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Abstract 

Land use and land cover (LULC) changes is a major global problem cause by intense human activities and 

socioeconomic development. These are especially more pronounced in fast developing regions such as 

Guangdong, Hong Kong, and Macau (GHKM), in South China. GHKM has undergone rapid economic 

development and urbanization over the past three decades (1986–2017) significantly influenced the LULC 

changes and ecosystem service value (ESV) and expected to continue in future. The alteration in ESV leads 

to the requirement of a significant tailored analysis of ecosystem services regarding incisive and relevant 

planning to ensure sustainability at regional level. To understand and assess the outcomes of these changes 

in the long term, the availability of reliable and adequate information about LULC change over the years is 

becoming increasingly necessary. It is essential to monitor, manage, and utilize ecosystems accurately to 

halt the ongoing loss of ecosystem services and maintain or balance the supply of different ecosystem 

services in the landscape. To date, studies in their quantitative analysis and the spatiotemporal variability 

at the regional level (in GHKM) are very limited. Therefore, this study aims to investigates the changes in 

LULC of GHKM based on multi-year Landsat (TM, ETM+ and OLI) and nighttime light (NTL) data, 

simulate future scenario using Land Change modeler (LCM), and their impact on ecosystem services value 

(ESV).  

A supervised classification technique, i.e., support vector machine (SVM), is used to classify the Landsat 

images into seven thematic classes: forest, grassland, water, fishponds, built-up, bareland, and farmland. 

The demographic activities are studied by calculating the light index, using nighttime light data. Several 

socioeconomic factors, derived from statistical yearbooks, are used to determine the impact on the LULC 

changes in the study area. The post-classification change detection shows that the increase in the urban 

area, from 0.76% (1488.35 km2) in 1986 to 10.31% (20,643.28 km2) in 2017, caused GHKM to become the 

largest economic segment in South China. This unprecedented urbanization and industrialization resulted 

in a substantial reduction in both farmland (from 53.54% (105,123.93 km2) to 33.07% (64,932.19 km2)) 

and fishponds (from 1.25% (2463.35 km2) to 0.85 % (1674.61 km2)) during 1986–2017. The most dominant 

conversion, however, was of farmland to built-up area. The subsequent urban growth is also reflected in 

the increasing light index trends revealed by NTL data. Of further interest the overall forest cover increased 

from 33.24% (65,257.55 km2) to 45.02% (88,384.19 km2) during the study period, with a significant 

proportion of farmland transformed into forest as a result of different afforestation programs. An analysis 

of the socioeconomic indicators shows that the increase in gross domestic product, total investment in real 
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estate, and total sales of consumer goods, combined with the overall industrialization, have led to (1) 

urbanization on a large scale, (2) an increased light index, and (3) the reduction of farmland.  

Using Land Change Modeler (LCM) predict the future scenario of the years 2024 and 2031 based on the 

past trend 2005—2017. The changes in spatial structural patterns are quantified and analyzed using selected 

landscape morphological metrics. The results show that the urban area has increased at the rate of 4.72% 

during 2005—2017 and will continue to rise from 10.31% in 2017 to 16.30% in 2031 at a rate of 3.27%. 

This increase in urban area will encroach further into farmland and fishponds. However, forest cover will 

continue to increase from 45.02% in 2017 to 46.88% in 2031. This implies a decrease in the mean Euclidian 

Nearest Neighbor Distance (ENN) of forest patches (from 217.57m to 206.46m) and urban clusters (from 

285.55m to 245.06m) during 2017—2031, indicating an accelerated landscape transformation, if the current 

patterns of change continue over the next decade.  

The most renowned established unit value transfer method has been employed to calculate the ESV. The 

results show that the total ecosystem service value in GHKM has decreased from 680.23 billion CNY in 

1986 to 668.45 billion CNY in 2017, mainly due to the decrease in farmland and fishponds. This overall 

decrease concealed the more dynamic and complex nature of the individual ESV. The most significant 

decrease took place in the values of water supply (-22.20 billion CNY, -14.72%), waste treatment (-20.77 

billion CNY, −14.63%), and food production (-7.96 billion CNY, −33.18%). On the other hand, the value 

of fertile soil formation and retention (6.28 billion CNY, +7.26%) and recreation and culture (5.09 billion 

CNY, +12.91%) increased. Furthermore, total ESV and ESV per capita decreased significantly with the 

continuous increase in total gross domestic product (GDP) and GDP per capita. A substantial negative 

correlation exists between farmland ESV and GDP indicating human encroachment into a natural and semi 

natural ecosystems. The results suggest that in the rapidly urbanizing region, the protection of farmland and 

to control the intrusion of urban areas has marked an important societal demand and a challenge to the local 

government.  

Thus, the speed of development suggests that opportunistic development has taken place, which requires a 

pressing need for smart LULC planning and to improve land use policies and regulations for more 

sustainable urban development, to guarantee ecosystem service sustainability, and protection of natural 

resources. 

Keywords: Land use land cover; Landsat; Land change modeler; ecosystem service value; urbanization; 

Guangdong, Hong Kong, and Macao. 
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Chapter 1 

1 Introduction 

 

1.1 Background 

Land use land cover (LULC), a complex system involving both the socioeconomic and natural ecosystem, 

is a foremost global issue instigated by intense socioeconomic development over the last few decades 

(Ayele, Hayicho, and Alemu 2019; Batunacun et al. 2018; J. Liu et al. 2014; Wu et al. 2013; Yu and Ng 

2007). Socioeconomic development, industrilization, urban sprawl, and land use policies are the major 

driving forces of LULC changes; however, urbanization has been the most direct expression of said changes 

(Dou and Chen 2017; Ma and Xu 2010). These variations have a profound impact on the earth’s ecosystems 

(Chen et al. 2013b; Dewan and Yamaguchi 2009a), biodiversity, atmospheric environment, climate change, 

carbon cycle, soil environment, energy balance, sustainability, and hydrological cycle both at a local and 

global scale (Liping, Yujun, and Saeed 2018; K. Yang et al. 2018; Zhu and Woodcock 2014). They have 

also influenced the physical characteristics of albedo, emissivity, photosynthetic capacity, transpiration, 

and roughness (Zhu and Woodcock 2014). Therefore, monitoring and mapping LULC changes have been 

widely acknowledged as an essential scientific objective and research theme.  

Increased urbanization, industrialization, and economic development have resulted in increased population 

pressure (Liping et al. 2018), which is accommodated by the urban growth pattern being towards the 

peripheral of rural areas (Araya and Cabral 2010), causing the conversion of natural and semi-natural 

resources at an unprecedented rate (Li and Liu 2017; Wu et al. 2013). This indicates that demand for natural 

resources is increasing day by day, and urbanization is proceeding at a staggering rate (Haas and Ban 2014; 

Karakuş 2019; Wu et al. 2013). Over half of the world populace currently lives in a metropolitan region 

(Jiang and Wu 2015; Karakuş 2019; Maimaitijiang et al. 2015), though they account for only 2-3% of the 

Earth’s land surface (Dewan and Yamaguchi 2009a; Dou and Chen 2017; Sexton et al. 2013; Yu and Ng 

2007). From 1970 to 2000, the global urban area increased by approximately 58,000 km2 and is estimated 

to increased to 1,527,000 km2 by 2030 (Wang and Murayama 2017). In developing countries, urban areas 

are predicted to surge from 300,000 km2 in 2000 to 770,000 km2 in 2030 and 1,200,000 km2 in 2050, 

respectively (Angel et al. 2011; Wu et al. 2017). Moreover, in Asia and Africa, 90% of the development is 

set to happen in the urban populace (Wang et al. 2019). In 2017, the world population has reached to 7.5 

billion (Wang and Murayama 2017).  
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Thus, the unparalleled increase in urbanization and pervasive LULC changes have exacerbated the (Wu et 

al. 2013) loss of arable land (Lopez et al. 2001), residential crowding, traffic congestion, and irreversible 

damage to ecosystem services and biodiversity (Dou and Chen 2017; Ma and Xu 2010). Ecosystem service 

(ES) is defined as the merchandise and services given by the ecosystem add to the prosperity of both directly 

or indirectly. It may also affect the health of the next generation of land users both at a local and regional 

scale (Kityuttachai et al. 2013; Liu et al. 2017). These significant changes are more pronounced in fast 

developing countries (such as China), given that, compared to the developed countries, their urbanization 

is often unplanned, improvised, and  even chaotic (Rimal et al. 2020).  

China total urban population has increased from 172.45 million (17.92%) in 1978 to 831.37 million 

(59.58%) in 2018 (China National Bureau of Statistics 2019; Wu et al. 2013) and is expected to reach 

68.38% and 81.63% by 2030 and 2050, respectively, with an average annual growth rate of 0.793% (S. Liu, 

Yu, and Wei 2019; Wu et al. 2017). This is mainly because Chinese cities are receiving more migrants from 

rural areas, catching up or shrinking the gap with developed countries, its economic position in the world 

(Yue, Liu, and Fan 2013), different developmental strategies across China were employed, such as 

“Western development”, “Rising of central China” and “North East Revitalization” (Jiyuan et al. 2010). 

Moreover, China bestows great significance to information application and turns external information into 

its resources by fortifying digestion, absorption, and re-innovation information (Zhao 2010). All these 

factors together with an unreasonable mode of growth, have led to severe deterioration of LULC, 

strengthened land use conflicts, urbanization, and a substantial reduction in agricultural land resources in 

many fast-developing regions such as Guangdong, Hong Kong, and Macao (GHKM) (Li and A. G. Yeh 

2004; K. Zhang et al. 2016). 

After the opening of economic reform in 1978, GHKM, the south east region of China, have practiced the 

highest rates of LULC changes, especially urban growth and reduction of farmland, socioeconomic 

development, and industrialization. This is due to decentralizing decision making and fiscal powers, 

permitting a more market-oriented economy, privatizing urban enterprises and housing, transition from the 

gross domestic product (GDP) to fanatical development evaluation (Li and A. G. Yeh 2004), opening to 

foreign direct investment (FDI) (Schneider and Mertes 2014), promotion of new industrial and technology 

parks on the fringe of an urban area and pushing of industrial/urban development further into sub-

urban/rural areas (Y. N. Zhang et al. 2011). The unprecedented increase of industrialization and 

urbanization has turned the GHKM from a predominate farmland region into a ‘‘world’s manufacturing 

workshop’’ (Shi and Shaker 2014). This region has become one of the most active, strong economic and 

flourishing regions across China (Chokkalingam, Zhou, and Toma 2006; World Bank 2011).  
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Different periods of politics, socioeconomic development, and urbanization such as “opening up and 

economic reform 1978–1991”, “Initial period of the socialist market-oriented economy 1992–2002”, “Mid-

term of the socialist market-oriented economy 2003–2008”, and “Socialist market-oriented economy 2009–

now” has a profound impact on GHKM LULC changes and urbanization (Wang et al. 2018) and moved the 

accentuation from one-way land development to both development and conservation (Jiyuan et al. 2010). 

These significant changes have attracted increasing attention from planners and policy makers, resulting in 

heated discussions on its definition, measurement, causes, and negative consequences (Yue et al. 2013).  

In this region, the land cover being used by enterprises for speculative activities and the development of 

real estate (World Bank 2011), given that it is a preferred destination region for millions of domestic 

immigrants and foreign investors; as such, the GHKM have spearheaded much of China’s socioeconomic 

development (Chen, Zeng, and Xie 2000; Wu et al. 2013; Ye and Xie 2012). With fiscal restructuring in 

China, GHKM started to take care of a large portion of their local fiscal revenue; local governments are 

under more pressure to increase local revenue, enabling infrastructure development to attract more 

investment (Yue et al. 2013). Instead of retaining farmland resources, local governments have given priority 

to the conversions of collective land for commercial and residential purposes (Han, Yang, and Song 2015; 

Wang et al. 2018). ‘Low-cost’ lands for urban development and industrialization gave significant 

motivations to promote the anomaly of ‘financing through land’ and to modify assigned land uses, such as 

a reduction in farmland and an increase in urban land (Wang et al. 2018; K. Zhang et al. 2016). Thus, the 

urbanization process followed by increased energy utilization power, and LULC changes (Wu et al. 2017; 

Zhao 2010). 

GHKM degraded land cover and environments represent a new normal. The new social conditions are 

currently combined to significantly transform ecological conditions and the conversion of farmland (K. 

Zhang et al. 2016). These audacious changes are promising. Burgeoning urban growth, insufficient housing 

and infrastructure, slum proliferation, and uncoordinated land development represent a significant 

challenge for accomplishing sustainable development objectives that require urban planners and decision-

makers to intervene (Wang and Maduako 2018; Zhao 2010). In short, as land/natural resources continue to 

decline for regional development, sustainable LULC is an inescapable decision. Therefore, monitoring 

LULC changes is a prerequisite for a deeper understanding of LULC changes and to determine the major 

land use conversion. The comprehensive study regarding LULC can give scientific guidance to the land 

development department and help policy decision-makers to set/formulate and adopt appropriate practices 

for sustainability.  

Industrialization and urbanization are firmly interrelated with socioeconomic variation, significantly 

affecting the changes and distribution of developed land and farmland. The conversion of farmland to other 



4 

 

land use types primarily increased due to high economic yield, urban expansion, immense development, 

industrialization, and the ecological effect of different policies. These include industrial, regional 

development, urbanization, ecological/environmental conservation, and land conservation policies (S. Du, 

Shi, and Van Rompaey 2014; Song and Deng 2017a; Wang et al. 2018) Urban land owned by the state; its 

utilization is under the control of local officials acting as agents of the state, subject to oversight by senior 

officials at the higher levels of government (Feng, Lichtenberg, and Ding 2015). The process of 

urbanization, rural-urban migration, land transaction practices (state and collective ownership of land), and 

landscape transformation from farming to non-agricultural use have become land-centered. Consequently, 

strengthen economic localism as it generates more revenue/financial incentives to the government than 

traditional farming activities (Chen et al. 2018; Ding 2003). Urban land produces profits as taxes, 

surcharges, and transaction fees. In China as a whole, land-related revenue grew from less than 10% in 

1999 to 55% of tax revenue in 2003-2004 and 67% in 2010 (Feng et al. 2015; P. Zhang et al. 2015). Hence, 

in local government, the relevant administrative departments (such as the land and resources bureaus) have 

played a vital role in the provision of urban land and its development (Chen et al. 2018; Long 2014). Thus, 

urbanization has created a mixed pattern of LULC where villages are merged with urban communities, and 

villages are placed on urban areas (J. Wang et al. 2012), thus moving GHKM away from an agrarian society. 

Similarly, changes in LULC due to anthropogenic activities are responsible for the degradation and loss of 

essential ecosystem services (Song and Deng 2017a). These include nutrient cycling, carbon absorbent, the 

provision of ecological barriers against extreme weather events (control environmental pollution), and 

tourism and recreation value (K. Zhang et al. 2016). They have been transformed into an urban ecosystem. 

Ecosystem services, their function, and process are lifesaving products. The changes in their structure, 

functions, various type, area, and spatial distribution respond according to the structural changes in LULC 

(Feng et al. 2012; Ye, Zhang, et al. 2018; Zhu et al. 2017). There is growing proof that they might be 

moving or have moved into a new framework or states that are hard to recover (Zhao 2010). These new 

states have severe and long-term ramification for human well-being. Furthermore, growing system moves 

within neighboring ecosystems can interfere with one another and cause falling impacts, which can prompt 

synchronous breakdown on a large scales (K. Zhang et al. 2016). 

Assessing ecosystem services provides a promising way to stimulate ecological construction and regional 

sustainable development (Dewan and Yamaguchi 2009a; Yeh and Li 1999; Zhu et al. 2017). For sustainable 

planning, by underlining the whole human-induced structure, planners have to think beyond the city 

boundaries greatly relies on the natural environs that provide the advantages and benefits that trigger the 

establishment of human society (Wu et al. 2013; Zhu et al. 2017). Therefore, it is necessary to determine 

the influences of LULC changes on ecosystem service values, which could provide useful information to 
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urban planners and policy decision-makers for sustainable socioeconomic, environmental, and urban 

development and a safe ecological environment (Feng et al. 2012; Ye, Zhang, et al. 2018). 

Enormous socioeconomic development, industrialization, and population growth have exceeded the coping 

capacities, leading to squatter settlements and shanty townscapes. These trends are expected to project in 

the coming decades with the consumption of more resources. Consequently, more significant variations in 

LULC occur and have encourage the Chinese government to fortify urban growth surveillance, whereas 

scientific supervision needs the help of accurate prediction of sprawl. Thus, examining and summarizing 

the characteristics of urban growth, including the future potential of sprawl, is essential. The precise 

prediction of future LULC and comprehensive understanding of their trends are important and put forward 

proposals about improving environmental quality, gaining much attention from researchers and help policy 

decision-makers for land use planning (Megahed et al. 2015; Mishra, Rai, and Mohan 2014; Rimal, Zhang, 

Keshtkar, B. N. Haack, et al. 2018; Zhang, Zhou, and Song 2020).  

In summary, land use planning, the process of economic development, extensive urban sprawl, and an 

enormous reduction of farmland resulted in significant LULC changes. Although land planning have been 

made or updated every 5 to 10 years but these planning lagged behind the unprecedent mode of 

socioeconomic development, industrialization, and urbanization that led to loss of farmland, ecosystem, 

widen urban rural gay, and social inequality gap. Some ecological systems have permanently transformed 

into a different regime, such as, shift of farmland to human benefit. All such changes have subverted the 

long-term relationship between man and nature. The route of sustainable urbanization and to control the 

reduction of farmland has not been well entrenched. Though detailed nation-wide land use has been made 

in china three times, these investigations have underpin loss of natural resources, essential ecosystem 

services, and unsustainable development. Decisions, long term planning and strict policies have been made 

but they lagged behind the socioeconomic development and industrialization. As country in more concerned 

towards its economic position and shrinking the gap with the developed countries. Therefore, a market-

oriented allocation and a control mechanism employing financial levers should be required. It is necessary 

to draw up ‘basic’ land legislation and sustainable development (Li and A. G. Yeh 2004; J. Liu et al. 2014; 

Ma and Xu 2010; Yansui, Lijuan, and Hualou 2008). The main challenge is to maintain a framework in a 

way that evades the new regime from deteriorating to an even worse and more robust system (Fang et al. 

2005; K. Zhang et al. 2016). 

Acknowledging these realities are urgently needed new approaches, paradigms, and more flexible policies, 

as well as scientific and technological service for the management and optimized allocation of natural 

resources and regional sustainable development (Dewan and Yamaguchi 2009a; Long et al. 2007). 

Therefore, there is a need to study non-linear LULC dynamics comprehensively at the regional level within 
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a holistic and integrated system for the long term. This study aims to understand the above underlying 

system dynamics and monitor the spatio-temporal LULC magnitude, pattern, and changes, the factors 

affecting these changes, and project them for future land development.  

1.2 Objectives 

This study aims to use remotely sensed images to monitor and investigate the patterns and processes of 

LULC changes in GHKM, their impact on ecosystem service value, and simulate future scenario. The 

specific objectives of the research are as follows: 

• Investigate spatio-temporal LULC change detection and patterns (urbanization, farmland, and 

forest) by sequential analysis of remote sensing and determine its socioeconomic determinants over 

the past three decades (1986-2017). 

• Predict the spatial explicit future LULC for the next 14 years using the LCM embedded with the 

Markov model.  

• Evaluate the influence of LULC changes on the ecosystem service value (ESV) and their function, 

its spatial distribution and examine the relationship between them. 
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Chapter 2 

2 Literature Review 

 

Monitoring and effective analysis of LULC changes require a significant amount of information about the 

surface of the earth (Araya and Cabral 2010). Since the launch of a first satellite, satellite remote sensing 

(RS) has been widely used in detecting the historical LULC changes both qualitatively (landscape changes 

either natural or human-induced) quantitatively (categorical transformation of the land) and its spatial 

distribution (Falahatkar and Soffianian 2011; Weng 2002). Remote sensing has proven effective in 

explaining human interactions with urban environments in which they live (Dewan and Yamaguchi 2009a; 

Gatrell and Jensen 2008). It provides cost-effective, multi-spectral, and multi-temporal data and has the 

characteristics of extensive area coverage and high precision (Nath, Niu, and Singh 2018). This has enable 

us to determine and analyze LULC changes (Al-Bakri, Duqqah, and Brewer 2013; Yang et al. 2003), urban 

expansion (Li and A. G. Yeh 2004), urban growth modeling (Dewan and Corner 2014; Dewan and 

Yamaguchi 2009a; Poelmans and Van Rompaey 2009), and their development, patterns, trends, and 

processes (Falahatkar and Soffianian 2011; Weng 2002). The information derived from remote sensing can 

be used to avoid irreversible and aggregative impacts of urban development (Yuan 2008) and are imperative 

in optimizing the provision of urban facilities and LULC changes (Barnsley and Barr 1996; Dewan and 

Yamaguchi 2009a, 2009b). 

Moreover, approaches related to landscape ecology, for example, landscape metrics, also help to describe 

the details and structures of spatiotemporal trends and changes of LULC at multiple scales. Combining 

remote sensing data with landscape metrics has quantified the urban growth and LULC change pattern in 

different cities and urban agglomeration around the globe (Araya and Cabral 2010; Geri, Rocchini, and 

Chiarucci 2010; Hamad, Balzter, and Kolo 2018; Jia et al. 2019; Jiao, Hu, and Xia 2019; Shi and Shaker 

2014; Weng 2007; Wu, Li, and Yu 2016). Therefore, studying LULC is one of the most prevalent research 

focuses today, as China still need innovative mode to establish a balance between economic development 

and natural resources' preservation at the provincial level with sustaining its international image of a capable 

power. Although new development mode and strategy have been introduced recently which have changed 

the previous mode of extensive land utilization to some extend and trend towards the more efficient and 

effective use but they are in initial stages. The overall aim of this study is to scrutinize the socioeconomic, 

spatial/contextual causes of changes, the process and trajectory of LULC changes, and their effects on 

ecosystem services by remotely sensed data in the form of multi-temporal optical Landsat image analysis. 
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This would enable policy and decision makers to make proposals for sustainable development and land use 

management.  

2.1 Land use land cover change detection 

Change detection is defined as “the process of detecting differences of state of an object or phenomenon 

between two different dates of the same geographical region” (Arastoo and Ghazaryan 2013; Özyavuz, 

Onur, and Bilgili 2011). It is split into (a) pre-processing, (b) appropriate selection of change detection 

algorithm, and (c) accuracy assessment. In the language of remote sensing, the changes occur due to 

spectral, spatial, thematic, and temporal constraints, soil moisture, and atmospheric conditions (Hussain et 

al. 2013). Generally, there are two change detection approaches: (1) change detection without classification 

and (2) post-classification comparison. Change detection without classification automatically identifies 

changes from the multi-temporal remote sensing images without requiring any previous knowledge based 

on the difference feature map.  

These include change vector analysis (CVA), bands stacking of different time, time series modeling 

(trajectory-based), and so on. In the post-classification comparison, multi-temporal images are compared 

for change analysis. These include image differencing, aerial difference calculation, image rationing, image 

regression, and composite analysis (Falahatkar and Soffianian 2011; Haque and Basak 2017; Weng 2002; 

Zhang et al. 2019). The most commonly used approach is post-classification, as it is relatively easy to use, 

gives ‘from-to’ change information, and reduces the environmental differences and sensor effect (MAS 

1999), however being sensitive to the prior classification accuracies (Hu and Zhang 2013). All these 

approaches are successively used in the monitoring of a variety of LULC changes (Dai and Khorram 1999; 

Dewan and Yamaguchi 2009a; Fan, Weng, and Wang 2007; Gopal and Woodcock 1996; Jaafari et al. 2016; 

Kaufmann and Seto 2001; Lambin 1997; Li and Liu 2017; Woodcock and Collins 1996). For example, 

vegetation, deforestation, disaster monitoring, (Hussain et al. 2013), landscape fragmentation (Nagendra, 

Munroe, and Southworth 2004), variations in ecosystems (Sharma et al. 2019), climate change (Tasser, 

Leitinger, and Tappeiner 2017), and urbanization (Rimal 2011). They provide the basis for understanding 

the interactions and relationships between natural phenomena and human activities (Yu et al. 2016).  

For monitoring LULC changes and urban growth, multi-spectral imagery such as Moderate Resolution 

Imaging Spectroradiometer (MODIS), Landsat thematic mapper (TM)/ enhanced thematic mapper 

(ETM+)/ operational land imager (OLI), and Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) data used. To map urban growth based on nighttime light data Defense 

Meteorological Satellite Program’s Operational Linescan System (DMSP OLS) images have been used (Shi 

et al. 2017). Amongst all different remote sensing data, in high resolution satellite data, temporal resolution 

and geographic coverage is a limiting factor, whereas conventional satellite data constrained by spatial 
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resolution cannot comprehensively reflect LULC changes and urban sprawl (Zhang and Seto 2013). In 

developing regions, the pace of urban growth and LULC changes is highly policy or event manipulated, 

which is temporally uneven and hard to capture using coarse temporal resolution satellite data (Li et al. 

2018). For monitoring small changes, regional and local scale studies, and to meet the demands of land 

management medium to high resolution/ finer resolution satellite data needed (such as Landsat) to identify 

the changes more accurately (Li et al. 2018; Zhu and Woodcock 2014). 

Landsat with 30 m spatial resolution data, 16 days temporal resolution, near nadir observation, relatively 

wide geographic coverage, continuous, and longest record of measurement is one of the most significant 

sources of data for studying LULC change detection at a moderate scale (Shi et al. 2017; Tan et al. 2010; 

Yang et al. 2014; Yang, Li, et al. 2019; Zhang and Seto 2013). Human-induced activities, socioeconomic 

development, and other environmental factors are responsible for significant changes in the landscape both 

at global and regional scales (Zhu et al. 2016; Zhu and Woodcock 2014). With the help of Landsat data, 

one can easily extract regional scale quantitative estimations and monitor and analyze the information of 

LULC changes, such as impervious surface change, changes in vegetation cover, inter-annual climatic 

variability, and urban growth (Bhandari, Phinn, and Gill 2012; Coppin and Bauer 1996; Galford et al. 2008; 

Jensen et al. 1995; Seto et al. 2002; Woodcock et al. 2001; Zhang and Weng 2016; Zhu and Woodcock 

2014). 

Several studies have been conducted addressing LULC change detection at different spatial and temporal 

resolution in China (Dou and Chen 2017; Fan, Wang, and Wang 2008; Feng and Fan 2018; Y. Hu et al. 

2019; Hu and Zhang 2013; X. Li et al. 2016; Li et al. 2017; Li and Wang 2015; Mertes et al. 2015; Seto et 

al. 2002; Shen et al. 2019; Su et al. 2010; Xiaopei, Jiangxing, and Jun 2006; XU, Wang, and Xiao 2000; 

Yang, Li, et al. 2019; Yongming et al. 2007) and around the world (Al-Bakri et al. 2013; Dewan and 

Yamaguchi 2009a; Dewan, Yamaguchi, and Rahman 2012; Falahatkar and Soffianian 2011; Karakuş 2019; 

Latifovic, Pouliot, and Olthof 2017; Mallupattu and Sreenivasula Reddy 2013; Mertes et al. 2015; Sleeter 

et al. 2018), human geography, urban geography, and economic geography, particularly their concept, 

processes, and driving forces (Braimoh and Onishi 2007; Dewan and Corner 2014; J. Du et al. 2014; Sun 

et al. 2012; Wu and Zhang 2012). In the Pearl River Delta (PRD) cities, the LULC accompanied by urban 

sprawl has endured severe changes (Hu and Zhang 2013). They examined the seasonal changes from March 

2008 to December 2009 using MODIS data. Their result demonstrates continuous increase in urban area 

while other LULC classes had different increasing or decreasing trend at the same period. Y. Wu, Li, and 

Yu (2016) examined urbanization and LULC changes in Guangzhou from 1979 to 2013 using multi-date 

Landsat images. They concluded that during the studied period, urbanization increased by 1,512.24 km2 

with an annual rate of change of 11.25% (Wu et al. 2016). Zhang, Chen, and Zhou (2015) assessed the 
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long-term LULC changes of Dongguan, and their results exhibited that during 1979-2013, the urban area 

grew by more than 52% (H. Zhang, Chen, and Zhou 2015). Jiyuan et al. (2014) has explored the spatio-

temporal LULC changes, patterns, and causes from 1980 to 2010 for China using Landsat images 

(TM/ETM+) (J. Liu et al. 2014). Yansui et al. (2008) analyze the spatio-temporal LULC transformation in 

the eastern coastal region of China from 1996 to 2005. Their results show that an increase in populace and 

socioeconomic development were the primary driving forces of urbanization and LULC changes (Yansui 

et al. 2008). Karen C Seto and Fragkias (2005) quantify the physical process of urban growth, LULC 

change, and the underlying socioeconomic process in a special economic zone of PRD (Seto and Fragkias 

2005). Lambin et al. (2001); Wang et al. (2012); and Sodango et al. (2017) concluded that not only 

economic fluctuation but also development policies, strategies, and competition with other parts of the 

world were responsible for significant LULC change (Lambin et al. 2001; Sodango, Sha, and Li 2017; J. 

Wang et al. 2012).  

Existing studies, however, have thoroughly investigated LULC change and urban expansion using remote 

sensing technology. These studies distinguished the accompanying characteristics Research objectives 

ranging from a solitary city (i.e., Beijing (Y. Yang et al. 2018), Shanghai (Zhao et al. 2006), Guangzhou 

(Gong et al. 2018; S. Liu et al. 2019), Shenzhen (Dou and Chen 2017), Hangzhou (Yue et al. 2013)) to 

urban aggregations (i.e., Beijing–Tianjin–Hebei (Sun and Zhao 2018), Pearl River Delta (Fan et al. 2008; 

Feng and Fan 2018; K. Yang et al. 2018; Yang, Li, et al. 2019), Yangtze River Delta (Lu et al. 2018; Luo 

et al. 2018))(Yu et al. 2019). These studies lack in explaining the aggravating complex structure of the land, 

intensive urbanization and development, and the relationship between them at a provincial scale using a 

medium to high-resolution data over a long period. There are still challenges in deriving the change 

information of LULC and urbanization in timing and location over a long period. Therefore, to mitigate the 

effects of significant LULC changes and provide effective policy alternatives, it is critical to understand the 

evolving nature of the GHKM region. Also, to provide a time series consistent LULC map for this 

significantly urbanizing region of the world, as a precursor to a quantitative assessment of regional LULC 

change and urbanization. 

Recent studies are more concerned and focused on the protection of farmland, reforestation, and sustainable 

development (Cortina et al. 2011; Li et al. 2013; Nagendra 2010; Plieninger et al. 2012; Rudel 1998). 

Urbanization, socioeconomic, and political development does not always mean destruction in the forest 

cover. However, they can endorse increasing forest cover and afforestation. In many parts of the world, 

especially in Europe, Asia, and North America, an increasing trend of forest cover has been seen after 

having massive deforestation. Kauppi et al. (2006) revealed that in France, although urbanization has 

increased from 42 million to 61 million during 1960-2006, at the same time, an increasing trend in forest 
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cover was observed, almost more than a quarter (Kauppi et al. 2006). Similarly, southern China accounts 

for 65% of the forest in China, especially for the fast-growing tree species (Shen et al. 2019). Forest 

succession in GHKM started after the establishment of the Forest Law of China. To make GHKM greener 

and mitigate the loss of forest due to massive urbanization, the government initiated different programs 

such as “to rehabilitate all degraded forest,” “National afforestation project,” “to strengthen the afforestation 

achievements and modernize forestry practices,” and “decision on speeding up forestry development”. 

These programs have also increased people's incentives and guarantee people’s ownership rights of forests. 

Thus, urbanization and economic activity have endorsed forestry development and different afforestation 

programs in the Guangdong, Hong Kong, and Macao  (Chokkalingam et al. 2006).  

2.1.1 Land use land cover classification 

Classification is one of the significant approaches to acquiring LULC information from remote sensing 

images (Q. Liu et al. 2014). Various classification techniques have been developed and employed in 

multiple perspectives (such as in the studies of environmental change, land resource and town planning, 

geological mapping, spatio-temporal modeling, LULC, and change detection) (Bahari, Ahmad, and 

Aboobaider 2014; Jung et al. 2006; Rogan et al. 2010; Zhu and Woodcock 2014). These techniques include: 

(1) both parametric (such as maximum likelihood classifier (MLC), minimum distance to means and the 

box classifier, ISODATA, and K-Means) and non-parametric (e.g., supervised classifier, support vector 

machine (SVM), decision tree, and artificial neural network (ANN)), (2) convolution neural network 

(CNN), (3) automated and semi-automated, (4) pixel and object based, and (5) spectral indices (Ayele et 

al. 2018; Mountrakis, Im, and Ogole 2011). 

Factors such as accuracy, speed, and practicality were considered when selecting a classification method 

(Bahari et al. 2014). MLC works with the assumption of the assignment of each pixel to the LULC class 

for which they have the highest probability (Ayele et al. 2018), whereas ANN estimate data properties 

based on training data (Hussain et al. 2013). In the decision tree, no assumption on data distribution and 

can provide a rule set for change and no-change classes. The drawback of a decision tree is that it (1) can 

be overtrained as it is responsive to both quality and quantity of training data each class; (2) do not aim for 

an optimal match; and (3) may grow much larger making it harder to analyze. A review of classification 

methods of remotely sensed can be found in (Hussain et al. 2013; Längkvist et al. 2016; Mather and Tso 

2010; Rai et al. 2020; Talukdar et al. 2020) and Table 1. However, MLC and ANN are among the most 

frequently used methods, but they have some drawbacks. ANN has been related to the problems of over-

fitting and local minima (Candade and Dixon 2004), whereas MLC requires a large training area (Bahari et 

al. 2014) and is unable to resolve the interclass confusion. These limitations are overcome by the support 

vector machine, which does not rely on any presumptions for the class distribution data (Mountrakis et al. 
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2011). According to Rimal et al. (2018) (Rimal, Zhang, Keshtkar, B. N. Haack, et al. 2018) and Waske and 

Benediktsson (Waske and Benediktsson 2007) when classifying the multispectral data, SVMs have 

achieved the highest overall accuracies among all approaches. 

The support vector machine is an advanced machine learning algorithm, relatively new supervised 

classification, and binary classifier actively used for the classification of satellite data. It has gained 

importance because of its robustness, high precision, and potent output results, even though using a small 

training sample. It works on the principle of Structure Risk Minimization (SRM) (Ustuner, Sanli, and Dixon 

2015), which separates the classes with a decision surface, called optimal hyper-plane, increases the margin 

between the classes using minimal training area. The data points closest to the hyper-plane are called 

support vectors (training areas) (Bahari et al. 2014; J. Liu et al. 2014). The complexity of the resulting 

classifier is represented by several support vectors instead of the dimensionality of the changing space. 

Consequently, SVMs tend to be less liable to over-fitting problems compared to other methods (Bahari et 

al. 2014; Candade and Dixon 2004; Duda et al. 2002). 

 

 

Figure 1. Schematic diagram of the Support Vector Machine (SVM). 

 

The classification based on SVM has been known to strike the right balance between accuracy achieved 

through a given finite amount of training patterns and the ability to generalize to unseen data (Candade and 

Dixon 2004; Mountrakis et al. 2011). It classifies the data both linearly and nonlinearly. For nonlinear data, 

the kernel function is used. The SVM kernel includes polynomial, linear, radial bias function, and sigmoid. 

The following parameters were used for SVM classification: (1) error penalty or cost (C) for all kernels, 

(2) gamma (γ) for all kernel types except linear, (3) bias term (r) for polynomial and sigmoid kernel, and 

(4) polynomial degree for the polynomial kernel. The optimum selection of the above-mentioned 

parameters increased classification accuracy. Despite its many advantages, SVM also has some limitations 
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(Bahari et al. 2014; Devadas, Denham, and Pringle 2012; Mohammadimanesh et al. 2018). The major 

drawback is the selection of an appropriate kernel function. Despite this constraint, this supervised 

technique remains most popular and produces more accurate classification results compared to conventional 

classification methods (Rimal, 2018). 

Table 1. Summary of different classification techniques (Hussain et al. 2013; Mondal, Kundu, and Chandniha 2012; 

Nitze, Schulthess, and Asche 2012; Shao and Lunetta 2009; Talukdar et al. 2020). 

Maximum 

likelihood 

classifier (MLC) 

• Parametric approach 

• Involves the assumption of the selected classes of  signature in a normal  distribution 

• No parameters 

• Less computational complexity 

• Exhibited inferior accuracies and higher variability 

• Disadvantage: requires a large training area and unable to resolve the interclass 

confusion 

Artificial neural 

network (ANN) 

• Non-parametric technique 

• Do not make assumptions about the nature of data distribution 

• Estimate data properties based on training data 

• Computational complexity is higher compared to traditional supervised methods (such 

as MLC) 

• Disadvantages: (1) complex architecture optimization; (2) low computational 

robustness; (3) exceed the good mean classification accuracy due to tremendous training 

time; (4) the hidden layer is not well-known; (5) for network teaching the amount of 

training data is essential 

Convolutional 

neural network, 

(CNN) 

• A standard feed-forward neural network consists of one input layer, multiple hidden 

layers, and an output layer. 

• Hidden layer includes convolutional layers, ReLU (activation function) layers, 

Kernels/filter, stride, padding, pooling layers, fully connected layers, and normalization 

layers. 

• Computationally expensive as it is far more data hungry because of its millions of 

learnable parameters to estimate 

• capture the remarkable features from raw images directly 

• do not require prior feature extraction, resulting in higher generalization capabilities 

• Uses stacked convolutional kernel to learn the features of images, so not only the 

spectral but also the texture information in spatial space is learned. 

• mainly used in high resolution remote sensing images which have fine texture features 

and fixed shapes as natural images employed in computer vision. 

• While texture features of Landsat images are not as fine as high resolution remote 

sensing images and objects captured with 30m resolution generally do not have fixed 

shapes 

• Disadvantage: (1) requires a large Dataset to process and train the neural network; (2) 

requiring graphical processing units (GPUs) for model training; (3) slower due to an 

operation such as maxpool; (4) Data requirements leading to overfitting & underfitting; 

(5) Classification of Images with different Positions; (6) adversarial examples; (7) 

Coordinate Frame 

Fully 

Convolutional 

Networks (FCN) 

• Consists of input layer, fully connected neurons, and output layer 

• can perform sematic segmentation and fits well to the pixel-wise classification of remote 

sensing data 

• If properly trained with a small number of labeled samples, the FCN based method can 

also significantly outperform the traditional method capability of the FCN model to 

exploit the spatial context 
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• Disadvantage: (1) computationally expensive; (2) significantly slower operation than, 

say maxpool, both forward and backward. If the network is pretty deep, each training 

step is going to take much longer; (3) loss of spatial information - because its “fully 

connected” 

Decision Tree (DT) 

• Non-Parametric technique 

• Do not make assumptions about the distribution of data 

• For change and no-change classes can give a set of rules 

• Disadvantages: (1) Sensitive to both quality and quantity of training data; (2) can be 

over-trained; (3) do not aim for an optimum match; (4) may increase much larger in 

sizes making it harder to analyze 

Support Vector 

Machine (SVM) 

• Non-parametric technique 

• Do not make assumptions about the distribution of data 

• Capable of managing small training data sets 

• As compared to traditional methods produces high classification accuracy 

• A theoretically bigger data set can be dealt with higher dimensionality  

• Outperformed RF and ANN. 

• Using  radial  basis  function  or  polynomial  kernels  exhibited  superior  results  to  

ANN and  RF  in  terms  of  overall  accuracy  and  robustness 

• Computational complexity is higher compared to traditional supervised methods (such 

as MLC) 

• Relatively high classification accuracy 

• Disadvantages: (1) Difficulty in choosing the best kernel function; (2) The 

computational time for classification and achieving optimization during the learning 

phase increases polynomially with the increase of data dimensionality 

Random Forest 

(RF) 

• Bagging and random algorithm based on a decision tree 

• Based on two parameters: (1) the number of trees, described by ‘n-tree’ and (2) in each 

break numerous features described by ‘m-try’ 

• Much more computationally expensive than SVM classifiers 

• Classification trees give an individual choice of vote 

• Give precise classification in directing the majority vote from trees in the entire forest 

• Stable and robust 

• Disadvantages: (1) complexity; (2) much laborious and time-consuming to construct a 

number of trees; (3) overfitting; (4) no interpretability 

 

2.2 Future prediction modelling 

In the environment of remote sensing and GIS, studies on change detection have mainly engrossed to 

provide information related to how much, where, and what type of LULC changes have occurred. After 

assessing how the land is currently being used, an evaluation of future predictions is required to ensure the 

adequacy of the future supply and for sustainable development. In short, the changes in LULC encourages 

the government to fortify the land cover management, whereas scientific management requires help in 

precisely foreseeing the LULC changes. Therefore, to answer the question of  how LULC may change in 

the future, a modeling approach is deemed to be a valuable tool (Liping et al. 2018; Yirsaw et al. 2017). 

LULC models comprise various methods and approaches, can be static and spatial, and investigate change 

vs. change rates (Mas et al. 2014). These models commonly encompass the following steps: (1) a change 

demand sub-model, (2) transition potential sub-model, and (3) change allocation sub-model. These steps 
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specify the amount and spatio-temporal location of LULC changes and the conversion of the LULC class 

from one to another (Rimal, Zhang, Keshtkar, B. N. Haack, et al. 2018).  

LULC models are classified into two groups: (1) regression-based model and (2) spatial transition-based 

models. In a regression-based model, such as a logistic model (Landis 1994; Turner, Wear, and Flamm 

1996; Wear, Turner, and Naiman 1998), LULC changes are defined through a set of spatially explicit factors 

(Weng 2002). In spatial transition-based models, such as cellular automation, future prediction of the land 

cover is made based on a probabilistic assessment with Monte Carlo or other methods (Clarke and Gaydos 

1998; Clarke, Hoppen, and Gaydos 1997; Weng 2002). The models involve the simulation or prediction of 

the environment as well as social systems' behavior in the study area during the studied period so that it 

contributes to the measured land changes (Gibson et al. 2018). Thus, they are needed to integrate spatial 

scales, to project future regimes, and their explanatory variables to simulate changes in LULC in response 

to biophysical and economic/human drivers (Shi and Shaker 2014). They are helpful in the selection of 

suitable development strategies.  

In recent decades, modeling of land use has been of increasing importance as urbanization, and LULC 

change has increased apprehension among planners and decision-makers about the future effects on the 

ecosystem and natural resources (Aburas et al. 2016; Bihamta et al. 2015; Dzieszko 2014; Liu and Phinn 

2004). The increasing trend of urbanization depends on various factors, such as socioeconomic 

development, demography, environment, geography, and culture. This specifies the increased importance 

of urban areas as the focal point of the populace and commercial concentration within a particular society 

(Aburas et al. 2017). The modeling of such dynamic systems is not an easy job (Ahmed et al. 2013). To 

date, many models have been developed which are classified as (1) mathematical equation based (e.g., 

logistic regression and Markov chain model), (2) system dynamic, (3) statistical, (4) expert system, (5) 

evolutionary, (6) models cellular, (7) hybrid or agent-based, and (8) integrated models (Aburas et al. 2017; 

Al-sharif and Pradhan 2014; Falahatkar and Soffianian 2011; Hyandye and Martz 2017). The most 

commonly used models are: (1) Land Change Modeler (LCM); (2) Cellular Automata (CA); (3) Markov 

Chain, (4) CA-Markov, (5) Geometric modeler (GEOMOD), (5) Conversion of land use and its effects 

(CLUE), and (6) STCHOICE (Mishra et al. 2014). However, it is difficult to compare which model gives 

a more accurate demonstration (Mishra et al. 2014). According to Deng et al. (2008), Li & Yeh (2002), 

Dimitropoulos (2011), Yang et al. (2012), and Al-Sharif and Pradhan (2014), models are tremendously 

helpful for the assessment of the effect of urban sprawl, in the planning and management of LULC, and 

identify best land use change patterns and trends (Al-sharif and Pradhan 2014; Deng, Su, and Zhan 2008; 

Li and Yeh 2002; Sun 2008; Xin, Xin-Qi, and Li-Na 2012). 
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2.2.1 CLUE and GEOMOD 

The CLUE dynamic model was developed by Veldkamp and Fresco (1996). This model depends on the 

analysis of location suitability using logistics regression. The main purpose of this model is to study LULC 

changes by incorporating driving factors such as biophysical and human. This model consists of three 

components: (1) regional biophysical component, (2) regional land use objective component, and (3) local 

land use allocation component. They used this model to simulate the LULC changes at local, regional, and 

national scales, a case study of Costa Rica and represents how biophysical and population factors have 

affected LULC (Sun 2008). With the increase in polulation and different biopysical factors (such as food, 

technology level, and socioeconomic condition) a land use conversion takes place only when the new land 

use gives a clear yiled or value improvement (Veldkamp and Fresco 1996). The drawback of this model is 

that it requires another mathematical model to predict future LULC (Han et al. 2015; Mas et al. 2014). 

The GEOMOD simulation model was developed by Pontius, Cornell, and Hall (2001). This model 

comprises three main decision rules: (1) the nearest neighbors, (2) political regions, and (3) the biophysical 

patterns. They used this model to study the spatial trend of the LULC and their changes with time, a case 

study of Costa Rica. They simulate the progressive loss of closed canopy forest for years 1940, 1961, 1983, 

and also extrapolates the LULC patterns for 2010. Over the several decades this model extrapolates LULC 

change for two categories with accuracy between 74% and 88%.  Conversely, this model only simulates 

the conversion between the two LULC types (Pontius, Cornell, and Hall 2001; Sun 2008). 

2.2.2 Markov chain model 

The Markov model is a robust model commonly used in monitoring, ecological modeling, modeling, and 

simulating changes, trends, and predicting the future scenario at a different spatial scale (Hamad et al. 2018; 

Verburg and Overmars 2009; Wang and Murayama 2017). This model predicts the future LULC changes 

from one time period (t=1) to another time (t+1) (Falahatkar and Soffianian 2011) based on the transition 

probability matrix of each LULC class (Hyandye and Martz 2017). The changes are considered a stochastic 

process in this model. However, the transition matrix is key to simulating LULC changes in the future 

(Wang and Murayama 2017; Weng 2002). The major drawback of this model is that it is unable to give the 

spatial distribution of LULC change activities (Al-sharif and Pradhan 2014). 

The future prediction of LULC changes can be calculated using the following equation: 

𝑆(𝑡 + 1) = 𝑃𝑖𝑗 ∗ 𝑆(𝑡)      (1) 

𝑃𝑖𝑗 =  (
𝑃11 𝑃12 𝑃1𝑛

𝑃21 𝑃22 𝑃2𝑛

𝑃𝑛1 𝑃𝑛2 𝑃𝑛𝑛

)     (2) 
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0 ≤ 𝑃𝑖𝑗 < 1 𝑎𝑛𝑑 ∑ 𝑃𝑖𝑗
𝑛
𝑗=1 = 1, (𝑖, 𝑗 = 1,2, … . 𝑛)   (3) 

where S(t) is the system state at time t; S(t+1) is the system state at a time (t+1); 𝑃𝑖𝑗  is the transition 

probability matrix from the current state i to another state j in the next time (Al-sharif and Pradhan 2014; 

Hamad et al. 2018; Kumar, Radhakrishnan, and Mathew 2014). 

Several studies have been carried out that used the Markov chain model to determine the future 

LULC scenario (Falahatkar and Soffianian 2011; Y. Hu et al. 2019; R. Zhang et al. 2011). Muller and 

Middleton (1994) studied the LULC change of the Niagara Region, Ontario, Canada, and analyzed that the 

transition matrix generated by the markov chain represents the multidirectional process. There result shows 

that (1) urbanization of agriculture land was the predominant LULC change during 1935 and 1981; (2) a 

continuing land transformation between wooded and agriculture LULC class has minute effect on the 

wooded net amount, but which could determine the long haul ecological value of remaining natural areas 

of the study area. They have also explained the mathematical working of this model (Muller and Middleton 

1994). Lopez et al. (2001) determined the relationship between the expansion of urban sprawl and LULC 

change of Morelia city during 1960—1990, Mexico using markov chain and regression analysis. There 

result suggests that the highest LULC attractor is the Morelia city, followed by plantation and croplands; 

on contrary grassland and shrublands are the least stable classes.  They also indicate that this model is more 

effective in determining LULC changes than predicting future LULC changes (Del Mar López, Aide, and 

Thomlinson 2001). Hathout (2002) examined how increasing urbanization trends affect agricultural land, a 

case study between West and East St. Paul in Manitoba, Canada, using this model. Their result depicts that 

East St Paul have higher urbanization rate (from 10.41% to 43.75%) during 1960—1989 than the West St 

Paul (from 7.36% to 23.57%). The prediction result shows that East St Paul will experience a reduced rate 

of increase than West St Paul (Hathout 2002). Zhang et al. (2011) predicted the changes and analyzed the 

factors that were responsible for changes in a wetland in Yinchuan plain China. Their result indicates 

increasing trend for artificial wetland distribution area while decreasing trend for natural wetland area. This 

depicts that human activities will remain the major cause of changes in the wetland distribution area of the 

studied area. They conclude that the markov model provides an effective means to policy and decision 

makers for wetland management and protecting its resources (R. Zhang et al. 2011). Kumar et al. (2014) 

examined the change from 1998 to 2006 using Indian Remote Sensing satellite images and simulated future 

scenarios for years 2014 and 2022 using the markov chain model, a case study of Tiruchirappalli city, India. 

Their result shows that urban increased from 19.08% to 38.06% during 1996—2006 and will increase to 

62.28% in 2022 as a result of increase in population pressure, whereas waste land area decreased by -

10.68%. Thus, the Markov model, coupled with the geospatial technology has indicated the descriptive 

capability of trend projection (Kumar et al. 2014). 
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2.2.3 Cellular Automata (CA) 

Cellular Automata (CA) was first developed by John Von Neumann and Stanislaw Ulam for determining 

the logical reinforcements of life (Wang and Murayama 2017). In 1970, Tobler, for the very first time, used 

the CA model for geographical modeling. This first theoretical approach of CA became the base of other 

models that appeared in the1980s with an objective of simulation and prediction of urban sprawl and LULC 

changes (Batty and Xie 1994; Couclelis 1985). In the 1990s, growth and advancement in the CA model 

(i.e., the ability to figure out added to the model), was utilized in the framework of LULC and urban 

dynamic (Aburas et al. 2017). 

CA is a dynamic process capable of modeling and controlling non-linear and complex spatial trends. It 

provides a clear insight picture of LULC changes from social behavior to global patterns. The major 

components of the CA model are (1) neighborhood type, (2) neighborhood size, (3) cell size, and (4) 

transition rules (Aburas et al. 2017; Al-sharif and Pradhan 2014). These parameters give optimum 

simulation results. The most important parameter in this model is the transition rule, depending on the 

training data, which controls the model. The transition rule is defined as the condition of each coming step 

that relies upon the present condition of that cell and its encompassing neighborhood cells (Al-sharif and 

Pradhan 2014). The transition rule successively demonstrates the complexities of land cover both spatially 

and temporally (Al-shalabi et al. 2013).  

The use of this model has increased in modeling LULC and urban expansion (Clarke et al. 1997; He et al. 

2006). It is essential to mention that space and time are discrete units in this model. However, in two 

dimensions, space is measured as a regular grid. The critical properties of this model are that they 

demonstrate the spatial and complex dynamicity of the system (Aburas et al. 2017; Al-sharif and Pradhan 

2014; S. Q. Wang, Zheng, and Zang 2012). The expression of the CA model can be expressed in the 

following equation: 

𝑆(𝑡, 𝑡 + 1) = 𝑓(𝑆(𝑡), 𝑁)     (4) 

Where S(t+1) is the system sate at time (t+1), functioned by the state probability of any time (N) (Hamad 

et al. 2018). 

Several studies have been performed that have used the CA model to assess urban expansion and LULC 

changes (Barredo et al. 2003; Clarke et al. 1997; White, Engelen, and Uljee 1997). These studies illustrated 

that this model is capable of describing and modeling the complex process of LULC change, urban systems, 

and patterns in an intelligible perspective (He et al. 2006; Sui and Zeng 2001; S. Q. Wang et al. 2012; Xian 

and Crane 2005; Yuan 2010). The major limitation of this model is that it cannot incorporate the macroscale 

driving factors, such as social, economic, and culture, which is responsible for LULC changes and urban 
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sprawl (Liping et al. 2018). However, for simulation and prediction, some of these studies depend on the 

quantitative models, such as logistic regression (LR), SLEUTH model, multi-criterion evaluation (MCE), 

and neural network (Aburas et al. 2017; Al-sharif and Pradhan 2014; Omar et al. 2014). 

Markov and CA models have proved their ability to provide a quantitative tool to ease the process of 

decision making regarding urban and environmental planning and suitability assessment of lands for 

development. This is important for the efficient management of large metropolis regions. However, the 

drawbacks of a single model are also explained in many studies (Araya and Cabral 2010; Balzter 2000; 

Triantakonstantis and Mountrakis 2012). Therefore, to overcome the limitations of individual models, 

integrated modeling approaches are generally used for LULC future prediction (Al-sharif and Pradhan 

2015; Basse, Omrani, Charif, Gerber, and Bódis 2014; Guan et al. 2011; Mishra et al. 2014; Wang and 

Maduako 2018). 

2.2.4 CA-Markov model 

The combination of dynamic simulation models with factual and observational models, for example, the 

CA-Markov model, can overwhelm the limitation of a single model. The use of the integrated model 

supplements each other, provides an enhanced understanding, and improves LULC modeling (Guan et al. 

2011). According to Arsanjani et al. (2011), the different study area has a different environmental condition 

and land characteristics; therefore, the performance of the LULC prediction model is different in different 

study areas (Al-sharif and Pradhan 2014; Arsanjani, Kainz, and Mousivand 2011). 

The integrated CA–Markov model is a vigorous method in which one can assess and model the LULC 

based on current trends, both spatially and temporally. This model is applicable to model the spatio-

temporal LULC simulations and reconstructions (Yang et al. 2015). This model comprises two components: 

(1) markov chain, and (2) CA (Sun 2008). This model can decode the markov chain model results through 

a CA model as a spatial distribution output, which is necessary for designing proper LULC planning (Al-

sharif and Pradhan 2014; Arsanjani et al. 2011). Based on transition matrices, the markov model controls 

the temporal change between LULC categories (Lopez et al. 2001). On the other hand, the CA model 

controls changes in spatial patterns through local rules taking into account neighborhood configuration and 

transition potential maps (Clarke, Brass, and Riggan 1994; Guan et al. 2011; He et al. 2008; Houet and 

Hubert-moy 2006; Li and A. G. O. Yeh 2004; X. P. Liu et al. 2007; White and Engelen 1993; Wu 2002). 

This model is one of the most commonly used models for predicting future LULC changes “t+1” using the 

progression from time “t-1” to time “t” (Behera et al. 2012; Houet and Hubert-moy 2006). It depends on 

the probabilities of land cover that changes from one state to another between two different time periods 

(Houet and Hubert-moy 2006). The probabilities matrices are created from the past LULC changes and 
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project to forecast future change (Behera et al. 2012). It can simulate numerous land use categories changes 

(Houet and Hubert-moy 2006). Therefore, providing the potential of stimulating the conversion from one 

class to another class of LULC (Hyandye and Martz 2017). Recently, many studies have endeavored to use 

the CA-markov model to integrate natural and socioeconomic data into land use simulations. For example, 

Kamusoko et al. (2009) incorporated socioeconomic and physical data into the CA-markov model to predict 

future LULC change for the year 2030 of Zimbabwe. Their result predicts a continuing decreasing trend in 

woodland and an increasing trend in bare land. Future simulation result yields that if current LULC trend 

continue without holistic sustainable development measures, severe land degradation will ensue  

(Kamusoko et al. 2009). Guan et al. (2011) predicted future LULC change 2015—2042 based on the past 

trend 1976—2006, using the CA-markov model. Simulation results yields continuing decreasing trend in 

agriculture land and forest area while increasing trend in built-up area.  This would help local authorities 

better understand and address a complex land use system, and develop the improved land use management 

strategies that can better balance urban expansion and ecological conservation (Guan et al. 2011; Yu 2009). 

Compared to other models, which also used for a similar task, this model poses benefits and drawbacks. 

The advantages of this model are (1) high proficiency, (2) easy calibration, (3) high capability to 

comprehensively simulate numerous land covers, and complex patterns (Memarian et al. 2012) as compared 

to other models (e.g., GEOMOD and CLUE) (Mas et al. 2007). The major drawbacks of this model are (1) 

incapability to integrate the human, social, and economic dynamics factors in the simulation that can be 

recognized in agent-based models (Arsanjani et al. 2011) and (2) fail to identify the new developments 

occurring in the studied area (Aburas et al. 2016; Memarian et al. 2012). Therefore, to address these 

limitations, this model needs to be combined with other types of models (Al-sharif and Pradhan 2014; 

Hyandye and Martz 2017). 

Soe and Le (2006) used the multi-criteria (MCE) technique in CA-Markov for future prediction of land 

cover (Myint and Wang 2006). The development of criteria based on the weight assignment to the drivers 

of LULC changes.  The more relevant the driver, the higher the weight is assigned (Behera et al. 2012). 

There are two types of criteria: (1) factors and (2) constraints. It depends on three standards: (1) 

decomposition, (2) comparative judgment, and (3) synthesis of priorities (Omar et al. 2014). A detailed 

application of CA-Markov can be found in (Adhikari and Southworth 2012; Guan et al. 2011; Han and Jia 

2017; Kamusoko et al. 2009; Kityuttachai et al. 2013; Mas et al. 2014; Myint and Wang 2006; Wang and 

Murayama 2017; Yang, Wu, et al. 2019; Yang, Fu, and Chen 2017; Yirsaw et al. 2017). 

2.2.5 Land Change Modeler (LCM) 

LCM is an incorporated model created by Clark Labs in collaboration with Conservation International, 

originally developed to oversee the impacts on biodiversity and to scrutinize and predict LULC changes 
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(Anand, Gosain, and Khosa 2018; Megahed et al. 2015; Roy, Fox, and Emsellem 2014). It is embedded in 

the IDRISI Terrset 18.1 software (Gibson et al. 2018). LCM moves in stepwise: (1) change analysis, (2) 

transition potential modeling, and (3) change prediction (Dzieszko 2014). This model takes two thematic 

raster images as input with the same number and same sequential order of LULC classes. LCM evaluates 

LULC changes of two different period, provides a quantitative assessment of changes of different LULC 

classes in terms of gains, losses, swap, net changes, and total changes, and shows the results in the form of 

numerous graphs and maps (Megahed et al. 2015; Wang and Maduako 2018).  

LCM breakdown the LULC changes for different classes, calculate and assess their trends and patterns, and 

then project these changes to predict the future LULC (Mishra et al. 2014). The model envisages the land 

use pattern in light of the past change trend (Anand et al. 2018). The explanatory variables, such as distance 

to roads, slope, aspect, and other variables, were added in the model as a rater datasets. The influencing 

variables were selected based on their availability, relative importance, and their corresponding effect on 

LULC changes using Cramer’s V (a quantitative measure that shows the relationship between explanatory 

variables and land cover categories) (Anand et al. 2018; Roy et al. 2014). 

For each transition, when the underlying driving is presumed to be the same as the land cover transitions 

grouped into sub-models. For example, the driver responsible for being a change from forest to an urban 

area is the same as those effects the conversion of farmland into an urban area. Based on Cramer’s V values, 

explanatory variables are assigned to each sub-model, and the transition potential map of each sub-model 

is determined through MLP neural networks (Gibson et al. 2018). MLP is capable of processing non-linear 

relationships among variables more adequately, model more than one transition at a time, and transform 

categorical data into continuous data (Ayele et al. 2019). The generated transition potential maps are an 

interpretation of time-specific potential for change. Based on these potential maps (Roy et al. 2014) and 

markov chain analysis, LCM projects future LULC maps (Mishra et al. 2014). 

Multi-layer perceptron (MLP) is a feed-forward neural network based on the supervised Backpropagation 

(BP) algorithm that plays a central role in prediction. It is a non-parametric algorithm and does not consider 

multicollinearity (Voight et al. 2019). MLP consists of three layers (1) input, (2) hidden (sets of 

computational nodes), and (3) output. It signifies relationships between transitions of land use and their 

explanatory variables through a network of weighted relationships modified iteratively by the algorithm 

(Mishra et al. 2014). Through hidden layers, the data flow in one direction from an input layer to an output 

layer and determine the non-linear relationships. 

LCM generates two types of prediction (1) hard prediction and (2) soft prediction. A hard prediction yields 

a projected map based on multi-objective land allocation (MOLA) module. This module assigns each pixel 

one of the land cover classes to whom it shows more probability to become. A soft prediction represents a 

https://www.sciencedirect.com/topics/computer-science/multiobjective
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continuous mapping of vulnerability to change. It designates the likelihood that a pixel is changed to another 

land cover class. Finally, the transition probability matrix derived from the markov chain decides how much 

land is assigned to a thematic class over T3 – T2, and n-year period (Gibson et al. 2018; Megahed et al. 

2015). 

LCM generated better prediction accuracy over a short period, particularly in the stable land cover than 

rapidly changing land cover. Compared to other models that forecast LULC changes based on supervised 

methods such as the weights of the evidence method in which the user adjusts and selects the weights, LCM 

produced more precise change potential maps. This is because neural network outputs more sufficiently 

display the changes of various LULC categories than the individual probabilities acquired through the 

method of weights of evidence (Megahed et al. 2015). Furthermore, according to Eastman et al. (2005), 

who compared different methods, such as logistic regression, Bayesian analysis, weights of evidence, and 

a neural network, concluded that neural networks generated more accurate predictions compared to other 

approaches (Eastman, Fossen, and Solarzano 2005). 

Several studies have used LCM to predict future LULC patterns (Dzieszko 2014; Gupta and Sharma 2020; 

Voight et al. 2019), tropical deforestation (Ayele et al. 2019; Voight et al. 2019), urban growth, erosion, 

Mediterranean catchment (Azmoodeh et al. 2016; Roy et al. 2014), and habitat modeling (Mas et al. 2014). 

Anand et al. (2018) used the LCM to simulate the changes in hydrological components in the Ganga basin, 

India, in response to LULC changes. Their results shows that urbanization and deforestation are the topmost 

contributor to the increase in surface runoff and water yield. While increased irrigation demands were the 

dominant contributor to the water consumption and also added to the increased evapotranspiration. Their 

study provides substantive information to the decision-makers to develop ameliorative strategies (Anand et 

al. 2018). Hamdy et al. (2017) simulated urban expansion from 2001 to 2013 using LCM in Abouelreesh 

village, province of Aswan, southern Egypt. Their result revealed that in 2001 urbanization risk area was 

59.79%, reached to 65.45% in 2013 (Hamdy et al. 2017). Abuelaish and Olmedo (2016) modeled the land 

cover changes in the Gaza strip from 1972-2013 using LCM and predicted that urban areas increase to 

58.83% by 2023 from 46.2% in 2013(Abuelaish and Olmedo 2016). Kumar et al. (2015) simulate the future 

urban expansion for the years 2030 and 2040 for Vijayawada, India, using the LCM model based on past 

trends from 1973 to 2014. The results depict an increase in built up area by 44.15 % and open land decrease 

by 58.68%. This rapid and massive conversion of vegetative and open land in to built-up area may have 

serious environmental impacts unless proper environmental management plans were implemented for the 

urban area (Kumar et al. 2015). According to Mas et al. (2014); Ozturk (2015); Gibson et al. (2018); Wang 

and Maduako (2018); Ansari and Golabi (2019), for regional case studies LCM is efficient in simulating 

future LULC changes, patterns, and trends. This is because LCM provides a better understanding of LULC 
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and is helpful for local administrative bodies for decision making (Ansari and Golabi 2019; Gibson et al. 

2018; Mas et al. 2014; Ozturk 2015; Wang and Maduako 2018). The results of all these studies showed that 

LCM is capable of producing highly accurate LULC simulation. Therefore, this study employed an LCM 

to predict the future LULC of GHKM.  

2.3 Ecosystem service value (ESV) 

An assessment of ecosystem services pursues to address the problem statement, “How much are nature's 

services worth?” (Westman 1977). Academically Westman, for the first time, used the term "natural 

services" in 1981 and its synonym "ecosystem services" formally adopted in 1983. In 1997, two pioneer 

studies were published: (1) “Nature’s Services: Societal Dependence on Natural Ecosystems” by Daily et 

al. (1997) (Daily 1997), and (2) “The Value of the World's Ecosystem Service and Natural Capital” by 

Costanza et al. (1997)(Costanza, D’Arge, et al. 1997). These studies ignited a discussion and research on 

ecosystems, ecosystem services, and related policies (M. Hu et al. 2019). 

Ecosystem service (ES) is defined as the environments, conditions, and procedure through which natural 

ecosystems and the species that include them maintain and accomplish human life. (Costanza, Batabyal, et 

al. 1997; Feng et al. 2012; Tianhong, Wenkai, and Zhenghan 2010). Ecosystem gives not only enormous 

materials (such as food, wood, and other raw materials) but also provides non-material services such as 

carbon sequestration and water filtration aesthetic welfares that are imperative for health and human beings 

(Costanza et al. 2014; Song and Deng 2017a). Ecosystem services are classified into four categories: (1) 

provisioning services; (2) supporting services; (3) regulating services; and (4) cultural services (W. Liu et 

al. 2019). These services depend on the type and status of the ecosystem. Supporting services have a 

relatively indirect impact, while other services have a direct impact. Each ecosystem provides unique 

services that cannot be substituted by others. For example, services offered by the forest ecosystem is 

different from grassland ecosystem or wetland ecosystem (Gashaw et al. 2018). Ecosystem services assess 

the association between man and nature and collaborate with different publics for different purposes (Jiang 

2018). The phenomena of the growing population, socioeconomic development resulting in the degradation 

of the natural environment and ascribed to the gap between the provision of ecosystem services and societal 

demands for these services (Feng et al. 2012). For example, when an ecosystem is handled to provide a 

single or certain service (for example, for the climate regulation), the other services are adversely 

influenced. Therefore, the valuation of an ecosystem plays an important role in both supportable ecology 

and ecological, economic research, and is urgently needed (Feng et al. 2012; Gashaw et al. 2018; Negussie 

et al. 2019).   

The land is not only the emplacement of the natural terrestrial ecosystem, but human beings also utilize it 

in several ways. Changes in LULC with the accelerated rate of urbanization, industrialization, and 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/forest-ecosystems
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/grasslands
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aquatic-ecosystem
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socioeconomic development can modify the ecosystem process, structure, and function, and consequently 

influence the ESV (Costanza, D’Arge, et al. 1997; Negussie et al. 2019; P. Zhang et al. 2015). These 

anthropogenic disturbances of the natural environment are becoming more prominent, resulting in an 

increasing trend of domestication and vulnerability of ecosystems at both local and global scale and has 

created large ecological footprints on the earth (Deng and Gibson 2018; Zeng et al. 2016). Moreover, for 

many years, people used only to consider the monetary estimation of the environment and natural resources, 

but have neglected their potential social, ecological, and environmental values (Salles 2011; Yoshida et al. 

2010). This short-sighted conduct causes excessive degradation of natural resources and damage to 

ecosystem service and endangers human sustainability in the biosphere (W. Liu et al. 2019; P. Zhang et al. 

2015), gaining much attention from researchers to determine the impact of LULC changes on ESVs (Song 

and Deng 2017a) and creating public awareness. Studies that quantify and analyze the impacts in terms of 

ES changes are still scarce. Therefore, the research is profoundly required on the quantitative assessment 

of ESV, especially in urbanization territories, which can enlighten land use management, policy decision-

makers for sustainability, and to improve the ecological environment (Ye, Zhang, et al. 2018). 

Different types of LULC play a different role in the provision of ecosystem services. For example, forest 

cover plays a vital role in the supply of wood and climate regulation, whereas farmland plays a key role in 

the provision of food. LULC types act as a proxy for ecosystem services by coordinating them equal to 

biomes (Polasky et al. 2011; Song et al. 2015). Thus, LULC gave a significant amount of ecosystem services 

information (Cai et al. 2013) and was subsequently used as supplementary data for assessing ecological 

transactions in the investigation (Lü et al. 2015). 

The ESV assessment method can be classified into four types: (1) cost-based methods; (2) revealed 

preference methods; (3) stated preference methods; and (4) the benefits transfer method (BTM) (Lin et al. 

2018). Costanza et al. (1997) has assessed global ESV using the benefits transfer method. They classified 

the biosphere into 16 ecosystems and 17 ecosystem functions and calculated the ESV of each (Costanza, 

Batabyal, et al. 1997; Song and Deng 2017a). Since then, the literature on the assessment of ESV has started 

to grow (Arunyawat and Shrestha 2016; Estoque and Murayama 2013; Gashaw et al. 2018; de Groot et al. 

2012; Kindu et al. 2016; Mendoza-González et al. 2012; Tolessa, Senbeta, and Kidane 2017; Vihervaara, 

Rönkä, and Walls 2010; Yi et al. 2017). Several researchers have examined the ESV of forest, grassland, 

and wetland by using Costanza et al. (1997) method (Calvet-Mir, Gómez-Baggethun, and Reyes-García 

2012; Long et al. 2014a; Polasky et al. 2011; Song and Deng 2017a; Viglizzo et al. 2012; Zang et al. 2011). 

Their derived coefficient value has been applied for the evaluation of ecosystem services on a global scale 

as compared to the regional level. 
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The results of (Costanza, Batabyal, et al. 1997) have been severely criticized by many researchers, 

especially when applied to China. This is because they underestimated farmland ESV and overestimated 

wetland ESV. However, their derived ESV mirrors the developed country's economic level, such as 

European countries and the United States, instead of developing countries such as China (Chen et al. 2014; 

Long et al. 2014b). Following the same methodology, the equivalent per-unit-area ESV was established by 

Xie et al (2003) (XIE et al. 2003) concerning to the Chinese terrestrial ecosystem via a survey of 200 

Chinese ecologists. Then, they modified the value of the coefficient of the Chinese ecosystem and can be 

applied to China’s different areas by localizing their average natural food production (Han, Song, and Deng 

2016; Tianhong et al. 2010). An assessment of ecosystem services helps policy and decision-makers to 

integrate environmental, social, and economic apprehensions into land use planning and management 

(Albert et al. 2016; W. Liu et al. 2019). 

Quantitative assessments of the impact of LULC changes on the ESV represent a central point of interest 

in scientific research on sustainable development (W. Liu et al. 2019). Several studies have been made 

which have studied the impact of LULC changes on ESV using equivalent per unit value in different regions 

of China (Cai et al. 2013; Feng et al. 2012; Han et al. 2016; Hao et al. 2012; M. Hu et al. 2019; Li et al. 

2010; Mamat, Halik, and Rouzi 2018; Peng et al. 2016; Wang et al. 2015; Ye, Bryan, et al. 2018; Ye et al. 

2015). Studies showed that in China during 2000-2008, a 1% change in LULC resulted in a 0.10% average 

change in ESV (Song and Deng 2017b). Su et al. (2014) determined that in Shanghai, China’s total ESV 

decreased during 1994-2006 and examined the relationship with urbanization (Su et al. 2014). Yun-guo et 

al. (2011) considered changes in ecosystem service in Changsha, China, predominantly affected by the 

sprawl of construction land and decreased in woodland and cropland (Yun-guo et al. 2011). Moreover, 

changes in LULC in northwest China primarily compelled by the growth of oasis agriculture have 

significantly influenced the ESVs and functions of the Yanqi basin, causing land deterioration and changes 

in the aquatic environment (S. Wang, Wu, and Yang 2014).  

To understand and assess the outcomes/results of these changes in the long term, the availability of reliable 

and adequate information about LULC change over the years is becoming increasingly necessary (Yirsaw 

et al. 2017). It is essential to monitor, manage, and utilize ecosystems accurately to halt the ongoing loss of 

ecosystem services and maintain or balance the supply of different ecosystem services in the landscape. To 

date, efforts or studies in the quantitative analysis of the effect of LULC changes on ESV and their 

spatiotemporal variability at the regional level (in GHKM) are very limited. Therefore, this study also aims 

to study the impact of LULC changes on ESV based on regional coefficient value. This could have 

significant practical ramifications for protecting ecological civilization.  
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Chapter 3 

3 Study Area1 

 

Guangdong, Hong Kong, and Macao geographically situated between 20°13′N–25°31′N and 109°39′E–

117°19′E in the southernmost part of mainland China (Figure 2). GHKM covers a total area of 

approximately 196,342 km2. GHKM is bounded by/share borders with Fujian province in the east, Jiangxi 

and Hunan provinces in the north, Guangxi in the west, and the South China Sea in the south (Shobairi and 

Li 2016). It consists of 23 cities, divided into four groups in accordance with their geographical location. 

This includes 11 cities in the Pearl River Delta (PRD), four cities in mountainous regions, four cities on the 

eastern side, and four cities on the western side (Chen et al. 2013b; Li et al. 2013; Shobairi and Li 2016). 

The cities in Pearl River Delta are Guangzhou, Foshan, Dongguan, Shenzhen, Zhongshan, Zhuhai, 

Huizhou, Jiangmen, Zhaoqing, Hong Kong, and Macao. Qingyuan, Shaoguan, Heyuan, and Meizhou cities 

in the mountainous region. However, Zhanjiang, Maoming, Yunfu, and Yangjiang are western side cities, 

whereas; Chaozhou, Shantou, Jieyang, and Shanwei are eastern side cities. Its climate varies from tropical 

to subtropical with hot, humid summers and cold, windy, dry winters. The monsoon rainy season begins in 

April and ends in September. The annual average temperature is 22°C, and annual average precipitation 

ranges from 1500—2000 mm (Li et al. 2013; Li and Wang 2015; Shen et al. 2019). Forest coverage varies 

from north to south, in relation to the local climatic conditions (Peng, Hou, and Chen 2008). Guangzhou is 

 

1 This chapter is based on a published study and being reproduced with the permission of MDPI and PLOS ONE. 

Hasan, S., Shi, W., Zhu, X., & Abbas, S. (2019). Monitoring of Land Use/Land Cover and Socioeconomic Changes 

in South China over the Last Three Decades Using Landsat and Nighttime Light Data. Remote Sensing, 11(14),1658. 

https://doi.org/10.3390/rs11141658 

Hasan, S., Shi, W., & Zhu, X. (2020). Impact Of Land Use Land Cover Changes On Ecosystem Service Value – A 

case study of Guangdong, Hong Kong, And Macao In South China. PLOS ONE, 15(4), 1–20. 

https://doi.org/10.1371/journal.pone.0231259 

Hasan, S., Shi, W., Zhu, X., Abbas, S. & Khan, H.U.A. (2020). Future simulation of land use changes in rapidly 

urbanizing South China based on Land Change Modeler and remote sensing data. Sustainability, 12(11), 4350; 

https://doi.org/10.3390/su12114350  
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the capital and the Pearl River, flowing through the GHKM, is the largest river in South China. The 

topography of this region is mixed and characterized by rivers, mountains, hills, plateaus, and plains (Li 

and Wang 2015).  

This region is one of the largest political, economic, and cultural centers with the most innovation capacity 

and strongest comprehensive strength across China (K. Yang et al. 2018). After the opening of economic 

reform in 1978, GHKM has practiced prompt increase in population, socioeconomic development, and 

changes in land use land cover. The increase in population mainly caused by increase in immigrants. The 

tremendous surge in urban area has predominantly come from the conversion of farmland into built-up area 

(Chang-ping 2010; Hasan et al. 2019). The total population of the Guangdong, Hong Kong, and Macao by 

2017 was 9164.90 (10,000 persons) (Xiowei, Xiangxin, and Jianfu 2017). The region has been already 

encountered ever more jam-packed transportation systems and environmental pollution (Wu et al. 2006). 

However, the availability of infrastructure supported by government and local authorities has facilitated its 

economic prosperity and its economy currently ranked 14th in the world (Shen et al. 2019). 

 

 

Figure 2. Location map of the Guangdong, Hong Kong, and Macao.
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Chapter 4 

4 Monitoring of Land Use/ Land Cover and Socioeconomic 

Changes in South China over the Last Three Decades Using 

Landsat and Nighttime Light Data2 

 

4.1 Introduction 

Land use and land cover changes (LULCC) have increasingly become a global challenge. They are 

the most direct expression of the effects of human activity on the natural ecosystems (J. Liu et al. 

2014; Mooney, Duraiappah, and Larigauderie 2013; Tian et al. 2012). The United Nations ‘Agenda 

of the Twenty-First Century’ in 1992 officially stimulated research activities related to land use and, 

therefore, the effects of land cover change (LCC). In 1995, two main international organizations, the 

International Geosphere-Biosphere Programme (IGBP) and the International Human Dimensions 

Programme (IHDP), initiated the joint program: the Land Use/Land Cover Change (LUCC) Research 

Program, as the core of a study related to the global LULC. Thus, since 2000, the monitoring and 

simulation of LULC change has become a key focus in the field of land change science (Dou and 

Chen 2017; J. Liu et al. 2014; Wu et al. 2016).  

Over the last few decades, land use changes and developments have resulted in population pressure 

(Wu et al. 2016). Both positive and negative health and welfare effects have arisen, as a result of 

random industrialization, economic development, modernization, and urban planning policies. It has 

been found that changes in land use have negative impacts on the climate, ecosystems, surface 

radioactivity (e.g., increased atmospheric greenhouse gasses and depletion of the ozone layer), 

agricultural activities, and biodiversity on both local and global scales. Such situations are more 

 

2 This chapter is based on a published study and being reproduced with the permission of MDPI. 

Hasan, S., Shi, W., Zhu, X., & Abbas, S. (2019). Monitoring of Land Use/Land Cover and Socioeconomic 

Changes in South China over the Last Three Decades Using Landsat and Nighttime Light Data. Remote Sensing, 

11(14),1658. https://doi.org/10.3390/rs11141658 
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prevalent in developing countries such as China (Dou and Chen 2017; Salih, Ganawa, and Elmahl 

2017; Yu et al. 2016; Zhu et al. 2016; Zhu and Woodcock 2014).  

Since the opening up of economic reform of China in 1978, radical changes in the economy, 

industrialization, and urbanization have taken place, which in turn have produced a highly noticeable 

LULCC, well-illustrated by the results of the rapid widespread development, mentioned above. 

Examples are found in coastal areas such as the Pearl River Delta (PRD) region in Guangdong, 

Shanghai, Jiangsu, and Zhejiang provinces of southeastern China (Fan et al. 2007; Li et al. 2013). 

China’s inherent problem, namely, the availability of land resources per capita being far below the 

world average, has influenced the current economic development and unprecedented urbanization. 

Development appears to have been almost uninhibited and characterized by a lack of planning for the 

betterment of the areas in which it has taken place. A consequence of this lack of planning is what 

appears to be random development, resulting in a lack of cohesion and subsequent inhibition of the 

preservation of the land resources of the newly urbanized areas (Li and A. G. Yeh 2004). During the 

five decades between 1949 and 1996, the total extent of the urban area of the cities of China nearly 

tripled (Lin and Ho 2003). During 1980–2011, the urban population increased by 500 million, thus, 

exceeding the total population of most countries. It is expected to rise by a further 300 million by 

2050 (S. Du et al. 2014). This rapid urbanization, combined with LULCC, reflects a depletion of 

natural resources and subsequent eco-environmental changes (Wu et al. 2016).  

During the same period, Guangdong, Macao, and Hong Kong (GHKM) have had similar experiences 

to those mentioned above, and, LULCC are especially notable in the form of urban land expansion 

and population growth. These areas were once rich in land resources and were a major source of 

commercial grain production before the opening of economic reform. The speed of urbanization and 

land use change (LUC) has been most significant in the PRD region, with the urban area increasing 

by more than 300% between 1988 and 1996 (Fan et al. 2007; Jiang and Wu 2015; Li et al. 2013; Zhu 

et al. 2016). More than 40% of farmland was converted to a different land type between 1978 and 

2013. Between 1978 and 1998, approximately 92 km2 of water sites adjacent to the PRD were 

transformed to islands, most of which have now been urbanized (Zhu et al. 2016). Such changes have 
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obviously reduced areas of fishponds and farmland, and consequently the associated resources and 

crop yield, at an increasing rate. As a result, sustainable development has been constrained (Hu and 

Zhang 2013; Li and Wang 2015), with such trends expected to continue during the coming decades. 

Contradictions in the realm of sustainable development and secure land use policy reform (S. Du et 

al. 2014) leads to further LULC changes (Jiang and Wu 2015; Li and A. G. Yeh 2004; Wenhua 2004; 

Zhu et al. 2016).  

Aggravating the above complex land structure and intensive urbanization, industrialization, and 

economic development have, therefore, highlighted the importance of the LULCC of the GHKM over 

the past 30 years and the “from-to” change in order to determine the socioeconomic factors that will 

contribute to the necessary changes to ensure future sustainable development. 

In the continuing development of remote sensing technology, satellite remote sensing has been widely 

used to detect LULC change both qualitatively and quantitatively (Al-Bakri et al. 2013; Dewan and 

Yamaguchi 2009a; Fan et al. 2007; Özyavuz et al. 2011; Seto et al. 2002; Treitz, Howarth, and Gong 

1992; XU et al. 2000; Yu et al. 2016), as well as urban expansion (Xiao et al. 2006), and to validate 

the modeling of urban growth (Dewan and Corner 2014; Poelmans and Van Rompaey 2009). Various 

methods and algorithms, broadly classified into two types, have been developed for use in detecting 

such changes. They include (1) change detection without classification, and (2) post-classification 

(Yu et al. 2016). Change detection without classification includes the normalized difference 

vegetation index (NDVI), normalized difference water index (NDWI), normalized difference built-

up index (NDBI), tasseled cap transformation, principal component analysis, and change vector 

analysis (CVA). Post-classification techniques include post-classification comparison, image 

differentiation, aerial difference calculation, image rationing, and image regression (Haque and Basak 

2017). All change detection techniques provide the basis for an understanding of the relationships 

and interactions between humans and natural phenomena (Fan et al. 2007; Hussain et al. 2013; Yu et 

al. 2016). Landsat images collected by Landsat 5 Thematic Mapper (TM), 7 Enhanced Thematic 

Mapper Plus (ETM+), and 8 Operational Land Imager (OLI) are often used to detect change, because 

they provide continuous, consistent, and long-term data over the past selected decades (Chen et al. 
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2003; Dou and Chen 2017; Haque and Basak 2017; Hussain et al. 2013; Seto and Fragkias 2005). 

They are available in multispectral, multi-resolution, and multi-temporal forms, which make them 

useful for LULC change monitoring (Dou and Chen 2017). Extensive studies have been conducted 

regarding LULCC (Dai, Wang, and Gao 2010; Fan et al. 2008; Lin and Ho 2003; J. Liu et al. 2014; 

Seto et al. 2002; Seto and Fragkias 2005; Sodango et al. 2017; Weng 2002) and their driving forces, 

such as urban expansion, population growth (Dou and Chen 2017; S. Du et al. 2014; Li and A. G. 

Yeh 2004; Ma and Xu 2010), socioeconomic determinants (Li and Wang 2015; Seto and Kaufmann 

2003), transformation of farmland to urban land (S. Du et al. 2014), and policy changes (J. Wang et 

al. 2012; Wang et al. 2018). Wu et al. (2016) assessed urban expansion and LULC changes in 

Guangzhou from 1979 to 2013 using differently dated Landsat images and concluded that urban 

expansion increased by 1512.24 km2, at an annual rate of 11.25% (Wu et al. 2016). Zhang et al. (2015) 

evaluated the long-term LULC changes, and their results showed that the urbanized area in Dongguan 

had increased by more than 52% between 1979 to 2013 (H. Zhang et al. 2015). Du et al. (2014) 

revealed further LULC changes and concluded, positively, that changes in land use were closely 

related to population growth, economic development, and the implementation of policies (S. Du et al. 

2014). 

For the classification of remote sensing data, both parametric and non-parametric statistical learning 

techniques have been developed and used in different contexts (Mountrakis et al. 2011). Parametric 

statistical learning techniques such as the maximum likelihood classifier (MLC) fail due to an 

inability to resolve the interclass confusion. This limitation can be overcome by applying a non-

parametric classifier such as a support vector machine (SVM), which does not depend on any 

assumptions of the class distributions of data (Bahari et al. 2014; Q. Liu et al. 2014; Mountrakis et al. 

2011). The support vector machine is an advanced machine learning algorithm, binary classifier, and 

a relatively new supervised classification technique (Pal and Mather 2005). The SVM outperforms 

the other methods due to its robustness, high classification accuracy, and effective output results, even 

when using a small training sample (Bahari et al. 2014; Hussain et al. 2013; Q. Liu et al. 2014; 

Mountrakis et al. 2011). It operates on the principle of structural risk minimization (SRM) (Ustuner 
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et al. 2015) and has overcome the problem of overfitting (Mountrakis et al. 2011; Pal and Mather 

2005). Therefore, the SVM has recently attracted the attention of researchers in the community of 

remote sensing (Gidudu, Hulley, and Marwala 2007). Several studies have employed an SVM 

(Candade and Dixon 2004; Devadas et al. 2012; Griffiths et al. 2010; Hao et al. 2016; Huang et al. 

2008; Megahed et al. 2015; Mohammadimanesh et al. 2018). 

Guangdong, Hong Kong, and Macao land use has undergone a significant development over the past 

30 years, substantially influenced by the changing polices enabling industrialization, urbanization, 

and socioeconomic activities. This region has become one of the richest regions in China, contributing 

14% of the country’s gross domestic product (GDP) (Xiowei et al. 2017). To understand the impacts 

of LULCC related to changes in policies and socioeconomic dynamics, this study is based on an 

integrated analysis as follows. First, we estimate the continuous monitoring of LULC changes in 

GHKM over the past 31 years (1986–2017). Second, we analyze the driving factors and mechanisms 

of the change. Third, we determine the relationship between light index, urbanization, and 

socioeconomic determinants. This study also aims to provide reference data regarding the 

implementation of sustainable socioeconomic and urban development for policy and decisions 

makers, and to map the relationships between factors that result in the reduction of farmland.  

4.2 Materials and Methods 

4.2.1 Data Acquisition and Pre-processing  

4.2.1.1 Landsat Data  

Atmospherically corrected Landsat (TM, ETM+, and OLI) level 2 images with 30 m spatial resolution 

were collected in the dry season (October to March) from 1986 to 2017 from USGS Earth Explorer 

(Anon n.d.). The study area was covered with 15 tiles of Landsat images for the corresponding study 

year. The dry season (winter) is considered the best period to study LULCC, due to minimal cloud 

and a better capacity to differentiate between grasses and evergreen forest (Li and Wang 2015). 

Mosaics of cloud-free images were produced every five years. However, due to serious cloud 

contamination during some years, the collected images were based on intervals that were one or two 

years longer or shorter during the selected five years (Table 20-S1). 
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4.2.1.2 DMSP/OLS NTL Data 

Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) version 4 data 

with 1 km spatial resolution and 6-bit radiometric resolution were downloaded from the National 

Geophysical Data Center (NGDC) website of National Oceanic and Atmospheric Administration 

(NOAA) (Anon n.d.). Nighttime light (NTL) data from 1994 to 2010, used as an annual NTL image 

composite, were only available for the period from 1992 to 2013. The stable night light product was 

used with six sensors F10, F12, F14, F15, F16, and F18; all background noise is removed from this 

product (Shi et al. 2016), thus it comprises only light emitting from residential areas, cities, town, and 

persistent lightning areas (Li and Zhou 2017). 

DMSP NTL images cannot be used directly because of the absence of onboard intercalibration and 

sensor, orbit, and magnitude discrepancies, and the digital numbers (DN) values of lit pixels of 

different satellites even when no changes occur on the ground (Elvidge et al. 2014; Faouzi and 

Washaya 2017; Jiang et al. 2017; Pandey, Joshi, and Seto 2013; Shi et al. 2016; Zhang and Seto 

2011). Therefore, intercalibration, inter-annual composition, and inter-annual series correction was 

performed to calibrate the NTL data (Faouzi and Washaya 2017; Jiang et al. 2017; Pandey et al. 2013; 

Shi et al. 2016).  

4.2.1.3 Other Data Sets 

Other data used in this study includes vector data of the GHKM administrative division boundary and 

socioeconomic data such as population and GDP data extracted from Guangdong, Hong Kong, and 

Macao Statistical Yearbooks 1986–2017. All satellite data, including Landsat and NTL images, were 

clipped by the study area boundary. The projection system used was WGS-1984-UTM-Zone-49N. 

4.2.2 Land Use Land Cover Classification from Landsat Images 

An a priori classification scheme was devised following similar studies in the Guangdong, Hong 

Kong, and Macao (S. Du et al. 2014; Fan et al. 2007; Li and Wang 2015). LULC classes were defined 

as forest, grassland, water, fishponds, built-up, bareland, and farmland (Table 2). The obtained images 

were classified by a supervised support vector machine (SVM) (Burges 1998). The SVM algorithm 

has flexible supervised classifier options with high accuracy when classifying the multispectral data, 
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compared to other supervised classification methods (such as a decision tree and maximum likelihood 

classifier (MLC)). It is an advanced machine learning statistical algorithm that separates the classes 

by an optimal decision hyperplane surface (Rimal, Zhang, Keshtkar, B. Haack, et al. 2018). High-

resolution Google Earth imagery was used to assist with the selection of regions of interest (ROIs) as 

training samples. In the SVM, a radial bias function (RBF) was used as a kernel function as this kernel 

yielded higher performance with respect to convergence speed, robustness, and fewer parameter 

values to predefine (Huang et al. 2008). The cost parameter (C) tells the SVM optimization how much 

we want to avoid misclassifying each training example. For large values of C, the optimization will 

choose a smaller-margin hyperplane, whereas a very small value of C will cause the optimizer to look 

for a larger margin separating the hyperplane. The gamma parameter defines the influence of a single 

training example. With a low gamma value, points far away from a plausible separation line are 

considered in the calculation for the separation line. On the other hand, a high gamma value considers 

the points close to the separable line (Huang et al. 2008; Pal and Mather 2005). Therefore, an RBF 

with the adjusted parameters C factor = 100, gamma = 0.167, and threshold = 0 were used in this 

study, as these parameters give the best results and high classification accuracy. The threshold = 0 

was set so that it uses the full resolution image. To eliminate the random noise and isolated pixels 

from a classified map, a majority filter of 8 by 8 was applied (S. Du et al. 2014). 

The accuracy of the classified maps was assessed by means of the producer’s accuracy, user’s 

accuracy, and kappa statistics derived from the confusion matrix (Abbas, Nichol, and Wong 2018; 

Lillesand, Kiefer, and Chipman 2008). The accuracy assessment samples were selected by stratified 

random sampling of the reference image verified with the high-resolution images of Google Earth 

and the land use data from the provincial Department of Land and Resources (Anon n.d.). The low 

spatial resolution on Google Earth historical imagery made it more difficult to obtain reference 

information for 1986, 1989, and 1994. However, it was managed by doing visual interpretation of the 

Landsat image using different band combinations. A similar approach was taken by (Dissanayake et 

al. 2019; Estoque and Murayama 2017; FAO 2016; Thapa and Murayama 2007). 
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Table 2. Description of land use land cover classes. 

Class Description Abbreviation 

Forest Forest, tree cover F 

Grassland Natural shrubs and grassland G 

Water 
Natural water bodies, oceans, lakes, rivers, and reservoir. Water bodies 

that are not used for intensive aquaculture 

W 

Fishponds 
Water bodies that are used for intensive aquaculture. Dike pond, 

including mulberry 

FP 

Built-up Land covered by buildings and other man-made structures BU 

Bareland Exposed soil, sand, rocks, landfill sites, and areas of active excavation BL 

Farmland Land used for farming, cropland, and orchards FL 

 

4.2.3 Change Detection from Classification Map 

Temporal changes in the spatial extent of the landscape thematic classes were determined through 

post-classification comparison of the classified maps. The maps were paired sequentially, i.e., 1986–

1989, 1989–1994, 1994–2000, 2000–2005, 2005–2010, and 2010–2017, and transition matrices were 

then produced (Abbas et al. 2018; Pontius, Shusas, and McEachern 2004). To summarize the 

transition and for further analysis, gain (Equation (5)), loss (Equation (6)), net change (Equation (7)), 

swap (Equation (8)), and total change (Equation (9)), of each LULC class, for each of the periods 

(Pontius et al. 2004) were calculated. Also calculated was the annual rate of change using Equation 

(10), based on the compound interest law; therefore, there is an insensitivity to different time periods 

(Puyravaud 2003; Teferi et al. 2013). 

𝑮𝒋 =  𝑷+𝒋 −  𝑷𝒋𝒋 (5) 

𝑳𝒋 =  𝑷𝒋+ −  𝑷𝒋𝒋 (6) 

𝑨𝑵𝒄𝒋 = |𝑷+𝒋 −  𝑷𝒋+| (7) 

𝑺𝒊 = 𝟐𝒎𝒊𝒏 (𝑷𝒋+ − 𝑷𝒋𝒋;  𝑷+𝒋 − 𝑷𝒋𝒋) (8) 

(𝑻𝒄)𝒋 = ( 𝑷𝒋+ − 𝑷𝒋𝒋) + (𝑷+𝒋 −  𝑷𝒋𝒋) (9) 

𝑹 = (
𝟏

𝑻𝟐 − 𝑻𝟏
) × (𝒍𝒏

𝑨𝟐

𝑨𝟏
) × 𝟏𝟎𝟎 (10) 

Where, G represents a gain, L represents loss, ANc represents absolute net change, S represents swap, 

Tc represents total change, A1 and A2 represent areas corresponding to time T1 and time T2, 

respectively, and R represents the rate of change in percentage terms per year. Gain (G) is defined as 
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the landscape thematic class percentage at time 2 after subtracting its proportion from the time 1 

landscape. Loss (L) is defined as the difference between the percentage of a class of time 1 landscape 

and its persistent proportion after the transition period. Absolute net change (ANc) is defined as the 

absolute difference of class landscape amount between the time 1 and time 2 landscapes. Swap (S) 

represents the amount of a loss of class at one location and the same amount is added to a different 

class in the landscape. The total change (Tc) characterizes the overall change, calculated by adding 

gain and loss (Abbas et al. 2018). In this study, the forest growth, expansion of urban area, and loss 

of farmland were explained both temporally and spatially through the transition matrix. 

4.2.4 Light index from DMSP NTL data 

The light index is defined based, simultaneously, on two parameters: (1) the brightness of the night 

light, and (2) the urban area of lit pixels. The light index shows a close relationship with urban 

population, urban area, and economic activities (Wei et al. 2014; Q. Zhang, Pandey, and Seto 2016). 

Therefore, changes in the light index over time show the trends of population density and economic 

growth (Shobairi and Li 2016). The light index was calculated using the following formula:  

𝑳𝒊𝒈𝒉𝒕 𝑰𝒏𝒅𝒆𝒙 = 𝑰 ∗ 𝑺 (11) 

where, I is the average night light brightness: 

𝑰 =
𝟏

𝑵𝑳 × 𝑫𝑵𝑴
× ∑ (𝑫𝑵𝒊 × 𝒏𝒊)

𝑫𝑵𝑴

𝒊=𝑷
 (12) 

 

where, 𝑫𝑵𝑴 is the maximum DN value, 𝑫𝑵𝒊 is the DN value of the ith gray level, 𝒏𝒊 is the number 

of lit pixels belonging to that ith gray level, P is the optimal threshold used to extract the urban area 

from the NTL images, and 𝑵𝑳is the number of lit pixels with a DN value between P and 𝑫𝑵𝑴. S is 

the proportion of lit urban areas to the total area of a study region:  

𝑺 =
𝑨𝒓𝒆𝒂𝑵

𝑨𝒓𝒆𝒂
 (13) 
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where, 𝑨𝒓𝒆𝒂𝑵 is the lit urban areas and Area is the total area of the study region (Shobairi and Li 

2016). 

4.3 Results  

4.3.1 LULC Changes from 1986 to 2017 

The LULC maps for the years 1986, 1989, 1994, 2000, 2005, 2010, and 2017 were produced by 

supervised image classification (Figure 3), followed by transition and persistence matrices of the 

LULC classes (Table 22-S3). The accuracy assessment based on a confusion matrix, having overall 

accuracy of 91% and kappa of 0.88 (Table 21-S2), suggests each classified LULC map is satisfactory. 

The transformation between the different LULC maps reflect the direction of change, which can be 

best explained using a space-time change process. The results (Table 22-S3) reveal that during 1986–

2017, the major transition occurred between built-up land, farmland, and forest. The diagonal 

numbers in Table 22-S3 show a class persistence (i.e., the area remained the same), and the off-

diagonal numbers in the matrix represent conversion from one class to another. The main 

characteristics of the transference are described below. 
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Figure 3. Land use land cover classification map of the Guangdong, Hong Kong, and Macao from 1986 to 

2017. 

 

Figure 4. Area distribution of different land use land cover classes and change trends in the Guangdong, Hong 

Kong, and Macao from 1986 to 2017: (a) land use land cover area of forest, water, built-up land, and farmland; 

(b) land use land cover change trends in forest, water, built-up land, and farmland; (c) land use land cover area 

of grassland, fishponds, and bareland; and (d) land use land cover change trends in grassland, fishponds, and 

bareland. 
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Figure 3 shows a series of maps, while Figure 4a, c is a bar chart and 4b, d gives LULC trends, 

showing that the GHKM land cover changed significantly during the study period. The economic 

reform policies, rapid economic development, and urbanization have changed the history of the study 

area socially and economically, resulting in LULCC (Ramakrishnan et al. 2001; J. Wang et al. 2012). 

The LULCC over the past 30 years indicates that forest, farmland, and built-up land remain the 

dominant cover types in the study area. The results reveal that in 1986, built-up land had the least 

coverage (Figure 3, Table 22-S3) and, over the years, it increased from 0.76% in 1986 to 10.31% in 

2017. Compared to other land cover classes, the built-up area increased, with the highest annual rate 

of change i.e., 8.45%, during 1986–2017 (Table 3). Its highest annual rate of change was observed 

between 1986 and 1989, i.e., 19.15%. From the late 1980s to the 2000s, the GHKM built-up area 

grew at an annual rate of around 8–10%, decreasing to 5.19% in 2000–2017 but still maintaining a 

high rate. The built-up area attained its maximum gain from 0.59% to 2.05% over the entire study 

period, with the highest being in 2005–2010. Its continuous expansion from an area of scattered 

downtown (central part or commercial of a town or city) to megacities is due to economic growth and 

the increasing population. 

The most socioeconomic development, industrialization, and urbanization have been observed in the 

greater bay region, Pearl River Delta (PRD), while other areas such as the eastern flank, western 

flank, and mountainous region have also grown. The Pearl River Delta (PRD) is characterized by 

intense human activities. The proportion of built-up areas varies significantly over time in different 

cities. In Shenzhen, Dongguan, Foshan, Zhongshan, and Macao, the built-up area was less than 5% 

in 1986. Since then, the urban area in these cities have expanded to a greater degree than that of other 

cities. The built-up land in these cities rose more than 50% by 2017 (Figure 5). In Guangzhou and 

Foshan, the built-up areas were significantly higher than in other cities in 1986. They remain higher 

in built-up area than other cities of the Guangdong, Hong Kong, and Macao in 2017. The overall 

proportions of their built-up areas were significantly lower than those in Shenzhen, Dongguan, 

Zhongshan, and Macao due to the relatively slower rates of urban growth and the imbalanced internal 

development. The built-up area in small cities such as Zhuhai is relatively smaller but proportionally 
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close to that of Guangzhou. The built-up area of Jiangmen, Jieyang, Huizhou, and Chaozhou is close 

to that of Zhuhai but the proportion of their built-up land is smaller than that of the other PRD regions. 

The proportion of built-up areas in the mountainous regions, on the western side, and in Shanwei city 

on the eastern flank are much smaller than that of the other 12 cities in this study area. Thus, it is clear 

that the opening up of reform, and the introduction of the new economic policies, especially in the 

PRD, have attracted a significant influence of population from the inner provinces of China. 

During the 31-year study period, among all the land use types the highest change in cover occurred 

in farmland. The area covered by farmland decreased by about 21%, i.e., from 53.54% (105,123.39 

km2) to 33.07% (64,932.38 km2), with a net loss of 4.26% to 4.73% over the study period (Table 22-

S3). This was mainly the result of the expansion of built-up areas, urbanization, and forest growth (at 

the rate of 0.98% annually) (Figures 4, 5). From the transition matrix (Table 22-S3), the conversion 

of farmland to other land types is most noticeable. As previously mentioned, a huge amount of 

farmland was transformed into built-up area: a probable 615 km2 (0.31%), 1804 km2 (0.92%), 1690 

km2 (0.86%), 1796 km2 (0.91%), 3211 km2 (1.63%), and 2840 km2 (1.44%) in 1986–1989, 1989–

1994, 1994–2000, 2000–2005, 2005–2010, and 2010–2017, respectively. The per capita area of 

farmland decreased to 0.000708 km2 in 2017 from 0.001831 km2 in 1986. The net loss of farmland 

decreased significantly, whereas its conversion to built-up land accelerated. 

Figure 5 shows that the proportion of farmland varied significantly over time in different cities of the 

study area. The situation was worse in the PRD (coastal) region and on the eastern side of the 

province, due to a significantly higher population density, higher economic development, and well-

established farmland traditions. From 1986 to 2017, the area of farmland loss in these regions was 

greater than that in other regions of the study area, as officials took full advantage of making a 

financial profit, regardless of the total effect on society. Other matters such as sustainability were not 

considered.  

The forest areas and built-up land have increased greatly. The gains in forest were 3.81%, 3.27%, 

1.93%, 1.85%, 2.17%, and 3.42% during 1986–1989, 1989–1994, 1994–2000, 2000–2005, 2005–

2010, and 2010–2017, respectively (Table 22-S3). The forest cover, converted from farmland, 
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increased at rates of 3.58%, 2.96%, 1.61%, 1.48%, 1.80%, and 3.05% during 1986–1989, 1989–1994, 

1994–2000, 2000–2005, 2005–2010, and 2010–2017, respectively (Table 22-S3). The highest annual 

rate of change in forest areas was 2.95% between 1986 and 1989 (Table 3). The changes in the 

proportion of forest cover over time differed in each prefecture during each of the six periods. In the 

PRD region, forest decreased, and more noticeably in Shenzhen, Dongguan, Zhuhai, and Zhongshan, 

but increased in peripheral counties (Figure 5). This is mainly because of conversion to built-up area, 

agricultural production, and unused land. From 1994 to 2017, forest cover also decreased on the 

eastern flank of the study area, but increased in some of the surrounding counties. In Foshan and 

Guangzhou, forest decreased from 1986 to 2000 and then increased between 2000 and 2017 because 

of an increase in urban forestry within the urbanized area.  

The area of fishponds changed slightly, decreasing from 1.25% (2463.37 km2) to 0.85 % (1674.61 

km2) during the study period. This shows that the net loss in fishponds increased from 0.68% to 0.85% 

from 1986 to 2017. Therefore, a net loss of fishponds and farmland accelerated the growth of urban 

area and forest cover. Considerable changes were also observed in both grassland areas and bareland. 

Grassland was reduced from 0.23% (460.11 km2) in 1986 to 0.10% (189.72 km2) in 2017, whereas 

bareland was reduced to 0.14% (275.40 km2) in 2017 from 0.38% (752.17 km2) in 1986 (Table 24-

S3). Grassland and bareland are located at areas of low elevation such as the PRD, which is the main 

reason for their shrinkage in areas. However, the change in water bodies was relatively stable (Figure 

4). 

The intermixing of forest, grassland, and farmland was also observed, mainly because of the nearly 

identical signature and the phenological difference in the image acquisition. The transition 

probabilities for forest to grassland are 0.03, 0.07, 0.02, 0.07, 0.02, and 0.03 (Table 22-S3); for 

grassland to forest they are 0.05, 0.02, 0.08, 0.04, 0.06, and 0.03 (Table 24-S3) and for farmland to 

forest they are 3.58, 2.96, 1.61, 1.48, 1.80, and 3.05 during 1986–1989, 1989–1994, 1994–2000, 

2000–2005, 2005–2010, and 2010–2017, respectively (Table 22-S3). A variation was observed in the 

trend of grassland and bareland as the acquisition of Landsat images was done in the dry season (Li 

and Wang 2015). 
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Table 3. The annual rate of change of each class as a percentage. 

 1986–1989 1989–1994 1994–2000 2000–2005 2005–2010 2010–2017 1986–2017  
(% change per year) 

     

Forest 2.95 1.23 0.58 0.42 0.75 0.86 0.98 

Grassland −19.02 6.51 −8.21 11.96 −21.00 5.10 −2.69 

Water 0.19 −0.02 −0.19 −0.50 0.06 0.30 −0.02 

Fishponds 6.08 4.94 −1.36 −2.02 −4.94 −5.51 −1.24 

Built-up 19.15 14.37 7.21 6.26 6.93 3.17 8.41 

Bareland −21.40 13.36 −17.08 24.64 −29.47 3.45 −3.22 

Farmland −2.38 −1.83 −0.86 −1.16 −1.60 −1.85 −1.55 
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Figure 5. Relative land use change at prefecture (city) level in (A) built-up, (B) farmland, and (C) forest. 

4.3.2 Socioeconomic Change 

Several types of socioeconomic factors collected from Guangdong, Hong Kong, and Macao Statistical 

Bureaus for 1986 to 2017, as listed in Table 4, are responsible for LULCC in GHKM.  
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Table 4. Socioeconomic indicators of the Guangdong, Hong Kong, and Macao. 

 1986 1989 1994 2000 2005 2010 2017 

Gross Domestic Product (100 

million Yuan) 
667.53 1381.39 4619.02 10,741.25 22,557.37 46,036.25 79,512.05 

Primary Industry 188.37 351.73 692.25 986.32 1428.27 2286.98 3694.37 

Secondary Industry 255.88 554.13 2253.25 4999.51 11,356.60 22,821.77 34,001.31 

Tertiary Industry 223.28 475.53 1673.52 4755.42 9772.50 20,927.50 41,816.37 

Total Population 

(10,000 persons) 
5740.70 6024.98 6691.46 7498.54 7899.64 8521.55 9164.90 

Total Investment in 

Fixed Assets 

(100 million yuan) 

216.50 347.34 2141.15 3233.70 7164.11 16,113.19 33,008.86 

Government Revenue (100 

million yuan) 
82.41 136.87 298.70 910.56 1807.20 4517.04 10,390.35 

Gross Agricultural output value 

(100 million yuan) 
279.15 548.60 1151.38 1701.18 2447.57 3754.86 6078.43 

Gross Industrial output value 

(100 million yuan) 
632.89 1647.24 7273.95 16,904.47 41,661.74 93,462.97 144,926.10 

Total Retail Sales of Consumer 

Good (100 million yuan) 
327.02 636.15 1991.33 4379.81 7915.51 17,458.44 34,739.00 

 

During the past 31 years (1986–2017), the GHKM GDP grew from 667.53 (100 million yuan) to 

79,512.05 (100 million yuan) (Table 4), with an annual growth rate above 15%. Economic 

development and population are closely related. With the increase in economic development, GDP 

increases. This increase in economic development also resulted in population growth through 

migration, as delineated in Table 4. This unprecedented increase of migrant population caused gradual 

expansion of cities, urban sprawl, and loss of farmland. Figure 6 shows the GDP, built-up land, and 

farmland trends from 1986 to 2017, further confirming the influence of the increasing GDP and 

population growth on the GHKM land cover. Compared to the GDP, however, the annual population 

growth is relatively low and varies significantly in different stages (Table 5) and in each city of the 

GHKM (Figure 7). Shenzhen, Dongguan, Hong Kong, Foshan, Guangzhou, Macao, and Zhuhai 

(monocentric cities) have experienced the greatest and most rapid increase over the past three 

decades; their annual GDP and population growth rate is close to the average growth rates of the 

whole region. The rest of the cities in the study area, however, have significantly lower growth rates 

than the regional averages and that of the population. 



 

45 

 

 

Figure 6. Summary of land policies, gross domestic product, urban area (urbanization), and farmland trend in 

different economic development periods from 1986 to 2017 (where, LAL = Land administration Law). 

Table 5. Population growth rate during different period. 

 1986−1989 1989−1994 1994−2000 2000−2005 2005−2010 2010−2017 

Population growth rate (%) 4.95 11.06 12.06 5.35 7.87 7.55 

 

Figure 7. Changes of gross domestic product in each city of the Guangdong, Hong Kong, and Macao. 
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Based on the urban extent dataset from NTL, an increasing trend of light index related to urbanization 

has been observed (Figure 25-S1, Table 6), which reflects human activities and development (Figure 

8). The reason for the increase in the light index is new lighting projects such as at malls, scenic spots, 

and streets in order to make the cities seem more glamorous. Consequently, after 30 years of 

development, a new pattern of urban sprawl has been observed in GHKM, especially in the PRD 

region, now named the “Greater Bay area” (Figure 3). This area accounts for 57% of the Guangdong, 

Hong Kong, and Macao population. The Guangdong, Hong Kong, and Macao government revenue 

has increased to 10,390.35 (100 million Yuan) from 82.41 (100 million Yuan) during the study period 

(Table 4).  

Table 6. Light index of the study area for the years 1994, 2000, 2005, and 2010. 

Year Light index NTL* Built-up area (km2) Average SDV** 

1994 3.42 7860 53.00 4.77 

2000 4.40 1024 52.84 4.90 

2005 6.21 15,104 54.27 4.53 

2010 8.38 17,431 55.34 4.07 

*NTL = nighttime light, **SDV = Standard deviation 
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Figure 8. Night light urban expansion images of the study area for the years 1994, 2000, 2005, and 2010. 

The total investment in fixed GHKM assets has increased from 216.50 (100 million Yuan) to 

33,008.86 (100 million Yuan) during 1986–2017. This significant increase in annual investment is 

the direct result of (a) more infrastructure and construction projects, (b) urbanization from low density 

to high density, and (c) conversion of farmland to other land types during the study period (Li and 

Wang 2015; Liu et al. 2016; J. Wang et al. 2012). There is a significant logarithmic relationship with 

a coefficient of determination R2 = 0.93 and R2 = 0.98 between the fixed assets investment and the 

built-up area (Figure 9a) and between GDP and population (Figure 9b), respectively. Figure 9c 

indicates that the coefficient of determination between population and farmland is 0.98. The light 

index has a strong relationship with urban areas extracted from DMSP NTL data, total population, 
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and socioeconomic indicators (i.e., secondary and tertiary industry), with a coefficient of 

determination of 0.94, 0.94, and 0.83 (during 1994–2010) (Figure 9d–f).  

During the study period, the total retail sales of consumer goods surged from 327.02 (100 million 

Yuan) in 1986 to 34,739.00 (100 million Yuan) in 2017, reflecting the demand for consumer goods 

such as cars and houses. This increase in spending power has promoted real estate. Due to the above-

mentioned factors, GHKM has also experienced significant socioeconomic development, by 

encouraging industry. A large migrant population and increasing demand for labor have further 

increased secondary and tertiary industries, rather than the primary industries (Table 4). As a result, 

the total population increased from 5740.70 (10,000 persons) in 1986 to 9164.90 (10,000 persons) in 

2017 (Table 4), with a population density of 612 (persons/km2) in 2017.  

In summary, policy changes, law enforcement, land use planning, and development strategy shifting 

may have great impact on the LULC change.   

 

Figure 9. The correlation between (a) fixed assets and built-up area (1986−2017), (b) GDP and population 

(1986−2017), (c) farmland and population (1986−2017), (d) light index and urban area (1994−2010), (e) light 

index and population (1994−2010), and (f) light index and socioeconomic indicators (1994−2010). 

. 
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4.4 Discussion 

4.4.1 Driving Forces of LULCC: The Link Between Socioeconomic Factors and 

LULC  

Previous studies have suggested that the processes of industrialization, urbanization, macro-economic 

policies, and economic fluctuations may be the major driving forces of land use and, therefore, land 

cover changes (J. Wang et al. 2012). In the current study, the results from LULC maps (Figure 3) and 

NTL images (Figure 8) shows the increasing trend of built-up area. This increase in built-up area 

reflects that socioeconomic development and the upgrading of industrial structures affected the land 

use structure and the provision of land resources. During the study period, fishponds decreased to 

0.85% from 1.25% and forest cover increased to 45.02% from 33.24% (Figure 3). GHKM shows the 

relationship between the different periods of modernization and the relationships with political 

movements, socioeconomic development, and urbanization (Table 7 and Figure 10). The year 1986 

marked the beginning of the economic “soft landing” that was intended to control unconstrained 

growth in the initial reform period. However, the years 1996 and 1997 marked the beginning of 

administrative changes that required approved integrated land use planning (LUP) at both regional 

and county levels and a shift to regional urbanization and pro-urbanization in the development policy 

(Wang et al. 2018). The detected LULCC results reveal a close relationship between urbanization and 

socioeconomic activities. 

The primary reason for urbanization is the land price differences between cities and downtown areas. 

The land prices of rural and backward areas were almost half, or even less than, that of established 

urban areas. This huge difference in land prices attracted investors to install their industries in 

commercially backward areas and towns. It also created the mixed land use patterns in which villages 

were absorbed within cities and cities imposed on villages. In so doing, the expansion of urban areas 

into the surrounding rural areas created strong pressure on farmland and provided an open space for 

conversion to other land types (Li and Wang 2015). Mixed land use patterns are more pronounced in 

highly populated regions, further enabled by fast economic development. In circumstances of 

relatively cheap land, it is difficult to control expansion owing to the interest of industrial investors. 

This rapid industrial growth further drove the conversion of more farmland and the subsequent rise 
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of built-up areas. Additionally, such developments are encouraged in that they provide a significant 

contribution to government revenue. 

The increase in monthly income has increased the demand for a luxurious lifestyle. This includes 

beautiful, spacious, and comfortable houses and more convenient transportation. This results in an 

increase in demand for urban land. Thus, urban sprawl and economic development have moved the 

GHKM away from an agrarian society. The light index has also delineated the land use policies that 

have been the product of political, economic, and social conditions in different periods of 

modernization and development since the opening of reform (Table 7) (Wang et al. 2018). Over the 

last three decades, economic growth is reflected in the marked increase in GDP, total investment in 

fixed assets, total retail sales of consumer goods, and other socioeconomic determinants.  

However, as urban land is more beneficial to the economic output of an area than areas of arable, 

farming, agricultural land, and bareland in the urban fringes, these land types provided obvious 

potential for urbanization (Li and Wang 2015; Liu et al. 2016; J. Wang et al. 2012). Urban land 

accounts for 30–70% of government revenue (Ng and Hang Hui 2007). The latter would probably be 

invested in industrialization and infrastructure projects to promote GDP growth, and, in so doing, 

further the corresponding urban sprawl. GHKM leads the country in retail sales and pays the most 

taxes to central government (Ramakrishnan et al. 2001). This causes an increase in the rate of land 

cover change and, subsequently, the furthering of urban expansion. This facilitated urban growth, not 

only in the PRD region but also in the outskirts of that region, which has been a major driving force 

in the reduction of farmland. The PRD, the central part of the province, became the main urbanization 

core, replacing the farmland of previous decades (Li and Wang 2015).  

Developments in science and technology in terms of economic development have promoted 

urbanization. New built-up areas were mainly concentrated in the center (PRD) and on the eastern 

side of the study area because of their geographical location. For instance, areas of low elevation were 

considered suitable for urban projects and development. The geography of each area resulted in the 

expansion of urban areas at decreasing rates. In these two regions, farmland and fishponds were the 

primary contributors to new built-up areas (Chen et al. 2013a; S. Du et al. 2014). By comparing the 
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PRD urbanized area with other densely urbanized areas of the world such as the UK (7.5% built-up 

area), the Netherlands (11.5%), and Belgium (20%), the PRD can be described as the most rapidly 

urbanized region, with built-up areas rising to 10.31% over the entire study period (S. Du et al. 2014). 

However, it has been observed that urbanization has, to a degree, become out of control, due to the 

inefficiency of land use management and failure of policies. Further reasons are related to the growing 

industries, foreign direct investment, job opportunities, desire for a better lifestyle, facilities, and road 

networks, and also the uniqueness of the location, i.e., neighboring Hong Kong and Macao (Fan et al. 

2007; Ramakrishnan et al. 2001). 

Table 7. Changing land use policies from 1978 to 2017. 

Years Periods Land use policies Issues 

1978−1991 Opening up and economic reform Local entrepreneurship 
Initial productivity but effect development of 

town and village enterprises 

1992−2002 
Initial period of the socialist 
market-oriented economy 

Farmland protection and land-use 
planning 

Conflict over farmland protection and land 
development 

2003−2008 
Mid-term of the socialist market-
oriented economy 

Urbanization and regional 

development 
Regulating land markets, use rights 

and property law 

Uneven urban-rural and regional social and 
economic development 

2009−now 
Socialist market-oriented 

economy 

Intensive land use under 
construction of civilization 

Regulating land markets, use rights 

and property 

Conflict over farmland conversion, 
protection and land development 

Uneven urban–rural and regional social and 

economic development 

The spatial planning modes in China is related to three planning systems: (1) the socioeconomic 

development plans, national spatial plans (land use plans), and the urban and rural plans. The 12th 

(2011—2015) and 13th (2016—2020) Five-year plan, the National New Urbanization Planning (2014-

2020), the urban and rural plans aim to regulate economic development, urbanization, safe 

construction of the ecosystem, reducing urban rural gap, the efficient distribution of land resources, 

the rational structuring of space, the ability to secure energy resources, the promotion of the general 

preservation of land, the securement of implementing national spatial plan, etc. On the one hand, the 

government hopes to transfer more rural people settling into cities as rural-urban migration could help 

stimulate domestic demand. Moreover, economic growth will continue to matter for future urban 

development but has to be balanced with social and environmental sustainability. This shift towards 

sustainable urbanization, with a more consumer-driven and service-oriented economy with less social 

inequality and sharp reductions in energy and resource use, requires an innovative planning system 

(Douay and Qi 2018; Harbers et al. 2017). 
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The current planning system and does not fully allow policymakers and planners to deal with rapid 

urbanization along the lines described above. The current situation may not be sustainable. GHKM 

industrial and urban development has been overly dependent on land- use modes characterized by 

extensive expansion rather than the coordinated and intensive use of scarce land resources. Land-use 

modes must become more efficient and intensive to secure strategic development goals of coordinated 

industrialization, urbanization, and agricultural modernization. One of the strategies proposed for 

more intensive and efficient land use should be ‘brownfield’ re-development through the recycling of 

polluted, abandoned, unused and idle urban sites. In addition, the optimization and improvement of 

the industrial structure will promote a transformation of the economic development mode. Future 

land-use policy should be shifted to more efficient and effective utilization of inventoried lands and 

move away from the wasteful practice of extensive utilization of increased amounts of developed 

lands (Wang et al. 2018). 

 

Figure 10. Changing land use and spatial policies during the study period. 

 

4.4.2 Consequence of LULCC: Farmland Reduction and Replacement  

Before the “open door” policy, Guangdong was an important region, dominated by open space, and 

farming activities, and was the largest grain-growing region in China. It was an important production 
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base for rice, sugar cane, and tropical fruits (S. Du et al. 2014). More than 50% of the country’s grain 

was grown in its southern part (Ramakrishnan et al. 2001; J. Wang et al. 2012). After the economic 

reform process initiated a surge in industry and technology, shifts in local economy, and a massive 

influx of overseas migrants, pressure was placed on farmland. The pressure became more serious as 

planning and management functions lagged behind economic development, making farmland 

unprotected and vulnerable (Dou and Chen 2017; J. Liu et al. 2014; Salih et al. 2017; Tian et al. 2012; 

Wu et al. 2016), with the result that, during the study period, it became a consistent source of new 

built-up areas, in line with the performance of other similar regions (S. Du et al. 2014; Fan et al. 2007; 

Li and Wang 2015). 

The conversion of farmland to another land use type was eventually restrained by additional and 

different land policies and legislation. The most influential of these were the “Land Administration 

Law (LAL)”, the “Basic Farmland Protection Regulation (BFPR)”, the “Returning Farmland to Forest 

Program (RFFP)” and “The Notice on Stabilizing and Improving the Contract of Rural Land issued 

by central government” (J. Wang et al. 2012). These programs were initiated by the government of 

China in 1999. These programs aimed (1) to control the expansion of urban areas, and (2) to protect 

farmland and its conversion. Furthermore, the aim was to promote market development and increase 

forest cover. According to article no. 33 of LAL, there should be no net loss of farmland. To control 

the urban sprawl, the stakeholders allowed the development of farmland, only if a substitute area 

could be developed more efficiently elsewhere in the province. The basic hypotheses of the above 

policies were rejected due to high investment and the implementation of different development 

policies that led to a significant occupation of land for construction activities. The result was a 

constant increase in urban and rural area settlements at the cost of a large reduction of the proportion 

of farmland and a widening of the urban–rural gap (Bai, Chen, and Shi 2012; S. Du et al. 2014; Lin 

and Ho 2003; Ramakrishnan et al. 2001; J. Wang et al. 2012). Thus, at the above juncture, 

urbanization was given priority over the protection of farmland in the current stage of economic 

development (S. Du et al. 2014). 
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Unfortunately, farmland being displaced to other regions would not necessarily ensure grain 

production, as the new sites may be less fertile, or dry and require irrigation facilities. Hence, because 

of a lack of land suitability, a significant decline in grain yields from 4.6 million tons to 2 million tons 

was seen in the early 2000s, causing adverse effects on the food production capacity. Additionally, a 

major shift from traditional double-season rice cropping to a single season directly caused the 

decrease in total grain production, even in more fertile and appropriate areas of farmland, such as in 

the higher areas of the PRD region. The indication is that farmers in these areas had changed the 

agricultural structure from food production to market-oriented farming, which included vegetables 

and animal husbandry. Additionally, this substantial reduction in grain yield was also due to the 

changes in food demands of high-income urban residents. For instance, larger sections of local 

communities began to consume less rice, maize, root crops and wheat, focusing more on poultry, 

meat, and fish. Moreover, output of cotton, edible oils, vegetables, fruit, meats, and fishery products 

grew even faster. Direct demand for rice, wheat and other food grains will be declining with positive 

implications for food security. The main uncertainties are about the indirect demand for cereals, the 

evolution of per caput demand for livestock products, and future gains in feed use efficiency (Norse, 

Lu, and Huang 2013; Wang et al. 2021). Together with the effects of environmental pollution, which 

led to a serious decline in food quality. Also, development of eucalyptus plantations on a large scale 

because of the high demand for timber products and high ecological value. This also prompted the 

conversion of farmland. 

In addition, the government is facing difficulties in maintaining a constant supply of farmland, due to 

rapid urbanization as indicated above. The central government gives a “farmland redline” (the 

minimal area of farmland) in each province. Urbanization, however, has increased the tension 

between the need to protect farmland and the demand for land for development. Although it is 

important to improve agricultural productivity and food security, as indicated above, there is an urgent 

need to strictly implement the protection policies regarding the quantity and quality of farmland (S. 

Du et al. 2014; J. Wang et al. 2012; Wang et al. 2018). 
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However, new agro-technologies as well as series of reform policies since 1978 has had greatly 

shaped agriculture throughout time to support agricultural growth. These agro-technologies 

demonstrates the importance of technological development in addition to improved incentives, 

institutional reform, rural economic development, and other policies that increase food availability. 

These technologies base grew rapidly during the reform and pre-reform periods. These technologies 

have changed the agriculture structure. The implementation of the household responsibility system 

(HRS) after its introduction in 1979 that gave individual farmers control over income rights of 

formerly collective owned land was a major policy driver for the rise in productivity based on 

improved crop varieties and high inputs of industrial fertilizers. The other major sources of growth 

were public agricultural research and development (R&D), investment in irrigation, shifts in 

technologies, transport infrastructure, and the use of off-farm production inputs (Norse et al. 2013).  

However, China has virtually no additional land to develop for crop production so the continuing loss 

of highly productive cropland to urban development and non-agricultural uses could undermine long-

term food security (Norse et al. 2013). To ensure the food security government should impose the 

heavy taxes on the reduction of farmland and reclamation of farmland by establishing its use in other 

places or by changing the preference of industry regarding the use of arable areas; to control the 

demand of timber products using numerous methods, such as, decreasing the usage of disposable 

chopsticks; avoid the wastage of paper; tighter application of the existing legislation and the removal 

of the perverse economic incentives to local governments that encourage such transfers; to overcome 

the potentials risks of land use right transfer; governments should create more employment 

opportunities in rural areas (in both agricultural and non-agricultural sectors)improvement of the rural 

social security system; raises farmers income; mobilized labor; optimizing agricultural production 

linkages; substantial expansion of irrigation infrastructure; adopting improved crop varieties; provide 

price incentives to increase the multiple cropping index and Strengthen scientific and technological 

support to agriculture (Norse et al. 2013). 

Irregularities and a lack of coordination with a market-oriented system have been unavoidable. 

Prevention tactics regarding the transfer of rural, collectively owned land by means of a market-
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oriented mechanism, have led to significant inequities between urban and rural activities. The policy 

“Proper law of 2007” has led to the phenomenon of “financing through land,” and impoverishing 

farmers by taking their land from them, apparently for the betterment of society, has caused an 

aggravation of the social divide between the urban and rural populations (Wang et al. 2018). Thus, 

there appears to be a necessity to modify the previously mentioned land policies and address or 

remove the urban–rural gap, not only to better ensure sustainable economic development, but also to 

remove social division between them.  

4.4.3 Benefits of LULCC: Forest Cover Increases  

GMHK has been ahead of the country in terms of socioeconomic development and urbanization, but 

also in its contribution to the deterioration of the environment. To solve such problems, the 

government established the program “Greener Guangdong in 10 years” in 1985. By the end of 1993, 

3.33 million hectares of degraded forest lands had been re-planted. To maintain this momentum, urban 

forestry considerations were given priority by the government. The objective was to introduce tree 

and shrub planting in cities to enhance the quality of life (Bui et al. 2003; Chokkalingam et al. 2006). 

A focus was placed on obtaining a Greener Guangdong (S. Du et al. 2014; Trac et al. 2013). Thus, 

during the period of this current study (1986–2017), forest cover increased from 33.24% to 45.02%. 

The government’s encouragement of urban forestry was designed to play a critical role in lessening 

the urban–rural gap, providing more job opportunities, improving the environment, maintaining the 

ecological balance, beautifying urban regions (Bui et al. 2003), and controlling the expansion of cities. 

The increase in the pattern of urban forestry reveals an increase in the demand for forest resources in 

the urbanized areas and a willingness to control and preserve natural ecosystems (Li and Wang 2015). 

From 1990 to the present, a wide range of forest programs were launched and implemented in GHKM, 

thus supporting afforestation achievements and the modernization of forestry practices. The focus 

was on both forest industry development (ecological forest) and plantations by adjusting tree species 

and forest structure to support different economic and recreational purposes. These programs also 

increased people’s incentives and interests regarding forestry development and encouraged the 

recognition of public ownership. Industrialization and urbanization, therefore, have promoted forestry 
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development and the rehabilitation of degraded forest land in GHKM (Chokkalingam et al. 2006; 

Peng et al. 2008). However, the development of urban forestry is only one strategy for solving the 

many problems facing cities new to the urbanization process. 

4.4.4 Recommendation for Sustainable Development and Open Space 

Protection 

Hong Kong can be considered reasonably successful in controlling unplanned urbanization and 

protecting open spaces, despite the population growth, economic development and the resulting urban 

sprawl to cater for them. The government should impose heavy taxes on the urban development of 

farmland to prevent further loss of farmland. The government needs to set up a new administrative 

body for the effective planning of land use. In this process, public contributions and making and 

executing plans for land use and sustainable development will play a dominant role. Transferring 

industrial activities from the PRD to lagging regions will help to reduce urban–rural inequality and 

increase rural household income. This would result in lessoning rural poverty. Thus, fast urbanization 

helps poverty alleviation and increasing the productivity. Furthermore, a detailed study at the city 

level is required to adapt policies more effectively and to control the negative impacts of land cover 

changes. 

4.5 Conclusion  

The results show that over the past three decades, GHKM, a large tropical and sub-tropical region in 

China, has undergone dramatic LULCC, mainly dominated by built-up land, farmland, and forest. 

During the study period, the built-up area has increased from 0.76% to 10.31% and farmland and 

fishponds decreased from 53.54% to 33.07% and from 1.25% to 0.85%, respectively. On the other 

hand, at the expense of the reduction of farmland and different afforestation programs, forest cover 

increased from 33.24% in 1986 to 45.02% in 2017. The primary reasons for such changes in land use 

and land cover were the development of the socioeconomic corridor, industrialization, job 

opportunities, urban sprawl, and different land policies. The transition of farmland to built-up area 

and the increase in light index reveal that urbanization provides more benefits to the government in 

terms of economic development. To some extent, the decrease in farmland mirrors the irreversible 

trends of industrialization, urbanization, and marketization. Moreover, a spatial analysis and 
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statistical data revealed that the marked increase in GDP, total investment in fixed assets, and total 

retail sales of consumer goods have to a large extent led to the expansion of cities. On the other hand, 

there has been a loss of farmland and an increase in forest cover. Such changes have caused notable 

land cover changes in GHKM. These trends may also be projected into the future. These findings 

revealed in this paper are designed to help policy and decision makers to analyze the relationship 

between socioeconomic drivers and LULCC. Also, this paper provides a scientific basis for land 

resource optimization, not only in GHKM but also in other parts of China. 
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Chapter 5 

5 Future simulation of land use changes in rapidly urbanizing 

South China based on Land Change Modeler and remote 

sensing data3 

 

5.1 Introduction 

Today, urban growth represents powerful engines for economic prosperity and growth. However, 

changes in land use land cover (LULC) are pervasive and subjects of great concern worldwide 

(Hossein Shafizadeh Moghadam and Helbich 2013). This is more pronounced in rapidly growing 

countries, such as China (Rimal et al. 2017), where urban land transactions and local land leasing 

revenue have exploded sharply (Chen et al. 2018), after the opening of economic corridor policy in 

1978. The phenomena of socioeconomic development and industrialization has resulted in an 

increasing urban population, rural to urban migration, reclassification of administrative rural zones to 

urban zones, and subsequent expansion of urban areas and cities in peri-urban pockets, at unparalleled 

rates (Araya and Cabral 2010; Li et al. 2014; Rimal et al. 2017; Zheng et al. 2018). According to the 

United Nations Department of Economic and Social Affairs Population Division, (2017) China’s total 

urban population has increased from 11.80% (7,726 (10,000 persons)) in 1950 to 58.52% (139,008 

(10,000 persons)) in 2017, and is predicted to reach 76.10% by the end of 2050 (Anon 2017). This 

situation has simultaneously strengthened economic localism, as built-land produces more revenue 

(Chen et al. 2018). However, these significant changes cause continuous stress on agricultural land 

 

3 This chapter is based on a published study and being reproduced with the permission of MDPI. 

Hasan, S., Shi, W., Zhu, X., Abbas, S. & Khan, H.U.A. (2020).Future simulation of land use changes in rapidly 

urbanizing South China based on Land Change Modeler and remote sensing data. Sustainability, 12(11), 4350; 

https://doi.org/10.3390/su12114350  

https://doi.org/10.3390/su12114350
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and other natural and semi natural resources (Ahmed and Ahmed 2012; Aithal, Vinay, and 

Ramachandra 2013; Wang and Maduako 2018). 

In China, the fragmentation of farmland into urban fringe and loss of other natural and semi natural 

resources have a strong prospective of weakening an enduring coherence of human beings and their 

environment, as well as a serious threat to food security (Wu et al. 2006). Immense anthropogenic 

activities have generated many ecological and environmental issues on different spatial scales, 

resulting in the increased scarcity of land resources. These include unplanned land development, 

employment opportunities, the escalation of slums, and insufficient infrastructure and houses (Dewan 

and Yamaguchi 2009a; Dewan et al. 2012; Guan et al. 2011; Hossein Shafizadeh Moghadam and 

Helbich 2013; Rimal et al. 2017; Wang and Maduako 2018). The prevailing high dynamic economic 

growth, urbanization, and industrialization has posed a great challenge to policy and decision makers 

to achieve the goal of sustainable development (Araya and Cabral 2010; Kumar et al. 2015; Rahman 

2016; Rimal et al. 2017; Wang and Maduako 2018). Therefore, the modeling and future prediction of 

land use land cover and urban growth is a pressing need to enable comprehensive view regarding a 

more competent administration of urban planning, preservation of natural resources (such as 

farmland), and the espousal of long-term sustainable policies. 

Recently, to better understand the functioning of the land use system, the modeling of land use land 

cover change is growing rapidly in the spatially explicit scientific field (Kumar et al. 2015; Verburg 

et al. 2004). Land change models are simplifications of reality that offers an important means of 

predicting future land use land cover change pressure points (Han et al. 2015; Nourqolipour et al. 

2015) and develop ex-ante visions of urbanization process implications (Hossein Shafizadeh 

Moghadam and Helbich 2013). Models usefully simplify the complex suite of socioeconomic and 

biophysical forces that influence the rate and spatial patterns of land use land cover change and, also 

enable the estimation of the impacts of changes in land use land cover (Aburas et al. 2018; Al-sharif 

and Pradhan 2014; Megahed et al. 2015; Shivamurthy and Kumar 2013; Verburg et al. 2004; Xin, 

Xin-qi, and Li-na 2012). To date, a variety of models have been developed, and are classified into the 

following types, (1) machine learning model, (2) cellular based model, (3) spatial based model, (4) 
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agent based approaches (Aithal et al. 2013; Brown et al. 2004; Han et al. 2015; Mas et al. 2014; 

Megahed et al. 2015), and (5) hybrid approaches (Council 2014). The performance of different 

modelling tools however, are difficult to compare because land use land cover change models can be 

fundamentally different in a variety of ways (Ansari and Golabi 2019; Kumar et al. 2015; Sun 2008). 

Several studies have revealed that Land Change Modeler (LCM), based on integrated multilayer 

perceptron (MLP) with markov chain (MC), is a strong model for the analysis and prediction of land 

use land cover change, urban growth, and the validation of results (Kumar et al. 2015; Mas et al. 

2014; Megahed et al. 2015; Mishra et al. 2014; Ozturk 2015; Wang and Maduako 2018). This is 

because outputs of neural networks, acquired through the Weights of Evidence technique (where a 

user can select and modify the weights) (Megahed et al. 2015; Pérez-vega, Mas, and Ligmann-

zielinska 2012; Roy et al. 2014), more effectively show the transition of different types of land cover 

than do individual probabilities. 

Landscape morphological and structural metrics are also used to directly compute the structure, 

spatio-temporal patterns of urban change, and land use land cover change from thematic maps. The 

metrics, however, provide a better illustration and explanation of spatial heterogeneity at a particular 

resolution and scale. They may give a connection among the physical structure of a landscape and 

urban pattern, shape, functionality, and process (Barnsley et al. 1997; Geoghegan, Wainger, and 

Bockstael 1997; Parker, Evans, and Meretsky 2001). These simple quantitative indices i.e. landscape 

metrics have also been used to interpret, asses, and verify urban models (Aithal et al. 2013; Alberti 

and Waddell 2000; Araya and Cabral 2010; Geri et al. 2010; Herold, Goldstein, and Clarke 2003; 

Jain, Kohli, and Rao 2011; Jia et al. 2019; Reis, Silva, and Pinho 2016). Herold et al. (2003) applied 

landscape metrics and an urban growth model in Santa Barbara, California from 1930 to 2001 and 

predicted the urban growth to the years 2030. They concluded the more compact growth around 

existing urban cores, rather than a leap frog urban development (Herold et al. 2003). Aithal et al. 

(2013) analyzed the land use dynamics in the rapidly urbanizing of Bangalore, India using multilayer 

perceptron, based on Cellular Automata (CA)-Markov and landscape metrics. Their results showed 

that from 2012 to 2020, urban land would expand 108% (Aithal et al. 2013). Megahed et al. (2015) 
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modeled the urban growth of Greater Cairo, Egypt, using landscape metrics and a Land Change 

Modeler. They concluded that urbanization had accelerated from 4.64% to 17.30% during 1984—

2014 and would continue to increase to 21.93% in 2025 (Megahed et al. 2015).  

Guangdong, Hong Kong, and Macao (GHKM) is one of the most significant and rapidly developing 

region in China. Guangdong, Hong Kong, and Macao has undergone a transformation from its 

planned economy to a market oriented economy, fast regional economic and social development 

policy/strategy, and urbanization acceleration process, all of which have had a significant impact on 

the spatial pattern of the land use land cover change (Han et al. 2015; Hasan et al. 2019; J. Liu et al. 

2014; Rimal et al. 2017). The economic center of China, especially the Pearl River Delta (PRD) 

region of the Guangdong, Hong Kong, and Macao has remained the primary destination region for 

local and international immigrants thus, causes intense settlement (Braimoh and Onishi 2007). The 

migration occurred because of the potential of remunerative job opportunities, a better education 

system, and other daily life facilities. This unprecedented urbanization and industrialization has 

caused the fragmentation of farmland into an urban fringe, with the loss of traditional farming 

activities and a shift in the character of rural communities (Wu et al. 2006). Consequently, the 

characteristics of land use land cover in Guangdong, Hong Kong, and Macao have changed 

significantly. If such circumstances continue, Guangdong, Hong Kong, and Macao will then quickly 

become an urban slum with the least suitable living conditions for urban residents (World Bank 2011). 

Slums exist in the neighborhood of posh areas and the exterior of big cities because the latter attract 

people for economic reasons. Both pull and push factors of rural urban migration, land price 

differences, non-affordable prices at densely urbanized area are underlying factor of growth of slums 

in urban areas, spiraling urban poverty, the inability of the urban poor to access affordable land for 

housing, and insecure land tenure. The various push factors operating at the place of origin include 

natural rate of population growth, creating population pressure on the existing resources, exhaustion 

of natural resources; natural calamities such as floods. The following may be counted as the pull 

factors: establishment of new industries with the provision of new opportunities for gainful 

employment; facilities for higher education in cities; pleasant climatic conditions, etc. Slums are the 
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products of failed policies, inappropriate regulation, dysfunctional land markets, unresponsive 

financial systems, and a fundamental lack of political will. Each of these failures adds to the toll on 

people already deeply burdened by poverty and forces them to live in slums.  

Thus, knowing the state of the future land use land cover of the Guangdong, Hong Kong, and Macao 

is a paramount requirement to enable the adequate design of potent urban, demographic, and 

economic policies and also an increase in or protection of farmland, to ensure sustainable 

development (Hyandye and Martz 2017; World Bank 2011). Therefore, the main objective of this 

study is to forecast future land use land cover changes, particularly urban growth, based on Land 

Change Modeler. Moreover, in the detailed analysis of the land use land cover change patterns, 

landscape metrics were also used to decipher and analyze model predicted land cover patterns in the 

study area, and was further extended to the year 2031. This study also aims to provide a scientific 

basis to decision and policy makers to enable the development of strategies that will ensure regional 

ecological protection and sustainable development. 

5.2 Materials and Methods  

5.2.1 Data Acquisition 

The land use land cover data for Guangdong, Hong Kong, and Macao for the years 2005, 2010, and 

2017 have been produced in the chapter 4, which was based on the supervised classification of multi-

temporal Landsat data (thematic mapper (TM)/enhanced thematic mapper (ETM+)/operational land 

imager (OLI)) at a 30m resolution (Hasan et al. 2019). Other data sets include Shuttle Radar 

Topographic Mission (SRTM) 30m Digital Elevation Model (DEM) downloaded from the 30m 

SRTM Tile downloader (Anon n.d.), roads network data and water channel network data obtained 

from the “Open Street Map (OSM)” (Anon n.d.). Slope, aspect, and hillshade were derived from the 

DEM. All the data were projected to Universal Transverse Mercator (UTM) projection i.e., WGS-

1984-UTM-Zone-49N, with the spatial resolution of 30m.  

5.2.2 Land use land cover change modelling and future scenarios  

Land Change Modeler (LCM) in TerrSet (formerly known as IDRISI) software was originally 

designed to manage biodiversity influences, and to analyze and forecast land use land cover changes 
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(Gibson et al. 2018; Hamdy et al. 2017; Mishra et al. 2014; Roy et al. 2014; Shivamurthy and Kumar 

2013). This model is based on the artificial neural network (ANN), Markov Chain matrices, and 

transition suitability maps, generated by training multilayer perceptron (MLP) or logistic regression 

(Ansari and Golabi 2019; Mas et al. 2014; Megahed et al. 2015). This model predicts the land use 

land cover changes from the thematic raster images having the same number of classes in the same 

sequential order (Mas et al. 2014). In this study, the Land Change Modeler is used to forecast the 

future land use land cover changes in Guangdong, Hong Kong, and Macao for the next fourteen years 

(for 2024 and 2031) by following the four steps: (1) change analysis, (2) transition potential and 

determination of explanatory variables, (3) change prediction, and (4) model validation (Dzieszko 

2014; Megahed et al. 2015). 

5.2.2.1 Change analysis 

In the change analysis panel, the changes between two different time periods time 1 and time 2 land 

use land cover maps were calculated. The change analysis give a quick evaluation of quantitative 

change, by charting gains and losses, among different land cover types (Mishra et al. 2014). It also 

estimates net change, persistence, and the specific transition of land cover information both in map 

and geographical forms (Hamdy et al. 2017). These changes are important to identify the dominant 

transition from one class to another, all the dominant transitions are then grouped and targeted 

(Dzieszko 2014; Megahed et al. 2015). The spatial trend of change provides the trend in the form of 

a map, with the best fit polynomial trend surface adhering to the pattern of change (Hamdy et al. 

2017).  

5.2.2.2 Transition potential modeling and driving forces determination 

5.2.2.2.1 Transition Potential 

The transition potential determines the area of change (Megahed et al. 2015). Land cover transitions 

can be grouped into sub-models, if it is assumed that for each transition, the underlying drivers of 

change are the same (Pérez-vega et al. 2012). For example, the processes that influence the land use 

land cover to change from farmland to built-up land may be the same as those that affect the change 

of forest to built-up land. Thus, land use land cover changes with common driving variables were 

grouped into sub-models (Gibson et al. 2018). In addition, evidence likelihood was selected to 
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determine the relative frequency of different land use land cover types which had occurred within the 

transitional areas (Megahed et al. 2015). 

5.2.2.2.2 Selection of explanatory variables 

Explanatory variables or drivers, responsible for land use land cover change, were selected on the 

basis of factors that increase or decrease the appropriateness of a specific alternative for the activity 

of concern (Mishra et al. 2014; Wang and Maduako 2018). Factors, such as, topography is a 

significant factor for urban change. Topography influences the city size and its spatial distribution, 

by possible restraints of water supply and provision of adequate land (Müller, Steinmeier, and Küchler 

2010). In general, the slope, aspect, and elevation are recognized as the most imperative topographic 

factors affecting urban sprawl (Braimoh and Onishi 2007; Reilly, Mara, and Seto 2009; Ye et al. 

2013). Proximity factors such as distance to water channels and distance to roads also play an 

imperative role in urban sprawl, as each provide convenience to dwellers to access resources and 

everyday needs. Neighborhood effects generally show that if a non-built-up pixel surrounded by built-

up land, it is more likely to eventually to transform into a built-up area. As regards, land use land 

cover planning and policy, factors differ because of the different institutional contexts of the different 

study areas. For example, in this study area (GHKM), urban development can be influenced by 

different planning guidelines and regulations, including master plans and zoning (Mishra et al. 2014; 

Ozturk 2015; Wang and Maduako 2018). In this study, both topographic and proximity factors were 

selected to scrutinize the urbanization and land use land cover change impacts. These variables are 

expected to have a significant influence on futures changes (Gibson et al. 2018; Maria et al. 2014). 

The significance of each variable is tested using Cramer’s V, a quantitative measure (Gibson et al. 

2018; Hamdy et al. 2017). However, Cramer’s V does not assure a strong performance of the 

variables, since it cannot represent the scientific prerequisites and the multifaceted nature of the 

relationships. It simply helps to determine whether or not to include the particular variable as a driving 

factor of land use land cover change (Kumar et al. 2015; Megahed et al. 2015; Raschio and Alei 

2016). 
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5.2.2.2.3 Multilayer perceptron (MLP) 

Multilayer perceptron (MLP) neural network is a feedforward neural network with one or more layers 

between the input and output layers. MLP depends on the back propagation (BP) algorithm that is a 

supervised training algorithm (Ahmed 2011; Eastman 2009; Mishra et al. 2014). It plays a central 

role in the land change modeler, and consists of three layers (1) input, (2) hidden, and (3) output 

(Mishra et al. 2014). Through feed-forward algorithms, networks calculate weights for input values, 

input layer nodes, hidden layer nodes, and output layer nodes, all of which propagate through the 

hidden layer, (set of computational nodes) to output layers. For modeling, multilayer perceptron 

allows more than one transition at a time (Megahed et al. 2015; Raschio and Alei 2016). In multilayer 

perceptron, through hidden layers, the data flows in one direction, from an input layer to an output 

layer and determines non-linear relationships. Within the layers, the nodes are assembled and every 

node receives an input signal from the different nodes and yields a transformed signal to other nodes. 

After assigning weight to each original input layer, which includes a threshold, it passes through either 

a linear or non-linear stimulation function. To reduce the error between the observed and the expected 

results, the weights must be resolved in the training process, before the system can be utilized for 

forecast purposes (Megahed et al. 2015; Raschio and Alei 2016). After the multilayer perceptron has 

been trained with various influencing factors (Mas et al. 2014), for each of the sub-models it therefore 

produces time-explicit transition potential maps that represent time-explicit change potential (Council 

2014; Eastman 2009; Gibson et al. 2018; Rimal et al. 2017). 

5.2.2.3 Change prediction 

Change prediction is the last step in which the future prediction is executed on the basis of Markov 

chain, and using the historical rate of change and the transition potential maps (Dzieszko 2014).  

5.2.2.3.1 Markov Change Model 

The Markov chain model, is a stochastic modelling procedure, extensively used for land use land 

cover change modelling. This model forecast the future land use land cover from time t=1 to another 

time t+1 (Falahatkar and Soffianian 2011), on the basis of the transition probability matrix and the 

transition area matrix of each land use land cover class (Hyandye and Martz 2017). The transition 

matrix represent the probability of land use land cover change in the observed time period from one 
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land use group to another (Behera et al. 2012; Han et al. 2015; Wang and Murayama 2017). Transition 

probability maps, generated through multilayer perceptron, provide a probability estimation that each 

pixel will either be converted into another land cover type or persist be adjusted during annual time 

steps (Gibson et al. 2018). 

5.2.2.4 Future Scenario 

Land Change Modeler produce two kinds of predictions: (1) hard prediction, and (2) soft predictions. 

A hard prediction produces a predicted map, (Megahed et al. 2015) based on a multi-objective land 

allocation (MOLA) module (Gibson et al. 2018). One of the land cover classes is assigned to each 

pixel, on the basis of their most likely probability. Soft prediction determines the probability of the 

pixel changing to another land category, by producing a vulnerability map, where the value from 0-1 

is assigned to each pixel (Megahed et al. 2015).  

5.2.2.5 Model validation 

Model validation is needed to assess the accuracy. Thus, the objective of the validation process is to 

determine the quality of 2017’s simulated map in comparison with 2017’s actual land use land cover 

map. For model validation, there are two well recognized methods: (1) Kappa statistics and (2) 

relative operating characteristics (ROC) (Mishra et al. 2014; Omar et al. 2014). Kappa statistics is a 

quantitative method that measures the goodness of fit or the best value between the model prediction 

and the observed maps, revised for precision by possibility in the form of K no (overall accuracy), 

kappa location (kappa for grid cell level location), K location Strata (kappa location strata), and K 

standard (kappa standard). The range of Kappa values is from 1 to -1, where positive values show, by 

chance, an unusual greater improved agreement, and negative values are a bad agreement (Araya and 

Cabral 2010; Chaudhuri and Clarke 2014; Omar et al. 2014; Roy et al. 2014; Sun 2008). Kappa values 

were categorized as poor below 0.40, fair to good from 0.40 to 0.75, and excellent over 0.75 (Roy et 

al. 2014). Relative operating characteristics, however, is well able to compare a Boolean map of 

"reality" with a suitability map. It is defined as a graph between the rate of true positives on the 

vertical axis and the rate of false positives on the horizontal axis. Its value ranges between 0 and 1, 

where, 1 shows a perfect fit and 0.5 shows a random fit (Aburas et al. 2018; Hamdy et al. 2017; 
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Martínez, Suárez-seoane, and Luis 2011; Mas et al. 2014; Sun 2008). The threshold value for the 

relative operating characteristics used in this study is 100. If the assessment of the simulation yields 

valid results (Ozturk 2015; Sahalu 2014), the calibrated model with the same driving forces then 

predicts the 2024 and 2031 land use land cover map, modelling the changes between 2005 and 2017 

land use land cover maps. 

5.2.3 Landscape metrics 

Landscape metrics are used to illustrate and compute the spatial characteristics of patches, land use 

land cover class area, and the whole land cover over time. This is useful for monitoring, measuring, 

and analyzing land use land cover change, such as changes in urban sprawl and its structure (Akin, 

Erdoʇan, and Berberoʇlu 2013). They illustrate significant landscape information such as the 

composition and configuration, heterogeneity, diversity, compactness, fractal dimensions, linearity 

and squareness, complexity, fragmentation, and morphological characteristics. However, their 

selection, interpretation, analysis, and evaluation depend on the specific study context, classified map, 

and the inherent process of change (Aithal et al. 2013; Araya and Cabral 2010; Geri et al. 2010; 

Herold et al. 2003; Megahed et al. 2015; Nichol, Abbas, and Fischer 2017). The matrices used for 

this study are listed in Table 8, and are based on similar studies (Akin et al. 2013; Alberti and Waddell 

2000; Anon 2019; Araya and Cabral 2010; Fang et al. 2014; Herold et al. 2003; Herold, Scepan, and 

Clarke 2002; JACK, Laack, and Zimmerman 2005; Jain et al. 2011; Lombardi, Perotto-Baldivieso, 

and Tewes 2020; Kevin McGarigal, Cushman, and Ene 2012; Megahed et al. 2015; Nichol et al. 2017; 

Perotto-Baldivieso et al. 2011; Reis, Silva, and Pinho 2015). These metrics were computed using the 

FRAGSTATS software (K. McGarigal, Cushman, and Ene 2012) based on land use land cover maps 

for the years 2005, 2010, 2017, and predicted 2024 and 2031. 

Table 8. The description of landscape metrics used for morphological analysis (where, CL = class level, LL = 

landscape level). 

Category Metric Name 
Acronym 

Unit 

Level 

Used 
Description Range 

Patch Size 

and Density 

 

Patch Density (PD) 

Number of 

patches per 

100 ha 

CL The number of patches per unit area PD ≥1, no limit 

Percentage of 

Landscape (PLAND) 
% CL The aggregated area of landscape. 0—100 
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Mean Patch Area 

(MPA) 
ha CL An average patch size in each class 

MPA > 0, no 

limit 

Shape and 

Edge 

 

Edge Density (ED) 

 
m/ha CL 

Calculate the total lengths of all edge segments of 

corresponding patch type per unit area. Edge density 

explained the complexity of each patch shape. 

ED ≥1, no limit 

Largest Patch Index 

(LPI) 

 

% CL 
Ratio between the largest patch of the corresponding 

patch type and the total landscape area. 
0 < LPI ≤ 100 

Area Weighted Mean 

Fractal Dimension 

Index (AWMPFD)  

 

None LL 

Measure the average fractal dimensions of patches of a 

particulate patch type divided by the total sum of the 

patch area. 

1 ≤ AWMPFD ≤ 

2 

Proximity 

 

Mean Euclidean 

Nearest Neighbor 

Distance (ENN_MN) 

 

m CL 

Measure the minimum edge to edge distance to the 

nearest neighbor same patch type. It explains isolation of 

corresponding patch type or landscape.  

ENN_MN > 0 

Diversity 

and Texture 

Contagion 

(CONTAG) 

 

% LL 
Measure the total probability that a patch of cells 

neighboring the same type of cells. 

0 < CONTAG ≤ 

100 

Shannon's Diversity 

Index 

 

None LL 

Indicate diversity in a landscape from the abundance of 

patch types. It increases as the number of different patch 

types increases or the distribution of area/land among 

patch types/classes becomes more equitable. 

Shannon’s 

Entropy ≥ 0, no 

limit 

5.3 Results 

5.3.1 Land cover change analysis 

The land use land cover maps for the years 2005, 2010, and 2017 (Hasan et al. 2019) are shown in 

Figure 3 (Chapter 4).  The area statistics of different land use land cover categories between different 

years are shown in Table 9. During 2005—2017, the built-up area increased from 5.84% (11475.77 

km2) to 10.31% (20228.95 km2), with a significant annual rate of change of 4.72%. The growth of 

built-up area is different in different periods i.e., 2.41% during 2005—2010 (period 1) and 2.06% 

during 2010—2017 (period 2). This significant rise in built-up area has resulted in a decline in both 

farmland and fishponds. Farmland covered an area of 40.77% (80043.82 km2) in 2005, but decreased 

substantially to 37.63% (73890.27 km2) in 2010 and 33.03% (64938.68 km2) in 2017, respectively. 

Thus, farmland declined by 3.13% during 2005—2010, 4.60% in 2010—2017, and 7.73% in 2005—

2017. Similarly, fishponds decreased from 1.56% (3059.93 km2) in 2005 to 0.97% (1902.79 km2) in 

2017, with a significant change of 3.96% (1157.13 km2). Furthermore, as a result of different 

afforestation programs, forest cover increased from 40.84% (80180.31 km2) in 2005 to 42.39% 

(83223.94 km2) in 2010 and 45.02% (88390.98 km2) in 2017, respectively (Table 9). 
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Table 9. Area statistics of the land use land cover classes for the years 2005, 2010, and 2017. 

 Year 2005  2010  2017  Change 

2005—2010 
Change 

Change 

2010—2017 
Change 

Change 

2005—2017 
Change 

Classes  Km2 % Km2 (%) Km2 (%) Km2 % Km2 % Km2 % 

Forest 80180.31 40.84 83223.94 42.39 88391.98 45.02 3043.63 1.55 5168.03 2.58 8211.67 4.13 

Grassland 399.84 0.20 143.26 0.07 189.47 0.10 -256.58 -0.13 46.21 0.02 -210.37 -0.11 

Water 20249.86 10.31 20211.49 10.29 20656.34 10.51 -38.37 -0.02 444.84 0.21 406.47 0.19 

Fishponds 3059.93 1.56 2453.32 1.25 1902.79 0.97 -606.61 -0.31 -550.53 -0.28 -1157.14 -0.59 

Built-up 11475.77 5.84 16203.51 8.25 20228.95 10.31 4727.74 2.41 4025.44 2.06 8753.18 4.45 

Bareland 934.47 0.48 218.44 0.11 275.21 0.14 -716.03 -0.36 56.77 0.03 -659.26 -0.34 

Farmland 80043.82 40.77 73890.27 37.63 64938.68 33.03 -6153.55 -3.13 -8951.59 -4.60 -15105.14 -7.73 

The gains and losses of different land use land cover thematic classes were calculated, as shown in 

Table 10. Major land use land cover changes include (1) expansion of built-up land, (2) reduction in 

farmland and fishponds, and (3) increase in forest cover. During 2005—2017, gain and loss in forest 

cover was 10092.25 km2 (2.09%) and 1880.78km2 (-0.39%), with a net gain of 8211.47 km2 (1.70%). 

Fishponds loss 2276.21 km2 (-0.47%) and gained 880.06km2 (0.18%), with a net loss of 1396.15 km2 

(-0.29%). Farmland lost 15672.26 km2 (-3.25%) and gained 566.94 km2 (0.12%) with a net loss of 

15105.30 km2 (-3.13%). Built-up land however, increased with a net gain of 8753.13 km2 (1.81%). 

During the same period, the classes that contributed to the net change of built-up area are listed as: 

forest 1067.32 km2 (0.22%), grassland 47.42 km2 (0.01%), water 272.06 km2 (0.06%), fishponds 

867.93 km2 (0.18%), bareland 346.48 km2, and farmland 6151.92 km2 (0.07%) were transformed to 

built-up area. The contribution to the net change of other classes are shown in Table 10 (2005—2017). 

In summary, the reduction in farmland concurs with the expansion of radioactivity aligned to the 

urbanization growth. 

Table 10. Land use land cover gains, losses and contributions to net change in each category during periods 

2005—2010, 2010—2017, and 2005—2017. 

2005—2010 
 Gain Loss Net contribution 

Classes  Forest Grassland Water Fishponds Built-up Bareland Farmland 
 % % % % % % % % % 

Forest 0.88 0.25 0.00 -0.02 0.00 0.00 0.12 0.00 -0.73 

Grassland 0.01 0.06 0.02 0.00 0.00 0.01 0.00 0.00 0.02 

Water 0.18 0.19 0.00 0.00 0.00 -0.01 0.02 0.00 -0.01 

Fishponds 0.23 0.36 0.00 -0.01 0.01 0.00 0.11 0.00 0.01 

Built-up 0.98 0.00 -0.12 0.00 -0.02 -0.11 0.00 -0.06 -0.67 

Bareland 0.03 0.18 0.00 0.00 0.00 0.00 0.06 0.00 0.09 

Farmland 0.21 1.48 0.73 -0.02 0.01 -0.01 0.67 -0.09 0.00 

2010—2017 

Forest 1.39 0.32 0.00 0.00 0.04 -0.02 0.14 0.02 -1.24 

Grassland 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 
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Water 0.27 0.18 -0.04 0.00 0.00 -0.07 0.04 0.00 -0.02 

Fishponds 0.18 0.35 0.02 0.00 0.07 0.00 0.06 0.00 0.01 

Built-up 0.83 0.00 -0.14 0.00 -0.04 -0.06 0.00 -0.01 -0.59 

Bareland 0.05 0.04 -0.02 0.00 0.00 0.00 0.01 0.00 -0.01 

Farmland 0.07 1.92 1.24 0.01 0.02 -0.01 0.59 0.01 0.00 

2005—2017 

Forest 2.09 0.39 0.00 -0.02 0.03 -0.05 0.22 -0.04 -1.84 

Grassland 0.03 0.07 0.02 0.00 0.01 0.00 0.01 0.00 0.01 

Water 0.27 0.19 -0.03 -0.01 0.00 -0.07 0.06 0.00 -0.03 

Fishponds 0.18 0.47 0.05 0.00 0.07 0.00 0.18 0.00 -0.01 

Built-up 1.81 0.00 -0.22 -0.01 -0.06 -0.18 0.00 -0.07 -1.27 

Bareland 0.05 0.18 0.04 0.00 0.00 0.00 0.07 0.00 0.02 

Farmland 0.12 3.25 1.84 -0.01 0.03 0.01 1.27 -0.02 0.00 

5.3.2 Simulation 

5.3.2.1 Transition potential modelling and determining driving variables  

The land use land cover change results indicated that the significant changes in urban areas occur 

mainly from the deterioration of farmland and fishponds. The transition considered in the Land 

Change Modeler are: Forest – Built-up, Grassland – Built-up, Water – Built-up, Fishponds – Built-

up, Bareland – Built-up, Farmland – Built-up, and Farmland – Forest. All these transitions, based on 

visual evidence of the urban spatial trend, had the same driving force. Table 11 illustrates the potential 

explanatory power of each driving force, represented by Cramer’s V. The variable that has a Cramer’s 

V value of about 0.15 or higher are useful, while those with values of 0.4 or higher are good. Thus, 

the selected factors were found to be relevant (Figure 11). Slope show significant influence on urban 

growth especially in the Pearl River Delta and on the eastern side of the study area. This could be 

attributed to their relatively flat terrain where the constraints of slope are not as significant as that in 

the mountainous regions. Both hillshade and aspect indicate exposure to sunlight, which can play a 

significant role in the selection of land for farmland and urban area encroachment. On the other hand, 

it is also important factor for the increasing growth of tropical/subtropical forest types in the study 

area. Hillshade may be correlate with slope and aspect as it reflect the topographic patterns associated 

with both of them. Other variables are also found to be an important spatial determination of urban 

growth. After the selection of the predictor variables, transitions were modelled in one transition sub-

model, and generated the transitions potential maps through multilayer perceptron with an accuracy 

of above 70% (Figure 12).   
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Table 11. Cramer’s V values of explanatory variables. 

Explanatory variables Cramer's V 

Slope 0.3448 

Aspect 0.3107 

DEM 0.2665 

Hillshade 0.2526 

Distance to roads 0.2162 

Distance to water channel 0.1787 

 

 

Figure 11. Maps of the variables used for the spatial distribution of land change modeling DEM, slope, 

aspect, hillshade, distance to roads, and distance to water channel. 
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Figure 12. Transition potential maps from (a) forest to built-up (b) grassland to built-up, (c) water to built-up, 

(d) fishponds to built-up, (e) bareland to built-up, (f) farmland to built-up, and (g) farmland to forest. 

5.3.2.2 Land use land cover Transition Analysis 

In this study, the transition probability matrices were produced for the years 2017 (using 2005 and 

2010 land use land cover layers), 2024 (using 2010 and 2017 land use land cover layers), and 2031 

(using 2010 and 2017 land use land cover layers) (Table 12). The transition probability matrix shows 

the probability of a conversion for each land use land cover class to another class, within the specified 

time. The change of probabilities, between two different time periods reveal the significant increase 

of urban areas at the cost of a decrease in farmland and fishponds in the Guangdong, Hong Kong, and 

Macao region. 

Table 12 (For 2017) shows that forest and built-up are the most stable classes with respective 

probabilities of 0.97 and 1.00. Water, farmland, and fishponds are the most dynamic classes with 

transition probabilities of 0.93, 0.87, and 0.28. In these land cover classes, farmland was mainly 
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converted into built-up land and forest cover, whereas, fishponds were primarily transformed into 

built-up land. The occupation of both farmland and fishponds by an urban sprawl is evident. From 

Table 12 (for 2024 and 2031) the transition of several land use land cover classes shows a consistency 

with the previous periods. Forest and built-up land are still the most stable classes with respective 

transition probabilities 0.96 and 1.00 (for 2024) and 0.94 and 1.00 (for 2031). The most dynamic 

classes are farmland and fishponds, which primarily transformed into built-up land with respective 

transition probabilities 0.1057 and 0.2956 (for 2024) and 0.151 and 0.3319 (for 2031). Transformation 

of farmland into forest had a probability of 0.113 for 2024 and 0.1582 for 2031 indicates that different 

afforestation policies will continue to play a significant role in making greener Guangdong, Hong 

Kong, and Macao.  

 

Table 12. Transition probability matrix of land use land cover classes for the years 2017, 2024, and 2031. 

Transition Probability Matrix 2017 

  Forest Grassland Water Fishponds Built-up Bareland Farmland 

Forest 0.9789 0.0007 0.0033 0.0054 0.0104 0.001 0.0000 

Grassland 0.3594 0.0926 0.054 0.0708 0.0712 0.0026 0.3495 

Water 0.0141 0.0001 0.9385 0.0306 0.0087 0.0004 0.0076 

Fishponds 0.1502 0.0006 0.2139 0.2888 0.2244 0.0017 0.1204 

Built-up 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Bareland 0.0851 0.0016 0.0242 0.024 0.3149 0.0098 0.5404 

Farmland 0.0606 0.0000 0.0025 0.0035 0.0555 0.0008 0.877 

Transition Probability Matrix 2024 

Forest 0.9615 0.0007 0.0076 0.0069 0.0223 0.001 0.0000 

Grassland 0.4148 0.0152 0.0715 0.0347 0.1167 0.0012 0.3459 

Water 0.0324 0.0001 0.8876 0.037 0.0246 0.0005 0.0178 

Fishponds 0.1982 0.0004 0.2587 0.106 0.2956 0.0009 0.1403 

Built-up 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Bareland 0.1211 0.0004 0.0294 0.0114 0.3541 0.001 0.4827 

Farmland 0.113 0.0001 0.0055 0.0045 0.1057 0.0008 0.7705 

Transition Probability Matrix 2031 

Forest 0.9445 0.0007 0.0119 0.0075 0.0344 0.0010 0.0000 

Grassland 0.4389 0.0017 0.0776 0.0166 0.1502 0.0008 0.3142 

Water 0.0509 0.0001 0.8411 0.0381 0.0421 0.0005 0.0272 

Fishponds 0.2224 0.0002 0.2667 0.0396 0.3319 0.0006 0.1385 

Built-up 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Bareland 0.1502 0.0001 0.0317 0.0066 0.3853 0.0006 0.4256 

Farmland 0.1582 0.0001 0.0084 0.0048 0.151 0.0008 0.6767 
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5.3.3 Validation 

Simulated and actual land use land cover maps of 2017 is shown in Figure 13. Their area statistics of 

different land use land cover classes are shown in Table 13. Visual interpretation of the modeling 

results shows that the simulated map for the year 2017 is reasonably similar to the actual map for that 

year. A more detailed analysis was accomplished using the Kappa variations and relative operating 

characteristics. Kappa variations that compared the projected land use land cover map with the actual 

land use land cover map of the year 2017 resulted in Kappa value = 0.97, Kno = 0.97, kappa location 

= 0.99, and k standard = 0.96, whereas the relative operating characteristics value i.e., area under the 

curve is 0.914 (Figure 14). Thus, high values of both Kappa and relative operating characteristics 

interpret that the majority of the study area experienced no change representing the consistency is 

quite strong between the predicted results and the actual land use situation. However, model predict 

less forest cover and more built-up area and fishponds than the actual land cover map. Both Kappa 

and relative operating characteristics results confirms that the model is reliable for the Guangdong, 

Hong Kong, and Macao and can be used to predict future land use land cover change under different 

scenarios. 

 

Figure 13. Actual and simulated land use land cover map for the year 2017 of the Guangdong, Hong Kong, 

and Macao. 

Table 13. Area statistics of actual and predicted land use land cover map of 2017. 

Classes 
Actual Predicted 

(km2) (km2) 

Forest 88391.98 86835.34 

Grassland 189.47 133.06 
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Water 20656.34 20035.57 

Fishponds 1663.83 1902.80 

Built-up 20228.95 21975.24 

Bareland 275.21 149.66 

Farmland 64938.68 65311.12 

 

 

Figure 14. Relative operative characteristics (ROC) curve which provide the correlation between predicted 

and actual land use land cover map. The closer the curve approaches the upper left corner, the stronger is the 

predictive power of the model. For this study relative operative characteristic value is 0.914, indicating strong 

consistency between predicted and actual land use land cover map. 

5.3.4 Future Scenario /simulation 

After successful validation of the model, based on real land use land cover maps the model predicted 

the urban growth and the land use land cover maps for the years 2024 and 2031 (Figure 15). The 

markov model also provides the transition probability matrix for the years 2024 and 2031 (Table 12 

for 2024 and 2031). The statistical change analysis of projected land cover is shown in Table 14. The 

model predicts that built-up land will continue to increase by 15710.20 km2 (136.90%) in 2024 and 

20518.78 km2 (178.80%) in 2031, compared to 11475.77 km2 in 2005, to the detriment of a decrease 

of farmland and fishponds (Table 14). Farmland will decrease by 22313.79 km2 (-11.36%) in 2024 

and 29000.81 km2 (-36.25%) in 2031, compared to the 80043.82 km2 in 2005. Fishponds will decrease 

by 1331.81 km2 (-0.68%) and 1420.87 km2 (-0.72%) in 2024 and 2031, compared to 3059.93 km2 in 

2005. However, forest cover will continue to increase by 9536.49 km2 (4.86%) and 11869.30 km2 

(6.05%) in 2024 and 2031, compared to 80180.31 km2 in 2005 (Table 14). The overall change in the 
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land use land cover in the predicted years is shown in Figure 16. In summary, the predicted results 

confirm that such patterns will continue in future because of the results of China’s economic hub, 

economic policy, housing, industry, and development of the infrastructure. These changes have 

adverse impacts on the urban environment. Therefore, with the help of future prediction results, 

proper planning and environmental management plans can control the adverse effect of these changes.  

 

Figure 15. Predicted land use land cover map for the years 2024 and 2031. 

 

Figure 16. Area of the land use land cover classes (a) forest, water, built-up, and farmland, (b) grassland, 

fishponds, and bareland over the years 2005, 2010, 2017, and predicted 2024 and 2031. 

 

Table 14. Area statistics of the projected land use land cover classes in 2024 and 2031. 

 2017 2024 2031 
Change 

2017—2024 

Change 

2017—2031 
Change 

Change 

2005—2031 
Change 

Classes km2 km2 km2 km2 % km2 % km2 % 

Forest 88391.98 89716.81 92049.62 1324.83 1.50 3657.64 4.14 11869.30 14.80 

Grassland 189.47 126.54 121.74 -62.93 -33.21 -67.72 -35.74 -278.10 -69.55 

Water 20656.34 19714.21 19360.51 -942.13 -4.56 -1295.82 -6.27 -889.35 -4.39 

Fishponds 1663.83 1728.12 1639.06 64.29 3.86 -24.77 -1.49 -1420.87 -46.43 

Built-up 20228.95 27185.97 31994.55 6957.03 34.39 11765.61 58.16 20518.78 178.80 

Bareland 275.21 141.09 134.27 -134.12 -48.73 -140.94 -51.21 -800.20 -85.63 

Farmland 64938.68 57730.03 51043.01 -7208.65 -11.10 -13895.67 -21.40 -29000.81 -36.23 
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Furthermore, it can be concluded from gain and loss Table 15 that farmland will be adversely 

influenced by an upsurge in other land use types, specifically built-up areas. A significant gain in both 

built-up and forest, has been recorded because of the socioeconomic development process and 

different land use policies such as the Land administration Law (LAL). Table 15 also shows the 

contribution to net change in each land use land cover category, both positively and negatively in the 

Guangdong, Hong Kong, and Macao during 2005—2031. It is worth noticing that the loss of farmland 

was mostly transferred into two classes i.e., (1) forest (18093.67 km2) and (2) built-up (11323.29 

km2). Table 15 shows that loss of fishponds dominantly converted into built-up area (1320.78 km2). 

Due to continuous increase in urban growth and development, the green ecosystem in the Guangdong, 

Hong Kong, and Macao will be significantly influenced, making it crucial for local institutions to 

establish exacting policies to protect and preserve the local environment in the long haul.  

Table 15. Gains, losses, and contributions to net change in each land use land cover types in the Guangdong, 

Hong Kong, and Macao during 2005—2031. 

2005—2031 Gain Loss Net contribution 

Classes     Forest Grassland Water Fishponds Built-up Bareland Farmland 

  % % % % % % % % % 

Forest 3.95 0.52 0.00 -0.02 0.03 -0.03 0.37 -0.04 -3.75 

Grassland 0.02 0.07 0.02 0.00 0.01 0.00 0.02 0.00 0.00 

Water 0.24 0.24 -0.03 -0.01 0.00 -0.08 0.15 -0.01 -0.03 

Fishponds 0.15 0.49 0.03 0.00 0.08 0.00 0.27 0.00 -0.03 

Built-up 3.27 0.00 -0.37 -0.02 -0.15 -0.27 0.00 -0.11 -2.35 

Bareland 0.03 0.19 0.04 0.00 0.01 0.00 0.11 0.00 0.01 

Farmland 0.05 6.20 3.75 0.00 0.03 0.03 2.35 -0.01 0.00 

In order, to examine and understand the influence of land use land cover change on green lands (i.e., 

forest and farmland) and the key role of urbanization, Figure 17 shows the conversion of farmland 

and forest into other land use types. The spatial visualization provided by the Land Change Modeler 

shows that in the next 14 years built-up areas are the most momentous land use land cover class and 

will negatively affect the farmlands. Figure 17b shows that the forest cover will continue to increase 

in the Guangdong, Hong Kong, and Macao over the next 14 years. 
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Figure 17. Transition from (a) farmland to all categories and (b) forest to all categories between 2005 and 

2031. 

5.3.5 Landscape metrics and urban analysis 

Figure 18 reflects the changes in spatial morphology of the landscape at class and landscape level. 

With the increase in the ‘percentage of the landscape’ of both forest cover and built-up land, the ‘patch 

density’ and ‘edge density’ increased significantly (Figure 18a-c). The patch density for forests cover 

increased from 0.46 to 0.53 and for built-up from 0.35 to 0.49 during 2005—2017 and will continue 

to increase during 2017—2031 (Figure 18b). This signifies the considerable growth of landscape 

complexity with the increasing human-induced activities. The largest patch index increases for both 

forest cover (from 4.06% to 7.33%) and built-up land (from 0.35% to 1.03%) during 2005—2017 and 

predicted result show that it will continue to increase to 11.60% in 2024 and 12.21% in 2031 (Figure 

18d). This indicate the corresponding patch type uniformity. A ‘mean patch area’, which is a critical 

measure of habitat fragmentation, will be decrease for forest cover from 36.17 ha in 2005 to 30.72 ha 

in 2031and increase for built-up land from 6.71 ha in 2005 to 11.10 ha in 2031. Smaller ‘mean patch 

area’ together with larger ‘patch density’ and ‘largest patch index’ for forest cover revealed 

fragmentation. However, larger ‘mean patch area’ together with larger ‘patch density’ and ‘largest 

patch index’ for built-up land reflects that the landscape is expected to gradually became urban 

dominated as the intensity of urbanization in the fringe as well as densification within already 

urbanized area increased tremendously, leading to the dominance of urban landscape. The mean 

Euclidian nearest neighbor distance (ENN_MN) shows an expected decrease for both forest and built-
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up land during 2005—2031 (Figure 18g). This indicating that the spaces between their neighbors is 

decreases with time due to high industrialization and unprecedented population density, thus 

suggesting coalescence. 

The ‘percentage of landscape’ of both farmland and fishponds decreased substantially during the 

study period. For farmland, the decrease in the ‘mean patch area’, ‘largest patch index’ and increase 

in ‘patch density’ reflect that farmland is highly fragmented (Figures 18b, d, and f). The ‘mean patch 

area’ decreased from 38.94 ha in 2005 to 24.04 ha in 2017 and will continue to decrease to 16.64 ha 

in 2024 and 12.03 ha in 2031. The ‘largest patch index’ showed the similar trend as a result of gradual 

urban encroachment. In contrast ‘edge density’, increases from 16.77 m/ha to 21.17 m/ha during 

2005—2031 indicating that the landscape patches turn to be complex. However, the value of ‘mean 

Euclidian nearest neighbor distance’ decreases from 220.56 m in 2005 to 211.41 m in 2031, indicating 

coalescence. For fishponds, the ‘patch density’ decreases substantially i.e., from 0.17 in 2005 to 0.09 

in 2031, indicating aggregated fishponds areas. Similarly, a significant reduction occurred in the 

‘mean patch area’, ‘largest patch index’, and ‘edge density’ during 2005—2017 and they will continue 

to decrease during 2017—2031 (Figure 18c, e, f). 

Due to more dispersed distribution, fragmentation, and heterogeneity in the landscape, ‘Shannon’s 

diversity index’ and ‘area weighted mean fractal dimension’ increases while, ‘contagion value’ 

decreases during 2005—2017 and predicted result shows that such trend will continue during 2017—

2031 (Figure 18 i-k). This indicating that urban growth will continue in the form of increasing number 

of clusters as well as expansion of existing urban centers. On the other hand, forest patches will 

increase and merged to form contiguous patches thus increasing proportion in the landscape and 

dominating land cover type. Decrease in farmland can be exacerbated due to isolation as indicated by 

increasing trend in patch density and reduction in the relative proportion in the landscape. This 

demonstrating that land development will continue to spread over the urban peripheral areas and into 

the neighboring rural areas. It will be important for policy makers to carefully design and monitor 

urban growth with least impact on the farmland fragmentation.  
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Figure 18. Temporal patterns of landscape metrics from 2005 to 2031 (a) Percentage of landscape (PLAND), 

(b) Patch density (PD), (c) Edge density (ED), (d, e) Largest Patch Index (LPI), (f) Mean patch area (MPA), 

and (g, h) Mean Euclidian Nearest Neighbor Distance (ENN_MN) at class level, whereas, (i) Shannon’s 

diversity index (SDI), (j) Area Weighted Mean Fractal Dimension (AWMPFD), and (k) Contagion (CONTAG)) 

at landscape level. 

5.4 Discussion 

After the settlement of political insurgency in 1978, the pace of infrastructure development, 

socioeconomic development, industrialization, and urbanization accelerated in the Guangdong, Hong 

Kong, and Macao. There is a complex relationship between land use land cover change, 

anthropogenic activities, and a sustainable future environment (Rimal et al. 2017). Today, a large 
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number of land use land cover and urban growth models have been developed which provide ability 

to choose a model according to the characteristics of the area of interest and the research questions 

(Han et al. 2015; Verburg et al. 2004; Verburg and Overmars 2007). In this study, Land Change 

Modeler was used to predict the land use land cover changes for the next fourteen years. Long-term 

simulations can be used as a guide for urban studies by giving future forecasts of possible changes 

under existing patterns and circumstances (Basse, Omrani, Charif, Gerber, and Bodis 2014; Ozturk 

2015). However, with the increase in simulation periods, the simulated results may be adversely 

affected. For example, land use land cover and transportation system are the two utmost imperative 

sub-systems that influences the long-term shape of a city. With time, they commonly influence each 

other, (Demirel et al. 2008) and may also affect the demands for travel and access. Construction or 

expansion of new or existing roads, for example, directly influences the settlements location and 

density. Thus, it is assumed, that the network of static transportation makes a substantial drawback 

for simulations of long haul urban development. In this regard, models have shortcoming in temporal 

dynamics (Basse, Omrani, Charif, Gerber, and Bodis 2014; Ozturk 2015; Rui and Ban 2011). Thus, 

for this study, on the basis of the continuity of the past trends of 2005—2017, projected maps for the 

years 2024 and 2031 have been simulated. To validate the model, the simulated image was compared 

with the actual land use land cover image of the same year i.e., for 2017, all the Kappa values and 

relative operating characteristics value were greater than 80%. The accuracy of this study shows 

consistency with previous studies, in which Land Change Modeler and Landsat images were used 

(Ahmed 2011; Ahmed and Ahmed 2012; Dewan and Yamaguchi 2009a; Dzieszko 2014; 

GÜLENDAM BAYSAL 2013; Han et al. 2015; Kumar et al. 2015; Megahed et al. 2015; 

Ongsomwang and Pimjai 2015; Ozturk 2015; Wang and Maduako 2018).  

5.4.1 Future consequences of land use land cover changes: built-up and 

farmland  

After the opening of the economic corridor, the Chinese government launched a series of policies 

such as the “Household Production Responsibility System (HPRS)” and the “market-directed 

economic system”. These policies have headed explicit conversion of land use land cover, such as 

transformation of farmland into built-up land (Y. Hu et al. 2019). During 2005—2017, the built-up 
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area boomed from 5.84% to 10.31% and the modeling results confirm that it will continue to increase 

to 16.30% by 2031, at a cost of substantial reduction in both farmland (from 40.77% in 2005 to 

26.00% in 2031) and fishponds (from 1.56% to 0.83% during 2005—2031). This trend is also 

reflected in the landscape metrics i.e., patch density, largest patch index, and edge density increases 

for built-up land and decreases for fishponds whereas, mean patch area decreases for both of them. 

Therefore, in each successive period, a high industrialization rate and socioeconomic development 

causes the expansion of built-up land beyond the administrative boundary of the counties, and urban 

growth exceeded the outskirts of the surrounding regions. This is also because of increase in 

household income/personal income level, living standards, and a reduction in traditional farming 

activities (Wang and Maduako 2018). However, the continuous development of historical city 

centers, more fragmented growth, and increasing coalescence between land cover neighbor’s causes 

decrease in mean euclidian nearest neighbor distance of built-up land and farmland. Moreover, 

increase in Shannon’s diversity index claims a high urban rate and dispersion of urban development 

within the period of study, causing a noteworthy influence on the urban peripheral (Araya and Cabral 

2010). With the increase in fragmentation, the contagion value decreased due to more individual units 

such as urban units. 

These changes are more pronounced in the Pearl River Delta (PRD) and on the east flank of the 

Guangdong, Hong Kong, and Macao. These two regions account for 57% of the Guangdong, Hong 

Kong, and Macao total population (Hasan et al. 2019). The probable reason is that these regions lie 

at a low elevation, and are more suitable for settlement than the high-elevated areas. Thus, 

unprecedented growth of built-up areas has overwhelmed the primitive rural areas and encompass an 

economic corridor from the PRD and the eastern sides towards the surrounding outskirts (Han et al. 

2015; Wang and Maduako 2018). However, increase in the proportion of urban dwellers have 

confirmed a rising competition between consumers in the property and land market (Chen et al. 2018). 

Such changes in land cover are attributed to the land use land cover regulations, which allowed the 

sale of the state ownership land in the property market, while the sale of collective land ownership is 

not allowed (Wu et al. 2006). This rapid development of built-up land has significantly contributed 
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to provide much lose space for other land use types, such as built-up areas. Additionally, the reason 

for the conversion of farmland into urban land is that the local government confiscated collectively 

owned farmland for public and commercial purposes and remunerated farmers for the loss of the 

affected lands. The confiscated land, then became state-owned and the rights of its land use transferred 

by sale, tender or agreement. A special market substance was established by the government and its 

related operational departments (Wu et al. 2006). 

Thus, these simulated results helped urban planners and policy decision makers to learn that further 

expansion of urban land and urban population could result in increased traffic jams, transformation 

of open spaces, increased travel time, residential energy consumption (Poelmans and Van Rompaey 

2009), and changes in living standards (Wu et al. 2006).  

5.4.2 Proximate and underlying factors 

Proximate and underlying factors of communal facility availabilities and rural urban connections 

(Rimal et al. 2017) have also ominously played a key role in the population migration in the 

Guangdong, Hong Kong, and Macao. Distance from roads and distance from water channels are also 

consider an imperative spatial determinant for urban development, thus indicating that non-urban area 

near to the city center has the higher probability of being converted into built-up land. Such areas 

were ripe for further urban planning (Wang and Maduako 2018). The next important factors for urban 

growth were slope, aspect, and hillshade (Rimal et al. 2017; Wang and Maduako 2018). The 

unparalleled combination of economic development, population, and the unintended byproducts of 

the growth of government policies has contributed to the social structure change of the Guangdong, 

Hong Kong, and Macao from a largely rural society to an urban society. Most importantly, 

urbanization and industrialization have significantly provoked farmland reduction in the Guangdong, 

Hong Kong, and Macao (Y. Hu et al. 2019; Wu et al. 2006). All the above mention drivers were 

should considered by policy decision makers when addressing land use development and the resulting 

key sustainability problems (Rimal et al. 2017). 
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5.4.2.1 Forest cover increases 

During 2005—2017, forest cover increased to 45.02% from 40.84% and simulation results show that 

it will continue to increase to 46.88% in 2031. This trend can also be observed in the increasing patch 

density, largest patch index, and edge density of forest cover. Of further interest, mean euclidian 

nearest neighbor distance of forest cover decreased as the distance between forest neighbors shrank. 

This increase in forest cover indicates that forest policies and afforestation programs is likely to 

continue in the study area. These programs may include “China Biodiversity Conservation Action 

Plan (1994) (CBCAP)” (Bentai, W. & Chunyu 1994), the “Forestry Action Plan for China’s Agenda 

21 (1995) (FAPCA)” (Klawitter 2004), the “China Ecological Environment Conservation Plan (1998) 

(CEECP)”, the “China Wetland Protection Action Plan (2000) (CWPAP)”, the “China Mangrove 

Protection Management (CMPM)”, and the “Utilization Plan (2002) (UP)” (Y. Hu et al. 2019; Jia et 

al. 2015). Forest cover in China, also increased because of the development of eucalyptus plantations 

on a large scale. Plantation of eucalyptus is not only limited to Guangdong but are also planted in 

most of southern China, such as, Guangxi, Sichuan, Yunnan, Hainan, and Fujian provinces, because 

of the high demand for timber products and high ecological value. Development of eucalyptus 

plantations on large scale for logging, however, also prompted the conversion of farmland. Therefore, 

to protect farmland conversion, it is essential to control the demand of timber products using 

numerous methods, such as, decreasing the usage of disposable chopsticks and avoid the wastage of 

paper (Y. Hu et al. 2019). The significant growth of eucalyptus has caused a set of potential ecological 

issues, such as water deprivation, biodiversity loss, and fertilizer consumption (Y. Hu et al. 2019).  

In summary, the future simulation of land use land cover change, based on the Land Change Modeler, 

have significant ramifications for urban planning and management of the Guangdong, Hong Kong, 

and Macao (Wu et al. 2006). The simulated results, given above in section 5.3.4 and 5.3.5 provide 

significant insights into the future land use land cover development, and will hence provide a better 

understanding of the area’s growth patterns and the necessity for suitable sustainable development, 

together with the protection of farmland during planning developmental. To a large extent, when 

planning a city or city growth the consequence of urban sprawl is a necessary consideration. 
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5.5 Conclusions 

During the last two decades, the Guangdong, Hong Kong, and Macao (GHKM) has experienced 

substantial changes in land use land cover with induced socioeconomic activities. This study has 

examined the features of land use land cover change and simulated future land use land cover and 

urban growth of the GHKM using Land Change Modeler (LCM). To validate the model, the projected 

2017 land use land cover map was compared with 2017 actual land use land cover map. After 

successful model validation, the land use land cover map for the years 2024 and 2031 are predicted. 

The simulated results showed an expected increase in built-up areas from 10.31% in 2017 to 16.30% 

in 2031 with the substantial decrease in farmland from 33.03% to 26.00% and fishponds from 0.97% 

to 0.83% during 2017—2031. Forest cover, however, will increase from 45.02% in 2017 to 46.88% 

in 2031 due to afforestation programs and reduction in farming activities. The spatial structure 

analysis of the landscape exhibits more disperse, heterogeneous, and fragmented landscape in future. 

Such changes in land use land cover are attributed to intense socioeconomic development, 

industrialization, and continuously sprawling urban fabric in urban pockets at suburban and peripheral 

areas. This unprecedented urbanization and an alarming loss of farmland could ultimately threaten to 

natural resources and food security. However, timely actions must be taken by urban planners and 

policy-decision makers to enable sustainable development as well as the protection of farmlands and 

other natural resources. 
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Chapter 6 

6 Impact Of Land Use Land Cover Changes On Ecosystem Service 

Value – A case study of Guangdong, Hong Kong, And Macao In South 

China4 

6.1 Introduction 

Ecosystem services (ES) can be described as the condition and processes through which natural 

ecosystems, and the species that comprise them, sustain and fulfill human well-being (Costanza, 

Batabyal, et al. 1997; Costanza, D’Arge, et al. 1997; Daily 1997). Ecosystem services can be 

considered as the goods and services that benefit human life both directly and indirectly (Feng et al. 

2012; Zhan 2015). These services include supporting services, regulating services, provisioning 

services, and cultural services. These services incorporate benefits to the society (Lin et al. 2018; 

Zhan 2015; Y. Zhang et al. 2015). In connection to rapid economic development, intense human 

activities and urbanization in the fastest burgeoning developing countries has placed pressure in the 

deterioration of key ES (Łowicki and Walz 2015; Ye, Zhang, et al. 2018; Zorrilla-Miras et al. 2014). 

Thus, the endowment of ES, its structure, and functions greatly influenced by changes in patterns, 

practices, and intensity of land use land cover (LULC) (Costanza et al. 2014; Fu et al. 2015; Gaglio 

et al. 2017; Li et al. 2010; Ye, Zhang, et al. 2018). Such changes in land cover have put both 

ecosystems and humans at risk and are expected to continue to increase in the future (Mamat et al. 

2018; Yirsaw et al. 2016; Zhan 2015). Therefore, increasing imbalance provision of ecosystems under 

the rapidly growing urbanization and development have become a focus of concern (Y. Zhang et al. 

2015). Such situations are more pronounced in developing countries such as China. 

Since China initiated the opening of economic reform and policy in 1978, socioeconomic 

development and adaptation of several land use policies have driven significant changes in LULC 

 

4 This chapter is based on a published study and being reproduced with the permission of PLOS ONE. 

Hasan, S., Shi, W., & Zhu, X. (2020). Impact Of Land Use Land Cover Changes On Ecosystem Service Value 

– A case study of Guangdong, Hong Kong, And Macao In South China. PLOS ONE, 15(4), 1–20. 

https://doi.org/10.1371/journal.pone.0231259  

https://doi.org/10.1371/journal.pone.0231259
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with increasing speed, breath, and depth (Chen et al. 2018). These changes have resulted in the urban 

expansion, loss of farmland (Mamat et al. 2018; Song and Deng 2017a), ecological damage (Y. Zhang 

et al. 2015), and horticultural development without proper planning and management of prevailing 

land resources (Yirsaw et al. 2016). China’s total urban population has increased from 11.80% in 

1950 to 58.52% in 2017, which is predicted to reach 76.10% by the end of 2050 (Anon 2017). The 

increasing human populace and socioeconomic development have confronted genuine difficulties in 

ecological land, various ecosystem services value, and food security both in space and time (Mamat 

et al. 2018; Zhan 2015). Thus, knowledge of economic valuation, analysis, and quantification of the 

effect of ongoing development on ES are necessary for policy decision makers in both the exploration 

of the means to achieve socioeconomic and ecological sustainable development (Elmqvist et al. 2015; 

Gómez-Baggethun and Barton 2013; Ye, Bryan, et al. 2018). Therefore, in recent year, ecosystem 

services have started gaining importance in order to reveal the coevolution process of both nature and 

human (Zhan 2015).  

Several studies have been performed to monitor the impact of LULC changes on the structure and 

functions of ESV in numerous regions of China (Cai et al. 2016; Chang-ping 2010; Chen et al. 2014; 

Feng et al. 2012; Hao et al. 2012; Hu et al. 2013; Li et al. 2014; Liu, Li, and Zhang 2012; Song and 

Deng 2017a; Wang et al. 2006; Wang and Sun 2016; Wu et al. 2013; Yan-qiong, Jia-en, and LI Yun 

2011; Ye, Zhang, et al. 2018) and around the world (Baró et al. 2015; Cai et al. 2013; Estoque and 

Murayama 2013; Hu et al. 2013; Kreuter et al. 2001; Liu, Li, et al. 2012; Long et al. 2014b; Mendoza-

González et al. 2012; Su et al. 2014; Sudhira and Nagendra 2013; TEEB 2013; Tianhong et al. 2010; 

Wu et al. 2013; Ye et al. 2015; Yi et al. 2017; Yirsaw et al. 2016). Due to LULC changes and 

urbanization, most of these studies showed moderate to significant decrease in ESV (Hu et al. 2013; 

Mamat et al. 2018; Su et al. 2014; Tianhong et al. 2010; Wu et al. 2013; Yirsaw et al. 2016) while 

others found almost no change (Han et al. 2016). Some studies have also revealed an increase in ESV 

(Fang et al. 2014; Li and Ding 2017; Y. Wang et al. 2014; Xia et al. 2018). Such variations in the 

services value are of the following reasons. Firstly, in terms of fast urbanization and industrialization, 

several changes in LULC occur concurrently, as a result of not only limited to urban sprawl but also 
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include various contending demands. These include reforestation and protection, natural indemnity, 

infrastructure development, comfort, and tourism and recreation (Bryan et al. 2015; Bryan and 

Crossman 2013). Secondly, there is a very close relationship between ESV types and LULC 

utilization (J. Liu et al. 2007; Ye, Bryan, et al. 2018). Given their profound implication and distinct 

nature and characteristics, the capability to summarize and apply the results of these case studies to 

other regions is limited. Thus, indicating the importance of studying the impact of LULC changes on 

ESV, which is essential to inform policy and decision-makers for sustainable planning and 

management and safe ecological system.  

Several methods exist to enable the quantification of the global terrestrial ecosystem services value 

but the method most commonly used is the “benefit transfer” developed by Costanza’s et al. (1997) 

(Costanza, D’Arge, et al. 1997). They classified the world ecosystems into 16 types and 17 subtypes 

as their services functions. Their results, however, have been seriously condemned when applied to 

China. For example, bias in some cases such as underestimated farmland ESV and overestimated 

wetland ESV (Cai et al. 2013). Their derived ESV mirrored the economic level of developed countries 

(e.g., United States and European countries) instead of developing countries such as China (Liu, Li, 

et al. 2012; Song and Deng 2017a; Wang et al. 2015). For Chinese terrestrial ecosystem services Xie 

et al. (2003) developed the equivalent per-unit-area following the same methodology proposed by 

Costanza et al. (1997) (Costanza, D’Arge, et al. 1997). They extracted the equivalent weight factor 

via a survey of 200 Chinese ecologists. Combined with land use data, equivalent per-unit-area values 

were widely used in a different regions of China to calculate ESV (Cai et al. 2013; Feng et al. 2012; 

Ye et al. 2015; Ye, Zhang, et al. 2018; Zhou et al. 2017). Using this method, LULC can act as a proxy 

by coordinating the land cover type proportional to the biomes. The later then assign the economic 

values centered on a standard, adjusted locally, and value of coefficients set. This method provide a 

type of multi-criteria technique, enabling the integration of diverse distinctive measurements into a 

solitary money related unit. Furthermore, this approach provides repeatable and comparable results, 

an assessment of change with time, and crosswise over a heterogeneous urbanization perspective. 
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Hence, it gives a constant mode to enhance knowledge with time through different case studies (Liu, 

Li, et al. 2012; Ye, Bryan, et al. 2018; Ye, Zhang, et al. 2018). 

The present study focus on Guangdong, Hong Kong, and Macao (GHKM) located in South China. 

Since 1978, economic development and urban expansion in GHKM has caused this region to become 

one of the fastest developing regions in the world. This has resulted in harsh natural conditions, 

overconsumption, and deterioration of provisioning services from nature and put both ecosystems and 

well-being at risk (Ye, Bryan, et al. 2018; Ye, Zhang, et al. 2018; Zhan 2015). The Chinese 

government has initiated different measures to improve the deteriorated ecological environment, by 

means of such as an increase in forest cover and to protect high productive cropland. The imbalance 

provision of ES is the main restricted factor both in social and economic sustainable development in 

the GHKM (Y. Zhang et al. 2015). Therefore, limited/not enough studies have been conducted in the 

GHKM that provides a comprehensive understanding and estimating the impact of such changes in 

land cover and policies on the ES. Hence, the objective of this study are as follows: to evaluate and 

quantify the effect of LULC changes on ESV in GHKM from 1986 to 2017, to assign the specific 

coefficient of ESV to each land use category using the established unit-value transfer method, and to 

scrutinize the impact of LULC changes on ESV. The contribution of individual ecosystem service 

functions changes during the study period based on modified coefficient. The coefficient of sensitivity 

is then assessed to estimate the uncertainty in the value coefficient. On the bases of the results, this 

study also aims to provide information useful to urban planners and decision-makers for the regional 

coordinate and sustainable development. 

6.2 Materials and Methods 

6.2.1 Acquisition of Data and land use land cover classification 

LULC data play a pivotal role to evaluate the ESV and the availability of historical LULC data 

provides an adequate ground to analyze changes in ESV (G. Li, Fang, and Wang 2016). The LULC 

data for the GHKM have been produced in the chapter 4 (Hasan et al. 2019) which is based on the 

classification of multi-temporal Landsat images (TM/ETM+/OLI) at 30m resolution for the years 

1986, 1989, 1994, 2000, 2005, 2010, and 2017. Each LULC map comprises of the seven classes 
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(Table 2). The overall accuracy of the classified LULC maps was about 91% and Kappa 0.88 (Hasan 

et al. 2019). To detect LULC changes, a cross-tabulation detection method was used to quantify the 

transitions. The LULC changes, related to seven images, were also mapped and graphed (Hasan et al. 

2019). The data was then used to estimate changes in various ESV and spatial analyses.  

 

6.2.2 Assigning ecosystem service value (ESV) 

In this study, we used the ES classification which is based on nine ecosystem services (Table 16) 

proposed by Xie et al. (2003) (their meaning and importance described in Table 25-S6). By tailoring 

the localized average natural grain yield, the equivalent weight factor, as shown in Table 16, can be 

applied to different regions of China. As a benchmark, the economic value of average natural grain 

production of farmland per year was set at 1.0 (Chen et al. 2014; Estoque and Murayama 2013; Han 

et al. 2016; Liu, Li, et al. 2012; Tianhong et al. 2010; Ye, Zhang, et al. 2018). Based on this factor, 

all other coefficients were adjusted accordingly. Xie et al. (2003) proposed that in general, the natural 

food production should be 1/7 of the actual food production (Liu, Li, et al. 2012; XIE et al. 2003).  

From 1986 to 2017, GHKM’s average actual grain production was 5529.76 kg/ ha and the average 

grain price in 2017 was 2.65 CNY/kg. Thus, the ESV of one equivalent weight factor for GHKM is 

2093.41 CNY ha-1 (5529.76*2.65/7).   

On the basis of the linkage between LULC types and biome types, the ESV per unit area of each 

LULC class in GHKM was assigned (Table 16). Specifically, LULC types “forest”, “grassland”, 

“water”, “fishponds”, “built-up”, “bare land”, and “farmland” equal to biome types “woodland”, 

“grassland”, “water body”, “wetland”, “construction land”, “unused land”, and “cropland”, 

respectively. For built-up, the coefficient value proposed by following Dong et al. (2007) (Dong et 

al. 2007) and Deng (2012) (Deng 2012) was considered. In this study, although the biomes used as 

proxies for each type of LULC do not perfectly match in each case however, they are related (Kreuter 

et al. 2001). Their use has been proven feasible in other case studies (Liu, Li, et al. 2012; Song and 

Deng 2017a; Tianhong et al. 2010; Wu et al. 2013). 
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Table 16. Equivalent weighting factor per hectare ESV of Chinese terrestrial ecosystems (Xie et al. (2003)). 

 Forest Grassland Water Fishponds Built-up Bareland Farmland 

Food 0.1 0.3 0.1 0.3 0.01 0.01 1 

Raw material 2.6 0.05 0.01 0.07 0 0 0.1 

Gas regulation 3.5 0.8 0 1.8 -2.42 0 0.5 

Climate regulation 2.7 0.9 0.46 17.1 0 0 0.89 

Water supply 3.2 0.8 20.4 15.5 -7.51 0.03 0.6 

Waste treatment 1.31 1.31 18.2 18.18 -2.46 0.01 1.64 

Soil formation and retention 3.9 1.95 0.01 1.71 0.02 0.02 1.46 

Biodiversity protection 3.26 1.09 2.49 2.5 0.34 0.34 0.71 

Recreation and culture 1.28 0.04 4.34 5.55 0.01 0.01 0.01 

Total 21.85 7.24 46.01 62.71 -12.01 0.42 6.91 

 

6.2.3 Ecosystem service value calculation 

By using Equation (14), Equation (15), and Equation (16) the ecosystem service value, ecosystem 

function, and total ESV for each thematic class was determined after evaluating the ESV per unit area 

for each land cover class (Feng et al. 2012; Tianhong et al. 2010; P. Zhang et al. 2015; Zhu et al. 

2017). 

𝐸𝑆𝑉𝑘 = ∑ 𝐴𝑘𝑓 ∗ 𝑉𝐶𝑘𝑓     (14) 

𝐸𝑆𝑉𝑓 = ∑ 𝐴𝑘𝑘 ∗ 𝑉𝐶𝑘𝑓     (15) 

𝐸𝑆𝑉 = ∑ ∑ 𝐴𝑘𝑓 ∗ 𝑉𝐶𝑘𝑓𝑘     (16) 

Where, 𝐸𝑆𝑉𝑘  represents the ESV for LULC class “k”, 𝐸𝑆𝑉𝑓  represents the value of ecosystem 

function type “f”, and 𝐸𝑆𝑉 represents the total ESV respectively. 𝐴𝑘represents the area for LULC 

class “k” and 𝑉𝐶𝑘𝑓 represents the value coefficient (CNY/ha/a) for LULC class “k” and ecosystem 

function type “f” (Feng et al. 2012; Tianhong et al. 2010; P. Zhang et al. 2015). 

6.2.4 Sensitivity analysis 

Since the biomes used as proxies do not perfectly match the LULC class (as mention above in section 

assigning ecosystem service value (ESV)) and there exist uncertainties in the coefficient values, 

sensitivity analysis is needed to determine the dependence level of the change of the ESV upon the 

coefficient values. Therefore, the standard economic elasticity concept was used to calculate the 

coefficient of sensitivity (CS) as follows: 
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𝐶𝑆 = |
(𝐸𝑆𝑉𝑗−𝐸𝑆𝑉𝑖)/𝐸𝑆𝑉𝑖

(𝑉𝐶𝑗𝑘−𝑉𝐶𝑖𝑘)/𝑉𝐶𝑖
|     (17) 

The percentage change in the ESV calculated resulting from ± 50% change in the coefficient value 

and LULC class ‘k’. “i” and “j” indicate the respective initial and adjusted values. If CS > 1, the 

estimated ESV is elastic, relative to that coefficient, whereas if CS < 1 than the estimated ESV is 

considered to be inelastic. The more prominent the corresponding change in the ESV with respect to 

a relative change in the coefficient value, the more serious is the utilization of a precise ecosystem 

value coefficient. However, in previous studies, the sensitivity analysis has been widely used 

(Aschonitis et al. 2016; Feng et al. 2012; Kreuter et al. 2001; Liu, Li, et al. 2012; Mamat et al. 2018; 

Tianhong et al. 2010; Wang et al. 2015; Ye, Bryan, et al. 2018; Zhu et al. 2017). 

6.3 Results 

6.3.1 Land use land cover change 

Guangdong, Hong Kong, and Macao LULC changed substantially between 1986 and 2017 (Figure 

4). Farmland had the greatest decline in the area among the seven LULC classes (-40191.84 km2, -

38.23%), followed by fishponds (-788.61 km2, -32%) and water (-152.22 km2, -0.73%). On the other 

hand, forest exhibited the largest increase (23126.88 km2, 35.40%), followed by built-up land 

(18753.44 km2, 1260.02%). As compared to other thematic classes, the built-up area increases with 

the highest annual growth rate i.e., 8.41% (Table 3). The estimated size of both water and fishponds 

were relatively small but they both play a vital role in ES and often have high service value. Their 

cumulative area accounts for only 11% of GHKM’s total area, which even seemed to declines during 

socioeconomic development and urbanization. The major transformation observed were farmland 

into built-up land and forest whereas, fishponds into built-up land (Table 23-S4). Thus, farmland and 

fishponds are the primary contributors to the new built-up areas. The transformation among different 

LULC classes certainly affects ecosystems structures and functions as well as variation in the total 

ESV. Therefore, estimating changes in the ESV in response to LULC changes are described in the 

below sections. 
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6.3.2 Variations in ecosystem service value 

In this study, based on the Equations (14)–(16) the ESV of each land cover class and total ESV of the 

GHKM for the years 1986, 1989, 1994, 2000, 2005, 2010, and 2017 were calculated using the 

modified value coefficients (Table 17) and the area of each LULC (Figure 4). According to the results, 

shown in Table 18, it can be indicated that the general ESV trend is characterized by a variable change 

process. During the study period, in GHKM’s total ESV surged from 680.23 billion CNY in 1986 to 

713.68 billion CNY in 1994, then declined to 668.45 billion CNY in 2017. In the first eight years 

(1986—1994), the total value of ESV increased by approximately 33.45 billion CNY. The ESV net 

benefits per hectare was 1703.38 CNY. In the following 23 years (1994—2017), ESV loss was about 

45.22 billion CNY, and the net loss of ESV per hectare was 2303.04 CNY. This net gain and loss in 

ESV are due to the LULC changes during the study period. 

Table 17. Per unit area ESV of different LULC classes in the Guangdong, Hong Kong, and Macao (CNYha-1year-1). 

 Forest Grassland Water Fishponds Built-up Bareland Farmland 

Gas regulation 7326.94 1674.73 0.00 3768.14 -5066.05 0.00 1046.71 

Climate regulation 5652.21 1884.07 962.97 35797.31 0.00 0.00 1863.13 

Water supply 6698.91 1674.73 42705.56 32447.86 -15721.51 62.80 1256.05 

Soil formation and retention 8164.30 4082.15 20.93 3579.73 41.87 41.87 3056.38 

Waste treatment 2742.37 2742.37 38100.06 38058.19 -5149.79 20.93 3433.19 

Biodiversity protection 6824.52 2281.82 5212.59 5233.53 711.76 711.76 1486.32 

Food 209.34 628.02 209.34 628.02 20.93 20.93 2093.41 

Raw material 5442.87 104.67 20.93 146.54 0.00 0.00 209.34 

Recreation and culture 2679.56 83.74 9085.40 11618.43 20.93 20.93 20.93 

Total 45741.01 15156.29 96317.79 131277.74 -25141.85 879.23 14465.46 

 

Table 18. Total ESV for each land use type in the Guangdong, Hong Kong, and Macao from 1986 to 2017. 

ESV billion CNY 

 Forest Grassland Water Fishponds Built-up Bareland Farmland Total 

1986 298.50 0.70 200.30 32.34 -3.74 0.07 152.07 680.23 

1989 326.18 0.40 201.38 38.59 -6.65 0.03 148.35 708.28 

1994 346.90 0.53 201.21 49.46 -13.69 0.07 129.19 713.68 

2000 359.15 0.33 199.07 45.64 -21.07 0.02 122.69 705.84 

2005 366.72 0.61 194.13 41.38 -28.87 0.08 115.79 689.84 

2010 380.64 0.22 194.65 32.18 -40.75 0.02 106.90 673.84 

2017 404.28 0.29 198.83 21.99 -50.89 0.02 93.93 668.45 

1986—1989 

billion CNY 27.68 -0.30 1.07 6.25 -2.91 -0.03 -3.72 28.05 

% 9.27 -42.53 0.54 19.32 77.71 -47.15 -2.45 4.12 

%/yr 3.00 -16.86 0.18 6.06 21.13 -19.15 -0.82 1.36 

1989—1994 
billion CNY 20.72 0.13 -0.17 10.88 -7.04 0.03 -19.15 5.40 

% 6.35 32.48 -0.08 28.19 105.81 90.29 -12.91 0.76 
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%/yr 1.24 5.79 -0.02 5.09 15.53 13.73 -2.73 0.15 

1994—2000 

billion CNY 12.26 -0.20 -2.14 -3.82 -7.39 -0.04 -6.50 -7.84 

% 3.53 -38.54 -1.06 -7.73 53.97 -63.09 -5.03 -1.10 

%/yr 0.58 -7.79 -0.18 -1.33 7.46 -15.30 -0.86 -0.18 

2000—2005 

billion CNY 7.56 0.28 -4.94 -4.26 -7.80 0.06 -6.90 -16.00 

% 2.11 85.51 -2.48 -9.34 36.99 234.30 -5.62 -2.27 

%/yr 0.42 13.15 -0.50 -1.94 6.50 27.30 -1.15 -0.46 

2005—2010 

billion CNY 13.92 -0.39 0.51 -9.20 -11.89 -0.06 -8.90 -16.00 

% 3.80 -64.10 0.26 -22.23 41.18 -76.72 -7.68 -2.32 

%/yr 0.75 -18.53 0.05 -4.90 7.14 -25.29 -1.59 -0.47 

2010—2017 

billion CNY 23.65 0.07 4.19 -10.19 -10.14 0.01 -12.97 -5.39 

% 6.21 32.32 2.15 -31.67 24.87 26.71 -12.13 -0.80 

%/yr 1.21 5.76 0.43 -7.33 4.54 4.85 -2.55 -0.16 

1986—2017 

billion CNY 105.78 -0.41 -1.47 -10.35 -47.15 -0.04 -58.14 -11.77 

% 35.44 -58.77 -0.73 -32.01 1260.02 -63.39 -38.23 -1.73 

%/yr 0.98 -2.82 -0.02 -1.24 8.78 -3.19 -1.54 -0.06 

 

A substantial decrease in total ESV (1.73%) between 1986 and 2017 was due to loss of semi-natural 

land cover types, especially shrinkage in farmland and unprecedented increase in urbanization. 

However, the loss of farmland was far higher than the loss by urbanization (Table 18). This causes a 

significant effect in loss of ESV. Though the ESV of other LULCs had increased, such as increase in 

forest cover but increase was too small to counterbalance the decline. Despite the fact that both water 

and fishponds covered small areas but they had the highest value coefficients. Therefore, they 

produced a service value nearly equal to that of the forest. High service value was also produced by 

farmland due to its large area coverage. The accumulated ESV of forest, water, fishponds, and 

farmland exceeded 90% of the total value, showing that these land cover classes played a key role in 

ecosystem services. This is particularly true regarding fishponds whose area was only 0.85–1.9%, yet 

produced 3–7% of the total ESV. It is assumed that the ESV for bareland and built-up land is much 

lower due to its low value coefficients. 

6.3.3 Change in ecosystem function 

The individual ecosystem function (computed using Equation 15) contribution rate to the total  ESV 

are ranked on the basis of their estimated average 𝐸𝑆𝑉𝑓 for the years 1986, 1989, 1994, 2000, 2005, 

2010, and 2017 (Table 24-S5). Water supply, waste treatment, soil formation and retention, and 

biodiversity protection were the most valuable ecosystem services, affecting the total ESV. However, 

their combined contribution accounted for 65.07%. The highest decline occurred in the water supply 
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value (-22.30 billion CNY, -14.72%) between 1986 and 2017 followed by waste treatment (-20.77 

billion CNY, −14.63%) and food production (-7.96 billion CNY, −33.18%). Conversely, soil 

formation and retention (6.28 billion CNY, +7.26%) and recreation and culture (5.09 billion CNY, 

+12.91%) have experienced a significant increase in value (Figure 19). Recreation and culture and 

food production made the least contribution to the ESV, with their accumulated contribution rate was 

only approximately 9.14%. 

 

Figure 19. Value of individual ESV in the Guangdong, Hong Kong, and Macao from 1986 to 2017. 

 

Figure 20. Individual ESV for different land use land cover in the Guangdong, Hong Kong, and Macao from 

1986 to 2017. 
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Due to the large area and the high coefficient value, forest produced the highest ESV among the seven 

LULC classes i.e., 50% of the total value. It has a significant effect on biodiversity protection, gas 

regulation, water supply, climate regulation, and soil formation and retention (Figure 20). In 1986 

water ESV was 200.30 billion CNY, which decreased by 1.47 billion CNY by 2017 with a robust 

influence on water supply and waste treatment. Farmland ESV was most affected by LULC changes, 

decreased by 58.14 billion CNY (38.23%) between 1986 and 2017. This has influenced soil formation 

and retention, waste treatment, biodiversity protection, and food production. Built-up area, increased 

by 18,753km2 (1260.02%) between 1986 and 2017, produced increasingly negative ESV (47.15 

billion CNY), notably through effects on water supply, waste treatment, and gas regulation (Figure 

20). However, the increase in the built-up area did not increase the ESV, as its coefficient value was 

zero, close to zero, and less than zero. This resulted in a rapid reduction in the individual value of 

ecosystem functions.  

6.3.4 Spatial Distribution 

The ESV varied spatially across the Guangdong, Hong Kong, and Macao. The ESV in the hilly and 

mountainous areas and in the southern regions of the GHKM was greater mainly due to the forest 

extent. In the PRD region and on the eastern side, ESV was low because of the development of the 

built-up area under fast growing urbanization. The urban areas were immediately surrounded by 

medium value farmland and water (Figures 21 and 22). Furthermore, individual ecosystem functions 

such as water supply, waste treatment, climate regulation, gas regulation, and food production 

decreased significantly in the PRD and on the eastern side of the GHKM during the study period 

(Figure 22). This is mainly because unprecedented industrialization, foreign direct investment, intense 

human activities, and socioeconomic development have been observed in these regions. Moreover, 

biodiversity protection, recreation and culture, raw material, and soil formation and retention have 

increased during 1986 and 2017 more pronounced in the mountainous region and on the southwestern 

side (Figure 22). This is the result of enaction of different land policies such as the “Forestry action 

plan for China Agenda 21 (1995)” and “Utilization Plan (2002)”. On the other hand, they decreased 

in the PRD and on the eastern side (Figure 23). 
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Figure 21. Spatially distributed total ESV in the Guangdong, Hong Kong, and Macao from 1986 to 2017. 
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Figure 22. Spatial distribution of individual ecosystem functions in the Guangdong, Hong Kong, and Macao 

from 1986 to 2017.  

6.3.5 Sensitivity analysis 

Sensitivity analysis was performed in order to assess the reliability of the results. The changes in the 

coefficient of sensitivity (CS) value must be relatively low i.e., less than one (in Equation (17)). In all 

cases, values of CS < 1 and often are near to zero (Table 19). This confirms that the total ESV 
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estimation was relatively inelastic in relation to the coefficient value (Mamat et al. 2018). The CS for 

forest, water, farmland, and fishponds was relatively large. Forest has the highest coefficient of 

sensitivity, about 0.5%, due to its high coefficient value and large area. Though the water and 

fishponds areas were small, their CS was relatively large because of their high value coefficients. 

Their CS decreased from 0.29 to 0.28 and 0.05 to 0.03 during the study period (Table 19). As 

compared to forest and water, the CS of farmland is lower, declining from 0.22 to 0.14 during 1986—

2017. The decrease in farmland and fishponds CS was mainly the result of an increase in urbanization 

and industrialization. Thus, in this present study, the sensitivity analysis showed that the estimation 

was robust despite uncertainties in the value coefficients. 

Table 19. Percentage wise change in the coefficient of sensitivity (CS) and estimated total ESV by 50% 

adjustment in the value of coefficient (VC). 

  

  

1986 1989 1994 2000 2005 2010 2017 

% CS % CS % CS % CS % CS % CS % CS 

Forest VC±50% 21.94 0.44 23.03 0.46 24.30 0.49 25.44 0.51 26.58 0.53 28.24 0.56 30.24 0.60 

Grassland VC±50% 0.05 0.00 0.03 0.00 0.04 0.00 0.02 0.00 0.04 0.00 0.02 0.00 0.02 0.00 

Water VC±50% 14.72 0.29 14.22 0.28 14.10 0.28 14.10 0.28 14.07 0.28 14.44 0.29 14.00 0.28 

Fishponds VC±50% 2.38 0.05 2.72 0.05 3.47 0.07 3.23 0.06 3.00 0.06 2.39 0.05 1.64 0.03 

Built-up VC±50% -0.28 -0.01 -0.47 -0.01 -0.96 -0.02 -1.49 -0.03 -2.09 -0.04 -3.02 -0.06 -3.81 -0.08 

Bareland VC±50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Farmland VC±50% 11.18 0.22 10.47 0.21 9.05 0.18 8.69 0.17 8.39 0.17 7.93 0.16 7.03 0.14 

 

6.3.6 Patterns of economic growth and its effect on ecosystem service value  

With the increase in GDP, the accomplishment in local economic development can be assessed. In 

the study period, GDP increased by a factor of 119.11 times from 66.75 billion CNY in 1986 to 

7951.21 billion CNY in 2017, with a yearly average growth rate of 16.67%. At the same time, ESV 

per capita decreased by 38.45% from 11849.22 CNY in 1986 to 7293.62 CNY in 2017. Figure 23a 

shows a negative non-linear relationship between GDP per capita and ESV per capita with a 

coefficient of determination R2 = 0.97. Figure 23b, a nonlinear regression analysis, demonstrated that 

there exists a significant negative correlation between farmland’s ESV and the GDP with a coefficient 

of determination R2 = 0.98, i.e., when GDP increased, the ESV of farmland decreased. Figure 23c 

indicated that the coefficient of determination between population density and ESV per capita is 0.99. 
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Therefore, economic development and urbanization had a significant negative impact on regional 

ESV. Of further interest, Figure 24a shows a decline in the ratio of total ESV to total GDP during the 

study period. Figure 24b and c show that with the increase in population and built-up area ESV 

decreases, whereas Figure 24d reflects that decrease in farmland has a negative impact on ESV i.e., 

ESV decreases. 

 

Figure 23. The correlation between (a) GDP per capita (CNY) and ESV per capita (CNY), (b) GDP (billion 

CNY) and farmland ESV (billion CNY), and (c) population density (sq.km) and ESV per capita (CNY) over 

the study period (1986—2017). 

 

Figure 24. Relationship between (a) changes in the ratio of total ESV and GDP from 1986 to 2017, (b) total 

population (10,000 persons) and ESV (billion CNY), (c) built-up (ha) and ESV (billion CNY), and (d) 

farmland (ha) and ESV (billion CNY) over the study period (1986—2017). 

In summary, the main reason for the decrease in total ESV is the process of rapid urbanization at the 

expense of loss of farmland. 
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6.4 Discussion 

We have computed the LULC changes from 1986 to 2017 and their impact on the ESV, in the rapidly 

developing Guangdong, Hong Kong, and Macao region. Changes in LULC and massive expansion 

of the built-up area has largely occupied the farmland and other natural and semi natural land cover. 

This has resulted in a substantial loss of ESV in certain zones while huge gains in others, with a net 

decrease of 1.73%. This net decrease in ESV is lower than other studies such as in Kashgar Region 

(Mamat et al. 2018), Ethopia (Negussie et al. 2019), Bordeaux, France (Cabral et al. 2016) and 

Nenjiang River Basin (Wang et al. 2015). Rapid urbanization processes and industrialization have 

converted farmland to built-up areas. During the study period, farmland has been significantly 

decreased, including the conversion of farmland to built-up areas and forest. Forest and water 

provided the highest ESV, including water supply, waste treatment, soil formation and retention, 

biodiversity protection, and climate regulation. Thus, water supply, waste treatment, and food 

production ecosystem services faced the largest loss, while soil formation and retention and culture 

have achieved the greatest gain. This is because of the gain in new industrial population and to meet 

the needs and aspiration aligned to those new industries. 

6.4.1 Driving forces for land use land cover changes and ecosystem service value 

After the implementation of the economic reform policy in China, GHKM region has advanced the 

furthest, practiced the largest socioeconomic development and population growth (Hasan et al. 2019; 

Ye, Bryan, et al. 2018). This has increased pressure to the ecology and environment and brought 

adverse effects on regional total ESV (Wu et al. 2013; Yirsaw et al. 2016). This has created numerous 

fascinating issues and challenges for researchers and policy and decision makers (Liu, Song, and Arp 

2012; Wu et al. 2013; Wu and Yeh 1997). Changes in the extent and composition of the forest, 

grassland, fishponds, and other ecosystems have large effects on the biophysical conditions, which 

further influence the provision of ES and biodiversity conversion (Zhan 2015). Fishponds and 

farmland both give various ES, for example, waste treatment, climate regulation, and biodiversity 

protection decrease during the study period. Both of them have greater economic benefits; they are 

being utilized for the construction purposes that further provoke the transformation of land use. Along 

with the decrease in area, the high value of water supply and waste treatment coefficients that are 
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related with water and farmland (Table 16) have resulted in a high ESV from this land cover. The 

changes in LULC also influences the water supply ecosystems by shifting the transpiration, 

interception, and evaporation. These factors tend to increase with the increase in forest cover (Zhan 

2015). Forest increases with highest ESV per unit area propelled by local government after 

implementing “Greener Guangdong” policy promoting the construction of forest protection system. 

This has encouraged farmers to establish horticultural plantations and forest industry development in 

the GHKM, especially since 1990 (Bui et al. 2003; Chokkalingam et al. 2006).  

In the process of urban expansion and industrialization, rural settlement and agricultural land 

depletion have experienced significant loss, which has a substantial negative effect on ESV and food 

security. At the end of 2013, the government established a program, namely “Farmland Protection 

Red Line 0.12 billion hectares (1.8 billion mu)” with the aim to maintain 1.8 billion mu farmland. 

Under the current scenario of rapid urbanization process, it would be very difficult to keep a target of 

0.12 billion of farmland in the future (Chen et al. 2018; Tan et al. 2017). Therefore, farmland 

protection as well as fishponds, both need to be considered on a first priority. 

The results of this study show consistency with past literature regarding the effect of LULC changes 

and urbanization on the ESV at a variable rate, ranging from significant decreases to a modest increase 

in service value, with the majority report a modest decrease in service value. Estoque and Murayama 

(2013) assessed the ESV in Baguio City, Philippines and result showed that in past 21 years (1988—

2009) the ESV decreased by 60%. Such decrease in ESV is due to decrease in forest cover and 

cropland (Estoque and Murayama 2013). In Argentina, the increased in economic income causes the 

decreased in ecosystem services (Viglizzo et al. 2012). In northen part of Lao PDR the ESV decreased 

by 11.74% during 1992 to 2002. The high rate of loss of services have undoubtedly serious negative 

ecological conservation in the long term (Yoshida et al. 2010). In Texas, USA, with the increase in 

urbanization the total ESV has dcreased by 4% during 1976 to 1991. In Berlin, Bremen, and Hamburg, 

Germany, the ESV decreased by 0.51%, 1.68%, and 2.26% respectively; because of the extent of 

urbanization and the level of economic development (Jiang 2018). In the southern plains of Nepal, 

the total ESV declined by 1% per year during 2001—2016 with the significant loss of forests, water 
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bodies, and agricultural land (Sharma et al. 2019). Moreover, different methods of evaluation can 

provide different results. For example, both Li et al. (Tianhong et al. 2010) and Peng et al. evaluated 

the ESV of Shenzhen for the same year (2000), giving estimates of 2.9 billion and 126.5 billion Yuan, 

respectively. Similarly, in this study ESV of GHKM for the same year (2017), giving estimate of 

668.45 billion (Xie et al. 2003) and 792.52 billion Yuan (Xie et al. 2008), respectively. Absolute 

numbers of ESVs have less meaning, and the dynamics of ESVs are commonly indicating ecological 

problems (Y. Wang et al. 2014). 

Moreover, economic growth seems to be in conflict with ecological protection as this study also 

shows that ESV and ESV per capita decreased significantly with the continuous increase in total GDP 

and GDP per capita over the past three decades in the GHKM. The main reason for such a decrease 

in ESV is the transformation of natural and semi natural resources into built-up (Feng et al. 2012; Lin 

et al. 2018; W. Liu et al. 2019; Liu, Li, et al. 2012; Tianhong et al. 2010; Wu et al. 2013; Ye, Zhang, 

et al. 2018; Y. Zhang et al. 2015), typically resulting in lower or negative values of services. 

Nonetheless, even in PRD, a fast urbanizing GHKM region, urban expansion is only one of the 

various LULC change happening concurrently. A range of other LULC changes corresponding with 

the increase of built-up area also took place. Such changes include a transformation of farmland to 

forest, a high service value land use. To some extent, this transformation negates the adverse effect 

of urban expansion on ESV in the GHKM (Ye, Bryan, et al. 2018).  

6.4.2 Implication for planning sustainable development 

The study presented in this paper clearly demonstrates the net decline in the ESV supply i.e., -1.73. 

Land use inherently entails trade-offs, with economic benefits inevitably taking precedence over 

ecosystem benefit. Protection of the natural environment is of equal importance to economic 

development. If environmental protection is neglected, the economic loss caused by pollution may 

exceed the economic benefits resulting from the transformation of land use. Therefore, GHKM needs 

improved planning regarding sustainability of ecosystems and smart land use. Such planning should 

involve environmental, economic, and social considerations in order that the sustainability of services 

antagonistically influenced by fast urban expansion, for example, gas regulation, water supply, waste 
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treatment, climate regulation, and food production must be stressed for improvement. Therefore, 

planning and decisions should focus on protecting farmland and fishponds to reverse the 

unsustainable deterioration in these ecosystem services. Similarly, the protection of forest and water 

is also important because they also comprise of high ecosystem services value. This could be 

accomplished through planning protocols and setting the sustainability targets for local ecosystem 

services by using different decision analysis methods such as triage planning (Pendleton et al. 2015), 

spatial optimization algorithms and ecological corridor (Chuai et al. 2016; Ye, Bryan, et al. 2018). 

This could reduce the future hazard for ESV. In summary, ESV has the great potential to inform 

policy and decision makers by highlighting the advantages of sustainable ecosystem management.  

6.4.3 Limitations 

In this study, the method used to calculate the ESV was proposed by Costanza et al. (1997a,b), and 

adjusted by Xie et al. (2003) according to the Chinese terrestrial terrain. The ESV was then derived 

by multiplying each land use class with a corresponding ecosystem coefficient value. Although, 

estimated results produced by this method have been criticized because of used at coarse resolution, 

uncertainties due to complex, dynamic, and nonlinear nature of ecosystems (Limburg et al. 2002; 

Turner et al. 2003), limiting economic valuation, and double scale problems (Konarska, Sutton, and 

Castellon 2002; Liu, Li, et al. 2012; Tianhong et al. 2010; Turner et al. 2003).  

The biomes used as a proxy for LULC classes but does not match precisely in each case (Kreuter et 

al. 2001). Additionally, heterogeneity in an ecosystem made the accuracy of the adjusted coefficient 

values in doubt (Tianhong et al. 2010). Although, a diverse range of valuation methods are available 

but, each and every method may prompt “refer” to different estimated values, hence causing a 

criticism in the ecosystem service valuation method. Thus it is essential to realize that the precise 

evaluation of the coefficients for time series analysis is less critical than the cross-sectional analysis. 

This is because the coefficients will, in general, have less influence regarding the estimation of 

directional change than that of the magnitude of ecosystem values (Liu, Li, et al. 2012; Tianhong et 

al. 2010). In this study, the supposition that coefficient of ESV remains constant over time, allows a 

comparison of minimal change with time. However, in reality, it is unlikely that values remain 
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constant (Zank et al. 2016). This study attempted to adjust the value of coefficients on the basis of 

study area data, but still it remains a general estimation and unable to capture the spatial heterogeneity 

among the supply of ecosystem services within the LULC classes (Tianhong et al. 2010; Ye, Bryan, 

et al. 2018). This method, however, will remain a convenient mode to integrate the effect of LULC 

changes across numerous ecosystem services and also identify minimal change with time in the 

provision of ecosystem services. Moreover, sensitivity analysis demonstrates that total ESV estimated 

in this study were relatively inelastic with respect to the value coefficient and despite of uncertainties 

our estimation up to some extent is robust. 

The reliability of a proxy based method can be increased by using remotely sensed high resolution 

images in combination with field survey. The field survey can empower LULC mapping at high 

accuracy. The methods used in this study also suppose that the value of each ecosystem service, given 

by each LULC over the study area is homogeneous, as the value coefficients are regionally 

downscaled values. Instead, in reality, values change spatially. This is a drawback of methods which 

can be overcome by incorporating biophysical and economic systems spatial models (Bryan and 

Crossman 2013) and by doing field survey for higher scale economic valuation of the supply of 

ecosystem services on local level (Bryan, Grandgirard, and Ward 2010; Raymond et al. 2009; Ye, 

Bryan, et al. 2018). 

In summary, based on Costanza’s et al. (1997) research, Xie et al. (2003, 2008) improved the 

calculation model by conducting a professional questionnaire survey of 700 ecologists and other 

relevant scholars in China that evaluated the status of China's ecosystem and socio-economic 

development.  The coefficients from Xie et al. (2008) were estimated according to a survey of 700 

ecologists or relevant scholars in China. Although these coefficients have been widely used in 

scientific studies (Fei et al. 2018; Wang et al. 2017). The equivalent coefficient was considered the 

estimated value of a certain ES of a specific ecosystem from the literature, indirect comparison with 

ecosystem biomass and experts’ knowledge (Xie et al. 2017). Equivalent coefficients for China's ES 

research were developed (M. Hu et al. 2019; Xie et al. 2017). The ecosystems were divided into 6 

primary categories, including farmland, forest, grassland, wetland, barren land and water area, after 
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that 14 secondary categories were subdivided (Xie et al. 2017). 

Using the Xie et al. (2003, 2008) value coefficients, however, may not be precise enough, because 

the land use classification was only applied to the first-level classification (e.g. forest land and 

grassland). The structural and functional differences of different ecosystems at the same level, e.g. 

the forest land type includes broad-leaved forests, coniferous forests, bush forests, etc., may lead to 

uncertain ESVs (Y. Wang et al. 2014). However, coefficient value derived by (Xie et al. 2017) can 

be applied to the second level classification. 

6.5 Conclusions 

This study has revealed the impact of LULC changes on ESV resulting from urban expansion, 

industrialization, and socioeconomic development in the GHKM between 1986 and 2017. The 

changes in the ESV show a close relationship with socioeconomic growth in the study area. The result 

showed that the built-up area had expanded by 1260.02% over the last three decades, with an average 

annual growth rate of 8.41%, produced mainly at the expense of the reduction of farmland, together 

with other concurrent non-urban LULC changes. This has placed strong pressure on both natural and 

semi-natural ecosystems.  

The total ESV decreased by 1.73% (11.77 billion CNY) between 1986 and 2017. This decrease in the 

value of ecosystem services is associated with a decrease in the total area of farmland, fishponds, and 

water. This also signifies the dynamics and complexity of the individual ESV as notably some 

services value decreased significantly while others increased substantially. Forest generated the 

highest percentage of the total ESV (approximately 50%) and together with fishponds, water, and 

farmland produced more than 90% of the total ESV, showing that these four LULC classes have an 

important role in supplying ecosystem services.  

Regarding the total ESV, the highest contribution is made by water supply followed by waste 

treatment ecological function. Their contribution represents approximately 45% of the total. The 

result shows that there exists a substantial negative correlation between farmland ESV and the GDP. 

The ESV for farmland was higher in 1986, but tended to decrease rapidly during the study period as 
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a consequence of the burgeoning industrialization and development. In regional land use planning 

and decision analysis, priority must be given to those services which can contribute to the 

sustainability of everyday life, particularly which can be adversely influenced by urban expansion 

such as water supply, gas regulation, climate regulation, and food production. Therefore, the fragile 

ecological environment in the GHKM clearly indicate that stakeholders and planners need to highlight 

the protection of such as farmland and fishponds to achieve the sustainable utilization of land 

resources and organized economic and environmental development.  

Furthermore, by using remote sensing data, the land cover class can be utilized as a proxy for 

ecosystem services, with corresponding land cover classes equal to biomes, thus, making the 

ecosystem valuation possible for larger regions. Further research should expand or design such 

methods that can more precisely evaluate these coefficients for the authenticity of the resulting 

estimate reliant upon the precision of the coefficient value. 
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Chapter 7 

7 Conclusion and Recommendations 

Guangdong, Hong Kong, and Macau (GHKM) has undergone significant LULC changes after the 

opening of economic reform policy in 1978. The massive land transformations caused by 

socioeconomic development, natural and human induced factors. This study has demonstrated the 

characteristics of LULC change over the past three decades (1986—2017), simulated future scenario 

using Land change modeler (LCM) and the impact of these tremendous changes on ecosystem service 

values. During 1986—2017, the built-up area has increased from 0.76% (1488.35 km2) to 10.31% 

(20,643.28 km2) and farmland and fishponds decline substantially from 53.54% (105,123.93 km2) to 

33.07% (64,932.19 km2) and from 1.25% (2463.35 km2) to 0.97% (1902.79 km2), respectively. On 

the other hand, due to different afforestation programs and at the expense of farmland reduction, forest 

cover increased from 33.24% (65,257.55 km2) in 1986 to 45.02% (88,384.19 km2) in 2017. The most 

dominant transformation observed were farmland to built-up and forest. The reasons for such changes 

in LULC were the socioeconomic development, cheap land rate, employment opportunities, better 

life style, urbanization, industrialization, facilities, and different land use policies. Moreover, land 

ownership and transfer policies have played their own role in changing land cover and real estate 

market. A marked increase in GDP, total investment in fixed assets, and total retail sales of consumer 

goods have led to the widespread expansion of cities and substantial loss of natural resources. 

However, reduction in farmland mirrors the irreversible trend of marketization and urbanization up 

to some extent. Thus long term LULC changes has provide a scientific reference for designing rational 

urban planning at provincial level and improve understanding of LULC changes in relation to 

socioeconomic determinant and land use policies. 

Furthermore, to simulate the future scenario of LULC change Land change modeler (LCM) was used. 

After model validation, predicted the LULC map for the years 2024 and 2031. The simulated result 

showed that current patterns will continue in future i.e. an expected increase in built-up area from 

10.31% (20,643.28 km2) in 2017 to 16.30% (31994.55 km2) in 2031 with the substantial decrease in 
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farmland from 33.03% (64,932.19 km2) to 26.00% (51043.01 km2) and fishponds from 0.97% 

(1902.79 km2) to 0.83% (1639.06 km2). Moreover, forest cover will increase from 45.02% (88,384.19 

km2) in 2017 to 46.88% (1639.06 km2) in 2031.The spatial structure analysis of the landscape exhibits 

more disperse, heterogeneous, and fragmented landscape in future. Such changes in land cover are 

attributed to intense socioeconomic development, industrialization, and continuous sprawling urban 

fabric in urban pockets at suburban and peripheral areas, which may have serious threat to 

environmental sustainability. A long‐term sustainable urban development is essential to promote 

orderly urbanization and should be linked to similarly urgent plans for farmland protection. 

The unprecedented development and urbanization has placed strong pressure on both natural and 

semi-natural ecosystems. The total ESV decreased by 1.73% (11.77 billion CNY) between 1986 and 

2017. This decrease in the value of ecosystem services is associated with a decrease in the total area 

of farmland, fishponds, and water. This signifies the dynamics and complexity of the individual ESV 

as notably some services value decreased significantly while others increased substantially. Forest 

generated the highest percentage of the total ESV (approximately 50%) and together with fishponds, 

water, and farmland produced more than 90% of the total ESV, showing that these four LULC classes 

have an important role in supplying ecosystem services. The ESV for farmland was higher in 1986, 

but tended to decrease rapidly during the study period because of the burgeoning industrialization and 

development.  

Therefore, the findings of this study will help policy decision makers to take some decisive measures 

for optimal land source optimization and analyze the relationship between LULC changes and 

socioeconomic determinants. Future prediction would give the information to the urban planner that 

further expansion of urbanization could result in traffic congestion, transformation of open spaces, 

increased travel time, and residential energy consumption. In addition, to reduce the further 

fragmentation of natural resources. For ecosystem services, priority must be given to those services 

which can contribute to the sustainability of everyday life, particularly which can be adversely 

influenced by urban expansion such as water supply, gas regulation, climate regulation, and food 

production. This could enhance the understanding of environmental managers and the general public 
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on the ongoing changes and contribute to establish the ecological corridor and effective strategies to 

reduce the reduction of ESV. Therefore, in the fragile ecological environment stakeholders need to 

highlight the protection of natural resources such as farmland and fishponds to achieve the sustainable 

economic and environmental development. Additional research is needed to cover marine 

ecosystems and to include the resilience of ecosystems to environmental change in spatially explicit 

assessments. 

Further research should expand at county, district level, and systematic cross-city comparisons using 

high spatial resolution data that integrates more accurate historical LULC changes. This could help 

to bring better insight to understand the current environmental issues and plan for future risks 

associated with farmland reduction, loss of key ecosystems and biodiversity, and urban sprawl. 

Moreover, as the reliability of the estimated ESV result mainly depend upon the precision of the 

coefficient value, therefore, future research should design such methods that can evaluate these 

coefficient value more accurately.  

https://www.sciencedirect.com/topics/social-sciences/marine-ecosystems
https://www.sciencedirect.com/topics/social-sciences/marine-ecosystems
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Appendices 

 

Figure 25-S1. Light index of the Guangdong, Hong Kong, and Macao from 1994 to 2010. 

  

 



  

152 

 

Table 20-S1. Description of the Landsat datasets scene used for land use land cover change detection. 

 

Path/Row 

1986 1989 1994 2000 2005 2010 2017 

Date Sensor Date Sensor Date Sensor Date Sensor Date Sensor Date Sensor Date Sensor 

 YYMNDD*  YYMNDD*  YYMNDD*  YYMNDD*  YYMNDD*  YYMNDD*  YYMNDD*  

120/043 19861105 TM 19891129 TM 19941111 TM 20001103 ETM+ 20050306 ETM+ 20101209 TM 20171025 OLI 

120/044 19861223 TM 19891129 TM 19941111 TM 20001010 TM 20061222 ETM+ 20101209 TM 20171110 OLI 

121/043 19861214 TM 19891120 TM 19941102 TM 20001102 TM 20051124 ETM+ 20101208 ETM+ 20171101 OLI 

121/044 19861214 TM 19891120 TM 19941102 TM 20000915 TM 20050116 TM 20101208 ETM+ 20171101 OLI 

121/045 19861214 TM 19891120 TM 19941102 TM 20000915 TM 20051124 ETM+ 20101029 TM 20171101 OLI 

122/043 19861103 TM 19891108 TM 19941109 TM 19991225 TM 20051123 TM 20101231 ETM+ 20171226 OLI 

122/044 19861103 TM 19891213 TM 19941024 TM 20000914 ETM+ 20051217 ETM+ 20101231 ETM+ 20171023 OLI 

122/045 19861124 TM 19890228 TM 19941024 TM 20001101 ETM+ 20051123 TM 20101231 ETM+ 20160326 OLI 

123/042 19861217 TM 19891204 TM 19941031 TM 20001124 ETM+ 20051208 ETM+ 20101222 ETM+ 20161128 OLI 

123/043 19861217 TM 19891204 TM 19941031 TM 20001226 ETM+ 20061219 TM 20111225 ETM+ 20180323 OLI 

123/044 19861228 TM 19891204 TM 19941223 TM 19991224 ETM+ 20061219 TM 20111225 ETM+ 20171030 OLI 

123/045 19861228 TM 19891204 TM 19941031 TM 19991208 ETM+ 20051122 ETM+ 20101112 TM 20171030 OLI 

124/044 19861219 TM 19891125 TM 19941107 TM 20001030 ETM+ 20051129 ETM+ 20101111 ETM+ 20170122 OLI 

124/045 19861206 TM 19891030 TM 19961214 TM 20001030 ETM+ 20051121 TM 20091124 ETM+ 20171208 OLI 

124/046 19861028 TM 19891018 TM 19941022 TM 20001123 TM 20061218 ETM+ 20101229 ETM+ 20161205 OLI 

• YYMNDD = Year Month Day 
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Table 21-S2. Accuracy assessment of classified images for the years 1986, 1989, 1994, 2000, 2005, 2010, and 2017 

(where, F = Forest, G = Grassland, W = Water, FP = Fishponds, BU = Built-up, BL = Bareland, and FL = Farmland). 

Reference Pixels  
F G W FP BU BL FL Total UA* (%) 

1986 Classified Pixels 

F 137 5 0 0 0 0 9 151 90.73 

G 1 33 0 0 0 1 2 37 89.19 

W 0 0 24 3 0 0 0 27 88.89 

FP 0 0 1 41 2 0 0 44 93.18 

BU 0 0 0 1 51 3 0 55 92.73 

BL 0 1 0 0 1 24 1 27 88.89 

FL 7 1 0 0 0 0 55 63 87.30 

Total 145 40 25 45 54 28 67 404 
 

PA** (%) 94.48 82.50 96.00 91.11 94.44 85.71 82.09 
  

OA*** 

(%) 

90.35  Kappa coefficient = 0.88 
    

          

Reference Pixels  
F G W FP BU BL FL Total UA* (%) 

1989 Classified Pixels 

F 140 3 0 0 0 0 8 151 92.72 

G 1 35 0 0 0 2 3 41 85.37 

W 0 0 27 1 0 0 0 28 96.43 

FP 0 1 2 37 1 0 0 41 90.24 

BU 0 0 0 3 45 1 0 49 91.84 

BL 0 1 0 0 1 30 1 33 90.91 

FL 7 0 0 0 2 0 52 61 85.25 

Total 148 40 29 41 49 33 64 404 
 

PA** (%) 94.59 87.50 93.10 90.24 91.84 90.91 81.25 
  

OA*** 

(%) 

90.57 Kappa coefficient = 0.88 
    

         

Reference Pixels  
F G W FP BU BL FL Total UA* (%) 

1994 Classified Pixels 

F 133 3 0 0 0 0 6 142 93.66 

G 2 39 0 0 0 1 3 45 86.67 

W 0 0 32 2 0 0 0 34 94.12 

FP 2 0 3 42 1 0 0 48 87.50 

BU 0 0 0 2 47 1 0 50 94.00 

BL 0 1 0 0 1 24 2 28 85.71 

FL 5 0 0 3 1 0 48 57 84.21 

Total 142 43 35 49 50 26 59 404 
 

PA** (%) 93.66 90.70 91.43 85.71 94.00 92.31 81.36 
  

OA*** 

(%) 

90.35 Kappa coefficient = 0.88 
    

          

Reference Pixels  
F G W FP BU BL FL Total UA* (%) 

2000 Classified Pixels 

F 148 3 0 0 0 0 9 160 92.50 

G 1 30 0 0 0 2 1 34 88.24 

W 0 0 23 1 0 0 0 24 95.83 

FP 0 0 2 35 1 0 1 39 89.74 

BU 0 0 0 1 50 1 0 52 96.15 
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BL 0 1 0 0 2 23 0 26 88.46 

FL 6 0 0 1 2 0 60 69 86.96 

Total 155 34 25 38 55 26 71 404 
 

PA** (%) 95.48 88.24 92.00 92.11 90.91 88.46 84.51 
  

OA*** 

(%) 

91.34 Kappa coefficient = 0.89 
    

          

Reference Pixels  
F G W FP BU BL FL Total UA* (%) 

2005 Classified Pixels 

F 127 3 0 0 0 0 7 137 92.70 

G 3 29 0 0 0 2 0 34 85.29 

W 0 0 35 3 0 0 0 38 92.11 

FP 0 0 2 39 2 0 0 43 90.70 

BU 0 0 0 2 55 3 0 60 91.67 

BL 0 1 0 0 2 22 1 26 84.62 

FL 6 0 0 0 1 0 59 66 89.39 

Total 136 33 37 44 60 27 67 404 
 

PA** (%) 93.38 87.88 94.59 88.64 91.67 81.48 88.06 
  

OA*** 

(%) 

90.59 Kappa coefficient = 0.88 
    

          

Reference Pixels  
F G W FP BU BL FL Total UA* (%) 

2010 Classified Pixels 

F 141 4 0 0 0 0 7 152 92.76 

G 3 28 0 0 0 0 0 31 90.32 

W 0 0 35 3 0 0 0 38 92.11 

FP 1 0 2 43 1 0 0 47 91.49 

BU 0 0 0 1 53 3 0 57 92.98 

BL 0 0 0 0 1 19 1 21 90.48 

FL 5 0 0 1 2 0 50 58 86.21 

Total 150 32 37 48 57 22 58 404 
 

PA** (%) 94.00 87.50 94.59 89.58 92.98 86.36 86.21 
  

OA*** 

(%) 

91.34 Kappa coefficient = 0.89 
    

          

Reference Pixels  
F G W FP BU BL FL Total UA* (%) 

2017 Classified Pixels 

F 129 3 0 0 0 0 8 140 92.14 

G 1 35 0 0 0 2 1 39 89.74 

W 0 0 25 2 0 0 0 27 92.59 

FP 0 0 1 36 1 0 0 38 94.74 

BU 0 0 0 1 57 2 0 60 95.00 

BL 0 1 0 0 2 31 1 35 88.57 

FL 4 0 0 1 2 0 58 65 89.23 

Total 134 39 26 40 62 35 68 404 
 

PA** (%) 96.27 89.74 96.15 90.00 91.94 88.57 85.29 
  

OA*** 

(%) 

91.83 Kappa coefficient = 0.90 
    

*UA = User Accuracy, **PA = Producer Accuracy, and ***OA= Overall Accuracy 
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Table 22-S3. Change detection matrix of land use land cover during different time period (percentage). 

1986/1989 
F G W FP BU BL FL Total/PLSE1 L* Tc** Nc*** ANc**** S***** 

F 32.51 0.03 0.06 0.45 0.16 0.03 0.00 33.24 0.71 4.52 3.09 3.09 1.43 

G 0.05 0.09 0.00 0.00 0.01 0.00 0.08 0.23 0.14 0.18 -0.10 0.10 0.08 

W 0.04 0.00 10.19 0.23 0.04 0.01 0.08 10.59 0.40 0.86 0.06 0.06 0.80 

FP 0.13 0.00 0.29 0.58 0.04 0.01 0.20 1.25 0.68 1.59 0.24 0.24 1.35 

BU 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.76 0.00 0.59 0.59 0.59 0.00 

BL 0.00 0.00 0.02 0.01 0.03 0.09 0.23 0.38 0.29 0.41 -0.18 0.18 0.23 

FL 3.58 0.00 0.10 0.23 0.31 0.07 49.26 53.54 4.26 4.85 -3.67 3.67 1.18 

Total/PLSL2 36.32 0.13 10.65 1.50 1.35 0.20 49.85 100 
     

G****** 3.81 0.04 0.46 0.92 0.59 0.11 0.59 
      

Persistence = 93.48%, Total change = 6.51%, Absolute net change = 3.97%, Swap = 2.54% 
  

              

1989/1994 
             

F 35.35 0.07 0.06 0.47 0.27 0.10 0.00 36.32 0.97 4.25 2.30 2.30 1.94 

G 0.02 0.10 0.00 0.00 0.01 0.00 0.00 0.13 0.03 0.11 0.04 0.04 0.07 

W 0.07 0.00 10.15 0.30 0.06 0.02 0.04 10.65 0.50 0.98 -0.01 0.01 0.97 

FP 0.21 0.00 0.23 0.77 0.11 0.02 0.15 1.50 0.72 1.87 0.42 0.42 1.45 

BU 0.00 0.00 0.00 0.00 1.35 0.00 0.00 1.35 0.00 1.43 1.43 1.43 0.00 

BL 0.01 0.00 0.02 0.01 0.07 0.05 0.05 0.20 0.15 0.49 0.18 0.18 0.30 

FL 2.96 0.00 0.17 0.36 0.92 0.20 45.25 49.85 4.60 4.85 -4.36 4.36 0.48 

Total/PLSL2 38.62 0.18 10.64 1.92 2.77 0.39 45.49 100 
     

G****** 3.27 0.08 0.49 1.14 1.43 0.33 0.24 
      

Persistence = 93.02%, Total change = 6.98%, Absolute net change = 4.38%, Swap = 2.61% 
  

              

1994/2000 
             

F 38.05 0.02 0.08 0.22 0.23 0.02 0.00 38.62 0.57 2.50 1.37 1.37 1.14 

G 0.08 0.08 0.00 0.00 0.01 0.00 0.00 0.18 0.09 0.12 -0.07 0.07 0.05 

W 0.04 0.00 10.12 0.36 0.05 0.01 0.06 10.64 0.52 0.93 -0.11 0.11 0.82 

FP 0.19 0.00 0.27 1.06 0.18 0.00 0.21 1.92 0.86 1.57 -0.15 0.15 1.42 

BU 0.00 0.00 0.00 0.00 2.77 0.00 0.00 2.77 0.00 1.50 1.50 1.50 0.00 

BL 0.01 0.00 0.01 0.01 0.16 0.05 0.14 0.39 0.33 0.43 -0.24 0.24 0.18 

FL 1.61 0.00 0.05 0.12 0.86 0.06 42.79 45.48 2.70 3.11 -2.29 2.29 0.82 

Total/PLSL2 39.99 0.11 10.53 1.77 4.27 0.14 43.20 100 
     

G****** 1.93 0.03 0.41 0.71 1.50 0.09 0.41 
      

Persistence = 94.92%, Total change = 5.08%, Absolute net change = 2.86%, Swap = 2.22% 
  

              

2000/2005 
            

F 38.98 0.07 0.07 0.26 0.39 0.21 0.00 39.99 1.00 2.85 0.85 0.85 2.00 

G 0.04 0.06 0.00 0.00 0.01 0.00 0.00 0.11 0.05 0.20 0.09 0.09 0.11 

W 0.10 0.01 9.82 0.40 0.08 0.02 0.09 10.52 0.70 1.14 -0.26 0.26 0.89 

FP 0.22 0.03 0.31 0.81 0.16 0.01 0.23 1.77 0.96 1.75 -0.17 0.17 1.58 

BU 0.00 0.00 0.00 0.00 4.27 0.00 0.00 4.27 0.00 1.58 1.58 1.58 0.00 

BL 0.01 0.00 0.01 0.00 0.02 0.04 0.07 0.14 0.11 0.55 0.33 0.33 0.21 

FL 1.48 0.04 0.06 0.13 0.91 0.20 40.38 43.20 2.82 3.20 -2.43 2.43 0.78 

Total/PLSL2 40.83 0.20 10.27 1.61 5.85 0.48 40.77 100 
     

G****** 1.85 0.15 0.44 0.79 1.58 0.44 0.39 
      

Persistence = 94.36%, Total change = 5.64%, Absolute net change = 2.85%, Swap = 2.78% 
  

              

2005/2010 
            

F 40.21 0.02 0.09 0.17 0.30 0.04 0.00 40.83 0.62 2.80 1.55 1.55 1.25 

G 0.06 0.05 0.01 0.01 0.01 0.00 0.06 0.20 0.16 0.18 -0.13 0.13 0.05 

W 0.10 0.00 9.80 0.25 0.06 0.00 0.05 10.26 0.46 0.95 0.03 0.03 0.92 
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FP 0.18 0.00 0.31 0.69 0.27 0.00 0.15 1.61 0.92 1.48 -0.36 0.36 1.12 

BU 0.00 0.00 0.00 0.00 5.85 0.00 0.00 5.85 0.00 2.41 2.41 2.41 0.00 

BL 0.03 0.00 0.01 0.01 0.14 0.03 0.25 0.48 0.44 0.52 -0.36 0.36 0.16 

FL 1.80 0.00 0.07 0.11 1.63 0.03 37.13 40.77 3.64 4.16 -3.13 3.13 1.02 

Total/PLSL2 42.38 0.07 10.29 1.25 8.26 0.11 37.64 100 
     

G****** 2.17 0.03 0.49 0.56 2.41 0.08 0.51 
      

Persistence = 93.75%, Total change = 6.25%, Absolute net change = 3.98%, Swap = 2.26% 
  

              

2010/2017 
             

F 41.59 0.03 0.20 0.16 0.34 0.06 0.00 42.38 0.79 4.21 2.63 2.63 1.58 

G 0.03 0.03 0.00 0.00 0.01 0.00 0.00 0.07 0.04 0.11 0.02 0.02 0.08 

W 0.11 0.00 9.85 0.21 0.09 0.00 0.03 10.29 0.44 1.10 0.22 0.22 0.88 

FP 0.22 0.00 0.37 0.40 0.15 0.01 0.10 1.25 0.85 1.31 -0.40 0.40 0.91 

BU 0.00 0.00 0.00 0.00 8.26 0.00 0.00 8.26 0.00 2.05 2.05 2.05 0.00 

BL 0.02 0.00 0.00 0.00 0.03 0.02 0.03 0.11 0.09 0.21 0.03 0.03 0.18 

FL 3.05 0.02 0.08 0.08 1.44 0.05 32.90 37.64 4.73 4.90 -4.57 4.57 0.34 

Total/PLSL2 45.02 0.10 10.51 0.85 10.31 0.14 33.07 100 
     

G****** 3.42 0.07 0.66 0.46 2.05 0.12 0.17 
      

Persistence = 93.06%, Total change = 6.94%, Absolute net change = 4.96%, Swap = 1.98% 
  

1PLSE = Percentage of earlier landscape, 2PLSL = Percentage of later landscape, *L = Loss, **Tc =  Total change, 

 ***Nc = Net change, ****ANc =  Absolute net change, *****S = Swap, and ******G= Gain 

 

Table 23-S4. Land use transitions in Guangdong, Hong Kong, and Macao between 1986 and 2017(km2). 

 2017  

 Classes Forest Grassland Water Fishponds Built-up Bareland Farmland Total/LSE1 

1986 

Forest 62,031.53 60.13 211.53 310.49 2586.82 57.05 0.00 65,257.55 

Grassland 285.24 63.82 2.69 2.30 80.75 2.37 22.93 460.11 

Water 167.71 14.26 19,268.44 420.14 838.32 9.89 76.72 20,795.47 

Fishponds 299.74 8.88 532.01 456.97 1074.51 5.75 85.50 2463.35 

Built-up 0.00 0.00 0.00 0.00 1488.35 0.00 0.00 1488.35 

Bareland 149.99 1.27 84.13 18.32 330.99 15.90 151.56 752.16 

Farmland 25,449.98 41.35 544.48 466.39 13,841.81 184.44 64,595.48 105,123.93 

  Total/LSL2 88,384.19 189.72 20,643.28 1674.61 20,241.55 275.40 64,932.19 196,340.94 

1LSE = Earlier landscape, 2LSL = Later landscape  

 

Table 24-S5. Value of ecosystem function from 1986 to 2017. 

ESVf billion(CNY/Yr) 1986 1989 1994 2000 2005 2010 2017 % Rank 
Tendency 

Food 23.99 22.63 20.99 20.08 19.11 17.83 16.04 2.91 9 

 

Raw material 37.80 40.95 43.25 44.61 45.41 46.92 49.54 6.39 8 
 

Gas regulation 59.07 62.31 63.64 63.51 62.56 61.44 60.36 8.99 6 

 

Climate regulation 67.38 71.13 75.07 74.66 73.53 71.55 70.07 10.41 5  

Water supply 151.47 154.78 154.97 149.66 142.08 133.82 129.17 21.00 1 
 

Waste treatment 141.96 142.71 142.69 138.37 132.45 126.21 121.19 19.55 2  

Soil formation and retention 86.53 89.35 90.78 91.44 91.31 91.57 92.81 13.12 3 
 

Biodiversity protection 72.55 75.93 78.41 79.45 79.74 80.79 83.11 11.39 4 
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Recreation and culture 39.47 41.73 43.88 44.05 43.65 43.70 44.57 6.23 7 
 

Total 680.23 701.51 713.68 705.84 689.84 673.84 668.45 100.00   

Table 25-S6. Meaning and importance of weigh factors. 

Regulation 

Gas regulation 
Regulation of atmospheric chemical composition e.g. CO2/O2 balance,O3 for 

UVB protection, and SOx levels 

Climate regulation 

• Regulation of global temperature, precipitation, and other biologically 

mediated climatic processes at global or local levels. 

• Capacitance, damping and integrity of ecosystem response to 

environmental fluctuations 

Water supply 
• regulation of hydrological flows 

• Storage and retention of water 

Waste treatment 
• Recovery of mobile nutrients and removal or breakdown of excess or 

xenic nutrients and compounds. 

• Movement of floral gamets 

Support 

Soil formation and 

retention 

• soil formation process 

• Storage, internal cycling, processing and acquisition of nutrients. 

• Retention of soil within an ecosystem 

Biodiversity protection 
• Trophic-dynamic regulations of populations 

• Sources of unique biological materials and products 

• Habitat for resident and transient populations. 

Provision 

Food That portion of gross primary production extractable as food. 

Raw materials 
That portion of gross primary production extractable as raw materials e.g. The 

production of lumber, fuel or fodder 

Culture Recreation and culture 
Providing opportunities for recreational activities. Providing opportunities for 

non-commercials uses. 

 


