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ABSTRACT

This thesis addresses the accurate and robust localization problems for UAV vi-

sual navigation, including the localization of both the UAV itself and destination,

during a mission-oriented flying. The self-localization process is carried out by visual

odometry (VO) and we localize the destination by object tracking. Both of them are

fundamental yet very challenging tasks in computer vision and robotic areas.

To achieve accurate and robust self-localization, our work investigates an inherent

problem of long-term VO, i.e., why the camera pose estimation process occasionally

obtains a relatively large error even when the residual of the reprojection errors are

well controlled. We demonstrate that the long-term VO process suffers from the

biased error distribution of estimated poses and presents a stereo orientation prior

(SOP) method to perform a bias compensation in each frame. Using the stereo camera

extrinsic parameters as the baseline, the SOP measures the bias of each dimension

of the 6-DoF pose for every 2D-3D geometric correspondence. Unlike the commonly

used error metrics that compute the total error of an inlier group, our measurement

is based on the semidifinite programming of the quadratic polynomials that reformed

from 2D-3D points projection system. This allows us to evaluate whether the error

mainly comes from orientation or translation. Thus, the proposed system can refine

the inlier group by rejecting the points with large error bias in orientation, which

performs like a ”soft-IMU”. We show that the proposed visual odometry system

achieves competitive performance in terms of accuracy and robustness even compare

with the IMU-aided state-of-the-art methods.

To automatically localize the destination for the UAV, we present a deep-learning-

based tracker. It rebuilds a discriminative target appearance model by selecting

the representative convolutional neural network (CNN) layers and feature maps au-

tonomously. Then a sub-network is extracted to perform the object detection for the
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tracked target. To show the versatility of the proposed method, we implemented it on

VGG-19 net and YOLO v3, respectively. The results demonstrate that the proposed

tracker is quite competitive with the state-of-the-art CNN-based trackers in terms of

accuracy, scale adaptation, robustness, and efficiency for UAV-related applications.

Finally, we integrate the visual odometry and object tracking into the UAV on-

board vision system. With the stereo vision and the current UAV pose from visual

odometry, the tracked targets in the 2D image can be converted to the 3D positions

in the odometry local map for the UAV navigation. This allows the UAV to perform

mission-oriented flying, such as object inspection or goods delivery, in full autonomy.
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1. INTRODUCTION

Local position Object tracking 

Fig. 1.1.: An example of UAV mission-oriented navigation in GNSS-denied envi-

ronments: survivors inspection inside the mine. The local position of the UAV is

obtained by visual odometry. The object tracking provides the location of a survivor

for UAV inspection maneuver. *The object tracking results are obtained from our

visual tracking work, which is presented in Section 5. The local position graph is

faked for illustration purposes only.

Many UAV applications involve mission-oriented navigation, such as following a

person or landing on a moving target. In these kinds of scenarios, two fundamental

problems need to be solved: 1) what is the current location of the UAV and 2) where

is the destination. When the visual navigation system is employed for the flight in

GNSS-denied environments, the aforementioned two problems are correlated to visual

odometry and object tracking, respectively. Visual odometry estimates the camera
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6-DoF poses from 2D image frames and transforms it to the UAV local positions. On

the other hand, object tracking locates the target in the 2D image views, which can

be converted to the 3D locations in the odometry map with the known depths and

camera absolute poses. An example is given in Fig. 1.1.

GPS 

RGB-D/Stereo camera 

Flight controller Onboard Computer 

IMU 

Height sensor 

Fig. 1.2.: UAV visual navigation platform design.

This thesis addresses these challenges and presents an integrated onboard vision

system with the robot self-localization and target tracking for the UAV to safely fly

in GPS-denied environments. The platform design is shown in Fig. 1.2. It consists

of RGB-D or stereo camera, height measurement sensor, and IMU. As the height

measurement and IMU data will be directly processed by the flight controller, our

research will focus on the visual input. The selection of a vision system has taken

many factors into accounts, such as weight, size, cost, and application scenarios.

Activate light sensors such as RGB-D or ToF cameras are widely used in indoor

visual navigation tasks. However, their ranges are usually within several meters. The

3D scene measurement using LIDARs, on the other hand, is usually a heavy and high

power consumption device for the UAV platform. Furthermore, it is expensive to use
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an accurate LIDAR for done, as the typical price is around 50k USD dollar. Therefore,

we select the stereo configuration for UAV visual perception, which measures the 3D

scenes purely from vision. The visual navigation involves two major research fields:

1) UAV stereo VO, which is an on-board local positioning system that extracts the

UAV motion from visual perception, this technique can also be used to reconstruct the

3D map of surroundings; 2) object tracking, which extends the navigation capability

in flying task so that the UAV can locate the destination online and plan the flight

route. Visual odometry, or the frontend of the VSLAM, provides real-time control

feedback to the flight controller, while the backend aims to refine the past results. In

other words, the frontend is the key to agile the UAV reaction during navigation.

In this chapter, we discuss the research background, challenges, motivation, and

contributions in the following sections.

1.1 GNSS-bypass navigation for UAV

GNSS-bypass navigation is a critical function for a UAV (multi-rotor drone). As

the GNSS suffers from the atmospheric effects, multipath effects, and many other

environmental factors that contaminate the signal, the position we obtained could

have more than 10 meters drift. Furthermore, there are many places that the GNSS

signal is blocked. Thus, we are unable to safely fly the UAVs in cloudy weather,

forest, urban area, or indoor places. To perform the GNSS-bypass flying, no matter

stabilize or follow a pre-defined route, the pose (orientation and location) of the

UAV is essential feedback for the flight controller. In recent years, computer vision

technology has progressed dramatically and visual navigation has become a popular

research topic. However, the progress has been much slower in moving those results

to UAV autonomous flight. Because recovering the UAV pose state from vision only

is rather difficult. Even the human pilots could get lost and result in dangerous action

without reading the aircraft pose from instruments, while they indeed have a better
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visual understanding of surroundings than machines. How to fly a UAV with an

on-board vision system becomes the biggest challenge in many applications.

1.2 Onboard system design

Pre-processing 

Other 
sensors 
inputs 

Flight 
controller 

Decision making 

Pose feedback 

Stereo camera 

YOLO detection 

VO 

Tracking UAV local pose 

Control commands 

Backbone 
CNN 

Onboard computer 

Proposed work 

Target location in 2D image view 

Fig. 1.3.: UAV visual navigation system for mission-oriented flight.

We show an onboard system architecture for UAV mission-oriented navigation in

Fig. 1.3, where the proposed research work is marked by red color. In the begin-

ning, the system obtains the raw data from the stereo camera and carries out some

standard image processing, such as image reshaping, rectification, filtering, bright-

ness, and contrast enhancement, etc, dependent upon the input requirement of the

following processes. The preprocessed image frames are subsequently used for UAV’s

local pose estimation. Concurrently, the UAV finds its destination by the proposed

tracker, which consists of a pre-trained backbone CNN and a tracking component.

If the target is a pre-defined object and trained by YOLO, the tracker can be ini-

tialized by YOLO detection. The proposed tracker is also capable of learning an

untrained target online, where the initial region is required. The motivation for de-

signing this kind of workflow is that the UAV onboard computer cannot afford the

real-time detection (> 10FPS) using full YOLO detection. The YOLO detection is
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fundamentally a regression network that recognizes a large number of objects and the

backbone CNN is acting as an image feature extractor. But object tracking does not

require classification. In other words, using a detection network to perform tracking

tasks produces a lot of redundant computation. Moreover, the tracked target may not

be included in the training datasets. The proposed tracker automatically selects the

CNN features and rebuilds the target model efficiently using fewer layers for visual

tracking. This allows the UAV to save more power to process other tasks such as

VO and decision making. The image features can also be used for the loop-closure

process, which is included in our future work. With the UAV pose in a local map

and target location in the 2D image view, the decision-making module can generate

control commands based on the pre-programmed strategies. The decision-making

system involves many other research topics such as visual servoing, path planning,

obstacle avoidance, etc., dependent upon the flying task. Our work aims to provide

accurate and robust real-time visual perception for the decision-making system.

1.2.1 Visual odometry

In visual navigation, reconstructing 3D scenes from 2D image views or deter-

mining the camera poses refer to the known scenes are the forward and backward

processes of multi-view geometry. Their simultaneous process, termed SfM [1], is

widely used in feature-based VO or VSLAM. Although has been studied for decades

and much progress has been made, the SfM remains a very challenging problem in

the robotic area because in practice we always get contaminated data. From analog

to the digital world, the hardware system and algorithms inevitably introduce noise,

even errors, into the raw data. For instance, in feature-based VO workflow, where the

stereo pairs for triangulation are obtained by feature point matching, the accuracy of

feature detection and matching algorithms significantly impact the final estimation

results. However, most of the existing methods, e.g., FAST [2], ORB [3], etc., contain

pixel-level location noise and mismatched pairs. Although the optimization methods
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can minimize the overall estimation error in most cases, the cumulative error and

occasional wrong estimation still result in poor navigation. At the top system level,

IMU-aided sensor fusion in conjunction with EKF could be the solution of choice.

With regard to the pure vision system, it is rather difficult for the system itself to

correct the cumulative errors. The error mainly comes from the process of recovering

the 3D scene structure and camera motion, where recovering the camera poses is of

prime interest.

1.2.2 Tightly Coupled vs Loosely Coupled

The navigation systems can be separated into two loosely-coupled and tightly-

coupled approaches from the aspect of system architecture, based on directly or in-

directly fused measurements from sensors. From algorithm point of view, tightly-

coupled techniques are generally more accurate and robust than loosely-coupled ap-

proaches. For instance, the tightly-coupled VIO methods are widely used in research

and commercial UAVs, as well as in augmented reality applications.

However, not all UAV navigation systems employ the tightly coupled VIO. The

loosely-coupled system is more popular for system modular design. In some multi-

sensor-fusion systems, each sensor separately estimated its states and the fusion only

happens at final stage. Which means the vision pose estimation is still implemented

as an independent subsystem, whereas the sensor fusion is processed at the upper

level. Thus the loosely coupling is flexible and tends to be more efficient during

the customization and iterative development. For example, when new sensors or

algorithms are available and the developers want to upgrade the relative parts of the

system, the loosely coupled configuration allows developers to simply swap out both

software and hardware components. Also, as the demand for more functions grows,

the loosely coupled system is more scalable and compared to the tightly coupled

one. The researcher can easily add new modules to the system without affecting the

existing functionality.



7

In conclusion, loose coupling provides more flexibility, scalability, adaptability,

efficiency, and innovation for system integration. This is simply the fact that loose

coupling reduces dependencies between components, isolating the impact of changes

to any given component. Therefore, we focus on developing a pure visual odometry

algorithm for a loosely coupled system so that other people can build their own

systems based on it.

1.2.3 Research Motivation

Without IMU correction, the cumulative error becomes significant, and the com-

mon solution is BA. However, BA reduces the effect of cumulative error averages

the bias over a set of frames. This process is a delayed correction that may cause

unexpected problems in UAV control.

Our research investigates an alternative method for reducing the cumulative error

in each individual frame. We address the inherent problem of the pure VO method,

namely, why does the camera pose estimation process occasionally obtain relatively

large errors even when the residual reprojection error is well controlled. We find

that the inlier group can exhibit a major bias on the orientation, which amplifies the

odometry error over time. Furthermore, from the state-of-the-art VIO methods, it is

clear that the IMU can significantly improve the VO performance by providing a prior

estimation of orientation. It is evident that an accurate orientation estimation is a

priority. We propose a novel visual odometry method that extracts prior knowledge of

orientation estimation from a stereo view. In [4,5], a sum-of-square (SOS) technique

is proposed for searching the global optimal solution of camera pose estimation. The

SOS feasibility could exam if a quadratic polynomial contains at least one solution

within a given boundary. Then the global optimal solution is determined by branch

and bound searching span the possible 6-DoF space. Inspired by them, we redefine

the inliers using SOS feasibility. The orientation boundary condition extracted from

the stereo setting is used to filter out the disqualified 3D points during frame-to-frame
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landmark updates. The filtering is carried out by localizing the second camera with

respect to the 3D points given in the first camera. Our experiments show that this

filtering is critical, which gives us better control to gauge the estimated poses, unlike

using the reprojection error measure for the same poses. Furthermore, our formulation

also allows us to set a smaller tolerance for orientation and a larger tolerance for

translation independently. This helps the system trade off the translation error with

orientation error while keeping enough inliers. The goal of doing this is to remove the

bias on orientation estimation, where the SOS technique with the known extrinsic

parameters of the stereo camera makes the bias on each dimension of a 6-DoF pose

measurable. Our experiments show that such a choice generally achieves VIO-level

accuracy without IMU.

In conclusion, our work offers advantages in terms of enhancement in the orien-

tation correction of odometry estimation using pure-vision information. From the

research aspect, we demonstrate that the controlled reprojection residual does not

guarantee the accurate estimation of a camera pose because of the statistical error

bias. Thus, we propose a new outlier rejection method to reduce the bias of the

orientation estimation. From the application perspective, the proposed method can

enhance the fault tolerance of a sensor fusion system, which is critical in safety-critical

applications such as UAV navigation.

1.3 Object tracking

Visual tracking, one of the fundamental problems in computer vision, has been

widely used in numerous vision-based UAV applications [6–9]. Although being inves-

tigated for decades and much progress in terms of tracking accuracy and robustness

has been made [10–17], object tracking still remains a challenging problem due to

many uncertainty factors, such as appearance variation, occlusion, background clut-

ter. On the other hand, deep learning methods are good options to address this

kind of uncertainty problem. Recently, convolutional neural networks (CNNs) have
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shown better performance in terms of accuracy and robustness for visual tracking

task compared to state-of-the-art approaches [11,12,14,15,18–23].

Two-dimensional CNNs have exhibited outstanding performance in object recog-

nition problems, for instance, YOLO [24], SSD [25], Faster RCNN [26], and Mask-

RCNN [27]. In the backbone layers of those CNNs, an object can be represented by

different levels of percepts, e.g., different complexity of the feature semantic combi-

nations. Thus, a featureless object may have a better representation using low-level

percepts while a complex object requires high-level percepts that contain highly dis-

criminative information. This phenomenon is commonly referred to as the semantic

gap. However, existing CNNs-based visual trackers use only one or several pre-selected

layers [18–20, 28]. Furthermore, each feature map from hierarchical layers indicates

the level of similarity of a specific type of feature throughout the whole image using

image convolution. Therefore, taking all feature maps from a hierarchical layer is

not a reasonable way to use CNN for object tracking since some of the features do

not belong to the object. Another main challenge for CNN-based approaches is the

scale variation. Since CNNs treat each frame as an independent image, continuity

of object scale change is ignored. As the results, the CNN-based methods still have

to use traditional methods for scale estimation of an untrained target. For instance,

[18] solve the scale factor estimation in its updated version by extracting HoG feature

in addition to CNN features.

In our research, the semantic gap issue mentioned above is addressed using a

recommender for layer selection and updating appearance model using recommended

feature maps. Hence the proposed method does not need the entire network in most

small or featureless target tracking cases. A demonstration is shown in Fig. 1.4, the

proposed system uses only the first 14 layers (YOLO v3 contains 106 layers in total)

to locate the target. Those efforts aim to reduce the work load for UAV onboard

computer. The scale variation problem is solved by learning object scale directly

from CNN features via a spatiotemporal-based approach. In addition, the proposed

scale learning framework also measures the certainty of tracking. Thus, the searching
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Fig. 1.4.: Proposed tracker rebuilds the target appearance model using only a few

layers of the backbone CNN of YOLO v3.

region grows together with the increasing of tracking uncertainty in the presence of

target lost due to fast or abrupt motion of the drone platform.

1.4 Preliminary Validation of Proposed System

Fig. 1.5.: Our UAV configuration for IROS 2019 drone racing competition: T265

provide the visual odometry measurement for UAV navigation, while the RGB camera

detects the highlighted gate that the UAV should pass.

To preliminarily validate the feasibility of the proposed system architecture, we

choose a simple yet typical scenario of mission-oriented flying: passing a gate. We

replace the VO algorithm module with the VIO of an Intel RealSense T265, which is
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a commercial navigation product. The object tracking module is simplified as a gate

tracker. We mount the T265 on the F330 UAV as Fig. 1.5 shows.

The Intel RealSense Tracking Camera T265 is a small, low-cost and light-weight

navigation sensor. A computing unit is embedded in the T265 sensor to work out its

motion from the stereo camera and IMU data. With fisheye lenses, a stereo camera

covers more than 150◦ field of view. In addition, two RGB cameras (front/back-

looking) are mounted for gate detection. The integrated system shows the modules

are compatible and the overall system can carry out the mission efficiently. With this

configuration, we won third place in the 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2019) drone racing competition.

1.5 Contributions

Our main contributions can be summarized as follows:

• Demonstration of the minimal adjustment approach that results in more ac-

curate camera pose estimation over the golden roles in structure from motion

problem.

Github: https://github.com/rduan036/CamAdj

• A novel visual odometry framework that uses a sum-of-square-based approach to

remove the orientation bias from a low-reprojection-error-inlier group. When

compared with traditional approaches, the proposed process significantly re-

duces the overall error in pose estimation.

Github: https://github.com/arclab-hku/SOPVO

• A novel recommender-based tracker that is capable of selecting the represen-

tative CNN layers and feature maps autonomously, which allows the tracker

to rebuild the appearance model of any untrained target and to simplify the

network.

Github: https://github.com/arclab-hku/ICRA2021tracking

https://github.com/rduan036/CamAdj
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• Real-time implementation of the proposed algorithms on Both Matlab and ROS.

Code and data are released as open-source online with Gazebo simulation tools.

Demo video with Github link: https://youtu.be/s2KDO2EqbNQ

1.6 Organization of the thesis

The rest chapters are list as follows:

• Chapter 2: literature review in terms of UAV visual navigation and object

tracking.

• Chapter 3: introduce the research in camera pose estimation.

• Chapter 4: introduce the proposed visual odometry algorithm.

• Chapter 5: introduce the proposed visual tracking algorithm.

• Chapter 6: conclusion and future works.

https://youtu.be/s2KDO2EqbNQ
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2. LITERATURE REVIEW

2.1 UAV visual navigation

Frontend (Online processing) Backend (Offline processing) 

… 

Input frames 
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Fig. 2.1.: Visual Simultaneous Localization And Mapping

Visual navigation is an active research topic in the field of computer vision and

robotics, especially for GNSS-denied environments like urban areas, indoor rooms,

or underground spaces. The most common solution to the UAV on-board visual

navigation system is the visual simultaneous localization and mapping (VSLAM). We

illustrate general VSLAM system in Fig. 2.1. There are two major modules: frontend

and backend. There are two problems to be solved in the frontend: reconstructing

3D scenes and estimating the camera pose in the current frame. However, they are

dependent upon each other. The 3D reconstruction requires known poses of the

camera, while the estimation of the absolute pose of the camera (with real distance)

requires the known 3D scene. The basic framework to solve those two problems
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concurrently is the structure from motion, as well as visual odometry when we focus

on the pose estimation for navigation. With a depth sensor or stereo view, the

coarse 3D scene can be generated in the beginning. Then the fundamental steps for

the frontend are tracking the image scenes (feature points, landmarks, objects, etc.)

between frames and estimating the camera motion with the geometry constraints.

The backend records the key information from the frontend, such as the 3D scene,

landmarks, and geometry constrains in keyframes over the navigation, and registers

them into a global map. With that information, the backend refines the estimation

results by feeding a set of keyframes into the optimizer. Meanwhile, if the frontend

detected similar scenes where the backend believes the UAV has come back to a

known place in the global map, the loop closure process will be activated. The loop

closure detection can be both online or offline, while the optimization can only be

done offline.

Structure from motion

Recovering 3D scene structure and camera motion is a fundamental process of VS-

LAM. Such recovery is possible by establishing algebraic relationships between knows

and unknowns. These relationships may come in the form of epipolar constraints,

where known 2D correspondences are related to the unknown camera motion param-

eters. Similarly, algebraic relationships can also be established using known 2D-3D

correspondences and unknown camera pose. The two are relative and absolute pose

problems, resp., where recovering camera poses is of prime interest. If one is in-

terested in recovering 3D from 2D image views, relationships between unknown 3D

points and known relative pose and 2D correspondences are expressed in an algebraic

form. Solving this algebraic system, for unknown coordinates of 3D points, is also

known as triangulation.

The usage of algebraic relationships for absolute and relative pose estimations can

be traced back to Grunert [29], Kruppa [30], and many others [31–38]. These for-



15

mulations recover the unknowns by solving systems of equations, which are generally

assumed to exist on desired real manifolds. In the absence of noise, this assumption

is justified. However, the desired solutions may not even exist in the presence of

noise, or recovering them at the very least becomes very cumbersome. Two notable

works [39, 40] that address this computational issue, have become influential in 3D

vision [41].

The unknowns obtained by solving algebraic systems are often ambiguous or non-

representative of the desired geometric measure. This is mainly because polynomial

systems offer multiple solutions, only one of them is the desired one, while many

others tend to be complex. Examples include: relative pose [40], absolute pose [39] ,

triangulation [42], and camera calibration [43]. The algebraic geometry approach of

analyzing the existence of the sought real solutions is studied in [44–47].

To circumvent the difficulty of making one choice among many, or dealing with

complex solutions, the search process in practice is either randomized or formulated

as the optimization over real space. The former assumes the availability of sufficiently

many measurements, e.g. RANSAC, where some polynomial systems, derived for a

so-called ‘minimal set’, offer desired and verifiable solutions [48–50]. The latter, often

cast as non-minimal problem is non-convex optimization, for which the fast recovery

of the optimal solution is difficult [51–53]. In either case, the quality of the obtained

solution depends upon the algebraic formulation in case the measurement is noisy.

The current gold standard for algebraic formulation relies on some form of geo-

metric errors [54, 55], in a normalized coordinate system [56]. For example, Bundle

Adjustment (BA) [57] uses point re-projection, which is the geometric distance mea-

sure in image space. Similarly, 3D triangulation [42] minimizes the error distance in

the reconstruction space. since the choice of error measure significantly influences the

quality of the sought solution, different applications may require different measures.

We are interest on the measure that is suitable for the long-term visual localization,

and alike. Although such consideration has been made in the literature for 3D tri-
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angulation [41], the same is missing for the camera pose estimation serving to the

long-term localization, to the best of our knowledge.

Visual odometry

Recovering the 6-DoF ego-motion and calculating robot odometry from its camera

system, also known as VO, is a fundamental problem in the field of computer vision

and robotic automation [58]. The most popular solution is a high-precision lidar sen-

sor [59–61]; however, due to budget and platform limitations, the design of indoor

UAV/MAV navigation systems is mainly based on low-cost cameras and inertial nav-

igation systems (INSs) [62–66]. Whenever an IMU is incorporated within the VO

system, it is commonly referred to as VIO. To fly a UAV in full autonomous space, a

sensor fusion system is essential, and VIO approaches are becoming popular [67–70].

While a flight controller, e.g., Pixhawk, takes all inputs, including vision pose, IMU

data, and range measurement, and conducts the sensor fusion process, which is nec-

essary to improve the data accuracy of each independent module. However, most

state-of-the-art methods employ the VIO approach, and only a few studies focus on

the output from pure vision [71–73].

Visual odometry research in computer vision has made significant progress over

the past years, fueled in part by progress in deep learning [71,74,75]. The progress has

been much slower for UAV autonomous navigation because only a few AI computing

devices (e.g., NVIDIA Jetson family) are suited for UAV platforms. Moreover, those

devices trade off other hardware resources for AI workloads. CPU-based devices such

as NUC, UP Board, and LattePanda are still widely used for UAVs. Additionally, we

need GPU to perform object detection and tracking. Therefore, this work addresses

the CPU-based VO problem.

From the algorithmic point of view, there are two major types of VO: feature-

based and direct methods. Feature-based methods follow the structure from a mo-

tion pipeline, which detects, tracks, and triangulates feature points across consecutive
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views. The problem is nonlinear, and solving it is even more challenging when the

set of 3D-2D correspondences contains bad geometry constraints (referred to as out-

liers hereafter). Many existing methods find the optimal solution by minimizing the

reprojection error. Direct methods, in contrast, estimate the camera motion by di-

rectly minimizing the photometric errors between views. For instance, DSO [72] and

its variant [71] sample image pixels that have intensity gradients, including smooth

intensity variations or edges, and obtain the transformation by aligning them between

two frames. However, the intensity difference between the two frames is nonconvex,

which makes the direct methods susceptible to many issues, including frame incon-

sistencies in terms of abrupt motion, change in illumination, image blur, and rolling

shutter effects introduced due to camera motion [76]. Hence, almost all of the exist-

ing direct-method-based VOs make the assumptions of sufficient scene illumination,

the dominance of static scenes with abundant texture, and enough scene overlap be-

tween consecutive frames. Semidirect visual odometry (SVO) [73] takes advantage of

both feature-based and direct methods by applying the direct method on small image

patches that are extracted and tracked using some feature-based methods.

VO approaches can also be categorized by the type of visual input. In monovision,

there is no baseline to calculate the real depth of the scene. Thus, the estimated trans-

lations will be up to scale throughout frames. Maintaining a uniform scale requires

the accurate depth alignment of different scenes, which is rather difficult. Therefore,

monovision-based methods usually use VIO, such as MSCKF [77], ROVIO [78], VINS-

MONO [64], in conjunction with sensor fusion methods. For example, the MSCKF

and ROVIO use an extended Kalman filter, while VINS-MONO employs a sliding

window estimator. As VIO benefits from the independent orientation measurement

using IMU, researchers have isolated the orientation estimation [79] and achieved

considerable improvement. However, it is still difficult to define proper boundary

conditions for orientation without using IMUs or other sensors. The drawback of

mono-VIO is the initialization problem. Many existing methods fail to initialize or

give poor state estimates. It is difficult for mono-vision to get quality stereo pairs for
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3D scene triangulation when the view is stationary or rotates with little translation.

In 2018, J. Delmerico et al. [80] conducted a comparison of monocular VIO for UAVs

on the EuRoc benchmark [81] and identified the necessity of additional computations

to improve VIO accuracy and robustness.

The alternatives to monocular vision are RGB-D and stereo VO, which do not

suffer from depth alignment and are widely used in commercial products, such as the

Intel RealSense family and Qualcomm Flight Pro. Visual odometry using stereo cam-

eras has also matured significantly in recent years, but only limited solutions have

been proposed [82, 83] compared to the vast works on monocular systems. Recent

works convert monocular VO to stereo version [72, 84]. However, an accurate esti-

mation using only vision still remains challenging, mainly due to the difficulties in

tracking the camera motion, enforcing the correct set of geometry constraints, and

computing the optimal solution of the triangulation.

2.2 UAV object tracking

In this section, three main tracking approaches, which are closely related to the

proposed method in section 5, are presented, i.e., tracking by correlation filters, track-

ing by CNNs, as well as their hybrid approaches.

Tracking by correlation filters : Correlation filters have gained considerable atten-

tion because they convert the problem into the Fourier domain. The trackers, which

employ correlation filters, compute the regression between the circular-shifted input

features, and a Gaussian function model refers to the target. A notable work [17],

popularly known as kernelized correlation filters (KCF) demonstrated excellent track-

ing performance by combining multi-dimensional features and kernels and finding the

best filter taps that maximize the correlation response of over-sampled target.

Tracking by CNNs : The research on CNN-based visual tracking has achieved

remarkable performance. For instance, the DeepTrack [85] learns effective feature

representations of the target object in a purely online manner. Hong et al. [28]



19

take outputs from the first fully-connected layer to learn the target and background

features. These approaches learn the positive and negative samples from a pre-trained

CNNs. However, such models are designed to recognize numerous objects discard

temporal information while the goal of visual tracking is to locate single or few objects’

positions over time. Wang et al. [86] use a domain adaptation module for online adapt

the pre-learned features according to the particular target object. This module has

been integrated into other tracking methods and achieved significant improvement.

Tracking by KCF-CNN : Recently presented work, e.g. hierarchical convolutional

features (HCF) [18] uses a KCF CNN-based hybrid approach. HCF uses 3 pre-selected

layers, i.e., the max-pooling layers of conv3, conv4, and conv5, with fixed weights.

The highest layer is able to discriminate the target while lower layers are used for

precise localization. However, this method suffers from a complex background since

most of the features that the CNN learned are background feature. In this paper,

instead of using fixed layers, we propose a novel recommender to automatically select

the best perceptive layers and the feature maps in each selected layer for the tracked

object. To handle the scale variation, we present spatiotemporal-based min-channel

feature maps. As a result, the target percept reconstructed from the recommended

feature maps is robust to both appearance and scale changes of target objects.
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3. CAMERA POSE ESTIMATION AND MINIMAL

ADJUSTMENT

3.1 Problem statement

In SfM, the golden standard in 3D scene reconstruction and camera pose esti-

mation is the minimization of the 3D point reprojection error. However, the inliers

controlled by the reprojection error threshold cannot always result in low error esti-

mations, which is demonstrated in the left plot of Fig. 3.1. The plot shows the distri-

bution of a set of pose estimation errors under the same reprojection error threshold.

The distribution’s covariance is unexpected. We summarize the characteristics of all

pose estimation from Fig. 3.1 to investigate the reasons as Tab. ?? shows.

Inlier group

size

Keypoint location

distribution

Large pose

estimation error

Sample

significance level

Noise is

normally distributed

Large Evenly Rarely Low Likely

Large Unevenly Occasionally Unclear Unclear

Small Evenly Occasionally Unclear Unclear

Small Unevenly Likely High Unlikely

The large pose error with a low error measure on point reprojection is usually be

interpreted as a local minimum problem. While the girded keypoint detection and

feature point boosting are the common solutions to reduce the effect of local mini-

mum solutions. How to control the optimization process to avoid the unexpected local

minimum lacks a systematic study of mathematical theory. To address this problem,

we made an assumption: there exist low-reprojection-error correspondences that neg-

atively affect the nonlinear refinement of pose estimation. These correspondences,

alternatively called singular points, play no or little supporting role while estimating

the camera pose using 2D reprojection error. The presence of noise in the singular

points would hinder the regression process of accurate pose estimation. We propose a
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camera adjustment (CamAdj) framework that refines the pose estimation by filtering

the singular points.

In this chapter, we wonder if there exist a better error measure over the reprojec-

tion error for the problem at hand. Our approach relies on the camera pose uncer-

tainty measure in the case of absolute and relative pose estimations. More precisely,

we are interested in answering the following question for every independent measure-

ment.

Problem 3.1.1 Is the minimal pose adjustment necessary for a zero algebraic resid-

ual within the expected uncertainty?

If the answer to the problem is affirmative, then we consider the corresponding mea-

surement an inlier. Otherwise, the measurement is an outlier. In the context of this

paper, we consider that some estimation of the camera pose is already known. This

estimate can be obtained by either solving the algebraic system or through offline

calibration (for example, calibrated stereo cameras). In fact, we are interested in

how well the measurements, correspondences in our case, satisfy the estimated pose.

Instead of the reprojection error (or similarity), we would like to know the influence

of each measurement directly on the pose. Pose influence-based outlier filtration can

play a vital role when (i) nonlinear refinement of the pose is performed in a nonmini-

mal setup and (ii) inliers are used to localize new images. An intuitive illustration of

our filtration technique is shown in Fig. 3.1 right plot.

The zero residual requirement of Problem 3.1.1 ensures the invariance of the pro-

posed measure. In other words, for any algebraic measure (that must vanish in the

absence of noise) in the presence of noise, the residual measure obtained by adjusting

the camera does not change for any choice of the coordinate system. The proposed

method relies on the theory of sum-of-squares (SoS), where adjusted camera poses

are ensured to reside in the real space of the Euclidean group. We demonstrate the

utility of the proposed filtration technique via several experiments that were con-

ducted for accurate relative and absolute pose estimations. In this process, we filter

the correspondences to obtain 3D points for later usage. The long-term effectiveness
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Fig. 3.1.: Pose estimation uncertainty using reprojection error (left) and the pose

bounds (right). Each point represents one independent estimation of the camera pose.

The pose estimations show large variations of errors using the same reprojection error

threshold. This is because we solve the pose by the regression process that assumes

the errors of the inliers are Normal distributed with N(µ, σ2) around the groundtruth,

while it is not always true. The pose bounds control the σ in different dimensions of

the error space to ensure the uncertainty of each estimation. Data source: experiments

of Fig. 3.5.

of our filtration is demonstrated by integrating it within the framework of VO, which

is presented in chapter 4.

3.2 Notation list

The notations for this chapter are given by follow:

u = {u1, u2, ...} : 2D point group in camera frame using homogeneous coordinates

X = {x1, x2, ...} : 3D point group in world frame

I : 3× 3 identity matrix

R : 3× 3 rotation matrix

t : 3× 1 translation vector

P = [R | t] : Transformation on the special Euclidean group

K : Camera intrinsic matrix

c : 3× 1 rotation in Cayley parameters
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G : Gram matrix of quadratic polynomial

∼ : Proportional to

[]× : Cross product

3.3 Preliminary

x 

uℎ 

uℎ uℎ 

World 

frame 

Camera  

frame 

Reprojection 

Point tracking 

Initial pose: P1 P0 

P 1xℎ 

P2 
Groundtruth 

Fig. 3.2.: The setup for the general SfM problem, where P0 represents the initial

pose of the reference frame and P̂k represents the estimation of an unknown Pk or an

adjusted pose of a known Pk.

We represent the Cartesian coordinates, in some world coordinate frame, of a

3D point x, by x ∈ IR3. Similarly, a 2D point u is represented by u ∈ IR2 in the

camera coordinate frame. The setup is shown in Fig. 3.2. A pair of corresponding

3D and 2D points are related by the projection equation uh ∼ Rx + t (the subscript h

denotes homogeneous coordinate) for a camera with its pose given by rotation matrix

R ∈ SO(3) and translation vector t ∈ IR3 such that the camera projection matrix is

P = [R t]. For Cayley parameters c ∈ IR3, we represent the rotation matrix as R(c).

The prior knowledge of the reference frame P′ and its stereo pair P1 is required for

the initialization of real-scale SfM. In this setup, we are interested in knowing the

following:
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Problem 3.3.1 Given a set of 3D-2D correspondences {xi, ui}mi=1 and the camera

projection matrix P̂ = [R̂ t̂], how well do the projection relationships uih ∼ R̂xi + t̂

hold?

In practice, the location of x is estimated by triangulation. Thus, the relationships

uih ∼ R̂xi + t̂ are bound not to hold perfectly due to the presence of noise and outliers.

Therefore, a good measure to evaluate the quality of the measurements is necessary.

Let such an error measure function be ρ(u, x, P̂). In the literature, three commonly

used error functions are ρa = [uh]×(P̂xh), ρg2 = u− (P̂xh)1:2

(P̂xh)3
, and ρg3 = (P̂xh)3uh − P̂xh,

where [.]× is a skew symmetric matrix. The algebraic measure ρa is essentially the

well-known direct linear transform (DLT) [32]. The favored geometric measure ρg2

(resp. ρg3) computes the Euclidean distance between the projected 3D (resp. back-

projected 2D) and measured 2D (resp. 3D) points [41]. These quality measures are of

particular interest when estimating P̂ from a set of 3D-2D correspondences. However,

P̂ is estimated by minimizing ρa using the closed-form solution of linear least-squares,

followed by nonlinear refinement to minimize ρg2 or ρg3. Minimizing ρg2 maximizes

the expectation under the assumption that the 3D points are noise free and 2D mea-

surement noise is zero mean Gaussian. A similar assumption is made, in the opposite

manner, while minimizing ρg3 to maximize the expectation.

In this work, we investigate why the commonly used geometric measures occa-

sionally generate biased errors in long-term localization 1. This concern is raised due

to the following observation: the 3D points reconstructed (or provided) could have

different noise levels at different locations. Note that far away points are known to

be more noisy when a stereo pair is used to reconstruct them. These far away noisy

points could still result in low reprojection error. Later, when the same points are

observed closely, these points must not be treated as inliers. Such treatment will

result in large pose error. Knowing when to reject points exactly becomes tricky.

Therefore, we wish to filter them as early as possible. A sensible solution could be

modeling each point and its uncertainty with a probability distribution. But the

1Since the issues of ρa have already been studied in several papers [41].
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non-isotropic distributions of landmarks make it rather difficult to find the fast or

closed-form solutions to the system with covariance model. Therefore, we consider

an alternative way by filtering the landmark with an unexpected uncertainty. Our

filtration approach assumes that the noisy 3D points are not aligned easily for perfect

projection when we try to adjust the camera. Of course, this scenario could also

be true for the noisy 2D points. In any case, we wish to filter 2D-3D points jointly

altogether. More importantly, the noise in 3D propagates over time in long-term

localization settings. Hence, our method can also be seen as the 3D noisy point fil-

tration technique when applied to the long-term localization case. To perform the

desired filtration, we are interested in determining the answer to Problem 3.3.1 in the

context of accurate estimation/refinement of P̂ from noisy 3D-2D correspondences.

3.4 Problem Formulation

The representation of rotation matrix in terms of Quaternions is due to Sir William

Hamilton. In this representation, a 3 dimension vector parallel to the rotation axis

and the angle about it are used. It uses 4 variables in total to represent the rotation

in 3D space.

Let q = (x, y, z, w)T be a quaternion vector, where (x, y, z) is the vector of rotation

axis and w the rotation angle. The trasformation between Euler angles rotation

matrix and quaternion vector is given by:

R =


w2 + x2 − y2 − z2 2(xy − wz) 2(wy + xz)

2(xy + wz) w2 − x2 + y2 − z2 2(yz − wx)

2(xz − wy) 2(wx+ yz) w2 − x2 − y2 + z2

 . (3.1)

Quaternions are the most widely used rotation matrix representation in non-linear

optimization frameworks. However, due to an extra freedom on the number of vari-

ables, this representation also demands an extra constraint on the norm of Quater-

nions to be unity, so that final matrix representation is guaranteed to be a rotation
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matrix. Hence, we choose to use Cayley transform based representation described as

follows.

In 3D geometry, the rotation matrix representation based on Cayley transform uses

only three variables. Let c = (x, y, z)T be the vector of these parameters’ entries, then

a skew symmetric matrix [c]× and its final rotation matrix representation is given by:

[c]× =


0 z −y

−z 0 x

y −x 0

↔ 1

K


x2 − y2 − z2 2(xy − z) 2(y + xz)

2(xy + z) −x2 + y2 − z2 2(yz − x)

2(xz − y) 2(x+ yz) −x2 − y2 + z2

 ,
(3.2)

where K = 1 +x2 + y2 + z2. In fact, the vector c is the unit axis of rotation scaled by

tan(θ/2), where θ is the rotation angle. Furthermore, the transformation equivalence

can be written as:

[c]× =


0 z −y

−z 0 x

y −x 0

↔ (I − [c]×)−1(I + [c]×). (3.3)

A 3D-2D correspondence {x, u} satisfies the projection uh ∼ Pxh if and only if the

quadratic polynomial p(c, r) = [(I− [c]×)uh]×
(
(I + [c]×)x + r

)
= 0 is true.

Recall that R = (I − [c]×)−1(I + [c]×) and let r = (I − [c]×)t. Then, the following

can be derived:

uh ∼ Pxh = (I− [c]×)−1(I + [c]×)x + t, (3.4)

(I− [c]×)uh ∼ (I + [c]×)x + (I− [c]×)t, (3.5)

p(c, r) = [(I− [c]×)uh]×
(
(I + [c]×)x + r

)
= 0. (3.6)

Because both t ∈ R3 and r ∈ R3, the iff condition holds true.

We denote matrices with uppercase letters and their elements by double-indexed

lowercase letters: A = (aij). Similarly, vectors are indexed: a = (ai). We write A � 0

(resp. A � 0) to denote that the symmetric matrix A is positive definite (resp. positive
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semi-definite). Any quadratic polynomial p(y) ∈ IR[y], on the variables y ∈ IRn can

be represented using a homogeneous representation yh = [yᵀ 1]ᵀ and the Gram matrix

G such that p(y) = yᵀhGyh. While adjusting the camera in accordance with this paper,

the problem boils down to finding the root of quadratic polynomials defined on some

variables y around a guess ŷ within a desired radius δ. In algebraic terms, our interest

in seeking the adjustment can be expressed in the following form. From Equation 3.6,

we know that each correspondence generates 3 polynomials, which are denoted as fθ.

We provide the details of fθ and their Gram matrix Gθ. Given 3D point in world

system Xk = [xw, yw, zw]T and 2D image point in camera coordinate system uk =

[u, v, 1]T , Cayley’s parameters c = [cx, cy, cz], and new vector r = [rx, ry, rz]
T , the

Equation (3.6) results following polynomials for every 3D-2D correspondence:

f1 = (cx + v − czu)(zw + rz − xwcy + ywcx)

−(cyu− cxv + 1)(yw + ry + xwcz − zwcx) = 0,

f2 = (cyu− cxv + 1)(xw + rx − ywcz + zwcy)

−(u− cy + czv)(zw + rz − xwcy + ywcx) = 0,

f3 = (u− cy + czv)(yw + ry + xwcz − zwcx)

−(cx + v − czu)(xw + rx − ywcz + zwcy) = 0.

Thus, we can generate the Gθ matrix for Equation 3.6:

G1 =



yw − zwv zwu−xw
2

xwv−ywu
2

0 v/2 1/2 zw + ywv

zwu−xw
2

0 0 0 −u/2 0 −xwv−ywu
2

xwv−ywu
2

0 0 0 0 −u/2 −xw−zwu
2

0 0 0 0 0 0 0

v/2 −u/2 0 0 0 0 −1/2

1/2 0 −u/2 0 0 0 v/2

zw + ywv
−xwv−ywu

2
−xw−zwu

2
0 −1/2 v/2 zwv − yw


, (3.7)
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G2 =



0 yw−zwv
2

0 −v/2 0 0 −xwv+ywu
2

yw−zwv
2

xwv−ywu
2

xwv−ywu
2

u/2 0 1/2 zw + xwu

0 xwv−ywu
2

0 0 0 −v/2 −yw−zwv
2

−v/2 u/2 0 0 0 0 1/2

0 0 0 0 0 0 0

0 1/2 −v/2 0 0 0 −u/2
−xwv+ywu

2
zw + xwu

−yw−zwv
2

1/2 0 −u/2 xw − zwu


, (3.8)

G3 =



0 0 yw−zwv
2

−1/2 0 0 −xw−zwu
2

0 0 zwu−xw
2

0 −1/2 0 −yw−zwv
2

yw−zwv
2

zwu−xw
2

xwv − ywu u/2 v/2 0 v

−1/2 0 u/2 0 0 0 −v/2

0 −1/2 v/2 0 0 0 u/2

0 0 0 0 0 0 0

−xw−zwu
2

−yw−zwv
2

xwu+ ywv −v/2 u/2 0 ywu− xwv


. (3.9)

Problem 3.4.1 Does there exists parameter y such that fθ(y) = 0 for y − ŷ ≤ δ with

δ ≥ 0 and y ∈ IRn, around ŷ?

This problem can be answered using the following theorem.

Theorem 3.4.2 (Quadratic within bounds [87]) For a sufficiently small δ ≥ 0

and quadratic polynomial fθ(y), the question of whether fθ(y) = 0 for y − ŷ ≤ δ and

y ∈ IRn is true or not, can be answered efficiently with a certificate using sum-of-

squares polynomial optimization.
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Theorem 3.4.2 makes use of the Gram matrices of the polynomial fθ(y), say Gθ, and

the bound representing polynomials fk(y) = (y
k
− yk)(yk − yk) for y

k
≤ yk ≤ yk,

say Gk. Then, the question in Problem 3.4.1 is answered by means of the following

semi-definite feasibility test:

find {λθ | θ = 1, 2, 3}, {λk ≥ 0 | k = 1, ..., 7},

subject to
∑
θ

λθGθ +
∑
k

λkGk � 0.
(3.10)

Note that y ≤ y ≤ y represents the elementwise inequality for the lower and upper

bounds on variable y. When we seek the existence of roots by adjusting around the

initial guess ŷ, we generate lower and upper bounds {y, y} such that both extremes

are within the radius δ, i.e., max(y − y, y − y) ≤ δ. Intuitively, solving (3.10) seeks

a quadratic sum-of-squares polynomial to test if fθ(y) is always positive/negative

within the bounds {y, y}. Since fk(y) are designed to be negative within bounds,

an affirmative result for the feasibility test (3.10) implies that the polynomial fθ(y)

is always either positive or negative within bounds. Therefore, there exists no root

within the investigated bounds. In other words, the answer to Problem 3.4.1 is neg-

ative, and the semidefinite problem of (3.10) is feasible. Theorem 3.4.2 also provides

the answer to the ”reverse” for sufficiently small δ. Note that (3.10) can be solved

efficiently using semidefinite programming.

3.4.1 Adjusting Cameras for Resectioning

Camera resectioning, i.e., determine the true parameters of the camera that pro-

duced a set of given image views. In the presence of unknown noise and potential

outliers, we are interested in answering Problem 3.3.1 by adjusting the camera. The

qualified ρ(u, x, P̂), in this case, is the direct measure of the minimal necessary rigid

motion adjustment for perfect resectioning. In the following, we present our proposal

in mathematically formal terms.
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Problem 3.4.3 For some metric for the difference between two camera poses, say

d(P1,P2), compute the measure for the quality of the projection relationships, as asked

in Problem 3.3.1, by minimally adjusting the pose P̂ to P as follows:

ρd(u, x, P̂)
.
= min

P∈SE(3)
d(P, P̂), s.t. ujh ∼ Pxjh,∀j. (3.11)

where j is the index of inliers. We are now interested in solving Problem 3.4.3 for each

correspondence. We express d(P1,P2) = max(|[cᵀ1 tᵀ1]
ᵀ − [cᵀ2 tᵀ2]

ᵀ|), for the L-infinity

norm of the vector.

Recall that the rotation matrix R(c) is parameterized using Cayley parameters c ∈

IR3. The parameter r is the reparameterized translation vector r = (I− [c]×)t. Using

the new parameters, we express the projection equations as quadratic polynomial

constraints with six degrees of freedom.

Proposition 3.4.1 A 3D-2D correspondence {xi, ui} satisfies the projection uih ∼

Pxih if and only if the quadratic polynomial p(c, r) = [(I−[c]×)uih]×
(
(I+[c]×)xi+r

)
= 0.

To approximate the measure d(P, P̂) using SoS theory, we make use of a quadratic

SoS polynomial such that g(P, P̂) = c− ĉ2 + r − r̂2. Let a new variable be y = [cᵀ rᵀ]ᵀ ∈ IR6

and let two Gram matrices be defined as follows:

yᵀGηy = g(P, P̂)− η and yᵀGy = p(y). (3.12)

Now, we are ready to present our preliminary result.

Proposition 3.4.2 The pose an influence measure, as defined in (3.11), any 3D-

2D correspondence can be well approximated using the following iterative semidefinite

program.

ρ(u, x, P̂) = min
λ,λη ,η≥0

η,

subject to λG + ληGη � 0,

@λ, λη ≥ 0.

(3.13)
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If (3.13) had feasibility constraints, the problem could be solved in a single step.

However, in the case of infeasibility, a bisection-like search on the variable η must

be performed. Such jumps between two extremes to find the minimum positive η

such that (3.13) is infeasible. Note that d(y) is SoS with zero minima and for perfect

resectioning p(y) = 0. Therefore, for perfect resectioning, η → ε is sufficient to make

(3.13) infeasible. It can be seen from (3.12) how η is related to the pose influence

measure.

3.4.2 Rejection of Outliers for Resectioning

The exact measure offered in (3.13) could turn out to be computationally heavy

due to its iterative nature. The iterative steps are not necessary if the threshold

η is given, to decide if the 3D-2D points pair (u, x) with respect to ρd(u, x, P̂) ≤ γ

for P̂. Now, we are ready to return to Problem 3.3.1 in the context of inlier/outlier

filtration. Let the given set of tuples be S = {Si} = {(ui, xi)}mi=1. For a given P̂, we

are interested in determining whether the tuple Si results in ρd(ui, xi, P̂) ≤ η. If the

condition is satisfied, then Si is considered to be an inlier; otherwise, it is considered

to be an outlier. The following corollary of our Proposition 3.4.2 concerns outlier

filtering.

Corollary 3.4.4 The set of inliers I ⊆ S defined by I = {Si| ρd(ui, xi, P̂) ≤ η,Si ∈ S}

can be obtained using

find λi, λη,

subject to λiGi + ληGη � 0,

(3.14)

for the individual tuple Si ∈ S. The feasibility of (3.14) implies that the tuple Si is

an outlier; otherwise, the tuple is an inlier.

Property 3.4.5 (Invariance) The inlier set I obtained using Corollary 3.4.4 is

invariant under measures ρa, ρg1, ρg2 as well as the rigid transformation of 3D points

and camera.
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3.5 Two-view Triangulation

We are interested in knowing, for a calibrated stereo setup, if the given 2D corre-

spondences result in meaningful triangulation. In other words, we want to investigate

if we can fine-tune the external parameters of the pre-calibrated stereo camera for

better triangulation results. As in the previous section, we seek a set of 2D cor-

respondences that can be perfectly triangulated by minimally adjusting one of the

cameras. We modify the configuration in Fig. 3.2 by fixing the reference camera

P′ = P0 = [I 0] and performing the camera adjustment on its stereo pair P1. Let P̂

be the adjusted pose of P1 Now, we are interested in the following for the problem of

two-view triangulation.

Problem 3.5.1 Given 2D corresponding points {u′, u} and camera projection ma-

trices P′ = [I 0] and P̂ = [R̂ t̂], is ρ(u′, u, P̂) ≤ η for a known threshold η, depth γ,

and

ρd2(u′, u, P̂) = min
P∈SE(3)

d(P, P̂), s.t. u′h ∼ γR̂uh + t̂? (3.15)

To address the above problem, we make use of the following corollary of our Propo-

sition 3.4.1 from the previous section.

Corollary 3.5.2 Any 2D correspondence {u′, u} satisfies the two-view relationship

u′h ∼ γR̂uh + t̂ if and only if p(c, r, γ′, γ) = γ′(I− [c]×)u′h − γ(I + [c]×)uh − r = 0.

We define parameters slightly differently in this section. For y = [cᵀ rᵀ γ γ′]ᵀ ∈ IR8,

Gram matrices Gη and G are defined similar to in (3.12). Thereafter, one can draw a

parallel to the previous section to the corollary below for the Corollary 3.4.4.

Corollary 3.5.3 For a given set of 2D correspondence tuples S = {Si} = {(u′i, ui)}mi=1,

the inliers I ⊆ S defined by I = {Si| ρd2(u′i, ui, P̂) ≤ η,Si ∈ S} can be obtained sim-

ilar to (3.14), for the individual tuple Si ∈ S.

It goes without saying that the property of invariance holds for triangulation as well.

In this case, however, we introduced two extra variables for depth in two views. At
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this point, it is important to know that Theorem 3.4.2 is true only when the variables y

are bounded. Regardless, this constraint is not a problem for the case of triangulation

because the chirality of the 3D points ensures that the depth must have lower bounds.

Similarly, the impossibility of reconstructing the (metric) point at infinity from two

views ensures the upper bound. One more issue that is still pending is the bounds

on the variables c and r. As such, given an initial guess of the absolute or calibrated

relative camera pose, for resectioning or triangulation, the bounds on c and t can

be easily derived. From these bounds, the bounds on r can also be derived using

the method of interval analysis [88]. If we wish to define the allowed thresholds on

each of the entries of 6DOF, unlike the general threshold on d(P, P̂), we can still use

Theorem 3.4.2. In this case, the allowed bounds c ≤ c ≤ c and r ≤ r ≤ r are derived

from the initial guess P̂ and the thresholds on the individual variables. When we

know the bounds, the formulation of (3.14) takes the form of (3.10).

3.6 Long-Term Localization

In the keyframe step, as shown in Fig. 3.2, we triangulate the correspondences

between the stereo pairs [P0,P1]. We fixed P0 as reference, then filter each 2D-3D

correspondence of P1 using CamAdj (Corollary 3.4.4), where the bounds are defined

by very small intervals around P1. This step allows us to have faithful 3D recon-

structed points with a very low d(P1, P̂1). These 3D points are expected to yield

low d(Pk, P̂k) for the following non-keyframes’ estimation {P̂k|k = 2, 3, ...}, which is

verified in nest section.

3.6.1 Keyframe Processing

In the keyframe step, we extract and match features between stereo pairs. This

step allows us to have a faithful 3D reconstruction with a known scale without re-

quiring motion estimation. Such 3D is obtained by triangulating the correspondences

between the stereo pairs. During the process of triangulation, 2D-2D correspondences
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Fig. 3.3.: The system overview of stereo visual odometry. The insufficient points will

activate the reset of keyframe.

are filtered using Corollary 3.5.3. More precisely, the correspondence tuples S are ob-

tained from the stereo pair, and the pose for each point is adjusted from the known

pose T̂ = [R12 | t12], where [R12 | t12] is the calibrated pose between the pair.

3.6.2 Non-keyframe Processing

The non-keyframes are localized with a typical SfM workflow. We do not de-

tect new keypoint in non-keyframes. All correspondences are established by tracking

the keypoints across frames independently for both stereo views. The obtained 2D-

3D correspondences are used to localize with the perspective-n-point method [32] or

variants.

3.6.3 The Algorithm

During the process of long-term localization, the 3D landmarks are reconstructed

for every keyframe, which is later used to localize non-keyframes, as shown in Fig. 3.3.

To validate the theoretical correctness of CamAdj, we do not add a new keypoint and

maintain the 3D points in a very simplified way: only keep the tracked inliers in the

non-keyframes.
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3.7 Experiments

This section presents the experiments that have been conducted in relation to

Sections 3.4 and 3.5. We use computer vision toolbox functions in MATLAB to

perform the Perspective-n-Point (PnP) estimation for the camera pose estimation on

both the simulation and the ETH3D benchmark [89]. The PnP method employed in

our experiments involves the outlier rejection process using the M-estimator sample

consensus (MSAC) algorithm. In contrast, we show the differences between the pose

estimation results with and without CamAdj filtering. We first demonstrate that

there are singular points in the reprojection error inliers that detriment the accuracy

of the pose estimation. Then, we show that the proposed CamAdj filtering improves

the pose estimation accuracy by rejecting these singular points. Later, we present

results on the EuRoC benchmark [90] dataset for long-term stereo visual odometry

using CamAdj filtering. The pose bounds [α, β] are given by c− ĉ ≤ α and r − r̂ ≤ β

for all experiments.

CamAdj filtering 

Better? 

Cam k 

Cam k+1 Cam k+2 

PnP(MSAC) 
Stereo triangulation 

Fig. 3.4.: We estimate the unknown pose of the third view using the known poses

of cameras k and k + 1 (which can be seen as calibrated stereo). The 3D points are

filtered by CamAdj, which results in a better pose estimation for the third view.
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Fig. 3.5.: Reprojection error metrics and pose rotation error with CamAdj and with-

out. In each experiment, we plot the mean errors of the ρa and ρg2 measure of overall

correspondences for each independent camera pose estimation (using ρg2) and the

norm of the rotation error compared to groundtruth. The results show nontrivial

fluctuations of rotation error refer to the measurements of these error metrics. The

results also demonstrate that the abnormal errors can be removed by CamAdj. The

distribution of the pose errors of all estimations is shown in Fig. 3.1.

3.7.1 CamAdj for Resectioning

Singular points. The singular points are 2D-3D correspondences that play no or

little supporting role while estimating the camera pose using 2D reprojection error. In

fact, the presence of noise in the singular points hinders the process of accurate pose

estimation. To demonstrate the existence/effect of the singular points, we conduct

experiments on real scene data, i.e., the ETH3D stereo dataset. The configuration

of our experiments is shown in Fig. 3.4, where we simply use two known views as

a stereo camera to estimate the camera pose of the third view and repeat the pose

estimation for the same 3-view group in the ETH3D dataset boulders. In this setting,

we study the relationship between the commonly used reprojection error metrics (ρa

and ρg2 in Section 3.4) and the rotation error, as shown in Fig. 3.5. Our observation

shows that singular points occasionally appear in the inlier group, which misleads

the pose estimation process. In other words, there exist some subsets in the 2D-3D
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correspondences that generate low reprojection error but high rotation or translation

error.

Local minimum 

Pose bounds 

SoS feasible SoS infeasible 

Remove 
Singular point 

 

Result with 
singular point 

SoS feasible 

outlier 

Local minimum with camAdj 

Inlier/outlier polynomials camAdj 

Groundtruth 

singular point 

Yaw 
angle 

Camera 

Fig. 3.6.: Illustration of the singular point hypothesis.

The singular point is our hypothesis based on an empirical observation from the

experiment in VI. A and the geometric representation of the polynomial system are

illustrated in Fig. 3.6 in this letter. We simplify the polynomial into one dimension

(yaw angle only) for visualization purposes. Most of the state-of-the-art methods are

seeking the local minimum of the overall system, where the singular points might

mislead the optimizer to fall into a sub-optimal solution. Our method identifies the

singular points by using the SoS feasibility of each polynomial in the given bounds

(each 3D-2D correspondence). This examination is based on a known stereo pair,

where the bounds are obtained from the prior knowledge of the extrinsic parameters.

Thus, we can filter singular points for future estimations. To be clear that Fig. 3.6

is a hypothesis based on mathematical theory and the original polynomial system is

in 6D space, which is impossible to be visualized. A rigorous demonstration is shown

in Fig. 3.1, where we show the error distribution on the normalized rotation and

translation of the estimated poses using real data from the experiments of Fig. 3.5.

Outlier filtration (synthetic data). We first show the filtering of the outlier (al-

ternatively called singular) points using the proposed CamAdj technique on synthetic

data. We set a virtual camera with focus fx = fy = 800 and center cx = cy = 1024 in
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bounds [α, β] noise free general error R error t error

[0.01,0.01] 0% 2% 0% 0%

[0.001,0.001] 0% 22% 18% 14%

[0.0005,0.0005] 0% 68% 62% 48%

[0.0001,0.0001] 0% 99% 98% 98%

[0.001,10−5] 0% 40% 36% 12%

[0.001,10−6] 0% 42% 42% 16%

[0.001,10−7] 0% 40% 43% 17%

[0.0005,0.001] 0% 58% 66% 34%

[0.0001,0.001] 0% 86% 96% 73%

[5 × 10−5, 0.001] 0% 88% 98% 82%

[10−5, 0.001] 0% 90% 98% 88%

Table 3.1.: Average rejection percentage of each data group with different bounds

(higher is better). The results indicate that the CamAdj filtering has different re-

jection performances in different types of errors. The reported experiments are con-

ducted after the reprojection error-based filtration technique. Among the three dif-

ferent sets (of various noise levels), the proposed CamAdj can well identify corre-

spondences from the highest noise level. This in turn means, correspondences from

noisy pose set when identified and filtered (which cannot be done any further using

reprojection error) can lead to better pose estimation.

camera matrix. During this computation, four groups of 2D-3D correspondences are

generated for the same view, with various noise levels (up to 5 pixels). The 3D points

are randomly generated and fixed, followed by 2D point generation using (i) inliers:

ground truth (R, t) pose with very small Gaussian noise. (ii) General error: noisy

camera pose (R + ∆R, t + ∆t). (iii) R error: (R + ∆R, t). (iv) t error: (R, t + ∆t). In

our experiments, 100 points were generated for each group.
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The noise on the 2D points is implicitly introduced by introducing the noise in the

pose. Now, using only the 2D-3D correspondences, we wish to measure their quality

for pose estimation of the next view. Using the current view’s pose, we first filter the

correspondences. In this process, the camera is adjusted to measure the influence of

the correspondences on the pose estimation of the next views. The adjustment is con-

ducted within different allowed bounds for the inlier/outlier separation (please refer

to Problem 3.2). In Table 3.1, we report our results for ±0.5 (Euler degree) noise on

rotation with a fixed offset and ±0.05 (meter) on translation. We use Gaussian noise,

and each correspondence is generated independently. Tab. 3.1 shows the CamAdj

filtering percentage of each group with different bounds [α, β]. The same bounds are

used for all of the entries of c and r. The noise free group is reported for the refer-

ence. In fact, such a group does not exist in practice. The reported experiments are

conducted after the reprojection error-based filtration technique. Our results imply

that for tighter bounds on rotation and translation, CamAdj filtering has a similar

outlier rejection rate on all error groups.

Dataset
Number

of test

R error (Euler degree) t error (m) Number

of pair

Rejection

rate (%)
FPS

Better R

rate (%)

Better t

rate (%)MSAC CamAdj+MSAC MSAC CamAdj+MSAC

boulders 50 1.7680 1.5901 0.0106 0.0097 155 3.8710 1.3 58.0 62.0

bridge 1624 0.9074 0.8832 0.0273 0.0271 124 9.9408 1.7 49.6 46.7

courtyard 300 0.2205 0.2036 0.0068 0.0064 74 3.0452 2.6 52.0 52.0

relief 2 450 1.3275 1.2916 0.1784 0.1777 154 4.2595 1.4 51.8 52.0

terrace 39 0.8267 0.7897 0.0102 0.0096 63 4.7619 3.6 53.8 53.8

terrace 2 101 0.0420 0.0410 0.0020 0.0019 71 2.3219 2.9 52.5 54.5

Average 427 0.8822 0.8546 0.0498 0.0495 107 7.6396 2.25 52.95 53.4

Table 3.2.: Pose estimation for the third view evaluated on ETH3D. We conduct

experiments illustrated in Fig. 3.4 for every 3 cameras in the listed datasets. In order

to show the impact of CamAdj filtration, we tune the CamAdj bounds iteratively until

the CamAdj reject 1 to 25 % points (average is given by Rejection rate). The test of

each group has been repeated 50 times. Better R/t rate indicates the percentage of

the tests when CamAdj filtration generates a better pose than MSAC.
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Fig. 3.7.: Rotation estimation error AUC for the third view in the three-view

configuration and two-view triangulation with unknown depths on ETH3D dataset

courtyard. The maximum rotation error thresholds in Cayley were set to 0.0087 (1◦

in Euler). The results indicate that CamAdj could yield better rotation estimation

overall.

Pose estimation (real data). We demonstrate that the camera pose estimation

can benefit from CamAdj filtering on the ETH3D benchmark evaluation. The pose

estimation setup follows the illustration in Fig. 3.4. To show the impact of CamAdj

filtering, we use dynamic bounds by lowering the bounds when sufficient inliers are

present, thus enforcing the rejection of a few bad points. The results of the pose

estimation for the third view are given in Tab. 3.2. The overall results on all datasets

demonstrate the utility of CamAdj filtration by consistently offering better pose es-

timation of the third camera. With regard to the computational complexity, camAdj

filtration takes approximately 5 ms per correspondence on a laptop with an Intel i7

8750H core. To further demonstrate the improvement of the CamAdj filtering, we

report the area under the curve (AUC) on the proportion of the estimated poses that
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respect the given error threshold (upper row of Fig. 3.7). In the plot, the y axis is

the proportion of the results within the threshold given by the x axis. It is clear that

CamAdj filtering increases the probability of having better rotation estimation.

3.7.2 CamAdj for Two-view

For the two-view triangulation problem in Section 3.5, we again report the AUC

plot (of 400 time tests on the courtyyard dataset with fixed bounds) in Fig. 3.7

on the bottom row. The results clearly show that the 2D-2D motion estimation

with CamAdj filtering also has a higher probability of providing a better rotation

estimation. In Tab. 3.3, we also report 3D point reconstruction obtained using the

proposed method. Note that the reported results are significantly superior to those

of MSAC. We visualize a few example results of both MSAC and CamAdj in Fig. 3.8.

In the reported results, we use fixed bounds [0.001, 0.5] for [α, β]. Note that the

number of final reconstructed points after CamAdj filtering is sometimes even better

than that of MSAC, offering us a larger set of reconstructed points.

Dataset
Error (m) / Reconstructed points Rejection

rate (%)
γ&γ′

MSAC CamAdj+MSAC

boulders 0.371 291 0.263 301 9.5 [1,30]

bridge 0.224 110 0.142 82 63.9 [1,15]

courtyard 0.253 206 0.162 189 28.5 [1,15]

relief 2 0.101 157 0.037 148 8.8 [1,15]

terrace 0.258 42 0.186 49 39.0 [1,30]

terrace 2 0.098 127 0.038 150 20.2 [1,15]

Average 0.218 156 0.138 153 28.3 -

Table 3.3.: Two-view reconstruction. The 3D reconstruction errors show a better

quality of triangulation after CamAdj filteration. γ & γ′ are the depth bounds (refer

Corollary 3.5.2)

.
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courtyard 

MSAC 
CamAdj + MSAC 

bridge terrace_2 

Fig. 3.8.: 3D points of different sequences; ground truth (colored), reconstructed by

MSAC (red) and CamAdj (green).

3.7.3 Long Term Localization

Dataset: V1 01 

V1 01 V1 02 V1 03 V2 01 V2 02 

0.1 

0.2 

0.3 

EuRoC datasets trajectory RMSE 
0.4 

(m)  

(m)  

Fig. 3.9.: Comparison of VO trajectories’ absolute RMSE with and without CamAdj

filtering (left). An example of the complete motion trajectory of the same settings

(right).

We performed the proposed CamAdj filtering for stereo visual odometry on the

EuRoC benchmark. To show the impact of the CamAdj filtering, the loop closure

and bundle adjustment were deactivated. The average absolute trajectory RMSE of

10 runs of visual odometry with and without CamAdj filtering is given on the left of

Fig. 3.9. On the right side, we show a sampled trajectory estimation result. For the
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Fig. 3.10.: Absolute rotation error in Euler angle (0 to π), in the case of long-term

localization.

Dataset\Method svomsf msckf okvis rovio vins-mono svogtsam CamAdj (ours)

V1 01 0.40 0.34 0.09 0.10 0.07 0.07 0.05

V1 02 0.63 0.20 0.20 0.10 0.10 0.11 0.07

V1 03 x 0.67 0.24 0.14 0.13 x 0.14

V2 01 0.2 0.10 0.13 0.12 0.08 0.07 0.05

V2 02 0.37 0.16 0.16 0.14 0.08 x 0.16

Table 3.4.: Trajectory RMSE comparison on EuRoC benchmark evaluation. The eval-

uation metric and results of the compared mono-VIO methods are adopted from [91],

while our method runs in pure stereo-VO model. Here ‘x’ implies the failure. This

comparison aims to show the accuracy level of the proposed VO. However, the com-

putational efficiency of CamAdj is very low because all correspondences are evaluated

independently. It is hard to achieve real-time processing.

difficult sequences V 103 and V 202, in which the drone was flying aggressively, the

inlier group became so small that even a few singular points could mislead the final

estimation. In Fig. 3.10, we compare the absolute rotation errors of sequences V 103

and V 201. The results demonstrate that CamAdj filtering significantly improved
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Dataset CamAdj BA CamAdj+BA

V1 01 0.08 0.10 0.11

V1 02 0.12 0.15 0.13

V1 03 0.25 0.24 0.24

V2 01 0.08 0.17 0.14

V2 02 0.28 0.30 0.19

Table 3.5.: Results corresponding to Fig.7. We sync the keyframe update with BA

for our method, which yield slightly differenct results with free run in TABLE 4.1.

odometry estimation for those sequences. It is important to note that the long-

term localization accumulates errors over time. Therefore, long-term localization can

significantly benefit from the accurate localization of individual frames. We show the

results of basic keyframe-based visual odometry (implemented by following MATLAB

Documentation: Structure From Motion From Multiple Views) with BA with and

without CamAdj in Tab. 3.5. To fairly compare the results, we force the keyframe

updating process for CamAdj to be the same as the VO using BA. As expected, BA

can still benefit from camAdj. The CamAdj free run results are evaluated in Tab. 4.1.
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4. STEREO ORIENTATION PRIOR FOR VISUAL

ODOMETRY

In previous chapter, we studied the problem of measuring the quality of 2D-2D and

2D-3D correspondences for the tasks of absolute/relative pose estimation and 3D tri-

angulation. Our quest was to measure the quality by means of moving the camera

in such a way that the error is minimized and becomes exactly zero for every point

individually. The minimal necessary adjustment then directly reflects the sought mea-

sure. In this chapter, we the same mathematical tool to verify another assumption:

there exist large-reprojection-error points that adding them into pose estimation re-

sults in an increase in translation error and a decrease in orientation error, which is

a meaningful trade-off for long term visual odometry (VO) problem.

4.1 Notation list

The definition of general notations in this chapter is given as follows.

I : 3× 3 identity matrix

R : 3× 3 rotation matrix

t : 3× 1 translation vector

c: rotation in Cayley parameters.

tnew = (I− [c]×)t : 3× 1 vector that represent the merged term

G: Gram matrix of quadratic polynomial.

P = {P1,P2, ...}: 3D points (landmarks).

p
′

and p: Keypoints on left (left) and right (right) views.

T = [R, t; 0, 1]: transformation matrix.

x = [cᵀ tᵀ]ᵀ: the vector representing the 6D pose.
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α and β: the bounds of rotation and translation variation around the baseline.

4.2 Methodology

This section describes the algorithm pipeline using overview flowcharts (Fig. 4.2)

and pseudocode. We illustrate the main contributions of the proposed method in

Fig. ??. The proposed method consists of keyframe and nonkeyframe states. The

keyframe state reconstructs the 3D scene, while nonkeyframe states estimate the

pose dependent upon the 3D scene. The pseudocode of these two states is given

in Algorithms 1 and 2, respectively. The Imgleft, Imgright are image inputs from

stereo camera. The proposed method detects keypoints in the left camera using the

ORB [3] feature detector. In the keypoint detection process, the image is divided

into an M×N grid to obtain a proper feature distribution. This process is denoted

as gridFeatureDetection in Algorithm 1. These keypoints are tracked in the right

camera and subsequent frames using the KLT [92] point tracker. Once the 3D points

are initialized by the stereo view, the system switches to a nonkeyframe and runs until

it matches the keyframe reset conditions: insufficient valid points or large motion. In

a nonkeyframe, the keypoints are tracked by the KLT, and the camera absolute pose is

estimated by the PnP process. Then, features are detected again to add new keypoints

into the current frame and compute the location of both existing and newly added

3D points from a stereo view. The 3D points P = {P1,P2, ...} when projected on the

left and right camera are given as p
′

and p, respectively. Let P cur and P pre represent

the same landmark triangulated in the current and previous frames, respectively.

They are detected by the ORB feature detector in a keyframe and matched by the

KLT point tracker in a nonkeyframe. Note that this process will always obtain new

locations Pcur of the existing 3D points Ppre from stereoview in the current frame

because no signal tracking and pose estimation is accurate enough; moreover, there is

pixel-level noise. How to update them to approach the ground truth (Pnew) is crucial
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Fig. 4.1.: Our contributions: We visualize one dimension (yaw angle alone) of the

polynomial system of the 2D-3D correspondences to illustrate the fundamental theory

in geometric representation. Because of image noise and point tracking uncertainty,

the zero residual of an inlier polynomial does not always appear at the groundtruth.

The optimal solution to the polynomial system (usually computed using the least

square method) may have a significant bias in terms of orientation. Our method

employs SOS to assess data bias, with the stereo camera serving as a bias measure-

ment baseline, much like base stations in differential GPS techniques. Unfortunately,

eliminating bias in both orientation and translation may result in a scarcity of inliers.

As a result, our method rejects orientation-bias outliers because they have a greater

impact on odometry. In subsequent frames, the bias-compensated group of filtered

3D points can be used to regress robust and accurate poses.
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Fig. 4.2.: System overview

because the odometry estimation is completely dependent upon them. We propose a

3D point learning strategy and stereo orientation prior to merge and evaluate these

points and reject outliers.

Algorithm 1: Keyframe state

Data: Imgleft, Imgright

Result: P

1 p
′ ← gridFeatureDetection(Imgleft) ;

2 //find keypoint pairs by mutual KLT tracking ;

3 p← KLT (Imgright,p
′
), P← triangulation(p

′
,p) ;

4 if insufficient valid points then

5 reset ;

6 else

7 jump to nonkeyframe state ;

In our experiments, the offset of the number of valid points for the switching

between keyframe and nonkeyframe was set to 25. Regarding the definition of large

motion, the offset of rotation was set to π/2 for all tests and the offsets of translations

for EuRoC and KITTI were set to 1m and 25m, respectively.

4.2.1 Stereo Orientation Prior

We propose a sum-of-square-based stereo orientation prior (denoted as SOP)

method to remove the keypoints that generate large orientation errors. The KLT
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Algorithm 2: Nonkeyframe state

Data: Imgleft, Imgright,P
pre

Result: UAV body pose Tbody, updated 3D points P

1 //Camera pose estimation ;

2 p
′ ← KLT (Imgleft,p

′
) ;

3 Tleft ← PnP (p
′
,Ppre) ;

4 Tbody ← convert(Tleft) ;

5 //Updating landmarks ;

6 p
′

add ← gridFeatureDetection(Imgleft) ;

7 p
′ ← {p′

,p
′

add} ;

8 p← KLT (Imgright,p
′
) ;

9 Pcur ← triangulation(p
′
,p) ;

10 P← SOP (Pcur,Ppre,p, Imgright,Tright) ;

11 if insufficient valid points or large motion then

12 jump to keyframe state ;

13 else

14 data update ;
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tracking loses some points in each new frame due to point out of view or mismatch.

Therefore, the proposed method adds new keypoints in each frame. This process cre-

ates two problems: 1) the frame-to-frame VO obtains new 3D locations of old points;

2) some added keypoints are very close to the existing keypoints, as they may in fact

represent the same point. We employ a simple yet effective 3D point learning process

that is given by Pnew ← (1− r)Pcur + rPpre, where r is a learning rate with a typical

value of 0.1 and P new
i is the new location of Pi that is computed by triangulation in

the current frame. Subsequently, the algorithm evaluates the quality of the learned

3D points by stereo orientation prior. Notably, the location accuracy of the landmarks

initialized in the keyframe depends upon their depth. The pose estimation may not

be accurate enough if the landmarks are left unaltered in nonkeyframes.

Reprojection 

𝒑𝒑𝑘𝑘 

       𝒇𝒇 𝒄𝒄, 𝒕𝒕,𝒑𝒑𝑘𝑘,𝑷𝑷𝑘𝑘 = 𝟎𝟎 
𝒔𝒔. 𝒕𝒕. 𝒄𝒄 − 𝒄𝒄𝒄 ≤ 𝛼𝛼 
       𝒕𝒕 − 𝒕𝒕𝒄 ≤ 𝛽𝛽 
 𝛼𝛼 ≪ 𝛽𝛽 

𝑷𝑷𝑘𝑘 

𝒑𝒑𝒄𝑘𝑘 

𝛼𝛼 
Uncertainty (possible solutions) 
distribution of 𝑷𝑷𝑘𝑘 in pose space 

𝒕𝒕 − 𝒕𝒕𝒄 
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SOS feasibility test 
SOP Inlier 

𝑷𝑷𝑝𝑝𝑝𝑝𝑝𝑝 

𝑷𝑷𝑐𝑐𝑐𝑐𝑝𝑝 

Fig. 4.3.: The main idea of SOP is simplified in 2D for illustration. Two different 3D

points Ppre and Pcur represent the same landmark Pk from old and current frames,

respectively. They are updated to the Pk and evaluated by SOS feasibility. If the

updated point does not result in the estimation within the given feasible bounds α

and β, it is considered an outlier. Thus, for each point, the SOP ensures that it

contains at least one solution in the given bounds. Statistically, the uncertainty of

refined inliers is controlled by [α, β] and the bias in orientation is diminished as shown.
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The idea of orientation prior is defining the inliers not based on traditional repro-

jection error threshold but a small orientation error when reprojecting them between

stereo views. The goal of using stereo orientation prior is to refine the inlier group

such that the regression process can fall to a local minimum with a small error on

orientation estimation. This process evaluates the quality of 3D points updated in a

new frame. The main idea of the stereo orientation prior is shown in Fig. 4.3. Let

x = [c′ᵀ t′ᵀ]ᵀ be the vector representing the 6D pose, where c′ ∈ R3 and t′ ∈ R3 are

rotation and translation vectors from the left to right camera. Likewise, c ∈ R3 and

t ∈ R3 are the estimated pose components for which an updated 2D-3D pair pk ∈ p

and Pk ∈ P (reprojections on right camera) generate reprojection errors (denoted

as e), and f(x,pk,Pk) = e. To make use of the stereo orientation prior to avoid the

error distribution bias on orientation, the proposed method gauges the quality of the

2D-3D pair (pk,Pk) by determining whether it can result in the PnP-based motion

of the right camera being close to the calibrated stereo motion within the given tol-

erances, i.e., ±α and ±β around the ground truth c′ and t′, respectively. However,

a single point can only generate 2 independent equations, which is an underdeter-

mined problem to estimate the actual errors. On the other hand, the non-isotropic

distributions of all points make modeling a single correspondence with an uncertainty

distribution extremely challenging. The SOP is presented as a means to control the

points’ uncertainty in the reverse way. This is solved by a SOS feasibility check.

Remark 1: Formally, this work aims to find all inlier pairs {(pm,Pm)|m ∈ inliers}

that satisfy:

f(x,pm,Pm) = 0 ,

‖c− c′‖ ≤ α , ‖t− t′‖ ≤ β , α� β ,
(4.1)

where f(x,pm,Pm) is the 3D to 2D projection. α and β define the variation around

c′ and t′, respectively. Note that they are the lower and upper bounds on xj, i.e.,

xjl ≤ xj ≤ xju. This condition can be written as an inequality in a second-degree

polynomial as follows:

gj(xj) = (−xjl + xj)(xju − xj) ≥ 0 . (4.2)
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Thus, for each known 2D-3D pair (pk,Pk), our primal problem is to solve the

feasibility problem:

fi(x) = 0 , i = 1, 2, 3,

gj(x) ≥ 0 , j = 1, .., 7,
(4.3)

where fi is a quadratic polynomial. Each correspondence generates 3 quadratic poly-

nomials (details are given in the Appendix). {gj|j = 1..., 6} are obtained from the

pose variable bounds, and {gj|j = 7} is the constraint to ensure that the depth of

points is positive. Note that all of these constraints are quadratic polynomials.

The dual problem of (4.3) is defined as follows: if there exist ti ∈ R and si ≥ 0

such that F (x)−G(x) � 0 with,

Ideal : F (x) =
∑3

i=1 tifi ,

Cone : G(x) = s0 +
∑7

i sigi +
∑7

i 6=j sijgigj

+
∑7

i 6=j 6=k sijkgigjgk + ... ,

(4.4)

where G(x) � 0. In this process, we test the feasibility contradiction between the

primal problem and dual problems. If the primal problem is feasible, we have F (x) =

0, which leads to F (x)−G(x) � 0. Therefore, the dual problem cannot be feasible.

Remark 2: For pose estimation with a set of 2D-3D correspondences {(pk,Pk)|k =

1, 2...}, our goal is to minimize the overall reprojection error within the bounds, which

is given by:

min
x,W

W · diag({
3∑
i=1

fi(x,pk,Pk)|k = 1, 2, ...})

s.t. gj(x) ≥ 0 , j = 1, .., 7,

W ∈ max
W

∑
diag(W),

(4.5)

where W is initialized as an identity matrix to indicate the inliers. Thus, if corre-

spondences (pk,Pk) are outliers, the system eliminates its impact by setting the k-th

diagonal element of W to 0. As the system also needs to maximize the inlier group,

the problem becomes bilevel optimization. However, if the VO system ignores W and
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directly computes the optimal solution of this problem, which can be solved by con-

verting to its Lagrangian dual problem (LP), the outliers may have a large effect on

the result. If rejecting the outliers by iteratively finding the solution of x with subset

data and determining whether it satisfies the boundary condition (such as RANSAC),

the system may mistakenly reject many inliers due to a suboptimal initial condition

of regression. Therefore, we expect to determine whether every single point has the

potential to be an inlier. Thus, the system does not minimize the cost but considers

the minimal solution (fi(x) = 0) as the constraint (equation (4.3)). It becomes an

underdetermined problem with infinite solutions, and we convert it to the feasibility

evaluation. The nonnegativity of the quadratic polynomial H(x) = F (x) − G(x)

ensures that the 2D-3D pair is an outlier for the given bounds. We test this condi-

tion using the theory of sum-of-squares, which is known as Hilbert’s 17th problem.

This problem has been systematically solved in the state of the art, and studies show

that any positive polynomial of degree 2 can always be represented as an SOS. We

illustrate how this theory helps the outlier rejection in Fig. 4.2.

Recall that we obtain 3 equations/polynomials of degree 2 from each correspon-

dence from equation (3.6) in previous chapter, with only two of them being linearly

independent. The variables of these polynomials are Cayley’s parameters c and new

translation tnew. From equation (4.2), we obtain 6 constraints (gi(x) ≥ 0, i = 1..., 6)

on the 6 DoF poses. In addition, we introduce the scale factor in equation (3.6):

λ(I− [c]×)pk = (I + [c]×)Pk + tnew , , λ ≥ 0 . (4.6)

By eliminating the variable λ, we obtain the constraint g7(x) ≥ 0 to ensure the

positive depth of each point.

Having built the dual problem system in equation (4.4), it can use the LMI solver

to find the values of t and s for ideal and cone. All polynomials in ideal and cone are

quadratic polynomials. Let matrices Gfi and Ggi be 7× 7 symmetric matrices such

that:

fi = yTGfiy, gj = yTGgjy, (4.7)
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where y =


c

tnew

1

. The details of how the matrices G are generated are provided

in the appendix. If there exist G � 0, the SOS problem is feasible. Then, we solve

equation 4.4 using linear matrix inequality (LMI). The LMI system is given by:

3∑
i=1

tiGfi −
7∑
j=1

sjGgj � 0, (4.8)

where t ∈ R and s ≥ 0. The feasibility of this problem can be tested directly using

semidefinite programming (SDP). For C++ implementation in ROS, we use SDPA-C

as the LMI solver. The SDP problem is given by:

min
h

wTh,

subject to H � 0.

(4.9)

In the case of the LMI problem Eq. 4.8, h = [t1, t2, t3, s1, s2, s3, ...]
T and w =

[0, 0, 0, 1, 1, 1...]T . In addition, the problem is subject to:

H =
3∑
i=1

tiGfi +
7∑
j=1

sj(I−Ggj) � 0. (4.10)

The SDP is time-consuming even in C++. To achieve real-time processing, we

introduce optimistic and pessimistic reprojection error thresholds to reduce the num-

ber of points in stereo orientation prior to outlier rejection. We show the algorithm

flowchart in Fig. 4.4. If the reprojection error of a point is less than pessimistic, it

is definitely an inlier. In the same way, an error greater than optimistic definitely

implies an outlier, and the rest are potential inliers. Therefore, the prior stereo ori-

entation only needs to check the points that are potential inliers. The typical values

for pessimistic and optimistic images are between 1-3 and 3-6 pixel distances, respec-

tively. They are selected based on the camera sensor noise and the uncertainty of

KLT tracking [93].



55

Optimistic threshold: potential inliers 
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Fig. 4.4.: Stereo orientation prior based outlier rejection. The error power map is

simplified in 2D (1D rotation and 1D translation) for illustration. Optimistic and

pessimistic reprojection error thresholds preliminarily identify the points that are

definitely inliers or outliers, while the remaining points are regarded as potential

inliers and evaluated by stereo orientation prior.

4.3 Experiments

In this section, we first evaluate the overall performance of the proposed method

on the EuRoC MAV benchmark. Then, we demonstrate whether and how the stereo

orientation prior contributes to the odometry estimation. Then, we test the proposed

method on the datasets recorded by a UAV equipped with Intel RealSense T265.

Some algorithms, such as SLAM-based approaches, eliminate cumulative error by

closing the loop; however, loop closure detection is not generally considered part of

the VO framework [73, 77, 80, 84]. Among them, [80] compared top-ranked state-

of-the-art mono VIO methods on the EuRoC benchmark using absolute trajectory

error (ATE) [94] on Intel NUC (Ubuntu 16.04 and ROS Kinetic), which is a common

onboard computer for UAVs. In their evaluation, the loop closure detection was

deactivated for all methods, and the results were aligned with ground-truth traces and

measured by root mean square error (RMSE). Both the results alignment and error

measurement were strictly referred to [94] to allow a fair comparison. Therefore, all

experiments were conducted with the same protocol to evaluate the proposed method.
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4.3.1 Benchmark Evaluation

We compared the proposed algorithm against the state-of-the-art VO/VIO meth-

ods on the EuRoC MAV benchmark. The datasets consisted of a VICON room and a

machine hall with pure static scenes, which simulated building an indoor environment.

For datasets with ID 01 or 02, the camera motion was smooth, and the environment

contained complex texture. In contrast, the UAV flew aggressively, and there were

fewer detectable patterns in other datasets. Many methods failed to detect and track

keypoints on dataset ”Vicon Room 2 03” because of the insufficient feature points,

aggressive motion, and brightness inconsistency, which was also reported in [84]. The

results of all datasets are shown in Tab. 4.1, and the details of the two sampled results

are shown in Fig. 4.5.

Vicon Room 1 01 Machine Hall 01 

Fig. 4.5.: Trajectory comparison results sampled from EuRoC benchmark evaluation

(Tab. 4.1).

Results on NUC5i7RYH: In [80], an Intel NUC with a dual-core Intel Core i7-

5557U CPU @3.10 Hz, 16G RAM was used. Therefore, we test our ROS C++ version

code on the same platform, i.e., NUC Kit NUC5i7RYH (Fig. 4.11), but with 8G

RAM. As we found that the results of the proposed algorithm had a minor difference

between using Kinetic default OpenCV and OpenCV 4 with the same parameters,

we provide both of the results for references. The boundary conditions were fixed

as α = 0.01 and β = 0.5 for all EuRoC datasets. The 0.01 boundary variation in
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Sensor Mono + IMU ∗ Stereo + IMU Stereo VO

Dataset SVOMSF MSCKF ROVIO VINS-MONO SVOTSAM OKVIS S-MSCKF SVO2.0 SOPVO SOPVO†

Vicon Room 1 01 0.39 0.29 0.10 0.07 0.12 0.09 0.07 0.06 0.07 0.06

Vicon Room 1 02 0.63 0.20 0.10 0.10 0.16 0.18 0.13 0.08 0.08 0.35

Vicon Room 1 03 × 0.67 0.14 0.13 × 0.24 0.20 0.24 0.17 0.39

Vicon Room 2 01 0.17 0.11 0.12 0.08 0.07 0.12 0.07 0.08 0.12 0.19

Vicon Room 2 02 0.37 0.16 0.14 0.08 × 0.17 0.18 0.20 0.21 0.19

Vicon Room 2 03 × 1.13 0.14 0.21 × × 0.24 × × ×

Machine Hall 01 0.22 0.43 0.21 0.27 0.08 0.21 × 0.11 0.08 0.10

Machine Hall 02 0.20 0.43 0.25 0.12 0.05 0.20 0.15 × 0.09 0.08

Machine Hall 03 0.60 0.25 0.25 0.13 0.12 0.25 0.29 0.36 0.24 0.27

Machine Hall 04 1.82 0.61 0.49 0.23 0.24 0.49 0.23 2.4 0.24 0.33

Machine Hall 05 0.93 0.48 0.52 0.34 0.16 0.56 0.29 1.20 0.33 0.50

Average / fail 0.44 / 3 0.40 / 1 0.24 / 0 0.17 / 0 0.12 / 3 0.25 / 1 0.19 / 1 0.16 / 4 0.16 / 1 0.25 / 1

Table 4.1.: EuRoC MAV visual odometry benchmark evaluation. The results that

achieved the best three levels of accuracy are marked by red, green, and blue. Except

for algorithm termination (marked by ×), the RMSE > 1 was also considered as

a fail. ∗The results of SVOMSF, MSCKF, ROVIO, VINS-MONO, SVOGTSAM,

and OKVIS were obtained from [80] (NUC results). Other methods were evaluated

using the same metric, i.e., real-time running on NUC ROS Kinetic, no loop closure

detection nor bundle adjustment. The final results of each dataset were the averages

of 10 runs. † ROS Kinetic uses OpenCV 3 by default. In OpenCV 4 the ORB detector

is modified and it generates slightly different results using the same parameters.

the Cayley parameters was [1.1573, 1.1342, 1.1573] degrees on XYZ at Euler angles,

which means that the system allowed the estimated right camera pose to have one

degree of error on each orientation axis around the baseline in the worst cases. In

our test, this restrictions are narrow enough to guide the optimizer to fall into a local

minimum with accurate orientation estimation. Note that the translation boundary

was tnew = (I − [c]×)t; refer to equation (??). Therefore, the boundary on actual

translation varied within a small interval dependent upon the actual rotation. The

pessimistic and optimistic thresholds were fixed to 2 and 5, respectively. The final

result of each dataset was the average of 10 runs. The comparison of algorithm

efficiency, including CPU usage and FPS, is given in Fig. 4.6.
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Fig. 4.6.: CPU usage and FPS on Intel NUC5i7RYH. The results of all compared

methods are obtained from [80].

The algorithm was run on approximately 50 FPS on average, ranging from 20 to

140+ FPS for a single frame; additionally, the CPU usage varied from approximately

50% to 300% because it depended on how many points were evaluated by stereo orien-

tation prior. It took approximately 0.5 ms per correspondence using NUC5i7RYH. As

the algorithm only stores the landmarks of a current keyframe, only 300 M additional

memory was used. The results indicate that the proposed method achieved similar

performance to the state-of-the-art mono VIO methods ROVIO, VINS-MONO, and

stereo VIO methods S-MSCKF, OKVIS in terms of accuracy and robustness without

using IMU. Section 4.3.2 provides a detailed analysis of whether and how prior stereo

orientation works.

4.3.2 Contribution of Stereo Orientation Prior

To fairly compare the results of using the proposed method with the traditional

method, i.e., only reprojection error, we designed the experiment as Fig. 4.8 shows.

The stereo orientation prior evaluated the points at which the reprojection errors were

between pessimistic and optimistic thresholds, which were fixed as 2 and 5 for the
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EuRoC benchmark test. Therefore, for outlier rejection using only reprojection error,

the stereo orientation prior to checking was blocked, and pessimistic thresholds from

1 to 4 were used. From the results, we found that the best threshold for reprojection

error was a 2 pixel distance, which was close to the image noise level, while a smaller

threshold rejected too many points and a larger threshold could not filter outliers

properly. The results indicated that the stereo orientation prior could reduce the

overall odometry estimation error from 18.5% to 30% on average compared with the

outlier rejection using only reprojection error. In our implementation, the SOP model

was implemented on a basic pipeline of keyframe-based visual odometry. As the SOP

module could improve the performance of the simplest VO pipeline, we believe it is

strong evidence to show the contribution in this work.

To further support the effectiveness of the proposed method, we show the absolute

value of the yaw Euler angle in comparison with the ground truth in Fig. 4.7. Because

the ground truths in Machine Hall datasets were obtained by laser tracker, which only

gave the 3D position, we show the results of 3 Vicon Room datasets, ranging from

easy to difficult. To avoid the chaos of plots, we chose the yaw angle because it

contains the major UAV motion. On dataset 01, the difference between using the

stereo orientation prior and the traditional method was not noticeable because the

motion of the UAV was quite smooth and the scene contained abundant high-quality

features. As the UAV flew more aggressively in a featureless environment (Vicon

Room 03 datasets in EuRoC), the proportion of outliers increased, which misled the

optimization process to fall into a suboptimal solution. Thus, the orientation prior

started showing its contribution to the estimation by guiding the optimizer to the

local minimum with less orientation error. Notably, the orientation error amplified

the trajectory error over time, which means that even a minor improvement may

result in a large difference.

To provide intuitive results, we demonstrate one well-known KITTI sequence, i.e.,

sequence00, to show whether the prior stereo orientation can better estimate the ori-

entation and the impact of the boundaries α and β in equation (4.1). KITTI [95] visual
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Fig. 4.7.: The absolute value of the yaw Euler angle in comparison with the ground

truth. The orientation estimation error comparison using SOP and only reprojection

error (RPE) for outlier rejection. The results were filtered by a median filter because

the ground truth data given by VICON contained some abnormal peaks. The results

indicate that the proposed method provided a better orientation estimation, especially

when keypoint detection and tracking became difficult. We compared SOP with

RPE = 2 because this threshold generated the best odometry estimation over other

thresholds (refer to Fig. 4.8). The angle MSE (given in the legend) was computed

from frame 2,000 to the end to avoid the impact of the value jump between −π and

π.

odometry datasets were recorded for autonomous driving. Therefore, the odometry

was based on 4 DoF poses, and the datasets were outdoor environments with dynamic

scenes. As the odometry results in KITTI were mainly on a 2D plane and the traces

were artificial patterns (squares and grids), we believe it is a straightforward method

for demonstrating the performance of stereo orientation prior. In this experiment,

we set the pessimistic and optimistic thresholds to 3 and 6, respectively, as we found
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Contribution of stereo orientation prior 

Fig. 4.8.: The ATE performances on the EuRoC benchmark using SOP and only

RPE. While the outlier rejection using only RPE achieved its best performance by

setting the threshold as the typical image noise level (2-pixel distance), the stereo

orientation prior reduced its error by 18.5%.

that the detected points in the KITTI dataset were coarse because the scene contains

highly chaotic and repeated patterns, such as trees, the surface of the road, and shad-

ows, and the reprojection error rejection was certain to fail with a smaller threshold.

For the stereo orientation prior, we fixed the boundary of orientation α = 0.1 and

translation β = 0.5. Because the image resolution was quite high in KITTI sequences,

the proposed method could not achieve real-time performance with NUC. All tests in

KITTI were carried out on a PC with ROS Melodic in real time, and no loop closure

detection or bundle adjustment was used during the experiments so that we could

guarantee that the visual odometry performance was the only factor of the results. In

Fig. 4.9, the stereo orientation prior significantly enhanced the estimation, especially

on orientation. Another experiment (Fig. 4.10) showed how better orientation and

overall trajectory estimation are correlated to the orientation boundary.
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Fig. 4.9.: Reprojection error (RPE) vs stereo orientation prior (SOP): three different

reprojection error thresholds were used to reject the outliers: pessimistic, optimistic,

and (pessimistic + optimistic)/2. SOP evaluated the points between pessimistic and

optimistic. For SOP, the boundary conditions were fixed as α = 0.1 and β = 0.5.

The results indicated that, regardless of how we changed the RPE, the orientation

estimation was not as good as that using SOP.

4.3.3 UAV Indoor Flight Test

The onboard tests were conducted on UAVs equipped with Intel NUC or UP

Board for the proposed method, which are shown in Fig. 4.11. The flight tests were

conducted in a VICON system with texture scenes and public indoor environments.

The stereoview was obtained from an Intel RealSense T265. To achieve real-time

performance (at least 10 FPS vision pose input for flight controller) on the UP Board,

as well as eliminate the scene of the UAV propeller, the system cropped and resized the

848 × 800 resolution fisheye view from T265 raw input into the 300 × 300 undistorted

image, as shown in Fig. 4.12. With the low-resolution stereo view, the proposed

method ran on approximately 12 and 100 average FPS on UP Board and NUC,

respectively.

VICON test: the F250 FPV quadcopter was flown fully autonomously under

the VICON system. The route of the flight was set to a square. In addition, we
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Fig. 4.10.: Orientation or translation prior: we adjusted the boundary condition to

further evaluate whether a small orientation boundary was the main contributor, as

we analyzed. In the first row, we changed the orientation boundary α while fixing the

translation boundary β, and vice versa for the second row. It is clear that when we

reduced the orientation boundary, the accuracy of orientation estimation increased,

resulting in improvement in the overall odometry estimation. The translation bound-

ary did not have the same level of impact on the results.

compared the proposed method with T265 inside-out tracking, and the results are

shown in Fig. 4.13 and Tab. 4.2. The average RMSE indicates that the proposed

method achieved odometry estimation accuracy similar to that of T265.

Public indoor environment test: The SK520 Quadcopter was not flown but

held by hand for safety reasons. The underground carpark and a square corridor

were selected for testing because there were location references for us to evaluate the

estimation results. Because we do not have the floor plan of the carpark, we manually

measured the length of the route refer to the centre line on the road, which was used

as groundtruth(GT). The route start from a point about 11m away in the front of
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Up Board NUC Intel Realsense T265 

Fig. 4.11.: Testing platforms. Left: SK520 Quadcopter with NUC; Right: QAV250

FPV Quadcopter with UP Board.

Fisheye rectification and cropping Recalibration and rectification  

Fig. 4.12.: The fisheye view converted into undistorted images. The left figure shows

the T265 fisheye view from our SK520 drone. Because the fisheye has more than 160

degrees of FOV with 848 × 800 resolution, some parts of the UAV, such as propellers,

occupied a large area of view. The right figure shows the grid feature detection of the

proposed method using the cropped and resized image.

the first corner, where we can align the speed bump with the centre of our image

view. We plot the estimated trajectory in ROS RVIZ, where the size of each grid is
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Fig. 4.13.: VICON flight test. The F250 drone flew by VICON, while the proposed

method was run onboard (Intel UP Board) at an average of 12 FPS.

Method T265 inside-out tracking Our

Sensor Stereo + IMU Stereo

Resolution 848 × 800 300 × 300

Mean RMSE (m) 0.020 0.023

Table 4.2.: Average RMSE evaluated by VICON.

1m. The right side shows the final results of the proposed method and the estimation

from Intel T265. The camera halo effect due to the light sources might be the reason

that Intel T265 underestimated the distance. Considering the measurement error of

the groundtruth (±0.5m), the drift of proposed method is less than 0.5m over 116m

route (< 0.4%). Videos can be found in our Github page. In Fig. 4.15 we show

another result in a square corridor environment. All the results indicate that the

proposed method could provide accurate estimation (translation error 6 0.4% for

the motion on horizontal plane and 6 5% for height estimation). Upper row shows

the floor plan of the corridor and our walk route. The side length of the square

corridor is 13.2m. The floor height down stairs is approximately 4m. We start from

the stairs, walk along the square corridor and back to the start point, then go down
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stairs. Lower row visualizes the estimated path and all tracked landmarks over the

odometry estimation. From the top view we can find that the point cloud shows

the proper square shape with about 13m side length, which indicate the accurate

odometory estimation on the xy plane. The side view shows odometory estimation

on height. It is clear that the odometry estimation on the walk along the square

is almost on the same plane. When going down stairs, the proposed method can

estimate the height variation within 20cm error (< 5%).

Visual references 43
±

0.5𝑚𝑚
 

15 ± 0.5𝑚𝑚 

11
±

0.5𝑚𝑚
 

Starting point 

GT 
T265 
Our 

Fig. 4.14.: Carpark test: The SK520 drone was handheld for safety reasons, while

the proposed method ran online on its onboard computer (NUC5i7RYH). The route

started from a point approximately 11 m away in the front of the first corner, where we

aligned the speed bump with the center of the image view. The estimated trajectory

was plotted in the ROS RVIZ, where the size of each grid was 1 m. The right side

shows the final results of the proposed method and the estimation from Intel T265.

The camera glare effect due to the light sources might be the reason that the Intel

T265 underestimated the distance. Considering the measurement error of the ground

truth (±0.5m), the drift of the proposed method was less than 0.5 m over the 116 m

route (< 0.4%).
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Starting point Marker 

Planned route Marker Our 

Fig. 4.15.: Corridor test: The bottom-left shows the planned route. We marked

the corner points of the route in real world as groundtruth because without mo-

tion capture system, we can only ensure the accurate measurements when reaching

these markers during walking. The estimation errors were measured by the drifting

distances of these corners. The average drift was within 20 cm (< 5% of overall dis-

tances). The right plot visualizes the estimated path and all tracked landmarks over

the estimation history.

4.4 Different between SOPVO and CamAdj

In CamAdj chapter, we made an assumption: there exist low-reprojection-error

inliers, denoted as singular points, that negatively affect the nonlinear refinement of

pose estimation. The comparison of the fundamentals between CamAdj and SOPVO

is given in the following figure (Fig. 4.16). To obtain a deeper understanding of

theoretical parts, we introduced two scenarios. Scenario 1 address the camera pose

estimation for general stereo SfM or VO problem. SOPVO is an extension of the

scenario 1 while based on the new assumption to explore the potential of the SoS
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filtration technique. To verify the new assumption, we have modified the workflow

of the VO accordingly. Scenario 2 is more related to the 3D reconstruction prob-

lem, which aims to explore the capability of using a similar approach on different

applications.

In SOPVO, different assumption is made to address the real-time VO problem. We

look for some large-reprojection-error points that adding them into pose estimation

results in an increase in translation error and a decrease in the orientation error.

The motivation for seeking these points is that we believe it is a meaningful trade-

off. The accuracy of orientation has a relatively larger impact on the long-term

trajectory estimation. Moreover, more inliers would increase the system’s robustness.

Therefore, the inlier/outlier filtration in SOPVO is done in all non-keyframes and

the goal is to find more potential inliers. During this process, all tracked points will

be updated based on new triangulation results and new keypoints are detected. To

identify the potential inliers, we use two different reprojection thresholds (optimistic

and pessimistic), only the correspondences with reprojection errors in between are

evaluated by the proposed method and other points are definitely inliers or outliers.

The experimental results show pieces of evidence that our assumption could be true.

CamAdj 

SOPVO 
(paper [1]) 

Assumption Approach 

Margin of inliers by low 

reprojection error threshold  

CamAdj outlier filtration zone 

t error 

R error 

t error 

R error 

Reprojection 

error thresholds 

Find potential inliers 

Definitely inliers 

Exist singular points that 

negatively affect nonlinear 

refinement of pose estimation. 

Some of them can still contribute 

to accurate orientation estimation 

because they generate errors 

mainly on translation. 

Data group 

2D-3D or 2D-2D 

correspondences with low 

reprojection errors. 

2D-3D correspondences 

with large reprojection 

errors. 

Fig. 4.16.: Fundamentals of CamAdj and SOPVO.
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5. VISUAL OBJECT TRACKING FOR TASK-ORIENTED

FLYING

Conv5-4Conv5-2Conv4-4Conv3-4Input

…

…

Feature maps of conv5-4

Recommended 

feature maps

      ModelingComparison

Rejected feature maps

Fig. 5.1.: Online CNN layer and feature map recommendation. The layer, in which

the highest convolutional responses gather at target center, is marked by a red box.

The target percept reconstructed from the recommended feature maps, on the other

hand, has a better description regarding the target’s central location, shape, and size.

Vision intelligence has achieved significant progress fueled by the deep learning

method, however, the progress becomes much slower in UAV applications due to

the limitation of the hardware platform. The drones have to process many tasks

concurrently, such as navigation, target detection, tracking, path planning, you name

it. Unfortunately, the powerful GPU usually is not a feasible option for small UAVs

or MAVs. With limited computational resources, we need to optimize the onboard

system.

The main idea of the convolutional feature recommendation is illustrated in Fig. 5.1.

We use VGG-19 as the backbone. The features of tracking target extract from dif-
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ferent layers are given in the fist row. When layer goes deeper, the semantic level

of feature become higher. But we also lose the location information. Therefore, low

layer features should also be used for tracking. Dr. Chao Ma’s work HCF [18] uses a

similar idea to perform visual tracking. In their work, however, they use fixed layers

and all feature maps of those layers to rebuild the target appearance model. We argue

that different target has different semantic level. For a simple target, we can use only

a few layers to represent the target properly, and not all feature maps are necessary

as some of them are background features.

1st frame

Correlation filter

Scale learning

Input

kth frame

ConvNet

kth frame

C
o

n
v

R
eL

U

P
o

o
l

Sample

Optimized 

network
Optimized

model

Sample

Recommender

Candidate

model

Model update

Optimized network

Training

Correlation 

filter

Fig. 5.2.: Tracking framework overview

5.1 Proposed Algorithm

In this section, we first give an overview of the proposed method, of which the

framework is shown in Fig. 5.2. The target appearance is given in the first frame. Ini-

tially, the proposed recommender optimizes the VGGNet [96] network by finding the

highest layer we actually need and build the optimized target model for the correla-

tion filter training, which is discussed in Section 5.1.1 and Section 5.1.2, respectively.

In each new frame, we take a sample patch that is an extended region of the target

region in the last frame and feed it to the optimized network - to extract the con-

volutional features. Then we use the proposed recommender to build the candidate
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model. The correlation filter works together with the proposed scale learning method

to relocate the target and update the new model(Section 5.1.3 and Section 5.1.4).

Finally, we summarize the tracking framework using pseudocode.

5.1.1 Recommender

Denote F̄ and B̄ as the mean response value of foreground region F (given by

bounding box) and background region B (the extended searching region) of a convo-

lutional response X(x1, x2, ..., xN), respectively. The recommendation score of X is

given by:

f(X,F,B) = DT ·GT, (5.1)

where the DT and GT are distinctive term and gain term, respectively. They are

defined as:

DT =
1

N

N∑
i=1

xi(e
1−( 2di

(1+β)r
)2 − 1), (5.2)

GT = (F̄ − B̄)2, (5.3)

where di is the pixel distance between i-th pixel to the target center and r is the

diagonal length of region F . β is the tolerance parameter. xi is the convolution

response value of i-th pixel. As Fig. 5.3 shows, DT scores the feature quality, while

GT measures the statistical difference between foreground and background. Fig. 5.4

shows the recommender output.

The high response of the convolution, i.e., i ∈ {i|xi ≥ δ}, means the local ap-

pearance is highly correlated to the image filter (or kernel) that learned by CNNs. In

this work, we are interested in the peak responses (δ = max(X)) because our goal is

single object tracking.

Remark 1: The typical value for tolerance parameter β is 0.25, which means we

assume that the location shift or scale growing of the target is within 25% target

size in general. It is introduced because the target may have a position shift or scale

variance.
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2𝑑𝑖
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𝑥

𝑑
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Fig. 5.3.: Diagram of DT and GT. DT aims to select the discriminative features

learned by CNN. As the new figure shows, for the convolution results, the peak

values with a large distribution is designed to result in a low score. DT provides

a convergent non-linear weight distribution refer to the 2di/(1 + β)r ratio as well

as labels foreground/background by the positive/negative score. GT, on the other

hand, amplify the discriminative score by comparing the power of foreground and

background.

(a) Input

F

B
(b) Conv4-4: 

DT = 0.9

GT = 0.5

(c) Conv5-4: 

DT = 1.5

GT = 0.8

(d) Feature map: 

DT = -0.5

GT = 0.7

Fig. 5.4.: Recommender output. The input in (a) shows the foreground (F) and back-

ground (B) regions. In (b), layer Conv4-4 has multiple dispersed peak convolutional

responses, while in (c), the peak responses gather to the center. Therefore, compare

to (b), the kernel learned in (c) is more likely to be the discriminative detector of the

target. A sample of feature maps is shown in (d), of which the discriminative term

DT is a negative value because it only represents background features. The gain term

GT, on the other hand, measures the difference level between F and B.
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5.1.2 Target Appearance Modeling

Figure 5.5 shows an example of target appearance modeling. We extract target

percept Cj from the j-th convolutional layer by taking the average of its Gaussian

weighted feature maps hji :

Cj =
∑
i

G ◦ hji , (5.4)

where theG is a cosine window that weight the feature by Hadamard product (notated

as ◦). This is used to avoid the discontinuity of image bounder. The hji is the i-th

feature map of j-th convolutional layer. Due to max-pooling, the image size of Cj

varies. Therefore, each Cj is re-sampled with a fixed size. To be noted that a

normalized C (values in the range [0,1]) is used for further computing.

VGG-19 networkSample 𝑤𝑖
20

… …

𝑤𝑖+5
20𝑤𝑖+2

20

224×224×64

112×112×128

Layer and feature map recommendation

ℎ𝑖
20 ℎ𝑖+5

20

…
C20 (Conv4-1)

56×56×256

Target appearance modeling

Pooling layer

Conv layer

Recommendation

ReLU layer

Fig. 5.5.: Recommendation framework: The proposed recommender selects layer C20

weights all feature maps in layer C20. Only the feature maps with the positive weights

are used to rebuild the target model. To be noted that the ReLU layers are taken into

account, therefore there are 37 layers in VGG-19. Hence, we extract the sub-CNN

with only 20 layers for this tracking task, which optimized the convolutional feature

extraction process.
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In the first frame, we extracted C from all layers and compute their recommen-

dation scores:

f c = {f cj |f cj = f(Cj, F, B),∀j}, (5.5)

by equation (5.1). The index set φ of recommended layers is given by:

φ = {j|f cj ∈ TopN(fc)}, (5.6)

where function TopN() returns the set of top N highest values of an input set.

Once φ is determined, we build the target model using recommended feature

maps for each recommended layer. The recommendation scores of all feature maps

in the j-th layer are computed as weights wj = {wji |w
j
i = max(0, f(hji , F, B),∀i)} (a

recommended feature map h satisfy f(h, F,B) > 0). Then our reconstructed model

x is define as:

x = {xj|xj =
∑
i

wjiG ◦ h
j
i ,∀j ∈ φ}. (5.7)

Remark 2: In the CNN-based state-of-the-art trackers, such as our closest com-

petitor HCF, the target percept is the weighted sum of the percepts obtained from

pre-selected CNN layers by taking the sum of all feature maps in each layer. Since

the input image patch could contain the background scene, the background features

may also be updated to the target model. In our method, most of the background

features are rejected by the proposed recommender and the features that represent

the whole or critical parts of target dominate the result by giving higher weights. One

example in the benchmark test is given in Fig. 5.6, which illustrates the importance

of feature map recommendation by comparing the proposed method (without scale

adaptation function) with HCF.

5.1.3 Correlation Filters

Correlation filters are trained by the linear regression method. Denote the vec-

torized samples of target xn and a vectorized 2D Gaussian window y ∼ N (µ, σ2),

where µ is the center of target sample and σ is the kernel width. To be noted that
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HCF Our HCF Our

Fig. 5.6.: With (our: red bounding box) or without (HCF: green bounding box)

feature selection by the proposed recommender. In order to do a fair comparison,

we disabled the scale adaptation of our method. In this example, the background

scene contains more features than the tracked object. As the CNNs simply detect

any learned features, without the recommendation of the feature maps, the back-

ground features may dominate the target appearance model, resulting in the drifting

of tracking.

y can also be the data labels because the weights in window y indicate the distances

to the target center. Then the linear regression problem is formed by:

arg min
ω
‖xω − y‖2 + λ‖ω‖2, (5.8)

where ω is the coefficients to be trained, x = {x1, x2, ...}, I is an identity matrix and

λ is the regularization coefficient. The closed-form solution of 5.8 is given by:

ω = (xTx + λI)−1xTy. (5.9)

To speed up the process, we train ω in Fourier domain. In the first frame, the

target model X is built by taking Fourier transforms of reconstructed feature X =

F(x) and Y = F(y). The initial trained correlation filter W is define as:

W = {W j|W j =
Y ◦ X̄j

Xj ◦ X̄j + λ
,∀j ∈ φ}, (5.10)

where the X̄ denote the complex conjugate of X.

From the second frame, our correlation filter estimates target location by comput-

ing the weighted correlation response R:

R = F−1(
∑
j

f ′jW
j ◦Xj),∀j ∈ φ, (5.11)
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where f ′j is the normalized score over recommendation score f c from equation (5.5)

with range [0,1]. Therefore, the local location u∗ with maximum correlation response

is the estimated new location of the target:

u∗ = arg max
u

R(u). (5.12)

After the target is relocated, we extract the CNN feature again in order to learn

the target appearance online. Let t be the index of frame sequence and α be the

learning rate, the updating process of numerator A and denominator B of filter W

can be written as:

At = (1− α)At−1 + αY ◦ X̄t, (5.13)

Bt = (1− α)Bt−1 + αXt ◦ X̄t, (5.14)

Wt =
At

Bt + λ
. (5.15)

5.1.4 Min-channel Scale Learning

In visual tracking, the target size changes continuously if there is no occlusion or

out of view. Therefore, for scale estimation, temporal information should be able to

increase the accuracy of scale estimation. In this work, we propose a spatiotemporal-

based min-channel scale learning scheme. The min-channel is a binary mask that

crops the minimum target region (bounding box region) from the searching region.

The min-channel approach aims to reject the noise as much as possible. To obtain

the min-channel map of the target, we project the max values at each location u

throughout all recommended feature maps, i.e., find the maximum value on the third

dimension of feature map set x. Then corp it by the min-channel mask MC.

xmin(u) = MC(u) ·max(x(u)),∀u. (5.16)

Then the new scale s at frame t refer to the first frame is updated as:

st = γ
s̄
∑

u x
min
t (u)∑

u x
min
1 (u)

+ (1− γ)
σwt
σw1
, (5.17)
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u

𝑥𝑚𝑖𝑛

Min-channel

𝒙

Fig. 5.7.: Spatiotemporal-based min-channel scale: the first block on the left describes

the main idea of min-channel. The highest responses of all recommended feature

maps are projecting into the min-channel map, in which we only take the pessimistic

of target region into consideration. Since the highest response of feature maps are

the location of target features, the variation of power distribution of the min-channel

maps are used for target scale change estimation.

where σw is a weighted standard deviation of xmin. The average scale of a short term

memory s̄ is computed after applying median filter to {st−1, st−2, ..., st−M−1}, where

M is the memory size. A typical value for γ is 0.9.

Remark 3: Because the feature maps extracted from CNN are re-sampled with a

fixed size, s̄ is used to recover the true statistical characteristics of xmint . For the

same reason, term
σwt
σw1

does not affect the result when the previous scale estimation

is correct. Wrong updating of target percepts tend to expand the distribution of

significant response of xmin since they are mainly background features. Therefore, the

purpose of introducing this term to extend the searching region when the uncertainty

(the distribution of high convolutional response) of estimation increased.

5.1.5 Tracking Framework

We denote input t-th frame It, target region Ft and its extended searching re-

gion Bt. Function CNNs() extracts the feature maps of input image. The tracking

framework of proposed tracker is shown in algorithm 3.
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Algorithm 3: Tracking framework of proposed tracker

Data: {It|t = 1, 2, ...}, F1

Result: {Ft|t = 2, 3, ...}

1 initialization: B1, t← 1, s1 ← 1 ;

2 h← CNNs(It(Bt)) // Extract CNN features

3 φ← Eq. (5.6)(h) // Index set of recommended layers

4 xt ← Eq. (5.7)(h, φ, Ft, Bt) // Target percept

5 Wt ← Eq. (5.10)(xt) // Correlation Filter

6 xmint ← Eq. (5.16)(xt) // Min-channel map

7 while t < frame length do

8 t← t+ 1

9 h← CNNs(It(Bt−1))

10 x← Eq. (5.7)(h, φ, Ft−1, Bt−1)

11 [Ft, Bt]← Eq. (5.11)& (5.12)(Wt−1,x)

12 xmint ← Eq. (5.16)(x)

13 st ← Eq. (5.17)(xmint , xmin1 , {st−1, ..., st−M−1})

14 [Ft, Bt]← ScaleUpdate(Ft, Bt, st)

15 h← CNNs(It(Bt))

16 xt ← Eq. (5.7)(h, φ, Ft, Bt)

17 Wt ← Eq. (5.15)(Wt−1,xt)
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5.2 Experiments

In this section, we demonstrate the performance of the proposed tracker by Vi-

sual Tracker Benchmark v1.0 test. The benchmark protocol is proposed by Y. Wu,

et al [97]. We tested our tracker on 50 datasets and evaluated with the following

three evaluation methods:

Center location error (CLE). CLE measures the tracking accuracy by comput-

ing the distance between the centers of the ground truth and the estimated bounding

box. On the other hand, SR measures the overlap between the ground truth and

bounding box, which is related to scale adaptation.

Success rate (SR). Let the bounding box be rt and ground truth ra, the overlap

score is defined as score = rt∩ra
rt∪ra . Typically, a score > 0.5 is considered as a successful

tracking. The reported measurement SR is the percentage of successfully tracked

frames in a sequence.

Target-based location error (TLE). TLE evaluation [98] evaluates the track-

ing accuracy by normalizing CLE with target size:

TLE = min(
2 ∗ CLE√
x2 + y2

, 2), (5.18)

where (x, y) is the pixel length of target groundtruth. It is noted that CLE tells the

pixel distance while ignoring the size of the target.

The proposed tracker is implemented in Matlab and runs on a laptop with 3.7-GHz

Intel Core i7-8700K processor, 48GB RAM and NVIDIA Quadro P2000 GPU. We

choose top 2 best layers and use the typical values for correlation filter parameters:

α = 0.01, λ = 10−4.

Remark 4: We run our tracker as well as other 10 state-of-the-art trackers on each

dataset from the first frame to the end, referred to a one-pass evaluation (OPE).

Then the final tracking results for each dataset is obtained by taking the average of

10 times running. The final mean results are calculated from all frames over the 50

tested datasets.
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Our test results are compared with other 10 high performance state-of-the-art

trackers: HCF [18], SiamFC [19], CFNet [20], Struck [12], DCFNet [21], HDT [22],

UDT [23], CSK [14], LSK [15], and MIL [11].

5.2.1 Overall Performance

The overall performance is shown in Fig. 5.8 using the area under curve (AUC)

and merged plot of mean CLE and mean SR, respectively.

Fig. 5.8.: Location precision plot (CLE: pixel-based distance) of OPE using AUC and

the merged plot of mean CLE and SR. This figure shows the overall performance of

trackers in terms of tracking accuracy and robustness. The proposed tracker achieves

the highest precision and the best average CLE (10.3).

The benchmark evaluation results illustrate that the proposed tracker performs

competitively good tracking results in both tracking accuracy and scale adaptation

compare to other 10 top-ranked state-of-the-art trackers. To provide detailed results,

the tracking results of 4 challenging sequences in the image view is shown in Fig. 5.9

(only 6 selected trackers’ results are displayed). To be noticed that accurate tracking

may also generate large CLE when the target is big. Furthermore, the tracker may

generate random CLE when it gets lost. To provide another aspect of the tracker

performance, we applied target-based location error (TLE). The detailed results in

TLE are also provided in table 5.1. The proposed method is again top 1 ranked by

TLE(achieves 0.226, which the average tracking error is 22.6% of target size). The

capability of adapting target large-scale variation and heavy occlusion of the proposed
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HCF SiamFC CFNet Struck DCFNet HDT UDT CSK LSK MIL Our

Car1 1.38 0.10 0.09 1.43 0.09 1.00 0.57 1.51 1.51 1.61 0.88

CarScale 0.31 0.15 0.15 0.35 0.09 0.31 0.11 0.67 0.16 0.35 0.28

Dudek 0.09 0.09 0.10 0.10 0.06 0.08 0.06 0.11 0.12 0.17 0.07

Human5 1.52 0.54 0.14 0.15 0.09 0.10 0.10 1.53 0.18 1.35 0.13

Human6 0.69 0.11 0.10 0.97 1.10 0.79 0.11 1.29 0.30 0.45 0.16

Jump 1.59 1.61 1.79 1.72 1.75 1.59 1.07 1.76 1.51 1.82 1.21

Shaking 0.23 0.10 0.11 0.59 0.14 0.26 0.13 0.32 0.50 0.47 0.17

Singer2 1.74 1.67 1.59 1.67 1.65 1.68 1.71 1.79 1.60 0.33 0.62

Skater2 0.14 0.14 0.11 0.20 0.22 0.14 0.21 0.22 0.24 0.47 0.14

Skiing 0.38 1.76 1.75 1.89 1.76 0.44 1.76 1.82 1.91 1.85 0.33

Tiger2 0.37 0.30 0.41 0.41 0.40 0.34 0.34 1.14 0.71 0.51 0.39

Trans 0.26 0.25 0.16 0.28 0.23 0.26 0.24 0.25 0.56 0.57 0.22

Vase 0.23 0.17 0.14 0.31 0.45 0.19 0.16 0.17 0.23 0.24 0.15

BlurCar2 0.07 0.08 0.04 0.11 0.04 0.06 0.04 0.07 0.14 1.24 0.13

BlurCar3 0.08 0.09 0.04 0.12 0.06 0.12 0.05 0.80 0.21 1.35 0.09

BlurFace 0.08 0.07 0.09 0.54 0.06 0.08 0.06 0.12 1.61 0.89 0.12

Bolt 0.21 1.90 1.94 1.94 0.20 0.15 0.16 1.92 0.21 1.95 0.18

Boy 0.11 0.10 0.08 0.13 0.07 0.09 0.08 0.40 0.08 0.47 0.13

Car2 0.12 0.06 0.06 0.07 0.04 0.11 0.05 0.08 1.10 1.28 0.19

Car24 0.26 0.06 0.07 1.62 0.05 0.22 0.06 0.31 0.06 1.03 0.31

Crossing 0.13 0.09 1.45 0.13 0.07 0.14 0.08 0.41 1.59 0.15 0.12

Crowds 0.10 0.12 0.12 0.26 1.76 0.11 0.12 0.13 1.95 1.83 0.15

Dancer 0.10 0.14 0.11 0.12 0.12 0.11 0.11 0.10 0.18 0.13 0.10

Dancer2 0.09 0.18 0.09 0.12 0.07 0.09 0.06 0.09 0.17 0.13 0.09

David 0.23 0.19 0.15 1.21 0.10 0.15 0.14 0.49 0.35 0.46 0.17

David3 0.05 0.59 0.07 1.09 0.07 0.05 0.07 0.51 0.90 0.40 0.14

Deer 0.10 0.11 0.09 0.10 0.21 0.10 0.10 0.10 1.24 1.59 0.16

Dog 0.28 0.28 0.19 0.51 0.25 0.36 0.24 0.33 1.65 0.41 0.45

Dog1 0.11 0.07 0.13 0.11 0.09 0.10 0.07 0.09 0.14 0.16 0.11

FaceOcc2 0.12 0.19 0.12 0.10 0.14 0.14 0.16 0.10 0.25 0.23 0.18

Fish 0.08 0.11 0.07 0.06 0.09 0.07 0.10 0.75 0.91 0.44 0.12

Football1 0.10 0.18 0.18 0.21 0.87 0.15 0.29 0.62 1.09 0.22 0.44

Freeman1 0.27 0.24 0.19 0.49 1.10 0.29 0.27 1.06 1.28 0.40 0.25

Girl 0.15 0.13 0.20 0.10 0.10 0.14 0.16 0.72 1.01 0.52 0.35

Human7 0.08 0.11 0.07 0.12 0.55 0.08 0.17 0.47 0.87 0.10 0.08

Human8 0.14 1.63 1.64 1.45 1.20 0.16 1.20 1.29 0.08 1.54 0.23

Human9 0.10 0.10 0.14 1.12 1.13 0.22 1.52 1.26 0.85 0.77 0.13

Jogging.1 0.07 0.13 0.12 1.00 0.13 0.07 1.09 1.48 1.37 1.43 0.08

Jogging.2 0.05 0.11 0.04 1.23 0.06 0.05 1.81 1.56 0.65 1.57 0.13

Man 0.10 0.06 0.07 0.06 0.07 0.09 0.07 0.08 0.09 1.55 0.14

Mhyang 0.05 0.06 0.10 0.05 0.06 0.08 0.06 0.07 0.07 0.40 0.11

MotorRolling 0.14 1.59 0.80 1.49 1.72 0.21 1.70 1.71 1.58 1.54 0.16

MountainBike 0.16 0.13 0.13 0.17 0.20 0.17 0.17 0.14 0.24 0.73 0.17

RedTeam 0.25 0.11 0.11 0.20 0.13 0.26 0.11 0.17 0.15 0.34 0.30

Singer1 0.13 0.07 0.08 0.24 0.03 0.16 0.07 0.23 0.33 0.26 0.27

Skater 0.13 0.12 0.09 0.11 0.25 0.15 0.18 0.19 0.26 0.14 0.15

Surfer 0.22 0.22 0.16 0.36 0.84 0.21 0.14 1.97 0.22 0.67 0.21

Trellis 0.14 0.42 0.11 0.16 0.09 0.12 0.10 0.42 0.10 1.19 0.11

Walking 0.15 0.12 0.09 0.18 0.07 0.23 0.06 0.27 0.74 0.11 0.10

Woman 0.13 0.20 1.55 0.08 0.15 0.16 0.13 1.51 1.52 1.52 0.22

Average TLE 0.276 0.343 0.349 0.545 0.405 0.249 0.353 0.692 0.695 0.786 0.227

Average FPS 5.68 68.26 45 17.04 42.365 5.736 51 435.81 NaN 35.42 13.25

Table 5.1.: TLE results of each dataset and average FPS: top 3 ranked results on

each dataset are marked by red, green, and blue, respectively.
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Fig. 5.9.: Tracking results on datasets (From top to bottom): Dog1, Human5, Mo-

torRolling, Human6.

tracker is illustrated in Fig. 5.9. The second best CLE is given by tracker HDT. In our

experiments, we simply use the top 2 recommended layers for target percept recon-

struction. Although high layer carries very poor location information, our optimized

target searching region and percept reconstruction significantly improved the tracking

precision and tiny discontinuity of position shifting is observed in some datasets.

5.2.2 Results Analysis

From the results, it is clear that the proposed method outperforms other 10 state-

of-the-art trackers by average tracking accuracy while success rate (SR) is the second

echelon ranked by overall evaluation. In Fig. 5.8 we can find that the proposed method

is not top ranked when the threshold is less than 20. This indicates a drawback of the

proposed tracker: the poor feature location information when only high-level CNN

layers are used. The low layer features have more precise location information but
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less discriminate to background features. Unlike HCF which uses fixed hierarchical

features to guarantee the location information, the proposed algorithm sometimes

may only use high layers of CNN, which is a tradeoff between tracking accuracy

and robustness. In conclusion, the proposed method achieves competitive overall

performance against other 10 top-ranked state-of-the-art trackers.

5.2.3 Algorithm Complexity

The major time consumption comes from the CNN feature extraction because

the complexity of the correlation filter and the proposed recommender are Θ(n2) and

Θ(n), respectively, while the CNN goes to Θ(
∑D

l=1M
2
l K

2
l Cl−1Cl), where the M is

the length of the feature map, K is the length of the Kernel, C is the number of

channels in each layer, l is the current layer and D is the number of the layers. The

proposed recommender compute the highest D that needed for a target in the first

frame, which means we could have a smaller D for a simple target, resulting in a

speedup of CNN feature extraction. The frame per second (FPS) of each open-source

methods are given in Tab. 5.1.

5.2.4 Evaluation By Attributes

To analyze trackers’ performance under different circumstances, we further eval-

uate the trackers on benchmark datasets regarding their attributes. The benchmark

datasets are classified into 11 attributes: low resolution (LR), illumination variation

(IV), scale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB),

fast motion (FM), in-plane rotation (IPR), out-of-plane rotation (OPR), out-of-view

(OV), and background clutters (BC). The average CLE of each attribute over all

tested frames is shown in Table.5.2. The proposed method achieves the best AUC

area on 9 attributes and best average CLE on 10 attributes.
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Fig. 5.10.: Precision plot of each attribute using AUC: the proposed tracker ranked

No.1 on 9 attributes (IV, OCC, DEF, MB, FM, IPR, OPR, OV, and BC) out of 11.

HCF SiamFC CFNet Struck DCFNet HDT UDT CSK LSK MIL Our

LR 19.425 7.938 7.794 22.768 9.463 10.694 17.909 176.382 42.53 41.128 7.825

IV 17.232 13.044 15.913 43.685 20.981 12.909 19.649 105.627 49.909 63.28 9.433

SV 19.473 12.385 14.068 40.079 19.334 12.396 15.351 90.759 39.47 58.293 9.125

OCC 21.6 14.008 17.343 39.657 19.501 12.966 14.975 89.185 37.254 58.383 9.333

DEF 23.76 16.576 21.18 40.713 23.366 14.219 16.809 88.889 39.817 61.572 9.448

MB 22.836 15.834 20.89 38.949 22.268 13.823 17.155 94.537 43.165 62.582 9.476

FM 22.406 15.123 20.333 37.469 22.946 14.379 17.219 98.938 44.809 62.203 9.569

IPR 21.139 15.765 21.042 36.75 22.573 14.203 17.119 91.652 42.858 58.519 9.603

OPR 20.117 15.853 21.743 36.168 22.576 14.423 16.984 86.262 40.621 55.467 9.596

OV 20.338 15.729 21.513 36.234 23.49 14.951 16.81 86.069 40.22 54.783 9.647

BC 20.056 15.871 21.724 39.204 23.423 14.822 16.762 86.523 40.912 57.332 9.605

Table 5.2.: Mean CLE by attributes: top 3 ranked results on each attribute are

marked by red, green, and blue, respectively.

5.3 UAV onboard test

We first performed the proposed tracker on video data recorded by a rescue drone.

The drone was flying inside the building or cave. The tracking targets include sur-

vivors and their belonging such as a bag. The video data contains blurred, fast

motion, and discontinuous frames due to UAV platform. In Fig.5.11, we illustrate

the tracking performance under blur and abrupt motion, illuminance change and large

scale variation. Demo video is available on Github page.
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#1 #37 

#5 #6 

#1 #36 

Fig. 5.11.: During the flight, image blur and abrupt motion happens occasionally.

The illuminance and target scale also variate over time.

For onboard tracking, we implemented the proposed method on Nvidia Jetson

TX2 using backbone CNN of a pre-trained Yolo v3 (Fig.5.12). For untrained target,

we can manually select the target and the proposed tracker will learn its feature

online. The UAV was flying under VICON environment. The task of the UAV is to

perform the traffic light inspection in full autonomous. The Yolo detection runs on

average 4 FPS. The FPS rise up to average 15 when switch to tracking model. Thus,

the UAV get extra computational power to plan the path and process data analysis.
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Switch from YOLO v3 to our tracker 

Manual selection for untrained target 

Onboard computer: NVIDIA Jetson TX2 

Fig. 5.12.: UAV onboard test.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this work, we propose a smart vision system for UAV task-oriented flying. The

system consists of visual odometry and object tracking. In visual odometry research,

we demonstrated with several experiments that measuring error directly in the pose

space eventually leads to better pose estimation. We have further shown that the

long-term localization can be improved significantly (because the errors are accumu-

lated over time) by detecting and avoiding points that require large adjustments.

Intuitively, the requirement of larger adjustments has a larger influence during the

pose estimation step. We also showed via experiments that a subset of such points

cannot be detected using the reprojection-based measure, thus leading to poor long-

term localization. We proposed a sum-of-square-based error measure that allows us to

perform the camera minimum adjustment. With the new error measure tool, we pre-

sented a stereo orientation prior visual odometry algorithm to remove the points with

large error bias in orientation, because the orientation error has a greater impact on

the overall estimation accuracy. The proposed method reformulates the reprojection

process and separates the orientation and translation error into different dimensions

and rejects the keypoints that may mislead the estimator to fall into the local min-

imum with a large orientation error. The algorithm was implemented on both intel

NUC and UP Board onboard computers for UAV indoor navigation. The experi-

ments on the benchmark test and onboard test demonstrated that the performance

of the proposed method is competitive with top-ranked stereo or visual-inertial odom-

etry methods in terms of accuracy and robustness. For object tracking research, we

proposed a novel CNN-based tracker that simplifies the network and learns a quality

appearance model with scale estimation using a recommender for the untrained target.



88

Experimental results on 50 challenging benchmark datasets and UAV onboard tests

demonstrated that the proposed method achieves competitive performance against

other top-ranked state-of-the-art trackers in terms of tracking accuracy, scale adap-

tation, and tracking robustness. Thus, the entire vision system can run real-time on

the UAV onboard system and perform the localization of both the UAV itself and the

destination, which is critical information to a task-oriented flight.

6.1.1 System Robustness in Harsh Environments

In harsh environments, vision systems face two major challenges: complicated

light sources and featureless texture. As the proposed visual odometry algorithms

use traditional feature point detection and tracking methods which are sensitive to

the environmental lighting and texture conditions. ORB feature detector and KLT

point tracker, for example, detect the handcrafted patterns and match the similar

descriptors between consecutive frames assuming the illuminance is constant. Due of

complex light sources and camera auto exposure, this assumption is not always valid

and it causes the point tracking failure as reported in [84]. A traditional way to solve

the illuminance inconsistency problem is performing the histogram equalization over

the associated frames. However, the improvement is limited because most of image

enhancement tasks are typical ill-posed problem.

Recently, the research in deep learning-based image enhancement has gained pop-

ularity. Since the DNN models have been trained on massive data samples, they carry

a lot of prior knowledge for solving the ill-posed problem. As a result, lightweight

DNNs for image enhancement are in increasing demand in the future to assure the

robotic system’s robustness in harsh environments.
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6.2 Future Works

6.2.1 Integration of onboard vision system

The CNN shown its outstanding ability to extract image features throughout our

visual tracking research. In the future, we will modify the system architecture as

shown in the Fig. 6.1 to further improve the onboard vision system. In the revised

architecture, the visual odometry, object detection and tracking are tightly coupled.

The input image will first be processed by a lightweight CNN for different semantic

feature extraction. The local features of image patches which can be utilized for

point tracking are mainly low-level CNN features. High semantic level features that

represent the entire image can be used for loop-closure detection. The future visual

tracking algorithm will be based on the Siamese net.

Other 

sensors 

inputs 

Flight 

controller 

Cognition & action 

Pose feedback 

Camera input 

Object 

Detection 

VO 

Object 

tracking 
UAV local pose 

Control commands 

YOLO 

Onboard computer 

Loop 

closure 

Target location in 2D image view 

Point 

tracking 

Backbone 

CNN 

Future research work 

CNN 

Fig. 6.1.: The comprehensive visual navigation system for task-oriented flight.

6.2.2 Loop-closure detection

To design a comprehensive and versatile visual navigation system, we need to close

the loop for visual odometry. In our future work, we will implement the loop-closure

detection as Fig. 6.1 shows. It takes the image perception from the same backbone
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CNN with object detection/tracking module, which saves the computational power

for the UAV onboard system.

The loop-closure detection helps the UAV to correct the estimation error by reg-

istering the current location with the learned one when the UAV came back to the

visited places. The loop closure approaches are usually done by single image retrieval,

but the challenge is, there are many similar locations, such as the corridor in the build-

ing. The errors in matches cannot be avoided in realistic. To reduce the probability

of the mismatch, we will investigate the performance of the sequence matching ap-

proach. The idea is illustrated in Fig. 6.2. We close the loop by taking the order of

the sequence of keyframes into consideration, which is similar to the recurrent neural

network (RNN) in natural language understanding. The image will be encoded by a

backbone CNN and represented by feature maps. This approach can also be used for

robot co-mapping.
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mismatch 
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Fig. 6.2.: Recurrent image retrieval for loop-closure detection.

6.2.3 End-to-end 3D pose estimation

The awareness of surroundings, including the estimation of the object’s position

and orientation from the visual sensor’s perception, remains a big challenge for an

autonomous robot. Because such estimation is usually built upon the object detec-
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tion on depth-registered vision. With the geometry correspondences, the pose of rigid

objects could be computed by finding their 6-DoF transforms. But the object pose

estimation is thus relatively a complex task and applicable only when an object’s tex-

ture and 3D shape are well learned by the robot, the object detection, and 3D points

registration should be employed as preliminary processes. In future work, we will

investigate an end-to-end lightweight CNN pose estimation approach for autonomous

drone navigation, based on the 3D perception from proposed visual odometry and

object tracking. (Fig. 6.3).

End-to-end lightweight CNN 

Fig. 6.3.: End-to-end lightweight CNN for pose estimation.
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