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Abstract 

This thesis improves the momentum potential theory (MPT) proposed by Doak to study 

the physical mechanism underlying high-speed boundary layer instabilities. The MPT 

approach decomposes random disturbances into well-defined vortical, acoustic, and thermal 

components and derives an energy budget equation. However, the application of the original 

MPT approach in the study of high-speed boundary layer instabilities in previous research is 

questionable. The first problem is that the effect of different source terms on different energy 

fluxes is not clarified. Three independent energy budget equations for each MPT component 

are obtained for the first time.  The effect of different source terms on each energy flux is 

clarified and energy exchange terms between MPT components are revealed. Then, the 

“sound radiation” mechanism of the supersonic mode and the stabilization mechanism of the 

porous coating to the supersonic mode is elucidated with these independent energy budget 

equations. The second problem is that the growth rate of the instability mode is not related to 

the energy budget equation explicitly. The integral energy budget equation is thus derived to 

evaluate contribution of different source terms to the growth rate. The growth rate analysis is 

performed for the unstable S mode of a Mach 6.0 boundary layer with the adiabatic wall in the 

spatial LST. The result indicates that the thermal diffusion source 𝑃𝑑𝑖𝑓𝑓  plays a key role in the 

amplification of the unstable S mode. Furthermore, the growth rate analysis is performed for 

DNS results of different acoustic metasurfaces to clarify the stabilization mechanism of 

acoustic metasurfaces. 
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Nomenclatures 

𝑎 = local speed of sound, m/s 

𝐶𝑝 = specific heat at constant pressure, J/(kg·K) 

𝑐 = phase speed, m/s 

𝑓 = frequency, Hz 

H = total enthalpy per unit mass, J/kg 

ℎ = specific enthalpy per unit mass, J/kg 

𝑒 = internal energy per unit mass, J/kg 

𝑀𝑟 = relative Mach number 

𝑀 = Mach number 

Re = Reynolds number 

𝜌 = density, kg/m3 

𝑇 = temperature, K 

𝑝 = pressure, Pa 

𝒎 = momentum density, kg/(m2·s) 

𝒎𝐴
′  = the acoustic component of momentum density, kg/(m2·s) 

𝒎𝐵
′  = the vortical component of momentum density, kg/(m2·s) 

𝒎𝑇
′  = the thermal component of momentum density, kg/(m2·s) 

𝑅 = gas constant of air, J/(kg·K) 

𝑆 = entropy, J/(kg·K) 

𝑆̿ = viscous stress tensor, kg/(m·s2) 

𝑡 = time, s 

𝑢 = streamwise velocity, m/s 

𝑣 = normal velocity, m/s 

𝑥 = streamwise coordinate, m 

𝑦 = normal coordinate, m 

𝒖 = velocity vector, m/s 

𝜶 = acceleration vector, m/s2 



 

XI 

 

𝛼 = streamwise wavenumber, m-1 

𝛽 = spanwise wavenumber, m-1 

𝜔 = circular frequency, s-1 

𝜴 = vorticity vector, s-1 

𝜎 = growth rate, m-1 

𝜓 = scalar potential of the momentum density, m2/s 

𝜓𝐴 = acoustic potential, m2/s 

𝜓𝑇 = thermal potential, m2/s 

𝛾 = specific heat ratio 

Superscripts 

′ = fluctuation quantity 

  ̅ = mean quantity 

Subscripts 

∞ = freestream quantity 

w = wall quantity 
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1. Introduction 

1.1 Background 

High-speed boundary layer (HBL) transition presents critical challenges to high-

performance supersonic and hypersonic vehicles' design. Laminar-to-turbulent transition in 

the HBL leads to a significant increase of convective heating rates from the high-temperature 

air to the vehicle surface, requiring an effective thermal protection system (TPS) protect the 

hypersonic vehicle from burning out. The high convective heat transfer rate due to the HBL 

transition is illustrated in Figure 1-1. The heat transfer rate for a laminar boundary layer can be 

40% less than that of a turbulent boundary layer on a sharp cone at M∞=5.5 [1]. Therefore, 

predicting and delaying the transition in the HBL is of particular importance for the design of 

future supersonic and hypersonic vehicles' TPS. 

Research studies of the laminar-turbulent transition mechanisms in the HBL have been a 

long history. Numerous investigations by experiment[2-13], linear stability theory (LST)[14-

19], and direct numerical simulation (DNS)[20-26] have been conducted to understand the 

physic mechanisms underlying the laminar-turbulent transition in the HBL. It is generally 

acknowledged that the transition from the laminar flow to the turbulent flow is a multifold 

process developing in several paths[27]. 
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Figure 1-1. Heat transfer rate on a sharp cone at M∞=5.5 [1] 

Figure 1-2 [28] shows different ways to turbulence in boundary-layer flows depending 

on the environment's perturbation disturbance levels. In the free-flight case of hypersonic 

vehicles, disturbances in the atmosphere are usually negligible. The transition from laminar to 

turbulence is in the HBL is mainly through path A. Path A is the modal growth of boundary-

layer instabilities, including Mack's first and second modes, the 3D crossflow instability, and 

the concave-wall Görtler instability. For the high-speed flow over a 2-D flat plate or an 

axisymmetric body, the dominant instability modes in the boundary layer are Mack's first and 

second modes. As the external disturbances level increases, laminar to turbulent transition will 

be triggered through other pathways. Path B is the transient growth of the eigenmodes in the 

HBL with higher-level external disturbances. Path C is the transient growth attributed to the 

non-orthogonal eigenmodes in the HBL. Path D is associated with the internal flows at a 

considerable turbulence level. Path E is the nonlinear case with such large amplitude 

disturbances that the linear assumption is invalid. 



 

3 

 

 

Figure 1-2. Paths to turbulence in boundary-layer flows [28] 

1.2 Linear Stability Theory 

When the disturbance level is low enough that the linearization assumption is valid, 

laminar-to-turbulent transition in the hypersonic boundary layer over a flat plate or 

axisymmetric cone is dominated by the modal growth of Mack’s first and second modes. In 

this case, LST as a powerful theoretical tool is widely utilized to identify unstable boundary 

layer modes and analyze their downstream development. 

In LST, physical quantities in the flow field 𝜙(𝑥, 𝑦, 𝑧, 𝑡) are divided into two parts: 

steady mean terms �̅�(𝑥, 𝑦, 𝑧) and small unsteady disturbance terms 𝜙′(𝑥, 𝑦, 𝑧, 𝑡). It can be 

expressed as 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = �̅�(𝑥, 𝑦, 𝑧) + 𝜙′(𝑥, 𝑦, 𝑧, 𝑡), where x is the stream-wise direction, y 

is the normal direction to the wall, z is the span-wise direction and t is the time. By 

substituting the above equation into the Navier-Stokes (N-S) equations, the linearized N-S 

equations are derived by dropping the quadratic nonlinear terms. The local parallel 
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assumption is adopted in LST that the growth of boundary thickness is negligible and the 

steady mean terms �̅� do not vary in the x-direction. Thus, the disturbance term 𝜙′(𝑥, 𝑦, 𝑧, 𝑡) is 

expressed in the harmonic waveform 𝜙′(𝑥, 𝑦, 𝑧, 𝑡) = �̂�(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) + 𝑐. 𝑐., c.c. means the 

complex conjugate. Here, 𝜔  is the circular frequency, 𝛼  and 𝛽  are the streamwise and 

spanwise wave number, respectively. With the local parallel assumption, the linearized N-S 

equations result in an eigenvalue problem. The mode solution �̂�(𝑦) and the dispersion relation 

𝐷(𝛼, 𝛽,𝜔) = 0 are obtained by solving the eigenvalue problem. There are two frameworks 

for LST. If 𝛼 and 𝛽 are real numbers and allowing 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 to be a complex number, a 

typical temporal stability analysis is performed. In this case, the mode solution with positive 

𝜔𝑖 represents an exponential growth unstable wave. If 𝜔 and 𝛽 are real numbers and allowing 

𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖 to be a complex number, it is a typical spatial stability analysis. Similarly, the 

mode solution with negative 𝛼𝑖 is an exponential growth unstable wave. 

1.3 Instability Modes in HBL 

Mack [14] firstly identified that multiple unstable modes exist in the compressible 

boundary layer at a high Mach number. As shown in Figure 1-3, Mack’s numerical study 

showed that the most unstable mode in the supersonic boundary layer (Mach>2.0) over the 

adiabatic wall is mode 2, which is referred to as Mack’s second mode. Mack also found that 

the most unstable mode 1 (Mack’s first mode), which corresponds to the Tollmien-Schlichting 

(TS) wave in the incompressible boundary layer, is oblique (𝛽 ≠ 0) as shown in Figure 1-4. 

On the contrary, higher modes are two-dimensional (𝛽 = 0) and do not have any counterpart 

in the incompressible boundary layer. 
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Figure 1-3. Maximum temporal amplification rate of first four two-dimensional modes 

in the supersonic boundary layer over the adiabatic wall. From Mack [14]. 

 

Figure 1-4. Temporal amplification rate of first and second modes for different wave 

angles at Mach 4.0 over the adiabatic wall. The total temperature of the freestream is 

311K. From Mack [14]. 

Following Mack [14], the relative Mach number is defined as 

 𝑀𝑟 =
�̅�(𝑦)−𝑐

�̅�(𝑦)
 (1.1) 

Here, �̅�(𝑦) is the mean streamwise velocity, c is the phase speed of disturbance waves, and 

�̅�(𝑦) is local acoustic speed. In the case of Mack’s second mode, there exists a sonic line, 

where 𝑀𝑟 = −1.0, in the boundary layer. Between the sonic line and the solid wall, the mean 

flow is supersonic (𝑀𝑟 < −1.0) relative to the phase speed of disturbance waves. In this 
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supersonic region, the acoustic rays are reflected by the wall and the sonic line. Thus, the 

boundary layer forms a waveguide for disturbance waves. As schematically shown in Figure 

1-5, Mack’s second mode and higher modes belong to the family of acoustic waves trapped in 

the waveguide [27].  

 

Figure 1-5. The waveguide in a high-speed boundary layer. From Fedorov [27]. 

Mathematically, eigen-modes can be used to expand PDE solutions. Fedorov and Tumin 

[18] suggest using the terminology of discrete and continuous modes instead of Mack’s 

terminology. In the framework of spatial LST, the solution of the eigenvalue problems is a 

unique expansion into several discrete and continuous normal modes. Normal modes in 

discrete spectrum vanish as 𝑦 → ∞, while the continuous modes are bounded as 𝑦 → ∞. 

Figure 1-6 shows the continuous and discrete spectrum in the complex α-plane in the spatial 

LST framework. In Figure 1-6, 𝛼𝑐,1
+  represent vorticity waves, 𝛼𝑐,2

+  represent entropy waves, 

𝛼𝑐,3
+  represent fast acoustic waves, 𝛼𝑐,4

+  represent slow acoustic waves, 𝛼𝑐,1
− , 𝛼𝑐,2

− , 𝛼𝑐,3
−  

represent upstream propagating waves, and 𝛼𝑛 represent discrete modes. 
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Figure 1-6. The schematic pattern of the continuous (lines) and discrete (crosses) 

spectrum in the complex α-plane in the spatial LST framework. From Chuvakhov and 

Fedorov [29]. 

In the discrete spectrum of spatial LST, the phase speed of one mode tends to 𝑐𝑟 = 1 +
1

𝑀
 

at the leading edge of the boundary layer, which is the phase speed of fast acoustic waves in 

the freestream. The phase speed of the other mode tends to 𝑐𝑟 = 1 −
1

𝑀
 at the leading edge of 

the boundary layer, which is the phase speed of slow acoustic waves in the freestream. Thus, 

the former is named slow mode (S mode) and the latter is named fast mode (F mode) [18]. 

Figure 1-7 shows the phase speed for slow and fast modes of the Mach 4.5 boundary layer 

with the adiabatic wall. As shown in Figure 1-7a, there are two unstable regions (𝑐𝑖 < 0) for 

the S mode, which corresponds to Mack’s first mode and second mode respectively. In Figure 

1-7b, the F mode synchronizes with fast sound waves in region 1 (R=0, the leading edge), 

whereas the S mode synchronizes with slow sound waves. As R increases, the F mode 

synchronizes with entropy/vorticity waves in region 2. Further downstream, the F mode 

synchronizes with the slow mode in region 3, which causes the most unstable Mack’s second 

mode [18]. 
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Figure 1-7. a) Imaginary and b) real parts of the phase speed, 𝒄 =
𝝎

𝜶
, for slow and fast 

modes at M=4.5, adiabatic wall, and the dimensionless frequency, 𝑭 =
𝝎

𝑹𝒆
, is 5×10-5 with 

spatial stability analysis. Here, 𝑹𝒆 is the Reynolds number based on the local boundary 

layer thickness. From Fedorov and Tumin [18]. 

1.4 Ultrasonic Absorptive Coating 

As mentioned above, the desire to delay even suppress the transition in HBL is of 

particular importance in the design of high-performance hypersonic vehicles. Under a low 

disturbance environment, the modal growth of Mack’s second mode is the major cause of 

boundary layer transition over a smooth flat plate or a sharp cone with a high Mach number. 

Numerous studies[30-49] have been conducted to control the laminar to turbulence transition 

in the HBL by suppressing the growth of Mack’s second mode. Mack’s second mode belongs 

to the family of trapped acoustic waves in the waveguide formed by the sonic line and the 

solid wall in the high-speed boundary layer. The wavelength of Mack’s second mode is 
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around twice the boundary thickness, and the phase speed of Mack’s second mode is slightly 

less than the freestream velocity. Thus, the frequency of Mack’s second mode is typically on 

the order of 100kHz, which is in the ultrasonic frequency band. Given the acoustic nature of 

Mack’s second mode, Malmuth, et al. [30] proposed to absorb the acoustic energy of Mack’s 

second mode by ultrasonic porous coating (UAC). The LST analysis performed by Fedorov, et 

al. [31] indicated that UAC reduces the growth rate of Mack’s second mode substantially. 

Rasheed, et al. [35] conducted boundary layer transition experiments on a sharp 5.06-deg half-

angle round cone at zero angle of attack in Caltech’s T5 Hypervelocity Shock Tunnel. The test 

cone had a smooth surface over half the cone and the UAC surface over the other half. In 

Figure 1-8, The resonantly enhanced shadowgraph of the flow field around the test cone 

showed that laminar-to-turbulence transition happened on the smooth side while the boundary 

layer is laminar on the porous side. The UAC was proved to be highly effective in delaying 

the transition dominated by Mack’s second mode. 

 

Figure 1-8. Resonantly enhanced shadowgraph of the boundary layer on the smooth side 

and the porous side. From [35]. 
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Fedorov, et al. [32] studied the boundary layer transition experimentally and theoretically 

on a thin coating of fibrous absorbent material (felt metal) in the Mach 6 wind tunnel on a 7◦ 

half-angle sharp cone. This kind of UAC has a random microstructure. Their results showed 

that Mack’s second mode is stabilized effectively by the UAC with random microstructure, 

while Mack’s first mode is destabilized marginally. Wang and Zhong [36] compared the 

growth rate of S mode on regular porous coating and felt-metal porous coating by numerical 

simulation. It was found that regular porous coating is weaker than felt-metal porous coating 

in Mack’s first mode destabilization and Mack’s second mode stabilization. Wagner, et al. [38] 

confirmed that ultrasonically absorptive carbon-carbon material delays the boundary layer 

transition effectively in the High Enthalpy Shock Tunnel Göttingen of the German Aerospace 

Center (DLR) at Mach 7.5. 

The stabilization effect of above mentioned UAC materials on Mack’s second mode is 

attributed to the dissipation of acoustic energy by porous microstructure. Wang and Zhong [50] 

studied the effect of porous coating admittance phase angle on the boundary layer stabilization 

and found that the destabilization effect of Mack’s first mode decreases with the phase angle 

of admittance decreasing. Based on the different effects of porous coating admittance phase 

angle on Mack’s first mode and second mode, Tian, et al. [44] proposed an optimal design of 

UAC which stabilized Mack’s second mode effectively and destabilized Mack’s first mode 

weakly. 

Besides the absorptive UAC materials, Zhao, et al. [46] found that Mack’s second mode 

is suppressed significantly with near-zero surface acoustic impedance. When the surface 

acoustic impedance approaches zero, a minimum fluctuation pressure is achieved near the 
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surface due to the cancellation of the incident and reflected acoustic waves. As shown in 

Figure 1-9, the amplitude of the fluctuation pressure decreases significantly in the cavity of 

the absorptive UAC, while it remains almost the same intensity in the cavity of the 

impedance-near-zero UAC. 

 

Figure 1-9. Fluctuating pressure amplitude contours for rigid boundary (upper), 

absorptive UAC (middle), and impedance-near-zero UAC (lower). 

1.5 Energy approaches 

The linear stability theory shows the existence of unstable modes in the high-speed 

boundary layer by giving the growth rate of these modes mathematically. However, it does not 

give any insight into the actual physics underlying the growth of unstable modes. There have 

been attempts to provide a physical interpretation of the growth of small disturbances in the 

flow field based on energy approaches. The first energy approach to the incompressible 

instability theory was originated by Reynolds [51]. In the incompressible boundary layer, the 

kinetic energy of a small 2D disturbance is given by multiplying the dimensionless x and y 

linearized momentum equations by 𝑢′ and 𝑣′, respectively, and add, 
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 (
𝜕

𝜕𝑡
+ �̅�

𝜕

𝜕𝑥
) 𝑒 + 𝑢′𝑣′

𝜕�̅�

𝜕𝑦
= −𝑢′

𝜕𝑝′

𝜕𝑥
− 𝑣′

𝜕𝑝′

𝜕𝑦
+

1

𝑅
(𝑢′𝛻2𝑢′ + 𝑣′𝛻2𝑣′) (1.2) 

Here, 𝑒 =
1

2
(𝑢′2 + 𝑣′2) is the kinetic energy of the 2D disturbance. Then, equation (1.2) is 

integrated from 𝑦 = 0 to infinity and is taken average over a wavelength, 

 
𝜕𝐸

𝜕𝑡
= �̅� − �̅� = ∫ 𝜏

𝜕�̅�

𝜕𝑦
𝑑𝑦

∞

0
− ∫ 〈𝜁2〉𝑑𝑦

∞

0
 (1.3) 

Here, 𝐸 =
1

2
〈𝑢′2〉 +

1

2
〈𝑣′2〉 is the total disturbance kinetic energy per wavelength, 𝜏 = −〈𝑢′𝑣′〉 

is the Reynolds stress, and 𝜁 =
𝜕𝑢′

𝜕𝑦
−
𝜕𝑣′

𝜕𝑥
 is the z-component of the fluctuation vorticity. The 

symbol 〈∙〉 means the average over a wavelength. In equation (1.3), �̅� = ∫ 𝜏
𝜕�̅�

𝜕𝑦
𝑑𝑦

∞

0
 is the total 

energy production term over a wavelength due to the Reynolds stress and �̅� = ∫ 〈𝜁2〉𝑑𝑦
∞

0
 is 

the total energy dissipated by the viscous effect. As a consequence, the small 2D disturbance 

in the incompressible boundary layer grows if and only if �̅� outweigh �̅�. 

Reynolds’ kinetic energy approach is only applicable to the incompressible parallel flow. 

For the compressible boundary layer with a high Mach number, Kuehl [52] derived a 

Lagrangian acoustic energy equation by ignoring the viscous effect. Considering the inviscid 

N-S equation, 

 
𝐷𝜌

𝐷𝑡
= −𝜌𝛻 ⋅ 𝒖 (1.4) 

 𝜌
𝐷𝒖

𝐷𝑡
= −𝛻𝑝 (1.5) 

 𝜌
𝐷𝑇

𝐷𝑡
−

1

𝐶𝑝

𝐷𝑝

𝐷𝑡
= 0 (1.6) 

Following below steps: 

𝒖 ⋅ (1.4) + 𝑅(𝑇 ⋅ (1.4) + (1.6)) 

The acoustic energy equation is derived as 

 
1

2
𝜌
𝐷𝒖2

𝐷𝑡
+

1

2𝜌𝑎2
𝐷𝑝2

𝐷𝑡
+ 𝛻 ⋅ (𝑝𝒖) = 0 (1.7) 

where 
𝐷

𝐷𝑡
 is the material derivative, 𝑎 = 𝛾𝑅𝑇 is the sound speed, and 𝛾 is the ratio of specific 
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heat. The first two terms on the left-hand side are the Lagrangian derivative of acoustic energy 

and the third term represents the divergence of acoustic power. 

From equation (1.7), one can derive the ideal gas, one-dimensional (1-D), parallel flow 

cycle-averaged disturbance acoustic energy equation: 

 
𝐷〈𝑒〉

𝐷𝑡
= −[

𝑑

𝑑𝑦
(�̅�〈𝑇′𝑣′〉) +

𝑑

𝑑𝑦
(�̅�〈𝜌′𝑣′〉)] (1.8) 

where, 

 〈𝑒〉 =
1

2
�̅�〈𝒖′2〉 +

1

2�̅��̅�2
〈𝑝′2〉 (1.9) 

is the disturbance energy norm adopted by Kuehl [52]. Compared to equation (1.3), the 

thermoacoustic Reynolds stresses 〈𝑇′𝑣′〉 and 〈𝜌′𝑣′〉 in equation (1.8) plays the similar roles as 

the viscous Reynolds stress 𝜏 = −〈𝑢′𝑣′〉. 

With the Lagrangian acoustic energy equation (1.8), Kuehl [52] showed that Mack’s 

second mode is related to a forced, resonating, thermoacoustic standing wave trapped in a 

thermoacoustic impedance well which is formed by the sonic line and the solid wall. The 

thermoacoustic Reynold stress derives energy from the mean flow, which is the energy source 

for the amplification of Mack’s second mode. Kuehl’s Lagrangian acoustic energy equation 

provides an insight into the physic mechanism of Mack’s second mode growth in the 

compressible boundary layer with a high Mack number. However, viscosity is not included in 

Kuehl’s approach. 

Tian and Wen [53] performed the stability analysis for Mack’s second mode in a Mach 

6.0 boundary layer based on the fluctuating internal energy. Mack’s second mode has the 

largest growth rate when the wall-normal transport of energy is in phase to the change in 

fluctuating internal energy in the vicinity of the critical layer, similar to the mechanism of the 
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Rijke tube in generating acoustic waves. 

Doak’s momentum potential theory (MPT) [54] provides a completed description of the 

development of disturbances in time-stationary fluctuating flows. By decomposing the 

fluctuation momentum density into its vortical, acoustic, and thermal components, a mean 

energy balance equation is derived for the mean (time-averaged) energy flux carried by 

momentum fluctuations can be expressed as a linear superposition of vortical, acoustic and 

thermal energy fluxes. MPT approach is firstly introduced to the study of the instability of 

high-speed boundary layer by Unnikrishnan and Gaitonde [55]. By applying MPT for LST 

and DNS results, Unnikrishnan and Gaitonde found that the vortical component displays a 

series of rope-shaped recirculation-cell patterns in the boundary layer, while both acoustic and 

thermal components display ‘trapped’ structures. Furthermore, Unnikrishnan and Gaitonde 

examined source terms in the boundary layer with different wall temperatures based on MPT’s 

energy budget equation and claimed that the thermal source is the primary source to the 

growth of Mack’s second mode. However, their conclusion on the energy source for Mack’s 

second mode is quite doubtful. The original energy budget equation in Doak [54] is restricted 

to the interpretation for the growth of disturbances because the growth rate of unstable modes 

is not explicitly linked to source terms in Doak’s MPT energy budget equation. Different from 

the energy norm defined in Reynolds’ kinetic energy approach and Kuelh’s Lagrangian’s 

approach, the energy fluxes in Doak’s MPT approach are not positive definite, which makes it 

difficult to identify the effect of source terms on the amplification of disturbances. With above 

problems, the physic interpretation for the instability mechanism of high speed boundary layer 

based on Doak’s original MPT approach is not logically consistent. 
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1.6 Overview 

This introductory chapter has given a brief introduction to the unstable modes in the 

high-speed boundary layer and different UAC materials that stabilize Mack’s second mode 

effectively. Then, energy approaches that aim to provide a physical interpretation for the 

boundary layer instability mechanism are reviewed. Among these energy approaches, Doak’s 

MPT approach is an elegant method that provides a physical description of the development 

of disturbances in the high-speed boundary layer. However, the energy fluxes and source 

terms in Doak’s MPT approach are not explicitly linked to key features of unstable modes. For 

this reason, the original energy budget equation in Doak’s MPT approach is still questionable 

to give a substantial interpretation for the development of disturbances in the boundary layer. 

The primary object of this work is to develop the MPT approach for a substantial and self-

consistent physical interpretation of the instability mechanism of the high-speed boundary 

layer. In chapter 2, the MPT approach proposed by Doak [54] is reviewed in detail. This 

includes 1) the decomposition of the momentum density into the vortical, acoustic, and 

thermal components, and 2) the energy budget equation that governs the balance between 

mean energy fluxes and source terms. Besides the original energy budget equation proposed 

by Doak [54], three independent energy budget equations for each component are derived for 

the first time to clarify the effect of source terms on mean fluxes. In chapter 3, three 

independent energy budget equations are implemented to DNS results of the supersonic mode 

over the highly cooled wall. The sound radiation mechanism of the supersonic mode is 

clarified under MPT’s framework. In chapter 4, the integration form of MPT’s energy budget 

equation is developed to study the growth rate of Mack’s second mode in LST. The source 
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term that is responsible for the growth of Mack’s second mode is identified. In chapter 5, the 

integration form of MPT’s energy budget equation is implemented to the DNS results of both 

the solid wall case and porous wall cases. The different stabilization mechanisms of different 

UAC structures are revealed. Finally, chapter 6 gives a summary of the current work. 
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2. Momentum potential theory 

2.1 MPT decomposition 

It is generally acknowledged that Mack’s second mode and higher modes belong to the 

family of trapped acoustic waves in the waveguide formed by the sonic line and the solid wall. 

However, the term “acoustic wave” adopted here is not well defined. Kovásznauy [56] 

showed that random fluctuations in the flow field with uniform mean velocity and temperature 

can be decomposed into vorticity, entropy, and acoustic modes. Under the small disturbance 

assumption, the interaction between different modes is negligible and the modes obey three 

independent governing equations. If the intensity of fluctuation is large that the linear 

assumption is invalid, quadratic interaction terms between different modes appear in the 

governing equation as source terms. However, Kovásznay’s approach is not suitable for 

extension to the boundary layer flows, where the gradient of mean velocity and mean 

temperature are strong. In the flow field with a strong gradient, complicated interaction terms 

exist between different modes even fluctuations are small. 

The MPT approach proposed by Doak [54] overcomes the restriction in Kovásznay’s 

approach for a general flow which is time stationary. In the time stationary flow, any physic 

quantity 𝜙 can be expressed as the sum of the time-averaged quantity �̅� and the fluctuation 

quantity 𝜙′. The time-averaged term �̅� is independent on time 𝑡. In Doak’s MPT approach, the 

momentum density, 𝒎 = 𝜌𝒖, is split into its vortical, acoustic, and thermal components. 

Considering the continuity equation, 

 
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝒎 = 0 (2.1) 
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Then, the vector field 𝒎 is decomposed into the rotational part 𝒎𝐵 and irrotational part −𝛻𝜑 

through the Helmholtz decomposition. 

 𝒎 = 𝒎𝐵 − 𝛻𝜑, 𝛻 ⋅ 𝒎𝐵 = 0 (2.2) 

Here, the scalar field 𝜑 is the momentum potential. 

The time average of equation (2.1) is 

 ∇ ⋅ �̅� = 0 (2.3) 

The vector field �̅� = �̅�𝐵  is solenoidal. Thus, the fluctuation momentum density 𝒎′  is 

expressed as 

 𝒎′ = 𝒎𝐵
′ − 𝛻𝜑, 𝛻 ⋅ 𝒎𝐵

′ = 0 (2.4) 

Subtract equation (2.1) by equation (2.3), we have the fluctuation continuity equation 

 
𝜕𝜌′

𝜕𝑡
+ 𝛻 ⋅ 𝒎′ = 0 (2.5) 

Furthermore, substitute equation (2.4) into equation (2.5), we obtain the Poisson equation 

 
𝜕𝜌′

𝜕𝑡
= 𝛻2𝜑 (2.6) 

For a general flow in the thermal equilibrium state, we can express the density 𝜌 as the 

function of the pressure 𝑝 and the entropy 𝑆. 

 𝜌 = 𝜌(𝑝, 𝑆) (2.7) 

With the small disturbance assumption, we have 

 𝜌′ = (
𝜕𝜌

𝜕𝑝
)
𝑆
𝑝′ + (

𝜕𝜌

𝜕𝑆
)
𝑝
𝑆′ (2.8) 

Here, 

 (
𝜕𝜌

𝜕𝑝
)
𝑆
=

1

�̅�2
=

1

𝛾𝑅�̅�
, (
𝜕𝜌

𝜕𝑆
)
𝑝
= −

(𝛾−1)�̅�

𝛾𝑅
 (2.9) 

Hence, equation (2.6) can be written as 

 
1

�̅�2
𝜕𝑝′

𝜕𝑡
−
(𝛾−1)�̅�

𝛾𝑅

𝜕𝑆′

𝜕𝑡
= 𝛻2𝜑 (2.10) 
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Because the momentum potential 𝜑 is linear in equation (2.10), 𝜑 can be regarded as the 

linear superposition of uniquely defined acoustic component 𝜑𝐴 and thermal component 𝜑𝑇. 

 𝜑 = 𝜑𝐴 + 𝜑𝑇,
1

�̅�2
𝜕𝑝′

𝜕𝑡
= 𝛻2𝜑𝐴, −

(𝛾−1)�̅�

𝛾𝑅

𝜕𝑆′

𝜕𝑡
= 𝛻2𝜑𝑇 (2.11) 

As a consequence, the fluctuation momentum density 𝒎′ can be written as the sum of the 

vortical component 𝒎𝐵
′ , the acoustic component 𝒎𝐴

′ , and the thermal component 𝒎𝑇
′ . 

 𝒎′ = 𝒎𝐵
′ +𝒎𝐴

′ + 𝒎𝑇
′ , 𝛻 ⋅ 𝒎𝐵

′ = 0,𝒎𝐴
′ = −𝛻𝜑𝐴,𝒎𝑇

′ = −𝛻𝜑𝑇 (2.12) 

Vortical component 𝒎𝐵
′  is solenoidal, isobaric, and isentropic. Acoustic component 𝒎𝐴

′  

represents the irrotational and isentropic part of 𝒎′ , which is related to the fluctuation 

pressure 𝑝′ in the flow field. Thermal component  𝒎𝑇
′  represents the irrotational and isobaric 

part of 𝒎′, which is related to the fluctuation entropy 𝑆′ in the flow field. 

The definition of momentum potential 𝜑  can be extended into the multi-chemical-

component flow with chemical reaction by expressing the fluctuation density 𝜌′ in the form 

 𝜌 = 𝜌(𝑝, 𝑆, 𝛼, 𝛽,⋯ ) (2.13) 

𝛼, 𝛽,⋯ are chemical-component concentrations or other suitable independent thermodynamic 

variables. Consequently, equation (2.8) can be rewritten as 

 𝜌′ = (
𝜕𝜌

𝜕𝑝
)
𝑆,𝛼,𝛽,⋯

𝑝′ + (
𝜕𝜌

𝜕𝑆
)
𝑝,𝛼,𝛽,⋯

𝑆′ + (
𝜕𝜌

𝜕𝛼
)
𝑝,𝑆,𝛽,⋯

𝛼′ + (
𝜕𝜌

𝜕𝛽
)
𝑝,𝑆,𝛼,⋯

𝛽′ + ⋯ (2.14) 

and the definitions (2.11) can be extended to 

𝜑 = 𝜑𝐴 + 𝜑𝑇 +𝜑𝛼 + 𝜑𝛽 +⋯ 

 (
𝜕𝜌

𝜕𝛼
)
𝑝,𝑆,𝛽,⋯

𝜕𝛼′

𝜕𝑡
= 𝛻2𝜑𝛼, (

𝜕𝜌

𝜕𝛽
)
𝑝,𝑆,𝛼,⋯

𝜕𝛽′

𝜕𝑡
= 𝛻2𝜑𝛽,⋯ (2.15) 

Similarly, we can define components related to chemical components 𝒎𝛼
′ ,𝒎𝛽

′ ,⋯ as 

 𝒎𝛼
′ = −𝛻𝜑𝛼,𝒎𝛽

′ = −𝛻𝜑𝛽,⋯ (2.16) 
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2.2 MPT energy budget equation 

Besides the MPT decomposition which provides a unique definition of vortical, acoustic, 

and thermal components in a general time-stationary flow, the other important aspect of the 

MPT approach is the energy budget equation governing the fluctuation energy transported by 

different components. The derivation of the energy budget equation is reviewed as follows. 

Firstly, considering the momentum conservation equation 

 
𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ 𝛻)𝒖 = −

1

𝜌
𝛻𝑝 +

1

𝜌
𝛻 ⋅ �̿� (2.17) 

Here, �̿� is the viscous stress tensor. 

Since 

 (𝒖 ⋅ 𝛻)𝒖 = 𝜴 × 𝒖 + 𝛻 (
𝒖2

2
) (2.18) 

and 

 𝛻ℎ = 𝑇𝛻𝑆 +
1

𝜌
𝛻𝑝 (2.19) 

Equation (2.17) can be expressed as 

 
𝜕𝒖

𝜕𝑡
+ 𝛻 (

𝒖2

2
+ ℎ) = −𝜴× 𝒖 + 𝑇𝛻𝑆 +

1

𝜌
𝛻 ⋅ �̿� (2.20) 

Here, 𝜴 = 𝛻 × 𝒖  is the vorticity vector and −𝜴× 𝒖  is the Coriolis acceleration. ℎ  is the 

enthalpy per unit mass. 

For the convenience of discussion, equation (2.20) is rewritten as 

 
𝜕𝒖

𝜕𝑡
+ 𝛻𝐻 = 𝜶 (2.21) 

Here, 𝐻 =
𝒖2

2
+ ℎ is the total enthalpy per unit mass and 𝜶 = −𝜴× 𝒖 + 𝑇𝛻𝑆 +

1

𝜌
𝛻 ⋅ �̿� is the 

so-called “acceleration” vector. 

Thus, the fluctuation momentum conservation equation is 

 
𝜕𝒖′

𝜕𝑡
+ 𝛻𝐻′ = 𝜶′ (2.22) 
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Taking the scalar production of equation (2.22) and the fluctuation momentum density 

𝒎′ 

 𝒎′ ⋅
𝜕𝒖′

𝜕𝑡
+𝒎′ ⋅ 𝛻𝐻′ = 𝒎′ ⋅ 𝜶′ (2.23) 

From equation (2.23), we have 

 
𝜕

𝜕𝑡
(𝒎′ ⋅ 𝒖′) + 𝛻 ⋅ (𝒎′𝐻′) − 𝒖′ ⋅

𝜕𝒎′

𝜕𝑡
− (𝛻 ⋅ 𝒎′)𝐻′ = 𝒎′ ⋅ 𝜶′ (2.24) 

Noting that 

 𝒎′ = �̅�𝒖′ + �̅�𝜌′ (2.25) 

With the continuity equation (2.5) and equation (2.25),  

 
𝜕

𝜕𝑡
(𝒎′ ⋅ 𝒖′ −

1

2
�̅�𝒖′2) + 𝛻 ⋅ (𝒎′𝐻′) + ℎ′

𝜕𝜌′

𝜕𝑡
= 𝒎′ ⋅ 𝜶′ (2.26) 

The time-average of equation (2.26) is 

 𝛻 ⋅ (𝒎′𝐻′̅̅ ̅̅ ̅̅ ̅) + ℎ′
𝜕𝜌′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
= 𝒎′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ (2.27) 

It is easy to obtain that 

 ℎ′
𝜕𝜌′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
= −

𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅
 (2.28) 

Finally, we get the energy budget equation 

 𝛻 ⋅ (𝒎′𝐻′̅̅ ̅̅ ̅̅ ̅) = 𝒎′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ +
𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅
 (2.29) 

Because 𝒎′  is the linear superposition of the vortical component 𝒎𝐵
′ , the acoustic 

component 𝒎𝐴
′ , and the thermal component 𝒎𝑇

′ , the energy budget equation (2.29) can be 

expressed as 

 𝛻 ⋅ (𝒎𝐵
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ + 𝒎𝐴

′𝐻′̅̅ ̅̅ ̅̅ ̅ +𝒎𝑇
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ) = 𝒎𝐵

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝒎𝐴
′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝒎𝑇

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +
𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅
 (2.30) 

On the left-hand side of equation (2.30), 𝒎𝐵
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ , 𝒎𝐴

′ 𝐻′̅̅ ̅̅ ̅̅ ̅, and 𝒎𝑇
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅  are fluctuation energy 

fluxes carried by 𝒎𝐵
′ , 𝒎𝐴

′ , and 𝒎𝑇
′ , respectively. On the right-hand side, 𝒎𝐵

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝒎𝐴
′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅, and 

𝒎𝑇
′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are source terms due to 𝒎𝐵

′ , 𝒎𝐴
′ , and 𝒎𝑇

′ , respectively. The additional source term 
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𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅
 is the source term due to the thermal diffusion process. Source terms represent the 

energy exchange between disturbances and mean flow. 

2.3 Decomposition of fluctuation velocity 𝒖′ 

The energy budget equation (2.30) proposed by Doak obtains an energy balance between 

energy fluxes and source terms. The existence of multiple energy fluxes, as well as source 

terms, makes it hard to clarify how the energy flux due to each component is affected by 

different source terms. Hence, the independent energy budget equation for each component is 

pursued to remove the ambiguity in the equation (2.30). 

First of all, the fluctuation velocity 𝒖′ is decomposed into different parts corresponding 

to different components of 𝒎′. From equation (2.25), 

 𝒖′ =
𝒎′

�̅�
−
�̅�

�̅�
𝜌′ =

𝒎′

�̅�
−
�̅�

�̅�
(
𝑝′

𝛾𝑅�̅�
−
(𝛾−1)�̅�𝑆′

𝛾𝑅
) (2.31) 

Based on equation (2.31), we define 

 

{
 
 

 
 𝒖𝐵

′ =
𝒎𝐵
′

�̅�

𝒖𝐴
′ =

𝒎𝐴
′

�̅�
−

�̅�

𝛾�̅�
𝑝′

𝒖𝑇
′ =

𝒎𝑇
′

�̅�
+
(𝛾−1)�̅�

𝛾𝑅
𝑆′

, 𝒖′ = 𝒖𝐵
′ + 𝒖𝐴

′ + 𝒖𝑇
′  (2.32) 

2.4 Vortical energy budget equation 

Taking the scalar production of equation (2.22) and the fluctuation momentum density 

𝒎𝐵
′  

 𝒎𝐵
′ ⋅

𝜕𝒖′

𝜕𝑡
+𝒎𝐵

′ ⋅ 𝛻𝐻′ = 𝒎𝐵
′ ⋅ 𝜶′ (2.33) 

Equation (2.33) can be rewritten as 

 
𝜕

𝜕𝑡
(𝒎𝐵

′ ⋅ 𝒖′) − 𝒖′ ⋅
𝜕𝒎𝐵

′

𝜕𝑡
+ 𝛻 ⋅ (𝒎𝐵

′ 𝐻′) = 𝒎𝐵
′ ⋅ 𝜶′ (2.34) 
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The second term on the left-hand side of equation (2.34) 

 𝒖′ ⋅
𝜕𝒎𝐵

′

𝜕𝑡
= (𝒖𝐵

′ + 𝒖𝐴
′ + 𝒖𝑇

′ ) ⋅ �̅�
𝜕𝒖𝐵

′

𝜕𝑡
 (2.35) 

Instituting equation (2.35) into equation (2.34), we have 

 
𝜕

𝜕𝑡
(𝒎𝐵

′ ⋅ 𝒖′ −
1

2
�̅�𝒖𝐵

′ 2) + 𝛻 ⋅ (𝒎𝐵
′ 𝐻′) = 𝒎𝐵

′ ⋅ 𝜶′ + �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝐵
′

𝜕𝑡
+ �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐵

′

𝜕𝑡
 (2.36) 

Taking the time-average of equation (2.36), we obtain 

 𝛻 ⋅ (𝒎𝐵
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ) = 𝒎𝐵

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝐵
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐵

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.37) 

The vortical energy flux 𝒎𝐵
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅  is governed by the vortical source 𝒎𝐵

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and two additional 

source terms. Additional source terms �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝐵
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐵

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 don’t present in Doak’s energy 

budget equation (2.30). 

2.5 Acoustic energy budget equation 

Taking the scalar production of equation (2.22) and the fluctuation momentum density 

𝒎𝐴
′  

 𝒎𝐴
′ ⋅

𝜕𝒖′

𝜕𝑡
+𝒎𝐴

′ ⋅ 𝛻𝐻′ = 𝒎𝐴
′ ⋅ 𝜶′ (2.38) 

Rewriting equation (2.38) as 

 
𝜕

𝜕𝑡
(𝒎𝐴

′ ⋅ 𝒖′) − 𝒖′ ⋅
𝜕𝒎𝐴

′

𝜕𝑡
+ 𝛻 ⋅ (𝒎𝐴

′ 𝐻′) − (𝛻 ⋅ 𝒎𝐴
′ )𝐻′ = 𝒎𝐴

′ ⋅ 𝜶′ (2.39) 

In the left-hand side of equation (2.39), we have 

 𝒖′ ⋅
𝜕𝒎𝐴

′

𝜕𝑡
= 𝒖′ ⋅ (�̅�

𝜕𝒖𝐴
′

𝜕𝑡
+

�̅�

�̅�2
𝜕𝑝′

𝜕𝑡
) (2.40) 

 (𝛻 ⋅ 𝒎𝐴
′ )𝐻′ = −

1

�̅�2
𝜕𝑝′

𝜕𝑡
(ℎ′ + �̅� ⋅ 𝒖′) (2.41) 

Hence, equation (2.39) is rewritten as 

 
𝜕

𝜕𝑡
(𝒎𝐴

′ ⋅ 𝒖′) + 𝛻 ⋅ (𝒎𝐴
′𝐻′) = 𝒎𝐴

′ ⋅ 𝜶′ + �̅�𝒖𝐵
′ ⋅

𝜕𝒖𝐴
′

𝜕𝑡
+ �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐴

′

𝜕𝑡
−

ℎ′

�̅�2
𝜕𝑝′

𝜕𝑡
 (2.42) 

The time-average of equation (2.42) is 
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 𝛻 ⋅ (𝒎𝐴
′ 𝐻′̅̅ ̅̅ ̅̅ ̅) = 𝒎𝐴

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ + �̅�𝒖𝐵
′ ⋅

𝜕𝒖𝐴
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐴

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
−

ℎ′

�̅�2
𝜕𝑝′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
 (2.43) 

The fourth term on the right-hand side of equation (2.43) satisfies 

 
ℎ′

�̅�2
𝜕𝑝′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
=

𝑆′

𝛾𝑅

𝜕𝑝′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
= −

𝑝′

𝛾𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
 (2.44) 

Finally, we have 

 𝛻 ⋅ (𝒎𝐴
′ 𝐻′̅̅ ̅̅ ̅̅ ̅) = 𝒎𝐴

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ + �̅�𝒖𝐵
′ ⋅

𝜕𝒖𝐴
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐴

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+

𝑝′

𝛾𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
 (2.45) 

The acoustic energy flux 𝒎𝐴
′𝐻′̅̅ ̅̅ ̅̅ ̅  is governed by the acoustic source 𝒎𝐴

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ , �̅�𝒖𝐵
′ ⋅

𝜕𝒖𝐴
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, 

�̅�𝒖𝑇
′ ⋅

𝜕𝒖𝐴
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, and 

𝑝′

𝛾𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
 that is a part of the thermal diffusion term 

𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅
 in equation (2.30). 

Source terms �̅�𝒖𝐵
′ ⋅

𝜕𝒖𝐴
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐴

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 also don’t present in Doak’s energy budget equation 

(2.30). 

2.6 Thermal energy budget equation 

Taking the scalar production of equation (2.22) and the fluctuation momentum density 

𝒎𝑇
′  

 𝒎𝑇
′ ⋅

𝜕𝒖′

𝜕𝑡
+𝒎𝑇

′ ⋅ 𝛻𝐻′ = 𝒎𝑇
′ ⋅ 𝜶′ (2.46) 

Rewriting equation (2.46) as 

 
𝜕

𝜕𝑡
(𝒎𝑇

′ ⋅ 𝒖′) − 𝒖′ ⋅
𝜕𝒎𝑇

′

𝜕𝑡
+ 𝛻 ⋅ (𝒎𝑇

′ 𝐻′) − (𝛻 ⋅ 𝒎𝑇
′ )𝐻′ = 𝒎𝐴

′ ⋅ 𝜶′ (2.47) 

Similarly, we have 

 𝒖′ ⋅
𝜕𝒎𝑇

′

𝜕𝑡
= 𝒖′ ⋅ [�̅�

𝜕𝒖𝑇
′

𝜕𝑡
−
(𝛾−1)�̅��̅�

𝛾𝑅

𝜕𝑆′

𝜕𝑡
] (2.48) 

 (𝛻 ⋅ 𝒎𝑇
′ )𝐻′ =

(𝛾−1)�̅�

𝛾𝑅
(ℎ′ + �̅� ⋅ 𝒖′) (2.49) 

Hence, equation (2.47) is rewritten as 

 
𝜕

𝜕𝑡
(𝒎𝑇

′ ⋅ 𝒖′) + 𝛻 ⋅ (𝒎𝑇
′ 𝐻′) = 𝒎𝑇

′ ⋅ 𝜶′ + �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝑇
′

𝜕𝑡
+ �̅�𝒖𝐵

′ ⋅
𝜕𝒖𝑇

′

𝜕𝑡
+
(𝛾−1)�̅�ℎ′

𝛾𝑅

𝜕𝑆′

𝜕𝑡
 (2.50) 

The time-average of equation (2.50) is 



 

25 

 

 𝛻 ⋅ (𝒎𝑇
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ) = 𝒎𝑇

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝑇
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ �̅�𝒖𝐵

′ ⋅
𝜕𝒖𝑇

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+
(𝛾−1)�̅�

𝛾𝑅
ℎ′

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
 (2.51) 

The fourth term on the right-hand side of equation (2.51) satisfies 

 
(𝛾−1)�̅�

𝛾𝑅
ℎ′

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
=

(𝛾−1)𝑝′

𝛾𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.52) 

Finally, we obtain 

 𝛻 ⋅ (𝒎𝑇
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ) = 𝒎𝑇

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝑇
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ �̅�𝒖𝐵

′ ⋅
𝜕𝒖𝑇

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+
(𝛾−1)𝑝′

𝛾𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (2.53) 

The thermal energy flux 𝒎𝑇
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅  is governed by the thermal source 𝒎𝑇

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝑇
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, 

�̅�𝒖𝐵
′ ⋅

𝜕𝒖𝑇
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, and 

(𝛾−1)𝑝′

𝛾𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 that is the other part of the thermal diffusion term 

𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅
 in equation 

(2.30). Source terms �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝑇
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and �̅�𝒖𝐵

′ ⋅
𝜕𝒖𝑇

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 also don’t present in Doak’s energy budget 

equation (2.30). 

2.7 Energy exchange terms 

In three energy budget equations (2.37), (2.45), and (2.53), which govern the energy 

fluxes carried by each MPT component independently, we find source terms that don’t present 

in Doak’s original MPT budget equation. Those new source terms satisfy 

 �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝐵
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ �̅�𝒖𝐵

′ ⋅
𝜕𝒖𝐴

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 0, �̅�𝒖𝐴

′ ⋅
𝜕𝒖𝑇

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐴

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 0, �̅�𝒖𝐵

′ ⋅
𝜕𝒖𝑇

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐵

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 0 (2.54) 

Therefore, we conclude that the physical meaning of the source term �̅�𝒖𝑎′ ⋅
𝜕𝒖𝑏

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 is the energy 

transfer from a component to b component during the energy transport due to b component. 

This finding clarifies in which manner fluctuation energy exchanges between different 

components. 

2.8 Summary 

In this chapter, we first reviewed the MPT decomposition and the derivation of the 

energy budget equation in Doak’s MPT approach. In the MPT decomposition, the fluctuation 
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momentum density 𝒎′ = (𝜌𝒖)′ is spilled into the rotational and the irrotational part by the 

Helmholtz decomposition. The rotational part of 𝒎′ is defined as the vortical component 𝒎𝐵
′  

of disturbances. Furthermore, the irrotational part of 𝒎′  is decomposed into the acoustic 

component 𝒎𝐴
′  and the thermal component 𝒎𝑇

′  based on the continuity equation and the 

thermodynamic state equation. The MPT decomposition provides a unique definition of the 

vortical, acoustic, and thermal components for a general time stationary flow, while the classic 

decomposition in Kovásznay’s approach is only applicable for the uniform flow. Besides the 

MPT decomposition, Doak obtained a mean energy budget equation for the fluctuation energy 

flux 𝒎′𝐻′̅̅ ̅̅ ̅̅ ̅ based on the continuity equation and the momentum conservation equation. The 

energy flux 𝒎′𝐻′̅̅ ̅̅ ̅̅ ̅ and the source term 𝒎′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ can be expressed as a linear superposition of 

energy fluxes and source terms due to each MPT component. Besides the source term caused 

by the interaction between the acceleration vector 𝜶′ and each MPT component, there exists 

another source term 
𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅
 which is related to the fluctuation thermal diffusion process. Source 

terms due to each component and the thermal diffusion source term 
𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅
 indicate the energy 

exchange between disturbances and mean flow during the fluctuation energy transport carried 

by 𝒎′. 

However, Doak’s original budget equation has energy fluxes and source terms in one 

equation. The effect of source terms on each energy fluxes is confused. The ambiguity in 

Doak’s original budget equation makes it difficult to provide a distinct physical interpretation 

for the development of disturbances in the flow field. To this end, we proposed three 

independent energy budget equations for each MPT component by introducing the 

decomposition of the fluctuation velocity 𝒖′. In the energy budget equation for the energy flux 
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carried by each MPT component, energy exchange terms �̅�𝒖𝑎
′ ⋅

𝜕𝒖𝑏
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 from a component to b 

component are discovered for the first time. The effect of source terms on each energy flux is 

clear in these three independent energy budget equations. The vortical energy flux 𝒎𝐵
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅  is 

governed by the vortical source 𝒎𝐵
′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and energy exchange terms, �̅�𝒖𝐴

′ ⋅
𝜕𝒖𝐵

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐵

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
. 

The acoustic energy flux 𝒎𝐴
′𝐻′̅̅ ̅̅ ̅̅ ̅ is governed by the acoustic source 𝒎𝐴

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅, energy exchange 

terms �̅�𝒖𝐵
′ ⋅

𝜕𝒖𝐴
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and �̅�𝒖𝑇

′ ⋅
𝜕𝒖𝐴

′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, and the thermal diffusion source 

𝑝′

𝛾𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
. The thermal energy 

flux 𝒎𝑇
′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅  is governed by the thermal source 𝒎𝑇

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , energy exchange terms �̅�𝒖𝐴
′ ⋅

𝜕𝒖𝑇
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and 

�̅�𝒖𝐵
′ ⋅

𝜕𝒖𝐴
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, and the thermal diffusion source 

(𝛾−1)𝑝′

𝛾𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
. 
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3. MPT analysis of the supersonic mode 

3.1 Supersonic mode 

In low-disturbance environments, the modal growth of Mack’s second mode becomes the 

primary path to laminar-to-turbulence transition in a two-dimensional (2D) BL over adiabatic 

surfaces for Mach > 4 [27]. In the case of Mack’s second mode over an adiabatic wall, a sonic 

line is present at 𝑦𝑠1, where �̅�(𝑦𝑠1) =
�̅�(𝑦𝑠1)−𝑐

�̅�(𝑦𝑠1)
= −1. Here, �̅� is the mean velocity, 𝑐 is the 

disturbance phase speed, and �̅� is the local sound speed. The disturbances travel subsonically 

above the sonic line but supersonically between the wall and the sonic line as trapped sound 

waves. Outside the BL, the subsonic wave diminishes exponentially. 

Bitter and Shepherd [57] studied Mack’s second mode over a highly cooled wall. The 

wall-to-edge temperature ratio was 𝑇𝑤 𝑇𝑒⁄ < 1, which corresponds to the state obtained in 

certain high-enthalpy wind tunnel experiments and real flight cases. They found that a special 

supersonic mode emerged at the edge of the BL and traveled outside it. Inside the BL over a 

highly cooled wall, another sonic line appeared, where �̅�(𝑦𝑠2) =
�̅�(𝑦𝑠2)−𝑐

�̅�(𝑦𝑠2)
= 1 above the first 

sonic line. The disturbance traveled subsonically between these sonic lines, but supersonically 

above the upper sonic line (along the edge of the BL) and below the lower sonic line. Notably, 

LST analysis [29, 58-61] showed that the synchronization of the free-stream slow sound 

waves and Mack’s second mode leads to the supersonic mode. The supersonic mode was 

oscillatory outside the BL. This supersonic mode broadens the unstable frequency band for 

disturbance in the flow field. Chuvakhov and Fedorov [29] called this supersonic mode the 

“spontaneous radiation of sound,” which emphasizes the oscillatory disturbance of the 
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supersonic mode outside the BL. Owing to the lower amplification rate of this supersonic 

mode compared with that of subsonic Mack’s second mode, the supersonic mode is 

considered to be insignificant in the transition of the high-speed BL. However, Mortensen [62] 

recently reported that the rate of growth of the supersonic mode exceeds that of Mack’s 

subsonic second mode in a Mach 20 flow over highly blunt cones. As Mack’s second mode 

and supersonic mode both exhibits acoustic-wavelike behavior between the lower sonic line 

and the solid wall, it is reasonable that UAC, which suppresses Mack’s second mode by 

dissipating the acoustic wave energy, can also stabilize the supersonic mode because of its 

similar acoustic characteristics. 

Note that the above description of the supersonic mode as a “spontaneous radiation of 

sound” has not been rigorously validated in realistic circumstances. The difficulty pertains to 

the lack of a universal definition of an “acoustic” or “sound” wave in a high-speed BL that 

exhibits a strong gradient in the mean flow field. Doak’s MPT approach provides an elegant 

tool for decomposing a time-stationary fluctuation flow field into three components and 

overcomes the restriction of Kovásznauy’s approach in inhomogeneous systems. 

Unnikrishnan and Gaitonde [63] performed MPT decomposition of instability waves in the 

Mach 6 flat plate boundary layer at different wall temperatures. They showed that oscillatory 

waves outside the highly cooled BL were mostly composed of vortical and acoustic 

fluctuations. The net outward acoustic flux of the supersonic modes increased with higher 

levels of wall cooling, as did the perturbation in the wall pressure. Their inspirational work 

revealed that the MPT approach is promised in the analysis of supersonic modes. However, 

their energy consideration was based on Doak’s original energy budget equation and thus 
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cannot clarify the effect of sources terms on the “sound radiation” of supersonic modes. To 

this end, MPT decomposition and three independent energy budget equations derived in 

Chapter 2 are applied to DNS data of supersonic modes with high-level wall cooling effect 

over smooth solid wall and UAC to provide a physical interpretation of the sound radiation 

mechanism in the supersonic mode and the stabilization mechanism of porous coatings to the 

supersonic mode. 

3.2 Direct numerical simulation 

The 2D Navier–Stokes equations in the conservation form which consist of a mass 

conservation equation, two momentum conservation equations, and an energy conservation 

equation is solved numerically. The dimensional governing equation in an arbitrary curvilinear 

coordinate system (𝜉, 𝜂) can be written as 

 
𝜕𝑸

𝜕𝑡
+
𝜕𝑬

𝜕𝜉
+
𝜕𝑭

𝜕𝜂
= 0 (3.1) 

Here, 𝑸 is a vector of the conservative variables, and 𝑬 and 𝑭 is the flux vector in the 𝜉 

and 𝜂  directions, respectively. Mapping the curvilinear coordinate system (𝜉 , 𝜂 ) into the 

Cartesian coordinate system ( 𝑥 , 𝑦 ), these vectors can be expressed in terms of the 

corresponding Cartesian vectors 𝑸𝑐, 𝑬𝑐, and 𝑭𝑐 as 

 𝑸 = 𝐽𝑸𝑐 , 𝑬 = 𝐽 (𝑬𝑐
𝜕𝜉

𝜕𝑥
+ 𝑭𝑐

𝜕𝜉

𝜕𝑦
) , 𝑭 = 𝐽 (𝑬𝑐

𝜕𝜂

𝜕𝑥
+ 𝑭𝑐

𝜕𝜂

𝜕𝑦
) (3.2) 

Here, 𝐽 = |
𝜕(𝑥,𝑦)

𝜕(𝜉,𝜂)
| is the transformation Jacobian. Vectors in the Cartesian coordinate system 

are defined as 

 𝑸𝑐 = {

𝜌
𝜌𝑢
𝜌𝑣
𝑒

} (3.3) 
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 𝑬𝑐 =

{
 

 
𝜌𝑢

𝜌𝑢2 + 𝑝 − 𝜏𝑥𝑥
𝜌𝑢𝑣 − 𝜏𝑥𝑦

𝑢(𝑒 + 𝑝) − 𝑢𝜏𝑥𝑥 − 𝑣𝜏𝑥𝑦 + 𝑞𝑥}
 

 
 (3.4) 

 𝑭𝑐 =

{
 

 
𝜌𝑣

𝜌𝑢𝑣 − 𝜏𝑥𝑦

𝜌𝑣2 + 𝑝 − 𝜏𝑦𝑦
𝑣(𝑒 + 𝑝) − 𝑢𝜏𝑥𝑦 − 𝑣𝜏𝑦𝑦 + 𝑞𝑦}

 

 

 (3.5) 

Here, 𝜌 is density, 𝑢 and 𝑣 denote the components of velocity in Cartesian coordinates, 𝑒 =

𝑝

𝛾−1
+
𝜌(𝑢2+𝑣2)

2
 is the specific total energy, the specific heat ratio 𝛾 = 1.4, and 𝑝 is pressure. 

The stress tensor 𝜏 and heat flux 𝑞 are 

 𝜏𝑥𝑥 = 2𝜇
𝜕𝑢

𝜕𝑥
−
2

3
𝜇 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) ,  𝜏𝑥𝑦 = 𝜇 (

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) , 𝜏𝑦𝑦 = 2𝜇

𝜕𝑣

𝜕𝑦
−
2

3
𝜇 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) (3.6) 

 𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
, 𝑞𝑦 = −𝑘

𝜕𝑇

𝜕𝑦
 (3.7) 

Here, 𝑇 is the temperature. The perfect gas condition was assumed. The dynamic viscosity 

coefficient 𝜇 and heat conductivity k were calculated by Sutherland’s law with Prandtl number 

𝑃𝑟 = 0.72. 

A high-order, accurate, shock-fitting finite difference method is adopted in the DNS 

calculation. The fifth-order upwind compact scheme is utilized to discretize the inviscid flux 

derivatives and the sixth central difference scheme is used to discretize the viscous terms. The 

temporal integration is simulated by the third order Runge–Kutta method. Two numerical 

simulations are performed for Mach 6.0 BL flows on a solid wall and a porous coating with 

very low wall temperature. In both cases, the unit Reynolds number is 1×107 m-1, and Mach 

number in the freestream 𝑀∞ is 6.0. The freestream temperature and wall temperature are 300 

K and 150 K, respectively. The length of the flat plate is 𝐿 = 0.6 m, and the computational 

domain is extended from 𝑥 = 0 𝑚 to 𝑥 = −0.02 𝑚 with the symmetry condition at 𝑦 = 0 in 

the extended region for numerical robustness. The computational grid has 3607×320 nodes 
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clustered at the leading edge and the plate surface. As shown in Figure 3-1, the numerical grid 

is verified by increasing the grid resolution by a factor of √2 in each direction (solid wall 

case), the discrepancy is less than 1%, and that suggests the grid independence for simulating 

the development of disturbance. 

 

Figure 3-1. Numerical grid verification. 

In the case of the porous coating, the coating is placed at 𝑥 = 0.3 m–0.6 m. The acoustic 

impedance boundary condition at the wall, 𝑣΄ =
𝑝΄

𝑍
, is adopted to model the porous coating 

effect. The theoretical model used here to describe the acoustic characteristics of the porous 

coating is developed by Zhao, et al. [45]. Figure 3-2 shows acoustic waves in the porous 

coating structure schematically. By considering high-order diffracted modes, the surface 

impedance Z is derived with the follow formulation 

 𝑍 = 𝜌𝑤𝑐𝑤 +
𝜌𝑤𝑐𝑤

𝑗𝑡𝑎𝑛(𝑘𝑐𝐻)𝜙(𝜌𝑤 �̃�⁄ )(𝑘𝑐/𝑘0)
− ∑

𝜌𝑤𝑐𝑤𝑘0

√𝑘0
2−(

2𝜋𝑛

𝑠
)
2
𝑆𝑛
2 +∞

−∞  (3.8) 

Here, 𝜙 is the porosity of porous coating, 𝐻 is the cavity depth, 𝜌𝑤 is the density at the wall, 

𝑐𝑤 is the sound speed at the wall, 𝑘0 is the sound wave number at the wall, 𝑆𝑛 is the overlap 

integral between the nth-order diffracted mode and the fundamental mode inside the cavity, �̃� 

is the dynamic density, and 𝑘𝑐  is a complex frequency-dependent quantity relating to the 

thermal and viscous boundary layers inside the narrow cavity. Details of those parameters can 

be found in Ref.[45]. The structure parameters of porous coating are chosen to be porosity 
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𝜙 =
2𝑏

𝑠
= 0.76, depth 𝐻 = 1.64 × 10−3m, and half-width 𝑏 = 1.96 × 10−4 m. 

 

Figure 3-2. Schematic of acoustic waves in the porous coating structure [45]. 

In the DNS, the steady-state flow field without disturbances is obtained at first. Then, a 

slot of periodic suction–blowing perturbation is introduced to the steady flow. 

 𝑞𝑤(𝑥, 𝑡) = 𝜀sin (2𝜋
𝑥−𝑥1

𝑥2−𝑥1
) sin(2𝜋𝑓𝑡),    𝑥1 ≤ 𝑥 ≤ 𝑥2 (3.9) 

Here, 𝑞𝑤  is the normal mass flow rate. The suction–blowing region is chosen to be 𝑥1 =

0.03 m, and 𝑥2 = 0.045 m. The force amplitude 𝜀 =0.001 is adopted to guarantee that the 

linear assumption is valid. The suction–blowing frequency 𝑓 is fixed at 495 kHz for both 

cases, and at this frequency, the supersonic mode is expected to appear at x > 0.34m. 

3.3 Linear stability theory results 

The spatial LST analysis is performed for the highly cooled wall case with the same flow 

condition and the same blow-suction frequency as in the DNS calculation. In this highly 

cooled wall case, Mack’s second mode is the F mode instead of the S mode in the adiabatic 

wall case. The trajectory of the F mode in the (
𝑐𝑝ℎ

𝑢∞
, 𝜎) plane are shown in Figure 3-3. Three 

vertical dashed lines in Figure 3-3 on the left (red), center (blue), and right (green) indicate the 

location ( 1 − 1/𝑀∞ ), 1, and ( 1 + 1/𝑀∞ ), which correspond to slow sound waves, 
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vorticity/entropy waves, and fast sound waves in the freestream, respectively. Arrows in 

Figure 3-3 represent the trend in 
𝑐𝑝ℎ

𝑢∞
 of the F mode as x increases. The F mode originates from 

fast sound waves is stable (𝜎 < 0). Then, the F mode synchronizes with vorticity/entropy 

waves and becomes unstable (𝜎 > 0) after cross vorticity/entropy waves. Finally, the F mode 

coalesces with slow sound waves and leads to the supersonic mode and a new stable mode. 

 

Figure 3-3. The trajectory of the F mode in the (
𝒄𝒑𝒉

𝒖∞
, 𝝈) plane. The dashed line shows the 

new stable mode. Here, 𝒖∞ is the free stream velocity. 

3.4 DNS results 

An instantaneous snapshot of 𝑝′, (𝜌𝑢)′ and (𝜌𝑣)′ from the results of the DNS of the 

solid wall and the porous coating are shown in the left column and the right column of Figure 

3-4, respectively. 

In the solid wall case, the fluctuations induced by the suction/blowing actuator are 

bifurcated into two regions, one aligning along the shock wave and the other traveling 

downstream within the boundary layer. An unstable supersonic mode occurs at 𝑥~0.34𝑚, and 

𝑝′, (𝜌𝑢)′, and (𝜌𝑣)′ are not evanescent above the BL. The so-called region of “spontaneous 

sound radiation” is enlarged as the perturbations propagated downstream, and it appears as 

though they were radiating outward at a fixed degree. In general, the peak values of 
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fluctuations in the streamwise momentum [Figure 3-4 (b1, b2)] are an order of magnitude 

higher than those of the wall-normal component [Figure 3-4 (c1, c2)]. 

In contrast to the case of the solid wall, when the disturbances travel downstream through 

the porous coating (𝑥 = 0.3 − 0.6 m), there is no visible “spontaneous sound radiation” 

phenomenon [Figure 3-4 (a2)]. The fluctuations within the BL are significantly suppressed, 

and this indicates that the porous coatings could effectively suppress the amplification of 

Mack’s second mode and the supersonic mode. 

 

(a1) 

 

(b1) 

 

(c1) 

 

(a2) 

 

(b2) 

 

(c2) 

Figure 3-4. Instantaneous snapshots of (a1, a2) p′ (Pa), (b1, b2) (ρu)′ (kg/m2/s), and (c1, 

c2) (ρv)′ (kg/m2/s) in the case of the solid wall (left column) and the porous wall (right 

column). 

3.5 MPT decomposition 

The different components are extracted by applying Doak’s MPT approach to the 
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instantaneous fluctuation field. The MPT decomposition is accomplished by solving two 

Poisson equations in equation (2.11). The Dirichlet boundary condition for momentum 

potential (𝜑 = 0) is adopted at the boundaries of the 2D computation region as in Ref. [55]. 

An instantaneous snapshot of the magnitudes of the vortical component (‖𝒎𝐵
′ ‖), acoustic 

component (‖𝒎𝐴
′ ‖), and thermal component (‖𝒎𝑇

′ ‖) of the solid wall and the porous wall are 

depicted in the left column and the right column of Figure 3-5, respectively. 

In the solid wall case, the result captures vortical perturbations from small fluctuations 

induced at the leading shock wave by the blowing–suction actuator of the wall. The vortical 

and thermal perturbations have the largest and smallest magnitudes, respectively. Both 𝒎𝐵
′  

and 𝒎𝐴
′  are present in the region of oscillation outside the BL, while the thermal component is 

not prominent in the “sound radiation.” This observation indicates that the “sound radiation” 

is not sufficiently precise to describe the unstable supersonic mode. Both acoustic and vortical 

waves exist in the “radiation” region. 

Figure 3-6 shows the distribution of ‖𝒎𝐵
′ ‖, ‖𝒎𝐴

′ ‖, and ‖𝒎𝑇
′ ‖ along the x axis at y=0m in 

the solid wall case and the porous wall case. On the porous coating, the amplitude of each 

component is reduced by an order of magnitude at x=0.4m [Figure 3-6(a) and Figure 3-6(b)]. 

The effect of the coating end (x = 0.3m), associated with the juncture between the solid and 

porous parts, induces vortical and slight acoustic components along the expansion wave. The 

vortical component continues to be the dominant one in terms of exhibiting the highest 

amplitude among all FT components [Figure 3-5(a2)]. Moreover, the regions of “sound 

radiation” in the acoustic and vortical components disappears [Figure 3-5(b2) and Figure 

3-5(c2)]. 



 

37 

 

 

(a1) 

 

(b1) 

 

(c1) 

 

(a2) 

 

(b2) 

 

(c2) 

Figure 3-5. Magnitudes of (a1, a2) 𝒎𝑩
′ , (b1, b2) 𝒎𝑨

′ , and (c1, c2) 𝒎𝑻
′  in the case of the 

solid wall (left column) and the porous wall (right column). (unit: kg/(m2•s). 

 

(a) 

 

(b) 

Figure 3-6. Magnitudes of 𝒎𝑩
′ , 𝒎𝑨

′ , and 𝒎𝑻
′  at y=0m in the case of the solid wall (left 

column) and the porous wall (right column). (unit: kg/(m2•s). 

3.1 Mean energy fluxes 

In this section, the mean energy fluxes carried by different components of the MPT is 
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discussed to provide insights into the development of perturbations in the BL. For 

convenience of discussion, the x gradient of the streamwise component of the mean energy 

flux 
𝜕

𝜕𝑥
(𝑚𝐵𝑥

′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅), 
𝜕

𝜕𝑥
(𝑚𝐴𝑥

′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅), and 
𝜕

𝜕𝑥
(𝑚𝑇𝑥

′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅) are denoted by JBx, JAx, and JTx, respectively. 

Similarly, the y gradient of the normal component of the mean energy flux, 
𝜕

𝜕𝑦
(𝑚𝐵𝑦

′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅), 

𝜕

𝜕𝑦
(𝑚𝐴𝑦

′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅), and 
𝜕

𝜕𝑦
(𝑚𝑇𝑦

′ 𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅) are denoted by JBy, JAy, and JTy, respectively. The vortical 

source −𝒎𝐵
′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , acoustic source −𝒎𝐴

′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅, and thermal source −𝒎𝑇
′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are designated as 

PB, PA, and PT, respectively. The sources due to thermal diffusion −
1

𝛾𝑅
𝑆′

𝜕𝑝′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
 and 

𝛾−1

𝛾𝑅
𝑝′

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
 in 

equation (2.45) and equation (2.53) are respectively designated as Pdiff1 and Pdiff2. The energy 

exchange from component a to b, �̅�𝒖𝑎
′ ⋅

𝜕𝒖𝑏
′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, is denoted by Exab. The sums of each of the 

right-hand-side source terms in equations (2.37), (2.45), and (2.53) are NB, NA, and NT, 

respectively. Thus, the energy budgets of equations (2.37), (2.45), and (2.53) can be expressed 

as 

 𝑱𝐵𝑥 + 𝑱𝐵𝑦 = 𝑵𝐵 = 𝑷𝑩 + 𝑬𝒙𝑨𝑩 +𝑬𝒙𝑻𝑩 (3.10) 

 𝑱𝑨𝒙 + 𝑱𝑨𝒚 = 𝑵𝑨 = 𝑷𝑨 + 𝑷𝒅𝒊𝒇𝒇𝟏 +𝑬𝒙𝑩𝑨 + 𝑬𝒙𝑻𝑨 (3.11) 

 𝑱𝑻𝒙 + 𝑱𝑻𝒚 = 𝑵𝑻 = 𝑷𝑻 + 𝑷𝒅𝒊𝒇𝒇𝟐 + 𝑬𝒙𝑩𝑻 + 𝑬𝒙𝑨𝑻 (3.12) 

JAx, JBx, JTx, JAy, JBy, and JTy on the solid wall and the porous coating at x = 0.48 m are 

illustrated in Figure 3-7. The magnitudes of JAx, JBx, and JTx are much smaller than those of 

JAy, JBy, and JTy in the BL. This indicates that the source terms on the right-hand side of 

equations (3.10), (3.11), and (3.12) influences the normal fluctuation energy transport in the 

first place, possibly because the y gradient of mean flow is much stronger than the x gradient 

in the BL flow field. In the case of the solid wall, JAy reaches its positive peak at around yc
 = 

0.001 m (the critical layer where �̅�(𝑦𝑐) =
�̅�(𝑦𝑐)−𝑐

�̅�(𝑦𝑐)
= 0) and then becomes negative above this 
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peak. This indicates the acoustic source terms strengthen acoustic fluxes in the y-direction 

around the critical layer and then weaken them in the negative region. JBy has a negative peak 

around the critical layer while JTy is positive between two sonic lines. In the case of the 

porous wall, the acoustic flux JAy behaves similarly to that in the case of the solid wall. JBy 

first reaches a negative peak and then changes to a positive peak above the critical layer, and 

JTy shows a contrary trend to JBy, but with a slightly smaller magnitude. In the detailed 

analysis of the source terms provided in the next section, the reversals in JBy and JTy are found 

to be related to the terms of energy exchange. 

 

(a) 

 

(b) 

Figure 3-7. Gradients of mean energy fluxes at x = 0.48m in the cases of the solid wall (a) 

and the porous coating (b). The sonic line and critical layer are marked using a dashed 

line and dash-dotted line, respectively (unit: kg/(m•s3). 

Figure 3-8 shows the acoustic, vortical, and thermal flux lines in the range of x = 0.45–

0.5 m, which indicates the directions of the mean transport of the fluctuation energy according 

to its respective components in the flow field. The background shows contours of NA, NB, and 

NT. As shown in Figure 3-8(a1), acoustic fluxes originate around the critical layer owing to 

the acoustic source terms and diffused. Above this layer, the fluctuation energy is transported 
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toward the bulk flow by 𝒎𝐴
′ , and leading to the “spontaneous sound radiation.” In Figure 3-8 

(b1), vortical source terms produce energy for the vortical fluxes in the vicinity of the surface 

of the plate. Then, vortical fluxes originating from the plate’s surface sink near the critical 

layer. The fluctuation energy is transported from the bulk flow into the BL by 𝒎𝐵
′ . Compared 

with NA and NB, the intensity of the thermal source terms is so weak that the thermal 

component is not prominent in the region of “sound radiation” [Figure 3-8(c1) and Figure 

3-5(c1)]. In the case of the porous coating [Figure 3-8(a2)–Figure 3-8(c2)], the sum of the 

source terms, i.e., NA, NB, and NT, is about four orders of magnitude smaller than that in the 

case of the solid wall. As shown in Figure 3-8(a2), NA around the critical layer is so weak that 

the upward acoustic flux lines finally turn upward. The fluctuation energy is barely 

transported out of the BL by 𝒎𝐴
′ . As a result, the “spontaneous radiation phenomenon” is 

absent in the case of the porous coating. 

 

(a1) 

 

(b1) 

 

(c1) 

 

(a2) 

 

(b2) 

 

(c2) 

Figure 3-8. (a1, a2) acoustic, (b1, b2) vortical, and (c1, c2) thermal fluxes in the cases of 

the solid wall (upper row) and the porous coating (lower row; unit: kg/(m•s3). 
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3.2 Source mechanism 

Figure 3-9 shows the contour of the acoustic source terms and Figure 3-10 shows the 

distribution of the acoustic source terms along the y axis at x=0.48m. The left column 

represents the case of the solid wall and the right column that of the porous coating. In the 

former case, PA is a primary energy producer near the critical layer and extracts fluctuation 

energy from the mean flow. Then, PA dissipates this fluctuation energy during the upward 

transport of the fluctuation energy due to 𝒎𝐴
′  [Figure 3-9(a1)]. Pdiff1 always dissipates the 

fluctuation energy near the critical layer [Figure 3-9(b1)]. The fluctuation energy is transferred 

from the vortical part to the acoustic part near the critical layer [Figure 3-9(c1)], while 

acoustic fluctuation energy is transferred into thermal energy [Figure 3-9(d1)]. The amplitude 

of ExBA is larger than that of ExTA. Therefore, ExBA compensates for the energy loss due to 

ExTA and became the other primary energy producer besides PA near the critical layer. In this 

regard, the outward acoustic fluxes and “sound radiation” phenomenon are directly related to 

PA and ExBA. In the case of the porous wall, the energy exchange terms ExBA and ExTA have 

nearly the same magnitude [Figure 3-9(c2) and Figure 3-9(d2)]. Due to the balance between 

ExBA and ExTA, PA is the unique primary energy producer in this case [Figure 3-9(a2)]. 

However, PA is significantly suppressed compared with that in the case of the solid wall, and 

this weakens the outward transport of the fluctuation energy by 𝒎𝐴
′ . 

 

(a1) 

 

(a2) 
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(b1) 

 

(c1) 

 

(d1) 

 

(b2) 

 

(c2) 

 

(d2) 

Figure 3-9. Left column: acoustic source terms for the solid wall; right column: acoustic 

source terms for the porous coating (unit: kg/(m•s3). 

 

(a) 

 

(b) 

Figure 3-10. Acoustic source terms at x = 0.48m in the cases of the solid wall (a) and the 

porous coating (b) (unit: kg/(m•s3). 

Figure 3-11 shows the contour of vortical source terms and Figure 3-12 shows the 
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distribution of the vortical source terms along the y axis at x=0.48m. In the case of the solid 

wall, PB is the energy producer in the vicinity of the surface of the plate [Figure 3-11(a1)]. 

Near the critical layer, vortical energy is transformed into acoustic energy [Figure 3-11(b1)], 

which leads to a significant sink in the vortical fluxes [Figure 3-8(b1)]. In the case of the 

porous wall, PB is suppressed at the plate’s surface and thus less vortical energy is transported 

to the critical layer. Furthermore, ExTB has a larger amplitude than ExAB, which is in contrast 

to the case of the solid wall, and leads to reversals in JBy and JTy [Figure 3-7(b)]. 

 

(a1) 

 

(b1) 

 

(c1) 

 

(a2) 

 

(b2)  

 

(c2) 

 

Figure 3-11. Left column: vortical source terms for the solid wall; right column: vortical 

source terms for the porous coating (unit: kg/(m•s3). 
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(a) 

 

(b) 

Figure 3-12. Vortical source terms at x = 0.48m in the cases of the solid wall (a) and the 

porous coating (b) (unit: kg/(m•s3). 

Figure 3-13 shows the contour of the thermal source terms and Figure 3-14 shows the 

distribution of the thermal source terms along the y axis at x=0.48m. In the case of the solid 

wall, ExAT is the primary energy producer of thermal fluxes, which is transformed from 

acoustic energy near the critical layer [Figure 3-13(c1)]. Nearly all of the energy produced by 

ExAT and PT is consumed by the negative ExBT and Pdiff2, leading to a marginal value of NT 

[Figure 3-8(c1)]. Therefore, the thermal component is not prominent in the region of “sound 

radiation.” In the case of the porous wall, PT is the primary energy producer, and is 

approximately balanced by the negative ExBT [Figure 3-13(d2)]. The magnitudes of the source 

terms on the porous coating are much smaller than those over the solid wall.  

 

(a1) 

 

(a2) 
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(b1) 

 

(c1) 

 

(d1)  

 

(b2) 

 

(c2) 

 

(d2)  

Figure 3-13. Left column: vortical source terms for the solid wall; right column: vortical 

source terms for the porous coating (unit: kg/(m•s3). 

 

(a) 

 

(b) 

Figure 3-14. Thermal source terms at x = 0.48m in the cases of the solid wall (a) and the 

porous coating (b) (unit: kg/(m•s3). 
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3.3 Summary 

In this chapter, the vortical, acoustic, and thermal components are extracted from the 

results of DNS for hypersonic BLs on a solid wall and a porous coating by using Doak’s MPT 

decomposition. Three independent energy budget equations for each component are adopted 

to clarify the contributions of the source terms to each energy flux term. The result shows that 

the normal transport of the fluctuation energy by the acoustic component is responsible for the 

mechanisms of “sound radiation” in the supersonic mode. In the case of the solid wall, the 

vortical and acoustic components coexist in the region of radiation of the supersonic mode. PA 

and ExBA near the critical layer produce energy for acoustic fluxes to transport the fluctuation 

energy to the bulk flow, which is responsible for the “sound radiation.” PB produced energy 

for vortical fluxes in the vicinity of the plate surface. However, vortical fluxes sink near the 

critical layer and fluctuation energy is transformed from the vortical component to the 

acoustic component. ExAT and PT produce energy for thermal fluxes near the critical layer and 

then fluctuation energy is consumed by ExBT and Pdiff2. In the case of the porous coating, PB in 

the vicinity of the plate’s surface is suppressed, and less vortical energy is transported to the 

critical layer. Therefore, less vortical energy is transformed into acoustic energy and PA 

becomes the unique energy producer for acoustic fluxes. The energy produced by PA cannot 

compensate for energy loss during the outward transport of the fluctuation energy. Eventually, 

there is no “spontaneous radiation phenomenon” on the porous coating. 
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4. MPT analysis of modal growth rate 

4.1 Motivation 

In chapter 2, we derived three independent energy budget equations for each MPT 

component for the first time. With these independent energy budget equations, the mean 

energy flux carried by each component balances with different source terms and energy 

exchange terms. Source terms indicate the energy exchange between disturbances and the 

mean flow field, while energy exchange terms represent the energy exchange between 

different MPT components of disturbances. The sum of three independent energy budget 

equations gives Doak’s original budget equation in which no energy exchange terms are 

present and the effect of different source terms on different energy flux is ambiguous. Source 

terms in the MPT energy budget equation can be classified into two categories: 1) the source 

term due to the interaction between each MPT component and the acceleration vector; 2) the 

source term arising in the thermal diffusion process. 

In chapter 3, we applied three independent energy budget equations to the analysis of the 

supersonic over highly cooled wall successfully. The acoustic energy flux is confirmed to be 

responsible for the sound radiation. By comparing the supersonic mode in the solid wall case 

and the porous wall case, the stabilization mechanism of the porous coating for the supersonic 

mode is clarified. The diminishing of the vortical source near the flat plate surface leads to the 

reduction of fluctuation energy transferred from the vortical component to the acoustic 

component near the critical layer. Thus, the acoustic energy produced near the critical layer is 

not sufficient to support the outward acoustic energy flux. Consequently, the sound radiation 
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disappears in the porous wall case. 

Considering energy fluxes and source terms, the MPT approach provides a convincing 

physical interpretation of the sound radiation mechanism of the supersonic mode. Another 

important issue is the study of the high-speed boundary layer instability is the physical 

mechanism of the modal growth of Mack’s second mode. Numerous existed LST analyses 

indicated that the synchronization of the S mode and the F mode causes unstable Mack’s 

second mode. The LST results are intriguing. However, the origin of the fluctuation energy 

that drives the modal growth of Mack’s second mode is still mysterious. Therefore, the MPT 

approach is applied to the LST result of Mack’s second mode for the physical explanation of 

the modal growth of Mack’s second mode. The energy analysis in the framework of the MPT 

approach provides a supplementary to the eigen analysis in the LST. 

4.2 Growth rate in the MPT approach 

In the study of the supersonic mode, sound radiation is related to the acoustic energy flux. 

Thus, energy budget equations in the MPT approach are applied directly in the analysis of the 

sound radiation mechanism of the supersonic mode. Similarly, the key to analyzing the growth 

rate with the MPT approach is to find the link between the growth rate and the energy budget 

equation. 

As mentioned in Chapter 1, the normal mode in the LST is assumed to have the harmonic 

wave form �̃�(𝑥, 𝑦, 𝑧, 𝑡) = �̂�(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) . For the spatial LST, the streamwise wave 

number 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖 is a complex number, and the growth rate 𝜎 = −𝛼𝑖. The real variables 

𝜙′ = �̃� + �̃�∗, the superscript * represents the complex conjugate of a complex variable. The 
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time average of the product of two disturbances term in the MPT approach is defined as 

 𝑎′𝑏′̅̅ ̅̅ ̅ =
𝜔

2𝜋
∫ 𝑎′𝑏′𝑑𝑡
2𝜋

𝜔
0

 (4.1) 

where 

 𝑎′ = [�̂�𝑒𝑖(𝛼𝑟𝑥+𝛽𝑧−𝜔𝑡) + �̂�∗𝑒−𝑖(𝛼𝑟𝑥+𝛽𝑧−𝜔𝑡)]𝑒𝜎𝑥 (4.2) 

 𝑏′ = [�̂�𝑒𝑖(𝛼𝑟𝑥+𝛽𝑧−𝜔𝑡) + �̂�∗𝑒−𝑖(𝛼𝑟𝑥+𝛽𝑧−𝜔𝑡)]𝑒𝜎𝑥 (4.3) 

Inserting equations (4.2) and (4.3) into equation (4.1), we have 

 𝑎′𝑏′̅̅ ̅̅ ̅ = (�̂��̂�∗ + �̂�∗�̂�)𝑒2𝜎𝑥 (4.4) 

Therefore, the x derivative of the time-average term  𝑎′𝑏′̅̅ ̅̅ ̅ in the spatial LST is 

 
𝜕𝑎′𝑏′̅̅ ̅̅ ̅̅

𝜕𝑥
= 2𝜎(�̂��̂�∗ + �̂�∗�̂�)𝑒2𝜎𝑥 = 2𝜎𝑎′𝑏′̅̅ ̅̅ ̅ (4.5) 

With equation (4.5), the energy budget equation (2.29) can be rewritten as 

 2𝜎(𝜌𝑢)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +
𝜕(𝜌𝑣)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
= 𝑷𝑩 + 𝑷𝑨 + 𝑷𝑻 + 𝑷𝒅𝒊𝒇𝒇 (4.6) 

By now, we have the growth rate 𝜎 present in the energy budget equation explicitly. 

However, there are two terms, 2𝜎(𝜌𝑢)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 
𝜕(𝜌𝑣)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
, on the left-hand side in the equation 

(4.6). Typically, 
𝜕(𝜌𝑣)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
 has a much larger order of magnitude than 2𝜎(𝜌𝑢)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  does, as shown 

in Figure 3-7. Thus, equation (4.6) is not suitable to explain in which manner source terms 𝑷𝑩, 

𝑷𝑨, 𝑷𝑻, and 𝑷𝒅𝒊𝒇𝒇 affect the growth rate of normal modes in the spatial LST. Another problem is 

that the equation (4.6) describes the local mean energy balance in the flow field, while the 

growth rate 𝜎 is a global parameter for normal modes of the spatial LST with parallel flow 

assumption. The growth rate 𝜎 in the spatial LST is the same for different physical quantities 

at different y locations. No doubt that the local energy budget equation (4.6) cannot provide a 

complete description of the contribution of local source terms to the global parameter 𝜎. 

Note that the additional term 
𝜕(𝜌𝑣)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
, which cannot be ignored in the local energy budget 
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equation (4.6), is a y-derivative term and the boundary condition for (𝜌𝑣)′ of the discrete 

mode in the spatial LST are 

 (𝜌𝑣)′ = 0, 𝑦 = 0 𝑎𝑛𝑑 𝑦 ⟶ +∞ (4.7) 

The integration of 
𝜕(𝜌𝑣)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
 from 𝑦 = 0 to 𝑦 ⟶ +∞ is 

 ∫
𝜕(𝜌𝑣)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
𝑑𝑦

+∞

0
= (𝜌𝑣)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

0

+∞
= 0 (4.8) 

Therefore, the integration of equation (4.6) from 𝑦 = 0 to 𝑦 ⟶ +∞ gives 

 2𝜎 ∫ (𝜌𝑢)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑦
+∞

0
= ∫ 𝑷𝑩𝑑𝑦

+∞

0
+ ∫ 𝑷𝑨𝑑𝑦

+∞

0
+ ∫ 𝑷𝑻𝑑𝑦

+∞

0
+ ∫ 𝑷𝒅𝒊𝒇𝒇𝑑𝑦

+∞

0
 (4.9) 

Here, the growth rate 𝜎 is independent of the y coordinate. The y-derivative term  
𝜕(𝜌𝑣)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
 is 

eliminated in the global integration energy budget equation. 

Furthermore, equation (4.9) can be rewritten as 

 𝜎 =
∫ 𝑷𝑩𝑑𝑦
+∞

0 +∫ 𝑷𝑨𝑑𝑦
+∞

0 +∫ 𝑷𝑻𝑑𝑦
+∞

0 +∫ 𝑷𝒅𝒊𝒇𝒇𝑑𝑦
+∞

0

2∫ 𝑞𝑥𝑑𝑦
+∞

0

= 𝜎𝐵 + 𝜎𝐴 + 𝜎𝑇 + 𝜎𝑑𝑖𝑓𝑓 (4.10) 

Here, (𝜌𝑢)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is denoted as 𝑞𝑥. The boundary layer is viewed as a waveguide for instability 

waves, the integration term ∫ 𝑞𝑥𝑑𝑦
+∞

0
 is thus the flux of instability waves in the waveguide. 

Contribution terms of each source term to the growth rate 𝜎 is defined as 

 𝜎𝐵 =
∫ 𝑷𝑩𝑑𝑦
+∞

0

2∫ 𝑞𝑥𝑑𝑦
+∞

0

, 𝜎𝐴 =
∫ 𝑷𝑨𝑑𝑦
+∞

0

2∫ 𝑞𝑥𝑑𝑦
+∞

0

, 𝜎𝑇 =
∫ 𝑷𝑻𝑑𝑦
+∞

0

2∫ 𝑞𝑥𝑑𝑦
+∞

0

, 𝜎𝑑𝑖𝑓𝑓 =
∫ 𝑷𝒅𝒊𝒇𝒇𝑑𝑦
+∞

0

2∫ 𝑞𝑥𝑑𝑦
+∞

0

 (4.11) 

4.3 Spatial linear stability analysis 

The self-similar solution of the laminar compressible boundary layer on a flat plate is 

obtained as the basic state for the spatial linear stability analysis 

 (𝐶𝑓′′)′ + 𝑓𝑓′′ = 0 (4.12) 

 (
𝐶

𝑃𝑟
𝑔′)

′
+ 𝑓𝑔′ +

𝑢𝑒
2

𝐻𝑒
[𝐶 (1 −

1

𝑃𝑟
) 𝑓′𝑓′′]

′

= 0 (4.13) 

 𝐶 =
𝜌𝜇

𝜌𝑒𝜇𝑒
,
𝑢𝑒
2

𝐻𝑒
=

(𝛾−1)𝑀2

1+
1

2
(𝛾−1)𝑀2

,
𝜌𝑒

𝜇𝑒
= [1 +

1

2
(𝛾 − 1)𝑀2] 𝑔 −

1

2
(𝛾 − 1)𝑀2𝑓′2 (4.14) 
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Here, 𝑓′(𝜂) =
𝑢

𝑢𝑒
, 𝑔(𝜂) =

𝐻

𝐻𝑒
. 𝐻  is the total enthalpy, 𝜌  is the density, 𝜇  is the viscosity 

coefficient, 𝑃𝑟 is the Prandtl number, 𝛾 is the specific heat ratio, and 𝑀 is the Mach number. 

The prime denotes the differentiation with respect to 𝜂  and the subscript e denotes the 

parameters in the freestream. The self-similar independent variables are given by the 

Howarth– Dorodnitsyn transformations and Mangler transformation by the coordinates 

 𝜉 = ∫ 𝜌𝑒𝜇𝑒�̅�𝑒𝑑𝑥
𝑥

0
, 𝜂 =

�̅�𝑒

√2𝜉
∫ 𝜌𝑑𝑦
𝑦

0
 (4.15) 

Here, 𝑥 is the streamwise direction and 𝑦 is the normal direction to the wall. The conventional 

no-slip boundary conditions are adopted at the wall. 

 𝜂 = 0: 𝑓 = 𝑓′ = 0, 𝑔 = 𝑔𝑤 𝑓𝑜𝑟 𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑤𝑎𝑙𝑙 𝑜𝑟 𝑔′ = 0 𝑓𝑜𝑟 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑤𝑎𝑙𝑙 (4.16) 

 𝜂 ⟶ ∞: 𝑓′ = 1, 𝑔 = 1 (4.17) 

In the spatial linear stability analysis hereinafter, the gas is assumed to be calorically and 

thermally perfect with 𝑃𝑟 = 0.72  and 𝛾 = 1.4 . The viscosity 𝜇  is approximated by 

Sutherland’s law. 

 
𝜇

𝜇𝑟𝑒𝑓
=

𝑇𝑟𝑒𝑓+𝑆

𝑇+𝑆
(

𝑇

𝑇𝑟𝑒𝑓
)

3

2
 (4.18) 

Here, 𝑆 = 110.4𝐾 , 𝑇𝑟𝑒𝑓 = 273.15𝐾 , and 𝜇𝑟𝑒𝑓 = 1.716 × 10
−5𝑃𝑎 ⋅ 𝑠 . The free-stream 

parameter is 𝑀 = 6.0, 𝑇𝑒 = 43.18𝐾, and the unit Reynolds number is 𝑅𝑒𝑢 = 1.05 × 10
7𝑚−1. 

In this case, the adiabatic wall temperature is 𝑇𝑤 = 300𝐾 . The frequency is fixed at 

138.74kHz. 

In the spatial LST with parallel flow assumption, the small disturbance is harmonic in 

time, 𝜙′(𝑥, 𝑦, 𝑧, 𝑡) = �̂�(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) . 𝜔  and 𝛽  are real numbers, while 𝛼  is a complex 

number. Since Mack’s second mode is two-dimensional, 𝛽 is fixed to be 0 in the spatial LST 

in this study. The linearized Navier-Stokes equations for disturbances is written in the matrix 
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form, as in Ref. [64] 

 
𝜕

𝜕𝑦
(𝑳0

𝜕𝜙′

𝜕𝑦
) + 𝑳1

𝜕𝜙′

𝜕𝑦
= 𝑯1𝜙

′ +𝑯2
𝜕𝜙′

𝜕𝑥
 (4.19) 

Here, 𝑳0, 𝑳1, 𝑯1, and 𝑯2 are 9×9 matrices. 𝜙′ has 9 components: 

 𝜙′ = (𝑢′,
𝜕𝑢′

𝜕𝑦
, 𝑣′, 𝑝′, 𝑇′,

𝜕𝑇′

𝜕𝑦
,
𝜕𝑢′

𝜕𝑥
,
𝜕𝑣′

𝜕𝑥
,
𝜕𝑇′

𝜕𝑥
) (4.20) 

In which 𝑢 , 𝑣 , 𝑝 , and 𝑇  are the streamwise velocity, normal velocity, pressure, and 

temperature, respectively. 

With the harmonic wave form of small disturbances, we have 

 
𝜕

𝜕𝑦
(𝑳0

𝜕�̂�

𝜕𝑦
) + 𝑳1

𝜕�̂�

𝜕𝑦
= 𝑯1�̂� + 𝑖𝛼𝑯2�̂� (4.21) 

Here, 

 �̂� = (�̂�,
𝜕𝑢

𝜕𝑦
, �̂�, �̂�, �̂�,

𝜕�̂�

𝜕𝑦
,
𝜕�̂�

𝜕𝑥
,
𝜕�̂�

𝜕𝑥
,
𝜕�̂�

𝜕𝑥
) (4.22) 

The boundary condition for the discrete modes of the spatial LST is 

 𝑦 = 0: �̂� = �̂� = �̂� = 0 (4.23) 

 𝑦 → ∞: �̂�, �̂�, �̂� ⟶ 0  (4.24) 

Finally, the governing equations (4.21) are discretized along with boundary conditions 

(4.23) and (4.24), a matrix eigenvalue problem is formulated as 

 𝐴�̂� = 𝑖𝛼𝐵�̂� (4.25) 

By solving the general eigenvalue problem (4.25), the dispersion relation 𝛼 = 𝛼(𝜔) and the 

eigenfunction �̂� of discrete normal modes of the spatial LST are obtained. 

4.4 Spatial LST results of the Mach 6.0 adiabatic 

wall case 

Figure 4-1 shows the phase speed 𝐶𝑟 =
𝜔

𝛼𝑟
 and imaginary part of wave number  𝛼𝑖 of the 
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S mode and F mode in the Mach 6.0 boundary layer over the adiabatic wall. The growth rate 𝜎 =

−𝛼𝑖 in the spatial LST. In Figure 4-1(a), three horizontal dashed lines indicate the phase speed 

of fast acoustic waves (upper, 𝐶𝑝ℎ = 1 +
1

𝑀
), vorticity/entropy waves (middle, 𝐶𝑝ℎ = 1), and 

slow acoustic waves (lower, 𝐶𝑝ℎ = 1 −
1

𝑀
) in the freestream. Two vertical dotted line in Figure 

4-1(a) indicate the location of SP1 (the synchronization point of the S mode and 

vorticity/entropy waves, 𝑥~0.76𝑚) and SP2 (the synchronization point of the S mode and F 

mode, 𝑥~0.1𝑚). In Figure 4-1(b), the S mode becomes most unstable at 𝑥~0.11𝑚, which is 

at the downstream of the synchronization point. The synchronization point of the S mode and 

F mode causes Mack’s second mode. 

 

(a) 

 

(b) 

Figure 4-1. The (a) phase speed 𝑪𝒓 =
𝜶𝒓

𝝎
 and (b) imaginary part of wave number 𝜶𝒊 of the S 

mode and the F mode in the spatial linear analysis for the Mach 6.0 boundary layer over the 

adiabatic wall. 𝑪𝒓  and 𝜶𝒊  are dimensionless. The characteristic velocity is the freestream 

velocity 𝒖𝒆 and the characteristic length is the local boundary layer thickness 𝑳𝒓𝒆𝒇 = √
𝒙

𝑹𝒆𝒖
. 

Figure 4-2 shows the eigenfunction of the S mode at the synchronization point 𝑥 = 0.1𝑚. 

The eigenfunction is normalized by 𝑝′ at 𝑦 = 0. Both 𝑝′ and 𝑇′ shows a peak at the critical 

layer, where �̅� = 𝐶𝑟. In a thin layer near the wall, 𝑢′, 𝑣′, and 𝑇′ decreases to 0 due to viscosity 
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effect to satisfy their boundary condition at the wall. 

 

(a) 

 

(b) 

 

(c) 

Figure 4-2. The eigenfunction of unstable Mack’s second mode (the S mode) at the 

synchronization point x=0.1m: (a) absolute values of 𝑢′, 𝑣′; (b) the abosolute value of 𝑝′; (c) 

the abosolute value of 𝑇′. The horinzontal dashed line indicate the location of the critical 

layer, where �̅� = 𝐶𝑟. 

4.5 MPT decomposition of Mack’s second mode 

With the harmonic ansatz for perturbations, the Poisson equation (2.11) becomes 

 𝛻2𝜑𝐴 = −
𝑖𝜔�̂�

�̅�2
, 𝛻2𝜑𝑇 =

𝑖𝜔(𝛾−1)�̅��̂�

𝛾𝑅
 (4.26) 

Similarly, the harmonic ansatz is adopted for the acoustic momentum potential 𝜑𝐴 and thermal 

momentum potential 𝜑𝑇. Equation (4.26) is rewritten as 

 −𝛼2𝜑𝐴 +
𝜕2𝜑𝐴

𝜕𝑦2
= −

𝑖𝜔�̂�

�̅�2
, −𝛼2𝜑𝑇 +

𝜕2𝜑𝑇

𝜕𝑦2
=

𝑖𝜔(𝛾−1)�̅��̂�

𝛾𝑅
 (4.27) 

Along with the boundary condition 

 𝑦 = 0: 𝜑𝐴 = 0,𝜑𝑇 = 0 (4.28) 

 𝑦 → ∞:𝜑𝐴 = 0,𝜑𝑇 = 0 (4.29) 

Equation (4.27) is solved numerically and MPT components are obtained as 

 𝑚𝐴 = −𝑖𝛼𝜑𝐴, 𝑛𝐴 = −
𝜕𝜑𝐴

𝜕𝑦
 (4.30) 
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 𝑚𝑇 = −𝑖𝛼𝜑𝑇, 𝑛𝑇 = −
𝜕𝜑𝑇

𝜕𝑦
 (4.31) 

 𝑚𝐵 = (�̅��̂� + �̅��̂�) − (𝑚𝐴 +𝑚𝑇), 𝑛𝐵 = �̅��̂� − (𝑛𝐴 + 𝑛𝑇) (4.32) 

Figure 4-4 shows the scalar potential  𝜑𝐴 and 𝜑𝑇 of the S mode at the synchronization point 

𝑥 = 0.1𝑚. The magnitude of 𝜑𝑇 is more than three times of the magnitude of 𝜑𝐴. The MPT 

components of the S mode at 𝑥 = 0.1𝑚 are plotted in Figure 4-4. For notational convenience, 

these components are designated 𝒎𝑩
′ = (𝑚𝐵 , 𝑛𝐵) , 𝒎𝑨

′ = (𝑚𝐴, 𝑛𝐴) , and 𝒎𝑻
′ = (𝑚𝑇 , 𝑛𝑇) , 

respectively. The vortical component has the largest magnitude order. The 𝑦-component of MPT 

components at the wall is not vanished, while their sum 𝑚𝐵 +𝑚𝐴 +𝑚𝑇 = (𝜌𝑣)
′ = 0  at 𝑦=0. 

 

Figure 4-3. The absolute value of acoustic momentum potential 𝜑𝐴 and thermal momentum 

potential 𝜑𝑇 of untsable Mack’s second mode (the S mode) at x=0.1m. 

 

(a) 

 

(b) 

 

(c) 

Figure 4-4. The absolute value of (a) the vortical component, (b) the acoustic component, and 

(c) the thermal component of unstable Mack’s second mode (the S mode) at x=0.1m. 
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4.6 Growth rate analysis of the unstable S mode 

Figure 4-5 shows 𝒒
𝒙
 of the S mode at x=0.076m (SP1) and x=0.1m (SP2). The eigenfunction 

of the S mode is normalized by the fluctuation pressure �̂� at the wall. It is noted that 𝒒
𝒙
 is positive 

in the lower region of the boundary layer and becomes negative near the critical layer. The 

magnitude of 𝒒
𝒙
 near the critical layer is much larger than it in other regions. Consequently, the 

integration term ∫ 𝒒
𝒙
𝑑𝑦

∞

0
 is negative for the S mode in the spatial LST. ∫ 𝒒

𝒙
𝑑𝑦

∞

0
 appears in the 

equation (4.10) as denominator. Eventually, negative source terms destabilize the S mode due to 

the negative ∫ 𝒒
𝒙
𝑑𝑦

∞

0
. This counterintuitive result is because 𝒒

𝒙
, which is regards as the “energy” 

term in integration MPT’s energy budget equation, is not positive definite. 

 

(a) 

 

(b) 

Figure 4-5. 𝒒𝒙 of the S mode (mormalized by �̂� at the wall) at (a) x=0.076m (SP1) and (b) 

x=0.1m (SP2). 

Source terms of the (normalized) S mode at x=0.076m (SP1) and x=0.1m (SP2) are plotted 

in Figure 4-6(a) and Figure 4-6(b), respectively. Obviously, the vortical source term 𝑷𝑩 is 

always opposite to the thermal source term 𝑷𝑻. The acoustic source term 𝑷𝑨 is positive at the 

wall and reach a negative peak near the wall.  𝑷𝑨 reaches a positive peak below the critical 
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layer and becomes negative above the critical layer. The thermal diffusion source term 𝑷𝒅𝒊𝒇𝒇 

is always negative in the boundary layer. There are two negative peaks in 𝑷𝒅𝒊𝒇𝒇. One is in the 

vicinity of the wall and the other is above the critical layer. Due to the negative integration 

term ∫ 𝒒
𝒙
𝑑𝑦

∞

0
, the negative 𝑷𝒅𝒊𝒇𝒇 destabilize the S mode, which extract energy from the mean 

flow for the amplification of the S mode. 

 

(a) 

 

(b) 

Figure 4-6. Source terms of the S mode (normalized by �̂� at the wall) at (a) x=0.076m (SP1) 

and (b) x=0.1m (SP2). 

As defined in equation (4.11), the global contribution of each source term in Mack’s 

second mode is plotted in Figure 4-7(a).  Two dotted lines indicate the location of 

synchronization points. 𝜎𝑑𝑖𝑓𝑓 and 𝜎𝐵 are positive, while 𝜎𝐴 and 𝜎𝑇 are negative. It means that 

the thermal diffusion source 𝑷𝒅𝒊𝒇𝒇 and the vortical source 𝑷𝑩 provide energy for the growth 

of the unstable S mode while 𝑷𝑨 and 𝑷𝑻 stabilize the S mode. Obviously, 𝜎𝐴 is coupled to 

𝜎𝑑𝑖𝑓𝑓 and 𝜎𝐵 is coupled to 𝜎𝑇. |𝜎𝐵| and |𝜎𝑇| reach their peak at the SP1, where the S mode 

synchronizes with vorticity/entropy waves in the freestream. |𝜎𝑑𝑖𝑓𝑓| reach its peak at SP2, 

where the S mode synchronizes with the F mode. |𝜎𝐴| reach its peak at the downstream of SP2. 

Figure 4-7(b) shows coupling effects 𝜎𝐴 + 𝜎𝑑𝑖𝑓𝑓  and 𝜎𝐵 + 𝜎𝑇 . 𝜎𝐴 + 𝜎𝑑𝑖𝑓𝑓  is positive and 
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becomes maxmum at the upstream of SP2. 𝜎𝐵 + 𝜎𝑇 is negative and becomes minimum between 

SP1 and SP2. Thus, the coupling effect of 𝜎𝐴 and 𝜎𝑑𝑖𝑓𝑓 is responsible to the modal growth of 

Mack’s second mode at SP2. According to above analysis, it is concluded that the thermal 

diffusion source term 𝑷𝒅𝒊𝒇𝒇 plays the key role in the amplification of Mack’s second mode at 

SP2 in the Mach 6.0 boundary layer with the adiabatic wall. 𝜎𝑑𝑖𝑓𝑓 reaches its peak at SP2, 

which leads to Mack’s second mode. Due to the exsitence of 𝜎𝐴, 𝜎𝐵,and 𝜎𝑇, Mack’s second mode 

becomes most unstable at the downstream of the SP2. 

 

(a) 

 

(b) 

Figure 4-7. (a) the global contribution of source terms on the growth rate 𝝈; (b) the global 

contribution of coupling effects 𝝈𝑨 + 𝝈𝒅𝒊𝒇𝒇 and 𝝈𝑩 + 𝝈𝑻. 

4.7 Thermal diffusion source Pdiff 

Both the vortical source term 𝑷𝑩  and the thermal diffusion source term 𝑷𝒅𝒊𝒇𝒇 produce 

energy for the amplification of the unstable S mode in the boundary layer. However, 𝝈𝑩 

couples with 𝝈𝑻  and 𝝈𝑩 + 𝝈𝑻  is negative. Moreover, 𝝈𝒅𝒊𝒇𝒇  becomes largest at SP2. It is 

generally acknowledged that the synchronization of the S mode and the F mode at SP2 leads 

to Mack’s second mode. Thus, the thermal diffusion source term 𝑷𝒅𝒊𝒇𝒇  is the key energy 
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producer related to Mack’s second mode. The thermal diffusion source term 𝑷𝒅𝒊𝒇𝒇 is related to 

the interaction between the fluctuation pressure 𝑝′ and the fluctuation entropy 𝑆′. In Doak’s 

MPT approach, the fluctuation pressure 𝑝′ is related to the acoustic component while the 

fluctuation entropy 𝑆′ is related to the thermal component. 𝑷𝒅𝒊𝒇𝒇 represents a thermal acoustic 

effect that produces energy for the amplification of Mack’s second mode. As shown in Figure 

4-6, the thermal diffusion source term 𝑷𝒅𝒊𝒇𝒇 has two negative peaks in the vicinity of the wall 

and near the critical layer, which means that the thermal-acoustic effect is significant in these 

regions. 

It is noted that the MPT decomposition is based on the linearized mass conservation 

equation while the energy budget equation is based on the linearized momentum conservation 

equation. The question arises naturally that how the linearized energy conservation equation 

affects the energy balance described in the energy budget equation. 

Firstly, considering the energy conservation equation in a usual standard form 

 (𝜌𝑇) [
𝜕𝑆

𝜕𝑡
+ (𝒖 ⋅ 𝛻)𝑆] = 𝛷 (4.33) 

Here, 𝛷 = 𝛻 ⋅ (𝑘𝛻𝑇) + �̿� ⋅ (𝛻𝒖)  includes the thermal conduction effect and viscous 

dissipation effect. Then, the linearization of equation (4.33) for a 2D parallel shear flow with 

unique mean pressure gives 

 �̅��̅� (
𝜕𝑆′

𝜕𝑡
+ �̅�

𝜕𝑆′

𝜕𝑥
+ 𝑣′

𝜕𝑆̅

𝜕𝑦
) = 𝛷′ (4.34) 

The 2D parallel shear flow with unique mean pressure is a typical assumption for boundary 

layer flow. 

Equation (4.34) can be rewritten as 

 
𝜕𝑆′

𝜕𝑡
+ �̅�

𝜕𝑆′

𝜕𝑥
= −𝑣′

𝜕𝑆̅

𝜕𝑦
+

𝛷′

�̅��̅�
 (4.35) 
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The left-hand side of equation (4.35) is the change rate of the fluctuation entropy observed in 

the reference frame with the mean velocity. The first term on the right-hand side of equation 

(4.35), −𝑣′
𝜕𝑆̅

𝜕𝑦
, is entropy exchange between neighbor layers with different mean entropy due 

to disturbance velocity, while the second term 
𝛷′

�̅��̅�
 is the fluctuation entropy generated in the 

irreversible process. 

Considering disturbances with the harmonic waveform, equation (4.35) is rewritten as 

 �̂� = −
�̂�

𝑖(𝛼�̅�−𝜔)

𝜕𝑆̅

𝜕𝑦
+

1

�̅��̅�

�̂�

𝑖(𝛼�̅�−𝜔)
 (4.36) 

Equation (4.36) is valid for non-neutral instability waves. For a neutral instability wave, 𝛼�̅� −

𝜔 = 0 at the critical layer. However, what we concern about is the physical mechanism of 

unstable Mack’s second mode. The neutral instability wave case is not taken into 

consideration in this study. 

Furthermore, two new variables are introduced into the analysis of the fluctuation 

entropy 

 
𝜕𝜂

𝜕𝑡
+ �̅�

𝜕𝜂

𝜕𝑥
= 𝑣′,

𝜕𝛹′

𝜕𝑡
+ �̅�

𝜕𝛹′

𝜕𝑥
= 𝛷′ (4.37) 

The dimension of the variable 𝜂  is displacement and the dimension of the variable 𝛷′  is 

energy per unit volume. The harmonic waveform of 𝑣′ and 𝛷′ gives 

 �̂� =
�̂�

𝑖(𝛼�̅�−𝜔)
, �̂� =

�̂�

𝑖(𝛼�̅�−𝜔)
 (4.38) 

And, we have 

 �̂� = −�̂�
𝜕𝑆̅

𝜕𝑦
+

�̂�

�̅��̅�
 (4.39) 

Thus, the fluctuation entropy 𝑆′ can be expressed as the sum of two parts 

 𝑆′ = −𝜂
𝜕𝑆̅

𝜕𝑦
+

𝛹′

�̅��̅�
 (4.40) 

The first part is fluctuation entropy caused by fluctuation displacement between neighbor 
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layers with different mean entropy. The second part is fluctuation entropy due to the viscous 

effect. Thus, the fluctuation entropy 𝑆′ is split into the inviscid part 𝑆𝑖𝑛𝑣
′ = −𝜂

𝜕𝑆̅

𝜕𝑦
 and the 

viscous part 𝑆𝑣𝑖𝑠
′ =

𝛹′

�̅��̅�
. 

Finally, the time average of 
𝑝′

𝑅
 and 

𝜕𝑆′

𝜕𝑡
 gives the thermal diffusion source term 

 𝑃𝑑𝑖𝑓𝑓 =  
𝑝′

𝑅

𝜕𝑆′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
= − 

𝑝′

𝑅

𝜕𝜂

𝜕𝑡

̅̅ ̅̅ ̅̅ 𝜕𝑆̅

𝜕𝑦
+

1

�̅�
 𝑝′

𝜕𝛹′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅
 (4.41) 

The first part − 
𝑝′

𝑅

𝜕𝜂

𝜕𝑡

̅̅ ̅̅ ̅̅ 𝜕𝑆̅

𝜕𝑦
 is the inviscid thermal-acoustic effect denoted as 𝑃𝑖𝑛𝑣 and the second 

part 
1

�̅�
 𝑝′

𝜕𝛹′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅
 is the viscous thermal-acoustic effect denoted as 𝑃𝑣𝑖𝑠. 

Figure 4-8 shows the 
𝑃𝑑𝑖𝑓𝑓

𝑄𝑥
, 
𝑃𝑖𝑛𝑣

𝑄𝑥
, and 

𝑃𝑣𝑖𝑠

𝑄𝑥
 of the S mode at x=0.076m (SP1) and x=0.1m 

(SP2). Here, 𝑄𝑥 = ∫ 𝑞𝑥𝑑𝑦
∞

0
  is the integration of 𝑞𝑥. 

𝑃𝑑𝑖𝑓𝑓

𝑄𝑥
 has two positive peaks near the wall and 

the critical layer, which indicates the thermal-acoustic effect is significant in these two regions. 

𝑃𝑑𝑖𝑓𝑓

𝑄𝑥
 almost overlaps 

𝑃𝑣𝑖𝑠

𝑄𝑥
 near the wall. The viscous effect 𝑃𝑣𝑖𝑠 dominates 𝑃𝑑𝑖𝑓𝑓 near the wall, 

while 𝑃𝑖𝑛𝑣 is negligible here. 
𝑃𝑣𝑖𝑠

𝑄𝑥
 near the wall is almost the same at SP1 and SP2.  

𝑃𝑖𝑛𝑣

𝑄𝑥
 has a 

positive peak at the critical layer, while 
𝑃𝑣𝑖𝑠

𝑄𝑥
 has a negative peak here. 𝑃𝑖𝑛𝑣 destabilizes the S mode 

around the critical layer, while 𝑃𝑣𝑖𝑠 stabilizes the S mode here. 

 

(a) 

 

(b) 

Figure 4-8. 
𝑷𝒅𝒊𝒇𝒇

𝑸𝒙
, 
𝑷𝒊𝒏𝒗

𝑸𝒙
, and 

𝑷𝒗𝒊𝒔

𝑸𝒙
 of the S mode at x=0.076m (SP1) and x=0.1m (SP2). 

Another concern is the relation between the thermal diffusion source 𝑷𝒅𝒊𝒇𝒇  and the 
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dilatation term (𝛻 ⋅ 𝒖′), which is important in the previous research of Tian and Wen [53]. It is 

noted that 

 𝛷′ = �̅��̅� (
𝜕𝑆′

𝜕𝑡
+ �̅�

𝜕𝑆′

𝜕𝑥
+ 𝑣′

𝜕𝑆̅

𝜕𝑦
) =

𝛾𝑅

𝛾−1
�̅� (

𝜕𝑇′

𝜕𝑡
+ �̅�

𝜕𝑇′

𝜕𝑥
+ 𝑣′

𝜕�̅�

𝜕𝑦
) − (

𝜕𝑝′

𝜕𝑡
+ �̅�

𝜕𝑝′

𝜕𝑥
) (4.42) 

As shown in Tian and Wen [53], 

 �̅� (
𝜕𝑇′

𝜕𝑡
+ �̅�

𝜕𝑇′

𝜕𝑥
+ 𝑣′

𝜕�̅�

𝜕𝑦
) = −(𝛾 − 1) (

𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
) +

𝑘(𝛾−1)

𝑅

𝜕2𝑇′

𝜕𝑦2
+ 𝜀 (4.43) 

𝜀 is a negligible term. By substituting equation (4.44) into equation (4.42), we have 

 𝛷′ = −𝛾𝑅 (
𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
) + 𝛾𝑘

𝜕2𝑇′

𝜕𝑦2
− (

𝜕𝑝′

𝜕𝑡
+ �̅�

𝜕𝑝′

𝜕𝑥
) +

𝛾𝑅

𝛾−1
𝜀 (4.44) 

The dilatation term is included in 𝛷′ and affects 𝑃𝑣𝑖𝑠. The observation that 𝑃𝑣𝑖𝑠 is dominant 

near the wall is consistent with the result of Tian and Wen [53]. 

4.8 Summary 

In this chapter, the integral energy budget equation is developed to study the modal 

growth rate of the S mode in the Mach 6.0 boundary layer with the adiabatic wall. The 

vortical source and the thermal diffusion source destabilize the S mode, while the acoustic 

source and the thermal source stabilize the S mode. It is found that 𝜎𝐴 is coupled to 𝜎𝑑𝑖𝑓𝑓 and 

𝜎𝐵 is coupled to 𝜎𝑇. 𝜎𝐵 + 𝜎𝑇 is negative while 𝜎𝐴 + 𝜎𝑑𝑖𝑓𝑓. |𝜎𝐵| and |𝜎𝑇| reach their peak at the 

SP1, where the S mode synchronizes with vorticity/entropy waves in the freestream. |𝜎𝑑𝑖𝑓𝑓| 

reach its peak at SP2, where the S mode synchronizes with the F mode. |𝜎𝐴| reach its peak 

downstream of SP2. Therefore, the instability mechanism of Mack’s second mode (the 

unstable S mode around SP2) is related to the thermal diffusion source 𝑃𝑑𝑖𝑓𝑓. The thermal 

diffusion source 𝑃𝑑𝑖𝑓𝑓 is caused by the interaction between the fluctuation pressure and the 

fluctuation entropy, which is thus a thermal-acoustic effect. Based on the linearization energy 
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equation, the thermal diffusion source 𝑃𝑑𝑖𝑓𝑓 is split into the inviscid part 𝑃𝑖𝑛𝑣 and the viscous 

part 𝑃𝑣𝑖𝑠 . The inviscid thermal diffusion source 𝑃𝑖𝑛𝑣  is related to the exchange between 

neighbor layers with different mean entropy, while the viscous thermal diffusion source 𝑃𝑣𝑖𝑠 is 

related to the thermal conduction and viscous dissipation. 𝑃𝑑𝑖𝑓𝑓 is significant near the wall 

and around the critical layer. 𝑃𝑣𝑖𝑠 almost overlaps 𝑃𝑑𝑖𝑓𝑓 and destabilizes the S mode near the 

wall. 𝑃𝑖𝑛𝑣 is dominant around the critical layer and destabilizes the S mode, while 𝑃𝑣𝑖𝑠 is also 

significant and stabilizes the S mode at the critical layer. 
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5. MPT analysis of acoustic metasurfaces 

5.1 Acoustic metasurface 

Ultrasonic absorptive coating (UAC) is an effective method to suppress the Mack second 

mode composed of regular or irregular microcavities. Meanwhile, UAC has minimal effects on the 

mean flow among various passive/active transition control strategies. Typically, UAC dissipates 

the Mack second mode disturbance energy through the viscosity in the narrow micropores and 

hence stabilizes the BL. 

The concept of the acoustic metasurface is introduced by Zhao, et al. [46] as the 

extension of UAC to suppress the Mack second mode and stabilize the hypersonic boundary layer 

(HBL). Acoustic metasurfaces are planar metamaterial structures composed of monolayer or 

multilayer stacks of subwavelength building blocks. In this sense, UAC is one form of acoustic 

metasurface that dissipates disturbance energy via its absorption characteristics. However, in 

addition to absorption capability, a metasurface can exhibit artificially designed acoustic 

characteristics, such as wave-front modulation, sound insulation, and so on [65, 66]. The 

impedance-near-zero acoustic metasurface proposed by Zhao, et al. [46] can effectively suppress 

the Mack second mode via out-of-phase behavior between the incident and reflected waves. 

Recently, Zhao, et al. [67] further proposed the reflection-controlled acoustic metasurface 

composed of periodical subwavelength groove groups that can change the reflection direction of 

disturbance waves. 

Although the stabilizing effects of various acoustic metasurfaces on HBL have been proven, 

the physics-based analysis of these multi phenomena is still unclear. Thus, the MPT approach is 
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applied to clarify the fundamental mechanism of acoustic metasurfaces to suppress the Mack 

second mode instability. 

5.2 Direct numerical simulation 

In this study, the disturbance flowfield of the Mach 6.0 boundary layer with the solid 

wall, absorptive metasurface, impedance-near-zero metasurface, and reflection-controlled 

metasurface is obtained by the two-dimensional DNS. The DNS method can be referred to in 

section 3.2. The unit Reynolds number was 1.05×107m-1. The freestream temperature and wall 

temperatures were 43.18 K and 300 K, respectively. The blow-suction disturbance is located at 

x=0.01m~0.015m. The blow-suction frequency is fixed at 138.74kHz. 

Figure 5-1 shows the 2-D (absorptive and impedance-near-zero) acoustic metasurface 

with subwavelength grooves schematically. The 2-D reflection-controlled metasurface with 

subwavelength grooves is plotted in Figure 5-2 schematically. The structure parameters of 

acoustic metasurfaces in the DNS are listed in table 5-1. Acoustic metasurfaces are placed at 

x=0.12m~0.18m in the 2D DNS. 

 

Figure 5-1. Schematic illustration of (absorptive and impedance-near-zero) acoustic 

metasurface with subwavelength grooves. H and b are the depth and half-width of the 

cavity. s is the cavity spacing. 
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Figure 5-2. Schematic illustration of reflection-controlled metasurface with 

subwavelength grooves. 

Table 5-1. Structure parameters of acoustic metasurfaces 

 H(mm) b(mm) s(mm) 

absorptive metasurface 1.633 0.196 0.5158 

impedance-near-zero metasurface 0. 55466 0.416 1.04 

reflection-controlled metasurface 1.056; 0.7904; 0.6246;  

0.4676;0.2642 

0.196 0.4946 

5.3 Acoustic characteristic of acoustic metasurfaces 

Before considering the hypersonic flowfield, the full-wave finite element simulations are 

performed to examine the acoustic characteristics of the designed metasurfaces in quiescent 

air using COMSOL Multiphysics®. For completeness, the contours of all kinds of surfaces are 

presented in Figure 5-3. The 𝑥′ coordinate in the streamwise direction and the 𝑦′ coordinate 

normal to the wall are normalized by the reference flat-plate length of 0.2 m. The amplitude of 

reflected waves on the absorptive metasurface is minimal, which strongly proves its 

absorption characteristics. The amplitude of reflected waves on the impedance-near-zero 

metasurface is smaller than on the rigid surface. It can’t be ignored that the pattern of the 
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reflection-controlled metasurface is quite different from other coatings, the reflected waves 

propagate upstream in the direction parallel to the surface. The full-wave finite element 

simulations show acoustic wave manipulation characteristics of each metasurface. 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 5-3. Simulated scattered pressure fields for various acoustic metasurfaces in the 

absence of hypersonic fluid flow: (a) rigid surface, (b) absorptive metasurface, (c) 

impedance-near-zero metasurface, (d) reflection-controlled metasurface. 

5.4 Mean flow 

It is necessary to assess whether the mean flow has changed or been affected. This is an 

important question to be addressed to explore the real cause of the change in the growth rate 

of Mack's second mode. With this in mind, the mean flow on the rigid surface and acoustic 

metasurfaces are compared. As shown in Figure 5-4, the profiles of velocity and temperature 

above the metasurfaces are consistent with those above the rigid surface, which indicates the 

designed metasurfaces have little effect on the mean flow field. 
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(a) 

 

(b) 

Figure 5-4. Comparisons of streamwise velocity and temperature profiles at x = 0.15m: 

(a) streamwise velocity profile and (b) temperature profile. 

5.5 Disturbance flow field 

The instantaneous fluctuating pressure contours for all cases are shown in Figure 5-5. 

The typical “two-cell” structure is observed on a rigid surface in Figure 5-5a. After x=0.11 m, 

the fluctuations are considerably amplified, which indicates the domination of Mack's second 

mode. Notably, x=0.11 m corresponded to the synchronization point of the discrete modes 

predicted by the LST. However, on the acoustic metasurfaces, the “two-cell” patterns are 

destroyed in different ways. For the absorptive metasurface case (Figure 5-5b), the upper 

mode cells tend to fuse with the lower parts and the trailing legs sink into the microgrooves. 

For the impedance-near-zero metasurface (Figure 5-5c), the trailing leg moves within the 

cavity. For reflection-controlled metasurface, the mode structures are divided into several 

segments in the normal direction as shown in Figure 5-5d.  

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 5-5. Fluctuating pressure contours for (a) rigid surface, (b) absorptive 

metasurface, (c) impedance-near-zero metasurface, (d) reflection-controlled metasurface. 

Figure 5-6 shows the streamwise variation of the upper envelope of maximum fluctuating 

pressure on the wall. The fluctuating pressure is greatly reduced when passing through the acoustic 

metasurfaces. After the acoustic metasurfaces, the amplitude rises quickly. It is thought the 

destruction of Mack second mode propagation pattern in the BL inhabiting its growth rate and 

stabilize the BL. 

 

Figure 5-6. Streamwise variation of the upper envelope of maximum fluctuating pressure 

for various surfaces. 
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5.6 Growth rate analysis 

In the growth rate analysis of the S mode in the spatial LST in Chapter 4, it is noted that 

 
𝜕(𝜌𝑢)′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
= −2𝛼𝑖(𝜌𝑢)

′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (5.1) 

The growth rate of the S mode is 𝜎 = −𝛼𝑖. Equation (5.1) is strictly valid with the parallel 

flow assumption. In DNS results, the boundary layer thickness is growing as x increases. With 

the local parallel assumption, the growth rate 𝜎2 in the rigid surface case is defined as 

 𝜎2 =
1

2∫ 𝑞𝑥𝑑𝑦
∞

0

𝜕𝑞𝑥

𝜕𝑥
 (5.2) 

Here, 𝑞𝑥 = (𝜌𝑢)
′𝐻′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Similar to equation (4.11), the contribution of each source term to the growth rate 𝜎2 is 

 𝜎2𝐴 =
∫ 𝑃𝐴𝑑𝑦
∞
0

2∫ 𝑞𝑥𝑑𝑦
∞
0

, 𝜎2𝐵 =
∫ 𝑃𝐵𝑑𝑦
∞
0

2∫ 𝑞𝑥𝑑𝑦
∞
0

, 𝜎2𝑇 =
∫ 𝑃𝑇𝑑𝑦
∞
0

2 ∫ 𝑞𝑥𝑑𝑦
∞
0

, 𝜎2𝑑𝑖𝑓𝑓 =
∫ 𝑃𝑑𝑖𝑓𝑓𝑑𝑦
∞
0

2 ∫ 𝑞𝑥𝑑𝑦
∞
0

 (5.3) 

For the DNS with acoustic metasurfaces, the definition of growth rate 𝜎2 is not suitable. 

Considering a 2-D parallel shear flow over acoustic metasurfaces with regular micro-structure, 

the mean flow field is periodic with the unit cell period s. According to Floquet theory, the 2-D 

disturbance wave can be expressed in the form 

 �̃�(𝑥, 𝑦, 𝑡) = �̂�(𝑥, 𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡) (5.4) 

Here, �̂�(𝑥, 𝑦) = �̂�(𝑥 + 𝑇𝑝, 𝑦)  is the periodic function with the period 𝑇𝑝 . 𝑇𝑝 = 𝑠  for 

absorptive metasurfaces and impedance-near-zero metasurface, while 𝑇𝑝 = 5𝑠 for reflection-

controlled metasurfaces. 

Similar to equation (4.4), the time-average of any two disturbance terms can be 

expressed as 

 𝑎′𝑏′̅̅ ̅̅ ̅ = (�̂��̂�∗ + �̂�∗�̂�)𝑒−2𝛼𝑖𝑥 (5.5) 

Here, �̂�(𝑥, 𝑦) and �̂�(𝑥, 𝑦) are the periodic function with the period s. Thus, we have 
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 𝑎′𝑏′̅̅ ̅̅ ̅|
𝑥+𝑇𝑝

= 𝑎′𝑏′̅̅ ̅̅ ̅|
𝑥
𝑒−2𝛼𝑖𝑇𝑝 (5.6) 

The growth rate 𝜎 = −𝛼𝑖 in the parallel shear flow over acoustic metasurface satisfies 

that 

 𝜎 =
1

2𝑠
𝑙𝑛 (

𝑎′𝑏′̅̅ ̅̅ ̅̅ |𝑥+𝑇𝑝

𝑎′𝑏′̅̅ ̅̅ ̅̅ |𝑥
) (5.7) 

The integration of the energy budget equation (2.29) over a unit cell gives 

 ∫ 𝑞𝑥𝑑𝑦
∞

0
|
𝑥0

𝑥0+𝑇𝑝
= ∮𝑃𝐴𝑑𝑆 + ∮𝑃𝐵𝑑𝑆 + ∮𝑃𝑇𝑑𝑆 + ∮𝑃𝑑𝑖𝑓𝑓𝑑𝑆 (5.8) 

With equation (5.7) and the local parallel assumption, the growth rate 𝜎3  in DNS of 

acoustic metasurfaces is defined as 

 𝜎3 =
1

2𝑠
𝑙𝑛 (

∫ 𝑞𝑥𝑑𝑦
∞

0
|
𝑥+𝑇𝑝

∫ 𝑞𝑥𝑑𝑦
∞

0
|
𝑥

) (5.9) 

Therefore, the contribution of each source term to the growth rate 𝜎3 is 

 𝑒2𝜎3𝐴𝑇𝑝 − 1 =
∮𝑃𝐴𝑑𝑆

∫ 𝑞𝑥𝑑𝑦
∞
0 |

𝑥

⟹ 𝜎3𝐴 =
1

2𝑇𝑝
𝑙𝑛 (

∮𝑃𝐴𝑑𝑆

∫ 𝑞𝑥𝑑𝑦
∞
0 |

𝑥

+ 1) (5.10) 

 𝑒2𝜎3𝐵𝑇𝑝 − 1 =
∮𝑃𝐵𝑑𝑆

∫ 𝑞𝑥𝑑𝑦
∞
0 |

𝑥

⟹ 𝜎3𝐵 =
1

2𝑇𝑝
𝑙𝑛 (

∮𝑃𝐵𝑑𝑆

∫ 𝑞𝑥𝑑𝑦
∞
0 |

𝑥

+ 1) (5.11) 

 𝑒2𝜎3𝑇𝑇𝑝 − 1 =
∮𝑃𝑇𝑑𝑆

∫ 𝑞𝑥𝑑𝑦
∞
0 |

𝑥

⟹ 𝜎3𝑇 =
1

2𝑇𝑝
𝑙𝑛 (

∮𝑃𝑇𝑑𝑆

∫ 𝑞𝑥𝑑𝑦
∞
0 |

𝑥

+ 1) (5.12) 

 𝑒2𝜎3𝑑𝑖𝑓𝑓𝑇𝑝 − 1 =
∮𝑃𝑑𝑖𝑓𝑓𝑑𝑆

∫ 𝑞𝑥𝑑𝑦
∞
0 |

𝑥

⟹ 𝜎3𝑑𝑖𝑓𝑓 =
1

2𝑇𝑝
𝑙𝑛 (

∮𝑃𝑑𝑖𝑓𝑓𝑑𝑆

∫ 𝑞𝑥𝑑𝑦
∞
0 |

𝑥

+ 1) (5.13) 

Figure 5-7 plots the contribution of each source term to the growth rate on various 

surfaces. The growth rate  𝜎2/𝜎3 is suppressed over acoustic metasurfaces. However,  𝜎2/𝜎3 is still 

positive and disturbance waves still grow over acoustic metasurfaces. This result is different from 

the fluctuation pressure distribution along the wall, as plotted in Figure 5-6. Similar to the 

growth rate analysis of the S mode plotted in Figure 4-7, 𝜎2𝐵/𝜎3𝐵 couples with 𝜎2𝑇/𝜎3𝑇, while 

𝜎2𝐴 /𝜎3𝐴  couples with 𝜎2𝑑𝑖𝑓𝑓 /𝜎3𝑑𝑖𝑓𝑓 . 𝜎2𝑑𝑖𝑓𝑓 /𝜎3𝑑𝑖𝑓𝑓  and 𝜎2𝐵 /𝜎3𝐵  is positive, while 𝜎2𝐴 /𝜎3𝐴  and 

𝜎2𝑇/𝜎3𝑇 is negative. 𝜎2𝑑𝑖𝑓𝑓/𝜎3𝑑𝑖𝑓𝑓  is larger than 𝜎2𝐴/𝜎3𝐴 in magnitude, and 𝜎2𝐵/𝜎3𝐵 is smaller than  

𝜎2𝑇 / 𝜎3𝑇  in magnitude. Therefore, the thermal diffsion source 𝑃𝑑𝑖𝑓𝑓  is still critical to the 
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amplification of disturbances waves in the DNS results with the rigid surface and acoustic 

measurfaces. 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 5-7. Contribution of each source term to the growth rate on various surfaces 

based on DNS results: (a) rigid surface, (b) absorptive metasurface, (c) impedance-near-

zero metasurface, (d) reflection-controlled metasurface. 

5.7 Source mechanisms 

The quantitative analysis of the contribution of each source term to the growth rate over 

the rigid surface and acoustic metasurface indicates that the thermal diffusion source plays a 

key role in the amplification of disturbance waves. There is no qualitative difference in the 

case with different acoustic metasurface. 

Acoustic source terms 𝑷𝑨 over the rigid surface and acoustic metasurfaces are plotted in 
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Figure 5-8. It should be addressed again that the negative source term leads to a positive growth 

rate and causes instability in HBL. In most areas, the acoustic source terms are close to zero. The 

positive/negative source terms that affect the growth rate of disturbance are mainly located at the 

wall and near the critical layer. In Figure 5-8b, 5-7c, and 5-7d, the negative acoustic source 

terms near the wall are attenuated due to microcavities. The effect of microcavities on acoustic 

source terms 𝑷𝑨 here stabilizes disturbance waves. However, positive acoustic source terms 

appear at y~0.0025m in Figure 5-8b, 5-7c, and 5-7d. The effect of microcavities on acoustic 

source terms 𝑷𝑨 here destabilizes disturbance waves. Periodic structure appears around the 

critical layer is apparent in Figure 5-8d. 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 5-8. Acoustic source term 𝑷𝑨 over (a) rigid surface, (b) absorpotive metasurface, 

(c) impedance-near-zero metasurface, and (d) reflection-controlled metasurface. 
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Vortical source terms 𝑷𝑩  over rigid surface and acoustic metasurfaces are plotted in 

Figure 5-9. Similarly, the positive vortical source terms near the wall are attenuated due to 

microcavities in Figure 5-9b, 5-8c, and 5-8d. The effect of microcavities on vortical source 

terms 𝑷𝑩 here destabilizes disturbance waves. The attenuation effect in Figure 5-9c is most 

significant. The periodic structure also appears around the critical layer in Figure 5-9d. 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 5-9. Vortical source term 𝑷𝑩 over (a) rigid surface, (b) absorpotive metasurface, 

(c) impedance-near-zero metasurface, and (d) reflection-controlled metasurface. 

Thermal source terms 𝑷𝑻 over the rigid surface and acoustic metasurfaces are plotted in 

Figure 5-10. Similarly, the negative thermal source terms near the wall are attenuated due to 

microcavities in Figure 5-10b, 5-9c, and 5-9d. The effect of microcavities on thermal source 

terms 𝑷𝑻  here stabilizes disturbance waves. Thermal source terms 𝑷𝑻  even change to be 
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positive at the wall between microcavities in Figure 5-10c. Periodic perturbation to the thermal 

source term around the critical layer is not significant in Figure 5-10d. 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 5-10. Thermal source term 𝑷𝑻 over (a) rigid surface, (b) absorpotive metasurface, 

(c) impedance-near-zero metasurface, and (d) reflection-controlled metasurface. 

Thermal diffusion source terms 𝑷𝒅𝒊𝒇𝒇 over rigid surface and acoustic metasurfaces are 

plotted in Figure 5-11. The quantitative analysis of the growth rate in section 5.6 suggests that 

the thermal diffusion source terms 𝑷𝒅𝒊𝒇𝒇 are critical in the amplification of disturbance waves. 

Thus, the effect of microcavities on the thermal diffusion source is the key to explain the 

stabilization mechanism of different acoustic metasurfaces. In Figure 5-11a, it is observed that 

thermal diffusion source terms 𝑷𝒅𝒊𝒇𝒇 over the rigid surface are negative in the whole flow 

field and have the largest magnitude near the wall and around the critical layer. In Figure 
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5-11b, 5-10c, and 5-10d, the negative thermal diffusion source terms 𝑷𝒅𝒊𝒇𝒇  are attenuated 

significantly near the wall due to microcavities. The effect of microcavities on thermal source 

terms 𝑷𝒅𝒊𝒇𝒇  here stabilizes disturbance waves. The attenuation effect of microcavities is 

weakest over the reflection-controlled metasurface and strongest over the impedance-near-

zero metasurface. In Figure 5-11b, thermal diffusion source terms 𝑷𝒅𝒊𝒇𝒇 become positive with 

small amplitude at y~0.0016m. In Figure 5-11c, thermal diffusion source terms 𝑷𝒅𝒊𝒇𝒇 become 

positive with relatively larger magnitude around y~0.0014m. In Figure 5-11d, periodic spots 

of positive thermal diffusion source terms 𝑷𝒅𝒊𝒇𝒇 with the largest magnitude appear below and 

above the critical layer. 

The thermal diffusion source 𝑷𝒅𝒊𝒇𝒇  is the time average of 
𝑝′

𝑅
 and 

𝜕𝑆′

𝜕𝑡
. 𝑝′  is related to 

sound waves reflected back and forth in the boundary layer flow field. Acoustic metasurfaces 

change the boundary condition of sound waves at the wall. Thus, all three kinds of 

metasurfaces have a significant effect on 𝑷𝒅𝒊𝒇𝒇  near the wall. However, the property of 

reflected sound waves caused by microcavities is different in different metasurfaces. For 

absorptive metasurfaces, the incident sound wave is dissipated in the narrow and deep cavity 

and no sound wave is reflected back. As a consequence, 𝑷𝒅𝒊𝒇𝒇 around the critical layer is 

affected slightly by absorptive metasurfaces. For impedance-near-zero and reflection 

controlled metasurfaces, incident sound wave is reflected intensely by microcavities. 

Consequently, the phase difference between 
𝑝′

𝑅
 and 

𝜕𝑆′

𝜕𝑡
 near the critical layer is affected 

significantly in impedance-near-zero and reflection controlled metasurface cases. By changing 

the direction of reflected sound wave in the reflection controlled metasurface case, 𝑷𝒅𝒊𝒇𝒇 

above the critical layer is even affected significantly by reflected sound waves. 
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(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 5-11. Thermal diffusion source term 𝑷𝒅𝒊𝒇𝒇 over (a) rigid surface, (b) absorpotive 

metasurface, (c) impedance-near-zero metasurface, and (d) reflection-controlled 

metasurface. 

5.8 Summary 

In this chapter, the stabilization mechanism of acoustic metasurfaces in the Mach 6.0 

boundary layer is studied through the MPT approach. The growth rate 𝜎2  and 𝜎3  for rigid 

surface and acoustic metasurfaces, respectively, are defined based on the integrated energy budget 

equation. The qualitative analysis of the contribution of each source term indicates that thermal 

diffusion source terms 𝑃𝑑𝑖𝑓𝑓  play a key role in the amplification of disturbance waves. Contours of 

thermal diffusion source terms 𝑃𝑑𝑖𝑓𝑓  provide an intuitive interpretation of the stabilization 
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mechanism of different acoustic metasurfaces. In the rigid surface case, thermal diffusion source 

terms 𝑃𝑑𝑖𝑓𝑓  reach negative peaks near the wall and around the critical layer. In acoustic 

metasurface cases, thermal diffusion source terms 𝑃𝑑𝑖𝑓𝑓  are attenuated by microcavities. The 

attenuation effect is strongest in the impedance-near-zero case and weakest in the reflection-

controlled case. The effect of microcavities on thermal diffusion source terms 𝑃𝑑𝑖𝑓𝑓  around the 

critical layer is insignificant in the absorptive metasurface case, while it is significant in the 

impedance-near-zero metasurface case and the reflection-controlled metasurface. Thermal 

diffusion source terms 𝑃𝑑𝑖𝑓𝑓 changes to positive around y~0.0014m over the impedance-near-zero 

metasurface. Spots of positive thermal diffusion source terms 𝑃𝑑𝑖𝑓𝑓 with very large amplitude 

appears periodically above and below the critical layer over the reflection-controlled 

metasurface. It is concluded that 1) the stabilization mechanism of the absorptive metasurface 

is mainly the attenuation effect near the wall due to microcavities; 2) the stabilization 

mechanism of the impedance-near-zero metasurface includes the attenuation effect near the 

wall and the effect on thermal diffusion source terms below the critical layer; 3) the reflection-

controlled metasurface has the weakest attenuation effect near the wall but the strongest effect 

on thermal diffusion source terms around the critical layer.  
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6. Conclusions 

The momentum potential theory (MPT) is applied to the study of the physical mechanism 

of hypersonic boundary layer instabilities. The MPT approach is an elegant method that 

provides a decomposition to instability waves in a general flow field and obtains an energy 

budget equation governing the development of instability waves. However, there is ambiguity 

in the original MPT approach proposed by Doak [54], which restricts the application of the 

MPT approach. To overcome the restriction, three independent energy budget equations are 

developed to clarify the sound radiation mechanism of the supersonic mode.  Then, the MPT 

approach is applied to the study of the modal growth of instability waves. The difficulty in 

this problem is that the growth rate of instability waves is not related to the energy budget 

equation explicitly. For this reason, the integrated energy budget equation is developed to 

clarify the effect of source terms on the growth rate. It is found that the thermal diffusion 

source term plays a key role in the modal growth of instability waves. Furthermore, the 

integrated energy budget equation is adopted to provide a physical interpretation of the 

stabilization mechanism of different acoustic metasurfaces. The results indicate that the 

stabilization mechanism of different acoustic metasurfaces is attributed to the attenuation 

effect on thermal diffusion source terms near the wall and the effect on thermal diffusion 

source terms around the critical layer. 

6.1 Recommendations for Future Work 

The present work represents an exploratory study of hypersonic boundary instabilities in 

the MPT framework. As such, this work should be viewed as laying the foundation for more 
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future work in depth. Some suggestions are provided here to guide future efforts. 

Firstly, the application of the MPT approach to the study of instabilities in the reacting 

flow. The chemical reaction is significant in high-enthalpy wind tunnel experiments and some 

real-flight cases. The existence of chemical reactions causes complicated instabilities in the 

flow field. It has been mentioned that the MPT approach can be extended to the multi-

chemical-components flow directly. It is interesting and worthwhile to explore the physical 

mechanism underlying the instabilities caused by chemical reactions in the MPT framework. 

Secondly, the application of the MPT approach to the study of instabilities in the 

nonlinear stage. In the present work, only the linear instability of the boundary layer with 

small disturbances assumption is considered. Although the linear assumption simplifies the 

MPT decomposition process and the derivation of the energy budget equation in a great deal, 

the MPT approach itself is not limited to the linear case. The continuity equation (2.1) is linear 

for the momentum density 𝒎, the MPT decomposition is thus valid in nonlinear cases. MPT 

energy budget equation in nonlinear cases can be derived as following. The scalar product of 

equation (2.21) and the momentum density 𝒎 gives 

 𝒎 ⋅
𝜕𝒖

𝜕𝑡
+𝒎 ⋅ 𝛻𝐻 = 𝒎 ⋅ 𝜶 (6.1) 

Equation (6.1) can be rewritten as 

 
𝜕

𝜕𝑡
(
1

2
𝜌𝒖 ⋅ 𝒖) + 𝛻 ⋅ (𝒎𝐻) + ℎ

𝜕𝜌

𝜕𝑡
= 𝒎 ⋅ 𝜶 (6.2) 

The time average of equation (6.2) is 

 𝛻 ⋅ (𝒎𝐻̅̅ ̅̅ ̅) + ℎ
𝜕𝜌

𝜕𝑡

̅̅ ̅̅ ̅
= 𝒎 ⋅ 𝜶̅̅ ̅̅ ̅̅ ̅ (6.3) 

Equation (6.3) can be expressed as 

 𝛻 ⋅ (𝒎′𝐻′̅̅ ̅̅ ̅̅ ̅ + �̅��̅�) + ℎ′
𝜕𝜌′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
= 𝒎′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ + �̅� ⋅ �̅� (6.4) 
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The time average of equation (2.21) is 

 𝛻�̅� = �̅� (6.5) 

The scalar product of equation (6.5) and �̅� gives 

 𝛻 ⋅ (�̅��̅�) = �̅� ⋅ �̅� (6.6) 

Substituting equation (6.6) into equation (6.4) gives 

 𝛻 ⋅ (𝒎′𝐻′̅̅ ̅̅ ̅̅ ̅) + ℎ′
𝜕𝜌′

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅
= 𝒎′ ⋅ 𝜶′̅̅ ̅̅ ̅̅ ̅̅ ̅ (6.7) 

The energy budget equation in nonlinear cases is the same as equation (2.29) in the linear 

cases. Thus, the MPT approach is promised in the study of the physical mechanisms of 

nonlinear instabilities, such as secondary instability, bypass mechanism, breakdown, etc. 

However, three independent energy budget equations for each MPT component are no longer 

valid without linear assumption. 

6.2 Final word 

The present work is one small step in the understanding of the complicated physic 

mechanism of hypersonic boundary layer instabilities and the laminar flow control in the 

hypersonic flow. There are still many difficulties in this area from the fundamental physics to 

the practical engineering. Hopefully, the on-going experimental, computational and theoretical 

investigations will deepen our understanding of the mystery of the boundary layer transition 

and leads to the realization of the space travel dream in the future. 

  



 

82 

 

References 

[1] K. F. Stetson and G. H. Rushton, "Shock Tunnel Investigation of Boundary-

Layer Transition," AIAA Journal, vol. 5, no. 5, pp. 899-906, 1967. 

[2] J. M. Kendall, "Supersonic Boundary Layer Stability Experiments," in 

Boundary Layer Transition Study Group Meeting, Aerospace Corp., San Bernardino, 

Calif., 1967. 

[3] J. M. Kendall, "Wind Tunnel Experiments Relating to Supersonic and 

Hypersonic Boundary-Layer Transition," AIAA Journal, vol. 13, no. 3, pp. 290-299, 1975. 

[4] K. F. Stetson, E. R. Thompson, J. C. Donaldson, and L. G. Siler, "Laminar 

Boundary Layer Stability Experiments on a Cone at Mach 8. Part I: Sharp cone," AIAA 

Paper, pp. 83-1761, 1983. 

[5] K. F. Stetson, E. R. Thompson, J. C. Donaldson, and L. G. Siler, "Laminar 

Boundary Layer Stability Experiments on a Cone at Mach 8. Part II: Blunt Cone," AIAA 

Paper, pp. 84-0006, 1984. 

[6] K. F. Stetson, E. R. Thompson, J. C. Donaldson, and L. G. Siler, "Laminar 

Boundary Layer Stability Experiments on a Cone at Mach 8. Part III: Sharp cone at Angle 

of Attack," AIAA Paper, pp. 85-0492, 1985. 

[7] K. F. Stetson, E. R. Thompson, J. C. Donaldson, and L. G. Siler, "Laminar 

Boundary Layer Stability Experiments on a Cone at Mach 8. Part IV: On Unit Reynolds 

Number and Enviromental Effects," AIAA Paper, pp. 86-1087, 1986. 

[8] K. F. Stetson, E. R. Thompson, J. C. Donaldson, and L. G. Siler, "Laminar 

Boundary Layer Stability Experiments on a Cone at Mach 8. Part V: Tests With a Cooled 

Model," AIAA Paper, pp. 89-1895, 1989. 

[9] A. D. Kosinov, A. A. Maslov, and S. G. Shevelkov, "Experiments on the 

stability of supersonic laminar boundary layers," Journal of Fluid Mechanics, vol. 219, 

1990. 

[10] S. J. Laurence, A. Wagner, and K. Hannemann, "Experimental study of 

second-mode instability growth and breakdown in a hypersonic boundary layer using 

high-speed schlieren visualization," Journal of Fluid Mechanics, vol. 797, pp. 471-503, 

2016. 

[11] R. E. Kennedy, S. J. Laurence, M. S. Smith, and E. C. Marineau, 

"Visualization of the second-mode instability on a sharp cone at Mach 14," in 2018 AIAA 

Aerospace Sciences Meeting, 2018, p. 2083. 

[12] S. J. Laurence et al., "Time-Resolved Visualization of Instability Waves in a 

Hypersonic Boundary Layer," (in English), Aiaa Journal, vol. 50, no. 1, pp. 243-246, Jan 

2012. 

[13] S. J. Laurence, A. Wagner, and K. Hannemann, "Schlieren-based techniques 

for investigating instability development and transition in a hypersonic boundary layer," 

Experiments of Fluids, 2014. 

[14] L. M. Mack, "Boundary-layer linear stability theory," in AGARD Conference, 

NATO, Paris, 1984, vol. 224, pp. 1-1 - 1-22. 

[15] M. R. Malik, "Prediction and control of transition in supersonic and 



 

83 

 

hypersonic boundary layers," AIAA Journal, vol. 27, no. 11, pp. 1487-1493, 1989. 

[16] H. L. Reed, W. Saric, and D. Arnal, "Linear stability theory applied to 

boundary layers," Annual Review of Fluid Mechanics, no. 28, pp. 389-482, 1996. 

[17] M. R. Malik, "Numerical methods for hypersonic boundary layer stability," 

Journal of Computational Physics, vol. 86, no. 2, pp. 376-413, 1990. 

[18] A. V. Fedorov and A. Tumin, "High-Speed Boundary-Layer Instability: Old 

Terminology and a New Framework," AIAA Journal, vol. 49, no. 8, pp. 1647-1657, 2011. 

[19] A. V. Fedorov and A. P. Khokhlov, "Prehistory of Instability in a Hypersonic 

Boundary Layer," Theoretical and Computational Fluid Dynamics, vol. 14, pp. 359-375, 

2001. 

[20] G. Erlebacher and M. Y. Hussaini, "Numerical experiments in supersonic 

boundary‐layer stability," Physics of Fluids A: Fluid Dynamics, vol. 2, no. 1, pp. 94-104, 

1990. 

[21] Y. Ma and X. Zhong, "Receptivity of a supersonic boundary layer over a flat 

plate. Part 1. Wave structures and interactions," Journal of Fluid Mechanics, vol. 488, pp. 

31-78, 2003. 

[22] Y. Ma and X. Zhong, "Receptivity of a supersonic boundary layer over a flat 

plate. Part 2. Receptivity to free-stream sound," Journal of Fluid Mechanics, vol. 488, pp. 

79-121, 2003. 

[23] Y. Ma and X. Zhong, "Receptivity of a supersonic boundary layer over a flat 

plate. Part 3. Effects of different types of free-stream disturbances," Journal of Fluid 

Mechanics, vol. 532, pp. 63-109, 2005. 

[24] X. Zhong and X. Wang, "Direct Numerical Simulation on the Receptivity, 

Instability, and Transition of Hypersonic Boundary Layers," Annual Review of Fluid 

Mechanics, vol. 44, no. 1, pp. 527-561, 2012. 

[25] A. Tumin, X. Zhong, and X. Zhong, "Numerical simulation and theoretical 

analysis of perturbations in hypersonic boundary layers," AIAA journal, vol. 49, no. 3, pp. 

463-471, 2011. 

[26] A. M. Tumin, X. Wang, and X. Zhong, "Direct numerical simulation and the 

theory of receptivity in a hypersonic boundary layer," 2007. 

[27] A. V. Fedorov, "Transition and Stability of High-Speed Boundary Layers," 

Annual Review of Fluid Mechanics, no. 43, pp. 79-95, 2011. 

[28] M. Morkovin, E. Reshotko, and T. Herbert, "Transition in open flow systems: 

a reassessment," Bull. Am. Phys. Soc, vol. 39, no. 9, p. 1882, 1994. 

[29] P. V. Chuvakhov and A. V. Fedorov, "Spontaneous radiation of sound by 

instability of a highly cooled hypersonic boundary layer," Journal of Fluid Mechanics, 

vol. 805, pp. 188-206, 2016. 

[30] N. Malmuth et al., "Problems in high speed flow prediction relevant to 

control," AIAA Paper, vol. 2695, p. 1998, 1998. 

[31] A. V. Fedorov, N. D. Malmuth, A. Rasheed, and H. G. Hornung, 

"Stabilization of Hypersonic Boundary Layers by Porous Coatings," AIAA Journal, vol. 

39, no. 4, pp. 605-610, 2001. 

[32] A. V. Fedorov, A. Shiplyuk, A. Maslov, E. Burov, and N. Malmuth, 

"Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating," 



 

84 

 

Journal of Fluid Mechanics, vol. 479, pp. 99-124, 2003. 

[33] A. Fedorov and N. Malmuth, "Parametric studies of hypersonic laminar flow 

control using a porous coating of regular microstructure," in 46th AIAA Aerospace 

Sciences Meeting and Exhibit, 2008, p. 588. 

[34] A. Fedorov, G. Brès, M. Inkman, and T. Colonius, "Instability of Hypersonic 

Boundary Layer on a Wall with Resonating Micro-Cavities," in 49th AIAA Aerospace 

Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011. 

[35] A. Rasheed, H. G. Hornung, A. V. Fedorov, and N. D. Malmuth, 

"Experiments on Passive Hypervelocity Boundary-Layer Control Using an Ultrasonically 

Absorptive Surface," AIAA Journal, vol. 40, no. 3, pp. 481-489, 2002. 

[36] X. Wang and X. Zhong, "Numerical simulations on mode S growth over 

feltmetal and regular porous coatings of a Mach 5.92 flow," in 49th AIAA Aerospace 

Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011, p. 

375. 

[37] D. Bountin et al., "Stabilization of a hypersonic boundary layer using a wavy 

surface," AIAA journal, vol. 51, no. 5, pp. 1203-1210, 2013. 

[38] A. Wagner, M. Kuhn, J. Martinez Schramm, and K. Hannemann, 

"Experiments on passive hypersonic boundary layer control using ultrasonically 

absorptive carbon–carbon material with random microstructure," Experiments in Fluids, 

vol. 54, no. 10, 2013. 

[39] G. A. Brès, M. Inkman, T. Colonius, and A. V. Fedorov, "Alternate Designs of 

Ultrasonic Absorptive Coatings for Hypersonic Bounday Layer Control," AIAA Paper, vol. 

4217, p. 2009, 2009. 

[40] Bres et al., "Second-mode attenuation and cancellation by porous coatings in 

a high-speed boundary layer," Journal of Fluid Mechanics, vol. 726, pp. 312–337, 2013. 

[41] I. Egorov, A. Novikov, and A. Fedorov, "Direct numerical simulation of 

supersonic boundary layer stabilization using grooved wavy surface," in 48th AIAA 

Aerospace Sciences Meeting, 2010, pp. 2010-1245. 

[42] A. Maslov et al., "Hypersonic Laminar Flow Control Using a Porous Coating 

of Random Microstructure," AIAA paper, vol. 1112, p. 2006, 2006. 

[43] R. C. Tritarelli, S. K. Lele, and A. Fedorov, "Stabilization of a hypersonic 

boundary layer using a felt-metal porous coating," Journal of Fluid Mechanics, vol. 769, 

pp. 729-739, 2015. 

[44] X. Tian, R. Zhao, T. Long, and C. Y. Wen, "Reverse Design of Ultrasonic 

Absorptive Coating for the Stabilization of Mack Modes," AIAA Journal, vol. 57, no. 6, 

pp. 2264-2269, 2019. 

[45] R. Zhao, T. Liu, C. Y. Wen, J. Zhu, and L. Cheng, "Theoretical Modeling and 

Optimization of Porous Coating for Hypersonic Laminar Flow Control," AIAA Journal, 

vol. 56, no. 8, pp. 2942-2946, 2018. 

[46] R. Zhao, T. Liu, C. Y. Wen, J. Zhu, and L. Cheng, "Impedance-Near-Zero 

Acoustic Metasurface for Hypersonic Boundary-Layer Flow Stabilization," Physical 

Review Applied, vol. 11, no. 4, 2019. 

[47] R. Zhao, C. Y. Wen, T. H. Long, X. D. Tian, and Y. Wu, "Spatial Direct 

Numerical Simulation of the Hypersonic Boundary-Layer Stabilization Using Porous 



 

85 

 

Coatings," AIAA Journal, vol. 57, no. 1, pp. 1-5, 2019. 

[48] R. Zhao, C. Y. Wen, X. D. Tian, T. H. Long, and W. Yuan, "Numerical 

simulation of local wall heating and cooling effect on the stability of a hypersonic 

boundary layer," International Journal of Heat & Mass Transfer, vol. 121, pp. 986-998, 

2018. 

[49] R. Zhao, X. X. Zhang, and C. Y. Wen, "Theoretical Modeling of Porous 

Coatings with Simple Microstructures for Hypersonic Boundary-Layer Stabilization," 

AIAA Journal, vol. 58, no. 2, pp. 1-6, 2019. 

[50] X. Wang and X. Zhong, "Phase angle of porous coating admittance and its 

effect on boundary-layer stabilization," in 41st AIAA Fluid Dynamics Conference and 

Exhibit, 2011, p. 3080. 

[51] O. Reynolds, "On the Dynamical Theory of Incompressible Viscous Fluids 

and the Determination of the Criterion," Philosophical Transactions of the Royal Society 

A, vol. 186, pp. 123-164, 1895. 

[52] J. J. Kuehl, "Thermoacoustic interpretation of second-mode instability," AIAA 

Journal, vol. 56, no. 9, pp. 3585-3592, 2018. 

[53] X. Tian and C. Wen, "Growth mechanisms of second-mode instability in 

hypersonic boundary layers," Journal of Fluid Mechanics, vol. 908, 2021. 

[54] P. Doak, "Momentum potential theory of energy flux carried by momentum 

fluctuations," Journal of sound and vibration, vol. 131, no. 1, pp. 67-90, 1989. 

[55] S. Unnikrishnan and D. V. Gaitonde, "Interactions between vortical, acoustic 

and thermal components during hypersonic transition," Journal of Fluid Mechanics, vol. 

868, pp. 611-647, 2019. 

[56] L. Kovásznauy, "Turbulence in supersonic flow," Journal of the Aeronautical 

Sciences, vol. 20, pp. 657-682, 1953, Art. no. 10. 

[57] N. Bitter and J. Shepherd, "Stability of highly cooled hypervelocity boundary 

layers," Journal of Fluid Mechanics, vol. 778, pp. 586-620, 2015. 

[58] C. P. Knisely and X. Zhong, "Supersonic Modes in Hot-Wall Hypersonic 

Boundary Layers with Thermochemical Nonequilibrium Effects," in 2018 AIAA 

Aerospace Sciences Meeting, 2018, p. 2085. 

[59] C. P. Knisely and X. Zhong, "Significant Supersonic Modes and the Wall 

Temperature Effect in Hypersonic Boundary Layers," AIAA Journal, vol. 57, no. 4, pp. 

1552-1566, 2018. 

[60] C. P. Knisely and X. Zhong, "Sound radiation by supersonic unstable modes 

in hypersonic blunt cone boundary layers. I. Linear stability theory," Physics of Fluids, 

vol. 31, no. 2, p. 024103, 2019. 

[61] C. P. Knisely and X. Zhong, "Sound radiation by supersonic unstable modes 

in hypersonic blunt cone boundary layers. II. Direct numerical simulation," Physics of 

Fluids, vol. 31, no. 2, p. 024104, 2019. 

[62] C. H. Mortensen, "Toward an understanding of supersonic modes in 

boundary-layer transition for hypersonic flow over blunt cones," Journal of Fluid 

Mechanics, vol. 846, pp. 789-814, 2018. 

[63] S. Unnikrishnan and D. V. Gaitonde, "Instability characteristics of cooled 

hypersonic boundary layers," in AIAA Scitech 2020 Forum, 2020, p. 0588. 



 

86 

 

[64] A. M. Tumin, "Three-dimensional spatial normal modes in compressible 

boundary layers," Journal of Fluid Mechanics, vol. 586, pp. 295-322, 2007. 

[65] Y. Li, X. Jiang, B. Liang, J. C. Cheng, and L. Zhang, "Metascreen-Based 

Acoustic Passive Phased Array," Physical Review Applied, vol. 4, no. 2, p. 024003, 2015. 

[66] M. Kim, W. Lee, C. I. Park, and J. H. Oh, "Elastic wave energy entrapment 

for reflectionless metasurface," Physical Review Applied, 2020. 

[67] R. Zhao, Y. Dong, X. Zhang, C. Wen, T. Long, and W. Yuan, "Control of 

Reflected Waves with Acoustic Metasurfaces for Hypersonic Boundary-Layer 

Stabilization," AIAA Journal, vol. 59, no. 6, pp. 1893-1898, 2021. 

 




