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ABSTRACT 

Damage identification is somewhat like a detective task to catch the ‘culprit’ – defect 

or damage committed to materials and structures. Driven by the motivation to 

‘visualize’ the ‘culprit’, diagnostic imaging using ultrasonic waves has been studied 

intensively and extensively over the past decades, to project identified defect or 

damage in an easily interpretable and intuitional quantitative image concerning the 

overall ‘health’ state of the structure under inspection. Nevertheless, prevailing 

diagnostic imaging approaches such as reverse time migration (RTM) and multiple 

signal classification (MUSIC), still show limitations when used in practice, 

particularly including 

(i) inferior imaging quality of the flaw: as a common problem of most imaging 

approaches, the image quality of lower flaw surfaces is usually inadequate, 

leading to possible deficiency in depicting full features of flaw; 

(ii) limited capability to detect flaw in specimens featuring irregular surfaces: 

prevailing imaging techniques often show proven effectiveness for a 

specimen with a flat surface that is either in parallel or oblique to the surface 

of the phased array, and it is a challenge to detect the specimens with non-

planar surfaces; 

(iii) incomplete coverage of inspection region: prevailing MUSIC methods are 

largely bound up with the use of a linear array, leaving blind zones and failing 

to access the full planar area of an inspected sample;  

(iv) insufficient signal features: prevailing MUSIC algorithm, manipulated in 

the time domain, is applicable to monochromatic excitation only, ignoring 
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signal features spanning a broad frequency band which also carry information 

of damage; and 

(v) lack of in-situ structural health monitoring (SHM) strategy: restricted by 

the use of bulky transducers, mobile manipulation, and computationally 

expensive imaging algorithms, it is a tough task to extend diagnostic imaging 

to real-time, continuous, in-situ SHM. 

 

In recognition of the foregoing deficiencies in conventional ultrasonic imaging, a new 

ultrasonic imaging framework is developed in this PhD study.  

 

First, an enhanced reverse time migration (ERTM) algorithm is developed, targeting 

superior imaging of full features of the embedded flaw in engineering material. On the 

basis of the multipath scattering analysis and Fermat’s principle of the acoustic wave 

propagation, the algorithm establishes a new wavefield extrapolation model and 

presents a virtual phased array to reconstruct the lower surface of the embedded flaw. 

In conjunction with the flaw upper surface constructed by the actual phased array, the 

complete flaw features can be precisely delineated. The effectiveness of the ERTM 

approach is demonstrated by evaluating flaw with different geometric profiles in both 

simulation and experiment. Results show that, in comparison with the conventional 

RTM and TFM, the developed EMTR method can efficiently and accurately depict the 

full profiles of the flaw, providing a great alternative for characterizing flaw of 

complex shapes. 

 

To extend the above imaging algorithm to an inspected specimen featuring an irregular 

top surface, an RTM-based multistep angular spectrum approach (ASA) imaging 
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framework is developed. Central to the framework is a multistep ASA, via which the 

forward propagation wavefields of wave sources and backward propagation 

wavefields of the received wave signals are calculated. Upon applying a zero-lag 

cross-correlation imaging condition of RTM to the obtained forward and backward 

wavefields, the image of the specimen with an irregular surface can be reconstructed, 

in which hidden damage, if any and regardless of quantity, are visualized. The 

effectiveness and accuracy of the framework are examined using numerical simulation, 

followed with experiments, in which multiple side-drilled holes, at different locations 

in aluminum blocks with various irregular surfaces, are characterized. The validation 

affirms that the RTM-based multistep ASA shows an enhanced imaging resolution and 

contrast against conventional TFM. 

 

An ameliorated multiple signal classification (Am-MUSIC) algorithm is proposed to 

remove the limitation of linear sensor array arrangement in conventional methods and 

to improve imaging resolution. The new method manipulates the signal representation 

matrix at each pixel using the excitation signal series, instead of the scattered signal 

series, which enables the use of a sparse sensor network with arbitrarily positioned 

transducers. By quantifying the orthogonal attributes between the signal subspace and 

noise subspace inherent in the signal representation matrix, a full spatial spectrum of 

the inspected sample can be generated, to visualize damage in the sample. Am-MUSIC 

is validated, in both simulation and experiment, by evaluating damage in plate-like 

waveguides with a sparse sensor network. Results verify that Am-MUSIC has full 

access to a sample, eliminating blind zones; and the amelioration expands conventional 

MUSIC from phased array-facilitated nondestructive evaluation to health monitoring 

using built-in sparse sensor networks. 
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Although Am-MUSIC algorithm expands conventional MUSIC algorithm from linear 

array-facilitated nondestructive evaluation to in-situ health monitoring with a sparse 

sensor network, a twofold issue still leaves to be improved: i) the signal representation 

equation is constructed at each pixel across the inspection region, incurring high 

computational cost; and ii) the algorithm is applicable to monochromatic excitation 

only, ignoring signal features scattered out of the excitation frequency band which also 

carry information on structural integrity. With this motivation, a multiple-damage-

scattered wavefield model is developed, with which the signal representation equation 

is constructed in the frequency domain, avoiding computationally expensive pixel-

based calculation – referred to as frequency-domain MUSIC (F-MUSIC). F-MUSIC 

quantifies the orthogonal attributes between the signal subspace and noise subspace 

inherent in the signal representation equation, and generates a full spatial spectrum of 

the inspected sample to visualize damage. Modeling in the frequency domain endows 

F-MUSIC with the capacity to fuse rich information scattered in a broad band and 

therefore enhance imaging precision. Both simulation and experiment are performed 

to validate F-MUSIC when used for imaging single and multiple sites of damage in a 

plate waveguide with a sparse sensor network. Results accentuate that the effectiveness 

of F-MUSIC is not limited by the quantity of damage and precision is not downgraded 

due to the use of a highly sparse sensor network – a challenging task for conventional 

MUSIC algorithm to fulfill. 

 

Finally, an in-situ SHM diagnosis framework, from sensing to the presentation of 

diagnostic results, is established by integrating the all-printed nanocomposite sensor 

array (APNSA) and MUSIC diagnosis algorithm. The new breed of nanocomposite-

based ultrasonic sensor – APNSA – is fabricated, in lieu of the conventional transducer 
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array, featuring not only full integration with the inspected structure, but also high 

flexibility, ultralight weight, and broadband responsivity. Supported by the APNSA 

sensor and used in conjunction with the MUSIC algorithm, the continuous monitoring 

of damage can be implemented. The effectiveness of the diagnosis framework is 

validated experimentally by characterizing structural damage in the composite 

laminates, and results highlight its alluring application prospects for damage detection 

and health status perception in a real-time, in-situ manner.  

 

In conclusion, enriched with fundamental theory development, dedicated modeling, 

innovative transducer fabrication, and intensive experimentation, a novel diagnosis 

imaging framework is developed in this study, to break through some critical 

bottlenecks of ultrasonic imaging, and cement a feasible way to meet diverse 

requirements in applications. 
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CHAPTER 1  

 

Introduction 

1.1 Background and Motivation 

Engineering assets in aerospace, ground transportation, ship-building, and civil 

industry are prone to various types of damage under adverse working conditions. 

Without timely awareness and appropriate remediation, material defects or structural 

damage can impact detrimental effects on structural integrity and potentially result in 

catastrophic consequences. Therefore, it is of incontrovertible significance but also a 

great challenge to identify and characterize the damage in the engineering structures. 

Subsequent to identification, timely remediation can be applied, to prevent further 

material deterioration, weaken the risk of consequent system failure, warrant the 

reliability, integrity, and durability of an engineering asset, and further bring immense 

economic and social benefits [1].  

 

Addressing such significance, a wide variety of damage identification techniques has 

been developed, exemplified by eddy current [2], ultrasonic testing [3], infrared 

thermography [4], magnetic testing [5], laser vibrometry [6], dye penetrant testing [7], 

shearography [8] and radiography [9]. Among them, ultrasonic testing, as a non-

invasive monitoring means, has been at the core of intensive efforts over the past 
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decades and has shown the prominent capability for damage identification. As a matter 

of fact: 

i) Ultrasonic waves, classified into bulk waves and guided waves depending 

on the patterns of particulate motion, can be used for damage detection in 

a diversity of application scenarios. Specifically, bulk waves, referred to as 

waves that propagate in media without boundaries, are commonly applied 

to detect damage embedded in a thick solid (i.e., remote from the surface); 

while guided waves are confined by boundaries and guided by the structure, 

capable of monitoring damage in thin structures whose planar dimensions 

are far greater than their thickness, such as plates, rods, and tubes. 

ii) Thanks to the high sensitivity of ultrasonic waves, ultrasonic testing is 

accurate for determining the damage location and characterizing its size 

and shape. 

iii) Ultrasonic testing can be applied for a variety of materials, e.g., metals, 

composites, concrete, and woods, compared to methods like magnetic 

testing which is limited to ferromagnetic materials. 

iv) Ultrasonic testing is nonhazardous to operation personnel and inspected 

materials, unlike radiography which needs adequate protection. 

v) Ultrasonic testing is capable of highly automated operation and on-site 

testing. 

 

The basic principle of ultrasonic testing is that the interaction of ultrasonic waves with 

structural damage can significantly influence their propagation, accompanied by wave 

reflection, scattering, and mode conversion. Upon capturing these characteristics and 

establishing relationships with damage parameters, the damage can be characterized. 
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With such a philosophy, damage identification using ultrasonic waves commonly 

includes the following essential steps: 

i) activating desired ultrasonic waves and capturing the reflected waves 

(pulse-echo) or the transmitted waves (pulse-catch).  

ii) extracting the characteristics of the captured wave signals, including delay 

in the time of transit, amplitude, frequency content, etc. 

iii) establishing the relationship between the extracted characteristics and 

damage performance in ultrasonic wavefields, including reflection, 

scattering, mode conversion, etc. 

iv) figuring out the damage and estimating its severity with extracted 

characteristics, via the established relationship. 

 

Though it appears straightforward, damage identification using ultrasonic waves is a 

typical inverse problem, which starts with the outcome (damage-scattered ultrasonic 

wave signals) and then needs to infer the reason (damage). Considering the fact that 

the inverse problem is often ill-posed and difficult to solve, continued efforts have 

been made to proposing solutions by means of proper techniques. As one of recent 

research focuses, imaging technique plays a significant role in solving an inverse 

problem and is widely adopted for damage identification [10-12]. In principle, the 

keystone of imaging technique is to project identified defect or damage to an 

intuitional and easy interpretation image via specific damage diagnostic imaging 

algorithms. In a synthetic image, each image pixel corresponds exclusively to a spatial 

location of the structure under inspection, and thus the defect or damage in the 

structure, if any, can be highlighted and depicted intuitively in the images, through 

investigating information borne by each pixel. Depending on the two basis wave 
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modes of ultrasonic waves, imaging techniques can be commonly classified into bulk 

waves-based or guided waves-based. 

 

For bulk wave-based imaging, scanning is the most straightforward approach and is 

commonly implemented using a single ultrasonic probe, in which the probe is 

maneuvered to move on a surface of the inspected sample and the arrival times of 

reflected waves are regularly recorded to construct an image [13, 14]. However, the 

single ultrasonic probe has fixed inspection parameters and provides very limited 

information. To enrich information for damage detection, an ultrasonic phased array, 

consisting of a number of small individual elements, has been introduced to cater to 

more versatile applications. As elements in a phased array can be sequentially 

activated with programmable time delays, phase differences can be created in the 

wavefronts and the resulting wave, as the synchronization of these wavefronts, shows 

strong directionality in propagation and is therefore termed beamforming. With 

various types of beamform, the phased array can be operated in different scanning 

patterns, as typified by linear scan, sectorial scan, and beam focusing scan [15-17]. 

 

Despite proven effectiveness when used for ultrasonic imaging, phased array scanning 

is time-consuming because different time delays need to be individually designed for 

each scanning direction or a focused point. Recently, a novel phased array-based 

imaging scheme is developed, in which the complete signal database of all transmitter-

receiver element pairs, referred to as full matrix capture (FMC), is captured and post-

processed by imaging algorithms to visualize damage [18]. The total focusing method 

(TFM) is one of the most representative post-processing imaging algorithms, which 

computes the time-of-flights (ToFs) of all transmitter-receiver element pairs for each 
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inspected point using FMC data, achieving synthetically ‘total focusing’ at each pixel 

in an image [19]. Nevertheless, TFM imaging, as an amplitude-based algorithm, can 

be affected by numerous phenomena along the wave paths, such as diffraction, 

scattering losses, multiple reflections, resulting in lower resolution and artifacts in 

reconstructed images. To fully exploit FMC data so as to improve imaging accuracy 

and resolution, a wavefield-based method, reverse time migration (RTM), has been 

developed [20, 21].  

 

RTM-based imaging method, on a basis of the wavefield extrapolation of the full-wave 

equation, is manipulated with a postulation that when a receiver wavefield is 

propagated backward from the receiver in the time domain, the wave components 

reflected from the internal damage will, in principle, focus at the location of the 

damage. The underlying principle of RTM-based imaging is the simultaneous 

extrapolation of forward propagation of wave sources and backward propagation of 

the received wave signals, followed by imaging formation via applying a cross-

correlation imaging condition. Using such a philosophy, RTM-based imaging has been 

validated in various damage characterization scenarios.  

 

However, prevailing bulk-wave based imaging methods show two major limitations in 

practice: 

1) The image quality of a lower flaw surface is usually inadequate, leading to 

possible deficiency in depicting full features of a flaw [16]. This is because that: 

i) unlike abnormal tissues to be diagnosed in a clinic that has acoustic 

impedance similar to normal tissues, a flaw in engineering material (e.g., a 

void) has a significantly distinct acoustic impedance from that of the intact 
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material, making it difficult for incident waves to penetrate the flaw and reach 

its lower surface; ii) the waves scattered from the lower flaw surface will still 

be heavily masked by a great number of waves reverberating between the top 

and bottom of the sample; 

2) TFM and RTM-based imaging methods show proven effectiveness for a 

specimen with a flat surface that is either in parallel or oblique to the surface 

of the phased array, however, it is a challenge to detect the specimens with 

non-planar surfaces, respective of the fact that the non-planar surfaces are 

ubiquitous in engineering practice such as welds, molded components and 

pipelines [20]. 

These two challenges entail new research efforts, with a hope to circumvent the above 

deficiency of existing bulk-wave-based imaging. 

 

For guided waves-based imaging, a sensor network consisting of multiple pairs of 

actuator-sensor is usually employed to provide desirable signal acquisition, followed 

with appropriate diagnostic imaging algorithms to depict damage. During 

implementation, the imaging algorithm is a predominant factor governing the accuracy 

and resolution that a reconstructed image can deliver, and this subject has attracted 

intensive research efforts over a long period, as typified by tomography-based imaging 

[22], ToF(time-of-flight)-based imaging [23], time-reversal (TR) imaging [24], 

probability-based imaging [25] and array signal processing-based imaging [26-30], to 

name a few. 

 

Tomography-based imaging is based on the principle that a guided wave passes more 

easily through an intact structural region, whereas it is somewhat blocked (‘attenuated’) 
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by damage. ToF is a straightforward feature of a guided wave signal that suggests the 

relative positions among the actuator, sensor and damage. The keystone of time-

reversal imaging is that the damage can be assessed by quantifying the difference 

between the time reversed wave signals with regard to the original incident signals. In 

probability-based imaging, an appropriate damage index (DI) is extracted from 

captured guided wave signals to describe the probability of the presence of damage 

using a greyscale image. Array signal processing-based imaging can be implemented 

in various modalities, including minimum variance distortionless response method 

[27], subspace fitting method [28], maximum-likelihood method [29], and MUSIC 

algorithm [30]. 

 

Among them, the multiple signal classification (MUSIC) algorithm is a promising 

candidate owing to its attractive directional scanning and searching ability. Unlike the 

traditional imaging algorithms which rely on either ToF or amplitude information of 

guided wave signals [23, 27], MUSIC algorithm is an eigen-structure approach that 

utilizes the orthogonality of subspaces in wave signals to estimate damage features [31, 

32]. The effectiveness of the MUSIC algorithm has been proved for identifying 

damage in numerous applications. Nevertheless, the algorithm still encounters some 

common problems: first, conventional MUSIC-based imaging methods are restricted 

to use the uniform linear sensor array that features a dense configuration of transmitter 

elements with a small enough element pitch, which barely covers the whole azimuth 

range 0°-360° and severely degrades the beamforming properties at the angles close 

to 0° and 180°, causing damage overridden in the regions of [0, 30°] or [150°, 180°] 

in most circumstances [33]. In addition, previous studies prior on MUSIC algorithms 

are applicable to monochromatic excitation only, ignoring signal features spanning a 
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broad frequency band which also carry information of damage, potentially resulting in 

identification errors [34, 35]. Finally, linear sensor arrays in the previous studies are 

commonly configured by manually aligning a certain number of lead zirconate titanate 

(PZT) wafers [36-38]. Such a means is of a low degree of coupling compatibility with 

inspection structure, limited adaptation to curved or geometrically complex structural 

surface and low inspection reliability due to human interference [39]. In particular, the 

impossibility of integrating a bulky array with the inspected structure precludes the 

linear array-based inspection from being extended from offline damage detection to 

real-time, in-situ diagnostic imaging. All these limitations considerably hamper 

widespread use of conventional MUSIC-based methods in guided wave-based 

diagnostic imaging, stimulating efforts to improve the versatility of MUSIC-based 

methods by possibly ameliorated imaging strategies. 

 

In conclusion, although remarkable progress has been made towards both bulk wave-

based and guided wave-based diagnostic imaging, there still exist some challenging 

issues for future development of such a technique, and some of them are briefed as 

below:   

i) the image quality of a lower flaw surface is usually inadequate, leading to 

possible deficiency in depicting full features of a flaw in bulk wave-based 

imaging;    

ii) it is a challenge for bulk wave-based diagnostic imaging to detect the 

specimens featuring an irregular top surface; 

iii) in guided wave-based diagnostic imaging, prevailing MUSIC-based 

methods are largely bound up with the use of a linear array. Constricted by 

this, it is a challenge to access the full planar area of an inspected sample, 
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leaving blind zones to which an array fails to scan;  

iv) the prevailing MUSIC algorithm in guided wave imaging, manipulated in 

the time domain, is applicable to monochromatic excitation only, ignoring 

signal features spanning a broad frequency band which also carry 

information of damage; and 

v) the use of bulky linear arrays along with computationally expensive 

imaging algorithms obviously restricts the extension of imaging to real-

time, continuous, in-situ structural health monitoring (SHM). 

 

1.2 Research Objectives 

To circumvent the above-addressed deficiencies of the prevailing ultrasonic imaging 

techniques both in bulk wave-based and guided wave-based testing, this PhD research 

is dedicated to developing a diagnostic imaging framework, to improve the 

detectability and accuracy of prevailing imaging-based damage identification. 

Addressing the inefficiencies of existing methods, the following specific objectives 

are expected to achieve in this PhD study:  

i) to develop an enhanced reverse time migration (ERTM) algorithm for the 

precise delineation of the damage with the full feature, whereby both the 

higher and the lower surfaces of embedded damage can be characterized 

effectively; 

ii) to propose an RTM-based multistep angular spectrum approach (ASA) 

imaging framework for detecting the specimen with an irregular top surface 

and depicting the multiple damage sites hidden in the specimen; 

iii) to develop an ameliorated multiple signal classification (Am-MUSIC) 
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algorithm for damage detection using sparse sensor networks, target 

removing the limitation of uniform sensor array arrangement and 

improving imaging resolution; 

iv) to present the frequency-domain MUSIC (F-MUSIC) algorithm, aim at 

lowering the computational costs, fusing rich information scattered in a 

broad band and detecting multiple damage sites;  

v) to propose an in-situ health diagnosis framework, from sensing to diagnosis, 

to implement ultrasonic imaging from offline testing to real-time, in-situ 

SHM. 

 

1.3 Scope of the Thesis 

In this PhD thesis, a new diagnostic imaging framework for ultrasonic wave-driven 

damage characterization is proposed, featuring theoretical analysis, numerical 

modeling, experimental validation, and proof-of-concept application paradigm. The 

chapters are organized roughly in the order of fundamental investigation, algorithm 

development, and engineering applications. 

 

The state of the art of ultrasonic wave-driven diagnostic imaging approaches is 

reviewed in Chapter 2. Fundamentals of bulk waves and guided waves are briefly 

recapitulated, and principles of damage identification using both two types of waves 

are described. Particular emphasis is placed on the discussion of the prevailing 

diagnostic imaging algorithms, especially their applications and limitations. 
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In Chapter 3, the ERTM algorithm is investigated for depicting damage 

characterization and geometric profiling. This algorithm, on the basis of the multipath 

scattering analysis and Fermat’s principle of the acoustic wave propagation, presents 

a virtual phased array to characterize the lower surface of the embedded damage. In 

conjunction with the damage upper surface constructed by the actual phased array, the 

full features damage can be precisely delineated. At the end of the chapter, both 

simulation and experiment are performed with ETRM algorithm when used for 

imaging damage with different geometric profiles.  

 

Chapter 4 is pertaining to the development of an RTM-based multistep angular 

spectrum approach (ASA) imaging framework for non-destructive evaluation of the 

specimen featuring an irregular top surface. Central to the framework is a multistep 

angular spectrum approach (ASA), via which the forward propagation wavefields of 

wave sources and backward propagation wavefields of the received wave signals are 

calculated. Upon applying a zero-lag cross-correlation imaging condition of RTM to 

the obtained forward and backward wavefields, the image of the specimen with an 

irregular surface can be reconstructed, in which hidden damage, if any and regardless 

of quantity, are visualized. Experiments are performed to validate the proposed 

approach, in which multiple damage, at different locations in aluminum blocks with 

various irregular surfaces, are characterized quantitatively.  

 

In Chapter 5, an Am-MUSIC algorithm is proposed to remove the limitation of 

uniform sensor array arrangement in the conventional method and improve damage 

imaging resolution. In the Am-MUSIC algorithm, the signal representation matrix at 

each pixel is manipulated by the excitation signal series, instead of the scattered signal 
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series, which enables the use of a sparse sensor network with arbitrarily positioned 

transducers rather than a linear array featuring a dense configuration of transducing 

elements with a uniform element pitch. By quantifying the orthogonal attributes 

between the signal subspace and noise subspace inherent in the signal representation 

matrix, a full spatial spectrum of the inspected sample can be generated, to visualize 

damage in the sample. The performance of the F-MUSIC algorithm is also verified by 

both simulations and experiments.  

 

Aimed at exploiting the merits of the Am-MUSIC algorithm earlier developed 

(particularly its flexibility in configuring a sensor network) but surmounting the 

deficiency that the algorithm remains, the F-MUSIC algorithm is developed in Chapter 

6. F-MUSIC constructs the multiple-damage-scattered wavefield model over the 

frequency domain, rather than at each pixel in the spatial domain, to avoid 

computationally expensive pixel-based calculation. With quantifying the orthogonal 

attributes and integrating the calculation over a broad frequency band, F-MUSIC can 

fuse rich information scattered in a broad band and therefore enhance imaging 

precision. Both simulation and experiment are also performed to validate F-MUSIC 

when used for imaging single and multiple sites of damage in a plate waveguide with 

a sparse sensor network. 

 

In Chapter 7, an in-situ health diagnosis framework, from sensing to diagnosis, is 

developed by integrating the APNSA sensor and MUSIC diagnosis algorithm. The 

fabrication of this new APNSA sensor is first elucidated, and its performance is then 

examined in a broadband ultrasonic regime. Supported by such a novel sensor and 

used in conjunction with the MUSIC algorithm, the diagnosis framework is 
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implemented and its effectiveness is also validated through laboratorial investigation. 

 

Chapter 8 serves as the conclusion of the thesis, where recommendations for future 

research are also made. 
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CHAPTER 2  

 

State of the Art of Diagnostic Imaging: A 

Literature Review 

2.1 Introduction 

With the motivation to ‘visualize’ material defect or structural damage, diagnostic 

imaging using ultrasonic waves has been the core of intensive research in recent years.  

This chapter reviews the state of the art of ultrasonic wave-driven diagnostic imaging 

approaches.  

 

Depending on the two basic wave modes of ultrasonic waves, diagnostic imaging 

approaches can be subdivided into two categories: the bulk waves-based and the 

guided waves-based [40]. The former has been primarily utilized for damage detection 

of the thick solid, as represented by scanning-based imaging, delay-and-sum-based 

imaging, and inversion-based imaging; whereas the latter is used to detect damage in 

thin plate/shell structures [41], which can be implemented in various modalities 

including tomography imaging, time-of-flight-based imaging, time-reversal imaging, 

probability-based diagnostic imaging and array signal processing-based imaging. 

Targeting developing a new diagnostic imaging framework, particular emphasis in this 
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chapter is placed on the discussion of these diagnostic imaging approaches, especially 

their applications and limitations. 

 

2.2 Bulk Wave-based Imaging Using Phased Arrays 

2.2.1  Fundamentals of Bulk Wave-based Imaging 

Waves that propagate in an object, independent of its boundary and shape, are called 

bulk waves [42]. Bulk waves can propagate in two basic modes in an infinite medium: 

longitudinal modes and transverse modes, as shown schematically in Figure 2.1. In 

longitudinal waves, particles move in the parallel direction to the energy transfer. Since 

longitudinal waves are commonly accompanied by compression forces, they can be 

generated in gases, liquids, as well as solids. Transverse waves are defined as waves 

whose particle motion is perpendicular to the direction of the energy transfer. Due to 

no shear strength in liquids and gasses, transverse waves only exist in solids. 

 

Figure 2.1 Longitudinal waves and transverse waves. 



 

16 

Velocity, as the most commonly used parameter in ultrasonic imaging, is typically 

determined by the elastic properties and density of the medium. For isotropic solids, 

the longitudinal and transverse wave velocities can be represented as [43]: 
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where, Lc  and Tc  are the longitudinal and transverse wave velocities, respectively, E 

is Young’s modulus,   is Poisson’s ratio, G is shear modulus and   is the density.  

 

Generally, efficient activation and acquisition of ultrasonic waves is the prerequisite 

of ultrasonic wave-based damage detection, and therefore ultrasonic probes have been 

introduced. Thanks to its high flexibility and good controllability, the single element 

ultrasonic probe, Figure 2.2, is the most popular transducer for activating and 

capturing ultrasonic waves [44]. Signals captured by a single element probe are easy 

to interpret as the function of the wave traveling time, and the distance to the damage 

can be determined with the reflected time and known wave speed.  

 

Nevertheless, the single element probe needs to be maneuvered during the practical 

implementation, incurring the high time consumption when inspecting a large structure. 

In addition, the single element probe has fixed inspection parameters including the 

aperture and the entry angle, failing to meet diverse requirements in engineering 

applications. Furthermore, the information provided by a single ultrasonic probe is 

limited, resulting in the poor capability of depicting full features of the damage.  
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Figure 2.2 Typical single element ultrasonic probes [45]. 

 

To circumvent these limitations, ultrasonic phased array probes, with some examples 

in Figure 2.3, have been developed to cater for more versatile applications [46-49]. A 

typical phased array consists of a number of transducer elements (typically from 16 to 

256), as shown in Figure 2.4. Each element is connected to an individual channel in 

the array controller and can act as both a transmitter and a receiver. Thanks to such a 

superb characteristic, the damage identification technique using phased arrays is a 

promising method, in lieu of the traditional single probe-based approach, which 

presents the following features: 

i) the capability of automated implementation, thereby simplifying the 

inspection procedure and reducing human interference; 

ii) the capacity to generate multiple scanning patterns including sweeping, 

steering and focusing by appropriately designing the time delay of each 

element, thereby meeting diverse requirements in applications; and 

iii) the ability to capture and record a large number of signals, enriching 

information for damage detection and therefore providing higher 
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identification accuracy. 

 

 

Figure 2.3 Typical ultrasonic phased array probes [50]. 

 

 

Figure 2.4 Schematic of an ultrasonic phased array probe [51]. 

 

With the original waveforms captured by a phased array, an easily interpretable and 

intuitional image is efficient to depict damage in terms of the location, size, shape and 

severity. Motivated by this, various phased array-based imaging methods have been 

increasingly studied [52-57], as categorized into i) scanning-based imaging, ii) delay-

and-sum-based imaging, and iii) inversion-based imaging. 

javascript:;
javascript:;
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2.2.2  Scanning-based Imaging 

Scanning is the most straightforward approach to construct an image of the inspected 

structure, which can be implemented using a single-element probe [14, 58, 59]. If the 

single-element probe is installed in a fixed position for both wave transmitting and 

receiving, Figure 2.5(a), the testing results could be displayed as A-scan (amplitude 

scan), in which the amplitude of the signal is represented as a function of time, as 

shown in Figure 2.5(b). When the probe is moved along a line and A-scan data are 

recorded regularly, B-scan (brightness scan) can be obtained, Figure 2.6. B-scan 

facilitates a two-dimensional (2D) image whose color scale implies damage and two 

axes represent the horizontal distance along with the specimen and the vertical distance 

(depth) into the specimen, respectively. As an extension of the B-scan, the C-scan 

pattern is implemented by moving the probe in two dimensions, displaying the test-

piece in a top view, illustrated in Figure 2.7.  
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(a) 

 

(b) 

Figure 2.5 (a) A-scan with a single-element probe; and (b) A-scan result with a single-

element probe [60]. 
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(a) 

 

 

(b) 

Figure 2.6 (a) B-scan with a single-element probe; and (b) B-scan result with a single-

element probe [61].  
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(a) 

 

 

(b) 

Figure 2.7 (a) C-scan with a single-element probe; and (b) C-scan result with a single-

element probe [62]. 

 

Extending the above-discussed scanning using a single probe to the case using a 

phased array that consists of a multitude of transducer elements, each element can be 
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individually fired to excite and receive ultrasonic waves. Such a merit remarkably 

simplifies the implementation of the B-scan by automatically activating each element 

without manually moving the array, as shown in Figure 2.8. Furthermore, C-scan can 

be also conveniently implemented by moving the array along a straight line, Figure 

2.9. 

 

 

(a) 

 

(b) 

Figure 2.8 (a) B-scan with a phased array probe; and (b) B-scan result with a phased array 

probe [63]. 
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(a)  

 

 

(b)  

Figure 2.9 (a) C-scan with a phased array probe; and (b) C-scan result with a phased array 

probe [64]. 

 

Apart from the aforementioned scanning patterns relying on single-input mode (i.e., 

only one element is activated at a measurement), one of the most attractive advantages 

of the phased array is that elements in the phased array can be sequentially activated 

with programmable time delays. As a result of the time delays, phase differences in the 
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wavefronts activated by individual array elements are created. Therefore, the resulting 

wave, as the synchronization of these waves, is displayed as beamforming. With 

appropriate adjustment of the time delays, the beamforming can have strong 

directionality, endowing the phased array with various scanning patterns, 

representatively as linear scan, sectorial scan, and beam focusing scan [65-69].  

 

In the linear scan, elements in a group are activated with the same time delay, forming 

a straight wave beam perpendicular to the inspected surface. After sequentially 

activating sensing groups in a phased array, a full image of the inspection structure can 

be reconstructed, as illustrated in Figure 2.10(a). This scanning pattern is similar to 

the B-scan, but linear scan beamforming uses a group of elements, instead of a single 

element, to activate and receive wave signals, which can enhance the signal-to-noise 

ratio (SNR) and resolution. Moreover, with the assistance of wedges, the linear scan 

can be implemented at a fixed angle, allowing to detect wide structures, such as welds.  

 

Sectorial scans commonly alter the time delay of all elements to sweep the beamform 

through a series of angles, featuring the rapid inspection without moving the array, 

shown in Figure 2.10(b). The sectorial scan is typically applied in inaccessible 

structures, like the turbine and blade root. Depending primarily on the array frequency 

and the element spacing, the sweep angles can vary from ±20° up to ±80°. 

 

Provided the time delay of elements is appropriately selected to meet the spherical 

timing relationship, the beam focusing scan can be implemented, in which the wave 

beam is focused at a special point, Figure 2.10(c). Since the focusing point has the 

narrowest wave beam and the greatest lateral resolution, the beam focusing scan 
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commonly outperforms other scanning patterns in terms of imaging sensitivity and 

resolution. 

 

   

(a) (b) (c) 

Figure 2.10 Scanning patterns of the phased array with different time delays: (a) linear scan; 

(b) sectorial scan; and (c) beam focusing scan [70]. 

 

However, in scanning-based imaging, different time delays need to be appropriately 

programmed for each scanning direction or each focused point, and this unavoidably 

requires burdensome work and incurs high time consumption. In addition, scanning-

based imaging commonly displays imaging results in a direct manner, which is poor 

to exploit rich damage information in the captured wave signals. To circumvent these 

problems, two representative post-processing imaging approaches, delay-and-sum-

based imaging and inversion-based imaging, have been developed to carry out data 

analysis of phased array signals, which are briefly introduced in Sections 2.2.3 and 

2.2.4, respectively.  
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2.2.3  Delay-and-sum-based Imaging 

The basic principle of delay-and-sum-based imaging is to construct the diagnostic 

image by weighting the sum of amplitude contributions from all received signals at 

pixel points. In general, delay-and-sum-based imaging requires a large number of 

received signals to ensure accuracy and precision of damage identification results, and 

such a requirement can be fulfilled by the phased array that consists of dense 

transducer elements. Therefore, delay-and-sum-based imaging is widely applied in the 

field of phased array-based damage identification and has been implemented in various 

modalities including synthetic aperture focusing technique (SAFT), TFM, 

wavenumber algorithm, plane wave imaging (PWI) method, phase coherence imaging 

(PCI) method. 

 

The SAFT was originally developed as a single ultrasonic probe-based imaging 

technique, which collected pulse-echo signals at a series of points along the sample 

surface. This type of data collection procedure can be implemented using a phased 

array with N transducer elements, Figure 2.11, in which each element is employed in 

turn for wave activation and reception, rendering a total of N wave signals. Defining 

the wave signal activated and received by the mth element at the position ( , 0)mx  as 

( , )mu x t , the SAFT imaging value, ( , )P x z , at pixel point ( , )x z  is performed as  

1

2
( , ) ( , ) ,

N
m

m

m

L
P x z u x

c=

=                         (2.3) 

where 
2 2( )m mL x x z= − +  the distance between the mth element and the pixel point, 

and c is the wave velocity. 
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Figure 2.11 SAFT image formation process [43]. 

 

Several representative studies in the SAFT field are presented here. Karaman et al. [71] 

built a theoretical framework of the SAFT and discussed factors related to imaging 

quality. Martinez et al. [72] developed a digital signal processing procedure including 

apodization, deconvolution, dynamic focusing, and envelope detection, to improve the 

accuracy of the SAFT image. Chahbaz et al. [73] compared the scanning-based 

imaging and the SAFT-based imaging, concluding that SAFT could provide better 

reconstruction results with higher SNR and spatial resolution. Stepinski et al. [74] 

proposed a wavenumber SAFT algorithm that implemented the SAFT in the 

wavenumber domain, rather than in the time domain, by which the image resolution 

was improved and the grating lobes were lower. Skjelvareid et al.[75] combined the 

SAFT with the virtual source method, which enlarged the focusing range of cylindrical 

scanning. 
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However, in SAFT, the wave activation and reception are implemented using the same 

element, which fails to fully exploit the advantages of the phased array that can 

simultaneously record pulse-echo signals using all elements in the array. To tackle this 

deficiency, TFM was developed by Holmes et al. [18] to utilize all possible transmit-

receive combinations of phased array elements. Consider that a phased array with N 

transducer elements is placed on the sample surface, Figure 2.12. Upon firing each 

element in turn and recording the received signal by all elements, the signals dataset 

of all transmitter-receiver pairs is collected, consisting of a total of N N  signals, 

termed FMC data. For the convenience of discussion in what follows, the signal 

transmitted from the mth element at the position ( , 0)mx  and then received from the 

nth element at the position ( , 0)nx  is defined as ( , , )m nu x x t . The TFM image value, 

( , )P x z , at pixel point ( , )x z  is given as: 

1 1

( , ) ( , , ) ,
N N

m xz n
m n

m n

L
P x z u x x

c

− −

= =

=                     (2.4) 

where 
2 2 2 2( ) ( )m xz n m m n nL x x z x x z− − = − + + − +   is the distance from the mth 

element to the pixel point ( , )x z  and then to the nth element. Equation (2.4) is the 

mathematical expression of TFM, in which all transmitter–receiver signals are 

employed so as to achieve the maximum utilization of information at each point. 
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Figure 2.12 TFM image formation process [43]. 

 

Based on this study, various modalities of the TFM have been developed. Paul et al. 

[76, 77] proposed the vector TFM (VTFM) algorithm by subdividing the phased array 

into equal-sized sub-arrays and weighting angular reflectivity characteristics to TFM 

results of all sub-arrays, via which the orientation of small damage could be 

determined and visualized. Felice et al. [78] considered the wave path that reflected 

from the back surface of a sample to the damage, and presented the Half-Skip TFM 

(HSTFM), thereby characterizing small surface-breaking cracks. Extending Felice’s 

method, the Full-Skip TFM (FSTFM) [79] was developed by introducing the wave 

propagation path that both transmission and reception include one reflected ray from 

the back surface. Upon fusing the information obtained from the TFM, FSTFM, and 

HSTFM, multi-view TFM (MTFM) [80] and combined TFM (CTFM) [81, 82] were 

developed to fully extract the signal features for damage identification. Taking mode 

conversions between longitudinal waves and transverse waves into account, Zhang et 

al. [83] proposed a multi-mode TFM, showing proven capability of localizing flaw in 
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a multi-layered structure. P. Masson et al. [84] presented an Excitelet imaging 

approach by calculating the correlation between measured signals and theoretical TFM 

signals, endowing it with the capability of reducing the number of required transducers 

without loss of imaging quality. 

 

Attempting to focus FMC data at each image pixel, the wavenumber algorithm was 

developed [85]. In the wavenumber algorithm, a mathematically rigorous solution is 

deducted for the wave propagation model in the wavenumber domain, instead of the 

time domain, achieving better image quality and superior computational performance.  

 

Derived from the medical imaging technique, the PWI method [86] was developed, in 

which plane ultrasonic wavefronts were transmitted at different angles and the image 

was reconstructed by dynamically focusing with a subset of adjacent elements. In 

comparison with the TFM, the PWI method requires fewer wave signals and provides 

higher image resolution [87].  

 

Jorge Camacho et al. [88] presented the PCI method by analyzing the phase diversity 

at the aperture data, which weighted the coherent sum output with the phase coherence 

factor (PCF) and the sign coherence factor (SCF) to suppress the side lobes in 

ultrasound images. 

 

2.2.4  Inversion-based Imaging 

The reciprocity of the wave propagation states that the received waves after time-

reversal could converge at the source point if time is going backward. Based on this 

philosophy, inversion-based imaging has been intensively developed in recent years, 
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represented by inverse wavefield extrapolation (IWEX), time-reversal (TR) mirror, 

decomposition of the time-reversal operator (DORT), scattering matrix-based imaging, 

topological imaging, and RTM. 

 

Portzgen et al. [89] proposed the IWEX approach based on the acoustic wavefield 

theory, with which inverse wavefields were extrapolated and focused on the damage 

position. Similar to TFM, the IWEX approach was developed in conjunction with 

Half-Skip and Full-Skip to enhance the capability of detecting corrosion and cracks 

[90, 91]. 

 

TR mirror was developed to refocus received waves on the defect position. Fink et al. 

[92, 93] contributed the fundamental theory of the TR mirror, in which mathematical 

principles and operating procedures were detailed. Rodríguez et al. [94] presented a 

model-based TR mirror to solve the inverse problem in a high-efficiency way. Jeong 

[95] extended the TR mirror to the anisotropic media using a modular Gaussian beam 

(MGB) model.  

 

As an extension of the TR mirror, the DORT method is developed, which constructs 

the response matrix of the medium and decomposes the TR operator to determine the 

TR invariants, rather than directly calculates the iterative process. Prada et al. [96] 

compared the performance of the TR mirror and DORT method, concluding that the 

TR mirror could accurately control wave focusing to reduce the speckle noise, while 

the DORT method could detect and separate multiple damage sites without the need 

for programmable generators. Nguyen et al. [97] defined two significant singular 

values corresponding to monopole and dipole mode in the anisotropic medium 

respectively, whereby extending the DORT method to characterize the small scatterer. 
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Villaverde et al. [98] combined the DORT method with the synthetic transmit aperture 

(STA) imaging to inspect coarse-grained steel. Cunningham et al. [99] developed an 

enhanced DORT method, which utilised the singular value decomposition of the time-

frequency domain response matrices to detect welds.  

 

The scattering coefficient matrix, as a function of incident and scattering angles, can 

be used to represent the damage scattering field that stores the scattering amplitude 

and phase information of the scatterer. Motivated by this, the scattering matrix-based 

imaging method has attracted intensive research efforts for damage identification. 

Respectively, Zhang et al. [100] built the scattering coefficient matrix databases using 

finite element method (FEM) simulations and identified the damage characterization 

by comparing the experimental scattering coefficient matrix with simulation databases. 

Bai et al. [101] extended Zhang’s method by introducing the correlation coefficient 

and the structural similarity index, which quantitatively evaluated the similarity 

between the scattering matrices of the inspected defect and those of reference cracks. 

Another successful application of the scattering matrix-based imaging was proposed 

by Cunningham [102], in which the relationship between sizes of cracks and maximum 

eigenvalues of crack scattering matrices were constructed on the basis of the Kirchhoff 

scattering model, bringing advantages of no requirement of scattering matrices 

databases and the ability to detect the small crack. 

 

Topological imaging is a novel inversion-based algorithm. Dominguez et al. [103] first 

established the topological gradient method to identify the position and shape of 

scatterers. This method was aimed at minimizing the topological gradient function to 

find the optimal adequation between the measuring signals and FMC data. Based on a 
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similar idea, the full waveform inversion method was developed by Seidl et al. [104, 

105], which iteratively adjusted the parameters of the simulation model to match the 

measured signals of the flawed specimen. 

 

RTM, originating from seismic imaging, has consolidated its popularity in ultrasonic 

imaging in recent years. The RTM-based imaging is manipulated with a postulation 

that when a receiver wavefield is propagated backward from the receiver in the time 

domain, the wave components reflected from the internal damage will, in principle, 

focus at the location of the damage. Representatively, Muller et al. [20] applied the 

RTM to image hidden scatterers in civil structures. Gao et al. [106] combined the TR 

algorithm with RTM, via which internal damage in a multi-layered medium was 

accurately visualized. Asadollahi et al. [107] presented an analytical RTM approach, 

in which the source and receiver wavefields were approximately calculated to improve 

computational efficiency. Rao et al. [108] developed elastic reverse time migration 

using a two-way elastic wave propagation equation, to image notches with irregular 

shapes.  

 

Although bulk wave-based imaging methods discussed in this section have 

demonstrated effectiveness in various applications, two main problematic issues are 

remaining for exploration: first, the lower surface of the embedded scatterer is 

inadequately characterized, leading to inferior imaging quality of full features of the 

scatterer. Second, the prevailing imaging algorithms have proven capacity of 

inspecting a specimen with a flat surface, and it is a challenge to detect specimens with 

non-planar surfaces.  
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2.3 Guided Wave-based Imaging Using Sensor 

Networks  

2.3.1  Fundamentals of Guided Wave-based Imaging 

In a bounded medium, propagation of elastic waves is guided by waveguide 

boundaries, and elastic waves in this case are known as guided waves. Depending on 

different boundary conditions, guided waves take a variety of modalities, typically as 

Rayleigh waves, Lamb waves, and Stoneley waves [109]. Amongst them, Lamb waves, 

propagating in thin plate- or shell-like structures, have been at the core of intensive 

efforts since the late 1980s and offered an effective avenue for damage identification 

[110], which features superb characteristics include: i) capability of rapidly inspecting 

a large area; ii) superior sensitivity to various types of damage; iii) ability to examine 

inaccessible structural components; and iv) great potential for online and in-situ 

monitoring. 

 

To provide a basis for Lamb wave-based damage detection, fundamentals of Lamb 

waves are recapped here briefly. In a thin isotropic plate, the governing equation of 

motion of elastic disturbance can be represented in the form of Cartesian tensor 

notation. Using the Helmholtz decomposition [111], the Lamb waves can be 

decomposed into two uncoupled parts, longitudinal waves and transverse waves, 

respectively. After applying boundary conditions at both the upper and lower surfaces, 

the general description of Lamb waves can be obtained as [112]: 

2

2 2 2
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qh k qp

ph k q
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−
  (symmetric modes),               (2.5a) 
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2 2 2

2
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ph k qp

−
= −   (antisymmetric modes) ,           (2.5b) 

where 
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= −  , 
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2

T

q k
c


= −   and 

2
k




=  . h is the half thickness of the 

plate， k, ω, and λ are the wavenumber, angular frequency, and wavelength. Equations 

(2.5a) and (2.5b) are collectively known as the Rayleigh-Lamb equations, which 

implies that Lamb waves consist of symmetric and anti-symmetric modes. Each type 

of modes has an infinite number of modes and can be symbolized as iS   and iA  

respectively (i = 0, 1, 2, …namely the order of Lamb waves).  

 

In guided wave-based damage identification, a multitude of spatially distributed 

sensors is usually networked to configure a sensor network. By ‘cooperating’ with each 

other, the sensor network can certainly provide adequate wave signals, thereby 

increasing detection confidence and minimizing dependence on the isolated actuator-

sensor path [113, 114]. With adequate wave signals captured by a sensor network, it is 

crucial to extract and fuse the damage information extracted from these signals, and 

therefore various diagnostic imaging algorithms have been developed, including 

tomography imaging, time-of-flight-based imaging, time-reversal imaging, 

probability-based diagnostic imaging, and array signal processing-based imaging to 

name a few. 

 

2.3.2  Tomography Imaging 

The principle of guided wave-based tomography imaging lies in that a guided wave 

passes more easily through the intact structure whereas it is somewhat blocked by 

damage, if any. If these abnormal features in waves are extracted and quantified, the 
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damage could be highlighted in the reconstructed image via appropriate imaging 

algorithms. In practice, guided wave-based tomography can be conducted following 

certain basic steps: 

i) meshing the inspected area into small cells (called grid cells); 

ii) extracting the feature of the signal received by an actuator-sensor pair in a 

sensor network as the sum of contributions from all cells that lie on the 

straight line (called a ray) of the actuator-sensor path; 

iii) using appropriate algorithms to establish the field value at each grid cell 

based on signal features extracted in step ii); 

iv) repeating steps ii) and iii) for all the available rays in a sensor network，

and fusing field values as the final tomogram. 

 

Following the above procedure, various guided wave-based tomography methods have 

been developed. Hutchins et al. [115, 116] made a substantial contribution to the early 

development of tomography, which utilized changes in wave velocity and attenuation 

of wave signals to reconstruct tomograms. Malyarenko et al. [117] introduced two 

major schemes for implementing guided wave tomography, namely parallel beam 

projection and crosshole scheme, as illustrated in Figure 2.13. Parallel beam 

projection employed one actuator-sensor pair and inspected the object by rotating the 

object with a very tiny angular; while in crosshole projection, a large number of 

transducers were fixed surrounding the object to form multiple actuator-sensor pairs 

for tomographic reconstruction. To take the multi-mode characteristics of Lamb waves 

into account, Hinders et al. [118] developed the multi-mode tomography in 

conjunction with the arrival time sorting algorithm, whereby to improve the 

identification precision in pipes and plates. Xu et al. [119] established an ellipse-based 
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corrosion damage model for Lamb wave tomography, by which the shape and 

orientation of corrosion could be efficiently detected. Belanger et al. [120] developed 

a novel diffraction tomography algorithm based on the Born approximation, applicable 

for thickness reconstruction of plates or pipes. To facilitate tomography imaging under 

varying environmental conditions, G. Park et al. [121] presented a relative baseline 

approach on the basis of cross-correlation and power spectral density analysis, 

endowing it with the capability of reducing the effects of environment condition 

changes and quantifying structural damage. Zhao et al. [122] compared some typical 

tomographic imaging techniques, drawing the conclusion that algebraic reconstruction 

technique (ART) performed better than filtered back projection (FBP) in terms of noise 

tolerance and datasets handling, while probabilistic reconstruction algorithm (PRA) 

benefited flexibility of array scheme selection and efficiency of reconstruction. This 

research also discussed the sensor array geometries, finding that the rectangular array 

featured higher precision while the square sensor array was more cost-effective.  

 

 

(a) 

Figure 2.13 Schemes of Lamb wave tomography: (a) parallel projection scheme; and (b) 

crosshole scheme [123]. 



 

39 

 

 

(b) 

Figure 2.13 Cont. 

 

Despite demonstrated effectiveness in numerous applications, tomography imaging 

still suffers from the requirement of a large number of rays in order to cover the entire 

inspection area, which heavily increases the operation time and fairly narrows the 

application fields.  

 

2.3.3  Time-of-flight-based Imaging 

ToF, defined as the time consumed for a wave to travel a certain distance, is one of the 

most straightforward signal features, which suggests the relative positions among the 

actuator, receiver and damage. Upon extracting ToFs from a certain number of signals 

captured by a sensor network and applying proper imaging algorithms, damage can 

accordingly be identified [124-126].  

 

To facilitate comprehension, the ToF-based imaging algorithm is briefly introduced 

using a scenario consisting of one actuator and two sensors, as shown in Figure 2.14. 
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In this scenario, the incident wave activated by the actuator is scattered by the damage, 

and then captured by two sensors sequentially.  

 

 

Figure 2.14 Schematic of a two-dimensional plate with one actuator and two sensors [127]. 

 

For an actuator-sensor pair, the time difference, i jt − , between the incident wave that 

the sensor first captures and the wave scattered by damage can be expressed as 

( , 1, 2)i i

i i

A D D S A S

A D S A S

L L L
t t t i

c c

− − −

− − −

+
− = − =  = ，        (2.6) 

where 
2 2( ) ( )A D D A D AL x x y y− = − + − ， 2 2( ) ( )

i i iD S D S D SL x x y y− = − + −  , 

2 2( ) ( )
i i iA S S A S AL x x y y− = − + −  , ( , )A Ax y  , ( , )

i iS Sx y   and ( , )D Dx y   are the 

locations of the actuator A, sensor S j and damage D，and c  is wave velocity. Equation 

(2.6) configures the locus of possible damage locations as an ellipse with the actuator 

and sensor being its two foci, as shown in Figure 2.15. 

 

Allowing for two sensing paths, the difference in the ToFs between these two actuator-
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sensor pairs can be expressed as  

1 2

1 2 1 2

D S D S

A D S A D S

L L
t t t

c c

− −

− − − − −− = − =  ，              (2.7) 

where 
1D SL −  and 

2D SL −  are the distances from the damage to sensor S1 and from the 

damage to sensor S2, respectively. Mathematically, the locus defined by Equation (2.7) 

is a hyperbola with two sensors being its two foci and suggests possible damage 

locations. With Equations (2.6) and (2.7), damage positions can be determined by 

seeking intersections of these spatial loci (ellipses or hyperbolae), as shown in Figure 

2.15. 

 

The above discussion can practically be expanded to the sensor network consisting of 

N lead zirconate titanate (PZT) wafers (each can function as both the actuator and the 

sensor). 

 

 

Figure 2.15 ToF-based imaging of damage in a two-dimensional plate with one actuator and 

two sensors [127]. 
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Using such a philosophy, ToF-based imaging methods have been developed and 

implemented for various damage scenarios. Tua et al. [128] detailed the procedure of 

the ToF-based imaging, and detected cracks damage by seeking intersections of 

ellipses. Croxford et al. [129] compared the ellipse-based method and hyperbola-based 

method, concluding that the overall performance of the two methods was similar, while 

when a small number of sensors was arranged, the hyperbola-based method was 

superior with higher SNR. Fendzi et al. [130] combined the Bayesian analysis with 

ToF-based imaging, to improve localization accuracy of the impact to a sandwich plate. 

Moll et al. [131] extended the ellipse-based method by amending the wave propagation 

velocity via an angle-dependent profile, endowing it with the capability of localizing 

multiple damage sites in the anisotropic plate.  

 

In the above studies, the accuracy of ToF extraction plays a dominant role in ToF-based 

imaging, but mode conversion and boundary reflection are some factors that can 

complicate ToF extraction. To this end, appropriate signal processing tools, such as the 

short-time Fourier transform (STFT), Hilbert transform and wavelet analysis, are often 

employed to improve the performance of ToF-based imaging [132, 133]. 

 

2.3.4  Time-reversal Imaging 

Time-reversal imaging is developed based on the principle of time reversibility of 

acoustic waves. Specifically, in an intact structure, received wave signals can be 

reconstructed at the original activation source with a time-reversal process (TRP), 

while if any damage exists on the wave propagation path, the time reversibility of 

acoustic waves would break down. Therefore, examining the discrepancies between 

the reconstructed wave signal and the original incident signal can indicate the presence 
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of damage without requiring the baseline signal [134, 135]. 

 

The above principle can be better understood using an example, in which two Lamb 

wave signals acquired in an aluminum plate with/without damage are reconstructed 

using TRP, as shown in Figures 2.16(a) and (b), respectively. It can be seen that due 

to the presence of damage, a large discrepancy between the reconstructed signal and 

the original incident signal is clearly evident in Figure 2.16(b), resulting in a much 

higher DI (i.e., the signal discrepancy between the reconstructed signal and the original 

incident signal in this example).  

 

(a) 

 

(b) 

Figure 2.16 Reconstructed wave signals: (a) without damage; and (b) with damage [136]. 
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This example also shows two key tasks in time-reversal imaging: the reconstruction of 

received signals and the calibration of deviation. To investigate these aspects, a number 

of studies have been reported. Park et al. [137] theoretically interpreted the TRP of 

Lamb waves and discussed factors in the TRP including velocity, dispersion, modes 

and boundary reflection. Xu and Giurgiutiu [138] developed a new theoretical model 

to analyze the TRP, concluding that Lamb waves could be rigorously time reversible 

under narrow-band tone burst excitation. Agrahari et al. [139] investigated the 

frequency tuning of time reversibility, finding that the best reconstruction did not occur 

at the sweet spot frequency of the single-mode excitation, which could be influenced 

by parameters including transducer size and thickness, number of tone bursts and plate 

thickness. Wang et al. [136] proposed a virtual time reversal (VTR) algorithm in 

conjunction with the air-coupled scan method, whereby reducing the hardware 

manipulation of TRP and achieving better waveform reconstruction. 

 

2.3.5  Probability-based Diagnostic Imaging 

Compared with the definitive identification results, the underlying implication of 

probability is more consistent with the implication of estimating damage [140, 141]. 

Based on such a philosophy, probability-based diagnostic imaging (PDI) has been 

intensively studied. In PDI, the distribution probability of damage can be calculated 

with an appropriate DI extracted from captured guided wave signals (e.g., ToF, signal 

magnitude, and signal correlation) and finally displayed in a greyscale image. 

 

ToF-based PDI in virtue of the ToF discussed in Sections 2.3.3 configures the locus of 

damage locations as an ellipse or a hyperbola, and calculates the probability of the 

presence of damage at a specific pixel according to the shortest distance between this 
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pixel and the locus. Signal magnitude-based PDI (also called the delay-and-sum 

method) relies on the fact that the existence of damage leads to the presence of an 

additional wave packet, namely damage-scattered wave, in the captured wave; 

therefore, the ToF and strength of damage-scattered wave can be used to reveal the 

damage. Practically, the damage-scattered wave signals are commonly extracted from 

captured wave signals by benchmarking the baseline signals, and the PDI can be 

defined in terms of the superposition of the magnitude of the damage-scattered wave 

signals that are shifted using a time-shifting rule. Signal correlation-based PDI 

hypothesizes that a low correlation between signals captured from a damaged structure 

and from the benchmark structure implies a high probability of damage presence along 

the signal acquisition path and vice versa. Based on this, the damage can be highlighted 

by aggregating all actuator-sensor paths with low correlation.   

 

PDI has proven effectiveness for identifying damage in a diversity of case studies. 

Representatively, Su et al. [142] applied ToF-based PDI to detect delamination in 

carbon-fiber-reinforced epoxy (CF/EP) laminates. Michaels et al. [23] proposed a 

delay-and-sum imaging method to characterize damage in a variable temperature 

environment. Wang et al. [143] developed a signal correlation-based PDI algorithm in 

conjunction with the use of virtual sensing paths, whereby to predict the location of 

damage in aluminum plates. Zhou et al. [144] presented a hybrid image fusion scheme 

that fused the various signal features including temporal information, signal energy, 

and signal correlation, applicable to visualizing structural damage regardless of its 

shape and number. In addition, in recognition of the fact that the performance of PDI 

can be significantly influenced by dispersive, multiple modes, frequency bandwidth, 

and baseline model, some enhanced PDI methods [145-147] were developed to address 
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the above concerns. 

 

2.3.6  Array Signal Processing-based Imaging 

Instead of using straightforward wave features such as time-of-flight or signal 

amplitude, the array signal processing-based imaging commonly makes use of global 

features of the wave signals to estimate damage characterization, which has been 

implemented in various modalities, including minimum variance distortionless 

response method [27], subspace fitting [28], maximum-likelihood method [29], and 

MUSIC and so on. 

 

In particular, the MUSIC algorithm, with its theoretical framework shaped by Schmit 

[148] in 1981 for frequency estimation and radio direction finding, is a directional 

scanning and searching method to unbiasedly estimate signal features in terms of the 

orthogonal attributes between signal subspace and noise subspace. With a directional 

scanning ability, MUSIC has been proven effectiveness in guided wave-based damage 

imaging. Representatively, Stepinski and Engholm [149] are among those first 

demonstrated the use of the MUSIC algorithm for estimating the direction of arrival 

(DOA) of an incoming Lamb wave in passive acoustic emission. Yang et al [150, 151] 

accurately determined the direction of impact-induced acoustic waves using MUSIC 

in conjunction with a linear sensor array, which, however, failed to precisely locate the 

impact site as the approach is based on the far-field hypothesis by simplifying that the 

impact-emanated wave is of a plane wavefront when the wave arrives at the array – it 

is not true for a waveguide in the near-field. 

 

To circumvent this limitation, Zhong et al [36] developed a near-field MUSIC 
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algorithm on the basis of the Taylor expansion theory, in which incoming waves are 

deemed to feature a spherical wavefront. This method was then validated by locating 

damage in a real composite oil tank, showing potential to improve localization 

accuracy. Extending this study and also taking into account other impact-induced wave 

components out of the excitation frequency, Yuan et al [37] proposed a single 

frequency component-based re-estimated MUSIC (SFCBR-MUSIC) with Shannon 

wavelet transform, showing the proven capability of localizing impact applied on a 

composite aircraft wing box. Conventional MUSIC was revamped by Zhong et al 

[152] based on 2D near-field assumption and the Gerschgorin discs theorem, and this 

revamped MUSIC algorithm facilitated detection of multiple damage sites. 

 

In addition to the above passive impact localization, MUSIC-based detection methods 

have also been extended to active damage identification. Bao et al [38] combined 

transmitter beamforming and weighted imaging with MUSIC, with which the severity 

of corrosion in aluminum plates was assessed, in conjunction with the use of a dual 

array consisting of two linear sensor arrays. Zuo et al [153] presented a model-based 

MUSIC algorithm by calculating the cross-correlation function between modeled 

scattered signals and measured residual signals, for identifying added mass attached to 

composite laminates, though material anisotropy of the composites and therefore 

discrepancy in wave velocities along different propagation directions were not 

considered. As an amendment to this approach, Bao et al [154, 155] developed an 

updated MUSIC algorithm to compensate for the anisotropy, by considering the effect 

of both the sensor localization error and the sensor phase error due to the material 

anisotropy, so that damage localization precision can be improved.  

 



 

48 

Despite demonstrated applications, MUSIC-based damage identification methods are 

usually restricted to the use of uniform linear arrays featuring a dense configuration of 

transmitter elements with a sufficiently small and uniform element pitch. This category 

of methods barely provides full inspection coverage, showing downgraded 

beamforming capability at azimuth angles close to 0° and 180°, as a result of which 

damage in the regions of [0, 30°] or [150°, 180°] within the inspection region may be 

overridden [33]. In addition, prevailing MUSIC-based methods, manipulated in the 

time domain solely at the monochromatic wave excitation frequency band only, ignore 

the wave components in the captured signals out of the range of the excitation 

frequency band which also carries rich information on structural damage or material 

degradation along wave propagation paths [34], potentially resulting identification 

errors [156]. Finally, linear sensor arrays in the previous studies are commonly 

configured by manually aligning a certain number of PZT wafers. Such a means is of 

a low degree of coupling compatibility with inspection structure and poor inspection 

reliability due to human interference, let alone extension of offline inspection to 

continuous monitoring of material deterioration and damage progressing. 

 

2.4 Summary 

In brief, this chapter reviews the state of the art of prevailing ultrasonic wave-based 

diagnostic imaging approaches. Depending on the two basis wave modes of ultrasonic 

waves, the diagnostic imaging approaches are distinguished by the bulk waves-based 

and the guided waves-based. In bulk waves-based diagnostic imaging, scanning-based 

imaging is the most straightforward approach but suffers from the cumbersome 

operation of moving transducers. Delay-and-sum-based imaging and inversion-based 
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imaging, as post-processing methods, can exploit rich information in the captured 

signals and therefore enhance imaging precision. Guided waves-based diagnostic 

imaging is represented as tomography imaging, time-of-flight-based imaging, time-

reversal imaging, probability-based diagnostic imaging, and array signal processing-

based imaging, each of which is discussed in terms of its applications and limitations. 

Driven by the state of the art reviewed above, developing the innovative diagnostic 

imaging framework for ultrasonic wave-driven damage characterization is the main 

objective of this PhD study. 
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CHAPTER 3  

 

Enhanced Reverse Time Migration 

(ERTM) for Damage Characterization and 

Geometric Profiling Using Phased Array  

3.1 Introduction  

To implement phased array-based imaging, phased arrays are manipulated on the 

surface of the inspected sample, to capture signals. However, such an imaging 

philosophy fails to delineate the lower surface of an embedded flaw (e.g., damage), let 

alone achieve a detailed depiction of its full features. This deficiency is mainly 

attributable to the difficulty in making use of the waves scattered from the lower 

surface of a scatterer. To this end, an ERTM algorithm is developed in this chapter for 

delineating damage characterization and geometric profiling. In ERTM, a virtual 

phased array is disposed on the basis of the multipath scattering analysis and Fermat’s 

principle of the acoustic wave propagation, to portray the lower flaw surface. In 

conjunction with the damage upper surface constructed by the actual phased array, the 

full features damage can be precisely delineated. The effectiveness of the ERTM 

algorithm is also verified in both numerical simulations and experimental 

investigations. 
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3.2 Principle of Enhanced Reverse Time Migration 

(ERTM)   

Considering a homogeneous solid with two flat parallel surfaces and a hidden scatterer, 

a phased array with N elements is placed on its upper surface, operating in a two-

dimensional scenario, as shown in Figure 3.1, where x and z stand for the horizontal 

dimension and the vertical dimension, respectively. Without losing generality, when a 

wave is transmitted from the nth element, there are two possible propagation paths of 

interest related to the scatterer: Path 1- the incident wave is reflected directly from the 

upper surface of the scatterer, and then received by elements in the array; Path 2 - the 

incident wave is reflected by the bottom of solid, scattered from the lower scatterer 

surface, and then captured by elements in the array. The conventional imaging methods, 

especially those capitalizing on ToFs and amplitude, take the Path 1 into account only 

and neglect wave components along the Path 2 which also carries rich information on 

the embedded scatterer, resulting in the deficiency in depicting full features of the 

scatterer. To overcome this bottleneck, the ERTM algorithm is developed in this 

chapter. 
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Figure 3.1 Schematic of the wave propagation in the specimen with hidden damage. 

 

Before detailing the ERTM, three premises should be pointed out: i) ERTM, as a post-

processing method, is based on the aforementioned FMC data, so it is assumed that 

FMC data have previously been captured for all damage cases; ii) the wave signals 

shall be recorded in a sufficiently long duration, ensuring that the multiple reflections 

from Path 2 can be included; and iii) the mode conversion in wave propagation are 

neglected, due to the weakness in the energy of the converted transverse wave mode, 

and only the longitudinal wave is investigated. 

 

In recognition of the fact that the ultrasound waves that underwent the multiple 

scattering Path 2 indicate the intensity of lower damage surface, ERTM treats the 

bottom of the solid specimen as a mirror and creates a virtual phased array that is 

located symmetrically with regard to the actual array, as shown in Figure 3.2. In 

conjunction with Fermat's principle of the acoustic wave propagation [157], the 

multiple scattering Path 2 could be simplified as the direct scattering path, equivalent 
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to the path that waves are transmitted from the nth element of the virtual phased array, 

reflected by the lower surface of the damage, and then captured with the virtual phased 

array. In this way, both the scattering paths 1 and 2 are viewed as the direct scattering 

paths, which contribute to the construction of the upper damage surface and the lower 

damage surface, respectively. 

 

  

Figure 3.2 Schematic of the wave propagation in the specimen using an actual phased array 

and a virtual phased array. 

 

Based on this mechanism, a novel model consisting of the original specimen and the 

mirrored specimen is established, Figure 3.3, under the assumption of initial 

Original specimen

X

Z

Path 1

Path 2

Damage

Virtual phased array N elements n
th

Actual phased array N elements n
th

Mirrored specimen



 

54 

undamaged material, via which a threefold ETRM imaging process is proposed for 

damage characterization: 

(i) upper scatterer surface: the actual phased array is employed for the RTM 

processing. Specifically, the wave signal excited by the nth element in the 

actual phased array is propagated forward to extrapolate the actual source 

wavefields ( , , ), ( 1,2,..., )a

nS x z t n N=  ; subsequently, the measured signals 

are reversed in time and excited at the corresponding locations of all 

elements in the actual array to extrapolate the actual receiver 

wavefields ( , , ), ( 1,2,..., )a

nR x z T t n N− = . 

(ii) lower scatterer surface: the RTM processing is applied with the virtual 

phased array, embracing the following two key steps. First, the virtual 

source wavefields ( , , ), ( 1,2,..., )v

nS x z t n N=   are extrapolated by exciting 

the nth element in the virtual phased array; Second, the time-reversed 

signals are excited by the corresponding elements in the virtual phased 

array to extrapolate the virtual receiver 

wavefields ( , , ), ( 1,2,..., )v

nR x z T t n N− = . 

(iii) image reconstruction: the image of the specimen is reconstructed by using 

the zero-lag cross-correlating imaging condition for the source wavefields 

and the receiver wavefields obtained in steps (i) and (ii), defined as 

        

upper lower

2 2
1 1

( , ) ( , ) ( , )

( , , ) ( , , ) ( , , ) ( , , )
,

( , , ) ( , , )

a a v vN N
n n n nt t

a v
n nn nt t

I x z I x z I x z

S x z t R x z T t S x z t R x z T t

S x z t S x z t= =

= +

− −
= +

 
 

 

  

(3.1) 
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where upper ( , )I x z  is the pixel value to define the upper surface flaw and 

lower ( , )I x z   to define the lower flaw surface; and ( , )I x z   is the image 

value at the pixel ( , )x z  in the reconstructed image. With Equation (3.1), 

the full profile of an embedded scatterer can be depicted accurately. 

 

 

Figure 3.3 Schematic of wavefields extrapolation model. 

 

The computation of source and receiver wavefields is the crucial concern in the ETRM 

imaging process, which can be solved with numerical techniques including finite 

elements, finite volumes or finite differences. In this chapter, the finite element method 
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(FEM) is chosen to provide the solution with the aid of flexible and various calculation 

modules of commercial software. 

 

3.3 Feasibility Study Using Numerical Simulation  

3.3.1  Numerical Model 

To verify the performance of the proposed ERTM, numerical simulation is carried out 

with COMSOL Multiphysics® software. Consider an aluminum sample (longitudinal 

wave velocity  Lc  = 6190 m/s, density    = 2700 kg/m3 and Poisson's ratio   = 0.33) 

with the size of 50 mm × 20 mm, a phased array with 32 elements is placed on the top 

surface of the sample. Three damage cases, labelled as C-I – C-III, are created by 

introducing the flaw with different geometries to the sample, as shown in Figure 3.4. 

The flaw is modeled by enforcing the material local stiffness to be zero. A 1.5-cycle 

Hann-windowed tone-burst with a central frequency of 5 MHz signal is selected as the 

excitation signal. By firing each element in turn and recording the received signals 

with all elements, the FMC data are obtained for all damage cases. 

 

 

https://www.sciencedirect.com/topics/engineering/poissons-ratio
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(a) 

 

 
(b) 

Figure 3.4 Schematics of 2D models in simulation for damage case (all dimensions in mm): 

(a) C-I; (b) C-II; and (c) C-III. 
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(c) 

Figure 3.4 Cont. 

 

3.3.2  Results 

Applying the ERTM method (Equation 3.1), the upper surface and the lower surface 

of the damage are displayed in Figures 3.5(a) and Figure 3.5(b), respectively. 

Aggregating the above two images produces a resulting image, Figure 3.5(c), in which 

the full profile of the embedded flaw is characterized, coinciding exactly with the 

actual flaw geometry. For illustrative comparison, the conventional methods, RTM and 

TFM, are also employed, and the resulting images are shown in Figure 3.5(d) and 

Figure 3.5(e), respectively. In both images, the upper surface of the flaw is defined 

only, while the lower flaw surface fails to be portrayed.  

 

With the same imaging procedure, the flaw in C-II and C-III are reconstructed in 

Figures 3.6 and 3.7, respectively. The imaging results confirm the conclusion that the 

EMTR method can efficiently characterize the lower surface of the flaw, conducive to 

the precise delineation of the flaw with full features; whereas conventional methods 
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highlight flaw upper surface only, which is poor to accurately define the lower flaw 

surface. 

 

 

(a) 

 

 

(b) 

 

Figure 3.5 (a) Reconstructed image of the flaw upper surface using ERTM for C-I; (b) 

reconstructed image of the flaw lower surface using ERTM for C-I ; (c) reconstructed image 

of the flaw using ERTM for C-I; (d) reconstructed image of the flaw using RTM for C-I; and 

(e) reconstructed image of the flaw using TFM for C-I; Z axis represents the distance below 

the array surface which is positioned at Z = 0; X axis represents the distance in region of 

interest (RoI) (the dotted-line-framed region in Figure 3.4(a)). 
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(c) 

 

 

(d) 

 

 

(e)  

 

Figure 3.5 Cont. 
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(a) 

 

 

(b) 

 

Figure 3.6 (a) Reconstructed image of the flaw upper surface using ERTM for C-II; (b) 

reconstructed image of the flaw lower surface using ERTM for C-II; (c) reconstructed image 

of the flaw using ERTM for C-II; (d) reconstructed image of the flaw using RTM for C-II; 

and (e) reconstructed image of the flaw using TFM for C-II; Z axis represents the distance 

below the array surface which is positioned at Z = 0; X axis represents the distance in RoI 

only (the dotted-line-framed region in Figure 3.4(b)). 
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(c) 

 

 

(d) 

 

 

(e) 

 

Figure 3.6 Cont. 
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(a) 

 

 

(b) 

Figure 3.7 (a) Reconstructed image of the flaw upper surface using ERTM for C-III; (b) 

reconstructed image of the flaw lower surface using ERTM for C-III ; (c) reconstructed 

image of the flaw using ERTM for C-III; (d) reconstructed image of the flaw using RTM for 

C-III, and (e) reconstructed image of the flaw using TFM for C-III; Z axis represents the 

distance below the array surface which is positioned at Z = 0; X axis represents the distance 

in RoI only (the dotted-line-framed region in Figure 3.4(c)). 
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(c) 

 

 

(d)  

 

 

(e) 

 

Figure 3.7 Cont. 
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3.4 Experimental Validation  

To experimentally validate the proposed ERTM imaging framework, an ultrasound 

testing platform (SonixTOUCH, Ultrasonix™) is designed and built, as shown in 

Figure 3.8(a). A linear array with 128 elements is arranged on the top surface of the 

specimen (longitudinal wave velocity  Lc  = 6190 m/s, density    = 2700 kg/m3 , 

and Poisson's ratio   = 0.33) and is regulated by the array controller 

(SonixTOUCH, Ultrasonix™) to excite and capture wave signals. The excitation wave 

– a 3-cycle Gaussian pulse with a central frequency of 5 MHz – is generated under an 

applied voltage of 60 V. A side-drilled hole (SDH) of 8 mm in diameter is introduced 

in the aluminum block as the damage scenario, Figure 3.8(b). 

 

 

(a) 

Figure 3.8 (a) Schematic of experimental set-up for validation; (b) An aluminum block 

featuring an SDH of 8 mm in diameter (all dimensions in mm). 

https://www.sciencedirect.com/topics/engineering/poissons-ratio
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(b) 

Figure 3.8 Cont. 

 

The reconstructed image using the ERTM algorithm is presented in Figure 3.9(a), in 

which both the upper surface and lower surface of damage are clearly and accurately 

indicated in the image, achieving superior imaging of full features of the embedded 

damage. To take a step further, conventional TFM and RTM algorithms are recalled 

for comparison, and reconstructed images are presented in Figures 3.9(b) and 3.9(c), 

respectively. It can be seen that both the methods fail to delineate the lower surface of 

the embedded damage accurately, let alone achieve a detailed depiction of its full 

features. 
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(a) 

  

(b) 

Figure 3.9 Reconstructed images using (a) ERTM; (b) RTM; and (c) TFM; Z axis represents 

the distance below the array surface which is positioned at Z = 0; X axis represents the 

distance in RoI only (the dotted-line-framed region in Figure 3.8(b)). 
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(c) 

Figure 3.9 Cont. 

 

3.5 Summary 

In this chapter, the ETRM imaging algorithm is investigated for depicting damage 

characterization and geometric profiling. The new algorithm, on the basis of the 

multipath scattering analysis and Fermat’s principle of the acoustic wave propagation, 

proposes a virtual phased array to characterize the lower surface of the embedded 

damage. In conjunction with the damage upper surface constructed by the actual 

phased array, the full features damage can be precisely delineated. The ERTM is 

validated, in both simulation and experiment, by evaluating flaw with different 

geometric profiles. Results show that compared with the conventional methods, the 

developed EMTR method can efficiently define the lower surfaces of the flaw and 

therefore precisely delineate full features of the flaw, which provides a great alternative 

for characterizing the flaw with complex shapes. 
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CHAPTER 4  

 

A Reverse Time Migration-based Multistep 

Angular Spectrum Approach for Ultrasonic 

Imaging of Specimens with Irregular 

Surfaces 

4.1 Introduction 

The prevailing imaging algorithms have proven the capacity of inspecting a specimen 

with a flat surface that is either in parallel or oblique to the surface of the phased array. 

Nevertheless, these algorithms often fail when they are extended to the specimens with 

non-planar surfaces, irrespective of the fact that the non-planar surfaces are ubiquitous 

in engineering practice such as weld-caps, molded components and pipelines. To 

circumvent such deficiency that most ultrasonic imaging algorithms may encounter, 

this chapter details a new ultrasonic imaging framework for a specimen featuring an 

irregular top surface, and demonstrate its capability of accurately depicting the 

multiple damage sites hidden in the specimen. Central to the framework is a multistep 

ASA, via which the forward propagation wavefields of wave sources and backward 

propagation wavefields of the received wave signals are calculated. Upon applying a 
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zero-lag cross-correlation imaging condition of RTM to the obtained forward and 

backward wavefields, the image of the specimen with an irregular surface can be 

reconstructed, in which hidden damages, if any and regardless of quantity, are 

visualized.  

 

4.2 RTM-based Multistep ASA 

4.2.1  Reverse Time Migration (RTM)  

In RTM-based imaging, the imaging conditions are applied to the forward propagation 

of a source signal and the backward propagation of a received signal, to reconstruct an 

image along with the specimen depth. Both the forward and backward wave 

propagation in a homogeneous medium is calculated on the basis of the acoustic wave 

equation using acoustic parameters (density, acoustic velocity, etc.) known a priori, 

with the assumption that the specimen is free of damage. Figure 4.1 shows the 

schematic of wave propagation in a homogeneous solid immersed in the fluid with an 

irregular top surface (i.e., a fluid-solid coupled system with an irregular interface) and 

hidden damage, when an N-element linear phased array is placed in the fluid to 

perform ultrasonic scanning. 
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Figure 4.1 Schematic of wave propagation in a fluid-solid coupled system with an irregular 

interface and hidden damage, under ultrasonic inspection using a phased array. 

 

For the 2D scenario shown in Figure 4.1, with ( ),x z  representing the Cartesian 

coordinates of an image pixel and t denoting the time, consider three paths of wave 

propagation when the nth element in the phased array ( 1,2,...,n N= ) is triggered to 

emit a probing wave into the coupled system: Path 1 – the wave is reflected directly 

from the upper surface of the specimen, and then captured by an element in the array; 

Path 2 – the wave is incident to the specimen, reflected by the damage, and then 

captured by an element in the array; and Path 3 – the wave is incident to the specimen, 

reflected by the specimen bottom to interact with the lower damage surface, reflected 

by the bottom again after wave scattering from the lower damage surface, and then 

captured by an element in the array. Amongst these three wave propagation paths, the 

wave signal along Path 1 contributes to the spatial determination of the specimen top 

surface, while the signals along Paths 2 and 3 facilitate imaging of the hidden damage. 

The wave signal acquisition duration, T, shall be sufficiently long, so that the multiple 

reflections from the specimen bottom along Path 3 can be included in the captured 

signals. 

Phased array
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RTM-based imaging embraces the following three key steps in sequence: 

(i) the wave signal excited by the nth element in the phased array is propagated 

forward in time with material properties and medium geometrical 

information known a priori, to extrapolate the source wavefields 

( ), ,nS x z t , ( 1,2,...,n N= ) from the initial time (when 0t = ) through the 

end of the signal acquisition (when t T= ); 

(ii) the received signals are reversed in time – the kernel of the RTM-based 

imaging; subsequently, the time-reversed signals are excited at the 

corresponding locations of all elements in the array, to extrapolate the 

receiver wavefields ( ), ,nR x z T t− ; and 

(iii) the image of the specimen is reconstructed after the zero-lag cross-

correlating the source wavefields and the receiver wavefields under certain 

imaging conditions. 

 

In this study, the zero-lag cross-correlation imaging condition in (iii), for all the 

possible pairs of source elements and receiving elements in the array, is defined as 

( )
( ) ( )

( )

0

21
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n nN
t
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=

=

=

 −

=





    ( 1,2,...,n N= ),  (4.1) 

where ( ),I x z  is the image value at a pixel ( ),x z  in the reconstructed image. To 

obtain the forward propagation wavefield ( ), ,nS x z t  and backward propagation 

wavefield ( ), ,nR x z T t−  in the specimen, one can use the aforementioned numerical 

methods, with which the entire fluid-solid coupled system, including the fluid, has to 

be modeled and imaged. This demands the extraordinarily high yet unnecessary 
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computational cost, even though the wavefield in the fluid contributes none to the 

characterization of damage – a major demerit that conventional RTM-based imaging 

has. 

 

4.2.2  Multistep Angular Spectrum Approach (ASA) 

A multistep ASA-based imaging framework is developed, to break through the 

limitations of conventional RTM in tackling fluid-solid coupled media with irregular 

interfaces. This framework allows modeling and calculation of the wavefields in the 

local region of interest (RoI) only, rather than the entire coupled system. Furthermore, 

it circumvents the shortcoming of the conventional ASA (namely, the extrapolation of 

wavefield can only be fulfilled when the interface possesses uniform acoustic 

parameters in the horizontal direction, and it cannot be extended to a solid with an 

irregular surface) [158-160]. 

 

With the assumption that (i) wave reflections from the top surface of the fluid and from 

the phased array surface are not taken into account, and (ii) the mode conversion in 

wave propagation is neglected, due to the weakness in the energy of the converted 

transverse wave mode, and only the longitudinal wave is investigated. The model for 

extrapolating wavefields is illustrated schematically in Figure 4.2. A twofold 

calculation process is proposed for wavefield extrapolation: (i) wave propagation in 

the fluid is ascertained to obtain the wavefields at the fluid-solid interface, as detailed 

in Section 4.2.2.1; (ii) the obtained wavefields at the interface are then treated as 

incident waves to emit into the solid, and with that, the wavefields in the solid are 

extrapolated, Section 4.2.2.2. 
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Figure 4.2 A 2D model for wavefield extrapolation in a fluid-solid coupled system with an 

irregular interface. 

 

4.2.2.1 Wavefields in Fluid and at Interface 

For the fluid-solid coupled system with an irregular interface shown in Figure 4.2, a 

phased array is placed in the fluid at the plane when 0z z= for wave excitation and 

acquisition. Given that an input signal ( )p t  is produced by a source element in the 

phased array at ( )0 0,x z , the Fourier modality of the acoustic pressure distribution, 

( ), ,P x z f , at the initial plane when 0z z=  can be expressed as 

( ) ( )0 0, , ( )P x z f P f x x=  − ,                     (4.2) 

where    signifies the Dirac function and f   the frequency. ( )P f   is the Fourier 

transform of ( )p t . Subsequently, Fourier transform is applied to ( )0, ,P x z f  with 

respect to x, to transform ( )0, ,P x z f  from the spatial to the wavenumber domain, 

and obtain its angular spectrum, ( )ˆ , ,xP k z f , at the plane when 0z z= , which reads 

( ) 0

0
ˆ , , ( ) xik x

xP k z f P f e
−

= ,                   (4.3) 
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where xk  denotes sampling wavenumber along x direction in the spatial frequency 

domain, which is the same in the solid and the fluid. 

 

Without loss of the generality, arbitrarily choose a point at the irregular interface, Qi 

(here, subscript i denotes a parameter at the interface; 1,2,...,i M=  where M stands 

for the total number of the discrete points selected on the interface for ASA 

calculation). The coordinates of Qi, namely ( )( ),i ix z x , can be determined in terms of 

the ToF of the first echo wave (i.e., the wave propagating along Path 1 as shown in 

Figure 4.1). When the probing wave travels from the initial plane ( 0z z= ) to point Qi, 

the angular spectrum of the acoustic field at the plane ( )iz z x=  , denoted with 

( )ˆ , ( ),x iP k z x f  , can be derived by introducing a phase shift with regard to 

( )0
ˆ , ,xP k z f , as 

( ) ( ) ( )0( )

0
ˆ ˆ, ( ), , , fluid z iik z x z

x i xP k z x f P k z f e −− −
= ,             (4.4) 

where 2 2

fluid z fluid xk k k− = −  ( 2fluid fluidk f c= : the wavenumber in the fluid; fluidc : 

the velocity of a wave in the fluid). 

 

Subsequently, the transient wavefield at Qi, viz., ( )( ), ,i ip x z x t , can be calculated 

upon applying the 2D inverse Fourier transform (including a spatial inverse Fourier 

transform first, and then a temporal inverse Fourier transform) on ( )ˆ , ( ),x iP k z x f , 

via 

( )( ) ( ) 2

1 ˆ, , , ( ),D
ii i x i x xp x z x t P k z x f−

==  ,            (4.5) 

where 2

1
D

−
 represents the 2D inverse Fourier transform. 
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4.2.2.2 Wavefields in Solid  

The transient wavefield at the interface derived in the above, ( )( ), ,i ip x z x t  , is 

incident to the solid. Provided a damage site exists in the solid at ( ),x z  , in Figure 

4.2, the damage scatters the incident wave via direct reflection from the plane 'z z=  

(Path 2) and multiple reflections from the specimen bottom (Path 3). In the same vein, 

the angular spectrum of the acoustic field at the plane 'z z= , where the damage exists, 

( )( )ˆ , ,solid

i xP k z f , can be ascertained, using Equation (4.4), as, 

( ) ( ) ( )( ) ( ) ( )( )2( )ˆ ˆ ˆ, , , ( ), , ( ),solid z i solid z bottom iik z z x ik z z z xsolid

i x x i x iP k z f P k z x f e C P k z x f e− − − − − − −
 = +   

   ( 1,2,...,i M= ),    (4.6) 

In Equation (4.6) the first term ( ) ( )( )ˆ , ( ), solid z iik z z x

x iP k z x f e − − −
 and the second term

( ) ( )( )2ˆ , ( ), solid z bottom iik z z z x

x iC P k z x f e − − − −
  refer to the wavefields contributed by Paths 2 

and 3, respectively; the superscript or subscript ‘solid’ distinguishes variables in the 

solid from those in the fluid as used in Section 4.2.2.1. 
2 2

solid z solid xk k k− = −  ( solidk : 

the wavenumber in the solid). C is a generalized reflection coefficient determined by 

the traction-free boundary condition at the specimen bottom, which can be obtained 

by solving Equation (4.6) when the term 

( ) ( )( ) ( ) ( )( )2ˆ ˆ, ( ), , ( ),solid z i solid z bottom iik z z x ik z z z x

x i x i

i

P k z x f e C P k z x f e− − − − − − − + 
   is zero. It is 

the introduction of such a coefficient in the angular spectrum calculation that makes it 

possible to accurately describe the lower surface of the hidden damage, in contrast 

with conventional imaging using TFM in which only the wave reflections from the 

upper surface of the damage (i.e., wave propagation along Path 2) are considered. 

Equation (4.6) is manipulated for each discrete point on the interface (M in total) to 



 

77 

yield ( )( )ˆ , ,solid

i xP k z f  (where 1,2,...,i M= ), summation of which leads to the total 

angular spectrum ( )( )ˆ , ,solid

xP k z f , at the plane z z=  (where damage exists): 

( ) ( )( ) ( )

1

ˆ ˆ, , , ,
M

solid solid

x i x

i

P k z f P k z f
=

 =      ( 1,2,...,i M= ).   (4.7) 

Subsequently, using the 2D inverse Fourier transform, the transient wavefield at the 

point ( ),x z   can be obtained, as 

   ( ) ( ) 2

1 ( )ˆ, , , ,D

solid

x x xp x z t P k z f−

=
  = .            (4.8) 

 

Upon applying the above multistep ASA to the excited signals and time-reversed 

signals, the forward and backward propagation wavefields in the solid are defined. 

With the wavefields, the entire solid can be imaged using Equation (4.1) of the RTM 

algorithm, in which damages, if any in the solid and regardless of the quantity, can be 

visualized. 

 

4.2.3  Numerical Verification 

To verify the RTM-based multistep ASA for ultrasonic imaging, numerical simulation 

is performed first, in which a 2D fluid-solid coupled system, as schematically shown 

in Figure 4.3(a), is considered. The depth of the fluid and the solid is 10 mm each, 

with respective key acoustic parameters listed in Table 4.1, and key parameters used 

in ASA calculation in Table 4.2. 

 

 

 

 



 

78 

 

(a) 

 

 

(b) 

 

Figure 4.3 (a) A simplified 2D fluid-solid coupled system for illustrating multistep ASA-

based imaging; (b) excitation signal; and (c) comparison of results obtained using the 

proposed algorithm and using FEM. 
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(c) 

Figure 4.3 Cont. 

 

Table 4.1 Acoustic parameters of the fluid-solid coupled system in simulation 

 fluid solid 

Velocity of wave (m/s) 1480 6300 

Density (kg/m3) 1000 2700 

 

Table 4.2 Key parameters used in the simulation for 2D inverse Fourier transform 

Sampling frequency 80 MHz 

Sampling interval of frequency 0.05 MHz 

Sampling wavenumber 45 mm-1 

Sampling interval of wavenumber 0.005 mm-1 

 

 

A point-like wave source is placed at the upper boundary of the fluid to excite an 

acoustic wave – a 1.5-cycle hamming modulated sinusoidal toneburst centered at 
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5MHz, Figure 4.3(b). Eight discrete points per wavelength are selected on the 

interface (Qi) for multistep ASA calculation. 

 

To verify the results obtained using multiple ASA, FEM-based modeling and 

simulation are performed using COMSOL Multiphysics® software. The FEM model 

features the same dimension along the z direction with that in the multistep ASA 

calculation, while it has a finite dimension along the x direction and is then applied 

with acoustic absorbing boundaries at both the left and right boundaries (eliminating 

wave reflection at boundaries). Thus, the model used in the multistep ASA calculation 

and the one in the FEM simulation have identical boundary conditions. The mesh size 

of the FEM model is 0.06 mm in the fluid and 0.24 mm in the solid. Arbitrarily 

choosing a point in the solid as the receiving point, as indicated in Figure 4.3(a), the 

time-series signal of the FEM-calculated wavefield at the receiving point is compared 

with that obtained using the multistep ASA, in Figure 4.3(c), to observe quantitative 

matching in between. 

 

It is noteworthy that under the same computational conditions, the computing time 

consumed by the multistep ASA calculation is reduced drastically to 500 seconds from 

the 3390 seconds used by the FEM simulation. 

 

4.3 Experimental Validation 

The multistep ASA-based imaging framework is validated experimentally on an 

ultrasound testing platform (SonixTOUCH, UltrasonixTM). Two aluminum blocks with 

irregular top surfaces – one featuring a parabolic surface and the other a wavelike 
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surface, are immersed in water for ultrasonic scanning. 

 

4.3.1  Set-up and Specimens 

The experimental set-up is illustrated schematically in Figure 4.4, showing the key 

equipment adopted. The first specimen, Figure 4.5(a), has a parabolic surface, in 

which four side-drilled holes (SDHs) are pre-treated, the diameter of these holes is 2.5 

mm, which is prudently selected to examine the detectability of the proposed algorithm; 

while the second specimen, Figure 4.6(a), possesses a top surface of a sinusoidal 

profile, in which two SDHs (Ø2.5 mm each) are pre-introduced. The locations of array 

surface, specimen surfaces, and SDHs are indicated in Figures 4.5(a) and 4.6(a), for 

two specimens. 

 

 

Figure 4.4 Schematic of experimental set-up for validation. 

SonixTouch
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The respective acoustic parameters of the fluid and the two specimens remain the same 

as those in numerical verification, Table 4.1. A multi-channel data acquisition module 

(SonixDAQ, UltrasonixTM) is used to capture signals which render up to 128 channels 

at a sampling rate of 80 MHz for each channel. A commercial array controller 

(SonixTOUCH, UltrasonixTM) regulates a linear array with a central resonance 

frequency of 5 MHz which comprises 128 elements (0.2698 mm in width for each 

element and 0.3048 mm in pitch). A 3-cycle Gaussian pulse is excited with the array 

under an applied voltage of 60 V, to generate the probing ultrasonic waves. Reflected 

wave signals from the specimen surface, damage, and specimen bottom are acquired 

with the array via fluid coupling. 

 

4.3.2  Results  

The surface of each specimen is first determined via a B-scan in which the wave 

propagation along Path 1 is considered and the Hilbert envelope of the corresponding 

waveform data is used to image interface depth, with results shown in Figures 4.5(b) 

and 4.6(b). The identified specimen surfaces tally well with the reality. With the 

determination of the location of the specimen surface, the transient wavefields at the 

specimen surface are calculated using the multistep ASA (Equation (4.5)). 

Subsequently, these wavefields are used as the incident waves to the specimen, and the 

wavefields at any location throughout the entire specimen can be calculated using 

Equations (4.6), (4.7), and (4.8). Applied with the zero-lag cross-correlation imaging 

conditions as defined in Equation (4.1), the image of the RoI (the region near the 

SDHs, namely the dotted-line-framed region in figures) can be reconstructed, shown 

in Figures 4.5(c) and 4.6(c). 
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(a) 

 

 

(b) 

 

Figure 4.5 (a) An aluminum block featuring a parabolic surface with four SHDs (unit: mm); 

(b) image of the upper part of the specimen constructed by a B-scan, for determination of 

specimen upper surface; (c) reconstructed image using the proposed imaging algorithm; and 

(d) reconstructed image using conventional TFM (for (c) and (d), Z axis represents the 

distance below the array surface which is positioned at Z=0; X axis represents the distance in 

RoI only (the dotted-line-framed region in Figure 4.5(a)). 
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(c) 

 

 

(d) 

 

Figure 4.5 Cont. 
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(a) 

 

(b) 

Figure 4.6 (a) An aluminum block featuring a sinusoidal surface with two SHDs (unit: mm); 

(b) image of the upper part of the specimen constructed by a B-scan, for determination of 

specimen upper surface; (c) reconstructed image using the proposed imaging algorithm; and 

(d) reconstructed image using conventional TFM (for (c) and (d), Z axis represents the 

distance below the array surface which is positioned at Z=0; X axis represents the distance in 

RoI only (the dotted-line-framed region in Figure 4.6(a)). 
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(c) 

 

(d) 

Figure 4.6 Cont. 

 

In the RoI images, each SDH in the two specimens is precisely depicted, showing not 

only its location and upper surface, but also its lower surface, thanks to the inclusion 

of multiple wave reflections from the damage and from the specimen bottom during 

wavefield extrapolation in the proposed approach. Notably, the proposed ASA allows 

imaging of the RoI only, while avoids modeling and imaging the entire fluid-solid 

coupled system, which significantly reduces the computational cost and unburdens 

computing hardware. 

 

Artifacts are observed in the reconstructed images, most of which are near the 

specimen upper surfaces – an inevitable consequence due to the inclusion of wave 

reflections from the specimen upper surface during wavefield extrapolation. Upon 

Z
 [

m
m

]

X [mm]

0 5 10 15 20 25 30 35 40

15

20

25

1.0

0.8

0.4

0.6

0.2

0

Z
 [

m
m

]

X [mm]

0 5 10 15 20 25 30 35 40

15

20

25

1.0

0.8

0.4

0.6

0.2

0



 

87 

obtainment of the wavefields at the interface, the reflection remains in the incident 

wave to the specimen, and then in the backward propagation, resulting in artifacts near 

the specimen upper surfaces. 

 

4.4 Discussion: Comparison with Conventional 

Total Focusing Method (TFM) 

To compare with the proposed RTM-based multistep ASA, conventional TFM is 

recalled, to characterize the same SDHs in the two specimens, in which all testing 

parameters remain unchanged. In conventional TFM-based imaging, wave reflections 

from the specimen bottom are not considered. With the determined locations of the 

specimen upper surfaces, ToFs of waves are extracted from captured signals, with 

which images of the specimens are reconstructed, in Figures 4.5(d) and 4.6(d). In the 

reconstructed images, all SDHs are located, whereas the image resolution is fairly low 

with the inadequate description of SDHs, and in particular the lower surface of each 

SDH is not depicted. In comparison with the conventional TFM, the RTM-based 

multistep ASA has proven capability of defining the lower damage surface with 

obviously improved image resolution. In conventional TFM, the irregular specimen 

surface is also a barrier to preclude the time-reversed signals from focusing at the 

damage location, resulting in low imaging resolution. Artifacts are also observed in 

TFM-reconstructed images, which can be attributed to the multiple wave reflections 

between the specimen bottom and the damage. 

 

Figure 4.7 further compares the mean values of the image pixel within the depth of 

0.5 mm where SDHs exist, obtained using the proposed multistep ASA approach and 
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using the conventional TFM-based algorithm. To facilitate comparison, imaging 

contrast is defined, which calibrates the difference between the peak value of the 

reconstructed SDH and that of the background. It is clear that the background value is 

reduced remarkably using the proposed ASA-based algorithm. The imaging contrast 

value obtained using the ASA-based algorithm is observed as high as 1.5 times the 

value yielded using TFM for the first specimen, Figure 4.7(a), and 2 times the value 

for the second specimen, Figure 4.7(b). 

 

 

(a) 

Figure 4.7 Average values of image pixel within the range of  0.5 mm near SDHs: (a) 

when z = 14 and 24 mm for the specimen with a parabolic curve; and when (b) z = 18 mm 

for the specimen with a sinusoidal surface. 
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(b) 

Figure 4.7 Cont. 

 

Although the image resolution of TFM-based or RTM-based imaging does not, in 

theory, tend to downgrade as depth increases, the quality of reconstructed images may 

deteriorate due to ultrasonic wave attenuation. Figure 4.7 argues that the multistep 

ASA evidently suffers less than TFM from such influence due to wave attenuation, and 

remains higher image quality for damage at a deeper depth. Such a merit is attributable 

to the fact that the reflections from the specimen bottom are considered in the 

wavefield extrapolation. 

 

4.5 Summary 

An RTM-based multistep ASA imaging framework is developed for non-destructive 

testing of a specimen featuring an irregular top surface via water immersion. Multistep 

ASA calculates forward propagation wavefields of sources and backward propagation 

wavefields of the received wave signals in the fluid-solid coupled system, with which 
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the transient wavefields at the fluid-solid interface are used as incident waves to the 

solid. Thanks to the RTM-enhanced algorithm in which multiple wave reflections from 

the specimen bottom are taken into calculation, the proposed approach demonstrates 

its capacity of accurately depicting the lower surfaces of multiple damages hidden in 

the specimen. Experiments are performed to validate the proposed approach, in which 

multiple SDHs, at different locations in aluminum blocks with various irregular 

surfaces, are characterized quantitatively. The validation affirms that the multistep 

ASA shows higher computational efficiency, compared to conventional RTM, and an 

enhanced imaging contrast against prevailing TFM. 
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CHAPTER 5  

 

Ameliorated-Multiple Signal Classification 

(Am-MUSIC) for Damage Imaging Using a 

Sparse Sensor Network 

5.1 Introduction 

Multiple signal classification (MUSIC) algorithm is a proven array processing 

technique for guided wave-based damage characterization. Nevertheless, prevailing 

MUSIC algorithms are largely bound up with the use of a dense linear array, which 

fails to access the full planar area of an inspected sample, leaving blind zones to which 

an array fails to scan. To break the above limitations, the conventional MUSIC 

algorithm is ameliorated in this study, by manipulating the signal representation matrix 

at each pixel using the excitation signal series, instead of the scattered signal series, 

which enables the use of a sparse sensor network with arbitrarily positioned 

transducers. In the ameliorated MUSIC (Am-MUSIC), the orthogonal attribute 

between the signal subspace and noise subspace inherent in the signal representation 

matrix is quantified, in terms of which the Am-MUSIC yields a full spatial spectrum 

of the inspected sample, and damage, if any, can be visualized in the spectrum.  
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5.2 Lamb Wave Scattering Theory 

Ultrasonic waves guided by a plate-like waveguide, a.k.a. Lamb waves, are of a 

multimodal and dispersive nature. At a given frequency, Lamb waves feature a 

multitude of wave modes which can be classified as the symmetric and antisymmetric 

modes. We consider a pure, monochromatic Lamb wave mode in the waveform of a 

toneburst, as the excitation signal ( )s t . ( )s t  is defined in a complex domain as 

0( ) ( ) exp
i t

s t u t


= ,                       (5.1) 

where ( )u t   denotes a window function to regulate the toneburst, t the time, i the 

imaginary unit, and 0  the central frequency of the toneburst. With the attenuation 

in magnitude as wave propagation in consideration, the Lamb wave, ( )R   , after 

travelling the distance d can be represented, in the frequency domain, as 

0( ) ( )exp ikdd
R S

d
  −= .                   (5.2) 

In the above, 0d   signifies an initial distance with regard to which the wave 

attenuation is calibrated; ( )S   is the corresponding Fourier representation of ( )s t ; 

k
c


= , where k denotes the wavenumber and c represents the propagation velocity of 

the considered monochromatic Lamb wave mode. 

 

Substituting Eqs. (1) into (2), the Lamb wave ( )r t  when it arrives at the distance d 

can be yielded, in the time domain, as 

0 ( )
10 0 0( ) ( ) exp ( ) ( ) exp

d
i d i t

c c
d d dd d

r t s s t u t
c cd d d





− −

−
 

= = − = − 
 

,    (5.3) 

where ( )r t   is the inverse Fourier transform of ( )R    and 1−   is the inverse 
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Fourier transform. 

 

For an intact waveguide, the captured wave signal, denoted with 
measured-intact ( )r t , is the 

direct arrival wave 
direct ( )r t  with incoherent noise 

measured-intact ( )w t , as 

measured-intact direct boundary-reflection measured-intact( ) ( ) ( ) ( )r t r t r t w t= + + ,          (5.4) 

where 
direct ( )r t  is the arrival wave propagating along the path from the wave source 

to the wave receiver. Provided damage is present at an unknown location in the 

waveguide, the damage can be modeled as a secondary wave source to scatter the 

incoming Lamb waves. Ignoring mode conversion, the measured signal 

measured-damage ( )r t  comprises the direct arrival wave 
direct ( )r t , boundary-reflection wave 

boundary-reflection ( )r t  , additional scattered wave from the damage 
scattered ( )r t  , and the 

incoherent noise 
measured-damage ( )w t , as 

measured-damage direct boundary-reflection scattered measured-damage( ) ( ) ( ) ( ) ( )r t r t r t r t w t= + + + ,  (5.5) 

where 
scattered ( )r t  is the arrival wave propagating along a scattered path (namely, the 

path from the wave source to the damage and then to the wave receiver). Suppose that 

the direct waves are the same at 
measured-intact ( )r t   and 

measured-damage ( )r t  , 
scattered ( )r t  

which carries information pertaining to the damage location can be obtained through 

benchmarking reference signals obtained from the intact status, as 

measured-damage measured-intact scattered residual( ) ( ) ( ) ( ) ( )r t r t r t w t r t− = + = ,        (5.6) 

where ( )w t   is the difference between the two noise terms 
measured-intact ( )w t   and 

measured-damage ( )w t  in the intact and current statuses. Here, for convenience of discussion, 

the terms of 
scattered ( ) ( )r t w t+  is referred to as the residual signal. 
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5.3 Near-Field MUSIC Algorithm 

As schematically illustrated in Figure 5.1, Lamb wave is excited at a foreknown 

position P, scattered by the damage, and then received by a linear sensor array that 

consisting of K transducing elements with a uniform element spacing l. Based on 

Fresnel region theory, the near-field monitoring scenario is defined when the distance 

between the array and the damage site satisfies[161]: 

3 22
0.62 near

D D
R

 
< < ，                     (5.7) 

where ( 1)D K l= −    the array aperture and    is the wavelength. Under this 

situation, the wavefront scattered by the damage is naturally spherical, which is 

characterized by the azimuth   and the range d. 

 

 

Figure 5.1 Use of a linear array with K PZT wafers for evaluation of damage in a near-field 

inspection region. 
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According to Equation (5.3), the scattered signal received by the first array element, 

scattered

1 ( )r t , is expressed as 

1
0 ( )

scattered 0 01 1
1

1 1

( ) ( ) ( ) exp
d

i t
c

d dd d
r t s t u t

c cd d

 −

= − = − ，          (5.8) 

where 0d  signifies an initial distance with regard to which the wave attenuation is 

calibrated, 1d  signifies the distance from the wave source through the damage and 

then to the first array element. Let 1 k
k

d d

c


−
=   (i.e., the time delay between two 

arrival signals captured by the first and the thk  (k=1, 2, …, K) element in the array), 

and then the scattered wave signal received by the thk  element, 
scattered ( )kr t , can be 

expressed as 

( )

1
0 0( ) ( )

scattered 0 0 0 1( ) ( ) ( ) exp ( )exp ,

1,2, , .

k
k

d d
i t i t

k k c c
k k

k k k

d d d d d d
r t s t u t u t

c c cd d d

k K

  


− − +

= − = − = − +

=

 

 (5.9) 

With the assumption that the array element spacing l  is sufficiently small (namely, 

/ 2l   , where    is the wavelength of wave signal), 
scattered ( )kr t   can be obtained 

based on the first element scattered signal 
scattered

1 ( )r t  (defined in Equation (5.8)) as 

1
0

1
0

0

( )
scattered 0 1

( )
0 1

scattered1
1

( ) ( ) exp

( )exp

( )exp .

k

k

k

d
i t

c
k k

k

d
i t

c

k

i

k

d d
r t u t

cd

d d
u t

cd

d
r t

d

 

 

 


− +

− +

= − +

 −

=

                (5.10) 

According to the cosine theorem [162] and second-order Taylor expansion [163], k  

can be re-written as 
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2 2 2

1 1 11

2 2
2 2

2

1 1

( 1) 2 ( 1) cos

cos
( 1) ( sin )( 1) ( ) ,

2

k
k

d d k l d k ld d

c c

l l l
k k O

c cd d







− + − − −−
= =

−
= − + − +

        (5.11) 

where 
2

2

1

( )
l

O
d

  denotes those terms, the order of which is greater than or equal to 

2

2

1

l

d
. Using the second-order Taylor series approximation, the scattered wave signal 

received by the thk  element retreats to 

0

2
2 2

0
1

scattered scattered1
1

cos
( ( 1) ( sin )( 1) )

2scattered1
1

( ) ( ) exp

( )exp .

ki

k

k

l l
i k k

c cd

k

d
r t r t

d

d
r t

d

 


 

−
− + −

=

=

        (5.12) 

Letting 

2
2 2

0
1

cos
( ( 1) ( sin )( 1) )

21
1( , ) exp

l l
i k k

c cd

k

k

d
b d

d


 



−
− + −

= , as the array steering factor for the 

thk  scattered signal, and recalling the noise term in Equation (5.6), the thk  residual 

signal, 
residual ( )kr t , can be expressed as  

residual scattered

1 1( ) ( , ) ( ) ( ) .k k kr t b d r t w t= +            (5.13) 

For the linear array with K elements, the residual signal vector 
residual ( )tR  can thus be 

obtained and expressed in a signal representation matrix, which reads 

residual scattered

1 1( ) ( , ) ( ) ( ) ,t d r t t= +R B W             (5.14) 

where  

residual residual residual residual

1( ) [ ( ), , ( ), , ( )] ,T

k Kt r t r t r t=R  
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2
2 2

0
1

2
2 2

0
1

1 1 1 1 1

cos
( ( 1) ( sin )( 1) )

21

cos
( ( 1) ( sin )( 1) )

21

( , ) [ ( , ), , ( , ), , ( , )]

1

exp
,

exp

T

k K

l l
i k k

c cd

k

l l
i K K

c cd

K

d b d b d b d

d

d

d

d


 


 

   

−
− + −

−
− + −

=

 
 
 
 
 
 =
 
 
 
 
 
 

B

 

1( ) [ ( ), , ( ), , ( )] .T

k Kt w t w t w t=W  

 

Prevailing MUSIC-based damage imaging approaches have been developed by virtue 

of the signal representation matrix as defined in Equation (5.14). They, in general, 

present the following limitations during practical implementation: 

i) In Equation (5.10), the operation of approximation, 1 1( ) ( )k

d d
u t u t

c c
− +  − , lies 

in the premise that k  is negligibly small. To accommodate such a pre-requisite, 

the element spacing in the phased array must be sufficiently small ( / 2l   ), 

leading to a uniform and dense configuration of the transducing elements. The 

dense configuration incurs challenge in scanning the entire inspection region with 

an azimuth ranging from 0° to 180°, because the beamforming efficiency is 

severely degraded at the angles which are close to 0° or 180°. In most 

circumstances, those regions where the scanning angles are in the range of [0, 30] 

or [150, 180] are deemed blind zones [33], in which damage may be overridden; 

and 

ii) In Equation (5.12), the steering vector is approximated using the second-order 

Taylor approximation, and the range error introduced by such approximation is 

remarkable when the damage is close to the array. For a range that is smaller than 
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twice the array length (i.e., the length from the first element to the thk element), 

such error could be 10% or above due to such approximation [164]. In addition, 

the steering vectors at the scanning angles   and −  have the same value in 

Equation (5.12), resulting in a mirrored dummy of the true damage which is located 

symmetrically with regard to the array surface. 

 

5.4 Am-MUSIC with A Sparse Sensor Network 

Aimed at circumventing the above key limitations that conventional MUSIC-based 

damage imaging possesses, the original MUSIC algorithm is revamped. Different from 

the use of a linear phased array, we allow a sparse sensor network with individual 

transducers that are randomly positioned. Without loss of generality, consider a sparse 

sensor network comprising Q PZT wafers (labelled as PZT-1, PZT-2, …, PZT-j, …, 

PZT-Q), as shown in Figure 5.2. Positioned at an arbitrary location within the 

inspection region, each PZT wafer acts as either a wave transmitter or a wave receiver, 

leading to ( 1)M Q Q= −   transmitter–receiver sensing paths in the sensor network. 

Provided damage exists at pixel ( , )x y   within the inspection area, the propagation 

distance, mxyd , for a Lamb wave, which is generated by the 
thi  transmitter at ( , )i ix y , 

scattered by damage at ( , )x y  and then propagates to the 
thj  receiver at ( , )j jx y , is 

2 2 2 2( ) ( ) ( ) ( )mxy i i j j mxyd x x y y x x y y c t= − + − + − + − =  ,       (5.15) 

and mxyt  is the time for the wave traveling along the scattered path. 



 

99 

 

Figure 5.2 A plate waveguide with a sparse sensor network of Q PZT wafers. 

 

Therefore, the scattered signal received by the 
thm   transmitter–receiver pair, 

scattered ( )mr t , can be written according to Equation (5.3) as 

scattered 0( ) ( ) ( 1, 2, ) .,
mxy

m

mxy

dd
r t s t

cd
m M= − =           (5.16) 

Equation (5.16) argues that for M transmitter–receiver pairs rendered by the sensor 

network, different scattering paths feature different degrees of time delay. A time shift, 

mxyt , is then applied to the 
thm  scattered signal 

scattered ( )mr t  in Equation (5.16), as 

scattered 0 0( ) ( ) ( )
mxy

m mxy mxy

mxy mxy

dd d
r t t s t t s t

cd d
+ = − + = .        (5.17) 

Letting 0
mxy

mxy

d
a

d
=   ( mxya   is referred to as the array steering factor for the 

thm  

scattered signal in what follows), Equation (5.17) can be rewritten as  

scattered ( ) ( )m mxy mxyr t t a s t+ = .                     (5.18) 
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With the noise term ( ( )w t in Equation (5.6)) in consideration, the residual signal vector 

for a total of M received signals which are respectively scattered by the damage at the 

pixel ( , )x y , residual ( )xy tR , can be expressed as the signal representation matrix 

residual ( ) ( ) ( )xy xyt s t t= +R A W ,                    (5.19)  

where  

residual residual residual residual

1 1( ) [ ( ) , , ( ) , , ( )]T

xy xy m mxy M Mxyt r t t r t t r t t= + + +R , 

1[ , , , , ]T

xy xy mxy Mxya a a=A , 

1 1( ) [ ( ) , , ( ) , , ( )]T

xy m mxy M Mxyt w t t w t t w t t= + + +W . 

Equation (5.19) implies that after compensating for the time delay to each residual 

signal, the residual signal vector can be defined using the excitation signal series, 

instead of using the scattered signal series as a conventional MUSIC algorithm does 

(Equation (5.14)). It is such a merit of the ameliorated MUSIC (Am-MUSIC) 

algorithm that enables the use of a sparse sensor network with arbitrarily positioned 

transducers. 

 

Recalling the MUSIC algorithm, the covariance matrix C   of the residual signal 

vector at pixel ( , )x y  within the inspection region yields as 

residual residual[ ( ) ( ) ]

= ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

H

xy xy

H H H

xy xy xy

H H H

xy

E t t

E s t s t E s t t

E t s t E t t

=

   +   

   + +   

C R R

A A A W

W A W W

            (5.20) 

where  E   denotes covariance computation, and superscript H represents the 

complex conjugate transpose. 
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As the source signal and noise signal are uncorrelated and mutually independent, the 

covariance matrix C  can be simplified as 

2H

xy s xy = +C A R A I ,                  (5.21) 

where = ( ) ( )H

s E s t s t  R , and it signifies the covariance matrix of the source signal. 

2  is noise power and I the covariance matrix of the noise signal. The covariance 

matrix C  can be decomposed into two parts: namely a signal-related part and a noise-

related part, as 

        
H H H

S S N N= = +C UΣU U ΣU U ΣU ,              (5.22) 

where 1 2[ , , , ]M  =U , and the columns of U  are the singular vectors; Σ  is a 

diagonal matrix with singular values arranged in descending order of magnitudes. 

Considering that xyA   is the steering vector at pixel ( , )x y   with the dimension of 

1M   and H

xy s xyA R A  in Equation (5.21) is decomposed as 
H

S SU ΣU  in Equation 

(5.22), 1[ ]S =U   denoting the signal subspace spanned by the eigenvectors 

corresponding to the first largest eigenvalue; and 2 3[ , , , ]N M  =U , representing 

the noise subspace spanned by the eigenvectors corresponding to the remaining 1M −   

eigenvalues. 

 

Based on Equations (5.21) and (5.22), the following expression can be obtained after 

multiplying the covariance matrix C  with the noise subspace NU  

H

xy s xy N =A R A U 0 .                       (5.23) 

As sR  is a full rank matrix, Equation (5.23) is further simplified as 

H

xy s xy N =A R A U 0 .                       (5.24) 
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Equation (5.24) argues that the steering vector xyΑ   at the position of damage is 

orthogonal with the noise subspace NU . This characteristic makes it possible for the 

Am-MUSIC to calculate the steering vector at each pixel across the entire inspection 

region and calibrate the degree of orthogonality between the steering vector and the 

noise subspace with the squared norm of vector H

xy NΑ U  as 

2
2 ( )H H H

xy N xy N N xy = =Α U Α U U A  .          (5.25) 

Taking a reciprocal of the squared norm expression creates a peak in the spatial 

spectrum that corresponds to the damage location. Am-MUSIC algorithm defines the 

pixel value ( Am-MUSIC ( , )P x y ) within the inspection region as 

Am-MUSIC

1
( , )

( )H H

xy N N xy

P x y =
Α U U A

.           (5.26) 

Equation (5.26) yields a full spatial spectrum for the inspection region, in which 

Am-MUSIC ( , )P x y culminates at the damage location. 

 

In summary, the complete procedure of the proposed Am-MUSIC algorithm is 

flowcharted in a nutshell in Figure 5.3.  
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Figure 5.3 Key steps of Am-MUSIC algorithm. 
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5.5 Numerical Validation 

To validate the developed Am-MUSIC algorithm for damage imaging, numerical 

simulation is implemented first. Consider a homogeneous, isotropic plate-like 

waveguide (density: ρ=2,700 kg/m3; Young modulus: E=71 GPa; Poisson’s ratio 

ν=0.33), measuring 500 mm × 500 mm × 2 mm. Atop the waveguide, there is a sparse 

sensor network with eight PZT wafers, as illustrated in Figure 5.4(a). Each PZT wafer 

functions as either a wave transmitter or a wave receiver, leading to 56 transmitter-

receiver sensing paths in the sensor network. For comparison against conventional 

MUSIC, another seven PZT wafers are arranged in a linear array as sensors, in Figure 

5.4(b), along with an additional PZT wafer as wave actuator placed at the position (250 

mm, 400 mm). In all cases, a 5-cycle Hanning window toneburst with a central 

frequency 200 kHz signal is selected as the excitation signal to obtain S0 wave mode, 

considering wave sensitivity and excitability. Total duration of 150 µs time length is 

analyzed for all numerical cases.  

 

Damage in the simulation is introduced to the waveguide by enforcing the material 

local stiffness to be zero. Three damage sites, labelled as D1-D3, are simulated in the 

waveguide, with respective positions highlighted in Figure 5.4. With these damage 

sites, three damage cases (C-I – C-III) are created by including different damage sites, 

Table 5.1.  
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(a) 

 

(b) 

Figure 5.4 Schematics of the plate waveguide in simulation (all dimensions in mm): (a) with 

a sparse sensor network for Am-MUSIC algorithm; and (b) with a linear array for 

conventional MUSIC algorithm. 
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Table 5.1 Three damage cases in simulation 

Damage case Damage site 

Position 

x [mm] y [mm] 

C-I D1 200 200 

C-II D2 150 350 

C-III D3 350 130 

 

 

Figure 5. 5 (a) displays the spatial spectrum obtained using the Am-MUSIC algorithm, 

for C-I – the case with the damage site (D1), accurately pinpointing the damage 

location (200 mm, 200 mm). For comparison, the image constructed using the 

conventional MUSIC algorithm is shown in Figure 5.5(b), indicating the damage 

location at (204 mm, 203 mm), which represents an error of (4 mm, 3 mm), in addition 

to an elongation artifact along the damage direction – a common deficiency for 

conventional MUSIC algorithms as illustrated elsewhere [36, 37, 150, 151, 155, 165]. 

The degree of such artifact depends on the point-spread function of the phased array 

at the location of the scatterer [166].  
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(a) 

 

(b) 

Figure 5.5 Spatial spectra for C-I obtained by (a) Am-MUSIC algorithm; and (b) 

conventional MUSIC algorithm. 
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Figure 5.6(a) shows the spectrum for C-II obtained using the Am-MUSIC. Again, the 

identified results are observed to coincide exactly with actual damage sites, contrasting 

the spatial spectrum obtained using the conventional MUSIC algorithm in Figure 

5.6(b), in which only the azimuth of damage is predicted. This is because the damage 

D2 fails to meet the near-field condition in Equation (5.7), which is located in the far-

field inspection region (
22

far

D
R


 ), and Lamb wave emanating from the scatterer in 

the far-field region is treated as a plane wave when they arrive at the array (i.e., only 

direction-of-arrival (DOA) can be estimated).  

 

  

(a) 

Figure 5.6 Spatial spectra for C-II obtained by (a) Am-MUSIC algorithm; and (b) 

conventional MUSIC algorithm. 
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(b) 

Figure 5.6 Cont. 

 

Provided that damage site D3 at an angle of 16.7° with regard to the linear array – the 

case of C-III, the constructed spatial spectra using the Am-MUSIC method and 

conventional MUSIC method are compared in Figure 5.7. In Figure 5.7(a), the 

damage site is localized precisely, in good agreement with the actual positions; 

however, the damage can barely be identified by the conventional MUSIC algorithm 

due to remarkable artifacts, in Figure 5.7(b), implying that the conventional MUSIC 

method may fail to detect the damage site which is in the blind zone. 
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(a) 

  

(b) 

Figure 5.7 Spatial spectra for C-III obtained by (a) Am-MUSIC algorithm; and (b) 

conventional MUSIC algorithm. 
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5.6 Experimental Validation 

Subsequent to numerical simulation, the effectiveness and accuracy of the Am-

MUSIC-driven anomaly imaging are validated experimentally. A 2 mm-thick 

aluminum plate (dimensions: 1000 mm × 1000 mm × 2 mm; density: ρ=2700 kg/m3; 

Young modulus: E=71 GPa; Poisson’s ratio ν=0.33) is prepared. A sparse sensor 

network, consisting of eight PZT wafers (labelled as PZT-1, PZT-2, …, PZT-8), is 

surface-adhered on the plate, with the location of each wafer indicated in Figure 5.8(a). 

The experimental set-up is shown in Figure 5.8(b). The excitation signal – a Hanning-

window-modulated 5-cycle toneburst at a central frequency of 200 kHz – is generated 

with an arbitrary waveform generator (NI® PXI-5412) and amplified by a linear power 

amplifier (Ciprian® US-TXP-3). The excitation signal is applied on each PZT wafer, 

in turn, to emit Lamb waves into the plate. S0 mode Lamb wave signals, each in 300 

µs, are acquired with a digital oscilloscope (NI® PXI-5105) at a sampling rate of 60 

MHz. 

 

Similar to the simulation in Section 5.5, three damage sites are considered in the 

experiment, as recapped in Table 5.2. 

 

Table 5.2 Damage cases in experiments 

Damage Case Damage 

E-I 

 

A through-hole D1 at (400 mm, 400 mm) (Ø: 10 mm) 

E-II A through-hole D2 at (300 mm, 700 mm) (Ø: 10 mm) 

E-III A through-hole D3 at (740 mm, 250 mm) (Ø: 10 mm) 
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(a) 

 

 

 

(b) 

Figure 5.8 (a) An aluminum plate with a surface-adhered sparse sensor network consisting 

of eight PZT wafers in the experiment (red ‘o’: actual damage and all dimensions in mm); 

and (b) Experimental set-up. 
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The spatial spectra constructed using the Am-MUSIC algorithm for three damage 

cases are presented in Figure 5.9, in which all damage sites are accurately located with 

precise depiction of the damage shape, demonstrating the great capacity of the 

developed Am-MUSIC algorithm towards damage identification. 

 

 

(a) 

Figure 5.9 Spatial spectra constructed using Am-MUSIC algorithm for damage case (a) E-I; 

(b) E-II; (c) E-III (red ‘o’: actual damage). 
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(b)  

 

 

(c) 

 

Figure 5.9 Cont. 
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To take a step further, the conventional MUSIC algorithm in junction with the use of 

a linear array is recalled for comparison. Seven PZT wafers are configured in a linear 

array as receivers, in Figure 5.10, along with an additional PZT wafer as a wave 

actuator placed at the position (500 mm, 800 mm). For the same damage cases, the 

spatial spectra constructed using the conventional MUSIC algorithm are shown in 

Figure 5.11, showing inferior accuracy in damage localization and sizing; moreover, 

it fails to identify damage D3 in E-III that is located in the blind zone for a conventional 

MUSIC algorithm.         

               

          

 

Figure 5.10 An aluminum plate with a surface-adhered linear array consisting of 7 PZT 

wafers in the experiment (red ‘o’: actual damage and all dimensions in mm). 
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(a)  

 

 

(b) 

Figure 5.11 Spatial spectra constructed using conventional MUSIC algorithm for damage 

case (a) E-I; (b) E-II; and (c) E-III (red ‘o’: actual damage). 
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(c) 

Figure 5.11 Cont. 

 

5.7 Summary 

Aimed to circumvent some critical limitations of the conventional MUSIC algorithm-

based damage imaging, an ameliorated MUSIC algorithm is developed. In the Am-

MUSIC algorithm, the signal representation matrix at each pixel is manipulated by the 

excitation signal series, instead of the scattered signal series, which enables the use of 

a sparse sensor network with arbitrarily positioned transducers rather than a linear 

array featuring a dense configuration of transducing elements with a uniform element 

pitch. By quantifying the orthogonal attributes between the signal subspace and noise 

subspace inherent in the signal representation matrix, a full spatial spectrum of the 

inspected sample can be generated, to visualize damage in the sample. The 

effectiveness and accuracy of the Am-MUSIC algorithm are verified in both 
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simulation and experiment. Results show that compared with the conventional MUSIC 

methods, the Am-MUSIC algorithm is capable of improving the detectability and 

eliminating blind zones, conducive to expanding conventional MUSIC from phased 

array-facilitated nondestructive evaluation to in-situ health monitoring using built-in 

sparse sensor networks. 
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CHAPTER 6  

 

Imaging Damage in Plate Waveguides 

Using Frequency-domain Multiple Signal 

Classification (F-MUSIC) 

6.1 Introduction 

In the previous chapter, an ameliorated MUSIC (Am-MUSIC) algorithm is developed, 

aimed at expanding conventional MUSIC algorithm from linear array-facilitated 

nondestructive evaluation to in-situ health monitoring with a sparse sensor network. 

Yet, Am-MUSIC leaves a twofold issue to be improved: i) the signal representation 

equation is constructed at each pixel across the inspection region, incurring high 

computational cost; and ii) the algorithm is applicable to monochromatic excitation 

only, ignoring signal features scattered out of the excitation frequency band which also 

carry information on structural integrity. With this motivation, a multiple-damage-

scattered wavefield model is developed, with which the signal representation equation 

is constructed in the frequency domain, avoiding computationally expensive pixel-

based calculation – referred to as frequency-domain MUSIC (F-MUSIC). F-MUSIC 

quantifies the orthogonal attributes between the signal subspace and noise subspace 

inherent in the signal representation equation, and generates a full spatial spectrum of 
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the inspected sample to visualize damage. Modeling in the frequency domain endows 

F-MUSIC with the capacity to fuse rich information scattered in a broad band and 

therefore enhances imaging precision. Both simulation and experiment are performed 

to validate F-MUSIC when used for imaging single and multiple sites of damage in a 

plate waveguide with a sparse sensor network. 

 

6.2 Principle of Methodology 

Consider a monochronic Lamb wave guided by a plate waveguide, ( )f t  . Upon 

propagating the distance of d, without considering the attenuation, the received signal, 

( )r t , is governed by 

( )( ) ( ) exp ,ik d i tr t F e d  


−

−
=                  (6.1) 

where ( )F   is the Fourier transform of ( )f t  in the frequency domain, t the time, 

  the angular frequency, i  the imaginary unit, and ( )k   the wavenumber of the 

Lamb wave ( ( )= ( )pk c   , where ( )pc   is the phase velocity). Applying Fourier 

transform on Equation (6.1), ( )r t  in the frequency domain, ( )R  , is obtained by 

/ ( )( )( ) ( )exp ( )exp .pi d cik dR F F
   

−−= =            (6.2) 

Assuming a wave scatterer (e.g., damage) in the waveguide, the scatterer can be 

modeled as a secondary wave source to scatter incoming ( )f t  and interfere with the 

original wavefield of signal ( )f t  ; and the scattered wavefield 
scattered ( )R    in the 

frequency domain can be defined by modulating the original wavefield with a 

scattering coefficient related to the scatterer, as 

 
scattered / ( )scattered ( ) ( ) ( )exp ,pi d c

R F
 

   
−

=           (6.3) 
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where ( )   is the scattering coefficient in the frequency domain [160], and 
scatteredd  

is the distance from the excitation source to the scatterer and then to the wave receiver. 

 

Discuss a sparse sensor network with Q piezoelectric lead zirconate titanate (PZT) 

wafers (labelled as PZT-1, …, PZT-i, …, PZT-Q) ( 1,2, ,i Q= ) surface-mounted on 

the plate waveguide, as shown schematically in Figure 6.1. With an arbitrary position 

on the waveguide, each wafer functions as a wave transmitter and a wave receiver as 

well. Thus, this sensor network renders ( 1)M Q Q= −  transmitter–receiver paths, and 

the thm  transmitter–receiver path ( 1,2, ,m M= ) links PZT-i (as wave transmitter) 

and PZT-j (as wave receiver). 

 

Figure 6.1 A plate waveguide with a sparse sensor network of Q PZT wafers and L damage 

sites. 

For an intact waveguide, the wave signal, captured by the 
thm  transmitter–receiver 

path (denoted with 
measured-intact ( )mr t  ), is the direct arrival wave 

direct ( )mr t  , boundary-
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reflection wave 
boundary-reflection ( )mr t  with incoherent noise 

measured-intact ( )mw t , as 

( )measured-intact direct boundary-reflection measured-intact( ) ( ) ( ) ( ), 1,2, , .m m m mr t r t r t w t m M= + + =  (6.4)          

 

Assume that up to L damage sites co-exist in the waveguide which are respectively 

located at 1 1( ), , ( ), , ( )l l L L         . Ignoring mode conversion and multiple 

reflections among damage sites, the wave signal captured by the same transmitter-

receiver path, 
measured-damage( )mr t , embraces the direct arrival waves 

direct ( )mr t , boundary-

reflection wave 
boundary-reflection ( )mr t , damage-scattered waves ( )scattered, ( ), 1,2, ,l

mr t l L=  

from all damage sites, and the incoherent noise 
measured-damage( )mw t , as 

( )measured-damage direct boundary-reflection scattered, measured-damage

1

( ) ( ) ( ) ( ) ( ), 1,2, , ,
L

l

m m m m m

l

r t r t r t r t w t m M
=

= + + + =     

(6.5) 

where 
scattered, ( )l

mr t  represents the wave signal that propagates from PZT-i (as wave 

transmitter) to the 
thl  damage site and then to PZT-j (as wave receiver). 

 

Benchmarking against the intact waveguide, one has, 

( )measured-damage measured-intact scattered, residual

1

( ) ( ) ( ) ( ) ( ), 1,2, ,
L

l

m m m m m

l

r t r t r t w t r t m M
=

− = + = =  

        (6.6) 

where ( )mw t   signifies the difference between two noise terms, 

measured-damage measured-intact( ) ( )m mw t w t−  . To facilitate discussion in what follows, the term, 

scattered,

1

( ) ( )
L

l

m m

l

r t w t
=

+ , is referred to as the 
thm  residual signal 

residual ( )mr t .  
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Applying Fourier transform on Equation (6.6) and substituting Equation (6.3) to (6.6), 

the thm  residual signal in the frequency domain, residual ( )mR  , is obtained as 

( )
/ ( )residual

1

( ) ( ) ( )exp ( ), 1,2, ,
l
m p

L
i d cl

m m

l

R F W m M
 

    
−

=

= + =   (6.7) 

where ( )l    denotes the scattering coefficient for the thl   damage site within the 

inspection region; 2 2 2 2( ) ( ) ( ) ( )l

m l i l i l j l jd x y x y   = − + − + − + −  , which 

represents the distance from the thi  wave transmitter to the thl  damage and then to 

the thj   wave receiver; ( )mW    is the Fourier counterpart of ( )mw t   in the 

frequency domain. 

 

Defining that ˆ ( )= ( ) ( )l

lF F      and 
/ ( )

( ) exp
l
m pi d cl

ma
 


−

=  , both of which are 

related to the 
thl  damage site, the residual signal residual ( )mR   can be rewritten, in the 

frequency domain, as 

( )residual

1

ˆ( ) ( ) ( ) ( ). 1,2, ,
L

l

m m l m

l

R a F W m M   
=

= + =      (6.8) 

Extending the above manipulation to all the available M transmitter–receiver paths in 

the sensor network, it has 

residual 1
11 1 1 1

residual residual 1

residual 1

1 1

ˆ ( )( ) ( ) ( ) ( )

ˆ( ) =( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( )

l L

l L

m m m m l

l L

M M M MM M L L L

FR a a a

R a a a F

R a a a F

   

     

      

    
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
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(6.9) 

where
residual residual residual residual

1( ) [ ( ), , ( ), , ( )]T

m MR R R   =R   the residual signal 

vector for the entire sensor network. Defining that 
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1( ) [ ( ), , ( ), , ( )]l l l T

l m Ma a a   =a  as the steering vector for the thl  damage site, 

1( ) [ ( ), , ( ), , ( )]l L   =Α a a a  as the steering vector dictionary for all damage 

sites, 
1
ˆ ˆ ˆ( )=[ ( ), , ( ), , ( )]T

l LF F F   F   as the excitation signal vector, and 

1( ) [ ( ), , ( ), , ( )]T

m MW W W   =W  as the noise term, Equation (6.9) is 

residual ( ) ( ) ( ) ( ) .   = +R Α F W               (6.10) 

Equation (6.10) defines all wave signals received by the entire sensor network, 

containing multiple damage-scattered wave components. It is referred to as a multiple-

damage-scattered wavefield model over the frequency domain. With this model, the 

residual signal series can be expressed with the excitation signal series, which is 

independent of the location of a wave receiver. It is such merit that allows arbitrarily 

positioning sensors in the sensor network – difficult to fulfill by conventional MUSIC 

algorithms which are largely bound up with the use of a dense, linear array with a 

uniform element pitch. Equation (6.10) also serves as the theoretical cornerstone for 

the F-MUSIC, as detailed as below. 

 

Recalling the conventional MUSIC algorithm, the covariance matrix ( )C  of the 

residual signal vector 
residual ( )R  is defined as 

residual residual( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,

H

H H H

H H H

E

E E

E E

  

      

    

 =  

   = +   

   + +   

C R R

Α F F Α Α F W

W F Α W W

  (6.11) 

where  E  is covariance computation and the superscript H the complex conjugate 

transpose. As the source signal is un-correlated to a noise signal, both 

( ) ( )HE    F W   and ( ) ( )HE    W F   retreat to zero. The noise, ( )W  , is 
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commonly a Gaussian white noise which satisfies 
2( ) ( ) ( )HE      = W W I  , 

where 2  is noise power and ( )I  the identity matrix. Therefore, Equation (6.11) 

can be rewritten as 

2( ) ( ) ( ) ( ) ( ) ,H     = +fC Α C Α I            (6.12) 

where ( )= ( ) ( )HE    f
C F F , denoting the covariance matrix of the source signal. 

 

Applied with eigenvalue decomposition, the covariance matrix ( )C   in Equation 

(6.12) is decomposed into two orthogonal subspaces, viz., signal subspace and noise 

subspace, as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,H H H

S S S N N N         = = +C U Σ U U Σ U U Σ U  (6.13) 

where 1 2( ) [ ( ), ( ), , ( )]M      =U   (the eigenvectors), and 

1 2( ) diag[ , ,..., ]M   =Σ   (the eigenvalues with 

2

1 2 1 2= =j j j M      + +    = =  ). 1 2( ) [ ( ), ( ), , ( )]S j      =U  (i.e., 

the signal subspace spanned by the eigenvectors corresponding to the j largest 

eigenvalues 1 2( ) diag[ , ,..., ]S j   =Σ  ); 1 1( ) [ ( ), ( ), , ( )]N j j M      + +=U  

(namely, the noise subspace spanned by those eigenvectors corresponding to the 

remaining eigenvalues 1 2( ) diag[ , ,..., ]N j j M   + +=Σ ). 

 

Multiplying ( )N U  with ( )C  in Equation (6.12) results in 

           
2( ) ( ) ( ) ( ) ( ) ( ) ( ).H

N N N       = +fC U Α C Α U U         (6.14) 

As 
2( ) ( ) ( )N N   =C U U  (according to Equation (6.13)), substituting 

2 ( )N U  

into Equation (6.14) leads to 
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( ) ( ) ( ) ( ) .H

N    =fΑ C Α U 0                  (6.15) 

Due to the full rank of ( )
f

C , Equation (6.15) can be simplified as 

1( ) ( ) [ ( ) ( ), , ( ) ( ), , ( ) ( )] .H H H H

N N l N L N       = =Α U a U a U a U 0        

 (6.16) 

Equation (6.16) indicates that the steering vectors at a damage site are orthogonal with 

regard to the noise subspace, because ( ) ( )H

l N  =a U 0 . With that, the F-MUSIC 

algorithm is defined in terms of the degree of orthogonality between the steering vector 

at each pixel and the noise subspace ( )N U , as 

2

1 1
( , , ) ,

( ) ( ) ( ) ( )( ) ( )
F MUSIC H HH

xy N N xyxy N

P x y 
    

− = =
a U U aa U

   (6.17) 

where 

1 / ( ) / ( ) / ( )
( ) [exp , ,exp , ,exp ] ,

m M
xy p xy p xy pi d c i d c i d c T

xy

     


− − −
=a  

2 2 2 2( ) ( ) ( ) ( ) .m

xy i i j jd x x y y x x y y= − + − + − + −  

 

By varying ( , )x y  in Equation (6.17), the entire inspection region of the sample under 

inspection is scanned, and a spatial spectrum is obtained. In the presence of damage at 

a particular location, the steering vector ( )xy a  is orthogonal to the noise subspace 

( )N U  , as a result of which the denominator of Equation (6.17) tends to be zero, 

resulting in a steep peak in the spatial spectrum, to indicate the damage presence and 

its location. It is noteworthy that on the basis of the multiple-damage-scattered 

wavefield model, the eigenvalue decomposition in Equation (6.13) is calculated only 

once, and then the calculated ( )N U  is applicable to all pixels. It is such a feature of 

the F-MUSIC algorithm that avoids time-consuming pixel-based calculation – a 
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demerit of the AM-MUSIC algorithm developed earlier [167], and remarkably lowers 

the computational costs. 

 

On the other hand, the residual wave signals, 
residual ( )R , are distributed over a broad 

band (ω ) rather than confined at the frequency of wave excitation. The broadband 

signals embrace rich information on damage or material degradation along the wave 

propagation path. With this in mind, the F-MUSIC algorithm is further refined by 

integrating the calculation conducted by Equation (6.17) over a broad frequency band 

(ω ), as 

1
( , ) .

1

( , , )

F MUSIC

F MUSIC

P x y

P x y 

−

 −

=


ω

                (6.18) 

 

Compared with conventional MUSIC algorithms manipulated in the time domain 

solely at the monochromatic excitation frequency, Equation (6.18) suggests that the F-

MUSIC algorithm, based on the analysis of the multiple-damage-scattered wavefield 

over the frequency domain, fuses rich wave components over a broad frequency band, 

consequently enhancing imaging precision (to be demonstrated in what follows). 

 

6.3 Numerical Validation 

6.3.1  Modeling and Results 

To verify the developed multiple-damage-scattered wavefield model and proposed F-

MUSIC algorithm, numerical simulation is implemented first. A homogeneous, 

isotropic plate (density: ρ=2700 kg/m3; Young modulus: E=71 GPa; Poisson’s ratio: 
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ν=0.33; dimension: 300 mm × 300 mm × 2 mm) is modeled. Eight PZT wafers 

(labelled as P1, P2, …, P8) that are on the surface of the plate form a sparse sensor 

network for wave generation and acquisition (a total of 8(8 1) 56− = sensing paths), as 

illustrated schematically in Figure 6.2. 

 

 

Figure 6.2 Schematic of a plate waveguide in simulation with a sparse sensor network (all 

dimensions in mm). 

 

Two scenarios are comparatively modeled: one is the benchmark that is free of damage, 

and the other contains a through-hole of a diameter of 8 mm at (110 mm, 120 mm). 

Considering wave sensitivity and excitability, a 5-cycle Hanning windowed toneburst 

at 200 kHz, Fig. 6.3, is generated by each PZT wafer in turn to obtain S0 wave mode, 

and in the meantime, the rest wafers serve as wave receivers to capture wave signals 

in a time window of 150 µs. In Figure 6.3 the bandwidth of the excitation, centralized 

at 200 kHz, is observed to span from 100 to 300 kHz. The 56 sets of residual signals, 
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( )residual ( ), 1,2, ,56mr t m =  in Equation (6.6), are obtained and shown in a waterfall 

view in Figure 6.4. 

 

 

Figure 6.3 Excitation signal and frequency domain spectrum. 

 

   

Figure 6.4 Waterfall view of 56 sets of residual signals. 
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Applying the F-MUSIC algorithm on all residual signals at the excitation frequency of 

200 kHz using Equation (6.17), the spatial spectrum of the plate containing the 

through-hole is displayed in Figure 6.5(a), in which, however, the damage can barely 

be visualized. Further, upon taking into account wave components scattered in the 

whole frequency band of excitation (100–300 kHz, as observed in Figure 6.3 with 

Equation (6.18), the reconstructed image is shown in Figure 6.5(b), which explicitly 

indicates the damage site and depicts the damage geometry with reduced artifacts, 

compared with Figure 6.5(a). 

 

 

(a) 

Figure 6.5 Spatial spectra obtained with F-MUSIC algorithm: (a) at the excitation frequency 

of 200 kHz; and (b) over the whole excitation band of 100–300 kHz (red ‘o’: actual damage). 
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(b) 

Figure 6.5 Cont. 

 

6.3.2  Discussion 

6.2.2.1 Different Patterns of Sensor Distribution in Sparse Sensor Network 

To examine the performance of the F-MUSIC algorithm when the sensors are arranged 

in different patterns in the sparse sensor network, parametric studies respectively using 

six PZT wafers (namely, P1, P2, P4, P5, P6, P8) and using four PZT wafers (P2, P4, 

P6, P8), Figure 6.2, are conducted, and correspondingly imaged spatial spectra are in 

Figures 6.6 and 6.7, respectively. Comparison with the spectrum in Figure 6.5(b) 

constructed when eight PZT wafers are used, these results obtained using partial 

sensors of the sparse sensor network with different sensor distribution patterns still 

show a high degree of detectability, and this implies the high flexibility in sensor 

network configuration endowed by the F-MUSIC algorithm: not only in number of 

sensors, but in sensor distribution. 
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Figure 6.6 Spatial spectrum obtained with F-MUSIC algorithm using six PZT wafers (P1, 

P2, P4, P5, P6, P8) (red ‘o’: actual damage). 

 

 

Figure 6.7 Spatial spectrum obtained with F-MUSIC algorithm using four PZT wafers (P2, 

P4, P6, P8) (red ‘o’: actual damage). 
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6.2.2.2 Multiple Damage Sites  

The capability of identifying multiple damage sites in the inspection region using the 

F-MUSIC algorithm is studied. Two damage sites are included in the plate waveguide 

at (110 mm, 120 mm) and (190 mm, 180 mm), respectively. The spatial spectrum 

constructed using the F-MUSIC algorithm is shown in Figure 6.8, to observe a 

quantitative match between identified and actual damage sites.  

 

 

Figure 6.8 Spatial spectrum obtained with F-MUSIC algorithm for a plate waveguide 

containing multi-damage (red ‘o’: actual damage). 

 

 

6.2.2.3 Comparison with Conventional MUSIC Algorithm 

The conventional MUSIC algorithm [36, 152, 165] is recalled for comparison. To this 

end, seven PZT wafers are configured in a linear array as wave receivers, Figure 6.9, 

along with another PZT wafer at (150 mm, 240 mm) as wave transmitter. Similar to 

the above damage cases, two typical damage scenarios were illustrated. In the first 
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case, a damage site D1 was located at (110 mm, 120 mm) as the single damage case. 

After then the multiple damage case is studied by adding another damage site D2 at 

the position (190 mm, 180 mm).  

 

 

Figure 6.9 Schematic of a plate waveguide in simulation with a linear sensor array to 

implement conventional MUSIC algorithm (all dimensions in mm). 

 

The images of two damage scenarios constructed using the conventional MUSIC 

algorithm are presented in Figures 6.10(a) and (b), respectively, showing inferior 

accuracy in damage localization and sizing; In addition, elongation artifacts are spotted 

along with the scanning directions toward the damage sites, which further degrade the 

resolution and efficiency of identification.  
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(a) 

 

(b) 

Figure 6.10 Spatial spectra constructed using conventional MUSIC algorithm for (a) single 

damage case and (b) multiple damage case (red ‘o’: actual damage). 
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6.4 Experimental Validation 

Experimental validation is conducted. An aluminum plate (density: ρ=2700 kg/m3; 

Young modulus: E=71 GPa; Poisson’s ratio: ν=0.33; dimension: 1000 mm × 1000 mm 

× 2 mm) is prepared, on which a sparse sensor network, consisting of eight PZT wafers 

(labelled as PZT-1, PZT-2, …, PZT-8), is surface-adhered, with respective locations 

indicated in Figure 6.11(a). The excitation wave is generated with a NI PXI-5412 

arbitrary waveform generation unit, in the form of a five-cycle Hanning-windowed 

toneburst at the central frequency 200 kHz and amplified by a Ciprian US-TXP-3 

linear power amplifier before being applied in turn to each PZT wafer. S0 mode Lamb 

wave signals captured by remaining PZT wafers are recorded with an Agilent MSOX 

3014A oscilloscope at the sampling rate of 60 MHz. The experimental setup is shown 

schematically in Figure 6.11(b). 

           

(a) 

Figure 6.11 (a) An aluminum plate with a surface-adhered sparse sensor network consisting 

of eight PZT wafers in the experiment (all dimensions in mm); and (b) schematic of the 

experimental set-up.  
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(b) 

Figure 6.11 Cont. 

 

In line with the simulation in Section 6.3, two damage scenarios are demonstrated in 

the experiment. In the first case, a through-hole of a diameter of 10 mm is drilled at 

the location (400 mm, 400 mm) as a single damage case; after then multiple damage 

case C-II is studied by adding another through-hole of the same diameter at the location 

(600 mm, 600 mm). The F-MUSIC algorithm is applied to two damage cases to obtain 

the spatial spectra, in Figures. 6.12(a) and (b), in which all damage sites are clearly 

depicted with high precision and image resolution. 
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(a) 

  

(b) 

Figure 6.12 Spatial spectra for (a) the single damage case (b) the multiple damage case (red 

‘o’: actual damage). 
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6.5 Summary 

Aimed at exploiting the merits of the Am-MUSIC algorithm (particularly its flexibility 

in configuring a sparse sensor network) that is earlier developed based on conventional 

MUSIC algorithms but surmounting deficiency that the Am-MUSIC algorithm still 

remains, the F-MUSIC algorithm is developed, based on a multiple-damage-scattered 

wavefield model over the frequency domain. F-MUSIC avoids computationally 

expensive pixel-based calculation, and fuses rich information scattered in a broad band 

to enhance imaging precision. The algorithm is validated using simulation and 

experiment, and results articulate that the effectiveness of F-MUSIC is not restricted 

by the quantity of damage, and with it the imaging precision is not sacrificed as a result 

of the use of a sparse sensor network. 
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CHAPTER 7  

 

An Application Paradigm: MUSIC-driven 

Structural Health Monitoring (SHM) Using 

All-printed Nanocomposite Sensor Array 

(APNSA) 

7.1 Introduction 

In spite of proven effectiveness in ultrasonic testing [168, 169], conventional 

ultrasonic arrays, with a bulky and unwieldy nature, are of a low degree of integrity 

with the inspected structure, which fails to implement in-situ, real-time SHM. To 

circumvent this deficiency, a new breed of nanocomposite-based ultrasonic sensor – 

APNSA – is fabricated, in lieu of the conventional transducer array, featuring not only 

full integration with the inspected structure but also high flexibility, ultralight weight, 

and broadband responsivity. Supported by such a novel sensor and used in conjunction 

with the aforementioned MUSIC algorithm, an in-situ health diagnosis framework can 

be implemented for damage identification and health status perception in a real-time 

manner. 



 

141 

7.2 APNSA: Fabrication and Responsivity 

7.2.1  Fabrication of APNSA 

The APNSA consists of a multitude of individual sensing elements which are inkjet 

printed by directly writing nanographene platelets (NGP)/PAA-based nanocomposite 

sensing ink on a Kapton film substrate. The sensing ink solvent is prepared by a 

standard solution mixing process, in which 0.2 g ethyl cellulose (EC) (viscosity 4 cP, 

5 % in toluene/ethanol, Aldrich Chemistry) and 0.3 g polyvinyl pyrrolidone (PVP) 

(PVP K-30, Sigma-Aldrich®) are dissolved into 100 mL anhydrous n-methyl-2-

pyrrolidone (NMP) (Aladdin®). By adding the Graphite powder (Aladdin®; 2.0 g) to 

the prepared solvent and processing a high-shear liquid phase exfoliation (LPE) with 

a high shear laboratory mixer (L5M, Silverson®), bulk natural graphite is exfoliated 

to few-layer graphene platelets, and the graphene dispersion is regulated to best fit the 

printing process. NGP dispersion is then centrifugated at 5,000 rpm for 20 min, and 

the top 80% of the supernatant is collected as NGP ink. Upon mixing the as-prepared 

NGP ink with PAA solution (12.8 wt% (80% NMP/20% aromatic hydrocarbon), 

Sigma-Aldrich; 1.6 g) and then magnetically stirring for 30 min, the NGP/PAA sensing 

ink is produced.  

 

With the direct-writable NGP/PAA sensing ink, the printing process is deployed on a 

desktop inkjet printing platform which consists of a PiXDRO LP50 inkjet printer (OTB 

Solar-Roth & Rau) and a DMC-11610 cartridge (Dimatix-Fujifilm Inc.). Prior to the 

printing process, the NGP/PAA sensing ink is filtered to screen out large NGPs, and 

the Kapton film is pre-treated with O2 plasma to warrant good adhesion. After printing, 

the APNSA is annealed at 400 oC for 20 min, to ensure imidization of the PAA and 
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remove the residual solvent and stabilizers. The parameters of APNSA including the 

size of the sensing element, the number of sensing elements, and the pitch of adjacent 

elements, can be customised to flexibly accommodate various applications. In this 

research, an APNSA with 8 sensing elements, Figure 7.1(a), is applied, in which each 

element is printed on the substrate as a square with the size of 12 mm×12 mm, Figure 

7.1(b), and the pitch between the centres of two neighboring elements is 16 mm to 

avoid the spatial aliasing. 

 

 

(a) 

Figure 7.1 (a) APNSA on a Kapton film substrate, printed by a desktop inkjet printing 

platform; and (b) a typical sensing element of an APNSA. 
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(b) 

 

Figure 7.1 Cont. 

 

7.2.2  Responsivity of APNSA 

The performance of an embedded sensor is substantially subject to the responsivity of 

the individual sensing element to broadband acousto-ultrasonic waves. To this end, the 

responsive capability of the APNSA sensing element is examined using an ultrasonic 

measurement system, as shown in Figure 7.2. A 2 mm-thick glass fibre/epoxy-

composite laminate plate (dimensions: 600 mm × 600 mm × 2 mm) is prepared, and a 

piezoelectric PZT wafer (Ø12 mm, 1 mm thick) is surface-bonded at the plate centre, 

functioning as an ultrasonic wave transmitter to emit waves into the laminate. A series 

of five-cycle Hanning-function-modulated sinusoidal tonebursts with the central 

frequency ranging from 50 to 500 kHz (with a stepping of 50 kHz) is generated with a 

waveform generator (NI® PXIe-1071), amplified with the power amplifier (Ciprian® 

US-TXP-3), and applied on the PZT wafer to emit acousto-ultrasonic waves into the 
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laminate plate. Four APNSA sensing elements are adhered on the plate, and each is 

150 mm apart from the transmitter for signal perception. Alongside each sensing 

element is a PZT wafer (Ø12 mm, 1 mm thick) which is used to capture wave signals 

for calibration and comparison with APNSA elements. Each APNSA sensing element 

is connected to a self-developed signal amplification and conditioning module via 

shielding cables. The module is powered by a GW INSTEK® GPC-3030D power 

supply, and consists of a resistance-adjustable R-V circuit that converts piezoresistive 

variations to electrical signals [170]. The signals captured by the APNSA sensing 

elements, as well as the counterpart signals acquired by PZT wafers, are 

simultaneously recorded using an Agilent® MSOX 3014A oscilloscope. 

 

 

 

Figure 7.2 Experimental set-up for APNSA sensing element responsivity calibration (unit: 

mm). 
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At a representative frequency of 200 kHz, the wave signals captured by the APNSA 

sensing element and PZT wafer are displayed in Figure 7.3. It can be seen that the 

signal acquired the APNSA sensing element explicitly embraces wave components 

including S0 (the zeroth-order symmetric plate wave mode guided by the laminate) and 

A0 (the zeroth-order anti-symmetric plate wave mode guided by the laminate) modes, 

with all waveforms in good consistence with those acquired by the PZT wafers. In 

addition, the frequency analysis via fast Fourier transform is applied on exemplary 

signals in Figure 7.4, revealing that an energy peak at 200 kHz, in consistence with 

the excitation frequency. Moreover, the relationship between the magnitude of 

excitation and the response intensity of the sensor is investigated in Figure 7.5, in 

which the sensor response magnitude is subjected to degrees of excitation with a linear 

relationship, in good consistency with that observed in the PZT wafer. Figure 7.6 

further compares signal magnitudes captured by the APNSA sensing element and by 

PZT wafer in a sweep frequency from 50 to 500 kHz, arguing a consistent trend for 

the two types of sensors. Taking a step further, the propagation velocities of S0 and A0 

wave modes at various excitation frequencies are shown in Figure 7.7, to observe a 

similar performance of two types of sensors in a wide frequency range as high as 500 

kHz. All These findings have affirmed good sensitivity, stability, and precision of the 

APNSA sensing element in ultrasonic waves acquisition. 
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(a) 

 

(b) 

 

(c) 

Figure 7.3 (a) Excitation signal at 200 kHz, as an example; wave signals acquired by (b) an 

APNSA sensing element, and (c) a PZT wafer; (d) comparison of wave energy envelopes. 
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Figure 7.4 Spectra of wave signals captured by an APNSA sensing element and PZT wafer, 

at 200 kHz. 

 

 

Figure 7.5 Peak-to-peak wave signal magnitude acquired by an APNSA sensing element and 

PZT wafer under different excitation voltages. 
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Figure 7.6 Peak-to-peak wave signal magnitudes acquired by APNSA sensing elements and 

PZT wafers (50-500 kHz). 

 

 

Figure 7.7 Comparison of group velocities acquired by APNSA sensing elements and PZT 

wafers (50-500 kHz). 
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7.3 MUSIC-driven Diagnostic Imaging of 

Composites Using APNSA 

With proven responsivity and sensing precision in responding to broadband acousto-

ultrasonic wave signals, the fabricated APNSA, in conjunction with the 

aforementioned MUSIC algorithm, is applied to implement in-situ damage 

identification, as an application paradigm. An APNSA consisting of eight graphene/PI 

sensing elements (labelled as S1, S2, …, S8) is surface mounted on the glass 

fibre/epoxy composite laminate plate, pictured in Figure 7.8(a), along with an 

additional PZT wafer as a wave actuator, Figure 7.8(b). A steel cylinder (Ø20 mm, 

200 g weight) is additionally bonded on the plate at the location of (30 mm, 10 mm) 

as the mock-up anomaly. The experimental system and measurement procedures 

remain the same as those used in Section 7.2.2. A five-cycle Hanning-windowed 

sinusoidal toneburst at a central frequency of 100 kHz is applied to the PZT actuator, 

generating an excitation wave with a wavelength (λ) of 37.2 mm. The element pitch in 

APNSA has been pre-set as 16 mm during inkjet printing, which is smaller than the 

half wavelength (i.e., 37.2/2=18.6 mm) of the generated wave.  
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(a) 

 

(b) 

Figure 7.8 (a) Photograph and (b) schematic of the glass fibre/epoxy composite laminate 

plate with APNSA and a mock-up anomaly (unit: mm). 

 

Two raw Lamb wave signals, captured by sensing element S1 of APNSA before and 

after introducing the mock-up anomaly, are shown in Figure 7.9(a). Comparing two 
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signals, an additional wave packet, Figure 7.9(b), is prominent and classified as the 

anomaly-induced wave component, which is named the anomaly-scattered wave. 

Extending the above procedure to the whole elements of APNSA, all residual signals 

that contain all anomaly-scattered waves are extracted, Figure 7.9(c), and written in a 

vector form, as 

residual residual residual residual T

1 8( ) [ ( ),..., ( ),..., ( )]mt r t r t r t=R ,            (7.1) 

 

 

 

Figure 7.9 (a) Wave signals captured by S1 of APNSA, before and after the mock-up 

anomaly introduced; (b) anomaly-scattered 0S  mode waves in the residual signal captured 

by S1; and (c) residual signals captured by all the sensing elements of APNSA. 
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As indicated in Figure 7.10, the actuator is placed at position (x0, y0), and the mth 

sensing element of APNSA is at (xm, ym). Assuming that a scanning position in the 

inspection region is at (x, y), the APNSA steering vector A(x, y) at this position can be 

defined according to the previous introduction in Section 5.3, as  

1 8( , ) [ ( , ),..., ( , ),..., ( , )]T

mx y a x y a x y a x y=A ,             (7.2) 

where 

01( , ) exp mi

m

m

d
a x y

d

 
= , 

2
2 2

1

cos
( 1) ( sin )( 1)m

l l
m m

c cd


 

−
= − + −   (m = 1, 2, …, 8)， 

( , )ma x y   is the steering vector of sensing element Sm, and τm is the difference in 

propagation time between two signals captured by sensing element S1 and element Sm. 

 

 

Figure 7.10 Use of MUSIC algorithm and APNSA for anomaly imaging. 
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Recalling the MUSIC algorithm, the pixel value of the spatial spectrum at ( , )x y  , 

( , )MUSICP x y , is formulated as 

 
N N

1
( , )

( , )( ) ( , )
MUSIC H H

P x y
x y x y

=
A U U A

. (7.3) 

Superscript H represents the complex conjugate transpose. By varying the scanning 

position (x, y), the spatial spectrum of the entire inspection region of the laminate is 

obtained. When the scanning position matches the anomaly location, the steering 

vector A(x, y) is orthogonal with regard to the noise subspace UN, and thus 

the denominator of Equation (7.3) approaches 0, resulting in a peak in the spatial 

spectrum that corresponds to the anomaly location.  

 

The imaging result is illustrated in Figure 7.11, showing high agreement with the true 

location of the mock-up anomaly, demonstrating the great application potential 

towards in-situ SHM.  

 

 

Figure 7.11 Anomaly image obtained via MUSIC algorithm and APNSA. 

https://www.sciencedirect.com/topics/engineering/denominator
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7.4 Summary 

An in situ health diagnosis framework, from sensing to the presentation of diagnostic 

results, is developed in this chapter, by integrating the APNSA sensor and MUSIC 

diagnosis algorithm. Compared with conventional ultrasonic arrays, APNSA can be 

fully integrated with the inspected structure, featuring high flexibility, ultralight weight, 

and broadband responsivity. Supported by such a novel sensor and used in conjunction 

with the aforementioned MUSIC algorithm, the continuous monitoring of damage can 

be implemented. The framework has been validated experimentally by intuitively and 

promptly characterizing structural damage in the composite laminates, and results 

highlight its alluring application prospects for damage detection and health status 

perception in a real-time and in situ manner.   
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CHAPTER 8  

 

Conclusions and Recommendation for 

Future Work 

8.1 Conclusions 

Diagnostic imaging based on ultrasonic waves has attracted increasing attention from 

researchers in recent years because it can provide readily interpretable images, which 

are capable of intuitively indicating the structural damage details and even the overall 

‘health’ state of the structure under inspection. However, prevailing diagnostic imaging 

still suffers some problematic issues:  

(i) it is often a challenge for imaging techniques to delineate the lower surface 

of an embedded scatterer, let alone achieve a detailed depiction of its full 

features; 

(ii) most approaches have a limited capability to detect the specimens featuring 

an irregular surface;  

(iii) prevailing MUSIC-based methods are largely bound up with the use of a 

linear array, leaving blind zones and failing to access the full planar area of 

an inspected sample; 

(iv) MUSIC algorithm in guided wave imaging, manipulated in the time 

domain, is applicable to monochromatic excitation only, ignoring signal 
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features spanning a broad frequency band which also carry information of 

damage; and  

(v) restricted by bulky transducers and computationally expensive imaging 

algorithms, it is a tough task to extend diagnostic imaging to real-time, 

continuous, in-situ SHM. 

 

Aiming at circumventing the above-addressed deficiencies and bottlenecks that the 

prevailing diagnostic imaging are facing, in this PhD study, a novel diagnostic imaging 

framework has been proposed to revamp traditional imaging approaches. 

 

First, the ETRM algorithm is investigated, whereby the lower surface of an embedded 

scatterer can be characterized cost-effectively, conducive to the precise delineation of 

the damage with full features. On the basis of the multipath scattering analysis and 

Fermat’s principle of the acoustic wave propagation, the algorithm presented a virtual 

phased array to reconstruct the lower surface of the embedded damage. In conjunction 

with the damage upper surface constructed by the actual phased array, the full features 

damage can be precisely delineated. The ERTM is validated, in both simulation and 

experiment, by evaluating damage with different geometric profiles. Results show that 

compared with the conventional method, the EMTR method can efficiently 

characterize the lower surfaces of the flaw and precisely delineate the full profiles of 

scatterers, which provides a great alternative for characterizing the flaw with complex 

shapes. 

 

To further detect the specimen featuring an irregular top surface, an RTM-based 

multistep ASA imaging framework is developed. Multistep ASA calculates forward 
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propagation wavefields of sources and backward propagation wavefields of the 

received wave signals in the fluid-solid coupled system, with which the transient 

wavefields at the fluid-solid interface are used as incident waves to the solid. Upon 

applying a zero-lag cross-correlation imaging condition of RTM to the obtained 

forward and backward wavefields, the image of the specimen with an irregular surface 

can be reconstructed, to visualize damage, irrespective of the damage quantity. 

Experiments are performed to validate the proposed approach, in which multiple SDHs, 

at different locations in aluminum blocks with various irregular surfaces, are 

characterized quantitatively. The validation affirms that the multistep ASA shows an 

enhanced imaging resolution and contrast against conventional TFM. 

 

An Am-MUSIC algorithm has been proposed to remove the limitation of uniform 

sensor array arrangement in the conventional method and improve damage imaging 

resolution. The Am-MUSIC method is developed by manipulating the signal 

representation matrix at each image pixel using the excitation signal series instead of 

the scattered signal series. Thanks to that, the Am-MUSIC algorithm does not 

necessarily entail the use of a linear phased array, and instead, it is compatible with a 

sparse sensor network in which individual transducers can be positioned arbitrarily. At 

each image pixel, the orthogonal attributes between the signal subspace and noise 

subspace inherent in the signal representation matrix are quantified, in terms of which 

Am-MUSIC yields a full spatial spectrum of the inspected sample, to visualize damage. 

The performance of the proposed algorithm has been verified by both simulations and 

experiments. Imaging results show that compared with the conventional method, the 

developed algorithm can successfully localize the damage and significantly improve 

the image quality. Moreover, the novel Am-MUSIC method uses a distributed array of 
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inexpensive piezoelectric wafers, which is easier to be arranged on structures and more 

responsive to the demands of in situ SHM.  

 

Aimed at exploiting the merits of the Am-MUSIC algorithm (particularly its flexibility 

in configuring a sensor network) but surmounting the deficiency that the algorithm 

remains, F-MUSIC is developed. Distinct from Am-MUSIC, F-MUSIC constructs the 

signal representation equation over the frequency domain, rather than at each pixel in 

the spatial domain, based on a multiple-damage-scattered wavefield model. F-MUSIC 

avoids computationally expensive pixel-based calculation, and fuses rich information 

scattered in a broad band to enhance imaging precision. The algorithm is validated 

using simulation and experiment, and results articulate that the effectiveness of F-

MUSIC is not restricted by the quantity of damage, and with it, the imaging precision 

is not sacrificed as a result of the use of a sparse sensor network. 

 

Lastly, an in-situ health diagnosis framework, from sensing to diagnosis, is developed 

by integrating the APNSA sensor and MUSIC diagnosis algorithm. Instead of 

conventional ultrasonic arrays, a new breed of nanocomposite-based ultrasonic sensor 

– APNSA – is developed, which can be fully integrated with the inspected structure, 

and also features high flexibility, ultralight weight, and broadband responsivity. 

Supported by such a novel sensor and used in conjunction with the MUSIC algorithm, 

the continuous monitoring of damage can be implemented. The effectiveness of the 

diagnosis framework is validated experimentally by characterizing structural damage 

in the composite laminates, and results highlight its alluring application prospects 

towards a real-time and in-situ SHM. 
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In short, the main achievements and original contributions of this PhD study can be 

summarized as follows: 

• Development of the ETRM algorithm for characterizing both the upper surface 

and the lower surface of the embedded damage, achieving the precise 

delineation of the full profiles of damage. 

• Development of the RTM-based multistep ASA imaging framework for 

ultrasonic testing of a specimen with an irregular top surface, demonstrating its 

capability of accurately depicting multiple damage. 

• Development of the Am-MUSIC algorithm for damage detection in 

conjunction with the use of a sparse sensor network with an arbitrarily 

positioned transducer, capable of removing the limitation of uniform sensor 

array arrangement and improving damage imaging resolution. 

• Development of the F-MUSIC algorithm based on a multiple-damage-scattered 

wavefield model, showing advantages in lowering the computational costs, 

fusing rich information scattered in a broad band and detecting multiple 

damage sites. 

• Development of an in-situ health diagnosis framework by integrating the 

nanocomposite-based APNSA sensor and the MUSIC algorithm, extending 

ultrasonic imaging from offline testing to the in-situ SHM. 

 

 

 

 



 

160 

8.2 Recommendations for Future Work 

With the promising outcomes reported here, there are still some problematic issues and 

challenges remaining for future exploration. 

 

First, in this study, the effective use of waves reverberating between the top and bottom 

of the sample is key to accessing the whole profile of an embedded scatterer [83, 87]. 

However, for a thick sample, the highly reverberating waves quickly convert the 

acoustic energy of incident waves to diffuse waves, with a considerably reduced 

magnitude. One can lower the excitation frequency to minimize that effect, but it is at 

the cost of sacrificing the sensitivity of the incident waves to a small flaw [171]. To 

circumvent this problem, diffuse wavefields are increasingly explored, because diffuse 

waves are highly repeatable yet sensitive to perturbation in the sample (e.g., a flaw). 

As a representative modality of diffuse waves, coda waves, widely employed for 

seismogram analysis in geosciences, can be extended to damage identification [171, 

172]. Nonetheless, due to multiple waves scattering and reverberation, coda wave 

signals are complex in appearance and it is thus a challenge to observe phenomenal 

changes in coda wave signals under their noisy and chaotic appearance. Therefore, 

future research will entail more efforts to cost-effectively extract damage features in 

coda wave signals. 

 

Second, on basis of the linear wave scattering phenomena (e.g., wave reflection, 

transmission), the present study casts major attention on the detection of linear 

macroscopic damage such as the side-drilled holes. However, engineering structures 

commonly initiates from microscopic damage, including fatigue crack under cyclic 
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loading, early bolt loosening in the multi-type joints, and pitting damage [173-175]. 

Such types of damage present highly nonlinear features with their characteristic 

dimensions being remarkably smaller than the wavelength of a probing wave and may 

not be detected efficiently using conventional approaches based on linear wave 

scattering. Therefore, it is fairly challenging but of great significance to monitor and 

characterize the undersized damage in engineering structures when the damage is still 

in its embryo stage. The generation of nonlinear features is attributed to the material 

nonlinearity in the terms of the material’s stress-strain relation or the contact acoustic 

nonlinearity (CAN) induced owing to the modulation of a ‘breathing’ crack nonlinear, 

and induce nonlinear phenomenal changes in captured signals, typically as the 

accumulative second harmonic waves. Therefore, in future work, a microscopic 

damage identification technique can be developed by combining results arising from 

this study and the nonlinearities of higher-order acousto-ultrasonic (AU) waves. Two 

major approaches would be recommended: mixed frequency responses (e.g., nonlinear 

wave modulation spectroscopy) [176, 177] and shifts in resonance frequency (e.g., 

nonlinear resonant ultrasound spectroscopy) [178, 179]. 

 

Third, the MUSIC-based methods developed in the study are primarily dependent on 

comparing the signals captured from the structure under inspection with baseline 

signals from a benchmark counterpart that is assumed to be free of damage. However, 

during this process, changes in measurement conditions may affect captured signals 

and should be considered. In practice, ambient temperature is the most common 

environmental change and has been investigated in pioneer studies [180-182], which 

indicates that in normal applications, change in ambient temperature is so small that 

there is no need to employ compensation, whereas when measurements operate in an 
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environment of elevated temperature, the influence of temperature cannot be ignored. 

Thus appropriate temperature compensation will be applied in an environment with 

temperature variation, to improve the quality of wave signals and benefit damage 

identification.  
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