

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

CONTINUOUS-TIME SERVICE NETWORK

DESIGN: NEW MODELS, RELAXATIONS, AND

SOLUTION METHODS

SHU SHENGNAN

PhD

The Hong Kong Polytechnic University

2022

The Hong Kong Polytechnic University

Department of Logistics and Maritime Studies

Continuous-Time Service Network Design: New Models,

Relaxations, and Solution Methods

Shu Shengnan

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

April 2022

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Shu Shengnan

Acknowledgements

My PhD studies have been an ongoing life-changing experience, one full of challenges,

both academically and personally. I would like to express my gratitude to all those

who have helped me during this long and arduous journey. Without their help and

encouragement, I would not have been able to pluck up my courage to complete this

journey.

First and foremost, I would like to express my sincere appreciation to my PhD

supervisor, Professor Zhou Xu, for the opportunity to learn from him, as well as for

his valuable suggestions, patient guidance and constant encouragement during my

PhD studies. I greatly admire his expertise, rigor, and enthusiasm as an academic,

and also respect his personality and diligence, as well as his timely availability to

provide valuable feedback for my studies and firm support when I get stuck. It has

been my honor to benefit from his guidance and supervision both academically and

personality-wise, and is something that I will treasure for the rest of my life.

I would also like to thank Professor Roberto Baldacci for his instruction and help

throughout my studies and work. It was truly an honor for me to take his graduate

courses and then to collaborate with him in my research work. His professional and

academic enthusiasm have greatly impressed me. I have gained invaluable knowledge,

techniques, and experience from him, and his support has been vital for the completion

of my thesis.

During my PhD studies, I have also had the great honor of research collaboration

with Professor Chung-Yee Lee. It has been such a rewarding and joyful experience to

work with Professor Lee, and his advice has been invaluable to me.

viii

I wish to thank the wonderful faculty members for their instruction and assistance

during my studies at the Hong Kong Polytechnic University. In particular, I greatly

appreciate Professor Pengfei Guo, Professor Li Jiang and Professor Miao Song for their

excellent PhD courses. I would also like to acknowledge the assistance of the kind staff

in the Department of Logistics and Maritime Studies, especially Ms Irene Lam, Ms

Lorraine Leung and Ms Anne Wong.

My special thanks are also extended to Professor Zhixing Luo, Professor Hu Qin

and Professor Qinghua Wu, who first introduced me to the field of operation research

during my master’s studies, and then continued to support me during my PhD studies.

Their suggestions and guidance strongly encouraged me to pursue a PhD in this field.

I am very grateful for the significant influence that they have had on my academic

career.

Moreover, I am grateful to Professor Qiang Meng, Professor Jin Qi, and Professor

Shuaian Wang for serving on my thesis committee, and for their important and insightful

suggestions on my thesis.

Finally, I would like to express my deepest appreciation to my family and friends

for their constant support and encouragement.

Abstract

This thesis aims to enrich both deterministic and robust optimization techniques for

the continuous-time service network design problem (CTSNDP), which occurs widely

in practice. It consists of two studies, with the first one incorporating holding costs

and the second one further considering uncertain travel times.

The CTSNDP is to minimize the total operational cost for consolidation carriers

by optimizing the schedules of transportation services and the routes of shipments

for dispatch, which can occur at any time point along a continuous-time planning

horizon. In order to be cost effective, shipments often wait to be consolidated, which

incurs holding costs. Holding costs not only contribute to the overall total cost, but

also affect the decisions on routing and consolidation plans in the CTSNDP. Despite

their importance, holding costs have not been considered in existing exact solution

methods for the CTSNDP, since incorporating them significantly complicates the

problem. The correctness of all these methods relies on the assumption of zero holding

costs. To tackle this challenge, the first study of this thesis develops a new dynamic

discretization discovery (DDD) algorithm, based on the typical time-expanded network,

that can solve the CTSNDP with holding costs (CTSNDP-HC) to exactly optimum.

The algorithm is based on a novel relaxation model, a new upper bound heuristic,

and a new discretization refinement procedure. Results of computational experiments

demonstrate the effectiveness and efficiency of our proposed algorithm, both in finding

optimal solutions to the CTSNDP-HC and in producing tight lower and upper bounds.

The experimental results also show the benefits of considering holding costs in the

CTSNDP-HC.

x

Due to various uncertainty factors, such as weather and traffic conditions, actual

travel times often fluctuate. Travel time uncertainty is thus a vital source of variability

in the CTSNDP-HC. This motivates the second study of this thesis on the robust

CTSNDP-HC. With uncertain travel times incorporated, solutions to the robust

CTSNDP-HC can lead to service network designs that not only provide reliable services

to transit shipments, but also minimize their operational costs. However, the time-

expanded network used in modeling and solving the deterministic CTSNDP-HC turns

out to be inappropriate for incorporating uncertain travel times in the robust CTSNDP-

HC. To address this challenge, a new deterministic optimization model for the CTSNDP-

HC based on the physical network is newly proposed. This new model formulates the

time component of the CTSNDP-HC by a set of variables and constraints, with their

indices indicating shipment consolidations. Based on this, we derive a two-stage robust

optimization model for the robust CTSNDP-HC, using a probability-free budgeted

uncertainty set to incorporate uncertain travel times. To solve the robust CTSNDP-HC,

we apply a classical column-and-constraint generation (C&CG) method, and then

enhance the method via some novel optimization techniques of dynamic parameter

adjustment. Results of computational experiments demonstrate the effectiveness and

efficiency of the two-stage robust optimization model and the enhanced C&CG solution

method, as well as the benefits of incorporating uncertain travel times in the robust

CTSNDP-HC

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1

1.1 Background . 1

1.2 Literature Review . 9

1.2.1 Deterministic Service Network Design Problems 9

1.2.2 Robust Service Network Design Problems 12

1.3 Summary of Contributions . 16

2 Deterministic Continuous-Time Service Network Design with Holding

Costs 19

2.1 Introduction . 19

2.1.1 The SNDP with Holding Costs 21

2.1.2 Discretized versus Continuous-Time Models 24

2.1.3 Outlines . 24

2.2 Modeling the CTSNDP-HC on a Finite Time-Expanded Network . . . 26

2.2.1 Representing Feasible Solutions 26

2.2.2 A Time-Index Formulation for the CTSNDP-HC 29

2.2.3 Existence of a Finite Time-Expanded Network for the CTSNDP-HC 31

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC . . . 34

2.3.1 An Overview of the Dynamic Discritization Discovery Algorithm 35

xii Table of contents

2.3.2 A Relaxation of the CTSNDP-HC 37

2.3.3 Strengthening Relaxation SND-HC-R(DT) 44

2.3.4 Initial Partially Time-Expanded Network 46

2.3.5 Computing a Feasible CTSNDP-HC solution 47

2.3.6 Refining a Partially Time-Expanded Network 48

2.3.7 Convergence and Optimality . 53

2.4 Computational Experiments . 54

2.4.1 Experiments based on CTSNDP Benchmark Instances 55

2.4.2 Experiments on Newly Generated CTSNDP-HC Benchmark In-

stances . 65

2.5 Summary . 73

3 Robust Continuous-Time Service Network Design with Uncertain

Travel Times 75

3.1 Introduction . 75

3.2 Problem Descriptions . 78

3.2.1 Deterministic CTSNDP-HC . 78

3.2.2 Robust CTSNDP-HC . 82

3.3 Mixed Integer Programming Formulations 85

3.3.1 MILP Formulation of Deterministic CTSNDP-HC 85

3.3.2 Two-Stage MINLP Formulation of Robust CTSNDP-HC 88

3.4 A Column-and-Constraint Generation Solution Method 90

3.4.1 MILP Reformulation of the Second-Stage Problem 91

3.4.2 Algorithm Framework . 97

3.5 An Enhanced Column-and-Constraint Generation Solution Method . . 99

3.5.1 Parameterizing the Two-Stage MINLP Model 101

3.5.2 Algorithm Framework . 102

3.5.3 Bounding Parameter Values . 104

3.5.4 Initialization of Parameter Values 106

3.5.5 Adjustment of Parameter Values 107

Table of contents xiii

3.5.6 Stopping Condition and Convergence Guarantee 109

3.6 Additional Accelerating Strategies . 111

3.6.1 Size Reduction for the Subproblem 111

3.6.2 Bundle of Worst-Case Scenarios 113

3.7 Computational Experiments . 115

3.7.1 Instances and Parameter Settings 115

3.7.2 Computational Performance . 117

3.7.3 The Price of Robustness . 125

3.8 Summary . 129

4 Conclusions and Future Works 131

4.1 Major Results and Findings . 131

4.2 Future Research Directions . 134

References 139

List of figures

2.1 Examples of SNDP solutions . 21

a Network D: (c, f, τ) on arcs . 21

b Instance data . 21

c Without holding costs . 21

d With holding costs . 21

2.2 Best-case analysis of cost saving for incorporating holding costs 23

2.3 Examples showing that for the CTSNDP-HC the transformation of

Boland et al. [20] cannot be applied . 32

a Network D: (c, f, τ) on arcs . 32

b Instance data . 32

c An optimal solution for the CTSNDP 32

d Alternative optimal solution for the CTSNDP 32

2.4 Illustration of expression (2.22) . 40

a Time points in Ti . 40

b Value of function ξi(t) . 40

2.5 Illustration of the mapping functions ρ(.), σ(.) and ξ(i) 43

2.6 Comparison of partially and fully time-expanded networks 63

2.7 Results about upper bound UB1 showing the average and maximum

cost saving percentages gained by the CTSNDP-HC solutions over

CTSNDP-based solutions . 69

a Distribution A . 69

xvi List of figures

b Distribution B . 69

c Distribution C . 69

2.8 Ratios of the holding costs and holding times 70

a Distribution A . 70

b Distribution B . 70

c Distribution C . 70

2.9 Sensitive analysis on the per-unit-of-demand-and-time cost hk
i 72

3.1 An Example of network GC constructed from a given nominal timely-

implementable flat solution (P , C) . 93

a Routing plan P, consolidation plan C, and consolidations along the

path P k for each commodity k ∈ K 93

b The resulting network GC . 93

3.2 Performance comparisons of EC&CG to EC&CG_BOUND 122

a AVG Time . 122

b UB Improvement . 122

3.3 Convergence curves over time . 123

a Convergence curves of EC&CG_BOUND 123

b Convergence curves of EC&CG 123

3.4 Performance of the robust solution under the worst-case scenario and

nominal scenario . 126

3.5 Comparison of robust solutions and stochastic solutions 128

List of tables

2.1 The consolidation plan for the example of Figure 2.1-(c) 28

2.2 Characteristics of “untimed” C instances 56

2.3 Summary results on the CTSNDP instances 59

2.4 Summary results on the CTSNDP-HC instances 59

2.5 Summary results on the CTSNDP-HC instances by network class . . . 61

2.6 CTSNDP-HC instances: holding costs, holding times and consolidations 64

2.7 Connectivity properties of the new CTSNDP-HC instances 67

2.8 Time flexibility of the new CTSNDP-HC instances 67

2.9 Summary results on the new CTSNDP-HC instances 68

2.10 Sizes of the partially and fully time-expanded networks and consolidations 70

2.11 Analysis of the difference in terms of timed arcs used between upper

bounds UB1 and UB . 71

3.1 Characteristics of “untimed” R instances 116

3.2 Details of the normal distributions used for generating “timed” instances116

3.3 Computational results on small-sized instances 118

3.4 Computational results on medium-sized instances 119

3.5 Computational results on large-sized instances 120

3.6 Time of solving the master problems and the subproblems 121

Chapter 1

Introduction

1.1 Background

With the rapid development of cross-region trading, especially for e-commerce, shipment

consolidation has become vital in the freight transportation industry. Particularly

in less-than-truckload (LTL) transportation, where each shipment is relatively small

compared to the capacity of trailers, carriers often need to consolidate the shipments for

cost effectiveness when they are deciding how to route the shipments through a network

of terminals. At each terminal visited, a shipment may be unloaded from an inbound

trailer and then loaded onto an outbound trailer, whereby trailers can be shared with

other shipments. Shipment consolidation is challenging, as it requires coordinating the

transportation of various shipments in both space and time. Accordingly, a freight

carrier has to decide on the routing and consolidation plans for the shipments, and also

has to design the shipping services for the execution of the plans, so that all service

standards are met for the routing of the shipments, with the total cost also being

minimized. This results in the well-known Service Network Design Problem (SNDP)

[33, 109].

2 Introduction

Continuous Time and Holding Costs

The Service Network Design Problem (SNDP) has for decades since the 1990s been

one of the most widely studied problems in the operations research community [38, 47],

due to its rich practical applications as well as theoretical significance.

Decisions in the SNDP have both temporal and spatial components, as when and

at which terminals to pick up a certain commodity for a certain service both need to

be determined. It is known that the SNDP is strongly NP-Hard [56], and thus it is

unlikely that there exists a polynomial time algorithm that can always produce an

exact optimal solution to the SNDP in polynomial time. To explore heuristic solutions

to the SNDP, the temporal component of the problem is often modeled approximately

by a discretization method [72, 2, 44, 37]. Through discretization, the time horizon is

split into several time intervals, so that instead of stating the exact departure time (e.g.

7:10 pm), the time interval (e.g., between 7 pm and 8 pm) can be determined, during

which a commodity may be dispatched from a terminal. As a result, the SNDP can be

modeled and solved approximately based on a discretized time-expanded network, in

which every node represents a pair of a geographic terminal and a discrete time interval,

and every arc that links two nodes represents a shipping service with departure time

and transit duration defined by the time interval of the two nodes [2, 50, 51, 86].

The discretized time-expanded network provides a flexible modeling paradigm for

the SNDP, that is, a time-index (TI) formulation, and this makes it much easier to

develop solution methods. However, in such solution methods that are based on a

discretized time-expanded network, it is challenging to choose an appropriate time

discretization level that directly impacts the solution difficulty and quality. Such

solution methods also fail to guarantee to produce a continuous-time optimal solution

to the SNDP, leaving two research questions to answer: (1) Does there always exist

a finite fully discretized time-expanded network that is sufficient for the solution

methods to generate a continuous-time optimal solution to the SNDP? Boland and

Savelsbergh [24] noted that for some problems, the existence of such a fully discretized

time-expanded network is not straightforward. For these kinds of problems, such as

1.1 Background 3

the continuous-time inventory routing problem, the optimal discretization level of the

network may be smaller than 1 and is difficult to identify [75]. (2) If a finite fully

discretized time-expanded network exists, how can the continuous-time optimal solution

to the SNDP be produced efficiently? Boland et al. [20] noted in their paper that for a

week-long planning horizon, there will be 2,016 time copies for each physical terminal

under a 5-minute discretization level, for which the resulting discretized time-expanded

network is too large to be applied in the development of efficient solution methods.

Ford Jr and Fulkerson [50, 51] and Skutella [94] also mentioned that the size of the

time-expanded network depends on the granularity of the time discretization and

the number of discretized time points, and that it can grow exponentially with the

problem size, significantly impacting the computational tractability. Hence, solving

continuous-time optimal solutions for the SNDP based on a fully discretized time-

expanded network is well known to be computationally challenging. This motivates

studies on the development of efficient solution methods for the Continuous-Time

Service Network Design Problem (CTSNDP).

Solutions to the CTSNDP indicate accurate departure times and consolidation

plan for shipments. Boland et al. [20] proved the existence of a finite fully discretized

time-expanded network for the CTSNDP, and they proposed a Dynamic Discretization

Discovery (DDD) algorithm to solve the optimal solution for the CTSNDP. This DDD

algorithm is based on a partially time-expanded network that contains only a subset of

the time points of the fully time-expanded network, and where arcs are constructed to

hold some expected properties. The DDD algorithm repeatedly solves an SNDP on a

partially time-expanded network, and refines the partially time-expanded network by

following certain refinement strategies. The algorithm stops when the optimal solution

obtained from the SNDP can be converted to an optimal solution of the CTSNDP.

Marshall et al. [81] further extended this DDD scheme for the CTSNDP based on

an interval-based network. However, all these studies on the DDD algorithm and its

extension [20, 81] assume that holding freight at a terminal incurs no additional cost.

They claim that many carriers operate their own holding terminals where holding

4 Introduction

commodities will not increase the total cost, and that if the carriers use third-party-

owned holding terminals, the transportation savings achieved by the consolidations

can fully cover the holding costs. The correctness of their DDD algorithms for the

CTSNDP rely on this zero holding costs assumption, as these methods depend on a

special solution structure that is only valid when the holding costs are zero [20, 62].

However, the holding costs do indeed play an important role in the CTSNDP, and

thus need to be incorporated. First, in practice, holding commodities in terminals

always incurs additional costs, adding to the total cost. Even in carriers’ self-owned

holding facilities at terminals, there are some operating costs, such as rental and labor

costs, which need to be shared among the commodities. The holding costs are often

different in different terminals and for different commodities [70, 99, 88]. It has been

widely noted that consolidations cause longer delivery times, and hence induce holding

costs [61]. Many existing studies on shipment consolidation take into account holding

costs [98, 100, 25, 88, 70, 99], which are also referred to as a consolidation penalty cost

[100]. Second, although some studies claim that the freight holding costs often make

up less than 5% of the total operating cost, for LTL carriers who often spend millions

of dollars on transportation in a week, a small percentage improvement in operating

costs means a significant amount of monetary saving, perhaps meaning the difference

between profitability and losing money. Furthermore, as observed by Rudi et al. [88] in

their study on the capacitated multi-commodity network flow problem, the choices of

transport modes with holding costs taken into account are significantly different from

the choices that are made without considering the holding costs, resulting in different

degrees of increase in the total cost of the latter’s choices. Thus, it is of great interest

to investigate, as is done in this thesis, how the holding costs affect the optimal total

operating cost as well as the optimal decisions on shipping service design, shipment

transportation, and shipment consolidations, in the CTSNDP.

Due to their importance, holding costs have been taken into account in some

existing studies on the SNDP and its variants [4, 3, 86, 63]. However, all solution

methods proposed in these studies are based on the discretization scheme. Similar to

1.1 Background 5

the SNDP, the solution methods based on the discretization scheme for the SNDP

with holding costs cannot guarantee to produce continuous-time optimal solutions.

Despite the importance of the holding costs in the SNDP, neither the existence of the

finite fully discretized time-expanded network nor the efficient exact solution method

for the continuous-time SNDP with holding costs are known in the literature. As we

mentioned earlier, the up-to-date existing methods proposed for finding the optimal

solutions to the CTSNDP [20, 81] are not valid when the holding costs are positive.

Marshall et al. [81] noted in their paper that it is a challenging extension for the

CTSNDP when it is no longer free to hold freights for consolidation. To incorporate

holding costs, one needs to optimize the decisions on locations and times for holding

the commodities, which significantly complicates the problem. These motivate the first

study of this thesis to develop the first exact solution method for the Continuous-Time

Service Network Design Problem with Holding Costs (CTSNDP-HC).

Uncertainty of Travel Times

Classical deterministic optimization models assume that all problem parameters are

known perfectly in advance. However, in many real-life problems, such as the SNDP,

several critical parameters, such as travel times and demands, are uncertain. Hence,

without incorporating such uncertainties, deterministic optimization models cannot

reflect the actual dynamic behavior of the uncertain parameters of these complex

real-life problems. Moreover, decision-makers often prefer robust solutions that exhibit

good performance over all the possible realizations of the uncertain parameters [74].

One of the common approaches to model uncertainty is to apply stochastic pro-

gramming, which was introduced by Dantzig [39] in 1955. This approach assumes

that the probability distribution of the uncertain parameters is known in advance,

and the decision-maker minimizes/maximizes the expected objective value over a set

of possible realizations of the uncertain parameters. Despite the great influence and

theoretical impact of stochastic programming [89, 19, 43], the limitations of stochastic

programming are obvious [83, 90, 30, 8]. First, the precise distribution of the uncertain

6 Introduction

parameters is hard to be identified, whereas the result of the stochastic programming

is sensitive to the considered distribution. Second, stochastic programming models are

often based on a given set of possible realizations of uncertain parameters, referred to

as scenarios. The solution quality of the stochastic programming relies on the com-

pleteness of the considered scenario set, whereas the size of the stochastic programming

model usually increases with respect to the number of scenarios considered. To find

the best solution, especially for large-sized instances, it is necessary to incorporate

a large number of scenarios, which often makes the stochastic programming models

hard to solve. Moreover, stochastic programming models are only concerned with the

average performance of the system by minimizing the expected total cost, and hence

they are powerless to handle risk aversion.

In view of such limitations of stochastic programming, another common approach,

named robust optimization [96, 10, 11, 8], can be applied to model uncertainty. Robust

optimization assumes a probability-free uncertainty set and optimizes for the worse-

case realization over all possible realizations within the uncertainty set. It only

requires certain modest assumptions about the probability distributions of the uncertain

parameters, and can preserve computational tractability of the deterministic problem.

For example, compared to precise probability distribution, it is often much easier to

identify lower/upper bounds or discrete collections of possible values for the uncertain

parameters. Utilizing bounds on the uncertain parameters to construct the uncertainty

set, various robust optimization approaches have been developed, such as the robust

optimization approaches based on the box uncertainty set [96, 11, 71], ellipsoidal

uncertainty set [10, 17, 71] and polyhedral uncertainty set [16, 12, 71]. To reduce

the conservatism of robust optimization solutions due to optimizing for the worst-

case scenario, the adjustable/adaptive robust optimization methods [9, 97, 14] with

multiple decision stages, and the budget-of-uncertainty approaches [16, 15, 29], which

control how much the uncertain parameters can deviate from their nominal values, are

widely utilized. More recently, distributionally robust optimization has been used to

tackle optimization problems under distribution uncertainty [26, 58, 41]. In contrast

1.1 Background 7

with uncertainty-set based robust optimization, which plans against the worst-case

realization in the uncertainty set, distributionally robust optimization plans against

the worst-case distribution in the ambiguity set of the feasible candidate distributions.

Most of the existing studies that incorporated uncertainties in service network design

focus only on demand uncertainty. These studies mainly applied either a scenario-based

stochastic programming approach to optimize for the average performance over a set of

possible demand realizations [79, 66, 6], or they applied a robust optimization approach

to optimize for the worst-case demand realization in a probability-free uncertainty set

[108, 5, 73]. For all the existing methods that incorporated the travel time for the

SNDP with demand uncertainty, the classic TI formulation of the deterministic SNDP

based on a discretized time-expanded network was extended [79, 66, 6, 108].

In addition to the demand, travel time is also an important source of uncertainties

in the design of service networks. Due to various uncertain factors, such as weather

and traffic conditions, actual travel times fluctuate and thus are unknown to carriers

when they design service networks. Uncertain travel times often cause delays to

transportation services in actual operation, so that commodities may not be delivered

on time. Such disruptive impacts will result in a penalty cost for late delivery or

may require some additional express services, which are very costly. With uncertain

travel times incorporated, the robust solutions can not only provide reliable services

for transit shipments, but also minimize their operational costs. As the uncertainty of

travel time is so critical to the SDNP, its disruptive impacts on actual operation need

to be taken into account, which further complicates the optimization problem.

Despite its great importance, travel time uncertainty has seldom been taken into

account in studies of the SDNP due to its complexity. In addition, the few existing

studies that have considered travel time uncertainty in the SNDP have the following

limitations, which have motivated the second study of this dissertation.

First, all existing studies that have incorporated travel time uncertainty in the

SNDP had only limited consideration of delay propagation caused by consolidations. In

the SNDP, any late delivery of a shipment is caused not only by its own transportation

8 Introduction

delays, but also by the transportation delays of other shipments that need to be

consolidated with it. However, most the existing studies failed to take into account the

disruptive impact of delays caused by consolidations [78, 114, 76]. Those few studies

that considered the consolidation delay propagation restricted each service to only

being used at most once within the whole time horizon, which makes the problem

simpler than the classical SNDP defined over the time-expanded network [42, 68].

Second, for those existing studies of the SNDP that incorporated travel time

uncertainty but had restricted considerations of delay propagation, only a scenario-

based stochastic programming model and a simulation model have been adopted [42, 68].

These studies required complete probability information about travel time realizations,

which is difficult to know in advance. As a result, only approximation or heuristic

methods are proposed for solving the models, thus limiting their usefulness in practice.

As far as we know, no existing studies of the SNDP under travel time uncertainty

have adopted a robust optimization solution framework. The main challenge is that

the common TI formulation based on the time-expanded network turns out to be

ineffective for developing robust optimization models and their solution methods for

the SNDP under travel time uncertainty. In order to model uncertain travel times,

it is necessary to take into account every possible realization of travel times. More

precisely, to deal with travel time uncertainty, the time-expanded network based on a

discrete-time planning horizon needs either to contain service arcs with all possible

travel times, or to vary with different realizations of travel times. In either case, the

resulting models are difficult to solve.

Third, no existing robust optimization methods tackle travel time uncertainty for

the SNDP under a continuous-time planning horizon and with non-zero holding costs.

Even for demand uncertainty, those solution methods known in the existing literature

cannot deal with the continuous-time planning horizon or the non-zero holding costs.

For modeling and solving the SNDP under travel time uncertainty, the case under a

continuous-time planning horizon is much more complicated than the case under a

discrete-time planning horizon, with the latter case already being very challenging.

1.2 Literature Review 9

Despite all the difficulties, though, finding an optimal continuous-time robust solution

for the problem with non-zero holding costs is of great practical value.

Motivated by the importance of travel time uncertainty in service network design

and the limitations inherent in existing studies, the second study of this thesis aims to

develop an effective robust optimization formulation and efficient solution methods for

the CTSNDP-HC under travel time uncertainty.

1.2 Literature Review

Service network design problems have been widely studied in the literature since the

1990s [38, 47] due to the wide range of applications they cover [33, 109]. An early

classification distinguishes between deterministic and robust service network design

problems, where in the robust variant the uncertainties of parameters are highlighted.

In this section, we review the existing literature on these two classes of service network

design problems, respectively.

1.2.1 Deterministic Service Network Design Problems

For a review of the deterministic variants and associated applications, the reader is

referred to Crainic [33] and Wieberneit [109]. Below, we first focus on works that are

closely related to the deterministic SNDP and to the solution approaches based on

discretization methods, and we then refer to the literature on service network design

problems with the objective of capturing consolidation costs such as in-storage holding

costs.

Discretization methods

The literature shows different discretization methods aimed at deriving relaxations

of TI models for routing and scheduling problems with time constraints. Wang and

Regan [106] and Wang and Regan [107] proposed relaxations of TI formulations for a

vehicle routing problem and for the Traveling Salesman Problem with Time Windows

10 Introduction

(TSPTW), respectively. The relaxations are obtained by partitioning the time windows

into a collection of nonoverlapping time intervals, and by defining variables associated

with these time intervals. The resulting relaxations are exploited to derive some strong

cutting planes that are embedded in a branch-and-cut solution framework. A similar

relaxation, called time bucket relaxation, was investigated by Dash et al. [40] to solve

the TSPTW by a branch-and-cut algorithm that also makes use of valid inequalities

derived from the bucket formulation.

Boland et al. [20] introduced a DDD algorithm to solve the optimal solution for

the CTSNDP. The DDD algorithm solves a sequence of MIPs defined on a subset of

times (i.e., a partial discretization), with variables indexed by times in the subset, that

provides lower bounds on the optimal continuous-time value. At each iteration of the

algorithm, new times are discovered and used to refine the partial discretization. Once

the right subset of times is discovered, the resulting MIP yields the continuous-time

optimal value. As highlighted by Boland et al. [20], the refinement strategies of Wang

and Regan [107] and Dash et al. [40] employed a DDD algorithm as a preprocessing

scheme, rather than a dynamic nonuniform scheme. Further, Boland et al. [20] also

focus on the size of the partially time-expanded network by keeping the number of

time points in the network to a minimum. The recent work of Marshall et al. [81]

further extends that of Boland et al. [20] by modeling the discretization in terms of

time intervals instead of time points. This new discretization leads to more effective

and efficient DDD algorithms. The algorithm of Marshall et al. [81] can handle larger

instances involving up to 30 nodes, 685 arcs, and 400 commodities, and can generate

high-quality solutions more quickly than that of Boland et al. [20].

Solution methods based on the DDD solution framework for service network design

problems were also investigated by Hewitt [62] and Medina et al. [82]. Hewitt [62]

considered variants of the service network design problem encountered in the LTL

freight transportation industry. They both proposed multiple enhancements to the

DDD algorithmic framework based on inequalities and symmetry-breaking branching

rules. Medina et al. [82] introduced an optimization problem that integrates long-haul

1.2 Literature Review 11

and local transportation planning decisions. The authors proposed a route-based and

an arc-based formulation for the problem that are both solved by means of a DDD

algorithm. Other applications of the DDD solution framework can be found in Vu et al.

[103], whereas for further perspectives on various aspects of time-dependent models

and the DDD, the reader is referred to Boland and Savelsbergh [24].

All the aforementioned works disregard holding costs. In particular, as we will show

later, the correctness of the DDD approach proposed by Boland et al. [20] strongly

relies on the assumption that the holding costs are equal to zero. This motivates our

study on the solution method for the CTSNDP with positive holding costs.

Handling consolidation costs

Consolidation is the process of grouping different items that originate at different

locations and different times into single vehicle loads at intermediate terminals or

facilities, and transportation costs must be weighed against the penalties (such as

handling and in-storage holding costs) that come with consolidation [61].

Several works have highlighted the importance of considering consolidation costs in

service network design. Ülkü [100] addressed holding costs as consolidation penalty

costs, and presented three shipment consolidation policies, namely, time, quantity and

hybrid policies. Pedersen et al. [86] focused on a generic model for transportation

service network design with asset management considerations. The authors modeled

asset positioning and utilization through constraints on asset availability at terminals,

with the consideration of in-storage holding costs. The problem was formulated by

means of an arc-based model, and a tabu search metaheuristic was used for its solution.

Rudi et al. [88] investigated a capacitated multi-commodity network flow model for the

planning of intermodal transportation services, with carbon emissions and in-transit

holding costs taken into account. They applied the model on a set of industry data

and investigated the interrelations between the decision criteria for greenhouse gas

emissions, cost, and time, as well as the impact of inventory holding costs. Jarrah et al.

[72] and Erera et al. [44] investigated real-world service network design problems faced

12 Introduction

by LTL freight transportation carriers. Both of the works considered handling costs at

intermediate terminals. Jarrah et al. [72] described an IP formulation capturing the

different LTL requirements that is solved using a slope scaling and load-planning tree

generation method. Erera et al. [44] presented integer linear programming (IP) models

and a matheuristic solution approach for large-scale instances that result in practical

applications. Additional works analyzing the trade-off between transportation and

holding costs can be found in Bookbinder and Higginson [25], Tyan et al. [98], Ulku

[99] and Hu, Toriello and Dessouky [70].

Holding costs for the SNDP and its variants formulated using TI models have been

considered by several works, such as Andersen et al. [4, 3], Pedersen et al. [86], and

Hewitt et al. [63]. However, due to the approximation introduced by the discretization,

the solution methods proposed in these works cannot guarantee the optimality of

the solutions obtained. To the best of our knowledge, no exact algorithm has been

proposed for the CTSNDP-HC, and the related literature is quite scarce. A continuous

SNDP with vehicle asset management was investigated by Hosseininasab [67], where

vehicle waiting and holding costs were also considered. Belieres [7] considered tactical

transportation planning in a multi-product supply chain inspired by the collaboration

between a third-party logistics company and a restaurant chain. The problem was

formulated using a TI model with holding costs, and it was solved by means of a

hybrid matheuristic based on the DDD algorithm, as the author observed that the

DDD method proposed by Boland et al. [20] cannot be used directly in the presence of

in-storage holding costs. The algorithm was tested on real-world instances, and the

results show that refining the granularity of the time discretization generates substantial

savings in terms of holding costs. In the first study of this thesis, we develop a novel

DDD algorithm that can efficiently solve the CTSNDP-HC to optimality.

1.2.2 Robust Service Network Design Problems

The existing studies mentioned in Section 1.2.1 are all based on the deterministic nature

of the SNDP. It is widely known that the SNDP encounters difficulties in handling

1.2 Literature Review 13

uncertainties. This motivated another stream of existing studies that took into account

uncertainties in the SNDP.

For the SNDP under uncertainties, most of the existing studies have focused on

demand uncertainty and have developed either stochastic optimization methods or

robust optimization methods. Among the stochastic optimization methods, Lium et al.

[79] investigated the significance of incorporating stochastic elements into some periodic

SNDP formulations, where demand uncertainty is considered to be one example. Their

study revealed that uncertainty plays an important role in the SNDP and that the

solutions based on a stochastic optimization approach can be structurally different

from their deterministic counterparts. Hoff et al. [66] followed the work of Lium

et al. [79] and developed the first metaheuristic method for a real life-sized periodic

stochastic SNDP under demand uncertainty. Bai et al. [6] further extended the work of

Lium et al. [79] by considering vehicle rerouting in the stochastic SNDP under demand

uncertainty. Although it is computationally more expensive to solve, their model has the

potential to reduce the costs of network planning and outsourcing. In addition, Hewitt

et al. [63] proposed a scenario-based cycle-path stochastic optimization formulation

for a scheduled SNDP with resource acquisition and management under demand

uncertainty. They presented two solution approaches for this problem, including a

column generation-based heuristic and a matheuristic.

To further address the demand uncertainty without full distribution information,

Atamtürk and Zhang [5] proposed a two-stage robust formulation for the network

flow and network design problem under demand uncertainty, which is a variant of

the SNDP without a temporal component. They also compared the computational

performances among the two-stage robust optimization method, the single-stage robust

optimization method, and the stochastic programming method. Their experimental

results indicated that their proposed two-stage robust optimization outperforms both

the scenario-based stochastic programming and the more conservative single-stage

robust optimization. Koster et al. [73] successfully applied Γ-uncertainty to formulate

a robust service network design problem under demand uncertainty, where the service

14 Introduction

network is static and has no temporal component. They assumed that the worst-case

demand realization in the given uncertainty set must satisfy the capacity constraints

of all the services, with outsourcing not allowed. Furthermore, Wang and Qi [108]

proposed a two-stage robust model for the SNDP under demand uncertainty based on

the discretized time-expanded network and with outsourcing allowed. They solved this

problem by a column-and-constraint generation method.

In addition to demand uncertainty, travel time uncertainty is also a major source of

uncertainties that needs to be taken into account in various transportation problems.

Many studies on transportation problems have considered travel time uncertainty,

including not only well-known classical transportation problems, such as the vehicle

routing problem with time window [69, 1] , shortest path problem [28, 69, 112] and

traveling salesman problem [84, 27, 113], but also some specific industry applications,

such as airline scheduling [95], pollution routing [46], liner ship schedule design [104, 105]

and daily drayage planning [45]. However, these transportation problems are different

from the SNDP, as no service designs and no consolidations need to be determined.

Thus, no consolidation delays occur in these problems.

For the SNDP and its variants, there is a lack of studies that incorporate travel

time uncertainties, for which modeling and solution approaches are limited. Motivated

by real-life applications, Yao et al. [110] studied a bus transit route network design

problem considering travel time variations. Other than using the average travel time

for each service leg, the authors adopted a reliability-based travel time by adding a

traveler’s risk preference-based buffer time to the average travel time. They proposed

a nonlinear optimization model which aims to maximize the efficiency of the passenger

trips with the reliability-based travel times taken into account, and they developed a

tabu search algorithm to solve the model. Zhao et al. [114] focused on an intermodal

service network design problem in a sea-rail transportation system under uncertain

travel times, transfer times, and demands, and they introduced chance constraints

on both capacity and on-time delivery. However, this study only considered some

specific feasible service routes that have several ship services followed by a train service,

1.2 Literature Review 15

but it did not take into account consolidation. Liang et al. [78] investigated a bus

bridging service design problem for recovery from disruptions in a rail transit system,

and formulated it as a path-based multi-commodity flow model without consolidation.

Lanza et al. [76] addressed the scheduled SNDP with stochastic travel times, in which

each service consists of a sequence of service legs with a scheduled departure time. The

authors derived a two-stage mixed-integer linear stochastic programming model defined

over a time-expanded network and proposed a progressive hedging-based meta-heuristic

to solve it. The first stage of their model determines the selection of services and

the routing of the freight flows, while the second stage verifies the delay penalties.

However, the authors only considered the delay propagation for service legs within the

same service. All these above studies did not consider the delay propagation caused by

consolidations.

To the best of our knowledge, there are only two studies that have considered consol-

idation delay propagation for the continuous-time SNDP under travel time uncertainty.

One is Demir et al. [42], which studied an energy-ware intermodal service network

design problem with uncertainties in both travel times and demands, where motor-

carrier transportation services must catch rail and maritime transportation services

according to their fixed schedules. In this study, the authors explored continuous-time

robust solutions for the planning of services in the network, and considered the delay

propagation caused by transfers and consolidations. The other is Hrušovskỳ et al.

[68], which extended the energy-ware intermodal service network design problem by

incorporating in-transit holding costs, and formulated the travel time uncertainty by a

simulation model.

However, for both of the two studies introduced above [42, 68], services are allowed

to be used at most once within the whole planning horizon, which simplifies the

model formulation, but limits its applications in practice. Moreover, both studies

developed only heuristic methods, which cannot guarantee to produce optimal or near

optimal solutions. In particular, Demir et al. [42] derived a stochastic programming

model that necessitates knowing the complete distribution information in advance for

16 Introduction

uncertain travel times. They solved the model by a sample average approximation

method, and applied the method only on small-sized instances. Hrušovskỳ et al.

[68] utilized a hybrid simulation-optimization approach that combines deterministic

optimization and simulation models to solve their problem. This hybrid simulation-

optimization approach iteratively utilizes the deterministic optimization model to obtain

deterministic transportation plans, and evaluates the feasibility of the transportation

plans under different travel time scenarios by a simulation model. It can thus be

concluded that there is no existing study on the development of a robust optimization

model and an exact solution method for the CTSNDP or CTSNDP-HC under travel time

uncertainty, with delay propagations caused by both transportation and consolidation

taken into account.

1.3 Summary of Contributions

This dissertation consists of two studies on the continuous-time service network de-

sign problem (CTSNDP). The first study, presented in Chapter 2, investigates the

deterministic CTSNDP with holding costs incorporated, which is referred to as the

CTSNDP-HC, while the second study, presented in Chapter 3, investigates the robust

CTSNDP-HC with uncertain travel times.

As revealed in the literature review, existing studies on the deterministic CTSNDP

often overlook the importance of holding costs. The existing discretization methods

developed for the SNDP are not effective in solving the CTSNDP, and the existing exact

solution methods developed for the CTSNDP without holding costs cannot be applied

in solving optimum solutions for the CTNSDP with holding costs. To tackle such

research gaps, in the first study of this dissertation we present the first exact solution

method for the CTSNDP with holding costs taken into account. Specifically, we develop

a novel dynamic discretization discovery (DDD) algorithm for the CTSNDP-HC, which

extends the DDD framework to the case with non-zero holding costs. Our distinct

contributions in this study are detailed as follows:

1.3 Summary of Contributions 17

• We prove the existence of the finite fully discretized time-expanded network and

hence the existence of the finite complete TI formulation for the CTSNDP-HC.

• We propose a new relaxation of the complete TI model for the CTSNDP-HC to

provide the valid lower bound solution for the original CTSNDP-HC.

• We adapt the DDD algorithm with the new relaxation method, a customized upper

bound heuristic method and a new refinement process to solve the CTSNDP-HC,

and also prove that the proposed DDD algorithm can eventually converge to an

optimal solution to the CTSNDP-HC.

• We conduct extensive computational experiments to demonstrate the efficiency

and effectiveness of the proposed DDD algorithm for the CTSNDP-HC and

the benefits that can be gained by taking into account holding costs. The

results also reveal that the significance of the benefits turns out to depend upon

the connectivity of the underlying physical network and the flexibility of the

shipments’ time requirements.

While the first study of this dissertation focuses on the CTSNDP-HC with deter-

ministic problem parameters, the second study of this dissertation incorporates travel

time uncertainty in the CTSNDP-HC. It aims to develop efficient solution methods

that can generate solutions with robust performance against possible changes in travel

times. The contributions of the second study are summarized as follows:

• We derive a new formulation of the deterministic CTSNDP-HC that enables us

to develop a novel two-stage robust optimization formulation of the CTSNDP-

HC under travel time uncertainty. These new formulations are based on the

physical network and are defined by decision variables and constraints with

indices associated with shipment consolidations.

• Our newly developed two-stage robust optimization model uses a budgeted uncer-

tainty set to incorporate uncertainties in travel times. To our knowledge, it is the

first robust optimization model for the SNDP under travel time uncertainty and a

18 Introduction

continuous-time planning horizon, with non-zero holding costs and consolidation

delay propagation taken into account.

• We develop a column-and-constraint generation method as a basic solution

method to solve the two-stage robust optimization model, and then enhance it

by parameterization and by dynamic parameter adjustment with several novel

optimization techniques.

• We conduct extensive computational experiments to evaluate the efficiency and

effectiveness of the newly proposed robust optimization model and solution

methods, as well as to demonstrate the benefits of incorporating travel time

uncertainty through robust optimization in solving the CTSNDP-HC.

This dissertation enriches both deterministic and robust optimization techniques for

the continuous-time service network design problem. It not only is of great practical

value, but it also lays down a solid foundation for future study on solving various

transportation network design problems with holding costs and uncertain travel times.

This dissertation is mainly based on the following working papers:

• Shu, S., Xu, Z. and Baldacci, R. (2022), Incorporating holding costs in continuous-

time service network design: new model, relaxation, and exact algorithm.

• Shu, S. and Xu, Z. (2022), Robust continuous-time service network design problem

under travel time uncertainty.

In addition, during her PhD study, the candidate has also published the following

research works, which do not directly contribute to this thesis:

• Lee, C.-Y., Shu S. and Xu, Z. (2020), Optimal global liner service procurement by

utilizing liner service schedules, Production and Operations Management 30(3),

703-714.

• Shen, H., Shu, S., Qin, H. and Wu, Q. (2020), An exact algorithm for the multi-

period inspector scheduling problem, Computers & Industrial Engineering 145,

106515.

Chapter 2

Deterministic Continuous-Time

Service Network Design with

Holding Costs

2.1 Introduction

Service network design problems [33] are common and important problems in trans-

portation, telecommunications, logistics, and production–distribution systems. In the

freight transportation industry, the less-than-truckload (LTL) motor carriers are typical

examples of such systems, where an intensive use of freight consolidation operations

are performed to save on transportation costs [109].

The service network design problem considered in this chapter, referred to as the

SNDP, can be described as follows. A network D = (N ,A) is given with terminal or

node set N and arc set A. Let K be a set of commodities, each commodity k ∈ K has

an origin ok ∈ N , a destination dk ∈ N , and a transportation demand qk ∈ N>0 that

must be delivered to the destination from the origin. While flowing along an arc (i, j),

a commodity consumes some of the arc capacity; the capacity is obtained by installing

on some of the arcs any number of links. In network D, also referred as a flat network,

each arc (i, j) ∈ A is associated with the following four attributes: (i) a travel time

20 Deterministic Continuous-Time Service Network Design with Holding Costs

τij ∈ N>0; (ii) a per-unit-of-flow cost ck
ij ∈ R>0 for each commodity k ∈ K; (iii) a fixed

cost fij ∈ R>0; and (iv) a capacity uij ∈ N>0. Installing one link on arc (i, j) provides

a capacity uij at a cost fij. With each commodity k ∈ K is also associated an earliest

available time ek ∈ N for its departure from the origin ok, and a due time lk ∈ N>0

for its arrival at the destination dk. We consider the unsplittable (or unbifurcated)

variant of the problem, where the flow of each commodity is required to follow one

route between the origin and the destination, as also considered by Boland et al. [20]

and Marshall et al. [81].

The SNDP consists of minimizing the sum of all costs (both fixed and flow costs),

while at the same time satisfying demand requirements, as well as capacity and time

constraints. The SNDP is known to be strongly NP–hard [56], and various extensions

of the SNDP have been studied in the transportation and telecommunications fields

[54, 52].

In the SNDP, the decisions are made as to the schedule of the services, this schedule

specifying timing information for each possible occurrence of a service during a given

time period, such as, the departure and arrival times at the origins, intermediate stops,

and destinations. A common technique adopted in the literature for modeling the

temporal component is discretization [72, 2, 44, 37], where the planning horizon is

discretized, and the problem is modeled on a time-expanded network. In the network,

nodes represent locations in time and space, while arcs or links represent either

physical movements between locations or just movements in time at one location. More

precisely, the arcs on the network are classified into dispatch or service arcs and holding

arcs. A service arc corresponds to the transportation between two locations, and

the difference between the periods of these locations is the time elapsed during the

transportation activity, whereas a holding arc is directed from one period to another for

the same location and represents only time-wise movement. The granularity of the time

discretization has an impact on both the computational tractability and the quality of

the solutions obtained, and studies have been presented that accurately capture the

consolidation opportunities as a Continuous-Time SNDP (CTSNDP) [20, 81].

2.1 Introduction 21

a b

c d

(1, 33, 60)

(2, 55, 100)

(2
,2

5,
45

) (1
,38,70)

(1,
22
, 40

)

(a) Network D: (c, f, τ) on arcs

k ok dk qk ek lk

1 b a 25 0 160
2 d a 30 20 180
3 c a 40 0 180

(b) Instance data

a b

c d

({1, 2, 3}, 90, 150)

({3
}, 0
, 40

)

({
2}
,2

0,
90

)

(c) Without holding costs

a b

c d

({1, 2}, 90, 150)

({
3}
,0
,4

5)

({
2}
,2

0,
90

)

(d) With holding costs

Figure 2.1 Examples of SNDP solutions

2.1.1 The SNDP with Holding Costs

For many practical applications of the SNDP, holding costs have a significant impact

on the service and consolidation decisions [98, 25, 88, 70]. These costs are also called

consolidation penalty costs [100], and can be facility-specific and/or commodity-specific

[70, 99, 88]. In the literature, holding costs are classified as in-transit and in-storage,

the in-transit holding cost usually being lower than the in-storage cost. In the context

of time-expanded networks, these costs are generally modeled by properly defining the

costs associated with the service and holding arcs of the network.

Motivated by the importance of the continuous variant of the SNDP and of the

holding costs, in this study we consider the CTSNDP with both in-transit and in-

storage holding costs or simply holding costs (CTSNDP-HC). In the following, in-transit

holding costs are modeled by means of costs ck
ij, whereas to model in-storage holding

22 Deterministic Continuous-Time Service Network Design with Holding Costs

costs, we associate with each commodity k ∈ K and node i ∈ N a per-unit-of-demand-

and-time (holding) cost hk
i ∈ R≥0. Hereafter, we also use the term holding costs to

refer to both the in-transit and in-storage holding costs.

To highlight the importance of considering the holding costs in the SNDP, Figure 2.1

gives a simple example of a SNDP instance with a consideration of holding costs. The

example involves three commodities, and Figure 2.1-(a) depicts the underlying network

D where relevant flow and fixed costs and travel times are reported close to each arc.

In the example, arcs (i, j) and (j, i) share the same data, and the per-unit-of-flow cost

of arc (i, j) is the same for all three commodities. Figure 2.1-(b) gives the different

parameters associated with the three commodities. In addition, each arc capacity is

assumed to be greater than the total demand of the commodities, i.e., to be 100, and

the in-storage per-unit-of-demand-and-time holding cost for each commodity at the

different nodes is equal to 0.01.

Figure 2.1-(c) illustrates the optimal solution for the SNDP by disregarding the

holding costs. The figure reports on each arc (i, j) the set of commodities consolidated,

the departure time from node i, and the arrival time to node j, represented by a triplet

({commodities}, dep.time, arr.time). The solution shown in Figure 2.1-(c) shows flow

and fixed costs equal to 165 (=1 × 40 (c, b) + 1 × 30 (d, b) + 1 × (25+39+40) (b, a))

and 93 (=22 (c, b) + 38 (d, b) + 33 (b, a)), respectively. The three commodities are

consolidated on arc (b, a), where commodities 1 and 3 wait 90 and 50 time units before

being consolidated with commodity 2, which arrives at node b at time 90. The total

holding cost is therefore equal to 42.5 (=90× 25× 0.01 + 50× 40× 0.01), thus resulting

in a total solution cost equal to 300.5. The solution shows that the average of the

per-unit-of-demand-and-time flow costs over arcs (c, d), (d, b) and (b, a) is equal to

about 0.02, thus being about twice the in-storage per-unit-of-demand-and-time holding

cost of the nodes.

Figure 2.1-(d) illustrates the optimal solution for the SNDP with consideration

of the holding costs. Solution 2.1-(d) shows flow and fixed costs equal to 165 (=1 ×

40 (c, a) + 1 × 30 (d, b) + 1 × (25+39+40) (b, a)) and 96 (=25 (c, a) + 38 (d, b) +

2.1 Introduction 23

33 (b, a)), respectively. The holding cost at node b is reduced from 42.5 to 22.5, since

commodity 3 is routed on the alternative path (c, a). The total cost of the solution is

283.5, being a cost saving equal to about 6% with respect to the total cost of solution

2.1-(c). Moreover, as shown in the example below, such a cost saving can be arbitrarily

large in the best situation.

a

o1

b′ b

c

o2

d

d1 d2
h1

b q1 t fbd

Figure 2.2 Best-case analysis of cost saving for incorporating holding costs

Figure 2.2 shows an example involving four terminals, with two commodities in

K = {1, 2} having their origins o1 = a and o2 = c and their destinations d1 = d2 = d.

In the example, we assume that the commodities’ earliest available times e1 and e2

are such that commodity 1 of demand q1 can potentially wait t units of times to

be consolidated with commodity 2 at terminal b at an additional holding cost h1
bq1t,

modeled by the holding arc (b′, b).

If the holding cost at terminal b is ignored when determining the optimal solution,

the cost of the last leg b − d excluding the flow cost is equal to (h1
bq1t + fbd) (i.e.,

the sum of the holding cost and fixed cost), where commodity 1 is consolidated at

terminal b with commodity 2 after having waited for t units of time, and the two

commodities are then routed together to terminal d. If the holding cost at terminal

b is considered and h1
bq1t > fbd, i.e., waiting at terminal b for commodity 1 incurs a

holding cost greater than the fixed cost associated with the final arc (b, d), then in the

corresponding optimal solution the two commodities are routed on two separate paths,

namely (a, b, d) and (c, b, d). As a result, the cost of the last leg b− d excluding the

flow cost is now equal to 2fbd. Since the flow costs are unchanged, a total saving of

24 Deterministic Continuous-Time Service Network Design with Holding Costs

(h1
bq1t− fbd) is achieved. This cost saving, with respect to the total cost of the optimal

solution, can be arbitrarily large by increasing h1
bq1t and fixing fbd.

2.1.2 Discretized versus Continuous-Time Models

A time-expanded network provides a useful way of modeling the SNDP, but the

corresponding time-index (TI) model (see, for example, [49, 59]) requires a discretization

of time known to be fine enough to provide a correct model for the continuous time,

i.e., to show that its optimal solution cost is continuous-time optimal. What is more,

selecting a proper time discretization for the time-expanded network can be challenging.

On the one hand, a fine discretization for a time-expanded network can provide

good approximations to the original continuous-time problem, but results in a large

and often intractable TI model. On the other hand, a coarse discretization is more

computationally tractable, but at the expense of a significant loss of solution quality,

which is referred to as the price of discretization [21].

In this context, it is beneficial to investigate complete TI models based on a complete

discretization of time, i.e., a discretization of time known to be fine enough to provide

a correct model for the continuous time. As shown by Boland and Savelsbergh [24],

the existence of a complete TI model is not straightforward.

2.1.3 Outlines

In this study, we describe an exact method for the CTSNDP-HC. The method is

based on the Dynamic Discretization Discovery (DDD) solution framework proposed

by Boland et al. [20] to solve the CTSNDP. The DDD uses successive approximations

of a TI model in order to solve the complete TI model, and its correctness relies on the

existence of a complete TI model for the problem. The main ingredients of a DDD are:

• A valid relaxation of a complete TI model based on a partial discretization.

• A primal heuristic that uses the solution provided by the relaxation to compute

a valid upper bound on the optimal value of the complete TI model. If the cost

2.1 Introduction 25

of the primal solution is equal to the solution cost of the relaxation, then the

primal solution is proved to be optimal.

• A refine strategy that, given a solution of the relaxation, refines the current

partial discretization so that the current solution of the relaxation is no longer

feasible for the corresponding relaxation model.

The DDD algorithm proposed by Boland et al. [20] for the CTSNDP strongly relies

on the assumption that freight can be held at a location at no cost, i.e., in-storage

holding costs are equal to zero, and cannot be used to solve the CTSNDP-HC. Our

distinct contributions in this study are as follows:

• We prove the existence of a complete TI model for the CTSNDP-HC.

• We derive a new relaxation of the complete TI model based on a mixed-integer

linear programming (MIP) model.

• Based on the complete TI model and its new relaxation, we develop a new DDD

algorithm with a new upper bound heuristic and a new refinement strategy to

solve the CTSNDP-HC.

• We validate the efficiency and effectiveness of the new algorithm via extensive

computational experiments and the benefits that can be gained by incorporating

holding costs

The remainder of this chapter is organized as follows. We prove the existence

of a complete TI model for the CTSNDP-HC in Section 2.2, followed by an detail

introduction of the DDD algorithm for solving the CTSNDP-HC in Section 2.3. We

report and analyze the results of extensive computational experiments in Section 2.4.

Finally, we summary the study in Section 2.5.

26 Deterministic Continuous-Time Service Network Design with Holding Costs

2.2 Modeling the CTSNDP-HC on a Finite Time-

Expanded Network

Like many other flow-over-time problems (see, for example, [49] and [94]) and network

design problems (see, for example, [4], [3], and [86]), the CTSNDP-HC can be approxi-

mated by a time-index formulation (TI model) based on a time-expanded network. In

this section, we first represent feasible CTSNDP-HC solutions over a time-expanded

network, then describe a discretized TI model for the CTSNDP-HC and show the

existence of a complete TI model.

2.2.1 Representing Feasible Solutions

A path P k = (νk
1 , ν

k
2 , ..., ν

k
mk+1) for a commodity k ∈ K is a path in D starting from

node νk
1 = ok and ending at node νk

mk+1 = dk. Associated with path P k is also the

sequence (ak
1, a

k
2, ..., a

k
mk) of arcs traversed by the path such that ak

n = (νk
n, ν

k
n+1) ∈ A

for n = 1, 2, ...,mk; in the following, the two representations of path P k are used

interchangeably. Given a set of departures times tk = (tk1, tk2, ..., tkmk) associated with the

nodes of the path, path P k is k-feasible, and we denote it with the pair Wk = (P k, tk),

if values tkn, n = 1, . . . ,mk, satisfy the following system of inequalities:

tkn ≥ ek, n = 1, (2.1a)

tkn ≥ tkn−1 + τak
n−1
, n = 2, . . . ,mk, (2.1b)

tkn + τak
n
≤ lk, n = mk, (2.1c)

Inequalities (2.1a) and (2.1c) impose that the departure and arrival times at the origin

and destination are within the required time limits ek and lk, respectively, where the

term tkn + τak
n

coincides also with the departure time at the destination dk. Inequalities

(2.1b) impose feasible departure times at the intermediate nodes of the path.

We also associate with each arc ak
n ∈ P k, n = 1, 2, . . . ,mk, a departure time that

corresponds to time tkn. A feasible solution W = {Wk}k∈K of the CTSNDP-HC is a

2.2 Modeling the CTSNDP-HC on a Finite Time-Expanded Network 27

collection of |K| paths, one feasible path for each commodity. We assume that for each

commodity k ∈ K, the difference (lk − ek) of its latest arrival time lk at the destination

and available time ek at the origin is not smaller than the length of the shortest-time

path from ok to dk in the flat network D. This assumption is sufficient to ensure the

existence of a feasible solution to the CTSNDP-HC.

Given a k-feasible timed path Wk, the holding plan of the path is defined as the

set of the waiting times Hk
n, n = 1 . . . ,mk + 1, at the different nodes of the path that

can be computed as follows:

Hk
n =

tkn − ek, n = 1,

tkn − (tkn−1 + τak
n−1

), n = 2, . . . ,mk,

lk − (tkn−1 + τak
n−1

), n = mk + 1.

(2.2)

Associated with a CTSNDP-HC solution W is the consolidation plan, where each

element defines that a subset of commodities are transported together through an arc

of the solution. More precisely, we denote with C = {C1, C2, . . . , C|C|} a consolidation

plan. Each Cr = (αr, Jr), r = 1, 2, . . . , |C|, denotes a consolidation on arc αr ∈ A, with

Jr being a set of pairs (k, n) with ak
n = αr, indicating that such commodities k are

shipped together through arc αr when they are routed through the n-th arcs of their

paths P k in solution W .

For each arc α = (i, j) ∈ ∪k∈KP
k, we define Θ(α) = {tkn : k ∈ K, ak

n ∈ P k, ak
n = α} as

the set of departure times associated with the arcs of paths in solutionW . Accordingly,

for each of such departure times t ∈ Θ(α), a consolidation (α, I(α, t)) can be defined

for arc α, where I(α, t) defined below indicates the set of commodities that are shipped

together through α with departure time t in solution W :

I(α, t) = {(k, n) : k ∈ K, ak
n = α ∈ P k and tkn = t}.

28 Deterministic Continuous-Time Service Network Design with Holding Costs

Table 2.1 The consolidation plan for the example of Figure 2.1-(c)

k P k C
α J

1 (b,a) (b,a) {(1, 1), (2, 2), (3, 2)}
2 (d,b,a) (d,b) {(2, 1)}
3 (c,b,a) (c,b) {(3, 1)}

With this, a consolidation plan C can be defined by solution W as follows:

C = {(α, I(α, t)) : ∀α ∈ ∪k∈KP
k, t ∈ Θ(α), I(α, t) ̸= ∅}.

The cost z(W) of a CTSNDP-HC solution W can then be computed as a function of

the holding and consolidation plans:

z(W) =
∑

Cr∈C
fαr

⌈∑
(k,n)∈Jr

qk

uαr

⌉
+

∑
k∈K

mk∑
n=1

ck
ak

n
qk +

∑
k∈K

mk+1∑
n=1

hk
νk

n
qkHk

n, (2.3)

where the three terms represent the fixed, flow and holding costs, respectively.

Alternatively, a feasible CTSNDP-HC solution can also be defined by (i) a routing

plan P = {P k}k∈K, (ii) a consolidation plan C and (iii) a set of departure times {tk}k∈K,

such that for each k ∈ K, path P k is k-feasible, and that from the consolidation plan C,

the waiting times {Hk}k∈K can be computed by expressions (2.2). We define S = (P , C)

as a flat solution, and the flat solution S is implementable if a set of departure times

{tk}k∈K satisfying condition (iii) exists.

As an example, Table 2.1 gives the consolidation plan C associated with the example

of Figure 2.1-(c). For each of the three commodities, the table gives the corresponding

path P k. The consolidation plan C shows that there are three consolidations associated

with arcs (b, a), (d, b), and (c, b). In particular, all three commodities are consolidated

on arc α = (b, a).

2.2 Modeling the CTSNDP-HC on a Finite Time-Expanded Network 29

2.2.2 A Time-Index Formulation for the CTSNDP-HC

We consider a time-expanded network with a discretization level ∆, D∆
T = (N∆

T ,H∆
T ∪

A∆
T) where T = (Ti)i∈N is a set of time points with Ti = {0,∆, 2∆, ...,M∆} for all

i ∈ N and for M ∈ N>0 with M = maxk∈K{
⌈
lk/∆

⌉
}. The node set N∆

T consists of

each time node (i, t) associated with each i ∈ N and t ∈ Ti. The set of arcs of D∆
T

contains two subsets of arcs:

• Holding arcs H∆
T . For every node i ∈ N , and every t ∈ Ti \ {M∆}, there is an

arc ((i, t), (i, t+ ∆)) representing a holding time of ∆ time units at node i.

• Dispatch or service arcs A∆
T . For every arc (i, j) ∈ A, and every node (i, t) ∈ N∆

T ,

there is an arc ((i, t), (j, t)) with i ̸= j representing a dispatch from node i at

time t arriving at time t at node j with t = t + ∆⌈τij/∆⌉ and t ≤ M∆, and

since τij ≤ ∆⌈τij/∆⌉, the condition t ≥ t+ τij holds, thus guaranteeing that the

feasible solutions of a TI formulation based on graph D∆
T (see below) are also

feasible for the CTSNDP-HC.

Network D∆
T is also known in the literature as a condensed time-expanded network.

Below, we model the CTSNDP-HC using a TI formulation based on graph D∆
T , denoted

as SND-HC(D∆
T).

Let ytt
ij be a nonnegative integer variable representing the number of times that

arc (i, j) ∈ A is used to serve the dispatches from node i at time t arriving at time t

in j, and let xktt
ij be 0-1 variable equal to 1 if commodity k ∈ K is routed along arc

(i, j) ∈ A departing from i at time t and arriving at j at time t, 0 otherwise. Moreover,

let wk
i be a nonnegative variable denoting the holding or waiting time of commodity k

at node i. Formulation SND-HC(D∆
T) is as follows:

z(D∆
T) = min

∑
((i,t),(j,t))∈A∆

T

fij · ytt
ij +

∑
k∈K

∑
((i,t),(j,t))∈A∆

T

(ck
ijq

k) · xktt
ij +

∑
k∈K

∑
i∈N

(hk
i q

k) · wk
i

(2.4)

30 Deterministic Continuous-Time Service Network Design with Holding Costs

s.t.
∑

((i,t),(j,t))∈A∆
T ∪H∆

T

xktt
ij −

∑
((j,t),(i,t))∈A∆

T ∪H∆
T

xktt
ji =

1 (i, t) = (ok, ek),

−1 (i, t) = (dk, lk),

0 otherwise,

∀k ∈ K, (i, t) ∈ N∆
T , (2.5)∑

k∈K
qkxktt

ij ≤ uijy
tt
ij, ∀ ((i, t), (j, t)) ∈ A∆

T , (2.6)

wk
i =

∑
((i,t),(j,t))∈A∆

T

t xktt
ij − ek, i = ok,

lk − ∑
((j,t),(i,t))∈A∆

T

t xktt
ji , i = dk, ∀ i ∈ N , ∀ k ∈ K,

∑
((i,t),(j,t))∈A∆

T

t xktt
ij −

∑
((j,t),(i,t))∈A∆

T

t xktt
ji , otherwise,

(2.7)

xktt
ij ∈ {0, 1}, ∀((i, t), (j, t)) ∈ A∆

T ∪H∆
T , k ∈ K, (2.8)

ytt
ij ∈ N, ∀((i, t), (j, t)) ∈ A∆

T , (2.9)

wk
i ≥ 0, ∀i ∈ N , k ∈ K. (2.10)

In the above formulation, the objective function (2.4) aims to minimize the total

cost computed as the sum of the fixed, flow and holding costs, respectively. Constraints

(2.5) are flow conservation constraints ensuring that each commodity k ∈ K is routed

along a single path starting from its origin after its earliest available time ek and

ending at its destination before its due time lk. For each commodity k ∈ K, the timed

path starts from time node (ok,ek) and ends at time node (dk,lk), and holding arcs

allow each commodity k ∈ K to arrive at its destination earlier than lk or depart

from its origin later than ek. Constraints (2.6) ensure that the flow on each service

arc does not exceed the capacity installed on the arc. Constraints (2.7) define the

values of variables wk
i , computed as the difference between the departure and arrival

times. Finally, constraints (2.8), (2.9) and (2.10) state the domains of the decision

variables.The above formulation contains as a special case the TI formulation described

by Boland et al. [20] and used to solve the CTSNDP. Indeed, when each coefficient hk
i

2.2 Modeling the CTSNDP-HC on a Finite Time-Expanded Network 31

is assumed to be equal to zero, the corresponding decision variables wk
i are no more

necessary in the formulation. We denote with SND(D∆
T) the resulting formulation.

Due to the definition of the time-expanded network D∆
T such that for each arc

(i, j) ∈ A we have ∆⌈τij/∆⌉ ≥ τij, any feasible solution of formulation SND-HC(D∆
T)

is also a feasible solution for the CTSNDP-HC. Nevertheless, an optimal SND-HC(D∆
T)

solution is not necessarily an optimal CTSNDP-HC solution, due to the discretization

factor ∆, i.e., z(D∆
T) provides a valid upper bound on the optimal CTSNDP-HC

solution cost.

It is not straightforward to prove the existence of a value ∆̂ such that z(D∆̂
T)

provides the optimal solution cost of the CTSNDP-HC. Indeed, as observed by Boland

and Savelsbergh [24], for some problems such as the TSPTW, a simple combinatorial

argument suffices to show the existence of a complete TI model, whereas for other

problems, such as the continuous-time inventory routing problem [75], such ∆̂ may be

smaller than one and is difficult to identify.

2.2.3 Existence of a Finite Time-Expanded Network for the

CTSNDP-HC

For the CTSNDP, the existence of a complete TI model has been shown by Boland et al.

[20], who noted that when the travel times and time window limits are integer-valued,

the set of times points ek, for some commodity k ∈ K, or of the form ek + ∑
a∈P τa,

for some path P in G originating at ok, suffice to compose a complete TI model. The

observation is that the dispatch times of a path P can be shifted to be as early as

possible without changing any consolidations so that the total cost is not changed,

and strictly relies on the assumption that in-storage holding costs are equal to zero.

For the CTSNDP-HC, due to the presence of nonzero holding costs in the problem

objective, such an observation is no longer valid.

To illustrate the case, Figure 2.3 considers the example of Figure 2.1 where the

solution of Figure 2.3-(c) depicts the optimal solution of the CTSNDP. The alternative

CTSNDP optimal solution represented by Figure 2.3-(d), where the departure time at

32 Deterministic Continuous-Time Service Network Design with Holding Costs

a b

c d

(1, 33, 60)

(2, 55, 100)

(2
,2

5,
45

) (1,38,70)

(1,
22
, 40

)

(a) Network D: (c, f, τ) on arcs

k ok dk qk ek lk

1 b a 25 0 160
2 b a 30 20 180
3 c a 40 0 180

(b) Instance data

a b

c d

({1, 2, 3}, 90, 150)

({3
}, 0
, 40

)

({
2}
,2

0,
90

)

(c) An optimal solution for the
CTSNDP

a b

c d

({1, 2, 3}, 90, 150)

({3
}, 5

0, 9
0)

({
2}
,2

0,
90

)
(d) Alternative optimal solu-
tion for the CTSNDP

Figure 2.3 Examples showing that for the CTSNDP-HC the transformation of Boland
et al. [20] cannot be applied

the origin of commodities 3 is equal to 50, can be shifted to be as early as possible,

thus obtaining the departure time of the solution of Figure 2.3-(c) without changing

the consolidations on arc (a, b). When considering the CTSNDP-HC, if the per-unit-

of-demand-and-time holding costs for commodity 3 at terminals b and c are equal to

0.01 and 0.005, respectively, commodity 3 incurs a holding cost equal to 0.01× 50× 40

for the solution of Figure 2.3-(c), whereas it incurs a lower holding cost equal to

0.005 × 50 × 40 for the solution of Figure 2.3-(d). Therefore, the time node (c, 50),

which is not part of a complete TI model for the CTSNDP, must be considered when

solving the CTSNDP-HC.

In order to show that a complete TI model exists for the CTSNDP-HC, it is

necessary to prove that, given a flat solution S, a linear programming model (LP) can

2.2 Modeling the CTSNDP-HC on a Finite Time-Expanded Network 33

be defined to determine optimal departure times tk for each k ∈ K that are integers.

This argument suffices to show that a complete TI model exists. The LP argument

was also used by Boland et al. [23] for a network scheduling problem.

Consider a flat solution S = (P , C), with a routing plan P and consolidation plan

C associated with P. We denote with zfc(S) the cost of the flat solution S, that is,

the sum of its fixed and flow costs:

zfc(S) =
∑

Cr∈C
fαr

⌈∑
(k,n)∈Jr

qk

uαr

⌉
+

∑
k∈K

mk∑
n=1

ck
ak

n
qk.

For each k ∈ K and each node vk
n ∈ P k, n = 1, 2, ...,mk + 1, we define nonnegative

continuous variables πk
vn

and tkvn
as the arrival and departure times of commodity k

at node vk
n, respectively. Moreover, for each Cr = (αr, Jr), r = 1, ..., |C|, we define a

nonnegative continuous variable t̂Cr ≥ 0 representing the consolidation time of the

commodities in Jr on arc αr, i.e., the joint departure time of all commodities (k, n) ∈ Jr.

If the flat solution S is implementable, then the following LP formulation, denoted

as implementable model (IM(S)), computes corresponding optimal departure times

for flat solution S of cost zfc(S) + zw(S):

zw(S) = min
∑
k∈K

mk+1∑
n=1

(hk
vn
qk) · (tkvn

− πk
vn

) (2.11)

s.t. πk
vn+1 − t

k
vn

= τvnvn+1 , ∀ k ∈ K, n = 1, ...,mk, (2.12)

tkvn
− πk

vn
≥ 0, ∀k ∈ K, n = 1, ...,mk + 1, (2.13)

t̂Cr − tkvn
= 0, ∀(k, n) ∈ Jr, r = 1, ..., |C|, (2.14)

πk
ok = ek, ∀k ∈ K, (2.15)

tkdk = lk, ∀k ∈ K, (2.16)

πk
vn
≥ 0, ∀ k ∈ K, n = 1, ...,mk + 1, (2.17)

tkvn
≥ 0, ∀k ∈ K, n = 1, ...,mk + 1, (2.18)

t̂Cr ≥ 0, ∀r = 1, ..., |C|. (2.19)

34 Deterministic Continuous-Time Service Network Design with Holding Costs

The objective function (2.11) aims to minimize the total holding cost associated with

the flat solution. Constraints (2.12), (2.13), (2.15) and (2.16) define the arrival and

departure times according to paths P k, k ∈ K, respectively. Constraints (2.14) impose

that the departure times at the intermediate nodes follow the consolidation plan C.

The following proposition implies the existence of a complete TI model for the

CTSNDP-HC.

Proposition 1. If ek, lk and τij are integer-valued and the flat solution S = (P , C) is

implementable, then for formulation IM(S) there is an integral optimal solution.

Proof. The matrix associated with constraints (2.12), (2.13) and (2.14) has coefficients

in {0, 1,−1} and each column of its transpose has exactly two nonzero elements of

different sign. Hence, it is totally unimodular and together with the bound constraints

(2.15)-(2.19) ensure that the extreme points of (2.12)-(2.19) are integral (see, for

example, [18]).

Notice that the above proposition does not suggest a specific value of the discretiza-

tion ∆. It is easy to see that if ratios τij/∆, ek/∆ and lk/∆ are integer-valued for

some ∆ ∈ N>0, z(D∆
T) corresponds to the optimal solution cost of the CTSNDP-HC,

and that in the worst case we have ∆ = 1. In practice, the size of the complete TI

model can be computationally intractable, but in the next section we describe an

exact algorithm aimed at finding the optimal CTSNDP-HC solution by solving a set of

reduced models of the complete TI model.

2.3 Dynamic Discritization Discovery Algorithm

for the CTSNDP-HC

In this section, we introduce a dynamic discritization discovery (DDD) algorithm for

the CTSNDP-HC. We start by an overview of the scheme of DDD algorithm in Section

2.3.1. Then we describe in detail the different components of the DDD algorithm for

the CTSNDP-HC. We illustrate how we construct and strengthen the relaxation of the

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 35

complete TI model for the CTSNDP-HC in Section 2.3.2 and Section 2.3.3, followed by

how the partially time-expanded network is initialized in Section 2.3.4 and the details

of the algorithm used to compute a valid upper bound in Section 2.3.5. We present

the refinement strategy in Section 2.3.6. Moreover, we shows that our proposed DDD

algorithm solves the CTSNDP-HC to optimality after a finite number of iterations in

Section 2.3.7.

2.3.1 An Overview of the Dynamic Discritization Discovery

Algorithm

A complete TI model for the CTSNDP-HC implies the existence of a discretization

∆̂ and of the corresponding fully time-expanded network D∆̂
T̂ such that the optimal

solution cost z(D∆̂
T̂) of formulation SND-HC(D∆̂

T̂) is the optimal solution cost of the

CTSNDP-HC. However, the size of the network D∆̂
T̂ can be prohibitively large, and the

resulting TI model impractical to be solved by conventional techniques.

For the CTSNDP, Boland et al. [20] proposed a DDD algorithm that dynamically

and iteratively determines the time points that are present in an optimal solution.

Let DT = (NT ,HT ∪ AT) be a partially time-expanded network that contains only a

small subset of the time points of the fully time-expanded network, i.e., |NT | ≪ |N ∆̂
T̂ |.

As illustrated in Algorithm 1, the DDD algorithm starts by properly initializing the

partially time-expanded network DT , and at each iteration of the algorithm, a relaxation

model SND(DT) is solved to compute a valid lower bound LB on the CTSNDP. An

upper bound is also computed using the lower bound solution and the algorithm

iterates until a predefined optimality tolerance is reached. The partially time-expanded

network DT is initialed and modified (or refined) whenever the optimality tolerance is

not reached to ensure the computation of a valid lower bound. The construction of the

network DT , together with the relaxation model SND(DT), ensures that whenever the

lower bound solution is not proved to be an optimal CTSNDP solution, the network

contains at least one arc, say arc ((i, t), (j, t′)) such that t′ < t + τij, i.e., the length

of the arc is too short and arc ((i, t), (j, t′)) is a short-arc. The network is therefore

36 Deterministic Continuous-Time Service Network Design with Holding Costs

Algorithm 1: DDD algorithm for the CTSNDP
Input: CTSNDP defined on a flat network D = (N ,A)
Output: Solution W = {Wk}k∈K of cost UB
begin

// Initialization
1 UB ← +∞, LB ← −∞, gap← +∞, W ← ∅;

// Initialize the partially time-expanded network
2 DT ← (NT ,HT ∪ AT);

// Termination condition
3 while gap > optimality tolerance do

// Solution of the relaxation
4 Solve SND(DT) and set LB equal to the optimal solution cost of SND(DT);

// Compute a feasible CTSNDP solution
5 Compute a valid upper bound z based on the solution defined by the relaxation;
6 if z < UB then
7 UB ← z;
8 Update solution W;
9 end

// Compute the optimality tolerance
10 gap← (UB − LB)/UB;

// Check the optimality condition
11 if gap > optimality tolerance then

// Optimality not reached
12 Based on the solution of SND(DT), refine the network DT to correct the length

of at least one short arc;
13 end
14 end
15 return Solution W of cost UB;
16 end

refined by adding new time points and modifying corresponding arcs, correcting the

length of short-arc ((i, t), (j, t′)) to be its actual value. The correctness of the algorithm

follows on from the validity of bounds LB and UB. The convergence of the method

relies on the refinement strategies, which guarantee that the final relaxation model will

eventually converge to the complete TI model.

In this study, we adapt the DDD Algorithm 1 in a novel way to solve the more

general CTSNDP-HC as summarized below.

(1) At Step 4, we solve a novel relaxation of formulation SND-HC(D∆̂
T̂). The relaxation

relies on both the definition of the network DT and on a formulation obtained by

relaxing equations (2.7) defining the holding variables w (see Section 2.3.2).

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 37

(2) At Step 5, we compute a valid upper bound UB based on the flat solution S defined

by the relaxation using a new heuristic algorithm accounting for the holding costs

(see Section 2.3.5).

(3) At Step 12, we extend the refinement strategy used by Boland et al. [20] to add

new time points based on the definition of variables w (see Section 2.3.6).

In the reminder of this section, we give the details of the DDD algorithm adapted

for the CTSNDP-HC.

2.3.2 A Relaxation of the CTSNDP-HC

In this section, we describe a valid relaxation for the CTSNDP-HC. We start by a

simple observation that if hk
i = 0, ∀k ∈ K, i ∈ N , then the CTSNDP-HC reduces to the

CTSNDP, and any valid lower bound (including the optimal objective value) for the

CTSNDP is also a valid lower bound for the CTSNDP-HC. Boland et al. [20] described

a lower bound for the CTSNDP based on a special case of formulation SND-HC(DT)

where variables wk
i , for k ∈ K, i ∈ N , and constraints (2.7) are disregarded, since

in-storage holding costs hk
i , ∀k ∈ K, i ∈ N , are all equal to zero. They show that the

following three properties of the partially time-expanded network DT suffice to provide

a valid lower bound on z(D∆̂
T̂).

Property 1. For all commodities k ∈ K, the nodes (ok, ek) and (dk, lk) are in NT .

Property 2. Every arc ((i, t), (j, t)) ∈ AT has t ≤ t+ τij.

Property 3. For every arc a = (i, j) ∈ A in the flat network D, and for every node

(i, t) in the partially time-expanded network DT , there is an arc a′ = ((i, t), (j, t)) in

DT for some t ∈ NT (a′ is called a timed copy of arc a in AT).

Let (x,y) be an optimal solution of formulation SND-HC(D∆̂
T̂) with zero holding

costs (i.e., an optimal CTSNDP solution) and let A = {((i, t), (j, t + τij)) ∈ A∆̂
T̂ :

y
t,t+τij

ij > 0} be the set of arcs traversed by the commodities in the solution. For any

arc a = ((i, t), (j, t+ τij)) ∈ A, define ρi(t) = argmax{s ∈ Ti : s ≤ t}. The existence of

38 Deterministic Continuous-Time Service Network Design with Holding Costs

such ρi(t) for each arc a = ((i, t), (j, t + τij)) ∈ A is ensured by the three properties.

Indeed, with denoting τ ij as the length of any shortest-time path from node i to node

j in the flat network D, for each k ∈ K and each i ∈ N , a time node (i, t) ∈ NT exists

with t ≤ ek + τ ok i. Further, by Property 3 a timed-copy arc ((i, ρi(t)), (j, t′)) ∈ AT of

arc a exists in DT for some (j, t′) ∈ NT , and define σ(a) to be any such t′.

Proposition 2 below shows that formulation SND-HC(DT) with zero holding costs

defined over a network DT satisfying Properties 1, 2 and 3 is a valid relaxation for

formulation SND-HC(D∆̂
T̂).

Proposition 2 (Boland et al. [20]). If the in-storage holding costs hk
i are all equal to

zero, the mapping of solution (x,y) into a solution (x,y) of formulation SND-HC(D∆
T)

defined by µ : A → AT with µ(a) = ((i, ρi(t)), (j, σ(a))) and computed by the following

expressions for each ã = ((i, t̃), (j, t̃′)) ∈ AT :

xkt̃t̃′

ij =
∑

a=((i,t),(j,t+τij))∈A:
µ(a)=ã

x
kt,t+τij

ij and yt̃t̃′

ij =
∑

a=((i,t),(j,t+τij))∈A:
µ(a)=ã

y
t,t+τij

ij , (2.20)

corresponds to a feasible solution of formulation SND-HC(DT) of the same cost of

solution (x,y).

The proof of the above proposition is based on the observation that, for each

commodity k ∈ K, to each path P
k = (ak

1, . . . , a
k
mk), ak

h ∈ A, h = 1, . . . ,mk, induced

by solution (x,y) with ak
h = ((ikh, tkh), (ikh+1, t

k
h + τik

h
ik
h+1

)) and tkh+1 ≥ tkh + τik
h

ik
h+1

for

h = 1, ..,mk − 1, corresponds a feasible path P k = (µ(ak
1), . . . , µ(ak

mk)) in DT with

appropriate holding arcs.

The above proposition relies on the fact that adding additional holding arcs does

not result in additional cost. In the presence of nonzero holding costs, given an optimal

(x,y,w) solution of formulation SND-HC(D∆̂
T̂) and corresponding paths {P k}k∈K, for

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 39

each k ∈ K we have that:

wk
ik
h

=

tkh − ek, h = 1,

lk − (tkh−1 + τih−1ih
), h = mk + 1, ∀ h = 1, . . . ,mk + 1.

tkh − (tkh−1 + τik
h−1ik

h
), otherwise,

If we now consider the mapped solution (x,y,w) based on Proposition 2, since for each
k ∈ K variables w depend only on variables x (see equation (2.7)) and ρik

h
(tkh) ≤ tkh

and σ(ak
h) ≤ tkh + τik

h
ik
h+1

, ∀ h = 1, . . . ,mk, we have:

wk
ik

h
=

ρik

h
(tkh)− ek ≤ wk

ik
h

, h = 1,

lk − σ(ak
h−1) ≥ wk

ik
h

, h = mk + 1, ∀ h = 1, . . . ,mk + 1.

ρik
h
(tkh)− σ(ak

h−1) ≥ wk
ik

h

or ρik
h
(tkh)− σ(ak

h−1) ≤ wk
ik

h

, otherwise,

Therefore, the total holding cost associated with solution (x,y,w) is not proved

to be less than or equal to the total holding cost associated with solution (x,y,w)

and even under Properties 1-3, formulation SND-HC(DT) is not a valid relaxation for

formulation SND-HC(D∆̂
T̂).

To obtain a valid relaxation for formulation SND-HC(D∆̂
T̂), we derive a relaxation

of equations (2.7) based on the following observations. Let P k = (ak
1, . . . , a

k
mk) with

ak
h = ((ikh, tkh), (ikh+1, t

k
h+1)), h = 1, . . . ,mk, k ∈ K, be a path in network D∆̂

T̂ representing

a feasible k-path, where we denote with t
k
h and tkh the arrival and departure times at

node ikh, h = 1, ..,mk + 1, respectively, with t
k
1 = ek:

(i) On the partially time-expanded network D∆
T satisfying Properties 1-3, to each

arrival time tkh, h = 2, ..,mk+1, we can associate a lower bound ť ≤ t
k
h computed as

ť = σ(ak
h−1). In addition, we associate an upper bound ρik

h
(tkh) ≤ tkh ≤ t̂ = ξik

h
(tkh)

with the departure time tkh, thus obtaining an upper bound on the holding time

at node ih, i.e., tkh − t
k
h ≤ t̂− ť.

(ii) Let T (P k) be the total transit time of path P k, computed as T (P k) = ∑mk

h=1 τak
h
.

Then, the total holding time of path P k must be equal to lk − ek − T (P k) since

40 Deterministic Continuous-Time Service Network Design with Holding Costs

time

(𝑖, 𝑡1) (𝑖, 𝑡2) (𝑖, 𝑡3)

𝑡𝐻 = 𝑚𝑎𝑥𝑘∈𝒦(𝑙
𝑘 − 𝜏𝑘(𝑖,𝑑𝑘))

𝒯𝑖 𝑡 𝑖(𝑡) 𝜉𝑖(𝑡)

(𝑖, 𝑡1) 𝑡2 𝑡2

(𝑖, 𝑡2) 𝑡3 𝑡2

(𝑖, 𝑡3) 𝑡𝐻 𝑡𝐻

∆

𝒯𝑖

(a) Time points in Ti

t t⃗i(t) ξi(t)
t1 t2 t2
t2 t3 t2
t3 tH tH

(b) Value of function ξi(t)

Figure 2.4 Illustration of expression (2.22)

each commodity k ∈ K leaves its origin ok at time ek and arrives at its destination

dk at time lk.

For a commodity k ∈ K, let τ k(i, j) denote the time of the shortest-time path from

node i to node j in the flat network D with the reduced arc set A \ {(i, ok) : (i, ok) ∈

A} \ {(dk, j) : (dk, j) ∈ A} computed with respect to travel times τij. Given any

k-feasible path P k and two nodes i and j visited by the path, where j follows i in the

path, value τ k(i, j) represents a valid lower bound on the difference between the arrival

time at node j and the departure time at node i of path P k. Further, for i ∈ N , let

t⃗i(t) be the next time point of point t in set Ti computed as

t⃗i(t) =

 argmin{t′ ∈ Ti : t′ > t}, if t < argmax{t′ ∈ Ti},

maxk∈K(lk − τ k(i, dk)), if t = argmax{t′ ∈ Ti},
(2.21)

where the term lk − τ k(i, dk) represents the latest departure time from node i for

commodity k to arrive at its destination ok before lk. Function ξi(t) for node i ∈ N

and time point t ∈ Ti, can be computed as:

ξi(t) =

 t⃗i(t), if t⃗i(t)− t > ∆̂,

t, if t⃗i(t)− t ≤ ∆̂.
(2.22)

Function ξi(t) computes an upper bound on time t and it returns t if the next time

point in set Ti is at a distance in time less than or equal to the discretization level ∆̂,

otherwise it returns either maxk∈K(lk − τ k(i, dk)) or the next time point t′ ∈ Ti such

that t′ > t. Figure 2.4 illustrates the computation of function ξi(t).

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 41

Based on the above observations, we obtain the following relaxation of formulation

SND-HC(D∆̂
T̂), called SND-HC-R(DT):

zR(DT) = min
∑

((i,t),(j,t))∈AT

fij · ytt
ij +

∑
k∈K

∑
((i,t),(j,t))∈AT

(ck
ijq

k) · xktt
ij +

∑
k∈K

∑
i∈N

(hk
i q

k) · wk
i

(2.23)

s.t. (2.5), (2.6), (2.8), (2.9), (2.10) and (2.24)

wk
i ≤

∑
((i,t),(j,t))∈AT

ξi(t)xktt
ij − ek, i = ok,

lk − ∑
((j,t),(i,t))∈AT

t xktt
ji , i = dk,

∑
((i,t),(j,t))∈AT

ξi(t)xktt
ij −

∑
((j,t),(i,t))∈AT

t xktt
ji , otherwise,

∀ i ∈ N , ∀ k ∈ K,

(2.25)∑
i∈N

wk
i = lk − ek −

∑
((i,t),(j,t))∈AT̂

τijx
ktt
ij , ∀ k ∈ K. (2.26)

Inequalities (2.25) relax equations (2.7), whereas constraints (2.26) impose the total

holding time for every commodity k ∈ K. The following theorem holds.

Theorem 1. If the partially time-expanded network DT satisfies Properties 1-3, then

zR(DT) ≤ z(D∆̂
T̂), i.e., relaxation SND-HC-R(DT) is a valid SND-HC(D∆̂

T̂) relaxation.

Proof. Let (x,y,w) be an optimal solution of formulation SND-HC(D∆̂
T̂) (i.e., an

optimal CTSNDP-HC solution) of cost z, and let A = {((i, t), (j, t + τij)) ∈ A∆̂
T̂ :

y
t,t+τij

ij > 0} be the set of arcs traversed by the commodities. Below we show that to

solution (x,y,w) corresponds a feasible, but not necessarily optimal, solution (x,y,w)

of formulation SND-HC-R(DT) of cost z = z.

By means of the mapping described by expressions (2.20), we can associate with

vectors x and y and corresponding paths {P k}k∈K, solution vectors x and y. As

shown by Boland et al. [20], to solution vector x corresponds a set {P k}k∈K of feasible

paths in network DT , one path for each commodity, with the same total fixed and

flow cost of paths {P k}k∈K. More precisely, for each commodity k ∈ K and path

42 Deterministic Continuous-Time Service Network Design with Holding Costs

P
k = (ak

1, . . . , a
k
mk), ak

h ∈ A, h = 1, . . . ,mk, with ak
h = ((ikh, tkh), (ikh+1, t

k
h + τik

h
ik
h+1

)) and

tkh+1 ≥ tkh + τik
h

ik
h+1

for h = 1, ..,mk − 1 induced by solution vector x, corresponds a

feasible path P k = (µ(ak
1), . . . , µ(ak

mk)) in DT with appropriate holding arcs. For each

k ∈ K we have that the total transit time T (P k) of path P k can be computed as

T (P k) = T (P k) =
mk∑
h=1

τak
h

=
∑

((i,t),(j,t))∈A

τijx
ktt
ij =

∑
((i,t),(j,t))∈AT

τijx
ktt
ij . (2.27)

The holding times w of solution (x,y,w) can be computed as:

wk
i =

tk1 − ek, i = ok,

lk − (tkmk + τik
mk

dk), i = dk,

tkh − (tkh−1 + τik
h−1ik

h
), i = ikh, h = 2, ...,mk,

0, otherwise,

,∀ i ∈ N ,∀ k ∈ K.

It is easy to see that for each k ∈ K we have

∑
i∈N

wk
i = lk − ek − T (P k). (2.28)

We now show that solution wk
i = wk

i , ∀i ∈ N , k ∈ K, satisfies constraints (2.25)

and (2.26), thus showing that to solution (x,y,w) corresponds a feasible solution

(x,y,w) of SND-HC-R(DT) of the same total fixed, flow and holding costs. According

to (2.27) and (2.28) for all k ∈ K, we have that constraints (2.26) are satisfied by

solution (x,y,w). Constraints (2.25) for the values w are as follows:

wk
i ≤

ξik
1
(ρik

1
(tk1))− ek, i = ok,

lk − σ(ak
mk), i = dk,

ξik
h
(ρik

h
(tkh))− σ(ak

h−1), i = ikh, h = 2, ...,mk,

0, otherwise,

∀ i ∈ N . (2.29)

Based on the mapping functions ρ(.), σ(.) and ξ(i) (see Figure 2.5), we have that

for each k ∈ K:

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 43

(a) Solution on the fully time-expanded network

(b) Mapped solution on the partially time-expanded network

service arc

hold-over arc�ℎ
! �ℎ+1

!

"
�ℎ
!
∆$

"
�ℎ+1
!
∆$

"
�ℎ
!

"
�ℎ+1
!

%ℎ
!

%ℎ
! + &

�ℎ
! �ℎ+1

! %ℎ+1
!

'
�ℎ
! (%ℎ

!)

(()ℎ
!) '

�ℎ+1
! (%ℎ+1

!) *
�ℎ+1
! ('

�ℎ+1
! (%ℎ+1

!))

holding time

upper bound on holding time

time

Figure 2.5 Illustration of the mapping functions ρ(.), σ(.) and ξ(i)

(i) ξik
h
(ρik

h
(tkh)) ≥ tkh, for h = 1, . . . ,mk, and ξik

1
(ρik

1
(tk1))− ek ≥ tk1 − ek = wk

ok .

(ii) σ(ak
h−1) ≤ tkh−1 +τik

h−1ik
h
h = 2, . . . ,mk, and lk−σ(ak

mk) ≥ lk−(tkmk +τik
mk

dk) = wk
dk .

(iii) ξik
h
(ρik

h
(tkh))− σ(ak

h−1) ≥ tkh − (tkh−1 + τik
h−1ik

h
) = wk

ik
h
, h = 2, ...,mk.

(iv) For each i /∈ P k, we have wk
i ≤ 0, hence wk

i = 0.

Solution (x,y,w) is then proved to be a feasible SND-HC-R(DT) solution with the same

flow, fixed and holding costs, as well as the same total cost, as solution (x,y,w).

44 Deterministic Continuous-Time Service Network Design with Holding Costs

The lower bound LB of the exact algorithm is thus computed as LB = zR(DT)

where, in the computational results reported in Section 2.4, relaxation SND-HC-R(DT)

is solved by means of a general MIP solver.

2.3.3 Strengthening Relaxation SND-HC-R(DT)

The quality of relaxation SND-HC-R(DT) strongly affects the effectiveness of the DDD

algorithm for solving the CTSNDP-HC. In this section, we further describe ways to

strengthen relaxation SND-HC-R(DT) in order to obtain tighter lower bounds.

We first observe that since variables w are nonnegative, equations (2.26) also imply

that ∑
((i,t),(j,t))∈AT

τijx
ktt
ij ≤ lk − ek, ∀ k ∈ K, (2.30)

that is, a path P k for commodity k ∈ K from the origin ok to the destination dk cannot

exceeds the maximum transit time computed as lk − ek.

As discussed by Boland et al. [20], the CTSNDP relaxation can be strengthened by

means of the following additional longest-feasibility-arc property, based on which we

can establish Theorem 2 below.

Property 4. If arc (i, t), (j, t′) ∈ AT , then there does not exist a node (j, t′′) ∈ NT

with t′ < t′′ ≤ t+ τij, i.e., t′ = argmax{s : s ≤ t+ τij, (j, s) ∈ NT }.

Theorem 2. For a fixed set of time points T , (and thus fixed node set NT), among

the partially time-expanded networks DT = (NT ,HT ∪ AT) satisfying Properties 1-3,

consider the one DT = (NT ,HT ∪ AT) that also satisfies Property 4. We have:

zR(DT) ≥ zR(DT).

Proof. Let (x,y,w) be a feasible solution of formulation SND-HC-R(DT) with the

objective value z. We show that to solution (x,y,w) corresponds a feasible, but

not necessarily optimal, solution (x,y,w) of formulation SND-HC-R(DT), with an

objective value z such that z = z.

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 45

Let A = {((i, t), (j, t′)) ∈ AT : ytt′
ij > 0} be the set of arcs traversed by solution

(x,y,w). Consider an arc ((i, t), (j, t′)) ∈ A such that all arcs of the form ((i, t), (j, t′′))

belong to AT with t′′ < t′. If no such arc ((i, t), (j, t′)) exists, solution vectors x = x

and y = y are clearly feasible for constraints (2.5), (2.6), (2.8), and (2.9) of formulation

SND-HC-R(DT). If such arc ((i, t), (j, t′)) exists, since networks DT and DT are defined

based on the same set of time nodes NT , there exists a path from (j, t′′) to (j, t′) in

network DT .

Initialize x = 0 and y = 0 and define xktt
ij = xktt

ij , k ∈ K, and ytt
ij = ytt

ij for

all arcs in ((i, t), (j, t)) ∈ (HT ∪ AT) ∩ (HT ∪ AT). We can adapt the solution

(x,y,w) with regard to the arc ((i, t), (j, t′)) to the solution (x,y,w) concerning the

arc ((i, t), (j, t′′)), with the addition of the holding arcs joining (j, t′′) to (j, t′)), by

setting ytt′′
ij = ytt′

ij and xktt′′
ij = xkt′′t′

jj = xktt′
ij . The resulting (x,y,w) solution is also

feasible for constraints (2.5), (2.6), (2.8), and (2.9), and the process can be repeated

for every arc ((i, t), (j, t′)) ∈ AT with t′′ < t′ for all ((i, t), (j, t′′)) ∈ AT . For each

commodity k ∈ K, let P k = (ak
1, . . . , a

k
mk), ak

h ∈ A, h = 1, . . . ,mk, be the path induced

by solution (x,y) with ak
h = ((ikh, t

k
h), (ikh+1, π

k
h+1)), h = 1, . . . ,mk, where tkh is the

departure time at node ikh and πk
h is the corresponding arrival time, h = 1, . . . ,mk + 1.

Due to the definition of solution vectors (x,y) based on solution vectors (x,y), in

graph DT for commodity k we have a path P k = P
k = (ak

1, . . . , a
k
mk), ak

h ∈ A, with

departure time tkh = t
k
h and arrival times πk

h ≤ πk
h, h = 1, . . . ,mk + 1.

We now show that solution vector w = w satisfies constraints (2.25) and (2.26)

of formulation SND-HC-R(DT), thus showing that (x,y,w) is a feasible SND-HC-

R(DT) solution having the same cost of solution (x,y,w). First, for each k ∈ K,

T (P k) = T (P k), hence equations (2.26) are satisfied. Define Nk = ⋃
h=1,...,mk+1{ikh},

k ∈ K, as the set of nodes visited by path P k. Then, we have that solution vector w is

46 Deterministic Continuous-Time Service Network Design with Holding Costs

defined as:

wk
i ≤

ξi(tk1)− ek, i = ok,

lk − πk
ik
mk
, i = dk,

ξi(tkh)− πk
h, if i = ikh ∈ Nk \ {ok, dk},

0, otherwise,

∀ i ∈ N .

and for inequalities (2.25) we have

wk
i ≤

ξi(tk1)− ek = ξi(tk1)− ek, i = ok,

lk − πk
ik
mk
≥ lk − πk

ik
mk
, i = dk,

ξi(tkh)− πk
h ≥ ξi(tkh)− πk

h, if i = ikh ∈ Nk \ {ok, dk},

0, otherwise,

∀ i ∈ N .

Hence, w = w is proved to be a feasible solution for inequalities (2.25).

2.3.4 Initial Partially Time-Expanded Network

Without loss of generality, we assume that mink∈K{ek} = 0. The initial partially

time-expanded network DT = (NT ,HT ∪ AT) is defined in order to satisfy Properties

1-4 as follows:

• According to Property 1, for all k ∈ K, nodes (ok, ek) and (dk, lk) are included in

node set NT .

• According to Properties 2 and 3, for each i ∈ N , a node (i, 0) is added to NT .

Moreover, based also on Property 4, for each node (i, t) ∈ NT and for each arc

(i, j) ∈ A, arc ((i, t), (j, t′)) with t′ = argmax{s ∈ Tj : s ≤ t+ τij} is added to arc

set AT .

• For each (i, t) ∈ NT , a holding arc ((i, t), (i, t′)) is added to set HT if t′ =

argmin{s ∈ Ti : s > t} exists.

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 47

Function ξi(t), ∀i ∈ N , t ∈ NT , is initialed based on the initial partially time-expanded

network and expressions (2.22).

In order to keep the number of variables and constraints of formulation SND-HC-

R(DT) as small as possible, we use the reduction rules described in Marshall et al. [81].

These rules are based on shortest path calculations and can identify the variables and

constraints that cannot be part of any optimal SND-HC-R(DT) solution. The reader

may refer to Marshall et al. [81] for additional details.

2.3.5 Computing a Feasible CTSNDP-HC solution

Our exact algorithm computes an upper bound UB on the optimal solution cost of

CTSNDP-HC based on the implementable model IM(S) described in Section 2.2.3.

More precisely, the flat solution S = (P , C) computed by solving relaxation SND-

HC-R(DT) is used to derive a feasible CTSNDP-HC solution. Since SND-HC-R(DT)

incorporates holding costs, our upper bound heuristic method also incorporates holding

costs.

For the CTSNDP, where holding costs are all zero, a solution (π, t, t̂) satisfying

(2.12)-(2.19) together with the flat solution S corresponds to a feasible CTSNDP

solution of cost zfc(S) = LB. Thus, as observed by Boland et al. [20], the optimality

for the CTSNDP can be proved whenever the flat solution S associated with the

relaxation is implementable. Hence, problem IM(S) for the CTSNDP reduces to a

feasibility problem. Marshall et al. [81] investigated the structure of the flat solution

S for the CTSNDP as a graph theoretical problem, and identified two cases inducing

non-implementable flat solutions (see Lemmas 1 and 2 of Marshall et al. [81]).

For the CTSNDP-HC, due to the presence of the in-storage holding costs and the

approximation introduced by relaxation SND-HC-R(DT), an implementable solution

S can correspond to a feasible solution with cost UB = zfc(S) + zw(S) greater than

the cost of the current lower bound LB, and optimality cannot be proved. However,

clearly, if UB = LB, then an optimal CTSNDP-HC solution has been identified.

48 Deterministic Continuous-Time Service Network Design with Holding Costs

The procedure performs the following two steps: (i) formulation IM(S) is solved

without constraints (2.16) in order to identify infeasible consolidation constraints (2.14)

which are related to Lemma 1 of Marshall et al. [81] and are selectively removed from

the formulation; and (ii) the resulting updated IM(S) model with constraints (2.16)

and a reduced set of constraints (2.14) is solved in order to identify additional infeasible

consolidation constraints which are related to Lemma 2 of Marshall et al. [81].

The procedure identifies infeasible consolidation constraints by computing an

irreducibly inconsistent system (IIS) of formulation IM(S), which is a description of

the minimal subproblem that is still infeasible [101, 32]. An infeasible subproblem is

minimal if, when any of the constraints are removed, the infeasibility vanishes, and

algorithms for identifying IIS have been investigated in Gleeson and Ryan [57] and

Chinneck [31]. Algorithm 2 gives the steps of the procedure. In the algorithm, sets

J , JC and JP represent index sets associated with consolidation constraints (2.14).

Function LP-Solve(.) iteratively solves an LP model until a feasible solution is found.

The function updates the set of consolidation constraints J and determines the set

of infeasible consolidations J . Algorithm 2 first identifies the set JC of infeasible

consolidation constraints (line 13) and then the additional set of infeasible constraints

JP (line 16). The final UB value is computed based on the final subset of consolidation

constraints identified, and JC and JP help identify how to refine the current partially

time-expanded network.

2.3.6 Refining a Partially Time-Expanded Network

If our exact algorithm (adapted from Algorithm 1 in Section 2.3.1) does not terminate,

then the upper bound UB computed by Algorithm 2 is greater than the current lower

bound LB, and the corresponding gap is greater than the given optimality tolerance.

In this case, at least one of the following two cases applies:

(i) The flat solution S is proved to be non-implementable, and at least one of the

sets JC and JP is non-empty. This implies that in the solution obtained by

the relaxation model, there is at least one commodity k ∈ K routed on an arc

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 49

Algorithm 2: Upper bound computation and identification of the sets of
infeasible consolidation constraints

Input: Flat solution S = (P, C)
Output: Upper bound UB and consolidation constraint subsets JC and JP

1 Function Solve-LP(LP, J , J):
begin

2 while not solved do
3 Solve problem LP with consolidation constraints in J ;
4 if LP is infeasible then
5 Detect an IIS and select from the IIS J ′ ⊆ J and compute

r∗ = argmin{fαr
: r ∈ J ′};

6 J ← J \ {r∗} and J ← J ∪ {r∗};
7 end
8 end
9 return J and J ;

10 end
begin

// Initialization
11 J ← {1, . . . , |C|}, JC ← ∅ and JP ← ∅;

// Compute set JC associated with cycles
12 Let LP be model IM(S) without constraints (2.14) and (2.16);
13 Solve-LP(LP, J , JC);

// Update the set of consolidation constraints
14 C ← {Cr : r ∈ J };

// Compute set JP associated with paths
15 Let LP be the model IM(S) without constraints (2.14);
16 Solve-LP(LP, J , JP);

// Update the set of consolidation constraints
17 C ← {Cr : r ∈ J };

// A feasible solution has been identified
18 UB ← zfc(S) + zw(S);
19 return UB, JC and JP ;
20 end

((i, t), (j, t′)) that is too short, i.e., t′ < t+ τij . We call an arc ((i, t), (j, t′)) ∈ AT

such that t′ < t+ τij a short-arc. The reason for the non-implementability is due

to the fact that short-arcs are evaluated by model IM(S) with the actual or true

travel times τij . In this case, the short-arcs identified must be lengthen by adding

new time points to network DT . Network DT is also updated in such a way that

the current flat solution S is no more feasible for the relaxation SND-HC-R(DT)

defined on the updated network DT .

(ii) The relaxation of the holding variables w defined by inequalities (2.25) is too

weak, i.e., the upper bounds on the departure times computed by functions ξi(.)

50 Deterministic Continuous-Time Service Network Design with Holding Costs

and the lower bounds on the arrival times computed by functions σ(.) must be

strengthened.

We observe that if the flat solution S is implementable, a sufficient condition
for the solution (x,y,w) of the relaxation SND-HC-R(DT) to corresponds to
an optimal CTSNDP-HC solution of cost LB is that wk

i = θk
i , ∀k ∈ K, i ∈ N ,

where:

θk
i =

∑
((i,t),(j,t))∈AT

t xktt
ij − ek, i = ok,

lk −
∑

((j,t),(i,t))∈AT

t xktt
ji , i = dk, ∀ i ∈ N , ∀ k ∈ K.

∑
((i,t),(j,t))∈AT

t xktt
ij −

∑
((j,t),(i,t))∈AT

t xktt
ji , otherwise,

(2.31)

If w ̸= θ, it exists at least one commodity k passing through a node i such that

wk
i > θk

i , and at least one of the following two cases applies:

(a) The upper bounds on the departure times for node i computed by function

ξi(.) must be reduced. Let ((i, t), (j, t′)) be an arc traversed by the path

associated with commodity k, and let b = ξi(t) be the time point computed

with respect to the current DT network. To strengthen the relaxation, a

new time t must be added to network DT such that the function ξi(t) is

updated in ξi(t) = t < b. A time point t = (i, t + max{⌊(wk
i − θk

i)/2⌋, 1})

suffices to the case.

(b) The lower bounds on the arrival times defined by the term∑
((j′,t),(i,t))∈AT

t xktt
j′,i of equations (2.31) for the cases i ̸= ok must be in-

creased. This can be accomplished by lengthening additional short-arcs (if

any).

Clearly, for the CTSNDP-HC with zero in-storage holding costs, this case (ii)

does not apply, and in the worst case the set of nodes NT corresponds to set N∆
T

with ∆ = 1.

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 51

Algorithm 3: Refinement of network DT with a new time point
Input: Network DT and time point t for node i
Output: Updated network DT

1 Function Refine(DT , i, t):
begin

2 NT ← NT ∪ {(i, t)};
// Add timed-copy arcs to node (i, t) satisfying Property 4

3 forall (i, j) ∈ A do
4 t′ ← argmax{s ∈ Tj : s ≤ t+ τij};
5 AT ← AT ∪ ((i, t), (j, t′));
6 end

// Change the arcs to impose Property 4
7 forall ((j, t), (i, t′)) ∈ A where t′ = argmax{s ∈ Ti : s < t} do
8 if t+ τij ≥ t then
9 AT ← AT \ {((j, t), (i, t′))};

10 AT ← AT ∪ {((j, t), (i, t))};
11 end
12 end

// Update holding arc set
13 t′ ← argmax{s ∈ Ti : s < t} and t′′ ← argmin{s ∈ Ti : s > t};
14 HT ← HT \ {((i, t′), (i, t′′))};
15 HT ← HT ∪ {((i, t′), (i, t)), ((i, t), (i, t′′))};
16 return DT ;
17 end

In the following, we describe how the network DT can be updated with new times

points based on the aforementioned cases (i) and (ii).

Adding new time points to the partially time-expanded network DT

The algorithm adopted to update the partially time-expanded network DT with a

new time point t for node i follows the steps of a similar algorithm used by the DDD

algorithm for the CTSNDP by Boland et al. [20]. Algorithm 3 gives the steps performed

to update a network DT with a new time point t for node i. In the algorithm, time

node (i, t) is first added to the set of time nodes NT (line 2). As required by Properties

3 and 4, for each arc (i, j) ∈ A, the longest timed-copy arc associated with time node

(i, t) is then added to the arc set AT (line 5). Whenever an arc with which Property

4 is not satisfied because of the addition of node (i, t), the network is updated by

removing the arcs not satisfying Property 4 and by adding new arcs that do satisfy

Property 4 (line 10). Finally, the set of holding arcs is updated (lines 13-15).

52 Deterministic Continuous-Time Service Network Design with Holding Costs

Algorithm 4: Refine strategy
Input: Network DT and consolidation constraint sets JC and JP

Parameters :NA number of additional short-arcs to be lengthen
Output: Updated network DT
begin

// Strategy 1: Lengthen short-arcs based on cycles
1 forall r ∈ JC do
2 forall (k, n) ∈ Jr do
3 P k ← path associated with commodity k;
4 forall ((i, t), (j, t′)) ∈ P k do
5 if t′ < t+ τij then Refine(DT ,j,t+ τij);
6 end
7 end
8 end

// Strategy 2: Lengthen short-arcs based on paths
9 forall r ∈ JP do

10 forall (k, n) ∈ Jr do
11 P k ← path associated with commodity k;
12 ((i, t), (j, t′))← ak

n;
13 if t′ < t+ τij then Refine(DT ,j,t+ τij) ;
14 ((i, t), (j, t′))← argmax((i1,t1),(i2,t2))∈P k{t1 + τi1,i2 − t2};
15 if t′ < t+ τij then Refine(DT ,j,t+ τij);
16 end
17 end

// Strategy 3: Lengthen short-arcs to strengthen the relaxation
18 Sort the arcs a = ((i, t), (j, t′)) associated with {P k}k∈K having t′ < t+ τij for increasing

values of γa = t;
19 L ← (a1, a2, . . . , a|AT |) such that γa1 ≤ γa2 ≤ · · · ≤ γa|AT | ;
20 forall h← 1 to NA do
21 ((i, t), (j, t′))← ah;
22 Refine(DT ,j,t+ τij)
23 end

// Strategy 4: Add new time points to strengthen the relaxation
24 forall k ∈ K do
25 P k ← path associated with commodity k;
26 forall ((i, t), (j, t′)) ∈ P k do
27 if wk

i > θk
i then

28 Refine(DT ,j,t+ max{⌊(wk
i − θk

i)/2⌋, 1});
29 end
30 end
31 end
32 end

2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC 53

Notice that the value of functions ξi(.) change according to the updated network

DT and expressions (2.22).

Refine strategy

The refinement strategy identifies new time points to update the network DT in order

to strengthen the relaxation. It is based on sets JC and JP of infeasible consolidation

constraints obtained from the computation of a valid upper bound by Algorithm 2.

An overview of the steps executed by the refinement strategy is given by Algorithm

4. In the algorithm, short-arcs associated with the set of infeasible consolidations JC

are first identified (Strategy 1, lines 1-8), followed by lengthening of the short-arcs

associated with infeasible consolidations from set JP (Strategy 2, lines 9-17). To

strengthen the relaxation of the holding variables w, the algorithm lengthens the

short-arcs associated with paths {P k}k∈K selected in the flat solution (Strategy 3, lines

18-23). It is worth noting that the paths composing an implementable flat solution can

contain short-arcs, hence in this case Strategies 1 and 2 are not used since JC = JP = ∅,

and the short-arcs are lengthened by Strategy 3. Finally, new time points are added

by Strategy 4 (lines 24-31).

It is worth noting that with zero in-storage holding costs, refinement Strategies 1

and 2 suffice for the convergence of the algorithm, since case (ii) of Section 2.3.6 does

not apply.

2.3.7 Convergence and Optimality

Given the domains of the x and y variables of formulation SND-HC(D∆̂
T̂) defined

on the fully time-expanded network D∆̂
T̂ , there are only a finite number of solutions

corresponding to all feasible solution vectors (x,y) of the formulation.

At the different iterations of the algorithm, according to our proposed refinement

process, if a flat-solution is non-implementable, at least one short-arc is identified by

Algorithm 2 and is lengthened by the refinement process. Moreover, if the current

relaxation of the holding variables w is too weak, new additional short-arcs are

54 Deterministic Continuous-Time Service Network Design with Holding Costs

lengthened and new time points are added to strengthen the relaxation. As a result of

the refinement process, the current solution of the relaxation is no longer feasible for

the updated relaxation SND-HC-R(DT).

Under our assumption made in Section 2.2.1, the CTSNDP-HC always has a feasible

solution. Therefore, since there are only finitely many feasible solutions, arcs to be

lengthened and time points to be added, repeating this process finitely many times

will guarantee the convergence of the solution associated with lower bound LB to an

optimal solution of the CTSNDP-HC. We have thus established the following result.

Theorem 3. If the optimality tolerance is set equal to zero, the DDD algorithm for

the CTSNDP-HC converges to an optimal solution after finitely many iterations.

2.4 Computational Experiments

In this section, we present extensive computational analysis based on two sets of

experiments. Through the first set of experiments (see Section 2.4.1), we evaluate the

performance of the DDD algorithm for the CTSNDP-HC on instances derived from

the literature. Through the second set of experiments (see Section 2.4.2), we examine

the quality of the solutions produced on an additional set of instances, so as to analyze

the effectiveness of the DDD algorithm and identify factors that affect the complexity

of the CTSNDP-HC. Based on the results from these two sets of experiments, we

evaluate the importance and benefits of taking holding costs into account in solving

the CTSNDP.

We denote with EXM our DDD algorithm for the CTSNDP-HC. In order to further

compare the performance of EXM, we also implemented the algorithm proposed by

Boland et al. [20] for the CTSNDP, hereafter denoted as EXM-0. Algorithm EXM-0

was used as a baseline algorithm to compute heuristic solutions for the CTSNDP-HC

so as to analyze the performance of algorithm EXM. It is worth noting that DDD-based

methods rely on two (relative) optimality tolerances: (i) the optimality tolerance used

by the DDD algorithm (see parameter optimality tolerance of the exact algorithm

2.4 Computational Experiments 55

described in Section 2.3.1), and (ii) the optimality tolerance used by the MIP solver.

For the sake of the notation, we denote by tolDDD and tolMIP the two optimality

tolerances, respectively. Given tolerance tolMIP applied to the MIP solver and in order

to compute safe lower bounds, the lower bound value LB was set equal to the best

known lower bound on the optimal objective given by the Gurobi solver at termination

through parameter ObjBoundC.

The algorithms were implemented in Java language, and Gurobi (v.8.1.1) [60] was

used as the LP solver to solve model IM(S), and as the MIP solver to solve relaxation

SND-HC-R(DT). The Gurobi function Model.computeIIS() was used to compute

IISs in Algorithm 2. The experiments were performed on an Intel(R) Core(TM) i7-8700

(3.20 GHz) Desktop PC equipped with 64 GB RAM running under Windows 10 64-bit

operating system.

2.4.1 Experiments based on CTSNDP Benchmark Instances

In our first set of experiments, we aim to test the performance of EXM in solving

CTSNDP benchmark instances used in the literature and CTSNDP-HC instances

generated from these CTSNDP benchmark instances.

Instance Generation

We considered the set of 558 CTSNDP instances generated by Boland et al. [21] that

also contains the 432 instances used by Boland et al. [20]. The 558 instances were also

used by Marshall et al. [81] to obtain their computational results.

The instances were derived from the 31 classes of the “C” instances presented in

Crainic et al. [34], which have been widely used in the literature as benchmarks to

evaluate the solution methods for the capacitated fixed charge network design problem

[56, 64, 36, 65]. Table 2.2 gives the details of the classes of networks D = (N ,A)

considered by Crainic et al. [34]. In the table, the column “Cost ratio” computed as
1

|A|
∑

a∈A
fa

caua
measures the ratio between fixed and variable costs, “Cap ratio” computed

as ∑
k∈K q

k/ 1
|A|

∑
a∈A ua indicates whether the arcs are loosely or tightly capacitated,

56 Deterministic Continuous-Time Service Network Design with Holding Costs

Table 2.2 Characteristics of “untimed” C instances

Class |N | |A| |K| Cost ratio Cap ratio Avg length

c33 20 228 39 0.02 5.8 2407.9
c35 20 230 40 0.02 16.0 767.9
c36 20 230 40 0.08 16.0 3705.8
c37 20 228 200 0.51 16.0 1871.4
c38 20 230 200 0.97 16.0 4381.0
c39 20 229 200 0.47 20.0 1691.3
c40 20 228 200 0.94 22.0 3522.1
c41 20 288 40 0.02 8.0 1622.0
c42 20 294 40 0.08 10.0 5675.8
c43 20 294 40 0.02 16.0 776.5
c44 20 294 40 0.08 16.0 3517.9
c45 20 294 200 0.48 25.0 1124.2
c46 20 292 200 1.01 25.0 2632.0
c47 20 291 200 0.46 28.0 996.6
c48 20 291 200 0.95 28.0 2271.6
c49 30 518 100 0.10 20.0 341.1
c50 30 516 100 0.51 20.0 1586.5
c51 30 519 100 0.09 29.9 206.6
c52 30 517 100 0.49 29.9 1161.5
c53 30 520 400 0.18 40.0 612.1
c54 30 520 400 0.36 40.0 1061.8
c55 30 516 400 0.18 49.9 479.4
c56 30 518 400 0.35 49.9 966.9
c57 30 680 100 0.09 20.0 307.6
c58 30 680 100 0.20 20.0 592.8
c59 30 687 100 0.10 29.9 187.1
c60 30 686 100 0.20 29.9 394.7
c61 30 685 400 0.19 40.0 503.8
c62 30 679 400 0.36 40.0 1056.5
c63 30 678 400 0.18 49.9 381.4
c64 30 683 400 0.34 49.9 780.0

and “Avg length” computed as 1
|K|

∑
k∈K τ ok dk , where τ ok dk is the length of the least

total travel time path from ok to dk, is the average length of the least total travel

time paths. For each of the 31 classes of networks reported in the table, Boland et al.

[21] generated 18 CTSNDP timed instances by first calculating the travel times for

each arc and then by generating the time windows for each commodity by randomly

sampling from a normal distribution. Based on Boland et al. [22] and as also reported

by Marshall et al. [81], these instances can also be grouped by the flexibility and

cost ratio of the instances, these being a measure of the tractability of the instances.

An instance has (i) low flexibility (LF) if mink∈K{lk − (ek + τ ok dk)} < 227, and high

2.4 Computational Experiments 57

flexibility (HF) otherwise, and (ii) low cost ratio (LC) if 1
|A|

∑
a∈A

fa

caua
< 0.175, and

high cost ratio (HC) otherwise. The instances are then grouped according to the two

measures, resulting in the four groups of instances, referred to as “HC/LF”, “HC/HF”,

“LC/LF” and “LC/HF”, respectively.

For each of the 558 CTSNDP instances, we generated a CTSNDP-HC instance by

first computing for each node i ∈ N parameter ϵi = 1/|Ai|
∑

a∈Ai
(ca +fa/ua)/τa, where

Ai = {(j1, i), (i, j2) : (j1, i), (i, j2) ∈ A} represents the average fixed and variable costs

of all the ingoing and outgoing arcs of node i. Then, the per-unit-of-demand-and-time

holding cost hk
i was set equal to 0.3 ϵi, ∀k ∈ K. Value 0.3 was chosen to simulate the

fact that holding costs typically range between 20% and 30% of the inventory value

[85, 88], and the transportation cost is generally less than the commodity value. Since

in practice a commodity does not incur any holding costs at the destination, for each

commodity k ∈ K we set hk
dk = 0. We therefore generated 558 CTSNDP-HC instances.

Results

Before evaluating the performances of EXM , to confirm the effectiveness of the baseline

algorithm, here we first report on a comparison of the results obtained by the baseline

algorithm EXM-0 in solving the 558 CTSNDP instances with the results of the DDD

algorithms proposed by Boland et al. [20], denoted as BHMS17, and Marshall et al.

[81], denoted as MBSH21. A time limit of one hour was imposed to EXM-0, as done

for both BHMS17 and MBSH21. In the comparison reported by Marshall et al. [81],

for method BHMS17, tolDDD and tolMIP were set equal to 0.01 and 0.0001 (i.e., the

CPLEX default setting), respectively. For method MBSH21, tolDDD was also set

equal to 0.01, whereas tolerance tolMIP was dynamically changed during the different

iterations. More precisely, the initial tolerance was set equal to 0.04, and then for each

iteration tolMIP was computed as max{gap× 0.25, tolDDD × 0.98}, where gap is the

final gap of the previous iteration. Regarding EXM-0, tolDDD and tolMIP were set

equal to 0.01 and 0.01, respectively. For the set of CTSNDP instances, our comparison

is based on the results reported by Marshall et al. [81] which were obtained on a single

58 Deterministic Continuous-Time Service Network Design with Holding Costs

core machine using CPLEX 12.6 as the MIP solver (for both BHMS17 and MBSH21,

with no specific machine type being reported). Because the computational environment

of BHMS17 and MBSH21 was different from that of our algorithms, a direct comparison

is therefore not possible. However, in what follows we give a clear overall picture of the

relative performance, especially when the total number of instances solved to proven

optimality is compared.

Table 2.3 gives the comparison of the three algorithms. For each group of instances,

the table shows the number of instances in the group and, for each algorithm, the

average percentage deviation of the final upper bound UB computed with respect to

the final lower bound LB (“%UB”), i.e., 100.0× UB−LB
UB

, the average computing time

in seconds (“time”), the average number of iterations (“iter”), and the percentage of

the instances solved to optimality (“%opt”) (within the given optimality tolerance).

The average values shown in columns “%UB”, “time”and “iter” were computed over

all instances.

The table shows that our implementation of the algorithm of Boland et al. [20]

compares well with both algorithms BHMS17 and MBSH21, and also shows similar

performances on the different groups of instances. We note that the computational

environment of EXM-0 is different from the one used by the other methods. However,

the comparison over the total number of instances solved to proven optimality gives

a clear global picture of the relative performance. In groups LC/LF and LC/HF,

EXM-0 was capable of solving to optimality all the instances within the imposed

optimality tolerance. In these groups, with respect to BHMS17 and MBSH21, EXM-0

shows higher percentage deviations of the final upper bound UB. This can be due to

the fact that different MIP solvers are used, and that EXM-0 computes a safe lower

bound based on the best known bound given by the Gurobi MIP solver. Based on

the results of Table 2.3, we adopted algorithm EXM-0 as a baseline algorithm for

comparison purposes with EXM.

2.4
C

om
putationalExperim

ents
59

Table 2.3 Summary results on the CTSNDP instances

Group Algorithm %UB time iter %opt
HC/LF BHMS17 0.08 1391.1 5.3 77.1

183 MBSH21 0.12 677.8 14.8 85.8
EXM-0 0.78 318.5 12.1 95.6

HC/HF BHMS17 0.56 1966.7 6.0 53.7
177 MBSH21 0.84 1693.8 17.5 56.5

EXM-0 3.31 1613.2 11.6 60.5
LC/LF BHMS17 0.00 28.6 3.7 100.0

94 MBSH21 0.00 0.6 6.5 100.0
EXM-0 0.62 0.8 3.7 100.0

LC/HF BHMS17 0.00 1.5 2.5 100.0
104 MBSH21 0.00 0.1 3.2 100.0

EXM-0 0.50 0.1 1.5 100.0

Table 2.4 Summary results on the CTSNDP-HC instances

Zero holding costs Nonzero holding costs

EXM-0 EXM EXM

%UB0 %UB %UB %LB0 %UB1
Group %opt min max avg time %tLB iter %opt min max avg time %tLB iter %opt min max avg time %tLB iter avg avg max

HC/LF 96.7 2.4 5.2 3.7 450.6 88.6 12.2 93.4 1.0 2.8 1.7 1170.9 93.3 7.5 78.1 1.0 4.5 1.7 2544.0 94.1 15.9 1.1 0.7 2.5

HC/HF 70.6 1.4 23.6 7.8 2878.0 95.1 12.7 68.9 1.2 8.8 2.9 3125.5 97.7 7.6 55.9 1.2 10.3 3.6 3786.3 97.7 10.0 1.7 1.5 14.5

LC/LF 100.0 - - - 0.8 60.0 3.7 100.0 - - - 1.3 68.0 3.1 100.0 - - - 1.9 70.7 4.7 0.5 1.3 2.8

LC/HF 100.0 - - - 0.1 40.9 1.5 100.0 - - - 0.1 51.7 1.6 100.0 - - - 0.2 55.2 2.4 0.2 1.5 3.1

Note: “-” represents that all instances in the corresponding instance group are solved to optimality by the corresponding method.

60 Deterministic Continuous-Time Service Network Design with Holding Costs

For the set of 558 CTSNDP-HC instances, we executed EXM with a time limit of two

hours, and we also used EXM-0 to solve the corresponding CTSNDP instances and to

compute heuristic solutions for the CTSNDP-HC, again with a time limit of two hours.

In order to attest to the effectiveness of EXM in solving the CTSNDP instances, we also

used algorithm EXM to solve the set of CTSNDP instances, that is, EXM was used by

setting the holding costs equal to zero. For these experiments, we used tolDDD = 0.01

for both EXM and EXM-0, tolMIP = 0.01 for EXM-0. For algorithm EXM, based on our

preliminary experiments, we also found to be computationally convenient to dynamically

change parameter tolMIP , that was computed as max{min{0.04, gap× 0.25}, 0.01}.

Table 2.4 reports the corresponding results based on the categories of the flexibility

and cost ratio of the instances. The following notation is used:

• LB0, UB0: final lower and upper bounds computed by EXM-0, respectively.

• UB1: value of the CTSNDP-HC solution derived from the upper bound UB0

computed by algorithm EXM-0, obtained by adding the holding costs associated

with the holding times of the solution corresponding to UB0.

• LB, UB: final lower and upper bounds computed by EXM, respectively.

For each method and group of instances, the table shows the percentage of instances

solved to optimality (“%opt”), the average percentage deviation of lower bound LB

with respect to lower bound LB0 (i.e., %LB0 = 100.0× LB−LB0
LB0) and the percentage

deviations of the different upper bounds computed as %UB0 = 100.0 × UB0−LB0
UB0 ,

%UB1 = 100.0× UB1−UB
UB1 and %UB = 100.0× UB−LB

UB
. For the different percentage

deviations, the min and max values are also reported. For UB0 and UB, the deviations

were computed over all instances not solved to optimality, whereas the deviations

of UB1 were computed over all instances. Columns time and iter give the average

computing time and number of iterations, respectively, computed over all instances.

Column %tLB reports the percentage of the total time spent in computing the lower

bound, i.e., the percentage of the total time spent by the MIP solver over the total

computing time.

2.4 Computational Experiments 61

Table 2.5 Summary results on the CTSNDP-HC instances by network class

Zero holding costs Nonzero holding costs
EXM-0 EXM EXM

%UB0 %UB %UB %LB0 %UB1
Class ni opt min max avg opt min max avg opt min max avg avg avg max

c33 18 18 - - - 18 - - - 18 - - - 0.6 1.8 3.1
c35 18 18 - - - 18 - - - 18 - - - 0.1 1.6 2.8
c36 18 18 - - - 18 - - - 18 - - - 0.1 1.2 2.3
c37 18 18 - - - 16 1.8 2.4 2.1 11 1.5 3.9 2.6 1.3 0.0 0.7
c38 18 10 1.4 22.3 8.9 11 1.3 8.6 3.3 9 2.0 9.4 4.5 1.3 2.3 13.5
c39 18 15 2.9 8.8 5.6 16 1.6 4.0 2.8 9 1.2 3.7 2.5 1.6 0.6 5.5
c40 18 9 11.8 23.6 17.9 9 3.0 8.8 4.8 9 4.2 10.3 6.6 2.4 5.7 14.5
c41 18 18 - - - 18 - - - 18 - - - 0.2 1.5 2.9
c42 18 18 - - - 18 - - - 18 - - - 0.6 1.3 1.9
c43 18 18 - - - 18 - - - 18 - - - 0.2 1.8 2.7
c44 18 18 - - - 18 - - - 18 - - - -0.1 0.9 1.2
c45 18 18 - - - 18 - - - 18 - - - 1.6 0.5 0.8
c46 18 14 1.8 6.8 4.1 14 1.2 2.6 1.7 11 1.6 3.2 2.0 1.4 0.8 3.9
c47 18 18 - - - 18 - - - 18 - - - 1.6 0.6 0.8
c48 18 13 4.6 16.5 9.6 12 1.9 3.5 2.9 9 1.2 7.7 3.0 1.7 1.9 10.1
c49 18 18 - - - 18 - - - 18 - - - 0.6 1.5 2.8
c50 18 18 - - - 18 - - - 18 - - - 1.2 1.1 2.1
c51 18 18 - - - 18 - - - 18 - - - 0.6 1.2 1.8
c52 18 18 - - - 18 - - - 18 - - - 1.0 1.2 2.0
c53 18 18 - - - 16 1.0 1.1 1.1 9 1.3 1.6 1.4 1.6 0.6 0.8
c54 18 10 1.7 5.5 3.4 10 1.8 3.1 2.4 9 2.7 4.1 3.5 1.3 0.6 2.6
c55 18 18 - - - 17 1.0 1.0 1.0 9 1.4 1.7 1.5 1.7 0.8 1.1
c56 18 13 2.3 4.3 3.4 10 1.2 3.5 1.9 9 2.3 4.5 3.2 1.5 0.5 2.3
c57 18 18 - - - 18 - - - 18 - - - 0.6 1.1 1.8
c58 18 18 - - - 18 - - - 18 - - - 0.7 0.9 1.6
c59 18 18 - - - 18 - - - 18 - - - 0.5 1.3 1.9
c60 18 18 - - - 18 - - - 18 - - - 0.7 1.3 2.3
c61 18 18 - - - 17 1.0 1.0 1.0 10 1.0 1.3 1.2 1.3 0.6 0.8
c62 18 9 1.9 8.0 5.4 10 1.7 3.4 2.8 9 3.6 5.2 4.3 1.5 1.2 3.4
c63 18 18 - - - 18 - - - 12 1.1 1.4 1.2 1.5 0.8 1.0
c64 18 11 1.8 5.2 3.4 9 1.1 2.8 2.0 9 2.2 4.5 3.1 1.4 0.7 2.5

Note:“-” represents that all instances in the corresponding instance set are solved
to optimality by the corresponding method.

62 Deterministic Continuous-Time Service Network Design with Holding Costs

Table 2.5 gives a different view of the results of Table 2.4 by grouping the instances

based on the 31 “C” classes. In the table, column “ni” gives the number of instances

in the corresponding group and “opt” is the number of instances solved to optimality.

Table 2.4 indicates that EXM achieves a similar performance to that of EXM-0

when used to solve the CTSNDP. The detailed Table 2.5 shows that EXM solved 491

instances to optimality, whereas 500 instances were solved by EXM-0 but that there

are instances solved to optimality by EXM that cannot be solved by EXM-0 within

the imposed time limit, and vice versa. Interestingly, on the one hand EXM requires

(on average) a smaller number of iterations to converge to an optimal solution than

EXM-0, thus showing the importance of the refinement strategy in DDD algorithms.

On the other hand, EXM requires a higher computing time, as shown by column %tLB.

For both EXM and EXM-0, most of the computing time is taken up by the MIP solver

used to compute the lower bounds at the different iterations. These results show that

tuning a DDD algorithm requires finding the right trade-off between the time spent

by the MIP solver and the rate of convergence of the DDD method, which strictly

depends on the refinement strategy.

The results on the CTSNDP-HC instances show that CTSNDP-HC instances of

groups LC/LF and LC/HF can also be easily solved by EXM, as with the CTSNDP

case. Conversely, the instances of groups HC/LF and HC/HF are more difficult to

solve, as shown by the percentages of instances solved to optimality. In particular,

for groups HC/HF that are characterized by a high cost ratio and high flexibility, a

trade-off between fixed, flow and holding costs must be achieved.

The summary results of Table 2.4 and the detailed results of Table 2.5 show that,

compared with EXM-0, algorithm EXM generates better lower and upper bounds for the

CTSNDP-HC. On the most difficult instances of group HC/HF, the solutions obtained

by EXM improve those derived from the solutions obtained by EXM-0 significantly.

This is indicated by the maximum percentage deviation %UB1 being equal to 14.5%.

It thus implies that a significant cost saving can be gained in some cases by taking into

2.4 Computational Experiments 63

EXM-0 EXM

0

5

10

15

20

25

30

6.2

19.9

8.7

24.3

2.1
5.4

%
va

lu
e

vars cons nds vars cons nds

EXM-0 EXM

0

5

10

15

20

25

30

1.9
5.0

2.7
6.2

0.7 1.6

%
va

lu
e

vars cons nds vars cons nds

(a) Group HC/LF (b) Group HC/HF

EXM-0 EXM

0

5

10

15

20

25

30

3.9

10.2

5.3

10.5

1.5 2.8

%
va

lu
e

vars cons nds vars cons nds

EXM-0 EXM

0

5

10

15

20

25

30

0.3 0.70.4 0.80.1 0.2

%
va

lu
e

vars cons nds vars cons nds

(c) Group LC/LF (d) Group LC/HF

Figure 2.6 Comparison of partially and fully time-expanded networks

account holding costs when solving the CTSNDP. It is worth noting that the negative

%LB0 value in Table 2.5 is due to applying the optimally gap of 0.01.

To further analyze the effectiveness of the DDD approach and impact of the holding

costs, Figure 2.6 shows the relative sizes (average percentage values), in terms of the

number of variables (“vars”) and constraints (“cons”) of the final relaxation models

(models SND(DT) and SND-HC-R(DT) associated with the last iteration of the DDD

algorithm) solved by algorithms EXM-0 and EXM with respect to the models associated

with the fully time-expanded networks. The figure also shows the relative number

of time points (or nodes) (“%nds”) of the final partially time-expanded network DT

64 Deterministic Continuous-Time Service Network Design with Holding Costs

Table 2.6 CTSNDP-HC instances: holding costs, holding times and consolidations

HC/LF HC/HF LC/LF LC/HF

%hc %ht %cs %hc %ht %cs %hc %ht %cs %hc %ht %cs
UB1 1.9 10.3 47.7 2.3 13.7 59.9 1.8 7.7 14.5 1.8 7.3 9.3
UB 1.2 7.0 47.5 1.7 10.4 61.3 0.5 2.3 13.0 0.3 1.5 8.0

over the fully time-expanded network. The figure clearly shows the advantage of the

DDD approach, which is capable of computing optimal solutions considering only a

reduced set of time points of the fully time-expanded network. What is more, the sizes

of the MIP solvers solved at the different iterations are confined to small portions of

the model associated with the fully time-expanded networks, a very relevant feature

given the complexity of solving TI formulations. A comparison with the results using

EXM-0 shows that EXM requires about twice the number of variables, constraints and

time points of EXM-0, which indicates an increased complexity of the problem after

incorporating holding costs.

Moreover, Table 2.6 summarizes relevant details of the solutions corresponding to

the upper bounds UB1 and UB. More specifically, the table reports the following

average percentage values: (i) %hc, the total holding cost over the total solution cost,

(ii) %ht, the total holding time over the total transit time, and (iii) %cs, the number

of consolidation arcs over the total number of arcs used by the solution. The table

also shows that the solutions computed by EXM achieve a marginal reduction in

terms of holding times (and corresponding holding costs) with respect to the solutions

derived from the EXM-0. Interestingly, this reduction is achieved by increasing the

percentages of consolidations (see column %cs) for group HC/HF, and by decreasing

of the percentages for the remaining groups. These also reveal the significant effect of

the holding costs on the decisions of holding and consolidation for solving the CTSND

2.4 Computational Experiments 65

2.4.2 Experiments on Newly Generated CTSNDP-HC Bench-

mark Instances

For our second set of experiments, we generated a new set of CTSNDP-HC instances.

To investigate attributes of the instances that affect the complexity of the CTSNDP-HC

and the importance of the holding costs, we exploit two main components characterizing

service network design problems: the connectivity of the underlying physical network

(spatial component) and the flexibility of the shipments’ time requirements (temporal

component). Using these newly generated instance, we also examine the benefits gained

by incorporating holding costs into the CTSNDP and the impact of the holding costs

on the solution structure in these more differentiated instances.

Instance Generation

The procedure used to generate the new instances followed two main steps.

(1) Varying the connectivity level. For each instance of Table 2.2, based on the

corresponding network D = (N ,A), we first derive the travel times τij, (i, j) ∈ A

using the method proposed by Boland et al. [20]. Similarly to the generation of the

instances explained in Section 2.4.1, for each k ∈ K, we set the per-unit-of-demand-

and-time cost hk
i equal to 0.3 ϵi for i ∈ N with ϵi = 1/|Ai|

∑
a∈Ai

(ca + fa/ua)/τa,

and set hk
dk = 0. Let Γ be the time of the path in D having maximum time among

the shortest-time ok − dk paths associated with the vertices ok, dk, ∀k ∈ K. Then,

we reduce the number of arcs of the network D = (N ,A) by an arc reduction

procedure that at each iteration performs the following steps:

(i) Randomly select an arc α by means of a uniform distribution from the set of

arcs A.

(ii) Check the connectivity of the network (N ,A \ {α}), i.e., check if for every

pair of vertices ok, dk, k ∈ K, there exists a path connecting ok to dk.

(iii) If the graph is connected, set A = A \ {α} and begin a new iteration.

66 Deterministic Continuous-Time Service Network Design with Holding Costs

If the removal of an arc α results in a disconnected network, a new arc is randomly

selected and the procedure terminates after 1
10x unsuccessful removal attempts,

where x is the initial number of arcs. After termination, each remaining arc in the

resulting graph D is in turn selected and tested for removal.

Let NR be the total number of arcs removed. We consider four final networks

corresponding to the networks obtained after the removal of ⌊xNR⌋ arcs where

x ∈ {1
4 ,

1
2 ,

3
4 , 1}, denoted as D1, D2, D3 and D4, respectively.

(2) Varying the flexibility level. Given a network Dx, x = 1, 2, 3, 4, let τ ij , i, j ∈ N ,

i ̸= j be the length of the least total travel time path from i to j, and let

B = {(i, j) : τ ij ≤ Γ}.

If, for a commodity k ∈ K, we have τ ok dk > Γ, we assign to the commodity new

origin and destination nodes by randomly sampling with a uniform distribution a

new pair from set B, and we recompute the new value τ ok dk .

We then generate available and due times also based on the method proposed by

Boland et al. [20] as follows:

(a) We compute the average length computed as lavg = 1
|K|

∑
k∈K τ ok dk .

(b) For generating values ek, we create a normal distribution with mean lavg and

standard deviation 1
6 lavg.

(c) For generating values lk, we create three normal distributions (denoted as

A, B and C, respectively) from which we drawn values lk, all of which are

defined by a standard deviation 1
6µ but where we consider the values for the

mean µ, 1
2 lavg, lavg and 3

2 lavg. A value lk is set equal to ek + τ ok dk + Fk where

Fk ≥ 0 is the value drawn from a distribution.

Based on the above two steps, for each of the instances in Table 2.2, we generated

four different networks Dx, x = 1, 2, 3, 4, and three instances based on the three different

distributions for values ek and lk, k ∈ K. These steps were repeated three times to

finally obtain a total of 3× (31× 4× 3) = 1116 instances.

2.4 Computational Experiments 67

Table 2.7 Connectivity properties of the
new CTSNDP-HC instances

Network Min cut. Avg cut.

D1 7 12
D2 4 8
D3 2 4
D4 1 1

Table 2.8 Time flexibility of the new
CTSNDP-HC instances

Normal
Distribution

Mean(µ) StdDev(σ)

A 1
2 lavg

1
6µ

B lavg
1
6µ

C 3
2 lavg

1
6µ

Table 2.7 summarizes the connectivity properties of the instances generated. Given

an instance and the associated network Dx, x ∈ {1, 2, 3, 4}, we first computed the

minimum ok − dk cut (denoted as (S,N \ S)k) in Dx, ∀k ∈ K, and then we computed

mink∈K{|(S,N \ S)k|}, i.e., the cardinality of the cut having the minimum cardinality

among the different ok − dk pair. For each type of network, the table reports the

cardinality of the cut having the minimum cardinality (“Min cut”) and the average

cardinality of all the minimum ok − dk cuts (“Avg cut”) computed over all instances

belonging to this particular type of network. Norms and standard deviations of three

normal distributions (distribution A, B and C) are summarized in Table 2.8.

Results

For each of the newly generated CTSNDP-HC instances, we excused algorithm EXM

and EXM-0, with setting the holding costs equal to zero for EXM-0. For these

experiments, we used tolDDD = 0.01 and a time limit of two hours for both EXM and

EXM-0, and tolMIP = 0.01 for EXM-0, whereas for EXM, the tolMIP was computed

dynamically as max{min{0.04, gap× 0.25}, 0.01}.

Table 2.9 summarizes the results obtained using the same notation introduced in

Table 2.4. The instances were grouped by distribution and network type. The average

values of time, and iter were computed over all instances. The deviations relative to

UB0 and UB were computed over all instances not solved to optimality, whereas the

deviations relative to LB0 were computed over all instances.

68 Deterministic Continuous-Time Service Network Design with Holding Costs

Table 2.9 Summary results on the new CTSNDP-HC instances

Zero holding costs Nonzero holding costs
EXM-0 EXM

%UB0 %UB %LB0
Dist. Network %opt min max avg time %tLB iter %opt min max avg time %tLB iter avg

A D1 86.0 1.1 18.1 7.0 1372.2 81.1 6.9 84.9 1.0 7.0 2.7 1577.8 88.2 7.5 2.0
D2 86.0 1.6 25.1 9.7 1448.9 79.5 5.9 76.3 1.0 6.0 2.6 1919.7 86.2 6.8 2.2
D3 82.8 1.1 30.2 9.1 1541.0 77.7 5.9 79.6 1.0 3.5 2.0 1853.5 83.6 7.3 2.5
D4 86.0 1.4 24.2 10.4 1176.2 76.5 6.0 84.9 1.1 6.3 2.5 1456.4 82.7 7.9 2.7

B D1 55.9 1.4 46.7 19.1 4389.6 89.1 3.6 55.9 1.0 14.2 4.7 3384.9 93.9 6.3 3.7
D2 53.8 1.1 47.5 18.1 4535.6 86.2 3.5 57.0 1.2 13.1 4.5 3416.6 92.2 6.2 3.9
D3 55.9 2.6 37.0 14.4 4418.3 80.4 3.0 53.8 1.0 17.9 4.2 3596.4 88.1 6.6 3.5
D4 74.2 2.6 41.8 13.5 2650.3 78.1 3.9 67.7 1.0 13.7 3.7 2719.4 85.0 8.0 3.2

C D1 47.3 1.1 54.7 21.6 3892.0 93.0 3.0 45.2 1.4 40.1 8.1 3986.3 97.2 5.5 4.0
D2 48.4 1.3 57.1 19.9 3769.7 90.6 2.8 46.2 1.2 45.3 7.9 3976.2 95.9 5.7 3.9
D3 51.6 2.0 39.8 15.2 3651.2 86.3 3.0 47.3 1.0 19.8 5.7 3859.0 93.5 5.9 3.7
D4 66.7 1.3 42.8 12.6 2592.8 80.8 3.7 62.4 1.1 15.8 4.5 3118.5 88.4 8.0 3.3

We recall that an increasing time flexibility corresponds to the ordering of distri-

butions A, B and C, whereas a decreasing connectivity level is associated with the

ordering of networks D1, D2, D3 and D4. The results shown in the table indicate

that, for both EXM-0 (CTSNDP case) and EXM (CTSNDP-HC case), the instances

characterized by high flexibility and connectivity levels are particularly difficult. Such

difficulty is due to the following reason: Under higher time flexibility and connectivity,

more consolidation opportunities are allowed, as well as more alternative services are

available. These increase the difficulty of the MIP problems to be solved, displaying

many equivalent solutions that significantly blows up the sizes of the branch-and-bound

trees. As a consequence, and as also shown by the percentage of the time spent by the

MIP solver and by the number of iterations, the entire solution process is slowed down.

Table 2.9 also reveals a significant percentage improvements of the lower bound

LB obtained by EXM respect to the lower bound LB0 provided by EXM-0, i.e., up to

4%. Moreover, Figure 2.7 plots the average and maximum percentage deviations of

the upper bound UB1 over all the instances of each distribution and network type. It

indicates that the cost saving percentage of the minimal total cost achieved by EXM

is also significant, whereas its maximum value can be up to 40.8%, and its average

value grows with time flexibility. The percentage deviations with respect to the lower

bound LB0 and of the upper bound UB1 clearly show the effectiveness of the EXM in

2.4 Computational Experiments 69

D1 D2 D3 D4

0

10

20

30

40

1.8 2.2 2.8 2.9

13.2

20.7
26.4

18.1%
U
B

1

avg max avg max avg max avg max

(a) Distribution A

D1 D2 D3 D4

0

10

20

30

40

8.6 9.1 7.9 6.4

38.7
36.3

28.7

34.8

%
U
B

1

avg max avg max avg max avg max

(b) Distribution B

D1 D2 D3 D4

0

10

20

30

40

11.2 10.7 10.1 9.0

39.6 40.8

33.4 34.7

%
U
B

1

avg max avg max avg max avg max

(c) Distribution C

Figure 2.7 Results about upper bound UB1 showing the average and maximum cost
saving percentages gained by the CTSNDP-HC solutions over CTSNDP-based solutions

solving the CTSNDP-HC, and indicate that solving the CTSNDP and, based on the

corresponding solutions, deriving corresponding CTSNDP-HC solutions, is clearly not

a valid option.

Since the newly generated CTSNDP-HC instances are based on the 31 “C" classes

of the CTSNDP benchmark instances, they can also be classified into 31 groups. In

the analysis below, we only consider the CTSNDP-HC instances from the groups in

which all instances are solved to optimality by both EXM and EXM-0.

Table 2.10 presents the relative sizes of the partially time-expanded networks over the

fully time-expanded networks of EXM-0 and EXM for the newly generated CTSNDP-

HC instances mentioned above, where the results were grouped by distribution and

network type and the notation adopted is that of Figure 2.6. In addition, the table also

shows percentage values concerning the number of consolidations (“%cs") associated

with upper bounds UB1 and UB. Finally, Figure 2.8 depicts the ratios of the holding

costs and holding times of these considered instances.

The results concerning the percentages of the number of consolidations (column

“%cs”) given by the table and the percentages of the holding times and costs depicted by

the figure, show that significant reductions in the two measures are achieved by upper

bound UB with respect to upper bound UB1, again depending on the connectivity of

the underlying physical network and the flexibility of the shipments’ time requirements.

This confirms the significant impact of the holding costs on the decisions of holding and

70 Deterministic Continuous-Time Service Network Design with Holding Costs

Table 2.10 Sizes of the partially and fully time-expanded networks and consolidations

Dist. Network %vars %cons %nds Upp. bounds %cs
A D1 EXM-0 1.7 2.3 0.8 UB1 40.7

EXM 3.8 4.3 1.4 UB 38.0
D2 EXM-0 1.6 2.1 0.7 UB1 42.9

EXM 3.4 3.9 1.3 UB 41.1
D3 EXM-0 1.4 1.9 0.7 UB1 49.6

EXM 2.9 3.3 1.1 UB 43.8
D4 EXM-0 1.3 1.8 0.7 UB1 51.0

EXM 2.5 3.2 1.2 UB 47.3
B D1 EXM-0 1.0 1.4 0.6 UB1 49.4

EXM 2.4 3.1 1.1 UB 41.3
D2 EXM-0 0.9 1.3 0.6 UB1 53.3

EXM 2.2 2.7 1.0 UB 42.2
D3 EXM-0 0.8 1.1 0.5 UB1 55.4

EXM 2.0 2.4 0.9 UB 46.5
D4 EXM-0 0.7 1.0 0.6 UB1 57.8

EXM 1.7 2.1 1.0 UB 47.8
C D1 EXM-0 0.7 1.1 0.5 UB1 49.9

EXM 1.8 2.5 1.0 UB 40.9
D2 EXM-0 0.7 1.0 0.5 UB1 56.0

EXM 1.8 2.4 0.9 UB 42.3
D3 EXM-0 0.7 1.0 0.4 UB1 58.3

EXM 1.7 2.2 0.9 UB 42.0
D4 EXM-0 0.5 0.7 0.4 UB1 60.1

EXM 1.5 1.8 0.8 UB 47.2

UB1 UB UB1 UB UB1 UB UB1 UB
0

10

20

30

40

10.2

4.3

11.4

4.9

12.5

5.2

13.6

5.7
2.9 1.0 3.3 1.2 3.9 1.4 4.2 1.5

D1 D2 D3 D4

%
va

lu
es

%hc %ht

(a) Distribution A

UB1 UB UB1 UB UB1 UB UB1 UB
0

10

20

30

40

14.0

4.6

16.4

4.9

18.9

5.9

21.6

6.2
5.1

1.4
5.7

1.4
6.4

1.5
6.9

1.6

D1 D2 D3 D4

%
va

lu
es

%hc %ht

(b) Distribution B

UB1 UB UB1 UB UB1 UB UB1 UB
0

10

20

30

40

17.5

4.9

19.0

4.9

23.4

5.6

28.3

6.37.0
1.6

7.3
1.5

8.4
1.5

9.0
1.5

D1 D2 D3 D4

%
va

lu
es

%hc %ht

(c) Distribution C

Figure 2.8 Ratios of the holding costs and holding times

2.4 Computational Experiments 71

Table 2.11 Analysis of the difference in terms of timed arcs used between upper bounds
UB1 and UB

Dist. Network %da Dist. Network %da Dist. Network %da

A

D1 8.66%

B

D1 9.51%

C

D1 11.55%
D2 9.26% D1 9.51% D2 11.87%
D3 8.77% D3 11.05% D3 12.31%
D4 9.46% D4 13.90% D4 15.74%

consolidation for solving the CTSNDP. Moreover, due to the reduction in the number

of consolidations, solutions obtained by EXM are more reliable than solutions obtained

by EXM-0. Indeed, in practice, routing issues that may occur along a trip often cause

delays to subsequent consolidations, which result in late services and deliveries. As

observed for the first set of instances, Table 2.10 also confirms the effectiveness of the

DDD approach in confining the sizes of the different MIPs to small portions of the fully

time-expanded model. In order to analyze the differences between the paths used in

the solutions of upper bounds UB and UB1, for each instance and for each commodity

k ∈ K, we computed the ratio between the number of different timed arcs used by the

paths of commodity k of solutions UB and UB1 and the total number of timed arcs

used by the solutions, i.e., we computed the ratio

rk = |A(UB1) ∪ A(UB)| − |A(UB1) ∩ A(UB)|
|A(UB1) ∪ A(UB)| ,

where A(UB) and A(UB1) are the sets of timed arcs used in the solutions of UB and

UB1, respectively. Then, for the given instance, the percentage average of values rk

were computed as %da =
∑

k∈K rk

|K| . Table 2.11 reports average values %da computed for

the different instances and grouped by distribution and network types. The table shows

that on average the solutions differ for about 11% of the total timed arcs used. The

differences are more significant for increasing flexibility level, and for a fixed flexibility

level, for decreasing connectivity level. The results reveal the ineffectiveness of the

deriving method of the CTSNDP solution proposed in Boland et al. [20] in handling

non-zero holding costs cases, and also demonstrate the significant impact of the holding

72 Deterministic Continuous-Time Service Network Design with Holding Costs

0.20 0.25 0.30 0.35 0.40

2.00

4.00

6.00

1.00

3.00

5.00

7.00

β

Va
lu

es
%hc
%ht

%UB1(avg)

Figure 2.9 Sensitive analysis on the per-unit-of-demand-and-time cost hk
i

costs on the solution structure, highlighting the importance of considering the holding

costs in solving the CTSNDP-HC, especially for instances with high flexibility and

lower connectivity.

To further analyze the effect of varying the per-unit-of-demand-and-time cost hk
i on

the CTSNDP-HC that was set equal to β ϵi, ∀k ∈ K, with β = 0.3 (see Section 2.4.1)

in our experiments, we compare the results obtained by EXM for the case β = 0.3 with

the results obtained using β = 0.2 and β = 0.4. For the experiments, we considered a

restricted set of instances composed of the instances of networks D2 and D3 under the

three different distributions A, B, and C. Figure 2.9 summarizes the results obtained.

For each β value (x axis), the figure shows the following average percentage values:

(i) %hc, the total holding cost over the total solution cost, (ii) %ht, the total holding

time over the total transit time, and (iii) %UB1avg, the average percentage deviation

of upper bound UB1 with respect to upper bound UB. The percentage values were

computed over all instances solved to optimality with all the considered β values. The

figure shows that when β increases, both %UB1avg and %hc increase. This implies

that although a higher per-unit-of-demand-and-time holding cost induces a larger

percentage of the holding cost, it induces a more significantly cost saving achieved

by UB over UB1. From the figure, we can also observe that when β increases, %ht

2.5 Summary 73

decreases. This implies that a higher per-unit-of-demand-and-time holding cost also

induces a significant reduction in holding time. Hence, as per-unit-of-demand-and-time

holding cost increases, it is more beneficial to take into account holding costs for solving

the CTSNDP-HC.

2.5 Summary

In this chapter, we designed a new exact algorithm for a generalization of the continuous-

time service network design problem (CTSNDP), first studied by Boland et al. [20],

where in addition to fixed and flow costs, holding costs are also considered (CTSNDP-

HC). We proved the importance of incorporating holding costs into the CTSNDP by

showing that, in some situations, the cost saving percentage of the minimal total cost

can be significantly large. The exact algorithm uses the same dynamic discretization

discovery (DDD) solution framework proposed by Boland et al. [20] for the CTSNDP,

but it extends the DDD framework in a number of non-trivial ways by exploiting a new

relaxation of a complete time-index model, a new upper bound heuristic and a new

refinement strategy. The new algorithm was extensively tested both on instances derived

from the literature and on newly generated instances, with the aim of benchmarking the

essential factors of the CTSNDP-HC. In particular, to assess the impact of the holding

costs, we designed experiments by varying the connectivity of the underlying physical

network and the flexibility of the shipments’ time requirements. The results obtained

not only showed the effectiveness of the new exact algorithm in solving challenging

CTSNDP-HC instances involving up to 400 commodities, but also indicated that

ignoring the holding costs leads to poor quality solutions. The impact of holding costs

is significant particularly when the network is characterized by high flexibility and

low connectivity levels. Compared with the heuristic solution obtained by the method

ignoring the holding costs, the maximum cost saving percentage of the minimal total

cost achieved by our exact method can be up to 40.8%.

Chapter 3

Robust Continuous-Time Service

Network Design with Uncertain

Travel Times

3.1 Introduction

In Chapter 2, we incorporated the holding costs in the continuous-time service network

design, and it resulted in the CTSNDP-HC, for which we proposed the first exact

optimization method, and where the problem instances are all deterministic. This

chapter aims to further incorporate uncertain travel times into the continuous-time

service network design, for which we propose the first robust optimization model and

corresponding solution methods for the CTSNDP-HC under travel time uncertainty.

In deterministic service network design, problem parameters, such as demands

and travel times, are assumed to be known in advance and unchanged during the

planning horizon. However, this is not always the case in many practical situations,

where decision-makers face various uncertainties. Ignoring such uncertainties often

leads to poor and undesirable decisions. Hence, in such situations, uncertainties need

to be taken into account in the planning process. There are two main sources of

uncertainties in the SNDP, i.e., demands and travel times. However, most of the

76 Robust Continuous-Time Service Network Design with Uncertain Travel Times

existing studies that incorporated uncertainties in the SNDP focused only on demand

uncertainty (see, for example, [79, 66, 6, 108, 5, 73]). Despite its importance, travel

time uncertainty has seldom been taken into account in existing studies of the SNDP.

Our study presented here is the first one that incorporates travel time uncertainty in

solving the CTSNDP-HC.

In Chapter 2, we proposed a TI model based on a time-expanded network for the

deterministic CTSNDP-HC. However, this TI model cannot be extended to derive

a robust optimization model for the CTSNDP-HC under travel time uncertainty.

This is because that in order to model the travel time uncertainty, the complete

time-expanded network needs to contain service arcs for all possible travel times and

contain time points for all possible arrival and departure times. This makes the

complete TI model significantly more complicated than that for the deterministic

CTSNDP-HC, being intractable to solve. As a result, common solution methods, such

as the dynamic discretization discovery method, the Benders decomposition method

and the column generation method, cannot be effectively designed based on such a

complicated complete TI model for the CTSNDP-HC under travel time uncertainty.

Therefore, the TI formulation proposed in Chapter 2 cannot be utilized and extended

to develop a tractable robust optimization model for the CTSNDP-HC under travel

time uncertainty.

To tackle this challenge, instead of using the TI model which contains time-

index variables and constraints based on the time-expanded network, we index the

consolidations on each service arc to derive a new formulation of the deterministic

CTSNDP-HC based on the flat network. By extending this new formulation of the

deterministic CTSNDP-HC, we can then derive a two-stage robust optimization model

for the CTSNDP-HC under travel time uncertainty, where a budgeted uncertainty set is

used to formulate the travel time uncertainty. The first stage of the robust optimization

model determines the selection of services, and the routing and consolidation plans

of commodities. The second stage determines the departure schedule after the actual

values of the travel times are realized.

3.1 Introduction 77

To solve our newly proposed two-stage robust optimization model, we first develop

a standard column-and-constraint generation (C&CG) method. It is based on a novel

reformulation of the second-stage problem of the model, and adapts the solution

framework proposed for the general two-stage robust optimization model in Zeng and

Zhao [111]. We then introduce a parameter to control the number of consolidations on

each arc, and enhance the standard C&CG method by dynamically adjusting the value

of this parameter via some new optimization techniques. Extensive computational

results indicate that the enhanced C&CG method significantly outperforms the standard

C&CG method, in terms of shorter computational time and better solution quality.

The computational results also reveal that the dynamic parameter adjustment is

effective in accelerating the C&CG method. Moreover, we evaluate the robustness of

solutions obtained from the newly proposed two-stage robust optimization model, and

demonstrate the value of incorporating travel time uncertainty in the CTSNDP-HC as

well as the price of the robustness against travel time uncertainty.

The remainder of this chapter is organized as follows. In Section 3.2, we extend

the setting of the deterministic CTSNDP-HC to introduce the definition of the ro-

bust CTSNDP-HC under travel time uncertainty. In Section 3.3, we present a new

formulation of the deterministic CTSNDP-HC, based on which, we derive a two-stage

robust optimization model for the CTSNDP-HC under travel time uncertainty. We

then present the standard column-and-constraint generation method in Section 3.4,

and elaborate the enhanced C&CG method via dynamic parameter adjustment in

Section 3.5, to solve the proposed two-stage robust optimization model. Two additional

acceleration strategies for the solutions methods are illustrated in Section 3.6. The

experimental results are reported in Section 3.7 followed by a summary of this chapter

in Section 3.8.

78 Robust Continuous-Time Service Network Design with Uncertain Travel Times

3.2 Problem Descriptions

In this section, we first reexamine the definition of the deterministic CTSNDP-HC

under given travel times, where feasible solutions are defined based on the flat network

instead of the time-expanded network. Based on this, we then introduce and formulate

a robust CTSNDP-HC under travel time uncertainty.

3.2.1 Deterministic CTSNDP-HC

In Chapter 2, we extended the problem setting in Boland et al. [20] to define the

deterministic CTSNDP with holding costs incorporated, and we defined its feasible

solutions based on the time-expanded network. In this section, we reexamine the

definition of the deterministic CTSNDP-HC where feasible solutions are defined based

on the flat network, instead of the time-expanded network.

Consider a network D = (N ,A) with a physical node set N and a directed arc

set A, which is referred to as the flat network. Consider a commodity set K, where

each commodity k ∈ K has a single origin ok ∈ N , a single destination dk ∈ N , a

transportation quantity qk ∈ N>0, an earliest available time ek ∈ N for its departure

from the origin ok, and a due time lk ∈ N>0 for its arrival at the destination dk. The

transportation quantity cannot be split so that it must be picked up only once from

the origin after the earliest available time and delivered to the destination before the

due time along a single delivery path.

In the flat network D, each arc (i, j) ∈ A is associated with four attributes: (1)

travel time τij ∈ N>0; (2) a per-unit-of-flow cost ck
i,j ∈ R>0 for each commodity k ∈ K;

(3) a fixed (resource installation) cost fi,j ∈ R>0 for service on the arc; and (4) a

capacity ui,j ∈ N>0 for service on the arc. Besides, both in-transit and in-storage

holding costs are considered here. The in-transit holding costs are incorporated in the

flow costs ck
i,j for k ∈ K and (i, j) ∈ A. A unit in-storage holding cost hk

i ∈ R≥0 (per

unit of flow and unit of time) is incurred, when a commodity k ∈ K is stored at node i

for i ∈ N .

3.2 Problem Descriptions 79

The deterministic CTSNDP-HC needs to decide delivery paths and departure times

for all the commodities as well as their consolidation plan, so as to determine the

installation of resources for services required to transport these commodities. Its aim is

to satisfy the delivery time constraints imposed by the commodities’ earliest available

times and due times, with the total cost, including fixed costs, flow costs and holding

costs, minimized.

A feasible solution to the deterministic CTSNDP-HC consists of (i) a routing plan,

(ii) a consolidation plan, and (iii) a departure schedule, which are defined below. We call

a directed path P in the flat network D as a flat path, which is represented by its node

sequence (ν1, ν2, . . . , νm+1) and arc sequence (a1, a2, . . . , am) with m ∈ N>0 denoting

the total number of its arcs. As in practice, the delivery path of each commodity cannot

have repeated vertices or arcs, and thus, it must be an elementary flat path from the

origin to the destination of the commodity. Accordingly, a routing plan P consists

of |K| elementary flat paths in the flat network D, with each flat path P k ∈ P for

k ∈ K representing the delivery path of commodity k from its origin ok to destination

dk, where the node and arc sequences of P k are denoted by (νk
1 , ν

k
2 , . . . , ν

k
mk+1) and

(ak
1, a

k
2, . . . , a

k
mk), respectively, with νk

1 = ok and νk
mk+1 = dk, and with no repeated

nodes or arcs.

Given a routing plan P , we need to specify how shipments of the commodities are

consolidated for each arc of the flat network D. For each α ∈ A, let K(α) = {k ∈

K | ak
n = α for some n with 1 ≤ n ≤ mk} indicate the subset of commodities that pass

through arc α of their flat paths in P. We can then represent a consolidation on arc

α by a commodity subset C ⊆ K(α), so that shipments of commodities k ∈ C on

arc α are consolidated to be shipped together. Since the demand quantity of each

commodity cannot be split in delivery, there are at most |K| consolidations on each

arc. Accordingly, a consolidation plan C consists of consolidations Cα
1 , C

α
2 , . . . , C

α
|K| for

α ∈ A, with each Cα
r ⊆ K(α) for r = 1, 2, . . . , |K|, indicating the r-th consolidation

on arc α. Each consolidation Cα
r , for α ∈ A, r = 1, 2, . . . , |K| can be empty. We

refer to the subscript r as the consolidation index of consolidation Cα
r on arc α. If

80 Robust Continuous-Time Service Network Design with Uncertain Travel Times

consolidations Cα
r for r = 1, 2, . . . , |K| cover all k ∈ K(α) for each α ∈ A, i.e.,

|K|⋃
r=1

Cα
r = K(α), for each α ∈ A,

then we call such a (P , C) pair a flat solution to the deterministic CTSNDP-HC.

Given a flat solution (P , C), we need to further specify when each commodity

departs from every node that it passes. Since each flat path in P is an elementary

path, every commodity can depart from the same node at most once. Accordingly, a

departure schedule T consists of departure times tkνk
n

for k ∈ K and n ∈ {1, 2, . . . ,mk},

indicating the departure time when commodity k departs from node νk
n of its flat path

P k. We can now define that (P , C, T) forms a feasible solution to the deterministic

CTSNDP-HC if the departure schedule T satisfies that

tkνk
n
≥ ek, for n = 1, (3.1)

tkνk
n+1
≥ tkνk

n
+ τak

n
, for n ∈ {1, 2, . . . ,mk − 1}, (3.2)

tkνk
n

+ τak
n
≤ lk, for n = mk, (3.3)

tki = tk
′

i , for k ∈ C(i,j)
r and k′ ∈ C(i,j)

r with (i, j) ∈ A and r ∈ {1, 2, · · · , |K|}. (3.4)

Here, constraints (3.1) and (3.3) together ensure that for each k ∈ K, the times

that commodity k departs from its origin and arrives at its destination are both

within the time window [ek, lk], constraints (3.2) are due to the travel times of arcs

on the flat path of each commodity k, and constraints (3.4) ensure that commodities

consolidated on the same arc all pass the arc at the same time. A flat solution (P , C)

is timely-implementable, if there exists such a departure schedule T that satisfies

(3.1)–(3.4).

3.2 Problem Descriptions 81

From a feasible solution (P , C, T), we can obtain holding times Hk
n for nodes νk

n

with n = 1, 2, . . . ,mk + 1 on the flat path P k of each commodity k ∈ K:

Hk
n =

tkνk

n
− ek, for n = 1,

tkνk
n
− (tk

νk
n−1

+ τak
n−1

), for n ∈ {2, . . . ,mk},

lk − (tk
νk

n−1
+ τak

n−1
), for n = mk + 1.

Accordingly, the total cost of solution (P , C, T) can be represented as follows:

∑
α∈A

|K|∑
r=1

fα⌈
∑

k∈Cα
r
qk

uα

⌉+
∑
k∈K

mk∑
n=1

ck
ak

n
qk +

∑
k∈K

mk+1∑
n=1

hk
νk

n
qkHk

n,

where the first and the second terms are the total fixed cost and flow cost, respectively,

and the third term is the total holding cost. It can be seen that the total fixed cost and

flow cost depend only on the flat solution (P , C), and the total holding cost depends

only on the routing plan P and the departure schedule T . Thus, we can define a

function f(P , C) to represent the total fixed cost and flow cost, and a function h(P , T)

to represent the total holding cost, where

f(P , C) =
∑
α∈A

|K|∑
r=1

fα⌈
∑

k∈Cα
r
qk

uα

⌉+
∑
k∈K

mk∑
n=1

ck
ak

n
qk,

h(P , T) =
∑
k∈K

mk+1∑
n=1

hk
νk

n
qkHk

n.

We assume that for each commodity k ∈ K, the difference (lk − ek) of its latest

arrival time lk at the destination and available time ek at the origin is not smaller

than the length of the shortest-time path from ok to dk in the flat network D. This

assumption is sufficient to ensure the existence of a feasible solution to the deterministic

CTSNDP-HC. Let D indicate the domain of all feasible solutions. The deterministic

CTSNDP-HC can thus be formulated as follows:

min
(P,C,T)∈D

[f(P , C) + h(P , T)]. (3.5)

82 Robust Continuous-Time Service Network Design with Uncertain Travel Times

3.2.2 Robust CTSNDP-HC

We now introduce the robust CTSNDP-HC under travel time uncertainty, which we

refer to as robust CTSNDP-HC for short. For this, we restrict the possible realized

values of uncertain travel times on arcs by the following polyhedral uncertainty set.

Suppose that for every time when the service on an arc α ∈ A is used to transport

a shipment, the travel time τ̃α on α is uncertain and its realized value lies in the

interval [τα − τ̂α, τα + τ̂α], where τα ∈ N>0 is the nominal value of τ̃α, and τ̂α ∈ N0

with τα − τ̂α > 0 denotes the maximum deviation of τ̃α with respect to the nominal

value. As the result, τ̃α can be represented as:

τ̃α = τα + τ̂αδα, where δα ∈ [−1, 1], for α ∈ A.

For each α ∈ A, since there are at most |K| consolidations that can pass through arc α,

we can use τ̃αr for r ∈ {1, 2, . . . , |K|} to indicate the travel time of the r-th consolidation

passing through arc α. Given an integer Γ ∈ N0 as the budget of uncertainty, which

can be used to adjust the robustness level, we define the uncertainty set U(Γ) of travel

times as follows:

U(Γ) =
{
τ̃ : τ̃αr = τα+τ̂αδαr,

∑
α∈A

|K|∑
r=1
|δαr| ≤ Γ, δαr ∈ [−1, 1],∀α ∈ A, r ∈ {1, 2, ..., |K|}

}
.

(3.6)

The uncertainty set U(Γ) includes all the possible realized values for the vector of

travel times, τ̃ = (τ̃αr)α∈A,r∈{1,2,...,|K|}, such that the total deviation of the travel times

with respect to their nominal values does not exceed the given budget of uncertainty Γ.

The decision process for the robust CTSNDP-HC has two stages. In the first stage,

the problem needs to determine a routing plan P and a consolidation plan C that

form a flat solution (P , C) before actual values of the travel times are realized. In

the second stage, given (P , C), the problem needs to determine a departure schedule

T after the actual values of the travel times are realized. Accordingly, (P , C) is a

here-and-now decision which is independent of the realized values of travel times, and

3.2 Problem Descriptions 83

T is a wait-and-see decision which is adaptive to the realized values of travel times. As

a result, for different realized values of the travel times, the first-stage cost associated

with (P , C) is deterministic, while both the second-stage decision T and its associated

cost vary. The robust CTSNDP-HC aims to minimize the total cost of the two stages

for the worst-case scenario over the uncertainty set of the travel times.

Specifically, let us first consider the second stage of the robust CTSNDP-HC. Given

a flat solution (P , C) determined in the first stage, and after actual travel times τ̃ ∈ U(Γ)

are realized, one needs to determine a departure schedule T = (tkνk
n
)k∈K,1≤n≤mk , where

each tkνk
n

indicates the time that commodity k departs from node νk
n on the flat path P k

of P . For each commodity k ∈ K and each arc ak
n = (νk

n, ν
k
n+1) of P k, since (P , C) is a

flat solution, there exists r(k, n) ∈ {1, 2, . . . , |K|} such that k ∈ Cak
n

r(k,n). This implies

that the actual travel time of commodity k on arc ak
n equals τ̃ak

n,r(k,n). Accordingly, the

departure schedule T needs to satisfy constraints (3.1) due to the earliest available

time ek for k ∈ K, constraints (3.4) due to the consolidations, and constraints (3.7)

below:

tkνk
n+1
≥ tkνk

n
+ τ̃ak

n,r(k,n), for k ∈ K, n ∈ {1, 2, . . . ,mk − 1}, (3.7)

which are due to the actual travel times and similar to the constraints (3.2) for k ∈ K

with τak
n

replaced by τ̃ak
n,r(k,n). The domain of such departure schedules T is denoted

by T(P , C, τ̃).

Due to the travel time uncertainty, we relax the due time constraints in the second

stage of the robust CTSNDP-HC. Instead, to restrict the violations of the due time

constraints, we impose a penalty gk per unit of time for the delay of commodity k’s

arrival at the destination dk for each k ∈ K. Let g(P , T) indicate the total delay

penalty for a departure schedule T with respect to flat paths in P . We have that

g(P , T) =
∑
k∈K

gk ·max{tkνk
mk

+ τ̃ak
mk

,r(k,mk) − lk, 0},

84 Robust Continuous-Time Service Network Design with Uncertain Travel Times

where (tk
νk

mk
+ τ̃ak

mk
,r(k,mk)) indicates the arrival time of commodity k at the destination

dk. Hence, under the realized travel times τ̃ ∈ U(Γ), the total cost, including the

holding costs and delay penalties, is determined by P and T , and it is equal to

h(P , T) + g(P , T). Its minimum value, minT ∈T(P,C,τ̃) [h(P , T) + g(P , T)]}, is referred

to as the second-stage cost of the robust CTSNDP-HC. Accordingly, the worst-case

second-stage cost over all possible realized values of travel times in U(Γ) equals

maxτ̃∈U(Γ) minT ∈T(P,C,τ̃) [h(P , T) + g(P , T)].

Next, consider the first-stage decisions of the robust CTSNDP-HC. Before the actual

travel times are realized, one needs to determine a flat solution (P , C). As commonly

required in practice, such a flat solution (P , C) needs to be timely-implementable for the

nominal scenario where travel times take their nominal values. However, this cannot be

guaranteed by the constraints imposed in the second stage of the robust CTSNDP-HC,

where the due time constraints are relaxed. Therefore, we follow a light robustness

approach, which was first proposed by Fischetti and Monaci [48] for robust optimization,

to formulate the first-stage decisions of the CTSNDP-HC, requiring the first-stage

decisions to be feasible for the deterministic CTSNDP-HC under the nominal scenario.

Specifically, we require that the flat solution (P , C) to be determined in the first stage

of the robust CTSNDP-HC must be timely-implementable under the nominal scenario,

or in other words, it must satisfy that there exists a departure schedule T̂ such that

(P , C, T̂) forms a feasible solution to the deterministic CTSNDP-HC under the nominal

travel times. We refer to such a flat solution (P , C) as a nominal timely-implementable

flat solution, and use F to indicate the domain of all nominal timely-implementable flat

solutions. The deterministic first-stage total cost associated with (P , C) equals f(P , C).

Accordingly, the robust CTSNDP-HC is to determine a nominal timely-implementable

flat solution (P , C) ∈ F by minimizing the sum of the deterministic first-stage cost and

the worst-case second-stage cost over the uncertainty set of travel times, as formulated

below:

min
(P,C)∈F

{f(P , C) + max
τ̃∈U(Γ)

min
T ∈T(P,C,τ̃)

[h(P , T) + g(P , T)]}. (3.8)

3.3 Mixed Integer Programming Formulations 85

3.3 Mixed Integer Programming Formulations

In this section, we start with a novel mixed integer linear programming (MILP)

formulation that is based on flat network instead of time-expanded network for the

deterministic CTSNDP-HC. From it, we derive a two-stage mixed integer nonlinear

programming (MINLP) formulation for the robust CTSNDP-HC, which is linearized

and solved in later sections.

3.3.1 MILP Formulation of Deterministic CTSNDP-HC

Instead of the TI model with variables and constraints indexed by time, here we

introduce a new formulation utilizing a set of variables and constraints indexed by

the consolidation indexes to model the temporal component of the deterministic

CTSNDP-HC.
According to the problem description in Section 3.2, a feasible solution to the

deterministic CTSNDP-HC consists of a routing plan P , a consolidation plan C, and
a departure schedule T . To represent the routing plan P, we introduce a binary
variable xk

ij for each (i, j) ∈ A and k ∈ K, indicating whether commodity k ∈ K
passes through arc (i, j). To represent the consolidation plan C, we introduce a binary
variable zk

ijr for each (i, j) ∈ A, r ∈ {1, 2, · · · , |K|}, and k ∈ K, indicating whether
the r-th consolidation C(i,j)

r on arc (i, j) contains commodity k. We then introduce a
non-negative integer variable yijr for each (i, j) ∈ A and r ∈ {1, 2, · · · , |K|} to represent
the number of resource installations required by service on arc (i, j) to accommodate
the commodities in consolidation C(i,j)

r . To represent the departure schedule T , we
introduce a non-negative continuous variable vk

ij for each (i, j) ∈ A and k ∈ K to
represent the time when commodity k departs from node i when passing through arc
(i, j), which equals 0 if commodity k does not pass through arc (i, j). We also introduce
a non-negative continuous variable bijr for each (i, j) ∈ A and r ∈ {|K|} to represent
the time when the shipment of the r-th consolidation C(i,j)

r on arc (i, j) departs from
node i. Moreover, we use a non-negative continuous variable wk

i for i ∈ N and k ∈ K to
represent the holding time for commodity k at terminal i, which equals 0 if commodity

86 Robust Continuous-Time Service Network Design with Uncertain Travel Times

k does not pass node i. Accordingly, we can formulate the deterministic CTSNDP-HC
by the following MILP model, which is referred to model DO, where M1 denotes a
sufficiently large constant:

[DO] min
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk
ij +

∑
(i,j)∈A

|K|∑
r=1

fij · yijr +
∑
k∈K

∑
i∈N

(hk
i q

k) · wk
i (3.9)

s.t.
∑

(i,j)∈A
xk

ij −
∑

(j,i)∈A
xk

ji =

1 i = ok,

−1 i = dk, ∀k ∈ K, i ∈ N ,

0 otherwise

(3.10)

∑
k∈K

qkzk
ijr ≤ uijyijr, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.11)

|K|∑
r=1

zk
ijr = xk

ij , ∀ (i, j) ∈ A, k ∈ K, (3.12)

∑
j:(j,i)∈A

(vk
ji + τjix

k
ji) ≤

∑
j:(i,j)∈A

vk
ij , ∀ i ∈ N \ {ok, dk}, k ∈ K, (3.13)

∑
j:(ok,j)∈A

vk
okj ≥ e

k, ∀ k ∈ K, (3.14)

∑
j:(j,dk)∈A

(vk
jdk + τjdkxk

jdk) ≤ lk, ∀ k ∈ K, (3.15)

vk
ij ≤M1x

k
ij , ∀ (i, j) ∈ A, k ∈ K, (3.16)

vk
ij ≤ bijr +M1(1− zk

ijr), ∀ (i, j) ∈ A, k ∈ K, r ∈ {1, 2, ..., |K|}, (3.17)

vk
ij ≥ bijr −M1(1− zk

ijr), ∀ (i, j) ∈ A, k ∈ K, r ∈ {1, 2, ..., |K|}, (3.18)

wk
i =

∑
j:(i,j)∈A

vk
ij − ek i = ok,

lk −
∑

j:(j,i)∈A
(vk

ji + τjix
k
ji) i = dk, ∀ i ∈ N , ∀ k ∈ K,

∑
j:(i,j)∈A

vk
ij −

∑
j:(j,i)∈A

(vk
ji + τjix

k
ji) otherwise,

(3.19)

xk
ij ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ K, (3.20)

yijr ∈ N≥0, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.21)

zk
ijr ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ K, r ∈ {1, 2, ..., |K|}, (3.22)

vk
ij ≥ 0, ∀ (i, j) ∈ A, k ∈ K, (3.23)

3.3 Mixed Integer Programming Formulations 87

bijr ≥ 0, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.24)

wk
i ≥ 0, ∀i ∈ N , k ∈ K. (3.25)

In model DO, the objective function (3.9) indicates the total cost to be minimized,

which includes three terms for the total transportation cost, total fixed cost, and

total holding cost, respectively. Constraints (3.10)–(3.12) are imposed to define the

routing and the consolidation plans. Specifically, constraints (3.10) are flow balance

constraints, ensuring that each commodity travels along one elementary flat path from

its origin to its destination. Constraints (3.11) are capacity constraints, ensuring that

the total quantity of commodities in each consolidation of an arc does not exceed

the total service capacity installed on the arc. Constraints (3.12) are consolidation

coverage constraints, ensuring that for every arc (i, j) on the flat path of commodity k,

where k ∈ K, there must be a consolidation of arc (i, j) that contains k. Constraints

(3.13)–(3.19) are imposed to define the departure schedule. Specifically, constraints

(3.13)–(3.15) are imposed on commodities’ departure times with respect to the travel

time of each arc, the earliest available time of each commodity, and the due time of

each commodity. Constraints (3.16) ensure that for each commodity, its departure

time for every unvisited node is zero. Constraints (3.17) and (3.18) ensure that for

each arc (i, j), the commodities that are consolidated to be shipped together through

(i, j) has the same departure time for node i. Constraints (3.19) are imposed to define

the holding time for each node i and commodity k based on the departure schedule

and the routing plan.

It can be seen that for each feasible solution (x,y, z,v, b,w) of model DO, (x,y, z)

corresponds to a flat solution (P , C), v corresponds to a departure schedule T that sat-

isfies (3.1)–(3.4), and thus, such (P , C, T) forms a feasible solution to the deterministic

CTSNDP-HC. Note that model DO is equivalent to the complete TI model proved in

Section 2.2. Model DO is the first MILP formulation of the deterministic CTSNDP-HC

that models the temporal component of the problem based on the consolidation indexes,

which is referred to as the consolidation-index formulation.

88 Robust Continuous-Time Service Network Design with Uncertain Travel Times

3.3.2 Two-Stage MINLP Formulation of Robust CTSNDP-HC

We can extend model DO of the deterministic CTSNDP-HC to formulate the robust

CTSNDP-HC by a two-stage MINLP model, where the first stage determines the

routing and the consolidation plans indicated by (x, z) before the actual travel times

are realized, and the second stage determines the departure schedule and holding times

indicated by (v, b,w) after the actual travel times are realized.

As required in the first stage of the robust CTSNDP-HC, (x, z) needs to ensure

the existence of a departure schedule that satisfies the constraints with respect to the

commodities’ earliest available times and due times under the nominal scenario. Thus,

we need to introduce decision variables vk
ij and bijr to indicate commodities’ departure

times and consolidations’ departure times for the nominal scenario, which are similar

to variables vk
ij and bijr of model DO. Moreover, as required in the second stage of

the robust CTSNDP-HC, constraints with respect to the commodities’ due times are

relaxed, but delay penalties are imposed. Thus, we need to introduce a new decision

variable sk for each k ∈ K, indicating the delay of the commodity k’s arrival at its

destination.

With the above decision variables introduced, the two-stage MINLP model for the

robust CTSNDP-HC, which is referred to as model RO, is presented below:

[RO] min
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk
ij +

∑
(i,j)∈A

|K|∑
r=1

fij · yijr + FRP (x, z) (3.26)

s.t. (3.10)− (3.12), (3.20)− (3.22) (3.27)∑
j:(j,i)∈A

(vk
ji + τ jix

k
ji) ≤

∑
j:(i,j)∈A

vk
ij, ∀ i ∈ N \ {ok, dk}, k ∈ K, (3.28)

∑
j:(ok,j)∈A

vk
okj ≥ ek, ∀ k ∈ K, (3.29)

∑
j:(j,dk)∈A

(vk
jdk + τ jdkxk

idk) ≤ lk, ∀ k ∈ K, (3.30)

vk
ij ≤Mxk

ij, ∀ (i, j) ∈ A, k ∈ K, (3.31)

vk
ij ≤ bijr +M(1− zk

ijr), ∀ (i, j) ∈ A, k ∈ K, r ∈ {1, 2, ..., |K|}, (3.32)

3.3 Mixed Integer Programming Formulations 89

vk
ij ≥ bijr −M(1− zk

ijr), ∀ (i, j) ∈ A, k ∈ K, r ∈ {1, 2, ..., |K|}, (3.33)

vk
ij ≥ 0, ∀ (i, j) ∈ A, k ∈ K, (3.34)

bijr ≥ 0, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}. (3.35)

where FRP (x, z) indicates the worst-case second-stage cost and is defined by the

following max-min optimization model:

[SO(x, z)] FRP (x, z) = max
τ̃∈U(Γ)

min
∑
k∈K

∑
i∈N

(hk
i q

k) · wk
i +

∑
k∈K

gk · sk (3.36)

s.t.
∑

j:(j,i)∈A
(vk

ji +
|K|∑
r=1

τ̃jirz
k
jir) ≤

∑
j:(i,j)∈A

vk
ij, ∀ i ∈ N \ {ok, dk}, k ∈ K, (3.37)

∑
j:(ok,j)∈A

vk
okj ≥ ek, ∀ k ∈ K, (3.38)

∑
j:(j,dk)∈A

(vk
jdk +

|K|∑
r=1

τ̃jdkrz
k
jdkr) ≤ lk + sk, ∀ k ∈ K, (3.39)

vk
ij ≤M1x

k
ij, ∀ (i, j) ∈ A, k ∈ K, (3.40)

vk
ij ≤ bijr +M1(1− zk

ijr), ∀ (i, j) ∈ A, k ∈ K, r ∈ {1, 2, ..., |K|}, (3.41)

vk
ij ≥ bijr −M1(1− zk

ijr), ∀ (i, j) ∈ A, k ∈ K, r ∈ {1, 2, ..., |K|}, (3.42)

wk
i ≥

∑
j:(i,j)∈A

vk
ij − ek, i = ok,

(lk + sk)− ∑
j:(j,i)∈A

(vk
ji +

|K|∑
r=1

τ̃jirz
k
jir), i = dk, ∀ i ∈ N ,∀ k ∈ K,

∑
j:(i,j)∈A

vk
ij −

∑
j:(j,i)∈A

(vk
ji +

|K|∑
r=1

τ̃jirz
k
jir), otherwise,

(3.43)

vk
ij ≥ 0, ∀ (i, j) ∈ A, k ∈ K, (3.44)

bijr ≥ 0, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.45)

wk
i ≥ 0, ∀i ∈ N , k ∈ K, (3.46)

sk ≥ 0, ∀k ∈ K. (3.47)

90 Robust Continuous-Time Service Network Design with Uncertain Travel Times

The objective (3.26) of model RO is to minimize the sum of the deterministic first-

stage cost, including the transportation costs and the fixed installation costs shown in

the first two terms of (3.26), and the worst-case second-stage cost over the uncertainty

set U(Γ) of travel times, represented by FRP (x, z). In model RO, constraints in (3.27)

are the same as those of model DO imposed on (x, z). Constraints (3.28)–(3.35)

are similar to (3.13)–(3.18), (3.23), and (3.24) of model DO with τji replaced by the

nominal travel times τ ji. These constraints are imposed to ensure the existence of a

feasible departure schedule under the nominal scenario.

Given any τ̃ ∈ U(Γ), the inner minimization model of the max-min model (3.36)–

(3.47) for FRP (x, z) formulates the second stage of the robust CTSNDP-HC. It formu-

lates the second-stage cost by a linear programming (LP) model that aims to determine

(v, b,w, s) with the sum of the holding costs and delay penalties minimized. Most of

its constraints are the same as those of model DO imposed on (v, b,w), except (3.37),

(3.39) and (3.43). Compared with constraints (3.13), (3.15), and (3.19) of model DO,

constraints (3.37), (3.39), and (3.43) replace τjix
k
ji with ∑|K|

r=1 τ̃jirz
k
jir for (j, i) ∈ A,

as the latter indicates the actual travel time of commodity k on arc (j, i) if k passes

through (j, i). Moreover, the decision variable sk for k ∈ K is included in the right

hand sides of constraints (3.39) and (3.43) so that it equals the delay of commodity

k’s arrival at its destination.

3.4 A Column-and-Constraint Generation Solution

Method

The column-and-constraint generation (C&CG) method proposed by Zeng and Zhao

[111] is widely used in solving two-stage robust optimization models, including the two-

stage robust optimization model for service network design under demand uncertainty

[108]. It has also been shown to be more effectively than the standard Benders

decomposition approach, which iteratively includes new Benders cuts. Thus, we

3.4 A Column-and-Constraint Generation Solution Method 91

consider to solve the two-stage robust CTSNDP-HC under travel time uncertainty

with a C&CG method.

Denote X as the domain of variables (x,y, z,v, b) defined by linear constraints

(3.27)–(3.35) and Q(τ̃) as the domain of variables (v, b,w, s) defined by linear con-

straints (3.37)–(3.47) under travel time realization τ̃ . Model RO proposed in Section

3.3.2 can be rewritten as the following MILP:

[ROLP] min
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk
ij +

∑
(i,j)∈A

|K|∑
r=1

fij · yijr + ϕ (3.48)

s.t. ϕ ≥
∑
k∈K

∑
i∈N

(hk
i q

k) · wk(τ̃)
i +

∑
k∈K

gk · sk(τ̃), ∀ τ̃ ∈ U(Γ), (3.49)

(v(τ̃), b(τ̃),w(τ̃), s(τ̃)) ∈ Q(τ̃), ∀ τ̃ ∈ U(Γ), (3.50)

(x,y, z,v, b) ∈ X . (3.51)

where ϕ is epigraphical variable introduced.

As a result, solving the two-stage robust CTSNDP-HC reduces to optimizing a

mixed integer programming. It is straightforward that a partial formulation of model

ROLP defined over a subset of U(Γ) is a valid relaxation of the original model ROLP.

Stronger lower bounds can be obtained by gradually adding scenarios into the subset

of U(Γ) to expand the partial formulation. The C&CG method can obtain the optimal

solution by iteratively adding new scenarios τ̃ as well as new cuts in (3.49) and (3.50).

We then show how we identify the new worst-case scenarios that should be added into

the scenario subset in Section 3.4.1 and illustrate the whole framework of the C&CG

method in Section 3.4.2.

3.4.1 MILP Reformulation of the Second-Stage Problem

For any given (x, z), its worst-case second-stage cost FRP (x, z) and the corresponding

worst-case scenario can be obtained by solving model SO(x, z) defined by (3.36)–(3.47).

The obtained worst-case scenario can be identified and added into the subset of U(Γ)

as a new scenario. However, model SO(x, z) is a max-min optimization model hard

92 Robust Continuous-Time Service Network Design with Uncertain Travel Times

to solve directly. We show as follows that model SO(x, z) can be reformulated as a

maximization MILP model, which is much more tractable.

First, consider the inner minimization problem of model SO(x, z) under any given

τ̃ ∈ U(Γ), which formulates the second stage of the robust CTSNDP-HC. As shown

below, it is a linear programming, and we refer to it as model LP(x, z, τ̃):

[LP(x, z, τ̃)] min
∑
k∈K

∑
i∈N

(hk
i q

k) · wk
i +

∑
k∈K

gk · sk

s.t. (3.37)− (3.47).

Lemma 1 below shows that for each τ̃ ∈ U(Γ), model LP(x, z, τ̃) always has a feasible

solution if (x, z) satisfies constraints (3.27)–(3.35) of model RO.

Lemma 1. For any (x, z) that satisfies constraints (3.27)–(3.35) of model RO, and

for any τ̂ ∈ U(Γ), model LP(x, z, τ̃) always has a feasible solution.

Proof. For any given (x, z) that satisfies constraints (3.27)–(3.35) of model RO, it

corresponds to a nominal timely-implementable flat solution (P , C). Consider any

realized travel time τ̃ ∈ U(Γ). For such (P , C) and τ̃ , we first show as follows that

there exists a departure schedule T such that constraints (3.1)–(3.4) are satisfied, from

which we can then obtain a feasible solution to model LP(x, z, τ̃).

For the nominal timely-implementable flat solution (P , C), consider each commodity

k ∈ K and its flat path P k in P with an arc sequence denoted by (ak
1, ..., a

k
mk). For

each n ∈ {1, 2, . . . ,mk}, there must exist a consolidation C
ak

n

rk
n
∈ C for arc ak

n with

rk
n ∈ {1, 2, · · · , |K|} such that k ∈ Cak

n

rk
n

. We can now construct a network GC = {NC,AC}

where each non-empty consolidation Cα
r ∈ C corresponds to a node, denoted by ⟨α, r⟩,

in the node set NC, and each pair of consolidations Cak
n

rk
n

and C
ak

n+1
rk

n+1
for k ∈ K and

n ∈ {1, ...,mk − 1} corresponds to an arc (⟨ak
n, r

k
n⟩, ⟨ak

n+1, r
k
n+1⟩) in the arc set AC. See

Figure 3.1 for an example of such a network GC.

Since the flat solution (P , C) is nominal timely-implementable, there exists a

departure schedule T which satisfies (3.1)–(3.4) with nominal travel times τ . According

to T , for each consolidation Cα
r ∈ C of arc α = (ν, ν ′) ∈ A we can obtain its

3.4 A Column-and-Constraint Generation Solution Method 93

 3,2 , 1

𝒫 𝒞 {𝐶
𝑟𝑛
𝑘

𝑎𝑛
𝑘

}

𝑃𝑘1 : 2,1

𝑃𝑘2 : 4,2 → (2,1)

𝑃𝑘3 : 3,2 → (2,1)

𝐶1
 2,1

: {𝑘1 ,𝑘2 ,𝑘3}

𝐶1
 3,2 : {𝑘3}

𝐶1
 4,2 : 𝑘2 ,

𝑘1:𝐶1
 2,1

𝑘2:𝐶1
 4,2 → 𝐶1

 2,1

𝑘3:𝐶1
 3,2 → 𝐶1

 2,1

 4,2 , 1

 2,1 , 1

(a) Routing plan P , consolidation plan C, and consolidations
along the path P k for each commodity k ∈ K

 3,2 , 1

𝒫 𝒞 𝒞
𝑟𝑛
𝑘

𝑎𝑛
𝑘

𝑝𝑘1 : 2,1

𝑝𝑘2 : 4,2 → (2,1)

𝑝𝑘3 : 3,2 → (2,1)

𝐶1
 2,1 : {𝑘1 ,𝑘2 ,𝑘3}

𝐶1
 3,2 : {𝑘3}

𝐶1
 4,2

: 𝑘2 ,

𝑘1:𝐶1
 2,1

𝑘2:𝐶1
 4,2 → 𝐶1

 2,1

𝑘3:𝐶1
 3,2

→ 𝐶1
 2,1

 4,2 , 1

 2,1 , 1

(b) The resulting network GC

Figure 3.1 An Example of network GC constructed from a given nominal timely-
implementable flat solution (P , C)

corresponding departure time from node ν, which is denoted by tα,r. For each pair of

consolidations Cak
n

rk
n

and C
ak

n+1
rk

n+1
with k ∈ K and n ∈ {1, ...,mk − 1}, the departure time

of Cak
n

rk
n

from node νk
n plus the nominal value τak

n
of travel time of arc ak

n must be less

than or equal to the departure time of Cak
n+1

rk
n+1

from node νk
n+1. Thus, by the definition

of GC = {NC,AC}, we obtain that

tα,r + τα ≤ tα′,r′ , ∀ (⟨α, r⟩, ⟨α′, r′⟩) ∈ AC.

This, together with τα > 0, for all α ∈ A, implies that GC must be an

acyclic network, and thus has a topological ordering of nodes in NC, denoted by

(⟨α1, r1⟩, ⟨α2, r2⟩, . . . , ⟨α|NG |, r|NG |⟩).

Next, consider each possible realized travel time τ̃ ∈ U(Γ). For n = 1, 2, . . . , |NG|,

we can now set the departure time of consolidation Cαn
rn

, which is denoted by t̂αn,rn ,

iteratively as follows:

t̂α1,r1 = max
k∈K

ek,

t̂αn,rn = t̂α1,r1 + max
(i,j)∈A

{τ ij + τ̂ij} for n = 2, 3, . . . , |NC|.

94 Robust Continuous-Time Service Network Design with Uncertain Travel Times

It can be seen that for each commodity k ∈ K,

t̂αk
1 ,rk

1
≥ t̂α1,r1 = max

k∈K
ek ≥ ek,

t̂αk
n+1,rk

n+1
≥ t̂αk

n,rk
n

+ max
(i,j)∈A

{τ ij + τ̂ij} ≥ t̂αk
n,rk

n
+ τ̃αk

n
for n = 1, . . . ,mk − 2.

Thus, by setting the departure time of commodity k for node νk
n to be equal to t̂αk

n,rk
n
,

for n = 1, 2, . . . ,mk − 1 and k ∈ K, we obtain a plan T̂ which satisfies the constraints

(3.1), (3.2) and (3.4) under the travel time τ̃ . From such a departure schedule T̂ , we

can obtain the values of variables vk
ij, bijr, wk

i , and sk, by their definitions, which form

a feasible solution to model LP(x, z, τ̃). Hence, Lemma 1 is proved.

For model LP(x, z, τ̃), let βk
i , γk, ψk, ηk

ij , θk
ijr, ξk

ijr, and λk
i denote the dual variables

associated with its constraints (3.37)–(3.43), respectively. By Lemma 1 and the strong
duality theorem, the optimal objective value of LP(x, z, τ̃) equals that of its dual
linear programming below, which is referred to as model DLP(x, z, τ̃):

[DLP(x, z, τ̃)] max
(β,γ,ψ,η,θ,ξ,λ)

∑
k∈K

∑
i∈N \{ok,dk}

(
∑

j:(j,i)∈A

|K|∑
r=1

τ̃jirz
k
jir) · βk

i +
∑
k∈K

ek · γk

+
∑
k∈K

(
∑

(j,dk)∈A

|K|∑
r=1

τ̃jdkrz
k
jdkr − l

k) · ψk −
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηk

ij

−
∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(1− zk
ijr)] · (θk

ijr + ξk
ijr)−

∑
k∈K

ek · λk
ok

+
∑
k∈K

(lk −
∑

j:(j,dk)∈A

|K|∑
r=1

τ̃jdkrz
k
jdkr) · λk

dk −
∑
k∈K

∑
i∈N \{ok,dk}

(
∑

j:(j,i)∈A

|K|∑
r=1

τ̃jirz
k
jir) · λk

i

(3.52)

s.t. βk
i − βk

j − ηk
ij −

|K|∑
r=1

θk
ijr +

|K|∑
r=1

ξk
ijr − λk

i + λk
j ≤ 0, ∀ k ∈ K, (i, j) ∈ A, i ̸= ok, j ̸= dk, (3.53)

− βk
j + γk − ηk

okj −
|K|∑
r=1

θk
okjr +

|K|∑
r=1

ξk
okjr − λ

k
ok + λk

j ≤ 0, ∀ k ∈ K, (ok, j) ∈ A, j ̸= dk, (3.54)

βk
i − ψk − ηk

idk −
|K|∑
r=1

θk
idkr +

|K|∑
r=1

ξk
idkr − λ

k
i + λk

dk ≤ 0, ∀ k ∈ K, (i, dk) ∈ A, i ̸= ok, (3.55)

3.4 A Column-and-Constraint Generation Solution Method 95

γk − ψk − ηk
okdk −

|K|∑
r=1

θk
okdkr +

|K|∑
r=1

ξk
okdkr − λ

k
ok + λk

dk ≤ 0, ∀ k ∈ K, (ok, dk) ∈ A, (3.56)

∑
k∈K

θk
ijr −

∑
k∈K

ξk
ijr ≤ 0, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.57)

λk
i ≤ hk

i q
k, ∀ i ∈ N , k ∈ K, (3.58)

ψk − λk
dk ≤ gk, ∀ k ∈ K, (3.59)

β ≥ 0,γ ≥ 0,ψ ≥ 0,η ≥ 0,θ ≥ 0, ξ ≥ 0,λ ≥ 0. (3.60)

This, together with the definition of uncertainty set U(Γ) in (3.6), implies that

FRP (x, z) can be reformulated as the following maximization MINLP model:

FRP (x, z) = max
(τ̃ ,δ,β,γ,ψ,η,θ,ξ,λ)

∑
(j,i)∈A

|K|∑
r=1

(∑
k∈Ki

zk
jir(βk

i − λk
i) +

∑
k∈Kd

i

zk
jir(ψk − λk

i)
)
· τ̃jir

−
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηk

ij +
∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(zk
ijr − 1)] · (θk

ijr + ξk
ijr)

+
∑
k∈K

ek · (γk − λk
ok) +

∑
k∈K

lk · (λk
dk − ψk) (3.61)

s.t. (3.53)− (3.60) (3.62)

τ̃ijr = τ ij + τ̂ijδijr, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.63)

−1 ≤ δijr ≤ 1, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.64)∑
(i,j)∈A

|K|∑
r=1
|δijr| ≤ Γ. (3.65)

where Ki = {k ∈ K : i ̸= ok and i ̸= dk}, Kd
i = {k ∈ K : i = dk}. The above

maximization MINLP model for FRP (x, z) can further be linearized and reformulated

as a MILP model based on Proposition 3 below.

Proposition 3. There exists an optimal solution to the maximization MINLP model

defined in (3.61)–(3.65) such that δijr ∈ {−1, 0, 1} for each (i, j) ∈ A and r ∈

{1, 2, ..., |K|}.

Proof. For any given (x, z) and fixed (β,γ,π,η,θ, ξ,λ), with τ̃ijr replaced by τ ij +

τ̂ijδijr for (i, j) ∈ A and r ∈ {1, 2, · · · , |K|}, model (3.61)–(3.65) becomes an LP model

on δ subject to constraints (3.64) and (3.65). It is well known that for any LP model,

96 Robust Continuous-Time Service Network Design with Uncertain Travel Times

there exists an optimal solution that is an extreme point of its feasible region. For the

feasible region defined by constraints (3.64) and (3.65), we can see that its extreme

point must satisfy that δijr ∈ {−1, 0, 1} for each (i, j) ∈ A and r ∈ {1, 2, ..., |K|}.

This implies that there exists an optimal solution to model (3.61)–(3.65) that satisfies

δijr ∈ {−1, 0, 1} for each (i, j) ∈ A and r ∈ {1, 2, ..., |K|}. Hence, Proposition 3 is

proved.

By Proposition 3, constraints (3.64) can be replaced with δijr ∈ {−1, 0, 1} for

(i, j) ∈ A and r ∈ {1, 2, ..., |K|}. Accordingly, (3.63) implies that τ̃ijr ∈ {τ ijr −

τ̂ijr, τ ijr, τ ijr + τ̂ijr}, which, together with τ ijr ∈ N>0, τ̂ijr ∈ N0 and τ ijr > τ̂ijr, implies

that τ̃ijr ∈ N>0. Moreover, we can replace each nonlinear term
(∑

k∈Ki
zk

jir(βk
i − λk

i) +∑
k∈Kd

i
zk

jir(ψk − λk
i)

)
· τ̃jir with a new variable φjir and replace each integer variable

δjir with three new binary variables ζjir,−1, ζjir,0 and ζjir,1, which are used to indicate

whether δijr equals -1, 0 and 1, respectively, for all (j, i) ∈ A and r ∈ {1, 2, ..., |K|}.

Let τ̃ijr,−1 = τ ijr − τ̂ijr, τ̃ijr,0 = τ ijr and τ̃ijr,1 = τ ijr + τ̂ijr. We introduce the following

constraints to ensure that φjir =
(∑

k∈Ki

zk
jir(βk

i − λk
i) + ∑

k∈Kd
i

zk
jir(ψk − λk

i)
)
· τ̃jir for all

(j, i) ∈ A and r ∈ {1, 2, ..., |K|}.

ζijr,−1 + ζijr,0 + ζijr,1 = 1, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.66)(∑
k∈Ki

zk
jir(βk

i − λk
i) +

∑
k∈Kd

i

zk
jir(ψk − λk

i)
)
τ̃jir,ℓ −M2(1− ζjir,ℓ) ≤ φjir

≤
(∑

k∈Ki

zk
jir(βk

i − λk
i) +

∑
k∈Kd

i

zk
jir(ψk − λk

i)
)
τ̃jir,ℓ +M2(1− ζjir,ℓ),

∀ (j, i) ∈ A, r ∈ {1, 2, ..., |K|}, ℓ ∈ {−1, 0, 1}, (3.67)

ζijr,−1 ∈ {0, 1}, ζijr,0 ∈ {0, 1}, ζijr,1 ∈ {0, 1}, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K|}, (3.68)

where M2 is a sufficiently large constant. Accordingly, constraints (3.65) can be replaced

with a linear constraint shown in (3.69) below:

∑
(i,j)∈A

|K|∑
r=1

(ζijr,−1 + ζijr,1) ≤ Γ. (3.69)

3.4 A Column-and-Constraint Generation Solution Method 97

Accordingly, the maximization MINLP model SO(x, z) defined by (3.61)–(3.65)

can be further reformulated as the following maximization MILP model:

[SRP(x, z)] FRP (x, z) = max
(ζ,β,γ,ψ,η,θ,ξ,λ,φ)

∑
(j,i)∈A

|K|∑
r=1

φjir −
∑
k∈K

∑
(i,j)∈A

(M1x
k
ij) · ηk

ij

+
∑
k∈K

∑
(i,j)∈A

|K|∑
r=1

[M1(zk
ijr − 1)] · (θk

ijr + ξk
ijr)

+
∑
k∈K

ek · (γk − λk
ok) +

∑
k∈K

lk · (λk
dk − ψk) (3.70)

s.t. (3.53) – (3.60), (3.66) – (3.68) and (3.69). (3.71)

The above reformulation can be solved directly by the solver to obtain the worst-

case second-stage cost FRP (x, z) and the corresponding worst-case scenario τ̃ can be

obtained by below (3.72).

τ̃ijr = τ̃ijr,−1ζijr,−1 + τ̃ijr,0ζijr,0 + τ̃ijr,1ζijr,1, ∀ (i, j) ∈ A, r ∈ {1, ..., |K|}, (3.72)

which, by Proposition 3, implies that

τ̃ijr ∈ {τ ijr − τ̂ijr, τ ijr, τ ijr + τ̂ijr}, ∀ (i, j) ∈ A, r ∈ {1, ..., |K|}. (3.73)

3.4.2 Algorithm Framework

From model ROLP over a scenario subset Λ ⊆ U(Γ), we can define the master problem

of the C&CG method as below, which is referred to as model MPC&CG:

[MPC&CG] min
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk
ij +

∑
(i,j)∈A

|K|∑
r=1

fij · yijr + ϕ (3.74)

s.t. ϕ ≥
∑
k∈K

∑
i∈N

(hk
i q

k) · wk(τ̃)
i +

∑
k∈K

gk · sk(τ̃), ∀ τ̃ ∈ Λ, (3.75)

(v(τ̃), b(τ̃),w(τ̃), s(τ̃)) ∈ Q(τ̃), ∀ τ̃ ∈ Λ, (3.76)

(x,y, z,v, b) ∈ X . (3.77)

98 Robust Continuous-Time Service Network Design with Uncertain Travel Times

The C&CG method iteratively solves the master problem to obtain a first-stage

solution (x,y, z), solves the corresponding subproblem SRP(x, z) to identify a new

worst-case scenario τ̃ , and then adds τ̃ to expand the scenario subset Λ so as to

update the master problem MPC&CG. With a new scenario τ̃ added to Λ, new decision

variables (v(τ̃), b(τ̃),w(τ̃), s(τ̃)), together with the corresponding constraints in (3.75)–

(3.76) defined on them, are added to the master problem MPC&CG.

Define the upper and lower bounds of the optimal objective value to the original

problem as UB and LB, respectively. The framework of our C&CG method for the

robust CTSNDP-HC can be summarized as below:

Step 1: Set n = 0, UB = +∞ and LB = −∞.

Step 2: Solve the master problem MPC&CG to find its optimal solution (x̂, ŷ, ẑ, ϕ),

and let LB equal to the optimal objective value of the MPC&CG.

Step 3: Solve the subproblem SRP(x̂, ẑ) to obtain its optimal objective value FRP (x̂, ẑ)

as well as the worst-case scenario τ̃ (n) according to (3.72), and update

UB = min{UB,
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · x̂k
ij +

∑
(i,j)∈A

|K|∑
r=1

fij · ŷijr + FRP (x̂, ẑ)}

.Step 4: If a certain stopping condition is reached, then the algorithm stops. Otherwise,

update Λ = Λ ⋃{τ̃ (n)}. Add new decision variables (v(τ̃ (n)), b(τ̃ (n)),w(τ̃ (n)), s(τ̃ (n)))

as well as their corresponding constraints in (3.75)− (3.76) to the master problem

MPC&CG. Update n = n+ 1 and then go to Step 2.

At each iteration of the C&CG method, the UB and LB are updated by solving

the corresponding master problem and subproblem, while a new worst-case scenario

τ̃ in U(Γ) is also found and added into the scenario subset Λ. The C&CG method

stops when a certain condition is satisfied. A common stopping condition is that the

optimality gap (UB − LB)/UB = 0. Under this stopping condition, we can see as

follows that our C&CG method must converge to an optimal solution to the robust

CTSNDP-HC in a finite number of iterations. To see this, it is worthy to note that if

3.5 An Enhanced Column-and-Constraint Generation Solution Method 99

the worst-case scenario τ̃ (n) identified in Step 3 is in the current scenario subset Λ, by

an argument similar to that in Zeng and Zhao [111] we know that LB = UB, implying

that the stopping condition (UB − LB)/UB = 0 is satisfied. Moreover, for each of

such scenarios τ̃ identified in Step 3, it satisfies that τ̃ijr ∈ {τ ijr − τ̂ijr, τ ijr, τ ijr + τ̂ijr},

∀ (i, j) ∈ A, r ∈ {1, ..., |K|} by (3.73). Hence, since the number of such scenarios

τ̃ is finite, we obtain that our C&CG method must reach (UB − LB)/UB = 0

in a finite number of iterations. This implies that under the stopping condition

(UB − LB)/UB = 0, our C&CG method must converge to an optimal solution to the

robust CTSNDP-HC in a finite number of iterations.

We also note that this C&CG method can be extended to solve the cases with

non-integer budget of uncertainty Γ. For the robust CTSNDP with non-integer Γ, we

have a new proposition by extending the result of Proposition 3, that is, there exists an

optimal solution to the maximization MINLP model defined in (3.61)–(3.65) such that

δijr ∈ {−1, 0, 1,Γ− ⌊Γ⌋,−(Γ− ⌊Γ⌋)} for each (i, j) ∈ A and r ∈ {1, 2, ..., |K|}. Based

on this new proposition, the linearization method for model SO and the C&CG solution

method are still valid for the robust CTSNDP with non-integer Γ. Moreover, our

robust optimization formulation RO and the C&CG solution method can be directly

applied to the cases with strict robustness, i.e., the robust solution should be feasible

for all possible scenarios of the given uncertainty set, by using an infinity large delay

penalty g.

3.5 An Enhanced Column-and-Constraint Genera-

tion Solution Method

The performance of the C&CG method relies on the efficiency of solving the master

problem and the subproblem in each iteration. In the C&CG method presented in

Section 3.4, the model sizes of the master problems and the subproblems, and hence

the running time spent in solving them, grow with the value of |K|, which indicates

the maximum total number of consolidations allowed on each arc. However, the actual

100 Robust Continuous-Time Service Network Design with Uncertain Travel Times

total number of consolidations on each arc (i, j) ∈ A used in the optimal solution is

often expected to be much smaller than |K|, particularly for those large-scale instances

with relatively large |K|.

Consider a flat solution (P , C) and the sets Cα, ∀α ∈ A, where each Cα consists

of the non-empty consolidations on arc α derived from C. It is clear that excluding

empty consolidation sets from C does not change the execution of the routing and

consolidation plans, and thus it does change the corresponding worst-case second-stage

cost. This implies that the flat solution (P , {Cα}α∈A) is equivalent to (P , C) as they

have identical first-stage cost and worst-case second-stage cost. It can also be seen that

the flat solution (P , {Cα}α∈A) is still feasible if we impose on an additional constraint

that the total number of consolidations on each arc α ∈ A cannot exceed |Cα| in the

first stage of the problem. This enlightens a novel idea to enhance the C&G method

that we can dynamically adjust the maximum total number of consolidations allowed

on each arc to restrict the sizes of master problems and the subproblems, so as to

accelerate the C&CG method.

By following the idea above, we propose an enhanced column-and-constraint gener-

ation method (EC&CG) in this section. It introduces a parameter Π to specify the

maximum total number of consolidations allowed on each arc, the value of which is

small at start, and then iteratively adjusted, together with the update of the scenario

subset Λ. As a result, both the master problem and the subproblems solved in the

EC&CG method have small sizes during the early iterations, which accelerates the

search for the upper bound of the optimal objective value of the problem. However, it

postpones the verification of the optimality of the upper bound to the later iterations,

where it requires to set a sufficiently large value for the parameter Π.

In the followings, we first introduce the parameter Π in Section 3.5.1 and propose

the framework of the EC&CG method which dynamically adjusts the value of the

parameter Π in Section 3.5.2. To illustrate how the parameter Π is adjusted in detail,

we first derive an upper bound for Π in Section 3.5.3. Based on this upper bound, we

then design our strategies to initialize and adjust the value of Π in Sections 3.5.4 and

3.5 An Enhanced Column-and-Constraint Generation Solution Method 101

3.5.5, respectively. Finally, we prove that our EC&CG method converge to an optimal

solution to the robust CTSNDP-HC in a finite number of iterations in Section 3.5.6.

3.5.1 Parameterizing the Two-Stage MINLP Model

Model RO proposed in Section 3.3.2 is based on the fact that there are at most |K|

consolidations on each arc. We now introduce a parameter (vector) Π = {Πij}(i,j)∈A

referred to as the consolidation frequency bound to replace the terms |K| in model

RO. This parameter Π restricts that the total number of consolidations on each arc

(i, j) ∈ A in any feasible solution of the robust CTSNDP-HC cannot exceed Πij of Π.

Let X (Π) denote the domain defined by (3.27)–(3.35) under the consolidation frequency

bound Π, i.e., with |K| in constraints (3.27)–(3.35) replaced by the corresponding Πij

for each (i, j) ∈ A. We can now extend model RO to define the following model RO(Π)

for every given parameter Π:

[RO(Π)] min
(x,y,z,v,b)∈X (Π)

∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk
ij +

∑
(i,j)∈A

Πij∑
r=1

fij · yijr + FRP (x, z,Π)

(3.78)

where FRP (x, z,Π) indicates the worst-case second-stage cost for the first-stage solution

(x, z) under Π. We can also extend model SO(x, z) to define model SO(x, z,Π) by

substituting terms |K| with their corresponding Πij for each (i, j) ∈ A, so that

FRP (x, z,Π) equals the optimal objective value of SO(x, z,Π) . Model RO(Π) aims

to find the optimal robust solution among all the solutions in which the total number

of consolidations on each arc (i, j) ∈ A is not greater than Πij.

Let ΠK indicate a special consolidation frequency bound such that ΠK
ij = |K|, for

all (i, j) ∈ A. It can be seen that model RO proposed in Section 3.3.2 is equivalent to

RO(ΠK).

102 Robust Continuous-Time Service Network Design with Uncertain Travel Times

3.5.2 Algorithm Framework

The master problem and the subproblem of our EC&CG method can be formulated as

follows. Let Q(τ̃ ,Π) denote the domain of variables (v, b,w, s) defined by (3.37)–(3.47)

under a given travel time realization τ̃ and the consolidation frequency bound Π,

where all terms |K| in (3.37)–(3.47) are replaced with their corresponding Πij for each

(i, j) ∈ A. Accordingly, we can obtain the the master problem to be solved during

each iteration n of the EC&CG method, which is denoted by RMP(Π(n),Λ(n)) with

Π(n) ≤ ΠK and Λ(n) ∈ U(Γ), as follows:

[RMP(Π(n),Λ(n))]

min
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk
ij +

∑
(i,j)∈A

Π(n)
ij∑

r=1
fij · yijr + ϕ (3.79)

s.t. ϕ ≥
∑
k∈K

∑
i∈N

(hk
i q

k) · wk(τ̃)
i +

∑
k∈K

gk · sk(τ̃), ∀ τ̃ ∈ Λ(n), (3.80)

(v(τ̃), b(τ̃),w(τ̃), s(τ̃)) ∈ Q(τ̃ ,Π(n)), ∀ τ̃ ∈ Λ(n), (3.81)

(x,y, z,v, b) ∈ X (Π(n)). (3.82)

Consider the master problem RMP(Π(n),Λ(n)) in iteration n, with its optimal

solution denoted as (x(n),y(n), z(n)). We can obtain the formulation of the subproblem,

denoted by SRP(x, z,Π), by substituting terms |K| with corresponding Πij in model

SRP(x, z) for each (i, j) ∈ A. Thus, model SO(x, z,Π) can be reformulated as model

SRP(x, z,Π), by following the reformulation method used in Section 3.4.1. The

worst-case second-stage cost FRP (x(n), z(n),Π(n)) can thus be obtained by solving the

subproblem SRP(x(n), z(n),Π(n)). Based on the solution ζ(n) obtained from model

SRP(x(n), z(n),Π(n)), the worst-case scenario τ̃ (n) ∈ U(Γ) can be identified according

3.5 An Enhanced Column-and-Constraint Generation Solution Method 103

to (3.83) below and then be used to update Λ(n+1).

τ̃
(n)
ijr =

∑

ℓ∈{−1,0,1}
τ̃ijr,ℓζ

(n)
ijr,ℓ, if r ∈ {1, ...,Πij},

τ ijr, otherwise,
∀ (i, j) ∈ A, r ∈ {1, ..., |K|}.

(3.83)

Our EC&CG method starts from a small Π and empty Λ, iteratively solves the

master problem and subproblem, and dynamically updates Π as well as Λ, until a

certain termination condition is reached. The framework of the EC&CG method can

be summarized as follows: Given an initial value Π(1) of the consolidation frequency

bound, it sets Λ(1) = ∅, UB =∞, and LB = -∞, and then in each iteration n = 1, 2, ...,

it goes through the following steps:

Step 1: Solve the master problem RMP(Π(n),Λ(n)) defined by Π(n) and Λ(n) to find its

optimal solution (x(n),y(n), z(n), ϕ(n)), and let LB equal to the optimal objective

value of the RMP(Π(n),Λ(n)).

Step 2: Solve the subproblem SRP(x(n), z(n),Π(n)) optimally to obtain the worst-case

second-stage cost FRP (x(n), z(n),Π(n)), identify the worst-case scenario τ̃ (n) ∈

U(Γ) according to (3.83), and update

Λ(n+1) = Λ(n) ⋃
{τ̃ (n)}, (3.84)

UB = min{UB,
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk(n)
ij +

∑
(i,j)∈A

Π(n)
ij∑

r=1
fij · y(n)

ijr +FRP (x(n), z(n),Π(n))}.

(3.85)

Step 3: If a certain stopping condition is reached, then the algorithm stops. Otherwise,

adjust the value of the consolidation frequency bound with the new value denoted

by Π(n+1). Update n = n+ 1 and then go to Step 2.

To apply our EC&CG method to solving the robust CTSNDP-HC under uncertain

travel times, we further design some specific strategies in Section 3.5.4 and Section 3.5.5

104 Robust Continuous-Time Service Network Design with Uncertain Travel Times

to determine the initial value of the consolidation frequency bound at beginning, and

to adjust the value of the consolidation frequency bound in each iteration, respectively.

We also specify the stopping condition for Step 3 and discuss the convergence of the

EC&CG method in Section 3.5.6. For these, we first derive a bound on the value of

the consolidation frequency bound, which is smaller than ΠK but is large enough to

prove the optimality of the obtained solution to the original robust CTSNDP-HC, in

Section 3.5.3.

3.5.3 Bounding Parameter Values

Under the constraints imposed by the commodities’ earliest available times and due

times, the total number of consolidations on an arc can be strictly less than |K| in every

nominal timely-implementable flat solution. For example, consider any commodity

k ∈ K and arc (i, j) ∈ A. If the total travel time of every path from the origin ok to

the destination dk of commodity k that passes the arc (i, j) exceeds (lk − ek) (i.e., the

the difference of the due time lk and the earliest available time ek of commodity k),

then commodity k cannot pass arc (i, j) without violating its due time, implying that

the total number of consolidations on arc (i, j) must be less than or equal |K| − 1.

Based on the observation above, we define Π∗
ij for each arc (i, j) ∈ A as the total

number of commodities k such that τ k(ok, i) + τ ij + τ k(j, dk) ≤ lk − ek, where τ k(i′, j′)

for each pair of nodes i′ and j′ indicates the length of the shortest-time path from node

i′ to node j′ for commodity k under the nominal travel times in the flat network. The

argument for our observation above indicates that only such commodity k can pass arc

(i, j) without violating its due time. Thus, the total number of consolidations on arc

(i, j) must be less than or equal to Π∗
ij. Therefore, we refer to the vector Π∗ of Π∗

ij for

(i, j) ∈ A as the maximum consolidation frequency. We have that Π∗ ≤ ΠK because

Π∗
ij ≤ |K| for all (i, j) ∈ A.

We can now establish the following Proposition 4 which indicates that the optimal

objective values of models RO(Π∗) and RO(ΠK) are equal.

3.5 An Enhanced Column-and-Constraint Generation Solution Method 105

Proposition 4. RO(ΠK) and RO(Π∗) have the same optimal objective values.

Proof. Given an optimal solution (x,y, z) to RO(ΠK) with the objective value

Z1 =
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk
ij +

∑
(i,j)∈A

|K|∑
r=1

fij · yijr + FRP (x, z),

where FRP (x, z) indicates the worst-case second-stage cost and equals the optimal

objective value of model SO(x, z). From (x,y, z), we can derive a flat solution

(P(x, z), C(x, z)). Let Rα(x, z) = {r : Cα
r (x, z) ̸= ∅} indicate a set of non-empty

consolidations on each arc α ∈ A. By the definition of Π∗, we have |Rα(x, z)| ≤ Π∗
α,

∀α ∈ A. Accordingly, by re-indexing the non-empty consolidations in each Cα(x, z),

we can derive a feasible solution (x̂, ŷ, ẑ) for RO(ΠK) from (x,y, z) where

x̂ = x,

ŷijr =

 y
ij,R(i,j)

r (x,z), if r ∈ {1, ..., |R(i,j)(x̂, ẑ)|},

0, otherwise,
∀ (i, j) ∈ A, r ∈ {1, ..., |K|},

ẑk
ijr =

zk

ij,R(i,j)
r (x̂,ẑ)

, if r ∈ {1, ..., |R(i,j)(x, z)|},

0, otherwise,
∀ (i, j) ∈ A, r ∈ {1, ..., |K|}.

It can be seen that re-indexing the consolidations does not change the actual execution

of the routing and consolidation plans, and does not change the corresponding worst-

case second-stage cost. Thus, since (x,y, z) is an optimal solution to model RO(ΠK),

we obtain that (x̂, ŷ, ẑ) is also an optimal solution to model RO(ΠK).

Therefore, by adding the following constraints (3.86) to model RO(ΠK), it does

not change the optimal objective value.

zk
ijr = 0, ∀(i, j) ∈ A, k ∈ K, r ∈ {Π∗

ij + 1, ..., |K|} (3.86)

By fixing such variables zk
ijr for (i, j) ∈ A, k ∈ K, r ∈ {Π∗

ij + 1, ..., |K|} to be zero, as

imposed by the new constraints (3.86), it is equivalent to removing these variables

106 Robust Continuous-Time Service Network Design with Uncertain Travel Times

from model RO(ΠK), which exactly leads to model RO(Π∗). Hence, models RO(ΠK)

and RO(Π∗) must have the same optimal objective values.

Proposition 4 indicates that for each arc (i, j) ∈ A, the value of Πij can be limited

to no greater than Π∗
ij. Therefore, when we set the initial value and adjust the value

of the parameter Πij for each arc (i, j) ∈ A, we can take into account only values no

greater than Π∗
ij. When Π reaches the value of Π∗, the EC&CG method becomes the

standard C&CG method, and it does not need to update the value of Π any more.

As we will show later, in each iteration n of the EC&CG method, the UB obtained

is a valid upper bound for both model RO(Π(n)) and the original robust CTSNDP-HC.

In each iteration n of the EC&CG method, the LB obtained is a valid lower bound for

model RO(Π(n)) since RMP(Π(n),Λ(n)) is a relaxation of model RO(Π(n)). However,

the LB obtained may not be a valid lower bound for the original robust CTSNDP-HC

since the solution space of model RO(Π(n)) is restricted by the parameter Π(n). Only

when Π(n)
ij equals Π∗

ij for each (i, j) ∈ A, the LB obtained becomes a valid lower bound

for the original robust CTSNDP-HC.

3.5.4 Initialization of Parameter Values

It is critical for the EC&CG method to set the initial consolidation frequency bound

Π(1) properly. On the one hand, it should ensure the feasibility of the RMP(Π(1),Λ(1))

and can produce a reasonably good initial upper bound. On the other hand, it should

also guarantee the tractability of the RMP(Π(1),Λ(1)).

To determine Π(1), we first follow the two steps below to generate an initial feasible

first-stage solution that has relatively few consolidations on each arc.

Step 1: For each commodity k ∈ K, compute a feasible delivery path P k that does not

violate the due time under the nominal travel times, with its total transportation

cost (including flow costs and fixed costs) minimized. For each arc (i, j) ∈ A, let

Π̂ij denote the total number of times that arc (i, j) has appeared in the obtained

paths P k.

3.5 An Enhanced Column-and-Constraint Generation Solution Method 107

Step 2: Solve the deterministic model DO with xk
ij fixed to be one if (i, j) ∈ P k, with

xk
ij fixed to be zero if (i, j) /∈ P k, and with terms |K| replaced by Π̂ij for all

(i, j) ∈ A and k ∈ K. The solution obtained is adopted as the initial first-stage

solution, denoted by (x(0), z(0)).

The Step 1 above constructs a routing plan for all the commodities by follow-

ing a greedy approach with respect to the transportation cost. The Step 2 above

then optimizes the consolidation plan based on the routing plan obtained in Step 1,

which is expected to result in a relatively small number of consolidations on each arc.

Let Cα(x(0), z(0)) denote the set of non-empty consolidations on each arc α ∈ A in

solution (x(0), z(0)). For each arc (i, j) ∈ A, by the definition of Π∗
ij we know that

|C(i,j)(x(0), z(0))| ≤ Π∗
ij. Let ρ0

ij indicate a threshold given as a parameter. Accord-

ingly, we determine the value Π(1)
ij as follows. If |C(i,j)(x(0), z(0))| ≥ ρ0

ij, then we set

Π(1)
ij = |C(i,j)(x(0), z(0))|, and otherwise, we set Π(1)

ij = min{ρ0
ij,Π∗

ij}. In other words,

we set Π(1)
ij = max

{
min{ρ0

ij,Π∗
ij}, |C(i,j)(x(0), z(0))|

}
for each (i, j) ∈ A. It can be seen

that Π(1)
ij ≥ |C(i,j)(x(0), z(0))| for all (i, j) ∈ A, ensuring that model RMP(Π(1),Λ(1))

at least contains (x(0), z(0)) as its feasible solution and can provide an upper bound

better than the worst-case total cost of the solution (x(0), z(0)). The value of Π(1)
ij is

set to be |C(i,j)(x(0), z(0))| or min{ρ0
ij,Π∗

ij}, whichever is larger, so that the tractabil-

ity of the model RMP(Π(1),Λ(1)) can be ensured when ρ0
ij is small, as the value of

|C(i,j)(x(0), z(0))| is expected to be small due to Step 2 above. In our computations

study in Section 3.7, we choose ρ0
ij = 4, for all (i, j) ∈ A.

3.5.5 Adjustment of Parameter Values

At each iteration of the EC&CG method, the consolidation frequency bound Π needs

to be increased, so as to expand the solution space of the master problem. While there

may be different strategies to adjust the consolidation frequency bound, we propose

one described below.

During each iteration n = 1, 2, ..., of the EC&CG method, after LB and UB are

updated, if the algorithm does not stop, we need to set the values of Π(n+1)
ij for (i, j) ∈ A

108 Robust Continuous-Time Service Network Design with Uncertain Travel Times

to update the consolidation frequency bound. When Π(n)
ij = Π∗

ij for all (i, j) ∈ A, we

keep Π(n+1)
ij = Π∗

ij for all (i, j) ∈ A, so that the standard C&CG method for RO(Π∗)

is followed in the future iterations. If Π(n)
ij < Π∗

ij for some (i, j) ∈ A, we set the values

of Π(n+1)
ij for (i, j) ∈ A according to the following two possible cases:

• Case 1: If the optimality (UB − LB)/UB is greater than 0.01, then we first

set Π(n+1)
ij to be equal to Π(n)

ij for each arc (i, j) ∈ A. We then compute ρij

that indicates the total number of times that arc (i, j) has appeared in all

the commodities’ delivery paths of the solution (x(n),y(n), z(n), ϕ(n)) for all arc

(i, j) ∈ A. If ρij > Π(n+1)
ij , we increase Π(n+1)

ij to ρij, so as to allow more

consolidations on such arcs (i, j) in future iterations. To extend the adjustment

strategy to the arcs not involved in the obtained solution (x(n),y(n), z(n), ϕ(n))

so as to further expand the solution space in the future iterations, we increase

Π(n+1)
ij by one for the arc (i, j) with the least value of Π(n+1)

ij that is smaller than

Π∗
ij. This also ensures that Π(n+1)

ij is greater than Π(n)
ij for at least one arc (i, j).

• Case 2: If the optimality (UB − LB)/UB is smaller or equal to 0.01, then we

set Π(n)
ij = Π∗

ij for all (i, j) ∈ A, so that further iterations of the EC&CG method

follows the standard C&CG method for RO(Π∗) to produce valid lower bounds

LB, which can then be used to verify the optimality of the newly obtained upper

bounds UB.

The above adjustment strategy implies that after some iteration n, we always have

Π(n)
ij = Π∗

ij for all (i, j) ∈ A. This ensures that LB obtained in each iteration after

iteration n is always a valid lower bound for the original robust CTSNDP-HC, so that

it can be shown that the EC&CG method converges to an optimal solution to the

original robust CTSNDP-HC (see Section 3.5.6 below). This adjustment process can

indeed be seen as a simple learning process that learns the consolidation information

from previous obtained solutions.

3.5 An Enhanced Column-and-Constraint Generation Solution Method 109

3.5.6 Stopping Condition and Convergence Guarantee

For the EC&CG method, a natural stopping condition is that Π(n)
ij = Π∗

ij for all

(i, j) ∈ A and the optimality gap (UB−LB)/UB = 0. It can be shown as follows that

under such a stopping condition, the EC&CG method must stop and converge to the

an optimal solution to the robust CTSNDP-HC in a finite number of iterations.

First, we need to establish Proposition 5 below.

Proposition 5. The value of UB obtained in each iteration n of the EC&CG method

is a valid upper bound on both the optimal objective value of RO(Π(n)) and the optimal

objective value of RO(Π∗).

Proof. Let Z(n) represent the optimal objective value of RO(Π(n)). If we can prove that

for each iteration n′ of the EC&CG method with 1 ≤ n′ ≤ n−1, every feasible solution

(x,y, z) to RO(Π(n′)), of which the objective value is denoted by Z(n′), satisfies that

Z(n′) ≥ Z(n), then from (3.85), we can obtain that the value of UB obtained in each

iteration n is a valid upper bound on Z(n).

By definition, Z(n′) can be represented as follows.

Z(n′) =
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · xk
ij +

∑
(i,j)∈A

Π(n′)
ij∑

r=1
fij · yijr + FRP (x, z,Π(n′)),

where FRP (x, z,Π(n′)) denotes the worst-case second-stage cost of the first-stage

solution (x, z) under Π(n′), and it equals the optimal objective value of model

SO(x, z,Π(n′)). From solution (x,y, z), we can derive a feasible solution (x̂, ŷ, ẑ)

to RO(Π(n)) as follows:

x̂ = x,

ŷijr =

 yijr, if r ∈ {1, ...,Π(n′)
ij },

0, otherwise,
∀ (i, j) ∈ A, r ∈ {1, ...,Π(n)

ij },

ẑk
ijr =

 zk
ijr, if r ∈ {1, ...,Π(n′)

ij },

0, otherwise,
∀ (i, j) ∈ A, r ∈ {1, ...,Π(n)

ij }.

110 Robust Continuous-Time Service Network Design with Uncertain Travel Times

The objective value of (x̂, ŷ, ẑ), denoted by Ẑ, can be represented as follows:

Ẑ =
∑
k∈K

∑
(i,j)∈A

(ck
ijq

k) · x̂k
ij +

∑
(i,j)∈A

Π(n)
ij∑

r=1
fij · ŷijr + FRP (x̂, ẑ,Π(n)),

and satisfies that Ẑ ≥ Z(n).

It can also be seen that SO(x̂, ẑ,Π(n)) can be transformed equivalently to

SO(x, z,Π(n′)) by removing those redundant variables and constraints that are associ-

ated with ẑk
ijr having r > Π(n′)

ij . Thus, FRP (x̂, ẑ,Π(n)) must be equal to FRP (x, z,Π(n′)),

implying that Ẑ = Z(n′). Accordingly, we have Z(n′) = Ẑ ≥ Z(n), which, together with

(3.85), implies that the value of UB obtained in each iteration n is an upper bound on

Z(n).

Moreover, since Z(n) is less than or equal to the optimal objective value of RO(Π∗),

we obtain the value of UB must also be an upper bound on the optimal objective value

of RO(Π∗). This completes the proof of Proposition 5.

From Proposition 5, we know that in each iteration n of the EC&CG method,

the value of UB is always a valid upper bound for RO(Π(n)). Thus, similar to our

argument for the C&CG method in Section 3.4.2, we can see that after a finite number

of iterations with the same value of Π(n)
ij , the gap (UB−LB)/UB can reach zero. Thus,

according to the adjustment strategies proposed in Section 3.5.5 for the consolidation

frequency bound Π, if there exists Π(n)
ij that is less than Π∗

ij, then at least one such

Π(n)
ij must be increased by at least one in each iteration. Since each Π(n)

ij cannot exceed

Π∗
ij, we can see that each Π(n)

ij must reach Π∗
ij after a finite number of iterations. This

implies that after a finite number of iterations, the EC&CG method must eventually

follow the standard C&CG method to solve the RO(Π∗). Thus, from our argument

in Section 3.4.2 for the standard C&CG method, we obtain that our C&CG method

can satisfy the stopping condition Π(n)
ij = Π∗

ij for all (i, j) ∈ A and the optimality gap

(UB − LB)/UB = 0, and thus, converge to an optimal solution to the original robust

CTSNDP-HC, in a finite number of iterations.

3.6 Additional Accelerating Strategies 111

Moreover, in some situations, one may impose a time limit stopping condition such

that the EC&CG method stops when a maximum running time allowed is exceeded.

Under this stopping condition, our EC&CG method may stop in certain iteration n

with Π(n)
ij < Π∗

ij for some (i, j) ∈ A. It is worthy to note that in such a situation, the

LB obtained is a valid lower bound only for RO(Π(n)) but may not be a valid lower

bound for RO(Π∗). This is because when such a smaller consolidation frequency bound

Π(n) is applied, some feasible solutions to RO(Π∗) may be ruled out in RO(Π(n)).

However, even for such a situation caused by the time limit stopping condition,

where our EC&CG method stops with Π(n)
ij < Π∗

ij for some (i, j) ∈ A, Proposition 5

implies that the value of UB obtained is a valid upper bound on the optimal objective

value of the original robust CTSNDP-HC.

Moreover, likewise, this EC&CG method can also be extended to solve the cases

with non-integer budget of uncertainty Γ by slightly modifying the Proposition 3 and

the cases with strict robustness by using an infinity large delay penalty g.

3.6 Additional Accelerating Strategies

To further enhance the performance of our newly proposed C&CG and EC&CG

methods, we develop and apply two additional accelerating strategies, which are

illustrated in Section 3.6.1 and Section 3.6.2, respectively.

3.6.1 Size Reduction for the Subproblem

The first strategy is to further reduce the size of the subproblem. In the followings, we

first present the size reduction for the subproblem SRP(x, z) of the C&CG method,

and then show that the approach can be applied to the subproblem SRP(x, z,Π) of

the EC&CG method.

To break the symmetric structure of each master problem MPC&CG of the C&CG

method, we can restrict that consolidation r on each arc (i, j) ∈ A is not empty only if

consolidation r − 1 is not empty. As a result, we can impose the following cut on the

112 Robust Continuous-Time Service Network Design with Uncertain Travel Times

first-stage solution (x,y, z) in the master problem RMP(Π(n),Λ(n)):

yijr+1 ≤Myijr, ∀ (i, j) ∈ A, r ∈ {1, 2, ..., |K| − 1}, (3.87)

where M is a sufficiently large number.

Consider any first-stage solution (x,y, z) with (3.87) satisfied. We can reduce the

size of the subproblem SRP(x, z) as follows. First, from (x,y, z), we can obtain its flat

solution (P(x, z), C(x, z)). Let P k(x, z) denote the flat path for commodity k ∈ K,

with N k(x, z) and Ak(x, z) representing the node sequence and the arc sequence along

P k(x, z), respectively. Let Cα(x, z) denote the set that consists of all non-empty

consolidations on arc α ∈ A. Accordingly, there are totally |Cα(x, z)| consolidations

on each arc α ∈ A.

Second, in any optimal solution to model SO(x, z) of the second-stage problem, it

can be seen that vk
ij = 0 for all (i, j) /∈ Ak, k ∈ K, wk

i = 0 for all i /∈ N k, k ∈ K, and

bijr = 0 for all (i, j) ∈ A with C(i,j)
r (x, z) being empty. Thus, these variables do not

affect the optimal objective value FRP (x, z) of model SO(x, z), leading to a number of

redundant variables and constraints in model SO(x, z), which can thus be excluded.

Accordingly, we can reduce the size of model SO(x, z) by replacing terms N , A and

Πij with corresponding N k(x, z), Ak(x, z) and |C(i,j)(x, z)|, respectively.

Third, with the size of model SO(x, z) reduced, the size of its reformula-

tion, model SRP(x, z), can also be reduced. The resulting model, denoted by

SRP1(x, z), is shown as follows, where L(x, z) denote the domain defined by

(3.53) – (3.60), (3.66) – (3.68) and (3.69) with terms N , A and |K| replaced by corre-

sponding N k(x, z), Ak(x, z) and |C(i,j)(x, z)|, respectively.

[SRP1(x, z)] FRP (x, z) = max
(ζ,β,γ,ψ,η,θ,ξ,λ,φ)∈L(x,z)

∑
(j,i)∈Ak

|C(j,i)(x,z)|∑
r=1

φjir

−
∑
k∈K

∑
(i,j)∈Ak

(M1x
k
ij) · ηk

ij

3.6 Additional Accelerating Strategies 113

+
∑
k∈K

∑
(i,j)∈Ak

|C(i,j)(x,z)|∑
r=1

[M1(zk
ijr − 1)] · (θk

ijr + ξk
ijr)

+
∑
k∈K

ek · (γk − λk
ok) +

∑
k∈K

lk · (λk
dk − ψk) (3.88)

Therefore, for the subproblem of the C&CG method, to compute the worst-case

second-stage cost FRP (x, z), we only need to solve model SRP1(x, z), in which the

consolidation index r of each arc (i, j) ∈ A is bounded by |C(i,j)(x, z)| instead of |K|.

For the EC&CG method, to break the symmetric structure of each master problem

RMP(Π,Λ), we can impose a constraint similar to (3.87) with |K| replaced by Πij.

For any first-stage solution (x,y, z) with such a constraint satisfied, we can follow an

argument similar to the above for the C&CG method to show that for the subproblem

of the EC&CG method, to compute the optimal objective value FRP (x, z,Π), we also

only need to solve model SRP1(x, z).

With the size of the subproblem reduced, the worst-case scenario τ̃ ∈ U(Γ) for each

first-stage solution (x,y, z) can be identified according to (3.89) below, so that the

convergences of the C&CG and EC&CG methods are still guaranteed.

τ̃ijr =

∑

ℓ∈{−1,0,1}
τ̃ijr,ℓζijr,ℓ, if r ∈ {1, ..., |C(i,j)(x, z)|},

τ ijr, otherwise,
∀ (i, j) ∈ A, r ∈ {1, ..., |K|}.

(3.89)

3.6.2 Bundle of Worst-Case Scenarios

For both the C&CG and EC&CG methods, we can further accelerate them by applying

a bundle strategy to update the scenario set and the corresponding cuts, which is similar

to the strategy used by Remli et al. [87] to update cuts for the Benders decomposition

method.

In each iteration of the C&CG and EC&CG methods, we solve the master problem

to obtain its optimal first-stage solution and another pool of other feasible first-stage

solutions, which can be achieved by common optimization solvers, such as CPLEX

114 Robust Continuous-Time Service Network Design with Uncertain Travel Times

and Gurobi. These first-stage solutions are sorted in an non-decreasing order of their

objective values.

For each first-stage solution obtained (including the optimal one) by the master

problem, we then solve the corresponding subproblem to identify its worst-case scenario.

Hence, in each iteration, there are multiple worst-case scenarios that can be identified,

and whose corresponding new variables and constraints are available to be added to

the master problem of the next iteration.

By adding the new variables and constraints obtained above, one can reduce the

number of iterations required the convergence to the optimal solution, but may also

increase the running time required to solve the master problem in each iteration. Thus,

as a trade-off, we add only a bundle of at most two worst-case scenarios to the master

problem in each iteration. One of such worst-case scenarios to add is that of the

optimal first-stage solution. To identify another worst-case scenario to add, we evaluate

the total first-stage and second-stage costs for all the first-stage solutions in the pool

to update the value of UB, and choose to add the worst-case scenario of the first-stage

solution in the pool that leads to an update of UB with the least total cost. (If no

first-stage solution in the pool leads to an update of UB, only the worst-case scenario

of the optimal first-stage solution is added.)

Moreover, when identifying the second worst-case scenario to add, we apply a

bounding strategy similar to that in Lee et al. [77], so as to accelerate the evaluation

of the worst-case total cost of each first-state solution in the pool. For this, consider

each first-stage solution (x,y, z) in the pool, with its first-stage cost denoted by f1.

Accordingly, to evaluate the worst-case total cost of (x,y, z), we need to solve model

SRP1(x, z) to compute the worst-case second-stage cost of (x,y, z). According to our

bundle strategy described above, the worst-case scenario of (x,y, z) can be added

only if the worst-case total cost of (x,y, z) is less than UB. Thus, when using an

optimization solver to solve model SRP1(x, z), we can enforce it to terminate earlier

when it finds a lower bound on the second-stage cost of (x,y, z) greater than (UB−f1).

3.7 Computational Experiments 115

3.7 Computational Experiments

In this section, we present our computational experiments. We first evaluate the

performance of the newly proposed C&CG and EC&CG methods in dealing with travel

time uncertainty for instances of different scales. We then analyze the robustness and

the price of the robustness of the newly proposed two-stage robust optimization model.

Both the C&CG and EC&CG methods were implemented in Java, with their

corresponding master problems and subproblems solved by the solver of Gorubi (v.9.1.2).

All experiments were conducted on a PC equipped with an Intel(R) Core(TM) i7-8700

CPU clocked at 3.20 GHz and 64 GB RAM, running on a 64-bit Windows 10 operating

system.

3.7.1 Instances and Parameter Settings

We generated the instances for our computational experiments based on the 12 problem

classes, R4-R15, of the fixed-charge capacitated multi-commodity network design

problem in the literature [56]. These instances have been used to derive benchmark

instances to evaluate the performance of the algorithms for the stochastic capacitated

fixed charge network design problem under certain uncertainty [35, 91, 92]. The

attributes of each class are given in Table 3.1, including the size of node set |N |, the

size of arc set |A|, and the size of commodity set |K|. Each class contains five networks

indexed by 1, 3, 5, 7 and 9, indicating the corresponding “cost ratio” (the ratio of

fixed cost to the variable cost) and “capacity ratio”(the ratio of total demand to total

capacity of the network). These instances are referred to as “untimed” instances, since

they do not have any temporal attributes, such as travel times of arcs, or earliest

available and delivery due times of commodities.

We added time attributes to these instances by using a scheme similar to that

in Boland et al. [20] to get the “timed” instances. First, for each arc (i, j) ∈ A, we

set τ ij, the nominal value of travel time (in minutes), to be proportional to its fixed

cost. According to Boland et al. [20], we set τ ij = 0.55 × fij where fij represents

116 Robust Continuous-Time Service Network Design with Uncertain Travel Times

Table 3.1 Characteristics of “untimed” R instances

Class |N | |A| |K| Class |N | |A| |K|

R04 10 60 10 R10 20 120 40
R05 10 60 25 R11 20 120 100
R06 10 60 50 R12 20 120 200
R07 10 82 10 R13 20 220 40
R08 10 83 25 R14 20 220 100
R09 10 83 50 R15 20 220 200

Table 3.2 Details of the normal distributions used for generating “timed” instances

Normal Distribution Mean(µ) Standard Deviation(σ)

For generating ek L 1
6µ

For generating Fk

L
1
6µ

1
2L
1
4L

the transportation cost for a carrier that spends 0.55 cents per mile and their trucks

travel at 60 miles per hour. For each commodity k ∈ K, we followed a normal

distribution to generate the available time ek randomly. Let Lk denote the length of

the shortest-time path from origin ok to destination dk for commodity k in the flat

network under the nominal travel times τ . We set the due time of each commodity

k ∈ K by lk = ek + Lk + Fk, where Fk ≥ 0 represents the corresponding time

flexibility, which we set randomly also by a normal distribution. Here, we used the

same normal distribution to generate the available times ek for all instances, but used

three different normal distributions to generate Fk for instances of high, medium and

low time flexibility, respectively. As such, we had three combinations of the normal

distributions to generate available times and commodity time flexibility. The details of

these normal distributions are shown in Table 3.2, where L represents the average of

Lk over all k ∈ K.

For each “timed” instances, we then generated the in-storage holding costs and

the late arrival penalty costs. To generate the in-storage holding costs, we applied the

3.7 Computational Experiments 117

similar method to the one used in Section 2.4.1. For each k ∈ K, we set the per-unit-of-

demand-and-time cost hk
i equal to 0.3 ϵi for i ∈ N with ϵi = 1/|Ai|

∑
a∈Ai

(ca+fa/ua)/τa,

and set hk
dk = 0. Inspired by Lanza et al. [76], we set the penalty cost gk per unit

of time for the delay of each commodity k ∈ K to be proportional to the most

expensive transportation cost per-unit-of-time for it passing through a service, i.e.,

gk = µk
1 ×maxa∈A{(ca ∗ qk + fa⌈qk/ua⌉)/τa}, where parameter µk

1 = 2.

To define the uncertainty set of travel time, we needed to generate the deviation of

the travel time and the budgeted of uncertainty. For each arc (i, j) ∈ A, the deviation

of the travel time τ̂ij was set to be τ̂ij = µ̂ijτ ij , where τ ij is the nominal value of travel

time generated, and µ̂ij is a coefficient randomly picked from 0.1 to 0.5. The budgeted

of uncertainty Γ was set to be ⌊µ2 · |K|⌋ with µ2 = 0.1.

Accordingly, for each network in each problem class, we randomly generated 3

instances for each combination of distributions for available times and time flexibility.

Thus, we obtained 5× 3× 3 = 45 instances for each problem class and 12× 45 = 540

instances in total. These instances were grouped by the scale of the problem class, i.e.,

the scale of the physical network and the commodity set, resulting in three groups of

instances, namely small-sized instances (i.e., those generated based on networks in R4,

R5, R7, R8), medium-sized instances (i.e., those generated based on networks in R6,

R9, R10, R13) and large-sized instances (i.e., those generated based on networks in

R11, R12, R14, R15).

3.7.2 Computational Performance

Computational Results

To evaluate the effectiveness and efficiency of the EC&CG and C&CG methods for the

robust CTSNDP-HC, we applied the two solution methods on the newly generated

instances, with the threshold for the optimality gap set to be 0.01% and the time

limit set to be 4 hours. This time limit was imposed over all the iterations, and at

each iteration the time limit imposed on for solving the master problem was 2 hours.

118 Robust Continuous-Time Service Network Design with Uncertain Travel Times

Table 3.3 Computational results on small-sized instances

Class
EC&CG C&CG

Opt Iter Time Opt Iter Time
R4 100% 3.2 0.3 100% 3.3 0.5
R5 100% 8.4 217.4 100% 8.4 728.1
R7 100% 4.3 0.7 100% 4.4 1.0
R8 100% 8.8 115.2 100% 8.9 413.7

When the time limit of 4 hours was reached, the algorithm stopped solving the master

problem immediately, but it still evaluated the worst-case second-stage cost values

for all the first-stage feasible solutions obtained in the final iteration, before its final

termination. With imposing such a time limit, in each iteration of the algorithm, the

lower bound value LB was updated according to the best known lower bound on the

optimal objective of the master problem, which was given by the Gurobi solver at

termination. For both EC&CG and C&CG methods, we used (x(0), z(0)) obtained by

the procedure in Section 3.5.4 as the initial first-stage solution.

The computational results of the EC&CG and C&CG methods on small-sized

instances are shown in Table 3.3. The percentage of instances solved to within an

optimality gap of 0.01% for each group is shown in the columns “Opt” and the average

number of the iterations for each solution method is displayed in columns “Iter”. Table

3.3 indicates that all small-sized instances can be solved to optimality by both EC&CG

and C&CG methods with almost same number of iterations. Thus, we only compare

the running time over the small-sized instances, which are shown in columns “Time”

in CPU seconds, for each solution method. The results in Table 3.3 show that both

the EC&CG and C&CG methods are very efficient in solving the small-sized instances,

but the EC&CG method is more efficient as it can solve the small-sized instances with

significant less computational time.

The computational results on medium-sized instances are shown in Table 3.4.

Similarly, in Table 3.4, columns “Opt” and “Iter” present the percentage of instances

solved to within an optimality gap of 0.01% and the average number of the iterations

3.7 Computational Experiments 119

Table 3.4 Computational results on medium-sized instances

Class
EC&CG C&CG UB Improvement

Opt Iter Gap AVG Time Opt Iter Gap AVG Time AVG MAX
R6 11% 14.2 5.49% 1262.7 11% 8.5 6.48% 3434.3 1.24% 7.00%
R9 36% 15.3 3.41% 685.4 24% 10.2 4.53% 2792.2 1.57% 10.67%
R10 44% 18.0 2.18% 337.3 36% 14.2 2.47% 649.7 0.46% 3.49%
R13 36% 15.8 3.21% 1040.2 31% 12.3 3.53% 3216.4 0.50% 3.28%

for each instance group, respectively. The average gaps between the lower bound

LBCCG obtained by the C&CG method and the upper bound (UB) obtained by each

solution method are shown by the columns “Gap”. Here, we used LBCCG to compute

the gaps for both the EC&CG and C&CG methods, since the LB obtained when

the EC&CG method stops may not always be a valid lower bound for the original

robust optimization problem. Moreover, columns “AVG Time” show the average

computational time in CPU seconds over the instances solved to optimality by the

C&CG method (note that all these instances were also solved to optimality by the

EC&CG method). Column “UB Improvement” indicates the difference of the upper

bound values obtained by these two solution methods over the instances which were

not solved to optimality by the C&CG method, where “AVG” and “MAX” indicate the

group average and maximum values of this difference, respectively. More specifically,

for each instance, this difference was calculated by UBCCG−UBECCG

UBCCG
where UBECCG

and UBCCG represent the upper bound values obtained by the EC&CG and C&CG

methods, respectively.

The results in Table 3.4 show that, for the medium-sized instances, the EC&CG

and C&CG methods are still efficient in producing solutions of good qualities with an

average optimality gap varying from 2.18% to 5.49% and 2.47% to 6.48%, respectively.

However, the EC&CG method is more efficient. It can solve more instances to optimality

in shorter computational time, and can provide better upper bound solutions for those

hard instances with the maximum improvement up to 10.67%.

For large-sized instances, although both the EC&CG and C&CG methods cannot

solve any instances to optimality, the comparison between the upper bound solutions

120 Robust Continuous-Time Service Network Design with Uncertain Travel Times

Table 3.5 Computational results on large-sized instances

Class
EC&CG C&CG UB Improvement

Iter Failure Iter Failure AVG MAX
R11 3.1 0% 2.4 0% 5.63% 22.48%
R12 2.2 0% 1.6 22% 5.61% 14.18%
R14 5.2 0% 3.2 0% 6.05% 17.37%
R15 2.6 0% 1.4 33% 7.86% 20.66%

provided by the two solution methods can still show the effectiveness and efficiency of

our proposed solution methods. Table 3.5 displays the comparison results on large-

sized instances using the same notations introduced in Table 3.4. In addition, columns

“Failure” report the percentage of the instances for which the Gorubi solver could not

solve the root linear programming relaxation problem of the master problem in the

first iteration within the time limit of 4 hours. For these failure cases, the algorithm

returned the initial solution (x(0), z(0)) obtained by the procedure proposed in Section

3.5.4. From Table 3.5, we can see that the C&CG method fails to provide any new

feasible solution other than the initial solution for 22% of R12 instances and 33% of R15

instances, while the EC&CG method is able to provide solutions better than the given

initial solution for all the considered instances. The average improvements in the upper

bound archived by the EC&CG method relative to that obtained by the C&CG method

vary from 5.61% to 7.86% for the four instance sets, with a maximum improvement up

to 22.48%. These analyses show that the EC&CG method significantly outperforms

the C&CG method, in terms of producing solutions of much better qualities for all

considered large-sized instances within the time limit.

Moreover, Table 3.6 shows the computational time for solving the master problems

and the subproblems SRP1(x, z), in terms of the percentages over the total computa-

tional time, which are presented in columns “MP Time” and “RP Time”, respectively.

Table 3.6 indicates that for both solution methods, most of the computing time is

taken up by solving the master problems. The small and stable proportion of the

3.7 Computational Experiments 121

Table 3.6 Time of solving the master problems and the subproblems

Class
EC&CG C&CG

MP Time RP Time MP Time RP Time
R6 98.57% 1.39% 99.38% 0.59%
R9 96.90% 2.94% 99.03% 0.77%
R10 86.00% 13.45% 90.94% 8.39%
R11 95.36% 3.86% 98.43% 0.73%
R12 91.83% 6.82% 97.91% 0.47%
R13 94.42% 5.32% 97.94% 1.91%
R14 97.96% 2.01% 99.56% 0.36%
R15 93.94% 5.44% 98.82% 0.26%

computational time consumed for solving the subproblems implies the effectiveness of

the size reduction strategy proposed in Section 3.6.1.

Overall, the results of our computational experiments demonstrate the effectiveness

and efficiency of the EC&CG and C&CG methods. In comparison of both computational

time and solution quality, the EC&CG method outperforms the standard C&CG

method. As shown in columns “Iter”, this outstanding performance of the EC&CG

method comes from that the EC&CG method can execute more iterations within the

time limit, thus is more likely to find better upper bound solutions.

Performance of Dynamic Parameter Adjustment

The EC&CG method enhances the C&CG method by introducing the parameter Π,

named as consolidation frequency bound. The enhanced effectiveness and efficiency of

the EC&CG method are due to both the upper bound derived for Π and the dynamic

parameter adjustment process developed for Π. The upper bound Π∗ derived for

Π can directly reduce the solution space and hence accelerate the algorithm. To

examine the impact of the dynamic parameter adjustment process, we next compare

the performance of the EC&CG method (with the dynamic parameter adjustment

process) with that of the EC&CG method without dynamic parameter adjustment

process, which we denote as EC&CG_BOUND.

122 Robust Continuous-Time Service Network Design with Uncertain Travel Times

0

500

1000

1500

2000

2500

3000

R4 R5 R6 R7 R8 R9 R10 R13

TI
M
E

ECCG CCG_BOUND

(a) AVG Time

0%

2%

4%

6%

8%

10%

12%

R6 R9 R10 R11 R12 R13 R14 R15

U
B

 IM
P

R
O

V
EM

EN
T

AVG MAX

(b) UB Improvement

Figure 3.2 Performance comparisons of EC&CG to EC&CG_BOUND

Figure 3.2(a) and (b) demonstrate the corresponding improvements in computational

time and solution quality due to applying the dynamic parameter adjustment process.

Figure 3.2(a) indicates the average computational time in CPU seconds over the

instances solved to optimality by the EC&CG_BOUND method. All these considered

instances were also solved to optimality by the EC&CG method. For R4 and R7

instances, both solution methods solved all the instances with an average computational

time of less than 1 second, thus the corresponding bar charts for R4 and R7 instances

are not apparent. Figure 3.2(b) indicates the improvement in the upper bound achieved

by the EC&CG method over the instances which were not solved to optimality by

the EC&CG_BOUND method, where “AVG” and “MAX” present the group average

and maximum value of this improvement, respectively, for the corresponding instance

set. While Figure 3.2(a) demonstrates a significant saving in computational time,

Figure 3.2(b) shows a significant improvement in upper bound for the considered

instances with a maximum improvement up to 12.28%. Therefore, Figure 3.2 reveals

the significant impact of the dynamic parameter adjustment process in accelerating

the solution methods and in producing better upper bound solutions.

Furthermore, Figure 3.3 illustrates how the dynamic parameter adjustment affects

the convergence behavior of the solution method, by comparing the EC&CG_BOUND

method (without dynamic parameter adjustment) and the EC&CG method (with

dynamic parameter adjustment). It plots LB and UB curves for each of the two solution

3.7 Computational Experiments 123

268000

278000

288000

298000

308000

318000

328000

338000

0 5 10 15 20 25 30 35

C
O

ST
 V

A
LU

E

TIME

ECCG UB ECCG LB

268000

278000

288000

298000

308000

318000

328000

338000

0 5 10 15 20 25 30 35

C
O

ST
 V

A
LU

E

TIME

ECCG_BOUND UB ECCG_BOUND LB

(a) Convergence curves of EC&CG_BOUND

268000

278000

288000

298000

308000

318000

328000

338000

0 5 10 15 20 25 30 35

C
O

ST
 V

A
LU

E

TIME

ECCG UB ECCG LB

268000

278000

288000

298000

308000

318000

328000

338000

0 5 10 15 20 25 30 35

C
O

ST
 V

A
LU

E

TIME

ECCG_BOUND UB ECCG_BOUND LB

(b) Convergence curves of EC&CG

Figure 3.3 Convergence curves over time

124 Robust Continuous-Time Service Network Design with Uncertain Travel Times

methods based on the computational results over a selected problem instance. In both

Figures 3.3(a) and 3.3(a), each data point on the curves indicates a pair of a value (LB

or UB) obtained in an iteration and the time that the iteration completes. The dotted

curves of the EC&CG method in Figure 3.3(b) correspond to the period that processes

the dynamic adjustment of the parameter Π, whereas the solid curves there correspond

to the period when parameter Π has been adjusted to the maximum consolidation

frequency Π∗, so that the algorithm follows the standard C&CG method.

From Figure 3.3, we have the following observations, showing the impact of the

dynamic parameter adjustment process:

1. By comparing the average time spent on each iteration of the two methods, we

can see that the dynamic parameter adjustment process shortens the time spent

by the EC&CG method in each iteration. This is because the master problems

solved in the EC&CG method have fewer variables and constraints than those in

the EC&CG_BOUND method.

2. As shown the dotted curves in Figure 3.3(b), during the process of the parameter

adjustment, the lower bound obtained by the EC&CG method may be larger

than the optimal objective value of the original robust optimization problem,

which is due to the restriction of the solution space. However, the lower bound

value is later corrected after the parameter Π is adjusted to be the maximum

consolidation frequency Π∗, and the dynamic parameter adjustment process

shortens the total running time of the EC&CG method significantly.

3. We know that the EC&CG method searches the feasible solutions within a smaller

solution space in each iteration but postpones verification of the optimality of

the solution obtained. Due to this, one may expect that the EC&CG method

requires more iterations than the EC&CG_BOUND method to obtain the optimal

solution and prove its optimality. However, the example shown in Figure 3.3

indicates that, for some problem instances, the EC& CG method can obtain

optimal solution with even fewer iterations than the EC&CG_BOUND method.

3.7 Computational Experiments 125

This reveals that, in some situations, the dynamic adjustment process of the

parameter Π can help the algorithm to find effective worst-case scenarios as well

and cutting planes earlier, thereby speeding up the convergence of the algorithm.

3.7.3 The Price of Robustness

The goal of the robust optimization for the CTSNDP-HC under travel time uncertainty

is to optimize the solution performance under the worst-case scenario, which may

sometimes be too conservative and at a price of poor performance under scenarios

other than the worst-case one. Following Bertsimas and Sim [16] and Atamtürk and

Zhang [5], in this section, we evaluate the performance of the first-stage robust solution

obtained by our proposed model RO under different scenarios to assess the advantage

and the price of its robustness.

Performance on Nominal Scenario

We first compare the performance of the robust solution obtained by model RO with

that of the solution obtained by the deterministic model DO under both the worst-case

scenario and the nominal scenario. We define two performance indicators, UBD and

ND, as follows:

UBD = FZ(x̂, ẑ)− FZ(x, z)
Z(x, z) , and

ND = Z(x̂, ẑ)−Z(x, z)
Z(x, z)

where (x, z) is the optimal solution obtained by model DO with a total cost of Z(x, z)

under the nominal scenario, (x̂, ẑ) is the solution obtained by the EC&CG method

with a total cost of Z(x̂, ẑ) under the nominal scenario, and FZ(x, z) and FZ(x̂, ẑ)

are the total costs under the worst-case scenario in the budgeted uncertainty set for

the corresponding solutions. It can be seen that the value of UBD indicates the cost

saving achieved by the optimal robust solution under the worst-case scenario, and that

126 Robust Continuous-Time Service Network Design with Uncertain Travel Times

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

R4 R5 R7 R8

ND UBD

Figure 3.4 Performance of the robust solution under the worst-case scenario and nominal
scenario

the value of ND indicates the price of its robustness under the nominal scenario, in

comparison against the optimal nominal solution.

Figure 3.4 plots the average values of UBD and ND in percentage over the four

classes of the small-sized instances. The values of UBD in Figure 3.4 indicate that the

solution provided by model RO can help the decision-maker achieve a considerable

amount of total cost reduction in the worst-case scenario. This shows the benefits for

incorporating travel time uncertainty in solving the CTSNDP-HC, and demonstrates

the robustness of the solution provided by model RO against travel time uncertainty.

The values of ND in Figure 3.4 reveal that the robustness of the solution provided

by model RO, i.e., its significant amount of cost saving in the worst-case scenario, is

at the expense of certain cost increase in the nominal scenario. However, such cost

increase in the nominal scenario is significantly less than the cost saving achieved by

model RO in the worst-case scenario.

Performance on Random Scenarios

To evaluate the performance of the robust solution under random scenarios, we compare

the solutions obtained from our proposed model RO and the solutions obtained

3.7 Computational Experiments 127

from a stochastic programming model (which minimizes the expected cost over a

set of scenarios). Let Ω̃ indicate a scenario set consisting of all possible travel time

realizations. Let Prob(τ̃) denote the probability of each possible realization τ̃ ∈ Ω̃.

The stochastic programming model for the CTSNDP-HC under travel time uncertainty

can be formulated as below:

[SP]

min
∑
τ̃∈Ω̃

Prob(τ̃)
(∑

k∈K

∑
(i,j)∈A

(ck
ijq

k)xk
ij +

∑
(i,j)∈A

|K|∑
r=1

fijyijr +
∑
k∈K

∑
i∈N

(hk
i q

k)wk(τ̃)
i +

∑
k∈K

gksk(τ̃)
)

s.t. (v(τ̃), b(τ̃),w(τ̃), s(τ̃)) ∈ Q(τ̃), ∀ τ̃ ∈ Ω̃,

(x,y, z,v, b) ∈ X .

Our evaluation is based on instances in R4, which were all solved to optimality for

both model RO and model SP. For each considered instances, we randomly generated

200 scenarios, referred to as the SP scenarios. For each scenario τ̃ , each travel time

τ̃ijr, ∀(i, j) ∈ A and r ∈ {1, 2, ..., |K|}, was drawn uniformly from [τ ij − τ̂ij, τ ij + τ̂ij].

We set Prob(τ̃) = 1
200 , so that every scenario was with equal probability. By the same

approach, we also randomly generated 1000 testing scenarios.

We used the Gurobi solver to solve model SP over the 200 SP scenarios, and applied

our EC&CG method to solve model RO for each uncertainty budget Γ ∈ {1, 2, ..., 10}.

We compare the solutions obtained by the two models in threefold: (1) the average

performance over the all the testing scenarios; (2) the worst performance over all

the testing scenarios; (3) the performance under the worst-case scenario in the given

budgeted uncertainty set. For every solution (x,y, z) obtained from model RO or model

SP, we computed its cost value under each testing scenario by solving the deterministic

model, DO, with (x,y, z) fixed as the given solution, with the travel times equal to

the realized travel times in the corresponding scenario, and with the variables and

constraints related to the delay penalty incorporated. We also computed the worst-case

second-stage cost of the given solution (x,y, z) by solving model SRP1(x, z), which

128 Robust Continuous-Time Service Network Design with Uncertain Travel Times

65000

67500

70000

72500

75000

77500

80000

82500

85000

87500

90000

1 2 3 4 5 6 7 8 9 10

C
o

st
 V

al
u

e

maximum cost of solution from SP maximum cost of solution from RO

expected cost of solution from SP expected cost of solution from RO

budgeted worst-case cost of solution from SP budgeted worst-case cost of solution from RO

𝚪

Figure 3.5 Comparison of robust solutions and stochastic solutions

was then used to compute the total cost of (x,y, z) under the worst-case scenario in

the given budgeted uncertainty set.

Figure 3.5 plots the expected total cost and the maximum total cost over the 1000

testing scenarios, as well as the total cost under the worst-case scenario in the given

budgeted uncertainty set U(Γ), for the solutions obtained from model RO and model

SP, with values averaged over all instances in group R4. Not surprisingly, compared

with the solutions obtained from model RO, the solutions obtained from model SP have

poorer worst-case performance over the given budgeted uncertainty set U(Γ). This

further verifies the robustness of the solution provided by model RO over the budgeted

uncertainty set U(Γ). For the random testing scenarios, the expected objective values

of the robust solutions obtained from model RO under Γ ∈ {1, 2, ..., 10} are larger but

very close to that of the solutions obtained from model SP. Thus, we can conclude that

the cost saving achieved by the robust optimization for the worst-case scenario is only

at the expense of a slightly worse expected performance over such a random scenario

3.8 Summary 129

set. Moreover, the solutions obtained from model SP also have a larger worst-case total

cost over the random scenario set. The robust average performance of the solution

obtained from model SP is thus associated with a significant risk of a poor worst-case

performance over a given scenario set or budgeted uncertainty set. Compared with

the solution obtained from model SP, the robust solution obtained from model RO

achieves a better trade-off between robustness and the price of robustness.

Moreover, we observe that, with a small value of Γ, i.e., Γ = 1 or 2, the total cost

of the solution provided by either of the two models under the worst-case scenario in

the given budgeted uncertainty set U(Γ) is lower than the maximum (or worst-case)

total cost among the testing scenarios, while the opposite occurs for a larger value

of Γ, i.e., Γ ≥ 5. This implies that when Γ is too small, the uncertainty set U(Γ)

cannot cover sufficient scenarios to achieve robustness, and that when Γ is too large,

the corresponding robust optimization models becomes too conservative, leading to

solutions with over-conservatism. Thus, the decision-maker have to choose Γ properly

to incorporate uncertainty sufficiently as well as to avoid having a robust optimization

model that is too conservative. However, the optimal value of Γ currently can only

be determined by numerical experiments. Finally, it is worth noting that the solution

quality of model SP relies heavily on the accuracy of the probability distribution and

the completeness of the considered scenario set. From this perspective, model RO also

has an advantage, as it requires much less information on distribution and is easier to

be solved for much larger-sized instances.

3.8 Summary

This chapter studied on how to handle travel time uncertainty for the continuous-time

service network design problem with holding costs incorporated (CTSNDP-HC). In real-

life applications, uncertain factors, such as weather and traffic conditions, often result

in fluctuated travel times and thus cause delays of transportation services. Handling

travel time uncertainty is an important but challenging task in the design of robust

130 Robust Continuous-Time Service Network Design with Uncertain Travel Times

and cost-effective service network. Despite its importance, the robust CTSNDP-HC

under travel time uncertainty has not been studied in the literature. This may be

due to its modeling complexity as well as to the ineffectiveness of the time-expanded

network in handling travel time uncertainty.

To tackle this challenge, instead of using the TI formulation based on the time-

expanded network, we newly proposed a consolidation-index formulation for the deter-

ministic CTSNDP-HC in this study. The new formulation is based on the flat network,

and it models the temporal component of the problem by a set of consolidation-index

variables and constraints. Based on this new deterministic formulation, we derived

a two-stage MINLP formulation for robust CTSNDP-HC with all the possible travel

time realizations described by a probability-free budgeted uncertainty set. The first

stage of this robust optimization model optimizes the selection of services, as well

as the routing and consolidation plans of commodities. The second stage determines

the departure schedule after the actual values of the travel times are realized. This

two-stage MINLP formulation for the robust CTSNDP-HC was further linearized and

solved by a standard column-and-constraint generation method. We then introduced

a parameter Π, referred to as the consolidation frequency bound, into the two-stage

robust optimization model. With this parameter, we enhanced the C&CG method

by dynamically adjusting Π. An extensive computation study was conducted to

evaluate the performance of the newly proposed two-stage robust optimization model

and solution methods. The experimental results showed that the enhanced C&CG

method outperforms the standard C&CG method significantly in terms of shorter

computational time and better solution quality. Moreover, the performance of the

robust solution under different scenarios demonstrated that the value for considering

travel time uncertainty for the CTSNDP-HC is more significant than the price of the

robustness against travel time uncertainty.

Chapter 4

Conclusions and Future Works

In this chapter, we summarize the major results and findings of this dissertation and

discuss some future research directions.

4.1 Major Results and Findings

In this dissertation, we conducted two studies to develop exact solution methods

for the deterministic CTSNDP with holding costs incorporated, and for the robust

CTSNDP-HC under travel time uncertainty, respectively.

The deterministic CTSNDP aims to optimize the establishment of transportation

services as well as the distribution and consolidation of commodity flows for a carrier,

so that the total operational cost over a continuous-time planning horizon is minimized.

Such a carrier often relies on shipment consolidation to maintain its profitability.

This leads to the waiting around of shipments, which incurs holding costs. For many

practical applications of the CTSNDP, holding costs are a vital part of the total cost and

significantly affect the decisions on opening services, as well as on the transportation

and consolidation of shipments. Despite their importance, holding costs has not been

taken into account in existing studies on the CTNSDP, as introducing the holding

costs significantly complicates the problem and makes it very challenging to solve. In

132 Conclusions and Future Works

the first study of this dissertation, we tackled the challenge of investigating how to

develop an efficient exact algorithm for the CTSNDP with holding costs incorporated.

Unlike the classic SNDP, which is often defined on a planning horizon that is

discretized into a finite number of equal-length time intervals, the CTSNDP is defined

on a continuous-time planning horizon so as to eliminate approximation errors caused

by the discretization. Existing algorithms developed for the CTSNDP and its variants

mainly follow a dynamic discretization discovery (DDD) solution framework. This

DDD framework iteratively refines a finite set of integral time units for discretization,

constructs a partially time-expanded network based on the discretization, and uses

the network to derive relaxations and feasible solutions to the problem. Such DDD

algorithms are known to be valid only under the assumption that holding costs are

zero, which significantly restricts the applications of these algorithms in practice. We

have shown that, with the holding costs ignored, there can be a significant loss as a

result of the total cost of actual operation of the service network design. However,

incorporating freight holding costs in solving the CTSNDP is challenging. With freight

holding costs incorporated, the existence of the finite complete time-index model for

the problem is not clear to see, and the relaxation and refinement methods in the DDD

algorithms for the CTSNDP also become invalid.

To tackle this challenge, in the first study of this dissertation, we first modeled

the CTSNDP-HC by a time-index formulation based on a discretized time-expanded

network. By utilizing the total unimodularity of a linear programming model, we

proved that to obtain an exact optimal solution to the CTSNDP-HC, it is sufficient to

include only integral time units in the time-index formulation, which is referred to as the

fully discretized time-expanded network. Based on a partially time-expanded network

consisting of only a subset of time points of the fully discretized time-expanded network,

we then derived a relaxation of the CTSNDP-HC, which provides a lower bound on

the total cost of the optimal solution to the CTSNPD-HC. With these, together with

a new upper bound heuristic and a new discretization refinement procedure that take

the holding costs into account, we developed a new DDD algorithm that can solve the

4.1 Major Results and Findings 133

CTSNDP-HC to optimality. The effectiveness and efficiency of the proposed DDD

algorithm in both finding optimal solutions to the CTSNDP-HC and producing tight

lower and upper bounds were validated through extensive computational experiments.

These computational results also showed the significant impact of holding costs on the

decisions of routing and consolidation. The results also indicated that ignoring the

holding costs in the CTSNDP will lead to poor quality solutions, especially for those

instances with a concentrated transit network and a long delivery due time. This work

not only enriches the optimization techniques for the deterministic CTSNDP-HC, but

also enhances the DDD algorithm and extends its practical applications.

While the first study of this dissertation explored the CTSNDP-HC with determin-

istic parameters, the second study of this dissertation investigated the robust solution

for the CTSNDP-HC under travel time uncertainty. Due to various uncertain factors,

such as weather and traffic conditions, travel time varies considerably, and is one of the

prime sources of uncertainty in service network design. These uncertain travel times

often cause delays to transportation services in actual operation, so that commodities

may not be delivered on time. Such disruptive impacts can result in order cancellations

or outsourcing, which are both very costly. Despite its importance and its disruptive

impact, due to its complexity, travel time uncertainty has seldom been taken into

account in the literature on SNDP. There is no existing robust optimization method for

the continuous-time SNDP under travel time uncertainty. To complete this research

gap, in the second study of this dissertation, we developed a robust optimization model

and its solution algorithms for the CTSNDP-HC with uncertain travel times.

The time-index formulations of the CTSNDP-HC, including those known in the

existing literature and the one proposed in the first study of this dissertation, cannot

be directly utilized to develop robust optimization models and their solution methods

for the same problem under travel time uncertainty. To tackle this challenge, in

the second study of this dissertation we first introduced a new MILP model for the

deterministic CTSNDP-HC, based on the consolidation index in the flat network

rather than the time index. From this new deterministic formulation, we were able

134 Conclusions and Future Works

to develop a two-stage robust optimization model for the robust CTSNDP-HC, with

uncertain travel times incorporated in a budgeted uncertainty set. The first stage of

the model determines the selection of services as well as the routing and consolidation

plans for commodities. The second stage of the model determines the departure

schedule of each selected service after the actual travel times are realized. To solve

this two-stage robust optimization model efficiently, we first developed a column-and-

constraint generation method (C&CG), from which we then proposed an enhanced

C&CG method by parameterizing the robust optimization model and utilizing some

novel optimization techniques for dynamic parameter adjustment. Results from the

computational study demonstrated the robustness of the solutions obtained from the

proposed two-stage robust optimization model against travel time uncertainty, and

exhibited the efficiency and effectiveness of the two proposed solution methods. The

computational results showed that the performance of the enhanced C&CG method

dominates that of the C&CG method in terms of shorter computational time and better

solution quality. Further analysis of the results revealed that by applying the dynamic

parameter adjustment process, the performance of the enhanced C&CG method can

be significantly improved, and that the price of such robustness against travel time

uncertainty is significantly less than its benefits.

The second study of this dissertation presents the first adaptive robust optimization

method for the SNDP with uncertain travel times and non-zero holding costs over

a continuous-time planning horizon. The consolidation-index formulation as well as

the dynamic parameter adjustment scheme introduced in this work are new to the

literature, providing a solid foundation for applying robust optimization techniques to

solving various transportation network design problems under travel time uncertainty.

4.2 Future Research Directions

The works presented in this dissertation have opened up three main directions for

further research, as explained below.

4.2 Future Research Directions 135

To Improve the Performance of the Proposed Solution Methods

First, in future research we could focus on improving the performance of the proposed

solution methods. For the deterministic CTSNDP-HC, our computational study has

demonstrated that the current implementation of the DDD algorithm for the CTSNDP-

HC is quite effective. However, some enhancements could be conducted to further

improve its efficiency, such as: 1) We could consider implementing a two-stage DDD

algorithm. The first stage would utilize the DDD algorithm proposed by Boland et al.

[20] to solve the CTSNDP with the holding costs set to be zero. Then the second

stage would apply our proposed DDD algorithm in solving the CTSNDP-HC by taking

the solution and final network of the first stage as the initial setting. The size of the

final MIP might be significantly reduced by this two-stage scheme, thereby improving

the performance of the algorithm; 2) We proposed only a default refinement strategy

in the first study of this dissertation. The algorithm can be further accelerated by

utilizing a more careful and clever refinement strategy which can obtain the optimal

solution by adding fewer time points or conducting fewer iterations; 3) The proposed

DDD algorithm never removes time points from the partially time-expanded network

after they have been added. The size of the partially time-expanded network in each

iteration will affect the size of the resulting MIP model and thus the computational

efficiency of the algorithm. This implies that the algorithm framework can be further

enhanced in the future so that some superfluous time points in the current partially

time-expanded network can be removed in the next iteration to reduce the sizes of the

MIPs.

Likewise, for the robust CTSNDP-HC, it would be of interest to further improve

the performance of the proposed EC&CG method, for which several recommended

directions are mentioned here: As shown in Section 3.7.2 of the second study of this

dissertation, the EC&CG method’s bottleneck lies in solving the master problem,

because the big-M are used in some of its constraints, and the number of variables

and constraints increases quickly over iterations. To tackle this, one possible approach

would be to design more efficient methods, such as branch-and-price algorithms or

136 Conclusions and Future Works

some heuristics, to solve the master problem, instead of solving it directly by the MIP

solver. Another possible approach is to investigate whether any worst-case scenarios,

together with their corresponding variables and constraints, can be removed from the

master problems in the later iterations, so as to reduce the sizes of the master problems.

For this, it would be worth developing effective domination rules among the worst-case

scenarios. Moreover, another promising future research direction would be to develop

more efficient strategies for the parameter adjustment, which could significantly affect

the performance of the EC&CG method.

To Develop New Optimization Techniques and Models

Another natural direction for future research would be to develop other new optimization

techniques for the deterministic CTSNDP-HC and for its robust variation under travel

time uncertainty. The DDD algorithm for the deterministic CTSNDP proposed by

Boland et al. [20] has recently been further modified by Marshall et al. [81], where the

time-expanded networks are defined on time intervals instead of time points. It is also

possible to adapt our newly proposed DDD algorithm for the deterministic CTSNDP-

HC to utilize the interval-based time-expanded network. As part of our future work, we

will investigate such an interval-based DDD algorithm for the deterministic CTSNDP-

HC, comparing its performance against the algorithm proposed in this dissertation,

and exploring their relationships.

For the robust CTSNDP-HC studied in this dissertation, we optimized the solutions

for the worst-case scenario in a given budgeted uncertainty set. To provide the decision-

maker with more robust options, it is an attractive research direction to investigate

a distributionally robust optimization method for tackling the CTSNDP-HC under

travel time uncertainty, so that solutions are optimized for the worst-case probability

distribution within the family of distributions. It is widely recognized that solutions

obtained from the distributionally robust optimization method are likely to be less

conservative than those obtained from robust optimization [53, 102]. Besides, affine

decision rules [9], which impose an affine dependence of the second-stage decisions on

4.2 Future Research Directions 137

the predefined uncertainties, provide an alternative method to formulate and solve the

robust problems. The optimality of affine decision rules in well-defined two-stage robust

optimization has been extensively investigated in previous studies [13, 93, 55]. If we

can prove the existence of an optimal affine solution to the second-stage of the robust

CTSNDP-HC, applying affine decision rules may help us to develop more efficient

solution methods to solve the robust CTSNDP-HC. Moreover, Long et al. [80] have

recently proposed a robust satisficing framework which aims to minimize the fragility

of the robust model to uncertainty in achieving the prescribed target. It is of great

interest for us to apply this new framework in solving the CTSNDP-HC under travel

time uncertainty. For these promising future research directions, we believe that our

newly derived consolidation-index deterministic model and newly proposed dynamic

parameter adjustment scheme can provide a solid foundation.

In addition, for both the deterministic CTSNDP-HC and robust CTSNDP-HC,

to make the proposed optimization models more useful for practical applications, it

is of great interest to develop more efficient solution methods to solve much larger

instances. Sarayloo et al. [91] have recently proposed a learning-based matheuristic for

the multi-commodity network design problem with stochastic demands. They proved

that this method is highly effective in finding good-quality solutions, especially for

large instances. As a future work, we will explore the development of an effective

matheuristic for both the deterministic CTSNDP-HC and the robust CTSNDP-HC.

To Investigate More Applications

In our future studies, we will investigate different variants of the CTSNDP and other

optimization problems based on the methods and results developed in this dissertation.

Real-world service network design problems pose several challenging extensions, such

as asset management, terminal capacities, and compatibility of commodities. Our

future work can therefore go in the direction of considering these extensions, as well

as other important features of these problems. In particularly, the CTSNDP with

time-dependent travel times, i.e., the travel time functions are continuous functions

138 Conclusions and Future Works

of departure times or link flows, can be more challenging and is of interest for future

research. In this dissertation, we only consider travel time uncertainty within a budgeted

uncertainty set. However, real-world service network design problems encounter

more uncertainties than just those of travel times. Thus, there would be significant

research value and practical value in incorporating other uncertainties, such as demand

uncertainty, into the proposed robust optimization model, so as to make it more

comprehensive. Besides, it also looks promising to investigate more applications of

the relaxation method derived for the deterministic CTSNDP-HC based on the time-

expanded network, as well as more applications of the consolidation-index formulation

newly proposed for handling travel time uncertainty. These newly proposed modeling

techniques can be adopted to other routing and scheduling problems, i.e., liner service

network design problem, to handle holding costs and travel time uncertainty.

References

[1] Adulyasak, Y. and Jaillet, P. (2016), Models and algorithms for stochastic and
robust vehicle routing with deadlines, Transportation Science 50(2), 608–626.

[2] Andersen, J., Christiansen, M., Crainic, T. G. and Grønhaug, R. (2011), Branch
and price for service network design with asset management constraints, Trans-
portation Science 45(1), 33–49.

[3] Andersen, J., Crainic, T. G. and Christiansen, M. (2009a), Service network design
with asset management: Formulations and comparative analyses, Transportation
Research Part C: Emerging Technologies 17(2), 197–207.

[4] Andersen, J., Crainic, T. G. and Christiansen, M. (2009b), Service network
design with management and coordination of multiple fleets, European Journal of
Operational Research 193(2), 377–389.

[5] Atamtürk, A. and Zhang, M. (2007), Two-stage robust network flow and design
under demand uncertainty, Operations Research 55(4), 662–673.

[6] Bai, R., Wallace, S. W., Li, J. and Chong, A. Y.-L. (2014), Stochastic service
network design with rerouting, Transportation Research Part B: Methodological
60, 50–65.

[7] Belieres, S. (2019), Mathematical programming for tactical transportation planning
in a multi-productsupply chain, PhD thesis, Automatic Control Engineering. INSA
de Toulouse.

[8] Ben-Tal, A., El Ghaoui, L. and Nemirovski, A. (2009), Robust optimization,
Princeton university press.

[9] Ben-Tal, A., Goryashko, A., Guslitzer, E. and Nemirovski, A. (2004), Adjustable ro-
bust solutions of uncertain linear programs, Mathematical programming 99(2), 351–
376.

[10] Ben-Tal, A. and Nemirovski, A. (1998), Robust convex optimization, Mathematics
of operations research 23(4), 769–805.

[11] Ben-Tal, A. and Nemirovski, A. (1999), Robust solutions of uncertain linear
programs, Operations research letters 25(1), 1–13.

[12] Bertsimas, D. and Brown, D. B. (2009), Constructing uncertainty sets for robust
linear optimization, Operations research 57(6), 1483–1495.

140 References

[13] Bertsimas, D. and Goyal, V. (2012), On the power and limitations of affine policies
in two-stage adaptive optimization, Mathematical programming 134(2), 491–531.

[14] Bertsimas, D., Iancu, D. A. and Parrilo, P. A. (2010), Optimality of affine policies
in multistage robust optimization, Mathematics of Operations Research 35(2), 363–
394.

[15] Bertsimas, D. and Sim, M. (2003), Robust discrete optimization and network
flows, Mathematical programming 98(1), 49–71.

[16] Bertsimas, D. and Sim, M. (2004a), The price of robustness, Operations research
52(1), 35–53.

[17] Bertsimas, D. and Sim, M. (2004b), Robust discrete optimization under ellipsoidal
uncertainty sets, Technical Report, MIT .

[18] Bertsimas, D. and Weismantel, R. (2005), Optimization over integers., Athena
Scientific.

[19] Birge, J. R. and Louveaux, F. (2011), Introduction to stochastic programming,
Springer Science & Business Media.

[20] Boland, N., Hewitt, M., Marshall, L. and Savelsbergh, M. (2017), The continuous-
time service network design problem, Operations Research 65(5), 1303–1321.

[21] Boland, N., Hewitt, M., Marshall, L. and Savelsbergh, M. (2018), The price of dis-
cretizing time: a study in service network design, EURO Journal on Transportation
and Logistics pp. 1–22.

[22] Boland, N., Hewitt, M., Marshall, L. and Savelsbergh, M. (2019), The price of dis-
cretizing time: a study in service network design, EURO Journal on Transportation
and Logistics 8(2), 195–216.

[23] Boland, N., Kalinowski, T. and Kaur, S. (2015), Scheduling network maintenance
jobs with release dates and deadlines to maximize total flow over time: Bounds
and solution strategies, Computers & Operations Research 64, 113–129.

[24] Boland, N. L. and Savelsbergh, M. W. (2019), Perspectives on integer programming
for time-dependent models, TOP pp. 1–27.

[25] Bookbinder, J. H. and Higginson, J. K. (2002), Probabilistic modeling of freight
consolidation by private carriage, Transportation Research Part E: Logistics and
Transportation Review 38(5), 305–318.

[26] Calafiore, G. C. and El Ghaoui, L. (2006), On distributionally robust chance-
constrained linear programs, Journal of Optimization Theory and Applications
130(1), 1–22.

[27] Chassein, A. and Goerigk, M. (2016), On the recoverable robust traveling salesman
problem, Optimization Letters 10(7), 1479–1492.

References 141

[28] Chen, B. Y., Li, Q. and Lam, W. H. (2016), Finding the k reliable shortest paths
under travel time uncertainty, Transportation Research Part B: Methodological
94, 189–203.

[29] Chen, X., Sim, M. and Sun, P. (2007), A robust optimization perspective on
stochastic programming, Operations research 55(6), 1058–1071.

[30] Chen, X., Sim, M., Sun, P. and Zhang, J. (2008), A linear decision-based approxi-
mation approach to stochastic programming, Operations Research 56(2), 344–357.

[31] Chinneck, J. W. (1997), Finding a useful subset of constraints for analysis in an
infeasible linear program, INFORMS Journal on Computing 9(2), 164–174.

[32] Chinneck, J. W. and Dravnieks, E. W. (1991), Locating minimal infeasible con-
straint sets in linear programs, ORSA Journal on Computing 3(2), 157–168.

[33] Crainic, T. G. (2000), Service network design in freight transportation, European
journal of operational research 122(2), 272–288.

[34] Crainic, T. G., Frangioni, A. and Gendron, B. (2001), Bundle-based relaxation
methods for multicommodity capacitated fixed charge network design, Discrete
Applied Mathematics 112(1-3), 73–99.

[35] Crainic, T. G., Fu, X., Gendreau, M., Rei, W. and Wallace, S. W. (2011),
Progressive hedging-based metaheuristics for stochastic network design, Networks
58(2), 114–124.

[36] Crainic, T. G., Gendron, B. and Hernu, G. (2004), A slope scaling/lagrangean
perturbation heuristic with long-term memory for multicommodity capacitated
fixed-charge network design, Journal of Heuristics 10(5), 525–545.

[37] Crainic, T. G., Hewitt, M., Toulouse, M. and Vu, D. M. (2014), Service network
design with resource constraints, Transportation Science 50(4), 1380–1393.

[38] Crainic, T. G. and Rousseau, J.-M. (1986), Multicommodity, multimode freight
transportation: A general modeling and algorithmic framework for the service net-
work design problem, Transportation Research Part B: Methodological 20(3), 225–
242.

[39] Dantzig, G. B. (1955), Linear programming under uncertainty, Management
science 1(3-4), 197–206.

[40] Dash, S., Günlük, O., Lodi, A. and Tramontani, A. (2012), A time bucket
formulation for the traveling salesman problem with time windows, INFORMS
Journal on Computing 24(1), 132–147.

[41] Delage, E. and Ye, Y. (2010), Distributionally robust optimization under mo-
ment uncertainty with application to data-driven problems, Operations research
58(3), 595–612.

142 References

[42] Demir, E., Burgholzer, W., Hrušovskỳ, M., Arıkan, E., Jammernegg, W. and
Van Woensel, T. (2016), A green intermodal service network design problem
with travel time uncertainty, Transportation Research Part B: Methodological
93, 789–807.

[43] Dyer, M. and Stougie, L. (2006), Computational complexity of stochastic pro-
gramming problems, mathematical programming 106(3), 423–432.

[44] Erera, A., Hewitt, M., Savelsbergh, M. and Zhang, Y. (2013), Improved load plan
design through integer programming based local search, Transportation Science
47(3), 412–427.

[45] Escudero, A., MuñUzuri, J., Guadix, J. and Arango, C. (2013), Dynamic approach
to solve the daily drayage problem with transit time uncertainty, Computers in
industry 64(2), 165–175.

[46] Eshtehadi, R., Fathian, M. and Demir, E. (2017), Robust solutions to the pollution-
routing problem with demand and travel time uncertainty, Transportation Research
Part D: Transport and Environment 51, 351–363.

[47] Farvolden, J. M. and Powell, W. B. (1994), Subgradient methods for the service
network design problem, Transportation Science 28(3), 256–272.

[48] Fischetti, M. and Monaci, M. (2009), Light robustness, in ‘Robust and online
large-scale optimization’, Springer, pp. 61–84.

[49] Fleischer, L. and Skutella, M. (2007), Quickest flows over time, SIAM Journal on
Computing 36(6), 1600–1630.

[50] Ford Jr, L. R. and Fulkerson, D. R. (1958), Constructing maximal dynamic flows
from static flows, Operations research 6(3), 419–433.

[51] Ford Jr, L. R. and Fulkerson, D. R. (1962), Flows in networks, Princeton university
press.

[52] Frangioni, A. and Gendron, B. (2009), 0–1 reformulations of the multicommodity
capacitated network design problem, Discrete Applied Mathematics 157(6), 1229–
1241.

[53] Gabrel, V., Murat, C. and Thiele, A. (2014), Recent advances in robust optimiza-
tion: An overview, European journal of operational research 235(3), 471–483.

[54] Gendron, B., Crainic, T., Frangioni, A., Sansó, B. and Soriano, P. (1999), Telecom-
munications network planning, Kluwer Academic Publishers pp. 1–19.

[55] Georghiou, A., Tsoukalas, A. and Wiesemann, W. (2021), On the optimality of
affine decision rules in robust and distributionally robust optimization, Available
at Optimization Online .

[56] Ghamlouche, I., Crainic, T. G. and Gendreau, M. (2003), Cycle-based neighbour-
hoods for fixed-charge capacitated multicommodity network design, Operations
research 51(4), 655–667.

References 143

[57] Gleeson, J. and Ryan, J. (1990), Identifying minimally infeasible subsystems of
inequalities, ORSA Journal on Computing 2(1), 61–63.

[58] Goh, J. and Sim, M. (2010), Distributionally robust optimization and its tractable
approximations, Operations research 58(4-part-1), 902–917.

[59] Groß, M. and Skutella, M. (2012), Maximum multicommodity flows over time
without intermediate storage, in ‘European Symposium on Algorithms’, Springer,
pp. 539–550.

[60] Gurobi Optimization, L. (2021), ‘Gurobi optimizer reference manual (v.8.1.1)’.
URL: http://www.gurobi.com

[61] Hall, R. W. (1987), Consolidation strategy: inventory, vehicles and terminals,
Journal of business logistics 8(2), 57.

[62] Hewitt, M. (2019), Enhanced dynamic discretization discovery for the continuous
time load plan design problem, Transportation science 53(6), 1731–1750.

[63] Hewitt, M., Crainic, T. G., Nowak, M. and Rei, W. (2019), Scheduled service
network design with resource acquisition and management under uncertainty,
Transportation Research Part B: Methodological 128, 324–343.

[64] Hewitt, M., Nemhauser, G. L. and Savelsbergh, M. W. (2010), Combining exact
and heuristic approaches for the capacitated fixed-charge network flow problem,
INFORMS Journal on Computing 22(2), 314–325.

[65] Hewitt, M., Nemhauser, G. and Savelsbergh, M. W. (2013), Branch-and-price
guided search for integer programs with an application to the multicommodity
fixed-charge network flow problem, INFORMS Journal on Computing 25(2), 302–
316.

[66] Hoff, A., Lium, A.-G., Løkketangen, A. and Crainic, T. G. (2010), A metaheuristic
for stochastic service network design, Journal of Heuristics 16(5), 653–679.

[67] Hosseininasab, A. (2015), The continuous time service network design problem,
Master’s thesis, University of Waterloo.

[68] Hrušovskỳ, M., Demir, E., Jammernegg, W. and Van Woensel, T. (2018), Hybrid
simulation and optimization approach for green intermodal transportation prob-
lem with travel time uncertainty, Flexible Services and Manufacturing Journal
30(3), 486–516.

[69] Hu, C., Lu, J., Liu, X. and Zhang, G. (2018), Robust vehicle routing problem
with hard time windows under demand and travel time uncertainty, Computers &
Operations Research 94, 139–153.

[70] Hu, W., Toriello, A. and Dessouky, M. (2018), Integrated inventory routing
and freight consolidation for perishable goods, European Journal of Operational
Research 271(2), 548–560.

144 References

[71] Jalilvand-Nejad, A., Shafaei, R. and Shahriari, H. (2016), Robust optimization
under correlated polyhedral uncertainty set, Computers & Industrial Engineering
92, 82–94.

[72] Jarrah, A. I., Johnson, E. and Neubert, L. C. (2009), Large-scale, less-than-
truckload service network design, Operations Research 57(3), 609–625.

[73] Koster, A. M., Kutschka, M. and Raack, C. (2013), Robust network design:
Formulations, valid inequalities, and computations, Networks 61(2), 128–149.

[74] Kouvelis, P. and Yu, G. (2013), Robust discrete optimization and its applications,
Vol. 14, Springer Science & Business Media.

[75] Lagos, F., Boland, N. and Savelsbergh, M. (2020), The continuous-time inventory-
routing problem, Transportation Science 54(2), 375–399.

[76] Lanza, G., Crainic, T. G., Rei, W. and Ricciardi, N. (2021), Scheduled service
network design with quality targets and stochastic travel times, European Journal
of Operational Research 288(1), 30–46.

[77] Lee, C.-Y., Shu, S. and Xu, Z. (2021), Optimal global liner service procurement by
utilizing liner service schedules, Production and Operations Management 30(3), 703–
714.

[78] Liang, J., Wu, J., Qu, Y., Yin, H., Qu, X. and Gao, Z. (2019), Robust bus bridging
service design under rail transit system disruptions, Transportation Research Part
E: Logistics and Transportation Review 132, 97–116.

[79] Lium, A.-G., Crainic, T. G. and Wallace, S. W. (2009), A study of demand
stochasticity in service network design, Transportation Science 43(2), 144–157.

[80] Long, D. Z., Sim, M. and Zhou, M. (2022), Robust satisficing, Operations Research
.

[81] Marshall, L., Boland, N., Savelsbergh, M. and Hewitt, M. (2021), Interval-based
dynamic discretization discovery for solving the continuous-time service network
design problem, Transportation Science 55(1), 29–51.

[82] Medina, J., Hewitt, M., Lehuédé, F. and Péton, O. (2019), Integrating long-
haul and local transportation planning: The service network design and routing
problem, EURO Journal on Transportation and Logistics 8(2), 119–145.

[83] Mokarami, S. and Hashemi, S. M. (2015), Constrained shortest path with uncertain
transit times, Journal of Global Optimization 63(1), 149–163.

[84] Montemanni, R., Barta, J., Mastrolilli, M. and Gambardella, L. M. (2007), The
robust traveling salesman problem with interval data, Transportation Science
41(3), 366–381.

[85] Needham, P. M. and Evers, P. T. (1998), The influence of individual cost factors
on the use of emergency transshipments, Transportation Research Part E: Logistics
and Transportation Review 34(2), 149–160.

References 145

[86] Pedersen, M. B., Crainic, T. G. and Madsen, O. B. (2009), Models and tabu
search metaheuristics for service network design with asset-balance requirements,
Transportation Science 43(2), 158–177.

[87] Remli, N., Amrouss, A., El Hallaoui, I. and Rekik, M. (2019), A robust optimiza-
tion approach for the winner determination problem with uncertainty on shipment
volumes and carriers’ capacity, Transportation Research Part B: Methodological
123, 127–148.

[88] Rudi, A., Fröhling, M., Zimmer, K. and Schultmann, F. (2016), Freight trans-
portation planning considering carbon emissions and in-transit holding costs: a
capacitated multi-commodity network flow model, EURO Journal on Transporta-
tion and Logistics 5(2), 123–160.

[89] Ruszczyński, A. and Shapiro, A. (2003), Stochastic programming models, Hand-
books in operations research and management science 10, 1–64.

[90] Sarayloo, F. (2018), Learning-Based Matheuristic Solution Methods for Stochastic
Network Design, PhD thesis, University of Montreal.

[91] Sarayloo, F., Crainic, T. G. and Rei, W. (2021a), A learning-based matheuristic
for stochastic multicommodity network design, INFORMS Journal on Computing
33(2), 643–656.

[92] Sarayloo, F., Crainic, T. G. and Rei, W. (2021b), A reduced cost-based restriction
and refinement matheuristic for stochastic network design problem, Journal of
Heuristics 27(3), 325–351.

[93] Simchi-Levi, D., Trichakis, N. and Zhang, P. Y. (2019), Designing response supply
chain against bioattacks, Operations Research 67(5), 1246–1268.

[94] Skutella, M. (2009), An introduction to network flows over time, in ‘Research
trends in combinatorial optimization’, Springer, pp. 451–482.

[95] Sohoni, M., Lee, Y.-C. and Klabjan, D. (2011), Robust airline scheduling under
block-time uncertainty, Transportation Science 45(4), 451–464.

[96] Soyster, A. L. (1973), Convex programming with set-inclusive constraints and
applications to inexact linear programming, Operations research 21(5), 1154–1157.

[97] Thiele, A., Terry, T. and Epelman, M. (2009), Robust linear optimization with
recourse, Rapport technique pp. 4–37.

[98] Tyan, J. C., Wang, F.-K. and Du, T. C. (2003), An evaluation of freight consoli-
dation policies in global third party logistics, Omega 31(1), 55–62.

[99] Ulku, M. A. (2009a), Analysis of shipment consolidation in the logistics supply
chain, PhD thesis, University of Waterloo.

[100] Ülkü, M. A. (2009b), Comparison of typical shipment consolidation programs:
structural results, Management Science and Engineering 3(4), 27–33.

146 References

[101] Van Loon, J. (1981), Irreducibly inconsistent systems of linear inequalities,
European Journal of Operational Research 8(3), 283–288.

[102] Van Parys, B. P., Esfahani, P. M. and Kuhn, D. (2021), From data to decisions:
Distributionally robust optimization is optimal, Management Science 67(6), 3387–
3402.

[103] Vu, D. M., Hewitt, M., Boland, N. and Savelsbergh, M. (2020), Dynamic dis-
cretization discovery for solving the time-dependent traveling salesman problem
with time windows, Transportation science 54(3), 703–720.

[104] Wang, S. and Meng, Q. (2012a), Liner ship route schedule design with sea
contingency time and port time uncertainty, Transportation Research Part B:
Methodological 46(5), 615–633.

[105] Wang, S. and Meng, Q. (2012b), Robust schedule design for liner shipping
services, Transportation Research Part E: Logistics and Transportation Review
48(6), 1093–1106.

[106] Wang, X. and Regan, A. C. (2002), Local truckload pickup and delivery with
hard time window constraints, Transportation Research Part B: Methodological
36(2), 97–112.

[107] Wang, X. and Regan, A. C. (2009), On the convergence of a new time window
discretization method for the traveling salesman problem with time window
constraints, Computers & Industrial Engineering 56(1), 161–164.

[108] Wang, Z. and Qi, M. (2020), Robust service network design under demand
uncertainty, Transportation Science 54(3), 676–689.

[109] Wieberneit, N. (2008), Service network design for freight transportation: a review,
OR spectrum 30(1), 77–112.

[110] Yao, B., Hu, P., Lu, X., Gao, J. and Zhang, M. (2014), Transit network de-
sign based on travel time reliability, Transportation Research Part C: Emerging
Technologies 43, 233–248.

[111] Zeng, B. and Zhao, L. (2013), Solving two-stage robust optimization problems
using a column-and-constraint generation method, Operations Research Letters
41(5), 457–461.

[112] Zhang, Y., Song, S., Shen, Z.-J. M. and Wu, C. (2017), Robust shortest path
problem with distributional uncertainty, IEEE transactions on intelligent trans-
portation systems 19(4), 1080–1090.

[113] Zhang, Y., Zhang, Z., Lim, A. and Sim, M. (2021), Robust data-driven vehicle
routing with time windows, Operations Research 69(2), 469–485.

[114] Zhao, Y., Xue, Q., Cao, Z. and Zhang, X. (2018), A two-stage chance con-
strained approach with application to stochastic intermodal service network design
problems, Journal of Advanced Transportation 2018.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.2 Literature Review
	1.2.1 Deterministic Service Network Design Problems
	1.2.2 Robust Service Network Design Problems

	1.3 Summary of Contributions

	2 Deterministic Continuous-Time Service Network Design with Holding Costs
	2.1 Introduction
	2.1.1 The SNDP with Holding Costs
	2.1.2 Discretized versus Continuous-Time Models
	2.1.3 Outlines

	2.2 Modeling the CTSNDP-HC on a Finite Time-Expanded Network
	2.2.1 Representing Feasible Solutions
	2.2.2 A Time-Index Formulation for the CTSNDP-HC
	2.2.3 Existence of a Finite Time-Expanded Network for the CTSNDP-HC

	2.3 Dynamic Discritization Discovery Algorithm for the CTSNDP-HC
	2.3.1 An Overview of the Dynamic Discritization Discovery Algorithm
	2.3.2 A Relaxation of the CTSNDP-HC
	2.3.3 Strengthening Relaxation SND-HC-R(DT)
	2.3.4 Initial Partially Time-Expanded Network
	2.3.5 Computing a Feasible CTSNDP-HC solution
	2.3.6 Refining a Partially Time-Expanded Network
	2.3.7 Convergence and Optimality

	2.4 Computational Experiments
	2.4.1 Experiments based on CTSNDP Benchmark Instances
	2.4.2 Experiments on Newly Generated CTSNDP-HC Benchmark Instances

	2.5 Summary

	3 Robust Continuous-Time Service Network Design with Uncertain Travel Times
	3.1 Introduction
	3.2 Problem Descriptions
	3.2.1 Deterministic CTSNDP-HC
	3.2.2 Robust CTSNDP-HC

	3.3 Mixed Integer Programming Formulations
	3.3.1 MILP Formulation of Deterministic CTSNDP-HC
	3.3.2 Two-Stage MINLP Formulation of Robust CTSNDP-HC

	3.4 A Column-and-Constraint Generation Solution Method
	3.4.1 MILP Reformulation of the Second-Stage Problem
	3.4.2 Algorithm Framework

	3.5 An Enhanced Column-and-Constraint Generation Solution Method
	3.5.1 Parameterizing the Two-Stage MINLP Model
	3.5.2 Algorithm Framework
	3.5.3 Bounding Parameter Values
	3.5.4 Initialization of Parameter Values
	3.5.5 Adjustment of Parameter Values
	3.5.6 Stopping Condition and Convergence Guarantee

	3.6 Additional Accelerating Strategies
	3.6.1 Size Reduction for the Subproblem
	3.6.2 Bundle of Worst-Case Scenarios

	3.7 Computational Experiments
	3.7.1 Instances and Parameter Settings
	3.7.2 Computational Performance
	3.7.3 The Price of Robustness

	3.8 Summary

	4 Conclusions and Future Works
	4.1 Major Results and Findings
	4.2 Future Research Directions

	References

