
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



MODELLING OF UNBAFFLED LONG 

ENCLOSURES FOR NOISE CONTROL 

YANG WEIPING 

PhD 

The Hong Kong Polytechnic University 

2021



The Hong Kong Polytechnic University 

Department of Mechanical Engineering 

Modelling of Unbaffled Long Enclosures 

for Noise Control 

Yang Weiping 

A thesis submitted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy 

June, 2021 



I 

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no material previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

acknowledgement has been made in the text. 

     (Signed) 

YANG Weiping   (Name of student) 

Department of Mechanical Engineering 

The Hong Kong Polytechnic University 

Hong Kong, China 

June, 2021 



 

 

II 

ABSTRACT 

Unbaffled long enclosures can be widely observed in practice, such as ventilation 

systems, traffic tunnels, and railway stations. These facilities bring people convenience 

however also cause noise pollution. Sound waves inside a long space do not dissipate 

but rather reverberate if they are not properly treated. Excessive exposure to such noisy 

acoustical environments exerts adverse effects on people’s physical and psychological 

health. Besides, the sound radiated from the openings of long enclosures also produce 

noise pollution to the surroundings. To predict and reduce the radiated noise, the sound 

pressure fields of unbaffled long enclosures are investigated, according to which, noise 

attenuation strategies are proposed.  

A theoretical model is first formulated based on the Wiener-Hopf (W-H) 

technique in conjunction with the mode-matching method to predict the sound radiated 

from an unbaffled long enclosure. The geometrical configuration represents a practical 

scenario in which noise is produced inside the long enclosure and radiates to the outside 

through the opening. The sound field inside the long enclosure is expressed in terms of 

the superposition of acoustical modes, while the radiated sound field is described by a 

far-field directivity pattern that can calculate large acoustic domains effectively. The 

detailed implementation procedures of the model are introduced and the physics behind 

the sound radiation phenomenon is explored. The modelling procedures using the W-

H technique build a theoretical foundation for problems regarding sound radiation from 

unbaffled long enclosures.  

For the purpose of predicting and attenuating the noise radiated from sound-proof 

tunnels, a theoretical model is proposed applying the W-H technique. Both the ground 

and impedance boundary conditions are taken into consideration. As a result, the sound 

distribution in the current configuration is totally different from that of the rigid long 
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enclosure without the ground. Owing to the ground reflections, more directivity lobes 

appear outside the long enclosure. Besides, from the investigations on the impedance 

boundary conditions, the inner wall of the long enclosure is the most effective location 

to mount noise control devices. Subsequently, a partial lining is employed to abate the 

radiated noise. The results demonstrate that SPLs inside and outside the unbaffled long 

enclosure are significantly decreased.  

Aiming at suppressing the peaks in the SPL spectra of the sound fields, Helmholtz 

resonators (HRs) are proposed to reduce the modal responses inside the long enclosure 

so that the radiated SPL field around the targeted frequencies are suppressed. A hybrid 

method based on the finite element method (FEM) and the W-H technique is established 

for the purpose of dealing with discrete noise control devices mounting on the enclosure 

wall. The mechanisms of using HRs to suppress the SPL peaks are then explored using 

the hybrid method. In addition, the interaction between the HRs and the acoustical field 

inside the long enclosure is investigated. The HR locations, optimized to achieve a high 

sound reduction, are obtained. Numerical results demonstrate that noise reduction can 

be achieved inside and outside the long enclosure around the targeted frequencies with 

an appropriate number and locations of HRs. 

To attenuate the higher-order acoustical modes inside an unbaffled long enclosure 

and achieve a broadband sound absorption performance, A Z-shaped micro-perforated 

panel absorber (ZMPPA) is proposed. To calculate the sound absorption coefficient of 

a ZMPPA under an oblique plane-wave incidence, an FEM-based numerical method is 

established. The acoustical performance of a ZMPPA is compared with that of flat and 

corrugated MPPAs. Numerical results demonstrate that the ZMPPA outperforms the 

others, especially at the first dip and middle-frequency range of the sound absorption 

coefficient curve. Parametric studies are carried out to study the effects of corrugation 
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depth, offset distance, and the incident angle on the sound absorption performance of 

the ZMPPA. Besides, a liner consisting of an array of ZMPPAs is employed to reduce 

the noise radiated from an unbaffled long enclosure including the ground. Satisfactory 

insertion loss is obtained. 

In addition to theoretical formulas, FEM-based simulation results are presented 

to validate the proposed models. Indoor and outdoor experiments are also implemented 

to figure out the spectrum characteristics of environmental noise. Furthermore, a scaled-

down quasi-two-dimensional test rig is developed. The theoretical models are verified 

and the sound attenuation performance of HRs and ZMPPAs are investigated using the 

experimental results. 
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NOMENCLATURE 

Symbol Description 

( )A   Spectral coefficient in the complex 𝛼-plane 

( )B   Spectral coefficient in the complex 𝛼-plane 

jb  Modal response coefficients 

B  Matrix form of the modal response coefficients 

( )C   Spectral coefficient in the complex 𝛼-plane 

0c  Sound speed in the air 

dC  
Diffraction coefficient 

jc  Modal response coefficient 

0.57721...C =  Euler’s constant 

C  Cut lines in the complex 𝛼-plane 

C  Matrix form of the modal response coefficients 

d  Derivative 

MPPd  
Hole diameter of an MPP 

jd  Modal response coefficient 

D  Cavity depth of an MPPA 

( )D   Spectral coefficient in the complex 𝛼-plane 

D  Matrix form of the modal response coefficients 

e  Even index 

( )f y  Sound pressure gradient at the opening 
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mf  Modal response coefficients of pressure gradient 

F  Matrix form of modal response coefficients 

( )g y  Sound pressure at the opening 

mg  Modal response coefficients of pressure 

G  Green’s function 

G  Matrix form of modal response coefficient 

h  Height of the unbaffled long enclosure 

H  Corrugation depth 

H  Matrix form of coefficient 

i  Imaginary variable 

j  Subscription index 

J  Matrix form of coefficient 

k  The wavenumber in the free space 

1k  Real part of wavenumber in the free space 

 Imaginary part of wavenumber in the free space 

K  Matrix form of coefficient 

l  Distance from the edge to the receiver in the shadow zone 

( ) ( ) ( ), ,L L L  + −  
Kernel function and its factorized forms 

pL  Length of the partial lining 

RL  
The sound pressure level at the receiver 

WL  The sound power level at the source 

L  Matrix form of coefficient 

m  Subscription index 

2k
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M  Matrix form of coefficient 

M  Maliuzhinets function 

n  Normal direction, subscription index 

( ) ( ) ( ), ,N N N  + −  
Kernel function and its factorized forms 

o  Odd index 

O Offset distance 

, , ,A B C Dp p p p  
Sound pressure in regions A, B, C, and D 

, , ,A B C DP P P P  
Transformed sound pressure in regions A, B, C, and D 

, , ,A B C DP P P P+ + + +  
Factorized sound pressure in the spectral domain 

, , ,A B C DP P P P− − − −  
Factorized sound pressure in the spectral domain 

AP+
, DP+

 Unknowns in the Wiener-Hopf equation 

ip  Incident sound pressure field in the GTD 

dp  Diffracted sound pressure field in the GTD 

cavityp  Sound pressure field inside the cavity 

ductp  Sound pressure field inside the duct 

incidentp  Incident sound pressure field 

MPPp  Perforation ratio of an MPP 

reflectedp  Reflected sound pressure field 

totalp  Total sound pressure field 

P  Matrix form of coefficient 

mnP  
Sound pressure of (m, n) image source 

mnQ  
The combined complex wave reflection coefficient 
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nQ  Volume velocity strength of the n-th point source 

r  Observation radius 

( )ro  The polar coordinate system 

R  Receiver point, distance from the source to receiver 

( )R +  
An unknown in the Wiener-Hopf equation 

nS  The n-th monopole point source 

S   Matrix form of coefficient 

t  Time 

MPPt  Thickness of an MPP 

T   Transfer function of the quasi-2D test rig 

U  Matrix form of coefficient 

nv  Normal particle velocity at the opening 

V  Matrix of particle velocity along the enclosure opening 

w i = +  Complex 𝑤-plane 

sw  The saddle point 

W Width of the cavity 

( )W   Characteristic function 

nx  Abscissa coordinate of the n-th monopole point source 

( )xoy  The Cartesian coordinate system 

X   Matrix of unit signal 

ny  Ordinate coordinate of the n-th monopole point source 

B

jY , 
C

mY  Modal functions in sub-regions B and C. 
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Y  Matrix form of coefficient, collected signal 

MPPZ  
Acoustical impedance of an MPP 

pZ  Acoustical impedance of the partial lining 

, 1,2,3,4.zZ z =  Acoustical impedance on different boundaries 

i  = +  Complex 𝛼-plane 

  Oblique sound absorption coefficient 

r  Random sound absorption coefficient 

m  Wavenumbers in the horizontal direction 

j  
Wavenumbers in the horizontal direction 

j  
Wavenumbers in the transversal direction 

  Incident angle in the GTD 

51.84 10 −=   Coefficient of kinematic viscosity 

  Integration variable 

, ,  + −  Kernel function and its factorized forms 

( ) ( ) ( ), ,     + −  
Kernel function and its factorized forms 

  Radian frequency 

  Observation angle, incident angle 

l
 

Local incident angle on MPP surface 

  Diffracted angle in the GTD 

j  Wavenumbers in the horizontal direction 

j  Wavenumbers in the transversal direction 

  Density of air 
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  The Dirac delta function 

O  The infinitesimal of higher-order 

AΩ  
Sub-region A 

BΩ
 

Sub-region B 

CΩ
 

Sub-region C 

DΩ
 

Sub-region D 

  Normalize coefficient of modal expansion 

2  2D Laplace operator 

  Small distance near the saddle point 

dL  Correction term for diffraction effect 

gL  Correction term for the ground effect 

  Integration path in the complex 𝛼-plane 

w  Integration path in the complex 𝑤-plane 

s  Steepest descent path (SDP) 
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INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Background 

During the process of China’s urbanization, numerous traffic tunnels have been 

built to make full use of land resources and shorten the distance of roads. According to 

incomplete statistics (Fei & Xing, 2013), the total length of road tunnels in China had 

reached 5122.6 kilometers by the end of 2013. However, the number has been growing 

continuously in the last 18 years. Undoubtedly, they are playing increasingly important 

roles in cities’ traffic systems. Their advantages are obvious in certain situations when 

the roads are designed to pass through rivers and mountains. However, they also bring 

a lot of problems, such as poor ventilation, lighting, and noise pollution, in which the 

noise pollution is particularly serious. As a long space with openings on both ends, the 

propagation, distribution, attenuation, and reverberation of sound inside traffic tunnels 

are completely different from that in the open space (Kang, 1996a; 1996b; 1996c; 1997; 

2002). Serious excess of noise standard for road tunnels exerts harmful effects on the 

maintenance staff, drivers, and passengers. People feel uncomfortable after exposing to 

such high noise environments. 

Abatement of traffic noise using a single sound barrier or parallel barriers is very 

common in densely populated cities like Hong Kong. The noise level behind a barrier 

can be greatly reduced as the line-of-sight from the source to the receiver is intercepted 

and only the diffracted sound waves can reach the shadow zone. To further enhance the 

performance, barriers with T-shaped, Y-shaped, circular, and branched edge profiles 
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have been designed to minimize the diffracted noise (Ishizuka & Fujiwara, 2004). Their 

performance, however, might still not be good if the barriers are built near high-rise 

buildings, as the noise can still deteriorate the living conditions of high-floor residents 

who are exposed to the illuminated zones of these barriers (Li, Kwok, et al., 2008; Li, 

Law, et al., 2008). To reduce the traffic noise effectively, tunnel-shaped sound barriers 

or the so-called sound-proof tunnels were built along the roads which can greatly reduce 

the noise to a relatively low level. However, apart from the problems like the traditional 

tunnels, the noise radiated from tunnel openings is becoming increasingly prominent 

which has severely impacted the living conditions of residents nearby. Therefore, it is 

of great significance to establish a prediction model for sound radiation from tunnels 

so that the formation mechanisms of sound fields can be investigated and appropriate 

noise attenuation approaches can be proposed to minimize noise pollution. 

Apart from the noise radiated from tunnels in the outdoor environment, the noise 

radiated from pipework systems inside buildings is another issue to be solved. In Hong 

Kong, to make full use of the land resources, ground floors are used. However, the air 

circulation underground is bad which needs ventilation systems to provide fresh air. As 

a result, the noise radiated from the outlet of the pipework become serious which exerts 

negative impacts on the working efficiency of staff. The noise is mostly generated by 

the internal flow within the pipework, which might be sufficient to cause vibration and 

structure damage. The rough surfaces inside pipework can also cause noise, which can 

be modeled as monopole point sources (Goyder, 2011). Such noise problems can also 

be found in public facilities like air-conditioning systems of metro stations and gas 

pipes in buildings. The annoying noise radiated from the openings of pipework has 

adversely affected people’s physical and mental health. As people’s requirements for 

acoustical environments are getting higher and higher, the prediction and suppression 
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of radiation noise from pipes have become an urgent issue to be considered. 

Both the sound-proof tunnel and pipework in a ventilation system can be modeled 

as an unbaffled long enclosure (Yang et al., 2021). Researches on sound propagation 

inside an unbaffled long enclosure have been conducted. However, relatively less effort 

has been devoted to the issue of sound radiation from the long enclosure. The formation 

mechanisms of the radiated sound fields and the relationship between the sound fields 

inside and outside the unbaffled long enclosure need to be investigated so that suitable 

noise control devices can be applied to attenuate the noise pollution. 

1.2 Literature review  

1.2.1 Sound pressure field inside long enclosures 

The sound field inside a long enclosure is complex due to multiple reflections and 

interferences of sound waves. Inside a practical tunnel, there are many factors affecting 

the sound distribution, such as the variation of traffic flows and vehicle types, different 

tunnel dimensions, and interior boundary conditions. Theoretically, the classical mode 

theory has been frequently employed to predict the sound pressure distribution inside a 

duct and long enclosure. The excitation, transmission, and radiation of sound in a duct 

of hard walls were systematically analyzed by Doak (1973). In addition, the sound field 

produced by a monopole point source in an infinite rectangular duct was calculated by 

using the mode theory (Pierce & Acoustics, 1981). The image source method (ISM) is 

another frequently applied method to calculate the sound field in a long enclosure, such 

as corridors (Redmore, 1982), street canyons (Iu & Li, 2002), and traffic tunnels (Li & 

Iu, 2002). Based on the principles of ray tracing techniques, an incoherent ISM (Lemire 

& Nicolas, 1989) was proposed and developed which can evaluate the sound pressure 



 

 

4 

level (SPL) of a particular receiver by the summation of intensities from direct and all 

image sources. However, this energy-based ISM cannot account for the interferences 

between the direct and reflected sound waves. Recently, a coherent ISM was presented 

by Min et al. (2011) to predict the sound field in a two-dimensional (2D) waveguide 

with locally reactive impedance boundary conditions. A three-dimensional (3D) model 

was subsequently developed and validated in a long space with reflective ground and 

an absorptive ceiling (Min et al., 2014). The primary and image sources in the model 

are presented in Figure 1.1. 

 

Figure 1.1 Coherent image source method (ISM) to predict the sound pressure field 

inside a long space (Min et al., 2014). 

The total sound pressure field at the receiver in this space can be approximated 

as the summation of successive sound reflections on the four boundaries, which can be 

modeled as image sources: 

 total mn mn

m n

p Q P
 

=− =−

=    (1.1) 

where mnQ  stands for the combined complex wave reflection coefficient at each surface 
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which contains the phase effect, and mnP  denotes the pressure. In addition, scaled-down 

experiments were conducted to study the properties of sound propagation inside a long 

enclosure (Li & Iu, 2004). 

In brief, the sound field inside an unbaffled long enclosure can be determined by 

using the mode theory and ISM. However, these theoretical models can only be applied 

to deal with regular geometries such as rectangular and cylindrical enclosures. ISM is 

based on acoustical rays which is applicable in point source excitation. Besides, all the 

models mentioned above assumed that the enclosure is infinite long which ignored the 

reflected sound waves at the opening. Therefore, it is necessary to propose a prediction 

model that can couple the sound fields inside and outside a long enclosure. 

1.2.2 Sound pressure field outside long enclosures 

The prediction of the noise level in the vicinity of an unbaffled long enclosure is 

difficult due to the complexity of the radiated sound field which is formed by various 

acoustical phenomena including the direct sound radiation, reflections on the walls, and 

diffraction at the sharp edge. In the past 30 years, numerous computational models were 

put forward by researchers from different angles on the sound radiation and diffraction 

at openings which provide us a theoretical basis for the research of tunnel noise. Since 

the end of the last century, an increasing number of inhabitants who live near a tunnel 

had been complaining about the insufferable noise radiated from the tunnel opening. In 

order to avoid this annoying problem, prediction models (Sasaki, 1984) were proposed 

to investigate the noise level radiated from traffic tunnels. However, most of them are 

unsatisfactory even for ordinary engineering applications because of poor precision or 

specific preconditions. Woehner (1992) presented measurement results both inside and 

around some tunnels in Germany. Absorptive treatment was applied to the interior of 
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the tunnels, and an average of 3 dB to 6 dB sound reduction was found. Olafsen (1996) 

described a mathematical model, where the tunnel is assumed to be a circular tube, and 

the sound power generated inside the tunnel is equal to the sound power radiated at the 

openings multiplied by a reduction factor. All the above-introduced methods are the 

initial explorations of tunnel noise which lay a foundation for the later researches. 

In 1998, the Research Committee of Road Traffic Noise in Acoustic Society of 

Japan (ASJ) established the ASJ model (Sakamoto, 2015; Sakamoto et al., 2020) to 

predict the noise level radiated from the tunnel opening. Based on the energy balance 

inside the tunnel, the total sound power produced by a point source was divided into 

two parts and each of them propagates to the receiver point either directly or through 

multiple reflections. The sound pressure level at the receiver can be expressed as 

 
108 20logR W d gL L R L L= − − +  +   (1.2) 

where WL  denotes the sound power level at the source, dL  and gL  are correction 

terms for diffraction and ground effect, R  stands for the distance from the sound source 

to the receiver. A schematic diagram of the ASJ model (Sakamoto, 2015) is illustrated 

in Figure 1.2. 

 

Figure 1.2 Schematic diagram of the ASJ model to predict the sound radiated from a 

traffic tunnel (Sakamoto, 2015). 
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Numerically, it is a simple model with certain accuracy. But it can only be used 

as an approximate approach to estimate the noise radiated from the tunnel openings as 

most of the correction terms in the formula are from experiments rather than analytical 

derivation. The correction term for the diffraction is calculated as a function of the path 

difference using Maekawa’s engineering chart (Maekawa, 1968; Yamamoto & Takagi, 

1992). The correction term for the ground effect is evaluated by summing attenuations 

due to all surfaces, independently of the types of road surface pavement. Moreover, the 

monopole point source was assumed to be on the central line of the ground which limits 

its applicability. Later, the sound power at the point source as well as along the opening 

surface was calculated analytically by Heutschi and Bayer (2006). Then, an empirical 

algorithm was proposed, in which a part of the sound energy from the source transmits 

to the receiver directly with certain shielding effects at the edges. The rest of the sound 

energy was assumed to radiate from the center point of the opening to the receiver with 

corresponding directivities. Although improvements were done compared to the ASJ 

model, no validation or experiments were presented. 

In addition to theoretical investigations, scaled-down experimental studies have 

been conducted to explore the properties of sound radiated from tunnels. Tachibana et 

al. (1999) performed 1:40 scaled-down experiments to validate the calculation scheme 

for sound radiation from road tunnel openings described in the ASJ model. They studied 

a tunnel with a semicircular cross-section and different absorption characteristics of the 

surface. They found that a sound absorptive treatment of a limited area near the tunnel 

opening reduces the emitted sound power. Full-scale experiments were conducted in 

the Tai Lam Tunnel and the Western Harbor Crossing Tunnel of Hong Kong to validate 

the coherent ISM model in practical situations (Li & Iu, 2005). In most of the cases, the 

results obtained by the coherent ISM and the experiments agree well with each other 
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and the discrepancies are within 3 dB. Moreover, A 1:10 scaled-down model has been 

established to validate the theoretical ISM and the ASJ model (Li & Iu, 2004). A 1:16 

scaled-down model was built to simulate the Transit Railway in Hong Kong to see if 

there is noise reduction after the use of sound absorption materials (Kang, 1998). Most 

of the investigations mentioned above are oriented to engineering applications. As a 

result, errors are unavoidable. Besides, the physics and formation mechanisms behind 

the sound radiation phenomenon are seldom explored.  

1.2.3 Calculation methods for sound radiation problems 

1.2.3.1 Numerical methods 

The main difficulty when dealing with the problem of sound radiation from an 

unbaffled long enclosure is how to model the semi-infinite region outside the enclosure 

opening. Otherwise, the boundary value problem cannot be solved theoretically for the 

lack of enough equations in the physical domain. Alternatively, numerical approaches 

such as the finite element method (FEM), the boundary element method (BEM) can be 

applied. A numerical model based on a hybrid FEM was developed that seeks to couple 

sound pressure fields of the interior and exterior regions (Kirby, 2008; Duan & Kirby, 

2012). Felix et al. (2018) proposed a method to transform the semi-infinite acoustical 

domain outside a duct into a waveguide region by introducing a perfectly matched layer 

(PML) outside the original geometry. By doing this, the sub-fields could be expressed 

in terms of normal modes inside the duct and the whole acoustical field can be obtained 

via the mode-matching method. However, the PML parameters need to be optimized in 

numerical computation when dealing with specific problems, such as sound radiation 

from tunnels. Besides, the calculation efficiency declines when the size of the geometry 

is large. Huang et al. (2001) investigated the sound field near the tunnel outlet through 
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the normal mode method analytically and BEM numerically. The tunnel is simplified 

as a circular tube with an abrupt change of the cross-section. Obviously, the sound field 

outside the tunnel should be modeled as a semi-free one rather than the one constrained 

in a tube. These numerical methods possess the advantage of tackling irregular-shaped 

acoustical domains, however, have shortcomings in computational efficiency when the 

calculated acoustical domain is large. 

1.2.3.2 Wiener-Hopf technique 

Wiener-Hopf (W-H) technique is a standard approach to solve certain types of 

linear partial differential equations, which are subjected to mixed boundary conditions 

on infinite geometries. The exact solution to the problem of plane-wave radiation from 

a cylindrical duct has been obtained applying the W-H technique (Levine & Schwinger, 

1948). The distribution of the radiated sound field which is symmetrical about the axis 

of the pipe was described by the directivity function. For the radiation of higher-order 

modes, Lordi et al. (1974) calculated the power radiated from a duct opening per unite 

solid angle by the W-H technique. Afterward, the magnitude of the directivity function 

was analyzed. Practical strategies were put forward to predict the radiated lobes, zeros, 

sidelines, and aft radiation (Homicz & Lordi, 1975).  

The W-H technique was initially applied in the Electromagnetic field to deal with 

problems regarding the Electromagnetic wave radiation from parallel plate waveguide 

radiators. The radiation field of a parallel-plate waveguide radiator due to a plane-wave 

incidence and a single-mode incidence were addressed using the W-H technique (Ayub 

et al., 2016; Buyukaksoy & Birbir, 1998). Nevertheless, when dealing with the radiation 

problems with complex boundary conditions on plate surfaces (Polat, 1998), the W-H 

equation becomes intractable. In order to solve the wave radiation problem with mixed 

boundary conditions, the waveguide region was proposed to be expressed in terms of 
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normal modes, and the Fourier transform technique was applied elsewhere. This bypass 

the most challenging step of the matrix W-H factorization when applying the traditional 

W-H procedures. Besides, the thickness of the wall (Hames, 2011), local impedance 

boundary conditions (Birbir & Buyukaksoy, 2000) were also taken into consideration 

when dealing with the radiation problem. Later, a theoretical model for sound radiation 

from an unbaffled annular duct with the flow (Gabard & Astley, 2006) and lined center 

body (Demir & Rienstra, 2006) were proposed using the W-H technique. The findings 

are important benchmark results for acoustical engine-aircraft engineering applications. 

Besides, they serve as useful tools for understanding the physics behind sound radiation 

phenomena and validating numerical solutions. 

However, the exact solutions are not convenient for numerical calculation as they 

are expressed by complex integrals. Several approximation methods were put forward 

to simplify the problem, in which the most widely applied is Hocter’s method (Hocter, 

1999; 2000). The ray structures of duct modes propagating inside a semi-infinite duct 

were determined by Chapman (1994). Using the modal angles, it is possible to express 

the propagation and radiation of modes in conjunction with Keller’s geometrical theory 

of diffraction. Besides, the W-H technique mentioned was applied in electromagnetics 

and for 2D geometries which limits its application in practical tunnels. 3D cases are 

seldom mentioned in literature even though they could be used in the cylindrical duct 

as they are symmetric along their axis. 

1.2.4 Helmholtz resonators for noise control 

Previous investigations have demonstrated that to predict the sound radiated from 

the openings of open cavities (Yang et al., 2013, Tong et al., 2017), unbaffled long 

enclosures (Yang et al., 2021), and ducts (Doak, 1973; Cai & Mak, 2018), the sound 
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fields inside the enclosed regions can be expressed by the superposition of acoustical 

modes, and the radiated sound fields are closely related with these modes. Due to the 

multiple reflections on boundaries inside the enclosed regions, standing waves can be 

observed which gives rise to multiple peaks in the SPL spectra of receivers inside and 

outside the geometry which are dominated by acoustical modes. Therefore, suppressing 

the acoustical modes inside the bounded region of an open cavity to attenuate the SPL 

peaks outside the enclosed region of the cavity has been proposed and verified (Wang 

& Choy, 2019a).  

A Helmholtz resonator (HR) is commonly used to attenuate the noise level at the 

resonant frequency, which is suitable for the control of a sound peak. A resonator works 

only within a narrow bandwidth centered at the resonant frequency of the resonator. To 

broaden the working frequency band, a resonator array consisting of multiple resonators 

with different natural frequencies has been applied to control multiple sound peaks. The 

sound transmission loss of a duct was improved by adding HRs at the side branch (Chen 

et al., 1998). Besides, serial and parallel arrangement of HRs were tested to obtain a 

broad impedance match (Seo & Kim, 2005). However, the mounting locations of the 

HRs must be optimized. Otherwise, unfavorable interactions among the HRs and the 

acoustical domain may occur when the distances between them are small. Apart from 

the duct noise control, HRs have also been applied to attenuate the noise radiated from 

a baffled rectangular open cavity (Wang & Choy, 2019a). They revealed that desirable 

noise attenuation can be achieved with the HR mounting near the point source, while 

the noise reduction decreases when the HR moves towards the opening of the cavity as 

the coupling effect between the HR and the cavity become weak. Similar results were 

found in parallel barriers which is a 2D configuration of an unbaffled open cavity 

(Wang & Choy, 2019b). In addition, HRs have been employed to suppress the noise 
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inside enclosures (Li et al., 2007; Li & Cheng, 2007; Yu et al., 2008; Yu & Cheng, 

2009). The effects of internal resistance and mounting locations of T-shaped HRs on 

the noised attenuation performance of enclosures are systematically investigated. Even 

though numerous studies on HRs were found, investigations on the interaction between 

multiple HRs and the acoustical field inside an unbaffled long enclosure have seldom 

been observed. 

1.2.5 Micro-perforated panel absorbers for noise control 

Micro-perforated panel absorbers (MPPAs) have been extensively used in room 

acoustics (Fuchs & Zha, 2006), architectural and environmental noise abatement (Kang 

& Brocklesby 2005; Asdrubali & Pispola, 2007). An MPPA can be simply assembled 

by putting an MPP in front of a backing cavity (Maa, 1998). MPPs can be manufactured 

from a variety of materials such as metal, plastics, and wood. Therefore, an MPPA can 

be used either in ordinary conditions or harsh environments. For instance, Wu (1997) 

proposed applying MPPs for the design of duct silencers. The sound absorption and 

transmission characteristics of a lightweight MPP backed by a plate were investigated 

by Dupont et al. (2003). The feasibility of using transparent MPPs in window systems 

to reduce the noise and maintain the efficiency of ventilation was examined by Kang 

and Brocklesby (2005). An innovative sound barrier using a transparent polycarbonate 

MPP was proposed and studied by Asdrubali and Pispola (2007) which shows excellent 

performance in both the acoustical and optical fields. Experimental investigations were 

carried out to explore the feasibility of applying MPPs in medical equipment such as 

magnetic resonance imaging scanners (Li & Mechefske, 2010). In addition, new types 

of mufflers (Allam & Abom, 2011) and dissipative silencers (Abom & Allam, 2013) 

were proposed based on MPPs. 
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Due to the promising potential of MPPAs in noise control, many efforts have been 

made to improve their acoustical performance. For instance, for the purpose of applying 

the MPPs to construction facilities, Liu and Herrin (2010) attempt to improve the sound 

absorption coefficient of an MPPA inside a rectangular enclosure by using honeycomb 

cavities (Herrin et al., 2011). Wang et al. (2010) developed an MPPA with a trapezoidal 

backing cavity which alters the coupling effect between the MPP and cavity. Gai et al. 

(2017) calculated the sound absorption coefficients of MPPAs with L-shaped backing 

cavities. Besides, the sound absorption performance of an MPPA backed by an HR was 

studied aiming at improving its property of absorbing low-frequency noise. Apart from 

the shape designs of an MPPA, flexible structures have been introduced to improve the 

performance of MPPAs. The vibration effect of flexible panels on the sound absorption 

performance of MPPAs was explored by Lee et al. (2005). Both the sound absorption 

and transmission performance of a flexible MPPA were investigated theoretically and 

experimentally (Bravo et al., 2012a; 2012b). Besides, a light MPP was used by Wang 

et al. (2012) to improve the noise control performance of duct silencers. In addition, 

multiple layered (Maa, 1987; Lee & Kwon, 2004; Sakagami et al., 2010; Bravo et al., 

2017; Chang et al., 2018, Bucciarelli et al., 2019); parallel (Wang & Huang, 2011; Yairi 

et al., 2011; Li et al., 2016) and serial (Qian et al., 2017) arrangement of MPPAs are 

proposed. In general, MPPs in parallel arrangements provide wider sound absorption 

bandwidth compared with those in serial arrangements. To widen the sound absorption 

bandwidth, inhomogeneous MPPAs were proposed (Prasetiyo et al., 2016; Mosa et al., 

2019; 2020). The inhomogeneous MPPAs provide good sound absorption bandwidth 

by designing the sub-MPPs. 

The performance of MPPAs might not be good when they are applied in complex 

situations (Maxit et al. 2012; Yang & Cheng, 2016), even though their performance 
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under a normal plane-wave incidence is excellent. To model practical situations, the 

sound absorption performance of MPPAs subjected to oblique and random plane-wave 

incidences has been studied (Yang et al., 2013; Wang et al., 2014; Liu et al., 2020). The 

sound absorption coefficient of an MPPA is dominated by the mass-spring system 

consisting of the air inside micro-perforations and the air inside the backing cavity. The 

equivalent acoustical impedance of the MPPA varies with respect to the incidence angle 

which in turn changes the sound absorption performance of the MPPA. Besides, for an 

MPPA with a rectangular cavity, only the acoustic modes normal to the MPP contribute 

to the sound absorption performance. Corrugated MPPA was proposed which not only 

changes the incidence angle of the incoming sound wave to the local MPP surface but 

also creates an irregular-shaped backing cavity which enables more acoustical modes 

to contribute to the sound absorption performance of the corrugated MPPA (Wang & 

Liu, 2020). Results showed that multiple modes of the corrugated configuration are 

excited at the peak and dip frequencies and the acoustic responses by the non-resonating 

modes contribute to the improvement of sound absorption performance. 

The sound distribution inside a soundproof tunnel is complex which needs a noise 

control device that can attenuate higher-order modes. Corrugated MPPAs are promising 

devices for the attenuation of noise in complex situations. However, only a sinusoidal 

MPP profile has been considered (Wang & Liu, 2020). To enhance the sound absorption 

performance, the acoustical characteristics of a Z-shaped MPPA are investigated and 

its sound attenuation performance inside an unbaffled long enclosure is explored in the 

current study. 

1.3 Preliminary experiments 

A preliminary experiment has been performed to figure out the basic properties 
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of traffic noise outside a tunnel in Hong Kong. According to the measurement method 

described in the environmental quality standard of noise (GB 3096-2008), the day-time 

equivalent A-weighted SPLs at different locations outside the tunnel were obtained by 

sound level meters (Larson Davis Model 831). For each test point, three measurements 

were carried out and their average SPLs are listed in Figure 1.3. The total average SPL 

of all the testing points reached 81.8 dB (A). It has exceeded the threshold specified in 

the standard which is 70 dB (A) for urban arterial roads. The noise pollution in this area 

has severely influenced the living condition of the nearby residents. 

 

Figure 1.3 Measurement locations outside a sound-proof tunnel in Hong Kong and the 

average SPLs at each testing point. 

Besides, the measured SPL spectra of the average noise radiated from the tunnel 

with stable traffic flow, from buses, and heavy trucks traveling at approximately 70 

km/h are presented in Figure 1.4. Apart from the fluctuating results under around 200 

Hz which results from the random vibration and the limitation of equipment, the noise 

energy concentrates mainly in the frequency range between 200 Hz and 2000 Hz. For 

high-frequency interval, however, the SPL decreases continuously and dissipates easily 

http://cn.bing.com/dict/search?q=continuously&FORM=BDVSP6&mkt=zh-cn


 

 

16 

in the open space with increasing distance. Similar experimental results can be observed 

in the work by Can et al. (2010).  

 

Figure 1.4 SPL spectra of noise radiated from a tunnel with stable traffic flow, from city 

buses, and heavy trucks traveling at about 70 km/h. 

Moreover, the SPL spectra of noise radiated from the openings of 3 ventilation 

ducts in research offices are illustrated in Figure 1.5. The peaks stand approximately at 

200 Hz with the SPLs reaching 58 dB. In the middle to high-frequency range, the SPLs 

decrease continuously. However, the SPLs are higher than 40 dB when the frequency 

is within 2000 Hz which is not conducive to efficient work. Based on the experimental 

results, the main noise frequency band that affects our normal life is 200 Hz to 2000 Hz 

which is chosen as the targeted frequency range in this thesis. Besides, the noise levels 

in people’s living environment have already excessed the threshold values of various 

noise standards which need serious consideration. 

 



 

 

17 

Figure 1.5 SPL spectra of noise radiated from the openings of three ventilation ducts in 

research offices. 

1.4 Motivations and objectives 

Environmental noise is particularly serious in densely populated cities like Hong 

Kong. To prevent the residents from noise pollution, parallel barriers have been widely 

constructed on both sides of roads. However, their performance is still unsatisfactory 

as the noise can still reach the residents in high-rise buildings. In addition, sound-proof 

tunnels are built to cover the roads so that the noise inside the tunnel cannot propagate 

directly to the outside receiver. However, the SPL and the reverberation time inside the 

sound-proof tunnels are high and long, respectively, which is harmful to maintenance 

staff, passengers, and drivers. Besides, the sound radiated from the portals also causes 

noise pollution to the surroundings. 

From the existing works, numerous investigations have been implemented on the 

propagation, reverberation, and dissipation of sound inside long enclosures and traffic 

tunnels. However, relatively little attention has been paid to problems concerning sound 

radiation from unbaffled openings. Specifically, the main issues needing consideration 

are summarized as follows: 

(1) Engineering approaches have been put forward to tackle problems regarding 

sound radiation from pipes and tunnels. However, theoretical investigations 

on sound radiation from such unbaffled long enclosures are limited.  

(2) W-H technique has been applied to formulate sound radiation problems. The 

geometrical configurations, sound sources, and boundary conditions need to 

be further extended to meet engineering applications. 

(3) The formation mechanisms of the sound pressure fields inside and outside an 
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unbaffled long enclosure are seldom explained, and the physics behind the 

sound radiation phenomenon is barely revealed. 

(4) A simple, compact, and reliable noise control device is still needed to suppress 

the noise radiated from an unbaffled long enclosure. The interaction between 

the acoustical field of an unbaffled long enclosure and a noise control device 

needs to be explored. 

Motivated by the serious noise pollution in Hong Kong and insufficient studies 

on the sound radiation problems, the prediction and attenuation of sound radiated from 

unbaffled long enclosures are addressed in this thesis. The objectives are summarized 

as follows: 

(1) To establish a theoretical model for the prediction of sound radiated from an 

unbaffled long enclosure, validate the proposed model using the FEM, and 

explain the physics behind the sound radiation phenomenon. 

(2) To model the sound radiation from a sound-proof tunnel, in which monopole 

point sources, impedance boundary conditions are taken into consideration to 

simulate practical scenarios; to explore the physics behind the sound radiation 

phenomenon, and provide a theoretical basis to the proposal of noise control 

strategies.   

(3) To propose suitable noise control devices for the abatement of noise radiated 

from unbaffled long enclosures, evaluate their performance, investigate the 

interaction between devices and the acoustical domain, and find the optimized 

configurations of the proposed noise control devices. 

(4) To validate the proposed theoretical models and examine the noise absorption 

performance of noise control devices via scaled-down quasi-two-dimensional 

experiments. 
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1.5 Outline of the thesis 

The thesis is composed of 6 chapters. Chapter 1 presents the background of sound 

radiation from unbaffled long enclosures, such as ductwork in ventilation systems and 

traffic tunnels. In addition, related literature is reviewed and preliminary experiments 

are conducted. Motivations, objectives, and the outline of this study are illustrated. 

Chapter 2 introduces the W-H technique to predict the sound radiation from an 

unbaffled long enclosure. In contrast to the classical formulations which led to a matrix 

W-H equation, the proposed model reduced the boundary value problem into two scalar 

modified W-H equations (MWHE) of the second kind which involve an infinite number 

of unknowns satisfying an infinite system of linear algebraic equations susceptible to a 

numerical treatment. Besides, monopole point sources are applied to simulate the noise 

sources which are more real and representative. Detailed formulation processes and the 

numerical implementation procedures are presented. The physics behind the radiation 

phenomenon is investigated by the mode theory. Additionally, quasi-2D experiments 

and FEM simulations are conducted to validate the proposed model. 

Chapter 3 presents a theoretical model for the prediction of sound radiated from 

an unbaffled long enclosure including the ground. The geometrical arrangement forms 

an idealized representation of soundproof tunnels where noise propagates inside the 

long enclosures and radiates to the outside through the openings. Impedance boundary 

conditions are applied to mimic the practical scenarios. The influences of these acoustic 

impedances on sound radiation patterns are investigated which indicates that boundary 

condition on the inner wall of the long enclosure is the most suitable one to be applied 

for the attenuation of noise. Besides, the sound radiation pattern from an unbaffled long 

enclosure with a partial lining is investigated in which frequency-dependent impedance 
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condition is applied. Finally, quasi-2D experiments are carried out to validate the model 

and examine the sound absorption performance of partial linings. 

Chapter 4 demonstrates a hybrid method to explore the sound radiated from an 

unbaffled long enclosure with the ground, in which the sound pressure field inside the 

long enclosure is calculated by the FEM, while the radiated sound field is expressed by 

the W-H technique. The proposed hybrid possesses the advantages of calculating the 

sound fields flexibly and efficiently. Helmholtz resonators are proposed to suppress the 

modal responses at the opening so that the radiated sound is expected to be attenuated 

at the targeted frequencies. The optimized configurations and locations of multiple HRs 

are obtained to suppress multiple sound peaks of the radiated sound field. Finally, a 

quasi-2D experiment is implemented to validate the model. 

Chapter 5 investigates the acoustical properties of a Z-shaped micro-perforated 

panel absorber (ZMPPA) in practical acoustical environments. A numerical scheme is 

proposed to calculate the sound absorption coefficient of corrugated MPPAs under an 

oblique plane-wave incidence. Then, the numerical model is validated using benchmark 

theoretical formulas. Parametrical studies are conducted to investigate the performance 

of a ZMPPA. After that, the optimized parameters of a ZMPPA are obtained, which are 

applied to attenuate the sound radiated from an unbaffled long enclosure. Experimental 

results are presented to validate the numerical model and examine the sound absorption 

performance of a ZMPPA in attenuating the noise radiated from an unbaffled long 

enclosure with the ground. 

Chapter 6 summarizes the findings in this thesis. Recommendations for the future 

work for sound attenuation of an unbaffled long enclosure are briefly discussed. 
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THEORETICAL MODEL OF SOUND RADIATION 

FROM AN UNBAFFLED LONG ENCLOSURE 

 

2.1 Introduction 

Sound radiation from an unbaffled long enclosure can be commonly observed in 

ductwork systems, such as ventilation, air conditioning, and aircraft jet engines. Various 

investigations have been conducted to predict and then reduce the sound radiated from 

the long enclosure, among which, the W-H technique was widely applied. However, in 

the previous studies (Levine & Schwinger, 1948; Lordi et al., 1974, Homicz & Lordi, 

1975; Buyukaksoy & Cinar, 2005; Peake & Abrahams, 2020), both acoustical domains 

inside and outside the duct were converted into the spectral domain through the Fourier 

transform, which gave rise to a matrix W-H equation. To find the solution, the square 

matrix must be split into the product of two matrices with nonvanishing determinants 

such that the entries of these matrices, as well as their inverses, are regular in a certain 

overlapped region of the upper and lower halves of the complex plane. However, due 

to the non-commutativity of matrix multiplication, there is not a general approach to 

achieve the W-H factorization of an arbitrary square matrix. As a result, if the geometry 

and boundary conditions are complicated, the solution to the radiation problem cannot 

be obtained using traditional W-H procedures. 

The distribution pattern of sound radiated from ducts or long enclosures is directly 

determined by the acoustical source. Plane-wave and single-mode were considered in 
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the models mentioned above. These models are applied to predict the sound radiation 

from heating, ventilation, and air-conditioning systems as the sound distribution in such 

a system is relatively simple. However, in larger geometries such as traffic tunnels, the 

sound field inside the long enclosure is more complicated, which cannot be represented 

by a plane-wave or single-mode. Hence, in this thesis, we use a monopole point source 

to simulate the noise source. It produces a sound field formed by the superposition of 

multiple higher-order acoustical modes, which is more practical and representative.  

2D configurations are considered in this thesis. Admittedly, a 2D model cannot 

fully represent the sound distribution in a 3D domain. However, for such a geometrical 

configuration, 2D models are often established in previous studies. This is due to the 

limitation of the W-H technique in dealing with a 3D problem. As a result, a 2D model 

is first established to explore the radiation patterns of noise from a long enclosure and 

to explain the physics behind the sound radiation phenomenon. With the development 

of the W-H technique, it has been extended to solve certain kinds of 3D problems such 

as sound radiation from annular/cylindrical ducts (Demir & Buyukaksoy, 2005; Demir 

& Rienstra, 2006; 2010; Tiryakioglu, 2019; Peake & Abrahams, 2020). Despite that, 

there are still many problems to be solved in building a 3D W-H model such as sound 

radiation from a rectangular long enclosure. These problems which will be studied in 

our future work. 

In this chapter, the sound radiation from an unbaffled long enclosure is analyzed 

based on the W-H technique. However, only the outside acoustical domain is converted 

into the spectral domain. Two modified W-H equations are obtained and their solutions 

are obtained simultaneously by applying the standard factorization and decomposition 

procedures. This bypass the most challenging stage of the classical formulations, which 

will lead to an intractable matrix W-H factorization. Besides, the sound field inside the 
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enclosure is expressed in terms of acoustical modes which is convenient to explain the 

radiation phenomenon from the perspective of the mode theory. Monopole point sound 

sources are applied. Detailed formulation and implementation of the theoretical model 

are demonstrated. Besides, the proposed theoretical model is validated using the FEM, 

and mechanisms behind the radiation phenomenon are explained from the perspective 

of mode theory. In addition, A quasi-2D experiment is also conducted to validate the 

proposed model. 

2.2 Theoretical model 

2.2.1 Description of the problem in the natural domain 

A schematic diagram of the sound radiation from an unbaffled long enclosure is 

shown in Figure 2.1. A two-dimensional rectangular (2D) enclosure is considered. The 

height of the unbaffled long enclosure is 2h, and the thickness of the wall is assumed to 

be zero for simplicity. All boundaries are set to be acoustically rigid. In this thesis, the 

flow speed of the air media is ignored which may change the propagation and radiation 

patterns of the noise. However, the proposed theoretical model can be easily extended 

to contain the moving flow (Gabard & Astley, 2006). Besides, the radiation properties 

of sound in the frequency domain are considered here. Nevertheless, in real traffic, both 

the velocity and location of the sound source are changeable. Doppler effect should be 

considered for such situations in the time domain. As the main purpose of this research 

is to explore the underlying physics behind the sound radiation phenomenon, frequency 

analysis is considered. 

The noise is produced by monopole point sources nS  with their locations and the 

volume velocity strengths being ( ),n nx y  and nQ  , respectively. A Cartesian coordinate 
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system ( )xoy   is adopted with the origin fixing at the middle point of the opening. The 

polar coordinate system ( )ro  is also shown to express the directivity patterns of the 

radiated sound field. In addition, imaginary interfaces I , II , and III  are depicted for 

the convenience of analysis. They divide the whole acoustical domain into four sub- 

regions which are denoted by AΩ , BΩ , CΩ , and DΩ , respectively.  

 

Figure 2.1 A schematic diagram of sound radiation from a two-dimensional unbaffled 

long enclosure. 

According to the partition of the whole acoustical domain in Figure 2.1, the total 

sound pressure field is expressed by the following piecewise function as 
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 (2.1) 

where ( ),Ap x y , ( ),Cp x y , and ( ),Dp x y  are the sound pressure fields of regions AΩ , 

CΩ , and DΩ , respectively. The incident and reflected sound pressure fields of region 
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BΩ  are denoted by ( ),incidentp x y  and ( ),reflectedp x y , respectively.  

The total sound pressure field without any sound source can be described by the 

following homogeneous Helmholtz equation as 

 ( ) ( )2 2, , 0total totalp x y k p x y + =  (2.2) 

where 2 2 2 2 2= x y   +   denotes the 2D Laplace operator, and k  represents the free 

space wavenumbers.  

In any physical medium, loss is inevitable. Therefore, an ideal lossless medium 

which is often used in theoretical analyses can be regarded as a limiting case with a 

vanishingly small loss. We assume: 

 
1 2 1 2, 0k k ik k k= −   (2.3) 

where 1k   and 2k−  are the real and imaginary parts of the wavenumber. 

Boundary conditions on the rigid walls can be described by 

 
( )

walls

,
0

totalp x y

y


=


 (2.4) 

Apart from that, the sound pressure and particle velocity at imaginary interfaces 

should be continuous which are expressed by 

 
III III
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p p p p p p

y y x x y y
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= = = = = =
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 (2.5) 

where Bp  denotes the total sound pressure field of region BΩ . 

Besides, when boundaries at infinity or geometrical singularities are involved in 

the model, several mathematically acceptable solutions of the acoustical field might be 

obtained. However, only one of them is completely consistent with the anticipated 

physical phenomenon. Hence, to ensure the uniqueness of the solution to the problem, 

we must consider the Sommerfeld radiation condition for the infinite region outside the 
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long enclosure (Yang et al., 2013): 
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 (2.6) 

Also, to avoid the geometrical singularities at the edges of the long enclosure, the 

acoustical energy stored in any finite neighborhood of the edges must be finite which 

is expressed by (Khan et al., 2014) 

 ( ) ( ) ( ) ( )1 2 1 2,
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p x h
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 = = →


 (2.7) 

where O  denotes the infinitesimal of higher-order. 

Inside the long enclosure, the incident sound pressure field produced by the n-th 

monopole point source satisfies the following inhomogeneous Helmholtz equation: 

 ( ) ( ) ( ) ( )2 2

0,incident n n nk p x y i kc Q x x y y   + = − − −  (2.8) 

where  ,  , and 0c  are, respectively, the Dirac delta function, the density of air and 

the sound speed. The solution to Eq. (2.8) satisfying the boundary conditions on walls 

can be expressed in terms of the superposition of normal modes as (Doak, 1973) 
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where the even (with superscript ‘e’) and odd (with superscript ‘o’) wavenumbers for 

cosine and sine modal functions are calculated by 
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and 
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Besides, the normalized coefficients of the cosine and sine modal expansions are 

calculated by 

 ( ) ( ) ( )2 2cos = 1 , sin

h h
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Due to the impedance mismatch caused by the abrupt size change at two sides of 

the enclosure opening, there must be a reflected sound pressure field inside the long 

enclosure which is expressed by 
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where 
o

nb  and 
e

nb  are modal response coefficients for cosine and sine modal functions.  

The boundary value problem is described in the natural domain. However, due to 

the infinite boundary conditions outside the long enclosure, it is difficult to obtain the 

solution to the Helmholtz equation applying traditional methods. Enlightened by the 

corresponding relationships between the infinite boundary conditions on walls and the 

infinite limits in Fourier integral, next, we will apply the Fourier transform to convert 

the radiated sound pressure field into the spectral domain. Solvable W-H equations will 

be obtained and then solved through the W-H technique. 

2.2.2 Radiated sound pressure field in the spectral domain 

The Helmholtz equations for regions ( )A D
Ω  in the natural domain are converted 

into the spectral domain through the full-range Fourier transform as  
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where i  = +  denotes the Fourier transform variable. The first term in the bracket 

of Eq. (2.14) can be integrated by parts as 
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where 
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Hereafter, we use the upper cases of the variables in the natural domain to stand 

for their transformed forms in the spectral domain. Note that the contributions from the 

bracketed terms of Eq. (2.15) at the positive and negative infinities are both zero. They 

result from the Sommerfeld radiation condition which implies that an outgoing wave 

disappears at the infinity.  

Combining Eqs. (2.14) and (2.15), we have the transformed Helmholtz equations 

for regions ( )A D
Ω  which are expressed as 

 ( )
( ) ( )

( ) ( )

2
2

2

, ,
0

, ,

A A

D D

P y P y

P y P yy

 
 

 

+ −

+ −

 + 
+ =  

+   
 (2.17) 

where 
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and ( ) 2 2k  = −  is called the square root function. It is defined in the complex 𝛼-

plane with two branch points k , and branch cuts C  along k =  to k i = −   and 

k =−  to k i = − +   as shown in Figure 2.2.  
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Figure 2.2 Schematic diagram of branch points (circles), branch cuts (red solid line) of 

the square root function, the integration path (blue arrow line) for the inverse Fourier 

transform. 

This is a compulsory choice due to the physical existence of Green’s function. 

Besides, it can be observed that the imaginary parts of the numbers in this cut plane are 

all negative, which implies that, under this configuration, the cut plane is a proper sheet. 

For the convenience of description, we denote that the regions 2k  −  and 2k   are 

the upper and lower half complex 𝛼-planes, respectively. 

Taking into consideration the following asymptotic behaviors: 
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it can be observed that ( ),AP y+
 and ( ),DP y+

 are regular functions in the upper half 

complex 𝛼-plane, while ( ),AP y−
 and ( ),DP y−

 are regular functions in the lower half 

complex 𝛼-plane. The general solution to Eq. (2.17) reads 
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where ( )A   and ( )D   are unknown spectral coefficients. Based on the transformed 

boundary conditions on the walls, we have the following identities: 

 ( ) ( ) ( ),AP h i A   + = −  (2.21) 

 ( ) ( ) ( ),DP h i D   + − =  (2.22) 

Similarly, the Helmholtz equation for region CΩ  is converted into the spectral 

domain using the half-range Fourier transform technique: 
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where the pressure and pressure gradient at the opening are defined as 
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and 
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The general solution to Eq. (2.23) which is a second order inhomogeneous linear 

differential equation can be obtained using the method of constant variation as 

 

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )( )

, cos sin

1
sin

C

y

h

P y B y C y

f i g y d
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      
 

+

−

= +      

+ + −      
 (2.26) 

where ( )B   and ( )C   are unknown spectral coefficients.  

Based on the transformed continuity relations of particle velocity at the imaginary 

interfaces I and III, the unknown spectral coefficients can be obtained as 

 
( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )
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B
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 
− − + + −       

 =
  


 (2.27) 
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( )

( ) ( ) ( ) ( ) ( )( )
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
 (2.28) 

Then, substituting Eqs. (2.27) and (2.28) into Eq. (2.26), the transformed sound 

pressure field of region CΩ  is obtained: 
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+
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−
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−

−

 − −
    =  

  + + −         
 

 − +
    +  

  − + −         
 
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



 (2.29) 

The term on the left-hand side of Eq. (2.29) is regular in the upper half complex 

𝛼-plane. However, the regularity of the terms on the right-hand side of the equation is 

violated by the poles occurring at the zeros of denominators satisfying the following 

conditions: 

 ( ) ( )sin 0o o

m m h     =
 

 (2.30) 

 ( ) ( )cos 0e e

m m h     =
 

 (2.31) 

These poles are eliminated by imposing that their residues are zero. According to 

the residue theorem, the terms in the bracket of Eq. (2.29) should be zero: 

 ( ) ( ) ( ) ( ) ( ) ( ), , 1 cos

h
mo o o o o o

A m D m m m

h

P h P h f i g d       + +

−

 − − = − +   (2.32) 

 ( ) ( ) ( ) ( ) ( ) ( ), , 1 sin

h
me e e e e e

A m D m m m

h

P h P h f i g d       + +

−

 + − = − +   (2.33) 

Define the following coefficients: 
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
−

  
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1
sin
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d
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
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
−

  
=   
   
  (2.35) 

Then, using Eqs. (2.34) and (2.35), Eqs. (2.32) and (2.33) can be simplified to the 

residue solutions as 

 ( ) ( ) ( ) ( ), , 1
mo o o o o o

A m D m m m m mP h P h f i g  + +− − = − +   (2.36) 

 ( ) ( ) ( ) ( ), , 1
me e e e e e

A m D m m m m mP h P h f i g  + ++ − = − +   (2.37) 

The sound pressure and its gradient at the opening of the long enclosure can be 

expanded into modal series as 
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( )
( )

0

cos

o o

om

mo o
m m

g y g
y

f y f




=
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  (2.38) 
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0

sin

e e

em

me e
m m

g y g
y

f y f




=

   
=   

  
  (2.39) 

In the residue solutions, there are still an infinite number of unknowns, which 

need extra equations to determine them. Next, we will obtain two W-H equations and 

their solutions using the W-H technique. 

2.2.3 Wiener-Hopf equations and their solutions 

Combining Eqs. (2.20), (2.21), (2.22), and the transformed continuity relations at 

imaginary interfaces I and III, we have the following identities: 

 ( )
( ) ( ) ( ) ( )

( ) ( )

1
, , + , ,

, ,

D A A D

C C

P h P h P h P h
i

P h P h

   
 

 

+ + − −

+ +

 − + − − 

= − −

 (2.40) 

and 
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( ) ( ) ( ) ( )
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P h P h
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 (2.41) 

Substituting Eq. (2.29) into Eqs. (2.40) and (2.41), respectively, we can obtain 

the following W-H equations:  
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 (2.42) 

and 
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 (2.43) 

where kernel functions are defined as follows: 

 ( )
( )

( )
( )cos

i h
h

N e
 

 


 

−
  =  (2.44) 

and 

 ( )
( )

( )
( )sin

i h
h

L e
 

 


 

−
  =  (2.45) 

In order to find the solutions of the W-H equations, the classical factorization and 

decomposition W-H procedures are conducted. The general procedures to solve a W-H 

equation are presented in Appendix-A. Taking Eq. (2.42) for example, the first step is 

to split (factorize) the kernel functions into positive (denoted by a superscript ‘+’) and 

negative (denoted by a superscript ‘-’) parts which are regular in the upper half and the 

lower half complex 𝛼-plane, respectively. 
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 (2.46) 

where the factorized kernel functions satisfy: 

 ( ) ( ) ( ) ( ), N N     + − + −= − = −   (2.47) 

Collecting the terms which are regular in the upper half complex 𝛼-plane at the 

left-hand side of the equation and those regular in the lower half complex 𝛼-plane at 

the right-hand side, we have 
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 (2.48) 

The regularity of the left-hand side terms in the lower half complex 𝛼-plane is 

violated by simple poles occurring at zeros of the denominator. They can be eliminated 

using the following decomposition procedure: 
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 (2.49) 

Considering analytical continuation followed by Liouville’s theorem and making 
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full use of the properties of the split function Eq. (2.47), the W-H solution is obtained 

as follows: 
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Based on the same procedures described above, we can obtain the solution to the 

second W-H equation: 
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Here, the split functions are regular in the upper half complex 𝛼-plane and their 

explicit expressions are obtained based on the method described by Mittra (1971) as 
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 (2.52) 

and 
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 (2.53) 

where 0.57721...C =  denotes the Euler-Mascheroni constant. 

2.2.4 Sound pressure field in the natural domain 

Then, to determine the modal response coefficients, we employ the well-known 

mode-matching method which has been extensively applied to analyze the sound fields 
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inside waveguide structures. Using continuity relations of sound pressure and particle 

velocity at imaginary interface II, we have 
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and 
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Similarly, we have 
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and 
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Multiply both sides of Eqs. (2.54) and (2.55) by ( )sin e

s y ; Eqs. (2.56) and  (2.57) 

by ( )cos o

s y , and integrate along the opening in terms of y . Making full use of the 

orthogonality of trigonometric functions, we have the following identities: 
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Similarly, we have 
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Rewrite Eqs. (2.58) to (2.63) in matrix forms, we have 

 e e e− =G B Y  (2.64) 

 e e e e−F U B =M  (2.65) 

 ( )F +U G =H F U G
e e e e e e e−  (2.66) 

 o o o−G B =Y  (2.67) 

 o o o o−F U B =M  (2.68) 

 ( )o o o o o o o−F +U G =H F U G  (2.69) 

where B
o , B

e , F
o , F

e , G
o , and G

e  are unknown coefficients to be determined; Y
o , 

Y
e , M

o , M
e , U

o , U
e , o

H , and e
H  are the known matrices that can be constructed 
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according to Eqs. (2.58) to (2.63), respectively. Matrix inversions are needed in the 

process of solving the equations. Therefore, we let all the subscript indexes be equal to 

guarantee that they are square matrices.  

After determining the unknown coefficients, the radiated sound pressure fields of 

regions AΩ  and DΩ  in the natural domain can be obtained by taking the inverse Fourier 

transform of Eq. (2.20) as 
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where the integration path   is presented in Figure 2.3, and 
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Eq. (2.70) can be numerically evaluated using the method introduced by Gabard 

and Astley (2006). However, the direct calculation of the inverse Fourier transform is 

expensive and time-consuming. To get an asymptotic solution to Eq. (2.70), we conduct 

a change of variables as follows: 

 cos , cos , sink w x r y r  = − = =  (2.73) 

Then, Eq. (2.70) is transformed into the complex 𝑤-plane as 
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where 

 ( ) ( )cosg w i w = − +  (2.75) 

and the new integration path w  is illustrated in Figure 2.3. Next, we deform the path 

into a new path s  known as the steepest descent path (SDP) which passes through the 

saddle point = θsw − . The criterion for the selection of s  are that the imaginary part of 

the function ( )g w  is constant and its real part reaches the maximum value at the saddle 

point which can be described as ( )’ =0sg w . 

 

Figure 2.3 Mapping of the square root function from the complex 𝛼-plane to the new 

complex 𝑤-plane.  

As kr → , the major contribution to the integral of Eq. (2.74) along s  comes 

from a small segment around the saddle point due to the exponentially decaying factor 

in the integrand. Making full use of the error function, the asymptotic evaluation of the 

inverse Fourier transform through the saddle point method gives 
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where the error function is expressed as 
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and   is a small length near the saddle point. Detailed derivations of the saddle-point 

method can be found in Appendix-B.  

In numerical calculations, we assume that the value of the error function is always 

1, which results in the far-field approximation of the radiated sound pressure field. It is 

sufficient for most engineering applications. For detailed analysis, the sound field near 

the opening of the unbaffled long enclosure is also needed which can be obtained either 

by evaluating the inverse Fourier transform directly or using the numerical methods. 

2.3 Sound radiation from an unbaffled long enclosure 

Numerical calculations and FEM simulations are done to validate the theoretical 

model proposed in Section 2.2, and reveal the formation mechanisms behind the sound 

radiation phenomenon.  

The configuration of an unbaffled long enclosure, monopole point source, and the 

properties of the air media are listed in Table 2-1. An unbaffled long enclosure of 2 m 

long and 0.4 m high is considered here. A monopole point source with volume velocity 

strength being 0.01 m2 s⁄  is located at (-1, -0.1) m. The far-field observation radius is 

set as 2 m, and the observation angle is between [-150 150] degrees. Besides, the speed 

of sound and the density of air are 340 m/s and 1.225 kg m3⁄ , respectively. 
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Table 2-1 Configuration of the unbaffled long enclosure, air properties, monopole point 

source, and the far-field directivity pattern. 

Air Properties Monopole Point Source 

Density  1.225 kg/m3 Location  (-1, -0.1) m 

Sound speed  340 m/s Volume velocity strength  0.01 m2/s 

Unbaffled Long Enclosure Directivity Patterns 

Height 0.4 m Far-field radius  2 m 

Truncated length 2 m Observation angle  [-150, 150] degrees 

 

2.3.1 Numerical implementation of the theoretical model 

2.3.1.1 Calculation of the wavenumbers 

Before any calculation, the wavenumbers must be determined in advance using 

Eqs. (2.10) and (2.11), respectively. Part of the odd and the even wavenumbers at 1000 

Hz in the horizontal and transversal directions are presented in Figure 2.4. As presented 

in Figure 2.4 (b) and (d), the wavenumbers in the transversal direction are pure real 

which are determined by the rigid boundary conditions and the height of the unbaffled 

long enclosure. In Figure 2.4 (a) and (c), however, the wavenumbers in the horizontal 

direction are either pure imaginary or real, as the free space wavenumber at 1000 Hz is 

18.5. Besides, the imaginary parts are negative to represent outgoing waves. 
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Figure 2.4 Part of the odd (a, b) and even (c, d) wavenumbers at 1000 Hz along the 

horizontal (a, c) and transversal (b, d) directions, respectively. 

2.3.1.2 Modal truncations and convergence checks 

Theoretically, the sound pressure field inside the long enclosure is composed of 

infinite propagating modes as presented in Eqs. (2.9) and (2.13). However, in numerical 

implementations, the modal series must be truncated. Therefore, a convergence check 

is carried out to determine the maximum mode number based on the trade-off between 

computation cost and accuracy. The criterion of convergence is defined that the relative 

error of pressure values between two successive mode numbers of arbitrary locations is 

less than 5%. As the maximum mode number increases as the increase of geometrical 

dimension and frequency, it could be determined by examining the convergence of the 

total sound pressure of arbitrarily picked points at 2000 Hz. The convergence of sound 

pressure against the modal number at locations (-2, 0) m, (-1, 0.2) m, and (0, -0.2) m 

are presented in Figure 2.5 (a), (b), and (c), respectively. At (-2, 0) m, the real and 

imaginary parts of sound pressure converge after 3 modes. At (-1, 0.2) m and (0, -0.2) 

m, the sound pressures become stable when the mode number is beyond approximately 

10. Generally, more acoustical modes are needed near the opening as it is the interface 
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of the incident and reflected sound waves. After some tentative calculations, 20 modes 

are finally considered for this configuration to ensure accuracy.  

 

Figure 2.5 Convergence checks of sound pressure at 2000 Hz: (a) (-2, 0) m, (b) (-1, 0.2) 

m, and (c) (0, -0.2) m. 

Then, SPL distributions inside the unbaffled long enclosure at 2000 Hz calculated 

by the FEM and W-H technique are compared in Figure 2.6. The commercial software 

COMSOL Multiphysics is applied for the FEM. When using the theoretical model, the 

size of the enclosure and the outside region can be infinite. However, this is impossible 

for the FEM. To solve this problem, the calculation domain is bounded by a perfectly 

matched layer (PML) which is an artificial absorption layer that allows sound waves to 

propagate out without reflections (Wang et al., 2015). To ensure the accuracy of the 

FEM and to satisfy the requirement for the acoustical elements which requires that the 

maximum side-length of the acoustical meshes should be less than 1/6 of the minimum 

wavelength in the targeted frequency range. The whole acoustical domain is discretized 

into more than 7.8× 105 elements. In addition, both the curvature parameter and scaling 

factor of the PML are set to be 1 in the current analysis according to the finding of Hein 
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et al. (2004). The SPL fields agree well with each other which indicates that 20 modes 

are sufficient to ensure an accurate result for the current configuration. 

 

Figure 2.6 SPL distribution inside the long enclosure at 2000 Hz obtained by (a) the FEM, 

and (b) the W-H technique. 

2.3.1.3 Accuracy analysis of the far-field approximation 

Several approximations are conducted to simplify the inverse Fourier transform 

and obtain the explicit directivity pattern of the radiated sound field. Among them, the 

one that affects the calculation accuracy the most is that we assume that the value of 

the error function in Eq. (2.76) is always 1. However, as illustrated in Figure 2.7 (a), it 

approaches 1 when the input is beyond 3. Hence, to ensure an accurate result of the 

radiated sound field, we should guarantee that 2kr   is larger than 3, which limits 

the choice of the observation radius in the targeted frequency range.  
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Figure 2.7 The properties of the error function and the accuracy analysis of the far-field 

approximation. 

Besides, as   is an unknown but small length near the saddle point, we choose 

two values of   to explore the properties of the error function. As demonstrated by 

Figure 2.7 (b) and (c), the value of the error function approaches 1 with the increase of 

the observation distance and frequency. Therefore, an observation radius that is large 

enough to ensure the accuracy of the result should be determined when the frequency 

range is chosen. After some trial calculations, generally, the observation radius can be 

roughly chosen as three to five times the enclosure height to ensure an acceptable result 

of the radiated sound pressure field. 

2.3.1.4 Model validation through the FEM 

Comparisons of the SPLs obtained by the FEM and the W-H technique within the 

targeted frequency range at randomly picked receivers (-0.5, 0) m and (-2, 2) m are 

presented in Figure 2.8. Good agreement can be observed even though discrepancies 

exist at the peaks which are within the acceptable range of error. Therefore, the results 

verify the proposed model in the calculation of sound pressure fields inside and outside 
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an unbaffled long enclosure. 

 

Figure 2.8 Comparisons of SPLs obtained by the FEM and the W-H technique at (a) 

receiver (-0.5,0) m and (b) receiver (-2, 2) m.  

The directivity patterns of the radiated sound field obtained by the FEM and the 

W-H technique are compared in Figure 2.9. Good agreement can be observed. At 200 

Hz, as shown in Figure 2.9 (a), the radiated sound field is symmetric about the central 

line of the long enclosure. As the cutoff frequency of the long enclosure is 425 Hz, only 

a plane wave exists inside the long enclosure at 200 Hz. The pressure along the opening 

is almost the same, so the radiated sound field exhibits symmetric distribution. At 1000 

Hz and 1800 Hz, however, as presented in Figure 2.9 (b) and (c), lobes can be seen in 

front of the opening as higher-order acoustical modes have been excited inside the long 

enclosure and the sound pressure distribution at the opening is non-uniform which gives 

rise to the formation of lobes in front of the opening.  
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Figure 2.9 Directivity patterns of the radiated sound field obtained by the FEM and the 

W-H technique at (a) 200 Hz, (b) 1000 Hz, and (c) 1800 Hz. 

The distribution patterns of the radiated SPL fields can be roughly explained from 

the perspective of acoustical rays as presented in Figure 2.10. In the shadow zones, only 

diffracted waves contribute to the sound fields. The SPLs in these regions are uniformly 

distributed. In the illuminated zone, however, direct, reflected, and the diffracted sound 

waves propagate to this region with different phases and over different distances which 

results in the lobes in front of the enclosure opening. 



 

 

48 

 

Figure 2.10 Acoustical rays from the sound source to the (a) shadow and (b) illuminated 

zones of an unbaffled long enclosure. 

2.3.2 Modal analysis of sound pressure fields 

The normalized modal response coefficients at 200 Hz and 1000 Hz are presented 

in Figure 2.11. At 200 Hz, as presented in Figure 2.11 (a), only plane-wave (zeroth even 

mode) contributes to the total sound pressure field as it is under the cut-off frequency 

of the long enclosure which is 475 Hz. At 1000 Hz, the first two even and odd acoustical 

modes contribute to the total sound pressure field. To further investigate the formation 

mechanisms of the sound distribution outside the long enclosure, the radiation pattern 

of a single-mode incidence is presented. The first three cosine and sine modal functions 

are given in Figure 2.12. The corresponding eigenfrequencies are 0, 850 Hz, 1700 Hz; 

and 425 Hz, 1275 Hz, 2125 Hz, respectively. These modes are imposed on the opening 

of the long enclosure as pressure boundary conditions in COMSOL. The radiated sound 

pressure field of these modes can then be obtained. 
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Figure 2.11 Normalized modal response coefficients of sound pressure at the opening 

(a) 200 Hz, odd (b), and even (c) modal response at 1000 Hz. 

 

Figure 2.12 Shapes of the first three cosine (a) and sine (b) modes; the corresponding 

eigenfrequencies are 0, 850 Hz, 1700 Hz; and 425 Hz, 1275 Hz, 2125 Hz. 

The radiated SPL fields of the zeroth cosine and sine mode incidence at 200 Hz 

are presented in Figure 2.13. The radiated SPLs are symmetric about the central line of 

the long enclosure. However, for cosine mode radiation, there is only one big lobe in 
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front of the opening, while there are two lobes at two sides of the opening for sine mode 

radiation. This finding can be verified in Figure 2.14. There is an even number of lobes 

for the sine mode radiation, while there is an odd number of lobes for the cosine mode 

radiation. Their joint contributions give rise to different SPL distributions outside the 

unbaffled long enclosure. 

 

Figure 2.13 Radiated SPL field of single-mode incidence at 200 Hz: the zeroth cosine (a) 

and sine (b) mode. 

 

Figure 2.14 Radiated SPL fields of single-mode incidence at 1000 Hz: the zeroth (a) and 

the first (b) cosine mode, the zeroth (c) and the first (d) sine mode. 
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2.3.3 Baffled and unbaffled long enclosures 

In early times, a recourse was often made to simplify the sound radiation problem 

in which the opening is surrounded by an infinite baffle, thereby eliminating the effect 

of the sharp edge. Sound radiation from a baffled opening can be solved by the Rayleigh 

integral method which can be expressed as (Pamies et al., 2011, McAlpine et al., 2012; 

Wang & Choy, 2019) 

 ( ) 0, n
S

p x y i kc Gv dS=    (2.78) 

where the Green’s function for a baffled opening is given by  

 ( ) ( ), , ,
2

ikr

R S

e
G r x y x y

r

−

= = −   (2.79) 

and nv  denotes the particle velocity normal to the opening.  

For sound radiation from an unbaffled opening, there is no theoretical formula for 

Green’s function of the radiated sound field. Hence, the Rayleigh integral cannot be 

directly applied to deal with unbaffled sound radiation problems. Besides, it is probably 

adequate for predicting sound radiation to the hemisphere in the front of the enclosure 

opening. However, the sideline radiation, as well as the sound field at the backside of 

the unbaffled long enclosure, is heavily influenced by the diffraction effect at the edge 

which cannot reasonably be predicted by the baffled model. The numerical method can 

be employed to obtain Green’s function outside an unbaffled opening (Wang & Choy, 

2019), Nevertheless, multiple calculations are required for each frequency concerned 

which is time-consuming. 

Directivity patterns of radiated SPL fields from the opening of an unbaffled and 

a baffled long enclosure are compared in Figure 2.15. As can be observed, directivity 

patterns are roughly consistent except for the region near the infinite baffle. And the 
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SPLs of the baffled long enclosure are larger than that of an unbaffled enclosure in this 

region. 

 

Figure 2.15 Directivity patterns of the radiated SPL fields outside an unbaffled and a 

baffled long enclosure at (a) 600 Hz, (b) 1200 Hz, and (c) 2000 Hz. 

This phenomenon can be explained from the perspective of the conservation of 

sound energy. The distributions of sound intensity near the openings of a baffled and 

an unbaffled long enclosure at 600 Hz are presented in Figure 2.16. For an unbaffled 

long enclosure, part of the sound energy is diffracted into the shadow zone as shown in 

Figure 2.16 (a). This part of sound energy, however, is blocked by the infinite baffle 

which either propagates along the boundary or reflects towards the opening as shown 

in Figure 2.16 (b). Consequently, the calculated SPLs using the baffled model are often 
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larger than that obtained by the unbaffled model in the region near the infinite baffle. It 

also implies that the Rayleigh integral method cannot be directly applied to predict the 

sound radiated from an unbaffled long enclosure. 

 

Figure 2.16 Distribution of sound intensity near the opening of an unbaffled (a) and a 

baffled (b) long enclosure at 600 Hz. 

2.3.4 Source effect 

The effect of source locations on the sound radiation phenomenon is investigated 

by changing one of the coordinates while keeping the other one constant. The directivity 

patterns of the radiated SPL field when the source is located at 𝑥 = -1 m are presented 

in Figure 2.17. At 500 Hz, as shown in Figure 2.17 (a), the SPLs in the shadow zone 

increase with the decrease of 𝑦 coordinates. This can be explained by the GTD that the 

incident angles of the sound pressure towards the sharp edge increase which gives rise 

to high diffraction efficiency. At higher frequencies, as illustrated in Figure 2.17 (b) 

and (c), the principle still holds for most of the results. However, when the point source 

is located at 𝑦=-0.05 m, the radiation patterns are irregular as the diffracted sound field 

is determined by the incident angle and sound pressure. At higher frequencies, multiple 

higher-order acoustical modes contribute to the sound pressure field, which leads to the 

complex distribution of sound pressure at the edge. Therefore, the diffracted sound field 
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in the shadow zone is irregular. 

 

Figure 2.17 Directivity pattern of radiated SPL field (x=-1 m) at (a) 500 Hz, (b) 1000 Hz, 

and (c) 1500 Hz. 

 

Figure 2.18 Directivity patterns of the radiated SPL field (y=-0.1 m) at (a) 500 Hz, (b) 

1000 Hz, and (c) 1500 Hz. 

The directivity patterns of the radiated SPL field when the source is at 𝑦 =-0.1 m 
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are presented in Figure 2.18. The results indicate that the radiated sound pressure field 

is complex which has no absolute correlation with the location of the point source. The 

results also show that various acoustical phenomena, such as direct sound propagation, 

sound reflection from the walls, sound diffraction to the shadow zone at the sharp edge 

form the final distribution of sound fields. 

2.4 Experimental studies 

Experimental studies are conducted to validate the theoretical model proposed in 

Section 2.2. The schematic diagram of the test rig is presented in Figure 2.19 (a). The 

experiment is carried out in an anechoic chamber of 6 m in length, 6 m in width, and 3 

m in height. As the proposed model was established in a 2D configuration, we designed 

a quasi-2D test rig accordingly (Guo et al., 2018; Fang et al., 2019; Ji et al., 2020) which 

is presented in Figure 2.19 (b). It is constructed by two parallel arranged acrylic plates 

of 2.4 m long, 1.2 m wide, and 0.02 m thick. To eliminate the effect of the higher-order 

acoustical modes along vertical direction, the distance between the acrylic plates is kept 

at 0.04 m. Based on the cut-off rule of a channel, the plates can form a quasi-2D space 

under about 4250 Hz. A rectangular duct of 1.2 m long, 0.2 m wide, and 0.04 m high is 

inserted into the quasi-2D space to form an unbaffled long enclosure. To simulate the 

infinite region outside the long enclosure, a layer of wedge-shaped Melamine foam is 

placed at the side openings of the 2D space. The total heights of the wedges are 0. 2 m 

as illustrated in Figure 2.19 (b). According to the rule of a quarter wavelength, they can 

achieve non-reflection boundaries above around 450 Hz (Jiang et al., 2016).  

The whole test rig is supported by a frame assembled by aluminum extrusions. 2 

A0 papers printed with the Cartesian and polar coordinate systems are pasted on the 

backside of the transparent acrylic plate to locate the measurement points. A Tannoy 
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loudspeaker connected to a long pipe of 1 m in length and 25 mm in diameter is applied 

to simulate a monopole point source. Measurements of the directional characteristics of 

this source were conducted and it was observed that the deviations in all directions were 

within 1 dB for frequencies above about 200 Hz (Li, Law, et al., 2008; Wang & Choy, 

2019). The harmonic sound source is produced by a signal generator, output by an A/D 

converter (NI 4431), amplified by the power amplifier (LA 1201), and played by the 

Tannoy loudspeaker. Two microphones (B&K 4189) are connected to the conditioning 

amplifier (B&K NEXUS) and the data acquisition module (NI 9234). They move along 

the observation radius and collect acoustical signals every 5 degrees of observation 

angle. The testing system is controlled by LabVIEW which possesses the merits of good 

stability and high real-time performance in the targeted frequency range.  
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Figure 2.19 Experimental setups: (a) schematic diagram of the quasi-2D experimental 

test rig, (b) photography of the test rig in an anechoic chamber. 

Due to the size of the test rig, it forms a scaled-down model of the traffic tunnel 

in practice which is about 10 m high. Then, the scaling factor is 1:50 which means the 

targeted frequency in practice [200, 2000] Hz must be enlarged to very high frequency 

range. However, limited by the sound absorption material and the quasi-2D space, the 

applicable frequency range of the test rig is [450, 4250] Hz. Consequently, it will fail 

to simulate the tunnels in practice. Instead, it is applied to validate the theoretical model 

by which the sound radiation patterns of large tunnel can be predicted. 

Considering the performance of the loudspeaker and the dimensions of the test 

rig, the location coordinates and volume velocity strength of the monopole point source 

are set as (-0.5, 0) m and 0.002 m2/s, respectively, in the experiment. In addition, the 

observation radius and angle are 0.6 m and [-90, 90] degrees, respectively. As the signal 

is amplified before being played by the loudspeaker, and practically, the frequency 

response of a loudspeaker is not always flat (Ortiz et al., 2013; Ortiz et al., 2016). The 

transfer function T  between the loudspeaker and the microphone must be determined 
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first. Their relations can be described by 

 XT=Y  (2.80) 

where X   and Y  are, respectively, the source and collected signals. A sinusoidal wave 

of unit amplitude  
T

1,1,...1X=  is stimulated and played by the loudspeaker. The sound 

pressure is measured by a microphone placed 20 mm in front of the pipe opening.  

 

Figure 2.20 Transfer function of the testing system and sound source correction: (a) the 

transfer function of the testing system, (b) correction of sinusoidal wave, (c) correction 

of a monopole point source. 

Using Eq. (2.80), the transfer function of the testing system is obtained which is 

illustrated in Figure 2.20 (a). Subsequently, the accuracy of the transfer function T  is 

checked by specifying 1X /T=  and the expected output should be  
T

1,1,...1Y=  which 

is shown in Figure 2.20 (b). The fluctuation of the SPLs radiated from the loudspeaker 

is within 0.3 dB in the frequency range of 500 Hz to 2000 Hz compared with the 

expected SPL which is 91 dB. Similarly, a monopole point source is designed and 
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corrected using the same procedures. The designed and corrected SPLs of the point 

source are compared in Figure 2.20 (c). As can be observed, the results agree well with 

each other which can be used in the following experiment. The monopole point source 

in the frequency range [2000, 4000] Hz is also corrected applying the method which is 

not presented here. 

The directivity patterns of the radiated SPL field are measured and compared with 

the theoretical results as demonstrated in Figure 2.21. Good agreement can be observed 

between the results obtained by the W-H technique and experiment. Even though only 

the experimental results in [-90, 90] degrees are presented, the consistency of the results 

validate the proposed theoretical model in calculating the radiated sound field.  

 

Figure 2.21 Directivity patterns of the radiated SPL field obtained by the theoretical 

model and experiment at (a) 500 Hz, (b) 1500 Hz, and (c) 2000 Hz. 
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Besides, the SPL spectra obtained by the proposed model and the experiment at 

randomly picked receivers (0, 0) m and (0.5, 0.5) m are compared in Figure 2.22. As 

the height of the unbaffled long enclosure is relatively small, the sound distributions 

inside and outside the long enclosure are quite simple. The SPL results coincide well 

with each other which validate the proposed model in predicting the sound fields inside 

and outside an unbaffled long enclosure. 

 

Figure 2.22 SPL spectra obtained by the W-H technique and experiment at randomly 

picked (a) receiver (0, 0) m and (b) receiver (0.5, 0.5) m. 

2.5 Summary 

This chapter concerns the W-H investigation of sound radiation from an unbaffled 

long enclosure. The geometrical configuration can be commonly observed in ductwork 

systems where noise is produced inside the enclosure and radiates to the outside through 

the openings. A prediction model consisting of employing the mode-matching method 

in conjunction with the Fourier transform is proposed to investigate the sound radiation 

phenomenon. The solution involves branch-cut integrals which can be evaluated by the 

saddle point method approximately. An explicit far-field directivity pattern of the 

radiated sound pressure field is obtained, which can calculate large acoustical domains 

with high efficiency. The detailed implementation procedures of the proposed model 
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are introduced, such as the calculation of the wavenumbers, modal truncation, and 

convergency checks. It is observed that 20 modes are sufficient for an accurate result 

for a long enclosure of 0.4 m in height. The accuracy of the far-field approximation is 

analyzed and the theoretical model is validated through the FEM.  

Subsequently, modal analysis is conducted to explore the formation mechanisms 

of the radiated sound field. The relationship between the acoustical modes and radiated 

sound field is investigated. Besides, the comparison between sound radiation from a 

baffled and an unbaffled long enclosure is carried out. Finally, quasi-2D experimental 

studies are implemented to validate the theoretical model. The proposed model can be 

applied to a broad frequency range and can be generalized into impedance boundaries 

which is an effective tool for the prediction and suppression of sound radiation from an 

unbaffled long enclosure. 
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THEORETICAL MODEL OF SOUND 

RADIATION FROM AN UNBAFFLED LONG 

ENCLOSURE WITH THE GROUND 

 

3.1 Introduction 

Unbaffled long enclosures with the ground (Kang, 1996a; 1996b; 1996c) can be 

widely seen in traffic facilities, such as tunnels and underground stations (Heutschi & 

Bayer, 2006; Yang & Shield, 2001; Shimokura & Soeta, 2011). They greatly facilitate 

people’s living conditions, however, cause many noise problems. The sound energy 

inside a long space is difficult to be attenuated (Kang, 1996c) which gives rise to high 

sound pressure levels and a long reverberation time. Such an acoustical environment 

produces adverse influences on drivers and passengers. Moreover, it impairs speech 

intelligibility. Besides, as the noise energy cannot be directly transmitted to the outside 

through the walls which can be considered rigid, it propagates to the openings of the 

long enclosure and radiates to the outside through the portals. Taking a traffic tunnel 

for example, if there are residents near the openings, their living environment will be 

seriously affected. 

Therefore, in this chapter, a mathematical model is first presented to predict the 

sound radiation from a semi-infinite unbaffled long enclosure including the ground 

effect. This geometrical configuration demonstrates an idealized representation of the 
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sound-proof tunnels, in which noise propagates along the enclosures and radiates to 

the outside through the portals. The prediction model described in this chapter applies 

only to theoretical situations and 2D configurations, however, necessary elements of 

realistic scenarios are included such as impedance boundary conditions, point source 

excitation, and ground effect, which is beneficial to understanding the physics behind 

the sound radiation phenomenon and significant for the proposal of suitable noise 

control approaches. In the first place, by expressing the sound pressure field regarding 

the superposition of acoustical modes inside the long enclosure and using the Fourier 

transform in other domains, the boundary value problem, which is intractable in the 

natural domain, is converted into a modified W-H equation (MWHE) of the second 

kind in the spectral domain. Subsequently, its solution is attained by employing the 

standard factorization and decomposition W-H procedures. Then, the radiated sound 

pressure field outside the enclosure is obtained by the inverse Fourier transform, 

which includes a contour integral that can be evaluated using the saddle point method 

approximately. In what follows, the model is validated by adopting the finite element 

method (FEM) and the far-field directivity patterns of the radiated sound pressure 

fields are shown. Besides, the properties of the sound pressure field both inside and 

outside three long enclosures with different boundary conditions are analyzed. Based 

on the results, a potential noise attenuation strategy by using acoustical liners is 

proposed and discussed. After that, a partial lining is applied to reduce the radiated 

noise from an unbaffled long enclosure and good noise reduction performance can be 

found. Finally, quasi-2D experiments are conducted to validate the proposed models. 
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3.2 Theoretical model 

3.2.1 Description of the problem in the natural domain 

A schematic diagram of sound radiation from an unbaffled long enclosure with 

the ground is presented in Figure 3.1. The height of the enclosure is h and the thickness 

of the wall is assumed to be zero for simplicity. The enclosure extends to the negative 

infinity and the ground extends to the positive infinity.  

 

Figure 3.1 A schematic diagram of sound radiation from an unbaffled long enclosure 

with the ground. 

The acoustical properties of the ground and wall surfaces are characterized by 

acoustical impedance , 1,2,3,4zZ z = . A Cartesian coordinate system ( )xoy  is applied 

with the origin fixing at the intersection of the opening and the ground. The sound is 

produced by monopole point sources with their location coordinates and the volume 

velocity strengths being ( ),n nx y  and nQ , respectively. Imaginary interfaces I and II 

are depicted for the convenience of analysis. They divide the whole acoustical domain 
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into three sub-regions which are AΩ , BΩ , and CΩ , respectively. Besides, the polar 

coordinate system ( )ro  is shown to illustrate the directivity pattern of the radiated 

sound pressure field. 

According to the partition of the whole acoustical domain in Figure 3.1, the total 

sound pressure field is expressed by the following piecewise function as 

 ( )

( ) ( )  )

( ) ( ) (   
( )  )  

, : , ,

, , , : ,0 0,

, : 0, 0,

A A

total incident reflected B

C C

p x y Ω x y h

p x y p x y p x y Ω x y h

p x y Ω x y h

  − +  +


= +  − 
  + 

 (3.1) 

where ( ),Ap x y  and ( ),Cp x y  are the sound pressure fields of regions AΩ  and CΩ , 

respectively. The incident and reflected sound pressure fields of region BΩ  are 

denoted by ( ),incidentp x y  and ( ),reflectedp x y , respectively.  

The Helmholtz equation of the total sound pressure field without a source, the 

Sommerfeld radiation condition for the semi-infinite region outside the long enclosure 

and the edge condition at the opening are the same as the model described in chapter 

2, which are expressed by Eqs. (2.2), (2.6), and (2.7), respectively. For the current 

configuration, the boundary conditions on the ground and wall are expressed by 

 
0

1,2,3,4

0total

z z

i kc
p

n Z



=

 
+ = 

 
 (3.2) 

where n  denotes the normal direction to the boundary. Continuity relations of sound 

pressure and particle velocity at imaginary interfaces I and II are expressed as 

 
III

, ; ,C CA B
A C B C

p pp p
p p p p

y y x x

  
= = = =

   
 (3.3) 

where Bp  denotes the total sound pressure field of region BΩ .  
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Inside the long enclosure, the incident sound field produced by monopole point 

sources satisfies the inhomogeneous Helmholtz Eq. (2.8). The solution under the 

boundary condition Eq. (3.2) is given by 

 ( )
( ) ( )0

1 0

,
2

j n

B B

i x xn j n j

incident B
n j j j

kc Q Y y Y y
p x y e





 
− −

= =

=


  (3.4) 

where ( )B

jY y  represents the transversal modal function of region BΩ  expressed as 

 ( ) ( )
( )0

1

sin
cos

jB

j j

j

i kc y
Y y y

Z

 



= +  (3.5) 

The transversal and horizontal wavenumbers of region BΩ  satisfy the following 

characteristic equations: 

 

( ) ( )

( )

0

1 3

2 2 2
2 2 20

1 3

1 1
cos

sin
0, , 0,1,2,...

j j

j

j j j

j

L i kc h
Z Z

hk c
k j

Z Z

  


  



 
= + 

 

 
− + = = − = 
 

 (3.6) 

The normalized coefficient of the modal expansion is given by 

 ( )
( )

2

jB B

j j

j

dL
Y h




 =  (3.7) 

where d  represents derivative. Due to the abrupt change of size at two sides of the 

opening, there is a reflected sound pressure field in region BΩ  which can be expressed 

in terms of normal modes as 

 ( ) ( )
0

, ji xB

reflected j j

j

p x y b Y y e




=

=  (3.8) 

where jb  denotes the modal response coefficient.  

Applying the similar procedures described in chapter 2, next, we convert the 
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radiated sound pressure field from the natural domain into the spectral domain through 

the Fourier transform. The residue solution and the W-H equation will be obtained to 

solve the intractable boundary value problem. 

3.2.2 Radiated sound fields in the spectral domain 

The transformed Helmholtz equation of region AΩ  is given in Eq. (2.17) and its 

general solution is given by 

 ( ) ( ) ( ) ( ) ( )( )
, , ,

i y h

A A AP y P y P y A e
 

   
− −+ −= + =  (3.9) 

where the square root function ( )   is defined in the complex 𝛼-plane illustrated in 

Figure 2.2. The definitions of the upper and lower complex 𝛼-planes are also applied 

in this chapter. 

Combining Eq. (3.9) and the transformed boundary conditions of Eq. (3.2), the 

following identity can be obtained: 

 ( ) ( ) ( ) ( )0 0

4 4

,A

i kc kc
P h R i A

y Z Z

 
    + +   

− = = − +   
   

 (3.10) 

On the other hand, the transformed Helmholtz equation for region CΩ  and the 

general solution are expressed by Eqs. (2.23) and (2.26), respectively. Combining the 

transformed continuity relations at interface I and Eq. (3.10), we have 

 ( ) ( ) ( )0

4

, ,C C

i kc
R P h P h

y Z


  + + +

= −


 (3.11) 

Using Eqs. (2.26) and (3.11), the transformed sound pressure of region CΩ  can 

be expressed as 
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 (3.12) 

where 
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 (3.13) 

The term on the left-hand side of Eq. (3.12) is regular in the upper half complex 

𝛼-plane. However, the regularity of right-hand side terms is violated by the presence 

of the poles occurring at the zeros of the denominator lying in the upper half complex 

𝛼-plane satisfying 

 ( ) 0, 0,1,2,...mW m = =  (3.14) 

These poles can be eliminated by imposing that their residues are zero, namely, 

according to the residue theorem, the terms in the curly brace of Eq. (3.13) should be 

zero. Then, we have the following equation: 
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

 (3.15) 

According to the form of the terms in the integrand of Eq. (3.15), we define two 
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coefficients as follows: 
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m m
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f f y
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=   
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  (3.16) 

where ( )C

mY y  represents the transversal modal function of region CΩ  which can be 

determined by the Helmholtz equation and the boundary condition on the ground: 

 ( ) ( )
( )

( )
0

2

sin
cos

mC

m m

m

i kc y
Y y y

Z

  
 

 
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 (3.17) 

The normalized coefficient of the modal expansion is given by 

 ( )
( )

2

mC C

m m

m

dW
Y h




 =  (3.18) 

Based on Eqs. (3.15) to (3.18), the residue solution can be obtained as 
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 (3.19) 

As can be observed in Eq. (3.19), it contains an infinite number of unknowns 

that need more equations to determine them. Next, we will obtain the W-H equation 

and its solution by the W-H procedures. 

3.2.3 Wiener-Hopf equation and its solution 

Considering the transformed continuity relation of sound pressure at imaginary 

interface I, we have the following identity: 
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( ) 0 4

, ,C A

iR
P h P h

kc Z
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 
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+

+ −+ =
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 (3.20) 

Substituting Eq. (3.12) into Eq. (3.20) and then applying the characteristics of 

trigonometric functions, we have 
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 (3.21) 

We can express the pressure and pressure gradient at the opening in the form of 

series expansions as 
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Substituting Eq. (3.22) into Eq. (3.21) and evaluating the resulting integral, we 

obtain a modified W-H equation of the second kind which is valid in the overlapped 

region of the upper and lower complex 𝛼-plane as presented in Figure 2.2: 
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where kernel functions are defined as 
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According to the factorization and decomposition W-H procedures introduced 

in chapter 2 and Appendix-A, the solution to the W-H equation is given by 
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where the explicit expressions of the split functions are given by 
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and (Buyukaksoy & Birbir, 1998) 
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where 0.5772...C =  denotes the Euler-Mascheroni constant, and the Maliuzhinets 

function is defined as 
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where  

 ( )
1

sin , 2,4z z 
−

= =  (3.29) 

3.2.4 Sound pressure field in the natural domain 

As can be found in Eq. (3.25), it contains an infinite number of unknowns. To 

determine them, we apply the well-known mode-matching method, which has been 

extensively applied to analyze the sound fields in waveguide structures. Combining 

Eqs. (2.24) and (3.3), we have the following identity: 
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Multiply both sides of Eqs. (3.30) and (3.31) by mode function ( )C

sY y  and then 

conduct an integration over the opening. Using the orthogonality of modal functions, 

one obtains 
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where 
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Combining the W-H solution Eq. (3.25) and the residue solution Eq. (3.19), they 

should be equal at specific values. Then we have the following equation: 
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where 
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Rewrite Eqs. (3.32), (3.33), and (3.35) in matrix forms: 

 Y+JB=G  (3.37) 

 M+KB=F  (3.38) 

 ( )F+UG=H F-UG  (3.39) 

where B , F , and G  are unknown modal response coefficients; Y , J , M , K , U , 

and H  can be constructed by Eqs. (3.32) to (3.36), respectively. In the process of 

solving the equations, matrix inversions are needed. Therefore, we let all the subscript 

indices be equal to guarantee that they are square matrices. After determining the 

unknowns, next, the radiated sound pressure field of region AΩ  in the natural domain 

can be obtained by taking the inverse Fourier transform of Eq. (3.9) as 
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where the integration path   is a straight line along the real axis lying in the common 

strip of the upper and lower complex 𝛼-planes as shown in Figure 2.2. Applying the 

saddle point method described in Appendix-B, the asymptotic evaluation of Eq. (3.40) 

is given by 
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The implementation of the far-field results has been elaborated in chapter 2. To 

obtain an accurate result of the sound fields, wavenumbers and a sufficient truncation 

number should be determined first. Detailed information will be presented in the next 

section.  
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3.3 Implementation of the theoretical model 

To validate the proposed model, numerical calculations and FEM simulations 

are implemented in this section. The geometrical configuration of the unbaffled long 

enclosure, monopole point source, and acoustical impedances in calculations are listed 

in Table 3-1. 

Table 3-1 Configuration of the unbaffled long enclosure, sound source, and acoustical 

impedances in numerical calculations. 

Air Properties Monopole Point Source 

Density  1.225 kg/m3 Location  (-2, 0.5) m 

Sound speed  340 m/s Volume velocity strength  0.01 m2/s 

Unbaffled Long Enclosure Directivity Patterns 

Height 1 m Far-field radius  5 m 

Truncated length 5 m Observation angle  [0, 150] degrees 

Acoustical Impedances 

𝑍1=202+13i; 𝑍2=1840+370i; 𝑍3=458+517i; 𝑍4=630-651i 

 

Theoretically, the size of the calculation domain, boundary conditions, and the 

frequency range can be assigned arbitrarily. For the sake of calculation efficiency, we 

deal with a relatively small long enclosure whose height is 1 m and truncated length 

is 5 m. Boundary conditions imposed on the ground and wall surfaces come from 

ceramic tubular liners which are made of parallel cylindrical channels embedded in a 

ceramic matrix. These liners are commonly applied in engineering applications, and 

the acoustical impedances of such acoustical liners with a variety of configurations 
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have been obtained through experiments (Jones et al. 2005). The sound propagation 

properties inside a lined duct were investigated and 4 acoustical impedances, namely, 

𝑍1=202+13i, 𝑍2=1840+370i, 𝑍3=458+517i, and 𝑍4=630-651i were employed which 

come from the experimental data (Yang et al. 2018). Therefore, we apply the same 

acoustical impedances in the current model to investigate the performance of using an 

acoustical liner to reduce the noise. However, these impedance values do not uniquely 

associate with sound absorption materials in practice which makes it difficult to select 

materials according to the impedance values in the theoretical modal despite that it is 

convenient for calculations. The relations between impedance values and their sound 

absorption performance should be presented for better understanding. This will be our 

future work. In this thesis, we apply different acoustical impedances mainly to validate 

our theoretical model. In addition, a monopole point source with its volume velocity 

strength being 0.01 m2/s is located at (-2, 0.5) m. The speed of sound and the density 

of air are 340 m/s and 1.225 kg/m3, respectively. 

3.3.1 Calculation of the wavenumbers 

As the expressions of sound fields in regions BΩ  and CΩ  are based on normal 

modes, a correct solution to the problem requires a successful determination of the 

wavenumbers which are defined by Eqs. (3.6) and (3.14), respectively. Aiming at 

finding the roots of characteristic equations, the classical Newton-Raphson method is 

applied, but care should be taken in selecting proper initial values and step lengths to 

implement the iteration scheme. Due to the nature of trigonometric functions, the roots 

are symmetric about the origin and with certain periodicity which can reduce the time 

cost during the calculation. However, one thing that should be kept in mind is that the 
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periods do not show up from the first root, and they exist only in either the real or the 

imaginary parts of the roots. Knowing this, we start the iteration from zero and define 

a step length that is slightly smaller than the period, which can be determined by a 

pilot calculation.  

Taking 1000 Hz for example, a small number of wavenumbers along horizontal 

and transversal directions of regions BΩ  and CΩ  are listed in Figure 3.2. As can be 

observed in Figure 3.2 (a), the first root of Eq. (3.6)  is 17.68-0.13i. It is very close to 

the wavenumber in the free space which is 18.32. However, it has a certain deviation 

and imaginary part because of the impedance boundary conditions. Additionally, the 

imaginary parts of these roots decrease over 2𝜋 continuously and finally tend to the 

minus infinity. The real parts decrease as well but ultimately converge to zero. In 

Figure 3.2 (b), the real parts of the roots, on the contrary, have a period of 2𝜋 and 

finally tend to the plus infinity, the imaginary parts, however, decrease stably and 

converge to zero eventually. In Figure 3.2 (c) and Figure 3.2 (d), similar changing 

patterns can be seen but the details are different due to different boundary conditions.  
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Figure 3.2 The Horizontal and transversal wavenumbers at 1000 Hz obtained by the 

Newton-Raphson method. 

3.3.2 Model validation via the FEM 

As the incident and reflected sound pressure fields inside the long enclosure 

share the same modal function, the number of normal modes used in the calculations 

is determined first. A convergence check is carried out to find out the maximum mode 

number based on a trade-off between the computation cost and accuracy. The criterion 

of convergence is defined that the relative error of sound pressure values between two 

successive acoustical modes at an arbitrary location is less than 1%. As the maximum 

mode number would increase with the increase of dimension and frequency. It can be 

obtained by checking the convergence of the total sound pressure of randomly picked 

points at 2000 Hz. Three receivers are considered here, namely, (-3, 0.1) m, (-1.5, 0.5) 

m, and (0, 0.9) m. The real and imaginary parts of sound pressure become stable after 

about 12 modes, as presented in Figure 3.3. After several calculations, 20 modes are 

considered for such a configuration. The results illustrate that the modal number is 

sufficient as a further increase in the number does not produce a significant difference 

in this study. 
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Figure 3.3 Convergence checks of the sound pressure field at 2000 Hz for arbitrarily 

picked receiver points (a) at (-3, 0.1) m, (b) at (-1.5, 0.5) m, (c) at (0, 0.9) m. 

Subsequently, the comparison of the SPL distribution in region BΩ  obtained by 

the FEM and the W-H technique at 2000 Hz is conducted. The commercial software 

COMSOL Multiphysics is applied for the FEM. In the theoretical model, the size of 

the long enclosure and the radiation region can be infinite. However, this is impossible 

for the FEM. To avoid this problem, the calculation domain is bounded by a perfectly 

matched layer (PML), which is an artificial absorption layer that allows sound waves 

to propagate out without any reflection (Wang et al., 2015). To guarantee the accuracy 

of the FEM and to satisfy the basic requirement for the acoustic elements which states 

that the maximum side-length of acoustical meshes should be less than one-sixth of 

the minimum wavelength in the frequency range of interest. The acoustical domain is 

discretized into about 1.67× 106 elements. Besides, the curvature parameter and the 

scaling factor of the PML are set to be 1 in the current simulation according to the 
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findings of Hein et al. (2004).  

 

Figure 3.4  Comparison of SPL distribution inside the unbaffled long enclosure at 2000 

Hz calculated by (a) the FEM and (b) the W-H technique. 

As presented in Figure 3.4, a good agreement can be observed even though small 

discrepancies can be found, which result from unsatisfactory mesh quality in the FEM 

and insufficient mode number using the W-H technique. Comparisons between the 

SPLs obtained by the FEM and the W-H technique in the targeted frequency range at 

randomly picked receiver points are illustrated in Figure 3.5. Good agreement can be 

observed which validates the proposed model in the calculation of sound field inside 

and at the shadow zone of a long enclosure. 
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Figure 3.5 Comparison between SPL spectra obtained by the W-H technique and the 

FEM at two randomly picked receivers inside and at the shadow zone of the long 

enclosure: (a) receiver (-1, 0.5) m, (b) receiver (-3, 3) m. 

The directivity patterns of the radiated SPL fields outside the long enclosure 

obtained by the FEM and the W-H technique are presented in Figure 3.6. The results 

agree well with each other despite that there are some discrepancies, which result from 

the far-field approximation. In front of the opening, lobes can be clearly observed, and 

the number of lobes increases with the increase of frequency. The sound pressure field 

in this region is formed by the superposition of direct, reflected, and diffracted sound 

waves. These sound waves propagate to the receiver over different distances and with 

different phases, which gives rise to the directivity patterns. At the backside of the 

long enclosure, the sound pressure field is the result of diffraction at the opening edge 

which, according to the GTD, is mainly determined by the incident angle, diffracted 

angle, and the distance between the edge and the receiver. This part of the sound field 

is quite stable and standing at relatively low SPLs.  
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Figure 3.6 Directivity patterns of the radiated SPL field obtained by the W-H technique 

and the FEM at (a) 200 Hz, (b) 1000 Hz, and (c) 2000 Hz. 

From the results presented in the preceding content, the W-H technique can 

predict the sound pressure fields both inside and outside an unbaffled long enclosure 

with a certain accuracy. Besides, the calculation time required by the W-H technique 

and the FEM is roughly the same. To verify the capability of the proposed method to 

deal with large-size acoustical domains, larger enclosures are considered. The results 

obtained using the FEM and the W-H technique are consistent which are not presented 

here. The main difference lies in the calculation time. When the size of the acoustical 

domain increases, more acoustical modes should be considered in order to obtain an 

accurate result using the W-H technique. Consequently, the calculation efficiency 

reduces. However, the advanced technologies of computers allow us to calculate 

summations fast. Therefore, the calculation efficiency of the proposed model for a big 

acoustical domain is acceptable. Moreover, the calculation efficiency of the radiated 
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sound pressure field is not constrained by the size of the outside domain because it is 

an explicit expression regarding the observation radius and angle. Nevertheless, for 

the FEM, the element number grows rapidly with the increased size of the acoustical 

domain. This will result in low efficiency, particularly in the case of real traffic tunnels 

whose size can reach tens of meters. Therefore, to calculate the sound pressure fields 

of big acoustical domains, the W-H technique outperforms the FEM, especially when 

far-field results are preferred in engineering projects. 

3.3.3 Sound radiation control using acoustic liners 

Acoustic liners are widely applied to attenuate noise in ducted systems (Bauer, 

1977; Tam et al., 2001; Jones et al., 2005; Brambley, 2011). Combining Eqs. (3.25) 

and (3.41), we notice that the radiated sound field is determined by the incident and 

reflected sound fields inside the long enclosure. Therefore, the radiated noise can be 

reduced through the control of the sound field inside the long enclosure. To verify this 

conjecture, and provide data to support the proposal of noise control strategies, three 

cases with different boundary conditions, namely, totally rigid (Case 1), an impedance 

on the inner wall (Case 2), and all surfaces having impedances (Case 3), are analyzed 

thoroughly. In these cases, the point source is located at (-2, 0.5) m, and the height of 

the long enclosure is 1 m. The SPL spectra for arbitrarily picked receiver (-1, 0.5) m 

inside the unbaffled long enclosure, and (-3, 3) m in the shadow zone are presented in 

Figure 3.7. In the totally rigid case, several peaks can be observed around 340 Hz, 680 

Hz, 1020 Hz, 1360 Hz, and 1700 Hz which are the resonance frequencies of the long 

enclosure. Taking rigid case as the basis, the introduction of liners on the boundaries 

can significantly reduce the SPL over most of the targeted frequency range, which is 
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mainly determined by the resistance and reactance of the acoustic impedance provided 

by the liner. However, the effects of the impedance values and the number of liners 

cannot be clearly reflected in this figure which will be considered in the future.  

 

Figure 3.7 SPL spectra under different boundary conditions for (a) receiver (-1, 0.5) m 

inside the long enclosure and (b) receiver (-3, 3) m in the shadow zone. 

As SPL spectra in Figure 3.7 can only reflect the results of a single point, SPL 

distributions inside and outside the long enclosure at resonant frequencies 340 Hz, 

1360 Hz, and non-resonant frequencies 510 Hz, 850 Hz, are shown in Figure 3.8 and 

Figure 3.9, respectively, to further explore the effect of liner on the reduction of noise 

radiated from the long enclosure. As can be seen in the rigid cases at 340 Hz and 1360 

Hz, SPLs stand at high levels and standing waves can be observed. Their distributions 

are along the transversal direction. After introducing the liners, the SPLs inside the 
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long enclosure are reduced and the resonant distributions disappear which reduces the 

radiated noise. In general, imposing all the boundaries with liners can obtain more 

sound reduction than using a liner on the inner wall even though the rule is reversed 

at some frequencies (340 Hz) which is determined by the boundary conditions. 

 

Figure 3.8 SPL distributions of a long enclosure at resonant frequencies: (a) 340 Hz, 

Case 1; (b) 340 Hz, Case 2; (c) 340 Hz, Case 3; (d) 1360 Hz, Case 1; (e) 1360 Hz, Case 

2; (f) 1360 Hz, Case 3. 

At 510 Hz and 850 Hz, the SPLs inside the long enclosure are also reduced after 

introducing the liners, however, not as much as the resonant frequencies. In brief, the 

introduction of liners can reduce the radiated noise but the performance depends on 

the sound distribution inside the long enclosure.  
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Figure 3.9 SPL distributions of a long enclosure at non-resonant frequencies: (a) 510 

Hz, Case 1; (b) 510 Hz, Case 2; (c) 510 Hz, Case 3; (d) 850 Hz, Case 1; (e) 850 Hz, Case 

2; (f) 850 Hz, Case 3. 

Furthermore, the directivity patterns of the radiated sound fields at 340 Hz, 850 

Hz, and 1360 Hz are presented in Figure 3.10. Compared to the rigid cases, the 

introduction of liners on the boundaries can reduce the SPLs of the radiated sound 

fields between the observation angles of 40~150 degrees. Generally, the case in which 

all surfaces have impedances reduces more SPL than the case with only 𝑍3. However, 

at 340 Hz, the result is reversed which can be explained by the GTD. We consider the 

enclosure edge as a secondary source. As is shown in Figure 3.8 (b), the SPL at the 

edge in case 𝑍1−4 is larger than the case 𝑍3, and hence the diffracted SPL is larger 

accordingly. Between the observation angles of 0~60 degrees, the SPL reductions 

become blurred as the SPLs vary irregularly. Besides, some dips in the rigid case 
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disappear after introducing the impedance. Despite this, the lobes in the rigid case are 

smoothed in the impedance cases. Another phenomenon in the rigid case that deserves 

attention is that, between the observation angles of 60~90 degrees, there always be 

one or more lobes with their SPLs standing at relatively high levels. These lobes are 

the so-called principal lobes and will be our focus of consideration in proposing noise 

control strategies. 

 

Figure 3.10 Directivity patterns of the radiated sound fields under different boundary 

conditions at (a) 340 Hz, (b) 850 Hz, and (c) 1360 Hz. 

According to the foregoing analysis, it is practicable to control the noise both 

inside and outside the long enclosure using acoustic liners. In practice, however, the 

ground is not convenient for the introduction of noise reduction devices and is usually 

considered to be acoustically rigid (Attenborough, 1985). Besides, the length of these 

linings should be finite which is less costly and more realistic. From the result of case 

with only 𝑍3 presented above, the noise reduction is not as good as expected. Hence, 
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the design of the location, length, and optimized value of the impedance on the wall 

of the enclosure will be studied. On the other hand, in this paper, liners with constant 

impedances are used to validate the proposed model and examine their potential to 

attenuate noise inside and outside the long enclosure. Currently, with the development 

of acoustical metamaterials, new types of liners (Guo et al., 2018) that can provide 

inhomogeneous impedances (Wang et al., 2015; Wang et al., 2017) are widely used 

for reflection wave manipulation and noise attenuation purposes. These structures 

have great potential for the control of noise inside and outside long enclosures. 

3.3.4 Partial lining on the enclosure wall 

Due to the difficulties in obtaining and solving the W-H equations, impedance 

boundary conditions of infinite long are usually preferred instead of finite ones (Demir 

& Buyukaksoy, 2003; Demir & Rienstra, 2006; Gabard & Astley, 2006). However, in 

practice, the length of a noise control device should be finite which is less costly and 

more realistic. Besides, constant impedance boundary condition was applied by Demir 

and Buyukaksoy (2005). However, the impedance values of any acoustical treatment 

in nature change with frequency. Hence, a frequency-dependent impedance boundary 

condition of finite length is considered here. To model the above-described scenario, 

a schematic diagram of the sound radiation from an unbaffled long enclosure with a 

partial lining on the inner wall is presented in Figure 3.11.  

The length of the partial lining is denoted by pL , and its acoustical properties 

are characterized by the acoustical impedance pZ . A new imaginary interface III is 

depicted which divides a region DΩ  with imaginary interface II. The sound pressure 
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field of region 
DΩ  can be expressed in terms of the superposition of acoustical modes 

as follows: 
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where jc  and jd  are modal response coefficients. 

The transversal and horizontal wavenumbers in region DΩ  are determined by 
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The sound pressure fields of the other regions can be described according to the 

previous chapters. To simplify the model, we assume that all the other boundaries are 

acoustically rigid. 

 

Figure 3.11 A schematic diagram of sound radiation from an unbaffled long enclosure 

with a partial lining. 

As can be observed, two extra unknown coefficients jc  and jd  were introduced 

in Eq. (3.42) which need two more equations to determine them. Continuity relations 

of pressure and its gradient at imaginary interface III are given by 
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Combining the residue solution, W-H equation, continuous relations of sound 

pressure, and its gradient at the imaginary II and III, the unknowns can be determined 

simultaneously. The finally identities are listed below: 
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Multiply both sides of Eqs. (3.45) to (3.48) by ( )cos s y  and integrate along the 

opening. Making full use of the orthogonality of modal functions, we have 
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Applying the same procedures in chapter 2, the residue and W-H solutions for 

the rigid unbaffled long enclosure with the ground are obtained. We have 
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Rewriting Eqs. (3.49) to (3.53) in matrix forms, we have 

 LC+D=E+KB  (3.54) 

 LC-D=P+RB  (3.55) 

 C+D=MG  (3.56) 

 C-D=SF  (3.57) 

 ( )F+UG=H F-UG  (3.58) 
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where B , C , D , F , and G  are unknown coefficients to be determined; L , R , E ,

U , K , P , M , S , and H  are the known matrices that can be constructed according 

to Eqs. (3.49) to (3.53). 

To validate the theoretical model, numerical simulations are carried out. In the 

proposed method, the size of the acoustic domain, the number of sources, impedance 

boundary conditions, and the targeted frequency range are arbitrary. However, for the 

sake of calculation efficiency, we start with a relatively small long enclosure of 1 m 

in height and 5 m in length. The frequency of interest ranges between 200 Hz and 

2000 Hz. The maximum wavelength is about 1.7 m at 200 Hz. So, all lengths in the 

following content are based on the multiples of this value. A monopole point source 

with its volume velocity strength being Q1=0.01 m2 s⁄  is considered first. It is placed 

at (-4, 0.5) m. The impedance boundary conditions applied to the partial lining come 

from an MPPA. The acoustical impedance of the MPPA is obtained according to the 

equation proposed by Maa (1998): 
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where 51.84 10 −=   kg/(m*s) is the coefficient of kinematic viscosity of air,   is 

the radian frequency, MPPt  is the thickness of the MPP, MPPd  is the diameter of micro-

holes, MPPp  is the perforation ratio of the MPP, D  denotes the cavity depth, and K is 

proportional to the ratio of the radius to the viscous boundary layer thickness inside 

the orifice: 
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  ( )2MPPK d  =  (3.60) 

Figure 3.12 shows the calculated acoustical impedance of MPPA in the targeted 

frequency range. The MPPA parameters are summarized in Table 3-2. 

Table 3-2 Parameters of MPPA used in the numerical calculation. 

MPPt  (mm) MPPd  (mm) MPPp  D  (mm) pL (m) 

0.2 0.2 1% 86 1.7 

 

 

Figure 3.12 Acoustical impedance of an MPPA and corresponding sound absorption 

coefficient under normal plane-wave incidence. 

Once the reactance of the MPP intersects with the negative part of the reactance 

of the backing cavity, a sound absorption peak appears. At 680 Hz, the total reactance 

of the MPPA vanishes and it works like a Helmholtz resonator at its resonant 

frequency. Under this configuration, the maximum absorption coefficient is 0.96 at 

680 Hz in normal incidence. However, the in-situ performance may vary. 

The directivity patterns of the radiated sound field are presented in Figure 3.13 

and good agreement can be found between the results obtained by the FEM and the 
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W-H technique. The proposed model can be applied to predict the radiated sound field 

of an unbaffled long enclosure with a partial lining. The applicability of the proposed 

model will be examined using experiments in the next section. 

 

Figure 3.13 Directivity pattern of the radiated SPL field obtained by the FEM and W-H 

technique at (a) 200 Hz, (b) 680 Hz, and (c) 1700 Hz. 

3.4 Experimental validations 

Experimental studies are performed to validate the theoretical model proposed 

in Section 3.2. The schematic diagram of the quasi-2D testing system is demonstrated 

in Figure 3.14 (a). A Detailed introduction about the measurement devices can be 

found in Section 2.4. Here, to mimic the ground, an acrylic plate is used to close one 

side of the quasi-2D space. Besides, another acrylic plate is inserted into the quasi-2D 

space to simulate the wall. Absorption materials and MPPA are attached to the inner 

wall of the long enclosure to mimic impedance boundary conditions. 
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Figure 3.14 Experimental setups: (a) schematic diagram of the quasi-2D experimental 

test rig, (b) photography of the test rig, (c) partial lining of absorption materials, and 

(d) partial lining of MPPA. 

To validate the proposed model, a layer of sound absorption material is used to 

simulate a partial lining. The acoustical impedance and sound absorption coefficient 

under normal plane wave incidence are obtained using an impedance tube as presented 

in Figure 3.15.  

 

Figure 3.15 Acoustical impedance (a) and sound absorption coefficient (b) of sound 

absorption material obtained by an impedance tube. 

The directivity patterns of the radiated SPL field obtained by the W-H technique 

and experiment are presented in Figure 3.16. The results are generally consistent in 

patterns, however, there are fluctuations in the experimental results, especially at the 

higher frequencies as presented in Figure 3.16 (c). These errors result from the shape 

effect of the sound absorption material. In the theoretical model, all the surfaces are 

assumed to be flat. Nevertheless, in the experiment, the rough surface of the material 

changes the reflected direction of the sound waves and the sound distribution inside 
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the long enclosure changes as well. Then, the radiated sound field which is determined 

by the sound field inside the long enclosure varies accordingly. Besides, this effect 

becomes dominant when the wavelength of the incoming sound wave is smaller than 

the corrugation size of the rough surface, namely, at high frequencies. 

 

Figure 3.16 Directivity patterns of the radiated SPL field from a long enclosure with 

partially lined porous materials (a) 500 Hz, (b) 1000 Hz, and (c) 1500 Hz. 

In addition, a partial lining of flat MPPA is used to validate the model. The basic 

parameters are listed in Table 3-3. The SPL spectra obtained by the W-H technique 

and experiment at receiver (-0.6 0.6) m are presented in Figure 3.17. The results agree 

well under 850 Hz and the patterns are similar in other frequencies. However, there 

are discrepancies between the results in the middle to high frequencies which result 

from manufacturing and assembling errors. 

Table 3-3 Parameters of MPPA used in the experiment. 
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MPPt  (mm) MPPd  (mm) MPPp  D  (mm) pL (mm) 

0.2 0.5 2% 18 435 

 

Figure 3.17 SPL spectra attained by the W-H technique and the experiment at receiver 

point (-0.6, 0.6) m. 

 

Figure 3.18 Directivity patterns of the radiated SPL field from a long enclosure with 

partially lined MPPA (a) 500 Hz, (b) 1000 Hz, and (c) 1500 Hz. 

The directivity patterns of the radiated SPL field obtained by the W-H technique 

and experiment are presented in Figure 3.18. General patterns coincide with each other 
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even though there are discrepancies between theoretical and experimental results. Due 

to the manufacturing error of the MPPA, the sound pressure field inside the unbaffled 

long enclosure has changed which gives rise to the change of the radiated directivity 

pattern. Combining the experimental results, the theoretical model is validated, even 

though there are certain errors that are within the acceptable range. However, it is 

unsuitable to use the proposed theoretical model to consider the impedance of a lining 

when its surface shape influences the sound distribution. 

3.5 Summary 

In this chapter, a rigorous and explicit model is established for the prediction of 

sound radiated from a semi-infinite long enclosure in which an unbaffled opening, the 

ground, and point-source excitation are taken into consideration simultaneously. The 

results obtained by the W-H technique and FEM are compared and discussed which 

indicates that the proposed method can predict the sound fields both inside and outside 

a long enclosure with high accuracy and efficiency.  

The theoretical model can be applied to a broad frequency range, generalized to 

arbitrary boundary conditions. Besides, there is no size restriction for the acoustical 

domain. The performance of acoustical liners with constant impedances in attenuating 

the noise inside and outside a long enclosure is first investigated, based on which 

potential noise reduction approaches are introduced. The proposed model will be an 

effective tool for conducting parameter studies, explaining the physics behind the 

sound radiation phenomenon, and proposing appropriate noise control strategies. 

Finally, quasi-2D experiments are carried out to validate the proposed models 

in which a layer of porous material and MPPA are used to provide different acoustical 
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impedances. The radiated directivity patterns agree with each other in relatively low 

frequencies. However, discrepancies exist at middle to high frequencies as the shape 

of the material surface and the manufacturing error of MPP influence the distribution 

of sound inside the long enclosure. Combining the experimental results, the theoretical 

model is validated, even though there are certain errors that are within the acceptable 

range. However, it is unsuitable to use the proposed theoretical model to consider the 

impedance of a lining when its surface shape influences the sound distribution. 
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SOUND RADIATION CONTROL OF AN 

UNBAFFLED LONG ENCLOSURE USING 

HELMHOLTZ RESONATORS 

 

4.1 Introduction 

In the last two Chapters, the W-H technique has been applied to model the sound 

radiated from unbaffled long enclosures with and without the ground effect, which are 

corresponding to ductwork systems and traffic tunnels in practice. The sound pressure 

field inside the unbaffled long enclosure was expressed in terms of the superposition 

of acoustic modes, while the radiated sound pressure field was described by the W-H 

technique. It is convenient to explain the radiation phenomenon through the classical 

mode theory, nevertheless, complicated to derive the modal response coefficients. In 

addition, despite that the radiated sound pressure field can be explicitly expressed in 

terms of observation radius and angle, which can deal with large acoustical domains 

with high efficiency, the sound pressure field is very difficult to obtain when there are 

discontinuous noise control devices mounting on the enclosure wall. For the FEM, it 

is convenient to calculate the sound pressure field inside an unbaffled long enclosure 

even when discrete acoustical silencers are mounted on the wall which is more flexible 

than the theoretical models. However, the calculation efficiency declines rapidly when 

dealing with large acoustical domains outside the long enclosure. Hence, to take the 
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advantage of both the W-H technique and the FEM, a hybrid method is proposed in 

this chapter to calculate the sound radiation from an unbaffled long enclosure with the 

ground. The sound pressure field inside the long enclosure is first obtained by the 

FEM, while the radiated sound pressure field is calculated through the W-H technique 

using the calculated sound pressure and particle velocity at the opening. This hybrid 

method not only possesses the flexibility of the FEM to deal with complicated noise 

control devices and boundary conditions but also has the high efficiency of the W-H 

technique in the calculation of a large acoustic domain. Numerical implementation of 

the hybrid method is introduced which can deal with complex noise control devices 

mounting on the wall and calculate large acoustical domains. 

To effectively reduce the noise radiated from the portals of a soundproof tunnel 

using a confined space on the wall, a simple, reliable, and compact noise control 

device is needed. Recently, Wang et al. (2015; 2017; 2018) proposed an active noise 

control (ANC) system which is called the planar virtual sound barrier to attenuate the 

noise radiated from a baffled rectangular cavity. Although substantial noise reductions 

were achieved near the resonant frequencies of the cavity using the ANC system, it 

can be hardly applied in practical traffic tunnels owing to the robust and complicated 

requirements of the ANC system. On the other hand, many passive noise attenuation 

techniques such as covering the surfaces of parallel barriers (Crombie & Hothersall, 

1994), and ducts (Rawlins, 1978) with porous materials have been proposed to reduce 

the sound radiated from openings. However, the performance is undesirable at low 

frequencies and the porous materials may cause hygiene problems such as the 

accumulation of dust and bacteria. The concept of sound wave-trapping barriers was 

introduced (Yang et al., 2013) recently, where the inner walls of the barriers are coated 
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by wedge-shaped structures. The sound waves are either redirected towards the 

ground or trapped within the parallel barriers so that the noise radiated to the outside 

is reduced. In order to suppress the sound radiated from parallel barriers, Helmholtz 

resonators (HRs) were adopted by Wang and Choy (2019a; 2019b) to modify the 

sound pressure distribution inside the parallel barriers so that the diffracted and the 

radiated sound around the targeted frequencies were reduced with an appropriate 

number and appropriate positions of HRs. The performance of HRs, however, is still 

limited by relatively narrow working frequency bands. To widen the stopband, a 

flexible panel device (FPD) was proposed to be mounted on the walls of the parallel 

barriers (Wang et al., 2020). An average insertion loss (IL) of approximately 5 dB was 

achieved in the frequency range between 80 Hz and 1000 Hz. Furthermore, with the 

advancement of acoustical meta-surfaces (AMS), parallel barriers of inhomogeneous 

impedance were constructed using an array of slender tubes with varying depths 

(Wang et al., 2015; 2016; Xiao et al., 2020). Reflected sound waves were manipulated 

applying the phase gradient of the walls so that the trapped acoustical energy inside 

the barrier was altered, which improved the sound reduction in the shadow zone.  

To distort the sound distribution inside the unbaffled long enclosure, mounting 

HRs on the enclosure wall is proposed in this chapter. The modal response coefficients 

at the opening around the targeted frequencies are reduced, and the radiated noise in 

the shadow zone is expected to be suppressed. HRs have been adopted to attenuate 

the noise in open cavities (Wang & Choy, 2019a; 2019b), ducts (Seo & Kim, 2005; 

Cai & Mak, 2018), and enclosure systems (Li et al., 2007; Li & Cheng, 2007; Yu et 

al., 2008; Yu & Cheng, 2009), however, the interaction between HRs and the acoustic 

field inside an unbaffled long enclosure has seldom been investigated. Besides, the 
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relationship between acoustical modes and the radiation patterns is analyzed. The HR 

array locations, optimized to reduce the radiated noise, are obtained. In addition, the 

influences of noise source types on the radiated acoustic field are explored. Finally, a 

quasi-two-dimensional experiment is carried out to verify the proposed model and 

examine the feasibility of HRs in suppressing the noise radiated from an unbaffled 

long enclosure including the ground. 

4.2 Hybrid method 

4.2.1 Formulation of the sound radiation problem 

The schematic diagram of an FE-WH-based hybrid method to predict the sound 

radiated from an unbaffled long enclosure with the ground is shown in Figure 4.1. The 

sound pressure field inside a long enclosure is obtained by the FEM, while the radiated 

sound pressure field is determined by the W-H technique using the calculated pressure 

and particle velocity at the opening.  
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Figure 4.1 Schematic diagram of a hybrid method to predict sound radiation from an 

unbaffled long enclosure with the ground. 

Applying the same procedures in chapter 2 and 3, the W-H solution for the rigid 

unbaffled long enclosure with the ground is obtained as follows: 
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The far-field directivity pattern of the radiated sound pressure field outside the 

unbaffled long enclosure is given by 
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From Eqs. (4.1) and (4.2), the radiated sound pressure field is determined by the 

modal response coefficients of sound pressure and pressure gradient along horizontal 

direction. To determine the coefficients, the continuity relations of sound pressure and 

pressure gradient at the opening of the unbaffled long enclosure are considered. 
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and 
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where nP  and nV  are the sound pressure and horizontal pressure gradient on meshing 

nodes ( )0, ny  along the enclosure opening. Modal function of region CΩ  is denoted 
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by 
C

mY   which can be obtained by the Helmholtz equation and the boundary condition 

on the ground.  

Rewriting Eq. (4.3) and Eq. (4.4) in matrix form, we have 

 P=MG  (4.5) 

 V=MF  (4.6) 

where matrices P  and V  can be obtained using FEM, while M  can be constructed 

using Eq. (4.3). After solving Eqs. (4.5) and (4.6), the modal response coefficients at 

the opening G  and  F  can be obtained. Then, the directivity pattern of the radiated 

sound pressure can be calculated using Eqs. (4.1) and (4.2). 

4.2.2 Implementation of the hybrid method 

In this section, the hybrid model is implemented numerically. The configuration 

of the unbaffled long enclosure, air properties, and the monopole point source are 

listed in Table 4-1.  

Table 4-1 Configuration of the unbaffled long enclosure, air properties, the monopole 

point source, and the far-field directivity. 

Air Properties Monopole Point Source 

Density  1.225 kg/m3 Location  (-2, 0.5) m 

Sound speed  340 m/s Volume velocity strength  0.01 m2/s 

Unbaffled Long Enclosure Directivity Patterns 

Height 1 m Far-field radius  5 m 

Truncated length 5 m Observation angle  [0, 150] degrees 
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An unbaffled long enclosure of 5 m in length and 1 m in height is considered 

here. A monopole point source is located at (-2, 0.5) m and the volume velocity 

strength is 0.01 m2/s. The far-field observation radius is 5 m and the observation angle 

is in the range of [0, 150] degrees. Besides, the speed of sound and density of the air 

are 340 m/s and 1.225 kg/m3, respectively. 

In the first place, the sound pressure field inside the long enclosure is calculated 

using the FEM. To ensure the accuracy of the results, the mesh grids along the opening 

are refined as presented in Figure 4.2. Besides, a geometrical singularity exists at the 

enclosure edge, where the pressure gradient at this point may be wrong. Hence, more 

grids are needed near this point and the horizontal pressure gradient at this point is 

replaced by that of the nearest point in the following calculations. Such replacement 

may give rise to certain errors of the radiated sound pressure field. however, the direct 

use of the horizontal pressure gradient at the edge will lead to wrong results.  
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Figure 4.2 Refinement of the meshing grids along the enclosure opening and at the 

sharp edge. 

The sound pressure and the horizontal particle velocity along the opening at 340 

Hz, 510 Hz, and 1190 Hz are presented in Figure 4.3. Using Eqs. (4.5) and (4.6), the 

modal response coefficients of sound pressure and horizontal pressure gradient can be 

obtained. Then, using Eqs. (4.1) and (4.2), the directivity pattern of the radiated sound 

field from the unbaffled long enclosure can be obtained. 

 

Figure 4.3 Distribution of absolute sound pressure (a) and particle velocity (b) along 

the opening at 340 Hz, 510 Hz, and 1190 Hz. 

Figure 4.4 compares the directivity patterns of the radiated SPL field obtained 

by the FEM and the hybrid method. Generally, the results agree well with each other 

even though small discrepancies exist in the shadow zone which must result from the 

approximation at the edge. The distribution patterns of the radiated sound field can be 

briefly explained from the perspective of acoustical rays applying Figure 4.5. In the 

shadow zone, the sound field is only composed of diffracted rays that depend on the 
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acoustical properties near the edge. The distribution of SPL in this region appears to 

be uniform. The SPL distribution in the illuminated zone, however, is complex, which 

is formed by direct sound propagation, sound reflection from the ground and wall, and 

sound diffraction at the sharp edge. These sound waves propagate to the receiver with 

different phases and over different distances. Consequently, their superposition leads 

to directivity lobes in front of the enclosure opening. 

 

Figure 4.4 Directivity patterns of the radiated SPL field obtained by the FEM and the 

proposed hybrid method at (a) 340 Hz, (b) 510 Hz, and (c) 1190 Hz. 
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Figure 4.5 Acoustical rays from the sound source to the (a) shadow and (b) illuminated 

zones of an unbaffled long enclosure with the ground. 

As the directivity polar plots can only show the patterns of the radiated sound 

field at specific frequencies, SPL spectra of two randomly picked receiving points R1 

(-1, 0.5) m and R2 (-3, 3) m are used to represent the characteristics of sound fields 

inside and in the shadow zone of the long enclosure. The comparison between the 

SPLs obtained by the W-H technique and the hybrid method in the targeted frequency 

range at the receivers is illustrated in Figure 4.6. Good agreement can be observed 

between the results, which along with Figure 4.4, verifies the proposed hybrid model 

in the calculation of sound fields inside and outside an unbaffled long enclosure. 
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Figure 4.6 Comparison of SPL spectra of receivers inside and outside the unbaffled 

long enclosure at (a) R1 (-1, 0.5) m and (b) R2 (-3, 3) m. 

4.3 Sound suppression of an unbaffled long enclosure 

using HRs 

4.3.1 Mechanism investigations 

As demonstrated in Figure 4.6, SPL peaks can be observed around 340 Hz, 680 

Hz, 1020 Hz, and 1360 Hz (denoted by squares) inside and at the shadow zone of the 

long enclosure. They are the resonant frequencies of the long enclosure along the 

vertical direction. In order to explore the formation mechanisms of sound peaks and 

then suppress the radiated noise at peak frequencies, HRs are proposed to reduce the 
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relevant modal responses inside the long enclosure so that the radiated sound field 

around the peak frequencies are expected to be controlled. Generally, the acoustical 

coupling between a long enclosure and an HR is strong when the resonator is close to 

the anti-node regions or near the primary sound sources. In addition, the acoustical 

properties at the enclosure edge, according to the geometrical theory of diffraction 

(GTD), have a great influence on the diffracted sound field. Hence, we choose two 

HR locations L1 (-2, 1) m and L2 (0, 1) m to explore their influences on the sound 

radiation phenomenon. Figure 4.7 (a), (b), and (c) show the SPL distributions inside 

and outside a long enclosure at 340 Hz for rigid wall without and with HRs at locations 

L1 (denoted by HR340, L1) and L2 (denoted by HR340, L2), respectively. Using the 

hybrid method, the effect from the HR profiles on the radiated sound pressure field is 

ignored. The HRs in Figure 4.7 are used mainly to illustrate their locations. In Figure 

4.7 (a), due to multiple reflections on the rigid ground and wall, an acoustic mode can 

be observed, and the SPL is generally high inside the long enclosure. However, in the 

horizontal direction, standing waves can be hardly seen because the reflected sound 

is relatively small which just influences the sound distribution near the opening. 

Outside the long enclosure, the principal lobe (the lobe with the highest SPL near the 

enclosure edge) locates at about 70 degrees. Figure 4.7 (b) shows that when the 

resonator is located exactly above the sound source, the SPL distribution in the long 

enclosure is greatly changed and the sound energy radiates mainly toward 10 degrees. 

Besides, the amplitude of the principal lobe is greatly reduced and its angle shifts to a 

lower degree compared with the rigid case. In Figure 4.7 (c), the HR340 is mounted 

near the edge, the SPL distribution inside the long enclosure remains almost the same 

as the rigid case without a resonator. The amplitude of the principal lobe, however, is 
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reduced and its angle shifts to a lower degree as well.  

 

 

Figure 4.7 SPL distributions of the sound fields at 340 Hz: (a) Rigid wall, (b) HR340 at 

L1, (c) HR340 at L2; and (d) far-field directivity patterns. 

Figure 4.7 (d) illustrates the comparison of SPL directivity patterns outside the 

long enclosure. The SPL distribution patterns along the observation radius are like the 

near-field results. However, the amplitudes and sizes of lobes are different among 

these three situations. The sound is significantly reduced above the observation angle 

of 50 degrees when an HR340 is mounted on the enclosure wall. However, the SPLs 

under the observation angle of 50 degrees are mostly larger than the rigid case which 
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implies that more sound energy radiates to the lower observation angles when an 

HR340 is mounted. Besides, the performance of HR340 at L2 is better than L1 when 

the observation angle is larger than 120 degrees. This is caused by the diffracted sound 

when the HR340 is located at L1 which forms a small lobe in the shadow zone. 

 

Figure 4.8 Absolute modal response coefficients at the opening normalized by the 

rigid case: (a) Rigid wall, (b) HR340 at L1, and (c) HR340 at L2. 

To better understand the physics behind the sound radiation control of using an 

HR, acoustical modal analysis is conducted. Figure 4.8 illustrates the absolute modal 

response coefficients |Gm| for the long enclosure with and without an HR340. In the 

rigid case, as presented in Figure 4.8 (a), the second acoustic mode is dominant. The 

amplitudes of the second modal responses are significantly reduced when an HR340 

is mounted at L1 and L2 as demonstrated in Figure 4.8 (b) and (c), respectively. The 

contributions from the adjacent acoustical modes, however, increase as well, which 

attributes to the energy conservation. Figure 4.8 (b) demonstrated that the zeroth and 
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the first acoustical modes become the main contributors to the total sound pressure 

field, while Figure 4.8 (c) displays that the first four acoustical modes contribute to 

the total sound pressure field. Different combinations of these modes form the sound 

pressure distributions as illustrated in Figure 4.7 (a), (b), and (c), respectively. 

 

Figure 4.9 Schematic diagram of the hybrid method, (a) the transversal modal shapes 

of the rigid long enclosure and the corresponding eigen-frequencies, (b) calculation 

domain in COMSOL. 

To find the connections between acoustical modes and the SPL distributions of 

the radiated sound field, the radiation pattern of each single-mode incidence from the 

enclosure opening is investigated using the hybrid method. The transversal acoustic 

mode shapes of the rigid long enclosure and the corresponding eigenfrequencies are 

displayed in Figure 4.9 (b). These modes are imposed on the enclosure opening as 

pressure boundary conditions in COMSOL so that their radiation patterns can be 
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obtained as shown in Figure 4.9 (a). Perfectly matched layers (PMLs) are applied to 

simulate the reflectionless boundaries.  

As can be observed in Figure 4.10, the radiation patterns of the zeroth to the 

fifth mode at 340 Hz are not symmetric about the centerline of the opening as shown 

in the paper of Tong et al. (2017) and the results in Figure 2.13 and Figure 2.14. 

However, the radiated acoustical modes from the opening tend to propagate upward 

due to the ground reflection. Besides, the number of radiation lobes at the opening 

increase with the modal index, and it is greater than the index by one. Also, it is found 

that the higher-order acoustical modes are quite easy to dissipate and small lobes 

merge to form large ones during the radiation process as demonstrated from Figure 

4.10 (d) to (f). In the far-field results, as presented in Figure 4.10 (g), the radiation 

directivities of the acoustical modes differ from each other mainly in front of the 

opening. By doing the modal decomposition analysis, we find the dominant modal 

contributors to the radiated field. The sound peaks in the shadow zone can then be 

suppressed by controlling the modal responses of these modes using HRs. 
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Figure 4.10 Radiated SPL fields under single-mode incidence at 340 Hz: (a) Mode 0, 

(b) Mode 1, (c) Mode 2, (d) Mode 3, (e) Mode 4, (f) Mode 5, and (g) far-field directivity 

patterns of Mode 0 to Mode 3. 

4.3.2 Diffraction effect at the enclosure edge 

Since only the diffracted sound waves propagate into the shadow zone of the 
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long enclosure, the acoustic properties at the sharp edge which can be considered as a 

diffraction point need to be further studied. According to the GTD proposed by Keller 

(1962), the diffracted sound pressure field can be calculated by 
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where dp  and ip  are, respectively, the sound pressure at the receiving and diffracting 

points, and l  is the distance between them. An asymptotical expanded form of the 

diffraction coefficient is given by 
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where   and   are the incident and diffraction angles, respectively.  

 

Figure 4.11 Change in the diffraction coefficient regarding frequency, the incident and 

diffraction angles. 

The change of diffraction coefficient against frequency, incident, and diffraction 

angles is shown in Figure 4.11. The diffraction coefficient decreases as the frequency 
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increases. This implies that a sound wave with a long wave length will be diffracted 

with higher efficiency. In addition, at a specific frequency, the increase of the incident 

angle obtains a larger diffraction coefficient. This means that the sound wave will be 

diffracted more effectively if the incident wave impinges normally to the enclosure 

wall. On the contrary, if the incident wave propagates along a parallel direction to the 

enclosure wall, a minimum diffraction coefficient will be observed. Besides, as the 

diffraction angle increases, it becomes more difficult for sound waves to be diffracted 

which results in the uniform decrease of SPL at higher observation angles in Figure 

4.7 (d). 

Combining Eqs. (4.1) and (4.2), the radiated sound pressure field is determined 

by the modal response coefficients of sound pressure and pressure gradient at the 

opening. Specifically, they correspond to the amplitude and angle of the incident 

sound pressure at the edge for the diffraction effect. Their joint effects on the 

diffraction phenomenon can be represented by a vector quantity, namely, sound 

intensity. Therefore, attention is then paid to the intensity field around the sharp edge. 

The sound intensity fields near the enclosure edge with and without HR340 are 

presented in Figure 4.12 using arrow line plots. The length of the line represents the 

amplitude and the arrow shows the direction. In the rigid case, as shown in Figure 

4.12 (a), a ring-shaped sound intensity distribution that rotates counterclockwise is 

formed near the opening. The incident sound waves reach the sharp edge almost at a 

perpendicular angle to the wall. The diffraction coefficient, according to the GTD, is 

close to the maximum. As a result, the far-field SPL at an observation angle of 120 

degrees in the shadow zone stands at about 88 dB as presented in Figure 4.7 (d). After 

mounting an HR340 on the wall at L1 and L2, the sound intensities in the shadow 
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zone are both reduced as shown in Figure 4.12 (b) and (c), respectively. However, the 

physics behind these two cases are different. In Figure 4.12 (b), the HR340 is mounted 

exactly above the sound source. The coupling between the HR340 and the sound field 

inside the long enclosure is strong which distorts the sound distribution near the 

opening. The sound waves propagate to the diffraction point at a grazing angle to the 

wall. In this case, the diffraction coefficient is close to the minimum based on the 

GTD. In Figure 4.12 (c), the HR340 is mounted near the edge. It produces little effect 

on the sound field inside the long enclosure. Nevertheless, the sound pressure around 

the sharp edge is greatly reduced which also gives rise to the suppression of sound in 

the shadow zone. Therefore, as demonstrated in Figure 4.7 (d), the SPLs at an 

observation angle of 120 degrees in the shadow zone are 76 dB and 74 dB when an 

HR340 is mounted at L1 and L2, respectively. The difference between these two cases 

is that the sound energy propagates mainly along the ground in Figure 4.12 (b) while 

to the sky in Figure 4.12 (c). 
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Figure 4.12 Sound intensity field near the sharp edge of the long enclosure at 340 Hz: 

(a) Rigid case, (b) HR340 at L1, and (c) HR340 at L2. 

4.3.3 Use of multiple HRs 

A resonator array consisting of HRs with different natural frequencies can be 

adopted to reduce the noise level at multiple sound peaks. Therefore, according to the 

SPL spectra presented in, four HRs, namely, HR340, HR680, HR1020, and HR1360 

are designed to suppress the sound peaks at 340 Hz, 680 Hz, 1020 Hz, and 1360 Hz, 

respectively. The geometrical configurations of these HRs are presented in Table 4-2. 

To begin with, the optimized locations of HRs are obtained based on the maximum 

mean IL over a frequency bandwidth (20 Hz) centered at the resonant frequencies of 

HRs. Receiver R2 (-3, 3) m is chosen to represent the properties of the sound field in 

the shadow zone. As the HRs are moving on the enclosure wall, the IL is a function 

of horizontal locations of HRs. Mathematically, it is expressed as follows: 
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where subscripts ‘Rigid’ and ‘HR’ represent the cases without and with the HR, 

respectively. fN  denotes the total number of sampling frequencies used to calculate 

the SPL. Figure 4.13 indicates the variation of mean ILs at receiving point R2 (-3, 3) 

m when different HRs are placed on different locations of the enclosure wall. Small 

and negative ILs can be observed when the HRs are mounted at the left-hand side of 

the sound source. This implies that the acoustical coupling between HRs and the long 
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enclosure is weak when they are away from the point source. Generally, the optimized 

locations are between the point source and the sharp edge, and the maximum ILs of 

HRs decline with the increase of frequency. An exception is that two optimal locations 

are observed for HR680. However, we use (-0.6, 1) m in the following calculations to 

avoid unfavorable interactions between HRs when the distance between them is too 

short. 

Table 4-2 Geometrical configurations and the optimized locations of HRs in reducing 

the noise radiated from an unbaffled long enclosure. 

Resonator 

types 

Neck 

width (m) 

Neck 

length (m) 

Cavity 

width (m) 

Cavity 

length (m) 

Optimized 

Locations (m) 

HR340 0.02 0.0381 0.14 0.05 (-1.19, 1) 

HR680 0.02 0.02 0.052 0.05 (-1.6,1), (-0.6, 1) 

HR1020 0.016 0.02 0.0572 0.02 (-1.8, 1) 

HR1360 0.01 0.012 0.028 0.0215 (-2.01, 1) 

 

 

Figure 4.13 Mean IL over the frequency bandwidth of 20 Hz centered at the resonant 

frequencies of HRs against their locations. 

The directivity patterns of the radiated sound field with a single HR and multiple 

HRs are shown in Figure 4.14. Compared with the rigid case without a resonator, the 
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SPLs in the shadow zone are significantly reduced both by a single HR and multiple 

HRs. Due to the favorable or unfavorable interactions among HRs and the long 

enclosure, the performance of multiple HRs is superior to a single HR at 340 Hz and 

1360 Hz, while inferior to a single HR at 1020 Hz. Overall, multiple HRs can reduce 

multiple SPL peaks. In order to examine whether there are undesirable results in this 

optimized configuration, the ILs of a single HR and multiple HRs are compared in 

Figure 4.15. In general, as presented in Figure 4.15 (a), (b), and (d), the performance 

of multiple HRs can maintain the performance of corresponding single HR in the 

certain frequency bandwidth. In Figure 4.15 (c), the IL of multiple HRs is smaller than 

that of a single HR1020 which is resulted from undesirable interactions among HRs 

and the long enclosure. However, two unexpected IL peaks appear in other frequency 

ranges which result from favorable interactions among HRs and the sound field inside 

the long enclosure. From the above analysis, a resonator array consisting of HRs with 

different natural frequencies can be adopted to reduce the noise level at multiple sound 

peaks if their locations are optimized. 
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Figure 4.14 Far-field directivity patterns (dB) of the radiated sound field in rigid, single, 

and multiple HRs conditions at (a) 340 Hz, (b) 680 Hz, (c) 1020 Hz, and (d) 1360 Hz. 

 

Figure 4.15 Comparison of ILs between HR array and single HR at R2, (a) HR340, (b) 

HR680, (c) HR1020, and (d) HR1360. 

4.3.4 Source effect 

In practice, there are various types of noise sources inside an unbaffled long 

enclosure. Therefore, preliminary investigations are conducted to explore the effects 

of the source on the sound radiation phenomenon. Four cases, namely, (1) plane-wave 

incidence with amplitude of 1 Pa, (2) single point source 1Q =0.01 m2/s at (-2, 0.5) m, 

(3) single point source 2Q =0.02 m2/s at (-1, 0.5) m, and (4) two point sources 1Q  and 

2Q  at (-2, 0.5) m and (-1, 0.5) m, respectively, are considered here. Directivity patterns 

of the radiated sound fields at specific frequencies are presented in Figure 4.16. 

As illustrated in Figure 4.16 (a), the radiation patterns of the plane-wave and 
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point source cases are similar at 300 Hz. This implies that plane-wave is the dominant 

mode radiating from the enclosure opening when the frequency of interest is relatively 

low. However, the size of the lobes in the point source cases becomes large at high 

frequency compared with the plane-wave case, as presented in Figure 4.16 (b). This 

is the result of the superposition of higher-order modes radiation.  As a result, plane 

wave incidence is not suitable to represent the sound source in traffic tunnel where 

higher-order acoustical modes must be considered. In addition, the SPLs are very 

similar for the case of multiple sources and the source 𝑄2  case, as the sound field is 

dominated by the source with a higher volume velocity strength. Besides, the 

amplitude and location of the point sources also influence the radiated sound field 

which will be analyzed in future work. 

 

Figure 4.16 Directivity patterns of the radiated sound field with different types of 

sound sources at (a) 300 Hz and (b) 1000 Hz. 

4.4 Experimental studies 

The schematic diagram of a quasi-2D experimental test rig to study the sound 

radiation from an unbaffled long enclosure is shown in Figure 4.17 (a). The photos of 

the test rig in an anechoic chamber and the HRs on the wall are demonstrated in Figure 
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4.17 (b) and (c), respectively. Detailed introductions about the testing system can be 

found in Section 2.4. In addition, 2D Helmholtz resonators are used in the theoretical 

model to explain the physics behind the sound attenuation phenomenon. However, in 

reality, 3D Helmholtz resonators are applied to verify their sound reduction abilities 

instead of validate the theoretical model. 
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Figure 4.17 Experimental setups: (a) schematic diagram of the quasi-2D experimental 

test rig, (b) photography of the test rig, and (c) Helmholtz resonators on the wall. 

Considering the performance of the loudspeaker and the dimensions of the test 

rig, the location and volume velocity strength of the monopole point source, the 

observation radius are set as (-0.4, 0.1) m, 0.002 m2/s, and 0.6 m, respectively, in the 

experiment. In the first place, the far-field directivity patterns of the radiated SPL field 

are measured and compared with the theoretical results as presented in Figure 4.18. 

Good agreement can be observed between the theory and experiment even though 

discrepancies exist. They are caused by various factors such as the installation 

accuracy of the test rig, the quality of the loudspeaker, the performance of the 

Melamine foam wedges, and the precision of positioning. 
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Figure 4.18 Directivity patterns of the radiated SPL field obtained by the W-H 

technique and experiment at (a) 500 Hz, (b) 2000 Hz, and (c) 4000 Hz. 

Then, the feasibility of using HRs to reduce the radiated noise from a long 

enclosure is verified by the experiment. Considering the height of the long enclosure 

in the test rig, the first SPL peak appears at 1700 Hz. However, the corresponding 

HRs will be too small to manufacture and install if we adopt a one-fifth scaled-down 

model of the long enclosure considered in Section 4.3. Besides, HR340 is too big to 

be mounted in the quasi-2D space. Therefore, only three cylindrical HRs: HR680, 

HR1020, and HR1360, fabricated of photosensitive resin using 3D printing technique 

are mounted on the enclosure wall to reduce the radiated noise even though SPL peaks 

will not appear in the targeted frequency range. Experimental results of SPL spectra 

at (-0.6, 0.6) m are presented in Figure 4.19. Clear sound reductions can be observed 

around 680 Hz, 1020 Hz, and 1360 Hz. The average ILs reach 2.1 dB, 8.3 dB, and 

11.9 dB within the bandwidth of 20 Hz centered at these frequencies.  

Besides, measured directivity patterns of the radiated SPL field with and without 
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HR array at 680 Hz, 1020 Hz, and 1360 Hz are presented in Figure 4.20. Clear sound 

reductions are obtained especially in the shadow zone. In brief, the experimental 

results demonstrate that using an HR array can reduce the noise in the shadow zone 

around the targeted frequencies. 

 

Figure 4.19 Experimental results of SPL spectra at (-0.6, 0.6) m with and without the 

HR array.  

 

Figure 4.20 Measured directivity patterns of the radiated SPL field with and without 

HR array at (a) 680 Hz, (b) 1020 Hz, and (c) 1360 Hz. 
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4.5 Summary 

The prediction and suppression of the noise inside and outside an unbaffled long 

enclosure are theoretically, numerically, and experimentally investigated. Formation 

mechanisms of the radiation directivity patterns are explored. HRs are employed to 

attenuate the radiated noise. The following conclusions are made: 

A hybrid method capable of coupling the interior and exterior acoustical fields 

of an unbaffled long enclosure including the ground is established. It is proven to be 

an effective tool for the analysis of sound radiation phenomena and the introduction 

of appropriate noise control approaches. The sound peaks and directivity patterns are 

closely related to the acoustical modes and the modal responses at the opening. With 

the appropriate design of HRs, the dominant modal responses at the peak frequencies 

of the SPL spectra are significantly reduced, which results in the amplitude reduction 

of the incident sound wave at the top edge of the enclosure. In addition, the direction 

of the incident sound wave bends slightly towards the parallel direction along the wall 

surface. Thus, the diffraction wave that propagates from the sharp edge to the shadow 

zone is attenuated. Quasi-2D experiments were implemented to verify the proposed 

theoretical model and demonstrate the feasibility of using HRs to attenuate radiated 

noise. Three resonators, HR680, HR1020, and HR1360, were applied to reduce the 

noise at 680 Hz, 1020 Hz, and 1360 Hz, respectively. The average ILs at receiver 

point (-0.6, 0.6) m reach 2.1 dB, 8.3 dB, and 11.9 dB, respectively, within a bandwidth 

of 20 Hz centered at these frequencies. 
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SOUND ABSORPTION CHARACTERISTICS OF 

Z-SHAPED MICRO-PERFORATED PANEL 

ABSORBERS 

 

5.1 Introduction 

From the previous Chapters, the sound pressure distribution inside an unbaffled 

long enclosure is complicated, which is formed by the linear superposition of multiple 

higher-order acoustical modes. In chapter 4, HRs have been proposed to suppress the 

sound peaks inside the unbaffled long enclosure so that the radiated SPL field around 

the resonant frequencies of the HRs can be attenuated. However, the noise reduction 

performance of an array of HRs is still unsatisfactory which is limited by their narrow 

working frequency bandwidths. Therefore, A simple, compact, and broadband noised 

suppression device is needed. The feasibility of applying two-dimensional hard rough 

surfaces to attenuate the noise level inside a traffic tunnel has been examined by Law 

et al. (2008). It was observed that an average sound reduction of about 3 dB over the 

frequency range from 500 Hz to 5000 Hz could be obtained. Aiming at absorbing the 

higher-order acoustical modes inside a duct, the interactions between these modes and 

a perforated liner system were investigated by Eldredge (2004). Later, enlightened by 

the research of Eldredge, a broadband acoustical liner with multiple cavity resonances 

was designed, and the acoustical performance of the liner was investigated (Jing et al., 
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2007; Zhou et al., 2016). 

From the above introductions, acoustical liners consisting of micro-perforated 

panel absorbers (MPPAs) are promising noise control devices to attenuate the noise 

consisting of higher-order acoustical modes. Apart from applying the multiple cavity 

resonances, MPPAs with trapezoidal (Wang et al., 2010) and L-shaped (Gai et al., 

2017) cavities are proposed. More acoustical modes that are initially decoupled with 

the MPP backed by a rectangular cavity are coupled with the MPP backed by cavities 

with irregular shapes. Compared with a flat MPPA backed by a constant air gap, the 

irregular-shaped MPPAs provide more spectral peaks and achieve good absorption 

performance at the dips in the sound absorption coefficient curve. These designs are 

from the perspective of the backing cavity and the incident plane waves are normal to 

the MPP. However, in practice, the distribution of sound pressure fields is complex in 

the duct, enclosure, and cavity systems. The amplitudes and incident angles of sound 

pressure along MPP surfaces are different. Consequently, the in-situ performance of 

the MPPAs is usually inferior to the theoretical results as the normal sound absorption 

coefficient of the MPPAs is inapplicable. Hence, to investigate the performance of an 

MPPA in practical acoustical environments, researches on the performance of MPPAs 

under oblique and random plane-wave incidences have been carried out (Yang et al., 

2013; Wang et al., 2014; Liu et al., 2020). Results show that shape designs of cavities 

are not enough for a broadband sound absorption performance of an MPPA, especially 

when the sound waves are impinging tangentially or at a large incident angle on the 

flat MPP. To further improve the sound absorption performance of an MPPA under 

an oblique plane-wave incidence or in the diffuse field, a corrugated MPPA (CMPPA) 

with a sinusoidal MPP profile is proposed (Wang & Liu, 2020). Both the plane-wave 
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incident angle to the local surface and the cavity shape of the MPPA are changed by 

introducing the corrugated MPP, which enhanced the sound absorption at the troughs 

and more spectral peaks can be observed. A key parameter that influences the sound 

absorption performance of a CMPPA is the corrugation depth. The corrugated profile 

of MPP, however, is determined when the corrugation depth and width of the MPPA 

are chosen, which is lacking flexibility for higher sound absorption performance.  

To find a more flexible configuration of the corrugated MPP profile, a Z-shaped 

micro-perforated panel absorber (ZMPPA) is proposed in this Chapter. It is targeted 

for the absorption of higher-order acoustical modes inside an unbaffled long enclosure 

so that the radiated sound field can be attenuated. In addition to the advantages of the 

CMPPA, a ZMPPA is more versatile and flexible, which is promising for broadband 

noise control in large spaces and buildings. The remainder of this chapter is organized 

as follows. A numerical approach is first proposed to calculate the sound absorption 

coefficients of MPPAs under an oblique plane-wave incidence. The proposed method 

is then validated using theoretical formulas. After that, the acoustical performance of 

the ZMPPA is investigated. The effects of the key parameters, such as the corrugation 

depth and offset distance, on the oblique sound absorption coefficient of the ZMPPA 

are explored. The random sound absorption coefficients of the MPPAs are calculated 

and compared to evaluate their performance in complex situations. In addition, a liner 

comprising of ZMPPAs is applied to attenuate the sound radiated from an unbaffled 

long enclosure with the ground. Finally, experimental results are presented to validate 

the numerical model and examine the performance of the ZMPPA. Results show that 

the ZMPPA can attenuate the radiated noise in a wide frequency band which proves 

that the ZMPPA is a promising noise control device in practical applications. 
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5.2 Numerical model 

5.2.1 The sound absorption coefficient of an MPPA under an 

oblique plane-wave incidence 

A schematic diagram of the micro-perforated panel absorber (MPPA) under an 

oblique plane-wave incidence is illustrated in Figure 5.1.  

 

Figure 5.1 A schematic diagram of the micro-perforated panel absorber (MPPA) under 

an oblique plane-wave incidence. 

The width of the acoustical domain is W, and the depth of the cavity is D. The 

bottom wall of the cavity is rigid, while the sidewalls of the acoustical domain are 

periodic to simulate an MPPA of infinite length. In addition, a non-reflection domain 
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is applied at the inlet of the duct to ensure that the reflected and scattered sound waves 

can propagate to the outside without any reflection. Assume that a plane-wave of unit 

amplitude is incident obliquely on the MPP surface which can be expressed by 

 ( )exp sin cosincidentp ik x y = − −    (5.1) 

where k  stands for the wavenumber in the free space, and   represents the incident 

angle. Part of the incident sound energy is reflected or scattered by the MPP while the 

rest is absorbed by the MPPA. The sound fields in the virtue duct and backing cavity 

satisfy the Helmholtz equation as 

 ( )2 2 0totalk p + =   (5.2) 

On two sides of the MPP, the normal particle velocity must be continuous along 

the MPP surface: 

 cavity duct

n

MPP

p p
u

Z

−
=  (5.3) 

where cavityp  and ductp  denote, respectively, the sound pressure field inside the cavity 

and duct. The acoustical impedance of the MPP can be calculated by Maa’s equation 

as given in Eq. (3.59). The MPPs considered in this thesis are assumed to be rigid and 

therefore, the vibration effects of the MPP panels are ignored. To include the vibration 

effect of MPP panel, Eq.(5.3) is replace by the coupled normal particle velocity of air 

and MPP (Takahashi & Tanaka, 2002; Wang et al., 2012). 

In order to account for the infinite size of the MPPA system, periodic boundary 

conditions are applied on sidewalls of the backing cavity and virtual duct which are 

described as 

 sinik W

L Rp p e −=  (5.4) 
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where subscripts ‘L’ and ‘R’ denote the left and right boundaries, respectively. For 

the inlet of the duct, A Dirichlet-to-Neumann boundary (DtN) Boundary condition is 

imposed to simulate a non-reflection boundary. For the bottom wall, a rigid boundary 

condition is applied which is expressed as 

 0total

y D

p

y
=−


=


  (5.5) 

The governing Helmholtz equation and the boundary conditions are considered 

using the FE software package COMSOL Multiphysics. Eq. (5.3) is implemented by 

specifying the surface of the MPP as an ‘interior impedance’ boundary. The sidewalls 

of the virtual duct and cavity are set as ‘Floquet periodicity’ and the bottom wall of 

the backing cavity is set as ‘acoustically rigid wall’ in COMSOL. A perfectly matched 

layer (PML) is specified on top of the duct to simulate a non-reflection domain, and 

the ‘background pressure field’ is used to define an oblique plane-wave incidence. In 

the numerical model, the backing cavity and the exterior virtual duct are meshed using 

triangular elements while the PML domain is discretized by structured grids. In order 

to ensure the accuracy of the model, 20 elements per wavelength are applied to mesh 

the acoustical domain. After solving the problem, the sound absorption coefficient of 

an MPPA under an oblique plane-wave incidence is calculated by 
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where the asterisk denotes the complex conjugate and the sound absorption coefficient 

under a random plane-wave incidence is calculated by 

 ( )
2

0
sin 2r d



   =   (5.7) 

The numerical model is applied to investigate the sound absorption performance 
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of different types of MPPAs as shown in Figure 5.2. For a flat MPP as demonstrated 

in Figure 5.2 (a), the acoustical impedance is determined by Maa’s formula. The sound 

properties of a corrugated micro-perforated panel absorber (CMPPA) were explored 

by Wang and Liu (2021), as presented in Figure 5.2 (b). The volume of the CMPPA 

is kept the same as that of an FMPPA. The sound absorption coefficient of the CMPPA 

increases considerably at the troughs of the sound absorption coefficient curve, which 

is a favorable characteristic for broadband random noise attenuation in large buildings 

and spaces. The sound absorption coefficient is mainly determined by the corrugation 

depth. However, once the height of the backing cavity and the width of the MPPA are 

chosen, the sinusoidal profile and the corrugation depth of the CMPP are determined 

which is lacking flexibility. In this regard, a Z-shaped micro-perforated panel absorber 

(ZMPPA) is proposed as shown in Figure 5.2 (c) and (d), which have the same volume 

and height as that of an FMPPA, respectively. 

The profile of a ZMPP is an interpolation curve that is determined by the cavity 

width W, height D, corrugation depth H, and an offset distance O from the central line 

as presented in Figure 5.2 (d). In such a configuration, the air gap between the ZMPP 

and the bottom wall forms an irregular-shaped backing cavity, which gives rise to the 

variation of the cavity depth. Therefore, the distance from the middle line of the ZMPP 

to the bottom wall is defined as the cavity depth D, so that the volume of the cavity is 

the same as that of an FMPPA. Due to the introduction of an offset distance, the shape 

of the ZMPPA is changeable which may provide more potential for the absorption of 

noise. Compared with the CMPPA, apart from the variation of the corrugation depth 

H∈[0, D]; the offset distance O∈[0, W/2]. However, to keep the same cavity volume 

as an FMPPA, the profiles of the CMPP and ZMPP protrude outward for a corrugation 
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depth which enlarges the thickness of the MPPAs. To propose compact absorbers, the 

acoustical performance of a ZMPPA of the same height as the FMPPA is investigated 

as demonstrated in Figure 5.2 (c). Such a configuration sacrifices a part of the cavity 

volume; however, the corrugation depth and offset distance are changeable which may 

provide unexpected performance. The positions of points that determine the profile of 

the ZMPP (red circles) are all changeable, as presented in Figure 5.2 (c). 

Since a ZMPP can be obtained by reshaping an FMPP, the acoustical impedance 

over the ZMPP profile is the same as the FMPP. However, the actual length, as well 

as the perforation area of the ZMPP are, respectively, longer and larger than that of 

the FMPP. So, the bulk perforation ratio of the ZMPP, which indicates the ratio of the 

total perforated area to the incident plane area is applied: 

 ZMPP FMPP

ZMPP

W
p p

L
= , (5.8) 

where ZMPPL  denotes the arc length of the ZMPP. The bulk perforation ratio is applied 

on the CMPPA as well. 
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Figure 5.2 Different configurations of MPPAs. (a) an FMPPA, (b) a ZMPPA with the 

same height as the FMPPA, (c) a CMPPA with the same volume as the FMPPA, (d) a 

ZMPPA with the same volume as the FMPPA. 

5.2.2 Model validation using theoretical formulas 

For an infinite long FMPPA with a constant air gap, the path difference between 

the incident and reflected acoustical waves from the cavity wall varies regarding the 

incidence angle. The sound absorption coefficient of the FMPPA under an oblique 

plane-wave incidence is calculated by (Maa, 1998) 
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 (5.9) 

For an FMPP that is backed by several sub-cavities, the MPPA can be treated 

as a locally reacting surface. The sound absorption coefficient of the MPPA under an 

oblique plane-wave incidence can be estimated by (Wang et al., 2014) 
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where the surface impedance can be obtained by the equivalent circuit method.  

To validate the proposed model using these theoretical formulas, three cases are 

considered, namely, (a) a normal plane-wave incidence on an FMPPA, (b) an oblique 

plane-wave incidence on the FMPPA (45 degrees), and (c) an Oblique plane-wave 

incidence on an FMPPA with sub-cavities (45 degrees). The parameters of MPPAs 

are listed in Table 5-1. As presented in Figure 5.3 (a) and (b), the results obtained by 

the current numerical method agree well with that calculated using Eq. (5.9) under 

normal and oblique plane-wave incidences. In Figure 5.3 (c), however, discrepancies 

can be observed between the results obtained by the current method and Eq. (5.10) 

under an oblique plane-wave incidence. The oblique sound absorption coefficient of 

an MPPA array is a function of the geometrical size of the sub-cavities, the incidence 

angle, and so on. However, Eq. (5.10) only takes the effect of the incidence angle into 

consideration while the influence by other parameters is ignored. An extreme situation 

is described using Eq. (5.10), in which the sizes of the sub-cavities are infinitesimal 

compared with the acoustical wavelength. As a result, the sound absorption coefficient 

of an MPPA with sub-cavities under an oblique plane-wave incidence can be roughly 

evaluated by Eq. (5.10). However, accurate numerical approaches, such as the current 

one, are necessary for the actual acoustical performance of the MPPA array. 
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Figure 5.3 Sound absorption coefficients of MPPAs: (a) normal plane-wave incidence 

on an FMPPA, (b) oblique (45 degrees) plane-wave incidence on the FMPPA, and (c) 

oblique (45 degrees) plane-wave incidence on an MPPA with sub-cavities. 

Table 5-1 Parameters of MPPA used to validate the numerical model. 

MPP parameters Cavity parameters (mm) 

MPPt  MPPd  MPPp  FMPPD  1D  2D  3D  4D  

0.4 (mm) 0.4 (mm) 1/100 100 100 50 12 25 

5.3 Acoustical properties of a ZMPPA 

5.3.1 ZMPPA of the same volume as the FMPPA 

The acoustical properties of the ZMPPA are investigated in this section. MPPA 

parameters used in the calculations are listed in Table 5-2. The MPP parameters are 

arbitrarily chosen for the purpose of revealing the sound absorption mechanisms. The 

optimized configurations will be presented later. 
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Table 5-2 Parameters of MPPAs used in the calculations. 

MPP parameters Cavity shape (mm) Corrugation profile (mm) 

MPPt  MPPd  MPPp  D W H=D/4 O=D/4 

0.4 (mm) 0.4 (mm) 1/100 100 100 25 25 

 

• Normal plane-wave incidence 

The sound absorption coefficients of the FMPPA, CMPPA, and ZMPPA under 

a normal plane-wave incidence are compared in Figure 5.4. First, the sound absorption 

coefficient of the ZMPPA at the first trough (1075 Hz) is improved compared with 

that of the CMPPA (1580 Hz) and FMPPA (1700 Hz). This is advantageous for the 

broadband attenuation of a highly reverberated acoustical field. Second, the first 

sound absorption peak of the ZMPPA shifts to a lower frequency (385 Hz) compared 

with that of the FMPPA and CMPPA (500 Hz), which is promising for the suppression 

of low-frequency noise. Besides, there are three sound absorption peaks between the 

frequency range of 1500 Hz and 2300 Hz, which also improves the sound absorption 

performance of the ZMPPA within the middle to high-frequency range. Besides, the 

CMPPA performs almost the same as the FMPPA below approximately 700 Hz which 

is determined by the ratio of the corrugation depth to the wavelength of the incident 

sound wave. However, the performance of the ZMPPA is not influenced by the ratio 

in this frequency range. As the sound dips and peaks are determined by the resonances 

of the cavity and mass-spring system composed of the air inside the perforations and 

the cavity, respectively. The frequency shift of the first peak, the enhancement of the 

first trough, and the appearance of extra peaks in the middle-frequency range indicate 

that the sound absorption mechanisms of the ZMPPA are different from the FMPPA 

and CMPPA. 
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Figure 5.4 Sound absorption coefficients of the FMPPA, CMPPA, and ZMPPA under a 

normal plane-wave incidence. 

The dips in the sound absorption coefficient curve of an MPPA result from the 

resonances of the backing cavity. At the resonant frequencies of a cavity, the stiffness 

of the air gap becomes infinity. Consequently, the air inside the perforations is unable 

to vibrate so that no energy dissipation occurs. Figure 5.5 demonstrates the first modal 

shapes and eigenfrequencies of the FMPPA, CMPPA, and ZMPPA, respectively. As 

presented in Figure 5.5 (a), for the FMPPA, the first resonant frequency of the cavity 

is 1700 Hz. The sound pressure along the MPP is large, which leads to the dip of the 

sound absorption coefficient. For the CMPPA, the resonant frequency is 1573 Hz. The 

sound pressure along the MPP is still large but shows a decreasing trend towards two 

sides as shown in Figure 5.5 (b). A small part of the sound energy is absorbed and the 

first dip in the sound absorption coefficient curve increases as well. For a ZMPPA, as 

demonstrated in Figure 5.5 (c), the first resonant frequency of the cavity is located at 

1165 Hz. However, the cavity is partitioned into two parts by the Z-shaped MPP. The 
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sound pressure in the upper part of the sub-cavity is large, however, the sound pressure 

along the MPP of the lower part is moderate, which allows more sound energy to be 

absorbed. Therefore, the sound absorption coefficient at the fist dip has been enhanced 

considerably compared with the FMPPA and CMPPA. In addition, the first trough of 

the FMPPA is located at 1700 Hz which is the same as the resonant frequency of the 

cavity. This implies that only the resonant mode contributes to the sound absorption 

performance of an FMPPA at 1700 Hz. However, for the CMPPA and ZMPPA, the 

frequencies of the first troughs shift compared with the resonant frequencies of the 

cavities which indicates that apart from the dominant mode, adjacent acoustical modes 

also contribute to the sound absorption performance. Furthermore, the Z-shaped MPP 

profile also plays the role of a multi-layered MPP, which introduces the peaks in the 

middle to high-frequency range. Although the second sound absorption peaks of the 

FMPPA and CMPPA are larger than that of the ZMPPA. The bandwidth of the peaks 

for half sound absorption is narrow. The second to fourth sound absorption peaks of 

the ZMPPA are moderate, however, the frequency band for half sound absorption is 

wide, which is favorable for broadband sound reduction. 
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Figure 5.5 The first cavity modal shapes and eigenfrequencies of the (a) FMPPA, (b) 

CMPPA, and (c) ZMPPA of the same volume. 

• Oblique plane-wave incidence 

The sound absorption coefficients of the FMPPA, CMPPA, and ZMPPA under 

an oblique plane-wave incidence are demonstrated in Figure 5.6. At 30 degrees of the 

incident angle, as shown in Figure 5.6 (a), apart from the properties of low-frequency 

shift for the first peak and the sound absorption enhancement of the first dip in the 

normal plane-wave incidence, the peaks in the sound absorption coefficient curve of 

ZMPPA between 1500 Hz and 2000 Hz improve considerably compared with that of 

the normal-incidence counterpart. The first trough almost disappears at 60 degrees of 

the incident angle as illustrated in Figure 5.6 (b). The sound absorption coefficients 

are larger than 0.5 in the frequency range of 500 Hz to 1850 Hz, and the performance 

of the ZMPPA is superior to the FMPPA and CMPPA under about 800 Hz. At 85 
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degrees of the incident angle, as displayed in Figure 5.6 (c), the FMPPA almost loses 

its sound absorption ability, however, the CMPPA and ZMPPA can still absorb sound 

energy due to the curved MPP profiles, and the ZMPPA presents better performance 

than the CMPPA.  
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Figure 5.6 Oblique sound absorption coefficients of the FMPPA, CMPPA, and ZMPPA 

at (a) 30 degrees, (b) 60 degrees, and (c) 85 degrees. 

Another observation is found that with the increase of the incident angle, the 

sound absorption curve shifts to higher frequencies. The MPPs are locally reacting 

whose acoustical impedances are independent of the incident angle, however, the 

acoustical impedances of the cavities vary with the incident angle which gives rise to 

the shift of the sound absorption coefficient curve. From the above analysis, the sound 

absorption performance of the curved MPPAs under an oblique plane-wave incidence 

is better than the normal counterparts, especially at large incident angles.  

Also, the sound absorption performance of the ZMPPA and CMPPA improve 

noticeably under oblique incidence while drops greatly for the FMPPA, especially at 

large incident angles. This is due to the curved MPP profiles where the local incident 

angle of the plane sound wave does not change in the same pattern as the angle of the 

background sound field, as presented in Figure 5.7. Imagine an extreme case when 

the incident angle of the background sound field reaches 90 degrees, the sound wave 
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propagates to the FMPP in a grazing angle while to the CMPP and ZMPP in certain 

local incident angles. This explains the results showed in Figure 5.6 (c). 

 

Figure 5.7 Oblique incident angle and the local incident angle on the MPP surfaces. (a) 

FMPPA, (b) CMPPA, and (c) ZMPPA. 

5.3.2 Effect of the offset distance 

As introduced before, the Z-shaped MPP profile introduces the performance of 

a multi-layered MPPA, while the curve is determined by the offset distance. So, the 

effect of the offset distance on the oblique sound absorption coefficient of the ZMPPA 

is investigated. The changes in the oblique sound absorption coefficient regarding the 

offset distance are presented in Figure 5.7. At 0 degrees, the first sound absorption 

peak shifts to lower frequency with increasing offset distance, along with the decrease 

of the bandwidth. This principle applies to 30 degrees as well. Besides, double peaks 

can be observed when the offset distance is larger than 20 mm. At 60 degrees, the first 
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sound absorption peak decreases; however, the bandwidth increases remarkably. In 

addition, double sound absorption peaks can be observed between the frequency range 

from 1200 Hz to 1800 Hz. The frequency interval between the peaks decreases with 

the increasing offset distance. At 85 degrees, the sound absorption only happens at a 

small frequency band, and the peak increase with the increasing offset distance. 
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Figure 5.8 Influence of the offset distance on the oblique sound absorption coefficient 

at 0 degree, 30 degrees, 60 degrees, and 85 degrees, respectively. 

5.3.3 Effect of the corrugation depth 

Another key parameter that influences the sound absorption performance of the 

ZMPPA is the corrugation depth H. Keeping the other parameters constant, the change 

in the sound absorption coefficient regarding the corrugation depth is demonstrated in 

Figure 5.9. At 0 and 30 degrees of the incident angle, the first sound absorption peaks 
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decrease slightly and shift to higher frequencies with the increase of the corrugation 

depth, along with the improvement of the first sound absorption dips. The sound 

absorption coefficients of the second peaks increase with increasing corrugation depth. 

At 60 degrees of the incident angle, the peaks and dips disappear which are replaced 

by a broadband sound absorption curve. Besides, the peak sound absorption reaches 

1 when H is large than 60 mm. At 85 degrees of the incident angle, the corrugation 

depth has little effect on the sound absorption coefficient of the ZMPPA.  
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Figure 5.9 Effect of corrugation depth on the oblique sound absorption coefficient at 

0 degree, 30 degrees, 60 degrees, and 85 degrees, respectively. 

5.3.4 ZMPPA of the same height as the FMPPA 

In the above analysis, the cavity volumes of the MPPAs are maintained the same 

to make fair comparisons. However, the CMPPA and ZMPPA occupy more space 

than the FMPPA because of the protruding corrugation profiles. This is not favorable 

for a compact noise control device. Therefore, the acoustical properties of a ZMPPA 
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and a CMPPA that are as high as an FMPPA are investigated.  

• Normal plane-wave incidence 

The sound absorption coefficients of the FMPPA, CMPPA, and the proposed 

ZMPPA under a normal plane wave incidence are shown in Figure 5.10. As the 

heights of the MPPAs are kept the same in this comparison, the cavity volumes of the 

CMPPA and ZMPPA are smaller than the FMPPA. Consequently, for the CMPPA, 

the first dip of the sound absorption coefficient curve shifts to a higher frequency 

(1965 Hz) comparing with 1580 Hz in Figure 5.4. For the ZMPPA, the first dip shifts 

to a higher frequency (1135 Hz) as well compared with 1075 Hz in Figure 5.4. 

However, it is still smaller than that of the FMPPA (1700 Hz) which results from the 

offset distance of the ZMPP profile. This phenomenon can also be observed at the 

first peaks of the CMPPA and ZMPPA with their frequencies shift to 610 Hz and 460 

Hz, respectively. However, for the ZMPPA, the first peak frequency is still lower than 

that of the FMPPA (500 Hz). In other words, the offset distance of the ZMPPA 

compensates for the frequency shift caused by the volume sacrifice. Besides, the 

broadband sound absorption performance in the middle frequency range remains. 

Figure 5.11 demonstrates the first cavity modal shapes and eigenfrequencies of 

the FMPPA, CMPPA, and ZMPPA. The heights of the MPPAs are kept the same. The 

eigenfrequencies increase to 1923 Hz and 1243 Hz for the cavities of the CMPPA and 

ZMPPA, respectively, compared with Figure 5.5. However, due to the corrugation 

profiles of the CMPP and ZMPP, the sound pressure distributions along their surfaces 

are not all large, which gives rise to the enhancement of the sound absorption at the 

dips. Besides, apart from the first cavity mode, adjacent acoustical modes contribute 

to the sound absorption performance of the CMPPA and ZMPPA. 
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Figure 5.10 Sound absorption coefficients of the FMPPA, CMPPA, and ZMPPA with the 

same height under a normal plane-wave incidence. 

 

Figure 5.11 The first cavity modal shapes and eigenfrequencies of the (a) FMPPA, (b) 

CMPPA, and (c) ZMPPA with the same height. 
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• Oblique plane-wave incidence 

The sound absorption coefficients of FMPPA, CMPPA, and ZMPPA under the 

oblique plane-wave incidence are presented in Figure 5.12. At 30 and 60 degrees of 

the incident angle, apart from the properties of low-frequency shift for the first peak 

and the absorption enhancement of the first dip in the normal plane-wave incidence, 

two peaks can be observed between 1500 Hz and 2000 Hz for the ZMPPA which is 

good for broadband noise control. At 85 degrees of the incident angle, the FMPPA 

almost loses its sound absorption ability, however, the CMPPA and ZMPPA can still 

absorb sound energy due to their curved MPP profiles. Figure 5.12 and Figure 5.6 

show similar results. The main difference between them is that the sound absorption 

curves of MPPAs shift to higher frequencies due to volume sacrifice. However, the 

ZMPPA can maintain good performance compared with the CMPPA which is mainly 

attributed to the Z-shaped MPP profile, especially the introduction of offset distance.  
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Figure 5.12 Oblique sound absorption coefficients of FMPPA, CMPPA, and ZMPPA of 

the same height at (a) 30 degrees, (b) 60 degrees, and (c) 85 degrees. 

The effect of the offset distance on the oblique sound absorption coefficient of 

a ZMPPA with the same height as the FMPPA is demonstrated in Figure 5.13. At the 

normal incidence case, with the increase of the offset distance, the low-frequency shift 

characteristic exhibits and the amplitudes of the sound absorption peaks increase as 
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well. At the oblique incidence case (45 degrees), two peaks are observed within the 

middle-frequency range. 

 

 

Figure 5.13 Effect of the offset distance on the oblique sound absorption coefficient 

of a ZMPPA with the same height as the FMPPA. 

5.3.5 Random sound absorption coefficients of MPPAs 

In a complex acoustical field, the incident sound waves propagate to the MPPAs 
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at random angles. Therefore, the random sound absorption coefficients of the FMPPA, 

CMPPA, and ZMPPA are obtained and compared in Figure 5.14. Within the presented 

frequency range, the ZMPPA and the CMPPA perform better than the FMPPA, and 

the random sound absorption coefficients of the ZMPPA are almost larger than that 

of the CMPPA, especially in the frequency range between 1000 Hz and 1800 Hz. All 

the results presented above are calculated using the default values of the parameters 

of MPPAs. In parametrical studies, better performance can be achieved by tuning the 

configuration of the ZMPPA. 

 

Figure 5.14 Comparisons of the random sound absorption coefficients between the 

FMPPA, CMPPA, and ZMPPA. 

5.4 Sound suppression of an unbaffled long enclosure 

using the ZMPPA 

Figure 5.15 illustrates the suppression of sound radiated from an unbaffled long 
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enclosure using a liner comprising an array of ZMPPAs. The hybrid method proposed 

in chapter 4 is applied to calculate the acoustical field. Besides, acoustical liners made 

of FMPPA and CMPPA are also applied to make comparisons. The liners are 3 m in 

length and the source is located at (-2, 0.5) m. MPP parameters are kept the same as 

Table 5-2. 

 

Figure 5.15 Suppression of sound radiated from an unbaffled long enclosure using a 

liner comprising of ZMPPAs. 

Comparisons of ILs obtained by the liners made of FMPPAs, CMPPAs, and 

ZMPPAs are demonstrated in Figure 5.16. All the liners exhibit negative ILs below 

about 300 Hz which indicates that the designed liners are not suitable for the control 

of low-frequency noise. From 500 Hz to 2000 Hz, the sound absorption performance 

of liners made of CMPPAs and ZMPPAs is superior to the liner made of FMPPAs 

which implies that the corrugation profiles of CMPP and ZMPP start to play important 

role in attenuating higher-order acoustical modes. Furthermore, from 1300 Hz to 1800 

Hz, the performance of the liner made of ZMPPAs is better than the liner made of 
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CMPPAs, even though there is a big trough at about 1600 Hz. This results from the 

flexible corrugation profile of the ZMPP which can achieve the performance of double 

layered MPPA in the middle to high-frequency range. 

 

Figure 5.16 Comparison of ILs obtained by the liners made of FMPPAs, CMPPAs, and 

ZMPPAs. 

 

Figure 5.17 Directivity patterns of the radiated SPL fields at (a) 265 Hz, (b) 680 Hz, and 

(c) 1435 Hz. 
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The directivity patterns of the radiated SPL fields are shown in Figure 5.17. At 

265 Hz, the liners loss their sound absorption abilities. At the resonance frequency of 

the unbaffled long enclosure 680 Hz, introducing liners can significantly reduce the 

radiated noise, especially in the shadow zone. At 1435 Hz, the liner made of ZMPPAs 

reached its best performance. 

5.5 Experimental studies 

5.5.1 Normal sound absorption coefficients of MPPAs 

The sound absorption coefficients of the FMPPA, CMPPA, and ZMPPA under 

a normal plane-wave incidence are measured by the two-microphone transfer function 

method. The experimental setup is demonstrated in Figure 5.18. A sinusoidal signal 

is generated by the LabVIEW program, which is then converted by a digital-to-analog 

convertor (DAC, NI PCI-M10-16E-1), amplified by a power amplifier (B&K Lab 

Gruppen 300), and played by a loudspeaker. The cross-section of the duct is 100×100 

mm2, which can maintain the plane-wave condition under 1700 Hz. The acoustical 

signals inside the rectangular duct are collected by a pair of microphones (B&K type 

4947), amplified by a conditioning amplifier (B&K Nexus 2693), and digitized by an 

analog-to-digital convertor (ADC, NI PCI-4452). The testing system is controlled by 

a LabVIEW program which has the advantages of excellent stability and real-time 

performance. 

The FMPPs are fabricated of stainless steel through the etching technique. The 

profiles of the CMPP and ZMPP are then obtained by reshaping the FMPP on prepared 

molds which are made of 3D printing, as demonstrated in Figure 5.19. The parameters 
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of the MPPAs applied in the experiment are illustrated in Table 5-3. The effective 

perforation ratios of all MPPs are 0.4/100. 

 

 

Figure 5.18 Experimental setup for the measurement of the normal sound absorption 

coefficients of MPPAs, (a) schematic diagram, (b) photography. 

The normal sound absorption coefficients obtained by the numerical model and 

the experiment are compared in Figure 5.20. Good agreement can be observed in the 

targeted frequency range which validate the proposed numerical model. Above about 
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600 Hz, discrepancies can be found between the results. They result from the error of 

the testing system, manufacturing accuracy and the mounting precision.  

 

Figure 5.19 Photos of MPPAs and shaping molds of the CMPP and ZMPP. 

 

Figure 5.20 Normal sound absorption coefficients obtained by the numerical model 

and experiments. (a) FMPPA, (b) CMPPA, and (c) ZMPPA. 
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Table 5-3 Parameters of MPPAs used in the experiment. 

MPPA parameters (mm) Corrugation profile (mm) 

MPPt  MPPd  D W H O 

0.2 0.3 100 100 50 25 

5.5.2 Quasi-2D experiment 

The performance of the ZMPPA, CMPPA, and FMPPA in reducing the radiated 

noise from an unbaffled long enclosure is examined using quasi-2D experiments. A 

schematic diagram of the test rig is presented in Figure 5.21 (a). 

 

 

Figure 5.21 Experimental setups. (a) schematic diagram of the test rig, (b) a liner made 

of FMPPAs, (c) a liner made of CMPPAs, and (d) a liner made of ZMPPAs. 
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The photography of the test rig can be found in the previous chapters such as 

Figure 3.14 (b) and Figure 4.17 (b). Here, 3 types of liners are mounting on the inner 

wall of the long enclosure as presented from Figure 5.21 (b) to (d). Each liner is 

assembled by four FMPPAs, CMPPAs, and ZMPPAs, respectively. The cavity width 

and depth of each unit are 100 mm and 50 mm, respectively. The corrugation depth 

and offset distance are 25 mm and 40 mm, respectively. A comparison between the 

ILs obtained by liners made of FMPPAs, CMPPAs, and ZMPPAs is demonstrated in 

Figure 5.22. From 500 Hz to 1600 Hz, the ILs are stands at about 5 dB to 8 dB which 

results from the shallow cavities of the MPPAs. Besides, in the frequency range of 

1200 Hz to 1700 Hz, the FMPPAs outperform the CMPPAs and ZMPPAs. The liner 

made of ZMPPAs starts to show its advantages in the frequency range between 1700 

Hz and 2000 Hz, in which high ILs are achieved. In this frequency interval, the sound 

field inside the long enclosure become complex. More random incident sound can be 

absorbed by the ZMPPAs. 

 

Figure 5.22 Comparison of Insertion losses obtained by liners made of (a) FMPPAs, (b) 

CMPPAs, and (c) ZMPPAs. 
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5.6 Summary 

To evaluate the sound absorption performance of an MPPA in practical sound 

fields, a numerical model is established which can calculate the oblique and random 

sound absorption coefficients of MPPAs. For the purpose of proposing a broadband 

noise control device, the sound absorption performance of a ZMPPA is thoroughly 

investigated using the numerical scheme. Owning to the offset distance, the sound 

absorption curve of the ZMPPA shift to lower frequencies which is favorable for the 

reduction of low-frequency noise. In addition, the profile of the ZMPP also introduces 

the properties of double-layered MPPAs, in which extra sound absorption peaks can 

be observed in the middle to high frequency range which is promising for broadband 

diffuse sound attenuation. However, due to the protruding MPP profile, the corrugated 

MPPAs are not as compact as the FMPPA of the same cavity volume. Therefore, the 

sound absorption performance of the ZMPPA with the same high as the FMPPA is 

also investigated. It is demonstrated that the sound absorption curve shifts to higher 

frequencies owning to the volume sacrifice. However, the broadband performance of 

ZMPPAs in the middle to high frequency range still maintains which is superior to 

the CMPPA and suitable for broadband noise attenuation. 

Besides, to attenuate the noise radiated from an unbaffled long enclosure with 

the ground, a liner consisting of an array of MPPAs is employed to absorb the multiple 

higher-order acoustical modes inside the long enclosure so that the radiated noised 

can be reduced. The obtained insertion losses show that the ZMPPA can attenuate the 

noise in a broad frequency range. 

To validate the proposed numerical model and examine the sound absorption 
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performance of the proposed ZMPPA, the normal sound absorption coefficients of the 

ZMPPA, CMPPA, and FMPPA are measured and compared. In addition, a quasi 2D 

experiment is conducted to explore the sound absorption performance of an array of 

ZMPPA in reducing the sound radiated from an unbaffled long enclosure with the 

ground. Satisfactory insertion loss is obtained. 
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CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

The thesis focuses mainly on the modelling of unbaffled long enclosures for the 

prediction and reduction of sound radiated from pipework systems and sound-proof 

tunnels. The formation mechanisms of sound fields and the physics behind the sound 

radiation phenomenon are investigated. Besides, HRs and ZMPPAs are proposed to 

attenuate the noise radiated from long enclosures. In summary, the main conclusions 

are drawn as follows: 

(1) To investigate the properties of sound radiated from a pipework system, a 

theoretical model is established combining the mode-matching method and 

the W-H technique. The formulation and implementation procedures of the 

proposed method are introduced which provides a theoretical foundation for 

sound radiation problems. In addition, the relationships between the radiated 

directivity patterns and the acoustical modes inside the long enclosure are 

explored. The theoretical model is proven to be an effective tool for the 

analysis of sound radiation phenomenon and the introduction of appropriate 

noise control strategies. 

(2) Sound radiation from an unbaffled long enclosure with the ground effect is 

modeled and studied. Point source excitation, the ground, and the impedance 

boundary conditions are considered to simulate the sound-proof tunnels in 
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practice. Complex wavenumbers and modal functions are introduced which 

explains the dissipation of sound energy. The effects of impedance on each 

boundary are evaluated. The results indicate that the inner wall of the long 

enclosure is the best location for mounting noise control devices. A partial 

lining is then employed to reduce the radiated noise and good performance 

is obtained. 

(3) Multiple sound peaks can be found inside and in the shadow zone of a rigid 

long enclosure. They resulted from the resonant modes along the transversal 

direction. HRs mounting on the enclosure wall are proposed to control the 

response coefficients of the resonant modes so that the SPLs around the peak 

frequencies are attenuated. A hybrid method is first put forward to deal with 

discrete noise control devices like HRs. The interaction between HRs and 

the acoustical field inside the long enclosure is investigated using the hybrid 

method. With the appropriate design, number, and location of HRs, the 

sound diffraction at the edge is reduced. Therefore, the radiated noise level 

in the shadow zone is attenuated. 

(4) To achieve a broader bandwidth of the sound absorption curve, a Z-shaped 

micro-perforated panel absorber is proposed. A numerical scheme is applied 

to evaluate the acoustical properties of the ZMPPA. The sound absorption 

coefficient of the ZMPPA under an oblique plane-wave incidence is attained 

and compared with that of the FMPPA and CMPPA. The ZMPPA exhibits 

a promising sound absorption coefficient at low frequency and demonstrates 

a broadband sound absorption curve in the middle frequency range. An array 

of ZMPPA is then applied to attenuate the sound radiated from an unbaffled 
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long enclosure. Excellent insertion loss is obtained. 

(5) To figure out the spectral characteristics of noise radiated from ventilation 

systems and traffic tunnels, indoor and outdoor experimental investigations 

are carried out. Besides, quasi-two-dimensional experiments are conducted 

to validate the theoretical models and examine the performance of proposed 

noised control devices in attenuating the sound radiated from unbaffled long 

enclosures. 

6.2 Recommendations for future study 

Theoretical, numerical, and experimental investigated are presented in the thesis 

to predict and suppress the sound radiated from unbaffled long enclosures. To enhance 

the understanding of the physics behind the sound radiation phenomena, improve the 

sound attenuation performance of HRs and ZMPPAs, and extend the proposed models 

to practical applications, several future studies are proposed as follows: 

(1) 2D configurations of unbaffled long enclosures are adopted in the theoretical 

models. However, they cannot fully represent the pipework and traffic tunnels 

in practice, which are in 3D configurations. A prediction model for the sound 

radiated from a long enclosure in a 3D configuration is needed for practical 

applications. 

(2) Monopole point sources are applied in this thesis to mimic the noise produced 

by vehicles. Whereas, there are various kinds of theoretical sound sources such 

as dipole source, line source, surface source, etc. The radiation characteristics 

of these sources need to be further investigated. Besides, the noise sources in 



 

 

170 

practice can be more complicated. The propagation, radiation, and dissipation 

of practical noise should be studied. 

(3) HRs and ZMPPAs mounting on the enclosure wall are proposed to attenuate 

the radiated noise. Nevertheless, only the simplest configurations of them are 

applied in the thesis to reveal the physical aspect of the problem. Optimized 

configurations of HRs and ZMPPAs and other updated noise control devices 

can be adopted to attenuate the radiated noise. 

(4) Passive noise control devices are employed to dissipate the sound energy so 

that the SPLs in the shadow zone can be reduced. The SPL distribution in the 

illuminated zone, however, is complex and irregular. In practice, the radiated 

noise towards the high-rise buildings also needs to be considered. Advanced 

meta-surfaces such as inhomogeneous impedance have the potential to change 

the radiation directivity so that the radiated noise towards a specific angle can 

be shifted or reduced. 
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APPENDIX-A 

PROCEDURES TO SOLVE A WIENER-HOPF 

EQUATION 

 

In general, the W-H equation can be obtained using the continuity relations of 

sound pressure at an imaginary interface. For a waveguide structure, the standard form 

of a W-H equation can be expressed as 

 ( ) ( ) ( ) ( )   + + −  = −  (A-1) 

where ( )+  and ( )−  are unknowns, while ( )+  and ( )  are functions in 

the complex 𝛼-plane. The first step to solve the W-H equation is to factorize the entire 

function into a product of two functions which are regular in the upper and lower half 

complex 𝛼- plane, respectively. 

 ( ) ( ) ( )  + − =   (A-2) 

The factorization process can be accomplished using the method introduced by 

Mittra (1971). Since ( )−  is nonzero, we have the following identity:  

 ( ) ( )
( )

( )

( )

( )

 
 

 

+ −

+ +

− −

 
  = −

 
 (A-3) 

The term on the left-hand side of the equation ( ) ( ) + +   is regular in the 

upper half complex 𝛼-plane; ( ) ( ) − −   is regular in the lower half complex 𝛼-

plane; however, the characteristics of ( ) ( ) + −   are not determined.  

The next step is to decompose the term into a sum of two functions which are 
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regular in the upper and lower half complex 𝛼-plane, respectively. 

 
( )

( )
( ) ( )


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
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+ −
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
=  +


  (A-4) 

Combining Eqs. (A-3) and (A-4), we have the following identity: 

 ( ) ( ) ( ) ( )
( )
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
   



−
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−


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 (A-5) 

Note that the terms on the left-hand side of Eq. (A-5) are regular in the upper 

half complex 𝛼-plane, and the terms on the right-hand side of the equation are regular 

in the lower half complex 𝛼-plane. These two half planes have a common overlapped 

region. By analytic continuation, both sides of the equation must equal to an entire 

function. Recall that an entire function is regular in the whole complex plane and it 

behaves algebraically at infinity. By an application of Liouville’s theorem which state 

that a bounded entire function is a constant, it is uniquely determined to be identically 

zero. 

 ( ) ( ) ( ) ( )
( )

( )
0, 0


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−

+ + + −

−


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 (A-6) 

So finally, the original W-H equation is divided into two, and the two unknowns 

can be obtained immediately. 
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APPENDIX-B 

DERIVATION OF THE FAR-FIELD 

APPROXIMATION 

 

In order to deal with problems of sound radiation from open structures using the 

W-H technique, the radiated sound pressure field is expressed in terms of the inverse 

Fourier transform as shown in Eq. (2.70). Except for a few special cases, however, the 

explicit expression of the integral cannot be obtained. Fortunately, the far-field result 

which is frequently applied in engineering applications, can be expressed in a simple 

form applying the saddle-point method. Taking the following equation for example 

 ( ) ( ) ( )sin, cos ,
2 w

krg wikh w

A A

i
p r P k w h e e dw



+ −


= − −  (B-1) 

where w  represents the integration path in the complex 𝑤-plane, and 

 ( ) ( )cosg w i w = − +  (B-2) 

The leading term of Eq. (B-1) can be attained using the exponentially decaying 

property of ( )krg w
e  in the integrand of Eq. (B-1). In the far-field, the main contribution 

to the integration of Eq. (B-1) comes from a small segment near the saddle point. The 

following approximation can be used: 

 ( ) ( )sin sincos , cos , ,ik wh ik h

A A sP k w h e P k h e w P+ − +−  −    (B-3) 

where sP  denotes a small segment near the saddle point.  

Also, ( )g w  can be approximated by the first three terms of Taylor expansion 

as follows:  
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( ) ( ) ( )( ) ( )( )

( )

2

2

' '' 2

2,

s s s s s

s

g w g w g w w w g w w w

i i w w P

 + − + −

= − + + 
 (B-4) 

Substituting Eqs. (B-3) and (B-4) into Eq. (B-1) gives 

 ( ) ( ) ( )( )
2

2sin, cos ,
2 s

ikr wikh ikr

A A
P

i
p r P k h e e e dw

 


++ −


= − −   (B-5) 

Next, we introduce a change of variable ' θw w= + , and note that the new path 

makes an angle of 3 / 4  with the real axis in the upper half of the complex 𝑤-plane, 

and / 4−  in the lower half of the complex 𝑤-plane. It follows that 

 

4

3 4

' , ' , 0
'

' , ' , 0

i

s

i

s

w e w P
w

w e w P







−

  
= 

 
 (B-6) 

And consequently, Eq. (B-5) becomes 
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 (B-7) 

where   is the distance between the saddle point to either end of sP . Therefore, it 

is a small number. Making full use of the error function  

 

( ) ( )
2

1 2 '

0

' erf
2 2

,
2

kr w kr
e d w

kr

kr
kr






−

 
=   

 

 →


 (B-8) 

So finally, combining Eqs. (B-5) to Eq. (8), we have 

 ( ) ( ) sin4, cos , erf
22

i

ik h ikr

A A

i kr
p r P k h e e e

kr
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+ −
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 (B-9) 
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