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Abstract

The thesis is concerned with the application of mean field game (MFG) and mean

field team (MFT) in the leader-follower (LF) interaction. We first introduce the LF

game and MFT, separately, which can be treated as two preliminary chapters, then

the LF game combine with MFT and MFG are investigated. More details about the

four topics in this thesis are introduced as follows.

• The first topic studies a mixed linear quadratic (LQ) stochastic LF game with

input constraint, where the model involves two agents with the same hierarchy

in decision making and each agent has two controls which act as a leader

and a follower, respectively. By solving a follower problem, we obtain a Nash

equilibrium. Then a leader problem with constrained controls is tackled and the

optimal controls are presented by projection mappings. Moreover, we consider

the case that the control weights are singular. In this case, a sufficient condition

for the uniform convexity of the cost functional is given and a minimizing

sequence of solutions with non-degenerate control weights is constructed to

investigate the weak convergence of the corresponding personal cost functionals.

• The second topic investigates the robust LQ MFT control under a direct ap-

proach, where a global uncertainty drift is involved for a large number of

weakly-coupled interactive agents. All agents treat the uncertainty as an adver-

sarial agent to obtain a “worst case” disturbance. Using variational analysis,

we first obtain the centralized controls by a set of forward-backward stochastic
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differential equations. Then the decentralized controls are designed by mean

field heuristics. Finally, the proof of asymptotically social optimality is given.

• The third topic combines the LF problem and the MFT problem, which involves

one leader and a large number of weakly-coupled interactive followers. All

agents cooperate to optimize the social cost functional. Unlike the second

topic, we apply the fixed point approach in this topic to solve the problem

and obtain a set of decentralized social optimality strategies (the asymptotical

Stackelberg equilibrium) through a consistency condition (CC) system.

• The fourth topic is a new game by combing three factors: hierarchical struc-

ture for iterative decision, model uncertainty with asymmetric information, and

weak-coupling in a large population system. In particular, two classes of agents

involved are denoted as leaders and followers, who sequentially make decisions

with a hierarchical structure. As a consequence, the information structures be-

tween different hierarchies become asymmetric due to their iterative positions.

Model uncertainty then arises in their decisions since the lacking of communica-

tion among non-cooperative leaders/followers. Moreover, all agents are framed

within a weakly-coupled large population system with complex interrelations.

Thus, leaders or followers play a Nash game with each other in their own hi-

erarchy, while leaders and followers play a Stackelberg game between the two

hierarchies. Applying the MFG theory, we obtain an asymptotic Stackelberg-

Nash-Cournot equilibrium based on a CC system. The well-posedness of such

consistency is derived by the fixed point analysis under mild conditions.

Keywords: Stackelberg game, weak-coupling, mean field game and team, input

constraint, model uncertainty, forward-backward stochastic differential equation.
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Notation

Rn n-dimensional real Euclidean space.

Rm×n the set of (m× n) real matrices.

Sn the set of all (n× n) symmetric matrices.

1A the indicator function of the given set A.

v> the transpose of vector (or matrix) v.

trM the trace of the square matrix M .

M−1 the inverse of matrix M .

M ≥ 0 (≤ 0) M is positive (negative) semi-definite.

M > 0 (< 0) M is positive (negative) definite.

|v| the standard Euclidean norm for vector v.

|M | the Frobenius norm for matrixM and |M | =
√

tr[MMT ].

‖M‖ the norm for matrix function M : [0, T ]→ R such that

‖M(·)‖ = sup0≤t≤T |M(t)|.

〈·, ·〉 the standard Euclidean inner product and for matrices

M , N , 〈M,N〉 = tr[MTN ].

:= Defined to be.

a.s. almost surely

|v|2M the quadratic form vTMv, for given M ≥ 0. It can also

defined as 〈Mv, v〉.
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C(0, T ;Rn) the set of all continuous functions φ : [0, T ]→ Rn.

C1(0, T ;Rn) the set of all continuously differentiable functions φ :

[0, T ]→ Rn.

L1
S(Ω;Rn) the set of Lebesgue measurable function φ : Ω → Rn

such that
∫

Ω

√
φT (ω)Sφ(ω)dP(ω) <∞, for S > 0, ω ∈

Ω.

L∞(Ω;Rn×n) the set of essentially bounded and measurable in matrix
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Lp(0, T ;Rn) the set of Lebesgue measurable functions φ : [0, T ] →

Rn such that
∫ T

0
|φ(t)|pdt <∞ (1 ≤ p <∞).

L∞(0, T ;Rn) the set of essentially bounded and measurable functions

φ : [0, T ]→ Rn.

(Ω,F ,P) probability space.

F = {Ft}0≤t≤T filtration.

(Ω,F , {Ft}0≤t≤T ,P) filtered probability space.

E ξ the expectation of the random variable ξ.

LpFT
(Ω;Rn) the set of Rn-valued FT -measurable random variables

ξ such that E|ξ|p <∞ (1 ≤ p <∞).
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∞ (1 ≤ p <∞).
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Chapter 1

Introduction

1.1 The review of the leader-follower (or Stackel-

berg game) problem

The study of equilibrium problems has attracted extensive and consistent research

attentions across the optimization or decision making community because of their

important theoretical values and significant application potentials.

Along this research line, Nash equilibrium (NE) provides one important and

fundamental notion for the solvability. In an NE, each agent is assumed to know the

equilibrium strategies of the other agents and no one can increase its expected payoff

by changing only its own strategy. The related NE problem has been well explored

from a variety of viewpoints and considerable outcomes are thus generated. For

example, see [16, 93, 103, 165, 166] for stochastic NE problem; [87, 141] for robust

NE problem.

On the other hand, the leader-follower (LF) problem, which can be traced back to

the work of von Stackelberg in 1934 (see [173]), provides another theoretical notion

for equilibrium studies. It is a strategic game problem with at least two hierarchies

of players. One hierarchy with a major position is defined as a leader and the other

with a minor position is defined as a follower. The leader moves first, and then

the follower will observe the leaders decision to move sequentially. Meanwhile, the
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leaders anticipate the responses of the followers and then intake such responses when

making their decisions. The optimal strategies for the leader and the follower form

a Stackelberg equilibrium.

From the economic aspect, in the LF game, the firm as a leader strives towards

a position of independence and dominates the market when the firm as a follower

favours a position of dependence which is different from the NE that both the two

firms want to be the position of dependence and do not become market dominance.

Form the aspect of structure, the Stackelberg game is hierarchical and sequential

where the leader first announces a strategy as an anticipation and the follower find

out his optimal strategy based on the leader’s anticipation. Then, the leader min-

imizes his cost functional by taking his own optimal strategy as a realization after

anticipating the followers best response. Thus, there is a looking forward and back-

ward processes for the leader. By contrast, the Nash game is simultaneous where

all the players optimize their strategies in single hierarchy at the same time. And

the anticipation and realization of each player in the game are both uniform and

simultaneous in Nash game.

Form the aspect of information structure, to achieve the LF equilibrium, each

leader should know the complete information of all players in system (including

the leaders and the followers) when anticipating the NE response of the followers,

however, each follower is not necessary to know all the information of the leaders

and only needs to know the strategies that the leaders announce and the information

of all the followers. Thus, the information between the leaders and the followers are

asymmetric. To achieve an NE, all players need to know the complete information

and the information between the players are symmetric.

The LF problem can be categorized by the static and dynamic context. The

dynamic context can be further categorized by the deterministic case and stochastic

case. More details will be introduced as follows.

2



1.1.1 The review of the static leader-follower problem in
mathematical field

In the static context, the Stackelberg problem is studied without time variable and

the LF equilibrium will not be related to time. Then such problem can be viewed as

a particular bilevel optimization problem (see [30, 38, 188]).

In mathematical field, [154] investigated a deterministic multiple leader-follower

(multi-LF) game and [155] extended the work that the leader anticipates the response

explicitly by the aggregate follower reaction curve and proved the existence and

uniqueness of the equilibrium. If the follower’s response is not unique, then it needs

to find the best respose under the worst choices from the rational response set instead

of the rational response curve [123]. Unlike the deterministic multi-LF games, [66]

studied a stochastic multi-LF game and showed the existence and uniqueness of the

stochastic multiple-leader Stackelberg-Nash-Cournot (SNC) equilibrium under some

assumptions.

The Stackelberg game problem can be transformed to other forms of mathe-

matical optimization problem. For example, a class of multi-LF game that can be

formulated as a generalized NE problem with convexified strategy sets was consid-

ered in [144] and the similar original problem that can be constructed as variational

inequalities was mentioned in [91]. By the special structure of Stackelberg game, the

best response (or responses) of the leader (or leaders) are found by solving an opti-

mization problem with constraints for the best response (or responses) of the follower

(or followers), which leads to a mathematical program with equilibrium constraints

(see [55, 67, 125, 132, 186]).

Sometimes both the leader and follower doubt the model specification, or the

model, in real world, normally contains uncertain parameter. To solve such problems,

[92] used the robust method that supposed the uncertain parameters belong to some
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sets and minimized the cost function with respect to the worst-case scenario. Then it

reformulated and solved the problem as a generalized variational inequality problem.

While [66] applied the Bayesian method by assuming the uncertainty in the inverse

demand function following a probability distributions of a random variable, and

then solved it to obtain the stochastic multi-LF SNC equilirum. In [131], since

the ambiguity of the true probability distribution, each player selected the optimal

strategy with respect to the worst distribution rather than the worst scenario to

hedge the risk.

1.1.2 The review of the static leader-follower problem in
economy and management field

In economy and management field, as we mention before, von Stackelberg first put

forward such game structure to model duopoly competition in his book [173]. Af-

ter that, there are a lot of research literature about the LF competition (see [111]).

[124] investigated the Stackelberg equilibrium on monopolistic competition and the

Stackelberg game combined with the theory of price agreement on monopolistic com-

petition was considered in [34]. [77, 139] studied the Stackelberg game model under

the background of duopoly game and the existence and stability of such Stackelberg

equilibrium were shown under some general conditions.

One of the interested points for the economists to the Stackelberg competition is

its advantage and efficiency in economy and management. Stackelberg illustrated the

advantage of moving first in a oligopolistic interaction and [152] made the concept

“first-mover advantage” deeply rooted in people’s mind. [63] showed that all se-

quential move structures are beneficial compared to the simultaneous move Cournot

markets by investigating a class of Stackelberg markets. [110] designed an experi-

mental market to compare the quantity between the Stackelberg and Cournot game.

And it proved that, in any matching scheme, the Stackelberg market yield higher
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output, higher consumer rents, and higher welfare levels than Cournot markets and,

thus, higher efficiency.

However, the “first-mover advantage” does not always hold. [8] gave a striking

result that the “first-mover advantage” is eliminated when there is even a slight im-

perfection in the observability of the leader’s choice for the follower. At that moment,

the set of pure strategy (If only one specific strategy can be selected under each given

information in the complete information game, this strategy is a pure strategy. A

mixed strategy is an assignment of a probability to each pure strategy.) NE obtained

for the LF game with imperfect observation, if the follower’s best response was single

valued, coincided exactly with the set of pure strategy NE obtained for the associated

simultaneous move game.

In recent year, the Stackelberg equilibrium has been applied in supply chain such

as product line [68], inventory [149], retail [51], product remanufacturing [151]. In

the financial market, [39, 153, 163] investigated the LF competition in the forward

market and [67] studied the Stackelberg game in the commodity market. Also, the

static LF game has been used in telecommunication industry [66, 170, 192] and

electricity markets [55, 92, 144]. Especially, [55] showed that the largest producer

can gain profits by withholding emission allowances and driving up the emission cost

for rival followers which illustrated the “first-mover advantage” again. This result

is quite important for the national strategy of “carbon neutrality” since, in some

cases, the emission rights are equal to the right to development for the developing

countries.

1.1.3 The review of the dynamic leader-follower problem
(deterministic)

In the dynamic (deterministic) context, the Stackelberg problem is investigated with

time variable. After the Stackelberg model had been put forward, most of the liter-
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ature are related to the economy and management in static context.

Until 1970s, the dynamic (deterministic) Stackelberg game in the continuous

time was considered primarily in the work of [50]. It was also the first to treat the

feedback Stackelberg solutions for discrete time games. Then, [158] investigated the

Stackelberg competition in static and dynamic nonzero-sum two-player games and

gave a discussion of the linear-quadratic Stackelberg differential game. And some

properties of the controls that are functions of the state variables of the LF game

in addition to time was discussed in [159]. Another references that consider the

open-loop Stackelberg solutions under discrete-time framework was investigated in

[118] and the feedback Stackelberg solutions in discrete-time dynamic games was

considered in [62]. [16, 127] gave a very comprehensive review about the dynamic

non-cooperative LF game with discrete time and continuous time framework.

The open-loop information structure, where the players are committed to the

strategy based on initial state and no measurement of state is available, is very

important for tackling the LF optimization problem. [50] first studied the open-

loop Stackelberg solution in dynamic games. Some other references [158, 159] that

considered the necessary condition for the existence of an open-loop Stackelberg

solution with two-player games and [160] for the multi-leader and multi-follower

differential game. The necessary conditions of an open-loop Stackelberg solution

and a Hamiltionian system, which was exploited to solve a two point boundary value

problem, of a linear-quadratic Stackelberg games was given in [1]. [80] studied a

new sufficient existence conditions for an open-loop LF equilibrium in terms of the

solvability of a terminal-value problem of two symmetric Riccati differential equations

and a coupled system of Riccati matrix differential equations, and [14] discussed the

mixed Stackelberg open-loop solution in nonzero-sum differential games.

Unlike the open-loop information structure, the closed-loop information structure

can be classified into three types. By [16, 26], if each player can access to current
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state measurements, then it is called the feedback information structure. If each

player can access to current state measurements and the initial state value, then

it is called the closed-loop memoryless information structure. If each player can

access to current state measurements and adapt his strategy to the evolution of the

system, then it is called the closed-loop information structure. Compare to the open-

loop information structure, the closed-loop information structure is more difficult to

determine the Stackelberg solution in differential games. The main reason is the

expression of the rational reaction set of the follower, the partial derivative of the

leaders control with respect to the state measurement, and some attempts have been

mentioned in [16, 62]. There are two main approaches to investigate the closed-loop

dynamic Stackelberg game problem.

The first approach is the min-min LF strategies with a team-optimal method

which first optimize the leader criterion as a team and then both controls are selected

such that the follower’s control react the leader’s control in a rational reaction set

(see [17, 18]). Especially, [112] studied both the min-max and min-min LF solutions

with closed-loop information structure. Another approach is to define the follower’s

rational reaction set for a given control of the leader and turn the original control

problem to be non-classical problem. [134] used a variational method to solve the

non-classical problem with assuming that is a normal optimization problem, while

[145] emphasized such technique does lead to a solution for all initial states.

Meanwhile, the dynamic (deterministic) LF game has been applied in pricing

and production planning [76], traffic networks [82], time delay problem [187], and

macroeconomics, such as policy making [84]. Since the government and private agent

both doubt a common approximating model and have different preferences in [84], it

defined the LF (or Ramsey plan) equilibrium with robust decision makers in which

the government and private agent have different linear-quadratic worst-case model

and the leader’s current and future control setting was tracked past by a vector of
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Lagrange multipliers.

1.1.4 The review of the dynamic leader-follower problem
(stochastic)

In the dynamic (stochastic) context, the Stackelberg problem contains a noise or

a stochastic process. The first literature to discuss the equilibrium in stochastic

Stackelberg dynamic games was in [48].

The LF problem with additive noise is that the diffusion term only contains con-

stants and the state and control do not appear in the diffusion term. The literature

that related to the additive noise are given as follows. The LF equilibrium solution

where players have access to noisy (but redundant) state information was considered

in [11]. [12] investigated the linear-quadratic stochastic LF dynamic games with

noisy observation and obtained the feedback Stackelberg solution. The existence of

stochastic incentive problems with nested information and multiple levels of hierar-

chy was discussed in [13]. [156, 157] considered the stochastic Stackelberg differential

game with asymmetric information, overlapping information, and their applications.

Sometimes, the diffusion term can contain state, or control, or both. If only the

state appears in the diffusion term, we called it multiplicative noise. For example,

The maximum principle for the global Stackelberg solution with multiplicative noise

and adapting to closed-loop memoryless information structure was introduced in [26].

An application of such model in manufacturer-retailer cooperative advertising game

was mentioned in [25]. Meanwhile, it can be used to study the real options games in

complete and incomplete markets (see [27]) Note that The closed-loop information

structure in stochastic case need to additionally adapted to the filtration generating

by a Brownian motion. This is the same for the open-loop information structure in

stochastic case comparing with deterministic case.

If the control appears in the diffusion term, we called it controlled diffusion. For
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example, the open-loop LF problem with random coefficients and controlled dif-

fusion, was first investigated in [190]. [126] explored the model of linear-quadratic

generalized Stackelberg game with controlled diffusion and proved its unique solvabil-

ity. The linear-quadratic stochastic LF differential games for jump-diffusion systems

with controlled diffusion and random coefficients was discussed in [135] and a mixed

linear quadratic Stackelberg game with input constraint was considered in [183].

These kinds of model have a wide application in financial market [71, 88], insurance

industry [41, 52].

With the development of mean field game theory, the hierarchical structure un-

der a large population system was investigated in [136, 178, 138]. The mean field

Stackelberg game with aggregation of delayed instruction and state control delay

were introduced in [22] and [23], respectively. The open-loop Stackelberg strategy

for mean field type linear-quadratic stochastic differential game was given in [130]

and the open-loop Stackelberg strategy for linear-quadratic stochastic mean field

team problem was discussed in [101]. Also, the mean field stochastic LF game has

been applied in mitigating epidemics, such as COVID-19 [5].

1.1.5 Another classification for the leader-follower problem

A general LF problem may also be classified into four types depending on N and M ,

the population of the leaders and followers, respectively.

• Type 1 is the single-leader and single-follower (SL/SF) problem (N = M = 1),

which is the most basic type of LF problem endowed with the simplest but

illustrative structure. For instance, interested readers may refer to [4, 173] for

its static study and [50, 52, 53, 127, 130, 156, 190] for dynamic one.

• Type 2 and Type 3 are the multi-leader and single-follower (ML/SF) problem

(N ≥ 2,M = 1) and the single-leader and multi-follower (SL/MF) problem
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(M ≥ 2, N = 1), respectively. These two types involve multiple leaders (or

followers). Thus, there arises not only the LF problem between two hierarchi-

cal agents but also the NE problem among the agents within the same hier-

archy. Therefore, the so-called Stackelberg-Nash-Cournot (SNC) equilibrium

is designed where Cournot implies all leaders (or followers) are homogeneous.

Readers may refer to [92] for robust ML/SF game, while [101, 138, 144, 178, 185]

for SL/MF game.

• Type 4 is the multi-leader and multi-follower (ML/MF) problem (N ≥ 2,M ≥

2) (see [66, 126, 160]) which is an extension of ML/SF and SL/MF problems

in Type 2 and Type 3. The followers are non-cooperative and thus compete

in a Nash game parameterized by the strategy profile of leaders. Likewise, all

leaders are also competitive in a Nash game parameterized by the NE responses

from all followers. Moreover, all leaders and followers compete in a Stackelberg

game at an upper level. For more relevant studies, readers may refer to [67]

for stochastic SNC equilibrium in the European gas market; [155] for ML/MF

game in an oligopolistic market; [163] for ML/MF game in a forward market

equilibrium model.

1.2 The review of the weak-coupling, mean field

game (or team), and model uncertainty

1.2.1 The weak-coupling and mean field game (or team)

The main purpose of this thesis is to study the LF problem in the context of a large-

population (or large-scaled) system (N � 2, orM � 2) where all (leaders/followers)

agents are weakly-coupled with more realistic interactions. It is noteworthy that a

large-population system arises often and naturally in various fields such as economics

[32, 73, 121, 180], engineering [103, 115], medicine [19, 120] as well as management
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science [64]. The most salient feature of a large-population system is the existence

of weak-coupling interaction amongst all involved agents. Under the weak-coupling

condition, the individual behaviors from a micro-scale can be negligible, whereas the

overall mass effects of all agents cannot be ignored on a macro-scale. A weak-coupling

system is strongly motivated by a variety of practical applications in reality, and we

defer its more detailed illustrations in Chapter 6.

When N (or M) is sufficiently large in our multi-agent system, the interaction

across all agents becomes rather complex and difficult to be handled. This is related

to the so-called “curse of dimensionality,” and more details are deferred in Chapter

6. The mean field game (MFG) theory (see [28, 40, 44, 43, 122]) or mean field

team (MFT) theory (see [101, 105, 147, 176]) provide us a tractable approach to

analyze such problems and compute the associated equilibrium or social optimality.

As the trade-off, some approximated asymptotic equilibrium (or social optimality)

can be designed with a more effective computation load. By this approach, we can

reduce the complexity in computation and obtain an approximated solution via some

consistency condition (CC) matching scheme (see more details deferred in Chapter

5 and 6). In the last decade, the MFG (or MFT) has been well studied in various

research areas such as economics [41, 78, 175], engineering [61, 103, 115], medicine,

and vaccination [81, 109], especially for the recent COVID-19 pandemic [5, 58, 70].

One of the particular applications of the MFG (or MFT) is the linear quadratic mean

field (LQ-MF) game (team) problem, which can model various problems. Readers

may refer to [10, 42, 99, 100, 105, 128, 169, 177, 179] and the reference therein for a

comprehensive review.

Normally, there are two routes to solve the MFG and MFT problems. One is

called the fixed point approach (see [101, 103, 105, 138]), which starts by applying

the mean field approximation and constructing a fixed point problem. Then, the N -

player game degenerates to an optimal control problem. By analyzing the optimal
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response of the representative player, the decentralized strategies can be designed,

which are proved to be asymptotically optimal. Another route is called the direct

approach (see [69, 108, 176, 184]), which starts by solving the N -player game prob-

lem and a Riccati-like equation system formally under a large-population and high

dimensional environment. Then, by letting N goes to infinity after obtaining the

centralized optimal strategies, one can derive the decentralized optimal control laws.

Thus, the difference between the two methods is the timing of using the mean field

heuristics technique.

1.2.2 Model uncertainty

In general, mathematical models only describe and simulate the complicatedly real

world in an approximated approach. Therefore, it is very meaningful to investigate a

model with uncertainty parameters. Recall that there are two main methods to deal

with the model uncertainty: one is the robust method that uses the minimax tech-

nique and considers the worst-case analysis (see [2, 87]); another one is the Bayesian

method for which some subjective probability measure is introduced to average all

possible realizations (see [85, 86] for details). The model uncertainty is also well doc-

umented in control theory literature. For example, in [98, 99, 174, 184], the LQ-MF

control problem with a global uncertainty parameter is considered by researchers.

More details, in [98], the so-called “hard constraint” approach was adopted to over-

come difficulties after using the Lagrange multiplier. The “soft constraint” case (see

[15, 172, 72]) was investigated in [99, 174, 184], which removed the bound of the

disturbance and add a penalty for the disturbance in cost functional. The situation

that a local disturbance appears between each agent was studied in [137, 168].
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1.3 Problem Statement and Main Contributions

of Each Topic in the Thesis

1.3.1 The first topic

In the first topic (Chapter 3) of this thesis, we investigate a mixed LF linear quadratic

(LQ) control problem. Compare to the model in [14] or the classical Stackelberg

differential games that have hierarchies between each player, Chapter 3 studies a

stochastic differential game under the LQ framework with two players and there is

no hierarchy of decision making between these two players. However, the hierarchy

appears inside each player which means two players act as both leaders and follow-

ers. More specifically, the state equation and cost functional for each player contain

two controls. On one hand, from a single player’s aspect, for a given strategy, the

player first chooses one control which acts as a follower, and then according to his

former choice to seek another control which acts as a leader to minimize his own cost

functional. If we consider each player as a system, then the system is very similar

to the LF social optimization problem in that all the players inside the system work

cooperatively and aim to minimize (maximize) the total cost functional (payoff) (see

[101]). On the other hand, the two players play a non-cooperative differential game

and seek the NE. Player 1 and player 2 always pick their own strategies simultane-

ously. In other words, for the mixed LF problem, we need to first solve a follower

problem and look for an open-loop NE between player 1 and player 2. Then, with the

former NE responses, we solve a leader problem and seek another open-loop NE. The

latter optimal strategies and the former optimal strategies constitute the Stackelberg

solution to our original mixed LF problem.

Compare to the previous work [14, 16, 25] that have no control constrained or

mixed structure, our study is the first to investigate the mixed LF LQ differential

game with input constrained and singular control weights. The constrained control
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makes the classical approaches fail to apply (see [54, 97]) and brings some difficulties

to our study here. First, the related forward-backward stochastic differential equa-

tion (FBSDE, see [133, 189]) system is no longer linear which becomes a nonlinear

FBSDE with a projection operator. Second, since the related FBSDE is nonlinear,

we cannot obtain the linear state feedback control by using the standard Riccati

equation method. In our study, we only consider the case that the controls who

act as leaders are constrained in a closed convex set of the whole space. The sit-

uation for constrained controls that act as followers is not investigated here since

their corresponding solutions are non-smooth and the whole system becomes very

difficult to be tackled. The LQ problem with input constraint has been studied from

various aspects. For example, the relative topic under the LQ-MF games context

was investigated in [93, 94]. A class of LQ problems in which the control process is

constrained in a cone was discussed in [29, 97, 129].

Moreover, unlike [93] that the control weights are positive-definite, the weight

coefficients of controls in Chapter 3 are allowed to be singular, which is realistic

and full of challenges. In classical LQ control problems (like [16, 101, 138]), the

control weights are required to be positive-definite or greater than δI (for some

δ > 0 and I is an identity matrix), such that the problem admits a unique solution

in the deterministic case or additive-noise case (see [93, 101, 138, 191]). Even if

the unconstrained control weights can be negative in the stochastic case, like [130,

164, 165, 166, 181], a sufficiently positive-definite condition (e.g., D>P (t)D > 0, t ∈

[s, T ], s ∈ [0, T ) in [191]) will be added. In Chapter 3, the controls have constraints

and the weights are degenerate. For this reason, we cannot use a projection operator

to map the original control value from the whole space to its closed convex subset

or apply the Riccati equation method. Instead, we decouple the states in leader

problem which is a FBSDE system and estimate each part of the system to obtain a

sufficient condition for the uniform convexity of the leader problem with respect to
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the corresponding control.

The contributions of the first topic can be summarized as follows:

• We introduce and analyze a class of mixed stochastic differential LF games

where two players with the same hierarchy play a non-cooperative game and

find an open-loop NE in differently hierarchical Nash games. In our setting, the

controls act as leaders are constrained and the control weights can be singular.

• For the non-singular case, the optimal pair is represented by a projection map-

ping, and a Hamiltonian system is obtained for the stochastic mixed LF games

problem through the FBSDE system with projection operators.

• For the singular case, we discuss the uniform convexity of the cost functionals

whose corresponding states are some fully coupled FBSDE systems and give

out sufficient criteria. The near-optimal control sequence is obtained and the

minimizing sequence method is applied to prove the weak convergence of its

corresponding cost functionals.

1.3.2 The second topic

The second topic (Chapter 4) of the thesis studies the social optimality of the robust

LQ-MF control model with a common uncertain drift by using a direct approach. The

common uncertain term appears in both the state equation and the cost functional

of each agent. Unlike [99] is related to MFG problem, Chapter 4 studies a MFT

problem. Meanwhile, compare with the fixed point approach (like [93, 94, 101, 105,

174]), we use the direct approach method to solve the MFT problem in Chapter

4 (see Section 1.2.1). For detail, we first perturb all the agents and used duality

procedures to tackle the large-scale problem with high dimensional FBSDE. After

that, the centralized controls explicitly depending on xi and the state average term

x(N) are obtained first and then the decentralized controls are designed by mean
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field heuristics. In reality, it is almost impossible for one agent to have all the

information of other agents. Therefore, the decentralized controls which are based

on the individual information sets will be used instead of the centralized controls

which are based on the full information set and the information structure of each

agent is different. Unlike [99, 174] that the weight coefficient Q of state in the cost

functional is allowed to be indefinite, the coefficients in Chapter 4 are time-varying,

which means the coefficients can be changed at different times. The time-variant

systems could be applied in many areas such as the earth’s thermodynamic and the

human vocal tract (see [162, 167]).

Compared with the previous works [99, 174], the second topic mainly makes the

following contributions:

• Instead of using the fixed-point method (see [101, 174]), the direct approach

is applied to solve the robust LQ-MF social control problem, where the state

weight Q is allowed to be indefinite.

• By the solvability of the low-dimensional Riccati-liked equation system, we

obtain the condition for the uniform convexity of a high-dimensional control

problem.

• Comparing to [174] whose CC system contains five coupled equations, we just

have four coupled Riccati-liked equations, which are much easier to be tackled.

The number of coupled equations can be even reduced to three under a specific

condition. Moreover, in proving asymptotic optimality, we obtain the consis-

tency of mean field approximations without setting an additional assumption.

1.3.3 The third topic

The third topic (Chapter 5) of this thesis investigates the social optimality of the LF

LQ-MF control problem, which can be considered as a combination of the first topic
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and the second topic. However, unlike the previous works [16, 190] and Chapter

3, the model in Chapter 5 contains one leader and N followers. The leader’s state

appears in both the state equation and the cost functional of each follower. It

shows that the dynamics and the cost functionals of the N followers are directly

influenced by the behavior of the leader. Meanwhile, compared to the model in

[107, 138], the followers’ state average term in Chapter 5 appears in all the state

equations and the cost functionals, which implies that the state dynamics and the

cost functionals are highly interactive and coupled, respectively. Different from the

direct approach in previous works [69, 108, 176, 184] and Chapter 4, the third topic

uses the fixed point approach to solve the LF MFT problem which starts by freezing

the state average term and constructing an auxiliary control problem to obtain the

decentralized controls.

Compared with the previous works [99, 105, 138], the third topic mainly makes

the following contributions:

• A social optimum problem is studied for mean field models with hierarchical

structure. Unlike [138] where the leader and the followers play a noncoopera-

tive game and try to minimize their cost functionals, all individuals in Chapter

5 aim to minimize the social cost functional which equals the summation of

all individual cost functionals. Since the cost functional presents individual

performance in the game problems, the order of the magnitude of its pertur-

bation is 1
N

which can be ignored (note that the N followers are coupled by

the state average) and the state average may be approximated by a stochastic

process directly (see [99]). However, in Chapter 5, the order of magnitude of

the perturbation cannot be ignored after summing up all the cost functionals,

which makes the problem very complicated. To overcome such difficulties, we

approximate some terms as N goes to infinity and use a duality procedure
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combined with auxiliary equations to transform the variation of the social cost

functional into a standard LQ control form. Then, we construct an auxiliary

control problem and a forward-backward consistency system to help us obtain

the decentralized form of the optimal controls for the N followers.

• The decentralized controls of the LF problem are obtained and the solvability

of a high-dimensional CC system is discussed. Since the leader’s state equation

and cost functional are fully coupled with the followers’ state equations and

cost functionals, it is more difficult to solve the leader’s problem. Except

constructing auxiliary problem by mean field approximation as in the former

part, we need to construct six auxiliary equations and use duality relations to

obtain the decentralized form of the optimal control for the leader. Unlike the

followers’ problem, the final CC system of the leader’s problem contains ten

equations which becomes a high-dimensional problem. To solve such equations

directly is very difficult since they are fully coupled and have high-dimensional

characteristics. We transform the CC system to a simple form of linear FBSDE

and discuss the solvability of the FBSDE through the Ricatti equation method

(see [133]).

• The decentralized strategies of the LF problem are proved to be asymptotic

Stackelberg equilibrium by perturbation analysis. Different from [105, 107,

138], we, in Chapter 5, discuss the asymptotic Stackelberg equilibrium for the

team problem. First, we need to prove the decentralized strategies for the fol-

lowers have asymptotic social optimality. Since the LF problem contains two

hierarchies, we need to consider both the leader’s and the followers’ cost func-

tionals when using the standard method (see [105]). The asymptotic optimality

is proved by decoupling the above cost functionals with two duality procedures

and some arguments in error estimates. Second, we need to prove the decen-
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tralized strategies for the LF problem are asymptotic Stackelberg equilibrium.

Some error estimates very hard to be given directly since they are fully cou-

pled. We decompose them by applying the Ricatti equation method and then

estimate them in proper order.

1.3.4 The fourth topic

The fourth topic (Chapter 6) of this thesis discusses the application of the MFG

approach in the weakly-coupling and model uncertainty ML/MF problem under a

large-population system (N � 2, M � 2) with an incomplete and asymmetric in-

formation structure. Since all the agents are competitive, they will not share their

information with others. Each leader and follower can only observe their objective

functions, which depend on the strategy average. However, by analyzing the previous

performance of the whole system, the agents can obtain the empirical distribution of

the strategy average and uncertain parameters which can be seen as some common

information in our weakly-coupled LF problem. Based on the common informa-

tion, we apply the mean field method to the weakly-coupled LF model with model

uncertainty and obtain an asymptotic equilibrium.

This topic contains many elements of previous chapters such as the LF equilibrium

(see Chapters 3 and 5), the weakly-coupling with mean field heuristics (see Chapters

4 and 5), the model uncertainty (see Chapter 4), the input constraint (see Chapter 3),

and the non-cooperative game (see Chapter 3). However, the whole study of Chapter

6 is under a static context (like [4, 66, 92, 144]), which is different from the previous

chapters with a dynamic background (see [28, 43, 103, 122, 138]). For this reason,

the general form game, LF game, and corresponding information structure under the

static background are first introduced and then the motivation of weakly-coupling

(see [106, 121, 146, 171]) and model uncertainty (see [2, 20, 21, 85, 86, 92, 141]) are

provided as some explanation in Chapter 6. Meanwhile, it can also be considered
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as some supplement for Chapters 4 and 5 although the LF MFG problem had been

studied under the dynamic context (see [138, 178]).

The main contributions can be sketched as follows

• It is the first time that the weakly-coupled LF game problem in the large-

population and static optimization setting is introduced.

• The ubiquitous model (parameter) uncertainty is naturally introduced in the

weakly-coupled LF problem in the presence of empirical distribution from the

large-population system.

• The MFG theory is applied to the above static weakly-coupled LF equilibrium

problem, and some approximated decentralized Stackelberg-Nash-Cournot (SNC)

strategy is designed based on a CC system.

• The well-posedness of the CC system is established under mild conditions for

both the general nonlinear and quadratic cases.

• A numerical example is provided to simulate the mean field approximation.

1.4 Organization of the Thesis

In this thesis, we study the MFG and MFT problems with stochastic LF interaction.

The chapters of this thesis are arranged carefully. We first introduce a mixed LF

problem between two players to give out the principle of the Stackelberg game and

then study an MFT control problem under a large-population system to provide

some mean field techniques. After that, an MFT LF problem is investigated which

can be considered as a combination of the previous two topics. Finally, an MFG LF

problem under a static optimization context is given as the MFG topic of this thesis

(since the MFG LF problem under dynamic context had been discussed in [138]).
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All these topics mentioned above are original research articles. The first three topics

have been published in Applied Mathematics & Optimization and ESAIM: Control,

Optimisation and Calculus of Variations, respectively (see [101, 183, 184]) and the

last topics have been finished and will be published soon. The following content is

the organization of each chapter.

In Chapter 2, we present a brief introduction of the LQ stochastic control problem.

Some inequalities which will be used in the following chapters are also given.

Chapter 3 investigates a mixed LF differential games problem, where the model

involves two players with the same hierarchy in decision making and each player has

two controls that act as a leader and a follower, respectively. We first formulate

the mixed LF game problem and discuss the followers’ problem by using variational

analysis and obtain an NE with linear state feedback control forms. Then, the

leaders’ problem with constrained control is solved and a Hamiltonian system with

non-degenerated controls weights are obtained. After that, we study the solvability

of the leaders’ problem under singular controls weights and obtain the near-optimal

control sequence of the problem. Finally, two examples are provided.

Chapter 4 studies a robust LQ MFT control problem. The model involves a

global uncertainty drift which is common for a large number of weakly-coupled in-

teractive agents. The robust LQ-MF problem is formulated first, and then the worst

disturbance based on the maximum principle is solved. Moreover, we seek the so-

cially optimal solution under the “worst case” uncertainty and design asymptotically

optimal decentralized controls by handling coupled FBSDEs. Finally, the asymptot-

ically social optimality of decentralized controls is proved and a numerical example

is provided to simulate the efficiency of decentralized control.

Chapter 5 deals with an LQ MFT LF problem, where the model involves one

leader and a large number of weakly-coupled interactive followers. We first solve the

optimal controls for followers based on person-by-person optimality and obtain the
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CC system of the follower’s problem. Then, we seek the socially optimal solution to

the leader’s problem and give the CC system of the leader’s problem. Meanwhile, the

CC system is transformed to a simple form of linear FBSDE, and its well-posedness is

discussed. Finally, the details of proving the asymptotic Stackelberg equilibrium are

given and a numerical example is provided to simulate the efficiency of decentralized

control.

Chapter 6 introduces the ML/MF problem in the context of a large-population

system where all agents are weakly-coupled with more realistic interactions. The

definition of the general Nash game, the ML/MF game, symmetric game, and the

corresponding information structure is introduced first. And then we formulate the

weak-coupling LF problem and the motivation of weakly-coupling and model un-

certainty. After that, a general case and a quadratic case of the weak-coupling LF

problem are represented, respectively. The MFG approach is applied to tackle the

problem in the above two cases and the existence and uniqueness of the fixed point

system (or the CC system) are also discussed. Finally, a numerical example is pro-

vided.

Chapter 7 concludes the whole thesis and plans for future work.
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Chapter 2

Preliminary

In this chapter, we introduce the linear quadratic (LQ) stochastic control model and

present some lemmas which will be used in the following chapters.

2.1 Linear Quadratic Stochastic Control Model

In this thesis, we mainly focus on the LQ framework, therefore we first introduce

the LQ stochastic control model. Let (Ω,F ,P) be a complete probability space (see

[191, Chapter 1]), ξ ∈ Rn be the values of the initial state, and W (·) be an one-

dimensional standard Brownian motions. ξ and W (·) are defined on (Ω,F ,P), and

Ft = σ(W (s), 0 ≤ s ≤ t) augmented by all the P-null sets in F . F = {Ft}0≤t≤T is

the natural filtration generated by the Brownian motions. Let T > 0 be given. For

any ξ ∈ Rn, consider the following linear stochastic differential equation (SDE):
dx(t) =[A(t)x(t) +B(t)u(t) + f(t)]dt

+ [C(t)x(t) +D(t)u(t) + σ(t)]dW (t), t ∈ [0, T ],

x(0) =ξ,

(2.1)

where A(·), B(·), f(·), C(·), D(·), σ(·) are deterministic matrix-valued functions of

suitable sizes. In addition, the quadratic cost functional is given as

J(ξ;u(·)) =
1

2
E
∫ T

0

{
|x(t)|2Q(t) + |u(t)|2R(t)

}
dt+

1

2
E|x(T )|2G, (2.2)
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where Q(·) and R(·) are Sn- and Sm-valued functions, respectively, and G ∈ Sn. If

A(·), C(·) ∈ L∞(0, T ;Rn×n), B(·), D(·) ∈ L∞(0, T ;Rn×m),

f(·), σ(·) ∈ L2(0, T ;Rn),

and u(·) ∈ L2
F(0, T ;Rm), then, for any ξ ∈ Rn, (2.1) admits a unique strong solution

x(·) ∈ L2
F(Ω;C([0, T ];Rn)). Moreover, there exists a constant c > 0 such that

E
[

sup
t∈[0,T ]

|x(t)|2
]
≤ cE

[
|ξ|2 +

∫ T

0

|u(t)|2 + |f(t)|2 + |σ(t)|2dt
]
. (2.3)

The right hand side of (2.2) is well-defined under u(·).

In what follows, if v consists of several sub-vectors v1, · · · , vN , it is sometimes

written for simplicity as (v1, · · · , vN) or (v>1 , · · · , v>N)> by abusing the matrix forma-

tion.

Next, we introduce a general LQ stochastic control model under a large-population

system (or large-scale system) with N agents. Let ξi ∈ Rn are the values of

the initial states and Wi(·) are one-dimensional standard Brownian motions, where

i = 1, · · · , N . ξi and Wi(·) are defined on (Ω,F ,P). Unlike the above classic LQ

stochastic control model, here we define σ-algebra F it = σ(Wi(s), 0 ≤ s ≤ t), where

1 ≤ i ≤ N and Ft = σ(Wi(s), 0 ≤ s ≤ t, 1 ≤ i ≤ N). Fi = {F it}0≤t≤T , is the nat-

ural filtration generated by Wi(·) and F = {Ft}0≤t≤T . We denote the N agents by

{Ai}i∈I , where I = {1, · · · , N} denotes the index set of the agents. The aggregation

of all agents is denoted by A := {Ai}i∈I . The state process of agent Ai is modeled

by the following linear SDE:


dxi(t) =[A(t)xi(t) +B(t)ui(t) + F (t)x(N)(t) + f(t)]dt+ [C(t)xi(t)

+D(t)ui(t) + F̄ (t)x(N)(t) + σ(t)(t)]dWi(t), t ∈ [0, T ],

xi(0) =ξi,

(2.4)
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where x(N)(t) := 1
N

∑N
i=1 xi(t), t ∈ [0, T ], is the state average of the agents. A(·),

B(·), F (·), f(·), C(·), D(·), F̄ (·), σ(·) are deterministic matrix-valued functions of

suitable sizes. The cost functional of Ai is modeled by

Ji(ξ;u(·)) =
1

2
E
∫ T

0

{
|xi(t)− Γ(t)x(N)(t)− η(t)|2Q(t) + |ui(t)|2R(t)

}
dt

+
1

2
E|xi(T )− Γ̂x(N)(T )− η̂|2G,

(2.5)

where ξ = {ξ1, · · · , ξN} and u(·) = {u1(·), · · · , uN(·)}. Γ(·) and η(·) are Rn×n- and

Rn-valued functions, and Γ̂ ∈ Rn×n, η̂ ∈ Rn. By some mild conditions, (2.4) admits

a unique strong solution with similar estimate as (2.3) and (2.5) is well-defined under

u(·). The details will be given in following chapters and we omit the corresponding

discussion here.

2.2 Some Lemmas

Lemma 2.1 (Gronwall’s Inequality). Suppose the continuously real-valued function

g(t) satisfy

0 ≤ g(t) ≤ α(t) + β

∫ t

0

g(s)ds, 0 ≤ t ≤ T,

with β ≥ 0 and α integrable on [0, T ]. Then

g(t) ≤ α(t) + β

∫ t

0

α(s)eβ(t−s)ds, 0 ≤ t ≤ T.

Proof The proof is trivial and we omit here. �

Lemma 2.2 (Burkholder-Davis-Gundy Inequality). Let (Ω,F , {Ft}0≤t≤T ,P) be a

complete filtered probability space augmented by all P-null sets in F and let W (t) be
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an m-dimensional standard Brownian motion. Let X ∈ L2,loc
F (0, T ;Rn×m), where

L2,loc
F (0, T ;Rn×m) ={x : [0, T ]× Ω→ Rn×m|x(·) is {Ft}0≤t≤T − adapted and∫ T

0

|x(t)|2dt <∞, P− a.s.}.

Then, for any r > 0, there exists a constant Cr > 0 such that for any stopping time

τ ,

1

Cr
E
{∫ τ

0

|X(s)|2ds
}r
≤ E

{
sup

0≤t≤τ

∣∣∣ ∫ t

0

X(s)dW (s)
∣∣∣2r} ≤ CrE

{∫ τ

0

|X(s)|2ds
}r
.

Proof See the Theorem 5.4 in Chapter 1 of [191]. �

Lemma 2.3. Let Γ is a r-dimensional linear subspace in Rn and r ≤ n with

(v1, · · · , vr) as basis. PΓ(·) : Rn → Γ is a projection operator defined under 〈·, ·〉M =

〈M 1
2 ·,M 1

2 ·〉 , M > 0. Denote V = (v1, · · · , vr), then the projection operators can be

expressed as PΓ = V (V >MV )−1V >M .

Proof First, it is easy to verify that 〈M 1
2 ·,M 1

2 ·〉 is a well-defined inner product on

Rn. By [35, Chapter 5], there exists a unique projection PΓ with respect to (w.r.t.)

Γ and 〈·, ·〉M . Then, for any vector v1 ∈ Γ, there exists a vector θ1 ∈ Rn such that

v1 = V θ1. Thus, for any vector θ2 ∈ Rn, PΓθ2 ∈ Γ and there exists a vector θ3 ∈ Rn

such that

PΓθ2 = V θ3.

Hence,

θ2 −PΓθ2 ⊥ V θ1.

Therefore,

〈θ2 −PΓθ2, V θ1〉M = 0,
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which derives that

V >M(θ2 − V θ3) = V >M(θ2 −PΓθ2) = 0.

Then, it follows that

PΓθ2 = V (V >MV )−1V >Mθ2,

which implies the lemma. �

From now on, we may suppress the notation of time t in Chapter 3, 4, and 5 if

necessary.
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Chapter 3

Mixed Linear Quadratic Stochastic

Differential Leader-Follower Game
with Input Constraint

In this chapter, a mixed leader-follower (LF) differential games problem with input

constraint is introduced. Two players play a Nash game with each other in the

same hierarchy and each player plays an LF game with his two controls which act

as a leader and a follower, respectively. Meanwhile, the controls act as followers

are unconstrained and the controls act as leaders are constrained. In addition, this

chapter discusses the case that the control weights are allowed to be singular.

3.1 Problem Formulation

Suppose that there are two players, 1 and 2, engaged in the game. The system state

is described by the following SDE on [0, T ]:


dxi =[Aixi +Bi

1ui +Bi
2vi + bi]dt+ [Ci

1xi +Di
1ui +Di

2vi + σi1]dW1

+ [Ci
2xi + F i

1ui + F i
2vi + σi2]dW2,

xi(0) = ξi, i = 1, 2,

(3.1)
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where Ai, Bi
1, B

i
2, b

i, Ci
1, D

i
1, D

i
2, σ

i
1, C

i
2, F

i
1, F

i
2, σ

i
2 are matrix-valued functions of suit-

able sizes and all these coefficients are satisfy following assumption:

(A3.1)



Ai(·) ∈ L2(0, T ;Rn×n), Bi
1(·) ∈ L2(0, T ;Rn×m), Bi

2(·) ∈ L2(0, T ;Rn×m),

Ci
1(·) ∈ L2(0, T ;Rn×n), Di

1(·) ∈ L∞(0, T ;Rn×m), Di
2(·) ∈ L∞(0, T ;Rn×m),

Ci
2(·) ∈ L2(0, T ;Rn×n), F i

1(·) ∈ L∞(0, T ;Rn×m), F i
2(·) ∈ L∞(0, T ;Rn×m),

bi(·), σi1(·), σi2(·) ∈ L2
F(0, T ;Rn), i = 1, 2.

The state equation of each player contains two controls. The controls u1, u2 act as

leaders and the controls v1, v2 act as followers. The set of admissible controls ui is

defined as follows:

Ui =
{
ui|ui(t) ∈ L2

F(0, T ; Γ)
}
, i = 1, 2,

where Γ ⊂ Rm is a closed convex set. Unlike [25], our controls u1, u2 are constrained

in a subset of full space Rm, which leads to some difficulties for solving the optimal

controls in the following. The set of admissible controls vi is defined as follows:

Vi =
{
vi|vi(t) ∈ L2

F(0, T ;Rm)
}
, i = 1, 2,

and we let U = U1 × U2, V = V1 × V2.

The cost functional Ji for player i is defined as follows:

Ji(u1; v1;u2; v2) =
1

2
E
∫ T

0

|xi − kixj|2Qi
+ |ui|2Ri

1
+ |vi|2Ri

2
dt+

1

2
E
[
|xi(T )

− kixj(T )|2Gi
+ 2〈gi, xi(T )− kixj(T )〉

]
, i = 1, 2, j 6= i,

(3.2)

where parameter ki ∈ [0, 1] and Qi, R
i
1, Ri

2, Gi are weight matrices. g1, g2 are random

variables. The coefficients satisfy following assumption:

(A3.2)

Qi(·) ∈ L2(0, T ;Sn), Ri
1(·) ∈ L∞(0, T ;Sm),

Ri
2(·) ∈ L∞(0, T ;Sm), Gi ∈ Sn, gi ∈ L2

FT
(Ω;Rn), i = 1, 2.
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For each player, (3.2) could be essentially considered as a team optimization problem

[89, 101] which is different from game problem [138, 156, 190]. Unlike [166], to avoid

the independence of two players, we add coefficients k1, k2, such that the two players

will concern about others’ performance when they make decisions. We can see that

(3.2) is equivalent to

1

2
E
∫ T

0

|(1− ki)xi + ki(xi − xj)|2Qi
+ |ui|2Ri

1
+ |vi|2Ri

2
dt

+
1

2
E
[
|(1− ki)xi(T ) + ki(xi(T )− xj(T ))|2Gi

+ 2〈gi, (1− ki)xi(T )

+ ki(xi(T )− xj(T ))〉
]
.

By [73], this is called relative performance concerns. In the finance area, ki deter-

mines the ith player’s preference for absolute wealth versus relative wealth. When ki

is large, the ith player is more concerned with relative wealth than absolute wealth

(see [65, 73]). However, this makes the system very complicated to be tackled since

the players’ states are coupled with each other.

Remark 3.1. Note that we allow the weight coefficients Ri
1 and Ri

2, i = 1, 2, to be

singular. Thus, the classical open-loop solutions (see [166, 190]) cannot be obtained

directly. By [195], we look for the feedback control form, however, the controls u1,

u2 are constrained that the FBSDE system cannot be decoupled by using standard

Riccati equation method. For these reasons, handling the problem becomes even more

challenging.

By [191, Section 4], under (A3.1)-(A3.2), for any ui ∈ Ui, vi ∈ Vi, (4.1) admits a

unique strong solution for xi ∈ L2
F(Ω;C(0, T ;Rn)). Moreover, there exists a constant

c > 0 such that

E
[

sup
t∈[0,T ]

|xi|2
]
≤ cE

[
|ξi|2 +

∫ T

0

(|ui|2 + |vi|2 + |bi|2 + |σi1|2 + |σi2|2)dt

]
.
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Meanwhile, for any (u1, u2, v1, v2) ∈ U × V , (3.2) is well defined.

In a mixed LF game, both the followers’ and the leaders’ problems are non-

cooperative differential games between two players with the same hierarchy (see

[14, 25]). Thus, our mixed LF game problem can divide into a follower part and a

leader part:

Problem 3.1. (FP) For any pair (u1, u2) ∈ U , given ξ1, ξ2 ∈ Rn, player 1 and player

2 seek for an Nash equilibrium, that is a pair (v̄1, v̄2), where v̄i(u1;u2): U → Vi,

i = 1, 2, is a mapping, such that

J1

(
u1; v̄1(u1;u2);u2;v̄2(u1;u2)

)
= inf

v1∈V1

J1

(
u1; v1(u1;u2);u2; v̄2(u1;u2)

)
,

J2

(
u1; v̄1(u1;u2);u2;v̄2(u1;u2)

)
= inf

v2∈V2

J2

(
u1; v̄1(u1;u2);u2; v2(u1;u2)

)
.

Problem 3.2. (LP) For given ξ1, ξ2 ∈ Rn and optimal pair (v̄1, v̄2) ∈ V, player

1 and player 2 correspondingly seek for an Nash equilibrium again, that is a pair

strategy (ū1, ū2) ∈ U , such that

J1

(
ū1; v̄1(ū1; ū2); ū2;v̄2(ū1; ū2)

)
= inf

u1∈U1

J1

(
u1; v̄1(u1; ū2); ū2; v̄2(u1; ū2)

)
,

J2

(
ū1; v̄1(ū1; ū2); ū2;v̄2(ū1; ū2)

)
= inf

u2∈U2

J2

(
ū1; v̄1(ū1;u2);u2; v̄2(ū1;u2)

)
.

For classical Stackelberg differential games problem, like [190], the two hierarchies

of players have their own cost functionals. The procedure of solving these problems is
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first solving the follower’s problem to obtain an optimal control ū2(u1), for any fixed

u1, and then solving the leader’s problem to obtain ū1. The optimal pair (ū1, ū2(ū1))

constitutes the Stackelberg equilibrium of the classical Stackelberg differential game

problem. However, in (FP) and (LP), we can see that player 1 and player 2 has

the same hierarchy and make decisions simultaneously. From a horizontal view of

(FP) and (LP), the two players play a non-cooperative game. Both of them will

concern about others’ performance and seek an NE such that no player can benefit

from unilaterally changing its own strategy. More specifically, at the vi, i = 1, 2,

actions, player 1 and 2 play a Nash game, with the additional information from the

ui, i = 1, 2, actions and find a pair (v̄1(u1;u2), v̄2(u1;u2)) (depending on u1, u2) such

that the equations in (FP) hold. Then, at the ui, i = 1, 2, actions, player 1 and

2 play a Nash game again and find a pair (ū1, ū2) such that the equations in (LP)

hold. The optimal pair (ū1, v̄1(ū1; ū2), ū2, v̄2(ū1; ū2)) constitutes the solution of our

original mixed LF game problem. From a vertical view of the two Nash games, they

play with hierarchies (first obtain (v̄1, v̄2), and then obtain (ū1, ū2)) and therefore

constitute a Stackelberg game. According to the above reason, we call this game a

mixed LF game.

3.2 The Follower Part

In this section, we first discuss the open-loop NE for the follower part. Since the

states and cost functionals of player 1 and player 2 are symmetric, in what follows,

we only consider one of them and the situation of another player is similar. For a

given pair (u1, u2) ∈ U , we give our first proposition of this section:

Proposition 3.1. Suppose that (A3.1)-(A3.2) hold. Then, (v̄1, v̄2) ∈ V is an open-

loop NE of (FP) if and only if the following two conditions hold:
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1. The adapted solution (x̄i, pi, βi, γi) to the FBSDE



dx̄i =[Aix̄i +Bi
1ui +Bi

2v̄i + bi]dt+ [Ci
1x̄i +Di

1ui +Di
2v̄i

+ σi1]dW1 + [Ci
2x̄i + F i

1ui + F i
2v̄i + σi2]dW2,

dpi =− [(Ai)>pi + (Ci
1)>βi + (Ci

2)>γi +Q(x̄i − kix̄j)]dt

+ βidW1 + γidW2,

x̄i(0) = ξi, pi(T ) = Gi(x̄i(T )− kix̄j(T )) + gi, i = 1, 2,

(3.3)

satisfies the following stationary condition:

Ri
2v̄i + (Bi

2)>pi + (Di
2)>βi + (F i

2)>γi = 0. (3.4)

2. The following convexity condition holds:

E
{∫ T

0

〈Qixi, xi〉+ 〈Ri
2vi, vi〉dt+ 〈Gixi(T ), xi(T )〉

}
≥ 0, i = 1, 2,

where xi is the solution to the following SDE:

dxi = (Aixi +Bi
2vi)dt+ (Ci

1xi +Di
2vi)dW1 + (Ci

2xi + F i
2vi)dW2,

xi(0) = 0.

Proof By variational analysis (see [166, Theorem 4.1]), the result can be obtained.

Thus, we omit it here. �

By the stationary condition (3.4) in Proposition 3.1, if Ri
2 is invertible, then we

have the optimal controls:

v̄i = −(Ri
2)−1[(Bi

2)>pi + (Di
2)>βi + (F i

2)>γi], i = 1, 2.

Since the controls v1, v2 have no constraint, we can consider their linear state feed-

back representations. We set the following nonhomogeneous relationships: pi(t) =
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Pi(t)x̄i(t) + ϕi(t), t ∈ [0, T ], i = 1, 2. Then, by [190, 191], we have following Riccati

equations: 

Ṗi + PiA
i + (Ai)>Pi +

2∑
m=1

(Ci
m)>Pi(C

i
m)

+Qi − (B̂i
2)>(R̂i

2)−1B̂i
2 = 0,

Pi(T ) = Gi, R̂i
2 > 0, i = 1, 2,

(3.5)

where Pi(·) ∈ C1(0, T ;Rn×n) are matrix-value functions. Here

B̂
i
2 = (Bi

2)>Pi + (Di
2)>PiC

i
1 + (F i

2)>PiC
i
2,

R̂i
2 = Ri

2 + (Di
2)>PiD

i
2 + (F i

2)>PiF
i
2, i = 1, 2.

Now, we assume (3.5) admits adapted solutions, then we have following backward

stochastic differential equations (BSDEs):


dϕi =− [(Âi)>ϕi + (Ĉi

1)>θi1 + (Ĉi
2)>θi2 + Ψ>i ui + (Ĉi

1)>Piσ
i
1

+ (Ĉi
2)>Piσ

i
2 − kiQix̄j + Pib

i]dt+ θi1dW1 + θi2dW2,

ϕi(T ) = −kiGix̄j(T ) + gi, i = 1, 2,

(3.6)

where the unknown here are 3-tuple (ϕi, θ
i
1, θ

i
2) of F-progressively measurable Rn-

valued processes and


Âi = Ai −Bi

2(R̂i
2)−1B̂i

2, Φi = (Di
2)>PiD

i
1 + (F i

2)>PiF
i
1,

Ĉi
1 = Ci

1 −Di
2(R̂i

2)−1B̂i
2, Ĉi

2 = Ci
2 − F i

2(R̂i
2)−1B̂i

2,

Ψi = (Bi
1)>Pi + (Di

1)>PiC
i
1 + (F i

1)>PiC
i
2 − Φ>i (R̂i

2)−1B̂i
2, i = 1, 2.

By [164, Page 2285], the solutions of equation (3.5) are said to be strong regular if

R̂i
2 = Ri

2 + (Di
2)>PiD

i
2 + (F i

2)>PiF
i
2 ≥ δI, a.e. t ∈ [0, T ], i = 1, 2,
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for some δ > 0. According to the Theorem 4.5 and Corollary 3.4 in [164], for any

fixed u1, u2, R̂i
2 ≥ δI for some δ > 0 is equivalent to v1(·) 7→ Ji(u1, v1(·), u2, v̄2)

is uniformly convex, when i = 1 (the situation is similar for i = 2). Then, by

the property of uniform convexity, (FP) is uniquely solvable. Thus, for our further

analysis, we give the following assumption:

(A3.3) R̂i
2 ≥ δI, i = 1, 2, for some δ > 0.

Concerning (A3.3), we have following proposition:

Proposition 3.2. Suppose that (A3.1)-(A3.3) hold. Then (FP) admits the unique

optimal control pair (v̄1, v̄2) ∈ V of state feedback forms, where

v̄i =− (R̂i
2)−1[B̂i

2x̄i + Φiui + (Bi
2)>ϕi + (Di

2)>θi1

+ (F i
2)>θi2 + (Di

2)>Piσ
i
1 + (F i

2)>Piσ
i
2], i = 1, 2,

(3.7)

and for any ξi ∈ Rn, i = 1, 2, j 6= i, the corresponding optimal costs are

inf
vi∈Vi

Ji(ui; vi;uj; v̄j)

=
1

2
E〈Pi(0)ξi, ξi〉+ 〈ϕi(0), ξi − kiξj〉+

1

2
E
∫ T

0

−|(R̂i
2)−

1
2 (Φiui

+ (Bi
2)>ϕi + (Di

2)>θi1 + (F i
2)>θi2 + (Di

2)>Piσ
i
1 + (F i

2)>Piσ
i
2)|2

+ 〈(Ri
1 + (Di

1)>PiD
i
1 + (F i

1)>PiF
i
1)ui, ui〉+ 〈Piσi1, σi1〉+ 〈Piσi2, σi2〉

+ 2〈(Bi
1)>ϕi + (Di

1)>θi1 + (F i
1)>θi2 + (Di

1)>Piσ
i
1 + (F i

1)>Piσ
i
2, ui〉

+ 2ki〈[(Âi)> − I]ϕi + (Ĉi
1)>θi1 + (Ĉi

2)>θi2 + Ψ>i ui + (Ĉi
1)>Piσ

i
1

+ (Ĉi
2)>Piσ

i
2 + Pib

i, x̄j〉+ 3k2
i 〈Qix̄j, x̄j〉+ 2〈θi1, σi1〉+ 2〈θi2, σi2〉dt.

(3.8)

Proof The proofs of the optimal controls and the optimal costs are similar to the

discussion in Page 313 to 317 of [191, Chapter 6] and theorem 2.3 of [190]. We omit

the them here. �
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Remark 3.2. If v1, v2, are constrained, we cannot obtain the linear feedback form of

controls by constructing Riccati equations. Then the problem becomes very difficult to

be tackled and its corresponding solutions are non-smooth. Thus, we do not consider

the constrained case here.

3.3 The Leader Part

After solving (FP), we turn to the leaders part. Note that when the players take

their optimal controls v̄i(·), i = 1, 2, given by (3.7), the leaders problem end up with

the following state equation:



dxi =[Âixi + B̂i
3ϕi + D̂i

2θ
i
1 + F̂ i

2θ
i
2 + B̂i

1ui + bi + D̂i
2Piσ

i
1

+ F̂ i
2Piσ

i
2]dt+ [Ĉi

1xi + (D̂i
2)>ϕi + D̂i

3θ
i
1 + D̂i

4θ
i
2 + D̂i

1ui

+ (D̂i
3Pi + I)σi1 + D̂i

4σ
i
2]dW1 + [Ĉi

2xi + (F̂ i
2)>ϕi + (D̂i

4)>θi1

+ F̂ i
3θ
i
2 + F̂ i

1ui + (D̂i
4)>σi1 + (F̂ i

3Pi + I)σi2]dW2,

dϕi =− [(Âi)>ϕi + (Ĉi
1)>θi1 + (Ĉi

2)>θi2 + Ψ>i ui + (Ĉi
1)>Piσ

i
1

+ (Ĉi
2)>Piσ

i
2 − kiQixj + Pib

i]dt+ θi1dW1 + θi2dW2,

xi(0) =ξi, ϕi(T ) = −kiGixj(T ) + gi, i = 1, 2, j 6= i,

(3.9)

where


B̂i

3 = −Bi
2(R̂i

2)−1(Bi
2)>, D̂i

2 = −Bi
2(R̂i

2)−1(Di
2)>, F̂ i

2 = −Bi
2(R̂i

2)−1(F i
2)>,

B̂i
1 = Bi

1 −Bi
2(R̂i

2)−1Φi, D̂
i
3 = −Di

2(R̂i
2)−1(Di

2)>, D̂i
4 = −Di

2(R̂i
2)−1(F i

2)>,

F̂ i
3 = −F i

2(R̂i
2)−1(F i

2)>, D̂i
1 = Di

1 −Di
2(R̂i

2)−1Φi, F̂
i
1 = F i

1 − F i
2(R̂i

2)−1Φi,
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and the cost functional:

Ji(u1; v̄1(u1;u2);u2; v̄2(u1;u2))

=
1

2
E
∫ T

0

|xi − kixj|2Qi
+ |ui|2Ri

1
+
∣∣∣(R̂i

2)−1[B̂i
2x̄i + Φiui + (Bi

2)>ϕi

+ (Di
2)>θi1 + (F i

2)>θi2 + (Di
2)>Piσ

i
1 + (F i

2)>Piσ
i
2]
∣∣∣2
Ri

2

dt

+
1

2
E(|xi(T )− kixj(T )|2Gi

+ 〈gi, xi(T )− kixj(T )〉, i = 1, 2, j 6= i,

(3.10)

which are still quadratic forms.

Next, we discuss the open-loop NE for the leaders part. Let us rewrite (3.9) and

(3.10) compactly such that



dX =[ÂX + B̂3ϕ+ D̂2θ1 + F̂2θ2 + B̂1u+ b1]dt

+ [Ĉ1X + (D̂2)>ϕ+ D̂3θ1 + D̂4θ2 + D̂1u+ σ1]dW1

+ [Ĉ2X + (F̂2)>ϕ+ (D̂4)>θ1 + F̂3θ2 + F̂1u+ σ2]dW2,

dϕ =− [(Â)>ϕ+ (Ĉ1)>θ1 + (Ĉ2)>θ2 + Ψ>u−QX + b2]dt

+ θ1dW1 + θ2dW2,

X(0) =(ξ>1 ξ>2 )>, ϕ(T ) = −GX(T ) + g,

(3.11)

where

X =

(
x1

x2

)
, ϕ =

(
ϕ1

ϕ2

)
, u =

(
u1

u2

)
, θ1 =

(
θ1

1

θ2
1

)
, θ2 =

(
θ1

2

θ2
2

)
, g =

(
g1

g2

)
,

Â =

(
Â1 0

0 Â2

)
, B̂3 =

(
B̂1

3 0

0 B̂2
3

)
, D̂2 =

(
D̂1

2 0

0 D̂2
2

)
, F̂2 =

(
F̂ 1

2 0

0 F̂ 2
2

)
,
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B̂1 =

(
B̂1

1 0

0 B̂2
1

)
, Ĉ1 =

(
Ĉ1

1 0

0 Ĉ2
1

)
, D̂3 =

(
D̂1

3 0

0 D̂2
3

)
, D̂4 =

(
D̂1

4 0

0 D̂2
4

)
,

D̂1 =

(
D̂1

1 0

0 D̂2
1

)
, Ĉ2 =

(
Ĉ1

2 0

0 Ĉ2
2

)
, F̂3 =

(
F̂ 1

3 0

0 F̂ 2
3

)
, F̂1 =

(
F̂ 1

1 0

0 F̂ 2
1

)
,

Ψ =

(
Ψ1 0
0 Ψ2

)
, Q =

(
0 k1Q1

k2Q2 0

)
, G =

(
0 k1G1

k2G2 0

)
, v =

(
v1

v2

)
,

b1 =

(
b1 + D̂1

2P1σ
1
1 + F̂ 1

2P1σ
1
2

b2 + D̂2
2P2σ

2
1 + F̂ 2

2P2σ
2
2

)
, b2 =

(
(Ĉ1

1)>P1σ
1
1 + (Ĉ1

2)>P1σ
1
2 + P1b

1

(Ĉ2
1)>P2σ

2
1 + (Ĉ2

2)>P2σ
2
2 + P2b

2

)
,

σ1 =

(
(D̂1

3P1 + I)σ1
1 + D̂1

4σ
1
2

(D̂2
3P2 + I)σ2

1 + D̂2
4σ

2
2

)
, σ2 =

(
(D̂1

4)>σ1
1 + (F̂ 1

3P1 + I)σ1
2

(D̂2
4)>σ2

1 + (F̂ 2
3P2 + I)σ2

2

)
,

and

J1(u; v̄(u)) =
1

2
E
{∫ T

0

〈K1Q1K
>
1 X,X〉+ 〈R̃1

1u, u〉+ 〈R̃1
2R̂
−1
2 [B̂2X

+ Φu+B>2 ϕ+D>2 θ1 + F>2 θ2 + σ3], R̂−1
2 [B̂2X + Φu

+B>2 ϕ+D>2 θ1 + F>2 θ2 + σ3]〉dt

+ 〈K1G1K
>
1 X(T ), X(T )〉+ 2〈K1e

>
1 g,X(T )〉

}
,

(3.12)

J2(u; v̄(u)) =
1

2
E
{∫ T

0

〈K2Q2K
>
2 X,X〉+ 〈R̃2

1u, u〉+ 〈R̃2
2R̂
−1
2 [B̂2X

+ Φu+B>2 ϕ+D>2 θ1 + F>2 θ2 + σ3], R̂−1
2 [B̂2X + Φu

+B>2 ϕ+D>2 θ1 + F>2 θ2 + σ3]〉dt

+ 〈K2G2K
>
2 X(T ), X(T )〉+ 2〈K2e

>
2 g,X(T )〉

}
,

(3.13)
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where

K1 =

(
1
−k1

)
, R̃1

1 =

(
R1

1 0
0 0

)
, R̃1

2 =

(
R1

2 0
0 0

)
, B̂2 =

(
B̂1

2 0

0 B̂2
2

)
,

R̂2 =

(
R̂1

2 0

0 R̂2
2

)
, B2 =

(
B1

2 0
0 B2

2

)
, D2 =

(
D1

2 0
0 D2

2

)
, F2 =

(
F 1

2 0
0 F 2

2

)
,

Φ =

(
Φ1 0
0 Φ2

)
, σ3 =

(
(D1

2)>P1σ
1
1 + (F 1

2 )>P1σ
1
2

(D2
2)>P2σ

2
1 + (F 2

2 )>P2σ
2
2

)
, K2 =

(
1
−k2

)
,

R̃2
1 =

(
0 0
0 R2

1

)
, R̃2

2 =

(
0 0
0 R2

2

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
.

Then, we give out the proposition for (LP) with non-degenerate control weights.

Proposition 3.3. Suppose that (A3.1)-(A3.3) and the following inequalities hold:

E
{∫ T

0

〈KiQiK
>
i Xi, Xi〉+ 〈R̃i

1δui, δui〉+ 〈R̃i
2R̂
−1
2 [B̂2X + Φδui

+B>2 ϕ+D>2 θ1 + F>2 θ2], R̂−1
2 [B̂2X + Φδui +B>2 ϕ+D>2 θ1

+ F>2 θ2]〉dt+ 〈KiGiK
>
i Xi(T ), Xi(T )〉

}
> 0, i = 1, 2,

(3.14)

where δu1 = (uT1 0T )T , δu2 = (0T uT2 )T and (Xi, ϕi, θ1i, θ2i) are the solutions to the

following SDE:



dXi =[ÂXi + B̂3ϕi + D̂2θ1i + F̂2θ2i + B̂1δui]dt+ [Ĉ1Xi + D̂>2 ϕi

+ D̂3θ1i + D̂4θ2i + D̂1δui]dW1 + [Ĉ2Xi + F̂>2 ϕi + D̂>4 θ1i

+ F̂3θ2i + F̂1δui]dW2, Xi(0) = (0> 0>)>,

dϕi =− (Â>ϕi + Ĉ>1 θ1i + Ĉ>2 θ2i + Ψ>δui −QXi)dt

+ θ1idW1 + θ2idW2, ϕi(T ) = −GXi(T ), i = 1, 2.

(3.15)
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Then, (ū1, ū2) ∈ U is an open-loop NE of (LP) if and only if the adapted solution

(X,ϕ, θ1, θ2, φi, Yi, β̂i, γ̂i) to the FBSDE



dX =[ÂX + B̂3ϕ+ D̂2θ1 + F̂2θ2 + B̂1ū+ b1]dt+ [Ĉ1X + (D̂2)>ϕ

+ D̂3θ1 + D̂4θ2 + D̂1ū+ σ1]dW1 + [Ĉ2X + (F̂2)>ϕ

+ (D̂4)>θ1 + F̂3θ2 + F̂1ū+ σ2]dW2, X(0) = (ξ>1 ξ>2 )>,

dϕ =− [(Â)>ϕ+ (Ĉ1)>θ1 + (Ĉ2)>θ2 + Ψ>ū−QX + b2]dt

+ θ1dW1 + θ2dW2, ϕ(T ) = −GX(T ) + g,

dYi =− [Â>Yi + Ĉ>1 β̂i + Ĉ>2 γ̂i −Q>φi +KiQiK
>
i X + B̂>2 R̂

−1
2 R̃i

2

· R̂−1
2 Υ]dt+ β̂idW1 + γ̂idW2,

dφi =[Âφi + (B̂>3 Yi + D̂2β̂i + F̂2γ̂i) +B2R̂
−1
2 R̃i

2R̂
−1
2 Υ]dt

+ [Ĉ1φi + (D̂>2 Yi + D̂>3 β̂i + D̂4γ̂i) +D2R̂
−1
2 R̃i

2R̂
−1
2 Υ]dW1

+ [Ĉ2φi + (F̂>2 Yi + D̂>4 β̂i + F̂>3 γ̂i) + F2R̂
−1
2 R̃i

2R̂
−1
2 Υ]dW2,

Yi(T ) = KiGiK
>
i X(T ) +Kie

>
i g −G>φi(T ), φi(0) = 0, i = 1, 2,

(3.16)

satisfies the following condition:

〈(R̃i
1 + Φ>R̂−1

2 R̃i
2R̂
−1
2 Φ)ū+ Φ>R̂−1

2 R̃i
2R̂
−1
2 [B̂2X +B>2 ϕ+D>2 θ1

+ F>2 θ2 + σ3] + B̂>1 Yi + D̂>1 β̂i + F̂1γ̂i −Ψφi, u
i − ū〉 ≥ 0,

for all ui ∈ Γ, a.e. t ∈ [0, T ], P-a.s, i = 1, 2,

(3.17)

where u1 = (u>1 ū>2 )>, u2 = (ū>1 u>2 )>, ū = (ū>1 ū>2 )> and Υ = B̂2X + Φū + B>2 ϕ +

D>2 θ1 + F>2 θ2 + σ3.

Proof Using a similar argument in Proposition 3.1, we let (ū1, ū2) ∈ U be the optimal

pair of (LP) and (X,ϕ, θ1, θ2, φ1, Y1, β̂1, γ̂1) be the adapted solution to (3.16) with
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i = 1. Since U1 is convex, for any ū1 + u1 ∈ U1 and ε ∈ [0, 1], we have

ū1 + εu1 = ε(ū1 + u1) + (1− ε)ū1 ∈ U1.

Let X be the perturbed state with following state equation:

dX =[ÂX + B̂3ϕ+ D̂2θ1 + F̂2θ2 + B̂1(ū+ εδu1) + b1]dt

+ [Ĉ1X + D̂>2 ϕ+ D̂3θ1 + D̂4θ2 + D̂1(ū+ εδu1) + σ1]dW1

+ [Ĉ2X + F̂>2 ϕ+ D̂>4 θ1 + F̂3θ2 + F̂1(ū+ εδu1) + σ2]dW2,

dϕ =− [Â>ϕ+ Ĉ>1 θ1 + Ĉ>2 θ2 + Ψ>(ū+ εδu1)−QX + b2]dt

+ θ1dW1 + θ2dW2,

X(0) = (ξ>1 ξ>2 )>, ϕ(T ) = −GX(T ) + g.

We let X = X + εX1, ϕ = ϕ + εϕ1, θ1 = θ1 + εθ11, θ2 = θ2 + εθ21 and X1, ϕ1, θ11,

θ21 are the solutions of (3.15) when i = 1. Then, one can obtain

J1(ū1 + εu1; v̄1(ū1 + εu1; ū2); ū2; v̄2(ū1 + εu1; ū2))

− J1(ū1; v̄1(ū1; ū2); ū2; v̄2(ū1; ū2))

=εE
{∫ T

0

〈K1Q1K
>
1 X + B̂>2 R̂

−1
2 R̃1

2R̂
−1
2 Υ, X1〉+ 〈R̃1

1ū+ Φ>R̂−1
2 R̃1

2R̂
−1
2 Υ, δu1〉

+ 〈B2R̂
−1
2 R̃1

2R̂
−1
2 Υ, ϕ1〉+ 〈D2R̂

−1
2 R̃1

2R̂
−1
2 Υ, θ11〉+ 〈F2R̂

−1
2 R̃1

2R̂
−1
2 Υ, θ21〉dt

+ 〈K1G1K
>
1 X(T ) +K1e

>
1 g,X1(T )〉

}
+
ε2

2
E
{∫ T

0

〈K1Q1K
>
1 X1, X1〉

+ 〈R̃1
1δu1, δu1〉+ 〈R̃1

2R̂
−1
2 [B̂2X1 + Φδu1 +B>2 ϕ1 +D>2 θ11 + F>2 θ21],

R̂−1
2 [B̂2X1 + Φδu1 +B>2 ϕ1 +D>2 θ11 + F>2 θ21]〉dt+ 〈K1G1K

>
1 X1(T ), X1(T )〉

}
.

On the other hand, we introduce following auxiliary equationsdY1 = α̂1dt+ β̂1dW1 + γ̂1dW2, Y1(T ) = K1G1K
>
1 X(T ) +K1e

>
1 g −G>φ1(T ),

dφ1 = ψ1dt+ ω1
1dW1 + ω1

2dW2, φ1(0) = 0,
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where Y1 = ((y1
1)> (y2

1)>)>, β̂1 = ((β̂1
1)> (β̂2

1)>)>, γ̂1 = ((γ̂1
1)> (γ̂2

1)>)>, φ1 =

((φ1
1)> (φ2

1)>)> and



α̂1 =− [Â>Y1 + Ĉ>1 β̂1 + Ĉ>2 γ̂1 −Q>φ1 +K1Q1K
>
1 X + B̂>2 R̂

−1
2 R̃1

2R̂
−1
2 Υ],

ψ1 =Âφ1 + [B̂>3 Y1 + D̂2β̂1 + F̂2γ̂1] +B2R̂
−1
2 R̃1

2R̂
−1
2 Υ,

ω1
1 =Ĉ1φ1 + [D̂>2 Y1 + D̂>3 β̂1 + D̂4γ̂1] +D2R̂

−1
2 R̃1

2R̂
−1
2 Υ,

ω1
2 =Ĉ2φ1 + [F̂>2 Y1 + D̂>4 β̂1 + F̂>3 γ̂1] + F2R̂

−1
2 R̃1

2R̂
−1
2 Υ,

β̂1, γ̂1 ∈ L2
F(0, T ;R2n). Applying Itô formula to 〈Y1, X1〉 and 〈φ1, ϕ1〉, we have

〈Y1(T ), X1(T )〉 − 〈Y1(0), X1(0)〉

=E
∫ T

0

〈α̂1 + Â>Y1 + Ĉ>1 β̂1 + Ĉ>2 γ̂1, X1〉+ 〈B̂>3 Y1 + D̂2β̂1 + F̂2γ̂1, ϕ1〉

+ 〈D̂>2 Y1 + D̂>3 β̂1 + D̂4γ̂1, θ11〉+ 〈F̂>2 Y1 + D̂>4 β̂1 + F̂>3 γ̂1, θ21〉

+ 〈B̂>1 Y1 + D̂>1 β̂1 + F̂1γ̂1, δu1〉,

and

〈φ1(T ), ϕ1(T )〉 − 〈φ1(0), ϕ1(0)〉 = E
∫ T

0

〈ψ1 − Âφ1, ϕ1〉

+ 〈ω1
1 − Ĉ1φ1, θ11〉+ 〈ω1

2 − Ĉ2φ1, θ21〉 − 〈Ψφ1, δu1〉 − 〈Q>φ1, X1〉.

Hence,

J1(ū1 + εu1; v̄1(ū1 + εu1; ū2); ū2; v̄2(ū1 + εu1; ū2))

− J1(ū1; v̄1(ū1; ū2); ū2; v̄2(ū1; ū2))

=εE
{∫ T

0

〈R̃1
1ū+ Φ>R̂−1

2 R̃1
2R̂
−1
2 Υ + B̂>1 Y1 + D̂>1 β̂1 + F̂1γ̂1 −Ψφ1, δu1〉dt

}
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+
ε2

2
E
{∫ T

0

〈K1Q1K
>
1 X1, X1〉+ 〈R̃1

1δu1, δu1〉+ 〈R̃1
2R̂
−1
2 [B̂2X1 + Φδu1

+B>2 ϕ1 +D>2 θ11 + F>2 θ21], R̂−1
2 [B̂2X1 + Φδu1 +B>2 ϕ1 +D>2 θ11

+ F>2 θ21]〉dt+ 〈K1G1K
>
1 X1(T ), X1(T )〉

}
.

Therefore, under the condition (3.14) for i = 1,

J1(ū1; v̄1(ū1; ū2); ū2; v̄2(ū1; ū2))

≤J1(ū1 + εu1; v̄1(ū1 + εu1; ū2); ū2; v̄2(ū1 + εu1; ū2)),

for any ū1 + u1 ∈ U1, ε ∈ [0, 1] if and only if (3.17) holds for i = 1. Similarly, we

have the result for i = 2. The proposition follows. �

By the discussion in [93], if (Ri
1 + Φ>i (R̂1

2)−1Ri
2(R̂1

2)−1Φi) > 0, there exists two

projection mappings PΓ1(·) : Rm → Γ and PΓ2(·) : Rm → Γ, where Γ is a closed

convex subset of Rm, under the norm | · |Ri
1+Φ>i (R̂1

2)−1Ri
2(R̂1

2)−1Φi
such that

ū1 = PΓ1{−(R1
1 + Φ>1 (R̂1

2)−1R1
2(R̂1

2)−1Φ1)−1[Φ>1 (R̂1
2)−1R1

2(R̂1
2)−1·

(B̂1
2x1 + (B1

2)>ϕ1 + (D1
2)>θ1

1 + (F 1
2 )>θ1

2 + (D1
2)>P1σ

1
1 + (F 1

2 )>P1σ
1
2)

+ (B̂1
1)>y1

1 + (D̂1
1)>β̂1

1 + F̂ 1
1 γ̂

1
1 −Ψ1φ

1
1]},

ū2 = PΓ2{−(R2
1 + Φ>2 (R̂2

2)−1R2
2(R̂2

2)−1Φ2)−1[Φ>2 (R̂2
2)−1R2

2(R̂2
2)−1·

(B̂2
2x2 + (B2

2)>ϕ2 + (D2
2)>θ2

1 + (F 2
2 )>θ2

2 + (D2
2)>P2σ

2
1 + (F 2

2 )>P2σ
2
2)

+ (B̂2
1)>y2

2 + (D̂2
1)>β̂2

2 + F̂ 2
1 γ̂

2
2 −Ψ2φ

2
2]}.

(3.18)

Let ū1 = (ū>1 0>)> and ū2 = (0> ū>2 )>, then we obtain the related Hamiltonian
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system:



dX =[ÂX + B̂3ϕ+ D̂2θ1 + F̂2θ2 + B̂1ū
i + b1]dt+ [Ĉ1X + (D̂2)>ϕ

+ D̂3θ1 + D̂4θ2 + D̂1ū
i + σ1]dW1 + [Ĉ2X + (F̂2)>ϕ+ (D̂4)>θ1

+ F̂3θ2 + F̂1ū
i + σ2]dW2, X(0) = (ξ>1 ξ>2 )>,

dϕ =− [(Â)>ϕ+ (Ĉ1)>θ1 + (Ĉ2)>θ2 + Ψ>ūi −QX + b2]dt+ θ1dW1

+ θ2dW2, ϕ(T ) = −GX(T ) + g,

dYi =− [Â>Yi + Ĉ>1 β̂i + Ĉ>2 γ̂i −Q>φi +KiQiK
>
i X + B̂>2 R̂

−1
2 R̃i

2·

R̂−1
2 (B̂2X + Φūi +B>2 ϕ+D>2 θ1 + F>2 θ2 + σ3)]dt+ β̂idW1

+ γ̂idW2, Yi(T ) = KiGiK
>
i X(T ) +Kie

>
i g −G>φi(T ),

dφi =[Âφi + (B̂>3 Yi + D̂2β̂i + F̂2γ̂i) +B2R̂
−1
2 R̃i

2R̂
−1
2 (B̂2X + Φūi +B>2 ϕ

+D>2 θ1 + F>2 θ2 + σ3)]dt+ [Ĉ1φi + (D̂>2 Yi + D̂>3 β̂i + D̂4γ̂i) +D2·

R̂−1
2 R̃i

2R̂
−1
2 (B̂2X + Φūi +B>2 ϕ+D>2 θ1 + F>2 θ2 + σ3)]dW1

+ [Ĉ2φi + (F̂>2 Yi + D̂>4 β̂i + F̂>3 γ̂i) + F2R̂
−1
2 R̃i

2R̂
−1
2 (B̂2X

+ Φūi +B>2 ϕ+D>2 θ1 + F>2 θ2 + σ3)]dW2, φi(0) = 0, i = 1, 2.

In summary, the mixed LF game problem with constrained and non-degenerate con-

trol weights is solved. Next, we give some examples for the explicit expression of the

projection operators PΓi , i = 1, 2.

3.3.1 Some examples for the projection operators

In general, the projection operator on a convex-closed set does not admit some

explicit representation. In some sense, we can characterize it using the so-called

variational inequality but some numerical algorithm should be invoked for real com-

putation. On the other hand, in case the convex-closed set has more structure, it is
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possible to construct more explicit representation, as addressed below. Before that,

in equation (3.18), we let

ϑi(xi;ϕi; θ
i
1; θi2; yii; β̂

i
i ; γ̂

i
i ;φ

i
i)

=− (Ri
1 + Φ>i (R̂i

2)−1Ri
2(R̂i

2)−1Φi)
−1[Φ>i (R̂i

2)−1Ri
2(R̂i

2)−1(B̂i
2xi

+ (Bi
2)>ϕi + (Di

2)>θi1 + (F i
2)>θi2 + (Di

2)>Piσ
i
1 + (F i

2)>Piσ
i
2)

+ (B̂i
1)>yii + (D̂i

1)>β̂ii + F̂ i
1γ̂

i
i −Ψiφ

i
i], i = 1, 2.

and ϑi1, ϑ
i
2, · · · , ϑim are the components of ϑi.

Case 1: Convex-closed cone. First, we consider the case when Γi, i = 1, 2 are

two convex-closed cones. Recall a set Γ is said to be a convex-closed cone if it is closed

convex set, and closed under positive scalar operations (namely, ϑi ∈ Γi ⊆ Rm, then

κiϑi ∈ Γi for all κi > 0). This definition may be revised as for all κi ≥ 0. Indeed,

since limκi→0 κ
iϑi = 0 by noting the closeness of Γi, so a closed cone contains the

original point 0 ∈ Γi.

In a finite-dimensional space such as Rm, a closed convex cone can be char-

acterized by m half-spaces. We may present this point when m = 2: suppose

PΓi : R2 → Γi, i = 1, 2 and Γi ⊂ R2 are closed convex cones, then Γi = {ϑi ∈

R2|〈αi1, ϑi〉 ≥ 0; 〈αi2, ϑi〉 ≥ 0} for vectors αi1, α
i
2 ∈ R2. Then, we can introduce the

normal cones for Γi. Recall the normal cone for a set Γ (not necessary to be convex

set) at point, say original 0, is:

NΓ(0) = {p ∈ Rm| 〈p, ϑi〉 ≤ 0, ∀ ϑi ∈ Γ}.

In particular, suppose βi1, β
i
2 respectively the normal vectors to αi1, α

i
2 with obtuse

angle arrangements: that is 〈αi1, βi2〉 ≤ 0, 〈αi2, βi1〉 ≤ 0. Then, the normal cone of

Γi takes form: NΓi(0) = {ϑi ∈ R2|〈βi1, ϑi〉 ≤ 0; 〈βi2, ϑi〉 ≤ 0}. In this case, the
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projection operator admits more explicit expressions as:

PΓi{ϑi} =


ϑi ϑi ∈ Γi, i = 1, 2,

0 ϑi ∈ NΓi(0),
αi

1〈αi
1,ϑ

i〉
〈αi

1,α
i
1〉

ϑi ∈ Γ† = {ϑi ∈ R2| 〈αi1, ϑi〉 ≥ 0; 〈βi1, ϑi〉 ≥ 0},
αi

2〈αi
2,ϑ

i〉
〈αi

2,α
i
2〉

ϑi ∈ Γ‡ = {ϑi ∈ R2| 〈αi2, ϑi〉 ≥ 0; 〈βi2, ϑi〉 ≥ 0}.

Case 2: Convex-closed orthant cone. Moreover, we have the following rep-

resentation for more specific orthant cone. Recall a nonnegative (closed, convex)

orthant cone in Rm space: Γi = {ϑi = (ϑi1, · · · , ϑim) ∈ Rm|ϑi1 ≥ 0, · · · , ϑim ≥ 0}. Note

that the positive orthant cone (Γi)′ = {ϑi = (ϑi1, · · · , ϑim) ∈ Rm|ϑi1 > 0, · · · , ϑim > 0}

is not closed. In this case, we have

PΓi{ϑi} = ((ϑi1)+, · · · , (ϑim)+),

where (ϑik)
+ = max{ϑik, 0}, k = 1, 2, · · · ,m.

Case 3: Subspace. A complete explicit form of projection may be the subspace

which is a very special but still important closed-convex set (note that subspace

constraint is well documented in literature such as [73, 95, 113]). Suppose Γi are

ri-dimensional subspaces in Rm, ri ≤ m with h1, · · · , hri as basis. Introduce Hi :=

(h1, · · · , hri), then we have explicit expression (see [9, Chapter 8]):

PΓi{ϑi} = Ĥiϑ
i,

with Ĥi = Hi(H
>
i R

i
1Hi)

−1H>i R
i
1, i = 1, 2 (see Chapter 2).

Besides, in case with standard orthonormal basis e1, · · · , er, we have

PΓi{ϑi} = (e1, · · · , er)(e1, · · · , er)>ϑi.

More financial linear constraints in subspace can refer to [73, Section 5].
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3.4 The Solvability of Singular Case

In Section 4, we obtain the open-loop NE for (LP), and the related mixed LF strategy

can be completely determined. A crucial assumption therein is the control weights

are positive-definite that restated as follows:

Ri
1(t) > 0, Ri

2(t) > 0, a.e. t ∈ [0, T ], i = 1, 2. (3.19)

Nevertheless, in reality, there arise various cases in which the control weight might

be indefinite or degenerated (e.g., the mean-variance optimization where control

weight becomes singular [129, 191, 195]). In the case that the control weight is

not invertible, it is impossible to decouple the Hamiltonian system like classical LQ

problems (see [101, 190, 191]). When handling (LP) under this case, the difficulties

mainly arise from two sides: (i) due to the singular control weight, the classical

FBSDE representation of Hamiltonian system via explicit stationary condition is no

longer workable; (ii) due to the input constrained for ui, i = 1, 2, it is also impossible

to impose the Riccati equation to have some conditions (like D>PD > 0 in [191]).

We plan to attack this problem by some weak-convergence method to get some

near-optimal control sequence. This provides some tractable solution, although near-

optimality, for real application purposes. It also provides some new insight into the

classical singular LQ control problem.

Unlike [164, 166], the state equation here becomes a fully-coupled FBSDE, thus

the standard completion-square method (see [191, Chapter 6]) via Riccati equation

may not be applicable directly. Meanwhile, the state equation with a fully-coupled

FBSDE has been investigated in [182, 193], their control weights are positive-definite,

thus the convexity of the corresponding cost functional is obvious. However, since Ri
1

and Ri
2, i = 1, 2 here are degenerate, we first need to discuss the (uniform) convexity

of the cost functional of (LP). By using a Riccati-type equation to decouple (3.11),

(LP) can be decomposed into a forward problem and a backward problem. Then,
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we can discuss the convexity of the above two problems, respectively. To simplify,

we let gi = 0. Since the states and cost functionals of player 1 and player 2 are

symmetric, we only consider player 1. For player 2, the situation is similar.

First, we rewrite (3.11) as follows:

dX =[ÂX + B̂3ϕ+ D̂2θ1 + F̂2θ2 + B́1ũ1]dt+ [Ĉ1X + D̂>2 ϕ

+ D̂3θ1 + D̂4θ2 + D́1ũ1]dW1 + [Ĉ2X + F̂>2 ϕ+ D̂>4 θ1

+ F̂3θ2 + F́1ũ1]dW2, X(0) = (ξ>1 ξ>2 )>,

dϕ =− [Â>ϕ+ Ĉ>1 θ1 + Ĉ>2 θ2 + Ψ́>1 ũ1 −QX]dt+ θ1dW1

+ θ2dW2, ϕ(T ) = −GX(T ),

(3.20)

where ũ1 = (u>1 0>)> and

B́1 =

(
B̂1

1 0
0 0

)
, D́1 =

(
D̂1

1 0
0 0

)
, F́1 =

(
F̂ 1

1 0
0 0

)
, Ψ́1 =

(
Ψ1 0
0 0

)
.

Let ϕ = ΛX + λ and

dϕ =Λ̇X + Λ[ÂX + B̂3ϕ+ D̂2θ1 + F̂2θ2 + B́1ũ1]dt+ Λ[Ĉ1X + D̂>2 ϕ

+ D̂3θ1 + D̂4θ2 + D́1ũ1]dW1 + Λ[Ĉ2X + F̂>2 ϕ+ D̂>4 θ1

+ F̂3θ2 + F́1ũ1]dW2 + λ̇+ ι1dW1 + ι2dW2

=− [Â>ϕ+ Ĉ>1 θ1 + Ĉ>2 θ2 + Ψ́>1 ũ1 −QX]dt+ θ1dW1 + θ2dW2,

where Λ(·) ∈ C1(0, T ;R2n×2n) and λ(·) ∈ C1(0, T ;R2n). By comparing the diffusion

terms, we have

θ1 =[Λ3(Ĉ1 + D̂>2 P ) + Λ1D̂4Λ2(Ĉ2 + F̂>2 P )]X + (Λ3D̂
>
2 + Λ1D̂4Λ2F̂

>
2 )λ

+ (Λ3D́
>
1 + Λ1D̂4Λ2F́1)ũ1 + ι1,

θ2 =[Λ2(Ĉ2 + F̂>2 P ) + Λ2D̂
>
4 P1(Ĉ1 + D̂>2 P )]X + (Λ2D̂

>
2 + Λ2D̂4Λ1D̂

>
3 )λ

+ (Λ2F́1 + Λ2D̂
>
4 P1D́1)ũ1 + ι2,
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where Λ1 =(I − ΛD̂3)−1Λ, Λ2 = (I − ΛF̂3 − ΛD̂>4 Λ1D̂4)−1,

Λ3 =Λ1 + Λ>1 D̂4Λ2D̂
>
4 Λ1.

By elementary calculation, one can obtain that Λ satisfies following process

−dΛ = H(Â; B̂3; Ĉ1; Ĉ2; D̂2; D̂4; F̂2)dt, Λ(T ) = G, (3.21)

with



H(Â; B̂3; Ĉ1; Ĉ2; D̂2; D̂4; F̂2)

:=ΛÂ+ Â>Λ + ΛB̂3Λ−Q+ Ĉ>1 ΛĈ1 + Ĉ>2 ΛĈ2 + ΛD̂2Λ3Ĉ1

+ Ĉ>1 Λ3D̂
>
2 Λ + ΛF̂2Λ2Ĉ2 + Ĉ>2 Λ2F̂

>
2 Λ + ΛD̂2D̂

>
2 Λ + ΛF̂2F̂

>
2 Λ

+ ΛF̂2Λ2D̂
>
4 Λ1Ĉ1 + Ĉ>1 Λ1D̂4Λ2F̂

>
2 Λ + ΛD̂2Λ1D̂4Λ2Ĉ2

+ Ĉ>2 Λ2D̂
>
4 Λ1D̂

>
2 Λ + ΛD̂2Λ1D̂4Λ2F̂

>
2 Λ + ΛF̂2Λ2D̂

>
4 Λ1D̂

>
2 Λ

+ Ĉ>1 Λ1D̂4Λ2Ĉ2 + Ĉ>2 Λ2D̂
>
4 Λ1Ĉ1.

If equation (3.21) is solvable, then the FBSDE (3.20) can be decoupled as follows



dX =(Ǎ1X + Č1λ+ D̂2ι1 + F̂2ι2 + B̌1ũ1)dt+ (Ǎ2X + Č2λ

+ D̂3ι1 + D̂4ι2 + B̌2ũ1)dW1 + (Ǎ3X + Č3λ+ (D̂4)>ι1

+ F̂3ι2 + B̌3ũ1)dW2, X(0) = (ξ>1 ξ>2 )>,

dλ =− {Ǎ4λ+ (ΛD̂2 + Ĉ>1 )ι1 + (ΛF̂2 + Ĉ>2 )ι2 + B̌4ũ1}dt

+ ι1dW1 + ι2dW2, λ(T ) = 0,

(3.22)
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where 

Ǎ1 =Â+ B̂3Λ + D̂2(Λ3(Ĉ1 + D̂>2 Λ) + Λ1D̂4Λ2(Ĉ2 + F̂>2 Λ))

+ F̂2(Λ2(Ĉ2 + F̂>2 P ) + Λ2D̂
>
4 P1(Ĉ1 + D̂>2 P )),

Ǎ2 =Ĉ1 + (D̂2)>Λ + D̂3(Λ3(Ĉ1 + D̂>2 P ) + Λ1D̂4Λ2(Ĉ2 + F̂>2 P ))

+ D̂4(Λ2(Ĉ2 + F̂>2 P ) + Λ2D̂
>
4 P1(Ĉ1 + D̂>2 P )),

Ǎ3 =Ĉ2 + (F̂2)>Λ + (D̂4)>(Λ3(Ĉ1 + D̂>2 P ) + Λ1D̂4Λ2(Ĉ2 + F̂>2 P ))

+ F̂3(Λ2(Ĉ2 + F̂>2 P ) + Λ2D̂
>
4 P1(Ĉ1 + D̂>2 P )),

Ǎ4 =Â> + ΛB̂3 + (ΛD̂2 + Ĉ>1 )(Λ3D̂
>
2 + Λ1D̂4Λ2F̂

>
2 )

+ (ΛF̂2 + Ĉ>2 )(Λ2D̂
>
2 + Λ2D̂4Λ1D̂

>
3 ),

Č1 =B̂3 + D̂2(Λ3D̂
>
2 + Λ1D̂4Λ2F̂

>
2 ) + F̂2(Λ2D̂

>
2 + Λ2D̂4Λ1D̂

>
3 ),

Č2 =(D̂2)> + D̂3(Λ3D̂
>
2 + Λ1D̂4Λ2F̂

>
2 ) + D̂4(Λ2D̂

>
2 + Λ2D̂4Λ1D̂

>
3 ),

Č3 =(F̂2)> + (D̂4)>(Λ3D̂
>
2 + Λ1D̂4Λ2F̂

>
2 ) + F̂3(Λ2D̂

>
2 + Λ2D̂4Λ1D̂

>
3 ),

B̌1 =B́1 + D̂2(Λ3D́
>
1 + Λ1D̂4Λ2F́1) + F̂2(Λ2F́1 + Λ2D̂

>
4 P1D́1),

B̌2 =D́1 + D̂3(Λ3D́
>
1 + Λ1D̂4Λ2F́1) + D̂4(Λ2F́1 + Λ2D̂

>
4 P1D́1),

B̌3 =F́1 + (D̂4)>(Λ3D́
>
1 + Λ1D̂4Λ2F́1) + F̂3(Λ2F́1 + Λ2D̂

>
4 P1D́1),

B̌4 =(ΛB́1 + Ψ́>1 ) + (ΛD̂2 + Ĉ>1 )(Λ3D́
>
1 + Λ1D̂4Λ2F́1)

+ (ΛF̂2 + Ĉ>2 )(Λ2F́1 + Λ2D̂
>
4 P1D́1),

b̌1 =b1 + D̂2(Λ3σ1 + Λ1D̂4Λ2σ2) + F̂2(Λ2σ2 + Λ2D̂
>
4 P1σ1),

b̌2 =σ1 + D̂3(Λ3σ1 + Λ1D̂4Λ2σ2) + D̂4(Λ2σ2 + Λ2D̂
>
4 P1σ1),

b̌3 =σ2 + (D̂4)>(Λ3σ1 + Λ1D̂4Λ2σ2) + F̂3(Λ2σ2 + Λ2D̂
>
4 P1σ1),

b̌4 =Λb1 + b2 + (ΛD̂2 + Ĉ>1 )(Λ3σ1 + Λ1D̂4Λ2σ2)

+ (ΛF̂2 + Ĉ>2 )(Λ2σ2 + Λ2D̂
>
4 P1σ1).
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Next, we give out a very important (sufficient) condition for the uniform convexity

of the cost functional (3.12) in (LP).

Theorem 3.1. Suppose that (A3.1)-(A3.3) hold, (3.21) is solvable. For some δ4 >

0, γ > 0, if

δ4γ >

∣∣∣∣12L1T + L2 + 1 + (
1

δ′′1
+

1

δ′′2
+

1

δ′′3
)L3T

[
L2 +

L1(T + 1)

2
+ 1

]∣∣∣∣,
where

L1 = exp
(

2

∫ T

0

(|Ǎ4|+
1

δ1

+
1

δ2

+
1

δ3

)dt
)
,

L2 =
(

2

∫ T

0

(|Ǎ4|+
1

δ1

+
1

δ2

+
1

δ3

)L1dt
)
,

L3 =(1 + 27δ′2 + 27δ′3) exp
(∫ T

0

(2|Ǎ1|+
1

δ′1
) + (1 +

1

δ′2
)|Ǎ2|2 + (1 +

1

δ′3
)|Ǎ3|2dt

)
,

and



δ1 =
1

2|(ΛD̂2 + Ĉ>1 )>(ΛD̂2 + Ĉ>1 )|
, δ′′1 =

1

9‖P3‖2 max{‖Č1‖2, ‖D̂2‖2, ‖F̂2‖2}
,

δ′1 =
1

9 max{‖Č1‖2, ‖D̂2‖2, ‖F̂2‖2}
, δ′2 =

1

9 max{‖Č2‖2, ‖D̂3‖2, ‖D̂4‖2}
,

δ′3 =
1

9 max{‖Č3‖2, ‖D̂>4 ‖2, ‖F̂3‖2}
, δ2 =

1

2|(ΛF̂2 + Ĉ>2 )>(ΛF̂2 + Ĉ>2 )|
,

δ′′2 =
2‖P3‖+ 1/max{‖Č2‖2, ‖D̂3‖2, ‖D̂4‖2}

9‖Ǎ>2 P3‖2
, δ3 =

1

|B̌>4 B̌4|
,

δ′′3 =
2‖P3‖+ 1/max{‖Č3‖2, ‖D̂>4 ‖2, ‖F̂3‖2}

9‖Ǎ>3 P3‖2
,

then cost functional (3.12) is uniformly convex on u.
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Proof The FBSDE (3.22) can be further divided into:



dX1 =(Ǎ1X1 + B̌1ũ1)dt+ (Ǎ2X1 + B̌2ũ1)dW1 + (Ǎ3X1 + B̌3ũ1)dW2,

dX2 =(Ǎ1X2 + Č1λ+ D̂2ι1 + F̂2ι2)dt+ (Ǎ2X2 + Č2λ+ D̂3ι1

+ D̂4ι2)dW1 + (Ǎ3X2 + Č3λ+ (D̂4)>ι1 + F̂3ι2)dW2,

dλ =− {Ǎ4λ+ (ΛD̂2 + Ĉ>1 )ι1 + (ΛF̂2 + Ĉ>2 )ι2 + B̌4ũ1}dt

+ ι1dW1 + ι2dW2,

X1(0) = (ξ>1 ξ>2 )>, X2(0) = (0> 0>)>, λ(T ) = 0,

(3.23)

and the cost functional (3.12) can be rewritten as

J1(u1) =
1

2
E
{∫ T

0

〈K1Q1K
>
1 (X1 +X2), (X1 +X2)〉dt+ 〈K1G1K

>
1 (X1

+X2)(T ), (X1 +X2)(T )〉
}

≥1

2
E
{∫ T

0

〈(1− ε)K1Q1K
>
1 X1, X1〉+ 〈(1− 1

ε
)K1Q1K

>
1 X2, X2〉dt

+ 〈(1− ε)K1G1K
>
1 X1(T ), X1(T )〉+ 〈(1− 1

ε
)K1G1K

>
1 X2(T ), X2(T )〉

}
,

where ε > 0. Then, according to the decoupled system (3.23), we can construct two

auxiliary systems:



dX1 = (Ǎ1X1 + B̌1ũ1)dt+ (Ǎ2X1 + B̌2ũ1)dW1 + (Ǎ3X1 + B̌3ũ1)dW2,

X1(0) = (ξ>1 ξ>2 )>,

J1
1 (u1) =

1

2
E
{∫ T

0

〈(1− ε)K1Q1K
>
1 X1, X1〉dt

+ 〈(1− ε)K1G1K
>
1 X1(T ), X1(T )〉

}
,

(3.24)
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and 

dX2 = (Ǎ1X2 + Č1λ+ D̂2ι1 + F̂2ι2)dt+ (Ǎ2X2 + Č2λ+ D̂3ι1

+ D̂4ι2)dW1 + (Ǎ3X2 + Č3λ+ (D̂4)>ι1 + F̂3ι2)dW2,

X2(0) = (0> 0>)>,

J2
1 (λ, ι1, ι2) =

1

2
E
{∫ T

0

〈(1− 1

ε
)K1Q1K

>
1 X2, X2〉dt

+ 〈(1− 1

ε
)K1G1K

>
1 X2(T ), X2(T )〉

}
.

(3.25)

We first consider the BSDE in (3.23). By the similar argument in [194, Chapter

4], [191, Chapter 7] and using Itô formula,

E
[
|λ(t)|2 +

∫ T

t

|ι1|2ds+

∫ T

t

|ι2|2ds
]

=E
∫ T

t

〈2λ, (Ǎ4λ+ (ΛD̂2 + Ĉ>1 )ι1 + (ΛF̂2 + Ĉ>2 )ι2 + B̌4ũ1)〉ds

≤E
∫ T

t

2|Ǎ4|〈λ, λ〉+
1

δ1

〈λ, λ〉+ δ1〈(ΛD̂2 + Ĉ>1 )>(ΛD̂2 + Ĉ>1 )ι1, ι1〉+
1

δ2

〈λ, λ〉

+ δ2〈(ΛF̂2 + Ĉ>2 )>(ΛF̂2 + Ĉ>2 )ι2, ι2〉+
1

δ3

〈λ, λ〉+ δ3〈B̌>4 B̌4ũ1, ũ1〉ds

≤E
∫ T

t

2(|Ǎ4|+
1

δ1

+
1

δ2

+
1

δ3

)|λ|2 +
1

2
|ι1|2 +

1

2
|ι2|2ds+ E

∫ T

0

|ũ1|2ds,

where δ1 = 1

2|(ΛD̂2+Ĉ>1 )>(ΛD̂2+Ĉ>1 )|
, δ2 = 1

2|(ΛF̂2+Ĉ>2 )>(ΛF̂2+Ĉ>2 )|
, δ3 = 1

|B̌>4 B̌4|
. Then

E
[
|λ(t)|2 +

1

2

∫ T

t

|ι1|2ds+
1

2

∫ T

t

|ι2|2ds
]

≤E
∫ T

t

2(|Ǎ4|+
1

δ1

+
1

δ2

+
1

δ3

)|λ|2ds+ E
∫ T

0

|ũ1|2ds, ∀ t ∈ [0, T ],

(3.26)
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which, together with Fubini’s theorem, implies that

E
[
|λ(t)|2

]
≤
∫ T

t

2(|Ǎ4|+
1

δ1

+
1

δ2

+
1

δ3

)E|λ|2ds+ E
∫ T

t

|ũ1|2ds.

By Gronwall’s inequality, we have

E
[
|λ(t)|2

]
≤ L1E

∫ T

0

|ũ1|2ds, ∀ t ∈ [0, T ], (3.27)

where L1 = exp
(

2
∫ T

0
(|Ǎ4| + 1

δ1
+ 1

δ2
+ 1

δ3
)dt
)

. Then, letting t = 0 and plugging

(3.27) into (3.26), we have

E
[ ∫ T

0

|ι1|2dt+

∫ T

0

|ι2|2dt
]
≤ (2L2 + 2)E

∫ T

0

|ũ1|2dt, (3.28)

where L2 =
(

2
∫ T

0
(|Ǎ4|+ 1

δ1
+ 1

δ2
+ 1

δ3
)L1dt

)
.

Secondly, we discuss the second system (3.25). Let δ′1 = 1

9 max{‖Č1‖2,‖D̂2‖2,‖F̂2‖2}
,

δ′2 = 1

9 max{‖Č2‖2,‖D̂3‖2,‖D̂4‖2}
, δ′3 = 1

9 max{‖Č3‖2,‖D̂>4 ‖2,‖F̂3‖2}
. Applying Itô’s formula and

combining with (3.27) and (3.28), it follows that

E|X2(t)|2 ≤ E
∫ T

0

[
(2|Ǎ1|+

1

δ′1
) + (1 +

1

δ′2
)|Ǎ2|2 + (1 +

1

δ′3
)|Ǎ3|2

]
|X2|2

+ (1 + 27δ′2 + 27δ′3)(|λ|2 + |ι1|2 + |ι2|2)ds

≤ E
∫ T

0

[
(2|Ǎ1|+

1

δ′1
) + (1 +

1

δ′2
)|Ǎ2|2 + (1 +

1

δ′3
)|Ǎ3|2

]
|X2|2ds

+ (1 + 27δ′2 + 27δ′3)(2L2 + L1(T + 1) + 2)E
∫ T

0

|ũ1|2ds, ∀ t ∈ [0, T ].

Applying Gronwall’s inequality, we have

E|X2(t)|2 ≤ L3(2L2 + L1(T + 1) + 2)E
∫ T

0

|ũ1|2ds, ∀ t ∈ [0, T ]. (3.29)
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where L3 = (1 + 27δ′2 + 27δ′3) exp
( ∫ T

0
(2|Ǎ1|+ 1

δ′1
) + (1 + 1

δ′2
)|Ǎ2|2 + (1 + 1

δ′3
)|Ǎ3|2ds

)
.

Let P3 ∈ C1(0, T ;S2n) satisfies the following Lyapunov equation:


Ṗ3 + P3Ǎ1 + Ǎ>1 P3 + Ǎ>2 P3Ǎ2 + Ǎ>3 P3Ǎ3 + (1− 1

ε
)K1Q1K

>
1 = 0,

P3(T ) = (1− 1

ε
)K1G1K

>
1 .

Then, combining (3.27)-(3.29) and using Itô’s formula to 〈P3X2, X2〉, we have

J2
1 (λ; ι1; ι2)

=
1

2
E
∫ T

0

2〈P3(Č1λ+ D̂2ι1 + F̂2ι2), X2〉+ 2〈Ǎ>2 P3(Č2λ+ D̂3ι1 + D̂4ι2), X2〉

+ 2〈Ǎ>3 P3(Č3λ+ (D̂4)>ι1 + F̂3ι2), X2〉+ 2〈P3(Č2λ+ D̂3ι1 + D̂4ι2), (Č2λ

+ D̂3ι1 + D̂4ι2)〉+ 2〈P3(Č3λ+ (D̂4)>ι1 + F̂3ι2), (Č3λ+ (D̂4)>ι1 + F̂3ι2)〉dt

≥1

2
E
∫ T

0

−δ′′1 |P3|2|Č1λ+ D̂2ι1 + F̂2ι2|2 − (
1

δ′′1
+

1

δ′′2
+

1

δ′′3
)|X2|2 − (δ′′2 |Ǎ>2 P3|2

− 2|P3|)|Č2λ+ D̂3ι1 + D̂4ι2|2 − (δ′′3 |Ǎ>3 P3|2 − 2|P3|)|Č3λ+ D̂>4 ι1 + F̂3ι2|2dt

≥1

2
E
∫ T

0

−(|λ|2 + |ι1|2 + |ι2|2)− (
1

δ′′1
+

1

δ′′2
+

1

δ′′3
)|X2|2dt

≥−
{

1

2
L1T + L2 + 1 + (

1

δ′′1
+

1

δ′′2
+

1

δ′′3
)L3T

[
L2 +

L1(T + 1)

2
+ 1

]}
E
∫ T

0

|ũ1|2dt,

(3.30)

where δ′′1 = 1

9‖P3‖2 max{‖Č1‖2,‖D̂2‖2,‖F̂2‖2}
, δ′′2 = 2‖P3‖+1/max{‖Č2‖2,‖D̂3‖2,‖D̂4‖2}

9‖Ǎ>2 P3‖2
,

δ′′3 =
2‖P3‖+1/max{‖Č3‖2,‖D̂>4 ‖2,‖F̂3‖2}

9‖Ǎ>3 P3‖2
.

Moreover, since the first system (3.24) is a standard control system, by the dis-
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cussion in [164, Theorem 4.5], there exists a Riccati equation



Π̇ + ΠǍ1 + Ǎ>1 Π +
2∑

m=1

Ǎ>mΠǍm + (1− ε)K1Q1K
>
1 − (B̌>1 Π

+
3∑

m=2

B̌>mΠǍm)>(Ǎ>2 ΠǍ2 + Ǎ>3 ΠǍ3)−1(B̌>1 Π +
3∑

m=2

B̌>mΠǍm) = 0,

Π(T ) = (1− ε)K1G1K
>
1 , Ǎ>2 ΠǍ2 + Ǎ>3 ΠǍ3 ≥ λI,

for some λ > 0 and Π(·) ∈ C1(0, T ;R2n×2n) is matrix-value functions. Denoting

Θ = (Ǎ>2 ΠǍ2 + Ǎ>3 ΠǍ3)−1(B̌>1 Π +
3∑

m=2

B̌>mΠǍm),

and applying Itô’s formula to 〈ΠX1, X1〉, it follows that

J1
1 (u1) =

1

2
E
∫ T

0

〈(Π̇ + ΠǍ1 + Ǎ>1 Π +
2∑

m=1

Ǎ>mΠǍm + (1− ε)K1Q1K
>
1 )X1, X1〉

+ 2〈ΘX1, ũ1〉+ 〈(Ǎ>2 ΠǍ2 + Ǎ>3 ΠǍ3)ũ1, ũ1〉dt+ 〈Π(0)X1(0), X1(0)〉

=
1

2
E
∫ T

0

〈(Ǎ>2 ΠǍ2 + Ǎ>3 ΠǍ3)(ũ1 −ΘX1), (ũ1 −ΘX1)〉dt+ 〈Π(0)X1(0), X1(0)〉.

Letting Ǎ>2 ΠǍ2 + Ǎ>3 ΠǍ3 ≥ δ4I, for some δ4 > 0. By Lemma 2.3 in [164], we have

J1
1 (u1) ≥ δ4γE

∫ T

0

|ũ1|2dt, ∀ ũ1 ∈ U1, (3.31)

for some γ > 0 (e.g. δ4γ = 1
2
(Ǎ>2 ΠǍ2 + Ǎ>3 ΠǍ3)). Then, J1

1 (u1) is uniformly convex.

Finally, combining (3.30) and (3.31), one can obtain

J1(u1) =J1
1 (u1) + J2

1 (λ; ι1; ι2) ≥
{
δ4γ −

1

2
L1T + L2 + 1 + (

1

δ′′1

+
1

δ′′2
+

1

δ′′3
)L3T

[
L2 +

L1(T + 1)

2
+ 1

]}
E
∫ T

0

|ũ1|2dt, ∀ ũ1 ∈ U1,
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is uniformly convex, if

δ4γ >

∣∣∣∣12L1T + L2 + 1 + (
1

δ′′1
+

1

δ′′2
+

1

δ′′3
)L3T

[
L2 +

L1(T + 1)

2
+ 1

]∣∣∣∣.
The theorem follows. �

According to above discussion, we study the solvability of (LP) under degenerate

control weight case with the following assumption:

(A3.4) Assume that (3.21) admits unique solution and for some δ4 > 0 and γ > 0,

δ4γ >

∣∣∣∣12L1T + L2 + 1 + (
1

δ′′1
+

1

δ′′2
+

1

δ′′3
)L3T

[
L2 +

L1(T + 1)

2
+ 1

]∣∣∣∣.
If (A3.4) hold, by the property of uniform convexity, (LP) admits a unique equi-

librium pair (ū1, ū2). However, as we discussed above, it is intractable to characterize

it. Thus, we may rest upon the classical weak-convergence method to have some near-

optimal sequence to approximate it. Then we consider a minimizing sequence for

(LP). Let R
i,(ε)
1 = εI, for some ε > 0, and

J
(ε)
i (u; v̄(u)) = J

(ε)
i (ui; v̄i(ui;uj);uj; v̄j(ui;uj))

=
1

2
E
{∫ T

0

〈KiQiK
>
i X,X〉+ 〈R̃i,(ε)

1 u, u〉dt+ 〈KiGiK
>
i X(T ), X(T )〉

+ 2〈Kie
>
i g,X(T )〉

}

:=Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)) +
1

2
E
∫ T

0

|ui|2Ri,(ε)
1

dt, i = 1, 2, j 6= i,

(3.32)

where

R̃
1,(ε)
1 =

(
R

1,(ε)
1 0
0 0

)
, R̃

2,(ε)
1 =

(
0 0

0 R
2,(ε)
1

)
.

Then, for fixed ū2, by equation (3.16), (3.18) and (3.20), we let

ū
(ε)
1 = PΓ1

{
− (R

1,(ε)
1 )−1[(B̂1

1)>y1
1 + (D̂1

1)>β̂1
1 + F̂ 1

1 γ̂
1
1 −Ψ1φ

1
1]
}
.
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Similarly, for fixed ū1,

ū
(ε)
2 = PΓ2

{
− (R

2,(ε)
1 )−1[(B̂2

1)>y2
2 + (D̂2

1)>β̂2
2 + F̂ 2

1 γ̂
2
2 −Ψ2φ

2
2]
}
.

Then, by [164, Corollary 4.7] and the uniform convexity of (3.12), for fixed ūj, j 6= i,

i = 1, 2, ū
(ε)
i is the unique optimal control of (3.32). Using the minimizing sequence,

we have following proposition:

Proposition 3.4. Suppose that (A3.1)-(A3.4) hold. For i = 1, 2 and j 6= i, ū
(ε)
i is

a minimizing sequence of

ui → Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)),

for some ε > 0, i.e.,

lim
ε→0

Ji(ū
(ε)
i ; v̄i(ū

(ε)
i ; ūj); ūj; v̄j(ū

(ε)
i ; ūj)) = inf

ui∈Ui
Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)).

Moreover, the sequence {ū(ε)
i }ε>0 admits a weakly convergent subsequence.

Proof By (3.32), for fixed ūj, j 6= i, i = 1, 2,

J
(ε)
i (ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj))

=Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)) +
1

2
E
∫ T

0

|ui|2Ri,(ε)
1

dt,

then we have

inf
ui∈Ui

J
(ε)
i (ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)) ≥ inf

ui∈Ui
Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)). (3.33)

On the other hand, since Ji is uniformly convex, for any δ > 0, there exists u
(δ)
i ∈ Ui

such that

Ji(u
(δ)
i ; v̄i(u

(δ)
i ; ūj); ūj; v̄j(u

(δ)
i ; ūj)) ≤ inf

ui∈Ui
Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)) + δ.
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Hence,

inf
ui∈Ui

J
(ε)
i (ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj))

≤Ji(u(δ)
i ; v̄i(u

(δ)
i ; ūj); ūj; v̄j(u

(δ)
i ; ūj)) +

1

2
E
∫ T

0

|u(δ)
i |2Ri,(ε)

1

dt

≤ inf
ui∈Ui

Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)) + δ +
1

2
E
∫ T

0

|u(δ)
i |2Ri,(ε)

1

dt.

Since δ > 0 is arbitrary, it follows that

lim
ε→0

inf
ui∈Ui

J
(ε)
i (ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)) ≤ inf

ui∈Ui
Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)).

(3.34)

Combining (3.33) and (3.34), we have

lim
ε→0

inf
ui∈Ui

J
(ε)
i (ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)) = inf

ui∈Ui
Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)).

Note that ū
(ε)
i is the unique optimal control of (3.32), then one can obtain

1

2
E
∫ T

0

|ū(ε)
i |2Ri,(ε)

1

dt

=J
(ε)
i (ū

(ε)
i ; v̄i(ū

(ε)
i ; ūj); ūj; v̄j(ū

(ε)
i ; ūj))− Ji(ū(ε)

i ; v̄i(ū
(ε)
i ; ūj); ūj; v̄j(ū

(ε)
i ; ūj))

= inf
ui∈Ui

J
(ε)
i (ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj))− Ji(ū(ε)

i ; v̄i(ū
(ε)
i ; ūj); ūj; v̄j(ū

(ε)
i ; ūj))

≤ inf
ui∈Ui

J
(ε)
i (ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj))− inf

ui∈Ui
Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)),

hence,

lim
ε→0

1

2
E
∫ T

0

|ū(ε)
i |2Ri,(ε)

1

dt = 0, ∀ ε > 0.
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Therefore,

lim
ε→0

Ji(ū
(ε)
i ; v̄i(ū

(ε)
i ; ūj); ūj; v̄j(ū

(ε)
i ; ūj))

= lim
ε→0

[
J

(ε)
i (ū

(ε)
i ; v̄i(ū

(ε)
i ; ūj); ūj; v̄j(ū

(ε)
i ; ūj))−

1

2
E
∫ T

0

|ū(ε)
i |2Ri,(ε)

1

dt
]

= lim
ε→0

J
(ε)
i (ū

(ε)
i ; v̄i(ū

(ε)
i ; ūj); ūj; v̄j(ū

(ε)
i ; ūj)) = inf

ui∈Ui
Ji(ui; v̄i(ui; ūj); ūj; v̄j(ui; ūj)).

Furthermore, since (A3.4) hold, by the property of uniform convexity, (LP) is

uniquely solvable. Let ūi be the optimal control of Ji(ui, v̄i(ui, ūj), ūj, v̄j(ui, ūj)),

we have

Ji(ūi; v̄i(ūi; ūj); ūj; v̄j(ūi; ūj)) +
1

2
E
∫ T

0

|ū(ε)
i |2Ri,(ε)

1

dt

≤J (ε)
i (ū

(ε)
i ; v̄i(ū

(ε)
i ; ūj); ūj; v̄j(ū

(ε)
i ; ūj)) ≤ J

(ε)
i (ūi; v̄i(ūi; ūj); ūj; v̄j(ūi; ūj))

=Ji(ūi; v̄i(ūi; ūj); ūj; v̄j(ūi; ūj)) +
1

2
E
∫ T

0

|ūi|2Ri,(ε)
1

dt,

i.e., {ū(ε)
i }ε>0 is bounded in the Hilbert space Ui and hence admits a weak-convergence

subsequence. �

3.5 Two Examples

We give an example with non-singular control weight and obtain a related Hamilto-

nian system. Then, another example with singular control weight is provided.

3.5.1 Example 1

We now look at a one-dimensional case and assume the following:
Ai = 0, Bi

1 = 1, Bi
2 = 1, bi = 0, ξi = 0, Gi = 2, T = 1,

Ci
1 = 0, Di

1 = 1, Di
2 = 1, σi1 = 0, Ri

1 = Ri
2 = 1, Qi = −2,

Ci
2 = 0, F i

1 = 0, F i
2 = 0, σi2 = 0, gi = 0, ki = 0.5, i = 1, 2.

(3.35)
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Then, the state equation can be show as follows:

dxi = (ui + vi)dt+ (ui + vi)dW, xi(0) = 0, i = 1, 2,

and the cost functional is

Ji(u1; v1;u2; v2) =
1

2
E
{∫ 1

0

−2|xi − 0.5xj|2 + |ui|2 + |vi|2dt
}

+
1

2
E
[
2|xi(T )− 0.5xj(T )|2

]
, i = 1, 2.

The corresponding Riccati equation Pi(·) satisfy

Ṗi − 2− P 2
i

1 + Pi
= 0, Pi(1) = 2, i = 1, 2. (3.36)

By computation, the solutions of (3.36) are shown as follows

Pi(t) = (2e2t−2 − 1)
1
2 − 1, or Pi(t) = −(2e2t−2 − 1)

1
2 − 1,

where t ∈ [0, 1]. According to our assumption (3.35), the state for (LP) is


dX =[ÂX + B̂3ϕ+ D̂2θ1 + B̂1u]dt+ [Ĉ1X + D̂>2 ϕ+ D̂3θ1 + D̂1u]dW,

dϕ =− [Â>ϕ+ (Ĉ1)>θ1 + Ψ>u−QX]dt+ θ1dW,

X(0) = (0> 0>)>, ϕ(T ) = −GX(T ),

(3.37)

where

X =

(
x1

x2

)
, ϕ =

(
ϕ1

ϕ2

)
, B̂1 = D̂1 =

(
1− 1

1+P1
0

0 1− 1
1+P2

)
,

Â = Ĉ1 =

(
− P1

1+P1
0

0 − P2

1+P2

)
, B̂3 = D̂2 = D̂3 =

(
− 1

1+P1
0

0 − 1
1+P2

)
,

Q =

(
0 −1
−1 0

)
, Ψ =

( P1

1+P1
0

0 P2

1+P2

)
, u =

(
u1

u2

)
, G =

(
0 1
1 0

)
,
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and the cost functional is

Ji(u; v̄(u)) =
1

2
E
{∫ 1

0

−2〈KiK
>
i X,X〉+ 〈R̃i

1u, u〉+ 〈R̃i
2R̂
−1
2 [B̂2X

+ Φu+B>2 ϕ+D>2 θ1], R̂−1
2 [B̂2X + Φu+B>2 ϕ

+D>2 θ1]〉dt+ 2〈KiK
>
i X(T ), X(T )〉

}
, i = 1, 2,

where

K1 =K2 =

(
1
−0.5

)
, R̃1

1 = R̃1
2 =

(
1 0
0 0

)
, B̂2 =

(
P1 0
0 P2

)
,

R̂2 =B2 =

(
1 0
0 1

)
, R̃2

1 = R̃2
2 =

(
0 0
0 1

)
.

Since R1
1 = R2

1 = 1 > 0 and R1
2 = R2

2 = 1 > 0, then let

ϑi(Pi;xi;ϕi; θ
i
1; yii; β̂

i
i) := Pi(Pixi + ϕi + θi1) + (1 + Pi)(y

i
i + β̂ii)− P 3

i − Pi,

there exists two projection maps PΓ1(·) and PΓ2(·) such that

ū1 = PΓ1

{
− ϑ1

1 + 2P1 + 2P 2
1

}
, ū2 = PΓ2

{
− ϑ2

1 + 2P2 + 2P 2
2

}
.

We let ū1 = (ū>1 0>)> and ū2 = (0> ū>2 )> and the related Hamiltonian system is



dX =[ÂX + B̂3ϕ+ D̂2θ1 + B̂1ū
i]dt+ [Ĉ1X + D̂>2 ϕ+ D̂3θ1 + D̂1ū

i]dW1,

dϕ =− [(Â)>ϕ+ (Ĉ1)>θ1 + Ψ>ūi −QX]dt+ θ1dW1, ϕ(T ) = −GX(T ),

dYi =− [Â>Yi + Ĉ>1 β̂i −Q>φi +KiQiK
>
i X + B̂>2 R̂

−1
2 R̃i

2R̂
−1
2 (B̂2X + Φūi

+B>2 ϕ+D>2 θ1)]dt+ β̂idW1, Yi(T ) = KiGiK
>
i X(T )−G>φi(T ),

dφi =[Âφi + (B̂>3 Yi + D̂2β̂i) +B2R̂
−1
2 R̃i

2R̂
−1
2 (B̂2X + Φūi +B>2 ϕ+D>2 θ1)]dt

+ [Ĉ1φi + (D̂>2 Yi + D̂>3 β̂i) +D2R̂
−1
2 R̃i

2R̂
−1
2 (B̂2X + Φūi +B>2 ϕ

+D>2 θ1)]dW1, φi(0) = 0, X(0) = (0> 0>)>, i = 1, 2.
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Suppose that PΓi : R→ Γi, Γi = [ai, bi] ⊂ R, for some ai ≤ bi, i = 1, 2, and we have

ū1 =PΓ1

{
− ϑ1

1 + 2P1 + 2P 2
1

}
= a1 ∨

(
− ϑ1

1 + 2P1 + 2P 2
1

)
∧ b1,

ū2 =PΓ2

{
− ϑ2

1 + 2P2 + 2P 2
2

}
= a2 ∨

(
− ϑ2

1 + 2P2 + 2P 2
2

)
∧ b2.

If ai = 0 and bi → +∞, then Γi = R+. Under this case, − ϑi
1+2Pi+2P 2

i
only take its

positive part and

ū1 =PΓ1

{
− ϑ1

1 + 2P1 + 2P 2
1

}
=
{
− ϑ1

1 + 2P1 + 2P 2
1

}+

=


− ϑ1

1 + 2P1 + 2P 2
1

, if − ϑ1

1 + 2P1 + 2P 2
1

> 0,

0, otherwise.

ū2 =PΓ2

{
− ϑ2

1 + 2P2 + 2P 2
2

}
=
{
− ϑ2

1 + 2P2 + 2P 2
2

}+

=


− ϑ2

1 + 2P2 + 2P 2
2

, if − ϑ2

1 + 2P2 + 2P 2
2

> 0,

0, otherwise.

In portfolio selection, letting Γ = R+ usually presents the constraint for short-selling

prohibition (see [97, 129]).

3.5.2 Example 2

The following example shows the singular case and gives out the criteria for the

uniformly convexity in Theorem 5.1. Consider the following one-dimensional case

and assume the following:
Ai = 1, Bi

1 = −1, Bi
2 = 1, bi = 0, ξi = 0, Gi = 1, T = 1,

Ci
1 = 0, Di

1 = 1, Di
2 = 1, σi1 = 0, Ri

1 = Ri
2 = 0, Qi = 0,

Ci
2 = 0, F i

1 = 0, F i
2 = 0, σi2 = 0, gi = 0, ki = 0.5, i = 1, 2.

(3.38)
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Then, the state equation can be show as follows:

dxi =[x1 − ui + vi]dt+ [ui + vi]dW, xi(0) = 0, i = 1, 2,

and the cost functional is

Ji(u1; v1;u2; v2) =
1

2
E|xi(1)− 0.5xj(1)|2, i = 1, 2.

The corresponding Riccati equation Pi(·) satisfy

Ṗi + Pi = 0, Pi(1) = 1, i = 1, 2, (3.39)

then (3.39) has a unique solution that

Pi(t) = et−1, t ∈ [0, 1].

By our assumption (3.38), some corresponding coefficients becomes



B̂i
2 = (Bi

2)>Pi = Pi, R̂i
2 = (Di

2)>PiD
i
2 = Pi, Âi = 0, Ĉi

1 = −1,

Φi = (Di
2)>PiD

i
1 = Pi, Ψi = (Bi

1)>Pi − Φ>i (R̂i
2)−1B̂i

2 = −2Pi,

B̂i
3 = −Bi

2(R̂i
2)−1(Bi

2)> = −P−1
i , D̂i

2 = −Bi
2(R̂i

2)−1(Di
2)> = −P−1

i ,

B̂i
1 = Bi

1 −Bi
2(R̂i

2)−1Φi = −2, D̂i
3 = −Di

2(R̂i
2)−1(Di

2)> = −P−1
i ,

D̂i
1 = Di

1 −Di
2(R̂i

2)−1Φi = 0, i = 1, 2.

We consider the case that i = 1 (it is similar when i = 2), and the state equation

(3.20) is 
dX =[B̂3ϕ+ D̂2θ1 + B́1ũ1]dt,

+ [Ĉ1X + D̂>2 ϕ+ D̂3θ1]dW, X(0) = (0> 0>)>,

dϕ =− [Ĉ>1 θ1 + Ψ́>1 ũ1]dt+ θ1dW, ϕ(T ) = −GX(T ),

(3.40)
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where ũ1 = (u>1 , 0
>)> and

X =

(
x1

x2

)
, ϕ =

(
ϕ1

ϕ2

)
, u =

(
u1

u2

)
, θ1 =

(
θ1

1

θ2
1

)
,

B̂3 =D̂2 = D̂3 =

(
−P−1

1 0
0 −P−1

2

)
= −e1−tI, Ĉ1 =

(
−1 0
0 −1

)
= −I,

G =

(
0 0.5

0.5 0

)
, B́1 =

(
−2 0
0 0

)
, Ψ́1 =

(
−2P1 0

0 0

)
= −et−1B́1.

The cost functional is

J1(u; v̄(u)) =
1

2
E
〈(

1
−0.5

)(
1
−0.5

)>
X(T ), X(T )

〉
. (3.41)

Meanwhile, considering the Riccati equation

−dΛ = H(B̂3;Ĉ1; D̂2; D̂3)dt, Λ(1) =

(
0 0.5

0.5 0

)
,

with

H(B̂3; Ĉ1; D̂2; D̂3) :=ΛB̂3Λ + Ĉ>1 ΛĈ1 + ΛD̂2(I − ΛD̂3)−1ΛĈ1

+ Ĉ>1 (I − ΛD̂3)−1ΛD̂>2 Λ + ΛD̂2D̂
>
2 Λ,

(3.42)

if we let

Λ =

(
Λ1 Λ2

Λ2 Λ3

)
, Λ′ = et−1 + Λ2,

then

(I − ΛD̂3)−1 =(I + e1−tΛ)−1 = et−1

(
Λ′ Λ1

Λ3 Λ′

)−1

=
et−1

(Λ′)2 − Λ1Λ3

(
Λ′ Λ1

Λ3 Λ′

)
.
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Thus,

(I − ΛD̂3)−1Λ =
et−1

(Λ′)2 − Λ1Λ3

(
Λ′ Λ1

Λ3 Λ′

)(
Λ1 Λ2

Λ2 Λ3

)

=
et−1

(Λ′)2 − Λ1Λ3

(
et−1Λ1 Λ′Λ2 − Λ1Λ3

Λ′Λ2 − Λ1Λ3 et−1Λ3

)
,

and

Λ(I − ΛD̂3)−1Λ =
et−1

(Λ′)2 − Λ1Λ3
Λ

(
et−1Λ1 Λ′Λ2 − Λ1Λ3

Λ′Λ2 − Λ1Λ3 et−1Λ3

)

=
et−1

(Λ′)2 − Λ1Λ3

·
(
et−1(Λ1)2 + Λ′(Λ2)2 − Λ1Λ2Λ3 Λ′Λ1Λ2 − (Λ1)2Λ3 + et−1Λ2Λ3

et−1Λ1Λ2 + Λ′Λ2Λ3 − Λ1(Λ3)2 et−1(Λ3)2 + Λ′(Λ2)2 − Λ1Λ2Λ3

)
.

Hence, by (3.42), one can obtain that

H(B̂3; Ĉ1; D̂2; D̂3)

=(e2−2t − e1−t)ΛΛ− Λ +
1

(Λ′)2 − Λ1Λ3

·
(
et−1(Λ1)2 + Λ′(Λ2)2 − Λ1Λ2Λ3 Λ′Λ1Λ2 − (Λ1)2Λ3 + et−1Λ2Λ3

et−1Λ1Λ2 + Λ′Λ2Λ3 − Λ1(Λ3)2 et−1(Λ3)2 + Λ′(Λ2)2 − Λ1Λ2Λ3

)
.

According to above discussion, we see that in Riccati equation
−dΛ =H(B̂3; Ĉ1; D̂2; D̂3)dt, Λ(1) =

(
0 0.5

0.5 0

)
,

(et−1 + Λ2)2 − Λ1Λ3 6= 0,

(3.43)

the components Λ1, Λ2 and Λ3 are heavily coupled. Therefore, an explicit solution of

(3.43) is difficult to be obtained. We assume that (3.43) is solvable and the FBSDE

(3.40) can be decoupled as followsdX =(Ǎ1X + Č1λ+ B̌1ũ1)dt+ (Ǎ2X + Č2λ)dW, X(0) = 0,

dλ =− {Ǎ4λ+ (ΛD̂2 + Ĉ>1 )ι1 + B̌4ũ1}dt+ ι1dW, λ(1) = 0,

66



where 

Ǎ1 =B̂3Λ + D̂2(I − ΛD̂3)−1Λ(Ĉ1 + D̂>2 Λ),

Ǎ2 =Ĉ1 + (D̂2)>Λ + D̂3(I − ΛD̂3)−1Λ(Ĉ1 + D̂>2 P ),

Ǎ4 =ΛB̂3 + (ΛD̂2 + Ĉ>1 )(I − ΛD̂3)−1ΛD̂>2 ,

Č1 =B̂3 + D̂2(I − ΛD̂3)−1ΛD̂>2 , B̌1 = B́1,

Č2 =(D̂2)> + D̂3(I − ΛD̂3)−1ΛD̂>2 , B̌4 = ΛB́1 + Ψ́>1 .

Furthermore, it can be divided into:


dX1 =(Ǎ1X1 + B̌1ũ1)dt+ Ǎ2X1dW, X1(0) = 0,

dX2 =(Ǎ1X2 + Č1λ)dt+ (Ǎ2X2 + Č2λ)dW, X2(0) = 0,

dλ =− {Ǎ4λ+ (ΛD̂2 + Ĉ>1 )ι1 + B̌4ũ1}dt+ ι1dW, λ(1) = 0,

and the criteria for the uniformly convexity of the cost functional (3.41) is: for some

δ4 > 0 and γ > 0,

δ4γ >

∣∣∣∣12L1 + L2 + 1 +
(

9‖P3‖2 max{‖Č1‖2, ‖D̂2‖2}

+
9‖Ǎ>2 P3‖2

2‖P3‖+ 1/max{‖Č2‖2, ‖D̂3‖2}

)
L3(L2 + L1 + 1)

∣∣∣∣,
where



L1 = exp
(

2(|Ǎ4|+ 2|(ΛD̂2 + Ĉ>1 )>(ΛD̂2 + Ĉ>1 )|+ |B̌>4 B̌4|)
)
,

L2 =2
(
|Ǎ4|+ 2|(ΛD̂2 + Ĉ>1 )>(ΛD̂2 + Ĉ>1 )|+ |B̌>4 B̌4|

)
L1,

L3 =(1 +
3

max{‖Č2‖2, ‖D̂3‖2}
) exp

(
2|Ǎ1|+ 9 max{‖Č1‖2, ‖D̂2‖2}

+ (1 + 9 max{‖Č2‖2, ‖D̂3‖2})|Ǎ2|2
)
,
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and

Ṗ3 + P3Ǎ1 + Ǎ>1 P3 + Ǎ>2 P3Ǎ2 = 0, P3(1) = (1− 1

ε
)

(
1
−0.5

)(
1
−0.5

)>
.

3.6 Conclusion

In this chapter, we study a mixed Stackelberg game problem that two players have the

same hierarchy and each of them contains an unconstrained control and a constrained

control. The unconstrained controls act as followers and the constrained controls

act as leaders. We first solve the problem under the case that the control weight

coefficients are non-degenerate and obtain the corresponding NE. Then, we discuss

the problem under the case in which the control weights are singular. Finally, a

minimizing sequence of the solutions is obtained and the weak convergence of the

corresponding cost functionals is proved. For future work, one can extend the results

of this paper and further investigate the limit solutions when the control weights are

singular.
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Chapter 4

Robust Linear Quadratic Mean

Field Social Control: A Direct
Approach

In this chapter, an LQ mean field team (MFT) problem with model uncertainty is

solved by using a direct approach. Unlike the person-by-person optimality, which

will be introduced in the next chapter, all the agents here are perturbed and the

duality procedures are used to tackle the large-scale problem with high-dimensional

FBSDEs. After that, the centralized controls explicitly depending on xi and the

state average x(N) are obtained first and then the decentralized controls are designed

by mean field heuristics.

4.1 Problem Formulation

We consider a large-population system with N weakly-coupled agents. By the dis-

cussion in Section 2.1 of Chapter 2, we define σ-algebra Git = F it
∨
σ{ξi}, where

1 ≤ i ≤ N , and Gt = Ft
∨
σ{ξi, 1 ≤ i ≤ N}. Gi = {Git}0≤t≤T , where 1 ≤ i ≤ N , and

G = {Gt}0≤t≤T . The state processes of the agent Ai, i = 1, 2, · · · , N , is modelled by
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the following linear SDE on a finite time horizon [0, T ]:

dxi =[Axi +Bui + Fx(N) + f ]dt+ σdWi,

xi(0) = ξi,
(4.1)

where x(N) := 1
N

∑N
i=1 xi is the state average of the agents. A,B, F, σ are determin-

istic matrix-valued functions of suitable sizes. f(·) ∈ L2
G(0, T ;Rn) is an unknown

disturbance that agents are imposed by the environment. The coefficients appearing

in (4.1) satisfy

(A4.1) A(·), F (·), σ(·) ∈ L∞(0, T ;Rn×n), B(·) ∈ L∞(0, T ;Rn×m).

The cost functional of Ai is given by

J F
i (u; f) =

1

2
E
∫ T

0

{
|xi − Γx(N) − η|2Q + |ui|2R1

− |f |2R2

}
dt

+
1

2
E|xi(T )− Γ̂x(N)(T )− η̂|2G,

(4.2)

where u = {u1, · · · , uN}. Q, R1, R2 and G are weight matrices and the coefficients

appearing in (4.2) satisfy

(A4.2)

Q(·) ∈ L∞(0, T ;Sn), R1(·), R2(·) ∈ L∞(0, T ;Sm), Γ(·) ∈ L∞(0, T ;Rn×n),

G ∈ Sn, Γ̂ ∈ Rn×n, η(·) ∈ L2
F(0, T ;Rn), η̂ ∈ L2

FT
(Ω;Rn).

All the agents in the system work cooperatively to optimize the social cost functional

J F
soc(u; f) =

N∑
i=1

J F
i (u; f). (4.3)

The decentralized control set is defined as follows:

UFi =
{
ui|ui(t) ∈ L2

Gi(0, T ;Rm), 1 ≤ i ≤ N
}
,
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and the decentralized control set of all agents is defined as UF = UF1 ×UF2 ×· · ·×UFN .

For comparison, the centralized control set is given by

UFc =
{

(u1, · · · , uN)|ui(t) ∈ L2
G(0, T ;Rm), 1 ≤ i ≤ N

}
.

According to the minimax control problem, we need to consider the possible of worst

case scenario. Thus, the social cost under the worst-case disturbance as

J wo
soc (u) = sup

f∈UF
c

J F
soc(u; f). (4.4)

For further analysis, we introduce the following assumptions.

(A4.3) {xi(0)} are independent with the same expectation. Exi(0) = ξ̂, 1 ≤ i ≤ N .

There exists a constant c0 such that sup1≤i≤N E|xi(0)|2 ≤ c0, where c0 is independent

of N . Furthermore, {xi(0)} and Wi(t), i = 1, 2, · · · , N are mutually independent.

(A4.4) R1(·) > 0, R2(·) > 0 and G ≥ 0.

Now, we introduce our robust LQ-MF problem:

Problem 4.1. (P4.1) Seek a set of decentralized control laws ū = {ū1, · · · , ūN} ∈ UF

such that for ε > 0,

J wo
soc (ū)− ε ≤ inf

u∈UF
c

J wo
soc (u) ≤ J wo

soc (ū).

For the sake of notation simplicity, we will use c to denote a generic constant in

following discussion. The value of c may be different at different places and it only

depends on the coefficients and initial values.

4.2 The LQ-MF Control Problem for the Distur-

bance

In this section, we seek the worst-case disturbance f . First, we fix ui = ǔi ∈ UFc , i =

1, · · · , N and consider the optimal control problem for the disturbance:

(P4.2) maximizef∈UF
c
J F
soc(ǔ; f).
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Then, (P4.2) can be rewritten as an equivalent problem

(P4.2a) minimizef∈UF
c
J̌ F
soc(f),

where

J̌ F
soc(f) =

1

2

N∑
i=1

E
∫ T

0

{
− |xi − Γx(N) − η|2Q + |f |2R2

}
dt

− 1

2

N∑
i=1

E|xi(T )− Γ̂x(N)(T )− η̂|2G.

(4.5)

Here xi are the solution to corresponding ǔi, i = 1, 2, · · · , N . To obtain the worst

disturbance, we need to discuss the convexity of (4.5).

Let x=(x>1 , · · · , x>N)>, u=(u>1 , · · · , u>N)>, W=(W>
1 , · · · ,W>

N )>, A=diag(A, · · · , A),

B=diag(B, · · · , B) and σ̌ = diag(σ, · · · , σ). Then our state equation can be rewrit-

ten as

dx = (Ǎx + Bu + 1⊗ f)dt+ σ̌dW(t),

where Ǎ = A + 1
N

(11> ⊗ F ), 1=(1, · · · , 1)>. Correspondingly, (P4.2a) can be

rewritten as

minf∈UF
c

{
1

2
E
∫ T

0

(−x>Qx + 2η̌x +Nf>R2f)dt− 1

2
E[x>(T )Gx(T ) + 2ὴx(T )]

}
,

where Q=diag(Q, · · · , Q)− 1
N

11>⊗QΓ, G=diag(G, · · · , G)− 1
N

11>⊗GΓ̂, η̌ = 1⊗ηΓ

and ὴ = 1⊗ η̂Γ̂, QΓ , Γ>Q+QΓ−Γ>QΓ, GΓ̂ , Γ̂>G+GΓ̂− Γ̂>GΓ̂, ηΓ = Qη−Γ>Qη

and η̂Γ̂ = Gη̂ − Γ̂>Gη̂.

For our further analysis, we have the following assumption:

(A4.5) The map f 7→ J̌ F
soc(f) is uniformly convex.

Next, we give a necessary and sufficient condition which is useful in future discussion.
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Proposition 4.1. The following statements are equivalent: (i) (A4.5) holds true.

(ii) The following equation

Ṗ + Ǎ
>
P + PǍ−P(1⊗ I)(NR2)−1(1> ⊗ I)P−Q = 0, P(T ) = −G,

admits a solution in C1(0, T ;SnN). (iii) The equation

Ṗ + P (A+ F ) + (A+ F )>P − PR−1
2 P − (Q−QΓ) = 0,

P (T ) = −(G−GΓ̂),
(4.6)

admits a solution in C1(0, T ;Sn).

(iv) det
{

(0, I)eAt ( 0
I )
}
> 0, ∀ t ∈ [0, T ], holds, where

A =

(
A+ F +R−1

2 G −R−1
2

Q̆ −(A+ F +R−1
2 G)>

)
, (4.7)

and Q̆ = GR−1
2 G+ (I − Γ)>Q(I − Γ) + (A+ F )>G+G(A+ F ).

Proof (i)⇐⇒ (ii) is proved in [164, Theorem 4.5]. By [164, Theorem 4.5], we obtain

(i) ⇐⇒ (iii). Moreover, we construct an auxiliary control problem


dy = ((A+ F )y + g)dt, y(0) = 0,

J̌ ′Fsoc(g) =
N∑
i=1

E
{∫ T

0

(−y>Q̂y + g>R2g)dt− [y>(T )Ĝy(T )]

}
,

where Q̂ = (I − Γ)>Q(I − Γ) and Ĝ = (I − Γ̂)>G(I − Γ̂). Let p be the adjoint

equation of state y and

dp = −[(A+ F )>p− Q̂y]dt, p(T ) = −Ĝy.

By Itô formula to 〈p, y〉, we have

N∑
i=1

E(〈p(T ), y(T )〉 − E〈p(0), y(0)〉) =
N∑
i=1

E
∫ T

0

〈−Q̂y, y〉+ 〈p, g〉dt.
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Thus, J̌ ′Fsoc(g) = 0 is equivalent to g = −R−1
2 p. Considering systemdy = [(A+ F )y −R−1

2 p]dt, y(0) = 0,

dp = −[(A+ F )>p− Q̂y]dt, p(T ) = −Ĝy,
(4.8)

and letting p = Py + κ, one can obtain that

dp = Ṗ ydt+ P ((A+ F )y −R−1
2 p)dt+ dκ = −[(A+ F )>p− Q̂y]dt.

Hence, P and κ should be the solution toṖ + P (A+ F ) + (A+ F )>P − PR−1
2 P − Q̂ = 0, P (T ) = −Ĝ,

κ̇+ [(A+ F )> − PR−1
2 ]κ = 0, κ(T ) = 0.

For (iv) =⇒ (iii) is proved in [133, Theorem 4.3]. On the other hand, we suppose

(iii) holds. By Proposition 5.5 and Theorem 6.1 of [191, Chapter 6], linear forward-

backward ordinary differential equation (4.8) is solvable. Set p̃ = p+ Ĝy, then (4.8)

can be rewritten as
dy =[(A+ F +R−1

2 Ĝ)y −R−1
2 p̃]dt,

dp̃ =[(Q̂+ (A+ F )>Ĝ+ Ĝ(A+ F ) +GR−1
2 G)y − (A+ F +R−1

2 Ĝ)>p̃]dt,

y(0) = 0, p̃(T ) = 0,

which implies
d

(
y
p̃

)
=

{
A
(
y
p̃

)
+ Cβ

}
dt+

{
A1

(
y
p̃

)
+ C1β

}
dW (t),

y(0) = 0, p̃(T ) = 0,

where A satisfies (4.7),

C =

(
0
0

)
, A1 =

(
0 0
0 0

)
, C1 =

(
0
0

)
.

By [133, Theorem 3.7], it follows that (iii) =⇒ (iv). The proposition follows. �
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Example 4.1. Consider Proposition 4.1 with parameters A = B = R2 = 1, F = −2,

Γ = 0.5, Q = 4, G = 0, T = 1. Then, by (4.6) we have

P (t) = − 1

t− 2
− 1, t ∈ [0, 1]. (4.9)

P (t) is well defined on [0, 1]. And by the local Lipschitz continuity property of (4.6),

(4.9) is unique. Furthermore, one can obtain that

A =

(
−1 −1
1 1

)
, eAt =

(
1− t −t
t t+ 1

)
,

and

det

{
(0, 1)eAt

(
0
1

)}
= t+ 1 > 0, ∀ t ∈ [0, 1],

which implies (iii)⇐⇒ (iv).

According to above discussion, we have following theorem.

Theorem 4.1. Suppose that (A4.1)-(A4.4) hold. Then (P4.2a) has a unique min-

imizer if and only if (A4.5) hold and the following FBSDE admits a unique solution,



dx̌i = (Ax̌i +Bǔi + Fx̌(N) + f̌)dt+ σdWi,

dp̌i = −[A>p̌i + F>p̌(N) − (Q−QΓ)x̌(N) + ηΓ]dt+
N∑
j=1

βji dWj,

x̌i(0) = ξi, p̌i(T ) = −Gx̌i(T ) +GΓ̂x̌
(N)(T ) + η̂Γ̂,

(4.10)

where p(N) = 1
N

∑N
i=1 pi and f̌ = −R−1

2 p(N).

Proof By the variational analysis in [176, Theorem 3.1], the theorem follows. �

By taking average of (4.10) and letting u(N) = 1
N

∑N
i=1 ui, we have following
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equations:



dx̌(N) = ((A+ F )x̌(N) +Bǔ(N) −R−1
2 p̌(N))dt+

1

N

N∑
i=1

σdWi,

dp̌(N) = −[(A+ F )>p̌(N) − (Q−QΓ)x̌(N) + ηΓ]dt+
1

N

N∑
i=1

N∑
j=1

βji dWj,

x̌(N)(0) =
1

N

N∑
i=1

ξi, p̌(N)(T ) = −(G−GΓ̂)x̌(N)(T ) + η̂Γ̂.

(4.11)

Now we discuss the feedback form of disturbance in (P4.2a). We make the ansatz

p̌(N)(t) = P̄ (t)x̌(N)(t) + š(t), t ∈ [0, T ], where P̄ (·) ∈ C1(0, T ;Sn) is a matrix-value

function and š(·) ∈ C1(0, T ;Rn). Combining this equation and (4.11), one can obtain

that

dp̌(N) = ˙̄Px̌(N)dt+ P̄ ((A+ F −R−1
2 P )x̌(N) +Bǔ(N) −R−1

2 š)dt+
P̄

N

N∑
i=1

σdWi + dš

=− [(A+ F )>(P̄ x̌(N) + š)− (Q−QΓ)x̌(N) + ηΓ]dt+
1

N

N∑
i=1

N∑
j=1

βji dWj.

(4.12)

Hence, P̄ (·) is a solution of


˙̄P + P̄ (A+ F ) + (A+ F )>P̄ − P̄R−1

2 P̄ − (Q−QΓ) = 0,

P̄ (T ) = −(G−GΓ̂),
(4.13)

and š(·) is the solution of the following BSDE:


dš+ [(A+ F̄ )>š+ P̄Bǔ(N) + ηΓ]dt+

1

N

N∑
j=1

N∑
i=1

(
P̄ σ

N
− βji )dWj = 0,

š(T ) = η̂Γ̂,

(4.14)
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where F̄ = F − R−1
2 P̄ . Thus, f̌ = −R−1

2 (P̄ x̌(N) + š). We can easily see that P in

(4.6) is equal to P̄ here. In what follows, P̄ will be substituted by P .

4.3 Distributed Strategy Design

After applying the worst disturbance f̌ , one can obtain the following optimal control

problem.

(P4.3): Minimize J wo
soc (u; f̌(u)) over {u = (u1, · · · , uN) ∈ UFc }, where



dxi = [Axi +Bui + F̄ x(N) −R−1
2 s]dt+ σdWi,

ds = −[(A+ F̄ )>s+ PBu(N) + ηΓ]dt+
1

N

N∑
j=1

N∑
i=1

(βji −
Pσ

N
)dWj,

xi(0) = ξi, s(T ) = η̂Γ̂,

(4.15)

and

J wo
soc (u) =

1

2

N∑
i=1

E
∫ T

0

{
|xi − Γx(N) − η|2Q(t) + |ui|2R1

− |P (t)x(N) + s|2
R−1

2

}
dt

+
1

2

N∑
i=1

E|xi(T )− Γ̂x(N)(T )− η̂|2G.

(4.16)

To solve (P4.3), we first give out a proposition.

Proposition 4.2. Suppose that (A4.1)-(A4.5) hold. If (P4.3) is uniformly convex

in u, then (P4.3) has a set of optimal controls and the following FBSDE admits a
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set of solutions

dxi = [Axi +Bui + F̄ x(N) −R−1
2 s]dt+ σdWi, xi(0) = ξi,

ds = −[(A+ F̄ )>s+ PBu(N) + ηΓ]dt+
1

N

N∑
j=1

N∑
i=1

(βji −
Pσ

N
)dWj,

dki = [−A>ki − F̄>k(N) −Qxi +QΓx
(N) + ηΓ + PR−1

2 (Px(N) + s)]dt

+ ζ iidWi +
∑
j 6=i

ζji dWj, ki(T ) = Gx̄i(T )−GΓ̂x̄
(N)(T )− η̂Γ̂,

dl = [(A+ F̄ )l +R−1
2 (k(N) + Px(N) + s)]dt, l(0) = 0, s(T ) = η̂Γ̂,

(4.17)

where k(N) = 1
N

∑N
i=1 ki and R1ui +BTki −BTPl = 0, i = 1, 2, · · · , N .

Proof Let u∗ = {u∗1, u∗2, · · · , u∗N} ∈ UFc be the unique centralized optimal control

of the N agents and x∗ = {x∗1, x∗2, · · · , x∗N} be their unique corresponding states.

We perturb u∗ and denote δu = u − u∗, δu(N) = u(N) − (u∗)(N), δxi = xi − x∗i ,

δx(N) = 1
N

∑N
i=1 δxi = 1

N

∑N
i=1(xi − x∗i ) = 1

N

∑N
i=1 xi −

1
N

∑N
i=1 x

∗
i = x(N) − (x∗)(N),

δs = s− s∗. Then we have
dδxi = [Aδxi +Bδui + F̄ δx(N) −R−1

2 δs]dt, δxi(0) = 0,

dδs = −[(A+ F̄ )>δs+ PBδu(N)]dt+
1

N

N∑
j=1

N∑
i=1

δβji dWj, δs(T ) = 0.

The Fréchet differential of the corresponding social cost functional is

δJ wo
soc (δu) = J wo

soc (u)− J wo
soc (u

∗) + o(|δu|2L2) = Λ1 +
1

2
Λ2,

where

Λ1 :=
N∑
i=1

E
∫ T

0

〈Q(x∗i − Γ(x∗)(N) − η), δxi − Γδx(N)〉+ 〈R1u
∗
i , δui〉

− 〈R−1
2 (P (x∗)(N) + s̄), (Pδx(N) + δs)〉dt
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+
N∑
i=1

E〈G(x∗i (T )− Γ̂(x∗)(N)(T )− η̂), δxi(T )− Γ̂δx(N)(T )〉,

Λ2 :=
N∑
i=1

E
∫ T

0

{
|δxi − Γδx(N)|2Q + |δui|2R1

− |Pδx(N) + δs|2
R−1

2

}
dt

+
N∑
i=1

E|δxi(T )− Γ̂δx(N)(T )|2G.

Note that

N∑
i=1

E
∫ T

0

〈−Q(x∗i − Γ(x∗)(N) − η), δΓx(N)〉dt

=
N∑
i=1

E
∫ T

0

〈Γ>Q((I − Γ)(x∗)(N) − η), δxi〉dt.

(4.18)

and

N∑
i=1

E
∫ T

0

−〈R−1
2 (P (x∗)(N) + s̄), (Pδx(N) + δs)〉dt

=
N∑
i=1

E
∫ T

0

−〈P>R−1
2 (P (x∗)(N) + s̄), δxi〉 − 〈R−1

2 (P (x∗)(N) + s̄), δs〉dt.

(4.19)

Let
dki = αidt+ ζ iidWi +

∑
j 6=i

ζji dWj, ki(T ) = Gx∗i (T )−GΓ̂(x∗)(N)(T )− η̂Γ̂,

dl = γdt,+νidWi +
∑
j 6=i

νjdWj, l(0) = 0.

(4.20)

where
αi =− [A>ki + F̄>k(N) +Qx∗i −QΓ(x∗)(N) − ηΓ − PR−1

2 (P (x∗)(N) + s̄)],

γ =(A+ F̄ )l +R−1
2 (k(N) + P (x∗)(N) + s̄),

N∑
j=1

νj = 0.
(4.21)
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By Itô formula,

N∑
i=1

E〈ki(T ), δxi(T )〉 −
N∑
i=1

E〈ki(0), δxi(0)〉

=
N∑
i=1

E
∫ T

0

〈αi + A>ki + F̄>k(N), δxi〉+ 〈B>ki, δui〉 − 〈R−1
2 k(N), δs〉dt,

(4.22)

and

N∑
i=1

E〈l(T ), δs(T )〉 − E〈l(0), δs(0)〉 = 0

=
N∑
i=1

E
∫ T

0

〈γ − (A+ F̄ )l, δs〉 − 〈B>Pl, δui〉+
1

N
〈
N∑
j=1

νj,
N∑
i=1

δβji 〉dt.

(4.23)

Consequently by (4.18), (4.19), (4.21), (4.22) and (4.23), we have

Λ1 =
N∑
i=1

E
∫ T

0

〈R1u
∗
i +B>ki −B>Pl, δui〉dt.

Thus, Λ1 = 0 is equivalent to R1u
∗
i + B>ki − B>Pl = 0, i = 1, 2, · · · , N . Then,

considering (4.15), (4.20) and (4.21), we have (4.17). The proposition follows. �

It follows from (4.17) that



dx(N) = [(A+ F̄ )x(N) +Bu(N) −R−1
2 s]dt+

1

N

N∑
i=1

σdWi, x(N)(0) =
1

N

N∑
i=1

ξi,

dk(N) = [−(A+ F̄ )>k(N) − (Q−QΓ)x̄(N) + ηΓ + PR−1
2 (Px(N) + s)]dt

+
1

N

N∑
i=1

N∑
j=1

ζji dWj, k(N)(T ) = (G−GΓ̂)x(N)(T )− η̂Γ̂.

(4.24)
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To discuss the state feedback form of the optimal controls we solved in (P4.3), we

consider the following nonhomogeneous relationships:


ki(t) = K(t)xi(t) + L(t)x(N)(t) +M(t)l(t) + ϕ(t),

s(t) = M̄(t)l(t) + L̄(t)x(N)(t) + φ(t),

k(N)(t) = (K(t) + L(t))x(N)(t) +M(t)l(t) + ϕ(t), t ∈ [0, T ],

(4.25)

where K(·), L(·), M(·), M̄(·), L̄(·) ∈ C1(0, T ;Rn×n) and ϕ(·), φ(·) ∈ C1(0, T ;Rn).

By (4.25), (4.17) and (4.24), we have

dki =K̇xidt+K[Axi +Bui + F̄ x(N) −R−1
2 s]dt+KσdWi + L̇x(N)dt

+ L[(A+ F̄ )x(N) +Bu(N) −R−1
2 s]dt+

L

N

N∑
i=1

σdWi

+ Ṁldt+M((A+ F̄ )l +R−1
2 (k(N) + Px(N) + s))dt+ dϕ

=− [A>ki + F̄>k(N) +Q(xi − Γx(N) − η)− Γ>Q((I − Γ)x(N) − η)

− PR−1
2 (Px(N) + s)]dt+

N∑
j=1

ζji dWj,

(4.26)

ds = ˙̄Mldt+ M̄ [(A+ F̄ )l +R−1
2 (k(N) + Px(N) + s)]dt

+ ˙̄Lx(N)dt+ L̄((A+ F̄ )x(N) +Bu(N) −R−1
2 s)dt+

L̄

N

N∑
i=1

σdWi + dφ

=− [(A+ F̄ )>(M̄l + L̄x(N) + φ) + PBu(N) + (I − Γ)>Qη]dt

+
1

N

N∑
j=1

N∑
i=1

(βji −
Pσ

N
)dWj.

(4.27)

Comparing the diffusion terms in (4.26), we have the following results: (K+ L
N

)σ = ζ ii ,

L
N
σ = ζji , j 6= i, L̄

N

∑N
i=1 σ = 1

N

∑N
j=1

∑N
i=1(βji − Pσ

N
). Hence, combining (4.25) and
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the equation R1u
∗
i +B>ki −B>Pl = 0, we have

u
∗
i = −R−1

1

{
B>Kxi +B>Lx(N) +B>ϕ−B>(P −M)l

}
,

(u∗)(N) = −R−1
1

{
B>(K + L)x(N) +B>ϕ−B>(P −M)l

}
.

(4.28)

Thus, using the same argument from (4.12) to (4.14), it follows that K is a solution

of

K̇ +KA+ A>K − (B>K)>R−1
1 B>K +Q = 0, K(T ) = G, (4.29)

and L, M , L̄, M̄ satisfy



L̇+ L(A+ F̄ ) + (A+ F̄ )>L+KF̄ + F̄>K − PR−1
2 (P + L̄) +MR−1

2 (K

+ L+ P + L̄)− (K + L)R−1
2 L̄− (B>(K + L))>R−1

1 B>(K + L)

+ (B>K)>R−1
1 B>K −QΓ = 0, L(T ) = −GΓ̂,

˙̄L+ L̄(A+ F̄ ) + (A+ F̄ )>L̄− L̄R−1
2 L̄+ M̄R−1

2 (K + L+ P + L̄)

− (B>(P + L̄))>R−1
1 B>(K + L) = 0, L̄(T ) = 0,

Ṁ +M(A+ F̄ ) + (A+ F̄ )>M − (K + L+ P )R−1
2 M̄ +MR−1

2 (M + M̄)

+ (B>(K + L))>R−1
1 B>(P −M) = 0, M(T ) = 0,

˙̄M + M̄(A+ F̄ ) + (A+ F̄ )>M̄ + M̄R−1
2 (M + M̄)− L̄R−1

2 M̄

+ (B>(P + L̄))>R−1
1 B>(P −M) = 0, M̄(T ) = 0,

(4.30)

and ϕ, φ satisfy



dϕ+ (MR−1
2 + A+ F̄ )>ϕ− (B>(K + L))>R−1

1 B>ϕ− (K + L+ P

−M)R−1
2 φ− ηΓ = 0,

dφ+ ((M̄ − L̄)R−1
2 + A+ F̄ )>φ− PBR−1

2 B>ϕ+ M̄R−1
2 ϕ+ ηΓ = 0,

ϕ(T ) = −η̂Γ̂, φ(T ) = η̂Γ̂.

(4.31)
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Remark 4.1. Equation (4.30) are the non-symmetric Riccati equations (or the

Riccati-like equations). For more details about their property and solvabibility, read-

ers could refer to [79, 108, 116].

If L(·), M(·), M̄(·) ∈ C1(0, T ;Sn) are the unique solutions in (4.30), we have the

following result:

Proposition 4.3. Suppose that (A4.1)-(A4.5) hold. If L, M , M̄ in (4.30) satisfy

L(·), M(·), M̄(·) ∈ C1(0, T ;Sn), then L̄ = −M and the original four coupled Riccati-

like equations can be simplified to three coupled equations.

Proof According to equation (4.29), K is symmetric. It follows from taking trans-

pose on M and multiply −1 on both sides in (4.30) that,

− Ṁ> + (A+ F̄ )>(−M)> + (−M)>(A+ F̄ ) + M̄>R−1
2 (K + L+ P −M)>

−M>R−1
2 M> − (B>(P −M>))>R−1

1 B>(K + L) = 0, −M>(T ) = 0,

Since L, M , M̄ are symmetric, we have L̄ = −M> = −M . Putting this result into

system (4.30), it could be simplified as



L̇+ L(A+ F̄ ) + (A+ F̄ )>L+KF̄ + F̄>K − PR−1
2 P −MR−1

2 M

+MR−1
2 (K + L+ P ) + (K + L+ P )R−1

2 M − (B>(K + L))>R−1
1 B>(K

+ L) + (B>K)>R−1
1 B>K −QΓ = 0, L(T ) = −GΓ̂,

Ṁ +M(A+ F̄ ) + (A+ F̄ )>M − (K + L+ P −M)R−1
2 M̄ +MR−1

2 M

+ (B>(K + L))>R−1
1 B>(P −M) = 0, M(T ) = 0,

˙̄M + M̄(A+ F̄ ) + (A+ F̄ )>M̄ + M̄R−1
2 M +MR−1

2 M̄ + M̄R−1
2 M̄

+ (B>(P −M))>R−1
1 B>(P −M) = 0, M̄(T ) = 0.

The proposition follows. �
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By a similar argument in [174, Lemma 2.1], if (A4.1)-(A4.5) hold, there exists

a constant δ > 0 such that R1(t) > δI and R2(t) > δI, a.e., t ∈ [0, T ]. Then, for

Q ≥ 0, (P4.3) is uniformly convex. However, when Q is indefinite, we have following

result.

Lemma 4.1. (P4.3) has uniform convexity if equations (4.29)-(4.31) has a solution,

respectively.

Proof By [176, Proposition 3.1] and [99, Section 3], we first let úi ∈ UFc , ś(·) ∈

C1(0, T ;Rn) and consider the system


dyi = Ayi +Búi + Fy(N) −R−1

2 (Py(N) + ś)dt, yi(0) = 0,

dy(N) = Ay(N) +Bú(N) + Fy(N) −R−1
2 (Py(N) + ś)dt, y(N)(0) = 0,

d(yi − y(N)) = A(yi − y(N)) +B(úi − ú(N))dt, (yi − y(N))(0) = 0.

By (4.13), (4.29) and using Itô formula to |yi − y(N)|2K and |yi − y(N)|2P , we have

E|yi(T )− y(N)(T )|2G = E|yi(T )− y(N)(T )|2K(T ) − E|yi(0)− y(N)(0)|2K(0)

=E
∫ T

0

〈(K>BR−1
1 B>K −Q)(yi − y(N)), yi − y(N)〉

+ 2〈úi − ú(N), B>K(yi − y(N))〉,

and

−E|y(N)(T )|2G−GΓ̂
= E|y(N)(T )|2P (T ) − E|y(N)(0)|2P (0)

=E
∫ T

0

〈(PR−1
2 P +Q−QΓ)y(N), y(N)〉+ 2〈ú(N), B>Py(N)〉 − 2〈ś, R−1

2 Py(N)〉.

By Lemma 2.1 in [174], we know that
∑N

i=1 E
∫ T

0
|yi|2dt ≤ c

N

∑N
i=1 E

∫ T
0
|úi|2dt,
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∑N
i=1 E

∫ T
0
|ś|2dt ≤ c

N

∑N
i=1 E

∫ T
0
|úi|2dt. By Lemma 2.3 in [164] and Proposition 4.1,

N∑
i=1

E
∫ T

0

(
|yi − Γy(N)|2Q + |úi|2R1

− |Py(N) + ś|2
R−1

2

)
dt+

N∑
i=1

E|yi(T )− Γ̂y(N)(T )|2G

=
N∑
i=1

E
∫ T

0

(
|yi − Γy(N)|2Q + |y(N)|2Q−QΓ

+ |úi − ú(N)|2R1
+ |ú(N)|2R1

− |Py(N)|2
R−1

2

− 2〈ś, R−1
2 Py(N)〉 − |ś|2

R−1
2

)
dt+

N∑
i=1

E|yi(T )− y(N)(T )|2G + |y(N)(T )|2G−GΓ̂

=
N∑
i=1

E
∫ T

0

(
|úi − ú(N) +R−1

1 B>K(yi − y(N))|2R1
+ |ú(N) −R−1

1 BPy(N)|2R1

− |Py(N)|2
B>R−1

1 B+2R−1
2
− |ś|2

R−1
2

)
dt

≥
N∑
i=1

E
∫ T

0

(
|úi +R−1

1 B>Kyi −R−1
1 B(P +K)y(N)|2R1

− c

N
|úi|2

)
dt

≥δ
N∑
i=1

E
∫ T

0

|úi|2dt.

The lemma follows. �

For further proofs, we have the following assumption:

(A4.6) Assume that (4.29)-(4.30) admit unique solutions.

Then, by above discussion, we have following theorem.

Theorem 4.2. Suppose that (A4.1)-(A4.6) hold. Then (P4.3) is uniquely solvable

with the optimal control ui in (4.28).

Proof Since (4.29)-(4.31) has a solution, respectively, the system (4.17) is decoupled

and solvable (see the Theorem 3.7 and Theorem 4.3 in [133, Chapter 2]). By Lemma

4.1, (P4.3) has uniform convexity and can achieves an optimal control, where ui =

−R−1
1 B>{Kxi + Lx(N) + ϕ− (P −M)l}. �
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We use x̂, l̂ to approximate x(N), l in (4.17) and (4.24), respectively.



dx̂ =

{
[A+ F̄ −BR−1

1 B>(K + L)−R−1
2 L̄]x̂−BR−1

1 B>ϕ

+ [BR−1
1 B>(P −M)−R−1

2 M̄ ]l̂ −R−1
2 φ

}
dt,

dl̂ =[(A+ F̄ +R−1
2 (M + M̄))l̂ +R−1

2 ((K + L+ P + L̄)x̂+ ϕ+ φ)]dt,

x̂(0) = ξ̂, l̂(0) = 0,

(4.32)

where K, L, L̄, M , M̄ , ϕ and φ are determined by (4.29)-(4.31). Then, according to

Theorem 4.2, one can obtain the decentralized control law for the agent Ai

ūi =−R−1
1 B>[Kx̄i + Lx̂+ ϕ− (P −M)l̂]. (4.33)

Meanwhile, we have the decentralized terms k̄i = Kx̄i + Lx̂ + Ml̂ + ϕ, s̄ = M̄ l̄ +

L̄x̄(N)+φ, and ŝ = M̄ l̂+L̄x̂+φ. By applying (4.33), we have the following closed-loop

system



dx̄i =

{
[A−BR−1

1 B>K]x̄i + (F̄ −R−1
2 L̄)x̄(N) −BR−1

1 B>Lx̂−BR−1
1 B>ϕ

+BR−1
1 B>(P −M)l̂ −R−1

2 (M̄ l̄ + φ)

}
dt+ σdWi, x̄i(0) = ξi

ds̄ =−
{

(A+ F̄ )>s̄+ (B>P )>R−1
1 B>Kx̄(N) + (B>P )>R−1

1 B>Lx̂

+ (B>P )>R−1
1 B>ϕ− (B>P )>R−1

1 B>(P −M)l̂ − (I − Γ)>Qη

}
dt

+
1

N

N∑
j=1

N∑
i=1

(
Pσ

N
− βji )dWj, s̄(T ) = η̂Γ̂, l̄(0) = 0,

dl̄ =[(A+ F̄ +R−1
2 M̄)l̄ +R−1

2 ((K + P + L̄)x̄(N) + Lx̂+Ml̂ + ϕ+ φ)]dt.

(4.34)
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Remark 4.2. We use the direct approach here and first obtain a set of centralized

optimal controls, then the decentralized controls are designed. Note that L, M , M̄ ,

L̄, ϕ, φ are not coupled with x̂ and it is simpler to solve four Riccati-liked equations

than solving the consistency condition (CC) system in [174] who contains five highly

coupled FBSDEs. Thus, the fixed-point equation system is not necessary here. In ad-

dition, if L, M , M̄ are symmetric, the original four equations can further degenerate

to three Riccati-liked equations.

Remark 4.3. Note that here the weight Q is allowed to be indefinite. If Q is negative

semi-definite, then (4.13) admits a solution necessarily. If Q is positive semi-definite,

then (4.29) also admits a solution necessarily. However, to ensure that both (4.13)

and (4.29) admit solutions, the selection of Q should reach a compromise and the

magnitude of Q cannot be too “positive” or “negative”.

4.4 Asymptotic Optimality

Definition 4.1. A set of control laws ū = {ū1, ū2, · · · , ūN} ∈ UF has robust asymp-

totic social optimality if

∣∣∣∣ 1

N
J wo
soc (ū)− 1

N
inf
u∈UF

c

J wo
soc (u)

∣∣∣∣ = O(
1√
N

),

where UFc is a set of centralized information-based control.

Before proving asymptotically social optimality, we need to introduce some esti-

mations first.

Lemma 4.2. Suppose that (A4.1)-(A4.6) hold. Then

E
∫ T

0

|x̄(N) − x̂|2dt+ E
∫ T

0

|l̄ − l̂|2dt = O(
1

N
).
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Proof By (4.34), we have

dx̄(N) =

{
[A−BR−1B>K + F̄ −R−1

2 L̄]x̄(N) −M)l̂ −BR−1
1 B>Lx̂

−BR−1
1 B>ϕ+BR−1

1 B>(P −R−1
2 (M̄ l̄ + φ)

}
dt+

1

N

N∑
i=1

σdWi,

x̄(N)(0) =
1

N

N∑
i=1

ξi.

(4.35)

Combining (4.24), (4.34), (4.32) and (4.35), one can obtain

dx̃ = [(A−BR−1
1 B>K + F̄ −R−1

2 L̄)x̃−R−1
2 M̄ l̃]dt+

1

N

N∑
i=1

σdWi,

dl̃ = [(A+ F̄ −R−1
2 M̄)l̃ +R−1

2 (K + P + L̄)x̃]dt,

x̃(0) =
1

N

N∑
i=1

ξi − ξ̂, l̃(0) = 0,

(4.36)

where x̃ = x̄(N)− x̂, l̃ = l̄− l̂. By the Cauchy-Schwarz inequality and the Burkholder-

Davis-Gundy inequality, we have

E sup
0≤s≤t

|X|2 = E sup
0≤s≤t

∣∣∣∣X(0) +

∫ s

0

AXdr +

∫ s

0

1

N

N∑
i=1

(
σ
0

)
dWi

∣∣∣∣2

≤c E sup
0≤s≤t

∫ s

0

|X|2dr +
3

N2

N∑
i=1

E
∣∣∣∣ ∫ t

0

(
σ
0

) ∣∣∣∣2dr ≤ c E
∫ t

0

|X|2dr +O
( 1

N

)
,

where X = (x̃>, l̃>)>,

A =

(
A−BR−1

1 B>K + F̄ −R−1
2 L̄ −R−1

2 M̄
R−1

2 (K + P + L̄) A+ F̄ −R−1
2 M̄

)
,

and constant c is independent of N . Then, by Gronwall’s inequality, one can obtain

that

E sup
0≤t≤T

|X|2 = O(
1

N
).
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The lemma follows. �

Remark 4.4. In [174], an additional Riccati equation is needed for proving

sup
0≤t≤T

E(|x̄(N) − x̂|2 + |s̄− ŝ|2) = O(
1

N
),

since (x̄(N)−x̂) and (s̄− ŝ) satisfy an FBSDE system and they need to be decoupled by

using the Riccati equation method. However, in our model, x̃ and l̃ evolve by forward

SDEs and we can estimate them directly without setting such an assumption.

Theorem 4.3. Suppose that (A4.1)-(A4.6) hold. The set of decentralized control

laws ū = {ū1, ū2, · · · , ūN} ∈ UF given by (4.33) has robust asymptotic social opti-

mality.

Proof Let x̀i = xi − x̄i, ùi = ui − ūi, x̀
(N) = x(N) − x̄(N) and s̀ = s − s̄, where

i = 1, 2, · · · , N . Then by (4.17),


dx̀i = [Ax̀i +Bùi + F̄ x̀(N) −R−1

2 s̀)]dt, x̀i(0) = 0,

ds̀ = −[(A+ F̄ )>s̀− PBù(N)]dt+
1

N

N∑
j=1

N∑
i=1

(−β̀ji )dWj, s̀(T ) = 0.
(4.37)

By Lemma 5.4 in [101], if (A4.1)-(A4.6) hold, for all ui ∈ UFc , i = 1, 2, · · · , N ,

we have 1
N
J wo
soc (u) ≤ 1

N
J wo
soc (ū) ≤ c, where c is independent of N . That implies

E
∫ T

0
|ui|2dt < c. Then, by (4.37), we have E

∫ T
0

(|x̀i|2 + |ùi|2 + |s̀|2)dt < c. Next,

considering (4.2) and (4.16), we denote

J wo
soc (u) =

1

2

N∑
i=1

E
∫ T

0

{
|xi − Γx(N) − η|2Q + |ui|2R1

− |Px(N) + s|2
R−1

2

}
dt

+
1

2

N∑
i=1

E|xi(T )− Γ̂x(N)(T )− η̂|2G =
N∑
i=1

(J F
i (ū) + J̀ F

i (ù) + Ii)

(4.38)
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where

J̀ wo
i (ù) =

1

2
E
∫ T

0

{
|x̀i − Γx̀(N)|2Q + |ùi|2R1

− |Px̀(N) + s̀|2
R−1

2

}
dt

+
1

2
E|x̀i(T )− Γ̂x̀(N)(T )|2G,

and

N∑
i=1

Ii =
N∑
i=1

E
∫ T

0

〈Qx̄i −QΓx̄
(N) − ηΓ − PR−1

2 (Px̂+ ŝ), x̀i〉

− 〈PR−1
2 [P (x̄(N) − x̂) + (s̄− ŝ)], x̀i〉 − 〈R−1

2 (Px̂+ ŝ), s̀〉

− 〈R−1
2 [P (x̄(N) − x̂) + (s̄− ŝ)], s̀〉+ 〈R1ūi, ùi〉dt

+
N∑
i=1

E〈Gx̄i(T )−GΓ̂x̄
(N)(T )− η̂Γ̂, x̀i(T )〉.

(4.39)

We now prove
∑N

i=1 Ii = O( 1√
N

). By (4.25), (4.34), (4.37), and the similar techniques

from (4.18) to (4.23),

N∑
i=1

E〈k̄i(T ), x̀i(T )〉 =
N∑
i=1

E
∫ T

0

〈−Qx̄i +QΓx̄
(N) + ηΓ −KR−1

2 (s̄− ŝ)

+ PR−1
2 (P + L̄)x̂+ PR−1

2 M̄ l̂ + PR−1
2 φ+ (KF̄ + F̄>K)(x̄(N) − x̂), x̀i〉

− 〈R−1
2 (Kx̄i + Lx̂+Ml̂ + ϕ), s̀〉+ 〈B>(Kx̄i + Lx̂+Ml̂ + ϕ), ùi〉dt,

(4.40)

and

0 =
N∑
i=1

〈l̄(T ), s̀(T )〉 − 〈l̄(0), s̀(0)〉 =
N∑
i=1

E
∫ T

0

〈R−1
2 k̄i, s̀〉+ 〈R−1

2 (Px̂+ ŝ), s̀〉

− 〈B>P l̄, ùi〉+ 〈R−1
2 (P + L̄)(x̄(N) − x̂) +R−1

2 M̄(l̄ − l̂), s̀〉.

(4.41)

Combining (4.39)-(4.41) and Lemma 5.1, note that s̄ − ŝ = M̄ l̃ + L̄x̃ and R1ūi +
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B>[Kx̄i + Lx̂−B>(P −M)l̂ + ϕ] = 0, one can obtain

1

N

N∑
i=1

Ii = O(
1√
N

).

Then, we put this into (4.38), the theorem follows. �

4.5 Numerical Examples

We continue to use the parameters in Example 4.1. First, we give the figure of

P (t) = − 1
t−2
− 1, t ∈ [0, 1]. Since P (t) in (4.6) is the same as it in (4.13), P (t) =

− 1
t−2
− 1 could also be solution for (4.13) and its trajectory is shown in Figure 1(a).

Let the population N = 100, R1 = 0.5, σ = 5, η = η̂ = 0, Γ̂ = 0.5 and the time

interval is [0,5]. Using Matlab computation and by (4.13), (4.29), P and K can be

easily computed. After that, we simulate the BSDEs from (4.30) to (4.31) and obtain

their figures in Figure 1(b)1. Taking the initial values independently from a uniform

distribution U(−30, 60) and by equations (4.36), the curve of x̃, l̃ and s̃ is described

in Figure 2(a). Denote that ε2
1 = E

∫ 1

0
|x̄(N) − x̂|2dt, ε2

2 = E
∫ 1

0
|l̄ − l̂|2dt. We let N

increase from 1 to 100 and the curves of ε2
1 and ε2

2 are shown in Figure 2(b). It shows

that they are getting close to zero when N is becoming larger and larger.

4.6 Conclusion

In this chapter, we study a class of social optimality for robust LQ-MF problems

with a common uncertain drift. By the robust optimization approach, we obtain a

“worst case” disturbance for all agents. Using variational analysis and decoupling

1 By observing figure 1(b), we could find that the curve of L̄ and M̄ is overlapping. In fact, the
situation does not change even though we try many sets of numbers for the parameters. Therefore,
we have a hypothesis that L̄ may be equal to M̄ . If so, the system (4.30) and (4.31) are decoupled
and solved directly, which may be useful in other more complicated models. Unfortunately, we
cannot prove the hypothesis rigorously in mathematics.
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(a) (b)

Figure 4.1: (a) is the curve of P (t) and (b) is the curves of L, M , L̄ and M̄ .

(a) (b)

Figure 4.2: (a) is the curves of x̃, l̃ and (b) is the curves of ε2
1, ε2

2 when time interval
is [0, 5].

the FBSDEs with mean field approximation, we construct the decentralized controls,

which are further proved to be an asymptotically social optimum. For further work,

it is interesting to investigate the social optimality for robust LQ-MF problems with

uncertainty in common noise by the direct approach.
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Chapter 5

Social Optima in Leader-Follower

Mean Field Linear Quadratic

Control

After introducing the LF problem and the MFT problem in Chapter 3 and Chapter

4, which can be considered as two preliminary chapters, respectively, we are going to

investigate the social optimality of the LF LQ-MF control problem. The model in this

chapter involves one leader and a large number of weakly-coupled interactive followers

and all the agents (including the leaders and the followers) cooperate to optimize the

social cost. Unlike the previous chapter that using the direct approach, we apply the

person-by-person optimality here and construct two auxiliary control problems (the

fixed point approach). By solving these two auxiliary problems sequentially with

consistent mean field approximations, a set of decentralized control can be obtained

with the help of a consistency condition (CC) system. By some proper conditions,

the asymptotic Stackelberg equilibrium is proved.

5.1 Problem Formulation

Consider a large-population system which contains one leader and N followers.

Since it contains a leader, by the discussion in Section 2.1 of Chapter 2, there are
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N + 1 agents in the system. We define the leader as A0 and let σ-algebra Git =

F it
∨
σ{ξi, ξ0,W0(s), 0 ≤ s ≤ t}, where 0 ≤ i ≤ N , and Gt = Ft

∨
σ{ξi, 0 ≤ i ≤ N}.

Gi = {Git}0≤t≤T , where 0 ≤ i ≤ N , and G = {Gt}0≤t≤T . The state processes of the

leader A0 and the follower Ai, i = 1, 2, · · · , N, are modeled by the following linear

SDE on a finite time horizon [0, T ]:


dx0 = [A0x0 +B0u0 + C0x

(N)]dt+D0dW0,

dxi = [Axi +Bui + Cx(N) + Fx0]dt+DdWi,

x0(0) = ξ0, xi(0) = ξi,

(5.1)

where x(N) := 1
N

∑N
i=1 xi is the state average of the followers and the coefficients are

satisfy the following assumption:

(A5.1)

A0(·), C0(·), A(·), C(·), F (·) ∈ L∞(0, T ;Rn×n),

B0(·), B(·) ∈ L∞(0, T ;Rn×m), D0(·), D(·) ∈ L∞(0, T ;Rn×d).

The set of admissible controls for A0 is defined as follows:

U0 =
{
u0|u0(t) ∈ L2

G0(0, T ;Rm)
}
,

and the set of admissible controls for the follower Ai is defined as follows:

Ui =
{
ui|ui(t) ∈ L2

Gi(0, T ;Rm)
}
, 1 ≤ i ≤ N.

These are the decentralized control sets and we let U = U1 × U2 × · · · × UN . For

comparison, the centralized control set is given by

Uc =
{

(u0, u1, · · · , uN)|ui(t) ∈ L2
G(0, T ;Rm), 0 ≤ i ≤ N

}
.

Now we introduce the cost functionals of the leader A0 and the follower Ai,
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1 ≤ i ≤ N . For the leader, the cost functional is defined as follows:

J0(u0;u) =E
{∫ T

0

[
|x0 −Θ0x

(N) − η0|2Q0
+ |u0(t)|2R0

]
dt

+ |x0(T )− Θ̂0x
(N)(T )− η̂0|2G0

}
,

(5.2)

where u = (u1, · · · , uN) ∈ Uc. Q0, R0 and G0 are weight matrices. Q0 and Θ0

represent the coupling between the leader and the state average term. This implies

that the states of the followers can influence the cost functional of the leader. For

the follower Ai, his individual cost functional is defined as follows:

Ji(u0;u) =E
{∫ T

0

[
|xi −Θx(N) −Θ1x0 − η|2Q + |ui|2R

]
dt

+ |xi(T )− Θ̂x(N)(T )− Θ̂1x0(T )− η̂|2G
}
,

(5.3)

where Q, R and G are weight matrices. Q, Θ and Θ1 represent the coupling between

the follower Ai, the state average term and the leader A0. This implies that the cost

functional of the follower Ai will be affected by the behavior of both the leader and

the other followers. All the individuals in the system, including the leader and the

followers, aim to minimize the social cost functional, which is denoted by

J (N)
soc (u0;u) = αNJ0(u0;u) +

N∑
i=1

Ji(u0;u), α > 0. (5.4)

Similar to [107] and [140], we have a scaling factor αN before J0(u0;u) such that

J0(u0;u) and Ji(u0;u) have the same order of magnitude. Otherwise, if αN = 1,

then the performance of the leader will be insensitive when N becomes larger. Now

we give some assumptions that will be applied in the further analysis.
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(A5.2) The coefficients of (5.2) and (5.3) satisfy


Q0(·), Q(·) ∈ L∞(0, T ;Sn), R0(·), R(·) ∈ L∞(0, T ;Sm),

Θ0(·),Θ1(·),Θ(·) ∈ L∞(0, T ;Rn×n), η0(·), η(·) ∈ L2(0, T ;Rn),

Θ̂0, Θ̂1, Θ̂ ∈ Rn×n, G0, G ∈ Sn, η̂0, η̂ ∈ Rn.

(A5.3) x0(0) andW0(·) are mutually independent. {xi(0), 1 ≤ i ≤ N} and {Wi(·), 1 ≤

i ≤ N} are independent of each other. Exi(0) = ξ̂, 1 ≤ i ≤ N . There exists a con-

stant K independent of N such that sup1≤i≤N E|xi(0)|2 ≤ K. Furthermore, x0(0),

W0(·) and {xi(0), 1 ≤ i ≤ N}, {Wi(t), 1 ≤ i ≤ N} are independent of each other.

(A5.4) Q0(·) ≥ 0, R0(·) > δI, G0 ≥ 0 and Q(·) ≥ 0, R(·) > δI, G ≥ 0, for some

δ > 0.

Next, we introduce our LF MFT problem:

Problem 5.1. (P5.1) For any u0 ∈ U0, to find a mapping M: U0 → U , and a

control ū0 ∈ U0 such that


J (N)
soc (u0;M(u0)) = inf

u∈Uc
J (N)
soc (u0;u),

J (N)
soc (ū0;M(ū0)) = inf

u0∈U0

J (N)
soc (u0;M(u0)).

Note that theM here is a mapping, which is different from the notationM[0, T ].

5.2 The LQ-MF Control Problem for the N Fol-

lowers

5.2.1 The person-by-person optimality

Fix u0 ∈ U0. The leader firstly announces his own open-loop strategy. Let ū =

{ū1, ū2, · · · , ūN} be the centralized optimal control of the followers and x̄ = {x̄1, x̄2, · · · , x̄N}

be the corresponding states. Now we perturb ūi and fix other ūj, where j 6= i. Then
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we denote δui = ui− ūi, δxi = xi− x̄i, where ui is the control after perturbing and xi

is its corresponding state. The Fréchet differential δJ0(δui) = J0(u0;u)−J0(u0; ū)+

o(|δui|2L2) and δJi(δui) = Ji(u0;u) − Ji(u0; ū) + o(|δui|2L2), where i = 1, · · · , N .

Therefore, the variations of the state equations for the leader, the ith follower and

the jth follower, where j 6= i, are


dδx0 = (A0δx0 + C0δx

(N))dt, δx0(0) = 0,

dδxi = (Aδxi +Bδui + Cδx(N) + Fδx0)dt, δxi(0) = 0,

dδxj = (Aδxj + Cδx(N) + Fδx0)dt, δxj(0) = 0, j 6= i,

and the variations of their corresponding cost functionals are

1

2
δJ0(δui) =E

{∫ T

0

〈Q0(x̄0 −Θ0x̄
(N) − η0), δx0 −Θ0δx

(N)〉dt

+ 〈G0(x̄0(T )− Θ̂0x̄
(N)(T )− η̂0), δx0(T )− Θ̂0δx

(N)(T )〉
}
,

1

2
δJi(δui) =E

{∫ T

0

〈Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δxi −Θδx(N)

−Θ1δx0〉+ 〈Rūi, δui〉dt+ 〈G(x̄i(T )− Θ̂x̄(N)(T )

− Θ̂1x̄0(T )− η̂), δxi(T )− Θ̂δx(N)(T )− Θ̂1δx0(T )〉
}
,

1

2
δJj(δui) =E

{∫ T

0

〈Q(x̄j −Θx̄(N) −Θ1x̄0 − η), δxj −Θδx(N)

−Θ1δx0〉dt+ 〈G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂),

δxj(T )− Θ̂δx(N)(T )− Θ̂1δx0(T )〉
}
,
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respectively. Consequently, we have the variation of the social cost functional as:

1

2
δJ (N)

soc (δui) =
1

2

[
αNδJ0(δui) +

∑
j 6=i

δJj(δui) + δJi(δui)
]

= E
{∫ T

0

αN〈Q0(x̄0 −Θ0x̄
(N) − η0), δx0〉 − αN〈Θ>0 Q0(x̄0 −Θ0x̄

(N) − η0), δx(N)〉

+ 〈Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δxi〉 − 〈Θ>Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δx(N)〉

− 〈Θ>1 Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δx0〉+ 〈Rūi, δui〉+
∑
j 6=i

〈Q(x̄j −Θx̄(N) −Θ1x̄0

− η), δxj〉 −
∑
j 6=i

〈Θ>Q(x̄j −Θx̄(N) −Θ1x̄0 − η), δx(N)〉 −
∑
j 6=i

〈Θ>1 Q(x̄j −Θx̄(N)

−Θ1x̄0 − η), δx0〉dt+ αN〈G0(x̄0(T )− Θ̂0x̄
(N)(T )− η̂0), δx0(T )〉

− αN〈Θ̂>0 G0(x̄0(T )− Θ̂0x̄
(N)(T )− η̂0), δx(N)(T )〉+ 〈G(x̄i(T )− Θ̂x̄(N)(T )

− Θ̂1x̄0(T )− η̂), δxi(T )〉 − 〈Θ̂>G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx(N)(T )〉

− 〈Θ̂>1 G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx0(T )〉+
∑
j 6=i

〈G(x̄j(T )− Θ̂x̄(N)(T )

− Θ̂1x̄0(T )− η̂), δxj(T )〉 −
∑
j 6=i

〈Θ̂>G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )

− η̂), δx(N)(T )〉 −
∑
j 6=i

〈Θ̂>1 G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx0(T )〉
}
.

(5.5)

When N →∞, it follows that

1

2
δJ (N)

soc (δui) = E
{∫ T

0

α〈Q0(x̄0 −Θ0x̄
(N) − η0), Nδx0〉 − α〈Θ>0 Q0(x̄0 −Θ0x̄

(N)

− η0), Nδx(N)〉+ 〈Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δxi〉+ 〈Rūi, δui〉+ 〈 1

N

∑
j 6=i

Q(x̄j

−Θx̄(N) −Θ1x̄0 − η), Nδxj〉 − 〈
1

N

∑
j 6=i

Θ>Q(x̄j −Θx̄(N) −Θ1x̄0 − η), Nδx(N)〉
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− 〈 1

N

∑
j 6=i

Θ>1 Q(x̄j −Θx̄(N) −Θ1x̄0 − η), Nδx0〉dt+ α〈G0(x̄0(T )− Θ̂0x̄
(N)(T )

− η̂0), Nδx0(T )〉 − α〈Θ̂>0 G0(x̄0(T )− Θ̂0x̄
(N)(T )− η̂0), Nδx(N)(T )〉+ 〈G(x̄i(T )

− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δxi(T )〉+ 〈 1

N

∑
j 6=i

G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )

− η̂), Nδxj(T )〉 − 〈 1

N

∑
j 6=i

Θ̂>G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), Nδx(N)(T )〉

− 〈 1

N

∑
j 6=i

Θ̂>1 G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), Nδx0(T )〉
}

+ o(1).

Note that E sup0≤t≤T |δx0|2 = O( 1
N2 ), E sup0≤t≤T |δx(N)|2 = O( 1

N2 ) and 〈Θ>Q(x̄i −

Θx̄(N) − Θ1x̄0 − η), δx(N)〉 + 〈Θ>1 Q(x̄i − Θx̄(N) − Θ1x̄0 − η), δx0〉 + 〈Θ̂>G(x̄i(T ) −

Θ̂x̄(N)(T )−Θ̂1x̄0(T )−η̂), δx(N)(T )〉+〈Θ̂>1 G(x̄i(T )−Θ̂x̄(N)(T )−Θ̂1x̄0(T )−η̂), δx0(T )〉 =

o(1) (the rigorous proof will be shown in Section 5.5 ). Let


δx†0 = lim

N→+∞
(Nδx0),

δx† = lim
N→+∞

(Nδxj) = lim
N→+∞

(
∑
j 6=i

δxj), j 6= i.
(5.6)

Here Nδx0 converges to δx†0 such that E
∫ T

0
|Nδx0 − δx†0|2 = O( 1

N2 ). Similarly,∑
j 6=i δxj and Nδxj converge to δx† (see Section 5.5 for the detailed proof). Then

one can obtain

dδx
†
0 = (A0δx

†
0 + C0δxi + C0δx

†)dt, δx†0(0) = 0,

dδx† = (Aδx† + Cδxi + Cδx† + Fδx†0)dt, δx†(0) = 0.
(5.7)

When N → ∞, by mean field approximation, we use x̂ to approximate x̄(N). Note

that x̂ will be affected by u0 which is given by the leader. Moreover, the influence of

individual follower on x̂ may be negligible. Hence, by straightforward computation,
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we simplified the social cost functional as follows:

1

2
δJ (N)

soc (δui)

=E
{∫ T

0

〈αQ0Ψ1 −Θ>1 QΨ3, δx
†
0〉+ 〈QΨi

2 −Θ>QΨ3 − αΘ>0 Q0Ψ1, δxi〉

+ 〈Rūi, δui〉+ 〈QΨ3 −Θ>QΨ3 − αΘ>0 Q0Ψ1, δx
†〉dt+ 〈αG0Ψ4(T )

− Θ̂>1 GΨ6(T ), δx†0(T )〉+ 〈GΨ6(T )− Θ̂>GΨ6(T )− αΘ̂>0 G0Ψ4(T ),

δx†(T )〉+ 〈GΨi
5(T )− Θ̂>GΨ6(T )− αΘ̂>0 G0Ψ4(T ), δxi(T )〉

}
,

(5.8)

where Ψ1(·) := x̄0 −Θ0x̂− η0, Ψi
2(·) := x̄i −Θx̂−Θ1x̄0 − η,

Ψ3(·) := (I −Θ)x̂−Θ1x̄0 − η,

are related to time t, and

Ψ4(T ) := x̄0(T )− Θ̂0x̂(T )− η̂0, Ψi
5(T ) := x̄i(T )− Θ̂x̂(T )− Θ̂1x̄0(T )− η̂,

Ψ6(T ) := (I − Θ̂)x̂(T )− Θ̂1x̄0(T )− η̂,

are related to time T which are terminal terms.

Remark 5.1. Note that, unlike the direct approach in Chapter 4 that perturbs all

the agents’ controls, the person-by-person optimality only perturbs the ith follower’s

control here. For this reason, it will derive three additional processes Nδx0, Nδxj,

and
∑

j 6=i δxj and two limit process δx†0 and δx†, which makes the problem more

complicated. However, if C0 = 0 and C = 0, then all these additional process can be

vanished and the problem will be simplified (see [105, 138]).

It is very important to formulate an auxiliary control problem to obtain the

decentralized optimal control for analyzing the problem of social optimality. Usually,
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an auxiliary control problem is a standard LQ control problem (see [105, 174]).

However, (5.8) contains δx†0 and δx†, which are the terms we do not want them

appear in the social cost functional. Therefore, we need to use a duality procedure

(see [191, Chapter 3]) to get off the dependence of δJ (N)
soc (δui) on δx†0 and δx†. To

this end, we introduce two auxiliary equations


dk1 = −(αQ0Ψ1 −Θ>1 QΨ3 + F>k2 + A>0 k1)dt+ β1dW0,

dk2 = −(QΨ3 −Θ>QΨ3 − αΘ>0 Q0Ψ1 + C>0 k1 + C>k2 + A>k2)dt+ β2dW0,

k1(T ) = αG0Ψ4(T )− Θ̂>1 GΨ6(T ), k2(T ) = (I − Θ̂>)GΨ6(T )− αΘ̂>0 G0Ψ4(T ),

and, by Itô formula (see Proposition 3.3 in Chapter 3 or Proposition 4.2 in Chapter

4), the variation of social cost functional is equivalent to

1

2
δJ (N)

soc (δui) = E
{∫ T

0

〈Qx̄i, δxi〉+ 〈Rūi, δui〉+ 〈−Q(Θx̂+ Θ1x̄0 + η)

−Θ>QΨ3 − αΘ>0 Q0Ψ1 + C>0 k1 + C>k2, δxi〉dt+ 〈Gx̄i(T ), δxi(T )〉

+ 〈−G(Θ̂x̂(T ) + Θ̂1x̄0(T ) + η̂)− Θ̂>GΨ6(T )− αΘ̂>0 G0Ψ4(T ), δxi(T )〉
}
.

(5.9)

5.2.2 Decentralized strategy design for followers

As discussed in the previous subsection, when N is sufficiently large, a stochastic

process x̂ can be used to approximate x(N). Now, we can introduce the following

auxiliary control problem for the ith follower.

Problem 5.2. (P5.2) Minimize Ĵi((u0, x̂);ui) over ui ∈ Ui, where

dxi = [Axi +Bui + Cx̂+ Fx̄0(u0)]dt+DdWi, xi(0) = ξi, i = 1, · · · , N, (5.10)

Ĵi((u0, x̂);ui) = E
{∫ T

0

|xi|2Q+ |ui|2R+2〈χ1, xi〉dt+ |xi(T )|2G+2〈χ2, xi(T )〉
}
, (5.11)
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with χ1 = −Q(Θx̂+ Θ1x̄0(u0) + η)−Θ>QΨ3 − αΘ>0 Q0Ψ1 + C>0 k1 + C>k2,

χ2 = −G(Θ̂x̂(T ) + Θ̂1x̄0(u0)(T ) + η̂)− Θ̂>GΨ6(T )− αΘ̂>0 G0Ψ4(T ).

Here, x̄0(u0) means x̄0 is related to u0. x̄0, x̂, k1 and k2 are determined by



dx̄0 = [A0x̄0 +B0u0 + C0x̂]dt+D0dW0, x̄0(0) = ξ0,

dx̂ = [Ax̂+Bû+ Cx̂+ Fx̄0(u0)]dt, x̂(0) = ξ̂,

dk1 = −(αQ0Ψ1 −Θ>1 QΨ3 + F>k2 + A>0 k1)dt+ β1dW0,

dk2 = −(QΨ3 −Θ>QΨ3 − αΘ>0 Q0Ψ1 + C>0 k1 + C>k2 + A>k2)dt+ β2dW0,

k1(T ) = αG0Ψ4(T )− Θ̂>1 GΨ6(T ), k2(T ) = (I − Θ̂>)GΨ6(T )− αΘ̂>0 G0Ψ4(T ),

(5.12)

where x̂ and û are the approximations of x(N) and 1
N

∑N
i=1 ui, respectively.

In what follows, we let ū =M(u0) = {ū1, ū2, · · · , ūN} ∈ U . Note that ū here rep-

resents the decentraliezd optimal control, which is different from the same notation

in the beginning of this section.

Proposition 5.1. Assume that (A5.1)-(A5.4) hold. For given u0 ∈ U0, (P5.2) has

a unique optimal control

ūi = −R−1B>pi, (5.13)

where pi is an adaptive solution to the following BSDE

dpi = −(A>pi +Qx̄i + χ1)dt+ ζ0dW0 + ζidWi, pi(T ) = Gx̄i(T ) + χ2. (5.14)

Proof By variational analysis (see Proposition 3.1 in Chapter 3), the result can be

obtained. �
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Substituting (5.13) into (5.10) and combining (5.14), we have the following FB-

SDE 
dx̄i = [Ax̄i −BR−1B>pi + Cx̂+ Fx̄0]dt+DdWi,

dpi = −(A>pi +Qx̄i + χ1)dt+ ζ0dW0 + ζidWi,

xi(0) = ξi, pi(T ) = Gxi(T ) + χ2, i = 1, 2, · · · , N.

(5.15)

By taking limits, the above FBSDE can be rewritten as:

dx̂ = [(A+ C)x̂+ Fx̄0 −BR−1B>p̂]dt, x̂(0) = ξ̂,

dp̂ = −(A>p̂+Qx̂+ χ1)dt+ ζ0dW0, p̂(T ) = Gx̂(T ) + χ2.
(5.16)

5.2.3 The consistency condition of the follower problem

Let

Ξ1 := (I −Θ>)Q(I −Θ) + αΘ>0 Q0Θ0, ΞG
1 := (I − Θ̂>)G(I − Θ̂) + αΘ̂>0 G0Θ̂0,

Ξ2 := (I −Θ>)QΘ1 + αΘ>0 Q0, ΞG
2 := (I − Θ̂>)GΘ̂1 + αΘ̂>0 G0,

Ξ3 := (I −Θ>)Qη − αΘ>0 Q0η0, ΞG
3 := (I − Θ̂>)Gη̂ − αΘ̂>0 G0η̂0,

Ξ4 := Θ>1 QΘ1 + αQ0, ΞG
4 := Θ̂>1 GΘ̂1 + αG0,

Ξ5 := Θ>1 Qη − αQ0η0, ΞG
5 := Θ̂>1 Gη̂ − αG0η̂0.

Combining (5.12) and (5.16), we can obtain the CC system



dx̂ = [(A+ C)x̂+ Fx̄0 −BR−1B>k2]dt, x̂(0) = ξ̂,

dx̄0 = [A0x̄0 +B0u0 + C0x̂]dt+D0dW0, x̄0(0) = ξ0,

dk1 = −[Ξ4x̄0 − Ξ>2 x̂+ A>0 k1 + F>k2 + Ξ5]dt+ β1dW0,

dk2 = −[Ξ1x̂− Ξ2x̄0 + C>0 k1 + (A+ C)>k2 − Ξ3]dt+ β2dW0,

k1(T ) = ΞG
4 x̄0(T )− (ΞG

2 )>x̂(T ) + ΞG
5 , k2(T ) = ΞG

1 x̂(T )− ΞG
2 x̄0(T )− ΞG

3 ,

(5.17)

where p̂ = k2 can be easily verified.
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5.3 The Optimal Control Problem for the Leader

Now, let (P5.2) have a unique solution. Then, for u0 ∈ U0 given by the leader, the

followers choose their optimal control ū = M(u0) = {ū1, ū2, · · · , ūN} ∈ U , where

ūi is shown in (5.13). Now we consider the optimal control of the leader to further

minimize the social cost functional. In the infinite population system, x(N) may be

approximated by x̂. Hence, we can construct the following auxiliary optimal control

problem for the leader.

Problem 5.3. (P5.3) Minimize Ĵ (N)
soc (u0; ū) over u0 ∈ U0, where

dx0 = [A0x0 +B0u0 + C0x̂]dt+D0dW0, x0(0) = ξ0,

Ĵ (N)
soc (u0; ū) = αN Ĵ0(u0; ū) +

N∑
i=1

Ĵi(u0; ū).
(5.18)

(P5.3) is based on (P5.2). Therefore, combining (5.13), (5.3), and (5.4) with mean

field approximations, the cost functionals of the leader A0 and the follower Ai are

Ĵ0(u0; ū) =E
{∫ T

0

〈Q0Ψ1,Ψ1〉+ 〈R0u0, u0〉dt+ 〈G0Ψ4,Ψ4〉
}
,

Ĵi(u0; ū) =E
{∫ T

0

〈QΨi
2,Ψ

i
2〉+ 〈B>pi, R−1B>pi〉dt+ 〈GΨi

5,Ψ
i
5〉
}
,

where x̂, x̄0, k1, k2, x̄i, pi are determined by (5.17) and (5.15).

We let ū0 be the optimal strategy of the leader and perturb u0 in (5.18), where

δu0 = u0−ū0. Since x̄0, x̂, x̄i and pi are determined by u0, we denote their correspond-

ing perturbations as: δx̄0 = x̄0(u0)− x̄0(ū0), δx̂ = x̂(u0)− x̂(ū0), δx̄i = x̄i(u0)− x̄i(ū0)

and δpi = pi(u0)−pi(ū0). For sake of notation simplicity, we drop (ū0) in the following

x̄0(ū0), x̂(ū0), x̄i(ū0) and pi(ū0), etc. Then, one can obtain

dδx̄0 = [A0δx̄0 +B0δu0 + C0δx̂]dt, δx̄0(0) = 0,
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and the variations of corresponding cost functionals

1

2
δĴ0(δu0) =E

{∫ T

0

〈Q0Ψ1, δx̄0 −Θ0δx̂〉+ 〈R0ū0, δu0〉dt

+ 〈G0Ψ4, δx̄0(T )− Θ̂0δx̂(T )〉
}
,

and

1

2

N∑
i=1

δĴi(δu0) =
N∑
i=1

E
{∫ T

0

〈QΨi
2, δx̄i −Θδx̂−Θ1δx̄0〉+ 〈R−1B>pi, B

>δpi〉dt

+ 〈GΨi
5, δx̄i(T )− Θ̂δx̂(T )− Θ̂1δx̄0(T )〉

}
.

Here Ψ1, Ψi
2, Ψ4(T ), Ψi

5(T ), are related to ū0, and, in what follows, Ψ1, Ψi
2, Ψ3,

Ψ4(T ), Ψi
5(T ), Ψ6(T ) will be related to ū0. Then, the variation of the social cost

functional is

1

2
δĴ (N)

soc (δu0) =αNE
∫ T

0

〈Q0Ψ1, δx̄0〉 − 〈Θ>0 Q0Ψ1, δx̂〉+ 〈R0ū0, δu0〉dt

+
N∑
i=1

E
∫ T

0

〈QΨi
2, δx̄i〉 − 〈Θ>QΨi

2, δx̂〉 − 〈Θ>1 QΨi
2, δx̄0〉

+ 〈BR−1B>pi, δpi〉dt+ αN〈G0Ψ4(T ), δx̄0(T )〉

− αN〈Θ̂>0 G0Ψ4(T ), δx̂(T )〉 −
N∑
i=1

〈Θ̂>1 GΨi
5(T ), δx̄0(T )〉

−
N∑
i=1

〈Θ̂>GΨi
5(T ), δx̂(T )〉+

N∑
i=1

〈GΨi
5(T ), δx̄i(T )〉.

(5.19)

Similarly, the variations of those equations in (5.15) and (5.17) are given by
dδx̄i =[Aδx̄i −BR−1B>δpi + Cδx̂+ Fδx̄0]dt, δx̄i(0) = 0, i = 1, 2, · · · , N,

dδpi =− (A>δpi +Qδxi + [Ξ1 −Q]δx̂− Ξ2δx̄0 + C>0 δk1 + C>δk2)dt

+ δζ0dW0 + δζidWi, δpi(T ) = Gδxi(T ) + [ΞG
1 −G]δx̂(T )− ΞG

2 δx̄0(T ),
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and 

dδx̂ = [(A+ C)δx̂+ Fδx̄0 −BR−1B>δk2]dt, δx̂(0) = 0,

dδk1 = −[Ξ4δx̄0 − Ξ>2 δx̂+ A>0 δk1 + F>δk2]dt+ δβ1dW0,

dδk2 = −[Ξ1δx̂− Ξ2δx̄0 + C>0 δk1 + (A+ C)>δk2]dt+ δβ2dW0,

δk1(T ) = ΞG
4 δx̄0(T )− (ΞG

2 )>δx̂(T ), δk2(T ) = ΞG
1 δx̂(T )− ΞG

2 δx̄0(T ).

Since (5.19) contains many terms that we do not want them to appear in the social

cost functional, we will use a similar argument in the last section to get off the

dependence of δĴ (N)
soc (δu0) on those terms. Therefore, we need the following auxiliary

equations 
dqi = midt+ n0

i dW0 + nidWi, qi(0) = 0, i = 1, 2, · · · , N,

dl1 = s1dt+ r1dW0, l1(0) = 0,

dl2 = s2dt+ r2dW0, l2(0) = 0.

where
mi = −(BR−1B>pi −BR−1B>yi − Aqi),

s1 = C0l2 + A0l1 − C0qi, s2 = (A+ C)l2 −BR−1B>ŷi + Fl1 − Cqi,

ni = 0, n0
i = 0, r1 = 0, r2 = 0,

and

dŷi =α̂dt+ β̂dW0 +
N∑
i=1

β̂idWi,

ŷi(T ) =αΘ̂>0 G0Ψ4(T ) + Θ̂>GΨi
5(T )− (ΞG

2 )>l1(T ) + (ΞG
1 )>l2(T ) + (ΞG

1 −G)>qi(T ),

dyi0 =α̂0dt+ β̂0dW0 +
N∑
i=1

β̂0
i dWi,

yi0(T ) =αG0Ψ4(T )− Θ̂>1 GΨi
5(T )− (ΞG

4 )>l1(T ) + (ΞG
2 )>l2(T ) + (ΞG

2 )>qi(T ),

dyi =αidt+ β0dW0 + βidWi, yi(T ) = GΨi
5(T )−Gqi(T ),
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where



α̂0 =− (αQ0Ψ1 −Θ>1 QΨi
2 + F>yi − F>ŷi + A>0 y

i
0 − Ξ>4 l1 + Ξ>2 l2 + Ξ>2 qi),

α̂ =− αΘ>0 Q0Ψ1 −Θ>QΨi
2 + C>yi − (A+ C)>ŷi + C>0 y

i
0 + Ξ2l1

− Ξ>1 l2 − (Ξ1 −Q)>qi,

αi =− (QΨi
2 + A>yi −Q>qi),

to help us obtain the optimal control of the leader. Here qi, l1, l2, ŷi, yi0, and yi

are used to free δĴ (N)
soc (δu0) from the dependence on pi, k1, k2, δx̂, δx̄0, and δx̄i,

respectively.

Similarly, by Itô formula and the duality relations, the variation of the social cost

functional can be derived as follows:

1

2
δĴ (N)

soc (δu0) = E
∫ T

0

〈αNR0ū0 +
N∑
i=1

B>0 y
i
0, δu0〉dt.

Thus, letting 1
2
δĴ (N)

soc (δu0) = 0 is equivlant to

αNR0ū0 +
N∑
i=1

B>0 y
i
0 = 0.

Then, we have the centralized form of the optimal control for the leader

ū0 = − 1

αN
R−1

0 B>0

N∑
i=1

yi0 := u
(N)
0 , (5.20)
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where ū0 relies on N and the following FBSDE



dyi = −(A>yi −Q>qi +QΨi
2)dt+ β0dW0 + βidWi, yi(T ) = GΨi

5(T )−Gqi(T ),

dqi = (BR−1B>yi + Aqi −BR−1B>pi)dt, qi(0) = 0, i = 1, 2, · · · , N,

dŷi = (−αΘ>0 Q0Ψ1 −Θ>QΨi
2 + C>yi − (A+ C)>ŷi + C>0 y

i
0 + Ξ2l1 − Ξ>1 l2

− (Ξ1 −Q)>qi)dt+ β̂dW0 +
N∑
i=1

β̂idWi,

ŷi(T ) = αΘ̂>0 G0Ψ4(T ) + Θ̂>GΨi
5(T )− (ΞG

2 )>l1(T ) + (ΞG
1 )>l2(T )

+ (ΞG
1 −G)>qi(T ),

dyi0 = −(αQ0Ψ1 −Θ>1 QΨi
2 + F>yi − F>ŷi + A>0 y

i
0 − Ξ>4 l1 + Ξ>2 l2 + Ξ>2 qi)dt

+ β̂0dW0 +
N∑
i=1

β̂0
i dWi,

yi0(T ) = αG0Ψ4(T )− Θ̂>1 GΨi
5(T )− (ΞG

4 )>l1(T ) + (ΞG
2 )>l2(T ) + (ΞG

2 )>qi(T ),

dl1 = (A0l1 + C0l2 − C0qi)dt, l1(0) = 0,

dl2 = [Fl1 + (A+ C)l2 −BR−1B>ŷi − Cqi]dt, l2(0) = 0.

(5.21)

Denote
y∗ = lim

N→+∞

1

N

N∑
i=1

yi, ŷ∗ = lim
N→+∞

1

N

N∑
i=1

ŷi, y∗0 = lim
N→+∞

1

N

N∑
i=1

yi0,

q∗ = lim
N→+∞

1

N

N∑
i=1

qi, l∗1 = lim
N→+∞

1

N

N∑
i=1

l1, l∗2 = lim
N→+∞

1

N

N∑
i=1

l2.

Here, using a similar argument of (5.6), we can easily prove that 1
N

∑N
i=1 yi,

1
N

∑N
i=1 ŷ

i,

1
N

∑N
i=1 y

i
0, 1

N

∑N
i=1 qi,

1
N

∑N
i=1 l1 and 1

N

∑N
i=1 l2 converge to y∗, ŷ∗, y∗0, q∗, l∗1 and l∗2,

respectively. Thus, combining (5.17) and (5.21), when N → ∞, we can obtain the
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CC system for the LF MFT problem



dx̂ = [(A+ C)x̂+ Fx̄0 −BR−1B>k2]dt, x̂(0) = ξ̂,

dx̄0 = [A0x̄0 + C0x̂−B0(αR0)−1B>0 y
∗
0]dt+D0dW0, x̄0(0) = ξ0,

dk1 = −[Ξ4x̄0 − Ξ>2 x̂+ A>0 k1 + F>k2 + Ξ5]dt+ β1dW0,

dk2 = −[Ξ1x̂− Ξ2x̄0 + C>0 k1 + (A+ C)>k2 − Ξ3]dt+ β2dW0,

k1(T ) = ΞG
4 x̄0(T )− (ΞG

2 )>x̂(T ) + ΞG
5 , k2(T ) = ΞG

1 x̂(T )− ΞG
2 x̄0(T )− ΞG

3 ,

dy∗ = −(A>y∗ −Q>q∗ +QΨ3)dt+ β∗dW0, y∗(T ) = GΨ6(T )−Gq∗(T ),

dq∗ = (BR−1B>y∗ + Aq∗ −BR−1B>k2)dt, q∗(0) = 0,

dŷ∗ = [−αΘ>0 Q0Ψ1 −Θ>QΨ3 + C>y∗ − (A+ C)>ŷ∗ + C>0 y
∗
0 + Ξ2l

∗
1 − Ξ>1 l

∗
2

− (Ξ1 −Q)>q∗]dt+ β̂∗dW0,

ŷ∗(T ) = αΘ̂>0 G0Ψ4(T ) + Θ̂>GΨ6(T )− (ΞG
2 )>l∗1(T ) + (ΞG

1 )>l∗2(T )

+ (ΞG
1 −G)>q∗(T ),

dy∗0 = −(αQ0Ψ1 −Θ>1 QΨ3 + F>y∗ − F>ŷ∗ + A>0 y
∗
0 − Ξ>4 l

∗
1 + Ξ>2 l

∗
2 + Ξ>2 q

∗)dt

+ β̂∗0dW0,

y∗0(T ) = αG0Ψ4(T )− Θ̂>1 GΨ6(T )− (ΞG
4 )>l∗1(T ) + (ΞG

2 )>l∗2(T ) + (ΞG
2 )>q∗(T ),

dl∗1 = (A0l
∗
1 + C0l

∗
2 − C0q

∗)dt, l∗1(0) = 0,

dl∗2 = [Fl∗1 + (A+ C)l∗2 −BR−1B>ŷ∗ − Cq∗]dt, l∗2(0) = 0,

(5.22)

and the decentralized optimal control for the leader

u∗0 = −(αR0)−1B>0 y
∗
0. (5.23)

The final CC system is highly coupled with five forward equations and five backward

equations. The existence and uniqueness of (5.22) are very important for obtaining

the optimal control, however, it is very difficult to solve such a high-dimensional
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system. We need to simplify the CC system to an FBSDE using block matrices and

these will be discussed in the next section.

5.4 Well-Posedness of the CC System

Note that in (5.22), the equations of (x̂, x̄0, k1, k2) form a coupled FBSDE and

(y∗, q∗, ŷ∗, y∗0, l
∗
1, l
∗
2) form another coupled FBSDE. The two FBSDEs are also fully

coupled with each other. Therefore, we try to look at the above FBSDEs differently.

To this end, we set

X =


x̂
x̄0

q∗

l∗1
l∗2

 , Y =


y∗

ŷ∗

y∗0
k1

k2

 , X(0) =


ξ̂
ξ0

0
0
0

 ,

Y(T ) =


GΨ6 −Gq∗(T )

αΘ̂>0 G0Ψ4 − Θ̂>GΨ6 − (ΞG
2 )>l∗1(T ) + (ΞG

1 )>l∗2(T ) + (ΞG
1 −G)>q∗(T )

αG0Ψ4 − Θ̂>1 GΨ6 − (ΞG
4 )>l∗1(T ) + (ΞG

2 )>l∗2(T ) + (ΞG
2 )>q∗(T )

ΞG
4 x̄0(T )− (ΞG

2 )>x̂(T ) + ΞG
5

ΞG
1 x̂(T )− ΞG

2 x̄0(T )− ΞG
3

 .

Then (5.22) is equivalent to

dX = [AX + BY + b]dt+ DdW0, X(0) = (ξ̂> ξ>0 0 0 0)>,

dY = [ÂX + B̂Y + b̂]dt+ D̂dW0, Y(T ) = GX(T ) + g,

(5.24)

with

A =


A+ C F 0 0 0
C0 A0 0 0 0
0 0 A 0 0
0 0 −C0 A0 C0

0 0 −C F (A+ C)

 , b =


0
0
0
0
0

 , D =


0
D0

0
0
0

 ,
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B =


0 0 0 0 −BR−1B>

0 0 −B0(αR0)−1B>0 0 0
BR−1B> 0 0 0 −BR−1B>

0 0 0 0 0
0 −BR−1B> 0 0 0

 ,

Â =


−Q(I −Θ) QΘ1 Q> 0 0

Ξ1 −Q(I −Θ) −Ξ2 +QΘ1 −(Ξ1 −Q)> Ξ2 −Ξ>1
Ξ>2 −Ξ4 −Ξ>2 Ξ>4 −Ξ>2
Ξ>2 −Ξ4 0 0 0
−Ξ1 Ξ2 0 0 0

 ,

b̂ =


Qη

−Ξ3 +Qη
−Ξ5

−Ξ5

Ξ3

 , D̂ =


β∗

β̂∗

β̂∗0
β1

β2

 , g =


−Gη̂

ΞG
3 −Gη̂

ΞG
5

ΞG
5

−ΞG
3

 ,

B̂ =


−A> 0 0 0 0
C> −(A+ C)> C>0 0 0
−F> F> −A>0 0 0

0 0 0 −A>0 −F>
0 0 0 −C>0 −(A+ C)>

 ,

G =


G(I − Θ̂) −GΘ̂1 −G 0 0

−ΞG
1 +G(I − Θ̂) ΞG

2 −GΘ̂1 (ΞG
1 −G)> −(ΞG

2 )> (ΞG
1 )>

−(ΞG
2 )> ΞG

4 (ΞG
2 )> −(ΞG

4 )> (ΞG
2 )>

−(ΞG
2 )> ΞG

4 0 0 0
ΞG

1 −ΞG
2 0 0 0

 .

Let

Ā =

(
A + BG B

Â−GA + B̂G−GB̂G B̂−GB

)
, b̄ =

(
b

b̂−Gb

)
,

D̄ =

(
D

D̂−GD

)
, Ȳ = Y−GX,

then (5.24) can be rewritten as:
d

(
X
Ȳ

)
=

{
Ā
(

X
Ȳ

)
+ b̄

}
dt+ D̄dW0,

X(0) = (ξ̂> ξ>0 0 0 0)>, Ȳ(T ) = g.

(5.25)
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This is a fully coupled FBSDE. By the Theorem 3.7 in [133, Chapter 2], the FBSDE

(5.25) is solvable for all g ∈ L2
F(Ω;R5n) if and only if the following condition holds:

det

{
(0, I)eĀt

(
0
I

)}
> 0, ∀ t ∈ [0, T ]. (5.26)

In the case, (5.24) admits an unique solution for any given g ∈ L2
F(Ω;R5n).

Under the condition (5.26), we may decouple the FBSDE (5.25) by

Ȳ(t) = K(t)X(t) + κ(t), t ∈ [0, T ],

where K ∈ C1(0, T ;S5n) is a solution of the following Ricatti equation

K̇ + K(A + BG) + KBK− (B̂−GB)K− (Â−GA + B̂G−GB̂G) = 0,

K(T ) = 0, t ∈ [0, T ],

and κ ∈ C1(0, T ;R5n) satisfies

κ̇+ (KB− (B̂−GB))κ+ Kb− (b̂−Gb) = 0, t ∈ [0, T ], κ(T ) = g. (5.27)

By the Theorem 3.7 and Theorem 4.3 in [133, Chapter 2], if (5.26) hold, then the

Ricatti equation admits a unique solution K(·) with the following representation:

K(t) = −
[
(0, I)eĀ(T−t)

(
0
I

)]−1[
(0, I)eĀ(T−t)

(
I
0

)]
, t ∈ [0, T ]. (5.28)

Example 5.1. Consider the system (5.25) with parameters A0 = 0.1, B0 = 1,

C0 = 0.01, D0 = 1, A = 0.05, B = 1, C = 0.05, D = 1, F = 0.3, Θ0 = 1, Q0 = 1,

R0 = 10, G0 = 0, Θ = 0.1, Θ1 = 1, Q = 0.9, R = 15, G = 0, α = 1.02, T = 12,
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η0 = η = 0. Then, we have

A =


0.10 0.30 0 0 0
0.01 0.10 0 0 0

0 0 0.05 0 0
0 0 −0.01 0.10 0.01
0 0 −0.05 0.30 0.10

,B =


0 0 0 0 −0.0667
0 0 −0.0980 0 0

0.0667 0 0 0 −0.0667
0 0 0 0 0
0 −0.0667 0 0 0

,

Â =


−0.81 0.90 0.90 0 0
0.939 −0.93 −2.649 1.83 −1.749
1.83 −1.92 −1.83 1.92 −1.83
1.83 −1.92 0 0 0
−1.749 1.83 0 0 0

, B̂ =


−0.05 0 0 0 0
0.05 −0.10 0.01 0 0
−0.30 0.30 −0.10 0 0

0 0 0 −0.10 −0.30
0 0 0 −0.01 −0.10

.

Hence, according to the simulation through Matlab software, for any t ∈ [0, T ], we

obtain

Ā =

(
A + BG B

Â−GA + B̂G−GB̂G B̂−GB

)
, det

{
(0, I)eĀt

(
0
I

)}
> 0,

(e.g. for t = 6, det

{
(0, I)eĀt

(
0
I

)}
= 12.7053 > 0). By the argument above,

(5.24) is solvable.

For further analysis, we make the following assumption:

(A5.5) The equation (5.25) has a unique solution and the solution (X, Ȳ, D̄) belongs

to M[0, T ].

For the following equationdx̄i = [Ax̄i −BR−1B>pi + Cx̂+ Fx̄0]dt+DdWi, xi(0) = ξi, i = 1, 2, · · · , N,

dpi = −[A>pi +Qx̄i + χ1]dt+ ζ0dW0 + ζidWi, pi(T ) = Gxi(T ) + χ2,

(5.29)

where χ1 and χ2 are related to ū0. We let pi = P̄ x̄i + ϕ̄, t ∈ [0, T ], where P̄ ∈

C1(0, T ;Sn) is a solution of the following Ricatti equation and ϕ̄ ∈ C1(0, T ;Rn)

satisfies
˙̄P + P̄A− P̄BR−1B>P̄ + A>P̄ +Q = 0, t ∈ [0, T ], P̄ (T ) = G,

˙̄ϕ+ (A> − P̄BR−1B>)ϕ̄+ χ1 + P̄Cx̂+ P̄F x̄0 = 0, t ∈ [0, T ], ϕ̄(T ) = χ2.
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Since the Ricatti equation is standard, it has a unique solution. Hence, (5.29) is

uniquely solvable and the solution belongs to M[0, T ].

5.5 Asymptotically Social Optimality

In this section, we discuss that if the leader announces u∗0 obtained in (5.23) to the

N followers, then the set of the optimal decentralized controls for the leader and

the followers will constitute an approximated Stackelberg equilibrium. First, for the

open-loop decentralized strategy (u∗0, u
∗) in (5.23) and (5.13), we have the realized

decentralized state x∗0 and x∗i , satisfies


dx∗0(t) = [A0x

∗
0(t)−B0(αR0)−1B>0 y

∗
0(t) + C0(x∗)(N)(t)]dt+D0dW0(t),

dx∗i (t) = [Ax∗i (t)−BR−1B>pi(t) + C(x∗)(N)(t) + Fx∗0(t)]dt+DdWi(t),

x∗0(0) = ξ0, x∗i (0) = ξi, i = 1, 2, · · · , N,

(5.30)

where y∗0, pi satisfy (5.22) and (5.29), respectively. Then, by [16] and [138], we give

the definition of the asymptotic Stackelberg equilibrium.

Definition 5.1. A set of control laws M(ǔ0) ∈ U has asymptotic social optimality

if ∣∣∣∣ 1

N
J (N)
soc (ǔ0;M(ǔ0))− 1

N
inf

(ǔ0,ǔ)∈Uc
J (N)
soc (ǔ0; ǔ)

∣∣∣∣ = O(
1√
N

),

whereM is a mapping andM : U0 → U . Uc is a set of centralized information-based

control.

Definition 5.2. A set of control laws (u∗0, u
∗) ∈ U0 × U , where u∗ = M(u∗0), is an

asymptotic Stackelberg equilibrium with respect to J (N)
soc (u0, u) if the following two

properties hold:

1. M(ǔ0) has an asymptotic social optimality under ǔ0.
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2. The following equation is satisfied

∣∣∣∣ 1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
inf
ǔ0∈Uc

J (N)
soc (ǔ0;M(ǔ0))

∣∣∣∣ = O(
1√
N

).

We first need to introduce some lemmas before proving the asymptotic Stackel-

berg equilibrium. In what follows, the value of K may be different at different places

and it only depends on the coefficients and initial values.

Lemma 5.1. Assume that (A5.1)-(A5.5) hold. Then

E
∫ T

0

|(x∗)(N) − x̂|2dt+ E
∫ T

0

|p(N) − p̂|2dt+ E
∫ T

0

|x∗0 − x̄0|2dt = O(
1

N
).

Proof The proof is similar to Lemma 4.2 in Chapter 4. For the detail proof, readers

may refer to [101, Appendix A]. �

Lemma 5.2. Assume that (A5.1)-(A5.5) hold. There exists a constant K, which

is independent of N , such that

J (N)
soc (u∗0;u∗) ≤ NK.

Proof See [101, Appendix B]. �

Proposition 5.2. Assume that (A5.1)-(A5.5) hold. For all (ǔ0; ǔ) ∈ Uc, there

exists a constant K, which is independent of N , such that

αN |ǔ0|2L2 + |ǔ|2L2 ≤ NK.

Proof The proof is trivial, we omit it here. �

The following two propositions will give the rigorous proofs for the approximations

in Section 5.2.
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Proposition 5.3. Assume that (A5.1)-(A5.5) hold. Then, for (5.5), E sup0≤t≤T |δx0|2 =

O( 1
N2 ), E sup0≤t≤T |δx(N)|2 = O( 1

N2 ) and 〈Θ>Q(x̄i − Θx̄(N) − Θ1x̄0 − η), δx(N)〉 +

〈Θ>1 Q(x̄i−Θx̄(N)−Θ1x̄0−η), δx0〉+〈Θ̂>G(x̄i(T )−Θ̂x̄(N)(T )−Θ̂1x̄0(T )−η̂), δx(N)(T )〉+

〈Θ̂>1 G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx0(T )〉 = o(1).

Proof See [101, Appendix C]. �

Proposition 5.4. Assume that (A5.1)-(A5.5) hold. Then, Nδxj, Nδx0, Nδxj

converge to
∑

j 6=i δxj, δx
†
0, δx† such that


E
∫ T

0

|Nδxj −
∑
j 6=i

δxj|2 = O(
1

N2
), E

∫ T

0

|Nδx0 − δx†0|2 = O(
1

N2
),

E
∫ T

0

|Nδxj − δx†|2 = O(
1

N2
).

Proof See [101, Appendix C]. �

By the lemmas and propositions we discussed above, we give the main result.

Theorem 5.1. Assume that (A5.1)-(A5.5) hold. Then the pair (u∗0, u
∗) given in

(5.23) and (5.13) is an asymptotic Stackelberg equilibrium with respect to the social

cost functional.

Proof For (ǔ0; ǔ) ∈ Uc, let

1

N
J (N)
soc (u∗0;u∗)− 1

N
J (N)
soc (ǔ0; ǔ) =

1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
J (N)
soc (ǔ0;M(ǔ0))

+
1

N
J (N)
soc (ǔ0;M(ǔ0))− 1

N
J (N)
soc (ǔ0; ǔ) := ∆1 + ∆2,

where ∆1 = 1
N
J (N)
soc (u∗0;M(u∗0)) − 1

N
J (N)
soc (ǔ0;M(ǔ0)), ∆2 = 1

N
J (N)
soc (ǔ0;M(ǔ0)) −

1
N
J (N)
soc (ǔ0; ǔ). Since ǔ0 is fixed, by following the standard method in [105], we obtain
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|∆2|2 ≤ c(|ǔ0|2L2) 1
N

. Specifically, we denote x̀i as the state of the ith follower when

its control is Mi(ǔ0), thus x̀i is equivalent to x̄i in Section 5.2. Let

ũ0 = ǔ0 − ǔ0 = 0, ũ = ǔ−M(ǔ0), ũi = ǔi −Mi(ǔ0),

x̃0 = x̌0 − x̀0, x̃i = x̌i − x̀i.

Then we have

J (N)
soc (ǔ0; ǔ) = αNJ0(ǔ0; ǔ) +

N∑
i=1

Ji(ǔ0; ǔ)

=αNJ0(ǔ0;M(ǔ0)) + αNH0 + αNI0 +
N∑
i=1

Ji(ǔ0;M(ǔ0)) +
N∑
i=1

Hi +
N∑
i=1

Ii,

where

J0(ǔ0;M(ǔ0)) = E
{∫ T

0

|x̀0 −Θ0x̀
(N) − η0|2Q0

+ |ǔ0|2R0
dt

+ |x̀0(T )− Θ̂0x̀
(N)(T )− η̂0|2G0

}
,

H0 = E
{∫ T

0

|x̃0 −Θ0x̃
(N)|2Q0

dt+ |x̃0(T )− Θ̂0x̃
(N)(T )|2G0

}
,

Ji(ǔ0;M(ǔ0)) = E
{∫ T

0

|x̀i −Θx̀(N) −Θ1x̀0 − η|2Q + |Mi(ǔ0)|2Rdt

+ |x̀i(T )− Θ̂x̀(N)(T )− Θ̂1x̀0(T )− η̂|2G
}
,

Hi = E
{∫ T

0

|x̃i −Θx̃(N) −Θ1x̃0|2Q + |ũi|2Rdt+ |x̃i(T )− Θ̂x̃(N)(T )− Θ̂1x̃0(T )|2G
}
,

I0 = E
{∫ T

0

(x̀0 −Θ0x̀
(N) − η0)>Q0(x̃0 −Θ0x̃

(N))dt

+ (x̀0(T )− Θ̂0x̀
(N)(T )− η̂0)>G0(x̃0(T )− Θ̂0x̃

(N)(T ))

}
,
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Ii = E
{∫ T

0

(x̀i −Θx̀(N) −Θ1x̀0 − η)>Q(x̃i −Θx̃(N) −Θ1x̃0) +M>
i (ǔ)Rũidt

+ (x̀i(T )− Θ̂x̀(N)(T )− Θ̂1x̀0(T )− η̂)>G(x̃i(T )− Θ̂x̃(N)(T )− Θ̂1x̃0(T ))

}
.

By straightforward computation

αNI0 = E
{∫ T

0

αN [Ψ>1 Q0 − (Θ0υ1)>Q0]x̃0 − α[Ψ>1 Q0Θ0

− (Θ0υ1)>Q0Θ0]
N∑
i=1

x̃idt+ αN [Ψ4(T )>G0 − (Θ̂0υ1(T ))>G0]x̃0(T )

− α[Ψ4(T )>G0Θ̂0 − (Θ̂0υ1(T ))>G0Θ̂0]
N∑
i=1

x̃i(T )

}
,

(5.31)

N∑
i=1

Ii = E
{∫ T

0

N∑
i=1

(Ψi
2)>Qx̃i − [(Θυ1)>Q+ Ψ>3 QΘ− ((I −Θ)υ1)>QΘ]

N∑
i=1

x̃i

−N [Ψ>3 QΘ1 − [(I −Θ)υ1]>QΘ1]x̃0 +M>
i (ǔ)Rũidt+

N∑
i=1

(Ψi
5(T ))>Gx̃i(T )

− [(Θ̂υ1(T ))>G+ Ψ6(T )>GΘ̂− ((I − Θ̂)υ1(T ))>GΘ̂]
N∑
i=1

x̃i(T )

−N [Ψ6(T )>GΘ̂1 − [(I − Θ̂)υ1(T )]>GΘ̂1]x̃0(T )

}
.

(5.32)

where υ1 = x̀(N)− x̂. By (5.22), (5.29) and Itô formula, we obtain following relations:

N〈k1(T ), x̃0(T )〉 = 〈αNG0Ψ4, x̃0(T )〉 − 〈NΘ̂>1 GΨ6, x̃0(T )〉

=E
∫ T

0

−〈αNQ0Ψ1, x̃0〉+ 〈NΘ>1 QΨ3, x̃0〉 − 〈k2, NF x̃0〉+ 〈C>0 k1,

N∑
i=1

x̃i〉dt,
(5.33)
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and

N∑
i=1

〈pi(T ), x̃i(T )〉 = E
∫ T

0

〈Θ>QΨ3,

N∑
i=1

x̃i〉 − 〈QΨi
2,

N∑
i=1

x̃i〉+ 〈αΘ>0 Q0Ψ1,
N∑
i=1

x̃i〉

− 〈C>0 k1,
N∑
i=1

x̃i〉 − 〈p(N) − k2, C

N∑
i=1

x̃i〉+
N∑
i=1

〈pi, Bũi〉+ 〈p(N), NF x̃0〉dt.

(5.34)

Meanwhile, by (5.13), we have

N∑
i=1

〈Mi(ǔ), Rũi〉+
N∑
i=1

〈pi, Bũi〉

=
N∑
i=1

〈RMi(ǔ) +B>pi, ũi〉 =
N∑
i=1

〈R(−R−1B>pi) +B>pi, ũi〉 = 0.

(5.35)

Combining (5.31)-(5.35), Lemma 5.1 and Lemma 5.2, it follows that

1

N
(αNI0 +

N∑
i=1

Ii) = O(
1√
N

).

Moreover, 1
N

(αNH0 +
∑N

i=1Hi) ≥ 0. Thus, we have

∆2 =
1

N
J (N)
soc (ǔ0;M(ǔ0))− 1

N
J (N)
soc (ǔ0; ǔ) ≤ c(|ǔ0|2L2)

1√
N
. (5.36)

For ∆1, we decompose it as follows:

∆1 =
1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
J (N)
soc (ǔ0;M(ǔ0)) =

1

N
J (N)
soc (u∗0;M(u∗0))

− 1

N
J (N)
soc (u

(N)
0 ;M(u

(N)
0 )) +

1

N
J (N)
soc (u

(N)
0 ;M(u

(N)
0 ))− 1

N
J (N)
soc (ǔ0;M(ǔ0)).

Note that u
(N)
0 is the centralized social optimal control in (5.20), thus one can easily

obtain that

1

N
J (N)
soc (u

(N)
0 ;M(u

(N)
0 )) ≤ 1

N
J (N)
soc (ǔ0;M(ǔ0)). (5.37)
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We know that J (N)
soc (u0;M(u0)) continuously depends on u0. Since M(u0) is the

solution of (5.29) which continuously depends on parameters, we have M(u0) is

continuous in u0. Note that J (N)
soc (u0;M(u0)) is a quadratic functional and u∗0 is

fixed. Let x̌
(N)
0 and x̌

(N)
i be the state of the leader and the ith follower when the

control of the leader is u
(N)
0 . Denote

ú0 = u
(N)
0 − u∗0, δM(u0) =M(u

(N)
0 )−M(u∗0),

δMi(u0) =Mi(u
(N)
0 )−Mi(u

∗
0), x́0 = x̌

(N)
0 − x∗0, x́i = x̌

(N)
i − x∗i .

Then we have∣∣∣∣J (N)
soc (u

(N)
0 ;M(u

(N)
0 ))− J (N)

soc (u∗0;M(u∗0))

∣∣∣∣
=

∣∣∣∣J (N)
soc (u

(N)
0 − u∗0 + u∗0;M(u

(N)
0 )−M(u∗0) +M(u∗0))− J (N)

soc (u∗0;M(u∗0))

∣∣∣∣,
and

J (N)
soc (u

(N)
0 ;M(u

(N)
0 )) = αN [J0(u∗0;M(u∗0)) +H ′0 + I ′0] +

N∑
i=1

[Ji(u∗0;M(u∗0)) +H ′i + I ′i],

where

J0(u∗0;M(u∗0)) = E
{∫ T

0

|x∗0 −Θ0(x∗)(N) − η0|2Q0
+ |u∗0|2R0

dt

+ |x∗0(T )− Θ̂0(x∗)(N)(T )− η̂0|2G0

}
,

H ′0 = E
{∫ T

0

|x́0 −Θ0x́
(N)|2Q0

+ |ú0|2R0
dt+ |x́0(T )− Θ̂0x́

(N)(T )|2G0

}
,
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Ji(u∗0;M(u∗0)) = E
{∫ T

0

|x∗i −Θ(x∗)(N) −Θ1x
∗
0 − η|2Q + |Mi(u

∗
0)|2Rdt

+ |x∗i (T )− Θ̂(x∗)(N)(T )− Θ̂1x
∗
0(T )− η̂|2G

}
,

H ′i = E
{∫ T

0

|x́i −Θx́(N) −Θ1x́0|2Q + |δMi(u0)|2Rdt

+ |x́i(T )− Θ̂x́(N)(T )− Θ̂1x́0(T )|2G
}
,

I ′0 = E
{∫ T

0

(x∗0 −Θ0(x∗)(N) − η0)>Q0(x́0 −Θ0x́
(N))dt

+ (x∗0(T )− Θ̂0(x∗)(N)(T )− η̂0)>G0(x́0(T )− Θ̂0x́
(N)(T ))

}
,

I ′i = E
{∫ T

0

(x∗i −Θ(x∗)(N) −Θ1x
∗
0 − η)>Q(x́i −Θx́(N) −Θ1x́0) +M>

i (u∗0)RδMi(u0)dt

+ (x∗i (T )− Θ̂(x∗)(N)(T )− Θ̂1x
∗
0(T )− η̂)>G(x́i(T )− Θ̂x́(N)(T )− Θ̂1x́0(T ))

}
.

By the similar arguments in Lemma 5.1 to Lemma 5.2 and |∆2|2 ≤ c(|ǔ0|2L2) 1
N

, we

obtain

1

N
H ′0 +

1

N
H ′i + αI ′0 +

1

N

N∑
i=1

I ′i = O(
1√
N

).

Hence, we have

− 1

N
J (N)
soc (u

(N)
0 ;M(u

(N)
0 )) +

1

N
J (N)
soc (u∗0;M(u∗0)) ≤ K(

1√
N

) = O(
1√
N

), (5.38)

where K is independent of N . By (5.38) and (5.37), it follows that

1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
J (N)
soc (u

(N)
0 ;M(u

(N)
0 )) = O(

1√
N

),

and

1

N
J (N)
soc (u

(N)
0 ;M(u

(N)
0 ))− 1

N
J (N)
soc (ǔ0;M(ǔ0)) ≤ 0,
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respectively. Thus, we have

∆1 =
1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
J (N)
soc (ǔ0;M(ǔ0)) ≤ O(

1√
N

). (5.39)

By Proposition 5.2, there exists K independent of N such that |ǔ0|2L2 ≤ K. Then,

combining (5.36), (5.39), we can obtain:

∆1 + ∆2 ≤ O(
1√
N

) + c(|ǔ0|2L2)
1√
N

) ≤ K ·O(
1√
N

) = O(
1√
N

),

where K is independent of N . The theorem follows. �

5.6 Numerical Examples

We now give a numerical example for Lemma 5.1. By (5.28) and (5.27), K and κ

can be easily computed. Consider Y = KX + κ, we can obtain that

dX = [(A + BK)X + Bκ+ b]dt+ DdW0, Y = KX + κ,

where X = ((x̂)> (x̄0)> (q∗)> (l∗1)> (l∗2)>)>, Y = ((y∗)> (ŷ∗)> (y∗0)> (k1)> (k2)>)>.

Since pi = P̄ x̄i + ϕ̄, by the following equations below (5.29), we have

dx̄i = [(A−BR−1B>P̄ )x̄i −BR−1B>ϕ̄+ Cx̂+ Fx̄0]dt+DdWi.

The realized decentralized state x∗0 and (x∗)(N), can be derived by (5.30). Combining

them with (5.22), one can obtain


d

(
x∗0 − x̄0

(x∗)(N) − x̂

)
=

[(
A0 C0

F A+ C

)(
x∗0 − x̄0

(x∗)(N) − x̂

)
−
(

0
BR−1BT

)
(p(N) − p̂)

]
dt+

1

N

(
0∑N
1 D

)
dWi,

(
x∗0 − x̄0

(x∗)(N) − x̂

)
(0) =

(
0

1
N

∑N
1 ξi − ξ̂

)
,

where p̂ = k2.
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(a)

(b)

Figure 5.1: (a) is the trajectories of x∗i , i = 1, · · · , 100 and (b) is the curves of ε2
i ,

i = 1, 2, 3 when time interval is [0, 12].

We continuously use the parameters in Example 5.1. The population N = 100

and the time interval is [0, 12]. By Matlab computation, the trajectories of the

realized state x∗i are shown in Figure 1(a).

We defined ε2
1 = E

∫ 12

0
|(x∗)(N)− x̂|2dt, ε2

2 = E
∫ 12

0
|x∗0− x̄0|2dt, ε2

3 = E
∫ 12

0
|p(N)−

p̂|2dt. When N increases from 1 to 100, the curves of ε2
1, ε2

2 and ε2
3 are shown in

Figure 1(b). The X axis indicates N and the Y axis indicates ε2
i , i = 1, 2, 3. It can

be seen that they are approaching to zero when N is growing larger and larger.
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5.7 Conclusion

This chapter has analyzed a class of LQ MFT control problems. We obtain the

decentralized form of optimal controls for the leader and N followers. By the Riccati

equation method, we discuss the solvability of the FBSDE. Finally, an asymptotic

Stackelberg equilibrium theorem is established. For future work, one can extend the

results of this paper to the hierarchical control with many leaders cases.
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Chapter 6

Stackelberg-Nash-Cournot

Equilibrium with Model

Uncertainty and Weak-coupling: a

Mean Field Consistency Approach

In this chapter, a multi-leader and multi-follower (ML/MF) game equilibrium prob-

lem with a hierarchical structure, model uncertainty, and weak-coupling is intro-

duced. The leaders or followers play a Nash game with each other in their hierarchy,

while leaders and followers play a Stackelberg game between the two hierarchies. The

information structures between leaders and followers are asymmetric and model un-

certainty appears since the lacking of communication among the agents. Moreover,

all agents are framed under a weakly-coupled large population system with complex

interrelations. According to the mean field game (MFG) theory, it can obtain an

asymptotic Stackelberg-Nash-Cournot (SNC) equilibrium for leaders and followers

based on a CC system.

This chapter can be considered as a supplement for the thesis. It is different from

the previous chapters since it is focusing on discovering the LF MFG under the static

model. Meanwhile, to our best knowledge, this is the first time to investigate the

weakly-coupled LF problem (w-LF) in a static optimization context.
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6.1 General Nash and Stackelberg Game

6.1.1 General Nash game

We recall the multiple-agent game in its general normal form with related notions.

Definition 6.1 (General form of game). A multiple-agent game is a quadruple G

:= (A, J, Γ, Θ), where A = {Ai}i∈I denotes the set of agents involved. I is

the agent index set and its cardinality is assumed to be finite with |I| < +∞.

J = (J1, · · · Ji · · · ,J|I|) denotes the cost functional profile of {Ai}i∈I with Ji =

Ji(xi;x−i; θi) : Γi ×
∏

j 6=i,j∈I Γj ×Θi ⊆ Rni ×
∏

j 6=i,j∈I Rnj ×Rmi → R the individual

functional of agent Ai. xi is the individual strategy (decision) taken by agent Ai while

x−i = (x1, · · · , xi−1, xi+1, · · · , x|I|) is the collective strategies of the other agents. θi

is the individual parameter of Ai. Γi ⊆ Rni is the individual admissibility of Ai

while Γ =
∏

i∈I Γi the admissible set of all strategies. P = (θ1, · · · θi · · · , θ|I|) ∈ Θ :=∏
i∈I Θi ⊆

∏
i∈I Rmi denotes the parameter sets amongst all agents while Θi ⊆ Rmi

the individual parameter support for Ai.

Remark 6.1. In general, we assume ∀i 6= j ∈ I,Ji 6= Jj so that all agents in

Definition 6.1 are completely competitive with fully conflictive costs. Another extreme

case is Ji ≡ Jj ≡ J for all i, j ∈ I, and in this case, all agents formalize a vector

team optimization (see Chapter 4 and 5). We may denote x = (x1, · · ·xi · · · , x|I|) =

(xi;x−i) ∈ Γi ×
∏

j 6=i,j∈I Γj = Γ to emphasize the particular role of decision xi for

agent Ai.

For multiple-agent game problem G, the following solvability notion is meaning-

ful.

Definition 6.2. An NE for a general multiple-agent game is an |I|-tuple x̄ =

(x̄i; x̄−i) satisfying

Ji(x̄i; x̄−i; θi) ≤ Ji(xi; x̄−i; θi), ∀xi ∈ Γi, ∀i ∈ I.
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Cournot game (or Cournot duopoly model) is one of the applications of NE.

Cournot model is a kind of non-cooperative game model in which two firms (it could

be generalized to N firms) with identical cost functions compete with homogeneous

products (see [59, 75, 143]). For example, suppose P (x1 + x2) be the price function

(or inverse demand function) for the firms and Ci(xi) be the cost function of firm Ai,

where xi ∈ R is the quantity of product of firm Ai. Then the profit is Ji(x1;x2) =

P (x1 + x2)xi − Ci(xi), i = 1, 2. To calculate the Cournot equilibrium (the NE), it

should first take the derivative of Ji, i = 1, 2, and set this to zero for maximization

(the firms want to maximize their profits, thus the inequality in Definition 6.2 should

has an opposite direction here):

∂Ji
∂xi

=
∂P (x1 + x2)

∂xi
xi + P (x1 + x2)− ∂Ci(xi)

∂xi
= 0.

The best responses of the firm Ai is the values of x̄i, i = 1, 2, that satisfy above

equation and the NE is the pair (x̄1, x̄2). More specifically, if the price function is

linear P (x1 + x2) = a − b(x1 + x2) and the cost is quadratic Ci(xi) = cx2
i , where a,

b, c > 0. Without loss of generality, consider A1’s problem, then

∂J1

∂x1

=
∂P (x1 + x2)

∂x1

x1 + P (x1 + x2)− ∂C1(x1)

∂x1

= 0

=⇒− bx1 + a− b(x1 + x2)− cx1 = 0.

The best responses of A1 and A2 (by symmetry) are

x̄1 = x̄2 =
a

3b+ c
,

and the profits of A1 and A2 under (x̄1, x̄2) are

J1(x̄1; x̄2) = J2(x̄1; x̄2) =
a2b

(3b+ c)2
.

127



If the number of firms generalized to N , then by some elementary calculation (see

[155]), the best responses of Ai, i = 1, · · · , N , is

x̄i =
a

(N + 1)b+ c
, i = 1, · · · , N,

and the profits of Ai under (x̄1, · · · , x̄N) is

Ji(x̄i; x̄−i) =
a2b

[(N + 1)b+ c]2
, i = 1, · · · , N.

Next, some applications of Cournot game or Cournot competition are introduced.

• Cournot model is applied in the international trade problem. In [57], the

industrial policies and optimal trade were obtained for a home market that

was supplied by a foreign firm and a domestic firm. The consumer’s surplus

from the consumption was

S(Pd;Pf ) = max
xd,xf

M(xd;xf )− Pdxd − Pfxf ,

where xd (xf ) was the quantity of the good produced by the home (foreign)

firm. M was measured in terms of the numeraire. Pd(xd;xf ) and Pf (xd;xf )

were the corresponding inverse demand function of the home firm and the

foreign firm, respectively, and

Pd(xd;xf ) =
∂M(xd;xf )

∂xd
, Pf (xd;xf ) =

∂M(xd;xf )

∂xf
.

The optimal policy under Cournot competition consisted of a domestic pro-

duction tax and a tariff. It denoted t as a specific tariff on imports and s as a

unit subsidy for the home firm’s output. The national welfare in the domestic

market was equal to the sum of the consumer’s surplus, the home firm’s profits,

and the tariff revenues, less the production subsidies,

W = S(Pd;Pf ) + (Pd − cd + s)xd + txf − sxd,
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where cd was the home firm’s marginal costs. If the goods were homogeneous,

then xd and xf are determined by an NE of the following conjectural variations

model:

Pd(xd;xf ) + xd(Pd + Pfγ)− cd + s ≤ 0,

Pf (xd;xf ) + xf (Pf + PdΓ)− cf − t ≤ 0,

where cf was the foreign firm’s marginal costs. γ =
dxf
dxd

(Γ = dxd
dxf

) was the

domestic (foreign) firms’ conjectural variations. Under Cournot model, γ =

Γ = 0. The total differential of the national welfare was:

dW = (Pd − cd)dxd + tdxf − xfd(Pf − t).

When the inverse demand function was linear as

Pd = ad − bdxd − kdxf , Pf = af − kdxd − bfxf ,

where all the parameters were positive and bdbf−k2
d > 0, and both the domestic

goods and imports were desirable, then the optimal tariff and subsidy were

t̄ =
1

3bdbf
[bdbf (af − cf )− kdbf (ad − cd)],

s̄ =
1

3bdbf
[(3bdbf − 2kd(ad − cd)− bdkd(af − cf )],

• In [83], the contracting and information sharing under Cournot competition

was studied. It contained two competing supply chains, each consisting of one

manufacturer and one retailer. The two supply chains were identical except

they had different investment costs. First, the manufacturers considered to

share information. Secondly, for the given the information structure, the man-

ufacturers made contracts to their retailers and the retailers competed under

Cournot model. The linear inverse demand function of retailers was

P = a− x1 − x2,
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where P was the market clearing price and x1, x2 ∈ R were the selling quanti-

ties. A was a random variable given by

a =

ah with probablity α,

al with probablity 1− α,

where ah and al were the high and low demand states, ah > al > 0. It denoted

the demand state as d = h or l for all the manufacturers and retailers. The

manufacturers offered contracts (xdi, pdi), i = 1, 2, to retailers, where xdi was

the order quantity and pdi was the corresponding payment. The profit function

of retailer i was

(ad − xdi − xdj − wdi)xdi,

where wdi was the whole price of retailer i, i = 1, 2, and the profit of manufac-

turer i was

wdix̄di.

(1) When the information sharing in both supply chains. The best response

function of retailer i and manufacturer i were

x̄di(xdj;wdi) =
ad − xdi − wdi

2
, w̄di(xdj) =

ad − xdj
2

It denoted x̄e1di and w̄e1di be the equilibrium selling quantity and wholesale price,

respectively, then

x̄e1d1 = x̄e1d2 =
ad
5
, w̄e1d1 = w̄e1d2 =

2ad
5
.

(2) When the information sharing in one supply chains, suppose manufacturer

1 did not know the demand state d and the price was changed as w1. In

anticipation of xd2, his expected profit became

w1[αx̄h1(xh2;w1) + (1− α)x̄l1(xl2;w1)],
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and the best response function of retailers and manufacturers were

x̄d1(xd2;w1) =
ad − xd2 − w1

2
, x̄d2(xd1;wd2) =

ad − xd1 − wd2

2
,

w̄1(xh2;xl2) =
α(ah − xh2) + (1− α)(al − xl2)

2
, w̄d2(xd1) =

ad − xd1

2
.

It denoted x̄e2di and w̄e2di be the equilibrium selling quantity and wholesale price,

respectively, then

x̄e2h1 =
ad
5

+
8

35
(1− α)(ah − al), x̄e2h2 =

ad
5
− 2

35
(1− α)(ah − al),

x̄e2l1 =
ad
5
− 8

35
α(ah − al), x̄e2l2 =

ad
5

+
2

35
α(ah − al),

w̄e2h2 = =
2ad
5
− 4

35
(1− α)(ah − al), w̄e2l2 =

2ad
5

+
4

35
α(ah − al),

w̄e21 =
2αah + 2(1− α)al

5
.

(3) When the system had no information sharing, both manufacturers did not

know the demand state and the wholesale price did not related to state d. In

anticipation of xdj, manufacturer i’s expected profit became

wi[αx̄hi(xhj;wi) + (1− α)x̄li(xlj;wi)],

and the best response function of the retailers and manufacturers were

x̄di(xdj;wi) =
ad − xdj − wi

2
, w̄i(xhj;xlj) =

α(ah − xhj) + (1− α)(al − xlj)
2

.

It denoted x̄e3di and w̄e3di be the equilibrium selling quantity and wholesale price,

respectively, then


x̄e3h1 =x̄e3h2 =

ad
5

+
2

15
(1− α)(ah − al), x̄e3l1 = x̄e3l2 =

ad
5
− 2

15
α(ah − al),

w̄e31 =w̄e32 =
2αah + 2(1− α)al

5
.
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The expect profits of the retailers and manufacturers were J k
ri and J k

mi, where

i = 1, 2, k = e1, e2, e3. Consequently, it obtained that

J e1
mi ≥ J e2

m2 ≥ J e3
mi ≥ J e2

m1, J e2
r1 ≥ J e3

ri ≥ J e1
ri ≥ J e2

r2 .

More details about Cournot model combining with Stackelberg game will be intro-

duced in the following sections.

6.1.2 General Stackelberg game

Given NE, we can introduce the LF game in the general multiple-agent context.

Definition 6.3 (LF). A general ML/MF game, is an octuple GLF := (AL, AF ; JL,

JF ; ΓL, ΓF ; ΘL, ΘF ), where AL := {ALi }i∈IL is the set of all leaders, where ALi

denotes the ith leader. IL = {1, · · · , N} is the leader index set. AF := {AFi }i∈IF is

the set of all followers. IF = {1, · · · ,M} is the follower index set, AFj denotes the

jth follower.

JL = (J L
1 , · · · ,J L

N ) denotes the cost functional of AL with J L
i =J L

i (xi;x−i; y; θLi ) :

ΓLi ×
∏

k 6=i Γ
L
k × ΓF × ΘL

i ⊆ Rni ×
∏

k 6=i,k∈IL Rnk × R
∑M

j=1mj × Rli → R the individ-

ual functional of agent ALi . xi is the individual strategy taken by agent ALi while

x−i = (x1, · · · , xi−1, xi+1, · · · , xN) is the decision strategies except that of ALi . yj

is the individual strategy taken by agent AFj , while y = (y1, · · · , yj, · · · , yM) is the

strategy profile of all followers. θLi is the individual parameter of ALi . ΓLi ⊆ Rni

is the individual admissibility of ALi . ΓFj ⊆ Rmj is the individual admissibility

of AFj , while ΓF =
∏M

j=1 ΓFj the admissible set of all follower strategies. PL =

(θL1 , · · · θLi · · · , θLN) ∈ ΘL :=
∏N

i=1 ΘL
i ⊆

∏N
i=1 Rli denotes the parameter sets amongst

all agents while ΘL
i ⊆ Rli the individual parameter support for ALi .

JF = (J F
1 , · · · ,J F

M) denotes the cost functional of AF with J F
j =J F

j (yj; y−j; x; θFj ) :

ΓFj ×
∏

k 6=j ΓFk ×ΓL×ΘF
j ⊆ Rmj ×

∏
k 6=j,k∈IF Rmk×R

∑N
i=1 ni×Rpi → R the individual

132



functional of agent AFj . y−j = (y1, · · · , yj−1, yj+1, · · · , yM) is the decision strategy

except that of AFj . x = (x1, · · · , xi, · · · , xN) is the strategy profile of all leaders. θFj

is the individual parameter of AFj . ΓL =
∏N

i=1 ΓLi is the admissible set of all leader

strategies. PF = (θF1 , · · · θFj · · · , θFM) ∈ ΘF :=
∏M

j=1 ΘF
j ⊆

∏M
j=1 Rpj denotes the

parameter sets amongst all agents while ΘF
j ⊆ Rpj the individual parameter support

for AFj .

Thus, in what follows, we may use GLF to represent an ML/MF game. The

solvability notion of the LF game is given in the following.

Definition 6.4 (Stackelberg-Nash equilibrium). A Stackelberg-Nash equilibrium for

GLF , is an (N + M)-tuple (x̄1, · · · , x̄N ; ȳ1(·), · · · , ȳM(·)), where the best response

functional ȳ(·) := (ȳ1(·), · · · , ȳM(·)) : ΓL → ΓF satisfies:

J F
j (ȳj(x); ȳ−j(x); x; θFj ) ≤ J F

j (yj(x); ȳ−j(x); x; θFj ), ∀yj ∈ ΓFj , ∀j ∈ IF , (6.1)

for any given x ∈ ΓL, and x̄ := (x̄1, · · · , x̄N) ∈ ΓL satisfies

J L
i (x̄i; x̄−i; ȳ(x̄i, x̄−i); θ

L
i ) ≤ J L

i (xi; x̄−i; , ȳ(xi, x̄−i); θ
L
i ), ∀xi ∈ ΓLi , ∀i ∈ IL.

(6.2)

Remark 6.2. Noting that ȳ(x) is actually an NE of the follower subgame GF :=

(AF , JF , ΓF , ΘF ), where JF is parameterized by the pre-announced leaders’ strategy

x ∈ ΓL. Thus, the mapping ȳ(·) : ΓL → ΓF is called the NE best response of

followers. The Stackelberg-Nash equilibrium for GLF can thus be written as (x̄1, · · · ,

x̄N ; ȳ1(x̄), · · · , ȳM(x̄)) to emphasize its dependence on (ȳ1(x̄), · · · , ȳM(x̄)).

As we mentioned before, H. Von Stackelberg first put forward Stackelberg game

in his book [173], which was based on the market structure theory. In fact, he

mentioned three cases in his book. The first case was that each of the two duopolies

(firms) was striving for dominating the market and took the position of independence.
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Then, both of them achieved the “independent supply” and obtained the greatest

profit. This situation is referred as the “Bowley duopoly”. The “Bowley duopoly”

possibly becomes market dominance for one of the two duopolies in the end, which

is impossible that two firms will win forever. The second case was that each of the

two duopolies wanted to be the “follower” since that was better for themselves. This

situation is referred as the “Cournot duopoly”. The difference between the two cases

is that each firms in the “Bowley duopoly” is oriented around the change possibilities

of the rival supply and does not note the actual rival supply, whereas each firms in

the “Cournot duopoly” is oriented around the actual rival supply and ignores its

change possibilities. The third case was that one firms strived towards a position of

independence when the other firm favours a position of dependence. In this case, an

equilibrium occurs as everyone orientates his action to what gives him the greatest

profit and no one wants to change the actual price structure. In [173], it was also

referred as “asymmetric duopoly”.

For example, we continuously use the notations in Cournot game. However, unlike

Cournot game, it should first consider the follower’s profit (we suppose it is firm 2

here). To calculate the Stackelberg equilibrium, it should first take the derivative of

J2, and set this to zero for maximization (the firms want to maximize their profits,

thus the inequality in Definition 6.4 should has an opposite direction here):

∂J2

∂x2

=
∂P (x1 + x2)

∂x2

x2 + P (x1 + x2)− ∂C2(x2)

∂x2

= 0.

The best responses of the firm A2 is the values of x̄2(x1) that satisfy above equation

and it depends on x1. Next, it should consider the leader’s profit. Putting x̄2(x1)

into J1, taking the derivative of J1, and set this to zero for maximization:

∂J1

∂x1

=
∂P (x1 + x̄2)

∂x̄2

· ∂x̄2(x1)

∂x1

x1 +
∂P (x1 + x̄2)

∂x1

x1 + P (x1 + x̄2)− ∂C1(x1)

∂x1

= 0.
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The best responses of the firm A1 is the values of x̄1 that satisfy above equation

and the Stackelberg equilibrium is the pair (x̄1, x̄2). More specifically, if the price

function is linear P (x1 + x2) = a− b(x1 + x2) and the cost is quadratic Ci(xi) = cx2
i ,

where a, b, c > 0. Then, for given x1,

∂J2

∂x2

=
∂P (x1 + x2)

∂x2

x2 + P (x1 + x2)− ∂C2(x2)

∂x2

= 0

=⇒− bx2 + a− b(x1 + x2)− cx2 = 0.

The best responses of A2 is

x̄2 =
a− bx1

2b+ c
,

Putting x̄2(x1) into J1,

∂J1

∂x1

=
∂P (x1 + x̄2)

∂x̄2

· ∂x̄2(x1)

∂x1

x1 +
∂P (x1 + x̄2)

∂x1

x1 + P (x1 + x̄2)− ∂C1(x1)

∂x1

= 0

=⇒ a− 2bx1 −
ab

2b+ c
+

2b2

2b+ c
x1 − 2cx1 = 0.

The best responses of A1 and A2 are

x̄1 =
a(b+ c)

2(b2 + 3bc+ c2)
,

and the best responses of A2 is

x̄2 =
a− bx̄1

2b+ c
=

a(b2 + 5bc+ 2c2)

2(2b+ c)(b2 + 3bc+ c2)
,

Thus, the Stackelberg equilibrium is the pair(
a(b2 + 5bc+ 2c2)

2(2b+ c)(b2 + 3bc+ c2)
,

a(b+ c)

2(b2 + 3bc+ c2)

)
.

Next, a more complicated example of Stackelberg game involving one leader and

two followers will be given. Similarly, we assume that the market price is determined
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by

P (x1 + x2 + x3) = a− b(x1 + x2 + x3),

where P (x1 + x2 + x3) is the price of all goods produced in a year, a, b > 0 are

constants, xi ∈ R is the value of quantity or supply of the firm Ai, i = 1, 2, 3. A1 is

assigned to the leader and A2, A3 are assigned to the followers. Note that all these

parameters are one-dimensional.

The selling quantities or supplies from them are assumed to be directly propor-

tional to the Cobb-Douglas production function (see [7]), which only differ a multiple

of unit price. Therefore, their selling quantities or supplies can be given as follows.

xi = αLβi C
γ
i , i = 1, 2, 3,

where α represents the total factor productivity that is assumed to be α = 1 for

simplicity, L and C represent the labor available and the capital investment, β and γ

represent the output elasticities of labor and capital respectively, which are constants

depending on the technology levels.

The cost functions of leader A1 and followers A2 and A3, which are related to

the labor available and capital invested, are shown as

ci(Ci) = c1
iLi + c2

iKi, i = 1, 2, 3,

with constants c1
i , c

2
i , and the profit functions of the three firms A1, A2, A3 are given

as

Ji =P (x1 + x2 + x3)xi − ci(Ki)

=Lβi C
γ
i [a− b(Lβ1C

γ
1 + Lβ2C

γ
2 + Lβ3C

γ
3 )]− (c1

iLi + c2
iCi), i = 1, 2, 3.

The firms A1, A2, A3 seek their own optimal investment for capital in this Stack-

elberg game. Therefore, for simplicity, the labor available Li, i = 1, 2, 3, are assumed

to be fixed. Similarly, we can also keep the capital investment fixed and solve the

optimal input for labor instead.
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The leader first announces a strategy. Then, for given C1, we take the partial

derivative of Ji to Ci, i = 2 or 3, and set this to zero,

∂Ji
∂Ci

= Lβi {γC
γ−1
i [a− b(Lβ1C

γ
1 + Lβ2C

γ
2 + Lβ3C

γ
3 )] + Cγ

i (−bLβi γC
γ−1
i )} − c2

i = 0.

For simplicity, we suppose that γ = 0.5, then the optimal supplies of the followers

(which can be considered as a Cournot equilibrium) are


C̄2 =

(
Lβ2 (a− bLβ1C

1
2
1 )(bL2β

3 + 2c2
3)

4(bL2β
2 + c2

2)2 − b2L2β
2 L

2β
3

)2

,

C̄3 =

(
Lβ3 (a− bLβ1C

1
2
1 )(bL2β

2 + 2c2
2)

4(bL2β
3 + c2

3)2 − b2L2β
3 L

2β
2

)2

.

Next, putting C̄2 and C̄3 into the leader’s profit function, taking the derivative of

J1, and setting the partial derivative below to zero,

∂J1

∂C1

=− bL2β
1 − c2

1 +
1

2
(aLβ1 − bL

β
1L

β
2C

1
2
2 − bL

β
1L

β
3C

1
2
3 )C

− 1
2

1

− bLβ1 [Lβ2 (
∂C

1
2
2

∂C1

) + Lβ3 (
∂C

1
2
3

∂C1

)]C
1
2
1 = 0,

with 

∂C
1
2
2

∂C1

= −bL
β
1L

β
2

2

(bL2β
3 + 2c2

3)C
− 1

2
1

4(bL2β
2 + c2

2)2 − b2L2β
2 L

2β
3

,

∂C
1
2
3

∂C1

= −bL
β
1L

β
3

2

(bL2β
2 + 2c2

2)C
− 1

2
1

4(bL2β
3 + c2

3)2 − b2L2β
3 L

2β
2

.

By some elementary calculation, it follows that the Stackelberg equilibrium of the
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capital investments are (C̄1, C̄2, C̄3), where



C̄1 =

(
aLβ1 Λ2

Λ1Λ2 + 2bLβ1 (a− 2bLβ1 )(bL2β
2 L

2β
3 + c2

3L
2β
2 + c2

2L
2β
3 )

)2

,

C̄2 =a2L2β
2 (bL2β

3 + 2c2
3)2

(
Λ1Λ2 + 2bLβ1 (a− 2bLβ1 )(bL2β

2 L
2β
3 + c2

3L
2β
2 + c2

2L
2β
3 )

Λ2(Λ1Λ2 + 2bLβ1 (a− 2bLβ1 )(bL2β
2 L

2β
3 + c2

3L
2β
2 + c2

2L
2β
3 ))

)2

,

C̄3 =a2L2β
3 (bL2β

2 + 2c2
2)2

(
Λ1Λ3 + 2bLβ1 (a− 2bLβ1 )(bL2β

3 L
2β
2 + c2

2L
2β
3 + c2

3L
2β
2 )

Λ3(Λ1Λ3 + 2bLβ1 (a− 2bLβ1 )(bL2β
3 L

2β
2 + c2

2L
2β
3 + c2

3L
2β
2 ))

)2

,

with Λ1 =2bL2β
1 + 2c2

1, Λ2 = (2bL2β
2 + 2c2

2)2 − b2L2β
2 L

2β
3 ,

Λ3 =(2bL2β
3 + 2c2

3)2 − b2L2β
3 L

2β
2 .

More details about the Stackelberg game will be introduced in the following sections.

6.1.3 Symmetric game

Next, we present a class of multiple-agent games with a special structure.

Definition 6.5 (Symmetric game). A multiple-agent game G is called symmetric if

for any permutation γ : I 7→ I, it holds that

Ji(x1, · · · , xN) = Jγ−1(i)(xγ(1), · · · , xγ(N)), (6.3)

with N = |I|.

The symmetric games arise naturally from the models of automated-agent interac-

tions where the agents possess identical circumstances, capabilities and perspectives.

[36] provided a class of symmetric games and investigated the stability of their NE.

[31] analyzed the symmetric equilibrium in repeated games where each stage game is

symmetric. [56] showed that a 2-strategy symmetric game must have a pure-strategy

NE.
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For the asymmetric system with heterogeneous objective functions and parame-

ters (like equation (2.5) and equation (2.6) in [92, Page 899]), when the population

gets large, the computational complexity increases rapidly (see [92, Page 912], the

number of terms in equation (5.5) has O(N×M) order). However, for the symmetric

games, it can be investigated by specific methods according to their particular struc-

tures and the symmetry supports a more compact representation which also brings

a good property for computation (see [56]). Thus, it is interesting to introduce

some symmetric structure in an ML/MF game context where all leaders/followers

may share some identical decision characters. To this end, we may introduce the

following definition.

Definition 6.6 (Symmetric LF game). An ML/MF game GLF is called symmetric

if (GF1) and (GL1) hold

(GF1) For any given pre-committed leaders’ strategies x, it holds that

J F
j (yj; y−j; x; θFj ) = J F

(γF )−1(j)(yγF (j); yγF (−j); x; θF(γF )−1(j)),

for any permutation γF : IF → IF , where yγF (−i) := (yγF (1),· · · , yγF (i−1),

yγF (i+1),· · · ,yγF (N)).

(GL1) For given followers’ NE best response ȳ(·) (if exists), and any admissible leader

strategy profile (x1, · · · , xN) ∈ ΓL, it holds that

J L
i (xi;x−i; ȳ(xi, x−i); θ

L
i ) = J L

(γL)−1(i)(xγL(i);xγL(−i); ȳ(xγL(i)xγL(−i)); θ
L
(γL)−1(i)),

for any permutation γL : IL → IL, where xγL(−i) := (xγL(1),· · · , xγL(i−1),

xγL(i+1),· · · ,xγL(N)).

Based on the aforementioned general games with NE and Stackelberg-Nash equi-

librium notions, we are now ready to address the sequential decision structure of the

LF game.
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6.1.4 Sequential optimization

By Definition 6.4, the scheme for searching the Stackelberg-Nash equilibrium of GLF

problem can be decomposed into the following two optimization sub-problems in an

“sequential” manner.

(LF1): The Followers’ subgame

The crux in this subgame is that the leaders move first by announcing their strategies

and anticipate the possible responses from all followers towards such announcements.

For any pre-committed leaders’ strategy profile x ∈ ΓL, all the followers {AFj }j∈IF

will face an NE problem, as specified as follows. Actually, the follower AFj will aim

to solve

(LF1)

minimize J F
j (yj; y−j; x; θFj ),

subject to yj ∈ ΓFj ,
(6.4)

where θFj is an individual parameter of agent AFj , and y−j the strategy profile

of all other followers. By Remark 6.2, an M -tuple of followers’ strategy profile

(ȳ1(·), · · · , ȳM(·)) is the NE response of followers, if (ȳ1(x), · · · , ȳM(x)) is an NE of

(LF1) (i.e., satisfies condition (6.1) in Definition 6.4) for ∀x ∈ ΓL. Noting herein x,

θFj are exogenous parameters while y−j is NE decision profile for other peers, and yj

is the principal decision variable for AFj .

(LF2): The Leaders’ subgame

After solving (LF1), one (not necessary to be unique) NE response ȳ(·), from the

standpoint of followers, can be obtained for each pre-announced and parameterized

x ∈ ΓL. Then all leaders {ALi }i∈IL will face an NE problem. We specify the ith
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leader’s subgame as follows

(LF2)

minimize J L
i (xi;x−i; ȳ(xi, x−i); θ

L
i ),

subject to xi ∈ ΓLi ,
(6.5)

where θLi is an individual parameter of agent ALi . Then the NE response x̄ of (LF2)

is the Stackelberg-Nash equilibrium strategy profile of leaders (i.e., satisfies condition

(6.2) in Definition 6.4). Moreover, the Stackelberg-Nash equilibrium strategy profile

of followers can be further determined by (ȳ1(x̄), · · · , ȳM(x̄)). Thus, by Remark 6.2,

the Stackelberg-Nash equilibrium for GLF can be denoted by (x̄1, · · · , x̄N ; ȳ1(x̄), · · · ,

ȳM(x̄)) instead of (x̄1, · · · , x̄N ; ȳ1(·), · · · , ȳM(·)).

6.1.5 Information structure

We have specified the scheme of a general LF game, and it is observed that the

LF game consists of a lower level subgame (LF1) for the followers and an upper

level subgame (LF2) for the leaders. Moreover, (LF1), (LF2) together formalize

an iterative decision pattern. Within it, the involved multiple leaders/followers are

posed in distinctive hierarchies along with complex interactions in lower and upper

levels or between. For further analysis, it becomes necessary to identify the related

information structure. In what follows, we also compare the information structures

affixed to LF- and Nash-game.

We now specify the information structures between NE of Definition 6.2 and

Stackelberg equilibrium of Definition 6.4. We firstly specify the information structure

of NE with Definition 6.2.Fi = {θi,Ji(·),Γi} , the individual information of agent Ai,

FG0 = {P ,J(·),Γ} , the complete information of all agents A.
(6.6)

By Definition 6.2, it follows that each Ai should access the complete information FG0
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in order to obtain an exact NE in game G. Next, we specify the information struc-

tures in the LF game, from the leaders’ and the followers’ standpoints respectively.

FFj =
{
x, θFj ,J F

j (·),ΓFj
}
, the individual information of follower AFj ,

FF =
{
x,PF ,JF (·),ΓF

}
, the information of all followers AF ,

FLi =
{
θLi ,J L

i (·),ΓLi
}
, the individual information of leader ALi ,

FLF0 =
{
PF ,JF (·),PL,JL(·),ΓF ,ΓL

}
, the information of all agents.

(6.7)

From the standpoint of a generic follower, he will compete with other follower peers

to achieve an NE given the pre-committed leader strategy profile x. Thus, in the

followers’ subgame (LF1), to search the exact equilibrium strategies, each follower

AFj , j ∈ IF should access the information FF . This is because for searching equilib-

rium in (LF1), it is necessary to access the complete information of all other follower

peers (especially, their parameters PF = (θF1 , · · · , θFM)). Otherwise, it becomes in-

tractable for the given follower to write down the equilibrium condition and compute

the related NE equilibrium strategy. We remark that all followers are competitive in

(LF1) thus there has no stimulus for them to set some information sharing channel.

Also, the followers do not need to access the leaders information i.e., J L(·), ΓL and

PL. In fact, the pre-committed strategy x is already a sufficient statistic for all

necessary information needed on the followers’ side. Essentially, this is due to the

iterative decision structure between the leaders and the followers.

The situation becomes rather different from the leaders side. Before announcing

the pre-committed strategy, each leader ALi should firstly anticipate the possible fol-

lowers’ best responses by solving the followers’ subgame (LF1). Hence, information

FF becomes a must for each ALi to configure such anticipation. Otherwise, it is im-

possible for the leaders to quantify the best response. In particular, the parameters

among all followers should be accessible for each leader when computing the best

response functional. Moreover, each leader ALi competes with the other leaders to
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achieve an NE. Thus, ALi needs to access the complete information FLF0 of the whole

game. Again, all leaders are also non-cooperative thus there has no motivation for

them to share the information via some communication channels.

In conclusion, to achieve the exact Stackelberg-Nash equilibrium (x̄, ȳ), each

follower AFj needs to access FF while each leader ALi needs to access FLF0 . Hence,

there exhibits some asymmetric information between the leaders and the followers

when searching the Stackelberg equilibrium. Especially, the leaders should get to

know all the objective functions J F
j (yj; y−j; x; θFj ) and J L

i (xi;x−i; y; θLi ), i ∈ IL, j ∈

IF when calibrating the NE response of followers, whereas it is not necessary for the

followers to get to know J L
i (xi;x−i; y; θLi ), i ∈ IL, when specifying his own strategy.

Instead, each follower only needs to know the leader strategy profile x, which suffices

to determine its strategy in the Stackelberg equilibrium. In other words, the pre-

committed x should be a sufficient statistic summarizing all information needed from

the leaders.

6.2 The Weakly-coupled LF Game with Model Un-

certainty

In principle, applying standard optimization results, we can still derive the (exact)

equilibrium for (LF1), (LF2) respectively. Then, the Stackelberg-Nash equilibrium

(x̄, ȳ) can thus be designed. However, in presence of a large-population system where

N � 2, M � 2, the aforementioned standard approach fails to work. Moreover,

there arise two significant characteristics when considering LF in a large-population

setting.

(1) (Large scale and curse of dimensionality). The first character is re-

lated to the modeling dimension and computational burden. Unlike the classical LF

games (e.g., [4, 190]), in lieu of some low-dimensional equilibrium system, we have
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to solve a system of equilibrium conditions build on a complex decision mechanism

in the current LF setting. Roughly speaking, the number of equilibrium conditions

in LF is in the same order to |IL| + |IF |, the sum of all agents’ cardinalities. If

|IL|+ |IF | is large enough, the high dimensionality of our LF system brings us con-

siderable flexibility to model various applications. However, it also yields a rather

heavy computational burden. The so-called the “curse of dimensionality” is used to

describe the rapid growth in the difficulty of a problem as the number of the dimen-

sion increases (see [117, 150]). For example, a system with 1000 decision markers

with binary states needs order 21000 ≈ 10301 computational resources, which is very

difficult to tackle. Therefore, it is desirable and necessary to find out an alternative

approach to circumvent such computational hurdles. Our main concern here is to

treat such large-scale systems by employing a more effective strategy profile with an

acceptable computation load. This is valuable for both theoretical analysis and real

applications.

(2) (Non-cooperation, information segmentation, and model uncertainty)

The second character connects to the modeling accuracy. Actually, it is well docu-

mented that any decision problems should be subject to possible model uncertainty.

In particular, the parameter uncertainty in static optimization. Note that all agents

in GLF are non-cooperative thus there is no natural channel for the leaders or the

followers to communicate or share their individual information (e.g., individual pa-

rameters θLi , θFj and objective functions J L
i (·), J F

j (·)). Thus, there arise some infor-

mation segmentation amongst all involved agents to access the complete information

for all population. By segmentation, we mean each agent should know his own indi-

vidual parameter but has no intention to share with other agents. As a consequence,

the complete information set FLF0 is partitioned into multiple segmented subsets for

each agent involved. For a generic agent, his own parameter is totally observable for

himself however becomes some hidden variable for other agents.
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Subsequently, when we assume such hidden variables follow some statistically in-

dependent distributions, then our solution concept should be symmetric or exchange-

able. Keep this in mind, in what follows, we might assume J L
1 (·) = · · · = J L

N (·),

J F
1 (·) = · · · = J F

M(·), which can be denoted by J L and J F respectively, and

ΓL1 = · · · = ΓLN , ΓF1 = · · · = ΓFM , which can be denoted by ΓL and ΓF respec-

tively. Meanwhile, from now on, we let n = n1 = · · · = nN , m = m1 = · · · = mM

and ΓLi ⊆ Rn, ΓFj ⊆ Rm, for any i ∈ IL, j ∈ IF . We are now ready to formally

introduce the w-LF.

Definition 6.7 (w-LF). A w-LF is a octuple Gw−LF :=(AL, AF ; JL, JF ; ΓL,

ΓF ; ΘL, ΘF ), where AL := {ALi }i∈IL is the set of all leaders. ALi denotes the ith

leader. IL = {1, · · · , N} is the leaders’ indices set. AF := {AFi }i∈IF is the set of all

followers. IF = {1, · · · ,M} is the followers’ indices set, AFj denotes the jth follower.

JL = (JL1 , · · · , JLN) denotes the cost functional profile of AL with J L
i =J L(xi;

x(N); y(M); ΠL
i ) : ΓL × ΓL × ΓF × ΘL ⊆ Rn × Rn × Rm × Rl → R be the

individual cost functional of leader ALi . xi is the individual strategy taken by ALi ,

while x(N) :=
∑N

i=1 xi
N

is the strategy average of leaders. yj is the individual strategy

taken by follower AFj , while y(M) :=
∑M

j=1 yj

M
is the strategy average of followers.

Random variable ΠL
i is the individual parameter of ALi . ΓL ⊆ Rn is the admissibility

of the leaders. ΓF ⊆ Rm is the admissibility of the followers. The parameter support

for the leaders is ΘL.

JF = (JF1 , · · · , JFM) denotes the cost functional profile of AF with J F
j =J F (yj;

y(M); x(N); ΠF
j ) : ΓF × ΓF × ΓL × ΘF ⊆ Rm × Rm × Rn × Rp → R the individual

functional of AFj . Random variable ΠF
j is the individual parameter of AFj . The

parameter support for the followers is ΘF .

Two salient features in Definition 6.7: one is the introduction of the strategy

average terms (also called weak-coupling terms) x(N), y(N); another one is the for-
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mulation of random variables ΠL
i , ΠF

j that connects to some subjective probability

from the viewpoint of generic agent (leader/follower). We present more justifications

to these characters in the following subsections.

6.2.1 The motivations for weak-coupling

Compared with the general LF problem, a crucial distinction in the w-LF is that

the objective functionals (e.g., profits, utility functions, etc) contain the strategy

average terms x(N), y(N). When analyzing the overall equilibrium, the change of

an individual strategy of a given agent can be negligible when |IL| + |IF | is large

sufficiently, nevertheless, the change of the strategy average terms across all agents

cannot be ignored.

We present some motivations for weak-coupling terms such as x(N), y(N). Virtu-

ally, such weak-coupling structures arise naturally from a variety of practical prob-

lems such as economics, biology, or management science. In [121], a repeated Cournot

oligopoly was considered as the number of firms N in the market grows without

boundary, that is N → ∞. Here we still use {Ai}Ni=1 to denote the N firms for no-

tation consistency. Firms {Ai}Ni=1 chose output levels simultaneously and the price

was determined so that all output could be sold. More concretely, xi was the output

of firm Ai, x = (x1, · · · , xN) was the N -tuple of firms outputs, and

x(N) =

∑N
i=1 xi
N

,

was the output average for all firms.

P = f(
N∑
i=1

xi/N
s)

was the inverse demand function, where the power index s ≥ 0 allowed demand to

increase with the number of firms and all {Ai}Ni=1 were weakly-coupled via output
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average x(N) when s = 1. The demand increased more (less) quickly than the number

of firms when s > 1 (s < 1). Then, the profit of Ai was

Ji(xi;x−i) = xif(
N∑
i=1

xi/N
s)− C(xi),

where C(xi) was the cost function of Ai. [121] gave out that when s = 1, that was

P = f(xN), for given nontrival sequence of trigger strategy equilibrium exists if and

only if there was a sequence of collusive output vectors (x̄1, · · · , x̄N) such that

1.

α

1− α
(J ∗i (xi;x−i)− J c

i (xi;x−i)) ≥ J d
i (xi;x−i)− J ∗i (xi;x−i) for all i,

with

J ∗i (xi;x−i) = Ji(x̄i; x̄−i)

represented the collusive profit,

J c
i (xi;x−i) = Ji(xci ;xc−i)

represented the Cournot profit and

J d
i (xi;x−i) = max

xi
Ji(xi; x̄−i)

represented the optimal deviation profit. xci , i = 1, · · · , N were the Cournot

output and x∗i , i = 1, · · · , N were the trigger strategy equilibrium, which sat-

isfied

Ji(x̄i; x̄−i) > Ji(xci ;xc−i).

2.

f(
N∑
i=1

x̄i/N)− f(
N∑
i=1

xci/N) > K

for all N and some K > 0.
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This becomes a special case of our w-LF that only have the leaders or the followers.

The weak-coupling structure has also been well studied in various other literature,

as sketched below.

• In [171], an infinitely repeated Cournot market involving N homogeneous firms

{Ai}Ni=1 was investigated. It was assumed that there has no demand uncer-

tainty. Thus, the market price P conveyed information about the production

decision of each firm by the outputs {xi}Ni=1. To represent the relation between

the industry output average

x(N) =

∑N
i=1 xi
N

,

and the market price, the author used an inverse demand function f satisfying

P = f(x(N)). Then, the profit of Ai was

Ji(xi;x−i) = xif(x(N))− C(xi),

where C(xi) was the cost function of Ai, and all {Ai}Ni=1 were weakly-coupled

via output average x(N).

• In [106], an international trade between the firms in home country (which was

set as A) and foreign country (which was set as B) was studied. The number of

firms in A country was N and the number of firms in B country was M .
∑N

i=1 xi

was denoted as the total output in A country, while
∑M

j=1 yj was denoted as

the total output in B country. The price in home country and for foreign

country were related to their corresponding total output in their own country

and defined as

PA = PA(
N∑
i=1

xi), PB = PB(
M∑
j=1

yj),
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and the profit of firm Ai or Bj, i = 1, · · · , N , j = 1, · · · ,M was written as

Ji(xi,
N∑
i=1

xi) =xiPA − C(xi), Jj(yj,
M∑
j=1

yj) = yjPB − C(yj),

where C was the firm’s cost function. Since opening countries to trade increased

the number of firms as they increased their demand, it was more convenient

and reasonable to express price with the average output x(N) = 1
N

∑N
i=1 xi and

y(M) = 1
M

∑M
j=1 yj when N,M became large enough. Then, under this case,

the price were rewritten as

PA = PA(x(N)), PB = PB(y(M)),

and the profit of firm Ai or Bj, i = 1, · · · , N , j = 1, · · · ,M were rewritten as

Ji(xi, x(N)) =xiPA − C(xi), Jj(yj, y(M)) = yjPB − C(yj).

Comparing to the discussion in [121], the international trade between the firms

in home country and foreign country in [106] had a similar result, that was

αN
1− αN

=
J d
i (xi;x

(N))− J ∗i (xi;x
(N))

J ∗i (xi;x(N))− J c
i (xi;x(N))

, for all i,

αM
1− αM

=
J d
j (yj; y

(M))− J ∗j (yj; y
(M))

J ∗j (yj; y(M))− J c
j (yj; y(M))

, for all j,

with J ∗ represented the collusive profit, J c represented the Cournot profit and

J d represented the optimal deviation profit. αN and αM were the minimum

discount factor.

• In [146], a free-rider problem in lobbying game among N firms {Ai}Ni=1 was

studied. It assumed that the good was traded internationally with a world

price of 1 and f(
∑N

i=1 xi) was the function of the height of the tariff, where
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xi represented the lobbying contributions of Ai in the industry. Then the

domestic price was given as P = 1 + f(
∑N

i=1 xi). The total industry capital

was normalized to 1 making each firm of size 1
N

and the profit of Ai was

pi =
P

N
=

1 + f(
∑N

i=1 xi)

N
.

Thus, the profit of each firm was weakly-coupled with the others via the lob-

bying contributions.

• In [49], a competition between two groups G1 and G2 in rent-seeking was ana-

lyzed. It supposed that G1 had N players denoted by {A1
i }Ni=1 and G2 had M

players denoted by {A2
j}Mj=1. xi and yj represented the efforts of each player in

G1 and G2, respectively.

c1(x(N), y(M)) =
Nx(N)

Nx(N) +My(M)
, c2(x(N), y(M)) =

My(M)

Nx(N) +My(M)

were the contest success functions of G1 and G2, where

x(N) =

∑N
i=1 xi
N

, y(M) =

∑M
j=1 yj

M

were denoted as the effort average of group G1 and G2, respectively. The payoff

functions of A1
i and A2

j were given by

p1
i =

c1(x(N), y(M))Z

N
− xi, p2

j =
c2(x(N), y(M))Z

M
− yj,

where Z was the divisible rent generated by a policy implemented by the gov-

ernment. Again, all members’ payoffs were weakly-coupled with the others via

effort average.

By aforementioned examples, we can conclude that weakly-coupled structure is in-

deed widely applied in various scenarios including the repeated Cournot market,
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international trade with tariff, rent-seeking activities, etc. Subsequently, introduc-

tion of weakly-coupled structure enables us to admit more modeling power for real

application.

6.2.2 The motivations for parameter uncertainty

This subsection aims to justify another feature of w-LF: parameter uncertainty.

Note that through the analysis of information structure in Section 6.1.5, each leader

should have complete information FLF0 about the whole game and each follower

has complete information FF of all the other followers. This is actually a relatively

strong information structure. However, in reality, there is no such strong information

structure. Thus, we usually consider another kind of game model in which some

uncertain data are involved. Such uncertain information structure in the game model

has also attracted great academic attention. There are two routes to tackle the

uncertainty: the Bayesian method and the robust method.

For the Bayesian method, [85, 86] studied a game with an incomplete informa-

tion structure where the agents cannot observe the exact value of some parameters

of the game and gave out the assumptions of uncertain parameters on probability

distributions called the Bayesian hypothesis. Based on such assumptions, the game

can be reformulated as a game with complete information. The reformulated game

is called the Bayesian equivalent of the original game.

On the other hand, the distribution-free models based on the worst-case scenario

have received attention in recent years [2, 87, 141]. Each agent makes a decision

according to the concept of robust optimization (see [20, 21]). Basically, in robust

optimization, uncertain data are assumed to belong to some set called an uncertainty

set, and then a solution is sought by taking into account the worst case in terms of the

objective function value and/or the constraint violation. In an ML/MF game with

parameter uncertainy, if each leader and follower has chosen a strategy pessimistically
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and no agent can obtain more benefits by changing his/her own current strategy

unilaterally (i.e., the other agents hold their current strategies), then the tuple of the

current strategies of all agents is defined as a robust Stackelberg–Nash equilibrium

and the problem of finding such a equilibrium is called a robust ML/MF problem.

A relevant robust equilibrium problem was studied in [92] where an ML/SF prob-

lem with model uncertainty was considered with the help of robust analysis. For any

strategies x given by the leaders, the follower chose its strategy by solving the worst-

case problem: miny J F (x, y), y ∈ ΓF . Moreover, each leader ALi , i = 1, · · · , N ,

tried to solve the uncertain optimization problem: minxi J L(xi, x−i, y, θ
L
i ) using its

own decision variable xi ∈ ΓL. By defining the worst cost function J̃ L(xi, x−i) =

supθi∈θ J
L(xi, x−i, y, θ

L
i ), the author reformulated the robust ML/SF problem into a

standard NE problem: minxi J̃ L(xi, x−i), xi ∈ ΓL with complete information.

Based on the above discussions, we conclude that it is also meaningful and promis-

ing to incorporate model uncertainty into our LF analysis. In what follows, the infor-

mation structure of GLF will include some model uncertainty for each leader/follower

agent in the context of a large-population system. For sake of simplicity, we focus

only on the uncertainty of individual parameter θLi , θFj . The uncertainty arising from

objective function J L
i (·), J F

j (·) can be studied similarly.

The Followers’ subgame with model uncertainty

Recall our (LF1) and (LF2) in last section, we can formulate our w-LF problem

as follows:

(w-LF1)

minimize J F
j (yj; y

(M);x(N); θFj ),

subject to yj ∈ ΓF ,
(6.8)
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and

(w-LF2)

minimize J L
i (xi;x

(N); ȳ(M)(x(N)); θLi ),

subject to xi ∈ ΓL,
(6.9)

where ȳ(M)(x(N)) is the average of best responses from all followers that depends on

x(N). Noting all parameters {θLi }i∈IL and {θFj }j∈IF here are assumed to be deter-

ministic only. At the moment, we do not introduce any randomness in our models

yet hence (w-LF1), (w-LF2) essentially are deterministic instead of stochastic op-

timizations. Nevertheless, as mentioned before, all agents in GLF are competitive,

non-cooperative, and have no strong motivation for information sharing. Therefore,

a generic leader ALi , from his informational point, can only observe his individual

parameter θLi . By contrast, all other N + M − 1 parameters from other agents be-

come hidden variables and cannot be observed or accessed. A direct consequence is

the leaders can no longer anticipate the NE response of followers in an exact sense.

Likewise, a generic follower AFj only knows his own parameter θFj and the other

M − 1 parameters are unavailable to him. This is because each follower only needs

to access the information FF instead of FLF0 that we had mentioned in last section.

This leads to a model uncertainty among agents in a large-population system along

with two hierarchies.

However, we still can study the asymptotic behavior as population M tends to

infinity which is essential to consider a family of games with an increasing number of

followers. Our analysis below will be based upon the observation that the large pop-

ulation limit may be employed to determine the effect of the mass of the population

on any given individual. Specifically, our interest is the case when θFj , j = 1, · · · ,M ,

is adequately randomized in the sense that the population exhibits certain statistical

properties.

In this context, the association of the value, the specific index j plays no essential
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role. What matters is the frequency of θFj occurred in different segments in the

measurable parameter set ΘF . Along this way, for any given population M , we

define the empirical distribution on ΘF :

πFM(θ) =
1

M

M∑
j=1

1ΘF (θFj ). (6.10)

Within this setup, we make the following assumption:

(A6.1) There exists a limiting probability distribution πF (θ) on ΘF such that

lim
M→+∞

πFM(θ) = πF (θ), and

∫
ΘF

dπF (θ) = 1.

By (A6.1), we introduce a sequence of independent and identically distributed (i.i.d.)

random variables ΠF
j generated by the limiting probability distribution πF .

With model uncertainty, the follower parameters PF are not available for each

leader ALi . However, through analyzing the whole system, ALi can obtain the empir-

ical distribution πF of the uncertain parameters as M →∞. Thus, we consider the

case M → ∞ and replace θFj with ΠF
j that is some random variable. For any given

pre-committed leader strategy profile x, the followers’ subgame becomes

(w-LF1)′

minimize EJ F
j (yj; y

(M);x(N); ΠF
j ),

subject to yj ∈ ΓF .
(6.11)

Consequently, the leaders can estimate the followers’ NE response ȳ(·) by solving

(w-LF1)′.

The Leaders’ subgame with model uncertainty

After obtaining the estimation of the NE responses of followers ȳ(·), each leader

competes with the other leaders to achieve an NE. Thus, the individual parameter
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θLi of ALi is unavailable to the other leaders {ALi′}i′ 6=i, and the exact NE is inaccessible

either.

However, we still can study the asymptotic behavior as population N tends to

infinity similarly. For any given population N , we define the empirical distribution

on ΘL:

πLN(θ) =
1

N

N∑
i=1

1ΘL(θLi ). (6.12)

We also make the following assumption:

(A6.2) There exists a limiting probability distribution πL(θ) on ΘL such that

lim
N→+∞

πLN(θ) = πL(θ), and

∫
ΘL

dπL(θ) = 1.

Through analyzing the whole system, the leaders can obtain the limiting empirical

distribution πL as N → ∞. We introduce a sequence of i.i.d. random variables ΠL
i

derived by the limiting probability distribution πL. Thus, when N →∞, θLi can be

replaced by ΠL
i and the leaders’ subgame becomes

(w-LF2)′

minimize EJ L
i (xi;x

(N); ȳ(M)(x(N)); ΠL
i ),

subject to xi ∈ ΓL.
(6.13)

Remark 6.3. Unlike the classical NE problem, (w-LF2)′ here is idiosyncratic from

the perspective of each leader ALi . More specifically, for the leader ALi , ΠL
i fol-

lows Dirac distribution δθLi and ΠL
1 , · · · ,ΠL

i−1,Π
L
i+1, · · ·ΠL

N all follow the limiting

distribution πL. ALi knows its own individual parameter ΠL
i = θLi exactly and

θL1 , · · · , θLi−1, θ
L
i+1, · · · , θLN cannot be observed by ALi thus become hidden (random)

variables. Instead, ALi can only calibrate limiting distribution πL across all such ran-

dom variables from a macro-scale, although it is impossible to calibrate their exact

values in a micro-scale. Equivalently, this distribution can be transformed into the

real distribution of θL1 , · · · , θLi−1, θ
L
i+1, · · · , θLN under subjective probabilistic reasoning.
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The next section will focus on applying the MFG approach to study the w-LF. In

fact, the mean field analysis is based on some exchangeability characteristic among all

the agents in a large-population system. By de Finetti theorem, any exchangeable

sequence should be conditional independent w.r.t some tail σ-algebra. Hence, by

conditional law of large number, the weakly-coupled term, when the population size

is sufficiently large, can be approximated by some limiting process driven by such

tail algebra. In particular, this may be approximated by the conditional expectation

of a generic agent on such tail σ-algebra.

6.3 The Weakly-coupled LF Problem with the MFG

Analysis: the General Case

As discussed before, it becomes quite intractable to compute the exact equilibrium of

w-LF because of the “curse of dimensionality.” As an alternative resolution, MFG

theory provides one effective methodology to derive an equilibrium with reduced

computation complexity but in an approximate or asymptotic sense.

We recall that in a large-population system, each agent interacts with others

via the strategy average x(N) across the whole population. To effectively handle

the associated weak-coupling, MFG will first construct an auxiliary optimization

problem for a generic agent using a mean field heuristic (i.e., fixing the strategy

average x(N) by its asymptotic limit x0). In this way, each agent needs only consider

a low-dimensional off-line optimization parameterized by pre-fixed term x0. Unlike

exact equilibrium calling for global/complete information, only local information is

required to quantify such approximated equilibrium. Secondly, MFG continues to

employ some fixed point argument to determine the frozen x0. This is also called

the CC system since the realized optimal state/decision should replicate the state-

average limit pre-fixed. Again, only local information (e.g., FLi and FFj ) is needed
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to achieve such asymptotic/approximated equilibrium (see [104, 138]) in a large-

population system. Often, the asymptotic equilibrium is also called “ε-equilibrium”

with more details. Besides, we assume that all leaders and followers are homogeneous

and the agents in the same hierarchy play a Nash-Cournot game. Confining to the

w-LF here, we may introduce the notion of ε-Stackelberg-Nash-Cournot (ε-SNC)

equilibrium as below.

Definition 6.8 (ε-SNC equilibrium). An ε-SNC equilibrium of w-LF is a (N+M)-

tuple (x̄1, · · · , x̄N ; ȳ1(·), · · · , ȳM(·)), where ȳ(·) : ΓL → ΓF satisfies that, for any given

x ∈ ΓL,

EJ F
j (ȳj(x); ȳ−j(x);x; ΠF

j )

≤ min
yj∈ΓF

j

EJ F
j (yj(x); ȳ−j(x); x; ΠF

j ) + ε(M), ∀j ∈ IF .
(6.14)

Meanwhile, find a x̄ ∈ ΓL satisfies

EJ L
i (x̄i; x̄−i; ȳ(x̄i,x̄−i); ΠL

i )

≤ min
xi∈ΓL

i

EJ L
i (xi; x̄−i; ȳ(xi, x̄−i); ΠL

i ) + ε(M,N), ∀i ∈ IL,
(6.15)

where ε(M), ε(M,N)→ 0 a.s. as M,N →∞.

To proceed, let us recall some standard notations. We denote vector as v =

(v1, · · · , vn), w = (w1, · · · , wm) and sometimes abuse the formations of column-

or row-vector. For a differentiable function f(v) : Rn → R, ∂f
∂vi

: Rn → R de-

notes the partial derivatives of f with respect to (w.r.t.) argument vi, i = 1, · · · , n.

The gradient of f is denoted by ∇f = ( ∂f
∂v1
, · · · , ∂f

∂vn
) : Rn → Rn. For a continu-

ously differentiable function f(v, w) = (f1(v, w), · · · , fm(v, w)) : Rn+m → Rm, where

fi(v, w) : Rn+m → R, i = 1, · · · ,m are the components of f , the Jacobian matrix of
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f w.r.t. w is denoted by

∂f

∂w
=

 ∂f1
∂w1

··· ∂f1
∂wm

...
...

...
∂fm
∂w1

··· ∂fm
∂wm

 . (6.16)

6.3.1 The MFG scheme

In what follows, we apply the MFG approach to search for the approximated equilib-

rium of the w-LF. Recall the index sets IF = {1, 2, · · · ,M} and IL = {1, 2, · · · , N},

then the w-LF can be formulated as (w-LF1) and (w-LF2):

(w-LF1)

minimize J F
j (yj; y

(M);x(N); θFj ),

subject to yj ∈ ΓF , j ∈ IF ,
(6.17)

for the followers’ problem and

(w-LF2)

minimize J L
i (xi;x

(N); ȳ(M)(x(N)); θLi ),

subject to xi ∈ ΓL, i ∈ IL,
(6.18)

for the leaders’ problem. Recall that ȳ(M)(x(N)) is the average of the best responses

of all followers that depends on x(N). The following assumptions are technical.

(A6.3)(Integrability) From the aspect of the ith leader and the jth follower, the sets

of admissible strategies of the other leaders {ALi′}i′ 6=i,i′∈IL and followers {AFj′}j′ 6=j,j′∈IF

satisfy:

xi′ ∈ L1(Ω;Rn), i′ 6= i, i′ ∈ IL, yj′ ∈ L1(Ω;Rm), j′ 6= j, j′ ∈ IF .

(A6.4)(Boundness, closeness and convexity) The sets ΓL ⊆ Rn and ΓF ⊆ Rm are

non-empty, bounded, closed and convex.

We now proceed to analyze our w-LF. We first treat the sub-problem (w-LF1)

(6.17) from the follower’s perspective. To this end, we construct the following aux-
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iliary problem for generic follower AFj , j ∈ IF , denoted as (w-LFA1):

(w-LFA1)

minimize JFj (yj; y
(0,x(N));x(N); θFj ),

subject to yj ∈ ΓF ⊆ Rm, j ∈ IF ,
(6.19)

by letting M → ∞ in (6.17) and freezing y(M) using its limit y(0,x(N)) (it only takes

limits in M and still depends on x(N)). Later, we will determine y(0,x(N)) using mean

field reasoning. For further analysis, we give the following assumption:

(A6.5) For any given x(N) ∈ Rn, y(0,x(N)) ∈ Rm, JFj is strictly convex w.r.t yj.

Since (x1, x2, · · · , xN) ∈ RnN is pre-fixed, x(N) becomes some endogenous param-

eter. Then, by (A6.4), (A6.5), there exists a minimizer of (6.19) and the minimizer

is unique since JFj is strictly convex. Therefore, the optimal strategy of (6.19) is:

ȳj(y
(0,x(N)), x(N), θFj ) = arg min

yj∈ΓF

JFj (yj; y
(0,x(N));x(N); θFj ), j ∈ IF . (6.20)

To determine the NE, it is necessary for jth follower to quantify optimal strategies

of other agents. By symmetry, other agents should take parallel strategies alike

{ȳj′(y(0,x(N)), x(N), θFj′)}j′ 6=j. However, noting all agents are non-cooperative, no one

would like to share their own information (e.g., parameter) with others. In partic-

ular, the jth follower cannot observe the parameters {θFj′}j′ 6=j,j′∈IF of other agents.

Thus, as mentioned in last section, he cannot quantify the optimal strategies of

others hence fails to compute the relevant exact equilibrium. However, the MFG

approach provides some alternative resolution: instead of searching or estimating

exact parameter for a given specific agent, the jth follower may estimate the empir-

ical distribution across all agents in a micro-scale by πF under (A6.1). Therefore,

from AFj ’s aspect, the parameters {θFj′}j′ 6=j,j′∈IF of other followers are unknown and

can be treated as the random variables {ΠF
j′}j′ 6=j,j′∈IF . For this reason, the optimizer
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ȳj′ can be reformulated as

ȳj′(y
(0,x(N)), x(N),ΠF

j′) = arg min
yj′∈ΓF

JFj′ (yj′ ; y
(0,x(N));x(N); ΠF

j′), j′ 6= j, j′ ∈ IF . (6.21)

If we further assume that JFj′ (·, y(0,x(N)), x(N),ΠF
j′) is continuous and JFj′ (yj, y

(0,x(N)), x(N), ·)

is measurable, then by Kuratowski and Ryll-Nardzewski measurable selection theo-

rem (see [3, 114, 161]) and noting ΠF
j′ is a random variable, then ȳj′(y

(0,x(N)), x(N),ΠF
j′)

is a random variable here. ȳj′ depends on y(0,x(N)) that is to be determined by a CC

system. Also, ȳj, ȳj′ are un-determined since they depend on x(N) and {ΠF
j′}j′ 6=j,j′∈IF

are i.i.d. under x(N).

Applying the mean-field reasoning, and taking the conditional expectation on ȳj′

under x(N) in (6.21), we can obtain the CC system of our followers’ problem

y(0,x(N)) = E(ȳj′(y
(0,x(N)), x(N),ΠF

j′)|x(N)). (6.22)

Here, the conditional expectation operator E(·|x(N)) is due to the de Finetti theorem

by noting all {ȳj′(y(0,x(N)), x(N),ΠF
j′)}j′∈IF have the tail-sigma algebra generated by

common term x(N) that might be treated as random variables. Also, recall y(0,x(N))

depends on pre-fixed profile x(N) that is to be determined. In this sense, (6.22)

does not completely characterize y(0,x(N)) yet. By (A6.3), ȳj′ ∈ L1(Ω;Rm) and the

expectation of ȳj′ is well-defined.

Next, we analyze the leader’s optimization problem (w-LF2) (6.18). With the

followers’ best response (6.20), the leaders continue to design their optimal strategies

in an iterative manner. Because we had frozen y(M) by y(0,x(N)) in (w-LFA1) (6.19),

(6.18) can be rewritten as

minimize JLi (xi;x
(N); y(0,x(N)); θLi ),

subject to xi ∈ ΓL, i ∈ IL,
(6.23)
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where y(0,x(N)) is given by (6.22). Similarly, we construct the following auxiliary

problem for a generic leader ALi , i ∈ IL, denoted as (w-LFA2) :

(w-LFA2)

minimize J̄Li (xi;x
0; y0; ΠL

i ),

subject to xi ∈ ΓL, i ∈ IL,
(6.24)

by letting N → ∞ in equation (6.23) and freezing x(N) by some (deterministic)

quantity x0 using the mean field reasoning. Note that x(N) has been frozen by x0 in

(6.24), thus y(0,x(N)) is replaced by y0 by sending N → ∞. For further analysis, we

give the following assumption:

(A6.6) For any given x0 ∈ ΓL, J̄Li is strictly convex w.r.t xi.

Under (A6.4), (A6.6), by similar argument as (6.20), there exists a minimizer

of (6.24) that is also unique as J̄Li is strictly convex. Thus, the optimal strategy x̄i

satisfying:

x̄i(x
0, y0, θLi ) = arg min

xi∈ΓL

J̄Li (xi;x
0; y0; θLi ), i ∈ IL. (6.25)

After obtaining his optimal strategy, the ith leader begins to estimate his peers’ opti-

mal strategy. Noting all leaders are non-cooperative and would no like to share their

own information (parameters), so a generic agent ALi cannot completely figure out

the others’ strategies because {θLi′}i′ 6=i,i′∈IL are hidden variables for him. Instead, by

the discussion in last section, he would treat {θLi′}i′ 6=i,i′∈IL using the limiting distri-

bution πL under (A6.2). Therefore, from ALi ’s aspect, the other leaders’ individual

parameters are unknown and can be treated as the random variables {ΠL
i′}i′ 6=i,i′∈IL .

For this reason, the optimizer x̄i′ can be recast as

x̄i′(x
0, y0,ΠL

i′) = arg min
xi′∈ΓL

J̄Li′ (xi′ ;x
0; y0; ΠL

i′), i′ 6= i, i′ ∈ IL. (6.26)

Applying the mean field reasoning, and taking the expectation on x̄i in (6.26), we
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can obtain the CC condition from the leaders’ perspective:

x0 = Ex̄i′(x0, y0,ΠL
i′), (6.27)

where y0 inside depends on x0. By (A6.3), xi′ ∈ L1(Ω;Rn) thus the expectation

operator on x̄i is meaningful. Combining with (6.22), we can obtain the CC system

of w-LF:

(CC)

x
0 =Ex̄i′(x0, y0,ΠL

i′),

y0 =E(ȳj′(y
0, x0,ΠF

j′)|x0).
(6.28)

Once the CC system (6.28) is solved, we might design the distributed strategies

ȳj′ = ȳj′(y
0, x0,ΠF

j′) and x̄i′ = x̄i′(x
0, y0,ΠL

i′) for the leaders {ALi }i∈IL and followers

{AFj }j∈IF , respectively in the w-LF. Moreover, we can continue to verify that they

form an ε-SNC equilibrium. Note that through the whole MFG procedure mentioned

above, each agent can obtain its own MFG strategy without knowing the exact

information of the others’.

6.3.2 Fixed point analysis

The CC system (6.28) plays an essential role to the design decentralized strategy of

w-LF. To this end, we discuss the uniqueness and existence of our CC system (6.28).

To begin with, we introduce two preliminary results and one assumption.

Proposition 6.1 (Brouwer fixed-point theorem). If Γ is a non-empty, compact,

convex subset of Rn and f : Γ→ Γ is a continuous function, then f has a fixed point

v0 ∈ Γ such that f(v0) = v0.

Proposition 6.2 (Implicit function theorem). Let v = (v1, · · · , vn), w = (w1, · · · , wm)

and f(v, w)=(f1(v, w), · · · , fm(v, w)) : Rn+m → Rm be a continuously differentiable

function. Let (v0, w0) = (v0
1, · · · , v0

n, w
0
1, · · · , w0

m) with f(v0, w0) = 0. If the Jacobian

matrix: ∂f
∂w

(v0, w0) is invertible, then there exists an open set U ⊆ Rn containing

162



“v0” such that there exists a unique continuously differentiable function g such that

g(v0) = w0, and f(v, g(v)) = 0 for ∀v ∈ U .

(A6.7)

(i) J̄Li′ (xi′ ;x
0; y0; ΠL

i′) is twice continuously differentiable w.r.t. xi′ and x0.

(ii) For any given x0 ∈ ΓL, let J̄Li′ is strictly convex, and there is a x̄i′ ∈ ΓLi′ s.t.

∇xi′
J̄Li′ (xi′ ;x

0; y0; ΠL
i′)|xi′=x̄i′ = 0.

(iii) For any given x0 ∈ ΓL and the corresponding x̄i′ ∈ ΓL, the matrix
∂∇xi′ J̄

L
i′

∂xi′
(x̄i′ , x

0) 6=

0.

Since y0 depends on the x0 and πF , we denote y0 as y0(x0, πF ) and x̄i′(x
0, y0(x0, πF ),ΠL

i′)

as x̄i′(x
0,ΠL

i′). We first study the uniqueness and existence of x0. To further analysis,

by [96, Section 2], we introduce the following assumptions.

(A6.8) For each x0 ∈ Rn, x̄i′(x
0, ·) ∈ ΓL, there exists a constant L1 ≥ 0 which is

independent of ΠL
i′ such that 〈x̄i′(x0

1,Π
L
i′)− x̄i′(x0

2,Π
L
i′), x

0
1− x0

2〉 ≤ −L1|x0
1− x0

2|2, for

any x0
1, x

0
2 ∈ Rn.

Based on the assumptions above we have the following result of x0.

Theorem 6.1. Under (A6.1), (A6.2), (A6.7) and (A6.8), the CC system (6.28)

admits at most one solution for x0.

Proof According to (A6.7), there exists a unqiue x̄i′(x
0, y0(x0, πF ),ΠL

i′) such that

∇xi′
J̄Li′ (xi′ ;x

0; y0(x0, πF ); ΠL
i′)|xi′=x̄i′ = 0. By equation (6.27), it follows that

〈Ex̄i′(x0
1,Π

L
i′)− Ex̄i′(x0

2,Π
L
i′),x

0
1 − x0

2〉 = 〈x0
1 − x0

2, x
0
1 − x0

2〉 = |x0
1 − x0

2|2 ≥ 0.

By (A6.8), for any x0
1, x

0
2 ∈ ΓL ⊆ Rn (note that x0

1 and x0
2 are deterministic here),

|x0
1 − x0

2|2 =〈Ex̄i′(x0
1,Π

L
i′)− Ex̄i′(x0

2,Π
L
i′), x

0
1 − x0

2〉

=E〈x̄i′(x0
1,Π

L
i′)− x̄i′(x0

2,Π
L
i′), x

0
1 − x0

2〉 ≤ −L1|x0
1 − x0

2|2 ≤ 0.
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Then, we have |x0
1 − x0

2|2 = 0. Hence, the uniqueness follows. �

Theorem 6.2. Under (A6.1)-(A6.8), there exists a unique solution satisfying the

CC system (6.28).

Proof For any x ∈ Rn, we denote T = T (x) := Ex̄i′(x,ΠL
i′). First, under (A6.4),

ΓL ∈ Rn is non-empty, convex, and compact, then for each x0 ∈ ΓL, T (x0) ∈ ΓL.

Thus T is a stable mapping on ΓL. Second, under (A6.7) and Proposition 6.2,

there exists a unique continuously differentiable function x̄i′(x
0,ΠL

i′) ∈ ΓL w.r.t. x0

such that ∇xi′
J̄Li′ (xi′ ;x

0; y0; ΠL
i′)|xi′=x̄i′ = 0. Thus, T is continuous on ΓL. Thus, by

Proposition 6.1 and Theorem 6.1, there exists a unique solution for x0 such that

x0 = Ex̄i′(x0,ΠL
i′). Since y0 = E(x0,ΠF

j′)|x0) depends on x0, therefore the existence

and uniqueness of y0 follows. �

In what follows, we present a special case to illustrate how the MFG scheme

works.

6.4 The Weakly-coupled LF Problem: the Quadratic

Functional Case

6.4.1 The procedure of quadratic weakly-coupled LF prob-
lem

This section considers an important and special case of (LF1) and (LF2) in which

the functional takes quadratic-form, more specifically,

J F
j (yj; y

(M);x(N); θFj ) =|Λ1
Fyj − Λ2

Fy
(M) − Λ3

Fx
(N) − θFj |2QF

, j ∈ IF ,

J L
i (xi;x

(N); y(M); θLi ) =|Λ1
Lxi − Λ2

Lx
(N) − Λ3

Ly
(M) − θLi |2QL

, i ∈ IL,
(6.29)

with Λ1
F ∈ Rm1×m, Λ2

F ∈ Rm1×m, Λ3
F ∈ Rm1×n, Λ1

L ∈ Rm1×n, Λ2
L ∈ Rm1×n, Λ3

L ∈

Rm1×m, QF ∈ Sm1 , QL ∈ Sm1 . Moreover, IF = {1, 2, · · · ,M} and IL = {1, 2, · · · , N}
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are the agent index sets for the followers and the leaders, respectively. For dimen-

sional consistency, we set n = m = m1 = l = p. We emphasize that quadratic opti-

mization has always been a prototype in optimization theory (e.g., see [33, 60, 92, 148]

for more recent studies) because of its structural tractability and amenable approx-

imation to general nonlinear functional. To be consistent, we denote the related

problem as q-LF which can be further formulated sequentially as (q-LF1), (q-

LF2):

(q-LF1)

minimize J F
j (yj; y

(M);x(N); θFj ),

subject to yj ∈ Rm, j ∈ IF ,
(6.30)

for the followers with decision variables {yj}j∈IF and

(q-LF2)

minimize J L
i (xi;x

(N); y(M); θLi ),

subject to xi ∈ Γ̄ ⊆ Rn, i ∈ IL,
(6.31)

for the leaders with decision variables {xi}i∈IL and Γ̄ ⊆ Rn is a closed convex set.

Moreover, we set the following assumptions on model. For further analysis, we

introduce

(A6.9)(Definiteness) QF , QL > 0.

(A6.10)(Full rank) Λ1
F ,Λ

1
L are of full-rank.

(A6.11)(Invertibility) (Λ1
F )TQF (Λ1

F − Λ2
F ) is invertible.

We point out (A6.9) connects to the (strict) convexity, (A6.10), (A6.11) are

related to invertibility. Note that (A6.11) is not redundant because it cannot be

implied from (A6.9), (A6.10). Here is one counter-example:

Λ1
F =

(
1 0 0
0 1 1

)
, QF =

 1 0 0
0 1 0
0 0 1

 , Λ2
F =

(
1 0 0
0 2 1

)
,
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following (A6.9), (A6.10), however

(Λ1
F )>QF (Λ1

F − Λ2
F ) =

 1 0
0 1
0 1

 1 0 0
0 1 0
0 0 1

( 0 0 0
0 −1 0

)
=

 0 0 0
0 −1 0
0 −1 0

 ,

which does not have full rank. Thus (A6.11) is not true. Moreover, (A6.11) implies

that Λ1
F 6= Λ2

F , otherwise (Λ1
F )>QF (Λ1

F−Λ2
F ) = 0. We now proceed to analyze q-LF.

As discussed in the general case, we first deal with the optimization problem (q-

LF1) (6.30) from the standpoint of followers. To this end, we should introduce the

following auxiliary problem for a generic follower AFj , j ∈ IF , denoted as (q-LFA1):

(q-LFA1)


minimize JFj (yj; y

(0,x(N));x(N); θFj )

:= |Λ1
Fyj − Λ2

Fy
(0,x(N)) − Λ3

Fx
(N) − θFj |2QF

,

subject to yj ∈ Rm, j ∈ IF ,

(6.32)

by letting M → ∞ in (6.30) and freezing y(M) using the term y(0,x(N)). Note that

y(0,x(N)) will be affected by x(N) which is given by the leaders. Moreover, the influence

of an individual follower on y(0,x(N)) may be negligible.

We examine the convexity of functional (6.32) in (q-LFA1). To this end, we

compute the first-order (gradient vector) and second-order partial derivative (Hessian

matrix) w.r.t. decision variables:



∇yjJ
F
j (yj; y

(0,x(N));x(N); θFj )

= 2
[
(Λ1

F )>QF

(
Λ1
F ȳj − Λ2

Fy
(0,x(N)) − Λ3

Fx
(N) − θFj

)]
,

∇2
yj
JFj (yj; y

(0,x(N));x(N); θFj ) = 2(Λ1
F )>QFΛ1

F .

(6.33)

By (A6.9) and (A6.10), (Λ1
F )>QFΛ1

F > 0, thus the functional JFj in (6.32) is strictly

convex w.r.t. yj. In fact, by (A6.9), all spectrum values of QF are positive. Then,
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combining (A6.10) implies that the positivity of all spectrum of (Λ1
F )>QFΛ1

F . This

also implies the invertibility of (Λ1
F )>QFΛ1

F .

Recall that (x1, x2, · · · , xN) ∈ RnN is pre-fixed so x(N) becomes some endogenous

parameter. Thus, (q-LFA1) is a strictly (uniformly) convex optimization to decision

yj, thus the optimal decision exists and should be unique, denoted by ȳj. In fact, the

uniform convexity implies the coercivity and it is obvious any quadratic functional

including (6.32) is always continuous, thus (6.32) always admits a minimizer in the

full space Rm. Moreover, the uniform convexity implies the strict convexity thus

such minimizer, if exists, should be unique.

Also, note that the decision variable yj is in full space, therefore (q-LFA1)

is an optimization problem without constraint. Hence, the optimizer ȳj can be

characterized sufficiently by zero-gradient condition:

∇yjJ
F
j (yj; y

(0,x(N));x(N); θFj ) = 0

=⇒ȳj = Θ1(Λ2
Fy

(0,x(N)) + Λ3
Fx

(N) + θFj ), j ∈ IF ,
(6.34)

where Θ1 = Θ1(Λ1
F , QF ) := [(Λ1

F )>QFΛ1
F ]−1(Λ1

F )>QF . After obtaining his optimal

strategy, the jth follower begins to estimate his peers’ optimal strategy. Since the

agents are non-cooperative, no one will share their own information with the others

and the jth follower will not know his peer’s personal parameter {θFj′}j′ 6=j,j′∈IF ex-

actly. As we mentioned before, he can only estimate {θFj′}j′ 6=j,j′∈IF by the limiting

distribution πF under (A6.1). Therefore, from AFj ’s aspect, the parameters of other

followers are unknown and can be treated as the random variables {ΠF
j′}j′ 6=j,j′∈IF .

For this reason, the optimizer ȳj′ can be presented as

ȳj′ = Θ1(Λ2
Fy

(0,x(N)) + Λ3
Fx

(N) + ΠF
j′), j′ 6= j, j′ ∈ IF . (6.35)

We remark that ȳj and ȳj′ depend on y(0,x(N)) that is to be determined by the CC sys-

tem. Also, ȳj and ȳj′ are un-determined since they depend on x(N) and {ΠF
j′}j′ 6=j,j′∈IF
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are i.i.d. under x(N).

Therefore, by applying the mean field reasoning and taking the conditional ex-

pectation on both sides of the expression of ȳj′ under x(N) in (6.35),

y(0,x(N)) =E(ȳj′|x(N)) = E
(

Θ1(Λ2
Fy

(0,x(N)) + Λ3
Fx

(N) + ΠF
j′)
∣∣∣x(N)

)
=Θ1Λ2

Fy
(0,x(N)) + Θ1Λ3

Fx
(N) + Θ1α,

(6.36)

where α is denoted as the conditional expectations of {ΠF
j′}j′ 6=j,j′∈IF under x(N). To be

verified soon, ȳj ∈ L1(Ω;Rm), thus the above conditional expectation is meaningful.

Note that x(N) is fixed but not asymptotic yet since till now, we only apply the

limiting scheme on M → ∞ instead N . Let Θ2 = Θ2(Λ1
F ,Λ

2
F , QF ) := I − Θ1Λ2

F ,

then we have

Θ2 =I − [(Λ1
F )>QFΛ1

F ]−1(Λ1
F )>QFΛ2

F = Θ1(Λ1
F − Λ2

F ).

By (A6.11) and the discussion below equation (6.33), (Λ1
F )>QFΛ1

F and (Λ1
F )>QF (Λ1

F−

Λ2
F ) are invertible, thus Θ2 is invertible. Then, we can obtain the CC system of prob-

lem (q-LFA1)

y(0,x(N)) = Θ−1
2 Θ1(α + Λ3

Fx
(N)), (6.37)

and equation (6.35) can be rewritten as

ȳj′ = Θ1

[
(Λ2

FΘ−1
2 Θ1 + I)Λ3

Fx
(N) + Λ2

FΘ−1
2 Θ1α + ΠF

j′

]
, j′ 6= j, j′ ∈ IF . (6.38)

Noticing y(0,x(N)) depends on the pre-fixed strategy profile x(N), thus it is still un-

determined. We continue to analyze the leader’s optimization problem (q-LF2)

(6.31). Based on the followers’ best responses (6.34) and (6.38), the leaders begin to

make their own optimal decisions. Since we had frozen y(M) by y(0,x(N)) in problem
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(q-LFA1)(6.32), (6.31) can be rewritten as


minimize JLi (xi;x

(N); y(0,x(N)); θLi )

:= |Λ1
Lxi − Λ2

Lx
(N) − Λ3

Ly
(0,x(N)) − θLi |2QL

,

subject to xi ∈ Γ̄ ⊆ Rn, i ∈ IL,

(6.39)

where y(0,x(N)) is given by (6.37). Similarly, we let N →∞ in equation (6.39), by the

mean field approximation, x(N) can be approximated by some deterministic quantity

x0. Subsequently, we obtain the following auxiliary problem of leaders (q-LFA2) :

(q-LFA2)


minimize J̄Li (xi;x

0; y0; θLi ) := |Λ1
Lxi − (Λ2

L + Λ3
LΘ−1

2 Θ1Λ3
F )x0

− Λ3
LΘ−1

2 Θ1α− θLi |2QL
,

subject to xi ∈ Γ̄ ⊆ Rn, i ∈ IL.

(6.40)

Note that x(N) has been frozen by x0 in (6.40), thus y(0,x(N)) is replaced by y0. We

can compute the sub-gradient and second-order partial derivative of (6.40),



∇xi J̄
L
i (xi;x

0; y0; θLi ) =2
[
(Λ1

L)>QL

(
Λ1
Lxi − (Λ2

L

+ Λ3
LΘ−1

2 Θ1Λ3
F )x0 − Λ3

LΘ−1
2 Θ1α− θLi

)]
,

∇2
xi
J̄Li (xi;x

0; y0; θLi ) =2(Λ1
L)>QLΛ1

L.

(6.41)

Again, by (A6.9) and (A6.10), (Λ1
L)>QLΛ1

L > 0 and the functional J̄Li in (6.40)

is uniformly convex w.r.t. xi. The uniform convexity implies the coercivity thus it

suffices to search the minimizer over a compact level set, even though the convex

closed set Γ̄ is not necessary to be bounded (compact). Moreover, the uniform

convexity implies the strict convexity thus such minimizer, if exists, should be unique.

Moreover, for convex optimization, the local minimizer is also a global minimizer.

Thus, the unique optimizer x̄i can be further characterized by the following sub-
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gradient inequality:

2
〈

(Λ1
L)>QL

(
Λ1
Lx̄i − (Λ2

L + Λ3
LΘ−1

2 Θ1Λ3
F )x0 − Λ3

LΘ−1
2 Θ1α− θLi

)
, xi − x̄i

〉
=2
〈

(Λ1
L)>QLΛ1

L

(
x̄i − [(Λ1

L)>QLΛ1
L]−1(Λ1

L)>QL(Λ2
L + Λ3

LΘ−1
2 Θ1Λ3

F )x0

− [(Λ1
L)>QLΛ1

L]−1(Λ1
L)>QLΛ3

LΘ−1
2 Θ1α− [(Λ1

L)>QLΛ1
L]−1(Λ1

L)>QLθ
L
i

)
,

xi − x̄i
〉
> 0, for ∀ xi ∈ Γ̄,

(6.42)

or equivalently (noticing Ψ := (Λ1
L)>QLΛ1

L > 0, thus Ψ
1
2 =

(
(Λ1

L)>QLΛ1
L

) 1
2 > 0 is

well-defined (see Theorem 7.2.6 in [90, Chapter 7])),

2
〈

Ψ
1
2

(
x̄i − [(Λ1

L)>QLΛ1
L]−1(Λ1

L)>QL(Λ2
L + Λ3

LΘ−1
2 Θ1Λ3

F )x0

− [(Λ1
L)>QLΛ1

L]−1(Λ1
L)>QLΛ3

LΘ−1
2 Θ1α− [(Λ1

L)>QLΛ1
L]−1×

(Λ1
L)>QLθ

L
i

)
,Ψ

1
2 (xi − x̄i)

〉
> 0, for ∀ xi ∈ Γ̄.

(6.43)

Since Ψ > 0, we take the following norm on Rn (see [93, 94, 183] for more details):

|x|2Ψ = 〈x, x〉Ψ := x>Ψx =
〈

Ψ
1
2x,Ψ

1
2x
〉
.

Moreover, it is easy to verify that 〈x, y〉Ψ =
〈

Ψ
1
2x,Ψ

1
2y
〉

is an inner product when

Ψ > 0. Note that such positive definite condition cannot be relaxed to Ψ ≥ 0. This

implies that (A6.9), (A6.10) should be necessary. It follows that (6.43) is equivalent

to

x̄i = PΓ̄

[
Θ3

(
(Λ2

L + Λ3
LΘ−1

2 Θ1Λ3
F )x0 + Λ3

LΘ−1
2 Θ1α + θLi

)]
, i ∈ IL, (6.44)

with Θ3 = [(Λ1
L)>QLΛ1

L]−1(Λ1
L)>QL and PΓ̄(·) : Rn → Γ̄ is the projection operator

under the norm | · |Ψ. Note that for any convex closed set Γ ⊆ Rn, the project
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operator PΓ(·) is always well-defined (see e.g., Section 1.5.2 of Chapter 1 in [74]

and [93]) for the inner product 〈x, y〉S =
〈
S

1
2x, S

1
2y
〉

for ∀S > 0. Naturally, this

is also the case with S = Ψ. After obtaining his optimal strategy, the ith leader

begins to estimate his peers’ optimal strategy. Since the leaders are non-cooperative

and will not announce their own information, ALi cannot obtain the exact value of

his peer’s personal parameter {θLi′}i′ 6=i,i′∈IL . As we mentioned before, he can only

estimate {θLi′}i′ 6=i,i′∈IL by the limiting distribution πL under (A6.2). Therefore, from

ALi ’s aspect, the other leaders’ personal parameters are unknown and can be treated

as the random variables {ΠL
i′}i′ 6=i,i′∈IL . For this reason, the optimizer x̄i′ can be

presented as

x̄i′ = PΓ̄

[
Θ3

(
(Λ2

L + Λ3
LΘ−1

2 Θ1Λ3
F )x0 + Λ3

LΘ−1
2 Θ1α+ ΠL

i′

)]
, i′ 6= i, i′ ∈ IL. (6.45)

Moreover, by the mean field reasoning, taking the expectation on both sides of (6.45),

we have

x0 = Ex̄i′ =E
{

PΓ̄

[
Θ3

(
(Λ2

L + Λ3
LΘ−1

2 Θ1Λ3
F )x0 + Λ3

LΘ−1
2 Θ1α + ΠL

i′

)]}
. (6.46)

Combining with (6.36), we can obtain the CC system of q-LF:

(CC)


x0 =E

{
PΓ̄

[
Θ3

(
(Λ2

L + Λ3
LΘ−1

2 Θ1Λ3
F )x0 + Λ3

LΘ−1
2 Θ1α + ΠL

i′

)]}
,

y0 =Θ−1
2 Θ1α + Θ−1

2 Θ1Λ3
Fx

0.

(6.47)

For sake of presentation, we denoteA := Θ3(Λ2
L+Λ3

LΘ−1
2 Θ1Λ3

F ) and B := Θ3Λ3
LΘ−1

2 Θ1

hereafter. Noticing the matrix space Rn×n and vector space Rn are both of finite

dimension. Thus, it makes no difference for which matrix norm | · |n×n to be adopted

in L∞(Ω;Rn×n) because all these norms are equivalent. Likewise, for S, S ′ > 0, the

associated norms |x|2S = x>Sx and |x|2S′ = x>S ′x are equivalent on Rn, therefore

L1
S(Ω;Rn) = L1

S′(Ω;Rn). Hence, we need only simply write L1(Ω;Rn) = L1
S(Ω;Rn)
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for all S > 0. We remark that in general, L∞(Ω;Rn×n) and L1(Ω;Rn) are not finite

dimensional space. Next, we present some preliminary results.

Proposition 6.3. Let Γ be a non-empty closed convex subset in Rn. Then, for any

A ∈ L∞(Ω;Rn×n), b ∈ L1(Ω;Rn), X ∈ L1(Ω;Rn), we have PΓ(AX+ b) ∈ L1(Ω;Rn),

where the projection operator PΓ(·) : Rn → Γ is defined under inner product 〈x, y〉S =〈
S

1
2x, S

1
2y
〉

for any S > 0.

Proof First, we point out the above result is rather general since A,X, b can all

be random matrices and vectors. Second, recall that for any S > 0, 〈x, y〉S =〈
S

1
2x, S

1
2y
〉

is an inner product and the Euclidean space Rn is a Hilbert space under

the associated norm |x|2S = 〈x, x〉S. Hence, the projection operator PΓ(A(ω)X(ω) +

b(ω)) : Rn → Γ is well-defined under |x|2S for each ω ∈ Ω. Moreover, PΓ(A(·)X(·) +

b(·)) is a random variable because of the continuity property of projection. Third, in

case Γ is bounded, PΓ(A(·)X(·) + b(·)) is also bounded because of PΓ(A(ω)X(ω) +

b(ω)) ∈ Γ for ω ∈ Ω. Hence, PΓ(AX + b) ∈ L1(Ω;Rn). Last, in case Γ is unbounded,

noting that it is non-empty, thus there exists at least z ∈ Γ with PΓ(z) = z. By

Theorem 1.5.5 of Chapter 1 in [74], the projection operator is Lipschitz continuous

with Lipschitz constant 1. Thus, for any S > 0,

|PΓ(AX + b)| ≤ 2|z|+ 2E|AX|+ E|b| < +∞. (6.48)

Hence the result. Recall the definition of L1(Ω;Rn) does not depend on the choice

of specific norm. Thus, the above norms on the right hand side can be understood

to the standard norm with S = I (identity matrix). In addition, the above estimate

still holds true for any other S > 0 such as S = Ψ with modified coefficients. �

Remark 6.4. By Proposition 6.3, the expectation definition in the CC system (6.47)

is well-posed by setting A = A, b = Bα + Θ3ΠL
i′ .
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Remark 6.5. Note that the projection operators under different inner products are

different. For example, we let Γ1 is a r-dimensional subspace in Rn and r ≤ n with

(v1, · · · , vr) as basis. P1
Γ1

(·) : Rn → Γ1 and P2
Γ1

(·) : Rn → Γ1 are two projection

operators defined under 〈·, ·〉S1 = 〈S
1
2
1 ·, S

1
2
1 ·〉 and 〈·, ·〉S2 = 〈S

1
2
2 ·, S

1
2
2 ·〉, respectively, S1,

S2 > 0. We denote V = (v1, · · · , vr), then the projection operators can be expressed

as P1
Γ1

= V (V >S1V )−1V >S1 and P2
Γ1

= V (V >S2V )−1V >S2 (see [183, Section 4.1]

or Chapter 2). Suppose that

V =

 1 −2
1 0
0 1

 , S1 =

 2 0 0
0 1 0
0 0 5

 > 0, S2 =

 1 0 0
0 1 0
0 0 1

 > 0,

we can obtain that

P1
Γ1

=

 0.7826 0.2174 −0.4348
0.4348 0.5652 0.8696
−0.1739 0.1739 0.6522

 , P2
Γ1

=

 0.8333 0.1667 −0.3333
0.1667 0.8333 0.3333
−0.3333 0.3333 0.3333

 .

Then, for any vector w = (1 2 3)> ∈ R3, the corresponding projections are

P1
Γ1
w =

 −0.0870
4.1739
2.1304

 , P2
Γ1
w =

 0.1667
2.8333
1.3333

 ,

which shows that P1
Γ1
w 6= P2

Γ1
w. This implies that, for a vector, the projection

operators under different norm will lead to different projections. Therefore, in what

follows, we will focus on the projection operator PΓ̄(·) : Rn → Γ̄ under the norm | · |Ψ.

Proposition 6.4. The projection operator PΓ̄(·) : Rn → Γ̄ under the norm | · |Ψ in

(6.44) is monotonic.

Proof For any u1, u2 ∈ Rn, we have the two-sided variational inequalities:

〈PΓ̄(u2)−PΓ̄(u1),PΓ̄(u1)− u1〉Ψ ≥ 0, 〈PΓ̄(u1)−PΓ̄(u2),PΓ̄(u2)− u2〉Ψ ≥ 0,

(6.49)

173



where the norm | · |2Ψ = 〈·, ·〉Ψ = 〈Ψ 1
2 ·,Ψ 1

2 ·〉, Ψ > 0 (see Appendix in [93]). Adding

up these two inequalities, we have

0 ≤ 〈PΓ̄(u2)−PΓ̄(u1),PΓ̄(u1)− u1 + u2 −PΓ̄(u2)〉Ψ

=〈PΓ̄(u2)−PΓ̄(u1), u2 − u1〉Ψ − 〈PΓ̄(u2)−PΓ̄(u1),PΓ̄(u2)−PΓ̄(u1)〉Ψ.
(6.50)

Then, it follows that

〈PΓ̄(u2)−PΓ̄(u1), u2 − u1〉Ψ ≥ |PΓ̄(u2)−PΓ̄(u1)|2Ψ ≥ 0, (6.51)

which means that PΓ̄ is monotonic. �

6.4.2 The well-posedness of the CC system

A crux is the well-posedness of the above CC system (6.47) since it plays a central

role in designing the decentralized LF strategy for q-LF. This may be proceeded

using the fixed point analysis based on Banach contraction mapping. With this,

the existence and uniqueness of parameter pair (x0, y0) can be ensured under some

norm estimates. Here, we prefer to address this issue using a different analysis. To

this end, we may establish the uniqueness and existence separately. We discuss the

uniqueness first by introducing the following assumption:

(A6.12) ΨA+A>Ψ < 0.

Then, we introduce the following theorem:

Theorem 6.3. Under (A6.9) to (A6.12), the CC system (6.47) admits at most one

solution.

Proof We introduce a mapping: for any x ∈ Rn, T = T (x) := E PΓ̄(Ax + b) with

b = Bα + Θ3ΠL
i′ . Note that b ∈ L1(Ω;Rn) due to Proposition 6.3. Then, the CC

system (6.47) can be reformulated as some fixed point relation: x = T (x). Suppose

that there are two solutions for it, denoted respectively by x1 = T (x1), x2 = T (x2).
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Then, on the one hand, by Proposition 6.4, we know for any ω ∈ Ω,

0 ≤
〈
PΓ̄(Ax1 + b(ω))−PΓ̄(Ax2 + b(ω)), (Ax1 + b(ω))− (Ax2 + b(ω))

〉
Ψ

=
〈
PΓ̄(Ax1 + b(ω))−PΓ̄(Ax2 + b(ω)),A(x1 − x2)

〉
Ψ
.

On the other hand, by the monotonicity of expectation, we have

0 ≤ E
〈
PΓ̄(Ax1 + b)−PΓ̄(Ax2 + b),A(x1 − x2)

〉
Ψ

=
〈
E PΓ̄(Ax1 + b)− E PΓ̄(Ax2 + b),A(x1 − x2)

〉
Ψ

=
〈
T (x1)− T (x2),A(x1 − x2)

〉
Ψ

=
〈
x1 − x2,A(x1 − x2)

〉
Ψ

=
〈
x1 − x2,ΨA(x1 − x2)

〉
=
〈
x1 − x2,

ΨA+A>Ψ

2
(x1 − x2)

〉
≤ 0,

where the last equality is due to the transpose invariance of quadratic form. Noting

that Â = ΨA+A>Ψ
2

is symmetric, then we have

0 =
〈
x1 − x2,

ΨA+A>Ψ

2
(x1 − x2)

〉
= |x1 − x2|2Â. (6.52)

Hence the uniqueness of x0 by noting Â < 0 due to (A6.12). Since y0 = Θ−1
2 Θ1α+

Θ−1
2 Θ1Λ3

Fx
0, the uniqueness of y0 follows. �

Recall that Θ3 =[(Λ1
L)>QLΛ1

L]−1(Λ1
L)>QL, Θ2 = I −Θ1Λ2

F ,

Θ1 =[(Λ1
F )>QFΛ1

F ]−1(Λ1
F )>QF ,

we have the following more detailed computation for ΨA and ATΨ:


ΨA =(Λ1

L)>QL

[
Λ2
L + Λ3

L

(
(Λ1

F )>QF (Λ1
F − Λ2

F )
)−1

(Λ1
F )>QFΛ3

F

]
,

A>Ψ =
[
Λ2
L + Λ3

L

(
(Λ1

F )>QF (Λ1
F − Λ2

F )
)−1

(Λ1
F )>QFΛ3

F

]T
QLΛ1

L.

(6.53)
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Thus, (A6.12) can be rewritten with the original matrices as follows:

(A6.13)

(Λ1
L)>QL

[
Λ2
L + Λ3

L

(
(Λ1

F )>QF (Λ1
F − Λ2

F )
)−1

(Λ1
F )>QFΛ3

F

]
+
[
Λ2
L + Λ3

L

(
(Λ1

F )>QF (Λ1
F − Λ2

F )
)−1

(Λ1
F )>QFΛ3

F

]T
QLΛ1

L < 0.

Obviously, (A6.13) is tedious and complicated, thus we introduce the following

interesting and simple cases:

Case 1 Λ3
L = 0, Λ1

L = I. In this case, the leaders only care about the peers’

strategies and ignore the followers’, while the followers consider both hierarchies’

strategies. Then, (A6.13) could be simplified as

ΨA+A>Ψ =QLΛ2
L + (Λ2

L)TQL < 0.

Case 2 Λ3
F = 0, Λ3

L = 0. In this case, the followers only care about the peer’s

strategies and ignore the leaders’, while the leaders ignore the followers’ strategies

and only care about their peers’. Then

ΨA+A>Ψ =(Λ1
L)>QLΛ2

L + (Λ2
L)TQLΛ1

L < 0.

Case 3 Λ2
F = 0, Λ1

F = I. In this case, the followers ignore the peer’s strategies and

only focus on the leaders’ strategies. Then, (A6.13) will be

ΨA+A>Ψ =(Λ1
L)>QL

(
Λ2
L + Λ3

LΛ3
F

)
+
(

Λ2
L + Λ3

LΛ3
F

)T
QLΛ1

L < 0.

It seems that no matter the leaders or the followers ignore another hierarchy’s strate-

gies, the form of ΨA+A>Ψ will simplify to the form in Case 2.

Next, we establish the existence of parameter pair (x0, y0) in our CC system

(6.47). Before that, we first give an assumption:

(A6.14) Γ̄ is bounded (compact).

We first present the following existence result.
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Proposition 6.5. Suppose that (A6.1)-(A6.2), (A6.9)-(A6.14) hold. Then the

CC system (6.47) admits at least one solution.

Proof Recall the mapping T : Rn → Rn by T (x) = E PΓ̄(Ax + b) with b =

Bα+ Θ3ΠL
i′ . Then, to verify the existence, it suffices to show the mapping T admits

at least one fixed point. We examine the mapping T confined on Γ̄. First, under

(A6.14), it is obvious that Γ̄ is compact and convex, and for x ∈ Γ̄, T (x) ∈ Γ̄,

thus T is a stable mapping on Γ̄. Second, T is continuous by noting the Lipschitz

continuity of projection operator, expectation operation, and affine transformation.

Therefore, by the Brouwer fixed-point theorem (see Proposition 6.1), the CC system

(6.47) admits at least one solution x0. Hence the existence for y0 follows. �

Combining Proposition 6.5, we have the following result.

Proposition 6.6. Under (A6.1)-(A6.2) and (A6.9)-(A6.14), the CC system (6.47)

admits a unique solution.

Proof By Proposition 6.5, there exists at least one solution for the CC system

(6.47). Combining this with Theorem 6.3, we know that the solution is unique. The

proposition follows. �

An interesting observation is that (A6.12) is imposed on the definitiveness of the

weight matrix, while (A6.14) is on the compactness of domain constraint. These

two assumptions are in different directions but jointly ensure the well-posedness

(existence, uniqueness) of the CC system (6.47).

Sometimes, (A6.14) seems somewhat restrictive, and we have the following un-

bounded extension.

(A6.15) A>ΨA < Ψ.

We have the following existence result.
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Proposition 6.7. Suppose that (A6.1)-(A6.2), (A6.9)-(A6.14), and (A6.15) hold.

Then the CC system (6.47) admits at least one solution.

Proof Since Γ̄ is unbounded, thus for any δ > 0, Cδ := Γ̄ ∩ B(0, δ) 6= ∅ where

B(0, δ) denotes the ball of Rn centered by the origin with radius δ > 0. Moreover,

for any δ > 0, Cδ is convex and compact (bounded, closed). We now verify that the

mapping T will be stable for some Cδ with sufficiently large δ > 0. Noting that for

Ax + b in the definition of T , only b is random depending on ω ∈ Ω. Then, for any

x ∈ Cδ, we have |Ax+ b(ω)|2Ψ ≤ 2(x>A>ΨAx) + 2|b(ω)|2Ψ for a.s. ω ∈ Ω. Since Γ̄ is

non-empty, there exists at least one z ∈ Γ̄ such that z = PΓ̄(z). Thus, we have, for

a.s. ω ∈ Ω :

|PΓ̄(Ax+ b(ω))|Ψ =|PΓ̄(Ax+ b(ω))− z + z|Ψ

≤|PΓ̄(Ax+ b(ω))−PΓ̄(z)|Ψ + |z|Ψ

≤|(Ax+ b(ω))− z|Ψ + |z|Ψ ≤ |Ax|Ψ + |b(ω)|Ψ + 2|z|Ψ.

Then, taking the expectation on both sides:

E|PΓ̄(Ax+ b)|Ψ ≤|Ax|Ψ + E|b|Ψ + 2|z|Ψ = (x>A>ΨAx)
1
2 + E|b|Ψ + 2|z|Ψ

<|x|Ψ + E|b|Ψ + 2|z|Ψ ≤ |x|Ψ.

Hence, T (x) = E PΓ̄(Ax + b) is stable on Cδ for sufficiently large δ. Then, the

continuous mapping T on Cδ admits at least one solution x0 by the Brouwer fixed-

point theorem, thus the existence for y0 follows. Hence the result. �

6.4.3 ε-Stackelberg-Nash-Cournot equilibrium

Next, we give the proof of the ε-SNC equilibrium (see Definition 6.8) for our strategies

in (6.38) and (6.45). For sake of notation simplicity, we will use K to denote a

generic constant in the following discussion. The value of K may be different at
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different places and it only depends on the coefficients. Before that, we first give two

preliminary results.

Lemma 6.1. Suppose that (A6.1)-(A6.2), (A6.9)-(A6.14), and (A6.15) hold.

Then for given x(N) ∈ Rn,

|ȳ(M) − y0| → 0 a.s., as M →∞.

Proof For the pre-fixed x(N) ∈ Rn and by equation (6.34) and (6.38), ȳ(M) =

Θ1[(Λ2
FΘ−1

2 Θ1 + I)Λ3
Fx

(N) + Λ2
FΘ−1

2 Θ1α +
θFj
M

+
∑M

j′=1,j′ 6=j ΠF
j′

M
], then we have

|ȳ(M) − y0| =
∣∣∣Θ1[(Λ2

FΘ−1
2 Θ1 + I)Λ3

Fx
(N) + Λ2

FΘ−1
2 Θ1α +

θFj
M

+

∑M
j′=1,j′ 6=j ΠF

j′

M
]

−Θ−1
2 Θ1(α + Λ3

Fx
(N))

∣∣∣ =
∣∣∣Θ1(

θFj
M

+

∑M
j′=1,j′ 6=j ΠF

j′

M
− α)

∣∣∣.
By equation (6.37), x(N) is pre-fixed, there exists a constant K such that |y0|2 ≤ K,

thus by equation (6.34), |ȳj|2 ≤ K and |ȳ(M)|2 ≤ K (the detailed proof is similar

to [101, Lemma 5.4]), for some K is independent of M . Then, we can obtain that,

there exists a constant K such that E|ΠF
j′ |2 ≤ K. Since {ΠF

j }Mj=1 are i.i.d. random

variables, by the Kolmogorov’s strong law of large numbers,
∑M

j′=1,j′ 6=j ΠF
j′

M
→ α a.s.

under x(N) as M →∞ , hence |ȳ(M) − y0| → 0 a.s. as M →∞. �

Lemma 6.2. Suppose that (A6.1)-(A6.2), (A6.9)-(A6.14), and (A6.15) hold.

Then

|x̄(N) − x0| → 0 a.s., as N →∞.

Proof Recall the fixed point in our CC system (6.47) x0 = E PΓ̄(Ax0 + bi′) with

bi′ = Bα + Θ3ΠL
i′ and x̄i′ = PΓ̄(Ax0 + bi′), then we have x̄(N) = 1

N
PΓ̄(Ax0 + bi) +

1
N

∑N
i′=1,i′ 6=i PΓ̄(Ax0 + bi′) and

|x̄(N) − x0| =
∣∣∣ 1

N
PΓ̄(Ax0 + bi) +

1

N

N∑
i′=1,i′ 6=i

PΓ̄(Ax0 + bi′)− x0
∣∣∣.
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Note that PΓ̄(Ax0 + bi) is fixed. By the existence and uniqueness of the CC system

(6.47), for some constant K, |x0|2 ≤ K. Then, by equation (6.44), |x̄i|2 ≤ K and

|x̄(N)|2 ≤ K for some K is independent of N . Thus, there exists a constant K such

that E|PΓ̄(Ax0 + bi′)|2 ≤ K. Since {Ax0 + bi′}Mj′ 6=j,j′=1 are i.i.d. random variables, by

the similar argument in [94, Lemma 5.2] and the Kolmogorov’s strong law of large

numbers, the result is straightforward. �

Theorem 6.4. Suppose that (A6.1)-(A6.2), (A6.9)-(A6.14), and (A6.15) hold.

Then the strategies (x̄1, · · · , x̄N , ȳ1, · · · , ȳM) given in (6.38) and (6.44) satisfy ε-SNC

equilibrium.

Proof By the definition 6.8, we first consider the followers’ subgame. For given

(x1, x2, · · · , xN) ∈ RnN , x(N) is pre-fixed and

inf
yj∈Rm

J F
j (yj; ȳ−j;x

(N); θFj ) =
∣∣∣Λ1

Fyj −
Λ2
Fyj
M
− Λ2

F

M

M∑
j′ 6=j

ȳj′ − Λ3
Fx

(N) − θFj
∣∣∣2
QF

=
∣∣∣Λ1

F (ȳj + δyj)− Λ2
F (ȳ(M) +

δyj
M

)− Λ3
Fx

(N) − θFj
∣∣∣2
QF

=J F
j (ȳj; ȳ

(M);x(N); θFj ) + U1 + U2 + U3,

(6.54)

where δyj is the variation of yj − ȳj and


U1 =2〈QF (Λ1

F ȳj − Λ2
F ȳ

(M) − Λ3
Fx

(N) − θFj ),Λ1
F δyj〉,

U2 =− 2

M
〈QF (Λ1

F ȳj − Λ2
F ȳ

(M) − Λ3
Fx

(N) − θFj ),Λ2
F δyj〉, U3 = |Λ1

F δyj − Λ2
F

δyj
M
|2QF

.

By equation (6.34), we can obtain that

U1 = 2〈(Λ1
F )>QFΛ1

F (Θ1Λ2
Fy

0 + Θ1Λ3
Fx

(N) + Θ1θ
F
j )− (Λ1

F )>QFΛ2
F ȳ

(M)

− (Λ1
F )>QFΛ3

Fx
(N) − (Λ1

F )>QF θ
F
j , δyj〉 = 2〈(Λ1

F )>QFΛ2
F (y0 − ȳ(M)), δyj〉.

(6.55)
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By the similar discussion in Lemma 6.1, under the pre-fixed x(N) ∈ Rn, |y0|2 ≤ K,

|ȳj|2 ≤ K, and |ȳ(M)|2 ≤ K for some K is independent of M . Thus, there exists a

constant K independent of M such that

inf
yj∈Rm

J F
j (yj; ȳ−j;x

(N); θFj ) ≤ J F
j (ȳj; ȳ

(M);x(N); θFj ) ≤ K. (6.56)

Since U3 ≥ 0, by (6.54) and (6.55), it follows that

J F
j (ȳj; ȳ

(M);x(N); θFj )− inf
yj∈Rm

J F
j (yj; ȳ−j;x

(N); θFj ) ≤ −U1 − U2.

By Lemma 6.1 and (6.56), we have U1, U2 → 0 a.s. under x(N) when M → ∞.

Denote ε(M) = −(U1 + U2), then

J F
j (ȳj; ȳ−j;x

(N); θFj ) ≤ inf
yj∈Rm

J F
j (yj; ȳ−j;x

(N); θFj ) + ε(M),

where ε(M)→ 0 a.s. as M →∞.

After the followers give out their best response, we consider the leaders’ subgame.

By the similar argument in (6.54),

inf
xi∈ΓL

i

J L
i (xi; x̄−i; ȳ

(M); θLi ) =J L
i (x̄i; x̄

(N); ȳ(M); θLi ) + Ū1 + Ū2 + Ū3 + Ū4, (6.57)

where δxi is the variation of xi − x̄i and

Ū1 =2〈QL(Λ1
Lx̄i − Λ2

Lx̄
(N) − Λ3

Lȳ
(M) − θLi ),Λ1

Lδxi〉,

Ū2 =− 2

N
〈QL(Λ1

Lx̄i − Λ2
Lx̄

(N) − Λ3
Lȳ

(M) − θLi ),Λ2
Lδxi〉,

Ū3 =− 2

N
〈QL(Λ1

Lx̄i − Λ2
Lx̄

(N) − Λ3
Lȳ

(M) − θLi ),Λ3
LΘ1(Λ2

FΘ−1
2 Θ1 + I)Λ3

F δxi〉,

Ū4 =‖Λ1
Lδxi − Λ2

L

δxi
N
− Λ3

LΘ1(Λ2
FΘ−1

2 Θ1 + I)Λ3
F

δxi
N
‖2
QL
.

Note that, by the similar argument in (6.55), Ū1 can be written as

Ū1 = 2〈(Λ1
L)>QL(Λ1

Lx̄i − (Λ2
L + Λ3

LΘ−1
2 Θ1Λ3

F )x̄0 − Λ3
LΘ−1

2 Θ1α− θLi ), δxi〉

+ 2〈(Λ1
L)>QLΛ2

L(x0 − x̄(N)) + (Λ1
L)>QLΛ3

L(y0 − ȳ(M)), δxi〉 := Ū11 + Ū12.
(6.58)
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By equation (6.43), we have

Ū11 = 2〈(Λ1
L)>QL[Λ1

Lx̄i − (Λ2
L + Λ3

LΘ−1
2 Θ1Λ3

F )x̄0 − Λ3
LΘ−1

2 Θ1α− θLi ], δxi〉 > 0.

According to the discussion in Lemma 6.2, |x0|2 ≤ K, |x̄i|2 ≤ K, and |x̄(N)|2 ≤ K

for some K is independent of N . Thus, there exists a constant K independent of N

such that

inf
xi∈ΓL

i

J L
i (xi; x̄−i; ȳ

(M); θLi ) ≤ J L
i (x̄i; x̄

(N); y(M); θLi ) ≤ K. (6.59)

Since Ū11, Ū4 ≥ 0, by (6.57) and (6.58), it follows that

J L
i (x̄i; x̄

(N); y(M); θLi )− inf
xi∈ΓL

i

J L
i (xi; x̄−i; ȳ

(M); θLi ) ≤ −Ū12 − Ū2 − Ū3.

By Lemma 6.1, Lemma 6.2 and (6.59), we have Ū12, Ū2, Ū3 → 0 a.s. when M,N →

∞. Denote ε(M,N) = −(Ū12 + Ū2 + Ū3), then

J L
i (x̄i; x̄

(N); y(M); θLi ) ≤ inf
xi∈ΓL

i

J L
i (xi; x̄−i; ȳ

(M); θLi ) + ε(M,N),

where ε(M,N)→ 0 a.s. as M,N →∞. The theorem follows. �

6.5 Numerical Example

In this section, we give a numerical example. Suppose that there are 500 leaders and

500 followers with Λ1
F = 3, Λ2

F = 1, Λ3
F = 2, Λ1

L = 2, Λ2
L = −2, Λ3

L = 1, QF = 2,

QL = 1. Moreover, IF = {1, 2, · · · , 500}, IL = {1, 2, · · · , 500}, and for dimensional

consistency, we set n = m = m1 = l = p = 1. Then the assumptions ??-??, ?? are

satisfied and the Eq. (6.30), (6.31) can be rewritten asminimize J F
j (yj; y

(M);x(N); θFj ) = 2|3yj − y(M) − 2x(N) − θFj |2,

subject to yj ∈ Rm, j ∈ IF ,
(6.60)

for the followers with decision variables {yj}j∈IF and
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(a) (b)

Figure 6.1: (a) is the curve of convergence in Lemma 6.1 and (b) is the curve of convergence

in Lemma 6.2

minimize J L
i (xi;x

(N); y(M); θLi ) = |2xi + 2x(N) − y(M) − θLi |2,

subject to xi ∈ Γ̄ ⊆ Rn, i ∈ IL,
(6.61)

for the leaders with decision variables {xi}i∈IL . Therefore, by the discussion in

Section 5.1 and 5.2, we can obtain that the CC system (6.47) of q-LF as follows
x0 =E

{
PΓ̄

[
0.5×

(
− 0.5x0 + 0.5α + ΠL

i′

)]}
,

y0 =0.5α + x0.

(6.62)

Now, we consider the case that the leaders’ strategies are unconstrained. Suppose

that the conditional expectations of {ΠF
j }Mj=1 under x(N) is α = 1 and the expectation

of {ΠL
i }Ni=1 is 0. Then the above system can be rewritten as

x0 = 0.2, y0 = 0.7. (6.63)

Next, we simulate the results of our ε-SNC equilibrium in Section 6.4.3. We first

defined 

ε1 =|ȳ(M) − y0|, ε2 = |x̄(N) − x0|,

ε3 =J F
j (ȳj; ȳ

(M);x(N); θFj )− inf
yj∈Rm

J F
j (yj; ȳ−j;x

(N); θFj ),

ε4 =J L
i (x̄i; x̄

(N); y(M); θLi )− inf
xi∈ΓL

i

J L
i (xi; x̄−i; ȳ

(M); θLi ),
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(a) (b)

Figure 6.2: (a) is the curve of convergence in the followers’ subgame and (b) is the curve

of convergence in the leaders’ subgame.

where ε1 represents the process of convergence in Lemma 6.1, while ε2 represents the

process of convergence in Lemma 6.2. ε3 and ε4 are corresponding to the processes

of convergence of our ε-SNC equilibrium.

The curves of ε1, ε2 are shown in Figure 1, and ε3, ε4 are shown in Figure 2 as M

and N increase from 1 to 500. The X-axis indicates the number of agents M or N ,

and the Y -axis indicates εi, i = 1, 2, 3, 4. It can be seen that they are approaching

zero when M or N is growing larger and larger.

6.6 Conclusion

In this chapter, we study a class of w-LF games with model uncertainty under a

large-population system. The leaders or followers play a Nash game with each other

in their hierarchy and play a Stackelberg game between two hierarchies. Applying

the mean field approximations, we obtain an asymptotic SNC equilibrium of our

problem. Finally, we give out a quadratic case and a numerical simulation.
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Chapter 7

Conclusions and Future work

This chapter concludes the thesis and gives out some possible future works that are

related to the topics in this thesis.

7.1 Conclusions

In this thesis, the problems related to the mean field game and team with leader-

follower interaction are introduced step by step. A mixed leader-follower problem

between two players with input constraints is first studied by using the maximum

principle and the minimizing sequence method. Then a robust mean field team con-

trol problem under a large population system is considered by utilizing the mean field

heuristics. These two chapters introduce the background, fundamentals, and some

techniques of the Stackelberg game and the mean field game (or team) respectively.

After that, the principle of the leader-follower game, the maximum principle, and the

mean field approximation methods are applied to investigate a leader-follower mean

field team problem with one leader and N followers. A pair of decentralized optimal

control laws are obtained and proved to satisfy the asymptotic Stackelberg equilib-

rium. Meanwhile, a Stackelberg-Nash-Cournot equilibrium between N leaders and

M followers under a static optimization context is introduced as a supplement for the

leader-follower mean field game topic of the thesis. Moreover, some numerical exam-
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ples are provided to simulate the asymptotic result of the mean field approximation

at the end of some chapters.

7.2 Future Work

The Related future works are listed below.

1. Some techniques and results of the mean field leader-follower problem we ob-

tained in this thesis can be applied in the financial market, especially combining

them with the mean-variance model.

2. Limitations and constraints appear commonly in the real world. Thus, it is

more meaningful and practical to study the leader-follower game with not only

the input constraints but also some “hard-constraints”. Also, the related results

may apply to management science or deep learning.
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[13] T. Başar. Stochastic incentive problems with partial dynamic information and
multiple levels of hierarchy. Eur. J. Polit. Econ., 5, 203-217, 1989.
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