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Abstract 

Autophagy is a dynamic and evolutionary conserved lysosomal degradation pathway 

for cellular remodeling, development and homeostasis, yet its function in definitive 

hematopoiesis is elusive. Taking advantage of the optically clear and externally 

fertilized zebrafish (Danio rerio) embryos together with the genetic tractability and the 

availability of pharmacological approaches, here we inhibited autophagy by knocking 

out uncoordinated-51-like autophagy activating kinases 1a (ulk1a) and 1b (ulk1b)  to 

investigate the role of autophagy in definitive hematopoiesis. 

 

The overall autophagy processes were monitored by western blot analysis, high-

resolution microscopy with zebrafish Lc3 fluorescent transgenic embryo Tg(GFP-

Lc3), lysosome dye (Lysotracker red) and autophagy detection dye (CYTO-ID®). 

Furthermore, hematopoietic phenotypes were examined by whole-mount in situ 

hybridization (WISH) and flow cytometry-based lineage-specific cell population 

counts. 

 

Zebrafish deleting ulk1b resulted in the inhibition of autophagy activation, but not 

autophagy flux at the whole embryo protein level. However, both autophagy activation 

and flux were significantly impaired in neurons, suggesting the tissue-specific 

requirement of ulk1b in zebrafish autophagy during embryonic development. Further 

investigation revealed that both chimeric and stable ulk1b knock-out significantly 

decreased the number of hematopoietic stem cells (HSCs) while increased myeloid 

progenitors, leukocytes and neutrophils in the caudal hematopoietic tissue (CHT). In 

contrast, both autophagy and hematopoiesis were unaffected upon somatically targated 
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ulk1aTAL. CYTO-ID® green staining indicated that ulk1b knock-out did not affect 

coro1a:DsRed positive leukocyte’s autophagy activation but inhibited autophagy flux 

upon CQ treatment. Chemical inhibition of autophagy using 3-MA treatment 

recapitulated the hematopoietic phenotypes observed in ulk1b mutants, suggesting that 

the increase in CMPs, leukocytes and neutrophils in the ulk1b mutants was likely 

autophagy-dependent. However, treatment with the autophagy inducer, calpeptin, can 

only rescue the increased neutrophil population in ulk1b mutants. Though calpeptin 

treatment significantly induced autophagy activation in leukocytes of wild-type and 

ulk1b mutant, the effects of calpeptin treatment on autophagy flux were not examined. 

It is possible that calpeptin cannot rescue the autophagy defects, particularly the 

suppressed autophagy flux in all hematopoietic lineages and thus cannot rescue all the 

hematopoietic phenotypes. Also, maintenance of normal hematopoiesis might require 

a specific autophagy level under tight regulation.  

 

In this project, we demonstrated that zebrafish is a valuable in vivo model for studying 

autophagy. Our results showed that ulk1b knock-out affects zebrafish autophagy in a 

tissue-specific manner, which is consistent with the current understanding that multiple 

canonical and non-canonical autophagy pathways involving different subsets of 

autophagy components are ongoing in different tissues. While our ulk1b knock-out 

models demonstrated the role of ulk1b-dependent autophagy in hematopoiesis, further 

investigation targeting other autophagy components in a lineage-specific manner is 

warranted to reveal the complete autophagy network in hematopoiesis.  
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Chapter 1: Introduction 
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1.1 Autophagy  

The term “autophagy” was first coined by Nobel Prize winner in Physiology or Medicine 

and English-born Belgian cytologist and biochemist Christian de Duve in 1963 [1]. 

Autophagy is an adaptive and highly conserved metabolic process in eukaryotes 

consisting of de novo synthesis of double-membrane vesicles (autophagosomes), 

engulfment of cytoplasmic materials and its delivery to the lysosome for degradation 

under different physiological and pathological conditions such as immunity, 

hematopoiesis, infections, cancer, aging and neurodegeneration [2-7]. During starvation, 

stress and amino acid insufficiency, autophagy play a key role in replenishing 

biosynthetic precursors through the breakdown of cytoplasmic organelles, responding to 

the stress-mediated cytotoxicity, in particular degrading aggregated proteins, damaged 

organelles and pathogens [8, 9]. Autophagy is a cytoprotective mechanics in which both 

too high and too low levels of autophagy may be deleterious to the organisms and leading 

to cell death [10].  

 

1.2 Types of autophagy 

Depending on cargo size and the routes by which cytoplasmic components are managed 

to degradation, autophagy can be classified into three major categories: microautophagy, 

chaperon-mediated autophagy and macroautophagy. Microautophagy was first 

mentioned in yeast and it is the degradation and direct engulfment of organelles such as 

peroxisome and nucleus by autophagic tubes near the boundary membrane where vacuole 

invaginates and engulfs cytosolic components directly into the lysosomes [11]. 

Maintaining cellular homeostasis, cell survival and cargo size under nitrogen limitation 

are the key roles of microautophagy [12]. Chaperone-mediated autophagy (CMA) does 
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not involve vesicle formation rather a direct translocation of specific proteins across the 

lysosome membrane. CMA includes the selective degradation of KFERQ-like motif-

bearing substrate proteins to the lysosomes through heat shock protein 70 (HSC70) 

chaperon and cochaperones like HSP40, the carboxyl terminus of HSC70-interacting 

protein (CHIP), HSP70–HSP90 organizing protein (HOP) and their engulfment inside 

the lysosomes through lysosome-associated membrane protein type 2A (LAMP2A) [13]. 

In contrast, macroautophagy involves double-membrane vesicle formation, 

encapsulation of cellular organelles, lysosomal fusion and cargo degradation [14].  

 

Autophagy has been previously described as a non-selective or canonical nutrient 

recycling phenomenon that occurs ceaselessly at the basal level and delineates the 

random consumption as well as successive degradation of cytoplasmic organelles, 

aggregated proteins et cetera [15]. Consequently, selective autophagy has been evolved 

as a discriminant selection, strictly regulated as damaged and cytosolic cargo degradation 

pathway for the removal of dysfunctional endoplasmic reticulum (ER-phagy) and parts 

of the ER membranes (reticulophagy), superfluous protein aggregates (aggrepahgy), 

dispensable peroxisomes (pexophagy), polluted mitochondria (mitophagy), excess 

ribosomes (ribophagy), lipid droplets (lipophagy), storage or release of ferritin iron 

(ferritinophagy), stress granules (granulophagy) and intracellular pathogens (xenophagy) 

to generate certain nutriments in response to environmental stimuli, therefore fostering 

cell survival and organism health [16-22]. In selective autophagy, the shape and size of 

the phagophore are regulated by the cargo itself and a variety of adaptor proteins 

including p62, optineurin (OPTN), nuclear dot protein 52 kDa (NDP52), neighbor of 
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BRCA1 gene 1 (NBR1), nuclear FMRP interacting protein (NUF1P1) and others to link 

cargoes to the autophagy machinery [20].  

 

It is well-established fact that canonical autophagy is present at the basal levels and 

closely associated with the regulation of cellular homeostasis in almost all cell types [23, 

24]. Autophagosome formation during canonical autophagy requires the hierarchical 

activities of different autophagy-related genes (ATGs). Non-canonical autophagy 

occurred during autophagy initiation, elongation and nucleation [25]. One of the most 

common forms of non-canonical autophagy is the Beclin 1 (BECN1: coiled-coil, moesin-

like BCL2-interacting protein) independent autophagy which occurs in the context of 

cellular survival, proliferation, cell death and the development of immune cells [26]. 

Another important non-canonical pathway is the LC3-associated phagocytosis (LAP) 

where LC3 conjugates to the phagosome membrane and plays critical roles in normal 

cell physiology and disease pathology [27]. Here, the canonical autophagy-dependent 

and independent roles are summarized (Table 1.1). 

 

1.3 Regulatory mechanism of canonical macroautophagy 

Macroautophagy is the most common cytoplasmic cargo clearance mechanism, hereafter, 

referred to as autophagy. Autophagy prevails at a basal level in most cell types to 

coordinate cellular homeostasis [14]. Many signaling activities including eukaryotic cell 

growth and metabolism are regulated by autophagy [28].  

 

Autophagy induction is triggered through distinct signaling cascades under starved 

conditions or pathogen infection [28, 29]. Under nutrient deprivation and glucose 
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availability, the mammalian target of rapamycin (mTOR) switches on and prevents 

ULK1 activation through phosphorylating Ulk1 Ser 757 and disrupting its association 

with adenosine monophosphate (AMP)-activated protein kinase (AMPK) [30]. During 

low glucose content, AMPK is activated and mTOR is inhibited, thereby suppressing 

ULK1 Ser 757 phosphorylation, allowing ULK1 phosphorylation by AMPK interaction 

and eventually activating autophagy [30]. Next, ULK1 forms a tetrameric complex with 

FAK family kinase interacting protein of 200 kDa (FIP200), ATG13, and ATG101 to 

recruit the VPS34 complex for phagophore isolation and autophagosome initiation [31, 

32] (Figure 1.1). The class III phosphatidylinositol 3-kinase (PtdIns3K) catalytic subunit 

VPS34 then interacts with ATG14, VPS15 and BECN1 to form a protein complex 

(PI3KC3) which is essential for the initiation and expansion of autophagosomes [33]. 

Furthermore, PI3KC3 synthesizes the lipid phosphatidylinositol-3-phosphate (PI3P), 

which recruited WD-repeat protein interacting with phosphoInositides (WIPI) proteins 

and subsequently WIPIs recruit Atg16L1 that conjugates with the autophagosome marker 

microtubule-associated protein 1A/1B-light chain 3 (LC3; mammalian ortholog of 

ATG8) through Atg5/12/16L1 complex recruitment [34]. During autophagosome 

maturation, LC3 translocated from the cytosol to the isolation membrane where the 

cysteine protease ATG4 cleaved pro-LC3 to generate LC3-I. Then, LC3-I is subsequently 

transferred by ATG7 to the expanded phagophore membrane where LC3-I travel through 

Atg3, lipidated to LC3-II and attached to the phagophore membrane [35]. In parallel, 

ATG5/12/16L complex stimulated the conjugation of LC3-I to 

phosphatidylethanolamine (PE) to form lipidated LC3 (LC3-II) which binds to receptor 

molecules such as p62 inside the inner and outer membranes of the autophagosome [36].  
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Figure 1.1: Mechanism of autophagy 

Autophagy is initiated under nutrient starvation, stress and pathogen infection where the 

5' AMP-activated protein kinase (AMPK) activates the ULK1 complex. Autophagy 

induction results in the recruitment of ATGs to the isolation membrane that forms a cup-

shaped structure also termed as phagophore. The isolation membrane then gradually 

elongated and results in a sphere around the cytosol. Eventually, the isolation membrane 

seals into a double-membrane vesicle called the autophagosome, where it engulfed 

cytosolic organelles as autophagic cargo. During phagophore elongation and 

autophagosome formation, delipidated LC3-I conjugates with the lipid-containing 

phosphatidylethanolamine (PE) to form lapidated LC3-II. After autophagosome 

formation, it fuses with the lysosome to form autolysosome where cytoplasmic cargos 

are broken down by the resident lysosomal hydrolases for cytosolic cargo degradation. 
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Additionally, LC3-II is also involved in phagophore extension and closure during 

autophagosome formation. The next step is the fusion of the matured autophagosome 

with the hydrolase enzyme-containing lysosome, referred to as autophagolysosome to 

provide its cytoplasmic organelle for degradation (Figure 1.1) [37].  

 

1.4 Importance of the ULK1  

ULK1 is a macroautophagy initiatory kinase and paralog of the yeast Atg1 protein. In the 

human genome, there are five Atg1 orthologues namely ULK1, ULK2, ULK3, ULK4, 

and STK36 [38]. Among them, only ULK1 and ULK2 have autophagy regulatory 

functions [39]. Both genes encoded serine/threonine protein kinases having a conserved 

N-terminal catalytic domain, a serine-proline rich central domain, and a C-terminal 

interacting region [40]. Although ULK1 and ULK2 are involved in autophagy induction, 

growing pieces of evidence suggested their functional differences concerning autophagy 

and other biological properties. Previously it was suggested that autophagy deficiency 

via ULK1 ablation associated with slow ribosomal and mitochondrial clearance in the 

reticulocytes while ULK1 is not essential for starvation-induced autophagy in mice [41]. 

They also found that during erythroid differentiation, ULK1 but not ULK2 upregulated.  

Another study indicated that functions of ULK2 are more likely to compensate ULK1 

ablation in a cell-type manner [40]. ULK1 and ULK2 also played autophagy-independent 

roles in lipid metabolism [42]. More recently, researchers found that ULK1 and ULK2 

have major differences in their transcriptional and post-translational regulators and their 

autophagy-related interactors [43]. 
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Table 1.1: Canonical autophagy-dependent and independent function(s) of the core 

ATGs 

Protein 

name 

Autophagy 

step(s) 

Canonical autophagy 

dependent functions(s) 

Rf. Canonical autophagy 

independent function(s) 

Rf. 

ULK1 or 

ATG1 
Initiation 

Mitochondrial respiration, 

ATP production, lipid 

metabolism, mitochondrial 

and ribosomal clearance 

[42, 

44] 

Cell death and apoptosis, 

endocytosis, immune signaling, 

antiproliferative and antineoplastic 

effects in MPNs, ER-to-Golgi 

trafficking, cellular homeostasis, 

ammonia-induced autophagy, 

endosomal trafficking  

[45-

52] 

ATG2A 

ATG2B 
Elongation 

Regulates lipid 

homeostasis, promotes 

Atg9-Atg18 interaction, 

programmed cell size 

reduction 

[53-

55] 

iDISC dependent caspase-8 

activation, apoptosis, lipid droplet 

localization 

[56, 

57] 

ATG3 Elongation 
Induces HIV infection and 

cell death 
[58] 

LAP, endosomal trafficking, 

apoptosis  

[59-

61] 

ATG4B 

ATG4D 
Elongation 

Sense balance and 

Otoconial development 

induces HIV infection and 

cell death 

[58, 

62] 

LAP, mitochondrial dysfunction, 

apoptosis 

[59, 

63] 

ATG5 Elongation 

Maintenance of innate 

lymphocytes, skeletal 

homeostasis, antiviral 

immune responses 

[64-

66] 

Immunity, intracellular pathogen 

killing, apoptosis, adipogenesis 

[67-

70]  

ATG6 or 

Beclin1 
Nucleation 

Induces HIV infection and 

cell death 
[58] 

Apoptosis, cell death, cancer cell 

growth, embryogenesis, tumor 

suppression, STAT3 

phosphorylation, DNA damage 

repair, receptor degradation and 

cytokinesis, induces viral 

transmission, improves the life 

span 

[26, 

71-

78] 

ATG7 Elongation 

Maintains cellular and 

behavioral responses, 

regulates potassium 

(K+) level in hypokalemia 

[79, 

80] 

Cell shrinkage, cell cycle arrest, 

mitochondrial clearance, 

adipogenesis, ISC integrity 

maintenance, promotes neuronal 

health and longevity 

[55, 

68, 

81-

83] 
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ATG8 or 

LC3 

Cargo 

selection 

Maintains tissue 

homeostasis 

[84] LAP, apoptosis, virus replication, 

cancer cell survival, lysosome 

biogenesis, exocytosis 

[67, 

85-

88] 

ATG9 Initiation Pathogenesis of POI [89] Maintain lysosomal degradation, 

axonal degeneration, STING and 

TBK1 assembly  

[90, 

91] 

ATG10 Elongation Not known - Apoptosis, deficiency leads to ALS 

and FTD molecular defects, 

lysosomal degradation, suppress 

HCV replication 

[92-

94] 

ATG12 Elongation Mitochondrial homeostasis, 

cell death, antiviral immune 

responses, osteoclast 

secretion, pathogen control 

[66, 

95, 

96] 

Endosomal trafficking, 

mitochondrial apoptosis, endosome 

to lysosome trafficking 

[59, 

97, 

98] 

ATG13 Initiation Cell cycle progression [99] Control virus replication, 

cardiac development 

[100]

, 

[101] 

ATG14 Nucleation Autophagosome–

endolysosome fusion 

[102] Autophagic cell death [103] 

ATG16L1 Elongation Urothelial vesicle 

trafficking 

[104, 

105] 

Apoptosis [67, 

106] 

ATG18 Elongation Programmed cell size 

reduction 

[55] Neural homeostasis [107] 

ATG101 Initiation Maintaining respiratory 

function 

[108] Not known - 

FIP200 Initiation Maintaining respiratory 

function 

[108] Control virus replication [100] 

VPS15 Nucleation Not known - Skeletal muscle function, 

endocytosis, neuronal migration 

[76, 

109, 

110] 

VPS34 Nucleation T-cell homeostasis [111] Endocytosis, receptor degradation 

and cytokinesis 

[76] 

 

ULK1: Unc-51 Like Autophagy Activating Kinase 1, LAP: LC3-associated phagocytosis, iDISC: 

intracellular death-inducing signaling complex, Rf: reference(s), PAS: pre-autophagosomal structure, ISC: 

intestinal stem cell, STING: stimulator of IFN genes, TBK1: TANK-binding kinase 1, POI: primary 

ovarian insufficiency, FTD: frontotemporal dementia, ALS: amyotrophic lateral sclerosis, HCV: hepatitis 

C virus, VPS34: vacuolar protein sorting 34, FIP200: FAK family-interacting protein of 200 kDa 
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Despite either ULK1 or ULK2 knock-out and their functional differences, both homologs 

have reasonable importance as knock-out of both ULK1 and ULK2 showed neonatal 

lethality, which is similar to the deletion of other core ATGs including ATG5 and ATG 

7 [41, 46]. Consequently, it remains elusive and challenging to study the general 

autophagy pathway via ablation of Atg5 or Atg7 or the upstream modulators such as 

Ulk1, Beclin 1 and Fip200 as the evidence suggested that, loss of core autophagy genes 

and their key initiatory kinases are often lethal and ultimately causes apoptosis [41, 112-

114]. 

 

1.5 Hematopoiesis 

Hematopoiesis is the process by which hematopoietic stem cells (HSCs) give rise to all 

blood cell types such as leukocytes, red blood cells and platelets [115]. Physiologically, 

all these blood cells reside inside the bone marrow microenvironment known as the HSC 

niche [116]. In mammals, hematopoiesis occurs sequentially in four distinct areas 

including the yolk sac, aorta-gonad mesonephros (AGM), fetal liver and bone marrow 

[115]. The first wave of blood cell production inside the yolk sac is called "primitive". 

Primitive hematopoiesis generates red blood cells for tissue oxygenation as the embryo 

grows quickly. Hematopoiesis in the primitive state is transient and is quickly replaced 

by adult-type "definitive" hematopoiesis. Throughout embryogenesis, definitive 

hematopoiesis is associated with hematopoietic stem cells and multipotent progenitors 

(HSCs/MPPs), which later become mature blood cells and immune cells [117]. 
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During steady-state and under stress conditions, a complex network of HSC-intrinsic 

mechanisms including transcriptional regulation, metabolic adaptation and epigenetic 

modification as well as extrinsic factors such as local signals inside the bone marrow 

microenvironment and long-distance signals from outside the bone marrow regulate the 

balance between HSC self-renewal and differentiation to maintain homeostasis [116]. 

Throughout vertebrate evolution, hematopoiesis has generally been conserved [118]. 

Studies of human hematopoiesis have been complemented and significantly extended by 

the manipulation of animal models, such as the mouse and zebrafish. 

 

1.6 Autophagy in hematopoiesis 

Autophagy is the major lysosomal degradation pathway and it plays a key role in 

maintaining hematopoiesis. The autophagic process causes the breakdown of cellular 

organelles and is required for cellular homeostasis, including differentiation processes, 

such as adipogenesis, erythropoiesis, and lymphopoiesis [119]. To identify the role of 

autophagy in hematopoiesis, different types of conditional Atg knock-out mice models 

have been used to avoid embryonic and neonatal lethality [120-123]. Autophagy is 

required for HSCs differentiation and maintenance. For instance, selective degradation 

of mitochondria (mitophagy) is crucial for regulating HSCs identity [124]. FIP200, a 

critical regulator of autophagy induction, led to the proper functioning and in vivo 

maintenance of HSC [112]. Furthermore, Atg7 deficiency in the hematopoietic system 

led to the loss of HSC function and dysregulated myeloid cell proliferation [125]. 

Therefore, autophagy is required for a variety of HSC functions including quiescence, 

self-renewal, and differentiation [126]. 
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Autophagy is also essential for the development and differentiation of other blood cell 

types such as B cells, T cells and erythroid cells [127-131] (Figure 1.2). Red blood cell 

(RBC) differentiation provided the first evidence that autophagy may be involved in 

hematopoietic differentiation. Additionally, most of the cellular organelles in peripheral 

tissues are removed when the cells are terminally differentiated into red blood cells. 

Autophagy is induced in polychromatic erythroblasts at the same time that several 

autophagy genes are expressed at high levels [132].  

 

1.6.1 Autophagy in HSCs maintenance 

During cell differentiation, mTOR pathway inhibition predominantly induces autophagy 

and potentiates HSC quiescence and self-renewal activities by suppressing mitochondrial 

functionality [133-135]. Mice with HSC-specific deletion of core autophagy gene Atg12 

resulted in a significant increase in apoptosis [136].  Lack of autophagy by conditionally 

deleted Atg7 in the HSCs resulted in disrupted megakaryopoiesis and thrombopoiesis as 

observed by enlarged platelets with excessive functional abnormalities during platelet 

activation and aggregation [137]. On the other hand, deletion of FOXO3A, a putative 

transcription factor of the HSC, and further crossing with GFP-LC3 mice demonstrated 

that Foxo3a regulates pro-autophagy gene expression in HSCs and maintains the 

quiescence of HSCs to protect them from starvation-induced metabolic stress [136, 138]. 

 

HSCs-specific autophagy-deficient mice showed the expansion of hematopoietic stem 

and progenitor cells (HSPCs), leading to bone marrow failure and severe anemia. 

Afterward, those mice undergone complete loss of HSC compartment and eventually die 
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[139, 140]. Knock-out of Atg5 in mouse hematopoietic cells also resulted in lymphopenia 

and progressive anemia [140]. However, whether this cellular proliferation occurs either 

cell-autonomously or due to cytopenias is elusive. Moreover, it has been shown that mice 

with Atg5 deficiency in HSCs resulted in survival defects including severe anemia, 

lymphopenia and significant reduction of HSCs [141]. Similarly, mice with autophagy 

deficiency via FIP200 ablation inside fetal HSCs were embryonically lethal [112].  

 

Although, it has been reported that Atg7 is curial for HSC maintenance but the overall 

autophagy data including how Atg7 knock-out influence the autophagy activation and 

how it is regulating autophagy flux were missing [142]. The maintenance of young and 

aged HSCs compartment was clearly shown by another study while isolating HSCs and 

granulocyte/macrophage progenitors from the GFP-LC3 transgenic mice bone marrow 

and measuring p62 and GFP-LC3 levels [136]. Later, it has been suggested that Atg7 

deficiency-induced aberrant megakaryocyte differentiation [137]. This study measured 

the LC3-II protein levels to observe autophagy activation upon conditionally knocking 

out Atg7 from the hematopoietic system. However, they did not show the autophagy flux 

changes and autophagy drugs (such as rapamycin, calpeptin, 3-MA, chloroquine) 

induced modulatory effects in Atg7 knock-out mice, which were essential to confirm such 

phenotypes were due to Atg7 regulated autophagy or Atg7 independent autophagy. One 

study did not interpret the autophagy level upon Atg5 knock-out [141], while another 

study investigated the autophagy by only observing p62 level accumulation [112], which 

is not sufficient to monitor autophagy according to the autophagy guideline [143]. In any 

experimental setup, measurement and detection of LC3-II level and detection of 
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autophagy flux by using chloroquine or bafilomycin A1 are critical to assess autophagy 

more precisely. In further research study by using Atg5 and Atg7 deficient mice model, 

autophagy has been assessed more precisely, demonstrated that high autophagy flux is 

essential for the maintenance of HSCs [144]. Nevertheless, all of these studies indicated 

that autophagy is essential for HSPCs homeostasis. 

 

1.6.2 Autophagy in progenitor cells 

Likewise the HSCs maintenance and normal functioning, autophagy also played essential 

roles for the maintenance of hematopoietic progenitors including the common myeloid 

progenitors (CMPs), common lymphoid progenitors (CLPs), megakaryocyte erythrocyte 

progenitors (MEPs), NK cell progenitors (NKPs) and granulocyte-macrophage 

progenitors (GMPs) in bone marrow (BM). Mice with the ablation of Atg7 in the HSPC 

compartment resulted in significantly reduced CMPs and CLPs in the BM and 

consequently induced severe myeloid proliferation, likely to human acute myeloid 

leukemia (AML) [7]. Furthermore, since ATG5 or ATG7 knock-down resulted in 

decreased HSPC frequencies, high autophagic flux is essential for the maintenance of 

myeloid and erythroid progenitor cells function in vitro and in vivo [144]. Recently, it 

has been suggested that chemically induced Atg5 deletion upon tamoxifen administration 

resulted in a significant reduction in CMPs, MEPs and GMPs in the BM [145]. Previously 

it has been reported that the mTOR signaling pathway modulated the myeloid progenitor-

derived macrophage differentiation by autophagy inhibition [146]. Conditional deletion 

of Atg7 in the mice hematopoietic system showed a significant reduction in CMPS, CLPs 
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and NKPs inside the BM [142], although, this study did not measure or detect the 

autophagy status in the Atg7 deficient mice hematopoietic system. 

 

1.6.3 Autophagy in lymphoid maturation 

Autophagy renders pivotal roles in lymphoid differentiation and maturation (Figure 1.3). 

Mechanistic insights using experimental mouse models suggested that deletions of 

selected Atgs such as Atg5 or Atg7 inside the T-cell and B-cell compartments involved 

fundamental autophagy process and regulating cellular renewal, differentiation and 

immune cell functions during lymphoid maturation. 

  

1.6.3.1 Role of autophagy during B lymphocyte development 

During early embryogenesis, B lymphocytes development initiated in a stepwise manner 

such as pro-B cells, pre-B cells, and immature B cells from HSCs inside the bone marrow 

while autophagic activity including Beclin 1 expression and autophagosome abundance 

was first reported during pro-B cell time point [147-150]. Afterward immature B cells 

migrate and secrete antibodies to the secondary lymphoid organs where they get fully 

matured. B lymphocytes are categorized into B-1 and B-2 lymphocytes depending on 

their cell surface marker expression properties [151].  

 

The first evidence concerning the necessity of autophagy during B-cell development 

comes from the conditional knock-out of the Atg5 mice model [129]. ATG5 deletion in 

B lymphocytes resulted in defective B cell development during pro-B cell to pre-B cell 

transition stages with a substantial decrease in B-1 lymphocytes inside bone marrow 

[129]. Cell death occurs more frequently in peripheral B-1 cells, which reduced their 
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numbers in contrast with the unaffected peripheral B-2 lymphocytes, indicating a relative 

autophagy dependency [129]. Matured B cells further differentiated into either quiescent 

memory B cells or long-lived antibody-secreting plasma cells [152]. Autophagy 

defective plasma cells and memory B cells are incapable of continuous protein 

biosynthesis and eventually come across misfolded protein aggregation due to apoptosis 

[153, 154].  

 

1.6.3.2 Autophagy in T lymphocytes 

Autophagy plays important role in T-lymphocyte homeostasis [155]. Deficiency of Atg5 

in mice showed full T lymphocytes maturation but peripheral T and B lymphocytes and 

total thymocytes were reduced [156]. Targeted deletion of Vps34 and Atg16l1 in the T-

cell compartment of aged mice models impaired the normal development of innate 

natural killer (NK) T lymphocytes [157, 158]. Consistent with the aforementioned 

findings, Atg7 ablated mice within the T-cell compartment perturbed cellular 

differentiation of invariant natural killer T (iNKT) cells in peripheral lymphoid organs 

[159]. Under normal circumstances, iNKT cells display upregulated mitophagy during 

thymus development. Impairment of Atg7 led to the accumulation of mitochondrial ROS 

and apoptosis [159]. Furthermore, targeted deletion of T-cell-specific core autophagy 

gene Atg5 or Atg7 resulted in autophagy deficiency and defective T lymphocyte 

production [160].  
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1.6.3.3 Autophagy in natural killer lymphoid cells 

NKPs derived from CLPs differentiated into immature or innate NK cells (iNKs) and 

eventually into mature NKs (mNKs), ensure immune response against viral infections 

and pathogen attacks [161-163]. NKP specific Atg5 deficient mice showed severe 

reduction in iNKs and mNKs within the bone marrow and spleen leading to the 

accumulation of ROS and damaged mitochondria [164].  

 

1.6.4 Autophagy in myelopoiesis and granulopoiesis 

Myelopoiesis is a stepwise differentiation and maturation of HSCs to CMPs by terminal 

differentiation which led to the production of monocytes and granulocytes including 

neutrophils, basophils and eosinophils. As a result, myelopoiesis is sometimes 

subdivided into monocytopoiesis and granulopoiesis [165]. It currently remains elusive 

that how autophagy mediates the monocyte and granulocyte differentiation.  

 

1.6.4.1 Autophagy in erythropoiesis 

Autophagy plays a critical role during erythropoiesis where nucleus removal from the 

erythroblasts initiates reticulocyte formation inside bone marrow [166]. Deficiency of 

Atg 5 and Atg7 in mice may diminish the mitochondrial clearance but could not abolish 

total autophagy [167, 168]. One of the previous studies reported that in mice deficient 

with Ulk1, Atg5 and Ulk1/Atg5 at developmental hematopoiesis, Ulk1 dependent 

autophagy plays the most predominant role in mitochondrial clearance than the Atg5 

dependent autophagy [44]. Similarly, Fip200 ablation impaired the erythroid maturation 

and rendered defective fetal HSC maintenance [112].  
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Figure 1.2: Atgs involved in hematopoietic differentiation. 

Autophagy plays a vital role during hematopoiesis indicating that specific stages of 

hematopoietic cell differentiation require the putative mechanistic involvement of 

different autophagy genes as well as the multiple autophagy factors. HSPC, 

hematopoietic stem and progenitor cell; CMP, common myeloid progenitor; CLP, 

common lymphoid progenitor; MEP, megakaryocyte-erythroid progenitor; GMP, 

granulocyte-macrophage progenitor; NK cell, natural killer cell. 

 

Studies suggested that mice deficient in Gata-1 suffered from immature proerythroblast 

stage and subsequently undergone cell death and apoptosis [169]. Gata-1 deficient mice 

exhibited severe anemia and embryonic lethality whereas GATA-1 expression induces 
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autophagy by upregulating ATG4B, ATG8 homologs and ATG12 expression in primary 

human erythroblasts by direct transcriptional control [170, 171]. 

 

1.6.4.2 Autophagy in neutrophil granulocytes 

Granulopoiesis is the sequential differentiation of GMPs to become eosinophils, 

neutrophils, basophils and macrophages inside bone marrow [165]. Granulocytes, also 

known as polymorphonuclear leukocytes (PMNL) are white blood cells where neutrophil 

granulocytes are the short-lived and widely abundant cells of the host immune system 

and its functional impairments leading to serious immunodeficiency syndromes [172]. 

Mice HSC compartments deleted with Atg7, displayed myelodysplastic syndrome 

(MDS) [139] and targeted deletion of Atg7 during earliest granulopoiesis leading to 

immature precursor accumulation that prevents neutrophil differentiation in vivo [173]. 

Furthermore, Atg7 ablation led to the defective lipophagy in neutrophil differentiation, 

although the exact molecular profiling of how lipophagy directed into the autophagy 

machinery was unknown. Moreover, no direct proof found regarding autophagy activity 

in basophil or eosinophil granulocytes. During the process of neutrophil development 

and maturation, autophagy acts as a defender mechanics to degrade extracellular 

materials by canonical autophagy [174], LC3-dependent phagocytosis [175] and 

xenophagy [176], while mice with Atg5 or Atg7 deficiency led to neutrophil 

degranulation and disrupted ROS generation [177].  

 

1.6.4.3 Autophagy in monocyte and macrophage development 

Monocytes are bone marrow-derived white blood cells or leukocytes, circulating inside 

the blood and upon migrating from the bloodstream into tissues, monocytes are 
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terminally differentiated into macrophages and dendritic cells [178]. Monocytes are 

involved in various cytokine induction, antigen presentation while conferring innate 

immunity and tissue homeostasis [179]. Macrophages are multifaceted innate immune 

phagocytes that serve as a first-line host defense against intracellular pathogen invasion 

by mounting pro-inflammatory responses via phagocytosis, releasing cytokines and 

renovate damaged tissues [180]. Only a few pieces of literature reported the role of 

autophagy during monocyte to macrophage differentiation. Circulating monocytes 

derived from CMPs can generate macrophages and dendritic cells inside tissues through 

cellular differentiation [181]. However, detailed mechanistic insights and molecular 

events have not been elucidated. Mice lacking Atg5 inside the granulocytes and 

monocytes/macrophages resulted in intracellular pathogen infection, indicating an 

essential role of Atg5 in cellular immunity and to kill intracellular pathogens via 

autophagy-independent GTPase trafficking [182].  

 

1.6.4.4 Autophagy in thrombopoiesis and the development of thrombocytes 

Thrombocytes or platelets are generated from the megakaryocyte progenitors (MPs) and 

are colorless, small and flowing cell fragments in the bloodstream that immediately 

respond to blood vessel injury, form blood clotting, prevent bleeding and assist in 

hemostasis [183]. Autophagy events also take place in thrombocytes where higher LC3-

II turnover is observed in thrombocytes compared to starved thrombocytes [184]. It has 

been suggested that megakaryocyte and thrombocyte-specific ablation of Atg7 indicated 

a markedly reduced LC3-II level, defective platelet aggregation, abrogated granule cargo 
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packaging, impaired hemostasis and thrombus formation without affecting platelet 

morphology [184]. 

 

In most cases, mice have been used as a common in vivo vertebrate model system while 

targeting different autophagy genes in the hematopoietic systems to delineate the 

autophagy activities and hematopoietic outcomes (Table 1.2). Nevertheless, the use of 

transparent in vivo models such as zebrafish can be helpful to elucidate the dynamic 

nature of autophagy in hematopoietic tissues with more details.  

 

1.7 Autophagy and malignant hematopoiesis 

The role of autophagy in hematological malignancies is double-faced and paradoxical 

because of its tumor-suppressive and tumor-promoting properties [185]. Dysregulations 

of HSPCs self-renewal and differentiation capacity are associated with malignant 

hematopoiesis. Autophagy is vital for the maintenance of life-long hematopoiesis and 

deletion of ULK1-interacting partners including FIP200, ATG5 or ATG7 impaired the 

normal survival capacity of HSCs in mice [112, 139, 140]. In particular, heterozygous 

deletion of ATG5 induces the disease progression of acute myeloid leukemia (AML) 

[140]. Conversely, human AML cells with ATG7 knock-down have reduced proliferation 

rate, enhanced chemosensitivity and improved outcomes in AML therapy [140]. 

Autophagy inactivation by Atg5 or Atg7 deletion increased the ROS generation, cell 

death and survival ability in leukemic mice [186]. Mice with HSC specific deletion of 

Atg7 resulted in defective mitophagy and MDS (myelodysplastic syndrome, a complex 

bone marrow failure disorders associated with aging, impaired clonal hematopoiesis and 
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anemia)-like phenotypes [142]. In vivo mouse model demonstrated that HSCs isolated 

from leukemic mice exhibit a higher level of basal autophagy compared to the non-

leukemic mice [187]. Deletion of Atg3 or treatment with autophagy inhibitors to 

inactivate autophagy from murine bone marrow cells prevented BCR-Abl-mediated 

leukemogenesis (leukemia induction process that associates multiple genetic and. 

epigenetic events) in vitro [188].  

 

1.8 Zebrafish as a model to study autophagy and hematopoiesis 

The optical clarity, high fecundity, externally developed embryos, high throughput 

chemical screening and the availability of transgenic and mutant strains of zebrafish 

made them a robust and prime vertebrate animal model for studying developmental 

biology, disease pathogenesis and more recently to explore autophagy during 

embryogenesis [189, 190]. Moreover, the revolution in gene editing such as Transcription 

Activator-Like Effectors Nucleases (TALENs) [191, 192], Clustered Regularly 

Interspaced Palindromic Repeats (CRISPR) system based genome editing [193] and Tol2 

transgenesis were promptly implemented in zebrafish opened up the possibility for cell-

type or tissue-specific genetic manipulations [194-200]. Having conserved orthologues 

of human ATGs such as ULK1 (58%), ULK2 (74%), ATG7 (77%), ATG5 (81%), ATG3 

(82%) and human-like sequential multi-lineage hematopoiesis over murine model [201], 

it may have the likelihood that the results obtained in autophagy research using zebrafish 

model would be linked to humans as well.  
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Table 1.2: Autophagy defects during hematopoietic differentiation in mice 

Model system Target cells Hematopoietic outcomes  Rf. 

Fip200flox/flox × Tie2-Cre 

HSCs 

Myeloproliferation, HSC apoptosis and 

severe anemia. 
[112] 

Atg5flox/flox × Vav-iCre Anemia. [202] 

Atg5flox/flox × Vav-Cre 
Lymphopenia, anemia, accumulation of 

monocytes, macrophages and neutrophils. 
[140] 

Atg12flox/flox × Mx1-cre Loss of HSCs. [136] 

Atg7flox/flox × Vav-Cre 
Loss of HSC function, severe 

myeloproliferation. 
[139] 

Atg5flox/flox × CD19-Cre 

B cells 

Defective antibody responses in B cells, 

increased cell death in BM and depletion in 

B-1 B cells. 

[129, 

203, 

204] 

Atg5flox/− × Mb1 Cre and 

Atg5flox/− × CD21 Cre 

Decreased T1 B cells and follicular B-cell 

numbers, reduced B-1a and B-2 B-cell 

proportion. 

[130] 

Atg5flox/flox × Gzmb-Cre 

Atg7flox/flox × Gzmb-Cre 

T cells 

Loss of T cell function. [205] 

Atg7flox/flox × CD4-Cre 

Loss of iNKT in lymphoid organs, 

lymphopenia, severely compromised CD8+ 

memory T cells. 

[160, 

206] 

Atg3flox/flox × Lck-Cre Decreased T cell numbers.  [207] 

Atg5flox/flox × Cre-ERT2 
Loss of CD8+ T cells, a severe reduction in 

lymphoid specific memory T cells.  
[208] 

Atg5flox/flox × CD4-Cre 

Atg7flox/flox × Lck-Cre 

Significant reduction in iNKT, CD4 and 

CD8 T cell numbers. 

[127, 

209] 

Vps34flox/flox;CD4-Cre  Impaired T cell homeostasis and anemia. [157] 

Atg16l1flox/flox;Cd11c-Cre Expanded T cell proliferation. [210] 

Atg3flox/flox Ubc;cre-ERT2 

Nkp46cre × Bnip3lflox/flox 

NK cells 

Loss of memory NK cells.  [211] 

Atg5flox/flox;NKp46-Cre  

FoxO1flox/flox;FoxO1AAA/+;

NKp46-Cre 

Impairment in NK cell development, 

reduction in iNKs and mNKs in the spleen 

and BM. 

[164] 

CD4 Cre-Atg7−/− 
Abrogated iNKT development, progressive 

anemia. 
[212] 
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Atg7flox/flox × Vav-iCre Erythrocytes 
Impaired red blood cell development and 

severe anemia. 
[213] 

Becn1flox/flox -Lyz2-cre+/−  

Fip200flox/flox -Lyz2-cre+/−  

Monocytes/ 

Macrophages 

Perturbed lymphoid and myeloid cell 

homeostasis, altered macrophage 

differentiation. 

[214] 

Atg7Flox/Flox; Mx-Cre Mast cells Impairment of mast cell degranulation.  [215] 

Vav-Cre × Atg7flox/flox 

Cebpa-cre × Atg7flox/flox 

Mx1-cre × Atg5flox/flox 
Neutrophils 

and 

Eosinophils 

Impaired neutrophil differentiation. [173] 

Atg7flox/flox;Lyz2-Cr Eosinophilic inflammation. [216] 

Atg7flox/flox ;LysM-cre 

Reduced neutrophil degranulation, 

increased circulating neutrophil numbers, 

decreased inflammatory potential of 

neutrophils.  

[177] 

CD11c-Cre-Atg5flox/flox Dendritic cells Reduced migration of DCs. [217] 

Atg7flox/flox;PF4-Cre 

Megakaryocytes 

and Platelets 

Impaired thrombosis, robust bleeding, 

platelet aggregation.  
[184] 

Atg7flox/flox;Vav-Cre 
Impeded megakaryocyte differentiation, 

abnormal platelet production. 
[218] 

Atg5flox/flox;PF4-Cre 

Delayed thrombus formation, pulmonary 

thrombosis, significantly reduced thrombin-

induced platelet aggregation. 

[219] 

 

mNKs, mature natural killers; BM, bone marrow; iNKT, invariant natural killer T; CD, cluster of 

differentiation; DCs, dendritic cells. 

 

Some of the landscapes already demonstrated that further studies of autophagy in 

zebrafish could result in a novel understanding of the physiological role of the autophagy 

mechanism [220-222]. In particular, cloning of zebrafish microtubule-associated protein 

1A/1B-light chain 3 (Lc3) targeting autophagosomes and generation of a transgenic 

green fluorescence protein (GFP) tagged Lc3 fish line (GFP-Lc3) implemented as an 

excellent platform to monitor autophagy lively under microscopic imaging [223]. The 
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below table showed the previously identified zebrafish autophagy homologs for different 

human autophagy proteins (Table 1.3). 

 

Zebrafish (Danio rerio) has emerged as a robust in vivo model for vertebrate 

hematopoiesis with unique features including high fecundity, optical transparency, 

dispensable early embryonic hematopoiesis, as well as highly amendable for genetic and 

chemical manipulation [224, 225]. Zebrafish hematopoiesis has a higher similarity to 

mammals considering the highly conserved complex regulatory networks and various 

hematopoietic lineages [115]. Particularly in early embryogenesis, zebrafish embryos do 

not require a fully effective circulatory system. As a result, it can be utilized as a model 

to provoke loss-of-function for gene expression. Compare with in vitro model, the 

zebrafish model provides more comprehensive information about the regulation of 

hematopoiesis, which is dynamic with interactions between hematopoietic cells and their 

niche at the whole-organism level. 

 

1.9 Zebrafish embryonic hematopoiesis 

Zebrafish are being utilized as a perfect model system to study vertebrate developmental 

hematopoiesis [201, 224, 226-228]. Unlike mammals, zebrafish eggs are fertilized 

externally and easily available for examining the one-cell embryonic stage. Although 

invertebrate model organisms such as fruit flies (Drosophila melanogaster) have shown 

their importance while studying embryogenesis [229-231], these models are not quite 

suitable for working on hematopoiesis and associated mature blood cells because of 

limited blood cell proliferation or differentiation [232], inappropriate vascular network 

[233], deficits equivalents of the lymphoid lineages and its mature blood cells [234]. With 
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the advancing genetic technologies in the past decade, zebrafish models played important 

roles in modeling hematopoietic defects, which essentially contributes to a 

comprehensive picture of vertebrate hematopoiesis. 

 

1.9.1 Zebrafish primitive hematopoiesis 

During the initial wave of zebrafish primitive hematopoiesis, lateral plate mesoderm 

(LPM) is the place where the early hematopoietic progenitor as defined by scl first 

appeared in the bud stage at 11 hpf [224]. Afterward, primitive hematopoiesis occurs in 

the intermediate cell mass (ICM) positioned in the trunk ventral to the notochord and the 

rostral blood island (RBI) originating from the cephalic mesoderm where it 

predominantly generates erythrocytes and some primitive macrophages [201, 235, 236].  

 

At 12 hours post-fertilization (hpf) stage, CMPs (pu.1/spi1b) first arises in the anterior 

lateral plate mesoderm (ALPM) [237], and differentiate as well as later migrate to the 

anterior yolk sac in the rostral blood island (RBI) where they expressed the pan-leukocyte 

marker (l-plastin/lcp1) after 16 hpf [238-240]. During the embryonic development of 

both mammals and zebrafish, hematopoiesis occurs in two successive waves namely 

primitive or embryonic hematopoietic wave and definitive wave [241-243]. 

Subsequently, pan-leukocyte marker expressed genes subdivided into neutrophil 

(mpx/mpo) and macrophage (mpeg1.1) lineages [244, 245] (Figure 1.3). 
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Figure 1.3: Timeline of developmental hematopoiesis in zebrafish. 

Around 11 hours post-fertilization (hpf), embryonic primitive hematopoiesis (blue) 

initiates when the multipotent precursor cells (hemangioblasts, can differentiate into both 

endothelial and hematopoietic cells) appeared in the anterior lateral mesoderm (ALM) 

and posterior-lateral mesoderm (PLM). Blood circulation begins at around 24 hpf (pink) 

and a transient definitive wave initiates in the posterior blood island (PBI) shortly after 

the appearance of erythro-myeloid progenitors (EMP). Definitive HSPCs arise from the 

hemogenic endothelial cells of the dorsal aorta (DA) at 26 hpf and migrate to the CHT at 

48 hpf. Lymphoid progenitor cells arise at around 54 hpf and seed inside the thymus (site 

for lymphoid T cells maturation). CMP: common myeloid progenitors. 
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Table 1.3: Key human autophagy proteins and zebrafish homologs 

 

Human 

proteins 

Zebrafish 

homolog 
Functions in the autophagy pathway Rf. 

ULK1 
ulk1a, 

ulk1b 

Initiator of the autophagy pathway, part of the ULK-

ATG13-ATG101-FIP200 complex that inhibits mTORC1 

complex;  

[246] 

ULK2 ulk2 

ATG101 atg101  
Part of the ULK complex, responsible for initiating cellular 

autophagy  
[247] 

ATG13 atg13 
Under nutrient starvation, enhances the kinase activity of 

ULK complex 

[248] 

 

FIP200 Rb1cc1 
Novel mammalian autophagy factor that functions together 

with ULKs and is essential for autophagosome formation  
[249] 

Beclin 1 beclin 1 

Interacts with BCL-2 binding protein; facilitating 

membrane extension, cargo recruitment and 

autophagosome maturation 

[250] 

WIPI1 Wipi1 
Major phosphatidylinositol 3-phosphate (PtdIns3P) 

effectors at the nascent autophagosome  
[251] 

ATG9A atg9a Its phosphorylation renders autophagosome assembly  [252] 

ATG3 atg3 

The ubiquitin-conjugating enzyme that catalyzes the 

conjugation of Atg8 and phosphatidylethanolamine (PE) 

and promotes the lipidation process  

 

[253] 

 

ATG4B atg4b 

A cysteine protease that converts the pro-LC3 to  LC3-I; 

conjugate LC3-I with phosphatidylethanolamine (PE) and 

yield LC3-II 

[254] 

ATG5 atg5 Conjugates with ATG12 and assists in autophagy  [255] 

ATG7 atg7 
Autophagosomal membrane development and fusion 

within cells 
[256] 

GABARAP 
gabarapa Binds to LC3 and plays a critical role in autophagosome-

lysosome fusion  
[257] 

gabarapb 

MAP1LC3B map1lc3b 
Referred to as LC3, the most widely used marker of 

autophagosomes 
[143] 

ATG10 atg10 Promoting autophagosome formation  [94] 

ATG12 atg12 Facilitates the LC3 lipidation [258] 
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ATG16L1 atg16l1 
Autophagosome synthesis while binding with the Atg5-

Atg12 complex 
[259] 

 

Human autophagy proteins and their zebrafish homologs were identified utilizing the National Center for 

Biotechnology Information (NCBI) Gene search tools (https://www.ncbi.nlm.nih.gov/gene/). 

 

Primitive erythropoiesis first arises in the posterior lateral plate mesoderm (PLPM) at 12 

hpf and further migrates to the intermediate cell mass (ICM) at 18 hpf characterized by 

the expression of gata1 and embryonic hemoglobin [260]. Cells within the ICM further 

differentiate into the endothelial cells of the trunk vasculature and proerythroblasts which 

begin to enter the circulation around 24 hpf. In the intermediate wave of hematopoiesis, 

the EMPs arise in the posterior blood island (PBI) region autonomously at 30 hpf that 

generate both myeloid cells (spi1b, lcp1 and mpx) and erythrocytes (gata1) [261] (Figure 

1.3). 

 

1.9.2 Zebrafish definitive hematopoiesis 

Zebrafish definitive hematopoiesis arises from the ventral wall of dorsal aorta (VDA) 

which is similar to the mammalian aorta-gonad-mesonephros (AGM) expressing 

hematopoietic stem cells myb and runx1 at 36 hpf through endothelial-hematopoietic 

transition (EHT) [262-265] (Figure 1.3). At 40 hpf, zebrafish thrombocytes arise inside 

the region of VDA and its circulation begins at 48 hpf characterized by the expression of 

CD41high in transgenic CD41:GFP zebrafish embryos [266, 267]. Subsequently, it 

migrates to the caudal hematopoietic tissue (CHT) which is comparable to the 

mammalian fetal liver. Afterward, the hematopoietic cells come to the kidney and thymus 

where the multi-lineage hematopoiesis and T lymphocytes are produced and eventually 

harbored inside the kidney marrow where life-long hematopoiesis takes place [224].  
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At the end of the primitive wave and the initiation of definitive hematopoiesis, a transient 

hematopoietic wave arises where the EMPs generate independently from the posterior 

blood island (PBI) [268] (Figure 1.3).  

 

Upon knock-down or knock-out of different core Atgs including FIP200, Atg5, Atg7, 

Atg12 and Atg16 inside the hematopoietic system, it is clear that autophagy plays a 

critical role while regulating HSCs and its downstream blood progenitors. However, the 

function of the core autophagy gene and autophagy activating kinase Ulk1 in the 

hematopoietic system remaining elusive.  In this study, the role of Ulk1 regulated 

autophagy in definitive hematopoiesis has been studied using the zebrafish model. 
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Chapter 2: Objectives 
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This study made use of the optically clear and robust zebrafish model to investigate the 

role of autophagy during embryonic hematopoiesis in vivo, based on TALEN-mediated 

knock-out of autophagy initiating kinase ulk1. 

 

Objectives: 

1. To develop zebrafish ulk1 knock-out models.  

2. To examine the effects of ulk1 knock-out in autophagy activation and flux.  

3. To investigate the effects of ulk1 knock-out in definitive hematopoiesis. 

4. To examine if the effects of ulk1 knock-out on hematopoiesis is autophagy-

dependent or independent  
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Chapter 3: Materials and Methods 
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3.1 Zebrafish strains, feeding and maintenance 

Wild-type, Tg(myb:GFP) [269], Tg(mpeg1.1:eGFP) [270], Tg(coro1a:DsRed) [271] and 

Tg(GFP-Lc3) [223] zebrafish lines were kept in normal aquatic conditions. Hatched 

brine shrimp were fed twice daily to the fish. Natural spawning was used to collect 

embryos and staged as previously mentioned guidelines [272, 273]. All zebrafish 

embryonic experiments were performed under the approval and guidelines of the Animal 

Subjects Ethics Sub-Committee (ASESC), The Hong Kong Polytechnic University.  

 

3.2 Zebrafish embryo collection and staging 

To obtain embryos, adult male and female zebrafish were set in a mating tank as 1:3 or 

2:4 ratio and separated by a divider one day before embryo collection (Figure 3.1). The 

next day, the divider was removed and allow the male and female fishes to meet, and 

embryos were collected from natural spawning. Developmental stages were determined 

following Kimmel et al and staged as mentioned in previous ethical approval [273] 

(Figure 3.2).  

 

3.3 ULK1 protein sequence alignment 

Amino acid sequences for human ULK1 (NP_003556.2), mouse Ulk1 

(NP_001334323.1), zebrafish ulk1a (NP_001124103.1) and ulk1b (XP_005161178.1) 

were obtained from National Center for Biotechnology Information (NCBI) and aligned 

by ClustalW2 (https://www.ebi.ac.uk/Tools/msa/clustalw2/). Phylogenetic tree of ULK1 

protein in human, mouse and zebrafish was built up using the neighbor-joining method. 
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Figure 3.1: Overview of zebrafish husbandry.  

(A) The multi-tank aquatic system for zebrafish husbandry in the Department of Health 

Technology and Informatics, The Hong Kong Polytechnic University. (B) Collection 

tanks were set to obtain embryos consisting of an outer tank in combination with an inner 

tank, which contains mesh at the bottom for embryo collection. A divider plate is set 

inside the inner tank to separate male and female fishes before mating and covered by a 

lid on the top. 
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Figure 3.2: Zebrafish embryonic developmental stages.  

Stages for zebrafish embryonic development adopted from Kimmel et al 1995 [273]. 
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3.4 Generation of the ulk1 mutants by TALENs  

TALEN sequences targeting the genomic region of zebrafish ulk1a exon 2 and ulk1b 

exon 4 were designed and synthesized as described previously [274]. Briefly, each 

TALEN arm was constructed by mixing an appropriate amount of six corresponding 

plasmids with 1 μL 10x NEBuffer 3.1 (New England Biolabs) and 0.5 μL BsmBI enzyme 

(Thermo Scientific) mix, gently centrifuged for a few seconds and incubated at 550C for 

30 minutes.  

 

Afterward, each reaction was added with 1.5 μL 10X T4 DNA Ligase Reaction Buffer 

(New England Biolabs), 0.5 μL T4 DNA Ligase (New England Biolabs) and 0.5 μL 

Esp3I enzyme (Thermo Scientific) and made up to 15 μL with deionized water. The 

whole reaction mixtures were subjected to thermocycler incubations as 370C for 5 

minutes, 160C for 10 minutes for 10 cycles, 370C for 15 minutes, 800C for 5 minutes and 

40C forever. 

 

To identify the correct constructs, colony PCR was performed. PCR reactions were then 

transformed to the TOP10 competent cells following blue/white screening whereas 

positive white clones were selected and further verified by Sanger sequencing. After 

confirmed by sequencing results, ulk1a and ulk1b plasmids were linearized and further 

purified by PCR purification kit (Qiagen, #28104). Next, every single-stranded DNA was 

reverse-transcribed to mRNA by T3 mMessage mMachine Kit (Ambion, #AM1348). 
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3.5 Microinjection  

Zebrafish embryos were microinjected as described in previous protocols [275, 276]. 

Briefly, ulk1a left and right TALEN arms and ulk1b left and right TALEN arms obtained 

from T3 mMessage mMachine in vitro transcription were mixed respectively to an 

appropriate amount. One-cell-stage zebrafish embryos were then individually 

microinjected by 100 pg of ulk1a and ulk1b TALEN mRNA into the yolk using 

stereomicroscope (Nikon SMZ800N, USA) and a pressure-controlled PLI-90 pico-liter 

injector (Harvard Apparatus Limited, USA) (Figure 3.3). 

 

3.6 TALEN mechanism and evaluation of TALEN activities by genotyping 

Mechanistically TALEs are genomic tools being used to modify DNA according to their 

specific loci using customizable DNA binding motifs. DNA recognition domains of 

TALEs are composed of tracts of identical 33-35 amino acid residues and a partial repeat 

domain. Within each unit, adenine (NI, NN and HD); guanine (NK, NN and NH for) and 

thymine (NG) are the repeat-variable di-residues (RVDs) that bind to a specific 

nucleotide [277, 278]. In the zebrafish model system, TALE nucleases or TALENs have 

been successfully used to introduce targeted mutations either through non-homologous 

end joining (NHEJ) or by homology-directed repair (HDR) and homology-independent 

repair (HIR) using a donor template. With comparable mutagenic activity, TALENs are 

more specific in binding and have fewer sequence constraints in targeting the genome, 

compared to other customizable nucleases. 
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Microinjected embryos from 36 hpf to 2 dpf were collected for restriction fragment 

length polymorphism (RFLP) genotyping as mentioned previously [279]. To check 

TALEN mutagenic activities in F0 chimeric mutants, embryos were taken one by one 

into the PCR strips and digested with genomic DNA (gDNA) extraction buffer (a mixture 

of KCl, MgCl2, Triton X-100, Tris-HCl of pH 8.0, NP-40 and proteinase K) at 550C for 

3 to 5 hours with shaking. Afterward, reaction mixtures were incubated for 10 minutes 

at 980C to inactivate the proteinase K and PCR amplified using the genotyping primers 

(Table 3.1).  

 

Then the PCR products were digested with AciI and NheI restriction enzymes targeting 

selected bases at the spacer region of ulk1a exon 2 and ulk1b exon 4 respectively (Figure 

3.4). During the imaging of performed agarose gel electrophoresis, an extra undigested 

PCR band was detected in both somatically targated ulk1a and ulk1b groups. 
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Figure 3.3: Microinjector system for zebrafish embryo microinjection.  

The system contains a stereomicroscope (Nikon SMZ800N, USA), a gas pressure 

microinjector (Harvard Apparatus, USA) and a micromanipulator (KANETEC, Japan). 
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Figure 3.4: Generation of somatically targated ulk1aTAL and ulk1bTAL by TALEN.  

(A-B) Schematic illustration representing TALEN mediated genome editing of zebrafish 

ulk1a and ulk1b. 14-20bp spacer region containing the mutation initiation site. AciI and 

NheI restriction enzymes were used in these genotyping assays to cut in a specified 

location of ulk1a and ulk1b.  
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In this study, somatically targated ulk1a and ulk1b groups were presented as ulk1aTAL 

and ulk1bTAL respectively, while their wild-type siblings were introduced as controls. 

Stable ulk1b wild type controls and their mutant siblings were presented as ulk1b+/+ and 

ulk1b-/-. 

 

3.7 Anti-sense RNA probe synthesis  

Complementary DNA (cDNA) sequences of the target genes were PCR amplified and 

sub-cloned into the pGEM-T-easy vectors (Promega, USA) following the manufacturer’s 

guidelines. The plasmid was ligated and transformed into the One Shot TOP10 

chemically competent cells with blue/white screening using isopropyl β- d-1-

thiogalactopyranoside (IPTG) and β-galactosidase combination (1:1). Colonies with 

white appearance were picked for overnight liquid broth culture at 370C shaking 

incubator. The overnight culture was then mini prepped by QIAprep Spin Miniprep Kit 

(Qiagen, USA) to purify the plasmid DNAs according to the manufacturer’s instructions. 

Purified plasmids were then verified by sequencing using T7 and SP6 primer. Confirmed 

plasmid DNAs were linearized by specific restriction enzymes and then purified by 

QIAquick PCR Purification Kit (Qiagen, USA) and concentrations were measured by a 

spectrophotometer (Thermo Scientific, USA). Purified single-stranded DNAs were next 

used as the template for anti-sense RNA probe synthesis using DIG RNA Labeling Kit 

and T7 or SP6 RNA polymerase (Roche Applied Science). To perform the whole-mount 

in situ hybridization (WISH), following plasmids, their linearized restriction enzymes 

and RNA polymerases were utilized to synthesize riboprobes and to complete the reverse 
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transcription reaction: spi1b- SacI-HF, T7; myb- SalI-HF, T7; lcpI- NsiI-HF, T7; mpx- 

PstI-HF, T7 and ulk1b- SacII. 

Table 3.1: List of primers used in this study. 

Primer Name Primer sequence 

Genotyping Primer Sets 

Zf-ulk1b-Exon_4-GF TTCATGGCCCGGGGGT 

Zf-ulk1b-Exon_4-GR CTGCTAGGAAGCTCCTCATGG 

Zf-ulk1a-Exon_2-GF AGACTTGATCGGACATGGCG 

Zf-ulk1a-Exon_2-GR CTCCTGGCAAAGGCACAAAC 

WISH Probe Primer Sets 

Zf-spi1b-PF TACATCATCCCACCCCAGCAAAC 

Zf-spi1b-PR AATGCTTTCTGTCTGTGTGGCTC 

Zf-lcp1-PF GAAGACCAGCGTCCATCTGC 

Zf-lcp1-PR CCAGCTCCACCGCATAGTTA 

Zf-mpx-PF CTCTGAACCCTGCTTCCCAAT 

Zf-mpx-PR TGGAATCTCTATCAGTCTCTTTCCA 

Zf-myb-PF CAGCACTCCACCTTAGCACA 

Zf- myb-PR TTGGGAGTTCGGAACAGCTC 

Zf-ulk1b-PF CCCCTACCCAGGATTCTCCA 

Zf-ulk1b-PR GACCACTTGTTTGACGGTGC 

 

GF, Genotyping forward primer; GR, Genotyping reverse primer; PF, WISH probe forward primer; PR, 

WISH probe reverse primer. 
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Briefly, 800 ng to 1 μg linearized plasmid DNA, 1 μL RNase inhibitor, 2 μL 10x 

transcription buffer, 2 μL 10x NTP labeling mixture and 2 μL T7 or Sp6 RNA polymerase 

were made up to 20 μL with nuclease-free water. The reaction mixture was incubated 

overnight at 370C and 1 μL deoxyribonuclease (DNase) was added, mixed gently and 

incubated again at 370C for 15 minutes. 

 

Then, approximately 60 μL 7.5 M lithium chloride (LiCl) was added to each reaction and 

incubated overnight at -200C for the precipitation of the RNA probe. At 40C, the reaction 

mixture was then centrifuged at 12,000 g for 15 minutes and the upper flow was 

discarded. Next, ice-cold 70% ethanol was added to wash the pellet, centrifuged for 5 

minutes at 7,500 g and the supernatant was removed. Afterward, the pellet was air-dried, 

resuspended in nuclease-free water. The concentration of the synthesized RNA probes 

was measured by NanoDrop 2000 Spectrophotometer (Thermo Scientific, USA). 

Riboprobes were further 100-fold diluted in pre-hybridization buffer solution and stored 

under -200C. 

 

3.8 In situ hybridization  

WISH was performed to determine the spatial and temporal gene expression pattern in 

zebrafish embryos at the mRNA level during embryonic development [280]. Protocols 

for WISH have been described previously [275, 276]. Embryos with mentioned 

developmental stages were collected and fixed with 4% paraformaldehyde (PFA) at room 

temperature for at least 4 hours. Afterward, fixed embryos were subsequently dehydrated 

in 25%, 50%, 75% and 100% ethanol for 5 minutes each and stored at -200C overnight. 

Embryos were further rehydrated (100%, 75%, 50% and 25% ethanol) and washed two 
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times in phosphate-buffered saline with Tween-20 (PBST). To avoid unwanted 

autophagy induction, 1-phenyl 2-thiourea (PTU) was not used to inhibit the conventional 

pigmentation in this study [281]. Instead, 4% PFA fixed zebrafish embryos were 

bleached with 3% H2O2 and 1% KOH before WISH. Older embryos other than 24 hpf 

were penetrated with Proteinase K (20 mg/mL, Roche) at 1:1000 dilution in PBST and 

re-fixed with 4% PFA for 30 minutes. After subsequent washes in PBST, embryos were 

soaked in 600 µL pre-hybridization buffer (PHB) (20x SSC buffer, 50% formamide, 50 

μg/ml heparin, 5x saline-sodium citrate, 0.1% Tween 20, 5mg/ml rRNA) and incubated 

in the water bath at 650C for 4 hours. Afterward, embryos were hybridized overnight with 

anti-sense mRNA probes at 650C.  

 

Next day, embryos were stepwise washed with 2x SSC and PHB mixture (25% 2x SSC 

in 75% PHB, 50% 2x SSC in 50% PHB, 75% 2x SSC in 25% PHB, and 100% 2x SSC 

for 15 minutes each) at 650C water bath, followed by 30 minutes 0.2x SSC wash at room 

temperature. Then subsequently washed in 0.2x SSC and PBST mixture (75% 0.2x SSC 

in 25% PBST, 50% 0.2x SSC in 50% PBST, 25% 0.2x SSC in 75% PBST and three times 

in 100% PBST) at room temperature for 5 minutes each. Then, embryos were hybridized 

with anti-digoxygenin antibody (1:4000) (Roche, Germany) at 40C overnight with slow 

motion shaking.  

 

On day three, embryos were washed four times with PBST each of 20 minutes before 

washing with AP buffer (100 mM NaCl, 100 mM Tris-HCl with pH 9.5, 0.05% Tween 

20 and 5 mM MgCl2,) three times (5 minutes for each wash). Then the embryos were 

incubated and conjugated to chromogenic alkaline phosphatase that hydrolyzes the 5-
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bromo-4-chloro-3-indolyl phosphate (BCIP) to 5-bromo-4-chloro-3-indole and inorganic 

phosphate. The organic compound is oxidized by nitro blue tetrazolium (NBT) to form 

an insoluble dark blue diformazan precipitate (NBT/BCIP (Roche, Germany))[282]. 

After the staining, substrate solution was removed and PBST added before image 

analysis using a Nikon SMZ1270/1270i stereomicroscope (Nikon Instruments Inc., NY, 

USA). For long-term storage, stained embryos were immersed in 100% ethanol and 

stored at -200C.  

 

3.9 Flow Cytometry, cell sorting and CYTO-ID® staining 

Flow cytometry was performed to enumerate the lineage-specific quantification of 

hematopoietic populations using transgenic embryos. Embryos as indicated stages were 

first anesthetized and digested with 0.05% trypsin-EDTA reagent (Gibco™, #25300054) 

for 50-75 minutes at 28.50C. Trypsin digestion was terminated by adding 10mM CaCl2 

followed by embryo dissociation into single-cell suspension by pipetting. Dissociated 

cells were further washed and harvested in 1mL phosphate-buffered saline (VWRTM, 

#E404-200TABS) with 2% fetal bovine serum (Gibco™, #10500-064) and filtered 

through a 40 µm cell strainer (Falcon®, #352340). Samples were spun down at 1200 rpm 

for 5 minutes at room temperature and washed two times with PBS having 2% (vol/vol) 

FBS. Then, the percentages of eGFP+ cells from different reporter lines were quantified 

by BD FACSAria™ III Cell Sorter (BD Biosciences) (Figure 3.5). Data were further 

analyzed by FlowJo version 7.6 software. To get the net fluorescence intensity, 

nonspecific immunofluorescent background or autofluorescence (AF) of the fluorescent 

samples were subtracted from the non-fluorescent wild-type samples. For CYTO-ID®  
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Figure 3.5: Flow diagram for the quantification of myeloid cells by flow cytometry 

in zebrafish embryos. 

Coro1a DsRed positive leukocytes were sorted out by flow activated cell sorting. 

Tg(Coro1a:DsRed) zebrafish embryos were used and the cells were trypsin digested 

prior to cell sorting. 
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green that stains acidic autophagosomes, sorted coro1a:DsRed positive cells were 

centrifuged and washed with PBS one time. Then green color CYTO-ID® kit and Hoechst 

stain added at 1:1 ratio, incubate in dark at 370 for 30 minutes. Samples were further 

washed with PBS and image under the confocal microscope. 

 

3.10 Western blot  

CelLyticTM MT Cell Lysis Reagent (Sigma Aldrich, #C3228) was used to deyolk and 

homogenize the zebrafish embryos.  By using BCA assay kits (Thermo ScientificTM, # 

23225), protein concentrations were determined, and the lysates were mixed with the 

sodium dodecyl sulfate (SDS) loading buffer and heat-denatured. Then the 12% TGX™ 

FastCast™ Acrylamide Kit (Bio-Rad Laboratories, Inc., #1610175) was used to 

electrophorese the protein samples. Afterward, proteins were transferred to the 

polyvinylidene difluoride (PVDF) membrane (Bio-Rad Laboratories, #1620264) and 

blocked in 5% no fat dry milk (Bio-Rad Laboratories, #1706404). After subsequent 

washes using Tris-buffered saline (150 mM NaCl, 50 mM Tris base, pH 7.5) with Tween-

20 (Bio-Rad Laboratories, #1610781) (TBST), snipped membranes were hybridized with 

anti-GAPDH (Cell Signaling Technology, #2118; 1:20000) and anti-Lc3b (Abcam, 

#ab48394; 1:1000) primary antibodies and incubated overnight at 40C. PVDF 

membranes were further washed in TBST and probed with goat anti-rabbit secondary 

antibody (Abcam, #ab6721; 1:3000) for 2 hours at room temperature. The membranes 

were then cleansed with TBST, signals were developed applying Clarity Western ECL 

Substrate (Bio-Rad Laboratories, #1705061) and imaged under ChemiDoc XRS+ System 

(Bio-Rad Laboratories).  
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3.11 Treatment with autophagy modulators and LysoTracker red staining 

Zebrafish embryos were treated with 3-MA (Selleckchem, #S2767) which is the class III 

PI3K inhibitor, calpeptin (Selleckchem, #S7396) which is the calpain protease I and II 

inhibitor and late stage autophagy degradation blocker chloroquine (Selleckchem, 

#S4157) which is also known as the autophagosome and lysosome fusion inhibitor, at 10 

mM, 50 µM and 100 µM and concentration respectively as previously stated [283]. F1 

ulk1b mutant Tg(GFP-Lc3) embryos were incrossed to get the wild type, heterozygous 

and homozygous siblings. To interpret and access the autophagy flux level, 2 dpf 

zebrafish embryos were treated with CQ to block the autophagy degradation pathway. 

Lysosome dye, also known as LysoTracker™ Red DND-99 fluorescent dye, was diluted 

to a 10µM final concentration. Then the Tg(GFP-Lc3) zebrafish embryos at 4 dpf age 

were incubated with the diluted lysosome dye in dark for 45 minutes at 28.50C [220, 

284]. Afterward, embryos were carefully washed 3 times before imaging. 

 

3.12 Light-sheet and confocal microscopy 

Positive fluorescence signals containing zebrafish embryos were first screened by the 

Nikon SMZ18 stereomicroscope (Nikon Instruments Inc., NY, USA). Then tricaine 

(Sigma-Aldrich, # A5040) was used at 0.164 mg/ml concentration to anesthetize the 

embryos. Afterward, embryos were mounted in 1.5% low gelling temperature agarose 

(Sigma-Aldrich, # A9045) into a 35 mm glass capillary for light-sheet imaging. Live 

images were captured by a Zeiss Light-sheet Z.1 Selective Plane Illumination 

Microscope (Carl Zeiss Microscopy, NY, USA) with a 20X objective lens. On the other 

hand, confocal images for the CYTO-ID® stained blood cells were taken using a Leica 
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TCS SPE Confocal Microscope (Leica Microsystems, Wetzlar, Germany) with the 40x 

objective lens. Furthermore, light sheet and confocal images were processed and 

analyzed by ZEN imaging and Leica LAS-X imaging software, respectively.  

 

3.13 Phospho-Histone H3 (pH3) immunostaining 

Zebrafish Tg(myb:GFP) embryos were fixed with 4% PFA for 4 hours at room 

temperature. Then the embryos were permeabilized with pre-chilled acetone for 20 

minutes at -200C. After PBST wash, embryos were blocked under 0.1% DMSO, 2% 

normal goat serum, 0.1% bovine serum albumin and 0.2% Triton-X100 in PBS 

containing block buffer for half an hour and hybridized with rabbit anti-phospho-Histone 

H3 (Ser10) polyclonal antibody (Cell Signaling Technology, #9701; 1:1000) for 16 hours 

or overnight at 40C. Embryos were further washed with PBST and incubated with Alexa 

Fluor 594 goat anti-rabbit secondary antibody (Invitrogen, #A-11012; 1:500) for one 

hour at room temperature and again washed with PBST before microscopic imaging. 

 

3.14 Statistical analysis  

Maximum intensity projections (MIPs) were performed using Z-Stack images (20 out of 

100 layers) to analyze the relative number of autophagosomes (GFP-Lc3+), lysosomes 

(LysoTracker-red+) and merged GFP-Lc3+ and LysoTracker-red+ puncta containing 

autolysosomes. At least five individual cells were counted per sample and the number of 

puncta per cell was calculated. ImageJ software version 1.8.0 (NIH) was used to quantify 

western-blot bands. During WISH analysis, HSCs and myeloid cell numbers were 

counted manually. Statistical analyses were performed by Mann-Whitney nonparametric 

U-test and the analysis of variance (ANOVA) with Tukey's multiple comparisons tests 
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using GraphPad Prism, version 7 (GraphPad Software, CA, USA). In all experiments, 

results were presented as mean ± standard error of the mean (SEM) and p-value less than 

0.05 (p < 0.05) were considered statistically significant. 
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4.1 Phylogenetically ULK1 conserved among vertebrates 

Zebrafish ulk1 is duplicated into ulk1a and ulk1b. We first examined the phylogenetic 

relationship among human, mouse, rat, medaka fish and zebrafish Ulk1 genes (Figure 

4.1A). Based on the phylogenetic analysis, zebrafish ulk1b is evolutionally more related 

to human ULK1, mouse and rat Ulk1 and medaka fish ulk1b thought multiple sequence 

alignment showed zebrafish ulk1a and ulk1b shared very high amino acid sequence 

similarlity across the whole protein (Figure 4.1B). Overall, zebrafish ulk1a and ulk1b 

share 47.85% and 58.02% sequence identity to their human orthologue, respectively 

(Figure 4.1C).  

 

4.2 Gene synteny of zebrafish ulk1b and human ULK1 are conserved 

Gene synteny of human ULK1, zebrafish ulk1a and ulk1b were examined. Stx2a, Sfswap, 

Mmp17, Ulk1 and Pus1 are syntenic in both human and zebrafish genome. On the other 

hand, zebrafish ulk1a gene synteny (fam101a, ncor2, ep400, ulk1a and adgrd1) is not 

conserved with the human ULK1 (Figure 4.2).  

 

4.3 Spatial expression pattern of ulk1b during zebrafish embryonic development 

Whole-mount in situ hybridization (WISH) was performed to investigate the spatial 

expression pattern of ulk1b during embryogenesis. Early maternal ulk1b transcripts were 

detected at the two-cell stage, suggesting that ulk1b may play a role in early 

embryogenesis (Figure 4.3 i). During the oblong to sphere stage, ulk1b expressed 

ubiquitously (Figure 4.3 ii). Later at 24 hpf and 48 hpf, ulk1b was predominantly 

expressed in the head region, with subtle expression also detected in cells along with the  
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Figure 4.1: Phylogenetic relationship, multiple sequence alignment and amino acid 

sequence homology of Ulk1 orthologues.  



 

55 

 

(A) Diagram showing the evolutionary relationship among zebrafish (Dr) ulk1a and 

ulk1b human (Hs) ULK1, mouse (Mm) Ulk1, rat (Rn) Ulk1, Japanese medaka (Ol) ulk1a 

and ulk1b. Scale bar represented 0.1 (10%) of genetic variation. (B) Multiple sequence 

alignment showing the conserved N terminus domain of zebrafish ulk1a and ulk1b human 

ULK1, mouse Ulk1, rat Ulk1, Japanese medaka ulk1a and ulk1b (C) Amino acid sequence 

similarities between zebrafish (Dr) ulk1a and ulk1b with human (Hs) ULK1; zebrafish 

ulk1a and ulk1b with mouse; zebrafish ulk1a and ulk1b with rat; zebrafish ulk1a and 

ulk1b with Japanese medaka ulk1a and ulk1b after alignment with protein BALST (Basic 

Local Alignment Search Tool). 

 

 

 

 

Figure 4.2: Human ULK1, zebrafish ulk1a and ulk1b synteny.   

The gene synteny of human ULK1 surrounding q24.33 position in chromosome 12, 

zebrafish ulk1b gene synteny in chromosome 21, and zebrafish ulk1a synteny in 

chromosome 8. In both human ULK1 and zebrafish ulk1a and ulk1b, solid arrows 

represented the specified and fixed position of a particular gene on the chromosome, and 

the arrow orientations indicated the RNA/transcript direction. 
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Figure 4.3: Spatial expression pattern of zebrafish ulk1b. 

Representative lateral views indicating the spatial expression pattern of the zebrafish 

ulk1b using antisense probe at two-cell (i), oblong to sphere (ii), 24 hpf (iii) and 48 hpf 

(iv) stages. mpf, minutes post fertilization; hpf, hours post-fertilization. 
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somite and caudal hematopoietic tissue (CHT) (Figure 4.3 iii and iv). 

 

4.4 Gene targeting of zebrafish ulk1a and ulk1b 

Next, we targeted zebrafish ulk1a and ulk1b through TALEN-mediated genome editing. 

TALENs successfully generated small indels at ulk1a and ulk1b loci in F0 as shown by 

the uncut bands in restriction fragment length polymorphism (RFLP) genotyping (Figure 

4.4). Somatically targeted F0 ulk1b embryos were raised and out-crossed with wild-type 

where further RFLP genotyping and DNA sequencing confirmed a 5-base-pair (bp) 

deletion in ulk1b stable mutants (Figure 4.5 A to C). 

 

4.5 ulk1b ablation perturbed autophagy activation, but not flux at the protein level  

To assess the autophagy activation, immunoblot analyses were performed with whole 

embryo lysate to measure the autophagosome-associated Lc3-II protein level. 

Immunoblot analyses showed that the Lc3-II level was unchanged in somatically targeted 

ulk1a groups while significantly decreased in ulk1b mutants compared to the controls, 

respectively (Figure 4.6 A and B). Next, to examine and visualize whether the 

somatically targeted ulk1a groups and ulk1b knock-out affect autophagy flux, zebrafish 

embryos were treated with CQ. As shown by the significantly increased level of Lc3-II 

protein, CQ treatment significantly blocked autophagy flux in wild-type, ulk1aTAL and 

ulk1b mutants (Figure 4.7 and 4.8). However, the fold-increased in Lc3-II observed in 

both ulk1aTAL and ulk1b mutants after CQ treatment were similar to the wild-type 

controls, indicated that autophagy flux was not affected by somatically targeted ulk1a 

and ulk1b knock-out. 
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Figure 4.4: RFLP assay for zebrafish ulk1a and ulk1b.  

(A-B) Genotyping performed by RFLP assay after ulk1a and ulk1b TALEN mRNA 

microinjection. bp, base pair; M, marker; wild type siblings as control; ulk1aTAL, ulk1a 

with TALEN mRNA injected; ulk1bTAL, ulk1b with TALEN mRNA injected; PCRamp, 

PCR amplicon; Uncut, restriction enzyme undigested PCR product; Cut, restriction 

enzyme digested PCR product 

 

 

 

 

 

B. 
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Figure 4.5: Generation of zebrafish ulk1b mutants by TALEN.  

(A) Genotyping for ulk1b F1 siblings done by the RFLP assay. bp, base pair; M, marker; 

ulk1b+/+, wild type sibling as control; ulk1b+/-, heterozygous mutant; ulk1b-/-, 

homozygous mutant. (B) A 5bp (∆5 bp) mutation was confirmed by Sanger sequencing 

in zebrafish ulk1b exon 4. Red arrowheads and stars indicating the TALEN target site to 

induce possible mutation. (C) Computer-aided ExPASy translator tool given ulk1b 

truncate protein sequence corresponding to 92 amino acids (a.a).  
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Figure 4.6: Autophagy levels in somatically targeted ulk1a groups and stable ulk1b 

mutants. 

(A) Western blot results showing that Lc3-II protein level in TALEN mediated 

somatically targeted zebrafish ulk1a chimeric mutants (ulk1aTAL) compared to ulk1a wild 

type siblings as control. (B) Western blot results also showing the Lc3-II protein level in 

zebrafish ulk1b stable mutants (ulk1b-/-) compared to the ulk1b wild type control siblings 

(ulk1b+/+). Relative Lc3-II protein levels were normalized by GAPDH while setting up 

the wild-type control value as 1.0. Each control and mutant group comprising in a total 

of 75 embryos for three independent experiments. Statistical analyses were performed by 

Mann-Whitney U test in between control siblings and mutants. Error bars were presented 

here as mean ± standard error of the mean (SEM). *, p < 0.05; ns, not significant. 
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Figure 4.7: TALEN mediated somatically targated ulk1a did not affect autophagy. 

Representative immune blot images showed the compasrison of Lc3-II protein level in 

somatically targated ulk1a groups (colum bar 2) compared to wild type controls (colum 

bar 1) treated with  E3 fish water. To visualize the autophagy flux or Lc3II accumulation, 

both ulk1aTAL groups (colum bar 4) and wild type control groups (colum bar 3) were 

treated with CQ. In the bar chart, relative Lc3-II protein levels were normalized by 

GAPDH while setting up the ulk1a control sibling’s (colum bar 1) value as 1.0. Each 

group comprising in a total of 75 embryos for five independent experiments.  

Statistical analysis was performed by two-way ANOVA using Tukey’s post-hoc method 

and error bars were presented here as mean ± standard error of the mean (SEM). *, p < 

0.05; ns, not significant and # #, p < 0.01 compared to the CQ untreated ulk1aTAL. 
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Figure 4.8: Autophagy activation, but not autophagy flux was affected in zebrafish 

ulk1b mutants. 

Western blot showed the compasrison of Lc3-II protein level in ulk1b mutants (colum 

bar 2) compared to wild type controls (colum bar 1) treated with  E3 fish water. To 

visualize the autophagy flux or Lc3II accumulation, both ulk1b mutants (colum bar 4) 

and wild type controls (colum bar 3) were treated with CQ. Relative Lc3-II protein levels 

were normalized by GAPDH while set up the E3 fish water treated ulk1b+/+ (colum bar 

1)  value as 1.0. Each group comprising in a total of 75 embryos for three independent 

experiments.  

Statistical analysis was performed by two-way ANOVA using Tukey’s post-hoc method 

and error bars were presented here as mean ± standard error of the mean (SEM). **, p < 

0.01; ***, p < 0.001; ns, not significant and # # #, p < 0.001 compared to the CQ untreated 

ulk1b mutants. 
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4.6 Autophagy activation and flux were affected in the neurons of ulk1b mutants  

Since autophagy is highly active in embryonic neurons [285], further analyses were 

performed to examine the effects of ulk1b knock-out on autophagy initiation and flux 

level in neurons of Tg(GFP-Lc3) using high-resolution microscopy. Light-sheet imaging 

showed that autophagosome (GFP-Lc3+), lysosome (LysoTracker-red+) and 

autolysosome (GFP-Lc3+ and LysoTracker-red+) puncta significantly reduced in the 

neuron cells of zebrafish ulk1b mutants (ulk1b-/-) compared to the wild type siblings 

(Figure 4.9 and Figure 4.10). CQ treatment further reduced the number of autolysosomes 

significantly in both control and ulk1b mutants. Importantly, autophagosome (GFP-Lc3+) 

puncta significantly increased by 1.64 fold after CQ treatment in control groups, but not 

in ulk1b mutants (1.01 fold), suggesting that autophagy flux were inhibited in the neuron 

cells of ulk1b mutants (Figure 4.9 and Figure 4.10). 

 

4.7 ulk1b mutants did not affect leukocyte autophagy activation 

To measure autophagy in hematopoietic cells, leukocytes were isolated from the 3 dpf 

ulk1b+/+ and ulk1b-/- in leukocyte-specific fluorescent reporter background 

Tg(coro1a:DsRed) by fluorescent-activated cell sorting (FACS). Sorted coro1a:DsRed 

positive cells were stained with autophagy detection kit CYTO-ID® green that can 

measure autophagic vacuoles. To validate the CYTO-ID® assay, treatment with 

autophagy inhibitor, 3-MA was performed, which significantly reduced the green 

autophagic vacuoles compared to the E3 treated ulk1b+/+ leukocytes (Figure 4.11).  
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Figure 4.9: ulk1b deletion inhibits autophagy flux in ulk1b zebrafish mutants.  

Schematic illustration showing the imaging of Lc3 positive cells in the midbrain section. 

The relative number of autophagosomes (GFP-Lc3), lysosomes (LysoTracker-red) and 

autolysosomes (GFP-Lc3 and LysoTracker-red) puncta per cell in the neurons were 

counted based on Z-Stack image analysis (20 layers out of 100 layers) with maximal 

intensity projection (MIP). All four groups individually comprise a total of nine Tg(GFP-

Lc3) experimental embryos to complete three biological replicates. Yellow and red boxes 

showing the autophagosome (GFP-Lc3) and autolysosome (GFP-Lc3 and LysoTracker-

red) puncta respectively. CQ: Chloroquine. Scale bar: 40µm (Merged) and 4µm 

(Enlarged). 
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Figure 4.10: Quantitation of the autophagosomes, lysosomes and autolysosomes  

The relative number of autophagosome (A), lysosome (B) and autolysosome (C) was 

counted from Figure 4.9. Statistical analyses were performed by two-way ANOVA using 

Tukey’s post-hoc method and error bars were presented here as mean ± standard error of 

the mean (SEM). *, p < 0.05; ***, p < 0.001 and ns, not significant. 
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4.8 ulk1b inhibition perturbed autophagy flux and most likely autophagy activation 

in leukocytes 

Autophagy flux in zebrafish leukocytes was next examined by treatment with CQ. A 

significantly increased number of autophagic vacuoles were observed in CQ treated 

ulk1b+/+ control with a flux increment of 1.55 fold.  In contrast, no changes in the number 

of autophagic vacuoles were observed in CQ treated ulk1b-/- (1.09 fold), indicating that 

autophagy flux was significantly inhibited in leukocytes of ulk1b-/-. ulk1b knockout likely 

inhibit autophagy activation because there is no increase in puncta in ulk1b-/- compare 

with ulk1b+/+ (Figure 4.12). 

 

4.9 Calpeptin induces autophagy in leukocytes of wild-type and ulk1b mutants 

We next examined if treatment with autophagy inducer, calpeptin can induce leukocyte 

autophagy in zebrafish embryos. In both ulk1b+/+ and ulk1b-/- siblings, autophagic 

vacuoles in leukocytes were significantly increased after calpeptin treatment (Figure 

4.13).  

 

4.10 Somatically targeted ulk1bTAL induced HSCs depletion and myeloproliferation  

The effect of ulk1a and ulk1b deficiency on definitive hematopoiesis was examined by 

WISH. Somatically targeted ulk1a (ulk1aTAL) had no effects on the expression of HSCs 

(myb), pan-leukocytes (lcp1), neutrophils (mpx) and myeloid progenitors (spi1b) 

compared to the controls (Figure 4.14 and Figure 4.15). However, somatically targeted  

ulk1bTAL significantly increased the number of spi1b, lcp1 and mpx positive cells,  
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Figure 4.11: Autophagy activation was inhibited in the leukocytes upon 3-MA 

treatment. 

Representative images showing the CYTO-ID® green positive autophagy vacuoles 

targeting autophagosomes, pre-autophagosomes and autolysosomes on coro1a:DsRed 

positive leukocytes at 3 dpf zebrafish embryos either in the presence or absence of 3-

MA. Blue Hoechst dye staining the nuclei. Yellow arrow head indicating the autophagy 

vacuoles. Scale bar: 4µm. Statistical analysis was performed by Mann-Whitney U test in 

between control siblings and mutants. Error bars were presented here as mean ± standard 

error of the mean (SEM). *, p < 0.05; ns, not significant. 
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Figure 4.12: Autophagy flux and most likely activation decreased upon ulk1b 

ablation. 

Representative images showing the CYTO-ID® green positive vacuoles in leukocytes at 

3 dpf ulk1b+/+ and ulk1b-/- zebrafish embryos either treated or untreated with CQ. Blue 

Hoechst dye staining the nuclei. Yellow arrow head indicating the autophagy vacuoles. 

Scale bar: 4µm. Statistical analysis was performed by two-way ANOVA using Tukey’s 

post-hoc method and error bars were presented here as mean ± standard error of the mean 

(SEM). *, p < 0.05; ns, not significant; ns, not significant compared to the ulk1b-/-. 
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Figure 4.13: Calpeptin-induced autophagy in leukocytes. 

Representative images showing CYTO-ID® green positive vacuoles in 

Tg(coro1a:DsRed) positive ulk1b+/+ and ulk1b-/- embryos at 3 dpf either treated with 

DMSO or calpeptin (CP). Blue Hoechst dye staining the nuclei. Scale bar: 4µm. 

Statistical analysis was performed by two-way ANOVA using Tukey’s post-hoc method 

and error bars were presented here as mean ± standard error of the mean (SEM). * p < 

0.05; ns, not significant; ns, not significant compared to the DMSO treated controls. 
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while decreasing the number of myb positive HSCs compared to the wild-type control. 

(Figure 4.16 and Figure 4.17). 

 

Flow cytometry analysis further demonstrated that knock-out of ulk1b increased the 

number of coro1a-positive leukocytes (Figure 4.18). However, no significant difference 

in the mpeg1.1-positive macrophage population was observed in ulk1bTAL compared to the 

wild-type control (Figure 4.19).  

 

Cellular proliferation of the HSC was also examined by immunostaining of 

phosphohistone H3 (PH3) in Tg(myb:GFP) at 72 hpf. The relative number of PH3-

positive myb significantly increased in ulk1bTAL compared to controls (Figure 4.20).  

 

Taken together, these results suggested that ulk1bTAL perturbed definitive hematopoiesis, 

in particular, induced myeloproliferation.   

 

 

 

 

 

 



 

71 

 

 

Figure 4.14: Somatically targated ulk1aTAL did not affect definitive hematopoiesis.  

In situ hybridization indicated the myb, spi1b, lcp1 and mpx gene expression pattern at 

the CHT region of control and ulk1aTAL groups at 2 dpf.  Scale bar: 300µm. 
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Figure 4.15: Quantitation of hematopoietic cell numbers in ulk1a siblings. 

The relative number of myb, spi1b, lcp1 and mpx positive cells were quantified from 

WISH results. Statistical analyses were performed by Mann-Whitney U test in between 

uninjected controls and ulk1aTAL. Error bars were presented here as mean ± standard error 

of the mean (SEM). ns, not significant.  
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Figure 4.16: Somatically targeted ulk1bTAL perturbed definitive hematopoiesis.  

Representative images from WISH showed the expression of zebrafish myb, spi1b, lcp1 

and mpx gene at the CHT region in controls and ulk1bTAL at 2 dpf.  Scale bar: 300µm. 
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Figure 4.17: Quantitation of hematopoietic cell numbers in ulk1b siblings. 

The relative number of myb, spi1b, lcp1 and mpx positive cells were quantified from 

WISH results. Statistical analyses were performed by Mann-Whitney U test in between 

uninjected controls and ulk1bTAL. Error bars were presented here as mean ± standard error 

of the mean (SEM). *, p < 0.05; **, p < 0.01; ***, p < 0.001 and ns, not significant.  

 

 

 

 

 

 

 

 

 

 

 



 

75 

 

 

Figure 4.18: ulk1b-/- mutants induces leukocyte numbers. 

Flow cytometry-based cellular analysis showing the quantitation of coro1a:DsRed 

positive cells from the wild type controls and ulk1b mutants. Statistical analysis was 

performed by Mann-Whitney U test in between controls and ulk1b-/-. Error bars were 

presented as mean ± standard error of the mean (SEM). **, p < 0.01. 
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Figure 4.19: Macrophages were unchanged somatically targated ulk1b. 

Flow cytometry-based cellular analysis showing the quantitation of mpeg1.1:eGFP 

positive cells from the wild-type controls and TALEN mediated ulk1bTAL groups. 

Statistical analysis was performed by Mann-Whitney U test in between controls and 

ulk1bTAL. Error bars were presented as mean ± standard error of the mean (SEM). ns, not 

significant. 
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Figure 4.20: Autophagy deficiency-induced HSC proliferation. 

Staining of GFP-positive HSC with phospho histone 3 (pH3) protein in the CHT of 3 dpf 

control and ulk1bTAL. Arrowhead indicates double-positive proliferative HSCs. Statistical 

analysis was performed by Mann-Whitney U test in between controls and ulk1bTAL. Error 

bars were presented here as mean ± standard error of the mean (SEM). Scale bar: 8µm. 

*, p < 0.05.  
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4.11 Stable ulk1b knock-out perturbed definitive hematopoiesis 

The potential role of autophagy in hematopoiesis was further examined in stable 

homozygous ulk1b mutant (ulk1b
-/-

). Similar to the hematopoietic phenotypes observed 

in chimeric mutants, the number of spi1b, lcp1 and mpx positive cells significantly 

increase in ulk1b
-/-

 compared with ulk1b
+/+ 

siblings while the number of myb positive 

HSCs decreased. (Figure 4.21 and 4.22).  

 

4.12 Autophagy inhibitor 3-MA perturbed definitive hematopoiesis in zebrafish 

 

Next, the link between autophagy and the hematopoietic phenotypes observed in ulk1b 

mutants was investigated by treatment with 3-MA. As shown by WISH, the number of 

myeloid progenitors, leukocyte and neutrophil increase and HSC reduced after 3-MA 

treatment compared with controls, indicated that 3-MA can recapitulate the 

hematopoietic phenotypes in ulk1b mutants (Figure 4.23 and Figure 4.24).  

 

4.13 Calpeptin only rescued the increased neutrophil numbers in ulk1b mutants 

To further investigate if hematopoietic phenotypes observed in ulk1b mutants are 

autophagy-dependent, ulk1b
-/-

 zebrafish embryos were treated with autophagy inducer 

calpeptin. However, calpeptin treatment could only rescue the increase in neutrophils, 

but not other hematopoietic lineages (Figure 4.25 to Figure 4.27). The effects of ulk1b 

knock-out and the autophagy drugs (3-MA and calpeptin) on zebrafish definitive 

hematopoiesis were also summarized (Table 4.1).  
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Figure 4.21: Loss of ulk1b perturbed definitive hematopoiesis.  

Representative WISH images showing the expression of myb, spi1b, lcp1 and mpx gene 

in ulk1b
+/+

 and ulk1b
-/-

 siblings at 2 dpf in the CHT region. Scale bar: 300µm. 
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Figure 4.22: Quantitation of hematopoietic cell numbers in ulk1b siblings. 

The relative number of myb, lcp1, spi1b and mpx positive cells were quantified from 

WISH results. Statistical analyses were performed by Mann-Whitney U test in between 

ulk1b
+/+ 

and ulk1b
-/-

. Error bars were presented here as mean ± standard error of the mean 

(SEM). **, p < 0.01; ***, p < 0.001 and ns, not significant. 
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Figure 4.23: 3-MA recapitulated ulk1b mutant phenotypes in wild-type siblings. 

Representative WISH analysis indicated the expression of myb, spi1b, lcp1 and mpx 

positive cells in E3 fish water treated and 3-MA treated wild type siblings in definitive 

hematopoiesis. Scale bar: 300µm.  
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Figure 4.24: Quantitation of HSC and myeloid cell numbers after 3-MA treatment. 

The relative number of myb, spi1b, lcp1 and mpx positive cells were quantified from 

WISH results. Statistical analyses were performed by the Mann-Whitney U test. Error 

bars were presented here as mean ± standard error of mean (SEM).*, p < 0.05 and **, p 

< 0.01.  
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Figure 4.25: Calpeptin unable to rescue the HSCs decrease in ulk1b mutants. 

The expression of myb positive cells in DMSO treated between ulk1b
+/+

, ulk1b
-/-

 and 

calpeptin treated ulk1b
-/-

 embryos at 2 dpf. Scale bar: 300µm. Statistical analysis was 

performed by one-way ANOVA using Tukey’s post-hoc method and error bars were 

presented here as mean ± standard error of the mean (SEM). *, p < 0.05 and ns, not 

significant.  
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Figure 4.26: Calpeptin only rescued neutrophil cell numbers in ulk1b mutants.  

Representative images from WISH analysis showed the expression of spi1b, lcp1 and 

mpx in DMSO treated ulk1b
+/+

, ulk1b
-/-

 and calpeptin treated ulk1b
-/- 

embryos in the CHT. 

Scale bar: 300µm. 
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Figure 4.27: Quantitation of myeloid cells in ulk1b mutants and siblings. 

The relative number of spi1b, lcp1 and mpx positive cells was quantified from WISH 

results. Statistical analyses were performed by one-way ANOVA using Tukey’s post-hoc 

method and error bars were presented here as mean ± standard error of the mean (SEM). 

*, p < 0.05; **, p < 0.01; ***, p < 0.001 and ns, not significant. 
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Table 4.1: Summary of the ulk1b autophagy in hematopoietic cells 

Conditions 
myb+ cells 

(HSCs) 

spi1b+ cells 

(CMPs) 

lcp1+ cells 

(Leukocytes) 

mpx+ cells 

(Neutrophils) 

Compared 

to 

ulk1b knock-out Decreased Increased Increased Increased ulk1b+/+ 

Control + 3-MA Decreased Increased Increased Increased ulk1b+/+ 

ulk1b knock-out + 

Calpeptin 
Not rescued Not rescued Not rescued Rescued 

DMSO + 

ulk1b-/- 
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Chapter 5: Discussion  
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In this study, optically clear zebrafish lines were employed to investigate the role of 

autophagy in definitive hematopoiesis. In zebrafish, ulk1 is duplicated into ulk1a and 

ulk1b. The phylogenetic tree showed that both zebrafish ulk1a and ulk1b are the 

orthologues of human ULK1. Synteny analysis indicated that zebrafish ulk1b is highly 

conserved with the human ULK1 and shared 58% amino acid sequence similarity with 

the human counterpart. Furthermore, knock-out of ulk1b perturbed autophagy and 

definitive hematopoiesis. Although ulk1a shared nearly 48% amino acid sequence 

similarity with the human ULK1, the gene synteny of zebrafish ulk1a and human ULK1 

were not conserved. Moreover, overall autophagy and hematopoietic phenotypes were 

unchanged after somatically targeting ulk1a, indicating that ulk1a may play either 

compensatory or redundant roles during autophagy and definitive hematopoiesis. 

Therefore, this study focused on ulk1b-regulated autophagy and its role in regulating 

zebrafish definitive hematopoiesis. 

 

Zebrafish ulk1b was ubiquitously expressed during early embryonic development and 

later expressed in the head region, somites and CHT. Consistent with the predominant 

expression of zebrafish atg5 in the forebrain, midbrain, and hindbrain [286], higher 

expression of ulk1b was also detected in the zebrafish head region. Previously studies 

reported that zebrafish ulk1 transcription started from 23 hpf [223] and at the one-cell 

stage [287], respectively. In this study, ubiquitous expression of zebrafish ulk1b was also 

detected in one to two-cell stage embryos, similar to the high expression of other 

zebrafish atgs including atg5, atg7, becn1 and atg12 in one to two-cell stage [286, 287] 
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and highlighted the importance of ulk1b-regulated autophagy during early embryonic 

development. 

 

Autophagy is an essential process for embryogenesis, whereas autophagy deficiency in 

zebrafish results in developmental defects including abnormal heart structure, defective 

cardiac looping, abnormal valve development and reduced survival [286, 287]. As 

expected, TALEN mediated chimeric knock-out of ulk1b leaded to embryonic death and 

deformities as previously shown by atg5, atg7 and becn1 morpholino knock-down [286, 

287]. However, more than 50% of the chimeric knock-out ulk1b embryos survived with 

normal morphology. Although both studies suggested that zebrafish atg5 knock-down 

mediated embryonic deformities signify atg5 in body development, stable atg5 mutant 

data were missing. Recently, it has been reported that zebrafish embryos with 

homozygous deletion of atgs (fip200-/-, atg101-/-, atg13-/-, atg9a-/-:atg9b-/-, atg2a-/-:atg2b-

/-, atg5-/-, atg14-/- atg16l1-/-) usually died around 2 weeks-post-fertilization [108]. 

Moreover, conventional knock-out of the core Atgs including FIP200, Atg9A, and Atg13 

causes embryonic lethality in mice [288-290] and mice with the deletion of Atg 

conjugation components including Atg3, Atg5, Atg7, Atg12, and Atg16L1 can survive 

during embryonic development but die within one day after birth [120-122, 291, 292]. 

However, knock-out of either Ulk1 or Ulk2 in mice displayed normal development and 

viability [293]. In this study, homozygous ulk1b mutants also survived with normal gross 

development, probably due to the functional redundancy or compensatory effects of 

ulk1a and/or the presence of non-canonical autophagy. Collectively, ulk1b knock-out 
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zebrafish is potentially a better model of autophagy-deficiency than other atgs knock-out 

models in the hematopoietic study because ulk1b mutants have normal gross morphology. 

 

At the whole embryo level, loss of ulk1b perturbed autophagy activation with markedly 

reduced Lc3-II protein level while the autophagy activation in somatically targeted ulk1a 

groups was unaffected. Previously, it has been reported that mice with either Ulk1 or 

Ulk2 knock-out and Ulk1/Ulk2 double knock-out (DKO) were associated with a reduced 

level of LC3-II protein expression [293, 294]. Decreased Lc3-II protein level was also 

observed in zebrafish upon atg5 morpholino knock-down [295]. However, none of the 

studies reported a complete removal of Lc3II protein upon Ulk1, Ulk2 or Ulk1/Ulk2 

knock-out, which suggested that a lower level of autophagy is still ongoing. The amount 

of Lc3-II protein found in ulk1b mutants might be generated in ulk1b-independent 

autophagy. 

 

Furthermore, autophagy flux was evaluated by assaying Lc3-II turnover in zebrafish 

whole embryo tissue lysate by treating with late-step autophagy inhibitor, CQ. CQ 

treatment indicated that autophagy flux was not significantly affected in both somatically 

targeted ulk1a groups and ulk1b stable mutants, unlike the previous study that reported 

that knock-out of Ulk1 in mouse embryonic stem cells (ESCs) significantly reduced 

autophagy flux [296]. Autophagy flux in ulk1 mutants was further investigated by using 

Tg(GFP:Lc3) with LysoTracker Red staining. Similar to our previous report [285], 

autophagy level is largely varied in different embryonic tissues with the highest level 

detected in skin, muscle and neuron. In ulk1b mutant, defective autophagy activation as 
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well as autophagy flux were found in neurons, suggested that different canonical and 

non-canonical autophagy pathways, including ulk1b-dependent and ulk1b-independent 

autophagy, are ongoing in different embryonic tissues.  

 

Despite the well-known effect of autophagy in blood cells [112, 139, 140, 213, 218], the 

role of ulk1-regulated autophagy in hematopoiesis is largely unknown. To study the role 

of autophagy in embryonic hematopoiesis, we examined the effects of ulk1b knock-out 

on hematopoiesis, in particular, the effects on autophagy status in hematopoietic cells as 

well as the effects on different hematopoietic lineages. Autophagy vacuoles were 

measured on coro1a:DsRed-positive leukocytes, whereby FACS-sorted coro1a:DsRed 

leukocytes were stained with CYTO-ID® green autophagy detection dye that can 

visualize autophagic vacuoles (including amphisomes and autolysosomes) and 

autophagy activation and flux were monitored in presence of either CQ or bafilomycin 

A1 [297]. Notably, autophagy flux was significantly reduced in coro1a:DsRed-positive 

leukocytes of ulk1b mutants compared to wild-type siblings. Also, both chimeric and 

stable homologous ulk1b mutants displayed a decrease in the number of HSC and an 

increase in the number of myeloid lineages, highlighted the previously unknown role of 

ulk1b on definitive hematopoiesis. While the connection between the decreased HSC and 

myeloproliferation requires further investigation, maybe ulk1b knock-out increased HSC 

proliferation, driving the differentiation into progenitor and myeloid lineages while 

depleting the HSC population. Since ulk1b-regulated autophagy knock-out induce 

myeloproliferation, alterations of this dynamic process might influence the HSC fate and 

hematopoietic system homeostasis. However, in patient having FLT3-ITD mutated acute 
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myeloid leukemia, higher expression of ULK1 have found with increased 

phosphorylation of ULK1 while treating with autophagy inhibitors can ameliorate the 

ULK1 phosphorylation [298]. In our findings, ulk1b mutants with perturbed definitive 

hematopoiesis were associated with inhibited autophagy flux, whereas higher flux is 

visualized in the transformation from HSCs to leukemia stem cells (LSCs) [299]. While 

LSCs and AMLs are malignant cells, here we focused on normal hematopoietic cells in 

our zebrafish models. Autophagy might have differential role on the basis of cell types, 

for instance, autophagy could protect AML cells while restricting the proliferation of 

normal cells. 

 

A significantly lower level of autophagy flux has been detected in Atg7 deficient aged 

mice bone marrow macrophages and indicated that higher flux is essential for preventing 

age-related immune senescence and increased cell death [300]. Higher autophagic flux 

is also important for the maintenance of HSCs quiescence and stemness, ESCs identity 

and proper neutrophil differentiation and function in mice [173, 301, 302]. It is also 

reported that autophagy flux inhibition led to HSPCs proliferation defects in zebrafish 

mutants [303]. While our study identified ulk1b-regulated autophagy flux in zebrafish 

leukocytes, autophagy in other hematopoietic lineages was not examined due to the 

limitation in lineage-specific red fluorescent reporter lines, which certainly warrants 

further investigations.  

 

To investigate if the hematopoietic phenotypes observed in ulk1b mutants were 

autophagy-dependent, we chemically modulated autophagy with 3-MA and calpeptin. 
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Treatment with 3-MA, which is a PI3K inhibitor blocking early autophagosome 

formation, recapitulated hematopoietic phenotypes observed in ulk1b mutants, strongly 

suggested that an autophagy-dependent role of ulk1b in definitive hematopoiesis.  

However, treatment with autophagy inducer, calpeptin cannot rescue all hematopoietic 

phenotypes in ulk1b mutants except the increase in neutrophils (Figure 5.1).  

 

There is a possibility that calpeptin cannot restore autophagy to the threshold level in 

every hematopoietic lineage, or maybe calpeptin cannot rescue ulk1b-dependent 

canonical autophagy. Although calpeptin induces autophagy activation in leukocytes of 

both wild-type and ulk1b mutants, consistent with the previous study [304], its effects on 

autophagy flux in leukocytes as well as autophagy in other hematopoietic lineages were 

not examined. While the failure in rescuing hematopoietic phenotypes in ulk1b mutant 

does not support the autophagy-dependent hypothesis, calpeptin might not be able to 

completely restore the autophagy and thus rescue all hematopoietic phenotypes in ulk1b 

mutants. Also, maintenance of different hematopoietic lineages may require a tightly 

regulated autophagy level, either increased or decreased autophagy beyond a certain 

threshold might result in deregulation of zebrafish hematopoiesis. 

 

In current understanding, autophagy is complex and not a linear pathway, there are 

multiple canonical and non-canonical autophagy pathways and the precise autophagy 

network in vertebrate hematopoiesis remains largely unknown. One limitation of our 

study is that we did not use other genetic tools such as antisense oligo or morpholino to 

knockdown ulk1 gene function to study autophagy and hematopoiesis, and to justify the  
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Figure 5.1: Diagram indicating the role of ulk1b in zebrafish definitive 

hematopoiesis. 

Zebrafish ulk1b was a positive regulator of HSPCs maintenance. Knock-out of ulk1b 

perturbed autophagy and definitive hematopoiesis while generating an increased number 

of myeloid cells at the expense of HSCs. Some of the hematopoietic defects can be 

partially rescued by chemically targeting ulk1b with the autophagy inducer calpeptin. 

Red dash arrowheads indicated the suppression of autophagy upon ulk1b ablation. Green 

dash arrowhead indicated the rescue of neutrophil cell numbers upon autophagy 

induction, while the black dash arrowheads indicated that calpeptin treatment cannot 

rescue the HSCs, CMPs and leukocytes in the ulk1b mutants. 
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existing data generated by TALEN gene targeting. However, morpholino has its own 

limitation such as its knockdown efficacy and non-specific gene effects [305]. 

Conversely, TALEN technology has lower off-target effects, higher specificity and such 

an approach in this study led to the development of stable mutants of ulk1 from 

somatically targeting the F0 embryos. Nevertheless, somatically targeting ulk1a and 

ulk1b using other advanced technologies such as CRISPR/Cas9 and TALEN targeting 

other exons of ulk1 would justify our data more precisely.  

 

The major limitation in this project is that we only targeted ulk1a and ulk1b ubiquitously 

in zebrafish to study the role of autophagy in definitive hematopoiesis. Moreover, we just 

worked on ulk1a chimeric mutants, which possibly carried a mixture of ulk1a mutations 

including in-frame mutation or mutation that does not alter the gene function. This could 

be the reason ulk1a chimeric mutants  have very subtle phenotypes concerning autophagy 

and hematopoiesis. Furthermore, we also did not study the wild-type endogenous ulk1b 

mRNA overexpression experiment in the stable mutants, which might elaborate the 

function of ulk1b in autophagy and hematopoiesis more detail. In particular, with various 

autophagy assays currently available in the field, the basal autophagy level in blood cells, 

especially, in leukocytes are nearly undetectable. Further studies targeting different atgs 

in a lineage-specific manner and better autophagy assay with much higher sensitivity are 

needed.  Nevertheless, our study demonstrated that zebrafish is a unique and efficient in 

vivo model with great potential to elucidate the role of autophagy and hematopoiesis. 
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Autophagy has been reported to implicate in hematological malignancies. While many 

studies have reported that autophagy inhibition overcomes drug resistance [306, 307] and 

suppresses leukemia cell growth [308, 309], others have demonstrated that autophagy 

suppression is important for leukemia development [310, 311]. These contradictive 

results suggested that autophagy plays paradoxical roles in leukemogenesis depending 

on cellular contexts. Our results showing that autophagy suppression would lead to 

deregulation of normal myelopoiesis, demonstrating the important anti-oncogenic role of 

autophagy during early stage of myeloid malignancies. Further investigation with bona 

fide models of hematological malignancy and tissue specific knock-out of autophagy 

from the myeloid cell are warranted. For instance, zebrafish has emerged as an important 

model organism for human cancer and models of hematological malignancies including 

myeloproliferative neoplasm (MPN), acute myeloid leukemia (AML), chronic myeloid 

leukemia (CML) and acute lymphoblastic leukemia (ALL) with highly conserved 

oncogenic pathways and pharmacologic responses were reported [312-316]. With the 

well-developed methodologies in autophagy study [223, 281, 284] and genetic 

engineering [317] zebrafish could be developed into a unique modelling platform to 

define the role of autophagy in hematological malignancies, which will provide important 

information for the development of autophagy-related therapeutic strategies against these 

heterogeneous diseases. 
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Chapter 6: Conclusion  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

98 

 

In summary, using the zebrafish embryonic model, we demonstrated that zebrafish ulk1b 

played essential roles in autophagy and definitive hematopoiesis. While ulk1b-dependent 

and independent autophagy are ongoing in different tissues during zebrafish embryonic 

development, ulk1b but not somatically targated ulk1aTAL induced the decrease in HSC 

as well as the increase in myeloid lineages, which is likely autophagy-dependent.  
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