

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

FEATURE REPRESENTATION FOR MINING

EVOLUTION PATTERNS IN DYNAMIC DATA

YU YANG

PhD

The Hong Kong Polytechnic University

2021

The Hong Kong Polytechnic University

Department of Computing

Feature Representation for Mining Evolution Patterns in

Dynamic Data

Yu Yang

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

August 2021

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Yu Yang

Abstract

Feature representation is an encoding process that projects the raw data into a dis-

criminative latent space so as to extract the characteristics, properties, attributes,

and underlying patterns from the data and embed them as features for supporting

effective machine learning. It is the heart of AI, powering it to develop and train

intelligent algorithms by supplying the useful information and discriminative features

extracted from large quantities of high-quality data.

In this thesis, I study an important yet overlooked problem of feature representation

in dynamic data for capturing and embedding the evolution patterns, thus effectively

facilitating the before-the-fact applications such as a prediction. Dynamic data refers

to data that changes over time. It contains historical evolution patterns revealing

how the data changed over time. Discovering and embedding these evolution patterns

introduces additional and effective information to overcome data insufficiency issues

in the before-the-fact applications, thereby leading to better performance.

Existing studies either is based on differential equations or employ data-driven meth-

ods. The former one suffers from the high sensitivity of noise and uncertainty, while

the latter merely focus on synchronous and/or period evolution patterns, overlook-

ing the complexity of dynamics. Therefore, both of them fail to achieve satisfactory

prediction performance. I aim to capture and embed the evolution from data with

complex dynamics. Multivariate, multi-timescale, and asynchronous dynamics arise

naturally in the world. Although these dynamics are very difficult to be fully captured

i

due to the high stochastic and uncertainty, discovering the evolution patterns from

them and embedding into the representation can effectively facilitate a prediction.

To tackle the challenge of multi-variables, I devised a time-capturing dynamic graph

embedding algorithm to learn the synchronous linkage evolution from the dynamic

connection changes of every vertex over time. To deal with the challenge of synchro-

nization, I propose a time-aware dynamic graph embedding algorithm to fully capture

and embed the asynchronous structural evolutions in which the connections of vertices

evolve at different times with variant evolution speed. Extensive experiments show

that both algorithms achieved significant performance improvement over the state-

of-the-art baselines in various graph mining applications. Lastly, a multi-timescale

bag-of-regularity method is devised to extract students’ learning regularity patterns

from their multi-timescale dynamic learning behaviors, thereby achieving impressively

high accuracy in early predicting academic at-risk students. I believe this thesis can

serve as a solid step towards advanced knowledge discovery and representation in

dynamic data.

ii

Publications Arising from the

Thesis

1. Yu Yang, Jiannong Cao, Wengen Li, Linchuan Xu, Zhongyu Yao, Ka Ho Wong,

Mingjin Zhang, and Esther Ahn Chian Ku, “BigEng: A Big Data-Driven Engine

for Inbound Baggage Allocation at Airports”, manuscript submitted to IEEE

Transactions on Industrial Informatics (TII).

2. Yu Yang, Hongzhi Yin, Jiannong Cao, Tong Chen, Quoc Viet Hung Nguyen,

Xiaofang Zhou, and Lei Chen, “Time-aware Dynamic Graph Embedding for

Asynchronous Structural Evolution”, manuscript submitted to IEEE Transac-

tions on Knowledge and Data Engineering (TKDE).

3. Yu Yang, Jiannong Cao, Milos Stojmenovic, Senzhang Wang, Yiran Cheng,

Chun Lum, and Zhetao Li, “Time-capturing Dynamic Graph Embedding for

Temporal Linkage Evolution”, in IEEE Transactions on Knowledge and Data

Engineering (TKDE) (2021).

4. Yu Yang, Zhiyuan Wen, Jiannong Cao, Jiaxing Shen, Hongzhi Yin, and Xiao-

fang Zhou, “EPARS: Early prediction of at-risk students with online and offline

learning behaviors”, in 25th International Conference on Database Systems for

Advanced Applications (DASFAA), pp. 3-9, 2020.

5. Yu Yang, Jiannong Cao, Jiaxing Shen, Ruosong Yang, and Zhiyuan Wen, “Learn-

iii

ing Analytics Based on Multilayer Behavior Fusion”, in 13rd International Con-

ference on Blended Learning (ICBL), pp. 15-24, 2020.

6. Yu Yang, Hanqing Wu, and Jiannong Cao, “Smartlearn: Predicting learning

performance and discovering smart learning strategies in flipped classroom”,in

2016 International Conference on Orange Technologies (ICOT), pp. 92-95,

2016.

7. Jiaxing Shen, Jiannong Cao, Yu Yang, Cho-Li Wang, Tingrui Pei, Zhetao Li,

and Alex ‘Sandy’ Pentland, “Accurate Inference of Social Networks in the Phys-

ical World using Transaction Data”, manuscript submitted to 38th IEEE Inter-

national Conference on Data Engineering (ICDE 2022).

8. Zhuo Li, Jiannong Cao, Zhongyu Yao, Wengen Li, Yu Yang, and Jia Wang,

“Recursive Balanced k-Subset Sum Partition for Rule-constrained Resource Al-

location”,in 29th ACM International Conference on Information & Knowledge

Management (CIKM), pp. 2121-2124, 2020.

9. Ka Ho Wong, Jiannong Cao, Yu Yang, Wengen Li, Jia Wang, Zhongyu Yao,

Suyan Xu, Esther Ahn Chian Ku, Chun On Wong, and David Leung, “Bi-

gARM: A Big-Data-Driven Airport Resource Management Engine and Applica-

tion Tools”, in 25th International Conference on Database Systems for Advanced

Applications (DASFAA), pp. 741-744, 2020.

10. Jiating Zhu, Yu Yang, Jiannong Cao, and Esther Chak Fung Mei, “New product

design with popular fashion style discovery using machine learning”, in Interna-

tional Conference on Artificial Intelligence on Textile and Apparel, pp. 121-128,

2018.

iv

Acknowledgments

A four-and-a-half-year journey of pursuing a Doctor of Philosophy (Ph.D.) is not

quite long but it is an important and unforgettable milestone in my life. I overcome

challenges, beat frustrations, and finally reach the destination. The journey is tough,

but it is so much more than worthy. Instead of publishing a few papers, my under-

standing of the Ph.D. is more about scientific thinking, high-level abstraction, logical

organization, and innovative solutions, thus resulting in seeing the truth beyond the

world.

First of all, I would like to thank my family for giving me unlimited supports on my

Ph.D. journey. Thank my mother Ms. Hongying Wu for supporting and understand-

ing my every decision without hesitation. Thank my wife Ms. Siyin He for taking

care of the whole family especially for our lovely children Tianran Yang and Danran

Yang. Due to the pandemic of COVID-19, I cannot return home and get together

with them. Although we usually feel lonely and helpless from each other, we always

encourage and support each other, solving every problem and challenge we faced.

Thank Tangyuan, Rongxin, Rongwen, and Pidan for saving me from frustrations and

depressions every time. I will always miss you all.

Next, I would like to give my biggest thanks to my Ph.D. advisor Prof. Jiannong

Cao. He is always energetic to do everything with the heart, being my model. He

taught me to pursue the truth beyond the world and guard me against being lost.

He created opportunities for me in accordance with my aptitude. Thanks for giv-

v

ing me opportunities to have this unforgettable journey in the Internet and Mobile

Computing Lab (IMCL) and for having the invaluable advisory to everything.

Besides, I would like to thank all my collaborators on my Ph.D. journey. Thank Prof.

Milos Stojmenovic for working together with me on any problem that I meet at any

time. He always has interesting ideas and encourages me to think creatively. Thank

Prof. Xiaofang Zhou and Dr. Hongzhi Yin for the unforgettable research cooperation

at the University of Queensland. It not only broadens my research horizons but also

greatly improves the methodological skills in research. Thank Dr. Frances Fan for

the domain knowledge in education, which helps me a lot in conducting research on

learning analytics.

Furthermore, I would like to thank all my colleagues in IMCL. Thank Dr. Wengen Li

for a great job in our iconic project BigARM. It is too impressive for me on every time

we work together to make our job perfectly meet the higher and higher expectation

of the Airport Authority of Hong Kong. Thank Dr. Jiaxing Shen, Dr. Shan Jiang,

Dr. Yanni Yang, Dr. Senzhang Wang, Dr. Xiulong Liu, Dr. Linchuan Xu, Dr. Yuqi

Wang, Dr. Xuefeng Liu, Dr. Zhuo Li, Dr. Jia Wang, Dr. Chun-Tung Li, Dr. Lei

Yang, Dr. Yuvraj Sahni, Dr. Divya Saxena, Dr. Tarun Kulshrestha, Dr. Yanwen

Wang, Dr. Kongyang Chen, Dr. Fuliang Li, Dr. Peiyuan Zhou, Mr. Hanqing Wu,

Mr. Ruosong Yang, Mr. Zhiyuan Wen, Ms. Jiating Zhu, Mr. Mingjin Zhang, Mr.

Shuaiqi Liu, Mr. Qianyi Chen, Mr. Zhixuan Liang, Ms. Junchen Zhu, Ms. Yuqing

Zhao, Mr. Yinfeng Cao, Mr. Yiran Cheng, Mr. Ka Ho Wong, Mr. Zhongyu Yao,

Ms. Suyan Xu, and Ms. Esther Ahn Chian Ku for the great support and enjoyable

time on my Ph.D. journey.

Last but not least, I would like to thank Prof. Zhong Ming, Prof. Qiang Huang,

and Dr. Yan-Ran Li from Shenzhen University to educate me with a solid research

foundation and recommend me to pursue the Ph.D. with Prof. Cao at the IMCL.

Otherwise, the dream is over before it starts.

vi

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments v

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Background & Motivation . 1

1.2 Research Challenges . 5

1.3 Research Framework . 6

1.4 Thesis Organization . 8

2 Time-capturing Dynamic Graph Embedding for Temporal Linkage

Evolution 11

2.1 Introduction . 12

vii

2.2 Literature Review . 15

2.3 Problem Definition . 17

2.4 Capturing the Evolution of Dynamic Graphs 19

2.5 Embedding Temporal Linkage Evolution 20

2.5.1 Time Capturing Dynamic Graph Embedding Model 21

2.5.2 Optimization Algorithm . 24

2.5.3 Efficient Training Procedure and Convergence 29

2.6 Experimental Results and Analysis 31

2.6.1 Experimental Setting . 32

2.6.2 Vertex Classification . 37

2.6.3 ToE Prediction . 39

2.6.4 Static Link Prediction . 40

2.6.5 Time-aware Link Prediction 41

2.6.6 Parameter Sensitivity Analysis 45

2.6.7 Convergence and Training Efficiency 45

2.6.8 Scalability of TCDGE . 49

2.7 Chapter Summary . 50

3 Time-aware Dynamic Graph Embedding for Asynchronous Struc-

tural Evolution 52

3.1 Introduction . 53

3.2 Literature Review . 57

3.3 Problem Definition . 59

viii

3.4 Capturing Asynchronous Structural Evolutions in the Dynamic Graph 60

3.5 Embedding Asynchronous Structural Evolutions in The Dynamic Graph 62

3.5.1 Embedding Dynamic Edge Formation with ToE 62

3.5.2 Structure Embedding with Evolution Starting Time 68

3.5.3 Representation Fusion . 70

3.5.4 Training TADGE . 71

3.6 Experiments . 74

3.6.1 Experimental Setting . 74

3.6.2 Experimental Results and Analysis 79

3.7 Chapter Summary . 93

4 Early Prediction of At-Risk Students with Multi-timescale Dynamic

Learning Behaviors 95

4.1 Introduction . 96

4.2 Literature Review . 99

4.3 Problem Formulation . 100

4.4 Data Description . 101

4.5 Methodologies . 102

4.5.1 multi-timescale Bag-of-Regularity 103

4.5.2 Social Homophily . 105

4.5.3 Data Augmentation . 108

4.6 Experiments . 108

4.6.1 Experiment Protocol . 109

ix

4.6.2 Experimental Results . 111

4.7 Chapter Summary . 117

5 Conclusions and Future Directions 118

References 121

x

List of Figures

1.1 Research framework. 6

2.1 An illustration of the evolution of a dynamic graph. a, b, c, and d

are vertices in a dynamic graph G = {Gt1 , Gt2 , Gt3}, where their edge

colors represents different ToE. 20

2.2 Time-aware link prediction results with varying threshold ϵ in the UCI

message dataset. 42

2.3 Time-aware link prediction results with varying threshold ϵ in the

Transaction dataset. 43

2.4 Time-aware link prediction results with varying threshold ϵ in the Co-

authorship dataset. 43

2.5 Average F1-score of vertex classification with varying the hyperparam-

eter of dimension k in the Co-Authorship dataset. 46

2.6 Average RMSE of ToE prediction with varying the hyperparameter of

dimension k in the Co-Authorship dataset. 46

2.7 Average AUC of static link prediction with varying the hyperparameter

of dimension k in the Co-Authorship dataset. 47

2.8 Convergence curves of TCDGE in the co-authorship dataset. 47

xi

2.9 Training efficiency of TCDGE with varying k in the co-authorship

dataset. 48

2.10 Scalability test results of TCDGE with varying number of vertices in

the synthesized dataset. 49

2.11 Scalability test results of TCDGE with varying number of snapshot

graphs in the synthesized dataset. 50

3.1 Modeling a dynamic graph with SGS, NFS, and the proposed one. . . 54

3.2 An illustration of the Time-aware Transformer for embedding vi. . . . 63

3.3 An illustration of embedding local structures si by the self-attention

mechanism. 69

3.4 Time-aware edge prediction results with varying RMSE threshold in

the Transaction dataset. 81

3.5 Time-aware edge prediction results with varying RMSE threshold in

the Hyperlink dataset. 82

3.6 Time-aware edge prediction results with varying RMSE threshold in

the Discussion dataset. 82

3.7 Results in the self-identification of vertex and static edge prediction

with varying the hyperparameter of dimension k in the Hyperlink dataset. 86

3.8 Results in the ToE prediction with varying the hyperparameter of di-

mension k in the Hyperlink dataset. 87

3.9 Micro-F1 scores of self-identification of vertices with varying the hy-

perparameter of blocks N and heads ō in the Hyperlink dataset. . . . 87

3.10 Macro-F1 scores of self-identification of vertices with varying the hy-

perparameter of blocks N and heads ō in the Hyperlink dataset. . . . 88

xii

3.11 Micro-F1 scores of static edge prediction with varying the hyperpa-

rameter of blocks N and heads ō in the Hyperlink dataset. 88

3.12 Macro-F1 scores of static edge prediction with varying the hyperpa-

rameter of blocks N and heads ō in the Hyperlink dataset. 89

3.13 RMSE of ToE prediction with varying the hyperparameter of blocks

N and heads ō in the Hyperlink dataset. 89

3.14 Training loss of TADGE in the Hyperlink dataset. 91

3.15 Training F1 scores of TADGE in the Hyperlink dataset. 91

3.16 Training RMSE of TADGE in the Hyperlink dataset. 92

3.17 Training efficiency of TADGE with varying k in the Hyperlink dataset. 93

3.18 Training time of TADGE per epoch with varying data proportions in

the Discussion dataset. 94

4.1 Regularity patterns of at-risk students and normal students. 104

4.2 A constructed co-occurrence network with σ = 5. 106

4.3 Results of STAR early prediction. 113

4.4 Results of testing the maximum timescale S of multi-scale bag-of-

regularity. 115

xiii

List of Tables

2.1 Notations for time capturing dynamic graph embedding 21

2.2 Statistics of datasets . 33

2.3 Vertex classification results . 37

2.4 Average RMSE of ToE prediction . 39

2.5 Average AUC of static link prediction 41

3.1 Statistics of datasets . 75

3.2 Parameter Setting of Temporal Random Walk 77

3.3 RMSE of ToE prediction . 80

3.4 Results of Static Edge Prediction . 80

3.5 Results of Self-identification of Vertices 84

3.6 Results of Vertex Classification . 85

4.1 Data overview . 102

4.2 Results of the ANOVA test . 111

4.3 Results of predicting STAR using the whole semester learning behavior 112

4.4 Evaluation of data augmentation . 114

xiv

4.5 Results of testing co-occurrence threshold δ 116

4.6 Results of testing linking threshold σ 116

xv

Chapter 1

Introduction

1.1 Background & Motivation

Artificial Intelligence (AI) was first coined by Prof. John McCarthy as “the science

and engineering of making intelligent machines” [62] at a summer research workshop

at Dartmouth College in 1956. In the first decades of the 21st century, driven by big

data and highly mathematical-statistical machine learning, AI achieved great success

in industry and academia, creating a new era. Feature representation is the heart of

AI, powering it to develop and train intelligent algorithms by supplying the useful

information and discriminative features extracted from large quantities of high-quality

data.

Feature representation is an encoding process that maps the raw data into a discrim-

inative latent space so as to extract the characteristics, properties, attributes, and

underlying patterns from the data and embed them as features for supporting effec-

tive machine learning [9] [52]. On one hand, it reveals underlying patterns and factors

hidden in the data for AI to understand the world around us. On the other hand, it

transforms the raw data as numeric feature vectors, thus easily facilitating machine

learning algorithms. The performance of intelligent algorithms is heavily dependent

1

Chapter 1. Introduction

on the expressiveness of the feature vectors [9].

The methodologies of feature representation can be categorized into two. One is fea-

ture engineering and the other is representation learning. Feature engineering is the

process of hand-crafting the appropriate numeric representation of raw data based

on human ingenuity and prior knowledge [116]. Statistical analysis is one of the

most common feature engineering approaches to represent raw data by using their

statistical characteristics such as maximum, minimum, mean, median, variance, per-

centiles, probability distributions, etc. Another feature engineering approach is to

manually extract invariant properties of raw data and embed them into represen-

tations. Gobor [79], SIFT [55], SURF [4], LBP [40], Bag-of-words [97], as well as

their multilevel and high-dimensional extensions [113] [17], achieved robust results in

various AI applications such as object detection, speech recognition, image retrieval,

text classification, etc. Unfortunately, hand-crafted features suffered from a lack of

distinctiveness and universality [91], which leads to unsatisfactory performance of

machine learning algorithms and weakens their generalization ability.

In representation learning, features are directly learned from data. It automatically

discovers useful information and underlying patterns from the data and embeds them

into distinctive representations for downstream machine learning tasks such as classi-

fication, regression, and prediction [9] [54]. In deep learning, the feedforward neural

network is exactly performing representation learning [25]. Specifically, the last layer

of a feedforward neural network is typically a linear classifier and/or regressor de-

pending on specific tasks. The rest of the network learns representations from the

input data so as to provide informative features for the last layer to achieve the best

task performance. When performing the back propagation to optimize the network,

it actually is employing the task-specific information to supervise the representa-

tion learning process, thus making the learned features distinctive and discrimina-

tive for the task. In addition to “deep” models like auto-encoder [38], seq2seq [82],

word2vec [63], BERT [21], etc., there also exist many methods on “shallow” represen-

2

1.1. Background & Motivation

tation learning such as principal component analysis (PCA) [96], linear discriminant

analysis (LDA) [8], non-negative matrix factorization (NMF) [93], sparse dictionary

learning [2], manifold learning [108], etc.

Although feature representation has been studied for many years, most of the existing

works are merely applicable to static data that remains the same over time. Even if

it uses the representation learning approaches, it essentially learns the task-specific

invariant properties of the static data. Hence, they achieve impressive performance

improvement in the after-the-fact applications such as detection, tracking, and recog-

nition, but fail in predictions. Prediction is quantitative forecasting of what will hap-

pen in the future with currently observed data, which is a before-the-fact task [45].

Since static data remain unchanged after collection, the prediction output will be

the same as the one in the corresponding after-the-fact tasks with currently observed

data, thus leading to meaningless results.

Mining the evolution in dynamic data for feature representation is the cornerstone of

the after-the-fact task like a prediction. Dynamic data refers to data that change over

time [7]. Mathematically, given a static data observation at time t0, denoting as x(t0),

its dynamics comes from an evolution function x̃ = f (x(t0), t), determining how x(t0)

will change over time t and being x̃ [13] [34]. Any data associated with time can be

counted as dynamic data and it widely exists in the world. For instance, When x(t0) ∈

R1 is a real number and changes over time, its corresponding x̃ is a univariate time

series. If the observed data x(t0) ∈ Rn, its x̃ becomes a n-variate time series. If x(t0) is

a static graph, x̃ will be a dynamic graph indicating the connection changes amongst

vertices in x(t0) over time. Since the prediction is made before fully observing the

entire data, very limited information can be extracted from the partial data, therefore

failing to achieve satisfactory prediction performance. However, the dynamic data

contain historical observations that carry the evolution patterns revealing how the

data observation changed over time. Leveraging the evolution patterns during feature

representation introduces additional and reliable information, thereby being able to

3

Chapter 1. Introduction

improve the prediction performance.

This thesis studies an important yet overlooked problem of feature representation in

dynamic data for capturing and embedding the evolution patterns, thus effectively

facilitating the before-the-fact applications such as a prediction. Due to the complex

nature of dynamics, it is very challenging to effectively capture and embed the evolu-

tion patterns in dynamic data. Existing studies can be categorized into two. One is

based on differential equations and the other employs data-driven approaches. The

former one assumes that the state observation x obeys differential equations involving

time derivatives dx
dt

= f(x, t), where f(x, t) is the evolution function. After solving

the differential equations under specific assumptions, e.g., the Markov hypothesis,

f(x, t) is differentiable to time t, etc., the evolution function f will be obtained for

prediction. These symbolic approaches are popular in the field of physics, biology,

civil engineering, mechanics, etc., for the applications such as climate prediction [68],

drug resistance analytics[41], structural health monitoring [1], control [20], etc. Al-

though the differential equation approaches are determinate and explainable, they

are too sensitive to noise and uncertainty [13], thus being weak in robustness and

generalization when being applied to prediction tasks.

On the other hand, the data-driven approaches first extract discriminative features

at each time step and then model their time varied difference to discover the evolu-

tion patterns. Because of the robustness to noise and well elimination of uncertainty,

these approaches are widely employed in AI-related applications such as accident

prediction [109], human action prediction [45], disease progression prediction [88],

flow prediction [57], etc. However, most existing studies degenerate the time-varying

evolutions into sequential changes so that eases machine learning models, especially

recurrent neural networks, to discover and embed the evolution patterns. It is worth-

while noting that, after degeneration, the models are merely capable to capture the

synchronous and periodic evolution patterns. In the over words, they assume that

the dynamics are invariant over time, which overlooks the complexity of dynamics

4

1.2. Research Challenges

and results in unsatisfactory prediction performance. Multivariate, multi-timescale,

and asynchronous dynamics arise naturally in the world. Although these dynamics

are very difficult to be fully captured due to the high stochastic and uncertainty,

discovering the evolution patterns from them and embedding into the representation

can effectively facilitate a prediction. For example, temperature varies over daily,

seasonal, and yearly time scales. Even under the same time scale, the speed of tem-

perature change in different areas in the world varies a lot. Should such complex

dynamics of temperature be degenerated as synchronous and/or periodic changes,

the accuracy in temperature or climate prediction will definitely be impaired.

1.2 Research Challenges

This thesis is confronted with the following challenges brought by dynamic data to

feature representation.

� Multi-variables. When there exist multiple variables dynamically evolving,

they will interact and influence each other. Meanwhile, this interrelationship

amongst multiple variables will also dynamically change over time. Therefore,

in feature representation, it is not only necessary to preserve the individual evo-

lutions, but also to model the dynamic interrelationship amongst them, which

is very challenging. Besides, the dynamic interrelationship amongst multiple

variables will introduce additional noise, stochastic, and uncertainty, thus mak-

ing the evolution pattern mining and feature representation become even more

difficult.

� Asynchronization. The dynamics in multivariate data are not always invariant.

Dynamic variables or objects evolve at different times with variant evolution

speed, thereby being asynchronous. Some of them start evolving early, while

others are later. Some evolve quickly, while others evolve slowly. This makes

5

Chapter 1. Introduction

Figure 1.1: Research framework.

the evolution patterns very complicated, thereby being difficult to fully capture

and embed in feature representation. Although preserving such evolutionary

patterns within asynchronous dynamics is difficult, it can effectively facilitate

the feature representation to accurately predict the future.

� Multi-timescales. The coherence of evolution for dynamic variables or objects

across multiple scales in time leads them to have multi-timescale dynamics. At

each timescale, they have their own changing patterns and eventually constitute

the overall evolution. In addition, the dynamic variables or objects can have

different evolving periods at each time scale and even asynchronous evolution,

therefore making the feature representation challenge to obtain the evolution

patterns from the multi-timescale dynamics.

1.3 Research Framework

This thesis studies the problem of feature representation in dynamic data for discover-

ing and embedding the complex evolution patterns, thus eventually achieving highly

6

1.3. Research Framework

accurate results in downstream prediction tasks. As showed in Fig. 1.1, the research

framework consists of five layers. The bottom layer is the dynamic data tackled by this

thesis. Specifically, this study focus on feature representation in dynamic graphs and

multivariate time series. Graphs are one of the most widely used data representations

to model pairwise relations between objects. In many real-world applications, e.g.,

social networks, biological networks, information diffusion networks, and interaction

networks, these relations naturally change over time. Vertices could join quickly or

slowly, leave at their own pace, and even re-join the graph, thereby making the graph

dynamic. Multivariate time series are sequences of multiple variables collected at

successive and equal time intervals. Due to its natural temporal ordering properties,

it widely appears in statistics, signal processing, physiology, econometrics, computa-

tional finance, meteorology, etc. This thesis researches the generic feature represen-

tation approaches for mining the evolution patterns from both dynamic graphs and

multivariate time series, which can be directly applied to solve the specific problems

in the above-mentioned areas.

In the second bottom layer, the raw input dynamic data are transformed into a

proper data structure, thereby capturing the particular dynamics for later embed-

ding in feature representation. Specifically, snapshot graph sequences and tempo-

ral edge sequences are respectively employed to capture the synchronous and asyn-

chronous structural evolutions in the dynamic graphs. The multivariate time series

will be transformed into a set of binary sequences, thereby easing the mining of multi-

timescale evolutions. Compared to the raw dynamic data, the transformed data not

only preserve the target evolution patterns for mining and feature representation but

also reduce the dimensionality and eliminate the noise and uncertainty. This enables

feature representation algorithms to more effectively discover evolutionary patterns

and embed them as more discriminative features, eventually improving prediction

accuracy.

In the embedding layer, this thesis extensively studies both feature engineering and

7

Chapter 1. Introduction

representation learning approaches to effectively and efficiently embed the evolution

patterns into features. In particular, a novel non-negative matrix factorization algo-

rithm with regression co-training is proposed in Chapter 2 to learn the synchronous

linkage evolution from the dynamic connection changes of every vertex over time,

thereby capturing and embedding the multivariate dynamics in the dynamic graphs.

To deal with the challenges of asynchronous dynamic, a time-aware dynamic graph

embedding algorithm is present in Chapter 3. It leverages the graph attention net-

works [86] and the self-attention mechanism [85] to embed the asynchronous struc-

tural evolutions in which the connections of vertices evolve at different times with

variant evolution speed. Besides, a new feature engineering approach, namely multi-

timescale bag-of-regularity, is creatively proposed in Chapter 4 to investigate the

multi-timescale dynamics in the binary sequences and embed the multi-timescale and

multi-period repetitive patterns.

Lastly, the obtained features carrying the evolution patterns of the dynamic data are

applied in downstream prediction tasks including but not limited to vertex classifi-

cation, static link prediction, time-aware link prediction, at-risk student early pre-

diction. It is worthwhile noting that the time-aware link prediction is a specific

application for dynamic graph embedding abstracted from many data mining appli-

cations such as forecasting future crowd flow, recommending items at varying time

intervals, predicting fraud victims, and the time of victimization. It simultaneously

predicts whether a pair of vertices will form an edge and when this edge will appear,

which is used to benchmark the effectiveness of dynamic graph embedding algorithms

for the first time.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

8

1.4. Thesis Organization

� In Chapter 2, I studied the problem of mining and embedding the multivariate

asynchronous linkage evolution in a dynamic graph. The dynamic graphs are

modeled as a sequence of snapshot graphs, appending the respective timespans

of edges (ToE), which captures the multivariate synchronous dynamics for ver-

tices in the graphs. A non-negative matrix factorization model is proposed to

infer a common latent space for capturing the synchronous structural evolu-

tions while co-training a linear regressor to embed the ToE at the same time.

Eventually, it overcomes the challenges of multivariate dynamics and success-

fully embeds the asynchronous linkage evolutions, thereby achieving significant

performance improvement over the state-of-the-art baselines in the applications

of vertex classification, static and time-aware link prediction.

� In Chapter 3, I studied an important yet overlooked problem in dynamic graph

embedding, namely fully capturing and embedding the asynchronous structural

evolutions of a dynamic graph. Such asynchronous nature can be interpreted as

the starting time and duration of a new edge that emerges between two vertices

and is of great importance to a wide range of time-sensitive applications, e.g.,

online information propagation modeling and crime prediction. In light of the

challenges brought by asynchronous dynamics, I formulate a dynamic graph as

a set of temporal edges, coupled with the respective ToE and ToV (joining time

of vertices) as two crucial indicators of the asynchronous properties. Lastly, a

novel time-aware dynamic graph embedding algorithm is proposed to discover

the patterns of asynchronous structural evolutions in the dynamic graph and

embed them into vertex representations. Extensive evaluations on large-scale

real-world datasets show that this approach outperforms the state-of-the-art in a

wide range of graph mining applications, thereby demonstrating its effectiveness

and superiority in dealing with asynchronous dynamics.

� In Chapter 4, I studied the problem of early predicting academic at-risk stu-

dents with dynamic learning behaviors. During the semester, students’ learning

9

Chapter 1. Introduction

patterns vary over daily, weekly, and monthly time scales. With the observa-

tion that study routines of good students are periodical and at-risk students

usually have more drop-out friends, a novel multi-timescale bag-of-regularity

method is proposed to discover students’ learning regularity patterns, overcom-

ing the challenges brought by the multiple-timescale dynamics in their learning

behaviors. Next, a co-occurrence network is constructed to approximate stu-

dents’ underlying social networks and encode the social homophily as features

through graph embedding. With the fused features of learning regularity and

social homophily, it can achieve impressive accuracy in very early predicting

at-risk students.

� In Chapter 5, I summarized the contributions made by this thesis and drew the

conclusions. Importantly, I further discussed the open challenges and future

directions in feature representation at the end of this thesis.

10

Chapter 2

Time-capturing Dynamic Graph

Embedding for Temporal Linkage

Evolution

Dynamic graph embedding learns representation vectors for vertices and edges in a

graph that evolves over time. In this chapter, I study the feature representation to

capture and embed the synchronous evolution of vertices’ temporal connectivity, deal-

ing with the challenges of multi-variables. Existing work studies the vertices’ dynamic

connection changes but neglects the time it takes for edges to evolve, thus failing to

embed temporal linkage information with the synchronous evolution patterns in the

dynamic graph. To capture vertices’ temporal linkage evolution, dynamic graphs are

modeled as a sequence of snapshot graphs, appending the respective timespans of

edges (ToE). The snapshot graph sequence will capture the synchronous evolution of

vertices’ connections in the dynamic graph. A common latent representation space

for all snapshot graphs is learned by a matrix-factorization-based model to embed

vertices’ dynamic connection changes while co-training a linear regressor to embed

ToE. Extensive evaluations on several datasets show that the proposed algorithm

11

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

can achieve significant performance improvements, i.e. 22.98% on average across all

datasets, over the state-of-the-art baselines in a wide range of graph mining tasks

including vertex classification, static link prediction, time-aware link prediction, and

ToE prediction.

2.1 Introduction

Dynamic graph embedding captures and encodes the evolution of vertex properties

and connections as low dimensional representation vectors in order to benefit down-

stream machine learning applications. Existing works model the dynamic graph as ei-

ther a sequence of static snapshot graphs [120] [110] [118] [119] [29] [26] [35] [98] [58] or

neighborhood formation sequence sampled from the temporal random walk [65] [121] [70].

These approaches merely capture the sequential changes of static graph structure

throughout the snapshot graph sequence as well as the sequential linkage evolution

among vertices for embedding. However, the time it takes for vertex connections to

evolve is also dynamic and it is neglected by the above approaches. Here, I tackle the

problem of embedding the temporal linkage evolution of vertices in a dynamic graph,

while simultaneously preserving their dynamic connection changes and timespans of

edge formation (ToE).

ToE preserves important duration of edge formation information as well as the tem-

poral dependencies of vertices while the dynamic graphs evolve. For example, in a

dynamic transaction network, buyers could appear at any time to trade with sellers

and disappear afterward, thereby forming an edge. The ToE in this case represents

how long the buyer takes to complete the transaction after the seller posts a sell

order, which carries important trading behavior and may be used to form trading

strategies. Cautious traders may prefer to spend a significant amount of time looking

for the best price of an item. Thus, the edges they construct may have a relatively

long ToE. Other traders may complete a transaction as soon as goods appear on the

12

2.1. Introduction

market, therefore resulting in a significantly shorter ToE. It is possible for buyers to

complete the transaction with one of multiple sell orders posted by the same seller at

different times, in which the ToE serves as discriminative information. Should ToE be

neglected and merely reduced to the dynamic connectivity changes among vertices,

the above trading patterns and strategies would be totally lost.

There are two major challenges in jointly embedding the dynamic linkage evolution

and ToE for preserving the temporal evolutionary patterns of a dynamic graph. The

first challenge is capturing and learning the multivariate linkage evolution patterns of

a dynamic graph from their local dynamic instances, which is the snapshot graph, in

an interpretable manner. The vertices’ connections and ToEs in every snapshot graph

are highly dynamic, therefore making it difficult to reconstruct the global evolution

process of a dynamic graph from the snapshot graph sequence in an interpretable

manner. Another challenge is preserving the temporal dependency among vertices

while embedding ToE. If the ToEs are aggregated for each vertex directly and ap-

pended with other vertex attributes, which is a common approach for embedding ver-

tex attributes in static graphs [101] [112], the temporal dependency among vertices

will gradually be lost due to information loss through aggregation [28]. Therefore,

the embedding algorithm should maximally prevent vanishing temporal dependency

while embedding ToE.

To address the above challenges, I first model the dynamic graph as a sequence of

snapshot graphs with ToE for every edge. I then propose a matrix factorization based

Time Capturing Dynamic Graph Embedding algorithm named TCDGE, which in-

fers a common latent space for capturing the structural and temporal evolution of the

dynamic graph and encodes them into representation vectors. This approach differs

from TNE [120], which embeds the snapshot graphs into separate latent spaces, since

I learn a common latent space from every snapshot graph for representing the ver-

tices’ dynamic connections. When vertex connections evolve, their projected positions

in the latent space will change accordingly. Therefore, vertices’ moving trajectories

13

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

within the common latent space reflects their evolutionary patterns in the dynamic

graph.

In order to embed ToE into the representations and preserve the temporal depen-

dencies among vertices, I first concatenate the representation of every two vertices

that form an edge as features for representing their temporal dependency. I then

regard the ToE as discriminative information and co-train a linear regressor using the

above features while learning the common latent space. The optimization algorithm

I present in this chapter is generic for any linear regressor such as the LASSO regres-

sion, the ridge regression, and the elastic net regression. Finally, vertices’ temporal

dependency and ToE will be gradually embedded into the representations as well as

the latent space during co-training.

To overcome the bottleneck of time efficiency in factorizing large-scale matrices, I op-

timize the latent space and the representation of the vertices by a projected gradient

approach. Meanwhile, I propose a singular value decomposition (SVD) based ap-

proach to initialize the embedding algorithm. It not only helps boost the convergence

speed for the algorithm but also prevents it from converging to a meaningless local

optimal. Inspired by negative sampling, I introduce negative samples to co-train the

regression model. Negative samples are constructed as any two vertices without any

edges between them and I set their ToE to zero. This indicates that these two vertices

have no temporal dependencies in the snapshot graph. Consequently, the TCDGE

algorithm is very time efficient and scalable, even though the model is complicated

with high-order polynomials.

The contributions are highlighted as follows:

� I propose a matrix factorization based dynamic graph embedding algorithm to

embed the temporal linkage evolution by learning a common latent space for

capturing the global evolutionary patterns throughout the sequence of snapshot

graphs while co-training a linear regressor, i.e., LASSO, to embed ToE for pre-

14

2.2. Literature Review

serving vertices’ temporal dependency. This approach differs from end-to-end

embedding algorithms, which usually are black boxes, by interpretively captur-

ing vertices’ temporal linkage evolution as their moving trajectories within the

latent space.

� I initialize the embedding algorithm by an SVD-based method and introduce

negative samples to co-train the linear regressor. Thus, the embedding algo-

rithm is very time efficient and scalable.

� I propose a new task, namely time-aware link prediction, to validate the ef-

fectiveness of dynamic graph embedding algorithms in preserving the temporal

dynamics.

� I conduct experiments on three public datasets over four machine learning ap-

plications. The experimental results show that the proposed model achieves

performance improvements of 17.00%, 22.91% and 11.88%, respectively, over

the state-of-the-art baselines in vertex classification, ToE prediction, static and

time-aware link prediction.

2.2 Literature Review

Starting with DeepWalk [71], numerous static graph embedding methods have been

proposed to encode the graph structure and attributes such as high-order proxim-

ities [32] [14], vertices’ centrality [18], vertex and edge attributes [112] [28], text

semantics [101] [100], and communities [92] [89]. In addition to embedding a single

homogeneous graph, EOE [99] and HWNN [81] infer a common latent space for re-

spectively embedding coupled heterogeneous graphs and hypergraph. In addition to

these unsupervised methods, there are several works focusing on task specific graph

representation learning [51] [111]. It simultaneously train a discriminator or classifier

using the labels of edges or vertices while learning the embeddings. The discrimi-

15

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

nator serves as a supervisor to make the final learned representation robust enough

for discriminating the labels in specific applications. I borrow the idea of learning

discriminative information while embedding the graph structure to co-train a linear

regressor for encoding the ToE and temporal dependencies of vertices into the final

representations.

In dynamic graph embedding, the main issue becomes handling the dynamic evolv-

ing nature of vertices and edges, and encoding their evolutionary patterns. Existing

works learn the structural differences of a graph at different timestamps by either ma-

trix factorization or deep learning approaches. For matrix factorization approaches,

TNE [120] is a pioneering work that factorizes the consecutive snapshot graphs into

different latent spaces with a temporal smoothness regularization. TMF [110] learns

the first-order neighborhood information while factorizing the adjacency matrices

of snapshot graphs. DHPE [119] employs the generalized SVD to preserve the high-

order proximities and Timers [114] explores the timing of restarting SVD to overcome

the error accumulation while embedding the dynamic graph. However, they fail to

preserve the global structural evolution of the whole dynamic graph over time. In

addition, none of them embed temporal information of vertices and edges like ToE

with the structural evolution.

There exist deep learning methods that capture the specific evolution process in

dynamic graphs. DynamicTriad [118] models the triad closure process when a graph

evolves. HTNE [121] models the neighborhood formation sequences as a Hawkes

Process with a time-aware weights. EPNE [90] learns the periodic linkage evolution

patterns by causal convolutions. However, these specific dynamic processes merely

exist in some particular graphs. For example, the triad closure process is not common

in other networks except social networks, thus leading to poor performance. I embed

temporal linkage evolution without pre-assuming any dynamic processes and give

an interpretation about what happens in the latent space when the dynamic graph

evolves over time.

16

2.3. Problem Definition

There are also methods that approach the graph evolution process by incremen-

tally appending out-of sample vertices or edges into the existing in-sample graph.

DepthLGP [58] first encodes the network properties by a high-order Laplacian Gaus-

sian Process using in-sample vertices, and then trains a deep neutral network to

transform the latent network properties states into the final representations. Graph-

SAGE [35] leverages the features from a vertex’s local neighborhood for new coming

vertex by using graph convolutional networks. MVC-DNE [102] incorporates both

the graph structure and the vertex properties for learning embeddings on incomplete

graph. DynGEN [29] adopts auto-encoders to incrementally handle the growing graph

and its extended version Dyngraph2Vec [26] trains a LSTM to capture the evolution

throughout snapshot graphs. DySAT [74] employs the self-attention mechanism to

capture the structure difference throughout the snapshot graph sequence instead of

using LSTM. DynGraphGAN [98] learns long-term structural evolution via adversar-

ial training. However, none of them model the ToE and temporal dependencies of

vertices, thereby failing to preserve the complete evolutionary pattern of the dynamic

graph in both structural and temporal domains, which is one of the main contribu-

tions of this work.

2.3 Problem Definition

In this section, I give a complimentary definition of dynamic graphs with synchronous

evolution and then properly formulate the dynamic graph embedding problem.

Since Vt ⊆ V for any t, the network structure in Gt evolves over time which also leads

to G evolving. At time t, the edge et,δi,j links the upcoming vertex vti to an existing

one vt
′
j which joins the graph at time t′. The temporal dependency among vertices

is reflected by the ToE δ. It is possible for vti to form edges with the same vertex

appearing at different times vt
′
j and vt

′′
j . These two edges link the same vertex pair

but have different ToE δ, which gives the dynamic graph the ability to distinguish the

17

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

edges between the same pair of vertices but established at two different timestamps.

Definition 1. Dynamic Graph with Synchronous Evolution. A dynamic

graph G = {Gt1 , Gt2 , · · · , Gtn} is a sequence of directed or undirected snapshot graphs

Gt, where Gt = (Vt, Et,Wt) is a snapshot graph at time t ∈ {t1, t2, . . . , tn}. Vt is

a subset of the vertex set V = {v1, v2, . . . , vm}. The edge et,δi,j = (vti , v
t′
j , δ) ∈ Et in

Gt represents the connection between an upcoming vertex vti joining at time t and an

existing vertex vt
′
j appearing at time t′, where i, j ∈ {1, 2, . . . ,m}, t′ ≤ t and δ = t− t′

is the ToE of et,δi,j . Each edge et,δi,j is associated with an edge weight wt,δ
i,j ∈ Wt.

Definition 2. Dynamic Graph Embedding. Given a dynamic graph G = {Gt1 , Gt2 ,

· · · , Gtn} and assuming that the maximum number of vertices m is known, the objec-

tive is to learn a mapping function f : v 7→ rv ∈ Rk for ∀v ∈ V such that rv preserves

the temporal linkage evolution of vertex v in terms of the dynamic connection changes

and temporal dependency, where k is a positive integer indicating the dimension of

the representation rv.

Definition 1 provides a generic description of the dynamic graph. When tn = 1,

the dynamic graph G degenerates into a static graph. If I assume t = t′ + 1 for

all edges, G becomes a continuous-time dynamic graph defined in [65]. If I as-

sume t′ = t, G becomes a structure evolving dynamic snapshot graph sequence

which is adopted by most of the approaches in dynamic graph embedding litera-

ture [120] [110] [118] [119] [29] [26] [35] [98] [58]. When I assume t′ = t, Vt ⊆ Vt+1

and Et ⊆ Et+1, G becomes a growing graph, where the vertices and edges are only

appended to the graph but not removed. This definition of a dynamic graph is generic

and captures both the structure and temporal dynamics.

18

2.4. Capturing the Evolution of Dynamic Graphs

2.4 Capturing the Evolution of Dynamic Graphs

In this section, I introduce the intuitions of capturing the evolution of a dynamic graph

and interpret what happens in the latent representation space when the dynamic

graph evolves.

Since each snapshot graph Gt is an instance of the dynamic graph G at time t, the dy-

namic change throughout the snapshot graph sequence exactly reflects the evolution

of G. From a vertex point of view, this evolution process consists of the sequential

changes of vertices’ connections with their corresponding ToE. Embedding the dy-

namic graph G becomes inferring a latent space H with k dimensions that maximizes

the retention of vertices’ temporal connections and attributes. When projecting the

snapshot graph Gt into the latent space H, every vertex in Gt obtains a response

vector rt, which is its embedding, showing its position in H. If vertices have similar

connectivity and ToE, they should be close to each other in H, which means the

distance between their embeddings is small.

When either vertices’ connections evolve or their ToE changes, resulting from the

evolution of the dynamic graph, their embeddings will change accordingly, therefore

causing their position in H to move. The trajectory of every vertex in H carries

its evolution process throughout the snapshot graph sequence. An example of this

idea is shown in Fig. 2.1, where vertices c and d have similar connectivity as well as

ToE among their connections so that their embeddings in the latent space H should

be close to each other, and their moving trajectories are also similar. Since the

silent vertices disconnect from any existing vertices, they should be projected to the

same position in H no matter which snapshot graph they leave. The connectivities

of vertices a and c are different in the three snapshot graphs resulting in different

temporal linkage evolution, which leads to their moving trajectories being far away

from each other. Finally, the embedding of any vertex v that preserves its temporal

linkage evolution is obtained by Eq. (2.1), and represents its moving trajectory in H,

19

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

Figure 2.1: An illustration of the evolution of a dynamic graph. a, b, c, and d are

vertices in a dynamic graph G = {Gt1 , Gt2 , Gt3}, where their edge colors represents

different ToE.

where rv,t ∈ Rk is its learned representation from the snapshot graph Gt, and T is a

transpose operator.

rv = [rTv,t1 , r
T
v,t2

, · · · , rTv,tn]T (2.1)

In the next section, I will propose the dynamic graph embedding model and an

optimization algorithm to efficiently infer the latent space H for embedding vertices’

temporal linkage evolution.

2.5 Embedding Temporal Linkage Evolution

In this section, I present the details of the proposed time capturing dynamic graph

embedding (TCDGE) model for encoding vertices’ temporal linkage evolution as rep-

resentations. Plus, I illustrate the optimization algorithm and training procedure to

efficiently train the TCDGE model.

20

2.5. Embedding Temporal Linkage Evolution

Table 2.1: Notations for time capturing dynamic graph embedding

Symbols Description

Gt A snapshot graph at time t, t = t1, t2, . . . , tn

m The maximum number of vertices in G

At ∈ Rm×m The adjacency matrix of Gt

Ât ∈ Rm×m 1-step probability transition matrix obtained from At

Mt ∈ Rm×m The high-order proximity matrix of Gt

Mt(u) ∈ Rm×1 The high-order proximity vector of vertex u at t

H ∈ Rm×k The inferred latent representation space

Wt ∈ Rk×m The learned representation matrix at t

Wt(u) ∈ Rk×1 The representation vector of vertex u at t

ytu,v ∈ R The ToE of an edge linked vertices u and v at t

x ∈ R(2k+1)×1 The learned coefficients of a linear regressor

2.5.1 Time Capturing Dynamic Graph Embedding Model

Before introducing the TCDGE model to solve the challenges, I first list the notations

that will be used in the remainder of this chapter in Table 2.1.

The representations of vertices in a latent space should reconstruct the original dy-

namic graph reasonably well with the inverted latent space projector. Thus, I mini-

mize the quadratic reconstruction loss under non-negative constraints for inferring the

common latent space H and encode the representations of vertices in each snapshot

graph Gt:

arg min
H,Wt

1

2

n∑
t=1

∥Gt −HWt∥2F s.t. ∀Wt ≥ 0, H ≥ 0 (2.2)

Adjacency matrices are commonly used to capture the linkage information among

vertices in a graph. However, the adjacency matrices of real world graphs are usually

very sparse such as those for information networks, transaction networks, etc., which

21

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

introduces bias into machine learning algorithms and leads to imprecise results [30].

Additionally, the adjacency matrix only captures 1-step direct connections of vertices

and is weak at representing the high-order neighborhood structure of the graph. One

common approach to overcome this issue is to extract the high-order proximities of

a graph from its adjacency matrix [101, 14]. In this chapter, I employ high-order

proximity matrix Mt of Gt as input, where

Mt = Ât + Ât

2
+ · · · + Ât

m
(2.3)

and Ât is the 1-step probability transition matrix obtained from the adjacency matrix

At after a column-wise normalization. If a vertex leaves Gt, meaning that it has no

connection with any existing vertices at t, I define it as a silent vertex and all elements

in its corresponding At column are zero. Consequently, its corresponding vector in

Mt is also a zero vector leading the optimally learned representations to also be zero

vectors. Finally, the evolving structure of G is preserved in a sequence of high-order

proximity matrices Mt. By factorizing them, I infer a common latent space H and

encode the structural dynamics of the dynamic graph into the representation Wt.

In solving the second challenge and further capturing the temporal dynamics, which

are the temporal dependencies of every pair of vertices carried by the ToE of their

linked edges, the objective is to embed the ToE into the representations Wt while

factorizing Mt. I regard every single edge as a data sample to encode their ToE indi-

vidually, which is different from treating all edges in a snapshot graph as a matrix Mt

for embedding the graph structure. Inspired by discriminative embedding [51] [111],

I treat ToE as “supervised” information to co-train a linear regressor while encoding

the representations Wt. In other words, I employ the ToE to guide the embedding

process and transfer it into the learned representations. Specifically, I constrain the

learned Wt such that it should have the ability to simultaneously reconstruct the

graph structure and accurately predict the ToE using the co-trained regressor x.

Given the ToE of an edge connecting two vertices u and v, I concatenate their rep-

resentation vectors Wt(u) and Wt(v) together as the feature of their corresponding

22

2.5. Embedding Temporal Linkage Evolution

edge to co-train a linear regressor for estimating its ToE as follows:

Jtp =
n∑

t=1

∑
u,v

(
ytu,v −

[
Wt(u)T Wt(v)T 1

]
x
)2

+ αϕ (x) (2.4)

where ϕ(x) is a regularization of x and α > 0 is a regression parameter. 1 is a constant

for linear regression. Jtp is a LASSO regressor when ϕ(x) = ∥x∥1, and it becomes a

ridge regressor or an elastic net regressor if ϕ(x) is ∥x∥22 or ∥x∥22 +α′∥x∥1 respectively.

The temporal dependencies of u and v are embedded into their corresponding rep-

resentations by the co-trained regressor since the representations of both source and

target vertices are involved to regress the ToE of the edge they formed. If there does

not exist any edges between u and v at time t, I set the corresponding ytu,v = 0,

indicating that there is no temporal dependency between these two vertices at time

t. When the dynamic graphs are undirected, I let ytu,v = ytv,u so that every pair of

vertices corresponds to the same ToE no matter how I concatenate their represen-

tation Wt(u) and Wt(v). In addition, if u appears multiple times in the dynamic

graph, such as a seller that posts multiple selling announcements at different times

in a dynamic transaction network that I mentioned in Section 2.1, ToE is exactly the

unique discriminative information for the new coming vertex v, identifying which u it

connects to. Such temporal dependencies between u and v are accurately preserved

by the co-trained regressor which adopts the concatenation of their representations

Wt(u) and Wt(v) as a feature to regress their corresponding ToE.

The co-trained linear regressor x allows this approach to identify the exact source

vertex by estimating the ToE when performing link prediction. Although existing

approaches can achieve the same goal by training an extra discriminator using well

learned representations, their performance is not satisfactory due to the absence of dis-

criminative information, such as ToE, for identifying the source vertex while learning

the embeddings (please refer to the experimental results in Section 2.6.5). Therefore,

the learned representation Wt has the ability to reconstruct the dynamic graph struc-

ture and preserve the temporal dependencies of vertices by approximating the ToE

23

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

of every edge.

Lastly, I assume that the graph evolves smoothly instead of being totally recon-

structed at every time step. Thus, I penalize vertices’s sharp changes of position

in the latent space by minimizing the ℓ2 distance between representations in two

consecutive snapshot graphs:

Jsm =
n∑

t=1

∑
u

(
1 −Wt(u)TWt(u)

)2
+

n∑
t=2

∑
u

(
1 −Wt(u)TWt−1(u)

)2 (2.5)

In order to maintain stability when factorizing H and Wt from Mt, I employ quadratic

regularizations Jreg = ∥H∥2F +
∑n

t=1 ∥Wt∥2F to prevent H and Wt from becoming sparse

rapidly. Therefore, the overall TCDGE model is

arg min
H≥0,Wt≥0,x

1

2

n∑
t=1

∥Mt −HWt∥2F +
λ1

2
Jreg +

λ2

2
Jsm +

λ3

2
Jtp (2.6)

where λ1 > 0, λ2 > 0, and λ3 > 0 are model parameters. It co-trains a linear regressor

to embed the ToE y, which carries the timespan of edges and temporal dependencies

of vertices, into the representation Wt while encoding the high-order proximities by

factorizing Mt for simultaneously preserving the structural dynamics. Since the ToE

is an attribute of the dynamic graph and naturally exists, the proposed TCDGE is

still an unsupervised representation learning approach.

2.5.2 Optimization Algorithm

In this subsection, I will explain how the optimization problem (2.6) was solved in

detail. I aim to find the optimal latent space H, the representations of vertices Wt

and the regression coefficient x. It is suitable to use an alternating directions method

to solve this optimization problem by fixing H and x to solve Wt followed by fixing

Wt to update H and x.

24

2.5. Embedding Temporal Linkage Evolution

Optimizing Vertex Presentation Wt

Since Wt(u) and Wt(v) are a part of Wt, it is difficult to handle the integrated vector

[Wt(u)T ,Wt(v)T , 1] in Jtp when solving for Wt. Thus, I let x = [xT
u , x

T
v , x0]

T , where

xu ∈ Rk×1, xv ∈ Rk×1, and x0 ∈ R, and rewrite Jtp as

Jtp =
n∑

t=1

∑
u,v

(
ytu,v −Wt(u)Txu −Wt(v)Txv − x0

)2
+ αϕ (x) (2.7)

I obtain the objective function of optimizing Wt as Eq. (2.8), which is a fourth-order

polynomial and is non-convex.

arg min
Wt≥0

1

2

n∑
t=1

∥Mt −HWt∥2F +
λ1

2

n∑
t=1

∥Wt∥2F +
λ2

2
Jsm

+
λ3

2

n∑
t=1

∑
u,v

(
ytu,v −Wt(u)Txu −Wt(v)Txv − x0

)2 (2.8)

Therefore, I adopt a block coordinate descent approach to solve Wt. When updating

Wt(u) for each vertex u at time t, I fix the H, x, and Wt(v) of all the other vertices

v at time t as well as all the representations W that are not at time t. Consequently,

the Wt problem becomes a convex optimization problem as shown in Eq. (2.9).

arg min
Wt(u)≥0

f(Wt(u)) = arg min
Wt(u)≥0

1

2
∥Mt(u) −HWt(u)∥22 +

λ1

2
∥Wt(u)∥22

+
λ2

2

((
1 −Wt(u)TWt(u)

)2
+
(
1 −Wt(u)TWt−1(u)

)2)
+
λ3

2

∑
v

(
ytu,v −Wt(u)Txu −Wt(v)Txv − x0

)2
+
λ3

2

(
ytu,u −Wt(u)Txu −Wt(u)Txv − x0

)2
(2.9)

If I choose to ignore situations where vertices can link to themselves (self-links), the

last term in Eq. (2.9) could be removed. I use the projected gradient methods [53] to

solve this convex optimization problem and obtain the updating function of Wt(u):

Wt(u) = max {Wt(u) − β ▽ f(Wt(u)), 0} (2.10)

25

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

where β > 0 is the learning rate and the gradient ▽f(Wt(u)) satisfies

▽f(Wt(u)) = HTHWt(u) −HTMt(u) + λ1Wt(u)

−λ2

(
Wt(u)

(
1 −Wt(u)TWt(u)

)
+ Wt−1(u)

(
1 −Wt(u)TWt−1(u)

))
−λ3

∑
v

(
ytu,v −Wt(u)Txu −Wt(v)Txv − x0

)
xu

−λ3

(
ytu,u −Wt(u)T (xu + xv) − x0

)
(xu + xv)

(2.11)

To ensure a sufficient decrease of Eq. (2.10) and to speed up convergence, I update

the learning rate β with a scaling factor θ to make the new Wt(u) satisfy

f(W i+1
t (u)) − f(W i

t (u)) ≤ σ1 ▽ f(W i
t (u))T

(
W i+1

t (u) −W i
t (u)

)
(2.12)

where i is the number of iterations and σ1 is a tolerance. With the proof by Bertsekas

in [12], there always exists a β > 0 that satisfies the rule (2.12) and every limit point

of {W i
t (u)}∞i=1 is a stationary point of the bound-constrained optimization problem

(2.9) [53]. After optimizing every Wt(u) for every vertex in Gt, an optimal Wt is

obtained. The pseudo code for solving Wt is presented in Algorithm 1.

Optimizing Common Latent Space H

When fixing Wt and x, the H optimization problem can be addressed by solving

arg min
H

h(H) = arg min
H≥0

1

2

n∑
t=1

∥Mt −HWt∥2F +
λ1

2
∥H∥2F (2.13)

This is also a convex bound-constrained optimization problem that is again solvable

using the projected gradient method, which is similar to the approach I employed in

solving Wt. The updating function of H is

H = max {H − β ▽ h(H), 0} (2.14)

where the gradient of h(H) is

▽h(H) =
n∑

t=1

(HWt −Mt)W
T
t + λ1H (2.15)

26

2.5. Embedding Temporal Linkage Evolution

Algorithm 1 The projected gradient algorithm of solving Wt.
Input: Mt, H, x, W 0

t , y
t, λ1, λ2, λ3, 0 < θ < 1, 0 < σ1 < 1

Output: Wt

repeat

for u = 1, 2, . . . ,m do

β0 = 0.01

for i = 1, 2, . . . do

βi = βi−1

if βi satisfies Eq. (2.12) then

repeat

βi = βi/θ

until βi does not satisfy Eq. (2.12)

else

repeat

βi = βi · θ

until βi satisfies Eq. (2.12)

end if

Update Wt(u) by using Eq. (2.10)

end for

end for

until converge.

return Wt

When optimizing H, I adopt the same learning rate updating strategy in solving Wt

here to ensure sufficient decent under the condition (2.16). σ2 is the tolerance and i

is the number of iterations.

h(H i+1) − h(H i) ≤ σ2 ▽ h(H i)T
(
H i+1 −H i

)
(2.16)

Co-training Linear Regressor for Embedding ToE

Fixing H and Wt for all t to optimize x is a standard linear regression problem.

When rewriting the Jtp in Eq. (2.4) in matrix form, I obtain the objective function of

optimizing x by Eq. (2.17), where Z = [ZT
1 , Z

T
2 , · · · , ZT

n]T and y = [yT1 , y
T
2 , · · · , yTn]T ,

27

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

which is a standard linear regression problem.

arg min
x

λ3

2
Jtp = arg min

x

λ3

2
∥y − Zx∥22 +

αλ3

2
αϕ (x) (2.17)

Zt for t = 1, · · · , n contains the concatenated features of any pair of vertices in the

snapshot graph Gt as showed in Eq. (2.18) and yt ∈ Rm2
is the corresponding ToE.

The standard algorithm can be directly applied to solve the linear regression problem

with different regularization ϕ(x) and finally get x.

Zt =



Wt(1)T Wt(1)T 1

Wt(1)T Wt(2)T 1
...

...
...

Wt(1)T Wt(m)T 1

Wt(2)T Wt(1)T 1
...

...
...

Wt(2)T Wt(m)T 1
...

...
...

Wt(m)T Wt(m)T 1



∈ Rm2×(2k+1) (2.18)

Since the connections of vertices usually evolve very frequently in a dynamic graph,

which leads to substantial changes to the concatenated edge features but only has a

slight impact on ToE, LASSO is very robust for embedding the ToE and unlikely to

overfit. In the remainder of this chapter, I specifically employ the LASSO regressor,

letting ϕ(x) = ∥x∥1, for illustration. To obtain the optimal LASSO regressor x, I first

let g(x) = λ3

2
∥y−Zx∥22, and then compute its gradient by ∇g(x) = λ3(Z

TZx−ZTy).

Lastly, I employ the FISTA algorithm [6] to solve the LASSO problem and obtain an

optimal x with

x = Sαλ3
2

(x− γ∇g(x)) (2.19)

where S(·) is a soft-threshold calculator. γ = 1/λmax(ZTZ) where λmax(ZTZ) is the

maximum eigenvalue of ZTZ which is the smallest Lipschitz constant of ∇g(x). The

pseudo code of the FISTA algorithms for optimizing x is presented in Algorithm 2.

28

2.5. Embedding Temporal Linkage Evolution

Algorithm 2 A FISTA algorithm for optimizing x.

Input: Z, y, α, λ3, x
0, τ 0

Output: x

1: L = λmax(ZTZ)

2: β3 = 1
L

3: repeat

4: xi+1 = Sαλ3
2

(γi − β3∇g(γi))

5: τ i+1 = 1+
√

1+4τ i2

2

6: γi+1 = xi+1 +
(

τi−1
τi+1

)
(xi+1 − xi)

7: until converge.

8: return xi+1

2.5.3 Efficient Training Procedure and Convergence

The major limitation of matrix-factorization-based algorithm is computation com-

plexity and scalability. Although the projected gradient algorithm and the FISTA

algorithm are one of the most efficient method to compute matrix factorization and

LASSO regression respectively, we further identify two bottlenecks in further improv-

ing the training efficiency and making TCDGE converge faster. One bottleneck is the

initialization of Wt and H to make them close to the optimal point for reducing the

training time while preventing them from sticking into meaningless local optima. The

other bottleneck is that very large-scale training samples make the FISTA algorithm

very time-consuming in computing the gradient ∇g(x). Training sets containing too

many edges with zero ToE impair the training precision of linear regressor as well.

Here, I present an initialization approach using singular value decomposition (SVD)

and an efficient FISTA training procedure to address the above efficiency bottlenecks.

Initialization of Wt and H by SVD

The TCDGE algorithm cannot be initialized by randomly generated H0 and W 0
t .

Usually, Mt is a sparse matrix but randomly generated H0 and W 0
t are all dense

29

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

matrices. It will make either or both H and Wt become zero matrices after a few

iterations. Thus, the algorithm stops at a local optimum and outputs meaningless

results.

To avoid reaching the zero local optimal point, the initialized H0 and W 0
t should

meet the requirement ∥Mt − H0W 0
t ∥2F ≤ ∥Mt∥2F [53]. Therefore, I adopt SVD to

initialize H0 and W 0
t as follows. First, I decompose every Mt and obtain its left-

singular matrix Ut, singular value matrix It, and right-singular matrix St. Then, I

select the rectangular diagonal sub-matrix from It corresponding to the top k singular

values, and the first k columns from Ut and St denoted as It,k, Ut,k and St,k. Finally,

I initialize H0 and W 0
t by:

H0 =
1

n

n∑
t=1

Ut,k and W 0
t = It,kS

T
t,k (2.20)

Using SVD to initialize the embedding algorithm prevents it from being stuck in the

zero local optimum and allows it to pursue meaningful results.

Efficient Linear Regressor Training with Negative Sampling

To capture all of the temporal dependencies among the m vertices in a dynamic graph

consisting of n snapshot graphs, m2 × n training samples in Z are used to co-train

the linear regressor in every time step. Because of the high dimensionality of Z,

computing the gradient ∇g(x) is very time-consuming. Meanwhile, many vertices

usually do not connect to each other in real cases. Thus, edges with zero ToE are

much more common than nonzero ToE edges, which causes imbalance issues and

impairs the precision of the co-trained regression model.

Inspired by negative sampling [64], I mark all edges with nonzero ToE as positive

samples and randomly choose a set of zero ToE edges, following a uniform distribution,

as negative samples to jointly train the regressor. Different from deep learning models

that just select a very small number of negative samples based on the label difference

for training, I restrict the number of negative samples to half of the number of positive

ones because negative samples in this model indicate vertices having no temporal

30

2.6. Experimental Results and Analysis

dependency which is one of the most important pieces of information that should be

learned by the regressor.

After negative sampling, the training samples in Z are dramatically reduced and posi-

tive samples become majorities, therefore saving the computational cost in calculating

∇g(x) and preventing the regressor from being dominated by the negative samples,

which makes it converge quickly and precisely. I have tried selecting negative samples

based on a probability distribution that is proportional or inversely proportional to

the vertex degree but the experimental results show that this is rarely much different

from following the uniform distribution.

Convergence and Stop Criteria

The overall work flow of the TCDGE algorithm is presented in Algorithm 3, which

essentially is a block-wise coordinate descent algorithm. Therefore, its convergence

can be guaranteed according to the proof of convergence of block-wise coordinate

descent [84]. Both algorithms for optimizing Wt and H stop when they meet the

condition in Eq. (2.21) and Eq. (2.22), which ensures the optimization outputs are

close to a stationary point [53]. ϵ is a very small positive number. For the jth element

aj in vector a, p(·) equals the gradient at aj if aj > 0 else p(·) equals the negative

gradient at aj.

∥p(▽h(H i))∥2 ≤ ϵ∥ ▽ h(H1)∥2 (2.21)

∥p(▽f(W i
t (u)))∥2 ≤ ϵ∥ ▽ f(W 1

t (u))∥2 (2.22)

The FISTA algorithm for embedding the ToE stops when the residual of x is less than

a small positive number ϵ′.

2.6 Experimental Results and Analysis

In this section, I conduct extensive experiments to showcase the effectiveness and

efficiency of the TCDGE algorithms in the data mining tasks of vertex classification,

31

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

Algorithm 3 The TCDGE algorithm.

Input: Mt, y, Z, x0, τ 0, λ1, λ2, λ3, α, 0 < θ < 1, 0 < σ1 < 1, 0 < σ2 < 1

Output: H, Wt, x

1: Initialize H0 and W 0
t by Equation 2.20

2: Initialize x by the FISTA algorithm

3: repeat

4: for t = 1, 2, . . . , n do

5: Update Wt by Algorithm 1

6: end for

7: Update H by the projected gradient algorithm

8: Update x by Algorithm 2

9: until converge.

10: return H, Wt, x

ToE prediction, static link prediction, and time-aware link prediction.

2.6.1 Experimental Setting

Datasets

Three public real-world datasets are considered when validating the performance of

TCDGE on data mining applications, whose statistics are presented in Table 2.2.

UCI Messages1 [66] is an online communication network of students. A vertex rep-

resents a student that has sent or received messages. The ToE is the communication

time interval between a pair of students. The communication lasts 7 months so that

a dynamic graph containing 7 snapshot communication graphs has been built for

capturing their dynamic communication behaviors.

1http://konect.uni-koblenz.de/networks/opsahl-ucsocial

32

http://konect.uni-koblenz.de/networks/opsahl-ucsocial

2.6. Experimental Results and Analysis

Table 2.2: Statistics of datasets

Dataset |V | |E| |Gt| Mean ToE Std ToE #Classes

UCI Messages 1899 22640 7 0.7387 (days) 2.1762 -

Transaction 5881 35592 11 1.4637 (months) 1.9303 2

Co-authorship 10374 60101 5 1.3834 (years) 1.0414 3

Transaction2 [48] is a bitcoin transaction network. A vertex is a trader who buys

and sells bitcoins and an edge forms while two traders complete a transaction. The

ToE is the time interval between buying and selling. Each snapshot graph carries the

transactions in a 6 month period. Since bitcoin traders are anonymous, there is a

need to maintain a record of their reputation to prevent transactions with fraudulent

and risky traders. Traders rate each other’s trustworthiness on a scale of -10 (total

distrust) to +10 (total trust) with a step of 1 after completing each transaction, so

that I label traders whose average score is above 1 as trustworthy while the rest

are deemed untrustworthy. Finally, I obtain 1092 untrustworthy traders and 4789

trustworthy ones.

I derive a Co-authorship3 network for publications from 2010 to 2014 in three research

areas including networking (NW), data mining (DM) and artificial intelligence (AI)

from the DBLP. A vertex is an author and two authors form an edge when they

coauthor a chapter. The ToE indicates the time interval between co-authorship. I

deem researchers that have coauthored with not less than 6 other authors and at least

coauthored with one of them twice in that period. The snapshot graphs represent the

co-authorship in every year. I label the vertices by their research areas which they

published most in. Finally, I obtains 3405 authors in NW, 2909 authors in DM, and

4060 authors in AI.

Baseline Methods

2https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
3http://projects.csail.mit.edu/dnd/DBLP/

33

https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
http://projects.csail.mit.edu/dnd/DBLP/

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

I benchmark the TCDGE algorithm to 7 state-of-the-art methods listed below using

their published codes.

� DeepWalk 4 [71] is a static graph embedding algorithm that employs skip-gram

to encode linkage relationships among vertices searched by the random walk. I

tested the combination of hyper parameters given window sizes ws ∈ {5, 8, 10},

walk lengths wl ∈ {10, 20, 30, 40}, and numbers of walks nw ∈ {20, 40, 60}, and

report the best results.

� Temporal Network Embedding (TNE)5 [120] is a matrix factorization based dy-

namic graph embedding method that encodes the structure evolving patterns

in different latent spaces. I tested the hyper parameter λ ∈ {0.01, 0.1, 1, 10},

and report the best results.

� Timers6 [114] is an incremental SVD approach for dynamic graph embedding

which overcomes the error accumulation issues by restarting SVD when the

error margin exceeds a threshold. I use the default parameter settings θ = 0.17.

� DynamicTriad7 [118] preserves the triad closure process while embedding the

structural evolution. I tested all combinations of hyper parameters β0, β1 ∈

{0.01, 0.1, 1, 10}, and report the best results.

� GraphSAGE 8 [35] is a graph convolutional network approach for embedding

the structural evolution of a dynamic graph. I train a two layer model with

respective neighborhood sample sizes 25 and 10, as described in the original

paper. I test different aggregators including GCN, mean, mean-pooling, and

LSTM and report the performance of the best performing aggregator in each

dataset.

4https://github.com/phanein/deepwalk
5https://github.com/linhongseba/Temporal-Network-Embedding
6https://github.com/ZW-ZHANG/TIMERS
7https://github.com/luckiezhou/DynamicTriad
8https://github.com/williamleif/GraphSAGE

34

2.6. Experimental Results and Analysis

� DynGEN 9 [29] adopts a deep auto-encoder to embed the structure changes

throughout the snapshot graph sequence. I train a two layer model and adopt

the default parameter settings that are recommended by the authors.

� DynG2vecAERNN 9 [26] is an extension of DynGEN which first adopts a deep

neutral network to encode the structure of each snapshot graph, and then em-

ploys an LSTM to embed the sequential evolution of every vertex throughout

the snapshot graphs. A two layer model is trained with the default parameter

setting as described in the original paper.

In order to verify the effectiveness of learning the common latent space H to capture

the linkage evolution, I experiment with the TCDGE without embedding ToE by

setting λ3 = 0, namely TCDGE-noToE. Meanwhile, I test another variant TCDGE,

namely TCDGE-wgToE, that adopts the ToE as weights of the adjacency matrix of

each snapshot graph but does not co-train any regression model, thus verifying the

effectiveness of the co-training approach.

Evaluation Metrics

I employ micro-F1 and macro-F1 scores as evaluation metrics for the task of vertex

classification as seen below:

Micro-F1 =
2
∑

i TPi∑
i (2TPi + FPi + FNi)

(2.23)

Macro-F1 =
1

c

∑
i

2TPi

2TPi + FPi + FN
(2.24)

where TPi, FPi, and FNi are the true positive, false positive, and false negative

results of the ith predicted class, respectively. The macro-F1 score is the mean of the

class-wise F1 score that is sensitive to the performance in classifying each individual

class. The micro-F1 score measures the overall classification performance regardless

of the accuracy in individual classes. Higher micro-F1 and macro-F1 scores indicate

better vertex classification performance.

9https://github.com/palash1992/DynamicGEM

35

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

I evaluate the performance of ToE prediction by measuring the Root Mean Square

Error (RMSE) between the predicted ToE and the ground truth as

RMSE =

√∑
y∈Stest

(y − ŷ)2

|Stest|
(2.25)

where y denotes the real ToE in the test set Stest and ŷ is the predicted one. |Stest| is

the number of test samples in Stest. The smaller the RMSE, the more accurate the

ToE prediction.

In link prediction, I employ the average area under the curve (AUC) of the receiver

operating characteristic (ROC) curve as the performance metric. The higher the

AUC, the better the link prediction performance.

Parameter Setting

The experiments have been conducted with k = 45 as the dimension of the represen-

tation vector for both the TCDGE and all baselines in all testing datasets. For the

parameters of TCDGE, I set the scaling factor θ = 0.5, tolerance σ1 = σ2 = 0.01. I

co-train a LASSO regressor for the TCDGE with initial regression parameter α = 1

Since Wt will be updated at each time step, making Z change dynamically, the re-

gression parameter α cannot be fixed. Otherwise, the LASSO cannot adequately

fit the ToE by using the new Z at each time. In addition, the training error of

LASSO will gradually accumulate so that the reconstruction error of the overall em-

bedding model will progressively increase, thus leading to poor embedding results.

I adopt θ to dynamically update α 10 times using the same updating strategies in

the projected gradient algorithm for learning the best LASSO regressor x at each

time. Finally, I report the best results by testing the combination of model param-

eters given λ1 ∈ {0.001, 0.01, 1} and λ2, λ3 ∈ {0.0001, 0.001, 0.01, 0.1, 1} for the data

mining tasks presented in the following subsections. All experiments are conducted

on a standard workstation with 2 Intel Xeon Gold 6128 CPUs and 64GB RAM, and

are implemented in MATLAB.

36

2.6. Experimental Results and Analysis

Table 2.3: Vertex classification results

Transaction Co-authorship

Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.8855 0.7229 0.5645 0.5684

TNE 0.8673 0.6777 0.4221 0.4064

Timers 0.7810 0.4896 0.3358 0.2965

GraphSAGE 0.6205 0.6256 0.4793 0.4537

DynamicTriad 0.8652 0.6737 0.5243 0.5189

DynGEN 0.8316 0.6680 0.5150 0.5065

DynG2vecAERNN 0.8140 0.4721 0.4681 0.5398

TCDGE-noToE 0.8621 0.7390 0.6921 0.7220

TCDGE-wgToE 0.8625 0.7402 0.6701 0.6885

TCDGE 0.9032 0.7725 0.6728 0.7079

2.6.2 Vertex Classification

Vertex classification aims to identify the unique label of vertices using their learned

representations in the dynamic graph G. I first learn the representation of vertices

in every snapshot graph Gt. Then, concatenate the representations Wt together by

Eq. (2.1) for classification. A support vector machine (SVM) with a Gaussian kernel

is trained by using these features to classify their corresponding labels. It tests the

embedding algorithms’ ability to capture the global graph evolutionary patterns in G

for all timestamps. Since the UCI messages dataset does not contain vertex labels, I

compare the classification performance in both bitcoin transactions and co-authorship

datasets. I repeat the 5-fold cross-validation on both datasets 10 times and compare

the average performance in macro-F1 and micro-F1 scores. I did not adopt any

extra methods to handle the issues of unbalanced labels in the bitcoin transaction

37

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

dataset but straightforwardly train the SVM for testing the actual performance of

the TCDGE algorithm in the case of label unbalanced classification. The results are

shown in Table 2.3.

In the bitcoin transaction dataset, the TCDGE algorithm achieves the best perfor-

mance, and outperforms the best baseline by 2.00% in micro-F1 scores and by 4.36%

in macro-F1 scores. In the co-authorship dataset, TCDGE and its variants, TCDGE-

noToE and TCDGE-wgToE, dramatically outperform all 7 other baseline methods.

This indicates that capturing the moving trajectories of vertices in the common latent

space, learned throughout the snapshot graph sequence by the proposed approach,

embeds the evolution of a dynamic graph better than the baseline methods. In ad-

dition, the temporal evolution patterns captured by the approach work much better

than the baselines in unbalanced label classification.

In the co-authorship dataset, TCDGE-noToE performs the best. This may be because

the standard deviation of its ToE is relatively small meaning that the time intervals

of co-authoring papers are not as significant as who they co-author with over time

for classifying their research areas. Therefore, purely capturing the linkage evolution

may be good enough for classifying authors’ research areas from their co-authorship,

and the TCDGE and TCDGE-wgToE achieve close performance, yet slightly worse

than TCDGE-noToE but still much better than the baselines.

When people trade bitcoins, the time interval between transactions becomes impor-

tant for measuring traders’ trading behavior and strategies, which results in higher

standard deviation of ToEs. Since the TCDGE algorithm successfully embeds both

structural evolution and the temporal information of edges at the same time, it

achieves the highest macro and micro F1 scores and dramatically outperforms the

traditional models which merely capture the linkage information. Although TCDGE-

wgToE leverages the ToE as weights of the adjacency matrices for embedding, the

temporal dependency among vertices gradually diminishes during embedding due to

the aggregation throughout the snapshot graph sequence, which is consistent with the

38

2.6. Experimental Results and Analysis

Table 2.4: Average RMSE of ToE prediction

UCI Messages Transaction Co-authorship

DeepWalk 2.5934 2.1084 1.0395

TNE 2.5335 2.0932 1.0377

Timers 2.1536 2.1074 1.0428

GraphSAGE 2.1471 2.1004 1.0392

DynamicTriad 2.3329 2.3485 1.3425

DynGEN 2.4160 2.4053 1.0395

DynG2vecAERNN 2.1640 1.9756 0.9891

TCDGE-noToE 2.1957 2.0920 1.0371

TCDGE-wgToE 2.1595 2.0659 1.0452

TCDGE 2.1419 1.7798 0.8967

conclusion drawn in [28]. However, co-training the LASSO regressor has the ability

to better preserve the temporal dependency among vertices and encode it into the

final representation. Therefore, embedding the temporal dependency together with

the structural evolution among vertices into a common latent space makes the learned

representation vectors preserve the global structural and temporal evolutionary pat-

terns from the whole dynamic graph, which is more discriminative and leads to better

classification results.

2.6.3 ToE Prediction

The objective of ToE prediction is to estimate the ToE of an edge given the repre-

sentation of its source and target vertices for testing how effectively the learned rep-

resentations capture temporal information. The experiment is conducted under the

leave-one-snapshot-graph-out cross-validation setting. Since the TCDGE co-trains a

LASSO regressor simultaneously with the representation learning, a snapshot graph

39

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

is selected for testing at each round and I use the rest of the snapshot graphs to train

the model until every snapshot graph serves as the testing graph once. When test-

ing the baseline methods, I first generate all the representations from every snapshot

graph, and then employ them to further train a LASSO regressor under the same

cross-validation setting. I repeat each experiment 10 times and report the average

RMSE.

The ToE prediction results are presented in Table 2.4. The TCDGE achieves a

12.85% lower RMSE on average against all baseline methods and outperforms the

best baseline by 6.50% indicating that the temporal dynamics are preserved by the

proposed co-training approach, which results in much lower ToE prediction errors

than the baseline approaches that ignore it. The representations learned by the

TCDGE carry both structural evolution of the dynamic graph and its ToE such that

it is more effective when discriminating temporal information than those approaches

that purely embed the graph structure, which leads to better performance in ToE

prediction.

2.6.4 Static Link Prediction

Static link prediction aims to predict whether a pair of vertices will form an edge at

time t+ 1, given their embeddings learned at t. This task ignores the joining time of

source vertices, which is widely adopted by the existing work to test the performance

of learned embeddings. Here I employ the cosine distance to measure the similarity

of two vertices in the latent space and calculate the probability of forming a new

edge by the sigmoid function. I predict the links in snapshot graph Gt+1 by using

the representation Wt under the same experimental settings as those of [120]. The

performance is measured by the average AUC for predicting G2 to Gn.

The results are reported in Table 2.5. Overall, the proposed TCDGE algorithm

outperforms all baselines by 27.56% on average with respect to the AUC, and achieves

40

2.6. Experimental Results and Analysis

Table 2.5: Average AUC of static link prediction

UCI Messages Transaction Co-authorship

DeepWalk 0.6619 0.9028 0.5977

TNE 0.6524 0.8264 0.5861

Timers 0.4943 0.4938 0.5156

GraphSAGE 0.5091 0.5624 0.5890

DynamicTriad 0.5187 0.4197 0.5950

DynGEN 0.6028 0.5826 0.4874

DynG2vecAERNN 0.4977 0.5218 0.4949

TCDGE-noToE 0.7003 0.9194 0.6044

TCDGE-wgToE 0.6969 0.9187 0.6037

TCDGE 0.7314 0.9248 0.6142

2.22% higher AUC than the best baseline method TCDGE-noToE on average in all

three datasets. The baseline approaches only learn from the linkage information.

However, the TCDGE algorithm not only learns the evolving patterns of who the

vertices link to, but also embeds how they link by capturing their ToEs and temporal

dependency such that the edges between the same pair of vertices but established

at two different timestamps can be distinguished. Therefore, the TCDGE algorithm

achieves better static link prediction performance in terms of higher AUC than all

baselines.

2.6.5 Time-aware Link Prediction

Time-aware link prediction is a unique application for dynamic graph embedding,

which aims to identify the joining time of existing vertices on top of the static link

prediction. It performs two tasks at the same time. One is to predict whether a

pair of vertices will form an edge at time t + 1 when given their representations

41

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

Figure 2.2: Time-aware link prediction results with varying threshold ϵ in the UCI

message dataset.

at time t. The other is to predict the joining time of existing vertex to identify

the unique one since it can join the dynamic graph several times. Specifically, data

mining applications such as predicting which sell order will be completed by a buyer,

predicting the future victims of fraud and when the fraud will happen, recommending

items at an appropriate time, etc., can all be abstracted as time-aware link prediction

applications.

Since the joining time of an existing vertex is equal to the difference between the ToE

and the joining time of an upcoming vertex, predicting the joining time of existing

vertices at the time when the upcoming one joins the dynamic graph is the same as

predicting the ToE of the edge they form. Thus, I predict the ToE instead of the

actual joining time of existing vertices in this experiment.

I conduct the experiment under the one-snapshot-graph-ahead cross-validation setting

in which a snapshot graph Gt (t > 1) is selected for testing at each round and I use

42

2.6. Experimental Results and Analysis

Figure 2.3: Time-aware link prediction results with varying threshold ϵ in the Trans-

action dataset.

Figure 2.4: Time-aware link prediction results with varying threshold ϵ in the Co-

authorship dataset.

43

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

the snapshot graph sequence {G1, · · · , Gt−1} to train the model until every snapshot

graph except G1 serves as the testing graph once. Since none of the baselines can

achieve the two goals in time-aware link prediction simultaneously, I employ the same

cross-validation setting to obtain baselines’ representations and then further train a

LASSO regressor to predict the ToE. I adopt the same approach used in static link

prediction to determine whether there exists an edge connecting a pair of vertices

here.

A temporal link has been correctly predicted if and only if the model correctly predicts

that a pair of vertices formed an edge and the RMSE of ToE prediction for this edge is

less than a threshold ϵ. To test how the prediction accuracy of ToE affects time-aware

link prediction, I perform time-aware link prediction in three datasets and test the

threshold ϵ from 0.0001 to 30. The experiment repeats 10 times for each threshold

and the average AUC are reported in Fig. 2.2 to Fig. 2.4.

The TCDGE performs the best in all three testing datasets when ϵ > 0.1. It also

achieves the highest AUC in the bitcoin transaction dataset and dramatically outper-

forms other baselines except DynG2vecAERNN in the remaining two datasets when

ϵ ≤ 0.1. DynG2vecAERNN works better in ToE prediction than other baselines (re-

fer to Table 2.4) but is comparatively much worse in link prediction (refer to Table

2.5) such that it achieves relatively high AUC with small ϵ but it cannot correctly

predict more temporal links when relaxing the threshold ϵ. Although the TCDGE

performs slightly worse than DynG2vecAERNN with small ϵ, it becomes the best of

all when ϵ = 1, and AUC increases slowly when ϵ > 1. This indicates that the RMSE

of ToE prediction for most temporal edges predicted by the TCDGE is less than 1.

Consequently, the LASSO co-training approach preserves the temporal dynamics well

while embedding the ToE, therefore resulting in superior performance in time-aware

link prediction.

44

2.6. Experimental Results and Analysis

2.6.6 Parameter Sensitivity Analysis

The TCDGE defined by Eq. (2.6) is dependent on regularizer weights λ1, λ2, λ3

and a hyperparameter k which is the dimension of the latent representation space

as well as the dimension of the learned embeddings. The selection of λ1, λ2 and λ3

highly depends on the input data and the selection approach has been illustrated in

section 2.6.1. Therefore, I conduct sensitivity analysis on the hyperparameter k from

15 to 285 in vertex classification, ToE prediction, and static link prediction. The co-

authorship dataset is adopted here because the scale is relatively large compared to

the other two datasets and the number of vertices in the three categories are almost

balanced, which is more common in daily life. I fix λ1 = 0.0001, λ2 = λ3 = 0.01

and only vary k at each time. As shown in Fig. 2.5 to Fig. 2.7, when k increases,

both F1-scores in vertex classification increase almost linearly and gradually converge.

The RMSE of ToE prediction decreases exponentially and converges with increasing

k. The average AUC of static link prediction is not sensitive to the dimension of

the representations. Since all results eventually converge to the best case when the k

is high enough, the TCDGE is not sensitive to the dimension of the common latent

space k.

2.6.7 Convergence and Training Efficiency

I demonstrate the convergence of the TCDGE algorithm in the co-authorship dataset

which has the highest number of vertices. Fig. 2.8 shows the loss of the objective

function in Eq. (2.6), fidelity term 1
2

∑n
t=1 ∥Mt − HWt∥2F , the LASSO regressor Jtp

in Eq. (2.4) when ϕ(x) = ∥x∥1, and the temporal smoothness regularization Jsm in

Eq. (2.5).

The TCDGE converges in very few iterations because of the initialization set by the

SVD and the effectiveness of the projected gradient method for solving Wt and H.

The initialization approach not only prevents the TCDGE from being stuck in the

45

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

Figure 2.5: Average F1-score of vertex classification with varying the hyperparameter

of dimension k in the Co-Authorship dataset.

Figure 2.6: Average RMSE of ToE prediction with varying the hyperparameter of

dimension k in the Co-Authorship dataset.

46

2.6. Experimental Results and Analysis

Figure 2.7: Average AUC of static link prediction with varying the hyperparameter

of dimension k in the Co-Authorship dataset.

Figure 2.8: Convergence curves of TCDGE in the co-authorship dataset.

47

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

Figure 2.9: Training efficiency of TCDGE with varying k in the co-authorship dataset.

zero local optimum, but also generates an approximation of Mt upon initialization,

which already decreases the loss of fidelity. In the projected gradient method, a scaler

θ is employed to search for a good learning rate to ensure the sufficient decrease of the

gradient, thereby boosting the convergence speed of the overall TCDGE algorithm.

Fig. 2.9 shows the average running time of each iteration while training the TCDGE

by varying the hyperparameter k. As k increases, the running time for updating H

at each iteration hardly increases. The running time of updating Wt and co-training

x almost linearly grows with increasing k. It takes less than 1 minutes to finish

updating the representation for over ten thousand vertices when k <= 105 and less

than 5 minutes when k = 255.

Although the TCDGE model looks complex, it converges quickly in terms of a small

number of iterations and a very short running time for encoding the representation

Wt, learning the common latent space H, and co-training the LASSO regressor x,

demonstrating the effectiveness of the projected gradient method and the the pro-

posed efficient training procedure.

48

2.6. Experimental Results and Analysis

Figure 2.10: Scalability test results of TCDGE with varying number of vertices in

the synthesized dataset.

2.6.8 Scalability of TCDGE

I synthesize two datasets on top of the co-authorship dataset to test the scalability of

the TCDGE. One is to fix the number of snapshot graphs but augment the number of

vertices in every snapshot graph by sampling vertices and edges in the other snapshot

graphs as new vertices and edges of the current graph. This tests the scalability

of the project gradient approach for updating Wt and the LASSO co-training. The

experimental results are shown in Fig. 2.10. As the number of vertices in the snapshot

graph increases, the running time for updating Wt grows almost linearly. The running

time for co-training LASSO and updating H becomes slightly longer, but still much

slower than the growth rate of updating Wt.

The other synthesized dataset fixes the number of vertices in every snapshot graph

but augments the number of snapshot graphs to test the scalability of learning the

common latent space H. I divide the vertices of each existing snapshot graph into

5-folds based on the degree of vertices. I take a fold from each existing snapshot

49

Chapter 2. Time-capturing Dynamic Graph Embedding for Temporal Linkage
Evolution

Figure 2.11: Scalability test results of TCDGE with varying number of snapshot

graphs in the synthesized dataset.

graph without duplication to synthesize a new snapshot graph. In Fig. 2.11, the

experimental results indicates that the running time of learning the common latent

space grows linearly. Consequently, the TCDGE algorithm has very good scalability

although the embedding model is complicated with high-order polynomials.

2.7 Chapter Summary

In this chapter, I model a dynamic graph as a snapshot graph sequence appended with

ToE for every edge, which captures the multivariate dynamics over vertices. A time

capturing dynamic graph embedding model is presented to embed the synchronous

linkage evolution while accounting for their evolution duration. In particular, it en-

codes every vertex’s temporal connection changes as its moving trajectories within

the inferred common latent representation space. The experimental results show that

this method can achieve significant performance improvements over existing state-

50

2.7. Chapter Summary

of-the-art approaches. The paper [104] arising by this study has been accepted to

publish in the IEEE Transactions on Knowledge and Data Engineering (TKDE) in

2021.

51

Chapter 3

Time-aware Dynamic Graph

Embedding for Asynchronous

Structural Evolution

In this chapter, I study the feature representation to fully capture and embed the

asynchronous evolution patterns in a dynamic graph, dealing with the challenges of

multivariate dynamics. Despite the benefits of learning vertex representations (i.e.,

embeddings) for dynamic graphs, existing works merely view a dynamic graph as

either sequential or synchronous changes within the vertex connections, neglecting

the crucial asynchronous nature of such dynamics where the evolution of each local

structure starts at different times and lasts for various durations. To capture the

asynchronous structural evolutions within the graph, I innovatively formulate the dy-

namic graphs as temporal edge sequences associated with the joining time of vertices

(ToV) and timespan of edges (ToE). Then, a time-aware Transformer is proposed to

embed vertices’ dynamic connections and ToEs into the learned vertex representa-

tions. Meanwhile, I treat each edge sequence as a whole and embed its ToV of the

first vertex to further encode the time-sensitive information. Extensive evaluations

52

3.1. Introduction

on several datasets show that the proposed approach outperforms the state-of-the-art

in a wide range of graph mining tasks. At the same time, it is very efficient and

scalable for embedding large-scale dynamic graphs.

3.1 Introduction

Graph are one of the most widely used data structures to represent pairwise relations

between entities. In many real-world applications, these relations naturally change

over time, making the graph dynamic. For example, in an online forum, users can post

messages at any time and form a discussion network. Some of them join the discussion

by replying or citing the published posts, thus forming edges among existing vertices.

Some may choose to unfollow other users or become inactive in the discussion, and

this will make them disconnected from other vertices. Since vertices can join, leave

and re-join a network at any time, the dynamics of graphs are beneficial for modeling

various types of data like traffic, financial transactions, and social media.

Dynamic graph embedding is an effective means to encode the evolutions of vertices’

connections and properties into vector representations to facilitate downstream ap-

plications. In general, to capture the dynamic changes of vertex connections over

time, existing approaches represent the dynamic graph as either a snapshot graph

sequence (SGS) [26] [58] [59] [83] [87] [94] [98] [118] [119] [120] or neighborhood for-

mation sequence (NFS) [11] [15] [24] [65] [70]. On one hand, SGS segments the graph

information into several time slots, where a static snapshot graph is built to repre-

sent the node connectivity within each time slot. On the other hand, NFS captures

dynamic graph information by using temporal random walk to sample the sequential

connections amongst vertices.

Unfortunately, both SGS and NFS incur inevitable information loss about the dynam-

ics properties of a graph, thus impeding the expressiveness of the eventually learned

53

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Figure 3.1: Modeling a dynamic graph with SGS, NFS, and the proposed one.

node embeddings. In Fig. 3.1, I provide an example on how SGS and NFS represent

the dynamic graph G, respectively. For SGS, a snapshot graph is built for each of

the 4 time slots ([t3, t4] and [t5, t6] are omitted as there are no new connections).

Obviously, SGS tends to suffer from sparsity issues with a fine-grained time granu-

larity, e.g., apart from G4, the vertices and edge in G1, G2, and G3 are too sparse for

effectively learning node embeddings. Should these three snapshot graphs be merged

to alleviate the sparsity, the subtle structural evolutions at different time steps will

be neglected. Furthermore, a largely overlooked fact in dynamic graphs is that, the

structural evolutions are asynchronous, i.e., the exact time consumed by each edge

update varies in different cases. For example, on the left of Fig. 3.1, the connections

among vertices {a, b, c, f} and {d, e, a, f}, evolve asynchronously since the edges have

different starting times and durations. As a result, modeling G as a SGS shown in

Fig. 3.1 will interrupt the continuous evolutions of vertices {a, b, c, f} with an irrel-

evant snapshot G3. Therefore, incorrect graph dynamics will be embedded, as such

asynchronous temporal information is totally lost when treating a dynamic graph as

an array of static snapshots.

Compared with SGS, NFS is more robust to sparsity as a certain amount of sub-

54

3.1. Introduction

structures of the dynamic graph is considered for different time steps owing to the

temporal random walk strategy. However, it still fails to capture the graph’s asyn-

chronous structural evolutions. Taking G in Fig. 3.1 as an example, the local structure

among {a, b, c, f} and {d, e, a, f} starts evolving at t1 and t4, respectively. The former

structure takes 6 time steps to completely link four vertices, which is slower than the

latter one that takes just 3 steps. Nevertheless, as shown in the middle-right part of

Fig. 3.1, the NFS model neglects this important temporal discrepancy, thus being

unable to preserve such asynchronous structural evolutions.

In this chapter, I study the important yet overlooked problem in dynamic graph em-

bedding, namely fully capturing the asynchronous structural evolutions of a graph.

Such asynchronous nature can be interpreted as the starting time and duration of a

new edge that emerges between two vertices, and is of great importance to a wide

range of time-sensitive applications, e.g., online information propagation modeling

and crime prediction. However, to achieve the goal, I are confronted with three ma-

jor challenges. (1) Capturing the asynchronous structural evolutions in a dynamic

graph. The representation of a dynamic graph should capture not only the dynamic

connections among vertices but also the starting time and duration of such evolu-

tions, so as to provide sufficient knowledge about the asynchronous characteristics of

a dynamic graph. (2) Embedding spatial and temporal dynamics of edges. When ver-

tices join, leave, and re-join the graph, the edges they formed will change accordingly,

which brings spatial dynamics. Meanwhile, it takes a different amount of time for

vertices to establish new links, leading to dramatic temporal dynamics. To preserve

the dynamic edge formation, both the spatial and temporal dynamics should be fully

encoded in the dynamic node embeddings. (3) Preserving asynchronous evolutions

of local structures. Some local structures evolve early, while others evolve later. The

embedding algorithm should account for the evolution starting time for every local

structure along with its dynamic edges, such that the patterns within asynchronous

structural evolutions can be effectively learned to facilitate predictions into the future.

55

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

In light of these challenges, I propose to represent a dynamic graph as a set of tem-

poral edges, coupled with the respective joining time of vertices (ToV) and timespan

of edges (ToE) as two crucial indicators of the asynchronous properties. A time-

centrality-biased temporal random walk is then developed to sample the local struc-

tures as temporal edge sequences. The ToV of the first vertex in a temporal edge

sequence corresponds to the evolution starting time of the local structure, and the

total ToE indicates how long the evolution of the current local structure takes. Hence,

the temporal edge sequences successfully capture the asynchronous structural evolu-

tions for learning expressive node embeddings. Moreover, I propose a novel Time-

Aware Dynamic Graph Embedding (TADGE) algorithm to embed the asynchronous

structural evolutions into vertex representations. In order to thoroughly incorporate

both the spatial and temporal dynamics of the edge formation, I design a time-aware

Transformer model. Intuitively, a vertex forms a new edge by linking another vertex

that has high affinity with it. Therefore, I build a Transformer [85] to embed vertices’

dynamic connections as their self-attentive embeddings through an encoder-decoder

framework, making the learned embeddings for every vertex carry the structural infor-

mation and ToE from its connected neighbors. In order to preserve the asynchronous

evolutions of local structures, I learn an overall representation of every edge sequence

by accounting for its evolution starting time. The sequence-level representation is

learned under the constraint that any pair of embeddings at different time steps

should help accurately estimate the evolving time interval between the corresponding

local structures. Lastly, I fuse the vertex- and sequence-level representations to gen-

erate the final embedding for each vertex, encoding the patterns of its asynchronous

structural evolutions in the dynamic graph to support downstream tasks.

The contributions of this study are highlighted as follows:

� A New Problem. To the best of my knowledge, I are the first to study

the problem of embedding the asynchronous structural evolutions of a dynamic

graph, in which the evolution starting time and duration of each local structures

56

3.2. Literature Review

vary significantly.

� A Novel Representation of Dynamic Graphs. I propose a time-centrality-

biased temporal random walk to innovatively formulate the dynamic graph as

temporal edge sequences associated with ToV and ToE tags, which preserves

the asynchronous structural evolutions for learning vertex embeddings.

� A New Approach for Dynamic Graph Embedding. I propose TADGE,

which is a novel time-aware graph embedding approach that learns expressive

dynamic vertex embeddings by fusing information of both the dynamic edge

formation and the asynchronous local structure evolutions.

� Extensive Experiments. I conduct experiments on several large-scale public

datasets on dynamic graphs. Experimental results demonstrate the superiority

of TADGE, which outperforms the state-of-the-arts and also shows significant

advances in training efficiency and scalability.

3.2 Literature Review

The main issue in dynamic graph embedding is capturing and encoding the dynamic

evolving nature of vertices and edges. Modeling the dynamic graph in a proper

manner is the foundation as it captures the dynamics of vertices and edges for later

embedding. Existing approaches model the dynamic graph as either a snapshot graph

sequence [26] [58] [59] [83] [87] [94] [98] [118] [119] [120] or neighborhood formation

sequences sampled from the temporal random walk [11] [15] [24] [65] [70]. These

approaches merely capture the synchronous structural evolutions and their limitations

have been discussed in Section 3.1. The dynamic graph model present in this chapter

captures not only the dynamic connection changes amongst vertices but also the

asynchronous evolution starting time and duration for embedding.

57

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Given the above dynamic graph models, the embedding algorithm aims to encode the

captured evolution patterns as representations of vertices or edges. TNE [120] is a pio-

neer work that embeds the structural difference in consecutive snapshot graphs. A se-

ries of similar approaches are continuously published, such as DHPE [119], TMF [110],

Timers [114], and DynGraph2Vec [27]. Instead of measuring the overall difference be-

tween snapshots, DynamicTriad [118] embeds the triad formation process amongst

vertices. DyRep [83] models the structural evolutions as a latent mediation pro-

cess bridging topological evolutions and dynamic activities between vertices. Graph-

SAGE [35] learns the structure by a graph neural network, leveraging neighborhood

information to generate embeddings for the new coming vertices.

Embedding the sequential edge formation is originally proposed in [65] which embed-

ding continuous-time dynamic graph. Following this idea, a series works has proposed

to learn the sequential information together with edge formation [11] [24] [70] [15] by

using the graph attention [87] [75] [24], generative adversarial networks [98] [117].

Although none of the above-mentioned works embed the asynchronous structural

evolutions, they inspire us to design the TADGE for jointly embedding the pair-wise

connections and the local structures.

There are a few works focusing on temporal network embedding. M2DNE [56] embeds

the temporal edge formation process and the evolving scale of the graph. It intro-

duces a time decay function while calculating the attention value between connected

vertices, which treats the temporal information as an edge attribute for embedding.

EPNE [90] embeds the periodic connection changes amongst vertices by causal con-

volutions. Although references [73] and [49] claim themselves as the temporal net-

work embedding, they degenerate the temporal network as neighborhood formation

sequence before embedding, thus merely preserving sequential structural evolutions

without temporal information. None of above mentioned works deal with the dy-

namic ToV and ToE at the same time. Hence, they fail to embed the asynchronous

structural evolutions but I fill this research gap in this chapter.

58

3.3. Problem Definition

3.3 Problem Definition

In this section, I give the definition of a dynamic graph and formulate the problem

of dynamic graph embedding for preserving the asynchronous structural evolutions.

In a dynamic graph G, vertices join the graph at any time as either isolated vertices

or forming edges with existing ones. Thus, I denote a vertex vi joining G at time t as

vti where t is the joining time of the vertex (ToV) and i = 1, 2, · · · , n. Since vertices

join, leave and rejoin the graph dynamically, which triggers the structural evolution,

I denote all ToVs of vi as its ToV set Tvi in which the number of appearances of vi

in G is |Tvi |. | · | is an operator for counting the number of elements in a set. When

vti links to an existing vertex vt
′
j whose ToV t′ < t and j = 1, 2, · · · , n, they form a

temporal edge et,δvi,vj = (vi, vj, t, δ, w) at time t, where δ = t− t′ is the timespan of the

edge (ToE) indicating how long it takes for vti to form an edge with vt
′
j , and w is the

edge weight. If i = j, a self-link is formed.

Next, I give a formal definition of a dynamic graph that is composed of the dynamic

appearing of vertices at different times with the edges they formed, and then formulate

the problem of dynamic graph embedding for preserving asynchronous structural

evolutions.

Definition 3. Dynamic Graph. A dynamic graph G = {V,E, TV }, where V =

{v1, v2, · · · } denotes a vertex set containing |V | vertices in G, and TV = {Tv1 , Tv2 , · · · }

is the ToV set of every vertex in V . E is the temporal edge set in which et,δvi,vj =

(vi, vj, t, δ, w) ∈ E is a temporal edge linking vi, vj ∈ V . t ∈ Tvi is the ToV of an

upcoming vertex vi and indicates the edge forming time. t′ ∈ Tvj is the ToV of an

existing vertex vj and t′ < t. δ = t− t′ is the ToE. w is the edge weight.

Definition 4. Dynamic Graph Embedding for Preserving Asynchronous

Structural Evolution. Given a dynamic graph G = {V,E, TV }, the objective is to

learn a mapping function f : v 7→ rv ∈ Rk for ∀v ∈ V such that the representation rv

preserves the asynchronous structural evolution of v in terms of asynchronous evolu-

59

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

tion starting time and duration, where k is a positive integer indicating the dimension

of rv.

Since I aim to embed the asynchronous structural evolutions in a dynamic graph,

I assume |V | is well-known and mainly focus on the edge updates in this study.

Meanwhile, my approach is compatible with any inductive learning schemes to handle

newly joined vertices.

3.4 Capturing Asynchronous Structural Evolutions

in the Dynamic Graph

Directly learn embeddings from the whole graph G is difficult due to its complexity

and dynamics. Thus, it is necessary to transform the original dynamic graph into a

proper format that captures its dynamic structural evolutions and is easy for later

embedding. However, regardless of modeling the dynamic graph as either SGS or

NFS, the asynchronous structural evolutions cannot be captured fairly well. Inspired

by [65] and [18], I propose a time-centrality-biased temporal random walk to sample

the dynamic graph and model it as a set of temporal edge sequences that properly

captures the asynchronous structural evolutions.

Specifically, I first randomly select a set of initial vertices via uniform distribution,

which appear at m different times and satisfy |V | ≤ m <
∑

v∈V |Tv|. Since there

are |V | vertices totally appearing
∑

v∈V |Tv| times in G, each of vertices’ occurrence

has the same probability p = 1∑
v∈V |Tv | to be selected as the initial one. This makes

the sequences sampled by the following temporal random walk cover the entire graph

evenly.

Next, I perform the temporal random walk to sample the connected vertices starting

from every initial vertex. The walker will only visit vertices whose ToV is greater

60

3.4. Capturing Asynchronous Structural Evolutions in the Dynamic Graph

than the previous one, making the sampled sequences are in line with the structural

evolutions of G. Usually, the upcoming vertices have higher chances to form edges

with the high centrality ones [33]. As the events/relationships happen in recent times

may have stronger influence to the current vertex comparing to that of happened long

time ago, I heavily sampling vertices that are close in time to the current one. In the

other words, the walker prefers to visiting a vertex through the edge with a smaller

ToE. Therefore, given a vertex vt, the temporal random walk samples the next vertex

vt
′
next from its neighborhood set Γvt based on a transition probability by Eq. (3.1)

following a time-centrality-biased distribution, where the ToV of every vertex in Γvt

is greater than t, degree(·) is the vertex’s degree for measuring its centrality, δv,vt is

the ToE of the edge connecting two vertices v and vt.

prw(vt
′

next) =
degree(vt

′
next)∑

v∈Γvt
degree(v)

(1 −
δvt′next,v

t∑
v∈Γvt

δv,vt
) (3.1)

Leveraging the centrality of vertices and ToE to sample the dynamic graph makes

the vertex distribution and its linkage evolutionary patterns in the generated corpus

more consistent with the original graph, thus providing comprehensive information

for later embedding.

I record the first ℓ vertices that the walker visits to construct the edge sequences st,

t = 1, 2, · · · ,m. The ToV of the first vertex in st exactly is the evolution starting

time and the total sum of ToE of all edges in st indicates the time the evolution of

st lasts. Finally, the dynamic graph has been modeled as a set of edge sequence G =

{s1, s2, · · · , sm}. An example is showed on the button-right in Fig. 3.1 demonstrating

that the time-centrality-biased temporal random walk is capable of capturing the

asynchronous structural evolutions in the dynamic graph.

In order to easily facilitate the embedding algorithm, I further attach a virtual vertex

⟨EOS⟩ with zero ToE to the end of every st. If the walker early stops before reaching

the maximum sampling number, I supplement ⟨EOS⟩ at the end to make the sequence

have the same length as others.

61

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

3.5 Embedding Asynchronous Structural Evolutions

in The Dynamic Graph

In this section, I present the details of the proposed TADGE to embed the asyn-

chronous structural evolutions. TADGE consists of three parts: (1) Edge For-

mation Embedding: a Time-aware Transformer to embed the dynamic connection

changes amongst vertices while preserving the ToE; (2) Structural Evolution Em-

bedding: a multi-head self-attention model to embed the asynchronous evolution

starting time for every local structure in the dynamic graph; and (3) Representa-

tion Fusion: encoding final vertex representation by fusing the above edge formation

and structural evolution embeddings. I introduce them in the following subsections

and present the training strategies at the end.

3.5.1 Embedding Dynamic Edge Formation with ToE

When a vertex comes and forms a new edge, it actually is selecting an existing vertex

in the graph to connect based on past connection evolution and ToE. From the vertex

point of view, the edge sequences carrying vertices’ connection evolutions can be

regarded as the sequences of vertices linking by these edges. Since the edges have

different ToE, the time interval between consecutive vertices in the sequence varies

from each other, thus bringing time-varying sequential dependency to vertices in the

edge sequence. Therefore, I embed the dynamic edge formation by learning (1) the

time-varying sequential dependency amongst vertices, and (2) pairwise connections

amongst vertices.

Inspired by the R-Transformer [95], I propose a Time-aware Transformer consisting

of a t-LSTM model and a Transformer to respectively learn vertices’ sequential de-

pendency with ToE and the pairwise connections in the edge sequence st. Fig. 3.2

shows the overall architecture. r̂vi is the obtained edge formation embedding for vi.

62

3.5. Embedding Asynchronous Structural Evolutions in The Dynamic Graph

Figure 3.2: An illustration of the Time-aware Transformer for embedding vi.

Learning Time-varying Sequential Dependency

Let us denote the target vertex that I are going to embed as vi. To learn the sequential

impact of ahead connected vertices and the ToE to vi in st, I build a t-LSTM model

that starts from a standard LSTM unit and connects to time-aware LSTM units [5].

It discounts the short-term effects from the long-term memory and supplements the

impact of ToE between two consecutive nodes in the sequence, thus learning the

time-varying sequential dependency.

Specifically, given the input information xvi ∈ Rk of vi and its connected vertex vj’s

overall memory Cvj and the hidden state hvj ∈ Rk, the time-aware LSTM unit first

63

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

decomposes Cvj into short-term memory CS
vj

and long-term memory CL
vj

as below:

CS
vj

= tanh
(
WdCvj + bd

)
(3.2)

CL
vj

= Cvj − CS
vj

(3.3)

where {Wd, bd} are the trainable weights and bias for the subspace decomposition.

Next, I further decay the decayed short-term memory CS
vj

by a heuristic function in

Eq. (3.4) such that the longer ToE the fewer effects to the short-term memory. δvi,vj

is the ToE of the edge linking vi and vj while e is the Euler’s number.

ĈS
vj

=
CS

vj

log(e + δvi,vj)
(3.4)

Lastly, I compose the adjusted overall memory back by

C̃vj = CL
vj

+ ĈS
vj

(3.5)

The rest parts in the time-aware LSTM unit are the same as the standard LSTM as

showed below:

fvi = σ(Wfxvi + Ufhvj + bf) (3.6)

gvi = σ(Wgxvi + Ughvj + bg) (3.7)

ovi = σ(Woxvi + Uohvj + bo) (3.8)

C̄vi = σ(Wcxvi + Uchvj + bc) (3.9)

Cvi = fvi ∗ C̃vj + gvi ∗ C̄vi (3.10)

hvi = ovi ∗ tanh(Cvi) (3.11)

Cvi is the current memory vi has. hvi is the output hidden state of the vertex vi

carrying the time-varying sequential dependency between itself and vertices in st.

σ(·) is a sigmoid function and ∗ is the element-wise multiplication. {Wf , Uf , bf},

{Wg, Ug, bg}, {Wo, Uo, bo}, and {Wc, Uc, bc} are the trainable weights and bias of the

forget gate f , input gate g, output gate o, and candidate memory C̄. Consequently,

the t-LSTM model is capable to learn the impact of past connections and ToE on

64

3.5. Embedding Asynchronous Structural Evolutions in The Dynamic Graph

the target vertex. Different from the STGN [115] which over-counts the short-term

memory to the long-term one, the t-LSTM eliminates the impact of time-varied short-

term memory from the long-term one, thereby making it more effective to learn the

temporal dependency without over-weighting the time intervals.

Embedding Pairwise Connection between Vertices

On top of the t-LSTM, I embed the direct connection between vi and vj by the

self-attention mechanism in a Transformer architecture [85]. Intuitively, the edge

formation process is to select an existing vertex from the graph for the upcoming one

vi to link to. In another word, vi is able to view the candidate vertices in the graph

and then determines which one it will form the edge with. I model this process by

the self-attention mechanism that contains two steps. First, I build an encoder to

compute the self-attention between vi and vertices in the local structure st that vi

belongs to. It measures the impact of connected vertices in the local structure for vi

to form edges. Second, regarding the encoder output as the context information of

forming the edges, I further build a decoder to learn which vertices vi exactly connects

to, thus well embedding the dynamic edge formation.

Encoder. Given the t-LSTM embeddings of ℓ vertices in the edge sequence st,

denoting as Hv = [hv1 , hv2 , · · · , hvℓ]
T ∈ Rℓ×k, I start with the multi-head self-attention

module:

Zo
en = softmax

(
Qo

enK
o
en

T

√
k

+ M

)
V o
en (3.12)

where Zo
en ∈ Rℓ×k is the computed attentions from the attention-head o = 1, 2, · · · , ō

while
√
k is a scaling factor to smooth the softmax calculation for avoiding extremely

large values of the inner product. Qo
en, K

o
en, V

o
en ∈ Rℓ×k respectively represent the

queries, keys, and values of the self-attention obtained by the linear projection of Hv,

Qo
en = HvW

Q,o
en , Ko

en = HvW
K,o
en , V o

en = HvW
V,o
en (3.13)

where WQ,o
en ,WK,o

en ,W V,o
en ∈ Rk×k are trainable projection weights for the queries,

keys, and values at every attention-head. Since the vertex can merely interact with

65

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

those that have already existed in the graph, I introduce a constant attention mask

M ∈ {0,−∞}ℓ×ℓ, setting the corresponding attention value to zero for the not-yet-

happened interactions between vertices. Next, I concatenate all attentions obtained

from every attention-head as Zen and propagate low-layer queries Qen to higher layers

in residual connections [37] with the layer normalization [3] as showed in Eq. (3.16),

which improves the expressive capability and prevents from the vanishing gradient

during training.

Zen = [Z1
en, Z

2
en, · · · , Z ō

en] ∈ Rℓ×ōk (3.14)

Qen = [Q1
en, Q

2
en, · · · , Qō

en] ∈ Rℓ×ōk (3.15)

Ẑen = LN(Zen + Qen) = Sln ∗
Zen + Qen − µ

ϵ
+ Bln (3.16)

LN(·) is the layer normalization function where µ and ϵ are the mean and variance

of elements in the input tensor, and {Sln, Bln} is the scaling weights and bias to be

learned for maintaining the representation ability of the network.

Lastly, I fuse the multi-head attentions Ẑen by a two-layer fully connected feed-forward

network (FFN) with non-linear activation ReLU(·) = max{0, ·} under the residual

connection setting and following by the layer normalization to obtain the attention

embedding Hen
v :

Hen
v = LN(ReLU(ẐenW

1
f + B1

f + Ẑen)W 2
f + B2

f) (3.17)

where W 1
f ∈ Rōk×ōk, W 2

f ∈ Rōk×k, B1
f ∈ Rℓ×ōk and B2

f ∈ Rℓ×k are the trainable

weights and bias of the FFN.

Decoder. The goal of the decoder is to learn which vertices the encoding one connects

to so that an edge forms. Thus, the input of decoder is the t-LSTM embeddings of the

second vertex to the last one in st, denoting as H ′
v = [hv2 , hv3 , · · · , hvℓ , hEOS]T ∈ Rℓ×k,

and their attentions Ẑ ′
en are obtained by re-using the self-attention module in the

encoder through Eq. (3.12) to (3.16).

66

3.5. Embedding Asynchronous Structural Evolutions in The Dynamic Graph

To further learn the pair-wise connection in st, I build another self-attention module

that employs Ẑ ′
en as the queries Qo

de, and the self-attentive embeddings of source

vertices Hen
v as the keys Ko

de and the values V o
de as showed in Eq. (3.18),

Qo
de = Ẑ ′

enW
Q,o
de , Ko

de = Hen
v WK,o

de , V o
de = Hen

v W V,o
de (3.18)

where WQ,o
de ∈ Rōk×k and WK,o

de ,W V,o
de ∈ Rk×k are trainable projection weight matrices

at every attention-head o = 1, 2, · · · , ō. Then, I calculate their self-attention by:

Zo
de = softmax

(
Qo

deK
o
de

T

√
k

+ M

)
V o
de (3.19)

Zde = [Z1
de, Z

2
de, · · · , Z ō

de] ∈ Rℓ×ōk (3.20)

Qde = [Q1
de, Q

2
de, · · · , Qō

de] ∈ Rℓ×ōk (3.21)

Ẑde = LN(Zde + Qde) (3.22)

Lastly, a two-layer fully connected FFN with ReLU activation is built to obtain the

edge formation embedding R̂v:

R̂v = LN(ReLU(ẐedW
3
f + B3

f + Ẑed)W
4
f + B4

f) (3.23)

where W 3
f ∈ Rōk×ōk, W 4

f ∈ Rōk×k, B3
f ∈ Rℓ×ōk and B4

f ∈ Rℓ×k are the trainable

weights and bias of this FFN.

Since the vertices’ sequential dependency and ToE have been well preserved by the

t-LSTM module and the encoder-decoder merely needs to learn the pairwise connec-

tion between vertices in st, it is not necessary for the Time-aware Transformer model

to incorporate with the position embedding which is used in the original Transformer.

In order to further boost the representation power of the Time-aware Transformer

model, I respectively stack N blocks of multi-head attention for encoder and decoder

In addition, I adopt dropout on every residual FFN as a regularization strategy to pre-

vent the model from over-fitting. Consequently, the Time-aware Transformer model

is capable to simultaneously embed the edge connecting pairs of vertices together

with their ToE.

67

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

3.5.2 Structure Embedding with Evolution Starting Time

When I treat every edge sequence st as a whole, the dynamic graph becomes a se-

quence G = {s1, · · · , st, · · · , sm} representing the evolving time series of the local

structures. This new sequence carries the global evolution patterns of G that consists

of the asynchronous evolving of every local structure. I are going to learn a repre-

sentation vector rst for every local structure st where t = 1, 2, · · · ,m. The structure

embedding rst should preserve the sequential dependency of every local structure in

G and its evolution starting time which exactly is the ToE of its first vertex.

Let’s denote the edge formation embedding of a vertex vi as r̂vi that corresponds to a

row vector in R̂v. I first aggregate the r̂vi for every vi in st to get the initial structure

embedding as showed in Eq. (3.24). Since the virtual vertex ⟨EOS⟩ appears at the

end of every st and does not contribute anything to the structures, I merely count the

first ℓ vertices in st to get the initial structure embedding regardless they are ⟨EOS⟩

or not. For ∀st ∈ G, the initial structure embeddings can be written into a matrix

form Hs = [hs1 , hs2 , · · · , hsm]T ∈ Rm×k.

hst =
ℓ∑

i=1

r̂vi ,∀vi ∈ st, t = 1, · · · ,m. (3.24)

Next, I build a self-attention model to learn the sequential relationship amongst the

initial structure embedding of every local structures in G as showed below:

Qo
s = HsW

Q,o
s , Ko

s = HsW
K,o
s , V o

s = HsW
V,o
s (3.25)

Zo
s = softmax

(
Qo

sK
o
s
T

√
k

)
V o
s (3.26)

Zs = [Z1
s , Z

2
s , · · · , Z ō

s] ∈ Rm×ōk (3.27)

Qs = [Q1
s, Q

2
s, · · · , Qō

s] ∈ Rm×ōk (3.28)

Ẑs = LN(Zs + Qs) (3.29)

where Qo
s, K

o
s , V

o
s ∈ Rm×k respectively represent the queries, keys, and values of the

self-attention obtained by the linear projection of Hs. WQ,o
s ,WK,o

s ,W V,o
s ∈ Rk×k

68

3.5. Embedding Asynchronous Structural Evolutions in The Dynamic Graph

Figure 3.3: An illustration of embedding local structures si by the self-attention

mechanism.

are trainable projection weight matrices at every attention-head o = 1, 2, · · · , ō. I

again build a two-layer fully connected FFN with the ReLU activation to obtain the

structure embedding R̂s:

R̂s = LN(ReLU(ẐsW
5
f + B5

f + Ẑs)W
6
f + B6

f) (3.30)

where W 5
f ∈ Rōk×ōk, W 6

f ∈ Rōk×k, B5
f ∈ Rm×ōk and B6

f ∈ Rm×k are the trainable

weights and bias of the FFN. Fig. 3.3 shows the model architecture for embedding

the local structures in the dynamic graph.

To this end, I obtain the structure embedding r̂st for every st in G, which is cor-

responding to the tth row of the R̂s, preserving the sequential relationship amongst

every local structure in G and itself. I do not strictly constrain that the upcoming

local evolution of st must be st+1 by training a decoder, as how I embed the pair-

wise connection between vertices, because the evolution of local structures happens

spontaneously and they do not have strict pair-wise relationships. Embedding the

structural evolution in this loose coupling manner gives the model a better generation

capacity.

69

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

In order to encode the asynchronous evolution timing of every local structure into the

structure embedding R̂s, I train the above attention model by a regression task that

estimating the evolution time interval δst,st′ between any two local structures st and

st′ . The benefits are in two folds. First, it well preserves the sequential dependency

amongst local structures while merely embeds their absolute evolution starting time

cannot achieve. Second, it augments the scale of training samples so that the model

is easy to converge and avoids under-fitting. However, when the scale of the dynamic

graph becomes extremely large, it will generate a huge number of local structures to

train the model, which dramatically impairs the training efficiency. I adopt a sliding

window with length ℓs to sample the local structure sequence G = {s1, s2, · · · , sm}.

The sliding step size õ satisfies 1 ≤ õ < ℓs for ensuring two consecutive subsequence

having overlap. Otherwise, the continuous evolution of the whole dynamic graph will

be intermittent. I then learn the structure embeddings in each sliding window, thus

reducing the size of training set for improving the training efficiency. To keep the

article organization consistent, I present the details of the regression task for embed-

ding the evolution starting time and discuss the criteria of improving the training

efficiency in Section 3.5.4.

3.5.3 Representation Fusion

For any vertex vi in an edge sequence st, I fuse its edge formation embedding r̂vi

together with its structure embedding r̂st by summing them up to obtain ŕvi = r̂vi+r̂st .

Then, I input it into a FFN with the ReLU(·) activation to encode the final vertex

representation as showed in Eq. (3.31).

rvi = LN(ReLU(ŕTviW
7
f + b7vi + ŕTvi)W

8
f + b8vi) (3.31)

where W 7
f ,W

8
f ∈ Rk×k and b7vi , b

8
vi
∈ R1×k are the trainable weights and bias of vi of

the FFN.

70

3.5. Embedding Asynchronous Structural Evolutions in The Dynamic Graph

3.5.4 Training TADGE

In order to effectively embed the asynchronous structural evolution, I train the

TADGE model by three self-supervised tasks simultaneously.

Training Task 1: Self-identification for Edge Formation Embedding

I employ a vertex classification task to train the Time-aware Transformer for learning

the edge formation embedding. Intuitively, no matter how vi’s connections change, its

embedding r̂vi should well identify vi itself since it is representing vi’s edge formation

information instead of other vertices’. I employ a softmax with cross-entropy loss to

train the Time-aware Transformer well-classifying vertices’ own identity as showed in

Eq. (3.32).

Lv = −
∑
vi∈V

(
yTvi log

(
softmax

(
R̂vr̂vi

))
+
(
1 − yTvi

)
log

(
1 − softmax

(
R̂vr̂vi

))) (3.32)

yvi ∈ R|V |×1 is the self-identification of vi in one-hot encoding that the ith element in

yvi is 1 and others are 0.

Training Task 2: Evolution Time Interval Regression for Structural Evo-

lution Embedding

Embedding the evolution starting time is the key to preserve the asynchronous struc-

tural evolutions. I employ a regression task on approximating the evolution time

interval δst,st′ between any pair of local structures st and st′ while learning their struc-

ture embeddings r̂st and r̂st′ in R̂s. Mathematically, this regression task is written in

Eq. (3.33), where ws ∈ Rk×1 is the trainable linear projection weights.

Ls =
1

m(m− 1)

∑
st∈G

∑
st′∈G
t′<t

(
wT

s

(
r̂st + r̂st′

)
− δst,st′

)2
(3.33)

71

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

There are m(m − 1)/2 pairs of local structures being used to calculate the gradient

of Eq. (3.33). When m becomes extremely large, the gradient calculation will take

a long time, which is an efficiency bottleneck of training the TADGE. Inspired by

the negative sampling, I adopt a sliding window with length ℓs to sample the whole

structure sequence G = {s1, s2, · · · , sm} and construct the structure pairs within the

siding window as training samples. The sliding step size õ should satisfy 1 ≤ õ < ℓs

for ensuring two consecutive subsequence having overlap. Otherwise, the continuous

evolutions of the whole dynamic graph will be intermittent. Thus, the maximum

number of sliding windows mw satisfies mw ≤ m− ℓs + 1. Since there are ℓs(ℓs− 1)/2

training samples in each sliding window, mwℓs(ℓs−1)/2 training samples are obtained

in total. According to the Lemma 1 and 2, when the sliding windows satisfy ℓ2s− ℓs <

m, the scale of training samples will definitely be reduced while ensuring the overlap

of sliding windows, therefore improving the training efficiency.

Lemma 1. mw
ℓs(ℓs−1)

2
< m(m−1)

2
if and only if mw <

m2

ℓ2s
.

Proof 1. Since m > ℓs ≥ 1, I have
ℓs − 1

ℓs
<

m− 1

m
. When mw <

m2

ℓ2s
, mw

ℓs(ℓs−1)
2

<

m2(ℓs−1)
2ℓs

< m(m−1)
2

. When mw ≥ m2

ℓ2s
, mw

ℓs(ℓs−1)
2

≥ m2(ℓs−1)
2ℓs

= m
2

(m− 1
ℓs

) ≥ m(m−1)
2

.

Lemma 2. When m > ℓs, mw ≤ m− ℓs + 1 and mw
ℓs(ℓs−1)

2
< m(m−1)

2
simultaneously

establish if ℓ2s − ℓs < m.

Proof 2. Since m − ℓs + 1 is the upper bound of mw and mw
ℓs(ℓs−1)

2
< m(m−1)

2

established when mw <
m2

ℓ2s
, I have m− ℓs + 1 <

m2

ℓ2s
, such that m− ℓs <

m2

ℓ2s
− 1 =

(m−ℓs)(m+ℓs)
ℓ2s

. Therefore, ℓ2s − ℓs < m.

Training Task 3: Time-aware Edge Reconstruction for Final Representa-

tions

Edge reconstruction task has been widely adopted to train the static graph embedding

algorithms. It assumes that the representation of connected vertices should be close.

72

3.5. Embedding Asynchronous Structural Evolutions in The Dynamic Graph

However, this assumption oversimplified the edge formation process in the dynamic

graph since the temporal information such as ToV and ToE has been neglected. A

vertex can join the dynamic graph many times forming edges with the same pair of

vertices but having different ToV and ToE. In the dynamic graph, when vertices are

connected and have similar ToV and ToE, their representation should be close.

I propose a new task, namely time-aware edge reconstruction, to simultaneously es-

timate the ToE while reconstructing the edges between pairs of vertices. Given the

final representation Rv = [rv1 , rv2 , · · ·]T ∈ R|V |×k, the time-aware edge reconstruction

not only classifies whether there is an edge between any pair of vertices, but also

regresses the corresponding ToE at the same time. The objective function is showed

in Eq. (3.34), where Le and LToE respectively are for the edge reconstruction and

the ToE regression.

Lr = Ledg + LToE (3.34)

Similar to identifying vertex itself in Section 3.5.4, I again built a softmax with cross-

entropy loss and employ the adjacency matrix Yadj ∈ R|V |×|V | as the labels for edge

reconstructing, showing in Eq. (3.35).

Ledg = −Yadj log
(
softmax

(
RvR

T
v

))
− (1 − Yadj) log

(
1 − softmax

(
RvR

T
v

)) (3.35)

LToE =
1

2m̂

∑
vi∈V

∑
vj∈Γvi

(
wT

ToE

(
rvi + rvj

)
− δvi,vj

)2
(3.36)

Since ToE does not exist if there is no connection between vertex pairs, I ignore them

and build the ToE regression LToE by Eq. (3.36), where Γvi is the neighborhood set

of vi, δvi,vj in the ToE of the edge linking vi and vj, wToE ∈ Rk×1 is the trainable

linear projection weights, and m̂ is the number of training edges.

73

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Optimization Strategy

As TADGE is built upon the deep neural network structure, I initialize the rep-

resentation Rv by using DeepWalk [71] and then apply Adam [43], a mini-batch

stochastic gradient descent optimizer, to learn the model parameters by minimizing

the joint loss L = Lv + Ls + Lr. Thanks to the above three training tasks, the

asynchronous structural evolutions will be gradually embedded into the vertex repre-

sentation. Meanwhile, I normalize the ToE and the time interval between structures

to [0, 1) by an arc-cotangent function δ = 2 arctan(δ)/π to suppress the influence of

very large absolute value of δ on the model convergence.

3.6 Experiments

In this section, I validate the effectiveness of the proposed TADGE in three public

real-world datasets and benchmark against the state-of-the-art baseline methods on

several data mining applications.

3.6.1 Experimental Setting

Datasets

I benchmark the TADGE algorithm in three public real-world datasets, whose prop-

erties are introduced below.

� Transaction. This is a dynamic bitcoin transaction network1 [48] on the Bit-

coin OTC platform. A vertex is a trader who buys and sells bitcoins. Two

traders form an edge when they complete a transaction. The ToE is the time

1https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

74

https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

3.6. Experiments

Table 3.1: Statistics of datasets

Dataset |V| |E| Mean Degree Mean ToE Std. ToE #Classes

Transaction 5,881 35,592 3.665 30.693 days 72.848 3

Hyperlink 54,075 571,927 7.701 58.350 days 121.937 2

Discussion 194,085 1,443,339 3.987 76.575 days 218.925 -

interval between buying and selling. Each trader is associated with a trustwor-

thy label in low, middle, and high for classification.

� Hyperlink. This is a dynamic subreddit-to-subreddit hyperlink network2 [47]

extracted from the posts that create hyperlinks from one subreddit to another

on Reddit. The vertex is a subreddit and the edge is a hyperlink connecting

two subreddits. Each vertex has a binary semantic label for classification.

� Discussion. This is a dynamic discussion network3 [69] extracted from a stack

exchange website, namely Super User. The vertex is a user who posts, replies,

comments and answers questions on the website. Once a user interact with

others, an edge is formed between them.

The statistics of these datasets are presented in Table 3.1.

Baseline Methods

The baseline methods for comparison are introduced below. I first choose the popu-

lar random-walk-based dynamic graph embedding methods and graph neural network

models as the common baselines. Both of them can only embed synchronous struc-

tural evolutions. Besides, I replace the Time-aware Transformer and the structure

embedding in the TADGE with the graph attention network (GAT) [87] to compare

the effectiveness of the TADGE against GAT while embedding the asynchronous

2https://snap.stanford.edu/data/soc-RedditHyperlinks.html
3https://snap.stanford.edu/data/sx-superuser.html

75

https://snap.stanford.edu/data/soc-RedditHyperlinks.html
https://snap.stanford.edu/data/sx-superuser.html

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

structural evolutions. Lastly, I further evaluate the vertex representation merely

learned by the Time-aware Transformer for exploring how TADGE benefits from the

structure embedding.

� CTDNE [65]. The Continuous-Time Dynamic Network Embedding consists of

a temporal random walk and a skip-gram algorithm to embed the continuous-

time dynamic graph. It merely embeds the synchronous sequential edge forma-

tion but neglects the evolution timing and duration.

� GraphSAGE4 [35]. This is a graph neural network approach for embedding

the dynamic graph by computing the graph convolution from the vertices’ con-

nection change over time. I test different aggregators including GCN, mean,

mean-pooling, and LSTM and report the best results in each dataset.

� GAT5 [87]. This is one of the most popular attention-based approach for graph

embedding, expanding the perception range of vertices from their local neighbor-

hoods to all vertices in the whole graph. It has been showed the effectiveness on

dynamic graph embedding and regarded as one of the state-of-the-art method.

In order to benchmark the TADGE against GAT, I train the model with a loss

function L = Lv + Lr so that the dynamic edge formation and the ToE are

preserved by the GAT for comparison.

� GAT-strc I supplement the structure embedding presented in Section 3.5.2 into

the above GAT, thus making it preserve the asynchronous structural evolutions.

I employ the graph attention instead of the self-attention to learn the structure

embedding. I train the model by using the same loss function L as the TADGE

for a fair comparison.

� TADGE-tTran I learn the vertex representation by the Time-aware Trans-

former which merely preserves the dynamic edge formation with the ToE. I

4https://github.com/williamleif/GraphSAGE
5https://github.com/PetarV-/GAT

76

3.6. Experiments

Table 3.2: Parameter Setting of Temporal Random Walk

Dataset m Max. ℓ Min. ℓ

Transaction 10,000 5 3

Hyperlink 200,000 5 3

Discussion 300,000 10 3

remove the structural attention from the TADGE while setting r̂st = 0 and

Ls = 0 to train the model.

I do not benchmark the TADGE against those methods regarding the SGS as inputs.

The proposed graph model contains finer grain edge information than the snapshot

graphs. Due to the time granularity issues of the SGS, I fail to construct the same

training and test sets as TADGE for a fair comparison.

Experiment Setup

To split training and test sets, I first randomly select m initial vertices and then sample

the dynamic graph into an edge sequence set G = {s1, s2, · · · , sm} as described in

Section 3.4. Due to different scales of datasets, I configure the temporal random walk

with the settings in Table 3.2.

I set the minimum walk length ℓ is 3 so that there are at least 2 edges in every edge

sequence indicating the structural evolutions. Besides, I found that vertices have

limited multi-hop connection in the dynamic graph, which is very different from that

of in a static graph. Over 98% of multi-hop connections in all three datasets does not

exceed the set maximum walk length. Lastly, I randomly select 80% of edge sequence

for model training and the rest is for testing. Please noted that I skip the graph

sampling step in CTDNE and GraphSAGE, training and testing them by using the

same input edge sequences as the TADGE for a fair comparison.

All experiments are conducted with k = 128 as the dimension of representation

77

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

vectors for the TADGE and all baseline methods in three datasets. Following the

recommended parameter setting of the Transformer in [85], I set the number of head

ō = 8 and stack N = 6 blocks for the Time-aware Transformer and GAT to learn

the embeddings in the Hyperlink and Discussion datasets. Due to the small scale of

the Transaction dataset, I set ō = 4 and N = 3. In training, each batch contains

200, 500, and 300 edge sequences for the datasets of Transaction, Hyperlink, and

Discussion respectively. The learning rate of the Adam gradient descent optimizer

is set to 0.005. For CTDNE and GraphSAGE, I adopt the optimal parameters in

their original papers. Both TADGE and baseline methods are trained with enough

epochs for ensuring the convergence. All experiments are conducted on a standard

workstation with Intel Xeon Gold 5122 CPUs, an RTX2080TI GPU, and 32GB RAM.

Evaluation Metrics

Evaluating Classification Performance. I adopt Micro-F1 and Macro-F1 scores

as evaluation metrics for the classification tasks. Mathematically, they are defined as

below:

MicroF1 =
2
∑c

i=1 TPi∑c
i=1 (2TPi + FPi + FNi)

(3.37)

MacroF1 =
1

c

c∑
i=1

2TPi

2TPi + FPi + FN
(3.38)

where c is the total number of classes and TPi, FPi, and FNi respectively are the true

positive, false positive, and false negative of the predicted results for the ith class.

In multi-class classification, the Micro-F1 scores measure the overall classification

accuracy regardless of the performance in classifying individual classes. The Macro-F1

scores are the mean of class-wise F1 scores in which it is sensitive to the classification

performance of minority classes while the Micro-F1 scores are not.

Evaluating Regression Performance. I evaluate the regression performance by

measuring the Root Mean Square Error (RMSE) between the predicted values and

78

3.6. Experiments

the ground truths. Mathematically, they are defined as below.

RMSE =

√∑
y∈Stest

(y − ŷ)2

|Stest|
(3.39)

RMSE measures the gap between the truth value y and the predicted one ŷ in the

test set Stest, revealing the regression errors.

3.6.2 Experimental Results and Analysis

Extensive experiments are conducted to validate the effectiveness and efficiency of

the proposed TADGE and report the results.

ToE Prediction

Given the embedding of vertex pairs, the ToE prediction is estimating the ToE of edge

they formed, thus testing how effectively the learned vertex representations preserve

the temporal dynamics. For the CTDNE and GraphSAGE, which do not leverage

ToE regression as a training task, I make use of the embeddings obtained in their

training phases to train a regression model that employs LToE in Eq. (3.36) as the

loss function.

The test results of ToE prediction are presented in the Table 3.3. The lower the RMSE

value, the more accurate the ToE prediction. The TADGE achieves the lowest RMSE

and dramatically outperforms all baseline methods in three datasets, demonstrating

that the temporal dynamic has been well preserved by the TADGE. Comparing to

those merely embedding the dynamic edge formation, i.e., GAT and TADGE-tTran,

the ToE prediction error drops a lot when they further embed the asynchronous

evolutions of local structures, thus validating the benefits of preserving asynchronous

structural evolutions in ToE prediction.

Static Edge Prediction

The objective of static edge prediction is to determine whether a pair of vertices will

79

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Table 3.3: RMSE of ToE prediction

Transaction Hyperlink Discussion

CTDNE 0.4397 0.4582 0.4718

GraphSAGE 0.4465 0.4464 0.4748

GAT 0.4304 0.4125 0.3394

GAT-strc 0.4025 0.4099 0.3317

TADGE-tTran 0.3959 0.4073 0.3298

TADGE 0.3795 0.4004 0.3170

Table 3.4: Results of Static Edge Prediction

Transaction Hyperlink Discussion

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

CTDNE 0.5177 0.4103 0.7253 0.4527 0.6897 0.3839

GraphSAGE 0.6132 0.5157 0.7114 0.3732 0.6125 0.3788

GAT 0.8300 0.8033 0.9362 0.9071 0.7140 0.6794

GAT-strc 0.8787 0.8627 0.9389 0.9140 0.7377 0.7050

TADGE-tTran 0.9111 0.8864 0.9536 0.9328 0.8060 0.7721

TADGE 0.9133 0.8939 0.9732 0.9612 0.8799 0.8567

form an edge in future timestamps when giving their current representations. This

task ignores the ToV, which is widely adopted by existing work to validate the per-

formance of embedding algorithms in preserving the linkage structures of the graph.

I employ the cosine distance to measure the similarity of vertices’ representation and

predict whether they form an edge by a sigmoid function. The Micro-F1 and Macro-

F1 scores are adopted to evaluate the prediction performance. The Micro-F1 scores

measure the overall prediction accuracy regardless of the respective performance of

each vertex while the Marco-F1 scores indicate the vertex-wise average performance

regardless of how often they appear in the graph.

80

3.6. Experiments

Figure 3.4: Time-aware edge prediction results with varying RMSE threshold in the

Transaction dataset.

The results are summarized in Table 3.4. The TADGE achieved the highest Micro-F1

and Macro-F1 scores in all three datasets. In the Time-aware Transformer, it first

learns vertices’ self-attentions within the local structure by an encoder. Regarding

this encoded vertex attentions as the context information, a decoder is then built to

further embed the exact connections between the vertex pairs within the local struc-

ture, thus better preserving the dynamic edge formation and resulting in higher F1

scores than other baseline methods. Besides, embedding the asynchronous structural

evolutions further boosts the effectiveness of preserving the dynamic edge formation.

Consequently, the TADGE dramatically outperforms all baseline methods, especially

in the Discussion dataset which is with the largest scale and highly dynamic connec-

tions.

Time-aware Edge Prediction

Time-aware edge prediction is a specific application for dynamic graph embedding ab-

stracted from many data mining applications such as forecasting future crowd flow,

81

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Figure 3.5: Time-aware edge prediction results with varying RMSE threshold in the

Hyperlink dataset.

Figure 3.6: Time-aware edge prediction results with varying RMSE threshold in the

Discussion dataset.

82

3.6. Experiments

recommending items at varying time intervals, predicting fraud victims and the time

of victimization. It simultaneously performs static edge prediction and ToE predic-

tion. An edge is correctly predicted if and only if true positive results are obtained in

static edge prediction and the RMSE of ToE estimation is smaller than a threshold

ε. In order to expose the effect of ToE prediction error on the performance of the

time-aware edge prediction, I test the threshold ε from 0.05 to 0.5 and report the

Micro-F1 scores in Fig. 3.4 to Fig. 3.6.

The TADGE performs the best in the datasets of Hyperlink and Discussion when

ε ≥ 0.05. This shows that the RMSE of ToE prediction for most edges predicted

by the TADGE in these datasets is less than 0.05. Although the TADGE performs

slightly worse than the GAT-strc in the Transaction dataset with small ε, it becomes

the best of all when ε > 0.25. The performance superiority of TADGE against the

CTDNE and the GraphSAGE demonstrates that temporal information carried by the

ToV and ToE is a key aspect of preserving the dynamics connection between vertices.

Consequently, the TADGE preserves the spatial and temporal dynamics of the edge

formation very well, therefore resulting in superior performance in the time-aware

edge prediction.

Self-identification of Vertices

Highly accurate self-identification of vertices is very important to the dynamic graph

embedding algorithm. The vertex representation will change as the graph evolves. If

the updated representation fails to recognize the vertex it is representing, the edge

prediction results will be totally wrong even the algorithm is with high edge prediction

accuracy. For example, supposed the algorithm can correctly predict the edge linking

vertices a and b when their representation ra and rb are given. However, if ra is

wrongly recognized as a representation of vertex c, the output of edge prediction will

become vertices c and b are connected, which is not true. Therefore, the representation

of vertices in the dynamic graph should well identify themselves no matter how their

connections change.

83

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Table 3.5: Results of Self-identification of Vertices

Transaction Hyperlink Discussion

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GAT 0.9119 0.8842 0.9033 0.8537 0.7419 0.6928

GAT-strc 0.9262 0.8989 0.9110 0.8642 0.7557 0.7118

TADGE-tTran 0.9068 0.8630 0.9321 0.8968 0.7981 0.7586

TADGE 0.9312 0.9098 0.9453 0.9167 0.8349 0.7975

To validate the effectiveness of the TADGE in self-identification of vertices, I first

generate the representation for every vertex in the test set and then classify its own

identity. Since the CTDNE and the GraphSAGE merely output a fixed representation

for every vertex and do not update the representations in a generic manner, which

is not applicable for the application of self-identification, I benchmark the TADGE

against the rest baseline methods in three testing datasets. The self-identify results

of baseline methods are obtained following the same procedure of the TADGE. As

shown in Table 3.5, the TADGE achieves the highest Micro-F1 and Macro-F1 scores,

which dramatically outperforms others. With the increasing scale and dynamics of

the graph, the performance improvement of the TADGE becomes more and more sig-

nificant. Therefore, the embeddings learned by the TADGE can accurately recognize

the represented vertex and eventually guarantee the reliability of the TADGE in the

practical use of the edge prediction.

Vertex Classification

Vertex classification aims to identify the unique labels of the vertices using their

learned embeddings. A support vector machine (SVM) with a Gaussian kernel is

trained by using the embeddings obtained from the training set with the correspond-

ing vertex labels. After obtaining vertices’ embeddings in the test set, I input them

into the well-trained SVM and classify their labels. It tests how well the embedding

algorithm is in preserving the evolutionary patterns. Since the Discussion dataset

84

3.6. Experiments

Table 3.6: Results of Vertex Classification

Transaction Hyperlink

Micro-F1 Macro-F1 Micro-F1 Macro-F1

CTDNE 0.5969 0.3680 0.7119 0.4653

GraphSAGE 0.6037 0.3711 0.7939 0.7361

GAT 0.5952 0.4256 0.7156 0.6705

GAT-strc 0.6173 0.4424 0.8067 0.7562

TADGE-tTran 0.6042 0.4122 0.7596 0.7247

TADGE 0.6302 0.4644 0.8140 0.7634

does not contain vertex labels, I compare the classification performance measured by

the Micro-F1 and Macro-F1 scores in both Transaction and Hyperlink datasets.

The results are presented in Table 3.6. At the first glance, it is clear that the TADGE

achieves the highest Micro-F1 and Macro-F1 scores in both datasets. Remarkably,

when neglecting the asynchronous structural evolving and merely embedding the

pair-wise dynamic connection changes, the classification accuracy drops significantly.

Since TADGE and GAT-strc are trained by the same loss functions, the performance

improvement of TADGE comes from the excellent preservation of dynamic connec-

tion changes by the Time-aware Transformer and super expression ability of the

self-attention mechanism. Comparing to CTDNE and GraphSAGE, the superior

performance of TADGE demonstrates that embedding the temporal information, i.e.,

ToV and ToE, makes the embeddings more discriminative. In summary, the TADGE

is capable to well preserve the asynchronous structural evolution patterns of vertices,

thus leading to better vertex classification performance.

Parameter Sensitivity Analysis

I investigate the performance fluctuations of TADGE with varied hyper-parameters.

85

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Figure 3.7: Results in the self-identification of vertex and static edge prediction with

varying the hyperparameter of dimension k in the Hyperlink dataset.

In particular, I study the sensitivity of TADGE to the embedding dimension k and

the number of blocks N and heads ō in self-identification of vertices, static edge

prediction, and ToE prediction using the Hyperlink dataset. I vary the value of one

hyper-parameter while fixed the others.

Impact of k

The embedding dimension k is an important hyper-parameter affecting the expres-

siveness of TADGE. I exam k in {32, 64, 128, 192, 256}. As the results in Fig. 3.7 and

Fig. 3.8, with the increasing k, the performance fluctuations in self-identification of

vertex and static edge prediction have similar patterns. Both Micro-F1 and Macro-F1

scores increase at the beginning, indicating that the embeddings’ expressiveness be-

comes more powerful as k increases. After reaching the best F1 scores when k = 128,

the classification performance slightly drops afterward. In ToE prediction, TADGE

gets the smallest RMSE when k = 64, and the prediction errors with the other k

values are close. Hence, TADGE is not sensitive to k in ToE prediction.

86

3.6. Experiments

Figure 3.8: Results in the ToE prediction with varying the hyperparameter of dimen-

sion k in the Hyperlink dataset.

Figure 3.9: Micro-F1 scores of self-identification of vertices with varying the hyper-

parameter of blocks N and heads ō in the Hyperlink dataset.

87

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Figure 3.10: Macro-F1 scores of self-identification of vertices with varying the hyper-

parameter of blocks N and heads ō in the Hyperlink dataset.

Figure 3.11: Micro-F1 scores of static edge prediction with varying the hyperparam-

eter of blocks N and heads ō in the Hyperlink dataset.

88

3.6. Experiments

Figure 3.12: Macro-F1 scores of static edge prediction with varying the hyperparam-

eter of blocks N and heads ō in the Hyperlink dataset.

Figure 3.13: RMSE of ToE prediction with varying the hyperparameter of blocks N

and heads ō in the Hyperlink dataset.

89

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Impact of the number of blocks N and heads ō.

The number of blocks and heads are the key parameters affecting the expression

ability of the self-attention mechanism in the TADGE to learn the asynchronous

structural evolutions. I test the combination of N ∈ {2, 4, 6, 8} and ō ∈ {2, 4, 8} to

evaluate their impacts on the performance fluctuations of TADGE. As the results in

Fig. 3.9 to Fig. 3.13, in self-identification of vertices, higher F1 scores are achieved

when having 2 or 6 blocks. With the increasing number of blocks, the general trend

of classification performance goes downward. When there are fewer blocks, TADGE

with 4 heads achieves the best self-identification results. However, more heads are

required for getting the higher F1 scores when over 6 blocks are employed. In the

static edge prediction, the increasing number of blocks has a negative impact on both

Micro-F1 and Macro-F1 scores while, in general, more heads the better performance.

Similar trends are observed in ToE prediction. In summary, TADGE prefers more

heads but fewer blocks so as to better embed the asynchronous structural evolutions

in the dynamic graph.

Convergence and Training Efficiency Analysis

I demonstrate the convergence and training efficiency of TADGE in the Hyperlink

datasets. In Fig. 3.14, I observe that training loss drops quickly and converges

within a hundred epochs. The overall training accuracy in both edge reconstruction

and self-identification of vertices quickly converges to over 0.9 Micro-f1 score (refer

to Fig. 3.15). Although the loss changes slightly, the Macro-f1 scores in both tasks

gradually increase and eventually reach the convergence, which is consistent with

the conclusion drawn in [85]. Because the appearing times of vertices in a dynamic

graph follow the long-tailed distribution, there are a number of vertices having very

few connections to others. They fail to provide enough linkage information for the

embedding algorithms to learn. Consequently, in the self-identification tasks, the

TADGE converges to very high Micro-F1 scores but with relatively low Macro-F1

scores. Better dealing with this minority of vertices will be a direction for further

90

3.6. Experiments

Figure 3.14: Training loss of TADGE in the Hyperlink dataset.

Figure 3.15: Training F1 scores of TADGE in the Hyperlink dataset.

91

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Figure 3.16: Training RMSE of TADGE in the Hyperlink dataset.

extending this study. In both ToE prediction and structural evolution time interval

regression, which are two regression tasks, the training RMSE converges within 20

epochs (refer to Fig. 3.16), indicating the advantageous convergence speed of the

TADGE in the regression tasks.

Fig. 3.17 shows the average running time of every epoch while training the TADGE

with varying dimension k. The shadow shows the variance of training time. As k

increases, the running time of updating the weights of TADGE at each epoch fluctu-

ates slightly. This validates that the training time is not sensitive to the dimension of

the representations. Hence, I conclude that TADGE has very good convergence and

training efficiency.

Scalability Analysis

I conduct a scalability test for the TADGE in the Discussion dataset which contains

194, 085 vertices and 1, 443, 339 edges. I vary the proportion of the training data in

{0.2, 0.4, 0.6, 0.8, 1.0} to train the TADGE and report the average training time of

92

3.7. Chapter Summary

Figure 3.17: Training efficiency of TADGE with varying k in the Hyperlink dataset.

every epoch. Ideally, the training time should increase linearly when I enlarge the

scale of training data. The growth of training time is showed in Fig. 3.18. The line

indicates the average running time of updating the weights of TADGE at each epoch

and the shadow shows the variance. As the scale of training data gradually enlarges,

the training time grows linearly from 0.141 × 103 seconds to 0.686 × 103 seconds.

Consequently, I conclude that the TADGE has very good scalability for embedding

very large-scale dynamic graphs.

3.7 Chapter Summary

In this chapter, I generically formulate a dynamic graph as a set of temporal edges,

appending the respective joining time of vertices (ToV) and timespan of edges (ToE),

which successfully captures the asynchronous dynamics in the graph. A time-centrality-

93

Chapter 3. Time-aware Dynamic Graph Embedding for Asynchronous Structural
Evolution

Figure 3.18: Training time of TADGE per epoch with varying data proportions in

the Discussion dataset.

biased temporal random walk is proposed to sample the dynamic graph as a set of

temporal edge sequences for capturing the asynchronous structural evolutions. A

TADGE model containing a Time-aware Transformer and a structural embedding

model is then proposed to simultaneously embed the dynamic connection changes

with ToE and the asynchronous evolution starting time of every local structure. The

experimental results show that the TADGE achieves significant performance improve-

ment over the state-of-the-art approaches in various data mining tasks, thus validating

the effectiveness of TADGE to embed the asynchronous structural evolutions. Be-

sides, TADGE is very efficient and scalable when handling large-scale dynamic graphs.

This study has been submitted to the IEEE Transactions on Knowledge and Data

Engineering (TKDE) in 2021.

94

Chapter 4

Early Prediction of At-Risk

Students with Multi-timescale

Dynamic Learning Behaviors

In this chapter, I study the feature representation to capture and embed the dy-

namic learning behavior for early predicting academic at-risk students, tackling the

challenge of multi-timescales. Early prediction of students at risk (STAR) is an ef-

fective and significant means to provide timely intervention for dropout and suicide.

Existing works mostly rely on either online or offline learning behaviors which are

not comprehensive enough to capture the whole learning process. In addition, they

merely focus on static or period learning behavior and overlook the multi-timescale

dynamics, thereby leading to unsatisfying prediction performance. A novel algorithm

(EPARS) is proposed to early predict STAR in a semester by modeling online and

offline dynamic learning behaviors. The online behaviors come from the log of activi-

ties when students use the online learning management system. The offline behaviors

derive from the check-in records of the library. The main observations are two folds.

Significantly different from good students, STAR barely have regular and clear study

95

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

routines. A multi-timescale bag-of-regularity method is devised to extract the multi-

period regularity patterns of students’ learning behaviors. Second, friends of STAR

are more likely to be at risk. A co-occurrence network is constructed to approximate

the underlying social network and encode the social homophily as features through

network embedding. With the fused features of learning regularity and social ho-

mophily, the EPARS can achieve impressively high accuracy in very early predicting

at-risk students.

4.1 Introduction

Predicting students at risk (STAR) plays a crucial and significant role in education as

STAR keep raising public concern of dropout and suicide among adolescents [67] [80].

STAR refer to students requiring temporary or ongoing intervention to succeed aca-

demically [72]. Students may be at risk for several reasons like family problems and

personal issues including poor academic performance. Those students will gradually

fail to sustain their studies and then drop out which is also a waste of educational

resources [10]. Early prediction of STAR offer educators the opportunity to intervene

in a timely manner.

Traditionally, many universities identify STAR by their academic performance which

sometimes is too late to intervene. Existing works are largely based on either online

behaviors or offline behaviors of students [36] [46] [60]. For example, STAR are pre-

dicted in a particular course from in-class feedback such as the grade of homework,

quiz, and mid-term examination [60]. In this case, only static learning behavior has

been captured for prediction. HoIver, due to the complex nature of STAR [23], either

online and offline behaviors only capture part of the learning processes. For exam-

ple, some students prefer learning with printed documents so they become inactive

in online learning platforms after downloading learning materials. This process is

difficult to capture through their online learning behaviors. Therefore, existing work

96

4.1. Introduction

can hardly capture the whole learning processes in a comprehensive way and thus

leads to poor performance in the early prediction of STAR.

In this work, I aim to predict STAR before the end of a semester using both online

and offline dynamic learning behaviors. STAR are defined as students with an average

GPA below 2.0 in a semester. Online behaviors are extracted from click-stream

traces on a learning management system (LMS). These traces reveal how students use

various functionalities of LMS. While the offline behaviors derive from library check-

in records. To achieve the goal, I encounter the following three major challenges: (1)

Multi-timescale dynamics of learning behavior. During the semester, the patterns

of students’ learning behavior varies over daily, weekly, and monthly time scales.

Therefore, it is challenging to capture them fairly Ill for classifying STAR. (2) Label

imbalance. The number of STAR is significantly smaller than that of normal students,

which makes it an extreme label-imbalance classification problem. The classifier will

be easily dominated by the majority class (normal students). (3) Data insufficiency.

Students, especially STAR, are usually inactive at the early stage of a semester. As a

result, the behavior traces are far from enough for accurate early prediction of STAR.

In light of these challenges, I propose a novel algorithm (EPARS) for early prediction

of at-risk students. EPARS captures students’ regularity patterns of learning pro-

cesses in a robust manner. Besides, it also models social homophily among students

to perform highly accurate early STAR prediction. The intuitions behind EPARS

are two-fold. First, good students usually follow their study routines periodically and

show clear regularities of learning patterns [107]. HoIver, the study routines of STAR

are disorganized leading to irregular learning patterns, which is different from good

students. Second, students tend to have social tie with others who are similar to

them according to the theory of social homophily [61] and existing studies found that

at-risk students had more dropout friends [23].

Based on both intuitions, I first propose a multi-timescale bag-of-regularity method

to extract discriminative features from the regularity patterns of students’ learning

97

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

behaviors. Unlike the traditional approaches using entropy for measuring the regular-

ities, which cannot work Ill on sparse data, I ignore the inactive behavior subsequence

and capture the regularity patterns in a multi-timescale manner. The proposed ap-

proach can capture the regularity patterns fairly well even though the data are very

sparse. Therefore, it overcomes the challenge of multi-timescale dynamics and ex-

tracts discriminative features from the regularity patterns for classifying STAR.

In order to model the social homophily, I construct a co-occurrence network from

the library check-in records to approximate social relationships among students.

Co-occurrence networks have been widely used in modeling social relationship and

achieved great success in many application scenarios [77] [78] After that, I embed the

co-occurrence networks and learn a representation vector for every student with the

assumption that students’ representation vectors are close when they have similar

social connections. Modeling the social homophily provides extra information to sup-

plement the lack of behavior trace for STAR at the beginning of a semester, which

solves the data insufficiency problems and makes EPARS capable of early predicting

STAR. Moreover, I oversample the training samples of STAR by random interpolat-

ing using SMOTE [16], which overcomes the label imbalance problem while training

the classifiers.

The contributions are summarized as follows.

� A multi-timescale bag-of-regularity approach is proposed to extract regular-

ity patterns of learning behaviors, which overcomes the challenges of multi-

timescale dynamics and is robust for sparse data. This approach is also generic

for extracting repeated patterns from any given sequence.

� The social homophily among students are learned by embedding a co-occurrence

network constructed from their library check-in records, which reliefs the data

insufficiency issues.

� Extensive experiments on a university-scale dataset show that the proposed

98

4.2. Literature Review

EPARS is effective on STAR early prediction in terms of 14.62% ∼ 38.22%

accuracy improvement to the baselines.

4.2 Literature Review

There are various reasons for students being at-risk, including school factors, com-

munity factors, and family factors. Most of the existing works focus on school factors

due to the convenience of data collection. The classification models used include Lo-

gistic Regression, Decision Trees, and Support Vector Machines. The main difference

of these works relies on the input features, which could be generally classified into

offline and online.

The offline learning behaviors contain check-ins of classes or libraries, quiz and home-

work grades, and records of other activities conduct in the offline environment. These

kinds of works are quite straight forward to monitor the student learning activities

for identification. Early researchers design the Personal Response system and uti-

lize the order of students’ device registration to help identify STAR [31]. Besides,

questionnaires and personal interviews are also applied to collect student informa-

tion for identification [19]. These methods show accurate results in an early stage

of a semester. Moreover, Marbouti et al. also proposed to identify STAR at three

time-points (week 2, 4, and 9) in a semester using in-term performance consists of

homework and quiz grades and mid-term exam scores [60]. These methods rely heav-

ily on domain knowledge, and collecting these offline learning data is very high labor

cost and time-consuming, such that they are not practical for large scale STAR pre-

diction.

With the popularization of online learning, researchers have turned their attention to

analyzing student behavioral data on online learning platforms such as MOOCs and

OpenEdX. The online learning behaviors are collected from the trace that students

99

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

left in the online learning system such as click-stream logs in functional modules of the

systems, forum posts, assignment submission, etc. Kondo et al. early detect STAR

from the system login and assignment submission logs on the LMS [44], but their re-

sults may be partial since most students are not actively engaged with LMS. Shelton

et al. designed a multi-tasks model to predict outstanding students and STAR [76],

which purely uses the frequency of module access as features. [39] proposed a per-

sonalized model for predicting STAR enrolling in different courses, but it is hardly

generalized to various courses, especially the totally new one. Instead of purely using

statistic features, I further extract students’ regularity patterns and social homophily

for early predicting STAR.

4.3 Problem Formulation

This section gives the formal problem definition of STAR early prediction which is

essentially a binary classification problem. I will introduce the exact definition of

STAR, the input data, and the meaning of early prediction.

According to the student handbook of the university, when a student has a Grade

Point Average (GPA) lower than 2.0, he/she will be put on academic probation in

the following semester. If a student is able to pull his/her GPA up to 2.0 or above at

the end of the semester, the status of academic probation will be lifted. Otherwise,

he/she will be dropped out. Therefore, STAR are defined as students whose average

GPA is below 2.0 in a semester.

The input data are two folds. One is the records of students’ online activities in the

Blackboard, a learning management system. The Blackboard has several modules

including course participation, communication and collaboration, assessment and as-

signments. Students could browse and download course-related materials including

lecture keynotes, assignments, quizzes, lab documents etc. They can also take online

100

4.4. Data Description

quizzes and upload their answers for assessment. Besides, students could communi-

cate over the different posts and collaborate on their group assignments. Students’

click operations in the Blackboard will be recorded (online traces). The other is

the check-in records of the library. Students have to tap their student cards before

entering the library (offline records).

Early prediction means the input data are collected before the end of a semester.

Given online traces and offline records accumulated within t (t < tend) where tend is

the end time of a semester, the objective is to identify STAR as accurate as possible.

4.4 Data Description

Students’ online and offline learning traces and their average GPA are collected in an

Asian University in 2016 to 2017 academic year. The online learning traces come from

how students use the Blackboard, a learning management system, to learn. There are

many functions in the Blackboard but some of them are rare to be used by students.

Thus, I collect the click-stream data with timestamps from some of the most popular

modules in the Blackboard including log-in, log-out, course materials access, assign-

ment, grade center, discussion board, announcement board, group activity, personal

information pages, etc. Offline learning traces come from students’ library check-in

records which indicating when they go to library. Since students do not need to tap

their student cards when they leave the library, the check-out records will not be

marked down and I exclude it in this study.

All 15, 503 undergraduate students in the whole university involved in this study.

Every student has a unique but encrypted ID for linking their LMS click-stream

data, library check-in records, and GPA. The overview of collected data are showed

in Tab. 4.1. There are 225 and 319 STAR in semester one and two respectively, which

are 1.45% and 2.06% of all students. This makes the STAR early prediction as an

101

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

Table 4.1: Data overview

Semester 1 Semester 2

STAR Other Std STAR Other Std

Population 391 15,112 225 15,278

click-stream logs in LMS 2,225,605 95,949,014 1,019,134 70,874,428

Avg. # click-stream logs 5,692.0844 6,349.1936 4,529.4844 4,638.9860

Avg. # click-stream logs in first 2 weeks 301.4041 399.9502 243.0400 284.4368

Avg. # click-stream logs in last 2 weeks 526.6522 545.4346 336.9133 304.7331

library check-in 14,045 636,353 6,245 517,557

Avg. # library check-in 35.9207 42.1091 27.7556 33.8760

Avg. # library check-in in first 2 weeks 1.7877 2.3303 1.3889 1.8424

Avg. # library check-in in last 2 weeks 2.9834 3.3760 2.3444 2.4547

extremely label imbalance classification problem. In addition, students left over 170

million click-stream logs but only 1.7 million library check-in records in the whole

academic year such that the data density between online and offline learning trace

are also imbalance. Compared to the last two weeks of the semester, all students are

less active in the first two weeks and STAR are even less active than normal students

which cause data inefficiency problems for early predict STAR at the beginning of

the semester.

4.5 Methodologies

In this section, I will elaborate on the proposed EPARS including multi-timescale

bag-of-regularity, social homophily, and data augmentation.

102

4.5. Methodologies

4.5.1 multi-timescale Bag-of-Regularity

In order to extract the regularity patterns from students’ learning traces, I propose

multi-timescale bag-of-regularity here, which is robust for sparse data.

Based on Hugh Drummond’s definition, behavior regularity is repeatedly occurring

of a certain behavior in descriptions of patterns [22]. Students usually have their

own repeated patterns for using LMS and going to the library. For instance, some

students prefer to go to the library every Monday and Thursday. It is possible for

us to illustrate their repeated patterns on multiple timescales such as they will not

go to library after the day they go there; they go to the library two and three days

apart alternately. If I purely extract the regularity patterns on a single timescale, it

hardly captures the complete picture and leads to information loss. This motivates

us to extract the regularity patterns in multi-timescales. In addition, traditional

approaches, such as entropy, measure the regularities in a global perspective. When

students’ library check-in data are sparse, those approaches will regard their library

check-in as outliers and consider their general regularity patterns as never go to the

library, which are incorrect. Therefore, I focus on the multi-timescale behavior traces

students leave during learning for extracting their learning regularity patterns.

First of all, I construct a binary sequence from students’ behavior traces. When

they have certain behaviors, such as check-in to the library, I mark it as 1 in the

sequence. The time granularity for constructing the binary sequence depends on the

application and the time granularity I used in this study is a day. Next, I sample

subsequences of length ℓ centered on every nonzero element in the sequence. The

length of subsequences ℓ = 2+(s−1)×z where s ∈ {1, 2, · · · , S} is the timescale and

z is the step-size between scales. This sampling approach guarantees that no all-zeros

sequence will be sampled for the following regularity measurement which gives the

proposed method the ability to overcome data sparsity issues. Every subsequence

actually is a behavior pattern that is viewed on different timescales.

103

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

Figure 4.1: Regularity patterns of at-risk students and normal students.

After sampling the multi-timescale dynamic behavior patterns, I explore the repeated

patterns from them to obtain the regularities. Since the regularity is repeatedly

occurring of behavior patterns, I ignore the subsequences that the times of occurrences

are less than a threshold n. For the subsequence of length ℓ in timescale s, it contains

2ℓ − 1 different behavior pattern excluding all-zeros one. I regard them as a bag and

count the number of occurrences of every behavior pattern. Finally, a (2ℓ − 1) × 1

vector rs is obtained, which carries the behavior regularities on timescale s.

Figure 4.1 shows the average occurrence number of each library check-in pattern

between STAR and normal students. The horizontal axis represents the library check-

in patterns at scale 1 to 4. For example, pattern 110 represents a three-day pattern

of students’ library check-in behavior in which they continuously go to the library

for first 2 days but not go there on the third day. The patterns at scale 1 exactly

104

4.5. Methodologies

is the total number of library check-ins. This figure indicates that STAR have less

continuous library studies than normal students.

Lastly, I concatenate the regularity vectors rs in every timescale as the representation

of regularity on multi-timescales. The proposed bag-of-regularity approach explores

the regularity patterns of behaviors in multi-timescales such that it can extract richer

information from the sparse input sequence. The regularity features extracted from

dense LMS data and sparse library check-in records by the multi-timescale bag-of-

regularity are on the same timescale-space so that I can simply concatenate them

together as the final regularity features for STAR prediction and the performance is

fairly well. In addition, the proposed multi-timescale bag-of-regularity is generic for

extracting repeated patterns from any given sequence since it will transform the input

sequence into a binary sequence before extracting regularities.

4.5.2 Social Homophily

A co-occurrence network is constructed to model the social relationship among stu-

dents. If students are friends, they are more likely to learn together because of the

social homophily [61]. They have a higher probability to go to the library together

comparing to strangers. Thus, I assume that two students are friends if they go to

library together. If the time difference of the library check-in between two students

is less than a threshold δ, I treat this as the co-occurrence of two students in the

library. In other words, they go to the library together. Based on this, I construct a

co-occurrence network G(V,E,W) where nodes V are students and there is an edge

e ∈ E linking two nodes if students go to the library together. Each edge is accom-

panied by a weight value w ∈ W showing how many times they co-occurrence in the

library. I constrain w ≥ σ which is a threshold to filter out the “familiar strangers”.

Figure 4.2 illustrates the constructed co-occurrence network partially. Each red node

represents one student, while the edges between nodes indicate the co-occurrences of

105

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

Figure 4.2: A constructed co-occurrence network with σ = 5.

students when they check-in to the library. The width of the edges shows the number

of co-occurrence time between them. I do not construct the co-occurrence network

from the LMS log-in traces because the LMS log-in frequency is too high and it will

involve too many “familiar strangers” in the network. This will introduce significant

biases for learning the social homophily later.

Next step is to learn students’ social homophily from the co-occurrence network.

Network embedding has been widely applied in encoding the connectivities among

nodes as representation and well preserves the graph properties [50] [102]. Here, I

embed the co-occurrence network by Node2Vec [32] and learn a representation vector

for every node which preserves the connectivities among students. In addition, I

106

4.5. Methodologies

constrain that the learned representation of nodes should be close when they have

similar connections. Specifically, I first exploring diverse neighborhoods for every

node by a biased random walk. Let us denote ci as the ith node in the walk. I sample

node sequences with transition probability

p(ci = u|ci−1 = v) =


αpqwuv

Z
if (u, v) ∈ E

0 Otherwise
(4.1)

where Z is a constant for normalization and αpq in Eq. (4.2) is the sampling bias.

αpq =



1/p if duv = 0

1 if duv = 1

1/q if duv = 2

0 Otherwise

(4.2)

duv denotes the shortest path distance between nodes u and v. Parameters p and q

make the trade-offs between depth-first and breadth-first neighborhood sampling.

To learning the final representation of every node, I train a Skip-gram model [71] by

maximizing the log-probability of its network neighborhood conditioned on its feature

representation as showed in Eq. (4.3) where f(·) is a mapping function from node to

feature representations and Ns(u) is u’s neighborhood sampling by the above random

walk.

max
f

∑
u∈V

log

 ∏
vi∈Ns(u)

exp (f(u) · f(vi))∑
v∈V exp (f(u) · f(v))

 (4.3)

I adopt the stochastic gradient ascent to optimize the above objective function over

the model parameters and obtain the representation of every node which carrying its

social homophily. Learning students’ social homophily provides extra information for

dealing with the data insufficiency issues such that it makes the EPARS have the

ability to early predict STAR.

107

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

4.5.3 Data Augmentation

To deal with the extremely label imbalance issues, I oversample the STAR by a

synthetic minority over-sampling technique (SMOTE) [16] while constructing the

training set. For each STAR training sample, denoted as x, I first search its k-nearest

neighbors from all STAR samples in training set by the Euclidean distance in the

feature space, and the k is set to 10 in the experiment. Next, I randomly select a

sample x′ from the k nearest neighbors and synthesize a new STAR example by Eq.

(4.4) where ω is a random number between 0 and 1.

xnew = x + (x′ − x) × ω (4.4)

After the data augmentation, STAR have the same amount as the normal students in

the training set; this allows the classifier to avoid being dominated by the majority of

the normal students during training. SMOTE synthesizes new examples between any

of the two existing minority samples by a linear interpolation approach. Compared

with a widely used under-sampling technique EasyEnsemble, SMOTE introduces ran-

dom perturbation into the training set while generating the synthetic examples, which

provide the trained classifier better generalization.

4.6 Experiments

Extensive experiments are conducted to showcase the effectiveness of proposed EPARS.

In particular, I aim to answer the following research questions (RQ) via experiments:

� RQ1: How effective is the EPARS in predicting STAR?

� RQ2: How early does the EPARS well predict STAR?

� RQ3: How effective is SMOTE for data augmentation in EPARS?

� RQ4: Is the EPARS sensitive to hyper-parameters?

108

4.6. Experiments

4.6.1 Experiment Protocol

Experiment Setting

In the collected dataset, each student has an independent label of either STAR or

the normal student in each semester. Thus, I treat students in different semesters

as a whole in the experiments. When predicting STAR at any time t before the end

of the semester tend, I extract features from their online and offline learning traces

from the beginning of a semester to the current time t. After feature extraction, I

synthesize new STAR examples to augment the training set. I conduct experiments

under the 5-fold cross-validation setting and repeat 10 times. The average results will

be reported in the next subsection. Several classifiers are tested, including the Logistic

Regression, Support Vector Machine (SVM), Decision Tree, Random Forest, and the

Gradient Boosting Decision Tree (GBDT). GBDT outperforms all other classifiers in

the experiments, so I only report the results of GBDT due to the space limit.

Parameter Setting

I set the maximum scale of regularity S = 4, the co-occurrence threshold δ to be

30 seconds, the linking threshold σ = 2, and the dimension of embedding to be 64

for EPARS. I select k = 10 neighborhood for SMOTE to augment the training set.

The classifier GBDT is trained with parameters that the number of estimators is 100,

maximum depth of the decision tree is 10, and the learning rate is 0.1.

Evaluation Metrics

I evaluate the performance of EPARS from two aspects. Since the STAR prediction

is a binary classification problem, I adopt Area Under the receiver operating charac-

teristics Curve (AUC) to measure the classification performance. The AUC indicates

how capable the model is to distinguish between STAR and the normal students.

Moreover, since the focus is to find out the STAR as accurate as possible, I measure

the accuracy of the proposed model in predicting STAR by the number of true posi-

109

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

tive predictions divided by the total number of STAR in the test set. I denote it as

ACC-STAR, which indicates how many percentages of STAR are correctly predicted.

Baseline Approaches.

As mentioned in the introduction, the major contribution is to achieve better STAR

early prediction performance, in terms of higher AUC and ACC-STAR, with features

extracted from students’ learning regularity and social homophily. To verify the

effectiveness of EPARS, I set four baseline models, including SF, DA, DA-Reg, and

DA-SoH. SF uses only the statistically significant behavior features as input to predict

STAR without data augmentation. The process of discovering significant statistical

features will be presented in the next paragraph. DA uses the same features as SF

and augments the training set using SMOTE. Comparing SF and DA, I can verify

whether SMOTE can solve the label imbalance challenge well and results in better

classification performance. DA-Reg and DA-SoH integrate the regularity features

and the social homophily to the DA, respectively. They are to verify the effectiveness

of the proposed multi-timescale bag-of-regularity and the social homophily modeling

approach in STAR prediction.

To discover the significant statistical features, I perform an ANOVA (analysis of vari-

ance) test to figure out what behaviors are statistically significant for distinguishing

between STAR and the normal students. I have 13 kinds of clickstream behaviors

on the LMS and 28 kinds of library check-in behaviors at different times of the day

and different periods in the semester. Due to the space limited, I report the statis-

tically significant features and some of the insignificant features discovered from the

ANOVA in Table 4.2. It is interesting to note that STAR use the LMS less than

the normal students, but they will check the announcement and lectures’ information

more. There is no significant difference in accessing the course materials and checking

assignment results. Besides, STAR go to the library less than the normal students at

the beginning of a semester. Still, they prefer more to be there after business hours.

Lastly, I select the statistically significant features as the SF baseline to benchmark

110

4.6. Experiments

Table 4.2: Results of the ANOVA test

Features P-value F-value Mean STAR Mean Others

LMS Login 0.0020 9.5112 127.4987 144.8043

LMS Logout 0.0000 34.5301 8.9318 20.1348

Check announcement 0.0158 5.8311 41.4436 36.8361

Course access 0.7328 0.1165 4.2677 4.5667

Grade center access 0.7694 0.0859 10.5486 10.2108

Discussion board access 0.0020 9.5951 11.7979 19.2444

Group access 0.0209 5.3385 13.2782 20.1268

Check personal info 0.0000 16.7953 0.2283 1.6585

Check lecturer info 0.0000 106.1638 9.7297 5.5440

Journal page access 0.0199 5.4191 0.2283 1.6585

Lib check-in 0.0700 3.2829 42.8163 47.3589

Lib check-in in the morning 0.0001 14.7133 7.0367 9.4206

Lib check-in in the afternoon 0.0023 9.3196 27.0604 31.9419

Lib check-in after midnight 0.0000 43.9327 4.0105 1.6927

Lib check-in before exam months 0.0123 6.2740 33.9265 39.0143

Lib check-in at the first month 0.0004 12.5447 8.4724 10.6052

the proposed EPARS.

4.6.2 Experimental Results

RQ1: To verify the effectiveness of the proposed EPARS in predicting STAR, I

extract features from the whole semester data to train the GBDT and benchmark

EPARS with four baselines. This experiment evaluates the performance of EPARS

when students’ all learning behaviors in a whole semester is known. The results are

presented in Tab. 4.3.

Comparing the experimental results between SF and DA, it is confirmed that the

111

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

Table 4.3: Results of predicting STAR using the whole semester learning behavior

Metric SF DA DA-Reg DA-SoH EPARS

AUC 0.8423 0.8442 0.8611 0.8623 0.8684

ACC-STAR 0.5395 0.6079 0.6842 0.6184 0.7237

data augmentation approach overcomes the data imbalance challenges to some extent

and achieves improvement in both AUC and ACC-STAR. In addition, the regularity

features extracted by the multi-timescale bag-of-regularity method can improve the

accuracy of predicting STAR a lot, which indicates that the regularity of learning

is a distinguished feature between STAR and the normal students, and the multi-

timescale bag-of-regularity can well extract their regularity patterns efficiently. Com-

pared with DA-Reg, DA-SoH achieves a higher AUC score and has better overall

classification performance. However, its ACC-STAR is much lower than DA-Reg’s,

suggesting that it cannot identify STAR as accurate as DA-Reg. In other words,

social homophily helps identify the normal students a lot rather than recognizing

STAR. This shows that the proposed approach is capable of well modeling the social

homophily among students. Nevertheless, STAR may have similar linkage patterns

with “familiar strangers” in the co-occurrence network since STAR are very hand-

ful. Combining the regularity patterns of learning and social homophily, which is

the proposed EPARS, achieves the best performance in predicting STA in terms of

19.05%, 5.77% and 17.03% ACC-STAR improvement to DA, DA-Reg and DA-SoH,

respectively. This indicates that friends of STAR are more likely to be at-risk if

their regularity patterns of learning behaviors are also similar. Therefore, the regu-

larity features can help eliminate the “familiar strangers” and result in better STAR

prediction performance.

RQ2: To demonstrate the effectiveness of the proposed methods in early predicting

STAR, I conduct experiments in every week’s data of the semester. For each week, I

extract features of students’ learning traces from the beginning of the semester to the

112

4.6. Experiments

Figure 4.3: Results of STAR early prediction.

end of that week. I repeat the experiment for 10 times, and the average ACC-STAR

of early predicting STAR is presented in Fig. (4.3) in which the solid lines are the

average ACC-STAR, and the shadows represent the error spans.

The EPARS outperforms all other baselines from the first week to the end of the

semester. It is worth mention that the EPARS can correctly predict 61.84% STAR

only based on the online and offline learning traces of the students in the first week,

which outperforms SF, DA, DA-Reg, and DA-SoH 38.22%, 17.50%, 14.62%, and

22.38%, respectively. In the first four weeks, the prediction performance of SF keeps

on decreasing. One possible reason is that some normal students are not active

in the beginning of the semester, so that they may have similar behavior patterns

with STAR and cause misclassification. Students’ social homophily and regularity

patterns of learning behaviors are much more discriminable especially in the early

stage of a semester. The performance of EPARS is almost converged in the middle

of a semester while other baselines are still gradually increasing or concussion. It

shows that the EPARS can leverage less information but achieves better performance

113

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

Table 4.4: Evaluation of data augmentation

STAR after DA # Normal Std after DA AUC ACC-STAR

SF 305 11295 0.8342 0.5526

RU 305 305 0.8211 0.5316

RO 11295 11295 0.8458 0.5645

SMOTE 11295 11295 0.8684 0.7237

in early predicting STAR.

RQ3: To verify the effectiveness of using SMOTE for dealing with the label imbalance

issues, I conduct a comparative experiment among random undersampling (RU),

random oversampling (RO) and SMOTE. RU and RO are widely adopted in existing

work for STAR prediction [36] [42]. RU randomly deletes examples with the majority

labels until the labels of training samples are balanced while RO randomly resamples

the minority examples until the numbers of the minority are the same as the majority

one. I regard SF as baseline and launch above data augmentation approach for

predicting STAR before the end of a semester. I repeat the experiment 10 times and

report the average AUC and ACC-STAR in Tab. 4.4.

The first two columns show the number of examples in the training set after data

augmentation in each fold of the experiment. Experimental results show that RO

slightly outperforms the baselines but the performance of RU is worse than the base-

lines. In the case of extremely label imbalance, undersampling technique drops most

of negative training samples and constructs a very small training set, which cannot

provide enough information to well train a classifier. Although RO augments the

minority examples by oversampling, most synthesis examples are the same so that

the classifier is very easy to overfit and results in poor testing accuracy. SMOTE syn-

thesizes the minority examples by linear interpolation which not only increases the

number of minority samples but also enriches the diversity of the training set. Thus,

it achieves the best STAR prediction accuracy in such an extremely label imbalance

114

4.6. Experiments

Figure 4.4: Results of testing the maximum timescale S of multi-scale bag-of-

regularity.

classification task.

RQ4: I test how sensitive EPARS is to the hyper-parameters and discuss how to

select hyper-parameters for EPARS. I focus on three hyper-parameters of EPARS.

One is the maximum time-scale S of the multi-scale bag-of-regularity. The other two

are co-occurrence threshold δ and linking threshold σ between pairs of students when

constructing co-occurrence networks for further modeling the social homophily.

While I are testing the maximum scale S, I fix all other parameters and vary S from

2 to 7 because the minimum time length of the repeated pattern is two days, and

the course schedule is a 7-day cycle. The prediction results are shown in Fig. 4.4. I

found that the overall classification performance measured by AUC is not sensitive

to the maximum scale S, but it affects a lot on the correctness of identifying STAR.

EPARS achieves the best performance when S = 4. The reason may be in two folds.

One reason is that the regularity patterns of the scale 5 to 7 can be synthesized by

the scale of 2 to 4. Thus it has already captured almost all regularity when setting

115

Chapter 4. Early Prediction of At-Risk Students with Multi-timescale Dynamic
Learning Behaviors

Table 4.5: Results of testing co-occurrence threshold δ

δ Ave #edge per week AUC ACC-STAR

10 seconds 14263 0.8699 0.5921

30 seconds 39386 0.8684 0.7237

60 seconds 77318 0.8576 0.6316

Table 4.6: Results of testing linking threshold σ

σ AUC ACC-STAR

2 times 0.8684 0.7237

3 times 0.8615 0.6184

4 times 0.8554 0.5658

5 times 0.8122 0.5395

the maximum scale S = 4. The other reason is that the output feature vector of

multi-scale bag-of-regularity is short and dense when S = 4. It will dramatically

become sparse when S ≥ 4 in this cases, which makes the performance worse.

I further test how co-occurrence threshold δ and linking threshold σ affect the model-

ing of social homophily and present the results in Tab. 4.5 and 4.6. δ = 30 is the best

since smaller δ will make the co-occurrence network unable to capture enough social

relationship for learning the social homophily and larger δ will introduce a large num-

ber of “familiar strangers” which also damages the prediction performance. Similar

results are found in the result of testing linking threshold σ. When increase σ, both

AUC and ACC-STAR are dropping. The reason is that STAR and some ordinary

students go to the library less often than outstanding students so that higher σ may

filter out their social interaction and results in worse prediction performance.

116

4.7. Chapter Summary

4.7 Chapter Summary

In this chapter, I present EPARS, a novel algorithm to extract students’ multi-

timescale regularity patterns of learning and social homophily from dynamic learning

behaviors for early predicting STAR. One of the major contributions is to devise a

multi-timescale bag-of-regularity method to extract regularity features from multi-

timescale dynamic learning behaviors, which is robust for sparse data. In addition,

I model students’ social relationships by constructing a co-occurrence network from

library check-in records and embed their social homophily as feature vectors. Be-

fore training a classifier, I oversample the minority examples to overcome the la-

bel imbalance issues. Extensive experiments are conducted on a large scale dataset

covering all undergraduate students in the whole university. Experimental results

indicate that the EPARS improves the accuracy of baselines by 14.62% ∼ 38.22%

and 5.77% ∼ 34.14% in predicting STAR in the first week and the last week of a

semester, respectively. The research papers [105] [103] [106] arising from this study

has been respectively published in proceedings of the 25th International Conference

on Database Systems for Advanced Applications (DASFAA), the 13th International

Conference on Blended Learning (ICBL) and 4th IEEE International Conference on

Orange Technologies (ICOT).

117

Chapter 5

Conclusions and Future Directions

In this thesis, I study an important yet overlooked problem that is feature represen-

tation in dynamic data for discovering and embedding complex evolution patterns. I

investigated the challenging issues and identified three grand challenges brought by

dynamic data to feature representation. The first one is multi-variate dynamics. It

causes the interrelationship amongst multiple variables to change over time and in-

troduces additional noise, stochastic, and uncertainty, thus making the embedding of

evolution patterns difficult. Second, data asynchronously evolve over time. It evolves

at different times with variant evolution speed, which makes the evolution patterns

very complicated, thereby being challenging to capture and embed in feature repre-

sentation. Lastly, the dynamics of data vary in multiple timescales. At each timescale,

dynamic variables or objects have their own changing patterns with different evolving

periods and eventually constitute the overall evolutions. Hence, it is challenging for

feature representation to fully capture the overall picture of the entire evolutions.

In light of these challenges, I proposed three novel feature representation algorithms to

respectively discover and embed the patterns of multivariate synchronous evolutions,

synchronous evolutions, and multi-timescale evolutions from the dynamic graphs and

the multi-variate time series. Specifically, in Chapter 2, I presented a time-capturing

118

dynamic graph embedding algorithm to learn the asynchronous linkage evolution

amongst vertices while accounting for their evolution duration. The dynamic graph

was modeled as a snapshot graph sequence appending with the timespan of edges

(ToE), thereby well capturing the multivariate synchronous linkage evolution for em-

bedding. A linear regressor was co-trained to embed ToE while inferring a common

latent space for capturing the structural difference amongst consecutive snapshots

by a matrix-factorization-based model, thereby successfully embedding vertices’ syn-

chronous linkage evolution and achieving dramatic performance improvement in graph

mining applications.

In Chapter 3, I designed a time-aware dynamic graph embedding algorithm to fully

capture and embed the asynchronous structural evolutions in a dynamic graph. The

dynamic graphs were innovatively formulated as temporal edge sequences associated

with ToE and ToV (joining time of vertices) to fully capture the asynchronous struc-

tural dynamics for embedding. The dynamic connection changes with ToE and the

asynchronous evolution starting time of every local structure were simultaneously

embedded by a Time-aware Transformer and a structural embedding model, thus

effectively and time-efficiently preserving the asynchronous structural evolution and

eventually outperforming the state-of-the-art in graph mining applications.

It is worth mentioning that both of the dynamic graph embedding algorithms pro-

posed in Chapter 2 and 3 are trained under self-supervision which are general feature

representation methods being independent of applications. It applicable for many

kinds of graph tasks, such as link prediction, vertex classification, vertex cluster-

ing, vertex ranking, graph kernels, and higher-order graph analysis. In addition to

graph data, these approaches are also applicable to diverse non-graph data such as

time-series, grid, text, etc. for capturing and embedding dynamics.

In Chapter 4, I devised a multi-timescale bag-of-regularity method to extract students’

learning regularity patterns from their multi-timescale dynamic learning behaviors.

In addition, I model students’ social relationships by constructing a co-occurrence net-

119

Chapter 5. Conclusions and Future Directions

work from library check-in records and embed their social homophily as feature vec-

tors. With the fused features of learning regularity and social homophily, it achieved

significant accuracy improvement in early predicting academic at-risk students.

Although this thesis presents several novel methods for feature representation in dy-

namic data, several open challenges are remaining to be addressed in the future. First

of all, dynamic data are generated in a streaming manner while most of the exist-

ing feature representation methods, especially the representation learning approaches,

process them batch-by-batch, thereby failing to embed the real-time dynamic changes

in time-sensitive applications. When new data is arriving at the system in a very rapid

manner, the information it carries is much less than that accumulated in the historical

data. This brings the two issues. One is difficult to accurately discriminate whether

it is an outlier or a new change which is significantly important. The other is how

to effectively update the long-term and short-term evolutions with this small amount

of information. Long-term evolutions usually develop slightly and slowly, while the

short-term ones may change dramatically in an instant. These two major issues point

out a promising direction for the future development of feature representation.

The other open challenge is causal reasoning. The advantage of feature representation

is its super ability to extract comprehensive and discriminative information from

data and further transform them as knowledge about the world for solving complex

problems. It enables the intelligent agent to understand the world, which is the

foundation of causal reasoning. How to leverage data-driven approaches to determine

causal relationships instead of correlation is an open research problem. In addition,

the reasoning should not be stationary. Similarly, with the continuous development

of human understanding of the world and things, reasoning results under the same

conditions should change over time, making them dynamic. How to achieve dynamic

causal reasoning becomes another open problem. I believe that solving these grand

problems will lead the whole area towards the era of artificial general intelligence.

120

References

[1] Douglas E Adams and Madhura Nataraju. A nonlinear dynamical systems

framework for structural diagnosis and prognosis. International Journal of En-

gineering Science, 40(17):1919–1941, 2002.

[2] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for

designing overcomplete dictionaries for sparse representation. IEEE Transac-

tions on signal processing, 54(11):4311–4322, 2006.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up

robust features (surf). Computer vision and image understanding, 110(3):346–

359, 2008.

[5] Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou.

Patient subtyping via time-aware lstm networks. In Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and data min-

ing, pages 65–74, 2017.

[6] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202,

2009.

121

References

[7] Nathaniel Beck and Jonathan N Katz. Modeling dynamics in time-series–cross-

section political economy data. Annual Review of Political Science, 14:331–352,

2011.

[8] Peter N. Belhumeur, Joao P Hespanha, and David J. Kriegman. Eigenfaces vs.

fisherfaces: Recognition using class specific linear projection. IEEE Transac-

tions on pattern analysis and machine intelligence, 19(7):711–720, 1997.

[9] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:

A review and new perspectives. IEEE transactions on pattern analysis and

machine intelligence, 35(8):1798–1828, 2013.

[10] Johannes Berens, Kerstin Schneider, Simon Görtz, Simon Oster, and Julian

Burghoff. Early detection of students at risk–predicting student dropouts using

administrative student data and machine learning methods. CESifo Working

Paper Series, 2018.

[11] Ferenc Béres, Domokos M Kelen, Róbert Pálovics, and András A Benczúr.

Node embeddings in dynamic graphs. Applied Network Science, 4(1):64, 2019.

[12] Dimitri Bertsekas. On the goldstein-levitin-polyak gradient projection method.

IEEE Transactions on automatic control, 21(2):174–184, 1976.

[13] Steven L Brunton and J Nathan Kutz. Data-driven science and engineering:

Machine learning, dynamical systems, and control. Cambridge University Press,

2019.

[14] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph represen-

tations with global structural information. In Proceedings of the 24th ACM In-

ternational on Conference on Information and Knowledge Management, pages

891–900, 2015.

[15] Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song,

and Yuan Qi. Continuous-time dynamic graph learning via neural interaction

122

References

processes. In Proceedings of the 29th ACM International Conference on Infor-

mation & Knowledge Management, pages 145–154, 2020.

[16] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip

Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal of

artificial intelligence research, 16:321–357, 2002.

[17] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality:

High-dimensional feature and its efficient compression for face verification. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 3025–3032, 2013.

[18] Hongxu Chen, Hongzhi Yin, Tong Chen, Quoc Viet Hung Nguyen, Wen-Chih

Peng, and Xue Li. Exploiting centrality information with graph convolutions for

network representation learning. In Proceedings of the 35th IEEE International

Conference on Data Engineering, pages 590–601, 2019.

[19] Samuel PM Choi, Sze Sing Lam, Kam Cheong Li, and Billy TM Wong. Learn-

ing analytics at low cost: at-risk student prediction with clicker data and sys-

tematic proactive interventions. Journal of Educational Technology & Society,

21(2):273–290, 2018.

[20] Fritz Colonius and Wolfgang Kliemann. The dynamics of control. Springer

Science & Business Media, 2012.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[22] Hugh Drummond. The nature and description of behavior patterns. In Per-

spectives in ethology, pages 1–33. Springer, 1981.

123

References

[23] Stephen Ellenbogen and Claire Chamberland. The peer relations of dropouts:

a comparative study of at-risk and not at-risk youths. Journal of adolescence,

20(4):355–367, 1997.

[24] Ahmed Fathy and Kan Li. Temporalgat: Attention-based dynamic graph rep-

resentation learning. In Pacific-Asia Conference on Knowledge Discovery and

Data Mining, pages 413–423, 2020.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[26] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec:

Capturing network dynamics using dynamic graph representation learning.

Knowledge-Based Systems, 2019.

[27] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec:

Capturing network dynamics using dynamic graph representation learning.

Knowledge-Based Systems, 187:104816, 2020.

[28] Palash Goyal, Homa Hosseinmardi, Emilio Ferrara, and Aram Gal-

styan. Capturing edge attributes via network embedding. arXiv preprint

arXiv:1805.03280, 2018.

[29] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding

method for dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.

[30] Sander Greenland, Mohammad Ali Mansournia, and Douglas G Altman. Sparse

data bias: a problem hiding in plain sight. BMJ, 352:i1981, 2016.

[31] Edwin R Griff and Stephen F Matter. Early identification of at-risk students

using a personal response system. British Journal of Educational Technology,

39(6):1124–1130, 2008.

124

References

[32] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-

works. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 855–864, 2016.

[33] Yupeng Gu, Yizhou Sun, Yanen Li, and Yang Yang. Rare: Social rank regulated

large-scale network embedding. In Proceedings of the 2018 World Wide Web

Conference, pages 359–368, 2018.

[34] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learn-

ing dynamics and heterogeneity of spatial-temporal graph data for traffic fore-

casting. IEEE Transactions on Knowledge and Data Engineering, 2021.

[35] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-

ing on large graphs. In Advances in Neural Information Processing Systems,

pages 1024–1034, 2017.

[36] Jiazhen He, James Bailey, Benjamin IP Rubinstein, and Rui Zhang. Identi-

fying at-risk students in massive open online courses. In Twenty-Ninth AAAI

Conference on Artificial Intelligence, 2015.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[38] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description

length, and helmholtz free energy. Advances in neural information processing

systems, 6:3–10, 1994.

[39] Li Chin Ho and Kyong Jin Shim. Data mining approach to the identification

of at-risk students. In 2018 IEEE International Conference on Big Data (Big

Data), pages 5333–5335. IEEE, 2018.

[40] Di Huang, Caifeng Shan, Mohsen Ardabilian, Yunhong Wang, and Liming

Chen. Local binary patterns and its application to facial image analysis: a

125

References

survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-

cations and Reviews), 41(6):765–781, 2011.

[41] Trachette Jackson and Ami Radunskaya. Applications of dynamical systems in

biology and medicine, volume 158. Springer, 2015.

[42] Sandeep M Jayaprakash, Erik W Moody, Eitel JM Lauŕıa, James R Regan, and

Joshua D Baron. Early alert of academically at-risk students: An open source

analytics initiative. Journal of Learning Analytics, 1(1):6–47, 2014.

[43] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[44] Nobuhiko Kondo, Midori Okubo, and Toshiharu Hatanaka. Early detection

of at-risk students using machine learning based on lms log data. In 2017

6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI),

pages 198–201. IEEE, 2017.

[45] Yu Kong and Yun Fu. Human action recognition and prediction: A survey.

arXiv preprint arXiv:1806.11230, 2018.

[46] Irena Koprinska, Joshua Stretton, and Kalina Yacef. Students at risk: Detec-

tion and remediation. In Proceedings of the 8th International Conference on

Educational Data Mining, pages 512–515, 2015.

[47] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Com-

munity interaction and conflict on the web. In Proceedings of the 2018 World

Wide Web Conference on World Wide Web, pages 933–943, 2018.

[48] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.

Edge weight prediction in weighted signed networks. In Proceedings of the 16th

IEEE International Conference on Data Mining, pages 221–230, 2016.

126

References

[49] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding

trajectory in temporal interaction networks. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

pages 1269–1278, 2019.

[50] Chaozhuo Li, Senzhang Wang, Dejian Yang, Zhoujun Li, Yang Yang, Xiaoming

Zhang, and Jianshe Zhou. Ppne: property preserving network embedding. In

International Conference on Database Systems for Advanced Applications, pages

163–179. Springer, 2017.

[51] Juzheng Li, Jun Zhu, and Bo Zhang. Discriminative deep random walk for net-

work classification. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics, pages 1004–1013, 2016.

[52] Yali Li, Shengjin Wang, Qi Tian, and Xiaoqing Ding. Feature representation

for statistical-learning-based object detection: A review. Pattern Recognition,

48(11):3542–3559, 2015.

[53] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization.

Neural computation, 19:2756–2779, 2007.

[54] Zhiyuan Liu, Yankai Lin, and Maosong Sun. Representation learning for natural

language processing. Springer Nature, 2020.

[55] David G Lowe. Distinctive image features from scale-invariant keypoints. In-

ternational journal of computer vision, 60(2):91–110, 2004.

[56] Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S Yu, and Yanfang Ye. Temporal

network embedding with micro-and macro-dynamics. In Proceedings of the 28th

ACM International Conference on Information and Knowledge Management,

pages 469–478, 2019.

127

References

[57] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic

flow prediction with big data: a deep learning approach. IEEE Transactions

on Intelligent Transportation Systems, 16(2):865–873, 2014.

[58] Jianxin Ma, Peng Cui, and Wenwu Zhu. Depthlgp: Learning embeddings of

out-of-sample nodes in dynamic networks. In AAAI, 2018.

[59] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convo-

lutional networks. Pattern Recognition, 97:107000, 2020.

[60] Farshid Marbouti, Heidi A. Diefes-Dux, and Krishna Madhavan. Models for

early prediction of at-risk students in a course using standards-based grading.

Computers and Education, 103:1 – 15, 2016.

[61] Peter V Marsden. Homogeneity in confiding relations. Social networks,

10(1):57–76, 1988.

[62] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shan-

non. A proposal for the dartmouth summer research project on artificial intel-

ligence, august 31, 1955. AI magazine, 27(4):12–12, 2006.

[63] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[64] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems, pages 3111–3119, 2013.

[65] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee

Koh, and Sungchul Kim. Continuous-time dynamic network embeddings. In 3rd

International Workshop on Learning Representations for Big Networks, 2018.

[66] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks. Social

networks, 31(2):155–163, 2009.

128

References

[67] Ricardo Orozco, Corina Benjet, Guilherme Borges, Maŕıa Fátima Moneta Arce,

Diana Fregoso Ito, Clara Fleiz, and Jorge Ameth Villatoro. Association between

attempted suicide and academic performance indicators among middle and high

school students in mexico: results from a national survey. Child and adolescent

psychiatry and mental health, 12(1):9, 2018.

[68] Timothy N Palmer. A nonlinear dynamical perspective on climate prediction.

Journal of Climate, 12(2):575–591, 1999.

[69] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal

networks. In Proceedings of the Tenth ACM International Conference on Web

Search and Data Mining, pages 601–610, 2017.

[70] Hao Peng, Jianxin Li, Hao Yan, Qiran Gong, Senzhang Wang, Lin Liu, Lihong

Wang, and Xiang Ren. Dynamic network embedding via incremental skip-gram

with negative sampling. Science China Information Sciences, 63(10):1–19, 2020.

[71] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of

social representations. In Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 701–710, 2014.

[72] V Richardson. At-risk student intervention implementation guide. The Edu-

cationand Economic Development Coordinating Council At-Risk Student Com-

mittee, page 18, 2005.

[73] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico

Monti, and Michael Bronstein. Temporal graph networks for deep learning on

dynamic graphs. arXiv preprint arXiv:2006.10637, 2020.

[74] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dy-

namic graph representation learning via self-attention networks. arXiv preprint

arXiv:1812.09430, 2018.

129

References

[75] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat:

Deep neural representation learning on dynamic graphs via self-attention net-

works. In Proceedings of the 13th International Conference on Web Search and

Data Mining, pages 519–527, 2020.

[76] Brett E Shelton, Juan Yang, Jui-Long Hung, and Xu Du. Two-stage predic-

tive modeling for identifying at-risk students. In International Conference on

Innovative Technologies and Learning, pages 578–583. Springer, 2018.

[77] Jiaxing Shen, Jiannong Cao, and Xuefeng Liu. Bag: Behavior-aware group

detection in crowded urban spaces using wifi probes. In The World Wide Web

Conference, pages 1669–1678. ACM, 2019.

[78] Jiaxing Shen, Jiannong Cao, Xuefeng Liu, and Shaojie Tang. Snow: Detecting

shopping groups using wifi. IEEE Internet of Things Journal, 5(5):3908–3917,

2018.

[79] Linlin Shen and Li Bai. A review on gabor wavelets for face recognition. Pattern

analysis and applications, 9(2):273–292, 2006.

[80] Ralph Stinebrickner and Todd Stinebrickner. Academic performance and college

dropout: Using longitudinal expectations data to estimate a learning model.

Journal of Labor Economics, 32(3):601–644, 2014.

[81] Xiangguo Sun, Hongzhi Yin, Bo Liu, Hongxu Chen, Jiuxin Cao, Yingxia Shao,

and Nguyen Quoc Viet Hung. Heterogeneous hypergraph embedding for graph

classification. In Proceedings of the 14th ACM International Conference on Web

Search and Data Mining, pages 725–733, 2021.

[82] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems,

pages 3104–3112, 2014.

130

References

[83] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.

Dyrep: Learning representations over dynamic graphs. In 7th International

Conference on Learning Representations, ICLR 2019, 2019.

[84] Paul Tseng. Convergence of a block coordinate descent method for non-

differentiable minimization. Journal of optimization theory and applications,

109(3):475–494, 2001.

[85] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008, 2017.

[86] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint

arXiv:1710.10903, 2017.

[87] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In International Conference

on Learning Representations, 2018.

[88] Hua Wang, Feiping Nie, Heng Huang, Jingwen Yan, Sungeun Kim, Shannon

Risacher, Andrew Saykin, and Li Shen. High-order multi-task feature learning

to identify longitudinal phenotypic markers for alzheimer’s disease progression

prediction. Advances in neural information processing systems, 25:1277–1285,

2012.

[89] Jia Wang, Jiannong Cao, Wei Li, and Senzhang Wang. Cane: community-

aware network embedding via adversarial training. Knowledge and Information

Systems, 63(2):411–438, 2021.

[90] Junshan Wang, Yilun Jin, Guojie Song, and Xiaojun Ma. Epne: Evolutionary

pattern preserving network embedding. In Proceedings of the 24th European

Conference on Artificial Intelligence, pages 1603–1610, 2020.

131

References

[91] Mei Wang and Weihong Deng. Deep face recognition: A survey. arXiv preprint

arXiv:1804.06655, 2018.

[92] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang.

Community preserving network embedding. In AAAI, pages 203–209, 2017.

[93] Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative matrix factorization: A com-

prehensive review. IEEE Transactions on knowledge and data engineering,

25(6):1336–1353, 2012.

[94] Yuandong Wang, Hongzhi Yin, Tong Chen, Chunyang Liu, Ben Wang, Tianyu

Wo, and Jie Xu. Passenger mobility prediction via representation learning for

dynamic directed and weighted graph. arXiv preprint arXiv:2101.00752, 2021.

[95] Zhiwei Wang, Yao Ma, Zitao Liu, and Jiliang Tang. R-transformer: Recurrent

neural network enhanced transformer. arXiv preprint arXiv:1907.05572, 2019.

[96] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[97] Lei Wu, Steven CH Hoi, and Nenghai Yu. Semantics-preserving bag-of-words

models and applications. IEEE Transactions on Image Processing, 19(7):1908–

1920, 2010.

[98] Yun Xiong, Yao Zhang, Hanjie Fu, Wei Wang, Yangyong Zhu, and S Yu Philip.

Dyngraphgan: Dynamic graph embedding via generative adversarial networks.

In Proceedings of the International Conference on Database Systems for Ad-

vanced Applications, pages 536–552, 2019.

[99] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. Embedding of em-

bedding: Joint embedding for coupled heterogeneous networks. In Proceedings

of the Tenth ACM International Conference on Web Search and Data Mining,

pages 741–749, 2017.

132

References

[100] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. On exploring

semantic meanings of links for embedding social networks. In Proceedings of

the 2018 World Wide Web Conference, pages 479–488, 2018.

[101] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang.

Network representation learning with rich text information. In IJCAI, pages

2111–2117, 2015.

[102] Dejian Yang, Senzhang Wang, Chaozhuo Li, Xiaoming Zhang, and Zhoujun Li.

From properties to links: Deep network embedding on incomplete graphs. In

Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management, pages 367–376, 2017.

[103] Yu Yang, Jiannong Cao, Jiaxing Shen, Ruosong Yang, and Zhiyuan Wen. Learn-

ing analytics based on multilayer behavior fusion. In 13th International Con-

ference on Blended Learning, pages 15–24. Springer, 2020.

[104] Yu Yang, Jiannong Cao, Milos Stojmenovic, Senzhang Wang, Yiran Cheng,

Chun Lum, and Zhetao Li. Time-capturing dynamic graph embedding for tem-

poral linkage evolution. IEEE Transactions on Knowledge and Data Engineer-

ing, 2021.

[105] Yu Yang, Zhiyuan Wen, Jiannong Cao, Jiaxing Shen, Hongzhi Yin, and Xiao-

fang Zhou. Epars: Early prediction of at-risk students with online and offline

learning behaviors. In International Conference on Database Systems for Ad-

vanced Applications, pages 3–19. Springer, 2020.

[106] Yu Yang, Hanqing Wu, and Jiannong Cao. Smartlearn: Predicting learning

performance and discovering smart learning strategies in flipped classroom. In

2016 IEEE International Conference on Orange Technologies (ICOT), pages

92–95. IEEE, 2016.

133

References

[107] Huaxiu Yao, Defu Lian, Yi Cao, Yifan Wu, and Tao Zhou. Predicting aca-

demic performance for college students: A campus behavior perspective. ACM

Transactions on Intelligent Systems and Technology (TIST), 10(3):24, 2019.

[108] Kai Yu, Tong Zhang, Yihong Gong, et al. Nonlinear learning using local coor-

dinate coding. In NIPS, volume 22, pages 2223–2231. Citeseer, 2009.

[109] Le Yu, Bowen Du, Xiao Hu, Leilei Sun, Liangzhe Han, and Weifeng Lv. Deep

spatio-temporal graph convolutional network for traffic accident prediction.

Neurocomputing, 423:135–147, 2021.

[110] Wenchao Yu, Charu C Aggarwal, and Wei Wang. Temporally factorized network

modeling for evolutionary network analysis. In Proceedings of the Tenth ACM

International Conference on Web Search and Data Mining, pages 455–464, 2017.

[111] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Collective classifi-

cation via discriminative matrix factorization on sparsely labeled networks. In

Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management, pages 1563–1572, 2016.

[112] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. User profile pre-

serving social network embedding. In IJCAI, pages 3378–3384, 2017.

[113] Wenchao Zhang, Shiguang Shan, Wen Gao, Xilin Chen, and Hongming Zhang.

Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical

model for face representation and recognition. In Tenth IEEE International

Conference on Computer Vision (ICCV’05) Volume 1, volume 1, pages 786–

791. IEEE, 2005.

[114] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. Timers: Error-

bounded svd restart on dynamic networks. In AAAI, 2018.

[115] Pengpeng Zhao, Anjing Luo, Yanchi Liu, Fuzhen Zhuang, Jiajie Xu, Zhixu Li,

Victor S Sheng, and Xiaofang Zhou. Where to go next: A spatio-temporal

134

References

gated network for next poi recommendation. IEEE Transactions on Knowledge

and Data Engineering, 2020.

[116] Alice Zheng and Amanda Casari. Feature engineering for machine learning:

Principles and techniques for data scientists. O’Reilly Media, Inc., 2018.

[117] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph

generative model for temporal interaction networks. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, pages 401–411, 2020.

[118] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic

network embedding by modeling triadic closure process. In AAAI, 2018.

[119] Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. High-order

proximity preserved embedding for dynamic networks. IEEE Transactions on

Knowledge and Data Engineering, 2018.

[120] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Gal-

styan. Scalable temporal latent space inference for link prediction in dynamic

social networks. IEEE Transactions on Knowledge and Data Engineering,

28(10):2765–2777, 2016.

[121] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu.

Embedding temporal network via neighborhood formation. In Proceedings of

the 24th ACM SIGKDD international conference on knowledge discovery & data

mining, pages 2857–2866, 2018.

135

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background & Motivation
	Research Challenges
	Research Framework
	Thesis Organization

	Time-capturing Dynamic Graph Embedding for Temporal Linkage Evolution
	Introduction
	Literature Review
	Problem Definition
	Capturing the Evolution of Dynamic Graphs
	Embedding Temporal Linkage Evolution
	Time Capturing Dynamic Graph Embedding Model
	Optimization Algorithm
	Efficient Training Procedure and Convergence

	Experimental Results and Analysis
	Experimental Setting
	Vertex Classification
	ToE Prediction
	Static Link Prediction
	Time-aware Link Prediction
	Parameter Sensitivity Analysis
	Convergence and Training Efficiency
	Scalability of TCDGE

	Chapter Summary

	Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution
	Introduction
	Literature Review
	Problem Definition
	Capturing Asynchronous Structural Evolutions in the Dynamic Graph
	Embedding Asynchronous Structural Evolutions in The Dynamic Graph
	Embedding Dynamic Edge Formation with ToE
	Structure Embedding with Evolution Starting Time
	Representation Fusion
	Training TADGE

	Experiments
	Experimental Setting
	Experimental Results and Analysis

	Chapter Summary

	Early Prediction of At-Risk Students with Multi-timescale Dynamic Learning Behaviors
	Introduction
	Literature Review
	Problem Formulation
	Data Description
	Methodologies
	multi-timescale Bag-of-Regularity
	Social Homophily
	Data Augmentation

	Experiments
	Experiment Protocol
	Experimental Results

	Chapter Summary

	Conclusions and Future Directions
	References

