm is a closed

set. Let G(w, x) = −Ax − w and M(w, x) = K. For W ⊆ domS we can write

gphM |W×Rn = W × Rn ×K and accordingly for any (w, x, u) ∈ gphM |W×Rn,

D∗M |W×Rn ((w, x) | u) (y) =

{
NW (w)× {0}, if y ∈ −NK(u)

∅, if y /∈ −NK(u)
, (3.1.12)
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and

∇G(w, x)∗y = (−y,−A∗y). (3.1.13)

Let n = m = 2, K = R× {0} ∪ {0} × R, A =

(
0 0
0 1

)
. Then we can also write the

closed form of S as

S(w) =

{
R2, w1 = 0,

R× {−w2}, w1 6= 0.

Then domS = K+ rgA = R2. Consider the particular pair (w̄, x̄) ∈ gphS|W where

w̄ = (0, 1)>, x̄ = (0, 0)> and a smooth manifold W = R × {1} ⊆ domS. Then

S|W (w) with w = (w1, 1)> ∈ W becomes

S|W (w) =

{
R2, w1 = 0,

R× {−1}, w1 6= 0.

Then the constraint qualification (3.1.5) becomes the one at the reference pair (w̄, x̄)

(as W is a smooth manifold):

(0, 0) ∈ projTW (w̄)×Rn (∇G(w̄, x̄)∗y +D∗M |W×Rn ((w̄, x̄) | −G(w̄, x̄)) (y))

=
{

(projTW (w̄)(v − y),−A∗y) | v ∈ NW (w̄), y ∈ −NK(Ax̄+ w̄)
}

=⇒ y = 0,

where the equation is a direct result from (3.1.12) and (3.1.13). As −G(w̄, x̄) =

Ax̄+ w̄ = (0, 1)>, K is regular at −G(w̄, x̄) and

NK(−G(w̄, x̄)) = NK

(
(0, 1)>

)
= R× {0}.

Thus M |W×Rn is graphically regular at (w̄, x̄,−G(w̄, x̄)). Besides, in view of the fact

that TW (w̄) = R× {0} and y ∈ −NK(Ax̄+ w̄) = R× {0} and by Lemma 2.1.2,

0 = projTW (w̄)(v − y) = projTW (w̄)(−y) = −y =⇒ y = 0.

Thus the constraint qualification is satisfied. Applying (3.1.7) , we obtain

D∗WS(w̄, x̄)(r) = {y | y ∈ NK(Aw̄ + x̄) with A∗y = r} =

{
R× {0} if r = (0, 0)>,

∅ if r 6= (0, 0)>.
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Thus, D∗WS(w̄, x̄)((0, 0)>) = R × {0} 6= {(0, 0)>}, S does not enjoy the Lipschitz-

like property relative to W at w̄ for x̄ according to Theorem 2.2.3. Also, for wε =

(ε, 1)> ∈ W with ε > 0, choose ρ > 0 being small enough. Then the inclusion

S(w̄) ∩ Bρ(x̄) = Bρ ⊆ S(wε) + κεB = R× {−1}+ κεB

does not hold unless ε ≥ 1+ρ
κ
. Then by definition we can also draw the same conclu-

sion. Below we give the figure of domS and S|W (w̄), S|W (wε).

Figure 3.1: domS and S|W (w) of Example 3.1.4.

By observing the right-hand side of the expression (3.1.6), we can see that (t,−r)

actually belongs to the projectional coderivative of the multifunction G(w, x) +

M(w, x) relative to the set W × Rn. Next we present a simpler model by taking

G(w, x) = 0 so that the relation of projectional coderivatives between S and M can

be revealed more clearly. After that, we give a parallel comparison with a related

result in [5], which uses directional coderivatives to characterize the Lipschitz-like

property of S relative to certain directions.

Corollary 3.1.5. For an implicit mapping S : Rm ⇒ Rn as S(w) = {x | 0 ∈M(w, x)}

where M : Rm×Rn ⇒ Rd is an outer semicontinuous mapping, consider a closed set

64



W ⊆ domS and let x̄ ∈ S|W (w̄), if

(0, 0) ∈ D∗M |W×Rn ((w̄, x̄) | 0) (y) =⇒ y = 0, (3.1.14)

then

D∗WS (w̄ | x̄) (r) ⊆ lim sup

(w,x)
gphS|W−−−−→(w̄,x̄)
r′→r

⋃
y∈Rd

{
projTW (w)(v)

∣∣∣∣
(v,−r′) ∈ D∗M |W×Rn ((w, x) | 0) (y)

}
.

(3.1.15)

If furthermore

(0, 0) ∈ D∗W×RnM ((w̄, x̄) | 0) (y) =⇒ y = 0 (3.1.16)

then we have

D∗WS(w̄ | x̄)(r) ⊆
{
t | ∃y such that (t,−r) ∈ D∗W×RnM((w̄, x̄) | 0)(y)

}
. (3.1.17)

When in addition M |W×Rn is graphically regular at (w̄, x̄, 0) and W is a smooth

manifold at w̄,

D∗WS(w̄ | x̄)(r) =
{
t
∣∣∃y s.t (t,−r) ∈ D∗W×RnM((w̄, x̄) | 0)(y)

}
.

Proof. This corollary comes from direct application of Theorem 3.1.2 by taking

G(w, x) = 0. As (w, x)
gphS|W−−−−→ (w̄, x̄) is equivalent to (w, x, 0)

gphM |W×Rn−−−−−−−→ (w̄, x̄, 0),

lim sup

(w,x)
gphS|W−−−−→(w̄,x̄)
y′→y

projTW (w)×RnD
∗M |W×Rn ((w, x) | 0) (y′) ⊆ D∗W×RnM ((w̄, x̄) | 0) (y).

Therefore we can rewrite the inclusions in Theorem 3.1.2 as (3.1.15) and (3.1.17)

respectively.

Observing (3.1.16) and (3.1.17), we can have a sufficient condition for the relative

Lipschitz-like property of S.
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Corollary 3.1.6. For the set-valued mapping S defined as in Corollary 3.1.5 with

(w̄, x̄) ∈ gphS|W , where W is a smooth manifold at around w̄ or a closed and convex

set, S has the Lipschitz-like property relative to W at w̄ for x̄ if

(t, 0) ∈ D∗W×RnM ((w̄, x̄) | 0) (y) =⇒ t = 0, y = 0.

Proof. This is a simple result from (3.1.16) and (3.1.17) and application of Theorems

1.3.8 and 2.2.3.

In [5, Theorem 3.5], a sufficient condition is given to examine the Lipschitz-like

property of the parametric system relative to a set. The condition mainly involves

directional limiting coderivatives. Next we illustrate how our upper estimate (3.1.15)

can be applied to verify the property for comparison. Here we put down some

necessary notations and the theorem for reference.

First we introduce the definitions of the directional limiting normal cone and the

directional limiting coderivatives.

Definition 3.1.7 ([30, Definition 2.3]). For a closed set Ω ⊂ Rn with x̄ ∈ Ω and

a direction u ∈ Rn, the directional limiting normal cone to Ω in direction u at x̄ is

defined by

NΩ(x̄;u) := lim sup
t↓0, u′→u

N̂Ω(x̄+ tu′), (3.1.18)

while for a set-valued mapping S : Rn ⇒ Rm having locally closed graph around

(w̄, x̄) ∈ gphS and a pair of directions (u, v) ∈ Rn × Rm, the set-valued mapping

D∗S((w̄, x̄); (u, v)) : Rm ⇒ Rn, defined by

D∗S((w̄, x̄); (u, v))(v∗) := {u∗ ∈ Rn | (u∗,−v∗) ∈ NgphS((w̄, x̄); (u, v))}, ∀v∗ ∈ Rm

(3.1.19)

is called the directional limiting coderivative of S in the direction (u, v) at (w̄, x̄). See

[5] for more details and some basic properties of these notions.
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Proposition 3.1.8 ([5, Theorem 3.5]). For an implicit mapping S : Rm ⇒ Rn as

S(w) = {x | 0 ∈M(w, x)}

where M : Rm×Rn ⇒ Rd is an outer semicontinuous mapping, consider a closed set

W ⊆ Rm and let x̄ ∈ S|W (w̄), further assume that

(i) for every w ∈ TW (w̄) and every sequence tk ↘ 0 there exists some x ∈ Rn

satisfying

lim inf
k→∞

d ((w̄ + tkw, x̄+ tkx, 0), gphM) /tk = 0 (3.1.20)

(ii) for every nonzero (w, x) ∈ TW (w̄)× Rn verifying (w, x, 0) ∈ TgphM(w̄, x̄, 0) one

has the implication

(v, 0) ∈ D∗M ((w̄, x̄, 0); (w, x, 0)) (y) =⇒ y = 0. (3.1.21)

Then S has the Lipschitz-like property relative to W at w̄ for x̄.

Next we give an example to illustrate how the upper estimate in Corollary 3.1.5

can be applied in verifying the Lipschitz-like property relative to a set with the basic

constraint qualification (3.1.14).

Example 3.1.9. For S(w) := {x ∈ Rn | Ax+ w ∈ K} where K ⊆ Rm is a closed

set. Then we have M(w, x) = −Ax− w +K. By writing

gphM = {(w, x, u) | u+ Ax+ w ∈ K} , (3.1.22)

gphM |W =

(w, x, u)

∣∣∣∣∣
(
I 0 0
I A I

)wx
u

 ∈ W ×K
 ,

we can see that
(
I 0 0
I A I

)
has full rank 2m and

(
I A I

)
has full rank m. Thus

we can apply [81, Exercise 6.7] to obtain, for any (w, x, u) ∈ gphM |W×Rn,

NgphM |W×Rn (w, x, u) = {(v + y, A∗y, y) | v ∈ NW (w), y ∈ NK(u+ Ax+ w)} ,

67



NgphM(w, x, u) = {(y, A∗y, y) | y ∈ NK(u+ Ax+ w)} .

By definition of coderivatives,

D∗M |W×Rn ((w, x) | u) (y) = {(−y,−A∗y) | −y ∈ NK(u+ Ax+ w)}+NW (w)× {0}
(3.1.23)

= D∗M ((w, x) | u) (y) +NW (w)× {0}.

Then the constraint qualification (3.1.14), together with the expression (3.1.23) be-

comes

NK(Ax̄+ w̄) ∩ kerA∗ ∩ (−NW (w̄)) = {0} (3.1.24)

at the reference pair (w̄, x̄) ∈ gphS|W .

Next we consider a particular case. Let n = m = 2, K = R+ × {0} ∪ {0} × R+

and A =

(
0 −1
0 1

)
. For the reference pair w̄ = (0, 0)>, x̄ = (0, 0)> and W =

{(w1, w2) ∈ R2 | w1 + w2 ≥ 0, w1 ≥ 0}, we have w̄ ∈ W and W ⊆ domS = K +

rgA = {(w1, w2) ∈ R2 | w1 + w2 ≥ 0}. By some calculation we can see that

NK(Ax̄+ w̄) = NK(0) = (R× {0}) ∪ ({0} × R) ∪ R2
−, kerA∗ = R(1, 1)>

and

NW (w̄) = NW (0) = W ∗ =
{

(w1, w2) ∈ R2 | w1 − w2 ≤ 0, w2 ≤ 0
}

and therefore the constraint qualification (3.1.24) is satisfied. As gphS|W is a union

of polyhedral cones, we have only finite combinations of NK(Ax + w) and NW (w).

By (3.1.23), we have for sufficiently small ε > 0,

lim sup

(w,x)
gphS|W−−−−−−−→(w̄,x̄)

⋃
y∈Rd

projTW (w)×RnD
∗M |W×Rn((w, x) | 0)(y)

=
⋃

(w,x)∈Bε(w̄,x̄)∩gphS|W
y∈−NK(Ax+w)

{(
projTW (w)(v − y),−A∗y

) ∣∣ v ∈ NW (w)
}

=

( ⋃
y∈(R×{0})∪({0}×R)∪R2

+

( {(
projW2

(v − y),−A∗y
) ∣∣ v ∈ W ∗

2

}
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∪
{

(projW (v − y),−A∗y)
∣∣ v ∈ W ∗} ))⋃

 ⋃
y∈(R×{0})∪({0}×R)

({(
projW1

(v − y),−A∗y
) ∣∣ v ∈ W ∗

1

}
∪ {(−y,−A∗y)}

) ,

where W1 = R+×R, W2 = {(w1, w2) | w1 + w2 ≥ 0}. Together with (3.1.15) we have

gphD∗WS(w̄ | x̄) ⊆
( ⋃
y∈(R×{0})∪({0}×R)∪R2

+

{(
A∗y, projW2

(v − y)
) ∣∣ v ∈ W ∗

2

}

∪
{

(A∗y, projW (v − y))
∣∣ v ∈ W ∗})⋃

 ⋃
y∈(R×{0})∪({0}×R)

({(
A∗y, projW1

(v − y)
) ∣∣ v ∈ W ∗

1

}
∪ {(A∗y,−y)}

) .

(3.1.25)

By the generalized Mordukhovich criterion, it is sufficient to examine the criterion

on each of the subsets in right-hand side of (3.1.25) to obtain D∗WS(w̄ | x̄)(0) = {0}:

1. y ∈
(
(R× {0}) ∪ ({0} × R) ∪ R2

+

)
∩ kerA∗ = R+ (1, 1)>. By calculation we

have W ∗
2 = R−(1, 1)> and W ∗ = {(w1, w2) | w1 − w2 ≤ 0, w2 ≤ 0} . Then we

can see that −y ∈ W ∗
2 ∩W ∗ and thus

projW2
(v − y) = 0 for v ∈ W ∗

2 ,

projW (v − y) = 0 for v ∈ W ∗.

2. y ∈ ((R× {0}) ∪ ({0} × R)) ∩ kerA∗ = {0}.

Therefore we have D∗WS(w̄, x̄)(0) = {0} and S has the Lipschitz-like property relative

to W at w̄ for x̄. However, in this case the stronger constraint qualification does not

hold, which can be verified via

(0, 0) ∈ projTW (w̄)×RnD
∗M |W×Rn ((w̄, x̄) | 0) (y)
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=
{

(projW (v − y),−A∗y)
∣∣v ∈ W ∗, y ∈ R× {0} ∪ {0} × R ∪ R2

+

}
⊆ D∗W×Rn ((w̄, x̄) | 0) (y) =⇒ y = R+(1, 1)> 6= {(0, 0)>}.

Next we will show how Proposition 3.1.8 fails on examining the property as for

w = (1,−1)> ∈ TW (w̄) and x = (0, 1)>, condition (ii) can’t be satisfied. Given the

conic and polyhedral structure of gphM (see representation(3.1.22)), again by [81,

Exercise 6.7] we have

(w, x, 0) ∈ TgphM(w̄, x̄, 0) = {(w, x, u) | Ax+ w + u ∈ TK(Ax̄+ w̄)} = gphM.

By definition of directional limiting normal cone (3.1.18),

NgphM ((w̄, x̄, 0); (w, x, 0))

:= lim supt↓0, (w′,x′,u′)→(w,x,0) N̂gphM ((w̄, x̄, 0) + t(w′, x′, u′))

= lim sup(w′,x′,u′)→(w,x,0) N̂gphM (w′, x′, u′)

= NgphM (w, x, 0)

=
{

(y, A∗y, y)
∣∣y ∈ NK(Ax+ w) = NK(0) = R× {0} ∪ {0} × R ∪ R2

−
}
,

where the second equality follows from the conic structure of gphM , the third one

from the definition of the normal cone mappings, and the last one from (3.1.22).

Then we have by definition of directional limiting coderivatives (3.1.19),

(−y,−A∗y) ∈ D∗M((w̄, x̄, 0); (w, x, 0))(y) with − A∗y = 0

=⇒ y ∈ R+(1, 1)> 6= {(0, 0)>},

suggesting that the Lipschitz-like property of S relative to W at w̄ for x̄ cannot be

obtained via Proposition 3.1.8.

Remark 3.1.10. The reason why the sufficient condition in Proposition 3.1.8 fails in

verifying the property in the above example is structural: the tool, directional limiting
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coderivatives, are intrinsically the coderivatives at the neighboring points in specif-

ically given directions. By Mordukhovich criterion (Theorem 1.3.6), it is required

that the coderivative of S at 0 includes 0 only, which means that the condition (ii) in

Proposition 3.1.8 requires the set W does not involve any points on the boundary of

domS other than the reference point. On the other hand, projectional coderivatives

come from taking the limsup of projected normal cone and therefore work efficiently

when characterizing the property when on the boundary.

Remark 3.1.11. In Theorem 3.1.2, two different constraint qualifications are men-

tioned. We can see that the basic one (3.1.3) is ensuring the upper estimate in two

ways: (i) restricting S to W ; (ii) expressing the normal cone of gphS via those of

gphG and gphM . In Corollary 3.1.5, the stronger constraint qualification (3.1.16)

ensures that D∗WS(w̄ | x̄) can be expressed via D∗W×RnM ((w̄, x̄) | 0). Note that in the

proof of Corollary 3.1.5, we used a larger set. The difference between Theorem 3.1.2

and combining application of Corollary 3.1.5 to M ′(w, x) := G(w, x) +M(w, x) and

that of the sum rule (Theorem 2.4.5) to G(w, x) + M(w, x) is caused by this larger

upper estimate.

In the next theorem, we give a setting where the constraint qualification (3.1.3)

could be bypassed. It is a result from Lemma 3.1.1.

Theorem 3.1.12. For S defined as in (3.0.1), if M = M(x) and ∇wG(w, x) has

full rank, then

D∗domSS (w̄ | x̄) (r) = lim sup

(w,x)
gphS−−−→(w̄,x̄)
r′→r

⋃
y∈Rd

{
projTdomS(w)(∇wG(w, x)∗y)

∣∣ − r′ ∈

(∇xG(w, x)∗y +D∗M (x | −G(w, x)) (y))

}
.

(3.1.26)
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Proof. When the set W := domS, S|W = S. By condition (b) in Lemma 3.1.1, we

have for any (w, x) ∈ gphS,

NgphS(w, x) =
⋃
y∈Rd

(∇G(w, x)∗y + {0} ×D∗M (x | −G(w, x)) (y)) .

Therefore we have

lim sup

(w,x)
gphS|W−−−−−−−→(w̄,x̄)

projTW (w)×RnNgphS|W (w, x) = lim sup
(w,x)

gphS
−−−−→(w̄,x̄)

projTdomS(w)×RnNgphS(w, x)

= lim sup
(w,x)

gphS
−−−−→(w̄,x̄)

⋃
y∈Rd

projTdomS(w)×Rn (∇G(w, x)∗y + {0} ×D∗M(x | −G(w, x))(y))

and thus the equation (3.1.26).

Here the set we refer to, W , becomes the largest possible set domS. In this case,

S does not carry the set constraint along for calculation and thus the constraint qual-

ification (3.1.3) goes back to the one in Lemma 3.1.1 and is satisfied automatically

with the above setting. In the coming sections, we introduce some models under

specific settings.

3.2 Linear constraint systems

Consider the solution mapping of a linear constraint system S : Rm ⇒ Rn:

S(b) = {x ∈ Rn | Ax+ b ∈ K} (3.2.1)

where K is a closed set in Rm and A ∈ Rm×n. By calculation in [38], for any given

pair (b̄, x̄) ∈ gphS,

NgphS(b̄, x̄) =

{
(u,A∗u)

∣∣∣∣ u ∈ NK(v̄)

}
where v̄ = Ax̄+ b̄. (3.2.2)

Here we denote the column space generated by A (i.e., linear combinations generated

by columns of A) as rgA and the orthogonal complement of rgA (also the null space
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of A∗) as kerA∗. In [38] a sufficient and necessary condition of Lipschitz-like property

of S at b̄ for x̄ is given via Mordukhovich criterion:

kerA∗ ∩NK(v̄) = {0}. (3.2.3)

Note that this condition can also be applied when both the matrix A and the vector b

undergo perturbations. We know that the Lipschitz-like property suggests implicitly

that the referred point b̄ should lie in the interior of the domain of S. Therefore

the criterion also fails when b̄ falls on the boundary of domS. Next we focus on the

Lipschitz-like property relative to domS.

3.2.1 Relative Lipschitz-like property and the graphical mod-
ulus

From expression (3.2.1) we can see that gphS can be taken as a linear transformation

of K. For the domain domS = K + rgA where rgA = A(Rn) = {Ax | x ∈ Rn}.

Given that rgA is a subspace in Rm, the domain of S can be interpreted as a set

generated by moving the set K along the subspace rgA. Therefore gphS, domS

share something common in structure with the setK like convexity and polyhedrality.

In this section we first assume K to be union of polyhedral sets and derive the

expression for projectional coderivatives of S relative to its domain. Later we consider

the case that K is a convex polyhedral set. Under such an assumption we can give

an explicit form of its tangent cone and normal cone.

First we present a result of simply applying Theorem 3.1.12 to S (3.2.1) with K

being a union a polyhedral sets. Under such a setting, the limsup in definition of

projectional coderivative can be substituted by a union as the number of possible

combinations of NgphS(b, x) and TdomS(b) are finite.

Corollary 3.2.1. For the set mapping S defined as in (3.2.1) with K being a union
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of polyhedral sets and a pair (b̄, x̄) ∈ gphS, for sufficiently small ε > 0,

D∗domSS(b̄ | x̄)(y) =
⋃

(b,x)∈gphS∩Bε(b̄,x̄)

{
projTdomS(b)(u)

∣∣ ∃u ∈ NK(Ax+ b)

s.t.− A∗u = y
}
.

(3.2.4)

Proof. Let G(b, x) = −Ax− b, M(x) = K, we can directly apply Theorem 3.1.12 to

S with

D∗M (x | Ax+ b) (u) =

{
{0}, if u ∈ −NK(Ax+ b)

∅, if u /∈ −NK(Ax+ b)

and

∇G(b, x)∗u = (−u,−A∗u).

In view of the fact that gphS is also a union of polyhedral sets, we have for sufficiently

small ε > 0,

D∗domSS
(
b̄ | x̄

)
(y)

= lim sup

(b,x)
gphS−−−→(b̄,x̄)
y′→y

⋃
u∈Rd

{
projTdomS(b)(v)

∣∣ (v,−y′) ∈ (−u,−A∗u) , u ∈ −NK(Ax+ b)

}

=
⋃

(b,x)∈gphS∩Bε(b̄,x̄)

{
projTdomS(b)(−u)

∣∣ y = A∗u, u ∈ −NK(Ax+ b)

}

and finally (3.2.4) by tuning the direction of u.

From now on we focus on the case where K is a convex polyhedral set. In this

case, domS is also convex and we can apply the generalized Mordukhovich criterion

(Theorem 1.3.8) to S relative to domS. Besides, gphS is also convex polyhedral and

S enjoys the Lipschitz continuity on domS automatically (see [81, Example 9.35]).

Thus S should enjoy the Lipschitz-like property relative to domS as well and we

next verify it by employing the generalized Mordukhovich criterion.
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Proposition 3.2.2. For the set mapping S defined as in (3.2.1) with K being convex,

we have that domS = K + rgA is convex as well. For a given pair (b̄, x̄) ∈ gphS

and v̄ = Ax̄+ b̄, we have

TdomS(b̄) = cl(TK(v̄) + rgA) = TK(v̄) + rgA, (3.2.5)

NdomS(b̄) =
(
TdomS(b̄)

)∗
= NK(v̄) ∩ kerA∗. (3.2.6)

Proof. As we know that v̄ ∈ K, b̄ = v̄ − Ax̄, domS = K + rgA, and both rgA and

K are closed and convex sets, by direct application of [81, Exercise 6.44] we obtain

(3.2.5) and (3.2.6).

Remark 3.2.3. For b ∈ bdry domS, there exists at least one x such that Ax + b ∈

bdryK, but not vice versa.

Corollary 3.2.4. For the set mapping S defined as in (3.2.1) with K being convex

polyhedral and a pair (b̄, x̄) ∈ gphS, S always has the Lipschitz-like property relative

to its domain at b̄ for x̄.

Proof. Here we use the generalized Mordukhovich criterion as domS is also convex:

D∗domSS(b̄|x̄)(0) = {0}. (3.2.7)

Given the expression of D∗domS(b̄ | x̄) as (3.2.4) and the polyhedrality of K, the

criterion is equivalent to checking for all (b, x)
gphS−−−→ (b̄, x̄), if

A∗u = 0, u ∈ NK(Ax+ b) =⇒ projTdomS(b)(u) = 0,

which is equivalent to

u ∈ NK(Ax+ b) ∩ kerA∗ =⇒ projTdomS(b)(u) = 0.

By convexity of TdomS(b), we have

projTdomS(b)(u) = 0⇐⇒ u ∈ NdomS(b) = NK(Ax+ b) ∩ kerA∗.

Therefore we have the property naturally.
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Given that the Lipschitz-like property relative to domS holds automatically, next

we explore the form of the modulus lipdomS S. For lipS, by calculation or [81,

Example 9.44] we have

lipS = max
u∈NK(Ax̄+b̄)∩S

1

‖A∗u‖
. (3.2.8)

For related results, see [9, Corollary 3.2] and [12, Remark 9]. First we give some

results regarding the calculation of projTdomS(b)(u) with u ∈ NK(Ax+ b).

Lemma 3.2.5. For a given pair (b, x) ∈ gphS and u ∈ NK(Ax+ b),

‖projTdomS(b)(u)‖ =

{
‖AA+u‖, if b ∈ bdry domS

‖u‖, if b ∈ int domS
(3.2.9)

where A+ is the pseudo-inverse of A given by

A+ =

{
(A∗A)−1A∗, if A is tall and thin
A∗(AA∗)−1, if A short and fat, or is tall but does not have full column rank,

and when A has neither full row rank nor full column rank, A+ is given by AA+ =

UU∗. Note that in this case U is an orthonormal basis for rgA, generated from the

truncated SVD of A, and therefore is tall and thin with rank(A) columns (and full

column rank).

Proof. For any b ∈ int domS, TdomS(b) = Rm and therefore the projection of u

is itself. For any b ∈ bdry domS, Ax + b must be lying on the bdryK as well

for bdry domS = bdry(K + rgA) ⊆ bdryK + rgA (see Remark 3.2.3). By [81,

Exercise 12.22], u can be represented uniquely as u = w+y with w = projTdomS(b)(u),

y = projNdomS(b)(u) and w ⊥ y. As when b ∈ bdry domS, u ∈ NK(Ax + b) and

NdomS(b) = NK(Ax+ b) ∩ kerA∗. Therefore we have

‖projTdomS(b)(u)‖ = ‖u− projNdomS(b)(u)‖

=d(u,NdomS(b)) = d(u, kerA∗) = ‖projrgA(u)‖
(3.2.10)
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Therefore the projection on TdomS(b) here is equivalent to projection on the column

space of A, where the results can be found in [49, Page 365].

For any (b, x) ∈ gphS with v = Ax + b ∈ bdryK, we denote the set of all

non-overlapping semi-closed faces F of K with v ∈ bdryF as F(v). Accordingly,

the normal cones on each F are the same and we denote them as NF . Among these

faces, some form the boundary of domS, and therefore we use Fe(v) to denote such

collection, i.e.,

Fe(v) := {F ∈ F(v) | F + rgA ⊆ bdry domS} .

Theorem 3.2.6. For any (b̄, x̄) ∈ gphS with b̄ ∈ bdry domS and v̄ = Ax̄ + b̄, we

have

lipdomSS(b̄|x̄) = max

{
max

F∈Fe(v̄)
sup

u∈NF∩S

‖AA+u‖
‖A∗u‖

, max
F∈F(v̄)\Fe(v̄)

sup
u∈NF∩S

‖u‖
‖A∗u‖

}
.

(3.2.11)

Proof. According to [59, Theorem 2.3],

lipdomSS(b̄|x̄) = lim sup
(b,x)

gphS
−−−−→(b̄,x̄)

sup
A∗u∈B

sup
u∈NK(Ax+b)

‖projTdomS(b)(u)‖
‖A∗u‖

.

For (b, x)
gphS−−−→ (b̄, x̄), it is equivalent for v := Ax + b

F(v̄)−−→ v̄. Besides, as Fe(v̄)

contains all faces that form the set bdry domS, then for any b ∈ bdry domS such

that Ax+ b ∈ F ∈ Fe(v̄) and u ∈ NF ,

‖projTdomS(b)(u)‖ = ‖projrgA(u)‖ = ‖AA+u‖.

For other semi-closed faces, i,e., b ∈ F ∈ F(v̄) \ Fe(v̄), b ∈ int domS and therefore

projTdomS(b)(u) = u for any u ∈ NF . Therefore we have

lipdomSS(b̄|x̄) = max
F∈F(v̄)

max
v∈F

sup
A∗u∈S

sup
u∈NK(v)

‖projTdomS(b)(u)‖
‖A∗u‖
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= max
F∈F(v̄)

max
v∈F

sup
u∈NF∩S

‖projTdomS(b)(u)‖
‖A∗u‖

,

and further (3.2.11) with possibilities of F ∈ F(v̄) exhausted.

Remark 3.2.7. When domS = Rn, the set Fe(v̄) = ∅ and ∪F∈F(v̄)NF = NK(v̄). In

this way, the modulus (3.2.11) becomes identical to (3.2.8) as

lipdomSS(b̄|x̄) = max
F∈F(v̄)

sup
u∈NF∩S

‖u‖
‖A∗u‖

= max
u∈NK(v̄)∩S

1

‖A∗u‖
= lipS.

3.2.2 Some examples

Next we give some examples on modulus calculations with K = Rn
+. Note that in

the following examples, for the case F = Rn
++, u ∈ NF = {0m}, which is trivial and

thus is omitted here. It is worth mentioning that graphical modulus lipdomS S, i.e.,

the largest κ in (1.3.4), can be obtained in the interior of the domain (see Example

3.2.8) or on the boundary (see Example 3.2.9).

Example 3.2.8. A =

(
−2 −3
2 3

)
, b̄ = 02, x̄ = 02. domS = {(y1, y2) | y2 ≥ −y1}.

projrgA(u) = UU∗u =

(
1
2
−1

2

−1
2

1
2

)
u with U = (− 1√

2
, 1√

2
)>.

F(v̄) =
{
{02}, {0} × R++, R++ × {0}, R2

++

}
,

Fe(v̄) = {{02}} .

1. v = (0, 0), u ∈ NK(v) = R2
−, TdomS(b) = {(y1, y2) | y2 ≥ −y1}.

κ = max
u∈R2

−

‖projrgA(u)‖
‖A∗u‖

= max
u∈R2

−

‖UU∗u‖
‖A∗u‖

=
1√
26
.

2. v ∈ {0} × R++, u ∈ NK(v) = R− × {0}, TdomS(b) = R2.

κ = max
u∈R−×{0}

‖projR2(u)‖
‖A∗u‖

= max
u1∈R−

|u1|∥∥∥∥(−2
−3

)
u1

∥∥∥∥ =
1√
13
.
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3. v ∈ R++ × {0}, u ∈ NK(v) = {0} × R−, TdomS(b) = R2.

κ = max
u∈{0}×R−

‖projR2(u)‖
‖A∗u‖

= max
u∈{0}×R−

‖u‖
‖A∗u‖

= max
u2∈R−

|u2|∥∥∥∥(2
3

)
u2

∥∥∥∥ =
1√
13
.

In all, lipdomSS(02 | 02) =
1√
13

.

Example 3.2.9. A =

1 −4
0 0
2 2

 , b̄ = 03, x̄ = 02. domS = R× R+ × R.

projrgA(u) = A(A∗A)−1A∗u =

1 0 0
0 0 0
0 0 1

u = (u1, 0, u3)>.

F(v̄) =
{
{03}, R++ × {02}, {02} × R++, R++ × {0} × R++,

{0} × R++ × {0}, R2
++ × {0}, {0} × R2

++, R3
++

}
,

Fe(v̄) = {{03}, R++ × {02}, {02} × R++, R++ × {0} × R++} .

1. v = 03, u ∈ NK(v) = R3
−, TdomS(b) = R× R+ × R.

κ = max
u∈R3

−

‖projrgA(u)‖
‖A∗u‖

= max
u∈R3

−

∥∥(u1, 0, u3)>)
∥∥∥∥∥∥( 1

−4

)
u1 +

(
2
2

)
u3

∥∥∥∥ =
1√
5
.

2. v ∈ R++ × {02}, u ∈ NK(v) = {0} × R2
−, TdomS(b) = R× R+ × R.

κ = max
u∈{0}×R2

−

‖projrgA(u)‖
‖A∗u‖

= max
u3∈R−

‖u3‖∥∥∥∥(2
2

)
u3

∥∥∥∥ =
1

2
√

2
.

3. v ∈ {02} × R++, u ∈ NK(v) = R2
− × {0}, TdomS(b) = R× R+ × R.

κ = max
u∈R2

−×{0}

‖projrgA(u)‖
‖A∗u‖

= max
u1∈R−

‖u1‖∥∥∥∥( 1
−4

)
u1

∥∥∥∥ =
1√
17
.

79



4. v ∈ R++ × {0} ×R++, u ∈ NK(v) = {0} ×R− × {0}, TdomS(b) = R×R+ ×R.

κ = max
u∈{0}×R−×{0}

‖projrgA(u)‖
‖A∗u‖

= 0.

5. v ∈ {0} × R++ × {0}, u ∈ NK(v) = R− × {0} × R−, TdomS(b) = R3.

κ = max
u∈R−×{0}×R−

‖projR3(u)‖
‖A∗u‖

= max
u∈R−×{0}×R−

∥∥(u1, 0, u3)>)
∥∥∥∥∥∥( 1

−4

)
u1 +

(
2
2

)
u3

∥∥∥∥ =
1√
5
.

6. v ∈ R2
++ × {0}, u ∈ NK(v) = {02} × R−, TdomS(b) = R3.

κ = max
u∈{0}×R2

−

‖projR3(u)‖
‖A∗u‖

= max
u3∈R−

‖u3‖∥∥∥∥(2
2

)
u3

∥∥∥∥ =
1

2
√

2
.

7. v ∈ {0} × R2
++, u ∈ NK(v) = R− × {02}, TdomS(b) = R3.

κ = max
u∈R−×{02}

‖projR3(u)‖
‖A∗u‖

= max
u1∈R−

‖u1‖∥∥∥∥( 1
−4

)
u1

∥∥∥∥ =
1√
17
.

In all, lipdomSS(03 | 02) =
1√
5
.

3.3 Linear complementarity problems

In this section we consider the linear complementarity problem LCP(q,M):

x ≥ 0, Mx+ q ≥ 0, x>(Mx+ q) = 0 (3.3.1)

where M ∈ Rn×n, q ∈ Rn and x ∈ Rn. For the Lipschitz-like property of the solution

mapping of this problem, see [38]. Here we consider only q is changing, and we denote

80



the solution mapping as S(·) : Rn ⇒ Rn. Thus we have the domain and graph of S

written as follow:

domS ={q ∈ Rn | ∃x ≥ 0, Mx+ q ≥ 0, 〈x, Mx+ q〉 = 0}, (3.3.2)

gphS = {(q, x) ∈ Rn × Rn | x ≥ 0, Mx+ q ≥ 0, 〈x, Mx+ q〉 = 0} . (3.3.3)

Here we introduce some properties of the set gphS and domS.

3.3.1 Properties of graph and domain

To analyze gphS, we first define a category of index combination I1, I2, I3 ⊂ I :=

{1, . . . , n} with

(a) I1 ∪ I2 ∪ I3 = I,

(b) Ii ∩ Ij = ∅,∀i 6= j.

Here we use I to denote the set of all such possible combinations:

I := {(I1, I2, I3) | I1 ∪ I2 ∪ I3 = I, Ii ∩ Ij = ∅, ∀i 6= j}, (|I| = 3n).

In terms of each combination (I1, I2, I3) ∈ I, we denote:

(gphS)(I1,I2,I3) :=

(q, x) ∈ Rn × Rn

∣∣∣∣∣∣
xi = 0 (Mx+ q)i > 0 if i ∈ I1

xi > 0 (Mx+ q)i = 0 if i ∈ I2

xi = 0 (Mx+ q)i = 0 if i ∈ I3

 .

(3.3.4)

We call (gphS)(I1,I2,I3) a slice of gphS.

Theorem 3.3.1. (gphS)(·,·,·) has the following properties:

(a) each index combination is unique, therefore the corresponding (gphS)(·,·,·) is mu-

tually exclusive (non-overlapping) for different index combinations, that is,

(gphS)(I1,I2,I3) ∩ (gphS)(I′1,I
′
2,I
′
3) = ∅, ∀(I1, I2, I3) 6= (I ′1, I

′
2, I
′
3);
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(b) gphS is a union of slices (gphS)(·,·,·) where the index combination runs through

all elements in I:

gphS =
⋃

(I1,I2,I3)∈I

(gphS)(I1,I2,I3); (3.3.5)

(c) (gphS)(I1,I2,I3) is a nonempty convex semi-closed polyhedral cone for all (I1, I2, I3) ∈

I. Here we adopt the definition of cone C as follows:

∀x ∈ C =⇒ λx ∈ C, ∀λ ∈ R++.

Note: such cone may not contain 0.

Proof. The first two properties and the polyhedrality in the third property can be

observed by checking the definition of gphS, (3.3.3), and gphS with the index com-

bination (3.3.4). For the conic structure and convexity mentioned in the third prop-

erty, ∀(q1, x1), (q2, x2) ∈ (gphS)(I1,I2,I3), and λ1, λ2 > 0, λ1(q1, x1) + λ2(q2, x2) ∈

(gphS)(I1,I2,I3) as elements (λ1x1 + λ2x2)i, λ1(Mx1 + q1)i + λ2(Mx2 + q2)i, for i ∈

{1, . . . , n} remain their status of being 0 or positive.

Depending on the combination above, the following proposition gives the interpreta-

tion of the index sets I1, I2, I3.

Proposition 3.3.2 ([16, Proposition 1.4.4]). For any given q ∈ domS, it can be

expressed as a nonnegative linear combination of columns in E (the unit matrix) and

−M as

q = c+ −Mc− =
∑
i:ci>0

E(·,i)c
+
i −

∑
i:ci<0

M(·,i)c
−
i . (3.3.6)

Here c+ = max{0, c} and c− = max{0,−c}. Then the corresponding solution under

such expression is x = c− with Mx + q = c+. In this case, I1 = {i | ci > 0},

I2 = {i | ci < 0}, I3 = {i | ci = 0}.
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From the proposition above and mutual exclusiveness between slices (gphS)(·,·,·), we

can see that for every (q, x) ∈ gphS, there is a unique index combination (I1, I2, I3) ∈

I such that (q, x) ∈ (gphS)(I1,I2,I3). To avoid abuse of notations, accordingly we

specify the unique index combination decided by (q, x) as

I1(q, x) :={i ∈ I|xi = 0, (Mx+ q)i > 0},

I2(q, x) :={i ∈ I|xi > 0, (Mx+ q)i = 0}, (3.3.7)

I3(q, x) :={i ∈ I|xi = 0, (Mx+ q)i = 0}.

Thus by the representation above we can see that when (q, x) is given, for any

pair (q′, x′) ∈ (gphS)(I1(q,x),I2(q,x),I3(q,x)), the index combination (I1(q′, x′), I2(q′, x′),

I3(q′, x′)) remains the same as the one of (q, x).

Remark 3.3.3. When we put the form of S as S(q) =
{
x | 0 ∈Mx+ q +NRn+(x)

}
,

the domain writes domS =
⋃
x∈Rn+

{
−Mx−NRn+(x)

}
. Given that

−NRn+(x) =

{
x′ ∈ Rn

∣∣∣∣ x′i ∈ R+, if xi = 0
x′i = 0, if xi > 0

}
,

we can have −NRn+(x) =
∑

i:ci>0E(·,i)c
+
i with x = c− taken as in (3.3.6).

With the pair (q, x) ∈ gphS fixed, we may now proceed to the representation

of NgphS(q, x). To better illustrate the structure of NgphS(q, x), we introduce a set

defined by index combinations:

W (I1, I2, I3) :=

(u∗, v∗) ∈ Rn × Rn

∣∣∣∣∣∣
(u∗i , v

∗
i ) ∈ {0} × R if i ∈ I1

(u∗i , v
∗
i ) ∈ R× {0} if i ∈ I2

(u∗i , v
∗
i ) ∈ Ω if i ∈ I3

 (3.3.8)

where Ω := (R× {0}) ∪ ({0} × R) ∪ R2
−. Note that for (q, x) ∈ gphS,

(u∗, v∗) ∈ W (I1(q, x), I2(q, x), I3(q, x))⇐⇒ (v∗,−u∗) ∈ NgphNRm+
(x,−Mx− q).

(3.3.9)

83



By calculation in [37] we have

NgphS(q, x) = {(u∗, M∗u∗ + v∗) | (u∗, v∗) ∈ W (I1(q, x), I2(q, x), I3(q, x))} (3.3.10)

From (3.3.10) we can see that the normal cone of gphS at a given pair is decided

by the associated index combination. Given the discussion above that the index

combination remains unchanged for all elements in the slice (gphS)(I1,I2,I3), in accor-

dance NgphS(q, x) stays the same for all (q, x) ∈ (gphS)(I1,I2,I3) as well. In this way,

we can use the index combination to recognize the behavior of neighboring points

(q, x)
gphS−−−→ (q̄, x̄) and the related NgphS(q, x). Next theorem shows how we can group

the elements by index combination.

Theorem 3.3.4. For (qk, xk)
gphS−→ (q̄, x̄), there is a subsequence (qki, xki) such that

the index combination I1(qki, xki), I2(qki, xki), I3(qki, xki) categorized as in (3.3.7)

remain the same for all i.

Proof. Let sequence (qk, xk) −→ (q̄, x̄) in gphS. For each k, (qk, xk) has a corre-

sponding combination of index set I1(qk, xk), I2(qk, xk), I3(qk, xk). As such combina-

tions of index set is finite, there is a subsequence (qki, xki) such that the corresponding

combination of index sets I1(qki, xki), I2(qki, xki), I3(qki, xki) remains the same. Then

the normal cone NgphS(qki, xki) remains the same as well.

As mentioned in the proof above, there are finite combinations of index sets

around (q̄, x̄). Next we illustrate what those combinations and neighboring slices

are.

Theorem 3.3.5. Given the pair (q̄, x̄) ∈ gphS, we denote the collection of all pos-

sible combinations of index sets as:

I(q̄, x̄) = {(I1, I2, I3) ∈ I | I1 ⊇ I1(q̄, x̄), I2 ⊇ I2(q̄, x̄), I3 ⊆ I3(q̄, x̄)} (3.3.11)
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The corresponding neighboring slices in gphS are finite as:

(gphS)(I1,I2,I3), ∀(I1, I2, I3) ∈ I(q̄, x̄).

Proof. For (q̄, x̄) ∈ gphS, specifically it lies on the slice (gphS)(I1(q̄,x̄),I2(q̄,x̄),I3(q̄,x̄)).

Consider (q, x) around (q̄, x̄) in gphS. By definition (3.3.7), we can see that for

I1(q, x), I2(q, x) there are open constraints (Mx + q)i > 0 and xi > 0 respectively

and for I3(q, x) there are equations: (Mx + q)i = 0 and xi = 0. Therefore for any

element (q, x)
gphS−−−→ (q̄, x̄), I1(q, x) and I2(q, x) should include I1(q̄, x̄) and I2(q̄, x̄)

as subsets respectively. For equality constraints, it can be tended through open

constraints, either (Mx + q)i > 0 or xi > 0. Then we have the indices in I3(q̄, x̄)

being distributed into either I1(q, x), I2(q, x) or remained in I3(q, x). Thus I3(q, x) ⊆

I3(q̄, x̄). Combining all these finite possible status, we arrive at (3.3.11). With

possible combinations decided, we can accordingly give neighboring slices as stated.

With index combination of neighboring slices given, we can see that for a given

pair (q̄, x̄), there are ‖I(q̄, x̄)‖ = 3‖I3(q̄,x̄)‖ neighboring slices in gphS (including the

slice where the pair lies on). For example, for (q̄, x̄) = (0, 0), I1(q̄, x̄) = ∅, I2(q̄, x̄) = ∅,

I3(q̄, x̄) = I. Then I(q̄, x̄) gives all possible combinations of I1, I2, I3: I(q̄, x̄) = I

and ‖I(q̄, x̄)‖ = ‖I‖ = 3n. The neighboring slices are all slices of gphS.

Other than the index notation we introduced above, there is another set of index

notation using α, which is introduced in [16]. Before introducing domS, we first

introduce complementary cones related to complementary matrices of M and the

index notation with α.

Definition 3.3.6 ([16, Definition 1.3.2]). Given M ∈ Rn×n and α ⊆ I = {1, . . . , n},
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we define a complementary matrix of M , CM(α) ∈ Rn×n as

CM(α)(·,i) =

{
−M(·,i), if i ∈ α,
E(·,i), if i /∈ α.

(3.3.12)

The associated cone, conv pos(CM(α)) is called the complementary cone (relative to

M) and conv pos(CM(α)) stands for the set of all nonnegative linear combinations

of columns of the matrix CM(α).

For an n × n matrix M , there are 2n complementary cones (convex polyhedral)

and the union of these cones is the domain of S, see (3.3.2). For α = ∅, CM(α) =

E. For α = I, CM(α) = −M . Therefore we can see that domS must contain

conv pos(E) = Rn
+ (i.e. the nonnegative orthant in Rn) and conv pos(−M), and

moreover is contained in conv pos(E,−M) where LCP(q,M) is feasible [16, Page

18]. Then we have:

domS =
⋃
α⊆I

conv posCM(α) (3.3.13)

and

(conv pos(E) ∪ conv pos(−M)) ⊆ domS ⊆ conv pos(E,−M). (3.3.14)

Note that in general, domS may not be convex and its convex hull is conv pos(E,−M).

Besides, the following notation for the index set α is also widely adopted on describ-

ing gphS [16, Page 646]:

(gphS)α :=

{
(q, x) ∈ Rn × Rn

∣∣∣∣ (Mx+ q)i = 0, xi ≥ 0 i ∈ α
(Mx+ q)i ≥ 0, xi = 0 i /∈ α

}
. (3.3.15)

In this way, gphS is a union of 2n closed convex polyhedral cones (gphS)α with α

running over all subsets of I. Under such representation, for a given index set α,

(gphS)α has one-to-one correspondence with conv pos(CM(α)) in domS. That is,
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for (q, x) ∈ (gphS)α, q ∈ conv posCM(α). And in reverse, for q ∈ conv posCM(α)

there always exists x such that (q, x) ∈ (gphS)α.

The difference between using α and (I1, I2, I3) is that for the case (Mx + q)i =

0, xi = 0, it is specifically categorized as I3 in the latter combination while in the

former, such i could fall in either α or α (the complement of α in I) by definition.

However, for such index notation, we can see that NgphS has different values for

(q, x) ∈ (gphS)α for a given α. More specifically, I1 ⊂ α, I2 ⊂ α.

As the assumption of the generalized Mordukhovich criterion requires the set to

be closed and convex, to employ such criterion on S relative to domS, it is natural

to ask under what condition domS is closed and convex. The following proposition

provides the rationality behind such an assumption.

Proposition 3.3.7 ([16, Proposition 3.2.1]). For an LCP(q,M), the following state-

ments are equivalent:

(a) M is a Q0-matrix.

(b) domS is convex;

(c) domS = conv pos(E,−M).

Here Q0-matrix means the type of matrices with LCP(3.3.1) being solvable whenever

feasible.

We can see that when domS is closed and convex, it is also a convex polyhe-

dral cone in Rn, generated by the columns of E and −M , which provides further

simplification to calculate its normal cone and tangent cone.

Theorem 3.3.8. Assume that domS is closed and convex. For a given combination

of index set (I1, I2, I3), any q with (q, x) ∈ gphS(I1,I2,I3) for some x has the following
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properties:

NdomS(q) =
{
w
∣∣ 〈w, v〉 = 0, v ∈

(
E(·,I1),−M(·,I2)

)
; 〈w, u〉 ≤ 0, u ∈

(
E(·,I1),−M(·,I2)

)}
,

(3.3.16)

TdomS(q) =(NdomS(q))∗ = conv pos
(
E(·,I1), −M(·,I2), ±E(·,I1), ±M(·,I2)

)
. (3.3.17)

Proof. Since domS is a polyhedral convex cone, so are TdomS(q) and NdomS(q). By

(10) in [18],

w ∈ NdomS(q)⇐⇒ q ∈ domS, w ∈ (domS)∗, w ⊥ q.

Here (domS)∗ means the polar of domS. As domS = conv pos(E,−M), by [81,

Lemma 6.45], we have

(domS)∗ =
{
w | 〈E(·,i), w〉 ≤ 0, 〈−M(·,i), w〉 ≤ 0, i = 1, . . . , n

}
.

Note that (q, x) ∈ gphS(I1,I2,I3), by representation (3.3.6) of q, q can be expressed as

a positive linear combination of E(·,i), i ∈ I1 and −M(·,j), j ∈ I2. Therefore we have

NdomS(q) = (domS)∗∩[q]⊥ =

{
w

∣∣∣∣ 〈E(·,i), w〉 ≤ 0, i ∈ I1, 〈−M(·,j), w〉 ≤ 0, j ∈ I2

〈E(·,i), w〉 = 0, i ∈ I1, 〈−M(·,j), w〉 = 0, j ∈ I2

}
.

From the polar relation between a normal cone and a tangent cone of a convex set,

we can derive:

TdomS(q) = (NdomS(q))∗ = conv pos
(
E(·,I1), −M(·,I2), ±E(·,I1), ±M(·,I2)

)
.

From the theorem above we can see that the tangent cone and the normal cone

stay the same for all (q, x) on the same slice of gphS as long as the index combination

is fixed. Note that when only q is given, without index combination, the linear

combination in (3.3.6) is not unique.
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3.3.2 Lipschitz-like property relative to domain under con-
vexity

For linear complementarity problems, the constraint qualification (3.1.3) can also be

avoided when the set we refer to is domS. The proposition below provides another

application of Theorem 3.1.12.

Proposition 3.3.9. For LCP(3.3.1) and the corresponding solution mapping S, let

(q̄, x̄) ∈ gphS. Then

D∗domSS(q̄ | x̄)(y∗) =
⋃

(q,x)∈gphS∩Bε(q̄,x̄)

{
projTdomS(q)(u

∗)
∣∣ ∃u∗ s.t.

(u∗,−y∗ −M∗u∗) ∈ W (I1(q, x), I2(q, x), I3(q, x))
}

(3.3.18)

for sufficiently small ε > 0.

Proof. Note that in Remark 3.3.3 we expressed S as

S(q) =
{
x ∈ Rn | 0 ∈Mx+ q +NRm+ (x)

}
.

Thus we can directly apply Theorem 3.1.12 to S with

D∗NRm+ (x | −Mx− q) (u∗) =
{
v∗
∣∣∣ (v∗,−u∗) ∈ NgphNRm+

(x,−Mx− q)
}
.

In view of the fact that gphS is also polyhedral, we have for sufficiently small ε > 0,

D∗domSS (q̄ | x̄) (y∗)

= lim sup

(q,x)
gphS−−−→(q̄,x̄)
y′∗→y∗

⋃
u∗∈Rn

{
projTdomS(q)(u

∗)
∣∣ y′∗ = −M∗u∗ − v∗,

(v∗,−u∗) ∈ NgphNRm+
(x,−Mx− q)

}

=
⋃

(q,x)∈gphS∩Bε(q̄,x̄)

{
projTdomS(q)(u

∗)
∣∣ y∗ = −M∗u∗ − v∗,
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(v∗,−u∗) ∈ NgphNRm+
(x,−Mx− q)

}

=
⋃

(q,x)∈gphS∩Bε(q̄,x̄)

{
projTdomS(q)(u

∗)
∣∣ y∗ = −M∗u∗ − v∗,

(u∗, v∗) ∈ W (I1(q, x), I2(q, x), I3(q, x))

}

and finally (3.3.18) by tuning the expression of y∗. Here the first equation is obtained

directly from the application of Theorem 3.1.12 and the second from the polyhedrality

of gphS. The third one can be derived via (3.3.9).

Although the expression of the projectional coderivative involves employing in-

formation of neighboring points, in next theorem we prove that under some specific

setting we can use only the information at the given point to obtain a sufficient and

necessary condition for relative Lipschitz-like property. Before presenting the condi-

tion, we introduce another set defined by index combination similar to W (I1, I2, I3):

W ′(I1, I2, I3) :=

(u∗, v∗) ∈ Rn × Rn

∣∣∣∣∣∣
(u∗i , v

∗
i ) ∈ {0} × R− if i ∈ I1

(u∗i , v
∗
i ) ∈ R− × {0} if i ∈ I2

(u∗i , v
∗
i ) ∈ R2

− if i ∈ I3

 . (3.3.19)

Theorem 3.3.10. For LCP(3.3.1) with M being a Q0-matrix, let x̄ ∈ S(q̄). The

solution mapping S has the Lipschitz-like property relative to its domain at q̄ for x̄

if and only if

∀(u∗,−M∗u∗) ∈W (I1(q̄, x̄), I2(q̄, x̄), I3(q̄, x̄))

=⇒ (u∗,−M∗u∗) ∈ W ′(I1(q̄, x̄), I2(q̄, x̄), I3(q̄, x̄)).
(3.3.20)

Equivalently, that is

∀(u∗,−M∗u∗) ∈ W (I1(q̄, x̄), I2(q̄, x̄), I3(q̄, x̄))

=⇒

{
〈u∗, E(·,i)〉 = 0, i ∈ I1(q̄, x̄), 〈u∗,M(·,j)〉 = 0, j ∈ I2(q̄, x̄)

〈u∗, E(·,i)〉 ≤ 0, i ∈ I1(q̄, x̄), 〈u∗,M(·,j)〉 ≥ 0, j ∈ I2(q̄, x̄).

(3.3.21)
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Proof. Given Theorem 3.3.7, domS here is a convex polyhedral cone as M is a Q0-

matrix. By applying the criterion D∗domSS(q̄ | x̄)(0) = {0} of relative Lipschitz-like

property, it remains to examine the behavior of NgphS(q, x) around (q̄, x̄) with first

element projected onto the tangent cones TdomS(q).

We begin our proof by showing the equivalence between D∗domSS(q̄ | x̄)(0) = {0}

and

∀(I1, I2, I3) ∈ I(q̄, x̄), (u∗,−M∗u∗) ∈W (I1, I2, I3) =⇒ (u∗,−M∗u∗) ∈W ′(I1, I2, I3).

(3.3.22)

For a given pair (q̄, x̄) ∈ gphS, the number of neighboring slices are finite (see

Theorem 3.3.5) and on each slice, NgphS, NdomS and TdomS remain the same. First,

given (I1, I2, I3) ∈ I, we introduce two notations as:

N(I1, I2, I3) :=

{
w

∣∣∣∣∣ 〈w, v〉 = 0, v ∈
(
E(·,I1),−M(·,I2)

)
〈w, u〉 ≤ 0, u ∈

(
E(·,I1),−M(·,I2)

) } , (3.3.23)

T (I1, I2, I3) := conv pos
(
E(·,I1),−M(·,I2),±E(·,I1),±M(·,I2)

)
. (3.3.24)

From expressions (3.3.16) and (3.3.17), we can see that

∀(q, x) ∈ (gphS)(I1,I2,I3) : NdomS(q) = N(I1, I2, I3), TdomS(q) = T (I1, I2, I3).

Therefore by Proposition 3.3.9 and Theorem 3.3.5 we have

lim sup
(q,x)

gphS
−−−−→(q̄,x̄)

projTdomS(q)×RmNgphS(q, x)

=
⋃

(q, x) ∈ (gphS)(I1,I2,I3)

(I1, I2, I3) ∈ I(q̄, x̄)

projTdomS(q)×RmNgphS(q, x) (3.3.25)

=
⋃

(I1,I2,I3)∈I(q̄,x̄)

{
(w∗,M∗u∗ + v∗)

∣∣∣∣ w∗ = projT (I1,I2,I3)(u
∗), (u∗, v∗) ∈ W (I1, I2, I3)

}
(3.3.26)
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and therefore

D∗domSS(q̄ | x̄)(y∗) =
⋃

(I1,I2,I3)∈I(q̄,x̄)

{
projT (I1,I2,I3)(u

∗) | ∃u∗ s.t.

(u∗,−y∗ −M∗u∗) ∈ W (I1, I2, I3)
}
.

In this way, the criterion is equivalent to checking if y∗ = 0 generates projT (I1,I2,I3)(u
∗) =

0 for every index combination (I1, I2, I3) ∈ I(q̄, x̄). For projT (I1,I2,I3)(u
∗) = 0, it

is equivalent that u∗ ∈ (T (I1, I2, I3))∗ = N(I1, I2, I3) considering the convexity of

T (I1, I2, I3). Thus it becomes:

∀(I1, I2, I3) ∈ I(q̄, x̄) : (u∗,−M∗u∗) ∈ W (I1, I2, I3) =⇒ u∗ ∈ N(I1, I2, I3).

As 〈u∗, E(·,i)〉 = u∗i and 〈u∗,−M(·,i)〉 = −(M∗u∗)i for i = 1, . . . , n , we can see that

{
〈u∗, E(·,i)〉 = 0, i ∈ I1, 〈u∗,M(·,j)〉 = 0, j ∈ I2

〈u∗, E(·,i)〉 ≤ 0, i ∈ I1, 〈u∗,M(·,j)〉 ≥ 0, j ∈ I2

⇐⇒


(u∗i ,−(M∗u∗)i) ∈ {0} × R−, i ∈ I1

(u∗i ,−(M∗u∗)i) ∈ R− × {0}, i ∈ I2

(u∗i ,−(M∗u∗)i) ∈ R2
−, i ∈ I3

,

(3.3.27)

which means that u∗ ∈ N(I1, I2, I3) is equivalent to (u∗,−M∗u∗) ∈ W ′(I1, I2, I3)

defined as (3.3.19). Then we have proved (3.3.22).

It remains to prove that (3.3.22) can be replaced by (3.3.20). It can be easily

observed that (I1(q̄, x̄), I2(q̄, x̄), I3(q̄, x̄)) ∈ I(q̄, x̄) and therefore (3.3.22) =⇒ (3.3.20)

naturally. Next we prove (3.3.20) =⇒ (3.3.22). For ∀(I1, I2, I3) ∈ I(q̄, x̄), by (3.3.8)

and (3.3.11) we have

W (I1, I2, I3) ⊆ W (I1(q̄, x̄), I2(q̄, x̄), I3(q̄, x̄)) .

Therefore when (3.3.20) holds, we have

(u∗,−M∗u∗) ∈ W (I1, I2, I3) =⇒ (u∗,−M∗u∗) ∈ W ′(I1(q̄, x̄), I2(q̄, x̄), I3(q̄, x̄).
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Given I3 ⊆ I3(q̄, x̄), we have (u∗i ,−(M∗u∗)i) ∈ R2
− for i ∈ I3 naturally. Be-

sides, (u∗,−M∗u∗) ∈ W (I1, I2, I3) gives (u∗i ,−(M∗u∗)i) ∈ {0} × R− for i ∈ I1 and

(u∗i ,−(M∗u∗)i) ∈ R− × {0} for i ∈ I2. As the last condition (3.3.21) can be derived

via (3.3.27), the proof is completed.

Remark 3.3.11. When q̄ ∈ int domS, NdomS(q̄) = {0}, the criterion above can be

reduced to

(u∗,−M∗u∗) ∈ W (I1(q̄, x̄), I2(q̄, x̄), I3(q̄, x̄)) =⇒ u∗ = 0,

which is equivalent to the sufficient and necessary condition for Lipschitz-like property

of S in [38] when q̄ ∈ int domS.

3.3.3 The graphical modulus

By (3.3.10), for a given pair (q̄, x̄) ∈ gphS,

lipS(q̄, x̄) = sup
(u∗,v∗)∈W (I1(q̄,x̄),I2(q̄,x̄),I3(q̄,x̄))

‖u∗‖
‖M∗u∗ + v∗‖

. (3.3.28)

From expression (3.3.28) we can see whenM∗u∗+v∗ = 0 it is required that u∗ = 0 as

otherwise lipS becomes infinite, which is equivalent to the criterion of Lipschitz-like

property of S at q̄ for x̄ given by [38]:

(u∗,−M∗u∗) ∈ W (I1(q̄, x̄), I2(q̄, x̄), I3(q̄, x̄)) =⇒ u∗ = 0. (3.3.29)

Here we further simplify the modulus by getting rid of v∗.

Theorem 3.3.12. For (q̄, x̄) ∈ gphS defined as in (3.3.3),

lipS(q̄, x̄) = sup
(I1,I2,I3)∈I(q̄,x̄)

sup
u∗∈U(I1,I2,I3)

‖u∗‖∥∥∥∥∥ M∗
(·,I2)u

∗(
−M∗

(·,I3)u
∗
)

+

∥∥∥∥∥
. (3.3.30)
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where for a vector y, (y)+ means ((y)+)i := (yi)+ = max{0, yi} and

U(I1, I2, I3) =

u∗ ∈ Rn

∣∣∣∣∣∣
u∗i = 0, i ∈ I1

u∗i ∈ R, i ∈ I2

u∗i ∈ R−, i ∈ I3

 . (3.3.31)

Proof. The supremum in (3.3.28) is equivalent to first maximizing the fractional in

(3.3.28) relative to v∗ and then relative to u∗. Therefore we begin by minimizing

‖M∗u∗ + v∗‖ element-wisely, i.e., min
v∗i
|(M∗u∗)i + v∗i | for each i ∈ I. Note that

(M∗u∗)i = M∗
(·,i)u

∗. Moreover, we have:

1. i ∈ I1(q̄, x̄) : (u∗i , v
∗
i ) ∈ {0}×R. min

v∗i ∈R
|M∗

(·,i)u
∗+v∗i | = 0 by taking v∗i = −M∗

(·,i)u
∗.

2. i ∈ I2(q̄, x̄) : (u∗i , v
∗
i ) ∈ R× {0}. min

v∗i =0
|M∗

(·,i)u
∗ + v∗i | = |M∗

(·,i)u
∗| .

3. i ∈ I3(q̄, x̄) : (u∗i , v
∗
i ) ∈ Ω.

Next we define the following index subset of I3 considering the possibilities of

the values of u∗,v∗ and M∗u∗ :

I31 := {i ∈ I3(q̄, x̄) | (u∗i , v
∗
i ) ∈ {0} × R} ;

I32 := {i ∈ I3(q̄, x̄) | (u∗i , v
∗
i ) ∈ R× {0}} ;

I33 :=
{
i ∈ I3(q̄, x̄) | (u∗i , v

∗
i ) ∈ R2

−
}

;

I331 :=
{
i ∈ I33 | M∗

(·,i)u
∗ ∈ R+

}
;

I332 :=
{
i ∈ I33 | M∗

(·,i)u
∗ ∈ R−

}
.

Similarly it can be divided non-overlappingly as

(a) i ∈ I31 where (u∗i , v
∗
i ) ∈ {0} × R, same as in i ∈ I1.

(b) i ∈ I32 where (u∗i , v
∗
i ) ∈ R× {0}, same as in i ∈ I2.
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(c) i ∈ I33 where (u∗i , v
∗
i ) ∈ R2

−. Here further dividing is required depending

on the value of M∗
(·,i)u

∗.

i. i ∈ I331: M∗
(·,i)u

∗ ∈ R+. Then min
v∗i ∈R−

|M∗
(·,i)u

∗ + v∗i | = 0 by taking

v∗i = −M∗
(·,i)u

∗.

ii. i ∈ I332: M∗
(·,i)u

∗ ∈ R−. Then by taking v∗i = 0,

min
v∗i ∈R−

|M∗
(·,i)u

∗ + v∗i | = |M∗
(·,i)u

∗| = −M∗
(·,i)u

∗.

Combining these two cases, we can see that for i ∈ I33,

min
v∗i ∈R−

|M∗
(·,i)u

∗ + v∗i | =
(
−M∗

(·,i)u
∗)

+
.

For the first two cases (a) and (b), they are covered in I1 and I2 respec-

tively when we consider all possible combinations (I1, I2, I3) ∈ I(q̄, x̄) defined

in (3.3.11). To avoid abuse of index notation, we take supremum over all these

combinations.

Remark 3.3.13. From the form of graphical modulus (3.3.30) we can also see that

the fixed point condition (3.3.20) is equivalent to neighboring point condition (3.3.22).

Next we consider the graphical modulus lipdomS S based on the sufficient and

necessary condition (3.3.21). Under the setting that domS is convex, by (3.3.26) we

can see that

lipdomS(q̄, x̄) = sup
(u∗,v∗)∈W (I1(q̄,x̄),I2(q̄,x̄),I3(q̄,x̄))

d(u∗, NdomS(q̄))

‖M∗u∗ + v∗‖

= sup
(I1,I2,I3)∈I(q̄,x̄)

sup
(u∗,v∗)∈W (I1,I2,I3)

d(u∗, N(I1, I2, I3))

‖M∗u∗ + v∗‖
.

(3.3.32)

Next we give further simplifications according to Theorem 3.3.12.
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Corollary 3.3.14. For (q̄, x̄) ∈ gphS defined as in (3.3.3),

lipdomS(q̄, x̄) = sup
(I1,I2,I3)∈I(q̄,x̄)

sup
u∗∈U(I1,I2,I3)

d(u∗, N(I1, I2, I3))∥∥∥∥∥ M∗
(·,I2)u

∗(
−M∗

(·,I3)u
∗
)

+

∥∥∥∥∥
, (3.3.33)

where U(I1, I2, I3) and N(I1, I2, I3) are defined as in (3.3.31) and (3.3.23) respec-

tively.

Proof. The step minimizing ‖M∗u∗ + v∗‖ relative to v∗ is already given in Theorem

3.3.12 for calculating lipS above.

3.4 Affine variational inequalities

Next we mainly focus on the affine variational inequality:

0 ∈ q +Mx+NC(x)

where C is a polyhedral convex set and M ∈ Rn×n. The solution mapping writes:

S(q) = {x | 0 ∈ q +Mx+NC(x)} . (3.4.1)

For a closed set Q ⊆ domS, the graph of the multifunction S restricted on Q is

gphS|Q = gphS ∩ (Q× Rn) = {(q, x) ∈ Q× Rn | 0 ∈ q +Mx+NC(x)} . (3.4.2)

From now on, we consider the case where Q is a polyhedral set. In this way, we may

express D∗QS in the form of union rather than limsup.

3.4.1 The upper estimate of the projectional coderivative

Proposition 3.4.1. For AVI(3.4.1) and the corresponding solution mapping S, con-

sider a union of polyhedral sets Q ⊆ domS which is also closed. Let (q̄, x̄) ∈ gphS|Q.

If the following constraint qualification holds:

∀u∗ ∈ NQ(q̄), (M∗u∗, u∗) ∈ NgphNC (x̄,−Mx̄− q̄) =⇒ u∗ = 0, (3.4.3)
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then

D∗QS(q̄ | x̄)(y∗) ⊆
⋃

(q,x)∈gphS|Q∩Bε(q̄,x̄)

{
projTQ(q)(−u∗ + w∗)

∣∣∣ w∗ ∈ NQ(q),

∃u∗ s.t. (M∗u∗ − y∗, u∗) ∈ NgphNC (x,−Mx− q)
} (3.4.4)

for sufficiently small ε > 0.

Proof. Apply Theorem 3.1.2 to S. Then the constraint qualification (3.1.3) becomes

(0, 0) = (u∗,M∗u∗)+(w∗, v∗) with w∗ ∈ NQ(q̄), v∗ ∈ D∗NC(x̄ | −Mx̄−q̄)(u∗) =⇒ u∗ = 0,

which is equivalent to

−u∗ ∈ NQ(q̄), −M∗u∗ ∈ D∗NC(x̄ | −Mx̄− q̄)(u∗) =⇒ u∗ = 0.

By tuning the direction of u∗, we arrive at (3.4.3). And the upper estimate (3.1.4)

can be put as

D∗QS (q̄ | x̄) (y∗) ⊆ lim sup

(q,x)
gphS−−−→(q̄,x̄)
y′∗→y∗

⋃
u∗∈Rn

{
projTQ(q)(u

∗ + w∗)
∣∣∣ y′∗ = −M∗u∗ − v∗,

v∗ ∈ D∗NC(x | −Mx− q)(u∗), w∗ ∈ NQ(q)

}

=
⋃

(q,x)∈gphS|Q∩Bε(q̄,x̄)

{
projTQ(q)(u

∗ + w∗)
∣∣∣ y∗ = −M∗u∗ − v∗,

v∗ ∈ D∗NC(x | −Mx− q)(u∗), w∗ ∈ NQ(q)

}

for sufficiently small ε > 0. Here the second equation comes from the polyhedrality

of both gphS|Q and Q. By tuning the expression of y∗ and direction of u∗, we finally

arrive at (3.4.4).
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Remark 3.4.2. When Q is taken as domS, we can apply Theorem 3.1.12 instead and

the constraint qualification (3.4.3) can be avoided and the inclusion (3.4.4) becomes

an equation.

Given the upper estimate (3.4.4), we can give a simple sufficient condition for the

Lipschitz-like property of S relative to Q when Q is in further convex.

Corollary 3.4.3. For AVI(3.4.1) and the corresponding solution mapping S, con-

sider a closed set Q ⊆ domS that is also convex polyhedral. Let (q̄, x̄) ∈ gphS|Q

with the constraint qualification (3.4.3) being satisfied. If for every (q, x) ∈ gphS|Q∩

Bε(q̄, x̄) with sufficiently small ε > 0,

(M∗u∗, u∗) ∈ NgphNC (x,−Mx− q) =⇒ u∗ ∈ −NQ(q), (3.4.5)

then S has the Lipschitz-like property relative to Q at q̄ for x̄.

Proof. When Q is in further convex, we may apply the generalized Mordukhovich

criterion D∗QS(q̄ | x̄)(0) = {0}. It becomes sufficient to verify such criterion on the

upper estimate (3.4.4) and

D∗QS(q̄ | x̄)(0) ⊆
⋃

(q,x)∈gphS|Q∩Bε(q̄,x̄)

{
projTQ(q)(−u∗ + w∗)

∣∣∣ w∗ ∈ NQ(q),

∃u∗ s.t. (M∗u∗, u∗) ∈ NgphNC (x,−Mx− q)
}
.

It is equivalent to examining if projTQ(q)(−u∗ + w∗) = 0 for all (q, x) ∈ gphS|Q ∩

Bε(q̄, x̄). As TQ(q) is convex, projTQ(q)(−u∗ + w∗) = 0 is equivalent to −u∗ ∈ NQ(q)

when w∗ ∈ NQ(q) is already given. Thus we arrive at the sufficient condition (3.4.5).

In this sufficient condition, we can see that NgphNC (x,−Mx− q) is used. In the

coming subsection, we further exploit the structure of this normal cone and will give

a more detailed form of the sufficient condition based on the critical face condition

introduced in [18].
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3.4.2 Generalized critical face condition

Before giving the generalized critical face condition, we first introduce some widely

adopted tools in study of polyhedral convex sets.

Lemma 3.4.4 ([80, Corollaries 16.4.2, 19.2.2, 19.3.2]). For two closed polyhedral

convex cones K1, K2 ∈ Rn, K∗1 , K∗2 , K1 +K2 are all polyhedral convex cones. Besides,

(K1 ∩K2)∗ = K∗1 +K∗2 , (K1 +K2)∗ = K∗1 ∩K∗2 .

Proposition 3.4.5. Let C be a polyhedral set in Rn. For x ∈ C and v ∈ NC(x)

consider the critical cone defined as K(x, v) := TC(x) ∩ [v]⊥. Then K(x, v) is a

polyhedral convex cone and the polar of it is (K(x, v))∗ = NC(x) + [v].

Proof. As C is a polyhedral set, NC(x) and TC(x) are polyhedral convex cones and

NC(x) = (TC(x))∗, vice versa. By polar relation of polyhedral convex cones, we can

see that (K(x, v))∗ = conv((TC(x))∗ ∪ [v]) = conv(NC(x) ∪ [v]). Next we will prove

conv(NC(x) ∪ [v]) = NC(x) + [v]. It is easy to see that both of these two sets are

cones.

AsNC(x) is a polyhedral convex cone, suppose it is generated by vectors a1, . . . , am,

i.e., NC(x) = conv pos{a1, . . . , am}. With v ∈ NC(x), there are λi ≥ 0, i = 1, . . . ,m

such that v =
∑m

i=1 λiai. Let w ∈ conv(NC(x) ∪ [v]). Then there exist λ′i ≥ 0, i =

1, . . . ,m and λ′m+1 ∈ R, τ ∈ [0, 1] such that w = τ
∑m

i=1 λ
′
iai + (1 − τ)λ′m+1v. As

τ
∑m

i=1 λ
′
iai ∈ NC(x), (1− τ)λ′m+1v ∈ [v], we have w ∈ NC(x) + [v].

Let w ∈ NC(x)+[v]. Then there exist u ∈ NC(x) and τ ∈ R such that w = u+τv.

Suppose u =
∑m

i=1 λ
′
iai with λ′i ≥ 0, i = 1, . . . ,m. Let τ ′ =

∑m
i=1 λ

′
i + |τ |. By conic

structure of NC(x) + [v], we have τ ′−1w ∈ NC(x) + [v] as well. We can write

w

τ ′
=

m∑
i=1

λ′i
τ ′
ai +

τ

τ ′
v,
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which is a convex combination of elements in NC(x) and [v]. Then the proof is

completed.

Below is an important result for introducing the face condition, which is given in

[18]. The proof can be found in [19].

Lemma 3.4.6 ([18, Reduction Lemma]). For any (x, v) ∈ gphNC, there is a neigh-

borhood U of (0, 0) in Rn × Rn such that for (x′, v′) ∈ U one has

v + v′ ∈ NC(x+ x′)⇐⇒ v′ ∈ NK(x,v)(x
′). (3.4.6)

Here the critical cone K(x, v) = TC(x) ∩ [v]⊥ with v ∈ NC(x). In particular,

TgphNC (x, v) = gphNK(x,v).

Lemma 3.4.7. From the proof of [18, Theorem 2] we can see that for any pair

(x, v) ∈ gphNC,

NgphNC (x, v) = {(F1 − F2)∗ × (F1 − F2) | F2 ⊂ F1 ∈ F(K(x, v))} (3.4.7)

where F(K(x, v)) is the collection of all closed faces of the polyhedral convex cone

K(x, v) in the form of F = K(x, v) ∩ [v∗]⊥, where v∗ ∈ (K(x, v))∗.

In [27] they give an expression of directional limiting normal cone of gphNC (see

also (3.1.18) for its definition).

Lemma 3.4.8 ([27, Theorem 2.12]). Given (x, v) ∈ gphNC and (x′, v′) ∈ TgphNC (x, v),

NgphNC ((x, v); (x′, v′)) := lim sup
t↘ 0

(x̃, ṽ)→ (x′, v′)

N̂gphNC ((x, v) + t(x̃, ṽ))

=
{

(F1 − F2)∗ × (F1 − F2) | x′ ∈ F2 ⊂ F1 ⊂ [v′]⊥, F1, F2 ∈ F(K(x, v))
}

Considering the conic structure of gphNC , we have the following result.
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Corollary 3.4.9. For a given pair (x, v) ∈ gphNC and (x′, v′) ∈ TgphNC (x, v) suffi-

ciently near to (0, 0),

NgphNC (x+ x′, v + v′) = NgphNC ((x, v); (x′, v′)) . (3.4.8)

Proof. As (x′, v′) ∈ TgphNC (x, v) is sufficiently near to (0, 0) and gphNC has conic

structure,

NgphNC (x+ x′, v + v′) = lim sup
(x′′,v′′)−→(x′,v′)

N̂gphNC ((x, v) + (x′′, v′′))

= lim sup
t↘0

(x̃,ṽ)→(x′,v′)

N̂gphNC ((x, v) + t(x̃, ṽ)) .

Then we can give another version of sufficient condition of Lipschitz-like property

relative to the set Q.

Proposition 3.4.10. For (q̄, x̄) ∈ gphS|Q defined as (3.4.2) , suppose the constraint

qualification (3.4.3) holds for all (q, x) ∈ gphS|Q sufficiently near to (q̄, x̄). If in

addition for q′ = q − q̄, x′ = x− x̄,

∀(M∗u∗, u∗) ∈ (F1 − F2)∗ × (F1 − F2) =⇒ u∗ ∈ −NQ(q̄) ∩ [q′]⊥, (3.4.9)

holds for all closed faces F1, F2 ∈ F(K(x̄, v̄)) with x′ ∈ F2 ⊂ F1 ⊂ [−Mx′ − q′]⊥,

then S has Lipschitz-like property relative to Q at q̄ for x̄. Here v̄ = −Mx̄− q̄. The

condition becomes necessary when gphNC is regular at (x̄, v̄).

Proof. For any (q, x) ∈ gphS|Q sufficiently near to (q̄, x̄), (q − q̄, x − x̄) = (q′, x′) ∈

TgphS|Q(q̄, x̄) is sufficiently near to (0, 0). By [81, Theorems 6.42, Exercise 6.7],

TgphS|Q(q̄, x̄) ⊆ (TQ(q̄)× Rn) ∩ TgphS(q̄, x̄)

= {(q′, x′) | q′ ∈ TQ(q̄), (x′,−Mx′ − q′) ∈ TgphNC (x̄, v̄)} .
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The inclusion becomes an equation when gphNC is regular at (x̄, v̄). Therefore

q′ ∈ TQ(q̄) and (x′,−Mx′ − q′) ∈ TgphNC (x̄, v̄). By polyhedrality of Q,

NQ(q̄ + q′) = NQ(q̄) ∩ [q′]⊥.

By Corollary 3.4.9,

NgphNC (x,−Mx− q) =
{

(F1 − F2)∗ × (F1 − F2) | x′ ∈ F2 ⊂ F1 ⊂ [v′]⊥,

F1, F2 ∈ F(K(x̄, v̄))
}

With NgphNC (x, v) specified in this way, (3.4.9) can be derived. Again, when gphNC

is regular at (x̄, v̄), the condition becomes necessary.

By further simplifying the condition, we arrive at the following condition involving

only the reference point.

Theorem 3.4.11. For (q̄, x̄) ∈ gphS|Q defined as (3.4.2), suppose the constraint

qualification holds:

u∗ ∈ NQ(q̄), (M∗u∗, u∗) ∈ (F1 − F2)∗ × (F1 − F2) =⇒ u∗ = 0, (3.4.10)

where F1, F2 are closed faces with F2 ⊂ F1 ∈ F(K(x̄, v̄)) and v̄ = −Mx̄ − q̄. If for

such F1, F2,

∀(M∗u∗, u∗) ∈ (F1 − F2)∗ × (F1 − F2) =⇒ u∗ ∈ −NQ(q̄), (3.4.11)

then S has Lipschitz-like property relative to Q at q̄ for x̄. The condition becomes

necessary when gphNC is regular at (x̄, v̄).

Proof. For this statement it remains to show that the constraint qualification and

the sufficient condition holding at the reference point indicates the conditions for any

(q, x) ∈ gphS|Q sufficiently near to (q̄, x̄). Suppose (3.4.10) and (3.4.11) holds. Let

102



q′, x′ denote q− q̄, x− x̄ respectively. Then (q′, x′) ∈ TgphS|Q(q̄, x̄) is sufficiently near

(0, 0). For F̃1, F̃2 ∈ K(x̄, v̄) with x′ ∈ F̃2 ⊂ F̃1 ⊂ [−Mx′ − q′]⊥,

tx′ ∈ F̃2 ⊂ F̃1, ∀t ≥ 0

by conic structure of F̃1, F̃2. Thus we have

[x′] ⊂ F̃1 − F̃2 ⊂ [−Mx′ − q′]⊥

Note that
(
[−Mx′ − q′]⊥

)∗
= [−Mx′ − q′] and [x′]∗ = [x′]⊥. Besides, F̃1 − F̃2 is still

a convex polyhedral cone (see Lemma 3.4.4) and by polar relation we have

[−Mx′ − q′] ⊂
(
F̃1 − F̃2

)∗
⊂ [x′]⊥.

Together that is

(M∗u∗, u∗) ∈
(
F̃1 − F̃2

)∗
×
(
F̃1 − F̃2

)
⊂ [x′]⊥ × [−Mx′ − q′]⊥.

From M∗u∗ ∈ (F̃1 − F̃2)∗ ⊂ [x′]⊥, we have 〈u∗,Mx′〉 = 〈M∗u∗, x′〉 = 0. From

u∗ ∈ F̃1 − F̃2 ⊂ [−Mx′ − q′]⊥, 〈u∗,−q′〉 = 〈u∗,−Mx′ − q′〉 = 0. Therefore, u∗ ∈ [q′]⊥

and (3.4.9) holds automatically when (3.4.11) is satisfied. Moreover, for u∗ ∈ NQ(q̄+

q′) = NQ(q̄) ∩ [q′]⊥ and the choice of F̃1, F̃2 is also covered in F1, F2, the constraint

qualification can be replaced by (3.4.10).

Consider the polar relation in the expressions (3.4.7) and (3.4.11), we give the

following lemma to further simplify the condition.

Lemma 3.4.12 ([80, Corollary 16.3.2]). Let A be a linear transformation from Rn

to Rm. For any convex set D in Rn, one has

(AD)∗ = (A∗)−1D∗. (3.4.12)

Next we give another illustration of the generalized criterion:
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Theorem 3.4.13. For (q̄, x̄) ∈ gphS|Q defined as (3.4.2), assume for all closed faces

F2 ⊂ F1 in F(K(x̄, v̄)) (where v̄ = −Mx̄− q̄) the constraint qualification holds:

NQ(q̄) ∩ (F1 − F2) ∩ (M(F1 − F2))∗ = {0}. (3.4.13)

If

(F1 − F2) ∩ (M(F1 − F2))∗ ⊆ −NQ(q̄), (3.4.14)

then S has the Lipschitz-like property relative to Q at q̄ for x̄. The condition becomes

necessary when gphNC is regular at (x̄, v̄).

Proof. For any possible combinations of F1 − F2 with F2 ⊂ F1 ∈ F(K(x̄, v̄)), F1, F2

are both convex cones and so is F1−F2. By (3.4.12),M∗u∗ ∈ (F1−F2)∗ is equivalent

to u∗ ∈ (M(F1 − F2))∗. Then (3.4.13) and (3.4.14) can be derived from (3.4.10) and

(3.4.11) respectively.
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Chapter 4

Lipschitz-like Property for Linear
Constraint Systems

In this chapter, we go back to the Lipschitz-like property and mainly focus on the

linear constraint system with an explicit set constraint.

4.1 Linear constraint systems

4.1.1 Lipschitz-like property of linear constraint systems

In [38], they considered a linear constraint system under full perturbation:

S(A, b) = {x ∈ Rn | Ax+ b ∈ K} (4.1.1)

where K ⊆ Rm is a closed set, A ∈ Rm×n and b ∈ Rm. Here we present their result

for reference:

Lemma 4.1.1 ([38, Theorem 3.3]). For the mapping S defined in (4.1.1) and (Ā, b̄, x̄) ∈

gphS,

D∗S
(
(Ā, b̄) | x̄

)
(x∗) =

{
({(v∗i x̄j)i,j} , v∗) | v∗ ∈ NK(Āx̄+ b̄), with x∗ = −Ā∗v∗

}
.

(4.1.2)

Here {(v∗i x̄j)i,j} stands for the matrix whose (i, j)-th entry is (v∗i x̄j). S has the

Lipschitz-like property at (Ā, b̄) for x̄ if and only if

ker Ā∗ ∩NK(Āx̄+ b̄) = {0}. (4.1.3)
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From the representation of coderivative of S (4.1.2), we can also have the expres-

sions of coderivatives for several similar set mappings with different parameters: one

with right-hand side perturbation and the other with left-hand side perturbation.

S ′(b) ={x ∈ Rn | Āx+ b ∈ K} (4.1.4)

S ′′(A) ={x ∈ Rn | Ax+ b̄ ∈ K}.

Although a full perturbation is considered in [38], we will prove in the next theorem

that from the perspective of the Lipschitz-like property, right-hand side perturbation

is actually equivalent to full perturbation. And both of these two types of pertur-

bation can indicate the Lipschitz-like property of the system under left-hand side

perturbation only. Such result can be obtained both by definition and coderivatives.

We use the latter method in the following proof.

Theorem 4.1.2. For (Ā, b̄, x̄) ∈ gphS and the following statements,

(a) ker Ā∗ ∩NK(Āx̄+ b̄) = {0}.

(b) S is Lipschitz-like at (Ā, b̄) for x̄.

(c) S ′ is Lipschitz-like at b̄ for x̄.

(d) S ′′ is Lipschitz-like at Ā for x̄.

(a) ⇐⇒ (b) ⇐⇒ (c) =⇒ (d). If in addition K is regular at Āx̄ + b̄ and x̄ 6= 0, (d)

=⇒ (a) and all the statements are equivalent.

Proof. The first equivalence (a) ⇐⇒ (b) comes from Lemma 4.1.1 . Similar to the

proof of [38, Theorem 3.3], let G(A, b, x) = −Ax − b and M(x) = K. We can see

that ∇bG(A, b, x) = −E has full rank m and therefore we can write

D∗S ′
(
b̄ | x̄

)
(x∗) =

{
v∗| v∗ ∈ NK(Āx̄+ b̄), with x∗ = −Ā∗v∗

}
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directly according to (4.1.2) and Lemma 3.1.1. Thus the condition (4.1.3) is also

a sufficient and necessary condition for the Lipschitz-like property of S ′ at b̄ for x̄.

Therefore we have the second equivalence.

Next we fix b = b̄ inG(A, b, x), by calculation in [38],∇AG(A, b̄, x)∗v∗ = {−(v∗i xj)i,j}.

For M(x) = K and any v ∈ K,

D∗M(x | v)(v∗) =

{
{0}, if v∗ ∈ −NK(v)

∅, if v∗ /∈ −NK(v)
.

Together we have(
∇AG(Ā, b̄, x̄),∇xG(Ā, b̄, x̄)

)∗
v∗ +D∗M(x̄ | Ax̄+ b̄)(v∗)

=
{(
−{(v∗i x̄j)i,j} ,−Ā∗v∗

) ∣∣ v∗ ∈ −NK(Āx̄+ b̄)
}

=
{(
{(v∗i x̄j)i,j} , Ā∗v∗

) ∣∣ v∗ ∈ NK(Āx̄+ b̄)
}
.

Then by Lemma 3.1.1, if the constraint qualification holds:

(0, 0) ∈
{(
{(v∗i x̄j)i,j} , Ā∗v∗

) ∣∣ v∗ ∈ NK(Āx̄+ b̄)
}

=⇒ v∗ = 0, (4.1.5)

then

D∗S ′′(Ā | x̄)(x∗) ⊆
{
{(v∗i x̄j)i,j} | v∗ ∈ NK(Āx̄+ b̄), with x∗ = −Ā∗v∗

}
. (4.1.6)

When the condition (4.1.3) holds, the constraint qualification (4.1.5) holds automat-

ically and D∗S ′′(Ā | x̄)(0) ⊆ {0} as v∗ = 0 indicates (v∗i x̄j)i,j = 0, ∀i, j. Therefore,

the direction (a) =⇒ (d) is completed by the Mordukhovich criterion. When x̄ 6= 0,

(v∗i x̄j)i,j = 0 for any i, j is equivalent to v∗ = 0 and therefore the constraint qualifica-

tion (4.1.5) holds automatically. If in addition K is regular at Āx̄+ b̄, the inclusion

(4.1.6) turns into an equation and by the Mordukhovich criterion, S ′′ is Lipschitz-like

at Ā for x̄ if and only if

Ā∗v∗ = 0, v∗ ∈ NK(Āx̄+ b̄) =⇒ (v∗i x̄j)i,j = 0, ∀i, j.

Therefore (d) =⇒ (a).
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Given the equivalence on the Lipschitz-like property of the linear constraint sys-

tem under right-hand side perturbation and full perturbation introduced in Theorem

4.1.2, to better analyze the problem we next consider the one with right-hand side

perturbation only, (4.1.4) with Ā given. We know that the Lipschitz-like property

suggests implicitly that the referred parameter b̄ should lie in the interior of the do-

main of S ′. Therefore the criterion fails when b̄ falls on the boundary of domS ′. Next

we give more illustrations of this criterion and further the Lipschitz-like stability of

S under different settings.

In this section we assume K to be a convex set. From Proposition 3.2.2 in the

last chapter, we notice that NdomS′(b̄) is exactly the set employed in the criterion

Theorem 4.1.2, (a). Then we can formulate the characterizations of Lipschitz-like

property of S ′ as follows.

Theorem 4.1.3. For the set mapping S ′ defined as in (4.1.4) with K being convex

and a pair (b̄, x̄) ∈ gphS ′, the followings are equivalent:

(a) S ′ is Lipschitz-like at b̄ for x̄;

(b) ker Ā∗ ∩NK(v̄) = {0};

(c) NdomS′(b̄) = {0};

(d) TdomS′(b̄) = Rm;

(e) 0 ∈ int
(
TK(v̄) + rg Ā

)
;

(f) b̄ ∈ int domS ′ = int
(
K + rg Ā

)
, i.e., b̄ is regular (see [76, Lemma 3]).

Proof. The first equivalence (a) ⇐⇒ (b) comes from the criterion in [38, Theorem

3.3] and subsequently the characterization (c) from (3.2.6) and (d) from polar rela-

tions between tangent cones and normal cones. (e) is an equivalent description of
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TdomS′(b̄) = Rm and the last one (f) is equivalent to (c) by characterization of interior

points via normal cones.

Remark 4.1.4. One shall compare the conditions here with [38, Theorem 4.1], where

K is assumed to be a closed convex cone. In their condition (f): rg Ā+cone(K−v̄) =

Rm is a particular expression of condition (d): TdomS′(b̄) = Rm here. A similar

statement of (f) is also given in [64, Corollary 4.2] which requires 0 ∈ int domS ′ but

K being a multifunction with convex graph.

Remark 4.1.5. In [76] with K being a convex polyhedral cone, Robinson shows that

when the solution set S ′(b) is bounded, it has the upper Lipschitz continuity, i.e.,

calmness, involving both left-hand side and right-hand side perturbation. See [76,

Lemma 2, Lemma 3]. Later in [78], Robinson gave the result that any polyhedral

multifunction is locally upper Lipschitzian.

4.1.2 Linear constraint system with a set constraint

Next we consider an extension of (4.1.1): adding a set constraint to the linear con-

straint system: x ∈ X ⊆ Rn. The model becomes:

S(A, b) = {x ∈ X | Ax+ b ∈ K} (4.1.7)

where K ⊆ Rm, X ∈ Rn are two closed sets, A ∈ Rm×n and b ∈ Rm. Similar to

Lemma 4.1.1, we first give the expression of the coderivative D∗S and the sufficient

and necessary condition for the Lipschitz-like property of S.

Theorem 4.1.6. For the solution mapping S of the linear constraint system intro-

duced in (4.1.7) and the triplet (Ā, b̄, x̄) ∈ gphS,

D∗S
(

(Ā, b̄)
∣∣ x̄) (x∗) =

{
((v∗i x̄j)i,j, v

∗) | −x∗ = Ā∗v∗ + w∗,

v∗ ∈ NK(Āx̄+ b̄), w∗ ∈ NX(x̄)
}
.
(4.1.8)
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The mapping S is Lipschitz-like at
(
Ā, b̄

)
for x̄ if and only if

− (Ā∗)−1NX(x̄) ∩NK(Āx̄+ b̄) = {0}. (4.1.9)

Proof. Let G(A, b, x) = −Ax−b andM(x) =

{
K, if x ∈ X
∅, if x /∈ X

. Then for any (x, v) ∈

gphM ,

D∗M(x | v)(v′) =

{
NX(x), if v′ ∈ −NK(v),

∅, if v′ /∈ −NK(v).

As ∇bG(A, b, x) = −E has full rank m we can directly apply Lemma 3.1.1 with case

(b) to obtain the equation for coderivative of S. Note that

∇G(Ā, b̄, x̄)∗(v′) =
(
−(v∗i x̄j)i,j,−v∗,−Ā∗v∗

)
.

Therefore we have

D∗S
(

(Ā, b̄)
∣∣ x̄) (x∗) =

{
(−(v∗i x̄j)i,j,−v∗) | − x∗ = −Ā∗v∗ + w∗,

v∗ ∈ −NK(Āx̄+ b̄), w∗ ∈ NX(x̄)
}

and accordingly (4.1.8) by changing the direction of v∗. By the Mordukhovich cri-

terion, when x∗ = −Ā∗v∗ − w∗ = 0, i.e., −Ā∗v∗ ∈ NX(x̄), it is required v∗ = 0 and

(v∗i x̄j)i,j = 0 for any i, j. Therefore the sufficient and necessary condition (4.1.9) can

be given.

For this linear constraint system, we will next show that the Lipschitz-like prop-

erty under right-hand side perturbation is also equivalent to the one under full per-

turbation. Besides, there are other characterizations using different tools. Before

that, we give some results on error bounds.

Let x̄ ∈ X, Ā ∈ Rm×n, b̄ ∈ Rm and v̄ := Āx̄ + b̄ ∈ K. Define the following

mapping

g(x,A, b) := d(x,X) + d(Ax+ b,K). (4.1.10)
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Then we can write (4.1.7) as

S(A, b) = {x ∈ Rn| g(x,A, b) = 0}.

Lemma 4.1.7. If the following condition holds

0 6∈ [Ā∗(NK(v̄) ∩ S) +NX(x̄) ∩ B]
⋃

[Ā∗(NK(v̄) ∩ B) +NX(x̄) ∩ S], (4.1.11)

then there exist some constants τ > 0, δ > 0 such that

τd(x, S(A, b)) ≤ g(x,A, b)

for all x ∈ Bδ(x̄) and (A, b) ∈ Bδ(Ā, b̄).

Proof. By (4.1.11), there exist constants δ > 0 and τ > 0 such that

d(0, A∗(NK(v) ∩ S) +NX(x̄) ∩ B) > τ (4.1.12)

and

d(0, A∗(NK(v) ∩ B) +NX(x̄) ∩ S) > τ (4.1.13)

for (A, b) ∈ Bδ(Ā, b̄) and v = Ax̄ + b. Consider the outer subdifferential of g(·, A, b)

(see [43] for reference) for any (A, b) ∈ Bδ(Ā, b̄),

∂>x g(x̄, A, b) = lim sup

x
g(·,A,b)−−−−−−−−−−→

g(x,A,b)>g(x̄,A,b)
x̄

∂xg(x,A, b). (4.1.14)

From [81, Example 8.53, Exercise 10.10] we know that ∂∞g(x,A, b) = ∂∞d(x,X) =

{0}. Let F (x,A, b) := Ax + b and v be the value v = Ax + b. Together with [81,

Corollary 10.11],

∂xg(x,A, b) ⊆ {x∗ | ∃v∗ s.t. (x∗, v∗) ∈ ∂g(x,A, b)} ⊆ ∂xd(F (x,A, b), K) + ∂d(x,X).

(4.1.15)
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Again, as ∂∞d(v,K) = {0}, we have by [81, Theorem 10.6],

∂xd(F (x,A, b), K) ⊆ ∇xF (x,A, b)∗∂d(v,K). (4.1.16)

Given g(x,A, b) > g(x̄, A, b), we have v /∈ K and/or x /∈ X. In this case, by [81,

Example 8.53] it is either

∂d(v,K) = NK(v) ∩ B, ∂d(x,X) = NX(x) ∩ S (4.1.17)

or

∂d(v,K) = NK(v) ∩ S, ∂d(x,X) = NX(x) ∩ B. (4.1.18)

Note that ∂d(v,K) = NK(v) ∩ S, ∂d(x,X) = NX(x) ∩ S is already included in both

equations. Combining (4.1.14) - (4.1.18), we arrive at

∂>x g(x̄, A, b) ⊂ [A∗(NK(v) ∩ S) +NX(x̄) ∩ B]
⋃

[A∗(NK(v) ∩ B) +NX(x̄) ∩ S]

for any (A, b) ∈ Bδ(Ā, b̄). This combining (4.1.12), (4.1.13) and [43, Theorem 2.1]

((d) ⇒ (a)) yields the desired result.

Lemma 4.1.8. If there exist some constants τ > 0, δ > 0 such that

τd(x, S(A, b)) ≤ g(x,A, b) (4.1.19)

for all x ∈ Nδ(x̄) and (A, b) ∈ Nδ(Ā, b̄), then S is Lipschitz-like at (Ā, b̄) for x̄.

Proof. It is easy to verify that

|g(x,A, b)− g(x,A′, b′)| ≤ (||x̄||+ δ)||A− A′||+ ||b− b′|| (4.1.20)

for all x ∈ Nδ(x̄) and (A, b) ∈ Nδ(Ā, b̄). Suppose that S does not enjoy the

Lipschitz-like property at (Ā, b̄) for x̄. Then for any κ > 0, there exist sequences

(Ak, bk), (A
′
k, b
′
k)→ (Ā, b̄) and {xk} ⊂ S(Ak, bk) with xk → x̄ such that

d(xk, S(A′k, b
′
k)) > κ(||Ak − A′k||+ ||bk − b′k||).

This together with (4.1.19) and (4.1.20) yields a contradiction.
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To show that the Lipschitz-like property of the linear constraint system (4.1.7)

under full perturbation is equivalent to that under right-hand side perturbation, we

introduce the set-valued mapping similar to (4.1.7) but with A = Ā fixed.

S ′(b) =
{
x ∈ X | Āx+ b ∈ K

}
. (4.1.21)

Theorem 4.1.9. For the set-valued mappings S, S ′ defined in (4.1.7) and (4.1.21)

respectively, and the function g(x,A, b) defined in (4.1.10), let (Ā, b̄, x̄) ∈ gphS.

Then we also have (b̄, x̄) ∈ gphS ′ and the following statements are equivalent:

(a) S is Lipschitz-like at (Ā, b̄) for x̄.

(b) S ′ is Lipschitz-like at b̄ for x̄.

(c) −(Ā∗)−1NX(x̄) ∩NK(Āx̄+ b̄) = {0}.

(d) 0 6∈ [Ā∗(NK(v̄) ∩ S) +NX(x̄) ∩ B]
⋃

[Ā∗(NK(v̄) ∩ B) +NX(x̄) ∩ S].

(e) there exist some constants τ > 0, δ > 0 such that

τd(x, S(A, b)) ≤ g(x,A, b)

for all x ∈ Bδ(x̄) and (A, b) ∈ Bδ(Ā, b̄).

Proof. The equivalence between (a) and (c) has already been established in Theorem

4.1.6. The equation of D∗S (4.1.8) is obtained via Lemma 3.1.1 with the full rank

property of ∇bG(A, b, x). Therefore, similar steps can be performed on S ′ to obtain

D∗S ′
(
b̄ | x̄

)
(x∗) =

{
v∗
∣∣ −x∗ = Ā∗v∗ + w∗, v∗ ∈ NK(Āx̄+ b̄), w∗ ∈ NX(x̄)

}
.

Then the Mordukhovich criterion on S ′ finally turns into (c) and therefore the equiv-

alence between (b) and (c) is established. As (d) ⇒ (e) and (e) ⇒ (a) have

been proved in previous lemmas, it remains to prove (c) ⇒ (d). Suppose 0 ∈

[Ā∗(NK(v̄)∩S)+NX(x̄)∩B]
⋃

[Ā∗(NK(v̄)∩B)+NX(x̄)∩S]. That means there exists

113



v∗ ∈ NK(v̄), w∗ ∈ NX(x̄) such that Ā∗v∗ +w∗ = 0 with either ‖v∗‖ = 1, ‖w∗‖ ≤ 1 or

‖v∗‖ ≤ 1, ‖w∗‖ = 1. Both of these two cases contradict (c) and therefore the proof

is completed.

Remark 4.1.10. The sufficient and necessary condition (c) can also be taken as a

linearized version of [81, Example 9.51] but improved on necessity without regularity

presented.

4.2 Linearization of nonlinear variational inequali-
ties

In this section, we discuss a set-valued mapping rising from the optimality condition

of the problem. Consider the following parametric optimization problem in which

the parameters are z, w,A, b.

min
x

F (w, x) + z>x

s.t. Ax− b ∈ C (4.2.1)

x ∈ Rn, A ∈ Rm×n, b ∈ Rm, z ∈ Rn

where F : Rd×Rn → R is differentiable with respect to x with ∇xF (w, x) = f(w, x)

and C ⊆ Rm is a convex polyhedral set. If the matrix A satisfies the constraint

qualification

A∗y = 0, y ∈ NC(Ax− b) =⇒ y = 0 (4.2.2)

then the stationary point set-mapping of this problem under perturbation on param-

eters (A, b, z, w) can be expressed as

S(A, b, z, w) =
{
x ∈ Rn | 0 ∈ z + f(w, x) + A∗NRm− (Ax− b)

}
. (4.2.3)

For the coming content, we analyze how this set-valued mapping can be approxi-

mated when A is a square matrix with full rank and the equivalence in terms of
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the Lipschitz-like property. The main task is to establish the equivalence of the

Lipschitz-like property between (4.2.3) and the set-valued mapping below for a given

point (Ā, b̄, z̄, w̄, x̄) ∈ gphS when Ā is a square matrix with full rank:

L(A, b, q) = {x | 0 ∈ q +Qx+NC(Ax− b)} (4.2.4)

where Q = (Ā∗)−1∇xf(w̄, x̄), q̄ = (Ā∗)−1z̄+(Ā∗)−1f(w̄, x̄)−(Ā∗)−1∇xf(w̄, x̄)x̄. Here

we introduce another set-valued mapping for the purpose of bridging in the condition

that (A∗)−1 exists:

S ′(A, b, z, w) = {x | 0 ∈ (A∗)−1z + (A∗)−1f(w, x) +NC(Ax− b)}. (4.2.5)

Before introducing the equivalence, we give some illustrations on the properties of

the inverse of a matrix and f . Throughout this section, we use ‖ · ‖ to denote any

matrix norm that satisfies ‖A∗‖ = ‖A‖ with A being a square matrix and ‖I‖ = 1.

Proposition 4.2.1. Suppose A is a nonsingular square matrix, and Aε = A+ ∆A.

If ‖Aε − A‖ < ‖A−1‖−1, then Aε is nonsingular.

Proof. Aε = A(I +A−1∆A). Given A is nonsingular, Aε is nonsingular if and only if

I+A−1∆A is nonsingular. By [36, Observation 1.1.7], this is equivalent to 0 /∈ σ(I+

A−1∆A), where σ(A) denotes the set of all eigenvalues of the matrix A. The condition

is then passed with equivalence to −1 /∈ σ(A−1∆A) by [36, Observation 1.1.8]. It is

known that ρ(A−1∆A) ≤ ‖A−1∆A‖ ≤ ‖A−1‖‖∆A‖ with ρ(A) denoting the spectral

radius of A, i.e., the largest absolute value of all possible eigenvalues. ‖∆A‖ =

‖Aε − A‖ < ‖A−1‖−1 ensures ρ(A−1∆A) < 1 and therefore Aε is nonsingular.

Lemma 4.2.2. For a nonsingular square matrix Ā, we denote d :=
‖Ā−1‖

1− a‖Ā−1‖
.

Then for any A′, A′′ ∈ Ba(Ā) with a < ‖Ā−1‖−1 we have the following properties:

(a) ‖(A′)−1‖ ≤ d.
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(b) ‖(A′∗)−1 − (Ā∗)−1‖ ≤ ad‖Ā−1‖.

(c) ‖(A′∗)−1 − (A′′∗)−1‖ ≤ d2‖A′ − A′′‖.

Proof. The first property comes directly from

‖(A′)−1‖ ≤ ‖Ā−1‖
1− ‖Ā−1(A′ − Ā)‖

≤ ‖Ā−1‖
1− a‖Ā−1‖

= d.

For the second,

‖(A′∗)−1 − (Ā∗)−1‖ = ‖(A′∗)−1(Ā∗ − A′∗)(Ā∗)−1‖

≤ ‖(Ā)−1‖ ‖(A′)−1‖ ‖A′ − Ā‖ ≤ ad‖Ā−1‖.

For the third,

‖(A′∗)−1 − (A′′∗)−1‖ = ‖(A′∗)−1(A′′∗ − A′∗)(A′′∗)−1‖

≤ ‖(A′∗)−1‖ ‖A′′∗ − A′∗‖ ‖(A′′∗)−1‖ ≤ d2‖A′ − A′′‖.

For the coming proof in this section, we continue to use d as

d :=
‖Ā−1‖

1− a‖Ā−1‖
(4.2.6)

Similar to [18], we have the following assumptions on f :

(A) f is differentiable with respect to x with Jacobian matrix ∇xf(w, x) depending

continuously on (w, x) in a neighborhood of (w̄, x̄);

(B) f is Lipschitz continuous in w uniformly in x around (w̄, x̄); that is, there exist

neighborhoods U of x̄ and V of w̄ and a number l > 0 such that for all x ∈ U

and w1, w2 ∈ V :

‖f(w1, x)− f(w2, x)‖ ≤ l‖w1 − w2‖. (4.2.7)
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Lemma 4.2.3 ([18, Strict Differentiability Lemma]). Under assumption (A), for

any ε > 0, there exist neighborhoods U of x̄ and V of w̄ such that for all x1, x2 ∈ U

and w ∈ V ,

‖f(w, x1)− f(w, x2)−∇xf(w̄, x̄)(x1 − x2)‖ ≤ ε‖x1 − x2‖. (4.2.8)

Readers are recommended to refer to [18] for the proof.

Let f1(A,w, x) := (A∗)−1f(w, x). Then we have ∇xf1(A,w, x) = (A∗)−1∇xf(w, x).

Next we will prove that the Strict Differentiability Lemma holds as well with f1:

Proposition 4.2.4. Under assumption (A) for f , for any ε′ > 0 there exist neighbor-

hoods U of x̄, V of w̄ and W of Ā, such that for all x1, x2 ∈ U and (A,w) ∈ W ×V ,

‖f1(A,w, x1)− f1(A,w, x2)−∇xf1(Ā, w̄, x̄)(x1 − x2)‖ ≤ ε′‖x1 − x2‖. (4.2.9)

Proof. Choose 0 < a < ‖Ā−1‖−1 to ensure existence of (A∗)−1 for all A ∈ Ba(Ā),

and b, t > 0 as in Strict Differentiability Lemma for f(w, x) with w ∈ Bb(w̄), x1, x2 ∈

Bt(x̄) and ε =
ε′

2d
with d defined as in (4.2.6) and ε as in (4.2.8). Without loss of

generality, suppose ε′ < 1. Take

a < min

{
1

‖Ā−1‖
,

ε′

(2c‖Ā−1‖+ 1)‖Ā−1‖

}
(4.2.10)

where c := ‖∇xf(w̄, x̄)‖. First we have

‖(A∗)−1‖‖f(w, x1)− f(w, x2)−∇xf(w̄, x̄)(x1 − x2)‖ ≤ ε′

2
‖x1 − x2‖ (4.2.11)

as ‖(A∗)−1‖ ≤ d by Lemma 4.2.2 (a) and ‖f(w, x1)−f(w, x2)−∇xf(w̄, x̄)(x1−x2)‖ ≤

ε‖x1 − x2‖ by (4.2.8). Besides, by Lemma 4.2.2 (b) and (4.2.10)

‖(A∗)−1 − (Ā∗)−1‖‖∇xf(w̄, x̄)‖ ≤ ac‖Ā−1‖2

1− a‖Ā−1‖
<

ε′c‖Ā−1‖
2c‖Ā−1‖+ 1− ε′

<
ε′

2
. (4.2.12)
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Combining (4.2.11) and (4.2.12) we can derive

‖f1(A,w, x1)− f1(A,w, x2)−∇xf1(Ā, w̄, x̄)(x1 − x2)‖

= ‖(A∗)−1f(w, x1)− (A∗)−1f(w, x2)− (Ā∗)−1∇xf(w̄, x̄)(x1 − x2)‖

≤ ‖(A∗)−1‖ ‖f(w, x1)− f(w, x2)−∇xf(w̄, x̄)(x1 − x2)‖

+ ‖(A∗)−1 − (Ā∗)−1‖ ‖∇xf(w̄, x̄)‖ ‖x1 − x2‖

≤ ε′‖x1 − x2‖.

Proposition 4.2.5. Under assumptions (A) and (B) of f , f1 is Lipschitz continuous

in (A,w) uniformly in x around (w̄, x̄), i.e. there exist neighborhoods U of x̄, V of w̄

and W of Ā and a number l′ > 0 such that for all x ∈ U , (A1, w1), (A2, w2) ∈ W ×V ,

‖f1(A1, w1, x)− f1(A2, w2, x)‖ ≤ l′(‖A1 − A2‖+ ‖w1 − w2‖). (4.2.13)

Proof. Take 0 < a < ‖Ā−1‖−1 and w1, w2 ∈ Br(w̄), x ∈ Bt(x̄) with r, t > 0 chosen

as in Lipschitz continuity of f illustrated as (4.2.7) with constant l > 0 and (4.2.8)

satisfied for a certain ε > 0. Consider any A1, A2 ∈ Ba(Ā),

‖f1(A1, w1, x)− f1(A2, w2, x)‖ = ‖(A∗1)−1f(w1, x)− (A∗2)−1f(w2, x)‖

≤ ‖(A∗1)−1 − (A∗2)−1‖ ‖f(w1, x)‖+ ‖(A∗2)−1‖ ‖f(w1, x)− f(w2, x)‖. (4.2.14)

Given

‖f(w1, x)‖ ≤ ‖f(w1, x)− f(w̄, x)‖+ ‖f(w̄, x)‖

≤ lr + ‖f(w̄, x)− f(w̄, x̄)−∇xf(w̄, x̄)(x− x̄)‖+ ‖f(w̄, x̄)‖+ ‖∇xf(w̄, x̄)‖ ‖x− x̄‖

≤ lr + (ε+ ‖∇xf(w̄, x̄)‖)t+ ‖f(w̄, x̄)‖ =: l1,

we can say that ‖f(w1, x)‖ is bounded by l1. Besides, ‖(A∗1)−1− (A∗2)−1‖ ≤ d2‖A1−

A2‖ by Lemma 4.2.2 (c). Then we have:

‖(A∗1)−1 − (A∗2)−1‖ ‖f(w1, x)‖ ≤ l1d
2‖A1 − A2‖. (4.2.15)
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By (4.2.7) and Lemma 4.2.2 (a), we have that

‖(A∗2)−1‖ ‖f(w1, x)− f(w2, x)‖ ≤ dl‖w1 − w2‖. (4.2.16)

Take l′ = max {l1d2, dl} and combine (4.2.14), (4.2.15) and (4.2.16), we can see that

(4.2.13) is proved.

Theorem 4.2.6. The following are equivalent for the mappings S, S ′, L:

(i) S is Lipschitz-like at (Ā, b̄, z̄, w̄, x̄);

(ii) S ′ is Lipschitz-like at (Ā, b̄, z̄, w̄, x̄);

(iii) L is Lipschitz-like at (Ā, b̄, q̄, x̄) with

q̄ = (Ā∗)−1z̄ + (Ā∗)−1f(w̄, x̄)− (Ā∗)−1∇xf(w̄, x̄)x̄.

Proof. The equivalence (i) ⇔ (ii) can be guaranteed by choosing a neighborhood

of Ā with radius a < ‖Ā−1‖−1, where the existence of (A∗)−1 of any B ∈ Ba(Ā) is

ensured. To prove (ii) ⇔ (iii), we first start with (iii) ⇒ (ii).

Let L have the Lipschitz-like property at (Ā, b̄, q̄, x̄) with a constant M ; that is,

for some r1, r2, r3 > 0 and t > 0 with r1 ≤ a, and for every (A′, b′, q′), (A′′, b′′, q′′) ∈

Br1(Ā)× Br2(b̄)× Br3(q̄) we have

L(A′, b′, q′)∩Bt(x̄) ⊂ L(A′′, b′′, q′′)+M(‖A′−A′′‖+‖b′− b′′‖+‖q′− q′′‖)B. (4.2.17)

Let ε′ > 0 be such that Mε′ < 1 as specified in the Strict Differentiability Lemma.

Choose α > 0, r′1 > 0 and r′5 > 0 as radius for x,B,w respectively, with

r′1 < min

{
a,

r3

4(l′ + d2‖z̄‖)

}
, α ≤ min

{
t,
r3

4ε′

}
such that Strict Differentiability Lemma and Lipschitz continuity both hold for f1.

Let r′′1 , r′2, r4, r5 > 0 be such that

r′′1 ≤ min

{
r′1,

α(1− ε′M)

16M [1 + l′ + (r4 + ‖z̄‖)d2]

}
, r′2 ≤ min

{
r2,

α(1− ε′M)

16M

}
,

119



r4 ≤ min

{
r3

4d
,
α(1− ε′M)

16Md

}
, and r5 ≤ min

{
r′5,

r3

4l′
,
α(1− ε′M)

16Ml′

}
.

Here d =
‖(Ā)−1‖

1− a‖(Ā)−1‖
and l′ > 0 is the Lipschitz constant for f1. It will be

demonstrated that S2 has the Lipschitz-like property at (Ā, b̄, z̄, w̄, x̄) with constant

M ′ =
M

1− ε′M
· max

{
1, d, l′, 1 + l′ + (r4 + ‖z̄‖)d2

}
.

Fix (A′, b′, z′, w′), (A′′, b′′, z′′, w′′) ∈ Br′′1 (Ā) × Br′2(b̄) × Br4(z̄) × Br5(w̄), and consider

any x′ ∈ S ′(A′, b′, z′, w′) ∩ Bα/2(x̄). Then

0 ∈ (A′∗)−1z′ + (A′∗)−1f(w′, x′) +NC(A′x′ − b′)

= (A′∗)−1z′ + (A′∗)−1f(w′, x′)− (Ā∗)−1∇xf(w̄, x̄)x′ + Ax′ +NC(A′x′ − b′)

= q′ + Ax′ +NC(A′x′ − b′),

Then x′ ∈ L(A′, b′, q′) for q′ = (A′∗)−1z′ + (A′∗)−1f(w′, x′)− (Ā∗)−1∇xf(w̄, x̄)x′. We

can write

q′−q̄ = (A′∗)−1z′−(Ā∗)−1z̄+(A′∗)−1f(w′, x′)−(Ā∗)−1f(w̄, x̄)−(Ā∗)−1∇xf(w̄, x̄)(x′−x̄).

Then

‖q′ − q̄‖ ≤‖(A′∗)−1z′ − (Ā∗)−1z̄‖+ ‖(A′∗)−1f(w′, x̄)− (Ā∗)−1f(w̄, x̄)‖

+ ‖(A′∗)−1f(w′, x′)− (A′∗)−1f(w′, x̄)− (Ā∗)−1∇xf(w̄, x̄)(x′ − x̄)‖.

By Strict Differentiability Lemma stated before, ‖q′ − q̄‖ ≤ ε′‖x′ − x̄‖. By Lipschitz

continuity of f1,

‖(A′∗)−1f(w′, x̄)− (Ā∗)−1f(w̄, x̄)‖ ≤ l′(‖A′ − Ā‖+ ‖w′ − w̄‖).

Moreover,

‖(A′∗)−1z′ − (Ā∗)−1z̄‖ ≤ ‖(A′∗)−1‖ ‖z′ − z̄‖+ ‖z̄‖ ‖(A′∗)−1 − (Ā∗)−1‖
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≤ d‖z′ − z̄‖+ d2‖z̄‖ ‖A′ − Ā‖.

In all, we have

‖q′ − q̄‖ ≤ (d2‖z̄‖+ l′)‖A′ − Ā‖+ d‖z′ − z̄‖+ l′‖w′ − w̄‖+ ε′‖x′ − x̄‖

≤ (d2‖z̄‖+ l′)r′′1 + dr4 + l′r5 + ε′α/2 ≤ r3

4
+
r3

4
+
r3

4
+
r3

8
< r3,

and therefore q′ ∈ Br3(q̄). Analogously, for the vector

q′′ = (A′′∗)−1z′′ + (A′′∗)−1f(w′′, x′)− (Ā∗)−1∇xf(w̄, x̄)x′,

q′′ − q̄ = (A′′∗)−1z′′ − (Ā∗)−1z̄ + (A′′∗)−1f(w′′, x′)− (Ā∗)−1f(w̄, x̄)

− (Ā∗)−1∇xf(w̄, x̄)(x′ − x̄).

Therefore q′′ ∈ Br3(q̄) as well.

Let x1 = x′. By the Lipschitz-like property of L, there exists x2 ∈ L(A′′, b′′, q′′)

such that

0 ∈ (A′′∗)−1z′′ + (A′′∗)−1f(w′′, x1) + (Ā∗)−1∇xf(w̄, x̄)(x2 − x1) +NC(A′′x2 − b′′)

and

‖x2 − x1‖ ≤M(‖A′ − A′′‖+ ‖b′ − b′′‖+ ‖q′ − q′′‖).

As q′ − q′′ = (A′∗)−1z′ − (A′′∗)−1z′′ + (A′∗)−1f(w′, x1)− (A′′∗)−1f(w′′, x1),

‖q′ − q′′‖ ≤ ‖(A′∗)−1‖ ‖z′ − z′′‖+ ‖z′′‖ ‖(A′∗)−1 − (A′′∗)−1‖

+ l′(‖A′ − A′′‖+ ‖w′ − w′′‖)

≤ [(r4 + ‖z̄‖)d2 + l′] ‖A′ − A′′‖+ d‖z′ − z′′‖+ l′‖w′ − w′′‖.

Then we have

‖x2−x1‖ ≤M
(
[1 + l′ + (r4 + ‖z̄‖)d2]‖A′ − A′′‖+ ‖b′ − b′′‖+ d‖z′ − z′′‖+ l′‖w′ − w′′‖

)
.

(4.2.18)
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By denoting the right-hand side part of (4.2.18) as s, we can have

s ≤M
{

2[1 + l′ + (r4 + ‖z̄‖)d2]r′′1 + 2r′2 + 2dr4 + 2l′r5

}
≤ α(1− ε′M)

2
.

Suppose that there exist points x2, x3, . . . , xn−1 with

0 ∈ (A′′∗)−1z′′ + (A′′∗)−1f(w′′, xi−1) + (Ā∗)−1∇xf(w̄, x̄)(xi − xi−1) +NC(A′′xi − b′′)

and

‖xi − xi−1‖ ≤ (Mε′)i−2s for i = 2, . . . , n− 1.

Then for every i we have

‖xi − x̄‖ ≤ ‖x1 − x̄‖+
i∑

j=2

‖xj − xj−1‖ ≤
α

2
+ s

i∑
j=2

(Mε′)j−2 ≤ α

2
+

s

1− ε′M
≤ α.

By setting

qi := (A′′∗)−1z′′ + (A′′∗)−1f(w′′, xi)− (Ā∗)−1∇xf(w̄, x̄)xi

= q̄ + (A′′∗)−1z′′ − (Ā∗)−1z̄ − (Ā∗)−1f(w̄, x̄) + (A′′∗)−1f(w′′, xi)

− (Ā∗)−1∇xf(w̄, x̄)(xi − x̄)

for i = 2, 3, . . . , n− 1 we get

‖qi − q̄‖ ≤ ‖(A′′∗)−1z′′ − (Ā∗)−1z̄‖+ ‖(A′′∗)−1f(w′′, x̄)− (Ā∗)−1f(w̄, x̄)‖

+ ‖(A′′∗)−1f(w′′, xi)− (A′′∗)−1f(w′′, x̄)− (Ā∗)−1∇xf(w̄, x̄)(xi − x̄)‖

≤ (l′ + d2‖z̄‖) ‖A′′ − Ā‖+ d‖z′′ − z̄‖+ l′‖w′′ − w̄‖+ ε′‖xi − x̄‖

≤ (l′ + d2‖z̄‖) r′′1 + dr4 + l′r5 + ε′α ≤ r3,

so that qi ∈ Br3(q̄). As xn−1 ∈ L(A′′, b′′, qn−2)∩Bα(x̄), by the Lipschitz-like property

of L, there exists xn with

0 ∈ (A′′∗)−1z′′ + (A′′∗)−1f(w′′, xn−1) + (Ā∗)−1∇xf(w̄, x̄)(xn − xn−1) +NC(A′′xn − b′′)

(4.2.19)
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and

‖xn − xn−1‖ ≤ M‖qn−1 − qn−2‖

≤ M‖(A′′∗)−1f(w′′, xn−1)− (A′′∗)−1f(w′′, xn−2)− (Ā∗)−1∇xf(w̄, x̄)(xn−1 − xn−2)‖

≤ Mε′‖xn−1 − xn−2‖ ≤ (Mε′)n−2s.

The induction step is thereby joined. We obtain an infinite Cauchy sequence of

points x1, x2, . . . , xn, . . . in Bα(x̄) and therefore converges to some x′′ ∈ Bα(x̄). Since

(A′′∗)−1f(w′′, ·) is continuous in Bα(x̄) and the normal cone map NC(A′′x − b′′) has

a closed graph, by (4.2.19), x′′ ∈ S ′(A′′, b′′, z′′, w′′). Moreover, since

‖xn − x′‖ ≤
n∑
i=2

‖xi − xi−1‖ ≤ s
n∑
i=2

(Mε′)i−2

≤ M

1− ε′M
(
[1 + l′ + (r4 + ‖z̄‖)d2]‖A′ − A′′‖+ ‖b′ − b′′‖

+ d‖z′ − z′′‖+ l′‖w′ − w′′‖
)
.

By passing to the limit, we have

‖x′′ − x′‖ ≤ M

1− ε′M
(
[1 + l′ + (r4 + ‖z̄‖)d2] ‖A′ − A′′‖+ ‖b′ − b′′‖

+ d‖z′ − z′′‖+ l′‖w′ − w′′‖
)

≤ M ′ (‖A′ − A′′‖+ ‖b′ − b′′‖+ ‖z′ − z′′‖+ ‖w′ − w′′‖) .

(iii) ⇒ (ii) is established.

To prove the implication (ii) ⇒ (iii), suppose S ′ has the Lipschitz-like prop-

erty at (Ā, b̄, z̄, w̄, x̄) with constant M , i.e., for some r1, r2, r4, r5, t > 0, for every

(A′, b′, z′, w′), (A′′, b′′, z′′, w′′) ∈ Br1(Ā)× Br2(b̄)× Br4(z̄)× Br5(w̄),

S ′(A′, b′, z′, w′) ∩ Bt(x̄) ⊂ S ′(A′′, b′′, z′′, w′′)

+M(‖A′ − A′′‖+ ‖b′ − b′′‖+ ‖z′ − z′′‖+ ‖w′ − w′′‖)B.
(4.2.20)
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Let ε′ be such thatMε′ < 1 and choose α′, r′1, r′5 > 0 as radius for x,B,w respectively,

with α′ ≤ t, r′1 ≤ r1 as specified in the Strict Differentiability Lemma for f1. Here

we denote

u := max{1, ‖Ā‖+ r′1}, v := ‖(Ā∗)−1∇xf(w̄, x̄)‖.

Let r′′1 , r′2, r3, α > 0 be chosen as:

α ≤ min
{
α′,

r4

3ε′u

}
, r′′1 ≤ min

{
r′1,

r4

3(‖q̄‖+ v‖x̄‖)
,

α(1− ε′M)

12M [1 + ‖q̄‖+ v(‖x̄‖+ α/2)]

}
,

r′2 ≤ min

{
r2,

α(1− ε′M)

12M

}
, r3 ≤ min

{
r4

3u
,
α(1− ε′M)

24Mu

}
.

It will be demonstrated that L has the Lipschitz-like property at (Ā, b̄, q̄, x̄) with

constant

M ′ =
Mu

1− ε′M
·max {u, 1 + ‖q̄‖+ r3 + v(‖x̄‖+ α/2)} . (4.2.21)

Here we express the form of z̄ = Ā∗q̄−f(w̄, x̄)+∇xf(w̄, x̄)x̄. Fix (A′, b′, q), (A′′, b′′, q′′) ∈

Br′′1 (Ā)× Br′2(b̄)× Br3(q̄) and consider x′ ∈ L(A′, b′, q′) ∩ Bα/2(x̄). Then

0 ∈ q′+Ax′+NC(A′x′−b′) = q′+Ax′−(A′∗)−1f(w̄, x′)+(A′∗)−1f(w̄, x′)+NC(A′x′−b′).

Let z′ := (A′∗)q′+(A′∗)(Ā∗)−1∇xf(w̄, x̄)x′−f(w̄, x′), then we have x′ ∈ S ′(A′, b′, z′, w̄).

Moreover,

z′ − z̄ = A′∗q′ − Ā∗q̄ + (A′∗)(Ā∗)−1∇xf(w̄, x̄)x′ −∇xf(w̄, x̄)x̄− [f(w̄, x′)− f(w̄, x̄)].

For the first part:

‖A′∗q′ − Ā∗q̄‖ = ‖A′∗q′ − A′∗q̄ + A′∗q̄ − Ā∗q̄‖ ≤ ‖A′∗‖ ‖q′ − q̄‖+ ‖A′∗ − Ā∗‖ ‖q̄‖.

For the second part:

‖(A′∗)(Ā∗)−1∇xf(w̄, x̄)x′ −∇xf(w̄, x̄)x̄− [f(w̄, x′)− f(w̄, x̄)]‖
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= ‖ − (A′∗)[(A′∗)−1f(w̄, x′)− (A′∗)−1f(w̄, x̄)− (Ā∗)−1∇xf(w̄, x̄)(x′ − x̄)]

+ (A′∗)(Ā∗)−1∇xf(w̄, x̄)x̄− (Ā∗)(Ā∗)−1∇xf(w̄, x̄)x̄‖

≤ ε′‖x′ − x̄‖ ‖A′∗‖+ ‖(Ā∗)−1∇xf(w̄, x̄)x̄‖ ‖A′∗ − Ā∗‖.

To sum up,

‖z′ − z̄‖ ≤ ‖A′∗‖ ‖q′ − q̄‖+ ‖A′∗ − Ā∗‖ ‖q̄‖+ ε′‖x′ − x̄‖ ‖A′∗‖

+ ‖(Ā∗)−1∇xf(w̄, x̄)x̄‖ ‖A′∗ − Ā∗‖

≤ (‖Ā‖+ r′′1)r3 + (‖q̄‖+ ‖(Ā∗)−1∇xf(w̄, x̄)x̄‖)r′′1 + ε′(‖Ā‖+ r′′1)α/2

≤ ur3 + (‖q̄‖+ v‖x̄‖)r′′1 + uε′α/2 ≤ r4

3
+
r4

3
+
r4

6
< r4.

Then z′ ∈ Br4(z̄). Analogously, for z′′ := (A′′∗)q′′+(A′′∗)(Ā∗)−1∇xf(w̄, x̄)x′−f(w̄, x′),

z′′ ∈ Br4(z̄) as well. By (4.2.20), let x1 = x′, there exists x2 ∈ S ′(A′′, b′′, z′′, w̄), i.e.,

0 ∈ (A′′∗)−1z′′ + (A′′∗)−1f(w̄, x2) +NC(A′′x2 − b′′)

= q′′ + (A′′∗)−1[f(w̄, x2)− f(w̄, x1)] + (Ā∗)−1∇xf(w̄, x̄)x1 +NC(A′′x2 − b′′),

and

‖x2 − x1‖ ≤M (‖A′ − A′′‖+ ‖b′ − b′′‖+ ‖z′ − z′′‖) .

As

‖z′ − z′′‖ = ‖(A′∗)q′ − (A′′∗)q′′ + (A′∗ − A′′∗)(Ā∗)−1∇xf(w̄, x̄)x1)‖

≤ ‖A′∗‖ ‖q′ − q′′‖+ ‖A′∗ − A′′∗‖ ‖q′′‖+ ‖(Ā∗)−1∇xf(w̄, x̄)x1‖ ‖A′∗ − A′′∗‖

≤ (‖Ā‖+ r′′1) ‖q′ − q′′‖+ [‖q̄‖+ r3 + v(‖x̄‖+ α/2)] ‖A′ − A′′‖,

we have

‖x2 − x1‖ ≤ M {[1 + ‖q̄‖+ r3 + v(‖x̄‖+ α/2)] ‖A′ − A′′‖

+ ‖b′ − b′′‖+ (‖Ā‖+ r′′1)‖q′ − q′′‖
}

=: s ≤ su.

Here

s ≤ M(2 [1 + ‖q̄‖+ r3 + v(‖x̄‖+ α/2)] r′′1 + 2r′2 + 2(‖Ā‖+ r′′1)r3
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≤ M(2 [1 + ‖q̄‖+ v(‖x̄‖+ α/2)] r′′1 + 2r′2 + 2(‖Ā‖+ 2r′1)r3

≤ M(2 [1 + ‖q̄‖+ v(‖x̄‖+ α/2)] r′′1 + 2r′2 + 4ur3 ≤
α(1− ε′M)

2
.

Suppose that there exist points x2, x3, . . . , xn−1 with

0 ∈ q′′ + (A′′∗)−1[f(w̄, xi)− f(w̄, xi−1)] + (Ā∗)−1∇xf(w̄, x̄)xi−1 +NC(A′′xi − b′′)

and

‖xi − xi−1‖ ≤ (Mε′)i−2su

for i = 2, 3, . . . , n− 1. Then for every i we have

‖xi − x̄‖ ≤ ‖x1 − x̄‖+
i∑

j=2

‖xj − xj−1‖ ≤
α

2
+ s

i∑
j=2

(Mε′)j−2 ≤ α

2
+

s

1−Mε′
≤ α.

By setting zi := (A′′∗)q′′ + (A′′∗)(Ā∗)−1∇xf(w̄, x̄)xi − f(w̄, xi) for i = 2, 3, . . . , n− 1,

we get

zi − z̄ = A′′∗q′′ − Ā∗q̄ + (A′′∗)(Ā∗)−1∇xf(w̄, x̄)xi −∇xf(w̄, x̄)x̄− [f(w̄, xi)− f(w̄, x̄)]

and therefore

‖zi − z̄‖ ≤ ‖A′′∗‖ ‖q′′ − q̄‖+ ‖A′′∗ − Ā∗‖ ‖q̄‖+ ε′‖xi − x̄‖ ‖A′′∗‖

+ ‖(Ā∗)−1∇xf(w̄, x̄)x̄‖ ‖A′′∗ − Ā∗‖

≤ (‖Ā‖+ r′′1)r3 + (‖q̄‖+ ‖(Ā∗)−1∇xf(w̄, x̄)x̄‖)r′′1 + ε′(‖Ā‖+ r′′1)α

≤ ur3 + (‖q̄‖+ v‖x̄‖)r′′1 + uε′α ≤ r4.

So zi ∈ Br4(z̄). Since xn−1 ∈ S ′(A′′, b′′, zn−2, w̄)∩Bα(x̄), by the Lipschitz-like property

of S ′ (4.2.20), there exists xn ∈ S ′(A′′, b′′, zn−1, w̄), i.e.,

0 ∈ q′′ + (A′′∗)−1[f(w̄, xn)− f(w̄, xn−1)] + (Ā∗)−1∇xf(w̄, x̄)xn−1 +NC(A′′xn − b′′)

(4.2.22)
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and

‖xn − xn−1‖ ≤ M‖zn−1 − zn−2‖

= M‖(A′′∗)(Ā∗)−1∇xf(w̄, x̄)(xn−1 − xn−2)− (f(w̄, xn−1)− f(w̄, xn−2))‖

≤ M‖A′′‖ ‖(A′′∗)−1(f(w̄, xn−1)− f(w̄, xn−2))− (Ā∗)−1∇xf(w̄, x̄)(xn−1 − xn−2)‖

≤ Mε′‖A′′‖ ‖xn−1 − xn−2‖ ≤ (Mε′)n−2su.

The induction step is joined. We obtain an infinite sequence of points x1, x2, . . . , xn, . . .

in Bα(x̄) and therefore converges to some x′′ ∈ Bα(x̄). As (A′′∗)−1f(w′′, ·) is contin-

uous in Bα(x̄) and the normal cone map NC has a closed graph, by (4.2.22), taking

n→∞, we have x′′ ∈ L(A′′, b′′, q′′). Moreover, since

‖xn − x′‖ ≤
n∑
i=2

‖xi − xi−1‖ ≤
n∑
i=2

(Mε′)i−2su ≤ su

1− ε′M

=
Mu

1− ε′M
{[1 + ‖q̄‖+ r3 + v(‖x̄‖+ α/2)] ‖A′ − A′′‖+ ‖b′ − b′′‖+ u‖q′ − q′′‖} ,

with definition of M ′ (4.2.21) we can have

‖x′′ − x′‖ ≤ M ′(‖A′ − A′′‖+ ‖b′ − b′′‖+ ‖q′ − q′′‖).

4.3 Application to a linear portfolio selection

In this section, we consider a linear portfolio selection problems with different set-

tings. For the first model, the conservative strategy requires minimizing the largest

invested risk with some specific constraint on asset allocation like number of invested

stocks and no-shorting circumstance. Some easy-to-hold conditions are obtained to

guarantee the Lipschitz-like property of the feasible set of such a problem. Later we

focus on the stationary set of a portfolio selection problem under minimax rule in

[8]. Sufficient conditions for this stationary point set mapping are also given.
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4.3.1 Examples of normal cones of a set constraint

From the criterion (4.1.9) we can see that to verify the Lipschitz-like property for the

system with a set constraint, it is essential to calculate NX(x̄) when X is given. For

example, when it comes to portfolio selection, we use x to represent the weighting

of selection of stocks. Therefore the summation constraint is a must:
∑n

i=1 xi = 1.

Besides, when short-selling is forbidden, a nonnegative constraint is added: xi ≥

0, i = 1, . . . , n. Among the universe of stocks we would like to limit the number of

stocks to invest in and therefore a sparsity constraint can be imposed: ‖x‖0 ≤ p, p ≤

n. Note that the zero norm ‖x‖0 is defined as the number of nonzero entries of the

vector x. We next give some calculation results on these set constraints.

For an arbitrary x ∈ X, we denote i ∈ I(x) if xi 6= 0 and k = |I(x)| = ‖x‖0, the

size of I(x) and also the number of nonzero entries of x. Besides, let I := {1, . . . , n}

and I(x) := I \ I(x).

1. X = {x ∈ Rn |
∑n

j=1 xj = 1}.

By [81, Example 6.8],

NX(x̄) = R(1, . . . , 1)>. (4.3.1)

Here R(1, . . . , 1)> stands for
{

(x, . . . , x)> | x ∈ R
}
.

2. X = {x ∈ Rn |
∑n

j=1 xj = 1, xj ≥ 0}.

In this case, X is an (n − 1)-simplex and therefore convex. Then N̂X(x̄) =

NX(x̄). Let

X1 =

{
x ∈ Rn

∣∣∣∣∣
n∑
j=1

xj = 1

}
, X2 = Rn

+.

Then X = X1 ∩X2. For any x̄ ∈ X,

NX1(x̄) = R(1, . . . , 1)>,
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NX2(x̄) =
{
x∗ ∈ Rn

− | 〈x∗, x̄〉 = 0
}

=
{
x∗ ∈ Rn

− | x∗i = 0 for i ∈ I(x̄)
}
,

where NX1(x̄) is obtained from [81, Exercise 6.7] and NX2(x̄) is a direct calcu-

lation. As both sets are convex and therefore regular and that

(−NX1(x̄)) ∩NX2(x̄) =

{
{0}, if x̄ 6= 0

R−(1, . . . , 1)>, if x̄ = 0
,

where the latter case is forbidden due to x̄ ∈ X, then we can apply [81, Theorem

6.42] and obtain

NX(x̄) = NX1(x̄) +NX2(x̄) =

{
x∗ ∈ Rn

∣∣∣∣ x∗i = x∗j , ∀i, j ∈ I(x̄)

x∗i ≤ x∗j , ∀i ∈ I(x̄), j ∈ I(x̄)

}
.

(4.3.2)

Note that when x̄ ∈ rintX, i.e., xi > 0 for all i = 1, . . . , n,

NX(x̄) = NX1(x̄) = R(1, . . . , 1)>.

3. X = {x ∈ Rn|
∑n

j=1 xj = 1, xj ≥ 0, ||x||0 ≤ p, p < n}.

In this case, X is a intersection of simplex and a set with non-trivial sparsity

constraint. Therefore X is a union of
(
n
p

)
(p−1)-simplices. Here we discuss the

possible cases depending on the sparsity level k = |I(x̄)| = ‖x̄‖0 at the given

point x̄.

Case (i) : k = p. In this case, x̄ must be an relative interior point of some

(p− 1)-simplex in Rn and X is regular at x̄. We denote such simplex as

C(x̄) =

x ∈ Rn
+

∣∣∣∣∣∣ xi = 0 for i /∈ I(x̄),
∑
i∈I(x̄)

xi = 1

 .

Referring to (4.3.2), we have

NX(x̄) = NC(x̄)(x̄) =
{
x∗ ∈ Rn

∣∣ x∗i = x∗j , ∀i, j ∈ I(x̄)
}
. (4.3.3)
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Case (ii) : k < p. In this case, x̄ must lie in the intersection of
(
n−k
p−k

)
(p− 1)-

simplexes in Rn. Since we already know that k elements in x should not equal 0

and there are n−k elements left to select p−k nonzero entries. We denote each

neighboring (p− 1)-simplex as Ct with t representing a unique selection of the

position where p− k nonzero entries lie, t = 1, ...,
(
n−k
p−k

)
. Here we use I(Ct) to

denote the index set where for x ∈ Ct, xi ≥ 0, i ∈ I(Ct) and xi = 0, i ∈ I(Ct).

As Ct is a simplex, by (4.3.2) we have

NCt(x̄) =

{
x∗ ∈ Rn

∣∣∣∣ x∗i = x∗j , ∀i, j ∈ I(x̄)
x∗i ≤ x∗j , ∀i ∈ I(Ct)\I(x̄), j ∈ I(x̄)

}
.

Given the sparsity constraint in X: ‖x‖0 ≤ p, as x̄ ∈
⋂
t

Ct, x
X−→ x̄ is equiva-

lent to x
⋃
t Ct−→ x̄. Thus we have

NX(x̄) = lim sup

x
X−→x̄

N̂X(x) = lim sup

x

⋃
t Ct−−−→x̄

N̂X(x) (4.3.4)

For x
⋃
t Ct−−−→ x̄, when x = x̄,

N̂X(x̄) = N̂∪Ct(x̄) =
⋂
t

N̂Ct(x̄) =
⋂
t

NCt(x̄)

=
⋂
t

{
x∗ ∈ Rn

∣∣∣∣ x∗i = x∗j , ∀i, j ∈ I(x̄)
x∗i ≤ x∗j , ∀i ∈ I(Ct)\I(x̄), j ∈ I(x̄)

}

=

{
x∗ ∈ Rn

∣∣∣∣ x∗i = x∗j , ∀i, j ∈ I(x̄)

x∗i ≤ x∗j , ∀i ∈ I(x̄), j ∈ I(x̄)

}
. (4.3.5)

The last equation comes from t running through all the possibilities and ac-

cordingly, ⋃
t

(I(Ct)\I(x̄)) = I(x̄).

When x
⋃
t Ct−−−→
6=

x̄, they can approach x̄ through relative interior of simplexes in
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dimensions ranging from (k − 1) to (p− 1) and for any x being in the relative

interior of the same simplex, N̂X(x) stays the same as well.

For the (p−1)-simplex, the simplex is Ct, t = 1, . . . ,
(
n−k
p−k

)
. Then for x ∈ rintCt,

N̂X(x) = N̂Ct(x) =
{
x∗ ∈ Rn | x∗i = x∗j , i, j ∈ I(Ct)

}
. (4.3.6)

For the (p − 2)-simplex, the simplex is an intersection of
(
n−p+1

1

)
(p − 1)-

simplexes. Suppose the related simplixes are Cs, s = 1, . . . ,
(
n−p+1

1

)
. For

x ∈ rint (
⋂
sCs),

N̂X(x) = N̂⋃
s Cs

(x) =
⋂
s

N̂Cs(x)

=

{
x∗ ∈ Rn

∣∣∣∣ x∗i = x∗j , ∀i, j ∈
⋂
s I(Cs)

x∗i ≤ x∗j , ∀i ∈ (
⋃
s I(Cs)) \ (

⋂
s I(Cs))) , j ∈

⋂
s I(Cs)

}
.

Note that in this case, I(x̄) ⊆
⋂
s I(Cs) and

(⋃
s

I(Cs)

)
\

(⋂
s

I(Cs))

)
=
⋂
s

I(Cs)) ⊆ I(x̄).

Therefore we have N̂X(x) ⊆ N̂X(x̄). Similarly, we can have for r-simplex with

k−1 ≤ r ≤ p−2 and x approximates x̄ via the relative interior of the simplex,

N̂X(x) ⊆ N̂X(x̄).

In conclusion, for the case k < p, combining (4.3.2), (4.3.5) and (4.3.6), we

have

NX(x̄) =

(n−kp−k)⋃
t=1

{
x∗ ∈ Rn

∣∣ x∗i = x∗j , i, j ∈ I(Ct)
}

⋃{
x∗ ∈ Rn

∣∣∣∣ x∗i = x∗j , ∀i, j ∈ I(x̄)

x∗i ≤ x∗j , ∀i ∈ I(x̄), j ∈ I(x̄)

}
.

(4.3.7)
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4. X = {x ∈ Rn|
∑n

j=1 xj = 1, ||x||0 ≤ p, p < n}.

This set differs from the previous one as there is no restriction on xi. When

put in the scenario of portfolio selection, it means shorting is allowed. Once

the non-negative constraint is abandoned, the set X is composed of
(
n
p

)
(p−1)-

dimensional affine subspaces.

Case (i) : k = p. In this case, x̄ must lie in the specific (p − 1)-dimensional

affine subspace

C(x̄) =

{
x ∈ Rn

∣∣∣∣∣∣sgn(xi) = sgn(x̄i), for i = 1, . . . , n,
∑
i∈I(x̄)

xi = 1

}

only and is not adjacent to any other (p− 1)-dim affine subspaces. Therefore,

we have

NX(x̄) = NC(x̄)(x̄) = N̂C(x̄)(x̄) = {x∗ ∈ Rn | 〈x∗, x− x̄〉 ≤ 0 for all x ∈ C(x̄)}

=

{
x∗ ∈ Rn

∣∣ x∗i = x∗j , ∀i, j ∈ I(x̄)

}
. (4.3.8)

Case (ii) : k < p. In this case, x̄ lie in the intersection of
(
n−k
p−k

)
(p − 1)-

dimensional affine subspace in Rn. We denote each neighboring (p − 1)-dim

affine subspace as Ct with t representing a unique selection of the position

where p − k nonzero entries lie, t = 1, ...,
(
n−k
p−k

)
. Here we use I(Ct) to denote

the index set where for x ∈ Ct, xi = 0, i ∈ I(Ct). Given Ct is an affine subspace,

for any x ∈ Ct =
{
x ∈ Rn |

∑
i∈I(Ct) xi = 1, xi = 0 for i /∈ I(Ct)

}
,

NCt(x) = {x∗ ∈ Rn | 〈x∗, x′ − x〉 ≤ 0,∀x′ ∈ Ct}

=
{
x∗ ∈ Rn

∣∣ x∗i = x∗j , ∀i, j ∈ I(Ct)
}
.

Given the sparsity constraint in X: ‖x‖0 ≤ p, as x̄ ∈
⋂
t

Ct, x
X−→ x̄ is equiva-
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lent to x
⋃
t Ct−→ x̄. Thus we have

NX(x̄) = lim sup

x
X−→x̄

N̂X(x) = lim sup

x

⋃
t Ct−−−→x̄

N̂X(x). (4.3.9)

For x
⋃
t Ct−−−→ x̄, when x = x̄,

N̂X(x̄) = N̂∪Ct(x̄) =
⋂
t

N̂Ct(x̄) =
⋂
t

NCt(x̄)

=
⋂
t

{
x∗ ∈ Rn

∣∣ x∗i = x∗j , ∀i, j ∈ I(Ct)
}

= R(1, . . . , 1)>. (4.3.10)

The last equation comes from the fact that
⋃
t I(Ct) = {1, . . . , n}.

For x
⋃
t Ct−−−→
6=

x̄, they can approach x̄ through affine subspaces in dimensions

ranging from (k − 1) to (p− 1).

For the (p − 1)-dim affine subspace Ct, t = 1, . . . ,
(
n−k
p−k

)
and x ∈ Ct with

‖x‖0 = p,

N̂X(x) = N̂Ct(x) = NCt(x) =
{
x∗ ∈ Rn | x∗i = x∗j , i, j ∈ I(Ct)

}
. (4.3.11)

For the (p − 2)-dim affine subspace, it is an intersection of
(
n−p+1

1

)
(p − 1)-

dim affine subspace. Suppose the related (p − 1)-dim affine subspaces are Cs,

s = 1, . . . ,
(
n−p+1

1

)
. For x ∈ (

⋂
sCs) with ‖x‖0 = p− 1 ,

N̂X(x) = N̂⋃
s Cs

(x) =
⋂
s

N̂Cs(x) =

{
x∗ ∈ Rn

∣∣∣∣∣x∗i = x∗j , ∀i, j ∈
⋃
s

I(Cs)

}

=R(1, . . . , 1)>.

Similarly, we can have for r-dim affine subspaces with k − 1 ≤ r ≤ p − 2 and

x approximates x̄ with k ≤ ‖x‖0 ≤ p − 1 accordingly, N̂X(x) = N̂X(x̄). In
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conclusion, for the case k < p, combining (4.3.9), (4.3.10) and (4.3.11) and the

fact that R(1, . . . , 1)> ⊆
{
x∗ ∈ Rn

∣∣ x∗i = x∗j , i, j ∈ I(Ct)
}
for any t, we have

NX(x̄) =

(n−kp−k)⋃
t=1

{
x∗ ∈ Rn

∣∣ x∗i = x∗j , i, j ∈ I(Ct)
}⋃R(1, . . . , 1)>

=

(n−kp−k)⋃
t=1

{
x∗ ∈ Rn

∣∣ x∗i = x∗j , i, j ∈ I(Ct)
} . (4.3.12)

4.3.2 Stability of feasible sets

Here we consider a conservative strategy of portfolio selection using the minimax risk

measure, which is a variant from the the framework of [8]. We minimize the largest

invested risk qjxj on an individual stock when given a desired return level in all, r̄.

Note that here we impose the assumption that all assets are risky, i.e., qj > 0.

min
x,y

y

s.t. qjxj ≤ y, qj > 0, ∀j = 1, ..., n,

n∑
j=1

r̄jxj ≥ r̄ (4.3.13)

x ∈ X

Here xj ≥ 0, j = 1, . . . , n stands for the allocation of investments on the j-th asset,

r̄j, qj denotes the expected rate of return and expected absolute deviation of the j-th

asset respectively. Therefore r̄jxj gives the expected return of the investment on j-th

asset. Therefore any investors who adopt such selection rule can best avoid high risks

in any invested assets. The constraint x ∈ X are mainly some possible restrictions on

the investment, like no-shorting, number of investing stocks, etc. For this model, X

must contain the no-shorting requirements. The individual data in the given model,

risk level qj and return r̄j, often subject to perturbation. It is essential to ensure
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the solution is stable under minor perturbations. We can write the feasible set as a

set-valued mapping S(A, b) = {z ∈ Z | Az + b ∈ K} and a given pair (Ā, b̄) is

Ā =


q1 0 · · · 0 −1
0 q2 · · · 0 −1

. . .
0 0 · · · qn −1
−r̄1 −r̄2 · · · −r̄n 0

 ∈ R(n+1)×(n+1), b̄ =


0
...
0
r̄



and K = Rn+1
− , Z =

{(
x
y

) ∣∣∣∣ x ∈ X, y ∈ R
}
. Next we explain how condition (4.1.9)

works when given a reference point. We next show that the feasible set mapping S,

with two different set constraints, is Lipschitz-like at (Ā, b̄) for (x̄, ȳ) when some

natural conditions are satisfied.

Theorem 4.3.1. For the portfolio selection problem (4.3.13) with X being one of

the following sets:

1) X =
{
x ∈ Rn |

∑n
j=1 xj = 1, xj ≥ 0

}
2) X =

{
x ∈ Rn |

∑n
j=1 xj = 1, xj ≥ 0, ‖x‖0 < p

}
let z̄ = (x̄, ȳ) ∈ S(Ā, b̄). If one of the following conditions is satisfied, S is Lipschitz-

like at (Ā, b̄) for z̄.

(a)
∑n

i=1 r̄ix̄i > r̄.

(b) the number of invested stocks is greater than 1, i.e., ‖x̄‖0 ≥ 2 and for the

invested stocks, there exists at least two stocks with different returns, i.e.,∃i, j ∈

I(x̄) and i 6= j such that r̄i 6= r̄j, where I(x̄) = {i ∈ I | x̄i 6= 0} .

Note that condition (b) is easy to be satisfied when the stock pool is big enough.
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Proof. By (4.1.9), S is Lipschitz-like at (Ā, b̄) for z̄ if and only if −(Ā∗)−1NZ(z̄) ∩

NK(Āz̄ + b̄) = {0}, i.e.,

z∗ ∈ NK(Āz̄ + b̄), −Ā∗z∗ ∈ NZ(z̄) =⇒ z∗ = 0. (4.3.14)

For

Āz̄ + b̄ =


q1 0 · · · 0 −1
0 q2 · · · 0 −1

. . .
0 0 · · · qn −1
−r̄1 −r̄2 · · · −r̄n 0




x̄1
...
x̄n
ȳ

+


0
...
0
r̄



=


q1x̄1 − ȳ

...
qnx̄n − ȳ∑n
i=1−r̄ix̄i + r̄

 ∈ K = Rn+1
− ,

and z∗ ∈ NK(Āz̄ + b̄) = NRn+1
−

(Āz̄ + b̄), we have

{
z∗i ≥ 0, if qix̄i − ȳ = 0

z∗i = 0, if qix̄i − ȳ < 0
for i = 1, . . . , n,

{
z∗n+1 ≥ 0, if

∑n
i=1−r̄ix̄i + r̄ = 0

z∗n+1 = 0, if
∑n

i=1−r̄ix̄i + r̄ < 0
.

(4.3.15)

For

−Ā∗z∗ = −


q1 0 · · · 0 −r̄1

0 q2 · · · 0 −r̄2

0 0 · · · qn −r̄n
−1 −1 · · · −1 0




z∗1
...
z∗n
z∗n+1

 =


r̄1z
∗
n+1 − q1z

∗
1

...
r̄nz
∗
n+1 − qnz∗n∑n

i=1 z
∗
i

 ∈ NZ(z̄),

sinceX and R are closed sets, by [81, Proposition 6.41], we haveNZ(z̄) = NX×R(x̄, ȳ) =

NX(x̄) × NR(ȳ) = NX(x̄) × {0}. Thus we first have
∑n

i=1 z
∗
i = 0. Combining

(4.3.15), we have z∗i = 0 for all i = 1, . . . , n. When condition (a) holds, we have

z∗n+1 = 0 and (4.3.14) is satisfied. If not, it remains to obtain z∗n+1 = 0 given

(r̄1z
∗
n+1, . . . , r̄nz

∗
n+1)> ∈ NX(x̄) and z∗n+1 ≥ 0 by (4.3.14). By comparing between
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(4.3.2), (4.3.3) and (4.3.7) we can see that for the two choices of X mentioned in the

theorem, we can derive something in common:

r̄iz
∗
n+1 = r̄jz

∗
n+1, i, j ∈ I(x̄).

Then by condition (b) we have z∗n+1 = 0 as there exists r̄i 6= r̄j for i 6= j, i, j ∈

I(x̄).

Next we present an example when both condition (a) and (b) fail, S does not

enjoy the Lipschitz-like property at the reference point.

Example 4.3.2. Consider the portfolio selection problem with two stocks:

min y

s.t. 0.1x1 ≤ y,

0.5x2 ≤ y,

0.1x1 + 0.1x2 ≥ 0.1(trivial)

x1 + x2 = 1, x1, x2 ≥ 0.

That is, we have the value:

Ā =

 0.1 0 −1
0 0.5 −1
−0.1 −0.1 0

 ∈ R3×3, b̄ =

 0
0

0.1


with the set constraint X = {x ∈ R2 | x1 + x2 = 1, x1, x2 ≥ 0}. For this problem, the

optimal solution is z̄ = (x̄, ȳ) = (5
6
, 1

6
, 1

12
)> where z̄ ∈ S(Ā, b̄). Both condition (a)

and (b) are not satisfied as r̄1x̄1 + r̄2x̄2 = r̄ = 0.1 and r̄1 = r̄2.

We will show that S does not enjoy the Lipschitz-like property at the optimal

solution point by the Mordukhovich criterion and by definition. To check by the

Mordukhovich criterion, we have NK(Āz̄+ b̄) = NR3
−

(Āz̄+ b̄) = NR3
−

(
(0, 0, 0)>

)
= R3

+
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and

−(Ā∗)−1 (NZ(z̄)) = −(Ā∗)−1(NX(x̄)× {0}) =
1

6

 −10 10 5
10 −10 1
50 10 5

 t
t
0

 (t ∈ R)

=R(0, 0, 1)>.

Then −(Ā∗)−1 (NZ(z̄))∩NK(v̄) = {02}×R+ 6= {03} and the Mordukhovich criterion

is not satisfied here.

To verify by definition, suppose there exists l > 0, U ∈ N (Ā, b̄), V ∈ N (z̄), such

that

S(A′, b′) ∩ V ⊂ S(A, b) + l (‖A′ − A‖+ ‖b′ − b‖)BR3 ,∀(A′, b′), (A, b) ∈ U. (4.3.16)

By taking

Aε =

 0.1 0 −1
0 0.5 −1

−0.1 + ε −0.1 0


and ε > 0 small enough and choosing ρ > 0 small enough such that B(z̄, ρ) ⊂ V , let

A′ = Ā, A = Aε and b′ = b = b̄ in (4.3.16), we should have

S(Ā, b̄) ∩ B(z̄, ρ) ⊂ S(Aε, b̄) + lεBR2 .

However, given

S(Ā, b̄) = {(x1, x2, y) ∈ Z | x1 ≤ 10y, x2 ≤ 2y, x1 + x2 = 1, x1, x2 ≥ 0} ,

S(Aε, b̄) = {(x1, x2, y) ∈ Z | x1 ≤ 10y, x2 ≤ 2y, x1 + x2 ≥ 1 + 10εx1}

= {(0, 1, y) | y ≥ 1/2} ,

the inclusion does not hold for any ε ∈ (0,
5
6

+ρ

l
). Thus S does not enjoy the Lipschitz-

like property at
(
Ā, b̄

)
for z̄, which conforms to what we derived from the Mor-

dukhovich criterion.
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4.3.3 Stability of a stationary point set

Next we consider a selection model which balances the return and risk by a parameter

λ. In [8] a parametric portfolio optimization problem is considered:

min
x,y

λy + (1− λ)

(
−

n∑
i=1

rixi

)

s.t. qjxj ≤ y,∀j = 1, . . . , n, (4.3.17)

n∑
i=1

xi = 1, xi ≥ 0, ∀i = 1, . . . , n

where λ ∈ (0, 1) is an investor’s risk tolerance parameter. Similar to the setting

of (4.3.13), in this problem we are both minimizing the highest risk of each in-

dividual asset and maximizing the expected rate of return of the portfolio. The

balance between these two goals is achieved via the parameter λ. In other words,

investors can adjust the strategy according to their preferences between the overall

return(
∑n

i=1 rixi) and the largest individual asset risk (y) by controlling λ. For this

model, three assumptions are considered:

(A1) r1 ≤ r2 ≤ · · · ≤ rn,

(A2) no two identical assets exist, i.e., @i 6= j with ri = rj, qi = qj,

(A3) all assets are risky, i.e., qj > 0 for i = 1, . . . , n.

Lemma 4.3.3 ([8, Theorem 3.1]). With the assumptions (A1-A3) introduced above,

the optimal solution to (4.3.17) is given as

x̄i =


1

qi

 ∑
l∈I∗(λ)

1

ql

−1

, i ∈ I∗(λ)

0, i /∈ I∗(λ)

, ȳ =

 ∑
l∈I∗(λ)

1

ql

−1

(4.3.18)

where I∗(λ) is the set of assets to be invested decided by the following rule:
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(i) if there exists an integer k ∈ [0, n− 2] such that

j−1∑
i=0

rn−i − rn−j
qn−i

<
λ

1− λ
, for j = 1, . . . , k (4.3.19)

k∑
i=0

rn−i − rn−k−1

qn−i
≥ λ

1− λ
, (4.3.20)

then I∗(λ) = {n, n− 1, . . . , n− k} .

(ii) otherwise, I∗(λ) = {n, n− 1, . . . , 1} .

Next we will show that this optimal solution enjoys stability when the parameters

ri, i = 1, . . . , n undergo perturbations under some assumptions. First we reformulate

the optimization problem (4.3.17) as follows,

min c̄>z

s.t. Az + b̄ ∈ R2n
− × {1} (4.3.21)

where

A =



q1 0 · · · 0 −1
0 q2 · · · 0 −1

. . .
0 0 · · · qn −1
−1 0 · · · 0 0
0 −1 · · · 0 0

. . .
0 0 · · · −1 0
1 1 · · · 1 0


, z =


x1
...
xn
y

 , c̄ =


(λ− 1)r1

...
(λ− 1)rn

λ

 , b̄ =

 0
...
0

 .

(4.3.22)
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Let

A∗

 µ
γ
τ

 =


q1 · · · 0 −1 · · · 0 1

. . . . . . ...
0 · · · qn 0 · · · −1 1
−1 · · · −1 0 · · · 0 0





µ1
...
µn
γ1
...
γn
τ


=


q1µ1 − γ1 + τ

...
qnµn − γn + τ
−
∑n

i=1 µi

 = 0

with

 µ
γ
τ

 ∈ NR2n
− ×{1}(Az+b) =

n∏
i=1

NR−(qixi−y)×
n∏
i=1

NR−(−xi)×N{1}

(
n∑
i=1

xi

)
⊆ R2n

+ ×R.

By
∑n

i=1 µi = 0 with µi ≥ 0, we have µi = 0 for i = 1, . . . , n. As there is at least

one xi > 0 due to the constraint
∑n

i=1 xi = 1, the relative γi = 0 and therefore τ = 0

and γi = 0, for i = 1, . . . , n. We can naturally obtain µ = 0, γ = 0, τ = 0 for

any z being in the feasible set. Considering the set R2n
− ×{1} is convex, the optimal

solution set-mapping can be put as

S(c, b) =
{
z ∈ Rn+1 | 0 ∈ c+ A∗NR2n

− ×{1}(Az + b)
}
. (4.3.23)

To analyze the stability of optimal solution of (4.3.17) subject to changes on ri, it

would be sufficient to study the Lipschitz-like property of the solution mapping S at

the given pair (c̄, b̄) in (4.3.22) for z̄ in (4.3.18) . In [8, Appendix A], when I∗(λ) is

given, the related Lagrangian multiplier (µ̄, γ̄, τ̄) ∈ NR2n
− ×{1}(Az̄ + b̄) is unique as

µ̄i =


1

qi

(1− λ)ri −

 ∑
l∈I∗(λ)

1

ql

−1(1− λ)
∑

l∈I∗(λ)

rl
ql

 > 0, i ∈ I∗(λ)

0, i /∈ I∗(λ)

,

(4.3.24)
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γ̄i =


0, i ∈ I∗(λ)

−(1− λ)ri +

 ∑
l∈I∗(λ)

1

ql

−1(1− λ)
∑

l∈I∗(λ)

rl
ql
− λ

 ≥ 0, i /∈ I∗(λ)
,

(4.3.25)

and

τ̄ =

 ∑
l∈I∗(λ)

1

ql

−1(1− λ)
∑

l∈I∗(λ)

rl
ql
− λ

 . (4.3.26)

Next we give the upper estimate of NgphS(c̄, b̄, z̄).

Proposition 4.3.4. Let (c̄, b̄, z̄) be given as in (4.3.18) and (4.3.22) . Then

NgphS(c̄, b̄, z̄) ⊆
{

(−t∗, v∗, A∗v∗)
∣∣∣ (v∗, At∗) ∈ NgphNR2n

− ×{1}
(Az̄ + b̄, η̄)

}
(4.3.27)

where η̄ := (µ̄, γ̄, τ̄) is given as in (4.3.24), (4.3.25) and (4.3.26).

Proof. Here we denote K := R2n
− × {1} and D := F (gphNK) where F : R2n+1 ×

R2n+1 → R2n+1 × Rn+1 is defined as F (v, t) =

(
E 0
0 A∗

)(
v
t

)
=

(
v
A∗t

)
. Then we

can rewrite (4.3.23) as

gphS = {(c, b, z) | (Az + b,−c) ∈ D} .

For U ∈ N (Az̄ + b̄,−c̄), F−1(U) ∩ gphNK is either a single-point set or an empty

set and therefore is bounded. Besides, as η̄ is unique in −c̄ = A∗η̄, by [81, Theorem

6.43], we have

ND(Az̄ + b̄,−c̄) ⊆
{

(v∗, t∗)

∣∣∣∣ (E 0
0 A

)
(v∗, t∗) ∈ NgphNK (Az̄ + b̄, η̄)

}
{

(v∗, t∗)
∣∣ (v∗, At∗) ∈ NgphNK (Az̄ + b̄, η̄)

}
(4.3.28)

The inclusion (4.3.28) becomes an equation when gphNK is convex at around (Az̄+

b̄, η̄).
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LetG(c, b, z) := (Az+b,−c). Then we have gphS = G−1(D) and that∇G(c̄, b̄, z̄) =(
0 E A
−E 0 0

)
has full rank 3n+ 2. By [81, Exercise 6.7],

NgphS(c̄, b̄, z̄) =∇G(c̄, b̄, z̄)∗ND(Az̄ + b̄,−c̄)

⊆
{

(−t∗, v∗, A∗v∗)
∣∣ (v∗, At∗) ∈ NgphNK (Az̄ + b̄, η̄)

}
.

Remark 4.3.5. If we consider S as a mapping of c only, i.e.,

S(c) =
{
z ∈ Rn+1 | 0 ∈ c+ A∗NR2n

− ×{1}(Az)
}
,

we can also obtain the upper estimate

NgphS(c̄, z̄) ⊆
{

(−t∗, A∗v∗)
∣∣∣ (v∗, At∗) ∈ NgphNR2n

− ×{1}
(Az̄, η̄)

}
via [81, Theorem 6.14] as the constraint qualification

{
(v∗, At∗) ∈ NgphNK (Az̄, η̄)

(−t∗, A∗v∗) = 0
=⇒ (v∗, t∗) = 0

holds automatically.

Theorem 4.3.6. The solution to the portfolio optimization problem (4.3.17) enjoys

the Lipschitz-like property at (x̄, ȳ) for (r1, . . . , rn) if one of the following conditions

is satisfied:

(a) I∗(λ) = {n, n− 1, . . . , 1},

(b) I∗(λ) = {n, n− 1, . . . , n− k} for k ∈ [0, n− 2] and
k∑
i=0

rn−i − rn−k−1

qn−i
>

λ

1− λ
,
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Proof. The solution to the problem (4.3.17) is Lipschitz-like at the reference point

if S is Lipschitz-like at (c̄, b̄) for z̄ by representation (4.3.23). With upper estimate

(4.3.27), it is sufficient to have{
(v∗, At∗) ∈ NgphNR2n

− ×{1}
(Az̄ + b̄, η̄)

A∗v∗ = 0
=⇒ v∗ = 0, t∗ = 0,

where η̄ := (µ̄, γ̄, τ̄) is given as in (4.3.24), (4.3.25) and (4.3.26). Note that

A∗v∗ =


q1v
∗
1 − v∗n+1 + v∗2n+1

...
qnv
∗
n − v∗2n + v∗2n+1

−
∑n

i=1 v
∗
i

 , At∗ =



q1t
∗
1 − t∗n+1
...

qnt
∗
n − t∗n+1

−t∗1
...
−t∗n∑n
i=1 t

∗
i


.

For (v∗, At∗) ∈ NgphNR2n
− ×{1}

(Az̄+ b̄, η̄), by [81, Proposition 6.41], it is equivalent that


(v∗i , qit

∗
i − t∗n+1) ∈ NgphNR−

(qix̄i − ȳ, µ̄i), i = 1, . . . , n

(v∗n+j,−t∗j) ∈ NgphNR−
(−x̄j, γ̄j), j = 1, . . . , n

(v∗2n+1,
∑n

i=1 t
∗
i ) ∈ NgphN{1}(

∑n
i=1 x̄i, τ̄).

(4.3.29)

We know that gphNR− = R− × {0} ∪ {0} × R+. Thus for any (u1, u2) ∈ gphNR− ,

NgphNR−
(u1, u2) =


{0} × R, (u1, u2) ∈ R−− × {0}
R× {0}, (u1, u2) ∈ {0} × R++

{0} × R ∪ R× {0} ∪ R+ × R−, (u1, u2) = (0, 0)

.

(4.3.30)

Besides, for gphN{1} = {1}×R, NgphN{1}(u1, u2) = R×{0} if u1 = 1. Together with

(4.3.24)-(4.3.26) and (4.3.30), we can further simplify (4.3.29) as

1. i ∈ I∗(λ): qix̄i = ȳ, µ̄i > 0, x̄i > 0, γ̄i = 0.

(v∗i , qit
∗
i − t∗n+1) ∈ NgphNR−

(qix̄i − ȳ, µ̄i) = R× {0}. (4.3.31)

(v∗n+i,−t∗i ) ∈ NgphNR−
(−x̄i, γ̄i) = {0} × R. (4.3.32)
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2. i /∈ I∗(λ): qix̄i = 0 < ȳ, µ̄i = 0, x̄i = 0, γ̄i ≥ 0.

(v∗i , qit
∗
i − t∗n+1) ∈ NgphNR−

(qix̄i − ȳ, µ̄i) = {0} × R. (4.3.33)

(v∗n+i,−t∗i ) ∈ NgphNR−
(−x̄i, γ̄i) =

{
R× {0}, if γ̄i > 0

{0} × R ∪ R× {0} ∪ R+ × R−, if γ̄i = 0
.

(4.3.34)

Besides, A∗v∗ = 0 and (v∗2n+1,
∑n

i=1 t
∗
i ) ∈ NgphN{1}(

∑n
i=1 x̄i, τ̄) generate

qiv
∗
i − v∗n+i + v∗2n+1 = 0, i = 1, . . . , n (4.3.35)

n∑
i=1

v∗i = 0 (4.3.36)

n∑
i=1

t∗i = 0. (4.3.37)

Combining (4.3.32), (4.3.33), (4.3.35) and (4.3.36) we can obtain v∗ = 0. It remains

to verify t∗ = 0.

When I∗(λ) = {1, . . . , n}, by (4.3.31) and (4.3.37) we directly have t∗ = 0. When

I∗(λ) = {n, n− 1, . . . , n− k} where the integer k ∈ [0, n− 2] is decided by (4.3.19)

and (4.3.20). By (4.3.25), for i = 1, . . . , n− k − 1,

γ̄i =− (1− λ)ri +

 ∑
l∈I∗(λ)

1

ql

−1(1− λ)
∑

l∈I∗(λ)

rl
ql
− λ



=(1− λ)

 ∑
l∈I∗(λ)

1

ql

−1 ∑
l∈I∗(λ)

rl − ri
ql
− λ

1− λ

 .

When condition (b) holds, with assumption (A1), γ̄1 ≥ γ̄2 ≥ · · · ≥ γ̄n−k−1 > 0.

Therefore we can update (4.3.34) as

(v∗n+i,−t∗i ) ∈ NgphNR−
(−x̄i, γ̄i) = R× {0}, i /∈ I∗(λ).

Together with (4.3.31) and (4.3.37) we can obtain t∗ = 0.
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Remark 4.3.7. For both of the conditions (a) and (b), strictly complementarity

between Az̄ + b̄ and (µ̄, γ̄, τ̄) is achieved.
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Chapter 5

Conclusions and Future Research

5.1 Summary of the thesis

The Lipschitz-like property relative to a set is an important task to study the sta-

bility of parametric systems under perturbations within a certain set as it puts no

assumption on where the reference point lies in. Thanks to the projectional coderiva-

tive and the generalized Mordukhovich criterion developed in Meng et al. [59], we

were able to characterize such a property relative to a closed and convex set.

In this thesis, we focused on introducing more properties of this newly intro-

duced tool, projectional coderivatives, and deriving corresponding calculus rules. By

exploiting the structure of smooth manifolds, we simplified the expression of pro-

jectional coderivatives of any set-valued mapping relative to a smooth manifold to

a fixed-point one and extended the generalized Mordukhovich criterion under such

a setting. For a closed set in general, we introduced the chain rule of this tool for

composition of two set-valued mappings with outer semicontinuity. We also partic-

ularly developed chain rules when any one of these two mappings is single-valued.

Based on these results, sum rules were presented with different types of constraint

qualifications.

Subsequently we considered the parametric system under the framework in Levy

and Mordukhovich [53] and gave the upper estimates of the projectional coderivatives
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under different settings. Several examples were given to illustrate how the upper

estimate can be applied to analyze the stability. The comparison with the other

tool, directional coderivatives, was also carried out. With wide applicability of such

a system, we studied linear constraint systems, linear complementarity problems

and affine variational inequalities. For the first two problems, we gave expression of

projectional coderivatives relative to their domains under polyhedrality and convexity

and derive the corresponding graphical modulus. For the third one, we provided an

upper estimate of the projectional coderivative relative to a polyhedral set within

its domain with a constraint qualification assumed. In particular we developed the

sufficient condition of the relative Lipschitz-like property as a generalized critical face

condition under the framework of Dontchev and Rockafellar [18].

For the Lipschitz-like property, we focused on the linear constraint systems and

showed that the relations between different types of perturbation in terms of the

property. We also extended to result to the linear constraint system with an im-

plicit set constraint and characterized the property using various tools. Besides, we

showed the equivalence on this property between a variational inequality and its

linear approximation under full perturbation. Additionally, we considered a prac-

tical problem, a linear portfolio selection problem with two different models and

drew some easy-to-hold condition for the Lipschitz-like property for the feasible set

mapping and the stationary point set mapping respectively.

5.2 Future work

With results obtained as stated above, we plan to investigate in the following direc-

tions.

1. For chain rules we derived, it requires the set to be a smooth manifold to

obtain the equation. Can we relax this setting and obtain an equation with
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other conditions?

2. The calculation of projectional coderivative comes with the representation of

the normal cone, NgphS|X . To express it in terms of NgphS and NX , a constraint

qualification is almost a must. As Penot [70] showed that the linear estimate

can also replace the constraint qualification, can we use this to simplify the

expression of projectional coderivatives for some specific problems?

3. We know that the Lipschitz-like property of S corresponds to the metric reg-

ularity of S−1. For the projectional coderivative defined as in (1.3.6), it is

asymmetrical and can be used to verify the relative Lipschitz-like property

according to the generalized Mordukhovich criterion. Is it possible to make

some modifications on the projectional coderivative and extend the criterion

for other relative stability properties, like relative metric regularity?

4. The equivalence on the Lipschitz-like property between the generalized equa-

tion and its linear approximation has been illustrated in Dontchev and Rock-

afellar [19]. As it is relatively more convenient to deal with the linearized

system, can we obtain similar results for the relative Lipschitz-like property?

5. In Section 4.3.1 we calculate the normal cone of a simplex with sparsity con-

straint. Is it possible to apply the method to calculating the normal cone of

the solution mapping of linear complementarity problems with sparsity con-

straints?

6. For affine variational inequalities, we derived an upper estimate of the projec-

tional coderivative relative to a polyhedral set in the domain of the solution

mapping under a constraint qualification. For a set that is closely tied to the

critical face and the normal cone on the face, can we bypass the constraint
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qualification and give a sufficient condition for the relative Lipschitz-like prop-

erty?

150



Bibliography

[1] Aram V Arutyunov and Alexey F Izmailov. Directional stability theorem and

directional metric regularity. Mathematics of Operations Research, 31(3):526–

543, 2006.

[2] Jean-Pierre Aubin. Lipschitz behavior of solutions to convex minimization prob-

lems. Mathematics of Operations Research, 9(1):87–111, 1984.

[3] Dominique Azé and Jean-Noël Corvellec. On the sensitivity analysis of Hoffman

constants for systems of linear inequalities. SIAM Journal on Optimization, 12

(4):913–927, 2002.

[4] Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone

Operator Theory in Hilbert Spaces. Springer, 2011.

[5] Matúš Benko, Helmut Gfrerer, and Jiří V Outrata. Stability analysis for parame-

terized variational systems with implicit constraints. Set-Valued and Variational

Analysis, 28(1):167–193, 2020.

[6] J Frédéric Bonnans and Alexander Shapiro. Perturbation Analysis of Optimiza-

tion Problems. Springer Science & Business Media, 2013.

[7] Jonathan M. Borwein. Stability and regular points of inequality systems. Jour-

nal of Optimization Theory and Applications, 48(1):9–52, 1986.

151



[8] Xiaoqiang Cai, Kok-Lay Teo, Xiaoqi Yang, and Xun Yu Zhou. Portfolio opti-

mization under a minimax rule. Management Science, 46(7):957–972, 2000.

[9] María J Cánovas, Asen L Dontchev, Marco A López, and Juan Parra. Metric

regularity of semi-infinite constraint systems. Mathematical Programming, 104

(2):329–346, 2005.

[10] María J Cánovas, Marco A López, Boris S Mordukhovich, and Juan Parra.

Variational analysis in semi-infinite and infinite programming, I: Stability of

linear inequality systems of feasible solutions. SIAM Journal on Optimization,

20(3):1504–1526, 2010.

[11] María J Cánovas, Alexander Y Kruger, Marco A López, Juan Parra, and

MA Théra. Calmness modulus of linear semi-infinite programs. SIAM Journal

on Optimization, 24(1):29–48, 2014.

[12] María J Cánovas, Marco A López, Juan Parra, and Francisco J Toledo. Calm-

ness of the feasible set mapping for linear inequality systems. Set-Valued and

Variational Analysis, 22(2):375–389, 2014.

[13] María J Cánovas, Abderrahim Hantoute, Juan Parra, and Francisco J Toledo.

Calmness modulus of fully perturbed linear programs. Mathematical Program-

ming, 158(1):267–290, 2016.

[14] María J Cánovas, René Henrion, Marco A López, and Juan Parra. Outer limit

of subdifferentials and calmness moduli in linear and nonlinear programming.

Journal of Optimization Theory and Applications, 169(3):925–952, 2016.

[15] Frank H Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

[16] Richard W Cottle, Jong-Shi Pang, and Richard E Stone. The Linear Comple-

mentarity Problem. SIAM, 2009.

152



[17] Aris Daniilidis and Jeffrey CH Pang. Continuity and differentiability of set-

valued maps revisited in the light of tame geometry. Journal of the London

Mathematical Society, 83(3):637–658, 2011.

[18] Asen L Dontchev and R Tyrrell Rockafellar. Characterizations of strong regu-

larity for variational inequalities over polyhedral convex sets. SIAM Journal on

Optimization, 6(4):1087–1105, 1996.

[19] Asen L Dontchev and R Tyrrell Rockafellar. Implicit Functions and Solution

Mappings. Springer New York, 2009.

[20] Andrew Eberhard, Vera Roshchina, and Tian Sang. Outer limits of subdiffer-

entials for min–max type functions. Optimization, 68(7):1391–1409, 2019.

[21] Marian J Fabian, René Henrion, Alexander Y Kruger, and Jiří V Outrata.

Error bounds: necessary and sufficient conditions. Set-Valued and Variational

Analysis, 18(2):121–149, 2010.

[22] Francisco Facchinei and Jong-Shi Pang. Finite-Dimensional Variational In-

equalities and Complementarity Problems. Springer Science & Business Media,

2007.

[23] Yaping Fang, Kaiwen Meng, and Xiaoqi Yang. On minimal generators for semi-

closed polyhedra. Optimization, 64(4):761–770, 2015.

[24] Anthony V Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlin-

ear Programming. Academic Press, 1983.

[25] Helmut Gfrerer. On directional metric regularity, subregularity and optimality

conditions for nonsmooth mathematical programs. Set-Valued and Variational

Analysis, 21(2):151–176, 2013.

153



[26] Helmut Gfrerer and Boris S Mordukhovich. Robinson stability of parametric

constraint systems via variational analysis. SIAM Journal on Optimization, 27

(1):438–465, 2017.

[27] Helmut Gfrerer and Jiří V Outrata. On Lipschitzian properties of implicit mul-

tifunctions. SIAM Journal on Optimization, 26(4):2160–2189, 2016.

[28] Helmut Gfrerer and Jiří V Outrata. On computation of limiting coderivatives

of the normal-cone mapping to inequality systems and their applications. Opti-

mization, 65(4):671–700, 2016.

[29] Helmut Gfrerer and Jiří V Outrata. On the Aubin property of solution maps to

parameterized variational systems with implicit constraints. Optimization, 69

(7-8):1681–1701, 2020.

[30] Ivan Ginchev and Boris S Mordukhovich. On directionally dependent subdif-

ferentials. Comptes rendus de l’Académie bulgare des Sciences, 64(4):497–508,

2011.

[31] Miguel A Goberna and Marco A López. Linear Semi-Infinite Optimization.

John Wiley & Sons, 1998.

[32] M Seetharama Gowda and Jong-Shi Pang. Stability analysis of variational in-

equalities and nonlinear complementarity problems, via the mixed linear com-

plementarity problem and degree theory. Mathematics of Operations Research,

19(4):831–879, 1994.

[33] René Henrion and Jiří Outrata. On calculating the normal cone to a finite union

of convex polyhedra. Optimization, 57(1):57–78, 2008.

[34] René Henrion, Jiří V Outrata, and Thomas Surowiec. On the co-derivative

154



of normal cone mappings to inequality systems. Nonlinear Analysis: Theory,

Methods & Applications, 71(3-4):1213–1226, 2009.

[35] Alan J Hoffman. On approximate solutions of systems of linear inequalities.

Journal of Research of the National Bureau of Standards, 49(4), 1952.

[36] Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge university

press, 1990.

[37] Duong Thi Kim Huyen and Jen-Chih Yao. Solution stability of a linearly per-

turbed constraint system and applications. Set-Valued and Variational Analysis,

27(1):169–189, 2019.

[38] Duong Thi Kim Huyen and Nguyen Dong Yen. Coderivatives and the solution

map of a linear constraint system. SIAM Journal on Optimization, 26(2):986–

1007, 2016.

[39] Alexander D Ioffe. On regularity concepts in variational analysis. Journal of

Fixed Point Theory and Applications, 8(2):339–363, 2010.

[40] Alexander D Ioffe. Metric regularity—A survey: Part 1. theory. Journal of the

Australian Mathematical Society, 101(2):188–243, 2016.

[41] Alexander D Ioffe. Variational analysis of Regular Mappings: Theory and Ap-

plications. Springer, 2017.

[42] Alexander D Ioffe. On variational inequalities over polyhedral sets. Mathematical

Programming, 168(1):261–278, 2018.

[43] Alexander D Ioffe and Jiří V Outrata. On metric and calmness qualification con-

ditions in subdifferential calculus. Set-Valued Analysis, 16(2-3):199–227, 2008.

155



[44] Hubertus Th Jongen, Jan-J Rückmann, and Gerd-Wilhelm Weber. One-

parametric semi-infinite optimization: On the stability of the feasible set. SIAM

Journal on Optimization, 4(3):637–648, 1994.

[45] David Kinderlehrer and Guido Stampacchia. An introduction to Variational

Inequalities and Their Applications. SIAM, 2000.

[46] Diethard Klatte and Bernd Kummer. Nonsmooth Equations in Optimization.

Kluwer Academic Publishers, 2002.

[47] Alexander Y Kruger, Huynh Van Ngai, and Michel Théra. Stability of error

bounds for convex constraint systems in banach spaces. SIAM Journal on Op-

timization, 20(6):3280–3296, 2010.

[48] Alexander Y Kruger, Marco A López, and Michel Théra. Perturbation of error

bounds. Mathematical Programming, 168(1):533–554, 2018.

[49] Serge Lang. Introduction to Linear Algebra (5th edition). Wellesley - Cambridge

Press, 2016.

[50] Gue Myung Lee and Nguyen Dong Yen. Coderivatives of a Karush–Kuhn–

Tucker point set map and applications. Nonlinear Analysis: Theory, Methods

& Applications, 95:191–201, 2014.

[51] Gue Myung Lee, Nguyen Nang Tam, and Nguyen Dong Yen. Quadratic Pro-

gramming and Affine Variational Inequalities: A Qualitative Study. Springer,

2005.

[52] John M Lee. Introduction to Smooth Manifolds. Springer, 2013.

[53] Adam B Levy and Boris S Mordukhovich. Coderivatives in parametric opti-

mization. Mathematical Programming, 99(2):311–327, 2004.

156



[54] Chong Li and Kung Fu Ng. Quantitative analysis for perturbed abstract inequal-

ity systems in banach spaces. SIAM Journal on Optimization, 28(4):2872–2901,

2018.

[55] Minghua Li and Shengjie Li. Robinson metric regularity of parametric vari-

ational systems. Nonlinear Analysis: Theory, Methods & Applications, 74(6):

2262–2271, 2011.

[56] Minghua Li, Kaiwen Meng, and Xiaoqi Yang. On error bound moduli for locally

Lipschitz and regular functions. Mathematical Programming, 171(1):463–487,

2018.

[57] Shu Lu and Stephen M Robinson. Variational inequalities over perturbed poly-

hedral convex sets. Mathematics of Operations Research, 33(3):689–711, 2008.

[58] Zhi-Quan Luo and Paul Tseng. Perturbation analysis of a condition number

for linear systems. SIAM Journal on Matrix Analysis and Applications, 15(2):

636–660, 1994.

[59] Kaiwen Meng, Minghua Li, Wenfang Yao, and Xiaoqi Yang. Lipschitz-like prop-

erty relative to a set and the generalized Mordukhovich criterion. Mathematical

Programming, 189(1):455–489, 2021.

[60] Kaiwen Meng, Hongyu Yang, Xiaoqi Yang, and Carisa Kwok Wai Yu. Portfolio

optimization under a minimax rule revisited. Optimization, pages 1–29, 2021.

[61] Boris S Mordukhovich. Sensitivity analysis in nonsmooth optimization. Theo-

retical Aspects of Industrial Design, 58:32–46, 1992.

[62] Boris S Mordukhovich. Complete characterization of openness, metric regularity,

and Lipschitzian properties of multifunctions. Transactions of the American

Mathematical Society, 340(1):1–35, 1993.

157



[63] Boris S Mordukhovich. Generalized differential calculus for nonsmooth and set-

valued mappings. Journal of Mathematical Analysis and Applications, 183(1):

250–288, 1994.

[64] Boris S Mordukhovich. Stability theory for parametric generalized equations and

variational inequalities via nonsmooth analysis. Transactions of the American

Mathematical Society, 343(2):609–657, 1994.

[65] Boris S Mordukhovich. Variational Analysis and Generalized Differentiation I.

Springer Science & Business Media, 2006.

[66] Boris S Mordukhovich. Variational Analysis and Applications. Springer, 2018.

[67] Boris S Mordukhovich and Jiří V Outrata. Coderivative analysis of quasi-

variational inequalities with applications to stability and optimization. SIAM

Journal on Optimization, 18(2):389–412, 2007.

[68] Boris S Mordukhovich and Bingwu Wang. Restrictive metric regularity and gen-

eralized differential calculus in Banach spaces. International Journal of Mathe-

matics and Mathematical Sciences, 2004(50):2653–2680, 2004.

[69] Javier F Peña, Juan C Vera, and Luis F Zuluaga. New characterizations of

Hoffman constants for systems of linear constraints. Mathematical Programming,

187(1):79–109, 2021.

[70] Jean-Paul Penot. Cooperative behavior of functions, relations and sets. Math-

ematical Methods of Operations Research, 48(2):229–246, 1998.

[71] Nguyen Thanh Qui. New results on linearly perturbed polyhedral normal cone

mappings. Journal of Mathematical Analysis and Applications, 381(1):352–364,

2011.

158



[72] Nguyen Thanh Qui. Nonlinear perturbations of polyhedral normal cone map-

pings and affine variational inequalities. Journal of Optimization Theory and

Applications, 153(1):98–122, 2012.

[73] Daniel Ralph. A new proof of Robinson’s homeomorphism theorem for PL-

normal maps. Linear Algebra and Its Applications, 178:249–260, 1993.

[74] Stephen M Robinson. Stability theory for systems of inequalities. Part I: Linear

systems. SIAM Journal on Numerical Analysis, 12(5):754–769, 1975.

[75] Stephen M Robinson. Stability theory for systems of inequalities, Part II: Dif-

ferentiable nonlinear systems. SIAM Journal on Numerical Analysis, 13(4):

497–513, 1976.

[76] Stephen M Robinson. A characterization of stability in linear programming.

Operations Research, 25(3):435–447, 1977.

[77] Stephen M Robinson. Strongly regular generalized equations. Mathematics of

Operations Research, 5(1):43–62, 1980.

[78] Stephen M Robinson. Some continuity properties of polyhedral multifunctions.

Mathematical Programming at Oberwolfach, pages 206–214, 1981.

[79] Stephen M Robinson. Normal maps induced by linear transformations. Mathe-

matics of Operations Research, 17(3):691–714, 1992.

[80] R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1997.

[81] R Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis. Springer

Science & Business Media, 2009.

[82] Stefan Scholtes. Introduction to Piecewise Differentiable Equations. Springer,

2012.

159



[83] Huynh Van Ngai and Michel Théra. Directional metric regularity of multifunc-

tions. Mathematics of Operations Research, 40(4):969–991, 2015.

[84] Huynh Van Ngai, Alexander Y Kruger, and Michel Théra. Stability of error

bounds for semi-infinite convex constraint systems. SIAM Journal on Opti-

mization, 20(4):2080–2096, 2010.

[85] Nguyen Dong Yen. Lipschitz continuity of solutions of variational inequalities

with a parametric polyhedral constraint. Mathematics of Operations Research,

20(3):695–708, 1995.

160


	CERTIFICATE OF ORIGINALITY
	Abstract
	Acknowledgements
	List of Notations
	1 Introduction
	1.1 Literature review
	1.2 Organization of the thesis
	1.3 Preliminaries

	2 Projectional Coderivatives and Chain Rules
	2.1 Projectional coderivatives and properties of smooth manifolds
	2.2 Lipschitz-like property relative to a smooth manifold
	2.3 Chain rules for projectional coderivatives
	2.4 Sum rules for projectional coderivatives

	3 Relative Lipschitz-like Property for Parametric Systems
	3.1 Projectional coderivatives for parametric systems
	3.2 Linear constraint systems
	3.2.1 Relative Lipschitz-like property and the graphical modulus
	3.2.2 Some examples

	3.3 Linear complementarity problems
	3.3.1 Properties of graph and domain
	3.3.2 Lipschitz-like property relative to domain under convexity
	3.3.3 The graphical modulus

	3.4 Affine variational inequalities
	3.4.1 The upper estimate of the projectional coderivative
	3.4.2 Generalized critical face condition


	4 Lipschitz-like Property for Linear Constraint Systems
	4.1 Linear constraint systems
	4.1.1 Lipschitz-like property of linear constraint systems
	4.1.2 Linear constraint system with a set constraint

	4.2 Linearization of nonlinear variational inequalities
	4.3 Application to a linear portfolio selection
	4.3.1 Examples of normal cones of a set constraint
	4.3.2 Stability of feasible sets
	4.3.3 Stability of a stationary point set


	5 Conclusions and Future Research
	5.1 Summary of the thesis
	5.2 Future work




