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Abstract 

 One-step CAA methods aim at resolving the flow and the acoustic 

fields simultaneously. A set of unsteady compressible Navier-Stokes (NS) 

Equations are solved in order to capture both the sound generated mechanism 

and the fluid-sound interaction at the near field.  The physical challenge of 

aeroacoustics simulation comes from the disparity of aerodynamic and 

acoustic scales.  Since the smaller acoustic scale has to be taken account for 

throughout the simulation, it is computational costly to solve the nonlinear NS 

Equations.  As a result, the direct methods, although accurate, are limited to 

simple cases.   

 Instead of solving a set of nonlinear NS equations, the particle 

distribution function is being tracked by solving the Modeled BE with BGK 

model.  The desirable macroscopic properties in both the aerodynamic and 

acoustic scales can be obtained by taking moment of the particle distribution 

function.  

 The accuracy and robustness of Modeled BE for CAA studies depends 

on  

1. An appropriate non-reflecting boundary conditions for aeroacoustics 

simulations 

2. The ability and extent of the Modeled BE to recover the unsteady 

compressible NS equations (Recovery of transport coefficients in 

macroscopic equations) 
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 In this thesis, the Modeled Boltzmann Equation (BE) as a One-Step 

Computational Aeroacoustics (CAA) method has been studied and analyzed 

with respect to the above aspects.  

 First of all, an appropriate non-reflecting boundary condition is crucial 

for CAA studies, since the rebound waves from boundaries would 

contaminate the computational domain and drive the solutions to a non-

physical one. In this thesis, different types of non-reflecting boundary 

conditions are studied and compared, with respect to two benchmarked 

aeroacoustics problems.  

 Physically, the particle distribution function in the Boltzmann 

Equation can be expanded to recover the unsteady compressible NS equations 

via Chapman-Enskog procedure.  However, there exist limitations on 

application by using different numerical schemes. The corresponding 

limitations are analyzed in the first aspect. 

 The macroscopic transport coefficients are closely related to the 

relaxation of particle collision.  Therefore, the transport coefficients should be 

recovered by physical laws via the relaxation of particle collision.  The first 

coefficient of viscosity related to momentum relaxation has been recovered by 

Sutherland’s Law by Li et al. (2006).  In this thesis, the coefficient of thermal 

conductivity is recovered by Eucken’s model, with respect to the energy 

relaxation. Case studies of aeroacoustics problems with thermal effect are 

presented accordingly. 
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Chapter 1 

Introduction 

1.1 Background 

Reduction of noise has been an important issue in engineering design 

in transportation and many other industries.  Active research in computational 

aeroacoustics (CAA) has been promoted in order to meet the increasingly 

stringent noise regulations, as well as to advance noise reduction and its 

associated technology. 

Numerical prediction of noise radiation associated with unsteady fluid 

flows involves capturing of waves in both aerodynamic and acoustic scales.  

Two major approaches to tackle aeroacoustic problems are commonly used; 

namely, hybrid or two-step method and direct aeroacoustic simulation (DAS) 

or one-step method (Colonius and Lele 2004).  

Hybrid method resolves the unsteady compressible flow and the 

radiated sound field in two steps (Colonius and Lele 1993).  In the first step, 

the unsteady aerodynamic field is either computed by a direct numerical 

simulation (DNS) scheme or by a large eddy simulation (LES) method.  The 

solution is then treated as the source term for noise propagation prediction in 

the second step.  The noise calculation in the far field is usually achieved by 

invoking Lighthill’s acoustic analogy (Lighthill 1952) or its derivative 

(Ffowcs Williams and Hawkings 1969), or by solving the linearized Euler 

equation (LEE) (Bogey, Baily and Juvé 2002), or by using the 

acoustic/viscous decomposition techniques (Jardin and Pope 1994; Shen and 

Sorensen 1999).  Noise thus generated in the far field can be calculated; 
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however, the interaction between fluid flow and the acoustic disturbances in 

the near field could not be resolved by any of these hybrid methods.  As a 

result, the noise calculated in the far field might not be exactly correct in 

terms of the frequency contents and this could give incorrect information for 

the design of noise control methodologies. 

On the other hand, a DNS scheme has been developed for a one-step 

method (Lele 1992; Colonius and Lele 2004).  The method solves a set of 

nonlinear unsteady compressible Navier-Stokes (NS) equations using a sixth-

order finite-difference scheme; therefore, it is capable of capturing both the 

aerodynamic and acoustic disturbance fields.  Consequently, the scheme is 

able to calculate the sound generated mechanism and the fluid-sound 

interaction in the near field.  However, computational accuracy and disparity 

of aerodynamic and acoustic scales require fine meshes, and long running 

time with small time steps.  Large computational cost thus results from 

solving a mixed set of scalar, vector and tensor equations involved in a DNS 

scheme with demanding spatial and temporal discretization.  Therefore, DNS 

scheme is limited to problems with relatively simple flow configurations and 

is not entirely suitable for calculating aeroacoustics problems involving 

complicated flows and/or geometries. 

In order to extend the direct methods to study more complicated 

aeroacoustics problems, it is necessary to ease or eliminate the burdens of 

numeric accompanied by the solution of a full set of Euler or NS Equations.  

In view of this, recent effort has been focused on introducing an alternative 

numerical scheme for CAA studies.  This scheme is based on solving a 
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modeled Boltzmann Equation (BE) which only involves one single scalar 

equation, as compared to a set of six scalar, vector and tensor equations in the 

case of a three-dimensional flow. 

1.2 Introduction to Modeled Boltzmann Equation (BE) 

The Boltzmann Equation describes the time evolution of mesoscopic 

particle velocity distribution function, )t,,x(f ξ , in a continuous velocity 

space (also known as phase space), through the motion of particles composed 

of free streaming and collision between particles (Harris 1971).  The 

macroscopic physical properties, such as density, momentum, kinetic and 

internal energy, energy flux, etc. can be retrieved by integrating the moments 

of f over the particle velocity space. 

The dimensional continuous form of the BE without external body force 

is given by 

( )ffQf
t

f
,=∇⋅+

∂

∂
ξξξξ     ,                (1.1) 

where t is time, ξξξξ is the particle velocity vector and Q is the collision integral 

defined as 

( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ∫ −−ΩΩ= *
'
*

'
*

3, ξξξξξξξξξξξξξξξξξξξξξξξξξξξξ ffffddffQ σ  ,          (1.2) 

Bold letters are used to denote vectors, and the integral is performed over the 

whole particle velocity space.  Streaming of particles is accounted for by the 

left hand side, while ( )f,fQ  on the right hand side represents a two-body 

particle collision integral.  The complicated mathematical structure of ( )f,fQ  

makes it very difficult to resolve, thus rendering a direct solution of Eq. (1.1) 
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extremely difficult, if not impossible.  Therefore, attempts have been made to 

simplify the collision term and that leads to a modeled BE.  The rationale for 

the simplification is based on the disparity of timescale between evolution of 

f  and the corresponding changes in macroscopic properties.  Since the BE 

has a much smaller timescale than the NS Equations, it is possible to assume 

that the macroscopic properties is insensitive to individual collisions between 

particles and deviation of gas particles from their local equilibrium state is 

sufficiently small (Bhatnagar, Gross and Krook 1954).  Under these 

assumptions, Bhatnagar, Gross and Krook (1954) proposed a simple model for 

Q and the resulting equation is widely known as the BE with a BGK-type 

model (Cercignani 1988). 

1.2.1 Governing equation of modeled BE and its connection to macroscopic 

properties 

 

The dimensionless form of the modeled BE is given by  

( )eq
fff

t

f
−−=∇⋅+

∂

∂

τ

1
ξξξξ ,                (1.3) 

where τ  is the time taken for f  to relax from non-equilibrium to a 

Maxwellian-Boltzmann equilibrium state eqf .  All variables in Eq. (1.3) are 

appropriately normalized using relevant characteristics length, velocity and 

time scales.  The collision integral, ( )f,fQ , is represented by the simple 

BGK model given by ( )eq
ff −−

τ

1
.  The macroscopic measurable properties 

are connected to the mesoscopic variable via the integrals of the moments of 

f  or eqf over the velocity space. 
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Similar to the continuous BE, the macroscopic conservation equations 

can be derived from the BGK-type modeled BE (hereafter simply stated as 

modeled BE in this thesis) by introducing five collision 

invariants αϕ ( )43210 ,,,,=α , 2
43210 1 ξϕξϕϕ === ;; ,,  (Cercignani 1988).  The 

modeled BE is multiplied by αϕ  and then integrated over the velocity space.  

Five equations of the macroscopic hydrodynamic theory for mass, momentum 

and energy conservation are obtained with thirteen variables.  In this case, the 

hydrodynamic description deduced from the modeled BE is not self-contained 

(Harris 1971).  The equations are then closed by invoking different 

assumptions that lead to the Euler or NS Equations.  To achieve this, a 

standard multi-scale Chapman-Enskog expansion is undertaken (Chapman 

1916, 1918; Enskog 1917), in which both spatial and temporal dimensions are 

rescaled with a small Knudsen number, ε . 

With this modeled BE, albeit improved from the original BGK-type modeled 

BE, there still exist certain shortcomings which prohibit its application to 

meaningful physical problems. 

First of all, τ , being regarded as the relaxation time of particle to relax 

to its equilibrium state after collision, should vary with the molecular velocity 

which is related directly to the temperature.  According to the kinetic theory of 

gas, τ is physically important if a correct derivation of the transport 

coefficients, such as the first and second coefficient of viscosity, µ and λ , and 

the thermal conductivity, κ , were to be realized. However, it was made 

constant locally in the BGK model.  Secondly, the Prandtl number Pr thus 

derived was found to have the value 1=Pr  which mismatches with both the 
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true BE and the experimental data for real gas ( 32 /Pr =  for monatomic gas 

and 75 /Pr = for diatomic gas).  Thus modeled, the BE still cannot be solved 

analytically; it needs to be solved numerically.  Various numerical schemes 

are available and a few of the more relevant schemes are discussed below. 

1.2.2 Different numerical schemes for modeled BE 

 
Two different types of numerical schemes are available for the 

solution of the modeled BE.  They are of slightly different character; one is 

known as the gas-kinetic scheme and the other is based on particle velocity 

lattice.  The latter scheme is commonly known as the lattice Boltzmann 

method (LBM).  These two schemes have been proposed as alternatives to 

conventional computational fluid dynamics (CFD) methods where the full 

Euler or NS equations are solved.  These two different numerical schemes 

used to solve the modeled BE are briefly discussed below in order to identify 

an appropriate scheme for the present study. 

1.2.2.1 Gas-kinetic scheme 

 

Based on the gas-kinetic theory for compressible flow simulations, 

gas-kinetic scheme has drawn much attention in the shock capturing 

community in the past few decades.  Originally, many numerical schemes 

were developed by solving the collisionless Boltzmann Equation (Pullin 1980; 

Mandal and Deshpande 1994).  Artificial “collisions” were added to reduce 

the numerical dissipations in these numerical schemes.  Xu (1993) proposed a 

new gas-kinetic scheme (named as BGK scheme) by solving the modeled BE 

with a BGK-type model.  Numerical fluxes on cell interfaces were calculated 
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by a finite volume method.  Since particle collisions during the gas evolution 

stage are included in Xu’s scheme, the entropy condition across shock is 

satisfied automatically in the relaxation process of the particle distribution 

function from non-equilibrium to an equilibrium state.  

Recently, the BGK-type scheme has been extended to study low Mach 

number viscous flows (Su, Xu and Ghidaoui 1999).  A two-dimensional lid-

driven cavity flow was studied and the results were in good agreement with 

Ghia’s experimental data (1982). 

1.2.2.2 Lattice Boltzmann method (LBM) 

 

According to Wolf-Gladrow (2000), in general, the LBM is regarded 

as an extension of lattice gas automata (LGA) or lattice gas cellular automata 

(LGCA).  In LBM, the modeled BE invoking either the BGK-type model or 

its variant is solved.  Therefore, the tracking of an individual particle motion 

and particle-particle collisions as in LGA or LGCA is replaced by a single-

particle distribution function as in the BGK-type modeled BE (McNamara and 

Zanetti 1988).  More than a decade ago, LBM has been proposed as an 

alternative to CFD techniques (Chen and Doolen 1998).  It has been 

developed to study a variety of CFD problems.  For example, LBM is 

proposed to study single component hydrodynamics, multiphase and multi-

component flows, flows through porous media, micro-flows, reaction-

diffusion systems and particulate suspensions in fluid, etc (Succi 2001). 

On the other hand, LBM with discrete lattice velocities can be 

obtained from the modeled BE.  By expanding the Maxwellian-Boltzmann 
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equilibrium distribution function, eqf  with low Mach number approximation 

(He and Luo 1997, Abe 1997), the corresponding discrete lattice velocities 

can be calculated.  Apart from the low Mach number approximation, the 

discrete lattice velocities are directly related to a fixed speed of sound 

according to the lattice model being proposed.  The rationale behind is that the 

true macroscopic hydrodynamic conditions have to be well represented by the 

selected lattice velocities.  In kinetic theory of gases, sound must be 

transmitted by the motions of individual particles with the same order of 

magnitude as that of the mean speed of particles (Chapman and Cowling 

1970). 

Being a simplified version of the modeled BE, the conventional LBM 

is able to recover the NS Equations in the asymptotic limit of Knudsen 

number going to zero, i.e., the dense gas assumption (Chen, Chen and 

Maatthaeus 1992; Qian, d’Humières and Lallemand 1992; Frisch, Hasslacher 

and Pomeau 1986; Frisch, d’Humières, Hasslacher, Lallemand and Pomeau 

1987).  Consequently, LBM is confined to low Mach number flows within the 

incompressible limit and isothermal flows, due to the expansion of eqf  in 

LBM and the fixed speed of sound selected for the lattice model. 

Attempts have been made to relax the thermal constraint.  For example, 

Sun (1998) introduced a prescribed potential energy term to retrieve an 

arbitrary specific heat ratio, γ , for a perfect gas locally for a fluid particle 

while τ was fixed to unity in the calculation.  On the other hand, Palmer and 

Rector (2000) modeled the internal energy as a scalar field by using a second 

distribution function to incorporate the thermal effect, while treating τ  as a 
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numerical parameter and its physical implication was not accounted for.  

Tsutahara et al. (2002) and Kang et al. (2003) included the particle rotational 

degree of freedom in calculating the specific heat ratio, γ .  However, a 

numerical parameter, the relaxation time factor, ϕ , was introduced into the 

µ , λ  and κ calculation, while the physical significance of τ was not 

explicitly addressed. 

Recently, the LBM has been modified and extended to deal with DAS 

problems.  Li et al. (2006) adopted the finite difference LBM for aeroacoustics 

simulations.  Unlike the conventional LBM, time step of the finite difference 

LBM (Reider and Sterling 1995) was independent of the lattice size, as node-

to-node movement of particles in conventional LBM was no longer a 

requirement for the finite difference LBM.  Also, Li et al. (2006) incorporated 

several remedies in the proposed LBM model.  Firstly, by introducing a two-

relaxation-time model, the first coefficient of viscosity, µ was correctly 

recovered by using the Sutherland Law as an additional constraint.  Thus 

modified, the dependence of µ on temperature is correctly modeled.  

Secondly, the equation of state was explicitly recovered through a redefinition 

of internal energy by invoking a collision model that considers rotational 

degree-of-freedom as well as the translational degree-of-freedom assumed in 

the BGK-type model.  As a result, γ is found to depend on the translational 

and rotational degree-of-freedom only and not on the dimensions of the 

problem as the traditional BGK model would give.  This formulation gives a γ 

= 1.4 exactly for diatomic gas.  Three cases were selected to validate the one-

step LBM aeroacoustics simulation; they were the one-dimensional acoustic 
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pulse propagation, the circular acoustic pulse propagation, and the 

propagation of acoustic, vorticity and entropy pulses in a uniform stream.  It 

was shown that the modified LBM gave identical results as those obtained 

from the solution of the NS equations using DNS. 

1.3 Problems Facing Modeled BE in DAS Studies 

In spite of Li et al.’s improvement (2006) on the LBM for DAS studies, 

there still exist important hurdles on extending the modeled BE to tackle DAS 

problems.  Some of these hurdles are high speed flow, thermal acoustics and 

other flow complexities, and open and wall boundaries.  In numerical 

aeroacoustics simulations involving open boundaries, quite often truncated 

computational boundaries have to be implemented in order that the 

simulations can be carried out in finite computational domain that is of a 

manageable size.  Thus nonreflecting boundary conditions are required at 

these boundaries if the internal acoustics field were not to be contaminated by 

spurious reflected waves at the computational boundaries.  Conventional 

nonreflecting boundary conditions used in the solution of the Euler or NS 

equations are not necessarily applicable to the solution of the particle 

distribution function f (Poinsot and Lele 1992; Colonius, Lele and Moin 1993; 

Ta’asan and Nark 1995; Freund 1997; Kim and Lee 2000; Hu 2001).  Further, 

in spite of several nonreflecting boundary conditions being proposed for the 

LBM (Chen, Martinez and Mei 1996; Maier, Bernard and Grunau 1996; Yu, 

Mei and Shyy 2005), their suitability for the current modified LBM needs to 

be investigated.  It is not feasible to tackle all problems associated with the 

use of LBM for DAS within the limited time frame of this thesis work, 
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therefore, a choice has to be made on the more relevant issues to be treated 

first.  In the present study, it is deemed more appropriate to examine the 

nonreflecting boundary conditions for f and to extend the formulation of Li et 

al. (2006) to include the thermal effect in the calculation of aeroacoustics. 

1.3.1 Non-reflecting boundary conditions (NRBC) for CAA studies 

 
Most aeroacoustic simulation problems are concerned with open 

boundaries.  In reality, the aerodynamic and acoustic disturbances propagate 

to infinity.  However, it is necessary to invoke truncated boundaries for 

numerical simulations, due to limited computational resources.  The artificial 

or computational boundaries, in this case, should allow both aerodynamic and 

acoustic waves passing through with minimal reflection.  Otherwise, the 

spurious erroneous waves reflecting from the computational boundaries could 

contaminate the numerical simulations, decrease the computational accuracy 

and might even drive the solutions towards a wrong time-stationary state.  

Consequently, nonreflecting boundary conditions (NRBC) are required for 

DAS be it carried out by LBM or DNS schemes. 

Numerous attempts have been made to develop NRBC for DNS 

scheme.  The classical 1-D nonreflecting characteristics-based boundary 

condition (NSCBC) is the most widely used because of its simplicity.  

Different NSCBC schemes have been proposed (Roe 1986, Giles 1990, 

Poinsot and Lele 1992, Colonius, Lele and Moin 1993, Kim and Lee 2000).  

Another NRBC is the absorbing boundary conditions (ABC) (Engquist and 

Majda 1977, Ta’asan and Nark 1995, Freund 1997).  A convective term was 

added to the linear Euler equations, thereby forcing the solution to become 
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supersonic at the border of the computational domain (Ta’asan and Nark 

1995).  An alternative proposal was to recast the Navier–Stokes equations 

with additional damping terms so that all flow unsteadiness were suppressed 

and the flow was forced towards a prescribed uniform flow in a buffer zone 

beyond the physical or computational domain (Freund 1997).  This proposal 

has one drawback though, because it requires an a priori knowledge of the 

outlet flow.  Others not as commonly used boundary treatment methods 

include the filtering method (FM) applied to the whole spatial field (Gaitonde 

and Visbal 1999, 2001), the perfectly matched layer (PML) method (Hu 2001), 

and the C1 continuity preservation method (Loh 2003, Loh and Jorgenson 

2005).  All these methods are successful for some types of problems and are 

less so for others. 

Similar to DNS schemes, NRBC for open boundaries have to be 

formulated for LBM.  All the boundary treatment schemes mentioned in the 

preceding paragraphs have been applied to DNS calculations only; few have 

been extended to LBM.  Instead, extrapolation method (EM) is applied to the 

zeroth or first order of f by Li et al. (2006).  In the study of Tsutahara et al. 

(2002), a prescribed boundary condition is specified for the density, but no 

details on implementation have been given.  On the other hand, Kang et al. 

(2003) stipulates NSCBC boundary conditions along the line of Poinsot and 

Lele (1992).  Again, no details were provided on how to implement the 

NSCBC. 

The improved LBM (Li et al. 2006) with zero f gradients (ZFG) 

assumed at open boundaries was used to simulate three benchmark 
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aeroacoustic problems.  Its computational accuracy was established by 

comparing the results of the three benchmark simulations with those obtained 

from DNS.  In the DNS calculations, the errors arising from reflection at the 

boundaries were minimized by adopting a relatively large domain with 

damping region in the simulation.  The results show that the LBM calculations 

(Li et al. 2006) with a smaller domain are just as accurate as those obtained 

using DNS with a larger computational domain.  However, their study did not 

examine the merits of other types of NRBC; therefore, the relative merits and 

accuracy of the respective boundary treatments on LBM aeroacoustic 

simulations need further investigation. 

1.3.2 Incapability of revealing correct thermal effect 

 

The macroscopic transport coefficients such as the first and second 

coefficient of viscosity, µ and λ , and also the coefficient of thermal 

conductivity,κ , are specified in the solution of the NS Equations.  However, 

in the kinetic theory of gases, these coefficients are part of the solution of the 

modeled BE.  In order to extend the modeled BE to study DAS problems, it is 

necessary to modify the equation so that it can fully recover the complete set 

of compressible NS equations, that is, the mass, momentum and energy 

conservation equations with the correct transport coefficients, and the gas 

equation of state. 

As mentioned in the previous section, in the BGK-type model, 

recovery of the Euler or NS equations, the Prandtl number, 1/Pr == κµ Pc , is 

inherent in the formulation even when the first coefficient of viscosity, µ is 
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correctly recovered.  This incorrect value of Pr  implies that the thermal 

energy exchange between particles has not been replicated properly and the Li 

et al. (2006) modified BGK model needs further improvement to account for 

the thermal energy exchange during the collision process. 

The incorrect value of Pr could be traced to the single-relaxation-time (SRT) 

model invoked in the modeled BE.  Under this model, the additional time 

required for the relaxation of thermal energy after collision is neglected.  In 

view of this, numerous attempts have been made to extend LBM to solve 

thermal problems based on a multi-speed model.  Alexander (1993) proposed 

a 2-D thermal LBM for monatomic gas.  However, the resulting Pr obtained 

has a value of 1/2 which is inconsistent with real gas.  Chen et al. (1994) 

employed a higher-order velocity expansion for eqf  to correct the viscous 

stress and the heat flux; however, details of the Pr correction were not 

mentioned.  Multi-speed models proposed by McNamara et al. (1995) and 

Teixeira el al. (2000) allowed variation of Pr, while it is numerically unstable 

due to the violation of a global H-theroem (Chen et al. 2000).  Lallemand et al. 

(2003) decoupled the shear and energy modes of the linearized evolution 

operator to improve the numerical stability, while physical background of the 

modification was not highlighted.  A passive scalar approach by Shan (1997) 

introduced an additional distribution function to solve the energy equation 

separately.  However, a much higher computational cost is required for this 

thermal LBM model in comparison with the isothermal one. 

So far much attention has been given to numerical treatment on 

thermal LBM rather than to recognize the physical significance of a correct 
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deviation of Pr for a diatomic gas.  This thesis proposes to examine the 

possibility of putting forward a physical model to recover a correct Pr for the 

finite difference LBM proposed by Li et al. (2006). 

The associated wall boundary conditions for thermal LBM also require 

further consideration.  No-slip boundary conditions are implemented in 

conventional LBM (isothermal) schemes via the bounce-back rule (Wolfram 

1986, Cornubert et al. 1991) or more elaborated methods based on the bounce-

back rule (Ziegler 1993, Skordos 1993, Noble et al. 1995, Inamuro et al. 1995, 

Maier et al. 1996, Zou and He 1997) were adopted.  The possibility of 

extending these wall boundary conditions methods to thermal LBM has not 

been examined.  Further, it has been shown that most of these proposed 

methods are of first- or second-order accuracy for the conventional LBM.  

Improvement in accuracy is necessary if the proposed methods were to be 

useful in any finite difference LBM schemes (an example is the scheme of Li 

et al. 2006) for aeroacoustics studies. 

1.4 Objectives of the Present Thesis 

From the discussion above, it is now clear what the objectives of this 

thesis should be.  This thesis aims to extend the modeled BE to simulate 

aeroacoustics problems in a more complete manner.  This involves finding 

appropriate nonreflecting boundary conditions for the modeled BE and to 

extend the work of Li et al. (2006) to further recover the thermal conductivity 

correctly.  Therefore, there are two objectives in this thesis. 

Firstly, non-reflecting boundary conditions (NRBC) are proposed and 

formulated for the modeled BE, based on viable NRBC for DNS schemes.  
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Among all schemes examined, the extrapolation method (EM) is applied to 

the distribution function or its derivative; the 1
C continuity preservation 

method and the absorbing boundary conditions (ABC) are also extended to Li 

et al.’s improved LBM for investigation.  Two cases are selected to validate 

the proposed NRBC.  They are the one-dimensional acoustic pulse 

propagation and the propagation of acoustic, vorticity and entropy pulses in a 

uniform stream. 

Secondly, a physical model is proposed to recover the thermal 

conductivity, κ , based on a multiple-relaxation-time approach.  Based on 

Eucken’s theory of heat conduction, the correct value of Prandtl 

number, 710.Pr ≈ , is retrieved.  Since µ and γ  have been replicated (Li et al. 

2006), a complete set of compressible NS Equations with correct transport 

coefficients can be fully recovered.  The Eucken’s model is applied to the 

improved LBM (Li et al. 2006) and the corresponding thermal effect on the 

three cases considered in their paper is investigated.  Furthermore, a 

thermoacoustic scattering problem is simulated by the gas-kinetic scheme and 

its result is compared with an analytical solution obtained by solving the 

governing NS equations. 

Once the full set of NS Equations is recovered with correct transport 

coefficients and an appropriate NRBC is identified, an appropriate modeled 

BE will be available for the study of practical aeroacoustics problems. 

1.5 Outline of the Present Thesis 

This thesis is organized as follows: 
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Chapter 2 outlines the recovery of macroscopic hydrodynamic 

equations from the modeled BE.  Euler and Navier-Stokes (NS) Equations are 

recovered via first and second order Chapman-Enskog (CE) expansion.  

Limitation of the recovery of the transport coefficients is explicitly stated.  

Details of Li et al’s (2006) remedy on the recovery of µ  by invoking 

Sutherland Law would be highlighted. 

Further to Li et al.’s remedy, recovery of the thermal conductivity for 

the modeled BE by Eucken’s Model would be outlined in Chapter 3.  Physical 

background of thermal energy relaxation in kinetic theory, importance of 

recovering thermal conductivity for aeroacoustic problems and the derivation 

of a correct thermal conductivity by Eucken’s Model would be stated in 

details. 

In Chapter 4, nonreflecting boundary conditions (NRBC) for DAS 

studies are proposed and formulated for the modeled BE outlined in Chapter 3.  

Different types of NRBC would be investigated and applied to Li et al.’s 

(2006) improved LBM for case study.  Results would be compared with DNS 

solutions. 

In Chapter 5, a thermoacoustics scattering problem would be studied 

analytically by solving the governing linearized Euler equations.  Results 

would be compared with the numerical solution obtained by using gas-kinetic 

scheme with a corrected thermal conductivity in Chapter 6. 

Conclusions and suggestions for possible future development of 

modeled BE for DAS studies would be outlined in Chapter 7. 
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Chapter 2 

Recovery of Navier-Stokes (NS) Equations by Modeled BE 

Under the assumption that a fluid can be regarded as a continuum, a 

direct aeroacoustic simulation (DAS) problem can be described by 

macroscopic measurable properties such as density, velocity and pressure, 

through a set of unsteady Navier-Stokes (NS) Equations.  In reality, however, 

fluid is made up of discrete particles.  It can be treated as a continuous 

medium only because the characteristic length scale of the macroscopic 

observable quantities is sufficiently large in comparison with the microscopic 

length scale (or mean free path) of particle motions.  Therefore, it is more 

appropriate to study a DAS problem by considering the modeled BE, in which 

the time evolution of a more informative function in mesoscopic level, the 

particle velocity distribution function, )t,,x(f ξ , in a continuous velocity 

space (also known as phase space) is described through the motion of particles 

composed of free streaming and collision between particles (Harris 1971). 

Since the individual motion of particles is not central, in an overall 

sense, to a solution of an aeroacoustic problem using DAS, it is possible to 

narrow down the description of f  (Harris 1971) such that the macroscopic 

quantities are connected via integrating moments of f .  Eventually, with the 

connection between f  and the macroscopic properties, it is made possible 

that only one variable, f , is solved in the modeled Boltzmann equation to 

obtain all the macroscopic information required to describe a DAS problem. 
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As mentioned in Chapter 1, the macroscopic conservation equations 

can be derived from the modeled BE, which was commonly represented by 

the BGK model, by introducing five collision invariants αϕ ( )43210 ,,,,=α , 

2

43,2,10 ;;1 ξϕξϕϕ ===  (Cercignani 1988).  Since the resulting laws of 

conservation are described by thirteen variables in five equations (Harris 

1971), the system of equations needs further closure by invoking different 

assumptions such that the unsteady compressible Euler or NS Equations are 

obtained.  In this case, a standard multi-scale mathematical procedure, the 

Chapman-Enskog (CE) expansion, is invoked.  Under this expansion, both 

spatial and temporal dimensions are rescaled using a small parameter defined 

as the ratio of a microscopic to a macroscopic length scale or commonly 

known as the Knudsen number, ε .  It should be pointed out that, by invoking 

the CE procedure, the unsteady compressible Euler or NS Equations are 

recovered with basically two limitations which prohibit its application to 

meaningful physical problems.  Improvements or modifications have to be 

made to relax or eliminate these two limitations, which are elaborated below. 

Firstly, the relaxation time, τ , was made constant locally in the BGK 

model.  Physically, it should vary with the molecular velocity which is 

directly related to the temperature.  From the kinetic theory point of view, τ  

is an important parameter for a correct derivation of the equation of state for a 

diatomic gas, or the specific heat ratio, γ.  Further, it is also important for a 

correct derivation of the transport coefficients, the first and second coefficient 

of viscosity µ  and λ , and the thermal conductivity, κ .  In order to replicate 
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the correct physics of a DAS problem using a modeled BE, it is necessary that 

a physical model should be formulated so that τ  varies with temperature, thus 

allowing the transport coefficients, µ  and λ , to be recovered correctly. 

Secondly, the thermal conductivity, κ, or its dimensionless counterpart 

Prandtl number, Pr , thus derived was found to give rise to the condition Pr = 

1.  It is in violation of the true BE as well as the experimental data for real 

gases.  For example, Pr should have a value of 3/2 for a monatomic gas and 

5/7 for a diatomic gas.  Physically, the incorrect value of Pr  implies that the 

thermal energy exchange between particles has not been replicated properly.  

In order to simulate DAS problems correctly, it is necessary that the BGK 

model improved to replicate γ and µ correctly should be improved to account 

for the thermal energy exchange during the collision process. 

Recently, Li et al. (2006) proposed an improved finite difference 

Lattice Boltzmann Method (LBM) to solve the modeled BE numerically for 

DAS problems.  In the proposed two-relaxation-time model, the set of 

unsteady compressible NS Equations for diatomic gas was recovered.  In 

order to accomplish this objective, a rotational degree-of-freedom was 

considered in addition to the translational degree-of-freedom in particle-

particle collisions, and the Sutherland Law was invoked so that τ  could be 

made a function of temperature, and the first coefficient of viscosity, µ , was 

recovered correctly. 

This chapter aims to give a brief description of the recovery of the set 

of unsteady NS Equations via CE expansion, in which the origin of limitations 

would be pointed out (Li et al. 2006).  Since the ultimate objective is for DAS 
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studies, Li et al’s model (2006) for polyatomic gas will be adopted.  Details of 

Li et al.’s (2006) remedy on the correct recovery of µ by invoking Sutherland 

Law will also be highlighted.  Finally, it serves as a foundation for Chapter 3 

where a physical model on the correct recovery of the thermal conductivity, κ , 

and its corresponding dimensionless number, Pr, will be discussed. 

2.1 Governing Equation for the Modeled BE and Macroscopic 

Properties 

As a simplified version of the continuous BE (see Equation 1.1 and 

1.2), the dimensionless form of the modeled BE is given by  

( )eq
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t
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∂
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1
ξξξξ ,                (2.1) 

where τ  is the time taken for f  to relax from a non-equilibrium state to a 

Maxwellian-Boltzmann equilibrium state eqf .  The units of variables in 

equation (4.1) are as follows: 
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The Maxwellian-Boltzmann equilibrium distribution function can be 
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where RT=θ .  All variables in equation (2.1) are appropriately normalized 

using relevant characteristic length (macroscopic length), velocity (speed of 



 

 41 

sound) and time (mean collision interval) scales.   The modeled BE is a 

blurred image of equation (1.1) based on a simpler operator )( fJ  where 

( )eqfffJ −−= ω)(  and the collision frequency is fixed at τω /1= .  In this 

case, only the qualitative and average properties of the true operator are 

retained in this equation (Cercignani 1988).  This model was initially 

proposed by Bhatnagar, Gross, and Krook (1954) and was later designated the 

BGK model.  Originally, the BGK model was proposed for a monatomic gas 

with a single-relaxation-time (SRT) model.  It would be shown later that Li et 

al. (2006) extended the BGK model to diatomic gas, by properly accounting 

for the rotational degree-of-freedom of molecular motion in the proposed 

model. 

Although the collision integral in equation (1.1) is simplified by the 

BGK model, f retains its probabilistic definition as that in the continuous BE.  

It has been defined that the mass density in physical space, ρ , is the integral 

of the density in the one-particle phase space, f , with respect to all possible 

velocities (Cercignani 1988) such that 

∫= ξξξξfdρ ,                    (2.3) 

The mass density is regarded as the zeroth moment of f .  The first moment 

of f , is the macroscopic linear momentum of the gas and is expressed in the 

following form (the following mathematical expressions in this section are in 

component form): 

∫= ξξξξfdu ii ξρ ,                 (2.4) 

where 3,2,1=i  for a 3-D problem. 
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The macroscopic internal energy of the fluid is defined by integrating 

the second moment of f  over the particle velocity space.  It consists of both 

kinetic energy of the fluid and the fluid internal energy, e . The definition of 

the latter needs further consideration if the dynamic motion of the gas 

particles were to be modeled sufficiently correctly for a diatomic gas.  It has 

been shown in Li et al.’s (2006) model that a correct realization of the 

diatomic nature of the gas particles hinges on a successful recovery of the 

equation of state for a perfect gas, which is the key to a correct estimation of 

the first coefficient of viscosity for DAS studies.  

For aeroacoustics computation, the fluid medium of interest is mostly 

air, which is mainly composed of diatomic nitrogen and oxygen gases.  

Generally, a polyatomic gas particle can undergo translational motion with 

TD degree of freedom, with an additional RD  degree of freedom for its 

rotational motion.  This indicates that both translational and rotational kinetic 

energies of polyatomic gas particles should be taken into account in a proper 

definition of the macroscopic internal energy.  For diatomic gas like air, the 

total number of degrees of freedom is 5=+ RT DD  (Woods 1993).  From 

statistical mechanics theory, the kinetic energy should be equally distributed 

on each degree of freedom.  It should be noted that the term, ∫ ξξξξξξξξ fd
2

2

1
, 

represents the summation of the translational energy with TD  degrees of 

freedom, where dξξξξ = dξξξξ xdξξξξ ydξξξξz.  The kinetic energy on each degree of 

freedom may be defined as ∫ ξξξξξξξξ fd
DT

2

2
11

.  Therefore, with the total number 
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of degrees of freedom given by RT DD + , the internal energy of the particles 

can be defined as ∫
+

ξξξξξξξξ fd
D

DD

T

RT 2

2
1 , and the second integrating moment of 

f  should give the macroscopic internal energy for the fluid as 

∫
+

=+ ξξξξξξξξ fd
D

DD
ue

T

RT 2

2
12

2

1
ρρ ,               (2.5) 

The fluid energy flux can be defined via the third integrating moment of f  as 

follows, 

∫
+

=







++ ξξξξξξξξ fd

D

DD
upue i

T

RT
i

2

2
12

2

1
ξρρ ,                (2.6) 

Integration of equation (2.5) suggests an explicit internal energy definition 

( ) 2/RTDDe RT +=  for diatomic gas. 

With the moments of f  as given in equations (2.3) - (2.6), the Navier-

Stokes (NS) equations and the equation of state for a perfect gas could be 

completely recovered from the modeled BE, i.e., equation (2.1), with the 

assumption of the BGK collision model and by invoking the Chapman-

Enskog expansion (Chapman and Cowling 1970; Li 2006).  Details of this 

derivation can be found in Li (2006); however, for the sake of completeness, a 

brief description will be given below. 

2.2 Recovery of Navier-Stokes Equations via the Chapman-Enskog 

Expansion 

Basically, the Chapman-Enskog procedure involves a direct expansion 

of the modeled BE for the moment of f  (Harris 1971).  The solution of the 

modeled BE is obtained by expanding f  as 
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 ( )3)2(2)1()0( εεε offffff neqeq +++=+= ,             (2.7) 

where ε  is the Knudsen number and is assumed to be much smaller than one, 

i.e., 1<<ε .  The corresponding spatial and temporal dimensions are rescaled 

as 

 
2

2

1 ttt ∂

∂
+

∂

∂
=

∂

∂
εε ,               (2.8a) 

 
1xx ∂

∂
=

∂

∂
ε ,                (2.8b) 

Substitute equations (2.7), (2.8) into (2.1) and collecting terms with the same 

order up to the second order gives 

 ( )1o : ( ) eqff =0 ,                 (2.9) 

 ( )εo : 
( )

( )
( )

τ
ξ

1
0

1

0

1

f
f

t

f
x −=∇⋅+

∂

∂
,             (2.10)  

 ( )2εo : 
( ) ( )

( )
( )

τ
ξ

2
1

2

0

1

1

1

f
f

t

f

t

f
x −=∇⋅+

∂

∂
+

∂

∂
,            (2.11) 

Note that the corresponding  moments of f  are contributed only by 

the equilibrium part, therefore, substituting equation (2.2) into the moments of 

f  as given in equations (2.3)-(2.6), the resulting moments of f  can be 

expressed as 

ρ=∫ ξξξξdf eq ,              (2.12a) 

i

eq

i udf ρξ =∫ ξξξξ ,             (2.12b) 

22

2
1

2

1
uedf

D

DD eq

T

RT ρρ +=
+

∫ ξξξξξξξξ ,           (2.12c) 
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i

eq

i

T

RT upuedf
D

DD








++=

+
∫

22

2
1

2

1
ρρξ ξξξξξξξξ .         (2.12d) 

With the moments of f  as given, the NS Equations can be obtained 

by multiplying the second-order equations (2.11) with five collision invariants, 

αϕ ( )4,3,2,1,0=α  and integrating over the velocity space.  The result of this 

manipulation gives the following continuum conservation equations (Li 2006) 
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From equations (2.13b) and (2.13c), the pressure is expressed in the 

form of ( )RT DDep += /2ρ .  The first and second coefficient of viscosity 

and the thermal diffusivity are defined as 

( ) τργµ e1−=     ,             (2.14a) 

( ) τργλ e
21−−=     ,             (2.14b) 

( ) τργγκ e1' −=     ,              (2.14c) 
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respectively, where γ  is the specific heat ratio and is defined as 

( ) ( )RTRT DDDD +++= /2γ .  By considering the definition of pressure and 

the specific heat ratio, the equation of state is fulfilled automatically as 

( ) RTep ρργ =−= 1 .               (2.15) 

Combining equations (2.14a) and (2.15), the first coefficient of 

viscosity, µ  can be expressed as τρτµ RTp == .  It can be seen from the 

above derivation that the Prandtl number, '/Pr κµγ=  is therefore fixed to 

unity.  A physical Eucken’s model would be suggested to relax the Prandtl 

number restriction in the next chapter. 

On the other hand, λµ,  and 'κ  are shown to be directly related to the 

relaxation time, τ  and γ.  Since τ  is related to γ also and is locally fixed in 

the BGK model, it implies that the derivation of the transport coefficients are 

incorrect; therefore, physical models should be proposed to account for the 

temperature dependence of τ .  Once this is successful, the corresponding 

transport coefficients would also have an appropriate dependence on 

temperature.  Li et al. (2006) invoked the Sutherland law to recover µ  

correctly.  Details of their derivation are briefly described in the following 

section. 

2.3 Recovery of the Correct First Coefficient of Viscosity 

As shown in equation (2.1), a single relaxation time is assumed in the 

modeled BE.  According to the kinetic theory of gases, the SRT model 

adopted in equation (2.1) can be regarded as a rigid sphere model (Ferziger 

and Kaper 1972).  The model assumes molecules as impenetrable billiard balls 
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with diameter σ , such that the mutual potential energy is given by the 

following equation 

( )




>

<∞
=

σ

σ
ϕ

r

r
r

0
    .                (2.16) 

Despite the simplicity of equation (2.16) in its ability to account for the 

attractive and repulsive forces among molecules, its Dirac-delta function 

behaviour leads to an inaccurate prediction of the temperature dependence of 

the transport and other macroscopic fluid properties.  The reason could be 

attributed to an abrupt change in potential at mmr σ≈ , and the negligence of 

the long range part of the potential, or the weak potential. 

Further, the relaxation time τ  associated with the rigid sphere model can be 

derived as 
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    ,           (2.17) 

where λ is the average mean free path, τ  is the average time interval of 

particle collision and nB MTk πξ /8= is the magnitude of the mean particle 

velocity (n is the particle number density, Mn is the molecular mass, and kB is 

the Boltzmann constant).  By considering the persistence of velocities after 

collision in equation (2.17), τ  is found to be about 45 /  times larger than τ  

and hence gives rise to an expression for µ  as 

TkM Bn

m

2

1

16

5

σπ
µ =     ,               (2.18) 
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thus giving a temperature dependence for the first coefficient of viscosity as 

T∝µ .  According to Chapman and Cowling (1960), it has been shown that 

the actual variation of µ  is more rapid than that given by equation (2.18) for 

all gases.   In other words, the assumed τ  in equation (2.17) is inadequate in 

recovering the transport coefficients correctly. 

In order to account for the temperature dependence of µ  more accurately, the 

rigid sphere model was modified by Sutherland (Ferziger and Kaper 1972), in 

which the attractive potential was made to obey the power law as follows 

( )
( )




>

<∞
=

σσ

σ
ϕ ν

rr/C

r
r

mm1

    .             (2.19) 

This model shows a correct temperature dependence of µ  and can be 

shown to be given by (Ferziger and Kaper 1972) 
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≈

+
= ∞

∞σπ
µ     ,          (2.20) 

where ∞T  is the reference temperature and 0S  is the Sutherland constant.  It 

has been shown that equation (2.20) is followed closely by air (consists 

mainly nitrogen and oxygen) within the interested temperature range (210K - 

1900K) for aeroacoustics problems. 

The true relation between the relaxation time and the temperature 

based on Sutherland’s model was developed by Li et al. (2006).  In their two-

relaxation-time model, an effective relaxation time, effτ  was introduced to 

substitute for the relaxation time,τ  in the modeled BE.  The effτ  was made up 

of a relaxation time 1τ  associated with the repulsive potential for the rigid 
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sphere and another relaxation time 2τ  associated with the weak attractive 

potential, which is accounted for by the Sutherland’s model.  Both relaxation 

times could be related to temperature T in the following way: 

T
1

4

5
1 ∝≈ ττ  and T∝∝ ξτ 2     .            (2.21) 

From the above equation, the relation of 1τ , 2τ  and T can be deduced 

as
T

1

2

1 ∝
τ

τ
.  It was therefore suggested that the effective relaxation time be 

given by 
21

1

/1 ττ

τ
τ

+
=eff  such that 

21
2

21 /1
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511
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ττσπττ
τµ

+
=








+==

TkM
pp

Bn

m

eff     ,           (2.22) 

Comparing equations (2.20) and (2.22), TS // 021 =ττ .  Thus derived, 

the temperature dependence of the effective relaxation time, effτ  was explicitly 

revealed and the first coefficient of viscosity, µ  was correctly recovered. 

2.4 Summary 

In this chapter, an improved modeled BE is introduced for study of 

DAS problems.  The relationship between the mesoscopic distribution 

function, f , and the macroscopic description of measurable properties such 

as density, momentum, energy and the energy flux via the moments of f  is 

highlighted.  The macroscopic conservation equations can be derived from the 

modeled BE by introducing five collision invariants αϕ ( )4,3,2,1,0=α , 

2

43,2,10 ;;1 ξϕξϕϕ === .  The resulting conservation laws are not self-
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contained, so that the system of equations is further closed by invoking 

different assumptions such that the Euler or NS Equations are obtained. 

A full set of unsteady compressible NS Equations are obtained by 

invoking a standard multi-scale mathematical model, and the Chapman-

Enskog (CE) expansion in which both spatial and temporal dimensions are 

rescaled with a small Knudsen number, ε .  Since diatomic gas is commonly 

studied in DAS problems, the recovery of the unsteady compressible NS 

Equations are based on a diatomic gas model developed by Li et al. (2006).  

Based on the equipartition theory of energy, the molecular collision properties 

of the fluid was fully accounted for when the fluid internal energy, e  was 

being considered as a component of the second moment of f . 

Two important restriction of the modeled BE is outlined.  Firstly, the 

relaxation time, τ , was made constant locally in the BGK model and its 

dependence on molecular velocity, thus dependence on temperature, T , was 

not truly revealed.  As a result, the transport coefficients, such as the first and 

second coefficients of viscosity, µ  and λ , and the thermal conductivity, 

κ were not correctly recovered.  This limitation was relaxed by the two-

relaxation-time model suggested by Li et al. (2006), in which the Sutherland 

law was invoked to correctly recovered µ .  However, there still exists the 

second restriction, the incorrect value of Pr.  The Prandtl number is fixed at 

unity which implies that the thermal energy exchange between particles has 

not been replicated properly.  A physical model, the Eucken model, would be 

invoked in the next chapter to recover a correct value of Pr for diatomic gas. 
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Chapter 3 

Recovery of Thermal Conductivity for Modeled BE by 

Eucken’s Model 

As shown in the preceding chapter, it is important to recover the full 

set of unsteady compressible Navier-Stokes (NS) equations from the modeled 

BE, as well as the associated transport coefficients correctly, if the true 

physics of an aeroacoustics problem were to be recovered. 

In the solution of the unsteady compressible NS equations, the 

transport coefficients such as the first and second coefficient of viscosity, 

µ and λ , and the thermal conductivity, κ  are specified, however, they should 

be part of the solution of the modeled BE via Chapman-Enskog (CE) 

expansion, as they depend on the relaxation time, τ  explicitly.  From the 

macroscopic point of view, the effect of µ  is reflected by the Reynolds 

number, µρ /uLRe = , where L  is the characteristic length scale of the fluid 

system; and the effect of κ  is reflected by the Prandtl number, κµ /cPr P= .  

In the unsteady compressible NS equations, however, terms associated with 

the second coefficient of viscosity, that is ( )kk x/u ∂∂λ  are generally small 

compared to other terms in practical flows (White 1991).  Therefore, it would 

not be considered in the present thesis. 

In addition to the Reynolds and Prandtl number, another dimensionless 

number, the Mach number, c/uM = , is also part of the solution of the 

modeled BE (u is the fluid velocity, c is the speed of sound and is given by 

RTc γ= , where γ  is the specific heat ratio, R is the gas constant and T is 
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the thermodynamic temperature of the gas).  As shown in the last chapter, by 

appropriately considering the molecular dynamics of the fluid, a correct value 

of γ  for diatomic gas, and thus a correct Mach number, can be obtained.  

Since the Reynolds, Mach, and Prandtl numbers are part of the solution of the 

modeled BE, their accuracies are important to a correct recovery of the 

solution of the NS equations from the modeled BE.  This is especially true for 

aeroacoustic and shock-free compressible flow simulations. 

In Li et al.’s (2006) two-relaxation-time model, the correct µ  

dependence on T has been obtained by invoking Sutherland law and the 

correct value of 41.=γ  for diatomic gas has been replicated by considering 

the translational degree of freedom as well as the rotational degree of freedom 

of particle collision in the definition of internal energy of the fluid.  Thus 

formulated, it can be shown that ( ) ( )RTRT DD/DD +++= 2γ , which yields 

γ = 1.4 correctly for diatomic gas because DT = 3 and DR = 2.  In other words, 

the Reynolds and Mach number thus deduced from the solution of the 

modeled BE is consistent with that specified in the NS equations for diatomic 

gas, such as air. 

In this chapter, a physical model, the Eucken model, would be invoked 

to recover a correct value for κ and hence a correct Prandtl number, Pr , for a 

polyatomic gas would be obtained.  A two-relaxation-time approach based on 

Li et al.’s (2006) model would be adopted.  Despite the fact that Li et al. 

(2006) applied their physical model to a lattice Boltzamann Method (LBM) to 

solve the modeled BE numerically, the improved modeled BE is based on 
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fundamental physical consideration and can be solved using different 

numerical schemes. 

3.1 Physical Background of Thermal Energy Relaxation in Kinetic 

Theory 

From the microscopic point of view, the phenomenon of fluid 

viscosity could be attributed to momentum transfer between gas particles 

before and after collisions.  Similarly, the thermal conductivity can be 

regarded as the thermal energy transfer from a gas particle to another, when 

the gas departs slightly from its uniform steady state (represented by the 

Maxwellian velocity distribution function) due to collisions.  All these 

transport phenomena, or the free-path phenomena (Chapman and Cowling 

1970) in non-uniform gases show their tendencies towards uniformity of mass 

velocity and temperature.  In order to relax to equilibrium state after collisions, 

gas particles have to re-distribute their momentum and thermal energy.  Time 

required for these re-distributions is known as the relaxation time.  In other 

words, both momentum and thermal energy relaxations should be accounted 

for, if a correct value of relaxation time is to be obtained. 

Li et al. (2006) proposed a two-relaxation-time model, where the 

relaxation time for momentum alone was considered.  Three cases were 

selected to validate the modeled BE where the equation was solved using a 

lattice Boltzmann numerical scheme.  The three cases were the one-

dimensional acoustic pulse propagation, the circular acoustic pulse 

propagation, and the propagation of acoustic, vorticity and entropy pulses in a 

uniform stream.  All cases are without significant temperature gradients and 
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the thermal effect is therefore negligible.  The modified LBM showed 

identical results as those obtained by solving the NS equations using DNS.  

However, the thermal energy relaxation was not considered in Li et al.’s (2006) 

model; consequently, an incorrect value of κ was obtained and the resulting 

Prandtl number was fixed to unity.  In order to study aeroacoustic problems 

with thermal effect, the thermal energy relaxation should be considered in 

determining the relaxation time.  That is, further improvement on Li et al.’s 

(2006) model should be carried out. 

A classical relation between the thermal conductivity, κ , and the first 

coefficient of viscosity, µ  was suggested by Maxwell (1867), thereafter 

different molecular models have been established to calculate the correct κ  

with the formula 

µκ Vck1=     ,                  (3.1) 

where 1k  is an unknown to be determined in accordance with different models.  

For Maxwellian molecule ( 5=ν , i.e. repulsive force between molecules 

varies inversely as the 5th power of the distance), and 1k  equals to 5/2; 

therefore, 2/5 µκ Vc= .  Although 5>ν  for most polyatominc gases, this 

value is widely applied for monatomic gas.  Based on rigid sphere model for 

the particles, k1 can be determined to be 

( )
( )( )
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( )( ) ⋅⋅⋅++
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where ∞<≤ν5  (Chapman and Cowling 1970).  Therefore, the value of 1k  

varies from 2.5 to 2.522 for monatomic gas, and agreed well with 
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experimental values (Chapman 1916, 1918, Chapman and Cowling 1970).  

However, the application of the proposed model to equation (3.1) is only valid 

for monatomic gas, where the rotational energy of diatomic or polyatomic 

gases was not taken into account for the derivation of the equation. 

It was not until Eucken (1913) who took a slightly different approach 

and proposed a relation linking 1k  to γ  that could improve the definition for κ 

for polyatomic gases.  In this approach, contribution of the rotational energy is 

taken into account to deduce heat flux.  Equation (3.1) is re-written as 

µκ Vck /1 = , where 1k  is defined as Eucken’s ratio and is denoted by Ef . 

Details of Eucken’s model for polyatomic gas would be outlined in the 

next section, with modification made by Woods (1993).  The result would be 

implemented to the two-relaxation-time model proposed by Li et al. (2006), 

such that a correct thermal conductivity, κ , hence a correct value of Prandtl 

number would be obtained for the modeled BE. 

3.2 Derivation of Correct Thermal Conductivity Using Eucken’s 

Model 

In Chapter 2, it has been shown that by introducing an effective 

relaxation time ( )211 /1/ ττττ +=eff  into the modeled BE, the temperature 

dependence of effτ  was revealed through the use of the Sutherland Law, hence 

the first coefficient of viscosity, µ  was recovered correctly.  In an attempt to 

further improve the correct recovery of κ , a modification based on Eucken’s 

theory of heat conduction (Chapman and Cowling 1970, Woods 1993) is 

proposed.  The use of Eucken’s theory to recover the Fourier law of heat 
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conduction has been attempted before (Rah and Eu 2001, Eu 2006) and good 

results were obtained.  Eucken (1913) suggested splitting the thermal 

conductivity of a dense gas into two non-interacting parts; one is due to the 

transport of translational energy and the other is due to the transport of 

internal energy.  Because only the contribution of the rotational degree of 

freedom to the internal energy transport is considered in the present study, the 

specific energy '
e  of a diatomic gas might be expressed as 

TcTceee VVrottran

"'''' +=+=     ,               (3.3) 

where the specific heats at constant volume, Vc′  and Vc ′′ , are given by 

2/3'
RcV =  and 2/"

RDc RV = , respectively (Woods 1993).  In general, the 

local heat flux q of a gas can be expressed as intqqq += unc , where 

eunc uq ρ= is the uncollided heat flux and 2/2
int uuq ρ=  is the heat flux due 

to particle interaction.  Starting from Eucken’s theory of heat conduction 

(Chapman and Cowling 1970, Woods 1993), it can be shown that the heat flux 

q is related to the local temperature gradient T∇ , as follows 

( ) Tpcpc effVeffVunc ∇





++−=+= ζττ 1

2

5 "'
intqqq     ,            (3.4) 

where ζ is a correction factor for thermal relaxation (Woods 1993).  Using 

the Fourier law of heat conduction, together with expressions for gas physical 

properties obtained from the modified BE (Ferziger and Kaper 1975), 

equation (3.4) could be shown to lead to an expression for κ  as follows 

( )ζττκ ++=
∇

= 1
2
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effVeffV pcpc
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( )56109
4

−−+= γζζγ
µ Vc

 

( )56109
4

−−+= γζζγ
γ

µPc
    .               (3.5) 

Eucken suggested that the ratio µκ VE cf /=  should be constant for a 

specific gas.  This ratio is known as Eucken’s factor.  For diatomic gas, its 

value is given by equation (3.5) as 

( ) ( )
2

35

4

59 γζγ −
+

−
=Ef     ,                 (3.6) 

For air, 4.1=γ  and from experimental evidence 15.0=ζ ; this gives 

rise to 96.1≈Ef , in agreement with the value obtained experimentally by 

Chapman and Cowling (1970).  Consequently, the Prandtl number can be 

expressed in terms of Ef , as 

E

VP

f

cc γ

κ

µγ

κ

µ
===Pr     .                (3.7) 

According to equation (3.7) and using 96.1≈Ef , 71.0Pr ≈ , thus 

showing that the Prandtl number is recovered using this approach to evaluate 

heat conduction between particles.  From equation (3.5), it can be seen that the 

derived expression for κ  is modified by the factor ( ) γγζζγ 4/56109 −−+  

compared with the uncorrected case, and this factor is only dependent on γ  

and a correction factor ζ  for thermal relaxation.  It should be noted that the 

expression for the thermal diffusivity 'κ  is given by 

( ) effE

V

E ef
c

f τργ
κ

µκ 1' −===     ,               (3.8) 

The net result again is a correction factor given by γ/Ef . 
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It should be noted that the effective relaxation time effτ  is also present 

in the correction derived for the thermal diffusivity, 'κ .  Therefore, this 

approach to model heat conduction does not require the introduction of 

another relaxation time to account for thermal energy exchange during the 

particle collision process. 

3.3 Discussion – Recovery of Transport Coefficients for Modeled BE 

A correct calculation of γ  and the transport coefficients µ  and κ is 

obtained by introducing 1τ and 2τ  to account for translational, rotational, and 

thermal energy exchanges during the particle collision process.  This indicates 

that the Reynolds, Mach, and Prandtl numbers can be determined correctly in 

the process of solving the modeled BE.  The specific heat ratio γ  is replicated 

exactly by partially taking into account the weak repulsive potential in the 

collision process, i.e., the rotational degree of freedom.   This, together 

with Sutherland’s law, leads to a relation between 1τ  and 2τ , with the result 

( )TSeff /1/ 01 +=ττ .  The factor ( )TS /1/1 0+  can be interpreted as a 

correction factor for 1τ .  This correction factor allows µ  (or its dimensionless 

equivalent Reynolds number) to be recovered; whereas another correction 

factor given by ( ) γγζζγ 4/56109 −−+  permits κ  (or its dimensionless 

equivalent Prandtl number) to be replicated exactly.  Physically, this means 

that the exchange of linear and angular momentum, and the exchange of 

thermal energy, occur in the same time scale 1τ ; the net exchange results only 

differ by a correction factor.  Furthermore, these results imply that the correct 
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calculation of γ  is crucial to the recovery of the NS equations and their 

transport coefficients.  This interpretation is drawn because of the interrelation 

between γ  and T and the fact that T can be expressed as Rc γ/2 . 

3.4 Summary 

 In this chapter, Eucken’s model was invoked to obtain a correct value 

of the thermal conductivity, κ  and the Prandtl number for polyatomic gas.  

Together with the correction of the first coefficient of viscosity, µ , the 

modeled BE is ready for aeroacoustic simulations. 

The merit of a correct recovery of κ  and the Prandtl number for the 

modeled BE, however, cannot be revealed by those cases studied by Li et al. 

(2006), since they are without significant temperature gradient.  Therefore, a 

scattering problem caused by acoustic interaction of a line thermal disturbance 

would be studied by using an improved modeled BE in Chapter 5 and 6.  In 

the next chapter, the effect of non-reflecting boundary conditions on 

aeroacoustic simulations would be investigated. 
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Chapter 4 

Non-reflecting Boundary Conditions for Direct Aeroacoustics 

Simulations Using Modeled BE 

4.1 Background 

The numerical methods used to carry out direct aeroacoustic 

simulations have to be capable of resolving the disparity in scales between the 

aerodynamic and acoustic disturbances.  However, they are not the only vital 

component that is important for an accurate resolution of the problem.  Most 

aeroacoustic simulation problems are concerned with open boundaries.  All 

numerical simulations have to invoke truncated boundaries because current 

computer capacity cannot accommodate infinite boundaries; it is most crucial 

that all truncated boundaries would not only allow the aerodynamic 

disturbances but also the acoustic waves to pass through with no reflection.  

Otherwise, the reflected acoustic waves would interact with the forward-going 

waves to produce disturbances that could be of the same order as the acoustic 

waves themselves.  The errors thus created cannot be distinguished from the 

true acoustic waves and the direct aeroacoustic simulation is not reliable.  

Therefore, a discussion of direct aeroacoustic simulation has to address the 

numerical method employed as well as the nonreflecting boundary conditions 

(NRBC) to be invoked for the truncated open boundaries.  These two 

components are briefly discussed in the following paragraphs.  

Up to now, one-step aeroacoustic simulations have been carried out by 

solving the mass, momentum and energy conservation equation, and the gas 

equation of state. Because the acoustic field has very low-energy contents, a 
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low dispersive and low dissipative scheme is required if wave propagation 

were to be resolved accurately in a direct aeroacoustic simulation.  A direct 

numerical simulation (DNS) scheme that satisfies these requirements have 

been proposed (Lele 1992) and it is made up of a sixth-order compact finite 

difference scheme and a fourth-order Runge–Kutta time-marching technique.  

The scheme was later improved (Gaitonde and Visbal 1999, Visbal and 

Gaitonde 2001) and the improved version has been used to study aeroacoustic 

problems and was found to be able to resolve the acoustic field with velocity 

fluctuations five orders of magnitude smaller than any mean field fluctuations 

(Leung et al. 2006). 

The DNS scheme is numerically rather complicated. Efforts to 

simplify the numeric led to the exploration of an alternate numerical scheme 

based on the Boltzmann equation (BE) (Frisch et al. 1987, Lallemand and Luo 

2000, 2003).  The modeled BE is simple because it only needs to solve one 

transport equation for the particle distribution function ( )tf ,, ξξξξx , rather than a 

mixed set of tensor, vector, and scalar equations as in the case of DNS.  The 

flow properties are obtained by integrating f over the particle velocity space.  

As mentioned in the first chapter, the modeled BE can be solved numerically 

by either the lattice Boltzmann method (LBM) or the gas-kinetic scheme.    

The simplicity of the modeled BE attracts researchers to extend one of the 

numerical scheme, the LBM to carry out one-step aeroacoustic simulationns 

(Ricot et al. 2002, Tsutahara et al. 2002, Kang et al. 2003, Wilde 2006).  Other 

proposals, based on the lattice kinetic equation (Mallick 2003) and the direct 

simulation Monte Carlo (Danforth and Long 2004), have also been put 
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forward.  In these methods and the LBM, it is not clear whether the speed of 

sound c has been recovered correctly because they follow the practice of DNS 

by specifying the Mach number M as an input to the problem.  However, this 

is not necessary for a gas kinetic approach because, in principle, once f is 

obtained from the BE, the thermodynamic properties of the gas can be 

determined and hence c and M.  Therefore, it is important to recover the gas 

equation of state correctly; that is, the specific heat ratio 4.1=γ  for air for 

aeroacoustic simulation.  One of the reasons for this deficiency could be due 

to the fact that, inherent in the original LBM proposal (Lallemand and Luo 

2003), the compressible form of the Navier–Stokes equations could be 

recovered but not the correct transport coefficients and proper gas equation of 

state (Tsutahara et al. 2002, Kang et al. 2003, Philippi et al. 2006).  This 

means that the theoretical relation between c and the internal energy e of the 

fluid cannot be replicated.  As a result, it is not sure whether M can be 

determined correctly over the whole flow field. 

Two improvements are required before the modeled BE can be 

extended with confidence to simulate aeroacoustics.  First, it is necessary to 

modify the equation so that it can fully recover the complete set of 

compressible Navier–Stokes equations, that is, the mass, momentum and 

energy conservation equations with the correct transport coefficients, and the 

gas equation of state (at least for a diatomic gas).  Second, it is necessary to 

formulate appropriate NRBC for use.   

As shown in the last chapter, the first improvement has been 

accomplished by invoking physical models.  In this chapter, examination of 
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different types of NRBC would be carried out such that an appropriate NRBC 

could be identified.  The improved LBM by Li et al. (2006) is chosen as the 

numerical scheme for investigation of various NRBC. 

4.2 Importance of Appropriate Non-reflecting Boundary Conditions  

For a truncated computational domain, precise boundary conditions 

play a key role in aeroacoustic calculation.  At some boundaries, such as the 

inflow and outflow boundaries, the assumed computational boundaries have to 

allow the aerodynamic field to pass freely with minimal reflection while at the 

same time they should be nonreflecting for the incident acoustic waves.  

Otherwise, the spurious erroneous waves reflecting from the boundaries could 

contaminate the numerical simulations, decrease the computational accuracy, 

and might even drive the solutions towards a wrong time stationary state.  

These requirements are particularly important in one-step numerical 

simulation of aeroacoustics of open flows, because reflecting waves at open 

boundaries are strictly prohibited.  Otherwise, the acoustic radiation condition 

will be violated.  Therefore, the implementation of NRBC at the 

computational boundaries is not only necessary but required in the simulation 

of aeroacoustic problems. 

4.3 An Introduction to the Lattice Boltzmann Method (LBM) 

To assess the effectiveness of the different NRBC for aeroacoustic 

simulations using LBM, an LBM that can simulate the fluid properties 

correctly is required.  Such an LBM has been derived by Li et al. (2006).  For 

the sake of completeness, the inadequacy of the conventional LBM is first 
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pointed out and this is followed by a summary of the remedies made to 

correctly recover the fluid properties (Li et al. 2006).  This improved LBM is 

used in the present study. 

4.3.1 Conventional LBM  

 
The governing equation of the LBM is the BE modeled by adopting 

the Bhatnagar, Gross, and Krook (BGK) (Bhatnagar et al. 1954) collision 

model.  In this equation, the particle distribution function f has the dimensions 

of ( ) 33 −−
⋅⋅ ms/mkg .  The dimensionless form of the modeled equation is 

given by 

( )1 eqf
f f

t
f

∂
+ ⋅∇ = − −

∂
ξξξξ

τ
    ,               (4.1) 

Where τ  is the time taken for f to relax from non-equilibrium to an 

equilibrium state eqf . All variables in the dimensional BE have been 

normalized by using a combination of the reference parameters, ∞ρ , ∞c  and L.   

Dimension of f is derived according to the zeroth-ordered integral moment of f 

as referred to equation (2.3).  Usually, the dense gas assumption was invoked 

to make use of the Chapman–Enskog expansion to derive the complete set of 

compressible Navier–Stokes equations and their transport coefficients from 

the BGK-modeled BE Lallemand and Luo 2003).  Only the translational 

degree of freedom was considered in formulating the BGK model; as a result, 

the particles were assumed to undergo rigid collision with a relaxation timeτ .  

This assumption led to ( ) nn DD /2+=γ , τρµ RT= , and µκ Pc= , where Pc  

is specific heat at constant pressure.  Therefore, 3-D flow of monoatomic 
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gases gives 67.1=γ  and 2-D flow yields 2=γ .  The conventional LBM 

solving the BGK modeled BE was unable to replicate the full set of 

compressible Navier–Stokes equations with correct transport coefficients 

and γ , and was not appropriate for aeroacoustic simulations.  Therefore, 

further improvements are required ifγ and the transport coefficients were to be 

recovered correctly. 

4.3.2 Improved LBM 

 
The improved LBM (Li et al. 2006) attempts to accomplish this by 

following a two-step approach.  The first step concentrates on the recovery of 

γ  and µ , whereas the second step focuses on deriving κ correctly.  It should 

be pointed out that in the present formulation, µ  and κ are the dimensionless 

counterparts of the fluid viscosity and thermal conductivity; they are 

normalized by cL∞ρ .  Effort to accomplish the first step has been made by 

including both the translational and rotational degree of freedom into the 

derivation of an effective relaxation time effτ  to replace τ  in equation (4.1).  

This effτ , as introduced in Chapter 2, was assumed to be made up of two 

relaxation times, 1τ  and 2τ .  It was found that 1τ  is essentially given by the 

rigid-sphere collision model, that is,τ , and 2τ  can be determined exactly with 

no arbitrary constant by stipulating that the derived µ  should obey the 

Sutherland law.  This improvement, however, could not rectify the error in the 

prediction of κ , which, according to this formulation, is given by µκ Pc= , 

thus leading to a Prandtl number 1/Pr == κµPc for diatomic gases.  
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In the preceding chapter, κ has been recovered correctly by invoking 

Eucken’s model for the derivation of the macroscopic heat flux without an 

introduction of an additional relaxation time other than that proposed by Li et 

al. (2006).  Thus derived, the improved LBM is able to replicate µ ,γ  and κ  

correctly, thus leading to a correct estimate of the Reynolds number, 

*/Re µρUL= , the Mach number cUM /= , and Pr, in a low- Reynolds-

number, shock-free compressible flow. Here, *µ is the dimensional µ . 

4.4 Numerical Solution of the Improved LBM  

The modeled equation (4.1) is solved numerically by first discretizing 

it in a velocity space using a finite set of velocity vectors { }iξξξξ  in the context 

of the conservation laws.  Here, the subscript i is only an index and is not a 

vector or tensor notation.  A local Maxwellian is used to represent eqf and a 

Taylor expansion up to third order in u is assumed. This can be expressed in 

the discrete velocity space as 

( ) ( )
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ρ
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OAf i

eq ,    (4.2) 

where ( )vu,=u  and 2/ cRT=θ .  The weighting factors Ai are dependent on 

the lattice model selected to represent the discrete velocity space.  They are 

evaluated from the constraints of the local macroscopic variables, such as ρ , 

momentum uρ , internal energy e, and pressure p, given by the integrals of f 

and ξξξξ  over the velocity space in the lattice with N discrete velocity sets{ }iξξξξ .  
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A discrete velocity set given by a D2Q13 (2-D with 13 velocity points) 

lattice model is adopted here, because D2Q13 has been shown to give very 

reliable and accurate results by Li et al. (2006).  The velocity lattice is shown 

in Figure 4.1, and the discrete velocity set and weighting factors Ai are given 

by 

( ) ( )
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The collision term in equation (4.1) is evaluated locally at every time 

step, whereas a sixth-order compact finite-difference scheme (Lele 1992) is 

used to evaluate the nonlinear term and a second-order Runge–Kutta method 

for time advancement.  The lattice size xδ is chosen such that ctx ≈δδ / , 

where tδ  for the lattice motion is chosen to be the same as t∆ for time 

marching and the grid size x∆ is taken to be the same as that used in the DNS 

scheme.  This choice of tx δδ / yields very stable numerical solutions for all 

cases investigated.  On boundaries, a one sided fourth-order compact method 

is used to derive the first derivatives.  This is essentially a low dispersive and 
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low dissipative scheme and is most suitable for simulation of aeroacoustic 

problems (Lele 1992, Gaitonde and Visbal 1999, Visbal and Gaitonde 2001). 

4.5  Selection of Non-reflecting Boundary Conditions for the Improved 

LBM 

The commonly used boundary treatment schemes for DNS are 

NSCBC, PML, ABC, FM, and C
1 continuity, whereas those that have been 

attempted only for LBM are the EM and ZFG methods.  Among the various 

boundary treatment schemes, some proposed for DNS can be extended to 

LBM, whereas others cannot.  For example, extension of the NSCBC scheme 

to LBM has been attempted (Ricot et al. 2002) previously.  Unfortunately, no 

details were given on the implementation; therefore, it was difficult to 

ascertain the general applicability of such an extension.  The NSCBC scheme 

has been carefully examined by Li (2006), who chose the propagation in a 

mean flow of a vortex, entropy, and an acoustic pulse to compare the 

performance of the NSCBC, PML, and ABC with a reference solution. The 

simulation was carried out using DNS and the reference solution was obtained 

using a much larger domain with buffer regions at the inlet and outlet. The 

results showed that among the schemes tested, PML and ABC gave the least 

error, whereas NSCBC gave the largest error compared to the reference 

solution. Straightly speaking, NSCBC works best with normal waves at the 

boundaries and this was one of the reasons why it performed the worst in this 

case. It is the objective of this work to seek NRBC that is applicable to all 

types of waves including normal waves. This shortcoming of the NSCBC 
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together with the assessment of Li (2006) renders it inappropriate for 

extension to LBM simulation.  

Applying the C
1 continuity preservation scheme directly to the 

primitive variables is not a viable alternative for LBM; however, the concept 

can be extended to LBM. Applying the C
1 continuity preservation scheme 

concept to LBM implies that the first derivatives of f have to remain 

continuous across the boundaries, and the inward first derivatives of f will 

have to be set to zero. This is different from the EM; therefore, it should be 

tested as an independent method. The PML is not quite applicable for LBM 

because the LBM only solves a scalar equation for f and the primitive 

variables are obtained by integrating f over the particle velocity space ξξξξ  and 

an a priori solution is not known for f in any matched layer. However, the 

concept could be extended by requiring f to approach a target f or eqf  at the 

boundaries. When the PML is implemented this way, it is not much different 

from the application of ABC to LBM. As will be seen later, applying the ABC 

to LBM requires the specification of a target f or eqf  at the boundaries. In 

view of this similarity, only the extension of ABC and not the PML to LBM 

will be considered in this paper. Because the ZFG has been used before to 

calculate identical benchmark aeroacoustic problems and good agreement 

with the reference DNS solution is obtained (Engquist and Majda 1977), there 

is no need to repeat the same calculations here again. In fact, the ZFG can be 

considered a viable nonreflecting boundary treatment scheme for one-step 

aeroacoustic simulations of the benchmark problems tested (Li et al. 2006). 

As a result, three types of nonreflecting boundary treatment schemes, namely,  



 

 70 

1) EM with or without FM,  

2) C1 continuity, and  

3) ABC are tested in the present study.  

Their suitability for LBM and accuracy are assessed against reference 

solutions obtained from DNS with a relatively large computational domain. In 

the DNS calculations, absorbing boundary treatments are applied. The clean 

solution obtained inside the larger computational domain is used as the 

reference solution. All error estimates of the LBM calculations are based on 

this reference. Each type of nonreflecting boundary treatment scheme is 

briefly described in the following sections. 

4.5.1 Type 1: EM with or Without FM 

 
This method is fairly easy to implement. Depending on whether 

zeroth- or first-order extrapolation is assumed, the method simply requires 

that f or its first gradient in every lattice directions at the computational 

boundary to be zero (Chen et al. 1996, Maier et al. 1996, Guo and Zhao 2003, 

Yu et al. 2005, Bennet et al. 2005). It is particularly suitable for LBM because 

there is only one scalar equation to solve. Of course, a buffer or damping 

region could be added to improve the performance of the method, but then the 

scheme would be quite similar to the ABC. Another alternative to improve its 

performance is to implement the EM with or without a FM. That way, their 

performance with or without FM could be assessed and compared.  

The filtering scheme (Gaitonde and Visbal 1999, Visbal and Gaitonde 

2001) implemented uses a 10th-order low passed filter. If there are n grid 
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points along the x axis, the equations of a low-passed filtered value ĥ  for any 

scalar h can be obtained from  

1=i  or ni = ; no filtering is applied,              (4.4a) 

{ }4,3,2∈i  

∑
=

+− =++
9

1
,11

ˆˆˆ
j

jijii hahhh αα     ,             (4.4b) 

{ }1,2,3 −−−∈ nnni  

∑
=

+−+−+− =++
9

1
11,11

ˆˆˆ
j

jninjii hahhh αα     ,            (4.4c) 

5=i  or 4−= ni  

( )∑
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jiji
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ii hh
b

hhh αα     ,            (4.4d) 

{ }5,...,7,6 −∈ ni  

 ( )∑
=
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1
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2
ˆˆˆ

j

jiji

j

ii hh
a

hhh αα     ,            (4.4e) 

where 49.0=α  ( 5.03.0 ≤≤ α ) and the aj, bj, aj,i are given in Table 4.1.  It 

should be noted that a 10th-order filter is applied at interior points for 

{ }5,...,7,6 −∈ ni and an eighth-order filter is applied near boundaries for 

{ }5,...,2∈i  and { }1,...,4 −−∈ nni . 

The designations, EM0, EM1, EM0/FM, and EM1/FM are used to 

denote the following combinations of EM and FM schemes: EM0 designates 

zeroth-order EM without FM, EM1 designates first-order EM without 

FM,EM0/FM designates zeroth-order EM with FM, and EM1/FM designates 

first-order EM with FM. 
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4.5.2 Type 2: C
1
 Continuity 

 
The basic idea of this method, hereafter designated as C1 continuity, is 

to extrapolate whatever variables (f, first derivatives of f, etc.) chosen for 

consideration at the computational boundary based on at least two known 

points inside the domain. In addition, the inward f (or first derivatives of f) in 

all lattice directions is assumed to be zero. Lower-order extrapolation methods 

(e.g., zeroth and first order) are easy to adopt for finite-difference schemes up 

to third order. Generally, the order of accuracy of the method should be at 

most one order lower than that of the finite-difference scheme used for the 

numerical simulation. If not, the overall order of accuracy would be lowered 

(Freund 1997). No filter or buffer region is added to this scheme. 

4.5.3 Type 3: ABC 

 
An absorbing region is established based on the addition of dissipative 

and convective terms to the compressible Navier–Stokes equations in the case 

of DNS schemes. The prescribed flow (usually uniform mean flow) is 

achieved on the boundary by suppressing all undesirable disturbances within 

the region. Therefore no reflection is detected at the boundary. This can be 

seen by considering a prescribed flow with properties given by a flow with 

target properties. This concept can be extended to LBM where the absorption 

is implemented in the f equation which can be written in the buffer region for 

a 2-D problem as 

( ) ( )eq

eff

a

eq
fffff

t

f
−−=−+∇⋅+

∂

∂

τ
σ

1
ξξξξ     ,             (4.5) 
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where fa has the same structure as the weighting factor Ai , ( )
2

/m D=σ σ δ , 

and mσ  is a constant to be specified. The target fa is therefore achieved 

asymptotically towards the outer boundary of the absorbing region. This 

boundary scheme is referred to as ABC from this point on. 

4.6 Case Study for Non-Reflecting Boundary Conditions by Using the 

Improved  LBM 

In the present study, an investigation into the performance of the three 

different nonreflecting boundary treatment schemes is carried out. The 

vehicles of this comparison are two classical aeroacoustic problems that have 

been investigated previously (Li et al. 2006). These two problems are as 

follows:  

Case 1) propagation of a plane pressure pulse;  

Case 2) propagation and interaction of an acoustic pulse with an 

entropy pulse and a vortex pulse.  

The benchmark solutions were provided by DNS calculations 

assuming a much larger computational domain. The DNS computational 

domain and the truncated domain for LBM simulations chosen for these two 

cases are specified in following sections. It is sufficient to note that in the 

DNS calculations, no filtering or damping is applied. In the first case, the 

initial size of the acoustic pulse L, ∞c , and mean density ∞ρ  are adopted as the  

reference quantities for normalization. The Reynolds number is defined as 

∞∞∞= µρ /LcRe . In the second case, the initial size of the acoustic pulse L, 

uniform mean flow ∞u , and mean density ∞ρ are adopted as the reference 
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quantities for normalization.  The Reynolds number and Mach number of the 

second case are defined as ∞∞∞= µρ /LuRe  and /M u c∞ ∞= . In both cases a 

uniform grid size of 05.0=∆=∆ yx  and a time step of 00001.0=∆t  are used 

in all calculations for consistency of comparison. 

Here, x and y are the Cartesian coordinates with the propagation direction 

aligned with x, and ∞µ  is the reference fluid viscosity.  

To demonstrate the validity and extent of the LBM simulations, the 

accuracy of the solutions are evaluated against the benchmark DNS solutions 

obtained using the larger domain with absorbing boundary treatment applied. 

The setup of absorbing boundary treatment applied to LBM is the same as that 

applied to DNS. A measure of the error between the LBM and DNS results of 

a macroscopic variable b is expressed in terms of the LP integral norm  

( )
PM

j

P

jjP bb
M

bL

1

1
DNS,LBM,

1








−= ∑

=

    ,              (4.6) 

for any integer p and its maximum 

( ) jj
j

bbbL ,DNS,LBMmax −=∞     ,               (4.7) 

Errors based on equations (4.6) and (4.7) are calculated using the three 

NRBC outlined in the preceding sections. The error estimates for the pressure 

and velocity deduced from all three types of NRBC are tabulated in Tables 

4.2–4.3. 

4.6.1 Case 1: Propagation of a Plane Pressure Pulse 

 
For this 1-D problem, the validity of those NRBC specified in section 

4.4 is tested by applying them on both the inlet and outlet boundary, while C1 
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continuity is used on the top and bottom boundaries. As demonstrated in Li et 

al. (2006), the large computational domain chosen for DNS simulation is 

1010 ≤≤− x  and 11 ≤≤− y , and the truncated size for LBM calculations is 

given by 55 ≤≤− x  and 11 ≤≤− y . This allows the present calculations to 

be compared with those presented using ZFG for boundary conditions (Li et al. 

2006). In ABC, an absorbing region with a width of 1=D is added to the inlet 

and outlet boundaries. Because 05.0=∆x , there are 20 grid points along the x 

direction in the absorbing region. No ABC is implemented at the top and 

bottom boundaries. The EM and C
1 continuity NRBC are applied to 

computational domains of the same size as ABC minus the absorbing region.  

The initial conditions for the aerodynamic and acoustics fluctuations 

are specified as (Tam and Webb 1993)  

, , , exp( )u u v v p p k∞ ∞ ∞ ∞= = = = +ρ ρ ε     ,             (4.8) 

where ( )
2

ln2 0.08/k x= − × . For the plane pressure pulse problem considered 

here, 1, 0, 0, 1/u v p∞ ∞ ∞ ∞= = = = ,ρ γ are chosen as reference quantities, while 

1000Re = and 0001.0=ε are specified. Using these reference quantities, the 

initial eqf is specified according to equations (4.2) and (4.3). 

Calculations are carried out using the three types of boundary 

treatment schemes discussed in section 4.4. Four different combinations of the 

EM type are tested; they are the zeroth- and first-order EM with and without 

the use of filtering. Altogether, six different boundary conditions are 

investigated; they are EM0, EM0/FM, EM1, EM1/ FM,C1 continuity, and 

ABC. Although the EM boundary conditions work well for aerodynamic flow 
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calculations (Chen et al. 1996, Maier et al. 1996, Guo and Zhao 2003, Yu et al. 

2005, Bennet et al. 2005), their suitability for one-step aeroacoustic 

simulations needs demonstration. These combinations of EM and FM could 

clearly demonstrate the necessity of having to implement FM in any one-step 

aeroacoustic simulations using EM and the relative merits of a zeroth- or first-

order extrapolation.  

Absolute integral norm error ( )pL1 , integral root mean square (rms) 

error norm ( )pL2 , and the maximum error norm ( )pL∞  are calculated at 

9=t .  Norm errors for fluctuating pressure p and the streamwise velocity u 

are determined using equations (4.6) and (4.7) and the results for EM0, 

EM0/FM, EM1, EM1/FM, C1 continuity, and ABC are tabulated in Tables 4.2 

and 4.3.  Among the nonreflecting boundary treatment schemes tested, three 

schemes give the best performance for the calculations of p and u. They are 

EM0/FM, EM1/FM, and ABC. Besides, ABC gives the least L2 error among 

the three best performed nonreflecting boundary treatment schemes, with the 

same order of magnitude as previous calculations of the same pulse at 

5000Re = (Li et al. 2006).  The worst performers are EM0 and EM1. This 

shows that filtering is necessary for one-step aeroacoustic simulation 

problems if these norm errors are to be reduced to minimum. Once filtering is 

applied, the difference between a zeroth-order extrapolation and a first-order 

one is negligibly small.  This is the reason why EM0/FM and EM1/FM have 

essentially the same performance. 

The plots of ( )∞− ρρ , ( )∞− pp , and u at 0=t , 3=t , 6=t , and 9=t  

for the four NRBC schemes, EM0/FM, EM1/FM, C1 continuity, and ABC, are 
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shown in Figures 4.2(a), 4.3(a), 4.4(a), and 4.5(a), respectively.  From the 

EM0 and EM1 calculations, it is obvious that at 9=t  the waves are reflected 

back from the inlet and outlet boundaries.  Therefore, these results are not 

shown.  To depict the wave behavior more clearly at the inlet and outlet 

boundaries, blowups of the density at these locations are given in Figures 

4.2(b), 4.3(b), 4.4(b), and 4.5(b). It is clear that the errors at these boundaries 

are at least one order of magnitude less.  

For the C1 continuity scheme, even though the inward first derivatives 

of f at the boundaries are set to zero, disturbance waves are clearly visible as 

early as 6=t  (Figure 4.4(a)). As a result, numerical results deduced from 

these three schemes are not in agreement with the reference DNS solution and 

the clean exit of all waves at 9=t  shown in the DNS result is not replicated 

correctly by the three boundary treatment schemes. The calculated results 

given by EM0/ FM, EM1/FM, and ABC (Figures 4.2, 4.3, and 4.5) are in 

excellent agreement with the DNS result and they show a clean exit of all 

waves at 9=t .  These results further support the conclusion drawn from a 

comparison of the error norm in Tables 4.2 and 4.3.  Because a 10th-order 

filtering scheme (Gaitonde and Visbal 1999, Visbal and Gaitonde 2001) is 

used in the extrapolation method, the results therefore suggest that reflections 

from the inlet and outlet boundary are mainly due to high-frequency 

components in the computational domain.  This explains why extrapolation 

method can be applied to low-order LBM schemes (Chen et al. 1996, Maier et 

al. 1996, Guo and Zhao 2003, Yu et al. 2005, Bennet et al. 2005), because 

high-frequency disturbances are not being resolved by these low-order LBM 
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schemes.  The ABC, on the other hand, is equally applicable for low as well as 

high-order LBM schemes; therefore, it can be used effectively for the 

calculations of aerodynamic flow alone as well as for one-step aeroacoustic 

problems.  Because ZFG has already been validated as a viable nonreflecting 

boundary condition for this problem (Li et al. 2006), up to this point, three 

different types of nonreflecting boundary treatment schemes (EM0/FM and 

EM1/FM can be considered as the same type) have been proven appropriate.  

Of these, ABC is an extension of a current scheme used in DNS to LBM. 

4.6.2 Case 2: Propagation of Acoustic, Entropy, and Vortex Pulses 

 
As before, the large computational domain is specified as 

1010 ≤≤− x  and 1010 ≤≤− y , and the acoustic pulse is initialized at 

1−=x and 0=y , whereas the entropy pulse and the vorticity pulse are 

initialized at 1=x and 0=y . The truncated computational domain for 

EM1/FM is given by 5.25.2 ≤≤− x  and 5.25.2 ≤≤− y . In the case of the 

ABC, an absorbing region with 1=D  is specified on all boundaries. 

Consequently, the computational domain for the ABC boundary treatment is 

5.35.3 ≤≤− x and 5.35.3 ≤≤− y .  The initial conditions for the aerodynamic 

and acoustics fluctuations are specified as 

( ) 2
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( )
2 2

2

1
ln2

0.4

x y
b

 − +
 = −
 
 

    ,                 (4.9c) 

where 1 20.0001, 0.001= =ε ε .  For this problem, the reference quantities are 

specified as 0;0;1 === ∞∞∞ vuρ  and 2/1 Mp γ=∞ , while 1000Re = and 

2.0=M  are chosen, which are the same as those previously reported (Tam 

and Webb 1993).  Using these reference quantities, the initial eqf  is specified 

according to equations (4.2) and (4.3).  The problem setup is visualized in 

Figure 4.6.  

This problem has also been treated in Li et al. (2006), and good 

agreement with DNS results is obtained using the ZFG boundary treatment 

scheme.  In the preceding example, it has been shown that among the three 

types of boundary treatment schemes considered, only EM/FM and ABC can 

reproduce the DNS results in a truncated computational domain.  Even then, 

all six schemes are used to perform the LBM calculations of this problem and 

the calculated error norms are tabulated in Tables 4.4 and 4.5 for comparison.  

Again, ( )pL1 , ( )pL2  and ( )pL∞  at 6.2=t  for EM0, EM0/FM, EM1, 

EM1/FM,C1 continuity, and ABC are calculated and shown in Tables 4.4 and 

4.5.  Only the norm errors of p and u are determined.  As expected, EM0/FM, 

EM1/FM, and ABC yield the least errors, whereas the C1 continuity scheme 

gives errors that are in between those of EM0 and EM1, and EM0/FM, 

EM1/FM, and ABC.  The worst performers are EM0 and EM1.  Again, ABC 

gives the least L1, L2, and L1 error among all schemes tested.  
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A sample comparison of the LBM calculations invoking ABC with 

those of DNS for case 2 is shown in Figure 4.7. The panels under Figure 4.7(a) 

are pressure plots, whereas those under Figure 4.7(b) are velocity contours.  

Altogether four different times are shown ranging from 1.0=t to 6.2=t . The 

solution in the upper part of each panel is due to LBM and the lower part is 

the corresponding DNS simulation obtained using a larger computational 

domain. It can be seen that by 6.2=t , the pulses have completely exited the 

computational domain defined by 5.25.2 ≤≤− x  and 5.25.2 ≤≤− y ; that is, 

the actual domain not counting the absorbing region assumed for the LBM 

simulation. The solutions obtained using both LBM and DNS are very clean 

and there is essentially no reflection of waves at the boundaries. It should be 

pointed out that the computational domain for the LBM is only 

5.35.3 ≤≤− x  and 5.35.3 ≤≤− y  compared to a domain of 1010 ≤≤− x  

and 1010 ≤≤− y  for the DNS.  This shows that LBM with ABC is a viable 

alternative to DNS with buffer region for direct aeroacoustic simulations. 
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4.7 Summary and Conclusions 

There are three objectives to this study.  The first is to determine what 

commonly used NRBC for DNS simulations could be extended to LBM.  The 

second is to ascertain whether the same accuracy could be achieved using a 

truncated computational domain compared to that required by DNS.  The third 

is to identify best-performing NRBC for one-step LBM simulation of 

aeroacoustic problems.  This investigation gives rise to three different types of 

NRBC schemes that could be extended to LBM and they are the filtering (FM) 

type, the C1 continuity type, and the absorbing (ABC) type.  In addition, two 

other NRBC schemes that have been used previously for LBM simulations 

have been extended to one-step LBM aeroacoustic calculations.  These are the 

extrapolation (EM) type and the zero f gradient (ZFG) type. The FM type and 

the EM type are tested in a mixed manner.  Because the ZFG has already been 

proven to be valid for one-step LBM in Li et al. (2006), the present 

investigation does not include it in the final assessment. 

Two aeroacoustic problems, namely, the propagation of a plane 

pressure pulse and the propagation of an acoustic pulse, an entropy pulse, and 

a vorticity pulse in a mean flow, are used as vehicles to test the different 

NRBC schemes.  Altogether, six different schemes are tested; they are EM0, 

EM0/FM, EM1, EM1/FM, C1 continuity, and ABC.  Of these six, only 

EM0/FM, EM1/FM, and ABC are capable of yielding results that are 

essentially identical to those deduced from a one-step DNS simulation using a 

much larger computational domain with no boundary treatment.  Overall, 

ABC performs the best.  This result together with the previous study using 
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ZFG gives four appropriate and applicable NRBC for one-step LBM 

simulation of aeroacoustic problems. 
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Figure 4.1 Definition of the D2Q13 lattice velocity model 
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Table 4.1 Values of aj, bj and aj,i 

 

 
ja  jb  2,ja  3,ja  4,ja  

j=0 
256

126193 α+  93 70

128

+ α  
- - - 

j=1 
256

302105 α+  
16

187 α+  
256

2541 α+  
256

21 α+−  
256

21 α−  

j=2 ( )
64

2115 α+−  
32

147 α+−  
32

231 α+  
32

301 α+  
32

21 α+−  

j=3 ( )
512

2145 α−  
16

21 α−  
64

507 α+  
64

1457 α+  
64

507 α+  

j=4 ( )
256

215 α+−  
128

21 α+−  
32

147 α+−  
32

187 α+  
32

1425 α+  

j=5 
512

21 α−  
0 

( )
128

1057 α−  ( )
128

1057 α+−  
128

5835 α+  

j=6 - - 32

147 α+−  
32

147 α−  
32

147 α+−  

j=7 - - 64

147 α−  
64

147 α+−  
64

147 α−  

j=8 - - 32

21 α+−  
32

21 α−  
32

21 α+−  

j=9 - - 256

21 α−  
256

21 α+−  
256

21 α−  
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Table 4.2 Norm error at t = 9 for case 1 (compared with DNS solutions): (a) pressure; 
(b) velocity ( ∞−= ppp̂ , ∞−= uuû ; rp̂  and rû  are the reference 
solutions). 

 
(a) 

( )
P

P

rP pp
n

L

1

ˆˆ
1











−= ∑

( )rppL ˆˆmax −=∞
 

1L  2L  ∞L  

EM0 4.2342 x 10-6 7.5517 x 10-6 1.9047 x 10-5 

EM0/FM 6.8096 x 10-8 1.1516 x 10-7 2.8650 x 10-7 

EM1 4.2377 x 10-6 7.5587 x 10-6 1.9064 x 10-5 

EM1/FM 7.2198 x 10-8 9.4061 x 10-8 2.1736 x 10-7 

C
1 Continuity 1.0677 x 10-6 1.3857 x 10-6 3.1877 x 10-6 

ABC 1.8837 x 10-8 2.0648 x 10-8 5.4979 x 10-8 

 

 

(b) 

( )
P

P

rP uu
n

L

1

ˆˆ
1











−= ∑  

( )ruuL ˆˆmax −=∞
 

1L  2L  ∞L  

EM0 4.2409 x 10-6 7.5617 x 10-6 1.9096 x 10-5 

EM0/FM 6.2575 x 10-8 1.0379 x 10-7 2.7033 x 10-7 

EM1 4.2451 x 10-6 7.5687 x 10-6 1.9113 x 10-5 

EM1/FM 6.7929 x 10-8 1.0123 x 10-7 2.6062 x 10-7 

C
1 Continuity 1.0357 x 10-6 1.3630 x 10-6 3.1571 x 10-6 

ABC 2.4918 x 10-8 3.3341 x 10-8 8.2538 x 10-8 
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Table 4.3 Norm error at t = 2.6 for case 2 (compared with DNS solutions): (a) 

pressure; (b) velocity ( ∞−= ppp̂ , ∞−= uuû ; rp̂  and rû  are the 
reference solutions). 

 

(a) 

( )
P

P

rP pp
n

L

1

ˆˆ
1











−= ∑

( )rppL ˆˆmax −=∞
 

1L  2L  ∞L  

EM0 5.2606 x 10-5 7.4286 x 10-5 3.1617 x 10-4 

EM0/FM 3.1530 x 10-5 3.6230 x 10-5 7.5139 x 10-5 

EM1 5.3584 x 10-5 7.525 x 10-5 3.2101 x 10-4 

EM1/FM 5.6519 x 10-5 6.9461 x 10-5 1.8350 x 10-4 

C
1 Continuity 9.8387 x 10-6 1.3297 x 10-5 7.9179 x 10-5 

ABC 2.7005 x 10-6 3.5453 x 10-6 1.3460 x 10-5 

 

 

(b) 

( )
P

P

rP uu
n

L

1

ˆˆ
1











−= ∑  

( )ruuL ˆˆmax −=∞
 

1L  2L  ∞L  

EM0 1.8421 x 10-5 3.2891 x 10-5 2.0135 x 10-4 

EM0/FM 6.6930 x 10-6 7.6686 x 10-6 1.7774 x 10-5 

EM1 1.8483 x 10-5 3.2924 x 10-5 2.0126 x 10-4 

EM1/FM 1.1918 x 10-5 1.4490 x 10-5 3.8759 x 10-5 

C
1 Continuity 1.037 x 10-5 2.9847 x 10-5 1.9847 x 10-4 

ABC 1.5974 x 10-6 2.1588 x 10-6 1.0723 x 10-5 
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∞− ρρ  ∞− pp  u   

   

(i) 

    

   

(ii) 

    

   

(iii) 

    

   

(iv) 

Figure 4.2(a) The density, pressure and velocity “u” fluctuations along the x-axis at 
four different t with zeroth-ordered extrapolation boundary conditions 
(with filter) EM0/FM: +, LBM; –––––, DNS.
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∞− ρρ  ∞− ρρ   

 
 

t=0 

   

 
 

t=3 

   

 
 

t=6 

   

 
 

t=9 

Figure 4.2(b) Enlarged snapshots of density fluctuation on left boundary, x = 
[-5,-4] and on right boundary, nx = [4,5] at t=0, t=3, t=6, t=9 
with zeroth-ordered extrapolation boundary conditions (with 

filter) EM0/FM: +, LBM; –––––, DNS.  
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∞− ρρ  ∞− pp  u   

   

(i) 

    

   

(ii) 

    

   

(iii) 

    

   

(iv) 

 
Figure 4.3(a) The density, pressure and velocity “u” fluctuations along the x-axis at 

four different t with first-ordered extrapolation boundary conditions 
(with filter) EM1/FM: +, LBM; –––––, DNS.
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∞− ρρ  ∞− ρρ   

 
 

t=0 

   

 
 

t=3 

   

 
 

t=6 

   

 
 

t=9 

Figure 4.3(b) Enlarged snapshots of density fluctuation on left boundary, x = 
[-5,-4] and on right boundary, x = [4,5] at t=0, t=3, t=6, t=9 with 

first-ordered extrapolation boundary conditions (with filter) 
EM1/FM: +, LBM; –––––, DNS. 
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∞− ρρ  ∞− pp  u   

   

(i) 

    

   

(ii) 

    

   

(iii) 

    

   

(iv) 

 
Figure 4.4(a) The density, pressure and velocity “u” fluctuations along the x-axis at 

four different t with C
1 boundary conditions: +, LBM; –––––, DNS.



 

 92 

∞− ρρ  ∞− ρρ   

 
 

t=0 

   

 
 

t=3 

   

 
 

t=6 

   

 
 

t=9 

Figure 4.4(b) Enlarged snapshots of density fluctuation on left boundary, x = 
[-5,-4] and on right boundary, x = [4,5] at t=0, t=3, t=6, t=9 with 

C
1 boundary conditions: +, LBM; –––––, DNS. 
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∞− ρρ  ∞− pp  u   

   

(i) 

    

   

(ii) 

    

   

(iii) 

    

   

(iv) 

 
Figure 4.5(a) The density, pressure and velocity “u” fluctuations along the x-axis at 

four different t with absorbing boundary conditions: +, LBM; –––––, 
DNS.
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∞− ρρ  ∞− ρρ   

 
 

t=0 

   

 
 

t=3 

   

 
 

t=6 

   

 
 

t=9 

Figure 4.5(b) Enlarged snapshots of density fluctuation on left boundary, x = 
[-5,-4] and on right boundary, x = [4,5] at t=0, t=3, t=6, t=9 with 

absorbing boundary conditions: +, LBM; solid line, DNS. 
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Figure 4.6  The acoustic, entropy and vorticity pulse propagation in a 
uniform stream configuration for Case 2 (hatched area as buffer 

region). 
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  (a)      (b) 
t = 0.1 t = 0.1 

  
t = 0.7 t = 0.7 

  
t = 1.6 t = 1.6 

  
t = 2.6 t = 2.6 

  

Figure 4.7  Comparison of LBM solutions using ABC (upper half) with 
DNS solutions (lower half): (a) pressure fluctuation (6 contours 
equally distributed between -5x10-5 and 5x10-5); (b) streamwise 
velocity fluctuation (6 contours equally distributed between -6 x 

10-5 and 6 x 10-5). 
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Chapter 5 

Theoretical Solution for Sound Scattering by a Localized 

Thermal Disturbance 

5.1 Background 

In the preceding chapters, physical models have been invoked for the 

correct recovery of the transport coefficients from the modeled BE.  The 

correct values of the transport coefficient ( γµ, and κ ) and their equivalent 

dimensionless numbers (Re, M and Pr) lead to recovery of the NS equations 

from the modeled BE.  With appropriate specification of non-reflecting 

boundary conditions, the modeled BE is ready for use to solve practical 

aeroacoustic problems. 

The improved modeled BE has been validated against aeroacoustic 

problems with no temperature variation in the flow medium (Li et al. 2006), 

and using different non-reflecting boundary conditions in Chapter 4.  In these 

validations, the Re and M are recovered correctly.  However, up to this point, 

the modeled BE has not been validated against any aeroacoustic problem 

where there is a temperature gradient in the flow medium.  Therefore, it is not 

possible at this point to claim that the improved modeled BE could also 

replicate κ or Pr correctly.  In view of this, an acoustic scattering problem 

with significant thermal gradient would be selected for investigation, from 

which the ability to resolve thermal effect by the modeled BE could be 

investigated. 

In general, there are three modes of motion in a slightly disturbed 

viscous heat conducting gas (Trilling 1955); namely acoustic (pressure), 
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entropy (thermal) and vorticity (velocity) waves.  Among these, the flow-

sound interaction involved in the scattering of sound waves by vortices has 

received great attention.  Numerous attempts have been made to study sound 

scattering by vortices and the corresponding experimental, analytical and 

numerical results are well documented (Georges 1972, Müller and Matschat 

1959, Morse and Uno Ingard 1968, Colonius et al. 1994).  According to 

Colonius et al. (1994), the ratio of the incident acoustic wavelength to the size 

of the vortex is a critical parameter that has substantial effect on the scattered 

field.  Two types of limit are discovered based on this ratio (Ford and 

Llewellyn Smith 1999).  If the incident acoustic wavelength is small 

compared with the size of the vortex, it is referred to as the WKB limit, while 

it is referred to as the Born limit if the opposite is true.  With reference to 

Morse and Uno Ingard (1968), scattered wave is defined as the wave given 

rise by the difference of two waves; one resulting from the interaction 

between the acoustic wave and the obstacle, and the other is the undisturbed 

wave in the absence of the obstacle.  If scattering by an obstacle is closed to 

the WKB limit, only half of the scattered wave spreads out nearly 

isotropically from the obstacle, the other half interferes destructively with the 

incident plane wave behind it to form a sharp-edged shadow.  On the other 

hand, if it is closed to the Born limit, all of the scattered wave spreads out in 

every directions and no sharp-edged shadow is observed.  However, different 

scattered fields can be obtained if the incident acoustic wavelengths lie 

between the two limits; these scattering results are known as the intermediate 

cases.  The interaction for all three cases is non-linear in nature; however, it is 
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the most vigorous for the intermediate cases, as the incident acoustic 

wavelengths are comparable with the size of the obstacle. 

Study of sound scattering in the two limits has been carried out by 

various researchers.  Georges (1972) used high frequency ray tracing 

techniques for the WKB limit, while Müller and Matschat (1959) considered 

the Born limit using a distributed vortex with velocity discontinuities.  Their 

study was followed by the investigations of Ferziger (1974), O’Shea (1975), 

Howe (1975), Yates (1978) and Candel (1979).  Numerical and analytical 

solutions of the NS equations were obtained by Colonius et al. (1994) using 

distributed vortices with and without circulation.  Furthermore, Ford and 

Llewellyn Smith (1999) investigated the scattering of a plane acoustic wave 

by an axisymmetric vortex with localized vorticity, arbitrary circulation and 

small Mach numbers. 

On the other hand, thermal-acoustic interaction has drawn much 

attention among researchers in the aerospace industry.  This is due to the fact 

that instability can be introduced into the flow by a fluctuating transfer of heat 

(Mawardi 1956), causing and maintaining oscillation.  For example, the Rijke 

phenomenon.  Sound attenuation under favorable heat conditions (Bass 1981) 

is also made possible.  Most of the problems being studied, however, are 

concentrated in thermal induced noise or computation of thermal effect on the 

absorption ability of air (Bass 1981).  Trilling (1955) showed that an 

instantaneous temperature rise due to an infinitely long plane wall could 

induce an acoustic wave.  Farouk et al. (2000) investigated numerically a 

thermally induced acoustic wave in a two-dimensional cavity by either heating 
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up or cooling down the vertical walls of the cavity.  The Rijke phenomenon 

(1859), where sound is generated by airflow through a sufficiently long 

vertical open-ended tube with a hot wire net in its lower part, has been studied 

qualitatively by Rayleigh (1945) and quantitatively by Landa (1996). 

Apart from the above cases, sound scattering due to thermal acoustic 

interaction has not gained much attention, especially in a flowing medium.  In 

view of this, the ability of the improved modeled BE to correctly resolve the 

thermal scattering effect in a problem similar to the one of acoustic wave 

scattering by a zero circulation vortex in a quiescent medium will be 

investigated.  The thermal problem is set up by considering acoustic waves 

propagating towards a localized thermal disturbance with zero heat gain/loss.  

Thus, the scattering of the acoustic waves will be affected by the thermal 

disturbance alone.  Since there is no mean flow present, the scattering effect is 

purely due to the thermal field generated by the localized thermal disturbance.  

Therefore, this problem is set up with much similarity to the scattering of 

acoustic waves by a zero circulation vortex. 

In principle, this problem could be made even simpler by considering 

the line heat source to extend to infinity, thus the problem will become 2-D in 

nature and by further assuming the quiescent medium to be isothermal.  Thus 

formulated, the thermal acoustic scattering problem is very similar to the 

vortex scattering problem treated by numerous researchers and briefly 

discussed above.  Furthermore, the heat conduction solution in the absence of 

an incident acoustic wave could be obtained and the thermal effect on the 

scattering of the acoustic wave could be easily delineated.  One would have 
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thought that a classic solution of this relatively simple problem would be 

available in the literature; however, after extensive search, no such solution 

was found.  In order to verify the numerical solution obtained by solving the 

modeled BE, an analytical solution would be most desirable.  Therefore, this 

chapter and the succeeding one would be devoted to a search for an analytical 

solution of this thermal scattering of acoustic waves by a localized thermal 

disturbance.  These two chapters are organized as follows.  A theoretical 

solution of the acoustic scattering problem will be attempted in this chapter 

and serves as a foundation for the validation of the improved modeled BE.  

The numerical solution of the modeled BE using either the lattice method or 

gas-kinetic method would be obtained for comparison in the chapter following 

this one. 

5.2 Theoretical Solution of the Acoustic Scattering Problem 

The acoustic scattering problem consists of two main components: the 

localized thermal disturbance and the incident acoustic waves.  Originally, a 

line heat source was assumed for the acoustic scattering problem.  Difficulties 

were encountered in the course of attempting to obtain an analytical solution 

to the steady state thermal problem.  The theoretical solution proofed to be 

quite difficult, if not impossible.  In the following, it would be shown that a 

line heat source is not quite suitable for the acoustic scattering investigation, 

because a steady state solution to the thermal problem could not be obtained 

analytically.  Consequently, a distributed thermal disturbance was attempted.  

A distributed thermal disturbance is obtained by structuring the temperature 

distribution, such that the overall heat loss/gain would be zero (similar to the 
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case of a zero circulation vortex where lift is absent), and the distributed 

thermal disturbance is therefore stationary with respect to time for the ease of 

steady state solution calculation.   This model for the thermal disturbance 

proofed to be quite manageable for the acoustic scattering problem and it was 

feasible to derive a steady state solution for the thermal problem.  The 

corresponding sketch for the acoustic scattering problem is shown in Figure 

5.1. 

In the following analysis, the variables are made dimensionless using 

the following characteristic scaling parameters (dimensional quantities are 

denoted by an asterisk, *): 

Length scale: wavelength of the incident pressure disturbance, L  

Velocity scale: speed of sound, ∞a  where 
∞

∞
∞∞ ==

ρ

γ
γ

P
RTa

2  

Time scale: 
L

a∞

 

Temperature scale: T∞ 

Density scale: ρ∞ 

With these characteristic scaling parameters, the following 

dimensionless variables can be defined.  They are 

Density: ρ =
ρ*

ρ∞

 

Temperature: 
∞

=
T

T
T

*

 

Pressure: P =
P

*

ρ∞a∞
2
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Two regions can be identified for the acoustic scattering problem, 

namely the inner or scattered region, and the outer or incident wave region.  

The theoretical solution would be obtained by asymptotic analysis, in which 

the inner solution is matched with the outer one at the interface.  The 

corresponding regions are analyzed in the following subsections. 

5.2.1 Theoretical Solution for a Localized Thermal Disturbance in a 

Quiescent Environment 

In a quiescent environment, the localized thermal disturbance is 

governed by a set of time independent non-dimensional conservation laws; 

these are the conservation laws for mass, linear momentum and energy.  In 2-

D polar coordinates, they can be written as 

( )
0=+

∂

∂

r

v

r

v rr ρρ
    ,                 (5.1) 

rrr

p

r

v
v rrrrr

r

σσ
ρ +

∂

∂
+

∂

∂
−=

∂

∂
    ,               (5.2) 

QT
r

v

r

v
p

r

T
vc rr

rv +∇+







+

∂

∂
−=

∂

∂ 2κρ     ,              (5.3) 

where ρ  is density, rv  is the radial velocity, p is pressure, rrσ is the shear 

stress, T is temperature, κ is the coefficient of heat conduction, and ( )rQQ =  

is the thermal disturbance distribution. 

The steady state solution of equations (5.1), (5.2) and (5.3) can be 

assumed to be 

0=rv ; ∞= pp ; ( )rTT = ; ( )
( )rTR

p
r ∞== ρρ     .             (5.4) 
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It can be shown that equations (5.1) and (5.2) are identically satisfied 

and equation (5.3) is reduced to 

( )( ) ( )
κ

rQ
rT −=∇ 2  or 

( )( ) ( )
κ

rQ

dr

rTd
r

dr

d

r
−=







1
 

Integrating once gives 

( ) ( ) ''
r

'

drr
rQ

dr

rTd
r ∫−=

0 κ
 

Integrating again gives 

( ) ( ) ( )
∞

∞

∫ ∫∫ ∫ ++−= Tdrr
k

rQ

r
drr
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rQ

r
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''
r

""
"

'

r r
""

"

' 0 00 0
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( )
∞

∞

∫ ∫ +−= Tdrr
k

rQ

rr

r
""

"

'

'

0

1
    .               (5.5) 

For a line heat source, 

( ) ( )
r

r
rQ

π

δ

4
=     .                 (5.6) 

Substitute equation (5.6) into equation (5.5) gives 

( ) ( ) ∞

∞

∞

∞

+=+= ∫ TrlnTdr
r

rT
r

r

'

' πκπκ 4

1

4

11
    . 

As ∞→r , ( )rln  becomes unbounded and therefore the steady state 

solution cannot be obtained by assuming a line heat source given by equation 

(5.6), or ( ) ( )
r

r
rQ

π

δ

4
= . 

In order to avoid the divergence as ∞→r , a distributed thermal 

disturbance with total source strength given by 

( ) 0
0

=∫
∞

rdrrQ     ,                 (5.7) 
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is assumed.  After some tedious algebra, the corresponding distributed thermal 

disturbance, ( )rQ , can be determined to be given by the following expressions 

(the corresponding distributions are shown in Figure 5.2): 

( )
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( ) ( )
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    ,             (5.8) 

where ;0.2;5.1;5.0 321 === rrr  

;5.0;6401.0;0.1 321 =≈= bbb  

( ) 5820.0111
0 ≈−= −−

eeC ; 476901 .C ≈ ; 217803 .C ≈  

In order to visualize sound scattering by this localized thermal 

disturbance, ( )rQ  is taken to be bounded at about 03.r = .  The corresponding 

temperature distribution is therefore determined by equation (5.5) and is 

shown in Figure 5.3; the density distribution is derived from 

( )
( )rTR

p
r ∞== ρρ  and is shown in Figure 5.4.  Thus derived, the localized 

thermal disturbance is without singularity at origin, and the divergency as 

∞→r  is avoided. 

5.2.2 Theoretical Solution for Acoustic Scattering by a Localized 

Thermal Disturbance 

In the absence of acoustic waves, the mean thermal field due to a 

localized heat source is given by 
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0== φvvr ; ∞= pp ; ( )
( )rTR

p
r ∞== ρρ  

The acoustic field is governed by the linearized Euler Equations (LEE).  

It is assumed that the distributed thermal disturbance is not affected by the 

incident acoustic waves.  In other words, the non-linear interaction between 

the incident sound waves and the localized thermal disturbance is assumed to 

be negligible, such that the LEE is valid for the theoretical analysis.  In polar 

coordinates, macroscopic properties ( )pvvr ,,, φρ  in the LEE can be 

expressed as 

0=
∂

∂
++

∂

∂
+
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∂
+

∂

∂

φ

ρ
ρ

ρ
ρ

ρ φv
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r     ,              (5.9) 
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ρ     ,               (5.10) 

φ
ρ φ

∂

∂
−=

∂

∂ p

rt

v 1
    ,               (5.11) 
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p rr     .             (5.12) 

Suppose the incident acoustic waves have a single frequency ω , a 

separation of variable technique can be used to factor out the time dependence.  

Consequently, ρ , rv , φv  and p can be expressed as 

( )
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where ρ̂ , rv̂ , φv̂  and p̂ are the total fluctuation of density, velocities in polar 

co-ordinates and pressure, respectively.  Equations (5.10), (5.11) and (5.12) 

form a closed system and ( )pvvr
ˆ,ˆ,ˆ φ  are expressed as 

r

p̂

i
v̂r

∂

∂
=

ρω

1
    ,               (5.14) 

φρω
φ
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∂
=

p̂

ri
v̂

1
    ,               (5.15) 
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r

v̂
pp̂i rr     .            (5.16) 

where ρ̂  can be determined subsequently by substituting the solution of 

pvvr
ˆ,ˆ,ˆ φ  into equation (5.10).  A single equation for p̂  can be obtained by 

substituting equations (5.14) and (5.15) into equation (5.16); the result is 
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As ∞→r , ∞→ ρρ , equation (5.17) can be written as 

0
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2     .          (5.18) 

In Cartesian coordinates, equation (5.18) becomes 

0
2

2

2

2

2

2

=+
∂

∂
+

∂

∂

∞

p̂
ay

p̂

x

p̂ ω
    .              (5.19) 

For a plane incident wave with amplitude A propagating in the x-

direction, the incident pressure can be written as 

x
a

i

i Aep̂ ∞=

ω

 (Cartesian coordinates)    ,    

  (5.20a) 
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ϕ
ω
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ω

mcos
a

r
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mm

m
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i ∑
∞

= ∞








== ∞

0

(Polar coordinates), (5.20b) 

where 








∞a

r
J m

ω
 is the Bessel function of order m, ,...3,2,1;2;10 === mmεε .  

The solution for p̂ in equation (5.17) can be obtained in three regions as 

follows: 

5.2.2.1 Solution for p̂  in region I - 1rr0 ≤< , ( )1r1 <<  

Suppose sp̂  is the scattered waves.  The solution for equation (5.17) 

can therefore be expanded in a Fourier series as 

( ) ϕmcosrfDp̂p̂p̂
m

mmsi ∑
∞

=

=+=
0

    .                                            (5.21) 

In order to determine ( )rfm , equation (5.21) is substituted into 

equation (5.17), with the coefficient of the Fourier cosine series set to zero.  

The result is 
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    ,                      (5.22) 

where mf  must be finite as 0→r . 

In region I, equation (5.22) is further reduced to  

0f
r
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dr
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−++ ω     ,          (5.22a) 

where 
( )

∞

=
p

0
2

2

0
γ

ωρ
ω  with solution for mf  is expressed as  

( ) m

m rrf = ,                   (5.22b) 
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which is used as the starting value for marching the solution from 1rr =  to 

2rr = .  Note that there is an arbitrary constant factor taken to be equal to 1 in 

this solution for mf , with the consequence being absorbed to the 

coefficient mD  which has to be determined.  

5.2.2.2 Solution for p̂  in region II - 21 rrr ≤<  

In this region, 2r is taken to be greater than, but close to 3.0, where the 

thermal disturbance is localized at 3r ≤ and the density is essentially at its 

uniform value outside this region. Again, p̂ can be expressed as equation 

(5.21) and mf  is obtained by solving equation (5.22).   

5.2.2.3 Solution for p̂  in region III - ∞<< rr2  

In this region, the scattered waves should be an outgoing wave which can be 

expressed as 

( ) ϕε mcosrfiAp̂
m

mm

m

s ∑
∞

=

=
0

    ,                                                      (5.23) 

where 

( )
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∞a

r
HBf mmm

ω1     .                                                                      (5.24) 

Here, mB  is a constant to be determined for every mode and ( )1
mH  is the 

Hankel function of the first kind (Abramowitz and Stegun 1965).  Therefore, 

p̂ in equation (5.17) is in the form: 
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Since ( ) ∞≈ ρρ r  in this region, equation (5.22) is reduced to  
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where 
( )

∞

=
p

r 2

22

1
γ

ωρ
ω  at 2rr = , providing an initial data for determining the 

constant mB .   

5.2.2.4 Patching of solutions for p̂ at 2rr =  

The solution of p̂ in equation (5.17) can be determined by patching the 

corresponding solutions obtained in region II and region III at 2rr = , where 

2r  is defined such that ( ) ∞≈= ρρρ 2r .  Combining equations (5.21) and 

(5.25), p̂ becomes 
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At 2rr = , mf and drdfm /  should be continuous, and the coefficients on the 

left hand side (LHS) and right hand side (RHS) of the cosine series should be 

equal for every mode.  Therefore, for ∞<≤ m0 , 
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In order to evaluate mf , the initial value problem is solved numerically 

using a 4th order Runge-Kutta Scheme.  At 1rr = , the solution of mf and 

drdfm / are obtained from equation (5.22b) and are used as initial values for 

marching to 2rr = .  

At 2rr = , both the Bessel function and the Hankel function can be 

determined, so that the unknown constants mB  and mD  are computed for 

every mode by solving equations (5.26) and (5.27).  The result is 
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The corresponding mf  is therefore determined for every mode 

( ∞<≤ m0 ), and the pressure distribution ( )rp̂  can be calculated. 

5.3 Discussion of Results 

Two limiting cases with different wavelengths, *λ , are attempted for 

the sound scattering problem.  Here, *λ is taken to be a dimensional parameter.  

For acoustic scattering problems, the resulting scattering pattern can be 

classified by the ratio between the incident acoustic wavelength, *λ , and the 

characteristic length of the obstacle (in this case the obstacle is the distributed 
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thermal disturbance).  In general, it can be defined by the Helmholz number 

lkH n = , where *
/k λπ2=  is the wavenumber and l is the characteristic 

length of the thermal disturbance.  Therefore, the two cases chosen are Case 

(1) 312 /H/l/ n

* === πλλ  and Case (2) 3102 /H/l/ n

* === πλλ . 

Since the distributed thermal disturbance is bounded at 03.r = , the 

appropriate characteristic length for the thermal disturbance should be l = r.  

The incident acoustic wavelength is *λ , therefore, nH  for Case (1) is 

( ) ππ 623 ==nH  and its corresponding value for Case (2) is 

ππ 6.05/3 ==nH .  The first case can be regarded as the short-wavelength (or 

high frequency) limit or the WKB limit, and the second case can be referred to 

as the long-wavelength (or low frequency) limit or the Born limit.  Since the 

non-linear interaction is not accounted for by the theoretical solution, the 

intermediate cases, whose non-linear interaction should be taken account for, 

are not presented in this chapter.  The theoretical solution for the acoustic 

scattering problem is obtained numerically with incident acoustic wave 

amplitude specified as 4101 −×=A .  The centre of the distributed thermal 

disturbance is located at ( ) ( )0,0, =yx  as shown in Figure 5.1.  Since the 

wavelength of the incident acoustic wave is the characteristic length, cases 

with different *λ  are made by re-scaling the size of the distributed thermal 

disturbance computationally.  Therefore, sizes of the computational domain 

should be the same for both cases, while the physical phenomena illustrated 

by different λ  are accomplished by re-scaling the size of the distributed 

thermal disturbance.  However, the computational domain has to be big 
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enough to allow the solution to be resolved accurately.  These two cases are 

discussed below. 

Case (1) 31 /=λ  

 

The grid sizes are specified as 2105 −×== yx ∆∆  and there are a total 

number of grid points of 400400×  in the computational domain.  This choice 

is equivalent to a physical domain size of 1010;1010 ≤≤−≤≤− yx .  The 

incident acoustic wave is specified at 10−=x .  The initial conditions of the 

pressure and density of the incident acoustic waves, ip̂  and iρ̂ , are shown in 

Figure 5.5(a) and 5.6(a), respectively. 

In this case, the radius of the distributed thermal disturbance is 3 times 

the incident acoustic wavelength, i.e., 31 /r/
* =λ ; therefore, it can be 

regarded as the WKB limit.  According to Morse and Uno Ingard (1968), this 

is not a common case in sound scattering.  However, it is expected that the 

scattering behavior would be distinct from that for long wavelength limit.  It is 

therefore worth study both short and long wavelength limit for better 

understanding of this acoustic scattering problem. 

The contour of the resulting pressure fluctuation p̂  is shown in Figure 

5.7(a).  As shown in Figure 5.7(a), a sharp-edged shadow is created behind the 

distributed thermal disturbance for this short-wavelength scattering problem.  

The presence of a sharp-edged shadow in the forward scattering direction 

(downstream direction) agreed with the theoretical prediction of sound 

scattering in the short-wavelength limit (Morse and Uno Ingard 1968).  It is 

stated that for this short-wavelength limit (WKB limit), the sharp-edged 
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shadow formed behind the obstacle (distributed thermal disturbance) is 

resulted from the interaction between the scattered wave and the undisturbed 

plane acoustic waves behind the obstacle.  The scattered wave is defined as 

the “interfering wave”, which interferes destructively with the undisturbed 

plane acoustic waves downstream. This interfering wave makes up half of the 

total scattered wave, where the other half regarded as “reflected waves” 

spread out nearly uniformly in all directions. 

The contour of the resulting density fluctuation ρ̂  is shown in Figure 

5.8(a).  With reference to equations (5.9) to (5.12) ρ̂ap̂ 2
∞= , therefore, the 

scattering pattern of ρ̂  is the same as that for p̂ .  The contour of the resulting 

temperature fluctuation T̂  is obtained via the equation of state and is shown in 

Figure 5.9(a). 

The 2-D contours and the directivity pattern of the scattered pressure 

level sp̂  are shown in Figures 5.10(a) and 5.11(a), respectively.  The 

corresponding variation of the scattering amplitude from θ  = 0 to θ  = π  

along radii originated from the center of the thermal disturbance is illustrated 

in Figures 5.12(a) to 5.12(g).  It can be clearly seen that peak scattering occurs 

along the axis of symmetry of the distributed thermal disturbance, 

accompanied by secondary peaks at approximately θ = 
6

π
± , with scattering 

amplitudes about half of that along the axis of symmetry.  The reflection of 

the scattering waves is not significant for this WKB limit. 

The 2-D contours and the directivity pattern of the scattered density 

level sρ̂  are shown in Figures 5.14(a) and 5.15(a), respectively.  
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Since si p̂p̂p̂ += , si
ˆˆˆ ρρρ +=  and ii

ˆap̂ ρ2
∞= , the resulting directivity of sρ̂  

has the same amplitude as that for sp̂ . 

The 2-D contours and the directivity pattern of the scattered 

temperature level sT̂  are shown in Figures 5.16(a) and 5.17(a), respectively.  

The corresponding variation of the scattering amplitude from θ  = 0 to θ  = π  

along radii originated from the center of the thermal disturbance is illustrated 

in Figures 5.18(a) to 5.18(g).  The directivity pattern for sT̂  is similar to that 

for sp̂  and sρ̂ .  However, the order of magnitude of the scattered temperature 

is 510− , which is 410−  times the temperature variation of the distributed 

thermal disturbance (where the thermal difference within the distributed 

thermal disturbance has an order of magnitude of 110− ). 

The directivity pattern for the short-wavelength limit is found to be 

similar to that of sound scattering by a vortex pair composed of two Oseen 

vortices of opposite circulation (Berthet et al. 2000).  However, no details of 

the theoretical derivation of the corresponding sound scattering problem was 

given in their paper, therefore, a quantitative comparison is not possible at this 

time. 

Case (2) 310 /=λ  

 

The grid sizes are given by 2105 −×== yx ∆∆  with a specified number 

of grid points 400400×  inside the computational domain.  Re-scaling the size 

of the distributed thermal disturbance by 1/10 times that for Case 1, therefore, 

the computational domain represents a physical domain with size given by 
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100100;100100 ≤≤−≤≤− yx .  The incident acoustic wave is specified at 

100−=x .  The pressure and density of the incident acoustic waves, ip̂  and 

iρ̂ , are illustrated in Figure 5.5(b) and 5.6(b), respectively. 

In this case, the radius of the distributed thermal disturbance is about 0.3 times 

the incident acoustic wavelength and can be regarded as the long wavelength 

limit, i.e. the Born limit.  According to Morse and Uno Ingard (1968), this is 

often the case for sound scattering.  Therefore, it is of interest to study this 

long wavelength limit for practical reasons. 

Unlike Case (1) for short wavelength, the scattered waves spread out 

in all directions as “reflected waves”.  Since the interfering wave is negligible 

in this long wavelength limit, no sharp-edged shadow is expected in the 

scattered field.  The corresponding contour of the resulting fluctuation of 

pressure p̂ , density ρ̂  and temperature T̂  are shown in Figures 5.7(b), 5.8(b) 

and 5.9(b) respectively.  It can be seen from the figures that the fluctuations 

are quite uniform.   

The scattered pressure sp̂  and the corresponding directivity pattern are 

shown in Figure 5.10(b) and 5.11(b).  The scattered pressure spreads more or 

less uniformly in all directions, with the peak amplitude at the immediate 

wake region of the distributed thermal disturbance.  As shown in the 2-D 

contour plots, there is a phase change at 
2

π
θ ±= .  Maximum amplitudes are 

reported at around 0=θ  and decreases to its minimum at 
2

π
θ ±=  and 

increases again to its secondary peak at πθ = .  This indicates that the 
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“reflected” portion of the scattered wave is significant for this long 

wavelength limit or Born limit.  Along the axis of symmetry of the distributed 

thermal disturbance in the forward scattering direction, there is a noticeable 

drop in sp̂ .  This “dip” in sp̂  is detected throughout the x-axis downstream of 

the distributed thermal disturbance.  A directivity plot for 3=*
/r λ  for sp̂  is 

shown on figure 5.11(c).  It shows that as *
/r λ  decreases, more “dips” are 

detected around the x-axis downstream of the distributed thermal disturbance. 

The 2-D contours and the directivity pattern of the scattered density sρ̂  

are illustrated in Figures 5.14(b) and 5.15(b), respectively.  Again, similar 

fluctuation pattern is expected for sρ̂  and sp̂ , in accordance with the 

isentropic relations ρ̂ap̂ 2
∞=  and ii

ˆap̂ ρ2
∞= . 

The scattered temperature sT̂  is obtained by the equation of state.  The 

corresponding 2-D contours and the directivity plot are shown in Figures 

5.16(b) and 5.17(b), respectively.  Again, the scattered waves spread out 

uniformly with maximum amplitude around 0=θ  with a drop at 0=θ .  

There is a noticeable phase change at 
2

π
θ ±= .  The scattered amplitude 

decreases to its minimum at 
2

π
θ ±=  and increases again to its secondary 

peak at πθ = .  Similar to the explanation for the scattered pressure and 

density, there is significant “reflection” of scattered waves for this long 

wavelength limiting case.  As for the scattered pressure, sp̂ , more “dips” are 

detected around 0=θ  as *
/r λ  decreases, as shown in Figure 5.17(c).   
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5.4 Summary 

In this chapter, the theoretical solution for sound scattering by a 

distributed thermal disturbance with zero heat loss/gain is obtained by 

patching method.  The distributed thermal disturbance was so structured that a 

steady state solution can be obtained for this acoustic scattering problem.  

Two cases, namely the short wavelength or WKB limit, and the long 

wavelength or Born limit, are investigated.  Different scattering pattern were 

obtained for both limits, due to the difference in scattered waves distributed in 

all directions resulting from the interaction between the incident sound waves 

and the distributed thermal disturbance. 

For the former case, a shadow with sharp edge is observed behind the 

distributed thermal disturbance along its x-axis of symmetry in the forward 

scattering direction, while it is absent in the latter one.  The difference was 

shown clearly on the directivity plots, in which reflection is insignificant for 

the short wavelength limit case while important for the long wavelength limit 

one. 

As seen in 5.2.2.4, patching was carried out by choosing 2r , where 

2r was taken to be greater than, but close to 3.0.  In this chapter, 2r  was 

chosen to be 5 for patching.  To ensure that the theoretical solution is not 

sensitive to the selected value of 2r , patching was accomplished by using 2r  

equals to 7 and 10, and no significant difference could be detected for the 

results obtained. 
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In the next chapter, the same cases would be studied numerically by 

solving the modeled BE.  The heat resolving ability of the modeled BE could 

then be validated. 
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Figure 5.1 Sketch of the acoustic scattering problem 

 

 

Figure 5.2 Thermal disturbance distribution along a radial direction 
(dimensionless) 
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Figure 5.3 Temperature distribution of the distributed thermal disturbance 
along a radial direction (dimensionless) 

 

Figure 5.4 Density distribution of the distributed thermal disturbance along a 
radial direction (dimensionless) 
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(a) 

 

(b) 

 

Figure 5.5  Pressure distribution of the incident acoustic wave along x-axis 
(dimensionless) (a) 31 /=λ ; (b) 310 /=λ . 
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(a) 

 

(b) 

 

 

Figure 5.6  Density distribution of the incident acoustic wave along x-axis 
(dimensionless) (a) 31 /=λ ; (b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 5.7 Pressure fluctuation of the acoustic scattering problem, p̂ (a) 

31 /=λ ; (b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 5.8 Density fluctuation of the acoustic scattering problem, ρ̂  (a) 

31 /=λ ; (b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 5.9  Temperature fluctuation of the acoustic scattering problem, T̂  
(a) 31 /=λ ; (b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 5.10 Scattered pressure distribution, sp̂ (2D contour) (a) 31 /=λ ; (b) 

310 /=λ  
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(a) 

 

(b) 

 

Figure 5.11 Scattered pressure level of the acoustic scattering problem, sp̂  

at 7=*
/r λ (a) 31 /=λ ; (b) 310 /=λ  
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Figure 5.11(c) Scattered pressure level of the acoustic scattering problem, sp̂  

at 3=*
/r λ  for 310 /=λ  
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Figure 5.12(a) Scattered pressure sp̂  at 0=θ  for 31 /=λ  

 

 

Figure 5.12(b) Scattered pressure sp̂  at 6/πθ =  for 31 /=λ  
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Figure 5.12(c) Scattered pressure sp̂  at 3/πθ =  for 31 /=λ  

 

 

Figure 5.12(d) Scattered pressure sp̂  at 2/πθ =  for 31 /=λ  
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Figure 5.12(e) Scattered pressure sp̂  at 32 /πθ =  for 31 /=λ  

 

Figure 5.12(f) Scattered pressure sp̂  at 65 /πθ =  for 31 /=λ  
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Figure 5.12(g) Scattered pressure sp̂  at πθ =  for 31 /=λ  

 

Figure 5.13(a) Scattered pressure sp̂  at 0=θ  for 310 /=λ  
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Figure 5.13(b) Scattered pressure sp̂  at 6/πθ =  for 310 /=λ  

 

Figure 5.13(c) Scattered pressure sp̂  at 3/πθ =  for 310 /=λ  
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Figure 5.13(d) Scattered pressure sp̂  at 2/πθ =  for 310 /=λ  

 

Figure 5.13(e) Scattered pressure sp̂  at 32 /πθ =  for 310 /=λ  
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Figure 5.13(f) Scattered pressure sp̂  at 65 /πθ =  for 310 /=λ  

 

Figure 5.13(g) Scattered pressure sp̂  at πθ =  for 310 /=λ  
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(a) 

 

(b) 

 

Figure 5.14 Scattered density distribution, sρ̂ (2D contour) (a) 31 /=λ ; (b) 

310 /=λ  
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(a) 

 

(b) 

 

Figure 5.15 Scattered density level of the acoustic scattering problem, sρ̂  at 

7=*
/r λ (a) 31 /=λ ; (b) 310 /=λ  



 

 139 

 

(a) 

 

(b) 

 

Figure 5.16 Scattered temperature distribution, sT̂  (2D contour) (a) 31 /=λ ; 

(b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 5.17 Scattered temperature level of the acoustic scattering problem, 

sT̂  at 7=*
/r λ (a) 31 /=λ ; (b) 310 /=λ  
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Figure 5.17(c) Scattered temperature level of the acoustic scattering problem, 

sT̂  at 3=*
/r λ  for 310 /=λ  



 

 142 

 

 

Figure 5.18(a) Scattered temperature sT̂  at 0=θ for 31 /=λ  

 

Figure 5.18(b) Scattered temperature sT̂  at 6/πθ =  for 31 /=λ  
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Figure 5.18(c) Scattered temperature sT̂  at 3/πθ =  for 31 /=λ  

 

 

Figure 5.18(d) Scattered temperature sT̂  at 2/πθ =  for 31 /=λ  
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Figure 5.18(e) Scattered temperature sT̂  at 32 /πθ =  for 31 /=λ  

 

 

Figure 5.18(f) Scattered temperature sT̂  at 65 /πθ =  for 31 /=λ  
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Figure 5.18(g) Scattered temperature sT̂  at πθ =  for 31 /=λ  

 

Figure 5.19(a) Scattered temperature sT̂  at 0=θ  for 310 /=λ  



 

 146 

 

Figure 5.19(b) Scattered temperature sT̂  at 6/πθ =  for 310 /=λ  

 

Figure 5.19(c) Scattered temperature sT̂  at 3/πθ =  for 310 /=λ  
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Figure 5.19(d) Scattered temperature sT̂  at 2/πθ =  for 310 /=λ  

 

Figure 5.19(e) Scattered temperature sT̂  at 32 /πθ =  for 310 /=λ  
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Figure 5.19(f) Scattered temperature sT̂  at 65 /πθ =  for 310 /=λ  

 

Figure 5.19(g) Scattered temperature sT̂  at πθ =  for 310 /=λ  
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Chapter 6 

Numerical Solution of Sound Scattering by a Localized 

Thermal Disturbance Using a Modeled BE Approach 

6.1 Background 

Recovery of thermal conductivity for aeroacoustic problems and the 

derivation of a correct thermal conductivity using Eucken’s Model have been 

accomplished in the Chapter 4.  In order to illustrate the ability to resolve 

thermal effect in the study of aeroacoustic problems by the modeled BE a case 

with thermal scattering of acoustic waves by a localized thermal disturbance 

has been selected for investigation.  An analytical solution has been 

established in Chapter 5 as the basis for verification of the numerical solution, 

which is to be obtained by solving the modeled BE in this chapter. 

As mentioned in Chapter 1, there are two common numerical schemes 

for solving the modeled BE, namely the lattice Boltzmann method (LBM) and 

the gas-kinetic scheme (GK/BE).  In the preceding chapters, it has been shown 

that a set of unsteady NS equations was recovered with the macroscopic 

dimensionless numbers (Re, M and Pr) deduced from the numerical solution 

of the modeled BE.  This was accomplished by invoking appropriate physical 

models for the transport coefficients.  Although a two-relaxation-time 

approach based on Li et al.’s model (2006) was adopted in the recovery of a 

correct shear viscosity and thermal conductivity, the improved modeled BE 

can be solved using different numerical schemes as it is based on fundamental 

physical consideration.  Besides, the gas-kinetic scheme has not yet been 

extended to tackle with any aeroacoustics problems.  In view of this, the gas-
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kinetic scheme is adopted to solve the improved modeled BE for the thermal 

acoustic scattering problem in this chapter.  The numerical solution obtained 

by gas-kinetic scheme is therefore validated via comparison with the 

analytical results in the last chapter.  In the following, a brief description of 

the gas-kinetic scheme proposed by Xu (2001) is presented.  Further details 

are available in Xu and He (2003). 

6.2 Gas-kinetic Scheme 

The gas-kinetic scheme being adopted for the numerical simulation of 

the thermal acoustic scattering problem is based on the formulation given in 

Su et al. (1999) and Xu and He (2003).  Due to the fact that the physical 

background of the gas-kinetic BGK scheme is similar to that of the LBM 

(both numerical schemes are developed to solve the modeled BE), focus of 

this section would be put on outlining the numerical details of the gas-kinetic 

BGK scheme. 

The gas-kinetic BGK scheme is a finite volume scheme from which 

the mass, momentum and energy fluxes are calculated across cell interfaces.  

In Xu and He’s model (2003), the energy equation was not solved because the 

formulation was intended for incompressible isothermal flow simulations.  

Since a significant temperature gradient is present in the thermal acoustic 

scattering problem, the energy equation has to be included in the gas-kinetic 

BGK scheme.  This is accomplished by making reference to the model of Su 

et al. (1999) for low-speed flow simulations. 

For a 2-D problem, the equilibrium distribution function of the BGK-

type model in the gas-kinetic BGK scheme can be expressed as 
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( )
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eq yxef     .                      (6.1) 

The expression is similar to that in equation (2.2) in Chapter 2.  Here, 

RT2

1
=β  and ςςςς is a vector in K dimensions where K can be regarded as the 

“implicit” degree of freedom.  For example, for a 2-D problem with diatomic 

gas, the “explicit” degree of freedom is the translational ones in the x- and y-

direction.  The corresponding “implicit” degrees of freedom are the 

translational one in the z-direction, as well as two rotational degrees of 

freedom for diatomic gas.  Therefore, 2χχχχ can be expressed as 

2χχχχ 22
2

2
1 K... χχχ +++= , where 3=K  for a 2-D problem with diatomic gas. 

As outlined in Chapter 2, the 2-D macroscopic conservation equations 

are derived from the modeled BE by introducing four (for 2-D problems) 

collision invariants αϕ ( )3210 ,,,=α , where 
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1
1 χξξϕξϕϕ ++=== yx, ;;  for the 2-D gas-kinetic BGK scheme 

via the following equations 
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The mass, momentum and energy fluxes are obtained as follows: 
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According to Su et al. (1999), the finite volume gas-kinetic BGK 

scheme is derived by integrating the modeled BE over the area of the 

numerical cell ( dxdy ) and further integrate the results with respect to time 

( dt ) as follows 

Ξϕ
τ

Ξϕ αα d
ff

df
t

f eq

∫∫ 






 −
−=








∇⋅+

∂

∂
ξξξξ     ,             (6.4) 

where dxdydtdddd yx χξξΞ = .  For a cell Ω  with boundary Ω∂ , the 

integrating moments of f can be expressed as follows 

∫∫
∂

=⋅+
Ω

α

Ω

α σϕϕ 0dfddVfd
dt

d
nξξξ     .              (6.5) 

where dV and σd represent the volume integral and the surface integral at a 

cell Ω  with boundary Ω∂ . 

The resulting finite volume scheme at numerical cell Ω  is constructed 

as 

∑∫
=

+ ⋅=−
4

1 0

1 1

k

t

kk

nn
dtlF

S
WW

∆

Ω

ΩΩ
∆

vv
    ,               (6.6) 

where Ω∆S  is the area of the numerical cellΩ ; nn
ttt −= +1∆ ; kF

v
is the flux 

across cell interfaces normal to k
v

; kl
v

is the length of the cell interface with 

normal direction k
v

.  In order to march the macroscopic solutions from n
t  to 

1+n
t , kF

v
 in equation (6.6) should be obtained via equation (6.3).  In other 

words, the distribution function f  presents in equation (6.3) has to be 

determined.  The corresponding calculation method based on models 

developed by Su et al. (1999) and Xu (2003) will be highlighted. 
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A formal integral solution for the distribution function in the modeled 

BE is expressed in the form 

( ) ( ) ( ) ( )ξξxξxξx ,tfedtet,,ftt,,f
/t'/ttt

tt

t

''eq '

∆
τ

∆ τ∆τ∆
∆

−+=+ −−+−
+

∫ 0

1
,           (6.7) 

where ( )'' ttt −+−= ∆ξxx  is the trajectory of a particle motion (Kogan 

1969).  In order to obtain the solution of f , the eqf  and 0f  on the right hand 

side of equation (6.6) have to be determined.  Suppose there is a cell 

interface 21 /ix +  between two adjacent cells ix and 1+ix .  At the beginning of 

each time step ∆t (assume 0=t  for ease of demonstration), the initial 

distribution function ( )00 =t,,f ξx  around 21 /ix +  can be expressed as 

( ) ( )00 210 ,,f,,f /i

eq
ξxξx +=  

     ( ) ( ) ( ) ( )00 212121
1

,,fxx,,f /i

eq

/i/i ξxξx +++ ∇⋅−++  ,             (6.8) 

where ( ) eqfff −=1  is defined as the non-equilibrium distribution function. 

In order to solve equation (6.7), eqf , ( )1f  and gradients of eqf  are calculated 

by following the procedure; the first step is to determine eqf  and its gradients, 

then the deviation distribution ( )1f  can be determined next.  These procedures 

are briefly described below. 

(1) eqf  and its gradients 

As shown in Chapter 2, the mesoscopic distribution function can be 

connected with the macroscopic variables by integrating the moments of f .  

Due to the fact that ( )∫ =−− 0
1

yx

eq
ddff ξξ

τ
 (compatibility condition), the 

connection can also be made by integrate moments of eqf , i.e., 
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( )∫ ++ ==
T

/it/iyx

eq evuWddf
2121 ρρρρςξξϕα     ,            (6.9) 

where 21 /iW +  is the macroscopic variables at cell interface 21 /ix + .  According 

to Xu (2003), 21 /iW +  and its gradients can be obtained from the discretized 

initial data iW  by a third-order central differencing interpolation scheme, i.e. 
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    .          (6.11) 

Therefore, eqf  is determined by substituting values from equation (6.10) into 

equation (6.8), using the expression of eqf  in equation (6.1).  On the other 

hand, the gradients of eqf  is obtained by taking derivatives of equation (6.9) 

with values of 
21 /idx

dW

+









 obtained from equation (6.11) substituted into it. 

(2) Determination of ( )1f  

The non-equilibrium distribution function, ( ) eqfff −=1  can be further 

expressed as 

( ) ( ) eq

yx

eq
eq

fAbaf
t

f
f ++−=
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∂

∂
−= ξξττ ξ

1     ,          (6.12) 

where eq
eq

eq
eq

eq
eq

bf
y

f
af

x

f
Af

t

f
=

∂

∂
=

∂

∂
=

∂

∂
;;  and baA ,,  have expressions 

given by αααααα ψψψ bb;aa;AA ===  for 4321 ,,,=α .  Furthermore, 

baA ,,  can be determined through the following mathematical manipulation, 

or 
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Since 

( ) ( )∫ ∫ =++−= 01 ςξξξξτϕςξξϕ αα ddfAbaddf yx

eq

yxyx     ,   (6.13c) 

therefore, 

( )∫ ∫ +−= ςξξξξϕςξξϕ αα ddfbaddAf yx

eq

yxyx

eq     .       (6.13d) 

The coefficients baA ,,  can be determined from the above relations (Xu 

2001), and equation (6.8) becomes 

( ) ( )[ ]byaxAbaft,,f yx

eq ++++−= ξξτ10 ξx     ,             (6.14) 

The remaining unknown in equation (6.7) is eqf  around the cell interface 

21 /ix +  at 0=t .  This can be determined by expanding eqf  about t = 0 as 
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( )Atbyaxf eq +++= 1     .             (6.15) 

Substitute equations (6.14) and (6.15) into equation (6.7), the distribution 

function at cell interface 21 /ix +  becomes 

( ) ( )[ ]AtAbaft,,f yx

eq +++−=+ ξξτ1ξx 1/2i     .           (6.16) 

Substitue f  in equation (6.16) into equation (6.3), the mass, 

momentum and energy fluxes across the cell interface 21 /ix +  can be calculated.  

Marching from nt =  to 1+= nt , equation (6.6) becomes: 
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Hence the density, momentum and energy inside the computational domain 

for every time step can be obtained. 

The time matching is based on the CFL condition in accordance with 

Su et al. (1999).  The ratio of the time step to the relaxation time is specified 

in the range 100/10 <∆≤ efft τ .  The CFL number is set at 0.45 for the 

numerical simulation. 

An attempt has been made to correct the Prandtl number, Pr, for the 

gas-kinetic scheme (Xu 2001).  However, the approach is based on numerical 

consideration only.  In this chapter, the gas-kinetic scheme adopted would be 

modified, so that the Pr could be corrected by invoking the Eucken model as 

previously outlined in Chapter 3.  To avoid repetition, only the salient points 

for implementation of the Prandtl number correction would be highlighted. 

To get a correct Pr, the thermal diffusivity, 'κ  is first corrected by the 

Eucken factor, Ef , based on the Eucken model using the following equation 

( ) effE

V

E ef
c

f τργ
κ

µκ 1' −===     ,                        (6.18) 

where 96.1≈Ef  for air.  The Pr for air is therefore obtained via its relation to 

Ef  and the result is 

71.0≈===
E

VP

f

cc
Pr

γ

κ

µγ

κ

µ
    .             (6.19) 
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The thermal acoustic scattering problem investigated in this chapter 

only has open boundary; therefore, non-reflecting boundary conditions are 

required for its successful simulation.  Since the gas-kinetic scheme and the 

LBM are different numerical schemes, non-reflecting boundary conditions 

should be tailored for each numerical scheme, respectively.  Effect of different 

non-reflecting boundary conditions on the simulated results has been 

thoroughly investigated in Chapter 4 for the LBM.  In this chapter, however, 

the main purpose is to demonstrate the thermal effect resolving ability of the 

modeled BE.  Consequently, detailed studies on the appropriate non-reflecting 

boundary conditions would not be conducted.  Instead, a viable non-reflecting 

boundary condition based on the one-dimensional Riemann invariants would 

be adopted for the incoming and outgoing boundaries on the left and right 

hand sides of the computational domain, while a zero-order extrapolation 

method would be applied to the upper and lower boundaries. 

6.3 Numerical Simulation of Thermal Acoustic Scattering Problem 

In order to make meaningful comparison with the theoretical results 

presented in Chapter 5, a sound scattering problem by a distributed thermal 

disturbance with the same problem specifications as in Chapter 5 (Figure 5.1) 

is studied.  Numerical simulations for both the short wavelength limit (WKB 

limit) and the long wavelength limit (Born limit) are conducted using the gas-

kinetic scheme described above and the simulated results are compared with 

the analytical solutions obtained in Chapter 5.  Therefore, numerical solutions 

for the thermal acoustic scattering problem are obtained with amplitude of the 

incident acoustic wave given by 4101 −×=A , and the dimensions and 
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properties of the distributed thermal disturbance are taken to be the same as 

those specified in Chapter 5 (Figures 5.2, 5.3 and 5.4). 

6.3.1 Case (1) 31 /=λ  

The grid sizes are given by 2105 −×== yx ∆∆  with 400400×  grid 

points in the computational domain.  This specification is equivalent to a 

physical domain with size given by 1010;1010 ≤≤−≤≤− yx .  The incident 

acoustic wave is specified at 10−=x .  The pressure and density of the 

incident acoustic waves, ip̂  and iρ̂ , can be referred to Figure 5.5(a) and 

5.6(a), respectively. 

As mentioned in Chapter 5, this case can be regarded as the short 

wavelength or WKB limit.  The contours of the fluctuating pressure p̂ , 

density ρ̂  and temperature T̂  are shown in Figures 6.1(a), 6.2(a) and 6.3(a), 

respectively.  A shape-edged shadow is clearly shown in the wake region 

behind the distributed thermal disturbance.  The two-dimensional contour of 

the scattered pressure sp̂  deduced by taking the difference between the 

pressure fluctuation p̂  and the pressure of the incident acoustic waves ip̂  is 

shown in Figure 6.4(a).  As shown in Figure 6.5(a), peak scattering occurs 

along the x-axis behind the distributed thermal disturbance.  This is 

accompanied by secondary peaks at approximately θ = 
6

π
± .  The results 

show good agreement with the analytical solutions presented in the last 

chapter.  However, the amplitude of the peak and the secondary peak 

scattering are 41025.1 −×  and 41058.0 −× , respectively, and are smaller than 
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the corresponding values deduced from the analytical solution ( 41038.1 −×  and 

41062.0 −× , see Figure 5.11(a)).  The reduction in scattering amplitude can be 

explained by the non-linear interaction between the incident acoustic waves 

and the distributed thermal disturbance.  The modulation of the amplitude of 

the scattering waves, resulting from the non-linear thermal-acoustic 

interaction, is revealed by this one-step aeroacoustics simulation obtained by 

solving the improved modeled BE.  On the other hand, the distributed thermal 

disturbance is assumed to have negligible effect on the incident sound waves 

for the theoretical analysis. 

Apart from the good agreement of peak scattering with the analytical 

solution, numerical error in the form of high frequency oscillations is detected 

in Figure 6.5(a).  This numerical error can be explained by the fact that the 

non-reflecting boundary condition based on Riemann invariants is not truly 

non-reflecting for scattered waves with any angle of incidence approaching 

the outgoing boundaries.  In fact, the Riemann invariants are most effective 

for outgoing waves that are normal to the open boundaries only.  In this 1=λ  

case, most of the scattered waves are concentrated at the wake region of the 

distributed thermal disturbance.  As a result, most of the scattered waves exit 

the outgoing boundary at small angles of incidence; this means that the 

Riemann invariants are approximately valid and the scattering field is not 

much altered by the small amount of reflected waves bouncing back from the 

open boundaries. 

The corresponding variation of scattering amplitude from θ  equals to 

0 to π  along radius originated from the center of the thermal disturbance is 
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illustrated in Figures 6.6(a) to 6.6(g).  This dissection of scattered field with 

respect to different θ  shows clearly the modulation of scattering amplitude by 

the non-linear thermal-acoustic interaction and the numerical errors detected 

with increasing θ . 

The scattered density, sρ̂ , is obtained from is ρρρ ˆˆˆ −=  and is shown in 

Figure 6.8(a).  Theoretically, the amplitude of sρ̂  should be the same as sp̂ , 

due to the isentropic relation ( ) ( )sisi app ρρ ˆˆˆˆ 2 +=+ ∞ , where ip̂ and iρ̂  have 

the same amplitude.  Despite the numerical error resulting from the reflection 

of scattered waves by the open boundaries, the amplitude of sρ̂  in Figure 

6.9(a) matches with sp̂  in Figure 6.6(a).  Therefore, the isentropic relation 

between p̂  and ρ̂  is preserved by the gas-kinetic scheme. 

The scattered temperature sT̂  is evaluated from the equation of state, 

once sp̂  and sρ̂  are known.  The corresponding 2-D contour and the 

directivity plot are shown in Figures 6.10(a) and 6.11(a), respectively.  Again, 

the alteration of scattering amplitude due to the non-linear thermal-acoustic 

interaction is replicated as that shown by sp̂  and sρ̂ , with numerical error 

detected starting at 
18

π
θ ≥ . 

6.3.2 Case (2) 310 /=λ  

The grid size for this case is again chosen to be 2105 −×== yx ∆∆  

with the same number of grid points, i.e. 400400× , in the computational 

domain.  By re-scaling the size of the distributed thermal disturbance just as in 

Case (2) of the theoretical analysis, physically the computational domain 
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represents a size given by 100100;100100 ≤≤−≤≤− yx .  The incident 

acoustic wave is specified at 100−=x .  The pressure and density of the 

incident acoustic waves, ip̂  and iρ̂  can be deduced from Figure 5.5(b) and 

5.6(b), respectively. 

Since the radius of the distributed thermal disturbance is 0.3 times the 

incident acoustic waves, it can be regarded as the long wavelength or Born 

limit.  The contours of the fluctuating pressure p̂ , density ρ̂  and temperature 

T̂  are shown in Figures 6.1(b), 6.2(b) and 6.3(b), respectively.  No shape-

edged shadow is detected, instead the scattering waves spread out more or less 

uniformly at about
18

7

18

7 π
θ

π
≤≤− .  As shown in Figure 6.4(b) for the 

scattered pressure, sp̂ , the fundamental scattering field is replicated by the 

gas-kinetic scheme.  However, a significant reflection of the scattered waves 

is detected and captured in these 2-D contours, as well as in the directivity 

plot in the succeeding Figure 6.5(b).  Since the scattered waves enclosed a 

much wider angle (
18

7

18

7 π
θ

π
≤≤− ) compared to Case (1), the angle of 

incidence for the scattered wave exiting the open boundaries is too large.  

Therefore, Riemann invariants are not sufficient to guarantee true “non-

reflecting” boundary conditions for the scattered waves, and the scattered field 

is therefore superimposed by the reflected waves from the boundaries.  As a 

result, the fundamental scattering pattern can be recognized but the amplitude 

of the scattered waves is contaminated by numerical noise.  The phenomenon 

is revealed clearly by the variation of scattering amplitude for θ  ranging from 
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0 to π  along radii originated from the center of the thermal disturbance 

(Figures 6.7(a) to 6.7(g)). 

The 2-D contours and directivity plots for the scattered density sρ̂  are 

shown in Figures 6.8(b) and 6.9(b), respectively.  Since the scattered field is 

contaminated by the reflected waves from the boundaries, only the basic 

scattering pattern can be replicated but not the scattered amplitudes.  

Consequently, the isentropic relation cannot be deduced from the figures. 

Again, the scattering pattern can be seen from the 2-D contours for the 

scattered temperature sT̂ , while the scattering waves are superimposed with 

numerical noise as shown in Figure 6.11(b).  The same phenomenon can be 

seen from the variation of scattering amplitude for θ  ranging from 0 to π  

along radii originated from the center of the thermal disturbance (Figures 

6.13(a) to 6.13(g)). 

6.4 Summary 

The thermal effect resolving ability of the modeled BE is demonstrated 

by an investigation of a thermal acoustic scattering problem.  Two limiting 

cases 31 /=λ (short wavelength limit) and 310 /=λ  (long wavelength limit) 

are studied.  The gas-kinetic scheme was adopted as the numerical scheme 

used to solve the modeled BE.  The scheme is improved so that the Prandtl 

number, Pr, is corrected by invoking the Eucken model as highlighted in 

Chapter 3.  Open boundary conditions based on Riemann invariants (left and 

right boundaries) and zero-order extrapolation method (upper and lower 



 

 163 

boundaries) are invoked for the numerical simulations.  The numerical results 

obtained are compared with the analytical solutions obtained in chapter 5. 

For the 31 /=λ  case, the results show good agreement with the 

theoretical solutions.  Also, the non-linear thermal-acoustic interaction 

between the distributed thermal disturbance and the incident acoustic waves 

are appropriately revealed by this one-step aeroacoustic simulation, whereas 

the corresponding thermal-acoustic interaction is not considered in the 

analytical solutions, or any other two-step numerical schemes for aeroacoustic 

simulations.  The computational boundaries based on Riemann invariants are 

sensitive to the angle of incidence of the exiting waves.  Since the scattering 

waves are concentrated in the wake region of the distributed thermal 

disturbance, most of the scattered waves are exiting the non-reflecting 

boundaries with small angle of incidence at the open boundaries.  Therefore, 

both the scattering pattern and the amplitudes are preserved, and the 

discrepancy in scattering amplitudes between the numerical and the 

theoretical results could be attributed to the different physics embodied in the 

assumptions of the two approaches. 

For the 310 /=λ  case, due to the large obliqueness of the scattered 

waves propagating towards the exiting boundaries, only the fundamental 

scattering pattern is recognized, while the scattering amplitudes cannot be 

compared with that obtained from theoretical analysis as they are 

superimposed with the reflected waves from the open boundaries. 

So far only qualitative comparison has been made between the 

theoretical and numerical solutions obtained by GKS.  Quantitative 
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comparison between these two solutions are not suitable, unless an 

appropriate boundary condition is applied to the numerical scheme, such that 

the difference between two results are solely due to the non-linear effect 

accounted for by the one-step method, while it is neglected in theoretical 

solution by solving the linearized Euler equations. 
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(a) 

 

(b) 

 

Figure 6.1  Pressure fluctuation of the acoustic scattering problem, p̂  (a) 

31 /=λ ; (b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 6.2  Density fluctuation of the acoustic scattering problem, ρ̂  (a) 

31 /=λ ; (b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 6.3  Temperature fluctuation of the acoustic scattering problem, T̂  (a) 
31 /=λ ; (b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 6.4 Scattered pressure distribution (2D contour), sp̂  (a) 31 /=λ ; (b) 

310 /=λ  
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(a) 

 

(b) 

 

Figure 6.5  Scattered pressure level of the acoustic scattering problem, sp̂  

at 7=*
/r λ   (a) 31 /=λ ; (b) 310 /=λ  
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Figure 6.6(a) Scattered pressure sp̂  at 0=θ  for 31 /=λ  

 

 

Figure 6.6(b) Scattered pressure sp̂  at 6/πθ =  for 31 /=λ  
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Figure 6.6(c) Scattered pressure sp̂  at 3/πθ =  for 31 /=λ  

 

 

Figure 6.6(d) Scattered pressure sp̂  at 2/πθ =  for 31 /=λ  
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Figure 6.6(e) Scattered pressure sp̂  at 32 /πθ =  for 31 /=λ  

 

Figure 6.6(f) Scattered pressure sp̂  at 65 /πθ =  for 31 /=λ  
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Figure 6.6(g) Scattered pressure sp̂  at πθ =  for 31 /=λ  

 

 

Figure 6.7(a) Scattered pressure sp̂  at 0=θ  for 310 /=λ  
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Figure 6.7(b) Scattered pressure sp̂  at 6/πθ =  for 310 /=λ  

 

 

Figure 6.7(c) Scattered pressure sp̂  at 3/πθ =  for 310 /=λ  
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Figure 6.7(d) Scattered pressure sp̂  at 2/πθ =  for 310 /=λ  

 

 

Figure 6.7(e) Scattered pressure sp̂  at 32 /πθ =  for 310 /=λ  
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Figure 6.7(f) Scattered pressure sp̂  at 65 /πθ =  for 310 /=λ  

 

 

Figure 6.7(g) Scattered pressure sp̂  at πθ =  for 310 /=λ  
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(a) 

 

(b) 

 

Figure 6.8 Scattered density distribution (2D contour), sρ̂  (a) 31 /=λ ; (b) 

310 /=λ  
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(a) 

 

(b) 

 

Figure 6.9 Scattered density level of the acoustic scattering problem, sρ̂  at 

7=*
/r λ  (a) 31 /=λ ; (b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 6.10 Scattered temperature distribution (2D contour), sT̂  (a) 31 /=λ ; 

(b) 310 /=λ  
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(a) 

 

(b) 

 

Figure 6.11 Scattered temperature level of the acoustic scattering problem, 

sT̂  at 7=*
/r λ  (a) 31 /=λ ; (b) 310 /=λ  
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Figure 6.12(a) Scattered sT̂  at 0=θ  for 31 /=λ  

 

Figure 6.12(b) Scattered temperature sT̂  at 6/πθ =  for 31 /=λ  
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Figure 6.12(c) Scattered temperature sT̂  at 3/πθ =  for 31 /=λ  

 

 

Figure 6.12(d) Scattered temperature sT̂  at 2/πθ =  for 31 /=λ  
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Figure 6.12(e) Scattered temperature sT̂  at 32 /πθ =  for 31 /=λ  

 

 

Figure 6.12(f) Scattered temperature sT̂  at 65 /πθ =  for 31 /=λ  
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Figure 6.12(g) Scattered temperature sT̂  at πθ =  for 31 /=λ  

 

Figure 6.13(a) Scattered temperature sT̂  at 0=θ  for 310 /=λ  
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Figure 6.13(b) Scattered temperature sT̂  at 6/πθ =  for 310 /=λ  

 

Figure 6.13(c) Scattered temperature sT̂  at 3/πθ =  for 310 /=λ  
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Figure 6.13(d) Scattered temperature sT̂  at 2/πθ =  for 310 /=λ  

 

 

Figure 6.13(e) Scattered temperature sT̂  at 32 /πθ =  for 310 /=λ  
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Figure 6.13(f) Scattered temperature sT̂  at 65 /πθ =  for 310 /=λ  

 

 

Figure 6.13(g) Scattered temperature sT̂  at πθ =  for 310 /=λ  



 

 188 

Chapter 7 

Conclusions and Future Work 

7.1 Summary and Conclusions 

The main objective of this study is to extend the modeled Boltzmann 

equation (BE) to tackle direct aeroacoustic simulation (DAS) problems.  In 

order to conduct one-step aeroacoustic simulations with the modeled BE, the 

unsteady Navier-Stokes (NS) equations have to be recovered from the 

modeled BE.  On the other hand, a truly non-reflecting boundary condition 

should be implemented into the numerical scheme for computational 

aeroacoustic (CAA) studies. 

Recovery of the NS equations from the modeled BE involves proper 

evaluation of transport coefficients including the specific heat ration, the 

dynamic shear viscosity and the thermal conductivity, µγ ,  and κ , 

respectively.  A two-relaxation-time model for one-step CAA studies has been 

proposed by Li et al. (2006), with remedies to allow the recovery of the NS 

equations from the modeled BE.  Thus formulated, their model allows γ and µ 

to be recovered correctly; hence, the Mach number and the Reynolds number 

were correctly calculated.  In order to complete the recovery of the full set of 

NS equations from the modeled BE, κ  and the Prandtl number have to be 

recovered correctly, thus allowing the thermal effect to be replicated correctly 

by the modeled BE. 

In this thesis, a modified two-relaxation-time modeled BE was put 

forward and a thorough study on two important issues has been carried out; (1) 
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an extensive examination of different non-reflecting boundary conditions 

(NRBC) for the modeled BE, and (2) inclusion of thermal effect in the 

modeled BE by invoking the Eucken model to properly account for heat 

transfer effect in non-isothermal flow problems.  This latter investigation 

requires the solution of a benchmark problem on acoustic scattering by a 

distributed thermal disturbance, which is solved analytically by making 

appropriate approximations and the solution used to validate the improved 

modeled BE. 

(1) An extensive examination of NRBC for the modeled BE 

Four different methods for the NRBC have been implemented to a 

numerical scheme used to solve the modeled BE; namely, the lattice 

Boltzmann method (LBM).  Since not many NRBC methods that are specific 

to the BE are available, other NRBCs that are commonly used in direct 

numerical simulation (DNS) schemes for DAS were tested in addition to the 

limited NRBC methods for the modeled BE.  The NRBC methods commonly 

used in DNS studies of DAS are the zero-order extrapolation method (EM0), 

the first-order extrapolation method (EM1), the C1 continuity method and the 

absorbing boundary condition (ABC) method.  On the other hand, methods 

that are specific to the modeled BE are the zero f gradient method and the zero 

first derivative of f method.  Two aeroacoustic problems were chosen as 

benchmarks to test the performance of these different NRBC methods.  The 

calculated results were compared with those deduced from DNS assuming a 

relatively large computational domain and with no boundary treatments.  

Among all NRBCs tested, the ABC was found to be most effective in its 
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treatment of the exiting waves and the numerical results are in good 

agreement with the reference DNS solutions obtained with a large 

computational domain with no boundary treatment.  This part of the thesis 

work indicates that for DAS studies using a modeled BE, it is not necessary to 

invoke NRBC designed specifically for the modeled BE.  Rather, the ABC, 

which is designed for DAS studies using NS equations, is found to be equally 

applicable for the modeled BE. 

(2) Inclusion of thermal effect in the modeled BE 

Based on the two-relaxation-time model proposed by Li et al. (2006), 

the set of Navier-Stokes equations were recovered by invoking Eucken model.  

Thus formulated, κ  as well as γ  and µ  were recovered correctly and 

therefore the dimensionless numbers M, Re and Pr in the NS equations were 

predicted correctly as solutions of the modeled BE. 

The improved modeled BE is used to solve a thermal-acoustic 

scattering problem in order to demonstrate its ability to resolve thermal effect.  

Instead of using the LBM to solve the improved modeled BE, an alternative 

numerical scheme was adopted; this is the the gas-kinetic scheme of Xu 

(2003).  The thermal-acoustic scattering problem attempted is a relatively 

simple problem where a plane pressure pulse was scattered by a distributed 

thermal disturbance.  Only the two-dimensional problem was considered.  

This is due to the fact that for this simplified version of the scattering problem 

an analytical solution could be obtained by asymptotic analysis for validation 

of the numerical solution of the improved modeled BE.  One key simplifying 

assumption of the analytical solution is the decoupling of the acoustic 
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propagation from the heat conduction problem.  This assumption was not 

necessary in the gas-kinetic scheme used to solve the modeled BE.  Therefore, 

it is expected that the interaction behavior could be resolved by the modeled 

BE approach.  Two limiting cases, a short ( 1=λ ) and a long ( 10=λ ) 

wavelength limit case, were studied.  The numerical solutions were compared 

to the analytical solutions obtained by asymptotic analysis.  Due to the limited 

time frame of this thesis work, detailed study on the NRBC for the gas-kinetic 

scheme could not be conducted.  Only the well known Riemann invariants 

method was adopted as the NRBC in the scattering study. 

It is found that, for the short wavelength limit, the modeled BE and 

analytical results were in very good agreement with each other.  The gas-

kinetic scheme revealed not only the thermal resolving ability, but also the 

non-linear thermal-acoustic interaction which can only be resolved by one-

step aeroacoustic simulations.  However, due to the fact that the NRBC based 

on Riemann invariants is only transparent to outgoing waves propagating 

perpendicularly towards the open boundaries, the numerical solutions for the 

long wavelength limit were contaminated by reflected waves from the 

numerical boundaries.  The fundamental scattering pattern for this long 

wavelength case was revealed but quantitative comparison could not be made. 

7.2 Future Work 

In this thesis, the modeled BE has been made capable of recovering the 

unsteady Navier-Stokes equations with correct transport coefficients and thus 

the corresponding dimensionless numbers.  This is accomplished by invoking 

physical models, such as Sutherland law and Eucken model.  The improved 



 

 192 

modeled BE as a one-step aeroacoustic simulation scheme has been verified 

by several benchmark problems, where its ability to resolve aeroacoustic 

waves, as well as thermal-acoustic interaction have been validated. 

If the modeled BE were to be extended to practical CAA studies, several 

improvements on this modeled BE should be implemented. 

1. The gas-kinetic scheme used to solve the modeled BE in the present 

study is able to resolve thermal-acoustic interaction for short 

wavelength acoustic waves; however, its ability to resolve long 

wavelength cases was limited because the simulated acoustic field was 

contaminated by the reflected wave from the open boundary based on 

Riemann invariants.  The reason is that the Riemann invariants 

boundary condition is not truly non-reflecting for incident waves that 

have substantial deviation from normal waves.  Despite the fact that an 

extensive study for different non-reflecting boundary conditions 

(NRBC) has been carried out for the LBM (one of the numerical 

scheme solving modeled BE), an equivalent study has not been 

conducted for the gas-kinetic scheme.  Therefore, it is suggested that a 

thorough NRBC study should be carried out for the gas-kinetic scheme.  

Up to this level of understanding of the gas-kinetic scheme, the 

conventional open boundary conditions can be extended for this 

scheme.  For example, absorbing boundary conditions (Engquist and 

Majda 1977,  Ta’asan and Nark 1995, Freund 1997).  The reason is 

that the primary governing equations to be solved in the gas-kinetic 

scheme is the macroscopic transport equations (see chapter 6), 
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although the mesoscopic variable, the distribution function is involved 

in the gas-kinetic scheme.   

2. As mentioned in Chapter 5, there are three fundamental modes of 

motion in a slightly disturbed heat conducting gas.  So far the modeled 

BE has only been validated against a thermal-acoustic interaction 

problem.  It should be further tested against other thermal-aero-

acoustic interaction problems. 

3. Theoretically, the NS equations are recovered from the modeled BE 

with correct transport coefficients and the associated dimensionless 

numbers.  At present, only cases with moderate M, Re and Pr have 

been investigated.  More cases with a wide range of M, Re, and Pr 

should be carried out for the modeled BE to further validate the 

proposed scheme. 

4. So far only simple problems in two-dimensions have been studied.  

Based on the validated 2-D scheme, it should be feasible to extend the 

modeled BE to a 3-D scheme, in order to tackle more complicated 

problems, e.g. aeroacoustic problems near airports, etc.  

5. A proper wall boundary condition should be included for investigation 

of realistic CAA problems with simple and complex geometries. 
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