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ABSTRACT

The Point Load Strength Test (PLST) is an extremely convenient and useful method
for rock classification and strength estimation. Although the PLST has been extensively
studied by experimental approach, there are relatively few theoretical studies for the
PLST. Analytic studies for the PLST include analyses of isotropic spheres under the
diametral PLST by Hiramatsu and Oka (1966), finite cylinders under the axial PLST by
Wijk (1978) and by Peng (1976), and finite cylinders under the diametral PLST by Wijk
(1980) and Chau (1998a).

However, the exact stress field within a cylinder under the axial or diametral PLST
has not been solved analytically. The only analytic results are the approximate solutions
by Wijk (1978, 1980), in which the interaction between the indentors and the surfaces of
the cylinder was idealized by two point forces. The finite element method has been
applied to the axial PLST (e.g. Peng, 1976), but the contact problem between the
indentors and the end surfaces was not considered either. The analytic solution by Chau
(19982) is for finite isotropic cylinders with zero shear displacement on the two end
surfaces under the diametral PLST. Moreover, all of these analyses are restricted to
considering rock as isotropic solids, there is no analytic solution for anisotropic rocks
under the PLST.

Therefore, this dissertation presents a series of exact analytic solutions for
anisotropic spheres and finite isotropic cylinders under the PLST. More specifically, the
dissertation presents: (I) an exact analytic solution for spherically isotropic spheres
under the diametral PLST; (II) an exact analytic solution for finite isotropic cylinders

under the axial PLST; () an exact analytic solution for finite isotropic cylinders under



the diametral PLST; and (IV) a general analytic solution for finite isotropic cylinders
under arbitrary surface load. In addition, a series of the PLST experiments have also
been done on plaster, a kind of artificial rock-like material, to verify the theoretical
solutions.

The method of solution for spheres uses the displacement potential approach
together with the Fourier-Legendre expansion for the boundary loads. The solution
reduces to the classical solution by Hiramatsu and Oka (1966) in isotropic case.
Numerical results show that the maximum tensile stress along the axis of loading is very
sensitive to the anisotropy in Young’s modulus, Poisson’s ratio and shear modulus,
while the pattern of the stress distribution is relatively insensitive to anisotropy of rocks.
The method for finite isotropic cylinders under the axial or diametral PLST expresses
displacement functions in terms of series of the Bessel and modified Bessel functions;
and the contact problem between the surfaces of the cylinder and the indentors, through
which the point loads are applied, is considered. Numerical results show that the tensile
stress distribution along the axis of loading within isotropic cylinders, either under the
axial or diametral PLST, similar to that within isotropic spheres under PLST, is not
uniform, tensile stress concentrations are developed near the point loads, the maximum
tensile stress increases with the decrease of Poisson’s ratio and the size of loading area.
The theoretical prediction for the size and shape effects of the specimen on the PLST
agrees well with experimental results. More importantly, if the sizes of the specimens
are comparable (ISRM, 1985), the tensile stress distributions along the axis of loading in

a sphere, in a cylinder under the axial or diametral PLST, have the similar pattern. This

vii



conclusion indicates that the PLST is insensitive to the exact shape of the specimen,
thus we provide the first theoretical basis for irregular lumps under the PLST.

In addition, by generalizing the method of solution for axisymmetric problem of the
axial PLST and for non-axisymmetric probiem of the diametral PLST, a new analytic
framework for analyzing stresses for finite isotropic solid cylinders under arbitrary

surface load is also presented.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

The Point Load Strength Test (PLST) is an extremely convenient and useful
method for rock classification and strength estimation (e. g. Broch and Franklin, 1972;
Guidicini et al., 1973; Bieniawski, 1974). Since the required apparatus for the PLST is
light and portable, the testing procedure is extremely simple and quick, and little or no
sample preparation is needed, the PLST has long been extensively used both in the field
and in the laboratory. Samples with various shapes have been used as specimens for the
PLST, such as spheres, rock cores (with the point loads appﬁed axially or diametrally),
or even an irregular lump picked up in situ. The testing procedure has been standardized
by the International Society for Rock Mechanics (ISRM, 1985). In addition to rock
testing, PLST has also been employed to estimate both tensile and compressive strength
of concrete (Robins, 1980; Richardson, 1989) and reinforced concrete (Robins and
Austin, 1985).

One typical feature of the PLST is that, each specimen is applied with a pair of
vertical concentrated loads so as to induce a horizontal tensile stress, it is this tensile
stress that splits apart the specimen along a plane or planes paralleling to the direction of
load application. Though specimens may be splitted apart into two or three parts, and
the failure planes may be along any directions, all failure planes pass through or
approximately pass through the line joining two point loads. This observed failure

pattern indicates that the stress distribution, especially the tensile stress distribution



along the line joining the two point loads, is of critical important to the PLST
(Hiramatsu and Oka, 1966; Wijk, 1978, 1980). Photoelastic experiments (Hiramatsu and
Oka, 1966) showed that the stress state, in the vicinity of the line joining two point loads
in a sphere, a cube, a rectangular prism or an irregular lump with a comparable size is
roughly the same. This stress analysis is considered to have provided a very important
experimental basis for irregular lumps under the PLST, but so far there is not any
theoretical basis for it. Even though extensive experimental studies have been done on
the PLST, there are fewer theoretical studies for it. Cylinders are the most commonly
used specimens for the PLST, but the stress fields within cylinders, which are induced
by point loads, have not been solved analytically.

In addition, all of the previous theoretical studies are restricted to considering rock
as isotropic solids, there is no analytic solution for anisotropic rocks under the PLST,
though in reality, most of rocks are, to a certain extent, anisotropic in nature.

Therefore, it is really imperative to do a thorough theoretical investigation for the

PLST. A brief literature review will be given in the next section.

1.2 A Brief Review of the Previous Work

Specimens subjected to point loads were originally studied as an interesting research
topic by Sternberg and Rosenthal (1952), D’ Andrea et al. (1965), McWilliams (1966),
Hiramatsu and Oka (1966), Reichmuth (1963, 1968), Franklin (1970) and Fookes et al.
(1971). It was not until Broch and Franklin (1972) proposed the point load strength test
to be a standard indirect tensile strength index test for rocks, PLST has been extensively
studied by experimental approaches (e.g. Guidicini et al., 1973; Bieniawski, 1974, 1975;

Pells, 1975; Carter and Sneddon, 1977; Hassani et al., 1980; Lajtai, 1980; Brook, 1977,



1980; Read et al., 1980; Greminger, 1982; Forster, 1983; Lumb, 1983; Irfan and Powell,
1985; and many others) and fewer theoretical studies (e.g- Peng, 1976; Wijk, 1978,
1980; Chau and Wong, 1996; Chau, 1998a). In particular, for theoretical studies,
Sternberg and Rosenthal (1952) and Hiramatsu and Oka (1966) used two different
methods and independently derived exact analytic solutions for isotropic spheres
subjected to point loads. But the latter discussed in detail the stress distribution along the
line joining the two point loads and thus provided the classical theoretical basis for the
PLST. Wijk (1978, 1980) obtained approximate solutions which estimate the tensile
stress at the center of cylinders under the axial and diametral PLST, and speculated that
the tensile stress at the center of the cylinder under the diametral PLST is larger than
that of a sphere under the diametral PLST but smaller than that of a finite circular plate
under the axial PLST. The approximate solution for cylinders under the axial PLST has
been used by Chau and Wong (1996) to estimate the index-strength conversion factor
theoretically. Finite Element Method (FEM) has been applied to the axial PLST (e.g.
Peng, 1976), but the interaction between the indentors and the surfaces of the cylinder,
as same as Wijk (1978,1980), was idealized by two point forces. Chau (1998a) first
solved the contact problem between the curved surface of the cylinder and the indentors,
and provided an exact analytic solution for finite cylinders with zero shear displacement
under the diametral PLST.

In addition, the stress analysis of elastic isotropic spheres and cylinders under
various boundary conditions has been one of the most fundamental problems in
theoretical elasticity and has long been studies by many researchers. In particular, for
spheres, when isotropic spheres are compressed between two rigid blocks, analyses have

been done by Frocht and Guernsey (1953), Durelli and Daniel (1961), Durelli and Chen



(1973), and Chen and Durelli (1973), Tatara (1991) and Tarata et al. (1991); when the
loads are transferred to the elastic isotropic spheres through displacement boundary
conditions, the problem was analyzed by Abramian et al. (1964). For cylinders,
Pochhammer (1876) and Chree (1889) independently obtained the general analytic
solution for an infinite circular isotropic cylinder subjected to arbitrary surface load.
Dougall (1914) used three displacement functions and derived an analytic solution for
circular isotropic cylinders. Filon (1902) presented analytic solutions for finite isotropic
cylinders subjected to certain axisymmetric loads, particularly provided the notable
solution which considered the effect of friction on the end surfaces on the nonuniform
stress distribution within the cylinder for the uniaxial compressive test. Saito (1952,
1954) derived general analytic solutions for finite isotropic cylinders subjected to
axisymmetric load. Ogaki et al. (1983) employed two stress functions and analyzed the
stress field in a circular isotropic cylinder subjected to the parabolic distributed load on
the end surfaces. Watanabe (1996) obtained an analytic solution for axisymmetric finite
isotropic cylinders constrained part of the radial displacement of the loading ends under
unconfined and confined compressive tests. Chau (1998a) derived an analytic solution
for finite isotropic cylinders with zero shear displacement under the diametral PLST. It
should be noted that, except the analytic solution by Chau (1998a), all of these closed-
form solutions are for 2-dimensional problems for isotropic cylinders. Very fewer
solutions for 3-dimensional problems for finite isotropic cylinders have been obtained
because the boundary conditions on the curved surface and on the end surfaces are very
difficult to satisfied exactly.

It is necessary to mention that other works have also been employed to analyze the

stresses in isotropic cylinders (Pickett, 1944; Edelman, 1948, 1949; Horvay and



Mirabal, 1958; Balla, 1960, Kotte et al., 1969; Knowles and Horgan , 1969; Bordia ,
1970; Brady, 1971; Peng, 1971; Al-chalabi and Huang, 1974; Al-chalabi et al., 1974;
Wijk, 1978, 1980; Robert and Keer, 1987a, 1987b; Herczynski and Folk , 1989).
However, there is no analytic solution for finite isotropic cylinders under the axial
PLST, diametral PLST or under arbitrary surface load. Moreover, all of the previous
theoretical analyses are restricted to considering rock as isotropic solids, there is no
analytic solution for anisotropic rocks under the PLST. Though in experiment, the point

load strength anisotropic index /,, which is defined as the ratio of the greatest point
load strength index I, to the least one in different directions, has long been used to

characterize the effect of anisotropy of rock on the PLST (e.g. Hassani et al., 1980;
Lajtai, 1980; Read et al., 1980; Greminger, 1982; Forster, 1983; Broch, 1983; ISRM,

1985).

1.3 Outline of the Present Research

The main objective of the dissertation is to obtain a series of exact analytic
solutions for anisotropic spheres and finite isotropic cylinders under the PLST.
Hopefully, by analyzing the stress fields within anisotropic spheres and finite isotropic
cylinders under the PLST, we can provide a thorough understanding of the failure
mechanism of rocks under the PLST.

More specifically, Chapter 2 presents an exact analytic solution for spherically
isotropic spheres under the diametral PLST (this chapter is essentially the same as two
papers by Chau and Wei, 1999a, International Journal of Solids and Structures; and by
Wei and Chau, 1998, International Journal of Rock Mechanics and Mining Science

35:4-5, paper No. 006). The method of solution uses the theory for spherically isotropic



solids proposed by Ding and Ren (1991), which is modified from the general theory by
Hu (1954). In particular, the displacement functions proposed by Hu (1954) will be
applied to uncouple three equations of equilibrium, then a change of variables proposed
by Ding and Ren (1991) is used such that closed-form solutions for the roots of the
characteristic equation of the governing equations can be found. Displacement functions
are further expressed in terms of spherical harmonics, and in turn all stress components
can also be expressed in terms of spherical harmonics. To obtain the final solutions,
applied load on the spherical surface is also expanded in terms of Fourier-Legendre
series (as employed by Hiramatsu and Oka, 1966) and matches with the boundary
values of the normal stresses of the spheres. The solution reduces to the classical
solution by Hiramatsu and Oka (1966) in isotropic case. Moreover, the effect of the
contact stress on the stress distribution along the line joining the two point loads is also
considered. Chapter 3 presents an analytic solution for the stress field within an elastic
circular solid cylinder under the axial PLST (The content of the Chapter has been
submitted for publication, Wei et al, 1999). The “displacement potential approach” is
also used to uncouple the equations of equilibrium, then both of the displacement
potential and the contact stress on the end surfaces are expanded in terms of Fourier-
Bessel expansion , so that, the unknown constants in expressions of stresses can be
uniquely determined. In addition, a series of the axial PLST have been done on plaster
to verify the analytic solution. Chapter 4 presents an exact analytic solution for an finite
isotropic cylinders under the diametral PLST (The content of the Chapter has been
submitted for publication, Chau and Wei, 1999b). The method of solution generally
follows the approach by Chau (1998a). But new expressions of two displacement

functions are introduced in terms of the Bessel function of first kind, trigonometric



functions and hyperbolic functions, such that the boundary conditions on the curved
surface and the boundary conditions on the end surfaces are satisfied exactly. All
coefficients can be determined by using the Fourier expansion or the Fourier-Bessel
expansion technique. In addition, the contact problem between the surfaces of the
cylinder and the indentors, through which the point loads are applied, is considered.
Chapter 5 uses all of the solutions obtained in Chapters 2, 3 and 4, and compares the
stress distribution along the line joining the two point loads in isotropic spheres and
cylinders under the diametral PLST and that in isotropic cylinders under the axial
PLST, so as to provide a theoretical basis for testing irregular lumps under the PLST.

In addition, Chapter 6 generalizes the method of solution for isotropic cylinders for
axisymmetric problem of the axial PLST and for non—axisymme&ic problem of the
diametral PLST, and provides a new analytic framework for analyzing stresses for finite
isotropic solid cylinders under arbitrary surface load. (The content of the Chapter has
been submitted for publication, Chau and Wei, 1999c¢).

Finaily, Chapter 7 summarizes the whole dissertation and gives recommendations for

further research.



Chapter 2
SPHERICALLY ISOTROPIC, ELASTIC SPHERES SUBJECT TO

THE DIAMETRAL POINT LOAD STRENGTH TEST

2.1 Introduction

The Point Load Strength Test (PLST) is a convenient and inexpensive method
for rock classification and strength estimation (e.g. Broch and Franklin, 1972;
Guidicini et al., 1973; Bieniawski 1974). The required apparatus for the PLST is light
and portable (Boisen, 1977). The point load strength test can be applied to rock cores
(either axially or diametrically), to spheres, or to irregular lumps as shown in Fig. 2-
1. The testing procedure has been standardized by the International Society for Rock
Mechanics (ISRM, 1985). In addition to rock testing, the PLST has also been applied
to estimate both tensile and compressive strengths of concrete (Robins, 1980;
Richardson, 1989) and reinforced concrete (Robins and Austin, 1985).

Extensive experimental studies have been done on the PLST (see the review by
Chau and Wong, 1996), but there are relatively few theoretical studies for PLST.
Analytic studies for the PLST include the analyses of isotropic spheres subjected to a
pair of diametrical point loads by Hiramatsu and Oka (1966), finite cylinders
subjected to the axial point loads by Wijk (1978) and Chau and Wong (1996), and
finite cylinders subjected to the diametral point loads by Wijk (1980) and Chau
(1998a).

All of these analyses are restricted to considering rock as isotropic solids, there is

no analytic solution for anisotropic solids under the PLST. However, in reality most



of rocks are, to a certain extent, anisotropic in nature. The PLST has also been
commonly applied in testing the strength of anisotropic rocks (e.g. Hassani et al.,
1980; Lajtai, 1980; Read et al., 1980; Greminger, 1982; Forster, 1983; Broch, 1983).

Therefore, in this chapter we will investigate the effect of material anisotropy on
the tensile stress concentration within rock specimens under the PLST by considering
the simplest problem for anisotropic materials: a spherically isotropic elastic sphere
subject to the diametral PLST. The solution to be presented here can be considered as
an extension of the classical solution for isotropic spheres obtained by Hiramatsu and
Oka (1966). The spherically isotropic solid, which was first introduced by Saint.
Venant in 1865 (see the historical account by Love, 1944), is the simplest type of
anisotropic solids and contains five independent material constants. In order to cover
the classical solution by Hiramatsu and Oka (1966), The diametral point loads are
modeled by a uniform distributed radial stress applied on two finite regions of the
spherical surface, which are further expanded into Fourier-Legendre series. However,
in real PLST, the diametral point loads are applied to the rock specimens through
steel cones with spherical heads (e.g. ISRM, 1985). Therefore, the actual boundary
condition of the applied loads should be more realistically modeled by contact
between the spherical rock and the steel cones, as proposed by Chau (1998a).
Therefore, we also consider the effect of this contact stress on the tensile stress
distribution within isotropic spheres subjected to the diametral PLST.

Although most of the rock specimens available for the PLST are either
cylindrical (i.e. rock cores) or irregular (i.e. rock lumps), the solution for the tensile

stress concentration in spheres under the diametral point loads has been found very



meaningful for the PLSTs. It provides not only a theoretical basis for the testing of
irregular lumps of rocks (Hiramatsu and Oka, 1966), but also an upper bound of the
tensile stress concentration within a cylindrical specimen under the diametral PLST
(e.g. see Wijk, 1980). More specifically, Wijk (1980) obtained an approximation for
the tensile stress concentration at the center of a cylinder under diametral point loads,
which is found intermediate between the solutions of the same problem for a circular
plate and for a sphere. The tensile stress distribution along the diameter of a cylinder
under the diametral PLST can be approximated by interpolating the solutions for
circular plates given by Wijk (1978) and for spheres given by Hiramatsu and Oka
(1966) (see for example Fig. 2 of Wijk, 1980). Therefore, the solution for spheres
does shed light on the stress analysis of the diametral PLST for cylindrical rock
cores.

The compression of isotropic spheres by either force or displacement control is
one of the most fundamental problems in the mathematical theory of elasticity and
has been considered by various authors. Sternberg and Rosenthal (1952) first solved
the problems of isotropic spheres under concentrated diametral loads by using the
Boussinesq stress-function in dipolar coordinates, and their solutions have been
verified by comparison to the experiments by Frocht and Guernsey (1953). When the
diametral point loads are distributed over two finite areas on the spherical surface,
the problem was solved by Hiramatsu and Oka (1966), and the analysis was
motivated by the PLST for irregular lumps. Experiments and stress analyses for large
deformations of spheres compressed between two rigid blocks have been done by

Frocht and Guernsey (1953), Durelli and Daniel (196 1), Durelli and Chen (1973),
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and Chen and Durelli (1973), Tatara (1991) and Tarata et al. (1991). When the loads
are transferred to the elastic spheres through displacement boundary condiwtions, the
problem was analyzed by Abramian et al. (1964). However, all of these analyses are
restricted to isotropic spheres, no stress analysis has been done on anisotropisc spheres
under diametral point loads.

Actually, with the exception of the theoretical analyses by Nowinskd (1959),
Eason (1962), Chen (1966), Hata (1993), Ding and Ren (1991) and Cha.u (1995,
1998¢) for spherically isotropic spheres, not many analytical solutions eexist for
spherically isotropic materials or spheres.

The method of solution used here follows the general theory for sprherically
isotropic solids proposed recently by Ding and Ren (1991), which is modified from
the general theory by Hu (1954). In particular, the displacement functions proposed
by Hu (1954) will be applied to uncouple the equations of equilibrium, and = change
of variables proposed by Ding and Ren (1991) will be used such that clossed-form
solutions for the roots of the characteristic equation of the governing equatiions can
be found. Displacement functions are expressed in terms of spherical harmomics, and
in turn all stress components can also be expressed in these terms. To obtain ®he final
solutions, applied loads on the spherical surface are expanded in terms of NFourier-
Legendre series (as employed by Hiramatsu and Oka, 1966) and match vith the
boundary values of the normal stresses of the spheres. Finally, a closed form solution
can be obtained for the stress concentration. As expected, the isotropic limi# of our

solution recovers the classical solution by Hiramatsu and Oka (1966), and cosmpares
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well with the experimental observations obtained by Frocht and Guernsey (1953)
using the method of photoelasticity.

It is also relevant to mention here that the contact problem between two identical
transversely isotropic spheres has been solved by Keer and Mowry (1979). The actual
contact problem between the steel cone and the anisotropic rock specimen and the
study on inelastic crushing of the rock at the contact are complicated problems and
out of the scope of the present study. We refer to Zhang et al. (1990) and Shah and
Wong (1996, 1997) for some recent developments. The main focus in this chapter
will be on the effect of material anisotropy on the tensile stress concentration within

the spherical rock specimen.

2.2 Governing Equations
2.2.1 Hooke's law

Consider a spherical polar coordinate system (r, &, @) with the origin locating at
the center of the sphere, as shown in Fig. 2-2. The spherical rock specimen is
assumed to be linear elastic and spherically isotropic, and the stress and strain

components are related by the following generalized Hooke’s law

4 = o'ee—-l;O'W_V'O‘” ) e =~70'99+0'W_V'0'” ,

E E E e E E E

V o (1+7) -
Ep=——(04hp+ +—= = s Epg =0, 2.1
m Er( o6 Gw) E' €ap E Cop 2G' ( )

where o = 6,9 . The Cauchy stress tensor is denoted by o and the strain tensor by

£. Physically, E and E'are the Young’s moduli governing axial deformations on the

planes of isotropy (i.e. any tangential plane on a spherical surface drawn from the
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origin) and along direction perpendicular to it (i. e. the radial direction) respectively.
The Poisson’s ratios V and v’ characterize transverse reductions in the plane of
isotropy under tension in the same plane and under radial tension respectively. The
shear modulus G' governs the shear deformation of on the planes with unit normals

perpendicular to the radial direction.

In order to make our Hooke’s law compatible with others (e.g. Hu 1954; Ding
and Ren 1991), (2.1) is inverted to give
Ogo = (2Ags + A13)E g +4,e,, + A€, ,
Opp = App8g9 +(2Ags + 41,) €, + A35,, (2.2)

O, =A;(Eg +€,,)+Ays,, , C g =2A666’5¢ s O, =2A44E,,

where
__EQE+V'E) __YEE __E*a-v
12 — (1_*_%5 ? 13 = E ? 33 E
4, =—LE A, =G E=E@-D)+2vV*E (2.3)
%20+’ o |

For small deformation and small strain, the relations between the strain and

displacement components in spherical polar coordinate are expressed as

u, 1, u 1 A, u u,
£, = » Egg=—m—+—1, ng - +—+~—C0t9,
o réé r rsin@ dp r r
u, cou
8np =l __.1_&__"4._") » €, =l(l%-—u—g+%) 5 (2.4)
2 rsin@dp r a 2'r oo a
i, u
o =l(l—¢—- £ cotd+ . ﬁ
2 rdé r rsin@ Jdp

where u,,u, and u, are displacementsin 6,p and r directions, respectively.
[ @ r Sp ¢
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2.2.2 Equilibrium equations

For the present problem of spheres under diametral compression, body forces
can be neglected. Hence, the equations of equilibrium can be simplified to

o 1 &o 100,, 20, —04—0,, +0,,c0t8

led re

+ + + =0

& rsin@ G r A r
do, go do 30,, +20,, coté

. L2 1 fad +1 fp + (i i - 2.5)

cr rsind Sp r 0 r
do 4 1 dog 180, 30,,+(04—0,, cotd

+ + =
& rsin@ dp r &0 r

Substituting (2.2) and (2.4) into (2.5), we obtain

g 2e 2¢, 2 £, | 7
—2(4,, +A55) +A13(_+_'— ) A33( . )+A4_,[;?V,'u,

5 173 174 A Z,, 3e,
Lo & (T 1B 20008 Ay Fr sy (Ermi ey o)
rsin@ Gp rsin@ dp r &0 r rsind &p ér r
A, & 1 e, lﬁsw cotd Ay G, 3e,,

—2 424 - +—=)=0

r oot el e e T e v e Sl F )

where

E=Egy+ &, (2.7)

vieZ ieoto L1 7 2.38)
a6 d0 sin’ 8 dp*

2.2.3 Boundary conditions

For the diametral compression of spheres of radius R, the pair of point forces of

magnitude F* are modeled by uniform radial stress p applied over two opposite
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spherical areas (on r = R), which subtend an angle of 26, from the origin

symmetrically with respect to the z-axis, as shown in Fig. 2-3. All other tractions are

zero on r = R. Mathematically, this boundary condition can be expressed as:

-p for 0<0<6, and 7—-0,<0=<nrx

o, = 2.9
0 for 8, <0<7-86,

C,, =0,,=0 (2.10)

onr = R, where p can be expressed in terms of F, R and 69 as (Hiramatsu and Oka
1966):

p=F/[272R*(1-cos6,)] (2.11)
Now, our problem is to solve the equilibrium equations (2.6) subject to boundary
conditions (2.9) to (2.10). The technique of displacement function and the method of

solutions are considered next.

2.3 Displacement Functions

It was proposed by Hu (1954) that the displacements under consideration can be
resolved into two parts: the first displacement field corresponds to both the radial
displacement and the dilatation equal to zero; and the second field corresponds to the
radial component of the curl of the displacements equal to zero. More specifically,

the displacements are decomposed into (Hu, 1954):

U, =ul +u’ =0+w
wp=ul 4l =L W 1 (2.12)
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where y and G are displacement functions. Substitution of (2.12) into (2.6) leads to

the following partial differential equations

2
2(a+b)VzG__vzo‘G 28,29, 2@)4. " Viw=0 @.13)
r & r- rr & ar
1B, 1 & g 2.14)
rdd rsiné dp
la_ 1 B _, (2.15)
rdf rsinf ap

in which 4 and B are functions expressed in terms of w, G, and v

2
A=-5viG+ 2 G-pT T+ HatD, g @216)
r Y - r ar
1 2 Fy 2
B=(h-b)5Viv+ “’)+h( - rij S
a=A4, +244 ,b=A4, — Ay ,d=A;+4,, (2.18)

c=4;;, h=4,, g=d+h-2(a+b)
As shown in Section V of Hu (1954), without loss of generality, both 4 and B can be

set to zero; that is,

A=B=0 (2.19)
The proof of this result is outlined briefly in Appendix I. In order to obtain a more
tractable form of the solution for (2.13) and (2.19), the following change of variables

similar to those proposed by Ding and Ren (1991) is introduced,
r=Rexp(77), y=RZexp(r), G=RFexp(n), w= = o (2.20)

where Z, F, and H are new displacement functions in terms of the new dimensionless

radial variable 7, and R is the radius of the sphere. When R = 1, the change of
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variables introduced in (2.20) reduces to those of Ding and Ren (1991), but with the
introduction of R into (2.20) no ambiguity in dimension will be resulted, as compared
to the analysis by Ding and Ren (1991). The main reason for introducing the change
of variables in (2.20) is that, as it will be shown later in this paper, the roots for the
characteristic equations for the governing equations can be obtained explicitly, as
compared to the implicit form given in equation (33) of Hu (1954).

Substitution of (2.20) into (2.16), (2.17), (2.19) and (2.13) leads to the following

three partial differential equations for Z, F, and H-

FZ Z
AM(&’7 éﬁ)+A sViZ~2(Ay, — AG)Z =0 2.21)
[h(:;2 +%)+aV:‘ —2b)F +[d :; ~+2(a +b)%]H= 0 (2.22)
8 g & 4
h—g)Vi -dv? F— AV: —42g—1H=0 2.23
[(h-g) &7] [(ﬁn 0,,,]2)+ m]+ go.,n] (2.23)

To uncouple the governing equations (2.22) and (2.23) for F and H, another new

displacement function ¢ is introduced such that

(2.24)

F=[

—2bl¢ (2.25)

Then, (2.22) is satisfied identically by (2.24) and (2.25). Substitution of (2.24) and
(2.25) into (2.23) yields a single governing equation for ¢, which can be further

simplified to the following form if another new potential @ is introduced

e F F
=)+ MV? NVIVHD=0(2.2
P a“rl a7 o) M Gt )T L NVIVIIe=0(2:26)
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— 2 _ 2
p_rg bc’ L=ég_’ o gcth’—d . nv=2 (2.27)
ch ch ch c
and P is defined as
__% (2.28)

on
Subsequently, only two displacement potentials Z and @ remain and satisfy (2.21)
and (2.26) respectively. Expressed in terms of these displacement functions, the

displacement components become

u, =-;%+[di+2(a+b)]@, u =£+;[d—a—+2(a+b)]@,
sinf d¢ on oo * 80 sin®  on I
(2.29)
u =2 r 2yt av —2pl0
r an;_ 81] 1

Substitution of (2.29) into (2.4) and (2.2) yields the strain and stress components in
terms of Z and @. The attractive feature of this displacement function approach is
that our governing equations are reduced to two uncoupled partial differential
equations, which are much easier to solve than coupled partial differential equations.
But, as a trade off the governing equation (2.26) is of order higher than that of the

equations of equilibrium. The general solutions for Z and @ are discussed next.

2.4 General Solutions for the Displacement Functions
Motivated by the stress analysis for isotropic spheres, the following solution

form in terms of spherical harmonics is sought for the displacement function Z

Z=3D,e*"S,(6,9) (2.30)

n=0
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where D, and 1, are unknown constants to be determined and S,( 8, ¢) is the
spherical harmonics of order n, which satisfies
VIS, (8, p) +n(n+1)S,(6,p) =0 (2.31)

Substitution of (2.30) into (2.21) leads to the following characteristic equation for

/1"

A+A,-M, =0 (2.32)
where

M, =2+m-1)(n+2)4, / 4, (2.33)

The two characteristic roots of (2.32) are

2 _—1+,/1+4M,l 1 _—1—,/1+4M,, @2.34)

nl 2 ? n2 — 2

Consequently, if 4,,= A,,, the displacement function Z defined in (2.29) becomes

Z=3 (D, e*" + D,e*")S, (6, p) (2.35)

n=0
where D, and D,, are unknown constants to be determined. Similarly, the

following form is sought for the displacement function @

@ =>"C,e""S,(6,9) (2.36)

n=0

Substitution of (2.36) into (2.26) yields the following characteristic equation for H,

(n+4,) +2P (Ul +11,)+ 0, =0 (2:37)
where

M
B, =D-n(n+D)—=, Q =(n+2)(n-D2L+n(n+DN] (2.38)
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The four characteristic roots for (2.37) can be solved analytically as

-1 -1 -1- -1-
o o +2\/57’#_ A S 239

#nl = 2 ’ n2 n3 — 2 H nd — 2

where

Sn=1-4[F, +\(B'-0,) 1. &, =1-4[F, —(F}-0,)] (2.40)

The second subscript i (i = 1,2,3,4) of p,; in (2.39) indicates the root number. When

the roots for 1, are distinct, the general solution form for ® becomes

D= (C, """ + C 6" + C,e"" + C,,e"") S, (6, ) (2.41)
n=0
where C,,C,,,C,; and C,, are constants to be determined by the boundary

conditions of the sphere. Since the exact forms for Z and @ depend on the types of
the characteristic roots for pu, and A, it is necessary to discuss the possible root types

for them.

2.5 Characteristic Roots for Solid Spheres

Physically, all components of displacement, strain and stress must be real,
therefore the displacement functions Z and @ must be real functions of the
coordinate r,& and ¢. For problems involving solid spheres, it is necessary to
ensure that all stress components remain bounded as the origin is approached.
Substitution of (2.35) and (2.41) into (2.29), (2.4) and (2.2) leads to the stress fields
inside the sphere, which are found to be proportional to the power Re[s]—1 (i =

1,2,3,4) and Re[A,]-1(i = 1,2) of r, where Re[ ] means the real part of [ ]. Since all
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stress components have to be finite at » =0, all r terms with power Re[x,] < 1 and

power Re[4,] < 1 should be discarded in view of this condition of boundedness at

the center of the sphere.

It can be shown that the three characteristic roots: p,; i = 3,4 and A,> will lead to
unbounded condition at the origin of the sphere, regardless of the value of » and the
elastic properties. That is,

Re[,,1<1, Re[g,,]<l, Re[u,]<l (2.42)
To see the validity of the first of (2.42), it can be noted that if 1+4M, > 0, 1, is real
and the real part of 4,, is always less than —1/2 (i.e. Re[4,,]<1); if 1+4M, <0, the
real part equal exactly —1/2 (i.e. Re[4,,]<1). Consequently, we haveRe[A ,]<I
independent of the value of n. For the validity of the second and third of (2.42), the
following argument can be applied. If 2> —(Q, > 0, we have three possible scenarios:
for ¢, and &, 2 0, both g, ; and u,, are real and the real parts of them are always
less than or equal to —1/2; for ¢, and &, <0, both g, and x,, are complex and the
real parts of them equal —1/2; and, finally, for ¢, <0 and &, >0, u,, is complex
with the real part equal to —1/2 and 4, is real and less than —1/2. If P> —Q <0, we
can let &, = 4e'® with the imaginary part of £, being 4Jlf’f——QT[ , which is always
positive. This implies that 0 <6 < m. Thus, &,"* becomes 4/%%? with 0 <6/2 <
T/2; hence, we must have Re[£”] > 0. Consequently, if P> -0 < 0, we have

Re[u,;]1 < 1 as shown in (2.39). Since for P’ -0,<0, ¢, and &, are complex
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conjugates, so Re[¢,”] = Re[£;*] > 0, hence Re[ u,,] < ~1/2. Therefore, the proof
for the validity of (2.42) is demonstrated. Thus, to ensure the stress field to be finite
at r =0, we have to set the constants for all terms corresponding to Anas M,y and g,

zero.
The solution forms for ® and Z now depend on the types of the possible roots for
the remaining characteristic values 1,,, x,, and u,,. We further note here that our
problem is axisymmetric with respect to the angle ¢. Thus, the spherical harmonics
reduces to
S,(8,p) = P,(cosb) (2.43)
where P, (cosd) is the Legendre Polynomials (e.g. Abramowitz and Stegun, 1965).
Therefore, all derivatives with respect to ¢ must be zero; consequently, it can be
shown that the displacement Z is identically zero. To see this, we, by using (2.1),

(2.4) and (2.29), first express the shear stress c,, as

2 1
olie-ta]

Since only one characteristic root remains for Z (i.e. 1,, ), the boundary conditions
(2.10) require that Z =0.

For the possible solution forms for @, there are six possible scenarios for the
types of roots for 4, and 4,,: ) when P} -0, >0, ¢, >0, & >0, g, and
Hnpare real unequal roots; (II) when P?2—Q, <0, u, and g, ,are complex
conjugates: () when P’ —-Q, >0, ¢, <0, &, >0, i, iscomplex and y,, is real;

V) when P'-Q, >0, ¢, <0, & <0, p, and pu, are complex but not
n n n nl n2
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conjugates; (V) when P’ —-Q =0, s, = ¢, >0, u,, = u,, are real (double real
roots); and (VI) when P} -Q, =0, ¢, = &, <0, u,, = u,, are complex (double
complex roots). However, for Case (III) it is straightforward to see that Re[u,]=

—1/2 < 1, thus the corresponding stress does not converge at r = 0. Consequently,
this possible scenario is ruled out. Similarly, the solution form for Case (IV) can also

be ruled out as it can be shown that Re[ Ha1=Re[pu,,1=-1/2<1. For Case (VI), it
can be shown that Re[ u,, ] =Re[ u,,] = —1/2 < 1, thus this possibility is again ruled

out. For Cases (V), it is required that P> —Q, = 0, which is unlikely to be satisfied

by most real materials for any particular ». Therefore, these possibilities will not be

considered in this study. The solutions for the remaining two possible scenarios are:

2.5.1 Case I: Two real roots

For any spherically isotropic material with a fixed value of #, if we find that

P}-Q,>0,¢,>0, &£ >0, then M, and u,,are real unequal roots. If 4, and
H,, 21, the corresponding solution is:

®, =(C,e"" +C,,e*") P (cosf) (2.45)
where C,; and C,» are real constants. If u,, and x,, <1, no converging solution

can be found for solid spheres.

2.5.2 Case II: Two complex conjugate roots
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For a particular spherically isotropic material with a specific n, if P*— 0, <0,

M, and 1, are complex conjugates. If Re[ z,, Jand Re[u,,]> 1, the corresponding
solution is:

©, =(D,e*" + D, e*")P (cosb) (2.46)

where D, = R, + i I, is a complex constant and the supeﬁmposed bar denotes the

complex conjugate and i, becomes

—1+\/1—4P,, —1'4,/P,,2 -0, !

#n - 2 = xn + I:yn - (2‘47)

Therefore, the general solution for ¢ can now be expressed as:
=3, (2.48)
n=0

where &, is defined in either (2.45) or (2.46), depending on the type of roots for s, .

2.6 The Method of Solutions
2.6.1 The general solutions of stresses

Substitution of the displacement potential into (2.29), (2.4) and (2.2) yields the

following expressions for the stress components:

lo% -
Cgo =—EZZCMP”" l{[szm(m+I)rmi +(Al3#mi +2A12 +2A66 )A'Hi]

m  i=l

8’ P, (cos 0)
2

x P (cos@)—~24,L, . }

+ =3 P, C0SON, (R, 1, )eos(y, In p)+ (-1, R, )sia(y, In o]
" | (2.49)
_ P, (cosb)

(R, 1, )cos(y, In p) + @,y (-1, R, )sin(y, In p)]}
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1 2 _ &P, (cos 6
O,9= _EZZ{A“C”"p”- l[(l — H )rmx’ + Ami]T)— }

m =l

AP, (cosb)

e (2.50)

+= % 0" MR, 1, )cos(y, In p) + TI(-1,, R, )sin¥, In )]

where p = r/R is the normalized radial coordinate. Note that the first summation for
m is done over all Case I (i.e. two real roots for z,) while the second summation for »
is done over all Case II (i.e. two complex conjugates for x,,). The following functions
have been used in these expressions:
Upi =Ui(ttm)=du,, +2(a+b) 2.51)
A=A (u)=hu, (g, +1)-2b—am(m+1) (2.52)
Q) (R,., 1,) =44, (4, + AL, (2x, +1y, = R, (2 — y2 +x,)]
+A,n(n+1)[2d(1,y, ~x,R,)—4(a+b)R,]
24, 4p[(x, 1, + y,R,)2x, + Dy, = (x,R, ~y,1,)(x; =y} +x,)]
+2[2b +an(n+ D][2(A4,, + )R, + A;5(x, R, — I, y.)] (2.53)
Q,(R,,I,)=24,[2d(I,y, —x,R,)—4(a+b)R,] (2.54)
HI(R,,1,) = Ayu{l,y,[2d(1-2x,) —4(a+D)]
+R,[2d(x? —y? ~x,) + Ha+b)(x, —D]}

~2A44[R,(x} -y} +x,)~1,(2x, + 1)y, ]+ 24,[2b +an(n+1)]R, (2.55)

The expression for o, can be obtained from (2.49) by replacing 4,,,(24), and

A;; by Aj;.0, and 4;; respectively; while the expression for o, can be obtained

from (2.49) by replacing 4,, and (24¢) by (244 + 4,,) and (—24,) respectively.
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2.6.2 Determination of unknown coefficients
In order to determine the unknown coefficients in these expressions, the Fourier-
Legendre expansion (e.g. see Brown and Churchill, 1993) adopted by Hiramatsu and

Oka (1966) is employed here to rewrite (2.9) as

o, =(cosf, -Dp+ Z E,.P,, (cos@) (2.56)
n=l
where
4n+1
m = ———[c0s8,P,,(cos8,)— P,,_ (cos8,)]lp 2.57)
2n+1

The coefficients for this Fourier-Legendre expansion of the applied normal stress can
be used to match with those from the internal stress field when the boundax-y values
are considered.

By combining the shear traction free condition given in the second of (2.10) and

(2.50), the following relations between C,; and C,, and between I, and R, are

established:
Cu=L,C,,, I,=K,R, (2.58)
where

N Gl 779 Y S VSR 0 (¢ K1) (2.59)

T A-g ), +A, 0 " TI0-1)
Since &,,,04 and o, are even functions of § while o, is odd function of 8, we

can replace “n” by “2n” and “m” by “2m” in all of the above expressions. The

expression of o, on r = R must match with (2.56) and leads to the following
solutions forC,, , and R,, (note that to avoid confusion the subscript 2m and 2 are

separated by a “comma™):
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n (2.60)

where R is again the radius of the sphere

Jom =Ly, [24;;mQ2m + DI, +(24; + A3 lrm, Loy
+24,;m2m+ DI, +(24,; + 45 Homa )Ny

- (2.61)
HZn = 4A44Al3 [KZn (2x2n + I)yZn - (x'fn - y‘.fn +x2n )]
+24,3n(2n+ D)[2d(K,, 5, — X,,) —4(a + b)]
+24, A3[(x,, K, + Y5, )(2x,, + Dy, — (X2, — Y2, K5, )(xzzn - .szn +x,,)]

+4[b +an(2n+D][24,; + 43 (x,, — Ky, ¥,,)] (2.62)

2.6.3 Final solutions for stresses
By now, all unknown constants have been obtained, and substitution of (2.58)

and (2.60) into (2.49) and (2.50) yields the final expressions of the stress

components as

=Z{[Lup“=~-"'[2,4 m@m+ 1), +(Ap, +24, +24)A,..]

+[24,m2m+ )T, , +(A 1, +24, +24,)A, """ 1P, (cos6)

-1 - o'P, cos(-)
—24,[p" T, L, +p™T, ] ( ) £ A (2.63)

m

*Zp%-' {P, (cos®)[Q, (LK, )cos(y,, Inp) +Q, (-K,, ,)sin(y,, np)]
_ 8P, (cos8)

220, (1K, )c0s(, Inp)+ @, (-K, Dsin(y,, Inp)]} x 2=

2x
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O = Z {4uL,,p Hamat [A-u 2m1 ) ami T Aoy
P, (cos8) . E,.

+ Aupl‘lm.z-l [(1 —_ ﬂzm.l )FZM,Z -+ A‘_)m'z]}

20 7,
Xou ) aP,,(cosl) E,
+30™ " M0 Ky )c0s(rs, In p) + TH-K, DsinGy, In oY 7222« 2 )
n 2n

And other shear stresses are zero (i.e. C,, = 04, =0). As mentioned previously, the
expression for o, can be obtained from (2.63) by replacing « A5,(24), 4,5 by
“A;3,0,4;7 respectively; while those for o, can be obtained from (2.63) by
replacing “ 4,,,(244)” by “ (244 + A4,,),(—2 Ags) ” respectively.

In the isotropic case, the coefficients in the generalized Hooke’s law take the

values

E'=E, v=v=v, G= £ (2.65)
2(1+v)

Substitution of (2.65) into (2.63) and (2.64), the present solution reduces to the
analytic solution by Hiramatsu and Oka (1966) for isotropic spheres subject to a pair
of diametrical pointed loads, which has been found providing the theoretical basis in

studying PLST

2.7 Numerical Results and Discussion
2.7.1 Stresses in isotropic spheres and comparisons with experiments

Hiramatsu and Oka (1966) concluded, by summing a finite number of terms in
their analytic solution of infinite series, that the tensile stress induced along the axis
through which the point loads are applied is fairly uniform (e.g. see Fig. 5 of their

paper). However, a more careful study of Hiramatsu and Oka’s (1966) solution by
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Wijk (1978) revealed that the maximum tensile stress may rise to double that of the
‘plateau’ value in the central part of the specimen for v = 1/3 and the tensile stress
distribution is not uniform (see Fig. 3 of Wijk 1978). This observation provides a
means to check the accuracy of the present numerical results. In particular, the
stresses for the case of isotropic spheres with v = 1/3 and 8, = 3° were calculated,
and our results coincide with those given in Fig. 2 of Wijk (1978), as expected. To
further investigate the finding by Wijk (1978), Fig. 2-4 plots the variations of the

normalized radial and tangential stresses, 2nR*o , /F and 21tR20',,a /F, versus the

radial distance r/R along the z-axis for various values of Poisson’s ratio v =v =v)

for 8, = 3°. By following the usual sign convention of continuum mechanics,

tension is plotted as positive. For small Poisson’s ratio (say v = 0.1), a “local peak”
near r/R = 0.9 appears in the tensile stress concentration which is about ten times
larger than those observed at the central part of the specimen. If the tensile strength
or point load strength index (PLSI) is proportional to the maximum tensile stress
within the specimen at the instant of failure, Fig. 2-4 indicates that the PLSI is
extremely sensitive to the actual value of the Poisson’s ratio of the rock. However,
the tensile stress at the central ‘plateau’ and the radial compression is relatively
insensitive to the change in Poisson’s ratio.

Figure 2-5 illustrates the effect of the size of the contact zone, 6,, on the
magnitude of the local peak of tensile stress for v= v’ =v = 0.1. Except for the

varying 6,, the plot is the same as those given in Fig. 4. It is clear that the deviation

of the maximum tensile stress from the ‘plateau’ value at the central portion of the

29



sphere increases drastically with the decrease of 8,, especially for 6, < 5°. For
example, the increment of the maximum tensile stress rises about 180% as 6,
decreases from 5° to 3°. For a large contact zone (say 8, > 7°), the effect on local
tensile zone is not significant.

Since for the case of anisotropic spheres, there is, to the best of our knowledge,
no experimental measurement on the stress concentration within a sphere under
diametral point loads. Figures 2-6 and 2-7 compare the predictions by our solution
for isotropic spheres with the experimental observations by Frocht and Guernsey
(1953), as well as the theoretical prediction by Sternberg and Rosenthal (1952).
More specifically, Fig. 2-6 plots the compressive hoop stress versus the radius 7/R
along §=7/2 for an isotropic sphere with v=048 and 6, = 5°. Our prediction
seems to agree better with the experiments than those by Sternberg and Rosenthal
(1952), although both solutions agree well with experiments. Figure 2-7 plots both
the radial and tangential stresses along the line between the point loads (i.e. along
6=0°) for v=048. Since a large deformation of the sphere is observed in the
loaded regions in the experiment (e.g. see Fig. 2-8 of Frocht and Guernsey, 1953), it
is difficult to determine precisely the value of 6, in the experiments. Therefore,
predictions have been obtained for both 8, =5° and 8, =15°. The predictions for
6, =15° seems to agree better with experiments when /R > 0.5, but both predictions
and observations agree well for /R <0.5, independent of the values of 8, . Thus, this
plot also provides a verification of our conclusion from Fig. 2-5 that the tensile

stresses within the central portion of the specimen (say 7/R < 0.5) are independent of
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the choice of &,. Although there is discrepancy near the surface of the sphere, the
agreement between the theoretical and experimental values is remarkably good in the

neighborhood of the center of the sphere.

2.7.2 Stresses in anisotropic spheres

The main contribution of the present paper is in obtaining an analytic solution
for spherically isotropic spheres under diametral point loads, and provides an
anisotropic counterpart of the classic solution by Hiramatsu and Oka (1966) for
isotropic spheres. Therefore, it is essential to investigate how the ‘local tensile zone’
near /R = 0.9 depends on the change in the degree of anisotropy, as most rocks
found in nature are anisotropic. Three parameters indicating the degree of anisotropy

are defined here and will be used as the control parameters in our calculations:

E 1 Ay -
p=zr a=L, = (2-66)

Ags

Figure 2-8 plots both normalized radial and tangential stresses along the line
between the center and the point load for various values of modulus ratio § (from 1.0
to 1.8) with a=£=1.0, v=0.2 and 8, =3°. The maximum tensile stress at about r/R
= 0.9 increases with B. That is, if a sphere is stiffer against axial deformation along
the tangential direction than along the radial direction, it is weaker in PLST (since a
higher tensile stress concentration is resulted and the rock with a larger B is easier to
break under the same applied loads). In addition, both the radial stress and tensile

stress at the center of the sphere decreases with B. Therefore, in contrast to the
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isotropic case, the stress concentration in anisotropic rocks is found to be sensitive to
the value of the modulus (or the modulus ratio).

Figure 2-9 plots the variations of 2nR? o, /F and 27:R20'38/F versus the radial

distance r/R along the z-axis for various values of a (=v/+) with B =1.5, &=1.0,
v=0.2 and 8,=3°. In contrast to the effect of modulus ratio, the increase of
anisotropy in terms of the changes in Poisson’s ratio along different directions (i.e.
increasing o) actually reduces the difference between the local tensile peak and the

stress within the central part of the sphere. But, the effect of o on the radial stress is

not very significant.

Figure 2-10 plots the normalized stresses versus r/R along the z-axis for various
values of § (= A4y /Ags ) with B =1.0, v=0.2 and &, =3°. As shown in (2.3), Ay,
can be interpreted as the modulus governing shear deformation in the planes with
normals perpendicular to the radial directions (i.e. transverse planes), and 4¢s can be
interpreted as the modulus governing shear deformation in the planes of isotropy.
The effect of this shear modulus ratio & is very similar to the observation in Fig. 2-8
for Young’s modulus ratio B. That is, if a sphere is stiffer against shear deformation
in the transverse planes than in the planes of isotropy, the local tensile stress
concentration (near /R = 0.9) becomes larger and, thus, it is weaker under PLST.
Compared with Fig. 2-8, the effect of the shear modulus ratio £ is much larger than
that of the Young’s modulus ratio B. Therefore, anisotropy in shear modulus have

greater effect on stress concentration than that in Young’s modulus.

2.8 Point Loads Modeled by the Hertz Contact Stress
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As mentioned in the Introduction, the double point loads are applied to spheres
through a pair of steel cones with spherical heads. Thus, the stress acting on spheres
is actually non-uniform, but should be the contact stress between the steel cones and
the spherical specimen. Since the contact is only expected to develop between the
spherical heads and the spherical specimen, this contact stress could be obtained by
considering the contact problem between two spheres.

In particular, according to the general theory for the contact problem between
two spheres by Hertz in 1881 (see Timoshenko and Goodier, 1982), the contact

normal stress is obtained as

-p(0) for 0<0<6, and n-6,<0<n
¢ = (2.67)
0 for 6, <6<n-8 ,
where
p(e) =‘;—°-\/RICOSIB—(R : —'Rol) (2.68)
3F
= 2.69
Po 2nR’ (2.69)
InF(G, +8 R
Ro = T ( Tt z)& ]l/: (2'70)
4R +R)
1-v? 1-vi
8 = 8, =—+ .71

‘" mE’ ' RmE
where F is the magnitude of the applied point force, R, is the radius of the circular
contact area, and R,, E, and v, are the radius of the spherical heads, Young’s

modulus and Poisson’s ratio of the steel cones respectively. As suggested by ISRM

(1985), the spherical head is of radius R,=5Smm and is made of tungsten carbide.
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Thus, Young’s modulus E, can be assumed to be large enough such that §, =0 can

be used in (2.71).

In order to match the stress field inside the sphere, (2.67) is also expand into

Fourier-Legendre series as (Farrell and Ross, 1971)

G_= ZEth" (cosB) 2.72)
where
4n+1),/R* -~ R} ' 2
g, =-8n*D | (D ()ax (2.73)
R, hosso,  COS™ 8,
and

R*-R?
cosf, = T” (2.74)

Numerical integration has been used in obtaining the values of E,, in (2.73).
Substitution of (2.73) and (2-65) into (2-63) and (2-64) yields the analytic solution
for an isotropic sphere under the diametral PLST.

Figure 2-11 compares both normalized radial and tangential stresses along the
line between the center of the sphere and one of the point loads under the action of
uniform stress (solution in previous section) and contact stress (solution in this
section) for E=18GPa, v=0.1, D=50mm and P=15kN. The angle e,
corresponding to the contact stress is 3.14° Fig. 2-11 shows that the compressive
stresses and the tensile stresses at the central part are almost the same for spheres
under the action of the uniform stress and the contact stress, but the stress

concentrations developed near the point loads are significantly different. Assuming a
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larger or smaller 6, will lead to under or over estimation for the maximum tensile

stress respectively. For example, assuming a smaller 0,, say 6, =2°, will lead to
about 100% over estimation of the actual maximum tensile stress, while assuming a

larger ©,, say 6, =5°, will lead to about 70% under estimation of it. It is also
interesting to note that if we assume 0, equal to 2.8°, the stress distribution will be

the same as that considering the Hertz contact problem.

Figure 2-12 plots both the normalized radial and tangential stresses along the line
between the center of the sphere and one of the point loads under the action of
uniform stress and contact stress for Poisson’s ratio v =03. Except for varying
Poisson’s ratio, the plot is the same as those given in Fig. 2-11. The angle 0,
corresponding to the contact stress is 3.10°. Fig. 2-12 shows that the difference of
tensile stress concentrations developed is relatively less significant for a large
Poisson’s ratio than those for smaller ones.

Figure 2-13 plots both the normalized radial and tangential stresses along the
line between the center of the sphere and one of the point loads under the action of
uniform stress and contact stress for Young’s modulus E=70GPa. Except for
assuming a larger Young’s modulus E, the plot is the same as those given in Fig. 2-
12. The angle 68, corresponding to the contact stress is 1.94°. Fig. 2-13 shows that the
difference of concentrations developed near the point loads is relatively more
significant for a larger Young’s modulus than those for smaller ones. Note that the
"uniform stress solution" is independent of Young's modulus of the specimen.

Above numerical results show that assuming a uniform stress acting on the

contact area of spheres will leads to either over estimation or under estimation of the



maximum tensile stress. Therefore, in the analyses of Chapters 3 and 4 for the axial

and diametral PLST on cylinders, the contact problem between the steel cones and

surfaces of the cylinder will be considered.

2.9 Conclusion

An analytic solution for the stress concentration inside a spherically isotropic
sphere under a pair of diametral point loads is obtained by employing the
“displacement potential method” together with a Fourier-Legendre expansion for the
boundary applied loads. When the isotropic limit is considered, the solution by
Hiramatsu and Oka (1966) is recovered analytically. It was found that a local tensile
zone near /R = 0.9 is developed, and such non-uniform distribution was first pointed
out by Wijk (1978) for isotropic spheres. The difference between the local maximum
tensile stress and the “plateau’ value in the central portion of the sphere increases
with the decrease of both the Poisson’s ratio and the area of loading surfaces. To
verify the present solution, the experimental observations by Frocht and Guernsey
(1953) for isotropic spheres with v = 0.48 are compared with our predictions, and the
theory and experiment agree well. In addition, the contact problem between the steel
cones and the surface of the sphere is also considered. We found that the assumption
of uniform stress acting on the contact area would lead considerable over or under
estimation of the maximum tensile stress.

For anisotropic spheres, it is found that the local maximum tensile stress increase
with the degree of anisotropy in both the Young’s and shear moduli, but decrease

with the anisotropy in Poisson’s ratio. In particular, if a sphere is stiffer against axial
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deformation along the tangential direction than along the radial direction, higher
tensile stress concentration is observed near /R = 0.9 and, thus, it is weaker under
the PLST. Similarly, if a sphere is stiffer against shear deformation in the transverse
planes than in the planes of isotropy, the local tensile stress concentration (near /R =
0.9) becomes larger and this leads to a smaller PLSI (i.e. a weaker rock). In contrast
to the effect of modulus ratio, the increase of anisotropy in terr£15 of the changes in
Poisson’s ratio along different directions (i.e. increasing a) actually reduces the
difference between the local tensile peak and the stress in the central part of the
sphere.

The present solution indicates that the tensile stress along the line of the applied
point loads within the spheres is not uniform, in contrast to the conclusion by
Hiramatsu and Oka (1966). The non-uniformity depends on the Poisson’s ratio, size
of contact zones, the degree of anisotropy of the tested rocks. In terms of further
experimental verification, the local peak of the tensile zone near /R = 0.9 may
provide a special feature for us to assess our prediction. If experimental technique,
such as the acoustic emission test, can be used to identify the origin of fracture during
the point load strength test, it is possible to see whether fracture originates at about
r/R = 0.9. Nevertheless, further experimental and theoretical studies are
recommended, especially for anisotropic rocks.

In addition to assuming a uniform distributed load in modeling the point loads,
the Hertz contact stress is also considered. It is concluded that large error may be

resulted if a realistic size of contact zone cannot be estimated.
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Chapter 3
AN EXACT ANALYTIC SOLUTION FOR THE AXTIAL POINT

LOAD STRENGTH TEST ON SOLID CIRCULAR CYLINDERS

3.1 Introduction

The direct tensile strength test on rock is seldom used due to the fact that tensile
force is difficult to apply to rock samples without inducing eccentric moments, and the
fact that the tensile stress is normally induced indirectly by compressions in rock masses
in real situations. The Point Load Strength Test (PLST), which is a popular index test
for strength estimation of rock, has been extensively used both in the field and in the
laboratory because of its simple testing procedures, of its cheap operating cost, and of its
short testing time (e.g. Chau and Wong, 1996). In estimating the strength of rocks,
cylindrical cores obtained from drilling are the commonly used samples in the PLST.
Specimens are normally split apart along the line joining the two applied point loads.

Extensive experimental studies have been done on the PLST (see the review by Chau
and Wong, 1996), but there are relatively few theoretical studies for the PLST. The
analytic studies for the PLST include the stress analyses of the diametral PLST on
isotropic spheres (Hiramatsu and Oka, 1966), spherically isotropic spheres (Wei and
Chau, 1998; Chau and Wei, 1999a), and the finite cylinders (Wijk, 1980; Chau, 1998a);
and the stress analysis of the axial PLST on finite cylinders (Wijk, 1978). But, it should
be emphasized that the solution for the axial PLST obtained by Wijk (1978) is only an

approximation of the tensile stress at the center of the cylinder. Nevertheless, the
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solution by Wijk (1978) was found useful in estimating analytically the index-strength
conversion factor for the axial PLST (Chau and Wong, 1996; Chau and Wong, 1998).

The tensile stress field within a cylinder under the axial PLST has not been solved
analytically, the only available approximation, as mentioned previously, is the stress at
the center of the cylinder (Wijk, 1978). In addition, all previous analyses (except Chau,
1988a) neglected the contact problem between the indentors and the surfaces of the
specimens and idealized the applied tractions as either point forces (e.g. Wijk, 1978) or
uniform traction (Hiramatsu and Oka, 1966), whilst, in reality, the so-called point loads
are actually applied through a pair of steel cones with spherical heads (ISRM, 1985).
The finite element method has been applied to the axial PLST (e.g. Peng, 1976), but the
contact problem between the steel cones and the end surfaces was not considered either.

Stress analysis for finite cylinders under various boundary conditions has been one

of the most fundamental problems in the theory of elasticity. The most notable early
development was the analysis by Filon (1902) for finite solid cylinders under uniaxial
compression with end friction. Dougall (1914) proposed a general analysis for solid
circular cylinders under various types of loading conditions. The application of
Dougall's (1914) approach to the axial PLST is, however, not straightforward, as the
physical meanings of the so-called permanent free modes and transitory free modes are
not readily understandable.

Using Love’s stress function for axisymmetric problems (e.g. Section 188 of Love,
1944), Saito (1952, 1954) proposed a Fourier-Bessel expansion of the stress function for
satisfying any axisymmetric boundary loading conditions. By adopting a two stress

function approach, Ogaki and Nakajima (1983) also proposed a general procedure and
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derived an analytic solution for finite cylinders with parabolic distributed loads acting
on the central part of the two end surfaces. Applying Saito (1952, 1954) approach,
Watanabe (1996) obtained the analytic solution for cylinders under compression with
perfectly or imperfectly constrained radial displacement on two loading end surfaces.
This approach can also be used to find the Young’s modulus from compression tests
with end friction (Watanabe, 1998) and provides a check for other approximate methods
(Chau, 1997, 1998b).

One important feature of the PLST is that all specimens are split apart into two or
three pieces in the tensile mode, which is believed to be caused by the tensile stress
between the two point loads. Thus, the stress distribution along the line joining the two
point loads is of great importance to the PLST. As remarked earlier, there is no solution
for the tensile stress distribution along the two applied point loads within cylindrical
specimens under the axial PLST.

Therefore, this chapter considers the stress distribution in a finite circular cylinder
subjected to the axial PLST. The method of solution, in contrast to the stress approach
by Saito (1952, 1954) and Ogaki and Nakajima (1982), uses the displacement potential
approach, while the boundary contact forces, similar to the approach by Saito (1952,
1954) and Ogaki and Nakajima (1982), are expanded into the Fourier-Bessel series. In
contrast to all previous studies (except, Chau, 1998a), the two point forces are modeled
more realistically as the contact stress between the flat end surfaces and the spherical
heads of the indentors. In verifying the applicability of the present solution to real

PLST, a series of the axial PLST have been carried out on rock-like plaster specimens.

40



Plaster is used in our PLST because man-made plaster is generally more homogeneous
than natural rock, in which inherent defects inevitably exist.

Except in the vicinity of the contact zone between the indentors and the end surfaces,
where crushing is the dominant mode of deformation, the present linear elastic solution
should provide meaningful results for interpreting the failure mechanism and strength of

the rock specimens under the axial PLST.

3.2 Governing Equations

Consider a cylindrical specimen of diameter D (or 2R) and length H (or 24). For
mathematical simplicity, we take the center of the cylinder as the origin of our
cylindrical coordinates (r,6,z) with the z-axis coinciding with the axis of symmetry of
the specimen, as shown in Fig. 3-1. Since the axial point forces are applied through by
pressing two collinear indentors along the axis of the symmetry of the cylinder, all

variables of the problem are independent of &. In the absence of body force, the

equations of equilibrium are (Love, 1944)

66, Jdo_ o©_-—-0C
” + ~ + lid 60 = 0 3.1
or oz r G-1)
. 8. 5. _g (2)
Oz or r
where the usual notation for Cauchy stress tensor is adopted.
For axisymmetric problems, strains and displacements are related by:
e, = g =t = _Lou v (3.3)
or r - 0z " 20z or
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where o_,5_,c, are the normal stresses in the axial, radial and circumferential

directions respectively, o_ is the shearing stress on the rz plane, €_,€,,8, and €_ are

the strains corresponding to those stresses, and u and w are the displacements in the -
and z-directions respectively.

The specimen is assumed to be linear elastic homogeneous and isotropic, thus the
following Hook’s law applies

I

€, =E[G” -v(o, +0c_)] (3.4)
€0 = %[0‘89 —v(o, +6,)] (3.5)
£ =%[c= ~v(o, +G_)] (3.6)
£, = %0, (3.7)

where £, v and G are the Young’s modulus, Poisson’s ratio and the shear modulus
respectively.

As shown in Fig. 3-1, all the surfaces of the specimen are traction free, except for the
two small circular contact areas where the spherical heads of the steel cones act on (one
on the top and the other at the bottom). The standard size for the radius of the spherical
heads is Smm, as suggested by ISRM (1985); while our experimental results show that
the size of the contact area is in the range of 1 to Smm. Therefore, the contact is
expected to develop only between the spherical heads of the steel cones and the end
surfaces of the specimen (probably except for very soft rocks). In addition, the size of
the contact area is much smaller than the standard diameter of the specimen (i.e.

D=50mm), as suggested by Broch and Franklin (1972) and ISRM (1985). Hence, the
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contact stress acting between the steel cones and the end surfaces of the specimen can be
approximated by considering the Hertz contact problem between a spherical surface of

radius R, and a semi-infinite flat surface. In particular, the formulae for contact stress in

Section 140 of Timoshenko and Goodier (1982) can be specialized to the present case as

-p(r) r<Rg,

_ 3.
c_ {0 F>R (3.8)
where
Py =2 [RT-r )

RD
3P

_ 3.10
P 2nR’ oo
g = [FTP@ *8IR, ., (3.11)

4

1__ 2 - 2

§ =V . 5 =17V (3.12)

T TRE nE,
where P is the magnitude of the applied point force, R, is the radius of the circular
contact area, and R,, E, and v, are respectively the radius of the spherical heads, the
Young’s modulus and Poisson’s ratio of the steel cones. As suggested by ISRM (1985),
the spherical head is of radius R, =5mm and is made of tungsten carbide. Thus, the
Young’s modulus £, can be assumed large enough such that d,=0 will be used in
(3.11) and (3.12).

Therefore, the boundary conditions for a solid cylinder subject to the axial PLST are:

6,=0,06_=0 onr=R (3.13)
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- <R
6. =0,0. ={ Py r<R o _in (3.14)
- = |0 r>R,

where p(7) is the contact pressure given by (3.9).
The next task is to find the solution for the stresses govermed by the equations of

equilibrium (3.1) and (3.2) together the boundary conditions (3.1!3) and (3.14).

3.3 Method of Solution
In contrast to the stress potential approach used by Saito (1952, 1954) and by Ogaki
and Nakajima (1983), the displacement potential approach is adlopted. In particular, the

following displacement potential ® is introduced

o’ o'®
= s =—f2(1-vVIV O+ (1-2 3.15
“=an’ ¥ RA-v)VD+(1-2v) 6,22] (3.15)
where
2> 108
V =— 4= 3.1
"“or* ror (3.16)

Substitution of (3.15) into (3.1) and (3.2) and by the virtue off (3.3) to (3.7), the two
equations of equilibrium are reduced to the following governing equation for the
displacement function @

Vo=V'Vd=0 3B.17)
where V* is the Laplacian operator, or V* =V +3'/8z*. That is, & satisfies the
biharmonic equation.

Substitution of (3.15) into (3.3) then the results into (3.4) to (3.7) leads to the
following stresses in terms of the displacement function @

G, =—2vGV’@+ 2G o

3.18
oz ozor? ( )




o, =2vGv: 22 1l 0® (3.19)

r dzor
c_. =-2G{(2-vV) iVz — E’——](IJ (3.20)
= oz oz’
o] —2G[—(1—v)iV + v o 1P (3.21)
= or ' oroz? ’

Except differing by a constant, these expressions are, in essence, the same as those
obtained by Love (see Section 188 of Love, 1944), although a different approach is

adopted here.

3.4 Appropriate Form of the Displacement Potential

The most difficult task for solving our problem is to find the appropriate form for the
displacement potential such that both the biharmonic equation (3.17) and the boundary
conditions (3.13) and (3.14) can be satisfied. As shown in Fig. 3-1, the axial PLST is
axisymmetric with respect to the axis of the cylinder. Due to this symmetry,

c,.,0, and o_ are expected to be even functions with respect to z , while o_ is odd

function with respect to z. Thus, the following series representation for the

displacement function & is adopted

3

__RkR knp’ sin(rmn)
P=—To e, N 5 4.1 (B.0)+ BB oL, (B.0)
(3.22)

= J (A .
+ z 0 g\} :p) [C; Slnh(‘Y,T'l) + D"Y:T'I COSh(Y ,Tl)]}

where the two normalized coordinates pand 77 are defined as p=r/R and n=2z/h;
K Is a geometrical shape ratio defined as x = A/ R; A, is the s-th root of J (x) = 0;

v.=Axand B =nn/x; J,(x),J(x),],(x) and I (x) are Bessel functions and
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modified Bessel function of the first kind of zero and first order respectively;
4,,C,,4,.B,,C, and D, are unknown coefficients to be determined. This solution form
is similar to those proposed by Saito (1952), if the minor typos on the functions sinh and
cosh are corrected.

It is straightforward to see that (3.22) satisfies the biharmonic equation (3.17), thus
(3.22) is a probable solution for the problem. The next step is to see whether the
boundary conditions can be satisfied exactly by the series expansion (3.22) by assigning

appropriate value to the unknown coefficients.

3.5 Determination of Unknown Coefficients
To see whether the series representation given in (3.22) is appropriate for our
problem of the axial PLST, the shear stress is first expressed in terms of the unknown

coefficients by substituting (3.22) into (3.21)

£l

o= Z sin(rrm){4,1,(B,p) + B,[2(1- V)1, (B, p) + B, pL,(B.p)1}
(3.23)

+ 3" J.01PI(C, +2vD,)sinh(y,m) + D,y meosh(y, m)]

By noting the fact that the shear stress o_ is identically zero on the curved surface
r =R (or p=1), we obtain the following expression between 4 and B,

4 B E,

. __B _E (3.24)
2(1-v1,B)+B,L,B.) -LB,) A,

where £ and A, are constants introduced to simplify the subsequent analysis.
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Similarly, the shear stress is also identically zero on the two end surfaces z=+h

(or 7 =+1), and this condition yields the following relation between C, and D,

CJ D: — _F: (3 -25)

2vsinhy, +7v, coshy, - ~sinhy, Q

5

where F, and Q, are, again, constants introduced to simplify the expression involved in

the subsequent analysis.
On the curved surface r=R, the radial stress can be found by substituting (3.22) into

(3.18) and setting o =11in the resulting equation:

5. =4y +@v=1C,~ ) lm)A [LB.)~LE)/B1+BI1-2L B +BLEI
,, ) (3:26)
+ LG, +@v+ DD Jensly, v+ Dy msioky. )

In terms of the constants newly-introduced in (3.24), (3.25) and (3.26) can be rewritten

as

G,=4v+2v-1C, + ZE cos(nmm)

(3.27)
+ Z%@[(sinhv, —7v, coshy, ) cosh(y n) +y nsinhy, sinh(y,n)]
In obtaining (3.27), we have set
A, ={[20-v)+B, M (B,)-B. I}(B.)}/B, (3.28)

In order to apply the boundary condition for o_ on r=R (or p =1), we first consider
the following Fourier series expansion for the bracket term in the second summation of

(3.27)
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(sinhy, —y, coshy, ) cosh(y n) +v msinhy, sinh(y 1)

(3.29)
=y, sinhty, Y G cosm)
o {y,” +(nm)"}
Consequently, (3.27) can be expressed as a function of cos(rnzn) only
c,=4Av+(2v-1)C, +Z[E" +ZF;Qm]cos(nm|) (3.30)
where
o = 4CD"Y,(m) I, )sinh*y, 53D

Q {y," +(nm)*}
Thus, substitution of (3.30) into the boundary condition (3.13) on the curved surface

p =1 leads to the following relations between 4, and C, and between E, and F

Av+Qv-1DC, =0 (3.32)
E +ZEQM =0 (3.33)

Finally, by combining (3.20), (3.22), (3.24) and (3.25), we obtain the following

expression for o_

6. =4 (1-v) +22—V)C, +Z§%’“—’°{[ﬁ,@ B.)~2L BV, B.0)~B.oL BB

(3.34)
" ES D). o
+ E —‘%[(smhv, +y, coshy, ) cosh(y,n) -y, nsinhy, sinh(y, 1)]
On the end surfacez = +h , we can set 7 =*1 in (3.34) and it is reduced to
o.=4,(1-v)+2(2-v)C,
(3.35)

+Z Eg;l) {IB.L, (B.) ~ 2L,(B)IL(B.0) ~B.oL (BL(B.0)} + Z EJ,(Ap)
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Note that in obtaining (3.35), we have set
Q, =sinhy, coshy, +7, (3.36)
In order to apply the end boundary condition for o_, we first expand the modified

Bessel functions in the first summation of (3.35) to a Fourier-Bessel expansion (Watson,

1944):

(8.1, B.)~2L, B0V, (B.0)—B.0L (B B.0) =4, B, )Z[z+@)].f(x)"(*'p)(3'37)

Thus, o_ can be expressed in terms of a series of J,(4,0) only.

In particular, substitution of (3.37) into (3.35) leads to
c.=4,(0-v)+2Q2~-Vv)C, + E [F. + E ER V, (\p) (3.38)

where

_ 4=D"NB, I(B,) 539
T A N+ BT

In order to match the load-induced contact stress (3.8) on the end surfaces with the

stress field given in (3.38), (3.8) is again expanded into Fourier-Bessel expansions:

2 AR, AR AR
E PR cos=2 _sin Moy (3 ) (3.40)
NRJII() R R

The details of this expansion are described in Appendix II for the sake of completeness.

Finally, by comparing the coefficients of (3.38) and (3.40), we have

4,(1-v)+22-Vv)C, =0 (3.41)
F, +ZE,R,, - 2R AR AR MRy (3.42)
MNRJI(M) S R R R
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It is straightforward that from (3.32) and (3.41) the only solution for 4, and C, is

4, =C =0 (3.43)

0 (]

For the unknown coefficients £, and F,, the two coupled system of equations, (3.33)

and (3.42), have to be solved simultaneously. For numerical implementation, we can
truncate the infinite series in (3.33) and (3.42) and only retain the first » and s terms.

Then, there will be (s+r) equations for the (s+7) unknown coefficients of F and E .
Once these coefficients are solved, the following expressions can be used to evaluate the

stress field inside the cylinder:

x

0= Y 2 (g 1 (B.)~ 21, (B (B.0) ~ B0, (B, (B.)}
=l " (3-44)
FJ,(A.p)

o [(y, coshy, +sinhy, ) cosh(y ,n) —y msinhy, sinh(y n)]

sal

0, =) P (1@ )41,V B0 B0l B B.0)+20-LB.)

I S ) ) )
+,4,8, )]%H E :' {/, (A, p)[(sinhy, —v, coshy, ) cosh(y, ) +v nsinhy, sinh(y, )] (3.45)

J (A .
2 2ty nic, sob(y, ) (1 2v)sick, ~7, cosh, JooshCr, 0}

5

6 = D 2 (1)L B )L B +H2Av- DL, B~ LBV, B (B0}

N F
+ _;_ —. {2vsinhy, cosh(y )/, (A.,p) (3.46)

A . .
+%‘—’2[[a—2v) sinhy, ~y, coshy, )] cosh(y 1)+ nsinhy, sink(y )]}

£
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_\ " £.sin(rmn) _
0.= ) B 1, LG -BALBILE.}
- (3.47)

YV EJ,(A . ;
_Z 5 lgg xp) [Y,COShY, slnh(‘yxn)—'y,sth,COSh(Yxn)]

Therefore, the problem has been solved analytically, and thus the assumed form for the

displacement potential (3.22) has been shown to be appropriate and complete.

3.6 Numerical Results and Discussions

The fracture surface of a failed rock specimen under the axial PLST must pass
through both loading points, if the result is to be accepted as a valid data (ISRM, 1985).
Indeed, our experiments show that almost all specimens are split into two or three
prismatic fragments along the line joining the two loading points. Thus, the tensile
stress along the line of two point loads (i.e. the axis of symmetry as shown in Fig. 3-1) is
of crucial importance to interpret the data from the axial PLST. Therefore, subsequent
discussions will focus on the stress distribution along the z-axis. It should be noted that
the radial stress equals the tangential stress along the z-axis, and thus only the radial and
vertical stresses are plotted in the following numerical examples.

Numerical results show that if #=R (i.e. a roughly equi-dimensional specimen), about
25 terms in both » and s are needed to achieve an accuracy of less than 3% error in the
tensile stress field. Note that » and s are the summation indices of the first and second
sum of (3.44) to (3.47). In general, more terms in # and less terms in s are needed for
h>R, while more terms in s and less terms in 7 are needed for A<R, but a total of 50

terms for 7 and s are normally needed to limit the error to within 3%.
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Figure 3-2 plots the variations of the normalized stresses o_ / o,and o_/o, (where
o, = P/ HD) versus the normalized distance z/4 along the z-axis for various values of
Poisson’s ratio v. The results are obtained for H/D = 11, D=2R=50mm, and
R, = 0.05R . Note that H/D=1.1 is the recommeded shape ratio for the axial PLST and

that D=50mm is the standard size of rock core for determining the Point Load Strength
Index (PLSI) suggested by ISRM (1985). In order to reflect only the effect of Poisson’s
ratio on the stress concentrations, we have fixed the size of the contact area in F 1g. 3-2.
Following the usual sign convention of continuum mechanics, tension is plotted as
positive. In contrast to the elastic stress field in the Brazilian test, F ig. 3-2 shows that
the tensile stress distribution along the z-axis is not uniform, a local tensile stress
concentration is developed near zA=0.9. As shown in Fig. 3-2, this maximum tensile
stress increases with the decrease of Poisson’s ratio v. Since the failure of the specimen
under the axial PLST is believed to be dominant by brittle fracture, we speculate that the
point where the crack initiates should be the same as the point where the maximum
tensile stress is induced. Indeed, we will show in later discussion that our experimental
observation basically égrees with this speculation. If the tensile strength or PLSI is
proportional to the maximum tensile stress at the instant of failure, Fig. 3-2 shows that
PLSI is extremely sensitive to the values of Poisson’s ratio v of the rock. However, the
tensile stress at the central part of the axis of symmetry and the axial compressive stress
are insensitive to the change in Poisson’s ratio. This conclusion is similar to that for an
isotropic sphere or a spherically isotropic sphere subjected to the diametral PLST (Wei

and Chau, 1998; Chau and Wei, 1999).
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Figure 3-3 illustrates the effect of the radius R, of the contact zone on the magnitude
of the local peak of tensile stress for H/D=11,D=2R=50mm and v =0.25.
Except for the varying R, the other parameters used in the plot are the same as those
used in Fig. 3-2. It is clear that the maximum tensile stress increases drastically with the
decrease of R,, especially for R, <0.05R. For example, the maximum tensile stress
rises to about 250% as R, decreases from 0.05R to 0.01R, while the tensile stress at the
central part of the z-axis and the axijal compressive stress are relatively insensitive to the
change of R,. Note also that the Young’s modulus E only has influence on the size of
the contact area as given by (3.11) and (3.12). Therefore, the stiffer the specimen the
smaller is the radius R, and thus a larger maximum tensile stress will be induced. Thus,
it appears that the stiffer the rock, the smaller is the PLSI. This conclusion appears to be
contrary to most experimental observations. In obtaining this result, we have actually
assumed that the local tensile strength for fracture is independent of the stiffness of the
material. However, in reality most natural rock strength and stiffness increase
simultaneously. Nevertheless, if there were a number of solids having the same local

tensile strength, the softer the rock the higher is the PLSI.
To verify the applicability of our analytic solution to actual axial PLST, the next

section will compare our analytic solution with our experimental data for the axial PLST

on cylinders made of a type of rock-like plaster.

3.7 Experiments and Comparison with the Theoretical Predictions
Experiments have also been done on rock-like plaster to verify the applicability of

our theoretical solution to the axial PLST. Plaster, instead of natural rocks, was used
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because the specimens will be more homogeneous and the results are more
reproducible. Our plaster specimens were made by using the following gprocedures.
Mixture of cool distilled water and gypsum with mass ratio of 3:10 was powured into a
cylindrical mould made of a plastic hollow tube. The mould was filled with plaster
paste in three consecutive phases and each phase covers one third of the lemgth of the
mould. When each one third of the mould is filled, a tiny wooden hammer vwas used to
tap 50-70 times into the mixture in order to yield a homogeneous sampple and to
minimize the air content of the specimen. The procedure has to be completed swiftly as
the mixture starts to coagulate within 8-10 minutes. If warmer water were used, the
setting time of the plaster paste would be even shorter. The mould was remmoved after
10-15 minutes. The curing of specimens was done at room temperature ancl humidity
(under air-conditioning). The weight of each specimen was recorded daily unttil a steady
weight was maintained. Normally, the daily change in mass will be less 0.1% =after about
45 days. To ensure a steady strength had been developed when the specirmens were
tested, all tests were conducted 60 days after the mixing. The density of the spsecimens is
about 1.75—~1.78g/cm’. For investigating the shape and size effects, a total oef eighteen
specimens were initially made for the axial PLST. Two samples were made fror each of
the following combinations of size and shape: (a) specimens of the sarme shape
(#/D=1.1) and various diameters of 41, 51, 56, and 67mm; and (b) specimeens of the
same diameter (56mm) and various lengths of 34, 44, 58, 63, and 69mm. All end
surfaces of the specimens were polished to a tolerance of 0.02mm of flatnesss, and the
maximum departure of the perpendicularity of the end surfaces from the axxis of the

specimens was controlled to within 0.001 radian or 0.05mm in 50mm. By folleowing the
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testing procedure suggested by ASTM for the uniaxial compression test, the average
Young’s modulus, Poisson’s ratio and compressive strength of the specimens were
obtained as 17.5GPa, 0.25 and 57.54MPa respectively. In addition, the uniaxial stress-
strain curve of our samples show clearly the sign of dilatancy. For more discussion on
the requirements of rock-like solids, we refer to Wong and Chau (1998).

To calibrate the maximum allowable local tensile field of the plaster under the axial
PLST, two more specimens with A#/D=1.1 and D=56mm were cast. The point load P
under which the specimen was broken was recorded for each specimen. Then, these data
were input into our solutions, the calculated stresses o, and o_ were plotted versus the
normalized distance z/% from the center in Fig. 3-4. The calculated maximum tensile
stresses for these four specimens are 23.06, 23.35, 21.50 and 23.21MPa with a mean of
22.78MPa. In order to predict the failure load for each sample, we make a major
assumption that if the maximum tensile stress reaches 22.78MPa (which will be called
local tensile strength hereafter) along the z-axis in the specimen, the specimen fails.
From microscopic point of view, this assumption implies that a critical local tensile
stress field of 22.78MPa is needed to initiate the unstable crack growth from a defect of
typical size in the plaster material.

Since many previous experiments showed that the PLSI (i.e. I, =Pr/4HD)
depends on both the length and diameter of the specimens (Broch and Franklin, 1972;
ISRM, 1985). By applying the concept of the local tensile strength (as described above)
to our analytic solution, prediction on both shape and size effects on the PLSI can be

made. In particular, the predicted PLSI (or I,) is plotted against the diameter in F ig. 3-5

for a fixed length/diameter ratio H/D=1.1 together with our experimental results.
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Because of the limited vertical clearance (10mm-89mm) of the loading frame of the
- PLST apparatus, only specimens of diameter from 41mm to 67mm were tested. Figure
3-6 plots the PLSI versus the length/diameter ratio for a fixed diameter D=56mm_ As
shown in Figs. 3-5 and 3-6, the predictions on both shape and size effects on the PLSI
agree very well with our experimental results. Since the shape effect was examined
experimentally only for specimens of D=56mm (see Fig. 3-6), Fig. 3-7 shows our
theoretical predications for the PLSI versus length/diameter ratio for different diameters
(D=40, 56 and 67mm). These results illustrate the well-known observations that for a
fixed H/D, the larger the specimen, the lower is the PLSI; for a fixed diameter D, the
more slender the specimen, the weaker is the rock (Broch and Franklin, 1972; Brook,
1977, 1980; Forster, 1983).

To further justify our solution, the failure patterns are examined in more detail here.
It was observed that all specimens are broken into either two or three prismatic
fragments with two additional small pieces of fall-off cones under the point loads, as
shown in Figs. 3-8 and 3-9. This failure pattern is very similar to that observed in the
double-punch test used in concrete testing (see Figs. 2 and 3 of Chen and Yuan, 1980).
These fall-off cones are in the shape of a single ridge (only one line of sharp ridge) if the
specimen breaks into two pieces along a roughly flat fracture surface, but are in the
shape of a triangular pyramid with a circular base if the specimen breaks into three
pieces (of roughly the same size). There is also evidence of crushing at the inclined
surfaces of the fall-off cones, as the plaster tumns to pale yellow compared to the yellow

color in the intact regions. The height of these fall-off cones (i.e. L, in Figs. 3-8 and 3-

9) is about 3-5, 5-6, and 6-7mm for specimens of diameter of 40, 56 and 67mm, while
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the diameter of the circular base of the fall-off cones (i.e. L_in Figs. 3-8and 3-9) is

about 3-4mm for specimens of diameters 40 and 56mm and 4-Smm for specimens of
diameter 67mm. The size of the circular base of the fall-off cones indicates the size of
the contact zone.

For the height of the fall-off cones, we speculate that it indicates the depth of the
crushing zone under the contact points. To illustrate this idea, we propose a very simple
model to estimate the size of the crushing zone. In particular, we estimate the crushing
pressure for our plaster using the grain crushing model proposed by Zhang et al. (1990).
Zhang et al. (1990) concluded that the porosity and the grain radius are the two major
parameters strongly correlated with the critical pressure for the onset of grain crushing,
which is illustrated in Fig. 10 of Zhang et al. (1990). For our plaster, the porosity is
obtained as 37.4%, which is obtained from the weight difference between the dried and
saturated samples, as suggested by Zhang et al. (1990). The average radius of the grain
of the plaster is about Sum, which is measured by using the polarizing optical
microscope with the maximum magnification power of 400x. From Fig. 10 of Zhang et
al. (1990), we found that the crushing pressure is about 19MPa. Theoretically, the
average hydrostatic pressure at any point within the specimen can be estimated by taking
the average of the normal stresses (the axial, radial and tangential stresses) of our elastic
solution. Figure 3-10 plots this predicted hydrostatic pressure (negative for pressure)
versus the normalized distance z/4 along the z-axis for various diameters (D = 40, 56
and 67mm). Other parameters used in the calculation are H/D=1.1, v=025 and
E=17.5GPa. If the hydrostatic pressure is larger than 19MPa, grain crushing is expected

to occur. From Fig. 3-10, we can interprete that the predicted height of the fall-off cones

57



for specimens of diameter 40, 56 and 67mm are 5.5, 5.9 and 7.0mm respectively
(corresponding to the size of the region with hydrostatic pressure larger than the
crushing pressure). These values agree well with our experimental observations, and the
present analysis indicates that the solution is capable of yielding the depth of the
crushing zone which is comparable to the observations. In addition, the location of the
maximum tensile stress field also coincides with the tip of the fall-off cones. This lends
further credence that the point of maximum tensile stress beneath the contact zone is

indeed the site of crack initiation.

3.8 Conclusion

In this chapter, we have presented a new analytical solution for the stress
concentrations in an elastic, isotropic solid circular cylinder of finite length subjected to
the axial point load strength test (PLST). Our analytic solution predicts that a local
tensile zone will develop near z/#=0.9 along the line joining the two point loads (or the
axis of symmetry). Our numerical results show that the maximum tensile stress
increases with the decrease of Poisson’s ratio v and the size of the loading area, but
increases with the Young’s modulus. The non-uniform distributions of the stresses
along the line joining the two point loads bear a close resemblance with those
predictions for an isotropic sphere under the diametral PLST. Numerical results show
that, for a fixed length/diameter ratio, the larger the specimen, the weaker is the Point
Load Strength Index (PLSI); for a fixed diameter, the more slender the specimen, the

weaker is the PLSI. A series of the axial PLST were also carried out on cylinders of a
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rock-like plaster material, and our predictions on both size and shape effects agree very

well with our experimental observations.
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Chapter 4
AN EXACT ANALYTIC SOLUTION FOR THE DIAMETRAL
POINT LOAD STRENGTH TEST ON FINITE SOLID

CIRCULAR CYLINDERS

4.1 Introduction

The Point Load Strength Test (PLST) has been a popular indirect tensile strength test
used in rock engineering, partly because tensile stress field in rock mass is usually
induced indirectly by compressive deviatoric stresses and partly because direct tension is
difficult to apply to rock specimens without inducing any eccentric moments. The
strength index measured in this test is called the Point Load Strength Index (PLSI),
which is a measure of the indirect tensile strength and has been correlated empirically to
both the tensile strength and compressive strength of rock. Although irregular lumps can
also be used as specimens for the PLST (ISRM, 1985), solid circular cylinders which are
cut from rock cores remain to be the most commonly used specimens. For cylindrical
specimens, the PLST can be applied either axially or diametrally. Sample preparation is
normally needed for the axial PLST (to achieve a pair of flat and parallel surfaces),
while the diametral PLST can be applied directly to cylinders, requiring no time
consuming sample preparation. Therefore, the diametral PLST is usually preferred
(Bieniawski, 1975; Hassini et al., 1980), and thus the focus of the present paper is on the
stress analysis for cylinders under the diametral PLST (see Fig. 4-1).

Although the PLST has been proposed and used since the sixties (D’Andrea et al.,

1965; McWilliams, 1966; Hiramatsu and Oka, 1966; Reichmuth, 1963, 1968), it is the
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work by Broch and Franklin (1972) that brings popularity to this inexpensive, quick and
convenient test to the rock mechanics community. In addition, the PLST has also been
employed for testing the tensile and compressive strengths of concrete (Robins, 1980;
Richardson, 1989) and reinforced concrete (Robins and Austin, 1985).

The diametral PLST has been investigated by many experimental studies (e.g.
Guidicini et al. 1973; Bieniawski 1974, 1975; Pells 1975; Carter and Sneddon 1977;
Wijk et al. 1978; Hassani et al, 1980; Lajtai 1980; Read et al. 1980; Greminger 1982;
Lumb 1983; Irfan and Powell 1985), but there are relatively few theoretical works on
the PLST. Theoretical analyses have been carried out for the PLST on isotropic spheres
(Sternberg and Rosenthal, 1952; Hiramatsu and Oka, 1966) and anisotropic spheres
(Wei and Chau, 1998; Chau and Wei, 1999a), for the axial PLST on solid cylinders (e.g.
Peng, 1976; Wijk, 1978; Chau and Wong, 1996; Wei et al., 1999}, and for the diametral
PLST on solid cylinders (Wijk, 1980; Chau 1998a).

In particular, regarding the tensile stress concentration in cylinders under the
diametral PLST, Wijk (1980) provided an approximation for the tensile stress at the
center of a solid circular cylinder. The tensile stress distribution along the line joining
the two applied point loads is then interpolated between those tensile stresses obtained
from the solution for the PLST on spheres by Hiramatsu and Oka (1996) and from the
solution for the axial PLST on finite circular plates by Wijk (1978). Recently, Chau
(1998a) obtained an analytic solution for a finite cylinder under the diametral PLST with
shear displacements constrained on the two end surfaces, whereas in actual PLST the
end boundaries are shear traction free. The main reason why Chau (1998a) considered

this kind of modified end boundary is to simplify the problem and to make it
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mathematically tractable. To date, there is no exact analysis available for evaluating the
stresses within a finite solid cylinder under the diametral PLST.

In addition, the stress analysis for elastic isotropic cylinders under various boundary
conditions is one of the most fundamental problems in theoretical elasticity and has a
rich history in the field of solid mechanics. As remarked by Filon (1902), the general
stress analysis (including non-axisymmetric) for an infinite circular cylinder subjected to
an arbitrary surface load was considered independently by Pochhammer (1876) and
Chree (1889). One of the commonly investigated problems for finite cylinders under
axisymmetric deformation is the compression of cylinders between two blocks at the
end surface. This problem was first considered by Filon (1902), and subsequently by
many others (see the review by Chau, 1997). More general stress analyses for
axisymmetric problems for circular cylinders were considered by Saito (1952, 1954) and
Ogaki and Nakajima (1983). The only analysis for non-axsiymmetric deformation of
finite cylinders is the approximate solution by Dougall (1914), who introduced three
displacement functions. There is, however, no exact analysis that has been proposed to
solve non-axisymmetric problems for finite cylinders involving loads -on the curved
surface and with traction free end surfaces. The stress analysis for cylinders under the
diametral PLST (our present problem) is one of these unsolved non-axisymmetric
problems for finite circular cylinders. As mentioned earlier, the only approximation for
a finite cylinder under the diametral PLST is the solution by Chau (1998a), which is one
of the few solutions considering the non-axisymmetric deformations of finite solid

cylinders.
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Therefore, the objective of this chapter is to present a new analytic solution for finite
cylinders under the diametral PLST. The method of solution basically follows the
displacement function approach by Chau (1998a), but new solution forms are proposed
for these displacement functions such that all the boundary conditions can be satisfied
exactly. In addition, the point loads are modeled by indentors acting upon the solid
cylinders (see Fig. 4-1), and the contact stress between the curved surface of the cylinder
and the spherical heads of the indentors is expanded into a double Fourier series so as to
match the boundary values of the internal stress field.

The results of the study should provide the fundamental understanding of the tensile
stress field within a finite cylinder under the diametral PLST. In addition to the practical
application to the diametral PLST, the present study also provides a general solution
technique for the stress analysis for cylinders subjected to arbitrary normal stress on the

curved surface and zero traction on the two end surfaces..

4.2 Governing Equations

The finite cylindrical specimen considered is of radius R (or diameter D) and length
2L, and is assumed to be homogeneous, linear elastic and isotropic. The origin and z-
axis of the cylindrical polar coordinate (7,0,z) system coincide with the center and the
axis of revolution of the specimen as shown in Fig. 4-1. For isotropic elastic cylinders,
the stress and strain tensors are related by the following Hook’s law
o, =2Ge, +1g 5, 4.1
where o,B,y =7,0,z; G and A are the Lame constants (G is normally referred as the

shear modulus); and, as usual tensor equations, the repeated indices in (1) mean
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summation. The Cauchy stress tensor amd strain tensor are denoted by o and ¢

respectively. For small deformation and small strain, the strain tensor relates to the

displacement by
€= %[(V u)” +Vu] 4.2)

where the displacement vector can bee expressed in physical components as

u=ue +ue,+ue_ . Inaddition, the displacement gradient tensor is defined as

Vu =eré+ea lé+elé (4.3)
ar r 06 174

It is straightforward to show that the physical components of the strain tensor in

cylindrical coordinate are
au V274 u, 1éu, B cu, 1éu u,
E,=—F ¢ =—", =—+— £y =—(—=+— -2,
S a& 7T o r r b 2 g rdlé r
1 2 ou, 1 ou Ou

) & == () 4.4)

For the problem under consideration, the body force can be neglected. Thus, the

equations of equilibrium, V.o =0, in term:s of the displacements are (Malvern, 1969):

A +26)2+ 2622 565 @.5)
or r oz

2012 1 26%2 6% _p 4.6)
r 06 oz or
de 2G 8 2680, _, @n

A+2G)—+——(rQ2 _—
( )az+ r 8r(r )+ r o0

where Q =[(Vu)" —Vu]/2 and e=V-u are the spin tensor and the volumetric strain

respectively.



When the specimen is subjected to the diametral PLST, all the surfaces of the

specimen are traction free except the contact stress within the elliptical contact zones

between the spherical heads of the indentors and the curved surface of the cylinder (see

Fig. 4-1), which was obtained by Chau (1998a) as

o (R,08,7)=——L (1 RO& =

2mnab a’ b’ )

for

a zz 2 a Zz 172
[zlsb,andlﬁlsz(l—b—z) or,zz—ngE(l—b_z) )

where P is the magnitude of the applied force. The size of the

(4.8)

(4.9)

contact zone is

(characterized by a and b, the half length of major and minor axes of the elliptical

contact area, and they can be evaluated by using (Chau, 1998a)

_[ 3PEC)1-v)RR ] a=b(l—e')"
2rG(1—e*)(R, +2R) | °

(4.10)

where G,v,Rand R, are the shear modulus, the Poisson’s ratio [note

2v=2X1/(A+ G)], the radius of the cylinder, and the radius of the spherical heads of the

indentors, respectively. The eccentricity of the elliptical region e [which should not be

confused with the volumetric strain used in (4.5)-(4.7)] can be obtained by solving the

following nonlinear equation

R, _2(1—e’)[K(e)—E(e) 1
R +2R ¢ E(e)

where

K(e)= ‘Fl—ezsin’dJ)'"’d(b, E(e)= I(ui—ezsin“b)"’d%
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are the complete elliptic integrals of the first and second kinds. Note that E(e) should not
be confused with the Young’s modulus E.

In summary, the boundary conditions for the finite cylinder under the diametral PLST
are

c_=0, o_=0, o,=0 (4.13)

°.=0, ,=0, (4.14)
o (R,0,2)

3P R’9* 22 2
e R < bandlé] < 2 (-3 orl -] < - 2oy

0 for|z| > b,and|6| > —(1 ——)”’or[z 6| > -(1 2)“2
(4.15)
onr=R.
As proposed by Chau (1998), a double Fourier expansion with respect to z and 0 is
applied to the contact stress (which will be used to match the boundary limit of the

internal stress field)

c.(R,z,0)= E ZXD'“ cos(n_z) cos(2n9) (4.16)
where
1/4 form=n=0
x=11/2 form=0,n#00rm#0,n=0 4.17)
1 forn>0and m>0

D_= —%[ sin’ Bcos(n, bcosB)J, (Esinf)dp + Fm’ Bcos(n,bcosB)J, (EsinP)dB]
Fis

(4.18)
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where
C=2nal/R (4.19)
Note that these expressions are the same as those given by Chau (1998a) after some

minor mistakes are corrected.

4.3 Method of Solution

The following two displacement functions @ and ‘P are adopted from Chau (1998a)

(except minor typo):
o’'d 10¥ 1o°¢ o¥ o’dp
= +=, == ——, u, ="21-v)IVOo+(1-2 4.20
Y arez roe’ T reaz o - (2(-v) (1=2v) oz? I 20
where
v, =li(ri)+ L9 (4.21)

ror or  r'oe
By substituting (4.20) into (4.5)-(4.7), the three equilibrium equations are converted
to the following two uncoupled partial differential equations for ® and ¥
Vo =V'V'® =0, V¥ =0 (4.22)
where V* is the Laplacian operator, or V* =V, +9*/9z*. Thatis, ® and ¥ satisfy the
biharmonic and harmonic equations respectively.

Substitution of (4.20) into (4.4) and then the results into (4.1) gives the stress
components in terms of two displacement functions ® and ¥ as

oD e o ,19¥

=-2vGV* Z=+2G —(—— 4.23
On v oz [azc’9r2 * or (r 50 J (4.23)
aood 12°d 1 &°® o 10¥
=2v6v: L2 126 -2 4.24
T v Oz [r Ozor M r: o000z or r o0 J ( )
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c_ =-2G[(2- v)—:;V’ —Eaz;-]cb (4.25)

o’ G 'Y

2
= 2G[-(1-v)2v D+ 4.26
On (= V)Br '+v8raz’] r 600z (4.26)
cp =2G-(1-v)12v +v1 2 1o ¥ 4.27)
r oo r 000z’ oroz
5 100, 110% 10%_o'¥
=2G[— (=) +=( )] (4.28)

or roeaz  2°ror r @ or
The next and in fact the most important step of the analysis is to assume appropriate
forms for the two displacement functions such that both the governing equations (4.22)

and the boundary conditions (4.13)-(4.15) can be satisfied.

4.4 Series Expressions for the Displacement Functions
After a tedious step of trial and error, the following two series expressions for @ and

W are proposed:

CD———{A°—+C gr‘ +Z{H r’"z+z - [Amr(—aéﬁ;:];r)+3m1h(nnr)]sin(nmz)

—,[C, sinh(y,z) + D,y zcosh(y ,2)}V,. (v r)} cos(2n0)}
Y.

rul

(4.29)
—~1—G {Z[E%r"' + Z% 1, (n.r)cos(n, z)]sin(2nd)} (4.30)

where n_ =mn/L, y,=A, /R, and A, is the sth root of J/ (1)=0;
J,.(x) and I, (x) are the Bessel and modified Bessel functions of the first kind of order
2n respectively; and 4,,C,,H, ,E, ,A_,B_,C.,D. and E_ are unknown coefficients

on? Qn?
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to be determined by the boundary conditions (4.13)-(4.15). Since the periodicity of the
pair of point loads on the circumference is m (see Fig. 4-1), the periodicity of
displacement functions ® and ‘¥ in 6 must also be m [ie. sin(2n0) and cos(2n0)].
The first two terms in (4.29) lead to constant normal stresses (it is evident from the
expressions of stresses to be given later), and the first term within the summation for
index # is resulted from considering the term m=0 in the next summation. A major
difference between (4.29) and the corresponding form given in (4.32) of Chau (1998a) is
the inclusion of the additional summation for index s involving hyperbolic functions
sinh(y,z) and cosh(y,z). The use of these hyperbolic sine and cosine in the solution
form appears to be first proposed by Schiff in 1883 (cited by Filon, 1902), and this form
has subsequently been adopted by Saito (1952, 1954) and Ogaki and Nakajima (1983) as
well. Similarly, the first term in the summation for index » in (4.30) is again resulted
from considering the term =0 in the next summation. It is straightforward to show that
the forms of ® and ¥ given in (4.29)-(4.30) satisfy the governing equations (4.22)
identically.

It C,=D,=C,=4,=H, =E, =0, the two displacement functions ® and ¥

given in (4.29)-(4.30) reduce to the corresponding expressions by Chau(1998a).
4.5 General Expressions for Stresses

Substitution of (4.29) and (4.30) into (4.23)-(4.28) yields the following expressions

for the stress components,
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=G i+ D DL +EY+ D AL ) — T Ry

B FI ME 3 \ ~
72. ;(:L’) Ti- a(jn-(rq-r ))}COS&'Z)+Z{[Q +(@v+DD,)coshf 2)+Dy zsinhg 2, (7r)

G, +D)coshf )+ Dyzsinbg - =ID) _H 1 051y bosend)

i@ 7r

(4.31)

110 d,(mn, 4 d,mr)

—(2v—1)C;+v.4,+Z{2r(2n-I)(f{,+Eh)r‘” +Z{A e o

) .
[1 (TL") i YL )]L e O (1 . ))}oos(n.z)+Z{2vD. cost(y 2)J, (1.7)

LAUD_4 o hes2n)

—(C. +D) ooy, 2) + Dy zsio(y, z)]L 5 el

(4.32)
5. =22-V)C, +(1-V)4, *Z{Z{A -V, ) +r2 ( L7118 I (ot 2)

—Z[(C, +(2v=1)D, )cosh(y,z) + D,y zsinh(y 2)}J,, (v,r)} cos(28)

(4.33)

=Z{Z{i[2(\,_l) amn 8 Ay B AMN E L (m,)}sm( ,
. o

or or n, o n,

a/, (Y r)

Z{—[(c +2vD, )sin(y ) + D,y zeoshly 12T cos(or)

(4.34)
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a, 2nB_ I E_4
o, Z{Z{ ...[2( -1 z,(17 r) C(;z.r)] : z,(;7 .7) - (TI )} sing, 2)

+Z{2[(c, +2D, )sinhg,2)+ D_y zcoshtr, 2] 2L N 1sinend)
sl },-' r

4.35)
N . 2nd_ &I, (n r), 2nB, 10L,(n.r) 1
.= D@m= ~E.)r Z{ e L ()]
"[ Lo, ;f’) o, )+9"af¢)]}cos(n 2)
TKC +D_ Yeosh(y.2)+ D,y zsinh(y, D) - Ly plysin(ard)
P (4'36)

4.6 Determination of the Unknown Coefficients

Specializing the shear stresses (4.34)-(4.35) to the end boundary conditions given in
(4.13)(ie. 0,. and o_,=0on z=+L), we have
(C,. +2vD, )sinh(y,L) + D_y, Lcosh(y,L) =0 “4.37)

This equation can be rewritten as

- L G (4.38)

2vsinh(y,L) +v,Lcosh(y ,L) ~—sinh(y, L) A,

where G, and A, are constants introduced to simplify the equations involved in the
subsequent analysis. Then, the constants C_and D_ can be expressed in terms of the

newly introduced constants as:

C_ = —%[2v sinh(y,L)+v,Lcosh(y,L)] 4.39)

s
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D= %sinh(Y,L) (4.40)

s

Substituting (4.39) and (4.40) into (4.33) then specializing the resulting stress to the

end boundary z=+L7, we have
o =2(2—-V)C +(1-Vv)4, +Z{Z{A..,[2(2— v=n)l (r)+nrLl, (MN1+B. L (n r)}-1)"

+) Z [y, Lesinh(y, L)coshly, DV (v, yeos(2r0)
" (4.41)
The first of the boundary conditions (4.13) requires that the normal stress is
identically zero on two end surfaces, independent of both r and 6 (i.e. o_=0 on
z=%L). In view of this, we expand all terms with the r-dependency (i.e. the modified
Bessel functions) in (4.41) into series expansion of Bessel function (Watson, 1944) and
then assign the following value for A, :
A, =v,L +sinh(y,L)cosh(y L) (4.42)
Subsequently, (4.41) is simplified to the following compact form,

0. =22 -v)Cy +(1— V)4,
(4.43)

+ 334G, + S A 2@ v —n)T, + U, 148, T, }1)"}o, (7.r) cos2n)

n=0 s=1

where

23
]:u - ()'z‘ _4n:)[(n-R)z +lz‘].jzzn (l,) [T]..R[z..-x (Tl..R)Jz.. (A‘:) +}“xlzn (Tl..R)Jz...; ()":)] (4'44)
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2. R (4n-2m R
U,= = R, (A
T AR LR, B e e (R )
L (R (e e e (R (LR, (1) 40, L (LR, (1 )](4.45)

N R (R, (X)) =X 1, (n.R)J, (X))}
The procedure in obtaining (4.44) and (4.45) is reported briefly in the Appendix III for

the sake of completeness. Finally, the end boundary condition (o.=0on z==%L) yieldé

the follow equations for the unknown coefficients

22-V)C, +(1-v)4, =0 (4.46)
G, +Z{A_ RR-v-nT, +U_1+B_ T }-1)"=0 (4.47)

So far, all end boundary conditions given in (4.13) have been considered. The next
step is to ensure that the curved boundary conditions (4.14)-(4.15) will be satisfied.

Substitution of (4.34) into the shear traction free condition (4.14) (i.e., o_=0 onr=R)

leads to

_RELMRY, B LR rELLOB o e
or’ n, or n, R

A9y _3)2LCLB)
n. or

To consider the boundary condition for the shear stress o, we, by applying similar

technique leading to the results given in (4.46)-(4.47), substitute (4.39)-(4.40) into

(4.36) and specialize the result on r=R. Then, all cosh(y,z) and 7.zsinh(y z) terms

involved are expanded into series of cos(77_z)and the final form is
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=z{2,,(2,,_1)(H0__ EM)RH+Z4mG,sinh*<y,L> J.0.R Z{zm 71, (77 R

AyL 7R
2nB, 14, R 1 1d,(m.R 4n I (n.R
+ 20 LR L R+ [ . (77, ) LR+ ..(:7. )]
7 R & R 7 K &

‘ZG" 8 Sl G D) LR T oo s cinons)

v Lyl +nl) R yi+nm

(4.49)

Subsequently, we can apply the second of the boundary conditions (4.14) to (4.49). That

is, the shear stress o, on the curved boundary is identically zero for any value of z and

0, and this leads to
AyL YR
2nd_ I, (mR) 2nB_ 1, (n.R 1 14, (R
= 2 LR 2B LA Ly ryye Lo L T OLR)
n: ar 7. R a R 2n: " R or

: I, (R G, 8n(-1)"sinh*(y,L) J, (¥.R 2
. nz[z"(mR) 77 )] Z (=D (r.L) (7 )[ 277 =0
R rLyl+nl) R V. +m;

4.51)

In order to satisfy the last boundary condition (4.15), we set 7=R in (4.31) to yield
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6, =Qv-1)C +v4, +Z{—2n(2n IH, +E, )R + Z{A_,[Zv[h (M.R)

0L (M.R) , poL, (Tl Ry _B.0L(M.R) 2nE (n R _10,(n.R)

1 .
—_1-1?[2 Pe 1 o o T [ R o I}cos(n,2)
Z{[(C +D,_ )cosh(y,z)+ D, v zsinh(y z)] ‘R’ J_,, @T.R
+(C, +(2v+1)D,)cosh(y z) + D,y zsinh(y )]/, (v, R)} } cos(2+0)
(4.52)

Before we apply the boundary condition, we again substitute (4.39)-(4.40) into 4.52)

and expand all functions of z-dependency in terms of cos(1)_z)

o, =(2v—1)C +vd, + z - 2n(on—1\H, +E, )R +Zi' 87, sm;‘ .0 7, (;R)
4 LA, Y, Y

N 1 ,0LOR) ZLOR. B, FLMR) 20E, IR _13,0.R)
+) Lo p-—pl e T e e e D) LAY

NG 4,y sb’ ey, D) w4 4y
Zi Ly:+m) 1+ (ITY:RJ Y:E]Jzn(Y,R)}OOS(TL,Z)}OOS(QrB)

=l

(4.53)
Finally, equating all the coefficients of (4.53) to those of (4.16) for all terms of z and

6, we have

@v-1)C,+v4,=D,_/4 (4.54)

G, 8n’vy sinh’(y,L) J, (7,R)

—2n(2n-1)(H, +E, )R +
(2n~1)H, +E,) T s

=1

=D, /2 (4.55)
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AL, (0 R~ = TR pTL LBy B OL(R) | 20E, 1, (n.R)
n. or’ or n: or n R
18l (n.R G 4y, (~D)"sinh*(y.L : 4n* | 4n’v
_lal,(m, )]_ - 47,( )Z ,(Y’ )[ . —(l+——=)———1J,.(Y.R)
R or —d A, L(yI+ml) Y.+nl YR vyIR
_|D,/2 forn=0,m>0
- D_ for n>0,m>0
(4.56)

By now, all boundary conditions have been satisfied, and all unknown coefficients
should be uniquely determined. More specifically, the unknown constants A, and C, can
be solved from (4.46) and (4.54) and A_,B_,E_and G, can be solved from the
coupled system of equations (4.47), (4.48), (4.51) and (4.56). Finally, H,_and E,_ can
be solved from (4.50) and (4.55), and C_and D, can then be back calculated from
(4.39) and (4.40). Therefore, the form of the displacement functions given in (4.29)-
(4.30) is indeed appropriate and complete. Numerical results for our analytical solutions

are given and discussed in the next section.

4.7 Numerical Results and Discussion

The analytic results given in the previous section involve the solution of systems of
coupled equations for the coefficients of the infinite series. In actual computation, we
have to truncate the infinite series and retain only finite number of terms.

In addition, the roots of J. (x) =0 play a very important role in series solution, it is
necessary to calculate these roots accurately and efficiently, Thus, we will discuss
briefly our strategy to obtain these roots. As discussed by Watson (1944), the smallest

root 4, of J; (x) =0 can be bounded by
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1/{2n(2n-§-2)¥ (forl<n<?2)
1/;4 2n+1 ; .
2n(2n+3) (for n > 2) <A <yn2n+l (4.57)

So the first root A, could be searched within this range by using standard procedure
(e.g., Press et al., 1992). Once this first root is obtained, we can generate the subsequent
roots efficiently if the following properties are noted: (i) The difference between any
two nonzero consecutive roots equals approximately w if x is large; (ii) There must
exist a root of J; (x)=0between any two consecutive roots of J. (x)=0; (iii)
Consequently, there must exist a root of J. (x) =0 between any two consecutive roots
of J; .(x) =0. Because tables for the roots of J! _ (x) =0 is not readily available in the

2a-1

literature, Table 4-1 tabulates the first ten roots for # from 0 to 7.
Numerical calculations show that the system of equations for solving

A_.,B_,E_ and G, becomes ill-conditioned for large m and s. More specifically, the
coefficients for 4,,B, and E_ become very large while the coefficients corresponding
to G, become relatively small. We found that the ill-condition can be alleviated by a

proper scaling of the coefficient. In particular, we divide all coefficients for

A.,B, and E_ with I, (1, R) and multiply all coefficients for G_ with A _; and after
solving 4_,B_,E_ and G,, all solutions of 4,,,,B,, and E,, are divided by I, (n_R)
while the solution for G is multiplied by A,. We found that more terms in 2 than in »
are needed for acquiring the same degree of convergence for o_, while less terms in m
than in 7 are needed for acquiring the same degree of convergence for o,,. In general,
50 terms in » and 25 terms in each of m and s are needed to control the error of tensile

stresses o_ and o, to within 1% .
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Before we discuss the distribution of the tensile stress within the cylinder, it is
instructive to compare the present solution with the approximation by Wijk (1980) for
the tensile stress at the center of the cylinder. Table 4-2 compares the tensile stresses at
the center of the cylinder predicted by Wijk (1980) and by the present solution, for
cylinders with geometric ratio L/D=1 and <o, and for Poisson’s ratio v=0, 0.1, 0.2, 0.3,
0.4, and 0.5. Since our solution for the contact stress depends upon the values of the
Young’s moduli and the actual magnitude of point forces at failure, we present in Table
4-2 the results based on different Young’s modulus and point force for the case of
L/D=1. It is clear from Table 4-2 that Wijk’s (1980) solution overestimates the value of
the tensile stress (about 4% for L/D=1, and about 0.3% for L/D — ). Wijk’s (1980)
approximation is much better for a longer cylinder than for the case of L/D=1. This is
expected because the end surface boundary conditions were satisfied only approximately
by Wijk’s (1980) solution. Although the approximation by Wijk (1980) is considered to
be very accurate, we will show next that the maximum tensile stress is not necessarily at
the center of the specimen.

Figures 4-2 and 4-3 plot the normalized stresses ¢, /0c,,6_/c,,and o_/c, (where
o, = P/ D) versus the normalized distance r/R for various sizes of contact zone r, /R

(where r, is a nominal radius for the elliptical contact area between the spherical heads

[+]

of the indentors and the curved surface of the cylinder and is defined as r, =+/ab ). The

plots are calculated for the standardized size and shape suggested by Broch and Franklin
(1972) and by ISRM (1985). More specifically, we have assumed the following

parameters: D=50mm, 2L=70mm, R, =5mm and v =0.25. By following the usual

sign convention of continuum mechanics, tension is plotted as positive. As shown in
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Figs. 4-2 and 4-3, both o, /o, and 6_/c are tensile along the line joining the two
point loads, and a zone of tensile stress concentration is developed at about /R~ 0.9,
comparing to the roughly constant value at central portion of the line (say for /R < 0.6).
Both figures show that the smaller the loading area, the larger the maximum tensile
stress is induced. It is interesting to note that both the tensile stress distributions
(0,/0,ando_/c,) and the compressive stress distribution (o, /&, ) along the line of
loading are remarkably similar to those of a sphere under the diametral PLST (Wei and
Chau, 1998; Chau and Wei, 1999) and of a cylinder under the axial PLST (Wel et al.,
1999).

Since both of the hoop stress o and the axial stress o_ are in tension, it is
necessary to check which one is the maximum tensile stress and thus should be
responsible for the tensile breakage of the specimens. Therefore, Fig. 4-4 compares the
normal stresses (o, /0,, o_/0,,ando, /5, ) in a typical specimen along the normalized
distance r/R. The plot is for r,/ R = 0.039 and other parameters are the same as those
~ used in Fig. 4-2. For this case, o_/oc, is larger than o, /o, in the central part, but
6, /0, increases faster than o_/o, when the point loads are approached.
Consequently the maximum tensile stress of the specimen is controlled by o, / c,,and
this maximum tensile stress is usually induced at about r/R = 0.9. Therefore, for the
following numerical results, only o, /o, is plotted if the standard geometric ratio

2L/D=1.4 is used. However, it should be noted that the hoop stress is not always the

dominant tensile stress, there is some fewer cases that the maximum tensile stress in a
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specimen may be determined by o_ /o,, such as when Poisson's ratio and the diameter
of the specimen are relatively large (see Fig. 4-9).

The effect of Poisson’s ratio on stress distribution is illustrated in Fig. 4-5, which
plots the normalized stresses o, /0, and o, /o, versus the normalized distance r/R
for various Poisson’s ratio v. The loading area is fixed at r,/R=0.039, and

parameters used are the same as those given in Fig. 4-2. The smaller the Poisson’s ratio
is, the larger the maximum tensile stress is induced. But the tensile stress at the central
part along the line of loading and the compressive stress distribution along the same line
are insensitive to the change of Poisson’s ratio. It is interesting to note that the
maximum tensile stress concentrations near the point loads disappear and thus the

maximum tensile stress is induced at the center when the solid becomes incompressible
(v=0.5).

The size effect of the spherical head of the indentor (R,) is demonstrated in Fig. 4-6,
which plots the normalized stresses o, /o, and o, /o, versus the normalized

distance 7/R for various values of R, and r,/R=0.039. Except for varying R,, the plots

are the same as those given in Fig. 4-2. As expected, a smaller radius of the spherical

head R, leads to a higher tensile stress concentration. For example, the maximum
tensile stress may increase by 35% if R, =3mm is used instead of the standard size of
R,=5mm (ISRM, 1985).

Figure 4-7 plots the normalized stresses o, /o, and o, /o, versus the normalized

distance r/R for various values of diameter D (all other parameters used are the same as

those used in Fig. 4-2). If we keep the size of the contact zone constant (r, / R =0.039), it

80



is observed that a larger specimen size leads to a larger tensile stress concentration, and
hence a smaller point load strength index (PLSI) defined as P/D*. This conclusion
agrees with the size effect that has observed repeatedly in many experiments (Broch and
Franklin, 1972; Brook, 1980; Greminger, 1982). The reason why we set the contact area
constant in the calculations shown in Fig. 4-7 is because our experimental observations
(to be discussed) show that the amount of indentation (hence the contact area) does not
change significantly for different sizes of specimens. In particular, we observe that the
indentation is on average 0.90, 1.07, and 1.55mm for cylinders of diameters of 35, 40,
and 56mm respectively. Fig. 2-13 to be followed will further compare the predicted and
the observed size and shape effects of specimens on the PLSL

Figure 4-8 shows the maximum normalized stresses o, /o, ando_/ o, (which
appear at about »/R=0.9) versus half length to diameter ratio L/D for different Poisson’s
ratio v and for D=50mm. The solid lines are for the maximum value of o, /c,and the
dotted lines are for those of o_/c,. The maximum value of o_/ o, decreases
drastically with the increase of L/D while the drop of o, /o, with L/D is relatively
gentle. Consequently, for v =025 the axial stress is the dominant tensile stress for L/D
< 0.4 and the hoop stress becomes dominant for larger L/D; and for v =035 the
geometric ratio L/D that separates the dominance between the axial and hoop stresses
equals 0.7. Since a larger tensile stress concentration implies a smaller PLSI
(1,=P/D%), a clear shape effect is observed in Fig.4-8. This shape dependency has been
observed repeatedly on natural rocks (Broch and Franklin, 1972; Greminger, 1982). To
further illustrate the shape effect on the maximum tensile stress (i.e. the maximum

among the axial and hoop stresses), Fig. 4-9 plots the maximum stress envelope versus

81



L/D for various values of Poisson’s ratio. For v >0.25, the maximum tensile stress is
insensitive to the shape as long as L/ D> 04, but for v=0.08, the maximum tensile
stress continues to decrease even for L/ D> 0.7. That is, shape effect is more severe
for more compressible solids or very soft rocks (i.e. rocks with small Poisson’s ratio).
Figure 4-10 shows these tensile stress envelope versus L/D for different diameters of
specimens. For specimen size smaller than 50mm, the shape effect can be neglected if
the L/D is larger than 0.4; but, for larger specimen (say D=80mm) the maximum stress
continues to decrease even for L/ D> 0.7, which is a value recommended by Broch
and Franklin (1972) to remove the shape effect. To avoid this shape effect, [SRM (1985)
recommended a value of L/D > 0.5 while Broch and Franklin (1972) suggested a value
of L/D > 0.7. Our analytic solutions show, however, that if Poisson’s ratio is small (say
v <0.1) and the size of the cylinder is large (say D = 80mm), the shape effect cannot be

ignored even for L/D > 0.7.

4.8 Experimental Validation

A series of the diametral PLST were carried out on cylinders of a rock-like plaster
material. A total of over 40 cylinders were cast using a plastic hollow mould of various
size (D= 35, 40, 50, and 56mm) and of shape factors (L/D=0.4, 0.5, 0.63, 0.76, 0.86 and
1.0). These specimens were made of a water-plaster-mixture with water/plaster mass
ratio of 3/10, and other mechanical properties for the material are: v=0.25, E=17.5GPa,
the uniaxial compressive strength (UCS) = 57.54MPa, and density=1.75-1.78g/cm>.
When the plaster mixture was poured into the mould layer by layer, it was tapped using

a small wooden hammer to minimize the content of air and to achieve a homogenous
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solid with reproducible properties. All tests were carried out after all the samples were
cured for 60 days and maintain a constant weight. For more discussion on the
requirements of judging a rock-like material using Buckingham pi-theorem, we refer to
Wong and Chau (1998).

To calibrate the maximum allowable local tensile stress of the plaster material under
the diametral PLST, the theoretical stress profiles of three specimens with D=56mm and
L/D=1.4 were calculated using our analytic solution. The magnitude of the point force at
the failure of each specimen together with other elastic properties of the material have
been substituted into our solution. Figure 4-11 shows the predicted stress profiles for

O,,0.and o, versus the normalized distance r/R. Stress profiles for these three

specimens basically overlap and cannot be distinguished easily on the figure. The
calculated maximum tensile stresses for these specimens are 26.133, 25.888,
26.315MPa with an average of 26.112MPa. In order to predict the failure load for
samples of other size and shape, we assume that if the maximum tensile stress in the
solid reaches 26.112MPa (which will be called the local tensile strength hereafter), the
specimen fails. From microscopic point of view, this assumption implies that a critical
local tensile stress of 26.112MPa is needed to initiate unstable crack growth wthin the
sample.

By using this local tensile strength, the maximum point force, and hence the PLSI,
can be predicted for specimens of any shape and size. Figure 4-12 plots the predicted
PLSI (or I,) versus L/D together with our experimental results for specimens of
D=56mm. Basically, theoretical prediction agrees well with experiments. Our

theoretical calculations show a very strong shape effect for L/D < 0.3 for D=56mm. As
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remarked earlier, this shape effect has been observed in other experimental studies (e.g.
Broch and Franklin, 1972; Greminger, 1982).

The predicted size effect on the PLSI is showed in Fig. 4-13 together with our
experimental data. Specimens of diameter of 35, 40, 50, and 56mm were tested. The
trends of the predicted and observed size effects agree very well. It should be noted that
we do not assume a constant contact area, as we did for the calculations show in Fig. 4-7
(since the point force at failure is input in our analysis).

Figure 4(a) of ISRM (1985) shows the typical modes of failure of specimens under
the diametral PLST observed in experiments; in particular, specimens are normally
broken into two or three pieces. The relation between these modes of failure in the
PLST and the shape of the specimens has not studied before; and the main reason is
probably due to the lack of information on the tensile stress field inside the specimens.

Figure 4-14 sketches two typical modes of failure observed in our experiments (we
call them T-mode and S-mode for indicating Tri-fracture and Single-fracture in the
failure mechanism), while Table 4-3 tabulates the failure mode and pattern for 9
particular samples that we have tested. It is observed that for cylinders with L/D =0.4, T-
mode is more likely to occur, while for cylinders with L/D > 0.5, S-mode appears to be
dominant. Note that out of the 36 samples with L/D > 0.5 that we have tested, only
three samples failed in T-mode. This observation can be explained by checking the
numerical results showed in Fig. 4-8. In particular, for L/D =0.4 and v=0.25 Fig. 4-8

shows that the magnitudes of o, and o_ are comparable. That is, tensile failure is

likely to occur along both axial and transverse directions; thus, multi-fracture showed in

the T-mode of Fig. 4-14 is more likely to occur than the S-mode. However, for longer
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cylinders (say L/D > 0.5) the upper curve in Fig. 4-8 suggests that the maximum tensile

stress is always domained by o, thus, we speculate that a single fracture may be more

likely to occur. However, more elaborated analysis and experiments are still required to

make our conclusion more convincible.

4.9 Conclusion

This chapter presents a new analytic solution for the stresses inside an isotropic solid
circular cylinder of finite length subjected to the diametral point load strength test
(PLST). The method of solution uses the displacement function approach together with
double Fourier expansion for the contact stress, which is obtained by considering the
Hertz contact between the indentors and the curved surface of the cylinder. Appropriate
forms for the displacement functions are proposed so that all boundary conditions and
all governing equations can be satisfied. Numerical results show that, similar to the
results for a sphere under the diametral PLST or a cylinder under the axial PLST, tensile
stress concentrations are developed near the point loads. The maximum tensile stress
decreases with the increase of Poisson’s ratio, the contact area, the radius of spherical
heads of the indentors, but increases with the increase of diameter D. The hoop stress is
the dominant tensile stress for long cylinders (say L/D larger than 0.7), but the axial
stress may become dominant if L/D is small (say smaller than 0.4). The proximity of

the values of normal stresses (o, and o_) also provide a plausible explanation why

specimens break into three pieces for D/L =0.4, but into two pieces when D/L > 0.7.
Both size and shape effects of specimens on the point load strength index (PLSI), which

is defined as P/D?, are predicted by our solution, and these predictions agree well with
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our experiments. In addition to the practical application to the diametral PLST, the
present study also provides a general solution technique for the stress analysis of

cylinders under arbitrary normal stress on the curved surface and with zero end

tractions.
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Chapter 5
THEORETICAL BASIS FOR TESTING IRREGULAR LUMPS

UNDER THE POINT LOAD STRENGTH TEST

5.1 Introduction

The possibility of using relatively unprepared specimens for rock classification and
strength estimation has always been attractive. The Point Load Strength Test (PLST)
seems potentially to be the most likely choice. Because the so-called point loads are
applied to specimens within very small surface areas, we speculate that the PLST is
more tolerant of the possible irregularity of specimens than other tests. In fact, samples
with various shapes, such as spheres, rock cores and irregular lumps, have been used as
specimens for the PLST (Hiramatsu and Oka, 1966).

The use of irregular lumps for rock testing, as described by Protodyakonov and
Voblikov (1957), was developed in Russia. The testing procedure was first formalized
by the International Bureau for Rock mechanics in 1961 (IBRM, 1961). Thereafter,
irregular lumps have been used for classifying sedimentary rocks (Hobbs, 1963), and
for testing mechanical performence of rockfill material (Pigeon 1969). For interpreting
the strength from the PLST on irregular lumps, the shape, size and orientation effects of
granite and other rocks on PLST have been experimently investigated (Diemat and
Duffaut, 1966; Duffaut, 1968; Duffaut and Maury, 1970; Brook, 1985). In addition,
irregular lumps have also been employed for studying rock weathering (e. g. Fookes et
al., 1971). For those samples of more highly weathered or jointed rocks, which can be

crumbled easily, are very difficult to prepare into rock cores or other regular-shaped
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samples. In such cases, irregular lumps must be directly used for the PLST.

However, results from irregular lumps suffer more scattering than those from rock
cores. Though the scattering can be compensated to certain extent by testing a large
number of lumps (the test is very quick) together with using some empirical formulas to
correct the size and shape effects (Brook, 1985), the stress state and the failure
mechanism of irregular lumps under the PLST is not well understood. The only
experimental investigation of stress field within irregular lumps is photoelastic
experiments by Hiramatsu and Oka (1966) which showed that the stress states in the
vicinity of the line joining the two applied point loads on a sphere, a cube, a rectangular
prism are roughly the same. This experimental stress analysis is considered to have
provided a very important experimental basis for testing irregular lumps under the
PLST, but so far there exists no exact theoretical analysis for it. The only theoretical
approximation is considered by Hiramatsu and Oka (1966) by assuming that irregular
lumps can be modeled by spheres under the PLST.

Therefore, this chapter investigates the stress distribution within irregular lumps
under the PLST. Since all of the failure surfaces of irregular lumps under the PLST pass
through or nearly pass through the line joining the two applied point loads, our
investigation will focus on the stress distribution along this line. To avoid the
insurmountable difficulty in mathematics in analyzing stress distribution within
irregular lumps with arbitrary shapes, we analyze and compare the stress distributions in
isotropic spheres and cylinders under the axial and diametral PLST (see Fig. 2-1).
Considering the difference in the shapes of spheres and cylinders under the axial and
diametral PLST, the comparison should provide insight into the stress distribution along

the line joining the two point loads in irregular lumps under the PLST. The isotropic

88



limit of our analytic solution obtained in Chapter 2 for spherically isotropic spheres
under the diametral PLST can be used to analyze the stress field in isotropic spheres,
while the analytic solutions obtained in Chapters 3 and 4 can be used to analyze the
stress distribution in cylinders under the axial and diametral PLST respectively. Note
that all of these solutions have considered the Hertz contact problem between the

surfaces of specimens and the steel cones through which the point loads are applied.

5.2 Isotropic Spheres Under the Diametral PLST

The boundary conditions for a sphere of radius R under the diametral PLST are

-p(@) for 0<60<6, and r-6,<6<=x
G = (5.1
0 for 6, <@ <x-6,
where
3F 2 2 2
OE m‘/R cos’@—(R* - R,?) (5.2)
O, =0,3=0 (5.3)

on r = R, where R, is the radius of the contact circular area and has been obtained in

(2.70) of Chapter 2, and F is the magnitude of the applied point force.

The exact analytic solution for a spherically isotropic sphere under the diametral

PLST has been obtained in Chapter 2. In particular, the tangential stress O (r,0) and

the radial stress o, (r,0) are
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= Z {[L,.p™ ' [24,m2m+ Dr,,, +(4,1,., +24, +24)A,_|]

+[24,mQ2m+ 1T, , +(A,u, , +24, +24,)A, Jp""1P_(cosH)

240" T, L +p7 T, 1 R 7., (5.4)

m

+ Z p™{P, (cosB)[Q, (L. K,,)cos(y,, Inp) + Q,(-K,, . )sin(y, Inp)]

-2 PO(SOSG_)[Q (1K, )cos(y, Inp) +Q,(-K,, ,I)sin(y,, lnp)]}xfl—.

where the functions [

mi?

A Q(R,,1,) and Q,(R,,[,) andconstants L, ,J, , H,,
and K, are defined in Chapter 2, and E,, can be obtained from (2.73) of Chapter 2.
The expression for ¢ _(r,0) can be obtained from (5.4) by replacing « A5,(2A5), A7
by “ 45,0, 4;; ” respectively.

As mentioned in Chapter 2, for isotropic case the coefficients for spherically

isotropic material take the values

E'=E, v=v=y, G'= 2 (5.5)
21+ v)

Substitution of (5.5) and (2.73) into (2.63) to (2.64), we derive the analytic solution

for isotropic spheres under the diametral PLST.

5.3 Solid Circular Cylinders Under the Axial PLST
The boundary conditions for a circular cylinder of diameter 2R and height 2/ under
the axial PLST can be formulated as:

- fi 0<r<
s ={ D or r<r, 5.6)

0 for , <6<R
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c_.=0 CN)
on two end surfaces z = +A; and
o =0c_=0 (5-8)

~ [

on the curved surface r = R, where

F
p=— 5.9
7y

where r g is the radius of the circular contact area obtained in (3.11) of Chapter 3, and F
is the magnitude of the applied point force.

The exact analytic solution for a finite isotropic cylinder under a pair of axial point
loads has been obtained in Chapter 3. The details of the method of solution will not be

repeated here, instead for the sake of completeness, we quote the following formulas for

the axial stress o_(r,0,z) and hoop stress O g (7,0, z) within the cylinder:

T E
op =D =T (5 1B~ 21, B B.0) - B.L(BIL(B.0)
. " (5.10)

EJ, (A . ) X
+ E %[(Y,COSIW,‘*'Sth,)COSh(Y,Tl)—Y,Tlsth,Smh(Y,TI)]

=l ¥

E
0w = = (1)1 B, (.02, (B, B LBV, B.0)/ (.00

N F
+ E —:’ {Zvsinhy, cosh(y n)J, (A,p) (5-11)

J A
+= Z 11 2v) iy, —, coshy,lecs(y v+ nsich, sob(y ]

£

where E,,F ,A, and Q_ have been obtained in Chapter 3; and B, and y are difined in

Section 3.4 of Chapter 3.
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5.4 Solid Circular Cylinders Under the Diametral PLST
The boundary conditions for a cylinder of diameter 2R and length 2L under the
diamental PLST are

c_.=0, o_=0, o,=0 (5.12)

c.=0, c,=0, (5.13)
o, (R,6,z)
3F R*G* *, a 22 s a z?
- 1— -)"?* fo <bandf < —(1-=) “orr -6l < —(1-)2
- 2mb( a2 bZ) r IZI an l , R( bz? I'lf[ l R( bzz
a z- a z
0 fc b,andlf| > —(1-=)"? -6 > —(1-)2
or lzl > b,an I [ R( bl) Orlﬂ' l R( bl)

(5.14)
on the curved surface r=R. In (5.14), a and b, the half length of major and minor axes of
the elliptical contact area, are derived in (4.10) of Chapter 4, and F is the magnitude of
the applied point force.

We have derived the analytic solution for finite solid circular cylinders under the
diametral PLST in Chapter 4. Again, without going into the details, we just quote the

following formulae for the normal stresses _(r,9,z), 6,(r,8,z),and o_(r,0,z) as

% =@u-IG A+ D L +EY D AP, 1) — 2 e By

B, 3L (nr) 2nE 3 I (nr) N )
oo )}coso_z)+Z{[g +@v+DD)coshgz)+Dyzsinkg V. ()

o) 4
& 7

+(C,+D, )cosh§ z)+D y zsinhg z)] % J, (7)1} kos@no)
’r

(5.15)
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(5.16)
G, =22-v)C, +(1-v)4, +Z{Z{A RQ-vI, () +r—2—= ér )]+B I, (. r)}cos(n 2)

—Z[(C, +(2v=D)D, )cost(y 2) + D,y zsith(y 2, (v )} cos(2r8)

5.17)
where 7, and y, are defined in Section 4.4 of Chapter 4, the governing equations for

4,,C, Ey,, Hy, 4, B,,.C.,, D, and E_ are given in Section 4.6 of Chapter 4.

5.5 Numerical Comparison of Stress Distribution Within Spheres and Cylinders
As mentioned before, the stress distribution along the line joining the two point
loads within a specimen is very important to the PLST, our discussion will focus only
on analyzing and comparing the stress distribution along the lines joining the two point
loads within isotropic spheres and cylinders under the PLST. It should be noted that
there is no shear stress along the lines within specimens under the axial and diametral
PLST. Thus, we only present the numerical results for the normal stresses along these
lines. Since lots of experiments (ISRM, 1985) indicate that the Point Load Strength
Index (PLSI) should be comparable same for a standard test, regardless of whether the

specimen is in shape of sphere, cylinder or irregular lump and whether the two point
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loads are applied axially or diametrally. Our objective of this chapter is to compare and
analyze the stress distribution along these lines within spheres and cylinders of standard
size under the axial and diametral PLST, so as to provide a theoretical basis for testing
irregular lumps under the PLST.

In addition, a series of PLST experiments have also been done on a kind of rock-
like plaster material, with the specimens made in standard shape and size of sphere and
cylinder. More specifically, 18 spherical and cylindrical specimens with the diameter of
50, 60 and 75mm are made for the axial and diametral PLST, at least two tests are done
for specimens with the same size (note that no test for the diametral PLST on cylinders
with diameter 75mm). All dimensions of specimens are set according to the standard
test suggested by ISRM (1985) and by Broch and Franklin(1972). For the axial PLST,
the length/diameter ratio of a cylindrical specimen is 1.1, while for the standard
diametral PLST, the length/diameter ratio of a cylindrical specimen is 1.4 (Broch and
Franklin, 1972). The mean magnitude of the point force at failure for each set of
specimens together with the elastic properties of the material (such as Poisson's ratio
v =0.25 and the Young's modulus £=17.5GPa) are substituted into the corresponding

analytic solutions. All stresses are normalized with the point load strength index, which

is defined as
F
I =— 5-18
Y (5-18)

where F'is the applied load at failure and D is the distance between the two point loads.
The numerical results for the tensile and compressive stress within the specimens
shown in Fig. 5-1 to Fig. 5-4 are the predictions by our solutions. Since the maximum

tensile stresses are dominated by the hoop stresses in cylinders under the diametral
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PLST, we only plot the hoop stresses in Fig. 5-1 to Fig. 5-3.

Figure 5-1 plots both the normalized tensile stress o,D?/ F and compressive stress

o.D*/F along the line joining the center of the specimen (either spherical or

cylindrical) and one of the point loads acting on the surface of the specimen under the
axial and diametral PLST with D=50mm. It is obviously that both of the tensile and
compressive stress distributions along these lines are indeed roughly the same, both in

terms of pattern and magnitude, if the stresses are normalized with respect to the PLSI.

Figures 5-2 and 5-3 plot both the normalized tensile stresses o,D?/F and

compressive stresses O'CDZ/ F along the line joining the center of specimen and one of

the point loads acting on the surface of the specimen under the axial and diametral
PLST for spheres and cylinders with different diameters 60 and 7Smm. Both of the
tensile and compressive stress distributions along these lines are roughly the same for
different sizes, but the magnitudes of the normalized stresses, especially the maximum
tensile stresses, are different. For spheres and cylinders with D=50mm, the maximum
tensile stresses are 14.35, 12.80 and 12.29MPa; with D=60mm the corresponding
maximum tensile stresses are 15.52, 15.17 and 15.30MPa; and with D=75mm the
corresponding maximum tensile stresses are 18.03 and 17.50MPa. It seems that the
normalized maximum tensile stress is a constant for a specimen with fixed size, no

matter whatever the shape of the specimen is. Figure 5-4 plots the mean values
0..D*/ F of the maximum tensile stresses versus different diameter D. The coefficient

of correlation is up to 0.996. Consequently, once the PLSI is calculated, the line shown
in Fig. 5-4 can be used to predict the maximum tensile stress in irregular lumps and thus

to further interpret the strength of rocks.
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However, our experimental data are limited, thus more experiments and

theoretical analysis are needed to make our conclusion more convincing.

5.6 Conclusion

In this chapter, we have compared the stress distributions along the line joining the
two point loads within isotropic spheres and cylinders under the diametral PLST and
isotropic cylinders under the axial PLST. It seems that the ratio of the maximum tensile
stress and the Point Load Strength Index (PLSI) is roughly a constant for a specimen no
matter whatever shape of the specimen is. Thus, a theoretical basis for the PLST on

irregular lumps has been formulated.
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Chapter 6
EXACT STRESS ANALYSIS OF FINITE SOLID CIRCULAR

CYLINDERS SUBJECTED TO ARBITRARY SURFACE LOAD

6.1 Introduction

Solid circular cylinders are the most commomly used specimens in various standard
tests in engineering, such as the uniaxial coompressive strength test, the triaxial
compressive strength test, the Brazilian test, thes double punch test, and the point load
strength test. In fact, the elastic stress analysis ©f solid circular cylinders is one of the
most fundamental problems in theoretical elastticity and has a rich history in solid
mechanics.

Pochhammer (1876) appears to be the first to propose a general analytic solution for
an infinite circular cylinder subjected to arbitrarey surface loads, the same solution was
also derived independently by Chree (1889). A typical example of axisymmetric
problem for infinite cylinders is the problem of applying band pressure on the curved
surface (Timoshenko and Goodier, 1982; Williiams, 1996). If the cylinder is semi-
infinite in length, the problem has been considerecd by Horvay and Mirabal (195 8).

For finite solid cylinders subjected to arbitrary loads, Dougall (1914) employed three
displacement functions and proposed an approxirmate approach for the stress analysis.
For axisymmetric deformations of finite cylindems, Filon (1902) presented an analytic
approach for the stress analysis, and particularlyy provided the first analytic solution
considering the effect of friction between the loa:ding platen and the end surfaces of a

solid cylinder on the nonuniform stress distribution within the cylinder
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undercompression. Employing Love’s (1944) stress function, Saito (1952, 1954) also
proposed a general solution form for axisymmetric stress analysis, in terms of the Bessel
and modified Bessel functions of the first kind of zero and first orders for r-dependency,
and in terms of trigonometric and hyperbolic functions in z-dependency. Using a similar
technique of series expansion, Ogaki and Nakajima (1983) proposed appropriate forms
for two stress functions and analyzed the stress field in a solid circular cylinder
subjected to parabolically distributed loads on part of the end surfaces. By using Saito’s
(1952) approach, Watanabe (1996) derived an analytic solution for axisymmetric finite
cylinders under the uniaxial and confined compression tests, in which the radial
displacement at the ends is partially constrained. Actually, the problem of compression
test on solid finite cylinders with end friction has been the subject of a number of
theoretical studies (e.g. Kimura, 1931; Pickett , 1944; Edelman, 1948:; Balla, 1960a,
1960b; Brady, 1971; Peng, 1971; Al-chalabi and Huang, 1974; Al-chalabi er al, 1974;
Chau, 1997, 1998b). This analysis has been found useful in the interpretation of the
strength of rock in the unixaial and triaxial tests (Kotte et al., 1969). For problems with
displacements applied on the end surfaces and with zero traction on the curved surface,
Robert and Keer (1987a-b) considered the stress singularities at the flat ends of the
cylinder. Wei et al. (1999) used the displacement function approach and presented an
analytic solution for the axial point load strength test (PLST), which provides an
improvement over the approximation by Wijk (1978). One particular type of
axisymmetric problems of finite solid cylinder that has been solved analytically is the
torsion problem. For example, the twisting of a finite cylinder by a pair of identical

annular stamps attached to its ends was considered by Hasegawa (1984), and the
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twisting of a finite solid cylinder with the free curved surface and fixed base by a rigid
die attached to the top surface was considered by Gladwell and Lamczyk (1990).
Except for the study by Dougall (1914), all of these analyses are only restricted to
axisymmetric problems of finite elastic cylinders; while Dougall’s (1914) solution is
only an approximation. In fact, only the axisymmetric problems of solid cylinders are
considered in classical textbooks in elasticity (e.g. Timoshenko and Goodier, 1982;
Love, 1944), no general treatment on non-axisymmetric problems of solid cylinders is
available.

For non-axisymmetric deformations of finite solid cylinders, Wijk (1980) derived a
simple approximation for the tensile stress at the center of the cylinder subjected to the
diametral PLST, in which two point forces are diametrically applied on the curved
surface of the cylinder. Chau (19982) introduced two displacement functions and
derived a solution for a finite circular cylinder under the action of two diametral
indentors and with constrained shear displacements on the two end surfaces. This
solution is an approximation for cylinders under the diametral PLST. To model the
actual traction free end boundaries (which is the realistic boundary for the PLST), Chau
and Wei (1999b) proposed more general solution forms for the two displacement
functions such that all boundary conditions are satisfied exactly. However, there is no
closed-form solution for finite elastic circular cylinders under arbitrary surface load.

Therefore, this paper presents a general analytic solution for finite elastic isotropic
cylinders under arbitrary surface loads. The method of solution is generalized from
those used by Wei et al. (1999) and Chau and Wei (1999b). Complete solution forms

for the displacement functions are introduced here such that any traction problems of
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finite solid isotropic cylinders can be solved exactly. The tractions on the curved
surface are expanded into double Fourier series expansion while the tractions on the end
surfaces are expanded into Fourier-Bessel series expansion, in order to match the
internal stress field resulting from the general solution forms of the displacement
functions. The solutions by Filon (1902), Saito (1952,1954), Watanabe (1996), Chau
(1998a), Chau and Wei (1999) and Wei et al. (1999) can be considered as a special case
of the present solution; that is, they can be re-derived independently using the present
unified approach.

Although the present paper considers only traction boundary value problems for
cylinders, it is straightforward to generalize the present approach to problems with
mixed boundary conditions (including both traction and displacement boundary

conditions).
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6.2 Governing Equations

Consider a homogeneous isotropic and elastic cylinder of radius R (or diameter D)
and length 2L in a cylindrical co-ordinate system as shown in Fig. 6-1. The stress and
strain tensors are related by the following Hook’s law
o, =2Ge_ +Ae d_, (6.1)
where o,B,y =r,8,z; G and A are the Lame constants (G is normally referred as the
shear modulus); and the repeated indices in (6.1) imply summation. The Cauchy stress
tensor and strain tensor are denoted by ¢ and & respectively. The strain tensor is

related to the displacements (u =u_ e, +u,e, + 1 e,) by

&= %[(Vu)’ +Vu] (6.2)
where
Vu=e é1--i-eé, lé-&-e a 6.3)

" a r &6 &

In terms of cylindrical coordinates, the physical components of the strain tensor given in

(6.2) are

g ou u 10y, 1 Ou, 10u u,
E.=—5, g =—", g,=—"+—2, g =— +——2——),
T 0Oz T or r raoo 2°'or roo r

1 10u 6u 1 ou ou
g€ =—(——= ] =—(—+—=). 6.4
® 2(r66+62)’ €x 2(6z+6r) ©.4)

In the absence of body force, the equations of equilibrium, V-5 =0, in terms of

displacements are (e.g., Malvern, 1969):

(r+26)28 2092 559 _, (6.5)
o r o8 P
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10e __8Q 20
A+260)~ 2 126 R 2% _g 6.
( )T z 7 or (6.6)

oe 2G ¢ 2G 6Q
A+26)—+——=—-(Q —==0 .
( )az r 8r( 2+ r 00 6.7

where Q =[(Vu)" —Vu]/2 and e =V -u are the spin tensor and the volumetric strain

respectively.

When the cylinder is subjected to arbitrary stresses on the surfaces, the general

boundary conditions are

c,=/1.(z0), o_=f.(20), o,=f,(20) forr=R (6.8)
c,=/.(@8), o_=f.(8), o,=f,(r0) forz=+L. 6.9)
c,=f,(0), o_=f(0), oc,=f,(0) forz=—L. (6.10)

where f, (i =1,23;j=r,z,0) are the prescribed tractions on the curved surface and on

the end surfaces of the cylinder. The first subscript i=1,2,3 indicates the curved, top and
bottom end surfaces respectively; the second subscript 7 (=r, 6, z) indicates the direction
along which the traction acts. To simply the later discussion, these boundary conditions
are called BCjj (i/=1,2,3) as defined in Table 6-1. For example, the first of (6.8) is

denoted by BC11.

6.3 Method of Solution
The main objective of the present paper is to obtain the exact solution satisfying both
the equations of equilibrium (6.5)-(6.7) and the boundary conditions (6.8)-(6.10).

Similar to the analyses by Chau (1998a) and by Chau and Wei (1999), two displacement
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functions ® and ¥ are introduced in such a way to uncouple the governing equations

(6.5)-(6.7),
oD 16¥ 1 30 8¥Y od
=——+=2, g=—a T RA-WV.D+1-20 2P :
“ T v T rme o AT RA-W (=271 @11
where
10 d 1 &
V=——r3)+— 6.12
Yor 6r(r ar) r: 6e: ( )

Substitution of (6.11) into (6.5)-(6.7) yields two uncoupled governing equations of
the displacement functions @ and ¥ :
VO =V'V'd =0, V¥ =0 (6.13)
where V* is the Laplacian operator, or V* = V,+8°/0z'. Thatis, ® and ¥ satisfy the
biharmonic and harmonic equations respectively.

In terms of these two displacement functions, the physical components of the stress

tensor can be obtained by substituting (6.11) into (6.4) and (6.1) as,

5D D 9 10¥
= _2VGV? 2G 215% 6.14
T v oz * [azar’ +8r (r 00 )l ( )
oD 180 1 &0 8. 18¥
—2vev: 22 o6 + _9 15
R e T T ) (6.15)
o._. &
. =26[2-w2v: - o (6.16)
oz oz
P &’ G o'y
=26[~(1-v)2v + @ 6.1
Ce =26V V + v lO+ — (6.17)
18 1 & oy
=26[-(1-w1Z v +v1 O-G 6.18
Oa =200V eV Ve 12 G s (©6.18)
3 150, 1.10¢ 18% &
=2612. L 1 + _ 6.19
T [6r (r 8662)+2(r or roo* ort )l ( )
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6.4 Series Expressions for the Two Displacement Functions

The most difficult step to solve the problem is to find the appropriate and complete
solution forms for the two displacement potentials ® and ¥, which should satisfy both
of the governing equation (6.13), and the boundary conditions (6.8)-(6.10) for any
arbitrary applied traction f,.

The method of separation of variables is employed here to solve (6.13). In particular,

we assume the series solution for W as

¥(r,z,0) = Z[‘”‘ (r,2)cos(@,6) +y, (r, z) sin(w,6)] (6.20)

n=Q

where o, is defined as ®, =2nn/T, and T is the periodicity of ¥ in 6, which should

match the periodicity of the external applied traction in 6. Substitution of (6.20) into

(6.13) leads to the governing equation for function vy (r,z), i=1,2,

Oy, 1oy, 2y, o]
i + 4 + L, Ll =0 6.2].
or* r or oz? re v ( )

The general solution of (6.21) is

sin(nz) sinh(yz)

v, (r,2) =[41, (nr)+BK, (nr)] cos(nz)* [CJ,, (yr) + DY, ()] (6.22)

cosh(yz)

where J, (yr),X_ (yr),I, (nr)and K, (nr) are the Bessel functions and modified
Bessel functions of the first kind and second kind with fractional order ®,;and 4, B, C,
D 7 and y are constants to be determined. Because the stress field at the center of the
finite cylinder must be finite, all terms that relate to ¥ .(yr)and K, (nr) must be

discarded. Therefore, the general expression for ¥ is assumed as:
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__1 N U cos@.z) o cosh§,z)_sin@, 8)
¥ B +Z[E;.r D = AL e DA M N

(6.23)
where G is the shear modulus, n_=mn/L, vy, =X, /R, and A, is the s-th root of
J.,'(x) =0. The characteristics of A, will be discussed later. £,E* and F* (I=1,2;
k=1,2,3,4) are unknown constants to be determined by the boundary conditions. The
superscript (J) is from 1 to 2 since the 8-dependency can be either sin or cos; and for
general case, we should include both /=1 and 2. For the superscript (k), we can have 4
combinations for the z- and 6-dependencies; and in general all four combinations are
needed for the most general case of applied traction. The corresponding z- and ©-
dependencies for each & and / are tabulated in Table 6-2. The summation for m can be
used to fit any z-dependency of applied traction on the curved surface while the
summation for s can take care of any r-dependency of applied traction on the end
surfaces. Note that the term vy, (r,z) = Er™ is resulted by considering the case of n=0;

and that the term for £, will lead to constant shear stress field for o_ only.

To find the general solution for @, we let V*® =¥ and note that the general
solution for ¥ is the same as those for ¥ given in (6.23). By back substitution of this
solution into V*® =¥ and by careful inspection, we propose the following general

solution for @ :
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1 z’ z
O=—id, Z+C Ep
3G g T Cas”

. .o, . 1 [3) aI-. (T]-r) (k) S]..n(T]“Z)
+Z {AProz + ZE[A-' r——ar +B'I, (n.r)] cos(n.2) (6.24)
sinh(y z) cosh(y.z) cos(w 6)

Z 7o cosh(y z) *Dlyz sinh(y :z) W..(r.r} sin(® :6)}

where 4,,C,,4,, 4% ,BL ,C* and D" (I=1,2; k=1,2,3,4) are unknown coefficients
to be determined by the boundary conditions. Each combination of 7 and k corresponds
to a particular combination of the upper and lower functions of z and 6 given in (6.24).
More specifically, the corresponding z- and 8-dependencies for each k and / are given in
Table 6-2; and in general all combinations of k and / are needed for general loading
cases. Note that the choices for k and / given in Table 2 will lead to o (r,z,0) being an
even function in @ [i.e.cos(® 0)] if /=1 and being an odd function [i.e. sin(w,0)] if
[=2. In addition, the z-dependency/B-dependency for c,(r,z,6) will be even/even,
even/odd, odd/even and odd/odd for £=1,2,3,4 respectively. Note that the constants A,

and C,, will only lead to constant normal stresses. In addition, it is straightforward to

show that (6.23) and (6.24) satisfy the governing equations (6.13) identically.

6.5 General Expressions for Stresses
Substitution of (6.23) and (6.24) into (6.14)-(6.19) leads to the following general

expressions for the stress components:
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o, =2v-DC, +v4, +Z{—co,(co_ —I4° :;(m"g)) +E? f::(;(m"ee)))r‘" *

Lo

N 1.8 o (mn),. BY&L (mr) cos(nz)
HZ{A,, P, ()~ g E e T
cosh(y,2) smb(v 2 1A TN o
Ct) Dk) k) J
E{[( + iy 2) +Dy, Ny Z)][Yr > yr LCrnl (6.25)
. cosh(y z) smh(y z) cos(w,6)
' +(2v+ D) DY +DPy, J
HC +Qv+DD) | by 2) by, )] N(Z2011 38 ©.6)

_{Z “w, a 1 (T]_r) oos(n_z) o, 8, (Y,"))OOSh("/,Z) + cos(,6) )
r sm(n.Z) e Y, & r sioh(yz) —sin(e,6)

_ : , 508 @8
c@—(zwl)c,,wm SCRD SO

N o 18, d®A & d o B‘"ld(n_,)m (n.2)
+{Z{A_ B ALY vt

N iy 2) sty o, siys) 1@ (Y)co as(,6)

D, Co+D o IE

Z{zv L0 e 91 )sd( S T L W
{ ©, 8 (I Ghy) mS(TLZ) "o, § (J,, (y.r) ooy 2) cm(m,e)}

bt & r SN Leiy & r sifyz) -su@®)

(6.26)

WA a,
o, =22-v)C, +(1-V)4, +Z{{Z{A:) [2(2_\,)[." (L) +r ; ]+B‘"I ) 0?;(7]_2))

. a0y Oy .2) 1, SinBY.2) c0s(®,0)
Z[(C VDD D L G )

6.27)
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A® @ al. B® ol i
&, =9(1-V)E, +Z{{Z{ 20-v) .,;1 r) a( (m, r))]T - .,(n.r)}sm(n.Z)

or N, & cos(ngz)

S S
(6.28)
Z{ - [(CP + D) zf DeDvyz :f;(;;)] LML }}i‘ﬁé’ 6.29)

“Zr: oL, () —sio(n.?) F_ &, (1.7 sisk(y 2), sio.0),
& omg) Lz, o coshy,?) cos(,6)

N o =S8  —sinw8) .
c, —Z{—m"(co -4 cos(®6) —E? cos(@.6) )lg

040 G () ©BY 18 (nr) 1 cos(_2)
-{Z{ n o O or o OB i)

=0

o OS2, sinh(y.2) 13, (1) 1 —sin(w,6)
Z{ O D) Gt DT ey DY 0 630)

E® 19 (M) o o1, (n,r) cos(n.z)
—{ 2 ot [r > ~L.n- P ] sin(n_2)

NE "[laf (v.r) mz LG, )_5‘J.,(zv,r)]o?sh(¥,2)}sin(®.9)}
L2y o & sinhly,2)’ cos(®,6)

For the sake of completeness, the proper choice of the upper and lower functions in z
and 6 corresponding to each value of & and / are tabulated in Table 6-3. It should be

emphasized again that all terms of k£ and / are needed in general.
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6.6 Determination of the Unknown Coefficients
By using double Fourier expansion technique, all boundary tractions acting on the

curved surface of the cylinder given in (6.8) can be expressed as (Brown and Churchill,

1993):

G = A =) cos cos(w O) + b sin(n z)cos(w 6
. ZZ{ _[a® cos(n,z) cos(e 0) + b sin(n_z) cos(w,0) 631
+¢’ cos(n,z) sin(@ B) + & sin(n_z) sin(e 0)]}

where o =r,z,0, and

1/4 form=n=0
A_=41/2 for n=0,m>00rm=0,n>0 (6.32)
1 form>0,n>0

al = % JI, n ‘[fm (z,8) cos(n_z) cos(w B)dzd®, b = % J: ) f {m (2,0)sin(n,z) cos(w 0)dzdD,
(6.33)

c =% f ) f f..(2,8)cos(n_z) sin(w,0)dzdB, d= =% J{ P ff (2,8)sin(n_z)sin(w 0)dzd®.
(6.34)

In order to match our general expressions of the stress field with the applied stress
given in (6.31) on the curved boundary (corresponding to BC11, BC12, and BC13). We
first substitute r=R into (6.25), (6.28) and (6.30) then expand all functions of z in terms

of Fourier sine and cosine series. Finally the shear and normal stresses on the curved

boundary can be expressed as:
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0 OHOD) Ly OO gy H(0.0)

(o =(2V"1)C‘; 'i'V‘4m +Z{_m,(ﬁ), _1X oor Sl’[(ﬁ)"e) O —SiI(OJ_e) SII( e)

n (&) 2 0y (TLR) R ail." (TLR) B,:) az1.,, (TL.IZ) OCE(TLZ)
s(R) Sm( e) Z{{A [, (n.B) e v 1 & }_Sin(mz)

z ()
+Dk))F)+Dk)A)] [( k) +(2v+1)Dk))r'() +Dk)A()]}J ( &MTL )}(Id&) )

~l SII( ) 51(03 9)
_{E‘,:’co. & a mB I, (TLR))OCE(TLZ)_ N 20,0 o (1K) oos(mZ)} oos(m,e)}
T R & R "sn(nz) Ledy; T R sn(nz) —sine,0)
(6.35)
= . cos(w 0)
o;_=9(1—v)Em+Z{—K\M(R)Sm(m”e)

= g ol (n.R) &L (n R).. B® 8l (n_R), sin(n.z) cos(w,0)
+Z G- or TR N+ or cos(n,z) sin(w 6)

(&)

(0]
5=, (n.R)

k)

—sin(n_z)+ = F,. o, sin(n_z) cos(® 0)

J, . Ry 3

2n. R ™ cos(n,z) - Y.R T cos(n,z) —sin(w 0)
(6.36)
u) (CD 9) —E® —Sin(m~e))Rv,-z+ 0 (R)—sin(cone)
s ~Z{-(o (@, ~1)4, cos(w 6) " —cos(w,0) Lo cos(w 0)
oy S@.0) 042 LK) 0B 1OLMR) 1, o o)
e (R)cos(m 0) Z [ or’ * n R or R - (B —sin(n,z)
O) 6\ T () A (D cos(n,z), , —sin(w,6)
Z{I—R,[(c #DIEZ DALV, ) oy
E® 10 (n.R) o &L, (n.R)
Yol R ORTT
VFUTY o &'J, (v.R), cos(n, z) sin(w,6)
QT L R o
6.37)

where
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sinh(y L) o

" =2vD?]————=+D"" cosh(y, L)( ‘R’ -D}J, (v.R)
(6.38)
F®o sinh(y L
R (R) Z z;)z S (Y )J"('Y,R) (6.39)
. F“q sinh(y_ L)
N (R) = m Dn ] (yR 6.40
.. (R) 3w R 7L . (r.R) (6.40)
P (R) = Z ’R’[ co s“’h” L) | D cosh(y, L)}V, (v.R) (6.41)
= FO 0'J, (v,R),sinh(y, L)
x“’=z n 1D J (v R)4+—==tlx : 6.42
“~Z 2Y:[Rz LB o 1 Y L ' (6.42)

In (6.35)-(6.37), '’ (i=1,2) are the factors for the Fourier expansion of

cosh(y,z) and sinh(y z) respectively:

ro - 2y,(=1)" sinh(y,L) (6.43)
L(y: +nl)
ro - 2n. (=™ sioh(y,L) (6.44)

Ly +nl)

While A® (i=1,2) are the factors for the Fourier expansion of y, zsinh(y,z) and

7.zcosh(y,z) respectively:

ap < 2LCVSOGD) 1 7 ooshey, £y + =Y sinhcy, L)] (6:45)
L(y;+m) Y.+,
A® = 211.}',(—12) S:nh(Y,L) (6.46)
-Y.l' + n.

111



Equating coefficients of the Fourier expansions in z and 6 in (6.35)-(6.37) to those
corresponding to BC11, BC12 and BC13 given by (6.31), we obtain a system of
equations for relating the unknown constants.

In particular, the following equations are obtained by BC11:

Qv-1)C, +v4, =a" /4 (6.47)
—0, (0, —1)(4,] +E)R" - RV (R)+ 3P (R)=a /2 (6.48)
—0,(0, ~1)(42 —E2)R" - R (R) - I (R) =c /2 (6.49)

2 0L, ,(n.R) ROIL, (n,.R)]_ B oI, (TI-R)}

. or n. or’ n: or’
EPw, 10l (n, R L (n R)

+a
u n? [R or

a, {A::,) [2\’[., (TI.R) -

]} Z{{ sz [(Cm D(t))r() +DmA(n ]

F(“(D J;' (Y,R)

—(C¥ +2v+1)D")r S+DPA I, (YR —a, = —= Y FE }=A_Q0
(6.50)
where «, (i=1,2) and Q) are defined in Table 6-4 for £=1.2,3, and 4.
The following equations are obtained by BC12:
9(1 - V)Em —N:: (R) = a;i’ /2 (651)
4 a,@.R) I (7.R),, B d, (n.R)
—[G-2v)— +tR—= )]+ = —=
7. ar a 7., ar
(6.52)
(k) = F(ﬁ)a) ] l Q( ,
+ B == R)+ Z—"—J RC® =1_Q
B 27 R (1. R)+ B 22 R . 7. R)
where £, (i=1,2) and Q% are defined in Table 6-5.
The following equations are obtained by BC13:
@ (0, -1)(4,) —E2)R"7 —p® (R)+X(R) =c /2 (6.53)
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—o (o, -4 +EP)R" + @ (R)+ X2 (R)=a® /2 (6.54)

@ A" 0"’1.,(77.R)+w,3‘_‘,’ 1, @R 1

. R
K, { - P - [R Py ra I, (7.R)]1}
E? 14, 0.R) o I, (n.R)
Lol i fd - n [ R _ @ N C(t) +D(t) r(l) 655
R R - E{l Pl LY (655)

&) A0 :) :.) 0): g'J ( @
+DPA Y, (r.R) - [—J.,(J’,R)+—z—]} .00

2y "R? a

F

where «, (i=1,2) and Q' are defined in Table 6-6.

On the end surfaces, z=L, (6.9) can be rewritten as

_ZZ L ) J, (v.r)
= C..[e; sin(w 0) + £ cos(w _6)] . (6.56)
c_= Z ZC,, [g; sin(w B8) + A cos(® O, (v.r) 6.57)
_ZZ iy . J.(1.7)
= €. [k sin(w ) + /. cos(w ,6)]7 (6.58)
On the other end surface z=—L, (6.10) is rewritten as
c., = iic (e, sin(®,0) + £, cos(@,0)]—=—~ Jo, (1) (6.59)
n=0 s=1 r
0. = ) 6.l sin,0) + I cos(@ )L, (1.7) (6.60)
XN - ] J. (.7
= ZZCM [k, sin(w 0) + cos(® ,9)]——r— (6.61)
where
_ 1/2 forn=0 6.62
ok 1 forn=0 (6.62)
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- an
TORTA eI ()

) 4n
/.

41

-

g’l

= an
TORT —w)J (A,) ]

. 41

T RT( —0)JE () |

T RTE o) (4)

0

AR

(]

kX = =
T RTA-al)J) (4) .

e an
TORTO -0)J, ()

oT/2

r'f. (r,0)J, (v.r)sin(w, 8)dbdr

v-T2

@T/2

r'f,(r.8)J, (v,r)cos(w 0)dodr

¥-T2

/2

1. (r.0)J_ (v.r)sin(w,0)dédr

T2

oT/2

rf,.(r,8)J_ (v ,r)cos(w, 0)dbdr

-T2

] frli SO, (y,r)sin(w,0)d6édr

TI2

-r F" [ (r,0)J__(y,r)cos(w 8)dbdr

(6.63)

6.64)

(6.65)

(6.66)

6.67)

(6.68)

e..f..g.,n .k, and [ can be obtained by replacing superscript “+” by “~” and * f..7

by “ f,.” (o =r,z,0) in (6.63)-(6.68).

It can be shown that once one end boundary (say z=L) is satisfied, the other end

boundary will be satisfied automatically. To see this, let us consider o_ as an example

and rewritten (6.57) and (6.60) as

.= ZZ%C {[(g; +g)sin(w,8) + (A + 4] ) cos(w,0)]

+[(g2 —&.)sin(w 8) + (A A ) cos(w O)I}, (v.r)

7= D 2 3 U8 +82)8in(o.0)+ (4 + ) 05(0,0)

~[(g. — &) sin(w,0) + (A, —h; ) cos(w )}, (v,r)

on z=[ and z=—L respectively.
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Comparing (6.69) and (6.70), we found that the term inside the first [ ] in (6.69) and
(6.70) is an even function with respect to z, while the terms inside the second [ ] is an
odd function with respect to z. Similar consideration can also be made to o, and o _.

To consider BC21, BC22, and BC23, the internal stress field given in (6.27)-(6.29) is

first expanded into Fourier-Bessel series (See Appendix IV for more details)

C_ —2(2—V)C +(1 V)Am +Z{2{{A(k)[(4 —2v—o )T +U ]+E”T}_a$(;(r:]:z))
oy, s ) ©.71)
Y2 Y.
C(k) 2 le Dk)
~(C? +(2v-1) )sm]:( 2) "'oost( )]}._( )su( 6)}
=20 (1-V)I +U,_+W, ]+§:_’[U_ —o. T} sin(n,2) c?s(m,e)
M. cos(n,2) sin(®,6)

Elo, 7 ~sin(n.2) cos(@,6) }+F1"co. sinh(y z) cos(w,6)
2n, 7 cos(n.z) —sin(@,8)’ 2y, cosh(y,z)—sin(w,0)

_— E L[(C;)_*_zvuk))smh(ypz +Dt C(Eh('y Z) COS(O.) e) ‘] (Y r)

~coshy, ) Or 1 sinbty 2) sine. 8 F

6.72)

N B sinnd-sies)
c,,-ZZ{Z{{ R CRC Y RUA o R

ED -sinf2)sin@h), o _ o Sinhgz)  coshgz) —sin€:0)
K[U" oLl stz coswd) 7. y UG +ND ). sh(/,z)+D" T2 Ginhgz) cose®) )

FV_ sinh§ z) sin@ ). J. L.Gn
zy coshy z)cos@6) r

where

277
I = : R)J, (A)+AM 1, R A.)](6.74
" T eI By + Iy e (L G (B, BT 6T
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U - 201 R 2. ~n.R

RI RJ. (A
T oD R () (R e, (e (R0

AL (R )]+ 2 RE (R () +A L (R, ()] 675)
(MR +X

N RI, (MR, (A=A (n.R)J (X))}

21'1,“1 RZ
W = L] RI RYJ (A Al RYJ A
- ()J,—cn:)[(n,R)‘+7L‘,]Jj,(x,){"' et (MR (A +X L (0 R)J, (X))
N 2 {2(V+ DX, —niR*)
T (MR A

L AVNRA,
(M.R) +X
AR, (MR, ()X —niRDI, (n R, (A)}}

MRL. (R, (A )+A 1 (M R)J, ()]

(M.R)* +A% (6.76)

(MR (.R)J (A )+R I (MR, ,(X)]

If A, #A,, then

v = 2%, KJ, Q) A+ A I, AN, ()

O Ay S VAR (O Rl

2L Ao
XI - ,xzn [}'PJ.;. (A'P)Jun -1 (l:) - lIJUn -1 (A‘P)J"" (l’ )] (6.77)
A+A)-20

+ co"( PA:- ’A)} . {)\'pjn,. ’l(lp )Jn,, (7\‘:) - A‘xJnn ()\'P)J""‘l (X" )]}

IfA, =4 ,then

L R YANCS 6.78)
* -0, ()

By substituting z=L into (6.71) and comparing the corresponding coefficients of

(6.69), we have

22-v)C, +(1-v)4, =0 (6.79)
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Z{A‘;’ [(4-2v-0,)T, +U_1+B T }(=1)"
) (6.80)
~{(C” +@v-1)D")cosh(y, L) + D"y, Lsinh(y, [)] =%§, e +5)

D U= 2v-0 )T + U1+ BT

(6.81)
(C® +@v—1)D*Yousiiy, L) + Dy Lsink(y, )] =—;c.. & +20)
(C? +(2v=DDP )sinb(y, L) + DYy, Leashly, [) =, (; ~F5) (6.82)
(G +@v—DD)sisbly, ) + DYy, Loosty, D) =, 8. ~2) (6.83)

The same system of equation is obtained if we substitute z=-L into (6.71) and
comparing the corresponding coefficients of (6.70). Thus, only one of the end

boundaries (either BC22 or BC32) has to be satisfied by the stress o_ given in (6.71).

Similar consideration can also be made for o, and o, and leads to the same

conclusion.

Applying BC21 or BC31 into (6.72), we have

n =

Vv
= sy, D)= ) “={(CD +2vD2)sinbly, L)+ DY, Loosh(y, D] =26, (2 + /) (6:39)
Y Y 2

s P

Pt
2)

)
—"T"Sinh(v,l;)— E [ +2vD‘,j’)5inh(Y,L)+D‘:,’Y,,Lcosh(Y,L)]=%C,(e;+e;)(6~85)

117



» »n

49 B® ) ®
E {0, —20,A-V)T_ +U_+W_]+—=[U_-o T 1} —T_}-1)" +—=—=cosh(y L)
-l TL. TL. ZTL 2Y

s

S
- E —=[(C? +2vD)cosh(y, L) +D;’Y,Lsinh(y,,L)]=;1C(f; -1)
i (6.86)

4) 4) )

U, —0 T +o=2 7 3ty — o oy Iy
T 2,

Z{{A—”)[(m: —20, (1-WT, +U_ +W,_]+—=

-1 n. n.,
V.

D (G +2vD ooty 1)+ D7y, Lty D] =365 —<0)

P (6.87)

Finally, applying BC23 or BC33 into (6.73), we have

= n

0). n n 2. 1) __p_l_”' hd =—1 - -
PG 2D ity D)+ DLy Loty D}« ) = sibly, D=3L (6 +K)  (6.38)

T = L4

2) 2) - 2) N plz) | s 1 - -
D) sty D+ D'y ooty DI+ Y T2 Esibly, D=3C G+ (6.89)

ks =l

3

= ® A® ® B®
E H——[Q-2v-0)I_+U_J+—=T }+—=[U, - [}
— . n. 2n,

. o (6.90)
CD_ 8] ) 3), : - _l - _ -

+—,[( * +2vD®)coshf, L) + Dy Lsinh§, L)1+ PE, 2, cosh§,z) —2§(km k)
Y (e -2y o)L+ U1+ 2 e Py Ty
m=] TI"‘ rLl 211..
(6.91)

= 1)

~ [ +2vD)coshfy, L) + Dy, Lsinhg )] + z == coshy2) %qz; ~I)
Y

s p=l 4

Therefore, 4, and C,, can be obtained from (6.47) and (6.79); E, can be otained

from (6.51); A® and E (I=1,2) can be obtained from (6.48)-(6.49) and (6.53)-(6.54);
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for each n, 12(M+S) unknown constants AY,B*,E® C*® ,D* and F®, (k= 123,4;
m=1, 2, ..., M; s=1, 2, ..., S) can be solved from a system of equations (6.50), (6.52) and
(6.55) with m from 1 to M, and (6.80)-(6.91) with s from 1 to S. Thus, we have exactly
12(M+S) equations for 12(M+S) unknowns for each n. If the summation 7 is from 1 to
N, the total number of unknowns and equations are T+12N(M+S). Finally, all stress
components can be obtained by back substituting all these coefficients into (6.25)-
(6.30). Therefore, the general elastic solution for stresses within the finite isotropic
cylinders subjected to arbitrary surface loads is obtained, and some special cases of this

general solution will be discussed next.

6.7 Special Cases

Let us consider some special loading cases of our general solution given in the
previous section. When we set @, =2n (n=1,2,...) and k=I[=1, the solution reduces to
the solution for finite cylinders under the diametral point load strength test considered
by Chau and Wei (1999); when we set @, =2n (n=1,2,...), k=I=1, and
C’ =Dy = F" =0, the solution reduces to the solution for finite cylinders with zero
shear displacements on the end surface under the diametral point load strength test by
Chau (1998a); when we set o, =0, k=I=], and E” = F"" =0, the solution reduces to
the solution for finite cylinders under the axial point load strength test by Wei et al.
(1999); when we set @, =0 and E = F" =0, the solution reduces to the general

solution for finite cylinders under axisymmetric load by Saito ( 1954,1952). In addition,

the solutions for finite cylinders constrained the radial displacement of the loading end
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under confined of unconfined compression tests by Filon (1902) and Watanabe (1996)

are also special cases of the present general solution.

6.8 Characteristics of Roots of the Derivative of the Bessel Function

When @, =0 (or cylinders under axisymmetric loads), Saito (1952) has considered the
roots of J',(A,)=0 in obtaining his numerical solution. These roots have also been
used by various authors, including Ogaki et al (1983), Watanabe (1996), and Wei et al.
(1999).

For obtaining the analytic solution for the diametral point load strength test, Chau
and Wei (1999) has evaluated the roots of J', (A,)=0 (n=0,1,2...,). Since the accuracy
of the present approach is also depend on the accuracy of the roots A, , in this section we
will consider some general characteristics of the roots of J "..(X,)=0, so that these
roots can be found more accurately and efficiently.

In particular, the following four regularities are observed for the roots of
J. (A)=0:

(1) The upper and lower bounds for the first root

As discussed by Watson (1944), the smallest root 4, of J! (x) =0 can be bounded
by

JRr@2n+2)} (for1<n<2) <2, < [lan@n+1)} (6.92)
,/%2ni2n +3 ” (forn>2)

The first roots can be searched within these upper and lower bounds. Once we obtain
the first root, we can generate the subsequent roots more efficiently if the following

properties are noted.
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(ii) For large A,, any two non-zero neighboring roots A, and A, of J', (x) =0 differ

by w(or A, —A, =m)

Since the Bessel function J_ (x) can be expressed as (Watson, 1944)

J._ (%) =\/% cos(x—%f—g-) +0(x™) (6.93)

For large x, we can retain the first order term. Considering the differentiation of it , we

have

J' ()~ /i sin(x- 2L _T (6.94)
g ™ 2 4
Consequently, the roots of J', (A,) = 0should satisfy

A —9?:—"--§=1m k=012... (6.95)

Fd

Therefore, the difference between any two neighboring roots is given by

A, A, =T (6.96)

if 4, is large enough.

(iii) There must be a root of J, '(x)=0 between any two neighbor roots of
J,,'(x)=0

To prove this characteristic, the following argument is applied. By following the
procedure given in Section 15.22 of Watson (1944), we define a function

f(x)=x""J_ (x). Suppose that A, and A, are two neighboring roots of J L (x)=0,

obviously, f(A,)=f(A_.)=0. It is well known that there must exist a value &
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between A, and A _, that satisfies f'(§)=0. In addition, it can be proved that
S'(E)=E""T, (&), so we have J', _ (£)=0. That is, between any two neighboring

roots A, and A, of J', (x) =0, we can find aroot & for J', _ (§) =0.

(iv) There must be a root of J, '(x)=0 between any two neighbor roots of
J, . (x)=0
The proof for this property is similar to those used in the previous characteristic (iii).

In particular, we can define another function g(x)=x"~""J "\, (¥), and follow the same

procedure as employed for (iii). Because the proof follows trivially, the details will not
be given here.
In numerical computation, the above four regularities can be used to evaluate the

roots of J_ '(x) =0 efficiently.

6.9 Conclusion

In this paper, we have presented a general solution for a finite isotropic solid cylinder
subjected to arbitrary boundary loads. Equations of equilibrium are first converted to
two uncoupled differential equations by using the displacement function approach.
Appropriate solution forms of these displacement functions are proposed in terms of
series expression involving the Bessel and modified Bessel functions in r-dependency,
trigonometric and hyperbolic functions in z-dependency, and trigonometric functions in
6-dependency. The boundary tractions on the curved surface are expanded into double

Fourier series expansion, while those on the end surfaces are expanded into Fourier-
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Bessel series expansion. System of simultaneous equations for the unknown constants
of the displacement functions is given explicitly for any arbitrary boundary loads. It was
demonstrated that only one of the end boundary conditions need to be satisfied, while
the other end boundary will be satisfied automatically. Solution for axisymmetric
problems given by Saito (1952, 1954) for finite solid cylinders, solution for the axial
point load strength test given by Wei et al. (1999), and solution for the diametral point
load strength test given by Chau and Wei (1999b) can all be recovered as special cases
of the present general solution. The framework of analysis given here can also be
extended to mixed boundary value problems (i.e. both displacement and traction are

applied on the boundary of the finite cylinders).
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Chapter 7

CONCLUSION

7.1 Summary of Results

This dissertation presents a series of exact analytic solutions for spheres and
cylinders. More specifically, the analytic solutions are for: spherically isotropic spheres
under the diametral Point Load Strength Test (PLST), finite isotropic cylinders under
the axial PLST, finite isotropic cylinders under the diametral PLST, and finite isotropic
cylinders subjected to arbitrary surface load.

In particular, Chapter 2 presents an analytic solution for the stress concentrations
within a spherically isotropic sphere under the diametral PLST. For the case of isotropic
sphere, our solution reduces to the classical solution by Hiramatsu and Oka (1966) and
agrees well with the published experimental observations by Frocht and Guemsey
(1953). A zone of higher tensile stress concentration is developed near the point loads.
The pattern of stress distribution along the axis of loading is relatively insensitive to
anisotropy of rock, while the maximum tensile stress is very sensitive to it, and the
difference between this maximum tensile stress and the uniform tensile stress in the
central part of the sphere increases with E/E’(where E and E’are the Young’s moduli
governing the axial deformations along directions parallel and normal to the plane of
isotropy respectively), G7/G (where G and G’ are the moduli governing the shear
deformations in the planes of isotropy and the planes parallel to the radial direction),
and v/v' (where Vv and V' are the Poisson’s ratios characterizing the transverse

reduction in the plane of isotropy under tension in the same plane and under radial
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tension respectively). This stress difference, in general, decreases with the size of
loading area and the Poisson’s ratio in isotropic planes.

Chapter 3 presents an analytic solution for the stress field within an finite cylinder
under the axial PLST. Our solution shows that a zone of higher tensile stress is
developed in the vicinity of the applied point loads, compared to the roughly uniform
tensile stress in the central portion of the line between the two point loads. This peak
tensile stress along the axis of loading decreases with the Poisson’s ratio and the size of
the loading area, but increases with the Young's modulus. The tensile stress distribution
along the axis of loading in a cylinder under the axial PLST is remarkably similar to that
observed in a sphere under the diametral PLST. Our solution also demonstrates both
size and shape effects on the point load strength index (PLSI) that we observed in our
experiments. In particular, for a fixed length/diameter ratio, the larger the specimen the
smaller is the PLSI; while for a fixed diameter, the longer the specimen the smaller is
the PLSI.

Chapter 4 presents an analytic solution for a finite isotropic cylinder under the
diametral PLST. Numerical results show that, similar to an isotropic sphere under the
diametral PLST or an isotropic cylinder under the axial PLST, the tensile stress
distribution along the axis of loading is not uniform, a zone of high tensile stress
concentrations are developed near the two point loads for both of the hoop stress and the
radial stress along the axis of revolution. Both of these maximum tensile stresses
decrease with Poisson’s ratio, the contact area, the radius of spherical heads of the
indentors, but increase with diameter of the specimen. The maximum tensile stress

along the axis of revolution decreases drastically with the increase of length/diameter
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ratio of the specimen, while the maximum hoop tensile stress is relatively insensitive to
it The size effect is also well predicted by the solution, that is, the larger the diameter,
the weaker the specimen.

More importantly, Chapter 5, by using all of the analytic solutions obtained in
Chapters 2, 3 and 4, analyzes and compares the tensile stress distributions in isotropic
spheres under the diametral PLST and cylinders under the axial and diametral PLSTs.
Numerical results show that, if the sizes of the specimens are comparable (say by
following the suggested dimension by ISRM, 1985), the distribution of the normalized
tensile stresses are very similar along the axis of loading in spheres under the diametral
PLST and cylinders under the axial and diametral PLST, both in terms of magnitude and
pattern of the distribution. This lends credence that the PLSI is relatively insensitive to
the exact shape of the specimen under PLST, and thus the first theoretical basis for
irregular lumps under PLST is provided.

Chapter 6 presents a new framework for stress analysis for finite isotropic cylinders
subjected to arbitrary surface load. The special cases of the solution include the analytic
solutions by Filon (1902), Saito (1952,1954), Watanabe (1996) and Wei et al. (1999) for
axisymmetric problems and the solutions by Chau (1998a) and Chau and Wei (1999b)

for non-axisymmetric problems for finite solid circular cylinders.

7.2 Further Studies
The Brazilian test is another popular indirect tensile strength test for brittle
materials. The theoretical basis for this test is the analytic solution by Hondros (1959),

which considered an infinite circular cylinder subjected to a uniform radial pressure
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acting over small angle of 2o at both ends of a diameter, as shown by Fig. 7.1.
However, in fact, the thickness of the cylindrical specimens under the Brazilian test,
according to the standard test suggested by the International Society for Rock
Mechanics (ISRM), should be approximately equal to the specimen radius, which is
finite. Thus, theoretically speaking, it is necessary to consider the stress analysis for a
finite cylinder under the Brazilian test, not the infinite case considered by Hondros
(1959). Since in Chapter 6 we have obtained a new framework for stress analyses of
finite cylinders subjected to arbitrary surface load, the analytic solution for a finite
cylinder under the Brazilian test can be obtained by setting parameters in Chapter 6 as
®,=2n, n=12,..,and k =/=1 in the solution given in Chapter 6. Furthermore, the
interaction between the curved surface of the cylinder and two steel loading jaws,
through which the two line loads are applied, can be more realistically modeled by
considering the contact problem between them. One major advantage of considering the
finite cylinder under the Brazilian test is that both of the size and shape effects of the
specimen can be predicted by the analytic solution.

A modification to the traditional Brazilian test has been proposed by applying three
line loads instead of two, as shown by Fig. 7.2. The two-dimensional analytic solution
has been obtained by Jaeger (1979). However, the traction free boundary conditions on
two end surfaces and the contact problem on the curved surface of the cylinder are not
considered either. Therefore, further theoretical improvement can be made on these two
aspects. The method of solution is similar to that proposed for the traditional Brazilian

test, but the parameters should be set to @_=3n, n=1,2,...,and k=/=1 instead in the
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solution given in Chapter 6. Thus, an exact analytic solution for the modified Brazilian
test which satisfies all the boundary conditions can be obtained.

In addition, the preliminary study on spherically isotropic spheres under the
diametral PLST shows that the anisotropy of material does have certain effect on the
tensile stress distribution within specimens, but, all analytic solutions obtained in this
dissertation for cylinders are restricted to considering cylindrical specimens to be linear
elastic and isotropic. This assumption, of course, can be restrictive for natural rock
specimens, since some rocks are inevitably anisotropic by nature. Thus, further
theoretical investigations on the effects of anisotropy on the stresses in cylinders under
the PLST are recommended.

In particular, it is possible to consider a transversely isotropic cylinder under the
axial and diametral PLST. The so-called transversely isotropy can be regarded as the
limiting case of spherically isotropy if we let the radius of the sphere be infinite. The
method of displacement potentials proposed by Hu (1953) for transversely isotropic
solid can be used. But the main difficulty lies on the choice of appropriate displacement
potentials that can satisfy all boundary conditions. Again, similar to the consideration by
Chau (1998a), the contact problem between the surface of the cylinder and the spherical
heads of the steel cones can be considered. The results of such a study should provide
the theoretical basis for the point load strength anisotropy index /, (Broch and Franklin,
1972; ISRM, 1985), which is defined as the ratio of the greatest to the least Point Load

Strength Indices. As mentioned earlier, the point load strength anisotropy index I has

long been extensively used in experiments to characterize the effect of anisotropy on the

PLST.
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Table 4-1 The first ten roots of J, (1,) =0 for »n from 0 to 7

: 0 1 2 3 4 5 6 7
1 3.8317 | 3.0542 | 53176 | 7.5013 | 9.6474 | 11.7709 | 13.8788 | 15.9754
2 7.0156 | 6.7061 | 9.2824 | 11.7349 | 14.1155 | 16.4479 | 18.7451 | 21.0154
3 10.1735 | 9.9695 | 12.6819 | 15.2682 | 17.7740 | 20.2230 | 22.6293 | 25.002
4 13.3237 | 13.1704 | 15.9641 | 18.6374 | 21.2281 | 23.7607 | 26.2460 | 28.6943
5 16.4706 | 16.3475 | 19.1960 | 21.9317 | 24.5872 | 27.1820 | 29.7290 | 32.2370
6 19.6159 | 19.5129 | 22.4010 | 25.1839 | 27.8893 | 30.5345 | 33.1314 | 356885
7 227601 | 22.6716 | 255898 | 28.4098 | 31.1553 | 33.8420 | 36.4805 | 39.0790
8 25.9037 | 25.8260 | 28.7678 | 31.6179 | 34.3966 | 37.1180 | 39.7919 | 42.4259
9 29.0468 | 28.9777 | 31.9385 | 34.8134 | 37.6201 | 40.3711 | 43.0755 | 45.7402
10 32.1897 | 32.1273 | 35.1039 | 37.9996 | 40.8302 | 43.6068 | 46.3378 | 49.0296

129




Table 4-2 Comparison of the theoretical predictions of the normalized tensile stress,

0. /(P! D), at the center of a solid circular cylinder under the diametral PLST given

by Wijk (1980) and by the present study. Note that the results by Wijk (1980) were re-

calculated to 4 significant digits.
Poisson's L/D=1.0 L/D— o
ratio Wijk E=40GPa | E=70GPa | E=70GPa Wijk Present
(1980) P=10KN | P=10KN P=20KN (1980) | (E=70GPa
P=20KN)
0.0 0.7678 0.7360 0.7365 0.7358 0.7372 0.7352
0.1 0.7144 0.6865 0.6870 0.6863 0.6877 0.6858
0.2 0.6685 0.6436 0.6441 0.6435 0.6448 0.6430
0.3 0.6284 0.6061 0.6066 0.6060 0.6072 0.6056
0.4 0.5931 0.5730 0.5734 0.5729 0.5740 0.5725
0.5 0.5618 0.5435 0.5439 0.5434 0.5444 0.5431

130




Table 4-3 Summary of some of the observed failure patterns. The T-mode and S-
mode are depicted in Fig. 4-14 and 8, and 6, are defined as the two minimum

angles between the cracks and the transverse line joining the two applied point

loads.
Sample Failure
No. L/D I,(MPa) Mode 01(°) 0.(°)
1 0.40 1.69 T 8 50
2 0.40 1.64 T 25 50
3 0.40 1.68 T 50 30
4 0.40 1.54 S 18 18
5 0.50 1.73 S 45 45
6 0.63 1.74 S 60 80
7 0.70 1.88 S 60 60
8 0.86 1.85 S 35 45
9 1.00 1.86 S 35 60
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Table 6-1 The definitions for boundary conditions BCij (ij=1,2,3).

Surface Direction

1) 2() 3(©)
1 (r=R) c_=f, c.=f. c,=f,
2 (z=L) c_=f, c_=f. Co=/e
3(@E=-L) o, =/, c_=1. S, =/
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Table 6-2 The 8- and z-dependencies for superscripts / (=1,2) and & (=1,2,3,4) used for

the displacement functions ¥ and ® given in Equations (6.23) and (6.24).

Constants for Superscripts 0-dependency z-dependency
Y and @ Ik
E2 149 1 sin/cos -
2 cos/sin -
E®IF® 1 sin cos/cosh
2 cos cos/cosh
3 sin sin/sinh
4 cos sin/sinh
A9 /B 1 cos sin
2 sin sin
3 cos cos
4 sin cos
c®/D® 1 cos sinh/zcosh
2 sin sinh/zcosh
3 cos cosh/zsinh
4 sin cosh/zsinh
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Table 6-3 The 0- and z-dependencies in (6.25)-(6.30) used for the stresses for
superscripts / (=1,2) and k (=1,2,3,4). The symbols used are: E1=sin, E2=cos, cosh,

zsinh; Ol=sin, O2=sin, sinh, zcosh

Uk Dependency c, c_ c, G._ G
=1 0 El E1l 01 El 01
I= 0 0] 01 El o1 El
k=1 0 El E1l 01 E1l o1
z E2 02 E2 E2 02
k=2 0 0Ol 01 El O1 El
z E2 02 E2 E2 02
k=3 0 El El 0))] El 01
z 02 E2 02 02 E2
k=4 0 01 01 El O1 El
z 02 E2 02 02 E2
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Table 6-4 The definitions of a, (i=1,2,3) and Q¢ used in (6.50) for k=1,2,3, and 4.

k a, @, Q7
1 +1 -1 a’
2 +1 +1 c
3 -1 -1 b .(;)
4 -1 +1 ay
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Table 6-5 The definitions of £, (i=1,2) and Q used in (6.52) for k=1,2,3, and 4.

k B B Q)
1 +1 -1 by
2 -1 +1 de
3 -1 -1 a;)
4 +1 +1 c:’
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Table 6-6 The definitions of x, (i=1,2) and Q' used in (6.55) for k=1,2,3, and 4.

k Ko K Qy
1 +1 +1 c?
2 -1 -1 a:)
3 —1 +1 d:)
4 +1 -1 be
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Fig. 2-2 The spherical polar coordinate system used
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Fig. 2-3 A sphere under the Point Load Strength Test-is modeled by uniform radial stress applied over two small

spherical areas subtending an angle of 26,
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Fig. 2-4 The normalized stresses 21R%c ,, /F and 2nR? & oo /F versus the normalized radial coordinate 1/R (along z-axis

or with © = 0°) for various values of Poisson’s ratio of isotropic spheres (i.e. V =v'=v ) for 0 0 =3°
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Fig. 2-5 The normalized stresses 2nR*o - /Fand 2rR* & , /F versus the normalized radial coordinate r/R (along z-axis

or with 8 = 0°) for various values of 6 o for isotropic spheres with ¥ = 0.1
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— Present Solution
2.5 -=-Experiment (Frocht & Guernsey)
-o- Sternberg & Rosenthal
2
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Fig. 2-6 The normalized tangential Stress —7R? g oo /F versus the horizontal axis r/R (with 0 =7 / 2) for isotropic

sphere with V = 0.48. The line with squares is the experimental result by Frocht and Guemnsey (1953), the line
with open circles is the solution by Sternberg & Rosenthal (1952), and the solid line is our prediction for

0,=5° _ .
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Fig. 2-7 Comparisons of the present solutions and the experimental results by Frocht and Guernsey (1953) for the

normalized stresses a%q: /F and 7R* &

oo /F versus the normalized radial coordinate /R (along z-axis or

with 0 =0°) for ¥ =v'=048. Our ?o&o:o:m for 0,=5°and 0, =15° are given in lines with circles and

solid lines respectively, while the experimental results are given in lines with squares,
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Fig. 2-8 The normalized stresses 2nR?o - /F and 2nR* o 4, /F versus the normalized radial coordinate r/R (along z-axis

or with 6=0°) for various values of modulus ratio B (=E/E') of anisotropic spheres with

0 =10,V=02t=10and 0, = 3° -
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Fig. 2-9 The normalized stresses 2nR’ o . /Fand 2nR? & , /F versus the normalized radial coordinate /R (along z-axis

or with 8 =0°) for various values of o (=v'/V) for anisotropic spheres with B=15v=02t=10 and
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Fig. 2-10 The normalized stresses 2nR*o . IF and 2nR? o o, /F versus the normalized radial coordinate r/R (along z-

axis or with 8 = 0°) for various values of € (=A44 /Ag ) for anisotropic spheres with B=10,v=02,0=10

and 0, =3°

147



30

—— Contact Stress
N
-~ - Uniform Stress ,_
20 | |
"
< “
° 4ol |
- "
2 Gol i
I

0 n . — 1R
& 0.2 0.4 m 1
|
- - _
10 or/ls

Fig. 2-11 The normalized radial and tangential stresses along the line between the center of the sphere and one of the

point loads under the action of uniform stress and contact stress for E=18GPa, v=01 , D=50mm and

P =15kN
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Fig. 2-12 The normalized radial and tangential stresses along the line between the center of the sphere and one of the

point loads under the action of uniform stress and contact stress for £=18GPa, v =03

, D=50mm and
P =15kN

149



20 [ ——Contact Stress By=1.2°

~ -~ Uniform Stress >_

“

|

TN w

S _

0., o.s\_m “

- 1
3 .
O 1 1 m ) __.—N

0 0.2 0.4 ! 1

“

!

10 L Oylls _

Fig. 2-13 The normalized radial and tangential stresses along the line between the center of the sphere and one of the

point loads under the action of uniform stress and contact stress for E<70GPa, v=01 , D=50mm and

P = 15kN
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Fig, 3-1 A sketch for the axial Point Load Strength Test for a cylindrical rock core of radius R and length 2h. The origin and z-

axis of the coordinates is set at the center of the cylinder and the axis of revolution
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Fig. 3-2 The normalized stresses 6, /o, and o, /0, versus the normalized distance z/h along the z-axis for various values of

Poisson’s ratio v for H/D=11,D=2R =50mm, and R, =005R
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Fig.3-3 The normalized stresses o/ o,and 6, /o, versus the normalized distance z/h along the z-axis for various diameter

R, of the contact area for H/D =11, D=2R = 50mm, and v =025
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Fig. 3-4 Stresses o, and o, versus the normalized distance z/h along the z-axis for four specimens of H/D=1.1, D=56mm,

v =025 under the critical load P ..
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Fig. 3-5 Comparisons of the theoretical predictions and the experimental results for the Point Load strength Index I versus

diameter for a fixed length/diameter Ratio H/D=1.1,and v = 025 . ~
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Fig. 3-6 Comparisons of the theoretical predictions and the experimental results for the Point Load Strength Index 7, versus

length/diameter Ratio for a fixed diameter D=56mm, and v = 0.25
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Fig 3-7 Theoretical predications for the Point Load Strength Index I, versus length/diameter ratio for various diameters for

Poisson’s ratio v = 025 .
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Fig. 3-8 A sketch showing the failure pattern of a solid cylinder of plaster material under the axial PLST if the specimen breaks

into two pieces along a flat surface
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Fig. 3-9 A sketch showing the failure pattern of a solid cylinder of plaster material under the axial PLST if the specimen breaks

into three pieces
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Fig. 3-10 Theoretical predictions for the hydrostatic stress versus the normalized distance z/h along the z-axis for different

diameters for Poisson’s ratio v = 025, together with the crushing pressure interpreted from Zhang et al. (1990)
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Fig. 4-1 A cylindrical rock specimen subjected to the diametral Point Load Strength Test (PLST)
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Fig. 4-2 The normalized stresses o, /o, and o, /a, versus /R for various values of r,/ R and for v=0.25, L/D=1.4

and R,=5mm
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Fig. 4-3 The normalized stresses o, / ¢,,and o, /o, versus r/R for various values of r,/ R and for v=0.25, L/D=1.4

and R,=5mm
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Fig. 4-4 A typical stress distribution of the normalized stresses Ow /0y, 0, /0 anda,, /o, versus /R for v=0.25

and r,/ R = 0,039
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Fig. 4-5 The normalized stresses o, / c,,and o /o, versus #/R for various values of v and r,/ R=0.039
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Fig. 4-6 The normalized stresses 0, /0, and o, /o, versus r/R for various values of Ryand r,/ R =0.039
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Fig. 4-7 The normalized stresses o, / o,,and 6 _/o, versus r/R for various values of D and r,/ R=0.039
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Fig. 4-8 The normalized tensile stresses s

/o g,anda , /o versus L/D for various values of v and for D=50mm and
r,/ R=0.039. The dotted and solid lines are for the axial and hoop stresses respectively
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Fig, 4-9 The maximum tensile stress envelopes versus L/D for various §_=8. of v and for D=50mm. The dotted and

solid lines are for axial and hoop stresses respectively
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Fig, 4-10 The maximum tensile stress envelopes versus L/D for various values of D and for v=0.25. The dotted and

solid lines are for axial and hoop stresses respectively
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Fig. 4-11 The theoretical stress distributions for 0w, 0, and o, versus r/R for three plaster specimens of size

D=56mm (v=0.25 and £=17.5GPa)
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Fig. 4-12 The theoretical and experimental point load strength index (7, =P/D?) versus the geometric ratio D/L for the
rock-like plaster material and for D=56mm
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Fig. 4-13 The theoretical and experimental point load strengthi index (I, =P/D?) versus the diameter D for the rock-
like plaster material for L/D=0.7

173



« >
D e
-

P Noe)

Fig. 4-14 A sketch of the two failure modes (T-mode and S-mode) of cylinders under the diametral point load

strength test (8, and 6, are defined as the two minimum angles between the cracks and the transverse line

joining the two applied point loads)
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Fig. 5-1 The normalized tensile stress o, D’ / F and compressive stress o, D’ / F versus the normalized distance /R or

z/h for cylinders and spheres under the axial and diametral PLST for D=50mm
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Fig. 5-2 The normalized tensile stress o,D"/ F and compressive stress 6 D' / F' versus the normalized distance r/R or

z/h for cylinders and spheres under the axial and diametral PLST for D=60mm
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Fig. 5-3 The normalized tensile stress ¢, D* / F and compressive stress o, D’ / F versus the normalized distance 7/R or

z/h for cylinders and spheres under the axial and diametral PLST for D=75mm
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Fig, 5-4 The normalized mean valves of the maximum tensile stress o, D"/ F versus different diameter D
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Fig. 6-1 A sketch of a finite solid circular cylinder of length 2

and radius R subjected to arbitrary tractions on the
curved and end surfaces. .
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Fig. 7-1 A cylinder under the Brazilian Test

180



Fig7-2 A cross-section of a cylinder under the modified Brazilian Test
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Appendix I THE PROOF OF 4=B=0

The proof for (2.19) given here follows that of Hu (1954). In particular, it can
be shown, by eliminating either 4 or B from (2.14) and (2.15), that both 4 and B satisfy
the plane Laplacian equation
Vi4A=VB=0. (Al)
where V] is defined in (2.8). Therefore, any harmonic functicns can be the solutions for

4 and B. However, as shown in Section V of Hu (1954), without loss of generality,

both 4 and B can be set to zeros (i.e. 4 =B =0). To see this, it should be first noted

that the determination of wg and u,, from (2.12) is not unique as there is a homogeneous

solution for:
1 591’0 +lm0 =O 15‘”0_ 1 éGo =0 (Az)
rsin@ dp r &9 ’ r o8 rsinf dp ’

Similar to the derivation of (Al), it is straightforward to show that both of these
homogeneous solutions, yp and Gy, satisfy the plane Laplacian equation

Viy, =V:G, =0. (A3)
Thus, the complete solution for yp and G, are harmonic functions. Alternatively, if a
change of variables &= Intan(@/2)is introduced as suggested by Hu (1954), the
solutions can be expressed in the form of complex function as y, + iG, = f(&+ ip,r),
where f is an arbitrary analytic function of the complex variable &+ip. Thus, any
arbitrary analytic functions ¥y and Gp can be added to y and G without loss of

generality.
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Following the same procedure, one can show that the general solution for 4 and
B given in (Al) can be written as 4 +iB = F(&+ ip,r), where F is again any arbitrary
analytic functions. Without loss of generality, functions 5 and Gy can be now added to
¥ and G, then the resultant ug and u,, are substituted into (2.6). It can be shown that if
the analytic function of ) and G are chosen such that

i—ff—hazf = _iF(E+ip,r), (A%)

d,z

then the 4y and Bp comresponds to yp and Gy satisfy 4, +iB, = —F(&+ ip,r).

Therefore, F, or in turn both 4 and B, can always be adjusted to zero by imposing
homogeneous analytic solution £ Consequently, we can always set 4 and B to zero

without loss of generality.
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Appendix I

FOURIER-BESSEL EXPANSION OF CONTACT STRESS

The expression (3.8) for o_ can be expanded into series of J,(1,p) by using the

following formula (e.g. Watson, 1944):

o, = ZEJ (.0 = ZE,J, (2. 2) ®B1)

where

2 r
EJ —WP‘O’:J (/l:})dr (B2)

Since o _ is nonzero only within the circular contract area, (B2) can be evaluated by

substituting (3.14) into (B2) as
2 r r
E=__—! LJE=r s, Dyar 3
5 Rz‘]-oz(l‘) pn Ro 0 r o( ]’R) (B )

Applying the change of variable r = R, sin@, (B3) becomes

2

228, | Gingcost o, (%ﬂ,, sin@)d6 B4)

TR
This integration can be done exactly by setting #=0and § =1/2 into the following

formula (formula 6.683 of Gradshteyn and Ryzhik, 1980):

[ J,(asin@)(sin8)"' (cos0)**dd = 2°T(6 + 1)a™"J,__ (a) (B5)

r'

for Re(6) >—1,Re(u) >-1.

The result of this integration gives



b, (27R,) R
E=—=>">—2- ] > A B6)
‘ AZRMVIN(A) R 2

Since J,,,(1,R,/R) can be written in terms of sin(1,R, /R)and cos(1,R,/R) as

(e.g. formula 8.464 of Gradshteyn and Ryzhik, 1980):

R R
° 1 )y=
a(p . R R B7)

(B6) can further be simplified to the following function of sine and cosine

2R AR AR . AR
E=ZRra) R TR g ®9
Thus, finally we arrive at
22, AR . AR
Zﬂ’R,,J’(,z) R &g S LAp) (B9)

which is the result given in (3.40) of the text.
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Appendix ITI

Fourier-Bessl Expansion for I, (n_r)andn_rI,__ (_r)

By applying Fourier-Bessel expansion to any function (Watson, 1944), I ..(m.r) and

n.rl,  (n.r)involved in (4.41) can be expressed in terms of J,_(y,r) as

L= T.7.0.7) ©n
n.rz,ﬂcn.r)=ZU..Jz. . (C2)
where

24, P, (P, (y F)dr (C3)

T =
T RN -4n)JL ()

27
U, = £ s J, d C4
~TE@ -y I D )

Note again that », =4, /R and A, is the root of J, (1,) =0. To integrate (C3) exactly,

we first note the following formula (5.54.1 of Gradshteyn and Ryzhik, 1980):

I; T (P (7 Ay < TR (LR, (3‘;)_—77:,.1,, (MR, (A,) ©5)
and the following identities

I, (q.ry=()"J, >Gn.r) (C6)
L..(.r)==i(-1)"J,,.Gn.r) (C7)

Substitution of (C6) and (C7) into (C5) and then into (C3) yields (4.44) given in the

text. To see the validity of (4.45), we first consider the following derivatives:
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%[r’lz, M. I1=20-2n)rl, (1), (v 1) +r' [0 L, (DL (.0 +v. LA, (v D]
(C8)

and

d
L Dl=4ml, (G )+ LN, (0 ) = L, (T, (1 1)
(C9)

We then consider the integration of an equation resulting from the subtraction of

(C9)xy, from (C8)x,, and by virtue of (4.44) the expression given in (4.45) can be

derived.

198



Appendix IV

Fourier-Bessel Expansion for

al r
I, (n.r)s nrl, (n.r), nirl, (7.r) and rﬁ
or

In order to apply the end boundary condition, the following »-dependent functions

(}'r)

I _(n.r),n, rl, (m.r), nirl, (7.7),and r—=—% " can be expressed in series of
Bessel function J_ (y,r) as (Watson, 1944):
L= TJ.0.0) ®1)
n.r,, . (n.r)=ZU.,J,, () ®2)
AL (L= W (1) ©3)
c?f (r o, 7 1) _ &
=D Vel (7.1) (D4)
s=|
where
T = 22, .:1 (m.r)J. (y.r)dr (D5)
"R o)L 0 I
2A'n ("
U, = Al J, d
" TRE-e Ly | N ©)
2)'11_]1 ("
= Al 4 J d 7
"TR@ oDy J a0 ®7
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2 a r
Ve = 2,42 2/12’ 2 J:er 7 ")
R*(A; —w;)J,, (1) o

S, (v r)dr (D8)

To integrate (D5), we first note the following formula (Watson, 1944):

RJ RJ, A)-AJ. (MR, (A
-F T Py e = AR OB, O ) A, (R, ) ©9)
n.—v.
and
1, (7.r)=e 2 J, (in,r) (D10)
where 4, =y R.
Substitution of (D10) into (D9) leads to
RI RYJ. A)+A 1 (M. RJ. (A
‘FI"' (P 3 e = DRl (1) .,(n;)”z, L (LR, () o1

Substitution of (D11) into (D5) leads to (6.74) given in the text.
We can integrate (D6) by integration by part, but this procedure is tedious. We

propose a simpler approach here. In particular, we first consider the differentiation of

the following functions:

g-[r’l., I, =20~ )l ), GN+r L, _ (), ¢n+y L O, ¢.0]
D12)

and

S, V=207, (P, 0 P B, (LD (=Y L L (7]
®13)

The result given in (6.75) can be obtained by virtue of (D11) together with the

equation resulting from subtracting (D13)xy, from (D12)x1_.
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Similarly, for the integration of (D7) we can consider the differentiation of the

following functions:
d 3 2 3 3
UL =27 (), G0+ r L (), G n+y L, ()

D14)

and
d 3 2 3 ¥
;[r L., G=2rL (I, G¢.D-y.rL (DI, ()+nr I (mnJ, .0

(D15)
Integration of the equation resulting from the subtraction of (D14)xy, from

D15)xn_ leads to

R

}’ I ), ()

[}
R

=Ry L R, Q)+ O.RJ, (A)]-2 ﬁv,r’l., QR VANRCIIES N AN YV (5] 2

(D16)

The integration in the right side of (D16) can be obtained by replacing “w_ " by

“o,+1” in (D12) and (D13) and substituting the related terms into (D16). Finally,
(6.76) can be obtained by substituting (D16) into (D7).

The integration for (D8) can be obtained by using the following procedure. We first

note that:

a]w, (7pr)
r

& Ve r)— 2,7, (7,1) D17)

then (D8) can be integrated exactly if we know the integration of

erm”_l (ypr)Jw" (y,r)and er’ (}/pr)Jm' ..
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When y, #y,, the first integration can be obtained by following the similar

procedure as getting the integration in (D6) simply by replacing the modified Bessel
function by the Bessel function. The second integration can be derived directly from

D9).

When y, = y,, the integration of rJ,, (7 ;P (7,r) is given by Watson (1944)
FJ., (v.r)J,, Cy.rydr= i—R’[ZJ'., A, A)=T A, (A)~J, (A, ,(A)]

(D18)
The integration of r%J, , (7;r)J,, (7,r) can be obtained by integrating the following

equation and using (D18):
g[f’J., G =20 (o), ) -2, (1) G0+ 0T, (), ()

(D19)

This completes the Fourier-Bessel expansions given in (6.74) to (6.78).
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