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Abstract

The thesis involves three research works in the field of privacy-preserving query process-

ing. They focus on the research problems of memory level security and privacy of data

querying services in the cloud hosting environment. In such a scenario, the proposed

schemes consider not only the direct attacks tampering with the data and the data

processing but also the threats from semi-honest adversaries in cloud platforms that at-

tempt to derive sensitive information for inference attacks through analyzing the access

pattern leakage. Motivated by these security goals, three privacy-preserving schemes

are designed based on different principles and for different types of queries that com-

prise the body of the thesis. The first work proposes memory-secure DBMS adaptation

encapsulating a bare SQL processor into the trusted execution environment (TEE) and

optimizes the existing Oblivious RAM scheme to efficiently shuffle the access patterns

generated in retrieving data blocks from untrusted memory for processing inside TEE.

The second work provides a perturbation mechanism in a two-tier index to obfuscate

the access pattern on the trapdoors of the fuzzy keyword search over encrypted docu-

ment database. The TEE technology is employed to encapsulate the plaintext secondary

index which is sensitive and conceals the obfuscation process. The third work gives a

middleware solution to obfuscate access frequency patterns for general queries without

leaking sensitive information of individual queries in a harsher threat model in which

the query boundaries are exposed to attackers. Different from the former two schemes,

it introduces a K-isomorphism perturbation mechanism on the query requests while not

over the data storage and query processor. In each of these works, adequate literature

is reviewed, and the most related works are involved in comparative evaluations. The

thesis unifies the three works under a common background to summarize the research

outcomes in the Ph.D. program and gives a prospect of future works.
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Chapter 1

Introduction

1.1 Background

The essence of information services, including distributed storage, query services, infor-

mation sharing, and machine learning is big data processing. This trend is becoming

more eminent as more and more traditional services switch to data-driven models, e.g.,

the DaaS model [98][120]. As such, data become the core resource in this surge of in-

dustry revolution. On the other hand, data owners need necessary infrastructures to

monetize the value of their data. In most cases, they need to outsource the data to

external servers for high computing power and fast communication speed (e.g., a con-

tent delivery network, CDN) to perform computation-intensive and low-latency tasks.

However, outsourced data usually contain sensitive information directly associated with

the owner’s interests and user privacy. As such, security threats are inevitable in such an
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1.1. Background

outsourcing environment, jeopardizing the trust between users and services. In recent

years, many data leakage events are reported, such as those in Google Docs and the

hidden malware found in Amazon Web Services (AWS), causing privacy and security

concerns from a wide range of users and stakeholders.

In the scenario of data outsourcing and cloud hosting, the attacks can be generally classi-

fied into two streams based on the threat model. The first stream assumes the adversaries

are malicious, who can compromise the hosts for unauthorized access to the outsourced

data or data processing programs [42][80][7]. The adversaries of this kind usually aim

to directly disclose the data, tamper with the data integrity, or maliciously intervene in

the program logic. The other stream assumes the adversaries are semi-honest, and only

eavesdrop on the access patterns on data storage. The access patterns can be generated

by all the memory operations and further used to infer valuable information. Known as

inference attacks [5][110][56], they are effective even when the data content is concealed

in an encrypted form. Therefore, they are easier to be conducted and more difficult

to be detected. For better understanding, the following examples explain how different

types of access patterns can be used to explore sensitive information.

� (1) The adversary records the runtime memory operations of a database for a

period of time. Then he compiles the statistics of block-wise access frequencies.

According to the results, he can tell which data blocks are more frequently accessed.

With auxiliary information, such as the natural distribution of the access over the

data blocks, he can further disclose their plaintext content.

3



Chapter 1. Introduction

� (2) If the memory access pattern of an individual query request remains the same

and distinguishable from others, the adversary can identify the request when the

same pattern is observed. In the case when the requests are limited to their owner

data, the identity of user can be revealed.

� (3) The adversary monitors the store engine of the relational database and captures

an alternate access pattern on the memory space of two entity tables. He can

infer that a join operation between the two tables is under processing with high

likelihood.

The above examples show that the access pattern leakage should not be ignored in the

design of secure query protocols. This thesis thoroughly studies the aforementioned

two kinds of security threats, namely the query processing tampering and the inference

attacks based on access pattern leakages. The thesis then provides efficient solutions

to address these threats for typical query services in the data outsourcing environment,

especially for cloud platforms. In the following sections of this chapter, I introduce the

research progress in this area and give an outline of research outcomes.

1.2 State-of-The-Art Techniques

The privacy-preserving query processing has attracted the academic force of information

security for decades. Now I introduce the current research progress in three parts based

on the security threats they are mitigated.

4



1.2. State-of-The-Art Techniques

1.2.1 Encryption Schemes

To fence the data confidentiality from direct attacks through unauthorized access con-

trol, diverse cryptographic approaches are widely adopted. However, these encryption

schemes may decrease data utility in practice, e.g., ciphertexts are not able to be searched

or computed in external servers. With this concern, new cryptographic primitives are

proposed, such as searchable encryption and homomorphic encryption. Searchable en-

cryption schemes facilitate the secure query services without revealing the plaintext

data in an outsourcing environment. Since the representative searchable symmetric

encryption (SSE) [27] and Public-Key Encryption with Keyword Search (PEKS) [12]

were proposed, dynamic SSE [58] techniques have emerged to fill the gap in data up-

dates, verifying the correctness of encrypted search [58], and accelerating range queries

by order-preserving encryption (OPE) [2]. However, these schemes share the same dis-

advantage of high computational cost and failing to effectively repeal malicious data

tampering and injection attacks on the application programs.

1.2.2 Trusted Execution Environment

To prevent data tampering and privilege escalation attacks even when the host is com-

promised, hardware-based security is proposed [46][52][6]. The principle is to seal a

runtime, namely the trusted execution environment (TEE), with a set of key preset in-

side CPU chips and registered with a centralized attestation platform held by the CPU

5
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• Runtime Buffer
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Figure 1.1: Trusted Execution Environment

manufacturers. To this end, the TEE is isolated from the operating system for an appli-

cation to safely run its code and lock its sensitive data [25]. Even though the attackers

manipulate privileged processes, OS administrators, and VM hypervisors, they can not

further tamper with the data and code in TEE, as shown in Figure 1.1. There is a trend

to support TEE in their new generation CPUs, such as the Intel flagship production

Software Guard Extensions (SGX) [52] in Skylake microarchitecture and ARM Trust-

Zone [6]). In the thesis, Intel SGX is applied in implementation and experiments, and a

detailed explanation is given as follows. A TEE in Intel SGX technology is called an ‘En-

clave’, which is executed in processor reserved memory (PRM) pre-configured in BIOS.

The sealed application code segments and accessory data in the enclave are encrypted

and signed by a key locked inside the Hardware Security Module (HSM). To initialize

the enclave, the enclave pages containing program code and data are loaded into Enclave

Page Cache (EPC) and hashed. The result is then transferred to ring 3 code before being

6



1.2. State-of-The-Art Techniques

handled by interrupts and exits. Next, the OS process of an application invokes ‘ECRE-

ATE’ to turn the coded EPC page into the SGX Enclave Control Structure (SECS) and

the enclave instance is born. Once created, the secure function calls (e.g. ‘ECALL’ and

‘OCALL’) are the only channels to communicate between enclave space and outside un-

trusted memory, while inside the enclave, the data are safe to be processed in plaintext.

During its life span, a ‘QUOTE’ of enclave status is signed by the platform’s Enhanced

Privacy ID (EPID) for attestation service. The local and remote attestation service

allows other enclave instances on the same host and the remote users to check with Intel

Attestation Service (IAS) for ensuring they are communicating with a secure enclave

application running with a trusted Intel processor so that they can safely exchange data

or use data services. The procedure of remote attestation is illustrated in Figure 1.2. At

the beginning stage of remote attestation, a challenge session is performed for mutual

authentication between enclave client and remote user. The remote party then requests

the enclave for the extended group ID (EPID-GID) of the corresponding EPID. After

the EPID-GID is received, it is passed to IAS to fetch the Signature Revocation List

(SigRL). The remote user then validates SigRL and requests for the report of ‘QUOTE’

to the enclave. During the above procedures, the two parties also complete the secret

keys sharing through a Diffie–Hellman key exchange (DHKE). The shared secret is then

used to produce a message digest and attached with the ‘QUOTE’ for verification. After

verifying the message, the remote user extracts the ‘QUOTE’ and sends it to IAS for

attestation. The IAS then verifies the cryptographic status of the enclave with the in-

formation given in ‘QUOTE’. If matched, IAS informs the remote user that the enclave
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Figure 1.2: Intel SGX Remote Attestation

is trusted, otherwise, returns an error message. Despite the advantages, this technology

as well as other TEE schemes show limitations in some respects. Above all, disk I/O

operations and syscalls are forbidden in the enclave. Secondly, the maximum heap size

for an SGX enclave is only about 90MB [75] in some mainstream OS platforms and the

page swaps (i.e. inter-relocation) between the enclave and main memory are required to

undergo extra validation and encryption before committing. Therefore, it is infeasible to
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distribute large-scale data or run a high memory occupation program inside. Moreover,

TEE is still vulnerable to some side-channel attacks as proposed in recent literature.

1.2.3 Access Pattern Obfuscation Schemes

To address the analytic and inference attacks assisted by the access pattern leakage,

many protocols are proposed and continuously enhanced by the follow-up studies. The

key idea is adding noises to obfuscate the patterns, so that to make the inference in-

accurate, i.e. to reduce the success rate of inference towards the same as a random

guess. The first kind is named private information retrieval (PIR). The original work

of PIR [22] replicates the records in database, and restores the real results from the

downloaded augmented query results in client-side. Some improved PIR protocols keep

the database unchanged but restore real results using cryptographic approaches, such as

the quadratic residues, etc. Another type of obfuscation scheme is the Oblivious RAM

(ORAM) [37]. It shuffles the memory storage with randomness after each data retrieval

and meanwhile performs a client-side search for real requests. The random perturbation

in server storage allows the Oblivous RAM to hide most of the access patterns except

the access intervals. The ORAM schemes gain more popularity than PIR protocols in

academia, as the randomness employed in ORAMs are more reliable than computational

hard problems (have the absolute solution) on which the PIR schemes rely when the com-

puting power largely grows in near future. However, there is a tradeoff between higher

robustness and the high cost in the server-side. Many variants and optimized ORAM
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protocols [38][96][28] effort to improve the performance, while unfortunately, there is

still distance from practical use. A detailed introduction of ORAM and representative

ORAM protocols can be found in Chapter 3.

To provide a more practical solution to conceal the access patterns for different types of

queries, a rich body of existing works involve obfuscation schemes designed according to

the characteristics of specific data and query processors, e.g. KV pairs, keyword search,

and relational database. To be best of my knowledge, except for downloading the entire

database to a local client, there is yet perfect obfuscation schemes completely all kind of

access patterns including the trivial ones. Hence, it is important to define the sensitive

access patterns to be protected on demand.

1.3 Thesis Contribution

The thesis consists of privacy-preserving schemes for three distinct queries. The first

work (see Chapter 3) implements a memory-secure adaptation of relational DBMS.

Leveraging the TEE technology, a minimized SQL processor is located in Intel SGX

to achieve a tamper-proof runtime memory. For loading the data into the enclave appli-

cation without leaving sensitive access patterns, an Oblivious RAM protocol is applied,

and its client is deployed in the enclave alongside the SQL processor. That said, the SQL

is safely processed in the TEE, and the data is retrieved from untrusted main memory

through the ORAM. The ORAM protocol optimizes the Path ORAM on its efficiency
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of data retrieving and meanwhile offering the additional capability of inter-table access

pattern hiding. This adaptation also mitigates the access pattern leakage in the data

persistence stage of the store engine with a Probabilistic Lazy Persistence mechanism.

The second work (see Chapter 4) addresses the index disclosure problems on fuzzy

keyword search by substituting the tradition trapdoor index with a two-tier index struc-

ture. In the system design, a small secondary index is preloaded into the SGX enclave

as meta-data and an edit-distance-based obfuscation mechanism is proposed to obfus-

cate the access pattern to keyword index in untrusted memory. Moreover, a trend-aware

cache is provided to effectively reduce the cost of data retrievals from enclave to external

memory.

The third protocol (see Chapter 5) proposed is a middle-ware solution to hide the access

frequency pattern for general queries. It virtually re-organizes the data blocks into a

K isomorphic structure inside the TEE and duplicates the query with the same iso-

morphism operation before dispatching to the query processor in untrusted memory. By

doing this, both the access frequency on each block and the query requests are always ob-

fuscated with at least K isomorphic duplications. Therefore, on one hand, the block-wise

access frequency distributions are smoothed and the ranking and order of the frequency

are concealed. On the other hand, the request intention of individual queries is also

protected from the adversary in the proposed threat model where the query boundaries

are disclosed. In addition, two working functions are given for point and range queries

separately to achieve a higher degree of perturbation on access frequency patterns.
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1.4 Thesis Structure

Chapter 2

The review of literature and Related works.

Chapter 3

Proposed research work: Memory-secure database adaptation using hardware enclave

and practical oblivious RAM.

Chapter 4

Proposed research work: Efficient memory-secure multi-keyword fuzzy query protocol.

Chapter 5

Proposed research work: Robust access pattern hiding module for general queries based

on k-isomorphism and TEE.

Chapter 6

Conclude the thesis and list plan of the further works.
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Chapter 2

Review of Related Literature

In this chapter, I review the literature and related works associated with the subjects in

the thesis. To present a systematic introduction of them and the relations to the pro-

posed schemes, they are categorized by the research directions in the following sections.

2.1 Optimizations of Oblivious RAM

In the subject of memory-secure database adaptation, a rich body of literature about

Oblivious RAM is surveyed. Since the idea was first invited by Goldreich et al. in

1987 [37], generations of ORAM schemes are proposed to provide optimizations mainly

on the protocol performance. TP ORAM [95] and Path ORAM [96] achieve O(logN)

client cost measured by amortized number of blocks accessed per client operation.

Goodrich et al. [38] achieves O(log2N) access bandwidth overhead, and Circuit ORAM
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[107] further reaches ω(logN) bandwidth blowup. More recently, many ORAM schemes

trade server computation cost for communication cost, such as Path PIR [73], Ring

ORAM [85][86] and Onion ORAM [28]. Among them, Bucket ORAM [33] with addi-

tive homomorphic encryption is remarked for providing single roundtrip (i.e., one single

client-server interaction) with O(1) bandwidth blowup. Balanced in bandwidth and stor-

age cost, and get benefit from its simplicity in implementation, the Path ORAM becomes

the most popular Oblivious RAM protocol and attracts numbers of follow-up studies to

optimize its efficiency. A detailed introduction of Path ORAM can be found later in

Chapter 3.2. As a representative extension work, PrORAM [115] operates directly at

the block level by locating shared blocks on the same path of the Path ORAM tree

and retrieving them as “super blocks” in one pass. The proposed Sap ORAM provides

optimization from another aspect. It achieves the performance improvement leveraging

the features of join query across tables (relations) without intervening the randomness

of block position on ORAM tree, thus furthest preserves the obfuscation capability of

Path ORAM. On the other hand, although based on Path ORAM, the path sharing

mechanism in SaP ORAM can also be adapted to other ORAM schemes for database

workloads. With regard to adopting ORAM schemes in the multi-user scenario, an-

other track of research works [57][60][18][109][17] effort to achieve high-speed concurrent

access over the ORAM server. The early ones, represented by [57][60][18], lay empha-

sis on the security of concurrent retrieval and the synchronization latency. Leveraging

identity-based signature, shuffle correctness proof mechanism, as well as the blockchain

technologies, the latter ones [109][17] provide traceable and unforgeable ORAM update
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to deal with arbitrary modifications from malicious clients.

2.2 Secure Query Processing Using TEE

Trusted Execution Environment (TEE) technology is widely adopted in applications to

provide tamper-proof query processing. The related literature is discussed from three

tracks as follows.

Database Applications Using TEE. In respect of SQL queries, Bajaj et al. pro-

posed TrustedDB [9], which uses IBM 4758 PCI [46] to implement tamper-proof query

processing. CryptSQLite [108] encapsulates the SQLite engine in an Intel SGX enclave

to achieve confidentiality with a modest performance drop. More recent work, ObliDB

[32], further enhances the performance of point query to 7− 22x faster than the existing

encryption-based oblivious database. StealthDB [40] and EnclaveDB [82] identify ac-

cess pattern attacks in untrusted memory/storage and propose cryptographic solutions

using secure hardware. They differ from the proposed adaptation in security boundary,

optimization of access pattern approaches, as well as high coupling adaptations with

hardware enclave, ORAM and disk storage. Other works, such as [3], [15], Qshield [20],

and VeriDB [121] are also surveyed for acquiring inspirations in adopting hardware en-

claves in the database for mitigating privacy issues and referencing their methodology

in tackling performance loss in different database systems. Among them, Qshield [20] is

highlighted for their innovation on multi-user control mechanism that notably simplifies
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the process of multi-user authentication in TEE. Therefore, this improvement further

enables the multi-user function in TEE-based secure database systems.

General Query Processing Using. With the increasing availability of trusted hard-

ware, they are found used in other query services other than relational databases. [62]

and pRide [70] encapsulates location-based query processing with IntelSGX enclave. [97]

and [74] implement the prototype keyword search protocol using IntelSGX. In parallel

with the proposed works in the thesis, Rearguard [97], [111] and SPEKS [114] migrate

the search and indexing computation into the isolated buffer of the Intel SGX enclave.

However, they are different from the proposed work in the thesis in supporting fuzzy

search, oblivious primitives used for access pattern hiding, and practical concerns of

enclave memory space. [4] and [69], leverage the secure hardware enclaves to guarantee

the confidentiality and integrity of user-profiles in social network discovery. [8] and [39]

is also commented for implementing the privacy-preserving modules with Intel SGX en-

clave for IoT information exchange, which paves a new application scenario for hardware

enclave technology.

Combining use of ORAM and Hardware Enclave. In parallel with the proposed

memory secure database adaptation in the thesis, other protocols [88][74][31][99] that

combine the two cryptographic primitives in the design begin to emerge. ZeroTrace [88]

provides additional security against software side-channel attacks on SGX enclave, i.e.,

the oblivious position map access using a novel assembly-level library in their proposed

ORAM controller. Their contribution is stand-alone and can be complementary to my
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work. Both Oblix [74] and ObliDB [31] realize the existence of access pattern leakage of

the depth/size of data structure applied in index search even with hardware enclaves and

further give more efficient solutions to this problem than the naive worst-case padding.

Pro-ORAM [99] improves the system throughput by using multi-threading Melbourne

Shuffle [76] with SGX enclaves while the proposed work fully utilizes the features of SQL

queries.

2.3 Privacy-preserving Fuzzy Keyword Search

In the subject of privacy-preserving fuzzy keyword search, I survey the related liter-

ature that is also devoted to addressing the security and privacy issues in the area

of keyword search. Majority of the literature extend the fundamental studies on key-

word exact/fuzzy search [12][102][66][27][84] with security improvements. They can be

generally divided into two tracks. One seeks performance enhancements upon crypto-

graphic primitives for different demands of queries. For multi-keyword conjunctive fuzzy

search, I remark [23][13][105][103] for their notable progress on query performance lever-

aging diverse technology dependencies. Among them, [23] optimized Bed-tree [117] with

privacy-aware feature and [103] used the locality-sensitive hashing (LSH) [48] and Bloom

Filter [11] to build index. For rank-ordered fuzzy search, Wang et al. initially gave a

baseline solution in [106]. Fu et al. addressed its limitation on ‘one-letter-mistake’ later

in [35]. More recent work [29] further improved the processing speed with the aid of

term frequency–inverse document frequency (TF-IDF). Among the studies of preferred
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keyword query, [90] introduced keyword weight in relevance scoring and reached accept-

able efficiency. A follow-up solution [34] applied a history-oriented user interest model

to achieve efficiency and personalization yields. Nevertheless, the exposure of runtime

memory makes their solutions vulnerable to privileged attack methods [16][119] in cloud

platforms. The other track focuses on exploring security improvements with various

tools. By optimizing the architecture of service, [47] traded communication overhead

between two cloud servers for the security improvements. By adopting user authoriza-

tion and access control, the representative works, [67] and [91] reduced the data owner’s

privacy leakage resulting from search results by delegating search capabilities to data

users using Hierarchical Predicate Encryption (HPE). However, they are incapable of

large datasets or multi-keyword queries due to the slow processing and remain com-

promised with ‘semi-honest’ adversaries who possess extra knowledge about searching

manners of users. In contrast, the proposed scheme in the thesis simultaneously achieves

both query performance and highly complete memory security.

2.4 Access Frequency Pattern Hiding for General

Query Processors

In my research work of designing an access frequency pattern hiding scheme for gen-

eral query processing, I study massive previous works that address the access fre-

quency pattern leakage of diverse categories of queries over encrypted data. I remark
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[112][81][64][78] in hiding the frequency patterns of keyword searching and [63][72][41] for

their solutions in concealing access frequency distributions of general database queries

against passive attackers. Among them, the most similar scheme to my design in Chap-

ter 5 is PANCAKE [41]. It creates replicas towards the frequently accessed data (i.e.

key-value pairs) and generates dummy access over them to make the distribution ap-

pear to be flat. My work differs from it in three aspects: First, all the components of

the proposed scheme run inside hardware enclave while do not rely on any intermediate

proxy which may generate additional risk of compromise. Second, my design maintains

the real-time access pattern in Frequency Snapshot which shares the same vision as ad-

versaries. This feature eliminates the uncertainty of distribution prediction based on the

histogram that applied in PANCAKE. Third, PANCAKE currently serves for KV-pairs

storage while the proposed work is designed for general point and range queries. The idea

of introducing dummy queries is also found in a more recent work [89], where Sepehri

et al. achieve constant overhead of 7 to 13 such fake queries per real one in smoothing

the frequency ranking pattern. Their disadvantage is that a local cache is required in

their design. [116][68][19] are also remarked for using similar duplication mechanism as

mine to obfuscate access frequency patterns. The main difference in implementation

is that they imposed the duplication mechanism directly on data storage and assume

that the adversary does not understand the program logic of their obfuscation protocols.

However, in many cases, the semi-honest hypervisors or compromised OS administrators

are able to analyze all the intermediate block-wise memory operations, including mem-

ory copies, lookups, and references, other than simply recording the block-wise access
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frequency distributions. Therefore, the adversary still holds the possibility to crack the

real requests. Intuitively, he may monitor the logic entrance of obfuscation protocol or

the point that the original request is resolved and then distinguish the requested blocks

from the protocol inputs or decoding results respectively.
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Chapter 3

Memory-secure database adaptation

3.1 Introduction

With the prosperity of database outsourcing, an increasing number of data owners and

service providers host their database management systems (DBMS) of web and mobile

applications in cloud platforms [1][83] for higher cost-performance. However, emerging

attacks as introduced in Chapter that target on cloud infrastructures become a major

threat [59][87] harming the reliability and credibility to data users and owners. On one

hand, the hosting platforms face traditional attack methods which allow adversary to

obtain unauthorized access to oursourced data. On the other hand, they suffer from

inference attacks [5][110][56] exploiting the access pattern of all levels of memory ac-

tivities of VM. The access pattern statistics used by inference attacks, such as access

frequency on memory addresses, access operation type (i.e., read and write), and disk
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I/O throughput over a period of time, are resistant to traditional database encryption

[77][104][56][55]. In respect of the store engine, the adversary can even learn the struc-

ture of a tree-based index by mapping the sequences of block accesses to traversal paths

in this tree. Furthermore, such attacks do not require full access to the memory space,

they are easy to perform and difficult to be detected. Motivated by this, the first subject

of the thesis is devoted to providing a practical solution to address the above concerns

in conventional DBMS.

Although the principle of inference attacks is introduced in Chapter 1.1, to depict its

consequences and feasibility in real-world cases, a preliminary experiment is conducted.

I adopt VMware vSphere ESXi, a leading hypervisor used by many cloud services, on a

bare-metal machine. Then install MySQL 5.6 database on its VM image and run 5 TPC-

H [100] OLAP SQL queries (#Q1, Q6, Q15, Q19, Q201) each by 50 runs. The integrated

analytical tool ESXi vCenter is used to monitor the number of disk reads, small-range

seeks, medium-range seeks on this VM and also calculate the small-to-medium seek ratio.

Then the success rate of such an inference attack is evaluated based on these parameter

readings.

Table 1 shows the average results over the 50 runs. The 4 parameter in the table columns

is involved as the features for classification. The first 40 runs are used as training data

to build a naive Bayes classifier, and the rest 10 runs are regarded as testing data to

reidentify their query IDs (sensitive). The accuracy of this attack is around 84%, which

1These queries are randomly selected to be listed from the queries which can not be easily distin-
guished from massive test results over all TPC-H queries under given attributes.
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Table 1: Disk Access Patterns of TPC-H Queries
Query Read Requests Small Medium S/M Ratio

1 2813 53832 2371 22.89
6 2812 45579 10688 4.31
15 5638 91622 21016 4.40
19 2918 56046 2283 24.55
20 15460 235021 18627 12.67

is much higher than 20% by random guess.

As introduced in Chapter 1.2.3, the Oblivious RAM is a well-studied solution for such

inference attacks. Nevertheless, a critical issue to adopt ORAM in the cloud database,

however, is that the untrusted VM can only serve as data storage (i.e., an ORAM

server), while most of the DBMS components, such as the query processing engine,

must be hosted in the data owner side (i.e., an ORAM client). This will pose not only

intensive computation on the data owner but also a large volume of network traffic from

and to the VM, which negates the purpose of a cloud solution.

Fortunately, with the advances in hardware-based security, a trusted execution environ-

ment (TEE), such as Intel SGX [52][54] and ARM TrustZone [6]) becomes a mandatory

component in modern CPUs. This emerging technology enables us to push the ORAM

client into the cloud VM so that the communication between ORAM client and

server incurs memory access only. With this key idea, in this work, a practical DBMS

adaptation is proposed, namely the ProDB. It employs a memory access obfuscation

mechanism that is immune to inference attacks. The adaptation is in a minimal design

of a traditional DBMS that separately runs on the Intel SGX Enclave [52] and on the

untrusted memory, connected by an Oblivious RAM protocol. Notice that, challenges in
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applying this TEE technology to real-world applications are: (1) limited computing and

memory capacity in the SGX Enclave, which is also true for other TEEs, such as ARM

TrustZone, and (2) I/O inefficiency due to the frequent block re-encryption by ORAM.

ProDB optimizes the resource allocation, block I/O, and ORAM access frequency to

address these challenges. To this end, I further propose a SQL-aware Path Oblivious

RAM protocol [96] named SaP ORAM that is tailored for processing SQL queries. It

has the following two features.

� Probabilistic Lazy Persistence. SaP ORAM probabilistically lowers the I/O

consumption of those dirty blocks due to ORAM re-encryption, by introducing

modest randomness in the lazy persistence process.

� SQL-aware ORAM Path Sharing. SaP ORAM organizes relevant tables that

are often jointly accessed into a single ORAM instance. As such, multiple block

accesses to these tables can share the same path of a single ORAM access. SaP

ORAM optimizes this task by applying the maximum weighted matching algo-

rithm [30][36] on the history query-table graph.

To summarize, the main contributions of this thesis work are as follows.

� I identify and resolve access pattern monitoring attacks by hypervisors using

a “hardware+software” (or more precisely “enclave+ORAM”) solution ProDB,

which optimizes the allocation of limited hardware resources and the use of ORAM.

� A novel ORAM protocol, SaP ORAM, is proposed to significantly enhance the
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efficiency over the classic Path ORAM by introducing probabilistic lazy persistence

and SQL-aware path sharing for a practical database workload such as the TPC-H

benchmark [100].

� The security functionality of access pattern hiding is rigorously analyzed in SaP

ORAM and series of experiments are conducted to demonstrate the system per-

formance of ProDB.

The rest of the chapter is organized as follows. An introduction of Oblivious RAM and

Path ORAM is given in Section 3.2. The system model and the design of ProDB are

presented in Section 3.3. The SaP ORAM protocol is shown in Section 3.4. Security

analysis of SaP ORAM and ProDB is given in Section 3.5, followed by the experimental

results and discussion in Section 3.6. Section 3.7 summaries this chapter. Some related

notations used in this chapter are listed in Table 2.

3.2 Oblivious RAM

In the section, I introduce the concept and principle of Oblivious RAM, which is applied

as the obfuscation scheme for access pattern leakage in the work.

Oblivious RAM [37][92][95][96][28][33][107] is a privacy-preserving data retrieve protocol

for a data owner to safely access a remote storage in an untrusted environment while

hiding her access pattern. It uses random permutation, shuffle of memory cells, and

symmetric encryption on data to hide the original access sequence.
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Table 2: Notations and Symbols
Symbol Definition
Path ORAM Parameters:

L depth of tree (for Path ORAM and SaP ORAM)
Z bucket size
B block size

SaP ORAM Evaluation Metrics:
λ # of tables combined in a SaP ORAM instance
Rd # of retrieve rounds occur in query requests
ω computational cost of processing a block on ORAM client
ψ efficiency gain in one pair of table
Ψ overall gain of all table pairs in database
Υ intra-table skewness of table pairing plan
Φ inter-table skewness of table pairing plan

Database Parameters:
HKh

(·) MAC function of incoming queries with hash key Kh

E(·), D(·) encryption and decryption function of query requests
Ku symmetric key for encrypting user requests
Ti database table index
Ni # of blocks of table Ti
P database page size
Ji,j # of joint accesses of table Ti and Tj in history
Si # of non-parallel accesses of table Ti in history
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Figure 3.1: ORAM Path and Stash

As the proposed SaP ORAM is based on Path ORAM [96], I briefly introduce the latter

in the following.

As shown in Figure 3.1, in Path ORAM data blocks are lodged in a tree structure. Each

node on the tree is called a ‘bucket’ with a fixed size of Z blocks. A ‘path’ refers to

all the buckets from a leaf node to the root. At the client-side, a position map stores

the mappings of block addresses to paths. Due to the randomness of path mapping and

the mechanism of path write-back (mentioned later), after each ORAM access, some

candidate blocks may fail to be passed back to the ORAM server. In Path ORAM, a

client cache, called stash, is set to lodge these overflowed blocks.

In each ORAM access, the client first lookups the position map to find the path assigned
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to the target block, then notifies the server to send that path and merges them into the

stash. After executing read or update operations, ORAM client re-maps the target block

randomly to another path and re-builds each node on the path. The latter is achieved

by traversing the stash to find candidate blocks whose assigned paths intersect with the

retrieved path at each layer of the tree (see Figure 3.1). In this step, if more than Z

candidate blocks are available for a bucket, the surplus ones have to remain in the stash.

Otherwise, in the case that the candidate blocks in the stash are insufficient, the path

will be padded with dummy blocks. As the last step, the client re-encrypt and writes

the entire path back to the server.

3.3 ProDB Architecture

3.3.1 Overview

Security Model

Since the underlying threats comes from both the unauthorized data access and analytic

attacks over memory which is different from conventional terms, the ‘memory-secure

DBMS’ is formally defined as follows.

Definition 1. (Memory-secure DBMS): Let Q⃗ denote a set of SQL queries executed by

a processing algorithm P and R denote their results. In this process, P leaves access

pattern ξ in the main memory. An adversary can conduct an attack function f that either

28



3.3. ProDB Architecture

tampers Q⃗, P and R for their interests or exploits Ip and ξ for sensitive knowledge. A

DBMS is memory-secure if and only if it satisfies the following two conditions. (1) Q⃗, P ,

and R are inaccessible to any attack f that can access the main memory space. (2) For

any attack f that attempts to infer Q⃗ or R, learning ξ only negligibly increases the success

rate, or formally, prob(f(Q⃗)|ξ) = prob(f(Q⃗)) + ϵ1 and prob(f(R)|ξ) = prob(f(R)) + ϵ2,

where ϵ1 and ϵ2 are negligible.

Remark 1. Notice that, the access pattern leakage can not be eliminated in the whole

site of memory space. In this work, the security boundary of access pattern leakage is

restricted under the level of relation data access and the intention of the SQL queries.

Other pattern leakages are regarded as less sensitive, such as whether the two queries

access the same database instance, and they are beyond the scope of my study.

System Model

As shown in Figure 3.2, assume that a database owner (e.g. a data service provider

for business purposes) outsources its database on a virtual machine (VM) in the cloud

hosting platform. To satisfy the second condition of memory-secure DBMS, an ORAM

scheme is employed to obfuscate the memory access pattern ξ generated by the opera-

tions of the store engine. To satisfy the first condition, a TEE (e.g., Intel SGX enclave)

is assumed to be available in the VM so that query processing and ORAM clients (col-

lectively called ProDB Core) can run in it while the ORAM servers run in the regular

operating system (i.e., untrusted space) of the same VM to interact with the external
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Figure 3.2: System Model

storage.

Performance Metric

As the ORAM cost is the predominant cost (w.r.t. CPU, I/O, and time) in ProDB, the

evaluation focus on this part. Let ω denote the cost for an ORAM client to retrieve

one single block in the path from the ORAM server, which also includes the overhead

incurred by TEE for public-key attestation and function calls. Therefore the cost of one

ORAM round is LZω, where Z is the bucket size and L is the depth of the tree. If there

is only one ORAM server, then the overall ORAM cost for a given query is the sum of

costs for all ORAM rounds to access all blocks for this query, i.e., RdLZω, where Rd is

the number of ORAM rounds. As such, the objective of ProDB is to minimize Rd while

still satisfying memory-secure DBMS.
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Figure 3.3: ProDB Two-Tier Design: Core and Shield

3.3.2 A Two-Tier Design

As shown in Figure 3.3,2 The proposed adaptation is composed of 2 tiers, namely the

ProDB Core and ProDB Shield, which run inside and outside a TEE, respectively.

ProDB Core

ProDB Core consists of the SQL Decryptor, Secure Query Processor, ORAM analyzer,

and ORAM Clients.

SQL Decryptor. When a SQL query arrives at the ProDB Core, it is in an encrypted

form. The SQL decryptor will decrypt it in the TEE so that the untrusted hosting

2To clarify, here do not depict those components in a conventional RDBMS that are not re-designed
in ProDB, such as the concurrency control unit and database logging.
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environment cannot learn about the query.

Secure Query Processor (SQP). SQP is the component to process queries in ProDB.

It inherits those software modules from a conventional RDBMS, such as SQL parser,

query optimizer, and query executer. The only difference is the I/O access. In a con-

ventional RDBMS, the query executer directly sends I/O instruction to load data blocks

from the main memory or the disk. In ProDB, the SQP loads data blocks from ORAM

clients, which interact with ORAM servers outside TEE. The latter loads data blocks

from storage engine if they are missing from the main memory.

ORAM Analyzer (OA). ProDB leverages SaP ORAM to securely access untrusted

memory for data blocks without leaking access pattern. SaP ORAM, further discussed in

Section 3.4, is a historical SQL-aware ORAM protocol. That is, how tables are mapped

to ORAM instances is determined by the historical SQL workload. In a nutshell, tables

that are frequently accessed together should be allocated to the same ORAM instance

so that a single round of ORAM access can retrieve multiple blocks from these tables.

In the ORAM Analyzer, historical statistics on SQL queries are retained for each table

Ti as two pieces of meta-data. The first, denoted by Ji,j, is the number of joint ORAM

accesses with another table Tj within the same batch of queries (e.g. transactions).

The second, denoted by Si, is the number of non-parallel ORAM accesses on this table

Ti. These sets of meta-data are employed to find the optimal pairing plan of tables (as

detailed in Section 3.4.2).

ORAM Clients During query execution, SQP accesses data blocks in the untrusted
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environment through ORAM clients. There is a one-to-one mapping between an ORAM

client and an ORAM server. Each ORAM server is initialized by its corresponding client.

ProDB Shield

As shown in Figure 3.3, ProDB Shield is the part of ProDB that works in the untrusted

memory. It consists of the DBMS Main Process and ORAM Servers.

DBMS Main Process. It serves as the entry point of queries and the carrier of

TEE program, i.e., the ProDB core. Besides these purposes, to function as a DBMS, it

includes other conventional DBMS components such as storage engine and connection

manager.

ORAM Servers. An ORAM server instance is organized in a tree structure (see Section

3.4) and can accommodate the data blocks of more than one table. As instructed by

SQP, the corresponding ORAM client sends read/write requests of data blocks to the

ORAM server, who then safely writes back updated data blocks to disks through the

storage engine under an ORAM-to-Disk mechanism introduced in Section 3.4.1.

3.3.3 Overall ProDB Work-flow

ProDB Core and ProDB Shield collaborate with each other to provide memory-secure

query operations. Figure 3.4 shows the main steps of query processing, among which

inflow and outflow instructions of TEE are transmitted through secure channel by issuing
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secure function calls of TEE (e.g., ECALL and OCALL in Intel SGX).

Algorithm 1 shows a detailed workflow of processing a batch of query requests T . As

defined in Table 2, a secure query request is encrypted by symmetric encryption E

with key Ku, and a MAC with key Kh is appended to ensure data integrity. So the

complete request is T = HKh
(EKu(S))||EKu(S). After being validated on hash value

(line 3), SQL decryptor decrypts the SQL strings S contained in the workload (line 6),

then forwards it to Secure Query Processor (SQP, line 7). ORAM Analyzer exports

SaP ORAM table pairing plan (see Section 3.4.2) to guide the initialization of ORAM

instances (line 8). The construction steps of the optimal table pairing plan will be given

later in Algorithm 2. Subsequently, each SQL string s is parsed as s∗ and optimized

to generate execution plan qp (line 10-11). Meanwhile, the historical query records are

updated. If the associated pages of qp do not exist in ORAM instances, SQP notifies
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store engine to load them from disk (line 12). The query engine then executes the

rest non-I/O tasks in qp and wraps the plaintext result set res (line 13). When all

the queries are handled, SQP invokes probabilistic lazy persistence (PLP) (see Section

3.4.1) to perform persistence jobs and flush related dirty pages into disk storage (line

15). SQP finally re-encrypts and hashes result set by EKu and HKh
, and sends it back

to the query initiator (line 16).

Algorithm 1 ProDB Query Process

Input: T = HKh
(EKu(S))||EKu(S)

Output: Result set: Rs = HKh
(EKu(res))||EKu(res)

1: Initiate return value: Rs← ∅
2: H ← HKh

(EKu(S))), Q← EKu(S)
3: if HKh

(Q) != H then
4: Return
5: else
6: S = DKu(Q)
7: SQP Invoke: doQuery(S)
8: buildOram(OA getPairing())
9: for each: SQL string s ∈ S do
10: s∗ = parse(s)
11: qp = opt(s∗) and OA update(s∗)
12: Invoke oram.loadData(qp)
13: res← res

⋃
SQP execQuery(qp, oram)

14: end for
15: SQP Invoke: persistence()
16: Return Rs = HKh

(EKu(res))||EKu(res)
17: end if

3.3.4 Limitations of ProDB

In most database management systems, persistent data are organized and stored in

certain file formats, such as heap files and sequential files. These files exploit the charac-
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teristics of a disk and thus optimize the I/O performance. However, when ProDB loads

these blocks, the original data organization in these files is lost due to the shuffling by

the ORAM server. By design, ProDB cannot address this issue for security purposes.

Furthermore, currently ProDB does not consider those advanced DBMS features, such

as concurrency control, rollback mechanism and database logging.

3.4 SaP ORAM

In this section, the features of access pattern obfuscation protocol, SaP ORAM, are

demonstrated. The proposed scheme addresses two efficiency gaps between existing

non-recursive Path ORAM and practical use in DBMS, that said, the privacy problem

in persistence and the compatibility of processing SQL queries. In what follows, I discuss

them separately.

3.4.1 Probabilistic Lazy Persistence

In a conventional RDBMS, the storage engine constantly writes modified dirty pages in

the buffer back to disks. Since the Path ORAM protocol needs to re-encrypt the whole

path of blocks back to the ORAM server, all these blocks are essentially modified as

shown in Figure 3.5(a). This will significantly degrade the I/O performance of ProDB.

The probabilistic lazy persistence mechanism of SaP ORAM addresses this problem

by making the following two changes on the Path ORAM client.
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Tagged Position Map. The ‘tag’ is appended as a new attribute to the original Path

ORAM position map. The bijective ‘address-path’ mapping is thus expanded to a triple

mapping as ‘tag-address-path’. “Tag” is used to identify the underlying storage medium

(e.g., a YD file of MySQL-ISAM or a filegroup of SQL Server) for the block. For new

data blocks, a special tag empty is used. Since this attribute is only used in the ORAM

client that runs on a TEE, it generates no security issues to ProDB.

Update List. An Update List is maintained in each SaP ORAM client. It stores

those blocks that are updated by SQL query rather than by the ORAM re-encryption.

When an ORAM client needs to write persistent media (e.g., after a transaction), the

persistence procedure is invoked. For each block in the list, it uses the tag in the position

map to locate the storage medium for that block and requests the storage engine to

perform the write.

However, as shown in Figure 3.5(b), if an ORAM client only sends the real updated

blocks for persistence, not those by the ORAM re-encryption (i.e., not logically modi-

fied), an adversary can learn from store engine about these blocks and infer the query.

To address this, a probabilistic dirty-block-generation procedure is provided to fabricate

an expanded and obfuscated update list for persistence. As shown in Figure 3.5(c), the

procedure randomly adds blocks that are modified by re-encryption from the position

map into the update list. Notice that, the ‘dummy updated blocks’ are randomly picked

from all the pages that have been loaded into ORAM. Therefore, the obfuscation re-

mains to be independent with distribution of real updates over pages. It is obvious that
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the more re-encrypted blocks the more effective this obfuscation becomes. However, it is

at the cost of degraded I/O performance. To model such cost, let H denote the number

of real updated blocks and H ′ denote the number of re-encrypted blocks. As they are

randomly selected from an ORAM tree with depth L, the probability that an adversary

succeeds with a random guess of all real updated blocks is

probb = 2−(H+H′). (3.1)

I/O in the storage engine typically use pages rather than blocks. To convert the above

to pages, let the page size P be a multiple of the block size B. As such, the total number

of pages in the ORAM tree is g = 2L·B·Z
P

, where Z is the bucket size for ORAM trees.

Further, assume that the real updates and dummy updates are both evenly distributed

among all pages, thus we obtain gR = g · (1− (g−1
g
)H) as the expected number of real

dirty pages in the Updated List and gD = g · (1− (g−1
g
)H+H′

) as the expected number

of dirty pages after adding H ′ dummy blocks. Then we could derive the probability of

identifying the real dirty pages through

probp = 2g·(
g−1
g

(H+H′)−1). (3.2)

The following illustrates a real-life example of this probability.

Example 1. Under a practical setting that P = 4B = 16Kb, L = 7, Z = 4, and

the expected overhead of lazy persistence is restrained to ≤ 1x, 2x number of dirty
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pages, i.e. gD ≤ 2gR, gD ≤ 3gR. Under such constrains, let H = 30, 40 to derive

corresponding maxH ′ = 66, 135 and maxH ′ = 102, 207 respectively for 1x and 2x

additional cost. The probability that an adversary knowing the distribution of updated

blocks to dirty pages succeeds with a random guess of the actual updated pages suffices

probp ≤ 2−48.4, ≤ 2−59.9 for 1x additional cost and probp ≤ 2−75.4, ≤ 2−91.9 for 2x

additional cost.

This shows that a moderate number of dummy blocks (e.g., the same number as the real

dirty blocks) is sufficient for a secure obfuscation.
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3.4.2 SQL-Aware Path Sharing

Path ORAM and other enhanced tree-based ORAMs still incur high computational and

I/O costs for a practical DBMS as ProDB. While it is an active research field to design

new ORAM schemes that optimize the performance of single block access, in this work,

an orthogonal perspective by reducing the number of ORAM rounds is initially proposed.

In this subsection, with the core idea of fetching more than one block from the tree path

during one ORAM round, the SQL-aware path sharing mechanism is proposed. The

ORAM Analyzer keeps track of those blocks that are frequently accessed together and

places as many of them in the same ORAM tree path as possible. Hosted in TEE, it

collects the access history of each table in the form Ni, Ji,j, Si, where Ni is the number

of blocks in table Ti, and Ji,j is the number of co-occurrences of block accesses to table

Ti and Tj in a batch of queries, while Si is number of access times to table Ti counted

exclusively (as defined in 3.3.2). Based on this history, data blocks from λ tables are

merged into a single ORAM instance. In the ideal case when all data blocks in the path

are requested, the amortized ORAM cost can be reduced by up to (λ− 1)ω.

For ease of presentation, in what follows I only discuss the condition that λ = 2, i.e.,

each ORAM instance holds up to 2 tables A and B, each of which accounts for s and

t blocks, respectively. Let M and N (M ≥ N) be their numbers of block accesses in

a query workload. If table A and table B have their individual ORAM instances, the

depths of ORAM trees are approximated as log s
Z
and log t

Z
, respectively. As such, the
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ORAM cost C using plain Path ORAM is:

C = Z(M log
s

Z
+N log

t

Z
)ω (3.3)

Recall that ω is the unit cost to access one block and Z is the bucket size. The security

proof of this path sharing technique is presented in Section 3.5.1.

If SaP ORAM is adopted instead, A and B are stored in one ORAM instance. When

a batch of SQL queries are executed, SaP ORAM retrieve paths that contain multiple

target blocks from both A and B. Let K (M ≤ K ≤M +N) denote the number of SaP

ORAM access rounds. Then the ORAM cost C ′ using SaP ORAM is:

C ′ = ZK(log
s+ t

Z
)ω (3.4)

Then I define efficiency gain ψ as the difference on ORAM costs between SaP ORAM

and plain Path ORAM for the query workload, i.e., ψ = C − C ′.

Definition 2. (Efficiency Gain ψ):

ψ = C − C ′ = Zω · log(( s
M tN

ZM+N
) · ( Z

s+ t
)
K

)

The following theorem depicts that to maximize ψ is equivalent to minimize K.

Theorem 1. (K Negative Correlation): Given the number of tuples s and t, bucket size

Z and the number of access rounds M ,N , maximizing ψ is equivalent to minimizing K.
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Proof. The key observation is that s + t > Z always holds for Path ORAM and its

variants, because a rather small Z (e.g.,Z = 3, 4 or 5) is usually chosen[96]. As shown

in Definition 2, given that 0 < Z
s+t

< 1, the expression of ψ suffices monotone increasing

function as K decreases.

To minimize K, it always expects to find a shared path in ORAM tree holding target

blocks of both two tables, so that it can access them in one pass. Now I give the definition

of such a path as follows.

Definition 3. (Gaining Path): In processing a query with M block accesses to table A

and N blocks accesses to table B, a tree path is called a gaining path if it contains at

least 1 target block of table A and 1 target block of table B simultaneously.

Each gaining path reduces K by 1. The ORAM client looks up the position map and

picks a gaining path to retrieve if there exists one. Otherwise, a non-gaining path is

chosen, which only reduces M or N by one. The following theorem shows that the best

efficiency gain can be achieved when M and N are the closest.

Theorem 2. If the total size of two tables,M+N , is fixed, a smaller intra-table skewness

Υ = |M −N | will lead to a higher efficiency gain ψ.

Proof. Let M∗ and N∗ be the remaining number of target blocks not accessed yet.

When the ORAM client picks a path to retrieve for the next round, the probability

that it can find a gaining path is Pr = Min(M∗,N∗)·Max(M∗,N∗)·2Z
s+t

. Since Min(M∗, N∗) ·

Max(M∗, N∗) = (M∗+N∗)2−(|M∗−N∗|)2
4

, andM∗+N∗ is a constant value, Pr must increase
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as |M∗−N∗| decreases. To prove this, the relation between |M∗−N∗| and Υ = |M−N |

is shown as below. After each retrieval, the change on |M∗ − N∗| satisfies a stochastic

walk as:

|M∗ −N∗|′ =



|M∗ −N∗|+ 1 with prob. 1−Pr
2

|M∗ −N∗| with prob. Pr

|M∗ −N∗| − 1 with prob. 1−Pr
2

The initial values are M∗
0 = M and N∗

0 = N , so the expectation of |M∗ − N∗| after a

finite random walk is E(|M∗ − N∗|) = |M − N | = Υ. As such, I prove that a smaller

|M − N | increases the probability of finding a gaining path in each round of retrieval.

Therefore, the efficiency gain of the transaction ψ will also increase.

Now we can generalize the above theorem to the whole set of tables in a database. That

is, we can pair up tables whose cumulated block accesses in all historical queries are

close (i.e. small Υ under fixed M +N). The objective is to achieve the highest overall

gain as defined below:

Definition 4. (Overall Gain) The overall efficiency gain Ψ =
x∑

i=1

ψi is the aggregated

ORAM cost saving for whole batch of queries. Here ψi denotes the efficiency gain for

i-th table pair (there are x pairs in total). Essentially, Ψ is the expression of yield on

performance metric Rd · ω for given set of query requests.

Nonetheless, the above paring scheme does not take M + N into account. Therefore,
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a combined metric, namely, the evaluation factor of two tables, is used to determine if

two tables are suitable for paring.

Definition 5. (Evaluation Factor) The evaluation factor αij of two tables i and j is

calculated as αij =
Ji,j

2

Si+Sj
. Here Si, Sj and Ji,j are the statistics of the historical queries

defined in Section 3.3.2. Specifically, Si, Sj indicate the number of non-parallel accesses

to single table and Ji,j is the number of joint accesses to table Ti, Tj within the same

batch.

The higher the evaluation factor, the more gaining paths the two tables can generate,

and thus the more suitable to pair them. However, the optimal table pairing plan

(OTPP) needs to enumerate all combinations of table pairs in a database. To efficiently

model this problem, an analogy is conducted to convert the problem to the maximum

weighted matching problem in graph. In such model, vertex set V is used to denote

tables and the edge set E is used to indicate the joint access between two tables. Then

the OTPP problem is equivalent to finding the maximum weighted matching on this

graph
−→
G(V,E), where the weight of edge (i, j) is the evaluation factor αij of two tables.

Unfortunately, state-of-the-art solutions to the maximum weighted matching problem

in a general graph, such as [30] and [36], still require quadratic complexity on |V |. In

what follows, an efficient heuristic-based approximate algorithm is provided to select a

suboptimal table pairing plan (STPP).

The entire STPP procedure is shown in Algorithm 2. The greedy algorithm sorts the

evaluation factors in descending order (line 3). It then traverses them in this order and
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Algorithm 2 Suboptimal Table Pairing Plan (STPP)

Input: All evaluation factors: αij,∀i, j ∈ U
Input: Unpaired table set: SV

Output: Bi-table Pair set: sttp
1: sttp← ∅
2: Initialize vertices set with table set U : SV ← U
3: Sort αij in descending order
4: for each: αij from top do
5: if i and j ∈ SV then
6: if αij ̸= 0 then
7: Put pair i↔ j into sttp
8: else
9: Put mono-table pair i and j into sttp
10: end if
11: Remove i, j from SV

12: else
13: if i or j ∈ SV then
14: Put mono-table pair i or j into sttp
15: else
16: Continue.
17: end if
18: Remove i or j from SV

19: end if
20: end for
21: Return sttp
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repeatedly adds the two vertices with the highest evaluation factor as a pair to sttp

(lines 4-7). The corresponding two tables are then removed from the unpaired table set

SV (line 11). At the end of an iteration, all isolated tables (i.e. vertices) are regarded as

mono-table pairs each of which will be allocated an ORAM instance. (lines 9 and 14).

The iteration terminates when SV becomes empty, and sttp is returned (line 21).

The evaluation on how the amount of database tables and the randomness of meta-data

affect the computational cost of STPP are shown in Section 3.6.4. Furthermore, the

relation between the independent cost in STPP and the overall cost in handling a query

request is also given in Section 3.6.4.

3.5 Security Analysis

The utilization of ORAM guarantees the memory access pattern of a data block is

indistinguishable from others. Therefore queries executed in memory disclose no dis-

criminative information to adversaries. Therefore, by introducing ORAM in untrusted

memory, the second condition in security model hold for ProDB. In this section, the

optimizations in SaP ORAM are theoretically proved not to compromise the security

functionality of ORAM. A proof on the security of path sharing in SaP ORAM is given

first followed by a discussion on the security of using multiple ORAM instances for a

single database.
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3.5.1 Security of Path Sharing

Path sharing allows a SaP ORAM client to fetch more than one target block in a single

ORAM access. The same style of security analysis as in Path ORAM [96] is adopted to

prove that this feature does not weaken the security level, so that adopting SaP ORAM

in ProDB does not compromise the security model of secure-DBMS in Definition 1.

Recall in Definition 1, the sequential access pattern with length m seen by the ORAM

server is denoted by ξ = (pm, pm−1, ..., p1), where pj is the path index in the ORAM

tree of depth L. The randomness in re-mapping the paths guarantees all block accesses

are statistically independent. Or formally, the probability of distinguishing the access

sequence of ξ from that of another query is Pr(ξ)Path = ( 1
2L
)m. In what follows, SaP

ORAM is proved to hold the same or even lower collision probability.

Theorem 3. In SaP ORAM, the path sharing mechanism ensures that ∀ξ, Pr(ξ)SaP ≤

Pr(ξ)Path always holds.

Proof sketch. Let λ denote the number of tables that are merged into one ORAM

instance and Lc denote the depth of the combined ORAM tree. Recall that in SaP

ORAM, we greedily retrieve the path that can fetch most (≤ λ) target blocks. The

path selection is executed inside an enclave space after the re-mapping step of previous

retrieval round. As such, the path retrieval maintains the same randomness as Path

ORAM. That is, the probability of distinguishing the access pattern ξ in SaP ORAM

satisfies Pr(ξ)SaP = ( 1
2Lc )

m. Further, due to the fixed bucket size Z, Lc must be larger
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than that of any ORAM instance of a single table to accommodate extra blocks, i.e.

Lc ≥ L. Therefore, we can guarantee that Pr(Si)SaP ≤ Pr(Si)Path.

3.5.2 Inter-table Security

Intuitively, there should be only one ORAM instance that holds all tables. However,

this is infeasible in practice for the following reasons. First, since a DBMS needs to

accommodate data into different storage media and locations (e.g., local disks, iSCSI,

and NFS), the single-ORAM-instance design cannot capture the difference in their I/O

characteristics. Second, the access frequencies of various tables are drastically different

and a single-ORAM-instance design cannot optimize the I/O performance for “hot”

tables. As such, the design of allowing each ORAM instance to accommodate a set

of tables is employed. However, as the mapping of tables to these ORAM instances is

not anonymous to ORAM servers, the table-level access pattern may still leak sensitive

information, though in a coarser scale. In an extreme example, if each table is mapped

to one ORAM instance, the alternate access of two ORAM servers can imply a nest-loop

join between two tables.

SaP ORAM protocol partially alleviates this issue by the path sharing feature. Since

data blocks of multiple tables are retrieved simultaneously through single path access to

an ORAM server, their original access sequences to these tables can no longer be inferred.

To illustrate this, the above extreme example is used. Let Seq := ..., A1(A, pathi, addr1, op),

A2(B, pathj, addr2, op), ... denote the original retrieval pattern on the two ORAM in-
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Figure 3.6: Access Pattern of Inter-table Queries

stances of a nest-loop join query on tables A and B. The pattern clearly shows the

alternate access of tables A and B, which can be inferred by an adversary as a nest-loop

join with high confidence. In SaP ORAM, since a batch of block accesses to tables A

or B can be achieved by a single ORAM access, such an alternate table access pattern

can no longer be observed. Furthermore, as shown in Figure 3.6, the same table access

pattern can also originate from a sequential scan of tables A and B. Therefore, the con-

fidence of the adversary to infer the query as a nest-loop join is significantly lowered.

3.6 Experimental Results

A prototype ProDB is implemented by refactoring those source codes with block ac-

cess instructions (such as “ha rnd next()” in “execute sqlcom select()”) in MySQL. The

ProDB core (i.e., client side of SaP ORAM) is written in C++, compiled to a DLL file,
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and called by MySQL main program “mysqld” in “lex-unit-execute()” after the SQL

string is parsed to LEX tree. The rest query execution procedures are removed (e.g.

”unit-optimize” for optimizing the query and transaction control in ”binlog”) to sim-

plify the process so that the experimental results will stay focus on the block access.

In this section, I evaluate the performance of both ProDB and SaP ORAM through

experiments. I first demonstrate the effectiveness of SaP ORAM to hide memory access

pattern. Then I conduct a comparative study on the efficiency of SaP ORAM and Path

ORAM. Finally, the overall performance of ProDB is depicted under various real-life

TPC-H query workloads.

3.6.1 Effectiveness of SaP ORAM for Memory Access Pattern

Hiding

I demonstrate the result of memory access pattern hiding against “curious” VM hypervi-

sor and OS administrator for a set of different type TPC-H (1GB workload) SQL queries

(Q4,Q17,Q21,RF1,RF23). Maintaining the same settings as applied in the preliminary

test shown in Section 1, the vSphere ESXi version 6.5 is deployed as hypervisor on host

machine which has Intel i7 6700 CPU with 64 GB memory. Its VM runs a Win 10 Pro

system with 2 CPU cores, 16GB memory, and MySQL 6.5 database.4 To exclude the

3Other TPC-H queries are excluded because they contain compound operations, such as ‘group by’,
which are beyond the current scope of ProDB.

4Since Intel SGX can only be applied to VM guests through KVM patches [53] at the time of writing,
the set of experiments in this subsection runs on a plaintext database without affecting the result of
access pattern hiding.
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Table 3: Memory Access Patterns for TPC-H Queries - Direct Access
Query Mem. Reads(K) Mem. Writes(K) Peak Usage(MB)
Q4 248 < 1 247
Q17 719 < 1 260
Q21 1, 295 < 1 1007
RF1 68 34.52 159
RF2 101 30.66 159

impact of disk I/O on the query performance, the MySQL store engine is enforced to

cache all TPC-H query workload in the memory by setting “innodb buffer pool size” to

1GB. I use hypervisor tools and MySQL monitoring instructions to record the values of

3 memory activity features, namely, # of read/write requests to MySQL process buffer

and the peak working memory usage in this VM. Tables 3 and 4 show the average feature

values over 100 independent runs without and with SaP ORAM, respectively. We can

observe that the values in Table 3 are more diverse and distinguishable, especially for

SQL queries with updates (RF1, RF2). Then I launch side-channel inference attack by

assuming an adversary has access to the same statistics as in these two tables and is

monitoring the memory access of an unknown TPC-H query. Specifically, the adversary

uses 80 runs as training data to build a naive-Bayes classifier over the 3 features, and

then uses 20 runs as testing data to reidentify their query IDs in TPC-H. The success

rates of this attack for each query without and with SaP ORAM are shown in Figure 3.7.

From the observation, we can see this inference attack is very effective (65%+) without

SaP ORAM. On the other hand, SaP ORAM effectively restrains the adversary from

performing significantly better than a random guess, because it manages to narrow down

the difference between queries in terms of memory reads, writes, and peak usage.
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Table 4: Memory Access Patterns for TPC-H Queries - via SaP ORAM
Query Mem. Reads(K) Mem. Writes(K) Peak Usage(MB)
Q4 2, 780 2, 451 893
Q17 10, 017 11, 634 1012
Q21 15, 363 14, 268 1022
RF1 1, 057 824 897
RF2 2, 201 2, 172 997
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Figure 3.7: Success Rates of Inference Attack - Direct Access vs. via SaP ORAM
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3.6.2 SaP ORAM Performance

In this subsection, the SaP ORAM performance is evaluated against Path ORAM in the

presence of Intel SGX. The experiments are conducted on an Intel i7 6700HQ CPU with

16 GB RAM running Windows 10. The blocks in the 4Kb data array are sequentially

accessed using three distinct Intel SGX Enclave programs sealed inside encrypted DLL

files, namely, without ORAM, with Path ORAM, and with SaP ORAM. The latter two

DLL files implement adopt the same ORAM parameter settings as L = 8, Z = 5 and

B = 4Kb.

Each DLL file is executed for up to 1, 000 block retrievals and the amortized elapsed time

of invoking the enclave program to access a block are measured (i.e., from the moment

when the program enters the enclave to the moment when the return buffer from the

enclave is received). The elapsed time under each DLL file is plotted in Figure 3.8. I

observe that as more blocks are accessed, SaP ORAM achieves a steady 30% performance

gain over Path ORAM mainly due to path sharing. On the other hand, compared with

the direct access without any ORAM, SaP ORAM only introduces about 100% overhead

to the elapsed time when a large number of blocks need to be accessed. Considering its

security yield, this performance loss is acceptable when the security concern dominates

the system design.
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Figure 3.8: Amortized Elapsed Time - SaP ORAM vs. Path ORAM vs. Direct Access

3.6.3 ProDB Performance Under TPC-H Workload

This subsection includes the study on parameters of both path sharing and probabilistic

lazy persistence mechanism reflecting on the ProDB query and persistence performance

under various real-life TPC-H workloads.

Path Sharing

In this part, the overall performance of ProDB is evaluated under TPC-H 1G dataset in

terms of amortized query elapsed time. The experiments focus on two TPC-H queries,

namely, Q12 and Q14. Both are two-table join queries5. For Q12, the tables “orders”

5Except for Q19, the other queries in TPC-H workload are not suitable to evaluate the pure effect
of SQL-aware path sharing as they are associated with either 1 or more than 2 tables. Q19 is less
representative in evaluating with different intra- and inter-table skewness. Therefore it is only used in
the evaluation STTP performance
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and “lineitem” are assigned as a pair and merge their blocks in one ORAM tree; for

Q14, tables “lineitem” and “part” are designated as a pair and their associated blocks

are merged into one ORAM tree. All rows in tables are fit in blocks (set B = 4Kb) as

full as possible. The blocks are arranged in the ORAM tree structure for executing SaP

ORAM accesses and in linear structure (Array) for direct non-ORAM accesses.

The 2 key internal parameters of path sharing that may affect the performance of ProDB

are studied. The first is the intra-table skewness Υ. As defined in Theorem 2, Υ directly

impacts on the efficiency gain ψ. In the experiment, Υ is normalized to [0, 2] and Υ = 1

indicates there is no distribution bias between the paired tables. The second parameter

is the inter-table skewness Φ which evaluates the similarity between the pre-generated

pairing plan and real query workload arrivals. Formally, the inter-table skewness Φ is

the ratio of the largest number of block accesses on a pair of tables (A,B) to the total

number of block accesses X. Recall that M and N denote the number of accesses to

table A and B, respectively, so Φ = M+N
X

.

In the first experiment, Υ is varied by manipulating the scale of blocks in both tables.

Figures 3.9(a) and 3.9(b) plot the amortized elapsed time of Q12 and Q14, respectively.

I observe that when there is no distribution bias, i.e., Υ = 1, ProDB achieves the lowest

elapsed time. Nonetheless, even in the extreme cases where Υ = 0 or 2, the elapsed

time is increased by at most 40% and is still lower than Path ORAM. As such, it can

be concluded that ProDB is robust with respect to Υ.

In the second experiment, the concentration ratio Φ is varied by adding random block
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Figure 3.9: Impact of Parameters on Path Sharing Performance
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accesses which are not related with the paired tables of Q12 and Q14, while maintaining

the same total number of block accesses and the true Υ. Figures 3.9(c) and 3.9(d) plot

the amortized elapsed time for Q12 and Q14, respectively. I observe that in both figures

the elapsed time of SaP ORAM decreases linearly as Φ grows. Note that in Figure

3.9(d), SaP ORAM is close to Path ORAM because the true Υ of Q14 approaches 0,

i.e., the number of blocks in table “lineitem” is much larger than that in table “part”.

Probabilistic Lazy Persistence

This part demonstrates how the number of dummy updated blocks added affects the

number of generated dirty pages for persistence. The experiment is performed on the

prototype of ProDB, as previously introduced in Section 3.6. In prior, Innodb parameters

are configured as “UNIV PAGE SIZE = 16Kb”,“UNIV PAGE SIZE SHIFT = 14” and

set ORAM block size B = 4Kb. In the experiment, 3 SQL statements are executed to

update different requested rows6 in table “orders” on their column “o orderstatus” with

TPC-H 1G database. By varying the number of dummy updated blocks (measured in

the percentage of real updated blocks) in ProDB core, the number of modified (dirty)

pages can collected through monitoring the Innodb buffer pool. As shown in Figure

3.10, the growth of dirty pages of same query fluctuates around linearity along with the

increase of dummy updated blocks when the weight of dummy updates is small, while

recedes to approximately sub-linear growth when the weight becomes large.

6The 3 SQL statements differ in their requesting monthly periods on column “o orderdate” from
1994-07-01 to 1994-10-01.
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3.6.4 Suboptimal Table Pairing Plan

In this subsection, the efficiency of the suboptimal table pairing plan (STPP) is evalu-

ated. In the first part, the CPU running time is measured with the number of tables

varying from 1000 to 10000. The meta-data, i.e. Si and Ji,j, are randomized in the

experiment. Figure 3.11(a) plots the results. As each result is averaged by 200 trials,

the standard deviations are plotted in the secondary y-axis in Figure 3.11(a). Based on

the observation, the CPU running time is almost proportional to the number of tables

even with the presence of random Si and Ji,j.

In the second experiment, the TPC-H query workload is introduced to evaluate the time

cost of STPP in the whole query processing. Figure 3.11(b) plots the STTP running time

compared with the overall query elapsed time in Q12, Q14 and Q19 of TPC-H under

various scales of TPC-H datasets (from 2G to 10G). It can be observed that STTP
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consumes a fixed amount of CPU running time, and therefore the higher the total query

elapsed time, the lower the percentage of STTP cost.

3.7 Summary

In this chapter, I propose ProDB as a minimal adaptation to a conventional database

engine to practically improve the mutual trust between stakeholders in cloud databases.

By leveraging hardware enclave, I propose SQL-aware Path ORAM (SaP ORAM) proto-

col to resolve access pattern attacks. It features probabilistic lazy persistence and path

sharing that exploit the unique characteristics of database workloads. One key advan-

tage of ProDB is that it does not need extra resources from the enclave and can co-exist

with other optimizations on the database engine. As for full-fledged work in the future,

I plan to enhance ProDB and SaP ORAM to support secure transaction management

and concurrency processing in coordinating with DBMS.
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Chapter 4

Privacy-preserving Fuzzy Keyword

Search

4.1 Introduction

In the last chapter, the proposed DBMS adaptation applies TEE technology for mem-

ory access security and the Oblivious RAM for obfuscating the memory access pattern

against inference attacks. However, the ORAM mechanism brings extra cost in data

block retrievals, though the efficiency is improved in my design. To further mitigate this

problem, in this chapter, I study a particular query, namely the fuzzy keyword search.

The feature of fuzzy keyword search is to return the augmented results that are likely

to be related to the inputs when the inputs are inaccurate or in the form of some typos.

To this end, the purpose of studying this kind of query is to utilize this nature and
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Figure 4.1: Unsolved Vulnerabilities of SSE/PEKS

combine it with an obfuscation scheme. Compared with an additional oblivious proto-

col, intuitively, this idea can reduce the overhead and maintain the protection on access

patterns.

I propose a fast oblivious trend-aware keyword index with fuzzy search capability over the

encrypted document data, named OKTI-F. To clarify the design goals of the proposed

protocol, I decompose the research problem into three issues and introduce them as

below.

� Trustworthy multi-keyword fuzzy searching over encrypted data on cloud.

The fuzzy keyword searching offers convenience to data users in many aspects,
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such as disposal of typos, uncertainty allowance in queries, and inspiring extra

searching results. In many scenarios, such search services are privately deliv-

ered to authorized data users, e.g., company staff, organization members, and

consortiums, through untrusted cloud platforms. Though massive efforts, repre-

sented by Searchable Symmetric Encryption (SSE) and Public-Key Encryption

with Keyword Search (PEKS), have been developed to improve the security of

query processes. However, the cloud platforms encounter new security challenges

from time to time, as illustrated in Figure 4.1. To the best of our knowledge, the

existing privacy-preserving fuzzy keyword search protocols merely take the com-

promised cloud infrastructures into account. The searching process for candidate

fuzzy keyword trapdoors, which is the core step in fuzzy keyword search schemes,

is vulnerable to such security threats. As different from the trapdoor entries which

can be protected by encryption approaches and hash functions, if this searching

process is intervened, the attackers can successfully tamper with the query result

withouts being detected. Fortunately, recent research works of hardware-based se-

curity technologies [46][52][6] offer quasi-ideal solutions for these hidden dangers,

although they are still imperfect in terms of practicality. Based on the features

introduced in Chapter 1.2.2, inside TEE, the queries can be safely and efficiently

processed over a plaintext keyword index, which can be further sorted for fast

searching, only at the cost of an additional user-to-cloud attestation procedure.

With the aid of IntelSGX, I first implement a fuzzy keyword index addressing

such security threats from essence. The most challenging problem in the design
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is the limitation of enclave memory. The main idea to solve the problem is to

introduce a separate-type index structure to load the keyword indexes on demand,

while only maintain a group of secondary indexes in the enclave to search such

candidate trapdoors (as seen in Section 4.3.3).

� Memory access pattern hiding in untrusted memory. With the concern

of large-scale datasets and the large number of demanded keywords, the enclave

space can not cache the entire keyword indexes for fuzzy search. The coordination

between the enclave and the untrusted memory is necessary. Consequently, the

access patterns are left on main memory which can be monitored by semi-honest

adversaries on cloud platform for valuable information. Such leakage, includes the

access frequency to the same block, the occurrence of the same batch of keyword

indexes, and other patterns which can help the attackers to explore sensitive infor-

mation about user behavior, ‘hotness’ of the words, etc. Moreover, such analytical

attacks are far more convenient to conduct than CPA-formed Keyword Guessing

Attack (KGA) [16]. To overcome this, in this chapter an edit distance-based ob-

fuscation scheme (as seen in Section 4.3.4) is proposed to prevent the adversaries

from deriving useful information from observing the access pattern of untrusted

memory.

� Responses to the change of searching trend to accelerate real-time key-

word queries. From the observation of keyword searching, the query service

shared in a relatively stable cluster of data users tends to show continuous iteration
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of a set of hot keywords along with the timeline. To speed up the query processing

associated with the current popular keywords, the proposed index scheme makes

full use of the enclave memory to selectively cache the keyword indexes. The

changes in the prevalence of keywords are recorded by the proposed Trend-aware

Cache which periodically notifies the enclave to load in the popular fuzzy indexes

and evict the aged ones. The detailed mechanism is introduced in Section 4.3.5.

To summarize, the main contributions of this chapter are as follows.

� Leveraging TEE technology, I design a secure protocol of fuzzy multi-keyword

query to resist the threats in cloud environment.

� In concern of access pattern leakage, I propose a specialized ED-based Obfuscation

Scheme(EDOS) upon fuzzy query processors to alleviate the threats of relevant

analytic attacks.

� I optimize the protocol with novel mechanisms, i.e. Two-layer Fuzzy Index(TFI)

and Trend-aware Cache (TAC), to enhance system practicality as well as efficiency.

� I conduct intensive experiments on the real-world datasets to demonstrate the

security improvement and functional yields compared with the baseline solution.

The rest of the chapter is organized as follows. Some preliminaries of fuzzy keyword

queries over encrypted are introduced in Section 4.2. I illustrate the proposed system

design and the proposed feature mechanisms in Section 4.3, followed by the analytic
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Table 1: Notations and Symbols
Symbol Definition

Fuzzy Multi-keyword Search over Encrypted Data
W The set of exact keywords of given dataset
Iinv Inverted Index of given W to
ed(·, ·) Edit distance from fuzzy keyword to exact keyword
TWi

Trapdoor function of keyword Wi

in OTKI-F
dλ Distance scaler
dq The distance scaler of query
I1, I2 keyword index, secondary index

Ĩ1, Ĩ2 Encrypted form of I1, I2
Gi,d fuzzy index group with edit distance d to Wi

FGk Searching results of k-th querying keyword
r Recession rate of each non-matched time interval

discussions on security model in Section 4.4. The experimental results are demonstrated

in Section 4.5. In Section 4.6, I conclude this chapter. Some notations related to this

chapter are summarized in Table 2.

4.2 Fuzzy Keyword Search over Encrypted Docu-

ment Data

In this section, I introduce the preliminaries of fuzzy keyword search to which I reference

in this research work.

The keyword search over encrypted data allows authorized data users to issue queries

to data storage via trapdoor functions while avoiding revealing the keyword-to-results

mappings to potential adversaries. On the other hand, fuzzy searching brings extra
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advantages in practice over the exact or Boolean keyword search [44] by providing re-

silience to the typos in keyword inputs. To support fuzzy searching, a straightforward

solution is to expand each original keywords into augmented groups that include all

similar keywords of them. In previous studies [94][66], the degree of similarity is defined

as the edit distance (ED), whose value indicates the number of letter-wise differences

to the original keyword. It is noteworthy that, the numbers of trapdoors required to

support such fuzzy search increase exponentially with the pre-configured ED, i.e., the

coefficient of growth on the number of trapdoors for alphabet text is 26d ·
(

d
2l+1

)
, where d

is the edit distance and l is the length of original keyword. To reduce this number, Li et

al. propose the wildcard fuzzy set [66]. As illustrated in Figure 4.2, they index the fuzzy

keywords with the same edit distance d and the positions of letter-wise differences as a

trapdoor. Though the wildcard fuzzy set and its variants have narrowed down the size of

fuzzy indexes, it cannot scale well to large document databases where each index entry

can contain extremely large number of encrypted document entries with fuzzy keywords

sharing the same d and differential letter-wise position.

4.3 OTKI-F Protocol

In this section, I present the OTKI-F protocol for index-based multi-keyword fuzzy

search using TEE. I first introduce the system model and overall algorithm, then provide

detailed discussion of the three featured enhancements on privacy preservation and query

performance.
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4.3.1 System and Security Model

As shown in Figure 4.3, the system model consists of three parties, i.e. data owner, data

users, and cloud server. Data owner outsources her document database to the cloud

server, which provides keyword search service 1 to data users. In this model, the data

owner does not trust the cloud server and thus encrypts the database before outsourc-

ing. An adversary can be either ‘hostile’ attackers or ‘honest-but-curious’ observers. A

‘hostile’ attacker can tamper with the query protocol to recover the encrypted data. On

the other hand, an ‘honest-but-curious’ observer learns sensitive information from the

memory access pattern of query execution.

1In this chapter, an assumption is that the keyword search only returns the topmost matched doc-
uments.
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More specifically, a cloud server consists of a variety of components including the In-

telSGX enclave. We trust the IntelSGX enclave and its validated communication channel

with outside parties. All other components, such as the OS, hypervisor, other active pro-

cesses as well as all levels of memory storage are not untrusted. Note that IntelSGX

is known to be vulnerable to several side-channel attacks [14][61][45], but since most of

them require strong assumption on the attacker and workload, they are not taken into

consideration. To summarize, the memory-secure keyword fuzzy search can be defined

as follows.

Definition 6. (Memory-secure keyword fuzzy search) A fuzzy query σ0 is processed un-

der an untrusted environment E, leaving a series of access pattern ξ0 and returning a

result set R containing the keyword trapdoors. An adversary A has full access to all

levels of memory in E. A fuzzy query processing protocol is memory-secure in E, if

it simultaneously satisfies the following 3 conditions: (i) The result set R is always a

correct answer of the trapdoor searching. (ii) During the search, A can only obtain the

query statement of σ0 and the result set R in an encrypted form. (iii) Let {σi} denote

a batch of such queries. For either two queries σi, σj ∈ {σi}, if they are semantically

same, i.e. σi = σj, the probability that they show the same series of access pattern to A

always suffices Pr(ξi = ξ0) < prob. where prob. is a trivial probability.

I will give the security proof of OTKI-F protocol against this definition in Section 4.4.
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4.3.2 OTKI-F Overview

The proposed OTKI-F protocol consists of two phases, namely the index deploying phase

and fuzzy keyword querying phase. As shown in Figure 4.3, the main building blocks of

this protocol include keyword index, secondary index, trend-aware cache. The keyword

index and secondary index form a two-layer hierarchical OTKI-F index to accelerate

query processing. The keyword index is stored in an encrypted form in the untrusted

memory, while the secondary index is stored in the enclave (i.e. the TEE of IntelSGX

technology) as plaintext. The trend-aware cache is a data structure that offers the

trend-awareness feature to further improve the efficiency of query processing under real

query workloads. Algorithm 3 summarizes the main procedures in both phases, which

are discussed in detail below.

A. Index Building Phase The data owner first pre-generates a one-way hash key K.

Based on the inverted index of the document database, he first converts it to Wildcard

fuzzy sets then further builds them into a two-layer fuzzy index as the structure shown

in Figure 4.4. The detailed procedure of building the index will be presented later in

Algorithm 4. Then, he invokes the SGX instruction “EENTER” to create an enclave

instance and initializes the secondary index which is encrypted with the enclave secret

key sk0. After that, he hashes the keyword index with K and deploys it in the untrusted

memory of cloud server.

B. Fuzzy Querying Phase The data user provisions with the enclave through a remote

attestation and derives the user session key sku. In more detail, remote user first derives
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the enclave’s EPID GID (extended group ID of EPID) and requests Intel Attestation

Server (IAS) to retrieve the enclave’s signature revocation information (SigRL) for ver-

ifying the enclave. Then it further checks the QUOTE Report (sgx quote) with IAS to

attest the enclave is at correct cryptographic status. After the remote attestation, data

user’s query request Q is encrypted with sku and sent to be decrypted inside enclave.

When request Q is received by cloud server, it is processed by retrieving the two-layer

index under the protection of ED-based Obfuscation Scheme (i.e., Algorithm 5). Briefly,

the secondary index handles the query first and returns candidate fuzzy keyword groups

whose original keywords are similar to the input query words. Afterward, the candi-

date keywords are searched in the trend-aware cache (TAC). If they are found, the final

query results will contain those documents that have a particular keyword. Otherwise,

the fuzzy keyword groups are retrieved from the keyword index. After combining the

partial results from each input, the trend-aware cache is updated according to Algorithm

6.

Algorithm 3 Overall OTKI-F Protocol

Index Building Phase:
1: HashKeyGen()→ K.
2: Run Algorithm 4:
I2 ← buildI2(). Ĩ2 ← Enc(sk0, I2).

I1 ← buildI1(). Ĩ1 ← Enc(K, I1).

3: Invoke EENTER(Ĩ2).

4: Send Ĩ1 to cloud server.

Fuzzy Querying Phase:
5: Data user sends query request T .
6: Run Algorithm 5 to execute query.
7: Run Algorithm 6 to update trend-aware cache to state ρ.
8: Adjust the cached keyword index entries according to ρ.
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4.3.3 Two-layer Fuzzy Index

The two-layer fuzzy index is composed of an encrypted keyword index Ĩ1 outsourced to

the untrusted cloud server and a secondary index Ĩ2 encrypted by the provisioned secret

key and pre-loaded into IntelSGX enclave.

Algorithm 4 shows the construction process of this index. The data owner first traverses

inverted index Iinv converting each of its entries to Wildcard fuzzy sets. AWildcard fuzzy

set is denoted as τ = (FW, {FID}), where FW is the identifier of wildcard-based fuzzy

set containing the information of differences to original keyword and {FID} indicates

the associated documents which contain the identifier. Then, each τ is assigned to a

fuzzy index group Gi,d,pos through a one-to-one mapping based on the edit distance d

to the original keyword Wi and the position list pos of character differences. Note that

the index groups of a given original keyword may intersect with other index groups.

For example, a fuzzy set of original keyword “MERS” with edit distance d = 2 can

overlap with the index group of the exact original keyword (d = 0) “SARS” on {FID}.

Meanwhile, a user-defined threshold dλ is introduced to discard those fuzzy keywords

whose edit distances exceed this threshold. As such, each encoded group id GIDi,d,pos

serves as the key of keyword index I1 and {FID} becomes its corresponding index

value. Then the algorithm hashes {FID} of each index entry in I1 with key K (e.g.,

HMAC-SHA256) into Ĩ1 = GIDi,d,pos, HK{FID} before deploying the latter to the cloud

database. To build the secondary index I2, the algorithm uses the plaintext FW as the

index key and GIDi,d,pos as its corresponding index value. Before sealing it into the
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enclave, the algorithm encrypts I2 with the secret key sk0 into Ĩ2.

Algorithm 4 Build OTKI-F Index

Input: Original keywords setW . Fuzzy scaler dλ. Pre-generated hash key K. Owner’s
secret key sk0. Document IDs {FID}. Inverted index of the documents Iinv. I1 ←
∅, I2 ← ∅.

Output: Output keyword index Ĩ1, secondary index Ĩ2.
1: for each entry in Iinv do
2: Convert it to Wildcard index entry τ = (FW, {FID}).
3: end for
4: for each τ do
5: Assign τ to Gi,d,pos, GIDi,d,pos = encodeID(FW, d, pos).
6: end for
7: for each Gi,d,pos do
8: I1 ← I1 ∪ (GIDi,d,pos, {FID}).
9: Ĩ1 ← Ĩ1 ∪ (GIDi,d,pos, HK{FID}).
10: I2 ← I2 ∪ (FW,GIDi,d,pos).

11: Ĩ2 = Enc(sk0, I2).
12: end for
13: Return Ĩ1, Ĩ2.

4.3.4 ED-based Obfuscation Scheme

In processing user queries with the two-layer fuzzy index, access pattern leakage will oc-

cur when TEE retrieves the keyword index I1 from the untrusted memory. Specifically,

to limit the number of search results, many fuzzy search protocols have a threshold

on edit distance dq, dq ≤ dλ between word input and its feasible keyword. As such,

the same access patterns on keyword index may be inferred as the same queries, which

jeopardizes the privacy of users and compromises the security of keyword space. To

guard against this, an ED-based Obfuscation Mechanism is proposed to make individual

keyword queries indistinguishable by adversaries with polynomial time. As shown in
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Algorithm 5), it resolves this issue by retrieving probabilistic supersets of requested key-

word indexes from untrusted memory. An obfuscation parameter ϵ is used to determine

the scale of such supersets and balance the trade-off between communication overhead

and obfuscation degree. The security analysis of this mechanism will be presented in

Section 4.4.2 and the discussion on the impact of ϵ on the performance will be shown in

Section 4.5.3.

The ED-based Obfuscation Mechanism works as follows. An encrypted fuzzy search

request T contains n querying inputs and an edit distance parameter dq, denoted as

T = Enc(sku, Q := [Wq1,Wq2, ...,Wqn], dq). Once the server receives the request, it

scans the key of plaintext (sorted) secondary index I2, namely FW , with each querying

word Wqk for their matched entries. Except for the string match to identifier FW , the

sequential search also references to the edit distance d between original keyword Wi and

FW . If d ≤ dq(≤ dλ), it merges the entry value GIDs directly to the intermediate

set {GID}, whereas the rest entries whose d suffices dq < d ≤ dλ are selected with

probability Pr = ϵ(d−dq) before being merged into {GID}. The enclave retrieves {GID}

first in the trend-aware cache and then in keyword index Ĩ1 for the candidate document

IDs. The matched entries of keyword index are aggregated in {GR}, which is a superset

of the real query. A followup pruning by d ≤ dq removes redundant elements whose

original keywords deviate from input word Wqk in a distance larger than dq. As such

the document IDs FIDj in Gj are merged into a partial result set associating with

single querying word {FGk} accordingly. Finally, the enclave obtains the multi-keyword
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searching results {FG} by intersecting all {FGk}.

Algorithm 5 Searching indexes with ED-based Obfuscation

Input: Encrypted query string
T = Enc(sku, Q := [Wq1,Wq2, ...], dq).
Intermediate set of group ids {GID} ← ∅.
Intermediate result document id sets {FG}k ← ∅ of the k-th querying keyword.
Obfuscation parameter ϵ.

Output: Query result document id set {FG}
1: Decrypt T with corresponding sku provisioned in attestation session.
2: for each Wqk ∈ Q do
3: Sequentially search Wqk among I2 for matches.
4: for each matched I2 entry do
5: if d ≤ dq then
6: {GID} ← G ∪GIDs.
7: else
8: GIDs is merged into {GID} at a probability Pr = ϵ(d−dq).
9: end if
10: end for
11: end for
12: Lookup each element of {GID} in trend-aware cache.
13: if Cached keyword index entries {GC}! = ∅ then
14: Merge {GC} into {GR}. Remove matched GID from {GID}.
15: end if
16: Invoke OCALL(searchI1()) to retrieve rest elements of {GID} in keyword index

Ĩ1.
17: Merge retrieved entries of keyword index into {GR}.
18: for each loaded entry Gj ∈ {GR} do
19: if d ≤ dq then
20: {FGk} ← {FGk} ∪ FIDj.
21: end if
22: end for
23: {FG} = {FG1}

⋂
{FG2}

⋂
{FG3}...

⋂
{FGm}.

24: Return {FG} to data user.
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4.3.5 Trend-aware Cache

It is a common observation that keyword search exhibits a changing trend of prevalent

words over time [43][118], for example, in a material e-library of editorial studio, and

email search in an institutional email archive. To this end, caching the documents (more

precisely the document IDs) which contain frequently searched keywords in an enclave

heap can reduce the number of OCALLs to the untrusted memory to retrieve keyword

index Ĩ1. Ideally, the keywords of all search requests can be cached. However, in practice,

since the enclave has limited size and popular words change over time, such cache cannot

always hit. To capture the change of “hot” keywords precisely and improve the utility

of limited enclave cache space, a spectial mechanism called Trend-aware Cache (TAC)

is provided.

Trend-aware Cache (TAC) is composed of one trend chain2 Ct and s candidate chains Ccj

initialized as an empty chain ⋄. Each of these chains contains keywords that frequently

co-occur in the keyword index retrieval. Hence each chain indicates a possible active

theme among the conversations of users. In a nutshell, TAC always cumulates the

lengths of the chains which may contain appearing prevalent themes, while reduces

the lengths of rests. As such, the longest chain represents the most popular theme in

keyword search services. As demonstrated in Algorithm 6, after each time interval ∆T ,

the aforementioned chains are updated based on the most recent index group retrieval

2The number of trend chains is not restricted. There also can be more than 1 prevalent themes
coexist in the enclave cache. For simplicity, the setting of one single trend chain is used throughout the
chapter as default.
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records and compete for the prevalent theme. The meta-data of records is the x most

frequently accessed index groups, denoted as Mi. Then, it scans each chain with the

indexes in Mi and counts the number of matches Nt and Ncj for Ct and Ccj respectively.

The trend chain Ct is examined in prior. If it is empty or Nt is no less than a thresholding

percentage p of x, the unmatched index group IDs are appended to the tail of the trend

chain. In other cases, it continues to examine the candidate chains. Likewise, if either

chain whose Ncj is equal or greater than x
2
or is an empty chain, the unmatched index

group IDs in Mi are appended to its tail. For all the chains, once appended with new

IDs, its length |Ct| or |Ccj | increases with |Nt| or Ncj respectively. Otherwise, the chains

which are not appended undergo a deduction on their lengths for loss on the hotness.

The number of deduction is determined by preset receding rate r. After scanning all the

chains, the longest chain is copied to substitute the trend chain, while itself is restored

to ⋄. An example of how the compositions of the chains change is shown in Figure 4.5.

4.3.6 Limitations

First, the proposed OTKI-F protocol does not cover the access to the actual document

files. A secure and oblivious protocol for secure document file retrieval from untrusted

sources is hence needed. Second, assume that the keyword index Ĩ1 can be loaded entirely

into the untrusted memory for execution. However, if this assumption does not hold,

such protocol will be vulnerable to those attacks leveraging the auxiliary knowledge

already derived from disk storage. For example, the Ĩ1 is split into separated DB files
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Algorithm 6 Trend-aware Cache

Input: Initialize 1 trend chain Ct, s candidate chains Ccj as empty chain, denoted as
⋄. Thresholding percentage p, Receding rate r.

1: for each time interval ∆Ti do
2: Invoke xtop() to record x most frequent accessed index groups as Mi, |Mi| = x.
3: Let Nt, Ncj denotes the number of matched groups with Ct, Ccj respectively.
4: for each existing chain Ct and Ccj do
5: if Nt ≥ p · x || Ct = ⋄ then
6: Append unmatched group IDs U to the end of Ct.
7: |Ct| ← |Ct|+ |Nt|.
8: else
9: if Ncj ≥ p · x || ∃ |Ccj | = ⋄ then
10: Append unmatched group IDs U to the end of Ccj .
11: |Ct| ← |Ct| − r, |Ccj | ← |Ccj |+ |Ncj |.
12: else
13: |Ct| ← |Ct| − r, |Ccj | ← |Ccj | − r.
14: end if
15: end if
16: end for
17: if ∃ |Ccj | ≥ |Ct| then
18: Ct ← Ccj , Ccj ← ⋄.
19: end if
20: end for
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on disk with explicit identifiers, such as file names, and is loaded partially on demand.

That said, adversaries can imply with the scope of keywords that likely to be searched

currently. On the other hand, for the extremely large database or keyword space, the

enclave may fail to load even the secondary index Ĩ2 in one pass. I plan to resolve this

with some oblivious swapping mechanisms in the future.

4.4 Security Analytics

In this section, the security and privacy functionalities of protocol components is ana-

lyzed and the proposed schemes is proved to satisfy all three conditions in the definition

of memory-secure keyword fuzzy search (as seen in Definition 6).

4.4.1 Condition i and ii Security

I now give the proof that query process of OTKI-F Protocol satisfies the Conditions i

and ii based on the security standards claimed in the literature.

Theorem 4. (Condition i&ii sufficiency): A keyword fuzzy search protocol satisfies

Condition i and ii security, if each of its building blocks associated with keyword index

(trapdoors) searching is inaccessible to the adversaries and the entries of keyword index

are protected by acknowledged cryptographic schemes.

Proof. Sketch. Since the adversary can not access the building blocks which are directly

related to the search process of candidate trapdoors in the enclave, the search always
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returns the correct results. Therefore Condition i holds. The utilization of encryption

and hash function ensures the accessible memory space is always operated in encrypted

form including query statement and results. Therefore Condition ii holds.

Recall that, there are three main components in the proposed protocol, i.e. keyword

index (trapdoors), secondary index, trend-aware cache. Among them, keyword index

Ĩ1 (trapdoors) is located in untrusted memory. As a community consensus, the applied

HMAC-SHA256 hash function is resistant to collision attack and remains robust against

length extension attack. The secondary index and trend-aware cache are sealed into

IntelSGX enclave and the outgoing channels are protected by secure function calls [26]

and the usage does not surpass the guaranteed security boundary of SGX as explained

in Intel’s manuals and reference books [50][49]. Hence, Theorem 4 holds for OTKI-F

protocol.

Remark 2. Though the existence of attacks based on L1 terminal fault flaw, e.g. Foreshadow[101],

has challenged the trust model of IntelSGX, it is still trustworthy in the cloud environ-

ment with the conditions that Intel microcode patches have been updated or the hyper-

threading is turned off.

4.4.2 Condition iii Security

This subsection proves that the query process of OTKI-F Protocol suffices the Condition

iii based on the quantitative evaluation. Prior to the proof, a formally definition of the

selective access pattern attack that may take place in the scenario of fuzzy keyword
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search are given as below.

Definition 7. (Ĩ1 Access pattern attack) The adversary holds the oracle that the queries

toward certain specified original keywords will burst in the coming time period. He then

begins to monitor the index entries of Ĩ1 retrieved to be loaded to the enclave. From

his perspective, the same access pattern for a retrieval means the same fuzzy search

request. Based on this, the sensitive information he can further infer includes the original

keywords of encrypted keyword indexes, the frequency of a particular query, etc.

Theorem 5. (Condition iii sufficiency): In OTKI-F Protocol, if the access pattern

attack succeeds only with a trivial probability, the protocol satisfies Condition iii security.

Proof. According to Definition 7, during the bursting period, the adversary actually

regards the arriving queries as the same input to seek a match in corresponding access

pattern on Ĩ1. Therefore, if the probability of the occurrence of the same series of access

patterns is trivial with such oracle, the Condition iii in Definition 6 must also hold.

In what follows, the success rate of the access pattern attack is formally modeled to

show it is indeed trivial in practice, and therefore Theorem 2 holds. During the runtime,

Ĩ1 is accessed for searching requested index group IDs based on the instructions issued

from the enclave. The set of requested index group IDs forms the superset of feasible

original keywords of querying word inputs as mentioned in Section 4.3.4. In the retrieval

of secondary index I2, the model do not attempts to predict the actual original keyword

of a fuzzy input (namely, target keyword) which means the additional index groups

contained in the superset consists of not only the Ĩ1 entries whose edit distance fall in
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the span dq ≤ d ≤ dλ but also the associate index groups of other original keywords

whose edit distances to the particular input are less than dλ. In the nature of ED-based

Obfuscation Scheme, the more such probabilistic additional index groups retrieved from

Ĩ1, the memory access patterns become more oblivious to the adversaries.

Now I evaluate the obfuscation imposed to adversary produced by protocol mechanism

based on the probability prob. that two queries with same x querying words generate

exactly the same access pattern on Ĩ1. The core factor of the probability is the numbers

of additional index groups Na involved in the super set. prob. is formulated as:

prob. =
1

2Na
=

1

2
∑

i≤xNi
(4.1)

where Ni is the total number of additional index groups of the i-th input word.

For each input word i, given the maximal edit distance dλ of Ĩ1, the query distance

allowance dq, the set of index groups with distance equal to or under dq is denoted as

TGi. The super set of TGi containing all possible keyword index groups is denoted as

SPi, and the differential set of SPi and TGi is denoted as Di. Then expand Di as =

Di = {Ω0,Ω1, ...,Ωn}, where Ωk indicates the k-th possible target keyword associated

the input keyword. Let NΩk
denote the expectation number of additional index groups

associate with the k-th possible target keyword after the probabilistic selection. Then

Ni is calculated as:

Ni = |Di| =
∑

k=1...n
NΩk

. (4.2)
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Next, substitute the value of NΩk
with:

NΩk
=

∑
d∈dq<d≤dλ

(
d

2lk + 1

)
· ϵd−dq (4.3)

where lk denotes the length of k-th possible target keyword. For each target keyword,

d denotes the edit distance to the corresponding original keyword of the specific index

group.

Finally, perform a stepwise substitution to Ni with the above expressions and derive the

quantitative evaluation model of obfuscation functionality as the equation below:

prob. = x · n ·
∑

d∈dq<d≤dλ

(
d

2lk + 1

)
· ϵd−dq . (4.4)

In a practical setting, let dλ = 3, dq = 1, n = 3, x = 3, and fix lk to 5 as close to the

average length of English word (4.7) [71]. It shows that the success rate prob. of access

pattern attack drops to 2−282.15 which is trivial in practical settings, when ϵ is set to a

reasonable value, 0.3, to control the communication overhead. Hence, Theorem 5 holds

for OTKI-F protocol.

4.5 Experimental Results

In this section, I evaluate the performance of OTKI-F as a memory-secure multi-keyword

fuzzy search protocol. First, the size of OTKI-F two-layer index is demonstrated to show
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its practicality and compatibility with Intel SGX. Then a thorough evaluation on the

efficiency of OTKI-F fuzzy search algorithm under a variety of parameter settings is

given. Third, the effectiveness of ED-based obfuscation Scheme which enhances the

privacy of keywords is discussed. At last, I test the performance yield of trend-aware

cache with simulated queries of dynamic trending keywords.

4.5.1 Efficiency of Building Index

In this subsection, the overall size of OTKI-F index is measured and compared with

the naive Wildcard protocol [66]. The applied dataset is a truncated ‘ENRONMAIL’

containing 10,000 files to extract the keywords for indexing. With the same maximal

fuzzy scale dλ = 2, both OTKI-F andWildcard indexes assemble the possible fuzzy words

into their entries, respectively. In the experiment, the keys of Wildcard index entries

are hashed with HMAC-SHA256, while the OTKI-F secondary indexes are measured in

plaintext.

As shown in Figure 4.6, the secondary index of OTKI-F is about 11X smaller than the

naive Wildcard index throughout the process. Further, according to this figure, it can

be projected that an approximately 90MB enclave can accommodate a secondary index

I2 with around 10, 000 keywords, which is sufficient in practice as the latest Longman

Dictionary of Contemporary English only identifies 9,000 English words as common ones.
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Figure 4.6: Index Size: Wildcard fuzzy index vs. OTKI-F secondary index

4.5.2 Performance of Fuzzy Keyword Search

In this subsection, I perform three sets of experiments to evaluate the impact of dataset

and queries on the performance of two-layer index. The experiments are conducted on

a desktop computer with Intel i7 6700HQ CPU, 16 GB RAM running Windows 10.

An Intel SGX enclave instance is created in hardware mode and pre-configured with

‘MAX STACK SIZE = 2MB’ and ‘MAX HEAP SIZE = 30MB’. 5000 annotated email

files in the ‘ENRONMAIL’ dataset is used to build an inverted index and then convert

it to an OTKI-F two-layer index. Then it stores and decrypts the secondary index I2

in the enclave as plaintext meta-data. I2 is then sorted with binary tree to speedup

searching. For the three parts, the maximum edit distance dλ is fixed as 2 for the first

two experiments and fuzzy scale allowance dq is set to 1 for all three. The trend-aware

caching is disabled to avoid its impact on the performance measurements in the second
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Figure 4.7: End-to-end searching time with changing keyword universe size and fixed dλ

and third experiment.

In the first experiment, a single request search processing time is measured by varying

the size of keyword universe. The elapsed time is counted from the issuing of query to

the point that resulting document IDs returns. Since a large proportion of keywords

of inverted index are sparse in mapping to documents (i.e., owns less than 5 mapped

email files). Certain keywords are randomly removed from the keyword universe before

it is converted to an OTKI-F index and the remaining number of keywords |W | ranges

from 100 to 500. Each query is composed of 3 wrongly spelled keywords, each with edit

distance d = 1 to its target keyword.

The end-to-end searching time of OTKI-F index is compared with SSE-based listing

approach mentioned in [66]. The listing approach indexes the encrypted document files
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with trapdoors of fuzzy sets of keywords on different edit distances. In such baseline

solution, the number of its LSH (i.e. locality-sensitive hash) of the is set to 30 and the

LSH miss is set to 8 to ensure enough accuracy. As the number of original keywords

increases, OTKI-F index gradually outperforms the listing approach when the number

of original keywords grows as shown in Figure 4.7. I attribute this observation to two

reasons: (a) The advantage of plaintext index search in enclave applied in the proposed

protocol compared to the SSE-based search used in listing approach becomes obvious.

(b) The trend-aware cache reduces the frequency of retrievals for Ĩ1 .

In the second experiment, the number of input words n varys from 1 to 8 increasingly

in 5 series of trial runs. Each series illustrates a different number of original keyword

universe |W | ranging from 100 to 500. As shown in Figure 4.8, the elapsed time shows a

linear increase with the growth of n. Further, the gaps between the series also increase

due to the logarithmic growth of elapsed time with the increase on |W |.

In the third experiment, the number of input words is fixed as n = 2 and the elapsed time

under various maximal fuzzy scales dλ = 1, 2 and 3 is measured. Figure 4.9 plots the 3

sets of results against the change of |W | on X-axis. It is observed that the increasing

rate on query processing time with growing |W | tends to be linear when dλ = 3, while

remains sub-linear when dλ = 1. I attribute this phenomenon to the exponentially

increase on fuzzy index entries caused by the maximal fuzzy scale dλ.
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4.5.3 Effectiveness of ED-based Obfuscation Scheme

In this subsection, I analyze the degree of confusion incurred to adversary by the pro-

posed ED-based Obfuscation Scheme. Recall the analytic model in Section 4.4.2, the

effect of access pattern hiding on keyword index Ĩ1 is correlated with the number of

additional index groups Na accessed on Ĩ1. The actual value of Na is directly impacted

by the obfuscation parameter ϵ. To this end, I collect the average numbers of accessed

Ĩ1 entries (i.e. index groups) with changing ϵ ranging in [0.2, 0.6]. A fixed query string

containing three input words is used to perform a dq = 1 fuzzy search against the sim-

ulated dataset (100 original keywords) with maximal fuzzy scale dλ = 3. Each of the

three inputs is a fuzzy keyword with d = 1 to its target keyword and does not overlap

with others on index groups. Then collect the actual numbers of additional index groups

Na retrieved from Ĩ1 of each keyword. 5 trial runs are conducted for each ϵ. Figure 4.10

plots the actual value of Na for each input word as well as the aggregated number of

distinct index groups being accessed.

As shown in Figure 4.10, the rise of average Na along with the increasing ϵ reflects a

positive correlation between the degree of obfuscation and obfuscation parameter ϵ. It

is also worth noticing that the number of distinct additional index groups accumulates

fast to a relatively large coverage of theoretical Na, which coincides with the analytical

model in Section 4.4.2).
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Figure 4.10: # of accessed Ĩ1 entries with changing ϵ
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4.5. Experimental Results

4.5.4 Performance of Trend-aware Cache

In this subsection, the performance of Trend-aware Cache (TAC) is evaluated by mea-

suring its cache hit rates from I2 search results. First, the truncated ‘ENRONMAIL’

dataset used in Section 4.5.1 is sorted by date. For each date, top-6 frequent included

keywords from the annotated emails of that day are selected as the seeds of search trend.

Time interval ∆Ti is set to 1 day. The random d = 1 fuzzy words of the selected hot

keyword are used in searchs3. Then the numbers of requested index groups after scan-

ning I2 are collected and the cache size is fixed to 4MB to calculate the hit rate. As for

the TAC parameters aforementioned in Section 4.3.5, the number of candidate chains is

set as s = 3, and the threshold percentage is set as p = 50% in identifying the potential

trend. The receding rate is set to r = 1 to control the eviction speed. Two date spans

from the database are randomly selected, each with 20 constant days. The average result

values of each date span are obtained from 10 repeating trials.

As shown in Figure 4.11 (a) and (b), the cache hit rates maintain above 15% after

several intervals in both date spans and show a peak at 54.5% and 62.4% respectively.

Comparing with first-in-first-out (FIFO), a common cache eviction strategy, hit rates of

enclave cache are improved by 58.2% and 103.7% on average.

Furthermore, Trend-aware Cache receives higher performance yield when more trend

chains are allowed to co-exist, especially for the datasets whose search trends concentrate

on more than one theme, such as “WEIBO Hotwords” provided by [93]. As plotted in

3In this experiment, the search stops after deriving the results of secondary index search.
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Figure 4.12, the sort 15 consecutive hourly hot word sets (Date: June 29th, 2020)

are sorted and top-20 frequent keywords for each hour are selected to evaluate TAC

performance of different numbers of trend chains. I set the threshold percentage p = 20%

and keep the rest settings unchanged as the previous experiment. The resulting hit rates

show a positive correlation with the number of trend chains on average values.

4.6 Summary

In this chapter, I propose OTKI-F, a memory secure multi-keyword fuzzy search protocol

built on a separate type keyword index. Leveraging IntelSGX technology, it ensures the

exclusive access of authorized stakeholders to second layer of index. The first layer is

protected by cryptographic tool and a novel obfuscation scheme from memory tampering

and access pattern sniffing respectively. I perform rigorous analysis on the claimed

security and privacy functionality with the security definition. On the other hand, a

trend-aware cache coordinator is employed to achieve moderate query performance or

even higher for trend-sensitive queries. I evaluate system performance and internal

parameters of OTKI-F with various simulation experiments and real dataset tests. The

novel mechanisms proposed in this work can be solely applied to other applications

offering significant enhancements. As for the extension of this study, I plan to keep

updating with the progress of TEE technology and provide security solutions to different

types of queries.
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Figure 4.11: Cache hit rates change with constant queries
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Chapter 5

Access Frequency Pattern Hiding

for General Query Processing

5.1 Introduction

In the previous chapter, motivated by the efficiency loss of using both TEE technology

and a standalone obfuscation scheme (i.e. the Oblivious RAM) to achieve secure and

privacy- preserving query processing, I explore the potential solution that combines the

obfuscation approach with the origin query processing, that is, the fuzzy keyword search.

Essentially, the main idea is to add randomness to the original result. Since the original

result is already augmented during the fuzzy keyword search, it cost only limited incre-

mental overhead in processing. However, after a wide survey into various query services,

I find the idea is only adaptable for the inclusion searches (i.e. searching the entities that
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include some specified elements), such as fuzzy searches and subgraph searches. That

said, in other categories, the queries tend to return the absolute or proper (exact) search

result according to the requests. Therefore, they still need standalone mechanisms that

are specially designed for different queries to achieve the perturbation on data access

patterns. To provide a general solution for different queries mentioned above, in this

chapter, an ad-hoc secure module is proposed using the TEE technology to imposed the

perturbation on the query requests prior to their processing stage. A line of proposed

protocols [79][72][41] also studies from this perspective. They hide the access frequency

patterns using the idea of injecting ‘fake query’ with the real accesses in an intermediate

proxy to smooth the distribution. Detailed comments of these related work can be found

in Chapter 2.4. Note that, although the system throughput is largely enhanced, their

drawbacks still exist in essence. Above all, it is inevitable to be concerned about the

additional risk of compromise generated in such a proxy. Secondly, a majority of them

use the mechanism of ‘query batching’ which could reveal access patterns of individual

real requests when the timing boundary of query processing is identical to adversaries

who are familiar with the obfuscation algorithm, particularly, when the arrival of re-

quests is sparse. They usually mitigate this crux by imposing extra latency on handling

the real query potentially identified in such cases, such as the batch pending applied in

[41]. Thirdly, previous fake-query-based schemes and oblivious access protocols either

merely support point queries (i.e., key-value searches) as limited by their mechanisms

or specially designed for particular order-preserving encryption (OPE) to process range

searches. However, both two query types are highly demanded in real-world query ser-
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vices (e.g., relational databases).

Table 1: Access Frequency Hiding Schemes

Schemes
Reveal

Individual
Request

Query
Types

Deploy
Requirements

Performance
(latency)

Yang
et al.[112]

No
Non-fuzzy

keyword search
(point query)

1.Rebuild on
index

2.Client
local cache

Low

Path
ORAM[96]

No

Split range
query as
individual

point queries

1.Re-organize
data storage
2.Client

local cache

Low

Mavroforakis
et al.[72]

Risk when
query boundary

disclosed

Range query
over MOPE

(Modular OPE)

1.Trusted proxy
Modificatio on
query processor

N/A

PANCAKE[41]

Risk when
query boundary

disclosed
(requires

batch pending)

KV-pairs query
(point query)

Trusted proxy High

The
proposed

No
Both point

and
range query

Only
Intel SGX

enabled host
High

Motivated by the three problems above, I propose the ReFlat module, a novel privacy-

preserving module that efficiently hides the access frequency pattern of both point and

range queries in the compromised and query boundary disclosed memory (CQBDM) (as

defined in Section 5.3.1) inheriting the idea of ‘fake query’.

To eliminate the demand of intermediate proxy, the core process of the proposed ob-

fuscation scheme is capsulate with the hardware enclave provided Intel SGX technology

[52][51][25], and its program code is run alongside the protected query processor in the

compromised cloud platform. As introduced in Chapter 3.1, even in a fully compro-
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mised cloud, it still guarantees that the adversary can not observe the buffered data,

the obfuscation algorithms as well as the incoming query requests. However, due to the

limitation of enclave heap space and the high cost of page swapping, it is infeasible to

load the entire data storage and the query processor into the enclave for processing.

Concerning this, the ReFlat module is designed to cost very small runtime memory and

pre-loads only schema information of the data storage as meta-data.

In ReFlat module, a query duplication mechanism, K-duplication, is used to fabricate

the fake queries. Initially, the data storage is virtually divided into K isomorphic seg-

ments, named duplication Structures, in the Intel SGX enclave. Then, each query

request on a particular data block is duplicated to the mapped blocks in the other K−1

duplication structures. Concerning this, K − 1 fake queries are generated to smooth ac-

cess frequency patterns not only for statistics of overall access times on each data block

during a given period but also for individual requests. The user finally receives the Slip

encrypted by his credential to distinguish which segments compose the result set of real

queries and which source from dummy queries. Different from other fake-query-based

schemes, the proposed scheme does not batch the query. As such, the access patterns

of individual queries are preserved in the cases where query boundaries are already

disclosed to attackers.

To build an integrated solution for point and range queries, two working functions of

K-duplication mechanism are elaborated, namely the Frequency Distortion Func-

tion (FDF) and Query Reconstruction Function (QRF). Both of them provide
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additional security to the basic K-duplication mechanism. Through FDF, the access

frequency patterns left by point queries are perturbed with extra dummies, and QRF

further hides query scopes of range search.

As an overview, in Table 1, the proposed scheme is compared with representative access

frequency pattern hiding schemes, including oblivious data access protocols and fake-

query-based schemes, in four concerning aspects: information leakage of individual query

in CQBDM, query types they are applicable to, additional requirements in deploying to

query processor, and protocol performance. Among them, the remarks of performance

are given based on the detailed experimental evaluations as seen in Section 5.5.

To summarize, the main contributions of this subject are as follows.

� To formally describe the ability of the attacker, I issue a rigorous threat model, that

is, compromised and query boundary disclosed memory (CQBDM), and describe

the levels of information leakage it may incur.

� I propose the obfuscation module, ReFlat, to conceal the access frequency pattern

in a robust manner against the defined leakage in compromised and query bound-

ary disclosed memory (CQBDM). Meanwhile significantly reduces the latency and

storage cost than the existing schemes that achieve equal security goals.

� The design of ReFlat does not intervene with the query processors, and conse-

quently preserves the functionality of sorted storage and the trapdoors of search-

able encryption. Besides, it can be conveniently adapted to any outsourced database
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offering point or range query interfaces. The implementation eliminates the need

for the intermediate proxy which may incur extra security risk itself and does not

transfer any data storage into the hardware enclave.

� Comparative experiments and thorough evaluations on system parameters over

real-world datasets are performed to prove the claimed effectiveness and perfor-

mance enhancement.

The rest of the chapter is organized as follows. In Section 5.2, I introduce the cryp-

tographic primitive used in the design of access pattern obfuscation scheme. I present

the threat model and security definitions, as well as the system model in Section 5.3

followed by the detailed introduction about the K-duplication mechanism and the secu-

rity analysis in Section 5.4. Experimental results and discussions are shown in Section

5.5. Section 5.6 summaries this chapter. Some related notations in this chapter are

summarized in Table 2.

5.2 Data Storage and Query Isomorphism

In this section, I introduce the concept of query isomorphism which is one fundamental

principle of this work.

The algebraic concept and properties of group isomorphism [10][65] is widely applied

in addressing structural attacks over sub-graph query [21][113][122]. Likewise, we can

model the isomorphism of query request patterns as follows.
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Table 2: Notations and Symbols
Symbol Definition

K # of duplication structures (duplication factor)
B universal set of blocks in a duplication structure
Qa all the queries pending for processing of

single request after being disposed in ReFlat
T (SK, ∗) trapdoor function of query generated with key SK

Np # of dummy point queries attached in FDF
Pr0 the probability of random attached dummies

in FDF can be selected from 0-accessed blocks
M # of segments in one duplication structure
R the query scope of a range query
RSeg the index scope of a segment used in QRF
Rd the expanded query scope of a duplication structure

used in QRF
ω # of accessed times of particular blocks
α pre-configured replica threshold in PANCAKE

Definition 8. Given two data structures G and H containing the same number of data

blocks, |G| = |H|. DG, DH denote the unique identity of data block in G, H. G and H

are isomorphic if either of the two conditions is satisfied:

(1) G and H are unsorted data structures. There exists a bijection f between DG and

DH , where DG, DH are the universal set of the data blocks in G, H.

(2) G and H are sorted data structures each with circular links between its two ends.

Let (DG, D
′
G) be the consecutive range covering the data blocks from DG to D′

G. Let

B(DG,D′
G) be the data blocks covered in range (DG, D

′
G). Condition (1) holds, and mean-

while f(DG, D
′
G) ∈ DH , f((B(DG,D′

G)) = Bf((DG,D′
G)) always hold for arbitrary referred

blocks of DG , D′
G.

Based on this definition, it is straightforward to obtain that each point or range query
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Figure 5.1: Threats of Compromised and Query Boundary Disclosed Memory

over G can be uniquely mapped to a query in H. This property is further applied in

K-duplication mechanism, as presented in Section 5.4.

5.3 ReFlat Architecture

In this part, threat and security model as well as the system framework of ReFlat module

are explained sequentially.

5.3.1 Threat Model

In the threat model of ReFlat, the encrypted data blocks are considered to be serialized

on logical addresses. A search key on the searching attribute is applied to facilitate point

queries or sorted to support range queries. In processing such queries, all the block-

wise accesses can be accurately monitored by the adversary in compromised memory.

Assume that the adversary possesses the knowledge of timing boundaries of each query,
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i.e. starting points and endpoints of entire process over the timeline. That said, he

always manages to associate a series of access patterns Pn captured from compromised

memory with a query arrival Sn (as shown in Figure 5.1). In practice, this assumption

is common to be reached when the real request arrivals are sparse or the data users

are authorized to distinct portions of data storage in multi-user scenarios. In addition,

the adversary acknowledges that query arrival Sn consists of a real query qn and some

fake queries generated from a known obfuscation protocol. Therefore, by grasping some

specific logic in the given obfuscation algorithm, he could further successfully map a

portion of access patterns in Pn to the real query qn. For example, the last query of Sn

in [72] is always the real request. To highlight the differences in adversaries’ capability

and target out of previous literature, the definition of compromised and query boundary

disclosed memory (CQBDM) is given as below.

Definition 9. (compromised and query boundary disclosed memory (CQBDM)) The

entire memory level access patterns can be monitored by the adversary in both an aggre-

gated perspective for sequence of queries and independent perspective for each individual

query. The boundary of processing each real request is assumed to be disclosed to the

adversary even though they are injected with fake queries as a sequence.

Remark 3. Although the memory is fully compromised, the adversary are unable to

crack the encrypted structures.

According to the definition, through convenient approaches or statistical tools, the ad-

versaries manage to know: a) The number of access times for all the data blocks; b) The
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Figure 5.2: K-duplication Structures

logic of all memory operations (e.g. memory reference) associated with accessed blocks;

c) A series of data accesses that generated by a sequence of queries is associated with

a real request; d) Assume that he is managed to understand the algorithm and map it

to the observed memory operations transparent; The model also assumes the attacker

holds the auxiliary knowledge such as e) the natural request frequency patterns of the

dataset in plaintext (e.g., flight with the lowest price are most frequently accessed).

Note that, the aim of an adversary over compromised and query boundary disclosed

memory includes not only information of data storage, but also the information of indi-

vidual query requests. Thus, the proposed threat model is also distinct from persistent

active/passive adversary [63][41] in adversary’s target.

5.3.2 Security Model

The proposed scheme aims to hide the actual request frequency patterns left by memory

operations associated with queries. To clarify the security goals, four levels of leak-
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age that can be obtained through analyzing the changes and statistics over the access

frequency patterns are given as below.

� (L1-leakage): The pattern reveals the data blocks which are topmost accessed and

their rank information.

� (L2-leakage): The adversary can identify the exact number of real access times of

a particular data block.

� (L3-leakage): For individual point query requests over unsorted storage, from ob-

serving the change on request frequency pattern, the adversary knows which data

block is actually requested or distinguishes whether two queries request for the

same block.

� (L4-leakage): For individual range query requests over sorted storage, from ob-

serving the changes on request frequency patterns, the adversary can correctly

find the requested ranges or successfully compare the scope of querying range of
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each query.

Definition 10. (K∗-Ordinary Request Frequency Pattern (ORFP)): In processing queries

in full compromised cloud memory, a privacy-preserving protocol turns the access fre-

quency pattern into k∗-Ordinary request frequency pattern if.f the worst case occurrences

of the above levels of leakage are all constrained under 1
k
.

Remark 4. Note that the CPA or IND-CPA approaches are beyond the scope of this

work, i.e. the attackers are assumed to have no information about the real query contents

of each particular query arrival. The security model also exclude other feasible side

channel attacks, such as timing attacks.

The principles of basic K-duplication mechanism and how it facilitates the ReFlat to

satisfy the security goals is briefly demonstrated as follows.

As detailed in Section 5.4.1, the original data storage are initialized as K virtual struc-

tures bath on the indexing attribute values in the enclave of ReFlat module. The virtual

structures are further initialized as isomorphic structures, i.e. duplication structures. As

shown in Figure 5.2, each virtual block contained in a duplication structure can always

be mapped to an isomorphic block sharing the same block-wise offset to its own head

blocks in the other K − 1 duplication structures. For ease of presentation, the K iso-

morphic blocks are named ”mirrors”. When each data block of the particular structure

is queried (or covered by a range query), the block request is duplicated to its ”mirrors”.

Consequently, the access frequency patterns in all the duplication structures are always

isomorphic. As examples, the changes on request pattern of two queries (range query Q1
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Figure 5.4: ReFlat System Design

and point query Q2) after processing the query duplication are depicted in Figure 5.3.

ReFlat maintains a Frequency Snapshot (FS) displaying the real-time access frequency

pattern of duplication structures to reflect the overall pattern of the data storage. From

time to time, the request frequency pattern reflected on the Frequency Snapshot always

synchronizes with the observation from the perspective of adversaries. Thus, based on

the principles of the K-duplication structure and the working functions of K-duplication

mechanism (as detailed in Section 5.4), the adversary needs a much higher random guess

cost to distinguish the listed access pattern leakages. The theoretical proof that ORFP

security is satisfied in ReFlat is provided in Section 5.4.4.
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5.3.3 System Model

In ReFlat, the protocol workflow consists of three procedures, which are user authenti-

cation, ReFlat Query Handler, and Query Dispatch as shown in Figure 5.4. These steps

run inside the Intel SGX enclave and exchange with the query processor in untrusted

runtime through secure function calls provided by the SGX enclave.

User Authentication. After a remote attestation stage (omitted in Algorithm 7),

user encrypt plaintext query Q with negotiated key K as E(K,Q). ReFlat decrypts

it to obtain Q inside enclave1. The user’s credentials SK for performing searchable

encryptions are also pre-fetched to enclave as meta-data.

ReFlat Query Handler (RQH). In this building block, both unsorted and sorted data

storage is virtually divided into K-duplication Structures according to the preloaded

meta-data describing the storage. The original query Q is processed through Fre-

quency Distortion, K-duplication and Query Reconstruction based their types to gen-

erate dummy queries for perturbing the access frequency pattern.

Query Dispatch. All the queries including the dummy ones Qa, before being forwarded

to query processor in fully compromised memory, are encrypted with user credentials

SK to generate trapdoors T (SK,Qa)for processing under searchable encryptions. An

encrypted Slip E(K,S) is attached to notify the user which result sets of queries are

used to restore the real query results of Q.

1Since the communication channel with user client is beyond the security boundary of ReFlat, no
hash functions and cryptographic primitives are specified to be applied to the user queries.
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Algorithm 7 and Figure 5.4 illustrate the workflow of processing a query with ReFlat

module. Note that, for all the algorithm steps, there are no real data blocks or memory

read/write instructions transmitted between ReFlat and untrusted query processor. The

frequency snapshot is updated once a real or dummy query is issued. The point queries

over unsorted storage and the range queries over sorted storage are handled in different

K-duplication functions in ReFlat query handler.

Algorithm 7 ReFlat Work-flow

Input: Encrypted user request E(K,Q)
Output: Result Set and Encrypted Slip RS∥E(K,S)
1: Decrypts E(K,Q) for Q in UA.
2: Searches enclave meta-data for user credentials SK.
3: RQH: Invokes updateFS(Q) to Update Frequency Snapshot FS.
4: if Q is point query over unsorted storage then
5: RQH: Runs K-duplication under Frequency Distortion Function.
6: RQH: Expands Q with the generated dummy queries Qd, Qa ← Q

⋃
Qd.

7: RQH: Invokes updateFS(Qa) and generate Slip E(K,S).
8: else
9: RQH: Runs K-duplication under Query Reconstruction Function.
10: RQH: Expands Q with the generated dummy queries Qd, Qa ← Q

⋃
Qd.

11: RQH: Invokes updateFS(Qa)
12: end if
13: Sends queries Qa and slip E(K,S) to query processor.
14: Query Processor: Derives query results RS and returns RS∥E(K,S).

5.4 K-duplication

In this section, the initialization process of duplication structure is introduced followed

by the algorithm demonstrations of the two working functions of K-duplication, that is,

Frequency Distortion Function(FDF) and Query Reconstruction Function(QRF). Then
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I further explain how they coordinate to achieve the K∗-Ordinary Access Frequency

Pattern (ORFP)(as seen in 5.4.4) in compromised and query boundary disclosed cloud

memory.

5.4.1 Initialize K-duplication Structure

First, the schema information of encrypted data storage is pre-loaded into an enclave in

plaintext as meta-data. This information is referenced for dividing the K-duplication

Structures and building the Frequency Snapshot. For easy presentation, in the rest

of this chapter, the trapdoors and indexes are assumed to be built over a consecutive

numeric attribute of data blocks. The particular data attribute is named the indexing

attribute and is used to uniquely represent corresponding virtual data blocks. Therefore,

in the current design, the meta-data includes the total number of data blocks, the lower

and upper bounds of the indexing attribute. ReFlat then evenly divides value span from

the lower bound to the upper bound into K duplication structures in a virtual axis2.

After that, each of the virtual blocks contained in a duplication structure is logically

mapped to the ”mirrors” to suffice the definition of isomorphic data structure (recall

from Section 5.2).
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Figure 5.5: Frequency Distortion Function

5.4.2 Frequency Distortion Function

In this subsection, the Query Reconstruction Function (QRF) designed for processing

point queries in ReFlat is demonstrated. Based on the query duplication mechanism

introduced in the security model (as seen in Section 5.3.2), the preliminaryK-duplication

perturbs each ranking of access frequency with at least K − 1 isomorphic block entities.

However, it can not effectively hide the number of access times of a particular data block

for point query Qp. The reason is that the probability of two real point queries occurring

at isomorphic blocks of different duplication structures is relatively low. Considering this,

for each request, Np dummy point queries are attached to the real query before being

duplicated. The dummy queries are randomly selected from the blocks whose number

of access times (ω) are larger than 0 based on the records of Frequency Snapshot (in

2The last structure is padded with faked value scope as the extension of the virtual axis to maintain
the same scope as previous ones.
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Figure 5.5). To prevent the real request on a data block that is never accessed from

being distinguished in this setting, QRF imposes a small probability Pr0 to let the

dummy queries probably be selected from on the blocks whose accessed time remain as

0. Then both the real and dummy queries are duplicated into the rest K−1 duplication

structures (as shown in Algorithm 8). Since the workload of query execution increase

linearly withK ·Np, in practice, K and Np shall be configured according to the capability

of the query processor.

Algorithm 8 K-duplication: Frequency Distortion Function

Input: real point query request: Qp,
universal set of blocks in a duplication structure: B,
queries pending for duplicating QC = ∅.

Output: Perturbed request: Q∗

1: if rand(0, 1) ≤ Pr0 then
2: Random select Np blocks as Qd from B into QC .
3: else
4: Remove the blocks with ω = 0 from B.
5: Random select Np blocks as Qd from B into QC .
6: end if
7: Q1 = QC

⋃
Qp.

8: Duplicate Q1 in all duplication structure.
Q∗ = Q1

⋃
Q2

⋃
...
⋃
QK .

9: Return Q∗.

5.4.3 Query Reconstruction Function

In this subsection, the Query Reconstruction Function (QRF) of K-duplication which

is specialized for range queries over sorted storage is introduced. Compared with point

query, range queries have a higher probability that the querying ranges of two requests

that originally contain a common isomorphic range in different duplication structures
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to be overlapped after duplicating. However, it is obvious that the query ranges of

distinct queries are less possible to be exactly the same in most cases. This phenomenon

incurs the leakage on the query range of individual requests if the access frequency

pattern is incrementally observed by adversaries. To overcome this, at the first stage, the

duplication structures are split intoM segments each of the same scopes of the indexing

attribute. Then expand the query range R of real request Qr that falls into a segment
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Algorithm 9 K-duplication: Query Reconstruction Function

Input: real range query request: Qr, its query range R. dummy range in a duplication
structure Rd = ∅.

Output: Perturbed request: Q∗

1: Split each duplication structures into M segments.
2: for each duplication structure Z do
3: for each segment Seg do
4: if RSeg

⋂
R ̸= ∅ then

5: Rd = Rd

⋃
RSeg.

6: end if
7: end for
8: end for
9: Execute K-Duplication and update Rd for each structure.
10: for each duplication structure Z do
11: Segregate Rd into dummy queries Qd.
12: Q∗ = Q∗⋃Qd.
13: end for
14: Return Q∗.

to be uniformed to cover the entire scope of the segment (as seen in Figure 5.6). At the

second stage, after the expanded range is duplicated, the query range of each isomorphic

structure is segregated randomly to reconstruct several dummy queries for processing

(as seen in Figure 5.7). Note that, in segregating the ranges, it always guarantees that

the real results of the requesting range can be recovered via the combination of the

results of several fabricated queries. The combination is synchronized to user in the

Slip. Algorithm 9 gives a step-wise demonstration of QRF.

5.4.4 Security Analysis

In this subsection, a theoretical analysis on the capability of access pattern obfuscation

provided by ReFlat is displayed .
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Theorem 6. (Mitigation of L1-Leakage): ReFlat constrains L1-Leakage with probability

under 1
K
.

Proof. (order) At any time, the data blocks can be ordered by their access frequen-

cies. From the perspective of adversaries, for each ranking in the order, there are nK

blocks that have the same number of access times, due to the K-duplication mechanism.

Therefore the probability of revealing the real order, Prorder, suffices

Prrankinformation = Πm
i=1(niK)−1 ≤ 1

K
(5.1)

, where m denotes the length of ordered data block sequence.

Theorem 7. (Mitigation of L2-Leakage): ReFlat constrains L2-Leakage with probability

under 1
K
.

Proof. (number of access times) After processing ν query requests (point/range queries)

in compromised and query boundary disclosed memory, a data block is accesses for a

times from the observation of adversaries. In ReFlat, each access may be caused by a

dummy request produced by the duplication and frequency distortion (for point query).

Thus, without further knowledge, the probability Prtimes that a is the real accessed time

suffices

Prtimes =
1

a
≤ 1

K
. (5.2)

, where a≫ K.
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Theorem 8. (Mitigation of L3-Leakage): ReFlat constrains L3-Leakage with probability

under 1
K
.

Proof. (requested block of individual query) For each point query, Np random dummy

requests are generated to distort the access frequency. After executing K-duplication,

Np ·K blocks are requested from the view of adversaries. The probability that he finds

out the real requested block is

Prpoint =
1

Np ·K
≤ 1

K
. (5.3)

Theorem 9. (Mitigation of L4-Leakage): ReFlat constrains L4-Leakage with probability

under 1
K
.

Proof. (query range or range scope) According to the Query Reconstruction Function,

each range query is first expanded to align with the scope of the segment. Then for each

of the K isomorphic structures, the expanded dummy ranges are randomly segregated

to reconstruct Nri dummy queries. Only one combination out of the dummy queries can

recover the real request range. Thus, the probability of recover the query range suffices

Prrange = ΣK
i=1Σ

Nri
t=1

(
t

Nri

)
≤ 1

K
. (5.4)
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Corollary 1. ReFlat facilitates the query processing in compromised and query boundary

disclosed cloud memory to achieve K∗-ORFP privacy preservation.

Proof. Recall the Definition 10, since Theorem 6, 7 , 8, 9 hold for ReFlat protocol, we

can say that K∗-ORFP is satisfied for the queries pre-processed in ReFlat.
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Figure 5.8: Perturbation on Request Frequency Patterns
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5.5 Experimental Results

In this section, the experimental results of the proposed scheme are presented in 3 parts,

namely the effectiveness of request frequency pattern hiding, the performance compar-

isons against other access frequency hiding schemes and the skewness on the internal

settings of system parameters. All the experiments are conducted on a local machine (i.e.

network latency ignored) with skylake i7-6700 CPU, 16G RAM. ReFlat program code

is launched inside Intel SGX (v1.0) enclave instance running in the Hardware Mode.

The “MaxStackSize” is pre-configured as 4MB for a single thread of ReFlat module

throughout this section. To highlight the performance of access pattern hiding, all the

data blocks and queries are processed in plaintext.

5.5.1 Effectiveness

In this part, ReFlat’s security capability of frequency pattern obfuscation is evaluated

using the YCSB dataset [24]. Every single record (data block) of the dataset is composed

of 10 data fields, each with 100 bytes, and 8 bytes primary key. To illustrate the

access frequency pattern over each block, 64 records are created and sorted by the

primary key. The total size is around 63KB. I configure the two duplication functions

of ReFlat as global duplication factor K = 8, distortion scaler Np = 2 for frequency

distortion function, the number of segments in each duplication structure M = 4 for

query reconstruction function. For handling the basic point and range queries, a minimal
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query processor is fabricated to resolve and execute such simple queries3. For point

queries, it simply traverses the dataset to search for corresponding primary key. For

range queries, it accesses the requested blocks by batch when the first block of the range

is found.

W.r.t point query, 100 queries in the form of YCSBWorkload-C are generated. For range

query, YCSB Workload-E with 100 queries whose average querying scope is adjusted to

around 4 records (blocks) is used. The adversarial program code counts the number of

access times over each block based on whether it is actually included in the final result

sets. The baseline solution for comparison directly process the query workload in the

aforementioned tiny query processor. Figure 5.8(a) and (c) show the original access

frequency patterns after executing the point and range queries through the baseline

function respectively. The two figures reflect the same patterns as can be observed by

adversaries in compromised and query boundary disclosed memory. Then process the

same query workloads through ReFlat prior to the tiny query processor and plot the

corresponding request frequency patterns in Figure 5.8(b)(d). It is obvious to find that,

for each number of accessed times in the figure, there exist at least K blocks sharing the

same value. Also, the access frequencies ω over individual blocks are randomly modified.

3The data storage is in plaintext to highlight the performance of access frequency pattern hiding
mechanisms of all the schemes studied in the following experiments. They are all independent of what
searchable encryptions are applied in the query processors.
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5.5.2 ReFlat Performance

Comparing to Insecure Baseline and Oblivious Data Access Solutions
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Figure 5.10: ReFlat vs. Baseline and oblivious data access schemes on overall perfor-
mance

This part evaluates the performance of ReFlat in obfuscating the memory accesses by

comparing it with bare insecure baseline (i.e. directly through the aforementioned tiny

query processor) and two mainstream oblivious data access protocols, namely Yang et
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al.’s storage shuffling schemes and the non-recursive Path ORAM [96]. The overall query

processing time is recorded from receive time to the point when all query results are col-

lected. Four experimental setups are prepared respectively for the insecure baseline, the

proposed scheme, Yang et al.’s, and non-recursive Path ORAM. In processing through

the insecure baseline, all the queries are executed in the aforementioned tiny query pro-

cessor (as seen in 5.5.1) directly. In ReFlat setup, maintaining the same as the previous

test, the query requests are handled by ReFlat with two working functions inside the

Intel SGX enclave before they are executed in the tiny query processor. In the setup of

Yang et al.’s approach, the primary keys of YCSB records act as the indexes of keywords

database in its original design while searching. In both Yang et al.’s setup and Path

ORAM setup, the server-side building blocks of their designs are embedded in the tiny

query processor to replace the direct data retrieve operations. Their client-side building

blocks are located in the local cache with the query processor so that the network delay

can be ignored. Note that, the sorted indexes are not compatible with the security model

of Path ORAM protocol, so the data accesses of range queries are treated as independent

block accesses in Path ORAM setup.

In this experiment, the working size of YCSB dataset contains 128 records. In ReFlat

setup, the duplication scale is configuredK = 16, the distortion scaler is set toNp = 2 for

frequency distortion function, and the number of segments in each duplication structure

is M = 4 for query reconstruction function. In Yang et al.’s setup, the number of lower-

level index groups recorded in an index group is configured as m = 4 in building its

123



Chapter 5. Access Frequency Pattern Hiding for General Query Processing

hierarchical index structure. In Path ORAM setup, the bucket size is set to Z = 4. For

each trial, the same workload varying from 50 to 300 original queries are given to both

setups. For point query, YCSB Workload-C is used. For range query, YCSB Workload-E

is used and the average querying scope is adjusted to around 15. Note that, the trial runs

of YCSB Workload-E are excluded in Yang et al.’s setup, since Workload-E is composed

of range queries while the Yang et al.’s scheme is designed for point keyword queries.

As plotted in Figure 5.9(a)(b), compared with the baseline, non-recursive Path ORAM

is 34x− 39x slower on average than the insecure baseline in dealing with point queries

and 295x− 346x slower in the range queries. Yang et al.’s approach shows 26x− 30x

slower on average for point queries. With moderate duplication factor, K = 16, ReFlat

outperforms Path ORAM with 6.7x faster on average for point query and 47.1x average

faster for range queries reaching 5.3− 5.7x and 6.2− 6.7x response time of the baseline

respectively for point and range queries. In comparison with the insecure baseline, the

processing speed is moderate and acceptable for application scenarios without strict

latency requirement. The higher efficiency yields in processing range queries can be

attributed to the preservation of sorted indexes in ReFlat mechanism. It can be inferred

that the increasing average querying scope will scale up the advantage of ReFlat in

processing range queries. In Figure 5.10(a), the system throughput (single thread) of

the four setups are exhibited in colored curves. In Figure 5.10(b), the average processing

latency for each query are demonstrated with the request intervals varying from 1ms to

50ms. The latencies of the Path ORAM setup over Workload-E are hidden, due to the
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throughput of processing range query with Path ORAM being extremely low.

Comparing to Existing Fake Query Injection Solution

To the best of my knowledge, ReFlat is the only wrapped up solution that provides

request pattern hiding in the CQBDM threat model without the aid of stand-along

proxy (with unknown security primitives and guarantees) or deferring the processing of

queries. To evaluate the performance with state-of-the-art schemes, I reforge a sketched

read-only prototype of PANCAKE and pre-set the query batching size as B = 4. Since

a YCSB dataset with 28 records (i.e., KV-pairs, in PANCAKE) is used, thus it is rea-

sonable to fix the replica threshold α = 1
n
= 1/128. The settings of ReFlat remain the

same as in Section 5.5.2. Both ReFlat and PANCAKE proxy are run in single thread

mode. Since PANCAKE only supports point query, YCSB Workload-C is applied in

the evaluation, and the average processing latency for each query is measured with time

intervals between individual requests changing from 1ms to 50ms. The evaluation results

are plotted in Figure 5.11(a).

For PANCAKE, the latency drops at the beginning (2ms interval trials) and turns to be

stable alongside the increase of query interval reflecting the optimal throughput capa-

bility is near 500 operations per second under the settings here. For ReFlat, the latency

sharply goes down with the increase of interval, and then levels off after reaching 5ms

which confirms the average processing time for individual query in underlying settings.

As illustrated in stable scope on the two curves, PANCAKE is 2.1x faster than the
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Figure 5.11: ReFlat vs. PANCAKE

proposed ReFlat module.

I also evaluate the stand-alone storage cost both of schemes. PANCAKE uses fixed

footprint to accommodate the 2n replicas of keys, each with 8 bytes. In ReFlat, the

implementation uses 4 bytes to label the n records and the K duplication structures

(fixed as K = 16). As shown in Figure 5.11(b), without enabling the UpdateCache,

PANCAKE requires up to 2x storage space in the proxy than the usage of ReFlat in

the enclave when n/K increases.

5.5.3 Changing value of K

With the changing value of duplication factor K, the processing time of 100 queries for

both point (YCSB Workload-C) and range queries (YCSB Workload-E) is recorded. In

processing the queries, YCSB dataset and the other parameters of both two working

functions maintain the same value as previous experiments. Let K vary from 8 to 40
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and calculate the amortized processing time for each query request. The changes on

the amortized ReFlat response time are also collected for each request. As reflected in

Figure 5.12, on one hand, the amortized time cost of processing single query shows a

linear growth with increasing K for both point and range queries. This observation is in

accordance with the increase in the actual number of dummy queries processed. On the

other hand, the amortized response time of ReFlat module remains stable along with

the growth of K, while slightly increasing in running range queries. The reason for the

difference is that the increasing number of duplication structures leads to extra time

usage for reconstructing the dummy queries over the duplicate ranges.
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5.6 Summary

In this chapter, I formally defined the access frequency leakage carrying sensitive in-

formation of query requests that can be obtained in compromised and query bound-

ary disclosed memory in the cloud environment. Then I propose the counter solution,

namely ReFlat, whose K-duplication mechanism notably mitigates the leakage for point

and range queries over encrypted data storage. Running inside the Intel SGX enclave,

ReFlat realizes K∗-ORFP privacy preservation without modifying the underlying query

processor and eliminates the security risk of involving intermediate proxy. ReFlat signif-

icantly outperforms ORAM solutions on overall efficiency and simultaneously achieves

higher robustness and smaller cost on extra buffer space than existing schemes based on

fake query injection.
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Conclusions

The thesis thoroughly studies the current progress of privacy-preserving query processing

from aspects of both idea and methodology. From the massive survey works, I carefully

select three existing research problems to explore and provide my research outcomes by

proposing robust and practical solutions. In each proposed scheme, the threat model

and security model are clearly stated, and both the theoretical analysis and experi-

mental proofs are given to prove the claimed security capabilities. The evaluations of

system performance are conducted with simulations, benchmarks and real-world dataset

tests. The following sections generally conclude the three subjects and list the potential

improvements and extensions to be completed in the future.
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6.1 Conclusion of Subjects

A. Memory-secure Database Adaptation In this subject, I first demonstrate that even

with the most recent hardware-based security technology such as Intel SGX, a hypervisor

can still sniff key database operations running in its guest virtual machine (VM) such as

the frequency and type of SQL queries, by monitoring the access pattern of this VM’s

main and secondary memory. To ensure security against such access pattern monitoring

attacks, I then propose ProDB, a minimal adaptation of a conventional DBMS with

both hardware enclave and Oblivious RAM protocol. To enhance its performance for

practical use, I also design a SQL-aware Path ORAM protocol called SaP ORAM, which

optimizes the classic Path ORAM protocol under practical database workload. Through

security analysis and extensive experimental results, I prove and show ProDB achieves

high security and throughput on commodity cloud hosting servers.

B. Privacy-preserving Fuzzy Keyword Search To enhance memory-level security of multi-

keyword fuzzy search, a widely occurred query request, I take the initiative to apply TEE

technology to our protocol design which provides hardware-based tamper-proof enclaves.

Then I propose the Edit Distance-based Obfuscation Scheme to further protect the

query process executed outside TEE against access pattern leakage. With concerns of

practicality and performance, I also propose the two-layer fuzzy index structure and

Trend-aware Cache. The former addresses the space limitation of TEE memory for

searching large datasets, while the latter optimizes the cache utility of TEE with a

trend-aware coordinator to effectively reduce the communication overhead.
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C. Access Frequency Pattern Hiding for General Query Processors In this work, I study

the threats model in which adversaries know both the exact in-memory flow of ac-

cessed blocks and the processing boundary of each request. Under these settings, he can

precisely observe the access frequency patterns in both aggregated and independent per-

spectives over queries. Then I propose the ReFlat module as a counter solution through

the K-duplication obfuscation mechanism. ReFlat securely runs inside the hardware

enclave provided by Intel SGX and requires no modifications on query processors. The

K-duplication mechanism is further optimized with two working functions to practically

deal with point and range queries. Compared with the state-of-the-art schemes using the

similar idea, that is, fake query injection, ReFlat eliminates the security risk of involving

intermediate proxy and achieves higher robustness under the proposed threat model. I

exhibit comparative experiment results showing that ReFlat exceeds existing schemes

providing equal security level in multiple system performance metrics.

6.2 Future Work

First, the current TEE technology used in my studies is Intel SGXv1, while in the next

version of Intel SGX, namely SGXv2, the larger and expandable EPC is expected to be

enabled. When SGXv2 is maturely supported in CPU and OS, the proposed systems

shall be re-designed to make full use of the feature and the overall performance shall be

re-evaluated. Secondly, the schemes proposed for privacy-preserving query processing do

not consider the data/index updating. Therefore, in the future, I would like to complete
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the algorithms to support dynamic data for higher applicability in existing applications.

Thirdly, I plan to engage in the privacy issues of other types of query and data services.

For example, one of my ongoing research works is about privacy-preserving data oracle of

a smart contract. It provides a desensitization function inside the SGX enclave to allow

contract owners to truncate sensitive information from retrieved external data before

attaching it to the transactions.
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