
Copyright Undertaking 

This thesis is protected by copyright, with all rights reserved. 

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



ON RADIATION-BASED THERMAL

SERVOING: PERCEPTION,

MODELLING, CONTROL, AND

EXPERIMENTS

HU LUYIN

MPhil

The Hong Kong Polytechnic University

2022





The Hong Kong Polytechnic University

Department of Mechanical Engineering

On Radiation-Based Thermal Servoing:

Perception, Modelling,

Control, and Experiments

HU Luyin

A thesis submitted in partial fulfilment

of the requirements for the degree of

MASTER OF PHILOSOPHY

January 2022





CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowl-

edge and belief, it reproduces no material previously published or written, nor

material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

Signature:

Name: Hu Luyin

i



ii



Abstract

Robotic thermal servoing (TS) is a new sensor-based temperature

control method that regulates heat energy transfer processes by ac-

tively changing the robot configuration. This control method is es-

sential for creating machines with thermo-motor intelligence for in-

dustrial, surgical, exploration, and rescue applications. Despite its

practical benefits, state-of-the-art methods typically address this prob-

lem in an openloop fashion (i.e. with no thermal feedback) and with

static source-surface configurations (i.e. no robot controls). The

main challenge is to derive a geometrical-thermal-motor model that

describes the relation between the active robot configuration and the

produced dynamic thermal response. The general objective of our

research is to implement different types of TS techniques and ex-

plore their practical applications. Specifically, this thesis focuses on

the robotic TS scenarios where the heat radiation is dominant.
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We started by investigating devices that enable the robot to perceive

temperature of its surrounding environment. To this end, an RGB-

depth-thermal camera system that registers an object’s temperature

profile to its geometrical information was developed to obtain abun-

dant multimodal feedback in real-time.

Then, we elucidates the formulation of a “fire-to-hand” robotic TS

problem, where multiple objects (with unknown thermophysical prop-

erties) attached to the same robot end-effector are controlled to move

around a radiative heat source. This experimental setup is a gener-

alization of many practical industrial applications. To effectively

and simultaneously regulate the temperature values the objects, two

asymptotically stable controllers, one model-based and one adap-

tive, were designed. The experimental results validate the feasibility

of our proposed method, and the unfeasible temperature target prob-

lem is analysed in depth.

Next, we explored a ”fire-in-hand” robotic TS problem, where a

robot system that autonomously tracks the sun and concentrates the

solar power through a Fresnel lens was developed. Relying on the

optical simulations and the heat pyrolysis model, we could actively

regulate the temperature of the target surface and the induced al-
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teration of the surface property by robot motion. This functional

robotic platform is a prototype of a new type of light-weight and

energy-efficient field robot that effectively utilizes solar power for

electricity generation and high temperature operations.
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Chapter 1

Introduction

1.1 Background

Temperature is a ubiquitous and crucial factor in scientific research

fields. Biologists find animals actively regulate their body tempera-

tures by behavioural and physiological responses under varying en-

vironmental conditions [1]. For humans, we not only intuitively ad-

Figure 1.1: Creatures and robots with “thermo-motor intelligence”. Butterflies
intuitively adjusting the angles between their wings and sunshine is depicted in (a).
Future robotic systems integrated with thermal servoing algorithms for volcano
exploration, firefighting and industrial applications are depicted in (b), (c), (d),
respectively. Images are designed by the authors.
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just the heat exchange between ourselves and environments, but also

invent delicate tools and algorithms for controlling the temperatures

of other physical systems (e.g., industrial temperature control sys-

tems [2]–[4]). Recently, a number of studies have also shown that

the temperature, both of the robot itself and of the object being ma-

nipulated, is an important factor that affects and constrains the per-

formance of robots for industrial [5], rescue [6], surgical [7] and

exploration purposes [8].

In previous studies, temperature control was dominantly achieved

by altering power supply to robotic systems. However, there has

been little discussion on a robotic temperature control system that

concerns or exploits heat energy transferred from the environment

(like what animals usually do). This capability is important for

robots that work under high temperature environments [6], contain

temperature-sensitive parts[7], or equipped with heat energy har-

vesting devices [9]. In addition, in some industrial applications

where output power of heaters is not controllable or reaches its max-

imum (when heating large-scale industrial products [3]), a different

temperature control algorithm is needed.
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1.2 Robot Thermal Servoing

To this end, we introduce robotic thermal servoing, a feedback con-

trol problem that deals with the regulation of an object’s tempera-

ture by means of motor actions of a rigid robot, which can either

manipulate the object or the heat source. It is a frontier problem that

has numerous important applications (e.g. in industrial process con-

trol, cosmetic dermatology, fire-fighting missions, etc.) where tem-

perature needs to be dynamically controlled and the environment is

uncertain. The quality, performance and safety of these (otherwise

open-loop) applications can be improved by incorporating thermal

sensorimotor capabilities.

From a control systems perspective, the automation of this type of

temperature-critical tasks requires: (a) the computation of a geometric-

thermal-motor (GTM) model1 describing the relation between the

robot’s motion and the consequent thermal response, and (b) the

development of a sensor-based strategy (that relies on the thermal

interaction matrix)2 to autonomously impose a desired heat profile

1The GTM model is analogous to the geometric-image-motor model used in visual servoing to
control the robot’s motion [10]. Its derivation relies on thermophysical principles (to be introduced
in Sec. 4.2), which correspond to the role of a camera model in the visual servoing formulation.

2Similar to the interaction (Jacobian) matrix of servoing problems, a thermal interaction matrix
relates the heat energy inflow/outflow towards/from the object of interest (that causes a temperature
change) with the robot motion.
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onto the surface of interest. Note that unlike other perception modal-

ities for robot control (e.g. vision [11], proximity [12], touch[13],

audition [14] and even smell [15]), thermoception has not been fully

formalized in the literature as a bona fide feedback signal for mo-

tion control. In the robotics community, we still lack the framework

to fully exploit it. Up to now, the overwhelming use of thermocep-

tion in robotics has been to monitor processes (e.g., image-based

visual servoing with thermal cameras [16]), but not to establish ex-

plicit thermal servo-loops [17], which are needed to accurately con-

trol temperature. Our aim in this paper is to develop the necessary

framework that enables the design of thermal servoing controls with

radiative heat sources. In general, there are two types of robotic TS

techniques: When the heat source is independent of the robot (wild-

fire, volcano, sunshine, etc.) and temperature of the robot itself or

objects attached to the robot is to be controlled, we may classify it

as “fire-to-hand” type; when the heat source is attached to the robot

(a common set up of power based robotic temperature control sys-

tems), we may classify it as “fire-in-hand” type (in analogy to the

well-known configuration in the classical visual servoing [18]).
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1.2.1 Fire-to-hand

Design of “fire-to-hand” type of algorithms can be inspired by an-

imals (especially ectotherms) who have learned various thermoreg-

ulation behavioural responses through evolution. To name a few,

marine animals that habit around hydrothermal vents actively reg-

ulate their proximity to vents according to their energetic require-

ments [19]; butterflies increase their body temperature by basking

dorsally or laterally in the sun, or to avoid overheating by turning

the thin edge of wings towards the sun [20], see Fig. 1.1 (a); ground-

dwelling insects vary distances between their bodies and ground sur-

faces to regulate their body temperatures by heat conduction and

convection [1].

Inspired by these biological examples, we may design TS al-

gorithms for existing robotic systems. In [6], firefighting robots

equipped with thermal cameras automatically locate and classify

fires in burning structures; by integrating the proposed method, the

firefighting robots can instruct themselves and human firefighters to

work at an optical safe distance depending on everchanging fire-

ground conditions, see Fig. 1.1 (b). Aerial volcano exploration

robots are equipped with thermal cameras for data collection pur-
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poses [8]; integrating the proposed method to these drones can make

them automatically adjust their configurations according to the erup-

tion stage of the volcano, see Fig. 1.1 (c). In [21], the functional

behavior of a flapping-wing robot’s hinge (made of temperature-

sensitive material) was controlled by varying its working temper-

ature. In future applications, robots with temperature-sensitive parts

may integrate the proposed method to exploit the heat energy trans-

ferred from environment to save energy and to improve robustness.

1.2.2 Fire-in-hand

Development of “fire-in-hand” type of algorithm is more for indus-

trial applications. For example, in automobile industry, uniform

heating of an aluminium mould during surface processing is neces-

sary to ensure its uniform structure and coloring; in [3], the optimal

configurations of multiple heaters were calculated under a simula-

tion environment to complete the task. However, if the heater con-

figurations are predetermined and fixed, uniform heating may not be

ensured as the real heat transfer processes are likely to be different

from simulations. Reformulating it as a “fire-in-hand” type of prob-

lem (where the heaters are installed on movable platforms), an adap-
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tive algorithm that controls heater configurations according to the

feedback temperature profile of the mould can be designed, which

also works for moulds of different shapes. We believe “fire-in-hand”

temperature control algorithm can be widely applied in similar in-

dustrial applications where the temperatures of complex-shaped or

large-scale objects are regulated by multiple heaters cooperatively.

Note that although robotic TS controls object temperature only by

motion, if other temperature control techniques (power based, heat-

ing duration based, etc.) are available, they can also be integrated to

improve efficiency.

In its most fundamental form, robotic TS involves: (a) the com-

putation of a geometric-thermal-motor (GTM) model that describes

the relation between the active robot configuration and the produced

dynamic thermal response, and (b) the development of a sensor-

guided motion strategy to autonomously impose a desired target

temperature to the body or the surface of interest.

1.3 Related Work

Although thermal sensing is a mature technology and has a rich his-

tory in the automation of many tasks (see e.g. [22]–[25]), its use
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as a feedback signal for robot control has not been sufficiently stud-

ied in the literature [26], where only a few works have addressed

this challenging servo-control problem. Some representative works

that deal with explicit thermal control include: [27], where a fuzzy

controller is developed to regulate the temperature of a fuel cell ac-

tuator; [7], where the influence of temperature in the deformation

behavior of a surgical robot is investigated, and an explicit thermal

regulator is designed; [5], where a control method is designed to

maintain a constant tool temperature by adjusting the spindle speed

in a stir friction welding robot. However, in these types of methods,

temperature control is achieved by directly modulating the power of

the heat-generating components. This approach is not suitable when

considering external heat sources, e.g. wildfires [6] and sunlight [9],

or when the source’s power should not be varied, e.g. in cosmetic

procedures [28].

A different strategy is to use sensor-based control, i.e. to dynam-

ically change the source-object geometric configuration to achieve a

desired thermal response (similar to what many organisms do [29]).

This can be easily done by rigid robots, since their basic function

is motion control. Such approach demands the development of ap-
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propriate models that can effectively capture the system’s GTM re-

lations. This idea has been partially demonstrated in [3], where the

optimal fixed location of multiple radiating heaters in a process is

automatically calculated to evenly imprint a desired thermal pro-

file onto a surface. Yet, the heater is static and the method requires

exact knowledge of all thermodynamic parameters (which are gen-

erally unknown). The proposed approach has also the potential to

be used e.g. in fire-fighting [30] or volcano exploration robots [8]

to calculate optimal trajectories that avoid overheating or damaging

the robot’s components.

The dynamic coupling between temperature and motion may seem

unintuitive for humans [31]. Yet, many organisms extensively ex-

ploit these relations. For instance, marine animals that inhabit hydro-

thermal vents manage their energetic demands by controlling their

proximity to the source [32]. Butterflies increase their body tem-

perature by basking dorsally/laterally to maximize sun expose [20].

Ground-dwelling insects adaptively change their body configuration

with respect to the sun-heated ground to regulate their temperature

[1]. Such advanced thermoception-based behaviors can be used to

solve many real-world problems (see Fig. 1.1). However, these ca-
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pabilities have not yet been fully incorporated in robot control, a

discipline with good track record of borrowing inspiration from na-

ture [33]–[35], but which seems to be lagging in this direction.

Figure 1.2: Temperature control of robotic friction stir welding [5]

1.3.1 Industrial Temperature Control System

Temperature control system for industrial applications has been well-

studied due to its economical importance. Temperature control sys-

tems for heat treatment processes was designed due to its significant

impact on the mechanical and structural properties of the end prod-

ucts [36]. Precise regulation of the heating and cooling temperatures

during different stages is essential to ensure a good product qual-

ity. A number of studies implemented numerical simulation based

method to analyze the heat transfer process, which serves as a gen-

eral guidance for designing temperature control algorithms. In [37],
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researchers adopted the broadly used FVM (Finite volume method)

method to predict the radiative heat transfer for a transient slab heat-

ing analysis. In [38], A new reheating furnace heat transfer model

that divides the heating volume into small regions depending on the

thermophysical conditions is proposed and verified by comparing

to the benchmark numerical simulation. The advantage of imple-

menting such numerical simulations of heat transfer processes is its

high fidelity. In industrial environments, the conditions of the heat

source, environments can be strictly controlled; thus, results of nu-

merical simulations can usually reflect the true heat transfer process.

However, from the robotics research point of view, the uncertainty

of the natural environment is very common in outdoor applications;

in addition, the dynamic movement of the robot during operation

will change the static heat transfer model. To cope with problem, a

real-time control method based on simplified and robust heat trans-

fer model needs to be designed.

1.3.2 Potential Robotic Thermal Seroving Systems

Researchers from robotics fields also found that temperature is a im-

port factor that constrains and affect the performance of the robotic
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Figure 1.3: Schematic of the considered furnace model including heating, soaking
and cooling sections [36]

system. In [39], a novel robotic system for skin photo-rejuvenation

is developed [39] (See Fig.1.4).

Figure 1.4: Skin photo-rejuvenation treatment is conducting by human and robot
operator [39].

The working principle of the skin treatment is to stimulate the

skin tissue by a laser shot with exact amount of energy. If the energy

level is too low, the treatment will not have a significant effect; If

the energy level is too large, it may cause damage to the skin. Due

to the various skin conditions of human, it is hard to design a static

algorithm that works perfectly for every circumstance. However, if

12



Figure 1.5: Thermal registration and feedback on control interface [39]

the feedback temperature profile of human face from the thermal

camera is available (See Fig. 1.5), a dynamic calibration algorithm

based on a preliminary test conducted before the treatment and a re-

liable skin tissue heat transfer model can be designed, which ensure

the treatment result for different types of skins.

For other types of robotic systems that may benefit from the inte-

gration of the robotic thermal servoing algorithm, we have demon-

strated a few of examples in Chapter 1. The potential applications

include but not limited to robots equipped with thermoelectric com-

ponents[40], robots for rescue mission in a fire-ground[41], robots

for high temperature environment exploration[42], and robots for

food preparation tasks[43].
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1.3.3 RGB-D-T Multimodal Camera System

Figure 1.6: Result of a 3D thermal mapping of an underground hot water system.
[44]

There are various types of temperature measurement devices that

can be used for collecting the feedback temperature information. A

thermisotor, which measures the temperature of the point it contacts,

is widely used in industrial applications and research. However, if a

temperature profile of an object surface is to be controlled, instead

of using multiple thermistors to the surface, using a thermal camera

to observe the target surface is a better choice.

In robotics research filed, depth camera has been integrated with

robotic systems for collecting visual and geometrical information

about its environment. In recent years, there has been an increas-

ing interest in integrating a thermal camera with a depth camera
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to develop a multimodal perceptual system that exploits the hidden

information of the object temperature distribution. The core tech-

nique required for building such a camera system is to design an

accurate and effective calibration algorithm for the two independent

cameras. A common method for geometric camera calibration uses

a checkerboard to estimate the intrinsic parameters of the camera

[45]. However, checkerboard patterns are not visible in the ther-

mal images (there is no temperature difference between the white

and black blocks of the checkerboards, thus, no distinguish charac-

teristics). Modified approach needs to be developed to calibrate a

thermal camera. In [44], 3D thermal mappings of building interiors

are generated using a calibrated camera system for energy efficiency

improvement. In [46], researchers suggest that the calibrated camera

system can be used for power station maintenance. In [47], a mobile

robot equipped with the camera system automatically surveillance

the temperature control and electricity supply system in a building.

In [48], the camera system is used for augmented reality design.
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1.4 Objectives

This research aims to develop the first thorough formulation of the

robotic thermal servoing problem. The main objectives include:

• To develop a multimodal perception system that is composed of

a depth camera and a thermal camera, which enable the robot

to obtain geometric and temperature information of the envi-

ronment in real-time.

• To formulate a radiation-based “fire-to-hand” robotic TS method

that regulates the temperature of multiple objects simultane-

ously. The aspects of the formulation include the heat transfer

modeling, non-linear control design, experimental validation,

and target feasibility analysis.

• To develop a robotic system that automatically concentrates so-

lar energy to a target point, which is guided by the feedback

information from a thermal camera and an RGB camera.
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1.5 Research Outline

The remaining part of the thesis is organized as follows. In Chap-

ter 2, we demonstrate the proposed multi-camera calibration work-

flow. The principles of multiview geometry and camera calibration

is introduced, the design of the customised calibration tool is ex-

plained, the image processing method for feature extraction is intro-

duced, and the visualization of the produced real-time thermal point

cloud is illustrated. In Chapter 3, we formulate the “fire-in-hand”

radiation-based robot TS method. We introduce the knowledge of

heat transfer modeling with an emphasis on its connection between

the robot servoing formulation. Multiple scenarios of the object con-

figuration are discussed, and a novel real-time numerical method for

computing the view factor for irregularly shaped objects at arbitrary

configuration is introduced. In Chapter 4, the formulation and sta-

bility analysis of a model-based controller and an adaptive controller

is demonstrated. Detailed experiments are reported and analysed to

validate the performance of the proposed controllers. Subsequently,

the target feasibility problem is addressed from optimization, analyt-

ical and experimental perspectives. In Chapter 5, the development
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of a robot system that automatically concentrates solar energy to a

target point is reported. The geometric optics of the utilized Fresnel

lens is demonstrated, as it is the foundation of the algorithm designs

of the system. The forward and inverse kinematics that guides the

robot motion is analysed, and the results of creating desired patterns

on the wood plane using concentrated solar energy are reported. Fi-

nally, the conclusion and future works are discussed in Chapter 6.
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Chapter 2

Multimodal Camera System

2.1 Background

Depth Sensor RGB Camera Thermal Camera

Figure 2.1: The developed multimodal camera system.

Depth cameras have been widely used in various robotic appli-

cations such as object manipulation, navigation, and human-robot

cooperation. The depth cameras output RGB images and depth im-
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ages of the same size simultaneously. The two images are calibrated

such that the pixel values in the depth image represent the depth val-

ues of the pixels in the RGB image. Relying on the standard camera

model, camera parameters, and fixed extrinsic transformations, an

RGB image and a depth image are fused to output a RGB-D point

cloud, which is a valuable representation of the environment: The

robot could utilize the color information for feature extraction and

object recognition, and the geometrical information for object ma-

nipulation and path planning.

For a robot system designed for thermal servoing, except for the

color and geometric information obtained by the depth camera, it

is necessary to equip it with devices that can perceive the tempera-

ture information of its surroundings. Depending on the application

scenario, we have used two types of temperature sensors in this the-

sis: (a) Thermistor, a traditional contact temperature measurement

unit that relies on the change of material’s resistance to indicate the

temperature change at its contact point. (b) Thermal camera, a non-

contact temperature measurement device that receives the long wave

infrared radiation emitted by objects, and formulates a thermal im-

age that represents the temperature profile of the environment.
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Comparing with the thermistor, the thermal camera outputs more

abundant surface temperature distribution information within a shorter

response time; however, its performance is limited by the possible

occlusion between objects, the smaller range of working tempera-

ture, the limited field of view, and the different object surface emit-

tances in the scene. These two types of devices can be used indepen-

dently or cooperatively in thermal servoing applications depending

on the specific task requirements. In this section, we present the inte-

gration of a consumer-grade (160 × 120 pixels resolution) thermal

camera FLIR Letpon 3.5 with a common depth camera RealSense

D415 for robot thermal servoing applications. The developed sys-

tem is depicted in Figure 2.1. In Chapter 4 and 5, we use the mea-

surements from thermistors instead as the feedback information to

the robot thermal servoing system to avoid the aforementioned lim-

itations of the thermal camera.
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Figure 2.2: Mathematical notations of the transformations and coordinate systems
in the camera system.

2.2 Methodology

2.2.1 Camera System Model

To integrate the feedback information from the two independent

cameras, we developed a system calibration algorithm that deter-

mines the color and temperature information of a 3D point in real-

time. The essential information required for the designed algorithm

includes two sets of intrinsic parameters of the cameras and the

transformations between coordinate systems. As depicted in Fig-
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ure 2.2, the three major coordinate systems of the system are the

RGB camera frame with the origin Cr, the thermal camera frame

with the origin Ct , and the depth sensor frame with the origin O.

We denote the image coordinate of a pixel in the RGB image by

xr =

[
ur vr 1

]⊺
, the image coordinate of a pixel in the thermal

image by xr =

[
ut vt 1

]⊺
, and the corresponding 3D point of the

two pixels by X =

[
X Y Z 1

]⊺
. According to the standard cam-

era projection model [49], the 3D world points and the 2D image

points satisfy the following equations:

srxr = ArErX, (2.1)

stxt = AtEtX (2.2)

where Ar,At and Er,Et are the intrinsic and extrinsic matrices of the

two cameras, and sr,st are two arbitrary scaling factors. It is criti-

cal to notice that in our proposed method, the RGB camera frame

(which moves along with the motion of the camera system platform)

is selected as the world coordinate system. Since the two cameras

are rigidly attached to the platform, Ar,At and Er,Et are constant

matrices.
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2.2.2 Customzied Calibration Board

(a) (b)

RGB Image Thermal Image

Figure 2.3: The RGB image and the thermal image of the designed multimodal
camera system calibration tool.

The standard calibration algorithm for obtaining the intrinsic and

extrinsic parameters of a regular RGB camera has been implemented

in various programming languages.It requires a specific calibration

tool which contains distinct visual features that can be detected in

the visual spectrum. Common calibration patterns like chessboard,

circles, and ChArUco pattern utilize black and white color to formu-

late the required patterns and features. However, these calibration

tools are not applicable for thermal camera calibration since a ther-

mal camera is not capable of differentiating colors, but is designed

to detect the temperature information. To this end, for our multi-
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modal camera system, a calibration board that presents recognizable

features in both RGB images (color difference) and thermal images

(temperature difference) needs to be manufactured.

There are a few thermal camera calibration tools that have been

designed in previous studies. In [50], a traditional chessboard was

heated by a flood lamp and the temperature difference appeared

since the black block area absorbs more radiation energy than the

white block area. We tried to use this type of calibration tool for our

camera system calibration, but the obtained thermal images are not

desirable. Our thermal camera has a much lower resolution than the

one used in [50], which makes the thermal image blurry and hard

to detect the corner features in the chessboard patterns. Due to the

resolution limitation, the line type calibration tool proposd in [51]

is also not appropriate. In [52], a board with multiple circular holes

was heated such that the centers of the circles are selected as features

in a thermal image. It inspired the design of the calibration tool used

in our study as shown in. The difference is that instead of using the

centers of circles as the feature, we use the centers of crossings as

the target feature. The advantage of this selection is that the depth

information of the selected feature is available (for center of circu-
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lar wholes, depth is not measurable), so we can directly obtain the

3D coordinates of the features to obtain the static extrinsic transfor-

mation. In addition, to uniformly heating up the board, we place

the calibration board above a flat box that contains hot water, which

easily creates a steady and uniform temperature difference between

the calibration board and the background. The RGB image and the

thermal image of our calibration tool are shown in Figure 2.3.

2.2.3 Calibration and RGB-D-T Point Cloud

Figure 2.4: The workflow of the implemented algorithm.

In this section, we introduce the implementation of our calibra-

tion algorithm and output of the camera system, RGB-depth-thermal

point cloud. The overall workflow of the method is depicted in Fig-
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ure 2.4. We first collect 30 pairs of RGB and thermal images of the

calibration board at different orientations and distances. Then, we

temporally select the calibration board plane as the world plane to

implement the feature extraction algorithm and camera calibration

algorithm to obtain the intrinsic parameters of the RGB and ther-

mal camera. For the feature extraction, we transform the collected

images in gray color scale and apply the Gaussian filter to remove

noise, then select an appropriate threshold to extract the whole pat-

tern of the calibration board. Next, we extract the structuring ele-

ment, i.e. the crossings in the image by using the following kernel

(the actual size is 13 by 13):
0 · · · 0 1 0 · · · 0

1 · · · 1 1 1 · · · 1

0 · · · 0 1 0 · · · 0

 (2.3)

We then find the centers of the contours of the remaining features

and record their image coordinates in a pre-defined order for the

camera calibration. An example of the feature extraction process is

demonstrated in Figure 2.5.

Once the intrinsic parameters of the RGB camera is calculated,
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(a) (b)

(c) (d)

Figure 2.5: Feature extraction from a thermal image.

we can use the aligned depth and RGB image to generate the 3D

coordinates of the features in the world (RGB camera) coordinate.

Note that although the depth information is obtained by the depth

sensors, the align function provided by the SDK of the depth camera

automatically completed the transformation from the depth sensor

frame to the RGB camera frame. We then implement the calibration

method using the collected thermal images with the real world co-

ordinates to obtain the static extrinsic transformation from the RGB
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camera frame to the thermal camera frame. Thereby, we can project

each 3D point (in the RGB camera frame) to the RGB image and to

the thermal image to find its corresponding color and temperature in-

formation. For any pair of collected RGB, depth, and thermal image,

the information could be integrated within 0.14 second and visual-

ized using the Ploty library in the form of RGB-D-T point cloud as

shown in Figure 2.4.
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Chapter 3

“Fire-to-Hand” Thermal Servoing:

Mathematical Modelling

3.1 Notation

Throughout this report, we use the following mathematical notation.

We denote column vectors and matrices by small bold and capital

bold letters, eg. v ∈Rn and M ∈Rm×n. We denote scalar and vector

errors by ∆T = T − T ∗ ∈ R,∆T = T−T∗ ∈ Rn where T ∗,T∗ are

scalar and vector of constant target temperatures.
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3.2 Heat Transfer Model

In following subsections, we introduce the basic thermodynamic

knowledge for developing a heat transfer model referring to [53] and

[54], but in a different way such that the effect of motion on varying

the radiative heat transfer is emphasized. Consider a robot manipu-

lator with end-effector configuration denoted by the vector x ∈ Rn.

The robot rigidly grasps a planar object through an adiabatic layer.

The object surface temperature should be controlled by changing its

geometric configuration relative to a planar heat source. To this end,

we first derive the relevant heat transfer model that is composed of

the following three parts: (i) heat source, (ii) heat collector (i.e., the

object), and (iii) surrounding environment, see Fig. 3.1. Thermo-

physical parameters of different parts are denoted by the same sym-

bol with different subscripts. We denote the heat source temperature

by T1. Temperature of the object is denoted by T2 and assumed to

be spatially uniform at any instant during the heat transfer process

(a common practice of using the lumped capacitance method for

solids experiencing sudden thermal changes[53]). The environment

temperature is denoted by T3 and assumed to be constant.
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Heat energy transfer occurs amongst the three parts whenever T1,

T2,T3 have different values. The direction of heat transfer is always

from a high temperature part to a low temperature part. We denote

the net energy transferred to the object by Q2, where a positive value

indicates the energy inflow. We introduce q2 = dQ2/dt to represent

the surface’s net heat transfer rate and v = dT2/dt to describe the

temporal change of measurement T2. According to the energy con-

servation laws, these quantities satisfy the relation

v =
1

m2c2
q2 (3.1)

where m2 denotes the object’s mass and c2 denotes the material’s

specific heat. To synthesise a thermal servoing controller, it is useful

to find an expression of the following form:

v = f (x,T2) : R6 ×R 7→ R (3.2)

which provides the thermal-geometric relation between the robot’s

configuration and the temperature changes. In the following subsec-

tions, we derive such a model by using the laws of thermodynamics.
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Heat Source T1

Surrounding T3

Object T2

E2

G2

ρ2G2

qconv

Insulation

qrad

qcond

J1

J3

Figure 3.1: Conceptual representation of the heat transfer model. A part of the
object surface is magnified to show different heat transfer processes.

3.3 Radiation Exchange Between Planar Surfaces

In this subsection, we demonstrate how to calculate q2 between pla-

nar surfaces when the thermophysical properties (temperature, mass,

specific heat, emissivity, absobpivity, etc.) of the parts are known.

According to the different mechanisms (random microscopic mo-

tion and forced macroscopic motion of particles [55]) involved in

heat transfer processes, the heat transfer rate q is the sum of the ra-

diative heat transfer rate qrad, the convective heat transfer rate qconv,

and the conductive heat transfer rate qcond. In our case, we assume

qcond is negligible since the object is attached to the end-effector

through an adiabatic layer. Since the constant heat source is kept
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at a much higher temperature (relative to the other parts), qrad is

the dominant part of the heat transfer process. Therefore, we also

neglect the effect of qconv in computing q2.

Heat radiation is the emission of energy in the form of electro-

magnetic waves from all matter that has a temperature greater than

absolute zero. Considering heat radiation exchange between the ob-

ject and the other parts, we derive q2 as:

q2 = qrad = A2(α2G2 −E2) (3.3)

where A2 denotes the object’s surface area, G2 denotes the rate of the

radiation incident to the surface per unit area (irradiation, W/m2),

α2 ∈ [0,1] denotes the object’s absorptivity (a unitless quantity de-

scribing what portion of irradiation is aborbed by the object surface),

E2 denotes the rate of radiation emitted by a surface per unit area

(emissive power). The emissive power of an object is approximated

using Stefan-Boltsman law as:

Ei = εiσT 4
i (3.4)

where εi ∈ [0,1] denotes the material’s emissivity, Ti (measured in

35



K) denotes the temperature of the object (σ = 5.67× 10−8 is the

Stefan-Boltzmann constant). For an opaque surface, a portion αi of

the irradiation is absorbed by the surface while the other portion ρi is

reflected to other parts; these two quantities must satisfy ρi+αi = 1.

We introduce the radiosity, Ji = Ei + ρiGi, which models the rate

of radiation that leaves surface i. To use related thermodynamics

principles to build a model for control purposes, we first make the

following assumptions:

1. The surface of the heat source and object are diffuse emitters

and receivers, and have uniform radiosity.

2. The environment (i.e., the room) is large enough so that it can

be modelled as a blackbody (ε3 = α3 = 1).

3. For the heat source, E1 ≫ ρ1G1, therefore, we fairly approxi-

mate its radiosity as J1 ≈ E1.

Remark 1. Here, we introduce the view factor Fi j, which is defined

as the fraction of Ji that is incident to the j surface. Calculation of

view factor is essential for developing radiation-based heat transfer

models. The detailed derivation of Fi j for different cases are demon-

strated in later subsections. Here, we assume Fi j are known scalars
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and focus on the derivation of q2.

The radiation incident to a surface is the summation of the corre-

sponding portion of radiation from other surfaces. Thus, Gi can be

evaluated from the following expression:

A2G2 =
3

∑
j=1

Fj2A jJ j = F12A1J1 +F22A2J2 +F32A3J3 (3.5)

Note that for planar surfaces, Fii = 0. In our case, F11 = F22 = 0. To

further simplify (3.5), we introduce the reciprocity relation AiFi j =

A jFji and the summation rule ∑
N
j=1 Fi j = 1 (Interested readers may

refer to the book [53] for detailed explanations of these two prin-

ciples). According to reciprocity relation, summation rule, and the

assumptions we made, (3.5) is transformed to:

A2G2 = F21A2J1 +F23A2J3

= F21A2E1 +(1−F21)A2E3

(3.6)

By injecting (3.6) in (3.3), we have

q2 = A2α2(E1 −E3)F21 +A2α2E3 −A2E2 (3.7)
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By injecting (3.7) and (3.4) in (3.1), we have

v = λ1F21 −λ2T 4
2 +λ3 (3.8)

Where the scalars λ1, λ2, and λ3 satisfy:

λ1 =
A2α2σ(ε1T 4

1 −T 4
3 )

m2c2
, λ2 =

A2ε2σ

m2c2
, λ3 =

A2α2σT 4
3

m2c2
(3.9)

Notice in , the only variable is F21, which depends on the robot con-

figuration x

Remark 2. Intuitively, F12 is the parameter which directly relates

to q2, as it is defined as the portion of the radiation from the heat

source that is incident to the object. However, recall the reciprocity

relation, A1F12 = A2F21, which shows F21 is nothing but F12 after

scaling. In our case, A1 is much larger than A2, and makes F21 a

better choice for further analyses and visualization purposes.

3.4 Uniform Temperature Assumption

In the formulation, we need to clarify that we only consider “small

enough” objects, such that their temperature can be fairly approxi-

mated by a single sensing point. The “uniform temperature distribu-
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tion” assumption is a prior condition of the “Lumped Capacitance

Method”, see [56, Chapter 5], which is commonly used to simplify

transient heat conduction problems. We would like to clarify that

the essence of the assumption is to neglect the internal heat con-

duction effect, such that the heat transfer process can be concisely

modeled by equation (1).

Necessity: Without this assumption, information about object’s sur-

face temperature profile and the internal temperature distribution of

the object is required to model the heat transfer process. The surface

temperature profile could be obtained by a thermal camera; How-

ever, it is inapplicable in this thesis since the objects and the heat

source sometimes get very close and the object surface is occluded.

For the internal temperature distribution, it is usually estimated us-

ing finite-element methods since it is intricate to be measured di-

rectly. Yet, that might significantly increase the computation time

for each step, and require an accurate estimation of the object’s ther-

mophysical properties.

Consequence: A direct consequence of applying the uniform tem-

perature assumption is that it differs from the real heat transfer pro-

cess. Nevertheless, according to the Biot number criterion, the
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assumption reasonably approximates the real situation if the Biot

number Bi < 0.1. In this thesis, the largest Biot number is Birad =

0.058 < 0.1, which is calculated according to the following formula:

Birad =
Rcond

Rrad
=

LεσF12(T 2
1 +T 2

2 )(T1 +T2)

k
(3.10)

Where L = 0.05m is the object characteristic length, ε = 0.25

is the emittance of the heat source, σ is the Stefan-Boltzmann con-

stant, F12 ∈ [0,0.041] is the view factor (heat source to object), T1 =

473.15K is the heat source temperature, T2 = 333.15K is the ob-

ject temperature, and k = 0.13W/(m ·K) is the heat conductivity of

the PLA material. An intuitive explanation of the validity of the as-

sumption and the Biot number is: When the internal heat conduction

transfers fast enough in the solid body with respect to the external

heat flow, it is fair to approximate the temperature throughout the

object changes simultaneously (and uniformly).

Another consequence of the assumption is that instead of con-

trolling the entire surface temperature profile, we only control the

temperature of the surrounding area where the thermistor is attached

(within the range where the Biot number criterion is satisfied). If

the whole surface temperature profile is to be controlled, multiple
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sensors attached to the same object can be used as feedback. The

formulation should be similar to Section 3.8. However, we would

like to point out that if a uniform temperature profile needs to be

precisely controlled, it is more appropriate to use other heat sources

(e.g., a hair dryer) that generates relative uniform heat flow, since

the spatial heat intensity of radiative heat source is essentially non-

uniform.

3.5 View Factor

We introduce the mathematical definition of the view factor Fi j in

this subsection. As shown in Fig. 3.2, consider an elementary area

dA1 on the heat source, and an elementary area dA2 on the object;

these two elementary areas are separated by a length r which forms

the polar angles θ1 and θ2. The view factor is defined as follows:

F21 =
1

A2

∫
A2

∫
A1

cosθ2 cosθ1

πr2 dA2 dA1 (3.11)

The analytical solution of the above double surface integral is usu-

ally complicated to derive. A variety of analytical and numerical

solutions are proposed to calculate the view factor [57]–[59]. Here,
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we implement an analytical method introduced in [60], which im-

plements Stokes’ theorem to convert the double surface integrals to

double contour integrals as follows:

F21 =
1

2πA2

∮
Γ1

∮
Γ2

lnsds2 ds1 (3.12)

where Γi denotes the contour of the ith surface, si is the position

vector of an arbitrary point on boundary Γi, and s = ∥s2 − s1∥2 is

the distance between two points on contours. The advantage of us-

ing this approach is its further application in the calculation of view

factors between complex geometries in arbitrary configurations.

3.6 Parallel Circular Surfaces

We denote the circular surface centre and radius as ci,ri, respectively

(see Fig. 3.2). We set the origin of the coordinate system i⃗1⃗j1⃗k1 at

c1, with the unit base vector k⃗1 along the surface normal n⃗1, and

the unit base vector i⃗1 perpendicular to the ground. We set i⃗2⃗j2⃗k2

as the translation of i⃗1⃗j1⃗k1, with the origin located at c2. We set ω1

as the angle between ĩ1 and s1, and ω2 as the angle between i⃗2 and

s2. We denote c1 =

[
0 0 0

]⊺
and c2 =

[
p1 p2 p3

]⊺
under⃗ i1⃗j1⃗k1
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Figure 3.2: Notations for calculating the view factor between two elementary
surfaces.

coordinate system. Parametric position vectors s1 and s2 are:

s1 =

[
r1 cosω1 r1 sinω1 0

]T

(3.13)

s2 =

[
r2 cosω2 + p1 r2 sinω2 + p2 p3

]T

(3.14)

for 0 ≤ ω1 ≤ 2π and 0 ≤ ω2 ≤ 2π . According to (3.13), (3.14), we

replace ds1 ds2 in (3.12) by dω1 dω2:

ds1 =

[
−r1 sinω1 dω1 r1 cosω1 dω1 0

]T

ds2 =

[
−r2 sinω2 dω2 r2 cosω2 dω2 0

]T

ds1 ds2 = r1r2 cos(ω1 −ω2)dω1 dω2

(3.15)
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Recall s = ∥s2 − s1∥2, we derive the expression of s as:

s2 = (r2 cosω2 + p1 − r1 cosω1)
2+

(r2 sinω2 + p2 − r1 sinω1)
2 + p3

2 (3.16)

Then, we rewrite (3.16) to derive a function of s as follows:

s = s(p1, p2, p3,ω1,ω2) = (p1
2 + p2

2 + p3
2+

2p1(r2 cosω2 − r1 cosω1)+2p2(r2 sinω2 − r1 sinω1)

+ r1
2 + r2

2 −2r1r2 cos(ω2 −ω1))
1
2 (3.17)

By substituting (3.15) and (3.17) into (3.12), the view factor F21 can

be calculated with the expression:

F21 =
1

2πA2

∫ 2π

0

∫ 0

2π

r1r2 cos(ω1 −ω2)

lns(p1, p2, p3,ω1,ω2)dω2 dω1 (3.18)

Notice in (3.18), for a time instant, we assume the instantaneous end-

effector position x =

[
p1 p2 p3

]T

is known exactly and A2,r1,r2

are known constants.

As the object is rigidly grasped by the robot, we consider the
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instantaneous end-effector position to be located at the center of the

object as x ≡ c2 =

[
p1 p2 p3,

]⊺
. By substituting (3.18) to (1), we

can finally determine the system’s thermal-geometric relation:

v = f (x,T2) = λ1F21 −λ2T2
4 +λ3 (3.19)

where the function f :R3×R 7→R is the same as mentioned in (3.2).

Take the time derivative of (3.19), we obtain the following dynamic

system:

v̇ = lu−4λ2T2
3v (3.20)

where l = λ1

[
∂F21
∂ p1

∂F21
∂ p2

∂F21
∂ p3

]
is the system’s interaction (Jaco-

bian) vector, and u = ẋ denotes the robot’s motion input. This equa-

tion is used for designing control laws by taking the psudo-inverse of

l, and for compensating drift factors. By using the Leibniz integral

rule [61], the interaction matrix can be derived as:

l⊺ =



∫ 2π

0

∫ 0

2π

h(p1 + r2 cosω2 − r1 cosω1)dω2 dω1∫ 2π

0

∫ 0

2π

h(p2 + r2 sinω2 − r1 sinω1)dω2 dω1∫ 2π

0

∫ 0

2π

hp3 dω2 dω1

 (3.21)

45



C1

n̂2

n̂1

D1

D2

D3

D4

C2

Robot

Object

Heat Source Plane

D5

D6

Object Plane

sa

sl

Figure 3.3: Conceptual representation of a self-obstruction case.

with h defined as:

h = λ1
r1r2 cos(ω1 −ω2)

2πA2s2 (3.22)

Since it is hard to derive the analytical solution for the above double

integral, we use the numerical integral tool provided by SciPy [62]

to online approximate l. See Appendix 3.35 for the the mathematical

explanation.

3.7 Circular Surfaces in Arbitrary Configurations

In this subsection, we extend the previous parallel surface condi-

tion to a 6 DOF scenario. We denote the rotation about i⃗2,⃗ j2, k⃗2

by θx,θy,θz, and the rotation and translation matrices as Rot(⃗i2,θx),
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Rot(⃗j2,θy), Rot(⃗k2,θz),Trans(p1, p2, p3)∈R3×3. For simplicity, we

use the abbreviation of cosine and sine as sinω = Sω ,cosω = Cω .

Most of the formulation is similar to the previous subsections, ex-

cept for the parameterization of the heat source and object contours

that are more complicated.

We first discuss the parameterization of the heat source. When

the heat source plane and the object plane are not parallel, self-

obstruction may occur and change the region of interest of the heat

source (see Fig. 3.3). Concretely, in certain configurations, radia-

tion from a part of the heat source can only incident to the backside

of the object and will not contribute to the heat inflow to the object.

We denote the object plane as D1D2D3D4, where D1, D2 are the in-

tersubsections between the heat source plane and the object plane.

The heat source is divided into two parts, the red part
>
D1D5D2D2D1

and the black part
>
D2D6D1D1D2. The black part of the heat source

only ”sees” the backside of the object and should be omitted from

the calculation of F21. To this end, we only consider the effect of the

red part and rewrite the view factor formula (3.12) as:

F21 =
1

2πA2
(
∮

Γa

∮
Γ2

lnsa ds2 dsa +
∮

Γl

∮
Γ2

lnsl ds2 dsl) (3.23)
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where Γa,Γl denote the arc
>
D1D5D2, line D1D2, and other variables

carries the same meaning as defined in subsection 3.5. Now we

discuss how to derive sa, sl. The normal vector of the object plane

n2 is calculated as:

n2 = Rot(z,θz) ·Rot(y,θy) ·Rot(x,θx)

·


0

0

−1

=


−SθxSθz −CθxCθzSθy

CθzSθx −CθxSθySθz

−CθxSθy


(3.24)

For simplicity, we denote n2 =

[
n1

2 n2
2 n3

2

]T

. The equation of the

plane D1D2D3D4 is:

n1
1x+n2

1y+n3
1z−n1

1p1 −n2
1p2 −n3

1p3 = 0 (3.25)

To find the intersubsection points, we substitute x = r1Cϕ , y = r1Sϕ ,

z = 0 where ϕ is the unknown variable in (3.25). Self-obstruction

only occurs when there exist two solutions ϕ1,ϕ2. Then, the para-
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metric vectors can be easily derived as:

sa =


r1Cϕ

r1Sϕ

0

 ,sl =


xl

kl(xl − r1Cϕ2)+ r1Sϕ2

0

 (3.26)

for ϕ ∈ [ϕ1,ϕ2], xl ∈ [r1Cϕ2,r1Cϕ1], and kl is the slope of the line

D1D2:

kl =
r1Sϕ2 − r1Sϕ1

r1Cϕ2 − r1Cϕ1

(3.27)

To derive F21, we first obtain dsa,dsa as:

dsa =

[
−r1Sϕ r1Cϕ 0

]T

dϕ,dsl =

[
1 kl 0

]T

dϕ (3.28)

Now we derive the parametric vector on the object contour after

translation end rotation as:

s2 = Rot(z,θz) ·Rot(y,θy) ·Rot(x,θx) ·Trans(p1, p2, p3)

·


r2 cosω2

r2 sinω2

0

=


a1r2Cω2 +a2r2Sω2 + p1

a3r2Cω2 +a4r2Sω2 + p2

a5r2Cω2 +a6r2Sω2 + p3


(3.29)

where the parameters determined by rotation angles are defined as
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follows:

a1 =CθyCθz,a2 =CθzSθxSθy −CθxSθz,a3 =CθySθz,

a4 =CθxCθz +SθxSθySθz,a5 =−Sθy,a6 =CθySθx

(3.30)

Similarly, ds2 is:

ds2 =


a2r2Cω2 −a1r2Sω2

a4r2Cω2 −a3r2Sω2

a6r2Cω2 −a5r2Sω2

dω2 (3.31)

Finally, distance between two points on s2,sa can be derived as

sa = ∥s2− sa∥2, sl = ∥s2− sl∥2. We substitute (3.26), (3.28), (3.29),

and (3.31) to (3.23) and obtain the view factor formula for self-

obstruction case as:

F21 =
1

2πA2

∫
ϕ2

ϕ1

∫ 0

2π

lnsa dω1 dϕ

+
1

2πA2

∫ r1Cϕ1

r1Cϕ2

∫ 0

2π

lnsl dω1 dxl (3.32)

Similar to the previous subsection, we obtain the following dynamic

system:

v̇ = lu−4λ2T2
3v (3.33)
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Where the interaction vector l is defined as

l = λ1

[
∂F21
∂ p1

∂F21
∂ p2

∂F21
∂ p3

∂F21
∂θx

∂F21
∂θy

∂F21
∂θz

]
(3.34)

Except for the numerical integration approximation technique dis-

cussed in Appendix section, we also apply the numerical partial dif-

ferentiation technique to approximate l in real time as:

l⊺ = λ1



F21 (p1 +dp1, p2, ...,ω2)−F21

dp1
...

F21 (...,θz +dθz,ω1,ω2)−F21

dθz


(3.35)

3.8 Multiple Objects

In the previous subsection, we presented the general approach to de-

rive l ∈ R6 between one object and the heat source. Following the

same approach, the interaction matrix L ∈ RN×6 for N objects can

be formulated easily. Note that we only consider the case where

the heat radiation between N objects can be ignored; otherwise, a

different form of thermal-geometrical relation (3.19) needs to be de-

rived. We denote the interaction vector for each object by ln for
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n = 1,2, ...,N, and the overall interaction matrix can be written as:

L =

[
l⊺1 l⊺2 . . . l⊺N

]⊺
∈ RN×6 (3.36)

We constrain the number of objects to be less than the DOF number

of the robot motion input. We denote the temperature, the tempera-

ture rate and the target temperature of each object by T n
2 ,v

n,T ∗n for

n = 1,2, ...,N. We then construct the following vector structures:

τ =

[
T 1

2 T 2
2 · · · T N

2

]⊺
, (3.37)

v =

[
v1 v2 · · · vN

]⊺
, (3.38)

τ
∗ =

[
T ∗1 T ∗2 · · · T ∗N

]⊺
∈ RN (3.39)

We denote the thermophysical properties constant λ2 defined in (3.9)

of each object by λ n
2 , for n = 1,2, ...,N. We construct the following

structures:

λ = diag(λ 1
2 ,λ

1
2 , · · · ,λ N

2 ) ∈ RN×N (3.40)

τ
′
=

[
(T 1

2 )
3 (T 1

2 )
3 · · · (T N

2 )3

]⊺
∈ RN (3.41)
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Figure 3.4: Contours of the two object are approximated by the truncated Fourier
series with 5 harmonics.

Accordingly, we can extend (3.33) to multiple objects case:

v̇ = Lu−4τ
′⊺

λv (3.42)

3.9 Arbitrary Surfaces at Arbitrary Configurations

In this subsection, we demonstrate how to develop radiation-based

GTM model for arbitrary surfaces in arbitrary configurations. The

core concept is to use the truncated Fourier series [63] for approx-

imating the parametric position vectors s1,s2. After obtaining the
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approximation of s1,s2, the remaining derivations of F21 are very

similar to the previous subsections. Thus, we only demonstrate how

to derive the parametric equation of an irregular-shaped contour.

We take the case where the objects are a bunny-shaped and a

hand-shaped artifact as an example, see Fig. 3.4 (a), (b). The

cases where both the object and the heat source surfaces are irreg-

ular can be easily extended. The artifacts are 3D printed accord-

ing to Solidworks models which are generated referring to the 2D

contours shown in Fig. 3.4 (c), (d). The parametric equations of

irregular-shaped contours are first derived in the complex number

form, then transferred back to the real number form. We select m

points on the contour in a counterclockwise order as ck = uk + ivk

for k = 0,1,2, . . . ,m− 1. Assume there is a function with parame-

ter x ∈ [0,1), when x = k/m for k = 0,1,2, . . . ,m−1, corresponding

function values are c(x) = cm·x. We can then approximate c(x) with

the following truncated Fourier series:

c(x) =
N

∑
n=−N

dne−2πinx (3.43)

where dn are approximated Fourier coefficients calculated follow-

ing the standard methods in [64], and 2N + 1 harmonics are used
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to approximate the contour (We set N=2 in this study). We denote

an = Re(dn), bn = Im(dn), and rewrite (3.43) as:

c(x) =
N

∑
n=−N

an cos2πnx−bn sin2πnx

+ i
N

∑
n=−N

an sin2πnx+bn cos2πnx (3.44)

According to the above equation, we transform it back to real num-

ber form and derive the parametric position vector of s2 as

s2 =


p1 +∑

N
n=−N an sin2πnx+bn cos2πnx

p2 +∑
N
n=−N an cos2πnx−bn sin2πnx

p3

 (3.45)

for x ∈ [0,1). Similarly, we can derive ds2 as:

ds2 =


∑

N
n=−N 2πn(an cos2πnx−bn sin2πnx)

∑
N
n=−N −2πn(an sin2πnx+bn cos2πnx)

0

dx (3.46)

Following the similar procedures presented in the previous subsec-

tions, the heat transfer model and the corresponding Jacobian matrix

can be derived easily.
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Chapter 4

“Fire-to-Hand” Thermal Servoing:

Controls and Experiments

Problem statement. Given a desired constant object target temper-

ature vector τ∗ ∈ Rn, design a velocity controller input u which

asymptotically minimizes the temperature error ∆τ = τ − τ∗.

Model-based
Plant

Controller

u τ

τ̇ , τ Rate

Estimator

τ
∗

Figure 4.1: Schematic representation of the model-based controller.
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4.1 Model-Based Controller

In this section, we discuss the model-based controller for controlling

N objects to achieve the target temperatures. We design the follow-

ing feedback velocity input:

u = L+(−Dv−K∆τ +4τ
′
2
⊺
λ 2v) (4.1)

where L+ = L⊺ (LL⊺)−1 represents the Moore-Penrose pseudoin-

verse. The state variables τ2,v are obtained from real-time sensor

feedback. By applying the above input to the nonlinear dynamic sys-

tem (3.20), it transforms to classical mass-spring-damper systems

as:

v̇ =−Dv−K∆τ (4.2)

Where D resembles the damping coefficient and K resembles the

spring stiffness.

Consider at time instant t, assume the discrete integral of L (see

Appendix for more details), and the prior values of combined ther-

mophysical parameters well approximate their true values. The con-

trol input (4.1) enforces an energetically passive closed-loop system

which asymptotically minimizes ∆τ .
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Adaptive
Plant

Controller

u τ τ̇ , τRate

Estimator

Estimator
Â1, Â2

τ
∗

Figure 4.2: Schematic representation of the adaptive controller.

Proof. Consider the quadratic Lyapunov function

H =
1
2

vT v+
1
2

K∆τ
T

∆τ (4.3)

whose time derivative is

Ḣ =−DvT v ≤ 0 (4.4)

By applying Krasovskii-LaSalle principle [65], the convergence

can be proved.

4.2 Adaptive Controller

In the model-based controller design, we assume the thermophysi-

cal properties are known exactly. However, due to the differences

in material and surface conditions, the true values of those prop-
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erties are hard to be determined. We introduce two unknown pa-

rameters a1 = 1/λ1, a2 = λ2/λ1 whose estimated values are â1, â2.

To this end, we denote the difference between the estimated values

and true values by ã1 = â1 −a1, ã2 = â2 −a2. For multiple objects,

we use superscripts to distinguish between different objects such as

an
1,a

n
2, â

n
1, â

n
2, ã

n
1, ã

n
2 for n = 1,2, ...,N. We then construct the follow-

ing matrix structures:

A1 = diag(a1
1, · · · ,aN

1 ),A2 = diag(a1
2, · · · ,aN

2 ),

Â1 = diag(â1
1, · · · , âN

1 ), Â2 = diag(â2
2, · · · , âN

2 ),

Ã1 = diag(ã1
1, · · · , ãN

1 ), Ã2 = diag(ã2
2, · · · , ãN

2 )

Divide the dynamic equation (3.20) by λ1 and combine it to vector

form as:

A1v̇+4τ
′⊺

A2v = Ju (4.5)

Where J is defined as:

J =

[
l1/λ 1

1 l2/λ 2
1 · · · lN/λ N

1

]
∈ RN×6 (4.6)

Where a general definition of interaction vectors ln for n = 1,2, ...,N

is provided in (3.34). Note that the unknown combined thermophys-
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ical properties λ n
1 are divided from ln, J is purely dependent on the

values of view factors F21 of objects. We then introduce the com-

bined error vector ζ =

[
ζ 1 · · · ζ N

]⊺
as

ζ = ∆τ̇ +µ0∆τ = v+µ0∆τ (4.7)

Where µ0 is a positive real number. Consider the feedback velocity

input

u = J+(−µ0Â1v−Kζ +4τ
′⊺

Â2v) (4.8)

where K is a positive real number. Substitute (4.7) to (4.5) and add

µ0A1v to both side, we obtain

A1ζ̇ +Kζ =−µ0Ã1v+4τ
′⊺

Ã2v (4.9)

For slow and smooth motion of the manipulator, the parameter

update rule

˙̂a1 = γ1µ0

[
(v1ζ 1 · · · vNζ N)

]⊺
(4.10)

˙̂a2 =−4γ2

[
v1ζ 1(T 1

2 )
3 · · · vNζ N(T N

2 )3

]⊺
(4.11)

where γ1,γ2 are positive real numbers representing the learning rates,
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which ensures the following conditions:

1. The asymptotic minimization of the error ∆T.

Proof. We construct following vectors:

â1 =

[
a1

1 a2
1 · · · aN

1

]⊺
, â2 =

[
a1

2 a2
2 · · · aN

2

]⊺
, (4.12)

Notice that ˙̃a1 = ˙̂a1, ˙̃a2 = ˙̂a2. Recall the definition of λ1 in (3.9),

we know every element in a1 is nonnegative. Consider following

quadratic Lyapunov function:

H =
1
2

ζ
⊺A1ζ +

1
2γ1

ã⊺1 ã1 +
1

2γ2
ã⊺2 ã2 (4.13)

We take the time derivative of (4.13) and obtain

Ḣ = ζ
⊺A1ζ̇ +

1
γ1

˙̂a
⊺
1 ã1 +

1
γ2

˙̂a
⊺
2 ã2 (4.14)

Substituting (4.9) into (4.14) and rearrange the equation, we have

Ḣ =−Kζ
⊺
ζ −µ0ζ

⊺Ã1v+
1
γ1

˙̂a1ã1 +4ζ
⊺
τ
′
Ã2v+

1
γ2

˙̂a2ã2 (4.15)

Substitue update rules (4.10) into (4.15), we have

Ḣ =−Kζ
⊺
ζ (4.16)
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By applying Krasovskii-LaSalle principle [65], convergence can be

proved.

4.3 Target Feasibility

In the previous sections, we proved |∆τ| can be asymptotically min-

imized by the two controllers. However, it is not guaranteed that

we can always enforce |∆τ| to decrease to zero. In some cases, |∆τ|

will only asymptotically approach a large local minimum. In other

words, the object temperature can not be controlled to reach the tar-

get temperature sometimes. Those failure cases are caused by the

choice of unfeasible target temperatures: Intuitively, if the target

temperatures are set to be too high or too low, it will be physically

unachievable at first; in addition, for objects fixed to the same end-

effector, their target temperatures should not be too different from

each other (e.g. one is set to be 30°C while the other is set to be

70°C is unfeasible). In this section, we analytically discuss two

necessary but insufficient conditions which ensure the feasibility of

the target temperature.

We consider the case where two objects, object 1 and object 2 are

fixed to the end effector (n object cases can be easily extended). We
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first derive boundary values of the target temperatures. Recall the

thermal-geometrical equation (3.19) and rewrite it as follows:

v =−λ2T2
4 +λ1F21(xo)+λ3 (4.17)

Where xo denotes the geometrical configuration of the object. We

assume there exists T2 = Tv0 that makes the temperature rate v equals

to zero. Note that the temperature value is always nonnegative, Tv0

can be solved as:

Tv0(F21) = ((λ1F21 +λ3)/λ2)
1
4 (4.18)

As λ1,λ2,λ3 are all positive and F21 ∈ [0,1], Tv0 always exists. Note

that for T2 > Tv0, v < 0; for T2 < Tv0, v > 0. Thus, the temperature

of an object at a specific configuration will always asymptotically

approach Tv0. In other words, Tv0 is the steady state temperature

of the object at a specific configuration xo. Note that Tv0 is a func-

tion of F21 with range F21 ∈ [0,1], and it can be easily shown that

dTv0/dF21 is always positive. Thus, when F21 = 0, we can calculate

the minimum value of Tv0:

min(Tv0) = (λ3/λ2)
1/4 = (α2T 4

3 /ε2)
1
4 (4.19)
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According to Kirchhoff’s law of thermal radiation[53], at thermody-

namic equilibrium, α2 = ε2. Thus, the minimum of Tv0 is simply:

min(Tv0) = T3 (4.20)

When F21(xo)→ 1 , the maximum value of Tv0 approaches:

max(Tv0)→ (λ1 +λ3)/λ2 = (α2ε1T 4
1 /ε2)

1
4 = ε

1
4
1 T1 (4.21)

According to (4.20), (4.21), we derive the first condition as:

T 1∗,T 2∗ ∈ [T3,ε
1
4
1 T1) (4.22)

Now we discuss the limitation of the difference between target

temperatures |∆T ∗| = |T 1∗−T 2∗|. We denote the geometrical con-

figuration of object 1, object 2 as xo1 = x+∆x1,xo2 = x+∆x2 where

x is the end-effector configuration, and ∆x1,∆x2 are constant dis-

placement vectors determined by the geometrical design of the end-

effector. The corresponding view factor values of objects 1, 2 are de-

noted by F21(xo1),F21(xo2). We denote the robot workspace as W.

We denote the steady-state temperatures of objects 1, 2 by T 1
v0,T

2
v0.

According to (4.18), |∆Tv0|= |T 1
v0−T 2

v0| can be expressed as a func-
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tion:

|∆Tv0(xo1,xo2)|= |n1(F21(xo1))−n2(F21(xo2))| (4.23)

with function n1(F21),n2(F21) defined as:

n1(F21) = (
λ 1

1 F21 +λ 1
3

λ 1
2

)
1
4 ,n2(F21) = (

λ 2
1 F21 +λ 2

3
λ 2

2
)

1
4 (4.24)

where λ 1
1 ,λ

1
2 ,λ

1
3 are thermophysical parameters of object 1, λ 2

1 ,λ
2
2 ,λ

2
3

are thermophysical parameters of object 2 (general definition in (3.9)).

For the function ∆Tv0(x+∆x1,x+∆x2) where x∈W and ∆x1,x2 are

constant vectors, as the function ∆Tv0 is continuous, there must ex-

ist a minimum value min(∆Tv0) = ∆Tv0(xmin) and a maximum value

max(∆Tv0) = ∆Tv0(xmax) that encompass all possible values of ∆Tv0,

where xmin and xmax are the end-effector positions corresponding to

the two extreme conditions. We can then derive the second condition

for feasible target temperatures as:

∆T ∗ ∈ [min(∆Tv0),max(∆Tv0)] (4.25)

A numerical (geometrical) interpretation of xmin and xmax will be

discussed in Section 4.11.
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Figure 4.3: Experimental setup.

4.4 Experimental Setup

We conduct a series of experiments on a 4-DOF robot (3 translations

and 1 rotation) to evaluate the proposed method. Fig. 4.3 shows the

experimental robot, Dobot Magician, whose end-effector is replaced

Figure 4.4: Auto-calibration using ArUco markers before experiments.
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Figure 4.5: Different object configurations for the experiments.

by a red 3D printed connector connected to an aluminium holder for

fixing objects. The triangular holder with a side length of 10cm can

hold up to 3 objects. We prepared three different kinds of objects

for temperature control experiments: An aluminium circular sheet

with 1.5cm radius and 3mm thickness; a green bunny-shaped sheet

with 1mm thickness which is 3D printed using the polylactic acid

(PLA) material and with a 30% infill density; a black hand-shaped

sheet with 1mm thickness which is 3D printed using PLA material

and with a 50% infill density. The dimensions of the two 3D printed

objects are shown in Fig. 3.4 in centimeters. The three objects are

attached to the holder through a layer of insulation foam to minimize

the effect of conductive heat transfer. For the aluminium sheet, the

values of its thermophysical properties can be approximated from

standard tables[53]. The emissivity, absorptivity, specific heat, and

density of aluminium objects are estimated as 0.04, 0.04, 903J ·K−1 ·
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kg−1, and 2702kg/m3.

For the two 3D printed objects, different infill densities, colors,

and uncertain surface conditions make their thermophysical proper-

ties hard to be estimated. Thus, in model-based controller exper-

iments, we only control the temperature of the aluminium sheet.

While in adaptive controller experiments, we control the temper-

atures of three different objects. We use a heating platform with

adjustable temperature output as the heat source. The heating sur-

face is the black disk with a radius of 9.25cm. The environment

temperature is assumed to be constant as 23°C.

At the beginning of the experiments, we use the RGB camera

module of the RealSense 415 depth camera and ArUco markers to

auto-calibrate the geometrical configuration of the heat source and

the end-effector (see Fig. 4.4). Intrinsic parameters of the RGB

camera are obtained by using Opencv [66] camera calibration func-

tions. Marker 1 is attached to the heating plate at a specific loca-

tion and orientation such that its center coincides with the C1 (the

center of the heating plate), and its x,y,z axes (represented by red,

blue, and green) align with i⃗1,⃗ j1, k⃗1 axes depicted in Fig. 3.2. In

other words, we make the marker 1 coordinate system the same as
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the heat source coordinate system which is used for calculating the

view factor. Since marker 1 needs to be removed during the heat-

ing process, marker 2 is attached to the metal shell of the heating

source. We denote the homogeneous coordinates of points under

marker 1, marker 2 coordinate system by m1,m2 ∈ R4. As shown

in Fig. 4.4 (a), a fixed the transformation between m1,m2 can be

obtained as m1 = (Tc
1)

−1Tc
2m2 Where Tc

1,T
c
2 ∈ R4×4 are transfor-

mation matrices between the marker 1, 2, and the camera coordi-

nate systems. After this fixed transformation is determined, we de-

tach marker 1 to prevent it from burning during the heating process.

Marker 3 is attached to the back of the aluminum holder for deter-

mining the geometrical configurations of objects. We control the

robot end-effector to move into the field of view of the RGB cam-

era, see Fig. 4.4 (b). We denote the homogeneous coordinates of

points under the new heat source, marker 2, and marker 3 coordi-

nate systems by m′
1,m

′
2,m3 ∈ R4. Transformation between m′

2,m3

is m′
2 = (Tc

2
′
)−1Tc

3m3 Where Tc
2
′
,Tc

3 ∈R4×4 are transformation ma-

trices between marker 2, 3, and camera coordinate systems. Finally,
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we can derive the transformation between m′
1 and m3 is :

m
′
1 = (Tc

1)
−1Tc

2(T
c
2
′
)−1Tc

3m3 (4.26)

Similarly, the rotation angle between the object plane and the heat

source plate plane can be calculated. Except for auto-calibration

before the experiments, marker 2 is also used for online tracking of

a moving heat source during thermal servoing processes. We report

the performance of the integrated system in Section 4.9.

To obtain feedback temperatures from objects, we attach a PT100

platinum thermistor with 0.3°C accuracy and 0.1°C precision to

each object. The raw data obtained by thermistors is processed by

a current-temperature transformation module and sent to a Linux

computer as the feedback data. The control output is calculated by

the computer and conducted by the robot using the position-stepping

mode.

4.5 Online Estimation of T2 and v

Recall (4.1), (4.8), temperature rate v is also required for calculating

appropriate control inputs. Due to the limitation of the sensor ac-
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Figure 4.6: Snapshots of the experiment with the adaptive controller where the
target temperatures is set to τ =

[
40 45 50

]⊺ (measured in °C).

curacy, precision, and sampling rate, the raw feedback temperatures

are discrete and relative noisy, which is undesirable for estimating

the true values of v for calculating desirable control inputs. To this

end, we implement polynomial fitting with sliding window method

to estimate the values of τ and v from the raw feedback data. See

Appendix section 7.2 for more details.

4.6 Experiments with the Model-Based Controller

We designed a series of experiments to evaluate the performance of

the model-based controller. We first conduct experiments to con-

trol the temperature of one object. The aluminium circular sheet is
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attached to the end-effector through an adiabatic layer as shown in

Fig. 4.5 (a).

In theory, we enforce the heat transfer system to resemble a mass-

spring-damper system by applying the controlled motion input u.

Accordingly, the choices of stiffness and damping coefficients K,D

will affect the performance of the system. Fig. 4.7 (a) demon-

strates the effect of the stiffness-like coefficient K. To follow the

standard form of error variation figures in visual servoing papers,

we depict the change of −∆T in the figures in this study. We set

D = 0.2 and T ∗ = 50°C as constants and conduct three experiments

with different K values. It shows that when K = 0.005 (red curve),

−∆T asymptotically decreases to zero with a relative slow speed;

when K increases to 0.05 (blue curve), −∆T decreases faster and

a small overshoot occurs; when K increases to 0.5 (black curve),

−∆T oscillates near zero with an approximate 3°C amplitude. This

verifies that the designed system resembles the mass-spring-damper

system. When the value of K increases, the system varies from over-

damped to under-damped. Thus, the coefficients should be thought-

fully designed for different heat transfer systems according to the

system performance requirements in real applications. We also con-
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ducted experiments with the same controller coefficients (K = 0.05,

D = 0.2) but different target temperatures T ∗ which is depicted in

Fig. 4.7 (a). It shows −∆T is asymptotically minimized to zero for

different target temperatures

For the multiple objects scenario, we conduct experiments to con-

trol the temperatures of two aluminium circular sheet as shown in

Fig. 4.5 (b). We denote object temperature vector by τ =

[
T 1

2 T 2
2

]⊺
,

the target temperature vector by τ =

[
T ∗1 T ∗2

]⊺
, and individual

errors by ∆T 1 = T 1
2 −T ∗1,∆T 2 = T 2

2 −T ∗2. We designed 4 exper-

iments where the patterns of τ∗ (measured in °C) are different. In

Fig. 4.8, we depict −∆T in the 4 experiments where target temper-

atures are set to τ∗ =

[
50 40

]⊺
, τ∗ =

[
60 40

]⊺
, τ∗ =

[
50 50

]⊺
,

and τ∗ =

[
80 40

]⊺
in (a), (b), (c), and (d). For the first three ex-

periments where the differences between two target temperatures

|T ∗1 − T ∗2| are small (or equals to zero), ∥∆τ∥ asymptotically de-

creases to zero. However, when |T ∗1−T ∗2| is large, which is shown

in Fig. 4.8 (d), two objects can not be controlled to reach the target

temperatures, and ∥∆τ∥ can only decrease to a large local minimum.

This failure can be explained by the second condition for feasible

target temperatures discussed in Section 4.3.
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Figure 4.7: Evolution of the temperature error of the aluminium sheet ∆T in the
experiments with the model-based controller.
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Figure 4.8: Evolution of the temperature errors of the two aluminium sheet
∆T 1,∆T 2 in the experiments with the model-based controller.
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4.7 Experiments with the Adaptive Controller

We designed a series of experiments to evaluate the performance

of the adaptive controller. For the truncated Fourier series approx-

imation, the more harmonics we use, the better the approximated

contour will align with the original contour. However, for real time

applications, we can use a small number of harmonics to achieve

a relatively good approximation result (5 in this study). In these

experiments with the adaptive controller, the temperatures of the

aluminium circular sheet, the bunny-shaped sheet, and the hand-

shaped sheet are to be controlled. We denote the vector of the

target temperatures of the circular, bunny, and hand sheet by τ∗ =[
T ∗1 T ∗2 T ∗3

]⊺
, and the corresponding vector of object tempera-

tures by τ =

[
T 1

2 T 2
2 T 3

2

]⊺
. The error vector is denoted by ∆τ =

τ − τ∗ =

[
∆T 1 ∆T 2 ∆T 3

]⊺
. The controller coefficients are set as

µ = 0.05, K = 0.15. We use learning gains γ1 = 0.005, γ2 = 10−22

for the update rules (4.10), (4.11) to constrain ˙̂a1, ˙̂a2 to the same

order of magnitude in each iteration. We set the initial values of

the combined parameters as a1
1 = a2

1 = a3
1 = 3.4, a1

2 = a2
2 = a3

2 =

4.2× 10−11, which are estimated according to the thermophysical
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parameters of aluminium, the heat source temperature T1 = 200°C,

and the environment temperature T3 = 25°C.

In this study, we report eight temperature control experiments

with different target temperatures and heat source conditions. Fig.

4.9 shows the variation of the negative individual temperature errors

−∆T 1, -∆T 2, and −∆T 3 in black, red, and blue colors. For ease of

expression, we name these 8 experiments as exp 1, exp 2, . . . , exp 8,

and denote the corresponding target temperatures of each experi-

ment by τ∗1,τ∗2, . . . ,τ∗8 (Values are listed in the caption part of Fig.

4.9). We set different values and patterns of object target temper-

atures in conducted experiments. In exp 1, we set the three target

temperatures to the same value. In exp 2, exp 3, exp 4, we set two

target temperatures to the same value, and the other to a lower or a

higher value. In exp 5, exp 6, we set the target temperatures of the

three objects to different values, with a non-uniform gap in exp 5

and a uniform gap in exp 6. In exp 7, exp 8, the three target temper-

atures are set to the same value, while the heat source condition is

different from the previous experiments. The heat source tempera-

ture T1 is set to 200°C in exp 1 ∼ exp 6, to 300°C in exp 7, and to

vary from 200°C to 300°C in exp 8. In all of the 8 experiments, the
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temperature error magnitude |τ| asymptotically decreases to zero. In

general, we validate that the adaptive controller is able to control the

temperatures of three objects with different shape, material, color

and surface condition without exact knowledge of the thermophysi-

cal properties of the objects, the heat source, and the environment.

In Fig. 4.10, we depict the 3D trajectories of the three objects

in exp 1, exp 2, . . . , exp 8. The boundary of the circular heat source

is depicted as a black circle (and ellipse). The color of a trajectory

point represents the temperature of the object at that position. A

variation of color from blue to red corresponds to a change of tem-

perature from low to high. To show the 3D trajectories clearly, we

depict two sets of trajectory visualizations from different viewing

angles: For Fig. 4.10 (a1),(b1), . . . ,(h1), the trajectories are viewed

in −⃗k1 direction; for Fig. 4.10 (a2),(b2), . . . ,(h2), the trajectories

are viewed in i⃗1 direction.

From the visualization of the trajectories, we find when the tar-

get temperatures are set to different values, the final position of the

objects with higher target temperatures are closer to the center of

the heat source, which can be explained either intuitively (the object

closer to the center of the heat source receives more heat radiation
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Figure 4.9: Evolution of the temperature errors of the three objects in the 8 ex-
periments with the adaptive controller, ∆T 1, ∆T 2, and ∆T 3 (measured in °C).
The target temperatures are set as: τ∗1 =

[
40 40 40

]⊺, τ∗2 =
[
50 40 40

]⊺,
τ∗3 =

[
50 50 35

]⊺, τ∗4 =
[
60 60 30

]⊺, τ∗5 =
[
50 45 35

]⊺, τ∗6 =[
40 45 50

]⊺, τ∗7 =
[
45 45 45

]⊺, τ∗8 =
[
45 45 45

]⊺.

energy), or by the spatial distribution of the view factor that we will

discuss in the following Section 4.10; when the target temperatures

are set to be the same value, the final position of the circular alu-

minium sheet is always closer to the center of the heat source, which

is caused by the difference between the thermophysical properties of

the objects. From this phenomenon, we obtain the intuition that the

aluminium circular sheet is harder to be heated comparing the other

two objects. This is caused by the absorptivity of the metal is usu-

ally much smaller than the absorptivity of non-metal. In fact, when

we observing the aluminium sheet using a thermal camera, it looks

like a mirror, which indicates the aluminium surface reflects most of

the incident heat radiations.
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Figure 4.10: Spatial displacements of the three objects in the 8 experiments with
the adaptive controller visualized from two viewing angles. We use change of
colors to visualize the change of temperatures during the experiments.

80



4.8 Evaluation of the Controller Performance

Figure 4.11: Evaluation of the adaptive controller’s performance on the magnitude
of temperature error vector |∆τ|.

Figure 4.12: Evaluation of the adaptive controller’s performance on the magnitude
of temperature error vectors |∆tau1|, |∆tau2|, |∆tau3|.

We have evaluated the performance of the adaptive controller by

analyzing the collected data from the eight experiments and sum-

marized the results in a table form (See Fig. 4.11, Fig. 4.12). The

purpose of the developed controller is to asymptotically reduce ∆τ ,

which is a vector that is composed of the temperature errors of the

81



3 objects. To evaluate the controller performance, we determine the

rise time, settling time, and the steady-state error of |∆τ|. In this

study, the rise time is defined as the time to decrease |∆τ| to 10%

of its initial value, the settling time is defined as the time it takes to

constrain |∆τ| within the 3% error band of its initial value, and the

steady state error is calculated as an average of |∆τ| at each time

step within the 3% error band. We find that the developed con-

troller effectively drives the temperature error near the zero point

in a short time. Furthermore, we include several detailed tables of

controller performance on the individual temperature errors in the

updated video, please check for more details.

4.9 Experiments with Interference

In this section, we report an integrated experiment where the adap-

tive temperature controller is combined with an online ArUco track-

ing algorithm to achieve temperature control tasks while the heat

source is moving. In the Section 4.4, the ArUco markers attached

to the heat source are used to obtain a fixed geometrical relationship

between the robot and the heat source. This geometrical relationship

is important for calculating a correct value of view factor, which is
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Figure 4.13: Experiments with Interference.

then used to online estimate the Jacobian matrix J. However, when

the heat source or the robot is moving, the new configuration of the

parts has to be updated to the adaptive temperature controller. For

simplicity, we study the case where robot is fixed and the heat source

is moved manually (Since we only use one depth camera which is

observing the heat source). We track the marker 2 attached to the

heat source to online update the heat source configuration, and set

the target temperature vector as τ =

[
40 40 40

]⊺
(measured in

°C). Figure 4.13 (a) shows the initial calibrated experiment set up,

(b) shows the manual interference applied to the heat source during
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Figure 4.14: Isosurfaces visualization of the two view factor subsets. The transla-
tion subset is depicted in (a), and the rotation subset is depicted in (b).

the experiment, (c) shows the detected marker 2 during the inter-

ference period, and (d) shows the change of individual temperature

errors (Notations are the same as the experiments with the adaptive

controller). We find that during the manual interference period, de-

crease trends of magnitudes of the individual temperature errors are

not affected, and |∆τ| asymptotically decreases to zero at the end

of the experiment. This integrated experiment is to show a simple

example of how to integrate the newly proposed method with the

traditional robotic algorithms (like visual servoing).
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Figure 4.15: Controlled variable visualization of the view factor isosurfaces.
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4.10 View Factor Visualization

In this section, we discuss the visualization of the view factor F21

with respect to the end-effector configuration x, which could be a

useful tool for analyzing and understanding radiation-based robotic

TS problems. In previous sections, we design asymptotic stable tem-

perature controllers based on derived heat transfer models. However,

the equations relating F21 and x in these models are complex, which

makes a part of the controlled system still remain like a “black box”

to us. Thus, we introduce the visualization of F21 with respect to x,

and discuss the meaning and potential applications of it.

We take the view factor visualization of the scenario “circular sur-

faces in arbitrary configurations” discussed in previous sections as

an example. We implement the controlled variable method to split

the 6-DOF variable x into two 3-DOF subset: the translation sub-

set where p1, p2, and p3 (measured in centimeters) are controlled

variables, and the rotation subset where θx, θy, θz (measured in de-

grees) are controlled variables. In the translation subset, the rota-

tions are set to constants as θx = 0, θy = 0, θz = 0. We then compute

F21 for points in a selected working range of controlled variables
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p1, p2 ∈ [−20,20], p3 ∈ [0,30] with a step of 1 (48,000 points in

total). In the rotation subset, the translations are set to fixed con-

stants as p1 = 0, p2 = 0, p3 = 5. We then compute points in range

θx,θy,θz ∈ [−90,90] with an incremental step of 2 (729,000 points

in total).

We then use isosurface visualization tool provided by Plotly li-

brary [67] to visualize the calculated data. The translation subset is

visualized in Fig. 4.14 (a), and the rotation subset is visualized in

Figure 4.14 (b). Concretely, 3-DOF end-effector configurations are

represented by points in 3D space, and 1-DOF view factor values

are represented by isosurfaces with different colors. Isosurfaces are

formed by points which have the same (or close) value of F21. The

isosurface visualization method is inspired by (3.34) which reveals

that the Jacobian matrix is positive proportional to the directional

derivative of F21(x) along x as L = λ1∇xF21(x). According to the

definition of isosurface, the surface normal of every point on the

surface also points in ∇xF21(x) direction. In addition, the distances

between isosurfaces with a equal value difference show the magni-

tudes of the elements of ∇xF21(x). A larger distance represents a

smaller magnitude.
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To show the usefulness of the view factor visualization, we take

the analyze of the translation subset shown in Fig. 4.14 (a) as an

example. For the single object scenario, according to the property

of vector pseudo-inverse and designed control inputs (4.1), (4.8),

the surface normal at a point on the isosurfaces also indicates the

direction of the end-effector movement at that point. Before visual-

ization, there are some obvious characteristics of isosurfaces that we

can predict, including the symmetric spatial distribution of F21 (due

to the circular shape of the heat source), and F21 decreases when

the object moves further from the heat source surface. However, we

discover some useful hidden information after visualization: The

centres of the isosurface spheres are shifting upwards when F21 de-

creases. This means at some points, the movement in k⃗1 direction

will cause a decrease of F21, which is counter-intuitive (people may

think moving the object towards the heat source will always increase

the heating speed). See C2 on the F21 = 0.1 isosurface in Fig. 4.14

(a). When the end-effector is at C2, it needs to move backwards in

k̂1 direction to heat up faster; in the regions where the end-effector is

far from the heat source, the distance between isosurfaces with the

same view factor value difference are comparatively larger. Thus,
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when the end-efector is far from the heat source, the control inputs

will have a larger magnitude and the end-effector moves faster.

Previously, 3 DOF of x are set to be controlled variables in the

two subsets for visualization. For further understanding the effect

of motion on heat transfer process, we present a visualization of the

view factor with respect to 4 DOF x in Fig. 4.15. For the previous

3 DOF translation subset, we add one more controlled variable θx

to extend it to 4 DOF. Concretely, we vary the rotation θx (which is

set to constant in 3 DOF visualization) from 0 to 90 and depict the

change of isosurfaces in Fig. 4.15 (a), (b), (c). We find when the geo-

metrical relationship between the object surface and the heat source

surface changes from parallel to perpendicular, there is a decrease

trend of view factor values and a shape change of isosurfaces. For

the previous 3 DOF rotation subset, we vary the translation p3 from

1 to 10, and depict the change of isosurfaces in Fig. 4.15 (d), (e),

(f). We find a decrease trend of view factors when the end-effector

moves in k⃗1 direction, while the shape of isosurfaces maintain the

same. Similarly, we vary the translation p1 from 0 to 10 and depict

the change of isosurfaces in Fig. 4.15 (g), (h), (i). We also find the

values of the isosurfaces decrease when the end-effector moves in i⃗1

89



0 1 2 3 4 5 6
Time (min)

(a)

0

20

40

60
−Δ

T
−ΔT1

−ΔT2

−ΔT3

0 1 2 3 4 5 6
Time (min)

(b)

40

Δ0

120

||Δ
τ|
|

||Δτ||

0 1 2 3 4 5 6
Time (min)

(c)

−20
0

20
40

−Δ
T

−ΔT1

−ΔT2

−ΔT3

0 1 2 3 4 5 6
Time (min)

(d)

20

30

40

50

||Δ
τ|
|

||Δτ||

Figure 4.16: Evolution of the temperature errors of the three objects when unfea-
sible target temperatures are set.

direction.

4.11 Unfeasible Thermal Targets

In Section 4.3, we discussed two necessary but insufficient condi-

tions for feasible target temperatures. When one of the two condi-

tions is not fulfilled, the magnitude of the temperature error can not

be minimized to zero, and we classify such cases as failed experi-

ments caused by the unfeasible target temperatures. We report two

failed experiments with adaptive controller where the target temper-
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Figure 4.17: Conceptual illustration of two objects fixed to an end-effector for
analyzing unfeasible target temperatures.

Figure 4.18: Geometrical explanation of the target temperature feasibility using
the steady-state temperature isosurfaces.
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atures are set as τ∗ =

[
80 80 80

]
, τ∗ =

[
70 35 35

]
, and depict

the individual temperature errors ∆T 1, ∆T 2, and ∆T 3 in Fig. 4.16

(a), (c). We also depict the magnitude of the aggregate temperature

error ∥∆τ∥ of the two experiments in Fig. 4.16 (b), (d). We find that

when the target temperatures are set too high, all temperature er-

rors for independent objects will not decrease to zero, and ∥∆τ∥ will

asymptotically decrease to a large local minimum; when the differ-

ence between individual target temperatures is too large, the object

with the highest initial individual temperature error will finally reach

its target temperature, while the other individual temperature errors

and overall temperature error will asymptotically decrease to a large

local minimum.

In Section 4.3, we proof that the theoretical steady state temper-

ature of an object heated by a heat source is positively proportional

to the view factor F21. Thus, the visualization of view factor isosur-

faces is also useful for understanding the two conditions of feasible

target temperatures. We discuss a simple but representative case

where two aluminium circular sheet with radius ro1 = 1.5cm,ro2 =

4.5cm are attached to the end-effector at o1,o2 (see Fig. 4.17) and

heated by the same circular heat source used in the experiment which
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is maintained at 200°C. The center of the end-effector is at oe, and

le1, le2 = 2cm are the distances between o1,o2 and oe. The basis vec-

tors of end-effector coordinate system i⃗e,⃗ je are depicted in the figure

and k⃗e can be determined accordingly. The origin of the coordinate

system used for calculating the view factors is set at the center of

the heat source and the basic vectors i⃗1,⃗ j1, k⃗1 are set to be parallel

to i⃗e,⃗ je, k⃗e. To explore the unfeasible temperature cases caused by

the fixed geometrical configuration of multiple objects on the same

end-effector, we select the visualization method where three trans-

lations are controlled variables. Thus, we restrict the robot can only

conduct 3 DOF translations to ensure the object surface is always

parallel to the heat source surface (When the objects are not parallel

to the heat source surface, the shape of the isosurfaces will change

as shown in Fig. 4.15).

View factors of objects 1, 2 with respect to the heat source coordi-

nates⃗ i1,⃗ j1, k⃗1 were calculated within the range of p1, p2 ∈ [−15,15],

p3 ∈ [0,30] with a step of 1 (measured in centimeters). According

to (4.18) and assuming the thermophysical properties of the objects,

the heat source and the environment are the same as mentioned in

Section 4.4, view factor values corresponding to 30°C,40°C,50°C
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steady state temperatures are calculated as 0.17, 0.43, and 0.61.

Since there exists a one-to-one correspondence between the view

factor and and the steady state temperature, controlling an object to

reach the target temperature T ∗ can be geometrically interpreted as

controlling the object center to approach the view factor isosurface

that corresponds to T ∗. Accordingly, determining the feasibility of

target temperatures T ∗1,T ∗2 of two objects attached to the same end-

effector is identical to finding whether there exists an end-effector

configuration that makes objects 1, 2 land on the isosurfaces corre-

sponding to target temperatures simultaneously.

An example of how the target temperature feasibility can be vi-

sualized and interpreted using isosurfaces is shown in Fig. 4.18. We

denote the steady state temperatures of objects 1, 2 as T 1
ss,T

2
ss. Fig.

4.18 (a), (b) show steady state temperature isosurfaces of object 1,

2, where T 1
ss,T

12
ss = 30°C,40°C,50°C. We denote the three isosur-

faces of object 1 as set 1, and the three isosurfaces of object 2 as set

2. Since the two objects are circular disks with different radius, the

shapes of sets 1, 2 are similar but different (see the bottom part of

the two sets). To show the differences between the two sets, set 1, 2

are colored in red, blue and depicted in the same coordinate system

94



in Fig. 4.18 (c).

In Fig. 4.18 (d), (e), (f), different combinations of target tmepera-

tures T 1∗,T 2∗ and their corresponding isosurfaces are depicted. We

find that for the cases where T ∗1 = T ∗2 = 30°C (depicted in Fig.

4.18 (d)) and T ∗1 = 30°C,T ∗2 = 40°C (depicted in Fig. 4.18 (e)),

the two target isosurfaces are relatively close to each other; the end-

effector starting from its initial configuration (colored in blue) can

find an appropriate configuration (colored in red) where the two ob-

jects land on the target isosurfaces simultaneously, which proves

that these two combinations of T ∗1,T ∗2 are feasible. While for the

case where T ∗1 = 50°C,T ∗2 = 30°C (depicted in Fig. 4.18 (f)),

we find the minimum distance between two isosurfaces is larger

than le1 + le2. Thus, this combination of T ∗1,T ∗2 is not feasible.

Similarly, if le1 + le2 is larger than the maximum distance between

two target isosurfaces, that combination of T ∗1,T ∗2 is unfeasible.

In general, thermophysical properties, view factors, and the fixed

distances between objects are the three main factors that affect the

feasibility of target temperature. Considering the feasibility prob-

lem as an identical geometrical problem could help human to un-

derstand the unseen heat transfer processes, and might be useful for
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Figure 4.19: Visualization of the target temperature space

path-planning related thermal servoing problems.

In addition to the aforementioned geometric explanation, we con-

duct an analysis of the characteristics of the entire feasible temper-

ature space Θtemp, which is defined as the collection of all sets of

steady-state temperature

Tss(x) = [T 1
ss(x1

ob j), . . . ,T
n

ss(xn
ob j)],Tss(x)∈Θtemp of N objects at-

tached to the same end effector, where x is the end-effector configu-

ration, xn
ob j,n = 1, . . . ,N is the object configuration, and T n

ss(xn
ob j) is

the steady-state temperature of an object when its center is at xn
ob j.

Since there is a fixed geometric relationship between x and xn
ob j,
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values of T n
ss(xn

ob j) can be calculated.

Here, we take the set-up in Fig. 4.19 (b) where 2 identical circu-

lar aluminium objects are attached to a 3-DOF end-effector with an

identical distance le as a case of study. We uniformly sample a dis-

crete end-effector configuration space where p1, p2 ∈ [−30cm,30cm], p3 =

1cm with a step of 0.2cm (90,000 points) and calculate the view fac-

tor values. Accordingly, Tss(x) ∈ R2, and Θtemp ∈ R90000×2 can be

obtained. For each Tss(x) in a feasible temperature space Θtemp,

we depict it as a 2D point such as in Fig. 4.19 (a). Although x is

uniformly sampled, the distribution of Tss(x) is not uniform, which

is caused by the non-linear thermal-geometric coupling. By chang-

ing the values of le, p3, several representative combinations are also

depicted in Fig. 4.19 (c), (d), (e). We analyze these figures and dis-

cover the following thermal-geometrical coupling characteristics:

Consider Figure 4.19 (c), (d), if the end-effector moves away

from the heat source (p3 increases), the area of feasible temperature

space Θtemp shrinks, which means the range of feasible temperature

is smaller. However, the density of points increases; It indicates the

robot motion induces a smaller change on heat transfer to the object,

which to some extent increases the accuracy of temperature control
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when p3 increases. Secondly, refer to Fig. 4.19 (e), we discover

the geometric coupling between objects (le in this case) also affects

Θtemp. If objects are close (e.g. le = 1), and the difference between

the target temperature of the objects is large, these combinations of

target temperature are not feasible (see the blank area e1, e2); If ob-

jects are far away (e.g. le = 9), controlling two objects to reach high

temperature simultaneously is not feasible (see the blank area e3).

For cases where N > 3, visualization is not practical, and some

advanced data analysis is required (which is beyond the scope of this

thesis). The analysis of the feasible temperature space reveals the

physical essence of the thermal-geometric coupling, and could shed

some light on practical thermal servoing system design. Neverthe-

less, it takes hours of computation even with parallel-computing to

obtain the required data. To quickly verify the feasibility of a spe-

cific set of target temperatures, we find reformulating the problem

from an optimization perspective is more effective.

Consider N objects attached to the same end-effector, the steady-

state temperature of each object is denoted by T n
ss(xn

ob j), n∈{1,2, . . . ,N}.

We denote the target temperature of each object by T n∗, then the tar-

get feasibility problem can be solved by solving the following opti-
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mization problem:

min
x

c(x) =
N

∑
n=1

|T n
ss(x)−T n∗| s.t. x ∈ W (4.27)

where W is the robot working space. If the global minimum of

c(x) equals to 0, the set of target temperature is feasible. We use a

simple homology global optimization [68] algorithm, which is im-

plemented in SciPy library, to conduct a verification of the method’s

feasibility. It turns out that the global minimum of c(x) can be found

effectively (in less than 1 minute) for randomly selected target tem-

peratures and geometric relationships between objects.

4.12 Independent Control of each Feedback Tem-

perature

When the objects are attached to the same end-effector, the motion

of these objects is coupled and therefore, the evolution of their tem-

perature is also coupled. Nevertheless, according to our analysis

on the spatial distribution of the view factor, independent control of

different feedback temperatures is possible, yet, this condition is lo-

cal, subject to constraints, and limited to three sensing points (i.e.
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Figure 4.20: Representative examples of the independent control of the temper-
ature of the objects. The spatial positioning of the rigidly grasped objects on to
“desired” isosurfaces limits the number of independent thermal sensing points to
3 at most.
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small objects) at most. The feasibility for independent control is

determined by the geometry of the view factor isosurfaces and the

rigid configuration amongst the manipulated objects. According to

Section 4.3, if the view factors can be (locally) manipulated inde-

pendently by the robot motion, we can fairly state that the objects’

temperature can also be independently controlled (as the view fac-

tor is responsible for determining the heat transfer rate at a specific

point). In the following, we use a simple 2D scenario to demonstrate

various representative examples of this situation.

Referring to Figure 4.20 (a) below, we take a horizontal 2D slice

of the 3D “view factor isosurfaces” (introduced in Section IV E and

F) with height pd = 2.6cm and depict it in Figure 4.20 (b). The

view factor contours with values ranging from 0.1 to 0.9 are depicted

and labeled. Consider the original configuration of the end-effector

holding two objects is at position A, and the view factor values of

object 1, 2 are F1
21 = 0.8,F2

21 = 0.3. By moving object 1 along the

contour where F1
21 = 0.8, the heat transfer rate to object 1 is held

constant, and we could independently control the heat transfer rate

of object 2. For example, if the end-effector moves from A to B,

F2
21 decreases from 0.3 to 0.2 while F1

21 is held constant; if the end-
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effector moves from A to C, F2
21 increases from 0.3 to 0.9 while F1

21

is held constant.

We can also extend this idea to a 3-object scenario (although, the

problem further complicates). As depicted in Figure 4.20 (c), the

end-effector holding object 1, 2, 3 is at the original configuration

D, and the view factors are F1
21 = 0.8,F2

21 = 0.3,F3
21 = 0.65. By

holding F1
21,F

2
21 constant, we independently control the view factor

of object 3 to decrease from 0.65 to 0.2 by “sliding” the end-effector

from D to E, along the specified contours. As shown in Figure 4.20

(d), by moving the robot in the off-plane k⃗1 direction, the shapes

of view factor contours vary, and F3
21 is independently controlled to

increase from 0.65 to 0.9. Note that these simple examples only

use translations. By incorporating controllable orientations, other

isosurfaces can be reached. The spatial positioning of the rigidily

grasped objects onto “desired” isosurfaces clearly limits the number

of independent thermal sensing points to 3 at most.
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Figure 4.21: Comparison between the steady state temperature collected from
experiments and from theoretical calculation.

4.13 Comparison between Optimization Control and

Robot Thermal Servoing

As mentioned in Section 4.3, the steady state temperature of the

object at a specific location can be calculated. It seems intuitive to

define the constraints of the problem, solve the optimization problem

to find the adequate location of the object with respect to the heater

to get the desired steady temperature and just control the robot to the

equilibrium pose.

Temperature control achieved by position optimization (open-

loop control) is feasible for industrial thermal engineering appli-

cations. Consider for instance [69], where uniform heating was

achieved by finding the optimal heater configurations, and [70] where

the optimization principles were discussed for energy-saving ther-
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mal system design. To implement these classical simulation-based

optimization methods, we require accurate knowledge of the ther-

mophysical properties of the object, the heat source, and the envi-

ronment. If any of these parameters is uncertain or changes during

the process, a position optimization method (without online adapta-

tion) will perform poorly.

We conducted a simple test to verify this statement, where we

uniformly sampled a discrete end-effector configuration space where

p1, p2 ∈ [−10cm,0cm], p3 = 5cm with a step of 1cm (121 points

in total) and collected the steady state temperature of the aluminium

plate used in the thesis from experiments and denote it by T real
ss .

We then calculated the corresponding theoretical steady state tem-

perature according to equation (49) and denote it by T theo
ss . The

error between the theory and the experiment is denoted by ∆Tss =

T real
ss − T theo

ss . We visualized T real
ss ,T theo

ss ,∆Tss in the form of heat

map in Figure 4.21. Note that the actual configuration space is en-

closed by the white dashed box, which is only 1/4 of the plane. For a

better visualization, we completed the other regions symmetrically.

The contour of the heat source is depicted by the black circle.

We find a considerably large error between the theoretical calcu-
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lation and the experiments. The simplified heat transfer model is not

the only reason for the error; in practical situations, the emittance

of the heat source and the absorptance of the object are also hard to

be accurately estimated in advance. To directly control the robot to

the equilibrium pose, online estimation of the thermophysical prop-

erties of the objects, and an effective algorithm to recalculate the

whole steady state temperature space are required. We think it is

an alternative temperature control strategy, which has a comparable

complexity to the proposed thermal servoing approach, however, it

is not robust to uncertainties.
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Chapter 5

“Fire-in-Hand” Thermal Servoing:

Feedback Solar Concentration

5.1 Introduction

In the past few decades, exploitation of solar energy has been at-

tracting people’s attention since it is a sustainable, powerful and

ubiquitous energy source that is a promising alternative to fossil fu-

els. Large scale solar power plants were developed in rural areas

like deserts and flatland; In urban areas, solar power collection de-

vices have been deployed in infrastructures for electricity generation

or redirecting natural sunlight inside buildings; Research on solar

powered automobiles has also been reaching monuments one after

another .
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In robotics community, there are a large amount of work that uti-

lizes solar power as electricity supply to the robotic systems. Such

as in [71], a pan-tilt platform that carries a solar panel automatically

followed the orientation of the sun according to the feedback signal

from the calibrated light sensor series was designed. In [72], a lo-

comotion robotic platform equipped with a thermal camera, a laser

scanning device, and a solar panel navigated itself within a certain

territory to generate a solar energy distribution map, which was then

used to optimize its performance on path planning with respect to

the expected energy consumption and collection trade-off.

Except for the generation of electricity that relies on the photo-

electric effect, the potential of heat generation from the solar power

did not raise enough attention among the robotics community. The

sun emits heat radiation to the earth, of which the intensity is approx-

imately 1000 watt per square meters. Inspired by the design of solar

thermal power plants, which coordinates thousands of mirrors to fo-

cus and heat up a traditional steam electricity generation system, we

propose to develop a new type of field robot that effectively utilize

the thermal effect of solar energy. There are at least 3 essential func-

tions that needs to be carefully designed: (a) The robot should be ca-
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pable of tracking the orientation of the sun in real-time to maximize

the net amount of the collected solar energy; (b) The robot should

be capable of controlling the direction of solar rays such that the

point of interest could be accurately heated; (c) The robot should be

able to manipulate the heat power intensity transferred to the target

point, such that a desired steady state temperature or an appropriate

heating process could be achieved.

5.2 Methodology

5.2.1 Notation

Throughout this manuscript, we denote all column vectors by small

bold letters, e.g. r ∈ Rn×1, and matrices by capital bold letters, e.g.

T ∈ Rm×n. We use a pre-superscript to indicate the coordinate sys-

tem of a positional vector, e.g. ar ∈R4×1 is a homogeneous position

vector in the frame (xyz)a. A homogeneous transformation matrix

Ta
b ∈ R4×4 describes the transformation from frame (xyz)a to frame

(xyz)b.
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Figure 5.1: A schematic of the developed system.

5.2.2 System Design

The main components of the developed system are depicted in Fig-

ure 5.1. As will be discussed in Section 5.2.3, the robotic sys-

tem needs at least 5-DOF to achieve the aforementioned objectives.

To this end, we integrate a 3-DOF robotic arm Dobot Magician

with two servo motors (controlled by a Raspberry Pi) to coopera-

tively manipulate a customized end-effector, which carries a spheri-

cal Fresnel lens, an RGB camera, and a thermal camera FLIR Lepton

3.5. We specifically design the structure of the end-effector so that

the optical axis of the Fresnel lens and the optical axes of the two

cameras intersect at the theoretical lens focal point, which creates a

large overlapping of the FOVs of the two cameras. The pitch angle
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and the yaw angle of the lens are independently controlled by motor

1 and 2, while the 3-DOF translation of the lens is controlled by the

robotic arm. Consequently, the configuration of the end-effector is

denoted by x ∈ R5. Relying on the system kinematics, the distance

between the lens center and an arbitrary target point can be set while

maintaining the desirable pitch and yaw angles of the lens.

With the aid of Figure 5.1, we clarify several frequently used

notations. We denote the static robot base frame by (xyz)r. The

world frame, which is determined by the ArUco marker attached to

the wood plank, is denoted by (xyz)w . We denote the origin of the

lens frame (xyz)l by Ol and set it at the center of the lens upper

surface. We align the initial axes of (xyz)l with the axes of (xyz)r

so that the initial lens yaw and pitch angles are set to zero. The

RGB camera frame (xyz)c1 and the thermal camera frame (xyz)c2

are set according to the conventions [73]. Relying on the system

kinematics, the robot-lens transformation matrix Tr
l can be derived.

Since the cameras and the Fresnel lens are rigidly attached to the

customized end-effector, Tl
c1

, Tl
c2

, Tc1
c2 are known constant matrices.

At the beginning of an task, the world-robot transformation Tw
r

is obtained by detecting the ArUco marker attached to the wood
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plane. The robot then moves to a predefined configuration to cap-

ture an RGB image of the light spot, which is streamed to our pro-

posed algorithm to determine the sun’s azimuth angle and altitude

angle. With the estimated solar angles, an evaluation experiment

is conducted to obtain the optimal focal length of the lens based

on the variation of the light spot area in the RGB images. Sub-

sequently, we estimate the unknown thermophysical parameters of

the system by fitting the theoretical heat transfer model to tempera-

ture data recorded by the thermal camera. A model-based controller

is then proposed to regulate the temperature variation of the target

point. To demonstrate the potential applications of the developed

system, we design an experimental study in which the robot creates

a desired pattern on a wood plane by feedback-controlled solar en-

ergy concentration.

5.2.3 Geometric Optics

In this section, we demonstrate the modeling and analysis of the

developed ray tracing simulation, which guides the design of the so-

lar angle estimation and the robot path generation algorithms. The

Fresnel lens adopted in this paper relies on the same working prin-
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Figure 5.2: Ray tracing diagrams of the plano-convex lens and the Fresnel lens.

ciples as the traditional spherical convex lens; Yet, it is more cost-

and energy-efficient ascribed to its delicate design [74]. As depicted

in Figure 5.2 (a), the curvature design of the convex lens takes a

notional sphere with center Oo and radius rs as reference. The in-

terested region (colored in turquoise) is bounded by a polar angle

ϕl ∈ [0,ϕlb] and an azimuthal angle θl ∈ [0,2π]. As shown in Figure

5.2 (b), the incident and refracted rays are denoted by os0, os1, os2.

Note the ray only refracts at the boundary surfaces, the inner part

of the lens (colored in light blue in Figure 5.2 c) merely contributes

to concentration, thus can be removed to alleviate energy loss. The

Fresnel lens exploits this feature as shown in Figure 5.2 (d), where
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the critical curved surface (colored in green) is divided into pieces

while maintaining the curvature and moved towards the flat bound-

ary surface.

Following the conventions in [75], the origin of the optics frame

(xyz)o is set at the center of the notional sphere. We set the axes of

(xyz)o to be parallel to the axes of (xyz)l. Note that the thickness of

the Fresnel lens is small (2 mm in this study), we fairly assume the

sun ray enters and leaves the lens at the same point (See Figure 5.2

d) to simplify the derivation. Consequently, the positional vector of

an incident point opl1 and its corresponding leaving point opl2 are

denoted by:

opl1 =
opl2 =

[
pl1x pl1y pl1z 1

]⊺
=

[
rsSϕlCθl rsSϕlSθl rsCϕlb 1

]⊺ (5.1)

According to the nomenclature of the spherical coordinate, the unit

directional vector of the incident ray is denoted by:

os0 =

[
Sϕ0Cθ0 Sϕ0Sθ0 Cϕ0 0

]⊺
(5.2)

where ϕ0 ∈ [π2 ,π],θ0 ∈ [0,2π] are the incident polar angle and the
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azimuthal angle of the ray. For an incident point opl1 on the con-

vex boundary, and an incident point opl2 on the flat boundary, the

corresponding active surface normals are:

onl1 =

[
SϕlCθl SϕlSθl Cϕl 0

]⊺
onl2 =

[
0 0 1 0

]⊺ (5.3)

The incident angle between os0 and the convex boundary normal

on1 is calculated by γ1 = cos−1(−os0 · onl1). To make a compact

derivation, we define the following variable:

ω1 = N1Cγ1 −
√

1−N2
1 +(N1Cγ1)

2 (5.4)

where N1 = ξ0/ξ1, and ξ0,ξ1 are the refractive index (with respect

to a specific wavelength of the light) of the air and the material of the

lens, respectively. According to [75], the refracted ray os1 is derived

as:

os1 =

[
s1x s1y s1z 0

]⊺
= ω1

onl1 +N1
os0 (5.5)

Similarly, the refracted ray os2 can be calculated. After the ray

exits the flat boundary, it travels rectilinearly until it hits the target

plane with the surface normal ong. We denote the intersection point
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Figure 5.3: Illustration of the geometrical characteristics of the projected points.

of os2 with the target plane as:

opg =
opl1 +λ

os2 (5.6)

where λ is an unknown scaling parameter. For a point opgo =

[
0 0 d 1

]
in the target plane, we can calculate λ and derive the expression of

opg by solving (opg − opgo) · ong = 0. In conclusion, opg is coupled

with 3 factors:

1. The position of an incident point on the lens, which is denoted

by ϕl and θl. In the next section, we will discuss a representa-

tive group of ϕl and θl to simplify the computation process.
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2. The direction of the incident ray os0, which is denoted by ϕ0

and θ0. In this study, ϕ0 is related to the elevation angle and θ0

is related to the azimuthal angle of the sun, which varies within

a day.

3. The configuration of the lens plane, which is denoted by ong

and d and can be controlled by the robot motion.

5.2.4 Optical Simulation

To analyse and exploit the coupling between the robot motion, sun

orientation variation, and the optical performance of the Fresnel

lens, we developed a visualization tool based on the aforementioned

derivation with the Python Plotly library. An illustration of our ray

tracing programme is shown in Figure 5.3, in which the solar inci-

dent angles are set to ϕ0 = 5π/6, θ0 = 0, the ground normal is set

to ong =

[
0 0 0 1

]⊺
, and the lens surface is set to be parallel to

the target plane. To generate a set of uniformly distributed incident

points, we pick a series of lengths rli that is evenly distributed from

0 to rsCϕlb (the lens radius); Different values of rli are represented

by different colors. For each circle of radius rli, we select sampling

points with an equal arc length; The values of the polar angle θl of

117



the selected points are visualized by the color saturation variation.

As shown in Figure 5.3 (a), the parallel sun ray first converges then

diverges after passing through the lens. Figure 5.3 (b) depicts the in-

cident points on the circular lens surface, and Figure 5.3 (c) depicts

the projected points on target plane.

Through the results of the simulation, we observe that for a group

of incident points opl1 that has the same rli, their corresponding pro-

jected points opg will form a (distorted) closed contour on the tar-

get plane. Furthermore, the hierarchy relationship with respect to

rli between different groups of opl1 is preserved after refraction1.

Concretely, for the group of incident points with the largest rl (de-

picted in red in Figure 5.3 b), their corresponding projected points

also form the outermost closed contour in Figure 5.3 (c). These neat

correspondences allow us to only analysis a representative group of

incident points with the same rli. Relying on this observation, we

select the geometric characteristics (centroid, shape, orientation.) of

the outermost boundary of the projected light spot in the following

sections, as it can be easily extracted from the RGB image feedback.

1Except for the region that is very close to the focal point.
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5.2.5 Solar Angle Estimation

In the previous literature, the sun orientation is either determined

manually or by an electrical compass. To automate the robot so-

lar concentration process, as the system is equipped with an RGB

camera to observe the ArUco marker, we propose an image-based

method to estimate the sun orientation. Note that the ground pro-

jection point opg is coupled with the sun orientation and the lens-

ground relative configuration. The lens-ground configuration is ac-

quired from the ArUco marker and the robot kinematics. If the re-

lationship between the opg and ϕ0, θ0 can be determined with the

developed simulation, we can estimate the solar angle with an im-
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age feedback.

Consider an RGB image feedback, we segment the image pixels

that represent the projected light spot by first transforming it into

gray scale, then applying a threshold function to find the region of

interest. Our target is to find the corresponding 3D coordinates of

these interested image pixels with respect to the optics frame (xyz)o,

such that they can be used as a feedback target to the estimation

algorithm.

In homogeneous coordinate systems, consider an interested im-

age pixel ip ∈ R3, and its corresponding unknown 3D coordinate

wp =

[
xw yw zw 1

]⊺
. According to the pinhole camera model

[49], the relationship between wp and ip is given by:

sip = A
[

r1 r2 r3 t
]

wp (5.7)

where s is an scaling factor, A is the camera’s intrinsic matrix, and[
r1 r2 r3 t

]
∈ R3×4 is the camera’s extrinsic matrix Tw

c1
. Since

the projected points are in the same target plane, ip and wp satis-

fies a homography transformation. Accordingly, we can derive the
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following equation:

[
xw yw a

]⊺
=

(
A
[

r1 r2 t
])−1

ip (5.8)

where a is an scaling factor. Subsequently, we can calculate wp∗
g ∈

R3, the position of the interested feedback points with respect to the

frame (xyz)o by the following equation:

op∗
g = Tw

c1
Tc1

l Tl
o

[
xw yw 0 1

]⊺
(5.9)

As the feedback information from the image is transformed to xyzo,

we can formulate it as a simulation-based servoing problem to esti-

mate the unknown solar orientation. As mentioned in the previous

section, we select the outermost boundary as the representative con-

tour. We denote the center of the representative ellipse on the target

plane by ocg =

[
xc yc

]⊺
, and the feature vector is formed as

y =

[
dc θc

]⊺
=

[(
x2

c + y2
c
)1

2 tan−1 (yc/xc)

]⊺
(5.10)

The selection of the feature vector is based on the observation of the

developed simulation, and an example is shown in Figure 5.4. When

the lens plane is parallel to the target plane, the variation of ϕ0 affects
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Figure 5.5: The simulation of lens reorientation and focus process while the ele-
vation angle ϕ0 = 5/6π and the azimuthal angle θ0 = 1/6π

dc, and the variation of θ0 affects θc. We denote the estimation of the

solar orientation at the step t by ϕt , θt , and its corresponding feature

vector acquired from the simulation is denoted by yt =

[
dt θt

]⊺
.

The reason that We select the polar angle of the ellipse instead of

its shape or orientation will be discussed in Section 5.3.1. From the

equation 5.9, we can compute the feedback target feature vector y∗.

We then design the following update rule of the solar angle estima-

tion to asymptotically reduce the error e = yt −y∗:

[
∆ϕt ∆θt

]⊺
=−λ1A+

t (y−y∗) (5.11)

where λ1 > 0 is a gain, and the interaction matrix in computed from
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the simulation as:

At =


dt(ϕt +δϕ,θt)−dt

δϕ

dt(ϕt ,θt +δθ)−dt

δθ

θt(ϕt +δϕ,θt)−θt

δϕ

θt(ϕt ,θt +δθ)−θt

δθ

 (5.12)

The above interaction matrix can be further simplified. We find that

if the RGB image is captured when the lens surface is parallel to the

target plane, dc is coupled with ϕ0 independently, and θc is coupled

with θ0 independently. In this situation, the At is diagona. Note that

we should set the initial guess of ϕl ̸= 0. Otherwise, the initial At

will become singular. The estimation algorithm terminates until |e|

is reduced to a small predefined value, and the final estimation of the

solar angles are denoted by ϕ̂0, θ̂0.

5.2.6 Lens Configuration

In this section, we introduce the computation of the lens configura-

tion to focus the sun rays to a target point on the target plane. The

solar energy power incident to the lens surface is calculated as:

wl = ds

∫
Al

cosβ dAl (5.13)
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Figure 5.6: A schematic of the heat transfer model. Rmember to change box to
block.

where ds is the solar energy density, Al is the lens surface, and β is

the angle between the target plane normal and the lens surface nor-

mal. To maximize the solar energy power collected by the lens, it is

straightforward that the lens surface normal should be aligned with

the estimated direction of the incident sunlight. Under this constrain,

consider a target point wp∗
g on the target plane, we first transform it

to the (xyz)o frame by op∗
g = To

l Tl
c1Tc1

w
wp∗

g since the orientation es-

timated in the previous section is in (xyz)o. The desired position of

the lens center is then computed as:

op∗
l =

op∗
g −dl p

os0 (5.14)

where os0 is defined by equation 5.2 and the estimated solar orien-

tation ϕ̂0, θ̂0, and dl p is the distance between the lens surface and
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the target plane. The lens center position in (xyz)r is computed as

rp∗
l = Tr

l T
l
o

op∗
l . The lens is then controlled to reach the target po-

sition and orientation according to the robot inverse kinematics. In

Figure 5.5, the robot solar concentration tasks is divided into sev-

eral subprocess including the alignment of the elevation angle, the

alignment of the azimuth angle, the translation of the lens to rp∗
l , and

the variation of dl p. By reorienting the lens surface towards the di-

rection of the incident sun ray, not only the collected solar power is

maximized, the optical concentration performance of the lens is also

improved. Therefore in this paper, we always align the lens surface

normal with the sun orientation.

Nevertheless, we argue that it is not strictly required to include

the reorientation process for robot solar concentration tasks in other

scenarios. As shown in Figure 5.5 (a), (b), and (c), the lens also con-

centrates solar energy when the lens orientation is not well aligned.

Relying on the developed simulation model, the robot solar concen-

tration control could be achieved when the robot DOF is limited (0

or 1 controllable rotation angle). Moreover, visiting Figure 5.4 (a),

we found that the distance between the lens surface and the optimal

focal point (where the cross section of the sun ray array is minimal)

125



is decreasing while the angle difference between the lens surface

normal and the solar elevation angle increases. This unique optical

characteristic could be useful for scenarios where the working space

of the robot is limited.

5.2.7 Heat Transfer Modeling

In this section, we model the heat transfer process induced by the

concentrated sunlight. As depicted in Figure 5.6, the sunlight con-

centrates to an interested region of area Ac. A controlled volume

(a cubic with a fixed edge length of dv) can be extracted for heat

transfer modeling. Note that dv should be selected small enough to

satisfy the Biot number criteria [56], which is set to dv = 5mm in this

paper. Note that Ac is coupled with the robot configuration x. Al-

though the direct analytical form of the mapping function f (x) = Ac

is not derived, it can be numerically computed from the developed

simulation or from the RGB image feedback.

We denote the solar energy intensity by qs, which is available if

the longitude, latitude, and temporal factors are provided, and the

constant that quantifies the energy loss caused by the light trans-

mission through the lens by κ .The heat flux inflow to the interested
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Figure 5.7: Experiments comparing the performance of the solar orientation es-
timation utilizing different geometric features. The positional-based method out-
performs the orientation-based method.
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controlled volume’s upper surface is computed as:

qin =
d2

v
Ac(x)

κqs (5.15)

If d2
v > Ac(x), then qin = κqs. For the heat flux outflow from the

controlled volume, it is composed 3 modes of heat transfer, includ-

ing heat radiation, convection, and conduction. We denote the tem-

perature of the controlled volume by T0 and the temporal change of

T0 by v = dT0/dt. According to the energy conservation law, the

relationship between the net heat flux and v is described by:

v = (qin −qrad −qconv −qcond)d2
v/mc (5.16)

where m, c are the mass and the specific heat of the controlled vol-

ume, respectively. Analogous to the formulation in [76], we rewrite

the above equation as:

v = λ0g(x)−λ1T 4
0 −λ2T0 +λ3 (5.17)

where g(x) = 1/Ac(x), and λ0,1,2,3 are positive time invariant vari-

ables if we assume the thermophysical properties of the controlled

volume (expect its temperature T0) remain unchanged, and the prop-
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Figure 5.8: Image-based focal length validation.

erties of the environment (e.g., the ambient temperature and the wind

speed) are also constants within a short period of time.

5.3 Results

5.3.1 Solar Orientation Estimation Feature Selection

In this section, we compare the performance of the solar orienta-

tion estimation methods exploiting different geometric features of

the light spot through experiments. We collected in total 400 RGB

images in four experiments. For each experiment, we set the lens

plane to be parallel to the target plane, and varied its azimuthal an-
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gle within a short period of time (less than three minutes). The esti-

mations of solar orientation exploiting different fractures were com-

puted and recorded for each configuration. The purpose of varying

the robot configuration is to evaluate the robustness of the estimation

algorithm, as in practice the initial robot configuration with respect

to the solar orientation is unknown set arbitrarily.

Within a short period of time, the variation of the real sun ori-

entation is negligible. Consequently, the estimations are expected

to be the same. Theoretically, the position, orientation and shape

of the projected light spot should be invariant to the lens azimuthal

angle variation (See Figure 5.4 b again). In practice, note that the

movement of the robot end-effector changes the relative configura-

tion between the camera and the projected light spot, which results

in a change of the size, orientation, and position of the light spot in

the feedback RGB image. If the the robot kinematics and the ho-

mography transformation from the ArUco maker are accurate, and

the optical performance of the used Fresnel lens is in accord with

the simulation, the projected light spot should also be invariant with

respect to the robot configuration. Nevertheless, due to the inherent

inaccuracy in a robot system, the geometrical features of the pro-
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Lens-Plane Distance and Temperature Variation

( C)

Time (s)

Tmax

Heating Pyrolysis Cooling

Figure 5.9: Temperature variation for different lens-plane distances.

jected light spot varies with the robot configuration. In conclusion,

we select the positional based features (as shown in Equation 5.10)

that produces more stable estimation results comparing to the orien-

tation based features through experiments.

Concretely, some representative processes of the four experiments

are demonstrated in Figure 5.7 (a) - (d), and the corresponding esti-

mation distributions are shown in Figure 5.7 (a1) - (d1). To visualize

the configuration variation of the robot during the experiments, we

also depict the top view of the robot system and annotate essen-

tial components. Note that these illustrative figures are generated

referring to the real configurations of the robot, and the depicted

light spot also comes from the real image feedback by transform-

ing image pixels to the points in xyzr utilizing the method intro-

duced in Section 5.2.5. As shown in 5.7 (a1) - (d1), the variance of
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the position-based method is much smaller than the variance of the

orientation-based method.

5.3.2 Focal Length Calibration

The intensity of the concentrated solar energy is related to the pro-

jection area of the light spot on the target plane Ac. This coupling is

described in 5.15, which is essential for the temperature control in

the robot solar concentration tasks. In section 5.2.7, we mentioned

that the mapping function between the robot configuration and Ac

can be numerically computed or from the RGB image. In this sec-

tion, we compare the results of Ac computed from simulation and

from the image feedback in experiments. We align the orientation of

the lens towards the estimated sun orientation, then control the robot

to focus the sun on a target point with varying lens-plane distance

dl p from 6.4 cm to 9.8 cm with a uniform step of 0.1 cm. As shown

in Figure 5.8 (a), the contour of the projected light spot is extracted

and depicted in red. The image pixels of the spot is then transformed

into points in (xyz)r coordinate, and the area of the formed contour

is computed accordingly. The relationship between Ac computed

from experiment and dl p is depicted in red dots in Figure 5.8 (c).
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We compute Ac in the simulation with the same sun orientation and

dl p variation as in the experiment, and depict the result in Figure 5.8

(c) in blue dashed lined. We claim that coupling between Ac and dl p

is similar in the experiment and simulation.

5.3.3 Temperature Variation and Plane-Lens Distance

The thermal camera provides feedback temperature of the heating

process. We conduct a series of experiments with varying distance

between the lens and the target plane and a fixed heating time. As

shown in Figure 5.9, when the distance is close to the focal length,

the surface temperature rapidly increases to the charring tempera-

ture. Once the wood pyrolysis occurs, the temperature stays at the

equilibrium, but the charred area spreads both horizontally and ver-

tically. When the distance gradually increases, the speed of tempera-

ture increment and the steady state temperature both decrease. Once

the solar concentration period ends (20 seconds), the lens moves up-

wards by 3 centimeters and the temperature gradually decreases due

to heat dissipation and convection. This experiment shows that the

temperature of the target point could be effectively regulated by the

robot configuration and the duration of the heating process.
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Figure 5.10: Results of the solar painting experiments. The robot path is planned
according to the feature points extracted from the target pattern.

5.3.4 Solar Painting Experiments

In this section, we introduce the method of creating a desired pat-

tern on the wood plane with the developed robot system. The target

pattern is composed of a series of points, and the positions of which

are generated by transforming the feature pixel coordinates extracted

from an image using image processing techniques to the world co-

ordinate according to the preset size of the desired pattern. Consider

an image that is composed of aim rows and yim columns. The work-

ing space on the target plane is a square of length lw cm. The scaling

factor is then computed as ωs = lw/(max(aim,yim) · rp), where rp is

the minimum radius of the projected light spot.The target pattern is
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resized according to the scaling factor ωs, and the feature points is

then extracted. For each image pixel (px, py) from the scaled image,

its corresponding coordinate in the world coordinate is then com-

puted as (pxrp+dx, pyrp+dy,0), where (dx,dy) represents the start-

ing point of the pattern on the target plane. The world coordinate is

then grouped according to the x coordinate and ordered according to

the y coordinate. We report four experiments with various patterns

and different scaling factors to validate the proposed method. As

shown in Figure 5.10, the target patterns include logos, letters, and

portraits.
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Chapter 6

Conclusion and Future Work

In this thesis, we present a through formulation of a new robotic tem-

perature control technique based on heat radiation to automatically

regulate the temperature of objects. There are three main aspects to

be considered to solve a robot thermal servoing problem: How does

the robot perceive the temperature of the target and the environment,

what physical model should be developed to describe the dominant

heat transfer process, and what control law should be designed to

achieve the temperature regulation task.

We first demonstrate the development of a multimodal camera

system that consists of a thermal camera and a depth camera. We

implemented a customized calibration algorithm to integrate the out-

put from the two cameras, such that the system could provide fused
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geometric and temperature information, the RGB-D-T point cloud,

of its environment in real-time. We then illustrate the mathematical

formulation of a fundamental “Fire to hand” radiation-based robot

thermal servoing problem in which the target objects are heated by

a radiative heat source. Next, a model-based controller and an adap-

tive controller that online estimates the unknown thermophysical pa-

rameters are designed. Then, a series of experiments are reported

and evaluated to validate the performance of two controllers. The

target feasibility problem is also discussed in depth qualitatively and

quantitatively. Finally, we reported a specific “Fire in hand” robot

thermal servoing problem, the solar painting robot. The developed

system can actively track the sun orientation based on the RGB im-

age feedback, and use a Fresnel lens to concentrate the solar energy

to regulate the temperature of a target point. In this experiment, the

thermal camera not only responsible for provides the value of the

feedback temperature of the target point, but also gives reference in-

formation for determining the true position of the focused light spot.

We validate that the integration of thermal servoing with other visual

servoing is feasible and valuable for the robot system control design.

Yet, the proposed algorithm has some limitations. We mainly
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consider the effect of heat radiation when analyzing the heat trans-

fer model. In practical situations, heat conduction, convection, and

radiation usually coexist and couple with each other. For the cases

where the heat conduction is not negligible (e.g., objects contact-

ing non-adiabatic surfaces, objects with large thickness, etc.) or the

cases where the heat convection is non-negligible (fluid speed or

temperature is high), more sophisticated heat transfer models need

to be developed. We also assume the temperature distribution over

the heat source and the object is uniform, which is invalid for indus-

trial heating applications where the object is much larger than the

heating device.

6.1 Contribution

In this thesis, we present a compact formulation of the radiation-

based robotic TS algorithm. The main contributions are summarized

as:

• We propose a novel motion control method to automatically

regulate the temperature of objects.

• We develop an efficient algorithm to compute radiation-based
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thermal interaction matrices in real-time.

• We report detailed experimental studies to validate the pro-

posed theory.

To the best of our knowledge, this is the first time that temperature

control task has been formalized as a servoing problem.

6.2 Future Work

For future work, we would like to explore more advanced integra-

tion of thermal servoing with visual servoing algorithms. This mul-

timodal perceptual and control capability is essential for develop-

ing robust robotic temperature control systems in complex scenar-

ios, such as service tasks in human environments and intelligent

industrial manufacturing. Several questions remain unanswered at

present. For the cases where heat conduction, convection and radia-

tion are in the same order of magnitude, how to quantitatively eval-

uate the trade-off between a delicate physical model and the compu-

tation time of each feedback control step is critical to the practical

implementation of the algorithm. The uniform temperature regu-

lation is commonly required in industrial heat processes. It could
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be achieved by either utilizing heat sources that output a relative

uniform heat flux (low speed hot air) or by designing adaptive algo-

rithms which control multiple small-scale heat sources to complete

the task cooperatively. For the solar concentration robot, we believe

there is abundant room in investigating its practical application sce-

narios. It could be integrated with a mobile platform (even a drone)

and a reflection system to create a steady and sustainable heat flux

at an arbitrary target area in 3D space, which is rather difficult to

achieve with traditional static heating systems. We encourage inter-

ested readers to work along these open directions.

6.3 Research Output

• L. Hu, D. Navarro-Alarcon, A. Cherubini and M. Li. On Radiation-

Based Thermal Servoing: New Models, Controls and Experi-

ments. IEEE Transactions on Robotics, 2021.

• M. Muddassir, D. Gomez, L. Hu, S. Chen and D. Navarro-

Alarcon. Paint with the Sun: A Thermal-Vision GuidedRobot

to Concentrate Solar Energy into Surfaces, 2021.

• T. Zhang, L. Hu, L. Li and D. Navarro-Alarcon. Towards a

141



Multispectral RGB-IR-UV-D Vision System —Seeing the In-

visible in 3D, IEEE ROBIO, 2021.

• L. Hu, A. Duan, M. Li, A. Cherubini, Q. Zhou, and D. Navarro-

Alarcon. Paint with the Sun: A Thermal-Vision GuidedRobot

to Concentrate Solar Energy into Surfaces, 2022.
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Chapter 7

Appendix

7.1 Online Estimation of the Interaction Vector l

The numerical solvers [62] for definite integrals is used to approx-

imate the interaction matrix in real time. The essence of numerical

integration is to divide the complex integrand into small subsections

and approximate each subsection with a polynomial which is easy

to integrate. We introduce a commonly used numerical approxima-

tion method of definite integrals, Composite Simpson’s rule, which

approximates the subsection by quadratic polynomials. The general
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form of Composite Simpson’s rule is as follows:

∫ d

c
g(x)dx ≈

h
3

[
g(x0)+2

n/2−1

∑
j=1

g
(
x2 j

)
+4

n/2

∑
j=1

g
(
x2 j−1

)
+g(xn)

] (7.1)

where n is the number of subintervals, x j = c+ jh for j = 0,1, ...,n−1,n

with h = (d − c)/n; in particular, x0 = c and xn = d.

7.2 Polynomial Fitting with sliding window

For a single object, we denote its temperature as Tt where t = t1, t2, · · · , tn

and tn represents the nth sampling time. The size of the sliding

window is set to be 10 data samples. When n < 10, the estima-

tion is at the initialization stage and the robot will not move. When

n ≥ 10, we denote the sample points in the sliding window by Ts =[
Ttn−9 Ttn−8 · · · Ttn

]⊺
. We then fit 10 sample points in the sliding
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window to the polynomial of order 3 as:

T̂s = Pctn =



(tn−9)
3 (tn−9)

2 (tn−9) 1

(tn−8)
3 (tn−8)

2 (tn−8) 1

... ... ...

(tn)3 (tn)2 (tn) 1





ctn
3

ctn
2

ctn
1

ctn
0


(7.2)

where ctn is the coefficient vector of the polynomial at sample time

tn. To minimize ∥Ts − T̂s∥2, the coefficients are computed as ctn =

P+Ts. Then, the temperature and temperature rate of a single object

can be estimated as:

Ttn = ctn
3 (tn)

3 + ctn
2 (tn)

2 + ctn
1 (tn)+ ctn

0 (7.3)

vtn = 3ctn
3 (tn)

2 +2ctn
2 (tn)+ ctn

1 (7.4)

We follow the same procedure to estimate the temperature and tem-

perature rates for other objects, and T2 and v can be estimated ac-

cordingly.
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