
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 1 

 

MULTI-ORGAN MULTI-OMICS PREDICTION OF 

ADAPTIVE RADIOTHERAPY ELIGIBILITY IN 

PATIENTS WITH NASOPHARYNGEAL 

CARCINOMA 

 

 

 

 

LAM, SAI KIT 

PhD 

 

 

The Hong Kong Polytechnic University 

2022

 

 

 



 

2 

 

The Hong Kong Polytechnic University 

Department of Health Technology and Informatics 

 

Multi-organ Multi-omics Prediction of Adaptive 

Radiotherapy Eligibility in Patients with 

Nasopharyngeal Carcinoma 

 

 

LAM, Sai Kit 

 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

 

February 2022 



3 

Certificate of Originality 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no material previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

aknowlegement has been made in the text. 

________________________________________________(Signed) 

Lam, Sai Kit  (Name of Student) 



 

   
4 

Abstract 

Intensity-modulated radiotherapy (IMRT) is a standard-of-care for advanced 

nasopharyngeal carcinoma (NPC) patients. The success of treatment relies on an 

assumption that patient anatomy remains throughout the entire IMRT course. In 

response to treatment perturbations, however, tumors and surrounding healthy organs 

may exhibit significant morphometric volume and/or geometric alterations, which may 

jointly alter patient anatomy and jeopardize treatment efficacy. Adaptive Radiotherapy 

(ART) can compensate for these patient-specific variations. Nevertheless, most of 

existing ART triggers require close monitoring throughout the IMRT course, and are 

deficient in capturing inter-patient disparity in intrinsic biologic tissue response. 

Therefore, effective pre-treatment prediction of ART eligibility is greatly demanding.  

In this study, various machine learning techniques was applied to investigate 

capability of a variety of prediction models, developed by using different types of “-

omics” features extracted from various organ structures, for pre-treatment prediction of 

ART demand in NPC patients, with an ultimate objective to facilitate ART clinical 

implementation in the future. 

First, 124 and 58 NPC patients from Queen Elizabeth Hospital (QEH) and Queen 

Mary Hospital (QMH), respectively, were retrospectively analyzed. Radiomic features 

extracted from neck nodal lesions of Computed Tomography (CT) images, clinical data, 

and combined types of features were used for developing R, C, and RC models, 

respectively, for predicting ill-fitted thermoplastic mask (IfTM)-triggered ART event. 

Results showed that the R model performed significantly better than the C model in the 

external QMH testing cohort (p<0.0001), while demonstrating no significant difference 

compared to the RC model (p=0.5773). Second, pre-treatment contrast-enhanced T1-
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weighted (CET1-w), T2-w magnetic resonance (MR) images of seventy NPC patients 

from QEH were processed for extraction of radiomic features from Gross-Tumor-

Volume of primary NPC tumor, for developing CET1-w, T2-w, and joint T1-T2 

models. Results indicated promising predictability of MR-based tumoral radiomics, 

with AUCs ranging from 0.895–0.984 in the training set and 0.750–0.930 in the testing 

set. Third, pre-treatment CECT and MR images, radiotherapy dose and contour data of 

one-hundred and thirty-five NPC patients treated at QEH were retrospectively analyzed 

for extraction of multi-omics features, namely Radiomics (R), Morphology (M), 

Dosiomics (D), and Contouromics (C), from eight organ structures. Four single-omics 

models (R, M, D, C) and four multi-omics models (RD, RC, RM, RMDC) were 

developed. Results demonstrated that the R model significantly outperformed all other 

three single-omics models (all p-value<0.0001), achieving an average AUC 0.918 

(95%CI: 0.903-0.933) in hold-out test set, respectively. Intriguingly, Radiomic features 

accounted for the majority of the final selected features (64-94%) in all the studied 

multi-omics models. 

In conclusion, a series of studies in this thesis demonstrated that CT-based neck 

nodal radiomics was capable of predicting IfTM-triggered ART events in NPC patients 

undergoing RT, showing higher predictability over clinical predictors. MRI-based 

tumoral radiomics was shown promising in pre-treatment identification of ART 

eligibility in NPC patients. Multi-organ multi-omics analyses revealed that the 

Radiomic model played a dominant role for ART eligibility in NPC patients. The 

overall findings may provide valuable insights for future study into developing an 

effective screening strategy for ART eligibility in NPC patients in the future. 
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GRSZM Gray level size zone matrix 

GTVn Gross-tumor-volume of NPC nodal lesions 

GTVnp Gross-tumor-volume of primary NPC tumor 

HNC Head-and-neck cancer 

HU Hounsfield unit 

IBSI Image biomarker standardization initiative 

IC Induction chemotherapy 

IfTM Ill-fitted thermoplastic mask 

IMRT Intensity-modulated radiotherapy 

IpsiPG Ipsi-lateral parotid gland 

IV Intravenous 

KRR Kernel ridge regression 

LASSO Least absolute shrinkage and selection operator 

LNs Lymph nodes 

LoG Laplacian-of-Gaussian 
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MKL Multi-kernel learning 

MLC Multi-lead collimator 

MR Magnetic resonance 

NCCN National comprehensive cancer network 

NGTDM Neighboring gray tone difference matrix 

NPC Nasopharyngeal carcinoma 

OARs Organs at risk 

OVH Overlap-volume histogram 

PACs Picture archiving and communication system 

PCC Pearson correlation coefficient 

PET Positron emission tomography 

PG Parotid glands 

POV Projection-overlap-volume 

PR Partial response 

PTV Planning target volume 
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QMH Queen Mary Hospital 

RECIST Response evaluation criteria in solid tumors 

ROC Receiver operator characteristic 

ROI Region-of-interest 

RT Radiotherapy 

SCC Spearman’s correlation coefficient 

SC Spinal cord 

T2-w T2-weighted 

TM Thermoplastic mask 

UICC Union for International Cancer Control 

VOI Volume-of-interest 
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1. Chapter 1: Introduction 

1.1 Advance in Omics Features from Radiotherapy Data 

Omics refers to a discipline of biological sciences that ends with -omics, such as 

genomics. The addition of -omics to a discipline implies a comprehensive analysis of a 

set of features, such as genetic features in genomics. Over the past decades, the omics 

field has been tremendously improved by technological advances which enables cost-

effective extraction and analysis of high-throughput features, and it has been largely 

expanded to a variety of new disciplines in medical research. In the context of 

radiotherapy (RT), a series of medical resources have been utilized for generation of -

omics features for cancer research. Specifically, medical images, such as computed 

tomography (CT), magnetic resonance (MR) and positron emission tomography (PET) 

images, have been adopted for massive extraction of Radiomic features; radiation 

treatment plan data, such as radiation dose and organ contours, have been used for 

extraction of multi-dimensional dose information, termed Dosiomics features. These 

high-throughput technologies have been extensively studied in the cancer research for 

a variety of predictions, including early detection of diseases, recurrence risk 

stratification, treatment responses, tumor grading, etc. 

1.1.1 Radiomics 

Radiomics has recently become an emerging field for personalized medicine. 

Coupled with the advanced machine learning technologies, radiomics has gained 

tremendous attention in the field of medical oncology [1]. Radiomics involves 

transformation of digitally encrypted medical images into mineable high-dimensional 

features, including morphologic shape of the volume of interest, distribution of pixel 
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intensity and the spatial relationship between adjacent pixel intensity. Application of 

various imaging filters, such as Laplacian-of-Gaussian filter and Wavelet filter will 

yield extra features with a wide range of scales and resolutions. A simplified diagram 

showing overview of different classes of radiomic features, with and without 

application of imaging filter (Laplacian-of-Gaussian or Wavelet) before feature 

extraction is given in Figure 1. Such multifarious features can subsequently be 

processed for decoding concealed genetic and molecular traits. Panth et al. conducted 

an in vivo preclinical experiment to investigate relationship between genetic changes 

and radiomic features in HCT116 doxycycline (dox) inducible GADD34 tumor cells, 

and reported that the radiomic features was capable of identifying early effects of 

variation in genetic changes following RT treatment [2]. The capability of radiomics 

have also been extensively studied in areas of cancer differentiation, prognosis, 

treatment response and toxicity prediction. For instance, Zhuo et al. combined patient’s 

clinical data and MR-based radiomic features to stratify nasopharyngeal carcinoma 

(NPC) patients into different survival risk groups, and reported that the developed 

radiomic model outperformed traditional factor of T-stage (C-index: 0.814 vs 0.803) 

and Tumor-Nodal-Metastasis staging system (C-index: 0.814 vs 0.765) [3]. Dong et al. 

developed an individualized nomogram for detecting occult peritoneal metastasis in 

advanced gastric cancer patients using CT-based radiomic features, and reported a 

promising model performance with area under the receiver characteristics curve (AUC) 

of 0.958 (95% confidence interval (CI): 0.923-0.993) in the training cohort, 0.941 

(95%CI: 0.904-0.977) in the internal validation cohort, 0.928 (95% CI: 0.886-0.971) 

and 0.920 (95% CI: 0.862-0.978) in two external validation cohorts [4]. Besides, Wang 

et al. developed a series of multi-parametric MR-based radiomic signatures for 

predicting early response of NPC tumor following induction chemotherapy, and 
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reported that the radiomic signature developed jointly from T1-weighted, contrast-

enhanced T1-weighted, T2-weighted and T2-weighted fat-suppressed MR images was 

the best performing one among those developed solely from either one of the imaging 

modalities, with the AUC of 0.822 (95% CI: 0.809-0.835), sensitivity of 0.980, 

specificity of 0.529, positive predictive value of 0.593 and negative predictive value of 

0.949, demonstrating capability of radiomics in predicting NPC tumor shrinkage 

following induction chemotherapy [5]. 

 

Figure 1. Simplified Diagram showing overview of different classes of radiomic 

features, with and without application of imaging filter (Laplacian-of-Gaussian or 

Wavelet) before feature extraction. 
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1.1.2  Dosiomics 

Dosiomics is a natural extraction of Radiomics [6]. It characterizes spatial 3-

dimensional (3D) distribution of radiation dose within a tissue. This has overcome the 

challenges of traditional dosimetric-volume histogram (DVH) parameters, where only 

1-dimensional (1D) point dose or 2-dimensional (2D) dose-volume parameters can be 

obtained, therefore losing statistical and spatial information of the dose delivered to the 

patient. With the dosiomics features, one can comprehensive depict complex 3D dose 

distribution by shape-based, intensity-based and texture-based features as in Radiomics 

analysis. An illustration example of DVH and spatial dose heteogenity within a given 

volume-of-interest is provided in Figure 2. Notably, the area of Dosiomics in cancer 

predictive research is still in its infant stage. Rossi et al. investigated the potential of 

dosiomics for prediction of treatment-induced toxicity in 351 prostate cancer patients, 

and reporting addition of dosiomic features into traditional clinical model significantly 

improved model predictability for treatment-induced gastrointestinal toxicity [7]. 

Buizza et al. investigated the role of dosiomics, radiomics, and clinical predictors for 

predicting prognosis of local control in skull-based chordoma patients treated by 

carbon-ion RT, and reported that the combined dosiomics-shape based model were the 

best-performing model with AUC up to 0.80, demonstrating outstanding capability of 

dosiomic in prognostic risk stratification [8]. Besides, Adachi et al. examined potential 

of dosiomics in predicting radiation pneumonitis of lung cancer patients who were 

treated by using stereotactic body radiation therapy, by comparing the dosiomic models 

with radiomic model, and reported that the dosiomic model outperformed the traditional 

DVH-based model (AUC: 0.837 ± 0.054 vs 0.660 ± 0.054), and the combined 

dosiomics-DVH model was the best-performing one, with AUC of 0.846 ± 0.049, 

highlighting the capability of dosiomics for prediction of radiation pneumonitis [9]. 
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Figure 2. Illustration of Dose-Volume Histogram (left) of several organs-at-risk, and 

Dosiomics features of dose heterogeneity within a given volume-of-interest. 
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1.2 Epidemiology of Nasopharyngeal Carcinoma (NPC) 

1.2.1 Etiology of NPC 

Nasopharyngeal Carcinoma (NPC) has a peculiarly skewed racial and geographic 

variation in distribution, being highly prevalent in Southeast Asia [10]. Annually, there 

are 129,000 new NPC cases globally, of which over 70% were found in east and 

southeast Asia, according to the International Agency for Research on Cancer [11, 12]. 

The distinct geographic distribution of NPC incidence between China and the rest of 

the countries around the globe can be seen in Figure 3 [10]. In 2015, NPC incidence is 

approximately 2.5 times higher in males than that in females, with median age at the 

time of diagnosis being around 50-52 years old. Specifically, in Hong Kong, an average 

of 866 newly diagnosed were reported annually from 2007-2016 [11]. The latest 

statistics from Hong Kong Cancer Registry showed that NPC ranked 10th major cause 

of cancer death in 2016 [11]. 

 

Figure 3. The distinct geographic distribution of NPC incidence between China and 

the rest of the countries around the globe [10] . 
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Development of NPC is multifactorial in nature. Risk factors of NPC include 

Epstein-Barr virus (EBV) infection, genetic predisposition, lifestyle and environmental 

factors [10]. Over 90% of the global population were infected by EBV virus [13],  

which is prevalently associated with non-keratinising subtype of NPC irrespective of 

ethnic origin [14]. An escalated level of antigen against the EBV viral capsid antigens 

is associated with development of NPC and the burden of the disease, and hence is used 

for NPC screening and treatment response assessment. Apart from this typical risk 

factor, multiple epidemiological research works have identified lifestyle, environmental 

factors and family history [11]. In Hong Kong, over 50% reduction in the incidence of 

NPC has been found compared to three decades ago [15], which could be ascribed to 

the increased public awareness of this disease and behavioural changes. For instance, 

over-consumption of salted fish has been identified as a prominent triggering factor for 

NPC development in endemic regions [13], however, profound changes in lifestyle and 

consumption pattern of salted fish over the past 30 years has been found in these 

population, accounting for the concurrent decreasing trend of NPC [13, 15]. Besides, a 

person who has a family history of NPC has been found to have up to 10-fold higher 

susceptibility to the development of NPC, compared to those who has no family history 

of NPC [13]. Other potential risk factors include passive cigarette consumption, over-

use of alcohol, and poor oral hygiene [16-20].  
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1.2.2 Pathology of NPC 

NPC can be categorized into three histological types according to the World Health 

Organisation (WHO). They are keratinising squamous (Type I), non-keratinising 

carcinoma (Type II) and basaloid squamous (Type III), where the Type II non-

keratinising carcinoma can be further divided in to two sub-categories: differentiated 

and undifferentiated tumor. The incidence of these three histological subtypes 

demonstrated a distinct geographic distribution, with the Type II being most prevalent 

(>95%) in endemic regions and Type I being less (<20%) [21-23]. In particular the 

Type II non-keratinising carcinoma is strongly associated with infection of EBV [10]. 

1.2.3 Diagnosis of NPC 

Due to the deep-seated nature of tumor, NPC is mostly asymptomatic in early stage. 

As the tumor growth progress and compress nearby functioning tissues and/or organs, 

several symptoms may be presented in NPC patients, though non-specific. These 

include headache, nasal obstruction or epistaxis, and tinnitus. In view of this, plasma 

EBV Deoxyribonucleic acid (DNA) testing is commonly deployed as screening tool for 

asymptomatic patients. Subjects with elevated level of plasma EBV DNA levels are 

suspicious for NPC development and a comprehensive head and neck evaluation will 

follow. This includes nasopharyngoscopy and endoscopic biopsy to assess the 

pathology of potential lesions for confirming the underlying histologic subtype [24, 25]. 

In addition, radiographic imaging, including computed tomography (CT), magnetic 

resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission 

tomography (PET)/CT can be deployed to further confirm the presence and extension 

(hence the stage) of the NPC tumor.  
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1.2.4 Staging of NPC 

Stage of NPC is determined in accordance with tumour-node-metastasis (TNM) 

cancer staging protocol, formulated by the Union for International Cancer Control/the 

American Joint Committee on Cancer (UICC/AJCC). This staging system mainly take 

into account anatomic (size) and extension (numbers and invasion) of the primary NPC 

tumor and metastatic lymph node lesions to evaluate the tumor burden of an individual 

[10]. 

Multiple imaging modalities can be adopted to comprehensive evaluate stage, and 

biologic activity of tumor and lymph node lesions. In particular, MRI is the most 

commonly used modality for NPC staging. It provides superior soft-tissue contrast, and 

is ionizing radiation-free in comparison to CT. The high spatial resolution of MRI 

allows for a better evaluation of disease extension in three dimensions. While 18F-FDG 

PET/CT offers a desirable workup for assessing presence of distant metastases, though 

is comparatively less affordable and also accessible in some centers.  
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1.3 Treatment of NPC 

Owing to the deep-seated anatomical position of NPC, operational removal of 

tumor induces a high risk of traumatic injury to surrounding critical normal tissues, 

including but not limited to brainstem, spinal cord, and optical nerves. Hence, surgical 

excision is rarely performed for NPC treatment. Thanks to the nature of high 

radiosensitivity, indeed, NPC is typically managed using non-invasive external 

radiation treatment for all stages of diseases. Notably, intensity modulated radiation 

therapy (IMRT) is currently the standard of care worldwide for local eradication of 

NPC tumor. On the other hand, chemotherapy presents a promising remedy for 

eliminating occult cancer cells throughout the entire body and is considered necessary 

for advanced-stage diseases. Chemotherapy can be administrated in combination of RT, 

referred to as chemo-radiotherapy or CRT, and chemotherapy can be given before 

(induction CRT), during (concurrent CRT) and after (adjuvant CRT) CRT treatment. 

They are described as follows. 

1.3.1 Radiotherapy 

Radiotherapy (RT) is currently the mainstay treatment for NPC. Over the past few 

decades, technological advancement, in both hardware and software perspectives, have 

enabled transformation of radiation delivery from two-dimensional (2D) and 3D 

conformal radiotherapy (3DCRT) to its current form of intensity-modulated radiation 

therapy (IMRT). IMRT is superior in terms of its dosimetric properties, enabling drastic 

enhancement in treatment outcome and reduction in radiation-induced toxicities [26-

30]. By adopting the static or dynamic multi-lead collimator (MLC) during dose 

delivery, IMRT can yield a highly conformal radiation beam to the tumor shape with 

sharp dose fall-off that allows for sparing of nearby normal tissues [31], enabling higher 
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dose to be given to the tumor for eradication [32]. In a meta-analysis of over 3,500 

patients, IMRT was demonstrated to yield significantly improved prognosis, in aspects 

of 5-year locoregional rate and overall survival, as compared to 2DRT and 3DCRT. 

Meanwhile, there were significant declines in incidences of various radiation-induced 

toxicities in NPC patients, including late xerostomia and temporal lobe damage [30]. 

1.3.2 Chemoradiotherapy 

Local and distant failure are not uncommon in patients with locally-advanced NPC, 

different forms of chemotherapy in combination of RT is recommended to improve 

tumor control. Chemotherapy combined with RT (Chemo-RT, CRT) before (induction 

CRT), during (concurrent CRT, CCRT) and after (adjuvant CRT) CRT treatment is 

considered essential in treatment locally-advanced NPC patients. According to the 

National Comprehensive Cancer Network (NCCN) guidelines, concurrent CRT 

with/without induction or adjuvant chemotherapy is advised for stage II-IVA NPC 

patients. 

Concurrent chemo-RT, referred to as CCRT, has been demonstrated to yield 

superior prognosis, compared to RT-alone in locally-advanced NPC patients in a 

copious amount of literatures [33-39]. Cisplatin is the most commonly employed 

chemotherapeutic agent in NPC treatment [10], which is a platinum-based chemical 

that prevents DNA synthesis from happening [40]. Adjuvant chemotherapy following 

CRT aims to eliminate the remnant cancerous cells throughout the blood circulation 

system. Cisplatin and fluorouracil are considered the typical chemo-agents. A 

metronomic administration of oral chemotherapeutic drugs following CRT allows 

regular and tolerated chemotherapy workup that renders less undesired toxicities to 

patients, this was supported by a number of reasonings regarding inhibition of blood 
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vessels formation, activation of anti-tumor immunity, etc. [41, 42]. Several 

retrospective studies have shown that this metronomic administration following CRT 

significantly reduced risk of post-treatment distant metastasis in high-risk patients [43, 

44]. On the other hand, induction chemotherapy followed by CRT presents an appealing 

and promising treatment strategy in IMRT era for locally-advanced NPC patients. It not 

only aims to eliminate occult cancerous cells before administration of CRT, but also 

reduce the burden of initial tumor bed, such that a more intense radiation dose can be 

prescribed to tumor bed during the CRT treatment. Its efficacy in terms of improved 

survival has been well documented in the body of literature [45-48]. 

1.4 Adaptive Radiotherapy (ART) 

Typically, radiation treatment plan is customized for individual patients according 

to their initial pre-treatment anatomy for the sake of maximizing radiation dose 

delivered to the tumor and metastatic lymph node lesion, meanwhile preventing the 

surrounding health tissues from excessive radiation exposure. Therefore, any deviations 

occurring during the course of treatment, either geometrical shift and/or volumetric 

shrinkage of tumor and/or nearby tissues, would lead to unfavorable dosimetric 

consequences to the patients, if not adjusted accordingly. 

Unfortunately, a large body of literatures has confirmed that prominent volumetric 

and geometric variations, for instance, shrinkage of tumor or parotid glands, change of 

body or neck contour due to body weight loss, are not uncommon during the course of 

radiation treatment for head and neck cancer (HNC) patients [49-55]. Such variations 

often lead to unanticipated overdose to critical organs or underdose to tumor volume 

and neck lymph nodes. Modifications of a treatment plan during a course of RT, i.e., 

replanning or adaptive RT (ART), can compensate for these variations and maintain 
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satisfactory therapeutic index. The clinical and dosimetric advantages of ART for HNC 

cancer patients have been widely accepted, and the use of ART worldwide has become 

commonplace in today’s clinical setting, reflected by the increasing number of relevant 

publications in the past three decades. 

1.4.1 Multi-factorial Nature of ART 

A copious amount of literature has attempted to identify risk factors for ART 

implementation. There is accumulating evidence demonstrating significant shrinkage 

of both primary tumor and neck nodal lesions occur during the course of treatment. A 

retrospective analysis of 40 pairs of planning CT and re-CT images of 40 NPC re-

planned patients reported a 35% of shrinkage of clinical-target-volume of primary 

tumor [51]. Another studied looked into percentage change in gross-tumor-volume of 

primary tumor, nodal lesions and combined lesions in HNC patients, and demonstrated 

median change of 27%, 43% and 31% in respective volumes [56]. Further, a 

retrospective study investigated average absolute volume change of primary tumor in 

159 NPC patients between pre-treatment CT and third week post treatment 

commencement, and they reported an average change from 45.9 cm3 to 26.7 cm3, 

accounting for over 40% volume reduction. Indeed, when significant tumor shrinkage 

occurs, the surrounding critical organs might move into the original high-dose region, 

leading to deleterious dosimetric impact on the surrounding organs [52, 55, 57] and/or 

insufficient dose delivery to targets [55, 58].  

 In addition to the response of tumor and nodal lesions to the radiation 

treatment, normal tissue could react drastically and dynamically during treatment 

course, causing undesirable risk of radiation safety. Due to the proximity of parotid 

glands (PG) to the primary tumor, damage to the PG organ is unavoidable, incurring a 
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series of downstream side effects that necessitate the need for ART implementation. 

Radiation-induced mucositis is one of the most debilitating radiation-induced toxicities 

in HNC patients, causing a severe sense of pain and difficulty in swallowing, which 

tremendously affects patient’s ability to intake adequate nutrition and results in 

significant body weight (BW) loss. A prospective analysis of change in body weight of 

HNC patients following radiation treatment reported an average of almost 40% of BW 

loss > 5 kg by treatment completion [59]. Following such BW loss, patients tend to 

have a reduced skin separation at various levels of cervical spine and neck [60]. This 

would potentially lead to two major consequences. First, it would cause positional 

variability during daily setup of treatment position due to possible head movement 

inside the thermoplastic cast customized prior to treatment commencement. Second, 

the BW loss is often accompanied with alterations in body and neck contour of patients 

making the originally planned isodose lines appear deviated from its original position. 

As a result, it is highly possible that the deviations in contour induce significant dose 

deviations in target, leading to insufficient dose coverage for disease control, or healthy 

critical organs, such as spinal cord and brainstem structures, giving rise to deleterious, 

if not life-threatening, consequences to patients.  

1.4.2 Therapeutic Role of ART 

Numerous studies have attempted to investigate potential dosimetric impacts, 

either on tumor and organs at risk (OARs), due to variations in their volume and 

position during the course of radiation therapy [50, 61]. For instance, Cheng et al. 

conducted a prospective study of 19 NPC patients for the purpose of revealing 

volumetric and dosimetric variability during the course of intensity modulated radiation 

therapy [50]. The 19 NPC patients underwent CT scans when they received 30 Gy and 
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50 Gy of radiation dose for generating hybrid plans that adapted to the “new” patient 

anatomy at the corresponding time-points. Cheng et al. reported that there was an 

average body weight loss of 5.4% and 9.3%, shrinkage of the primary gross tumor 

volume (GTV) of 9% and 16%, volume reduction of the contra-lateral parotid gland of 

0.7 and 3.4 cm3, volume shrinkage of the ipsilateral parotid gland of 5.3 and 8.4 cm3, 

at the time points of 30 Gy and 50 Gy, respectively. When the two hybrid plans were 

compared to the original pre-treatment plan, they found that the hybrid plan yielded a 

significantly higher dose and improved greater inhomogeneity in most target volume 

of most patients. In addition, radiation damage to several critical OARs, such as 

maximum dose to the spinal cord and brainstem, and mean dose to the parotid glands, 

were also found to be larger in the hybrid plans [50]. In another study, Hu et al. 

conducted a retrospective study of 40 NPC patients for the purpose of identifying 

potential benefits of ART in NPC patients undergoing volumetric modulated arc 

radiotherapy [51]. Forty NPC patients received two-phase treatment planning and a 

second CT scan at the 22nd fraction of radiation for the phase II ART. They reported 

volume reduction of multiple organs when comparing the adapted plan and the hybrid 

plan. For instance, there were significant reduction of volume of the ipsilateral parotid 

gland (23 vs 19 cc, p<0.001), contra-lateral parotid gland (23 vs 18 cc, p<0.001), 

clinical target volume (32 vs 21 cc, p<0.001), planning target volume (126 vs 107, 

p<0.001). They concluded that ART has a dosimteric advantages for NPC patients who 

are with higher initial body weight, larger body mass index, profound body weight loss 

during treatment, treated by concurrent chemo-radiotherapy, and with advanced tumor 

stage (stage >= III) [51]. The dosimetric and clinical benefits of ART in NPC have been 

well-demonstrated in several prospective and retrospective studies [50, 55, 61-69]. 
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Mounting evidence have also demonstrated the superiority of ART in enhancing tumor 

coverage and strengthening normal tissue sparing [63-65, 67, 68]. 

Apart from the dosimetric perspectives, ART can also bring about clinical benefits 

to NPC patients. The clinical benefits can generally be observed in two aspects: tumor 

locoregional control and patient’s quality of life. For tumor locoregional control, Luo 

et al. attempted to compare the long-term outcomes in patients with locally-advanced 

NPC disease with and without ART implementation [66]. Two hundred NPC patients 

who were diagnosed with stage T3/T4 NPC were analyzed after a propensity score 

matching at a ratio of 1:1. They reported that patients who received ART had a 

prolonged 5-year local-regional recurrence-free survival than those without (96.7 vs 

88.1%, p<0.05), while there were no significant differences in terms of distant 

metastasis-free survival, progression-free survival and overall survival between the two 

groups. They further reported that the ART implementation was determined to be an 

independent prognosticator for local-regional control in their study [66]. Other studies 

shared similar findings [55, 61, 69]. For patient’s quality of life, Yang et al. carried out 

a non-randomized prospective controlled cohort for investigating impact of ART on 

patient’s quality of life in the IMRT era [69]. They analyzed a total of 129 NPC patients 

(ART: 86, non-ART: 43). Results of their study demonstrated that the ART led to a 

profound impact on the quality of life of NPC patients, in both global QoL and other 

QoL scales. Similarly, they also reported that significantly improved local-regional 

control in patients who received ART, compared to those who did not. While no 

significant improvement was observed in terms of overall survival [69]. 
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1.4.3 Clinical Practice of ART 

Currently, there is no universal protocol for ART implementation for NPC patients 

in clinic, and the implementation depends of a number of factors. In a local hospital at 

Hong Kong [70], a daily megavoltage CT (MVCT) or weekly cone beam CT (CBCT) 

or planar orthogonal X-rays is often taken for all patients to correct for positional 

variations and to assess anatomic or geometric changes throughout the entire treatment 

chain. Additionally, weekly records of body weight are also made to assess whether 

significant body weight loss (BWL) occurred. The Radiation Oncology team will 

review the above scans on a regular basis, considering BWL of individual patients. 

When significant BWL occurs, possibly accompanied with noted change in body or 

neck contour, significant lymph nodes regression and/or loss of neck tissue, an adaptive 

review process will be initiated, where the original plan will be re-calculated on the 

MVCT scan for initial dosimetric evaluation to determine whether further actions (re-

CT and/or re-plan) or continuous monitoring is appropriate. Patients who do not receive 

any actions from the first review session will then be treated with the original plan until 

the next review session for another dosimetric evaluation. On a plan review, radiation 

oncologist will assess the geometric, volumetric and dosimetric variations of both target 

and organs at risk (OARs) structures through both visual inspection and dosimetric 

evaluation. Considerations influencing ART implementation included risks of 

insufficient primary and nodal targets coverage, overdose to critical organs (such as 

spinal cord, optic chiasm, and brainstem), increase of high skin dose areas over neck, 

and unfit of thermoplastic cast for patient immobilization. 
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1.4.4 Challenges of Current ART Implementation 

At present, there is no widely accepted protocol to identify NPC patients for ART 

ahead of treatment commencement, manual screening process throughout the course of 

treatment is deemed necessary to determine ART eligibility for each individual patient.  

There is a number of limitations regarding the implementation of ART. First, the 

process is resource intensive and time-consuming due to the demand for repeated 

imaging, re-delineation, re-planning, and analyzing potential dosimetric impacts as a 

result of anatomic variations during treatment. All these incur huge clinical burden and 

elevated cost of patient care to an oncology department. Therefore, implementing ART 

for each individual patient is considered clinically impractical, particularly in busy 

centers. Second, there is no existing universal selection protocol for ART due to the 

multifactorial nature of ART eligibility (e.g. BW loss, change of body and neck contour, 

tumor shrinkage, etc.). Hence, the current ART practice in most oncology centers is not 

efficient. Further, the demand for ART can solely be assessed during the RT treatment; 

when a patient is determined to be ART candidate, the department would need to ad-

hoc re-allocate manpower and resources for that particular patient, adding significant 

burden to the clinic. Without question, pre-therapeutic identification of high-risk NPC 

patients for ART is clinically favorable in the era of personalized oncology, enabling 

physicians to prescribe ART for NPC patients more effectively and facilitate resources 

allocation in clinical settings. 

1.5 Previous Research Works on ART Risk Prediction 

Despite the large body of literatures confirming significant tumor shrinkage of 

tumor and nodal lesions during the course of treatment, serving as a favorable ART 



 

   
43 

criterion, there is severe lack of studies that developed selection strategies for ART on 

the basis of tumor volume reduction.  

Radiation dose has long been regarded as a prime attribute for morphometric 

volume change of tumors, neck lesions and bilateral parotid glands throughout the 

treatment course. Bahl et al. prospectively analyzed volumetric alterations in 20 NPC 

patients between pre-treatment computed tomography (CT) and mid-treatment CT at 

the 17th fraction [62]. They reported approximately 30% shrinkage of high-risk gross-

tumor-volume (GTV), which was accompanied with a significantly increased median 

dose of 7.2-7.7 Gy to and reduced volume of bilateral parotid glands. Another 

prospective study by Cheng et al. demonstrated that the anatomic tissue shrinkage was 

dependent on radiation dose received. They analyzed repeated planning CT and 

magnetic resonance images (MRI) at 30-Gy and 50-Gy intervals and reported that the 

shrinkage of both primary NPC tumor and nodal lesions against pre-treatment baselines 

were higher when 50-Gy was delivered (13% and 29%, respectively) than that when 

30-Gy was given (9% and 16%, respectively) and a similar trend was also observed for 

bilateral parotid glands [50]. Further evidence was also observed by Hu et al. who 

analyzed 40 re-planned NPC patients and confirmed the significant shrinkage of 35% 

in clinical-target-volume [51], and by Murat et al. who reported a median reduction of 

27% and 43% in primary and nodal GTV, respectively, in 48 re-planned head-and-neck 

cancer patients [56]. A small-sized retrospective study could be found in the literature. 

They attempted to devise a decision tree for tumor shrinkage using 48 HNC patients. 

They incorporated initial tumor volumes and a number of clinical factors, achieving 

satisfying accuracy of 88% [48]. However, there is a number of deficiencies in their 

work. First, due to the limited sample size of only 48 patients, their results remain to be 

further validated in a large patient cohort. Second, some of the clinical factors in their 
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model, such as tumor growth pattern (endophytic or exophytic), are not widely used in 

many other medical centers, thereby potentially impeding generalizability of their 

decision tree model. Lastly, if not most importantly, their work was not intended to 

predict the need of ART ahead of treatment commencement, rather they predicted the 

risk of tumor shrinkage. 

Recently, Radiomics appears to be an emerging field for personalized medicine. 

Coupled with the advanced machine learning technologies, radiomics has gained 

tremendous attention in the field of medical oncology [1]. Radiomics involves 

transformation of digitally encrypted medical images into mineable high-dimensional 

features, including morphologic shape of the volume of interest, distribution of pixel 

intensity and the spatial relationship between adjacent pixel intensity. Such multifarious 

features can subsequently be processed for decoding concealed genetic and molecular 

traits [1]. The capability of radiomics in areas of cancer differentiation, prognosis, 

treatment response and toxicity prediction have been well-documented in the body of 

literature [4, 71-74]. 

In particular, there is mounting evidence in the literature showing the power of 

Radiomics in predicting treatment response on the ground of volume shrinkage in 

various cancer diseases [5, 75-81], which has laid great foundation for Radiomics 

prediction of ART demand in cancer patients. For instance, Hou et al. investigated 

CECT-based biomarkers for prediction of therapeutic response to chemo-radiotherapy 

in esophageal carcinoma and reported the discriminability of their model in AUC 

ranging from 0.686 to 0.727 [77]. Wang et al. developed a radiomic signature 

combining features from multi-modal MR imaging sequences for prediction of early 

treatment response to induction chemotherapy in NPC patients, achieving an AUC of 
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0.822 [5]. Piao et al. devised a MR-based radiomic model to distinguish sensitive and 

resistant tumors in NPC patients following induction chemotherapy, yielding an AUC 

of 0.905 [81]. In these studies, the tumor response was defined in accordance with the 

Response Evaluation Criteria in Solid Tumors (RECIST) via quantitative assessment 

of tumor shrinkage, which follows the same line of thought as in this present study. All 

the above evidence indicates the outstanding capability of Radiomics in divulging 

patient-specific intrinsic tissue biologic characteristics for discerning respondent and 

non-respondent cancer patients upon treatment perturbations, laying great foundation 

for predicting patient-specific anatomic variations for ART eligibility. 

Nevertheless, severely limited effort has yet been made to determining ART 

eligibility for cancer patients. A radiomics study, for the first time, tried to predict tumor 

shrinkage in 91 lung cancer patients and therefore predict the ART on the ground that 

they intentionally performed ART solely on the basis of shrinkage of planning target 

volume (PTV) on weekly CT scans [56]. This, however, is not a routine clinical practice 

and not applicable in NPC in view of the multifactorial ART eligibility, including dose 

tolerance of surrounding critical organs, change in neck contours and variability in 

treatment setup position. Further, the radiomic features in their study were extracted in 

PTV of lung tumor, where a significant portion of air was included, potentially limiting 

inference of their radiomic signatures in relation soft-tissue tumor response. 

  



 

   
46 

2. Chapter 2: Research Gap and Study Aims 

According to the literature review conducted in previous sections, a series of 

research gaps have been identified.  

Research gap 1: The volumetric shrinkage of neck nodal lesions following 

radiotherapy is a key contributor for ill-fitted thermoplastic mask (IfTM), a routinely 

used immobilization device for safeguarding radiation delivery accuracy and safety. To 

deal with this, an ad hoc ART may be required to ensure accurate and safe radiation 

delivery and to maintain treatment efficacy. Presently, the entire procedure for 

evaluating an eligible ART candidate is time-consuming, resource-demanding, and 

highly inefficient. Further, the degree of nodal lesion shrinkage following treatment has 

been shown to be heterogenous between patients. Therefore, in the artificial intelligence 

paradigm, an effective personalized pre-treatment identification of NPC patients at risk 

for IfTMs has become greatly demanding for achieving efficient ART eligibility 

screening, while no relevant studies have been reported.  

Study aim 1: To address the above research gap, I carried out an experiment to 

investigate the capability of CT-based neck nodal radiomics for predicting IfTM-

triggered ART events in NPC patients via a multi-center setting. The developed 

radiomic model was compared with traditional clinical predictors. This research is 

presented in Chapter 3 of this thesis report. 

 Research gap 2: There is enormous amount of studies in the literature 

demonstrating significant volume reduction of primary NPC tumor throughout the 

radiotherapy course. Indeed, when significant tumor shrinkage occurs, those critical 

organs might move into the original high dose region, leading to deleterious dosimetric 
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impact on the surrounding organs and/or insufficient dose delivery to targets. In case 

of severe deviations, ART needs to be performed. In view of the tedious procedure for 

evaluating an eligible ART candidate, there is a pressing demand for an effective pre-

treatment evaluation for NPC patients. Pre-treatment multi-parametric MR images are 

standard-of-care of radiotherapy workflow in NPC patients and their capability in 

highlighting tissue anatomic and physiologic information is superior than CT images, 

however, MR-based radiomics in ART prediction have not yet been investigated. 

Study aim 2: To address the above research gap, I performed an experiment to 

develop contrast-enhanced T1-weighted (CET1-w) and T2-weighted (T2-w) MR-based 

risk prediction model for ART, separately, and in combination, to evaluate their 

efficacy in assessing ART eligibility in NPC patients. This research is presented in 

Chapter 4 of this thesis report. 

 Research gap 3: It has been discovered that not only primary tumors and neck nodal 

lesions may experience the above-mentioned volumetric changes following 

radiotherapy, surrounding healthy organs (such as parotid glands) may exhibit 

significant morphometric volume and/or geometric alterations, all of which may then 

individually and jointly alter patient anatomy and jeopardize the efficacy of the original 

treatment plan. Further, three-dimensional spatial dose distribution within the pertinent 

organ structures (reflected by Dosiomics), initial morphologic characteristics of 

pertinent organs (reflected by morphologic features), and initial geometric relationship 

between different internal organs (reflected by Contouromics), may also work in 

conjunction with radiomics attributes for determining the final patient anatomy that 

necessitates ART implementation. However, no relevant study has been reported before. 
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Study aim 3: To address the above research gap, I conducted a series of 

experiments to develop a variety of single-omics models (Radiomics, or Dosiomics, or 

Contouromics) for different pertinent organ structures, and various multi-omics models, 

with a hope to identify the role of different omics-based models in prediction of ART 

eligibility in NPC patients. This research is presented in Chapter 5 of this thesis report. 
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3. Chapter 3: A Multi-Center Study of CT-Based Neck 

Nodal Radiomics for Predicting an Adaptive 

Radiotherapy Trigger of Ill-Fitted Thermoplastic Masks 

in Patients with Nasopharyngeal Carcinoma 

Introduction: Significant lymph node shrinkage is common in patients with 

nasopharyngeal carcinoma (NPC) throughout radiotherapy (RT) treatment, causing ill-

fitted thermoplastic masks (IfTMs). To deal with this, an ad hoc adaptive radiotherapy 

(ART) may be required to ensure accurate and safe radiation delivery and to maintain 

treatment efficacy. Presently, the entire procedure for evaluating an eligible ART 

candidate is time-consuming, resource-demanding, and highly inefficient. In the 

artificial intelligence paradigm, the pre-treatment identification of NPC patients at risk 

for IfTMs has become greatly demanding for achieving efficient ART eligibility 

screening, while no relevant studies have been reported. Hence, we aimed to investigate 

the capability of computed tomography (CT)-based neck nodal radiomics for predicting 

IfTM-triggered ART events in NPC patients via a multi-center setting. Methods: 

Contrast-enhanced CT and the clinical data of 124 and 58 NPC patients from Queen 

Elizabeth Hospital (QEH) and Queen Mary Hospital (QMH), respectively, were 

retrospectively analyzed. Radiomic (R), clinical (C), and combined (RC) models were 

developed using the ridge algorithm in the QEH cohort and evaluated in the QMH 

cohort using the median area under the receiver operating characteristics curve (AUC). 

Delong’s test was employed for model comparison. Model performance was further 

assessed on 1000 replicates in both cohorts separately via bootstrapping. Results: The 

R model yielded the highest “corrected” AUC of 0.784 (BCa 95%CI: 0.673–0.859) and 

0.723 (BCa 95%CI: 0.534–0.859) in the QEH and QMH cohort following 

bootstrapping, respectively. Delong’s test indicated that the R model performed 
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significantly better than the C model in the QMH cohort (p < 0.0001), while 

demonstrating no significant difference compared to the RC model (p = 0.5773). To 

conclude, CT-based neck nodal radiomics was capable of predicting IfTM-triggered 

ART events in NPC patients in this multi-center study, outperforming the traditional 

clinical model. Conclusion: The findings of this study provide valuable insights for 

future study into developing an effective screening strategy for ART eligibility in NPC 

patients in the long run, ultimately alleviating the workload of clinical practitioners, 

streamlining ART procedural efficiency in clinics, and achieving personalized RT for 

NPC patients in the future. 

3.1 Background 

Radiotherapy (RT) is a cornerstone modality for nasopharyngeal cancer (NPC) 

patients [10, 15], among which the involvement of neck lymph nodes (LNs) is of high 

prevalence [82]. Irradiation down to the cervical LNs, in addition to the primary NPC 

tumor, is essential for achieving thorough cancer eradication and mitigating the risk of 

cancer recurrence [83, 84]. Throughout the 6–7 weeks of a RT course, a thermoplastic 

mask (TM) immobilization device that provides full coverage of the head and bi-lateral 

shoulders is deployed for each NPC patient to ensure reproducible patient positioning 

between RT fractions in order to maintain treatment efficacy [85]. However, anatomic 

variations and body weight loss of NPC patients are not uncommon [49, 54, 70, 86-89]，

posing a risk of TM unfit. In cases of ill-fitted TMs (IfTMs), an ad hoc adaptive 

radiotherapy (ART) may be triggered to ensure accuracy and safe radiation delivery 

and to maintain treatment efficacy [55, 63, 64, 68]. Presently, clinical ART practice is 

still in its infant stage. The entire procedure for evaluating an eligible ART candidate 
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is time-consuming, resource-demanding, and requires multidisciplinary efforts [88, 90]. 

In the artificial intelligence paradigm, the pre-treatment identification of NPC patients 

at risk for IfTMs has become greatly demanding for the sake of improving medical 

resource allocation and achieving greater procedural efficiency in oncologic care 

delivery. 

The volumetric shrinkage of neck nodal lesions is a key factor for IfTM. Since neck 

nodal lesions locate in a close proximity to the body skin surface of NPC patients, the 

significant shrinkage of neck LNs in response to treatment would cause a palpable 

change in the patient’s neck contour, producing a TM-to-skin air gap which in turn 

elevates the risk of intra-fractional patient movement during RT delivery and hence 

jeopardizes treatment efficacy [85, 91-93]. A representative NPC patient showing 

remarkable neck lymph node shrinkage during the course of RT treatment, reflected by 

the reduced lateral diameter of the neck region can be seen in Figure 4. Indeed, there 

is mounting evidence indicating that substantial LN volume shrinkage occurs 

throughout the RT course in NPC and head-and-neck cancer (HNC) patients, 

potentially triggering ART implementation [49, 50, 54, 56, 94]. For example, Wing et 

al. quantified the anatomic changes of 30 NPC patients and reported that there was a 

significant regression of neck volumes over time with a mean loss rate of 0.39 ± 

0.15%/day and a mean volume loss of 11.91 ± 5.57% upon treatment completion [94]. 

Murat et al. reported that there was a 43% reduction of neck nodal target volumes in 

HNC patients undergoing RT [56]. Similarly, Cheng et al. re-viewed both mid-

treatment computed tomographic (CT) and magnetic resonance (MR) scans of NPC 

patients and showed that there were up to 30% reductions in the volume of nodal lesions 
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[50]. Despite the above evidence, inter-patient heterogeneity in treatment response has 

impeded the accurate individualized prediction of tumor shrinkage for decades. 

 

Figure 4. A representative NPC patient showing remarkable neck lymph node 

shrinkage during the course of RT treatment, reflected by the reduced lateral diameter 

of the neck region from “Before RT” to “During RT”. 

Recently, radiomics, which involves the extraction of high-throughput quantitative 

features from medical images, has become an emerging area for divulging the intrinsic 

biologic and genetic characteristics of tissue for individual cancer patients [1, 95-97]. 

Radiomics has been extensively studied for treatment response prediction in various 

cancer types on the basis of Response Evaluation Criteria in Solid Tumors (RECIST), 

where criteria are determined by the extent of tumor shrinkage following treatment [5, 

75-81]. For instance, Hou et al. investigated CT-based biomarkers for the prediction of 

the therapeutic response to chemoradiotherapy in esophageal carcinoma and reported 

that the discriminability of their model achieved area under the receiver operating 

characteristics curves (AUC) ranging from 0.686 to 0.727 [77]. Wang et al. developed 
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a radiomic signature combining features from multi-modal MR imaging sequences for 

the prediction of an early treatment response to induction chemotherapy in NPC 

patients, achieving an AUC of 0.822 [5]. Piao et al. devised an MR-based radiomic 

model to distinguish sensitive and resistant tumors in NPC patients following induction 

chemotherapy, yielding an AUC of 0.905 [81]. These research efforts have laid a great 

foundation for the radiomics prediction of ART eligibility in cancer patients. Ramella 

et al. performed a radiomic analysis on pre-treatment CT images of replanned non-

small cell lung cancer patients and generated a radiomic signature for the prediction of 

tumor shrinkage during chemoradiotherapy, yielding an AUC of 0.82 [56]. Yu et al. 

investigated MR-based radiomics from primary NPC tumors for predicting ART 

eligibility in a single cohort, achieving AUCs ranging from 0.75 to 0.93 [70]. 

Unlike MR imaging, CT is often the first-line modality for the neck nodal imaging 

of NPC patients. In this study, we aimed to investigate the capability of CT-based neck 

nodal radiomics for predicting IfTM-triggered ART events in NPC patients via a multi-

center setting. The main contributions of this study can be presented in three aspects: 

First, the application of CT-based neck nodal radiomics for developing a prediction 

model for IfTM-triggered ART events in NPC patients is proposed for the first time. 

Second, the multi-center setting of this study allows for the assessment of model 

generalizability across medical institutions. Third, the use of radiomics renders the 

possibility for the pre-treatment identification of NPC patients who are at a greater risk 

of experiencing IfTM-triggered ART events, potentially alleviating the workload of 

clinical practitioners, streamlining ART procedural efficiency in clinic, and achieving 

personalized RT for NPC patients in the future. 
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3.2 Methods 

3.2.1 Patient Data  

A total of 261 NPC patients who received RT at Hong Kong Queen Elizabeth 

Hospital (QEH) between 2012 and 2015 and 160 NPC patients who received RT at 

Hong Kong Queen Mary Hospital (QMH) between 2012 and 2020 were retrospectively 

screened for study eligibility. Patient informed consent was waived due to the 

retrospective nature of this study. Patients who had biopsy-proven primary NPC 

without the existence of distant metastasis and co-existing tumors of other types at 

diagnosis and who received curative concurrent chemoradiotherapy (CCRT) were 

included in this study. Patients who were treated by induction chemotherapy or did not 

have a complete set of clinical/image data were excluded from this study. The clinical 

records of all the enrolled patients were input by the attending radiation oncologists and 

were carefully examined to determine the binary prediction outcome in this study. 

Patients who had clinical records regarded as ill-fitted with the TM, necessitating the 

implementation of ART, were labelled as 1, and were otherwise labeled as 0. 

3.2.2 Image Acquisition and Volume-of-Interest (VOI) Definition 

All the planning contrast-enhanced CT (CECT) images were retrospectively 

collected in the format of Digital Imaging and Communications in Medicine (DICOM) 

and archived using a picture archiving and communication system (PACs).  

At QEH, intravenous (IV) CECT simulation was performed in a supine position 

with an immobilization thermoplastic cast. This was typically acquired at 3 mm 

intervals from the vertex to 5 cm below the sternoclavicular notch under a 16-slice 
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Brilliance Big Bore CT scanner (Philips Medical Systems, Cleveland, OH). CECT 

acquisition parameters were as follows: scan mode = helical, voltage = 120 kVp, X-ray 

tube current = 264 mA, exposure = 325 msec, pixel spacing = 1.152 × 1.152-mm, slice 

thickness = 3 mm, and matrix = 512 × 512 pixels. Two types of IV contrast agents were 

available: (i) OMNIPAQUE TM 350 mg I/mL and (ii) VISIPAQUE TM 320 mg I/mL; 

either one of them was prescribed to each eligible patient and was injected at a rate of 

2 mL/sec for 70 mL, followed by scanning after a 30 sec delay. 

At QMH, IV CECT simulation was performed in a supine position with an 

immobilization thermoplastic cast. This was typically acquired at 3 mm intervals from 

the vertex to 5 cm below the sternoclavicular notch under a 16-slice GE Discovery RT 

CT scanner (General Electric). CECT acquisition parameters were as follows: scan 

mode = helical, voltage = 120 kVp, X-ray tube current = 40 mA, exposure = 325 msec, 

pixel spacing = 1.152 × 1.152 mm, slice thickness = 2.5 mm, and matrix = 512 × 512 

pixels. IV contrast agents OMNIPAQUE TM 300 mg I/mL was prescribed to patient and 

the injection rate was 2 mL/sec for 100 mL, followed by scanning after a 20 sec delay. 

In both hospitals, the gross-tumor-volume of NPC nodal lesions (GTVn) was chosen as 

the VOI for the extraction of radiomic features in this study, which was manually de-

lineated on axial CT slices by experienced radiation oncologists specializing in head-

and-neck cancers with accreditations, using Eclipse ARIA (Varian Medical System, 

Inc.) version 13 at QEH and version 13.6 at QMH.  
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3.2.3 Image Pre-processing 

Given that variations in image acquisition and reconstruction parameters within 

and between medical centres exist, image pre-processing prior to radiomic feature 

extraction is of paramount importance for optimizing the consistency and hence 

reproducibility and validity of radiomics studies. In this study, four key image pre-

processing steps were involved, including voxel size resampling, VOI re-segmentation, 

image filtering, and the quantization of grey levels. All these steps were performed in 

accordance with well-accepted recommendations from the Image Biomarker 

Standardization Initiative (IBSI) guidelines [98], using an in-house developed pipeline 

tool based on Python v3.7.3.  

First of all, the CECT images were resampled to a voxel size of 1 × 1 × 1 mm3 

using linear interpolation to correct for different imaging voxel spacing and slice 

thicknesses among the different institutions. VOI re-segmentation was then performed 

to confine the Hounsfield unit (HU) to the range of (-150,180) within the VOI for 

eliminating non-tumor components, such as air cavities and bony structures. 

Subsequently, Laplacian-of-Gaussian (LoG) filters with various Gaussian radius 

parameters of 1 mm, 3 mm, and 6 mm were deployed to produce filtered images for 

obtaining multi-scale texture features, from fine to coarse. The quantization of image 

grey levels was applied to normalize the image signal intensities. Grey-level intensities 

of the images were discretized with various settings of fixed bin counts, ranging from 

50 to 350 with an incremental interval of 50. 
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3.2.4 Feature Extraction 

The extraction of radiomic features was performed using the publicly available 

PyRadiomics v2.2.0 and SimpleITK v1.2.4 package, which was embedded in the in-

house developed Python-based v3.7.3 pipeline. Radiomic features were calculated from 

GTVn on CECT images, with and without LoG filters applied. They can be divided 

into three major families: shape, first-order statistics, and texture features, which can 

be further categorized into gray level difference matrix (GLDM), gray level 

cooccurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level size 

zone matrix (GLSZM), and neighboring gray tone difference matrix (NGTDM) classes. 

In this study, a total of 2130 radiomic features, including 14 shape features, 72 first-

order statistics, and 2044 texture features, were extracted from raw and LoG-filtered 

images under the pre-defined bin count settings. 

3.2.5 Model Development and Evaluation 

The eligible patients from QEH were used for the development and internal vali-

dation of the prediction model, while those from QMH were used for an external 

independent evaluation of the trained model. For QEH, the eligible patients were 

randomly stratified into a training dataset and a validation dataset with 20 iterations, 

generating an ensemble feature set. For QMH, all the eligible patients were employed 

as an external testing set for assessing the model generalizability across medical centres. 

All the development and evaluation processes of the radiomic model were conducted 

by using R software v3.6.3.  

For the radiomic (R) model, the entire QEH cohort was partitioned into a training 

set (~75%, n = 100) and an internal validation set (~25%, n = 35) with 20 iterations. In 
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each iteration, z-score normalization was first applied to the training set to scale the 

value of each of the extracted features to a mean of 0 and standard deviation of 1, which 

was then applied to the internal validation set. In the training set, Spearman’s 

correlation (SCC) analysis was performed using the “caret” package to assess inter-

feature correlation; features which had an SC coefficient equal to or larger than 0.8 and 

had the greater mean absolute value between a pair of features were excluded. Unpaired 

two-sided Mann–Whitney U analysis was carried out using the “wilcox.test” function 

to examine the clinical association of each individual feature; features which showed a 

clinical association with a p-value of less than or equal to 0.1 were retained. Hence, a 

set of remnant features that had strong a clinical association to the prediction outcome 

and were free of highly redundant features was formed under each of the 20 iterations. 

A combination of these 20 feature sets formed an ensemble feature set, in which each 

feature was ranked according to its frequency of occurrence under the 20 iterations. 

Features with a higher frequency were retained for downstream model development. 

The maximum number of features in the final model was set to 10% of the training 

sample size [99-101]. In the case of exceeding the amount of features, features that had 

the least frequency of occurrence were excluded from the final R model. Ridge 

regression was employed for model development using the “glmnet” package in the R 

software. Meanwhile, a 10-fold cross validation was performed within the training set 

of each iteration to minimize the risk of model overfitting; nine of them were used for 

model training, followed by internal validation on the remaining partition. The final R 

model was selected when the model predictability reached its maximum on the 

validation cohort. A simplified workflow of the radiomic model development is 

illustrated in Figure 5. 
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Figure 5. Workflow for radiomic model development. 

For the clinical (C) model, a series of clinical data, including the patient’s gender, 

age, volume of GTVn, T-stage, N-stage, whether the patient had T-stage ≥ 3, N-stage 

≥ 2, T-stage ≥ 3 plus N-stage ≥ 2, their pre-treatment body weight, pre-treatment body 

mass index (BMI), whether the patient had pre-treatment BMI ≤ 18.5, 18.5 < BMI < 

22.9, 23 < BMI < 24.9, BMI > 23, and BMI > 25, were analyzed in the QEH cohort 

using an unpaired two-sided Mann–Whitney U test. Clinical data with a p-value of less 

than or equal to 0.01 were selected as the predictive features for the subsequent 

development of the C model. The finally selected radiomic features and clinical 

parameters were integrated for building the combined (RC) model. 

The predictive performance of the models was evaluated using median area under 

receiver operating characteristic (AUC) curve using the “ROCR” package. Further, a 

bootstrap resampling technique with 1000 replications was applied to the entire QEH 

cohort for obtaining the 95%CI of the AUC estimates of the model. In each sub-sample, 
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the model was trained using the selected features, resulting in an individual 

predictability in terms of the AUC. The results over all the 1000 replicates were then 

reported for the mean “corrected” AUC with a bias-corrected and accelerated 95%CI 

(BCa 95%CI). Furthermore, the developed models were independently evaluated on an 

external testing dataset of the QMH cohort for assessing the model generalizability 

across medical institutions. 

With regard to the use of the bootstrapping technique, it employs random sampling 

with replacement to mimic the sampling process, and it is a statistical procedure that 

resamples a single dataset for generation of multiple simulated samples for efficient 

and accurate cross-validation of a prediction model [102]. Unlike traditional methods, 

bootstrapping uses samples to draw inferences about populations without assumption 

of any parametric form for the distribution of a population (dataset). Consequently, 

bootstrapping is commonly applied for a wider variety of distributions, unknown 

distributions, and smaller sample sizes. The core idea of this technique is to resample 

with replacement from a single dataset multiple times (i.e., 1,000 as in this study), 

generating 1,000 resampled datasets, each with individual statistical estimate of AUC. 

Therefore, not one but all possible configurations were studied on bootstrap datasets, 

with the model performance being estimated as average loss on the out-of-sample 

predictions. In this dissertation project, the model was first developed and determined 

under nested cross-validation using the QEH dataset, the bootstrapping technique was 

then applied to both QEH and QMH cohorts to generate multiple bootstrap samples 

from the two respective cohorts for estimating overall model performance in QEH 

dataset (where the model was developed) and QMH dataset (where the data was not 

involved in any of the model development processes). Each bootstrap dataset has its 
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own set of sample statistics of AUC, such as the mean, median, and standard deviation. 

Specifically, the AUC was first computed on the full data of QEH and QMH datasets, 

the AUC was then computed on each bootstrap sample of the two datasets. The average 

difference between the full data-trained model and the bootstrap-trained model was 

computed to estimate the bias in the full-data-estimated AUC. The final estimate of 

AUC was given by the difference in the full-data AUC, named as “corrected” AUC, 

and the estimated bias, named as “bias-corrected and accelerated 95%CI” or “BCa 

95%CI”. 

With regard to the use of external testing, Ramspek et al. provided a comprehensive 

overview on the use of external validation in machine learning models [103]. The 

external dataset are naïve data to the developed model, which has not been involved in 

any of the model development processes, so they serve as a new data to assess the 

reliability and generalizability performance of the developed model. As the model 

performance is generally poorer in new patient population than that in the population 

where the model was developed, it is essential to assess model generalizability before 

its clinical implementation. Because the data characteristics between centers may vary 

to different extent, and may influence the model performance, the model external 

validation will enable the clinicians and researchers to gain more understanding on how 

the model performs on their own patient population [103]. 
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3.2.6 Statistical Analysis 

The discriminability of the R model, in terms of the median AUC scores across the 

20 iterations, was compared against the C and RC models in the training, validation, 

and testing datasets using Delong’s test. After bootstrapping, the “corrected” AUC and 

its BCa 95%CI were recorded and analyzed between the entire QEH and QMH cohort. 

On the other hand, a Chi-square test was employed to assess the statistical difference 

of the categorical patient clinical factors between the QEH and QMH cohorts, while an 

unpaired two-sided student t-test was applied for the continuous clinical factors. In all 

the above analyses, unless specified, a p-value of ≤ 0.05 was considered statistically 

significant. 
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3.3 Results 

3.3.1 Patient Characteristics 

A total of 124 and 58 NPC patients from QEH and QMH, respectively, were 

considered eligible in this study. There were 24 (~20%) and 16 (~28%) patients labelled 

as 1 in the QEH and QMH cohort, respectively.  

Table 1 summarizes the major characteristics of the patients in each studied cohort. 

It indicates that there was no statistically significant difference in the distribution of 

age, gender, histologic subtype, and volume of GTVn between the QEH and QMH 

cohort (p > 0.05), while there were significant differences in the distribution of a 

tumor’s T-/N-stage and the pre-treatment BMI of patients between the two cohorts (p 

< 0.05). However, further analyses of the clinical association of these features showed 

that neither the T-stage nor the N-stage of tumors were significantly associated with 

IfTMs in the QEH (p = 0.163 and p = 0.215, respectively) and QMH (p = 0.576, p = 

0.443, respectively) cohort; pre-treatment BMI was found to be statistically significant 

in the QMH cohort (p = 0.014), but not in the QEH cohort (p = 0.600). 

Table 1. Distribution of patient characteristics in both QEH and QMH 

cohorts. 

Patient Characteristics QEH Cohort QMH Cohort p-Value 

Age (average, range) 54.3 (27–81) 50.8 (32–81) 0.0591 

Gender 0.329 

Male (no.,%) 93 75 48 83  

Female (no.,%) 31 25 10 17  
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WHO histologic subtype * 0.705 

Type-1 (no., %) 3 2 1 2  

Type-2 (no., %) 2 2 2 3  

Type-3 (no., %) 119 96 55 95  

Tumor stage (7th AJCC)  

T-stage     <0.05 

T1–T2 (no., %) 15 12 30 52  

T3–T4 (no., %) 109 88 28 48  

N-stage     <0.05 

N0–1 (no., %) 19 15 23 40  

N2–3 (no., %) 105 85 35 60  

Pre-treatment BMI  

(average, range) 

23.3 

(14.3–35.5) 
25.6 (17.9–35.8) <0.05 

Volume of GTVn  

(average, range) 

30,025.7 

(501.0–330,143.0) 

22,808.6 

(942.0–95,606.0) 
0.233 

* WHO histologic subtype of NPC: Type 1, keratinizing squamous cell carcinoma; 

Type 2, non-keratinizing differentiated carcinoma; Type 3, non-keratinizing 

undifferentiated carcinoma. Abbreviation: AJCC, American Joint Committee on 

Cancer. 
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3.3.2 Model Development  

Figure 6 illustrates the change in the AUC of the R model against the number of 

selected features in the model. The best-performing R model in the QEH internal vali-

dation set was determined when the number of selected features reached a value of 4, 

where the model predictability reached the maximum in the internal validation set. The 

selected features included LoG-6mm-glszm_Low Gray Level Zone Emphasis (Bin 

count = 100), LoG-6mm-glszm_Zone Entropy (Bin count = 50), Original_gldm_Large 

Dependence Low Gray Level Emphasis (Bin count = 300), and LoG-

6mm_glcm_Inverse Variance (Bin count = 50). For the C model, the results indicated 

that only N-stage ≥ 2 and the volume of GTVn were found to be significantly different 

between patients who experienced IfTM-triggered ART events and those did not in the 

QEH cohort (both p < 0.01). The four selected radiomic features and two clinical 

parameters were combined to form an ensemble of six features for the combined (RC) 

models. 
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Figure 6. The change in AUC of the R model in both training and internal validation 

sets of the QEH cohort against the number of selected features. 

3.3.3 Model Evaluation 

Table 2 summarizes the performance of the different models (R, C, and RC) in the 

training and internal validation sets of the QEH cohort and the external testing set of 

the QMH cohort. The bootstrapped AUCs and the corresponding BCa 95%CI of the 

models in both the QEH and QMH cohorts were also calculated and reported. 

From Table 2, it can be observed that the R model achieved the highest score of 

the “corrected” AUC at 0.784 (BCa 95%CI: 0.673, 0.859) in the QEH and 0.723 (BCa 

95%CI: 0.534, 0.859) in the QMH cohort following the bootstrapping of 1000 

replicates. The C model was the most under-performing model in both cohorts. 

Similarly, Delong’s test showed that the R model was significantly superior in 

predictability, in terms of the median AUC, over the C model in the training (0.753 vs. 
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0.624, p < 0.001), internal validation (0.716, 0.570, p < 0.01), and external testing 

(0.637 vs. 0.593, p < 0.001) sets.  

Apart from this, the addition of the two selected clinical features into the final R 

model (i.e., the RC model) did not yield better a predictive performance, with a 

“corrected” AUC of 0.782 (BCa 95%CI: 0.683, 0.862) in the QEH and 0.710 (BCa 

95%CI: 0.474, 0.834) in the QMH cohort. Similarly, the external testing of the RC 

model demonstrated that there was no statistically significant difference in its 

predictability as compared to the R model (0.641 vs. 0.637, p = 0.816). 

The reported AUC of the testing cohort was generally lower that the “corrected” 

AUC of the QMH cohort (i.e., the testing cohort) for the three types of models, as 

indicated in Table 2. This is probably due to the fact that the former one was reported 

as median AUC, while the latter one was reported as average AUC. They are not inter-

comparable due to their difference in nature. In particular, a median AUC is required 

for inter-model comparisons by the Delong’s test using the “roc.test” in R software. 

Nevertheless, the key messages from the Table 2 are that the radiomic model 

outperformed the clinical model, and addition of clinical attributes into the radiomic 

model did not improve the model predictability. Of note, these key messages remain 

valid in both the “corrected” AUC and the median AUC. 
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Table 2. A summary of the performance of different studied models (R, C, 

and RC) in different studied cohorts. 

Model 

“Corrected” AUC 

(Average, BCa 95%CI) 
Median AUC 

p-Values 

QEH Cohort QMH Cohort 
Training 

Cohort 

Validation 

Cohort 

Testing 

Cohort 

R 
0.784 

 (0.673, 0.859) 

0.723  

(0.534, 0.859) 
0.753 0.716 0.637 Reference 

C 
0.648  

(0.516, 0.747) 

0.673  

(0.499, 0.814) 
0.624 0.570 0.593 **** 1 *** 2 **** 1 

RC 
0.782  

(0.683, 0.862) 

0.710  

(0.474, 0.834) 
0.757 0.679 0.641 0.488 **** 1 0.816 

1 ****: p-value < 0.001; 2 *** 0.001< p-value < 0.01. 

 

 

3.4 Discussion 

NPC patients often present the involvement of neck LNs at presentation. 

Significant neck LN shrinkage is not uncommon in NPC patients undergoing RT, 

causing a risk of IfTMs during daily RT setup. If this occurs, tremendous efforts are 

made to implement ad hoc ART to ensure accurate and safe radiation delivery. 

However, the entire ART procedure for a single patient is highly time-consuming, 

resource-intensive, and requires multi-disciplinary efforts. Hence, the pre-treatment 

identification of individual patients who are at a greater risk of having an IfTM is highly 

desirable to alleviate the clinical workload, facilitate ART practice in the clinic, and 

achieve personalized RT. For the first time, we attempted to reveal the capability of 

CT-based neck nodal radiomics in predicting IfTM-triggered ART events in NPC 

patients via a multi-center setting in this study.  

The results of this study showed that radiomics plays a key role in predicting IfTM 

risk in NPC patients. The R model achieved the highest score of the “corrected” AUC 
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at 0.784 (BCa 95%CI: 0.673, 0.859) in the QEH and 0.723 (BCa 95%CI: 0.534, 0.859) 

in the QMH cohort following the bootstrapping of 1000 replicates, achieving a 

profoundly superior predictability over the C model, which was found to be the most 

under-performing model in both cohorts (Table 2). Moreover, the combined RC model 

did not result in a better predictive performance than the R model, with the “corrected” 

AUC of 0.782 (BCa 95%CI: 0.683, 0.862) in the QEH and 0.710 (BCa 95%CI: 0.474, 

0.834) in the QMH cohort; it also demonstrated no statistically significant difference in 

its predictability as compared to the R model in the external testing set (0.641 vs. 0.637, 

p = 0.816) (Table 2). To a degree, the superiority of radiomics may be ascribed to its 

unique property of unravelling tissue biologic characteristics in response to treatment 

perturbations. Indeed, an enormous number of articles in the literature have 

demonstrated the capability of radiomics in predicting tumor responsiveness on the 

basis of Response Evaluation Criteria in Solid Tumors (RECIST) [5, 75-81], where the 

criteria are defined according to the degree of tumor volume shrinkage following 

treatment, which appears to follow the same line of thought as in this study. For 

example, Piao et al. investigated the potential of MR-based radiomics in differentiating 

NPC patients who are more likely to get a better treatment response from induction 

chemotherapy (IC) and those who are not; their radiomic model achieved an 

outstanding AUC of 0.905 [81]. Similarly, Wang et al. studied a diverse range of MR 

sequences for the prediction of early therapeutic response to IC in patients with 

esophageal carcinoma, yielding an AUC of 0.822 in their final model [5]. These studies 

have laid a great foundation for the radiomics prediction of neck tumor shrinkage 

leading to IfTM-triggered ART events in NPC patients, as in the present work. 
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Indeed, multiple research groups have reported a varying extent of neck lymph 

shrinkage during the course of RT treatment in head-and-neck cancer (HNC) patients, 

potentially triggering ART implementation. For example, Wing et al. quantified the 

anatomic changes of 30 NPC patients and reported that there was a significant 

regression of neck volumes over time with a mean loss rate of 0.39 ± 0.15%/day and a 

mean volume loss of 11.91 ± 5.57% upon treatment completion [94]. Murat et al. 

reported that there was a 43% reduction of the neck nodal target volumes in HNC 

patients undergoing RT [56]. Similarly, Cheng et al. reviewed both mid-treatment CT 

and MR scans of NPC patients and found out there were up to 30% reductions in the 

volume of nodal lesions [50]. All these investigations have suggested that the shrinkage 

of neck nodal lesions may serve as a favorable criterion for selecting patients for ART. 

However, there are limited studies on developing an ART eligibility screening strategy 

based on nodal tumor shrinkage. Yu et al. were the first to demonstrate the capability 

of MRI-based radiomics from primary tumors in predicting the ART eligibility of NPC 

patients. The performance of the prediction models in terms of AUC ranged from 0.75 

to 0.93 in the testing datasets [70], which appears to be considerably higher than that in 

this study. To account for this, we inferred that the discrepancy may largely lie in the 

superiority of MRI in capturing tissue contrast over CT imaging. Given that the nodal 

lesions of NPC patients were mostly scanned with a CT imaging modality, instead of 

MRI, in the majority of the data available to us, the development of MR-based radiomic 

models was not feasible in this work. Nevertheless, investigations on the potential of 

MR-based nodal radiomics in predicting the ART eligibility of NPC patients can be an 

interesting area in the future. 
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Presently, the study conducted by Yu et al. is the only publication in the literature 

that attempted to predict the ART eligibility of NPC patients though MRI-radiomics 

from primary tumors (rather than CT-radiomics from metastatic lymph nodes as in this 

study) [70]. Radiomic features can be broadly divided into three categories: shape, first-

order, and texture features. Notably, four texture radiomic features were included in the 

final R model in this study, including LoG-6mm-glszm-Low Gray Level Zone 

Emphasis, LoG-6mm-glszm-Zone Entropy, Original_gldm-Large Dependence Low 

Gray Level Emphasis, and LoG-6mm-glcm_Inverse Variance. On the contrary, the 

results from Yu et al. indicated that the majority of the selected features in the final 

radiomic models be-longed to shape or first-order categories, with five out of eight in 

their contrast-enhanced T1-weighted model, and three out of six in both the T2-

weighted and joint T1–T2 models [70]. Whether or not such a difference in the 

categorical distribution of the selected features between the two studies depends on the 

type of imaging modality (i.e., CT or MRI) or the source of features (i.e., primary NPC 

tumor or metastatic lymph nodes) or other factors remains to be fully elucidated; 

evidence from the body of literature on CT-based radiomics in predicting RECIST-

defined treatment response (i.e., tumor shrinkage) may provide us with valuable 

insights for this.  

First, GLCM remains the common feature category in the final CT-based radiomic 

models, no matter if the source of the features was primary tumors or lymph node 

lesions [75, 76, 78-80]. Second, multiple studies on CT-based radiomics prediction for 

RECIST-defined treatment response share similar findings to this study. For instance, 

Coroller et al. analyzed CT-based radiomics from the primary tumor and lymph nodes 

of non-small cell lung cancer patients for predicting the pathological response, and 
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reported that six out of the eight selected features from lymph nodes belonged to 

textural radiomic features [76]. Trebeschi et al. investigated the potential of CT-based 

radiomics from primary and lymph node lesions in predicting the cancer 

immunotherapy response, and found that 7 out of the 10 selected features were texture 

features [80]. Similarly, Santiago et al. assessed the nodal response of diffuse large B-

cell lymphoma to treatment using CT-based radiomics, and reported that 6 out of the 

10 selected features were texture features [79]. Moreover, Colen et al. developed a 

series of CT-based radiomic models for predicting the response to pembrolizumab in 

patients with advanced rare cancers, and all the selected features belonged to the texture 

category [75]. Third, the texture features of GLCM-Inverse Variance and GLSZM-

Zone Entropy, selected in this current work, were also reported in previous studies on 

CT-based radiomics for treatment response prediction [75, 78-80]. GLCM-Inverse 

Variance measures local homogeneity within the tissue volume and GLSZM-Zone 

Entropy measures texture irregularity or randomness quantified by the amount of 

homogeneous connected areas within the tissue volume of a certain size and intensity, 

describing the regional heterogeneity of the tissue [98]. Although intra-tumoral 

heterogeneity has been regarded to reflect tumor aggressiveness and hence its 

responsiveness (i.e., shrinkage) to treatment perturbations, the explicit correlation 

between these features and nodal tumor shrinkage remains unclear and deserves further 

exploration in the future. Based on findings from the above literature, it can be observed 

that the dominance of texture features in the R model of this study may be partly 

ascribed to the use of CT imaging and/or the feature source of lymph node lesions for 

treatment response prediction. Nevertheless, further investigations in this aspect are 

warranted. 
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This study has several limitations. First, the retrospective nature of this study might 

account for the potential bias; there were significant differences of the tumor T- and N-

stage and the pre-treatment BMI of patients between the QEH and QMH cohort (Table 

1). Nevertheless, these variables were in general not significantly associated with the 

IfTM-triggered ART events in both cohorts. Therefore, we speculated that its overall 

impact on the model development should be minimal.  

Second, the sample size involved in the model development and evaluation was 

relatively small, potentially causing model overfitting. To deal with this, a 10-fold 

cross-validation with 20 iterations and bootstrapping with 1000 replicates were applied 

in this work with an attempt to minimize the potential prediction bias. Moreover, an 

independent external test was performed to assess the model generalizability (i.e., 

degree of model overfitting) between medical centers. Nonetheless, a larger study 

cohort is warranted in the future to achieve a higher statistical inference.  

Third, the predictive performance of the radiomic model was limited by the use of 

CT images, which may impede its widespread clinical utility. However, this was limited 

by the dataset available to us, where the nodal lesions of NPC patients were mostly 

scanned with a CT imaging modality; thus, the development of MR-based radiomic 

models was not feasible in this work.  

Notably, the ART eligibility screening for NPC patients is still in its infant stage; 

this study is the first of its kind in investigating the potential of CT-based neck nodal 

radiomics in a multi-institutional setting for predicting IfTM-triggered ART demand in 

NPC patients. Hence, the findings of this study should provide valuable insights into 
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developing a more effective screening for ART eligibility in NPC patients in the long 

run. 

To summarize, in this study, we attempted to investigate potential of CT-based 

neck nodal radiomics in a multi-institutional setting for predicting IfTM-triggered ART 

demand in NPC patients. The results of this work revealed that CT-based neck nodal 

radiomics was capable of predicting IfTM-triggered ART events in NPC patients 

undergoing RT. The R model consisted of four texture radiomic features, achieving a 

“corrected” AUC of 0.784 in the QEH cohort and 0.723 in the external QMH cohort. 

The findings of this study provide valuable insights for future study into developing an 

effective screening strategy for ART eligibility in NPC patients in the long run, 

ultimately alleviating the workload of clinical practitioners, streamlining ART 

procedural efficiency in clinics, and achieving personalized RT for NPC patients in the 

future. Future work on a larger cohort with MR nodal radiomics is highly warranted for 

strengthening the model predictability and statistical inference.  
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4. Chapter 4: Pretreatment Prediction of Adaptive 

Radiation Therapy Eligibility Using MRI-Based 

Radiomics for Advanced Nasopharyngeal Carcinoma 

Patients 

Introduction: Adaptive radiotherapy (ART) can compensate for the dosimetric 

impacts induced by anatomic and geometric variations in patients with nasopharyngeal 

carcinoma (NPC). Yet, the need for ART can only be assessed during the radiation 

treatment and the implementation of ART is resource intensive. Therefore, we aimed 

to determine tumoral biomarkers using pre-treatment MR images for predicting ART 

eligibility in NPC patients prior to the start of treatment. Methods: Seventy patients 

with biopsy-proven NPC (Stage II-IVB) in 2015 were enrolled into this retrospective 

study. Pre-treatment contrast-enhanced T1-w (CET1-w), T2-w MR images were 

processed and filtered using Laplacian of Gaussian (LoG) filter before radiomic 

features extraction. A total of 479 radiomics features, including the first-order (n = 90), 

shape (n = 14), and texture features (n = 375), were initially extracted from Gross-

Tumor-Volume of primary tumor (GTVnp) using CET1-w, T2-w MR images. Patients 

were randomly divided into a training set (n = 51) and testing set (n = 19). The least 

absolute shrinkage and selection operator (LASSO) logistic regression model was 

applied for radiomic model construction in training set to select the most predictive 

features to predict patients who were replanned and assessed in the testing set. A double 

cross-validation approach of 100 resampled iterations with 3-fold nested cross-

validation was employed in LASSO during model construction. The predictive 

performance of each model was evaluated using the area under the receiver operator 

characteristic (ROC) curve (AUC). Results: In the present cohort, 13 of 70 patients 

(18.6%) underwent ART. Average AUCs in training and testing sets were 0.962 
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(95%CI: 0.961–0.963) and 0.852 (95%CI: 0.847–0.857) with 8 selected features for 

CET1-w model; 0.895 (95%CI: 0.893–0.896) and 0.750 (95%CI: 0.745–0.755) with 6 

selected features for T2-w model; and 0.984 (95%CI: 0.983–0.984) and 0.930 (95%CI: 

0.928–0.933) with 6 selected features for joint T1-T2 model, respectively. In general, 

the joint T1-T2 model outperformed either CET1-w or T2-w model alone. 

Conclusions: Our study successfully showed promising capability of MRI-based 

radiomics features for pre-treatment identification of ART eligibility in NPC patients. 

4.1 Background 

Due to the high proximity of the primary NPC tumor to the surrounding critical 

organs (spinal cord, brainstem, parotid glands) and metastatic neck lymph nodes, NPC 

is rarely treated surgically; radiation therapy (RT) remains the mainstay of NPC 

treatment [104]. Intensity-modulated radiation therapy (IMRT) with/without induction 

chemotherapy (IC) or adjuvant chemotherapy (AC) is currently the standard of care for 

NPC patients [104]. In clinical practice, RT treatment plans are tailor-made based on 

anatomic information of individual patients from their pre-treatment planning 

computed tomography (CT) images to maximize the radiation dose to tumor while 

protecting nearby critical structures and maintaining sufficiently high dose coverage to 

surrounding nodal targets. 

However, an abundance of research has shown that significant anatomic and 

geometric variations are not uncommon throughout the course of RT for NPC due to 

either body weight loss (BW loss) or tumor regression [49-55]. Radiation- induced 

mucositis is a common and debilitating complication for RT to HNC patients, which 

can lead to severe pain and difficulty in eating, largely affecting one’s nutritional intake 
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and resulting in significant BW loss. A prospective study reported a 37% of BW loss > 

5kg by the end of treatment [59]. Patients having significant BW loss tends to 

accompany with reduced skin separation at various levels of cervical spine and neck 

[60], causing positional variability due to possible head movement inside the 

thermoplastic cast. Consequently, such variations would leave the issue of whether the 

contour deviations induced significant dose deviations in target or organs at risk. For 

tumor regression, Hu et al. conducted a retrospective study and reviewed the planning 

CT and re-CT images of 40 re-planned NPC patients and confirmed the significant 

clinical-target-volume shrinkage of 35.1% [51]. Murat et al. also reported median 

percentage change in GTV of HNC patients for primary (26.8%), nodal (43.0%), and 

total (31.2%) GTVs [56]. Indeed, when significant tumor shrinkage occurs, those 

critical organs might move into the original high dose region, leading to deleterious 

dosimetric impact on the surrounding organs [52, 55, 57] and/or insufficient dose 

delivery to targets [55, 58]. ART can compensate for these dosimetric impact and 

maintain desirable therapeutic index. The clinical and dosimetric benefits of ART for 

HNC and NPC cancer patients have been widely reported [69, 105-107]. Yet, the 

implementation of ART is limited by several reasons. First, the choice to ART can be 

resource intensive and time-consuming for repeat imaging, re-contouring, re-planning, 

and analyzing dosimetric impacts between previous and new treatment plans, adding 

significant clinical burden and cost of patient care to an oncology center. Hence, 

performing ART on a patient basis is clinically impractical, especially for some busy 

units. Second, due to the nature of multifactorial ART eligibility, there is no universal 

selection protocol for ART that can be applied to all hospitals. In this regard, a huge 

amount of efforts has been constantly made to identify possible ART criteria for HNC 
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and NPC cancer patients [51, 53, 54, 56, 86, 94, 108, 109] to facilitate the clinical 

application of ART. Despite that, the current ART practice in most oncology centers, 

particularly for those busy units, is not efficient. The need for ART of each patient can 

now be only assessed during the RT treatment. Therefore, pre-treatment identification 

of high-risk NPC patients for ART is crucially favorable to achieve optimal 

personalized RT treatment, enabling radiation oncologists to more effectively and 

accurately prescribe ART for NPC patients and streamline resources management in 

clinical settings. 

Recently, the field of radiomics together with rapid machine learning paradigms 

have increasingly gained popularity in the community of medical research, paving the 

way toward precision and personalized medicine [1]. Radiomics, first introduced by 

Lambin et al. is now shifting the role of medical imaging beyond the traditional 

diagnostic purposes [1]. It allows for transformation of digitally encrypted medical 

images into mineable high-dimensional data, which can then be quantitatively analyzed 

to decode concealed genetic and molecular traits for decision making in oncology [110]. 

While the predictive powers of radiomics in both cancer diagnosis and disease 

progression have been widely investigated [4, 71-74], an extremely limited effort has 

yet been made to identify cancer patients for ART. Given the evidence of significant 

tumor shrinkage between two CT scans along RT treatment for re-planned NPC 

patients, we hypothesize that radiomic features extracted from 3-dimensional tumor 

volume contain predictive biomarkers for tumor shrinkage following cancer 

treatment—an implication for ART. 
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Currently, there is no research to include radiomics in predicting ART eligibility 

for NPC patients and its tumoral predictive biomarkers for ART has not been explored 

before. The objective of our study was to identify tumoral radiomic features using 

multi-parametric MR images, which are capable of predicting the ART eligibility for 

NPC patients. A study flow of current study is shown in Figure 7. 

 

Figure 7. An illustration of study flow of current study.  
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4.2 Methods 

4.2.1 Patient Source 

The current research was approved by the Human Subjects Ethics Sub-committee 

of the Hong Kong Polytechnic University and Kowloon Central/Kowloon East Cluster 

Research Ethics Committee of the Hospital Authority. This is a retrospective study, 

based on analyses of anonymized radiographic data and clinical data, the requirement 

for individual informed consent was waived. A total of 100 newly diagnosed patients 

with biopsy- proven (II-IVB) NPC (According to 7th edition of American Joint 

Committee on Cancer/Union for International Cancer Control TNM staging system) 

who received primary radiation therapy with/without chemotherapy at the Department 

of Clinical Oncology of Queen Elizabeth Hospital (QEH) between April 2015 and 

February 2016 were retrospectively reviewed. Based on the inclusion and exclusion 

criteria, 70 eligible patients were enrolled in the current study and randomly stratified 

into training (n = 51) and testing (n = 19) sets, as illustrated in Figure 8. 
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Figure 8. Inclusion and exclusion criteria used in the current study. 

 

4.2.2 Inclusion and Exclusion Criteria 

Patients treated at QEH were included in this study if the following inclusion 

criteria were met: (a) evidence of biopsy-proven NPC; (b) availability of pre-treatment 

1.5 Telsa (1.5 T) MRI data acquired following the imaging protocol used at QEH; (c) 

availability of both Contrast-enhanced T1- weighted (CET1-w) and T2-weighted (T2-

w) MR images; (d) availability of clinical (e.g. age, gender, TNM stage, body weight 

data), treatment and outcome (replan status) data. Patients were excluded if any of the 

following exclusion criteria were met: (a) any evidence of distant metastasis at 

diagnosis prior to the initial treatment; (b) palliative treatment was intended; (c) MRI 

data acquired at hospitals/clinics other than QEH; (d) incomplete image data or segment 

data; (d) palpable volume of primary tumor (GTVnp) exceeded the field-of-view of MR 
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images after image registration with planning CT images. Based on these criteria, a 

total of 70 patients were enrolled in this research. Eligible patients were randomly 

stratified into training (n = 51) and testing (n = 19) cohorts (Figure 8). 

4.2.3 Patient Data 

Patient clinical data, including demographic information (age, gender) and tumor 

characteristics (T stage, N stage, histological subtype); imaging data (planning CT 

images, pre- treatment CET1-w and T2-w MR images); treatment-related data 

(contouring data, treatment machine, treatment strategies, dose fractionation scheme); 

outcome data (re-plan status and any replan-related medical records) were 

retrospectively collected. 

4.2.4 Treatment 

In general, patients with early-stage (I-II, n = 3) tumors were treated with curative 

RT alone, while those with advanced- stage (III-IVB, n = 67) were treated with radical 

concurrent chemoradiotherapy (CCRT), with/without IC or AC. Pre-treatment MRI and 

planning CT scans were performed within a week prior to the start of IC treatment for 

target delineation and during the last cycle of IC treatment, respectively. In our dataset, 

7 out of 70 patients received IC, while only one underwent ART procedures, who 

subsequently refused further IC after completion of the first cycle due to repeated 

vomiting.  

The concurrent chemoradiotherapy regimen comprised cisplatin (30 mg/m2 on a 

weekly basis, 3- 5 cycles). Induction chemotherapy and adjuvant chemotherapy 

consisted of 3-week cycles of gemcitabine and cisplatin (GP) for 3 cycles and 4-week 
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cycles of cisplatin and fluorouracil (PF4) for 3 cycles, respectively. Reasons for not 

receiving chemotherapy included age, organ dysfunction indicating intolerance to 

treatment, and an individual patient’s refusal. 

Intensity-modulated radiation therapy (IMRT) or TomoTherapy was administrated 

with a standard dose-fractionation schedule of 66 Gy in 33 fractions in 5 – 6 

fractions/week to high-risk clinical target volume (CTV) with 3-mm margins in both 

nasopharynx (Planning target volume, PTVnp66) and neck region (PTVn66) with 

fractional dose of 2.18 Gy; Whereas, 60 Gy was prescribed to the low-risk CTV with 

3-mm margins in both PTVnp60 and PTVn60 with 1.82 Gy/fraction; A simultaneous 

integrated boost (SIB) of 70 Gy was given to GTVnp with 3-mm margins (PTVnp70) 

to achieve optimal local tumor control with 2.12 Gy/fraction. 

4.2.5 Clinical Endpoint 

The clinical endpoint of this study was defined as the re-plan status of patients: 

whether or not a patient received ART during RT treatment at the discretion of radiation 

oncologist. 

4.2.6 Multifactorial ART Eligibility 

In the dataset, 39 (of 100) patients were initially enrolled into the adaptive review 

processes, while only 16 ultimately received re-planned procedures. Among the 16 

patients, 13 were enrolled in the study, the replans were mostly done during week 4–5 

and after the 20th fraction on average A diagram of leading causes for ART 

implementation are illustrated in Figure 9. 
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Figure 9. An illustrative example of clinical decision on ART implementation. 

Among the 39 patients who were enrolled into a review of need for ART, the 

majority of patients (29/39, among which 14/29 patients subsequently underwent ART) 

were reviewed for the need of ART because of significant body weight (BW) loss 

(>10% drop from the initial body weight measured one day before receiving radiation 

treatment); other reasons for reviewing the need for ART included significant loss of 

neck tissue (6/39, among which 4/6 subsequently underwent ART); significant 

shrinkage of lymph nodes (8/39, among which 4/8 subsequently underwent ART), 

noted change of body contour or neck contour (5/39, all of which subsequently 

underwent ART), significant change in neck position/MVCT scan showed twisting of 

neck (3/39, among which 1/3 subsequently underwent ART); cord displacement larger 

than 3mm found on 2D X-ray film when Linear Accelerator was used for treatment 
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(1/39, among which no ART was performed subsequently); teeth removal (1/39, among 

which no ART was performed subsequently). Some patients exhibited more than one 

of the above reasons for reviewing the need for ART. 

Among the 16 patients who subsequently underwent ART after being reviewed, 4 

(out of 16) patients received ART due to unfit of their thermoplastic casts, probably due 

to significant BW loss and shrinkage of neck lymph nodes; 5 (out of 16) were found to 

have insufficient dose coverage of their neck node regions, probably due to significant 

change in neck contour and/or shrinkage of neck lymph node and/or significant loss of 

neck tissue and/or change of body contour; 4 (out of 16) were found to have significant 

increase in high dose area over neck skin, probably due to significant decrease in neck 

lymph node volume/ neck tissue volume; 2 (out of 16) were found to be risky in the 

dose tolerance of spinal cord (a portion of spinal cord was going to receive >45Gy, the 

45Gy isodose line was in close proximity to the spinal cord), probably due to significant 

change in neck contour; 1 (out of 16) was found to have slightly overdosed optical 

chiasm, possibly due to change of body contour caused by significant BW loss; 1 (out 

of 16) received ART because a part of the contoured target volume was found to be 

outside the body contour. Some patients exhibited more than one of the above reasons 

for receiving ART. 

4.2.7 MRI Acquisition and Segmentation 

All 70 patients were scanned with 1.5-T MRI (Avanto, Siemens, Germany) at 

QEH. We acquired T2-w and CET1-w Digital Imaging and Communications in 

Medicine (DICOM) images archived using Picture Archiving and Communication 

System (PACs).  
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The MR images acquisition parameters were as follows: axial T2-w using short-

tau-inversion- recovery (STIR) MR sequence (repetition time [TR]/ echo time [TE]: 

7640/97 ms, field-of-view [FOV] = 24 x 24 cm, number of acquisition = 1, slice 

thickness = 4 mm x 25 slices, spacing: 0.75mm x 0.75mm x 4.4mm, matrix: 320) and 

axial CET1-weighted spin-echo MR sequence (repetition time [TR]/ echo time [TE]: 

739/17 ms, field-of-view [FOV] = 24 x 24 cm, number of acquisition = 1, slice 

thickness = 3 mm x 48 slices, spacing: 0.938mm x 0.938mm x 3.3mm, matrix: 256). 

Intravenous contrast enhanced computed tomography (CT) simulation was 

performed at 3 mm intervals from the vertex to 5 cm below the sternoclavicular notch 

with a 16-slice Brilliance Big Bore CT (Philips Medical Systems, Cleveland, OH). All 

segmentations (tumor, nodal volume and other organs-at-risk) were manually 

delineated on axial CT slices by an experienced radiation oncologist (with >20 years of 

experience), which was then fused with MR images for further processing. 

4.2.8 MRI Image Pre-processing 

Before extracting radiomic features, all MR images were processed using 3DSlicer 

(version 4.11.0). Isotropic resampling was performed by linear interpolation to obtain 

a voxel size of 1 × 1 × 1 mm to account for variations in scanning parameters between 

studied MR series. MRI inhomogeneity correction was applied to account for the 

locally varying intensity using N4ITK algorithm. To ensure meaning comparison of the 

extracted features values across all patients, intensity normalization was conducted 

using brainstem as a reference region-of-interest (ROI), which was chosen because its 

signal intensity is comparatively homogeneous. The existing contour of the brainstem 

structure for RT planning purpose was modified to exclude air. Image discretization 
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with a fixed bin width of 5 to maintain constant intensity resolution across resampled 

images. Apart from the original images, image reconstructions were performed using 

Laplacian of Gaussian (LoG) filter with sigma values of 2, 3, 4, 5mm to extract features 

at multiple scales of resolution, from fine, medium to coarse. 

4.2.9 Feature Extraction and Pre-processing 

A total of 479 radiomic features were extracted from GTVnp on CET1-w and T2-

w MR images, respectively, using SlicerRadiomics in 3D Slicer (version 4.11.0). A 

representative example of axial pre-treatment MR images with GTVnp contour is 

shown in Figure 10.  

 

Figure 10. Axial pre-treatment morphological MR images of a 44-year-old man with 

undifferentiated carcinoma of NPC (T3N2M0). Features of radiomics were extracted 

from the primary tumor area - GTVnp (red overlay). From left to right: CET1-w and 

T2-w MR image, respectively. 
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Extracted features included shape features (n = 14), first-order intensity features 

(n = 90), and texture features (n = 375). Detailed listing of types of extracted features 

is indicated in Figure 11. All extracted radiomics features were centered and scaled to 

a value with a mean of 0 and a standard deviation of 1 (z-score transformation) before 

further analysis using R software (version 3.5.2). 

 

Figure 11. Types of radiomic features extracted in this study. 

The distribution and names of extracted features, including gray level co-

occurrence matrices (GLCM), gray level dependence matrices (GLDM), gray level run-

length matrices (GLRLM), gray level size zone matrix (GLSZM), and neighboring gray 

tone difference matrices (NGTDM) categories. Distribution of the different classes of 

radiomic features is summarized in Table 3.  
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Table 3. Distribution of extracted features in current study. 

 Distribution of Extracted Features 

(n=479) 

 Original 

Features 

LoG-

Features 

(Kernel 

size: 2mm) 

LoG-

Features 

(Kernel 

size: 3mm) 

LoG-

Features 

(Kernel 

size: 4mm) 

LoG-

Features 

(Kernel  

size: 5mm) 

Shape 14 0 0 0 0 

First-order 18 18 18 18 18 

GLCM 24 24 24 24 24 

GLDM 14 14 14 14 14 

GLRLM 16 16 16 16 16 

GLSZM 16 16 16 16 16 

NGTDH 5 5 5 5 5 

Sub-Total 107 93 93 93 93 
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4.2.10 Feature Selection and Model Optimization Methodology 

To avoid over sensitive model, we removed highly inter- correlated radiomics 

features. By using the R package “caret,” we computed Pearson correlation coefficient 

(PCC) based on a correlation matrix to quantify the pair-wise correlations. If two 

radiomic features appeared a strong correlation with an absolute correlation coefficient 

(r) ≥ 0.9, we removed the feature with the largest mean absolute correlation. As a result, 

we obtained a primary feature set of 53 from 479. 

Following this, we applied Least Absolute Shrinkage and Selection Operator 

(LASSO) algorithm in R package “glmet” to select the most predictive radiomic 

features based on the ART status of patients in the training set. The LASSO is typically 

applied to select high-dimensional biomarkers, and coefficients of the regression 

variables were penalized in the process of regularization to minimize the prediction 

error. The ratio of patients who did not receive ART (n = 57) to those who did (n = 13) 

was 4, approximately. Considering the imbalance data, we adopted the three-step 

feature screening strategy, as illustrated in Figure 12, to construct CET1-w, T2-w, and 

joint T1-T2 based radiomic models. The first two steps aimed to further eliminate 

less/least predictive features in terms of their frequency of occurrence among hundreds 

of generated models. With the reduced features, we performed PCC with r ≥ 0.8 to 

avoid highly correlated features in the final models. Lastly, model trainings were 

performed with reduced number of input features using a double cross-validation 

approach, similar to the one adopted by Xu et al. [111]. In short, 100 random sampling 

was conducted to balance the class distribution within the cross- validation partitions, 

which would result in a distribution of AUC values across the generated models and 
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hence allow us to assess the model performance. A 3-fold nested cross-validation was 

performed with 20 repetition to determine the optimal value for the model tuning 

parameter (λ). As a result, a total of 2,000 models were generated for each input set of 

features. In total, 8 sets of radiomic features with number of variables ranging from 3 

to 10 were analyzed for the prediction capability in terms of AUCs using box and 

whisker plots and 95 percent confidence interval (CI). 

 

Figure 12. Feature selection and model optimization methodology. Superscript “a”: T 

for training cohort; V for validation cohort. “b”: The number inside the parentheses is 

either “1” or “0,” representing “re-planned” and “not re-planned” patients; Numbers 

in front of the parentheses indicate number of patients. “c”: 25 features remained in 

feature set 1c for CET1-w-based model; while 28 and 39 for T2-w-based and Joint 

T1-T2-based models, respectively. “d”: 16 features remained in feature set 2 for 
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CET1-w-beased model; while 13 and 22 for T2-w-based and Joint T1-T2-based 

models, respectively. 

4.2.11 Feature Screening Methodology 

As illustrated in Figure 12, the feature screening methodology were divided in 

three parts. Part I: The goal of part I was solely to eliminate the radiomic features (out 

of the 53 features) that were less, if not least, robust. In part I (a), we put all the re-

planned patients (n=13) plus other 17 non-re-planned patients into training cohort 

(n=30) with a three-fold cross-validation, and performed multiple rounds of training to 

generate a total of 400 sub-models. Then, we ranked the 53 features in a descending 

order according to their frequency of occurrence (from a maximum of 400 to a 

minimum of zero) to obtain the first set of features. In part I (b), we put all 70 patients 

into the training cohort with a ten-fold cross-validation, and generated 400 sub-models 

for the same goal. Then, we ranked the 53 features as described to obtain the second set 

of features. Following this, we then eliminated the features that did not appear in any 

of the 400 sub-models, as they were considered as the least robust to the outcome 

prediction. After all these, we compared both sets of features and reduced to 28 features 

according to their frequency of occurrence in all the models. 

Part II: The goal was to further eliminate the less predictive features by considering 

five different possible distributions of re-planned patients (n=13) in training and 

validation cohorts. We put 51 patients (including 8 re-planned patients) into training 

cohort, and remaining 19 patients (including 5 re-planned patients) into validation 

cohort. We employed three-fold cross-validation to generate 200 sub-models, we then 
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ranked the 28 features in a descending order according to their frequency of occurrence 

(from a maximum of 200 to a minimum of zero). We repeated the above procedures 

with other 4 ratios of number of re-planned patients in training cohort to that in 

validation cohort (i.e. 9:4, 10:3, 11:2, and 12:1). Subsequently, by comparing these 5 

sets of features, we further reduced the features number to 16. 

Part III: The goal was to create an optimized radiomic model with reduced number 

of remaining features. We put 51 patients (including 8 re-planned patients) into training 

cohort, and remaining 19 patients (including 5 re-planned patients) into validation 

cohort with three-fold cross-validation. Two thousand sub-models were generated, each 

of them might contain different amounts of features. We then categorized the 2,000 

sub-models according to the numbers of remaining features in these models and 

evaluated these categories one-by-one. By assessing the consistency and stability of 

area under the receiver operator characteristic (ROC) curve (AUC) in training cohort 

among different sub-models in specific category, we further removed features that 

appeared to be less influential to the AUC values and hence less predictive to the 

outcome. 

4.2.12 Statistical Analysis 

The statistical correlations between available clinical data and replan status were 

assessed using univariate logistic regression. All statistical analyses were performed 

using R software (version 3.5.2). The following R packages were used: The glmnet 

package was used for LASSO logistic regression. The caret package was used to 

perform Pearson correlation study. The ROCR package was employed to perform ROC 
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analysis. All statistical tests were two-sided, and P-values of <0.05 were considered 

significant. 

4.3 Results 

The demographic and tumor characteristics of 70 NPC patients are summarized in 

Table 4. Thirteen (18.6%) patients who underwent ART procedure were included. 

There is no statistical association between the available clinical data and re-plan 

incidence. 

Table 4. Patient characteristics in the present cohort. 

Clinical Factor Category Number 

(Percent / SD) 

P-values 

Gender Male 50 (71.4%) 0.256 

Female 20 (28.6%) 

Age in years <51 42 (60%) 0.386 

51-70 7 (10%) 

>70 2 (2.9%) 

T stage T1 2 (2.9%) 0.554 

T2 2 (2.9%) 
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T3 50 (71.4%) 

T4 16 (22.8%) 

N stage N1 5 (7.1%) 0.859 

N2 56 (80%) 

N3 9 (12.9%) 

Overall stage Stage II 3 (4.3%) 0.535 

Stage III 43 (61.4%) 

Stage IV 24 (34.3%) 

Histology Type I 3 (4.3%) 0.827 

Type II 1 (1.4%) 

Type III 66 (94.3%) 

Treatment EBRT-alone 14 (20%) 0.841 

CCRT 37 (52.9%) 

CCRT + AC 11 (15.7%) 
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IC + CCRT 7 (10%) 

Others 1 (1.4%) 

Initial weight (kg) 

(average, SD) 

Replan Group 61.6 (15.5) 0.929 

Non-replan Group 61.9 (12.2) 

Abbreviations: EBRT, External Beam Radiation Therapy; CCRT, Concurrent 

Chemotherapy Radiation Treatment; IC, Induction Chemotherapy; AC, Adjuvant 

chemotherapy; Type 1, Keratinizing squamous cell carcinoma; Type II, Non-

keratinizing differentiated carcinoma; Type III, Non-keratinizing undifferentiated 

carcinoma. 

 

Figure 13 displays the AUC distributions for each feature set (from 3 to 10 

features). Figures 5A–C shows the box and whisker plots of the three types of models 

(CET1-w, T2-w, and joint T1-T2) for training set; Figures 5D–F are for testing set; 

Figures 5G–I visualizes the range of 95% CI of AUCs in both training and testing sets 

for the three types of models. The optimal feature sets for each type of models were 

determined considering the overall distribution of AUC values and its stability. When 

adding one more feature to the current feature set made no/less difference to the AUC 

values, the current feature set was considered as the optimal feature set that would give 

optimal predictive performance of the models. Selected features for each model are 

listed in Table 5. 
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Figure 13. A-F: Distribution of AUC values against number of features in the models 

(CET1-w model, T2-w model, and Joint T1-T2 model) for training (A-C) and testing 

(D-F) chorts. G-I: 95% CI of AUC for both cohorts against number of selected 

features in the models. 



 

   
98 

Table 5. Table of selected features in CET1-w, T2-w, and joint T1-T2 radiomics 

models. 

MRI 

Series 

Selected Radiomic Features 

CET1-w 

Model 

T2-w 

Model 

Joint T1-

T2 Model 

CET1-w Original shape sphericity Yes   

CET1-w 

Original shape maximum 2D 

diameter slice 

Yes   

CET1-w 

Log-sigma-2-0-mm-3D glcm 

MCC 

Yes  Yes 

CET1-w 

Log-sigma-2-0-mm-3D first-

order Kurtosis 

Yes  Yes 

CET1-w 

Log-sigma-3-0-mm-3D first-

order Skewness 

Yes  Yes 

CET1-w 

Log-sigma-4-0-mm-3D first-

order Kurtosis 

Yes   

CET1-w 

Log-sigma-5-0-mm-3D gldm 

Dependence Entropy 

Yes   
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CET1-w 

Log-sigma-5-0-mm-3D gldm 

Small Dependence Low Gray 

Level Emphasis 

Yes  Yes 

CET1-w Original first-order Kurtosis   Yes 

T2-w Original shape sphericity  Yes  

T2-w Original shape elongation  Yes  

T2-w 

Log-sigma-2-0-mm-3D gldm 

Large Dependence High Gray 

Level Emphasis 

 Yes  

T2-w 

Log-sigma-2-0-mm-3D glcm 

lmc1 

 Yes  

T2-w 

Log-sigma-3-0-mm-3D ngtdm 

strength 

 Yes  

T2-w 

Log-sigma-5-0-mm-3D first-

order Kurtosis 

 Yes  

T2-w Log-sigma-3-0-mm-3D glcm ldn   Yes 
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Average AUC values in training and testing sets were 0.962 (95%CI: 0.961–0.963) 

and 0.852 (95%CI: 0.847–0.857) with 8 selected features for CET1-w model; 0.895 

(95%CI: 0.893– 0.896) and 0.750 (95%CI: 0.745–0.755) with 6 selected features for 

T2-w model; and 0.984 (95%CI: 0.983–0.984) and 0.930 (95%CI: 0.928–0.933) with 

6 selected features for joint T1-T2 model, respectively. 

4.4 Discussion 

We successfully revealed the predictive capability of MRI-based radiomics in ART 

eligibility using the dataset. Eight features were identified for CET1-w model, 

including 2 shape features (sphericity, maximum 2D diameter slice) and 6 LoG-based 

features which include 3 first-order features (kurtosis, skewness) and 3 texture features 

(GLCM and GLDM). Six features were selected for T2-w model, including 2 shape 

features (sphericity, elongation) and 4 LoG-based features which include 1 first-order 

feature (kurtosis) and 3 texture features (GLDM, NGTDM). Six features were chosen 

for joint T1-T2 model, including 1 first-order feature (kurtosis) and 5 LoG-based 

features which consist of 2 first-order features (kurtosis, skewness) and 3 texture 

features (GLCM, GLDM), as shown in Table 5. With these selected features, we 

achieved average AUCs of 0.962 (0.852), 0.895 (0.750), 0.904 (0.930) in training 

(testing) set for CET1- w, Tw-2 and joint T1-T2 models, respectively, representing a 

promising result for pre-treatment prediction of ART eligibility in NPC patients. 

Multiple groups have confirmed that significant tumor shrinkage occurs during RT, 

triggering the need for ART. Hu et al. reviewed the planning CT and re-CT images of 

40 re-planned NPC patients and confirmed the significant clinical-target-volume 

shrinkage of 35.1% [51]. Murat et al. reported median percentage change in GTV of 
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HNC patients for primary (26.8%), nodal (43.0%), and total (31.2%) GTVs [56]. Lee 

H et al. confirmed average volume reduction of GTVnp of 45.9 cm3 (pre- RT) to 26.7 

cm3 (third week of RT) in 159 NPC patients. All these studies have suggested that 

tumor shrinkage serves as a favorable ART criterion [53]. However, only a few studies 

have developed ART selection strategies based on the tumor volume reduction. Murat 

et al. developed a decision tree for tumor shrinkage for HNC patients, incorporating 

initial target volumes and other clinical factors; although an accuracy of 88% was 

reported in predicting the tumor shrinkage in 48 patients, the validity was not tested and 

some of the clinical factors used may not be available in other clinics, such as tumor 

growth pattern (endophytic or exophytic), hindering the generalizability of the decision 

tree [56]. Recently, Ramella et al. explored the radiomic capability for ART in lung 

cancer patients and reported that radiomic features extracted from planning target 

volume (PTV) of lung cancer on CT images were capable of distinguishing patients 

between ART and non-ART group with AUC of 0.82, on the ground of tumor shrinkage 

during treatment [112]. To our best knowledge, this study is the first to include 

radiomics in predicting ART eligibility for NPC patients and its tumoral predictive 

biomarkers for ART has not been explored before. The promising results are also in 

line with the work done by Ramella et al. [112]. 

From the results, we observed that the joint T1-T2 radiomic model outperformed 

either CET1-w or T2-w alone model in terms of AUCs in both training and testing sets. 

From Figures 13 (G–I), it can be observed that the joint T1-T2 model gives a more 

consistent variation in 95% CI of AUCs against different feature sets in both training 

and testing sets, suggesting that joint T1-T2 model might be the preferable predictive 

system among the others. Another interesting observation was that the majority (5 of 
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6) of the selected features in the joint T1-T2 model were from CET1-w images, 

suggesting that features from CET1- w images might be more predictive than those 

from T2-w images. A possible reason could be attributed to the inherent limitation of 

LASSO; when pairwise correlations exist between predictors, the LASSO picks one 

correlated predictor and ignores the rest. To account for this, we performed another 

PCC with r ≥ 0.8 prior to part III in the feature selection methodology (Figure 12) to 

avoid highly correlated features in the final models. Further investigations on the 

feature selection methodology will be part of future studies. 

On the other hand, NPC radiomics studies on MR images have been widely studied, 

focusing mainly on prediction of prognosis (disease progression) and treatment 

response to either induction chemotherapy (IC) or chemo-radiotherapy, while 

prediction of the need for replanning has not been previously reported. Besides, each 

study developed a unique radiomic signature for the same outcome prediction, which 

limits the feasibility to directly compare all the resultant features between studies. 

However, interestingly, categories of resultant features might be different depending on 

prediction outcomes, which might explain the results to some extent. For prognostic 

prediction, texture features were obviously dominant in their final radiomic signatures 

relative to first-order and shape features, and GLCM (Gray-Level Co-occurrence 

Matrix) was the only shared-feature category between studies. A possible rationale 

might be that the texture features were considered to reflect intra-tumor heterogeneity 

by depicting the spatial arrangement of voxels (regularity) and variability of local 

intensity within tumor, which was acknowledged as a characteristic of malignancy. For 

prediction of treatment response, while GLCM were still the only common resultant 

feature category between studies, however, first-order features were dominant in final 
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radiomics signature. Wang et al. investigated the capability of MRI-based radiomic 

signatures to predict early response to IC for NPC patients using T1-w, CET1-w, and 

T2-w MR images [5]. Among the 15 features selected in their joint-T1-CET1-T2-w 

model, 7 were first-order features, three were GLCM features, and the rest were Gabor 

and wavelet features. Another radiomic study by Hou et al. exploring feasibility of 

CECT-based biomarkers to predict therapeutic response of esophageal carcinoma to 

chemo-radiotherapy reported that first-order features (skewness and/or kurtosis) were 

identified as significant parameters for differentiating SDs (stable disease) from PRs 

(partial response) and SDs from CRs (complete response) [77]. In both studies, the 

tumor response was assessed according to the Response Evaluation Criteria in Solid 

Tumors (RECIST), which takes into account the reduction of tumor size following 

treatment. Similar to this study, we hypothesized that the image-based tumoral 

biomarkers are predictive to tumor shrinkage. 

From the results, shape features (e.g., Sphericity, Elongation, Maximum 2D 

diameter slice) and/or first-order features (e.g., kurtosis and skewness) were generally 

dominant relative to texture features in the models, which is consistent with results from 

abovementioned radiomic studies for treatment response prediction. Interestingly, it is 

also worth noting that tumor sphericity was found to be predictive in both CET1-w and 

T2-w models in this work. Tumor sphericity reflects tumor compactness, with smaller 

value of sphericity representing a less compact tumor, implicating a higher infiltrative 

nature of NPC tumor. Similarly, Du et al. investigated prognostic value of pre-treatment 

MR-based radiomic features for 3-year disease progression following intensity-

modulated radiotherapy in NPC patients [113]. They found that the tumor sphericity 

was the most predictive factor, with lower sphericity indicative of an elevated risk of 



 

   
104 

disease progression. From the Shapley additive explanations (SHAP) analysis, Du et 

al. discovered a distinct relationship between tumor sphericity and overall stage of NPC 

patients, with low sphericity corresponding to lower risk for early-stage tumor (Stage I 

+ II) but higher risk for advanced-stage tumor (Stage III + IV) [113]. It would be of 

great interest to investigate the potential interaction between tumor sphericity and 

disease stage in relation to ART prediction in the future. Apart from this, kurtosis and/or 

skewness and GLCM-based features are the common features shared in all three 

models. Kurtosis and skewness measure the peakiness and asymmetry of the histogram, 

respectively, while GLCM features quantify the spatial gray-level variation within local 

neighbors on a pixel basis. Nevertheless, the understanding of the meaningfulness of 

these features, especially in relation to the prediction outcome, is still largely unknown 

and deserves further investigations. 

This study has several limitations. Firstly, the heterogeneity of image acquisition 

and reconstruction protocols and ART strategies in different medical centers limit the 

generalizability of the identified models and reproducibility of the selected features. In 

future study, we will perform testing on different datasets obtained from other oncology 

departments with patients undergoing MRIs on different scanners. Secondly, the rate 

of adaptive re-planning in the small cohort is relatively low. A more convincible 

conclusion could be drawn by recruiting larger cohorts with more balanced dataset 

between patients who underwent replan and those did not, which will be part of future 

efforts. Lastly, the retrospective nature of this study might account for the potential 

bias. However, the novelty of this study was to highlight the capability of using pre-

treatment MRI radiomic features to predict which patients undergoing radiotherapy for 

NPC were selected for ART. In future study, radiomics features from other ROIs and 
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other pertinent non- radiomic clinical data, such as volumetric and dosimetric data of 

tumor and nearby organs (e.g., lymph nodes and parotid glands), and geometric 

relations among these structures, will be incorporated into the radiomics models in 

future to yield a more comprehensive prediction. 

In summary, the present study successfully demonstrated promising capability of 

MRI-based radiomics for pre-treatment identification of ART eligibility in NPC 

patients. In particular, the joint T1-T2 model with 6 selected radiomic features appears 

to be the preferable predictive system over other studied models. This would allow 

radiation oncologists to more effectively and accurately prescribe ART on individual 

patient basis to achieve true personalized radiotherapy for NPC patients, meanwhile 

streamlining resources management in clinical settings. In future work, multi-

institution prospective studies with larger patient sample are warranted to improve the 

clinical efficacy of the prediction models. 
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5. Chapter 5: Multi-organ Omics-based Prediction for 

Adaptive Radiation Therapy Eligibility in 

Nasopharyngeal Carcinoma Patients undergoing 

Concurrent Chemoradiotherapy 

Introduction: To investigate the role of different multi-organ omics-based 

prediction models for pre-treatment prediction of Adaptive Radiotherapy (ART) 

eligibility in patients with nasopharyngeal carcinoma (NPC). Methods: Pre-treatment 

contrast-enhanced computed tomographic and magnetic resonance images, 

radiotherapy dose and contour data of 135 NPC patients treated at Hong Kong Queen 

Elizabeth Hospital were retrospectively analyzed for extraction of multi-omics features, 

namely Radiomics (R), Morphology (M), Dosiomics (D), and Contouromics (C), from 

a total of eight organ structures. During model development, patient cohort was divided 

into a training set and a hold-out test set in a ratio of 7 to 3 via 20 iterations. Four single-

omics models (R, M, D, C) and four multi-omics models (RD, RC, RM, RMDC) were 

developed on the training data using Ridge and Multi-Kernel Learning (MKL) 

algorithm, respectively, under 10-fold cross validation, and evaluated on hold-out test 

data using average area under the receiver-operator-characteristics curve (AUC). The 

best-performing single-omics model was first determined by comparing the AUC 

distribution across the 20 iterations among the four single-omics models using two-

sided student t-test, which was then retrained using MKL algorithm for a fair 

comparison with the four multi-omics models. Results: The R model significantly 

outperformed all other three single-omics models (all p-value<0.0001), achieving an 

average AUC of 0.942 (95%CI: 0.938-0.946) and 0.918 (95%CI: 0.903-0.933) in 

training and hold-out test set, respectively. When trained with MKL, the R model 

(R_MKL) yielded an increased AUC of 0.984 (95%CI: 0.981-0.988) and 0.927 
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(95%CI: 0.905-0.948) in training and hold-out test set respectively, while 

demonstrating no significant difference as compared to all studied multi-omics models 

in the hold-out test sets. Intriguingly, Radiomic features accounted for the majority of 

the final selected features, ranging from 64% to 94%, in all the studied multi-omics 

models. Conclusions: Among all the studied models, the Radiomic model was found 

to play a dominant role for ART eligibility in NPC patients, and Radiomic features 

accounted for the largest proportion of features in all the multi-omics models. 

5.1 Background 

Nasopharyngeal carcinoma (NPC) presents immediate proximity to a variety of 

surrounding critical healthy organs such as spinal cord and brainstem within an 

intricated nose-pharynx ministry, dysfunction of which can incur catastrophic 

complications. At present, concurrent chemo-radiotherapy (CCRT) is a standard-of-

care remedy for advanced NPC patients; adoption of Intensity-modulated Radiotherapy 

(IMRT) allows for highly conformal and precise dose delivery to the treatment targets, 

meanwhile protecting the adjacent healthy tissues. Notably, the success of treatment 

relies on an assumption that the patient anatomy remains throughout the 6-7 weeks of 

IMRT course. In response to treatment perturbations, however, tumors and surrounding 

healthy organs may exhibit significant morphometric volume and/or geometric 

alterations, which may jointly alter patient anatomy and jeopardize the efficacy of the 

original treatment plan. The issue of these variabilities can be more detrimental in the 

IMRT era, where slight anatomic deviations may deleteriously lead to significant 

dosimetric consequences due to the sharp dose falloff beyond the target lesions. 

Confronted with this, Adaptive Radiotherapy (ART), a modification of the original 
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treatment plan, has been introduced to compensate for these patient-specific variations. 

The dosimetric and clinical benefits of ART for NPC patients have been well-

documented in the literature [55, 61, 63-65, 67, 68].  

Notwithstanding, ART generally involves re-imaging, re-segmentations of tumor 

and organs-at-risk (OARs), and re-planning, requiring a highly specialized 

multidisciplinary team. This labor-intensive and time-consuming nature of ART 

procedures preclude the feasibility of routine ART practice on a patient basis in clinic. 

In light of this, tremendous effort has been constantly made to evaluating the underlying 

morphometric and geometric variations of patient anatomy amid the radiotherapy 

course, in the hope of streamlining clinical implementation of ART [49-52, 56-58, 60, 

62, 70, 108, 114, 115]. 

Radiation dose has long been regarded as a prime attribute for morphometric 

volume change of tumors, neck lesions and bilateral parotid glands throughout the 

treatment course. Bahl et al. prospectively analyzed volumetric alterations in 20 NPC 

patients between pre-treatment computed tomography (CT) and mid-treatment CT at 

the 17th fraction. They reported approximately 30% shrinkage of high-risk gross-

tumor-volume (GTV), which was accompanied with a significantly increased median 

dose of 7.2-7.7 Gy to and reduced volume of bilateral parotid glands [62]. Another 

prospective study by Cheng et al. demonstrated that the anatomic tissue shrinkage was 

dependent on radiation dose received. They analyzed repeated planning CT and 

magnetic resonance images (MRI) at 30-Gy and 50-Gy intervals and reported that the 

shrinkage of both primary NPC tumor and nodal lesions against pre-treatment baselines 

were higher when 50-Gy was delivered (13% and 29%, respectively) than that when 
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30-Gy was given (9% and 16%, respectively) and a similar trend was also observed for 

bilateral parotid glands [50]. Further evidence was also observed by Hu et al. who 

analyzed 40 re-planned NPC patients and confirmed the significant shrinkage of 35% 

in clinical-target-volume [51], and by Murat et al. who reported a median reduction of 

27% and 43% in primary and nodal GTV, respectively, in 48 re-planned head-and-neck 

cancer patients [56].  

Notably, volumetric shrinkages of these organ structures are often accompanied 

with geometric shifts of internal structures [58, 60] and/or body contour modification 

[60, 70], which may in concert contribute to an elevated risk of ill-fitted immobilization 

cast during daily setup [60, 70], and/or detrimental consequences following treatment 

(e.g., overdosing to OARs [52, 57, 61], underdosing to targets [58, 61], triggering the 

demand for ART. In view of this, research community has introduced numerous criteria 

as ART triggers [56, 58, 108, 114, 115], mainly on dosimetric aspects. Nevertheless, 

most of these factors require close monitoring throughout the radiotherapy course for 

each patient, pre-treatment prediction of ART eligibility is greatly demanding. Further, 

these factors are deficient in capturing inter-patient disparity in intrinsic biologic 

response of tissue upon receiving treatment perturbation. 

Until more recently, emerging Radiomics has opened up opportunities for 

divulging concealed biologic traits and genetic association of tumor and organ 

structures [96, 116, 117]. There is mounting evidence in the literature showing the 

power of Radiomics in predicting treatment response on the ground of volume 

shrinkage in various cancer diseases [5, 75, 77, 78, 81, 112], which has laid great 

foundation for Radiomics prediction of ART demand in cancer patients. Ramella et al. 
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performed radiomic analysis on pre-treatment CT images of replanned non-small cell 

lung cancer patients and generated a radiomic signature for prediction of tumor 

shrinkage during chemo-radiotherapy, yielding an Area Under the Receiver 

Characteristics Curves (AUC) of 0.82 [112]. For the first time, Yu et al. generated 

several radiomic models for ART eligibility in NPC patients using tumoral radiomic 

features from multi-parametric pre-treatment MRI, achieving AUCs ranging from 0.75 

to 0.93 [70]. It is worth noting that ART eligibility is multifactorial in nature. Joint 

response of multiple organ structures upon treatment perturbations, treatment 

aggressiveness, and pre-treatment geometric and morphologic condition of patient 

anatomy, may all come into play for triggering ART.  

Therefore, it is pertinent to investigate the role of these attributes, in the form of -

omics features, from multiple relevant organ structures within head-and-neck regions 

using pre-treatment CT, MRI, contours, and three-dimensional dose map for prediction 

of ART eligibility in NPC patients, which constituted the main objective of this present 

study. The success of this study may provide the community with valuable insights into 

developing ART screening strategies in future, particularly in view of the soaring 

demand of ART in this vulnerable subgroup of cancer sufferers in the IMRT era. 

5.2 Methods 

5.2.1 Patient Data 

This study is a retrospective analysis of 261 NPC patients who received 

radiotherapy at Hong Kong Queen Elizabeth Hospital between 2012 and 2015. Patient 

informed consent was waived due to the retrospective nature of this study. Patients were 
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included if they (1) were diagnosed with biopsy-proven primary NPC without presence 

of distant metastasis and co-existing tumors of other types at presentation, (2) 

underwent curative concurrent chemo-RT (CCRT) or CCRT plus adjuvant 

chemotherapy (AC), and (3) were treated with Helical Tomotherapy. Patients were 

excluded if they (1) received induction chemotherapy before CCRT treatment, or (2) 

received RT-alone without concurrent chemotherapy, or (3) did not receive injection of 

contrast agent for obtaining planning contrast-enhanced CT (CECT) images or planning 

contrast-enhanced T1-w (CET1-w) MR images, or (4) did not have complete set of 

clinical/image data. The binary status of whether or not an individual patient has 

undergone ART treatment during their main course of RT at the discretion of radiation 

oncologist was chosen as the clinical endpoint for this study. Patients were labelled as 

1 if he/she has received ART treatment, otherwise were labelled as 0. 

 

5.2.2 Image Acquisition 

All the enrolled patients underwent pre-treatment planning CECT and MRI scans, 

which were retrospectively retrieved in Digital Imaging and Communications in 

Medicine (DICOM) format, archived using Picture Archiving and Communication 

System (PACs).  

For CECT image acquisition, patients were immobilized with thermoplastic cast in 

a supine position. The scan range covered from the vertex to 5-cm below the 

sternoclavicular notch and was acquired at 3-mm intervals using a 16-slice Brilliance 

Big Bore CT (Philips Medical Systems, Cleveland, OH). Details of acquisition 

parameters: scan mode = Helical, voltage = 120-kVp, X-ray tube current = 264-mA, 
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exposure = 325-msec, pixel spacing = 1.152x1.152-mm, slice thickness = 3-mm, matrix 

= 512x512 pixels. Two types of intravenous contrast agents were available: (i) 

OMNIPAQUE TM 350 mg I/ml and (ii) VISIPAQUE TM 320 mg I/ml; either one of 

them was prescribed and injected at a rate of 2-ml/sec for 70-ml, followed by scanning 

after a 30-sec delay. 

MRI scans were acquired under a 1.5-Tesla MR scanner (Siemens Avanto, 

Germany). Details of MRI acquisition parameters: axial T2-weighted (T2-w) using 

short-tau-inversion- recovery MR sequence (repetition time [TR]/ echo time [TE]: 

7640/97-ms, field-of-view [FOV] = 24x24-cm2, number of acquisition = 1, slice 

thickness = 4-mm x 25 slices, spacing: 0.75x0.75x4.4-mm3, matrix: 320) and axial 

CET1-w spin-echo MR sequence TR/TE: 739/17-ms, FOV = 24x24-cm2, number of 

acquisition = 1, slice thickness = 3-mm x 48 slices, spacing: 0.938x0.938x3.3-mm3, 

matrix: 256). 

5.2.3 Volume-of-Interest (VOI) Definition 

There were a total of 8 different VOIs of organ structures involved in this study, 

including gross-tumor-volume of primary NPC tumor (GTVnp) and metastatic lymph 

nodes (GTVn), ipsi-lateral parotid gland (IpsiPG), contra-lateral parotid gland 

(ContraPG), brainstem (BS), spinal cord (SC), high-dose and low-dose regions of nodal 

planning target volume (PTVn_high_dose for the PTVn with the prescribed dose level 

of 70-Gy, PTVn_low_dose for the PTVn with the prescribed dose level of 60-Gy, 

respectively). Figure 14 illustrates location of each of the VOIs involved in this study. 
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Figure 14. Illustration of the eight VOIs involved. 

GTVnp was manually delineated on axial CT slices after registration with planning 

MR images, and GTVn was delineated on CECT images by an experienced radiation 

oncologist specializing in head-and-neck cancers with accreditations, in accordance 

with International Consensus Guidelines for the CT-based delineation of neck levels 

[118]. To determine whether each of the segmented parotid glands (PG) belongs to 

IpsiPG or ContraPG for each patient, the minimum geometric distance between a 

particular voxel point on the PG volume and all voxel points on the GTVnp surface was 

first determined. This procedure was repeated for another voxel point on the PG volume 

until the minimum distances between each of all the voxel points on the PG volume and 

the GTVnp surface were determined. Lastly, a median value of these calculated 

minimum distances was obtained to determine the overall proximity of that PG to the 

Ipsilateral 
Parotid Gland

(IpsiPG)

Contra-lateral 
Parotid Gland

(ContraPG)

Primary tumor 
(GTVnp)
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GTVnp for each patient.  The PG with smaller median value of the minimum distances 

was denoted as IpsiPG, otherwise it was denoted as ContraPG. All segmentations were 

carried out using Varian ARIA and Eclipse treatment planning system v13 (Varian 

Medical Systems Inc, Palo Alto, CA). 

5.2.4 Multi-omics Feature Extraction 

Radiomics (R) and Morphologic (M) Features: Prior to radiomic feature extraction, 

a series of image pre-processing steps were performed on CECT and MR images 

according to well-recognized recommendations from the Image Biomarker 

Standardisation Initiative (IBSI) guidelines [98], using the in-house developed Python-

based (v3.7.3) platform. Details of the image pre-processing procedures are indicated 

as follows: 

All CECT and MR images were resampled to a voxel size of 1x1x1-mm3 to 

mitigate impacts of difference in image acquisition parameters among different 

patients. Quantization of grey levels was applied to normalize image signal intensities 

in both types of images. Grey-level intensities of the images were discretized to a range 

of fixed bin counts, ranging from 50 to 350 with an incremental interval of 50. Besides, 

all images were convolved with Laplacian of Gaussian (LoG) filter under three levels 

of Gaussian radius parameters to produce filtered images which highlight specific 

texture radiomic features at multiple scales from fine (1 mm), medium (3 mm) to coarse 

(6 mm).  Wavelet filters (HHH, HLL, LHL, LLH, LHH, HLH, HHL, LLL) were also 

applied to both CECT and MR images for yielding radiomic features with multiple 

resolutions. Re-segmentation was performed on CECT images to confine the 

Hounsfield Unit (HU) to the range of [-150, 180] for eliminating non-soft tissue 



 

   
115 

components within the studied VOI, such as air cavities and bony structures. In 

particular to MR images, inhomogeneity correction of image pixel value was 

implemented using N4B bias correction provided in the “N4 Bias Field Correction 

Image Filter” in SimpleITK (v1.2.4). 

In this study, 4 different VOIs of organ structures (GTVnp, GTVn, IpsiPG and 

ContraPG) were involved in radiomic feature calculations. Extraction of radiomic 

features was performed using the publicly available SimpleITK (v1.2.4) and 

PyRadiomics (v2.2.0) packages embedded in the platform in accordance with the IBSI 

guidelines [98]. Radiomic features can be generally divided into three major families: 

morphologic features, first-order statistics, and texture features which can be further 

categorized into Gray Level Difference Matrix (GLDM), Gray Level Cooccurrence 

Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone 

Matrix (GLSZM), Neighboring Gray Tone Difference Matrix (NGTDM) classes. 

Radiomic feature calculations were performed on CECT, CET1-w and T2-w MR 

images, with and without being filtered by Laplacian of Gaussian (LoG) filter (kernel 

size: 1-mm, 3-mm, 6-mm) and wavelet filters (HHH, HLL, LHL, LLH, LHH, HLH, 

HHL, LLL). In this study, morphologic features of all the 4 VOIs were separated from 

the radiomic feature set, resulting in a total of 6,348 radiomic features for each studied 

VOI. The morphologic features of all the studied organ structures were combined to 

form a set of 56 features. 

Dosiomics (D) Features: All the 8 different VOIs of organ structures were 

employed for dosiomic feature calculation using RT dose data. Conventional dose-

volume histogram (DVH) does not contain information on spatial dose distribution 
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within irradiated organs. By contrast, dosiomics is capable of characterizing spatial 

pattern of local radiation dose distributions within the 8 studied VOIs. It has been 

extensively studied in various predictive modelling for cancer prognosis and treatment 

responses [119, 120]. In this study, dosiomic features of DVH curve points for the 8 

VOIs were calculated based on the method adopted by Gabryś et al., examples include 

but not limited to maximum dose, minimum dose, mean dose, volume of the VOI 

receiving at least certain dose levels, and minimum dose received by certain volume of 

the VOI [121]. Besides, spatial dose distribution within each studied VOI was extracted 

to comprehensively depict the heterogeneity of deposited dose, such as dose gradients 

along the three imaging axes (x-, y- and z-directions). The definitions of these features 

were described in a previous publication by Buettner et al. [122]. Further, the three-

dimensional (3D) dose distribution within each studied VOI was transformed into a 3D 

image, such that radiomics-alike dosiomics features were subsequently calculated using 

the PyRadiomics package; examples include first-order dose statistics, GLDM, GLCM, 

GLRLM, GLSZM and NGTDM. A total of 1608 dosiomic features were extracted from 

the 8 VOIs in this study. 

Contouromics (C) Features: In this work, we extracted features that depict complex 

geometric relationships between 4 pairs of VOIs of organ structures (GTVnp and 

IpsiPG, GTVnp and ContraPG, GTVnp and SC, and PTVn_low_dose and SC), on the 

ground that the implementation of ART is triggered by change of geometric relationship 

of different internal organs within head and neck regions. These features were extracted 

from the RT contour data. For the first time, they were termed as “Contouromics” in 

this study. For each of the VOI pairs, a series of contouromic features were calculated 

from a distance descriptor overlap-volume histogram (OVH), as adopted in a previous 
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publication [123]; for instance, the maximum and minimum distances between SC and 

PTVn_low_dose during the treatment planning stage were calculated as the distances 

on the OVH at zero and full volume, respectively. In this study, the calculation of OVH 

was implemented using the algorithm employed in a previous publication [123]. 

Besides, an angle descriptor projection-overlap-volume (POV), defined as one VOI that 

overlaps with the parallel projection of another VOI at specific projection angle, was 

used for further divulging potential contouromic features from the VOI pairs. A total 

of 132 contouromic features were extracted from the 4 pairs of VOIs in this study. 

Table 6 summarizes the sources of VOIs involved in calculation of the four types of -

omics features studied. 
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Table 6. A summary of the sources of VOIs involved in calculation of the four types 

of -omics features studied. 

Radiomics 

(R) 

Morphology 

(M) 

Dosiomics 

(D) 

Contouromics 

(C) 

CECT-GTVnp GTVnp GTVnp PTVn_low_dose-

SC 

CECT-GTVn GTVn GTVn GTVnp-IpsiPG 

CECT-IpsiPG IpsiPG IpsiPG GTVnp-ContraPG 

CECT-ContraPG ContraPG ContraPG GTVnp-SC 

CET1w-GTVnp 

 

BS 

 

CET1w-IpsiPG 

 

SC 

 

CET1w-ContraPG 

 

PTVn_high_dose 

 

T2w-GTVnp 

 

PTVn_low_dose 

 

T2w-IpsiPG 

   

T2w-ContraPG 
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5.2.5 Determination of Optimal Feature Selection (FS) Algorithms for 

Each -omics Dataset 

Feature dimensionality reduction is considered essential in machine learning when 

it comes to minimizing the risk of model overfitting. Although there are a multitude of 

unsupervised and supervised FS algorithms currently available for assessing 

redundancy and outcome relevance of the studied features, an optimal combination of 

both kinds of FS algorithms remains unclear. In this study, a total of 6 unsupervised 

and 4 supervised FS algorithms that have been commonly adopted in machine learning 

were studied [124] and are publicly available (https://jundongl.github.io/scikit-

feature/algorithms.html), giving rise to a resultant amount of 24 FS combinations.  

Figure 15 outlines 24 combinations of the 4 supervised and 6 unsupervised FS 

algorithms studied. Each of the studied FS combinations was applied to training data 

of each iteration, followed by a 10-fold cross validation (CV) during Ridge modeling. 

More details of the studied FS algorithms can also be found in the literature [125-129]. 

  

https://jundongl.github.io/scikit-feature/algorithms.html
https://jundongl.github.io/scikit-feature/algorithms.html
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Figure 15. A summary of all the studied supervised and unsupervised FS algorithms 

and the studied FS combinations. Abbreviations: Lap score: Laplacian score, SPEC: 

Spectral, MCFS: multi-cluster feature selection, NDFS: Nonnegative discriminative 

feature selection, UDFS, Unsupervised discriminative feature selection 

A proper selection of FS combination for a particular feature set is crucial to ensure 

that the final selected features of a prediction model are of high discriminability (i.e., 

high score of Area Under the Receiver Operating Characteristics Curve, AUC score) 

and high reproducibility under multiple train/test splits of the dataset (i.e., high feature 

output stability score). To this end, we adopted a strategic workflow (Figure 16) to 

calculate both scores and determined the optimal FS combination using a decision 

graph (Figure 16) for a particular -omics dataset.  
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Figure 16. A simplified workflow for optimal FS combination determination of a 

given feature set. 

Figure 16 illustrates a simplified workflow for optimal FS combination 

determination of a given feature set. The patient cohort was divided into a training and 

a hold-out dataset with 10 iterations. The hold-out test dataset of each iteration was 

employed to assess the model discriminability in terms AUC score to avoid introducing 

bias. Feature output stability of the models was assessed through the 10 iterations and 

quantified to a value ranging from 0 to 1 using a frequency-based criterion. A value of 

1 for stability indicates that the model has completely consistent feature selection 

results under the 10 iterations. More details on the frequency-based criterion approach 

are explained as follows: 

Patient cohort

10 iterations of cohort division

1st Training set 1st Hold-out set10th Training set 10th Hold-out set

FS combination FS combination

Model training Model training Model evaluation Model evaluation

Feature output stability 
evaluation

Model discriminability 
evaluation

Stability score
Average AUC score
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After implementing the workflow of Figure 16 with 10 iterations, a binary matrix 

Z which indicates results of the feature selection of each iteration can be obtained. The 

matrix Z is defined by Equation 1: 

  

   (Eq. 1)     

 

where each of the 10 rows represents results of the feature selection in each iteration. 

For example, z1,d=0 means the dth feature was removed during the 1st iteration. As such, 

feature output stability of the models was assessed through the 10 iterations and 

quantified to a value ranging from 0 to 1 using a frequency-based criterion and 

formulated in Equation 2 – 5 below: 

 (Eq. 2) 

where 

 (Eq. 3) 

 (Eq. 4) 

 (Eq. 5) 
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As such, scores of feature output stability (i.e., stability score) and model 

discriminability (i.e., average AUC score on the hold-out test datasets) for each FS 

combination can be determined for a particular feature dataset. In this study, a product 

of both scores was calculated and plotted in a decision graph (Figure 17) for all the 

studied FS combinations. The FS combination with the highest value of the score 

product was determined to be the optimal FS combination for each of the studied feature 

datasets, which was used in subsequent model development. 

 

Figure 17. A decision graph showing results of the product of stability score and 

average AUC score for 8 different FS combinations of a given feature set. Point A has 

the highest product score of stability and AUC, and hence refers to the optimal FS 

combination while Point B represents the worst FS combination. 
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5.2.6 Development and Evaluation of ART Prediction Models 

In this study, a total of 4 single-omics models (R, M, D, C) and 4 multi-omics 

models (RM from R+M, RD from R+D, RC from R+C, RMDC from R+M+D+C) were 

developed using the corresponding -omics features from multiple VOIs of organ 

structures. 

Figure 18 shows a schematic diagram for model development. The patient cohort 

was divided into a training dataset and a hold-out test dataset in a ratio of 7 to 3 via 20 

iterations. The optimal supervised FS algorithm was applied only to the training dataset 

of each iteration to maintain clinical relevance of the remnant features. The optimal 

unsupervised FS algorithm was subsequently applied to remove highly redundant 

features, leading to a reduced feature set of K features. Development of prediction 

models was conducted with the initial K features using the Ridge algorithm (for single-

omics model) or Multi-Kernel Learning (MKL) algorithm (for multi-omics model) via 

a 10-fold cross-validation (CV) within the training set to mitigate the risk of model 

overfitting. Evaluation of model discriminability, in aspects of AUC, was performed on 

the hold-out test set of each iteration. The model development process was repeated on 

(K-1) features after removing the feature of the lowest ranking of frequency of 

occurrence across the 20 iterations until one feature remained in the feature set. An 

optimal prediction model was finally determined when the average AUC on the hold-

out test datasets reached its maximum. 
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Figure 18. shows a schematic diagram for model development. Abbreviations: T: 

Training set, H: Hold-out test set, FS: feature selection, MKL: Multi-Kernel Learning, 

CV: Cross-Validation, AUC: Area Under the Receiver Operating Characteristics 

Curves. 
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With regard to the model training algorithm, Ridge classifier was adopted for 

generation of the 4 single-omics models. It is a typical statistical approach for resolving 

bias-variance trade-off with the use of a linear function; the principles and advantages 

of Ridge algorithm have been well-documented [130]. On the other hand, MKL 

algorithm was applied for development of multi-omics models in this study. Unlike 

single-omics features, different types of multi-omics data may contain distinctly 

different data representations. Ridge algorithm is deficient in capturing the difference 

in representations of multi-omics data and non-linear relationship between predictors 

and prediction outcome. Therefore, MKL was adopted in this study with an attempt to 

divulging complementary (non-linear) relationship between different types of -omics 

features and prediction outcomes. Specifically, two types of kernels (Gaussian and 

Polynomial) with a range of kernel parameters were applied. Each kernel was 

embedded into the feature space of a given multi-omics feature set for subsequent multi-

omics fusion. Figure 19 illuminates the multi-omics fusion framework in the study. 

More details of the MKL algorithms can be a previous publication [131] and is 

described as follows: 

MKL algorithm was applied for development of multi-omics models in this study. 

Unlike single-omics features, different types of multi-omics data may contain distinctly 

different data representations. In kernel learning, such data representations are 

implicitly selected through kernel. The use of kernel allows machine learning 

practitioners to define similarity between two types of -omics data and a proper 

regularization term for a learning task. Lanckriet et al. has demonstrated that adoption 

of multiple kernels improved model interpretability and classification performance 
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when compared to single kernel application and introduced MKL for binary 

classification [132-134].  

From mathematical perspective, the MKL was adopted by reconstructing the kernel 

representation in Kernel Ridge Regression to the following Equation 6: 

K = ∑ α𝑖K𝑖
𝑃
𝑖=1  (Eq. 6) 

 

where K_i represents different kernel matrices constructed by different types of 

kernels, α_i is the kernel weight of K_i, P is the number of kernel matrices. More 

information on KRR can be found in a previous literature [135]. 

Figure 19 illuminates the multi-omics fusion framework in the study. Considering 

a multi-omics feature dataset containing “s” types of -omics data and a total number of 

“t” features, M1, M2, Ms refer to all the features in the 1st, 2nd and all types of -omics 

data, respectively; f1, f2, ft refer to the 1st, 2nd, tth individual features of the given 

multi-omics feature dataset. KM refers to kernel matrix. Gaussian [0.5, 1, 2, 5, 7, 10, 

12, 15, 17, 20] corresponds to kernel parameters used in the Gaussian kernel function; 

Polynomial [1, 2, 3] corresponds to kernel parameters used in the Polynomial kernel 

function. As such, each of the kernel matrices can either use the combined set of multi-

omics features or individual set of single-omics features under specific kernel 

parameters, achieving multi-omics fusion. 
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Figure 19. Schematic diagram of the multi-omics fusion framework. Considering a 

multi-omics feature dataset containing “s” types of -omics data and a total number of 

“t” features, M1, M2, Ms refer to all the features in the 1st, 2nd and all types of -

omics data, respectively; f1, f2, ft refer to the 1st, 2nd, tth individual features of the given 

multi-omics feature dataset. KM refers to kernel matrix. Gaussian [0.5, 1, 2, 5, 7, 10, 

12, 15, 17, 20] corresponds to kernel parameters used in the Gaussian kernel function; 

Polynomial [1, 2, 3] corresponds to kernel parameters used in the Polynomial kernel 

function. 

5.2.7 Model Comparison and Statistical Analysis 

For single-omics models, discriminability of the final radiomic model (R), in terms 

of distribution of the AUC scores across the 20 iterations, was compared against the 

other 3 single-omics models (M, D, and C) in both training and hold-out test datasets. 

For multi-omics models, discriminability of the final RMDC model was compared 

against the other 3 multi-omics models (RM, RD, and RC) in both training and hold-
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out test datasets. Further, we also compared the best-performing single-omics model 

against all the 4 studied multi-omics models (RM, RD, RC, and RMDC). With this 

regard, the selected single-omics model was firstly re-trained using MKL algorithm for 

achieving a fair comparison with multi-omics models.   

Statistical estimates of model discriminability in terms of average AUC, its 

standard deviation (STD) and 95% confident interval (95%CI) across the 20 iterations 

for all the studied prediction models were reported in this study. Two-sided paired 

student t-test was employed for the abovementioned comparisons. On the other hand, 

Chi-square test was employed to assess statistical difference of categorical patient 

clinical factors between patients who received ART and those who did not, while two-

sided student t-test was applied for continuous clinical factors. A p-value of ≤ 0.05 was 

considered statistical significant. 

5.3 Results 

5.3.1 Patient Characteristics 

A total of 135 NPC patients (35 experienced ART, approximately 26%) were 

finally considered eligible for this study. Table 7 summarizes major characteristics of 

the patients. There were no statistically significant differences in the studied clinical 

factors between patients who experienced ART and those who did not. 

 

Table 7. Patient clinical characteristics. *WHO histologic subtype of NPC: Type 1: 

Keratinizing squamous cell carcinoma; Type 2: Non-keratinizing differentiated 
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carcinoma; Type 3: Non-keratinizing undifferentiated carcinoma. Abbreviation: 

AJCC: American Joint Committee on Cancer. 

Clinical factor Data  p-value 

Age 

Average, Range 54 27 - 81 0.142 

Gender 

Male (no.,%) 101 75 

0.348 

Female (no.,%) 34 25 

WHO Histologic subtype* 

Type-1 (no., %) 4 3 

0.544 Type-2 (no., %) 3 2 

Type-3 (no., %) 128 95 

T-Stage 

T1 (no., %) 9 7 

0.133 

T2 (no., %) 9 7 

T3 (no., %) 94 70 

T4 (no., %) 23 17 

N-Stage 

N0 (no., %) 1 1 0.146 
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N1 (no., %) 22 16 

N2 (no., %) 98 73 

N3 (no., %) 14 10 

Overall stage (7th AJCC) 

Stage-I (no., %) 1 1 

0.077 

Stage-II (no., %) 7 5 

Stage-III (no., %) 92 68 

Stage-IVA (no., %) 23 17 

Stage-IVB (no., %) 12 9 

Initial size of primary tumor (mm3) 

Average, range 43,482 
4,537 - 

184,333 
0.341 

Initial size of nodal lesion (mm3) 

Average, range 31,078 
501 - 

330,143 

0.202 

Initial total tumor burden (primary + nodal lesion) (mm3) 

Average, range 74,560 
7,886 - 

438,998 

0.153 

Pre-treatment body weight (kg) 

Average, range 63 37-102 0.265 
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5.3.2 Optimal FS Combination Determination and Model Development 

Optimal combinations of FS algorithms for the 4 single-omics datasets (R, M, D, 

C) and the 4 multi-omics datasets (RM, RD, RC, RMDC) were determined using the 

decision graphs (Figure 20 – Figure 27). The optimal FS algorithms and the product 

scores were determined to be S4U6 and 0.80 for the R model (Figure 20), S2U1 or 

S3U6 and 0.56 for the D model (Figure 21), S2U6 and 0.48 for the C model (Figure 

22), S3U3 and 0.47 for the M model (Figure 23), S1U6 and 0.75 for the RD model 

(Figure 24), S4U6 and 0.72 for the RC model (Figure 25), S4U6 and 0.76 for the RM 

model (Figure 26), S4U6 and 0.69 for the RMDC model (Figure 27), as summarized 

in Table 8. 

 

Figure 20. Results of decision graphs for the Radiomic model, with the corresponding 

optimal FS algorithms and the product scores being S4U6 and 0.80, respectively (as 

indicated by Red arrow).  
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Figure 21. Results of decision graphs for the Dosiomic model, with the corresponding 

optimal FS algorithms and the product scores being S2U1 or S3U6 and 0.56, 

respectively (as indicated by Red arrow). 

  



 

   
134 

 

Figure 22. Results of decision graphs for the Contouromic model, with the 

corresponding optimal FS algorithms and the product scores being S2U6 and 0.48, 

respectively (as indicated by Red arrow). 
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Figure 23. Results of decision graphs for the Morphologic model, with the 

corresponding optimal FS algorithms and the product scores being S3U3 and 0.47, 

respectively (as indicated by Red arrow). 
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Figure 24. Results of decision graphs for the RD multi-omics model, with the 

corresponding optimal FS algorithms and the product scores being S1U6 and 0.75, 

respectively (as indicated by Red arrow). 
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Figure 25. Results of decision graphs for the RC multi-omics model, with the 

corresponding optimal FS algorithms and the product scores being S4U6 and 0.72, 

respectively (as indicated by Red arrow). 
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Figure 26. Results of decision graphs for the RM multi-omics model, with the 

corresponding optimal FS algorithms and the product scores being S4U6 and 0.76, 

respectively (as indicated by Red arrow). 
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Figure 27. Results of decision graphs for the RMDC multi-omics model, with the 

corresponding optimal FS algorithms and the product scores being S4U6 and 0.69, 

respectively (as indicated by Red arrow). 
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Table 8. Results of optimal combinations of supervised and unsupervised feature 

selection (FS) algorithms for the four single-omics models and four multi-omics 

models. 

Feature Set Optimal FS Combination 

Single-omics Model 

Radiomics (R) S4U6 

Morphology (M) S3U3 

Dosiomics (D) S2U1, S3U6 

Contouromics (C) S2U6 

Multi-omics Model 

RM S4U6 

RD S1U6 

RC S4U6 

RMDC S4U6 

 



 

   
141 

Figure 28 (A-D) and Figure 29 (A-E) illustrate the change of average AUC scores 

(and its STD shown in shadow) in both training and hold-out test sets against varying 

number of features for the 4 single-omics models and the 4 multi-omics models, 

respectively. Final models were determined when the average AUC scores on the hold-

out test sets reached its maximum.  

 

Figure 28 (A-D). Change of average AUC scores (and its STD shown in shadow) in 

both training (red curves) and hold-out test sets (blue curves) against varying number 

of features for the four single-omics models: Morphology (A), Radiomics (B), 

Contouromics (C), and Dosiomics (D), respectively. 
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Figure 29 (A-E). Change of average AUC scores (and its STD shown in shadow) in 

both training (red curves) and hold-out test sets (blue curves) against varying number 

of features for the four multi-omics models: Radiomics+Morphology (A), 

Radiomics+Dosiomics (B), Radiomics+Contouromics (C), and 

Radiomics+Morphology+Dosiomics+Contouromics (D), and the Radiomics models 

trained by using MKL algorithm (E), respectively. 

 

Table 9 summarizes the total number and distribution of the selected features in 

the final models. Interestingly, it can be observed that radiomic features are dominant 

in all the four multi-omics models, compared to M, C, and D features. 
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Table 9. A summary of total number and distribution of selected features in the final 

models. (*Not applicable) 

 

Number of Final Selected Features 

Total R M C D 

Radiomics (R) 11 11 * * * 

Morphology (M) 9 * 9 * * 

Contouromics (C)  10 * * 10 * 

Dosiomics (D) 18 * * * 18 

Radiomics 

(R_MKL) 

23 23 

* * * 

RM 33 31 2 * * 

RC 28 27 * 1 * 

RD 38 30 * * 8 

RDCM 55 36 3 9 7 
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5.3.3 Model Comparison 

Figure 30(A-B) indicates box-whisker plots of the average AUC distributions for 

the final single-omics models, and Figure 30 (C-D) for the multi-omics models and the 

Radiomic models trained by using MKL algorithms, in training and hold-out test sets. 

A summary of the statistical estimates of model performance is provided in Table 10A 

and 10B. 

From Figure 30 (A-B) and Table 10A, it can be seen that the Radiomic model (R) 

significantly outperformed all other studied single-omics models (p-value < 0.0001), 

achieving an average AUC of 0.942 (STD: 0.009, 95%CI: 0.938-0.946) in the training 

set and 0.918 (STD: 0.034, 95%CI: 0.903-0.933) in the hold-out set.   

The Dosiomic model (D) was the second best single-omics model with an average 

AUC of 0.895 (STD: 0.018, 95%CI: 0.887-0.903) in the training set and 0.811 (STD: 

0.029, 95%CI: 0.798-0.824) in the hold-out set. This was followed by the Morphologic 

model (M) which yielded an average AUC of 0.740 (STD: 0.032, 95%CI: 0.726-0.754) 

in the training set and 0.643 (STD: 0.078, 95%CI: 0.608-0.677) in the hold-out set, 

while the Contouromic model (C) was the most underperforming model, producing an 

average AUC of 0.664 (STD: 0.052, 95%CI: 0.641-0.687) in the training set and 0.550 

(STD: 0.082, 95%CI: 0.514-0.586) in the hold-out test set. 

From Figure 30 (C-D) and Table 10B, it can be observed that the RMDC model 

had the highest AUC of 0.997 (STD: 0.003, 95%CI: 0.995-0.998) in the training set and 

0.943 (STD: 0.029, 95%CI: 0.931-0.956) in the hold-out set, compared to other types 

of multi-omics models. While it statistically outperformed the other three studied multi-
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omics models (RM, RD, and RC) in the training set, it did not reach the statistical 

significant level in the hold-out test set.  

Notably, when the R model was re-trained using MKL algorithm (referred to as 

R_MKL model), the average AUC boosted to 0.984 (STD: 0.008, 95%CI: 0.981-0.988) 

in the training set and 0.927 (STD: 0.050, 95%CI: 0.905-0.948) in the hold-out set. The 

development and performance of the R_MKL model can be seen in Figure 30 (E), 

Figure 30 (C-D) and Table 10B. Surprisingly, further comparisons between the 

R_MKL model and all the 4 studied multi-omics models indicated that there were no 

significant differences in model discriminability between R_MKL and all other multi-

omics models in the hold-out test set (Figure 30D, Table 10B). 
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Figure 30 (A-D). Box-whisker plots of the average AUC distribution for the final 

single-omics models in training set (A) and hold-out test set (B), and for the multi-

omics models and the Radiomic models trained by using MKL algorithms in training 

(C) and hold-out test (D). 
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5.4 Discussion 

ART aims to compensate for patient-specific anatomic variations between fractions 

in NPC patients, while routine ART implementation on patient basis would 

undoubtedly pose immense burden to clinic. Previously, we were the first to 

demonstrate the capability of tumoral Radiomics from pre-treatment MRI for prediction 

of ART eligibility in NPC patients [70]. In this study, we investigated a variety of 

single-omics and multi-omics models from multi-modal images, with an eye towards 

identifying their roles in predicting ART eligibility in NPC and providing insights into 

development of ART eligibility screening strategy in NPC in the long run. In this 

discussion, we attempted to highlight key findings of the study, scrutinize possible 

underlying reasons, and provide research community with potential directions in the 

future. 

Results of the study showed that the R model significantly outperformed all other 

studied single-omics models (i.e., M, C and D models, all p-value < 0.0001), achieving 

an average AUC of 0.942 (STD: 0.009, 95%CI: 0.938-0.946) in the training set and 

0.918 (STD: 0.034, 95%CI: 0.903-0.933) in the hold-out test set (Figure 30A-B, Table 

10A). Among the studied multi-omics models, the RMDC had the highest average AUC 

in both cohorts (Figure 30C-D, Table 10B), however, its difference to the other three 

models (RM, RD and RC) did not reach the level of statistical significance in the hold-

out test sets (Table 10B). Surprisingly, there was no statistical difference between the 

R_MKL and all the studied multi-omics models in the hold-out set (Table 10B). In 

other words, addition of other types of -omics features into a radiomic model did not 

demonstrate statistically significant improvement in model performance, suggesting the 
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dominant role of Radiomic features in prediction of multifactorial ART eligibility in 

NPC. Besides, Radiomic features accounted for majority of the final selected features, 

ranging from 64% to 94%, in all the studied multi-omics models (Table 9). We 

speculated that the dominant role of Radiomics found in this study could partially be 

explained by both the unique nature of Radiomics and the multi-factorial nature of the 

ART eligibility.  

First, the outstanding predictability of Radiomics in this study may largely lie in its 

unique capability in unraveling intrinsic tissue property regarding response to treatment 

perturbations, which can be tissue-type dependent and patient-specific. There is 

mounting evidence in the literature showing the power of Radiomics in predicting 

treatment response in various cancer diseases [5, 75, 77, 78, 81, 112]. For instance, Hou 

et al. investigated CECT-based biomarkers for prediction of therapeutic response to 

chemo-radiotherapy in esophageal carcinoma and reported the discriminability of their 

model in AUC ranging from 0.686 to 0.727 [77]. Wang et al. developed a radiomic 

signature combining features from multi-modal MR imaging sequences for prediction 

of early treatment response to induction chemotherapy in NPC patients, achieving an 

AUC of 0.822 [5]. Piao et al. devised a MR-based radiomic model to distinguish 

sensitive and resistant tumors in NPC patients following induction chemotherapy, 

yielding an AUC of 0.905 [81]. In these studies, the tumor response was defined in 

accordance with the Response Evaluation Criteria in Solid Tumors (RECIST) via 

quantitative assessment of tumor shrinkage, which follows the same line of thought as 

in this present study. Apart from this, Ramella et al. performed radiomic analysis of 

pre-treatment CT images of replanned non-small-cell lung cancer patients and 

generated a radiomic signature for prediction of tumor shrinkage during chemo-
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radiotherapy, yielding an AUC of 0.82 [112]. Yu et al. analyzed tumoral radiomic 

features from multi-parametric pre-treatment MRI of NPC patients and developed 

several prediction models for ART eligibility, achieving AUC ranging from 0.750 to 

0.930 [70]. All the above evidence indicates the outstanding capability of Radiomics in 

divulging patient-specific intrinsic tissue biologic characteristics for discerning 

respondent and non-respondent cancer patients upon treatment perturbations, laying 

great foundation for predicting patient-specific anatomic variations for ART eligibility 

for NPC in this study. 

By contrast, Dosimoics mainly characterizes aggressiveness of a specific treatment 

plan by capturing dose statistics from the entire three-dimensional dose distribution 

map within each of the studied organ structures, while it appears to convey little 

information on tissue responsiveness upon treatment perturbations. To a degree, this 

may shed some light on the well-recognized phenomenon where the same-staged 

patients experienced a diverse range of treatment outcome/response following identical 

treatment (same degree of treatment aggressiveness). Herein, we emphasize that results 

of the study do not deny the potential of Dosiomics in predicting treatment response. 

Indeed, it is worth noting that the D model was the second best-performing model in 

this study, giving rise to an average AUC of 0.895 (STD: 0.018, 95%CI: 0.887-0.903) 

in the training set and 0.811 (STD: 0.029, 95%CI: 0.798-0.824) in the hold-out test set 

(Figure 30A-B, Table 10A). This result appears in agreement with most of the previous 

studies investigating triggering factors for ART in NPC, where radiation dose deposited 

was regarded as a prime factor for morphologic volume shrinkage of targets and OARs 

during the RT course, which may in turn incur intolerable dosimetric deviations from 

initial treatment plan and hence trigger ART implementation. For instance, Cheng et al. 
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analyzed repeated planning CT and MR scans at 30 and 50-Gy intervals [50]. They 

reported that the shrinkage of both primary tumor and nodal lesions were higher when 

50-Gy was delivered (13% and 29%, respectively) than that when 30-Gy was given 

(9% and 16%, respectively) and similar trend was also observed for bilateral parotid 

glands, which jointly led to significant increase in doses to numerous critical OARs, 

triggering implementation of ART. In this regard, several research groups have also 

suggested to incorporate dosimetric deviations in targets and/or OARs (such as parotid 

glands) as part of the ART regimen [58, 108, 114, 115]. Of note, although Dosiomics 

has recently been studied for prediction of toxicity [7, 9, 119, 121, 136] and prognosis 

[120, 121] in cancer patients, its potential in treatment response prediction, in particular 

on the basis of the RECIST criteria, has not been reported. Future studies in this aspect 

are recommended to confirm its capability in this regard. 

On the other hand, Morphologic and Contouromic features merely depict initial 

morphometric characteristics and geometric relationship between organs, respectively. 

They share commonality in their distinct disparity against Radiomics in that they both 

carry little or no underlying biologic information of the studied organ structures. This 

may in part explain the fair-to-poor predictive performance of the M and C models in 

the study, yielding an AUC of 0.643 (STD: 0.078, 95%CI: 0.608-0.677) and 0.550 

(STD: 0.082, 95%CI: 0.514-0.582) in the hold-out test set, respectively (Figure 30A-

B, Table 10A).   

In addition, the multifactorial nature of ART eligibility in the context of NPC 

disease may further elucidate why Radiomics plays a dominant role in this study, 

irrespective of additional types of -omics features. ART eligibility in NPC depends on 



 

   
155 

multiple organs located in a confined space of head-and-neck regions. GTVnp, GTVn 

and bilateral parotid glands are all bulky organ structures within the nose-pharynx 

ministry, responsiveness of these structures upon treatment perturbations jointly 

determines the degree of patient-specific alternations in anatomy, hence affecting the 

demand for ART. Given the unique superiority of Radiomics in unravelling intrinsic 

tissue biologic response, we inferred that the role of Radiomics could become 

increasingly important when more organ structures come into play in contributing to 

the studied outcome (i.e., the ART eligibility), compared with other types of -omics 

features. This may, to some extent, provide an insight into the findings that Radiomic 

features accounted for the largest proportion of the final selected features in all the 

studied multi-omics models (Table 9); and that the multi-organ-based R model 

performed far better than other single-omics models (all p-value < 0.0001) (Table 

10A); and that incorporating Morphologic and/or Dosiomic and/or Contouromic 

features into the radiomic model did not demonstrate statistically significant 

improvement in the hold-out test set (Table 10B) (all p-value > 0.05). Herein, we 

highlight that findings of this study may provide research community with valuable 

insights into development of pre-treatment stratification strategies for ART eligibility 

in NPC patients, potentially facilitating clinical implementation of ART in the future.  

Although there exists a lack of studies on revealing multi-omics in prediction of 

multi-organ triggering outcome, results from a few studies in the literature may worth 

attention. Sheikh et al. investigated radiomics and dosimetric features from bilateral 

parotid and submandibular glands (i.e., four separated organ structures) for predicting 

xerostomia, and reported that addition of dosimetric and clinical factors into a joint-

CT-MR radiomic model did not lead to statistically significant improvement in model 
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performance [137], which appears to be in line with the current findings. By contrast, 

Jiang et al. reported superior model performance when using both radiomic and 

dosimetric features from five lung sub-regions for predicting radiation pneumonitis 

than when using radiomic features alone [138], which may appear contradictive to the 

findings. However, it should be noted that the features in their studies were essentially 

derived from a single organ – the same lung tissue, rather than individual separated 

organ structures as in this current work. Further, unlike the present work, only CT-

based radiomics was adopted in their study, which may lead to a relatively weaker 

predictive power than as if it were developed from multi-modal images that capture 

complementary tissue characteristics. Notwithstanding, this presents an interesting area 

to be explored and a close scrutinization of different types of features in prediction of a 

multi-organ contributing outcome is highly warranted in the future to further affirm the 

role of radiomics in context. 

This study has several limitations. First, the models were developed and validated 

in a small-sized single cohort of NPC patients who received CCRT under Tomotherapy 

machine. While we believe such a homogeneous dataset is advantageous for model 

building, findings of the study require further validation in a large multi-cohort study. 

However, it is worth noting that the goal of this study was to assess the role of different 

omics-based prediction models for ART eligibility in NPC, instead of developing a 

generalizable model for clinical adoption. Thus, results of this study still deserve great 

attention in the community. Second, this study employed a large number of features for 

model building, which may lead to model overfitting in a small-sized cohort. In this 

regard, we deployed a strategic approach of determining optimal FS combinations that 

were used for feature dimensionality reduction prior to model development. The 
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remnant feature sets were of high outcome relevance and low feature redundancy, and 

only 10 to 33 and 37 to 55 features were input to the modelling algorithms for 

developing single-omics and multi-omics models, respectively. 

To conclude, comparisons among all the studied models indicated that the 

Radiomic model was found to play a dominant role for ART eligibility in NPC patients; 

and Radiomic features accounted for the largest proportion of features in all the four 

multi-omics models, suggesting its governing power in ART eligibility prediction. 
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6. Chapter 6: Summary and Reflection 

6.1 Summary of Current Findings 

Significant shrinkage of neck nodal lesions has been commonly reported in NPC 

patients undergoing RT treatment, which is a key contributor for ill-fitted thermoplastic 

mask (IfTM), a routinely used immobilization device for safeguarding radiation 

delivery accuracy and safety. In severe situation of IfTM, an ad hoc ART may be 

required to ensure accurate and safe radiation delivery and to maintain treatment 

efficacy. Presently, the entire procedure for evaluating an eligible ART candidate is 

time-consuming, resource-demanding, and highly inefficient. In Chapter 3, I developed 

a CT-based models using radiomic features extracted from neck nodal lesions of NPC 

patients in the hope of facilitate clinical implementation of IfTM-triggered ART. The 

results of the study showed that radiomics plays a key role in predicting IfTM risk in 

NPC patients in both discovery cohort (corrected AUC: 0.784, BCa 95%CI: 0.673, 

0.859) and independent external cohort (corrected  ACU: 0.723, BCa 95%CI: 0.534, 

0.859). The developed radiomic models also outperformed traditional clinical model. 

To a degree, the superiority of radiomics may be ascribed to its unique property of 

unravelling tissue bio- logic characteristics in response to treatment perturbations. 

Indeed, an enormous number of articles in the literature have demonstrated the 

capability of radiomics in predicting tumor responsiveness on the basis of Response 

Evaluation Criteria in Solid Tumors (RECIST). where the criteria are defined according 

to the degree of tumor volume shrinkage following treatment, which appears to follow 

the same line of thought as in the study. Detailed discussions of the selected features in 

the radiomic models and their relevance to the literature are provided in the discussion 
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section in Chapter 3. Overall, this CT Radiomic-based pre-treatment identification of 

NPC patients who are at a greater risk of having an IfTM is of high potential to alleviate 

the clinical workload, facilitate ART practice in the clinic, and achieve personalized 

RT. 

 Apart from the neck nodal shrinkage, enormous amounts of studies have 

demonstrated significant volume reduction of primary NPC tumor throughout the 

radiotherapy course. Indeed, when significant tumor shrinkage occurs, those critical 

organs might move into the original high dose region, leading to deleterious dosimetric 

impact on the surrounding organs and/or insufficient dose delivery to targets. It is 

worth-noting that pre-treatment multi-parametric MR images are standard-of-care of 

radiotherapy workflow in NPC patients and their versatile capability in highlighting 

tissue anatomic and physiologic information. In Chapter 4, a variety of MR-based 

radiomic models, including contrast-enhanced T1-weighted (CET1-w) and T2-

weighted (T2-w) MR-based prediction model separately and in combination, were 

presented for evaluating their efficacy in assessing ART eligibility in a single cohort of 

NPC patients. The joint T1-T2 model achieved the highest AUC of 0.964 in the training 

cohort and 0.930 in the testing cohort, followed by CET1-w model with AUC of 0.962 

in the training cohort and 0.852 in the testing cohort, and T2-w model with AUC of 

0.895 in the training cohort and 0.750 in the testing cohort. Detailed discussions of the 

selected features in the radiomic models and their relevance to the literature are 

provided in the discussion section in Chapter 4. The study follow the same line of 

thought regarding capability of radiomics in predicting tumor shrinkage upon treatment 

perturbation on the basis of RECIST. The high predictability of the developed MR-
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based radiomic model may offered valuable insights into screening at-risk NPC patients 

for ART implementation in clinic. 

Lastly, it has been discovered that not only primary tumors and neck nodal lesions 

may experience the above-mentioned volumetric changes following radiotherapy, 

surrounding healthy organs (such as parotid glands) may exhibit significant 

morphometric volume and/or geometric alterations, all of which may then individually 

and jointly alter patient anatomy and jeopardize the efficacy of the original treatment 

plan. Further, three-dimensional spatial dose distribution within the pertinent organ 

structures (reflected by Dosiomics), initial morphologic characteristics of pertinent 

organs (reflected by morphologic features), and initial geometric relationship between 

different internal organs (reflected by Contouromics), may also work in conjunction 

with radiomics attributes for determining the final patient anatomy that necessitates 

ART implementation. In Chapter 5, I developed a variety of single-omics models 

(Radiomics: R, or Dosiomics: D, or Contouromics: C or Morphologic: M) and various 

multi-omics models for different pertinent organ structures, with a hope to identify the 

role of different omics-based models in prediction of ART eligibility in NPC patients. 

Results of the study indicated that the R significantly outperformed all other studied 

single-omics models (i.e., M, C and D models, all p-value < 0.0001), achieving an 

average AUC of 0.942 (STD: 0.009, 95%CI: 0.938-0.946) in the training set and 0.918 

(STD: 0.034, 95%CI: 0.903-0.933) in the testing set. Among the studied multi-omics 

models, the RMDC had the highest average AUC in both cohorts, however, its 

difference to the other three models (RM, RD and RC) did not reach the level of 

statistical significance in the testing sets. Surprisingly, addition of other types of -omics 

features into a radiomic model did not demonstrate statistically significant 
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improvement in model performance, suggesting the dominant role of Radiomic features 

in prediction of multifactorial ART eligibility in NPC. Besides, Radiomic features 

accounted for majority of the final selected features, ranging from 64% to 94%, in all 

the studied multi-omics models. This result suggested that the dominant role of 

Radiomics found in this study could partially be explained by the unique nature of 

Radiomics. On the contrary, Dosiomics may mainly characterize aggressiveness of a 

specific treatment plan by capturing dose statistics from the entire three-dimensional 

dose distribution map within each of the studied organ structures, while possibly 

conveying little information on tissue responsiveness upon treatment perturbations. 

Similarly, Morphologic and Contouromic features merely depict initial morphometric 

characteristics and geometric relationship between organs, respectively. In fact, ART 

eligibility in NPC depends on multiple organs located in a confined space of head-and-

neck regions. GTVnp, GTVn and bilateral parotid glands are all bulky organ structures 

within the nose-pharynx ministry, responsiveness of these structures upon treatment 

perturbations jointly determines the degree of patient-specific alternations in anatomy, 

hence affecting the demand for ART. The best-performing radiomic model was 

developed by using radiomic features extracted from a number of pertinent organs, 

including primary NPC tumor, metastatic neck lymph nodes, and bi-lateral parotid 

glands, which appears to be in the same line of thoughts as the above interpretations. 

Results from the study may offer valuable insights into development of ART eligibility 

screening strategy in NPC in the long run. 

It is worth noting that the 4 single-omics models developed by using Ridge logistic 

regression (linear) and 4 multi-omics models developed using MKL algorithm (non-

linear) were studied for multi-organ omics-based prediction of ART eligibility in NPC 
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patients, as described in Chapter 5.2.6. Ridge classifier is a typical statistical approach 

for resolving bias-variance trade-off with the use of a linear function, while it is 

considered deficient in capturing the difference in representations of multi-omics data 

and non-linear relationship between predictors and prediction outcome. The MKL 

algorithm, on the other hand, was adopted for model development on multi-omics data. 

Unlike single-omics features, different types of multi-omics data may contain distinctly 

different data representations. In kernel learning, such data representations are 

implicitly selected through kernel. The use of kernel allows machine learning 

practitioners to define similarity between two types of -omics data and a proper 

regularization term for a learning task. The MKL algorithm was used to divulge 

complementary (non-linear) relationship between different types of -omics features and 

prediction outcomes. Specifically, two types of kernels (Gaussian and Polynomial) with 

a range of kernel parameters were applied. Each kernel was embedded into the feature 

space of a given multi-omics feature set for subsequent multi-omics fusion (an overall 

MKL framework is indicated in Figure 19). 

To determine the final model for prediction of ART eligibility, discriminability of 

the four single-omics models (all linear) were first inter-compared in aspect of 

distribution of the AUC scores across the 20 iterations. It was found that the Radiomic 

model (R) outperformed other single-omics models, achieving average AUC of 0.942 

(STD: 0.009, 95%CI: 0.938-0.946) and 0.918 (STD: 0.034, 95%CI: 0.903-0.933) in 

training and hold-out testing set (all p<0.0001, indicated in Table 10A). This best-

performing R model was then re-trained using MKL algorithm, referred to as R_MKL 

model (non-linear), for the comparison against the four multi-omics models. When the 

R_MKL model was compared to other multi-omics models (all non-linear), it turned 
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out that these were no significant difference in aspects of AUC in the hold-out test set 

(all p>0.05, indicated in Table 10B), suggesting that the dominant role of radiomic 

features in prediction of ART eligibility in NPC patients. Besides, it is worth pointing 

out that although the average AUC score of the R_MKL model (non-linear) in the hold-

out testing set (AUC: 0.927, STD: 0.050, 95%CI: 0.905-0.0948) was higher compared 

to the R model (linear) (AUC: 0.918, STD: 0.034, 95%CI: 0.903-0.0933), the difference 

did not reach the level of statistical significance (p>0.05). The R_MKL model presented 

no statistical benefits in terms of classification power while containing twice amounts 

of predictors, compared to the R model. Therefore, the R model was finally chosen as 

a parsimonious model that achieved a satisfactory level of classification performance 

using as few explanatory variables as possible in order to avoid complex model 

interpretability when more and more predictors are involved and to reduce the risk of 

false positive findings when testing on new datasets. The intention of developing a 

parsimonious model in this dissertation project is also in line with a number of studies 

in the literature [139-141]. 

 

6.2 Limitations & Recommendations for Future Studies 

The limitations of the three studies are described in each of the corresponding 

Chapters (Chapter 3.4, Chapter 4.4, Chapter 5.4). Particularly, three major 

limitations of methods and works done: (1) model and radiomic feature interpretability, 

(2) model reliability, and (3) limited sample size, are summarized in this section, 

followed by recommendations for future works. 
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(1) Radiomic model interpretability is the central premise for its wide-spreading 

clinical implementation. Although a well-established protocol - Image Biomarker 

Standardization Initiative (IBSI) has been widely used for calculation of radiomic 

features [98], the definitions of these features are based on complex mathematical 

equations and there often exists a complicated linkage between the radiomic feature 

and pathophysiological or biological mechanisms. Therefore, it is still challenging for 

this high-throughput radiomics to offer biologic underpinnings of the association 

between radiomic predictors and the prediction outcome-of-interest, which has largely 

impeded the clinical adoption of the developed radiomic models. 

In Chapter 3, for example, although a number of CT-based features were identified 

for prediction of IfTM-triggered ART, which predicted the shrinkage of neck nodal 

lesions in NPC patients, there is still a lack of thorough understanding on the biologic 

relationship between the radiomic predictors and tumor shrinkage. In Chapter 5, despite 

that an attempt was made to enhance the model interpretability by incorporating dose-

related and organ morphologic characteristics into the model development process, it 

turned out that the radiomic-alone model outperformed all other studied models after 

statistical analysis. 

Multiple efforts in the past years have been made to explore biologic meaning of 

radiomic features [116, 141-144]. In particular, Tomaszewski et al. provided a 

comprehensive review on the biological meaning of radiomic features in several key 

perspectives [144], including genomic association (i.e., radio-genomics), 

histopathologic relationship, etc.  
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For radio-genomics, for instance, Rios Velazquez et al. revealed association of CT-

based radiomics with somatic mutations in 763 lung cancer patients [143]. They 

developed a radiomic signature related to imaging heterogeneity that was associated 

with epidermal growth factor receptor (EFGR) and Kirsten rat sarcoma (KRAS) viral 

ono-gene homolog. Gevaert et al. developed gene-based signatures to predict PET/CT-

based radiomic association in lung cancer patients, and vice versa, and found that the 

accuracy can be up to 86%, indicating strong association between genomic and 

radiomic features [142]. 

For histopathologic association with radiomics, Tunali et al. adopted 

immunohistochemistry (IHC) and genetic factors of non-small cell lung cancer patients 

for prognosis prediction of treatment response following immunotherapy [141]. They 

found that the CT-based radiomic feature, gray-level co-occurrence (GLCM) inverse 

difference, was positively related to tumor hypoxia. Sun et al. generated a CT-based 

radiomic signature for immune cell infiltration, and they found that the signature was 

associated with genetic expression of PD-L1 and anti-PD-1, pathologic findings, and 

overall survival [116]. 

Recommendations: With the increasing importance of biologic interpretability of 

radiomic features and models, researchers should make their greatest efforts in the 

future to include biologic tests, such as pathologic test, genetic test and tumor hypoxia 

information on PET images, at the stage of study design for the sake of performing 

correlation analysis between radiomic predictors and the tumor pathology and 

genotypes. More importantly, biological validation of the developed radiomic signature 

should be performed to validate the biological role of the prediction model, as this will 
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enhance the model’s explanability from the biologic grounds, paving the way toward 

bench-to-bedside model translation in clinic. 

(2) Model reliability against variabilities in intra-/inter- organ segmentations and 

imaging protocols, etc. is essential for model clinical utility. Variabilities in imaging 

protocols within or between institutions and organ segmentation have been considered 

as prime culprits that deleteriously influence feature reproducibility. 

For imaging protocol variabilities, the potential impacts on feature reproducibility 

have been extensively studied in the literature [98], necessitating the need for image 

pre-processing prior to radiomic feature extraction. In my dissertation project, a series 

of image preprocessing steps were conducted in each of the corresponding chapters 

(Chapter 3.2.3, Chapter 4.2.8, and Chapter 5.2.4). For example, isotropic voxel size 

resampling to 1x1x1mm3 was made to mitigate impacts of difference in image 

acquisition protocol between medical centers; re-segmentation was conducted on CT 

images to confine the HU to the range of (-150,180) for eliminating non-soft-tissue 

components (such as air cavities and bony structure); intensity normalization of MR 

images was conducted to obtain comparable features between subjects, etc. However, 

it has been found that pre-processing steps, such as signal intensity normalization and 

voxel size resampling [145, 146], choices of scanner and noise [147, 148], may affect 

feature reproducibility, potentially resulting in unexpected impacts on predictive 

performance of the developed radiomic model. 

In particular for isotropic voxel size resampling, linear interpolation was performed 

in this project to rescale the voxel size to 1 x 1 x 1 mm3 for the sake of achieving inter-

institutional comparison of features extracted by images obtained under varying 
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protocols and reconstruction parameters. In clinical practice, it is common to obtain 

anisotropic voxels in most imaging modalities, with slice thickness greater than the 

cross-sectional resolution. Three-dimensional isotropic resampling has been suggested 

for establishing conservative scales in 3D and eliminating direction-related bias in 

calculation of 3D radiomic features [149]. 

Such interpolations may affect reproducibility of radiomic feature [150-152], and 

the degree of impact may vary depending on the categories of radiomic features. For 

instance, calculations of shape-based and first-order features are less relevant to spatial 

distribution of imaging voxel intensities, therefore the impacts may be of less extent. 

However, texture radiomic features, which characterizes spatial variations of voxel 

intensities, may in principle subject more to the interpolation methods. For example, 

resampling to a larger voxel size, which increases inter-voxel spatial distance, may lead 

to information loss; while resampling to a smaller voxel dimension, which decreases 

inter-voxel spatial distance, lead to generation of artificial information. Extreme 

resampling methods may increase the risk of generating images with poor-quality or 

over-smoothing. Therefore, in this dissertation project, the dimension and methods of 

voxel size resampling were adopted in compliance with a well-established IBSI 

protocol for radiomic feature calculation [98]. 

Still, it is acknowledged that the adoption of interpolation in this dissertation, to 

some degree, affect the calculation of radiomic features and possibly the performance 

of radiomic model. Several studies have investigated potential impact of interpolation 

on robustness of radiomic features [150-152], mostly on CT images. An ideal potential 

biomarker or model should be robust to such an imaging pre-processing step, which, 
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however, was not conducted in this dissertation project and is regarded as one of the 

limitations of this work. 

For organ segmentation variabilities, the issue of intra-observer variability in 

segmentation of tumor and organs-at-risk has been recognized in the literature, which 

may become severer in NPC due to its highly infiltrative nature [153-155]. Such 

variabilities have been thought to impact the textural content of the segmented regions, 

hence affect the reproducibility of the extracted radiomic features. 

Multiple studies have been conducted to investigate the underlying impact on 

feature reproducibility [148, 156-159], among which there are two most commonly 

employed approaches: (1) test-rest reproducibility analysis [156] and (2) multi-expert 

tumor segmentation variability assessment [159]. For instance, Balagurunathan et al. 

performed a test-retest reproducibility analysis of 32 lung cancer patients who were 

subjected to 2 CT scans (15 mins apart) [156]. Segmentations were made on both scans 

separately, followed by radiomic feature calculations from the lung tumors. 

Concordance correlation coefficient (CCC) across the test-retest data revealed that only 

30% of the features were robust (CCC ≥ 0.9) [156]. On the other hand, Qiu et al. 

investigated impact of tumor segmentation variations on CT-based radiomic features in 

hepatocellular carcinoma patients by recruiting five abdominal radiation oncologists 

and semi-automatic algorithms for tumor segmentation [159]. They found the 

reproducibility of radiomic features largely depended on segmentation approaches, 

with only 65% (out of 71) features had ICC larger than 0.75 for all segmentation 

methods [159]. 
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Although these two commonly used strategies allow assessment of feature 

reproducibility using ICC and/or CCC, prior to predictive model development, it 

presents practical challenges in that the test-retest would requires every studied subject 

to undergo two separate scans in two different time points, followed by separated 

segmentations, which was practically not achievable in this dissertation project due to 

the retrospective study nature. Besides, although the recruitment of multiple oncologists 

for organ segmentation allows assessment of impact of inter-observer segmentation 

variability on feature reproducibility, this resource is highly demanding and difficult to 

obtain due to the existing heavy workload of clinicians. Therefore, feature 

reproducibility against organ segmentation variabilities was not investigated and 

remains to be one of the limitations in this project. 

Recommendations: To resolve the above-mentioned challenges, there is an 

ongoing trend in application of semi-automatic or fully automatic segmentation 

methods, hoping to potentially improve the inter- and intra-observer segmentation 

consistency, hence alleviating the underlying impact of feature reproducibility. For 

example, Liu R et al. assessed stability of CECT-based radiomic features against 

segmentation variabilities by using different semi-automatic segmentation algorithms 

in oropharyngeal cancer patients, quantified by using intra-class correlation coefficients 

(ICC) and concordance correlation coefficients (CCC) metrics for inter-observer 

reliability assessment [158]. Alternatively, Zwanenburg et al. has developed an image 

perturbation algorithm that aims to simulate variabilities in image pre-processing steps 

(such as voxel size resampling), imaging noise, and tumor segmentation for the sake of 

assessing robustness of radiomic features [148]. This presents an exciting moment to 

waive the requirement of test-retest dataset and recruitment of multiple oncologists for 
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examining impact of such variabilities on radiomic features reproducibility, and is 

anticipated to plan an increasing important role in the future. 

(3) The limited sample size used in this project is the third limitation of this 

project. Ideally, a prediction model should be developed in a large-sized training cohort, 

followed by validation in independent external cohorts for assessing model 

generalizability between datasets. Indeed, a small sample size may increase both the 

risk of type I and type II errors, and thus increase the risk of overfitting [160]. Therefore, 

there exist various recommendations regarding the minimum size of dataset for 

safeguarding statistical power and robustness of the developed predictive models. 

Bibault et al. suggested that the sample size should be 5-10 times higher than the 

number of features investigated, and a thorough pre-selection of features is needed to 

determine a reasonable sample size [161]. Chalkidou et al. recommended a minimum 

of 10-15 patients for model training and validation if one feature finally contributes to 

reasonably stable estimates [100]. 

Despite the efforts made in this dissertation project to minimize the potential 

impacts, for example, by using the dedicatedly designed feature selection approaches, 

the nested K-fold cross-validation (CV), and bootstrapping techniques (Chapter 3.2.5, 

Chapter 4.2.10-4.2.11, and Chapter 5.2.5), the statistical power of the developed 

model was still limited by the small sample size. Indeed, the small sample size involved 

in the project was partly due to an attempt to obtain a cohort of patients with relatively 

homogenous characteristics. For instance, all of the studied patients presented in 

Chapter 3 and 5 were treated by concurrent chemoradiotherapy (CCRT). Patients who 

received radiotherapy-alone, induction chemotherapy before CCRT, or adjuvant 
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chemotherapy post CCRT were excluded, for the sake of minimizing potential 

prediction bias due to the biologic effects caused by heterogenous treatment regimens. 

However, this has largely reduced number of eligibility patients in these studies. 

Recommendations: A larger study cohort is warranted in the future to achieve a 

higher statistical inference of the prediction model. Alternatively, there is emerging 

imbalance adjustment strategies being investigated to mitigate impact of the sample 

size on model performance [162]. For instance, Zhang et al. developed an imbalance 

adjustment framework to alleviate the impact of imbalanced events in a small sample 

cohort for prediction of distant metastasis in NPC patients [162]. This presents an 

interesting technique to be incorporated into this project in the future. Besides, 

whenever possible, external model validation should be conducted for assessing model 

generalizability to patients treated in different institutions. In future study, 

investigations on datasets obtained from different oncology departments are needed to 

further assess model generalization power. 
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7. Chapter 7: Conclusion 

ART aims to compensate for patient-specific anatomic variations between 

fractions, ensure accurate and safe radiation delivery, and to maintain treatment efficacy 

in NPC patients. Presently, the entire procedure for evaluating an eligible ART 

candidate is time-consuming, resource-demanding, and highly inefficient. Therefore, 

routine ART implementation on patient basis would undoubtedly pose immense burden 

to clinic. Tremendous efforts have been made to identify dosimetric factors that may 

relate to anatomic variations. Nevertheless, most of these factors require close 

monitoring throughout the radiotherapy course for each patient, pre-treatment screening 

strategy is severely lacking at present. Further, these factors are deficient in capturing 

inter-patient disparity in intrinsic biologic response of tissue upon receiving treatment 

perturbation. Until more recently, emerging Radiomics has opened up opportunities for 

divulging concealed biologic traits and genetic association of tumor and organ 

structures [96, 116, 117]. There is mounting evidence in the literature showing the 

power of Radiomics in predicting treatment response on the ground of volume 

shrinkage in various cancer diseases [5, 75, 77, 78, 81, 112], which has laid great 

foundation for Radiomics prediction of ART demand in cancer patients. It is also worth 

noting that ART eligibility is multifactorial in nature. Joint response of multiple organ 

structures upon treatment perturbations, treatment aggressiveness, and pre-treatment 

geometric and morphologic condition of patient anatomy, may all come into play for 

triggering ART. In my thesis, I have set out a series of studies for investigating potential 

of a variety of prediction models using -omics features from several pertinent organ 

structures, including primary NPC tumor, metastatic neck lymph node lesions, bi-
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lateral parotid glands, etc., in the hope of facilitating ART clinical implementation in 

the long run. 

This study evaluated capability of CT-based neck nodal radiomic features for 

prediction of IfTM-triggered ART, MR-based tumoral radiomic features and a variety 

of multi-organ single-omics (R, D, M, C) and multi-omics models (RD, RM, RC, 

RDCM) for prediction of ART eligibility prior to treatment commencement. There are 

still many unresolved challenges for future investigations. First, the model 

interpretability needs to be enhanced for bench-to-bedside translation, it could be 

achieved by incorporating biologic, genetic or functional imaging tests (e.g., PET 

imaging) at the stage of study design in future works. Second, prospective large multi-

center studies are warranted in the future to improve generalizability and statistical 

inference of the prediction models. Third, feature reproducibility against VOI 

delineations need to be considered in order to obtain robust features for downstream 

model development and evaluation. If these challenges were overcome, it adds 

significant value to the assessment of -omics in prediction of ART eligibility in NPC 

patients, paving the way toward personalized oncology. 

 To summarize, a series of studies in this thesis demonstrated that CT-based neck 

nodal radiomics was capable of predicting IfTM-triggered ART events in NPC patients 

undergoing RT, showing higher predictability over traditional clinical predictors. MRI-

based tumoral radiomics was shown promising in pre-treatment identification of ART 

eligibility in NPC patients. In particular, the joint T1-T2 model outperformed both T1-

w and T2-w models. Multi-organ multi-omics analyses revealed that the Radiomic 

model played a dominant role for ART eligibility in NPC patients and Radiomic 
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features accounted for the largest proportion of predictors in all the four multi-omics 

models (RD, RC, RM and RDCM), suggesting its governing power in ART eligibility 

prediction in NPC patients. The overall findings may provide valuable insights for 

future study into developing an effective screening strategy for ART eligibility in NPC 

patients in the long run, ultimately alleviating the workload of clinical practitioners, 

streamlining ART procedural efficiency in clinics, and achieving personalized RT for 

NPC patients in the future. 
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