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Abstract 

The shipping industry has started to investigate and employ autonomous ships to 

overcome various problems that come along with the ever-increasing waterborne 

transport volumes, energy consumption, and seafarer shortage. This dissertation deals 

with two autonomous ship scheduling problems: an autonomous ship scheduling 

problem with a waterway bottleneck, and an autonomous vessel train scheduling 

problem in a hub-and-spoke network. 

For the first problem, we develop a novel schedule optimization model for 

autonomous vessels passing a waterway bottleneck. The autonomous vessels are 

controlled by a central planner who enforces the optimal schedules. The model 

minimizes the vessel bunker cost and delay penalty at destinations by incorporating the 

realistic, nonlinear relationship between bunker consumption and sailing speed. The 

nonlinear model is linearized via two approximations. The first one linearizes the 

bunker consumption function using a piecewise linear lower bound, while the second 

does so by discretizing the time. Numerical experiments show that the discrete-time 

approximation model produces better solutions with lower computational costs than the 

continuous-time, piecewise-linear approximation, especially for large-scale problems. 

Numerical case studies are conducted for a real-world waterway bottleneck, the Three 

Gorges Dam lock. Results reveal how the optimal cost components and autonomous 

vessels’ schedules and delays are affected by key operating parameters, including the 

fuel prices, delay penalty rates, and the tightness of sailing time windows. Comparison 
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against two simpler benchmark scheduling strategies (one with no vessel coordination 

and the other adopting a naïve coordination) manifests the sizeable benefit of optimal 

autonomous vessel scheduling. 

Before resolving the technological difficulties required for a full automation, 

autonomous vessel train is a promising transitional solution to autonomous ship 

operations. A vessel train features a conventional, manned leader ship that pilots several 

autonomous ships (the followers) from their origin ports to destination ports. Present 

autonomous ships are small-sized and thus suitable for serving as feeders in a regional 

hub-and-spoke waterway network. We develop novel models for jointly optimizing the 

autonomous vessel assignment to the vessel trains, and the sequence of ports of call and 

the schedule of each vessel train in a hub-and-spoke network. Two mixed-integer 

programming models are developed, one for the freight distribution problem and the 

other for the vessel backhaul problem. Solutions to these models capture the optimal 

tradeoff between the added detour and delay costs of vessel trains and the lower sailing 

cost of autonomous ships. Numerical case studies are carried out for a real-world short-

sea shipping network around the Bohai Bay of China. Results reveal sizeable cost 

savings of vessel train operations as compared to using conventional ships only. 

Sensitivity analyses are performed to unveil how the benefit of vessel trains is affected 

by key operating factors, e.g., the numbers of conventional and autonomous ships, the 

ratio between their costs, the maximum vessel train length, and the network topology. 

This study can be viewed as a first step toward real implementations of the 
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economically competitive and environmentally friendly autonomous freight ships via 

vessel trains. 

Keywords: optimal ship scheduling; autonomous ships; waterway bottleneck; 

piecewise linear approximation; discrete-time approximation; bunker cost; vessel trains; 

hub-and-spoke networks 
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Chapter 1. Introduction 

Section 1.1 presents the background of this dissertation. Section 1.2 reviews 

related studies in the literature. Section 1.3 provides an overview of the dissertation. 

1.1. Background 

Waterway (including maritime and inland waterway) transportation plays a vital 

role in the modern world economy. Over 80% of the international trade in goods, 

approximately 11.1 billion tons in 2019, is carried by waterway (UNCTAD, 2020). This 

number had been increasing at an average annual rate of 2.8% before the COVID-19 

outbreak (WTO, 2021). The total cost of waterway transportation amounts to around 

0.9 trillion USD in 2021.1 Thus, the waterway transportation industry keeps looking for 

innovative technological solutions that can increase the productivity or lower the cost 

(Yang et al., 2019). An increasingly popular innovation of this kind is autonomous 

vessel (Munim, 2019). Compared to the conventional manned ships, autonomous 

vessels have the following advantages: 

(i) A fleet of autonomous vessels can be operated and controlled in a centralized 

way (Chen et al., 2020). This would significantly improve the efficiency of 

vessel operations, e.g., when multiple vessels pass through a busy bottleneck. 

 
1 This number is estimated using the following facts: the global maritime trade in goods is about 15.4 

trillion USD (Kalouptsidi, 2021, UNCTAD, 2021a), and the transportation cost is around 5.6% of the 

total trade value (UNCTAD, 2021b). 
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(ii) Due to the novel hull designs, increased automation, and less or no crew 

required, autonomous vessels have lower bunker, operation, and personnel costs 

(Liu et al., 2016). 

(iii) By minimizing the human error, autonomous vessels are safer than conventional 

ones (Ahvenjärvi, 2016, Liu et al., 2016). 

(iv) Thanks to the reduced bunker consumption, autonomous vessels are more 

environmentally friendly (Ahvenjärvi, 2016). 

Thus, research institutions and industrial practitioners become increasingly 

interested in developing this technological solution over the last two decades (Naeem 

et al., 2008, Khare and Singh, 2012, Rødseth, 2017, Munim, 2019). Ongoing research 

and development projects include MUNIN (Burmeister and Rødseth, 2016), ReVolt 

(Tvete, 2022), Yara Birkeland (Kremer, 2021), etc. Studies have been devoted to 

various aspects of autonomous vessels, including technologies (Escario et al., 2012, 

Höyhtyä et al., 2017, Im et al., 2018), economic viability (Kretschmann et al., 2017, 

Ghaderi, 2019, Akbar et al., 2021), law and regulatory issues (Karlis, 2018, Klein et al., 

2020), and human factors (Wahlström et al., 2015, Ahvenjärvi, 2016). 

The first problem we examine in this dissertation is how a fleet of autonomous 

vessels can be optimally coordinated by a central planner to pass a common, busy 

waterway bottleneck with the minimum total cost. This problem is important because 

the rapid growth in the shipping industry has resulted in severe vessel congestion at 

waterway bottlenecks, including busy dams, locks, canals, and terminals. For example, 
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a cargo ship can wait up to 3 days at the Three Gorges Dam (TGD) on the Yangtze River 

during the busiest seasons (Zhao et al., 2020). Due to the demand surge in Spring 2021, 

the waiting times for the Neopanamax and liquefied natural gas vessels to transit the 

Panama Canal soared to 8–9 days (Connolly, 2021), incurring huge costs (e.g., the daily 

cost of a large gas carrier is $77,200; see Miller (2020)). The Suez Canal obstruction in 

March 2021 created a waiting time cost of $400 million per hour (LaRocco, 2021). 

These high waiting costs render the shipping services less appealing (Lave and DeSalvo, 

1968, Laih and Sun, 2014, Laih et al., 2015, Rogers, 2018). 

Improving the bottleneck's capacity is an effective way to mitigate the queues at 

waterway bottlenecks. However, this usually involves infrastructure expansions 

requiring large capital investment and long construction periods (Rusinov et al., 2021). 

Thus, waterway management authorities and shipping companies often prefer 

inexpensive and convenient congestion mitigation measures via vessel voyage 

rescheduling. The use of remotely-controlled autonomous vessels enables the efficient 

implementation of optimal vessel schedules. 

Vessel voyage scheduling involves adjusting vessels’ sailing speeds, which will 

affect the vessels’ bunker cost. Note that the bunker cost constitutes 50–75% of the total 

operating cost of ships (Notteboom, 2006, Golias et al., 2009, Ronen, 2011), and a 

vessel’s bunker consumption increases polynomially with the sailing speed (Wang et 

al., 2013). Thus, the autonomous vessel voyage scheduling optimization must consider 

both the schedule delay and bunker costs. A key result of the autonomous vessel 
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scheduling problem with bottleneck passage is that any vessel queues at the bottleneck 

must be eliminated at the system optimal solution (that is, when the vessel schedules 

can be jointly coordinated and optimized). To see why, note that if some vessels may 

form a queue at a bottleneck, they can be coordinated to slow down so that their 

departure times from the bottleneck will not be changed, while their bunker costs will 

be reduced due to the lower speeds. This result is similar to what was reported by the 

well-known road traffic bottleneck studies (e.g., Vickrey (1969); Arnott et al. (1993)). 

On the other hand, researchers and practitioners generally believe that fully 

autonomous vessels are infeasible in the near future given the present technological 

limitations (Gu et al., 2020). Like autonomous cars (Van Brummelen et al., 2018), 

transitional solutions with limited autonomy levels have been proposed to expedite the 

practical use of autonomous vessels. For example, a reduced crew is still needed to 

assist in the ship navigation. In addition, small-sized vessels are more suitable to be 

autonomized due to their better maneuverability during the transitional period (Liu et 

al., 2016). Those smaller autonomous vessels are especially fit for providing feeder 

service in a hub-and-spoke network, such as inland waterways, sea-river, and short-sea 

transportation (Munim, 2019). Practically, those autonomous feeder vessels can form 

vessel trains led by a manned ship to improve the safety, security, and maneuverability 

(Munim, 2019). 

The idea of vessel trains (also termed vessel platoons) was initiated by the project 

Novel IWT and Maritime Transport Concepts (NOVIMAR) funded by European Union 
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(Munim, 2019). The leader ship of a vessel train should be a fully manned, conventional 

ship with navigation, communication, and control equipment for managing the entire 

vessel train. Follower vessels in a train are autonomous ones with less crew onboard. 

This crew is responsible for emergency or occasional, difficult tasks when sailing. It 

can be removed as the autonomy level improves. Each follower vessel can join or leave 

the train freely. 

By significantly reducing the difficulties in navigation, communication, and 

control, vessel trains make it feasible to operate autonomous ships under the present 

technology level. Vessel train operations can reduce the crew needed, save the operating 

cost, and promote the level of automation in waterway transportation. It is an ideal 

solution during the transitional period toward full autonomy. 

On the other hand, vessel train operations raise a new scheduling problem since 

autonomous vessels must be dispatched together with a manned leader ship, and the 

leader ship must take detours to escort every autonomous member to its destination. 

Unfortunately, the literature on ship scheduling have also by-and-large remained silent 

on this research problem, as we shall see next. 

1.2. Literature Review 

In this section, we will review the literature on vessel scheduling problems, 

autonomous vessel operations and autonomous vehicle platooning. 
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1.2.1. Ship Scheduling 

The literature on ship scheduling has grown considerably over the past decades. 

Various ship scheduling problems involving distinct problem setups, application scopes, 

model formulations, and solution approaches have been tackled (Psaraftis, 2019). 

Comprehensive reviews of early studies in this realm can be found in Ronen (1983), 

Ronen (1993), Christiansen et al. (2004), Christiansen et al. (2013), Meng et al. (2014), 

and Psaraftis (2019). Our focus will be on those that incorporated waterway bottlenecks 

and how the vessels’ bunker consumption was considered. 

Selected studies in recent years are summarized in Table 1.1. Most of them aimed 

to minimize the vessels’ waiting time or the associated cost, while others maximized 

the shipping profit (see column 2). Though most studies examined the joint scheduling 

of multiple vessels (column 3), many of them assumed that the vessels sailed at a 

constant speed (column 4). 

More importantly, to our best knowledge, no work has optimized multiple vessels’ 

sailing speeds and schedules of passing a bottleneck for minimizing the bunker cost and 

the delay penalty jointly (see columns 5 and 6). Note that studies that jointly optimized 

ship routing and scheduling considered the effect of sailing speed on bunker 

consumption, but they did not examine the congestion at waterway bottlenecks (Meng 

et al., 2015, Zhen et al., 2016, Wen et al., 2016). On the other hand, works investigating 

vessel queueing at bottlenecks by-and-large overlooked the relation between sailing 
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speed and bunker cost (Hermans, 2014, Laih and Sun, 2014, Passchyn et al., 2016, 

Lalla-Ruiz et al., 2018, Deng et al., 2021). The only exception seems to be Tan et al. 

(2018), which developed a bi-objective program to optimize ship sailing speeds and the 

schedule for visiting a bottleneck. Unfortunately, that work only focused on a single 

ship in the interest of deriving an analytical solution. 

Table 1.1. Selected studies on ship scheduling problems. 

Study Objective Number 
of ships 

Varying 
sailing speed 

Bunker 
consumption Bottleneck Solution Approach 

Hermans (2014) Minimize waiting time Single No No Yes Polynomial-time 
deterministic algorithm 

Laih and Sun (2014) Eliminate waiting time Multiple No No Yes Analytical method 

Meng et al. (2015) Maximize shipping 
profit Multiple No Yes No Branch-and-price 

Passchyn et al. (2016) Minimize waiting time Multiple No No Yes Dynamic programming 

Zhen et al. (2016) Minimize bunker and 
transshipment cost Multiple Yes Yes No Modified branch-and-

bound  

Wen et al. (2016) Maximize shipping 
profit  Multiple Yes Yes No Heuristic & branch-and-

price 

Tan et al. (2018) 
Minimize bunker 
consumption and ship 
roundtrip time 

Single Yes Yes Yes 
Relaxed nonlinear 
programming and 
convex programming 

Lalla-Ruiz et al. 
(2018) Minimize waiting time Multiple No No Yes Heuristic method 

Meisel and Fagerholt 
(2019) 

Minimize bottleneck 
transit time Multiple Yes No Yes Metaheuristic method 

Deng et al. (2021) Minimize social cost Multiple No No Yes Analytical method 

Regarding the solution approach, most cited studies developed exact solutions via 

analytical methods, branch-and-bound approaches, or polynomial-time algorithms, 

while some also relied on heuristic methods (column 7). 

Note that all the above-cited studies assumed conventional manned ships. The 

literature on autonomous ship scheduling for bottleneck passage is absent. Nevertheless, 

our autonomous ship scheduling problem for bottleneck passage is similar to the 
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problem involving conventional ships instead, if the conventional ships can also be 

controlled by a central planner. 

We find that the effect of bottlenecks has also been extensively studied for roadway 

traffic. Since the seminal work of Vickrey (1969), a large collection of papers have 

studied variants of the Vickrey’s model (e.g., de Palma et al. (1983), Arnott et al. (1990), 

Arnott et al. (1993), Yang and Meng (1998), Xiao and Zhang (2013), Li et al. (2017)). 

To their credit, the above works have unveiled important (and sometimes surprising) 

insights regarding the temporal pattern of congestion and optimal congestion pricing 

(Small, 2015). Unfortunately, their models cannot be directly applied to our 

autonomous ship scheduling problem with a bottleneck for various reasons. First, the 

roadway and waterway bottleneck models have different objectives. This is because 

cars carry passengers who value the travel time high, while ships often carry time-

insensitive freight. In the latter case, fuel cost weights more than the value of travel 

time. As a result, cars prefer to travel at the free-flow speed, while ships may 

intentionally slow down to save fuel. Second, roadway traffic is often modeled as a 

continuum due to the great number of cars, while ships traveling in a waterway are not 

because they are sparse in space. Finally, the voyages and schedules of a group of ships 

can often be coordinated by a central operation manager (e.g., by the shipping company 

that manages a fleet, or by the manager of a dam lock). This is not the case for private 

vehicles, which are controlled by individual drivers. 
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1.2.2. Autonomous Vessel Operations 

For the technical development, business models, and economical analysis of 

autonomous ships, one can refer to Munim (2019), Gu et al. (2020), and Ziajka-

Poznańska and Montewka (2021). 

Table 1.2 summarizes selected studies on autonomous vessel operations. Some 

works examined the operations of individual autonomous vessels instead of vessel 

trains; see the 2nd-4th rows of the table. They focused on either the cost-benefit analysis 

(Kretschmann et al., 2017) or the vessel scheduling problem (Akbar et al., 2021, Zhang 

and Wang, 2020). Of note, Akbar et al. (2021) modeled a hub-and-spoke shipping 

network similar to the one studied in the present paper. Other works investigated 

autonomous vessel trains mixed with conventional vessels or not; see the 5th-8th rows 

of Table 1.2. Unfortunately, none of these latter-cited studies has examined the optimal 

scheduling problem of autonomous vessel trains. 

To our best knowledge, the only study that optimized the schedules of autonomous 

vessel trains is Chen et al. (2020); see the last row of Table 1.2. However, this study 

assumed that autonomous vessels and vessel trains can sail themselves without being 

led by manned ships. Thus, it did not consider vessel detours. Note that detours are 

unavoidable when autonomous vessels must be piloted by manned ships. Considering 

these detours will render the scheduling problem formulation more complicated.  
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Table 1.2. Selected studies on autonomous vessel operation problems. 

Study Objective or focus Autonomous 
vessel 

Vessel 
train 

Manned vessel 
as leader 

Vessel 
scheduling Methodology 

Kretschmann et al. 
(2017) 

Autonomous ships’ 
economic potential Yes No No No Cost-benefit 

analysis 

Zhang and Wang 
(2020) 

Minimize the fuel cost 
and delay penalty Yes No No Yes 

Mixed-integer 
linear 
programming 

Akbar et al. (2021) Minimize the 
operating cost Yes No No Yes Heuristics 

Chen et al. (2019) A new platoon control 
approach Yes Yes No No Dynamic model 

Liang et al. (2021) Platoon control laws Yes Yes No No Neural dynamic 
model 

Colling and 
Hekkenberg (2020) 

Economic viability of 
vessel trains Yes Yes Yes No Cost-benefit 

analysis 

Meersman et al. 
(2020) 

Economic and societal 
benefits of vessel 
trains 

Yes Yes Yes No Cost-benefit 
analysis 

Chen et al. (2020) Minimize the passing 
time Yes Yes No Yes 

Mixed-integer 
linear 
programming 

On a side note, Zhen et al. (2018) optimized the assignment of barges to tugs and 

the departure time of tugs from a seaport. Despite the fact that this cited study focused 

on conventional ships, the barge-to-tug assignment and scheduling problem is similar 

to the autonomous vessel train scheduling problem. Regrettably, the transportation 

network examined in that study is a simple one-dimensional river. Thus, their model 

cannot be applied to a general hub-and-spoke network. 

In summary, no work has jointly optimized the assignments of autonomous ships 

to vessel trains led by manned conventional ships and their schedules in a hub-and-

spoke network. 
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1.2.3. Autonomous Vehicle Platooning 

We have also reviewed related works in the realm of autonomous vehicle 

platooning (e.g., Han et al. (2020), Wu et al. (2021), Sala and Soriguera (2021)). 

Detailed reviews of vehicle platooning operations can be found in Bhoopalam et al. 

(2018), Zhang et al. (2020), and Lesch et al. (2021). Autonomous vehicle platoons are 

similar to vessel trains in that they both reduce the fuel and labor costs and that they are 

both potentially safer than conventional vehicles and vessels operated by humans. In 

addition, formations of vehicle platoons and vessel trains both involve detours. 

However, prevailing vehicle platoon scheduling models cannot be applied to vessel 

trains due the following main reasons: 

(i) Operations of autonomous vehicle platoons are more flexible than autonomous 

vessel trains. This is because an autonomous vehicle can conveniently switch 

between the human-driving and the autonomous-driving modes. Thus, an 

autonomous car or truck can join or detach from a platoon at any time or location. 

On the other hand, an autonomous vessel cannot join or leave a vessel train in 

the middle of its voyage since the crew cannot board or alight the ship en-route 

(Colling and Hekkenberg, 2020). 

(ii) An autonomous vessel train saves bunker thanks to the technological 

advancement and the removal of crew and associated facilities. On the other 

hand, the fuel saving of a vehicle (especially truck) platoon is mainly due to 

reduction of air drag, which is a function of the platoon size (Tsugawa et al., 

2016). 
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(iii) The operating environments and constraints are different between vehicle 

platooning and vessel training. For example, truck drivers must follow 

regulations on the continuous driving hours (Goel, 2010, Goel et al., 2012, Goel, 

2014). 

1.3. Dissertation Overview 

In light of the research gap revealed above, this dissertation presents two 

autonomous ship scheduling problems. The first one deals with the optimal scheduling 

of autonomous vessels passing a waterway bottleneck. And the second optimally solves 

the optimal scheduling of autonomous vessel trains in a hub-and-spoke network. 

For the autonomous ship scheduling problem with a waterway bottleneck, we 

formulate a novel model that optimizes multiple autonomous vessels’ travel schedules 

for passing a common bottleneck. The objective is to minimize both the bunker cost 

and the delay penalty at their destinations. 

We propose two alternative formulations to linearize the original nonlinear model. 

The first program used an improved outer-approximation method, originally proposed 

by Wang and Meng (2012), to approximate the nonlinear bunker cost function by a 

piecewise linear function. The second converts the nonlinear program to a binary 

integer program by discretizing the time. Notably, we develop improved bounds of 

vessel travel times that can increase the computational efficiency for both methods (see 

Proposition 3 in Section 2.1.3). The computational performances of the two methods 
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are evaluated and compared via extensive numerical experiments. Results show that the 

discrete-time model can produce better solutions within less runtime than the outer-

approximation model, especially for large-scale problems. This finding reveals the 

numerical limitation of the outer-approximation method. 

Further numerical results are obtained from the TGD case study. These results 

unveil how different vessels’ optimal schedules and delays are affected by key operating 

parameters, including their delay penalty rates and fuel prices. The benefit of optimal 

vessel scheduling is demonstrated via comparison against two simpler benchmark 

scheduling strategies. The first benchmark strategy assumes no coordination between 

vessels as each of them determines its optimal sailing schedule. The second assumes 

that a central operation manager determines the vessels’ priority for passing the 

bottleneck simply by their penalty rates. 

For the autonomous vessel train scheduling problem in a hub-and-spoke network, 

we show how to optimally form and schedule autonomous vessel trains led by 

conventional ships to serve as feeder services in a regional waterway transportation 

network. Our proposed method can be readily used during the transitional period when 

vessels with limited autonomy level are available. 

Specifically, we formulate novel models that jointly optimize the assignment of 

autonomous follower ships to the conventional leader ships, the vessel trains’ departure 

time schedules, and the sequence of ports of call for each vessel train in a hub-and-
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spoke network. The objective is to minimize the total sailing cost and delay penalty of 

the vessels. We model two opposite operating scenarios: a freight distribution scenario 

where all the vessels travel from a hub port to a set of feeder ports, and a backhaul 

scenario where all the vessels return from the feeder ports to the hub port. The models 

are linearized and solved via CPLEX.  

A numerical case of the major ports in the Bohai Bay of China is studied. Results 

unveil how much of the cost the optimally scheduled vessel train operations can save. 

Extensive sensitivity analyses are conducted with respect to the effects of key operating 

factors, including the autonomous ships’ sailing cost rates, delay penalty rates, the 

tightness of sailing time windows, the size limit of vessel trains, and the waterway 

transportation network topology. These unveil useful insights into the operating 

conditions under which the autonomous vessel trains are beneficial. The insights have 

implications on the future development and commercialization of autonomous vessels. 

The rest of this dissertation is organized as follows. Chapter 2 investigates the 

optimal scheduling of autonomous vessels passing a waterway bottleneck. Chapter 3 

examines the optimal scheduling of autonomous vessel trains in a hub-and-spoke 

network. Conclusions and future research directions are discussed in Chapter 4. 
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Chapter 2. Optimal Scheduling of Autonomous Vessels 

Passing a Waterway Bottleneck 

This chapter develops a novel schedule optimization model for autonomous 

vessels passing a waterway bottleneck. The model minimizes the autonomous vessel 

bunker cost and delay penalty at destinations by incorporating the realistic, nonlinear 

relationship between bunker consumption and sailing speed. The nonlinear model is 

linearized via two approximations. The first one linearizes the bunker consumption 

function using a piecewise linear lower bound, while the second does so by discretizing 

the time. Numerical case studies are conducted for a real-world waterway bottleneck, 

the Three Gorges Dam (TGD) lock. Results reveal how the optimal cost components 

and autonomous vessels’ schedules and delays are affected by key operating parameters. 

Comparison against two simpler benchmark scheduling strategies (one with no vessel 

coordination and the other adopting a naïve coordination) manifests the sizeable benefit 

of optimal autonomous vessel scheduling.  

Section 2.1 defines the autonomous vessel scheduling problem involving a 

waterway bottleneck and presents the model formulations. Section 2.2 compares the 

solution quality and computational efficiency of the two alternative programs. 

Numerical results of the TGD case study are presented in Section 2.3, including the 

comparison against two benchmark scheduling strategies. Section 2.4 summarizes this 

chapter. The notation used in this chapter is summarized in Appendix A.  
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2.1. Models 

Section 2.1.1 introduces the problem definition and key assumptions. Section 2.1.2 

presents the problem formulation. Sections 2.1.3 and 2.1.4 furnish the outer-

approximation and discrete-time formulations, respectively. 

2.1.1. Problem Setup and Assumptions 

Consider a set of autonomous vessels, denoted by 𝑉𝑉 , that can be operated and 

controlled in a centralized way and pass a common bottleneck in a waterway network, 

e.g., a dam or canal. Each autonomous vessel 𝑣𝑣 ∈ 𝑉𝑉 departs its distinct origin port of 

call at time 𝑇𝑇𝑣𝑣0 and is expected to arrive at its destination port by 𝑇𝑇𝑣𝑣. The travel distances 

from autonomous vessel 𝑣𝑣’s origin port to the bottleneck (the first leg of its voyage) 

and from the bottleneck to the autonomous vessel’s destination port (the second leg) 

are denoted by 𝐿𝐿1𝑣𝑣  and 𝐿𝐿2𝑣𝑣  (nautical miles), respectively. We assume that each 

autonomous vessel spends a constant transit time, 𝜔𝜔 (h), on traversing the bottleneck, 

and that a minimum headway between two consecutive autonomous vessel passages 

through the bottleneck, 𝐻𝐻 (h), is required to ensure safety. An autonomous vessel that 

cannot pass the bottleneck immediately upon its arrival will join a queue. An 

autonomous vessel that arrives at its destination port later than the expected arrival time 

will incur a penalty. 

We assume that a central operation manager seeks to minimize the total bunker 

consumption and late arrival penalty for all the autonomous vessels. This may occur 
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when all the autonomous vessels in 𝑉𝑉  belong to the same shipping company. The 

manager determines each autonomous vessel’s speed profile. The bunker consumption 

rate of autonomous vessel 𝑣𝑣 (ton/n mile) depends on its sailing speed 𝑠𝑠 (knot). In this 

thesis we use the bunker consumption rate function proposed by Wang and Meng 

(2012): 

𝑓𝑓𝑣𝑣(𝑠𝑠) = 𝑎𝑎𝑣𝑣 ∙ 𝑠𝑠𝑏𝑏𝑣𝑣 , 𝑣𝑣 ∈ 𝑉𝑉                    (2.1) 

where 𝑓𝑓𝑣𝑣(𝑠𝑠) denotes the bunker consumption per nautical mile of autonomous vessel 

𝑣𝑣 ∈ 𝑉𝑉 ; and 𝑎𝑎𝑣𝑣 > 0  and 𝑏𝑏𝑣𝑣 > 1  are constant coefficients. 2  Autonomous vessel 𝑣𝑣 ’s 

tardiness penalty, 𝑃𝑃𝑣𝑣 ($), is assumed to be a linear function of its delay; i.e., 𝑃𝑃𝑣𝑣(𝑦𝑦𝑣𝑣) =

𝛽𝛽𝑣𝑣 ∙ max{0,𝑦𝑦𝑣𝑣 − 𝑇𝑇𝑣𝑣}, where 𝛽𝛽𝑣𝑣 ($/h) denotes the penalty per hour of delay, and 𝑦𝑦𝑣𝑣 the 

actual arrival time of 𝑣𝑣 at its destination port. 

We derive the following two propositions from Equation (2.1): 

Proposition 1. For a fixed travel distance, an autonomous vessel’s bunker 

consumption increases with its speed. 

Proof: It follows directly from the monotonicity of Equation (2.1).          □ 

Proposition 2. An autonomous vessel will travel at a constant speed to minimize 

the bunker consumption if the travel distance and time are both fixed. 

 
2 Equation (2.1) can be replaced with other bunker consumption functions. The outer-approximation 

method works as long as the function is convex, while the discrete-time model can be applied even 

without the convexity requirement. 
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Proof: It follows from the strict convexity of the bunker consumption per hour, 

i.e., 𝑓𝑓𝑣𝑣(𝑠𝑠) ∙ 𝑠𝑠 = 𝑎𝑎𝑣𝑣𝑠𝑠𝑏𝑏𝑣𝑣+1. Suppose autonomous vessel 𝑣𝑣’s travel distance and time are 𝐿𝐿 

and 𝑡𝑡, respectively. It travels at speed 𝑠𝑠1 for 𝛿𝛿𝛿𝛿 hours and at 𝑠𝑠2 ≠ 𝑠𝑠1 for (1 − 𝛿𝛿)𝑡𝑡 hours 

( 0 < 𝛿𝛿 < 1 ) so that 𝑠𝑠1𝛿𝛿𝛿𝛿 + 𝑠𝑠2(1 − 𝛿𝛿)𝑡𝑡 = 𝐿𝐿 . The total bunker consumption is 

�𝑓𝑓𝑣𝑣(𝑠𝑠1)𝑠𝑠1𝛿𝛿 + 𝑓𝑓𝑣𝑣(𝑠𝑠2)𝑠𝑠2(1 − 𝛿𝛿)�𝑡𝑡. If the autonomous vessel travels at its average speed, 

𝑠𝑠1𝛿𝛿 + 𝑠𝑠2(1 − 𝛿𝛿), it will cover the same distance 𝐿𝐿 in the same duration 𝑡𝑡. However, it 

will use less fuel because the strict convexity of 𝑓𝑓𝑣𝑣(𝑠𝑠) ∙ 𝑠𝑠 renders 𝑓𝑓𝑣𝑣�𝑠𝑠1𝛿𝛿 + 𝑠𝑠2(1 − 𝛿𝛿)� ∙

�𝑠𝑠1𝛿𝛿 + 𝑠𝑠2(1 − 𝛿𝛿)�𝑡𝑡 < 𝑓𝑓𝑣𝑣(𝑠𝑠1)𝑠𝑠1𝛿𝛿𝛿𝛿 + 𝑓𝑓𝑣𝑣(𝑠𝑠2)𝑠𝑠2(1 − 𝛿𝛿)𝑡𝑡.              □ 

Proposition 1 yields the following two corollaries:  

Corollary 1. It is never optimal for an autonomous vessel to arrive earlier than its 

expected arrival time. 

Proof: If an autonomous vessel arrives earlier than its expected arrival time at the 

optimality, it can always lower its speed to reduce the bunker consumption while still 

arriving on time. In this way, the total bunker and penalty cost will diminish.         □ 

Corollary 2. Under the system-optimal scheduling strategy, it is never optimal for 

vessels to form a queue at the bottleneck. 

Proof: If a queue is formed at the bottleneck at the optimality, the central operation 

manager can always coordinate the autonomous vessels to sail more slowly so that the 

queue is eliminated while all the autonomous vessels still pass the bottleneck at the 
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same times as before. Then the bunker costs would be reduced without increasing the 

schedule delay penalties.                     □ 

In addition, Proposition 2 indicates that, given an autonomous vessel’s arrival time 

at the bottleneck, it will travel at a constant speed from its origin to the bottleneck. The 

same can be said for its travel from the bottleneck to the destination, given the departure 

time from the bottleneck and the arrival time at the destination. Thus, we denote 𝑥𝑥𝑣𝑣 

autonomous vessel 𝑣𝑣 ∈ 𝑉𝑉 ’s arrival time at the bottleneck. Following the above 

corollaries, autonomous vessel 𝑣𝑣’s cruise speeds before and after passing the bottleneck 

are 𝐿𝐿1𝑣𝑣
𝑥𝑥𝑣𝑣−𝑇𝑇𝑣𝑣0

 and 𝐿𝐿2𝑣𝑣
𝑦𝑦𝑣𝑣−𝑥𝑥𝑣𝑣−𝜔𝜔

, respectively.  

The problem is therefore equivalent to finding the optimal 𝑥𝑥𝑣𝑣 and 𝑦𝑦𝑣𝑣 (𝑣𝑣 ∈ 𝑉𝑉) for 

minimizing the total bunker consumption and penalty costs. We next formulate a 

nonlinear program for the problem. 

2.1.2. Problem Formulation 

The nonlinear formulation of the autonomous vessel scheduling problem 

involving a bottleneck is presented as follows: 

[M1]  

min∑ �𝛼𝛼 �𝐿𝐿1𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣

𝑥𝑥𝑣𝑣−𝑇𝑇𝑣𝑣0
�
𝑏𝑏𝑣𝑣

+ 𝐿𝐿2𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣

𝑦𝑦𝑣𝑣−𝑥𝑥𝑣𝑣−𝜔𝜔
�
𝑏𝑏𝑣𝑣
� + 𝛽𝛽𝑣𝑣 ∙ max{0,𝑦𝑦𝑣𝑣 − 𝑇𝑇𝑣𝑣}�𝑣𝑣∈𝑉𝑉     (2.2a) 

subject to  

𝑥𝑥𝑣𝑣 ≥ 𝑇𝑇𝑣𝑣0 + 𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max ,∀𝑣𝑣 ∈ 𝑉𝑉                  (2.2b) 

𝑦𝑦𝑣𝑣 ≥ 𝑥𝑥𝑣𝑣 + 𝜔𝜔 + 𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max ,∀𝑣𝑣 ∈ 𝑉𝑉                 (2.2c) 
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�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� ≥ 𝐻𝐻,∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗.                (2.2d) 

In objective function (2.2a), the first term in the braces is the bunker consumption 

cost of autonomous vessel 𝑣𝑣 ∈ 𝑉𝑉, where 𝛼𝛼 denotes the bunker fuel price ($/ton); and 

the second term is the autonomous vessel’s tardiness penalty. Constraints (2.2b) and 

(2.2c) guarantee that an autonomous vessel’s sailing speed never exceeds a maximum 

speed, 𝑠𝑠𝑣𝑣max  (knot). Constraints (2.2d) stipulate the minimum headway between the 

passages of any two autonomous vessels through the bottleneck. 

Program [M1] is approximately linearized in two ways, as presented in the 

following sections. 

2.1.3. Linearization via the Outer-approximation Method 

[M1] is a nonlinear program with a nonlinear objective (2.2a) and nonlinear 

constraints (2.2d). Constraints (2.2d) can be linearized as follows using the Big-M 

method: 

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 ≥ 𝐻𝐻 + 𝑀𝑀�𝑧𝑧𝑖𝑖𝑖𝑖 − 1�,∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗              (2.3a) 

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 ≤ −𝐻𝐻 + 𝑀𝑀𝑧𝑧𝑖𝑖𝑖𝑖 ,∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗               (2.3b) 

where 𝑀𝑀 is a sufficiently large number, and 𝑧𝑧𝑖𝑖𝑖𝑖’s (𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉) are binary variables. The 

𝑧𝑧𝑖𝑖𝑖𝑖 = 1 if autonomous vessel 𝑖𝑖 arrives at the bottleneck after autonomous vessel 𝑗𝑗, and 

= 0 otherwise. A candidate value of 𝑀𝑀 will be provided momentarily. 
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Next, we linearize the objective function (2.2a). First, the penalty term can be 

linearized by introducing a nonnegative auxiliary variable 𝑝𝑝𝑣𝑣 (𝑣𝑣 ∈ 𝑉𝑉) that represents 

autonomous vessel 𝑣𝑣’s delay. The penalty term in (2.2a) is then replaced with 𝛽𝛽𝑣𝑣𝑝𝑝𝑣𝑣. In 

addition, the following constraints are added to the formulation: 

𝑝𝑝𝑣𝑣 ≥ 0,∀𝑣𝑣 ∈ 𝑉𝑉                    (2.4a) 

𝑝𝑝𝑣𝑣 ≥ 𝑦𝑦𝑣𝑣 − 𝑇𝑇𝑣𝑣,∀𝑣𝑣 ∈ 𝑉𝑉.                  (2.4b) 

Finally, we linearize the bunker fuel cost term in (2.2a) via the outer-

approximation method. To this end, we first replace decision variables 𝑥𝑥𝑣𝑣 and 𝑦𝑦𝑣𝑣 with 

autonomous vessel 𝑣𝑣’s travel times in the two segments, denoted by 𝜆𝜆𝑣𝑣 and 𝜇𝜇𝑣𝑣 (𝑣𝑣 ∈ 𝑉𝑉), 

respectively, i.e., 

𝜆𝜆𝑣𝑣 = 𝑥𝑥𝑣𝑣 − 𝑇𝑇𝑣𝑣0,∀𝑣𝑣 ∈ 𝑉𝑉                  (2.5a) 

𝜇𝜇𝑣𝑣 = 𝑦𝑦𝑣𝑣 − 𝑥𝑥𝑣𝑣 − 𝜔𝜔,∀𝑣𝑣 ∈ 𝑉𝑉.                 (2.5b) 

Thus, constraints (2.2b-c), (2.3a-b), and (2.4b) are rewritten as: 

𝜆𝜆𝑣𝑣 ≥ 𝜆𝜆𝑣𝑣min ≡
𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max ,∀𝑣𝑣 ∈ 𝑉𝑉                 (2.6a) 

𝜇𝜇𝑣𝑣 ≥ 𝜇𝜇𝑣𝑣min ≡
𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max ,∀𝑣𝑣 ∈ 𝑉𝑉                 (2.6b) 

𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑗𝑗 ≥ 𝐻𝐻 − �𝑇𝑇𝑖𝑖0 − 𝑇𝑇𝑗𝑗0� + 𝑀𝑀�𝑧𝑧𝑖𝑖𝑖𝑖 − 1�,∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗          (2.6c) 

𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑗𝑗 ≤ −𝐻𝐻 − �𝑇𝑇𝑖𝑖0 − 𝑇𝑇𝑗𝑗0� + 𝑀𝑀𝑧𝑧𝑖𝑖𝑖𝑖 ,∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗            (2.6d) 

𝑝𝑝𝑣𝑣 ≥ 𝑇𝑇𝑣𝑣0 + 𝜆𝜆𝑣𝑣 + 𝜔𝜔 + 𝜇𝜇𝑣𝑣 − 𝑇𝑇𝑣𝑣,∀𝑣𝑣 ∈ 𝑉𝑉.               (2.6e) 

The bunker consumption in (2.2a) is now rewritten as 𝐿𝐿1𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣
𝜆𝜆𝑣𝑣
�
𝑏𝑏𝑣𝑣

+

𝐿𝐿2𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣
𝜇𝜇𝑣𝑣
�
𝑏𝑏𝑣𝑣

. To linearize this term, we define 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) and 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣) as follows: 
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𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) = 𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣
𝜆𝜆𝑣𝑣
�
𝑏𝑏𝑣𝑣

,∀𝑣𝑣 ∈ 𝑉𝑉                (2.7a) 

𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣) = 𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣
𝜇𝜇𝑣𝑣
�
𝑏𝑏𝑣𝑣

,∀𝑣𝑣 ∈ 𝑉𝑉.                (2.7b) 

Since 𝑏𝑏𝑣𝑣 > 1, 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) and 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣) are convex functions. They are approximated 

by piecewise-linear, lower-bound functions denoted by 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) and 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣):  

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) = max{0,𝜃𝜃1𝑣𝑣𝑣𝑣𝜆𝜆𝑣𝑣 + 𝛾𝛾1𝑣𝑣𝑣𝑣 ,∀𝑘𝑘 = 1,2,⋯ ,𝐾𝐾1𝑣𝑣}, 𝑣𝑣 ∈ 𝑉𝑉          (2.8a) 

𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣) = max{0, 𝜃𝜃2𝑣𝑣𝑣𝑣𝜇𝜇𝑣𝑣 + 𝛾𝛾2𝑣𝑣𝑣𝑣 ,∀𝑘𝑘 = 1,2,⋯ ,𝐾𝐾2𝑣𝑣}, 𝑣𝑣 ∈ 𝑉𝑉          (2.8b) 

where 𝜃𝜃1𝑣𝑣𝑣𝑣 , 𝛾𝛾1𝑣𝑣𝑣𝑣 , 𝜃𝜃2𝑣𝑣𝑣𝑣 , and 𝛾𝛾2𝑣𝑣𝑣𝑣  are coefficients of the linear segments used to 

construct the approximate functions; and 𝐾𝐾1𝑣𝑣  and 𝐾𝐾2𝑣𝑣  are the numbers of linear 

segments. The two functions are constructed to ensure the approximation error of the 

total bunker cost never exceeds a predefined bound 𝜀𝜀 ($), i.e., 𝛼𝛼∑ ��𝐿𝐿1𝑣𝑣𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) +𝑣𝑣∈𝑉𝑉

𝐿𝐿2𝑣𝑣𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣)� − �𝐿𝐿1𝑣𝑣𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) + 𝐿𝐿2𝑣𝑣𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣)�� ≤ 𝜀𝜀 . Details on the construction of 

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)  and 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣) , including the determination of coefficients 𝜃𝜃1𝑣𝑣𝑣𝑣 , 𝛾𝛾1𝑣𝑣𝑣𝑣  (𝑣𝑣 ∈

𝑉𝑉, 𝑘𝑘 = 1,2, … ,𝐾𝐾1𝑣𝑣), 𝜃𝜃2𝑣𝑣𝑣𝑣, and 𝛾𝛾2𝑣𝑣𝑣𝑣 (𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 = 1,2, … ,𝐾𝐾2𝑣𝑣), are relegated to Appendix 

B. 

Built upon the above approximations, we introduce new decision variables 𝑞𝑞1𝑣𝑣 

and 𝑞𝑞2𝑣𝑣 denoting the bunker consumption rates of autonomous vessel 𝑣𝑣’s two travel 

segments before and after the bottleneck ( 𝑣𝑣 ∈ 𝑉𝑉 ), respectively. Then [M1] is 

approximated by the following mixed-integer linear program: 

[M2]  

min∑ {𝛼𝛼[𝐿𝐿1𝑣𝑣𝑞𝑞1𝑣𝑣 + 𝐿𝐿2𝑣𝑣𝑞𝑞2𝑣𝑣] + 𝛽𝛽𝑣𝑣𝑝𝑝𝑣𝑣}𝑣𝑣∈𝑉𝑉               (2.9a) 
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subject to  

Constraints (2.4a), (2.6a-e) and  

𝑞𝑞1𝑣𝑣 ≥ 𝜃𝜃1𝑣𝑣𝑣𝑣𝜆𝜆𝑣𝑣 + 𝛾𝛾1𝑣𝑣𝑣𝑣 , 𝑞𝑞1𝑣𝑣 ≥ 0,∀𝑘𝑘 = 1,2,⋯ ,𝐾𝐾1𝑣𝑣,∀𝑣𝑣 ∈ 𝑉𝑉          (2.9b) 

𝑞𝑞2𝑣𝑣 ≥ 𝜃𝜃2𝑣𝑣𝑣𝑣𝜇𝜇𝑣𝑣 + 𝛾𝛾2𝑣𝑣𝑣𝑣 , 𝑞𝑞2𝑣𝑣 ≥ 0,∀𝑘𝑘 = 1,2,⋯ ,𝐾𝐾2𝑣𝑣,∀𝑣𝑣 ∈ 𝑉𝑉.          (2.9c) 

Program [M2] can be solved via commercial solvers like CPLEX. However, the 

computation cost rises rapidly with the number of constraints dictated by 𝐾𝐾1𝑣𝑣 and 𝐾𝐾2𝑣𝑣 

(𝑣𝑣 ∈ 𝑉𝑉). To improve the solution efficiency, we develop tighter upper bounds for the 

optimal 𝜆𝜆𝑣𝑣 and 𝜇𝜇𝑣𝑣 than those used in the literature. (For example, in Wang and Meng 

(2012), the travel time upper bounds were derived from a prespecified minimum speed 

only.) These better bounds can effectively diminish the search ranges for the optimal 

𝜆𝜆𝑣𝑣 and 𝜇𝜇𝑣𝑣, and thus reduce the numbers of linear segments used in constraints (2.8a-b). 

Specifically, the following proposition gives the upper bounds of 𝜆𝜆𝑣𝑣 and 𝜇𝜇𝑣𝑣: 

Proposition 3. The upper bounds of 𝜆𝜆𝑣𝑣  and 𝜇𝜇𝑣𝑣 , denoted by 𝜆𝜆𝑣𝑣max  and 𝜇𝜇𝑣𝑣max 

respectively, are presented as follows: 

𝜆𝜆𝑣𝑣max = max �max �𝑇𝑇𝑣𝑣 − 𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max , 𝐿𝐿1𝑣𝑣 �

𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1� + 2(|𝑉𝑉| − 1)𝐻𝐻, 𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max� ,∀𝑣𝑣 ∈ 𝑉𝑉    (2.10a) 

𝜇𝜇𝑣𝑣max = max �𝑇𝑇𝑣𝑣 − 𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max , 𝐿𝐿2𝑣𝑣 �

𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1 , 𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max� ,∀𝑣𝑣 ∈ 𝑉𝑉.        (2.10b) 

Proof of Proposition 3 is relegated to Appendix C. In addition, the lower bounds 

of the optimal 𝜆𝜆𝑣𝑣 and 𝜇𝜇𝑣𝑣 are given by (2.6a-b). 

Finally, by scrutinizing (2.6c-d), we find that the following value of 𝑀𝑀  is 

sufficiently large to use: 
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𝑀𝑀 = 𝐻𝐻 + max
𝑣𝑣∈𝑉𝑉

𝑇𝑇𝑣𝑣0 − min
𝑣𝑣∈𝑉𝑉

𝑇𝑇𝑣𝑣0 + max
𝑣𝑣∈𝑉𝑉

𝜆𝜆𝑣𝑣max − min
𝑣𝑣∈𝑉𝑉

𝜆𝜆𝑣𝑣min.           (2.11) 

Any value greater than (2.11) can also be used. However, using a larger 𝑀𝑀  would 

increase the solution time of [M2]. 

2.1.4. A Discrete-time Model 

We now discretize the time variables in [M1] using a unit time interval denoted by 

∆𝑡𝑡. Time discretization essentially discretizes the range of speeds each vessel can take 

in its two sailing legs. Thus, the bunker consumption rate for each discrete speed value 

can be calculated in advance, eliminating the nonlinearity issue. Note that the travel 

time bounds developed in Section 2.1.3 also allow us to use as few time intervals as 

possible, thus improving the computational efficiency of the discrete-time model. 

Specifically, define 𝜏𝜏 ∈ 𝑍𝑍+ as the integer time coordinate, where 𝑍𝑍+ represents the 

set of all positive integers. Denote Ψ1𝑣𝑣 the set of possible arrival times of autonomous 

vessel 𝑣𝑣 ∈ 𝑉𝑉 at the bottleneck, and Ψ2𝑣𝑣 the set of possible travel times of autonomous 

vessel 𝑣𝑣 from entering the bottleneck to arriving at the destination port. They are given 

by: 

Ψ1𝑣𝑣 = {𝜏𝜏|𝜏𝜏 ∈ 𝑍𝑍+, 1
∆𝑡𝑡

(𝑇𝑇𝑣𝑣0 + 𝜆𝜆𝑣𝑣min) ≤ 𝜏𝜏 ≤ 1
∆𝑡𝑡

(𝑇𝑇𝑣𝑣0 + 𝜆𝜆𝑣𝑣max)},∀𝑣𝑣 ∈ 𝑉𝑉            (2.12a) 

Ψ2𝑣𝑣 = {𝜏𝜏|𝜏𝜏 ∈ 𝑍𝑍+, 1
∆𝑡𝑡

(𝜔𝜔 + 𝜇𝜇𝑣𝑣min) ≤ 𝜏𝜏 ≤ 1
∆𝑡𝑡

(𝜔𝜔 + 𝜇𝜇𝑣𝑣max)},∀𝑣𝑣 ∈ 𝑉𝑉             (2.12b) 

where 𝜆𝜆𝑣𝑣min, 𝜆𝜆𝑣𝑣max, 𝜇𝜇𝑣𝑣min, and 𝜇𝜇𝑣𝑣max are again from Equations (2.6a-b) and Proposition 3 

(i.e., Equations (2.10a-b)). 
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Define two batches of binary decision variables, 𝑥𝑥𝜏𝜏𝜏𝜏 and 𝜉𝜉𝜏𝜏𝜏𝜏, to substitute for 𝑥𝑥𝑣𝑣 

and 𝑦𝑦𝑣𝑣. Specifically, 𝑥𝑥𝜏𝜏𝜏𝜏 = 1 if and only if 𝑥𝑥𝑣𝑣 = ∆𝑡𝑡 ∙ 𝜏𝜏, and 𝜉𝜉𝜏𝜏𝜏𝜏 = 1 if and only if 𝑦𝑦𝑣𝑣 −

𝑥𝑥𝑣𝑣 = ∆𝑡𝑡 ∙ 𝜏𝜏. We have the following constraints for the discrete-time model: 

∑ 𝑥𝑥𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ1𝑣𝑣 = 1,∀𝑣𝑣 ∈ 𝑉𝑉                      (2.13a) 

∑ 𝜉𝜉𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ2𝑣𝑣 = 1,∀𝑣𝑣 ∈ 𝑉𝑉                      (2.13b) 

𝑥𝑥𝜏𝜏𝜏𝜏 ∈ {0, 1},∀𝜏𝜏 ∈ Ψ1𝑣𝑣,∀𝑣𝑣 ∈ 𝑉𝑉                    (2.13c) 

𝜉𝜉𝜏𝜏𝜏𝜏 ∈ {0, 1},∀𝜏𝜏 ∈ Ψ2𝑣𝑣,∀𝑣𝑣 ∈ 𝑉𝑉.                    (2.13d) 

Constraints (2.13a) and (2.13b) will be used to replace (2.2b) and (2.2c) in the original 

program [M1]. 

Further denote 𝜏𝜏1min = min{𝜏𝜏 ∈∪𝑣𝑣∈𝑉𝑉 Ψ1𝑣𝑣}  and 𝜏𝜏1max = max{𝜏𝜏 ∈∪𝑣𝑣∈𝑉𝑉 Ψ1𝑣𝑣}  the 

minimum and maximum arrival times of all autonomous vessels at the bottleneck, and 

ℎ′ = 𝐻𝐻/∆𝑡𝑡. We select the ∆𝑡𝑡 such that ℎ′ is an integer. Then constraints (2.2d) in [M1] 

can be replaced with the following one, which stipulates that at most one autonomous 

vessel will arrive at the bottleneck during any ℎ′ consecutive time intervals: 

∑ ∑ 𝑥𝑥𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ1𝑣𝑣∩{𝑖𝑖,…,𝑖𝑖+ℎ′−1}𝑣𝑣∈𝑉𝑉 ≤ 1,   𝑖𝑖 = 𝜏𝜏1min, 𝜏𝜏1min + 1,⋯ , 𝜏𝜏1max − ℎ′ + 1.       (2.14) 

In the discrete-time model, the penalty term in the objective (2.2a), 𝛽𝛽𝑣𝑣 ∙

max{0,𝑦𝑦𝑣𝑣 − 𝑇𝑇𝑣𝑣} , is also linearized as described in Section 2.1.3. The associated 

constraints (2.4a) are retained, while constraints (2.4b) are replaced with: 

𝑝𝑝𝑣𝑣 ≥ ∑ ∆𝑡𝑡 ∙ 𝜏𝜏 ∙ 𝑥𝑥𝜏𝜏𝑣𝑣𝜏𝜏∈Ψ1𝑣𝑣 + ∑ ∆𝑡𝑡 ∙ 𝜏𝜏 ∙ 𝜉𝜉𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ2𝑣𝑣 − 𝑇𝑇𝑣𝑣,∀𝑣𝑣 ∈ 𝑉𝑉.          (2.15) 
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This is because 𝑦𝑦𝑣𝑣 = ∑ ∆𝑡𝑡 ∙ 𝜏𝜏 ∙ 𝑥𝑥𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ1𝑣𝑣 + ∑ ∆𝑡𝑡 ∙ 𝜏𝜏 ∙ 𝜉𝜉𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ2𝑣𝑣 , and 𝑥𝑥𝑣𝑣 = ∑ ∆𝑡𝑡 ∙ 𝜏𝜏 ∙𝜏𝜏∈Ψ1𝑣𝑣

𝑥𝑥𝜏𝜏𝜏𝜏 ,∀𝑣𝑣 ∈ 𝑉𝑉. 

Finally, the bunker fuel cost term in (2.2a), 𝛼𝛼 �𝐿𝐿1𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣

𝑥𝑥𝑣𝑣−𝑇𝑇𝑣𝑣0
�
𝑏𝑏𝑣𝑣

+

𝐿𝐿2𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣

𝑦𝑦𝑣𝑣−𝑥𝑥𝑣𝑣−𝜔𝜔
�
𝑏𝑏𝑣𝑣
� , is rewritten as 𝛼𝛼[𝐿𝐿1𝑣𝑣𝑄𝑄1𝑣𝑣 + 𝐿𝐿2𝑣𝑣𝑄𝑄2𝑣𝑣] , where 𝑄𝑄1𝑣𝑣  and 𝑄𝑄2𝑣𝑣  are 

expressed as functions of 𝑥𝑥𝜏𝜏𝜏𝜏 and 𝜉𝜉𝜏𝜏𝜏𝜏: 

𝑄𝑄1𝑣𝑣 = 𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣

∑ ∆𝑡𝑡∙𝜏𝜏∙𝑥𝑥𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ1𝑣𝑣 −𝑇𝑇𝑣𝑣0
�
𝑏𝑏𝑣𝑣

,∀𝑣𝑣 ∈ 𝑉𝑉                  (2.16a) 

𝑄𝑄2𝑣𝑣 = 𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣

∑ ∆𝑡𝑡∙𝜏𝜏∙𝜉𝜉𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ2𝑣𝑣 −𝜔𝜔
�
𝑏𝑏𝑣𝑣

,∀𝑣𝑣 ∈ 𝑉𝑉.                  (2.16b) 

Since 𝑥𝑥𝜏𝜏𝜏𝜏 and 𝜉𝜉𝜏𝜏𝜏𝜏 are binary variables, (2.16a-b) are equivalent to: 

𝑄𝑄1𝑣𝑣 = ∑ 𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣

∆𝑡𝑡∙𝜏𝜏−𝑇𝑇𝑣𝑣0
�
𝑏𝑏𝑣𝑣
𝑥𝑥𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ1𝑣𝑣 ,∀𝑣𝑣 ∈ 𝑉𝑉                  (2.17a) 

𝑄𝑄2𝑣𝑣 = ∑ 𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣

∆𝑡𝑡∙𝜏𝜏−𝜔𝜔
�
𝑏𝑏𝑣𝑣
𝜉𝜉𝜏𝜏𝜏𝜏𝜏𝜏∈Ψ2𝑣𝑣 ,∀𝑣𝑣 ∈ 𝑉𝑉.                  (2.17b) 

In summary, program [M1] can be converted to the following binary integer 

program: 

[M3]  

min∑ �𝛼𝛼 �𝐿𝐿1𝑣𝑣 ∑ 𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣

∆𝑡𝑡∙𝜏𝜏−𝑇𝑇𝑣𝑣0
�
𝑏𝑏𝑣𝑣
𝑥𝑥𝜏𝜏𝜏𝜏𝜏𝜏∈𝛹𝛹1𝑣𝑣 + 𝐿𝐿2𝑣𝑣 ∑ 𝑎𝑎𝑣𝑣 �

𝐿𝐿2𝑣𝑣
∆𝑡𝑡∙𝜏𝜏−𝜔𝜔

�
𝑏𝑏𝑣𝑣
𝜉𝜉𝜏𝜏𝜏𝜏𝜏𝜏∈𝛹𝛹2𝑣𝑣 � + 𝛽𝛽𝑣𝑣𝑝𝑝𝑣𝑣�𝑣𝑣∈𝑉𝑉     (2.18) 

subject to  

Constraints (2.4a), (2.13a-d), (2.14) and (2.15). 

[M3] can also be solved by CPLEX. 
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2.2. Solution Quality and Computational Efficiency 

This section looks into the solution quality and computational efficiency of models 

[M2] and [M3]. We first consider 100 numerical instances with 12 autonomous vessels. 

The parameters of each instance, i.e., 𝐿𝐿1𝑣𝑣 , 𝐿𝐿2𝑣𝑣 , 𝑇𝑇𝑣𝑣0 , 𝑇𝑇𝑣𝑣 , 𝛽𝛽𝑣𝑣 , 𝑠𝑠𝑣𝑣max , 𝑎𝑎𝑣𝑣  and 𝑏𝑏𝑣𝑣  for 𝑣𝑣 ∈

{1,2, … ,12} , are randomly generated from the following distributions: 

𝐿𝐿1𝑣𝑣 , 𝐿𝐿2𝑣𝑣~𝑈𝑈[31, 360]  n miles, 𝑇𝑇𝑣𝑣0~𝑈𝑈[0.1, 30]  h, 𝑇𝑇𝑣𝑣~𝑈𝑈[30, 60]  h, 𝛽𝛽𝑣𝑣~𝑈𝑈[1000, 6000] 

$/h, 𝑠𝑠𝑣𝑣max~𝑈𝑈[18, 23]  knot, 𝑎𝑎𝑣𝑣~𝑈𝑈[4, 5] × 10−4 , 𝑏𝑏𝑣𝑣~𝑈𝑈[1.8, 2.2] , where 𝑈𝑈[𝑐𝑐1, 𝑐𝑐2] 

denotes a uniform distribution with support from 𝑐𝑐1 to 𝑐𝑐2. The distributions of 𝑠𝑠𝑣𝑣max, 𝑎𝑎𝑣𝑣 

and 𝑏𝑏𝑣𝑣 are assumed to follow the values suggested by Wang and Meng (2012). The 

bunker fuel price 𝛼𝛼, the autonomous vessel transit time through the bottleneck 𝜔𝜔, and 

the minimum headway 𝐻𝐻 are set to 500 $/ton, 3.0 h, and 1.0 h, respectively (Sina News, 

2020). In addition, we specify seven values of the error bound 𝜀𝜀 in [M2], i.e., 𝜀𝜀 ∈ {625, 

312.5, 156.3, 78.1, 39.1, 19.5, 9.8} $, and seven values of the time interval ∆𝑡𝑡 in [M3]: 

Δ𝑡𝑡 ∈  �1, 1
2

, 1
4

, 1
8

, 1
16

, 1
32

, 1
64
�  h. Note that both 𝜀𝜀  and Δ𝑡𝑡  decrease at a rate of 0.5 in the 

above sequences. Models [M2] and [M3] are solved by CPLEX-12.8 running on a 4.7 

GHz Octa-Core PC with 32 GB of RAM. 

Solutions obtained from the two approximate models [M2] and [M3] are plugged 

into (2.2a) to calculate the true objective values. Thus, the results are upper bounds of 

the optimal solution. For simplicity, we calculate the averages of each model's objective 

values and runtimes across the 100 numerical instances. The average values of [M2] 
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are plotted against 𝜀𝜀 in Fig. 2.1a, and those of [M3] are plotted against Δ𝑡𝑡 in Fig. 2.1b. 

Note that the horizontal axis is set to the logarithmic scale in each figure.  

 

                   (a) Outer-approximation model [M2]                                       (b) Discrete-time model [M3] 

Fig. 2.1. Objective values and solution times of the two models. 

Both figures show that the average objective value (the solid curve) decreases as 

𝜀𝜀  and Δ𝑡𝑡  diminish. However, the two solid curves exhibit different patterns. The 

average objective value calculated from [M3] quickly converges to 4.05 × 105  $ as 

Δ𝑡𝑡 ≤ 1
8
 h, manifesting that the solution to [M3] approaches the exact solution of [M1] 

as Δ𝑡𝑡  approaches zero. On the other hand, the objective value obtained from [M2] 

oscillates around 4.10 × 105 when 𝜀𝜀 ≤ 312.5 $. This reveals that the solution of [M2] 

has a larger error than that of [M3]. (Recall that the curves show the true objective 

values calculated by the original objective function (2.2a), and they are upper bounds 

of the exact solution of [M1].) Using the convergent objective value of [M3] as the 

benchmark, the solution to [M2] exhibits an error of at least 1.2%. More importantly, 

further numerical analyses showed that this error did not diminish when 𝜀𝜀 approaches 
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zero, meaning the predefined “error bound” 𝜀𝜀 cannot be guaranteed. These observations 

are at odds with the theory of the outer-approximation method. We believe the main 

reason possibly lies in the piecewise linear approximation of nonlinear functions 

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) and 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣). Specifically, numerical error arises when calculating the lines 

and points of tangency in the piecewise linear approximation of [M2] (see Algorithm 1 

in Appendix B). Regrettably, this error tends to fluctuate as 𝜀𝜀 approaches zero since the 

start point of each tangent line segment becomes closer to the original curve. Please 

refer to the end of Appendix B for a more detailed explanation. 

On the other hand, the average runtime increases as 𝜀𝜀 and Δ𝑡𝑡 diminish; see the 

dashed curves in Fig. 2.1a and b. This observation is expected. The runtime in Fig. 2.1b 

increases rapidly since the number of constraints in [M3] grows linearly with the 

number of time intervals; see Equation (2.14). Nevertheless, Fig. 2.1b shows that the 

solution quality is good enough for Δ𝑡𝑡 ≤ 1
8
 hour. The benefit of further reducing Δ𝑡𝑡 is 

negligible. 

A more important question is how the two models perform when solving larger-

scale instances. Fig. 2.2 plots the average runtimes of 100 randomly selected instances 

for [M2] and [M3] when the number of vessels |𝑉𝑉| varies from 10 to 120. For each 

value of |𝑉𝑉|, the same 100 instances are solved by both models. The 𝜀𝜀 and Δ𝑡𝑡 are set to 

1,000 $ and 0.1 h, respectively. These values are selected to favor [M2] in terms of the 

runtime; see Fig. 2.1a and b. Other values of 𝜀𝜀 and Δ𝑡𝑡 yield similar results as in Fig. 

2.2. The other parameter values are the same as for Fig. 2.1a and b. Fig. 2.2 shows that 



 

30 

the runtime of [M2] soars when |𝑉𝑉| > 20, making [M2] unacceptably slow for large-

scale autonomous vessel scheduling problems. The reason is simple. Note that the 

number of piecewise linear constraints (2.9b) and (2.9c) in [M2] increases rapidly with 

|𝑉𝑉|. Furthermore, the number of constraints (2.6c) and (2.6d) increases quadratically 

with |𝑉𝑉|. These problems do not exist for [M3]. 

 
Fig. 2.2. Comparison of solution times of [M2] and [M3] for |𝑽𝑽| ∈ [𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏]. 

In summary, [M3] appears to be a better choice than [M2] in terms of both solution 

quality and computational efficiency, especially for large-scale problems. 

2.3. Numerical Study 

The background and parameter values of a real-life case study are introduced in 

Section 2.3.1. Section 2.3.2 examines the optimal autonomous vessel schedules and the 

associated delays obtained from the two models. The benefit of the optimal 
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coordination of autonomous vessel passages at the bottleneck is investigated in Section 

2.3.3. 

2.3.1. Description of the Case Study and Parameter Values 

The Three Gorges Dam on the Yangtze River is one of the busiest waterway 

bottlenecks in the world (Pomfret, 2019). We consider a simple case with 12 

autonomous vessels passing through the TGD lock. These autonomous vessels can be 

remotely controlled and optimally coordinated by a central planner. The maximum 

sailing speeds and bunker consumption parameters of the 12 autonomous vessels are 

again borrowed from Wang and Meng (2012) and summarized in Table 2.1. Columns 

2–5 of Table 2.2 show the 12 autonomous vessels’ origin and destination ports and their 

distances from the TGD. Locations of these ports and the TGD on the Yangtze River 

are illustrated in Fig. 2.3. Columns 6–11 of Table 2.2 show their departure and expected 

arrival times and penalty rates for two scenarios. These parameter values are selected 

in a way that the autonomous vessels’ sailing time windows (𝑇𝑇𝑣𝑣 − 𝑇𝑇𝑣𝑣0) in Scenario 1 are 

generally tighter than in Scenario 2, while the penalty rates in Scenario 2 are higher. By 

comparing these two scenarios, we can examine how the autonomous vessels’ travel 

time windows and penalty rates 𝛽𝛽𝑣𝑣 affect the optimal autonomous vessel schedules and 

actual arrival times at the destination ports. The autonomous vessel transit time 𝜔𝜔 and 

the minimum headway 𝐻𝐻 are set to 3.0 h and 1.0 h, respectively. Three bunker fuel 

prices, 200, 500, and 800 $/ton, are employed to reflect the price fluctuations in the fuel 

market (Ship and Bunker, 2021). Comparing the solutions under different fuel prices 
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can unveil how the fuel price affects the optimal autonomous vessel schedules and 

delays. For the outer-approximation model [M2] (i.e., the continuous-time model), the 

error bound 𝜀𝜀 is set to 1,000 $. For the discrete-time model [M3], the unit time interval 

∆𝑡𝑡 is set to 0.1 h.  

Table 2.1. Maximum sailing speeds and bunker consumption parameters. 

Vessel 1 2 3 4 5 6 7 8 9 10 11 12 

𝑠𝑠𝑣𝑣max (knot) 19 20 19 18 21 23 19 18 22 20 21 19 

𝑎𝑎𝑣𝑣 (× 10−4) 4.2 4.0 4.3 4.2 4.3 4.4 4.5 4.1 4.2 4.3 4.1 4.3 

𝑏𝑏𝑣𝑣 1.95 2.10 1.98 2.05 2.02 1.96 1.89 1.96 2.04 1.97 2.10 2.11 

 

Fig. 2.3. Locations of the origin and destination ports and the TGD along the Yangtze River. 

2.3.2. Optimal Autonomous Vessel Scheduling Solutions 

Fig. 2.4a and b plot the optimal total cost, the tardiness penalty, and the bunker 

cost against the bunker price 𝛼𝛼 for the two scenarios, respectively. Results of [M2] and 

[M3] are plotted as the solid and dashed curves, respectively. Note that the optimal cost 

values calculated by the two models are very close to each other in most cases. An 

exception occurs when 𝛼𝛼 = 800 $/ton under Scenario 1, where the gaps in the bunker 
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cost and the tardiness penalty are 7% and 46%, respectively. These large gaps are 

possibly due to the inaccuracy of the linear approximation in [M2]. 

Table 2.2. Vessel route parameters, departure and expected arrival times, and penalty rates. 

Vessel Origin Destination 
𝐿𝐿1𝑣𝑣  

(n mile) 

𝐿𝐿2𝑣𝑣  

(n mile) 

Scenario 1  Scenario 2 

𝑇𝑇𝑣𝑣0 (h) 𝑇𝑇𝑣𝑣 (h) 𝛽𝛽𝑣𝑣 ($/h)  𝑇𝑇𝑣𝑣0 (h) 𝑇𝑇𝑣𝑣 (h) 𝛽𝛽𝑣𝑣 ($/h) 

1 Zhicheng Badong 51.84  31.86  23.8  32.5  1000   23.3  30.2  4000  

2 Zhicheng Wanxian 51.84  145.79  23.3  41.2  1200   19.7  30.2  4200  

3 Shashi Fuling 101.51  257.56  19.7  47.8  1500   19.7  41.6  4500  

4 Shashi Chongqing 101.51  322.35  23.7  49.8  1900   23.3  41.6  4900  

5 Shashi Badong 101.51  31.86  21.7  31.5  2100   8.2  52.8  4100  

6 Chenglingji Wanxian 234.88  145.79  11.2  40.2  2400   1.3  59.2  4400  

7 Chenglingji Fuling 234.88  257.56  12.5  41.1  3900   1.3  41.6  4900  

8 Chenglingji Chongqing 234.88  322.35  13.5  46.1  5000   10.2  51.2  5000  

9 Honghu Badong 262.96  31.86  10.6  24.7  5200   10.2  59.2  5200  

10 Honghu Wanxian 262.96  145.79  10.1  31.2  5400   8.2  59.2  5400  

11 Hankou Fuling 359.61  257.56  2.3  40.8  5700   1.3  52.8  5700  

12 Hankou Wanxian 359.61  145.79  3.3  36.2  5000   1.3  59.2  5000  

 
                                     (a) Scenario 1                                                                     (b) Scenario 2 

Fig. 2.4. Total cost and cost components versus 𝜶𝜶. 

As expected, the total cost increases rapidly as 𝛼𝛼  grows in each scenario. The 

increase is mainly due to the surge in the bunker cost. The tardiness penalty also 

increases since vessels will reduce their speeds to save the bunker at a higher price, 
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although that would result in larger schedule delays. The difference between the two 

scenarios is also evident. In Scenario 1, the tardiness penalty increases by 78% (using 

the more accurate result of [M3]) when 𝛼𝛼 rises from 200 to 800 $/ton since more vessels 

choose to bear greater delays with the lower tardiness penalty rates. However, for the 

same case in Scenario 2, the tardiness penalty only increases by 13% due to the higher 

penalty rates. 

 
Fig. 2.5. Optimal vessel sailing times and delays under Scenario 1. 
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We further examine the detailed solutions, i.e., the optimal 𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣, and 𝑝𝑝𝑣𝑣, of [M2] 

and [M3]. For simplicity, only the results for Scenario 1 are plotted in Fig. 2.5a-c. 

Similar findings were also observed for Scenario 2 but are omitted here for simplicity. 

Note that the figures unveil a variety of mismatches between the solid curves (solutions 

from [M2]) and the dashed ones (solutions from [M3]), especially for autonomous 

vessel 9 when 𝛼𝛼 = 800 $/ton (see the circled points in Fig. 2.5a and c). It turns out that 

the two approximate models produced considerably different solutions despite the small 

𝜀𝜀 and Δ𝑡𝑡 used and the similar objective values. 

Fig. 2.5a-c also show that the sailing times and delays of autonomous vessels 1-6 

at their destinations are moderately sensitive to 𝛼𝛼 . Specifically, the delays roughly 

increase with 𝛼𝛼 ; see Fig. 2.5c. On the other hand, the sailing times and delays of 

autonomous vessels 7-12 are insensitive to 𝛼𝛼 , possibly because those autonomous 

vessels have larger penalty rates (see the bold purple curve in Fig. 2.5c). For the same 

reason, the delays of autonomous vessels 7-12 are relatively low3. 

2.3.3. Benefit of the Optimal Coordination of Vehicle Passages through the 

Bottleneck 

To better understand the benefit of optimal autonomous vessel scheduling, we 

compare the cost of optimal scheduling against two simpler scheduling strategies. 

 
3 The delay of autonomous vessel 9 in the [M2] solution for 𝛼𝛼 = 800 $/ton is an exception. This is 

possibly due to the inaccuracy of the [M2] solution. 
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The first strategy assumes no central operation manager, meaning that the 

individual vessels’ sailing times are not coordinated. Each vessel optimizes its speed 

profile without knowing other vessels’ arrival times at the bottleneck. When vessels 

form a queue at the bottleneck, they will pass following the first-come, first-serve 

(FCFS) rule. Each vessel will then re-optimize its speed for the second sailing leg after 

passing the bottleneck. The scheduling and cost evaluation model under this FCFS 

strategy is formulated in Appendix D.  

The second strategy assumes that the central operation manager adopts a “naïve” 

rule to prioritize the vessels with higher penalty rates. Specifically, the manager sorts 

all the vessels according to their 𝛽𝛽𝑣𝑣’s in descending order. (Thus, we term this strategy 

the descending-penalty or DP strategy.) The vessel on the top of the list will adopt a 

speed profile that minimizes its own cost. From the second vessel on, each vessel can 

pass the bottleneck following its cost-minimizing speed profile if the passage does not 

conflict with any vessel with a higher 𝛽𝛽𝑣𝑣. If a conflict occurs, that vessel will have to 

postpone its passage. After determining all the vessels’ passage times at the bottleneck, 

the central operation manager will re-optimize their speeds to avoid queues. This 

strategy's scheduling and cost evaluation model is relegated to Appendix E. 

We compare the total cost, the tardiness penalty, and the bunker cost under the 

optimal scheduling strategy, the FCFS strategy, and the DP strategy for the two 

scenarios of the TGD case in Fig. 2.6a and b. Only the solutions of [M3] are used for 

comparison because we reckon that they are more accurate than the [M2] solutions. 
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                  (a) Scenario 1                                                                      (b) Scenario 2 

Fig. 2.6. Comparison of the three scheduling strategies. 

Fig. 2.6a shows that the optimal scheduling strategy can save up to 12% of the 

total cost compared to the FCFS strategy with no coordination and 5.8% compared to 

the DP strategy with naïve coordination. This manifests the considerable cost advantage 

of the system-optimal coordination and scheduling. Further comparison of the cost 

components reveals that the tardiness penalty under the optimal strategy is much lower 

than the two benchmark strategies, which is the main reason for the cost advantage of 

optimal coordination.  

To our surprise, the DP strategy exhibits the highest delay penalty but the lowest 

bunker cost. This finding is counterintuitive since this strategy aims to reduce the 

schedule delays of vessels with higher penalty rates. The reason is that some vessels 

with lower penalty rates have to postpone their passages excessively to make way for 

those with higher penalty rates, even if the latter vessels arrive at the bottleneck later. 

As a result, the DP strategy backfires by causing the highest tardiness penalty, indicating 
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that simply prioritizing vessels according to their penalty rates is ineffective. The lowest 

bunker cost of this strategy is due to the same reason. After the speed re-optimization, 

some vessels sail at very slow speeds in the first leg since they have to make way for 

other vessels at the bottleneck anyway. 

On the other hand, Fig. 2.6b shows that the three strategies produce similar costs 

in Scenario 2 (only the cost under the DP strategy for 𝛼𝛼 = 200 $/ton is moderately 

higher due to the relatively larger tardiness penalty and the quite low fuel price). This 

is because most vessels suffer only small penalties due to their wide sailing time 

windows in Scenario 2, regardless of the strategy. Thus, the room for improvement by 

optimally coordinating vessel travel is meager. 

2.4. Summary 

This chapter developed a new nonlinear model for minimizing the sum of 

autonomous vessels’ bunker cost and lateness penalty by selecting the optimal 

autonomous vessel schedules for passing a common bottleneck and the associated 

speed profiles. Two linear approximations of the model were proposed. One employed 

a piecewise linear lower bound to approximate the nonlinear bunker consumption 

function. The other converted the original model to a binary integer program by 

discretizing the time. Tighter bounds of autonomous vessel travel times were developed 

to improve the computational efficiency of both methods. 
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Comparison via extensive numerical experiments showed that, even though the 

two approximate models yielded similar objective values (see Fig. 2.4a and b), they 

produced quite different schedules for individual autonomous vessels (see Fig. 2.5a-c). 

Scrutinization unveiled that the solution from the discrete-time model [M3] was more 

accurate than that of the outer-approximation model [M2] (see Fig. 2.1a and b). This is 

likely due to the errors arising in the numerical computation of the tangent lines and 

points for [M2] (see Appendix B). These errors may increase as the predefined error 

bound 𝜀𝜀 diminishes, thus rendering the theoretical error bound invalid. Moreover, [M3] 

is much faster than [M2] for large-scale instances (see Fig. 2.2). The findings speak to 

the limitations of the outer-approximation method in real practice. 

Numerical results of the TGD case study unveiled how the bunker price, tightness 

of the sailing time windows, and the penalty rates affect the optimal autonomous vessel 

schedules and the minimal cost (see Section 2.3.2). By comparing against a no-

coordination strategy and a naïve coordination strategy, we showed that the optimal 

autonomous vessel scheduling could significantly reduce the cost, especially the 

tardiness penalty when the sailing time windows were tight. However, when the sailing 

time windows were very loose, the improvement of optimal autonomous vessel 

scheduling was small. 
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Chapter 3. Optimal Scheduling of Autonomous Vessel Trains in 

a Hub-and-Spoke Network 

This chapter develops novel models for jointly optimizing the autonomous vessel 

assignment to the vessel trains, and the sequence of ports of call and the schedule of 

each vessel train in a hub-and-spoke network. Two mixed-integer programming models 

are developed, one for the freight distribution problem and the other for the vessel 

backhaul problem. Solutions to these models capture the optimal tradeoff between the 

added detour and delay costs of vessel trains and the lower sailing cost of autonomous 

ships. Numerical case studies are carried out for a real-world short-sea shipping 

network around the Bohai Bay of China. Results reveal sizeable cost savings of vessel 

train operations as compared to using conventional ships only. Sensitivity analyses are 

performed to unveil how the benefit of vessel trains is affected by key operating factors, 

e.g., the numbers of conventional and autonomous ships, the ratio between their costs, 

the maximum vessel train length, and the network topology. 

The rest of this chapter is organized as follows. Section 3.1 describes the problem 

definition, model formulations, and their linearization. Numerical results of the Bohai 

Bay case study are presented in Section 3.2. Section 3.3 summarizes this chapter. The 

notation used in this chapter is summarized in Appendix F. 
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3.1. Problem Description and Formulation 

Section 3.1.1 presents the problem setup and key assumptions. Section 3.1.2 

formulates the problem as a mixed-integer nonlinear program (MINLP). Section 3.1.3 

linearizes the original program. The backhaul problem of vessel trains is discussed in 

Section 3.1.4. 

3.1.1. Problem Setup 

Consider a regional waterway transportation network represented by a set of ports 

𝑃𝑃 ≡ {0, 1, … , |𝑃𝑃|}, including a hub port numbered 0, and feeder ports 𝑖𝑖 ∈ 𝑃𝑃\{0}. We 

first investigate a freight distribution problem where the cargoes are loaded to the 

vessels (conventional or autonomous) at the hub port and transported to the feeder ports. 

A backhaul problem, i.e., the freight collection problem where vessels (carrying cargoes 

or not) travel from the feeder ports to the hub port, will be discussed in Section 3.1.4. 

Denote 𝐿𝐿 ≡ {1, 2, … , |𝐿𝐿|} the set of conventional manned ships that can serve as leader 

ships of vessel trains, and 𝐹𝐹 ≡ {|𝐿𝐿| + 1, … , |𝐿𝐿| + |𝐹𝐹|}  the set of autonomous ships. 

Each vessel train consists of one leader vessel, denoted by 𝑙𝑙 ∈ 𝐿𝐿, and 𝑛𝑛𝑙𝑙 autonomous 

follower ships. We specify that 0 ≤ 𝑛𝑛𝑙𝑙 ≤ 𝑢𝑢𝑙𝑙 where 𝑢𝑢𝑙𝑙 denotes the maximum number of 

follower ships led by 𝑙𝑙. The leader vessel sails solo if 𝑛𝑛𝑙𝑙 = 0. With a slight abuse of 

notation, we also use 𝑙𝑙 to indicate that vessel train led by 𝑙𝑙. 

The destination port of leader vessel 𝑙𝑙 ∈ 𝐿𝐿  is denoted by 𝑑𝑑𝑙𝑙  and that of 

autonomous follower vessel 𝑓𝑓 ∈ 𝐹𝐹 is denoted by 𝑑𝑑𝑓𝑓, 𝑑𝑑𝑙𝑙 ,𝑑𝑑𝑓𝑓 ∈ 𝑃𝑃\{0}. Vessel train 𝑙𝑙 may 
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call several ports to drop off the follower ships before arriving at the leader’s destination 

𝑑𝑑𝑙𝑙. Denote 𝑇𝑇𝑙𝑙 and 𝑇𝑇𝑓𝑓 the earliest departure times of 𝑙𝑙 ∈ 𝐿𝐿 and 𝑓𝑓 ∈ 𝐹𝐹 from the hub port, 

and 𝑇𝑇𝑙𝑙′  and 𝑇𝑇𝑓𝑓′  their expected arrival times at the destination ports, respectively. A 

penalty will be imposed on a ship that arrives later than the expected arrival time. This 

penalty will be calculated by the delay multiplied by a predefined penalty cost rate. The 

penalty cost rate is denoted by 𝑝𝑝𝑙𝑙 for 𝑙𝑙 ∈ 𝐿𝐿 and 𝑝𝑝𝑓𝑓 for 𝑓𝑓 ∈ 𝐹𝐹. We assume that the sailing 

time from port 𝑖𝑖 ∈ 𝑃𝑃 to port 𝑗𝑗 ∈ 𝑃𝑃, denoted by 𝑡𝑡𝑖𝑖,𝑗𝑗, is identical for all the vessels and 

vessel trains. Further assume that the sailing cost, including the fuel, operating, crew, 

and vessel renting costs, is proportional to the travel time. Denote 𝑐𝑐𝑙𝑙 and 𝑐𝑐𝑓𝑓 the sailing 

cost per unit travel time for 𝑙𝑙 ∈ 𝐿𝐿 and 𝑓𝑓 ∈ 𝐹𝐹, respectively. 

The objective is to minimize the sum of the sailing cost and the penalty for all the 

vessels. The optimal decision is concerned with: (i) how the autonomous vessels are 

assigned to the leader vessels to form vessel trains; and (ii) when each vessel train 

departs from the hub port and in what order it calls each member ship’s destination port. 

3.1.2. Mathematical Formulation 

[P0]  

min ∑ [𝑐𝑐𝑙𝑙𝜆𝜆𝑙𝑙 + 𝑝𝑝𝑙𝑙(𝜏𝜏𝑙𝑙 + 𝜆𝜆𝑙𝑙 − 𝑇𝑇𝑙𝑙′)+]𝑙𝑙∈𝐿𝐿 + ∑ �𝑐𝑐𝑓𝑓𝜆𝜆𝑓𝑓 + 𝑝𝑝𝑓𝑓�𝜏𝜏𝑓𝑓 + 𝜆𝜆𝑓𝑓 − 𝑇𝑇𝑓𝑓′�
+�𝑓𝑓∈𝐹𝐹        (3.1) 

subject to 

∑ 𝜙𝜙𝑙𝑙,𝑓𝑓𝑙𝑙∈𝐿𝐿 = 1, ∀𝑓𝑓 ∈ 𝐹𝐹                    (3.2) 

∑ 𝜙𝜙𝑙𝑙,𝑓𝑓𝑓𝑓∈𝐹𝐹 ≤ 𝑢𝑢𝑙𝑙 , ∀𝑙𝑙 ∈ 𝐿𝐿                    (3.3) 

𝜏𝜏𝑓𝑓 ≥ 𝑇𝑇𝑓𝑓, ∀𝑓𝑓 ∈ 𝐹𝐹                     (3.4) 
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𝜏𝜏𝑓𝑓 ≥ 𝜏𝜏𝑙𝑙 − 𝑀𝑀�1 − 𝜙𝜙𝑙𝑙,𝑓𝑓�, ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑓𝑓 ∈ 𝐹𝐹                (3.5) 

𝜏𝜏𝑙𝑙 ≥ 𝑇𝑇𝑙𝑙 , ∀𝑙𝑙 ∈ 𝐿𝐿                      (3.6) 

𝜏𝜏𝑙𝑙 ≥ 𝜙𝜙𝑙𝑙,𝑓𝑓𝑇𝑇𝑓𝑓, ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑓𝑓 ∈ 𝐹𝐹                   (3.7) 

𝜆𝜆𝑓𝑓 ≥ 𝑡𝑡0,𝑑𝑑𝑓𝑓 , ∀𝑓𝑓 ∈ 𝐹𝐹                     (3.8) 

𝜆𝜆𝑓𝑓 ≥ 𝜆𝜆𝑘𝑘 + 𝑡𝑡𝑑𝑑𝑘𝑘,𝑑𝑑𝑓𝑓 − 𝑀𝑀�1 − 𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙 �, ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑓𝑓,𝑘𝑘 ∈ 𝐹𝐹,𝑓𝑓 ≠ 𝑘𝑘            (3.9) 

∑ ∑ 𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙

𝑓𝑓∈𝐹𝐹,𝑓𝑓≠𝑘𝑘𝑘𝑘∈𝐹𝐹 ≥ ∑ 𝜙𝜙𝑙𝑙,𝑓𝑓𝑓𝑓∈𝐹𝐹 − 1, ∀𝑙𝑙 ∈ 𝐿𝐿              (3.10) 

∑ 𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙

𝑓𝑓∈𝐹𝐹,𝑓𝑓≠𝑘𝑘 ≤ 1, ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑘𝑘 ∈ 𝐹𝐹                (3.11) 

𝜆𝜆𝑙𝑙 ≥ 𝑡𝑡0,𝑑𝑑𝑙𝑙 , ∀𝑙𝑙 ∈ 𝐿𝐿                    (3.12) 

𝜆𝜆𝑙𝑙 ≥ 𝜆𝜆𝑓𝑓 + 𝑡𝑡𝑑𝑑𝑓𝑓,𝑑𝑑𝑙𝑙 − 𝑀𝑀�1 − 𝜙𝜙𝑙𝑙,𝑓𝑓�, ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑓𝑓 ∈ 𝐹𝐹             (3.13) 

𝜏𝜏𝑓𝑓 ≥ 0, ∀𝑓𝑓 ∈ 𝐹𝐹                     (3.14) 

𝜏𝜏𝑙𝑙 ≥ 0, ∀𝑙𝑙 ∈ 𝐿𝐿                     (3.15) 

𝜆𝜆𝑓𝑓 ≥ 0, ∀𝑓𝑓 ∈ 𝐹𝐹                    (3.16) 

𝜆𝜆𝑙𝑙 ≥ 0, ∀𝑙𝑙 ∈ 𝐿𝐿                     (3.17) 

𝜙𝜙𝑙𝑙,𝑓𝑓 ∈ {0,1}, ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑓𝑓 ∈ 𝐹𝐹                 (3.18) 

𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙 ∈ {0,1}, ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑓𝑓,𝑘𝑘 ∈ 𝐹𝐹,𝑓𝑓 ≠ 𝑘𝑘.               (3.19) 

The two terms of objective (3.1) are the total costs for manned leaders and 

autonomous followers, respectively, where decision variables 𝜏𝜏𝑙𝑙  and 𝜏𝜏𝑓𝑓  denote the 

actual departure times of leader vessel 𝑙𝑙 ∈ 𝐿𝐿  and autonomous vessel 𝑓𝑓 ∈ 𝐹𝐹  from the 

hub port, respectively; 𝜆𝜆𝑙𝑙 and 𝜆𝜆𝑓𝑓 denote the sailing times of vessel 𝑙𝑙 and 𝑓𝑓 from the hub 

port to their destination ports, respectively; and function ( )+ returns the maximum of 

0 and the argument. 
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Constraint (3.2) guarantees that each autonomous vessel is led by one leader vessel, 

where binary decision variable 𝜙𝜙𝑙𝑙,𝑓𝑓 indicates whether autonomous vessel 𝑓𝑓 is assigned 

to vessel train 𝑙𝑙. Constraint (3.3) specifies the capacity of each vessel train. Constraint 

(3.4) indicates that an autonomous vessel’s actual departure time from the hub port is 

not earlier than that vessel’s earliest departure time; and constraint (3.5) stipulates that 

an autonomous vessel’s actual departure time is not earlier than the actual departure 

time of its leader vessel (i.e., the vessel train), where 𝑀𝑀 is a sufficiently large number 

whose value will be given momentarily. Constraints (3.6) and (3.7) indicate that a vessel 

train’s actual departure time from the hub port is not earlier than each member vessel’s 

earliest departure time. Constraint (3.8) guarantees that the sailing time of the first 

autonomous vessel dropped off by vessel train 𝑙𝑙 is not less than the direct sailing time 

from the hub port to its destination port. Constraint (3.9) ensures that any successive 

autonomous vessel 𝑓𝑓’s sailing time is not less than the sailing time of its preceding ship 

in the same vessel train plus the direct sailing time between the two ships’ destination 

ports. The binary decision variable 𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙   denotes whether vessel 𝑓𝑓  is successive to 

vessel 𝑘𝑘 in vessel train 𝑙𝑙 (i.e., 𝑓𝑓 is dropped off right after 𝑘𝑘). Constraint (3.10) indicates 

that the sum of 𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙  for a specific vessel train 𝑙𝑙 is not less than the number of follower 

ships assigned to that vessel train minus 1. Constraint (3.11) ensures that each 

autonomous vessel 𝑘𝑘 has at most one successive vessel in a vessel train. Constraints 

(3.12) and (3.13) specify that leader vessel 𝑙𝑙’s sailing time must be greater than or equal 

to: (i) the direct sailing time from the hub port to its destination; and (ii) the sailing time 
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of any follower 𝑓𝑓 led by 𝑙𝑙 plus the direct sailing time between the two ships’ destination 

ports. Constraints (3.14)-(3.19) define the bounds of continuous decision variables 𝜏𝜏𝑙𝑙, 

𝜏𝜏𝑓𝑓, 𝜆𝜆𝑙𝑙, 𝜆𝜆𝑓𝑓, and binary variables 𝜙𝜙𝑙𝑙,𝑓𝑓 and 𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙 . 

By scrutinizing (3.4-3.7), (3.9) and (3.13), we find that the following value of 𝑀𝑀 

is sufficiently large to use: 

𝑀𝑀 = max �max
𝑙𝑙∈𝐿𝐿

𝑇𝑇𝑙𝑙 , max
𝑓𝑓∈𝐹𝐹

𝑇𝑇𝑓𝑓 , (|𝐹𝐹| + 1) ∙ max
𝑖𝑖,𝑗𝑗∈𝑃𝑃

𝑡𝑡𝑖𝑖,𝑗𝑗�.             (3.20) 

Any value greater than (3.20) can also be used. However, using a larger 𝑀𝑀 would 

increase the solution time. 

3.1.3. Linearization of [P0] 

The nonlinear operator (∙)+  in objective (3.1) can be simply linearized by 

introducing auxiliary variables 𝜃𝜃𝑙𝑙 and 𝜃𝜃𝑓𝑓 denoting the tardiness of ship 𝑙𝑙 ∈ 𝐿𝐿 and 𝑓𝑓 ∈

𝐹𝐹, respectively. The linearized program is presented as follows: 

[P1]  

min ∑ [𝑐𝑐𝑙𝑙𝜆𝜆𝑙𝑙 + 𝑝𝑝𝑙𝑙𝜃𝜃𝑙𝑙]𝑙𝑙∈𝐿𝐿 + ∑ �𝑐𝑐𝑓𝑓𝜆𝜆𝑓𝑓 + 𝑝𝑝𝑓𝑓𝜃𝜃𝑓𝑓�𝑓𝑓∈𝐹𝐹               (3.21) 

subject to 

Constraints (3.2)-(3.19) 

𝜃𝜃𝑙𝑙 ≥ 𝜏𝜏𝑙𝑙 + 𝜆𝜆𝑙𝑙 − 𝑇𝑇𝑙𝑙′, ∀𝑙𝑙 ∈ 𝐿𝐿                  (3.22) 

𝜃𝜃𝑓𝑓 ≥ 𝜏𝜏𝑓𝑓 + 𝜆𝜆𝑓𝑓 − 𝑇𝑇𝑓𝑓′, ∀𝑓𝑓 ∈ 𝐹𝐹                  (3.23) 

𝜃𝜃𝑙𝑙 ≥ 0, ∀𝑙𝑙 ∈ 𝐿𝐿                     (3.24) 



 

46 

𝜃𝜃𝑓𝑓 ≥ 0, ∀𝑓𝑓 ∈ 𝐹𝐹.                    (3.25) 

As a standard mixed-integer linear program, [P1] can therefore be easily solved 

by the commercial solvers (e.g., CPLEX) that take advantage of distributed parallel 

algorithms for mixed-integer linear programming. However, the computational 

performance will obviously be affected by the problem size. Specifically, given the 

binary variables 𝜙𝜙𝑙𝑙,𝑓𝑓  and 𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙  , the number of leader ships |𝐿𝐿|  and the number of 

autonomous ships |𝐹𝐹| will have a significant impact on the solution time. In addition, 

the tightness of vessel sailing time windows will also affect the computational 

performance. The details of the computational performance will be elaborated in the 

following numerical study section. 

3.1.4. The Backhaul Problem 

For long-term vessel train operations, the leader and follower ships distributed to 

the feeder ports must return to the hub port (with or without cargo) to serve more 

distribution trips. The autonomous ships still need to form vessel trains led by 

conventional ships when they return. This backhaul problem is the reverse of the above 

freight distribution problem. 

Similarly, we assume that each backhaul ship is associated with an earliest 

departure time from its origin feeder port and an expected arrival time at the hub port. 

The other parameters and variables of the backhaul problem are nearly the same as 

those defined for the freight distribution problem (see Section 3.1.1). Thus, we use the 
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same notations listed in Appendix F for the backhaul problem. Only trivial changes 

need to be noted. For example, 𝑑𝑑𝑙𝑙 and 𝑑𝑑𝑓𝑓 now represent the origin ports of the ships, 

and 𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙   now indicates whether autonomous ship 𝑓𝑓  is picked up by leader vessel 𝑙𝑙 

preceding autonomous ship 𝑘𝑘 or not. If a backhaul ship carries no load, its expected 

arrival time can be set to a large value, and its cost and penalty rates can be set to a low 

value or zero. 

Formulation [P1] can be applied to the backhaul problem with only two changes. 

First, constraint (3.5) should be replace with 𝜏𝜏𝑓𝑓 + 𝜆𝜆𝑓𝑓 ≥ 𝜏𝜏𝑙𝑙 + 𝜆𝜆𝑙𝑙 − 𝑀𝑀�1 − 𝜙𝜙𝑙𝑙,𝑓𝑓�,∀𝑙𝑙 ∈

𝐿𝐿,∀𝑓𝑓 ∈ 𝐹𝐹 . This indicates that an autonomous ship assigned to vessel train 𝑙𝑙  cannot 

arrive at the hub port earlier than its leader vessel. Second, constraint (3.7) should be 

replaced with 𝜏𝜏𝑙𝑙 + 𝜆𝜆𝑙𝑙 ≥ 𝑇𝑇𝑓𝑓 + 𝜆𝜆𝑓𝑓 − 𝑀𝑀�1 − 𝜙𝜙𝑙𝑙,𝑓𝑓�,∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑓𝑓 ∈ 𝐹𝐹 . This ensures that a 

leader vessel cannot pick up an autonomous ship before the latter’s earliest departure 

time. Thus, the backhaul problem is formulated as: 

[P2] 

min ∑ [𝑐𝑐𝑙𝑙𝜆𝜆𝑙𝑙 + 𝑝𝑝𝑙𝑙𝜃𝜃𝑙𝑙]𝑙𝑙∈𝐿𝐿 + ∑ �𝑐𝑐𝑓𝑓𝜆𝜆𝑓𝑓 + 𝑝𝑝𝑓𝑓𝜃𝜃𝑓𝑓�𝑓𝑓∈𝐹𝐹               (3.26) 

subject to 

Constraints (3.2)-(3.4), (3.6), (3.8)-(3.19), (3.22-3.25) 

𝜏𝜏𝑓𝑓 + 𝜆𝜆𝑓𝑓 ≥ 𝜏𝜏𝑙𝑙 + 𝜆𝜆𝑙𝑙 − 𝑀𝑀�1 − 𝜙𝜙𝑙𝑙,𝑓𝑓�,∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑓𝑓 ∈ 𝐹𝐹             (3.27) 

𝜏𝜏𝑙𝑙 + 𝜆𝜆𝑙𝑙 ≥ 𝑇𝑇𝑓𝑓 + 𝜆𝜆𝑓𝑓 − 𝑀𝑀�1 − 𝜙𝜙𝑙𝑙,𝑓𝑓�,∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑓𝑓 ∈ 𝐹𝐹.             (3.28) 
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3.2. Numerical Study 

We conduct extensive numerical experiments on the freight distribution problem 

for a case study of the Bohai Bay of China. The backhaul problem is omitted for brevity 

since the two problems have similar formulations. All the numerical instances are 

solved by the CPLEX solver (version 12.8) on a personal computer equipped with an 

Intel Core eight-core processor clocked at 4.7 gigahertz and 32GB RAM clocked at 

3200 megahertz. 

The background and parameter values of the case study are introduced in Section 

3.2.1. Section 3.2.2 examines the computational performance of [P1]. Sections 3.2.3-

3.2.7 present the sensitivity analyses of the vessel train operation’s cost saving with 

respect to: (i) the cost ratio between an autonomous ship and a conventional one; (ii) 

the penalty cost rate; (iii) the tightness of sailing time windows; (iv) the vessel train 

size limit 𝑢𝑢𝑙𝑙; and (v) the waterway transportation network topology. 

3.2.1. Description of the Case Study and Parameter Values 

We consider the waterway transportation network between nine seaports around 

the Bohai Bay as shown in Fig. 3.1. The Port of Tianjin is the largest port in Northern 

China. It is thus designated as the hub port. The rest are assumed to be feeder ports. The 

travel distances between any two of the nine ports are given in Table 3.1. The vessel 

sailing speed is set to 15 knots (Colling and Hekkenberg, 2020). The travel times, 𝑡𝑡𝑖𝑖,𝑗𝑗 

(𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃), can be calculated by dividing the sailing distance by the sailing speed. 
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For simplicity, we assume that all the conventional ships are identical and have the 

same sailing cost rate, i.e., 𝑐𝑐𝑙𝑙 = 𝑐𝑐ℒ = 500 $/h, ∀𝑙𝑙 ∈ 𝐿𝐿 (Colling and Hekkenberg, 2020). 

A similar assumption is made for all the autonomous ships. Since the practical cost data 

for autonomous ships are unavailable, we assume that an autonomous ship’s sailing cost 

rate, 𝑐𝑐𝑓𝑓 = 𝑐𝑐ℱ, ∀𝑓𝑓 ∈ 𝐹𝐹, is expressed as a ratio 0 < 𝛼𝛼 ≤ 1 times 𝑐𝑐ℒ; i.e., 𝑐𝑐ℱ = 𝛼𝛼𝑐𝑐ℒ. The 

use of 𝛼𝛼 is convenient for the sensitivity analyses. More advanced autonomous ships 

would have lower 𝛼𝛼 values. We further assume that the penalty cost rates, 𝑝𝑝𝑙𝑙 and 𝑝𝑝𝑓𝑓, 

are equal and expressed as a ratio 𝜌𝜌 times the sailing cost rate of a conventional ship; 

i.e., 𝑝𝑝𝑙𝑙 = 𝑝𝑝𝑓𝑓 = 𝜌𝜌𝑐𝑐ℒ  (∀𝑙𝑙 ∈ 𝐿𝐿 , 𝑓𝑓 ∈ 𝐹𝐹 ). Unless otherwise specified, we set 𝛼𝛼 = 0.7 

(Colling and Hekkenberg, 2020) and 𝜌𝜌 = 0.4 (Zhang and Wang, 2020) in the following 

sections. 

 
Fig. 3.1. Positions of the nine seaports in the hub and spoke network. 
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Each ship’s destination feeder port, 𝑑𝑑𝑙𝑙 (𝑙𝑙 ∈ 𝐿𝐿) or 𝑑𝑑𝑓𝑓 (𝑓𝑓 ∈ 𝐹𝐹), is selected randomly 

from the eight feeder ports. Their earliest departure times are randomly generated from 

a uniform distribution over [0, 24]  h, i.e., 𝑇𝑇𝑙𝑙 ,𝑇𝑇𝑓𝑓~U[0, 24],∀𝑙𝑙 ∈ 𝐿𝐿,𝑓𝑓 ∈ 𝐹𝐹 . We further 

specify that the sailing time window for a vessel is expressed by the minimum sailing 

time duration (i.e., 𝑡𝑡0,𝑑𝑑𝑙𝑙 or 𝑡𝑡0,𝑑𝑑𝑓𝑓) times a slack coefficient denoted by 𝛿𝛿𝑙𝑙 for 𝑙𝑙 ∈ 𝐿𝐿 and 

𝛿𝛿𝑓𝑓  for 𝑓𝑓 ∈ 𝐹𝐹 . In other words, we set 𝑇𝑇𝑙𝑙′ = 𝑇𝑇𝑙𝑙 + 𝛿𝛿𝑙𝑙𝑡𝑡0,𝑑𝑑𝑙𝑙  and 𝑇𝑇𝑓𝑓′ = 𝑇𝑇𝑓𝑓 + 𝛿𝛿𝑓𝑓𝑡𝑡0,𝑑𝑑𝑓𝑓 , where 

𝛿𝛿𝑙𝑙 , 𝛿𝛿𝑓𝑓 ≥ 1. A smaller slack coefficient means the corresponding vessel’s time window 

is tighter. If 𝛿𝛿𝑙𝑙 = 1, then the only way for vessel 𝑙𝑙 to avoid a penalty is to depart the 

hub port immediately at 𝑇𝑇𝑙𝑙 and take a direct sailing route to its destination. Coefficients 

𝛿𝛿𝑙𝑙  and 𝛿𝛿𝑓𝑓  are also randomly generated from a uniform distribution: 𝛿𝛿𝑙𝑙 , 𝛿𝛿𝑓𝑓~U[𝛿𝛿̅ −

∆, 𝛿𝛿̅ + ∆], where 𝛿𝛿̅ denotes the mean slack coefficient, and Δ indicates how varied the 

coefficients are. We set 𝛿𝛿̅ = 1.3 and Δ = 0.3 unless otherwise specified. 

Table 3.1. Sailing distances (n mile) between any two ports of the case study. 

Port ID 0 1 2 3 4 5 6 7 8 
 

Tianjin Dandong Dalian Lvshun Yingkou Qinhuangdao Yantai Qingdao Lianyungang 

0 0 335 220 164 266 134 203 443 511 

1 335 0 135 201 338 283 195 332 400 

2 220 135 0 86 223 168 90 278 346 

3 164 201 86 0 162 107 101 309 377 

4 266 338 223 162 0 173 227 446 514 

5 134 283 168 107 173 0 172 391 459 

6 203 195 90 101 227 172 0 247 315 

7 443 332 278 309 446 391 247 0 102 

8 511 400 346 377 514 459 315 102 0 
Source: Marine Distance Tables for China Coast (NGDCNH, 2009). 
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We also assume all the vessel trains have the same size limit, i.e., 𝑢𝑢𝑙𝑙 = 𝑢𝑢, ∀𝑙𝑙 ∈ 𝐿𝐿. 

For now, we specify 𝑢𝑢 = |𝐹𝐹| , meaning that no limitation on the vessel train size is 

imposed (note that |𝐹𝐹| is the total number of autonomous vessels). This renders the 

most optimistic case. Other values of 𝑢𝑢𝑙𝑙 will be examined in Section 3.2.6. 

3.2.2. Computational Performance 

We first examine the computational performance for instances where |𝐿𝐿| ∈

{4, 6, 8, 10, 12}  and |𝐹𝐹| ∈ {8, 16, 24, 32, 40, 48, 56, 64} . For each (|𝐿𝐿|, |𝐹𝐹|) , ten 

numerical instances are solved with randomly generated 𝑑𝑑𝑙𝑙, 𝑑𝑑𝑓𝑓, 𝑇𝑇𝑙𝑙, 𝑇𝑇𝑓𝑓, 𝛿𝛿𝑙𝑙, and 𝛿𝛿𝑓𝑓 (𝑙𝑙 ∈

𝐿𝐿, 𝑓𝑓 ∈ 𝐹𝐹) from distributions specified in Section 3.2.1. Denote 𝑇𝑇�CPU
|𝐿𝐿|,|𝐹𝐹| the average CPU 

time for solving the ten instances with |𝐿𝐿| leader vessels and |𝐹𝐹| followers. 

 
Fig. 3.2. Average solution times of [P1]. 

Fig. 3.2 plots 𝑇𝑇�CPU
|𝐿𝐿|,|𝐹𝐹| against |𝐹𝐹| for different values of |𝐿𝐿|. The curves show that 

𝑇𝑇�CPU
|𝐿𝐿|,|𝐹𝐹|  increases rapidly with |𝐹𝐹|  and |𝐿𝐿|  with an exception that 𝑇𝑇�CPU

|10|,|56| > 𝑇𝑇�CPU
|12|,|56| . 

The exception is probably due to the randomness in parameter values. When |𝐹𝐹| ≤ 32, 
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an instance takes less than 40 seconds to solve on average. However, for a large instance 

with |𝐹𝐹| = 64 and |𝐿𝐿| = 12, the average CPU time is around 20 minutes. Thus, one 

may need to resort to heuristic methods for even larger-scale instances (which are not 

common in reality). 

The computational efficiency is also significantly affected by the tightness of 

sailing time windows. This can be seen from Fig. 3.3, which plots the average CPU 

time of ten randomly generated instances against 𝛿𝛿̅ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4}. The case 

of 𝛿𝛿̅ = 1 indicates that no slack is available for any vessel. The value of Δ is set to 0 if 

𝛿𝛿̅ = 1 and 0.5 otherwise. We set |𝐿𝐿| = 8 and |𝐹𝐹| = 24. All the instances have the same 

vessel OD pairs and earliest departure times. Only the expected arrival times 𝑇𝑇𝑙𝑙′ and 𝑇𝑇𝑓𝑓′ 

vary according to 𝛿𝛿̅.  

 

Fig. 3.3. Average solution times against 𝜹𝜹�. 
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Fig. 3.3 shows that the CPU time plunges as 𝛿𝛿̅ grows from 1 to 1.5. This indicates 

that instances with loose sailing time windows can be solved much faster. When 𝛿𝛿̅ 

continues to grow, the solid cuve decreases slowly and gradually becomes flat. 

3.2.3. Sensitivity of the Cost Saving of Vessel Trains to the Cost Rate of 

Autonomous Vessels 

We first examine the sensitivity of the vessel train strategy’s cost saving to the 

ratio between the sailing cost rates of autonomous and conventional ships, i.e., 𝛼𝛼 = 𝑐𝑐ℱ
𝑐𝑐ℒ

. 

The cost saving is calculated by comparing the overall cost of vessel trains against a 

benchmark scenario where all the vessels are conventional ones with the same cost and 

penalty rates. The parameter values are the same between the vessel-train and 

benchmark scenarios. Note in the latter scenario that each ship will travel individually 

and directly to its destination.  

Specifically, we denote 𝑟𝑟|𝐿𝐿|,|𝐹𝐹|  the percentage cost saving of the vessel train 

strategy with |𝐿𝐿|  conventional leaders and |𝐹𝐹|  autonomous followers over the 

benchmark scenario with |𝐿𝐿| + |𝐹𝐹| conventional, manned vessels; i.e., 

𝑟𝑟|𝐿𝐿|,|𝐹𝐹| = (TC0
|𝐿𝐿|+|𝐹𝐹| − TC|𝐿𝐿|,|𝐹𝐹|)/TC0

|𝐿𝐿|+|𝐹𝐹|,              (3.29) 

where TC|𝐿𝐿|,|𝐹𝐹| and TC0
|𝐿𝐿|+|𝐹𝐹| denote the minimum total costs of the vessel train strategy 

and the benchmark scenario, respectively. We further denote 𝜉𝜉|𝐿𝐿|,|𝐹𝐹| the share of penalty, 

PC|𝐿𝐿|,|𝐹𝐹|, in the overall cost for the vessel train case; i.e., 

𝜉𝜉|𝐿𝐿|,|𝐹𝐹| = PC|𝐿𝐿|,|𝐹𝐹|/TC|𝐿𝐿|,|𝐹𝐹|,                 (3.30) 
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We specify that |𝐿𝐿| = 8 and |𝐹𝐹| ∈ {4, 8, 16, 32}. For each |𝐹𝐹|, ten instances with 

distinct vessel ODs and time windows are generated randomly. For each instance, we 

let 𝛼𝛼 vary from 0.5 to 1.0 at an interval of 0.1.4 Average results of 𝑟𝑟|𝐿𝐿|,|𝐹𝐹| and 𝜉𝜉|𝐿𝐿|,|𝐹𝐹| 

across the ten test instances are plotted against 𝛼𝛼 in Fig. 3.4a and b, respectively. 

 
                              (a) Percentage cost saving                                          (b) Ratio of penalty to the total cost 

Fig. 3.4. Percentage cost saving and share of penalty cost against 𝜶𝜶 for vessel train operations. 

As expected, the curves in Fig. 3.4a decrease with 𝛼𝛼. More importantly, Fig. 3.4a 

shows that the cost saving increases with the number of autonomous ships (except for 

the case where 𝛼𝛼 = 1), although a larger |𝐹𝐹| also means longer vessel trains and thus 

more detours and delays. For example, when there are 8 leader vessels and 32 

autonomous ones, the optimal vessel train assignment plan and schedule can save up to 

34% of the cost for 𝛼𝛼 = 0.5. Moderate cost savings (3-10%) can be attained even when 

𝛼𝛼 = 0.8. This speaks to the great potential of autonomous vessel train operations. 

 
4 The lower bound of 𝛼𝛼 is determined as per Colling and Hekkenberg (2020), where the crew cost is 

estimated to be 48% of the total. 
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The curves in Fig. 3.4a are approximately linear because over 90% of the total cost 

is the sailing cost, which is roughly a linear function of 𝛼𝛼. This can be seen from Fig. 

3.4b. The latter figure shows that the share of penalty cost is less than 6% for all the 

cases investigated here. The penalty cost takes a larger share when 𝛼𝛼 is small and when 

there are more autonomous ships (so that the vessel trains are longer and more detours 

are incurred). This is also as expected.  

3.2.4. Sensitivity to the Ratio of Penalty Cost Rate 

In this section, we fix the sailing cost rates and let the ratio between the penalty 

rate and the leader vessels’ sailing cost rate, 𝜌𝜌 , vary. We set |𝐿𝐿| = 8  and |𝐹𝐹| ∈

{4, 8, 12, 16, 20}. Ten randomly generated instances are examined for each |𝐹𝐹| and the 

average 𝑟𝑟|𝐿𝐿|,|𝐹𝐹| and 𝜉𝜉|𝐿𝐿|,|𝐹𝐹| are calculated. We let 𝜌𝜌 increase from 0.125 to 8 at a rate of 

2. In other words, the penalty rates, 𝑝𝑝ℒ  and 𝑝𝑝ℱ , take values in 

{62.5, 125, 250, 500, 1000, 2000, 4000} $/h. A larger 𝜌𝜌 indicates that vessels will try 

harder to complete their trips by the expected arrival times. 

The results of 𝑟𝑟|𝐿𝐿|,|𝐹𝐹| and 𝜉𝜉|𝐿𝐿|,|𝐹𝐹| are plotted in Fig. 3.5a and b, respectively. Fig. 

3.5a shows that the cost saving decreases as the penalty rate increases. This is because 

no penalty is incurred in the benchmark scenario. The cost advantage of vessel train 

operations is observed for 𝜌𝜌 ≤ 2 , meaning that vessel trains (with detours) are 

unsuitable for the shipment of highly time-sensitive goods. In addition, the sensitivity 

of cost saving to 𝜌𝜌 is higher for larger values of |𝐹𝐹|, meaning that longer vessel trains 



 

56 

transporting time-insensitive goods can achieve greater cost savings. This is confirmed 

by Fig. 3.5b. Note that the share of penalty cost is higher for |𝐹𝐹| ≥ 12. 

 
                             (a) Percentage cost saving                                                  (b) Ratio of penalty to total cost 

 
(c) Sailing cost 

Fig. 3.5. Percentage cost saving, share of penalty cost, and sailing cost against 𝝆𝝆. 

Fig. 3.5c plots the sailing cost against 𝜌𝜌. The figure shows that the sailing cost is 

almost insensitive to 𝜌𝜌 . In fact, it only increases slightly as 𝜌𝜌  grows. This occurs 

because there is not much room to adjust the optimal vessel assignment and routing 

when 𝜌𝜌  is high. Such stable sailing cost essentially indicates that the vessels’ 
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assignment and routing nearly do not change given that the average number of 

autonomous vessels led by every leader vessel is basically fixed by the problem 

formulation. 

3.2.5. Sensitivity to the Tightness of Sailing Time Windows 

In addition to the cost parameters, one may also be interested in knowing how the 

cost saving of vessel trains is affected by the tightness of sailing time windows (which 

also reflects the time sensitivity of the cargo to some degree). Thus, we plot 𝑟𝑟|𝐿𝐿|,|𝐹𝐹|, 

𝜉𝜉|𝐿𝐿|,|𝐹𝐹|  and the sailing cost against 𝛿𝛿̅ ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}  in Fig. 3.6a-c, 

respectively. We still set |𝐿𝐿| = 8  and |𝐹𝐹| ∈ {4, 8, 12, 16, 20} . The ∆  is set to 0 when 

𝛿𝛿̅ = 1.0 and 0.5 otherwise. Each point in Fig. 3.6a-c still represents the average value 

of ten randomly generated instances. 

Fig. 3.6a shows that the cost saving grows with 𝛿𝛿̅ , which is as expected. The 

growth rate declines significantly as 𝛿𝛿̅ ≥ 2, revealing that the benefit of vessel train 

operations is approaching its maximum. This is confirmed by Fig. 3.6b, which 

manifests that the penalty cost drops drastically below 2% of the total when 𝛿𝛿̅ ≥ 2. 

When 𝛿𝛿̅ = 4, the penalty cost is negligible. Comparison across different values of |𝐹𝐹| 

in Fig. 3.6a unveils that the cost saving is slightly more sensitive to 𝛿𝛿̅ for a larger |𝐹𝐹|. 

This is because longer vessel trains tend to have higher penalty costs. Lastly, Fig. 3.6c 

shows that the sailing cost is also insensitive to 𝛿𝛿̅. According to the problem formulation, 

the number of leader vessels and the number of autonomous vessels are actually the 
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most important factors that determine the average vessel assignment and routing which 

can directly affect the total sailing cost of the whole vessel train system. 

 
                             (a) Percentage cost saving                                                 (b) Ratio of penalty to total cost 

 
(c) Sailing cost 

Fig. 3.6. Percentage cost saving, share of penalty cost, and sailing cost against 𝜹𝜹�. 

3.2.6. Sensitivity to the Vessel Train Size Limit 

This section investigates the sensitivity of cost savings to the size limit 𝑢𝑢𝑙𝑙 = 𝑢𝑢 

(∀𝑙𝑙 ∈ 𝐿𝐿). The 𝑟𝑟|𝐿𝐿|,|𝐹𝐹| and 𝜉𝜉|𝐿𝐿|,|𝐹𝐹|, averaged across ten randomly generated instances, are 

plotted against 𝑢𝑢 ∈ {4, 8, 12, 16, 20} in Fig. 3.7a-b, respectively. For simplicity, we set 
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|𝐹𝐹| = 20  and |𝐿𝐿| ∈ {4, 8, 12, 16, 20} . Note that the case where 𝑢𝑢 = 4 , |𝐿𝐿| = 4 , and 

|𝐹𝐹| = 20  is infeasible since each of the four leader vessels must pilot at least 5 

followers on average to be able to accommodate all the 20 autonomous vessels. This 

case is therefore removed. 

 
                              (a) Percentage cost saving                                               (b) Ratio of penalty to total cost 

Fig. 3.7. Percentage cost saving and share of penalty cost against 𝒖𝒖. 

Fig. 3.7a shows for each value of |𝐿𝐿| that, as expected, the cost saving first grows 

with the size limit and then converges when 𝑢𝑢 is sufficiently large (e.g., when 𝑢𝑢 ≥ 4 

for |𝐿𝐿| = 20, and 𝑢𝑢 ≥ 8 for |𝐿𝐿| = 12 and 16). This means that vessel train operations 

can attain the maximum benefit with a limited threshold of vessel train size. 

Comparison across the different values of |𝐿𝐿| in Fig. 3.7a reveals that, when the number 

of autonomous ships is fixed, 𝑟𝑟|𝐿𝐿|,|𝐹𝐹|  first increases and then decreases as |𝐿𝐿|  grows 

(e.g., for 𝑢𝑢 ≥ 8 , 𝑟𝑟8,20 > 𝑟𝑟12,20 > 𝑟𝑟16,20 > 𝑟𝑟20,20 > 𝑟𝑟4,20 ). It first increases because 

more leader vessels can reduce the vessel train sizes and thus the detours and delays. 

However, when |𝐿𝐿| is sufficiently large (≥ 8), further increasing |𝐿𝐿| will undermine the 
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percentage cost saving since leader vessels are more expensive than autonomous ones. 

This finding implies that the benefit of vessel trains may peak at a certain ratio between 

the numbers of leader and follower vessels. 

Fig. 3.7b reveals that the share of penalty cost is insensitive to 𝑢𝑢, except for a 

moderately larger share when |𝐿𝐿| and 𝑢𝑢 are both small. In addition, the penalty share 

diminishes as |𝐿𝐿| increases, manifesting that more leader vessels can reduce the vessel 

delays due to the smaller vessel train sizes. Lastly, the sailing cost is again insensitive 

to 𝑢𝑢, and the results are omitted for brevity. 

3.2.7. Sensitivity to the Network Topology 

Our last batch of sensitivity analyses pertain to the effect of network topology on 

the cost saving of vessel trains. The network topology will affect the routing of vessel 

trains and the detour distances. An extreme case is where all the ports are located along 

a one-dimensional waterway and the hub port is located at the end of the waterway. 

This type of waterway network, despite its very simple topology, is common in the real 

world, for example, a river where the hub port is a sea port located at its estuary (Zhen 

et al. (2018)). The case is extreme because any vessel train dispatched from the hub 

port will take no detour during its journey. Thus, this type of topology represents an 

optimistic case for vessel train operations where the cost saving is maximized. In this 

section, we examine and compare the cost savings on this extreme type of waterway 

network against those on the Bohai Bay network. 
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Specifically, we consider a one-dimensional hypothetic network illustrated in Fig. 

3.8. The network contains a hub port located at the left end of the river and eight feeder 

ports. For comparison, the distances between the feeder ports and the hub are set to the 

same values as in the Bohai Bay case. All the other parameters, including the OD pairs 

and the associated time windows, are set to the same values between the two networks. 

 

Fig. 3.8. Distances from the hub to the feeder ports in the one-dimensional hypothetic network. 

We set |𝐿𝐿|, |𝐹𝐹| ∈ {4, 8, 12, 16, 20} and calculate the 𝑟𝑟|𝐿𝐿|,|𝐹𝐹|, 𝜉𝜉|𝐿𝐿|,|𝐹𝐹|, and the sailing 

cost, averaged across ten randomly generated instances, for either network and each 

pair of (|𝐿𝐿|, |𝐹𝐹|). The results are plotted against |𝐹𝐹| in Fig. 3.9a-d. The solid and dashed 

curves in these figures represent the Bohai Bay case and the one-dimensional network 

case, respectively. 

Fig. 3.9a-b show that for both networks, the cost saving increases with |𝐹𝐹|, which 

is as expected. Deploying eight leader vessels brings the highest cost savings in both 

networks. However, the performance of cases with four leader vessels differs largely 

between the two networks. For the Bohai Bay network, |𝐿𝐿| = 4 renders the lowest cost 

savings due to the high costs of detours and delay penalty. On the other hand, for the 

one-dimensional network, |𝐿𝐿| = 4  produces the second-highest cost savings among 
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|𝐿𝐿| ∈ {4, 8, 12, 16, 20} . The minimum cost savings occur in the latter network with 

|𝐿𝐿| = 20 because conventional ships are more costly. 

Comparing Fig. 3.9a and b reveals that vessel trains operating in the one-

dimensional network produce greater cost savings than in the Bohai Bay case. This is 

due to the elimination of detours and the significant delay reductions. As |𝐿𝐿| increases 

from 4 to 20, the gap between the two networks diminishes from 6-12% to 1-2%. This 

is because in a regular hub-and-spoke network (e.g., the Bohai Bay case), fewer leaders 

render longer vessel trains and thus more detours and vessel delays. Contrarily, when 

more leaders are available, vessel trains will take more direct routes with lower delays.  

Fig. 3.9c confirms that the delay penalty is much smaller in the one-dimensional 

network. In addition, the share of penalty in the total cost decreases as |𝐿𝐿| grows in both 

networks, which is intuitive. 

Regarding the sailing cost, Fig. 3.9d shows that it is approximately a linear 

increasing function of |𝐿𝐿|  and |𝐹𝐹|  in either network. The one-dimensional network 

renders lower sailing costs than the Bohai Bay case, but the gap between the two 

networks diminishes as |𝐿𝐿| grows. 
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      (a) Percentage cost saving for the Bohai Bay case   (b) Percentage cost saving for the one-dimensional network 

 
                            (c) Ratio of penalty to total cost                                                     (d) Sailing cost 

Fig. 3.9. Percentage cost saving, share of penalty cost, and sailing cost for the two networks. 

3.3. Summary 

This chapter formulated the optimal scheduling of autonomous vessel trains for 

the freight distribution problem and the backhaul problem in hub-and-spoke networks. 

Novel nonlinear models were developed for minimizing the sum of vessel trains’ sailing 

cost and lateness penalty by optimally assigning the autonomous follower vessels to the 
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leaders and determining the optimal departure time and the port calling sequence of 

each vessel train. The models were solved by CPLEX after linearization. 

Computational performance tests show that, albeit the CPU runtimes soar as the 

problem size grows, a typical problem of a practical scale (e.g., with 9 ports, 10 leader 

vessels, and 50 autonomous vessels) can be solved in several minutes. 

Extensive numerical experiments were conducted to examine the cost savings of 

vessel train operations in or near the Bohai Bay of China compared to a benchmark 

scenario with conventional ships only. Sensitivity analyses were performed to unveil 

the cause-and-effect relations between the cost savings and key operating factors, 

including the autonomous vessels’ cost rate, numbers of leader and follower vessels, 

penalty cost rate, tightness of sailing time windows, vessel train size limit, and shipping 

network topology. 

Findings from the numerical results can inform practitioners on implementing the 

autonomous vessel train strategy. First of all, the results manifest the great economical 

potential of autonomous vessels even though they must be piloted by manned ships. 

For example, when a conventional leader pilots 1-4 autonomous vessels on average, the 

strategy can save up to 18% of the cost if operating an autonomous vessel is 30% 

cheaper than a conventional one and 34% if that is 50% cheaper (see Fig. 3.4a). Even 

greater savings can be achieved when vessel trains are operated in a one-dimensional 

waterway network, e.g., the Yangtze River of China; see Section 3.2.7. This is because 



 

65 

the detours incurred by vessel train operations would be minimal. In addition, the 

strategy is more suitable for time-insensitive cargo, which has either a loose sailing time 

window or a lower penalty rate (Fig. 3.5a and 3.6a), also thanks to the lower detour and 

delay costs incurred. 

On the other hand, increasing the maximum size of vessel trains would only 

improve the cost saving moderately (Fig. 3.7a). In fact, too few leader vessels would 

render longer vessel trains, more detours, and greater delays, which increase the cost. 

Our numerical results suggest that a sufficient number of leader vessels (eight in the 

Bohai Bay case study) should be used to attain the best performance of vessel trains 

(see Fig. 3.7a and 3.9a).  
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Chapter 4. Conclusions 

Section 4.1 summarizes the contributions of this dissertation. Section 4.2 discusses 

some possible extensions of the current work. 

4.1. Contributions 

In this dissertation, we investigate two types of optimal scheduling problems of 

autonomous ships: the autonomous ship scheduling problem for voyages with a 

waterway bottleneck, and the autonomous vessel train scheduling problem in a hub-

and-spoke network. Although various ship scheduling problems have long been studied 

in the literature, ship scheduling problems focused on autonomous ships are seldom 

examined. To advance the current research frontier and shed light on further research 

and real-world implementation in the realm of autonomous ships, we formulate and 

optimally solve the above two problems for minimizing the total costs of all the 

autonomous ships including sailing costs and tardiness penalties, considering different 

levels of autonomy. 

For the optimal scheduling of autonomous vessels passing a waterway bottleneck, 

we develop a novel schedule optimization model. The model minimizes the sum of 

autonomous vessels’ bunker cost and lateness penalty at destinations by selecting the 

optimal autonomous vessel schedules for passing a common bottleneck and the 

associated speed profiles, and incorporating the realistic, nonlinear relationship 

between bunker consumption and sailing speed. The nonlinear model is linearized via 
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two approximations. The first one linearizes the bunker consumption function using a 

piecewise linear lower bound, while the second converts the original model to a binary 

integer program by discretizing the time. 

Numerical experiments show that the discrete-time approximation model produces 

better solutions with lower computational costs than the continuous-time, piecewise-

linear approximation, especially for large-scale problems. Comparison between the 

continuous-time and the discrete-time models via extensive numerical experiments also 

shows that, even though the two approximate models yield similar objective values, 

they produce quite different schedules for individual autonomous vessels. 

Scrutinization unveils that the solution from the discrete-time model is more accurate 

than that of the continuous-time approximate model. Moreover, the discrete-time model 

is much faster than the continuous-time one for large-scale instances. The finding 

indicates that the piecewise linear approximation method’s accuracy and computational 

efficiency are limited, especially for large-scale problems. 

Numerical case studies are conducted for a real-world waterway bottleneck, the 

Three Gorges Dam lock. Results reveal how the optimal cost components and 

autonomous vessels’ schedules and delays are affected by key operating parameters, 

including the fuel prices, delay penalty rates, and the tightness of sailing time windows. 

Comparison against two benchmark scheduling strategies (one with no vessel 

coordination and the other adopting a naïve coordination) manifests the sizeable benefit 

of optimal autonomous vessel scheduling. By comparing against the other two 
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coordination strategies, we show that the optimal autonomous vessel scheduling can 

significantly reduce the cost, especially the tardiness penalty when the sailing time 

windows are tight. However, when the sailing time windows are very loose, the 

improvement of optimal autonomous vessel scheduling is small. These insights can 

inform ship operation managers on better coordinating vessels’ passage schedules at 

bottlenecks under various conditions. 

For the optimal scheduling of autonomous vessel trains in a hub-and-spoke 

network, we study the scheduling of autonomous vessel trains for the freight 

distribution problem and the backhaul problem. An autonomous vessel train is formed 

by a conventional (manned) leader vessel and several autonomous follower vessels. 

The leader vessel will escort all the autonomous followers throughout their journeys. 

This strategy allows for safely operating autonomous vessels with limited autonomy 

level, thus expediting the replacement of conventional vessels with this more 

economical and environmentally friendly type of vessels. 

Novel nonlinear models are developed for minimizing the sum of vessel trains’ 

sailing cost and lateness penalty by optimally assigning the autonomous follower 

vessels to the leader vessels and determining the optimal departure time and the port 

calling sequence of each vessel train. The models can be solved by CPLEX after 

linearization. Two mixed-integer programming models are developed, one for the 

freight distribution problem and the other for the backhaul problem. 
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Computational performance tests show that a typical problem of a practical scale 

can usually be solved in several minutes. Thus, practitioners can readily use our models 

to generate optimal autonomous vessel train assignments and schedules for daily feeder 

service operations in inland waterway, sea-river, and short-sea networks. 

Solutions to these models capture the optimal tradeoff between the added detour 

and delay costs of vessel trains and the lower sailing cost of autonomous ships. 

Numerical case studies are carried out for a real-world short-sea shipping network 

around the Bohai Bay of China. Results reveal sizeable cost savings of vessel train 

operations as compared to using conventional ships only. Results manifest the great 

economical potential for autonomous ships even though they must be piloted by 

conventional ships. And even greater savings can be achieved when vessel trains are 

operated in a single river. Sensitivity analyses are performed to unveil how the benefit 

of vessel trains is affected by key operating factors, e.g., the numbers of conventional 

and autonomous ships, the ratio between their costs, the maximum vessel train length, 

and the network topology. 

This part of study is the first to jointly optimize the assignment of autonomous 

ships to vessel trains, the sequences of ports of call, and the schedules of vessel trains. 

The results show sizable economic benefits of this novel operating strategy, and how 

key operating factors affect the performance of vessel trains. We believe that our study 

will shed light on more advanced research on autonomous ship scheduling problems 

accounting for further technological and operational details. These research works will 
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motivate real-world implementations of autonomous ships during the transitional 

period toward full autonomy. 

4.2. Future Work 

This dissertation will be built upon to investigate the following potential 

extensions in the future: 

For the autonomous ship scheduling problem with a waterway bottleneck, our 

models and results rely on certain assumptions, e.g., that a central operation manager 

can fully control all the autonomous vessel itineraries. This may occur when all these 

vessels belong to the same shipping company. Extension can be studied to consider the 

case where different autonomous vessels belong to different companies, each seeking 

to minimize its own cost. A formulation built upon a game theory framework would be 

desirable. In an extreme case where each autonomous vessel makes its own decision, 

the bottleneck operator (e.g., the dam traffic manager) can charge congestion tolls to 

the autonomous vessels (like the tolls in the roadway bottleneck models) to “coordinate” 

them in a limited way. Further complexities will arise when the autonomous vessels’ 

travel times or bottleneck passage times are affected by external factors (e.g., the tidal 

level, water flow) and thus exhibit a certain level of stochasticity. 

For the autonomous vessel train scheduling problem, we adopted distinct 

idealizations to simplify the modeling work. For example, we assumed a fixed sailing 

speed for all the vessels and a fixed sailing cost rate independent of the sailing speed. 
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In reality, a vessel’s bunker cost is a function of its sailing speed (Wang and Meng, 

2012), and a vessel train should be able to adjust its speed to meet the target delivery 

times. In addition, a more sophisticated scheduling model may also consider the 

transshipment of autonomous ships between different vessel trains and the deadheading 

problem of vessel trains. 
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Appendices 

Appendix A. Notation of the Optimal Scheduling of Autonomous 

Vessels Passing a Waterway Bottleneck 

Indices: 

𝑣𝑣, 𝑖𝑖, 𝑗𝑗  autonomous vessels; 

𝜏𝜏   time coordinate in the discrete-time model; 

Sets: 

𝑉𝑉   set of autonomous vessels; 

Ψ1𝑣𝑣   set of all the possible arrival times of autonomous vessel 𝑣𝑣 at the   

   bottleneck in the discrete-time model; 

Ψ2𝑣𝑣   set of all the possible travel times of autonomous vessel 𝑣𝑣 from entering 

   the bottleneck to arriving at its destination port in the discrete-time model;  

Parameters: 

𝐿𝐿1𝑣𝑣   (n mile), distance from autonomous vessel 𝑣𝑣’s origin port to the   

   bottleneck; 

𝐿𝐿2𝑣𝑣   (n mile), distance from the bottleneck to autonomous vessel 𝑣𝑣’s   

   destination port; 

𝑇𝑇𝑣𝑣0   (h), autonomous vessel 𝑣𝑣’s departure time from its origin port; 

𝑇𝑇𝑣𝑣   (h), autonomous vessel 𝑣𝑣’s expected arrival time at its destination port; 

𝑃𝑃𝑣𝑣(𝑦𝑦𝑣𝑣)  ($), tardiness penalty of autonomous vessel 𝑣𝑣 as a function of its arrival 

   time at the destination, 𝑦𝑦𝑣𝑣; 

𝛽𝛽𝑣𝑣   ($/h), tardiness penalty per hour of autonomous vessel 𝑣𝑣; 
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𝑓𝑓𝑣𝑣(𝑠𝑠)  (ton/n mile), bunker consumption rate of autonomous vessel 𝑣𝑣 traveling 

   at speed 𝑠𝑠; 

𝑎𝑎𝑣𝑣, 𝑏𝑏𝑣𝑣  coefficients of the bunker consumption function, 𝑎𝑎𝑣𝑣 > 0, 𝑏𝑏𝑣𝑣 > 1; 

𝑠𝑠   (knot), sailing speed (of autonomous vessel 𝑣𝑣); 

𝑠𝑠𝑣𝑣max  (knot), the maximum sailing speed of autonomous vessel 𝑣𝑣; 

𝜔𝜔   (h), transit time for a vessel to pass through the bottleneck; 

𝐻𝐻   (h), the minimum headway between the passages of two consecutive  

   vessels through the bottleneck; 

ℎ′   number of time intervals representing the minimum headway between the 

   passages of two consecutive vessels through the bottleneck in the  

   discrete- time model; 

𝛼𝛼   ($/ton), bunker fuel price; 

∆𝑡𝑡   (h), unit time interval in the discrete-time model; 

𝑀𝑀   a sufficiently large number; 

𝜀𝜀   ($), error bound of the objective function value; 

𝜀𝜀 ̅   (tons/n mile), error bound for each nautical mile traveled; 

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)  (ton/n mile), bunker consumption rate of autonomous vessel 𝑣𝑣 for travel 

   time 𝜆𝜆𝑣𝑣 from its origin to the bottleneck; 

𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣)  (ton/n mile), bunker consumption rate of autonomous vessel 𝑣𝑣 for travel 

   time 𝜇𝜇𝑣𝑣 from the bottleneck to its destination; 

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)  (ton/n mile), a piecewise-linear lower-bound of 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣); 

𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣)  (ton/n mile), a piecewise-linear lower-bound of 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣); 

𝜃𝜃1𝑣𝑣𝑣𝑣, 𝛾𝛾1𝑣𝑣𝑣𝑣  slopes and intercepts of the linear segments used to construct the   

   approximate function 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣), 𝑘𝑘 ∈ {1,2, … . ,𝐾𝐾1𝑣𝑣}; 
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𝜃𝜃2𝑣𝑣𝑣𝑣, 𝛾𝛾2𝑣𝑣𝑣𝑣  slopes and intercepts of the linear segments used to construct the   

   approximate function 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣), 𝑘𝑘 ∈ {1,2, … . ,𝐾𝐾2𝑣𝑣}; 

𝐾𝐾1𝑣𝑣   number of linear segments used to construct the approximate function 

   𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣); 

𝐾𝐾2𝑣𝑣   number of linear segments used to construct the approximate function 

   𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣); 

𝜆𝜆𝑣𝑣min  (h), lower bound of autonomous vessel 𝑣𝑣’s travel time from its origin to 

   the bottleneck; 

𝜆𝜆𝑣𝑣max  (h), upper bound of autonomous vessel 𝑣𝑣’s travel time from its origin to 

   the bottleneck; 

𝜇𝜇𝑣𝑣min  (h), lower bound of autonomous vessel 𝑣𝑣’s travel time from the   

   bottleneck to its destination; 

𝜇𝜇𝑣𝑣max  (h), upper bound of autonomous vessel 𝑣𝑣’s travel time from the   

   bottleneck to its destination; 

𝜏𝜏1min  the minimum time coordinate of all the autonomous vessels’ possible  

   arrival times at the bottleneck in the discrete-time model; 

𝜏𝜏1max  the maximum time coordinate of all the autonomous vessels’ possible 

   arrival times at the bottleneck in the discrete-time model; 

Decision variables: 

𝑥𝑥𝑣𝑣   (h), arrival time of autonomous vessel 𝑣𝑣 at the bottleneck;  

𝑦𝑦𝑣𝑣   (h), arrival time of autonomous vessel 𝑣𝑣 at its destination port; 

𝑝𝑝𝑣𝑣   (h), autonomous vessel 𝑣𝑣’s delay at its destination port; 

𝜆𝜆𝑣𝑣   (h), autonomous vessel 𝑣𝑣’s travel time from its origin to the bottleneck; 
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𝜇𝜇𝑣𝑣   (h), autonomous vessel 𝑣𝑣’s travel time from the bottleneck to its   

   destination; 

𝑞𝑞1𝑣𝑣   (ton/n mile), bunker consumption rate of autonomous vessel 𝑣𝑣 from its 

   origin to the bottleneck; 

𝑞𝑞2𝑣𝑣   (ton/n mile), bunker consumption rate of autonomous vessel 𝑣𝑣 from the 

   bottleneck to its destination; 

𝑥𝑥𝜏𝜏𝜏𝜏   binary variable that equals 1 if autonomous vessel 𝑣𝑣 arrives at the  

   bottleneck at 𝜏𝜏, and 0 otherwise; 

𝜉𝜉𝜏𝜏𝜏𝜏   binary variable that equals 1 if autonomous vessel 𝑣𝑣’s travel time from 

   entering the bottleneck to arriving at its destination port is 𝜏𝜏, and 0  

   otherwise. 

Appendix B. The Outer Approximation and its Computational 

Limitation 

First, divide the objective error bound 𝜀𝜀  ($) by the fuel price 𝛼𝛼  and the total 

distance traveled by all the autonomous vessels. This yields the error bound for each 

nautical mile traveled, denoted by 𝜀𝜀 ̅(tons/n mile): 

𝜀𝜀̅ = 𝜀𝜀
𝛼𝛼

× 1
∑ (𝐿𝐿1𝑣𝑣+𝐿𝐿2𝑣𝑣)𝑣𝑣∈𝑉𝑉

.                    (B1) 

In what follows, we derive piecewise linear approximations 𝑄𝑄�1𝑣𝑣(𝜆𝜆𝑣𝑣) and 𝑄𝑄�2𝑣𝑣(𝜇𝜇𝑣𝑣) 

(∀𝑣𝑣 ∈ 𝑉𝑉) that satisfy: 

|𝑄𝑄�1𝑣𝑣(𝜆𝜆𝑣𝑣) − 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)| ≤ 𝜀𝜀,̅ |𝑄𝑄�2𝑣𝑣(𝜇𝜇𝑣𝑣) − 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣)| ≤ 𝜀𝜀 ,̅∀𝑣𝑣 ∈ 𝑉𝑉           (B2) 
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Note that 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)  and 𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣)  represent the bunker consumption per nautical 

mile for autonomous vessel 𝑣𝑣 ’s two sailing legs. Thus, Equation (B2) guarantees 

(theoretically) that the error in the bunker consumption cost is no greater than 𝜀𝜀. 

We next present an algorithm that generates a convex piecewise-linear function 

𝑄𝑄�1𝑣𝑣(𝜆𝜆𝑣𝑣) with as few linear segments as possible. The algorithm for generating 𝑄𝑄�2𝑣𝑣(𝜇𝜇𝑣𝑣) 

is similar and thus omitted for brevity. 

The algorithm uses the first-order derivative of 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)  and the inverse of 

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣). These are presented as follows: 

𝑄𝑄′1𝑣𝑣(𝜆𝜆𝑣𝑣) = −𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣𝐿𝐿1𝑣𝑣𝑏𝑏𝑣𝑣(𝜆𝜆𝑣𝑣)−𝑏𝑏𝑣𝑣−1,∀𝑣𝑣 ∈ 𝑉𝑉               (B3) 

𝑄𝑄1𝑣𝑣−1(𝑞𝑞) = 𝐿𝐿1𝑣𝑣 �
𝑞𝑞
𝑎𝑎𝑣𝑣
�
− 1
𝑏𝑏𝑣𝑣 ,∀𝑣𝑣 ∈ 𝑉𝑉.                  (B4) 

Since 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) is a monotonically decreasing function, its inverse function exists 

and is also a decreasing function. Thus, 0 < 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) ≤ 𝜀𝜀 ̅ if 𝜆𝜆𝑣𝑣 ≥ 𝑄𝑄1𝑣𝑣−1(𝜀𝜀)̅ . This 

condition means the approximation 𝑄𝑄�1𝑣𝑣(𝜆𝜆𝑣𝑣) can be set to zero when 𝜆𝜆𝑣𝑣 ≥ 𝑄𝑄1𝑣𝑣−1(𝜀𝜀)̅; see 

Fig. B1. 

The algorithm is illustrated in Fig. B1. We start from a point that is 𝜀𝜀 ̅below curve 

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) at the left end of the feasible range of 𝜆𝜆𝑣𝑣, denoted by (𝜆𝜆𝑣𝑣1 ,𝑄𝑄1𝑣𝑣1 ) in the figure. 

Draw a tangent line from that point to curve 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣). End this line segment when the 

error from 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)  increases to 𝜀𝜀 ̅ again, i.e., at point (𝜆𝜆𝑣𝑣2 ,𝑄𝑄1𝑣𝑣2 )  in the figure. This 

tangent line will be the first one in the set of linear approximation functions. Similarly, 

draw the second tangent line to 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) from point (𝜆𝜆𝑣𝑣2 ,𝑄𝑄1𝑣𝑣2 ). Repeat this process until 
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𝜆𝜆𝑣𝑣𝑘𝑘 ≥ min{𝑄𝑄1𝑣𝑣−1(𝜀𝜀)̅, 𝜆𝜆𝑣𝑣max} . If 𝜆𝜆𝑣𝑣𝑘𝑘 < 𝜆𝜆𝑣𝑣max , add line 0 ∙ 𝜆𝜆𝑣𝑣 + 0  to the set of linear 

approximation functions. Details of this algorithm are furnished below. 

 
Fig. B1. Illustration of a piecewise linear approximation of 𝑸𝑸𝟏𝟏𝟏𝟏(𝝀𝝀𝒗𝒗). 

However, numerical errors arise in the above process, especially when solving 

Equation (B5) in Algorithm 1 for the point of tangency �𝜆̂𝜆𝑣𝑣𝑘𝑘,𝑄𝑄�1𝑣𝑣𝑘𝑘 �. Inspection of Fig. B1 

reveals that the error would be relatively large under two conditions: (i) where the first-

order derivative of the original bunker consumption function, 𝑄𝑄1𝑣𝑣′ (𝜆𝜆𝑣𝑣), changes slowly, 

or equivalently, where 𝑄𝑄1𝑣𝑣′′ (𝜆𝜆𝑣𝑣) is small; and (ii) where the start point of the tangent line, 

�𝜆𝜆𝑣𝑣𝑘𝑘,𝑄𝑄1𝑣𝑣𝑘𝑘 �, is close to curve 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣). Unfortunately, both conditions are satisfied for our 

bunker consumption function. Condition (ii) becomes stronger when the predefined 

error bound 𝜀𝜀 is smaller. Moreover, the error in �𝜆̂𝜆𝑣𝑣𝑘𝑘,𝑄𝑄�1𝑣𝑣𝑘𝑘 � would be amplified by the 

extrapolation for calculating �𝜆𝜆𝑣𝑣𝑘𝑘+1,𝑄𝑄1𝑣𝑣𝑘𝑘+1�, the start of the next linear segment. Hence, 

the resulting approximation error may exceed the theoretical bound 𝜀𝜀, and it may not 
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diminish as 𝜀𝜀 approaches zero. This could explain why the solution quality of [M2] 

does not match the expectation in Section 2.3. 

Algorithm 1: Generate a piecewise linear approximation of 𝑸𝑸𝟏𝟏𝟏𝟏(𝝀𝝀𝒗𝒗) (𝒗𝒗 ∈ 𝑽𝑽) 

Step 0: Denote Ω the set of approximation lines. Initialize Ω = ∅. Define 𝜆𝜆𝑣𝑣min =

𝐿𝐿1𝑣𝑣/𝑠𝑠𝑣𝑣max , 𝜆̃𝜆𝑣𝑣 = 𝑄𝑄1𝑣𝑣−1(𝜀𝜀)̅ , and 𝜆𝜆𝑣𝑣max  by (10a). Set 𝑘𝑘 = 1 , 𝜆𝜆𝑣𝑣𝑘𝑘 = 𝜆𝜆𝑣𝑣min , and 𝑄𝑄1𝑣𝑣𝑘𝑘 =

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣𝑘𝑘) − 𝜀𝜀.̅  

Step 1: Add to Ω  the line (numbered line 𝑘𝑘 ) that passes point (𝜆𝜆𝑣𝑣𝑘𝑘,𝑄𝑄1𝑣𝑣𝑘𝑘 )  and is 

tangential to 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣). The point of tangency, denoted by (𝜆̂𝜆𝑣𝑣𝑘𝑘,𝑄𝑄�1𝑣𝑣𝑘𝑘 ), can be obtained 

by solving the following equation for 𝜆̂𝜆𝑣𝑣𝑘𝑘 (and 𝑄𝑄�1𝑣𝑣𝑘𝑘 = 𝑄𝑄1𝑣𝑣�𝜆̂𝜆𝑣𝑣𝑘𝑘�):  

𝑄𝑄′1𝑣𝑣�𝜆̂𝜆𝑣𝑣
𝑘𝑘� = 𝑄𝑄1𝑣𝑣�𝜆𝜆�𝑣𝑣𝑘𝑘�−𝑄𝑄1𝑣𝑣𝑘𝑘

𝜆𝜆�𝑣𝑣𝑘𝑘−𝜆𝜆𝑣𝑣𝑘𝑘
.                     (B5) 

Equation of line 𝑘𝑘 is given by:  

𝑄𝑄1𝑣𝑣 − 𝑄𝑄1𝑣𝑣𝑘𝑘 = 𝑄𝑄′1𝑣𝑣�𝜆̂𝜆𝑣𝑣
𝑘𝑘�(𝜆𝜆𝑣𝑣 − 𝜆𝜆𝑣𝑣𝑘𝑘).                   (B6) 

Set 𝜃𝜃1𝑣𝑣𝑣𝑣 = 𝑄𝑄′1𝑣𝑣�𝜆̂𝜆𝑣𝑣
𝑘𝑘� and 𝛾𝛾1𝑣𝑣𝑣𝑣 = 𝑄𝑄1𝑣𝑣𝑘𝑘 − 𝑄𝑄′1𝑣𝑣�𝜆̂𝜆𝑣𝑣

𝑘𝑘�𝜆𝜆𝑣𝑣𝑘𝑘. Then (B6) can be written as:  

𝑄𝑄1𝑣𝑣 = 𝜃𝜃1𝑣𝑣𝑣𝑣𝜆𝜆𝑣𝑣 + 𝛾𝛾1𝑣𝑣𝑣𝑣.                     (B7) 

Step 2: If the gap between line 𝑘𝑘  and 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)  is not greater than 𝜀𝜀̅ when 𝜆𝜆𝑣𝑣 =

min�𝜆̃𝜆𝑣𝑣, 𝜆𝜆𝑣𝑣max�, i.e.,  

𝑄𝑄′1𝑣𝑣�𝜆̂𝜆𝑣𝑣
𝑘𝑘��min�𝜆̃𝜆𝑣𝑣, 𝜆𝜆𝑣𝑣max� − 𝜆𝜆𝑣𝑣𝑘𝑘� + 𝑄𝑄1𝑣𝑣𝑘𝑘 ≥ 𝑄𝑄1𝑣𝑣�min�𝜆̃𝜆𝑣𝑣, 𝜆𝜆𝑣𝑣max�� − 𝜀𝜀,̅           (B8) 

go to Step 3.  

Otherwise, there exists a unique point (𝜆𝜆𝑣𝑣𝑘𝑘+1,𝑄𝑄1𝑣𝑣𝑘𝑘+1) on line 𝑘𝑘, such that 𝜆̂𝜆𝑣𝑣𝑘𝑘 < 𝜆𝜆𝑣𝑣𝑘𝑘+1 <

min�𝜆̃𝜆𝑣𝑣, 𝜆𝜆𝑣𝑣max� and 𝑄𝑄1𝑣𝑣𝑘𝑘+1 = 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣𝑘𝑘+1) − 𝜀𝜀.̅ The 𝜆𝜆𝑣𝑣𝑘𝑘+1 can be obtained by solving the 

following equation:  

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣𝑘𝑘+1) − 𝜀𝜀̅ − 𝑄𝑄1𝑣𝑣𝑘𝑘 = 𝑄𝑄′1𝑣𝑣�𝜆̂𝜆𝑣𝑣
𝑘𝑘�(𝜆𝜆𝑣𝑣𝑘𝑘+1 − 𝜆𝜆𝑣𝑣𝑘𝑘).                      (B9) 

Set 𝑘𝑘 = 𝑘𝑘 + 1 and go to Step 1.  

Step 3: Set 𝐾𝐾1𝑣𝑣 = 𝑘𝑘. The 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) is defined by:  

𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) = max{0,𝜃𝜃1𝑣𝑣𝑣𝑣𝜆𝜆𝑣𝑣 + 𝛾𝛾1𝑣𝑣𝑣𝑣 , 𝑘𝑘 = 1,2,⋯ ,𝐾𝐾1𝑣𝑣}.            (B10) 
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Appendix C. Proof of Proposition 3 

We first prove that (2.10a) is an upper bound of the optimal 𝜆𝜆𝑣𝑣. 

Denote 𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣) = 𝛼𝛼[𝐿𝐿1𝑣𝑣𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) + 𝐿𝐿2𝑣𝑣𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣)] + 𝛽𝛽𝑣𝑣𝑝𝑝𝑣𝑣  the total bunker 

consumption and penalty cost for autonomous vessel 𝑣𝑣 ∈ 𝑉𝑉. We next examine the value 

of 𝜆𝜆𝑣𝑣 that minimizes 𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣). To this end, we consider that 𝜇𝜇𝑣𝑣 is fixed for now. 

First, when 𝜆𝜆𝑣𝑣 ≤ −𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝜇𝜇𝑣𝑣 + 𝑇𝑇𝑣𝑣, 𝑝𝑝𝑣𝑣 = 0; see (2.4a) and (2.6e). In this case, 

𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣)  is decreasing with 𝜆𝜆𝑣𝑣  because 𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣)  is a decreasing function of 𝜆𝜆𝑣𝑣 ; see 

(2.7a). 

On the other hand, when 𝜆𝜆𝑣𝑣 > −𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝜇𝜇𝑣𝑣 + 𝑇𝑇𝑣𝑣, 𝑝𝑝𝑣𝑣 = 𝑇𝑇𝑣𝑣0 + 𝜆𝜆𝑣𝑣 + 𝜔𝜔 + 𝜇𝜇𝑣𝑣 − 𝑇𝑇𝑣𝑣 

which increases linearly with 𝜆𝜆𝑣𝑣. Now 𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣,𝜇𝜇𝑣𝑣) becomes: 

𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣) = 𝛼𝛼[𝐿𝐿1𝑣𝑣𝑄𝑄1𝑣𝑣(𝜆𝜆𝑣𝑣) + 𝐿𝐿2𝑣𝑣𝑄𝑄2𝑣𝑣(𝜇𝜇𝑣𝑣)] + 𝛽𝛽𝑣𝑣(𝑇𝑇𝑣𝑣0 + 𝜆𝜆𝑣𝑣 + 𝜔𝜔 + 𝜇𝜇𝑣𝑣 − 𝑇𝑇𝑣𝑣) , if 𝜆𝜆𝑣𝑣 >

−𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝜇𝜇𝑣𝑣 + 𝑇𝑇𝑣𝑣.                           (C1) 

The partial derivative of 𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣) on 𝜆𝜆𝑣𝑣 is given by: 

𝜕𝜕𝑐𝑐𝑣𝑣
𝜕𝜕𝜆𝜆𝑣𝑣

= 𝛼𝛼𝐿𝐿1𝑣𝑣𝑄𝑄′1𝑣𝑣(𝜆𝜆𝑣𝑣) + 𝛽𝛽𝑣𝑣 = −𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣𝐿𝐿1𝑣𝑣𝑏𝑏𝑣𝑣+1

(𝜆𝜆𝑣𝑣)𝑏𝑏𝑣𝑣+1 + 𝛽𝛽𝑣𝑣 .              (C2) 

Moreover, the second-order partial derivative of 𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣) on 𝜆𝜆𝑣𝑣 is: 

𝜕𝜕2𝑐𝑐𝑣𝑣
𝜕𝜕𝜆𝜆𝑣𝑣2

= 𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣(𝑏𝑏𝑣𝑣+1)𝐿𝐿1𝑣𝑣𝑏𝑏𝑣𝑣+1

(𝜆𝜆𝑣𝑣)𝑏𝑏𝑣𝑣+2 > 0                   (C3) 

Thus, when 𝜆𝜆𝑣𝑣 > −𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝜇𝜇𝑣𝑣 + 𝑇𝑇𝑣𝑣 and 𝜇𝜇𝑣𝑣 is fixed, 𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣) is convex with 

respect to 𝜆𝜆𝑣𝑣  and is minimized when 𝜕𝜕𝑐𝑐𝑣𝑣
𝜕𝜕𝜆𝜆𝑣𝑣

= 0 . This yields 𝜆̅𝜆𝑣𝑣 = 𝐿𝐿1𝑣𝑣 �
𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1 . 
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Combining the monotonically decreasing segment of 𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣)  when 𝜆𝜆𝑣𝑣 ≤ −𝑇𝑇𝑣𝑣0 −

𝜔𝜔 − 𝜇𝜇𝑣𝑣 + 𝑇𝑇𝑣𝑣 and the convex segment when 𝜆𝜆𝑣𝑣 > −𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝜇𝜇𝑣𝑣 + 𝑇𝑇𝑣𝑣, we have: 

𝜆̿𝜆𝑣𝑣 = max �𝑇𝑇𝑣𝑣 − 𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝜇𝜇𝑣𝑣, 𝐿𝐿1𝑣𝑣 �
𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1�.              (C4) 

This is the value of 𝜆𝜆𝑣𝑣  that minimizes 𝑐𝑐𝑣𝑣(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣)  for a given 𝜇𝜇𝑣𝑣 . It is thus the 

optimal 𝜆𝜆𝑣𝑣 for autonomous vessel 𝑣𝑣 if the interactions between autonomous vessels at 

the bottleneck are ignored and 𝜇𝜇𝑣𝑣 is given. Considering that 𝜇𝜇𝑣𝑣 ≥
𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max, any value of 𝜆𝜆𝑣𝑣 

that is greater than the following bound will only increase autonomous vessel 𝑣𝑣’s cost: 

𝜆̿𝜆𝑣𝑣max = max �𝑇𝑇𝑣𝑣 − 𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max , 𝐿𝐿1𝑣𝑣 �

𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1�.             (C5) 

Now consider the interactions between autonomous vessels. Autonomous vessel 

𝑣𝑣 may not be able to pass the bottleneck at its own cost-minimizing time 𝜆̿𝜆𝑣𝑣 (which is 

capped by 𝜆̿𝜆𝑣𝑣max) because it may have to make way for other autonomous vessels. We 

consider a worst-case scenario, where the present autonomous vessel 𝑣𝑣 must make way 

for all the other |𝑉𝑉| − 1 autonomous vessels. Moreover, the other |𝑉𝑉| − 1 autonomous 

vessels arrive at the bottleneck at 𝜆̿𝜆𝑣𝑣 + 𝐻𝐻 − 𝜖𝜖̂, 𝜆̿𝜆𝑣𝑣 + 3𝐻𝐻 − 2𝜖𝜖̂, 𝜆̿𝜆𝑣𝑣 + 5𝐻𝐻 − 3𝜖𝜖̂, …, 𝜆̿𝜆𝑣𝑣 +

(𝐻𝐻 − 𝜖𝜖̂) + (2𝐻𝐻 − 𝜖𝜖̂)(|𝑉𝑉| − 2) , where 𝜖𝜖̂  is a very small positive value. In this case, 

autonomous vessel 𝑣𝑣 cannot pass the bottleneck between 𝜆̿𝜆𝑣𝑣 and 𝜆̿𝜆𝑣𝑣 + (2𝐻𝐻 − 𝜖𝜖̂)(|𝑉𝑉| −

1)  without delaying other autonomous vessels. In other words, it must pass the 

bottleneck either before 𝜆̿𝜆𝑣𝑣  or after 𝜆̿𝜆𝑣𝑣 + (2𝐻𝐻 − 𝜖𝜖̂)(|𝑉𝑉| − 1) . Since 𝜆̿𝜆𝑣𝑣 + (2𝐻𝐻 −



 

81 

𝜖𝜖̂)(|𝑉𝑉| − 1) < 𝜆̿𝜆𝑣𝑣 + 2(|𝑉𝑉| − 1)𝐻𝐻 ≤ 𝜆̿𝜆𝑣𝑣max + 2(|𝑉𝑉| − 1)𝐻𝐻, any value of 𝜆𝜆𝑣𝑣 greater than 

𝜆̿𝜆𝑣𝑣max + 2(|𝑉𝑉| − 1)𝐻𝐻 will be suboptimal. 

Finally, it is obvious that 𝜆𝜆𝑣𝑣max ≥
𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max. Combining the above results, we have: 

𝜆𝜆𝑣𝑣max = max �max �𝑇𝑇𝑣𝑣 − 𝑇𝑇𝑣𝑣0 − 𝜔𝜔 − 𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max , 𝐿𝐿1𝑣𝑣 �

𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1� + 2(|𝑉𝑉| − 1)𝐻𝐻, 𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max� ,∀𝑣𝑣 ∈ 𝑉𝑉,       (C6) 

which is (2.10a). 

Upper bound (2.10b) can be proved similarly. The only difference is that 

autonomous vessel 𝑣𝑣 does not need to make way for other autonomous vessels after 

passing the bottleneck. Thus, term 2(|𝑉𝑉| − 1)𝐻𝐻 in (C6) will not appear in the upper 

bound of the optimal 𝜇𝜇𝑣𝑣.                      □ 

Appendix D. First-come, First-serve Scheduling Strategy 

The vessel scheduling solution and the associated cost under the FCFS strategy 

are formulated in three steps.  

Step 1 minimizes each vessel 𝑣𝑣’s schedule regardless of the minimum headway 

constraint. The model is denoted by [M4-𝑣𝑣] for vessel 𝑣𝑣 ∈ 𝑉𝑉:  

[M4-𝒗𝒗]  

min 𝑐𝑐(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣) = 𝛼𝛼 �𝐿𝐿1𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣
𝜆𝜆𝑣𝑣
�
𝑏𝑏𝑣𝑣

+ 𝐿𝐿2𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣
𝜇𝜇𝑣𝑣
�
𝑏𝑏𝑣𝑣
� + 𝛽𝛽𝑣𝑣𝑝𝑝𝑣𝑣                (D1a) 

subject to 

𝑝𝑝𝑣𝑣 = max{0,𝑇𝑇𝑣𝑣0 + 𝜆𝜆𝑣𝑣 + 𝜔𝜔 + 𝜇𝜇𝑣𝑣 − 𝑇𝑇𝑣𝑣}                           (D1b) 
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𝜆𝜆𝑣𝑣 ≥
𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max                           (D1c) 

𝜇𝜇𝑣𝑣 ≥
𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max.                           (D1d) 

[M4-𝑣𝑣] can be solved analytically. From the analysis in Appendix C, we know that 

for a fixed 𝜇𝜇𝑣𝑣, the optimal 𝜆𝜆𝑣𝑣 is:  

𝜆𝜆𝑣𝑣∗ (𝜇𝜇𝑣𝑣) = max �𝑇𝑇𝑣𝑣 − (𝑇𝑇𝑣𝑣0 + 𝜔𝜔 + 𝜇𝜇𝑣𝑣), 𝐿𝐿1𝑣𝑣 �
𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1 , 𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max�.                  (D2) 

For simplicity, we define 𝜆̃𝜆𝑣𝑣 = max �𝐿𝐿1𝑣𝑣 �
𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1 , 𝐿𝐿1𝑣𝑣
𝑠𝑠𝑣𝑣max� and 𝑇𝑇�𝑣𝑣 = 𝑇𝑇𝑣𝑣 − (𝑇𝑇𝑣𝑣0 +

𝜔𝜔). Thus, 𝜆𝜆𝑣𝑣∗ (𝜇𝜇𝑣𝑣) is simplified as: 

𝜆𝜆𝑣𝑣∗ (𝜇𝜇𝑣𝑣) = max�𝑇𝑇�𝑣𝑣 − 𝜇𝜇𝑣𝑣, 𝜆̃𝜆𝑣𝑣�.                (D3a) 

Note that if we swap 𝜆𝜆𝑣𝑣  with 𝜇𝜇𝑣𝑣  and 𝐿𝐿1𝑣𝑣  with 𝐿𝐿2𝑣𝑣  in (D1a-d), the formulation 

remains the same. Thus, we can similarly write the optimal 𝜇𝜇𝑣𝑣 as a function of 𝜆𝜆𝑣𝑣: 

𝜇𝜇𝑣𝑣∗(𝜆𝜆𝑣𝑣) = max{𝑇𝑇�𝑣𝑣 − 𝜆𝜆𝑣𝑣, 𝜇𝜇�𝑣𝑣}.                (D3b) 

where 𝜇𝜇�𝑣𝑣 = max �𝐿𝐿2𝑣𝑣 �
𝛼𝛼𝑎𝑎𝑣𝑣𝑏𝑏𝑣𝑣
𝛽𝛽𝑣𝑣

�
1

𝑏𝑏𝑣𝑣+1 , 𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max�.  

Combining (D3a-b), we consider the following two cases illustrated in Fig. D1a 

and b.  
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Fig. D1. Illustration of the two cases. 

 Case 1: when 𝜆̃𝜆𝑣𝑣 + 𝜇𝜇�𝑣𝑣 ≤ 𝑇𝑇�𝑣𝑣 (Fig. D1a). The reader can verify that the optimal 

solution of (𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣) satisfying (D3a-b) must lie in the red line segment in Fig. D1a, 

which is described by: 𝜆𝜆𝑣𝑣 + 𝜇𝜇𝑣𝑣 = 𝑇𝑇�𝑣𝑣, 𝜆̃𝜆𝑣𝑣 ≤ 𝜆𝜆𝑣𝑣 ≤ 𝑇𝑇�𝑣𝑣 − 𝜇𝜇�𝑣𝑣. In this case, 𝑝𝑝𝑣𝑣 = 0. Thus, 

𝑐𝑐(𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣) ≡ 𝑐̃𝑐(𝜆𝜆𝑣𝑣) = 𝛼𝛼𝑎𝑎𝑣𝑣 �𝐿𝐿1𝑣𝑣 �
𝐿𝐿1𝑣𝑣
𝜆𝜆𝑣𝑣
�
𝑏𝑏𝑣𝑣

+ 𝐿𝐿2𝑣𝑣 �
𝐿𝐿2𝑣𝑣

𝑇𝑇�𝑣𝑣−𝜆𝜆𝑣𝑣
�
𝑏𝑏𝑣𝑣
�.            (D4) 

 The first- and second-order derivatives of 𝑐̃𝑐(𝜆𝜆𝑣𝑣) are: 

𝑑𝑑𝑐𝑐̃
𝑑𝑑𝜆𝜆𝑣𝑣

= 𝛼𝛼𝑎𝑎𝑣𝑣 �−𝑏𝑏𝑣𝑣𝐿𝐿1𝑣𝑣
𝑏𝑏𝑣𝑣+1𝜆𝜆𝑣𝑣

−𝑏𝑏𝑣𝑣−1 + 𝑏𝑏𝑣𝑣𝐿𝐿2𝑣𝑣
𝑏𝑏𝑣𝑣+1�𝑇𝑇�𝑣𝑣 − 𝜆𝜆𝑣𝑣�

−𝑏𝑏𝑣𝑣−1�                   (D5) 

𝑑𝑑2𝑐𝑐̃
𝑑𝑑𝜆𝜆𝑣𝑣2

= 𝛼𝛼𝑎𝑎𝑣𝑣 �𝑏𝑏𝑣𝑣(𝑏𝑏𝑣𝑣 + 1)𝐿𝐿1𝑣𝑣
𝑏𝑏𝑣𝑣+1𝜆𝜆𝑣𝑣

−𝑏𝑏𝑣𝑣−2 + 𝑏𝑏𝑣𝑣(𝑏𝑏𝑣𝑣 + 1)𝐿𝐿2𝑣𝑣
𝑏𝑏𝑣𝑣+1�𝑇𝑇�𝑣𝑣 − 𝜆𝜆𝑣𝑣�

−𝑏𝑏𝑣𝑣−2� > 0.        (D6) 

 Thus, 𝑐̃𝑐(𝜆𝜆𝑣𝑣) is a convex function, and its minimizer can be derived by letting 

𝑑𝑑𝑐𝑐̃
𝑑𝑑𝜆𝜆𝑣𝑣

= 0: 

𝜆̂𝜆𝑣𝑣 = 𝐿𝐿1𝑣𝑣𝑇𝑇�𝑣𝑣
𝐿𝐿1𝑣𝑣+𝐿𝐿2𝑣𝑣

.                      (D7) 

 Considering the boundary constraint 𝜆̃𝜆𝑣𝑣 ≤ 𝜆𝜆𝑣𝑣 ≤ 𝑇𝑇�𝑣𝑣 − 𝜇𝜇�𝑣𝑣, the optimal solution 

to (D1a-d) is: 
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�
𝜆𝜆𝑣𝑣∗ = mid�𝜆̃𝜆𝑣𝑣, 𝜆̂𝜆𝑣𝑣,𝑇𝑇�𝑣𝑣 − 𝜇𝜇�𝑣𝑣�

𝜇𝜇𝑣𝑣∗ = 𝑇𝑇�𝑣𝑣 − 𝜆𝜆𝑣𝑣∗
,                  (D8) 

where function mid(∙) returns the middle one of the three arguments.  

 Case 2: when 𝜆̃𝜆𝑣𝑣 + 𝜇𝜇�𝑣𝑣 > 𝑇𝑇�𝑣𝑣 (Fig. D1b). The reader can verify that there exists 

a unique optimal solution satisfying (D3a-b): (𝜆𝜆𝑣𝑣∗ , 𝜇𝜇𝑣𝑣∗) = �𝜆̃𝜆𝑣𝑣, 𝜇𝜇�𝑣𝑣�.  

From the optimal solution (𝜆𝜆𝑣𝑣∗ , 𝜇𝜇𝑣𝑣∗) , we derive the vessels’ arrival time at the 

bottleneck, 𝑥̅𝑥𝑣𝑣 = 𝑇𝑇𝑣𝑣0 + 𝜆𝜆𝑣𝑣∗ ,∀𝑣𝑣 ∈ 𝑉𝑉. 

Step 2: Sort {𝑥̅𝑥𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉} in ascending order. Denote the sorted sequence by �𝑥̅𝑥(𝑖𝑖)�, 

i.e., 𝑥̅𝑥(1) ≤ 𝑥̅𝑥(2) ≤ ⋯ ≤ 𝑥̅𝑥(|𝑉𝑉|) . Incorporate constraints (2.2d) in the following way. 

Define a new sequence �𝑥𝑥�(𝑖𝑖)� such that 𝑥𝑥�(1) = 𝑥̅𝑥(1) and 𝑥𝑥�(𝑖𝑖+1) = max�𝑥̅𝑥(𝑖𝑖+1), 𝑥𝑥�(𝑖𝑖) + 𝐻𝐻�, 

∀𝑖𝑖 ∈ {1,2, … , |𝑉𝑉| − 1}. Note that {𝑥̅𝑥𝑣𝑣} indicate the vessels’ desired passage times while 

�𝑥𝑥�(𝑖𝑖)� represent their actual passage times considering the minimum headway 𝐻𝐻. 

Step 3: Given the updated vessel arrival times at the bottleneck, �𝑥𝑥�(𝑖𝑖)�, re-optimize 

𝜇𝜇𝑣𝑣 for each vessel 𝑣𝑣 ∈ 𝑉𝑉 using the following model denoted by [M5-𝑣𝑣]:  

[M5-𝒗𝒗]  

min 𝛼𝛼𝐿𝐿2𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣
𝜇𝜇𝑣𝑣
�
𝑏𝑏𝑣𝑣

+ 𝛽𝛽𝑣𝑣𝑝𝑝𝑣𝑣                             (D9a) 

subject to: 

𝑝𝑝𝑣𝑣 = max{0, 𝑥𝑥�𝑣𝑣 + 𝜔𝜔 + 𝜇𝜇𝑣𝑣 − 𝑇𝑇𝑣𝑣}                      (D9b) 

𝜇𝜇𝑣𝑣 ≥
𝐿𝐿2𝑣𝑣
𝑠𝑠𝑣𝑣max.                           (D9c) 
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where 𝑥𝑥�𝑣𝑣 is obtained from �𝑥𝑥�(𝑖𝑖)�. [M5-𝑣𝑣] can be simply solved using (D3b) by letting 

𝜆𝜆𝑣𝑣 = 𝑥𝑥�𝑣𝑣 − 𝑇𝑇𝑣𝑣0 . Denote the optimal solution of [M5-𝑣𝑣 ] by 𝜇𝜇𝑣𝑣∗∗  and the corresponding 

delay by 𝑝𝑝𝑣𝑣∗∗. 

Given the above solution, calculate the total cost by: ∑ �𝛼𝛼 �𝐿𝐿1𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿1𝑣𝑣
𝜆𝜆𝑣𝑣∗
�
𝑏𝑏𝑣𝑣

+𝑣𝑣∈𝑉𝑉

𝐿𝐿2𝑣𝑣𝑎𝑎𝑣𝑣 �
𝐿𝐿2𝑣𝑣
𝜇𝜇𝑣𝑣∗∗
�
𝑏𝑏𝑣𝑣
� + 𝛽𝛽𝑣𝑣𝑝𝑝𝑣𝑣∗∗�. Note in the FCFS solution that 𝑥𝑥�𝑣𝑣 is not always equal to 𝑇𝑇𝑣𝑣0 +

𝜆𝜆𝑣𝑣∗  (𝑣𝑣 ∈ 𝑉𝑉). When the two are not equal, the difference is vessel 𝑣𝑣’s waiting time at the 

bottleneck. 

Appendix E. Descending Penalty Scheduling Strategy 

The vessel scheduling solution and the total cost under the DP strategy are also 

derived in three steps. 

Step 1 is the same as Step 1 of the FCFS strategy (see Appendix D), which solves 

[M4-𝑣𝑣] for each vessel 𝑣𝑣 ∈ 𝑉𝑉 and calculates its arrival time at the bottleneck, 𝑥̅𝑥𝑣𝑣. 

Step 2: Adjust the vessel schedules in the descending penalty order to ensure 

constraints (2.2d) are satisfied. 

 Step 2.1: Sort the penalty rates {𝛽𝛽𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉} in descending order. Denote the 

resulting sequence by �𝛽𝛽[𝑖𝑖], 𝑖𝑖 = 1,2, … , |𝑉𝑉|� , i.e., 𝛽𝛽[1] ≥ 𝛽𝛽[2] ≥ ⋯ ≥ 𝛽𝛽[|𝑉𝑉|] . Write the 

corresponding sequence of 𝑥̅𝑥𝑣𝑣 as �𝑥̅𝑥[𝑖𝑖], 𝑖𝑖 = 1,2, … , |𝑉𝑉|�. 

 Step 2.2: Denote 𝑥𝑥�[𝑖𝑖]  the actual arrival time of vessel [𝑖𝑖]  at the bottleneck 

under the DP strategy. Initialize 𝑥𝑥�[𝑖𝑖] = 𝑥̅𝑥[𝑖𝑖], ∀𝑖𝑖 ∈ {2,3, … , |𝑉𝑉|}. Set 𝑚𝑚 = 2. 
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 Step 2.3: Find 𝑙𝑙,𝑛𝑛 < 𝑚𝑚  such that 𝑙𝑙 = arg max
𝑖𝑖<𝑚𝑚

�𝑥𝑥�[𝑖𝑖]|𝑥𝑥�[𝑖𝑖] ≤ 𝑥𝑥�[𝑚𝑚]�  and 𝑛𝑛 =

arg min
𝑖𝑖<𝑚𝑚

�𝑥𝑥�[𝑖𝑖]|𝑥𝑥�[𝑖𝑖] ≥ 𝑥𝑥�[𝑚𝑚]� . Define ∆1= 𝑥𝑥�[𝑚𝑚] − 𝑥𝑥�[𝑙𝑙]  and ∆2= 𝑥𝑥�[𝑛𝑛] − 𝑥𝑥�[𝑚𝑚] . If 𝑙𝑙  does not 

exist (i.e., 𝑥𝑥�[𝑚𝑚] < 𝑥𝑥�[𝑖𝑖],∀𝑖𝑖 < 𝑚𝑚 ), set ∆1= ∞ ; and if 𝑛𝑛  does not exist (i.e., 𝑥𝑥�[𝑚𝑚] >

𝑥𝑥�[𝑖𝑖],∀𝑖𝑖 < 𝑚𝑚), set ∆2= ∞. 

 Step 2.4: Consider the following four cases regarding ∆1 and ∆2. 

 Case 1: ∆1,∆2≥ 𝐻𝐻 . Set 𝑚𝑚 ← 𝑚𝑚 + 1 . If 𝑚𝑚 > |𝑉𝑉| , go to Step 3. Otherwise, 

return to Step 2.3. 

 Case 2: ∆1< 𝐻𝐻  and Δ1 + Δ2 ≥ 2𝐻𝐻 . Set 𝑥𝑥�[𝑚𝑚] = 𝑥𝑥�[𝑙𝑙] + 𝐻𝐻 . Set 𝑚𝑚 ← 𝑚𝑚 + 1 . If 

𝑚𝑚 > |𝑉𝑉|, go to Step 3. Otherwise, return to Step 2.3. 

 Case 3: ∆1< 𝐻𝐻 and Δ1 + Δ2 < 2𝐻𝐻. Set 𝑥𝑥�[𝑚𝑚] = 𝑥𝑥�[𝑛𝑛] + 𝐻𝐻. Return to Step 2.3. 

 Case 4: ∆1≥ 𝐻𝐻 and ∆2< 𝐻𝐻. Set 𝑥𝑥�[𝑚𝑚] = 𝑥𝑥�[𝑛𝑛] + 𝐻𝐻. Return to Step 2.3. 

Step 3: Given the updated vessel arrival times at the bottleneck, �𝑥𝑥�[𝑖𝑖]�, re-optimize 

𝜇𝜇𝑣𝑣 for each vessel 𝑣𝑣 ∈ 𝑉𝑉 using [M5-𝑣𝑣] in Appendix D. Calculate vessel 𝑣𝑣’s arrival time 

𝑦𝑦�𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉. Calculate the total cost under the DP strategy using (2.2a). 

Under the DP strategy, the vessels experience no waiting time because the central 

operation manager will determine each vessel’s speed profile and arrival time at the 

bottleneck. 
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Appendix F. Notation of the Optimal Scheduling of Autonomous 

Vessel Trains in a Hub-and-Spoke Network 

Indices: 

𝑖𝑖, 𝑗𝑗   indices of ports, 𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃, 𝑖𝑖 = 0 indicates the hub port; 

𝑙𝑙   index of a leader ship or a vessel train led by ship 𝑙𝑙, 𝑙𝑙 ∈ 𝐿𝐿; 

𝑓𝑓,𝑘𝑘   indices of autonomous follower ships, 𝑓𝑓, 𝑘𝑘 ∈ 𝐹𝐹; 

Sets: 

𝑃𝑃   set of all the ports, 𝑃𝑃 ≡ {0, 1, … , |𝑃𝑃|}; 

𝐿𝐿   set of all the conventional leader ships, 𝐿𝐿 ≡ {1,2,⋯ , |𝐿𝐿|}; 

𝐹𝐹   set of all the autonomous follower ships, 𝐹𝐹 ≡ {|𝐿𝐿| + 1,⋯ , |𝐿𝐿| + |𝐹𝐹|}; 

Parameters: 

𝑡𝑡𝑖𝑖,𝑗𝑗   direct travel time from port 𝑖𝑖 to port 𝑗𝑗, 𝑡𝑡𝑖𝑖,𝑗𝑗 = 𝑡𝑡𝑗𝑗,𝑖𝑖, 𝑡𝑡𝑖𝑖,𝑖𝑖 = 0, 𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃; 

𝑑𝑑𝑙𝑙, 𝑑𝑑𝑓𝑓  destination port of leader ship 𝑙𝑙 ∈ 𝐿𝐿 or follower ship 𝑓𝑓 ∈ 𝐹𝐹; 

𝑇𝑇𝑙𝑙, 𝑇𝑇𝑓𝑓  the earliest departure time of leader ship 𝑙𝑙 ∈ 𝐿𝐿 or follower ship 𝑓𝑓 ∈ 𝐹𝐹  

   from the hub port; 

𝑇𝑇𝑙𝑙′, 𝑇𝑇𝑓𝑓′  the latest expected arrival time of leader ship 𝑙𝑙 ∈ 𝐿𝐿 or follower ship 𝑓𝑓 ∈ 

   𝐹𝐹 at its destination port; 

𝑐𝑐𝑙𝑙, 𝑐𝑐𝑓𝑓  sailing cost rate of leader ship 𝑙𝑙 ∈ 𝐿𝐿 or follower ship 𝑓𝑓 ∈ 𝐹𝐹 per unit  

   travel time; 

𝑝𝑝𝑙𝑙, 𝑝𝑝𝑓𝑓  penalty cost rate for leader ship 𝑙𝑙 ∈ 𝐿𝐿 or follower ship 𝑓𝑓 ∈ 𝐹𝐹 per unit  

   delay at its destination port; 

𝑢𝑢𝑙𝑙   the maximum number of follower ships that can be led by 𝑙𝑙 ∈ 𝐿𝐿; 

𝑀𝑀   a sufficiently large number; 
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Decision variables: 

𝜙𝜙𝑙𝑙,𝑓𝑓   binary variable that equals 1 if 𝑙𝑙 ∈ 𝐿𝐿 is the leader of 𝑓𝑓 ∈ 𝐹𝐹, and 0  

   otherwise; 

𝛽𝛽𝑘𝑘,𝑓𝑓
𝑙𝑙    binary variable that equals 1 if, in vessel train 𝑙𝑙 ∈ 𝐿𝐿, 𝑓𝑓 ∈ 𝐹𝐹 arrives at its 

   destination port next to 𝑘𝑘 ∈ 𝐹𝐹, and 0 otherwise; 

𝜏𝜏𝑙𝑙   actual departure time of leader ship or vessel train 𝑙𝑙 ∈ 𝐿𝐿 from the hub port; 

𝜏𝜏𝑓𝑓   actual departure time of follower ship 𝑓𝑓 ∈ 𝐹𝐹 from the hub port; 

𝜆𝜆𝑙𝑙, 𝜆𝜆𝑓𝑓  actual travel time of leader ship/vessel train 𝑙𝑙 ∈ 𝐿𝐿 or follower ship 𝑓𝑓 ∈ 𝐹𝐹; 

Auxiliary variables: 

𝜃𝜃𝑙𝑙, 𝜃𝜃𝑓𝑓  tardiness of leader ship 𝑙𝑙 ∈ 𝐿𝐿 or follower ship 𝑓𝑓 ∈ 𝐹𝐹. 
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