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Abstract

In this thesis, we explore two issues related to efficient resource utilization to support

the sustainable development goal for our society. To achieve sustainable operations,

firms are encouraged to positively impact customers as well as the environment in

addition to pursue profit. For example, a last-mile transportation service provider

can increase the utilization of limited vehicle resource, which provides customers

a convenient alternative for short-distance travel in urban area and hence helps

reduce the carbon emissions from automobiles. Another example is that, a firm

selling consumer product can use recycled materials that saves production resource

and waste to help citizens live in a better environment. Both of them save the

resource and provide customers a more sustainable lifestyle. We further elaborate

the two aforementioned aspects as follows.

In the first topic, we consider the efficient operations of limited amount of ve-

hicles that can be allocated to urban area in a shared micromobility system. A

micromobility service provider can crowdsource individual riders to conduct vehicle

relocation with reward incentives and outsource relocation to a third-party logistics

provider (3PL). The former performs vehicle relocation continuously while the latter

runs the relocation following a certain schedule. We construct a time-space network

with multiple regions and formulate a two-stage stochastic integer programming

model incorporating riders’ demand uncertainty. In the first stage, the micromobil-

ity operator plans the initial vehicle allocation across service regions, while in the

second stage, he decides subsequent vehicle relocation across the regions over an

operational horizon. To enable the practical significance of our model, we develop

a temporal decomposition algorithm, which outperforms a state-of-the-art commer-

cial solver in solution quality and computational time for solving large-scale problem

instances based on real data. Numerical experiments show that 3PL outsourcing is
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more efficient for mass relocation than rider crowdsourcing, while the latter is more

efficient in handling sporadic relocation needs. Introducing rider crowdsourcing in

addition to 3PL outsourcing can significantly increase the profit, reduce the de-

mand loss, and improve the vehicle utilization rate of the system without affecting

the existing commitment with the 3PL. The budget for acquiring vehicles and the

budget for rider crowdsourcing significantly impact the vehicles’ initial allocation

and subsequent relocation. We also find that rider crowdsourcing relocates more

vehicles under a unimodal demand pattern than a bimodal pattern, whereas the

reverse holds for 3PL outsourcing.

In the second topic, we consider how the recycled materials in a sustainable

product can be impacted by the recycling label. In practice, there are many differ-

ent types of recycling label issued by NGOs. We consider two types of commonly

observed recycling labels: 1) Percentage label that conducts a continuous grading

assessment, from which consumers know exactly the fraction of recycled content; 2)

Binary label that implements a pass/fail criterion, from which consumers only know

whether the fraction of recycled content meets the standard or not. We establish

a game-theoretical model wherein an NGO needs to decide the label type and a

monopoly firm decides the fraction of recycled content and price for its product.

The firm sells its product to consumers who cannot directly observe the fraction

of recycled content used in the product but can obtain information from the label

on the product. Some consumers are environmentally conscious who are willing to

pay a premium for the recycled content; and others are environmentally unconscious

who are indifferent in recycled and non-recycled content. We examine the impacts

of different labelling schemes on a firm’s recycling and pricing decisions as well as an

NGO’s payoff and consumer surplus. We highlight a few interesting findings. First,

the firm weakly prefers the percentage label, while NGO and consumers weakly pre-

fer the binary label. Second, more environmentally conscious consumers or lower

fixed cost of recycling may not necessarily increase the firm’s usage of recycled ma-

terials under the binary label, and may indeed hurt the consumer surplus under

either label type. These findings can provide useful managerial insights for NGOs

and firms who are concerned about recycled materials.
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Chapter 1

Introduction

Sustainable development is the international community’s most urgent priority. In

academia, the community of operations management is actively exploring what so-

lutions can serve the sustainable goal. Being a major part in the business world,

90% of firms feel they need to change their core business models in some way to

operate in a truly sustainable economy (Bain & Company 2018). Indeed, many

decisions that determine a firm’s sustainability impact also naturally intersect with

established operations management streams such as product design and transporta-

tion system (Drake and Spinler 2013). Aiming to contribute to the sustainable

development research from the lens of operations management, this thesis focuses

on the two aforementioned streams regarding a sustainable last-mile mobility sys-

tem and a green product with recycled materials, respectively. Particularly, the first

study investigates the planning effectiveness and operational efficiency in the shared

micromobility system with crowdsourcing relocation riders. The second study, re-

garding the sustainable use of natural resources, investigates the impact of different

recycling label schemes on firms’ recycling decisions. Both of them contribute to

efficient resource utilization for the sustainable goal.

In Chapter 2, we focus on the planning and operational design for a sustainable

shared micromobility system. In contrast to other mobility systems, the shared

micromobility firm is burdened with physical assets (e.g., micromobility vehicles).

It has flexible pick-up and drop-off spots and no self-regulated owner to ride the

vehicle to meet the demand. These features intensify the supply-demand mismatch

during operations. Thus, it is crucial to smartly allocate and relocate the vehicles
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so that the firm can sustainably earn profit. We particularly investigate the micro-

mobiliy vehicle rebalancing with third-party logistics (3PL) and/or crowdsourcing

relocation riders. This part of the work was motivated by the innovative opera-

tions in the shared micromobility system. For example, Bird and Mobike provide

customers with rewards to incentivize them to help relocate the vehicles. This in-

novative relocation method is in contrast to the traditional 3PL relocation. Then,

we are interested in the following questions: How shall a shared micromobility firm

allocate its vehicles and conduct the relocation to balance the supply and uncertain

demand to improve its profit? How does the adoption of each relocation strategy

(crowdsourcing and/or 3PL outsourcing) affect the system efficiency? How do the

system parameters (e.g., demand patterns and the demand loss penalty) affect the

performance of the two relocation methods? What is the optimal relocation strategy

that a shared micromobility system shall adopt, and under what conditions?

We construct a time-space network with multiple regions and formulate a two-

stage stochastic mixed-integer programming model that considers uncertain cus-

tomer demands. In the first stage, the micromobility operator decides the initial

vehicle allocation for the service regions, whereas in the second stage, he determines

subsequent vehicle relocation across the regions over an operational horizon. We de-

velop an efficient solution approach that incorporates scenario-based and time-based

(temporal) decomposition ideas. Our approach outperforms a commercial solver in

solution quality and computational time for solving large-scale problem instances

based on real data. Our model and algorithm can help the micromobility firm make

more comprehensive decisions towards the sustainable vehicle operations.

Then, we derive the following insights from numerical experiments with the

dataset from Citi Bike. We first find that the 3PL outsourcing is more efficient

for mass relocation than rider crowdsourcing, while the latter can be more efficient

in handling sporadic relocation needs. Second, the budget for acquiring vehicles and

the budget for rider crowdsourcing significantly impact the vehicles’ initial alloca-

tion and subsequent relocation. Third, the 3PL often conducts relocation around

peak hours of a day by moving vehicles in batches from faraway, low-demand re-

gions, whereas rider crowdsourcing is engaged throughout the day to relocate a few

2



vehicles each time from neighboring regions. At last, rider crowdsourcing relocates

more vehicles under a unimodal demand pattern than a bimodal pattern, whereas

the reverse holds for 3PL outsourcing. These results inform how to improve the

operational efficiency and profitability in shared micromobility systems.

In Chapter 3, we focus on the recycling label design for sustainable consumer

products. We study the impacts of different recycling label schemes on a firm’s recy-

cling and pricing decisions as well as an NGO’s payoff and consumers’ surplus. This

part of the work was based on observing diverse environmental labels in the current

market, which convey different levels of recycled content information. The more the

recycled material is used, the less waste is generated. However, when making recy-

cling and pricing decisions, a profit-maximizing firm needs to be concerned about

consumers’ recognition of its green practice. Consumers usually do not have direct

information regarding the recycled material in a product. A recycling label is one

of the potential solutions that can serve the communication between the firm and

consumers about the green efforts. Hence, the study on the labelling scheme con-

tributes to waste reduction and sustainable product design. Specifically, we identify

two types of labels issued by an NGO and they differ in the label information scheme

for the recycled content. The first is a binary label with only one pass/fail standard.

A product can apply the label if it contains the recycled material above the stan-

dard. The second, by contrast, is a percentage label that verifies and displays the

actual percentage of the recycled material in a product. Then, we study the follow-

ing three questions: (1) Under different labelling schemes, how are the firm’s and

NGO’s payoffs influenced by the fraction of environmentally conscious consumers

and the technology cost of recycling? (2) Which type of label benefits the firm?

Which one is preferred by the NGO? (3) How is consumers’ surplus influenced by

the labelling scheme? For these questions, we establish a game-theoretical model

wherein an NGO chooses the label type (binary or percentage) and a monopoly firm

decides the fraction of the recycled material and price for its product.

We highlight our key insights as follows. First, we find that, as the fraction of en-

vironmentally conscious consumers increases or the fixed cost of recycling decreases,

the firm’s usage of recycled content increases under the percentage label, while it

3



may increase or decrease under the binary label. Second, the firm is always weakly

better off under the percentage label than under the binary label. Third, NGO

weakly prefers the binary label. Interestingly, under the percentage label, NGO can

be worse off if more consumers become environmentally conscious or the technol-

ogy cost of recycling reduces. Fourth, consumers weakly prefer the binary label to

the percentage label. Noteworthily, under either percentage or binary label, more

environmentally conscious consumers or lower fixed cost of recycling may hurt or

benefit the consumer surplus. Our results can provide useful insights to facilitate an

effective label design that helps convey information to consumers and also influences

firms’ recycling and pricing strategies.

In Chapter 4, we briefly summarize the main work in this thesis, and also point

out some possible directions for future research relating to efficient resource utiliza-

tion in the shared micromobility service or green products.
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Chapter 2

Resource Utilization in A Shared
Micromobility System: Vehicle
Rebalancing with Rider
Crowdsourcing

2.1 Introduction

A shared micromobility system consists of lightweight vehicles such as bikes, e-bikes,

e-scooters, or e-mopeds. It offers an eco-friendly form of short-distance travel (e.g.,

last-mile transportation) and helps alleviate city congestion, achieving a sustainable

urban transportation system (Simlett and Møller 2020, McKinsey 2021). During the

COVID-19 pandemic, the shared micromobility system becomes even more popular

as some people avoid taking crowded public transportation. In the U.S., around

60% of car trips are within 8 kilometers, making the shared micromobility system

an excellent alternative. It is estimated that the micromobility market in the U.S.

alone will reach 200 to 300 billion dollars by 2030 (McKinsey 2019).

A shared micromobility system differs from other shared mobility systems (e.g.,

car sharing and ride hailing) mainly because of the following three features. First,

the shared micromobility system is asset heavy and its operator often bears high

investment and operational costs of its physical assets (e.g., bikes) (Hasija et al.

2020). In a competitive market, these high costs cannot be covered by simply

increasing rental prices because customers can easily switch to other mobility services

(e.g., public transportation or car sharing). Thus, it is important for the operator

to properly determine a total number of vehicles and allocate them to each service
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region. Second, as there is no self-regulated owner for each micromobility vehicle,

shared micromobility services are not provided on an on-demand basis like ride

hailing because drivers do not ride a micromobility vehicle to search for customers.

Third, customers of the shared micromobility system can pick up and drop off

vehicles in any service region at any time. Such convenience often leads to a severe

imbalance between the vehicle supply and demand in different regions, resulting in

an oversupply of vehicles with few pick-ups in some regions and insufficient vehicles

in others. Such imbalance can substantially undermine the system’s operational

efficiency, service quality, and profitability. As a result, the shared micromobility

system requires efficient relocation of vehicles across the service regions.

The above three features draw special attention to the initial allocation and

subsequent relocation of vehicles to help the shared micromobility system achieve

economic viability and sustainability. In contrast to other mobility systems that

adopt instruments such as increasing drivers’ salaries or dynamic pricing to control

the vehicle supply and demand, the operator of the shared micromobility system

can first allocate and then relocate vehicles to balance their supply and demand for

each service region. This allows the operator to boost profitability given the low

profit margin of micromobility services.

Currently, many shared micromobility firms outsource the vehicle relocation to

third-party logistics providers (3PLs). Each 3PL rebalances micromobility vehi-

cles across service regions in batches of vehicles primarily by trucks to enjoy the

economies of scale (Dell’Amico et al. 2014). Such 3PL relocation is often executed

according to a certain schedule (e.g., in the early morning or late night) and may

not meet all vehicle-relocation requirements. Each request for the 3PL relocation

incurs a fixed setup cost. In fact, due to the high setup cost incurred in each request,

it is too costly to frequently engage the 3PL to relocate vehicles across the service

regions to rebalance the supply and demand.

To overcome this challenge, some shared micromobility firms adopt a crowd-

sourcing strategy to hire individual riders to relocate vehicles. Each crowdsourced

rider relocates one vehicle at a time, and receives a reward from the operator upon

completing the task. In addition to the financial rewards, the riders are motivated
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by the fact that the relocation trips may be close to the riders’ original travel routes

or they use this opportunity to exercise. For example, Mobike rewards riders with

coupons or cash to relocate bikes (Horwitz 2017) and Bird pays riders to charge and

relocate e-scooters (Bird 2020). Such rider crowdsourcing can help relocate vehicles

in a more flexible manner. In contrast to the 3PL relocation, rider crowdsourcing

offers more flexibility by providing sporadic relocation. On the other hand, rider

crowdsourcing increases the relocation cost because it loses the economies of scale

and it relies on continuous tracking of the vehicle supply and demand for different

service regions. Overall, the total cost of rider crowdsourcing may be higher than

that of 3PL outsourcing if many vehicles are relocated.

To the best of our understanding, our work is the first to study the effectiveness

and implications of combining 3PL outsourcing and rider crowdsourcing to rebal-

ance shared micromobility vehicles. In particular, we are interested in the following

research questions: How should a shared micromobility operator integrate the vehi-

cle allocation and relocation decisions to match his finite supply with the uncertain

demand to maximize his profit? Given a limited budget for acquiring vehicles, how

does the budget affect the initial vehicle allocation for the regions and the subsequent

vehicle relocation across the regions? Similarly, how does a budget for crowdsourc-

ing individual riders affect the vehicle allocation and relocation? What is the best

strategy for vehicle relocation (i.e., rider crowdsourcing only, 3PL outsourcing only,

both of them, or none of them)? Under each relocation strategy, are there any in-

teresting temporal or spatial features of the shared micromobility system? How do

system parameters affect the performance of the system?

In this chapter, we consider an operator that provides a fleet of micromobility

vehicles to satisfy customers’ demands in a service area over an operational horizon

with multiple periods. Due to government regulations, the entire service area is

divided into multiple regions (He et al. 2017, Qi et al. 2018) with different vehicle

allocation capacities. The customer demands in each period are uncertain. At the

start of the horizon, the operator first decides the initial vehicle allocation for the

different service regions without knowing the actual demands in each period. Sub-

sequently, in each period, after the demands are realized, the operator determines
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and executes the vehicle relocation across the regions (using rider crowdsourcing

and 3PL outsourcing) to match the vehicles with the customer demands. Unsatis-

fied demands in each period are lost. The operator’s objective is to maximize his

expected profit over the operational horizon.

We make the following contributions for the work in this chapter:

(i) We formulate the operator’s integrated vehicle allocation and relocation problem

as a two-stage stochastic mixed-integer program (Birge and Louveaux 2011) on a

time-space network. In the first stage, we decide the initial vehicle allocation for the

service regions, whereas in the second stage we determine the subsequent vehicle

relocation across the regions over the horizon. The vehicle relocation is modeled as

recourse decisions after the demands are realized in each period.

(ii) We develop an efficient algorithmic approach that incorporates scenario-based

and time-based (temporal) decomposition ideas to obtain high-quality solutions to

the problem. Our numerical experiments based on data collected from Citi Bike

(2021) suggest that our approach yields better solutions in a much shorter time

than a commercial solver.

(iii) We obtain the following managerial insights for the micromobility operator.

We find that the 3PL is more efficient in mass relocation than rider crowdsourcing,

whereas the latter is more efficient in handling sporadic relocation needs. Introduc-

ing rider crowdsourcing in addition to the 3PL can significantly increase the profit,

reduce the demand loss, and improve the vehicle utilization rate of the system with-

out affecting the existing commitment with the 3PL. We also observe that the budget

for acquiring vehicles and the budget for rider crowdsourcing have significant im-

pact on the initial vehicle allocation and the subsequent vehicle relocation. We find

that the 3PL often conducts relocation around peak hours of a day by moving ve-

hicles in batches from faraway, low-demand regions, whereas rider crowdsourcing is

engaged throughout the day to relocate a few vehicles each time from neighboring

regions. Furthermore, rider crowdsourcing relocates more vehicles under a unimodal

customer arrival pattern than a bimodal pattern, whereas the reverse holds for 3PL

outsourcing.

After reviewing the related literature in Section 2.2, we formulate the problem
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in Section 2.3. Section 2.4 studies structural results for the two-region case. Section

2.5 develops a solution approach for the general case with multiple regions. Section

2.6 performs extensive numerical experiments to examine the two vehicle-relocation

methods based on the data from Citi Bike (2021). Section 2.7 concludes the chapter.

All proofs are presented in Online Appendix.

2.2 Literature Review

Our work in this chapter is closely related to the Operations Management (OM)

studies on shared mobility, a component of smart cities (Qi and Shen 2019, Mak

2022). The majority of literature on shared mobility focuses on vehicle-sharing

systems, where people rent or hail cars from individual car owners or drivers for trips

(e.g., Nair and Miller-Hooks 2014, Boyacı et al. 2015, and Feng et al. 2021). He et al.

(2017) consider a service region design problem by incorporating fleet operations

and the customer adoption rate for electric vehicles under uncertainty. Chang et al.

(2017) optimize the car fleet location, size, and type via integer programming by

considering a carbon emission constraint. Lu et al. (2018) optimize vehicle allocation

under demand uncertainty and address the impact of one-way and round-way trips

on the system’s profit and service quality.

Shared micromobility, another type of shared mobility, further brings challenges

and opportunities to OM researchers (Hasija et al. 2020). Recent work by Kabra

et al. (2020) empirically investigates the impact of bike accessibility and availability

on bike-share ridership by using a structural demand model. Our work is more

related to Shu et al. (2013). Specifically, they build linear programming models with

proportionality constraints to optimize the bicycle flows when the initial allocation

of bicycles is given at each dock station and examine the impact of bicycle operations

on the dock size. However, the decisions on initial allocation and fleet operations

are inherently interdependent. Therefore, we consider an integrated allocation and

relocation model in which an operator decides the initial vehicle allocation and

subsequent vehicle relocation.

Our work also contributes to the literature on fleet operations on shared mo-

bility. The existing studies extend the broader scope of inventory redistribution
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or transshipment (Benjaafar et al. 2022), which has been widely investigated es-

pecially for the optimal stocking policy (Tagaras and Cohen 1992, Grahovac and

Chakravarty 2001). Different approaches have been proposed to facilitate fleet op-

erations for vehicle-sharing systems. Nair and Miller-Hooks (2011) minimize the

cost of fleet redistribution by mixed-integer programming with chance constraints

to ensure service level. Lu et al. (2018) implement dynamic vehicle relocation via

a rolling horizon method. He et al. (2020) derive an optimal relocation policy for

a two-region system and then use a linear decision rule to solve a distributionally

robust model for a multi-region system.

Our work is more related to micromobility vehicle operations (e.g., fleet oper-

ations of bicycle-sharing systems). Dell’Amico et al. (2014) model bike relocation

by trucks as a capacitated pickup-and-delivery vehicle routing problem and use a

branch-and-cut algorithm to find solutions. Freund et al. (2020) consider truck-

and trike-based rebalancing approaches for a bike-sharing system and formulate the

underlying routing problems with integer programming to minimize expected cus-

tomer dissatisfaction. Fu et al. (2022) build a two-stage robust model to optimize

station location in the first stage and rebalancing vehicle assignment in the second

stage, given the fixed number of stations and vehicles. The above studies often

ignore the system operator’s capacity design (e.g., bike allocation), which is more

critical in shared micromobility than in vehicle-sharing as mentioned in Section

2.1. Furthermore, the above papers only consider bike relocation in batches and

the corresponding route design problem. In contrast, our study considers different

relocation strategies using rider crowdsourcing and 3PL outsourcing.

Finally, our work is related to OM studies on crowdsourcing. Crowdsourcing is

widely studied in last-mile delivery operations, where independent car drivers (Qi

et al. 2018, Fatehi and Wagner 2022) or cyclists (Kafle et al. 2017) are incentivized

to provide customers with fast and on-time delivery services. Unlike goods that exit

the delivery system once they are delivered, shared micromobility vehicles stay in

the system after they are relocated. Such a difference inspires further studies that

provide foundations for using crowdsourcing in micromobility vehicle relocation. Ac-

cording to a survey by Singla et al. (2015), customers are willing to alter their routes
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to help relocate bikes given monetary incentives. Fricker and Gast (2016) analyze

the steady-state performance of a bicycle-sharing system and show that incentiviz-

ing users to the least-loaded station leads to fewer problematic stations. He et al.

(2021) formulate a model in which a two-sided matching platform (e.g., a free-float

bike-sharing platform) determines both the spatial allocation of parking spaces and

the design of incentive instruments (e.g., price and rewards to customers) that can

affect the supply in each region. Huang et al. (2021) find that a sparse structure

of a transshipment network can guide bike repositioning by crowdsourced volun-

teers and help reduce the rebalancing of workload without sacrificing much demand

satisfaction. Unlike the above studies, our work in this chapter offers new insights

by incorporating rider crowdsourcing and 3PL outsourcing in an integrated micro-

mobility vehicle allocation and relocation model under different temporal demand

patterns.

2.3 Problem Formulation

Consider a shared micromobility operator, who provides shared micromobility ser-

vice for a set of regions V = {1, 2, . . . , V } in each period t ∈ T = {0, 1, . . . , T − 1}.

We first describe the movement of micromobility vehicles across the service regions

and then present our optimization model.

2.3.1 Vehicle Movement: A Time-Space Network

We model the vehicle movements among regions and across periods as flows in a

time-space network G = (N ,A), where N is a set of nodes and A is a set of directed

arcs on the network as shown in Figure 2.1. Service region i ∈ V in period s ∈ T

is represented by node nis ∈ N . The flow on the directed arc (nis, njt) ∈ A with

s ≤ t − 1 represents the number of vehicles moving from node nis to node njt. At

the start of period 0, each node ni0, i ∈ V , is allocated with an initial number of

vehicles xi. At the end of the operational horizon (period T − 1), the number of

vehicles in each node ni,T−1, i ∈ V , is denoted as x̃i. We define column vectors

x = (xi, i ∈ V)⊤ and x̃ = (x̃i, i ∈ V)⊤ as the inflow and the outflow of the network

G.

11



ynV 0,nV 1

xV

x3

x2

x1

x̃V

x̃3

x̃2

x̃1y
n
10 ,n

32

γn21
,n13

γ
n
31 ,n

V 3

γn21 ,n33
γ
n
21 ,n

V
3

nV,0 nV,1 nV,2 nV,3

n3,0 n3,1 n3,2 n3,3

n2,0 n2,1 n2,2 n2,3

n1,0 n1,1 n1,2 n1,3

n3,T−1

n2,T−1

n1,T−1

nV,T−1

Trip arc (allows crowdsourcing) Idle arc 3PL relocation arc

Figure 2.1: Time-space Network G

Given regions i, j ∈ V , we assume that a rider takes lij ≥ 1 periods to ride a

micromobility vehicle from region i to region j with lii = 1. In contrast, we assume

the 3PL takes a fixed number of periods lr ≥ 1 to relocate vehicles from region i to

region j. This assumption is reasonable for a relatively compact geographical area

in which the regions in V are near each other. To ensure that a rider has enough

time to ride a micromobility vehicle from region i to region j before the end of the

operational horizon, we consider the demands from region i to region j that occur

only in period t ∈ T (lij) = {0, 1, . . . , T − lij − 1}. Similarly, to ensure that the 3PL

can finish all the relocations before the end of the operational horizon, we consider

only 3PL relocations that begin in period t ∈ T (lr) = {0, 1, . . . , T − lr − 1}.

Based on how micromobility vehicles are moved between two nodes, there are

three types of arcs in A in the time-space network: (i) Trip arcs : The flow of

each trip arc (nis, njt) ∈ At represents the number of trips from region i in period

s ∈ T (lij) to region j ̸= i in period t = s + lij, for all i, j ∈ V . Each arc in At

may contain two types of trips: one corresponds to the customer demand and the

other is induced by crowdsourced riders. (ii) Idle arcs : The flow of each idle arc

(njt, nj,t+1) ∈ Ai, represents the number of idling vehicles in region j ∈ V from

period t ∈ T \{T − 1} to period t + 1. (iii) 3PL relocation arcs : The flow of each

3PL relocation arc (nis, nj,s+lr) ∈ Ar represents the number of vehicles relocated by

the 3PL from region i to region j ̸= i in period s ∈ T (lr), for all i, j ∈ V . Define

I = {t, i, r}. Thus, we have A = ∪∀e∈IAe and Ae1 ∩Ae2 = ∅, for e1 ̸= e2, e1, e2 ∈ I.
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Given i ∈ V and t ∈ T \ {T − 1}, the sequence of events regarding vehicle

movements and demand arrivals is depicted in Figure 2.2 and described as follows:

(i) At the start of period t, vehicles idling in region i from period t−1 and incoming

vehicles from any region j ∈ V \ {i} are realized, if any. (ii) Customer demands

arrive. (iii) Knowing the realized demands, the operator determines and executes

the numbers of vehicles relocated by crowdsourced riders and the 3PL. (iv) Any

demand loss is observed and the system is updated for period t+ 1.

Idling vehicles from period t − 1

and incoming vehicles from

region j ∈ V\{i} are realized

Customer

demands arrive

Operator decides the relocation

by crowdsourcing and 3PL

System is updated

for period t + 1

time
Period t Period t+ 1

Figure 2.2: The sequence of events

By observing demand uncertainty, we can model such a process over multiple

periods as a stochastic program in which decisions are made sequentially for each

period t. To avoid the curse of dimensionality and enable efficient decision-making

for large instances, we approximate the problem using a two-stage stochastic pro-

gramming model. In the first stage, we decide the initial number of vehicles allocated

to each region. In the second stage, we decide the vehicle relocation as a recourse

for the entire operational horizon.

2.3.2 Mathematical Formulation

The shared micromobility operator is endowed with a budget that can afford at

most N micromobility vehicles. In the first stage, the operator makes the vehicle

allocation decisions x so that
∑

j∈V xj ≤ N . A cost cj ≥ 0 is incurred for allocating

a micromobility vehicle to region j ∈ V . Due to government regulations on the

parking space, we have xj ≤ Bj for each region j ∈ V .

In the second stage, time-dependent demands arrive at each region i ∈ V at the

start of each period t ∈ T \{T − 1}. For each arc (nit, nj,t+lij) ∈ At, let λnit,nj,t+lij

denote the demand (number of customers) from region i in period t to region j with
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travel time lij. The operator receives a revenue R ≥ 0 for serving a customer per

period. If the number of vehicles available in region i cannot meet the demands

of the region in period t, the unsatisfied demand for (nit, nj,t+lij) ∈ At, denoted by

ηnit,nj,t+lij
, is lost and the operator pays a penalty cost Cp ≥ 0 per customer lost.

Facing uncertain demands, the operator makes his initial vehicle allocation de-

cisions and subsequent relocation decisions to maximize his expected profit. The

profit equals the total revenue minus the total cost. The total cost includes the

initial vehicle allocation cost
∑

j∈V cjxj in the first stage and demand-loss penalty

and vehicle relocation costs in the second stage. Given the initial vehicle alloca-

tion x, let Θ(x) denote the optimal expected net cost of the second stage (i.e.,

the total cost minus the total revenue of the second stage). Thus, maximizing the

operator’s expected profit is equivalent to minimizing the summation of
∑

j∈V cjxj

and Θ(x). The operator optimizes his vehicle allocation decisions by solving the

following problem:

min
x

∑
j∈V

cjxj +Θ(x) s.t. x ∈ X =

x ∈ Z|V|
+

∣∣∣∣∣∣ xj ≤ Bj , j ∈ V,
∑
j∈V

xj ≤ N

 , (M)

where Θ(x) is realized in the second stage as the operator optimizes the vehicle

relocation using rider crowdsourcing and 3PL across the regions. Problem (M)

is an integrated vehicle allocation and relocation problem. We discuss the vehicle

relocation problem in the second stage in detail below.

Vehicle Relocation by Crowdsourced Riders: We assume riders are always

available and can be crowdsourced in any period. For a given arc (nit, nj,t+lij) ∈ At,

we introduce a continuous decision variable Λnit,nj,t+lij
to represent the number of

crowdsourced riders from region i in period t to region j. We assume the operator

provides an incentive ϕnit,nj,t+lij
to motivate the riders to relocate the vehicles along

arc (nit, nj,t+lij). We assume crowdsourcing riders follows the law of diminishing

returns (Shephard and Färe 1974): The marginal reward for the crowdsourced riders

increases as the number of crowdsourced riders increases. Specifically, we define a

concavely increasing incentive function g(·) such that
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Λnit,nj,t+lij
= g

(
ϕnit,nj,t+lij

)
= Λ̄ij ×

(
1− e

−βijϕnit,nj,t+lij

)
, t ∈ T (lij), j ̸= i, i, j ∈ V,

(2.1a)

where Λ̄ij ≥ 0 represents the maximum number of riders that can be crowdsourced

in region i to conduct trips to region j, and βij ≥ 0 denotes the rate of diminishing

return on rewards. Both Λ̄ij and βij can be estimated from historical data.

The total incentive used by the operator to crowdsource riders is capped by a

budget Bc ≥ 0:

∑
i∈V

∑
j∈V,j ̸=i

∑
t∈T (lij)

ϕnit,nj,t+lij
≤ Bc. (2.1b)

For each arc (nit, nj,t+lij) ∈ Ai ∪ At, let ynit,nj,t+lij
denote its realized flow. We have

the following equations:

ynit,nj,t+lij
= λnit,nj,t+lij

+ Λnit,nj,t+lij
− ηnit,nj,t+lij

, t ∈ T (lij), j ̸= i, i, j ∈ V. (2.1c)

Vehicle Relocation by the 3PL: For each period t ∈ T (lr), we define a decision

variable zt such that zt = 1 if the 3PL is requested by the operator in period t to

relocate vehicles and zt = 0 otherwise. In practice, the operator can only request

the 3PL for vehicle relocation for no more than z̄ times over the entire operational

horizon: ∑
t∈T (lr)

zt ≤ z̄. (2.2a)

For each request, the 3PL charges the operator a fixed fee Cr ≥ 0 to relocate

vehicles across multiple regions. Note that no additional fees are required if it takes

multiple periods to relocate the vehicles. Define a binary variable z̃t to represent

the status of the 3PL such that z̃t = 1 if the 3PL provides service in period t and

z̃t = 0 otherwise. Since the 3PL provides service only if the operator has requested

it, we have the following constraints:

zt − z̃t ≤ 0, t ∈ T (lr). (2.2b)

If a 3PL relocation is requested by the operator in period t (i.e., zt = 1), then it

implies that no 3PL relocation service is provided in period t − 1 (i.e., z̃t−1 = 0).

We have the following constraints:
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zt + z̃t−1 − 1 ≤ 0, t ∈ T (lr)\{0}. (2.2c)

If a 3PL relocation service is provided in period t (i.e., z̃t = 1) but not in period

t− 1 (i.e., z̃t−1 = 0), then clearly the relocation service is initiated in period t (i.e.,

zt = 1). This can be represented by the following constraints:

zt − z̃t + z̃t−1 ≥ 0, t ∈ T (lr)\{0}. (2.2d)

In practice, the 3PL can only serve a limited number of periods. Specifically, we

assume that during any time interval of lf periods, the 3PL operates for at most ¯̄z

periods:

t+lf−1∑
i=t

z̃i ≤ ¯̄z, t ∈ {0, 1, . . . , T − lr − lf − 1}. (2.2e)

For each arc (nit, nj,t+lr) ∈ Ar, we define a continuous decision variable γnit,nj,t+lr
to

represent the number of vehicles relocated by the 3PL from region i in period t to

region j. The total number of relocated vehicles in period t is constrained between

a lower limit q and an upper limit q̄:

qz̃t ≤
∑
i∈V

∑
j∈V,j ̸=i

γnit,nj,t+lr
≤ q̄z̃t, t ∈ T (lr). (2.2f)

At the beginning of period 0, we assume that the 3PL is requested if it provides

relocation service:

z0 − z̃0 ≥ 0. (2.2g)

Finally, the following constraints restrict z̃t to be binary for t ∈ T (lr):

z̃t ∈ {0, 1}, t ∈ T (lr), (2.2h)

which, together with constraints (2.2b) – (2.2d) and (2.2g), guarantee zt to be binary

for t ∈ T (lr).

Example. We show an example where the 3PL is requested in period s1 and

period s2 with s1 < s2 (i.e., zs1 = zs2 = 1), as shown in Figure 2.3. Once requested in
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period s1, the 3PL provides services for two consecutive periods (i.e., z̃s1 = z̃s1+1 = 1

represented by orange circles). It then stops services in period s1 + 2 until period

s2 − 1 (i.e., z̃s1+2 = · · · = z̃s2−1 = 0 represented by gray circles). Once requested

again in period s2, the 3PL provides services for three consecutive periods (i.e.,

z̃s2 = z̃s2+1 = z̃s2+2 = 1). Figure 2.3 illustrates the detailed values of zt and z̃t for

t ∈ {s1 − 1, s1, . . . , s2 + 3}, in which zt = 0 if t ̸= s1 or t ̸= s2.

time

Period s1 − 1 s1 s1 + 1 s1 + 2 · · · s2 − 1 s2 s2 + 1 s2 + 2 s2 + 3

zt

z̃t 0 1 1 0 · · · 0 1 1 1 0

0 1 0 0 · · · 0 1 0 0 0

Figure 2.3: Service Status of the 3PL

We observe from the above Example 1 that the value of z̃t can be different from

that of zt in each period t ∈ T (lr), while their logical relationships are described by

constraints (2.2b) – (2.2d) and (2.2g). Note that z̃t is necessary to describe whether

the 3PL provides services in each period t (i.e., service status), while zt describes

whether the 3PL is requested to start providing services in period t or not. Once

starting to provide services, the 3PL can continue to provide services for several

consecutive periods subject to constraints (2.2e). Technically the variable zt is not

necessary to describe the service status of the 3PL, but we define it for two purposes:

(i) practically control the total number of requests that the operator submits to the

3PL, as described by constraints (2.2a); (ii) record the fixed fee Cr when the 3PL is

requested because this fee is incurred once the 3PL starts providing services. Thus,

the total fixed fee incurred over the entire operational horizon is
∑

t∈T (lr)
Crz

k
t .

Flow Balance: Given any node nit ∈ N , the number of vehicles flowing into this

node should be the same as the number of vehicles flowing out from this node:

(
ynit,ni,t+1 +

∑
j∈V,j ̸=i

(
ynit,nj,t+lij

+ γnit,nj,t+lr

))
−

(
yni,t−1,nit +

∑
j∈V,j ̸=i

(
ynj,t−lji

,nit + γnj,t−lr ,nit

))

=


xi, if t = 0;

0, if t = 1, . . . , T − 2;

−x̃i, if t = T − 1;

(2.3)

for i ∈ V . Note that the constraints may contain some undefined arcs (nis, njt)

with s < 0 or t ≥ T for j ̸= i, i, j ∈ V (see Figure A.1 in Appendix A.2.1). For
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consistency, we set the realized flow ynis,njt
= 0 and the number of vehicles relocated

by the 3PL γnis,njt
= 0 on such arcs.

In the second stage, given the initial vehicle allocation x, the operator relocates

the vehicles to maximize his expected profit subject to uncertain demands λnit,nj,t+lij
.

We assume that there is a finite support for the joint distribution of the uncertain

demands in all the service regions across all the periods. Thus, we use a set K

to include scenarios of uncertain demands in all the service regions across all the

periods. Each scenario k ∈ K has a probability pk ≥ 0 with
∑

k∈K pk = 1. For each

scenario k ∈ K, the operator makes recourse decisions for all the periods in T . We

reuse the above notation for the second-stage problem and add a superscript k to

each decision variable for each scenario. We use bold symbols to represent vectors.

For example, x̃k = (x̃k
j , j ∈ V)⊤ (see Appendix A.2.2 for the details). For each

k ∈ K, let Yk = (x̃k,ηk,yk,γk,Λk,ϕk, zk, z̃k) denote all the decision variables and

let Y(x,λk) := {Yk ∈ R(|V|+4|At|+|Ar|+2|T (lr)|)
+ | (2.1a)− (2.1c), (2.2a)− (2.2h), (2.3)}

denote the feasible region. Given the initial vehicle allocation x, the expected net

cost Θ(x) in the second stage can be determined by solving the following network

flow optimization problem:

Θ(x) = min
Yk∈Y(x,λk), k∈K

∑
k∈K

pk

∑
a∈At

(
Cpη

k
a + ϕk

a −Rla
(
yka − Λk

a

))
+

∑
t∈T (lr)

Crz
k
t

 . (P)

Note that the flows on the idle arcs do not incur any costs and the flows correspond-

ing to the 3PL and crowdsourcing relocation do not generate revenue.

Model Implementation: In practice, we can apply our model for the allocation

planning on a seasonal or yearly basis. After deriving the amount of vehicles and

the allocation, we can apply the second-stage model for daily relocation decisions

given the estimated demand of the day. We may need to adjust the initial allocation

in different regions at the beginning of the day to match the reality before we derive

the relocation decisions.

Remark. We note that in practice the decision-makers can also use simulation

methods for planning and operational policies for bike-sharing systems(Jian et al.

2016, Soriguera et al. 2018, Negahban 2019). It is preferred when the problem

is difficult to be translated into an analytical expression. It can also handle the
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problem with a high degree of uncertainty. However, simulation is often more time

consuming and less accurate than the stochastic optimization (Amaran et al. 2016).

Moreover, simulation is often regarded as a black box and may not be able to provide

rich analytical insights as model-based mathematical programming. Therefore, we

prefer to investigate our problem by stochastic optimization.

2.4 Analysis of Two-region Case

We consider a special case of problem (M) with two service regions. To obtain

some structural results, we focus on a scenario in K with demands λnit,n3−i,t+L
.

We assume that the numbers of vehicles initially allocated to the two regions x1

and x2 are given so that we can study the optimal relocation strategy for prob-

lem (P) in detail. We use the following problem setting: (i) The travel time and

the 3PL relocation time between the two regions are a constant L. (ii) To relo-

cate vehicles from region i and period t to the other region by crowdsourcing, the

total reward provided increases linearly with the number of crowdsourced riders:

ϕnit,n3−i,t+L
= αΛnit,n3−i,t+L

+ b, where α ≥ 0 represents a variable cost of crowd-

sourcing an additional rider and b ≥ 0 represents a fixed cost of crowdsourcing.

(iii) We set q = 0 and q̄ = max
{
λnit,n3−i,t+L

∣∣ i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}
}
.

Problem (P) becomes

Θ(x1, x2) = min
(Λ,y,η,z,γ)∈Y(x1,x2,λ)

{
T−L−1∑
t=0

(
2∑

i=1

(
Cpηnit,n3−i,t+L + αΛnit,n3−i,t+L + b (2.4)

−RL
(
ynit,n3−i,t+L − Λnit,n3−i,t+L

))
+ Crzt

)}
,

where Y(x1, x2,λ) is described in detail in Appendix A.3.1. Note that there are no

incoming vehicles for any region in the first L periods and no demands in the last

L periods. Thus, it is sufficient to consider periods t ∈ {0, 1, . . . , T − L− 1} in the

objective.

Proposition 2.1. Given any i ∈ {1, 2} and t ∈ {0, 1, . . . , T−L−1}, the optimal re-

location strategy satisfies the following three conditions: (a) Λ∗
nit,n3−i,t+L

γ∗
nit,n3−i,t+L

=

0; (b) Cr ≥ αΛ∗
nit,n3−i,t+L

; and (c) if z∗t = 1 and γ∗
nit,n3−i,t+L

> 0, then Cr ≤

αγ∗
nit,n3−i,t+L

.
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Part (a) of Proposition 2.1 shows that under the optimal relocation strategy, the

3PL and crowdsourcing are not used simultaneously in any region i and period t.

Part (b) shows that if crowdsourcing is used (i.e., Λ∗
nit,n3−i,t+L

> 0), then its unit

cost of relocating one vehicle is less than that by the 3PL (i.e., α ≤ Cr/Λ
∗
nit,n3−i,t+L

).

Similarly, Part (c) shows that if the 3PL is used in a given period t (i.e., z∗t = 1

and γ∗
nit,n3−i,t+L

> 0), then its unit cost of relocating one vehicle is less than that by

crowdsourcing (i.e., Cr/γ
∗
nit,n3−i,t+L

≤ α). Such insights imply that the unit cost of

each relocation method serves as a critical instrument for the micromobility operator

to decide which method to use for each arc in the time-space network. Section 2.6

considers a more practical setting in industry by solving the general problem (M).

We first introduce a solution approach to problem (M) in the following section.

2.5 Solution Approach for Multiple Regions

We will develop a decomposition-based solution approach to efficiently solve the in-

tegrated vehicle allocation and relocation problem (M). To accomplish that, we first

propose a piecewise-linear approximation of the nonlinear crowdsourcing incentive

function g(·) in (2.1a) and then develop a solution algorithm to solve problem (M).

2.5.1 Piecewise-Linear Approximation of the Incentive Func-
tion

In constraints (2.1a), given any scenario k ∈ K and arc (nit, ni,t+lij) ∈ At, the number

of crowdsourced riders is Λk
nit,ni,t+lij

= g(ϕk
nit,ni,t+lij

) = Λ̄ij(1− e
−βijϕ

k
nit,nj,t+lij ), which

is a concavely increasing function of the reward amount ϕk
nit,ni,t+lij

. To facilitate

algorithmic development for solving problem (M), we approximate the function g(·)

with a piecewise-linear function, as illustrated in Figure 2.4, such that the nonlinear

constraints (2.1a) can be replaced by a set of linear constraints. Since the same

approximation is applicable for any two given regions i and j in each period t for

any scenario k, we drop the superscript and subscripts from Λk
nit,nj,t+lij

, ϕk
nit,nj,t+lij

,

Λ̄ij, and βij when describing our approximation. That is, we have Λ = g(ϕ) =

Λ̄(1− e−βϕ), where ϕ ∈ [0,∞).

Given an arbitrarily small number ϵ > 0, define ϕ̄ = g−1
(
Λ̄− ϵ

)
. We divide the
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Figure 2.4: Piecewise-Linear Approximation of the Incentive Function

interval [0, ϕ̄] into H segments, each with length δ = ϕ̄/H. Given any h ∈ H =

{1, 2, . . . , H}, we approximate the function g(·) in the hth segment [(h − 1)δ, hδ]

(denoted as [bh−1, bh] in Figure 2.4) with a linear function passing through points

((h − 1)δ, g((h − 1)δ)) and (hδ, g(hδ)). Let k̄h = (g(hδ) − g((h − 1)δ))/δ denote

the slope of this linear function. For ϕ in [ϕ̄,∞), we approximate the function g(·)

with a constant Λ̄ − ϵ. For each h ∈ H in the above approximation, the number

of crowdsourced riders Λ linearly increases with the reward ϕ, while the slope k̄h is

decreasing in h and becomes 0 as ϕ reaches ϕ̄. Clearly, having more segments (i.e.,

a larger H) leads to a more accurate approximation.

For each h ∈ H, define a binary decision variable uh such that uh = 1 if the

optimal reward ϕ falls in the hth segment, and uh = 0 otherwise. Since we minimize

the objective of problem (M), no binary variables are needed for [ϕ̄,∞) because no

more crowdsourced riders will be attracted when ϕ becomes larger than ϕ̄ (i.e., the

optimal ϕ will not exceed ϕ̄). We thus restrict ϕ ∈ [0, ϕ̄]. For each h ∈ H, define a

continuous decision variable ϕ̃h ∈ [0, δ] such that the optimal reward ϕ = (h−1)δ+ϕ̃h

and the optimal number of crowdsourced riders Λ = g((h − 1)δ) + k̄hϕ̃h in the hth

segment. Thus, the constraint Λ = g(ϕ) can be approximated by the following set

of constraints:

ϕ =
H∑

h=1

uh

(
(h− 1)δ + ϕ̃h

)
, (2.5a)

Λ =

H∑
h=1

uh

(
h−1∑
m=1

k̄mδ + k̄hϕ̃h

)
, (2.5b)

H∑
h=1

uh = 1, (2.5c)

0 ≤ ϕ̃h ≤ δ, h ∈ H, (2.5d)

uh ∈ {0, 1}, h ∈ H. (2.5e)
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Note that there are bilinear terms (i.e., uhϕ̃h) in (2.5a) and (2.5b). Since uh is

binary for h ∈ H, such bilinear terms can be exactly reformulated as the following

linear constraints:

ϕ =
H∑

h=1

(
(h− 1)uhδ + ωh

)
, Λ =

H∑
h=1

uh

h−1∑
m=1

k̄mδ +
H∑

h=1

k̄hωh,

uhδ − ωh ≥ 0, ϕ̃h − ωh ≥ 0, δ − uhδ − ϕ̃h + ωh ≥ 0, ωh ≥ 0, h ∈ H, (2.6)

where ωh replaces uhϕ̃h in (2.5a) and (2.5b) for h ∈ H.

By adopting the approximation in (2.5c) – (2.5e) and (2.6), we are ready to re-

formulate the relocation problem (P) by approximating nonlinear constraints (2.1a)

for each scenario k ∈ K. For each arc a = (nit, nj,t+lij) ∈ At, we add a subscript a to

the decision variables ϕ, uh, ϕ̃h, and ωh, and add subscripts ij to the parameters δ

and k̄h in (2.5c) – (2.5e) and (2.6). Given any first-stage solution x, problem (P) can

be decomposed to |K| independent problems, each corresponds to scenario k ∈ K.

Let Pk denote the relocation problem that corresponds to scenario k ∈ K with its

net cost equals

Ψ
(
Ỹk
)
=
∑
a∈At

(
Cpη

k
a + ϕk

a −Rla

(
yka − Λk

a

))
+
∑

t∈T (lr)

Crz
k
t , (2.7)

where Ỹk = (x̃k,ηk,yk,γk,Λk,uk,ϕk, ϕ̃
k
, zk, z̃k,ωk) ∈ R(|V|+(4+3H)|At|+|Ar|+2|T (lr)|)

+ ,

uk = ((uk
1,a, . . . , u

k
H,a), a ∈ At)⊤, ϕ̃

k
= ((ϕ̃k

1,a, . . . , ϕ̃
k
H,a), a ∈ At)⊤, and ωk =

((ωk
1,a, . . . , ω

k
H,a), a ∈ At)⊤. We obtain the final formulation of the relocation problem

(P) as follows:

Θ′(x) = min
Ỹk, k∈K

{
(2.7)

∣∣∣∣ (2.1b), (2.1c), (2.2a)− (2.2h), (2.3),

(
(2.5c)− (2.5e), (2.6), a ∈ At

)
, k ∈ K

}
. (Q0)

By relaxing uk
h,a to be continuous for k ∈ K, h ∈ H, and a ∈ At, the above problem

becomes

Θ′′(x) = min
Ỹk, k∈K

{
(2.7)

∣∣∣∣ (2.1b), (2.1c), (2.2a)− (2.2h), (2.3),(
(2.5c)− (2.5d), (2.6),

(
ukh,a ∈ [0, 1], h ∈ H

)
, a ∈ At

)
, k ∈ K

}
. (Q)
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Proposition 2.2. Given any initial vehicle allocation x ∈ X , we have Θ′(x) =

Θ′′(x).

Proposition 2.2 shows that for each scenario k ∈ K, the optimal objective value

of problem (Q0) is not affected if binary variables uk
h,a (h ∈ H, a ∈ At) are relaxed

to continuous ones. Thus, we can use (Q) to approximate the original second-stage

problem (P) to reduce the computational burden. Hereafter, we replace (P) with

the reformulated relocation problem (Q) in the integrated allocation and relocation

problem (M).

2.5.2 Solution Algorithm

We propose an algorithm that can efficiently solve large-scale instances of problem

(M). The algorithm consists of three steps: First, to increase computational ef-

ficiency, we reduce the number of binary variables in the relocation problem (Q).

Second, as problem (Q) is difficult to solve when considering the entire time-space

network G, we derive a temporal decomposition approach by iteratively solving a

series of subproblems. Each subproblem considers only a part of the time-space net-

work covering several consecutive periods. Third, based on initial vehicle allocations

obtained in the second step, we design a heuristic to further improve the solution

quality. To facilitate the algorithm description, we first refine the notation defined

in Section 2.3.

Algorithm Notation. Recall from Section 2.3.2 that the starting periods of

trip arcs and 3PL relocation arcs are in the sets T (lij) and T (lr), respectively, where

lij and lr represent the trip and relocation durations, respectively. For recording

purposes, we rename the sets as T (lij, 0, T ) = {0, 1, . . . , T − lij−1} and T (lr, 0, T ) =

{0, 1, . . . , T − lr − 1}. Likewise, we rename the relocation problem (Q) as Q(0, T )

and the integrated allocation and relocation problem (M) as M(0, T ). Generally,

given a starting period s ∈ T , an ending period e ∈ T ∪ {T} (e ≥ s + 1), and

a time duration l ∈ {1, 2, . . . , e − s}, define T (l, s, e) = {s, s + 1, . . . , e − l − 1}.

For a part of the time-space network with a starting period s and an ending period

e, let Q(s, e) denote the corresponding relocation problem, which has a vector of

variables Ỹk
(s,e) and a feasible region Y(s,e)(x,λ

k) := {(A.9a) − (A.9s)} for k ∈ K
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(see Appendix A.4.2 for details). LetM(s, e) denote the integrated allocation and

relocation problem with Q(s, e) as the relocation problem in its second stage.

When we relax the binary variables z̃k, k ∈ K, to continuous ones, we denote

the resulting feasible region in the second stage as YLP(s,e)(x,λ
k) := {(A.9a) −

(A.9r), z̃kt ∈ [0, 1], t ∈ T (lr, s, e)}, k ∈ K. The relaxed relocation problem is

QLP(s, e) := {Θ′′(x)| Ỹk
(s,e) ∈ YLP(s,e)(x,λ

k), k ∈ K} and the overall relaxed two-

stage problem is denoted by MLP(s, e). Note that as the second-stage problem of

MLP(s, e), problem QLP(s, e) is a linear programming (LP) relaxation of Q(s, e).

By using the starting period s as a superscript, let xs = (xs
i , i ∈ V)⊤ denote the

first-stage solution ofMLP(s, e) and let vs denote its corresponding objective value.

Similarly, we add a superscript s to the second-stage decision variables to denote

the second-stage solution.

Step 1: Reducing The Number of Binary Variables. Due to constraints

(2.2a) – (2.2e), in an optimal solution, only a limited number of z̃kt , k ∈ K, t ∈ T ,

will be 1, and the others equal 0. This means that the 3PL relocation service is

provided only in several periods. To reduce the number of binary variables, we

design Algorithm 1 (see Appendix A.4.3) with some z̃kt fixed at 0, while the others

are optimized. Specifically, for any s ∈ T and e ∈ T ∪ {T} such that e− s ≥ 3, we

solve the LP relaxation problem MLP(s, e) to find z̃kst for each scenario k ∈ K. If

the values of z̃kst and z̃kst + z̃kst+1 are almost zero, then we fix z̃kt = 0 in Q(s, e).

Step 2: Temporal Decomposition. Our original relocation problem Q(0, T )

can have a huge number of variables and constraints. By splitting the time-space

network along the operational horizon into M sub-networks, each sub-network m ∈

{1, 2, . . . ,M} has a shorter time horizon with Tsub = ⌊T/M⌋ periods. Solving the

problem Q(s, e) with s = (m− 1)Tsub and e = mTsub, which corresponds to the mth

sub-network, is more computationally efficient. Thus, we will solve a sequence of

smaller two-stage stochastic programs, each corresponding to a sub-network, in a

backward manner, from sub-network M to sub-network 1.

For each sub-networkm, we follow a four-step solution procedure. First, we apply

Algorithm 1 to reduce the number of binary variables. Second, based on the initial

vehicle allocation of sub-networkm+1, we add new constraints to balance the vehicle
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flows between sub-networks m and m+1, and obtain the initial vehicle allocation of

sub-network m. Third, we re-solve the relaxed two-stage problemMLP(s, e) several

times by perturbing the initial vehicle allocation of sub-network m to yield several

candidate allocations. Fourth, if m ≥ 2, then we choose the vehicle allocation

with the best objective of MLP(s, e) as the vehicle allocation of sub-network m.

If m = 1, then given an initial vehicle allocation of sub-network m, we solve the

two-stage problemM(0, T ) over the original time-space network with the first-stage

decisions fixed at this initial vehicle allocation and the number of binary variables

reduced. We choose the vehicle allocation with the best objective of M(0, T ) as

the initial vehicle allocation of the entire network. Algorithm 2 in Appendix A.4.4

presents the above decomposition approach in detail to solve problem (M).

Step 3: Heuristic Search. With several initial vehicle allocations of sub-

network 1 obtained from the above temporal decomposition approach, we introduce

Algorithm 3 in Appendix A.4.5 to further search for better solutions. Algorithm 3

is based on the following intuition: If the objective value under a vehicle allocation

monotonically decreases as the total number of allocated vehicles increases (resp.

decreases), then likely a smaller objective can be found by further increasing (resp.

decreasing) the total number of allocated vehicles. We observe this phenomenon in

our numerical experiments.

2.6 Numerical Experiments: A Case Study

We conduct numerical experiments using real operational data from Citi Bike (2021).

We first discuss parameter settings of the problem and then obtain managerial in-

sights from various numerical experiments based on these settings.

2.6.1 Parameter Settings

We have collected data from Citi Bike (2021) in New York City (NYC) from January

1, 2018 to December 31, 2019. Figure 2.5 shows the overview of daily demands of

different locations of Manhattan in 2018. We focus on Midtown Manhattan between

the 20th Street and the 57th Street, and divide the area into nine rectangular service

regions (i.e., |V| = 9). Each region covers an area of about 1-kilometer square, as
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shown in Figure 2.6.2.1 The travel distance between any two regions is measured

by the Manhattan distance (L1 norm) between their centers. Based on the data in

2018, we find that the average riding speed is 9 kilometers per hour.2.2 Thus, the

average trip duration from one region to a neighboring region is 6.7 minutes. For

simplicity, we assume the traveling speed between any two regions is the same and

set each period as 6 minutes (leading to T = 240 periods per day). As a result, the

longest trip (e.g. from region 1 to region 9) takes four periods. This is evidenced in

the data as 96.5% of the trips in the studied area finish within 24 minutes.

(a) Minimum Daily Demands (b) Average Daily Demands

(c) Maximum Daily Demands

Figure 2.5: Daily Demands of Manhattan in 2018

7

8

9
4

5

6
1

2

3

Figure 2.6: Service Regions in Midtown Manhattan

2.1Source: https://www.propertyshark.com/mason/ny/New-York-City/Maps?map=nyc2.
2.2Similar user behavior for urban commuters in NYC can be found in NYC DOT (2019).
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The upper bound N of the total number of vehicles allocated to the studied area

is not available in the data set. We estimate such an upper bound as follows:

N =
No. of all the trips in the studied area

No. of all the trips in NYC
×No. of vehicles in NYC,

where the number of vehicles in NYC is obtained by counting unique bike IDs in

the data set. Based on the above calculation, we have N = 1, 206. Similarly, we

estimate the upper bound Bj of the total number of vehicles allocated to region j

as follows:

Bj =
No. of all the trips from region j

No. of all the trips in the studied area
×N, j ∈ V.

Note that the total number of vehicles allocated by our model is much smaller than

N . This indicates that there are many redundant bikes allocated to the studied area

— a phenomenon commonly seen among shared micromobility systems in practice.

The reasons can be (i) the firm believes that allocating more bikes will provide more

convenient services and attract more customers; (ii) the firm may want to increase its

market share by increasing their vehicle supply. Nevertheless, allocating redundant

bikes creates traffic congestion or chaos on the streets and leads to more complicated

vehicle relocation operations. To tighten the number of bikes, we reduce N to 500

in our numerical experiments. As N is scaled from 1,206 down to 500, the upper

bound Bj of region j ∈ V is also scaled down by multiplying 500/1, 206.

The cost parameters are estimated (in USD) on a daily basis. The vehicle al-

location cost is cj = 0.5 for each j ∈ V .2.3 The revenue per bike trip per period

is R = 0.2 and the penalty cost Cp = 0.5 for an unfulfilled trip demand.2.4 As for

relocation costs, we use Cr = 15 for 3PL relocation per request with volume lower

capacity q = 0 and upper capacity q̄ = 100.2.5 In addition, the 3PL can be requested

at most z̄ = 10 times per day. In any given lf = 10 consecutive periods, the 3PL

2.3The vehicle allocation cost is estimated by dividing 150 dollars (the normal price of a bicycle
offered on Amazon.com) over 300 operational days per year (we exclude some days due to vehicle
maintenance and weather conditions).

2.4Given that the annual membership costs 15 dollars per month, the revenue is estimated by
assuming that each customer has 30 rides per month with 2.5 periods (15 minutes) per ride, leading
to R = 0.2.

2.5According to American Transportation Research Institute (Murray and Glidewell 2019), the
average service cost of motor carriers from 2015 to 2018 is 1.67 dollars per mile. We assume that
the 3PL relocation charges the same price and covers 9 miles of a route through nine regions, which
leads to about 15 dollars per relocation request.
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can operate at most ¯̄z = 2 consecutive periods.

The parameters of the incentive function g(·) are obtained as follows. Given any

pair of regions i, j ∈ V , we may estimate the maximum number of crowdsourced

riders Λ̄ij and the rate βij of the incentive function in (2.1a) from the historical

data. Unfortunately, the available data is insufficient for such an estimation. In-

stead, we construct the piecewise-linear approximation of the incentive function in

(2.5a) – (2.5e) using three parameters Λ̄ij, k̄hij, and ϕ̄ij. We estimate these param-

eters as follows. (i) We first solve the two-stage optimization problem (M) over

the entire network G without any relocations. Denote its solution with superscript

“∗∗”, and set Λ̄ij = max{η∗∗nit,nj,t+lij
| t ∈ T (lij)}. (ii) Next, we generate H slopes

k̄hij, h ∈ {1, 2, . . . , H}, of the piecewise-linear function by obtaining the correspond-

ing unit reward 1/k̄hij. The H unit rewards are sampled from a uniform distribution

U(uij, ūij), where uij = 0.1 + 0.1lij and ūij = 0.2 + 0.1lij are estimated by using the

data of the Citi Bike’s Bike Angels Rewards Program.2.6 We then sort the H slopes

in decreasing order to fit the incentive function in Figure 2.4. (iii) Finally, we can

derive the length of each segment in Figure 2.4 by δij = (Λ̄ij− ϵ)/
∑H

h=1 k̄hij and the

reward threshold by ϕ̄ij = Hδij. The trip duration between any two regions i, j ∈ V

ranges from 1 to 4 periods. The maximum reward for crowdsourcing one rider is

0.6 dollar (i.e., max{ūij} = max{0.2 + 0.1lij | lij ∈ {1, . . . , 4}} = 0.6). We set the

crowdsourcing budget Bc = 500 as we note that the actual crowdsourcing costs in

our experiments are always lower than this value.

The data reveals that the hourly total demand of the studied area exhibits dif-

ferent patterns on weekdays and weekends. The former has a bimodal pattern with

morning and evening peak hours, while the latter has a unimodal pattern with af-

ternoon peak hours. Thus, we conduct the case study for the weekdays and the

weekends separately. In the experiments, we use the 2018 data for training to com-

2.6This program has a hierarchical reward scheme. One can earn 1-6 points for one crowdsourcing
trip depending on the origin and destination. The value of 1 point also varies. When a rider has
accumulated points less than 80 in one month, every 20 points worth a one-week membership
(i.e., 15 dollars per month). Thus we round the value of one point as 0.2 dollar. When more
points are collected, every 10 points worth 1.2 dollar and we simply take one point as 0.1 dollar.
Thus, we assume that on average, a 6-minute trip (i.e., one period) will reward the rider 1-1.5
point (i.e., 0.2-0.3 dollar) and every additional 6-minute will increase the range bounds by 1 more
point (i.e., 0.1 dollar). In summary, the reward cost corresponding to trip duration lij is between
uij = 0.1 + 0.1lij and ūij = 0.2 + 0.1lij for any i, j ∈ V.

28



pute the first-stage allocation x by solving problem (M). Given x, we use the 2019

data to perform out-of-sample tests by solving problem (Q). We use 350 days of

trip records each year as 350 different scenarios (i.e., a one-day sample corresponds

to one scenario) to capture the demand uncertainty, where 250 scenarios correspond

to the weekday demands and 100 scenarios correspond to the weekend demands. In

our algorithm, we set the number of sub-networks M = 8.

Note that an efficient shared micromobility system should have a low total un-

satisfied demand (also known as demand loss)
∑

a∈At ηa and a high expected vehicle

utilization rate defined as
∑

a∈At(ya − Λa)/
∑

i∈V xi. We use these two measures to

evaluate the service quality.

2.6.2 Computational Performance of the Solution Approach

We demonstrate the computational efficiency of our proposed solution approach in

Section 2.5.2 for solving the integrated allocation and relocation problem (M) by

benchmarking it against CPLEX 12.71 with C++ API.2.7 Our solution approach

is implemented in parallel on 24 threads with C++ OpenMP. The computational

experiments are performed on a computing node with 24 2.3-GHz Intel Xeon E5-

2670 processors and 32 GB of memory in a high performance computing cluster.

It is worth noting that considering more scenarios ensures a higher solution qual-

ity but increases the computational time. Since both approaches above cannot solve

any of the weekday training instances with 250 scenarios (because of out of memory),

we need to reduce the number of scenarios for each weekday instance. Figure 2.7

shows how the computational time and the relative error of the total allocation2.8

vary with the number of scenarios |K| under our solution algorithm. In general,

as |K| decreases, the computational time decreases whereas the relative error first

decreases and then increases. To strike a balance between the computational time

2.7We also implement the benchmark problems in the recent version CPLEX 12.10, but the
solution performance only slightly improved for our instances. Note that the presolver, the dynamic
search, the various cuts, and heuristics are turned on by default and decided by CPLEX internally.

2.8The relative error is defined as (|xsum,|K|=k − xsum,|K|=250|)/xsum,|K|=250 × 100%, where
xsum,|K|=250 and xsum,|K|=k represent the numbers of allocated vehicles under the 250 scenarios
and k scenarios respectively. To compute xsum,|K|=250, we implement our solution algorithm in a
single thread by handling each scenario of the second-stage problem (Q) sequentially (rather than
in parallel), which requires much less memory.
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and the relative error, we reduce the number of scenarios for each weekday instance

from 250 to 80. We sample three 80-scenario instances (by randomly selecting 80 out

of the 250 scenarios) and observe that the resulting relative error is only 1.18% on

average. Note that the benchmark CPLEX approach cannot even solve any weekday

training instance with 80 scenarios.
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Figure 2.7: The Trade-off between the Computational Time and the Relative
Error

Furthermore, our solution approach can efficiently solve all the weekend training

instances, while the benchmark CPLEX approach struggles to get a high-quality

solution. Thus, we do not reduce the number of scenarios for the weekend training

instances. Finally, we set 180 minutes as the time limit for all the instances in our

later experiments.

We further demonstrate the computational efficacy of our solution approach by

varying several parameters. First, as the price varies with the vehicle type and qual-

ity, we consider the vehicle allocation cost cj ∈ {0.5, 0.8, 1.0}, for j ∈ V .2.9 Second,

we consider the fluctuation in the logistics market such that the 3PL relocation

cost is Cr ∈ {13, 15, 17}.2.10 We consider the penalty cost Cp ∈ {0.1, 0.3, 0.5, 0.7}

to represent the potential revenue loss of losing a customer under different market

competition levels. This results in 36 (= 3 × 3 × 4) problem instances for a given

2.9For example, Mobike provides both the ‘Lite’ version bike (which incurs low cost) and the
electric bike (which incurs high cost). The corresponding yearly allocation costs are estimated
as 150, 210, and 300, leading to cj ∈ {0.5, 0.8, 1.0} for all j ∈ V, respectively. Such costs are
representative for most bikes, e-bikes and e-scooters according to their prices listed on Amazon.com;
see https://www.amazon.com/s?k=bike&ref=nb sb noss.
2.10The average marginal cost (in US dollar) of trucking per mile ranges from 1.5-1.8 during 2010-
2019 (Murray and Glidewell 2019). We assume that the 3PL runs 9 miles per request and thus
the total cost per request is 13.5-16.2. We consider a slightly larger range 13-17.
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weekday or weekend demand setting. For each instance, we run three experiments

and report the average result in Table A2 in Appendix A.5.1, where each experiment

is created by randomly sampling the demand values from the historical data.

For all the instances, our solution approach performs significantly better than

the benchmark CPLEX approach for solving problem (M) in terms of the solution

quality (“Profit” in Table A2) and computational time. Note that the CPLEX ap-

proach cannot provide any feasible solution within the time limit of 180 minutes for

the weekday instances, and can only provide a solution xj = 0, j ∈ V , for the week-

end instances. In contrast, our solution approach produces high-quality solutions

within 37.7 minutes on average for each weekday instance with 80 scenarios, and

within 45.9 minutes on average for each weekend instance with 100 scenarios (see

Table A2). These results suggest that our solution approach can potentially support

urban shared micromobility operations well. We investigate its out-of-sample per-

formance and obtain managerial insights from different perspectives in the following

sections.

2.6.3 Impact of Allocation Upper Bound N on Vehicle Al-
location and Relocation

We examine the impact of the vehicle allocation upper bound (UB) on the system’s

vehicle allocation and relocation under the parameter settings stated in Section

2.6.1. We vary the allocation upper bound N between 120 and 720, while keeping

other parameters unchanged. We use the weekday demands for illustration. Similar

insights are obtained for the weekend situation. Specifically, we examine how N

affects the initial vehicle allocation in Figure 2.8 and the average number of relocated

vehicles in Figure 2.9.

Figure 2.8 suggests that when the upper bound N is large (i.e., N > 210), it is

economical to allocate fewer vehicles to each region than its upper bound. There is no

need to allocate too many vehicles if demands can be well satisfied. It is interesting

to see that more vehicles are allocated to regions 1 to 5, where public transportation

and commercial blocks are distributed more densely than other regions (see Figure
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Figure 2.8: The Impact of Allocation UB on Vehicle Allocation for Different
Regions
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Figure 2.9: The Impact of Allocation UB on Vehicle Relocation

Figure 2.9 suggests that as N increases, both the average number of relocated

vehicles and the average relocation cost first increase and then decrease. When the

upper bound is low (i.e., N ≤ 210), the initially allocated vehicles are not enough

to satisfy the demands. Increasing the upper bound increases the initial allocation

(as shown in Figure 2.8) and leads to more relocated vehicles. Thus, the number of

relocated vehicles increases as the initial allocation increases. When the allocation

upper bound is moderate (i.e., 210 < N ≤ 480), a larger upper bound N decreases

both the average number of relocated vehicles and the average relocation cost. This

is because a larger N leads to a higher initial allocation (see Figure 2.8) and the

allocated vehicles are sufficient to satisfy most of the demands, which requires less

vehicle relocation subsequently. This suggests that a higher initial allocation can

2.11The ridership ranking of the subway stations in NYC is referred to MTA (2020).
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reduce the need for subsequent relocation. When the allocation upper bound is large

(i.e., N > 480), both the initial allocation and subsequent relocation stabilize and

are less affected by the upper bound.

Finally, we choose a sufficiently large upper bound N = 500 for the training

instances. The optimal total number of allocated vehicles for the weekdays is 338

and that for the weekends is 253. Such vehicle allocations will be used for the later

experiments.

2.6.4 Impact of Relocation Strategies

We examine four different relocation strategies for problem (Q): (i) No micromo-

bility vehicle relocation, i.e., ϕnit,nj,t+lij
= Λnit,nj,t+lij

= 0, for (nit, nj,t+lij) ∈ At, and

zt = 0, for t ∈ T (lr); (ii) relocation only by rider crowdsourcing, i.e., zt = 0, for

t ∈ T (lr); (iii) relocation only by the 3PL, i.e., ϕnit,nj,t+lij
= Λnit,nj,t+lij

= 0, for

(nit, nj,t+lij) ∈ At; and (vi) relocation by both rider crowdsourcing and the 3PL. To

demonstrate their operational performance, we conduct experiments over various

instances by varying the penalty cost Cp.

Table 2.1 shows that demand loss can be effectively reduced by vehicle relocation.

Compared to the case without any relocation, the demand loss can be significantly

reduced by 98% through rider crowdsourcing alone and 50% through 3PL relocation

alone, and can be further reduced when both relocation methods are used. Fur-

thermore, relocation only by rider crowdsourcing yields a higher utilization rate and

profit compared to relocation only by the 3PL. A more detailed observation on Table

2.1 indicates that rider crowdsourcing alone relocates more vehicles than the 3PL

alone. Thus, compared to the 3PL, rider crowdsourcing is a more effective way to

match supply with demand for the shared micromobility system.

To understand the above results, it is helpful to distinguish two types of relo-

cation needs: mass relocation needs (i.e., many vehicles to be relocated, such as in

rush hours) and sporadic relocation needs (i.e., only a few vehicles to be relocated,

such as in non-rush hours). It is worth noting that rider crowdsourcing serves both

the mass and sporadic relocation needs, while the 3PL generally only serves the

mass relocation needs. For the sporadic relocation, the average cost per relocated
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Table 2.1: Impact of Relocation Strategies and Penalty Cost

Cp
Relocation
Strategies

Crowdsourcing 3PL
Demand
Loss

Utilization
Rate

Profit
($)No. of Vehicles

Relocated
Cost
($)

No. of Vehicles
Relocated

Cost
($)

Weekdays

0.1

No relocation – – – – 953.0 17.892 2,209.9
Crowdsourcing 928.8 238.6 – – 24.2 20.640 2,407.8

3PL – – 650.7 63.5 473.3 19.311 2,398.2
Combination 484.0 111.7 660.1 57.0 14.8 20.668 2,481.4

0.3

No relocation – – – – 947.2 17.909 2,019.9
Crowdsourcing 960.6 247.8 – – 1.9 20.706 2,406.1

3PL – – 665.1 66.7 457.0 19.359 2,309.5
Combination 492.1 115.2 673.2 56.9 0.3 20.711 2,482.5

0.5

No relocation – – – – 942.8 17.922 1,830.9
Crowdsourcing 964.2 248.7 – – 0.1 20.711 2,405.9

3PL – – 673.3 67.6 455.3 19.364 2,217.1
Combination 491.5 114.8 673.2 57.3 0 20.711 2,482.7

0.7

No relocation – – – – 942.7 17.922 1,642.3
Crowdsourcing 964.2 248.8 – – 0.1 20.711 2,405.9

3PL – – 677.6 69.1 451.1 19.377 2,129.9
Combination 489.4 113.9 674.1 57.6 0 20.711 2,483.3

Weekends

0.1

No relocation – – – – 494.5 11.383 1,008.7
Crowdsourcing 492.0 133.9 – – 0.4 13.336 1,130.0

3PL – – 318.5 33.8 218.1 12.475 1,128.4
Combination 228.5 53.9 320.2 30.2 0.8 13.334 1,179.8

0.3

No relocation – – – – 492.7 11.390 910.0
Crowdsourcing 492.4 134.1 – – 0.1 13.337 1,130.0

3PL – – 319.8 34.5 219.2 12.471 1,082.8
Combination 235.3 56.3 305.6 29.1 0 13.337 1,178.6

0.5

No relocation – – – – 491.2 11.396 811.6
Crowdsourcing 492.5 134.1 – – 0 13.337 1,130.0

3PL – – 309.3 34.8 228.5 12.434 1,030.4
Combination 246.9 58.8 302.3 27.8 0 13.337 1,177.5

0.7

No relocation – – – – 491.2 11.396 713.4
Crowdsourcing 492.5 134.1 – – 0 13.337 1,130.0

3PL – – 301.1 34.5 227.1 12.440 985.0
Combination 245.6 59.1 302.9 27.9 0 13.337 1,177.0

vehicle by using the 3PL is much higher than the cost of losing a customer. Thus,

the 3PL is not cost effective for the sporadic relocation. For the mass relocation,

the 3PL achieves a lower average cost per relocated vehicle because of the economies

of scale in relocating vehicles in batches. Furthermore, Table 2.1 shows that when

both relocation methods are used, the 3PL relocates more vehicles with a lower cost

than rider crowdsourcing. The number of vehicles relocated by the 3PL is similar to

that when only 3PL relocation is used. This suggests that the 3PL satisfies mostly

the mass relocation needs, while rider crowdsourcing mainly serves the sporadic

relocation needs.

In general, as the penalty cost per customer lost Cp increases, it becomes more

likely to relocate vehicles to avoid demand losses. Interestingly, we observe the

opposite effect for relocation only by the 3PL (strategy (iii)) on weekends: Increasing

Cp may decrease the number of vehicles relocated by the 3PL.2.12 Figure 2.10 shows

2.12To leave out the numerical errors, we test with different values of Cp in a finer scale and a
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a typical scenario on weekends: When the penalty cost is low (Cp = 0.1), the 3PL

relocates some vehicles (47 in this example) around 5pm. Surprisingly, when the

penalty cost is high (Cp = 0.5), it does not relocate any vehicles. We explain this

counter-intuitive result below.

0 5 10 15 20 24
Hours

0

20

40
No. of Customer Arrivals
No. of Relocated Vehicles by 3PL, Cp=0.1
No. of Relocated Vehicles by 3PL, Cp=0.5

Figure 2.10: Customer Arrivals and Vehicles Relocated by The 3PL in A Day
during Weekends

This counter-intuitive situation only happens on weekends rather than on week-

days. Since demands are lower on weekends, the need for relocation is lower. The

unimodal pattern of customer arrivals in Figure 2.10 over a day shows that there are

fewer rush hours. This reduces the need for the 3PL to relocate vehicles in batches.

For example, when Cp = 0.5, the 3PL is requested 4.5 times per day on weekdays

(≈ total relocation cost by the 3PL/Cr = 67.6/15) and is requested only 2.3 times

per day on weekends (≈ 34.8/15). Furthermore, relocating vehicles from region i to

region j can increase the profit from region j, but may incur demand losses in region

i. As Cp increases, the profit gain may be less than the penalty cost, causing the

number of vehicles relocated by the 3PL to decrease. This reduces the overall profit

of the 3PL. Table 2.1 shows that as Cp increases on weekends, the profit gap between

relocation by combining both methods and relocation only by the 3PL increases. In

fact, as Cp increases, the profit gap between relocation only by rider crowdsourcing

and relocation only by the 3PL also increases. Therefore, the operator should use

either only rider crowdsourcing or the combination of both methods instead of using

the 3PL alone to relocate vehicles on weekends.

2.6.5 Impact of Rider Crowdsourcing Budget

If a shared micromobility operator wants to thrive in the market, his operational

budget for relocation should be carefully planned. The shared micromobility op-

wider range from 0.1 to 1 with step length 0.1. We observe that the number of vehicles relocated
by the 3PL remains decreasing while the demand loss shows an increasing trend.
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erator often contracts with the 3PL for its relocation service, and thus the total

relocation fee paid to the 3PL often remains stable. In addition, the operator can

introduce rider crowdsourcing with a more adjustable budget to support his daily

operations. When the operator is new in rider crowdsourcing, he can experiment

and gradually adjust the budget to learn the effect. We examine the impact of rider

crowdsourcing budget Bc on the system performance in Table 2.2.

Table 2.2: Impact of Rider Crowdsourcing Budget

Bc

Crowdsourcing 3PL
Demand
Loss

Utilization
Rate

Profit
($)No. of Vehicles

Relocated
Cost
($)

No. of Vehicles
Relocated

Cost
($)

Weekdays

0 0 0 673.3 67.6 455.3 19.365 2,217.1
30 140.0 29.0 693.4 67.0 315.7 19.777 2,310.5
50 223.4 46.9 689.5 66.2 234.4 20.018 2,357.9
80 323.5 69.8 694.2 64.4 140.6 20.296 2,409.3
100 373.7 82.1 685.8 62.9 95.2 20.430 2,433.4
∞ 491.5 114.8 673.2 57.3 0 20.711 2,482.7

Weekends

0 0 0 309.3 34.8 228.5 12.435 1,030.4
10 47.7 9.7 316.0 34.2 181.4 12.621 1,064.6
20 89.4 18.4 312.4 33.8 140.9 12.780 1,091.6
30 125.4 26.4 313.3 32.4 108.2 12.910 1,112.5
50 176.6 38.7 307.3 30.8 61.8 13.093 1,140.7
∞ 246.9 58.8 302.3 27.8 0 13.337 1,177.5

For weekdays or weekends, as the rider crowdsourcing budget Bc increases, more

riders are crowdsourced and the number of vehicles relocated by these riders signif-

icantly increases. Meanwhile, the demand loss decreases and the vehicle utilization

rate increases, leading to a higher profit. In contrast, as the crowdsourcing budget

Bc increases, the number of vehicles relocated by the 3PL first increases and then

decreases in general. The above results lead to the following phenomenon: Rider

crowdsourcing complements (benefits) the 3PL when the crowdsourcing budget is

low. On the other hand, when the budget is high, rider crowdsourcing substitutes

the 3PL.

Figure 2.11 illustrates how rider crowdsourcing can complement the 3PL. Both

the demands in region j in period t and that in region i in period t + ljm + lmi are

greater than the corresponding vehicle supply. If rider crowdsourcing is provided in

region m, then the 3PL can relocate vehicles from region i in period t− lr to region

j so that these vehicles can satisfy the demand of customers in region j in period

t that move to region m. Crowdsourced riders help relocate these vehicles back to
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Figure 2.11: Rider Crowdsourcing Benefits The 3PL

region i to meet the demand in period t+ ljm+ lmi. Conversely, if no crowdsourcing

is provided in region m because of an insufficient budget, then the 3PL may not

relocate vehicles from region i in period t− lr to region j. The vehicles remain idle

in region i until period t+ ljm+ lmi. Thus, rider crowdsourcing can complement the

3PL.

As the crowdsourcing budget becomes larger, the 3PL relocation with a rela-

tively high average cost per relocated vehicle can be substituted by the cheaper

rider crowdsourcing, manifesting the substitutional effect. Although the above com-

plementary and substitutional effects can potentially exist, rider crowdsourcing has

limited impact on the number of vehicles relocated by the 3PL. Table 2.2 shows that

as the crowdsourcing budget Bc increases, the number of vehicles relocated by the

3PL fluctuates only within 3.1% on weekdays and 4.5% on weekends. This suggests

that introducing rider crowdsourcing to the micromobility system with 3PL relo-

cation may significantly increase the system’s profit without affecting the existing

commitment with the 3PL.

2.6.6 Operational Features of Relocation

Table 2.1 shows that the micromobility system generates more profit if both reloca-

tion methods are adopted. Here, we examine the operational features of relocation

in detail on three representative scenarios for weekdays, where the daily demand is

low (4,744 trips), medium (7,967 trips), and high (12,294 trips). We observe similar

relocation results on weekends.

Temporal Features of Relocation. Figure 2.12 shows the number of relocated
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Figure 2.12: Customer Arrivals and Vehicles Relocated by 3PL and Rider
Crowdsourcing during A Weekday

vehicles compared to the number of customer arrivals over the operational horizon.

Clearly, the 3PL often relocates vehicles in batches during 8am-10am, 11am-1pm,

and 3pm-5pm (i.e., around peak hours). As the 3PL relocates vehicles to adjust the

supply across multiple regions to match potential demands in the upcoming periods,

the number of relocated vehicles can be larger than the demand per period. Note

that the 3PL is usually not engaged after the evening demand peak because of fewer

customer arrivals that do not need batch relocation. In contrast, rider crowdsourcing

is conducted throughout the day to relocate a much smaller number of vehicles per

period.

Spatial Features of Relocation. Figure 2.13 displays the weekday demands

during rush hours in the morning (top row) and evening (bottom row). Specifically,

regions 2, 4, 5, 6, and 8 represent Midtown South, West, Center, East, and North,

respectively, whereas regions 1, 3, 7, and 9 represent Midtown Southwest, Southeast,

Northwest, and Northeast, respectively (see Figure 2.6).

According to a ridership report of subway traffic in Manhattan (MTA 2020),

region 5 (Midtown Center) is the busiest region with the largest passenger flow.
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Figure 2.13: Spatial Features of Demands in Rush Hours

It covers Times Square, Herald Square, and the north part of Broadway, and has

multiple subway lines passing through. Region 6 (Midtown East) has an important

transportation hub, the Grand Central Terminal. Region 2 (Midtown South) has

high-traffic subway stations, 34St Herald and 34St Penn Station, and is slightly

busier than region 8 (Midtown North) where Rockefeller Center is located. Region

1 (Midtown Southwest) covers a few entrances of 34St Penn Station and hence

can be a busy region. Region 9 (Midtown Northeast) has one high-traffic station,

Lexington Av/53St. Figure 2.13 suggests that the shared micromobility demand is

closely related to the ridership of subway traffic. The demand for short-range trips

(lij ≤ 2) is higher than that for long-range trips (lij ≥ 3).

Figures 2.14 and 2.15 show the relocation by the 3PL and rider crowdsourcing,

respectively. We focus on the demand features in two clusters of regions and the

corresponding relocation features. In the first cluster, the busiest pick-up regions

are regions 1, 2, and 3 (respectively, Midtown Southwest, South, and Southeast)

during both 8am-10am and 5pm-7pm (see Figure 2.13), as most customers travel

from one of these regions to a neighboring one. Thus, they are also among the

busiest destinations. To maintain the vehicle supply, the operator relocates many

vehicles to regions 1, 2, and 3 rather than from them. In particular, the 3PL may
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Figure 2.14: Spatial Features of 3PL Relocation

relocate vehicles from a faraway region (e.g., from region 9 to region 2 in Figure

2.14(b)). In contrast, rider crowdsourcing relocates from nearby regions (e.g., from

region 5 to region 2 in Figure 2.15(i)).

In the second cluster, many customers pick up vehicles from region 5 (Midtown

Center) and travel to regions 6 and 8 (respectively, Midtown East and North) in the

morning (see Figures 2.13(b) and (c)). Thus, many vehicles are relocated to region 5

(Midtown Center) from other regions before the customers arrive. In particular, the

3PL relocates batches of vehicles mostly from the low-demand region 9 (Midtown

Northeast) to region 5 (see Figures 2.14(b) and (c)). In contrast, rider crowdsourcing

relocates only a few vehicles from each neighboring region to region 5 (see Figures

2.15(b) and (c)).

These observations suggest that the destinations of relocation by rider crowd-

sourcing and the 3PL are similar, indicating their common goal to match supply

with demand. The 3PL relocates many vehicles per request from faraway regions,

whereas rider crowdsourcing often incentivizes a few riders each time from neigh-

boring regions. Thus, their origins of relocation are often different, resulting in the

substitutional effect at each origin. This is consistent with Proposition 2.1.
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(c) High demand, 8am-10am
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(f) High demand, 1pm-3pm
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Figure 2.15: Spatial Features of Rider Crowdsourcing Relocation

2.6.7 Impact of Temporal Demand Patterns

In this section, we investigate the impact of the demand pattern on vehicle relocation

by comparing the unimodal customer arrival pattern on weekends and the bimodal

pattern on weekdays. Note that the demand per day during weekends is lower than

that during weekdays. To focus on the demand pattern’s impact, we process our data

using ARIMA models (Hamilton 2020) so that the demand per day during weekends

is on the same scale as the demand per day during weekdays (see Appendix A.5.2 for

the details). After training with the new data by solving problem (M), the optimal

total number of vehicles allocated under the unimodal pattern is 159, and that under

the bimodal pattern is 170. We then solve problem (Q) using testing data to obtain

out-of-sample results. Table 2.3 presents the optimal vehicle relocation under the

two demand patterns.
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Table 2.3: Impact of Demand Patterns

Demand
Pattern

Cp

Crowdsourcing 3PL
Demand
Loss

Utilization
Rate

Profit
($)No. of Vehicles

Relocated
Cost
($)

No. of Vehicles
Relocated

Cost
($)

Bimodal
(Weekdays)

0.05 254.8 60.4 130.4 17.1 8.4 29.861 1,590.2
0.1 271.8 65.5 113.5 14.8 3.8 29.888 1,588.4
0.3 274.1 65.9 113.3 15.0 0.2 29.901 1,588.9
0.5 264.5 63.3 127.1 17.5 0 29.911 1,589.1

Unimodal
(Weekends)

0.05 279.5 64.7 93.7 11.9 9.1 31.879 1,594.9
0.1 278.6 64.5 101.0 12.8 6.0 31.898 1,594.8
0.3 291.5 67.9 82.4 10.6 2.8 31.918 1,593.8
0.5 293.3 68.2 81.9 10.8 2.0 31.923 1,593.4

We obtain the following insights. First, the total number of vehicles relocated by

rider crowdsourcing together with the 3PL remains similar under the two demand

patterns. However, the 3PL relocates more vehicles under the bimodal pattern than

under the unimodal pattern. This is because the bimodal pattern has two demand

peaks, for which batch relocation is more needed from the 3PL than the unimodal

case. In contrast, rider crowdsourcing relocates more vehicles under the unimodal

pattern than under the bimodal pattern.

Second, in contrast to Tables 2.1 and 2.2, the number of vehicles relocated by

the 3PL is significantly smaller than that by rider crowdsourcing. This surprising

result is because of the newly sampled demand that has slightly lower peak values

as shown in Figure 2.16. Although the demand peak values are slightly lower, batch

relocation by the 3PL is substantially less needed, while rider crowdsourcing is used

more often.
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Figure 2.16: Representative Demand Patterns during A Weekday

Third, the system has more vehicles allocated initially for the bimodal demand

pattern (i.e., 170) than that for the unimodal pattern (i.e., 159). However, the

profit under the bimodal pattern is lower than that under the unimodal pattern,
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indicating that it is more challenging to manage the operations under the bimodal

demand pattern. Since the total costs under the two demand patterns are similar,

the higher utilization rate under the unimodal pattern leads to a higher profit.

2.7 Conclusion

Among shared mobility systems, a shared micromobility system presents a unique

challenge because its operator often bears the cost of physical assets (i.e., micro-

mobility vehicles). A proper initial vehicle allocation for different service regions is

especially crucial for satisfying customer demands. In addition, the system offers

the convenience of vehicle pick-ups and drop-offs, which may lead to a severe mis-

match between supply and demand under uncertain customer arrivals. To better

match supply with demand, it is necessary for the operator to constantly relocate

the micromobility vehicles across the regions. When the system operator decides

on how many vehicles to be initially allocated to different service regions, he also

needs to consider the future relocation decisions. Thus, it is critical to integrate

the initial allocation and subsequent relocation decisions to maximize the operator’s

profitability. The problem becomes especially complex when the operator adopts

both rider crowdsourcing and 3PL outsourcing for vehicle relocation.

We formulate an integrated vehicle allocation and relocation problem under de-

mand uncertainty as a two-stage stochastic integer programming model on a time-

space network. In the first stage, the system operator decides the initial vehicle

allocation before the demands are realized. In the second stage where various de-

mand realizations are considered, the operator decides the relocation of vehicles

across the regions to match supply with demand in each period. To maintain a

financially sustainable micromobility system, the operator maximizes his expected

profit.

For a special case with two service regions, we derive basic insights for the re-

location strategy with both rider crowdsourcing and the 3PL. We find that under

the optimal relocation strategy, rider crowdsourcing and the 3PL are not used si-

multaneously in any region and period. Instead, the optimal relocation strategy will

choose a relocation method with a lower relocation cost per vehicle (see Proposition
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2.1).

For a more general case with multiple service regions, we first approximate the

incentive function, which determines the number of crowdsourced riders given a re-

ward amount, using a piecewise-linear function. The approximation introduces some

binary variables, which can be relaxed to continuous variables without affecting the

optimal objective value of the second-stage relocation problem (see Proposition 2.2).

We then propose an algorithmic approach that incorporates both scenario-based

and time-based (temporal) decomposition ideas to efficiently solve the two-stage

model. Numerical experiments suggest that our approach significantly outperforms

the CPLEX solver in both solution quality and computational time (see Section

2.6.2).

Based on a data set from Citi Bike, we investigate the critical role of rider

crowdsourcing in micromobility vehicle relocation for different parameter settings

and demand patterns. We first solve the integrated vehicle allocation and relocation

problem to obtain an initial vehicle allocation for different service regions. Based on

the initial allocation, we then solve the second-stage relocation problem to determine

out-of-sample relocation decisions. We uncover the following insights that may shed

light on the successful operations of shared micromobility systems.

(i) If the vehicle allocation budget is tight, the number of relocated vehicles in the

second stage increases as the number of allocated vehicles in the first stage increases.

In contrast, if the vehicle allocation budget is sufficiently large, the number of re-

located vehicles decreases as the number of allocated vehicles becomes larger. This

is because if there are sufficiently many micromobility vehicles available initially,

the need to relocate vehicles to match supply with demand subsequently becomes

smaller (see Section 2.6.3).

(ii) If only one relocation method is adopted, rider crowdsourcing often outper-

forms the 3PL for matching supply with demand (see Table 2.1). If both relocation

methods are used, the number of vehicles relocated by the 3PL dominates that by

rider crowdsourcing because of the 3PL’s lower average cost per relocated vehicle.

The 3PL satisfies mostly mass relocation needs, while rider crowdsourcing mainly

serves sporadic relocation needs. We find that investing in rider crowdsourcing
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can increase the profit, reduce the demand loss, and improve the vehicle utiliza-

tion rate of a shared micromobility system with an existing 3PL relocation method.

Therefore, in high-traffic areas with dense populations, combining the two relocation

methods leads to a higher profit. It is also interesting to note that as the penalty

cost per customer lost increases, the number of vehicles relocated by the 3PL alone

may decrease (see Figure 2.10).

(iii) We also investigate the impact of the rider crowdsourcing budget. As the

rider crowdsourcing budget increases, the number of vehicles relocated by rider

crowdsourcing increases, while the number of vehicles relocated by the 3PL first

increases and then decreases. This suggests that rider crowdsourcing complements

(benefits) the 3PL when the crowdsourcing budget is low, but substitutes the 3PL

when the budget is high. Overall, introducing rider crowdsourcing to the micro-

mobility system with 3PL relocation may significantly increase the system’s profit

without affecting the existing commitment with the 3PL (see Section 2.6.5).

(iv) Through studying the temporal and spatial relocation features, we find that

the 3PL often conducts relocation around demand peak hours (e.g., 8am-10am,

11am-1pm, and 3pm-5pm), while rider crowdsourcing is conducted throughout the

day. Moreover, to increase the supply in high-demand pick-up regions, the 3PL may

relocate vehicles in batches from faraway, low-demand regions, while rider crowd-

sourcing tends to relocate a few vehicles each time from neighboring regions (see

Section 2.6.6).

(v) Temporal demand patterns also have a significant impact on vehicle alloca-

tion and relocation. The operator allocates more vehicles initially under a bimodal

customer arrival pattern. Besides, rider crowdsourcing relocates more vehicles under

a unimodal customer arrival pattern than a bimodal pattern, whereas the reverse

holds for 3PL outsourcing (see Section 2.6.7).

Although our numerical experiments are based on Citi Bike (2021), our proposed

model and solution approach are sufficiently general for any typical shared micro-

mobility systems. As the Citi Bike’s data is quite representative, we believe the

above insights shall hold for other micromobility systems with similar operational

features as well.
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Chapter 3

Resource Utilization in Green
Products: Impacts of Recycling
Label Scheme on Firm’s Recycling
and Pricing Decisions

3.1 Introduction

The promotion of recycled materials is one of the key missions in establishing Circu-

lar Economy, which is a model of production and consumption that involves sharing,

leasing, reusing, repairing, refurbishing and recycling existing materials and prod-

ucts as long as possible. However, the current adoption of recycled materials in

manufacturing is insufficient to meet these sustainability goals. Per an EU report,

recycled materials during 2008-2016 met less than 12% of EU demand for materials

(European Commision 2019). To aid the situation, for example, the New Plastics

Economy Global Commitment was endorsed by over 400 organizations in 2018 to

promote the circular use of plastics.3.1 Other similar efforts are on the way, such as

Make Fashion Circular, which promotes the use of recycled inputs for apparel in the

fashion industry.3.2 The environmental benefit of using recycled materials is multi-

faceted, such as reducing the post-consumer waste to be landfilled or incinerated,

reducing the need for raw materials and thus conserving natural resources.

Many consumers also care about the greenness of a product and are willing to

3.1Source: https://www.newplasticseconomy.org/ (Last accessed on September 1, 2020)
3.2Source: https://www.ellenmacarthurfoundation.org/our-work/activities/make-fash

ion-circular (Last accessed on September 1, 2020)
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pay more for it. A UL Environment survey in 2014 shows 58% of respondents

are willing to pay up to 10% more for a certified green product.3.3 In spite of

consumers’ growing concern about sustainability, there are potential barriers that

prevent consumers from knowing the extent of recycled materials used in a product.

Hence, there is a strong demand for trustworthy environmental labels. The PEFC

Global Consumer Survey reveals that more than 80% of consumers want product

labels to communicate sustainable practices and content.3.4 On the one hand, the

labels help firms to communicate green efforts to consumers. On the other hand, they

allow consumers to assess and compare the environmental performance of similar

products without being an expert.

There are diverse environmental labels in the current market, and some are

voluntary and some are mandatory.3.5 This chapter studies voluntary recycling

labels offered by non-governmental organizations (NGOs) that can independently

evaluate and verify the product’s recycled content. Furthermore, we focus on two

different types of labels for recycled content. (For the sake of brevity, we often refer

to recycling label as “label”, and refer to the proportion of the recycled material

used in a product as “recycled content”.) First, we consider a binary label with only

one pass/fail standard, such as the PEFC recycled label that requires the labeled

product to contain at least 70% recycled material (PEFC Council 2008), as shown

in Figure 3.1(a).3.6 When observing such a binary label, consumers know that the

product contains at least 70% recycled material. Second, we consider a percentage

label that verifies and displays the actual percentage of the recycled material in a

product, such as the SCS Kingfisher label (SCS Global Services 2014), the Verus

3.3Source: https://www.ul.com/news/study-proves-influence-green-product-claims-pu
rchase-intent-and-brand-perception (Last accessed on September 1, 2020)

3.4Source: https://pefc.org/news/consumers-trust-certification-labels-and-expect-
companies-to-label-products-pefc-research-shows (Last accessed on September 1, 2020)

3.5Voluntary labels are those that firms can choose to adopt or not. Mandatory labels impose
regulations that firms must obey. In addition, the form of environmental labels can be versatile.
We consider a general situation, in which the labels may appear directly on the product, indirectly
in the advertisement, or in the online product display page, etc., subject to the marketing strategy.

3.6For example, 3M applies this label for some of its paper product Post-it, see https://www.

3mireland.ie/3M/en IE/p/d/v101312060/ (Last accessed on September 1, 2020). Note that in
the latest PEFC standard released in February 2020, the standard for recycled content has been
lifted to 100% to be eligible for the PEFC recycled label on the product. More information at
www.pefc.org
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label (Verus Carbon Neutral 2019), the UL Recycled Content label (UL 2019), and

the GreenCircle Certified label (GreenCircle Certified 2019).3.7 The examples of

percentage labels are shown in Figure 3.1(b). When observing such a percentage

label, consumers can discern the exact proportion of the recycled material.

(a) Example of Binary Label:
PEFC Recycled Label

(b) Examples of Percentage Labels: Green-
Circle Certified (left) and SCS Kingfisher
Labels (right)

Figure 3.1: Label Examples

Different recycling label schemes will affect a firm’s decisions regarding recycled

content usage and price, which will in turn influence product demand, consumer

surplus, and environmental impact. It remains unclear how different labels’ de-

signs influence the firm’s decisions and profitability. Moreover, from the NGO’s

perspective, the focal question is how to design a recycling label that can incentivize

sustainable practices and induce greater usage of recycled materials.

Motivated by the above observations, this chapter targets to study the impacts

of different recycling label schemes on a firm’s recycling and pricing decisions, as

well as an NGO’s payoff and consumers’ surplus. To this end, we establish a game-

theoretical model, wherein an NGO chooses a label type (binary or percentage) to

maximize the total usage of recycled materials and a monopoly firm decides the

fraction of the recycled material and price for his product. The market consists

of two types of consumers: A fraction of consumers are environmentally conscious

3.7For example, the NORAMCO plastic bags with SCS label, see https://www.noramcobag.c

om/products/recycled-pgb-series; one type of HP printers is verified with 9% recycled content
by UL label, see https://www.ul.com/news/ul-2809-recycled-content-validation-earned

-hp-designjet-t200t600-printer-series. According to SCS standard for percentage-based
recycled content claim, the term “minimum content” refers to the total recycled content (possibly
for multiple components) in the final product rather than the recycled content of a particular
component. The nature of this term is different from the minimum standard used by a binary
label. For more details, please see https://cdn.scsglobalservices.com/files/standards/sc

s stn recycledcontent v7-0 070814.pdf.
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and willing to pay more for the recycled content; the rest are environmentally un-

conscious and indifferent between the recycled or non-recycled content. We aim to

answer the following questions: (1) Under different labelling schemes, how are the

firm’s recycling and pricing decisions influenced by the fraction of environmentally

conscious consumers and the technology cost of recycling? (2) Which type of label

is preferred by the firm? Which one is preferred by the NGO? (3) How is consumer

surplus influenced by the labelling scheme?

We highlight some of our findings. First, we derive the firm’s optimal decisions

under the percentage and binary labeling schemes, respectively. We find that as the

fraction of environmentally conscious consumers increases or as the technology cost

of recycling decreases, the firm’s recycled content increases under the percentage

label, while it may either increase or decrease under the binary label.

Second, the firm is always weakly better off under the percentage label than under

the binary label. This is because the firm can choose the optimal recycled content

and fully reveal the information by applying the percentage label. By contrast, the

firm is constrained by the binary label standard and cannot fully reveal information

to consumers, which reduces the firm’s profitability.

Third, in contrast to the firm’s preference, the NGO always weakly prefers the

binary label. Moreover, under the percentage label, the NGO might even be worse

off as more consumers become environmentally conscious or as the technology cost

of recycling declines. This is because the NGO’s payoff is associated with the total

usage of recycled materials, which depends on both the recycled content in each

product and the total demand of the product. As more consumers are willing to

pay a premium for recycled content or as the fixed cost of recycling declines, the firm

may change his strategy by increasing the price to only target the environmentally

conscious consumers, which will lead to lower demand and thus reduce the total

usage of recycled content.

Finally, we study the impact of different labeling schemes on consumers’ total

surplus. We find that, in contrast to the firm’s preference, consumers weakly prefer

the binary label to the percentage label. Because the binary label conveys only

partial information, the NGO may set a low label standard that induces the firm to
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compromise on price in exchange for more demand, which in turn allows consumers

to extract more surplus. Noteworthily, under either a percentage or binary label,

more environmentally conscious consumers or a lower fixed cost of recycling may

hurt or benefit consumer surplus, as the firm’s price strategy may change.

The remainder of this chapter is organized as follows. We review the literature

in Section 3.2 and describe the game-theoretical model in Section 3.3. Section 3.4.1

analyzes the case of the percentage label; Section 3.4.2 analyzes the case of the

binary label; Section 3.4.3 compares the outcomes in the two cases. The consumer

surplus is discussed in Section 3.4.4. Section 3.5 concludes the chapter.

3.2 Literature Review

Our study is related to three streams of literature in economics and management

operations areas: voluntary certification/labeling, recycling/remanufacturing, and

corporate social responsibility (CSR). Certification is important in disclosing prod-

uct information to consumers. Traditionally in economic literature, many papers

study the information disclosure of a pass/fail certification (Lizzeri 1999, Garella

and Petrakis 2008, Stahl and Strausz 2017, Zapechelnyuk 2020), and they mainly

concern mandatory certifications for non-green products. This study, on the other

hand, is closely related to voluntary certification/labeling concerning environmental

issues. The literature related to this topic often focuses on the impact of competition,

including competition among firms (Youssef and Lahmandi-Ayed 2008), competi-

tion among label certifiers (like NGOs) with the same interest (Heyes and Martin

2016), competition between conflicting interests, such as between NGOs and indus-

try (Fischer and Lyon 2014, Li 2020) or between industry and regulator (Heyes and

Maxwell 2004). These papers also examine the pass/fail standard for label design.

In particular, some papers consider the information uncertainty of the label stan-

dard that results from certification error (Mason 2011) or consumers’ lack of trust

(Harbaugh et al. 2011). Moreover, there are some papers study multi-tier label de-

sign: Li and van ’t Veld (2015) compare a multi-tier label with many competing

single-tier labels under different objectives. Nadar and Ertürk (2020) compare the

effects of a multi-tier label with a single-tier label in reducing environmental impact
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and resource consumption. Fischer and Lyon (2019) study the environmental con-

sequences when two sponsors, NGO and industry, compete with single-tier labels

and multi-tier labels. Yenipazarli (2015) studies the impact of label standard and

price under a full information label with a special labelling cost structure. Different

from the above papers, this study mainly focuses on the NGO’s voluntary recycling

label and compares the percentage label of full information with the binary label of

partial information.

Our work is also related to the literature on recycling or remanufacturing (see

Souza 2013 for a comprehensive review). Chen and Liu (2014) study how price

leadership impacts price and quality decisions for the green product in a duopoly

market. They show that the brown firm as the price leader can lead to more recycled

content in the product. Schlosser et al. (2021) develop an optimal control model

to study dynamic pricing and recycling investment over time. For remanufacturing

papers, many relevant ones focus on the impact of remanufacturing on product

design. For example, Debo et al. (2005) study how a product’s remanufacturing

level and price are influenced by consumer distribution and cost structure. Atasu

and Souza (2013) compare quality and pricing choices under three recovery schemes.

They also compare mandatory and voluntary recovery rates, and find the quality

is higher under mandate recovery legislation. Örsdemir et al. (2014) study how an

OEM can compete with a remanufacturer in both quantity and quality. They find

remanufacturing may not benefit the environment and consumers. Papers in this

stream often assume perfect information and do not consider labels. We differ by

considering different recycling label designs that can convey different information to

consumers.

Finally, our work is relevant to the literature on CSR in operations area (see

Lee and Tang (2018) for a comprehensive review). One stream of the literature

examines how firms’ strategies impact socially responsible behaviors (Plambeck and

Taylor 2016, Chen and Lee 2017, Iyer and Singh 2018). We are more relevant to the

studies on how regulation standards can induce social and environmental benefits.

For example, a large body of papers investigate the impact of Extended Producer

Responsibility (EPR), a policy that mandates manufacturers support the take-back,
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recycling and final disposal of their products (see Atasu and Van Wassenhove 2012

and Kunz et al. 2018 for the overview). The literature of this stream considers

diverse issues, such as the efficient design of EPR to improve environmental and/or

economic impact (Atasu et al. 2009, Alev et al. 2020), the comparison of regulation

standards facing channel competition (Esenduran et al. 2020), and the comparison of

regulations with different cost allocations (Atasu and Subramanian 2012, Esenduran

and Kemahlıoğlu-Ziya 2015, Gui et al. 2016, Huang et al. 2019, Rahmani et al. 2021).

These studies mainly focus on mandatory regulation, rather than on the voluntary

label as we consider. In particular, Murali et al. (2019) compare a self-label with

full information and an external label with a pass/fail standard, and they aim to

investigate the credibility of self-label and whether the government should intervene.

In contrast to this and other studies within this stream, our work contributes to this

body of work by studying voluntary recycling labels with different schemes that

convey different information. We focus on the interaction between the label design

and a firm’s usage of recycled materials in a product.

3.3 Model Framework

We construct a single-period game to analyze the interactions among an NGO (re-

ferred to as “she”), a firm (referred to as “he”), and consumers (referred to as

“they”) in the context of label design and product design with recycled materials.

The details of each player and the game sequence are explained below, and the

notations used in this chapter are summarized in Table 3.1.

Firm: We consider a profit-maximizing firm selling a single product to con-

sumers. The product can be produced from two types of materials: virgin material

and recycled material. The firm can decide what percentage of recycled material

to use for the product. Let q ∈ [0, 1] denote the percentage of recycled material

(also referred to as “recycled content” ) and 1 − q denote the percentage of virgin

material.3.8 To produce a product with recycled content q, the firm needs to incur

fixed cost kq2 and marginal cost c(q), where k > 0 (referred to as ”technology cost

3.8The recycled content is calculated by the ratio of the weight of the recycled material to that
of the overall product. This definition of recycled content follows ISO 14021.
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Table 3.1: Summary of Notations

Notation Description

α The fraction of environmentally conscious consumers

d Consumer demand

v Consumers’ base valuation of the product

vr Environmentally conscious consumers’ marginal valuation of recycled con-
tent

cn The marginal cost of the virgin material

cr The marginal cost of the recycled material

k The fixed cost related to recycling technology

p The product price

q The percentage of recycled content, q ∈ [0, 1]

q̄ The recycled content standard for the binary label, which is determined
by the NGO, q̄ ∈ (0, 1]

π The firm’s profit

Π The NGO’s payoff

CS Consumer surplus

of recycling”). The fixed cost kq2 is associated with the facility or technology set-up

for processing and integrating recycled materials into the product. The marginal

cost c(q) = crq + cn(1 − q) is the sum of the costs of the two types of materials,

where cr > 0 and cn > 0 represent the marginal costs of recycled and virgin mate-

rial, respectively. The cost of the recycled material can be higher or lower than that

of the virgin material in practice. For example, the recycled paper and carpet can

be cheaper than their virgin counterparts (Biddle 1993); the recycled aluminum is

cheaper than the newly processed aluminum (Goman 2021); and the recycled plas-

tic was cheaper than its virgin counterpart during 2012-2019 but began to be more

expensive since 2019 (Judith Evans and Hook 2020). Hence, we consider both the

cases of cn > cr and cn ≤ cr to cover the diverse cost scenarios in practice. The

product has a base valuation v > max{cr, cn}, regardless of its recycled content. In

addition, we consider the recycled content in the product (i.e., q) to be the firm’s
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private information and unobservable to consumers. However, the recycled content

can be verified by an NGO and certified with a label (if it meets the requirement),

from which consumers can obtain some information regarding the recycled content,

which will be elaborated later. The firm’s problem is to choose recycled content q

and retail price p to maximize his profit π(p, q) = d (p− c(q))−kq2, where d denotes

the firm’s demand and will be discussed later.

Consumers: Without loss of generality, we normalize the total number of con-

sumers to one. There are two types of consumers with respect to their attitude

towards recycled materials. A fraction α ∈ [0, 1] of consumers are environmentally

conscious (denoted by C-type), who appreciate recycled materials and are willing

to pay more for greater recycled content; the rest of them 1−α are environmentally

unconscious (denoted by N -type), who are indifferent between recycled and virgin

materials when making purchase decisions. The C-type consumers have additional

marginal valuation vr > 0 for the usage of recycled materials.3.9 Consumers cannot

observe the recycled content q directly, but can obtain information from the label

certified by the NGO if the firm obtains one. Each N-type consumer’s utility of

purchasing the product is given by uN(p) = v − p, which only depends on the base

valuation v and price p but not on the recycled content. By contrast, each C-type

consumer’s utility is given by uC(p, ϕ) = v + vrϕ− p, where ϕ denotes C-type con-

sumers’ belief about the recycled content based on the label information and will

be discussed in details later when we introduce the label types. Each consumer will

purchase one unit of the product if and only if the utility is non-negative. That is,

C-type consumers will purchase the product if and only if p ≤ v + vrϕ, and N-type

consumers will purchase if and only if p ≤ v. Thus, the product demand is given by

d
.
= d(p, ϕ) =


1, if p ∈ [0, v]

α, if p ∈ (v, v + vrϕ]

0, otherwise

. (3.1)

Note that we assume that there exist some outside options which are made of pure

virgin material and can provide consumers zero utility. That is, consumers who do

3.9The additional marginal valuation is a kind of premium that reflects the recognition of envi-
ronmental benefits believed only by C-type consumers, as noted by Chen (2001) and Heyes and
Martin (2016). The linear form of benefits that consumers obtain from recycled content is also
adopted by Li and van ’t Veld (2015), Lim et al. (2019), and Fischer and Lyon (2019).
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not purchase this product will switch to the outside options that are made of pure

virgin material.

NGO: We model an NGO as a third-party certifier that can provide a voluntary

and credible label of recycled content for products. The NGO is able to verify

the recycled content used in the product once the firm chooses to apply her label.

For the sake of simplicity, we consider that there are two types of labels for the

NGO to choose between: the percentage label (denoted as P) and the binary label

(denoted as B). The percentage label shows exactly the percentage of the recycled

material used in a product and can provide perfect information to consumers. By

contrast, the binary label sets one pass/fail standard, denoted by q̄ ∈ (0, 1],3.10 and

the product can only obtain the label if its recycled content meets the standard (i.e.,

q ≥ q̄) and cannot obtain the label otherwise (i.e., q < q̄). To simplify the NGO’s

problem and derive clear insights from label comparison, we consider that the NGO

can only choose one type of label to offer, and that there is no cost for the firm to

apply the label as in Murali et al. (2019).

We focus on the case where the NGO is an environmental proactivist that cares

about product waste management and aims to minimize environmental damage.

Note that in our setting, all consumers will either purchase the focal product or

switch to the outside options that made of pure virgin material. Therefore, the

more total amount of recycled material used by the firm, the less total amount of

virgin material to be exploited, and thus the less environmental damage there will

be. Hence, we consider that the objective of the NGO is to maximize the overall

usage of recycled material, which is equivalent to minimize the total amount of virgin

material used in the whole market and hence reduce environmental damage.3.11 As

such, the NGO’s payoff is given by Π = dq, where d is the total demand of the

product and q is the percentage of the recycled material in the product.

Next, we discuss how C-type consumers’ belief about the recycled content, ϕ, is

influenced by the product’s label. The percentage label provides them full informa-

3.10We assume q̄ > 0 in the binary case to avoid the trivial discussion on q̄ = 0.
3.11We remark that there is no consensus on an NGO’s objective. Some NGOs may care more
about environmental damage or benefit, and some may care more about profit performance. Our
paper focuses on the former case, similar as that considered in Heyes and Martin (2016).
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tion about the recycled content q, and thus ϕ = q. By contrast, the binary label

only indicates that the content q is no less than the standard q̄. We assume that

C-type consumers are willing to pay for the certified content q̄ (i.e., ϕ = q̄) when

the product obtains the binary label, and not willing to pay for the recycled content

(i..e, ϕ = 0) when the product fails to have a binary label. It is clear that the firm

will always choose to apply the label, given that the label is free of cost and can

provide necessary information to enhance C-type consumers’ willingness-to-pay. We

further remark that including the cost of applying the label will not qualitatively

affect our main insights. Thus, for the sake of simplicity, we assume the labeling

cost is zero.

Game sequence: The sequence of events is given as follows. In Stage 1, the

NGO decides which type of label to offer, and sets the label standard q̄ if the

binary label is chosen. In Stage 2, given the NGO’s label type, the firm decides the

percentage of the recycled material q and retail price p. Given that applying the

label is free, the firm will try to apply the label and may or may not obtain it. In

Stage 3, consumers make purchase decisions after observing retail price p and the

firm’s label information.

Tie-breaking rules: We make the following tie-breaking rules: (1) When the

firm is indifferent between setting a high or low price, the firm sets a low price so as

to benefit consumers and the NGO. (2) When the NGO is indifferent between setting

a high or low standard under the binary label, she will choose a high standard that

benefits the firm.

3.4 Analysis

We solve the game through backward induction. We first analyze the case of the

percentage label in Section 3.4.1, and then study the binary label in Section 3.4.2.

The comparisons regarding the firm’s profits and the NGO’s payoffs under the two

different labels are provided in Section 3.4.3. Finally, we further examine consumer

surplus in Section 3.4.4.
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3.4.1 Percentage Label

Given that the NGO offers the percentage label, the firm needs to decide the recycled

content q ∈ [0, 1] and the product’s price p ≥ 0. Since we assume a zero cost for

label registration, the firm will always apply for the label. In this case, consumers

can perfectly know q by observing the label, i.e., ϕ = q. Note that only if the firm’s

recycled content q = 0, he fails to obtain a label, and ϕ = 0 accordingly. The firm’s

problem is to choose the recycled content and retail price to maximize his profit,

i.e.,

max
p,q

π(p, q) =

{
α(p− c(q))− kq2, if p ∈ (v, v + vrq]

p− c(q)− kq2, if p ∈ [0, v]
.

Given any recycled content q, we first show the firm’s optimal pricing strategy,

denoted by p∗P (q), in Lemma 3.1. Note that we use subscript “P” to denote the case

of the percentage label.

Lemma 3.1. Under the percentage label, given recycled content q, the firm’s optimal

price decision is given by

p∗P (q) =

{
v + vrq, if α > α̃ and q > q̃

v, otherwise
,

where α̃ = v−cr
v+vr−cr

and q̃ = (1−α)(v−cn)
vrα−(1−α)(cn−cr)

.

Obviously, the firm will either set p∗P (q) = v+vrq to serve only C-type consumers

(i.e., d = α) or set p∗P (q) = v to serve all consumers (i.e., d = 1). We refer to the

former as high price strategy and the latter as low price strategy. Lemma 3.1 provides

us with the following insights. When there is a large fraction of C-type consumers

(i.e., α > α̃) and the product contains a high percentage of the recycled material (i.e.,

q > q̃), the firm prefers to set a high price to only serve C-type consumers; otherwise,

he prefers to set a low price and sell to all consumers. Next, we characterize the

optimal recycled content q∗P and the corresponding price p∗P
.
= p∗P (q

∗
P ) in Proposition

3.1 and Table 3.2. The details are referred to Appendix B.1.2.

Proposition 3.1. Given the percentage label, there exist parameter regions P1H ,

PHH , PLL, P1L, and P0L in terms of the fraction of C-type consumers (α) and

fixed cost factor (k), such that the firm’s optimal recycled content (q∗P ) and the

corresponding price (p∗P ) are given in Table 3.2.
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Table 3.2: The Firm’s Decisions under the Percentage Label

cn > cr cn ≤ cr
Region P1H PHH PLL P1L P1H PHH P0L

q∗P 1 α(vr+cn−cr)
2k

cn−cr
2k

1 1 α(vr+cn−cr)
2k

0

p∗P v + vr v + vrq
∗
P v v v + vr v + vrq

∗
P v

k

(a) When cn > cr

k

(b) When cn ≤ cr

Figure 3.2: The Firm’s Decision Regions under the Percentage Label
Note: In (a): cn = 4, cr = 1, v = 8, vr = 7; In (b): cn = 1, cr = 4, v = 8, vr = 7.

We define five regions (P1H , PHH , PLL, P1L, and P0L) in terms of (α, k), in which

the firm’s decisions are different. Each region Pij has two subscripts: The first sub-

script i denotes the recycled content decision and the second subscript j represents

the price decision. Specifically, i = 1 means 100% recycled content (i.e., q∗P = 1),

i = H means a high percentage of recycled content (i.e., q∗P = α(vr+cn−cr)
2k

), i = L

means a low percentage of recycled content (i.e., q∗P = cn−cr
2k

), and i = 0 means no

recycled content (i.e., q∗P = 0); j = H means high-price strategy (i.e., p∗P = v+vrq
∗
P ),

while j = L indicates low-price strategy (i.e., p∗P = v). These regions are depicted

in Figure 3.2.

We explain Proposition 3.1 in two different cases, depending on whether the

recycled material has a cheaper marginal cost than that of virgin material. First,

we consider the case where the marginal cost of the recycled material is strictly

cheaper than that of virgin material (cn > cr), as shown in Figure 3.2(a). Although

the recycled material has a cheaper marginal cost, integrating the recycled material
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will still incur an additional fixed cost. Thus, only when the fixed cost factor of

recycling (k) is low (i.e., in regions P1H and P1L), the firm would use purely recycled

materials (i.e., q∗P = 1); otherwise, the firm would choose a high percentage of the

recycled material if the fraction of C-type consumers is high (i.e., in region PHH)

and a low percentage of the recycled material if the fraction of C-type consumers

is low (i.e., in region PLL). Moreover, as previously discussed in Lemma 3.1, when

the fraction of C-type consumers is high (i.e., in regions P1H and PHH), the firm

would charge a high price such that only C-type consumers are willing to buy;

otherwise (i.e., in regions P1L and PLL), he will charge a low price to serve all

consumers. Next, we consider the case where the marginal cost of the recycled

material is higher (cn ≤ cr), as shown in Figure 3.2(b). The firm’s price decision

is similar to the previous case, but the recycled content decision is different. Since

the recycled material is more expensive, the firm will not use any recycled material

if the fraction of C-type consumers is not sufficiently high (i.e., in region P0L). If

there are sufficient C-type consumers, the firm will use purely recycled materials

(i.e., q∗P = 1) only when the fixed cost of recycling (k) is low (i.e., in region P1H),

and adopt a high percentage of recycled materials when the fixed cost is high (i.e.,

in region PHH).

Let π∗
P and Π∗

P denote the firm’s equilibrium profit and the NGO’s equilibrium

payoff in the percentage label case, respectively, which are given by:

(π∗
P ,Π

∗
P ) =



(α(v + vr − cr)− k, α), (α, k) ∈ P1H

(v
2
rα+α(cn−cr)(cn−cr+2vr)+4k(v−cn)

4k
, α

2(vr+cn−cr)
2k

), (α, k) ∈ PHH

(4k(v−cn)+(cn−cr)2

4k
, cn−cr

2k
), (α, k) ∈ PLL

(v − cr − k, 1), (α, k) ∈ P1L

(v − cn, 0), (α, k) ∈ P0L

. (3.2)

We further conduct sensitivity analysis to study how the fraction of C-type con-

sumers (α) and the technology cost of recycling (k) affect the firm’s optimal recy-

cled content and profit as well as the NGO’s payoff. The results are summarized in

Corollary 3.1.

Corollary 3.1. Under the percentage label: (1) The firm’s optimal recycled content

(q∗P ) and the corresponding profit (π∗
P ) are (weakly) increasing in α and (weakly)
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decreasing in k. (2) The NGO’s payoff (Π∗
P ) may increase or decrease in α and in

k.

Corollary 3.1(1) shows the firm will (weakly) increase the recycled content and

earn a (weakly) higher profit as more consumers become C-type or as the technology

cost of recycling decreases. This implies that when the percentage label is offered

to reveal full information, the firm would have incentive to help popularize envi-

ronmental education and increase the environmental consciousness of the public, or

to improve the technology level to pursue a lower cost of processing recycled ma-

terials. Our findings are consistent with some practical observations. For example,

Hewlett-Packard adopted UL Recycled Content label (an example of percentage la-

bels) for some of its products, and it also actively engaged in the practices that

could encourage consumers to recycle and enhance their awareness of environmental

issues.3.12

Moreover, interestingly, we find that as the fraction of C-type consumers in-

creases or the fixed cost of recycling becomes lower, the NGO can be better off

within each decision region (see Figure 3.2) but may be even worse off in the entire

region, as shown in Corollary 3.1(2). Specifically, when α increases or k decreases

such that the region switches from PLL∪P1L∪P0L to P1H ∪PHH , the NGO’s payoff

could even be reduced. This is because although the firm adopts a higher percentage

of recycled materials as α increases or k decreases, his pricing strategy may change

from low to high, and thus the total demand becomes lower. This may lead to either

a higher or lower total usage of recycled materials, and thus may benefit or hurt the

NGO’s payoff.

3.4.2 Binary Label

We study the case of the binary label in this section. Given that the binary label

is chosen, the NGO needs to further decide the label standard q̄ ∈ (0, 1]. Then,

the firm decides the recycled content q and price p. Different from the percentage

3.12See https://www.recyclingtoday.com/article/hp-striving-higher-recycled-plastic
s/;
https://www.siliconrepublic.com/science/hp-encourages-consumers-to-print-and-rec

ycle-like-the-lorax.
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label, the firm can only obtain the binary label if q ≥ q̄, and cannot obtain the

label otherwise. The C-type consumers are willing to pay for the certified recycled

material (i.e., ϕ = q̄) when the product has a binary label, and are not willing to

pay any premium (i.e., ϕ = 0) for the product without a label. Given the binary

label with standard q̄, the firm’s profit is:

π(p, q|q̄) =


α(p− c)− kq2, if p ∈ (v, v + vrq̄] and q ≥ q̄

−kq2, if p ∈ (v, v + vrq̄] and q < q̄

p− c− kq2, if p ∈ [0, v]

.

Note that if p > v + vrq̄, the product demand will be zero; similarly, if p > v and

q < q̄, the firm has zero demand and negative profit. Thus, it is easy to see that

in the equilibrium, the firm would either obtain a binary label (q ≥ q̄) and charge

a high price p = v + vrq̄ to target C-type consumers only, or charge a low price

p = v to target all consumers. Lemma 3.2 characterizes the firm’s optimal pricing

strategy, denoted by p∗B(q, q̄), given the recycled content q and the label standard q̄.

Note that we use subscript “B” to denote the binary label case.

Lemma 3.2. Given the binary label with standard q̄ and the firm’s recycled content

q, the firm’s optimal price decision is given by

p∗B(q, q̄) =

{
v + vrq̄, if (α−1)[crq+cn(1−q)−v]

αvr
< q̄ ≤ q

v, otherwise
.

This lemma shows that the firm prefers the high-price strategy (i.e., p∗B(q, q̄) =

v + vrq̄) when the binary label standard is relatively high and he obtains the label,

and he prefers the low-price strategy (i.e., p∗B(q, q̄) = v) otherwise. Next, given label

standard q̄, we show the firm’s optimal recycled content, denoted by q∗B(q̄), and

the corresponding price, denoted by p∗B(q
∗
B(q̄), q̄), in Lemma 3.3 and Table 3.3. A

visualization of the equilibrium outcomes as a function of k and q̄ is shown in Figure

3.3. The details are referred to Appendix B.2.2.

Lemma 3.3. Given the binary label standard q̄, there exist parameter regions Qij

for i ∈ {1, H,M,L, 0} and j ∈ {H,L}, such that the firm’s optimal recycled content

(q∗B(q̄)) and the associated price (p∗B(q
∗
B(q̄), q̄)) are given in Table 3.3. Specifically,

in region Q0L or QLL, the firm cannot obtain the binary label, i.e., q̄ > q∗B(q̄);

otherwise, he can obtain the label, i.e., q̄ ≤ q∗B(q̄).
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𝑄1𝐻

𝑄𝐻𝐻

𝑄𝑀𝐻

𝑄𝐿𝐿
(No Label)

𝑄1𝐿 𝑄𝐻𝐿

(a) When cn > cr

𝑄𝑀𝐻 𝑄0𝐿
(No Label)

(b) When cn ≤ cr

Figure 3.3: The Firm’s Decision Regions under the Binary Label

Note: In (a): cn = 4, cr = 1, v = 8, vr = 7, α = 0.7; In (b): cn = 1, cr = 4, v =
8, vr = 7, α = 0.9. In Q0L ∪ QLL, the firm cannot obtain the label. Otherwise,
the firm can obtain the label.

Table 3.3: The Firm’s Decisions Given the Binary Label Standard

cn > cr cn ≤ cr
Region Q1H QHH QMH Q1L QHL QLL QMH Q0L

q∗B(q̄) 1 α(cn−cr)
2k

q̄ 1 cn−cr
2k

cn−cr
2k

q̄ 0

p∗B(q
∗
B(q̄), q̄) v + vrq̄ v + vrq̄ v + vrq̄ v v v v + vrq̄ v

Label ✓ ✓ ✓ ✓ ✓ × ✓ ×

We define the regions Qij for i ∈ {1, H,M,L, 0} and j ∈ {H,L}, in which the

firm’s decisions are different. Each region Qij has two subscripts: The first subscript

i describes the recycled content decision and the second subscript j represents the

price decision. Specifically, i = 1 means 100% recycled content (i.e., q∗B(q̄) = 1),

i = H means the recycled content is greater than the label standard (i.e., q∗B(q̄) > q̄),

i = M means the recycled content exactly equals the label standard (i.e., q∗B(q̄) = q̄),

i = L means the recycled content is less than the label standard (i.e., q∗B(q̄) < q̄),

and i = 0 means no recycled content (i.e., q∗B(q̄) = 0); j = H means high-price

strategy, while j = L means low-price strategy. The visualization of these regions is

given in Figure 3.3.

Similarly, we explain the firm’s optimal recycled content in two different cases,

depending on the marginal cost of the recycled material. The first case, in which
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the recycled material is cheaper than the virgin material (i.e., cn > cr), is shown in

Figure 3.3(a). Note that integrating recycled material will incur an additional fixed

cost. Thus, although the recycled material has a cheaper marginal cost, the firm will

adopt purely recycled materials only when the fixed cost k is small, and switch to

high, medium, and low level of recycled content as k increases. Particularly, when

both fixed cost k and the label standard q̄ are large (i.e., in region QLL), the firm’s

recycled content will be lower than the label standard and will have to set a low

price since he fails to obtain the label. In the second case, in which recycled material

is more expensive (i.e., cn ≤ cr), the firm will either adopt a medium percentage of

recycled content and a high price when the fixed cost factor k is low, or adopt zero

recycled content and a low price when k is large, as shown in Figure 3.3(b).

Finally, we remark that, in contrast to the percentage label case in which the

firm can always obtain a label, the firm may or may not obtain the binary label.

As shown in Lemma 3.3, the firm will choose not to meet the label standard in

two regions: 1) When the recycled material is cheaper and both the fixed cost of

recycling and the label standard are high (i.e., in region QLL); 2) When the virgin

material is cheaper and the fixed cost of recycling is high (i.e., in region Q0L).

Next, we turn to the NGO’s problem. Given the firm’s decisions, the NGO sets

the binary label standard q̄ to maximize her payoff:

max
q̄

Π(q̄) =

{
α · q∗B(q̄), if p∗B(q

∗
B(q̄), q̄) ∈ (v, v + vrq̄]

q∗B(q̄), if p∗B(q
∗
B(q̄), q̄) ∈ [0, v]

.

The NGO obtains payoff αq∗B(q̄) when the firm sets a high price that only attracts

C-type consumers (i.e., d = α), and payoff q∗B(q̄) when the firm sets a low price to

target all consumers (i.e., d = 1). Let q̄∗ denote the NGO’s optimal binary label

standard, and let q∗B
.
= q∗B(q̄

∗) and p∗B
.
= p∗B(q

∗
B, q̄

∗) denote the firm’s corresponding

recycled content and price, respectively. Then, the NGO’s optimal label standard q̄∗

and the firm’s optimal recycled content q∗B and price p∗B are described in Proposition

3.2 and Table 3.4. The NGO’s corresponding payoff is provided in Appendix B.2.5.

Proposition 3.2. Given the binary label, the NGO’s optimal label standard (q̄∗)

and the firm’s optimal decisions are given in Table 3.4.
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Table 3.4: NGO’s and the Firm’s Decisions under the Binary Label

cn > cr cn ≤ cr

Region B1H BMH B1L B
′
1L BML BHL B1H B

′
MH B0L

q̄∗ 1 q̄MH 1 q̄1L
cn−cr
2k

q̄HL 1 q̄
′
MH (0, 1]

q∗B 1 q̄MH 1 1 cn−cr
2k

cn−cr
2k

1 q̄
′
MH 0

p∗B v + vrq̄
∗ v + vrq̄

∗ v v v v v + vrq̄
∗ v + vrq̄

∗ v

Label ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×
Note: q̄MH=

α(vr−cr+cn)+
√

α2(vr−cr+cn)2+4k(v−cn)(α−1)−(cn−cr)2

2k
,

q̄
′
MH=

α(vr−cr+cn)+
√

α2(vr−cr+cn)2+4k(v−cn)(α−1)
2k

, and q̄1L and q̄HL are given in Appendix B.2.3.

k

𝐵𝑀𝐿

𝐵1𝐿 𝐵1𝐿
′

𝐵𝐻𝐿

𝐵1𝐻

𝐵𝑀𝐻

(a) When cn > cr

k 𝐵0𝐿

𝐵1𝐻

𝐵𝑀𝐻
′

(b) When cn ≤ cr

Figure 3.4: The NGO’s Decision Regions under the Binary Label

Note: In (a): cn = 4, cr = 1, v = 8, vr = 7; In (b): cn = 1, cr = 4, v = 8, vr = 7.

Similarly, we define the regions Bij for i ∈ {1, H,M,L, 0} and j ∈ {H,L} in

terms of (α, k) to differentiate the equilibrium outcomes. The subscript i represents

recycled content and j indicates the price strategy, which are defined similarly to

those for region Qij. Those regions are depicted in Figure 3.4, and the details are

referred to Appendix B.2.3.

First, we consider the case in which the recycled material has a higher marginal

cost (i.e., cn ≤ cr), as shown in Figure 3.4(b). Since the recycled material is more

expensive, when the fraction of C-type consumers is small (i.e., in region B0L),

the firm is not interested in using any recycled content and will set a low price

regardless of the NGO’s label standard. In this region, the NGO will gain zero
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payoff and become indifferent to any label standard between 0 and 1. When the

fraction of C-type consumers (α) becomes larger, the firm will have more incentive

to use recycled materials and the NGO will induce more usage of recycled content

through the design of its label standard. Specifically, when α is large and the

technology cost of recycling (k) is low (i.e., in region B1H), the NGO will set the

label standard to 100%, and the firm will use purely recycled content to obtain the

label and set a high price to target only C-type consumers. When both α and k

are high (i.e., in region BMH), the NGO will set a moderate label standard, and the

firm will just meet the standard and set a high price.

Second, we consider the case in which the recycled material has a lower marginal

cost (i.e., cn > cr), as shown in Figure 3.4(a). Since the recycled material is cheaper,

the firm has an incentive to adopt some recycled material in order to lower the total

marginal cost; and the NGO’s label standard would also influence the firm’s recycled

content and price decisions. When the fixed cost factor k is low or the fraction of C-

type consumers α is high (i.e., in regions B1L, B
′
1L, BHL and B1H), the firm will either

choose purely recycled content or a proportion of recycled content that is strictly

higher than the label standard (i.e., q∗B > q̄∗); otherwise (i.e., in regions BMH and

BML), he will choose the recycled content that just meets the label standard (i.e.,

q∗B = q̄∗). Interestingly, in regions B
′
1L and BHL, the firm’s recycled content will

be strictly higher than the label standard. Given that the NGO can anticipate the

firm’s recycled content decision, why would she set a label standard strictly lower

than the firm’s choice? The reason is as follows. In these two regions, the firm faces

a low fixed cost and a high fraction of C-type consumers; thus, he has incentive to

adopt high percentage of recycled materials and set a high price to only serve C-

type consumers. While the NGO wants to encourage high demand so that the total

usage of recycled materials can be improved. Note that the binary label can only

partially reveal the information of recycled content to consumers, that is, a firm’s

high price strategy is constrained by the label standard. Thus, to induce greater

usage of recycled materials, the NGO will set a relatively low label standard in these

regions, so that charging a high price to serve only C-type consumers becomes less

profitable for the firm. Hence, given the low label standard, the firm will choose a
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strictly higher recycled content but a low price to serve all consumers, and the NGO

can benefit from the larger demand.

We further summarize different situations of the firm’s label outcome in the

following proposition.

Proposition 3.3. Given the binary label:

(1) The firm will not obtain the label (i.e., q̄∗ > q∗B) in the region B0L;

(2) The firm sets the level of recycled content strictly higher than the label standard

(i.e., q̄∗ < q∗B) and obtains the label in the regions BHL and B
′
1L;

(3) The firm sets recycled content exactly the same as the label standard (i.e., q̄∗ =

q∗B) and obtains the label in the other regions.

As previously discussed, in most cases the NGO will set a label standard at

the level such that the firm will just meet it (i.e., q̄∗ = q∗B). However, when the

recycled material is more costly than virgin material and the technology cost of

recycling is high (i.e., in region B0L), the firm will not use any recycled content

regardless of the label standard, and thus will not obtain the label. Moreover, when

the recycled material is cheaper, the firm would prefer to use a percentage of the

recycled material that is even strictly higher than the label standard (i.e., q̄∗ < q∗B)

if the technology cost of recycling is low and the fraction of C-type consumers is

high (i.e., in regions BHL and B
′
1L). This situation is not uncommon in practice.

For example, 3M claims that its product, Post-it Recycled Notes, is made with pure

recycled paper and certified by PEFC Recycled label (an example of binary labels)

which only requires a minimum of 70% recycled content.3.13

Next, we will show how the fraction of C-type consumers and the fixed cost of

recycling affect the NGO’s and the firm’s decisions and payoffs. The results are

summarized in Corollary 3.2 and depicted in Figure 3.5.

Corollary 3.2. Under the binary label, in the equilibrium: (1) The NGO’s label

standard (q̄∗) may increase or decrease in α and in k. (2) The firm’s recycled

content (q∗B) (weakly) increases in α and may increase or decrease in k. (3) Both

the firm’s profit and the NGO’s payoff (weakly) increase in α and (weakly) decrease

3.13See https://www.3m.co.uk/3M/en GB/p/d/v101054008/
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Figure 3.5: Impact of α and k under the Binary Label when cn > cr

Note: (a), (c), (e) show the impact of α where (a) k = 1, (c) k = 2, and (e) k = 6.
(b), (d), (f) show the impact of k where (b) α = 0.2, (d) α = 0.54, and (f) α = 0.6.
(a)− (f) are based on cn > cr where cn = 4, cr = 1, v = 8, vr = 7.

Intuitively, the firm should use more recycled content and the NGO should raise

the label standard as the fraction of C-type consumers (α) grows or as the technology

cost of recycling (k) drops. Interestingly, we find that i) the NGO’s label standard

may actually decrease as α increases (e.g., see region B
′
1L in Figure 3.5(a)), and ii)
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the firm’s recycled content and the NGO’s label standard may also increase as k

increases (e.g., see Figure 3.5(f) when the region switches from BHL to B1H). Both

of these two situations occur in the case when the recycled content has a lower

marginal cost (i.e., cn > cr). The reason is as below. For point i), as α increases

from region B1L to B
′
1L (see Figure 3.5(a)), the firm has incentive to switch his price

strategy from low to high, which in turn would lead to low demand. To prevent

this, the NGO would decrease the label standard, which makes serving only C-type

consumers less profitable and forces the firm to maintain a low price that serves all

consumers. For point ii), as k increases from region BHL to B1H (see Figure 3.5(f)),

the firm prefers to reduce the recycled content and set a low price. As the recycled

content becomes too low, the NGO has incentive to increase the label standard,

which encourages the firm to adopt high recycled content to obtain the label and

set high price to only target C-type consumers. Thus, both the label standard and

the firm’s recycled content will jump up as k increases from region BHL to B1H .

Moreover, Corollary 3.2(3) shows that both the firm and the NGO can benefit from

a higher fraction of C-type consumers or a lower technology cost of recycling.

3.4.3 Comparison between Percentage and Binary Labels

We have so far examined the equilibrium outcomes under the percentage and binary

labels, respectively. In this section, we compare the outcomes of the two labels.

We show the results in Proposition 3.4 and Figures 3.6-3.7. The intersection of the

decision regions under the two labeling schemes in Proposition 3.4 is depicted in

Figure 3.8.

Proposition 3.4. The firm always weakly prefers the percentage label, while the

NGO always weakly prefers the binary label. Moreover, the recycled content may be

higher or lower under the binary label than that under the percentage label. Specifi-

cally:

(1) When cn ≤ cr: q
∗
P < q∗B if (α, k) ∈ RB; otherwise (i.e., (α, k) ∈ RI), q

∗
P = q∗B = 0

and the outcomes of the two labels are identical.

(2) When cn > cr: q∗P < q∗B if (α, k) ∈ RB; q
∗
P > q∗B if (α, k) ∈ RP ; otherwise (i.e.,
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(α, k) ∈ RI), q
∗
P = q∗B and the outcomes of the two labels are identical.3.14

As shown in Proposition 3.4 and Figure 3.7, the binary label either leads to an

identical outcome as that of the percentage label, or strictly benefits the NGO but

hurts the firm. This is due to the factor that the binary label can only partially

reveal the firm’s recycling information, and thus the firm may not be able to select

his most preferred recycled content and price as he could under the percentage

label. At the same time, under the binary label, the NGO could influence the firm’s

decision through setting the label standard to enhance the total usage of recycled

materials. Thus, the NGO always weakly prefers the binary label, while the firm

weakly prefers the percentage label.

α

𝑃𝐿𝐿 𝑃𝐻𝐻

𝐵𝑀𝐻𝐵𝑀𝐿 𝐵1𝐻
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𝐵𝐻𝐿𝐵𝑀𝐿 𝐵1𝐻

(b) When cn > cr and k is small

α

𝑃0𝐿 𝑃𝐻𝐻

𝐵𝐻𝐻𝐵0𝐿 𝐵1𝐻

(c) When cn ≤ cr

qP
*

qB
*

Figure 3.6: Comparison of Recycled Content under the Two Labels
Note: In (a): cn = 4, cr = 1, v = 8, vr = 7, k = 8; In (b): cn = 4,cr = 1, v = 8,

vr = 7, k = 2; In (c): cn = 1, cr = 4, v = 8, vr = 7, k = 3.

3.14Note that RB
.
=

{
PHH ∩ (B1H ∪BMH), if cn > cr

PHH ∩ (B1H ∪B
′

MH), if cn ≤ cr
,

RI
.
=

{
P1L ∪ PLL ∪ (P1H ∩B1H), if cn > cr

P1H ∪ P0L, if cn ≤ cr
, and RP

.
= (P1H ∪ PHH) ∩ (BML ∪BHL).
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Figure 3.7: The Firm’s and the NGO’s Label Preferences.
Note: In (a): cn = 4, cr = 1, v = 8, vr = 7; In (b): cn = 1, cr = 4, v = 8, vr = 7.
In RP and RB, the firm strictly prefers the percentage label while the NGO
strictly prefers the binary label. Moreover, q∗P > q∗B in RP and q∗P < q∗B in RB.
In RI , both the firm and the NGO are indifferent between the two labels.

As shown in Proposition 3.4 and Figure 3.8, the firm’s recycled content under

the binary label is weakly higher than that under the percentage label when the

virgin material is cheaper (i.e., cn ≤ cr); while it could be higher or lower when the

recycled material is cheaper (i.e., cn > cr). Under the percentage label, the firm can

always choose his most preferred recycled content. By contrast, under the binary

label, the firm’s decision is influenced by the NGO’s label standard. To induce

higher total usage of recycled materials, the NGO may either set a high standard

that encourages the firm to raise the recycled content that meets the standard (e.g.,

in region B1H), or set a low standard that induces the firm to reduce recycled content

but increase demand by setting a low price (e.g., in region BML). Thus, the firm’s

recycled content under the binary label can be higher (i.e., in region RB) or lower

(i.e., in region RP ).

Our results could provide some useful managerial insights for both NGOs and

firms. Both binary labels (e.g., PEFC label) and percentage labels (e.g., GreenCircle

Certified label) are commonly observed in practice. Our results may provide some

possible explanations for the label choices. We find that the NGO and the firm

often have different label preference. When the NGO has the negotiation power to

design her most preferred label, a binary label might be selected, since the NGO

70



k
𝐵𝑀𝐿⋂𝑃𝐻𝐻

𝐵𝑀𝐿⋂𝑃1𝐻

𝐵1𝐻⋂𝑃𝐻𝐻

𝐵𝑀𝐻⋂𝑃𝐻𝐻

𝐵1𝐻⋂𝑃1𝐻
𝐵𝑀𝐿⋂𝑃𝐿𝐿k

𝐵𝑀𝐿⋂𝑃𝐿𝐿

𝐵𝑀𝐿⋂𝑃𝐻𝐻

𝐵𝑀𝐿⋂𝑃1𝐻

𝐵𝐻𝐿⋂𝑃1𝐻

𝐵1𝐿
′ ⋂𝑃1𝐻𝐵1𝐿⋂𝑃1L

𝐵1𝐻⋂𝑃1𝐻

𝐵1𝐻⋂𝑃𝐻𝐻

𝐵𝑀𝐻⋂𝑃𝐻𝐻

(a) When cn > cr

k 𝐵0𝐿⋂𝑃0𝐿

𝐵𝑀𝐻
′ ⋂𝑃𝐻𝐻

(b) When cn ≤ cr

Figure 3.8: The Overlap of Decision Regions under the Labeling Schemes
Note: In (a): cn = 4, cr = 1, v = 8, vr = 7, k = 2; In (b): cn = 1,cr = 4, v = 8,

vr = 7, k = 2.

is able to influence the firm’s usage of recycled content through the appropriate

choice of label standard. However, in some situations, the label design does not

purely depend on the NGO’s preference. For example, competition often exists

among label providers in practice. In a competitive labeling market, firms may

have stronger negotiation power, and NGOs may have to offer the firms’ preferred

percentage label in order to encourage their adoption. Moreover, sometimes there

exists a third-party organization that can further coordinate the firms’ and NGOs’

preferences in working toward a sustainable development goal. For example, Ellen

MacArthur Foundation (EMF), established in the UK, is one such advocate of the

circular economy that partners with firms and label certifiers to promote the usage

of recycled materials.
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3.4.4 Consumer Surplus

In this section, we further examine consumers’ total surplus (aggregate utility) under

each type of labels and study which type of label most benefits consumers. Let CSP

and CSB denote consumers’ total surplus under the percentage and binary labels,

respectively. Recall that if the firm adopts the high price p = v + vrq under the

percentage label or p = v + vrq̄ under the binary label, only C-type consumers

purchase the product and their utility is zero. Thus, CSB(p, q̄) = CSP (p, q) = 0

when the firm adopts the high-price strategy. If the firm adopts the low price p = v,

all consumers will purchase the product but only C-type consumers have positive

utilities. Thus, CSB(p, q̄) = αvrq̄ under the binary label and CSP (p, q) = αvrq

under the percentage label in the case of low-price strategy. In short, the consumer

surplus under each label is, respectively, given by

CSP (p, q) =

{
αvrq, if p = v

0, if p = v + vrq
, CSB(p, q̄) =

{
αvrq̄, if p = v

0, if p = v + vrq̄
.

Let CS∗
P

.
= CS∗

P (p
∗
P , q

∗
P ) and CS∗

B
.
= CS∗

B(p
∗
B, q̄

∗) denote the consumer surplus

in equilibrium under the two labels, respectively. We summarize the comparison

between consumer surplus under the two labels in Proposition 3.5.

Proposition 3.5. Consumers always weakly prefer the binary label: CS∗
P < CS∗

B if

cn > cr and (α, k) ∈ (BML∪BHL∪B1L∪B
′
1L)∩(P1H∪PHH); otherwise, CS∗

P = CS∗
B.

We find that consumers weakly prefer the binary label over the percentage label.

Specifically, when the virgin material is cheaper (i.e., cn ≤ cr), consumers will have

zero surplus under either labeling scheme, i.e., CS∗
P = CS∗

B = 0, since the firm would

either set the high price or choose purely virgin material. While, when the recycled

material is cheaper (i.e., cn > cr), consumers might be strictly better off under the

binary label. This occurs when the firm prefers a high price under the percentage

label but has to set a low price under the binary label because the NGO sets a low

label standard to stimulate high demand. In addition, since the percentage label can

convey more information than the binary label, when comparing Proposition 3.5 with

Proposition 3.4, we can conclude that firms may prefer more market transparency

(information) than consumers, which aligns with Stahl and Strausz (2017).
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We can further study the impact of the fraction of C-type consumers (α) and the

technology cost of recycling (k) on consumer surplus, the result of which is shown

in the following corollary.

Corollary 3.3. (1) When cn ≤ cr, CS∗
P = CS∗

B = 0. (2) When cn > cr, both CS∗
P

and CS∗
B are non-monotone in α or k.

As previously mentioned, when the virgin material is cheaper (i.e., cn ≤ cr),

consumer surplus is independent of the fraction of C-type consumers and the tech-

nology cost of recycling, since all consumers have zero surplus. However, when the

recycled material is cheaper (i.e., cn > cr), consumers may be either better off or

worse off when either the fraction of C-type consumers or the technology cost of

recycling increases (e.g., see region PLL or BML). As α or k increases, the firm will

adjust not only recycled content but also price strategy. Thus, consumer surplus is

not continuous and non-monotone in α and k. More details are referred to Appendix

B.3.3.

3.5 Conclusion

Green products with recycled materials have been successfully promoted by some

leading firms and many others are following suit incorporating it into their manu-

facturing process. Nevertheless, these products face a potential crisis of trust from

consumers and the question of how to convince consumers to pay for the firm’s

green efforts in using recycled materials. A recognized environmental label that

independently certifies the usage of recycled content is one good solution, but the

design of such a label has yet to mature. Against this backdrop, we study two forms

of commonly observed recycling labels and analyze the impacts of these different

labels on a firm’s recycling and pricing decisions, as well as the NGO’s payoff and

consumers’ total surplus. To that end, we build a game-theoretical model wherein

an NGO offers a certain type of label and a monopoly firm sells a product and

decides the fraction of its recycled materials and price. The market is filled with

both environmentally conscious and unconscious consumers. Then, we derive rich

managerial insights about the firm’s recycling decision and NGO’s labelling scheme.
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In summary, we find that the firm prefers the percentage label, while NGO and

consumers prefer the binary label. In addition, as more consumers become environ-

mentally conscious or as the technology cost of recycling decreases: 1) The firm’s

optimal recycled content increases under the percentage label but may decrease or

increase under the binary label; 2) The firm is always better off; 3) The NGO is

better off under the binary label and might be worse off under the percentage label.

Some of these counterintuitive findings should attract the attention of label admin-

istrators. As the calls of governments, non-profit organizations, and industries are

intensifying for a mature recycling label scheme that facilitates communication be-

tween the growing number of recycled products and consumers, our results provide

useful insights for the development of an effective label design.

Our analysis also provides possible explanations for some observations of the

recycling labels. Different types of labels could be prevalent in different markets,

due to the frequently differing preferences of firms and NGOs. In some markets, the

label design mainly depends on the NGOs’ preference; while in others, it may also

depend on the firms’ preference (such as in a competitive label market). Therefore,

different label designs may need to be adopted. Finally, we want to point out

that our analytical results on the label preference of the firm and NGO are robust

with respect to the following modifications. First, we change the linear form of

marginal cost of materials to a quadratic form. Second, we consider consumers’

environmental awareness is continuously distributed instead of the existing two types

of consumers. Then, the demand can linearly depend on the price. Both of the two

scenarios quantitatively change the firm’s profit and NGO’s payoff, however, they

do not qualitatively change the information disclosure of the two labels. The firm

can always choose his most preferred recycled content and fully reveal it by the

percentage label while NGO can influence the firm’s decision by the binary label.
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Chapter 4

Summary and Future Research

This thesis explores two aspects of sustainable operations, in which our main theme

is to make full use of the limited resource. The first part concerns the sustainable

micromobility service in last-mile transportation. The service provider faces a lim-

ited number of vehicles to be allocated in the urban area, and he also wants to serve

as many as customers. Hence, the deployment and efficient use of the vehicles are

investigated. The second part concerns the label design for a sustainable consumer

product. The use of recycled materials can save the limited resource on earth and

reduce waste. Recycling labels can disclose information about recycled materials of

products to consumers. Hence, an effective label design may incentivize firms to

use a higher proportion of recycled materials or sell more products to increase the

total usage of recycled materials. Thus, the second part of this thesis focuses on the

impacts of recycling labels on firms’ recycling and pricing decisions.

In our first study, we note that a sustainable urban transportation system should

utilize mobility tools to avoid congestion. Recently, as the shared micromobility ser-

vice was expanding rapidly with pending operational challenges yet to be overcome,

we study the vehicle allocation and relocation in a shared micromobility system

to help the shared micromobility firm operate a sustainable business. Particularly,

we address the important role of rider crowdsourcing and the 3PL relocation in

matching the supply with demand as well as increasing the utilization of vehicles.

Admittedly, there are limitations in our study. Based on them, we can extend

the current research in several relevant directions. We then discuss the possible

extensions in our first study as follows. First, we used the information from Citi
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Bike’s Angel Program to simplify the cost parameters for the relationship between

the crowdsourcing cost and the number of crowdsourced riders. When more data

for rider crowdsourcing behavior is available, this relationship can be modelled more

accurately. Besides, we offer a reward for a specific trip with given origin and

destination. There are alternative reward strategies, such as reward only at the

origin to alleviate overburdened supply, reward only at the destination to prevent

depleted supply. The reward size can also depend on the supply or be fixed. We are

currently not clear under what conditions will one of the above reward strategies

or a mixed of them performs the best. In view of the above, the crowdsourcing

operations can be further refined and the total cost of our model can be further

optimized. Second, we did not consider the vehicle routing for 3PL relocation, which

was another tough optimization problem. In practice, the truck drivers hired by 3PL

may have work shifts and the trucks may be prohibited for some roads. Hence, we

can further consider the truck routing with time window constraints and/or spatial

constraints. Besides, the truck can pick up and drop off micromobility vehicles at any

point along the route, which poses new challenge on the design of 3PL relocation. In

the future, we can take into consideration the dynamic pick-up and delivery. We may

further investigate how rider crowdourcing interacts with the vehicle route. Third,

we note that the rider crowdsourcing is a carbon neutral way for the micromobility

vehicle rebalancing. By contrast, 3PL relocation with fossil fuel trucks increases

the carbon emission. When we take the cost of carbon emission into the objective,

or restrict the carbon emission under uncertain demand by a chance constraint, we

can derive new insights about how different relocation strategies contribute to the

carbon neutral goal.

In our second study, our focus is on the usage of recycling materials. We have

studied the impact of two types of recycling labels, i.e., percentage label and bi-

nary label. Interestingly, we find that when more consumers are environmentally

conscious or the technology cost of recycling decreases, the firm may decrease the

recycled content when a binary label is applied. We also find that an NGO may be

worse off when a percentage label is applied. Therefore, the labelling scheme should

be carefully designed to better serve our sustainable goal.
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In the following, we discuss a possible direction related to our second study

for future research. We only consider two types of labelling schemes in our study.

Indeed, there are other types of labels in practice. For example, the FSCRecycled

label for paper or wood products has three tiers of recycled content; the GRS label

for fashion industry has a mixed typed standard, which shows the percentage of

recycled content only if it is above a threshold. Our study serves as a first step

to understand the basic impacts of two simple labelling schemes, and investigating

those other types of labels may generate additional results and interesting insights.
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Appendix A

Supplements for Chapter 2

A.1 Table of Notation

Table A1: Summary of Notation

Notation Description

Sets:
V set of service regions V = {1, 2, . . . , V }
T operational horizon T = {0, 1, . . . , T − 1}

T (l, s, e) {s, s+ 1, . . . , e− l − 1}
G time-space network G = (N ,A)
N set of nodes on the network G
A set of directed arcs on the network G

At,Ai,Ar trip arcs, idle arcs, 3PL relocation arcs
K set of scenarios of uncertain demands in all the service regions across all the periods.
H set of segments on the interval [0, ϕ̄] used to approximate the incentive function g(·), H = {1, 2, . . . , H}

Parameters:
lij duration for a rider trip from region i ∈ V to region j ∈ V
lr duration for the 3PL to relocate vehicles from region i ∈ V to region j ∈ V
N upper bound for the total number of allocated vehicles
Bj upper bound for the number of vehicles allocated to region j ∈ V
cj cost incurred for allocating a micromobility vehicle to region j ∈ V
λa customer demand (the number of customers) from region i in period t to region j with travel time lij

for each arc a = (nit, nj,t+lij ) ∈ At

R revenue for serving a customer per period
Cp penalty cost per customer lost
Λ̄ij maximum number of riders that can be crowdsourced from region i to conduct trips to region j
βij the rate of diminishing return on rewards in the incentive function g(·)
Bc upper bound for the total incentive used by the operator to crowdsource riders
Cr fixed fee paid to the 3PL for relocating vehicles per request
z̄ maximum number of times that the 3PL can relocate vehicles per day
¯̄z maximum number of periods that the 3PL operates during any time interval of lf periods
q̄ upper bound for the total number of relocated vehicles by the 3PL in each period
q lower bound for the total number of relocated vehicles by the 3PL in each period

pk probability of each scenario k ∈ K
ϕ̄ Given an arbitrarily small number ϵ > 0, ϕ̄ = g−1

(
Λ̄− ϵ

)
k̄h slope of a linear function passing through points ((h− 1)δ, g((h− 1)δ)) and (hδ, g(hδ)), k̄h = (g(hδ)−

g((h− 1)δ))/δ with δ = ϕ̄/H
M number of sub-networks for temporal decomposition
Tsub number of periods in each sub-network m ∈ {1, 2, . . . ,M}
Dm dictionary to record the pair of initial vehicle allocation and the corresponding objective value of the

two-stage problem over sub-network m
N̄1, N̄2 step sizes for heuristic search

Variables:
xi number of vehicle allocated to region i ∈ V
x̃i number of vehicles in the ending period T − 1 in region i ∈ V
ηa unsatisfied demand on arc a = (nit, nj,t+lij ) ∈ At
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Table A1 Summary of Notation (Continued)

Notation Description

Λa number of crowdsourced riders from region i in period t to region j for a given arc a = (nit, nj,t+lij ) ∈
At

ϕa incentive used to motivate the riders to relocate the vehicles along arc a = (nit, nj,t+lij ) ∈ At

ya realized flow on arc a = (nit, nj,t+lij ) ∈ Ai ∪ At

γa number of vehicles relocated by the 3PL from region i in period t to region j for each arc a =
(nit, nj,t+lr ) ∈ Ar

zt zt = 1 if the 3PL is requested by the operator in period t to relocate vehicles and zt = 0 otherwise
z̃t the status of the 3PL such that z̃t = 1 if the 3PL provides service in period t and z̃t = 0 otherwise
uh uh = 1 if the optimal reward ϕ falls in the hth segment for each h ∈ H, and uh = 0 otherwise

ϕ̃h ϕ̃h ∈ [0, δ] such that the optimal reward ϕ = (h− 1)δ + ϕ̃h for each h ∈ H
ωh variable to approximate uhϕ̃h for each segment h ∈ H

A.2 Supplement to Section 2.3

A.2.1 Undefined Arcs

yn1,−1,n1,0

ynV,−1,nV,0
ynV,T−1,nV,T

yn1,T−1,n1,T

ynV,1−
l2V

,n1,1

γn2,2−lr ,nV 2

γn
1,T−2 ,n

1,T−2+lr

ynV,T−2,n1,T−2+l1V

nV,0 nV,1 nV,2

n1,0 n1,1 n1,2 n1,T−1

nV,T−1nV,T−2

n1,T−2

Figure A.1: The Example of Undefined Arcs

A.2.2 Vector Definition

For each k ∈ K, we let λk denote the demand vector and define x̃k = (x̃k
j , j ∈

V)⊤ as the idle vehicle flows after period T − 1. Similarly, for each k ∈ K, we

let ηk = (ηknit,nj,t+lij
, (nit, nj,t+lij) ∈ At)⊤ represent the vector of unsatisfied de-

mands, yk = (yknit,nj,t+lij
, (nit, nj,t+lij) ∈ At)⊤ the vector of realized flows, γk =

(γk
nit,nj,t+lij

, (nit, nj,t+lij) ∈ Ar)⊤ the vector of 3PL relocation flows, Λk = (Λk
nit,nj,t+lij

,

(nit, nj,t+lij) ∈ At)⊤ the vector of rider crowdsourcing relocation flows, ϕk = (ϕk
nit,nj,t+lij

,

(nit, nj,t+lij) ∈ At)⊤ the vector of rewards to crowdsource riders, zk = (zkt , t ∈

T (lr))⊤ the vector of 3PL relocation requests, and z̃k = (z̃kt , t ∈ T (lr))⊤ the vector

of the 3PL relocation operation status (i.e., whether or not it is active).
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A.3 Supplement to Section 2.4

A.3.1 Constraints
The constraint set Y(x1, x2,λ) is defined by the following constraints:

ynit,ni,t+1 + ynit,n3−i,t+L + γnit,n3−i,t+L =
xi, t = 0,

yni,t−1,nit , t = 1, 2, . . . , L− 1,

yni,t−1,nit + yn3−i,t−L,nit + γn3−i,t−L,nit , t = L, . . . , T − 1,

i ∈ {1, 2}, (A.1a)

ynit,n3−i,t+L =

{
λnit,n3−i,t+L + Λnit,n3−i,t+L − ηnit,n3−i,t+L , t = 0, 1, . . . , T − L− 1,

0, t = T − L, . . . , T − 1,

i ∈ {1, 2}, (A.1b)

γnit,n3−i,t+L ≤ q̄zt, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}, (A.1c)

Λnit,n3−i,t+L , ynit,n3−i,t+L , ηnit,n3−i,t+L , γnit,n3−i,t+L ≥ 0, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1},
zt ∈ {0, 1}, t ∈ {0, 1, . . . , T − L− 1},
ynit,ni,t+1 ≥ 0, i ∈ {1, 2}, t ∈ T \ {T − 1}. (A.1d)

A.3.2 Proof of Proposition 2.1

Proof. By substituting constraints (A.1b) to the objective for all t ∈ {0, 1, . . ., T −

L − 1} and removing the constant term, we can equivalently replace the objective

in (2.4) by the following one:

T−L−1∑
t=0

(
2∑

i=1

(
(Cp +RL) ηnit,n3−i,t+L + αΛnit,n3−i,t+L

)
+ Crzt

)
. (A.2)

We denote the optimal solution of problem (2.4) by Y∗ = (Λ∗
nit,n3−i,t+L

, y∗nit,n3−i,t+L
,

η∗nit,n3−i,t+L
, γ∗

nit,n3−i,t+L
, i ∈ {1, 2}, t ∈ {0, 1, . . . , T−L−1}, y∗nit,ni,t+1

, i ∈ {1, 2}, t ∈

{0, 1, . . . , T − 1}, z∗t , t ∈ {0, 1, . . . , T − L − 1}). In the following, we prove the

proposition by contradiction and we first focus on part (b) and part (c) and then

part (a).

For part (b), suppose, on the contrary, that there exists some ĩ ∈ {1, 2} or

t̃ ∈ {0, 1, . . . , T − L − 1} such that one of the following three cases happen: (i)

αΛ∗
nĩt̃,n3−ĩ,t̃+L

> Cr, (ii) αΛ
∗
nĩt,n3−ĩ,t+L

> Cr for any t ∈ {0, 1, . . . , T − L− 1}, and (iii)

αΛ∗
nit̃,n3−i,t̃+L

> Cr for any i ∈ {1, 2}. For case (i), we construct a new solution Y∗∗ =

(Λ∗∗
nit,n3−i,t+L

, y∗∗nit,n3−i,t+L
, η∗∗nit,n3−i,t+L

, γ∗∗
nit,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T−L−1},

y∗∗nit,ni,t+1
, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − 1}, z∗∗t , t ∈ {0, 1, . . . , T − L− 1}) such that
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Λ∗∗
nĩ,t̃,n3−ĩ,t̃+L

= 0, γ∗∗nĩt̃,n3−ĩ,t̃+L
= γ∗nĩt̃,n3−ĩ,t̃+L

+ Λ∗
nĩt̃,n3−ĩ,t̃+L

, z∗∗
t̃

= 1, (A.3a)

y∗∗nĩt̃,n3−ĩ,t̃+L
= y∗nĩt̃,n3−ĩ,t̃+L

− Λ∗
nĩ,t̃,n3−ĩ,t̃+L

, (A.3b)

Λ∗∗
nit̃,n3−i,t̃+L

= Λ∗
nit̃,n3−i,t̃+L

, y∗∗nit̃,n3−i,t̃+L
= y∗nit̃,n3−i,t̃+L

,

γ∗∗nit̃,n3−i,t̃+L
= γ∗nit̃,n3−i,t̃+L

, i ∈ {1, 2}\{̃i}, (A.3c)

Λ∗∗
nit,n3−i,t+L

= Λ∗
nit,n3−i,t+L

, y∗∗nit,n3−i,t+L
= y∗nit,n3−i,t+L

,

γ∗∗nit,n3−i,t+L
= γ∗nit,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}\{t̃},(A.3d)
z∗∗t = z∗t , t ∈ {0, 1, . . . , T − L− 1}\{t̃}, (A.3e)

η∗∗nit,n3−i,t+L
= η∗nit,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}, (A.3f)

y∗∗nit,ni,t+1
= y∗nit,ni,t+1

, i ∈ {1, 2}, t ∈ T . (A.3g)

It is easy to verify that Y∗∗ is feasible for problem (2.4). It follows that the objective

(A.2) with respect to Y∗∗ minus that with respect to Y∗ equals −αΛ∗
nĩt̃,n3−ĩ,t̃+L

+

Cr(1−z∗t̃ ) ≤ −αΛ
∗
nĩt̃,n3−ĩ,t̃+L

+Cr < 0, where the first inequality holds because Cr ≥ 0

and z∗
t̃
≥ 0 and the second inequality holds because of the case (i) assumption. Thus,

a lower objective is achieved with respect to the solution Y∗∗, which contradicts that

Y∗ is the optimal solution of problem (2.4). For both cases (ii) and (iii), we can

similarly construct such a new solution Y∗∗ and lead to the contradiction. We omit

the details for brevity. Therefore, αΛ∗
nit,n3−i,t+L

≤ Cr holds for any i ∈ {1, 2} and

t ∈ {0, 1, . . . , T − L− 1}.

For part (c), suppose, on the contrary, that there exists some ĩ ∈ {1, 2} or

t̃ ∈ {0, 1, . . . , T − L − 1} such that one of the following cases happen: (i) Cr >

αγ∗
nĩt̃,n3−ĩ,t̃+L

if z∗
t̃
= 1 and γ∗

nĩt̃,n3−ĩ,t̃+L
> 0, (ii) Cr > αγ∗

nĩt,n3−ĩ,t+L
if z∗t = 1 and

γ∗
nĩt,n3−ĩ,t+L

> 0 for any t ∈ {0, 1, . . . , T −L−1}, and (iii) Cr > αγ∗
nit̃,n3−i,t̃+L

if z∗
t̃
= 1

and γ∗
nit̃,n3−i,t̃+L

> 0 for any i ∈ {1, 2}. For case (i), we construct a new solution

Y∗∗ = (Λ∗∗
nit,n3−i,t+L

, y∗∗nit,n3−i,t+L
, η∗∗nit,n3−i,t+L

, γ∗∗
nit,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T−

L − 1}, y∗∗nit,ni,t+1
, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − 1}, z∗∗t , t ∈ {0, 1, . . . , T − L − 1})

such that

Λ∗∗
nĩ,t̃,n3−ĩ,t̃+L

= γ∗nĩt̃,n3−ĩ,t̃+L
, (A.4a)

γ∗∗nĩt̃,n3−ĩ,t̃+L
= 0, z∗∗

t̃
= 0, (A.4b)

y∗∗nĩt̃,n3−ĩ,t̃+L
= y∗nĩt̃,n3−ĩ,t̃+L

+ γ∗nĩt̃,n3−ĩ,t̃+L
, (A.4c)

Λ∗∗
nit̃,n3−i,t̃+L

= Λ∗
nit̃,n3−i,t̃+L

, y∗∗nit̃,n3−i,t̃+L
= y∗nit̃,n3−i,t̃+L

,

γ∗∗nit̃,n3−i,t̃+L
= γ∗nit̃,n3−i,t̃+L

, i ∈ {1, 2}\{̃i}, (A.4d)
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Λ∗∗
nit,n3−i,t+L

= Λ∗
nit,n3−i,t+L

, y∗∗nit,n3−i,t+L
= y∗nit,n3−i,t+L

,

γ∗∗nit,n3−i,t+L
= γ∗nit,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}\{t̃},(A.4e)
z∗∗t = z∗t , t ∈ {0, 1, . . . , T − L− 1}\{t̃}, (A.4f)

η∗∗nit,n3−i,t+L
= η∗nit,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}, (A.4g)

y∗∗nit,ni,t+1
= y∗nit,ni,t+1

, i ∈ {1, 2}, t ∈ T . (A.4h)

It is easy to verify that Y∗∗ is feasible for problem (2.4). It follows that the objective

(A.2) with respect toY∗∗ minus that with respect toY∗ equals αγ∗
nĩt̃,n3−ĩ,t̃+L

−Cr < 0

due to the case (i) assumption. Thus, a lower objective is achieved with respect to

Y∗∗, which contradicts that Y∗ is the optimal solution of problem (2.4). For both

cases (ii) and (iii), we can similarly construct such a new solution Y∗∗ and lead to

the contradiction. We omit the details for brevity. Therefore, Cr ≤ αγ∗
nit,n3−i,t+L

holds for any i ∈ {1, 2} and t ∈ {0, 1, . . . , T − L− 1} if z∗t = 1 and γ∗
nit,n3−i,t+L

> 0.

For part (a), suppose, on the contrary, that there exists some ĩ ∈ {1, 2} or t̃ ∈

{0, 1, . . . , T −L−1} such that one of the following cases happen: (i) Λ∗
nĩt̃,n3−ĩ,t̃+L

> 0

and γ∗
nĩt̃,n3−ĩ,t̃+L

> 0, (ii) Λ∗
nĩt,n3−ĩ,t+L

> 0 and γ∗
nĩt,n3−ĩ,t+L

> 0 for any t ∈ {0, 1, . . . , T−

L− 1}, and (iii) Λ∗
nit̃,n3−i,t̃+L

> 0 and γ∗
nit̃,n3−i,t̃+L

> 0 for any i ∈ {1, 2}. For case (i),

we further consider two subcases. Subcase 1): Λ∗
nĩt̃,n3−ĩ,t̃+L

+γ∗
nĩt̃,n3−ĩ,t̃+L

≤ Cr/α. We

construct a new solutionY∗∗ = (Λ∗∗
nit,n3−i,t+L

, y∗∗nit,n3−i,t+L
, η∗∗nit,n3−i,t+L

, γ∗∗
nit,n3−i,t+L

, i ∈

{1, 2}, t ∈ {0, 1, . . . , T − L − 1}, y∗∗nit,ni,t+1
, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − 1},

z∗∗t , t ∈ {0, 1, . . . , T −L− 1}) such that Λ∗∗
nĩ,t̃,n3−ĩ,t̃+L

= Λ∗
nĩt̃,n3−ĩ,t̃+L

+ γ∗
nĩt̃,n3−ĩ,t̃+L

and

(A.4b) – (A.4h) hold. Subcase 2): Λ∗
nĩt̃,n3−ĩ,t̃+L

+ γ∗
nĩt̃,n3−ĩ,t̃+L

> Cr/α. We construct a

new solution Y∗∗ such that (A.3a) – (A.3g) hold. The objective (A.2) with respect

to Y∗∗ in either subcase is strictly lower as shown before, which contradicts that

Y∗ is the optimal solution of problem (2.4). For both cases (ii) and (iii), we can

similarly construct such a new solution Y∗∗ and lead to the contradiction. We omit

the details for brevity. Therefore, Λ∗
nit,n3−i,t+L

γ∗
nit,n3−i,t+L

= 0 holds for any i ∈ {1, 2}

and t ∈ {0, 1, . . . , T − L− 1}.
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A.4 Supplement to Section 2.5

A.4.1 Proof of Proposition 2.2

Proof. Note that given the allocation solution x, the solution to the second-stage

problem (Q0) (or (Q)) with respect to any scenario k ∈ K is independent from that

with respect to any other scenario k′ ∈ K. Thus, it suffices to consider only one sce-

nario in K for both problems (Q0) and (Q). To that end, we omit the superscript k

in both problems (Q0) and (Q) and denote by Ỹ = (x̃,η,y,γ, z, z̃,Λ,ϕ,u, ϕ̃,ω) the

second-stage variables of problem (Q0) or (Q) with respect to any scenario in K. For

ease of notation, we also split Ỹ into three parts: Ỹ1 = (x̃,η,y,γ, z, z̃), Ỹ2 = (Λ,ϕ)

and Ỹ3 = (u, ϕ̃,ω). Moreover, to differentiate the notation in problems (Q0) and

(Q), we denote the variables of problem (Q0) by Ỹb and the corresponding feasible

region by Yb = {Ỹb | (2.2a)− (2.2h), (2.1b), (2.1c), (2.3), ((2.5c)− (2.5e), (2.6), a ∈

At)}. Similarly, we denote the variables of problem (Q) by Ỹr and the corre-

sponding feasible region by Yr = {Ỹr | (2.2a)− (2.2h), (2.1b), (2.1c), (2.3), ((2.5c)−

(2.5d), (2.6), (uh,a ∈ [0, 1], h ∈ H), a ∈ At)}. The optimal solutions of both (Q0)

and (Q) are specified with superscript ·∗. The optimal objective values of both prob-

lems are denoted by Θ′(x) = Ψ(Ỹb∗) and Θ′′(x) = Ψ(Ỹr∗). Because Yb ⊆ Yr and

both problems (Q0) and (Q) are minimization problems sharing the same objective

function (2.7), we have

Θ′(x) ≥ Θ′′(x). (A.5)

In the following, we will show that Θ′(x) ≤ Θ′′(x).

We claim that

(
Ỹr∗

1 , Ỹr∗
2

)
∈ Proj(Ỹb

1 ,Ỹ
b
2)

(
Yb
)

=
{(

Ỹb
1 , Ỹ

b
2

)
∈ R(|V|+4|At|+|Ar|+2|T (lr)|)

+

∣∣∣ ∃Ỹb
3 ∈ R3H|At|

+ such that Ỹb ∈ Yb
}
. (A.6)

Note that (Ỹr∗
1 , Ỹ

r∗
2 ) satisfies constraints (2.2a) – (2.2h), (2.1b), (2.1c), and (2.3)

because these constraints are shared by Yb and Yr and Ỹ3 is involved in none of

these constraints. Thus, to show that our claim holds, it suffices to show that there

exists Ỹr′
3 ∈ R3H|At|

+ such that (Ỹr∗
2 , Ỹ

r′
3 ) satisfies (2.5c) – (2.5e) and (2.6) for any

a ∈ At, thereby leading to (Ỹr∗
1 , Ỹ

r∗
2 , Ỹ

r′
3 ) ∈ Yb. We will prove this by contradiction.
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Note that for any given a ∈ At, if (Ỹr∗
2 , Ỹ

r′
3 ) satisfies (2.5c) – (2.5e) and (2.6),

then Ỹr∗
2,a = (ϕr∗,Λr∗) amounts to a point in the projection space ProjỸb

2,a
(Yb) =

{Ỹb
2,a ∈ R2

+ | ∃(Ỹb
1 , Ỹ

b
3) and (Ỹb

2,e, e ∈ At, e ̸= a) such that Ỹb ∈ Yb}. This pro-

jection space can be represented by a piece-wise linear curve with H segment and

ϕ runs in [0, ϕ̄], as illustrated in Figure A.2, and such a point can be illustrated

by point B in this figure. Now, for the contradiction, we suppose that there ex-

ists some a′ ∈ At such that Ỹr∗
2,a′ = (ϕr∗

a′ ,Λ
r∗
a′) does not amount to a point in the

projection space ProjỸb
2,a
(Yb). More specifically, by the feasibility of Ỹr∗

2,a′ from

(Q), it will amount to a point in the projection space ProjỸr
2,a
(Yr) = {Ỹr

2,a ∈

R2
+ | ∃(Ỹr

1, Ỹ
r
3) and (Ỹr

2,e, e ∈ At, e ̸= a) such that Ỹr ∈ Yr}, which is the convex

hull of ProjỸb
2,a
(Yb) and can be illustrated by the gray region Ω in Figure A.2. Also,

Ỹr∗
2,a′ can be illustrated by point P .

ϕ

Λ

u1

uh uH

Ω

B

P ′
P

P ′′

ϕ̄

Λ̄− ϵ

Figure A.2: A Geometric Illustration of (ϕ,Λ)

Now, we construct a solution (Ỹb′
1 , Ỹ

b′
2 , Ỹ

b′
3 ). We let Ỹb′

1 = Ỹr∗
1 . For Ỹb′

2 =

(ϕb′,Λb′), we let (ϕb′
e ,Λ

b′
e ) = (ϕr∗

e ,Λ
r∗
e ) for any e ∈ At and e ̸= a′, Λb′

a′ = Λr∗
a′ , and ϕb′

a′ =

(h′−1)δ+(Λr∗−
∑h′−1

m=1 k̄mδ)/k̄h′ , where h′ = argmin{h ∈ {1, 2, . . . , H}|
∑h−1

m=1 k̄mδ ≤

Λr∗
a′ <

∑h
m=1 k̄mδ}. For Ỹb′

3 = (ub′, ϕ̃
b′
,ωb′), we let (ub′

e , ϕ̃
b′
e ,ω

b′
e ) = (ur∗

e , ϕ̃
r∗
e ,ω

r∗
e )

for any e ∈ At and e ̸= a′. For (ub′
a′ , ϕ̃

b′
a′ ,ω

b′
a′), we let ub′

a′,h′ = 1 and ub′
a′,h = 0 for

any h ∈ {1, 2, . . . , H} and h ̸= h′, and ωa′,h = ϕ̃a′,h = (Λr∗ −
∑h′−1

m=1 k̄mδ)/k̄h′ and

ωa′,h′ = 0 for any h ∈ {1, 2, . . . , H} and h ̸= h′. Based on the construction, we have

(Ỹb′
1 , Ỹ

b′
2 , Ỹ

b′
3 ) ∈ Yb and the corresponding objective value is Θ′′(x)+ (ϕb′

a′ −ϕr∗
a′) by

the formulation of (2.7). Because (Ỹb′
1 , Ỹ

b′
2 , Ỹ

b′
3 ) ∈ Yb, we also have

Θ′′(x) + (ϕb′
a′ − ϕr∗

a′ ) ≥ Θ′(x). (A.7)

84



because the objective value with respect to a feasible solution for a minimization

problem is no greater than the optimal objective value.

Note that (ϕb′
a′ ,Λ

b′
a′) amounts to a point in the projection space ProjỸb

2,a
(Yb) and

can be illustrated by point P ′ in Figure A.2. For simplicity, we denote the projection

space ProjỸb
2,a
(Yb), i.e., a piece-wise linear function, by Λ = Ξ(ϕ), which is also an

increasing and concave function. Thus, we have Λb′
a′ = Λr∗

a′ = Ξ(ϕb′
a′). Also, there

exists Λb′′ ∈ [0, Λ̄ − ϵ] such that Λb′′
a′ = Ξ(ϕr∗

a′ ), as illustrated by point P ′′ in Figure

A.2. Because the function Λ = Ξ(ϕ) is concave and (ϕr∗
a′ ,Λ

r∗
a′) is an interior point of

ProjỸr
2,a
(Yr), we have Λr∗

a′ < Λb′′
a′ = Ξ(ϕr∗

a′ ). It follows that Ξ(ϕ
b′
a′) < Ξ(ϕr∗

a′ ). Because

the function Λ = Ξ(ϕ) is increasing, we have ϕb′
a′ < ϕr∗

a′ . It further indicates that

Θ′′(x) + (ϕb′
a′ − ϕr∗

a′ ) < Θ′′(x). (A.8)

From (A.7) and (A.8), we obtain Θ′′(x) > Θ′(x), which contradicts with (A.5).

Therefore, we have (A.6) holds and (Ỹr∗
1 , Ỹ

r∗
2 , Ỹ

r′
3 ) ∈ Yb. It follows that Ψ(Ỹr∗

1 , Ỹ
r∗
2 , Ỹ

r′
3 ) ≥

Θ′(x) because of the same reason for (A.7) to hold. In addition, by the formulation of

(2.7), where Ỹ3 is not involved, we have Ψ(Ỹr∗
1 , Ỹ

r∗
2 , Ỹ

r′
3 ) = Ψ(Ỹr∗) = Θ′′(x). There-

fore, we have Θ′′(x) ≥ Θ′(x), which together with (A.5) imply that Θ′′(x) = Θ′(x).

This completes the proof.

A.4.2 The Refined Model

Given a starting period s ∈ T and ending period e ∈ T ∪ {T}, we define At(s, e)

as the subset of At in period t ∈ T (lij, s, e) and denote the second-stage vari-

ables between the time range [s, e) in each scenario k ∈ K by vector Ỹk
(s,e) =

(x̃k,ηk,yk,γk,Λk,uk,ϕk, ϕ̃
k
, zk, z̃k,ωk)(s,e). Then, we can write Q(s, e) as follows:

Θ′′
(s,e)(x) = min

Yk
(s,e)

, k∈K

∑
k∈K

pk

 ∑
a∈At(s,e)

(
Cpη

k
a + ϕk

a −Rla(y
k
a − Λk

a)
)
+

∑
t∈T (lr,s,e)

Crz
k
t


(Q(s, e))

s.t. Yk
(s,e) ∈ Y(s,e)(x,λ

k), k ∈ K.

For ease of notation, we omit superscript k for variables and parameters in Y(s,e)(x,λ
k)

for any k ∈ K. Then, the feasible region Y(s,e)(x,λ) with respect to each scenario is

given by
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Y(s,e)(x,λ) :=
{
Ỹ(s,e) ≥ 0

∣∣∣ (A.9a)ynit,ni,t+1 +
∑

j∈V,j ̸=i

(
ynit,nj,t+lij

+ γnit,nj,t+lr

)−
(
yni,t−1,ni,t

+
∑

j∈V,j ̸=i

(
ynj,t−lij

,ni,t + γnj,t−lr ,ni,t

))
=


xi, if t = s,

0, if t = s+ 1, . . . , e− 2,

−x̃i, if t = e− 1,

i ∈ V, (A.9b)

λnit,nj,t+lij
+ Λnit,nj,t+lij

− ηnit,nj,t+lij
= ynit,nj,t+lij

, t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9c)

ϕnit,nj,t+lij
=

H∑
h=1

(h− 1)uh,nit,nj,t+lij
δij + ωh,nit,nj,t+lij

, t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9d)

Λnit,nj,t+lij
=

H∑
h=1

uh,nit,nj,t+lij

h−1∑
m=1

k̄mijδij +
H∑

h=1

k̄h,nit,nj,t+lij
ωh,nit,nj,t+lij

,

t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9e)

uh,nit,nj,t+lij
δij − ωh,nit,nj,t+lij

≥ 0, t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9f)

ϕ̃h,nit,nj,t+lij
− ωh,nit,nj,t+lij

≥ 0, t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9g)

δij − uh,nit,nj,t+lij
δij − ϕ̃h,nit,nj,t+lij

+ ωh,nit,nj,t+lij
≥ 0, t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9h)

H∑
h=1

uh,nit,nj,t+lij
= 1, t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9i)

ϕ̃h,nit,nj,t+lij
≤ δij , h ∈ H, t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9j)

uh,nit,nj,t+lij
≤ 1, h ∈ H, t ∈ T (lij , s, e), j ̸= i, i, j ∈ V, (A.9k)

t+lf−1∑
i=t

z̃i ≤ ¯̄z, t ∈ {s, . . . , e− lr − lf − 1}, (A.9l)

∑
t∈T (lr,s,e)

zt ≤ z̄, (A.9m)

qz̃t ≤
∑
i∈V

∑
j∈V,j ̸=i

γnit,nj,t+1 ≤ q̄z̃t, t ∈ T (lr, s, e), (A.9n)

zt − z̃t ≥ 0, t = s, (A.9o)

zt − z̃t + z̃t−1 ≥ 0, t ∈ T (lr, s+ 1, e), (A.9p)

zt + z̃t−1 − 1 ≤ 0, t ∈ T (lr, s+ 1, e), (A.9q)

zt − z̃t ≤ 0, t ∈ T (lr, s, e), (A.9r)

z̃t ∈ {0, 1}, t ∈ T (lr, s, e)
}
. (A.9s)

Note that Ỹ(s,e) ≥ 0 indicates every variable in the vector Ỹ(s,e) is non-negative.
Finally, the two-stage stochastic programM(s, e) is given by

min
x

∑
j∈V

cjxj +Θ′′(x) s.t. x ∈ X =

x ∈ Z|V|
+

∣∣∣∣∣∣ xj −Bj ≤ 0, j ∈ V,
∑
j∈V

xj ≤ N

 .

(M(s, e))

A.4.3 Algorithm 1 Details

For any s ∈ T and e ∈ T ∪ {T} such that e− s ≥ 3, we fix some binary variables in

problem M(s, e) to be 0 by making use of its LP relaxation solution. Specifically,

in Algorithm 1, we apply the following procedure for each scenario k ∈ K. First,

we construct two sets (i.e., T r1 and T r2) by, respectively, collecting the following
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two sets of values: (i) γks
sum,t =

∑
i∈V
∑

j∈V,j ̸=i γnit,nj,t+1
, t ∈ T (lr, s, e) and (ii)

γ̂ks
sum,t = γks

sum,t + γks
sum,t+1, t ∈ T (lr, s, e − 1), while each of these two sets of values

are sorted in decreasing order in sets T r1 and T r2. Next, we collect the time indices

(i.e., t) of the first nI ≤ e− s−1 elements of the ordered set T r1 in T̂ r1 and those of

T r2 in T̂ r2. In addition, by increasing the value of each element in T̂ r2 by 1, we collect

these indices in T̂ r3. It is noted that for each scenario k ∈ K, the subset of variables

{z̃kt , t ∈ T̂ r1∪T̂ r2∪T̂ r3} are most likely to take value 1. Thus, we reduce the binary

variables z̃kt in the operational problem QLP(s, e) and Q(s, e) by restricting z̃kt = 0 if

t ∈ T (lr, s, e)\(T̂ r1 ∪ T̂ r2 ∪ T̂ r3) for any scenario k ∈ K. By constraints (2.2f), when

z̃kt = 0, the number of vehicles relocated by the 3PL γnit,nj,t+lr
= 0 from region i in

period to region j. Thus, the solution space is reduced and the solution process can

be accelerated.

Algorithm 1 Reduction of the Binary Variables for 3PL Relocation (s, e)

1: Initialize: T r1 = T̂ r1 = T r2 = T̂ r2 = T̂ r3 := ∅
2: SolveMLP(s, e) to obtain γks

sum,t, t ∈ T (lr, s, e), k ∈ K
3: for k ∈ K do
4: T r1 ← {γks

sum,t | t ∈ T (lr, s, e)} such that γks
sum,(1) ≥ · · · ≥ γks

sum,(e−s−lr−1) and T r1 =

{γks
sum,t | t ∈ T (lr, 1, e− s)}

5: γ̂ks
sum,t ← {γks

sum,t + {γks
sum,t+1, t ∈ T (lr, s, e− 1)

6: T r2 ← {γ̂ks
sum,t | t ∈ T (lr, s, e)} such that γ̂ks

sum,(1) ≥ · · · ≥ γ̂k∗
sum,(e−s−lr−2) and T r2 =

γ̂ks
sum,t | t ∈ T (lr, 1, e− s− 1)}

7: T̂ r1 ← {t ∈ T (lr, s, e) | γks
sum,t ≥ γks

sum,(nI)
}, T̂ r2 ← {t ∈ T (lr, s, e− 1) | γ̂ks

sum,t ≥ γ̂ks
sum,(nI)

},
T̂ r3 ← {t+ 1 | t ∈ T̂ r2}

8: Set z̃kt = 0, t ∈ T (lr, s, e)\(T̂ r1 ∪ T̂ r2 ∪ T̂ r3) in QLP(s, e) and Q(s, e)
9: T r1, T̂ r1, T r2, T̂ r2, T̂ r3 ← ∅

A.4.4 Algorithm 2 Details

In Algorithm 2, we solve smaller and thus simpler two-stage stochastic programs

over each sub-network m ∈ {1, 2, . . . ,M} in a backward sequence, from the last

sub-network m = M to the first m = 1. For each sub-network, we follow a four-step

solution procedure, with the first step to reduce the number of second-stage binary

variables by applying Algorithm 1. In the following, we detail the remaining three

steps for solving the two-stage stochastic programs (i.e., M((m − 1)Tsub,mTsub))

over the sub-networks m ≥ 2 and m = 1 separately.

For any m ≥ 2, we have the following detailed Steps 2 - 4:
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Algorithm 2 Temporal Decomposition

1: Initialize: x := 0, xsum := 0, Dm := ∅, m ∈ {1, 2, . . . ,M}
2: for m = M, . . . , 1 do
3: s← (m− 1)Tsub, e← mTsub

4: Update problem QLP(s, e) and Q(s, e) to reduce binary variables by Algorithm 1

5: SolveMLP(s, e) with Ỹ(s,e) ∈ YLP(s,e)(x,λ) ∩ {Ỹ(s,e) | x̃i ≥ xi, i ∈ V} to obtain solution
xs and objective vs

6: Dm ← Dm ∪ {(xs, vs)}, xi ← xs
i , xsum ←

∑
i∈V xs

i

7: for σsum = σ, . . . , σ̄ do

8: X ′ ← X ∩ {x ∈ Z|V|
+ |

∑
i∈V xi = xsum + σsum, xi − σi ≤ xi ≤ xi + σi, i ∈ V}

9: ResolveMLP(s, e) where x ∈ X ′ by Bender’s decomposition
10: Obtain solution xs and objective vs

11: Dm ← Dm ∪ {(xs, vs)}, X ← ∅
12: if m ̸= 1 then
13: Dm ← {(xℓ, vℓ) ∈ Dm, ℓ ∈ {1, 2, . . . , |Dm|}|v1 ≤ · · · ≤ v|Dm|}
14: xs ← Dm[0].key, x← xs

15: else
16: for all (xs, vs) ∈ D1 do
17: T̂ ← {(t, k) ∈ T (lr, 0, T ) × K | z̃kt = 0 in Q(s, e) with t ∈ T (lr, s, e) where s =

(m− 1)Tsub, e = mTsub, m ∈ {1, 2, . . . ,M}}
18: ResolveM(0, T ) where x ∈ X ∩ {x ∈ Z|V|

+ | x = xs} and Ỹ ∈ Y(x,λ) ∩ {Ỹ | z̃kt =

0, (t, k) ∈ T̂ } to obtain v′

19: vs ← v′, update (xs, vs) in D1

20: Return D1

• Step 2. When solving the two-stage problemMLP(s, e) over the sub-network

m (i.e., s = (m − 1)Tsub, e = mTsub), we add the constraints x̃i ≥ xi, i ∈ V ,

in the second-stage problem. That is, for each region i ∈ V , we denote the

outflow of the sub-network m by x̃i and the lower bound for the outflow by

xi. This lower bound takes the value of the first-stage solution xs
i , i ∈ V , of

the two-stage problemMLP(s, e) over the sub-network m+ 1 if m < M (i.e.,

s = mTsub, e = (m+ 1)Tsub) and takes the value of 0 if m = M . These lower-

bound constraints follow the intuition that, by splitting the entire network,

the vehicle allocation solution of the two-stage problem over the sub-network

m approximates that over the sub-networks from m to M . Intuitively, the

demand of the two-stage problem over sub-networks from m to M is no less

than that over the sub-networks from m + 1 to M and the higher demand

often leads to more allocated vehicles. Thus, the number of vehicles leaving

sub-network m in each region should be no less than the number of vehicles

allocating to each region over sub-network m + 1. Then, we derive the first-

stage allocation solution to the problemMLP(s, e) over the sub-network m.
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• Step 3. We refine and re-solve the problem MLP(s, e) several more times,

where for each time, two types of constraints are added, yielding several can-

didate allocations. One type of constraints are to perturb the total number

of allocated vehicles to take a different value. Particularly, we set the total

number of allocated vehicles
∑

i∈V xi = xsum+σsum for each σsum ∈ {σ, . . . , σ̄},

where σsum denotes the perturbed value. The others are box constraints

xi ∈ [xi − σi, xi + σi], i ∈ V , where σi (with
∑

i∈V σi ≤ σsum) is the maxi-

mum purterbed value for the regional vehicle allocation. Slightly perturbing

the total number of allocated vehicles to different potential values has two

advantages. First, it can reduce the feasible region of the vehicle allocation

variables. Second, we observe that, when the total number of allocated ve-

hicles is fixed, a small perturbation of the total number of vehicles allocated

to one or more regions has a minor impact on the objective value of the in-

tegrated allocation and relocation problem. The reason is intuitive. That is,

though regional vehicle allocation is perturbed, the vehicles can be relocated

to proper places at a low cost. However, when the total number of allocated

vehicles takes different values, the resulting objective values of the two-stage

problem changes significantly. This is because the allocation cost of one vehicle

is often higher than the relocation cost of multiple vehicles. Thus, perturbing

the total allocation has a larger impact on the objective value than perturbing

the regional allocation with a fixed total allocation.

• Step 4. With several candidate solutions for allocating vehicles in sub-network

m, we store each solution xs as the key and the objective value vs as the value

in dictionary Dm, which stores data by the key-value pairs and the subscript

m represents the sub-network index. Then, the solution xs with the smallest

objective vs in Dm is chosen and for each i ∈ V , xs
i is taken as the lower bound

xi for the two-stage problem over sub-network m− 1.

When m = 1, a similar four-step solution procedure is applied as above except

that in the final step, we do not choose the xs
i with the smallest objective value in

D1. Instead, for each candidate solution xs in D1, a two-stage problem M(0, T )
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over the entire network is solved with the first-stage decisions fixed as xs and the

number of second-stage binary variables reduced. The resulting objective value is

denoted by v′ and used to update vs with respect to xs. We thus obtain several

candidate solutions xs and the corresponding objectives value vs in D1 for the two-

stage problemM(0, T ) over the original time-space network.

We note that the network split in Algorithm 2 will break some original arcs

connecting the sub-networks. However, there are periods when the shared micro-

mobility system has a relatively low demand and thus a low volume of traffic on

the broken arcs. Thus, the temporal decomposition shall cause a minor error when

splitting the network in those low-demand periods.

Whenever solving a two-stage problem, we apply Bender’s decomposition such

that the second-stage problem can be further decomposed into independent scenario-

based subproblems, which can be solved in parallel. Our temporal decomposition

algorithm can efficiently solve large-scale problems because (i) the problem size at

each iteration is reduced, so is the number of binary variables; (ii) the solution

space ofMLP(s, e) is reduced by fixing
∑

i∈V xi to different values, thereby enabling

a quick search of better solutions; and (iii) by employing Bender’s decomposition,

we can leverage the parallel capacity to solve the second-stage problem Pk for each

separate scenario k ∈ K in parallel, further enhancing the computational efficiency.

Furthermore, we formulate the Bender’s cuts used in the above Algorithm 2. We

note that our two-stage problem MLP(s, e) over any sub-network has a complete

recourse, and hence we only need to derive the Bender’s optimality cuts. Given the

operational horizon [s, e), denote the arc set At with t ∈ T (lij, s, e) by At(s, e). Also,

given the first-stage solution x, denote the multipliers for the first case of constraints

(A.9b) (with right-hand-side xi) by π1
i ∈ R, i ∈ V , those for constraints (A.9c) by

π2
a ∈ R, a ∈ At(s, e), those for constraints (A.9l) by π3

t ≥ 0, t ∈ {s, . . . , e− lr − lf},

that for constraint (A.9m) by π4 ≥ 0, those for constraints (A.9i) by π5
a ∈ R, a ∈

At(s, e), those for constraints (A.9j) by π6
h,a ≥ 0, h ∈ H, a ∈ At(s, e), those

for constraints (A.9h) by π7
h,a ≥ 0, h ∈ H, a ∈ At(s, e), those for (A.9k) by

π8
h,a ≥ 0, h ∈ H, a ∈ At(s, e), those for constraints (A.9q) by π9

t ≥ 0, t ∈ T (lr, s, e),

and those for continuous relaxation of constraints (A.9s) by π0
t ≥ 0, t ∈ T (lr, s, e).

90



We omit the dual variables for other constraints because they do not appear in the

optimality cuts. At a given iteration, a Bender’s optimality cut takes the following

form:

θ −
∑
k∈K

pkqk(x) ≥ 0,

where θ denotes the lower bound approximation of the second-stage value function

Θ′′
(s,e)(x) and

qk(x) =
∑
i∈V

π1
i xi +

∑
a∈At(s,e)

π2
aλa −

e−lr−lf−1∑
t=0

π3
t
¯̄z − π4z̄ +

∑
a∈At(s,e)

π5
a

−
∑

h∈H,a∈At(s,e)

((
π6
h,a + π6

h,a

)
δij + π8

h,a

)
−

∑
t∈T (lr,s,e)

(π9
t + π0

t ).

Note that only one cut is generated at each iteration. One can also use a multi-cut

version, by which |K| Bender’s optimality cuts are generated at each iteration (Birge

and Louveaux 2011).

In the numerical experiments, we set the perturbation for regional allocation

σi = 1 for i ∈ V , σ = σ̄ = 1 for the total allocation, and the step sizes N̄1 = |V| and

N̄2 = ⌊|V|/3⌋.

A.4.5 Algorithm 3 Details

Algorithm 3 mainly consists of two steps. First, we set the search step of the total

number of allocated vehicles xsum as a positive value N̄1 ≤ N . If the solution x0

in D1 with the smallest objective value (denoted by vmin) has the largest (resp.

smallest) total number of allocated vehicles xsum, we then generate a new candidate

solution by increasing (resp. decreasing) xsum by N̄1. This is done by randomly

choosing xi, i ∈ V , for N̄1 times, where for each time the value of the chosen

xi is increased (resp. decreased) by 1. Then, we append this new solution and

the corresponding objective value of the two-stage problem M(0, T ) to D1. If the

newly added objective is the smallest in D1, then we similarly generate another new

candidate solution. Otherwise, the search in the first step terminates, and we denote

by x̄sum (resp. xsum) the current largest (resp. smallest) total number of allocated

vehicles. The intuition of this step is as follows. Suppose we observe the objective
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Algorithm 3 Heuristic Search (D1)

1: Initialize vmin :=∞, xsum :=∞, xsum := −∞, x̄sum :=∞, V ′ ← ∅
2: D̂1 ← {(q, v) | (x, v) ∈ D1, q =

∑
i∈V xi}

3: D̂1 ← {(xl, vl) ∈ D̂1 | x1 ≤ · · · ≤ x|D̂1|}, x̄sum ← D̂1[|D̂1| − 1].key, xsum ← D̂1[0].key

4: D1 ← {(xl, vl) ∈ D1 | v1 ≤ · · · ≤ v|D1|}, v0 ← D1[0].value, x
0 ← D1[0].key, xsum ←

∑
i∈V x0

i

5: I ← 0
6: if xsum ≥ x̄sum then
7: while v0 < vmin and I ≤ 20 do
8: Randomly pick V ′ ⊆ V such that |V ′| = N̄1

9: x0
i ← x0

i + 1, i ∈ V ′, x̄sum ←
∑

i∈V x0
i , vmin ← v0

10: ResolveM(0, T ) where x ∈ X ∩ {x ∈ Z|V|
+ | x = x0} to obtain v0

11: D1 ← D1 ∪ {(x0, v0)}, I ← I + 1

12: if I ≤ 20 then x0
i ← x0

i − 1, i ∈ V ′, xsum ←
∑

i∈V x0
i , v

0 ← vmin, vmin ←∞
13: while v0 < vmin and xsum + N̄2 < x̄sum do
14: Randomly pick V ′ ⊆ V such that |V ′| = N̄2

15: x0
i ← x0

i + 1, i ∈ V ′, xsum ←
∑

i∈V x0
i , vmin ← v0

16: ResolveM(0, T ) where x ∈ X ∩ {x ∈ Z|V|
+ | x = x0} to obtain v0

17: D1 ← D1 ∪ {(x0, v0)}
18: if xsum + N̄2 < x̄sum then x0

i ← x0
i − 1, i ∈ V ′, v0 ← vmin

19: else
20: if xsum ≤ xsum then
21: while v0 < vmin and I ≤ 20 and x0

i > 0, i ∈ V do
22: Randomly pick V ′ ⊆ V such that |V ′| = N̄1

23: x0
i ← x0

i − 1, i ∈ V ′, xsum ←
∑

i∈V x0
i , vmin ← v0

24: ResolveM(0, T ) where x ∈ X ∩ {x ∈ Z|V|
+ | x = x0} to obtain v0

25: D1 ← D1 ∪ {(x0, v0)}, I ← I + 1

26: if I ≤ 20 then x0
i ← x0

i + 1, i ∈ V ′, xsum ←
∑

i∈V x0
i , v

0 ← vmin, vmin ←∞
27: while v0 < vmin and xsum − N̄2 > xsum and x0

i > 0, i ∈ V do
28: Randomly pick V ′ ⊆ V such that |V ′| = N̄2

29: x0
i ← x0

i − 1, i ∈ V ′, xsum ←
∑

i∈V x0
i , vmin ← v0

30: ResolveM(0, T ) where x ∈ X ∩ {x ∈ Z|V|
+ | x = x0} to obtain v0

31: D1 ← D1 ∪ {(x0, v0)}
32: if xsum − N̄2 > xsum then x0

i ← x0
i + 1, i ∈ V ′, v0 ← vmin

33: Return x0 and v0
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values in D1 monotonically decrease as the corresponding total number of allocated

vehicles increases (resp. decreases), then a smaller objective can be found highly

possibly by further increasing (resp. decreasing) total number of allocated vehicles

(note that we do observe this phenomenon in our numerical experiments, see Section

2.6). If such observation is not found, we immediately output the solution with the

smallest objective value in D1.

Second, we set the search step of xsum as a positive value N̄2 ≤ N̄1/2 and search

within the range between x̄sum−|N̄1| and x̄sum (resp. between xsum and xsum+ |N̄1|).

That is, we generate a new candidate solution by increasing xsum starting from

x̄sum − |N̄1| (resp. decreasing xsum starting from xsum + |N̄1|) with a step size N̄2.

We append the new solution and the corresponding objective value of the two-stage

problem M(0, T ) to D1. If the sequence of objective values derived in this step

stops decreasing during the search, then we end up with a locally optimal solution

x0 with the smallest objective in D1. We can also obtain the corresponding second-

stage solution. This second step is to refine the search with a smaller step size

hoping that a smaller objective can be found.

A.5 Supplement to Section 2.6

A.5.1 Performance of Solution Approaches

We compare the CPLEX approach with our solution approach, and report the results

in Table A2. The CPLEX approach cannot find any feasible solution in weekday

instances (can find low-quality solution with low profit in weekend instances) within

the time limit of three hours. In contrast, our approach can produce good-quality

solution with high profit and computational time around 1 hour. Hence, our solution

approach perform better in both solution quality and time.

Then, we show the convergence performance of our solution approach in Tables

A3 and A4. Variant instances are tested with different sizes of demand scenarios

(denoted by |K|) and time horizons (denoted by Range). In Table A3, taking week-

day instances for example, CPLEX can derive a feasible solution with optimality

gap (denoted by Opt Gap) 5.8% on average upon termination in 24 hours. Our
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Table A2: Performance of Solution Approaches

Cases
Weekdays Weekends

The CPLEX Approach Our Solution Approach The CPLEX Approach Our Solution Approach
cj Cr Cp Profit ($) Time(s) Profit ($) Time(s) Profit ($) Time(s) Profit ($) Time(s)

0.5

13

0.1 – 10,800 2,126.9 3,216 -255.8 10,800 877.6 3,563
0.3 – 10,800 2,127.8 3,356 -767.4 10,800 878.6 3,248
0.5 – 10,800 2,124.7 2,845 -1,279.1 10,800 879.7 3,319
0.7 – 10,800 2,124.3 2,121 -1,790.7 10,800 879.2 3,282

15

0.1 – 10,800 2,125.0 3,037 -255.8 10,800 875.8 3,503
0.3 – 10,800 2,126.7 2,964 -767.4 10,800 876.6 2,581
0.5 – 10,800 2,123.2 2,885 -1,279.1 10,800 877.5 3,366
0.7 – 10,800 2,122.7 2,920 -1,790.7 10,800 877.9 2,322

17

0.1 – 10,800 2,122.7 3,039 -255.8 10,800 875.2 3,186
0.3 – 10,800 2,111.7 2,106 -767.4 10,800 875.8 2,977
0.5 – 10,800 2,117.8 2,229 -1,279.1 10,800 876.6 3,012
0.7 – 10,800 2,118.4 2,901 -1,790.7 10,800 876.8 2,113

0.8

13

0.1 – 10,800 2,041.3 2,172 -255.8 10,800 848.9 2,822
0.3 – 10,800 2,041.8 2,816 -767.4 10,800 849.6 2,063
0.5 – 10,800 2,037.9 1,639 -1,279.1 10,800 849.7 2,820
0.7 – 10,800 2,028.6 2,464 -1,790.7 10,800 849.7 2,089

15

0.1 – 10,800 2,036.8 2,065 -255.8 10,800 847.7 2,763
0.3 – 10,800 2,033.6 2,110 -767.4 10,800 848.0 2,804
0.5 – 10,800 2,031.9 2,348 -1,279.1 10,800 848.1 2,852
0.7 – 10,800 2,030.3 2,315 -1,790.7 10,800 848.0 2,485

17

0.1 – 10,800 2,032.3 2,136 -255.8 10,800 847.2 2,775
0.3 – 10,800 2,032.1 1,486 -767.4 10,800 847.4 2,854
0.5 – 10,800 2,028.2 2,467 -1,279.1 10,800 847.9 2,778
0.7 – 10,800 2,031.4 1,615 -1,790.7 10,800 848.0 2,603

1.0

13

0.1 – 10,800 1,999.2 1,489 -255.8 10,800 831.4 2,425
0.3 – 10,800 1,985.2 2,051 -767.4 10,800 830.9 2,616
0.5 – 10,800 1.985.9 2,027 -1,279.1 10,800 830.6 2,598
0.7 – 10,800 1,980.4 2,196 -1,790.7 10,800 831.2 2,610

15

0.1 – 10,800 1,991.5 2,156 -255.8 10,800 830.3 2,616
0.3 – 10,800 1,984.2 2,134 -767.4 10,800 829.5 2,626
0.5 – 10,800 1,978.4 2,190 -1,279.1 10,800 830.1 2,570
0.7 – 10,800 1,976.4 1,493 -1,790.7 10,800 829.6 1,804

17

0.1 – 10,800 1,988.6 2,185 -255.8 10,800 830.1 2,578
0.3 – 10,800 1,979.2 2,121 -767.4 10,800 828.9 2,572
0.5 – 10,800 1,975.8 1,470 -1,279.1 10,800 829.6 2,550
0.7 – 10,800 1,976.8 1,442 -1,790.7 10,800 828.9 2,648

Table A3: Performance of Convergence for Our Solution Approach(|K| > 1)

Cases
Weekdays Weekends

The CPLEX Approach Our Approach The CPLEX Approach Our Approach
|K| Range Profit ($) Opt Gap(%) Time(s) Profit($) Time(s) Profit Gap(%) Profit($) Opt Gap(%) Time(s) Profit($) Time(s) Profit Gap(%)

40

[40,140] 1053.98 5.35 86,400 1033.04 1044.39 1.99 371.76 9.38 86,400 366.35 592.08 1.45
[30,150] 1157.92 5.38 86,400 1123.60 683.44 2.96 446.49 11.02 86,400 434.44 416.35 2.70
[140,240] 1137.47 4.64 86,400 1100.23 843.57 3.27 576.74 7.66 86,400 557.18 655.75 3.39
[120,240] 1339.22 4.96 86,400 1289.28 647.04 3.73 727.61 8.51 86,400 703.10 706.39 3.37
[50,210] 2094.89 5.66 86,400 2028.59 950.63 3.16 849.83 11.40 86,400 833.55 1066.79 1.92
[40,220] 2119.43 6.76 86,400 2085.27 1165.65 1.61 890.03 10.87 86,400 866.96 1139.95 2.59

60

[40,140] 1047.85 5.71 86,400 1029.17 1537.17 1.78 372.41 9.79 86,400 367.82 958.78 1.23
[30,150] 1149.76 5.74 86,400 1121.47 1124.32 2.46 450.28 10.43 86,400 440.19 1037.25 2.24
[140,240] 1090.06 5.10 86,400 1056.69 1355.32 3.06 572.75 8.88 86,400 559.59 1238.03 2.30
[120,240] 1289.42 5.46 86,400 1250.08 903.61 3.05 716.45 10.65 86,400 709.56 1310.85 0.96
[50,210] 2038.98 6.33 86,400 1996.06 1954.31 2.10 841.80 12.87 86,400 838.45 1670.96 0.40
[40,220] 2074.42 6.84 86,400 2040.21 1816.97 1.65 876.33 13.00 86,400 872.81 1884.92 0.40

80

[40,140] 1046.26 5.83 86,400 1027.93 2128.56 1.75 346.76 10.66 86,400 345.08 1342.17 0.48
[30,150] 1147.68 5.89 86,400 1120.14 1494.76 2.40 418.84 11.86 86,400 413.63 1510.07 1.24
[140,240] 1107.77 5.09 86,400 1072.53 1607.27 3.18 542.36 8.95 86,400 528.87 1462.90 2.49
[120,240] 1308.71 5.29 86,400 1262.03 1279.33 3.57 680.90 10.31 86,400 673.11 1820.05 1.14
[50,210] 2016.48 8.41 86,400 2004.17 2674.13 0.61 787.54 13.87 86,400 789.36 2272.17 -0.23
[40,220] 2076.55 7.63 86,400 2052.47 2607.70 1.16 820.02 13.99 86,400 821.06 2363.86 -0.13

approach can derive the result in 23 minutes on average. The relative gap of profits

by two approaches is 2.4% on average. Hence, our approach shows an numerically

reasonable convergence performance. Furthermore, since CPLEX approach has dif-

ficulty to solve the instances and terminates with relatively large optimality gap, we

further test some instances of single scenario (scenario 0, 55, 172, respectively) in

different sizes of time range, where CPLEX can terminate with tiny optimality gap.

The results are shown in Table A4. By comparing the profits, our approach has

gap 3.7% with CPLEX results on average. It further strengthens the convergence
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Table A4: Performance of Convergence for Our Solution Approach(|K| = 1)

Cases
Weekdays

The CPLEX Approach Our Approach
Scenario Range Profit ($) Opt Gap(%) Time(s) Profit($) Time(s) Profit Gap(%)

0

[40,140] 480.97 0.01 27.86 474.11 93.12 1.43
[140,240] 569.15 0.01 24.24 556.63 70.97 2.20
[50,210] 1014.07 0.50 9624.85 990.11 65.78 2.36
[40,220] 1030.21 0.50 8928.45 992.53 73.90 3.66

55

[40,140] 953.94 0.01 139.68 929.55 88.16 2.56
[140,240] 1014.38 0.01 42.25 966.51 90.38 4.72
[50,210] 1903.93 0.50 38122.5 1859.37 188.32 2.34
[40,220] 1942.64 0.50 96833.50 1849.99 64.83 4.77

172

[40,140] 1322.18 0.01 33.81 1262.25 46.56 4.53
[140,240] 1407.56 0.01 32.14 1327.00 52.21 5.72
[50,210] 2611.32 0.50 18808.20 2468.59 26.35 5.47
[40,220] 2673.52 0.50 47991.00 2529.64 39.22 5.38

Table A5: Comparison of Approximation with Different Sample Sizes

Cases Weekday Profits($)
cj Cr Cp Averaged 250 scenarios 80 scenarios Gap(%)

0.5

13

0.1 2,126.9 2,104.3 1.06
0.3 2,127.8 2,129.4 0.07
0.5 2,124.7 2,103.4 1.00
0.7 2,124.3 2,092.8 1,48

15

0.1 2,125.0 2,103.4 1.01
0.3 2,126.7 2,114.7 0.56
0.5 2,123.2 2,101.9 1.00
0.7 2,122.7 2,092.1 1.44

17

0.1 2,122.7 2,104.1 0.88
0.3 2,111.7 2,082.1 1.40
0.5 2,117.8 2,105.9 0.56
0.7 2,118.4 2,111.5 0.33

0.8

13

0.1 2,041.3 2,030.3 0.54
0.3 2,041.8 2,044.5 0.13
0.5 2,037.9 2,041.5 0.18
0.7 2,028.6 2,043.7 0.74

15

0.1 2,036.8 2,027.1 0.48
0.3 2,033.6 2,032.1 0.08
0.5 2,031.9 2,031.2 0.04
0.7 2,030.3 2,031.8 0.07

17

0.1 2,032.3 2,026.4 0.28
0.3 2,032.1 2,028.1 0.19
0.5 2,028.2 2,028.6 0.02
0.7 2,031.4 2,021.6 0.48

1.0

13

0.1 1,999.2 1,988.7 0.52
0.3 1,985.2 1,994.0 0.44
0.5 1.985.9 1,992.4 0.32
0.7 1,980.4 1,993.8 0.67

15

0.1 1,991.5 1,988.7 0.14
0.3 1,984.2 1,990.6 0.32
0.5 1,978.4 1,990.4 0.61
0.7 1,976.4 1,990.2 0.70

17

0.1 1,988.6 1,988.7 0.01
0.3 1,979.2 1,988.7 0.47
0.5 1,975.8 1,988.4 0.63
0.7 1,976.8 1,988.2 0.57

performance of our solution approach.

In addition, we show our solution approach with 80 scenarios for weekday in-

stances does not lead to significant approximation error with the practical case of

uncertain demand by two steps. First, we note Citi Bike has applied predictive

methods to estimate the demand and then use a deterministic model to derive re-

location decisions (O’Mahony and Shmoys 2015). Second, we average the weekday

demand of 250 scenarios in a year to a single scenario and use it to replace the

predictive supply in practical case. Then, we compare our results with those by
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the deterministic model in Table A5. It shows the gap of profits between two cases

is less than 1.5% for various instances. Hence, the sample size of 80 scenarios for

weekday instances is suitable to approximate the reality.

A.5.2 Data Processing via ARIMA Models

In contrast to the previous experiments, we re-generate the training and testing

samples separately, with each having 120 samples of scenarios for both the weekday

and weekend demands. To that end, the data in 2018 is fitted in seasonal ARIMA

models. We use 20 weekdays (resp. 8 weekend days) of trip records in each month

to fit a time series model of the bimodal (resp. unimodal) pattern. Thus, we have

12 fitted time series models for weekdays (resp. weekend days) in 12 months. Then,

each model generates 20 new samples for the corresponding month by forecasting:

10 for training and 10 for testing, leading to 120 scenarios of demand for training

and 120 scenarios of demand for testing. To keep the mean values of the weekday

and weekend samples the same in each given month, we follow the following three

steps: (i) first, scale the sample values; (ii) then, randomly select an arc in the

network G and add one more demand to the sample with a lower mean value; and

(iii) do the above step until the mean values are the same.
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Appendix B

Proofs for Chapter 3

B.1 Proofs Under the Percentage Label

B.1.1 Proof of Lemma 1

In the case of percentage label, the firm can always obtain a label. In Stage 2, the

firm chooses a price and the percentage of the recycled material to maximize profit,

i.e., max π(p, q). As shown in Equation (3.1), the firm can set either a low price

to serve all consumers or a high price to serve only the environmentally conscious

consumers. Besides, one can verify that the firm’s profit increases in p (i.e., ∂π
∂p

> 0)

in both scenarios. Thus, the firm’s optimal price is either p∗P = v + vrq or p∗P = v.

Next, we compare the firm’s optimal profit in the high price scenario (i.e., π(v+

vrq, q)) with that in the low price scenario (i.e., π(v, q)). Solving π(v, q) − π(v +

vrq, q) = q(α(cr−vr−cn)+cn−cr)−(1−α)(v−cn) = 0 leads to q = (α−1)(v−cn)
(α−1)(cr−cn)−αvr

.

Define q̃ = (α−1)(v−cn)
(α−1)(cr−cn)−αvr

and α̃ = v−cr
v+vr−cr

. By algebraic analysis, we finally have

π(v, q)−π(v+vrq, q) ≥ 0 if α ≤ α̃ or if α > α̃ and q ≤ q̃, and π(v, q)−π(v+vrq, q) < 0

if α > α̃ and q > q̃, as shown in Lemma 1.

B.1.2 Proof of Proposition 3.1

We prove proposition 1 by first solving the firm’s optimal recycled content q∗P in the

second stage given the pricing strategy in Lemma 1. Then we compare the resulting

firm’s profits in all possible cases. To simplify the discussion, we only consider strict

inequalities during the analysis and incorporate the equality conditions in the final

results.
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Table B1: Summary of q∗P by Cases

Case q∗P π(p∗P , q
∗
P ) Conditions Condition Set

H1 q̃ (v−cn)(αvr(cr−cn+α(vr+cn−cr))−k(v−cn)(1−α)2)

(cr−cn+α(vr+cn−cr))2
α > α̃, q∗H < q̃ QH1

H2 q∗H
α(α(vr+cn−cr)2+4k(v−cn)))

4k
α > α̃, q̃ < q∗H < 1 QH2

H3 1 α(v + vr − cr)− k α > α̃, q∗H > 1 QH3

L1 0 v − cn α > α̃, q∗l < 0 QL1

L2 q∗l
(cn−cr)2+4k(v−cn))

4k
α > α̃, 0 < q∗l < q̃ QL2

L3 q̃ (v−cn)(αvr(cr−cn+α(vr+cn−cr))−k(v−cn)(1−α)2)

(cr−cn+α(vr+cn−cr))2
α > α̃, q∗l > q̃ QL3

L4 0 v − cn α < α̃, q∗l < 0 QL4

L5 q∗l
(cn−cr)2+4k(v−cn))

4k
α < α̃, 0 < q∗l < 1 QL5

L6 1 v − cr − k α < α̃, q∗l > 1 QL6

Optimal Recycled Content in High and Low Prices

When the price is high, i.e., p∗P = v+ vrq, the profit π(v+ vrq, q) = −kq2 + αq(vr +

cn − cr) + α(v − cn) is concave in q. Solving the first-order condition ∂π(v+vrq,q)
∂q

= 0

yields the maximizer q∗H = α(vr+cn−cr)
2k

. Recall α̃ < α ≤ 1 and q̃ < q ≤ 1 for the

high price as shown in B.1.1, then the optimal recycled content q∗P is discussed in

three cases H1 ∼ H3, see Table B1. When the price is low, i.e., p∗P = v, the profit

π(v, q) = −kq2 + q(cn − cr) + v − cn is also concave in q. Solving the first-order

condition ∂π(v,q)
∂q

= 0 yields the maximizer q∗l = cn−cr
2k

. Recall the conditions for the

low price: 1) α > α̃ and q ≤ q̃ where we discuss three cases L1 ∼ L3; 2) α ≤ α̃

where we discuss three cases L4 ∼ L6. Then the corresponding q∗P is given in Table

B1 and the conditions are collected in Qt,∀t ∈ {H1, ..., H3, L1, ..., L6}.

By Lemma 3.1 and simple algebraic calculations, the conditions (the fourth col-

umn in Table B1) in each case are collected in the sets (the last column in Table

B1) as follows with equality sign included. Due to the focus of our study, all sets are

described with focus on (α, k). QH1
.
= {(α, k) : α > α̃, k > max{0, k̄H}} where k̄H=

α(vr+cn−c)(cr−cn+α(vr+cn−c))
2(v−cn)(1−α)

, QH2
.
= {(α, k) : α > α̃, vr > cr−cn, 12α(vr+cn−cr) < k ≤ k̄H},

QH3
.
= {(α, k) : α > α̃, vr > cr−cn, k ≤ 1

2α(vr+cn−cr)}, QL1
.
= {(α, k) : cr > cn, α > α̃},

QL2
.
= {(α, k) : cn > cr, α > α̃, k > max{0, k̄L}} where k̄L=

(cn−cr)(α(vr+cn−cr)−(cn−cr))
2(v−cn)(1−α)

,

QL3
.
= {(α, k) : cn > cr, α > α̃, k ≤ k̄L}, QL4

.
= {(α, k) : cr > cn, α ≤ α̃}, QL5

.
= {(α, k) :

cn > cr, α ≤ α̃, k > cn−cr
2 }, QL6

.
= {(α, k) : cn > cr, α ≤ α̃, k ≤ cn−cr

2 }.
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Comparison of the Cases in High and Low Prices

Next, we derive the firm’s optimal q∗P by comparing the resulting profits in cases

H1 ∼ H3 with those in L1 ∼ L6. A trivial case is that, when α ≤ α̃, only the cases

L4 ∼ L6 exist and no comparison is needed. Then, we consider α > α̃ and compare

cases H1 ∼ H3 with L1 ∼ L3. There are 9 comparisons in total and the results are

given in Table B2, where k̄3=
(cr−cn)2−α2(−cr+vr+cn)2

4(α−1)(v−cn)
,

k̄4=
(cn−cr)((α−1)(cn−cr)+αvr)

(1−α)(v−cn)
, k̄1=

1
2
(α(v+vr−cr)+cn−v+

√
(α(cr−v−vr)+v−cr)(α(cr−v−vr)+v+cr−2cn)),

αa=

√
c3r−c2r(2v+vr+cn)+cr(v2+2cn(v+vr))−v2(vr+cn)+2vvrcn−2vrc

2
n

(cr−vr−cn)(cr−2v−vr+cn)2
+ cn−v

cr−2v−vr+cn
,

αb=
1
2

√
−c3r+c2r(2v+vr+cn)−cr(v2+2v(cn−vr)+4vrcn)+v2(vr+cn)−4vvrcn+4vrc

2
n

(v−cn)2(−cr+vr+cn)
+ cr+v−2cn

2(v−cn)
.

Next, we define five sets: Pij, ∀i ∈ {1, H, L, 0}, j ∈ {H,L} where i indexes the

recycled content and j the high or low price. Specifically, P1H , PHH , PLL and P0L

are derived from QL4, QL5 and Table B2, the firm’s corresponding optimal recycled

contents (q∗P ) are 1 (with high price), q∗H , q∗l and 0, respectively. Note that for

each row of Table B2, we combine the conditions in the third and forth columns.

For the rows whose q∗P are the same, we further collect the combined conditions

into the corresponding set. The other set P1L is derived from QL6 where only the

case L6 holds. The firm’s corresponding recycled content is 1 (with low price).

P1H
.
= {(α, k) : α > α1H , k ≤ k̄1H}, PHH

.
= {(α, k) : α > αHH , 12α(cn + vr − cr) <

k ≤ k̄HH)}, PLL
.
= {(α, k) : cn > cr, k > kLL}, P1L

.
= {(α, k) : cn > cr, α ≤ α̃, k ≤

1
2(cn − cr)}, P0L

.
= {(α, k) : cn ≤ cr, k > k0L}, where the boundaries for α and k

are given by k̄1H=

min{k̄1, 12α(cn+vr−cr)}, if cn>cr

min{α(v+vr−cr)+cn−v, 1
2
α(cn+vr−cr)}, otherwise

, α1H=

α̃, if cn>cr

0, otherwise

, k̄HH=

k̄3, if cn>cr

α2(−cr+cn+vr)
2

4(1−α)(v−cn)
, otherwise

, αHH=

αa, if cn>cr

2(v−cn)
−cr−cn+vr+2v

, otherwise

, kLL=


1
2
(cn−cr), if α≤α̃

k̄1, if α̃<α≤αa

k̄3, if α>αa

,

k0L=

α(v+vr−cr)+cn−v), if α≤ 2(v−cn)
−cr−cn+vr+2v

α2(−cr+cn+vr)
2

4(1−α)(v−cn)
, otherwise

. A visualization example of the regions Pij,

∀ i ∈ {1,H,L,0}, j ∈ {H,L} is shown in Figure 3.2.

B.1.3 Proof of Corollary 3.1

We first prove Corollary 1(1). For q∗P : by Proposition 3.1, we can easily check

that i)
∂q∗P
∂α

> 0, if (α, k) ∈ PHH ;
∂q∗P
∂α

= 0, otherwise; ii)
∂q∗P
∂k

< 0, if (α, k) ∈
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Table B2: Comparison of the Firm’s Profit in Percentage Label by Cases

Case1 Case2 Qcase1 ∩Qcase2 πcase1 − πcase2 q∗P

H1 L1
{(α, k) : cn < cr, α > α̃, k >
max{0, k̄H}}

< 0 0

H1 L2 {(α, k) : cn > cr, α > α̃, k > k̄H} < 0 q∗l
H1 L3 ∅ NA NA

H2 L1
{(α, k) : cn < cr, vr >
cr − cn, α >
α̃, 1

2α(vr + cn − cr) < k < k̄H}

> 0 if cr > cn, vr > cr − cn, α >
2(v−cn)

−cr−cn+vr+2v and 1
2α(cn+vr−cr) <

k < α2(−cr+cn+vr)
2

4(1−α)(v−cn)

q∗H

< 0 otherwise 0

H2 L2
{(α, k) : cn > cr, α >

α̃,max{ 12α(vr + cn − cr), k̄L} <
k < k̄H}

> 0 if cn > cr, α > αa, max{ 12α(cn+
vr − cr),

1
2 k̄4} < k < k̄3

q∗H

< 0 otherwise q∗l

H2 L3 {(α, k) : cn > cr, α > αb, k̄3 <
k < 1

2 k̄4}
> 0 q∗H

H3 L1
{(α, k) : cn < cr, vr > cr − cn, α >

α̃, k < 1
2α(vr + cn − cr)}

> 0 if cr > cn, vr > cr − cn, α >
v−cn

v+vr−cr
and k < min{α(v+vr−cr)+

cn − v, 1
2α(cn + vr − cr)}

1

< 0 otherwise 0

H3 L2
{(α, k) : cn > cr, α > α̃, k̄L < k <
1
2α(vr + cn − cr)}

> 0 if cn > cr, α̃ < α < αb and
1
2 k̄4 < k < min{k̄1, 1

2α(cn+vr− cr)}
1

< 0 otherwise q∗l

H3 L3
{(α, k) : cn > cr, α > α̃, k <
min{k̄L, 1

2α(vr + cn − cr)}}
> 0 1

Note: NA implies the corresponding case is not applicable and no result is given.

PHH ∪ PLL;
∂q∗P
∂k

= 0, otherwise. Hence, the firm’s optimal recycled content weakly

increases in α and weakly decreases in k. Note that from now on, we use “weakly”

to indicate q∗P is not continuous but monotone across regions. For π∗
P , by Equation

(3.2), we can verify i)
∂π∗

P

∂α
> 0 if (α, k) ∈ P1H ∪ PHH and

∂π∗
P

∂α
= 0 otherwise;

ii)
∂π∗

P

∂k
= 0 if (α, k) ∈ P0L and

∂π∗
P

∂k
< 0 otherwise. Hence, the firm’s profit weakly

increases in α and weakly decreases in k. Next, we prove Corollary 1(2). From

Equation (3.2), we have i)
∂Π∗

P

∂α
> 0 if (α, k) ∈ P1H ∪ PHH and

∂Π∗
P

∂α
= 0 otherwise;

ii)
∂Π∗

P

∂k
< 0 if (α, k) ∈ PHH ∪ PLL and

∂Π∗
P

∂k
= 0 otherwise. However, NGO’s

payoff may drop as α increases and may rise as k increases across boundary (α, k) ∈

(P1H ∪ PHH) ∩ (PLL ∪ P1L ∪ P0L). For example, Π∗
P1L

= 1 > Π∗
P1H

= α, then NGO’s

payoff drops at the boundary P1H ∩ P1L as α grows (e.g., from P1L to P1H). Hence,

NGO’s payoff is non-monotone in α and in k.
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B.2 Proofs Under the Binary Label

B.2.1 Proof of Lemma 2

This lemma shows the firm’s optimal price in the case of the binary label. Given the

label standard q̄ and the firm’s recycled content q, the firm can set a price p ∈ [0, v]

to serve all consumers or set p ∈ (v, v + vrq̄] to serve the environmentally conscious

consumers. We obtain the optimal price p∗B = v or p∗B = v + vrq̄ by observing

the firm’s profit is increasing in p (i.e., ∂π(p,q)
∂p

> 0) in either case. Moreover, the

firm can set the high price p∗B = v + vrq̄ only if he obtains the label, i.e., q ≥ q̄.

Solving π(v + vrq̄, q) − π(v, q) = αvrq̄ + (1 − α)[crq + cn(1 − q) − v] > 0 yields

q̄ > (α−1)[crq+cn(1−q)−v]
αvr

(denoted as ¯̄q). Then, the firm prefers the high price if

¯̄q < q̄ ≤ q and the low price otherwise.

B.2.2 Proof of Lemma 3.3

The proof logic is similar to that for Proposition 1. Given the binary label standard

q̄ and the optimal price in Lemma 2, we solve for the firm’s optimal recycled content

q∗B, which leads to a few different cases. Then, we compare the resulting firm’s profits

in these cases. Note that we only consider strict inequalities during the analysis and

incorporate the equality conditions in the final results.

The Optimal Recycled Content in High and Low Prices

When p∗B = v + vrq̄, the firm needs to obtain the label, i.e., q ≥ q̄. Since the profit

π(v+vrq̄, q) = αq̄vr−kq2+αq(cn−cr)+α(v−cn) is concave in q, solving ∂π(v+vr q̄,q)
∂q

= 0

yields the maximizer q∗h = α(cn−cr)
2k

. Recall Lemma 3.2, solving q̄ > ¯̄q with respect to q

yields q > q̂(q̄) if cr > cn and q < q̂(q̄) if cr < cn where q̂(q̄) =
v−cn−α(v+q̄vr−cn)

(1−α)(cr−cn)
. Then,

we need to compare whether q∗h is greater or smaller than q̂(q̄), q̄ and 1, respectively,

under the high price conditions. The resulting values of q∗B are summarized in Cases

h1 ∼ h4 in Table B3. For example, if q∗h > 1 (Case h4), then q∗B = 1 is optimal.

When p∗B = v, the profit π(v, q) = −kq2+ q(cn− cr)+v− cn is concave in q. Solving

∂π(v,q)
∂q

= 0 yields the maximizer q∗l = cn−cr
2k

as in the percentage label case. There

are also four cases for q∗B, summarized in Cases l1 ∼ l4 in Table B3, where the firm

sets a low price and may get the label (as in Cases l3, l4) or not (as in Cases l1, l2).
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Table B3: Summary of q∗B by Cases

Case q∗B π(p∗B, q
∗
B) Conditions

h1 q̂(q̄) − (α−1)αq̄vr(cr−cn)2+k(αq̄vr+(α−1)v−αcn+cn)2

(α−1)2(cr−cn)2

¯̄q < q̄ < q < q̂(q̄) < 1, q∗h > q̂(q̄)
¯̄q < q̄ < q̂(q̄) < q < 1, q∗h < q̂(q̄)

h2 q̄ α(q̄(−c+ vr + cn) + v − cn)− kq̄2 q̂(q̄) < q̄, q∗h < q̄, ¯̄q < q̄ < q < 1

h3 q∗h
α2(cr−cn)2

4k
+ α(q̄vr + v − cn) q̄ < q < q̂(q̄) < 1, ¯̄q < q̄ < q∗h < q̂(q̄)

h4 1 α(q̄vr + v − cr)− k q̂(q̄) > 1, ¯̄q < q̄ < q < 1 < q∗h
l1 0 v − cn q∗l < 0 < q

l2 q∗l
(cn−cr)2+4k(v−cn)

4k
0 < q∗l < q̄

l3 q∗l
(cn−cr)2+4k(v−cn)

4k
q̄ < q∗l < 1, q̄ ≤ ¯̄q

l4 1 v − cr − k q∗l > 1, q̄ ≤ ¯̄q
Note: The conditions (in the forth column) include those for the firm’s pricing strategy and recycled content
decision. Cases h1 ∼ h4 always have q > q̄ > ¯̄q such that the high price and the label can be applied. In Case
h3, only the subcase when cn > cr is feasible. Since cn < cr leads to q∗h < 0 ≤ q̄ that contradicts the condition
for the high price. Cases l1 ∼ l4 are under the low price scenario. In Cases l1 and l2, the firm cannot obtain
the label. Otherwise, he can obtain the label but has higher profit with the low price (i.e., q̄ < ¯̄q). Moreover,
Case l1 implies only the subcase with cn < cr holds. Cases l2 ∼ l4 imply cn > cr holds because cn < cr leads
to q∗l < 0 that contradicts q∗l > 0 in these cases.

By simple algebraic calculations, the conditions in the last column of each row

in Table B3 are solved, and according to q∗B, the conditions in different rows are

combined into sets Qx, where x represents the case’s name. Qh1
.
= {(α, k, q̄) : α >

α̃, k < k̄h1, qh1 < q̄ < q̄h1}, Qh2
.
= {(α, k, q̄) : α > α̃, k > kh2, q̄ > q̄h2}, Qh3

.
=

{(α, k, q̄) : cn > cr, α > α̃, α(cn−cr)
2 < k < k̃h1, q̄

2
h1 < q̄ < q∗h}, Qh4

.
= {(α, k, q̄) : cn >

cr, α > α̃, k < α(cn−cr)
2 , q̄1h1 < q̄}, Ql1

.
= {(α, k, q̄) : cn < cr}, Ql2

.
= {(α, k, q̄) : cn > cr,

k > cn−cr
2 , q∗l < q̄}, Ql3

.
= {(α, k, q̄) : cn > cr, k > cn−cr

2 , q̄ < q̄l3}, Ql4
.
= {(α, k, q̄) :

cn > cr, k < cn−cr
2 , q̄ < q̄l4}. The boundaries are: q

h1
=
{

q̃, if cn > cr

q̄1h1, otherwise
, q̄h1 ={

min{q̄1h1, q̄
2
h1}, if cn > cr

q̃, otherwise
, k̄h1 =

{
k̃h1, if cn > cr

∞, otherwise
, q̄h2 =

{
max{q̃, q∗h}, if cn > cr

q̃, otherwise
,

kh2 =
{

α(cn−cr)
2

, if cn > cr

0, otherwise
, q̄l3 =

{
q∗l , if α < α̃

min{q̄l1, q∗l }, otherwise
, q̄l4 =

{
1, if α < α̃

q̄1h1, otherwise
. In the

above, α̃, q̃ are defined in Lemma 1. k̃h1 =
α(cr−cn)(α(c−vr−cn)+cn−cr)

2(1−α)(v−cn)
, q̄1h1 =

(1−α)(v−cr)
vrα

,

q̄2h1 =
(1−α)(α(cr−cn)2+2k(v−cn))

2αkvr
, q̄l1 =

(1−α)((cr−cn)2+2k(v−cn))
2αkvr

.

Firm’s Optimal Decision

Next, we derive the optimal solutions by comparing the resulting profits in Cases

h1 ∼ h4 and l1 ∼ l4, the results are summarized in Table B4, where

q
′
MH

=
α(vr−cr+cn)−

√
α2(vr−cr+cn)2+4k(v−cn)(α−1)

2k
, q̄

′
MH=

α(vr−cr+cn)+
√

α2(vr−cr+cn)2+4k(v−cn)(α−1)
2k

,

q
MH

=
α(vr−cr+cn)−

√
α2(vr−cr+cn)2+4k(v−cn)(α−1)−(cn−cr)2

2k
,

q̄MH=
α(vr−cr+cn)+

√
α2(vr−cr+cn)2+4k(v−cn)(α−1)−(cn−cr)2

2k
.
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For a clearer display of the firm’s decisions, we combine the conditions in the third

and fourth columns of each row in Table B4. According to the value of q∗B, we com-

bine those conditions in different rows into six regions Qij where i ∈ {1, H,M,L, 0}

indexes the recycled content and j ∈ {H,L} the high or low price: QMH
.
={(α,k,q̄):

α>αLH , Q
MH

<q̄≤Q̄MH}, QHH
.
={(α,k,q̄): cn>cr, α>α̃, k>

α(cn−cr)
2

, Q
HH

<q̄≤q∗h}, Q1H
.
={(α,k,q̄): cn>

cr, α>α̃, k<
α(cn−cr)

2
, q̄1h1<q̄≤1}, Q0L

.
={(α,k,q̄): cn≤cr, (vr≤cr−cn || vr>cr−cn & (q̄≤q

′
MH

|| q̄
′
MH<

q̄≤1))}, QHL
.
={(α,k,q̄): cn>cr, k>k̄HL, q̄< cn−cr

2k
, q̄<q̃HL}, QLL

.
={(α,k,q̄): cn>cr,k>k̄HL, q̄> cn−cr

2k
, q̄<

q̃HL}, Q1L
.
={(α,k,q̄): k≤ cn−cr

2
, q̄≤q̄1L}. Each of these sets corresponds to q∗B in cases

h2(q̄), h3(q∗h), h4(1), l1(0), l2(q∗l ), l3(q∗l ), l4(1), respectively. An example of

the regions in (k, q̄) space is shown in Figure 3.3. The boundaries are: Q
HH

=
Q̄1L, if

α(cn−cr)
2

<k< cn−cr
2

Q̄HL, if cn−cr
2

<k<
(cr−cn)(α2(−cr+2vr+cn)+cr−cn)

4(α−1)(v−cn)

, αLH=

α̃, if cn>cr

0, otherwise

,

Q
MH

=


max{q∗l ,qMH

}, if cn>cr

q
′
MH

, if cn≤cr,vr>cr−cn

∞, otherwise

, Q̄MH=


min{1,q̄MH}, if cn>cr

min{1,q̄′MH}, if cn≤cr,vr>cr−cn

−∞, otherwise

, k̄HL=


cn−cr

2
, if α≤α̃

0, otherwise

,

q̃HL=

1, if α≤α̃

Q̄HL, otherwise

, q̄1L=

1, if α≤α̃

Q̄1L, otherwise

. In the above, Q̄HL denotes the upper bound

of q̄ in region QHL ∪ QLL in (k, q̄) space as shown in Figure 3.3. It can be derived

from rows 3, 6, 7, 11 of Table B4 as

Q̄HL=



(1−α)((1+α)(cr−cn)2+4k(v−cn))
4αkvr

, if cn−cr
2

<k<
(cr−cn)(α2(−cr+2vr+cn)+cr−cn)

4(α−1)(v−cn)

q
MH

, if max{ cn−cr
2

,
(cr−cn)(α2(−cr+2vr+cn)+cr−cn)

4(α−1)(v−cn)
}<k<k̄3

1, if k>k̄3

.

Q̄1L denotes the upper bound of q̄ in region Q1L. It can be derived from rows 4, 8,

12 of Table B4 as

Q̄1L=


(1−α)(v−cr)

vrα
, if k<

α(cn−cr)
2

− 4k(cr+k−v)+α2(cr−cn)2+4αk(v−cn)
4αkvr

, if
α(cn−cr)

2
<k<min{ cn−cr

2
,k̄5}

α(−cr+vr+cn)−
√

4k(cr+k−v)+α2(−cr+vr+cn)2+4αk(v−cn)
2k

, if k̄5<k< cn−cr
2

,

where k̄5=
1
2
(−
√

α2(−c2r+2cr(vr+cn)+v2−2cn(v+vr))+2α(cr−v)(v−cn)+(cr−v)2+α(cn−v)+v−cr). Note

that for QHH , QHH
< q̄ ≤ q∗h contradicts k̄5 < k < cn−cr

2
. Hence, only the first two

cases of Q
1L

apply to Q
HH

.

Finally, we can easily compare q̄ and q∗B(q̄). First, consider cn > cr. In QMH , q̄ =

q∗B(q̄). In QHH , by definition, q̄ ≤ q∗B(q̄) =
α(cn−cr)

2k
. In Q1H and Q1L, q̄ ≤ q∗B(q̄) = 1.

In QHL, q̄ ≤ q∗B(q̄) =
cn−cr
2k

. In QLL, q̄ > q∗B(q̄) =
cn−cr
2k

. Next, consider cn ≤ cr. In

QMH , q̄ = q∗B(q̄) as before. In Q0L, q̄ > q∗B(q̄) = 0. Hence, the firm cannot obtain
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the label given QLL and Q0L.

B.2.3 Proof of Proposition 3.2

This section solves NGO’s optimal label standard q̄∗ in the first stage. Given the

firm’s optimal decisions in the second stage, NGO chooses q̄ to maximize her payoff,

i.e.,

max
q̄

Π(q̄)=

αq
∗
B(q̄), if p∗B(q

∗
B(q̄), q̄) = v + vrq̄

q∗B(q̄), if p∗B(q
∗
B(q̄), q̄) = v

.

For a clearer discussion, we first discuss the NGO’s optimal label standard by cases

in Table B5, where (α, k) space is divided into 11 components. Each component

case may be related to multiple subcases where NGO’s corresponding payoffs need

to be further compared. Note in Table B5,

Q̄∗=


1, if cn−cr

2α
<k<k̄1

min{Q̄HL,q
∗
l } if k<min{ cn−cr

2α
,k̄1} or min{k̄MH ,k̄1}<k<k̄3

q̄MH if k̄1<k<k̄MH

, where k̄MH=

k̄2, if α<
√

cr−cn
cr−cn−vr

k̄3, otherwise

,

k̄1=
1
2
(α(v+vr−cr)+cn−v+

√
(α(cr−v−vr)+v−cr)(α(cr−v−vr)+v+cr−2cn)), k̄2=

(cr−cn)(α2(−cr+2vr+cn)+cr−cn)
4α2(α−1)(v−cn)

.

Note that q̄MH and q̄ = 1 intersects at k = k̄1, qMH
and q∗h intersects at α2k̄2, qMH

and q∗l intersects at k = (cn−cr)(α(vr+cn−cr)−(cn−cr))
2(v−cn)(1−α)

. k̄3 is the right-most k bound for

region QMH . For the fifth case in Table B5, NGO can obtain payoff q∗l regardless of

any q̄ ≤ 1, she will set q̄ = q∗l to let the firm obtain the label and benefit consumer

surplus. Similar cases occur in the last two cases of Table B5.

Then, we summarize the equilibrium outcomes and combine the conditions in

(α, k) space in sets B1H , BMH , B
′
MH , BML, BHL, B1L, B

′
1L and B0L as follows.

B1H
.
={(α,k): α>α1H , k1H<k≤k̄

′
1H}, where k1H=


cn−cr

2α
, if cn>cr

0, otherwise

, k̄
′
1H=

k̄1, if cn>cr

α(v+vr−cr)−v+cn, otherwise

.

BMH
.
={(α,k): cn>cr, α>

√
(cr−v)2+2vr(cn−cr)+v−cn

−cr+2(v+vr)−cn
, k̄1<k≤k̄MH}.

B
′
MH

.
={(α,k): cn≤cr, α>

2(v−cn)
2v+vr−cr−cn

, α(v+vr−cr)−v+cn<k≤α2(−cr+vr+cn)2

4(1−α)(v−cn)
}.

BML
.
={(α,k): cn>cr, k>

(cn−cr)(α(vr+cn−cr)−(cn−cr))
2(v−cn)(1−α)

, ( cn−cr
2

<k≤ cn−cr
2α

|| k>max{ cn−cr
2α

,k̄1,k̄MH})}.

BHL
.
={(α,k): cn>cr, k≤ (cn−cr)(α(vr+cn−cr)−(cn−cr))

2(v−cn)(1−α)
, ( cn−cr

2
<k≤ cn−cr

2α
|| k>max{ cn−cr

2α
,k̄1,k̄MH})}.

B1L
.
={(α,k): cn>cr, α≤α̃, k≤ cn−cr

2
)}.

B
′
1L
.
={(α,k): cn>cr, α>α̃, k≤ cn−cr

2
)}.

B0L
.
={(α,k): cn≤cr, k>k0L}, where k0L=

α(v+vr−cr)−v+cn), if α≤ 2(v−cn)
2v+vr−cr−cn

α2(−cr+vr+cn)2

4(1−α)(v−cn)
, otherwise

.

The corresponding label decisions (q̄∗) are 1, q̄MH , q̄
′
MH , q

∗
l , q̄HL, 1, q̄1L, (0, 1],
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respectively. In particular, q̄MH , q̄
′
MH are referred to Section B.2.2 and

q̄HL=


(1−α)((1+α)(cr−cn)2+4k(v−w))

4αkvr
, if (α,k)∈BHL and k≤

(cr−cn)(α2(−cr+2vr+cn)+cr−cn)
4(α−1)(v−cn)

q
MH

, if (α,k)∈BHL and k>
(cr−cn)(α2(−cr+2vr+cn)+cr−cn)

4(α−1)(v−cn)

,

which includes the first two cases of Q̄HL.

q̄1L=


(1−α)(v−cr)

vrα
, if (α,k)∈B′

1L and k<
(cn−cr)α

2

− 4k(cr+k−v)+α2(cr−cn)2+4αk(v−cn)
4αkvr

, if (α,k)∈B′
1L and

(cn−cr)α
2

<k≤k̄5

α(−cr+vr+cn)−
√

4k(cr+k−v)+α2(−cr+vr+cn)2+4αk(v−cn)
2k

, if (α,k)∈B′
1L and k>k̄5

,

which coincides with Q̄1L. The results in proposition 2 then immediately follow.

B.2.4 Proof of Proposition 3.3

By Proposition 3.2, we can easily compare q̄∗ and q∗B. For Proposition 3.3(1): In B0L,

q̄∗ > q∗B = 0 since here q̄∗ ∈ (0, 1]. For Proposition 3.3(2): In BHL, by the analysis

in Section B.2.3, q̄HL(⊂ Q̄HL) < q∗B. In B
′
1L, by Section B.2.3, q̄1L(⊂ Q̄1L) < q∗B = 1.

For Proposition 3.3(3): When cn > cr, in B1H , BMH , BML, B1L, obviously q̄∗ = q∗B.

When cn ≤ cr, in B1H and B
′
MH , q̄

∗ = q∗B.

B.2.5 Proof of Corollary 3.2

For Corollary 3.2(1): By Proposition 3.2, we can easily verify ∂q̄∗

∂α
> 0 if (α, k) ∈

BMH ∪ B
′
MH ,

∂q̄∗

∂α
< 0 if (α, k) ∈ BHL ∪ B

′
1L and ∂q̄∗

∂α
= 0 otherwise. Hence, the

optimal label standard q̄∗ may increase or decrease in α. We can also verify ∂q̄∗

∂k
<

0 if (α, k) ∈ BMH ∪ B
′
MH ∪ BML or if (α, k) ∈ B

′
1L and k > (cn−cr)α

2
, and ∂q̄∗

∂k
= 0

otherwise. We see q̄∗ weakly decreases in k in each individual region. In addition,

q̄∗ < cn−cr
2k

when (α, k) ∈ BHL and q̄∗ = 1 when (α, k) ∈ B1H . One can easily verify

cn−cr
2k

< 1 at the boundary (α, k) ∈ B1H ∩ BHL. Then, q̄∗ increases as k increases

from BHL to B1H . Hence, q̄
∗ may increase or decrease in k.

For Corollary 3.2(2): By Proposition 3.2, we can verify
∂q∗B
∂α

> 0 if (α, k) ∈

BMH ∪ B
′
MH and

∂q∗B
∂α

= 0 otherwise. Hence, the firm’s optimal recycled content q∗B

weakly increases in α. Moreover,
∂q∗B
∂k

< 0 if (α, k) ∈ BMH ∪ BML ∪ BHL ∪ B
′
MH

and
∂q∗B
∂k

= 0 otherwise. However, similar to q̄∗, q∗B = cn−cr
2k

in region BHL, which is

smaller than q∗B = 1 in region B1H . Then, q∗B increases as k increases from BHL to

B1H . Hence, q
∗
B may increase or decrease in k.

For Corollary 3.2(3): Let Π∗
B

.
= Π∗

B(q̄
∗) denote the NGO’s optimal payoff and

π∗
B

.
= π∗

B(p
∗
B(q̄

∗), q∗B(q̄
∗)) the firm’s optimal profit. By Proposition 3.2, we obtain
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equation (B.1) below. Then, we can verify i)
∂π∗

B

∂α
> 0, if (α, k) ∈ B1H and

∂π∗
B

∂α
= 0

otherwise; ii)
∂π∗

B

∂k
< 0 if (α, k) /∈ B

′
MH ∪ B0L and

∂π∗
B

∂k
= 0 otherwise. Hence, the

firm’s optimal profit weakly increases in α and weakly decreases in k. Moreover, we

can also verify i)
∂Π∗

B

∂α
> 0 if (α, k) ∈ B1H ∪ BMH ∪ B

′
MH and

∂Π∗
B

∂α
= 0 otherwise;

ii)
∂Π∗

B

∂k
< 0, if (α, k) ∈ BMH ∪B

′
MH and

∂Π∗
B

∂k
= 0 otherwise. Hence, NGO’s optimal

payoff weakly increases in α and weakly decreases in k.

(π∗
B ,Π∗

B)=



(α(v+vr−cr)−k,α), (α,k)∈B1H

(
(cn−cr)

2+4k(v−cn)
4k

,
α2(vr−cr+cn)+α

√
α2(vr−cr+cn)2+4k(v−cn)(α−1)−(cn−cr)2

2k
), (α,k)∈BMH

(v−cn,
α2(vr−cr+cn)+α

√
α2(vr−cr+cn)2+4k(v−cn)(α−1)

2k
), (α,k)∈B′

MH

(
(cn−cr)

2+4k(v−cn)
4k

, cn−cr
2k

), (α,k)∈BML∪BHL

(v−cr−k,1), (α,k)∈B1L∪B
′
1L

(v−cn,0), (α,k)∈B0L

.

(B.1)

B.3 Comparison Under the Two Labels

B.3.1 Proof of Proposition 3.4

We present the proof in two parts. In the first part, we compare q∗P and q∗B following

Propositions 3.1 and 3.2. The comparison is valid in the following non-empty regions:

When cn > cr, there are B1H∩P1H , B1H∩PHH , BMH∩PHH , BML∩PHH , BML∩PLL,

BML ∩ P1H , BHL ∩ P1H , B
′
1L ∩ P1H , B1L ∩ P1L; When cn ≤ cr, there are B1H ∩ P1H ,

B1H ∩ PHH , B
′
MH ∩ PHH , B0L ∩ P0L. Otherwise, the intersection is empty. Then,

the comparison is given below.

First, when cn > cr: (1) B1H ∩ P1H , q∗P = q∗B = 1. (2) B1H ∩ PHH , q∗P =

α(vr+cn−cr)
2k

< q∗B = 1 since k > 1
2
α(cn + vr − cr) by the definition of PHH . (3)

BMH ∩ PHH , q
∗
B − q∗P =

√
α2(vr−cr+cn)2+4k(v−cn)(α−1)−(cn−cr)2

2k
> 0, hence q∗P < q∗B. (4)

BML∩PHH , q
∗
P −q∗B = αvr

2k
> 0, hence q∗P > q∗B. (5) BML∩PLL, q

∗
P = q∗B = cn−cr

2k
. (6)

(BML ∪ BHL) ∩ P1H , q
∗
B = cn−cr

2k
< q∗P = 1 since k > cn−cr

2
by the definition of BML

and BHL. (7) B
′
1L ∩ P1H , q

∗
B = q∗P = 1. (8) B1L ∩ P1L, q

∗
B = q∗P = 1. Proposition

3.4(2) follows.

Then, when cn ≤ cr: The first two cases are the same as above. For B
′
MH ∩PHH ,

q∗B−q∗P =

√
α2(vr−cr+cn)2+4k(v−cn)(α−1)

2k
> 0, hence q∗P < q∗B. For B0L∩P0L, q

∗
B = q∗P =

0. Proposition 3.4(1) follows.
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In the second part, we compare the firm’s profits as well as the NGO’s payoffs

under the binary label and the percentage label. First, given equations (3.2) and

(B.1), the profit comparison is shown in Table B6. We only show the results where

the intersection of any pair of Pij and Bi′j′ is non-empty. When the intersection is

empty, the case is trivial that the firm only has one choice, either the percentage

label or the binary label. Next, given equations (3.2) and (B.1), we compare the

NGO’s payoffs under the two labels and summarize the results in Table B7.

By the definition of the regions and the results shown in Table 10 and 11, we

can easily find the firm prefers the percentage label while NGO prefers the binary

label when cn ≤ cr and (α, k) ∈ PHH = (B1H ∪ B
′
MH) ∩ PHH , or when cn > cr and

(α, k) ∈ (BMH∪B
′
1L∪BML∪BHL)∩(PHH∪P1H). Otherwise, they are both indifferent

in two labels. Hence, we conclude that the firm weakly prefers the percentage label

while NGO weakly prefers the binary label.

B.3.2 Proof of Proposition 3.5

We first show the consumer surplus under each label given (α, k) and then com-

pare them under the two labels. First and foremost, environmentally unconscious

consumers exit the market if the product has a high price (i.e., p = v + vrq or

p = v + vrq̄), or pay the same with their valuation for the product if the product

has a low price (i.e., p = v). Hence, these consumers cannot obtain positive sur-

plus. By contrast, the environmentally conscious consumers pay the same with their

valuation for the product when the product is labeled and the price is high, where

they have zero surplus. When the product has a low price, each of these consumers

obtains surplus vrq if a percentage label is applied or vrq̄ if a binary label is applied.

Hence, the aggregate consumer surplus is either αvrq or αvrq̄. In summary, given α

and k, we have

CS∗
P (p∗P ,q∗P )=


αvr

cn−cr
2k

, if (α, k) ∈ PLL

αvr, if (α, k) ∈ P1L

0, otherwise

, CS∗
B(p∗B ,q̄∗B)=



αvr
cn−cr
2k

, if (α, k) ∈ BML

αvrq̄HL, if (α, k) ∈ BHL

αvr, if (α, k) ∈ B1L

αvrq̄1L, if (α, k) ∈ B
′
1L

0, otherwise

,
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where CS∗
P (p

∗
P , q

∗
P ) and CS∗

B(p
∗
B, q̄

∗
B) describe the consumer surplus under the per-

centage label and the binary label, respectively.

We then check the consumer surplus in three components of (α, k) space: (α, k) ∈

(B1H ∪ BMH ∪ B
′
MH) ∩ (P1H ∪ PHH), wherein the firm sets a high price under

both labels; (α, k) ∈ (BML ∪ BHL ∪ B1L ∪ B
′
1L) ∩ (P1H ∪ PHH), wherein the firm

sets a low price under the binary label and a high price under a percentage label;

(α, k) ∈ (BML∪BHL∪B1L)∩(PLL∪P1L), wherein the firm sets a low price under both

labels. Then, one can easily verify that CS∗
P = CS∗

B for the following cases: (α, k) ∈

(B1H ∪BMH ∪B
′
MH)∩ (P1H ∪PHH), CS∗

P = CS∗
B = 0; (α, k) ∈ (BML ∪BHL)∩PLL,

CS∗
P = CS∗

B = αvr
cn−cr
2k

; (α, k) ∈ B1L ∩ P1L, CS∗
P = CS∗

B = αvr. The remaining

component is (α, k) ∈ (BML ∪ BHL ∪ B1L ∪ B
′
1L) ∩ (P1H ∪ PHH), one can check in

this case CS∗
P = 0 while CS∗

B > 0.

B.3.3 Proof of Corollary 3.3

By Proposition 3.5, we can easily verify that i)
∂CS∗

P

∂α
> 0, if (α, k) ∈ PLL ∪ P1L;

∂CS∗
P

∂α
= 0 otherwise; ii)

∂CS∗
P

∂k
< 0, if (α, k) ∈ PLL;

∂CS∗
P

∂k
= 0 otherwise. Hence, when

cn ≤ cr, CS∗
P is not influenced by α and k, see Corollary 3.3(1). When cn > cr, a

visualization is shown in Figure B.1. One can check CS∗
P = 0 when (α, k) ∈ P1H

and CS∗
P = αvr

cn−cr
2k

when (α, k) ∈ PLL. Since αvr
cn−cr
2k

> 0, when α increases from

PLL to P1H , CS∗
P decreases. Hence, CS∗

P increases in α when (α, k) ∈ PLL ∪ P1L

and weakly decreases otherwise; When k increases from P1H to PLL, CS∗
P increases.

Hence, CS∗
P decreases in k when (α, k) ∈ PLL and weakly increases otherwise, see

Corollary 3.3(2).

Moreover, we can verify that i)
∂CS∗

B

∂α
> 0, if (α, k) ∈ BML ∪ B1L;

∂CS∗
B

∂α
<

0, if (α, k) ∈ BHL ∪ B
′
1L;

∂CS∗
B

∂α
= 0 otherwise; ii)

∂CS∗
B

∂k
< 0, if (α, k) ∈ (BML ∪

BHL)∪ (B1L & k > (cn−cr)α
2

);
∂CS∗

B

∂k
= 0 otherwise. Hence, when cn ≤ cr, CS∗

B is not

influenced by α and k, see Corollary 3.3(1). When cn > cr, a visualization is shown

in Figure B.2. One can check CS∗
B = 0 when (α, k) ∈ B1H∪BMH and CS∗

B > 0 when

(α, k) ∈ BML ∪BHL. By the similar reason discussed for CS∗
P , as α increases, CS∗

B

increases when (α, k) ∈ BML ∪B1L and weakly decreases otherwise; As k increases,

CS∗
B weakly increases when (α, k) ∈ B1H ∪ BMH and weakly decreases otherwise,
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see Corollary 3.3(2). The above results are summarized in Corollary 3.3.

𝜕𝐶𝑆𝑃
∗

𝜕α
> 0

k
𝜕𝐶𝑆𝑃

∗

𝜕α
= 0

𝑃1𝐻⋃𝑃𝐻𝐻𝑃𝐿𝐿⋃ 𝑃1𝐿

(a) The Sensitivity with Respect to α

k

𝑃1𝐻⋃𝑃𝐻𝐻⋃𝑃1𝐿

𝑃𝐿𝐿 𝜕𝐶𝑆𝑃
∗

𝜕𝑘
< 0

𝜕𝐶𝑆𝑃
∗

𝜕𝑘
= 0

(b) The Sensitivity with Respect to k

Figure B.1: The Sensitivity of Consumer Surplus with Percentage Label.
Note: cn = 4, cr = 1, v = 8, vr = 7

𝜕𝐶𝑆𝐵
∗

𝜕α
< 0

k
𝜕𝐶𝑆𝐵

∗

𝜕α
> 0

𝐶𝑆𝐵
∗=0

𝐵𝑀𝐿⋃𝐵1𝐿
𝐵1𝐻⋃𝐵𝑀𝐻

𝐵𝐻𝐿⋃𝐵1𝐿
′

(a) The Sensitivity with Respect to α

𝜕𝐶𝑆𝐵
∗

𝜕𝑘
< 0

k
𝜕𝐶𝑆𝐵

∗

𝜕𝑘
= 0

𝐶𝑆𝐵
∗=0

𝐵1𝐻⋃𝐵𝑀𝐻

𝐵1𝐿⋃(𝐵1𝐿
′ & 𝑘 <

𝑐𝑛 − 𝑐𝑟 𝛼

2
)

𝐵𝑀𝐿⋃𝐵𝐻𝐿⋃

(𝐵1𝐿
′ & 𝑘 >

𝑐𝑛 − 𝑐𝑟 𝛼

2
)

(b) The Sensitivity with Respect to k

Figure B.2: The Sensitivity of Consumer Surplus with Binary Label.
Note: cn = 4, cr = 1, v = 8, vr = 7
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Table B4: Comparison of the Firm’s Profit by Cases Given Binary Label q̄

Case1 Case2 Qcase1 ∩Qcase2 πcase1 − πcase2 q∗B

h1 l1
{(α, k, q̄) : cn < cr, α > α̃, q̄1h1 <
q̄ < q̃} < 0 0

h1 l2 ∅ NA NA

h1 l3

{(α, k, q̄) : α >√
(cr−v)2+4vr(v−cn)+cr+v−2cn

2(cr−vr−cn)
,

cn−cr
2 < k < k̃h1, q̃ < q̄ < q̄2h1}

< 0 q∗l

h1 l4

{(α, k, q̄) : α > α̃, (k < α(cn−cr)
2 ,

q̃ < q̄ < q̄1h1) || (
α(cn−cr)

2 < k <

min{k̃h1, cn−cr
2 }, q̃ < q̄ < q̄2h1)}

< 0 1

h2 l1
{(α, k, q̄) : cn < cr, α > α̃, q̄ >
q̃}

> 0 if q
′

MH
< q̄ < min{1, q̄′

MH} and
vr > cr − cn

q̄

< 0 otherwise 0

h2 l2
{(α, k, q̄) : cn > cr, α >

α̃, α(cn−cr)
2 < k, q̄ > max{q̃, q∗l }}

> 0 if q
MH

< q̄ < min{1, q̄MH} and
k < k̄3

q̄

< 0 otherwise q∗l

h2 l3
{(α, k, q̄) : cn > cr, α >

α̃, α(cn−cr)
2 < k,max{q̃, q∗h} < q̄ <

min{q̄l1, q∗l }}

> 0 if q
MH

< q̄ < min{1, q̄MH} and
k < k̄3

q̄

< 0 otherwise q∗l

h2 l4
{(α, k, q̄) : cn > cr, α̃ < α <√
(v−cr)(−cr+v+4vr)+cr−v

2vr
,

α2vr(cn−cr)
2(α−1)(cr−v)

< k < cn−cr
2

, max{q̃, q∗h}

< q̄ < q̄1h1}

> 0 if q̄ > α(−cr+vr+cn)
2k −√

4k(cr+k−v)+α2(−cr+vr+cn)2+4αk(v−cn)

2k

q̄

< 0 otherwise 1

h3 l1 ∅ NA NA
h3 l2 ∅ NA NA

h3 l3
{(α, k, q̄) : cn > cr, α >
α̃, cn−cr

2 < k < k̃h1, q̄
2
h1 < q̄ <

min{q∗h, q̄l1}}

> 0 if q̄ >
(1−α)((1+α)(cr−cn)

2+4k(v−cn))
4αkvr

q∗h

< 0 otherwise q∗l

h3 l4
{(α, k, q̄) : cn > cr, α >

α̃, α(cn−cr)
2 < k < min{ cn−cr

2 ,

k̃h1}, q̄2h1 < q̄ < min{q∗h, q̄1h1]}

> 0 if q̄ >

− 4k(cr+k−v)+α2(cr−cn)
2+4αk(v−cn)

4αkvr

q∗h

< 0 otherwise 1
h4 l1 ∅ NA NA
h4 l2 ∅ NA NA
h4 l3 ∅ NA NA
h4 l4 ∅ NA NA
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Table B5: Summary of the NGO’s Decision by Cases

Cases Subcases q∗B(q̄) q̄ Π∗ q̄∗

cn < cr, vr < cr − cn Q0L 0 ≤ 1 0 (0, 1]
cn < cr, vr > cr − cn,
k < α(v + vr − cr)− v + cn

QMH q̄ ≤ 1 α
1

Q0L 0 ≤ 1 0

cn < cr, vr > cr − cn, α > 2(v−cn)
2v+vr−cr−cn

,

α(v + vr − cr)− v + cn < k < α2(−cr+vr+cn)
2

4(1−α)(v−cn)

QMH q̄ ≤ q̄
′

MH αq̄
′

MH
q̄
′

MHQ0L 0 ≤ 1 0

cn < cr, vr > cr − cn, ( α < 2(v−cn)
2v+vr−cr−cn

,
k > α(v + vr − cr)− v + cn ) || (
α > 2(v−cn)

2v+vr−cr−cn
, k > α2(−cr+vr+cn)

2

4(1−α)(v−cn)
)

Q0L 0 ≤ 1 0 (0, 1]

cn > cr, α < α̃, k > cn−cr
2

QHL q∗l ≤ 1 q∗l q∗l
QLL q∗l ≤ 1 q∗l

cn > cr, α < α̃, k < cn−cr
2 Q1L 1 ≤ 1 1 1

cn > cr, α > α̃, k < α(cn−cr)
2

Q1H 1 ≤ 1 α
Q̄1L

Q1L 1 ≤ Q̄1L 1

cn > cr, α > α̃,
α(cn−cr)

2 < k < min{ cn−cr
2 , k̄5}

QMH q̄ ≤ Q̄MH αQ̄MH

Q̄1LQHH q∗h ≤ q∗h αq∗h
Q1L 1 ≤ Q̄1L 1

cn > cr, α > α̃, k̄5 < k < cn−cr
2

QMH q̄ ≤ Q̄MH αQ̄MH Q̄1L
Q1L 1 ≤ Q̄1L 1

cn > cr, α > α̃, cn−cr
2 < k < k̄3

QMH q̄ ≤ Q̄MH αQ̄MH

Q̄∗QHH q∗h ≤ q∗h αq∗h
QHL q∗l ≤ Q̄HL q∗l

QLL q∗l ≤ Q̄HL q∗l

cn > cr, α > α̃, k > k̄3
QHL q∗l ≤ Q̄HL q∗l q∗l
QLL q∗l ≤ Q̄HL q∗l

Table B6: Summary of the Comparison of the Firm’s Profits

Region π∗
B − π∗

P Firm’s preference Region π∗
B − π∗

P Firm’s preference

B1H ∩ P1H = 0 indifferent B1H ∩ PHH ≤ 0 percentage

BMH ∩ PHH ≤ 0 percentage B
′
MH ∩ PHH ≤ 0 percentage

(BML ∪BHL) ∩ PHH ≤ 0 percentage (BML ∪BHL) ∩ PLL = 0 indifferent

(BML ∪BHL) ∩ P1H ≤ 0 percentage B1L ∩ P1L = 0 indifferent

B
′
1L ∩ P1H ≤ 0 percentage B0L ∩ P0L = 0 indifferent

Table B7: Summary of the Comparison of the NGO’s Payoffs

Region Π∗
B −Π∗

P NGO’s preference Region Π∗
B −Π∗

P NGO’s preference

B1H ∩ P1H = 0 indifferent B1H ∩ PHH ≥ 0 binary

BMH ∩ PHH ≥ 0 binary B
′
MH ∩ PHH ≥ 0 binary

BML ∩ PHH ≥ 0 binary (BML ∪BHL) ∩ PLL = 0 indifferent

BHL ∩ PHH ≥ 0 binary (BML ∪BHL) ∩ P1H ≥ 0 binary

B1L ∩ P1L = 0 indifferent B
′
1L ∩ P1H ≥ 0 binary

B0L ∩ P0L = 0 indifferent

111



References

Alev, I., Agrawal, V. V., and Atasu, A. (2020). Extended producer responsibil-

ity for durable products. Manufacturing & Service Operations Management,

22(2):364–382.

Amaran, S., Sahinidis, N. V., Sharda, B., and Bury, S. J. (2016). Simulation op-

timization: a review of algorithms and applications. Annals of Operations

Research, 240(1):351–380.

Atasu, A. and Souza, G. C. (2013). How does product recovery affect quality choice?

Production and Operations Management, 22(4):991–1010.

Atasu, A. and Subramanian, R. (2012). Extended producer responsibility for e-

waste: Individual or collective producer responsibility? Production and Oper-

ations Management, 21(6):1042–1059.

Atasu, A. and Van Wassenhove, L. N. (2012). An operations perspective on product

take-back legislation for e-waste: Theory, practice, and research needs. Produc-

tion and Operations Management, 21(3):407–422.

Atasu, A., Van Wassenhove, L. N., and Sarvary, M. (2009). Efficient take-back

legislation. Production and Operations Management, 18(3):243–258.

Bain & Company (2018). Transforming Business for a Sustainable Economy. https:

//www.bain.com/contentassets/d72f85af23564454970916d56eb4b5b4/

bain brief transforming business for a sustainable economy.pdf,

accessed: January 12, 2022.

Benjaafar, S., Jiang, D., Li, X., and Li, X. (2022). Dynamic inventory repositioning

in on-demand rental networks. Management Science. Forthcoming.

Biddle, D. (1993). Recycling for Profit: The New Green Business Frontier. ht tp s:

112

https://www.bain.com/contentassets/d72f85af23564454970916d56eb4b5b4/bain_brief_transforming_business_for_a_sustainable_economy.pdf
https://www.bain.com/contentassets/d72f85af23564454970916d56eb4b5b4/bain_brief_transforming_business_for_a_sustainable_economy.pdf
https://www.bain.com/contentassets/d72f85af23564454970916d56eb4b5b4/bain_brief_transforming_business_for_a_sustainable_economy.pdf
https://hbr.org/1993/11/recycling-for-profit-the-new-green-business-frontier
https://hbr.org/1993/11/recycling-for-profit-the-new-green-business-frontier


// hb r. or g/ 19 93 /1 1/ re cy cl in g-fo r-pr of it -t he -n ew -g re en -b

us in es s-fr on ti er , accessed: December 30, 2020.

Bird (2020). Vehicle Payouts. ht tp s: // he lp .b ir d. co /h c/ en -u s/ ar ti cl

es /3 60 02 49 46 57 2-Ve hi cl e-Pa yo ut s/ , accessed: January 27, 2022.

Birge, J. R. and Louveaux, F. (2011). Introduction to Stochastic Programming.

Springer.

Boyacı, B., Zografos, K. G., and Geroliminis, N. (2015). An optimization frame-

work for the development of efficient one-way car-sharing systems. European

Journal of Operational Research, 240(3):718–733.

Chang, J., Yu, M., Shen, S., and Xu, M. (2017). Location design and relocation

of a mixed car-sharing fleet with a CO2 emission constraint. Service Science,

9(3):205–218.

Chen, C. (2001). Design for the environment: A quality-based model for green

product development. Management Science, 47(2):250–263.

Chen, C. and Liu, L. Q. (2014). Pricing and quality decisions and financial incen-

tives for sustainable product design with recycled material content under price

leadership. International Journal of Production Economics, 147:666–677.

Chen, L. and Lee, H. L. (2017). Sourcing under supplier responsibility risk: The

effects of certification, audit, and contingency payment. Management Science,

63(9):2795–2812.

Citi Bike (2021). ht tp s: // ci ti bi ke ny c. co m/ ho me pa ge . ht tp s: // ne w.

mt a. in fo /a ge nc y/ ne w-yo rk -c it y-tr an si t/ su bw ay -b us -r id er

sh ip -2 01 9 , accessed: January 27, 2022.

Debo, L. G., Toktay, L. B., and Van Wassenhove, L. N. (2005). Market segmenta-

tion and product technology selection for remanufacturable products. Manage-

ment Science, 51(8):1193–1205.

Dell’Amico, M., Hadjicostantinou, E., Iori, M., and Novellani, S. (2014). The

bike sharing rebalancing problem: Mathematical formulations and benchmark

instances. Omega, 45:7–19.

Drake, D. F. and Spinler, S. (2013). Om forum—sustainable operations manage-

113

https://hbr.org/1993/11/recycling-for-profit-the-new-green-business-frontier
https://hbr.org/1993/11/recycling-for-profit-the-new-green-business-frontier
https://hbr.org/1993/11/recycling-for-profit-the-new-green-business-frontier
https://hbr.org/1993/11/recycling-for-profit-the-new-green-business-frontier
https://help.bird.co/hc/en-us/articles/360024946572-Vehicle-Payouts/
https://help.bird.co/hc/en-us/articles/360024946572-Vehicle-Payouts/
https://help.bird.co/hc/en-us/articles/360024946572-Vehicle-Payouts/
https://citibikenyc.com/homepage
https://new.mta.info/agency/new-york-city-transit/subway-bus-ridership-2019
https://new.mta.info/agency/new-york-city-transit/subway-bus-ridership-2019
https://new.mta.info/agency/new-york-city-transit/subway-bus-ridership-2019


ment: An enduring stream or a passing fancy? Manufacturing & Service

Operations Management, 15(4):689–700.
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