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Abstract

Speaker verification (SV) aims to determine whether the speaker identity of a test

utterance matches that of a target speaker. In SV, the identity of a variable-length

utterance is typically represented by a fixed-dimensional vector. This vector or its

modeling process is referred to as speaker embedding. Although state-of-the-art deep

speaker embedding has achieved outstanding performance, deploying SV systems to

adverse acoustic environments still faces a number of challenges. First, today’s SV

systems rely on the condition that the training and test data share the same distri-

bution. Once this condition is violated, domain mismatch will occur. The problem

will be exacerbated when the speaker embeddings violate the Gaussianity constraint.

Second, because the temporal feature maps produced by the last frame-level layer are

highly non-stationary, it is not desirable to use their global statistics as speaker em-

beddings. Third, current speaker embedding networks do not have any mechanisms

to let the frame-level information flow directly into the embeddings layer, causing

information loss in the pooling layer.

This thesis develops three strategies to address the above challenges. First, to

jointly address domain mismatch and the Gaussianity requirement of probabilistic

linear discriminant analysis (PLDA) models, the author proposes a variational do-

main adversarial learning framework with two specialized networks: variational do-

main adversarial neural network (VDANN) and information-maximized VDANN (In-

foVDANN). Both networks leverage domain adversarial training to produce speaker

discriminative and domain-invariant embeddings and apply variational autoencoders

(VAEs) to perform Gaussian regularization. The InfoVDANN, in particular, avoids

posterior collapse in VDANNs by preserving the mutual information (MI) between the

domain-invariant embeddings and the speaker embeddings. Second, to mitigate the

effect of non-stationarity in the temporal feature maps, the author proposes short-time

spectral pooling (STSP) and attentive STSP to transform the temporal feature maps



into the spectral domain through short-time Fourier transform (STFT). The zero- and

low-frequency components are retained to preserve speaker information. A segment-

level attention mechanism is designed to produce spectral representations with fewer

variations, which results in better robustness to the non-stationary effect in the fea-

ture maps. Third, to allow information in the frame-level layers to flow directly to

the speaker embedding layer, MI-enhanced training based on a semi-supervised deep

InfoMax (DIM) framework is proposed. Because the dimensionality of the frame-level

features is much larger than that of the speaker embeddings, the author proposes to

squeeze the frame-level features via global pooling before MI estimation. The pro-

posed method, called squeeze-DIM, effectively balances the dimension between the

frame-level features and the speaker embeddings.

We evaluate the proposed methods on VoxCeleb1, VOiCES 2019, SRE16, and

SRE18-CMN2. Results show that the VDANN and InfoVDANN outperform the

DANN baseline, indicating the effectiveness of Gaussian regularization and MI max-

imization. We also observed that attentive STSP achieved the largest performance

gains, suggesting that applying segment-level attention and leveraging low spectral

components of temporal feature maps can produce discriminative speaker embeddings.

Finally, we demonstrate that the squeeze-DIM outperforms the DIM regularization,

suggesting that the squeeze operation facilitates MI maximization.
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Chapter 1

INTRODUCTION

In this chapter, we introduce the topic speaker recognition and discuss the latest

development of deep speaker embedding. Specifically, several challenges in state-of-

the-art speaker embedding will be highlighted. These challenges motivate us to de-

velop the strategies in later chapters as solutions. We then conclude the contributions

of this thesis and outline the thesis’ organization.

1.1 Speaker Recognition

Identity authentication plays a crucial role in almost all aspects in our daily life,

e.g., granting access to personal devices or private premises, personalizing and cus-

tomizing remote services, performing financial transactions, etc. Compared with the

traditional password- or token-based mechanisms, biometric authentication provides

a more convenient, efficient, and effective way to recognize an individual’s identity.

Such authentication exploits a person’s physical or behavioral characteristics such as

fingerprint, face, voice, iris, gait, etc. to build the identity profiles [6]. Because speech

is a natural means of human-to-human interaction and the voices of individuals are

different, voice biometrics is one of the most user-friendly biometric authentication

methods. The individuality of human voices is primarily due to the variability of the

vocal apparatus across speakers. Besides, voice biometrics has attracted widespread

interest from academic and industrial communities due to its non-intrusive way of

identity determination and the ease of accessing to speech data.



2

Briefly speaking, speaker recognition refers to the technology that uses a speaker’s

voice to recognize his/her identity. It is also called voice biometrics. Such technology

has been applied to many practical scenarios such as access control, service customiza-

tion, financial transactions, criminal surveillance, national security and so on.

In general, speaker recognition can be divided into two major categories: speaker

identification and speaker verification (SV). The former aims to determine the identity

of a test speaker from a known set of speakers, whereas the latter is to detect whether

a test speaker’s identity matches that of a target voice. Because SV is a one-to-one

mapping evaluation, the verification result is a yes/no decision. This is in contrast

to speaker identification, which is a one-to-many mapping task, i.e., determining who

in a given speaker set produces the query utterance. On the other hand, accord-

ing to the dependence on the text content in the input speech, speaker recognition

can be text dependent or text independent. Because the lexicon in text-dependent

speaker recognition systems is constrained to limited words or phrases, the degree of

phonetic variability is lower than that of text-independent systems. As a result, the

performance of text-dependent speaker recognition is usually better than that of the

text-independent counterpart, although the duration of the input speech is typically

shorter in text-dependent systems. In other words, text-independent speaker recog-

nition is more difficult. This thesis will focus on text-independent speaker verification.

1.2 Development of Speaker Modeling

Modern SV systems are complex and are comprised of many components including

voice activity detection (VAD), feature extraction, speaker modeling, and backend

modeling (see Chapter 2 for details). During the past years, each component has

evolved rapidly, especially with the advance of deep learning. Among these compo-

nents, speaker modeling has experienced dramatic development and has contributed

to the greatest performance gains. This section overviews the latest development in
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speaker modeling.

1.2.1 I-vector

One classic speaker modeling method is the i-vector approach proposed in 2009 [7,8].

The i-vector method uses factor analysis (FA) to model the speaker and non-speaker

variabilities. Through the FA model, variable-length utterances are represented by the

posterior means of the low-dimensional speaker factors and channel factors. Under the

i-vector framework, the posterior means of speaker factors are used as speaker embed-

dings, which represent speaker-specific traits. Because of the low dimensionality of the

embeddings, various channel compensation methods can be applied to suppress the

channel variability in the i-vectors. Such methods include linear discriminant analysis

(LDA), nuisance attribute projection (NAP) [9], within-class covariance normaliza-

tion (WCCN) [10], and probabilistic linear discriminant analysis (PLDA) [11, 12].

Specifically, the i-vector/PLDA framework can produce excellent performance un-

der a variety of practical conditions, making it the dominant approach for speaker

recognition since 2010. Even today, i-vectors are frequently used.

Although the i-vector approach has achieved significant improvement in perfor-

mance, it still has some drawbacks. First, the i-vector approach can be seen as an

unsupervised dimension reduction method operated on the Gaussian mixture model

(GMM) supervectors. Unsupervision means that the method cannot exploit the

speaker labels in the training set. Therefore, there is no guarantee that speaker

information is explicitly aggregated into the i-vectors. This is a huge disadvantage

because large-scale labeled datasets have become widely available. Second, an i-vector

is a maximum a posteriori (MAP) point estimate of the latent variables in an FA

model. Therefore, i-vectors do not carry any information regarding their reliability

and uncertainty. This is particularly problematic for short-utterance SV because the

reliability of i-vectors drops when the utterance duration decreases. For example, in

VoxCeleb1 [13] and VOiCES 2019 [14] where the average duration is about 8 seconds
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and 16 seconds, respectively, the performance of i-vectors is not good. Third, the

performance of i-vectors can quickly reach a plateau when the amount of training

data increases. For example, in the i-vector system reported by [3], incorporating

data augmentation to i-vector training can only obtain a limited performance gain.

This observation suggests that the i-vector approach cannot fully exploit the speaker

information in large training sets.

To overcome the above limitations, we will explore a more advanced speaker mod-

eling method in this thesis. With the success of deep learning in various areas [15–18],

deep speaker embedding has gradually become a mainstream approach.

1.2.2 Deep Speaker Embedding

Over the years, using deep neural networks (DNNs) to extract speaker embeddings

has advanced rapidly. The advancements appear not only in network architectures

but also in optimization strategies and learning metrics. In particular, end-to-end

speaker embedding networks offer superior performance and have become a norm

in learning speaker representation. Nevertheless, there is no consistent definition of

“end-to-end”. Some researchers view end-to-end from the perspective of SV protocols

and derive the end-to-end losses directly from SV decisions [19–21]. Others consider

end-to-end as a speaker identification problem and derive a softmax-like classification

loss [3, 22–25]. In this section, we will use both definitions and give a brief overview

of deep speaker embedding.

Early attempts on deep speaker embedding dated back to the d-vector approach

proposed in 2014 [22]. A d-vector system uses a multi-layer perceptron (MLP) with

a softmax output layer to learn frame-level features, and the d-vector is the average

of the frame-level outputs at the last hidden layer. To make the d-vectors better fit

the SV task, a tuple-based end-to-end model was proposed in [19], which maps an
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enrollment–test pair to a decision probability. To highlight the difficult pairs1 during

training and to remove the sample selection requirement in [19], a generalized end-

to-end loss was proposed in [20]. Together with a long short-term memory (LSTM),

the method in [20] maps the frame-level features to an utterance-level embedding.

Similar studies applying end-to-end losses can also be found in [21,26,27]. Although

[20,21,26,27] are specialized in SV tasks, the LSTM/MLP-based embeddings can also

be used for other applications.

Another line of speaker embedding extraction is based on end-to-end speaker iden-

tification networks. The embedding networks in this category have a similar struc-

ture: a convolutional neural network (CNN)/LSTM-based frame-level subnetwork,

a pooling layer, and a fully-connected utterance-level network. Compared with the

speaker embeddings trained by end-to-end losses, this kind of speaker embedding can

generalize better to unseen data and are more robust to noise, reverberation, and

domain mismatch [28–31]. A classical speaker embedding following this line is the

x-vector [3], which uses time delay neural networks (TDNNs) to extract frame-level

features and applies statistics pooling to summarize these features in the form of

fixed-length vectors. Since the emergence of the x-vector, it has been a baseline for

speaker embedding.

With the development of more advanced DNNs, ResNets [32], DenseNets [33], and

Res2Nets [34] have been widely used to extract the frame-level information in speaker

embedding networks [23–25]. For example, lightweight ResNets were adapted from

ResNet-34 and ResNet-50 in [23] and [35]. In both [24] and [36], DenseNets were

used in the frame-level subnetwork. Also, the authors of [25] applied a Res2Net to

process frame-level information. A key advantage of using CNNs or more advanced

architectures in the frame-level subnetwork is that the complex temporal relations

across frames can be better captured compared with the traditional MLPs. This is the

1The speaker-specific trait of the enrollment utterance is similar to that of the test utterance.
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reason that the CNN-based speaker embedding has become the mainstream speaker

modeling method at present. Unless otherwise stated, the deep speaker embeddings

in this thesis refer to the utterance-level representations extracted from CNN-based

end-to-end speaker identification networks.

Besides the development in frame-level subnetworks, the pooling layer has ad-

vanced simultaneously for more efficient utterance-level aggregation. For instance,

the authors of [27] projected the channel-wise mean vectors of the frame-level features

onto a speaker embedding space. In the x-vector extractor, both the means and the

standard deviations of the frame-level features are computed through a statistics pool-

ing layer [3]. By simultaneously pooling over the features from different frame-level

layers, multi-level pooling was proposed in [37]. Besides, the authors of [38] proposed

the learnable dictionary encoding where the encoded vectors act like the means of

a GMM. In [23], a NetVLAD layer [39] was applied for utterance-level aggregation.

Instead of performing attention across the frames, channel- and context-dependent

statistics pooling [25] extends attention along the channel dimension to highlight the

contribution of individual channels.

Another popular category of frame-level aggregation is the attentive pooling. For

instance, an attention mechanism was introduced to weight the temporal frames so

that the attended frames have greater contribution to the speaker embedding vec-

tor [40]. To increase the representation capacity of the aggregated embeddings, multi-

head attentive pooling was proposed to attend the convolutional features from mul-

tiple perspectives [41]. The authors of [42] further extended this multi-head idea and

diversified the attention heads by allowing different resolutions in different heads. Dif-

ferent from [41] where each head attends the frame-level features across all channels,

the authors of [43] applied each head to a subset of the channels. By integrating the

attention mechanism and GMM clustering, the authors of [24] proposed a mixture of

attentive pooling from a probabilistic perspective.

The above pooling methods operate in the temporal domain. Yet we can perform
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aggregation in the spectral domain. Inspired by the work in [44], the author proposed

short-time spectral pooling (STSP) in [45] to preserve speaker information. To em-

phasize the discriminative segments, the author further introduced attentive STSP

in [46] as an extension of STSP. Results show that the attentive STSP can further

enhance the aggregation of frame-level information.

1.3 Motivations of the Thesis

Although CNN-based speaker embedding has achieved state-of-the-art performance,

there are still several challenges to be overcome. These challenges motivate us to

develop advanced strategies to make SV systems more practical.

1. Domain mismatch: To develop practical SV systems, we assume that the train-

ing data (source-domain data) share the same distribution with the test data

(target-domain data). In practice, however, the distributions of the training

and test data can differ due to the discrepancy in the conditions from which

the data were collected, e.g., different channels, languages, noises, etc. As a

result, the assumption can hardly be met and domain mismatch occurs, which

poses a great challenge to SV. Therefore, it is necessary to adapt the trained

models based on some target-domain data. This strategy is known as domain

adaptation (DA). On the other hand, due to the high cost of data labeling,

usually only a small amount of labeled data or even no labeled data from the

target domain are available. This difficulty motivates us to seek advanced DA

methods to alleviate the domain mismatch problem.

2. Gaussianity requirement of PLDA models: PLDA models have been playing a

key role in backend scoring since the era of i-vectors. Although deep speaker

embeddings are amenable to the simple cosine scoring and rely less on the PLDA

model, the PLDA scorer still outperforms the cosine scorer (especially in EER)



8

for median-sized embedding networks like the x-vector extractor [38, 47, 48].

However, PLDA models require the x-vectors to follow a Gaussian distribution.

Once this assumption is violated, the SV performance will be degraded severely.

Deep speaker embeddings, on the other hand, are not guaranteed to be Gaussian

and thus may not meet the Gaussianity requirement of PLDA backends. This

introduces a challenge in applying PLDA models. Traditional solutions to this

problem include using heavy-tailed PLDA [1,49] or applying the x-vector length

normalization [50]. However, the former is more computationally expensive than

the Gaussian PLDA and the latter is not really a Gaussianization procedure but

a sub-optimal compromise. Therefore, we need to develop Gaussian-regularized

optimization for x-vectors.

3. Utterance-level aggregation: Modern speaker embedding networks typically ap-

ply a pooling layer to aggregate the frame-level information into utterance-level

embeddings. One baseline aggregation strategy is to use channel-wise means

and standard deviations of the last frame-level feature maps as the summa-

rization of the whole utterance [3]. However, due to the sharp dimensionality

reduction in the pooling operation, some speaker information will inevitably be

lost in the aggregation process. This motivate us to preserve as much speaker

information as possible during the pooling operation. On the other hand, most

pooling methods are performed in the temporal domain. Due to the high non-

stationarity in the final feature maps, it is not beneficial to exploit the temporal

statistics during aggregation. Thus, aggregation methods that aim to preserve

information and to exploit the stationarity in the feature maps should be devel-

oped.

4. Frame-level information enhanced learning: As introduced in Section 1.2.2, the

frame-level subnetwork of a speaker embedding network contributes the largest

performance gains. It is therefore crucial to enhance the flow of the frame-level
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information through the network so that more speaker information can reach the

speaker embedding layer. Mainstream embedding networks use CNNs, ResNets,

or DenseNets to facilitate the frame-level information flow. Nevertheless, this

information flow is constrained within the frame-level subnetwork only and the

frame-level information has to be aggregated through an additional pooling

operation before utterance-level processing. This not only reduces the efficiency

of information flow but also leads to information loss. Because the goal of

speaker embedding networks is to produce utterance-level representations, it

makes sense to let the frame-level information flow directly into the utterance-

level subnetwork, bypassing the pooling layer. This motivate us to propose a

frame-level information preservation framework for speaker embedding.

1.4 Contributions of the Thesis

This thesis contributes to the field of SV by addressing the challenges introduced in

Section 1.3. The main contributions are as follows.

1. Variational domain adversarial learning: To jointly address domain mismatch

and the Gaussianity constraint, the author incorporates a variational autoen-

coder (VAE) [2] into the conventional domain adversarial neural network (DANN)

[51] and proposes a novel variational domain adversarial neural network (VDANN)

[31,52,53]. The DANN part aims to alleviate the domain mismatch between the

training and test data through adversarial training [54], whereas the VAE is to

constrain the learned embeddings to be Gaussian so that the Gaussian PLDA

backend can be directly applied. This strategy is called variational domain

adversarial learning in this thesis.

However, a potential limitation of the VDANN is that posterior collapse [55–58]

may occur while training the VAE. Because posterior collapse occurs when the

produced latent vectors (embeddings) are independent of the inputs, posterior
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collapse can lead to non-informative speaker embeddings. This outcome is un-

desirable because our objective is to learn meaningful embeddings. To address

this limitation, the author adopts the idea of InfoVAE [59] and incorporates a

mutual information (MI) term into the objective function so that the depen-

dence of the speaker embeddings on the inputs can be enhanced. The resulting

architecture is called information-maximized VDANN (InfoVDANN) [31,53].

2. Utterance-level aggregation in the spectral domain: To preserve as much speaker

information as possible when aggregating the frame-level representations, the

author proposes short-time spectral pooling (STSP) [45] and performs aggre-

gation in the spectral domain. From a Fourier perspective, the conventional

statistics pooling [3] only exploits the DC (zero frequency) components of the

last frame-level feature maps. STSP improves statistics pooling by retaining

more frequency components besides the DC ones to preserve richer information.

The author proves that STSP is a generalized statistics pooling method.

To compute the spectral embeddings in STSP, we simply average the spectro-

gram along the temporal axis for each utterance. However, this brute average

ignores the importance of individual windowed segments in the spectrogram. To

emphasize on the discriminative segments, the author extends STSP by using a

self-attention mechanism in the spectral domain and proposes a novel attentive

STSP method [46]. Due to the segment-level attention mechanism, attentive

STSP can produce spectral embeddings with less variation than attentive pool-

ing, making it more robust against the non-stationarity in the feature maps.

3. Mutual information enhanced training: To directly feed the frame-level infor-

mation into the speaker embeddings, the author proposes to maximize the MI

between the frame-level features and the utterance-level embeddings. The au-

thor adopts the Deep InfoMax (DIM) framework [60] to perform MI estimation



11

through semi-supervised learning. However, a straightforward implementation

of DIM may pose a dimensionality imbalance problem, leading to unreliable MI

estimation and performance degradation. To overcome this problem, the au-

thor proposes to squeeze the frame-level features before MI estimation through

some global pooling methods. The resulting structure is called squeeze-DIM [61]

regularizer, which facilitates the MI maximization.

1.5 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2 presents a literature survey on SV. Specifically, the key components of

a typical SV system, such as the feature extraction module, the speaker embedding

network, and the backend, are introduced.

In Chapter 3, the author reviews two modern deep learning models: generative

adversarial networks (GANs) and VAEs. These models will be used in later chapters.

In Chapter 4, the author introduces the variational domain adversarial learning

framework and details the principle of VDANN and InfoVDANN, which are used to

jointly address domain mismatch and Gaussianity requirement of the PLDA models.

Chapter 5 is to address the utterance-level aggregation challenge. The author pro-

poses to aggregate the frame-level information in the spectral domain. In particular,

STSP and attentive STSP are introduced to preserve richer speaker information in

the aggregated embeddings.

In Chapter 6, the author performs MI enhanced training so that the information in

the frame-level layers can be directly fed into the speaker embeddings. The author will

introduce the DIM framework for MI maximization and detail the proposed squeeze-

DIM regularization.

Finally, the author gives conclusions and suggests possible future work in Chapter

7.
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Chapter 2

SPEAKER VERIFICATION

This chapter presents a literature survey on speaker verification, including the

processing pipeline, the key components of speaker verification systems, and the per-

formance evaluation metrics.

2.1 System Overview

Speaker verification (SV) is to determine whether the identity of a claimed utterance

matches a target identity. As shown in Figure 2.1, a typical SV task consists of a

training phase and a verification phase. In the training phase, a speaker embedding

network is learned from a large amount of training data. For the SV system relying

on the probabilistic linear discriminant analysis (PLDA) [11, 12] backend, a PLDA

model is also trained in this phase. The verification phase actually contains an en-

rollment stage and a test stage. In the enrollment stage, one or more utterances

from an enrolled speaker are provided for speaker modeling. During the test stage,

the claimant’s embedding is extracted from the test utterance and verified against

the enrolled speaker embedding by comparing the score of the enrollment–test trial

with a threshold. If the score is larger than the threshold, we accept the hypothesis

that the test utterance has the same identity as that of the enrollment utterance;

otherwise, the enrollment and test utterances come from different speakers.
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Figure 2.1: Overview of a typical speaker verification (SV) system. The schematics
above the horizontal red line denote the training phase, which contains a speaker em-
bedding network training stage and a PLDA backend training stage. The verification
phase is illustrated below the red line, where an enrollment stage and a test stage
are involved. In the verification phase, an enrollment–test embedding pair is scored
by the backend and the score is compared with a threshold to decide whether the
identity of the test utterance is the same as that of the enrolled speaker.

2.2 Voice Activity Detection

Voice activity detection (VAD) is to determine the speech and non-speech segments

in a speech signal. Although it is a simple binary classification task, it is important

for a variety of speech applications, e.g., keyword spotting [62], SV [63,64], etc. VAD

is beneficial to SV in mainly two aspects. First, it filters out the non-speech activities

such as noises, which reduces the effect of noises and increases the contribution of the

speech activities. Second, VAD allows the subsequent pipelines to process the speech

segments only and reduces the computational cost in the verification stage. This is

important for real-time applications and personalized VAD [65].

A naive implementation of VAD is the energy-based VAD, which is the default

speech/non-speech detection in the Kaldi’s SRE16 recipe1 and Kaldi’s VoxCeleb

1https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2.



14

Figure 2.2: Extraction pipeline of MFCCs.

recipe.2 More advanced VAD involves statistical models, GMMs or application-

specific processing [63]. Recently, DNN-based VADs are becoming popular, e.g., [66]

and [67] are based on the CNN-BiLSTM architecture.

Note that not all SV systems have a VAD module. For example, in [68], the VAD

is replaced by a temporal gating operation and this module can be flexibly placed

after any frame-level layer.

2.3 Feature Extraction

Before the emergence of DNN-based speaker embedding, acoustic features play a

crucial role in traditional speaker modeling such as the GMM universal background

model (UBM) and i-vector. One of the popular acoustic features in SV are Mel-

frequency cepstral coefficients (MFCCs) [69], which are widely used in GMM-based

speaker models. Figure 2.2 shows the processing pipeline of MFCCs. Because speech

signals are non-stationary, we rely on short-term statistics to represent the character-

istics of a speech signal. This is done by first segmenting the speech into short and

overlapped frames. A typical configuration is to use a duration of 25ms with a 10ms

sliding step. A Hamming or Hanning window is usually applied on each frame to

suppress the spectral leakage incurred by Fourier transform. After that, a nonlinear

Mel-scale filter-bank analysis is performed on the spectrogram so that the produced

filter-bank coefficients (spectrum energy in each Mel-scale frequency band) can better

approximate the response of the human auditory system. After applying a logarithm

2https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2.
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operation, we obtain the filter-bank energy coefficients. Finally, discrete cosine trans-

form (DCT) is applied to the filter-bank features and the leading coefficients are

retained as MFCCs.

Although MFCCs are mainstream acoustic features during the pre-DNN era, re-

cent studies on deep speaker embedding have shown that MFCCs are not advanta-

geous over the simple filter-bank features [18, 28, 29, 48]. The acoustic features can

even be the simpler spectrograms when 2-D CNNs are used in the frame-level layers

of the embedding network [13,23,27]. In short, with a decreasing dependence on the

acoustic features, their choices are becoming more and more diverse for deep speaker

embedding.

Note that this spectral feature extraction module may not be necessary if raw

waveforms are directly used for training an embedding network [68, 70–73]. How-

ever, in this thesis, we focus on the deep speaker embedding that uses the dominant

spectrum-based features such as filter-bank energy coefficients and MFCCs.

2.4 Speaker Embedding Networks

Compared with the traditional i-vectors, DNN-based speaker embeddings offer several

advantages. Firstly, given a large amount of speech data, DNNs are able to fit more

complex functions than GMMs. Thus, this data-driven approach can fully exploit

the speaker-related information in large-scale training data. Moreover, attributed to

the large modeling capacity of DNNs, deep speaker embeddings can better capture

the variability in short utterances. Secondly, with an increasing amount of labeled

data, deep speaker embedding can sufficiently aggregate the speaker-discriminative

information from training data through supervised learning. Thirdly, DNNs are less

dependent on the assumption of the input acoustic features. For example, in the i-

vector method, the GMMs normally use a diagonal covariance matrix for each mixture

component, and this requires that the elements of an observed acoustic feature vector
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Table 2.1: Architecture of the speaker embedding network used in this thesis. BN rep-
resents batch normalization [4]. T denotes the total number of frames in an utterance
and Nspk is the number of training speakers.

Layer Layer Type Layer Context Total Context Output Dimension

1 TDNN-BN-ReLU [t− 2, t+ 2] 5 512
2 TDNN-BN-ReLU {t− 2, t, t+ 2} 9 512
3 TDNN-BN-ReLU {t− 3, t, t+ 3} 15 512
4 Dense-BN-ReLU {t} 15 512
5 Dense-BN-ReLU {t} 15 1,500
6 Pooling [0, T ) T 3,000
7 Dense-BN [0, T ) T 256
8 AM-Softmax [0, T ) T Nspk

should be decorrelated. This is the reason why MFCCs [69] are widely used in i-

vector modeling. However, DNNs are more competent in exploring the correlation

among the feature components. Therefore, even simple filter-bank energy features can

outperform MFCCs when large DNNs are used [18, 48]. In this section, we mainly

introduce the baseline speaker embedding network (a modified x-vector extractor)

that will be used in later chapters.

2.4.1 Network Architecture

As illustrated in Table 2.1, the configuration of the speaker embedding network used

in this thesis is almost identical to that of [3]. One difference is that the additive

margin softmax (AM-Softmax) [74] is used in the output layer of the former system.

The motivation is that the AM-Softmax loss takes both inter-speaker variations and

within-speaker variations into account, thereby being more suitable for the verifica-

tion task. Another difference is that the former uses a dense layer of 256 nodes for

utterance-level processing, because this configuration produces better performance

under the AM-Softmax loss. During frame-level processing, each TDNN layer ag-

gregates several contextual frames from the previous layer, resulting in a temporal
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context of 15 acoustic frames at Layer 3. For each utterance, its speaker embedding

vector is the affine output at Layer 7.

We can also use more advanced convolutional layers to replace the TDNN layers in

the frame-level subnetwork for better performance. An example is shown in Chapter

6, where the middle TDNN layers are replaced by three Res2Net blocks so that the

information flows within each block can be diversified.

2.4.2 Pooling Strategy

We introduce three baseline pooling methods for utterance-level aggregation: statis-

tics pooling, multi-head attentive pooling, and channel- and context-dependent statis-

tics pooling.

Statistics Pooling

The default pooling method for x-vector is statistics pooling. Denote H = {ht}T−1t=0 ∈

RC×T as a feature map at the last convolutional layer, where C is the number of

channels in the feature map H and T is the number of frames. H comprises a sequence

of frame-level vectors fed to the pooling layer. The aggregated representation z is

expressed as

z = [µ>,σ>]>, (2.1)

where

µ =
1

T

T−1∑
t=0

ht, (2.2)

and

σ =

√√√√ 1

T
diag

(
T−1∑
t=0

hth>t − µµ>
)
. (2.3)

In (2.3), diag(·) means constructing a vector using the diagonal elements of a square

matrix and the square root is operated element-wise. In short, the aggregated rep-

resentation z is the concatenation of channel-wise means and standard deviations of
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the feature map.

Multi-head Attentive Pooling

In [41], an attention mechanism with multiple heads was introduced to attend the

frame-level features from various perspectives. Let us consider an H-head attention

network with a tanh hidden layer of D nodes and a linear output layer. The attention

weight matrix A = (at,h) ∈ RT×H can be computed as

A = Softmax
(
tanh

(
H>W1

)
W2

)
, (2.4)

where W1 ∈ RC×D and W2 ∈ RD×H are trainable weight matrices and the softmax

function is operated column-wise. For the h-th head (h ∈ {1, . . . , H}), the attended

mean and standard deviation vectors are computed as follows:

µh =
T−1∑
t=0

at,hht, (2.5)

and

σh =

√√√√diag

(
T−1∑
t=0

at,hhth>t − µhµ>h

)
. (2.6)

Finally, we have the aggregated vector as follows:

z =
[
µ>1 ,σ

>
1 , . . . ,µ

>
H ,σ

>
H

]>
. (2.7)

A major difference between statistics pooling and attentive pooling is that the latter

scales the feature map by an attention weight vector {at,h}T−1t=0 for each head h during

the pooling process (see (2.5) and (2.6)). The purpose of the attention weight vector is

to emphasize discriminative frames for information aggregation. Because multi-head

attentive pooling has H independent attention weight vectors in A, its capacity for
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information preservation is larger than that of single-head attentive pooling.

Channel- and Context-Dependent Statistics Pooling

Multi-head attentive pooling applies attention weights independently on channel-wise

feature sequences, assuming that each channel has equal importance to the discrimina-

tive power of speaker embeddings. In [25], channel- and context-dependent statistics

pooling (CCDSP) was proposed to account for the contribution of individual chan-

nels. To enable the attention network to take the utterance’s global properties (such

as noise or recording conditions) into consideration, we concatenate ht in (2.2) with

the global non-weighted mean µ (see (2.2)) and standard deviation σ (see (2.3)) along

the channel axis, i.e., h̃t = [h>t ,µ
>,σ>]>. Then, we compute the attention scores as

et,c = v>c f
(
W3h̃t + b

)
+ kc, c = 1, . . . , C, (2.8)

where W3 ∈ RD′×3C and b ∈ RD′
are the channel independent weight matrix and

bias vector to be learned, respectively, and f(·) is a non-linear activation function.

vc ∈ RD′
and kc ∈ R are the learned channel-dependent weight vector and bias of

the c-th channel, respectively. et,c is then normalized along the frame dimension via

a softmax function to compute the channel-dependent attention weights

aCD
t,c =

exp (et,c)∑T−1
τ=0 exp (eτ,c)

. (2.9)

Finally, the weighted mean vector µCD =
{
µCD
c

}C
c=1

and the standard deviation vector

σCD =
{
σCD
c

}C
c=1

are concatenated to form the aggregated embedding, where

µCD
c =

T−1∑
t=0

aCD
t,c ht,c, (2.10)
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and

σCD
c =

√√√√T−1∑
t=0

aCD
t,c h

2
t,c − (µCD

c )2. (2.11)

2.4.3 Additive Margin Softmax Loss

X-vector extractor uses a softmax activation function at the output layer. Because the

softmax loss aims to separate different classes, it is not good at reducing the within-

class variations. To reduce within-speaker variations and obtain more discriminative

embeddings, we may use the additive margin softmax loss [74]:

L = − 1

Ntrn

Ntrn∑
i=1

log
es(cos θyi−m)

es(cos θyi−m) +
∑Nspk

j=1,j 6=yi e
s cos θj

= − 1

Ntrn

Ntrn∑
i=1

log
es(w̃

>
yi
f i−m)

es(w̃
>
yi
f i−m) +

∑Nspk

j=1,j 6=yi e
s w̃>

j f i
, (2.12)

where m and s denote the cosine margin and the scaling factor, respectively and

Ntrn is the number of training samples in a mini-batch. f i is the affine output of

the Dense-BN layer (Layer 7) in Table 2.1 for the i-th training sample, and yi is the

corresponding speaker label. w̃j, which corresponds to the j-th output node, is the

j-th column of the weight matrix W̃, i.e., W̃ = {w̃j}
Nspk

j=1 . Note that both w̃j and f i

are normalized to unit length.

2.5 Backends

In SV systems, a backend is used to compute the scores for decision-making given

a pair of enrollment and test speaker embeddings. Probabilistic linear discriminant

analysis (PLDA) [11,12] is one of the commonly used backend. PLDA is a probabilistic

generative modeling method that can be seen as supervised factor analysis. Compared

with the cosine scorer, the PLDA backend is able to compensate for the channel

variabilities in the speaker embeddings. According to the assumption on the input
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distributions, PLDA backends can be divided into Gaussian PLDA and heavy-tailed

PLDA.

2.5.1 Gaussian Probabilistic Linear Discriminant Analysis

Gaussian PLDA (G-PLDA) has been widely used since the i-vector era. There are

three types of G-PLDA: the standard PLDA [12], the simplified PLDA [75, 76], and

the two-covariance model [11]. Given a training set X = {xij; i ∈ [1, N ], j ∈ [1, Ni]}

of N speakers and each with Ni embeddings, the standard PLDA formulation can be

expressed as

xij = m + Vzi + Uyij + εij, (2.13)

where m ∈ RD is the global mean vector of the training embeddings, V ∈ RD×M

contains the basis spanning a low-dimensional speaker subspace, and U ∈ RD×P is a

low-rank matrix whose columns span the channel subspace. The latent variable zi’s

are speaker factors with a standard Gaussian distribution, i.e., zi ∼ N (0, I), whereas

yij’s are channel factors with yij ∼ N (0, I). εij denotes the Gaussian residue with

zero mean and a diagonal covariance matrix Σ, i.e., εij ∼ N (0,Σ). If we use a full

covariance matrix for εij, we can merge the channel term (Uyij) into the residue and

obtain the simplified G-PLDA model:

xij = m + Vzi + εij. (2.14)

The parameters ω = {m,V,Σ} can be optimized by an EM algorithm [77].

During the verification stage, given a pair of target and test speaker embeddings

(xs,xt), the likelihood ratio score is calculated as [75]

S (xs,xt) =
P (xs,xt| same )

P (xs,xt| different )
=

∫
p (xs,xt, z|ω) dz∫

p (xs, zs|ω) dzs
∫
p (xt, zt|ω) dzt

, (2.15)
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Figure 2.3: Graphical illustration of simplified heavy-tailed PLDA [1].

where ω denotes the parameters of the G-PLDA model.

2.5.2 Heavy-Tailed Probabilistic Linear Discriminant Analysis

G-PLDA assumes that the observed speaker embeddings follow a Gaussian distri-

bution. This is, however, unlikely the case in practice because speaker embeddings

often exhibit large deviations from the mean vector [78] if no additional Gaussianiza-

tion procedures are performed. To accommodate the large deviation from the mean,

heavy-tailed priors such as Student’s t distributions were used to describe the latent

variables, which results in heavy-tailed PLDA (HT-PLDA) [78]. In [1], an efficient

implementation was introduced to reduce the computational cost of HT-PLDA.

The graphical representation of the efficient HT-PLDA is illustrated in Figure 2.3.

For speaker i, xij ∈ RD and zi ∈ RM are the observed speaker embedding and

normally distributed speaker factors, respectively. λij denotes the precision scaling

factor which follows a Gamma distribution G(α, β) parametrized by α = β = ν/2. The

parameter ν is known as the degrees of freedom. The HT-PLDA model is formulated

as [1]

p (xij|zi, λij) = N
(
xij|Fzi, (λijW)−1

)
, (2.16)

where F ∈ RD×M is the speaker factor loading matrix and W ∈ RD×D is the precision
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matrix of the residues. The model parameters are {ν,F,W}. However, there is no

closed-form solution for the M-step of the EM algorithm for optimizing the model

parameters, nor is there any closed-form expression for exact HT-PLDA scoring. Ei-

ther zi or λij can be integrated out in closed form, but not both. However, Gaussian

likelihood approximation [79] can be applied to address this problem.

2.6 Evaluation Metrics

Two types of errors are used to measure the performance of an SV system: false

rejection rate (FRR) and false acceptance rate (FAR). The FRR represents the chance

of falsely rejecting the true speakers, and it is also known as the miss rate:

PMiss|Target = NMiss/NTarget, (2.17)

where NMiss is the number of false rejections given a decision threshold and NTarget

is the total number of true-speaker trials. Whereas the FAR is the chance of falsely

accepting the imposters, also known as the false alarm rate:

PFalseAlarm|Nontarget = NFalseAlarm/NNontarget, (2.18)

where NFalseAlarm is the number of false acceptances and NNontarget is the total number

of imposter trials.

A well-performed SV system should achieve a low FAR and also a low FRR.

However, because FRRs and FARs have opposite trends when the decision threshold

changes, it is impossible to decrease both error rates simultaneously. The equal error

rate (EER) [80], the detection cost function (DCF) [81], and the detection error

tradeoff (DET) curves [82] are commonly used as evaluation metrics. These metrics

are all derived from FRR and FAR.

• Equal Error Rate: The EER [80] refers to the operating point at which the FAR
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is equal to the FRR. EER indicates the system performance independent of the

threshold. The lower the ERR, the better the performance.

• Detection Cost Function: The DCF [81] is defined as a weighted sum of the

FRR and FAR at a specific decision threshold θ:

CDet(θ) = CMiss × PTarget × PMiss|Target(θ)

+ CFalseAlarm × (1− PTarget)× PFalseAlarm|Nontarget(θ), (2.19)

where CMiss and CFalseAlarm are the costs of miss detection and false acceptance,

respectively, and PTarget is the prior probability of target speakers. CDet is often

normalized by CDefault for better interpretation of the performance, with CDefault

defined as the best cost that could be obtained without the input utterances:

CNorm(θ) = CDet(θ)/CDefault(θ), (2.20)

where CDefault(θ) = min{CMiss × PTarget, CFalseAlarm × (1− PTarget)}. In practice,

the minimum DCF (minDCF)—obtained by sweeping the thresholds—and the

actual DCF (actDCF)—determined by an application-specific threshold—are

mainly used as performance metrics.

• Detection Error Tradeoff: A DET curve [77,82] is similar to a receiver operating

characteristic (ROC) curve except that both axes in the DET curve follow a non-

linear scale. When the distributions of the true-speaker trials and the imposter

trials are normal, the DET curve will be a straight line. This facilitates the

comparison of similar systems: the closer the curve is to the origin, the better

the performance. An example of the DET curve is shown in Figure 2.4.
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Figure 2.4: Illustration of the DET curve (in red color). The blue circle, which locates
at the intersection of the first quadrant angle bisector and the DET curve, refers to
the operating point where EER is achieved. The black circle denotes the operating
point with minDCF.



26

Chapter 3

MODERN DEEP LEARNING MODELS

In this chapter, we introduce generative adversarial networks (GANs) and varia-

tional autoencoders (VAEs). These networks will be used in later chapters.

3.1 Generative Adversarial Networks

The generative adversarial network (GAN) is a well-known framework for generative

modeling through an adversary. As shown in Figure 3.1, the standard GAN consists

of a generative model which aims to learn the distribution of the real data, and a

discriminative model that is to differentiate the real samples from the generated fake

samples. The training of GANs is a minimax optimization of the objective function.

Specifically, the discriminative model is trained by maximizing the GAN objective

so that it can correctly distinguish between the real data and the generated data,

whereas the generative model is optimized by minimizing the objective function to

fool the discriminative model.

Given a training set X with true data distribution pD(x) (x ∈ X ), from a genera-

tive modeling perspective, the aim of the generative model is to learn a distribution

pg(x) as close to pD(x) as possible. Denote the generative model by a differentiable

function G(·; θg) parameterized by a DNN with parameters θg; G(z; θg) aims to map

noise samples z ∼ pz(z) to x in the original data space. Also, we denote the discrim-

inative model by D(·; θd), which is to classify the samples from pD(x) and pg(x) into

correct and fake categories, respectively. The minimax optimization of GANs can be
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Figure 3.1: Schematic of the standard GAN. The black solid arrows illustrate the
forward signal flows, the black dotted arrows denote the error backpropagation flows,
and the blue arrow indicates the switch of signal flow from the real data to the
generated data.

expressed as

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pD(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (3.1)

where V (D,G) is called value function (or GAN objective function) [54]. In fact,

V (D,G) is the negative of the binary cross-entropy loss function with D(x) corre-

sponding to the correct label 1 and D(G(z)) corresponding to label 0. In practice,

we optimize D (with G fixed) for k (k ≥ 1) steps before updating G once (with D

fixed) and iterate this process until reaching an equilibrium condition where D cannot

discriminate between the real samples and the fake samples.

To analyze the equilibrium condition, instead of using an iterative training proce-

dure, we first optimize D to completion with a fixed G. The optimal D is obtained

as follows [54]:

D∗G(x) =
pD(x)

pD(x) + pg(x)
. (3.2)

Under the optimal D∗G, the inner term of (3.1) becomes
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V (G,D) = Ex∼pD(x) [logD∗G(x)] + Ez∼pz(z) [log (1−D∗G(G(z)))]

= Ex∼pD(x) [logD∗G(x)] + Ex∼pg(x) [log (1−D∗G(x))]

= Ex∼pD(x)

[
log

pD(x)

pD(x) + pg(x)

]
+ Ex∼pg(x)

[
log

pg(x)

pD(x) + pg(x)

]
= KL

(
pD(x)

∥∥∥∥pD(x) + pg(x)

2

)
+ KL

(
pg(x)

∥∥∥∥pD(x) + pg(x)

2

)
− log 4

= 2JS(pD(x)‖pg(x))− log 4, (3.3)

where KL(·‖·) and JS(·‖·) ≥ 0 are the Kullback–Leibler (KL) divergence and Jensen–

Shannon (JS) divergence between two data distributions, respectively. From (3.3), we

observe that when pD(x) = pg(x), V (G,D) achieves the minimum value of − log 4.

Therefore, when the training process reaches the equilibrium, the discriminator is not

able to distinguish the real data from the generated data, i.e., D∗G(x) = 1/2.

Note that (3.3) indicates that optimizing D to completion actually defines the JS

divergence between the real data distribution and the fake data distribution. Thus,

adversarial learning through a minimax game is effectively minimizing the JS diver-

gence between two distributions. When the equilibrium condition is attained, the

JS divergence term becomes zero and these two distributions are equal. Because JS

divergence is a distance measure between two distributions, adversarial learning can

be used to minimize their distance. This is useful in domain adaptation where the

objective is to minimize the source data distribution and the target data distribution.

Following this strategy, domain adversarial training [51] was proposed and has been

widely used for alleviating domain mismatch [31,52,83,84]. In Chapter 4, the author

adopts the same idea and applies an adversarial autoencoder (AAE) [85] in the la-

tent space to minimize the distance between the aggregated posterior and the prior

probability of the latent variables outputted from the encoder of the AAE–VDANN.
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Figure 3.2: Graphical illustration of the probabilistic model involved in the autoencod-
ing variational Bayes (AEVB) approach [2]. The solid arrows denote the generative
modeling process with parameters θ, i.e., pθ(x, z) = pθ(z)pθ(x|z), and the dashed
arrows represent the approximate inference process with a recognition model qφ(z|x)
parameterized by φ, which is an approximate to the true posterior pθ(z|x). φ and θ
are jointly learned by AEVB.

3.2 Variational Autoencoders

Variational autoencoders (VAEs) are another category of generative models that use

the variational Bayes (VB) method to perform density estimation. The autoencoding

VB (AEVB) approach provides an efficient VB implementation to approximate the

intractable posterior [2].

Suppose we have a training set X with true data distribution pD(x) (x ∈ X ) and

its underlying generation is determined by a latent variable set Z. Figure 3.2 presents

a graphical illustration of the latent variable model used in the AEVB framework,

where qφ(z|x) is the variational posterior to approximate the intractable true posterior

pθ(z|x). The objective of AEVB is to jointly learn the variational parameters φ and

the generative model parameters θ.

VAE is a specific implementation of the AEVB approach where DNNs implement

the posterior inference model and the generative model. As shown in Figure 3.3, a

VAE consists of an encoder (recognition model) and a decoder (generative model),

whose parameters are denoted as φ and θ, respectively. Note that both the encoder

and the decoder are probabilistic models because given a sample x (or z), the output
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Figure 3.3: Schematic of a VAE. The solid and dashed arrows represent network
connections and stochastic sampling, respectively.

of the encoder (or decoder) is a distribution (we use a Gaussian distribution in Fig-

ure 3.3). A VAE can be optimized by maximizing the evidence lower bound (ELBO)

of log-likelihood [2, 59]:

max
φ,θ

ELBO(φ, θ) = max
φ,θ

EpD(x)

[
− KL (qφ(z|x)‖pθ(z)) + Eqφ(z|x) [log pθ(x|z)]

]
, (3.4)

where pθ(z) is the prior of z which is generally a standard Gaussian N (z; 0, I).

Because the encoder qφ(z|x) is effectively a probabilistic model (with a sampling

operation), the gradient of the ELBO w.r.t. φ cannot be directly computed. A naive

solution is to use the Monte Carlo gradient estimator. However, due to the high

variance of this gradient estimator, it cannot be applied in practice. To estimate the

gradient w.r.t. φ, we can use the reparameterization trick [2].

Given a latent variable z ∼ qφ(z|x), we reparameterize z using a differentiable

transformation function gφ(ε,x) with an auxiliary random variable ε as follows:

z = gφ(ε,x), ε ∼ p(ε). (3.5)
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Following this reparameterization, for some function f(z), we can estimate its expec-

tation w.r.t. qφ(z|x) as

Eqφ(z|x)[f(z)] = Ep(ε) [f (gφ (ε,x))] ' 1

L

L∑
l=1

f (gφ (εl,x)) , (3.6)

where εl ∼ p(ε) and L is number of latent samples corresponding to a single x. Note

that (3.6) can provide a gradient estimate of f(z) w.r.t. qφ (z | x) with much lower

variance than that using a simple Monte Carlo gradient estimator. Finally, the ELBO

can be estimated as

ELBO(φ, θ) ' 1

N

N∑
i=1

[
− KL (qφ(z|xi)‖pθ(z)) +

1

L

L∑
l=1

log pθ (xi|zil)

]
, (3.7)

where zil = gφ (εl,xi) and N is the number of training samples.

For the VAE used in this thesis, as shown in Figure 3.3, we use a Gaussian distri-

bution for qφ(z|x) with mean vector µ and a diagonal covariance matrix diag (σ2), i.e.,

qφ(z|x) = N (z;µ, diag (σ2)).1 According to (3.5), we obtain the l-th latent sample

as zl = gφ (εl,x) = µ + σ � εl, where εl ∼ N (0, I) and � is the Hadamard product.

For the Gaussian variational posterior case, we can obtain an analytical expression

for the KL divergence term in (3.4) and the final estimate of ELBO becomes

ELBO(φ, θ) ' 1

NL

N∑
i=1

L∑
l=1

log pθ (xi|zil) +
1

2

N∑
i=1

J∑
j=1

[
1 + log σ2

ij − µ2
ij − σ2

ij

]
, (3.8)

where J is the dimension of the latent variable z. As suggested in [2], we may use

L = 1 in (3.8) during the sampling operation.

We will use (3.8) in Section 4.3 for variational domain adversarial learning. Nev-

ertheless, we should also note that there are other decompositions or modifications of

the ELBO for various interpretations of the VAE. For example, the ELBO has been

1Both µ and σ2 depend on x and φ.
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widely adapted for disentangled factor learning [86–89]. In [59], the ELBO in (3.4)

was reformulated to provide intuition for improving the training of VAEs:

ELBO(φ, θ) = EpD(x)

[
− KL (qφ(z|x)‖pθ(z)) + Eqφ(z|x) [log pθ(x|z)]

]
∝ − KL (qφ(z)‖pθ(z))− Eqφ(z) [KL (qφ(x|z)‖pθ(x|z))] , (3.9)

where qφ(z) is the aggregated posterior [85,90]: qφ(z) =
∫
x
pD(x)qφ(z|x)dx. Note that

qφ(z) requires an aggregation over the entire training set X , it cannot be computed ex-

actly. In practice, we can approximate qφ(z) by a Monte Carlo estimate [77,91]. (3.9)

is useful in the interpretation of information-maximized VAE (InfoVAE) introduced

in Section 4.4.1.

Besides being used as a generative modeling method, the VAE can be used as an

inference model in which the latent variable z’s are extracted as the output representa-

tions. Also, we note that the KL divergence term in (3.4) can be used as a regularizer

on z’s so that the latent representations can retain some desirable properties. For

example, in Chapter 4, the author uses a VAE to perform Gaussian regularization on

the learned speaker embeddings by minimizing the KL divergence between qφ(z|x)

and a Gaussian distribution pθ(z) to make the embeddings more Gaussian. This

property is beneficial when a Gaussian PLDA backend is used for scoring.
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Chapter 4

VARIATIONAL DOMAIN ADVERSARIAL LEARNING

FOR SPEAKER VERIFICATION

4.1 Introduction

One challenge to SV is domain mismatch. Domain mismatch refers to the problem

where the distribution of the (source-domain) training data differs from that of the

(target-domain) test data due to different languages, channels, noises, etc. Domain

mismatch can cause severe performance degradation, and domain adaptation (DA) is

usually adopted to alleviate this problem. In this chapter, we focus on the scenario

where only a small amount of unlabeled target-domain data are available besides

large-scale source-domain data. This situation requires unsupervised DA.

There are many attempts to perform unsupervised DA in SV and these methods

can be roughly divided into two categories: model-level DA and embedding-level DA.

The first category directly adapts the covariance matrices of PLDA models to make

the PLDA parameters better match the target distribution, e.g., CORAL+ [92] and

Kaldi’s PLDA adaptation.1 The second category aims to learn a domain-invariant

space so that the target-domain data match the source-domain data in the trans-

formed space. Traditional methods in this category include inter-dataset variability

compensation [93], dataset-invariant covariance normalization [94], correlation align-

ment (CORAL) [95], and feature-Distribution Adaptor [96]. More advanced methods

are based on DNNs, e.g., autoencoder-based DA [97], maximum mean discrepancy

(MMD) [98] based DA [30,99,100], and domain adversarial training (DAT) [51] based

1https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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DA [83, 84, 101, 102]. In particular, DAT has shown promising performance in the

Domain Adaptation Challenge 2013 [84].

Another challenge to SV is that the speaker embeddings are required to follow a

Gaussian distribution if the standard PLDA backend is used for scoring. However,

there is no guarantee that the embeddings are Gaussian in practice, which leads to

poor performance when Gaussian PLDA (G-PLDA) backends are applied. Heavy-

tailed PLDA (HT-PLDA) [1, 49] can be used to address this problem but it is very

computationally expensive. Length normalization [50] is another feasible strategy

but it is only a sub-optimal compromise. Yet we may directly regularize the speaker

embeddings to be Gaussian while training the embedding network. Such works in-

clude Gaussian-constrained training [103] and variational autoencoders (VAEs) based

regularization [104,105].

In this chapter, the author proposes a variational domain adversarial learning

framework to jointly address the domain mismatch challenge and the Gaussianity

requirement of the G-PLDA model. Specifically, a variational adversarial neural net-

work (VDANN) and an information-maximized VDANN (InfoVDANN) are proposed

in Section 4.3 and Section 4.4, respectively.

4.2 Domain Adversarial Neural Network

Domain adversarial neural network (DANNs) [51] aim to learn a domain-invariant

latent space through adversarial training for unsupervised DA. DANNs have been

widely applied to alleviate domain mismatch. In [84], DAT is used to generate

speaker discriminative and domain-invariant representations in the Domain Adapta-

tion Challenge 2013. Also, an end-to-end DANN was implemented in [83] to produce

embeddings that are invariant to languages.

As shown in Figure 4.1, a standard DANN consists of three subnetworks: an

encoder E, a label predictor C, and a domain discriminator D. Their parameters are
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Figure 4.1: Schematic of a DANN. After training, the transformed features are ex-
tracted from the z nodes.

denoted by φe, θc, and θd, respectively. Given a source domain set X S = {xS1 , . . . ,xSNS}

and a target domain set X T = {xT1 , . . . ,xTNT }, where NS and NT are the number of

samples in X S and X T , respectively. Denote y = {yi} corresponding to X S as the

one-hot speaker labels and d = {di} corresponding to {X S,X T} as the domain labels,

respectively. Define the loss function of DANN as

L(θc, θd, φe) = LC(θc, φe)− αLD(θd, φe)

=
∑

xi∈XS
LC (C(E(xi)), yi)− α

∑
xi∈{XS ,XT }

LD (D(E(xi), di)) , (4.1)

where LC(·) and LD(·) are the loss functions for C and D, respectively. α weights

the domain discrimination loss during training. The minimax optimization in DANN

is denoted as follows

min
θc,φe

max
θd
L(θc, θd, φe). (4.2)

After successful training, the features encoded by the extractor are not only task

discriminative but also domain-invariant. This feature extractor is used to calculate

embeddings for later tasks.
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4.3 Variational Domain Adversarial Neural Network

Although prior findings suggest DAT’s superiority to conventional DA [83, 84], there

is no guarantee that the learned features follow a Gaussian distribution, which is es-

sential for the G-PLDA backend. To alleviate this limitation, the author incorporates

a VAE into DAT so that the learned features are not only speaker discriminative and

domain-variant but also Gaussian distributed. The resulting network is referred to as

variational DANN (VDANN).

As explained in Section 3.2, one desirable property of VAE is that the first term

on the right-hand side of (3.4) can be considered as a regularizer that constrains the

variational posterior qφ(z|x) to be close to the desired prior pθ(z). Therefore, if we

constrain pθ(z) to be a multivariate Gaussian distribution, the encoder is encouraged

to produce Gaussian latent vectors, which is amenable to PLDA modeling.

Suppose we have a training set X = {X r}Rr=1 comprising samples from R domains,

where X r = {xr1, . . . ,xrNr} contains Nr samples from the r-th domain. Also, we

denote y and d as the one-hot speaker and domain labels, respectively. We define the

Gaussian VAE loss as the negative of the ELBO in (3.8):

LVAE (θ, φ) ' −
R∑
r=1

Nr∑
i=1

{
1

2

J∑
j=1

[
1 + log

(
σrij
)2 − (µrij)2 − (σrij)2]

+
1

L

L∑
l=1

log pθ (xri |zil)

}
, (4.3)

where J is the dimension of z and L denotes the number of latent samples. In practice,

we set L = 1.

As shown in Figure 4.2, the proposed VDANN consists of a speaker predictor C,

a domain classifier D and a VAE. The latter contains an encoder E and a decoder

G. The network parameters are denoted as θc, θd, φe and θg, respectively. Through

adversarial training, the VDANN learns a domain-invariant space across multiple
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Figure 4.2: Schematic of a VDANN (and an InfoVDANN). The solid and dashed
arrows represent network connections and stochastic sampling, respectively. For
VDANN, LVAE(φe, θg) is used, whereas LInfoVAE(φe, θg) is used for InfoVDANN.

domains. Specifically, applying adversarial training on E while minimizing the speaker

classification loss with respect to φe will make E produce a domain-invariant but

speaker discriminative representation through the nodes denoted by z in Figure 4.2.

To train this network, we define the loss of VDANN as:

LVDANN(θc, θd, φe, θg) = LC(θc, φe)− αLD(θd, φe) + βLVAE(φe, θg), (4.4)

where

LC(θc, φe) =
1

N

R∑
r=1

Nr∑
i=1

{
−

K∑
k=1

yrik logC (E (xri ))k

}
, (4.5)

LD(θd, φe) =
1

N

R∑
r=1

Nr∑
i=1

{−dri logD (E (xri ))r} , (4.6)
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and LVAE takes similar form as in (4.3) except that the parameters of the encoder and

decoder change to φe and θg, respectively. The subscript k in the categorical cross-

entropy loss of the speaker classifier C in (4.5) indexes the speakers and represents the

k-th output of the classifier. The hyperparameters α and β control the contribution

of individual losses that shape the features produced by E.

During training, for each mini-batch, we first optimize D by minimizing the do-

main classification loss. Parameters of D are then fixed while training the remaining

parts of the VDANN. To incorporate speaker information into E, speaker prediction

loss is minimized; simultaneously we maximize the domain classification loss so that

we can learn a domain-invariant space for E. Moreover, the VAE loss is minimized

to regularize the learned features to be Gaussian. To summarize, we optimize the

VDANN as follows:

min
θc,φe,θg

max
θd
LVDANN(θc, θd, φe, θg). (4.7)

(4.7) can be divided into the following minimax procedure:

θ̂d = argmax
θd

LVDANN(θ̂c, θd, φ̂e, θ̂g), (4.8)(
θ̂c, φ̂e, θ̂g

)
= argmin

θc,φe,θg

LVDANN(θc, θ̂d, φe, θg), (4.9)

where symbols with a hat (e.g., θ̂c) on the right-hand side of (4.8) and (4.9) mean

that they are fixed when optimizing the target parameters. After training, we may

extract the transformed features from the z nodes of the encoder E. Since the varia-

tional approximate posterior is regularized to follow a Gaussian distribution, features

produced from the encoder will also likely to be Gaussian.

SRE16 development set was used as the cross-validation set to determine the

hyperparameters α and β in (4.4) and we used simple grid search to tune these

hyperparameters. Note that the DANN in Section 4.2 is a special case of VDANN,

i.e., if we set R = 2 and β = 0 in (4.4), the VDANN loss reduces to the DANN loss
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in (4.1).

4.4 Information-Maximized Variational Domain Adversarial Neural Net-

work

A potential problem of VDANN is that training the VAE by maximizing the ELBO

of log-likelihood could cause failure in learning informative latent representations

[55, 59, 90, 106]. In particular, if the decoder is flexible enough, a VAE can produce

noninformative latent vectors independent of the inputs. This problem is referred to

as posterior collapse [55, 57, 58], which is undesirable for learning meaningful repre-

sentations.

Several methods have been proposed to address the posterior collapse problem,

e.g., applying the KL cost annealing [107], using a variational mixture of posteriors

[108], reducing the amortization gap [57], skipping the connections in the decoder

[58], aggressively training the encoder [55], applying a self-attention mechanism [109],

etc. In [59], the InfoVAE, a variant of VAE with the information-maximized latent

representation, was proposed to address posterior collapse. The idea is to explicitly

enhance the dependence of the latent vectors on the inputs by maximizing the mutual

information (MI) between the latent variables and the inputs.

In this section, the author adopts the idea of InfoVAE and extends the VDANN

for unsupervised DA. With the InfoVAE, the learned features can sufficiently reflect

the meaningful information from the inputs, while simultaneously retain the benefit of

VDANN to produce Gaussian distributed features. The author refers to the resulting

information-maximized VDANN as InfoVDANN.

4.4.1 Information-Maximized VAE

Maximizing the ELBO directly can lead to some problems. First, according to (3.9),

if the dimension of x is much higher than that of z, maximization of the ELBO will
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emphasize the second term, i.e., data reconstruction. This bias in emphasis can easily

cause overfitting. Second, as mentioned earlier, if the decoder is flexible enough, VAE

training will ignore the information between the latent features and the inputs, leading

to noninformative representation.

In [59], a new objective function was proposed based on (3.9) to address the prob-

lems in VAEs. The objective includes 1) adding a scalar to increase the contribution

of KL (qφ(z)‖pθ(z)) and to counteract the dimension imbalance between X and Z

and 2) incorporating an MI term that explicitly retains high mutual information be-

tween x and z. The resulting model is called InfoVAE whose objective is expressed

as follows:

ELBOInfoVAE = −λKL (qφ(z)‖pθ(z)) + ηIq(x; z)− Eqφ(z) [KL (qφ(x|z)‖pθ(x|z))]

= −λKL (qφ(z)‖pθ(z))

+ η
{
EpD(x) [KL (qφ(z|x)‖pθ(z))]−KL (qφ(z)‖pθ(z))

}
+ EpD(x)

[
− KL (qφ(z|x)‖pθ(z)) + Eqφ(z|x) [log pθ(x|z)]

]
+ KL (qφ(z)‖pθ(z))− EpD(x) [log pD(x)]

∝ EpD(x)Eqφ(z|x) [log pθ(x|z)]− (1− η)EpD(x) [KL (qφ(z|x)‖pθ(z))]

− (λ− 1 + η)KL (qφ(z)‖pθ(z)) , (4.10)

where Iq(x; z) is the MI between x and z under qφ(x, z). The hyperparameter λ

compensates for the dimension imbalance between x and z, so that the variational

inference and data reconstruction can be balanced. η signifies the importance of

maintaining high mutual information between the original and latent vectors. We

do not explicitly use Iq(x; z) in the final expression because the MI term is difficult

to compute directly, especially in high-dimensional spaces. Note that we can further

generalize the KL (qφ(z)‖pθ(z)) in (4.10) to broader divergence families for efficient

optimization, e.g., we may use MMD [98] as a divergence measure or introduce a
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discriminator and apply adversarial training to distinguish samples drawn from qφ(z)

and pθ(z), similar to the adversarial autoencoder (AAE) [85].

4.4.2 Information-Maximized VDANN

To improve the training of a VDANN, the author proposes an InfoVDANN by in-

corporating an InfoVAE into the DANN [51] to learn features that can sufficiently

characterize the latent information from the inputs while simultaneously leverage the

benefit of the VDANN.

The InfoVDANN has a similar structure as the VDANN, as shown in Figure 4.2.

The only difference between the InfoVDANN and VDANN is the use of the variational

loss function: the InfoVAE loss function is used in InfoVDANNs, whereas the VDANN

applies a standard VAE objective.

We follow the same mathematical settings as in VDANN and define the InfoVAE

loss function as the negative of (4.10)

LInfoVAE (φe, θg) = − 1

N

R∑
r=1

Nr∑
i=1

{
1

L

L∑
l=1

log pθ (xri |zril)

− 1− η
2

J∑
j=1

[(
µrij
)2

+
(
σrij
)2 − 1− log

(
σrij
)2]

− (λ− 1 + η)
1

L

L∑
l=1

[log qφ(zril)− log p(zril)]

}
, (4.11)

where J is the dimension of z and L denotes the number of sampled latent variables

for a given x. The hyperparameters λ and η are consistent with those in (4.10). The

first term on the right-hand side of (4.11) is the data reconstruction error, whereas

the second term is the analytical expression of KL (qφ(z|x)‖pθ(z)). The third term is

the Monte Carlo estimate of KL (qφ(z)‖pθ(z)) in (4.10), i.e.,

KL (qφ(z)‖pθ(z)) = Eqφ(z) [log qφ(z)− log pθ(z)] . (4.12)
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To train the InfoVDANN, we define the loss of InfoVDANN as

LInfoVDANN(θc, θd, φe, θg) = LC(θc, φe)− αLD(θd, φe) + βLInfoVAE(φe, θg), (4.13)

where LC(θc, φe) and LD(θd, φe) have been defined in (4.5) and (4.6), respectively.

The training procedure of InfoVDANN is similar to that of VDANN in (4.7) except

that LInfoVDANN(θc, θd, φe, θg) instead of LVDANN(θc, θd, φe, θg) is applied.

4.4.3 MMD–VDANN and AAE–VDANN

To compute the term KL (qφ(z)‖pθ(z)) in LInfoVAE, we first need to obtain samples z’s

from qφ(z). This can be easily addressed by ancestral sampling [55, 58, 106], that is,

we first uniformly sample x’s from the training data, and then draw samples z’s from

qφ(z|x). Take a mini-batch of B training samples as an example, this can be denoted

as follows:

z ∼ qφ (z|xb) , b ∼ Uniform (1, . . . , N). (4.14)

After getting samples from qφ(z|xb), the aggregate posterior can be calculated through

the Monte Carlo estimate:

qφ(zs) ≈
1

B

B∑
b=1

qφ (zs|xb) , s = 1, . . . , B. (4.15)

If we use theseB zs’s to estimate Eqφ(z) [log qφ(z)], i.e., the first term of KL (qφ(z)‖pθ(z))

in (4.12), we have

Eqφ(z) [log qφ(z)] ≈ 1

B

B∑
s=1

[
log

1

B

B∑
b=1

qφ (zs|xb)

]
. (4.16)
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Since the estimate in (4.16) is biased and can only give a lower bound on the true

expectation [55], the estimate of KL (qφ(z)‖pθ(z)) will also be biased. This means

that we need to set the mini-batch size B to a large value during training to make

the estimate of the KL divergence reliable, which would lead to heavy computation.

Although there are other methods to estimate qφ(z) and Eqφ(z) [log qφ(z)] [88, 89],

these methods are restricted to using KL divergence as the “distance” between qφ(z)

and pθ(z). Inspired by the work in [59,87], we generalize the KL divergence to other

probability distance metrics. Setting L = 1, the resulting objective of the InfoVAE is

then reformulated as

L̂InfoVAE (θg, φe) = − 1

N

R∑
r=1

Nr∑
i=1

{
log pθ (xri |zri )

− 1− η
2

J∑
j=1

[(
µrij
)2

+
(
σrij
)2 − 1− log

(
σrij
)2]}

+ (λ− 1 + η)Dg (qφ(z)‖pθ(z)) , (4.17)

where Dg(·‖·) denotes a generalized distance metric.

If we apply MMD [98] as the distance metric in (4.17), the resulting InfoVDANN

is called MMD–VDANN. MMD characterizes the distance between two distributions

as the Euclidean distance in the Hilbert space, which can be efficiently computed by

the kernel trick. Given a suitable kernel, MMD can match up to infinite moments of

their distributions. An unbiased empirical estimate of MMD between datasets X and

Y is given by

MMD2(X ,Y) =
1

N(N − 1)

N∑
n=1

N∑
n′ 6=n

k (xn,xn′ ) +
1

N ′(N ′ − 1)

N
′∑

n=1

N
′∑

n′ 6=n

k (yn,yn′ )

− 2

NN ′

N∑
n=1

N
′∑

n′=1

k (xn,yn′ ) , (4.18)
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where N and N
′

denote the number of samples in X and Y , respectively, and k (·, ·)

represents a kernel.

Alternatively, we may use adversarial learning to minimize the distance between

two distributions in the latent space as in AAEs [85]. This can be fulfilled by intro-

ducing a discriminator to distinguish the samples drawn from qφ(z) and pθ(z). The

author calls the InfoVDANN that implements the minimization of Dg (qφ(z)‖pθ(z))

by adversarial learning as AAE–VDANN.

The optimization of MMD–VDANN and AAE–VDANN is the same as in (4.7),

except that LVAE (φe, θg) is replaced by L̂InfoVAE (θg, φe) (see (4.17)) for the LInfoVDANN.

Take the MMD–VDANN as an example, we use MMD between qφ(z) and pθ(z) as the

Dg (qφ(z)‖pθ(z)) term in (4.17). It is straightforward to implement this by replacing

x’s and y’s in (4.18) with the samples drawn from qφ(z) and pθ(z), respectively. Also,

we set both N and N
′
to be the mini-batch size B during training. The latent samples

z’s from qφ(z) can be drawn according to (4.14).

MMD–VDANN and AAE–VDANN are proposed as two specialized variants of

the InfoVDANN to leverage MI. The difference between MMD–VDANN and AAE–

VDANN is that MMD–VDANN minimizes the MMD between the aggregated pos-

terior qφ(z) and the prior pθ(z) as a proxy to minimize the generalized divergence

Dg (qφ(z)‖pθ(z)), whereas AAE–VDANN applies adversarial training to minimize this

divergence. The author proposes these two variants to demonstrate that the perfor-

mance of InfoVDANN is not sensitive to how the generalized divergence is minimized.

In other words, InfoVDANN would not be biased towards a specific divergence be-

tween qφ(z) and pθ(z). We will verify this through the experiments in Section 4.6.

4.4.4 Relation to Previous Works

One common characteristic among [92–96] is that they performed DA without using

DNNs. For DNN-based DA methods, [97] and [30,99,100] applied Euclidean distance

and MMD to measure the discrepancy between different distributions, respectively.
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Different from these distance metrics, [84] and [83] used adversarial training to learn

domain-invariant representations. But because there is no constraint on the latent

features learned by DANN, the adversarial training may lead to non-Gaussian latent

vectors, which would break the assumption of the Gaussian PLDA backend. VDANN

overcomes this limitation by regularizing the learned embeddings using a VAE in DAT

so that they were Gaussian distributed. Thus, VDANN differs from DANN in this

variational regularization.

However, a potential limitation of the VDANN is that posterior collapse may oc-

cur while training the VAE, leading non-informative speaker representations. The

proposed InfoVDANN follows the framework of variational DAT in that it performs

domain adaptation and Gaussianity regularization simultaneously. However, a major

difference with VDANN is that it addresses the posterior collapse problem by explic-

itly incorporating an MI term in the loss function. Maximizing this term enables

the InfoVDANN to preserve more speaker information into the learned embeddings,

which is the contribution of this method.

In Section 4.3, we see that DANN is a special case of the VDANN. By removing

the sampling operation and the decoder in the VAE, VDANN becomes the DANN.

In fact, both the VDANN and DANN are special cases of InfoVDANN: InfoVDANN

becomes the VDANN if the MI term is removed from the objective function, and it

becomes the DANN if we further remove the sampling operation and the decoder in

the VAE.

4.5 Experimental Setup

The performance of various DA methods was evaluated on SRE16 [110] and SRE18-

CMN2 [111]. All experiments were based on x-vectors [3] using the x-vector extractor

available from the Kaldi repository.2 Unless otherwise stated, the InfoVDANN men-

2http://kaldi-asr.org/models/m3
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tioned in the latter sections represents both MMD–VDANN and AAE–VDANN.

4.5.1 Training of InfoVDANN, VDANN and DANN

We used data from four domains as shown in Table 4.1 to train the InfoVDANN,

VDANN, and DANN. Each dataset corresponds to a domain. To briefly summarize,

SRE04–10 mainly consist of conversational telephone speech in English. VoxCeleb1

was a wideband corpus extracted from the YouTube videos spanning a wide range of

ethnicities with real-world noises. SwitchBoard-2 was an English corpus of two-sided

telephone conversations collected in the 90’s. Similar to the VoxCeleb1 dataset, SITW

was a collection from the open source media with unconstrained acoustic conditions.

In contrast, the SRE16 evaluation set is composed of telephone conversations spo-

ken in Tagalog and Cantonese, while SRE18-CMN2 contains mainly conversational

telephone speech in Tunisian Arabic. Although there is overlap in the collection con-

ditions amongst these datasets, basically, they differed from each other in channels,

languages, noises, etc. Therefore, there are mismatches between the training data

and the test data and mismatches within the training data.

The statistics of the four training sets are shown in Table 4.1. Note that each

training set is a subset of the original set. For example, the minimum number of

x-vectors per speaker is 30 for both SRE04–10 and VoxCeleb1. SwitchBoard-2 was

selected from Phases I–III to ensure that there are at least 20 x-vectors for each

speaker, whereas each speaker in SITW has at least 15 x-vectors.

Table 4.1: Statistics of Training Sets

Dataset No. of speakers No. of utterances

SRE04–10 1,796 53,880
VoxCeleb1 1,181 35,430

SwitchBoard-2 268 6,812
SITW 198 3,572
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As shown in Figure 4.2, there are four sub-networks in the VDANN and InfoV-

DANN. The encoder has two hidden layers and each layer has 1,024 nodes. We used

ReLU as the activation function in each layer, followed by batch normalization (BN)

and dropout. The dimension of the latent space was set to 400. There is only one

hidden layer with 2,048 nodes in the decoder. The output layers of both the encoder

and decoder are linear. For the speaker classifier, we used a 1024-1024 hidden-layer

structure with Leaky ReLU activation functions, and BN and dropout layers were ap-

pended after each layer. The output layer has 3,443 nodes with a softmax function,

which correspond to 3,443 speakers. The configuration of the domain classifier is sim-

ilar to that of the speaker classifier except that the number of nodes in the two hidden

layers are 128 and 32, respectively. There are four output nodes which correspond to

the four domains in Table 4.1. The dropout rate was set to 0.2 for all dropout layers

in the network. For the AAE–VDANN, we included an additional latent-variable dis-

criminator to Figure 4.2 to differentiate the samples drawn from qφ(z) and pθ(z). This

discriminator has two hidden layers with 128 and 16 nodes, respectively, followed by

ReLU activation and BN in each layer. The number of trainable parameters of each

network is summarized in Table 4.2.

Table 4.2: Number of trainable parameters of the embedding transformation networks

Network No. of parameters

DANN 7.02 M
VDANN 9.89 M

MMD–VDANN 9.89 M
AAE–VDANN 9.94 M

We used the Adam optimizer to train the InfoVDANN, VDANN and DANN with

a learning rate of 1.0×10−3. The mini-batch size was set to 128. MMD was computed

using a mixture of seven radial basis functions (RBFs) with width being set to 0.1,

0.2, 0.4, 1.0, 4.0, 16.0, 256.0, respectively for the MMD–VDANN. For the DANN, we
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set α = 0.1 and β = 0 in (4.13), whereas for the VDANN, we set α = 0.1 and β = 0.1

with η = 0 and λ = 1.0 in (4.17). For the InfoVDANN, we set α = 0.1, β = 1.0,

η = 0.2, and λ = 1.0. These hyperparameters were determined by simple grid search

on the SRE16 development set.

4.5.2 PLDA Training and Scoring

We used the Gaussian PLDA (G-PLDA) backend and the heavy-tailed PLDA (HT-

PLDA) [1] for scoring. For SRE16, the baseline G-PLDA and HT-PLDA models

were both trained on the augmented SRE04–10 x-vectors. For SRE18, Mixer6 and its

augmentation were also added to the training sets. The augmentation step followed

the Kaldi’s SRE16 recipe. Before G-PLDA training, the x-vectors were centered and

projected to a 150 dimensional space by an LDA transformation matrix, followed

by whitening and length normalization. The LDA projection matrix was trained

on the same dataset as for training the PLDA models. The dimension of the LDA

projection was selected according to the EER on the development set. Evidences of

why the projection dimension was set to 150 can be found in Appendix C. As for

the HT-PLDA training, we used the same setup as that in [1]. For example, the

degree of freedom in the heavy-tailed distribution and the dimension of the speaker

subspace were set to 2 and 150, respectively. Also, the LDA projection and length

normalization were excluded from the preprocessing.

For all the G-PLDA backends, we also applied Kaldi’s PLDA adaptation as an

extra adaptation step. Specifically, SRE16 unlabeled data were used to adapt the

PLDA model for SRE16, whereas we used SRE18 unlabeled data for PLDA adaptation

for SRE18. While for the HT-PLDA systems, since Kaldi’s PLDA adaptation was not

compatible with the HT-PLDA model, we used the unsupervised domain adaptation

[112] via parameter interpolation as in [1]. The interpolation factor was set to 0.9 for

the out-of-domain part.

For the evaluations of InfoVDANN, VDANN, and DANN, we applied the same
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processing as the baseline using the transformed x-vectors rather than the raw x-

vectors.

4.6 Results and Discussions

4.6.1 SRE Performance

We followed the Kaldi’s SRE16 recipe for SRE16/18 evaluations for the G-PLDA

backends. For the baseline, the x-vectors were centered, LDA-transformed, whitened,

and length-normalized before PLDA scoring. The same preprocessing was applied

to the transformed x-vectors for the InfoVDANN, VDANN and DANN. As for the

preprocessing of x-vectors for HT-PLDA models, only centering and whitening were

applied.

Table 4.3 shows the performance of different systems on SRE16 and SRE18-CMN2.

The first part (rows 1–5) and the second part (rows 6–10) are the results applying

HT-PLDA and G-PLDA scoring, respectively. For evaluations based on HT-PLDA,

without PLDA adaptation, the HT-PLDA backends only outperform the G-PLDA

counterparts in minDCF under SRE16-All and SRE16-Tagalog. For SRE18-CMN2

evaluations, the HT-PLDA backends even cannot compete with the G-PLDA models.

Besides, we see that the unsupervised DA failed on SRE16-All and SRE16-Tagalog,

and it only worked on SRE16-Cantonese and SRE18-CMN2 with a slight performance

gain over the unadapted version. In general, there is no consistent observation that

InfoVDANN with HT-PLDA backends outperforms the other systems. It seems that

although the HT-PLDA model is theoretically capable of addressing the non-Gaussian

embeddings, it failed to achieve consistent gains compared with those of the G-PLDA

backend (rows 6–10). Maybe the (transformed) x-vectors do not present a strong

heavy-tailed characteristic. Or there may be a need for LDA to find more discrimi-

native directions in the speaker subspace before performing HT-PLDA scoring.

The performance based on the G-PLDA backend is shown in the second part (rows
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6–10) in Table 4.3. Without Kaldi’s PLDA adaptation under SRE16-All, we can

observe that although VDANN can reduce domain mismatch in terms of both EER

and minDCF, both MMD–VDANN and AAE–VDANN consistently outperform the

VDANN. We also performed Kaldi’s PLDA adaptation as an extra domain adaptation.

From columns 4–5 in the second part, we see that Kaldi’s PLDA adaptation is still

helpful in further reducing domain mismatch. From the improvement due to the

PLDA adaptation, we may conclude that adversarial domain adaptation and PLDA

adaptation are complementary. The fact that the performance of InfoVDANN is

better than that of DANN verifies that imposing the variational regularization on

the transformed x-vectors is effective for domain adaptation. The performance of the

Cantonese and Tagalog partitions is consistent with that of SRE16-All. These findings

suggest both types of InfoVDANNs (MMD–VDANN and AAE–VDANN) benefit DA

in extracting additional speaker discriminative information from the training data

compared with the VDANN, and that incorporating an MI term in the loss function

is effective for reducing domain mismatch.

From the last four columns in the second part of Table 4.3, we obtain similar

conclusions for SRE18-CMN2 as in SRE16: maintaining high MI between the latent

features and the inputs can feed more speaker information into the learned embed-

dings, which enhances speaker recognition performance.

As shown in Appendix B, the P -values of the McNemar’s tests [5] between both

InfoVDANNs and the others are mostly zeros for SRE16-All and SRE18-CMN2. This

means that the improvement of both InfoVDANNs over VDANN, DANN and the

baseline is statistically significant.

We also present the performance of some state-of-the-art end-to-end systems in

the third part (rows 11–14) of Table 4.3. Generally, results show that end-to-end

systems outperform the embedding–backend cascaded systems. This is reasonable

because the end-to-end systems have greater capacity to learn the domain invariance.
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4.6.2 Speaker Discriminative Features

By explicitly incorporating an MI term in the objective function, InfoVDANN is

able to feed extra information into the speaker embeddings, making them more dis-

criminative than those of the VDANN and DANN. To investigate the discrimina-

tiveness of the InfoVDANN, we plot the between-class variances against the within-

class variances using the SRE04–10 dataset (with augmentation). In Figure 4.3(a),

the x-axis denotes the logarithm of normalized within-class variances: log[(Vw −

min(Vw))/(max(Vw) − min(Vw))], where Vw is the within-class variance. Therefore,

different systems can be compared in the same scale. The scale of the y-axis is

log[(Vb − min(Vw))/(max(Vw) − min(Vw))], where Vb denotes the between-class vari-

ance. Each datapoint in Figure 4.3(a) corresponds to a dimension of the embedding

vector. We see that InfoVDANN generally has larger between-class variances than

the baseline for each within-class variance. This means that the x-vectors transformed

by the InfoVDANN are more discriminative compared with the baseline because the

speaker clusters become more separated after the transformation. However, it is

not clear if InfoVDANN outperforms the VDANN and DANN because their scatters

overlap with each other in the plot.

Since LDA was applied before PLDA scoring, we further evaluate the discrimina-

tiveness of these systems after LDA projection. The sorted between-class variances

after normalization were plotted in Figure 4.3(b). Note that the within-class variances

are all normalized to 1. According to Figure 4.3(b), we see that for the first 150 di-

mensions, InfoVDANN consistently has larger between-class variances than the other

systems. This suggests that the embeddings transformed by InfoVDANN are more

discriminative after LDA projection, which verifies the advantage of InfoVDANN over

the VDANN and DANN.

We also compare the t-SNE [114] plots of the raw x-vectors randomly selected from

20 speakers with those of their transformed ones. The selected x-vectors do not appear



53

  

(a)

  

(b)

Figure 4.3: Illustration for (a) between-class variances versus within-class variances
before LDA and (b) between-class variances after LDA.

in the training sets. Specifically, for each domain we randomly chose 5 speakers, with

each speaker providing at least 20 utterances. The results are illustrated in Figure 4.4.

In the figure, each color corresponds to a domain, and each marker represents a speaker

whose identity is indicated in the legend.

As shown in Figure 4.4, except for the utterances in SITW, the x-vectors trans-

formed by the InfoVDANN, VDANN and DANN are more speaker discriminative

across all the four domains. To be specific, the clusters from 3 speakers annotated

by the orange oval (i.e., sw 5069, sw 5143 and sw 5397) in Figure 4.4(a) are close

to each other and we cannot differentiate them easily. However, these x-vectors are

more speaker discriminative after DAT as observed in Figs. 4.4(b)–(e). Similarly, the

x-vectors from SRE04–10 indicated by the black arrows (speaker identities 8918, 8962

and 8977) become more distinct after InfoVDANN transformation (Figure 4.4(e)). For

Voxcleb1, the embeddings within the red clouds (speaker IDs id11247 and id11248)

show the same tendency: DAT makes the speaker representation more discriminative.

Because these speakers are not in the training set, the results suggest that the InfoV-

DANN can generalize to unknown speakers. This is the reason why the InfoVDANN
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Figure 4.4: Comparison of t-SNE plots of (a) raw x-vectors, (b) DANN-transformed
x-vectors, (c) VDANN-transformed x-vectors, (d) MMD–VDANN transformed x-
vectors, and (e) AAE–VDANN transformed x-vectors. Each color denotes a domain,
e.g., red, green, blue and magenta indicate SwitchBoard-2, SRE04–10, VoxCeleb1
and SITW, respectively, and each marker represents a speaker. Speaker identities are
illustrated in the legend.

can improve the performance of x-vectors in SRE16 and SRE18-CMN2.

4.6.3 Effect on Gaussian Regularization

The InfoVDANN and the VDANN apply variational regularization on the learned

embeddings so that the transformed x-vectors will follow a Gaussian distribution. To

investigate the effectiveness of this Gaussian regularization, we present the normal

Q–Q plots [115] of two randomly selected dimensions of the raw x-vectors and the

x-vectors transformed by InfoVDANN, VDANN, and DANN. These x-vectors were

selected from the CMN2 part of the SRE18 evaluation set. Evidently, as shown in

Figure 4.5, the distributions of all the x-vectors transformed by the MMD–VDANN,
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Figure 4.5: Quantile-quantile (Q–Q) plots of the 151-st (Row 1), and 301-st (Row 2)
components of (a) raw x-vectors, (b) DANN-transformed x-vectors, (c) VDANN-
transformed x-vectors, (d) MMD–VDANN transformed x-vectors, and (e) AAE–
VDANN transformed x-vectors. The vertical and horizontal axes correspond to the
samples under test and the samples drawn from a standard normal distribution, re-
spectively. The red line represents the case of perfectly Gaussian. The p-values above
the graphs were obtained from Shapiro-Wilk tests, with p > 0.05 meaning failing to
reject the null hypothesis that the test samples come from a Gaussian distribution
(i.e., the larger the p, the more Gaussian the distribution).

AAE–VDANN, and VDANN are closer to a Gaussian distribution than the DANN

and the baseline systems, whereas the InfoVDANN-transformed ones seem to be more

Gaussian than those transformed by the VDANN. This suggests that the InfoVAE

loss can make the latent vectors z’s to follow a Gaussian distribution.

The histograms of the p-values obtained from Shapiro-Wilk tests [116,117] are il-

lustrated in Figure 4.6. We can see that generally the MMD–VDANN, AAE–VDANN,

and VDANN have larger p-values than the DANN and the baseline. This suggest that

the distributions of InfoVDANN- and VDANN-transformed x-vectors are closer to the

standard Gaussian than the DANN and baseline systems. This is reasonable because

we perform variational regularization in these three systems to make their distribu-

tions more Gaussian.
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Figure 4.6: Histograms of the p-values of each dimension of (a) raw x-vectors,
(b) DANN-transformed x-vectors, (c) VDANN-transformed x-vectors, (d) MMD–
VDANN transformed x-vectors, and (e) AAE–VDANN transformed x-vectors. The
p-values were obtained from Shapiro-Wilk tests, with p > 0.05 meaning failing to
reject the null hypothesis that the test samples come from a Gaussian distribution.

Table 4.4: Estimates of the mutual information term (Iq(x; z) in (4.10)) under SRE16
Evaluation set and SRE18-CMN2 Evaluation set

SRE16-eval SRE18-eval-CMN2

Enrollment Test Enrollment Test

mean var mean var mean var mean var

VDANN 4.466 1.092 5.078 1.115 3.922 1.045 4.567 1.077
MMD–VDANN 4.811 1.052 5.770 1.150 5.357 1.228 5.028 1.327
AAE–VDANN 5.114 1.047 6.263 1.151 5.038 1.163 5.031 1.248

4.6.4 Comparison of Mutual Information

The InfoVDANN explicitly incorporates an MI term in the objective function dur-

ing DAT to additionally preserve meaningful information between the learned features

and the input set. It makes sense to infer latent representations that are more speaker

discriminative by maximizing this MI term together with the optimization of other

sub-networks in the InfoVDANN. It has been verified in Table 4.3 that both the In-

foVDANNs consistently outperform the VDANN based on the G-PLDA backend. To

further evaluate the effectiveness of this MI maximization, we report the MI estimates

on both the SRE16 Evaluation set and SRE18-CMN2 Evaluation set in Table 4.4.

The MI between the latent variable z and the input x is estimated by (4) in
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Appendix A. We randomly selected 1,024 x-vectors from each set (e.g., SRE16-eval

Enrollment and Test, SRE18-eval-CMN2 Enrollment and Test), and used these 1,024

samples as one single batch for each estimation. Each of the mean and variance was

based on 200 simulations.

We can see from Table 4.4 that both MMD–VDANN and AAE–VDANN have

higher MI between the learned features and the inputs than the VDANN, which

contributes to the performance gain in SRE16 and SRE18-CMN2. According to (5)

in Appendix A the MI estimates are bounded by 6.9314 (i.e., log(1024)) for these

samples. Although there is some gap between the estimates and the upper bound,

the performance gains on SREs are still statistically significant as reported in Section

4.6.1.

4.6.5 Impact of Hyperparameters λ and η

In (4.13), we use four hyperparameters (α, β, λ and η) in the InfoVDANN’s objective

function. VDANN is a special case of InfoVDANN in that the InfoVDANN loss

degenerates into the VDANN objective when η = 0, and λ = 1 in (4.17). The

discrepancy between the two loss functions is the choice of Dg (qφ(z)‖pθ(z)) and the

contribution of KL (qφ(z|x)‖pθ(z)) and Dg (qφ(z)‖pθ(z)) to the total loss, which are

controlled by λ and η, respectively. To examine the superiority of InfoVDANN over

VDANN, we present the impact of λ and η on SRE performance in Figure 4.7 by

setting α = 0.1, and β = 1.0 in (4.13).

From (4.10), we note that λ is to balance the variational inference and data re-

construction during the optimization of the VAE sub-network in Figure 4.2. In our

experimental setup, because the difference between the dimension of the latent vec-

tor (400) and that of the input embedding (512) is not very large, we started with

λ = 1.0 to evaluate the influence of η on SRE16-eval and SRE18-CMN2. As shown

in Figure 4.7(a) and Figure 4.7(b), both MMD–VDANN and AAE–VDANN achieve

the best performance at η = 0.2 for SRE16 with and without the extra Kaldi’s PLDA
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Figure 4.7: Impact of hyperparameters λ and η on the performance of SRE16 and
SRE18-CMN2. The first row shows the impact of η on the performance of SRE16
[(a) and (b)] and SRE18-CMN2 [(c) and (d)] with λ fixed to 1.0. The second row
illustrates the impact of λ on SRE16 [(e) and (f)] and SRE18-CMN2 [(g) and (h)]
with η = 0.2. The instances with a suffix “ adp” in the legend denote the case using
Kaldi’s PLDA adaptation.

adaptation. In this regard, we fixed η to 0.2 when inspecting how λ impacts SRE16

performance. The result is illustrated in Figure 4.7(e) and Figure 4.7(f), from which

we can see that within a wide range of λ ∈ [0.8, 10], the SRE16 performance with-

out PLDA adaptation does not change too much, while it achieves a slightly better

performance at λ = 1.0. With Kaldi’s PLDA adaptation, we can obtain similar

performance at λ = 1.0 and λ = 2.0. Overall, with η = 0.2, both MMD–VDANN

and AAE–VDANN obtained a consistently good performance at λ = 1.0 for SRE16

with and without PLDA adaptation. From Figs. 4.7(a), 4.7(b), 4.7(e) and 4.7(f), we

conclude that η = 0.2 and λ = 1.0 are suitable choices for compromising the con-

tribution of KL (qφ(z|x)‖pθ(z)) and Dg (qφ(z)‖pθ(z)) to produce meaningful speaker

embeddings.
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We obtained a similar conclusion for SRE18-CMN2, as shown in Figs. 4.7(c),

4.7(d), 4.7(g) and 4.7(h). The performance over the choice of both hyperparameters

with PLDA adaptation is more stable than that without it. For fixed λ, increasing η

from 0 to an appropriate value (e.g., 0.2) can improve the performance of InfoVDANN.

However, a larger value for η can have a detrimental effect on the performance. Be-

cause η represents the contribution of the MI term in (4.10), maintaining a high MI

between the latent features and the inputs during training does not always produce

better features. Note that when η = 1.0 and λ = 1.0, (4.10) becomes the standard

AAE loss function [85]. This in turn verifies that KL (qφ(z|x)‖pθ(z)) is still very im-

portant as a regularization term on the learned embeddings. On the other hand, with

η = 0.2, as shown in Figs. 4.7(g) and 4.7(h), the performance is insensitive to a wide

range of λ.

From the above analysis, we thus used α = 0.1, β = 1.0, η = 0.2, and λ = 1.0 for

experimental comparisons in the previous subsections. From Figs. 4.7(a)–(h), we also

observe that there is no big difference between the choice of Dg (qφ(z)‖pθ(z)), e.g.,

MMD and adversarial learning, since MMD–VDANN has a comparable performance

with the AAE–VDANN for nearly all of the experiments. This also empirically ver-

ifies the robustness of InfoVDANN using different ways to minimize the generalized

divergence. But due to the additional latent-variable discriminator (distinguishing

the samples drawn from qφ(z) and pθ(z)) in AAE–VDANN, AAE–VDANN possesses

more parameters compared with MMD–VDANN. Moreover, the minimax optimiza-

tion of this latent-variable discriminator is not as efficient as the minimization of the

MMD. As such, in practice, training AAE–VDANN takes slightly longer than train-

ing MMD–VDANN3. Thus, from the perspective of implementation, MMD–VDANN

may be a better choice.

3It takes around 15% more time to train an AAE–VDANN than an MMD–VDANN.
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Chapter 5

UTTERANCE-LEVEL AGGREGATION IN THE

SPECTRAL DOMAIN

5.1 Introduction

A modern speaker embedding network is usually comprised of three components: a

frame-level subnetwork, a pooling layer, and an utterance-level subnetwork. Because

information will inevitably be lost in the pooling operation, it is crucial to preserve

as much information as possible when aggregating the frame-level representations.

Conventional pooling strategies such as statistics pooling [3] and self-attention based

pooling [24,41,42] are operated in the temporal domain. However, due to the high non-

stationarity in the temporal feature maps produced from the last frame-level layer,

it is undesirable to use the global statistics (e.g., means and standard deviations,

etc.) of the temporal feature maps as aggregated embeddings. This motivates us

to explore more stationary spectral representations and perform aggregation in the

spectral domain.

In [44], spectral pooling was proposed to replace max pooling for better informa-

tion preservation in computer vision. This method involves three steps: 1) trans-

forming the convolutional features from the spatial domain to the spectral domain by

discrete Fourier transform (DFT), 2) cropping and retaining the low spectral compo-

nents, and 3) performing inverse DFT on the cropped features to transform them back

to the spatial domain. Because most energy of the spectral representations locates

in the low-frequency region, spectral pooling is able to preserve most of the feature

information by retaining the low spectral components.
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However, because DFT can only be applied to deterministic or wide-sense station-

ary signals, it is not suitable for non-stationary speech signals [118]. In this chapter,

the author replaces DFT by short-time Fourier transform (STFT) to account for the

non-stationarity in the convolutional feature maps. Specifically, two spectral pooling

strategies, i.e., short-time spectral pooling (STSP) [45] and attentive STSP [46], are

proposed to preserve rich information and mitigate the non-stationarity in the frame-

level feature maps during aggregation. The principles of STSP and attentive STSP

are detailed in Section 5.2 and 5.3, respectively.

5.2 Short-time Spectral Pooling

Figure 5.1 shows the process of STSP. Because the pooling layer sits between the

frame-level subnetwork and the utterance-level subnetwork, spectral analysis is per-

formed on the output feature maps of the last convolutional layer, not on the MFCCs

or filter-bank features. Given the c-th channel feature xc = {xc(t)}T−1t=0 of a convolu-

tional feature map {xc}Cc=1 ∈ RC×T with C channels, its short-time Fourier transform

(STFT) [119] is expressed as follows:

Xc(n, k) =
T−1∑
t=0

xc(t)w(t− nS)e−
j2π
L
kt, (5.1)

where w(·) is a window function of length L, S denotes the sliding step of the window,

n indexes the temporal segments (sliding windows), and k = 0, . . . , L− 1 indexes the

frequency components. Note that in this chapter, we always make sure that the STFT

length (the length of Fourier transform during STFT) is equal to the window length

L. (5.1) suggests that by sliding the window, we may apply multiple STFTs on a

1-D sequence to produce a 2-D spectral feature map with a temporal index n and a

frequency index k for each channel.

To compute the spectral representation for each channel, we average the windowed
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Figure 5.1: Schematic of short-time spectral pooling (STSP). The left part depicts the
signal flow within the embedding network, whereas the right part details the pipeline
of STSP. In the green dashed box, the left-most graph in the second row illustrates
a temporal feature map extracted from the last convolutional layer. The bottom-
left spectrograms were produced by STFT with length L = 8, and the vertical red
boxes on top of the spectrogram denote spectral arrays to be averaged along the time
axis by an attention weight matrix. The actual values of Mc and Pc after applying
(5.2) and (5.3) are shown in the middle and the right-most maps in the second row,
respectively. The top three plots correspond to the row vectors with elements xc(t),
Mc(k), and Pc(k) in the red boxes, respectively. All the spectral features in the green
boxes in the second row are concatenated to form the final utterance-level statistics
(see (5.4) and (5.5) for details)

segments within the spectrogram |Xc(n, k)| along the temporal axis and obtain the

first-order spectral representation as follows:

Mc(k) =
1

N

N−1∑
n=0

|Xc(n, k)| , k = 0, . . . , L− 1 (5.2)

where N = floor((T − L)/S) + 1 is the number of windowed temporal segments.
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Similarly, by averaging the square of the spectrogram, we obtain the second-order

spectral statistics as

Pc(k) =
1

N

N−1∑
n=0

|Xc(n, k)|2 , k = 0, . . . , L− 1. (5.3)

During aggregation, we concatenate Mc(0) and the square roots of the lowest R

components of Pc(k) to form the utterance-level representation of channel c:

zc =
(
Mc(0),

√
Pc(0), . . . ,

√
Pc(R− 1)

)
. (5.4)

The final utterance-level feature is produced by concatenating the spectral statistics

of all channels:

z = (z1, . . . , zc, . . . , zC) . (5.5)

Note that this STSP process ((5.1)–(5.5)) is applied to the speaker embedding network

during both the training and inference phases.

One benefit of using the averaged representations Mc(k) and Pc(k) is that they

have a low-pass characteristic. This characteristic facilitates the aggregation by keep-

ing the lowest spectral components only, because these components contain most of

the energy of the original features.1

In fact, STSP has a close relationship with statistics pooling [3]. For example,

if we set k = 0 and use a rectangular window in (5.2) without any overlap between

successive segments (S = L), the DC component Mc(0) approximates the mean of

xc. On the other hand, setting k = 0 in (5.3) resembles the power. In the extreme

case where S = L = 1, we have Pc(0) = 1
N

∑N−1
n=0 xc(n)2. This means that under this

condition, using means and standard deviations for statistics pooling is an analogy to

1According to Parseval’s theorem [120], the energy of a signal in the temporal domain is equal to
that in the spectral domain.
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using the DC components (Mc(0) and Pc(0) in (5.2) and (5.3)) for STSP. Thus, we may

consider STSP as a generalized statistics pooling. Because we have higher-frequency

components (Pc(k)’s for k > 0) for pooling, we can preserve more information than

statistics pooling.

5.3 Attentive Short-time Spectral Pooling

5.3.1 Motivation of Attentive STSP

One limitation of STSP is that the brute average of the spectrograms along the

temporal axis ignores the importance of individual windowed segments. In other

words, all segments in a specific spectrogram were treated with equal importance when

computing the spectral representations. In practice, however, this is not reasonable

because phonetic information is rarely distributed uniformly across an utterance. As a

result, different segments of an utterance have different speaker discriminative power.

To address the above limitation of STSP, the author proposes applying self-

attention [121] on the windowed segments for each spectrogram while computing the

spectral representations. As a result, the discriminative segments can be emphasized

during aggregation. The author calls the proposed method attentive STSP in this

chapter. Unlike the conventional attention mechanisms for speaker embedding that

perform attention on temporal frames [24,40–42], attentive STSP performs attention

on individual windowed segments. Nevertheless, the rationale behind attentive STSP

is the same as that of the conventional attentive pooling methods.

The intuition that exploiting the local stationarity in the convolutional feature

maps is beneficial to utterance-level aggregation can be interpreted from a perspec-

tive of stochastic process. Specifically, if we consider a feature sequence at the final

convolutional layer as a realization of a stationary stochastic process, its global statis-

tics (e.g., mean, standard deviation, etc.) will not change with time. However, once

the stationarity assumption is violated, which is common for the final convolutional
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feature maps, these global statistics will become unreliable for summarizing the pro-

cess. This suggests that the performance of statistics pooling and its attentive variants

would suffer more severely on long utterances because of the non-stationarity in the

feature sequence. Therefore, the conventional pooling methods that operate in the

temporal domain can be sensitive to the duration variations in the evaluation sets.

On the other hand, attentive STSP is more robust to duration variations, attributed

to its ability to handle the local stationarity in the feature maps.

In fact, it has been observed in portfolio optimization that exploiting only the

mean and variance of a non-stationary sequence is not sufficient. In [122], the authors

pointed out that although the mean-variance optimization (MVO) has long been an

optimal strategy for investment, it presents poor out-of-sample performance due to the

non-stationarity in the financial time series. To overcome the inherent time-varying

property of the price series, a complex spectral portfolio method was proposed to

model the cyclostationarity of the time series.

5.3.2 Principle of Attentive STSP

The procedure of attentive STSP is shown in Figure 5.2. The difference between

attentive STSP and STSP in Section 5.2 is the way the spectral representations are

calculated. In attentive STSP, rather than brutely average the windowed segments

within the spectrogram |Xc(n, k)|, we apply a weighted average of these segments by

an H-head attention weight matrix and obtain a spectral sequence for each head as

follows:

Mh
c (k) =

N−1∑
n=0

αhn |Xc(n, k)| , k = 0, . . . , L− 1 (5.6)

where N = floor((T − L)/S) + 1 is the number of windowed temporal segments,

h ∈ [1, H] indexes the attention heads, and αh = {αhn}N−1n=0 denotes the attention

weight vector corresponding to head h. Similarly, if we attend to the square of the
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spectrogram, we obtain the second-order spectral statistics:

P h
c (k) =

N−1∑
n=0

αhn |Xc(n, k)|2 , k = 0, . . . , L− 1. (5.7)

The attention mechanism is shown in Figure 5.2(b). Note that the attention

process is operated on the windowed segments within each spectrogram. We first

average the spectrogram for each channel along the frequency axis to make sure

that all the spectral components within a specific segment share the same attention

weights. The resulting feature map is denoted as G = {Gc(n)}Cc=1 ∈ RC×N , where

Gc(n) =
1

L

L−1∑
k=0

|Xc(n, k)| , n = 0, . . . , N − 1. (5.8)

Similar to (2.4), the attention weight matrix ASTSP = {αh}Hh=1 is computed as

ASTSP = Softmax
(
tanh

(
G>WSTSP

1

)
WSTSP

2

)
, (5.9)

where WSTSP
1 ∈ RC×D and WSTSP

2 ∈ RD×H are trainable weight matrices.

To aggregate the frame-level information, we concatenate Mh
c (0) and the square

roots of the lowest R components of P h
c (k) to form the utterance-level representation

of channel c for head h:

zhc =
(
Mh

c (0),
√
P h
c (0), . . . ,

√
P h
c (R− 1)

)
. (5.10)

The final utterance-level feature is produced by concatenating the spectral statistics

of all channels and all heads:

z =
(
z1
1, . . . , z

h
c , . . . , z

H
C

)
. (5.11)
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(a)

(b)

Figure 5.2: (a) Schematic of attentive STSP. The left part depicts the signal flow
within the embedding network, whereas the right part details the pipeline of attentive
STSP. In the green dashed box, the left-most graph in the second row illustrates a
temporal feature map extracted from the last convolutional layer. The bottom-left
spectrograms were produced by STFT with length L = 8, and the vertical red boxes
on top of the spectrogram denote spectral arrays to be averaged along the time axis
by an attention weight matrix. The actual values of Mh

c and P h
c (only h = 1 is

considered here) after applying (5.6) and (5.7) are shown in the middle and the right-
most maps in the second row, respectively. The top three plots correspond to the row
vectors with elements xc(t), M

1
c (k), and P 1

c (k) in the red boxes, respectively. All the
spectral features in the green boxes in the second row are concatenated to form the
final utterance-level statistics (see (5.10) and (5.11) for details). (b) Schematic of the
attention mechanism used in attentive STSP. The middle feature map denotes the
actual value of G and the node graph illustrates an H-head attention network. The
attention weight matrix ASTSP is computed as in (5.9).
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5.3.3 Rationale and Validity of Attentive STSP

As mentioned in Section 5.1, to facilitate the aggregation process, STSP requires that

the energy of the features should concentrate in the low-frequency region [45]. To

demonstrate that attentive STSP also satisfies this requirement, we provide empirical

evidences by plotting the statistics of the spectral representations computed from (5.6)

and (5.7). The procedure for computing the spectral representations is as follows:

1. Randomly select 20 utterances from each of the 1,211 speakers in the VoxCeleb1

development set.

2. Extract 40-dimensional filter-bank features from the selected utterances and

perform mean normalization with a sliding window of 3 seconds.

3. Train an embedding system with a single-head attentive STSP layer (H = 1)

using 5,984 speakers from the VoxCeleb2 development set.

4. Extract the feature maps from the last convolutional layer of the embedding

network.

5. Compute the spectral representations M1
c (k) and P 1

c (k) according to (5.6) and

(5.7), respectively.

We followed the Kaldi’s recipe2 to prepare the acoustic features (the second step) to

make sure that the data preparation is the same as that of the embedding training

data. The training procedure of the embedding network is detailed in Section 5.4.1.

Figure 5.3 shows the statistics of M1
c (k) and P 1

c (k) over 24,220 utterances. We

observe that both the M1
c (k) and P 1

c (k) of a particular channel that was randomly

selected have most of their energy concentrated in the low-frequency region. This

2https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2.
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Figure 5.3: Statistics of Mh
c (k) in (5.6) and P h

c (k) in (5.7) of a randomly selected
channel c with respect to the frequency components k’s under H = 1. Black diamonds
and blue squares denote the means of M1

c (k) and P 1
c (k) over 24,220 utterances in

the VoxCeleb1 development set, respectively. The error bars represent one standard
deviation. The STFT length L for computing Xc(n, k) in (5.1) was set to 8. Only
the left half of M1

c (k) and P 1
c (k) (0 ≤ k ≤ 4) are plotted due to the symmetry of

spectrograms along the frequency axis.

validates the feasibility of using attentive STSP for utterance-level aggregation. At-

tributed to the desirable statistics of Mh
c (k) and P h

c (k) in the spectral domain, atten-

tive STSP uses the lowest spectral components for aggregation.

The property that most of the energy of the convolutional features concentrates in

the low-frequency part in the spectral domain also reflects that the frame-level network

is a low-pass filtering system. In [123], Rahaman et al. interpreted the generalization

of DNNs [124, 125] from a Fourier perspective and revealed a learning bias of DNNs

towards low-frequency functions (spectral bias). Although there is no exact clue that

the low-pass characteristic of the speaker embedding network is completely attributed

to the spectral bias of CNNs, we believe that this bias at least contributes partially

to the low-pass property of the frame-level networks. On the other hand, in both

temporal pooling [27] and statistics pooling [3], global averaging is used to extract
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the mean vector of the whole temporal features. In fact, global averaging can be seen

as mean filtering with a global kernel [126], which is a low-pass filtering operation.

Therefore, the pooling methods in [27] and [3] have already implicitly exploited the

low-pass characteristic of the CNNs, although they only use the DC components of the

spectral representations. Similar to the vanilla STSP, the proposed attentive STSP

explicitly explores the low-pass filtering effect and improves these pooling strategies

by accounting for more spectral components besides the DC ones. Thus, attentive

STSP preserves more speaker information than the conventional statistics pooling

during aggregation.

Note that for the k-th spectral component (k > 1), because Mh
c (k) and P h

c (k)

are both related to the k-th frequency, the information in Mh
c (k) and P h

c (k) will be

correlated. From Fig. 5.3, we observe that P 1
c (k) decays faster than M1

c (k) and are

more energy-concentrated towards the zero frequency. We hypothesize that using

P h
c (k) can be more effective than using Mh

c (k) alone (see Section 5.5.5 for details).

Taking this observation into account and to avoid using repeated information, we only

use
√
P h
c (k) (k > 1) in (5.4) for aggregation.

5.3.4 Relation to Previous Works

Attentive STSP is a generalized STSP in that if we apply equal attention weights

produced from a single-head attention network on the windowed segments in (5.2)

and (5.3), i.e., α1
n = 1/N for n ∈ [1, N ], attentive STSP reduces to the vanilla STSP

in [45].

Similar to STSP, attentive STSP also generalizes statistics pooling. Under the

condition where single-head attention is implemented and equal attention weights are

applied, if we set k = 0 and use a rectangular window without any overlap between

successive segments (i.e., S = L) in (5.2), the DC component M1
c (0) = 1

N

∑NL−1
t=0 xc(t)
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approximates the mean of xc multiplied by a scaling factor L.3 On the other hand,

setting k = 0 in (5.3) resembles computing the power of xc. In the extreme case

where S = L = 1, we have P 1
c (0) = 1

T

∑T−1
t=0 (xc(t))

2. This means that under these

conditions, using the means and standard deviations in statistics pooling is an analogy

to using the DC components (k = 0 in (5.2) and (5.3)) in attentive STSP. Therefore,

attentive STSP can be seen as a generalized statistics pooling method.

Attentive STSP has a close relationship with multi-head attentive pooling [41]

because they both apply an attention mechanism during aggregation. However, there

are two major differences between these two methods. Firstly, as shown in (5.9),

attentive STSP performs attention on a series of windowed segments in G, whereas

multi-head attentive pooling implements an attention network on a sequence of frames

as in (2.4). Because the spectral components in each segment is (locally) stationary,

segment-level attention can provide attenive STSP with better robustness against the

non-stationarity in the feature maps than frame-level attention. Secondly, attentive

STSP further preserves the speaker information by retaining the informative spec-

tral components only. Note that not all the components in the spectral domain are

beneficial for aggregation. Specifically, incorporating high-frequency components can

cause detrimental effect to the speaker embeddings because these components are

very noisy. In contrast, because multi-head attentive pooling takes all the temporal

frames into account, it always includes all the spectral information during aggregation

(due to the equivalence of information between the temporal domain and the spectral

domain). Therefore, attentive STSP is advantageous to multi-head attentive pooling

in information distillation.

Note that the windowed segment attention in attentive STSP is different from

the sliding-window attention in [127] and [128], although both attention mechanisms

3In fact, the DC component should be M1
c (0) = 1

N |
∑NL−1

t=0 xc(t)| under S = L according to
(5.2). However, in this paper, because each convolutional layer is followed by an ReLU layer in
the speaker embedding network (see Table 2.1), all the elements of the input feature xc will be

non-negative. Thus, we have M1
c (0) = 1

N |
∑NL−1

t=0 xc(t)| = 1
N

∑NL−1
t=0 xc(t) > 0.
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involve the term “window.” In particular, the segment-level attention in this paper is

operated on the windowed segments to account for the local stationarity of the tem-

poral feature maps. The attention mechanism aims to learn the global relationships

across all of the windowed segments in an utterance. In contrast, the sliding-window

attention takes a series of tokens (equivalent to frames in speaker verification) as input

and only models the local relationships of the tokens within each sliding window. The

objective is to reduce computation relative to the full attention [121]. Therefore, these

two methods differ completely in their inputs, operating mechanisms, and objectives.

Interestingly, attentive STSP is also related to the modulation spectrum of speech

[129, 130] because the spectral representations in attentive STSP and modulation

spectrum are both produced from spectrograms. However, due to the differences

in the input, the way to produce the spectrograms, and the strategy to compute

the spectral representations, attentive STSP differs substantially from modulation

spectrum. First, attentive STSP is operated on the output feature maps at the last

convolutional layer of a speaker embedding network, whereas modulation spectrum

takes speech signals as input. Second, attentive STSP applies STFT to perform

time-frequency transformation, whereas filter-bank analysis is typically adopted for

computing the spectrograms in modulation spectrum. Third, to compute modulation

spectra, handcrafted bandpass filtering is often applied to the spectrograms, e.g., a

linear filter is applied to the log-transformed spectrograms in RASTA processing [131].

In contrast, we compute Mh
c (k)’s and P h

c (k)’s through a weighted average of the

spectrogram and its square.

5.4 Experimental Setup

Five pooling methods are compared in this chapter, i.e., statistics pooling [3], multi-

head attentive pooling [41], channel- and context-dependent statistics pooling (CCDSP)

[25], STSP [45], and the proposed attentive STSP. We evaluated the performance of
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these pooling methods on the VoxCeleb1 test set (clean) [13], the VOiCES 2019 eval-

uation set [132], the SRE16 evaluation set [110], and the SRE18-CMN2 evaluation

set [111].

5.4.1 Training of Speaker Embedding Extractor

For the evaluation on VoxCeleb1, only the VoxCeleb2 development subset (approxi-

mate 2 million utterances from 5,984 speakers) was used for training. Whereas both

VoxCeleb1 development and VoxCeleb2 development data were used as the training

set for VOiCES 2019, which amounts to about 2.1 million utterances from 7,185 speak-

ers. We followed the Kaldi’s VoxCeleb recipe to prepare the training data, i.e., using

40-dimensional filter bank features, performing energy-based voice activity detection,

implementing augmentation (by adding reverberation, noise, music and babble to the

original speech files), applying cepstral mean normalization with a window of 3 sec-

onds, and filtering out utterances with a duration less than 4 seconds.4 Totally, we

had approximately twice the number of clean utterances for training the embedding

network.

For both SRE16 and SRE18-CMN2 evaluations, we followed the Kaldi’s SRE16

recipe to prepare the training data.5 Instead of using the 40-dimensional filter bank

features, 23-dimensional MFCCs were used for training. The training set consists of

SRE04–10, Mixer 6, Switchboard Cellular, and Switchboard 2 (all phases). Totally,

we had 238,618 utterances from 5,402 speakers in the training set.

We used the architecture in Table 2.1 to implement the statistics pooling baseline.

For systems that use multi-head attentive pooling, we used an attention network with

500 tanh hidden nodes and H linear output nodes, where H is the number of attention

heads (see (2.7)). We used D′ = 256 in CCDSP (see 2.8) and the non-linearity is tanh.

For STSP, we used a rectangular window function with length L = 8 and S = L. The

4https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2.

5https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2.
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attention network in attentive STSP follows the structure of multi-head attentive

pooling and uses various window functions with length L ranging from 4 to 16. The

step size S of each windowed segment varies from L/4 to L.

The additive margin softmax loss [74] was used for training. The additive margin

m and the scaling factor s in (2.12) were set to 0.25 and 30, respectively. The mini-

batch size was set to 128 for all evaluation tasks. There are around 2,337 mini-batches

in one epoch for VoxCeleb1 and VOiCES 2019, and 4,220 mini-batches for SRE16 and

SRE18-CMN2. Each mini-batch was created by randomly selecting speech chunks of

2–4s from the training data. We used a stochastic gradient descent (SGD) optimizer

with a momentum of 0.9. The initial learning rate was 0.02 and it was linearly

increased to 0.05 at Epoch 20. After that, it was decayed by half at Epochs 50, 80

and 95, respectively. Totally, the networks were trained for 100 epochs. Once training

was completed, the speaker embedding was extracted from the affine output at Layer

7 in Table 2.1.

5.4.2 PLDA Training

We used a Gaussian PLDA backend [11] for all evaluations. For VoxCeleb1, the

PLDA model was trained on the speaker embeddings extracted from the clean utter-

ances in the training set for the embedding network. For VOiCES 2019, we trained

the backend on the concatenated speech with the same video session and used ut-

terances augmented with reverberation and noise. The PLDA training data for both

SRE16 and SRE18-CMN2 were the embedding network’s training set excluding the

Switchboard part. Before PLDA training, the speaker embeddings were projected

onto a 200-dimensional space by LDA for VoxCeleb1 and 150-dimensional space for

VOiCES 2019, SRE16, and SRE18-CMN2, followed by whitening and length normal-

ization. The LDA projection matrix was trained on the same dataset as for training

the PLDA models. For VOiCES 2019, SRE16 and SRE18-CMN2, we also applied

adaptive score normalization [133]. The cohort for VOiCES 2019 was selected from
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the longest two utterances of each speaker in the PLDA training data; whereas for

SRE16 and SRE18-CMN2, the cohort was the respective unlabeled development set.

5.5 Results and Discussions

5.5.1 Performance on Various Evaluations

The performance was evaluated in terms of EER and minDCF with Ptarget = 0.01. Ta-

ble 5.1 shows the performance of different systems on VoxCeleb1 (clean), VOiCES19-

eval, SRE16-eval, and SRE18-CMN2-eval. We can observe that all the pooling meth-

ods outperform the statistics pooling baseline. For attentive pooling, STSP and

attentive STSP, we have the following analyses.

Multi-head attentive pooling

For all evaluation tasks, attentive pooling (Rows 2–5) achieves the best performance

when the number of heads H was set to 2. When H further increases to 4, attentive

pooling exhibits performance degradation, especially on SRE16 and SRE18-CMN2.

Among many possibilities, the performance degradation can be caused by an increased

number of non-stationary attention weight vectors produced by the attention network.

Take VoxCeleb1 for example, as shown in the first row of Fig. 5.4(a), the feature

sequence ({hc,t}T−1t=0 in (2.5)) presents a high non-stationarity along the temporal axis.

To fit the drastic variations of the sequence, the attention network is trained to pro-

duce attention weights of large variations, as evident by the second row of Fig. 5.4(a).

However, due to the substantial variations within the weight vectors, it is difficult

for the attention network to generalize well on unseen utterances. Therefore, the

non-stationarity of the attention weights could remarkably affect the performance of

attentive pooling. On the other hand, a larger H does not necessarily indicate a larger

degree of diversity in the attended feature sequences. For example, as shown in the

third row of Fig. 5.4(a), the attended frames by Head 1 largely overlap those by Head
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0. On the contrary, increasing the number of attention heads may introduce a larger

degree of non-stationarity in the attention weights, causing poorer generalization to

unseen data.

For SRE16-eval and SRE18-CMN2-eval, because the utterances in the evaluation

sets are much longer than those in VoxCeleb1,6 the degree of non-stationarity in

the attention weights will be larger than that of the VoxCeleb1 test set. Thus, the

performance drop on SRE is severer than that on VoxCeleb1 and VOiCES 2019.

Channel- and Context-Dependent Statistics Pooling

We evaluated the performance of CCDSP with and without the global context vector

(µ and σ, see Section 2.4.2). As observed in Rows 6–7, including the global statistics

does not make a remarkable difference in performance. Although CCDSP achieves

comparable performance with attentive pooling and outperforms statistics pooling, it

cannot compete with STSP and attentive STSP on VOiCES 2019 and SREs.

STSP

From Rows 8–10 of Table 5.1, we see that STSP achieves a consistent improvement

in performance when the retained number of low-frequency components R in P h
c (k)’s

is increased from 1 to 3. However, further including the 4-th component will slightly

degrade the performance, as can be seen in Row 11. This may be because there

are more noises in the higher-frequency components. As demonstrated in [45], the

magnitude of the spectral components Pc(k)’s in STSP approaches 0 when k becomes

large. This suggests that we can hardly learn useful information from these vanishing

components. Instead, the high frequency components can bring unwanted noise to

the network during learning.

6The enrollment utterances of SRE16-eval and SRE18-CMN2-eval are approximate 60 seconds
and the test utterances are 10–60s [110, 111], whereas the average duration of VoxCeleb1 is 8.2
seconds [13].
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Figure 5.4: Illustration of the mechanism in (a) multi-head attentive pooling and (b)
attentive STSP under H=2. We used a rectangular window function for attentive
STSP under L = S = 8. Both the embedding networks were trained on the Vox-
celeb2 development data (see Section 5.4.1). For multi-head attentive pooling, the
feature sequence ({hc,t}T−1t=0 in (2.5)) in the first row corresponds to an utterance ran-
domly selected from the VoxCeleb1 development set. For attentive STSP, the feature
sequence is a random row vector in G of (5.8). Note that the unit in the horizontal
axis is the frame index t in (2.5) and (5.1).

Comparing Rows 8–11 and Rows 2–5, we observe that STSP achieves similar per-

formance as that of attentive pooling on VoxCeleb1 and VOiCES19-eval, but STSP

remarkably outperforms attentive pooling on both the SRE evaluations. In fact, al-

though both attentive pooling and STSP aim at preserving speaker information dur-

ing aggregation, they fulfill the task from different perspectives. Specifically, attentive

pooling emphasizes on discriminative temporal frames to enhance the information in

the aggregated embeddings, whereas STSP emphasizes discriminative spectral com-

ponents. Due to the duality of Fourier transform, the information in the temporal

domain is equal to that in the spectral domain. This suggests that there should be

little difference between attentive pooling and STSP, as can be verified by the compar-

ison on VoxCeleb1. However, for long utterances, because of the high non-stationarity

in the convolutional features (as analyzed in Section 5.5.1(multi-head attentive pool-
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ing)), it can be difficult to extract discriminative information in the temporal domain.

In contrast, the spectral components in STSP are smoother, making STSP more ro-

bust against the non-stationary feature maps, especially for long utterances as in the

SRE evaluations. Therefore, STSP can achieve larger performance gain over attentive

pooling on both SRE tasks.

Attentive STSP

As shown in Rows 12–17 of Table 5.1, the best performance of attentive STSP is

achieved under R = 2 and H = 1. Compared with attentive pooling (Rows 2–5),

a major advantage of attentive STSP is that because the attention mechanism is

operated on the windowed segments instead of the frames, the produced attention

weight vectors are much smoother than those by attentive pooling. This can be seen

by comparing the second rows of Fig. 5.4(a) and Fig. 5.4(b). In fact, it is natural

to obtain smoother attention weights by segment-level attention because the coarse-

grained attention mechanism has taken the local stationarity in the feature sequences

into account. After all, exploiting the local stationarity in the frame-level features is

a fundamental difference between the STSP-based pooling and the spectral pooling in

[44]. On the other hand, as explained in Section 5.5.1 (STSP), performing aggregation

on long utterances in the spectral domain is superior to that in the temporal domain.

Because of the segment-level attention and the spectral aggregation, attentive STSP

obtains substantially better performance than attentive pooling, especially on the

SRE16 and SRE18-CMN2.

Compared with STSP, the extra attention mechanism in attentive STSP can em-

phasize discriminative segments for information aggregation, leading to more discrim-

inative speaker embeddings. This is why attentive STSP outperforms STSP on all the

evaluation tasks, which verifies the motivation of this paper. An interesting observa-

tion is that different from STSP which achieves the best performance under R = 3,

attentive STSP performs the best when R = 2. This indicates that the spectral en-
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Table 5.2: Performance on the subsets of SRE16. Stats, MHAP, and Att STSP refer
to statistics pooling, multi-head attentive pooling, and attentive STSP, respectively.

Female Male Cantonese Tagalog
Pooling method EER minDCF EER minDCF EER minDCF EER minDCF

Stats 8.60 0.513 7.63 0.445 3.53 0.315 12.48 0.693
MHAP (H=2) 8.14 0.484 7.06 0.437 3.07 0.276 11.68 0.668
STSP (R=3) 6.82 0.472 6.20 0.438 2.82 0.270 9.58 0.647

Att STSP (R=2) 6.49 0.471 5.99 0.430 2.53 0.263 9.52 0.627

ergy of attentive STSP are more concentrated at the low-frequency region than the

STSP, which further facilitates the aggregation process.

We also investigated the effect of the number of heads H on the performance of

attentive pooling. Comparing Row 13 and Rows 16–17 in Table 5.1, we see that

increasing H does not offer any performance improvement on all evaluations. As

illustrated in the third row of Fig. 5.4(b), the sequences after a two-head attention

operation are almost the same. This suggests that more attention heads do not

necessarily create richer diversity of the attended features. Instead, a larger H can

introduce noises to the pooling operation because of the non-stationarity in the atten-

tion weights, as in attentive pooling in Section 5.5.1 (Multi-head attentive pooling).

If not stated otherwise, in the rest of the paper, we only used a single-head attention

network for attentive STSP, i.e., H = 1.

Furthermore, the performance improvement of STSP and attentive STSP on the

subsets of the SRE16 evaluation data is also consistent. Specifically, we split the

SRE16 evaluation data according to the gender and language information, and the

results are shown in Table 5.2. We observe that both STSP and attentive STSP

outperform statistics pooling and multi-head attentive pooling, and attentive STSP

achieves the best performance consistently on all subsets.
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Figure 5.5: (a) EER and (b) minDCF of attentive STSP on VoxCeleb1, VOiCES19-
eval, SRE16-eval, and SRE18-CMN2-eval with respective to various window functions
under L = S = 8, R = 2, and H = 1.

5.5.2 Impact of Window Functions

In (5.1), a window function is applied to each temporal segment before performing

DFT. To investigate the effect of the window function on performance, we imple-

mented attentive STSP with the rectangular window, the Hanning window, and the

Hamming window [134]. The performance is compared under L = S = 8 and R = 2.

As shown in Fig. 5.5(a) and Fig. 5.5(b), there is no significant difference in the

performance of the three windows. We have also tried other configurations by varying

R and L, but the results are almost the same. These suggest that attentive STSP is

not sensitive to the window function.

5.5.3 Impact of STFT Length

In Section 5.3.2, we used STFT to exploit the local stationarity of temporal fea-

tures for aggregation. Although each frame at the output of the last convolutional

layer (Layer 5 in Table 2.1) contains the information of 15 speech frames, we cannot

guarantee that the CNN’s outputs are locally stationary. Because it is difficult to

quantify the degree of local stationarity in the convolutional feature maps, we varied

the STFT length L to investigate its influence on the performance of STSP. In the
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Figure 5.6: Performance of attentive STSP on (a) and (e) VoxCeleb1, (b) and (f)
VOiCES19-eval, (c) and (g) SRE16-eval, and (d) and (h) SRE18-CMN2-eval with
various STFT lengths under the setting H = 1 and L = S, where L and S are the
STFT length and the step size of the sliding window, respectively. The black dashed
line indicates the best result in the individual subfigure.

following experiments, the step size S of the window function is equal to L.

As shown in Figs. 5.6(a)–5.6(h), attentive STSP consistently achieves the best

performance when L = 8 on all evaluation tasks. When L further increases to 16, the

performance degrades in most cases, especially on SRE16-eval and SRE18-CMN2-eval.

We hypothesize that the performance degradation is caused by the violation of the

local stationarity required by STFT. When the STFT length approaches 16, the local

stationarity of STFT may not hold and thus it would be difficult to obtain effective

local information. Another disadvantage of using L = 16 is that because there are

more spectral components in the frequency domain than those under L = 8, we need a

larger R to include sufficient speaker information in the aggregated embeddings. This

is not favorable for aggregation. Therefore we did not account for the case where L

is larger than 16.

Interestingly, the best results under L = 4 are comparable with those under L = 8
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Figure 5.7: (a) EER and (b) minDCF of attentive STSP on VoxCeleb1, VOiCES19-
eval, SRE16-eval, and SRE18-CMN2-eval with respective to the step sizes of the
sliding window under L = 8, R = 2, and H = 1.

for VoxCeleb1, VOiCES19-eval, and SRE18-CMN2-eval. However, on SRE16-eval,

the setting of L = 8 remarkably outperforms the case of L = 4. Although the local

stationarity is largely satisfied under L = 4, there are insufficient components to hold

speaker information in the spectral domain. Note that when L = 4, we can only have

3 spectral components in P h
c (k) because of the symmetry in STFT spectrograms.

From the above analysis, the configuration of L = 8 makes a compromise between

the local stationarity and the spectral resolution. This is the reason we used L = 8

in Section 5.5.1 and Section 5.5.2.

5.5.4 Impact of Step Size

The step size S of windowed segments determines the degree of overlapping between

successive segments and the number of segments in a temporal feature sequence.

Because these factors can affect the results of STFT, which in turn affects the perfor-

mance of STSP. To investigate the impact of step size on performance, we fixed the

STFT length to 8 and varied S under R = 2.

As shown in Figure 5.7(a) and Figure 5.7(b), the step size does not have a sub-

stantial impact on the performance of attentive STSP across all the evaluations. This
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means that attentive STSP is not sensitive to the step size of the sliding window.

However, given fixed L, because a larger S results in a smaller number of windowed

segments for a fixed-length feature sequence, the subsequent computational load of

the spectral representations will be reduced. Therefore, it is favorable to use S = L

in attentive STSP to reduce the computational cost. This is the reason why we used

S = L in the former sections.

5.5.5 Effect of Mh
c (k) and P h

c (k)

Mh
c (k) in (5.2) and P h

c (k) in (5.3) denote the weighted average of the magnitude

and energy of the spectrogram along the temporal axis, respectively. A noteworthy

observation is that, as shown in Fig. 5.3, P h
c (k)’s contain more energy in the low

frequency components than Mh
c (k)’s do.7 This phenomenon can also be observed

from the rightmost two plots in the middle row of Fig. 5.2(a), where the number of

salient components of P h
c (k) is smaller than that of Mh

c (k) for all channels. Based

on the observation from both figures, we may ask a question: Is P h
c (k) more effective

than Mh
c (k) for attentive STSP due to its more energy-concentrated property?

To answer the above question, we modified the procedure of attentive STSP in

Section 5.3.2 slightly by either excluding Mh
c (0) or only including Mh

c (0) in (5.4) and

(5.5). The results of the modification are shown in Rows 5–9 of Table 5.3. Com-

paring Rows 1–4 and Rows 6–9, we observe that the attentive STSP without Mh
c (0)

obtains comparable results with the standard attentive STSP consistently across all

the evaluations under various R’s. This observation suggests that once P h
c (k)’s are

used in the aggregation process, Mh
c (0) does not offer any effective performance gain.

This argument can be further demonstrated by the comparison between Row 5 and

Row 6. For example, when Mh
c (0)’s are used alone as the aggregated statistics, the

performance of attentive STSP degrades substantially, as can be seen in Row 5. In

7The magnitude of Ph
c (k)’s presents a faster attenuation to zero than Mh

c (k)’s.
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contrast, using P h
c (0)’s alone (Row 6) remarkably outperforms that using Mh

c (0)’s

alone (Row 5) across all the evaluations. Therefore, using P h
c (0) alone is much more

effective than using Mh
c (0) only for aggregation.

However, as verified in Section 5.3.4, attentive STSP is a generalized statistics

pooling method in that using the DC components of the spectral representations is an

analogy to using the means and standard deviations in statistics pooling. Therefore,

to make attentive STSP complete and compatible with the historical statistics pooling

method, we still keep Mh
c (0) in attentive STSP.

5.5.6 Effect of Test Utterance Duration

From Table 5.1, we observe that compared with the baseline, the performance im-

provement of attentive STSP on SREs is much larger than that on VoxCeleb1 and

VOiCES 2019. This observation suggests that attentive STSP can be more effective

on long utterances (SREs) than on short ones (Voxeleb1 and VOiCES 2019). To

investigate whether the superior performance gain of attentive STSP is related to the

utterance duration or the dataset, we compared the performance of various pooling

methods by truncating the test utterances.

In the experiments, we kept the duration of the enrollment utterances unchanged

on all datasets. For VoxCeleb1 and VOiCES 2019, we randomly truncated the test

utterances into 2s and 5s; whereas the test utterances are truncated to 5s and 20s for

SRE16 and SRE18-CMN2. Note that if the duration of the original utterances is less

than the target duration, we used the full-length utterances. The results are shown

in Table 5.4. For each setting, the performance is an average of 5 runs.
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From Table 5.4, we observe that the performance of all pooling methods degrades

severely when the test utterances were truncated. Generally, attentive STSP out-

performs the other pooling strategies consistently across different test durations.

The performance improvement of attentive pooling, CCDSP, STSP, and attentive

STSP with respective to statistics pooling is shown in Fig. 5.8. We observe that

the performance gain of attentive STSP becomes larger when the test utterances are

longer. Besides, the performance improvement of attentive STSP consistently ex-

ceeds that of the other pooling methods. For example, in SRE16, when the duration

of test utterances increases from short (5s) to medium (20s), the EER improvement

(EERStats − EERAtt−STSP) increases from 0.58% to 1.27%. This observation suggests

that attentive STSP favors long utterances and that attentive STSP is more resilient

to the duration variations in the test utterances.
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Figure 5.8: Improvement in (a) EER and (b) minDCF with respective to statis-
tics pooling. MHAP : multi-head attentive pooling; CCDSP : channel- and context-
dependent statistics pooling; STSP : short-time spectral pooling (proposed); Att-
STSP : attentive short-time spectral pooling (proposed).
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Chapter 6

MUTUAL INFORMATION ENHANCED TRAINING FOR

SPEAKER EMBEDDING

6.1 Introduction

Studies have indicated that features at the lower layers of a DNN are generally more

class-agnostic, while those at the upper layers are more class-specific [135, 136]. Ac-

cordingly, the prediction uncertainty decreases when signals flow from the lower layers

to the upper layers, suggesting that training is a process of information loss. There-

fore, some speaker information will inevitably diminish in the upper layers when

training a speaker embedding network. As such, an intuitive way to enhance speaker

information in the embeddings is to explicitly maximize the mutual information (MI)

between the frame-level features and the segment-level embeddings, so that the em-

beddings can learn extra speaker information from the more general low-level features.

In fact, exploiting MI to learn meaningful speaker embeddings is not new. In [31],

InfoVDANN was introduced to maximize the MI between the transformed embeddings

and the input embeddings so that the transformed embeddings are more speaker

discriminative. However, this method is operated at the segment level, which forbids

it from leveraging useful information in the frame-level layers. Attributed to the deep

InfoMax (DIM) [60] framework for representation learning, estimating the MI between

the frame-level features and the segment-level embeddings has become feasible via MI

neural estimators (MINEs) [137].

In this chapter, we aim to produce informative speaker embeddings through the

DIM framework. However, a straightforward implementation of DIM may pose a
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dimensionality imbalance problem. Because the dimensionality of the (flattened)

frame-level features is generally much larger than that of the speaker embeddings, the

learned MI estimators may be biased towards the frame-level features. In this case, MI

cannot be accurately approximated, and directly applying MI maximization can fail to

learn useful information. Therefore, it would be amenable to perform dimensionality

reduction before MI estimation and maximization. Inspired by the squeeze operation

in the SE networks [136], the author proposes to performing global pooling on the

frame-level features for each channel before maximizing the MI between the frame-

level features and the speaker embeddings. The global pooling essentially reduces the

dimensionality of the frame-level features, which avoids imbalanced dimensionality

in the MI estimation. The author calls the resulting method squeeze-DIM, which

uses the MI estimation between the squeezed frame-level features and the speaker

embeddings as a proxy to that between the original pairs. Different from DIM which

aims for unsupervised learning, the author uses squeeze-DIM as a regularizer with

the main task being speaker classification.

6.2 Deep InfoMax

MI is a useful tool in representation learning. The performance of representations

through unsupervised learning can even be comparable with that through supervised

learning on specific tasks [60]. The MI between two random variables X and Y is

defined as the KL divergence between their joint distribution and the product of their

marginals:

I(X;Y ) = DKL(P (X, Y )‖P (X)P (Y )). (6.1)

However, MI is difficult to estimate, especially when X and Y locate in a continuous,

high-dimensional space. To scale with the dimension, various variational bounds are

introduced in combination with neural networks when estimating MI. For the scenario

where the objective is to learn encoded representations Y = Eφ(X) from the input
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X, we maximize the MI between the input and output of the encoder [60,138]:

(φ̂, θ̂) = argmax
φ,θ

Iθ (X;Eφ(X)) , (6.2)

where φ and θ parameterize the encoder Eφ and the MI estimator Iθ, respectively.

There are several popular variational lower bounds on MI [137,139,140]. The basic

idea behind these bounds is that if we can train a discriminator (MI estimator) that

is able to accurately differentiate the samples drawn from the joint distribution and

those from the product of the marginals, we obtain a good estimate of the true MI.

One well-known variational estimator is called InfoNCE [139,141]:

I(X;Y ) ≥ E

[
1

B

B∑
i=1

log
ef(xi,yi)

1
B

∑B
j=1 e

f(xj ,yi)

]
, IInfoNCE(X;Y ), (6.3)

where the expectation is over B independent samples {(xi,yi)}Bi=1 drawn from the

joint distribution P (x,y) and B is the mini-batch size. f(·, ·) denotes the critic, which

takes a pair of samples and outputs a scaler score. Common critics can be a bilinear

function f(x,y) = x>Wy where W is a weight matrix to be learned, a separable

function f(x,y) = gθ1(x)>gθ2(y) where gθ1(·) and gθ2(·) are functions characterized

by networks with parameters θ1 and θ2, respectively, and a concatenated function

f(x,y) = hθ([x,y]) where hθ(·) denotes a network parameterized by θ [139].

Because IInfoNCE(X;Y ) is a multi-sample lower bound, it has low variance. How-

ever, IInfoNCE(X;Y ) is biased and is upper bounded by logB, which means that this

bound will be loose when the true MI I(X;Y ) > logB.

Another MI estimator is based on the variational f -divergence estimation special-
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Figure 6.1: Schematic of MI-enhanced training. The whole network comprises two
sub-networks: an upper speaker classifier Cω and a lower MI estimator Iest. The
MI estimator is instantiated by a separable critic as in (6.6) and (6.10) for DIM
regularization and squeeze-DIM regularization, respectively. For DIM regularization,
a flatten layer is used as the first layer of gθ1 , while a global pooling layer is applied
for squeeze-DIM regularization. FC denotes the fully-connected layer.

ized to KL divergence (f -GAN KL) [142]:

I(X;Y ) ≥ Ep(x,y)[f(x,y)]− Ep(x)p(y)
[
ef(x,y)−1

]
, INWJ(X;Y ). (6.4)

INWJ(X;Y ) is unbiased but presents high variance [139].

There are also other MI estimation such as the non-linearly interpolated lower

bound [139] and the smoothed mutual information lower-bound [140]. These estima-

tors have a better bias-variance trade-off than IInfoNCE(X;Y ) and INWJ(X;Y ).

6.3 DIM Regularized Speaker Embedding

We adopt the DIM framework as a regularization on the embeddings so that more

low-level information can be incorporated in the embeddings during training. As

shown in Figure 6.1, there are two branches in the MI-enhanced training. The upper
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branch represents a standard speaker classification task, while the lower is a DIM

regularizer.

Let x, xconv, xemb be the input acoustic feature vectors, the immediate convo-

lutional feature maps, and the speaker embeddings, respectively. Without loss of

generality, we use a separable function as the critic in the MI estimator, although

other critics can also be applied. To preserve extra information in xemb, we maximize

the MI between xconv and xemb as in (6.2):

(φ̂, θ̂1, θ̂2) = argmax
φ,θ1,θ2

Iθ1,θ2(Xconv;Xemb), (6.5)

where φ parameterizes the encoding network (within the red dashed box in Figure 6.1)

between xconv and xemb, i.e., xemb = Eφ(xconv). θ1 and θ2 constitute the MI estimator

with a separable critic as follows:

f(xconv,xemb) = gθ1(Flatten(xconv))>gθ2(xemb). (6.6)

The MI estimator Iθ1,θ2 can be IInfoNCE and INWJ in (6.3) and (6.4), respectively.

Denote the classification loss in the upper branch of Figure 6.1 as

Lcls(ω) = − 1

N

N∑
i=1

K∑
k=1

yik logCω(xik), (6.7)

where yik is an element of the one-hot speaker labels, and Cω(·) represents the whole

speaker classifier parameterized by ω. N andK denote the number of training samples

and the number of speakers, respectively. Note that the parameter of the encoder φ

is a subset of ω. If we define the total loss of the network as

L(ω, θ1, θ2) = Lcls(ω)− αIθ1,θ2(Xconv;Xemb), (6.8)

where α is a hyperparameter weighting the contribution of MI regularization, then
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MI-enhanced training can be expressed as follows:

(ω̂, θ̂1, θ̂2) = argmin
ω,θ1,θ2

L(ω, θ1, θ2). (6.9)

6.4 Squeeze-DIM Regularized Speaker Embedding

One problem of the DIM regularized speaker embedding is that Iθ1,θ2(Xconv;Xemb)

can be unreliable when the dimensionality of the flattened xconv is much larger than

that of xemb, because the critic f(xconv,xemb) = gθ1(Flatten(xconv))>gθ2(xemb) would

be biased towards learning the information in xconv only, other than the mutual in-

formation between Xconv and Xemb.

To address the problem of dimensionality imbalance, we propose to squeeze xconv

using some global pooling methods for each channel before MI estimation. In this

case, the critic becomes

f(xconv,xemb) = gθ1(GlobalPool(xconv))>gθ2(xemb). (6.10)

Common global pooling operations can be global average pooling, statistics pooling

[3], attentive pooling [40,41], etc. The optimization is the same as (6.9).

Note that xconv does not necessarily have to be at the output of the first convolu-

tional layer as shown in Figure 6.1. Instead, it can be the output of any frame-level

layers, and it can even be the input acoustic features.

In conclusion, the only difference between the proposed embedding and the DIM

regularized embedding in Section 6.3 is that the former applies a channel-wise global

pooling operation on the convolutional feature maps instead of flattening them. The

squeeze operation facilitates the MI estimation although it introduces some informa-

tion loss, which may explain the empirical performance improvement in Section 6.6.
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6.5 Experimental Setup

We evaluated the performance of squeeze-DIM on the VoxCeleb1 test set (clean) [13]

and the VOiCES 2019 development and evaluation sets [132].

6.5.1 Training of Speaker Embedding Extractor

Both VoxCeleb1 development and VoxCeleb2 development data were used for training,

which amounts to around 2.1 million utterances from 7,185 speakers. We followed the

Kaldi’s VoxCeleb recipe to prepare the training data, i.e., using 40-dimensional filter

bank features, performing energy-based voice activity detection, implementing aug-

mentation (by adding reverberation, noise, music, and babble to the original speech

files), applying cepstral mean normalization with a window of 3 seconds, and filtering

out utterances with a duration less than 4 seconds.1 Totally, we had approximately

twice the number of clean utterances for training the embedding network.

The embedding extractor in the upper branch of Figure 6.1 is used as the baseline.

The number of output filters of the convolutional layers (or blocks) is 512 except that

it is 1,536 for the last convolutional layer. The kernel sizes of the convolutions are 5, 3,

3, 3, and 1, respectively, and the dilation rates are 1, 2, 3, 4, and 1, respectively. The

scale and the number of convolutional filters of all three Res2Blocks [34] are 8 and 64,

respectively. We used an embedding size of 192. For the MI-enhanced training, we

followed the structure in Figure 6.1 and set the number of nodes in all fully-connected

layers in the MI estimator (the lower part of Figure 6.1) to 32. IInfoNCE in (6.3) was

used as the MI estimator in our experimental setups because we found that it is

more stable to optimize than INWJ (see (6.4)) and other MI estimators [139, 140].

The hyperparameter α for weighting the MI estimation was set to 0.1. We used a

global average pooling layer for the squeeze operation in the squeeze-DIM regularized

speaker embedding. To further verify the effectiveness of MI regularization, we also

1https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2.
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included an embedding that uses the SE block [136] with a reduction factor of 8 as a

comparison.

The additive margin softmax loss [74] was used for training. The additive margin

and the scaling factor were set to 0.25 and 30, respectively. The mini-batch size was

set to 128 and there are around 2,337 mini-batches in one epoch. Each mini-batch was

created by randomly selecting speech segments of 2 seconds from the training data.

We used an Adam [143] optimizer. The learning rate was initialized to 1.0 × 10−3

and it was decayed by half at Epoch 25. At Epoch 50, we increased the learning rate

to 1.0× 10−3 and decreased it by half again at Epoch 75. Totally, the networks were

trained for 100 epochs.

6.5.2 PLDA Training

We used Gaussian PLDA backends [11] for both evaluation tasks. For VoxCeleb1, the

PLDA model was trained on the x-vectors extracted from the clean utterances in the

training set for the embedding network. For VOiCES 2019, we trained the backend on

the concatenated speech with the same video session and used utterances augmented

with reverberation and noise. Before PLDA training, the x-vectors were projected

onto a 192-dimensional space by LDA for VoxCeleb1 and 150-dimensional space by

LDA for VOiCES 2019, followed by whitening and length normalization. The LDA

projection matrix was trained on the same dataset as for training the PLDA models.

For VOiCES 2019, we also applied adaptive score normalization [133]. The cohort

was selected from the longest two utterances of each speaker in the PLDA training

data .

6.6 Results and Discussions

The main result of MI-enhanced training is shown in the upper part (Rows 1–4) of

Table 6.1. We can see that DIM regularized embedding only achieves marginal im-
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Table 6.1: Performance on VoxCeleb1, VOiCES19-dev, and VOiCES19-eval. The
upper part (Rows 1–4) is the main result of MI-enhanced training, while the lower
part (Rows 5–10) shows the ablation study by varying the source of xconv in Figure 6.1.
The layer in the parenthesis denotes where xconv comes from, e.g., ‘1st conv’ means
that xconv is the output of the first convoulutional layer, etc. DIM and squeeze-DIM
represent DIM regularized and squeeze-DIM regularized speaker embedding.

VoxCeleb1 VOiCES19-dev VOiCES19-eval
Row Emb. sys. # Paras EER minDCF EER minDCF EER minDCF

1 Baseline 4.70 M 1.89 0.188 2.20 0.275 5.94 0.474
2 DIM 7.98 M 1.94 0.189 1.85 0.236 5.73 0.449
3 squeeze-DIM 4.73 M 1.60 0.161 1.79 0.229 5.12 0.399
4 Baseline + SE [136] 4.77 M 1.74 0.180 1.81 0.236 5.70 0.444

5 squeeze-DIM (input) 4.71 M 1.75 0.185 1.94 0.235 5.75 0.430
6 squeeze-DIM (1st conv) 4.73 M 1.60 0.161 1.79 0.226 5.12 0.399
7 squeeze-DIM (2nd conv) 4.73 M 1.67 0.178 1.76 0.229 5.45 0.412
8 squeeze-DIM (3rd conv) 4.73 M 1.82 0.190 1.97 0.232 5.56 0.420
9 squeeze-DIM (4th conv) 4.73 M 1.97 0.198 2.01 0.230 5.62 0.426
10 squeeze-DIM (5th conv) 4.76 M 1.88 0.192 2.15 0.234 5.71 0.436

provement over the baseline on VOiCES 2019, whereas the squeeze-DIM regularized

embedding remarkably outperforms the DIM regularized version on all tasks. Al-

though DIM regularization should theoretically incorporate more information in the

embeddings than the baseline, the practical implementation of the MI estimator can

be severely biased towards the information of the convolutional feature maps due to

their higher dimensionality than the embeddings. As a result, the MI estimation is

unreliable and this limits the regularization effect on the speaker embeddings. In

contrast, although the squeeze operation can introduce information loss, it facilitates

the MI estimation, which helps feed useful information from the low-level features

into the embedding. This verifies the motivation of the proposed squeeze-DIM reg-

ularization. By comparing Row 3 and Row 4, we observe that squeeze-DIM is more

effective than applying SE, which further verifies the effectiveness of squeeze-DIM.

The lower part (Rows 5–10) of Table 6.1 shows the performance by varying the

source of xconv in Figure 6.1. In general, we can achieve the best performance if xconv
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is the output from the first frame-level layer (Row 6). When xconv moves from the first

layer to upper layers, the performance degrades gradually. This may be because the

information becomes more speaker-specific and attenuates gradually while propagat-

ing to the upper layers. We also see that all the squeeze-DIM regularized embeddings

can achieve better performance than the baseline on VOiCES 2019. However, when

xconv comes from the fourth and fifth convolutional layers (Row 9 and Row 10), their

performance is slightly worse than the baseline on VoxCeleb1. This suggests that

MI maximization is more effective on noisy data and has robustness against adverse

conditions.

To investigate whether squeeze-DIM is more effective under adverse conditions,

we added simulated noise to the original VoxCeleb1-test data and evaluated the per-

formance on the simulated data. Specifically, we followed the augmentation strategy

in the Kaldi’s recipe and randomly added noise, babble, music, and reverberation to

each utterance of VoxCeleb1-test. The results are illustrated in Figure 6.2. We can

see that when xconv (see Figure 6.1) moves from the first convolutional layer to upper

layers, the performance of squeeze-DIM on the simulated data degrades gradually.

However, squeeze-DIM outperforms the baseline consistently. In contrast, squeeze-

DIM cannot compete with the baseline on the original data when xconv moves to the

forth and fifth layers. This observation further verifies the robustness of squeeze-DIM

under noisy conditions.

Another interesting observation is that maximizing the mutual information be-

tween the inputs and the embeddings is less effective than maximizing the mutual in-

formation between the immediate convolutional features and the embeddings, which

can be verified by comparing Row 5 and Rows 6–7. This means that although the in-

put filter-bank features contain more information than the middle layers, it is difficult

to extract speaker information directly from the input layer.
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(a)

(b)

Figure 6.2: Comparison of (a) EER and (b) minDCF of squeeze-DIM between the
original VoxCeleb1-test data and the simulated VoxCeleb1-test data. In the legend,
the layer in the parenthesis denotes where xconv comes from, e.g., ‘1st conv’ means
that xconv is the output of the first convoulutional layer, etc.



101

Chapter 7

CONCLUSIONS AND FUTURE WORK

In this thesis, the author introduces three strategies, namely, variational domain

adversarial learning, short-time spectral aggregation, and mutual information (MI)

enhanced training, to improve the robustness of speaker embeddings against specific

adverse environments for SV. In this chapter, we compare the effectiveness of these

strategies and give concluding remarks.

7.1 Discussions

We first investigate which of three strategies is the most effective for SV. Rather than

comparing every possible combinations of these strategies, we compare the perfor-

mance of the representative configurations through DET curves.

7.1.1 Effect of Variational Domain Adversarial Learning

In Section 4.6.1, we have observed that the VDANN-transformed x-vectors can slightly

outperform the DANN-transformed x-vectors. This observation suggests that per-

forming Gaussian regularization through a VAE is beneficial to the x-vector/PLDA

framework. To further investigate the effect of variational regularization, we com-

pare the x-vectors transformed by VDANN with the original x-vectors on SRE16

and SRE18-CMN2. As shown in Figure 7.1, we observe that there is no significant

difference among the original x-vectors, DANN-transformed x-vectors, and VDANN-

transformed x-vectors for both SREs. This indicates that the overall improvement of

the VDANN/DANN-transformed system over the baseline system is marginal.
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(a)

(b)

Figure 7.1: Comparison of the original x-vectors, DANN-transformed x-vectors, and
VDANN-transformed x-vectors on (a) SRE16-eval and (b) SRE18-CMN2-eval. Base-
line refers to the original x-vector system [3] and the networks with “-adapt” means
that PLDA adaptation was used as an extra domain adaptation method.
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7.1.2 Effect of Spectral Aggregation and Mutual Information Enhanced Training

In this section, we investigate the performance of two spectral aggregation strate-

gies and MI-enhanced training on VOiCES19-eval and SRE16-eval. To evaluate the

pooling strategies, we used the speaker embedding network detailed in Table 2.1 for

VOiCES19-eval, whereas the architecture in the upper branch of Figure 6.1 was used

in SRE16-eval. For MI-enhanced training, we used the MI estimator illustrated in

the lower branch of Figure 6.1 for both VOiCES19-eval and SRE16-eval. The DET

curves are shown in Figure 7.2.

From Figure 7.2(a), we observe that without MI regularization, STSP slightly

outperforms statistics pooling, whereas attentive STSP achieves much better per-

formance than both STSP and statistics pooling. When STSP was combined with

MI-enhanced training, we can see that MI regularization achieves remarkable perfor-

mance improvement. However, we do not observe significant performance gain when

MI-enhanced training was incorporated into statistics pooling and attentive STSP.

Among all these configurations, STSP with MI regularization, attentive STSP, and

attentive STSP with MI regularization perform similarly on VOiCES19-eval and these

methods largely outperform the other systems. Considering the fact that MI-enhanced

training requires an additional MI estimator, which increases the complexity of the

speaker embedding system, attentive STSP is recommended in the deployment.

As shown in Figure 7.2(b), without MI-enhanced training, STSP and attentive

STSP achieve similar performance on SRE16-eval and both methods substantially

outperform statistics pooling. For statistics pooling, performing MI regularization

provides further improvement. However, applying MI-enhanced training degrades the

performance of STSP. This observation suggests that incorporating MI regularization

is not necessarily beneficial when STSP is used. From Figure 7.2, we conclude that

in general, attentive STSP provides the largest performance gain among the various

combinations between spectral aggregation and MI regularization.
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(a)

(b)

Figure 7.2: Comparison between spectral aggregation (STSP and attentive STSP)
and MI-enhanced training on (a) VOiCES19-eval and (b) SRE16-eval. Stats and
Att STSP refer to the systems using statistics pooling and attentive STSP as the
pooling methods, respectively. The labels with a suffix “MI” represent the systems
combining the spectral aggregation strategy with MI-enhanced training.
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7.2 Conclusions

In Chapter 4, the author proposed a variational domain adversarial learning frame-

work to jointly address the language mismatch problem and the Gaussianity require-

ment of the Gaussian PLDA backend. Specifically, two types of DNNs, i.e., the

variational domain adversarial neural network (VDANN) and information-maximized

VDANN (InfoVDANN), were introduced for unsupervised domain adaptation (DA).

The VDANN incorporates a VAE into the conventional DANN to impose a constraint

on the distribution of the transformed speaker embeddings so that these embeddings

are not only speaker discriminative and domain-invariant, but also conform to a Gaus-

sian distribution. To overcome the potential posterior collapse in VDANNs when

training the VAE, the author proposed an InfoVDANN by replacing the VAE with

an InfoVAE. InfoVDANN explicitly encourages higher MI between the learned em-

beddings and the inputs, while simultaneously retaining the advantage of VDANN as

a Gaussian distribution regularizer.

Experimental results on SRE16 and SRE18-CMN2 show that both the VDANN

and InfoVDANN are capable of reducing domain mismatch through domain adver-

sarial training. Moreover, Gaussianity tests verify the effectiveness of the variational

regularization, which validates our motivation. The fact that the InfoVDANN con-

sistently outperforms VDANN suggests that feeding suitable MI into the training of

InfoVDANNs is effective for extracting extra information for SV. The consistency of

the MI estimates on the test datasets also confirms the feasibility of using InfoV-

DANNs for unsupervised DA.

In Chapter 5, short-time spectral pooling (STSP) and attentive STSP were pro-

posed from a Fourier perspective for better preservation of the speaker information.

STSP is able to aggregate both DC components and higher-frequency spectral infor-

mation into the utterance-level representations, which helps to feed more information

into the speaker embeddings. To emphasize on the discriminative segments when com-
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puting the spectral representations, attentive STSP was proposed as an extension of

STSP. Specifically, attentive STSP exploits two levels of information enhancement

strategies during the aggregation process: 1) applying self-attention on the windowed

segments of STFT to emphasize on the discriminative information and 2) retaining

the low-frequency components in the spectral domain to eliminate the effect of the

noisy high-frequency information. Due to these two levels of information preservation,

attentive STSP can produce spectral representations with less variations and obtain

greater robustness against the non-stationarity in the convolutional feature maps.

Evaluation results on VoxCeleb1, VOiCES19-eval, SRE16-eval, and SRE18-CMN2-

eval show that both STSP and attentive STSP consistently outperform statistics

pooling and multi-head attentive pooling, which indicates that it is advantageous to

exploit the more stationary spectral statistics during aggregation for robust SV. More-

over, attentive STSP is consistently superior to the vanilla STSP on all evaluation

tasks, suggesting that it is beneficial to apply segment-level attention in the spectral

domain for SV.

In Chapter 6, MI-enhanced training was proposed to encourage the information

flowing from the frame-level feature maps to the speaker embeddings. Rather than

directly adopt the DIM framework for regularization, the author introduced a squeeze-

DIM regularized embedding to address the problem of dimensionality imbalance be-

tween the frame-level features and the embeddings during MI maximization. The eval-

uation results on both VoxCeleb1 and VOiCES 2019 show that the proposed method

outperforms the baseline, DIM regularized embedding, and the SE-integrated embed-

ding, verifying the effectiveness of the proposed method. Besides, the performance

gains of squeeze-DIM regularized embedding on VOiCES 2019 are more consistent

than those on VoxCeleb1, which suggests that squeeze-DIM regularization is robust

under noises and reverberations.
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7.3 Future Work

To perform variational regularization, the term KL (qφ(z|x)‖pθ(z)) in (3.9) is min-

imized during the optimization of InfoVDANN. However, the assumption that the

prior pθ(z) follows a standard Gaussian may be too strong because this means that

all z’s drawn from qφ(z|x) would approximate a normal distribution if qφ(z|x) ap-

proaches pθ(z). One resulting limitation is that posterior collapse may occur while

training the VAE, which can lead to non-informative speaker embeddings. This can

be addressed by the InfoVDANN method in Chapter 4. Another adverse effect is that

the latent variables z’s can only capture single modal information if pθ(z) is simply a

normal distribution. A possible improvement is to apply a Gaussian mixture model

to increase the encoding capacity of the latent features and make the domain transfer

more continuous for complicated adaptation. In the future, we will try this idea to

find if there are any performance gains through using a mixture of Gaussians as the

target distribution in the latent space.

Another possible improvement for variational domain adversarial learning is to

try an end-to-end structure instead of transforming the x-vectors. As shown in Ta-

ble 4.3, we see that end-to-end systems have greater capacity in adapting the speaker

embeddings and learning domain invariance. Therefore, end-to-end VDANNs may be

a possible solution to further reducing the mismatches among different domains.

In Chapter 5, we have observed that performing aggregation in the spectral do-

main is more robust against the non-stationarity in the convolutional feature maps

than applying temporal aggregation. Nevertheless, STFT is a simple time-frequency

transform that cannot achieve good temporal and spectral resolutions simultaneously.

Therefore, we may try advanced time-frequency analysis tools such as wavelet anal-

ysis to transform the temporal feature maps to the spectral domain, so that better

time-frequency details can be captured during utterance-level aggregation.

Finally, we may extend the MI-enhanced training in Chapter 6 by performing
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dense squeeze-DIM regularizations on the speaker embeddings. Rather than max-

imize the MI between the feature maps from a single convolutional layer and the

speaker embeddings, we simultaneously feed the frame-level information from multi-

ple convolutional layers to the embeddings. In this way, the information fed into the

embedding layer would be largely diversified.
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Appendix A

MONTE CARLO ESTIMATE OF MUTUAL

INFORMATION

The mutual information (MI) between the latent variable z and the input x is

defined as the KL divergence between the joint probability distribution qφ(x, z) and

the product of their marginal distributions pD(x)qφ(z)

Iq(x; z) = Eqφ(x,z)
[
log

qφ(x, z)

pD(x)qφ(z)

]
= Eqφ(x,z)

[
log

qφ(z|x)

qφ(z)

]
= EpD(x)Eqφ(z|x)[log qφ(z|x)]− Eqφ(z) [log qφ(z)]

= − EpD(x) [H [qφ(z|x)]]− Eqφ(z) [log qφ(z)] . (A.1)

In (A.1), qφ(z|x) is the variational posterior in the terminologies of variational autoen-

coders (VAEs), where φ parameterizes the encoder of a VAE; qφ(z) is the aggregated

posterior, i.e., qφ(z) =
∫
x
pD(x)qφ(z|x)dx.

The first term on the right-hand side of (A.1) is the average negative entropy of z’s

drawn from qφ(z|x). For a given xs, we assume qφ(z|xs) = N (z;µs, diag (σ2
s)), where

µs ≡ µ(xs;φ) and σs ≡ σ(xs;φ) are the mean and standard deviation outputs of the

encoder before the sampling process. Then the negative entropy can be analytically

computed as follows:

−H [qφ(z|xs)] = −1

2

J∑
j=1

[
1 + log(2π) + log σ2

sj

]
, (A.2)
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where J is the dimension of z.

The second term Eqφ(z) [log qφ(z)] can be estimated by Monte Carlo methods as in

(4.16):

Eqφ(z) [log qφ(z)] ≈ 1

B

B∑
s=1

[
log

1

B

B∑
b=1

qφ (zs|xb)

]
, (A.3)

where B is the mini-batch size and zs is a sample from the output of the InfoVAE’s

encoder given a sample xb uniformly sampled from pD(x), i.e., zs is drawn from

N (z;µb, diag (σ2
b )).

Finally, the MI is calculated as

Îq(x; z) =
1

B

B∑
s=1

{
−1

2

J∑
j=1

[
1 + log(2π) + log σ2

sj

]
− log

1

B

B∑
b=1

qφ (zs|xb)

}
. (A.4)

During the testing stage, B can be set to a large value (e.g., 1,024) for an accurate

estimate of Iq(x; z).

Alternatively, the MI can be expressed as

Iq(x; z) = Eqφ(x,z)
[
log

qφ(x|z)

pD(x)

]
= Eqφ(z)Eqφ(x|z) [log qφ(x|z)]− EpD(x) [log pD(x)]

= − Eqφ(z) [H [qφ(x|z)]] + logN, (A.5)

where N is the number of test samples uniformly drawn from pD(x). The term logN

is resulted from the uniform sampling on the data set [106]. As entropy is always

positive for random variables, the MI is bounded by logN from (A.5), which can

provide a reference for the MI estimates.
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Appendix B

STATISTICAL SIGNIFICANCE TESTS

We conducted McNemar’s tests [5] on the SRE performance to test the significance

of the performance gain achieved by the InfoVDANN. EER was used as the operating

point for hard decisions in the test. As shown in Table B.1, the P -values of the Mc-

Nemar’s tests between both InfoVDANNs and the others are mostly zeros for SRE16

and SRE18-CMN2. This means that the improvement of both InfoVDANNs over

VDANN, DANN and the baseline is statistically significant. The “adp” in Table B.1

represents the Kaldi’s PLDA adaptation.

Table B.1: P -values of the McNemar’s tests [5]

System1 System2
SRE16, All SRE18-CMN2

w/o adp w/ adp w/o adp w/ adp

MMD–VDANN baseline 0 0 0 0
AAE–VDANN baseline 0 0 0 0
MMD–VDANN DANN 0 0 0 4.44× 10−16

AAE–VDANN DANN 0 0 0 0
MMD–VDANN VDANN 0 0 0 0
AAE–VDANN VDANN 0 0 0 2.77× 10−7
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Appendix C

SELECTION OF THE LDA DIMENSION

The dimension of LDA projection was determined by the EERs evaluated on the

development sets. For SRE18-CMN2, we used the SRE18-CMN2 development set to

compute the EERs. As shown in Figure C.1, for each system, the optimal dimension

is 150 considering the EERs with and without PLDA adaptation. We thus set the

dimension of the LDA projection to 150. We have a similar conclusion for SRE16,

according to Figure C.2.
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(a) Baseline (b) DANN

(c) VDANN (d) MMD–VDANN

(e) AAE–VDANN

Figure C.1: EERs evaluated on the SRE18-CMN2 development set for different sys-
tems
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(a) Baseline (b) DANN

(c) VDANN (d) MMD–VDANN

(e) AAE–VDANN

Figure C.2: EERs evaluated on the SRE16 development set for different systems




