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Abstract

With the rapid development of modern measurement technologies, datasets con-

taining both discrete and continuous variables are more and more commonly seen in

different areas. In particular, the dimensions of the discrete and continuous variables

can oftentimes be very high. Discriminant analysis for mixed variables under the tra-

ditional fixed dimension setting has been well studied. Despite the recent progress

made in modelling high-dimensional data for continuous variables, there is a scarcity

of methods that can deal with a mixed set of variables. To fill this gap, this thesis

develops a novel approach for classifying high-dimensional observations with mixed

variables. So in this thesis, we aim to develop a simple yet useful classification rule

that addresses both the high dimensionality and the mixing structure of the variables

simultaneously.

In Chapter 2-3 we introduce our framework building on a location model, in

which the distributions of the continuous variables conditional on categorical ones

are assumed Gaussian. We overcome the challenge of having to split data into

exponentially many cells, or combinations of the categorical variables, by kernel

smoothing. And provide new perspectives for its bandwidth choice to ensure an

analogue of Bochner’s Lemma, which is different to the usual bias-variance tradeoff.

We show that the two sets of parameters in our model can be separately estimated

and provide a penalized likelihood method for their estimation.

In Chapter 4, some theoretical results are shown. Efficient direct estimation
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schemes are developed to obtain consistent estimators of the discriminant compo-

nents.

In Chapter 5, we conduct simulation studies to investigate the performance of

proposed semiparametric location model. Results on the estimation accuracy and

the misclassification rates are established, and the competitive performance of the

proposed classifier is illustrated by extensive simulation and real data studies.
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Chapter 1

Introduction

1.1 Bayes’ LDA

As a traditional classification technique, linear discriminant analysis(LDA) is

commonly used in modern statistical research. It works well when data are in con-

tinuous type with low dimension.

Consider X as a set of random variables under the assumption of Gaussian

distribution. L is the class label of X with the prior probabilities πi = Pr(L =

i), i = 1, 2, .... The classical Bayes rule classifies a new observation into class i if

πifi(X) is the maximum among all classes. The linear form can be shown as:

l(X) = arg max
i

{
µTi Σ−1X − 1

2
µTi Σ−1µi + log πi

}

When L = 2, it would be reduced to a binary problem. In that case, the new

observation would be classified into class 1 if π1f1 > π2f2. Intuitively,

(
X −

(
µ1 + µ2

2

))T
Σ−1 (µ1 − µ2) + log

π1

π2

> 0

For simplicity of representation, we will focus on the binary problem with only
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two classes.

1.2 Motivation

High dimensional data sets containing both discrete and continuous variables

arise frequently in practice in the past decades. For example, many diagnosis studies

in medical research entail the collection of both high dimensional continuous gene

expressions and categorical features such as gender, indicator of medical history and

indicators of the presence of certain symptoms. As highlighted by Fan et al. (2017),

such a structure poses new challenges in statistical modeling. For discriminant analy-

sis, several approaches have been developed in the early literature for mixed variables

under the traditional fixed dimensional setting, and recent research focuses mainly on

data sets with high dimensional continuous variables. Promising approaches taking

into account both the high dimensionality and the mixing nature of the data sets are

still missing. In this thesis, we aim to develop a simple yet useful classification rule

that addresses both high dimensionality and the mixing nature of the variables, with

sound theoretical justifications. In particular, we are interested in a more challenging

case where the dimensions of the discrete variables and the continuous variables can

both be very high.

Now we consider the problem of classifying very high-dimensional observations

into categories. In a great many cases, the datasets can contain a mixed set of vari-

ables including discrete and continuous ones, both of which can be high-dimensional

while the sample size is small. There are some examples below:

• Example 1. In clinical practice, it is common to collect data that come with

continuous variables and discrete variables. The dimension of these features can

be relatively high, while the number of patients is relatively small, especially

for serious or rare diseases. For example, in the Hepatocellular Carcinoma
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dataset that we considered in the real data study, there are 165 patients with

22 continuous variables which are mainly from patients’ medical test results,

and 118 binary variables which are mainly indicators of related symptoms and

medical histories.

• Example 2. In integrative analysis, the main objective is to combine different

datasets for a comprehensive study. One of the possible possibilities is to inte-

grate continuous-type data with discrete-type data. For example, the Breast

Cancer Gene Expression Profiles data that we considered in our analysis con-

sists of 489 mRNA Z-Scores (which are measurements of the relative expression

of patients’ genes to the reference population), and a set of indicators of mu-

tation for 173 genes. A strong motivation for combining these two datasets is

that together they may provide more information about the mortality risk, the

main quantity of interest.

• Example 3. In addition to medical field, datasets with a mixed set of vari-

ables can be collected in other fields. For example, the Australian Credit Card

Approval dataset we considered in our real data analysis concerns credit card

applications. The dataset contains person information which consists of differ-

ent types of data.

In order to deal with these mixed variables, a simple strategy is to treat the categor-

ical variables as continuous ones and apply existing classification methods developed

for continuous variables. Such a treatment ignores the nature of categorical variables

and intuitively incurs loss of information. Here we present a simple example. Con-

sider a two-class classification problem where there are one continuous variable X

and one binary categorical variable U . Assume that the prior for the class label L is

balanced, i.e., P (L = 1) = P (L = 2) = 0.5, and that P (U = 0) = P (U = 1) = 0.5

for both classes. For Class 1, suppose the conditional distribution of X given U
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satisfies

X|U = 0 ∼ N(−1, 1), X|U = 1 ∼ N(1, 1).

Likewise, for Class 2, assume that

X|U = 0 ∼ N(1, 1), X|U = 1 ∼ N(−1, 1).

If we simply treat U as a continuous variable that takes value 0 or 1, and seek for

the best linear classifier, the misclassification rate for the optimal linear classifier

will be easily seen as 1
2

[
1
2

+ Φ(−1)
]
, which is more than twice of the optimal Bayes

misclassification rate Φ(−1). Details are as follows:

(1). With some simple calculations it can be shown that the optimal Bayes classifier

is: classify (X,U) into class 1 if XU > 0, and into class 2 otherwise. The correspond-

ing misclassification rate can be easily established. (2). Without loss of generality,

consider a classifier that classify (X,U) into class 1 if and only if X+aU > b for some

a and b. Let Z be a random variable following the standard normal distribution.

The misclassification rate of the linear classifier can be computed as:

R(a, b) =
1

4
P (X + aU > b|L = 2, U = 0) +

1

4
P (X + aU > b|L = 2, U = 1)

+
1

4
P (X + aU < b|L = 1, U = 0) +

1

4
P (X + aU < b|L = 1, U = 1).

Note that P (X + aU > b|L = 2, U = 0) = P (X > b|X ∼ N(1, 1)) = P (Z > b − 1).

Similarly, we have P (X + aU > b|L = 2, U = 1) = P (Z > b − a + 1), P (X + aU <

b|L = 1, U = 0) = P (Z < b+1) and P (X+aU < b|L = 1, U = 1) = P (Z < b−a−1).

Consequently, we have

R(a, b) =
1

2
+

1

4
P (b− 1 < Z < b+ 1)− 1

4
P (b− a− 1 < Z < b− a+ 1)

≥ 1

2
− 1

4
P (−1 < Z < 1)
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=
1

4
+

1

2
Φ(−1),

where the equal sign in the second inequality is obtained when a = b → ∞. An

immediate message from this simple example is that, in order to obtain a sound

classifier, we may have to handle the effects of categorical variables and continuous

variable differently, and seek for ways of capturing their interactions. In our setting,

the challenge on the need to handle mixed variables is further exasperated by the

high-dimensionality of the problem.

1.3 Literature review

For discriminant analysis, while there are early works in investigating how to

model mixed variables under the traditional fixed dimensional setting, recent re-

search has focused almost exclusively on datasets with high dimensional continu-

ous variables. Methodologies that can effectively take into account both the high-

dimensionality and the mixing nature of the datasets are scarce.

When the dimensionality is fixed, discriminant analysis with discrete and con-

tinuous data has been well studied. Some simple summaries are listed in Hamid

(2010).

• A simple strategy is transforming the two different types of variables into one

type. For example, Cochran and Hopkins (1961) transformed the discrete

variables into continuous type.

• Another approach is to establish different discriminant rules for different types

of variables and combine them to obtain a final classifier, see Xu et al. (1992)

for example.

• Krzanowski (1975, 1980) first proposed linear discriminant rules based on the

location model (2.1).
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Later, more comprehensive discriminant rules were proposed based on logistic dis-

crimination, kernel estimation and the location model; see for example Aitchison

and Aitken (1976), Knoke (1982), Asparoukhov and Krzanowski (2000), Kokonendji

and Ibrahim (2016) and the references therein. Variable selection for location model

based discriminant rules and further extension to quadratic rules and a nonparamet-

ric smoothing version can be found in Daudin (1986), Krzanowski (1993), Krzanowski

(1994), Krzanowski (1995), Asparoukhov and Krzanowski (2000) and Mahat et al.

(2007). Among these approaches, location model based on discriminant rules have

received most attentions and were shown to be comparable or better than other

procedures under suitable Conditions (Asparoukhov and Krzanowski, 2000; De Leon

et al., 2011). However, these approaches are not applicable to the case that the

dimension of the discrete variables and the dimension of the continuous variables are

both large. In particular, in terms of theoretical analysis, these discriminant rules

are either algorithmic without theoretical justification, or statistically justified under

the fixed dimensional assumption. For better discussion of existing literatures, we

introduce some notations related to the location model and the optimal Bayes rule

first.

We focus on binary problems where observations are from two classes. Let (Z,U)

be a random observation and denote its class label as L, where L ∈ {1, 2}. Here Z is

a p dimensional continuous variable and U is a d dimensional discrete variable. Both

p and d are very large. We shall assume that all variables in U are binary since for

variables that have more than two categories, we can further reduce it to the binary

case by introducing a set of dummy binary variables (Krzanowski, 1993). Denote the

probability function of (Z,U) in class i as fi(Z,U) for i = 1, 2. It is well known that

Bayes’ rule is optimal in that it achieves the smallest misclassification rate among all

discriminant rules; see for example Anderson. The Bayes rule classifies a data point
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to the first class if and only if

π1f1(Z,U) > π2f2(Z,U),

where P (L = i) = πi, i = 1, 2 is the prior probability of an observation coming

from class i. As an application of the Bayes rule, consider the case where there

are no discrete variables. Classical linear discriminant analysis (LDA) assume that

observations from class i follow N(µi,Σ), a multivariate Gaussian distribution with

class-specific mean µi ∈ Rp, and a common covariance matrix Σ ∈ Rp×p, an appli-

cation of the Bayes rule gives rise to the familiar linear discriminant analysis (LDA)

rule which assigns observation to class 1 if and only if

(µ1 − µ2)TΣ−1

[
Z− µ1 + µ2

2

]
+ log

π1

π2

> 0. (1.1)

The Gaussianity assumption of the observations with a common covariance matrix

is particularly appealing since the resulting Bayes rule is a simple linear function

of the variable with an index Σ−1(µ1 − µ2) and an intercept log{π1/π2}. Indeed, a

widely studied and popular approach in high-dimensional classification, as discussed

in previous work below, is to assume a sparse index that gives rise to the so-called

sparse LDA (Cai and Liu, 2011; Fan et al., 2012; Mai et al., 2012; Mai and Zou,

2013).

Under the high dimensional setting with discrete variables absent, there is a large

growing literature devoted to the study of classification. Bickel and Levina (2004)

first showed that using estimates developed under the fixed-dimensionality scenario

for high-dimensional problems gives a classifier equivalent to random guessing in the

worst case scenario. For the LDA in (1.1), there are many approaches proposed to

deal with the high-dimensionality. In recent years, a plethora of methods built on

suitable sparsity Conditions have been proposed to estimate (1.1). Under suitable
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sparsity conditions on µ1, µ2 and Σ, Shao et al. (2011) proposed to shrink the en-

tries of their empirical estimates. By assuming that Σ−1(µ1 − µ2) is sparse, several

papers proposed to estimate this quantity by minimizing a penalized loss function

that constrains its `1 norm (Cai and Liu, 2011; Fan et al., 2012; Mai et al., 2012;

Mai and Zou, 2013). Mai et al. (2019) further studied a multiclass extension of the

LDA. Jiang et al. (2018) proposed a sparse quadratic discriminant analysis method

that allows the within-class covariance matrices to differ. Jiang et al. (2020) investi-

gated a scenario where the covariance matrices are varying with a fixed-dimensional

continuous variable. Despite these new developments in high dimensional LDA for

model (1.1), it is challenging to develop proper estimation procedures for (2.1), when

the dimensions of the continuous and discrete variables, namely p and d, are both

large. On one hand, for a given d, there will be 2d locations and hence there will

be a lot of empty cells unless the sample size grows exponentially in d (Hall, 1981).

On the other hand, the means and covariance matrix in (2.1) are now functions of

the location, i.e., the high dimensional discrete variable. Of all the papers reviewed,

(Jiang et al., 2020) is the closest to this thesis. However, unlike the dynamic LDA

where the index variable is defined on a compact, continuous and finite dimensional

space (Jiang et al., 2020), the space {0, 1}d is much irregular and as d tends to in-

finity, one would encounter a small ball probability issue analogous to that occurs

in infinite dimensional spaces (Hong and Linton, 2016), bringing an extra layer of

complexity in establishing theoretical properties.

To tackle these challenges, we propose a new semiparametric model based on

the location model in which the classification rule relies on a functional classifica-

tion direction β(u) and a parametric intercept η(u). We show that the classification

direction β(u) and the intercept η(u) can be independently estimated, and over-

come the curse of dimensionality of estimating these two high-dimensional functions

by penalized likelihood. Crucially for estimating β(u), we are the first to leverage
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traditional kernel smoothing with modern development on small ball probability un-

der high dimensionality which can be of independent interest. More specifically,

although asymptotic properties of kernel smoothing estimators for regression func-

tions of infinite order have been rigorously derived in Hong and Linton (2016), the

case considered in this paper is very different and more challenging in that high

dimensionality appears in both the regression function and the binary covariates.

In particular, we have identified that unlike classical kernel smoothing where the

bandwidth is usually chosen to balance the bias and variance of a kernel smoothing

estimator, the bandwidth here must be chosen to be large enough to ensure an ana-

logue of Bochner’s Lemma to hold for high dimensional discrete variables. Built on

this, we have further established concentration inequalities for the kernel smoothing

estimators, which are essential for obtaining consistency under high dimensionality.

To the best of our knowledge, this is the first attempt to establish a theoretical

framework to evaluate the concentration behavior of kernel smoothing estimators for

high dimensional regression functions with high dimensional independent covariates.

Lastly, we have integrated all the estimation errors and derived the asymptotic mis-

classification rate of the proposed semiparametric classifier, from which one gains

useful insights on how the estimation errors of the classification direction and the

intercept affect the classification accuracy.

The remainder of this thesis is organized as follows. In Chapter 2, we introduce

the separability property of the semiparametric location model, and provide more

details on the estimation of its parameters. In Chapter 3, we first provide a motivat-

ing proposition which claims that the classification direction β(u) and the intercept

η(u) can be independently estimated, followed by efficient estimation schemes for

estimating β(u) and η(u). In Chapter 4, we provide consistency results for the es-

timation of β(u) and η(u), and evaluate the asymptotic misclassification rate of the

estimated classifier. Also, technical proofs are deferred to this chapter. In Chapter

9



5, we conduct extensive numeric studies on simulated data and seven real datasets

to illustrate the competitive performance of our method, with comparison to some

modern approaches. Some discussion about this work is in Chapter 6.
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Chapter 2

A Semiparametric Location Model

The location model treats the discrete random vector U as a location or cell

and assumes that conditional on U, the continuous random vector Z follows a

location-dependent multivariate normal distribution. More specifically, following

Olkin and Tate (1961), we assume that the probability an individual selected at

random from class i falls in cell U = u is pi(u), and conditional on U, Z|U ∼

N(µi(U),Σ(U)), i = 1, 2. The common discrete variable dependent covariance Σ(U)

is inspired by the assumption in LDA. Denote the posterior probability of (Z,U)

from class i as P (i|Z,U), i = 1, 2. Under the location model, the optimal Bayes’ rule

reduces to a functional linear classifier: classifies (Z,UZ) into class 1 if

log
P (1|Z,U)

P (2|Z,U)
= log

π1f1(Z,U)

π2f2(Z,U)
(2.1)

= [µ1(U)− µ2(U)]TΣ−1(U)

[
Z− µ1(U) + µ2(U)

2

]
+ log

π1p1(U)

π2p2(U)
> 0,

and into class 2 otherwise. Denote β(U) := Σ−1(U)[µ1(U) − µ2(U)], and η(U) :=

log π1p1(U)
π2p2(U)

. The classifier in (2.1) can be written as

β(U)T
[
Z− µ1(U) + µ2(U)

2

]
+ η(U) > 0, (2.2)

11



which is a functional linear classifier in Z, with a location-dependent direction β(U)

and a location-dependent intercept η(U). In our setting, β(u) is a p-dimensional

vector for each fixed u, and u itself is also high-dimensional. As a result, the dimen-

sionality of the model is extremely high. In the setting of this thesis, we considered

U as a vector of binary variables. And we have

• For β(U), we have 2d p-dimensional vectors to estimate;

• For η(U), we have 2d different values to estimate.

Thus, the estimation problem even after assuming the location model is much

more challenging than that of the LDA in which only a scalar intercept and a p-

dimensional vector need estimating. Given a relative small sample size, there is no

hope that either β(U) or η(U) can be reasonably estimated unless some kind of

structures are assumed. In this thesis, we focus on a general scenario where β(U)

is treated as a function which varies smoothly over the locations U, and η(U) is

modelled by a parametric first order approximation. Some of the properties regarding

the location model (e.g., Proposition 3.1) and our theoretical framework could be

adapted to cases where more stringent assumptions are imposed to further simplify

the model complexity. Because of the dependence of β(U) on U , we shall refer to

our model as the semiparametric location model.

Denote the sample in population 1 as (U1,X1), . . . , (Un1 ,Xn1) and in population

2 as (V1,Y1), . . . , (Vn2 ,Yn2). We now summarize the main steps for estimating the

parameters based on this sample. First, we observe that the estimation of β(U) and

that of η(U) can be made separate, thanks to a key result provided in Proposition

3.1. Note that from Proposition 3.1 we have:

η(u) = log
P (L = 1|U = u)

P (L = 2|U = u)
,

12



i.e., η(u) is the logit transformation of the probability P (L = 1|U = u). Con-

sequently, η(U) can be simply obtained by fitting a logistic regression with U

as covariates, I(L = 1) as the response, and η(u) as the discriminant function.

Here I(·) is the indicator function. Note that for any injective function G(u) :

{0, 1}d 7→ R, it can be easily shown by induction that G(u) can be written as

a polynomial of u = (u1, . . . , ud) ∈ {0, 1}d. Specifically, there exist constants

a0; a1, . . . , ap; a1,2, a1,3, . . . , ap−1,p; . . . ; a1,2...,d, such that

G(u) = a0 +
d∑
i=1

aiui +
∑

1≤i<j≤d

ai,juiuj + · · ·+ a1,2...,du1u2 · · ·ud.

Suppose log p1(u) and log p2(u) are injective functions such that

log πjpj(u) (2.3)

= a
(j)
0 +

d∑
i=1

a
(j)
i ui +

∑
1≤i<j≤d

ai,juiuj + · · ·+ a1,2...,du1u2 · · ·ud, j = 1, 2,

where the intercepts and first order coefficients between the two classes, a
(1)
0 , a

(1)
1 , . . . , a

(1)
p

and a
(2)
0 , a

(2)
1 , . . . , a

(2)
p , are potentially different, while the higher order coefficients

a1,2, . . . , a1,2...,d are assumed to be common between the two classes.

In the context we consider in this thesis where d (i.e., the dimension of U) grows

to infinity, one popular approach to fit this logistic regression is to focus on the lower

order terms in η(U). That is, only the main effects or lower-order interaction terms

of the variables in U are considered. In this thesis, we focus on the main effects

model by modelling η(U) as

η(u) = A0 +
d∑
i=1

Aiui. (2.4)

13



with Ai = a
(1)
i − a

(2)
i , i = 0, . . . , d and A = (A1, ..., Ad). The assumption of common

higher order coefficients between the two classes in (2.3) is analogous to the common

covariance assumption in the classical LDA setting. Importantly, since all the ui’s

are binary variables, the probability of a higher order term ui1ui2 · · ·uik taking the

value 1 tends to zero in a geometric rate. Hence the expansion (2.3) can in general

be well approximated by the lower order terms in practice. This is in contrast to

the unusual lower order approximation widely applied in linear models where the

rational is to achieve certain amount of parsimony. In particular, (2.4) is true if we

only consider model (2.3) with the first two terms only. We note that in addition to

achieve parsimony of modelling, the approximation using low order terms for binary

variables is more meaningful than that in the usual linear model.

The estimation of β(U) = Σ−1(U)[µ1(U) − µ2(U)] is more challenging. Our

strategy is to estimate µi(U) and Σ(U) first via kernel smoothing. Since U is dis-

crete, we employ Hamming distance to measure the closeness of two vectors of dis-

crete values. Theoretically, we handle the diverging dimension of U by analyzing

normalized versions of the kernel weights, and analyze the interplay between the

bandwidth and the dimensionality in the kernel smoothing via a novel analysis on

the small ball probability to ensure suitable convergence. Different from classical

kernel smoothing theory where the bandwidth only affects the estimation bias and

variance, the bandwidth here is crucial for the integrated small ball probability that

is the normalizing constant in our case. Interestingly, as indicated by Lemma 4.2 ,

the bandwidth should be large enough to guarantee an analogue of Bochner’s Lemma

(Bosq, 2012) to hold. As a result, we establish concentration inequalities for the nor-

malized terms in the kernel estimators, and further show that the misclassification

rate of our proposed classifier converges to the optimal Bayes risk under appropriate

assumptions.
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We remark that the semiparametric location model is much more complicated

than the well-known semiparametric varying coefficient model in that (i) the varying

coefficient β(U) is a function of U, which is a high dimensional binary variable, while

in the literature, the dynamic variable is usually univariate and continuous. Existing

estimation approaches such as spline methods for semiparametric varying coefficient

models (Wei et al., 2011) are no longer valid. (ii) the covariate U is the same as

the dynamic factor, introducing possible confounding in the estimation of β(u) and

η(u) = A0 +ATu. Fortunately, in the next chapter, we show that the direction β(u)

and the intercept η(u) can be independently estimated, and hence direct estimations

can be efficiently constructed.
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Chapter 3

Estimation

In our semiparametric location classifier in (2.2), η(u) is a linear function of u

and β(u) is a function of the location u. In this chapter we will first look at the

classification problem from the perspective of minimizing the expected misclassifica-

tion rate, from which it is found that although β(u) and η(u) both appear in the

Bayes rule (2.2), they can be independently estimated. We will then discuss how to

estimate β(u) and η(u).

3.1 Separability of β(u) and η(u)

For a given location U = u, consider a general discriminant rule

D(b(u), b0(u)) := b(u)T [Z− µ1(u) + µ2(u)

2
] + b0(u), (3.1)

which classifies a new observation (Z,u) to class 1 if and only if D(b(u), b0(u)) > 0.

Under the location model, the misclassification rate of the classifier D(b(u), b0(u))

over all locations can be seen as

R(D(b(u), b0(u)) =
∑

u∈{0,1}d
[π1p1(u)Pu (2|1) + π2p2(u)Pu (1|2)], (3.2)

17



where Pu(i|j) is the conditional misclassification probability of classifying Z from

class i to class j given the location u. Let Φ(·) be the cumulative distribution

function of the standard normal distribution. Under the Gaussianity assumption we

have

Pu(i|j) = Φ

(
b0(u)− b(u)T [µi(u)− µj(u)]/2√

b(u)TΣ(u)b(u)

)
. (3.3)

The purpose of classification is to seek a classification direction b(u) and the cor-

responding intercept b0(u) such that the expected misclassification rate in (3.2) is

minimized. Although the estimation of these two arguments are interrelated, we

show in the following proposition that their estimation can be separated.

Proposition 3.1. Assume the location model hold, and let β(u) and η(u) be the op-

timal classification direction and intercept in the Bayes classifier (2.2), respectively.

Consider D(b(U), 0), a special case of the general discriminant rule (3.1) with a zero

intercept: b0(u) = 0. We have

β(u) = Σ−1(u)[µ1(u)− µ2(u)]

= arg min
b(u)∈D

E{R(b(u), 0)},

where D is the set of all functions from {0, 1}d to R, and E is the expectation. On

the other hand, for the optimal intercept η(u) we have: η(u) = log P (L=1|U=u)
P (L=2|U=u)

.

Proof. Given the classification direction b(u), to minimize (3.2), it can be shown

after some simple calculation that the optimal intercept is given as

b̃0(u) =
b(u)TΣ(u)b(u)

[µ1(u)− µ2(u)]Tb(u)
log

(
π1p1(u)

π2p2(u)

)
.

Plugging the above equation into (3.2), we obtain that, to minimize the expected
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misclassification rate, it is equivalent to find b(u) that minimizes

R(D(b(u), b̃0(u)) (3.4)

=
∑

u∈{0,1}d

[
π1p1(u)Φ

(
−∆

2
− η(u)

∆

)
+ π2p2(u)Φ

(
−∆

2
+
η(u)

∆

)]
,

where η(u) = log
(
π1p1(u)
π2p2(u)

)
, and ∆ = [µ1(u)−µ2(u)]Tb(u)√

b(u)TΣ(u)b(u)
. For a given u ∈ {0, 1}d,

denote

Ru(∆, η) = π1p1(u)Φ

(
−∆

2
− η(u)

∆

)
+ π2p2(u)Φ

(
−∆

2
+
η(u)

∆

)
.

By taking the partial derivation with the respect to ∆, it can be shown that

∂Ru(∆, c)

∂∆
= −

√
π1p1(u)π2(u)p2(u)exp

{
−
(
c2(u)

∆2
+

1

4
∆2

)
/2

}
< 0,

which implies that to minimize the expected misclassification rate, it is equivalent to

look for b(u) that maximizes ∆(u). Now let’s consider the set of zero-intercept linear

classifiers defined as in (3.1) with b0(u) = 0. Consequently (3.3) can be written as

R(1|2) = R(2|1) = Φ
(
−∆(u)

2

)
, and the expected misclassification rate (3.2) reduces

to:

R(b(u)) =
∑

u∈{0,1}d
[π1p1(u) + π2p2(u)]Φ

(
−∆(u)

2

)
= Φ

(
−∆(u)

2

)
,

which is also minimized when ∆(u) is maximized. Consequently the optimal zero-

intercept classification direction is also the minimizer of (3.4).

On the other hand, by the definition of η(u), we have:

η(u) = log
π1p1(u)

π2p2(u)
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= log
P (U = u, L = 1)

P (U = u, L = 2)

= log
P (L = 1|U = u)

P (L = 2|U = u)

This proves the claim on η(u).

This proposition ensures that the estimation β(u) and η(u) can be conducted

separately. In particular, it indicates that the estimation of β(u) can be conducted

by simply setting η(u) = 0.

3.2 Estimation of β(u)

Denote the estimate of µ1(u), µ2(u) and Σ(u) as µ̂1(u), µ̂2(u) and Σ̂(u) re-

spectively. To estimate β(u) at any cell u, we will resort to kernel smoothing.

Recall that our sample n = n1 + n2 consists of (U1,X1), . . . , (Un1 ,Xn1) from popu-

lation 1 and sample consists of (V1,Y1), . . . , (Vn2 ,Yn2) from population 2. For any

u1,u2 ∈ {0, 1}d, define the normalized Hamming distance between u1 and u2 as

< u1,u2 >=
|u1 − u2|1

d
,

where | · |1 is the `1 norm. Our estimation of the mean and covariance matrix is based

on the following Nadaraya-Watson type local smoothing. For given bandwidths hx

and hy, we estimate µ1 and µ2 as

µ̂1(u) =

n1∑
j=1

exp{−(dhx)
−1|Uj − u|1}Xj∑n1

j=1 exp{−(dhx)−1|Uj − u|1}
,

µ̂2(u) =

n2∑
j=1

exp{−(dhy)
−1|Vj − u|1}Yj∑n2

j=1 exp{−(dhy)−1|Vj − u|1}
.
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Based on these, we shall establish the theory for the kernel smoothing estima-

tors. Note that Σ(u) = E[X(u)X(u)T ] − EX(u)(EX(u))T = E[Y(u)Y(u)T ] −

EY(u)(EY(u))T . We estimate Σ(u) as

Σ̂(u) =
n1

n
Σ̂1(u) +

n2

n
Σ̂2(u),

where

Σ̂1(u) =

∑n1

j=1 exp{−(dhxx)
−1|Uj − u|1}XjX

T
j∑n1

j=1 exp{−(dhxx)−1|Uj − u|1}
− µ̂1(u)µ̂1(u)T ,

Σ̂2(u) =

∑n2

j=1 exp{−(dhyy)
−1|Vj − u|1}YjY

T
j∑n2

j=1 exp{−(dhyy)−1|Vj − u|1}
− µ̂2(u)µ̂2(u)T ,

with the bandwidth parameters hxx and hyy controlling the smoothness of the esti-

mators. By noting that given u, β(u) is the minimizer of the convex loss function

R(β(u)) := β(u)TΣ(u)β(u)−2β(u)T [µ1(u)−µ2(u)], we estimate β(u) by minimizing

the following penalized loss function

β̂(u) := arg min
b∈Rp

bT Σ̂(u)b− 2bT (µ̂1(u)− µ̂2(u)) + λβ |β(u)|1 , (3.5)

at each u, where λβ > 0 is a tuning parameter, and µ̂1, µ̂2 and Σ̂ are kernel estimators

of µ1, µ2 and Σ discussed above and defined in Chapter 3 Section 3.2. Because β(U)

and η(U) can be estimated separately, λβ in (3.6) can be independently chosen

without referencing to the estimation of η(u). In particular, Proposition 3.1 implies

that the choice of λβ can be determined by minimizing the misclassification rate

when the intercept η(U) is set to be zero.
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3.3 Estimation of η(u)

Note that η(u) = log π1p1(u)
π2p2(u)

= log P (U=u,L=1)
P (U=u,L=2)

= log P (L=1|U=u)
P (L=2|U=u)

. Under the

semiparametric location model we have,

log
P (L = 1|U = u)

P (L = 2|U = u)
= A0 + ATu,

which corresponds to the well known logistic regression model. Therefore, given the

samples U1, . . . ,Un1 ; and V1, . . . ,Vn2 , we propose to estimate (A0,A) by minimizing

the following penalized entropy loss:

(Â0, Â) = arg min
A0∈R,A∈Rd

1
n

{∑n1

i=1

[
−(A0 + ATUi) + log(1 + exp{A0 + ATUi})

]
(3.6)

+
∑n2

j=1 log(1 + exp{A0 + ATVi})
}

+ λη|A|1,

where R = (−∞,∞), |A|1 denotes the `1 norm of A, and λη > 0 is a tuning

parameter.
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Chapter 4

Theoretical Results

Notations here: For a k × p matrix M = (Mij)k×p we denote the vector l∞

norm induced matrix norm as ‖M‖L := max1≤i≤k
∑p

j=1 |Mij|, and denote ‖M‖∞ =

max1≤i≤k,1≤j≤p |Mij|. Write the jth component of Xi as Xij and denote Yij likewise.

With some abuse of notations, for a given u ∈ {0, 1}d, we denote ∆u = U − u

and Nu = |U − u|1, where U is a random variable with probability mass function

p1(U) or p2(U), depending on whether U is from class 1 or 2. We use m(u) as a

generic notation to denote any of the following conditional mean functions: E[Xk
1i|u],

E[Y k
1i|u], E[(X1iX1j)

k|u], and E[(Y1iY1j)
k|u] with k = 1 or 2, 1 ≤ i, j ≤ p. We denote

a � b if a/b → ∞ and a � b if a = O(b) and b = O(a). Throughout this thesis,

c, C, C0, C1, C2, . . . refer to some generic constants that may take different values in

different places.

4.1 Concentration inequalities

To study the property of the proposed estimators, we make the following as-

sumptions.

(C1). There exists a constant B ∈ (0, 0.5] such that B ≤ d−1ENu ≤ 1 − B holds

for any u ∈ {0, 1}d. There exist constants C > 0 and 0 ≤ α < 1
2

such that
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for any u ∈ {0, 1}d, E(
∑d

i=1W
(i)
u )k ≤ Ck!d1+α(k−2) for any k ≥ 2, where

Wu = (W
(1)
u , . . . ,W

(d)
u )T = ∆u − E∆u.

(C2). Write n = n1 + n2. We assume that n1 � n2, log(p+d)
n

+ log(p+d)

d log2 n
→ 0, and

for h = hx, hy, hxx or hyy, there exists a positive constant C > 0 such that

log(d+n)
h2d

≤ C.

(C3). For any u ∈ {0, 1}d and t > 0, denote

κu(t) :=
E[m(U)−m(u)] exp{−(dt)−1Nu}

E exp{−(dt)−1Nu}
,

and let κ(t) = supu∈{0,1}d κu(t). We assume that κ(t)→ 0 as t→ 0 and d→∞.

(C4). There exists a positive constant M such that sup1≤i≤p,u∈{0,1}d EX
4
1i(u) ≤M <

∞ and sup1≤i≤p,u∈{0,1}d EY
4

1i(u) ≤ M < ∞. There exists a constant MΣ > 1

such that

M−1
Σ ≤ inf

u∈{0,1}d
λ1(Σ(u)) ≤ sup

u∈{0,1}d
λp(Σ(u)) ≤MΣ,

where λ1(Σ(u)) and λp(Σ(u)) are the smallest and largest eigenvalues of Σ(u),

respectively.

Condition (C1) is a regularization condition on the discrete variable U, and is

generally true when the success probability of each element in U is bounded away

from zero and one.

Condition (C2) specifies the order of the bandwidth h. Unlike classical results in

kernel smoothing where h is chosen to balance the bias and variance, our h here has to

be large enough to ensure the small ball probability E exp{−(hd)−1|U−u|1} is large

enough. Specifically, as a form of Bochner’s Lemma, a commonly applied result in

classical kernel smoothing estimation is that 1
h
EK

(
|U−u|1
dh

)
would tend to the density
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function of u for a properly chosen kernel function under some regular conditions

(Bosq, 2012). However, such a conclusion fails in our case. More specifically, suppose

we use a continuous density to approximate the discrete probability mass function of

u as d→∞. With some abuse of notations, let pd(u) be the point mass probability of

u. The approximated density at location u, following traditional arguments, is given

as f(u) = limε→0+
1
ε

∑
uε:d−1|uε−u|1≤ε pd(uε). Similar to the small ball probability issue

in the Hong and Linton (2016), such a density relies on the choice of ε and hence is

not well defined. On the one hand, as d grows, the point mass function at u converges

to zero in an exponential rate. Such a point mass probability can’t be well estimated

unless the sample size also grows exponentially in d. To tackle this issue, other than

evaluating the denominator and numerator in the Nadaraya-Watson type estimators

directly, we establish concentration inequalities for their normalized versions such as

1
n1

∑n1

j=1
exp{−(dhx)−1|Uj−u|1}
E exp{−(dhx)−1|U1−u|1} and 1

n1

∑n1

j=1
exp{−(dhx)−1|Uj−u|1}Xji
E exp{−(dhx)−1|U1−u|1} . Similar to equation

(6) of Hong and Linton (2016), the normalizing coefficient E exp{−(hd)−1|U− u|1}

can be viewed as an integrated small ball probability. Condition (C3) quantifies the

smoothness of m(u). For better understanding, we provide some examples where

(C3) is satisfied.

Example 1. Smoothness on the expected different function on the contour

Note that for any integer s, Cu,s := {U : Nu = s} defines a contour with radius s

from the center u. Let Gu(s) := E[m(U)−m(u)|Nu = s] be the expected difference

of m(·) over all the U’s on the contour Cu,s. (C3) is satisfied if Gu(s) is smooth in

the sense that E[Gu(s) exp{−(dt)−1Nu}]
E exp{−(dt)−1Nu} = κu(t)→ 0.

As an example, suppose for any ui ∈ Cu,1, we have m(ui) = m(u) + su,ui ,

where su,ui is the a “signal” generated from su,ui = I{εu = 0}N(0, d−1σ2), for some

constant σ2 > 0 and some Bernoulli random innovation εu such that P (εu = 1) =

1− εu = 0 = πu. The point mass probability πu controls the proportion of neighbors
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that take the same value as m(u). Condition (C3) is satisfied if πu → 1 fast enough

such that Gu(s) = o(1) for all s = 1, . . . , d.

Example 2. Lipschitz with exponential order

For any u1,u ∈ {0, 1}d, suppose there exists a constant 0 ≤ c ≤ 1 such that,

|m(u1)−m(u)| ≤ κ1 exp

{
|u1 − u|c1 − EN c

u

(d log d)
c
2

}
,

for some κ1 → 0. Note that by Jensen inequality we have for any c ∈ [0, 1], EN c
u ≤

(ENu)c. By Kimball’s inequality, Lemma 4.1, Conditions (C1) and (C4), there exists

a large enough constant C1 > 0 such that

E[m(U)−m(u)] exp{−(dt)−1Nu}
E exp{−(dt)−1Nu}

≤ κ1E exp

{
N c

u − EN c
u

(d log d)
c
2

}

= κ1E exp

{
EN c

u

(d log d)
c
2

·
(
N c

u

EN r
u

− 1

)}

= O

(
κ1 exp

{
C1

(
d

log d

) c
2

·
(

log d

d

) c
2

})

= O(κ1).

Example 3. Centered Lipschitz with exponential order

Existing literature for estimating the distribution of high dimensional discrete vari-

ables sometimes models the probability mass as a function of the centered variable

instead (Grund and Hall, 1993). We hence consider the following Lipschitz condition

centered at the mean of Nu: For any u1,u ∈ {0, 1}d, there exist constants c ≥ 0,

26



C > 0 such that,

|m(u1)−m(u)| ≤ Cκ1 exp

{
(|u1 − u|1 − ENu)c

(d log d)
c
2

}
,

for some κ1 → 0. By Kimball’s inequality and Lemma 4.1 we have,

E[m(U)−m(u)] exp{−(dt)−1Nu}
E exp{−(dt)−1Nu}

=
E[m(U)−m(u)] exp{−(dt)−1(Nu − ENu)}

E exp{−(dt)−1(Nu − ENu)}

≤ Cκ1E exp

{
(Nu − ENu)r

(d log d)
r
2

}
= O(κ1).

Next we establish concentration inequalities for the weighted estimators of the

mean and covariance matrix functions. Note that in practice, the sample size in

either the training dataset or the testing dataset can be much smaller than the total

locations 2d. For simplicity, we shall assume that the region of interest is the ball

centered at v ∈ {0, 1}d with radius r: Bv(r) := {u ∈ {0, 1}d : |u − v|1 ≤ r}. Let

κ(·) be defined as in Condition (C3).

Before going to the main theorems and proofs of them, we firstly introduce some

technical lemmas and establish concentration inequalities for the weighted estimators

of the mean and matrix functions.

Lemma 4.1. Let N = (N1, . . . , Nd)
T ∈ {0, 1}d be a random vector with mean EN =

(p1, . . . , pd)
T . Denote Wi = Ni − pi, and assume that there exist constants C > 0

and 0 ≤ α < 1
2

such that E(
∑d

i=1 Wi)
k ≤ Ck!d1+α(k−2) for any k ≥ 2. For any ε > 0
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such that dαε→ 0, we have, when d is large enough,

P

(
1

d

∣∣∣∣∣
d∑
i=1

Wi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp{−C1dε

2}.

Proof. Note that for any t ≤ cd1−α for some constant c < 1, we have,

E exp

{
t

d

d∑
i=1

Wi

}
= 1 +

t2

2!d2
E
( d∑
i=1

Wi

)2

+
t3

3!d3
E
( d∑
i=1

Wi

)3

+ · · ·

≤ 1 +
Ct2

d
+

Ct3

d2−α + · · ·

≤ 1 +
Ct2

d

[
1 +

t

d1−α + · · ·
]

≤ 1 +
Ct2

d(1− c)

≤ exp

{
Ct2

d(1− c)

}
.

Consequently, by the general form of the Chebyshev-Markov inequalities (c.f. 6.1.a

of Lin and Bai (2011)), we have, for any ε > 0 such that dαε→ 0,

P

(
1

d

d∑
i=1

Wi ≥ ε

)
≤ E exp

{
t

d

d∑
i=1

Wi − tε

}
≤ exp

{
Ct2

d(1− c)
− tε

}
.

Notice that the last term in the above inequality is minimized at t0 = (2C)−1d(1− c)ε.

On the other hand, when t = t0 we have t = o(d1−α). Consequently, when d is large

enough such that t ≤ cd1−α, we have

P

(
1

d

d∑
i=1

Wi ≥ ε

)
≤ exp

{
−d(1− c)ε2

4C

}
.

The lemma is proved by setting C1 = 1−c
4C

.
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We say W1, . . . ,Wd are m-dependent if for any 1 ≤ i ≤ d, Wi is dependent to

at most m variables in {Wj : j 6= i, 1 ≤ j ≤ d}. When W1, . . . ,Wd are m-dependent

for a constant m, we have E(
∑d

i=1Wi)
k ≤ d(m+ 1)k−1. Hence Lemma 4.1 holds for

m-dependent sequences with m = o(dα).

Lemma 4.2. Under Conditions (C1) and (C2) we have, when d is large enough, for

any constant C2 > B and u ∈ {0, 1}d, there exists a constant C1 > 0 such that,

E exp{−(hd)−1Nu} ≥ exp{−(dh)−1ENu}; (4.1)

E exp{−(hd)−1Nu} < 2(n+ d)−C2 + exp

{
−(dh)−1ENu + h−1

√
C1 log(d+ n)

d

}

= exp{−(dh)−1ENu}

(
1 +O

(√
log(d+ n)

h2d

))
. (4.2)

where B ∈ [0.5, 1) is defined as in Condition 1.

Proof. (4.1) is a direct result of Jensen’s inequality.

Recall that Nu = |U− u|1, B ≤ d−1ENu ≤ 1−B ,

E exp{−(hd)−1Nu} = E exp{−(hd)−1|U− u|1}

< 2 exp{−C1dε
2}+ exp{−(dh)−1ENu + h−1ε}

= exp{−(dh)−1ENu}

(
1 +O

(√
log(d+ n)

h2d

))

then (4.2) can be obtained from Lemma 4.1 with ε =
√

C1 log(d+n)
d

.

Similar to Lemma 1 and Corollary 1 in Hong and Linton (2016), Lemma 4.2

above provides an analogue of Bochner’s Lemma for infinite-dimensional discrete

variables. However, the convergence will only be obtained when log(d+n)
h2d

→ 0,

which in return indicates that h should not converge to zero with a rate faster than
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O
(√

log(d+n)
d

)
.

Lemma 4.3. Under Conditions (C1)-(C3), we have, when n1 and n2 are large

enough, for any v ∈ {0, 1}d and a bounded radius r, and any small enough εn > 0,

there exist constants C1 > 0 and C2 > 0 such that

P

(
sup

u∈Bv(r)

∣∣∣∣∣ 1

n1

n1∑
j=1

exp{−(dhx)
−1|Uj − u|1}

E exp{−(dhx)−1|U1 − u|1}
− 1

∣∣∣∣∣ ≥ εn

)
≤ C1d

r exp
{
−C2n1ε

2
n

}
.

and

P

(
sup

u∈Bv(r)

∣∣∣∣∣ 1

n2

n2∑
j=1

exp{−(dhy)
−1|Vj − u|1}

E exp{−(dhy)−1|V1 − u|1}
− 1

∣∣∣∣∣ ≥ εn

)
≤ C1d

r exp
{
−C2n2ε

2
n

}
.

Proof. Denote Wj(u) := n−1
1

( exp{−(dhx)−1|Uj−u|1}
E exp{−(dhx)−1|U1−u|1} − 1

)
. From Condition 2 and

Lemma 4.2, we have, EWj(u)2 ≤ n−2
1 C for some constant C > 0. By Doob’s

submartingale inequality we have, for any u ∈ {0, 1}d, and any t > 0 such that n−1
1 t

is small enough,

P

(∣∣∣∣∣ 1

n1

n1∑
j=1

exp{−(dhx)
−1|Uj − u|1}

E exp{−(dhx)−1|U1 − u|1}
− 1

∣∣∣∣∣ > εn

)
(4.3)

≤ 2 exp{−tεn}Πn1
j=1E exp{tWj(u)}

≤ 2 exp{−tεn}Πn1
j=1{1 + t2EWj(u)2}

≤ 2 exp

{
−tεn +

n1∑
j=1

t2EWj(u)2

}

≤ 2 exp

{
−tεn +

t2C

n1

}
.

Here in the second inequality we have used the fact that EWj(u) = 0 and ex ≤
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1 + x+ x2 when x > 0 is small enough. By setting t = (2C)−1n1εn, we have:

P

(∣∣∣∣∣ 1

n1

n1∑
j=1

exp{−(dhx)
−1|Uj − u|1}

E exp{−(dhx)−1|U1 − u|1}
− 1

∣∣∣∣∣ > εn

)
≤ 2 exp

{
−n1ε

2
n

4C

}
.

By noticing that the cardinality of Bv(r) is less than dr/r!, we have

P

(
sup

u∈Bv(r)

∣∣∣∣∣ 1

n1

n1∑
j=1

exp{−(dhx)
−1|Uj − u|1}

E exp{−(dhx)−1|U1 − u|1}
− 1

∣∣∣∣∣ ≥ εn

)
≤ 2dr

r!
exp

{
−n1ε

2
n

4C

}
.

This proves the first statement of the lemma. The second statement can be obtained

similarly.

The following theorems establish uniform consistency for any u in the ball Bv(r).

Theorem 4.1. Under Conditions (C1)-(C4), when n1 and n2 are large enough, there

exist constant C1 > 0, C2 > 0 such that for any εn > κ(h),

P

(
sup

1≤i≤p,u∈Bv(r)

|µ̂1i(u)− µ1i(u)| > εn

)
≤ C1pd

r exp
{
−C2n1(εn − κ(hx))

2
}
,

and

P

(
sup

1≤i≤p,u∈Bv(r)

|µ̂2i(u)− µ2i(u)| > εn

)
≤ C1pd

r exp
{
−C2n2(εn − κ(hy))

2
}
.

Proof. Denote

Wji(u) := n1
−1

[
exp{−(dhx)

−1|Uj − u|1}Xji

E exp{−(dhx)−1|U1 − u|1}
− µ1i(u)

]
,

and

Bi(u) :=
E exp{−(dhx)

−1|U1 − u|1}X1i(u)

E exp{−(dhx)−1|U1 − u|1}
− µ1i(u).
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Similar to (4.3), for any 0 < t < T , where T is a small enough constant, we have,

P

(∣∣∣∣∣ 1

n1

n1∑
j=1

exp{−(dhx)
−1|Uj − u|1}Xji

E exp{−(dhx)−1|U1 − u|1}
− µ1i(u)

∣∣∣∣∣ > εn

)

≤ 2 exp

{
−tεn + tBi(u) + t2

n1∑
j=1

E(Wji(u))2

}
.

From Condition (C3) we have Bi(u) = κu(hx). On the other hand, by Lemma 4.2

and Condition (C4), we have,

E(n1Wji(u))2 ≤ 2E

∣∣∣∣exp{−(dhx)
−1|Uj − u|1}Xji

E exp{−(dhx)−1|U1 − u|1}
− E exp{−(dhx)

−1|U1 − u|1}µ1i(U1)

E exp{−(dhx)−1|U1 − u|1}

∣∣∣∣2

+2

∣∣∣∣E exp{−(dhx)
−1|U1 − u|1}µ1i(U1)

E exp{−(dhx)−1|U1 − u|1}
− µ1i(u)

∣∣∣∣2
≤ C, (4.4)

for some large enough constant C > 0. Consequently, we have

P

(∣∣∣∣∣ 1

n1

n1∑
j=1

exp{−(dhx)
−1|Uj − u|1}Xji

E exp{−(dhx)−1|U1 − u|1}
− µ1i(u)

∣∣∣∣∣ > εn

)

≤ 2 exp

{
−tεn + tκ(hx) +

Ct2

n1

}

≤ 2 exp

{
−n1(εn − κ(hx))

2

4C

}
.

Together with Lemma 4.3, we have

P

(
sup

1≤i≤p,u∈Bv(r)

|µ̂1i(u)− µ1i(u)| > εn

)
≤ C1pd

r exp
{
−C2n1(εn − κ(hx))

2
}
.
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This proves the first statement of the theorem. Similarly changing

Wji(u) := n2
−1

[
exp{−(dhy)

−1|Vj − u|1}Yji
E exp{−(dhy)−1|V1 − u|1}

− µ2i(u)

]
,

and

Bi(u) :=
E exp{−(dhy)

−1|V1 − u|1}Y1i(u)

E exp{−(dhy)−1|V1 − u|1}
− µ2i(u).

P

(∣∣∣∣∣ 1

n2

n2∑
j=1

exp{−(dhy)
−1|Vj − u|1}Yji

E exp{−(dhy)−1|V1 − u|1}
− µ2i(u)

∣∣∣∣∣ > εn

)

≤ 2 exp

{
−tεn + tBi(u) + t2

n2∑
j=1

E(Wji(u))2

}
.

E(n2Wji(u))2 ≤ 2E

∣∣∣∣exp{−(dhy)
−1|Vj − u|1}Yji

E exp{−(dhy)−1|V1 − u|1}
− E exp{−(dhy)

−1|V1 − u|1}µ2i(V1)

E exp{−(dhy)−1|V1 − u|1}

∣∣∣∣2

+2

∣∣∣∣E exp{−(dhy)
−1|V1 − u|1}µ2i(V1)

E exp{−(dhy)−1|V1 − u|1}
− µ2i(u)

∣∣∣∣2
≤ C,

P

(∣∣∣∣∣ 1

n2

n2∑
j=1

exp{−(dhy)
−1|Vj − u|1}Yji

E exp{−(dhy)−1|V1 − u|1}
− µ2i(u)

∣∣∣∣∣ > εn

)

≤ 2 exp

{
−tεn + tκ(hy) +

Ct2

n2

}

≤ 2 exp

{
−n2(εn − κ(hy))

2

4C

}
.

P

(
sup

1≤i≤p,u∈Bv(r)

|µ̂2i(u)− µ2i(u)| > εn

)
≤ C1pd

r exp
{
−C2n2(εn − κ(hy))

2
}
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Similarly, we can show that:

Theorem 4.2. Under Conditions (C1)-(C4), when n1 and n2 are large enough, there

exist constant C1 > 0, C2 > 0 such that for any εn > κ(h),

P

(
sup

u∈Bv(r)

∥∥∥Σ̂(u)− Σ(u)
∥∥∥
∞
> εn

)
≤ C1p

2dr exp
{
−C2n(εn − κ(h))2

}
.

Proof. Note that
∥∥∥Σ̂(u)− Σ(u)

∥∥∥
∞

= max
1≤i,j≤p

|σ̂i,j(u)− σi,j(u)|, and Σ(u) = ΣX(u) =

ΣY(u), where

Σ̂1(u) =

∑n1

j=1 exp{−(dhxx)
−1|Uj − u|1}XjX

T
j∑n1

j=1 exp{−(dhxx)−1|Uj − u|1}
− µ̂1(u)µ̂1(u)T , (4.5)

and

Σ̂2(u) =

∑n2

j=1 exp{−(dhyy)
−1|Vj − u|1}YjY

T
j∑n2

j=1 exp{−(dhyy)−1|Vj − u|1}
− µ̂2(u)µ̂2(u)T .

From Theorem 4.1 and Condition (C4), and with some abuse of notations, in this

proof we shall simply set

Σ̂1(u) =

∑n1

j=1 exp{−(dhxx)
−1|Uj − u|1}XjX

T
j∑n1

j=1 exp{−(dhxx)−1|Uj − u|1}
− µ1(u)µ1(u)T ,

and

Σ̂2(u) =

∑n2

j=1 exp{−(dhyy)
−1|Vj − u|1}YjY

T
j∑n2

j=1 exp{−(dhyy)−1|Vj − u|1}
− µ2(u)µ2(u)T .

Denote

Wjik(u) := n1
−1

[
exp{−(dhxx)

−1|Uj − u|1}XjiX
T
jk

E exp{−(dhxx)−1|Uj − u|1}
− µ1i(u)µ1k(u)T

]
,
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and

Bik(u) :=
E exp{−(dhxx)

−1|U1 − u|1}X1i(u)X1k(u)

E exp{−(dhxx)−1|U1 − u|1}
− µ1i(u)µ1k(u).

Similar to (4.3), for any 0 < t < T , where T is a small enough constant, we

have,

P

(∣∣∣∣∣ 1

n1

n1∑
j=1

exp{−(dhxx)
−1|Uj − u|1}XjiXjk

E exp{−(dhxx)−1|U1 − u|1}
− µ1i(u)µ1j(u)

∣∣∣∣∣ > εn

)

≤ 2 exp

{
−tεn + tBik(u) + t2

n1∑
j=1

E(Wjik(u))2

}
.

From Condition (C3) we have Bik(u) = κu(hxx). On the other hand, by Lemma 4.2

and Condition (C4), we have,

E(n1Wjik(u))2

≤ 2E

∣∣∣∣exp{−(dhxx)
−1|Uj − u|1}XjiXjk

E exp{−(dhxx)−1|U1 − u|1}
− E exp{−(dhxx)

−1|U1 − u|1}µ1i(U1)µ1k(U1)

E exp{−(dhxx)−1|U1 − u|1}

∣∣∣∣2

+2

∣∣∣∣E exp{−(dhxx)
−1|U1 − u|1}µ1i(U1)µ1k(U1)

E exp{−(dhxx)−1|U1 − u|1}
− µ1i(u)µ1k(u)

∣∣∣∣2
≤ C, (4.6)

for some large enough constant C > 0. Consequently, we have

P

(∣∣∣∣∣ 1

n1

n1∑
j=1

exp{−(dhxx)
−1|Uj − u|1}XjiXjk

E exp{−(dhxx)−1|U1 − u|1}
− µ1i(u)µ1k(u)

∣∣∣∣∣ > εn

)

≤ 2 exp

{
−tεn + tκ(hxx) +

Ct2

n1

}

≤ 2 exp

{
−n1(εn − κ(hx))

2

4C

}
.
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We can establish similar results for Σ̂2(u). Since

Σ̂(u) =
n1

n
Σ̂1(u) +

n2

n
Σ̂2(u),

we immediately have

P

(
sup

1≤i,k≤p,u∈Bv(r)

|σ̂i,k(u)− σi,k(u)| > εn

)
≤ C1p

2dr exp
{
−C2n(εn − κ(h))2

}
.

This proves this theorem.

Theorems 4.1 and 4.2 above provide concentration results for µ̂1(u) and µ̂2(u).

In particular, the right hand side of the concentration inequalities will tend to 0

when we set εn = C
√

log(p+d)
n

+κ(h) for some large enough constant C > 0. The rate√
log(p+d)

n
echoes a classical rate that quantifies its dependence on the dimension and

the sample size, while the term κ(h) is a bias caused by local smoothing. It is gen-

erally hard to evaluate κ(h) unless some strong structural assumptions are imposed

for m(u). Under the classical context, the bandwidth h is usually chosen to obtain

a trade-off between the bias and the variance, and hence it is theoretically crucial to

know the rate of the bias. However, under the setting that m(u) is high dimensional,

the h that provides the best bias-variance trade-off may not necessarily provide any

guarantee for the uniform convergence of the estimator, which is an essential re-

quirement for establishing consistency under high dimensionality. Alternatively, we

suggest setting h to be large enough (as in Condition (C3)) to ensure an analogue of

Bochner’s Lemma (i.e., Lemma 4.2) to hold, and as a result, concentration results in

the above two theorems can be appropriately established. Practically, although it is

common to select the bandwidth by minimizing the mean integrated squared error

via cross validation, for classification with high dimensional mixed variables, we have

found that it works better to choose h to minimize the misclassification rate.
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4.2 Consistency of β̂(u)

4.2.1 `1-penalized estimation

Before we introduce the main results for the estimation of β(u), we study the

theoretical properties of the solution of the following generic penalized quadratic

loss. These results will be used to prove the consistency of β̂(u) later. For a given

u ∈ {0, 1}d, let Ω̂(u) and â be consistent estimators of a p × p parameter matrix

Ω(u) and a p dimensional parameter a, respectively. For a given tuning parameter

λ, we define the l1 penalized estimator of b∗(u) := Ω(u)−1a(u) as:

b̂(u) = arg min
b∈Rp

1

2
bT Ω̂(u)b− âT (u)b + λ‖b‖1. (4.7)

Denote the support of b∗(u) as Su = {i : b∗i (u) 6= 0} where b∗i (u) is the i-th element

of b∗(u). When there is no ambiguity we shall use S instead of Su in some occasions.

For example, we shall use bS(u) instead of bSu(u) to denote the nonzero subset of

b(u). The following proposition establishes an upper bound for the estimation error

of b̂(u) in terms of the estimation accuracy of â(u) and Ω̂(u).

Proposition 4.1. Denote εu = ‖â(u) − a(u)‖∞ + ‖[Ω̂(u) − Ω(u)]b∗(u)‖∞, and

eu = ‖b∗(u)‖0‖ΩS,S(u)−1‖L‖Ω̂(u) − Ω(u)‖∞. Assume the following inequalities

hold:

sup
u∈Bv(r)

{‖ΩSc,S(u)ΩS,S(u)−1‖L + eu} < 1,

sup
u∈Bv(r)

2[1− ‖ΩSc,S(u)ΩS,S(u)−1‖L − 2eu]−1εu < λ.

We have, for any u ∈ Bv(r),

(i) b̂Sc(u) = 0;
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(ii) ‖b̂(u)− b∗(u)‖∞ ≤ 2(1− eu)−1‖ΩS,S(u)−1‖Lλ.

Proof. Given the true support S, we consider the estimation

b̂0(u) = arg min
b∈Rq , bSc=0

1

2
bT Ω̂(u)b− â(u)Tb + λ‖b‖1

= arg min
b∈Rq , bSc=0

1

2
bTS Ω̂S,S(u)bS − âS(u)TbS + λ‖bS‖1.

By the Karush-Kuhn-Tucker (KKT) condition, we have

Ω̂S,S(u)b̂0
S(u)− âS(u) = −λZ, (4.8)

where Z is the sub-gradient of ‖bS‖1. By the definition of b∗(u) := Ω(u)−1a(u), we

have

(
aS(u)
aSc(u)

)
=

(
ΩS,S(u) ΩS,Sc(u)
ΩSc,S(u) ΩSc,Sc(u)

)(
b∗S(u)

0

)
=

(
ΩS,S(u)b∗S(u)
ΩSc,S(u)b∗S(u)

)
,

and hence we have Ω̂S,S(u)b̂0
S(u) −ΩS,S(u)b∗S(u) + aS(u) − âS(u) = −λZ. Conse-

quently, we have,

b̂0
S(u)− b∗S(u) (4.9)

= −ΩS,S(u)−1
{
λZ + [Ω̂S,S(u)−ΩS,S(u)]b̂0

S(u) + (aS(u)− âS(u))
}
.

By the triangle inequality, we have

‖b̂0
S(u)− b∗S(u)‖∞

≤ ‖ΩS,S(u)−1‖L
{
λ‖Z‖∞ + ‖[Ω̂S,S(u)−ΩS,S(u)](b̂0

S(u)− b∗S(u))‖∞

+‖[Ω̂S,S(u)−ΩS,S(u)]b∗S(u) + aS(u)− âS(u)‖∞
}

≤ ‖ΩS,S(u)−1‖L
{
λ+ ‖b∗(u)‖0‖Ω̂(u)−Ω(u)‖∞‖b̂0

S(u)− b∗S(u)‖∞
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+‖(Ω̂(u)−Ω(u))b∗(u) + a(u)− â(u)‖∞
}
,

which implies that

‖b̂0
S(u)− b∗S(u)‖∞

≤ [1− ‖b∗(u)‖0‖ΩS,S(u)−1‖L‖Ω̂(u)−Ω(u)‖∞]−1‖ΩS,S(u)−1‖L(λ+ εu)

≤ 2[1− ‖b∗(u)‖0‖ΩS,S(u)−1‖L‖Ω̂(u)−Ω(u)‖∞]−1‖ΩS,S(u)−1‖Lλ, (4.10)

where in the last inequality we have used the fact (from the Conditions) that, εu < λ.

Next, we complete the proof by showing that b̂0(u) is exactly the minimizer of (4.7).

By the KKT condition, it is sufficient to show

‖(Ω̂(u)b̂0(u)− â(u))S‖∞ ≤ λ, and (4.11)

‖(Ω̂(u)b̂0(u)− â(u))Sc‖∞ < λ. (4.12)

(4.11) is a direct result of (4.8). For (4.12), we have

(Ω̂(u)b̂0(u)− â(u))Sc

= Ω̂Sc,S(u)b̂0
S(u)− âSc(u)

= Ω̂Sc,S(u)b̂0
S(u)−ΩSc,S(u)b∗S(u) + aSc(u)− âSc(u)

= Ω̂Sc,S(u)(b̂0
S(u)− b∗S(u)) + [Ω̂Sc,S(u)−ΩSc,S(u)]b∗S(u) + aSc(u)− âSc(u)

= [Ω̂Sc,S(u)−ΩSc,S(u)](b̂0
S(u)− b∗S(u))

+ ΩSc,S(u)ΩS,S(u)−1{ΩS,S(u)(b̂0
S(u)− b∗S(u))}

+{(Ω̂(u)−Ω(u))b∗(u) + a(u)− â(u)}Sc .

Together with (4.9) and (4.10), we have

‖(Ω̂(u)b̂0(u)− â(u))Sc‖∞
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≤ ‖b∗(u)‖0‖Ω̂(u)−Ω(u)‖∞‖b̂0
S(u)− b∗S(u)‖∞

+‖ΩSc,S(u)ΩS,S(u)−1‖L(λ+ εu + ‖b∗(u)‖0‖Ω̂(u)−Ω(u)‖∞‖b̂0
S(u)− b∗S(u)‖∞)

+εu

≤ (1 + ‖ΩSc,S(u))ΩS,S(u))−1‖L)(λ+ εu)

1− ‖b∗(u))‖0‖ΩS,S(u))−1‖L‖Ω̂(u))−Ω(u))‖∞
− λ

=

{
εu −

1− ‖ΩSc,S(u))ΩS,S(u))−1‖L − 2‖b∗(u))‖0‖ΩS,S(u))−1‖L‖Ω̂(u))−Ω(u))‖∞
1 + ‖ΩSc,S(u))ΩS,S(u))−1‖L

λ

}

·

{
1 + ‖ΩSc,S(u)ΩS,S(u)−1‖L

1− ‖b∗(u)‖0‖ΩS,S(u)−1‖L‖Ω̂(u)−Ω(u)‖∞

}

+λ.

Under the Condition that

2[1− ‖ΩSc,S(u)ΩS,S(u)−1‖L − 2‖b∗(u)‖0‖ΩS,S(u)−1‖L‖Ω̂(u)−Ω(u)‖∞]−1εu < λ,

we have ‖(Ω̂(u)b̂0(u) − â(u))Sc‖∞ < λ. Consequently, b̂(u) = b̂0(u). Lastly, note

that the inequality conditions in this proposition hold for all u ∈ Bv(r), we conclude

that the model selection consistency and the bound (4.10) hold for all u ∈ Bv(r).

Proposition 4.1 provides a general result for the oracle property of an estimator

defined by minimizing the estimated quadratic loss (4.7). We remark that Propo-

sition 4.1 can be applied to many different statistical problems where quadratic loss

taking the form (4.7) is adopted. In particular, we do not impose any assumption on

the signal strength of the nonzero parameters. Conditions in the above proposition

rely on the magnitude of ‖ΩSc,S(u)ΩS,S(u)−1‖L, which is related to the well known

irrepresentable condition (Zhao and Yu, 2006; Zou, 2006), and the uniform estima-

tion error bounds of ‖â(u) − a(u)‖∞ and ‖Ω̂(u) − Ω(u)‖∞, which require specific

evaluation for different applications.
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4.2.2 Oracle properties of β̂(u)

Next we establish the oracle properties of β̂(u) by using the results obtained

in the previous part. With some abuse of notations, denote the support of β(u) as

Su = {i : βi(u) 6= 0} where βi(u) is the ith element of β(u). Similarly, we use Ŝu to

denote the support of the estimator β̂(u) based on (3.5). From Proposition 4.1 and

the uniform bounds established in Section 4.1, we have:

Theorem 4.3. Assume that Conditions (C1)-(C4) hold. In addition, assume that(√
log(p+d)

n
+ κ(h)

)
supu∈Bv(r) ‖β(u)‖0‖ΣS,S(u)−1‖L → 0, and there exists a con-

stant 0 < κ0 < 1 such that supu∈Bv(r) ‖ΣSc,S(u)ΣS,S(u)−1‖L < 1 − κ0. By choosing

λβ = C2

(√
log(p+d)

n
+ κ(h)

)
supu∈Bv(r)(‖β(u)‖1 + 1) for some large enough con-

stant C2, and denoting Mr = supu∈Bv(r) ‖ΣS,S(u)−1‖L, we have, for any given r =

O(logd(p+ d)),

(i) P

( ⋂
u∈Bv(r)

{Ŝu = S(u)}

)
= 1−O((p+ d)−1);

(ii) P
(

supu∈Bv(r) ‖β̂(u)− β(u)‖∞ ≤ 2λβMr)
)

= 1−O((p+ d)−1).

Proof. Set εn = C
√

log(p+d)
n

+ κ(h) for some large enough constant C > 0. From

Theorems 4.1 and 4.2 we have when C is large enough, with probability larger than

1−O((p+d)−1), supu∈Bv(r) ‖µ̂1(u)−µ1(u)‖∞ = O(εn) and ‖Σ̂(u)−Σ(u)‖∞ = O(εn).

Consequently, when C is large enough and εn → 0, we have

sup
u∈Bv(r)

{‖ΣSc,S(u)ΣS,S(u)−1‖L + 2‖β(u)‖0‖ΣS,S(u)−1‖L‖Σ̂(u)− Σ(u)‖∞} < 1,
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and

sup
u∈Bv(r)

2[1− ‖ΣSc,S(u)ΣS,S(u)−1‖L − 2‖β(u)‖0‖ΣS,S(u)−1‖L‖Σ̂(u)− Σ(u)‖∞]−1εu

< λβ.

The theorem then follows from Proposition 4.1.

Note that we do allow the support of β(u) to be different across different u ∈

Bv(r). Part (i) in Theorem 4.3 states that the common support of non-informative

features can be consistently identified. Part (ii) of Theorem 4.3 indicates that the

estimation error for the nonzero elements is of order Op(λβMr). This is similar to

the error bound obtained in Theorem 2 of Mai et al. (2012). However, instead of

imposing any assumption for the minimal signal |β(u)|min as in Condition 2 of Mai

et al. (2012), our error bound relies on the total signal strength ‖β(u)‖1 through the

choice of λβ.

4.3 Consistency of η̂(u)

Theoretical properties of penalized logistic regression have been well explored in

the literature; see for example Meier et al. (2008) and Rocha et al. (2009). Other than

studying the excess risk or the global error of the estimator η̂ as in Meier et al. (2008)

or establishing consistency for the coefficient estimators with requires additional

assumptions on the signal strength for the nonzero parameters, here we directly

explore the estimation accuracy of η̂(u) = Â0 +ÂTu in estimating η(u) = A0 +ATu.

We first assume the following conditions hold:

(C5). Let W = UI{L = 1} + VI{L = 2} where U and V are independent binary

vectors with density functions p1(·) and p2(·), respectively. We assume that the

covariance matrix H = Var(W) is positive definite with eigenvalues bounded
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away from zero.

(C6). LetM = {j : Aj 6= 0} andM = |A1|0. We assume that 1−maxe∈Mc |He,MH−1
M,M| >

0, and M2eM
√

log d
n
→ 0.

Condition (C6) is an irrepresentability assumption to guarantee model selection con-

sistency. The following theorem provides the uniform estimation error for η̂(u).

Theorem 4.4. Let Conditions (C5) and (C6) hold. We have

sup
u∈{0,1}d

|η̂(u)− η(u)| = Op

(
M2eM

√
log d

n

)
.

Proof. Denote the objective function on the right hand side of (3.6) as Ln(η). The

true linear function η(W) = A0 + ATW is the minimizer of the expected risk:

El(η̃; W, L)) = E{−(2− L)η̃(W) + log(1 + exp{η̃(W)})}.

Let M̂ := {j : Âj 6= 0}. Using similar arguments as in the proof of Proposition

4.1, we can first show that under Conditions (C5) and (C6), P (M̂ =M)→ 1. For

convenience we shall assume hereafter in this proof that M̂ =M.

Let Bη(δ) be the set of linear functions η̄(w) = Ā0 +ĀT
1 w , such that

∑d
i=0 |Āi−

Ai| = δ for some δ > 0. Here Āi is the i-th element of Ā1, and Āi = 0 for i ∈ Mc.

With some abuse of notations, let Wi = Ui, W̃i =
(

1
Wi

)
for i = 1 . . . , n1, Wn1+i =

Vi, W̃n1+i =
(

1
Wn1+i

)
for i = 1 . . . , n2, and denote Wn = (W̃1, . . . , W̃n). The Hessian

matrix of Ln is then given as:

Hn(η) =
n∑
i=1

W̃iW̃
T
i

exp{η(Wi)}
(1 + exp{η(Wi)})2

.

By Taylor expansion we have, there exists an η∗(w) = A∗0 + wTA∗1, such that A∗0 ∈

43



[Ā0, A0], A∗i ∈ [Āi, Ai] for i ∈M, A∗i = 0 for i ∈Mc, and

Ln(η̄) = Ln(η) + L′n(η)

(
Ā0 − A0

Ā1 −A1

)
+

(
Ā0 − A0

Ā1 −A1

)T
Hn(η∗)

(
Ā0 − A0

Ā1 −A1

)
.

Note that from Bernstein’s inequality (Lin and Bai, 2011) and the fact that EL′n(η) =

0, we have, there exists a constant C > 0 such that with probability larger than

1−O(d−1), ∣∣∣∣L′n(η)

(
Ā0 − A0

Ā1 −A1

)∣∣∣∣ ≤ CδM

√
log d

n
,

holds for all η̄ ∈ Bη(δ). On the other hand, using Condition (C5) and the fact that

(Ā0−A0)2 +‖Ā1−A1‖2
2 ≥M−1δ2, we have with probability larger than 1−O(d−1),

(
Ā0 − A0

Ā1 −A1

)T
Hn(η∗)

(
Ā0 − A0

Ā1 −A1

)
≥ δ2

MeM
,

holds for all η̄ ∈ Bη(δ). Consequently, by choosing δ = C1M
2eM

√
log d
n

for some

large enough constant C1 > 0, we have with probability larger than 1 − O(d−1),

Ln(η̄) < Ln(η) holds for all η̄ ∈ Bη(δ). Consequently, by continuity and convexity

of the objective function Ln, we conclude that with probability tending to 1, the

minimizer η̂ of Ln must lie inside the L1-ball with radius δ, i.e., |η̂(w) − η(w)| ≤∑d
i=0 |Âi − Ai| < δ. This proves the theorem.

From Theorem 4.4, the uniform error bound is reduced to Op

(√
log d
n

)
when

the number of nonzero parameters M is bounded.
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4.4 Misclassification rate

Given U = u, denote D(Z; u) = β(u)T
[
Z− µ1(u)+µ2(u)

2

]
+ η(u) and D̂(Z; u) =

β̂(u)T
[
Z− µ̂1(u)+µ̂2(u)

2

]
+ η̂(u). The optimal Bayes’ risk is given as

Ru = π1Ru(2|1) + π2Ru(1|2),

where Ru(2|1) = P (D(Z; u) ≤ 0|Z ∈ N(µ1(u),Σ(u))) and Ru(1|2) = P (D(Z; u) >

0|Z ∈ N(µ2(u),Σ(u))). Correspondingly, the misclassification rate of our proposed

method is given as

R̂u = π1R̂u(2|1) + π2R̂u(1|2),

where R̂u(2|1) = P (D̂(Z; u) ≤ 0|Z ∈ N(µ1(u),Σ(u))) and R̂u(1|2) = P (D̂(Z,u) >

0|Z ∈ N(µ2(u),Σ(u))). Note that when Z ∈ N(µ2(u),Σ(u)), we have,

D(Z; u) ∼ N
(
β(u)T [µ2(u)− µ1(u)]/2 + η(u), β(u)T [µ1(u)− µ2(u)]

)
.

Denote ∆(u) := β(u)T [µ1(u)−µ2(u)] = [µ1(u)−µ2(u)]TΣ−1(u)[µ1(u)−µ2(u)]. We

assume that:

(C7). supu∈{0,1}d ∆(u) ≥ δ for some constant δ > 0.

We remark that ∆(u) captures how far are the (normalized) centers of the two

classes away from each other. Condition (C7) ensures that the center of the two class

are separable. The following theorem indicates that the estimated semiparametric

classification rule I{D̂(Z; u) > 0} is asymptotically optimal.

Theorem 4.5. Let Conditions (C1)-(C7) hold. For a given u ∈ {0, 1}d of interest,

let s = sup
u∈Bv(r)

‖β(u)‖0. We have:

sup
u∈Bv(r)

|R̂u −Ru| (4.13)
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= Op

((
s+ sup

u∈Bv(r)

|β(u)|1
)
Mr

(√
log(p+ d)

n
+ κ(h)

)
+M2eM

√
log d

n

)
.

Proof. By definition we have:

D̂(Z,u)−D(Z,u) =

{
ZT [β̂(u)− β(u)]− 1

2
β̂(u)T [µ̂1(u) + µ̂2(u)]

+
1

2
β(u)T [µ1(u) + µ2(u)] + [η̂(u)− η(u)]

}
.

Write Z = (Z1, · · · , Zp)T . From Theorem 4.3, we have: supu∈Bv(r) |ZT [β̂(u) −

β(u)]| ≤ supu∈Bv(r)

∑p
i=1 |Zi[β̂(u)−β(u)]i| = Op

(
suMr

(√
log(p+d)

n
+ κ(h)

))
. Sim-

ilarly, we have

sup
u∈Bv(r)

|β̂(u)T [µ̂1(u) + µ̂2(u)]− β(u)T [µ1(u) + µ2(u)]|

= Op

((
s+ sup

u∈Bv(r)

|β(u)|1
)
Mr

(√
log(p+ d)

n
+ κ(h)

))
.

Together with Theorem 4.4, we have:

sup
u∈Bv(r)

|D̂(Z; u)−D(Z; u)| (4.14)

= Op

((
s+ sup

u∈Bv(r)

|β(u)|1
)
Mr

(√
log(p+ d)

n
+ κ(h)

)
+M2eM

√
log d

n

)
.

Note that

R̂(1|2) = P (D̂(Z; u) > 0|Z ∈ N(µ2(u),Σ(u)))

= P (D(Z; u) > D(Z; u)− D̂(Z; u)|Z ∈ N(µ2(u),Σ(u))).
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and

R̂(2|1) = P (D̂(Z; u) < 0|Z ∈ N(µ1(u),Σ(u)))

= P (D(Z; u) < D(Z; u)− D̂(Z; u)|Z ∈ N(µ1(u),Σ(u))).

On the other hand, for a given u, denote the density of D(Z; u) as Fi(·; u) for Z

in class i = 1, 2. Under Conditions (C5) and (C6), we have Fi(·; u) is bounded from

above. Together with (4.14), we conclude that

R̂(1|2)−R(1|2)

= Op

∫ (s+supu∈Bv(r) |β(u)|1
)
Mr

(√
log(p+d)

n
+κ(h)

)
+M2eM

√
log d
n

0

F2(z; u)dz


= Op

((
s+ sup

u∈Bv(r)

|β(u)|1
)
Mr

(√
log(p+ d)

n
+ κ(h)

)
+M2eM

√
log d

n

)
.

Similarly,

R̂(2|1)−R(2|1)

= Op

((
s+ sup

u∈Bv(r)

|β(u)|1
)
Mr

(√
log(p+ d)

n
+ κ(h)

)
+M2eM

√
log d

n

)
.

Then the theorem can be proved.

There are two terms on the right hand side of (4.13). The first term is similar to

those for other high dimensional LDA classifiers with continuous data only (Cai and

Liu, 2011; Jiang et al., 2020), and is mainly introduced by the estimation of β(u).

The second term is introduced by the estimation of η(u). Although both p and d are

allowed to grow exponentially in n, the sparsity requirement for the discrete variables

seems to be more restricted as we require M2eM to be o
(√

log d
n

)
.
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Chapter 5

Numerical Study

5.1 Tuning parameters for simulation

In what follows we will introduce the cross validation procedures for determining

the bandwidths and the tuning parameters λβ and λη. We remark that owing to

Proposition 3.1, the determination of λβ and λη can be conducted separately, results

in additive computation cost other than multiplicative computation cost.

In this section, we will use the following two methods for bandwidth selection.

Correspondingly, we conduct two simulation studies using two methods under six

models.

5.1.1 Bandwidth selection I

One approach to choose the bandwidths hx, hy, hxx and hyy is to use leave-one-

out cross validation as is usually done in kernel smoothing. However, this band-

width selection I approach does not recognize the constraint in our theory that the

bandwidths should be large enough (see Condition C2) to guarantee an analogue of

Bochner’s Lemma (i.e., Lemma 4.2) to hold. As an alternative, we propose to select

the bandwidths and the tuning parameter λβ together by minimizing classification

error.

For simplicity, we shall use a common bandwidth parameter h for all the band-

49



widths hx, hy, hxx and hyy. Suppose we reformulate the weights by introducing

θ = exp{−(dh)−1}
1+exp{−(dh)−1} . That is, by writing exp{−(dh)−1t} =

(
θ

1−θ

)t
, we have

µ̂1(u) =

n1∑
j=1

( θ
1−θ )

|Uj−u|1Xj∑n1

j=1( θ
1−θ )

|Uj−u|1
, µ̂2(u) =

n2∑
j=1

( θ
1−θ )

|Vj−u|1Yj∑n2

j=1( θ
1−θ )

|Vj−u|1
.

Clearly θ ∈ [0, 0.5]. When θ → 1
2
, µ̂1i(u) and µ̂2i(u) reduce to the means of all

the samples, and when θ → 0, µ̂1i(u) and µ̂2i(u) reduce to the sample means in

the cells only. Coincidentally, under this formulation, we found that subject to a

normalizing term (1− θx)d, the denominator is the same as the smoothing estimator

for the distribution of a high dimensional and binary random vector in Aitchison and

Aitken (1976) , Grund and Hall (1993). We shall be adopting this new formulation

for tuning selection, as the parameter θ is now bounded, which is practically more

convenient for tuning.

5.1.2 Bandwidth selection I: λβ for the estimation of β(u)

Note that Proposition 3.1 implies that the estimation of β(u) can be indepen-

dently conducted by minimizes the expected misclassification rate over the class of

zero-intercept classifiers. More specifically, For given (θ, λβ), let β̂−i(Ui) and β̂−i(Vi)

be the estimators obtained using (3.5) by leaving (Xi,Ui) and (Yi,Vi) out, respec-

tively. We choose (θ, λβ) such that the following misclassification rate is minimized:

R0(λβ) =

n1∑
i=1

I

{
β̂−i(Ui)

T

(
Xi −

µ̂1,−i(Ui) + µ̂2(Ui)

2

)
≤ 0

}

+

n2∑
j=1

I

{
β̂−j(Vj)

T

(
Yj −

µ̂1(Vj) + µ̂2,−j(Vj)

2

)
≥ 0

}
.
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5.1.3 Bandwidth selection I : λη for the estimation of η(u)

Given the chosen (θ, λβ), we denote ζi := β̂−i(Ui)
T
(
Xi − µ̂1,−i(Ui)+µ̂2(Ui)

2

)
and

ζn1+j = β̂−j(Vj)
T
(
Yj − µ̂1(Vj)+µ̂2,−j(Vj)

2

)
, for i = 1, . . . , n1 and j = 1, . . . , n2. Note

that these values have been computed when determining λβ and hence it requires

no extra computation burden. Let (Â0,−i, Â−i) and (Â0,−(n1+j), Â−(n1+j)) be the

estimator based on (3.6) by leaving Ui and Vj out, respectively. We then choose λη

by minimizing the following misclassification rate:

R(λη) =

n1∑
i=1

I
{
ζi + Â0,−i + UT

i Â−i ≤ 0
}

+

n2∑
j=1

I
{
ζn1+j + Â0,−(n1+j) + VT

j Â−(n1+j) ≥ 0
}
.

5.1.4 Bandwidth selection II

We also introduce the way to choose the bandwidths hx, hy, hxx and hyy is to

use leave-one-out cross validation as is usually done in kernel smoothing. More

specifically, hx is obtained by minimizing the following cross-validation score:

CV (hx) =
1

n1

n1∑
i=1

‖Xi − µ̂1,−i(Ui)‖2
2,

where µ̂1,−i(·) is the weighted estimator obtained by leaving the ith sample Xi out.

Given hx and the leave-one-out estimators µ̂1,−i(·), i = 1, . . . , n1, we then choose hxx

such that the following cross-validation score is minimized:

CV (hxx) =
1

n1

n1∑
i=1

‖(Xi − µ̂1,−i(Ui))(Xi − µ̂1,−i(Ui))
T − Σ̂1,−i(Ui)‖2

2,
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where Σ̂1,−i(Ui) is the weighted estimator obtained by leaving the ith sample Xi out

in (4.5). Bandwidths hy and hyy in Class 2 are chosen in a similar way.

5.1.5 Bandwidth selection II : λβ for the estimation of β(u)

Recall that β(u) can be estimated independently in Bandwidth selection I. For

a given λβ, let β̂−i(Ui) and β̂−i(Vi) be the estimators obtained using (3.5) by leav-

ing (Xi,Ui) and (Yi,Vi) out, respectively. We choose λβ such that the following

misclassification rate is minimized:

R0(λβ) =

n1∑
i=1

I

{
β̂−i(Ui)

T

(
Xi −

µ̂1,−i(Ui) + µ̂2(Ui)

2

)
≤ 0

}

+

n2∑
j=1

I

{
β̂−j(Vj)

T

(
Yj −

µ̂1(Vj) + µ̂2,−j(Vj)

2

)
≥ 0

}
.

We use warm start for the above cross validation procedure to further accelerate the

computation speed.

5.1.6 Bandwidth selection II : λη for the estimation of η(u)

Given the chosen λβ, we denote ζi and ζn1+j same as those in Bandwidth selection

I. Leaving Ui and Vj out, we also denote (Â0,−i, Â−i) and (Â0,−(n1+j), Â−(n1+j)) as the

estimator based on (3.6). Then λη can be chosen by minimizing the misclassification

rate:

R(λη) =

n1∑
i=1

I
{
ζi + Â0,−i + UT

i Â−i ≤ 0
}

+

n2∑
j=1

I
{
ζn1+j + Â0,−(n1+j) + VT

j Â−(n1+j) ≥ 0
}
.
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5.2 Simulation I

Let u = (u1, . . . , ud)
T be a generic location in {0, 1}d. Given location u,

samples from class 1 are generated from N(µ1(u),Σ(u)) and samples from class

2 are generated from N(µ2(u),Σ(u)). In this simulation, we set the mean func-

tions µ1(u) = (µ11(u), · · · , µ1p(u))T and µ2(u) = (µ21(u), · · · , µ2p(u))T are set as

µ1(u) = Σ(u)β(u)
2

= −µ2(u). In the following we consider different settings for Σ(u)

and β(u):

Model 1. We set the (i, j)th element of Σ(u) as σij(u) = ū|i−j|, i, j ∈ 1, · · · , p,

where ū = d−1
∑d

k=1 uk, and let β1(u) = β2(u) = 5
(∑d

k=1 uk√
d
−
√
d

2

)
, β3(u) = · · · =

βp(u) = 0.

Model 2. We set the (i, j)th element of Σ(u) as σij(u) = [2ū(1 − ū)]|i−j|, i, j ∈

1, · · · , p, where ū = d−1
∑d

k=1 uk, and let β1(u) = β2(u) = β3(u) == 5
(∑d

k=1 uk√
d
−

√
d

2

)
, β4(u) = · · · = βp(u) = 0.

Model 3. We set the (i, j)th element of Σ(u) as σij(u) = ū|i−j|

exp{ū|i−j|} , i, j ∈ 1, · · · , p,

where ū = d−1
∑d

k=1 uk, and we set

β1(u) = · · · = β15(u) = sign
(∑d

k=1 uk√
d
−
√
d

2

)
1
2

exp
{
|2
∑d
k=1 uk√
d
−
√
d|
}

, and β16(u) =

· · · = βp(u) = 0.

Model 4. We set the (i, j)th element of Σ(u) as σij(u) = ū
|i−j|

2 , i, j ∈ 1, · · · , p,

where ū = d−1
∑d

k=1 uk, and let β1(u) = β2(u) = 5
(∑d

k=1 uk√
d
−
√
d

2

)
, and β3(u) = · · · =

βp(u) = 0.
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Model 5. We set the (i, j)th element of Σ(u) as σij(u) = [3ū(1 − ū)]|i−j|, i, j ∈

1, · · · , p, where ū = d−1
∑d

k=1 uk, and let β1(u) = β2(u) = β3(u) == 5
(∑d

k=1 uk√
d
−

√
d

2

)
, β4(u) = · · · = βp(u) = 0.

Model 6. We set the (i, j)th element of Σ(u) as σij(u) = ū|i−j|

exp{ū|i−j|} , i, j ∈ 1, · · · , p,

where ū = d−1
∑d

k=1 uk, and we set

β1(u) = · · · = β5(u) = sign
(∑d

k=1 uk√
d
−
√
d

2

)
1
2

exp
{
|2
∑d
k=1 uk√
d
−
√
d|
}

, and β6(u) =

· · · = βp(u) = 0.

The locations Vi = (Vi1, . . . , Vid)
T in Class 2 are randomly generated by P (Vij =

0) = 0.5, i = 1, 2, · · · , n2, j = 1, 2, · · · , d. Similarly, for Class 1, we generate the

Ui = (Ui1, . . . , Uid)
T by P (Uij = 1) = 0.5 + ξj for i = 1, 2, · · · , n1, j = 1, 2, 3, 4, 5.

We simply set ξ1 = · · · = ξ5 = 0.25 and ξ6 = · · · = ξd = 0 for Model 1 and Model 2;

ξ1 = · · · = ξ5 = 0.3, ξ6 = · · · = ξd = 0 for Model3, Model 4, Model 5 and Model 6.

P (Uij = 1) = 0.5 for i = 1, 2, · · · , n, j = 6, 7, · · · , d for class 1.

We use SLM to denote our proposed semiparametric location model. For com-

parison, we also consider the following classifiers:

• SLM: our proposed Semiparametric Location Model.

• PLG: l1 Penalized Logistic Regression(Meier et al., 2008).

• RF: Random Forest(Breiman, 2001).

• DSDA: Direct Sparse Discriminant Analysis in Mai et al. (2012).

We first fix the sample size to be n1 = n2 = 200, and compare these 4 meth-

ods under different dimensions for the discrete and continuous variables: (d, p) =

(10, 20), (20, 50) and (50, 100). The misclassification rates of these methods on 200
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Model 1

(d, p) (10, 20) (20, 50) (50, 100)

Bayes Risk 0.158 0.177 0.191

RSLM 0.208(0.031) 0.231(0.031) 0.266(0.035)

RPLG 0.216(0.035) 0.272(0.037) 0.315(0.041)

RRF 0.233(0.029) 0.294(0.032) 0.338(0.037)

RDSDA 0.213(0.032) 0.263(0.030) 0.295(0.036)

Table 5.1: Simulation I : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 1 with n1 = n2 = 200.

testing samples are computed over 100 replications, in the situation that more repli-

cations can cause time-consuming. The means and standard deviations of these

misclassification rates are reported in Tables 5.1-5.6, from which we observe that our

proposed SLM classifier outperforms other classifiers. The performance of DSDA is

slightly better than that of Penalized Logistic Regression. Random Forest, is com-

parable to other methods when d and p are small, but the misclassification rates

become larger than those of the other methods in cases where d and p are large.

Next, we fix the dimensions (d, p), and let the sample size n = n1 + n2 increase

from 200 to 500 (with n1 = n2). The regret, which is defined as the misclassification

rate minus the Bayes risk, was computed for each n. Figures 5.1-5.6 show that as n

increases, the regret becomes smaller for all the four methods, while the curves for

our semiparametric location model generally produce small regret values among all

methods as the sample size n increases.

5.3 Simulation II

Considering the same models (1-6) mentioned in Simulation I, we also show some

results of four methods (semiparametric location model, penalized logistic regression,

random forest and direct sparse discriminant analysis) based on Bandwidth selection
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Model 2

(d, p) (10, 20) (20, 50) (50, 100)

Bayes Risk 0.125 0.133 0.144

RSLM 0.169(0.024) 0.228(0.035) 0.283(0.033)

RPLG 0.224(0.031) 0.280(0.039) 0.327(0.046)

RRF 0.208(0.028) 0.285(0.033) 0.342(0.036)

RDSDA 0.221(0.028) 0.273(0.034) 0.304(0.039)

Table 5.2: Simulation I : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 2 with n1 = n2 = 200.

Model 3

(d, p) (10, 20) (20, 50) (50, 100)

Bayes Risk 0.041 0.093 0.041

RSLM 0.170(0.030) 0.185(0.032) 0.234(0.028)

RPLG 0.190(0.034) 0.222(0.040) 0.264(0.044)

RRF 0.186(0.032) 0.238(0.036) 0.285(0.030)

RDSDA 0.184(0.030) 0.212(0.028) 0.247(0.032)

Table 5.3: Simulation I : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 3 with n1 = n2 = 200.

II. Under same settings of Simulation I, Tables 5.7-5.12 show the mean and standard

deviations of misclassification rates under dimension (d, p) = (10, 20), (20, 50) and

(50, 100). And the curves of regrets for all the four methods are shown in Figures

5.7-5.12 with n increasing from 200 to 500.

5.4 Real data analysis

5.4.1 Selection of tuning parameters

We use the first method(Bandwidth selection I) for determining the bandwidths

and the tuning parameters in real data case studies.
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Model 4

(d, p) (10, 20) (20, 50) (50, 100)

Bayes Risk 0.147 0.172 0.189

RSLM 0.161(0.028) 0.192(0.034) 0.214(0.030)

RPLG 0.172(0.031) 0.213(0.033) 0.248(0.040)

RRF 0.189(0.028) 0.245(0.035) 0.283(0.033)

RDSDA 0.166(0.031) 0.204(0.029) 0.235(0.034)

Table 5.4: Simulation I : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 4 with n1 = n2 = 200.

Model 5

(d, p) (10, 20) (20, 50) (50, 100)

Bayes Risk 0.111 0.119 0.133

RSLM 0.123(0.023) 0.168(0.031) 0.226(0.036)

RPLG 0.174(0.031) 0.223(0.034) 0.252(0.040)

RRF 0.163(0.024) 0.237(0.032) 0.286(0.034)

RDSDA 0.164(0.028) 0.210(0.028) 0.241(0.032)

Table 5.5: Simulation I : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 5 with n1 = n2 = 200.

5.4.2 Real data cases

In this section, we investigate the performance of the proposed SLM model by

analyzing seven real datasets. We compare SLM to the three other classifiers used

in simulaiton. In addition, we compute the misclassification rates for Classification

Tree (CT), which to some degree can be viewed as a non-ensemble version of RF.

The real cases we studied include: Hepatocellular Carcinoma data, Breast Can-

cer Gene Expression Profiles (METABRIC) data, Cylinder bands data, Heart-Disease

data, Australian credit card application data, Hepatitis data and German Credit

data. All these datasets are publicly available on the UCI Machine Learning Repos-
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Model 6

(d, p) (10, 20) (20, 50) (50, 100)

Bayes Risk 0.145 0.173 0.166

RSLM 0.176(0.029) 0.193(0.029) 0.235(0.032)

RPLG 0.205(0.039) 0.231(0.037) 0.264(0.043)

RRF 0.203(0.030) 0.232(0.031) 0.289(0.031)

RDSDA 0.195(0.029) 0.220(0.032) 0.247(0.033)

Table 5.6: Simulation I : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 6 with n1 = n2 = 200.
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Figure 5.1: Simulation I : The regrets of SLM,PLG,RF,DSDA under Model 1.
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Figure 5.2: Simulation I : The regrets of SLM,PLG,RF,DSDA under Model 2

Model 1

(d, p) (10, 20) (20, 50) (50, 100)

Bayes Risk 0.159 0.175 0.188

RSLM 0.208(0.030) 0.238(0.036) 0.275(0.044)

RPLG 0.220(0.031) 0.268(0.033) 0.306(0.033)

RRF 0.236(0.033) 0.295(0.033) 0.338(0.037)

RDSDA 0.219(0.031) 0.263(0.031) 0.294(0.037)

Table 5.7: Simulation II : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 1 with n1 = n2 = 200.
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Figure 5.3: Simulation I : The regrets of SLM,PLG,RF,DSDA under Model 3

itory or the public data platform Kaggle. All categorical variables are translated

into binary variables using dummy variable encoding. Missingness in the categorical

variable is treated as one category, and mean imputation is used for missing values

of the continuous variables. We perform a 10-fold cross-validation and the average

misclassification rates are reported in Table 5.13. The datasets we considered are

described as follows:

Hepatocellular Carcinoma dataset Hepatocellular carcinoma (HCC) is the most

common type of primary liver cancer in adults and the third leading cause of cancer-

related death worldwide. This dataset was collected at a University Hospital in
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Figure 5.4: Simulation I : The regrets of SLM,PLG,RF,DSDA under Model 4

Portugal. It contains real clinical data of 165 patients diagnosed with HCC, in which

only 102 patients finally survived. There are 22 continuous variables and 118 binary

variables.

Breast Cancer Gene Expression Profiles (METABRIC) Breast cancer is the

most frequent cancer among women, and one of the leading causes of cancer deaths

in females. This dataset comes from the Molecular Taxonomy of Breast Cancer

International Consortium (METABRIC) database. The original data was published

on Nature Communications (Pereira et al., 2016). There are 1904 patients with

breast cancer in this data. 489 mRNA Z-scores for 331 genes, and indicators of
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Figure 5.5: Simulation I : The regrets of SLM,PLG,RF,DSDA under Model 5

mutation for 173 genes are recorded. To reduce the computational costs, following

Cai and Liu (2011), only 100 mRNA Z-scores with the largest absolute values of the

two sample t statistics are used.

Cylinder bands data Cylinder bands data contains 20 categorical variables which

were transformed into 482 binary variables via dummy variable encoding. There

are 20 continuous variables, but we have removed variables “ESA Amperage” and

“chrome content”, owing to the fact that more than 95% of the observations are

taking a same value or having a missing value for these two variables. This dataset

contains 277 instances.
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Figure 5.6: Simulation I : The regrets of SLM,PLG,RF,DSDA under Model 6

Heart-Disease data The heart-disease dataset contains 13 attributes (which have

been extracted from a larger set of 75). There are 7 categorical variables which can

be transformed into 19 binary variables and 6 continuous variables. This dataset

contains 270 instances. And there are no missing values in this dataset.

Hepatitis data Hepatitis dataset contains 155 patients diagnosed with hepatitis, in

which 123 patients are lived. Missingness in the categorical variable of this dataset

is treated as one category. Overall, this dataset contains 7 continuous variables, and

12 categorical variables which were transformed into 32 binary variables.

Australian Credit Card Approval data This dataset concerns credit card appli-
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Model 2

n = 400

(d, p) (10, 20) (20, 50) (50, 100)

Bayesrisk 0.127 0.134 0.144

RSLM 0.180(0.030) 0.227(0.032) 0.301(0.039)

RPLG 0.227(0.037) 0.280(0.036) 0.324(0.046)

RRF 0.213(0.032) 0.286(0.035) 0.348(0.038)

RDSDA 0.224(0.034) 0.278(0.035) 0.308(0.035)

Table 5.8: Simulation II : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 2 with n1 = n2 = 200.

Model 3

n = 400

(d, p) (10, 20) (20, 50) (50, 100)

Bayesrisk 0.042 0.093 0.041

RSLM 0.172(0.030) 0.188(0.027) 0.242(0.038)

RPLG 0.186(0.031) 0.220(0.030) 0.265(0.037)

RRF 0.187(0.031) 0.235(0.034) 0.280(0.038)

RDSDA 0.184(0.026) 0.214(0.028) 0.254(0.035)

Table 5.9: Simulation II : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 3 with n1 = n2 = 200.

cations. There are 6 numerical variables, and 8 categorical attributions which were

transformed into 36 binary variables via dummy variable encoding. This dataset

contains 690 instances.

German Credit data In this German Credit dataset, there are 7 continuous vari-

ables such as duration in month and credit amount, and 13 categorical variables

which were transformed into 54 binary variables. The objective is to class a cus-

tomer as a “good” or “bad” customer. This dataset contains 1000 instances.
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Model 4

n = 400

(d, p) (10, 20) (20, 50) (50, 100)

Bayesrisk 0.149 0.172 0.188

RSLM 0.164(0.028) 0.189(0.035) 0.220(0.036)

RPLG 0.174(0.031) 0.220(0.035) 0.255(0.039)

RRF 0.192(0.036) 0.249(0.035) 0.287(0.037)

RDSDA 0.166(0.026) 0.210(0.030) 0.239(0.030)

Table 5.10: Simulation II : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 4 with n1 = n2 = 200.

Model 5

n = 400

(d, p) (10, 20) (20, 50) (50, 100)

Bayesrisk 0.113 0.119 0.134

RSLM 0.128(0.024) 0.170(0.032) 0.244(0.042)

RPLG 0.169(0.032) 0.223(0.043) 0.266(0.043)

RRF 0.161(0.028) 0.229(0.033) 0.296(0.037)

RDSDA 0.162(0.028) 0.218(0.031) 0.245(0.033)

Table 5.11: Simulation II : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 5 with n1 = n2 = 200.

From Table 5.13 we observe that our method is the best classifier for six out of

seven datasets, and is the second best for the ACA data. Random Forest performs

well too, being the best classifier for the Australian Credit Card Approval dataset

and among the best two classifiers in another four datasets. The CT method seems

to be the worse classifier overall.
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Model 6

n = 400

(d, p) (10, 20) (20, 50) (50, 100)

Bayesrisk 0.147 0.171 0.164

RSLM 0.174(0.031) 0.192(0.030) 0.247(0.047)

RPLG 0.202(0.036) 0.230(0.032) 0.270(0.040)

RRF 0.197(0.033) 0.233(0.033) 0.282(0.029)

RDSDA 0.193(0.031) 0.216(0.032) 0.251(0.031)

Table 5.12: Simulation II : The mean and sd of the misclassification rates of SLM,
PLG, RF and DSDA over 100 replications under Model 6 with n1 = n2 = 200.

SLM PLG RF DSDA CT

Hepatocellular Carcinoma 0.231 0.279 0.291 0.255 0.376

Breast Cancer 0.357 0.393 0.358 0.366 0.420

Cylinder Bands 0.332 0.379 0.368 0.394 0.411

Heart-Disease 0.148 0.163 0.178 0.159 0.296

Hepatitis 0.135 0.180 0.155 0.174 0.199

Australian Credit Card Approval 0.142 0.142 0.122 0.146 0.139

German Credit 0.236 0.263 0.246 0.253 0.285

Table 5.13: Classification errors for real data study under 10-fold cross-validation.
The best classifier for each data set is highlighted in boldface.
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Figure 5.7: Simulation II : The regrets of SLM,PLG,RF,DSDA under Model 1.
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Figure 5.8: Simulation II : The regrets of SLM,PLG,RF,DSDA under Model 2
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Figure 5.9: Simulation II : The regrets of SLM,PLG,RF,DSDA under Model 3
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Figure 5.10: Simulation II : The regrets of SLM,PLG,RF,DSDA under Model 4
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Figure 5.11: Simulation II : The regrets of SLM,PLG,RF,DSDA under Model 5
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Figure 5.12: Simulation II : The regrets of SLM,PLG,RF,DSDA under Model 6
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Chapter 6

Discussion

High dimensional data sets containing both discrete and continuous variables

arise frequently in practice in the past decades. In order to classify data with high

dimensional mixed variables simultaneously, we have proposed a semiparametric lo-

cation model based on the optimal Bayes rule in this thesis. Recall that U is the

discrete variable which is viewed as a random “location” in {0, 1}d. The traditional

Bayes rule classifies observations based on the joint distribution of (X,U) in each

class. In our approach, the joint distribution is formulated via the distributions of

X|U and U. Here, X|U has Gaussian assumption, with the mean and covariance

matrix defined as functions of the location. We have shown that under this location

model, the direction β(u) and the the intercept η(u) of the classification rule can

be estimated respectively. To address the curse of dimensionality, we consider the

direction to be vary smoothly over the locations and intercept to be approximated

by a linear expansion. The estimation methods we have adopted in this thesis have

covered (low order) parametric approximation, and nonparametric smoothing. Dif-

ferent combinations of the parametric and nonparametric approaches could result in

different theories and performance in different applications.

In this thesis, we expect to convey that discrete variables and continuous vari-

ables should be treated differently, and more dedicated modeling strategies should
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be considered in the presence of other complex structures. Apart from the semipara-

metric classifier we have developed, there are other possible variations that we can

consider. First, we can impose different structures for β(u) and η(u). For example,

similar to η(u), we can also adopt a linear approximation for the classification direc-

tion β(u) and the mean and covariance functions. The resulting classifier will reduce

to a classifier with linear effects X, U and their interactions. Second, we can also

consider relaxing the Gaussian assumption on X to a copula model as in Jiang and

Leng (2016) and Mai and Zou (2015). Add robust to the assumption of Gaussian

assumption of continuous variables can be discussed. Third, it is interesting to apply

the idea of the location model to develop ensemble classifiers using for example ran-

dom subspace for high dimensional data with mixed variables (Tian and Feng, 2021).

Furthermore, the proposed idea can be extended to handle the case where X admits

a matrix or tensor structure (Pan et al., 2019). We leave these for future exploration.

Last but not least, in practical cases, we can try to get the misclassification rates

only based on continuous variables then compared it with the misclassification rates

based on all discrete and continuous variables. From this we can see the practical

effect of the proposed location model.
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