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Abstract 

 

 As commercially available off-the-shelf (COTS) vehicle profiling products 

have many limitations and restrictions, a better solution is expected from this industrial 

research project. 

 This research aims to develop a novel integrated drive-through vehicle profiling 

system that automatically classifies incoming vehicles based on multiple factors by 

critical features of different car type.  This system should be able to accurately measure 

the length and width of moving vehicles and to recognize some critical features to be 

assigned to appropriate size categories.  

 Many possible solutions have been proposed in the past decades. The main 

technological approaches for detection can be divided into two: sensor-based detection 

methods and vision-based detection methods. Sensor-based detection methods collect 

different types of data to perform tasks. Vision-based detection methods can solve 

complex tasks, such as face detection, traffic sign detection and pedestrian detection, 

etc. With low price tag and easy installation, a vision-based sensor is a natural solution 

for detection. 

 The tools for this research are based on the latest technologies, such as Light 

Detection and Ranging (LiDAR), Computer Vision (CV), geomagnetic sensor, and the 
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deep learning technique. In order to cater for the needs of Smart City development, they 

can also provide all the profiling data that can be shared with other systems to form big 

data. 

 This research will develop the theory and methodology for a new vehicle 

profiling system design with lower power consumption, more flexibility, and higher 

cost-effectiveness. The new system is expected to be easier to install and to generate 

significant savings on maintenance and total cost of ownership.  

 

Keywords: vehicle profiling, vehicle classification, multiple sensor system, smart city 
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1.1 General background 

 
Figure 1.1: Schematic illustration of an Urban Traffic Management and Control (UTMC) 

system  
(Hamilton et al., 2013) 

  

 In recent years, the development of smart city has been a topic of much discussion. To 

remain competitive, many cities, including Hong Kong, have built a strategic blueprint to move 

toward a smart city, as it can have better management and more efficient allocation of resources 

in the community. A smart city demands safer and more efficient public services through an 

intelligent integration of state-of-the-art technologies; thus, automation service will be one of 

the key operations in the future (Keung et al., 2018). The main idea of a smart city is to make 

resource allocation and management more efficient through artificial intelligence and data 

analytics. The Urban Traffic Management and Control (UTMC) is important to build a smart 

city. UTMC consists of several parts, as shown in Figure 1.1, such that different applications 

can benefit from using the UTMC system and share information with each other to maximize 

their efficiency.  This research attempts to contribute to the urban traffic control system. It is 

mainly divided into three parts as shown in Figure 1.2, i.e., sensor networks, traffic 

management, and safety. 
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Figure 1.2: Hierarchical functionality of wireless sensor network-based urban traffic 
management system (UTMC)  

(Nellore & Hancke 2016) 
 

 As shown in Figure 1.3, many sensors have been proposed to be used in traffic 

management. For example, video imaging is one of the common sensors which can profile and 

identify the objects directly from the Red-Green-Blue (RGB) image. Together with deep 

learning algorithm, the application can be much more robust and diverse. In addition, induction 

loop and Radio Frequency Identification (RFID) are also common sensors being used in 

transportation management. The induction loop can detect if any vehicle is moving around the 

detection area, while RFID can be looking for any registered information about a certain 

vehicle with a database. 
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Figure 1.3: Sensors and wireless technologies available for traffic management 
(Alkhatib, Hnaif & Kanan, 2019) 

 

 Sensor networks can help to acquire information on road conditions instantly; this 

information can, thus, be further used for traffic management and safety control. The use of a 

vehicle profiling system can help deduce the type of vehicle. This classification information 

can be employed in a statistical fashion such as road planning for construction and maintenance, 

road surveillance and traffic control. Specifically, these data are significant for automatic toll 

charging systems.  

 The research focuses on developing a vehicle classification methodology through 

profiling. The expected research result is creating a novel drive-through vehicle profiling 

system.  Though there are several facial recognition systems being used nowadays, a mature 

vehicle classification system has not been developed yet, as the features of different vehicles 

are not similar like human faces. Moreover, the environment of a vehicle profiling system is 

usually worse than facial recognition.  Therefore, it is difficult to use the exact same technique 

used in facial recognition to perform vehicle profiling. 

 Most profiling systems only use a camera and has limitation to work properly in certain 

situation such as bad weather. As commercially available off-the-shelf (COTS) vehicle 
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profiling products have several limitations and restrictions, a better solution is expected from 

this science-based project. The research aims to combine certain critical sensors and adjust 

their detection algorithm to complement the weakness of a single camera sensor system. 

 In Hong Kong, different types of vehicles have their own tunnel rates. Before the 

vehicle reaches the charging counter, if there is a classification system can identify the type of 

vehicle and sets the correct rate to be charged. The driver immediately pays the charge through 

contactless payment cards such as the Octopus card, once they reach the counter. In this case, 

no staff is required to stay at the charging counter to collect the payment, thus speeding up the 

payment process, and create an automatically tunnel troll service without any devices or tags 

inserted into their car. 

 As this system can collect a considerable amount of data about the type of car passing 

though the road, a valuable traffic flow data set can be obtained. The analysis of such data can 

have other applications. For example, decide what advertisement should be placed on a 

particular traffic road. If there are many buses passing the road, the system may focus on which 

products can be advertised to the people on the bus. This can help to increase efficiency in 

advertisement expenditures. 

 

1.2 Problem Statement 

 There are reputable brands associated with the Vehicle Profiling System, such as 

sensors produced by Sick AG that have been implemented for traffic management.  However, 

they are less flexible, less cost-effective and require complicated integration of unattended 

solutions.  As a result, they are not very successful in the global market. 

 Most of the above market products are usually formed based on the ground-based laser, 

which full name is light amplification by stimulated emission of radiation, scanning data and 

an analytical approximation of the vehicle profile.  The contemporary vehicle profiling system 

can only recognize small cars, full-size cars, light trucks and Sport Utility Vehicles (SUVs).  
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However, this classification is mainly based on a simple four-parameter description of the 

vertical profile of the vehicles.  There are no high accuracy vehicle classification and 

recognition methods for categorizing vehicles to support traffic flow applications.  

 The technology used in face login authorization is not suitable for all profiling cases. 

There are limitations to this technology: the object should be placed near the camera so that all 

its details. For instance, if the user of a laptop is far away from the device, they cannot pass the 

face login authorization and the system displays a message to inform the user to get closer to 

the camera. Besides this, it is also not suitable for capturing a large object. To capture the 

complete picture of a large object, it cannot be placed too close to the camera. Based on the 

above limitations, this technology is not suitable for vehicle profiling.  As the size of a vehicle 

is much larger than human, the distance between the camera and the detected vehicle is longer; 

therefore, the image captured may have different degrees of distortion.  

 

1.3 Significance of the Research 

 To remain competitive, many cities including Hong Kong have a strategic blueprint to 

move towards smart city, as it can lead to better management and more efficient allocation of 

resources in the community. A smart city demands safer and more efficient public services 

through intelligent integration of state-of-the-art technologies; thus, automation service is one 

of the key areas of a smart city. Simply speaking, latest information and communication 

technology (ICT) are used for data collection, which is connected to the Internet of Things (IoT) 

and processed by artificial intelligence and/or data analytic algorithms for better management 

and more efficient allocation of resources in the community, such as traffic and transportation 

systems, power plants, water supply networks, waste management, law enforcement, 

information systems, schools, libraries, hospitals, and others. 

 For instance, extensive research for the LiDAR technology has been done for 

autonomous or self-driving vehicles because of its multi-faceted advantages that include 
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improved safety, reduced congestion, lower emissions and greater mobility.  More recently, 

research has begun exploring the feasibility of using LiDAR data for transportation 

applications, including infrastructure, emergency and environmental mapping along corridors. 

An initial investigation on the performance of extracting vehicles from LiDAR data, together 

with other types of data, and then categorizing them has proved that it is a valuable traffic flow 

information (Lovas, Toth & Barsi, 2004).  

 

1.4 Research Objectives 

Research in the field of profiling system mainly focuses on programming rather than 

hardware. However, this research still needs to attempt to consider the hardware aspect as well, 

in order to have an equipment that is cost-effective and yet has a reasonable accuracy rate.  

This research focuses on developing smart vehicle profiling solutions for the smart 

government and citizens.  The work to be conducted includes devising new algorithms with a 

theoretical basis as well as customizing the state-of-the-art embedded information technology, 

computer vision and deep learning.  

 Briefly, this research aims to design and develop a profiling method to investigate the 

factors of rectification to reduce the degree of distortion, to design and develop a multiple 

sensor architecture and a circuit unit to assist in the identification of the vehicle type, to design 

and apply an ROI deep learning algorithm to limit the range of analysis, and to evaluate in real 

life scenarios about the application of vehicle classification. 

The profiling system in this research is proposed to be applied in Hong Kong. After 

profiling the vehicles, classification of the vehicle type can be carried on. The list of vehicle 

types to be classified is according to the different toll rates for vehicles that go through a road 

tunnel in Hong Kong. According to the Transport Department of Hong Kong, toll rates for 

different tunnels are not the same, and the vehicles are divided into 10 types: 
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1) Motorcycles, motor tricycles 

2) Private cars 

3) Taxis 

4) Public light buses 

5) Private light buses 

6) Light goods vehicles, 

7) Medium goods vehicles 

8) Heavy goods vehicles 

9) Public and private single-decked buses 

10) Public and private double-decked buses 

According to Cap. 374 Road Traffic Ordinance: 2 Interpretation 

(https://www.elegislation.gov.hk/hk/cap374), the definition of the above vehicles is: 

- “bus means a motor vehicle constructed or adapted for the carriage of a driver and 

more than 19 passengers and their personal effects” 

- “light bus means a motor vehicle constructed or adapted for use solely for the 

carriage of a driver and not more than 19 passengers and their personal effects, but does not 

include an invalid carriage, motor cycle, motor tricycle, private car or taxi” 

- “public light bus means a light bus, other than any private light bus, which is used or 

intended for use for hire or reward” 

- “private light bus means— 

(a) a school private light bus; or 

(b) a light bus (other than a school private light bus) used or intended for use— 

(i) otherwise than for hire or reward; or 

(ii) exclusively for the carriage of persons who are disabled persons and persons 

assisting them, whether or not for hire or reward” 

-  “private car means a motor vehicle constructed or adapted for use solely for the 
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carriage of a driver and not more than 7 passengers and their personal effects but does not 

include an invalid carriage, motor cycle, motor tricycle or taxi” 

- “taxi means a motor vehicle which is registered as a taxi under this Ordinance” 

- “light goods vehicle means a goods vehicle having a permitted gross vehicle weight 

not exceeding 5.5 tonnes” 

- “medium goods vehicle means a goods vehicle having a permitted gross vehicle 

weight exceeding 5.5 tonnes but not exceeding 24 tonnes” 

- “heavy goods vehicle means a goods vehicle having a permitted gross vehicle weight 

exceeding 24 tonnes but not exceeding 38 tonnes” 

- “motor cycle means a two-wheeled motor vehicle with or without a sidecar” 

- “motor tricycle means a three-wheeled motor vehicle other than— 

a motor cycle with a sidecar; and 

a village vehicle” 

There are private bus and public bus in fact, however, since the tunnel charges for both 

are the same, no further distinguish is needed for this research.  

In addition, Hong Kong tunnels have an electronic toll collection (ETC) service 

provided by Autotoll Limited, which is the only one to provide this service. Vehicles with an 

Autotoll Tag do not have to stop and pay cash at toll booths. A unique tag is matched with 

particular information in the database of the system, which includes information on the type of 

vehicle. In this research, the profiling system has been designed such that no tags are required 

to be installed in the vehicle, and no information has to be matched and found from the database.  
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1.5 Project scope 

The aim of this project is to develop a profiling system with the classification function 

used in UTMC for a future smart city. There are many literatures and patents related to vehicle 

profiling systems. This project will analyse those works and investigate its innovation trend, 

and thus propose a novel profiling system. This profiling system will collect RGB images, point 

cloud and magnetic flux density by camera, LiDAR and geomagnetic sensor respectively. 

When a vehicle enters the profiling area, the system will profile it and deduce the type of 

vehicle by analyzing all the data collected by sensors. 

 

1.6 Thesis organization 

 This thesis is divided into five chapters, and each chapter is organized as below:  

 Chapter 1: Introduces the project background, problem statement, significances of the 

research, objective and organization of the works. 

 Chapter 2: Reviews the related knowledge, including the profiling system proposed in the 

past, object detection in 2D images by camera and deep learning, depth measurement, 

LiDAR technology and geomagnetic sensor through a comprehensive literature review. 

 Chapter 3: Evaluates the patents in public databases and identifies a design trend with the 

TRIZ technique and gives an overview of the implementation of the proposed solution 

using LiDAR data, images as well as the measured magnetic flux density. 

 Chapter 4: Describes a prototype made for simulations and presents the experimental 

results, with a comparison with other solutions, discussion on the limitations of the 

proposed solution, and suggestions any directions for further development.  

 Chapter 5: Concludes the thesis and summarizes the contributions of the proposed method. 
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2.1   Review of vehicle profiling system 

 In most of the profiling systems, objects are scanned using a single or multiple cameras 

within a period. Numerous other devices have been suggested for object scanning in these 

systems. For vehicle profiling, the commonly used sensors include video camera, ultrasonic 

device, inductive loop, geomagnetic sensor and infrared camera (Klein, 2002). The ways in 

which data are collected vary, as each sensor has its own set of strengths and weaknesses with 

respect to cost, accuracy and performance. Based on the type of data collected, several vehicle 

classifications have been proposed by different researchers. Examples include the axle-based 

methods (Martin, Feng, & Wang, 2003), the vehicle sound-based methods (Nooralahiyan et al., 

1997), the vehicle-length-based methods (Meta & Cinsdikici, 2010), the video-based methods 

(Zhang, Avery & Wang, 2007), and the radar-based methods (Urazghildiiev et al., 2007). In 

this research, a novel profiling system using multiple sensors (camera, LiDAR, and 

geomagnetic sensor) as well as applying both vehicle-length-based method and video-based 

method is proposed. A more technical review about the proposed solution is discussed in the 

following sections, and its general idea is illustrated in Figure 2.1. 

 

 

 

Figure 2.1: Vehicle profiling system 
 

2.2   Object detection in RGB images 

 A camera is a commonly used device in object detection. In transportation engineering, 

a camera can take a photo of vehicles which contain some information about the vehicles. One 

of its applications nowadays is in roadside surveillance systems, used to validate the accuracy 

of parking-gap estimation and system performance, aiming at facilitating traffic and fleet 

management for smart mobility. This surveillance system insists on measuring the length and 

Vehicle Profiling 
System 

Vehicle(s) 

Vehicle profile: 
type, axle 
number, … 



13 
 

height of the vehicles. The proposed mounting position of the camera is on streetlights or 

nearby facilities, with a 45°-90° viewing angle (Ho et al. 2019), as shown in Figure 2.2. 

 

 
Figure 2.2: Illustration of various camera positions 

 (Ho et al., 2019) 
 

However, the technological challenge is that the performance of this approach is 

affected when camera lenses and different lighting conditions cause the barrel distortion and 

severe blurring in photos are caused by camera lenses and different lighting conditions. It In 

addition, it is also difficult to overlap nearly exact images under non-identical exposures to 

produce seamless stitching results. This may greatly affect the data analysis of the vehicles. 

Therefore, dimension measurement of the camera is not preferred. 

Machine learning on images is one of the key technologies of object recognition, as it 

allows the system to learn how to classify objects. It is a field of study that gives computers the 

ability to learn without being explicitly programmed.  

Finding of vehicle features can be obtained as recognition problem. Local Photometric 

Descriptors (usually called Local Descriptor) are N-dimensional feature vectors that are used 

to describe special/colour information of a certain point in an image.  A cross-correlation 

between feature vectors is useful to compute the correspondence of two points between two 
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images. For example, a basic Local Descriptor stores the RGB value of a pixel in the image. 

However, the state of image pixels of the same object changes from time to time as a result of 

the change in lighting condition and viewing direction. Therefore, an image pixel descriptor is 

impractical to the process of object recognition.  In recent years, different researchers have 

tried to develop a new Local Descriptor that is invariant to scaling, rotation, noise and 

illumination. Some remarkable descriptors are Scale Invariant Feature Transform (SIFT), 

Gradient location-orientation histogram (GLOH) and Moment Invariants. The invariant 

characteristic provides a foundation for a robust, practical image retrieval method in Book 

Cover Recognition Problem. These robust descriptors find a wide range of application in the 

machine vision area, including object recognition, image retrieval and video data mining. 

However, this algorithm is strong for detecting same object with the same feature. The same 

types of vehicles but of different model will have different appearance.   In consideration with 

the image noise, the performance of using local descriptor-related method is poor as it cannot 

detect exactly the same object as in training.  

Although it is not suitable for vehicle classification, it can be considered for detecting 

part of vehicle features. The detection of a wheel can result in counting the axles of a vehicle, 

which is one of the important features in vehicle profiling. There are several findings with 

respect to axle counting. Some methods propose utilizing several laser beams on the close 

surface of the road (Xiang, Otto & Wen, 2008) or optic pairs (Ueda et al., 1997). If the wheels 

pass across them, the laser beam or optic pairs are occluded, allowing for the number of axles 

to be counted. However, the error rate of these methods is too high as its noise is significant, 

snow or dirt will highly affect its performance, and it requires an additional cost of the system. 

LiDAR is another tool that can be possibly used instead of laser beams for the purpose of 

counting axles (Sato, Aoki & Takebayashi, 2014). However, while the strengths of LiDAR 

include measuring the depth of an object, LiDAR data may sometimes fail to identify whether 

the object is a wheel. Therefore, LiDAR is not a robust solution. Another proposed method to 
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use physics sensor such as a capacitive sensor or pressure sensor. Detection can be done on the 

top of the sensors, as the wheel is passing through; however, these types of sensors have a short 

life cycle and require an additional cost of the system. To minimize the physical problem, 

counting axles on an images base is a better solution.  

In fact, all the machine learning approaches mentioned above need to define the main 

feature of an object first and then use another technique such as support vector machine (SVM) 

for the classification. However, machine learning approaches have their own limitations. Even 

if the amount of data increases, the performance will not improve proportionally. With the rapid 

growth of information technology, the quality and quantity of the data set obtained and the 

computing power of machines are much better than before. It is a waste to not use the benefit 

of technology. Recently, a machine learning method, namely deep learning, has been developed. 

The heart of deep learning approaches is utilizing data as much as possible, to boost its 

performance. With the aid of Graphics Processing Unit (GPU) and a set of data images from 

the Internet, the performance of approached based on deep learning is better than traditional 

machine learning approaches in most cases as described in Figure 2.3, which is why the field 

of object recognition has become becoming popular in recent years.  

 
Figure 2.3: Deep learning vs. older learning algorithms 

 (Brownlee, 2020) 
 

In most research and application nowadays, the pioneers are mainly using a camera to 

capture images for recognition purposes, and their main methodology is to use deep learning 
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approaches, which is one sub-group in machine learning. Deep learning tends to result in higher 

accuracy, but has higher hardware requirements or requires a longer training time, and performs 

exceptionally well on machine perception tasks that involve unstructured data such as blobs of 

pixels or text. As deep learning is a powerful algorithm, research in this technology has won 

the Turing Award in 2018. Compared with classic object detection, the deep learning algorithm 

does not need to detect the accurate characteristic of the object, and can simply focus on some 

common features. Thus, it can greatly reduce processing time and increase the accuracy rate. 

 There are several deep learning algorithms in object detection, for example, Faster R-

CNN (Region-based convolution neural network), SSD (Single shot multi-box detector) and 

YOLO (You only look once). Each of them has their own advantages and disadvantages, and 

so people may choose one of them to suit their application or for further development. These 

algorithms are commonly used for different purposes, and their performance evaluation is done 

using five metrics: precision, recall, F1 score, quality and processing time. For Faster R-CNN 

and YOLO, both algorithms are comparable in precision, which means that both have a high 

capability to correctly classify car object in the image. However, YOLO is more capable of 

extracting all the cars and its processing time is faster (Benjdira et al., 2019).  

 Up to now, there have been five versions for YOLO. The first version was released in 

2016. YOLO is an end-to-end object detection algorithm; it means that once an image is input, 

the next step gives out the location of the bounding box and detection result directly, without 

the process of handling region proposal in faster R-CNN, and hence, the detection speed in 

YOLO is faster. Moreover, this benefit can help to achieve the requirement of real-time 

detection in this research.  

 The basic procedure is shown in Figure 2.4. The input image will be divided into S×S 

grid cells, and each cell will predict B boundary boxes. Each boundary box contains 5 elements: 

(x, y, w, h) and a box confidence score. The confidence score reflects how likely the box 

contains an object and how accurate the boundary box is.  
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 Each cell has C-conditional class probabilities. The conditional class probability is the 

probability that the detected object belongs to a particular class (one probability per category 

for each cell). So, YOLO’s prediction has a shape of (S, S, B×5 + C). To make a final prediction, 

it keeps those with high box confidence scores (greater than 0.25) as its final predictions. 

 
Figure 2.4: The working model of YOLO 

(Redmon et al., 2016) 
 
 
2.3 Depth measurement 

 The depth represents the distance between the sensor and the object. This information 

is important as it can be used to calculate the dimension of an object. Since there is a wide 

application range, there is a huge motivation of developing a cost-effective and high accuracy 

depth estimation solution. Most of the depth estimation is image-based.  

 In the history of depth estimation from image, Semi-Global Matching (SGM) is one of 

the classical algorithms, where the depth map is generated from a pair of stereo images 

(Hirschmuller, 2007). The estimation process mainly divided into four steps which are 

matching cost computation, cost aggregation, disparity computation, and disparity refinement. 

A matching cost computation occurs by inputting stereo images. These matching costs are 

refined within a certain neighbourhood in cost aggregation. Depth estimation can then be 

derived from matching the cost, and finally processing a refinement by removing peaks, 
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increasing the accuracy by sub-pixel interpolation or interpolating gaps. However, this method 

has errors occurring at ill-posed regions and streaking artefacts in the depth map.   

 Zbontar and LeCun (2016) combine deep learning with SGM in depth estimation. This 

method matches patches using CNN instead of matching pixel. First, the cost volume of the 

obtained patches from CNN output is computed. The cost volume of disparity image is then 

refined by using SGM. 

 If the training data set is sufficient, the superiority of the deep learning algorithm 

becomes more evident, and hence full deep learning is expected, which comes to the idea of 

end-to-end learning. A research study proposed using a convolutional network by stereo images 

for the entire learning task (Mayer et al., 2016). They had introduced over 35000 pairs of stereo 

images with ground truth disparity, scene flow and optical flow for training. The main 

limitation of supervised learning is the training process where labelled data, ground truth depth 

information and cumbersome pre-process analysis are required, and it consumes a huge amount 

of resources.   

 Apart from a supervised learning method, there is an unsupervised leaning method as 

well. There are two main training approaches for the unsupervised method; one is using a 

monocular video; and the other is using synchronized pairs of stereo images. Garg et al. (2016) 

proposed an unsupervised learning method by CNN for single view depth estimation. The 

weakness of most deep CNN learning algorithms is the requirement for a set of annotated 

ground-truth depth data. In their work, they only need a pair of stereo images to train their 

system. One of the stereo images is passed on to CNN to generate a predicted inverse depth 

map. After inverse warping between this map and another stereo image, a wrap image is formed. 

By comparing the original image and the warped image, a reconstruction error can be deduced. 

The acquisition of this training data can be through any stereo images captured by a normal 

camera, and does not need any depth sensor or manual annotation. The main contribution of 

this method is that their network learns a deep CNN for monocular estimation without requiring 
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a pre-training stage or annotated ground-truth depth. The limitations of this method are that it 

is slow and inefficient, the loss is high, and the depth map has a “texture-copy” artefacts 

problem. A paper proposed another modified method (Godard, Aodha & Brostow, 2017). Their 

algorithm can deal with the “texture-copy” artefacts problem. The left image is used to generate 

both the left and the right depth maps.  An inverse warping is then performed with the original 

right and left image respectively, to finally form both the left and right warped images. This 

method improves quality and increases robustness. A paper proposed a further modified self-

supervised learning method which trains on pairs of stereo images simultaneously and 

symmetrically (Goldman, Hassner & Avidan, 2019). It shows how a network trained on stereo 

images can naturally be used for monocular depth estimation at test time. In some cases, this 

monocular disparity estimation of this method even outperforms supervised systems.   

 However, stereovision suffers from some serious problems that cause lower accuracy 

of depth estimation. First, the accuracy often depends on the distance of the objects. Second, 

the estimation is poor in a low-light environment. Third, a high computational resource is 

required for processing the estimation.  Last but not the least, the image-base method is still 

not accurate enough. 

 

2.4 LiDAR technology  

 Other than image-based method estimation, there are, in fact, other methods which can 

measure the depth of an object. Light-based depth estimation is one of the most famous 

methods, and the sensor usually employed is LiDAR (Werner, 2014). LiDARs were first used 

in military applications to detect and identify vehicles by their range profiles (Sun et al., 2018). 

It is a surveying method that measures distance to a target by illuminating the target with a 

laser light and measuring the reflected light with a sensor, thereby analysing the accurate 

distance between LiDAR and target. In fact, each light pulse received can locate a point on the 

reflection surface, and by getting those points reflected by an object or vehicle, its dimension 
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or shape can be generated. Nowadays, LiDAR is widely used for object perception and 

recognition as 1D, 2D, and 3D variants in different industries, for instance, industrial 

manufacturing, traffic systems, logistics, and autonomous vehicle field. 

Generally, there are a few types of laser range finding principles nowadays: time-of-

flight (TOF), triangulation and phase shift measurement. All these principles are established 

not only based on three characteristics but also on the advantages of laser; straight propagation 

of unobstructed light, known velocity of light travelling in space and easy detection as only 

one wavelength of light is generated from laser. 

 To begin with, range finding through TOF is extensively used in commercial products. 

Basically, the concept is to measure the duration between each laser pulse from being emitted 

to being received. 

 
Figure 2.5: Working principle of LiDAR 

 (https://steemit.com/technology/@rnjena/low-cost-solid-state-2d-lidar) 
  

 In Figure 2.5, if applying the ToF method, the laser and receiver should be very close. 

When the traveling time (T) is obtained, where c is the speed of light (3×108 ms-1), the distance 

(d) can be calculated. On the other hand, for the triangulation method, the position of receiver 

should be known, and hence can be a bit far away, the θ indicates that there is an angular 

distance between the laser emitter and the receiver. This separation is small enough that there 

will be no adverse effect on the accuracy during the range-finding process (Angelopoulou & 

Wright Jr, 1999). By the above method, a 3D shape of objects can be generated, it provide 

direct geometric information of the environment (Wulf & Wagner, 2003). 
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 Unlike TOF, there is another method that a continuous wave laser is used instead of 

laser pulses. This continuous wave acts as a carrier wave that modulates the intensity at a 

specific frequency. The idea is to compare the difference in phase between emitted and received 

signals (Hu et al., 2011). This range can be determined by the following equation: 
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                                                 (2.1) 

where c is the speed of the light, f is the modulation frequency, λ is the wavelength and ∆φ is 

the phase shift. The following diagram describes the general idea of wave modulations in 

phase-shift measurement (Pfeifer & Briese, 2007), as shown in Figure 2.6.  

 

 
Figure 2.6: Wave modulations in phase-shift measurement 

(Pfeifer & Briese, 2007) 
 

 Examples of world leading vendors are Velodyne (http://velodynelidar.com/) and 

Quanergy (http://quanergy.com/) from America and Canada respectively; and Slamtec 

(https://www.slamtec.com/cn/) in the Mainland China. 

 Compared to other 3D sensing techniques, such as stereo cameras and radar, LiDAR 

sensors can provide high resolution and highly accurate measurements of the surroundings 

under various weather conditions. 

There are research studies that use LiDAR for vehicle classification as well. A research 

study supposed to mount two LiDARs in a side-fire configuration next to the road (Coifman & 

Lee, 2011), as shown in Figure 2.7. After distinguishing between vehicle or non-vehicle, the 
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vehicle body information is extracted from the two LiDARs. Accurate LiDAR data can deduce 

the vehicle length and height, as well as the speed of the vehicle. It insists on the dimensional 

variation along the vehicle body, so the authors propose several features including Vehicle 

length (VL), Vehicle height (VH), Detection of middle drop (DMD), Vehicle height at middle 

drop (VHMD), Front vehicle height (FVH), Front vehicle length (FVL), Rear vehicle height 

(RVH) and Rear vehicle length (RVL). By setting a suitable threshold of each feature, a 

decision tree is formed, and the classification is simply based on it. 

 

 

Figure 2.7: Measuring of vehicle dimension by two LiDARs 
 
 

Besides dimension measuring, LiDAR data can generate a 3D model of an object, and 

there is an idea for using the deep learning algorithm on a 3D model, similar to object detection 

on 2D images. The data of a 3D model usually are a cloud of points; the shape of an object is 

presented by several points. LiDAR is one of the point-capturing devices used nowadays. 

Based on a technique similar to YOLO in 2D images, there is a research study that use a 

modified YOLO to detect 3D points of cloud (Simony, Milz, Amende & Gross, 2018).  

Apart from a modified version of YOLO, another point cloud deep learning algorithm 

called Voxelnet is proposed (Zhou & Tuzel, 2018).  An example is illustrated in Figure 2.8. It 

is a famous algorithm for LiDAR object detection. The general working procedure is to use a 



23 
 

recurrent neural network (RNN). It will scan the target area to form a point cloud image, then 

bound the target object by a bounding box.  

 

Figure 2.8: Bounding from LiDAR point cloud data by VoxelNet 
(Zhou & Tuzel, 2018) 

 

 The featured learning network takes a raw point cloud as input, partitions the space into 

voxels, and transforms points within each voxel to a vector representation characterizing the 

shape information. The space is represented as a sparse 4D tensor. The convolution middle 

layers process the 4D tensor to aggregate spatial context. Finally, a region proposal network 

(RPN) generates 3D detection. The above workflow is shown in Figure. 2.9. 
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Figure 2.9: Workflow of the VoxelNet  
(Zhou & Tuzel, 2018) 

 
 

 The LiDAR can provide a point cloud and its geometry can be adequately modelled to 

form a height histogram of the car. After some data processing such as histogram smoothing, a 

“picture” of the car can be generated, as shown as Figure 2.10. 

 
Figure 2.10: Point cloud data 

(https://velodynelidar.com/vls-128.html) 
 

  Similar to the deep learning in images, a set of point cloud is needed for training 

purposes. However, point cloud labeling is more complex than images. Figure 2.11 shows an 

example of labeling some point cloud data, the 3D bounding box should bind the target object 

and give an annotation. 
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Figure 2.11: 3D point cloud annotation  

(https://www.cloudfactory.com/computer-vision) 
 

 

In fact, there is a significant problem in 3D deep learning. As the performance of deep 

learning is directly affected by the quality and quantity of the training data, the actual 

performance in 3D is technically worse than in 2D images. The data of 3D point clouds are 

hard to collect. Unlike 2D images, 3D points cloud cannot be captured by general camera. Lots 

of 2D image training data can be found on the Internet, which the 3D point cloud data does not. 

The photos of buses, taxis and motorcycles can be easily found, but there is either less 3D 

points cloud in all types of vehicles or none. As a result, it takes a huge amount of time and 

resources to collect enough training data which is not cost-effective. Therefore, it is better than 

using LiDAR just for direct dimension measuring but not deep learning. 

 

2.5 Geomagnetic sensor and magnetic field 

 Besides camera and LiDAR, there are researches proposed to use geomagnetic sensor 

for vehicle profiling. The Earth has a huge magnetic field surrounding it. Some scientists 
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suggest that some animals have a “magnetic feeling” and use it for guiding some actions, like 

birds usually know the southerly direction and fly toward the south to escape cold weather. A 

geomagnetic sensor can measure the magnetic field of the Earth. Since metal can interfere with 

magnetic flux density, a larger metal result in greater change in this density. Therefore, as all 

the vehicles are made of metal, the magnetic sensor can classify vehicles by measuring the 

change of magnetic flux density.  

 

 
Figure 2.12: The magnetic flux density is different between before and after the vehicle 

across 
 

In Figure 2.12, at the beginning, the geomagnetic sensor measures the magnetic flux 

density without vehicles, and this value acts as a reference value. When a vehicle reaches the 

detecting area, the value of magnetic flux density will increase. Different vehicle sizes must 

have different increasing values. The type of vehicle can be identified by calculating the 

differences between increasing value and reference value. The mapping table between vehicle 

type and magnetic flux density change should be further evaluated by analysing more testing 

data. 
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 The main advantages of using the geomagnetic sensor are on the manufacturing cost, 

maintenance cost, installation difficultness and weather resistant issue (Bugdol et al., 2014). 

However, a limitation of the geomagnetic sensor is that it cannot distinguish type of vehicles 

with similar size in a high accuracy rate, a related result as shown in Table 2.1 (Kaewkamnerd 

et al., 2010).  This is because their material is comprised of nearly the same mass of metal, and 

the change in the magnetic flux field is, therefore, similar. On the other hand, if it is used for 

detecting the existing status of a vehicle, it is a good application. Once the magnetic field flux 

has changed, it insists that a vehicle lays on the road. Though nowadays, a parking detecting 

system has used a geomagnetic sensor to sense vehicles.  

 

Table 2.1: Classification of results into 4 types of vehicles 
Type Classification Result (%) 

Motorcycle 100 

Car  82.46 

Van 78.57 

Pickup 65.71 
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3.1 Patents of vehicle profiling and classification 

After vehicle profiling, to make the system marketable in daily life, a classification 

action should be carried on. In transportation engineering, vehicle classification is a labour 

intensive and an error-prone task.  Automated vehicle classification system is a much-discussed 

topics nowadays. The main purpose of this system is to identify the type of passing vehicles 

automatically by analysing different kinds of data from a different sensor(s). Vehicle 

classification is one part of a future smart city (Haferkamp et al., 2017), as it has many potential 

smart applications, for instance, it can be used in traffic safety analysis (Alkheder et al., 2013), 

automated toll payment (Suryatali & Dharmadhikari, 2015), road maintenance, road 

infrastructure management (Masino et al., 2017), and other applications related to road traffic. 

All of these applications can greatly increase the efficiency of resource allocation of city related 

road management.  

As one can foresee the benefit of the vehicle classification system, there have been 

many proposed vehicle classification systems with different algorithms, but each of them may 

have its limitations. To fulfil different requirements, people try to keep on optimizing existing 

solutions or design a new solution, in order to resolve different kinds of limitations and improve 

adaptability in various environments. Therefore, there are patents related to the vehicle 

classification system. In addition, vehicle classification is a relatively new discipline. The 

earliest patent is published in 1974, the patent number of which is US3794966.   

These patents are investigated by the popular теория решения изобретательских 

задач (in Russian, TRIZ) method. TRIZ is a theory of inventive problem solving which is 

developed from the research of nearly 200 thousand patents by the Soviet Union inventor 

Genrich Altshuller (Altshuller et al., 1999). He believes that invention has a track to follow, as 

most innovation is based on previous inventions and improved by known knowledge and 

technology. By analysing such a large number of patents, a contradiction matrix is designed 

and it can be used to check the most likely inventive principles applied in certain conditions.  
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However, the matrix was developed around the year 1956 when electronics and computer 

technology were still in their infancy (Souchkov, 2015). A new version of a contradiction matrix 

was proposed by Mann (2010). In this section, the new contradiction matrix will be used. 

The raw data extracted from the patents are summarized in Table 3.1.  The contradicting 

parameters of TRIZ have been identified and tabulated in Table 3.2.  The inventive principles 

identified from the patents and those recommended from the contradiction matrices are 

compared in Table 3.3.   
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Table 3.1: Patent extracted information 

  

Item 

Patent 
Improving 

features 
Worsening features 

Solution Inventor 
Used 

Number Title 
Publi
cation 
Date 

1 
US3794

966 

Automatic vehicle 
classification and 
ticket issuing system 

1974/
2 

Increase the degree 
of automation by 
automatic 
distribution of 
tickets 

Not robust enough as 
the classification 
results are affected 
by tailgating, 
variable length of 
vehicles and traffic 
patterns 

Adding a barrier to 
the traffic lane and 
controlling the flow 
of vehicles through 
feedback 

2 
US4789

941 

Computerized 
vehicle classification 
system 

1988/
12 

Classifying 
vehicles 
automatically with 
a treadle 
arrangement and 
counting axles 

Axis counting by a 
treadle is not robust 
due to a wide variety 
of vehicle 
configurations and 
hostile working 
environments 

Profiling the 
vehicles' height by 
ultrasonic 
additionally 

3 
US5392

034 
Vehicle classification 
system using profile 

1995/
2 

Classifying 
vehicles 
automatically 
based on detected 
information 

The system fails in 
some cases if license 
plates cannot be 
detected  

Profiling the shape 
through optical 
sensor 

4 
US5446

291 

Method for 
classifying vehicles 
passing a 
predetermined 
waypoint 

1995/
8 

Detect the 
characteristic of 
vehicles 
automatically by 
using a seismic 
detector 

A distinction cannot 
be made between 
specific vehicle 
types within a 
generic type 

Profiling the height 
by using laser 

5 
US5619

616 

Vehicle classification 
system using a 
passive audio input 
to a neural network 

1997/
4 

More information 
can be obtained for 
classification 
purposes by using 
radar, ultrasound 

The performance is 
affected by the 
environment such as 
weather and light 
conditions 

Using passive audio 
sensors instead of 
active sensor like 
ultrasound 

6 
US5717

390 

Doppler-RADAR 
based automatic 
vehicle-classification 
system 

1998/
2 

Improving the 
classification 
accuracy 

Needs to place an 
identification label 
for each vehicle and 
hence is difficult to 
apply 

Scan the vehicles’ 
shape by using radar 

7 
US6014

447 

Passive vehicle 
classification using 
low frequency 
electromagnetic 
emanations 

2000/
1 

Collect less amount 
and types of sensed 
data for enhancing 
efficiency 

The sensed data may 
not characterize the 
vehicle with 
sufficient specificity 
to classify it 

Only use acoustic 
sensor by improving 
its data processing 
algorithm 
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Table 3.1 (Con’t): Patent extracted information 

 

Item 

Patent 
Improving 

features 
Worsening features 

Number 
Solution Inventor 

Used 
Number Title 

Publi
cation 
Date 

8 
US2002
0140924 

Vehicle classification 
and axle counting 
sensor system and 
method 

2002/
10 

Improving the 
classification 
accuracy by using a 
video and 
collecting other 
types of data like 
axis counting 

Highly increases the 
installation cost by 
collecting axis 
counting data from 
treadle 

Profiling and axis 
counting by a 
scabbing time-of-
flight laser 
rangefinder 

9 
US6828

920 

System and method 
for classifying 
vehicles 

2004/
12 

Decrease 
manufacturing cost 
by reducing the 
number of 
installations of RF 
transponders 

Reliability decreases 
or may even not 
work as not enough 
information 
collected 

Use a single 
inductive loop to 
generate a field for 
electrically sensing 
vehicles 

10 
US6865

518 

Method and device 
for classifying 
vehicles 

2005/
3 

More refined 
classification is 
required 

More sensors are 
needed 

Obtaining a digitized 
signal from the 
electromagnetic 
signal from one 
inductive loop, which 
is digitized, 
sequenced, and time-
stamped data. 

11 
US6894

233 

Systems and 
methods for 
classifying vehicles 

2005/
5 

Utilizing the 
existing assets in 
detecting aspect 

Require extensive 
renovations and/or 
road construction for 
their installation 

Using other field of 
sensor like capacitive 
sensor together with 
existing assets 

12 
US2005
0267657 

Method for vehicle 
classification 

2005/
12 

Decrease 
manufacturing cost 
by reducing the 
number of 
installations of any 
affixing items 

Reliability decreases 
or may even not 
work as the 
apparatus is not 
sufficient 

Use image capture 
instead of installing 
anything inside the 
vehicle 

13 
US8311

343 

Vehicle classification 
by image processing 
with laser range 
finder 

2012/
11 

Improving the 
precision of 
measurement in 
profiling 

The distance 
between the sensor 
and vehicle needs to 
be fixed to fix the 
measuring reference 

Scanning the 
vehicles by a camera 
with an additional 
rangefinder 

14 
US2015
0269444 

Automatic 
classification system 
for motor vehicles 

2015/
9 

Make it possible to 
measure physical 
characteristics of 
the vehicles by 
using multiple 
sensors on various 
features 

Not implemented in 
a simple or cost-
effective manner 

Capturing images 
separately by 
multiple cameras 
from birds-eye view 
and three-quarter 
front view  
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Table 3.1 (Con’t): Patent extracted information 

Item 

Patent 
Improving 

features 
Worsening features 

Number 
Solution Inventor 

Used 
Number Title 

Publi
cation 
Date 

15 
US9239

955 

Method and system 
for vehicle 
classification 

2016/
1 

To ensure the 
images of vehicles 
are valid for 
classification 
process 

The area of 
obstruction caused 
by overlapping of 
vehicles cannot be 
too large 

Capturing the images 
from the rear view of 
vehicles 

16 
US9361

798 
Vehicle classification 
system and method 

2016/
6 

Improving the 
accuracy by using 
dual inductive 
loops 

Some locations are 
only allowed a single 
inductive loop 
embedded in the 
road 

Generating a signal 
waveform from a 
signal in a single 
inductive loop 
generated by a 
passing vehicle 

17 
US9466

000 

Dynamic Bayesian 
networks for vehicle 
classification in 
video 

2016/
10 

Automation 
classification by 
image, video 
streams and 
computer 

Several problems 
occur such as 
occlusion, tracking a 
moving object, 
shadows, rotation, 
lack of color 
invariance 

Classifying from rear 
view instead of side 
view 

18 
US9519

060 

Methods and 
systems for vehicle 
classification from 
laser scans using 
global alignment 

2016/
12 

Improving the 
performance on 
both scope and 
efficiency 

Requires intense 
human labor 

Using data to 
generate the shape of 
the vehicle instead of 
length 

19 
US9683

836 

Vehicle classification 
from laser scanners 
using fisher and 
profile signature 

2017/
6 

By using laser 
scan, it can be 
placed in sensitive 
locations such as 
bridges 

Limited in scope and 
efficiency 

Use of a linear 
classifier with more 
complex features 
than just the high-
level features or the 
raw profiles 

20 
US9977

972 

3-D model based 
method for detecting 
and classifying 
vehicles in aerial 
imagery 

2018/
5 

Obtaining 
geometric relation 
by 3D approach 

Faulty edge 
detection, lack of 
scene contrast, 
blurry imagery, 
scene clutter and 
noise 

Introduce a 3D 
method in aerial 
imagery 

21 
US9984

704 
Vehicle classification 
system and method 

2018/
5 

Count the number 
of axis 
automatically by 
piezoelectric sensor 

Piezoelectric sensor 
broken frequently 

Use of contactless 
non-mechanical 
sensor, i.e., sound 
sensor 

22 
US1034

5449 

Vehicle classification 
using a recurrent 
neural network 
(RNN) 

2019/
7 

Reducing the 
installation cost or 
cost of apparatus 

Reliability decreases 
or may even not 
work as apparatus 
are not sufficient to 
collect enough data 

Analysis of the 
vehicles’ types by 
using GPS track data 
from the driver’s 
mobile phone 
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Table 3.2: Corresponding TRIZ contradicting parameters 
 Improving Feature Worsening Feature 
Patent 
Item 

Technical 
Parameter 

Name/description 
Technical 
Parameter 

Name/description 

1 43 Automation 35 Reliability/Robustness 
2 43 Automation 35 Reliability/Robustness 
3 43 Automation 35 Reliability/Robustness 
4 43 Automation 35 Reliability/Robustness 

5 49 
Ability to 
detect/measure 

32 Adaptability/Versatility 

6 35 Reliability/Robustness 34 Controllability 
7 44 Productivity 35 Reliability/Robustness 
8 35 Reliability/Robustness 41 Manufacturability 
9 41 Manufacturability 35 Reliability/Robustness 

10 50 
Measurement 
precision 

45 System complexity 

11 49 
Ability to 
detect/measure 

41 Manufacturability 

12 41 Manufacturability 35 Reliability/Robustness 

13 50 
Measurement 
precision 

32 Adaptability/Versatility 

14 50 
Measurement 
precision 

45 System complexity 

15 28 Loss of information 5 Area of moving object 

16 50 
Measurement 
precision 

41 Manufacturability 

17 43 Automation 46 Control complexity 
18 35 Reliability/Robustness 43 Automation 
19 41 Manufacturability 50 Measurement precision 

20 49 
Ability to 
detect/measure 

35 Reliability/Robustness 

21 43 Automation 36 Reparability 
22 41 Manufacturability 35 Reliability/Robustness 
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Table 3.3: Inventive principles used 

Patent 
Item 

TRIZ Matrix (Mann’s 
version) 
Recommended 
Inventive Principles 

Inventive Principle Inventor Used 

Parameter Name of Inventive Principle 

1 12, 28, 23, 7, 35, 31 23 Feedback 

2 12, 28, 23, 7, 35, 31 28 
Mechanics Substitution / Another 
Sense 

3 12, 28, 23, 7, 35, 31 28 
Mechanics Substitution / Another 
Sense 

4 12, 28, 23, 7, 35, 31 28 
Mechanics Substitution / Another 
Sense 

5 1, 26, 13, 23, 35, 15, 19 13 The Other Way Round 

6 28, 1, 40, 29, 3, 19, 13 28 
Mechanics Substitution / Another 
Sense 

7 3, 1, 35, 10, 14, 24, 39, 9 3 Local Quality 

8 28, 10, 35, 4, 40 28 
Mechanics Substitution / Another 
Sense 

9 2, 3, 35, 9, 28, 27, 33 28 
Mechanics Substitution / Another 
Sense 

10 3, 35. 10, 27, 1, 13, 28, 26 35 Parameter Change 

11 5, 28, 37, 13, 2, 29, 11, 24 28 
Mechanics Substitution / Another 
Sense 

12 2, 3, 35, 9, 28, 27, 33 28 
Mechanics Substitution / Another 
Sense 

13 35, 2, 19, 13, 24, 6, 1 2 Separation / Taking out / Extraction 
14 3, 35, 10, 27, 1, 13, 28, 26 1 Segmentation 

15 
28, 26, 17, 25, 30, 16, 1, 
37, 7 

17 
Dimensionality change / Transition 
into a new dimension 

16 3, 25, 28, 13, 35, 24, 1 35 Parameter Change 

17 28, 3, 4, 17, 37, 10 17 
Dimensionality change / Transition 
into a new dimension 

18 35, 10, 1, 13, 28, 17, 27 17 
Dimensionality change / Transition 
into a new dimension 

19 
35, 12, 1, 6, 28, 15, 13, 24, 
29 

35 Parameter Change 

20 28, 40, 26, 1, 35, 2, 8, 10 17 
Dimensionality change / Transition 
into a new dimension 

21 13, 35, 4, 2, 28, 37, 17 28 
Mechanics Substitution / Another 
Sense 

22 2, 3, 35, 9, 28, 27, 33 28 
Mechanics Substitution / Another 
Sense 
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From Table 3.3, it is observed that the most used inventive principle is “Mechanics 

Substitution/Another Sense”, 11 out of 22. Use of treadles and identification items were the 

most common classification methods in the past. A treadle can count the number of vehicles’ 

axles if the vehicles pass on it. The sensor will sense the force acting on it and then determine 

how many axles pass across, by analysing the duration of the acting force and the time 

difference between the separated acting forces. Further, it can also predict the type of vehicles. 

However, a treadle is not a robust sensor as the data collected by it cannot conclude a high 

accuracy classification result. In addition, its life cycle is not long. In order to deal with the 

limitation of the treadle, Patents 2 and 8 suggest changing the treadle to other sensors in 

different fields, i.e., measure vehicles’ dimensions by using ultrasound and count the number 

of axles by TOF laser range-finder. Patent 11 has a similar case. Rather than changing the 

treadle to another field of sensor, the inventors propose adding a capacitive sensor and together 

work with the existing treadle system, which can utilize the existing assets in the aspect of 

detection. The same problem also occurs in Patent 21’s piezoelectric-sensor. A non-contact 

sound sensor is thereby preferred by the inventors.  

Some sensors are used in prior methods, but the reliability is not acceptable. In Patent 

3, the prior method uses multiple sensors, but if one of them fails, especially in detecting the 

content of license plates, the system mostly fails in classification. Therefore, the inventor 

proposes using an optical sensor as it has a larger fault tolerance. Another prior method 

mentioned in Patent 4 uses a seismic sensor, but its performance is poor since distinction cannot 

be made between specific vehicle types and a generic type. Hence, a laser sensor is suggested 

by the inventors. 

Besides, some classifications require identification items be installed in vehicles, like 

an RFID transponder or barcode, which contains some information about that vehicle. A 

scanning device can check this information as vehicles pass across it. However, as described 

in Patents 6, 9 and 12, installation of any affixed items in vehicles induces very high costs and 
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low operability. It may technically not be possible to install affixed items on every vehicle.  

Hence, the patents proposed changing the field of sense into others, i.e., radio-wave field from 

radar, the magnetic field from inductive loop, and image-based camera.  

Another approach proposed by Patent 22 employs GPS tracking of vehicles. A vehicle 

classification cloud system can receive the travelling record of different vehicles and then 

predict their type by analysing the travelling data. This method can greatly reduce the cost with 

respect to system installation and hardware, as it does not need physical sensors along the traffic 

road. In addition, instead of active sensors, which emit a pulse to the objects to be detected and 

reflect back to the sensors, a passive audio sensor is preferred since it can reduce the effect of 

environmental noise as proposed in Patent 5.  

As described above, there are many different fields of sensors that can be used in 

classifying vehicles, and it comes down to an idea of creating a classification system by 

combining various outputs of sensors. However, in Patent 7, the inventors stated that it might 

not be a practical idea to gather all kinds of data in some application or environment. In this 

situation, only a few data are valid and the system may not characterize the vehicle with 

sufficient specificity to classify it. Therefore, the inventors applied the “Local Quality” 

inventive principle. A new algorithm is proposed to enhance the analysis of the data from an 

acoustic sensor(s) and to enable it to function in locally optimized conditions. This suggestion 

can decrease the handling of too many kinds of data. 

On the other hand, too few sensors may result in low accuracy or other limitation. In 

Patent 13, the classification process is only based on measuring dimensions of vehicles by the 

camera. If the distance between the camera and the different vehicles varied too much, the 

measuring dimension will differ a lot. Therefore, the “Separation/Taking out/Extraction” 

inventive principle is applied in this case, so that the function of dimension measuring and 

distance measuring are separated. 
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In other patents, other inventive principles are used. In Patent 1, the proposed method 

adds a barrier to separate the vehicles passing through the lane one by one to prevent the 

problem of overlapping. This involves the “Feedback” inventive principle. In Patent 14, it is 

mentioned that the prior arts have used laser devices together with thermal imaging cameras or 

TOF cameras.  However, the implementation is neither simple nor cost-effective. The inventors 

thereby proposed to capture the images separately by using multiple common cameras from 

birds-eye view and three-quarter front view.  This incorporates the “Segmentation” inventive 

principle. 

Sometimes the raw data is changed into another form for further analysis, which 

employs the “Parameter Change” inventive principle. In Patents 10 and 16, multiple sensors 

may not be applicable due to system complexity or environmental issue, and hence designing 

a valid classification system with only one sensor is preferred. By generating a signal waveform 

or obtaining a digitized signal from the electromagnetic signal which is then digitized, 

sequenced, and time-stamped, the collected data can be much more useful when compared with 

a set of raw signals. Patent 19 suggested using a linear classifier with more complex features 

rather than the high-level features or raw profiles such as width and height. Fisher vectors, 

extracted from “patches” of the profile, and profile feature, obtained by computing the integrity 

of the profile, can be used to improve the scope and efficiency of the system with laser scanners. 

An overlapping problem is considered in Patent 15, as the image of the vehicle will be 

obstructed by other vehicles and the influence level will be based on the size of vehicles. The 

proposed solution captures the images of vehicles from the rear-view instead of the side-view 

by employing the “Dimensionality change/Transition into a new dimension” inventive 

principle. A similar situation is mentioned in Patent 17. It states that if the classification system 

uses a camera to capture images automatically, it is hard to prevent the problem of occlusion, 

tracking a moving object, shadows, rotation, and lack of colour invariance, and hence it 

proposes a solution changing the capturing direction to rear-view. The same inventive principle 
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is also used in Patent 18. As classification by length is not sufficient, the inventors proposed to 

classify the vehicles by 3D instead of 2D.  

There is one case which cannot be predicted by both the classical and the new matrices. 

In Patent 20, the inventors point out that the classification of the 2D methods can only make a 

coarse utilization of the geometric relations and is ill suited.  In this scenario, 3D models 

become indispensable. However, 3D methods also have their technical problems such as faulty 

edge detection, lack of scene contrast, blurry imagery, scene clutter, and noise. In this case, the 

inventors suggest a 3D method in aerial imagery instead of ground-level imagery, which also 

belongs to the “Dimensionality change/Transition into a new dimension” inventive principle. 

In addition to recommending inventive principles, TRIZ also predicts technical 

developments and possible patterns of the products by using evolution trend. It can provide 

hints and innovation trends for further development of existing products or systems. There are 

8 evolution trends and 35 evolution trends described by classical TRIZ (Altshuller, Shulyak  & 

Rodman, 2005) and Mann’s revised TRIZ (Mann, 2003) respectively. As found in the previous 

section, the classical TRIZ may no longer be applicable in technology nowadays.  Therefore, 

the evolutionary trend of Mann’s revised TRIZ is used in the vehicle classification system 

forecasting.  

However, not all the evolutionary trends are suitable for analysing all the systems, as 

each system will have its own evolutionary trends.  In the vehicle classification system, 8 

evolution trends from Mann’s revised TRIZ are identified to be more applicable. They are 

“Geometric Evolution (Lin)”, “Mono-Bi-Poly (Various) – Interface”, “Sense interaction”, 

“Design point”, “Controllability”, “Human Involvement”, “Market Evolution”, and “Customer 

Purchase Focus”. They are examined with reference to the 22 selected patents as in the follow 

section. 
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1) Sense interaction 

Trend: 1 sense  2 senses  3 senses  4 senses  5 senses 

From the investigated patents, it can be observed that there are many proposed sensors 

in the vehicle classification system. For example, force sensors like treadle and capacitive 

sensor; electromagnetic wave sensors like camera, laser sensor, radar and Infra-red sensor; 

magnetic sensors like geomagnetic sensor and inductive loop sensor; sound sensors like audio 

sensor, ultrasound sensor and acoustic sensor. Most of the patents are designed to have one or 

two sensors in their system only due to the system complexity issue. In the future, if the 

computing power of the system is improved, more sensors with different sense fields will be 

used, as more sense fields will result in more information. In addition, a higher computing 

power can process more data, and hence the performance of the system can be improved. 

 

2) Geometric Evolution (Lin) 

Trend: Point  1D Line  2D Plane  3D Surface 

 The detecting geometry is changed from “Point” to “3D Surface”. Treadle is a point 

sensor, as it can only sense the force at a point. Laser sensor can measure the length and height 

of vehicles. In recent technology, 2D models of vehicles can be captured in detail by a camera. 

Together with a camera and the aid of other sensors, or other 3D sensors, a 3D model of vehicles 

can be obtained or generated. Therefore, the evolutionary trend of “Geometric Evolution (Lin)” 

is at the end stage, and the future invention should be focusing on 3D model development. 
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3) Mono-Bi-Poly (Various) – Interface 

Trend: Mono-System  Bi-System  Tri-System  Poly-System 

 The systems in the patents are focused on vehicle classification, as its performance still 

has to improve. In fact, other useful systems can be combined to give an all-round smart system. 

Several road-related functions can be added into the system for better road management, such 

as detecting the speed of vehicles, measuring vehicles’ weight, and capturing the number of the 

license plate. 

 

4) Design point 

Trend: Single Operating Point  Two Operating Point  Many Operating Point  

Continuous Re-optimization 

The operating point is dependent on the type of sensors. For a camera, it can detect 

different points of interest (POI), which is at the final stage of “Design point” evolution trend. 

However, for some sensors such as magnetic sensors or force sensor, it usually operates at a 

single point to detect one vehicle. Therefore, the status of this evolution trend varies with 

different classification systems due to the use of different sensors. The development trend 

should be similar to the camera’s trend, as it can operate across a range of area and find a POI 

for classification. 

 

5) Controllability 

Trend: No feedback  Addition of feedback  System with learning/adaptive  Feed-

forward  Self-adaptive, autonomous system 

The feedback function can improve the performance of the system. The status is 

generally at the second “Addition of feedback” stage. Some of the classification systems try to 

add some control components to prevent overlapping issues. In the future, it is expected to have 
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more learning function or self-adaptive functions such that they can identify some unknown 

cases to prevent fault detection. 

 

6) Human Involvement 

Trend: Human  Human + Tools  Human + Powered Tools  Human + Semi-Automated 

Tools  Human + Automated Tools  Automated Tools 

The main object of using a vehicle classification system is to perform the vehicle 

classification function automatically. Based on the above patents, the status is at the “Human 

+ Automated Tools” stage or even tends to the “Automated Tools” stage. The main problem 

with the vehicle classification system not being fully automated relates to the robustness.   This 

is because system faults may cause troubles like money disputes or traffic safety issues, and 

hence human will still need to partially be involved in controlling the system. In the future, if 

the technology develops further, this system should be fully automated. 

 

7) Market Evolution 

Trend: Commodity  Product  Service  Experience  Transformation 

The status of the current classification system is between “product” and “service”. Most 

of the inventors or patent owners most likely sell their system just for a vehicle classification 

function. Only few of them sell it with complete services such as toll charging and traffic 

management. It can be foreseen that if the technology develops further, this system could be 

sold in packages, or as a united system. 
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8) Customer Purchase Focus 

Trend: Performance  Reliability  Convenience  Price 

The main purpose of research and invention in most of the patents is still focused on 

performance and reliability, to function more or less on the same level as humans. In the future, 

the customer will demand the system to be more convenient to use, for instance, simpler 

implementation and more user-friendly control interface, and ultimately, lowest prices.  

A radar plot summary of the above trends is depicted in Figure 3.1. The percentage of 

unfilled area shows the estimated potential for improvement for vehicle classification up to 

2020, which is 72.92%. 

 

 
Figure 3.1:1 Evolution potential of vehicle classification 

 
 

In those patents, the vehicle classification system focuses not only on the degree of 

automation, but also insists on its robustness, accuracy, manufacturability, production cost, 

environment adaptability and/or diversity of classification types. However, each invention may 

have its limitation, and hence, it may not be possible to apply only one particular system in all 

Sense interaction

Geometric Evolution
(Lin)

Mono-Bi-Poly (Various) –
Interface

Design point

Controllability

Human Involvement

Market Evolution

Customer Purchase
Focus



44 
 

applications.  

In the past, vehicle classification was processed manually. Sensor technology was not 

developed at that time. It could not capture enough vehicles’ characteristics, and hence it was 

not possible to build an applicable automatic vehicle classification system due to accuracy and 

robustness issues. Beginning from around the 1950s, the Third Industrial Revolution and the 

Fourth Industrial Revolution occurred within the engineering industry. One of the main 

development trends was to accelerate automation by using the latest electronic and information 

technology, to make a complex and flexible system involving automation technology and many 

other areas. The development of automated vehicle classifications started during this period. 

From Table 3.1, it can be observed that most of the patents in the latter half of the 20th century 

are focused on improving the degree of system automation, and aimed at reducing reliance on 

humans, however, provide an acceptable performance. After the automation developed 

relatively, the improving factors were changed to accuracy, robustness, or manufacturability in 

recent years. In order to have a wild range of applications, a feasible vehicle classification 

system should have high classification accuracy and should be adaptable in various 

environments such as rainy days and night-time, as these are the key factors that determine the 

performance of the whole system. Another vital factor is the number of categories that the 

system can identify. There are a large number of vehicle types in the world, where different 

countries may have different types of vehicles. The classification category of the system 

depends on its application Some applications may have to classify the type of the passing 

vehicles, while some applications may only need to classify the size of vehicles. 

In order to achieve the above goals, some modifications to the existing systems are 

expected. From Table 3.2, the inventive principle of “Mechanics Substitution/ Another Sense” 

is the most famous method. As sensor technology has greatly improved recently, people should 

consider the type of sensor which was not suitable in the past. Inventors can also consider other 

fields of sense to profile the vehicle, such as light field, magnetic field, and microwave field. 
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While these fields can provide more information, they are not limited to only one field. Multiple 

sensors across different fields can make the classification system more adaptable and robust in 

different environments. If the cost of each sensor is not high, multiple sensors can be a possible 

solution in the future with advances in vehicle classification systems. This also agrees with the 

evolution trend proposed by TRIZ. 

Therefore, this research is trying to design a novel profiling system with multiple 

sensors that can perform a robust classification function. Multiple sensors can increase the 

reliability of a recognition system. Each of the sensors must have its own pros and cons. 

Combining different sensors into one system can maximize the pros and compensate for the 

advantages of each sensor. With more data collected by the system, the accuracy of a 

recognition system in different environments can be enhanced. It is just like a human being 

senses the environment with six senses instead of only one sense.   

 

3.2 Proposed vehicle profiling system 

In fact, nowadays, object detection systems or profiling systems insist on the computer 

vision technique with the deep learning algorithm.  This research is trying to lighten the role of 

deep learning while remedying the limitation by using other sensors, i.e. geomagnetic sensor 

and LiDAR. The proposed profiling system is working with sensor-bases object detection to 

see if it can increase the efficiency and stability of the profiling system. Geomagnetic sensor, 

camera and LiDAR are the main devices used for acquiring data to perform a real-time vehicle 

profiling system. 
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3.3 Hardware equipment 

The main objective of the hardware aspect of this work of research is cost-effective and 

simple installation, so the system has enough market potential.   

There are three sensors in this system, i.e., camera, LiDAR and geomagnetic sensor, as 

well as a single board computer (SBC) to receive and compute raw data from all the sensors.  

 

 

 

 

 

 

 

 

 

 
Figure 3.2: The proposed vehicle profiling system 

 

 As shown in Figure 3.2, all the three sensors, i.e. LiDAR, camera and geomagnetic 

sensor, are connected to an SBC either with a wire or wirelessly. Each sensors have its own 

task. The LiDAR can measure the distance from the vehicle to itself by calculating the time of 

flight of the light pulse, and together with the camera information, the dimension of the vehicle 

can be deduced. The geomagnetic sensor measures the magnetic flux density all the time; if a 

vehicle is passing across it, the magnetic field flux density will greatly change according to the 

size of the vehicle. The image captured by the camera can be used to directly identify the 

number of axles and text on the vehicle’s side body. With the above profiling, a classification 

result can be generated. In addition, by using YOLO, another classification result can also be 

generated by different routines. These two results are further processed with the help of 
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multiple-criteria decision-making (MCDM) to attain a final classification result. 

 
3.3.1 Speed control 

One of the main concerns in profiling is the movement of the vehicle. For instance, all 

the sensors fail to detect or measure a fast-moving object, the geomagnetic sensor fails to pick 

up on the change in the magnetic field due to the limited sampling time, the camera fails to 

capture a clear picture due to low frame per second and the LiDAR fails to collect valid data 

due to distortion. In order to ensure valid object measurement and capturing, the most robust 

method is to limit the speed of the vehicle while it is passing through the profiling system. 

There are two possible ways in which the driver can be advised to slow down the speed of their 

vehicle. The first is to place a speed limit sign along the roadside to let the driver know that he 

should slow down his vehicle. Figure 3.3 shows the speed limit sign in Hong Kong, and the 

number inside the sign indicates the highest speed the vehicle can take in km per second. This 

sign should be placed near the beginning of the road so that the speed can decrease to a certain 

value before the vehicle enters the profiling system. However, this method cannot ensure that 

all drivers would comply with the speed restriction. The second method concerns installing a 

speed bump on the lane. It is a physical equipment that uses vertical deflection to slow vehicle 

traffic. If the driver does not slow down his vehicle, he will feel a huge damping and damaging 

to his vehicle. These penalties can ensure that drivers move their vehicles slowly when they 

are passing across. 
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Figure 3.3: Speed limit sign along the road 

 
 

In this work of research, there is a geomagnetic sensor that needs to be placed under a 

passing vehicle. In order to reduce the manufacturing cost, it is proposed that the sensor is 

placed inside a speed bump rather than digging into the ground. The speed bump should have 

enough space to house the geomagnetic sensors.  Moreover, the speed bump should not be 

made of metal, in order to prevent the blocking effect of the wireless signal emitted or received 

from the sensors.  Figure 3.4 shows one possible speed bump made of polyvinyl chloride (PVC). 

The height of the slot inside is 20mm, which is enough to accommodate the geomagnetic 

sensors and the battery. 

 

 
Figure 3.4: Speed bump that can store some sensors or cables 
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3.3.2 Geomagnetic senor 

As mentioned in the previous sections, the function of geomagnetic sensors is to detect 

the existence of a vehicle and to classify the vehicle based on its size.  Therefore, there are 

three purposes for using geomagnetic sensors in this study. First, it will act as an event-trigger 

device for the profiling system to indicate when the vehicle is presented. The geomagnetic 

sensors will obtain a ground value, which is in the situation of no vehicles passing, after starting 

the profiling system. The geomagnetic sensors will continuously measure the magnetic field 

for every single period. If a change in the magnetic field is larger than the threshold value, it 

indicates that a vehicle is approaching the profiling system; Secondly, after the event-trigger, 

the geomagnetic sensors will record the value of the magnetic field until it drops lower than 

the threshold value again. The recorded value will then be sent to SBC for further data analysis. 

To enlarge the observability of the change of magnetic flux density, the magnetic field index 

(MFI) will be introduced to compare the measuring result directly. 

ฮ𝐵ሬ⃗ ฮ =  ඥ𝐵௫
ଶ +  𝐵௬

ଶ + 𝐵௭
ଶ    (3.1) 

         𝐵ௗ௜௦௧ =  ฮ𝐵ሬ⃗ ௧ −  𝐵ሬ⃗ ଴ฮ              (3.2) 

𝑀𝐹𝐼 =  ቀ
஻೏೔ೞ೟

ௌ
ቁ

ଶ

      (3.3) 

where 𝐵ሬ⃗  is magnetic flux density,  𝑡 implies the time for measuring, 0 indicates the ground 

value, and 𝑆  is the sensitivity coefficient. Finally, the profiling system will define a period 

having the highest MFI measured, and this indicates a valid interval where further data analysis 

will focus on this period. 

 

3.3.3 Camera 

 The profiling system needs to profile the whole shape of the vehicle in the side view. 

In this case, multiple camera setups with key images stitching may be necessary. Images are 

captured by many cameras at almost the same time, and the images are rectified by rotation, 
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translation, cutting edge and resizing to a certain resolution. However, this method causes a 

high installation cost and complicates data processing. The latter may also increase the error 

rate. To decrease the processing time and minimise the error rate, a single set of sensors to 

detect one vehicle is preferred over multiple sets, as it can reduce pre-processing work, such as 

reforming the whole profile. 

Together with geomagnetic sensors recording the magnetic value of the vehicle, the 

camera will record a video or continuous frames while the vehicle passes through the profiling 

system. These videos should contain certain information about the vehicle, i.e., text printed on 

the vehicle’s body, number of axles, and appearance of the body. The camera should be high 

revolution to capture the detail of the vehicles, and it should be at least Full HD: 1080p image 

resolution (1,920×1,080 pixels).  

 

3.3.4 LiDAR 

A LiDAR is used to measure the depth of the vehicle from LiDAR itself, so the 

dimension of the vehicle can be calculated. As the sensor part of the profiling system is 

supposed to install on the side of the lane, only the vehicle’s length and height remain as points 

of concern. The dimension along the vehicle’s body is usually not identical; take a taxi for 

example.  

 

 
Figure 3.5: A taxi with a height level mark 
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 From Figure 3.5, it can be observed that the length between 1m height below and 1m 

height above are much different, but the valid length or height is defined as the longest part of 

the vehicle. On the other hand, the variation in length along the vehicle body may be one of the 

classification features for some types. Further modification of the algorithm in this study can 

investigate this aspect in the future. Moreover, the flatness and the material of the object surface 

are two of the factors that affect the performance of LiDAR. If the surface is made of glass, i.e., 

windows, the LiDAR light pulse may penetrate through it and no light pulse will be reflected 

to the LiDAR. Hence, fault detection occurs.  

 Nowadays, there are mainly two Beam-steering technology methods for 3D LiDAR, 

which are the spinning LiDAR and the mechanical scanning LiDAR. When in operation, part 

of the spinning LiDAR is rotating so that the light pulse can be emitted to different directions.  

Hence, it has the advantage of 360° coverage, but its price is higher.  Mechanical scanning 

LiDAR uses a mirror to redirect a single laser to different directions.  The mirror is driven by 

a unique system called micro-electro-mechanical system (MEMS). It usually has a limited FoV, 

but its price is lower than the spinning LiDAR. In this project, a mechanical scanning LiDAR 

is more suitable, as the scanning rage does not need to be 360° and the cost is one important 

consideration of the system. 

 

3.3.5 Computing apparatus 

A computing apparatus is needed for deep learning training and system operation. The 

hardware requirement for the training purpose is very high. Normally, it requires a powerful 

GPU instead of using CPU for training; otherwise, the training process is too slow. Therefore, 

the choice of GPU affects the performance and efficiency of training. Without GPU, the whole 

deep learning may take several months to process. A suitable GPU can compress the duration 

into several days, hours or even minutes. Based on the latest information available in 2020, the 

acceptable GPU with the lowest specification is GTX 1050 Ti (4GB) or the online GPU Colab 
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from Google. On the other hand, if there is a trained data set already for use, then the GPU and 

the training process is unnecessary, unless the user requires a better performance. 

For the operating computer, a single-board computer (SBC) is recommended. An SBC 

is a complete computer built on a single circuit board. Its size is smaller than a desktop 

computer, and it can hence be installed quite simply.  

 

3.4 Sensor’s position 

Figure 3.6: Illustration of the proposed profiling system 
 
 

The proposed profiling system is configured as shown in Figure 2.6. The sensors should 

be placed in suitable positions so that the profiling system can supervise the whole target area 

and fully profile any vehicles. The faulty position of sensors will result in the failure of the 

entire profiling system. In fact, all sensors have their limited field of view (FoV) or detecting 

range; hence, the design sensor’s position should be considered the limitation for all the sensors 

used. 

LiDAR Camera 

Geomagnetic sensor 
inside the speed bump 
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 There are three camera classes based on the FoV, which is classified by the lens. The 

first is normal lens, where the FoV is about 50-55° and it is nearly the same as the FoV of 

human eyes; therefore, the image taken with this lens is similar to human vision. The second is 

telephoto lens, where the FoV is usually less than 30°. This lens is mainly used in long distance 

observation, as it has a larger depth of field. The third one is a wide-angle lens, where the FoV 

is usually over 60°. To capture a large object or a broad area, a wide-angle camera is more 

suitable than the others. Since the size of vehicles is relatively big, this kind of lens is suitable 

for vehicle profiling.  

Similar to the camera, LiDAR also has its own angle of view. Commonly, there are two 

types of LiDAR, depending on their usage. The first one is an all-around LiDAR. Its FoV is 

360° and it can scan in all directions; hence, it can detect its surroundings. This type of LiDAR 

is mainly used in autonomous vehicles to check if there are any obstacles blocking the travel 

path. The second one is similar to a camera and it has a limited FoV. This type of LiDAR is 

suitable for detecting a specific area in detail. 

 The camera and the LiDAR will be installed closer to each other in order to minimise 

the installation space. It will be assumed that they are close enough so that the origin of their 

FoV is the same, and hence, the system FoV will be dominated by the narrow one between the 

camera and the LiDAR. For better performance, the camera FoV and LiDAR FoV should be 

similar, as it can maximise the information obtained from both. Figure 3.7 and 3.8 are the top-

view and side-view of the sensor with vehicle and lane. 

FoVୱ୷ୱ୲ୣ୫ =  min(FoVୡୟ୫ୣ୰ୟ, FoV୐୧ୈ୅ୖ)   (3.4) 
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Figure 3.7: Top-view of a sensor with expected horizontal FoV. 
 
 
 

 
Figure 3.8: Side-view of a sensor with expected vertical FoV 
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VL: Vehicle length 

VW: Vehicle width 

VH: Vehicle height 

LW: Lane width 

SH: Sensor height 

SDH: Distance between sensor and the near rim of the lane for horizontal  

SDV: Distance between sensor and the near rim of the lane for vertical 

θH: Half of horizontal field of view (HFoV) 

θV: Half of vertical field of view (VFoV) 

   tan(𝜃ு) =
௏௅

ଶൗ

ௌ஽ಹ
     (3.5) 

tan(𝜃௏) =
௏ுିௌு

ௌ஽ೇ
     (3.6) 
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Table 3.4: Cap 374A Road Traffic (Construction and Maintenance of Vehicles) Regulations, 
FIRST SCHEDULE OVERALL DIMENSIONS OF VEHICLES 

Vehicle 
Overall 

Length 

Overall 

Width 

Overall 

Height 

Private Car 6.3 metres 2.3 metres 2.0 metres 

Taxi 6.3 metres 2.3 metres 2.0 metres 

Invalid Carriage 6.3 metres 2.3 metres 2.0 metres 

Light Bus 7.5 metres 2.3 metres 3.0 metres 

Bus 

Single-decked 12.0 metres 2.5 metres 3.5 metres 

Double-decked 12.0 metres 2.5 metres 4.6 metres 

Articulated 15.0 metres 2.5 metres 3.5 metres 

Light Goods Vehicle 10.0 metres 2.5 metres 3.5 metres 

Medium Goods Vehicle 11.0 metres 2.5 metres 4.6 metres 

Heavy Goods 

Vehicle 

Rigid 11.0 metres 2.5 metres 4.6 metres 

Articulated 16.0 metres 2.5 metres 4.6 metres 

Special Purpose Vehicle 12.0 metres 2.5 metres 4.6 metres 

Tricycle - 1.1 metres - 

Trailer 13.5 metres 2.5 metres 4.6 metres 

Pedestrian-controlled Vehicle 4.3 metres 1.6 metres - 

 

The general size limitation of vehicles in Hong Kong is mentioned in Table 3.4. 

Considering the case for the largest measuring one for most cases, excluding the one that is 

articulated, the length and height are 12m and 4.6m, respectively. Assume that the sensors are 

placed at 1m above the ground and at most 2m from the near rim of the lane, so that the camera 

can capture a good quality image. On substituting the above parameter into equation 3.5 and 

3.6, the half of HFoV and VFoV are 71.6° and 60.1° respectively.  
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3.5 Supervising area 

 Besides the function of vehicle classification, another possible application is to 

supervise all the vehicles on the traffic road, and hence the total number can be identified, 

together with the types of vehicles. Therefore, there is a need for deciding the number of sensors 

used to cover a certain supervising area. This question is similar to the art gallery problem, 

which is a kind of visibility problem. An art gallery is supposed to find the minimum number 

of guards needed for observing its entirety. Specifically, this question is one involving 

computational geometry. Given a simple polygon with n vertices or sides, how many points 

that can look around 360° in the polygon are needed if every point in the polygon is to be 

covered. According to Chvátal's art gallery theorem (Chvátal, 1975), if the detecting direction 

of the sensors is 360°, the upper bound on the minimal number of points is n/3, where n is the 

number of vertices of the polygon.  

If the above case is changing the guard to sensors used in a profiling system, the number 

of sensors required for monitoring a whole polygon area should be n/3 at most, where n is the 

number of vertices of the detected area. However, one of the main assumptions of the above 

thermo is that the detecting range of sensors is unlimited and goes in all directions, so that it 

can travel far away from the source. In reality, as discussed in the section above, all the sensors 

have their limited FoV and detecting range, and the sensors should be able to profile the whole 

vehicle, i.e., the dimension or full body picture. Figure 3.9 shows an illustration position of 

sensors where there is a distance SD between the sensors and the road. It should be noted that 

the side-view on both right and left are supposed to be identical.  
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Figure 3.9: Supervising areas of multiple sensors with limited FoV 

 
 

Like the art gallery problem (Abdelkader et al., 2015), finding the exact number of 

minimum sensors necessary for supervising the whole polygon even the sensors can be located 

in the interior of the polygon for any degree of FoV α, where 0<α<360°, is an NP-hard problem. 

In fact, the sensors used in this study have a limited FoV, and assume it is 45° <α ≤ 180°. In 

this case, there is proof that for α = (180 − ε) where ε>0, at least 2n/3–1 sensors needed; and 

for α = 180, at least n/3 sensors are enough to monitor (Tóth, 2002). This information is useful 

as it gives a reference of hints for calculating the manufacturing and installation cost. 

 

3.6 Image processing for camera image 

In view of a general design for taking large objects, wide angle lens can be used to 

capture an image, so that it can increase the flexibility of the system to be applicable in different 

environments. On the other hand, Barrel distortion is associated with wide-angle lens; so, the 

image should be rectified before it is passed on for further processing. However, Figure 3.10 

depicts that the edge (shown in the red circle) on the left is stretched to the square form (shown 

in the red circle) on the right in the rectification procedure. This process will decrease the image 

quality or cause loss of detail on the edge area, as the rectification procedure of the skewed 

images involves a number of steps related to rotation and translation. A typical example is as 

shown in Figure 3.11. 
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Figure 3.10: Problem of rectification  

(Florez, 2010) 
 

 
Figure 3.11: Before rectification (left) and after rectification (right)  

(Hughes et al., 2009) 
 
 

There are two types of distortion, radial distortion and tangential distortion.   The 

rectification formulas are as follows (Bradski, 2000): 

x଴ = x(1 + kଵrଶ + kଶrସ + kଷr଺)      (3.7) 

y଴ = y(1 + kଵrଶ + kଶrସ + kଷr଺)     (3.8) 

xଵ = x଴ + (2pଵxy + pଶ(rଶ + 2xଶ))     (3.9) 

yଵ = y଴ + (pଵ(rଶ + 2yଶ) + 2pଶxy)     (3.10) 

where k1, k2, k3, p1 and p2 are the five distortion parameters, and rଶ = xଶ + yଶ.  x , y are the 

original position of each pixel, while x଴ , y଴ are the rectified position from radial distortion and 

xଵ , yଵ are the rectified position from both radial and tangential distortion. As different cameras 

have their own distortion characteristics, the five distortion parameters given above should be 
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applied for different cameras, and they can be found by utilizing the calibration method with 

the pre-rectification position and the post-rectification position of three pixels. In the market 

nowadays, the output image of some wide-angle cameras has already rectified.  

 

3.7 Dimension measuring and calculation 

 
Figure 3.12: Procedure for finding the dimension of the vehicle 

 

Figure 3.12 is the general workflow of dimension determining. A point cloud is 

collected by the LiDAR. Let 𝑃 be a point cloud contains 𝑛 points. With respect to the LiDAR 

position as the origin, 𝑥௡, 𝑦௡, and 𝑑௡ represent the location of point 𝑛 in x-coordinate and y-

coordinate and its depth, respectively. 

𝑃௡ = [𝑝ଵ 𝑝ଶ ⋯ 𝑝௡] = ൥ 

𝑋௡

𝑌௡

𝐷௡

 ൩ =  ൥

𝑥ଵ

𝑦ଵ

𝑑ଵ

 

𝑥ଶ … 𝑥௡

𝑦ଶ … 𝑦௡

𝑑ଶ … 𝑑௡

൩   (3.11) 

where (𝑥௡, 𝑦௡, 𝑑௡) ∈ ℝଷ 
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Actually, 𝑑 represents the depth of the detected point in its z-coordinate, not to be 

confused with the distance, as descripted in Figure 3.13. 

 
Figure 3.13: Distance and depth illustration on top view 

 

In fact, the LiDAR is going to scan in all directions within its field of view, including 

the lane shown in Figure 3.14, which will affect the determination of the height of the vehicle. 

Figure 3.15 shows the depth maps where the lane and the vehicle merge into each other since 

their values are very close. As a result, it is hard to determine the edge of the vehicle.  

        
Figure 3.14: The detection range of the LiDAR 
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lane 

vehicle 

lane 

 

 
Figure 3.15: Depth map without vehicle (Top); depth map with a vehicle (Bottom) 

 

To prevent improper detection, the height profiling is divided into two parts: ab and bc, 

as shown in Figure 3.16, where SH and SF are known. 

            
Figure 3.16: A vehicle is passing on the lane; ac is the upper part of the vehicle, while bc is 

the lower part 
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While the profiling system begins to work, the LiDAR should scan the background and 

acquires its depth map corresponding to the ground environment. After that, a point cloud of 

the ground data is obtained. 

There are several points where the value of 𝑑 is equal to that of SF, which indicate the 

far rim of the lane. A mean value of these points in the y-axis is defined by 𝑦෤௟௔௡௘, which is a 

threshold level to indicate which part belongs to ab or bc. An angle 𝛾 can be calculated from 

the actual position of the LiDAR.  

𝑦෤௟௔௡௘ =
௬೗భା௬೗మା⋯ା௬೗ೝ

௥
     (3.12) 

where 𝑙௥ ∈ 𝑛 and 1 ≤ 𝑟 ≤ 𝑛 

𝛾 = tanିଵ ௌு

ௌி
      (3.13) 

After the above preparing procedures, the system will start to operate normally, raw 

data from LiDAR and the camera are collected continuously. The system will only focus on 

analysing valid data which is defined as the data taking at the moment of the highest magnetic 

flux density measured by geomagnetic sensor. Take an example as shown in Figure 3.17. 

 
Figure 3.17: Depth map of a double-decked bus 
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 Base on the depth map generated by valid data, the region of interest (ROI) will be 

identified according to the ground value. 

𝐷௡
(ோைூ)

 = 𝐷௡ × ൦

𝐿ଵ 0 ⋯ 0
0 𝐿ଶ 0 ⋮
⋮ 0 ⋱ 0
0 ⋯ 0 𝐿௡

൪    (3.14) 

𝐿௡ = ൜
1   𝑖𝑓 𝑑௡ ≥ 𝑆𝐹
0   𝑖𝑓 𝑑௡ < 𝑆𝐹

      (3.15) 

where 𝐿௡ is an 𝑛 × 𝑛 diagonal matrix. 

While the vehicle is passing into the scanning area, the YOLO detection will also give 

another ROI.  This is represented by a point cloud of YOLO bounding box 𝐵௬௢௟௢ , which 

indicates that a single vehicle is detected. It should be noted that for each time of detection, the 

bounding box does not always bound the whole vehicle. The bounding box is applied to the 

𝐷(ோைூ) to narrow down the processing range and form with a new ROI 𝐷(ோைூ∗).  

𝐵(௬௢௟௢) = ൤
𝑥௕భ

𝑥௕మ
⋯ 𝑥௕ೖ

𝑦௕భ
𝑦௕మ

⋯ 𝑦௕ೖ
൨    (3.16) 

𝐷௡
(ோைூ∗)

= ቊ
𝐷௡

(ோைூ)
      𝑖𝑓 𝑛 = 𝑏௞

0               𝑖𝑓 𝑛 ≠ 𝑏௞

    (3.17) 

where 𝑏௞ ∈ 𝑛 and 1 ≤ 𝑘 ≤ 𝑛. 

Figure 3.18 shows the above bounding boxes of ROI. After locating them, some 

background error and region of non-interest will be removed accordingly.  In addition, vehicle 

windows are transparent or partially transparent to the light pulse of LiDAR where the depth 

measurement is not valid. Hence, these regions will be filtered by setting a threshold value.  

Let 𝐹 be the set of points filtered by 𝑇 from 𝑃௡
(ோைூ∗) , where 𝑇 is a threshold value of 

background error detection and the region of non-interest. Figure 3.19 shows the depth map 

after the above filtering procedures. 

𝐹 = [𝑝௙భ
𝑝௙మ

⋯ 𝑝௙ೕ] = 𝑃௝
(ி௜௟௧௘௥௘ௗ)

          ∀𝑑௡
(ோைூ∗)

> 𝑇    (3.18) 

where 𝑓௝ ∈ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛. 
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Figure 3.18: Depth map with ROI according to ground data (red box) and YOLO (green box) 
 

 
Figure 3.19: Depth map after filtering 

 

Finally, the average depth of the vehicle can be calculated. To reduce the error from the 

edge detection, the trimmed mean is taken: 

𝑑௠௘௔௡ =  
ଵ

௄ିଶ௣
 ∑ 𝑑௙ೕ

௄ି௝
௝ୀ௣ାଵ      (3.19) 

where 𝑝 =  0, 1, 2, … , (𝐾 − 1) /2 and K is an odd number. 
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By using the average depth, a valid point cloud of a vehicle can be found. Assume that 

the confidence level is α. The population standard deviation of 𝑑௠௘௔௡ and the margin of error 

(ME) can be obtained by the calculation given below. 

𝜎ௗ =  ඨ
∑ (ௗ೑೔

ି ௗ೘೐ೌ೙)మೕ
೔సభ

௝
      (3.20) 

𝑀𝐸 = 𝑍ఈ/ଶ  ×  
ఙ೏

ඥ௝
      (3.21) 

 A valid point of a vehicle can be defined within a range 𝑑௠௘௔௡  ± 𝑀𝐸, which is called 

a confidence interval. The profiling system will start from a point in 𝐹, e.g., (𝑥௜, 𝑦௜), in which 

the depth magnitude is nearest to 𝑑௠௘௔௡ . All nearby points are then searched, i.e., 

(𝑥௜ + 𝑟, 𝑦௜ + 𝑠), where 𝑟 and 𝑠 is an integer number which constitute the searching range to 

see if it is a valid point. If this point is valid, the searching process will repeat with respect to 

this point until no other valid points are detected. It should be noted that the area of lane, i.e. 

all points of 𝑦 ≤ 𝑦෤௟௔௡௘, will not be searched. Please be noted that the above procedures can 

obtain all the points belongs to the vehicle outside the YOLO bounding box and remove all the 

error points within the confidence interval but not belongs to the vehicle.  

Next, all the valid point will transform to a depth map, as show in Figure 3.20, and 

apply Canny edge detector to find the edge of whole vehicle except inside the lane area, as 

shown in Figure 3.21. 
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Figure 3.20: Depth map generating by searching valid points 

 

 
Figure 3.21: The edge of partial vehicle  

 

Afterwards, a set of points (𝐴) will be obtained from the points of edge and a shade of 

part of the vehicle profile will be derived.  

𝐴 = [𝑝௔భ
𝑝௔మ

⋯ 𝑝௔೘]     (3.22) 

The dimension in pixel, length (𝐿′) and height (𝐻′), of the vehicle can be calculated by 
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the formula given below. 

𝐿′ = max
ଵழ௜ழ௠

 𝑥௔೔
− min

ଵழ௜ழ௠
 𝑥௔೔

     (3.23) 

𝐻ᇱ = 𝑎𝑏 + 𝑏𝑐 = max
ଵழ௜ழ௠

𝑦௔೔
− 𝑦෤௟௔௡௘ + (𝑆𝐹 − 𝑑௠௘௔௡) tan 𝛾   (3.24) 

Finally, the dimension in the real world, length (𝐿) and height (𝐻), of the vehicle can 

be calculated by the formula given below. 

𝐿 = 𝑘𝐿′𝑑௠௘௔௡      (3.25) 

𝐻 = 𝑘𝐻′𝑑௠௘௔௡     (3.26) 

where 𝑘 is a scaling coefficient.  

 The assumption of the above algorithm is that the height of the vehicle is higher than 

the position of the LiDAR. Otherwise, the whole vehicle is out of the ROI and the system 

cannot distinguish between the lane and the vehicle. 
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3.8 Workflow of the profiling system 

 
Figure 3.22: Workflow of the profiling system 
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Figure 3.23: The decision tree for classification 
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The data processing of the proposed profiling system and program workflow are 

illustrated in Figure 3.22 and 3.23. To begin with, the start of the system is to get the ground 

value the data obtained from the geomagnetic sensor and the LiDAR. A ground value is an 

offset value and is supposed to be the lowest value for all time. In order to obtain this value, 

the user should ensure that no vehicle or unusual object, especially metallic, is placed inside 

the detection range; otherwise, the reference ground value is useless and will result in fault 

detection while operating the profiling system. After that, the system can be worked 

accordingly. Upon starting the profiling system, the geomagnetic sensor will scan the magnetic 

field continuously.  

When SBC receives the raw data from the geomagnetic sensor, a measured magnetic 

field will be calculated and compared with a threshold value. The threshold value is a defined 

value that indicates the existence of any vehicles. If the geomagnetic sensor senses that the 

change in magnetic flux density is larger than the threshold value, it means that there is a 

vehicle approaching the geomagnetic sensor. The LiDAR and the camera will start to record 

the point cloud and RGB images. The frame per second is set to 30, and so, hundreds of frames 

will be obtained for further analysis. After sensing, the system will start classifying the type of 

vehicle. As the magnetic field value of a motorcycle is much smaller than others, it can used to 

identify if it is a motorcycle first. 

Next, the RGB image will first undergo analysis by YOLO. The system will start 

identifying any vehicles in the frame. This action can identify the Region of Interest (ROI) for 

processing the consequence. After that, the YOLO will start determining whether it is a goods 

vehicle. If it is a goods vehicle, the RGB images will be checked by the Hough circle algorithm 

to count the axles; normally, if it has 4 or more than 4 axles, a heavy goods vehicle can be 

identified. If it is not a goods vehicle, the RGB images will be checked by Tesseract to identify 

some keyword, e.g., ‘TAXI’ and ‘PUBLIC LIGHT BUS’, and hence, a taxi or a public light 

bus can be identified. 
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In addition, the point cloud measured by the LiDAR can be used for calculating the 

dimension, and hence the system can distinguish among a light bus, a double-deck bus, a single 

deck bus, a private car and a light goods vehicle. 

 
3.8.1 Magnetic Field measurement 

According to the literature and the patents discussed in the previous section, the 

geomagnetic sensor is strong enough to identify motorcycles/motor tricycles. As mentioned in 

the previous sections, the measurement of motorcycles/motor tricycles by the LiDAR is 

relatively poorer than that of other vehicles. Therefore, in the first step of classification analysis, 

the profiling system can identify motorcycles/motor tricycles using the magnetic field data. 

 

3.8.2 Word identification 

There is a difficulty in distinguishing between a taxi and a private car. In fact, the same 

vehicular model can be used as a taxi or a private car depending on the owner registration under 

the government. Figure 3.24 is an example, where the private car model is the Toyota Prius. 

Not only is their shape similar, but the color of both is also nearly the same. It is hard to 

distinguish between them by size or appearance. Therefore, the system should further focus on 

other possible features that form the main differences between a taxi and a private car.  

  
Figure 3.24: A taxi (left) and a private car (right) 

 
 

According to Cap. 374A Road Traffic (Construction and Maintenance of Vehicles) 

(https://www.elegislation.gov.hk/hk/cap374A) Regulations no. 45,  
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Taxis to have illuminated signs and markings 

Every taxi shall— 

(a) have fitted on the top of its roof an illuminated sign, of a type approved by the 

Commissioner, which at all times during the hours of darkness when the taxi is available 

for hire displays the word “TAXI” so that it is clearly visible from the front and the rear 

of the vehicle; and (L.N. 258 of 1984) 

(b) be plainly marked in English and Chinese writing of uniform size not less than 100 

millimetres in height on the outside of the vehicle on both the near and off sides with the 

word “TAXI” and the characters “的士”. 

 In brief, each taxi should have a sign on the top, as shown in Figure 3.25, and a word 

“TAXI” printed on both sides  of its body, as shown in Figure 3.26.  

 
Figure 3.25: Taxi sign on the top of taxi 

 
 

Although the aforementioned is one of the main differences between a taxi and a private 

car, it is not a good and reliable feature to distinguish between them. The camera in this study 

is designed to be installed on the side of the road, the word ‘TAXI’ on the sign cannot be 

captured. Actually, compared with the vehicle’s body, the tag is relatively small; and it is 

sometimes hard to detect it. In fact, it does not prohibit people from placing something on the 

top of their car. In some situation, the sign might be might faultily detected, causing an incorrect 

prediction.  
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Another main difference is the print text on the vehicle’s body – the word ‘TAXI’ must 

be printed on the side of a taxi. It is a strong indicator for identifying taxi, even without any 

relevant characteristics. In this case, searching for the text on the taxi’s body is a solid solution. 

 
Figure 3.26: Side-view of a taxi 

 
 

Similarly, for the public light bus, the words ‘PUBLIC LIGHT BUS’ should be marked 

on both sides, as shown in Figure 3.27, according to Cap. 374A Road Traffic (Construction and 

Maintenance of Vehicles) (https://www.elegislation.gov.hk/hk/cap374A) Regulations no. 50. 

Additional markings on public light buses 

Every public light bus shall be plainly marked— 

(a) in block letters and Chinese characters, of uniform size not less than 100 millimetres in 

height, on the outside of the vehicle on both the near and off sides, with the words “Public 

Light Bus” and the characters “公共小型巴士”;  

For more information, the model of the public light bus mainly used in 2020 constitutes: 

GMI Gemini, Golden Dragon XML6701J18, Mitsubishi Fuso Rosa, Optare Solo SR and 

Toyota Coaster. 
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Figure 3.27: Side-view of a mini-bus 

 
 

In this study, Tesseract will be used for word detection. Tesseract is an optical character 

recognition engine, developed and sponsored by Google since 2006. One of the famous 

applications of this technology is license plate recognition, which is similar to the application 

of this research. There are several page segmentation modes (PSM) for Tesseract, and PSM 11 

is set for the proposed system. In this PSM, Tesseract will try to find as much text as possible 

as in the frame.  As a result, a list of words is acquired. If the profiling system detects the word 

‘TAXI’ or ‘PUBLIC’ + ‘LIGHT’ + ‘BUS’, then it is able to classify a taxi and a public light 

bus respectively. 

 

3.8.3 Dimensional analysis 

The dimension of a vehicle is one of its key features. The profiling system should 

familiarise the typical size and restriction size of most vehicle types. Table 3.5 summaries the 

dimensional data of different main vehicles used in Hong Kong in 2020. 
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Table 3.5: The main models of single-decked buses used in 2020 
Model Length Width Height 

Young Man JNP6122UC 

** 

12 2.54 3.84 

Young Man JNP6122G 12 2.5 3.2 

Scania K230UB 10.6-12 2.527 3.15 

Young Man JNP6120GR 11.6 2.54 3.17 

Young Man JNP6105GR 10.5 2.54 3.17 

Volvo B7R 12 25 3.5 

Yixing SDL6105／

SDL6120 

11.6-10.5 2.5 - 

MAN NL273F 12 2.5 - 

Isuzu FRR 8.8 2.26 2.89 

ISUZU LV434R 11 2.4 3.5 

MAN A91 12 2.5 3.5 

ISUZU LV423R 12 2.4 3.4 

Daewoo BH117L 11 - 3.5-3.7 

Enviro200 Dart 10.4-11.3 2.432 3.05 

BYD K9R 11.6-12 2.5 3.2 

BYD K9A 12 2.55 3.2 

Size range 8.8-12 2.26-2.55 2.89-3.84 

** This model is a capacitive bus, with the maximum height of 3.84m, but it includes an electric 

charging port. Its appearance is shown in Figure 3.28. 
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Figure 3.28: Young Man JNP6122UC 

  

Table 3.6: The main models of double-decked buses used in 2020 
Model Length Width Height 

Alexander Dennis 

Enviro400 

10.45 2.55 4.4 

Alexander Dennis 

Enviro500 

11.3-12 2.51 4.4 

Dennis Trident 3 10.3-12 2.5 4.17-4.4 

MAN A95 12-12.8 2.5-2.55 4.2-4.43 

Scania K280UD 12 2.5 4.4 

Scania K310UD 12 2.5 4.4 

VDL DB300 10 2.55 4.38 

Volvo B8L 12-12.8 2.55 4.35-4.4 

Size range 10-12.8 2.5-2.55 4.17-4.43 

 

  



78 
 

Table 3.7: The main models of light goods vehicle (van) used in 2020 
Model Length Width Height 

TOYOTA HIACE 4.695-5.38 1.695-1.88 1.98-2.105 

NISSAN URVAN 4.695-5.08 1.695-1.88 1.99-2.285 

Volkswagen 

Transporter 

4.892-5.292 1.904-1.959 1.935-2.476 

FORD 

TRANSIT*** 

4.972-5.339 1.986-2.29 1.969-2.022 

PEUGEOT 

EXPERT 

4.609-5.309 1.905-1.94 2.204 

HYUNDAI H1 5.15-5.125 1.920 1.925 

M-BENZ VITO 4.748-5.223 1.906 1.875 

LAND ROVER 

DISCOVERY 

4.838-4.970 2.022-2.22 1.888-1.909 

Size range 4.695-5.38 1.695-2.22 1.875-2.476 

*** There are many sub-models for FORD TRANSIT. The dimension stated in the table is the 

size of the ones commonly used in Hong Kong.  

 
 The model of private light buses can also be used as public light buses, and vice versa. 

In fact, most of the models of private light bus are the same as those of public light buses in 

Hong Kong. Therefore, their size can indicate the same model. 
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Table 3.8: The main models of light bus used in 2020 
Model Length Width Height 

GMI Gemini 6.99 2.04 2.865 

Golden Dragon 

XML6701J18 

6.97 2.05 2.65 

Mitsubishi Fuso 

Rosa 

6.245-7.73 2.01 2.63-2.735 

Optare Solo SR 7.87 2.34 2.885 

Toyota Coaster 6.255-7.725 2.035 2.585-2.6 

Size range 6.245-7.73 2.01-2.34 2.585-2.88 

 

 
Table 3.9: The main models of taxi used in 2020 

Model Length Width Height 

Toyota Crown 

Comfort 

4.695 1.695 1.525 

Toyota Comfort 

Hybrid (JPN) 

4.4 1.695 1.88 

Toyota Prius 4.48 1.745 1.49 

Toyota Noah 4.71 1.73 1.825 

Nissan Cedric 4.69 1.695 1.445 

Nissan NV200 4.4 1.695 1.850 

Ford Transit 

Connect 

4.825 1.810 1.93 

Size range 4.4-4.825 1.695-1.81 1.445-1.93 
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According to Tables 3.5, 3.6, 3.7, 3.8 and 3.9, light bus, double-decked bus, single-

decked bus and light goods vehicle can be classified based on the analysis of dimension. The 

length of a double-decked bus and single-decked bus is about 12m normally, while that of a 

light bus and light good vehicle is shorter than 8m. The classification line of these two groups, 

therefore, can be set to 9m. The length of the light bus is within 6.245–7.73m while that of light 

goods vehicle is within 4.695–5.38m. The classification line between them can hence be set to 

6m. The height of a double-decked bus is 4.17–4.43m while that of a single-decked bus is 2.89–

3.7m. The classification line between them can therefore be set to 3.9m. The height of private 

car is assumed to be similar to the taxi; a taxi is 1.445–1.93m while that light goods vehicle is 

1.875–2.476m. The classification line between them can therefore be set to 1.9m, but it is not 

correct, further improvement should be considered to fix this issue. 

 
3.8.4 Role of deep learning  

As mentioned above, the deep learning technique is commonly used in the object 

detection nowadays. However, before it can have a high accuracy rate, several problems need 

consideration. First, greater resources are required in order to obtain enough a data set large 

enough to make the training process of deep learning. Second, the annotation process of data 

sets needs huge human resources. Finally, in order to speed up the training process, a high 

computing power and high standard Graphic Processing Unit (GPU) is needed. To design a 

novel and cost-effective profiling system, the role of deep learning should be optimised.  

 
As the dimensions of the double-decked bus, medium goods vehicle, and heavy goods 

vehicle are similar, their classification by dimensional analysis is not valid. In this case, 

appearance analysis through image deep learning technology is a better solution. The 

appearance of goods vehicles usually differs from that of other types of vehicles, while the 

classification of other types of vehicles are analysed by other features.  
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3.8.5 Trained Dataset for YOLO 

The performance of YOLO detection is directly influenced by the trained data set. This 

data should include all types of vehicles that are going to be classified. The source training of 

a dataset can be varied, any photos that contain the classified class are suitable, and it can be 

taken by a camera or a mobile phone by any person anywhere, as well as on the internet. 

 

3.8.6 Image labelling  

 In order to enhance the performance of object detection, the dataset is customized so 

that more images are going to be trained. Before the training process, the images need to be 

annotated. Each image contains a lot of information, including ROI and background. The ROI 

should be labelled with a certain category, which is a step called annotation. After collecting 

lots of images and point cloud, all data should be processed with annotation manually one by 

one. There is no auto-annotation program available which is good enough to perform 

annotation. Though the task is tedious, but it is a very important step for the profiling system.  

Since a wrong annotation label will affect the performance of the profiling system. Below is an 

example of one image from the dataset. 
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Figure 3.29: A goods vehicle 

(https://www.hgvtraders.com/vehicles/scania-r440-44-tonne-curtain-side-for-sale). 
  

 In Figure 3.29, the photograph contains a goods vehicle, a traffic road and lots of plants. 

The region of interest (ROI) is a vehicle, which is the object to be classified. Therefore, the 

area of the vehicle should be marked and labelled as shown in Figure 3.30. 

 
Figure 3.30: Labelling of an image inside the data set 
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 An .xml file is created after the above step. This file contains information on the 

bounding area and labelling name in text format, as shown as Figure 3.31. 

Figure 3.31: Information in .xml after labelling 
  

 Each image matches with its particular .xml file. Together with the images, the training 

process will train on ROI only and hence it can increase the efficiency of the training and 

exhibit better profiling performance.  

 

3.8.7 Counting of axles 

Medium goods vehicles and heavy goods vehicles are similar in appearance with 

different size, as shown as Figure 3.32, so their tunnel fee is different in charge, and hence, the 

profiling system should distinguish between them. 
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Figure 3.32:  A medium goods vehicle: Isuzu FSR90 (the left one) and a heavy goods vehicle: 

Isuzu CYH52 (the right one), the Length/Width/Height are 7.875m/2.20m/2.53m and 
10.66m/2.49m/2.98m respectively (https://www.isuzu.com.hk/index-cn) 

 
 

In addition, heavy goods vehicles can be divided into two types, one is rigid and the 

other is articulated. The latter is usually connected with a trailer. Sometimes, there might not 

be any containers on the trailer, and hence the length measurement might fail. Moreover, 

according to the Code of Practice for the Loading of Vehicles from the Transport Department, 

the goods container can be placed on the middle part of the vehicle or trailer. Figure 3.33 shows 

one of the possible placements of a container. The length dimension measured may be divided 

into two parts: the vehicle head and the container. This may increase the complexity of how to 

define the length of the vehicle. The variation of the heavy goods vehicle is too large, and hence, 

it is not recommended to identify it by dimension or magnetic field. 

 

 
Figure 3.33: Possible placement of container for a heavy goods vehicle 
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In Hong Kong, most of the heavy goods vehicle is 30 tonnes or above, and they most 

frequently have 4 or more axles. On the other hand, light goods vehicle and medium goods 

vehicle must have 2 to 3 axles. Therefore, counting the number of axles can help classification 

it if it is a heavy goods vehicle.  

 

Table 3.10: Weight, length and axles for goods vehicle 
Type of goods vehicle Total weight (Tonnes) Description 

Light goods vehicle 5.5 Vehicle length is shorter 

than 6m normally 

2 axles 

Medium goods vehicle >5.5 to 24 Vehicle length is longer 

than 6m normally 

2 to 3 axles 

Heavy goods vehicle >24 Vehicle length is longer 

than 7m normally 

4 or more than 4 axles 

 

The number of axles can give a hint in classifying the vehicle type: larger sized vehicles 

usually needs more axles. In fact, the vehicle type classified in the Electronic Toll Collection 

(ETC) system, referring to Figure 3.34, in Hong Kong also concerns the number of axles. 

Therefore, the counting of axles is essential in the profiling system. 
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Figure 3.34: List of vehicle types defined by the ETC system in Hong Kong 
 

Most of the vehicles have 2 axles. Only heavy vehicles need 3 or more axles to support 

the weight of the vehicle and its loading. In fact, besides goods vehicles, double-decked bus is 

another common vehicle that might require 3 axles. However, not all of them have 3 axles as 

shown in Figure 3.35. Therefore, the number of axles is not a critical characteristic for 

identifying a double-decked bus.  

 
Figure 3.35: Model Enviro400 Euro V 
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According to Hong Kong Transportation Department, if a vehicle has more than two 

axles, then an additional charge is needed for each additional axle in most tunnels 

(https://www.td.gov.hk/en/transport_in_hong_kong/tunnels_and_bridges/toll_rates_of_road_t

unnels_and_lantau_link/index.html). Therefore, the counting of axles is a essential function of 

a profiling system. 

There are two proposed methods to identify wheels in this research. The first one uses 

the deep learning approach, which can be also done by YOLO, or other deep learning algorithm 

for object detection.  This is similar to classifying the goods vehicles as described in the 

previous section. On the other hand, it requires lots of wheel images for training purpose, so 

the Hough transform algorithm method is proposed in this project, it can detect any circle in 

the image.  

The image will first transform into an edge picture by Canny edge detector, as shown 

in Figure 3. 36, to give the shape of all obvious objects. The Hough transform method then 

detects any line or shape of the edge picture. For instance, all the wheels must be in shape of a 

circle.  Therefore, all circles inside the edge image will be detected.  

Figure 3.36: Edge picture of an RGB image captured by camera 
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In some scenarios, there are other circles on the vehicle’s body.  This will affect the 

correct rate of axle counting. To prevent fault detection, there are three rules to be considered 

while applying the Hough transform method. First, the radius of the circle is defined within a 

valid range and this value should be adjusted as different sites might have a different position 

of the camera. Second, the circle must be aligned with almost the same vertical level, to make 

sure there is no mix up with another circle from the surroundings or the vehicle’s body. Third, 

only the lowest set of circles is counted, to prevent any circles above the wheel to be counted. 

If there are two or more circle which obey the above rules, these circles are counted as wheels 

as shown in Figure 3.37. 

Figure 3.37: Wheel counting after applying the Hough transform algorithm 
 
 
3.8.8 Multiple-criteria decision analysis (MCDM) 

After acquiring the final classification result mentioned in the previous sections, it is 

going to calculate the confidence score of the final classification result 𝑆(௙௜௡௔௟). 

𝑆(௙௜௡௔௟) = 𝛼଴𝐾𝑃(௬௢௟௢) + 𝛼ଵ𝑆(௧௘௫௧_்) + 𝛼ଶ𝑆(௧௘௫௧_௉) + 𝛼ଷ𝑆(௔௫௟௘௦) + 𝛼ସ𝑆(௟௘௡௚ ) + 𝛼ହ𝑆(௛௘௜௚௛ ) 

                                                                                                                                (3.27) 

As mentioned in the previous sections, some types of vehicles can be simply classified 

by YOLO detection with a well-trained data. This can be used to check the validation of the 

profiling system. The COCO data set is used in current stage, it can be classifying the vehicle 
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into three categories only, including motorcycle, bus and goods vehicle. In the equation 3.27, 

the value of  𝑃(௬௢௟௢) can be obtained by YOLO directly during operation. It is a confidence 

percentage of its classification result, and its range is 0 to 100. 𝐾 is the scaling coefficient 

which make the value of  𝑃(௬௢௟௢)consistent with 𝑆, and its value is set to be 0.02 in current 

stage. 𝛼଴ - 𝛼ହ are the coefficients of each of the criteria, and the sum of them is equal to 1. 

Their value should be investigated with more testing result. In fact, the value can be varied in 

different environments, such as day or night, sunny or rainy, etc. Their value is set to be 0.2 in 

current stage. 𝑆(௧௘௫௧_்), 𝑆(௧௘௫௧_௉), 𝑆(௔௫௟௘௦), 𝑆(௟௘௡௚௧௛)𝑎𝑛𝑑 𝑆(௛௘௜௚௛௧) are the confidence score of 

different criteria, and the value of it is defined in the tables 3.11 to 3.15. 

 

Table 3.11: Confidence score for the word “TAXI” scanned 
 Taxi Others 

Four letters of “TAXI” 2 0 

Three letters of “TAXI” 1 1 

Two or less letters of “TAXI” 0 2 

 

 

 
Table 3.12: Confidence score for the word “PUBLIC LIGHT BUS” scanned 

 Public light bus Others 

Ten or more letters of “PUBLIC LIGHT 

BUS”  

2 0 

Five to nine letters of “PUBLIC LIGHT 

BUS” 

1 1 

Four or less letters of “PUBLIC LIGHT 

BUS” 

0 2 
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Table 3.13: Confidence score for the number of axles count 
 Heavy goods 

vehicle 

Medium goods 

vehicle 

Double-deck 

bus 

Others 

Four or more axles 2 0 0 0 

Three axles 0 2 2 0 

Two axles 0 0 2 2 

 

Table 3.14: Confidence score for the length acquire 
 Heavy goods 

vehicle, Single / 
double-decked bus 

Medium goods 
vehicle 

Private / 
public light 

bus 

Others 

Length>10.5 2 0 0 0 

10.5>Length > 9.5 1 1 0 0 

9.5>Length>8.5 0 2 1 0 

8.5>Length>7.5 0 2 2 0 

7.5>Length>6.5 0 2 2 0 

6.5>Length>5.5 0 1 1 1 

Length <5.5 0 0 0 2 

 
 

Table 3.15: Confidence score for the height acquired 
 Heavy / Medium 

goods vehicle, Single / 

double-decked bus 

Light goods 

vehicle 

Private / 

public light 

bus 

Others 

Height > 4 2 0 0 0 

4> Height >3 1 0 1 0 

3> Height >2 0 2 2 1 

Height <2 0 2 0 2 
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The range of scores is set to be 0 to 2 at current stage. The range and the score tables 

should be revised afterward according to the testing results. If the testing data is large enough, 

it may apply a numerical machine learning / AI to find out the most suitable value in the future. 

In addition, if the final confidence score is too low, i.e. smaller than 1, the system 

decides a failed case of the classification. Otherwise, it can determine to be a successful case 

and show the classification result to the user. 
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Chapter 4 
Result and 
Analysis 
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4.1  System prototype and data collection 

The prototype has three main components: A LiDAR camera Intel® RealSense™ L515, 

an SBC IEI NANO-BT-i1-J19001-R11 and a geomagnetic sensor, referring to Figure 4.1, 4.2 

and 4.5 respectively. The simulation test is carried out by combining all the data collected by 

the sensors.  

A long-range and wide FoV LiDAR is expensive. Therefore, a several metres range 

LiDAR with model cars is used in the prototype to simulate depth measuring. Intel® 

RealSense™ L515 has both a camera and a LiDAR inside. The horizontal FoV and vertical 

FoV are 70° and 55°respectively for LiDAR while 70°and 43° respectively for camera. 

 
Figure 4.1: LiDAR camera – Intel® RealSense™ L515 
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Figure 4.2: An SBC IEI NANO-BT-i1-J19001-R11 

 

 COCO (Common Objects in COntext) trained dataset is to be used for YOLO. It is an 

open-source data set with around 90 categories, and only 4 of them are extracted and applied 

in this project, i.e. car, truck, motorcycle, and bus. With an increasing number of images being 

collected, the original COCO data set can be further trained by the user so that a customised 

dataset can be used. A COCO dataset with version “2017 Train/Val/Test” is implemented; the 

public download link is https://cocodataset.org/#download. 

A geomagnetic sensor is developed to achieve a low-cost and energy-efficient solution. 

The energy consumption is a very important factor, as the sensor may dig into the ground, and 

hence, it is hard to take it out once it is installed. This geomagnetic sensor is designed to 

communicate both with wires and wirelessly. The IC used in the geomagnetic sensor module 

is LSM303D produced by STMicroelectronics. Its circuit schematic is presented in Figure 4.3 

and 4.4. 
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(a) MCU part: a firmware is embedded and controls the whole device, connecting all the 

other parts to perform its functions  

 

Figure 4.3: Circuit schematic of the geomagnetic sensor being developed, (a) MCU part  
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(b)  Sensor and communication part: a GMS module is a magnetic field sensor which sends 

an MFI data by SERCOM. An IC sensor measures humidity and temperature, which 

sends a raw data directly by I2C. Two LEDs and one buzzer are connected to MCU for 

debugging purpose., 433 and LORA module is a wireless communication interface, and 

COM port is a wire communication with RS232 TTL interface 

 

(c) Power part: connected to a 3.6V Lithium battery as a power source, with a charging IC 

which can charge the battery by 3.6~4V charging input. A voltage detection circuit is 

also implemented to detect the voltage of the battery 

 

Figure 4.4: Circuit schematic of the geomagnetic sensor being developed (con’t), (b) sensor 
and communication part, (c) power part. 

 



97 
 
 

 

 
Figure 4.5: A geomagnetic sensor with a battery 

 

 
Figure 4.6: Testing environment of the geomagnetic sensor 
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Figure 4.7: Geomagnetic sensor placed into a mounting case, view without a cover (Left) and 

view with a cover (Right) 
  

 A geomagnetic sensor is placed under the ground as shown in Figure 4.7, and it sends 

raw data via wireless communication. A vehicle is entering into the detection area as shown in 

Figure 4.8 and 4.9. The magnetic field flux density has greatly changed while the vehicle passes 

across. Graph plots in Figure 4.10 show the variation in the magnetic field against time.  

 

 
Figure 4.8: Private car for the testing geomagnetic sensor 
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Figure 4.9: Illustration of a vehicle entering the geomagnetic sensor’s (circle) detection area 

 
 

 
Figure 4.10: Variation of magnetic field while a private car enters and exits the detection area 

 

Other types of vehicles, i.e., medium goods vehicles, referring to Figure 4.11, and 

motorcycles, referring to Figure 4.12, were tested. However, as this test was carried in a private 

area, i.e., the Hong Kong Institute of Vocational Education (Sha Tin), only approved vehicles 

were allowed to enter into the site; hence, not all vehicle types could be tested.  
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Figure 4.11: Medium goods vehicle for geomagnetic sensor testing 

 

 
Figure 4.12: Motorcycle for geomagnetic sensor testing 
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4.2  Data consolidation and result simulation 

Several executions are performing in slightly different situations, such as different 

positions on the ground, different angles of moving direction and different moving speeds. The 

model of each type of vehicles is the same for each unit tests. 

 
4.2.1 Data summary  

Table 4.1: MFI (in mG2) measured from the geomagnetic sensor 

Type of 
vehicles 

No. of 
execution  

Min. Max. Avg. Std. Dev. Median 

Motorcycles 30 1356 19866 11063 3926 10683 

Private cars 30 6779 57266 32406 15837 28696 

Medium 
goods 

vehicles 
30 63432 65535 65351 558 65535 

*The maximum measuring value of geomagnetic sensor is 65535. 
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Table 4.2: Length (in m) deduced by data measured from the camera and the LiDAR 

Type of 
vehicles 

No. of 
execution 

Min. Max. Avg. Std. Dev. Median 

Private cars 30 4.4 5.4 4.69 0.207 4.7 

Taxis 30 4.1 4.9 4.68 0.149 4.7 
Public light 
buses 

30 6.5 7.3 6.89 0.205 6.9 

Private light 
buses 

30 6.5 7.4 6.9 0.213 6.9 

Light goods 
vehicles 
(Van) 

30 4.7 5.2 4.89 0.169 4.9 

Medium 
goods 
vehicles 

30 5.7 6.5 5.99 0.168 6 

Heavy goods 
vehicles 

30 10 11.2 10.85 0.236 10.9 

Single-decked 
buses 

30 11.7 12.8 11.99 0.234 12 

Double-
decked buses 

30 11.5 12.6 11.96 0.258 12 

 
 

Table 4.3: Height (in m) deduced by data measured from the camera and the LiDAR 

Type of 
vehicles 

No. of 
execution 

Min. Max. Avg. Std. Dev. Median 

Private cars 30 1.5 1.8 1.59 0.081 1.6 

Taxis 30 1.5 1.8 1.61 0.085 1.6 
Public light 
buses 

30 2.5 2.8 2.68 0.083 2.7 

Private light 
buses 

30 2.6 2.8 2.69 0.068 2.7 

 Light goods 
vehicles 
(Van) 

30 1.9 2.1 2 0.071 2 

Medium 
goods 
vehicles 

30 2.5 2.9 2.69 0.098 2.7 

 Heavy goods 
vehicles 

30 4 4.2 4.08 0.075 4.1 

 Single-
decked buses 

30 3.1 3.3 3.2 0.068 3.2 

 Double-
decked buses 

30 4.2 4.5 4.39 0.08 4.4 
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Table 4.4: Performance of a vision task by data from the camera 

Function Item description 
No. of 
execution 

No. of 
correct  

Correct rate (%) 

Word 
identification 

‘TAXI’ 30 24 80 

‘PUBLIC’ or ‘LIGHT’  30 26 86.7 

No words / other words 240 240 100 

YOLO object 
detection 

Goods vehicles (excluding vans) 60 59 98.3 

Motorcycles 30 30 100 

Buses* 120 117 97.5 

Other vehicles 90 60 66.7 

Wheel detection 

Detected at least 2 but not more 
than 3 axles for goods vehicles 

30 19 63.3 

Detected at least 4 axles for goods 
vehicles 

30 11 36.7 

*Including public light buses, private light bus, single-decked buses and double-decked buses 

 
4.2.2 Overall simulated classification result 

The above profiling data is connected separately according to each sensor. After recoding 

all the data, it is entered into a classification program and processed according to the workflow 

mentioned in Section 3.8. Table 4.5 shows the classification result. 

 

Table 4.5: Overall classification performance 

Classification type 
No. of 

execution 
No. of 
correct 

Correct rate 
(%) 

Overall correct 
rate (%) 

1) Motorcycles 30 30 100 

86 

2) Private cars 30 30 100 

3) Taxis 30 24 80 

4) Public light buses 30 26 86.7 

5) Private light buses 30 30 100 

6) Light goods vehicles (Van) 30 28 93.3 

7) Medium goods vehicles 30 19 63.3 

8) Heavy goods vehicles 30 11 36.7 

9) Single-decked buses 30 30 100 

10) Double-decked buses 30 30 100 
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4.3 Result analysis and limitation 

4.3.1 Different vehicle types with the same vehicular model 

The main limitation of the proposed profiling system is to classify some vehicles of the 

same model but different vehicle types. This problem occurs between taxi and private cars as 

mentioned in the previous sections, but the body of the taxi has the word ‘TAXI’ marked on it 

for identification. However, the same problem can also occur between a van (LGV) and a 

private car. According to Cap. 374A Road Traffic (Construction and Maintenance of Vehicles) 

(https://www.elegislation.gov.hk/hk/cap374A) Regulations 81A, a van should be followed 

below regulations. 

Protective partitions inside vans 

(1) There shall— 

(a) be in every van, permanently, between the goods compartment and the seating 

accommodation, a partition, which shall be of such height, width, strength, design 

and construction as to be capable of— 

(i) withstanding or bearing the weight of any load the partition is likely to 

encounter or the van is likely to carry; and 

(ii) acting as a protective barrier against goods in the goods compartment shifting 

into the seating accommodation; and 

(b) not be any side windows in the goods compartment of any van. 

(2) In this regulation, “van” means a light goods vehicle constructed with a fully enclosed 

body which is an integral part of the vehicle. 

(3) This regulation shall apply— 

(a) to a van registered on or after 1 July 1990, as from the date of such 

registration; and 

(b) to a van registered before 1 July 1990, as from 1 July 1991. 
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Figure 4.13: A private car with model Toyota HiAce 

 

 
Figure 4.14: A van with model Toyota HiAce 

  

 Figures 4.13 and 4.14 show a private car and a van with the same model – Toyota HiAce. 

Their shapes and dimensions are both similar or even identical. The main difference is the 

existence or no existence of the side window. In this case, the proposed system is not able to 

distinguish between them. Further improvement should be focused on identifying the existence 

of the side windows. 

 

4.3.2 Different types with similar features 

In fact, there is a light goods vehicle that is very similar to a medium goods vehicle – 

5.5-tonne goods vehicle and 9-tonne goods vehicle, respectively. Their features like size, 

appearance, number of axles, etc. are nearly the same, and hence it is very difficult to 
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distinguish between them. According to Road Traffic (Construction and Maintenance of 

Vehicles) (https://www.elegislation.gov.hk/hk/cap374A) Regulations 40A. 

Sideguards 

(1) Subject to paragraph (2), this regulation shall apply to— 

(a) a goods vehicle which has a permitted gross vehicle weight exceeding 5.5 tonnes 

and the distance between the centres of any 2 consecutive axles exceeds 3 metres; 

(b) … 

(2) … 

(3) Every vehicle to which this regulation applies shall be fitted with sideguards constructed 

and fitted to meet the following requirements — 

(a) … 

(4) The requirements in paragraph (3) shall apply only as far as is practicable in the case of 

a vehicle fitted with a tank for carrying fluid which is provided with valves and hose or 

pipe connections for loading and unloading and in the case of a vehicle with extending 

stabilisers required for stability during loading, unloading or while used for operations 

for which it is designed or adapted. 

(5) Every sideguard fitted to a vehicle in pursuance of this regulation shall at all times while 

the vehicle is used on a road be maintained free from any defect which might in any way 

affect its effectiveness. 



107 
 
 

 
Figure 4.15: Sideguard installed in a goods vehicle 

 

All 9 tonne goods vehicles must install sideguards, as shown in Figure 4.15. This can 

be one main feature that must exist for medium goods vehicles. On the other hand, drivers of 

5.5 tonne goods vehicle can also install sideguards although it is not mandatory. In practice, 

besides the safety issue, some drivers of 5.5 tonne goods vehicle want to pretend that their 

vehicles are 5.5 tonne goods vehicles in order to escape the prosecution of overload. In this 

case, the detection of safeguards is not a valid distinguishing characteristic. Therefore, the 

distinguishing between light goods vehicles and medium goods vehicles cannot be done by 

observing the appearance. The division of goods vehicle is based on its maximum weight 

including loading, not the dimension.    

 

4.3.3 Improvement and exceptional case in axles counting 

The result of axles counting shown in Chapter 4 is not very good. It is because the edge 

finding has less tolerance to handle different situations. For example, the image of wheel is 

interfered by shadow and the whole wheel is in black colour as shown as Figure 4.16. It 

sometimes fails to indicate the wheel as a circle. To improve this, more filters are needed or  

the deep learning algorithm should be used instead. Besides, some mechanical sensors can be 
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used for axles counting, such as piezoelectric detectors and load cell. Further investigation on 

this topic is needed.  

 
Figure 4.16: Black wheels with shadow 

 

In Hong Kong tunnel service, besides the type of vehicle, an additional charge is needed 

for each axle if the vehicle has more than two axles. In fact, some goods vehicles are raising 

their last axle, and the corresponding wheels do not touch the ground if they are not carrying 

any goods. In practice, the raising axles are not counted as valid axles, and hence, there is no 

need to pay an additional charge, although no law or instruction about this practice is mentioned.  

For the proposed system, as the raising axle is not aligned with other axles in horizontal, 

its wheel will be discerned as a circle object but not a wheel. An improvement can be made to 

identify the raising axles if needed. 

 

4.3.4 Selection and application of LiDAR 

Before embarking on an in-depth investigation about the practicality of the profiling 

system and finding an authorized place to test the entire system, a cheaper LiDAR with a 

shorter detecting range is used for concept development in this project. In fact, a long-range 

LiDAR is required for vehicle profiling, as the dimension of vehicles is in metres. The FoV of 

LiDAR, as well as camera, should be considered with the possible installation position, which 

can check by equation 3.5 and 3.6.  Based on the above calculation, a possible LiDAR is the 

Velodyne Veladome, in which HFoV and VFoV are both 180°, is one of the possible LiDAR 

for future development and testing, and its pricing is around US$4,000 per unit.  
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In addition, a further development can be also focusing on detecting the speed of a 

vehicle by using the LiDAR, and the dimension of the vehicle can be calculated by direct 

measuring and speed of vehicle. In this case, the HFoV of the LiDAR does not need to cover 

the whole vehicle, and hence the LiDAR can place closer to the lane and it can enhance the 

flexibility of installation and the selection of the LiDAR. 

 

4.4 Qualitative comparison with other methods 

 In this section, the proposed method is compared with methods of those mentioned in 

Chapter 2. The ‘SICK method’ is the product sold by the SICK company 

(https://www.sick.com/ag/en/system-solutions/profiling-systems/free-flow-

profiler/c/g442952.) 
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Number of classification types 

 There are many types of vehicles that a good profiling system should be able to classify 

based on the profiling data. If only a few types can be classified, the market value will be much 

lower, and the system may not be viable. 

 

Table 4. 6: Description of the number of classification types for different methods 
Method Description 

Proposed 
Together with point cloud, magnetic field and images, ten of the vehicles 

can be classified, and potentially for all vehicle types. 

SICK 

The three dimensions are going to be detected, and hence it can deduce 

most vehicle. However, it fails to classify different vehicle types with 

same model. 

Axle-based 
It has a limited classification performance since it uses the axle 

information and most vehicles are two-axles.  

Sound-based It has a limited classification performance since it uses audio information 

and the variation of sound signal is too larger even for the same vehicle 

type with a different model or producer. 

Magnetic-based The detection of magnetic field mainly acquires the size of the vehicle, it 

is hard to distinguish types of vehicles with similar sizes. 

Video-based Traditional algorithm is limiting in classification performance; it is hard 

to define all the common features of all the vehicle types. With the new 

deep learning algorithm, there is a potential to classify all the vehicle 

types if the training data set is huge enough in the future. 
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Classification accuracy 

 The classification accuracy is different with profiling accuracy. Besides the preciseness 

of the profiling data, the type of data also affects the classification accuracy. 

 

Table 4. 7: Description of classification accuracy of different methods 
Method Description 

Proposed 

Although the profiling accuracy is not the main concern, it can profile 

several data, including dimension, number of axles, change in magnetic 

flux density and text on the vehicle, which can increase the classification 

accuracy. 

SICK 
A relative precise three dimension is detected, and hence it can result in a 

high classification accuracy.  

Axle-based As it is a simple counting method, the classification accuracy is very high. 

Sound-based The noise of data is significant; it affects the classification result a lot. 

Magnetic-based In the normal situation, the change in the magnetic field is directly 

proportional to its size, so the classification is solid. 

Video-based The image contains many pieces of useless information such as 

background and noise, it affects the classification performance. 
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Manufacturing cost 

 The manufacturing cost includes all the expenditure used in assembling the whole 

system and installing it in the working position. Sometimes, even though the system hardware 

cost is low, the mounting cost may be high and hence the total cost becomes higher. In addition, 

the maintenance cost also counts as a potential manufacturing cost.  A cost-effective system 

should also consider its lifecycle. 

 
Table 4. 8: Description of manufacturing cost for different methods 

Method Description 

Proposed A LiDAR camera and a geomagnetic sensor with speed bump are used.  

SICK 
Three 2D LiDARs are used. However, a gantry is needed so that the 

sensors can be mounted on a suitable place to work properly. 

Axle-based 

Several sensors can be used for detecting axle, such as piezoelectric 

detectors, load cell, capacitance mat or optical fiber. Actually, they are all 

mechanical sensors, and hence the lifecycle may vary with the working 

environment. 

Sound-based The main component used is only several directional microphones, which 

is relative cheap components. 

Magnetic-based Only geomagnetic sensors are used. These sensors can be placed either 

under the lane or inside the speed bump, and hence its expenditure is not 

high. 

Video-based A high-quality camera is needed; the system is based on frames recoded 

to perform the classification. Nowadays, the pricing of camera is not high 

even it has a good quality. 
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Flexibility of installation 

 Not all locations are suitable to install the profiling system due to the environment or 

human aspects. The size and complexities and working performance of the profiling system are 

also of concern for installation. 

 

Table 4. 9: Description of flexibility of installation for different methods 
Method Description 

Proposed 
A speed bump is needed, but some users are resisting it. The LiDAR 

camera should be placed on one side of the lane with a certain distance.  

SICK 

There should be enough space and affordable infrastructure to install a 

gantry; otherwise, the sensors cannot be mounted onto suitable regions 

for profiling. 

Axle-based A flat sensor is placed on the road, so that its installation not complicated. 

Sound-based The installation requires finding a suitable location for sensors; otherwise, 

it fails to collect valid data. 

Magnetic-based The geomagnetic sensors should be placed into speed bumps or dug into 

the ground. 

Video-based Only a camera is placed in a particular region, so its installation is very 

flexible. 
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System processing time 

 The system processing time is the time required for analysing the collected data. 

Normally, a big size of point cloud data requires a longer processing time. 

 

Table 4. 10: Description of system processing time for different methods 
Method Description 

Proposed 
It needs to process point cloud, images and digital data, so the processing 

time is relatively higher. 

SICK 
Although only point cloud data needs to be handled, its size is very big as 

three LiDAR are used. The processing time is still significant. 

Axle-based 
A simple digital count and classification mapping occurs in this method, 

so the processing time is very fast. 

Sound-based Only audio signal is processed. It is relatively fast. 

Magnetic-based Only magnetic field signal is processed. It is relatively fast. 

Video-based Only the image is processed. It is relatively fast. 
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Vehicle speed allowed 

 A user-friendly system should allow the user to employ the system in any condition. 

The vehicle speed is one of the main concerns. 

 

Table 4. 11: Description of the vehicle speed allowed for different methods 
Method Description 

Proposed 

One of the main profiling is text detection. The vehicle should not be too 

fast; otherwise, the camera cannot capture a clear image to identify the 

words due to technological limitations. 

SICK 
The working principle is based on dimension measuring and speed 

detecting. A relatively high speed is allowed. 

Axle-based 
The sensor detection is a simple physical touch, so it allows a high-speed 

vehicle. 

Sound-based The speed of the vehicle also affects the sound made by the vehicle. To 

reduce this variation, the difference of speed between the vehicles should 

not be too large. 

Magnetic-based The speed allowed depends on the sensor’s sampling speed. A good 

quality sensor can be used for high-speed detection. 

Video-based The image should be clear enough to find out the desired features, and it 

depends on the requirement of preciseness. Rolling shutter might occur if 

the vehicle is moving too fast. This causes distortion and hence affects the 

accuracy. 
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Table 5.7 shows Pugh's selection matrix (Pugh, 1981) being used to compare the quality of the 

different methods. As this research aims to develop a marketable system, its performance plays 

a critical part in it. Therefore, the number of classification types and the classification accuracy 

are the most concerning criteria. Next, the cost of manufacturing and installation should be 

considered. The processing time and the vehicle speed allowed are less significant. Based on 

the above criteria weights, it can be observed from the table that the proposed method in this 

research is the better option compared to the others. 

 
Table 4. 12: Pugh's selection matrix for different methods 

Criteria Weight  
Method 

Proposed SICK 
Axle-
based 

sound-
based 

Magnetic- 
based 

Video-
based 

Number of 
classification 

types 
3 1 1 -1 -1 -1 0 

Classification 
accuracy  

3 1 1 1 -1 1 0 

Manufacturing 
cost 

2 0 -1 0 1 1 1 

Flexibility of 
installation 

2 0 -1 0 0 0 1 

System 
processing time 

1 -1 -1 1 1 1 0 

Vehicle speed 
allowed 

1 -1 0 1 -1 0 -1 

 Total 4 1 3 -4 3 3 
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5 Conclusion 

A novel vehicle profiling system with multiple sensors is proposed in this project, which 

can reduce the reliance on any one of the sensors, so each sensor can compensate to make the 

system more functional and robust. Besides, to explore the potential application of the profiling 

system, it is better to profile several characteristics of the vehicles, such as change in magnetic 

flux density, dimension, number of axles and text on vehicles’ body. For future development, 

colour, sound pattern, temperature, shape can be also considered.  

Figure 5.1: The smart mobility segment of Hong Kong’s smart city initiative includes the 
development of an intelligent transport system  

(Deng & Perez, 2020) 
 

 Together with other systems, an intelligent transport system can be assembled as shown 

in Figure 5.1. As the profiling system can classify the type of vehicle, the classification result 

can further send information to other sub-systems via a cloud server for usage other than the 
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tunnel toll auto-charging service.  For example, whether or not there is a taxi or other public 

transport in a particular area can be checked, and to see what types of passengers are coming 

across certain areas so that a corresponding service can be designed. Businesses can use it to 

track consumer patterns or learn what advertisements to display according to the type of 

passenger. To give precise insights that result in safer cars, smarter homes, and optimized 

enterprises, an IoT strategy requires a connection to many other data-gathering devices, and 

hence, an intelligent transport system is a big part of the AI industry. An all-round profiling 

system can collect much more data and store it as big data to do serve above purpose. 
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