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Abstract

This thesis is concerned with the system of conservation laws transformed via a Cole-

Hopf transformation from the Keller-Segel model to repulsive chemotaxis which has

various applications, such as biological systems that build transport networks (rein-

forced random walks [27,28]).

Traveling wave solutions to conservation laws arising from chemotaxis with pos-

itive chemotactic coefficient (denoted by χ > 0) have been widely studied, while the

analysis of traveling waves to conservation laws arising from repulsive chemotaxis

(denoted by χ < 0) still remains open. The purpose of this thesis will be to de-

velop some existence and stability theories for such a system of conservation laws

to repulsive chemotaxis. We first show the exisence of travaling waves by using the

phase plane analysis, where there are three heteroclinic connections in the system.

Numerical simulations will be presented to demonstrate the process of wave propa-

gation. We then proceed to prove the stability of traveling waves by employing the

method of weighted energy estimates. We get estimates on the types of integrals

which are usually interpreted in terms of energies related to the physical problems

behind partial differential equations.

This thesis develops the first theoretical results on traveling waves to conservation

laws arising from repulsive chemotaxis and more open problems relate to the system

will be proposed for future studies.
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Chapter 1

Introduction

1.1 Background

The appearance of traveling waves is common in biological phenomena. Traveling

wave is a kind of wave, which travels with constant propagation speed and unchanged

shape. There are some practical examples demonstrating such waves, including the

calcium waves propagating on the surface of the egg of the fish Medaka during fertil-

ization [1], the transmission of an advantageous gene in a population [2], the branch-

ing pattern formation of colonies of bacteria, Paenibacillus dendritiformis [3, 4] and

so on. Mathematicians have explored traveling waves for years and have tried to

give mathematical modeling and analysis to such an event because the investiga-

tion of traveling waves plays an important role in understanding the mechanisms

behind various patterns in biology science. Mathematically, if a solution to a partial

differential equation is in the form

u(x, t) = U(x− ct) = u(z), z = x− ct,

with U ∈ C∞(R) satisfying conditions

U(±∞) = u±, U
′(±∞) = 0,

then u(x, t) is a traveling wave solution that moves at constant speed c in the positive

x-direction. z is the wave variable and u± are constants which represent the right
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and left end states, describing the asymptotic states of U as z → ±∞.

In 1937, the Fisher equation, the most fundamental reaction-diffusion model

which admits traveling wave solutions, was developed to describe the transmission of

advantageous genes in a population. It shows that the combination of reaction and

diffusion increases the efficiency of information transferal through traveling waves of

concentration movements comparing with the diffusion mechanism alone. The Fisher

equation has a wide range of applications in biological science, from bacteria growth

to animal dispersal.

However, there are many wave propagating phenomena which cannot be described

by the Fisher equation. Instead they can be interpreted by chemotaxis. It describes

the movements of bacteria, cells and organisms in response to chemical substances

present in the environment. Chemotaxis has many applications in biological and

biomedical science, including blood vessel formation, bacterial infection, immune

responses, development of cancer and wound healing [5]. Scientists have found trav-

eling wave patterns driven by chemotaxis, for example, bands of motile Escherichia

coli(E.coli) were observed when the bacteria were placed in one end of a capillary

tube containing oxygen and an energy source [6]. Another famous example is the

aggregation of Dictyostelium discoideum as traveling waves[7]. In 1970s, Evelyn Fox

Keller and Lee A. Segel [8, 9] proposed a mathematical model to describe the aggre-

gation of cellular slime molds like Dictyostelium discoideum. The Keller-Segel model

has become one of the most well-known models in mathematical biology. We study

its general form in one dimensional space with logarithmic law,

{
ut = [dux − χu(log h)x]x,

ht = εhxx − uf(h),
(1.1)

with (x, t) ∈ R × [0,∞). Here u(x, t) and h(x, t) denote the cell density and the

chemical concentration, respectively. d > 0 and ε ≥ 0 are the cell and chemical
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diffusion coefficients. χ is called the chemotactic coefficient measuring the strength

of the chemical signals. If χ > 0 (resp. χ < 0), the chemical is a chemoattractant

(resp. chemorepellent). log h is the chemosensitivity function, the signal detection

mechanism. Note that the chemosensitivity functions in other forms, such as kh

linear law and khm

1+hm
receptor law with k > 0 and m ∈ N have been widely studied,

see [5, 10, 11, 12]. Function f(h) represents the consumption rate of the chemical

per cell in the forms shown below

f(h) = hm =


constant rate, m = 0,

sublinear rate, 0 < m < 1,

linear rate, m = 1,

superlinear rate,m > 1.

(1.2)

When 0 ≤ m < 1, Keller and Segel interpret the traveling bands of bacterial chemo-

taxis experimentally observed in [13] with ε = 0 and more works on the existence of

traveling bands were done for ε ≥ 0 [14, 15, 16, 17, 18]. When m > 1, H. Schwetlick

has proved the non-existence of traveling wave solutions for the model (1.1) in [18].

When m = 1, the model (1.1) with nonzero chemical diffusion was used by Rosen to

describe the chemotactic movement of motile aerobic bacterial toward oxygen, and

later was used to describe the initiation of angiogenesis [19, 20, 21].

The stability of traveling waves remains as a difficult problem, although the ex-

istence results has been widely established. When 0 ≤ m < 1, there is no stability

result on traveling waves. When the chemical diffusion is nonzero, the linear in-

stability of traveling wave solutions to chemotaxis model was shown by Nagai and

Ikeda in [16]. When m = 1, the stability of traveling wave solutions for the system

with small chemical diffusion or zero chemical diffusion were established for χ > 0

in [23, 24, 22].

The success of these results heavily rely on the following transformation. As

can be seen that the singularity lying in the logarithmic law at h = 0 has brought
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difficulties in mathematical analysis, to resolve such a problem, a Cole-Hopf type

transformation is applied to model (1.1),

v = − ∂

∂x
(log h) = −hx

h
.

Model (1.1) with f(h) = h is transformed into the following conservation laws with-

out singularity {
ut − χ(uv)x = duxx,

vt + (εv2 − u)x = εvxx.

As we have discussed from the previous context, fruitful results on the traveling

waves of the above system were derived. See [25].

1.2 Organization of the Thesis

In this thesis, I will focus on the conservation law system arising from chemotaxis

instead of the original model (1.1). The organization of the thesis is as follows.

In the first part of introduction chapter, the concept of traveling waves and chemo-

taxis has been introduced. Some previous research works relate to traveling waves

have been reviewed. In the remaining introduction chapter, I will state the trans-

formed system that we study.

In the second chapter, we introduce methods which will be needed when we anal-

yse the existence and stability of the system and main results of the our study will

be illustrated.

In the third chapter, we show the details of the phase plane analysis to prove

the existence results in different cases while the non-existence results will also be

presented. In addition, we show the numerical simulations of traveling waves for

three heteroclinic connection cases by using Matlab Program.

In the fourth chapter, we show the details of weighted energy method to prove
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the stability results.

In the final chapter, a brief summary of the whole thesis will be given and some

research problems that we may explore will be presented.

1.3 Our Considered Problem and Applications

In this thesis, we consider the case of (1.1) when f(h) = αh where α < 0 which means

that chemical substance is consumed only when cells (bacteria) leave the chemical.

We employ the following Cole-Hopf type transformation

v =
1

α

∂

∂x
(log h) =

1

α

hx
h
. (1.3)

Our considered system is

{
ut + (uv)x = duxx, x ∈ R, t > 0,

vt + (σv2 + u)x = εvxx, x ∈ R, t > 0,
(1.4)

with the initial data

(u, v)(x, 0) = (u0, v0)(x)→ (u±, v±) as x→ ±∞. (1.5)

The system (1.4) we are concerned with has various applications.

Application 1: The Attraction-repulsion chemotaxis model

Luca et al. [26] proposed the attraction-repulsion chemotaxis model to study the

aggregation of Microglia observed in Alzhemer’s disease.


ut = d∆u−∇ · (χu∇s) +∇ · (ξu∇w),

st = ε∆s+ αu− βs,
wt = ε∆w + γu− δw.

(1.6)

The aggregation of Microglia denoted by u due to the interaction with chemoattractant(β-

amyloid) denoted by s and chemorepellent (tumor necrosis factor TNF-α) denoted
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by w. χ, ξ, β, δ ≥ 0, α, γ > 0 are parameters. When β = δ = 0, setting

θ = χα− ξγ,

where θ is an index measuring the competition between attraction and repulsion.

Let

h = χ∇s− ξ∇w.

We have {
ut = d∆u− θ∇ · (u∇h),

ht = ε∆h+ u.

Letting v = −∇h, we derive

{
ut − θ∇ · (uv) = d∆u,

vt +∇u = ε∆v.

When θ = −1, the above equations are transformed into the system (1.4) with σ = 0.

Application 2: The Repulsive chemotaxis model with logarithmic sensi-

tivity

Biological systems that build transport networks can be described in terms of rein-

forced random walks. The repulsive chemotaxis model with logarithmic sensitivity

was derived in [27, 28] which is modeled by reinforced random walkers represented

by u such as myxobacteria and chemical signal denoted by w released from cells. The

system reads as follows

{
ut = d∆u−∇ · (χu∇ lnw),

wt = ε∆w + uw − µw,
(1.7)

where χ < 0. The Cole-Hopf type transformation v = −∇ lnw = −∇w
w

yields that

vt =
(
−wx
w

)
t

=
(wt
w

)
x
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=− ε
(wxx
w

)
x
− ux

=− ε
[(wx

w

)
x

+
(wx
w

)2
]
x

− ux

=− ε
[
(−v)x + (−v)2

]
x
− ux

=εvxx − ε(v2)x − ux.

The system (1.4) can be derived from (1.7) by setting χ = −1 and σ = ε.

Appliaction 3: The Boussinesq-Burgers system

Our model (1.4) has applications in fluid mechanics. For example, when σ = 1
2

and w = v, (1.4) becomes the following Boussinesq-Burgers system which is used to

describe the propagation of shallow water waves [29].

{
ut + (uv)x = duxx,

wt +
(
u+ w2

2

)
x

= εwxx + δwxxt
(1.8)

In this system, w = 1 + ρ where ρ is the height of the fluid and u represents velocity

of the free surface of the fluid above the bottom.

Since my analysis is mainly focus on the applications in biology science, we require

u ≥ 0.
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Chapter 2

Methods and Main Results

2.1 Methods

There are various methods to study the existence of traveling waves. For example,

topological methods, in particular, the Leray-Schauder method and methods of bifur-

cation theory. To prove the existence of traveling wave solutions of (1.4), one of the

most conventional methods, phase plane analysis (shooting method), is employed.

To apply this method, we need to transform the partial differential equations to a

system of ordinary differential equations (ODEs). Then we shall reduce the system

into a system of first order ODEs. For the resulting system, we can linearize the

system by calculating the Jacobian matrix and analyze the properties of equilibrium

points. There are four types of critical points, including unstable and stable focus,

unstable and stable nodes, centers and saddles. Then a heteroclinic or homoclinic

orbit, a path in phase space which joins two different equilibrium points or joins

a saddle equilibrium point to itself (unstable manifold and stable manifold), gives

existence of a traveling wave solution.

In the phase plane analysis, Poincaré–Bendixson theorem [30] is an important tool

applied when proving the existence of traveling waves. The generalized Poincaré–Bendixson

theorem is

Proposition 2.1 (Poincaré–Bendixson Theorem). Let M be an open subset of R2
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and f ∈ C1(M,R2). Fix x ∈ M,σ ∈{±}, and suppose omega-limit set ωσ(x) 6= ∅

is compact, connected, and contains only finitely many fixed points. Then one of the

following cases holds:

(i) ωσ(x)is a fixed orbit;

(ii) ωσ(x)is a regular periodic orbit;

(iii) ωσ(x) consists of (finitely many) fixed points {xj}and non-closed orbits γ(y)

such that ω±(y) ∈ {xj}.

To investigate the stability of traveling waves, we are looking for a small perturba-

tion with zero integral from traveling wave solution converges to this traveling wave

solution, translated properly by a shift x0. Mathematically, it means

sup
x∈R
|(u, v)(x, t)− (U, V )(x+ x0 − ct)| → 0, as t→ +∞.

The weighted energy method is applied for the investigation. Energy method is a very

useful technique in PDE analysis. For this method, we get estimates on the types

of integrals like
∫
|u|2 and

∫
|∇u|2 which are usually interpreted in terms of energies

related to the physical problems behind PDEs. Therefore, we call methods that

involve these kinds of estimates energy methods. Historically, this may come from

Hilbert’s solution to the Dirichlet problem, which consisted in minimizing
∫
|∇u|2.

The method of energy estimates for the nonlinear stability of viscous shock profiles

of conservation laws was first introduced by Matsumura and Nishihara in [31] and by

Goodman in [32]. In our study, we need to choose a weight function to overcome the

singularity occurs during the calculations. As a result, the weighted energy method

is applied to study the stability of traveling wave solutions of (1.4).

2.2 Main Results

The first result of our thesis is on the existence of traveling wave solutions of (1.4).

9



Theorem 2.1. When σ ≥ 1, there is no traveling wave solution to the system (1.4).

When σ ∈ (0, 1), we have the following existence results:

a) Let (u+, v+) = (0, 0) and (u−, v−) = (c2(1−σ), c). Then the system (1.4) has a

unique (up to a translation) monotone traveling wave (U, V )(x− ct) satisfying

Uz < 0 and Vz < 0.

b) Let (u+, v+) = (c2(1−σ), c) and (u−, v−) = (0, c
σ
). Then the system (1.4) has a

unique (up to a translation) monotone traveling wave (U, V )(x− ct) satisfying

Uz > 0 and Vz < 0.

c) Let (u+, v+) = (0, 0) and (u−, v−) = (0, c
σ
). Then the system (1.4) has a unique

(up to a translation) traveling wave (U, V )(x− ct) satisfying Vz < 0.

The main result on the asymptotic stability is as follows

Theorem 2.2. Let (U, V )(z) be the traveling wave solutions to model (1.4) obtained

in Theorem 2.1. If ε > 0 is small and u+ ≥ 0, then there exists a constant x0 such

that such that the initial perturbation from the spatially shifted traveling waves with

shift x0 is of zero integral, namely (φ0, ψ0)(±∞) = 0, where

(φ0, ψ0)(x) =

∫ x

−∞
(u0(y)− U(y + x0), v0(y)− V (y + x0) dy.

Then if there exists a constant δ0 > 0 such that ‖u0 − U‖1,w+‖v0 − V ‖1,w+‖(φ0, ψ0)‖ ≤

δ0, then the system (1.4) has a unique solution (u, v)(x, t) satisfying

(u− U, v − V ) ∈ C([0,∞), H1
w) ∩ L2([0,∞), H2

w)

and the asymptotic stability follows:

sup
x∈R
|(u, v)(x, t)− (U, V )(x+ x0 − ct)| → 0, as t→ +∞.

10



Chapter 3

Proof of Existence

In this section, the non-existence and existence of traveling wave solutions of system

(1.4) with σ > 0 will be shown by using the phase plane analysis.

We define the traveling wave ansatz

(u, v)(x, t) = (U, V )(z), z = x− ct, (3.1)

where c denotes the wave speed and z is the traveling wave variable. Substituting

(3.1) into (1.4) to get the traveling wave equations with boundary conditions


−cUz + (UV )z = dUzz,

−cVz + (σV 2 + U)z = εVzz,

U(±∞) = u± ≥ 0, V (±∞) = v±,

Uz(±∞) = Vz(±∞) = 0,

(3.2)

Integrating (3.2) once to reduce the second order ordinary differential equations into

first order ODEs, {
dUz = −cU + UV + ρ1,

εVz = −cV + (σV 2 + U) + ρ2,
(3.3)

where ρ1 and ρ2 are constants satisfying

{
ρ1 = cu− − u−v− = cu+ − u+v+,

ρ2 = cv− − σv2
− − u− = cv+ − σv2

+ − u+,
(3.4)
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In this paper, we assume that ρ1 and ρ2 equal to zero. Then from (3.4), we get

{
u−(c− v−) = u+(c− v+) = 0,

v−(c− σv−)− u− = v+(c− σv+)− u+ = 0,
(3.5)

The system (3.3) becomes

{
dUz = −cU + UV,

εVz = −cV + (σV 2 + U).
(3.6)

(3.6) has three equilibrium points (0, 0), (0, c
σ
) and (c2(1−σ), c). The Jacobian matrix

of the linearized system at (uc, vc) is

J(uc,vc) =

[
−c+vc
d

uc
d

1
ε

−c+2σvc
ε

]

with eigenvalues λ satisfying

λ2 +

(
c− vc
d

+
c− 2σvc

ε

)
λ+

1

dε
((vc − c)(2σvc − c)− uc) = 0. (3.7)

The discriminant of the quadratic equation (3.7) is non-negative in the region X =

{(u, v)| u ≥ 0}. Hence all roots of (3.7) are real. Now we can investigate the prop-

erties of equilibrium points and apply phase plane analysis to verify the existence

results in following three different cases where σ = 1, σ > 1 and 0 < σ < 1.

3.1 Case of σ = 1

When σ = 1, there are only two equilibria (0, 0) and (0, c). For (0, 0), we have

J(0,0) =

[
− c
d

0
1
ε
− c
ε

]
12



with λ1 = − c
d

and λ2 = − c
ε
.

Both of the eigenvalues are negative, hence (0, 0) is a stable node.

For (0, c), we have

J(0,c) =

[
0 0
1
ε

c
ε

]

with λ1 = 0 and λ2 = c
ε
.

Thus (0, c) is unstable. Next we prove that there is no heteroclinic orbit connecting

(0, 0) and (0, c). The corresponding eigenvector of λ2 is

v2 =

[
0

α

]

where α ∈ R. It indicates that the eigenvector lies along the V-axis, hence a non-

trivial trajectory cannot be formed. We have shown that there is no heteroclinic

connection between (0, 0) and (0, c) when σ = 1, therefore, traveling wave solutions

for the system (1.4) do not exist when σ = 1.

3.2 Case of σ > 1

When σ > 1, we only consider equilibria (0, 0) and (0, c
σ
) since the U-coordinate is

smaller than zero at (c2(1−σ), c), this point is not relevant in the context. For (0, 0),

we have

J(0,0) =

[
− c
d

0
1
ε
− c
ε

]

with λ1 = − c
d

and λ2 = − c
ε
.

Both of the eigenvalues are negative, hence (0, 0) is a stable node.

For (0, c
σ
), we have

J(0, c
σ

) =

[
c(1−σ)
dσ

0
1
ε

c
ε

]
13



with λ1 = c(1−σ)
dσ

and λ2 = c
ε
.

Since σ > 1, we have λ1 < 0 and λ2 > 0. Thus (0, c
σ
) is a saddle point. Next we shall

prove that there is no heteroclinic orbit connecting (0, 0) and (0, c
σ
). The eigenvector

of the positive eigenvalue is

v2 =

[
0

α

]

where α ∈ R. It indicates that the eigenvector lies along the V-axis, hence similar

with the case of σ = 1, traveling wave solutions for the system (1.4) do not exist when

σ > 1. We have shown that there is no traveling wave solution to (1.4) whenσ ≥ 1

as stated in Theorem 2.1.

3.3 Case of 0 < σ < 1

There are three possible heteroclinic connections between (c2(1−σ), c) and (0, 0),(c2(1−

σ), c) and (0, c
σ
) and (0, c

σ
) and (0, 0). Setting c = 1 and σ = 1

2
, we use program

Matlab to generate the phase portrait of system (3.6) in V − U plane.(See Fig.1)

Then we shall prove the existence of the connections below.

3.3.1 Heteroclinic Connection between (c2(1− σ), c) & (0, 0)

For (0, 0), we have

J(0,0) =

[
− c
d

0
1
ε
− c
ε

]

with λ1 = − c
d

and λ2 = − c
ε
.

Since both of the eigenvalues are negative, (0, 0) is a stable node.

For (c2(1− σ), c), we have

J(c2(1−σ),c) =

[
0 c2(1−σ)

d

1
ε
−c+2σc

ε

]

14
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Figure 3.1: Phase portrait of the system (3.6) in V − U plane, setting c = 1 and
σ = 0.5, three critical points are represented by three black points on the figure.

with λ1 = c(2σ−1)
2ε

+

√
[ c(1−2σ)

ε ]
2
+

4c2(1−σ)
dε

2
> 0 and λ2 = c(2σ−1)

2ε
−

√
[ c(1−2σ)

ε ]
2
+

4c2(1−σ)
dε

2
< 0

since σ < 1.

Thus, it is a saddle point.

Next we shall check that there is a heteroclinic orbit connecting (c2(1 − σ), c) and

(0, 0). We have nullclines of the system (3.6) which are given by

{
U(V − c) = 0

U = V (c− σV )
(3.8)

The first equation of (3.8) gives two straight lines: U = 0 and V = c, and the second

equation gives a parabola. To this end, we can prove that the region bounded by the

lines and the parabola is an invariant region of system (3.6). The region is defined

by G = {(U, V )| 0 ≤ U ≤ c2(1− σ), 0 ≤ V ≤ c} (see Fig 3.2) and bounded by

Γ1 = {(U, V )|U = V (c− σV ), 0 < V < c}

Γ2 = {(U, V )|V = c, 0 < U < c2(1− σ)}

Γ3 = {(U, V )|U = 0, 0 < V < c}

15



Figure 3.2: A numerical plot of the phase plane of system (3.6), where the deeppink
straight line represents V = c, O = (0, 0) and B = (c, c2(1− σ)) in V − U plane.

Along Γ1, Uz = U(V − c) = V (c − σV )(V − c) < 0 and Vz = 0. Therefore, the

direction field along Γ1 points downward vertically. Along Γ2, Uz = 0 and Vz =

−c2(1− σ) + U < 0, thus the direction field along Γ2 points to the left horizontally.

Along Γ3, Uz = 0 and Vz = V (−c+ σV ) < 0. Therefore, the direction field along Γ3

points to the left horizontally. We conclude that G is an invariant region from the

above analysis. Then we shall prove that the unstable manifold of (3.6) emanating

from (c2(1−σ), c) is trapped inside the invariant region. From direct calculation, we

derive that the tangent direction of Γ1 at (c2(1− σ), c) is

dU

dV

∣∣∣∣Γ1

(c2(1−σ),c)

= c(1− 2σ)

The tangent direction of Γ2 at (c2(1− σ), c) is

dU

dV

∣∣∣∣Γ2

(c2(1−σ),c)

=∞

Now we compute the direction of the unstable manifold of (3.6) at (c2(1 − σ), c)

and compare with the directions of the boundaries. We consider the associated

16



eigenvector of λ1,

v1 =

[
c(2σ−1)−ελ1

ε

−1
ε

]

Tangent to the eigenvector, the direction of the unstable manifold at (c2(1−σ), c) is

given by

dU

dV

∣∣∣∣
(c2(1−σ),c)

= c(1− 2σ) + ελ1

Since ε and λ1 are positive, we have

dU

dV

∣∣∣∣Γ1

(c2(1−σ),c)

<
dU

dV

∣∣∣∣
(c2(1−σ),c)

<
dU

dV

∣∣∣∣Γ2

(c2(1−σ),c)

Therefore we deduce that the direction of the unstable manifold of (3.6) at (c2(1 −

σ), c) is between the tangent lines of Γ1 and Γ2 at (c2(1− σ), c) which points inside

the invariant region. By the Poincaré-Bendixson theorem, the unstable manifold has

to reach the stable equilibrium (0, 0). A solution for the system (3.6) is generated

by this trajectory connecting (c2(1− σ), c) and (0, 0) with Uz < 0 and Vz < 0 when

σ < 1. We have proved Theorem 2.1(a).

we shall simulate the traveling wave solutions of system (1.4) numerically by using

the ”pdepe” Matlab. We set c = 1, σ = 1
2
, d = 4and ε = 1 to generate the wave

propagation profiles in finite spatial domain, I = (0, 600).

For (c2(1− σ), c) and (0, 0), we have

{
u− = 1

2
,

u+ = 0,
and

{
v− = 1,

v+ = 0,
(3.9)

The initial condition is set to be

(u0, v0) =

(
1

2 + e2(x−100)
,

1

1 + e2(x−100)

)
.

17



Figure 3.3 and figure 3.4 show the propagation of u and v of the system (3.6). Figure

3.5 and 3.6 show the wave profiles in 3D planes.

Figure 3.3: Evolutionary wave profile of u

Figure 3.4: Evolutionary wave profile of v
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Figure 3.5: Evolutionary wave profile of u in 3D

Figure 3.6: Evolutionary wave profile of v in 3D
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3.3.2 Heteroclinic Connection between (0, cσ) & (c2(1− σ), c)

For (0, c
σ
), we have

J(0, c
σ

) =

[
c(1−σ)
dσ

0
1
ε

c
ε

]

with λ1 = c(1−σ)
dσ

and λ2 = c
ε
.

Since both of the eigenvalues are positive, (0, c
σ
) is an unstable node. For (c2(1−σ), c),

we have shown that it is a saddle point.

Next we shall check that there is a heteroclinic orbit connecting (0, c
σ
) and(c2(1 −

σ), c). Since we can not construct an invariant region for the heteroclinic orbit

connecting (0, c
σ
) and (c2(1− σ), c), we reverse the direction of the phase plane. By

letting z̄ = −z = −x + ct, the direction of the orbits in the phase plane will be

reversed as shown in the Matlab figure below.

-3 -2 -1 0 1 2 3

V

-3

-2

-1

0

1

2

3

U . .

.

Figure 3.7: Phase portrait of the system (3.6) in V − U plane, setting c = 1 and
σ = 0.5 where z̄ = −z = −x+ ct.
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Therefore, let (u, v)(x, t) = (U, V )(z̄) and substitute into (1.3), then (1.3) becomes

{
cUz̄ − (UV )z̄ = dUz̄z̄

cVz̄ − (σV 2 + U)z̄ = εVz̄z̄
(3.10)

Integrating (3.9) once gives

{
cU − (UV ) = dUz̄

cV − (σV 2 + U) = εVz̄
(3.11)

The equilibrium points of the transformed system are the same as the original one,

which are (0, c
σ
),(c2(1 − σ), c) and (0, 0). Since we are looking for the existence of

heteroclinic connection between (0, c
σ
) and (c2(1 − σ), c), we only need to explore

properties of these two points. To begin with, we obtain the Jacobian matrix of

(3.10),

J(uc,vc) =

[
c−vc
d

−uc
d

−1
ε

c−2σvc
ε

]

At (c2(1− σ), c), we have

J(c2(1−σ),c) =

[
0 c2(σ−1)

d

−1
ε

c(1−2σ)
ε

]

where the eigenvalues are

λ1,2 =

c(1−2σ)
ε
±
√

c2(1−2σ)2

ε2
+ c2(1−σ)

dε

2
,

We have λ1 > 0 and λ2 < 0, so (c2(1− σ), c) is a saddle point.

At (0, c
σ
), we have

J(0, c
σ

) =

[
c(σ−1)
dσ

0
−1
ε

−c
ε

]
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with λ1 = c(σ−1)
dσ

and λ2 = −c
ε

.

Both of the eigenvalues are negative, so (0, c
σ
) is a stable node.

Next we can prove that there is a heteroclinic orbit connecting these two manifolds.

We construct a triangle region enclosed by the following lines and show that this

region of system (3.10) is invariant. The region is bounded by three lines (see Fig

3.8).

Figure 3.8: phase portrait for σ = 1 in V − U plane where two deeppink lines
represent V = c and U = c(c− σV ) respectively, A = ( c

σ
, 0) and B = (c, c2(1− σ)).

Γ1 = {(U, V )|0 < U < c2(1− σ), V = c},

Γ2 = {(U, V )|U = c(c− σV ), 0 < U < c2(1− σ), c < V <
c

σ
},

Γ3 = {(U, V )|U = 0, c < V <
c

σ
},

Along Γ1, Uz̄ = U(c−V )
d

= 0 since V = c and Vz̄ = c2(1− σ) + U > 0. Therefore, the

direction field of (3.10) along Γ1 points to the right horizontally. For Γ2, we have

Γ2 = U + cσV − c2. If there exists vector fields leave the triangle region by passing

through Γ2, then there exists a point at which dΓ2

dz̄
> 0. However, by (3.10) and the
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equation of Γ2, we derive that

dΓ2

dz̄
= Uz̄ + cσVz̄

=
cU − UV

d
+ cσ

cV − σV 2 − U
ε

=
(−cσV + c2)(c− V )

d
+ cσ

cV − σV 2 + cσV − c2

ε

Since we are interested in the sign of dΓ2

dz̄
and the denominators of the above equations

are positive, we can neglect the denominators and expand the equation. Then we

have

F (V ) = cσ(1− σ)V 2 +
(
c2σ(σ − 1) + c2(σ − 1)

)
V + c3(1− σ)

We have d2F (V )
dz̄2

> 0, so F (V ) is convex. Since c < V < c
σ
, we can show that both

F (c) and F ( c
σ
) are non-negative to conclude that F (V ) < 0. Indeed, we have

F (c) = c3σ(1− σ) + c3σ(σ − 1) + c3(σ − 1) + c3(1− σ) = 0

and

F (
c

σ
) =

c3(1− σ)

σ
+ c3(σ − 1) +

c3(σ − 1)

σ
+ c3(1− σ) = 0

Therefore, F (V ) < 0 and dΓ2

dz̄
< 0. There has no trajectory leaving the region

through Γ2. Along Γ3, Uz̄ = 0 and Vz̄ = cV −σV 2 > 0. Therefore, the direction field

of (3.10) along Γ3 points to the right horizontally. Therefore the triangle region is an

invariant region. Next we shall prove that the unstable manifold of (3.10) emanating

from (c2(1−σ), c) is trapped inside the region. We derive that the tangent direction

of Γ1 is

dU

dV

∣∣∣∣Γ1

(c2(1−σ),c)

=∞

The tangent direction of Γ2 at (c2(1− σ), c) is

dU

dV

∣∣∣∣Γ2

(c2(1−σ),c)

= −cσ
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Now we can compute the direction of the unstable manifold at (c2(1 − σ), c) and

compare with the directions calculated above. We consider the associated eigenvector

of λ1 =
c(1−2σ)

ε
+

√
c2(1−2σ)2

ε2
+
c2(1−σ)

dε

2
.

v1 =

[
c(1−2σ)

ε
− λ1

1
ε

]

Tangent to the eigenvector, the direction of the unstable manifold at (c2(1−σ), c) is

given by

dU

dV

∣∣∣∣
(c2(1−σ),c)

= c(1− 2σ)− ελ1

When ε is small enough, we have

c(1− 2σ)− ελ1 + cσ = c(1− σ) > 0

Therefore, we get

dU

dV

∣∣∣∣Γ2

(c2(1−σ),c)

<
dU

dV

∣∣∣∣
(c2(1−σ),c)

<
dU

dV

∣∣∣∣Γ1

(c2(1−σ),c)

Hence we conclude that the unstable manifold at (c2(1 − σ), c) lies between the

tangent lines of Γ2 and Γ3. Since the manifold is trapped inside the invariant region,

this unstable manifold has to go to the stable equilibrium by the Poincaré-Bendixson

theorem.

Since we have proved that there exists traveling wave solution in the reversed system,

there also exists traveling wave solution in the system (3.6). The difference is that

the direction of the orbits are reversed. Hence, a solution for the system (3.6) is

generated by this trajectory connecting (c2(1 − σ), c) and (0, c
σ
) when σ < 1. We

have proved Theorem 2.1(b).
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Similar with the simulation of traveling waves for (c2(1 − σ), c) and (0, 0). For

(c2(1− σ), c) and (0, c
σ
), we have

{
u− = 0,

u+ = 1
2
,

and

{
v− = 2,

v+ = 1,
(3.12)

The initial condition is set to be

(u0, v0) =

(
1

2 + e2(x−100)
,

1

1 + e2(x−100)

)
.

Figure 3.9 and figure 3.10 show the propagation of u and v of the system (3.6).

Figure 3.11 and 3.12 show the wave profiles in 3D planes.
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Figure 3.9: Evolutionary wave profile of u
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Figure 3.10: Evolutionary wave profile of v

Figure 3.11: Evolutionary wave profile of u in 3D
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Figure 3.12: Evolutionary wave profile of v in 3D

3.3.3 Heteroclinic Connection between (0, cσ) & (0, 0)

For (0, c
σ
), we have shown that it is an unstable node. For (0, 0), we have shown that

it is a stable node.

Next we shall check that there is a heteroclinic orbit connecting (0, c
σ
) and(0, 0) by

constructing a triangle region OBA where O = (0, 0), A = (0, c
σ
) and B = (m, c)

where 0 < m ≤ c2(1− σ). We can prove this region enclosed by the following three

lines is an invariant region of system (3.6). (See Fig 3.13)

Γ1 =
{

(U, V )|U = 0, 0 < V <
c

σ

}
Γ2 =

{
(U, V )|U =

σmV

c(σ − 1)
+

m

1− σ
, 0 < U < c2(1− σ), c < V <

c

σ

}
Γ3 =

{
(U, V )|U =

m

c
V, 0 < U < c2(1− σ), 0 < V < c

}
Along Γ1, Uz = 0 and Vz = V (σV − c) < 0. Therefore, the direction field of (3.6)

along Γ1 points to the left horizontally. For Γ2, we have Γ2 = c(1−σ)U+mσV −cm.
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Figure 3.13: phase portrait for σ = 1 in V − U plane where two deeppink lines
represent U = mσV

c(σ−1)
+ m

1−σ and U = mV
c

respectively, A = ( c
σ
, 0) and B = (c,m).

If there exists vector fields leave the triangle region by passing through Γ2, then there

exists a point at which dΓ2

dz
> 0. However, by (3.6) and the equation of Γ2, we derive

that

dΓ2

dz
= c(1− σ)Uz +mσVz

=
c(1− σ)(−cU + UV )

d
+
mσ(−cV + σV 2 + U)

ε

Since we are interested in the positivity of dΓ2

dz
and the denominators of the above

equations are positive, we can neglect the denominators. Let

F (V ) = c(1− σ)(−cU + UV ) +mσ(−cV + σV 2 + U)

Using U = σmV
c(σ−1)

+ m
1−σ to expand the equation. Let m = c2(1−σ)

2
, then we have

dF (V )

dz
=− c2(σ − 1)2σV 2 − c3σ2(1− σ)V

2
− c4(1− σ)2

2
< 0

since 0 < σ < 1 and c > 0. We get dΓ2

dz
< 0, therefore, no trajectories can leave the

region through Γ2 with m = c2(1−σ)
2

.
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For Γ3, we have Γ3 = mV −cU . Assume there exists vector fields leaving the triangle

region through Γ3, then there exists a point where dΓ3

dz
< 0. For m = c2(1−σ)

2
, we have

dΓ3

dz
= −cUz +mVz

=
−c(U(V − c))

d
+
m(−cV + σV 2 + U)

ε

Similarly, we are only interested in the sign of the above equation, substitute U = m
c
V

into the equation and simplify it, we have

dF (V )

dz
=
c2(1− σ)V

2
(c− V ) > 0

since 0 < σ < 1 and 0 < V < c in this case. Thus, dΓ3

dz
> 0 which contradicts our

assumption, we conclude that no trajectories leaves the region through Γ3. OBA is an

invariant region. Next we shall prove that the unstable manifold of (3.6) emanating

from (0, c
σ
) is trapped inside the region. We derive that the tangent direction of Γ1

is

dU

dV

∣∣∣∣Γ1

(0, c
σ

)

= −∞

The tangent direction of Γ2 at (0, c
σ
) is

dU

dV

∣∣∣∣Γ2

(0, c
σ

)

= −cσ
2

Now we can compute the direction of the unstable manifold at (0, c
σ
) and compare

with the directions calculated above. We consider the associated eigenvector of

λ1 = c(1−σ)
dσ

.

v1 =

[
c
ε
− λ1

−1
ε

]
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Tangent to the eigenvector, the direction of the unstable manifold at (0, c
σ
) is given

by

dU

dV

∣∣∣∣
(0, c

σ
)

= −c+ ελ1

When ε is small enough, we have

−cσ
2

+ c =
c(2− σ)

2
> 0

Therefore, we get

dU

dV

∣∣∣∣Γ1

(0, c
σ

)

<
dU

dV

∣∣∣∣
(0, c

σ
)

<
dU

dV

∣∣∣∣Γ2

(0, c
σ

)

Hence we conclude that the unstable manifold of (3.6) at (0, c
σ
) lies between the

tangent lines of Γ1 and Γ2. Since the manifold is trapped inside the invariant region,

this unstable manifold has to go to the stable equilibrium (0, 0) by the Poincaré-

Bendixson theorem. A solution for the system (3.6) is generated by this trajectory

connecting (0, c
σ
) and (0, 0) when σ < 1. We have proved the Theorem 2.1(c).

For the case of (0, c
σ
) and (0, 0), we have

{
u− = 0,

u+ = 0,
and

{
v− = 2,

v+ = 0,
(3.13)

The initial condition is set to be

(u0, v0) =

(
ex−100

2 + e2(x−100)
,

2

1 + e2(x−100)

)
.

Figure 3.14 and figure 3.15 show the propagation of u and v of the system (3.6).

Figure 3.16 and 3.17 show the wave profiles in 3D planes.
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Figure 3.14: Evolutionary wave profile of u
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Figure 3.15: Evolutionary wave profile of v
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Figure 3.16: Evolutionary wave profile of u in 3D

Figure 3.17: Evolutionary wave profile of v in 3D
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Chapter 4

Proof of Stability

4.1 Energy Estimates

Next we investigate the stability of traveling wave solutions to the system (1.4). We

will choose suitable weight functions according to different cases. Before stating our

expected stability result, we introduce the following notations.

Notations: Let Ω be a domain, L2(Ω) denotes the space of square integrable func-

tions defined in Ω, Hk(Ω) the Sobolev space of the L2 functions f(x) defined in Ω

whose derivatives ∂n

∂xn
f(n = 1, 2, ..., k) belong to L2(Ω). Let Hk

w(Ω) be the weighted

Sobolev space with the norm given by

‖f‖Hk
w(Ω) =

( k∑
i=0

∫
Ω

w(x)

∣∣∣∣∂if(x)

∂xi

∣∣∣∣2dx) 1
2

.

‖·‖ := ‖·‖L2(Ω), ‖·‖k := ‖·‖Hk(Ω) and ‖·‖k,w := ‖·‖Hk
w(Ω) will be used for simplicity.

Apply the anti-derivative technique to decompose the solution since (1.4) is a system

of conservation laws.

(u, v)(x, t) = (U, V )(x+ x0 − ct) + (φz, ψz)(z, t), (4.1)
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Then

(φ(z, t), ψ(z, t)) =

∫ z

−∞
(u(y, t)− U(y + x0 − ct), v(y, t)− V (y + x0 − ct) dy, (4.2)

where the initial data is

(φ0, ψ0)(z) =

∫ x

−∞
(u0(y)− U(y + x0), v0(y)− V (y + x0) dy,

We have

(φ0, ψ0)(±∞) = 0, (4.3)

by the following assumption

∫ +∞

−∞

(
u0(x)− U(x+ x0)
v0(x)− V (x+ x0)

)
dx =

(
0
0

)

since we assume that the initial perturbation is a spatially shifted traveling wave

with an amount x0 with zero integral.

Moreover, we have

φ(±∞, t) = ψ(±∞, t) = 0, (4.4)

for all z ∈ R and t > 0. since

(
φ(±∞, t)
ψ(±∞, t)

)
=

∫ +∞

−∞

(
u(x, t)− U(x+ x0 − ct)
u(x, t)− U(x+ x0 − ct)

)
dx =

∫ +∞

−∞

(
u0(x)− U(x+ x0)
v0(x)− V (x+ x0)

)
dx

Substituting (4.1) into (1.4), integrating the resulting equations with respect to z

and using the wave equations in (U, V ), we obtain the equations for the perturbation

{
φt = dφzz + (c− V )φz − Uψz − φzψz,
ψt = εψzz + (c− 2σV )ψz − φz − σψ2

z ,
(4.5)

We look for solutions to the reformulated system in the following solution space
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X(0, T ) := {(φ(z, t), ψ(z, t) : φ ∈ C([0, T );H2
w, φz ∈ L2((0, T );H2

w),

ψ ∈ C([0, T );H2
w, ψz ∈ C([0, T );H1

w ∩ L2((0, T );H2
w)}

Define

N(t) := sup
τ∈[0,t]

(‖φ(·, τ)‖2,w + ‖ψ(·, τ)‖2 + ‖ψz(·, τ)‖1,w). (4.6)

By the Sobolev embedding theorem, it holds that

sup
τ∈[0,t]

{‖φ(·, τ)‖L∞ , ‖φz(·, τ)‖L∞ , ‖ψ(·, τ)‖L∞ , ‖ψz(·, τ)‖L∞} ≤ N(t). (4.7)

For (4.5), we shall prove the following statements.

Proposition 4.1. If ε > 0, there exists a constant δ > 0 such that if N(0) ≤ δ, then

the Cauchy problem (4.5) has a unique global solution (φ, ψ) ∈ X(0,∞) satisfying

‖φ‖2
2,w + ‖ψ‖2

2 + ‖ψz‖2
1,w +

∫ t

0

(‖φz(·, τ)‖2
2,w + ‖ψz(·, τ)‖2

2,wdτ

≤ C(‖φ0‖2
2,w + ‖ψ0‖2

2 + ‖ψ0z‖2
1,w) ≤ CN2(0),

(4.8)

for all t ∈ [0,∞). Moreover, it holds that

sup
z∈R
|(φz, ψz)(z, t)| → 0, as t→ +∞, (4.9)

Theorem 2.2 is a direct consequence of the above Proposition. To prove Proposition

4.1, we first need to prove the local existence of a unique solution to system (4.5)

and then prove the global existence of (φ, ψ) by establishing some a priori estimates.

Proposition 4.2. (Local existence) For any δ1 > 0, there exists a constant T0 > 0

depending on δ1 such that if (φ0, ψ0) ∈ H2
w with N(0) ≤ δ1, then (4.5) has a unique

solution (φ, ψ) ∈ X(0, T0) satisfying N(t) ≤ 2N(0) for any t ∈ [0, T0].
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Proposition 4.2 can be proved by the well-known fixed point theorem. [See [33] for

details].

Proposition 4.3. (A priori estimates) Assume that (φ, ψ) ∈ X(0, T ) is a solution to

(4.5) obtained from Proposition 4.2 for some positive T .Then there exists a constant

δ2 > 0 independent of T , such that if N(t) ≤ δ2 for all t ∈ [0, T ], then the solution

(φ, ψ) satisifies (4.8) for any t ∈ [0, T ].

The proof of Proposition 4.3 is based on the following lemmas. We assume that

N(t) < 1 in the context.
∫∞
−∞ f(x, t)dx and

∫ t
0

∫∞
−∞ f(x, τ)dxdτ will be abbereviated

as
∫
f and

∫ t
0

∫
f for simplification. We will prove it in the following three different

cases.

4.2 Case of (u−, v−) = (c2(1−σ), c) and (u+, v+) = (0, 0)

When (u−, v−) = (c2(1 − σ), c) and (u+, v+) = (0, 0), the traveling wave solution

component U has the following asymptotic behavior

U(z)− u− ∼ Ceλ1z, as z → −∞,

U(z) ∼ Ce−
c
d
z, as z →∞,

(4.10)

where C is a positive constant. Since singularity is arised from u+ = 0, we choose

the following weight function

w(z) = e
c
d
z + 1, z ∈ R, (4.11)

Lemma 4.1. Let the assumptions in Proposition 4.3 hold, there exists a positive
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constant C such that

‖φ‖2
w + ‖ψ‖2 +

d

4

∫ t

0

‖φz(·, τ)‖2
wdτ + 2ε

∫ t

0

‖ψz(·, τ)‖2dτ

+
d

3

∫ t

0

‖Uz(·)φ(·, τ)‖2dτ

≤C
(
‖φ0‖2

w + ‖ψ0‖2 +N(t)

∫ t

0

∫
wψ2

z

)
.

(4.12)

Proof. Multiplying the first equation of (4.5) by φ/U and the second one by ψ, then

add together obtaining the following

1

2

(φ2

U
+ ψ2

)
t
−

[
dφφz
U

+
(c− V )φ2

2U
+ εφφz + (

c

2
− σV )ψ2 − φψ

]
z

+
dφ2

z

U
+
φφzψz
U

+ εψ2
z =

dUzφφz
U2

+
Uz(c− V )φ2

2U2
+
Vzφ

2

2U
+ σVzψ

2 − σψ2
zψ,

Since Vz < 0 from the existence result, we have

1

2

(φ2

U
+ ψ2

)
t
−

[
dφφz
U

+
(c− V )φ2

2U
+ εφφz + (

c

2
− σV )ψ2 − φψ

]
z

+
dφ2

z

U
+ εψ2

z ≤
dUzφφz
U2

+
Uz(c− V )φ2

2U2
− σψ2

zψ −
φφzψz
U

,

(4.13)

From (3.6), dUz = U(V − c), we have

Uz(c− V )φ2

2U2
=
−dU2

zφ
2

2U3
, (4.14)

By Young’s inequality, it holds that
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dUzφφz
U2

≤ 3dφ2
z

4U
+
dU2

zφ
2

3U3
,

φφzψz
U

≤ d

8U
‖φ(·, t)‖L∞φ2

z +
2

dU
‖ψ(·, t)‖L∞ψ2

z

≤ dN(t)

8U
φ2
z +

2N(t)

dU
ψ2
z ,

(4.15)

where we have assumed that ‖φ(·, t)‖L∞ ≤ N(t) and ‖ψ(·, t)‖L∞ ≤ N(t). Substitute

the above inequalities into (4.13) and integrate the resultant inequality with respect

to z and t.

Note that

∫ [
dφφz
U

+
(c− V )φ2

2U
+ εφφz + (

c

2
− σV )ψ2 − φψ

]
z

= 0,

We get

1

2

∫ (φ2

U
+ ψ2

)
+
d

4

∫ t

0

∫
φ2
z

U
+ ε

∫ t

0

∫
ψ2
z +

d

6

∫ t

0

∫
U2
zφ

2

U3

≤ dN(t)

8

∫ t

0

∫
φ2
z

U
+

2N(t)

d

∫ t

0

∫
ψ2
z

U
+ σN(t)

∫ t

0

∫
ψ2
z +

1

2

∫ (φ2
0

U
+ ψ2

0

)
,

Since U is monotone decreasing in (−∞,∞), we have u− ≥ U . Then ψ2
z ≤

u−ψ2
z

U
and

using σ < 1, assume N(t) is small enough, we derive that

∫ (φ2

U
+ ψ2

)
+
d

4

∫ t

0

∫
φ2
z

U
+ 2ε

∫ t

0

∫
ψ2
z +

d

3

∫ t

0

∫
U2
zφ

2

U3

≤ CN(t)

∫ t

0

∫
ψ2
z

U
+

∫ (φ2
0

U
+ ψ2

0

)
,

(4.16)

Now we need to bound 1/U in terms of our weight function (4.11). Since U(z) has

the asymptotic behavior U(z) ∼ Ce−
c
d
z as z → ∞, there is a constant M > 0 such
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that 1
U

∼ Ce
c
d
z for any z ≥ M . We have chosen w(z) = e

c
d
z + 1 as our weight

function, so we can find two constants α > β > 0 such that

βw ≤ 1

U
≤ αw,

for any z ≥M .

When z < M , 1
U

is monotone increasing in (−∞,∞) and let 1 < w ≤ 2e
c
d
M , we have

w

2u−e
c
d
M
≤ 1

u−
≤ 1

U
≤ 1

U(M)
≤ w

U(M)
,

for any z < M .

Therefore, for any z ∈ R, we can find two constants C2 > C1 > 0 such that

C1w ≤
1

U
≤ C2w. (4.17)

Lemma 4.1 is proved by (4.16) and (4.17).

We next estimate the first-order derivatives of(φ, ψ)

Lemma 4.2. Let the assumptions in Proposition 4.3 hold, then there exists a positive

constant C such that

‖φz‖2
w + ‖ψz‖2 + ‖ψz‖2

w + d

∫ t

0

‖φzz(·, τ)‖2
wdτ +

∫ t

0

‖ψz(·, τ)‖2dτ

+

∫ t

0

‖ψzz(·)φ(·, τ)‖2
wdτ ≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w

)
.

(4.18)

Proof. Differentiate (4.5) with respect to z, we have

{
φtz = dφzzz + (c− V )φzz − Vzφz − Uψzz − Uzψz − (φzψz)z,

ψtz = εψzzz + cψzz − 2σ(V ψz)z − φzz − σ(ψ2
z)z,

(4.19)

Multiplying the first equation of (4.19) by φz/U and the second equation by ψz, we

have
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{
φtzφz
U

= dφzzzφz
U

+ (c−V )φzzφz
U

− Vzφ2z
U
− ψzzφz − Uzψzφz

U
− (φzψz)zφz

U
,

ψtzψz = εψzzzψz + (c− 2σV )ψzzψz − 2σVzψ
2
z − φzzψz − σ(ψ2

z)zψz,

Since we have

dφzzzφz
U

= d
(φzzφz

U

)
z
− dφ2

zz

U
−
[dφ2

z

2

( 1

U

)
z

]
z

+
φ2
z

2

( d
U

)
zz
,

((c− V )φzzφz
U

=
((c− V )φ2

z

2U

)
z
− φ2

z

2

(c− V
U

)
z
,

(φzψz)zφz
U

=
(φ2

zψz
U

)
z
− φzψzφzz

U
+
Uzφ

2
zψz

U2
,

ψzzφz + φzzψz = (φzψz)z,

ψzzzψz = (ψzzψz)z − ψ2
zz,

[Cψzz − 2σ(V ψz)z]ψz =
[( c

2
− σV

)
ψ2
z

]
z
− σVzψ2

z ,

− σ(ψ2
z)zψz =

−2σ

3
(ψ3

z)z,

integrating the equations with respect to z and adding them together, we get the

following equation

1

2

d

dt

∫ (φ2
z

U
+ ψ2

z

)
+ d

∫
φ2
zz

U
+ ε

∫
ψ2
zz

= −σ
∫
Vzψ

2
z +

1

2

∫
φ2
z

[( d
U

)
zz
−
(c− V

U

)
z

]
−
∫
Vzφ

2
z

U
,

−
∫
Uzψzφz
U

+

∫
φzψzφzz

U
−
∫
Uzφ

2
zψz

U2
,

(4.20)

Using the first equation of (3.6), we have( d
U

)
zz
−
(c− V

U

)
z

=
2dU2

z

U3
− dUzz

U2
+
dUzz
U2
− 2dU2

z

U3

= 0,

(4.21)
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By Cauchy-Schwarz inequality and ‖ψz(·, t)‖L∞ ≤ N(t), we have∫ ∣∣∣∣φzψzφzzU

∣∣∣∣ ≤ d

4

∫
φ2
zz

U
+
N(t)

d

∫
φ2
z

U
,

∫ ∣∣∣Uzφzψz
U

∣∣∣ =

∣∣∣∣UzU
∣∣∣∣ ∫ |ψzφz| ≤ C

∫
Uψ2

z + C

∫
φ2
z

U∫ ∣∣∣Uzφ2
zψz

U2

∣∣∣ ≤ CN(t)

∫
φ2
z

U
,

Since Vz = −cV+σV+U
ε

where U and V are bounded, we have |Vz| is bounded by a

constant C > 0. Integrating (4.20) with respect to t, we have

1

2

∫ (
φ2
z

U
+ ψ2

z

)
+ d

∫ t

0

∫
φ2
zz

U
+ ε

∫ t

0

∫
ψ2
zz

≤ 1

2

∫ (
φ2

0z

U
+ ψ2

0z

)
+ C

∫ t

0

∫
ψ2
z + C

∫ t

0

∫
φ2
z

U
+ C

∫ t

0

∫
Uψ2

z

+ C

∫ t

0

∫
φ2
z

U
+ CN(t)

∫ t

0

∫
φ2
z

U
+
d

4

∫ t

0

∫
φ2
zz

U
+
N(t)

d

∫ t

0

∫
φ2
z

U
,

The above inequality combines with lemma 4.1 gives

∫ (
φ2
z

U
+ ψ2

z

)
+ d

∫ t

0

∫
φ2
zz

U
+ ε

∫ t

0

∫
ψ2
zz

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 +

∫ t

0

∫
Uψ2

z +N(t)

∫ t

0

∫
ψ2
z

U

) (4.22)

Now we need to estimate
∫ t

0

∫
Uψ2

z . Multiplying the first equation of (4.5) by ψz

leads to

Uψ2
z = dφzzψz + cφzψz − V φzψz − φzψ2

z − φtψz, (4.23)
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The second equation of (4.19) gives,

φtψz = (φψz)t − φψzt

= (φψz)t − φ[εψzzz + cψzz − 2σ(V ψz)z − φzz − σ(ψ2
z)z]

= (φψz)t − ε(φψzz)z + εφzψzz − c(φψz)z + cφzψz + 2σ(φV ψz)z

− 2σφzV ψz + (φφz)z − φ2
z + σ(φψ2

z)z − σφzψ2
z ,

(4.24)

and

dφzzψz = dψz[εψzzz + cψzz − 2σ(V ψz)z − σ(ψ2
z)z − ψtz]

= d

[
−1

2
(ψ2

z)t + ε(ψzψzz)z − εψ2
zz +

c

2
(ψ2

z)z − σ(V ψ2
z)z

− σVzψ2
z −

2σ

3
(ψ3

z)z

]
,

(4.25)

We substitute the above equations into (4.23) and then integrate the resultant equa-

tion with respect to z, we have∫
Uψ2

z +
d

2

∫
(ψ2

z)t + dε

∫
ψ2
zz + dσ

∫
Vzψ

2
z

= −
∫
V ψzφz − (1− σ)

∫
φzψ

2
z −

∫
(φψz)t

− ε
∫
φzψzz + 2σ

∫
φzV ψz +

∫
φ2
z

Integrating with respect to t, noting that

∫ t

0

∫
φzψ

2
z ≤ N(t)

∫ t

0

∫
ψ2
z ,

by ‖φz(·, t)‖L∞ ≤ N(t) and using Cauchy-Schwarz inequality, V and |Vz| are bounded,
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we derive

d

2

∫
ψ2
z + εd

∫ t

0

∫
ψ2
zz + σd

∫ t

0

∫
Vzψ

2
z +

∫ t

0

∫
Uψ2

z

=
d

2

∫
ψ2

0z −
∫ t

0

∫
V φzψz −

∫ t

0

∫
φzψ

2
z −

∫
φψz +

∫
φ0ψz0 − ε

∫ t

0

∫
φzψzz

+ 2σ

∫ t

0

∫
V φzψz +

∫ t

0

∫
φ2
z + σ

∫ t

0

∫
φzψ

2
z

≤ d

2

∫
ψ2

0z +

∫
φ0ψ0z −

∫
φψz + (2σ − 1)C

∫ t

0

∫
Uψ2

z + (2σ − 1)C

∫ t

0

∫
φ2
z

U

+ (σ − 1)N(t)

∫ t

0

∫
ψ2
z + (

ε

2d
+ 1)

∫ t

0

∫
φ2
z +

εd

2

∫ t

0

∫
ψ2
zz,

(4.26)

Since φ2
z ≤

u−
U
φ2
z, combining with lemma 4.1 yields

∫
ψ2
z + ε

∫ t

0

∫
ψ2
zz +

∫ t

0

∫
Uψ2

z

≤
∫
ψ2

0z +
2

d

∫
φ0ψ0z + C

∫ t

0

∫
φ2
z

U
+

2(σ − 1)N(t)

d

∫ t

0

∫
ψ2
z

≤ C

(∫
φ2

0 +

∫
ψ2
z0 +

∫ t

0

∫
φ2
z

U
+N(t)

∫ t

0

∫
ψ2
z

)

≤ C

(
‖φ0‖2

w + ‖ψ0‖2
1 +N(t)

∫ t

0

∫
ψ2
z

U

)
,

(4.27)

Together with (4.22), we have

∫ (
φ2
z

U
+ ψ2

z

)
+ d

∫ t

0

∫
φ2
zz

U
+ ε

∫
ψ2
zz

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 +N(t)

∫ t

0

∫
ψ2
z

U

)
,

(4.28)

Next we shall estimate
∫ t

0

∫ ψ2
z

U
. Multiplying the second equation of (4.19) by e

c
d
zψz,

43



we derive

ψtze
c
d
zψz = εψzzze

c
d
zψz + cψzze

c
d
zψz − 2σ(V ψz)ze

c
d
zψz

− φzze
c
d
zψz − σ(ψ2

z)ze
c
d
zψz,

Note that

εψzzze
c
d
zψz = (εψzze

c
d
zψz)z − εψzz

c

d
e
c
d
zψz − εe

c
d
zψ2

zz,

[cψzz − 2σ(V ψz)z]e
c
d
zψz =

[( c
2
− σV

)
e
c
d
zψ2

z

]
z

− σVze
c
d
zψ2

z −
c

2

c

d
e
c
d
zψ2

z + σV
c

d
e
c
d
zψ2

z ,

−σ(ψ2
z)ze

c
d
zψz =

[
−2σ

3
e
c
d
zψ3

z

]
z

+
2σ

3
ψ3
z

c

d
e
c
d
z,

We have(
e
c
d z

2
ψ2
z

)
t

+ εψ2
zze

c
d
z + e

c
d
zψ2

z

[
σVz +

c2

2d
− σV c

d

]
= (εψzze

c
d
zψz)z − εψzz

c

d
e
c
d
zψz +

[( c
2
− σV

)
e
c
d
zψ2

z

]
z
− φzze

c
d
zψz

+

[
−2σ

3
e
c
d
zψ3

z

]
z

+
2σ

3
ψ3
z

c

d
e
c
d
z,

(4.29)

By Young’s inequality, we get

∣∣∣εψzz c
d
e
c
d
zψz

∣∣∣ ≤ ε

2
e
c
d
zψ2

zz +
εc2

2d2
e
c
d
zψ2

z ,

and ∣∣φzze cd zψz∣∣ ≤ c2

4d
e
c
d
zψ2

z +
d

c2
e
c
d
zφ2

zz,

Integrating (4.29) over R× [0, t] and using ‖ψz(·, t)‖L∞ ≤ N(t), we have∫
e
c
d
zψ2

z + 2ε

∫ t

0

∫
e
c
d
zψ2

zz + 2

∫ t

0

∫ [
σVz +

c2

2d
− σV c

d

]
e
c
d
zψ2

z
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≤
∫
e
c
d
zψ2

0z + ε

∫ t

0

∫
e
c
d
zψ2

zz +
εc2

d2

∫ t

0

∫
e
c
d
zψ2

z +
c2

2d

∫ t

0

∫
e
c
d
zψ2

z

+
2d

c2

∫ t

0

∫
e
c
d
zφ2

zz +
4σcN(t)

3d

∫ t

0

∫
ψ2
ze

c
d
z,

Rearranging the equation and using (4.28), we derive

∫
e
c
d
zψ2

z +

∫ t

0

∫ [
c2

2d
+ 2σVz − 2σV

c

d
− εc2

d2

]
e
c
d
zψ2

z + ε

∫ t

0

∫
e
c
d
zψ2

zz

≤
∫
e
c
d
zψ2

0z +
2d

c2

∫ t

0

∫
e
c
d
zφ2

zz +
4σcN(t)

3d

∫ t

0

∫
e
c
d
zψ2

z

≤
∫
wψ2

0z + C

∫ t

0

∫
φ2
zz

U
+ CN(t)

∫ t

0

∫
wψ2

z

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w +N(t)

∫ t

0

∫
wψ2

z

)
(4.30)

where we have used e
c
d
z ≤ w ≤ 1

C1U
for z ∈ R. When ε > 0 is small enough such

that c2

d
(1

2
− ε

d
) > 0, we require ε ≤ d

2
, then it follows from (4.30) that

∫ +∞

0

e
c
d
zψ2

z +

∫ t

0

∫ +∞

0

e
c
d
zψ2

z + ε

∫ t

0

∫ +∞

0

e
c
d
zψ2

zz

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w +N(t)

∫ t

0

∫
wψ2

z

)
.

(4.31)

Since the weight function is chosen to be e
c
d
z + 1, therefore we have e

c
d
z ≥ w

2
in the

domain of [0,+∞). Then it follows that∫ +∞

0

wψ2
z +

∫ t

0

∫ +∞

0

wψ2
z + ε

∫ t

0

∫ +∞

0

wψ2
zz

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w +N(t)

∫ t

0

∫
wψ2

z

)

For the domain of z ∈ (−∞, 0), we have 1 < w < 2. Recalling that U is monotone

decreasing, U(0) < U(z). Therefore U(0)w
2

< U(0) < U(z). Thus, from (4.17) and
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(4.27), we get ∫ 0

−∞
wψ2

z +

∫ t

0

∫ 0

−∞
wψ2

z + ε

∫ t

0

∫ 0

−∞
wψ2

zz

≤ C

(
‖φ0‖2

w + ‖ψ0‖2
1 +N(t)

∫ t

0

∫
wψ2

z

)
For z ∈ (−∞,∞), we have∫

wψ2
z +

∫ t

0

∫
wψ2

z + ε

∫ t

0

∫
wψ2

zz

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w +N(t)

∫ t

0

∫
wψ2

z

)
Thus ∫

wψ2
z + (1− CN(t))

∫ t

0

∫
wψ2

z + ε

∫ t

0

∫
wψ2

zz

≤ C
(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w

)
When N(t) is small enough, we have

∫
wψ2

z +

∫ t

0

∫
wψ2

z + ε

∫ t

0

∫
wψ2

zz ≤ C
(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w

)
(4.32)

Therefore, by (4.12), (4.28) and (4.32), we have proved lemma 4.2

We next estimate the second-order derivatives of (φ, ψ).

Lemma 4.3. Let the assumptions in Proposition 4.3 hold, then there exists a con-

stant C > 0 such that

‖φzz‖2
w + ‖ψzz‖2 + d

∫ t

0

‖φzzz(·, τ)‖2
wdτ

+

∫ t

0

‖ψzz(·, τ)‖2dτ + ε

∫ t

0

‖ψzzz(·, τ)‖2dτ

≤C
(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0,z‖2

1,w

)
.

(4.33)
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Proof. Differentiating (4.19) with respect to z gives


φtzz = dφzzzz + (c− V )φzzz − Vzφzz − (Vzφz)z − Uzψzz − Uψzzz

−(φzψz)zz − (Uzψz)z,

ψtzz = εψzzzz + cψzzz − 2σ(V ψz)zz − φzzz − σ(ψ2
z)zz,

(4.34)

Multiplying the first equation of (4.34) by φzz/U and the second by ψzz and using

dφzzzzφzz
U

= d
(φzzzφzz

U

)
z
− dφ2

zzz

U
− d

2

(
φ2
zz

( 1

U

)
z

)
z

+
d

2
φ2
zz

( 1

U

)
zz
,

(c− V )φzzzφzz
U

=
[(c− V )φ2

zz

2U

]
z
− φ2

zz

2

((c− V )

U

)
z
,

−ψzzzφzz − φzzzψzz = −(ψzzφzz)z,

ψzzzzψzz = (ψzzzψzz)z − ψ2
zzz,

[cψzzz − 2σ(V ψz)zz]ψzz =
[ c

2
(ψ2

zz)− 2σ(V ψz)zψzz

]
z

+ 2σVzψzψzzz

+ σ(V ψ2
zz)z − σVzψ2

zz,

−σ(ψ2
z)zzψzz = −σ[(ψ2

z ]zψzz]z + 2σψzψzzψzzz,

we have

1

2

d

dt

∫ (φ2
zz

U
+ ψ2

zz

)
+ d

∫
φ2
zzz

U
+ ε

∫
ψ2
zzz + σ

∫
Vzψ

2
zz

= −
∫
Vzφ

2
zz

U
−
∫

(Vzφz)zφzz
U

−
∫

(Uzψz)zφzz
U

−
∫
Uzψzzφzz

U

−
∫

(φzψz)zzφzz
U

+ 2σ

∫
Vzψzψzzz + 2σ

∫
ψzψzzψzzz,

(4.35)

Note that

(Vzφz)zφzz
U

=

(
Vzφzφzz
U

)
z

− Vzφzφzzz
U

+
UzVzφzφzz

U2
,

(Uzψz)zφzz
U

=

(
Uzψzφzz

U

)
z

− Uzψzφzzz
U

+
U2
zψzφzz
U2

,
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(φzψz)zzφzz
U

=

(
(φzψz)zφzz

U

)
z

− (φzψz)zφzzz
U

+
(φzψz)zφzzUz

U2
,

ψzψzzz + ψzzψzzz = (ψzψzz)z − ψ2
zz + (

1

2
ψ2
zz)z,

Since |Vz ≤ C| and
∣∣Uz
U
≤ C

∣∣, we get by Cauchy-Schwarz inequality∫ ∣∣∣∣(Vzφz)zφzzU

∣∣∣∣ =

∣∣∣∣−∫ Vzφzφzzz
U

+

∫
VzUzφzφzz

U2

∣∣∣∣
≤ d

4

∫
φ2
zzz

U
+
C

d

∫
φ2
z

U
+ d

∫
φ2
zz

U
+
C

d

∫
φ2
z

U
,

∣∣∣∣∫ Uzψzzφzz
U

∣∣∣∣ ≤ d

4

∫
φ2
zz

U
+
C

d

∫
ψ2
zzU

∫ ∣∣∣∣(Uzψz)zφzzU

∣∣∣∣ =

∣∣∣∣∫ Uzψzφzzz
U

+

∫
U2
zψzφzz
U2

∣∣∣∣
≤ d

4

∫
φ2
zzz

U
+
C

d

∫
Uψ2

z + d

∫
φ2
zz

U
+
C

d

∫
ψ2
zU,∫ ∣∣∣∣(φzψz)zzφzzU

∣∣∣∣ = −
∫

(φzψz)zφzzz
U

+

∫
(φzψz)zφzzUz

U2

≤ dN(t)

4

∫
φ2
zzz

U
+

2CN(t)

d

∫
φ2
zz

U
+

2CN(t)

d

∫
ψ2
zz

U
,

Integrate (4.35) over (0, t), we have

1

2

∫ (φ2
zz

U
+ ψ2

zz

)
+
d

4

∫ t

0

∫
φ2
zzz

U
+ ε

∫
ψ2
zzz

≤ 1

2

∫ (
φ2

0zz

U
+ ψ2

0zz

)
+ σC

∫ t

0

∫
ψ2
zz + C

∫ t

0

∫
φ2
zz

U
+

2C

d

∫ t

0

∫
ψ2
zU

+
2C

d

∫ t

0

∫
φ2
z

U
+
C

d

∫ t

0

∫
ψ2
zzU +

2CN(t)

d

∫ t

0

∫
ψ2
zz

U
,

(4.36)
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Using lemma 4.2, we derive

∫ (φ2
zz

U
+ ψ2

zz

)
+ d

∫ t

0

∫
φ2
zzz

U
+ ε

∫
ψ2
zzz

≤ C
(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

w

)
+N(t)

∫ t

0

∫
ψ2
zz

U
+

∫ t

0

∫
Uψ2

zz,

(4.37)

We next estimate
∫ t

0

∫
Uψ2

zz. Multiplying the first equation of (4.19) by ψzz, we get

Uψ2
zz = [dφzzz + (c− V )φzz − Vzφz − Uzψz − (φzψz)z]ψzz − φtzψzz, (4.38)

Noting

dφzzzψzz = d[−ψtzz + εψzzzz + cψzzz − 2σ(V ψz)zz − σ(ψ2
z)zz]ψzz

= d
[
− 1

2
(ψ2

zz)t + ε(ψzzψzzz)z − εψ2
zzz +

c

2
(ψ2

zz)z − 2σ[ψzz(V ψz)z]z

+ 2σψzzz(V ψz)z − σ[ψzz(ψ
2
z)z]z + σψzzz(ψ

2
z)z

]
,

and

φtzψzz = (φzψzz)t − φzψzzt

= (φzψzz)t − [εψzzzz + cψzzz − 2σ(V ψz)zz − σ(ψ2
z)zz − φzzz]φz

= (φzψzz)t − ε(φzψzzz)z + εφzzψzzz − c(φzψzz)z + cψzzφzz + 2σ(φz(V ψz)z)z

− 2σφzz(V ψz)z + σ(φz(ψ
2
z)z)z − σφzz(ψ2

z)z + (φzφzz)z − φ2
zz,

We substitute the above equations into (4.38) and integrate the resultant equation
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with respect to z, we have

∫
Uψ2

zz +
d

2

∫
(ψ2

zz)t + dε

∫
ψ2
zzz

= 2σd

∫
ψzzz(V ψz)z + dσ

∫
ψzzz(ψ

2
z)z −

∫
V ψzzφzz −

∫
Vzψzzφz −

∫
Uzψzψzz

−
∫
φzψz)zψzz −

∫
(φzψzz)t − ε

∫
φzzψzzz

+ 2σ

∫
φzz(V ψz)z + σ

∫
φzz(ψ

2
z)z +

∫
φ2
zz

(4.39)

Rearranging the equation, we have

d

2

d

dt

∫
ψ2
zz + εd

∫
ψ2
zzz +

∫
Uψ2

zz +
d

dt

∫
φzψzz

= −ε
∫
φzzψzzz +

∫
φ2
zz + 2σ

∫
φzz(V ψz)z + σ

∫
φzz(ψ

2
z)z + 2σd

∫
ψzzz(V ψz)z

+ σd

∫
ψzzz(ψ

2
z)z −

∫
[V φzz + Vzφz + Uzψz + (φzψz)z]ψzz

(4.40)

By applying Cauchy-Schwarz inequality∫
[V φzz + Vzφz + Uzψz]ψzz ≤

1

4

∫
Uψ2

zz

+ C

(∫
V 2φ2

zz

U
+

∫
V 2
z φ

2
z

U
+

∫
U2
zψ

2
z

U

)
,

∫
(φzψz)zψzz =

∫
φzψ

2
zz +

∫
ψzφzzψzz

≤ N(t)

∫
ψ2
zz +N(t)

∫
φ2
zz

U
+
N(t)

4

∫
Uψ2

zz.

and integrating (4.40) over [0, t], we have
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∫
ψ2
zz + ε

∫ t

0

∫
ψ2
zzz +

∫ t

0

∫
Uψ2

zz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

w +N(t)

∫ t

0

∫
ψ2
zz

U

) (4.41)

Substitute (4.41) into (4.37) gives

∫ (φ2
zz

U
+ ψ2

zz

)
+ d

∫ t

0

∫
φ2
zzz

U
+ ε

∫
ψ2
zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

w +N(t)

∫ t

0

∫
ψ2
zz

U

) (4.42)

Next we apply similar procedure to estimate the last term. Multiplying the second

equation of (4.19) by e
c
d
zψzz, we have

e
c
d
zψzzψtzz = e

c
d
zψzzεψzzzz + e

c
d
zψzzcψzzz − e

c
d
zψzz2σ(V ψz)zz

− e
c
d
zψzzφzzz − e

c
d
zψzzσ(ψ2

z)zz,

We derive

(
e
c
d
zψ2

zz

2

)
t

+
c2

2d
e
c
d
zψ2

zz + εe
c
d
zψ2

zzz

= [εψzzze
c
d
zψzz +

c

2
e
c
d
zψ2

zz − 2σ(V ψz)ze
c
d
zψzz − σ(ψ2

z)ze
c
d
zψzz]z

− cε

d
e
c
d
zψzzψzzz + 2σ(V ψz)ze

c
d
zψzzz + 2σ(V ψz)z

c

d
e
c
d
zψzz − e

c
d
zψzzφzzz

+
σc

d
(ψ2

z)ze
c
d
zψzz + σ(ψ2

z)ze
c
d
zψzzz

(4.43)

By Young’s inequality

| − cε

d
e
c
d
zψzzψzzz + 2σ(V ψz)ze

c
d
zψzzz| ≤

ε

4
e
c
d
zψ2

zzz + Cεe
c
d
z(ψ2

zz + ψ2
z),

|e
c
d
zψzzφzzz| ≤ e

c
d
zφ2

zzz + Ce
c
d
zψ2

zz,
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and integrating (4.43) over R× [0, t],

∫
e
c
d
zψ2

zz +
c2

d

∫ t

0

∫
e
c
d
zψ2

zz +
3ε

2

∫ t

0

∫
e
c
d
zψ2

zzz

≤
∫
e
c
d
zψ2

0zz + C

∫ t

0

∫
e
c
d
zψ2

zz + C

∫ t

0

∫
e
c
d
zψ2

z

+ 2

∫ t

0

∫
e
c
d
zψ2

zzz +
σN(t)

2

∫ t

0

∫
e
c
d
zψ2

zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w +N(t)

∫ t

0

∫
wψ2

zz

)
(4.44)

where we have used that Vz and V are bounded and ‖ψz(·, t)‖L∞ ≤ N(t) to get

the first inequality, and used Lemma 2 with the inequality (4.42) to get the second

inequality.

It follows that

∫ +∞

0

e
c
d
zψ2

zz +

∫ t

0

∫ +∞

0

e
c
d
zψ2

zz + ε

∫ t

0

∫ +∞

0

e
c
d
zψ2

zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w +N(t)

∫ t

0

∫
wψ2

zz

)
.

(4.45)

Since we have e
c
d
z ≥ w

2
in the domain of [0,+∞), then it follows that∫ +∞

0

wψ2
zz +

∫ t

0

∫ +∞

0

wψ2
zz + ε

∫ t

0

∫ +∞

0

wψ2
zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w +N(t)

∫ t

0

∫
wψ2

zz

)

For the domain of z ∈ (−∞, 0), we apply the same argument, then we get

∫ 0

−∞
wψ2

zz +

∫ t

0

∫ 0

−∞
wψ2

zz + ε

∫ t

0

∫ 0

−∞
wψ2

zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

w +N(t)

∫ t

0

∫
wψ2

zz

) (4.46)
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Together we have

∫
wψ2

zz +

∫ t

0

∫
wψ2

zz + ε

∫ t

0

∫
wψ2

zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w +N(t)

∫ t

0

∫
wψ2

zz

) (4.47)

When N(t) is small enough, we have

∫
wψ2

zz +

∫ t

0

∫
wψ2

zz + ε

∫ t

0

∫
wψ2

zzz ≤ C
(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w

)
(4.48)

Therefore, lemma 4.3 is proved by using (4.12),(4.18),(4.37) and (4.48).

4.3 Case of (u−, v−) = (0, cσ) and (u+, v+) = (c2(1−σ), c)

Apply the same technique, we can get (4.16). Note that U is monotone increasing

in (−∞,∞), we have u+ ≥ U , so ψ2
z ≤

u+ψ2
z

U
. Now we bound 1/U in terms of weight

function. For (u−, v−) = (0, c
σ
) and (u+, v+) = (c2(1 − σ), c), we have the following

asymptotic behavior for component U

U(z) ∼ Ce
c
d
z, as z → −∞,

U(z)− u+ ∼ Ce−λ2z, as z →∞,
(4.49)

where C is a positive constant. Since singularity is arised from u− = 0, we shall

choose weight function w(z) as

w(z) = e−
c
d
z + 1, z ∈ R, (4.50)

Since 1
U
∼ Ce−

c
d
z for z < M where M > 0, we can find two constants β > α > 0

such that

αw ≤ 1

U
≤ βw, for any z < M,
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When z > M , 1
U

is monotone decreasing in (−∞,∞) and 1 < w(z) ≤ 2e−
c
d
M , we

have

w

2u+e
− c
d
M
≤ 1

u+

≤ 1

U
≤ 1

U(M)
≤ w

U(M)
,

for any z > M .

Therefore, we get (4.17) for z ∈ R. The desired lemma 4.1 follows from (4.16) and

(4.17). Noting that φz ≤ u+
U
φ2
z. When estimating

∫ t
0

∫ ψ2
z

U
, we multiply the second

equation of (4.19) by e−
c
d
zψz. We apply the similar procedure to get lemma 4.2.

When estimating
∫ t

0

∫ ψ2
zz

U
, we multiply the second equation of (4.19) by e−

c
d
zψzz.

Lemma 4.3 is derived by using the similar procedure.

4.4 Case of (u−, v−) = (0, cσ) and (u+, v+) = (0, 0)

When (u−, v−) = (0, c
σ
) and (u+, v+) = (0, 0), the traveling wave solution component

U has the following asymptotic behavior

U(z) ∼ Ce
c
d
z, as z → −∞,

U(z) ∼ Ce−
c
d
z, as z →∞,

(4.51)

where C is a positive constant. Since singularities are arised from u+ = 0 and u− = 0,

we choose the following weight function

w(z) =

{
e−

c
d
z + 1, z ∈ (−∞, 0),

e
c
d
z + 1, z ∈ [0,+∞),

(4.52)

Applying the same technique and using the fact that U is monotone increasing in

(−∞, 0) (u+ ≥ U) and is monotone decreasing in [0,∞) (u− ≥ U) to get (4.16)

where we have used ψ2
z ≤

u±ψ2
z

U
. Next we bound 1/U in terms of weight function.

Since 1
U
∼ Ce−

c
d
z for z < 0, we can find two constants β > α > 0 such that

αw ≤ 1

U
≤ βw, for any z < 0,
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Similarly, we can find two constants µ > ν > 0 such that

νw ≤ 1

U
≤ µw, for any z ≥ 0,

where 1
U
∼ Ce

c
d
z for z ≥ 0. Therefore, we get (4.17) for z ∈ R. The desired

lemma 4.1 follows from (4.16) and (4.17).Noting that φz ≤ u±
U
φ2
z. When estimating∫ t

0

∫ ψ2
z

U
, we multiply the second equation of (4.19) by e−

c
d
zψz for the domain of

(−∞, 0) and multiply the second equation of (4.19) by e
c
d
zψz for the domain of [0,∞).

Applying the similar procedure as we done for the case of (u−, v−) = (c2(1 − σ), c)

and (u+, v+) = (0, 0) to get lemma 4.2. When estimating
∫ t

0

∫ ψ2
zz

U
, we multiply the

second equation of (4.19) by e−
c
d
zψzz for the domain of (−∞, 0) and multiply the

second equation of (4.19) by e
c
d
zψzz for the domain of [0,∞). Lemma 4.3 is derived

by using the similar procedure.

4.5 Proof of the Main Result

Proof of Proposition 4.1. Since (4.8) has been implied by proposition 4.3, we

only need to prove (4.9). From global estimate (4.8) we have

‖φz(·, t), ψz(·, t)‖1,w → 0, as t→ +∞

Hence, for all z ∈ R, it follows that

φ2
z(z, t) = 2

∫ z

−∞
φzφzz(y, t)dy

≤ 2

(∫ ∞
−∞

φ2
zdy

) 1
2
(∫ ∞
−∞

φ2
zzdy

) 1
2

≤ ‖φz(·, t)‖1,w → 0, as t→ +∞

Applying the same method to ψz leads to

ψz(z, t)→ 0, as t→ +∞,
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for all z ∈ R.

Hence, (4.9) is proved.

Theorem 2.2 is a direct consequence of Proposition 4.1 where (4.8) guarantees

that N(t) is small for all t > 0 when N(0) is small.
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Chapter 5

Summary and Prospects for the

Future

We show that traveling wave solutions of the system (3.6) do not exist when σ ≥ 1.

There are three heteroclinic orbits connecting the critical points (U, V ) = (0, 0), (c2(1−

σ), c) and (0, c
σ
) in the (U, V ) phase plane of (3.6) deriving from the chemotaxis model

when 0 ≤ σ < 1 under the assumption of ρ1 = ρ2 = 0. This is proved by using the

phase plane analysis. Furthermore, we have established the stability result of the

traveling waves of (3.6) by applying the weighted energy method.

However, there are many limitations in this study. Firstly, we only consider the

case when ρ1 = ρ2 = 0, the existence of traveling waves is worth studying when ρ1

and ρ2 not equal to zero after finishing the previous work. In addition, we are now

exploring traveling waves to the chemotaxis model in one dimensional space. The

study of two-dimensional traveling wave solutions (planar waves) is a challenging

topic and has many open problems and is worthwhile to be solved in the future.
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