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Abstract

Organisms cannot live without food resource as their energy supply, in all prob-

ability. The different strategies that they use to forage or to increase their survival

rates may result in diverse interactions between or among organisms, amongst which

predation as one of fundamental relations exists broadly in nature. This thesis is

associated with exploring dynamics of classical solution to two classes of predator-

prey models with spatial diffusion and preytaxis effect: direct preytaxis and indirect

preytaxis. The preytaxis here refers to that predators have an apparent tendency to

move towards the region of higher density of prey. The main difference of being direct

or indirect case lies in that predators search for prey directly, or perceive mainly the

signals released by prey through which predators may likely find the prey eventually.

In more detail, our results include three parts as below: Firstly, for the direct

preytaxis model with no diffusion of prey (i.e., a parabolic-ODE system), we study

local-in-time existence and uniqueness of its classical solution by using Banach’s

fixed-point theory in a suitable Sobolev space as the spatial domain Ω ⊂ Rn(n ≥ 1).

Also, we derive its global existence by obtaining uniform-in-time boundedness of its

solution in norm L∞(Ω), when spatial dimension n = 2.

On the other hand, inspired by vanishing viscosity method we explore convergence

relationship between the strong solution of a related fully parabolic PDE system and

the aforementioned parabolic-ODE system in Ω ⊂ R2, when the diffusion coefficient

ε (> 0) of prey density tends to zero. Here the main tools used include analytic semi-

group techniques, Aubin-Lions compactness lemma, trace interpolation inequalities,

Lp theory and Schauder’s estimate of linear parabolic equations, etc.
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Finally, for the indirect preytaxis model with density-dependent preytaxis we in-

vestigate global-in-time existence, uniqueness and uniform-in-time boundedness of its

classical solution in Ω ⊂ Rn(n ≥ 1), by a combination of Amann’s theory for quasi-

linear parabolic systems, analytical semigroup techniques and Moser’s iteration. In

addition, via Lyapunov’s function techniques and limit property of dynamical sys-

tems we acquire that the classical solution may converge in norm L∞(Ω), as time

t → +∞, to its prey-only state and coexistence state under suitable conditions.

The numerical simulations we perform indicate that some density-dependent prey-

taxis and predators’ diffusion may either flatten the spatial one-dimensional patterns

which exist in non-density-dependent case, or break the spatial two-dimensional dis-

tribution similarity which occurs in non-density-dependent case between predators

and chemoattractants (released by prey).
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List of Notations

Basic Notations

Here we invoke some notations introduced in [1, Appendix A].

Ω (resp. Ω) A bounded open (resp. closed) domain in n-dimensional
Euclidian space Rn for integer 0 < n ∈ N.

Qτ (resp. Qτ ) A bounded open domain Ω × (0, τ) (resp. a bounded
closed domain Ω× [0, τ ]) for 0 < τ < +∞. In particu-
lar, we let Q := Ω× (0,+∞).

~ν The outer normal unit vector to the boundary ∂Ω of
Ω.

∇ The usual gradient operator, i.e.,∇ := ( ∂
∂x1
, ∂
∂x2
, · · · , ∂

∂xn
)

as x = (x1, x2, · · · , xn) ∈ Ω ⊂ Rn.

∇· The usual divergence operator, i.e., ∇· :=
∑n

i=1
∂
∂xi

, as

x = (x1, x2, · · · , xn) ∈ Ω ⊂ Rn.

∆ The usual Laplace operator, i.e., ∆ :=
∑n

i=1
∂2

∂x2
i
, as

x = (x1, x2, · · · , xn) ∈ Ω ⊂ Rn.

Dkf The k-times derivative of function f(x) for k ∈ N. In

more detail, we let Dα
xf = ∂|α|f

∂x
α1
1 ∂x

α2
2 ···∂x

αn
n

and |α| =

α1 +α2 + · · ·+αn for a multiindex α = (α1, α2, · · · , αn)
with αi ∈ N. Then Dkf(x) = {Dαf(x) : |α| = k}, and

|Dkf(x)| :=
(∑

|α|=k |Dα
xf |2

)1/2
. In particular, D2f de-

onotes the Hessian matrix of f , and we use Df = ∇f
without any confusion.

aτ The transpose of a vector a.

Function Spaces

Below we list several function spaces, with their definitions given in [1, Appendix
A], [2, sec.2] or [3, chap.I].

Lp(Ω) andLp(Qτ ) The usual Lebesgue spaces for 1 ≤ p ≤ +∞ are defined
on Ω and Qτ , respectively.
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p (Qτ ) A standard t-anisotropic Sobolev space defined on Qτ

for (x, t) ∈ Qτ = Ω × (0, τ), 1 ≤ p < +∞ and m ∈ N,
denotes a set of functions v(x, t) in Lp(Qτ ) such that
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Chapter 1

Introduction

Qualitative and quantitative studies and predictions on evolutionary state of

species are undoubtedly important to safeguard the balance and biodiversity of

ecosystems. To capture this state, it is significant to describe the interactions be-

tween and among organisms which may affect the species’ survival and reproduction

positively, neutrally, or negatively. As classified by ecologists, there are five major

types of the interactions inlcuding predation, competition, mutualism, commensalism

and amensalism.

As one of the principal themes in ecology, predator-prey relationship exists ex-

tensively [4], ranging from macroorganism like lions and gazelles, lynx and snowshoe

hare, birds and insects, etc., to microorganism like bacterial predator-prey coevolu-

tion [5, 6]. Pioneering works that model the dynamical evolution of predator-prey

relation have been made by A. J. Lotka [7], V. Volterra (cf. [8]), A. N. Kolmogorov

[9, Chp-II] and [10], G. F. Gauze [11, 12], M. C. Rosenzweig and R. H. MacArthur

[13], et al, where they proposed or improved the classical predator-prey models by

giving a system of Ordinary Differential Equations (ODEs). These models are es-

tablished usually under three basic theoretical assumptions (cf. [14, Chp.1.1]): (a)

abundance: a large number of individuals; (b) uniformity: individuals of the same

population are identical in all dynamical aspects; (c) ergodicity: the movement of

individuals as a whole population can be treated as a ergodic system. In particular,

the (c) implies that each individual “perceives” the same ambient environment due
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to fast movement and independence from each other, and thus probabilities of the

collision or interaction for two individuals are proportional to the production of their

densities, i.e., follow ‘mass action’ type rules. In addition, there is no description

on heterogeneous spatial movement of predators and prey in their models. However,

spatiotemporal heterogeneity or aggregation is one of essential features of biodiver-

sity of ecosystems (cf. [15, 16]), and to reveal the mechanism behind entails the

consideration of their spatial movement. In this way, when considering the spatial

diffusion of predators and prey, P. Kareiva and G. Odell [17] introduced a system of

parabolic Partial Differential Equations (PDEs). A. Stevens and H. G. Othmer [18]

came up with a coupled form of PDE-ODEs in which the spatial diffusion of prey is

ignorable.

More generally, when spatial movement of organisms is involved, different types

of species may display distinguishing biological features of movement in response to

various living environment. In field observations there exist preytaxis for insects [17],

chemotaxis for monad [19, 20, 21, 22], nutrient taxis for bacteria [23], hypotaxis for

cell migration [24], phototaxis or phototropism for plant organs [25], etc. We remark

that the term “A-taxis” above emphasizes that the movement tendency of a kind of

objects (e.g., organisms or some chemicals) is influenced remarkably by another type

of objects, condition or substance closely related to “A”. For instance, the preytaxis

means the predators’ movement is highly affected by the prey, chemotaxis means

the organisms’ movement is largely determined by the chemicals released by the

organisms themselves, hypotaxis implies cell migration is directed by its peripheral

adhesions, etc.

In this thesis, we shall restrict our attention to some predator-prey systems with

spatial diffusion and preytaxis effect. Note that the term preytaxis in the literature

may refer to two sides: the attraction or repulsion, of predators along prey density

gradients. We tend to the former, that is, we adopt throughout this thesis that

predators are inclined to move towards the region of higher density of prey. Moreover,
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we need to distinguish that: the usual diffusion effect occurring in a region mainly

emphasizes the same species from its higher density to its lower density, but the

movement tendency between two different species, i.e. predators and prey, happens

due to preytaxis effect.

1.1 A Fundamental Equation

To well understand the preytaxis models introduced later, we first turn to a

continuity equation (cf. [26, Chap.1.1]). In general, for some physical quantity Q

diffusible or conductible in a media Ω ⊂ Rn(n ≥ 1), we denote its density by q(x, t)

for spatial variable x ∈ Ω and time t ∈ R. Postulate that there are only two ways to

change the amount of Q in a region:

(1) the amount of Q in a region raises if additional Q flows inwards through the

surface of the region, and drops when it flows outwards;

(2) the amount of Q in a region increases if new Q is generated inside the region,

and decreases as the Q is destroyed inside the region.

Then for any subdomain U ⊂ Ω with boundary surface ∂U, one may derive

d

dt

∫
U

q(x, t) dx = −
∫
∂U

J · ~ν dS +

∫
U

%(x, t) dx. (1.1)

Here dS is the unit measure of ∂U, J is the flux density of the quantity Q which

measures the amount of substance that flows through a unit area during a unit time,

~ν is the outer normal vector to ∂U , and % is the generation of quantity Q per unit

volume in U per unit time (i.e., generation rate). The negative sign in (1.1) shows

that the density flows into U through the boundary ∂U .

Together with divergence theorem implying
∫
∂U

J · ~ν dS =
∫
U
∇ · J dx, then by

the arbitrary U ⊂ Ω and by assuming that q, %,∇ · J and ∂q
∂t

are continuous in their
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variables, the integral equation (1.1) changes into the following continuity equation

∂q

∂t
= −∇ · J + %, x ∈ Ω ⊂ Rn (n ≥ 1), t ∈ R, (1.2)

where ∇· is usual divergence operator. This equation as % = 0 may be the simplest

model capable of generating aggregation phenomenon.

For the generation % in (1.2), one may note that % > 0 suggests the sustained

creation of Q and thus it is called source term; % < 0 implies the persistent vanish-

ment of Q, thus sink term; % ≡ 0 means that the quantity Q cannot be created or

destroyed, hence in this case the equation (1.2) exactly expresses conservation law.

For the flux density J in (1.2), one may invoke either Fick’s law in chemical reaction

process, Fourier’s law in heat conduction, Darcy’s law in porous-medium, or Ohm’s

law in the field of electrical networks, where the flux can be expressed by

J = −D∇q

for some constant D > 0. The zero-flux boundary condition on (1.2) refers usually

to

J · ~ν
∣∣
∂Ω

= 0 (1.3)

which means the change of quantity Q described by (1.2) in Ω is isolated from its

ambient environment (i.e., Rn\Ω). Finally, it is easy to see that if (1.2) coupled with

(1.3) obeys the conservation law, i.e., % = 0, then

∫
Ω

q(x, t) dx =

∫
Ω

q(x, t0) dx

which is obtained by integrating (1.2) with respect to x ∈ Ω and setting initial data

q(x, t0). This means the physical quantity Q of density q will not change over time,

due to no inflow and outflow (zero-flux boundary condition) as well as no creation

and destruction (% = 0).

Below we shall introduce general preytaxis models and the one we considered
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respectively.

1.2 General Models with Direct Preytaxis

Suppose that in a region the movement of predators and prey under consideration

can be viewed as a sort of diffusion. Thus with the above observation on (1.2) and

(1.3) at hand, finding the flux density J and generation rate % is an essential step

to derive the desired diffusion equations. To be specific, the classical predator-prey

model with preytaxis effect on population level can be traced back to P. Kareiva and

G. Odell [17], which generically takes the form

{
ut = ∇ · (d(w)∇u− uχ(u,w)∇w) + P (u,w),

wt = ε∆w +G(u,w).
(1.4)

Here u = u(x, t) and w = w(x, t) represent population density of predators and prey

at position x ∈ Ω ⊂ Rn (n ≥ 1) and time t ∈ R+, respectively, d(w) in diffusion

term ∇ · (d(w)∇u) depicts the predators’ diffusive motility, χ(u,w) in the preytaxis

term −∇(uχ(u,w)∇w) measures sensitivity of the preytaxis per unit strength of the

gradient ∇w. The negative sign in the preytaxis term means that the direction of

predator’s movement driven by preytaxis is opposite to its spatial random diffusion,

that is, the movement of predators dominated by preytaxis may helpfully form the

aggregation of predators, in contrast with its spatial diffusion. The ε > 0 accounts

for diffusion rate of the prey species. Interspecific and intraspecific interactions of

the predators and prey, for instance, their death, birth, emigration, immigration,

etc., may be characterized by P (u,w) and G(u,w), respectively,

P (u,w) = γuF (u,w)− h(u), G(u,w) = wf(w)− g(u,w). (1.5)

More precisely, γuF (u,w) (resp. wf(w)) may characterize birth or arrival (immi-

gration) of the predators (resp. of the prey), h(u) (resp. g(u,w)) refers to death

or departure (emigration) of the predators (resp. of the prey). Thus one may take
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g(u,w) = uF (u,w) if the death or departures of prey is predominantly caused by

predation, and we shall adopt this statement in what follows.

The flux density of u and w read −(d(w)∇u−uχ(u,w)∇w) and −ε∇w, severally.

The predator u and prey w governed by (1.4) inhabit in the domain Ω. By an

assumption that they cannot come across the boundary of Ω, then it is reasonable

to require zero-flux boundary condition in (1.4), that is,

(d(w)∇u− uχ(u,w)∇w) · ~ν
∣∣
∂Ω

= 0, ε∇w · ~ν
∣∣
∂Ω

= 0,

in terms of (1.1)–(1.3), or more stronger one, i.e. zero-Neumann boundary

∇u · ~ν
∣∣
∂Ω

= 0, ∇w · ~ν
∣∣
∂Ω

= 0.

Some popular assumptions and expressions on d(w), χ(u,w), f(w), h(u) and F (u,w)

can be summarized as follow. One may suppose that

d′(w) < 0 and χ(u,w) = χ(w) = −d′(w),

so ∇ ·
(
d(w)∇u − χ(w)u∇w

)
= ∆(d(w)u) and then d′(w) < 0 may indicate that

predators will slacken their diffusion when perceiving prey signals. This is called

“density-suppressed” effect and more detailed discussions can be found in [27, 28,

29, 30, 31] and the references therein. The per capita growth rate of prey population

in absence of predators is denoted by f(w) which satisfies

f(0) > 0 and f ′(w) < 0,

and thus allows logistic growth (growth with a threshold as a result of finite food

resources), that is,

wf(w) = rw
(

1− w

K0

)
r, K0 > 0, (1.6)

where K0 represents the carrying capacity (threshold) of the environment and r is

speed of growth rate. To describe Allee’s effect which states the positive density

dependence, or the positive correlation between population density and individual
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fitness, there is

wf(w) = rw
(

1− w

K0

)(w
a
− 1
)
, 0 < a < K0 (Bistable or Allee effect). (1.7)

As summarized in [32], the death rate of predators may be linear or quadratic ex-

pression as

h(u) = θu, h(u) = θu+ lu2, θ, l ≥ 0.

There are numerous types of functional response function F (u,w) which represent

the conversion from intake of prey to new predators, such as Beddington-DeAngelis

type (cf. [33, 34, 35])

F (u,w) =
b1w

1 + b2w + b3u
, b1, b2, b3 > 0,

ratio dependent form (cf. [36])

F (u,w) =
w

u+ w
,

and prey dependent F (u,w) = F (w). In the last case F (w) is often assumed to fulfill

F (0) = 0 and F ′(w) > 0,

and thus incorporates:

F (w) =w (Holling type I or Lotka-Volterra type),

F (w) =
w

c+ w
, c > 0 (Holling type II),

F (w) =
wk

ck + wk
, c > 0, k > 1 (Holling type III),

F (w) = c(1− e−kw), c > 0, k > 1 (Ivlev type).

(1.8)

Note that (1.4) is similar to the systems that may describe chemotaxis [19, 37],
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nutrient taxis [23], the random walking problem with persistence of direction and

external bias for particles [38], etc. In the setting of preytaxis, system (1.4) has been

investigated substantially based on diverse assumptions on d(w), χ(u,w), P (u,w)

and G(u,w) in applications. We shall review some typical, not exhausted, results

according to hypotheses on χ(u,w). Firstly, if the preytaxis sensitivity χ(u,w) =

χ is a constant sufficient small, Wu et al. [32] proved that the unique classical

solution exists and is bounded globally in time in Ω ⊂ Rn(n ≥ 1) for a large class

of F, h and f . Without this smallness on χ, Jin and Wang [39] derived the global

boundedness and stability of classical solution in Ω ⊂ R2 regarding Rosenzweig–

MacArthur (F of Holling II and f of logistic type) growth terms. Li [40] showed

that a unique globally-bounded classical solution for F of Lotka-Volterra type and

f of logistic form in Ω ⊂ Rn(n = 2, 3). Cai et al. [41, 42] established the global-in-

time existence and boundedness of classical solutions in Ω ⊂ Rn(n ≥ 1) and studied

its stationary problem as n = 1, for ratio-dependent F and logistic f . Secondly,

one may suppose χ(u,w) = χ(u) with a truncation imposed in response to biological

threshold behaviors, for example, there exists a maximal density of the predators due

to volume-filling effect or prevention of overcrowding [43]. Under this assumption,

Ainseba et al. [44] showed the existence and uniqueness of weak solution; Tao [45]

derived the existence of global-in-time classical solutions in Ω ⊂ Rn(1 ≤ n ≤ 3);

He and Zheng [46] further obtained the global-in-time boundedness of the classical

solutions; The existence of non-constant steady states was studied in [47, 48] via

bifurcation theory and index degree theory. Thirdly, the truncation on χ(u,w) is

not required as χ(u,w) = χ(w), provided that the L∞ boundedness is essentially

determined by the w-equation itself. For instance, the growth rate of w, i.e., f(w),

is logistic type which may imply that ‖w(·, t)‖L∞(Ω) is bounded uniformly in t. With

this observation and for 0 ≤ χ(w) ∈ C2([0,+∞)), Jin and Wang [49] showed the

global existence of bounded classical solution in Ω ⊂ R2.

On the other hand, if diffusion strength of prey w is so weak that the diffusion
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effect can be negligible, that is, one may formally suppose ε = 0, then (1.4) reduces

to the following parabolic-ODE system

{
ut = ∇ · (d(w)∇u− uχ(u,w)∇w) + P (u,w),

wt = G(u,w),
(1.9)

coupled usually with no-flux boundary condition only on u

(
d(w)∇u− uχ(u,w)∇w

)
· ~ν
∣∣
∂Ω

= 0.

Such a kind of model has been proposed by Stevens and Othmer [18] to account

for biological systems where a control species diffuses in response to a non-diffusible

signal that may modify the local environment for succeeding passages. For example,

myxobacteria travels typically in swarms via gliding and gathers by intercellular

molecular signals of negligible diffusion.

The existent results on (1.9) are not as many as that on (1.4), partly because the

theories of fully parabolic models may be no longer suitable even for its local-in-time

wellposedness, let alone the global wellposedness or uniform-in-time boundedness.

Here we review several the most related results. When d(w) = d is a positive

constant, in the context of chemotaxis, Friedman and Tello [50] has studied the

classical solution and its stability of (1.9) in Ω ⊂ Rn(n ≥ 1), when P = 0, χ(u,w) =

χ(w) ∈ C1(R) and G(u,w) = ϕ(u,w)φ(u,w) satisfies φ′u > 0, χuφ′u + φ′w < 0

and χ, ϕ > 0. If χ(w) and ϕ(u,w) are two positive constants, Negreanu and Tello

[51] considered the stationary states and bifurcations under zero-Neumann boundary

condition when P, φ ∈ C2(R2), χuφ′u + φ′w > 0 and P ′uφ
′
w − P ′wφ′u > 0. They proved

global-in-time existence and uniqueness of the classical solution when χuφ′u+φ′w = 0

and P = 0. Suppose that P = 0, χ(u,w)∇w = χ∇Γ(w) > 0, Γ ∈ C2(R), and

G ∈ C2(R2). Then Chen et al. [52] derived that the local existence of unique solution

(weak solution) in Lp(0, T ;W 1
p (Ω)) with p > max{2, n} for both (1.4) and (1.9) in

Ω ⊂ Rn(n ≥ 1). They showed that the weak solution of (1.4) can converge to that of

9



(1.9) in a sense when T is small. The local-in-time existence, stability, and blowup

results for models similar to (1.9) can be seen [53, 54, 55] and the references therein.

In a setting of hypotaxis, Walker [24] considered a system including (1.9) as a part

and studied the existence of unique global classical solution.

1.3 Models of Direct Preytaxis under Considera-
tion

As reviewed above, there are lots of hypotheses on d(w), χ(u,w), F (u,w), h(u)

and f(w) in (1.4) and (1.5). For clarity, we shall in both Chapter 2 and Chapter 3

suppose for (1.4) and (1.5) that g(u,w) = uF (u,w),

χ(u,w) = χ, d(w) = d, F (u,w) = w, h(u) = u(k + lu), f(w) = r
(

1− w

K0

)
with χ, d, k, r, γ,K0 > 0 and l ≥ 0. By introducing two nondimensional variables

t̃ = k t, x̃ =

√
k

d
x,

letting

ε̃ =
ε

d
, χ̃ =

χK0

d
, r̃ =

r

k
, γ̃ =

γK0

k
, ũ(x̃, t̃) =

u(x, t)

k
, w̃(x̃, t̃) =

w(x, t)

K0

,

and removing the “∼” in the resulting system for brevity of notations, one may see

that (1.4) under zero-flux boundary condition changes into



ut = ∆u−∇ · (χu∇w) + γuw − u(1 + lu), in Q,

wt = ε∆w − uw + rw(1− w), in Q,

(∇u− χu∇w) · ~ν
∣∣
∂Ω

= 0, ε∇w · ~ν
∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.10)
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where Q := Ω× (0,+∞), the open bounded domain Ω ⊂ Rn(n ≥ 1) with boundary

∂Ω, ε, χ, γ, r > 0 and l ≥ 0. Corresponding to (1.9) we therefore have the following

parabolic-ODE system:



ut = ∆u−∇ · (χu∇w) + γuw − u(1 + lu), in Q,

wt = −uw + rw(1− w), in Q,

(∇u− χu∇w) · ~ν
∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.11)

where prey w has no diffusion, like a kind of plant or signaling molecules of insignif-

icant diffusion.

The classical solution of (1.10), as above-mentioned, has been established by Li

[40] under zero-Neumann boundary for n = 2, 3. To the best of our knowledge, it

remains unknown whether the classical solution of (1.11) exists locally or globally

in time. If it does, may the classical or strong solution of (1.10) strictly converge to

that of (1.11) in a sense, as ε→ 0 ?

We shall answer these two questions as Ω ⊂ R2 in Chapter 2 and Chapter 3,

respectively. Throughout Chapter 2 and Chapter 3 our basic assumptions are:

u0(x), w0(x) ∈ C2+β(Ω) for some β ∈ (0, 1), ∂Ω ∈ C∞,
u0(x) ≥ (6≡)0, w0(x) > 0 for all x ∈ Ω,

(∇u0 − χu0∇w0) · ~ν
∣∣
∂Ω

= 0,(
and∇w0 · ~ν

∣∣
∂Ω

= 0, ε ∈ (0, 1) in (1.10)
)
.

(1.12)

We note that for (1.10) the ε in ε∇w · ~ν
∣∣
∂Ω

= 0 may be removed as ε > 0 by the

linearity of trace operator, but is essentially needed when we take ε → 0 in the

boundary condition (cf. Chapter 3)

To make the boundary conditions standard, we shall introduce a reversible con-

tinuous transformation

a(x, t) := u(x, t)e−χw(x,t), i.e., u = aeχw.
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Substituting it into (1.10) gives rise to

at =− χawt + e−χw∇ · (eχw∇a) + γaw − a(1 + laeχw)

=− χawt + χ∇w · ∇a+ ∆a+ γaw − a(1 + laeχw),
(1.13)

and

wt = ε∆w − aweχw + rw(1− w), (1.14)

where a and w satisfy zero-Neumann boundary condition, i. e., for t > 0,

∇w · ~ν
∣∣
∂Ω

= 0, ∇a · ~ν
∣∣
∂Ω

= e−χw(∇u− χu∇w) · ~ν
∣∣
∂Ω

= 0, (1.15)

in the light of (∇u− χu∇w) · ~ν
∣∣
∂Ω

= 0, e−χw > 0, and the definition of trace.

Similarly, we shall state the general systems of indirect preytaxis and the one we

consider, severally.

1.4 Generic Models of Indirect Preytaxis

Different from the aforementioned direct search for prey, some predators might

start with perceiving chemical signals released by prey, for instance smell of blood

or pheromone (trace pheromone, aggregation pheromone, etc.), and then hunt for

the prey by tracking such signals, the process of which is called an indirect preytaxis

in this case. Similar to a role of direct preytaxis in promoting the heterogeneity of

ecosystems, strong indirect preytaxis may also cause spatial heterogeneity (cf. [56])

without considering predator’s reproduction, mortality, and random diffusion of the

prey. Later Tyutyunov et al. [16] proposed another more general model which reads


ut = ∇ ·

(
d(v)∇u− χ(v)u∇v

)
+ γuF (w)− θu,

vt = dv∆v + βw − σv,

wt = dw∆w + wf(w)− uF (w),

(1.16)
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where u = u(t, x) and w = w(t, x) represent population density of predators and

prey at position x ∈ Ω ⊂ Rn(n ≥ 1) and time t ∈ (0,+∞) severally; v = v(t, x)

is concentration of chemicals released by prey which are secreted at a constant rate

β > 0, decay in a fixed rate σ > 0, and diffuse with a constant diffusivity dv > 0.

The (−d(v)∇u+uχ(v)∇v) is called the predators’ flux density, d(v) is the predators’

random-motility function, and uχ(v)∇v means that predators move towards the

increasing gradient of the chemical density at an average speed of χ(v)∇v with χ(v)

measuring indirect preytaxis sensitivity per unit strength of the gradient ∇v. In this

way the advection term −∇ · (uχ(v)∇v) is viewed as indirect preytaxis effect of

predators.

System (1.16) is usually coupled with zero-Neumann boundary condition

∇u · ~ν
∣∣
∂Ω

= 0, ∇v · ~ν
∣∣
∂Ω

= 0, ∇w · ~ν
∣∣
∂Ω

= 0,

which in this case is equivalent to zero-flux boundary condition

(
d(v)∇u− χ(v)u∇v

)
· ~ν
∣∣
∂Ω

= 0, dv∇v · ~ν
∣∣
∂Ω

= 0, dw∇w · ~ν
∣∣
∂Ω

= 0,

in the sense of trace, since as supposed above d(v), dv, dw do not change their signs.

System (1.16) may cover some reaction-diffusion systems used to describe the

dynamics amongst the bacterial cell density, concentration of acyl-homoserine lac-

tone, and nutrient density (cf. [27]). In addition, if χ(v) = 0 and dv and dw are

density-dependent as well, then (1.16) can be used to describe the interactions among

uninfected cells, free viruses produced by infected cells, and infected cells (cf. [57]).

In this thesis we will understand it in the view of indirect predator-prey relationship.

Firstly, when χ(v) and d(v) are supposed to be constants and Ω ⊂ R1, Tyutyunov

et al. [16] studied pattern formation condition on stationary states of (1.16) with

zero-Neumann boundary condition. Their numerical analysis illustrated that non-

trivial homogeneous stationary state of the model becomes unstable with respect

to small perturbation caused by increasing preytaxis strength; Zuo and Song [58]
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obtained some interesting dynamical behaviors including stability and double-Hopf

bifurcation results; Secondly, if χ(v) and d(v) are constants and Ω ⊂ Rn(n ≥ 1),

Yoon and Ahn [59] derived the unique global-in-time classical solution to the system

(1.16) with functional response functions involving Beddington-DeAngelis type, and

showed asymptotic stability of both prey-only and coexistence steady states. They

found that preytaxis is an essential factor in generating patterns. Thirdly, when

d(v) is a positive constant but χ(v) is density dependent, Wang and Wang [60] in-

vestigated global existence and boundedness of the unique classical solution as well

as the asymptotic stabilities of nonnegative and spatial homogeneous equilibria as

Ω ⊂ Rn(n ≥ 1).

1.5 Models of Indirect Preytaxis under Consider-
ation

In view of the above review a question arises: what will happen when χ(v) and

d(v) are both density-dependent? Relevant results remain unknown before we solve

this problem, to the best of our knowledge. This inspires us to study the global-in-

time existence, uniqueness and large time behavior of the unique classical solution

to

ut = ∇ ·
(
d(v)∇u− uχ(v)∇v

)
+ γuF (w)− θu− `u2, t > 0, x ∈ Ω;

vt = dv∆v + βw − σv, t > 0, x ∈ Ω;

wt = dw∆w + wf(w)− uF (w), t > 0, x ∈ Ω;

∇u · ~n = 0, ∇v · ~n = 0, ∇w · ~n = 0, t > 0, x ∈ ∂Ω;

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ Ω,

(1.17)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, ~n is the unit

outer normal vector towards ∂Ω, ` ≥ 0, and dw, γ, θ > 0.
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1.6 Outline of the Thesis

The organization of this thesis is below: We shall in Chapter 2 study the global-

in-time existence and uniqueness of classical solution to the model (1.11) (cf. Theo-

rem 2.1). Considering that (1.11) is a parabolic-ODE system, we start with establish-

ing the local-in-time existence and uniqueness of strong solution and then improve

the regularity in subsection 2.2.1 in order to make it a local classical solution. Based

on some a prior estimates in subsection 2.2.2, we shall in subsection 2.2.3 obtain

the global-in-time existence, uniqueness, and uniform-in-time boundedness, when

Ω ⊂ R2.

We consider in Chapter 3 the limit of the strong solution of (1.10) when the

diffusion coefficient ε of prey tends to zero (cf. Theorem 3.1). More precisely, in sec-

tion 3.2 we first prepare some estimates of the classical solution to (1.10) and then the

verify that this classical solution is strong solution by giving corresponding W 2,1
p (QT )

estimates. The main difficulties in this part lie in deriving the upper boundedness of

component u in norm L∞(Ω) such that this estimate remains bounded as ε→ 0. With

these preparations at hand, we shall in section 3.3 prove that the strong solutions of

(1.10) may converge as ε→ 0 to the strong solution of (1.11), by using Aubin-Lions

compactness lemma and trace interpolation inequalities in subsection 3.3.1. Then

in subsection 3.3.2 we intend to prove that this strong solution of (1.11) fulfills the

classical regularity and uniqueness, thus being the unique classical solution of (1.11).

The two chapters above-mentioned pertain to direct preytaxis models (1.10) and

(1.11). For the indirect preytaxis model (1.17), we shall in Chapter 4 explore global-

in-time existence and uniqueness, by obtaining the uniform-in-time boundedness of

the solution in section 4.2. Upon finding suitable Lyapunov’s functions in section 4.3,

we are to investigate the global asymptotic stability for the prey-only state and coex-

istence state, by using limit properties of dynamical systems. In addition, we will in

section 4.4 derive their linear instability criteria and present some patterns of spatial

one-dimensional case in subsection 4.4.2 and two-dimensional case in subsection 4.4.3.
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We clarify that the results of Chapter 4 have been published as our paper in [61].
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Chapter 2

Global Well-Posedness on
Parabolic-ODE System with

Direct Preytaxis

2.1 Models and Main Results

As stated in subsection 1.3, we shall in this chapter consider the global-in-time

existence and uniqueness of classical solution to the parabolic-ODE system (1.11),

that is, 

ut = ∆u−∇ · (χu∇w) + γuw − u(1 + lu), in Q,

wt = −uw + rw(1− w), in Q,

(∇u− χu∇w) · ~ν
∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(2.1)

under the condition (1.12), that is,


u0(x), w0(x) ∈ C2+β(Ω) for some β ∈ (0, 1), ∂Ω ∈ C2+β,

u0(x) ≥ (6≡)0, w0(x) > 0 for all x ∈ Ω,

(∇u0 − χu0∇w0) · ~ν
∣∣
∂Ω

= 0,

(2.2)

where Q = Ω × (0,+∞) and Ω ⊂ Rn(n ≥ 1) is a bounded open domain. Note that

here we need only ∂Ω ∈ C2+β instead of ∂Ω ∈ C∞ in (1.12).
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For the above problem our main result reads as below:

Theorem 2.1. Let Ω ⊂ Rn(n ≥ 1) be a bounded open domain and (2.2) hold. Then

for any given T > 0 there exists a local-in-time positive and unique classical solution

(u,w) of (2.1) fulfilling

(u,w)(x, t) ∈
(
C
(
Ω× [0, T0)

)
∩ C2,1

(
Ω× [0, T0)

))2

for some 0 < T0 < min{1, T} which depends on the upper bound of ‖(u0, w0)‖C1(Ω).

In particular when n = 2, the local classical solution is global in time (i.e.,T0 = T ),

and satisfies

‖w(·, t)‖L∞(Ω) + ‖u(·, t)‖L∞(Ω) ≤ C, t ∈ (0, T ),

where the constant C is independent of T , and K := max{1, ‖w0‖L∞(Ω)}.

2.2 Proof of Theorem 2.1

Motivated by [2], we are in this section to prove the Theorem 2.1, that is, when

l > χK or χ > 0 is small enough, the unique classical solution of (2.1) exists globally

in time.

Let Q̄T := Ω × [0, T ] for any fixed 0 < T < +∞. Upon the transformation

implemented in (1.13)–(1.15), system (2.1) becomes



at = −χawt + χ∇w · ∇a+ ∆a+ γaw − a(1 + laeχw), in QT ,

wt = −aweχw + rw(1− w), in QT ,

∇a · ~ν
∣∣
∂Ω

= 0, t ∈ (0, T ),

a(x, 0) = a0(x) ≥ ( 6≡)0, w(x, 0) = w0(x) > 0, x ∈ Ω.

(2.3)

Note that by the transformation the existence and uniqueness of the classical solution

of (2.3) implies that of (2.1). So we next shall focus only on (2.3).
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2.2.1 Local Existence and Uniqueness of the Classical Solu-
tion to (2.3)

We start with consideration of its strong solution in the following lemma:

Lemma 2.1 (Local existence and uniqueness). Assume (2.2) and Ω ⊂ Rn (n ≥ 1).

Then system (2.3) possesses a strong solution, i.e.,

(a, w) ∈ W 2,1
p (QT0)× C1,1(Q̄T0),

for n+ 2 < p < +∞, provided that 0 < T0 < 1 is sufficient small and depends only

on

R ≥ 2 + 2‖a0‖C1(Ω) + 2‖w0‖C1(Ω).

Moreover,
a > 0, 0 < w ≤ max

{
1, ‖w0‖L∞(Ω)

}
in QT0 .

Proof. Below we shall use Banach’s fixed-point theorem to show the local existence

of strong solution to (2.3). Taking 0 < T < 1, we introduce a Banach space X with

respect to function (a, w) which is endowed with norm

‖(a, w)‖X := ‖a‖C1,0(Q̄T ) + ‖w‖C1,0(Q̄T )

and introduce a closed subspace of X by

XR :=
{

(a, w) ∈ X : a(x, 0) = a0(x), w(x, 0) = w0(x),

∇a · ~ν
∣∣
∂Ω

= 0, ∇a0 · ~ν
∣∣
∂Ω

= 0, ‖(a, w)‖X ≤ R
}
.

For any given (a, w) ∈ XR, to system (2.3) we shall derive a corresponding function

pair

(ā, w̄) := F (a, w),

from {
w̄t = w̄

{
− aeχw + r(1− w)

}
, in QT

w̄(x, 0) = w0(x), x ∈ Ω
(2.4)
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and

āt −∆ā− χ∇w̄ · ∇ā+ ā
{

1− (χw − l)aeχw
}

=
{
γ − rχ(1− w)

}
aw, in QT

∇ā · ~ν
∣∣
∂Ω

= 0, t ∈ (0, T )

ā(x, 0) = a0(x), x ∈ Ω

(2.5)

by showing that F is a contraction mapping from XR into itself.

Indeed, it is easy to see that (2.4) is a linear ODE of w̄ and thus its unique

solution reads

w̄(x, t) = w0(x)e
∫ t
0 h1(x,s)ds > 0, with h1 := −aeχw + r(1− w) ∈ C1,0(Q̄T ),

by (a, w) ∈ C1,0(Q̄T ). Taking spatial gradient from both sides may yield

∇w̄ = ∇w0e
∫ t
0 h1(x,s)ds + w0(x)e

∫ t
0 h1(x,s)ds

∫ t

0

∇xh1(x, s)ds.

Thereby one may derive from the expression of w̄ that

‖w̄‖C(Q̄T ) ≤‖w0‖C(Ω) · e
T‖h1‖C1,0(Q̄T ) ,

obtain from (2.4) that

‖w̄t‖C(Q̄T ) ≤‖w̄‖C(Q̄T ) · ‖h1‖C(Q̄T ),

and infer from the expression of ∇w̄ that

‖∇w̄‖C(Q̄T ) ≤‖∇w0‖C(Ω) · e
T‖h1‖C1,0(Q̄T ) + ‖w0‖C(Ω) · e

T‖h1‖C1,0(Q̄T ) · T‖h‖C1,0(Q̄T ).

Thus for sufficient small 0 < T < 1, we may conlude that

‖w̄‖C1,0(Q̄T ) =‖w̄‖C(Q̄T ) + ‖∇w̄‖C(Q̄T )

≤eT‖h1‖C1,0(Q̄T )
{
‖∇w0‖C(Ω) + ‖w0‖C(Ω)(1 + T‖h‖C1,0(Q̄T ))

}
≤2‖∇w0‖C(Ω) + 2‖w0‖C(Ω)

≤R

(2.6)
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in view of (a, w) ∈ XR.

The (2.6), combined with known functions

h2 := 1− (χw − l)aeχw ∈ C1,0(Q̄T ) and h3 :=
{
γ − rχ(1− w)

}
aw ∈ C1,0(Q̄T )

due to (a, w) ∈ XR, indicates that (2.5) is a linear parabolic equation of ā, i. e.,


āt −∆ā− χ∇w̄ · ∇ā+ h2ā = h3, in QT ,

∇ā · ~ν
∣∣
∂Ω

= 0, t ∈ (0, T ),

ā(x, 0) = a0(x), x ∈ Ω.

Then Lp-theory of linear parabolic equations immediately implies that (2.5) possesses

a unique strong solution ā which satisfies

‖ā‖W 2,1
p (QT ) ≤ C(T )

{
‖h3‖Lp(QT ) + ‖a0‖W 2

p (Ω)

}
for any 1 < p < +∞, where C(T ) remains bounded for any finite T > 0. Now

applying a Sobolev’s embedding

W 2,1
p (QT ) ↪→ Cα,α

2 (Q̄T ) (2.7)

with 0 < α ≤ 2− n+2
p
< +∞ (i. e. n+2

2
< p < +∞) may show

‖ā‖
C1+λ, 1+λ

2 (Q̄T )
≤ C(n, p,QT ) ‖ā‖W 2,1

p (QT ), (2.8)

with λ ∈ (0, 1) and n+ 2 < p < +∞. These estimates combined with

‖ā‖C1,0(Q̄T ) =‖ā‖C(Q̄T ) + ‖∇ā‖C(Q̄T )

≤‖ā− ā0‖C(Q̄T ) + ‖ā0‖C(Q̄T ) + ‖∇ā−∇ā0‖C(Q̄T ) + ‖∇ā0‖C(Q̄T )

≤T
1+λ

2 ‖ā‖
C1, 1+λ

2 (Q̄T )
+ ‖a0‖C1(Ω)

≤T
1+λ

2 ‖ā‖
C1+λ, 1+λ

2 (Q̄T )
+ ‖a0‖C1(Ω)
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will indicate

‖ā‖C1,0(Q̄T ) ≤T
1+λ

2 C(n, p,QT )C(T )
{
‖h2‖Lp(QT ) + ‖a0‖W 2

p (Ω)

}
+ ‖a0‖C1(Ω)

≤2 + 2‖a0‖C1(Ω)

≤R

(2.9)

for T > 0 sufficiently small. So we have proved the mapping

F : XR −→ XR. (2.10)

Below we shall show that such a F is contractive on XR. Suppose (ā1, w̄1) =

F (a1, w1) and (ā2, w̄2) = F (a2, w2) with (a1, w1), (a2, w2) ∈ XR. Then we may

compute that

(w̄1 − w̄2)t = h4(w̄1 − w̄2) + h5, with (w̄1 − w̄2)(x, 0) = 0

where

h4 := −a1e
χw1 + r − rw1 and h5 := w̄2

{
a2e

χw2 − a1e
χw1 + r(w2 − w1)

}
.

It follows that

(w̄1 − w̄2)(x, t) =

∫ t

0

h5(x, s)e
∫ t
s h4(x,τ)dτds

and

∇(w̄1 − w̄2)(x, t) =

∫ t

0

∇xh5(x, s)e
∫ t
s h4(x,τ)dτds

+

∫ t

0

h5(x, s)e
∫ t
s h4(x,τ)dτ

∫ t

s

∇xh4(x, τ)dτ ds.

Note that

‖h5‖C(Q̄T )

=‖w̄2

{
(a2 − a1)eχw2 + a1(eχw2 − eχw1) + r(w2 − w1)

}
‖C(Q̄T )
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≤‖w̄2‖C(Q̄T )

{
eχ‖w2‖C(Q̄T ) · ‖a1 − a2‖C(Q̄T ) + ‖(|a1|+ r)eχ(w1+w2)‖C(Q̄T ) · ‖w1 − w2‖C(Q̄T )

}
≤‖w̄2‖C(Q̄T )‖(|a1|+ r + 1)‖C(Q̄T )e

‖χ(w1+w2)‖C(Q̄T )
{
‖a1 − a2‖C(Q̄T ) + ‖w1 − w2‖C(Q̄T )

}
,

∇h5

=∇w̄2

{
a2e

χw2 − a1e
χw1 + r(w2 − w1)

}
+ w̄2

{
∇a2e

χw2 −∇a1e
χw1

+ χa2e
χw2∇w2 − χa1e

χw1∇w1 + r∇(w2 − w1)
}

=∇w̄2

{
a2e

χw2 − a1e
χw1 + r(w2 − w1)

}
+ w̄2

{
eχw2∇(a2 − a1) + (eχw2 − eχw1)∇a1

+ χ∇w2e
χw2(a2 − a1) + χ∇w2a1(eχw2 − eχw1) + χa1e

χw1∇(w2 − w1) + r∇(w2 − w1)
}
,

‖∇h5‖C(Q̄T )

≤‖∇w̄2‖C(Q̄T )‖(|a1|+ r + 1)‖C(Q̄T )e
‖χ(w1+w2)‖C(Q̄T )

{
‖a1 − a2‖C(Q̄T ) + ‖w1 − w2‖C(Q̄T )

}
+ ‖w̄2‖C(Q̄T )

{
eχ‖w2‖C(Q̄T )‖∇(a2 − a1)‖C(Q̄T ) + χ‖∇w2e

χw2‖C(Q̄T )‖a1 − a2‖C(Q̄T )

+ ‖∇a1 + χ∇w2a1‖C(Q̄T )e
χ‖w1+w2‖C(Q̄T )‖w1 − w2‖C(Q̄T )

+ ‖r + χa1e
χw2‖C(Q̄T )‖∇(w1 − w2)‖C(Q̄T )

}
and ‖∇h4‖C(Q̄T ) =‖ − ∇a1e

χw1 − χa1e
χw1∇w1 − r∇w1‖C(Q̄T )

≤eχ‖w1‖C(Q̄T ) · ‖∇a1‖C(Q̄T ) + ‖r + χa1e
χw1‖C(Q̄T ) · ‖∇w1‖C(Q̄T ).

These immediately shows that

‖w̄1 − w̄2‖C1,0(Q̄T )

=‖w̄1 − w̄2‖C(Q̄T ) + ‖∇(w̄1 − w̄2)‖C(Q̄T )

≤TeT‖h4‖C(Q̄T ) ·
{
‖h5‖C(Q̄T ) + ‖∇h5‖C(Q̄T ) + ‖h5‖C(Q̄T ) · ‖h4‖C(Q̄T )

}
≤Tc1(R)

{
‖a1 − a2‖C1,0(Q̄T ) + ‖w1 − w2‖C1,0(Q̄T )

}
(2.11)

when T > 0 is sufficient small.
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On the other hand, we see that



(ā1 − ā2)t −∆(ā1 − ā2)− χ∇w̄1 · ∇(ā1 − ā2)

+h2(ā1 − ā2) = h6, in QT ,

∇(ā1 − ā2) · ~ν
∣∣
∂Ω

= 0, t ∈ (0, T ),

(ā1 − ā2)(x, 0) = 0, x ∈ Ω,

(2.12)

where

h6 :=− χ∇(w̄1 − w̄2) · ∇ā2 − ā2

{
(χw1 − l)a1e

χw1 − (χw2 − l)a2e
χw2
}

+
{
γ − rχ(1− w1)

}
a1w1 −

{
γ − rχ(1− w2)

}
a2w2.

Thanks to (2.6) and (2.9), we may consider (2.12) as a linear parabolic equation of

(ā1 − ā2). Note that

(χw1 − l)a1e
χw1 − (χw2 − l)a2e

χw2

=(χw1e
χw1 − leχw2)(a1 − a2) + χa2e

χw1(w1 − w2) + (χa2w2 − la1)(eχw1 − eχw2)

and {
γ − rχ(1− w1)

}
a1w1 −

{
γ − rχ(1− w2)

}
a2w2

=
{

(γ − rχ)w1 + rχw2
2

}
(a1 − a2) +

{
(γ − rχ)a2 + rχa1(w1 + w2)

}
(w1 − w2).

Then for sufficient small T > 0, we have

‖h6‖Lp(QT ) ≤χ‖∇ā2‖C(Q̄T ) · ‖∇(w̄1 − w̄2)‖Lp(QT )

+ ‖ā2(χw1e
χw1 − leχw2)‖C(Q̄T ) · ‖a1 − a2‖Lp(QT )

+ χ‖ā2a2e
χw1 + |χa2w2 − la1|eχ(w1+w2)‖C(Q̄T ) · ‖w1 − w2‖Lp(QT )

+ ‖(γ − rχ)w1 + rχw2
2‖C(Q̄T ) · ‖a1 − a2‖Lp(QT )

+ ‖(γ − rχ)a2 + rχa1(w1 + w2)‖C(Q̄T ) · ‖w1 − w2‖Lp(QT )

≤c2(R)
{
‖a1 − a2‖C1,0(Q̄T ) + ‖w1 − w2‖C1,0(Q̄T )

}
.
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Applying Lp-theory of linear parabolic equations to (2.12) may yield that

‖ā1 − ā2‖W 2,1
p (QT ) ≤C(T )

{
‖h6‖Lp(QT )

}
≤C(T )c2(R)

{
‖a1 − a2‖C1,0(Q̄T ) + ‖w1 − w2‖C1,0(Q̄T )

}
.

Similar to the derivation of (2.8), again using the Sobolev embedding leads us to

‖ā1 − ā2‖
C1+λ, 1+λ

2 (Q̄T )
≤C(n, p,QT ) ‖ā1 − ā2‖W 2,1

p (QT )

≤C(n, p,QT )C(T )c2(R)
{
‖a1 − a2‖C1,0(Q̄T ) + ‖w1 − w2‖C1,0(Q̄T )

}
.

So we may derive from (ā1 − ā2)(x, 0) = 0 for x ∈ Ω that

‖ā1 − ā2‖C1,0(Q̄T ) =‖(ā1 − ā2)(x, t)− (ā1 − ā2)(x, 0)‖C1,0(Q̄T )

≤T
1+λ

2 ‖(ā1 − ā2)(x, t)− (ā1 − ā2)(x, 0)‖
C1, 1+λ

2 (Q̄T )

≤T
1+λ

2 c3(R)
{
‖a1 − a2‖C1,0(Q̄T ) + ‖w1 − w2‖C1,0(Q̄T )

}
.

(2.13)

Consequently, by taking T > 0 to be small enough such that

Tc1(R) + T
1+λ

2 c3(R) < 1,

then (2.11) and (2.13) collectively imply that F in (2.10) is a contraction mapping,

which means that (2.3) has a unique strong solution in XR.

The positivity of a can be obtained by applying comparison principle of linear

parabolic to a-equation in (2.3) after treating ∇w,w as known functions and using

the regularity of a. Finally, from (2.4) we infer that

wt ≤ rw(1− w) ⇒ w(x, t) ≤ 1

(w0(x)−1 − 1)e−rt + 1
≤ max

{
1, ‖w0‖L∞(Ω)

}
= K

upon a comparison principle of ODE. This completes the proof.

We may improve the regularity of such a strong solution to (2.3) as below.

Lemma 2.2 (Regularity). The solution derived in Lemma 2.1 possesses the following
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regularity:

(a, w) ∈ C2+α,1+α
2 (Q̄T )× C2+α,1+α

2 (Q̄T ), α ∈ (0, 1),

for any 0 < T ≤ T0, where the domain Ω ⊂ Rn(n ≥ 1) is bounded and fulfills that

any x, y ∈ Ω can be connected by finitely many line segments, e.g., Ω to be convex or

∂Ω is sufficient regular, like ∂Ω ∈ C2+α.

Proof. We may reformulate the a-equation in (2.3) as


at −∆a− χ∇w · ∇a+ a = h7, in QT ,

∇a · ~ν
∣∣
∂Ω

= 0, t ∈ (0, T ),

a(x, 0) = a0(x) > 0, x ∈ Ω,

(2.14)

with h7 :=
{
γ − rχ(1 − w)

}
aw + (χw − l)a2eχw. For any 0 < T ≤ T0, Lemma 2.1

and Sobolev embedding (2.7) may lead us to that

‖w‖C1,1(Q̄T ) ≤ c4(R),

and for λ = 1− n+2
p
∈ (0, 1) (i. e. n+ 2 < p < +∞),

‖a‖
C1+λ, 1+λ

2 (Q̄T )
≤ C(n, p,QT ) ‖a‖W 2,1

p (QT ).

Therefore we have for each fixed t ∈ [0, T ] that the embedding holds:

w ∈ C1(Ω̄) ↪→ Cα(Ω̄), α ∈ (0, 1),

when Ω satisfies that any x, y ∈ Ω can be connected by finitely many line segments.

We also have for any fixed x ∈ Ω that

w ∈ C1([0, T ]) ↪→ C
α
2 ([0, T ]),

as [0, T ] is a convex domain. These combined with w ∈ C1,1(Q̄T ) imply w ∈

Cα,α
2 (Q̄T ), by its definition. Then h7 ∈ Cα,α

2 (Q̄T ) since the multiplication of any
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two elements in a Hölder space remains in this Hölder space and ez ∈ Cα,α
2 (Q̄T ) if

z ∈ Cα,α
2 (Q̄T ). Then to (2.14) which may be treated as a linear parabolic equation

of a, an application of Schauder estimate gives that

‖a‖
C2+α,1+α

2 (Q̄T )
≤ C

{
‖h7‖Cα,α2 (Q̄T )

+ ‖a0‖C2+α,1+α
2 (Q̄T )

}
.

On the other hand, the w-equation in (2.3) is

{
wt = −aweχw + rw(1− w), in QT ,

w(x, 0) = w0(x) > 0, x ∈ Ω.
(2.15)

Then we arrive at wt ∈ Cα,α
2 (Q̄T ) and

(∂xiw)t = h8 ∂xiw + h9, i = 1, 2, · · · , n,

which means

∂xiw(x, t) = ∂xiw(x, 0) e
∫ t
0 h8(x,τ) dτ +

∫ t

0

h9(x, s)e
∫ t
s h8(x,τ) dτ ds ∈ Cα,α

2 (Q̄T )

where

h8 := −χaweχw − aeχw + r − 2rw ∈ Cα,α
2 (Q̄T ), h9 := −weχw∂xia ∈ Cα,α

2 (Q̄T ).

So w ∈ C1+α,1+α
2 (Q̄T ) and h8, h9 ∈ C1+α,1+α

2 (Q̄T ), due to a ∈ C2+α,1+α
2 (Q̄T ). More-

over, we have

∂2
xixj

w(x, t) =∂2
xixj

w(x, 0) e
∫ t
0 h8(x,τ) dτ + e

∫ t
0 h8(x,τ) dτ∂xiw(x, 0)

∫ t

0

∂xjh8(x, τ) dτ

+

∫ t

0

∂xjh9(x, s)e
∫ t
s h8(x,τ) dτ +

∫ t

0

h9(x, s)e
∫ t
s h8(x,τ) dτ

∫ t

s

∂xjh8(x, τ) dτ ds

for i, j = 1, 2, · · · , n, which means

w ∈ C2+α,1+α
2 (Q̄T ),

in virtue of h8, ∂xjh8, h9, ∂xjh9 ∈ Cα,1+α
2 (Q̄T ). This completes our proof.
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The following is the extendability condition on the classical solution of (2.3).

Lemma 2.3 (Extension condition). The local classical solution obtained in Lemma 2.1

and Lemma 2.2 exists in t ∈ (0, T ) for any given T > 0, provided that

‖a‖L∞(QT ) + ‖w‖L∞(QT ) ≤ C(T ) < +∞. (2.16)

To prove this criteria, we need some a prior estimates to be given in the following

subsection.

2.2.2 Some A Prior Estimates

Throughout this subsection, we always assume that (2.3) has a classical solution

(a, w) ∈ C2,1(Q̄T )× C2,1(Q̄T ) for T > T0. (2.17)

Moreover, considering the similar structure between the u-equation in (2.1) (i.e.

(3.3)) and (3.2), the detailed derivations of the estimates needed in this subsection

will be omitted sometimes if they are similar to the corresponding ones in Section 3.2.

Lemma 2.4. Under the assumption (2.17), we then derive

‖a(·, t)‖L1(Ω) + ‖w(·, t)‖L1(Ω) ≤ C0 for t ∈ (0, T ),

where C0 := 2γ(r + 1)|Ω|K/min{1, γ} for γ > 0.

Proof. We refer readers to the proof of Lemma 3.2, by ‖a(·, t)‖L1(Ω) ≤ ‖u(·, t)‖L1(Ω)

due to a = ue−χw and u,w ≥ 0.

Lemma 2.5. Under the assumption (2.17), we may obtain that

‖a(·, t)‖L∞(Ω) ≤ C̃, t ∈ (0, T )

where the constant C̃ is independent of T .

Proof. We start with the calculation of ‖a(·, t)‖Lp(Ω) for 2 < p < +∞. Indeed, one
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may compute for p ≥ 2 that

d

dt

∫
Ω

eχwap + r(p− 1)χ

∫
Ω

eχwapw + p(p− 1)

∫
Ω

eχwap−2|∇a|2

+ p

∫
Ω

eχwap + pl

∫
Ω

e2χwap+1

=(p− 1)χ

∫
Ω

e2χwap+1w + r(p− 1)χ

∫
Ω

eχwapw2 + pγ

∫
Ω

apeχww.

When l ≥ χK, we see

pl

∫
Ω

e2χwap+1 ≥ (p− 1)χ

∫
Ω

e2χwap+1w,

which means

d

dt

∫
Ω

eχwap +

∫
Ω

eχwap +
p(p− 1)

2

∫
Ω

eχwap−2|∇a|2 ≤ pc̄0

∫
Ω

eχwap (2.18)

by 0 < w ≤ K with c̄0 := rχK2 + γK.

When l < χK, we note that

d

dt

∫
Ω

eχwap + p(p− 1)

∫
Ω

eχwap−2|∇a|2 ≤ pc̄0

∫
Ω

eχwap + (p− 1)c̄1

∫
Ω

ap+1 (2.19)

with c̄1 := χKe2χK . Using generalized Gagaliardo-Nirenberg interpolation inequality

(n = 2) [62, Lemma A.5] may lead us to∫
Ω

ap+1 =‖a
p
2‖

2(p+1)
p

L 2(p+1)
p

≤ η‖∇a
p
2‖

2(p+1)
p
− 2
p

L2(Ω) ‖a
p
2

(
ln a

p
2

) p
2‖

2
p

L 2
p

(Ω) + C‖a
p
2‖

2(p+1)
p

L 2
p

(Ω) + Cη

=
ηp‖a ln a‖L1(Ω)

2
‖∇a

p
2‖2

L2(Ω) + C‖a‖p+1
L1(Ω) + Cη

and thus

(p− 1)c̄1

∫
Ω

ap+1 ≤ p(p− 1)

2

∫
Ω

ap−2|∇a|2 + c̄2 ≤
p(p− 1)

2

∫
Ω

eχwap−2|∇a|2 + c̄2

where we take η = 4(p−1)c̄1
p2‖a ln a‖L1(Ω)

and set c̄2 = (p− 1)c̄1

{
C‖a‖p+1

L1(Ω) + Cη
}
.
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Therefore, either in this case or in (2.18) we always have for p ≥ 2 that

d

dt

∫
Ω

eχwap +

∫
Ω

eχwap +
p(p− 1)

2

∫
Ω

eχwap−2|∇a|2 ≤ p(c̄0 + 1)

∫
Ω

eχwap + c̄2.

Meanwhile, an application of Gagliardo-Nirenberg interpolation inequality (n = 2)

and Young’s inequality with a parameter η > 0 may yield that

‖a‖pLp(Ω) =‖a
p
2‖2

L2(Ω) ≤ C2
{
‖∇a

p
2‖2θ

L2(Ω)‖a
p
2‖2(1−θ)

L 2
p

(Ω) + ‖a
p
2‖2

L 2
p

(Ω)

}
≤C2

{p2η

4

∫
Ω

ap−2|∇a|2 + (1 + η−
θ

1−θ )‖a‖pL1(Ω)

}
with θ = p−1

p
, which means

p(c̄0 + 1)

∫
Ω

eχwap ≤p(c̄0 + 1)eχKC2
{p2η

4

∫
Ω

ap−2|∇a|2 + (1 + η1−p)‖a‖pL1(Ω)

}
≤p(p− 1)

4

∫
Ω

eχwap−2|∇a|2 + c̄3

where we take η = p−1
p2C2eχK(1+c̄0)

and c̄3 = p(c̄0 + 1)eχKC2
(
1 + η1−p)‖a‖pL1(Ω). So we

have

d

dt

∫
Ω

eχwap +

∫
Ω

eχwap ≤ c̄2 + c̄3

which implies∫
Ω

ap ≤
∫

Ω

eχwap ≤ c̄2 + c̄3 +

∫
Ω

eχw0a0
p, 2 ≤ p < +∞. (2.20)

In view of (2.19) and (2.18), one may obtain an inequality similar to (3.27) by

using Gagliardo-Nirenberg interpolation inequality (cf. the part between (3.24) and

(3.27)). Then the rest is to conduct Moser’s iteration which proceeds as the proof

of Lemma 3.8 (i.e., similar to the part after (3.27)). Together with (2.20), one may

finally obtain that ‖a(·, t)‖L∞(Ω) is upper bounded by some constant C̄ which is

independent of t and T. Thus we complete this proof.
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Lemma 2.6. Under assumption (2.17) and Ω ⊂ R2, we may derive that

∫
Ω

(|∇a(·, t)|2 + |∆w(·, t)|2) ≤ C(T ), and

∫ T

0

∫
Ω

|∆a(·, t)|2 ≤ C(T )

for any t ∈ (0, T ).

Proof. We refer readers to a similar discussion made in the proof of Lemma 3.10,

and note that we here have no boundary condition ∇w · ~ν
∣∣
∂Ω

= 0, but an inequality

similar to (3.34) still holds.

Lemma 2.6 enables us to derive ‖∇w‖Lp(Ω) for p > 2 by using Gagliardo-Nirenberg

interpolation inequality as

‖∇w‖Lp(Ω) ≤ C
{
‖∆w‖

p−2
p

L2(Ω)‖w‖
2
p

L∞(Ω) + ‖w‖L∞(Ω)

}
Then, the same as proving Lemma 2.2, one may obtain the following estimate.

Lemma 2.7. Under assumption (2.17), the solution satisfies

‖(a, w)‖
C2+α,1+α

2 (Q̄T )
≤ C(T ), α ∈ (0, 1),

for any finite T > T0, where the domain Ω ⊂ R2 is bounded and fulfills that any

x, y ∈ Ω can be connected by finitely many line segments, e.g., Ω to be convex or

∂Ω ∈ C2.

We are now in a position to prove Theorem 2.1 by verifying the extendability

condition given in Lemma 2.3 which illustrates that the global-in-time existence of

the unique classical solution to (2.3) and thus (2.1).

2.2.3 Proof of Theorem 2.1

By adopting the idea in [2, Theorem 5.3], we may prove the extendability given

in Lemma 2.3 as below.
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Proof. One may argue the Lemma 2.3 by a contradiction. Suppose that the unique

local classical solution (a, w) of (2.3) exists only in (0, T̄ ] for some 0 < T̄ < +∞.

Then we may consider (a, w)(x, T̄ − τ) as a new initial value of (2.3) for any

0 < τ < T̄ . It follows from Lemma 2.1 and Lemma 2.2 that there exists a 0 <

T̄0 < 1 which depends only on the upper bound of ‖(a, w)(·, T̄ − τ)‖C1(Ω̄), instead

of τ , such that the system (2.3) has a unique local classical solution which exists in

(T̄ − τ, T̄ − τ + T̄0). Note that (a, w)(x, T̄ − τ) indeed can be treated as a “ point ” of

(a, w)(x, t) and thus Lemma 2.7 implies that the upper bound of ‖(a, w)(·, T̄−τ)‖C1(Ω̄)

depends only upon T̄ . So T̄0 is dependent only on T̄ (i.e., T̄0 = T̄0(T̄ )) between τ

and T̄ .

The above procedure remains true for any 0 < τ < T̄ . Thereby, one may infer

that

T̄ − τ + T̄0 > T̄

as long as τ < T̄0 which can be achieved since T̄0 does not depend on τ . The unique-

ness of solution (a, w) to (2.3) means that the solution starting from (a, w)(x, T̄ − τ)

and ending up with (a, w)(x, T̄ − τ + T̄0), is only a section of the solution (a, w) of

(2.3), so

T̄ − τ + T̄0 ≤ T̄ .

This is a contradiction.

Proof of Theorem 2.1: Lemma 2.1 and Lemma 2.2 show that the local-in-time

unique classical solution of (2.3), thus of (2.1), exists in Ω ⊂ Rn(n ≥ 1). Lemma 2.3

shows that such a local solution exists globally in time for n = 2, provided that

l ≥ χK or χ > 0 is small as required in Lemma 2.5. Finally the L∞(Ω) estimate is

a consequence of Lemma 2.1 and Lemma 2.5.
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Chapter 3

Vanishing Viscosity Limit on a

Fully Parabolic System with

Direct Preytaxis

The term vanishing viscosity limit orginates from vanishing viscosity method.

This method may be traced back to M. G. Crandall and P.-L. Lions [63] in 1983 to

obtain the viscosity solutions (Lipschitz continuous solutions, i.e., W 1
∞) of Dirichlet

problem for Hamilton–Jacobi equation F(x, u,∇u) = 0 during dealing with the

uniqueness of its solution. For clarity in our case, here we review and slightly extend

the basic idea of vanishing viscosity method as follow: There is a nonlinear parabolic

PDE

∂u

∂t
= F(x, t, u,∇u), x ∈ Ω ⊂ Rn(n ≥ 1), t > 0, (3.1)

subjecting to some suitable initial and boundary conditions, where real-valued func-

tion F is continuous but may not be linear in all its arguments, and ∇u represents

the gradient of unknown function u = u(x, t). To qualitatively find the solution of

(3.1) in a suitable Sobolev space, one may approximate by solutions {uε}ε∈R of the

following PDE

∂u

∂t
= ε∆u+ F(x, t, u,Du), x ∈ Ω ⊂ Rn(n ≥ 1), t > 0, ε ∈ R
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and take the limit of {uε}ε∈R in a sense, as ε → 0. The essential part lies in that

some estimates for {uε}ε∈R which do not collapse and blow up as ε → 0, will allow

to pass the limit

uε → u, in some sense.

Then one may solve the original problem (3.1) if the limit u itself satisfies the equa-

tion, required regularity, and the boundary condition (if appropriate).

3.1 Models and Main Results

As stated in subsection 1.3, we shall in this chapter to consider that the strong

solution of 

ut = ∆u−∇ · (χu∇w) + γuw − u(1 + lu), in Q,

wt = ε∆w − uw + rw(1− w), in Q,

(∇u− χu∇w) · ~ν
∣∣
∂Ω

= 0, ε∇w · ~ν
∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(3.2)

will converge, as ε→ 0, to the strong solution of following parabolic-ODE system



ut = ∆u−∇ · (χu∇w) + γuw − u(1 + lu), in Q,

wt = −uw + rw(1− w), in Q,

(∇u− χu∇w) · ~ν
∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(3.3)

where Q := Ω × (0,+∞), the open bounded domain Ω ⊂ R2 with boundary ∂Ω,

ε, χ, γ, r > 0 and l ≥ 0. Throughout this chapter, our hypotheses are


u0(x), w0(x) ∈ C2+β(Ω) for some β ∈ (0, 1), ∂Ω ∈ C∞,

u0(x) ≥ ( 6≡)0, w0(x) > 0 for all x ∈ Ω,

(∇u0 − χu0∇w0) · ~ν
∣∣
∂Ω

= 0 (and∇w0 · ~ν
∣∣
∂Ω

= 0, ε ∈ (0, 1) in (3.2)).

(3.4)
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For this problem our main results read as below:

Theorem 3.1. Let Ω ⊂ R2 be a bounded open domain and (3.4) hold. For an

arbitrarily given T ∈ (0,+∞), one may derive:

(a) For any ε > 0 and p ∈ (2,+∞), both the system (3.2) and (3.3) have a unique

strong solution denoted by (uε, wε) and (u,w), respectively, which satisfy

(uε, wε)(x, t) and (u,w)(x, t) ∈
(
W 2,1
p (Ω× (0, T ))

)2

.

(b) For 2 < p, q <∞, the strong solutions have following convergence relation:

uε → u in Lp(0, T ;W 1
q (Ω)) and wε → w in L∞(0, T ;W 1

q (Ω)).

(c) System (3.3) has a unique classical solution (u,w) fulfilling

(u,w)(x, t) ∈
(
C
(
Ω× [0, T ]

)
∩ C2,1

(
Ω× [0, T ]

))2

.

We remark that compared with the local weak solution derived in Theorem 1.1,

1.3, and 1.4 of [52], roughly speaking, our Theorem 2.1 and 3.1 can be viewed partially

as counterparts in the framework of classical solutions for Ω ⊂ R2. In contrast with

[64], we remove the initial boundary condition ∇w0 ·~ν
∣∣
∂Ω

= 0 assumed in the system

(3.3), which seems more appropriate for the w-equation as an ODE.

3.2 Global-in-Time Existence of the Classical and
Strong Solution to (3.2)

For Ω ⊂ R2 the global-in-time existence of the unique classical solution to system

(3.2) given in [40, Theorem 1.1], is obtained actually under zero-Neumann boundary

condition, Ω ⊂ R2 being convex, ε = 1, and l = 0. This is not sufficient to clarify the

dependence on ε in the course of its proof. In addition, the ideas that appeared in

[40, 32, 37, 23] in obtaining ‖u‖Lp(Ω)(2 ≤ p < +∞), may not be directly applicable
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in our case, since the relevant estimates may either tend to infinity or give rise to

χ→ 0, while ε→ 0. More importantly, these connected estimates in particular when

ε → 0, will play a pivotal role in the proof of Theorem 3.1 in section 3.3. Thus we

shall in this section derive the necessary estimates by proving again the following

proposition. Based on this, we shall explore that the u-component in (3.2) satisfies

‖u(·, t)‖L∞(Ω) ≤ C(T ) < +∞ as ε→ 0, that is, Lemma 3.9 in section 3.2.3.

Proposition 3.1. Assume that Ω ⊂ R2 is a bounded open domain and (3.4) holds.

Then for any given T, ε > 0, system (3.2) possesses a global-in-time unique solution

(u,w)(x, t) ∈
(
C
(
Ω× [0, T ]

)
∩ C2,1

(
Ω× (0, T )

))2

.

3.2.1 Local Existence

In regard to zero-flux boundary condition, the Amann [65, 66] may yield the fol-

lowing local existence and uniqueness. Alternatively, this can be proved by jointly us-

ing Banach’s fixed-point theory, semigroup techniques and Lp theory and Schauder’s

theory of linear parabolic equations. We refer readers to an analogous proof given in

[67, Theorem 3.1] and omit its details here for brevity.

Lemma 3.1 (Local existence and uniqueness). Let Ω ⊂ R2 be an open bounded

domain with smooth boundary ∂Ω. If u0, w0 ∈ C2(Ω), then there exists Tmax ∈

(0,+∞] depending on u0 and w0 such that the problem (3.2) for each ε > 0 has a

unique classical solution on [0, Tmax) which fulfills

(u,w)(x, t) ∈ C
(
Ω× [0, Tmax)

)
∩ C2,1

(
Ω× (0, Tmax)

)
. (3.5)

If (u0, w0) satisfies 0-order compatibility, i.e., (∇u0 − χu0∇w0) · ~ν
∣∣
∂Ω

= 0 and ∇w0 ·

~ν
∣∣
∂Ω

= 0, then the local solution (u,w) is global-in-time, provided that

lim
t↗Tmax

{
‖u(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω)

}
< +∞.
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Remark 3.1. For (u,w) obtained in Lemma 3.1, if u0, w0 ≥ 0(6≡ 0) additionally,

then u(x, t), w(x, t) ≥ 0 for (x, t) ∈ Ω× [0, Tmax). Furthermore,

u(x, t) > 0, 0 < w(x, t) < max{1, ‖w0‖L∞(Ω)} =: K, (x, t) ∈ Ω× (0, Tmax)

for each ε > 0.

Indeed, one may infer the positivity of u by applying on any [0, T ] ⊂ [0, Tmax) the

comparison principle of linear parabolic equations to
at = ∆a+ χ∇w · ∇a+ a{γw − χwt − (1 + laeχw)}, in QT ,

∇a · ~ν
∣∣
∂Ω

= 0, in (0, T ],

a(x, 0) = u0(x)e−χw0(x) ≥ 0( 6≡ 0) in Ω,

since w,∇w,wt, and a here can be treated as known functions with the regularity

(3.5). A similar discussion will lead to the positivity of w.

Moreover, one may derive the upper bound of w by applying comparison principle

of a single linear parabolic equation to
wt − ε∆w = −uw + rw(1− w) ≤ rw(1− w), in Ω× (0, Tmax)

∇w · ~ν
∣∣
∂Ω

= 0, in (0, Tmax),

w(x, 0) = w0(x), in Ω,

since the system composed by the rightmost growth term and coupled with the same

initial boundary-value condition, has a upper solution solving the following ODE of

Bernoulli type {
dw̄
dt

= rw̄(1− w̄), t > 0;

w̄(0) = ‖w0‖L∞(Ω) > 0,

where

w̄ := w̄(t) =
1

(w̄−1
0 (x)− 1)e−rt + 1

≤ max
{

1, ‖w0‖L∞(Ω)

}
.
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3.2.2 L∞ Estimate of Solution to (3.2)

Due to Remark 3.1 and the extendability condition given in Lemma 3.1, it suffices

to obtain the L∞ estimate of u. We start with the following L1(Ω) estimate.

Lemma 3.2. Assume that (u,w) is the classical solution to (3.2). Then one may

acquire that

0 < ‖u(·, t)‖L1(Ω) + ‖w(·, t)‖L1(Ω) ≤ C0, t ∈ (0, Tmax)

with C0 := 2
{

1 + γ(r + 1)|Ω|K + ‖u0‖L1(Ω) + γ‖w0‖L1(Ω)

}
/min{1, γ} for γ > 0.

Proof. For any 0 < T < Tmax we may compute that

d

dt

∫
Ω

(u+ γw) +

∫
Ω

(u+ γw) =

∫
Ω

{
γrw(1− w)− u(1 + lu)

}
+

∫
Ω

(u+ γw)

≤γ(r + 1)

∫
Ω

w

according to (3.2) and u,w ≥ 0. Then from 0 < w < K in Remark 3.1 it follows

that

y′(t) + y(t) ≤ γ(r + 1)|Ω|K with y(t) :=

∫
Ω

{u(x, t) + γw(x, t)} dx

which concludes this proof by solving the above differential inequality in t ∈ (0, T ).

The next is to find some information on u, like
∫

Ω
uµ (µ ≥ 2) for our purpose

later. Instead of directly calculating 1
2

d
dt

∫
Ω
u2 that will yield a right-hand integral∫

Ω
u∇u·∇w to control with difficulty at present, we thereby shall compute d

dt

∫
Ω
u lnu

where
∫

Ω
∇u ·∇w appears but may be cancelled during computing d

dt

∫
Ω
|∇w|2
w

, which

is the purpose of the following two lemmas.

Lemma 3.3. Assume that (u,w) is the classical solution of (3.2). Then we have for
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l > 0 that

d

dt

∫
Ω

u lnu+

∫
Ω

u lnu+

∫
Ω

|∇u|2

u
+
l

2

∫
Ω

u2 ln(u+ 1) ≤ χ

∫
Ω

∇u · ∇w + C1,

and for l = 0 that

d

dt

∫
Ω

u lnu+

∫
Ω

u lnu+

∫
Ω

|∇u|2

u
≤ χ

∫
Ω

∇u · ∇w + γK

∫
Ω

u lnu+ C1,

where the constant C1 depends only upon γ, l,K, and C0 from Lemma 3.2.

Proof. Considering the positivity stated in Remark 3.1, one may multiply the u-

equation of (3.2) by (1 + lnu) and integrate the resulting equation with respect to

x ∈ Ω, to obtain that

d

dt

∫
Ω

u lnu+

∫
Ω

u lnu+

∫
Ω

|∇u|2

u

=χ

∫
Ω

∇u · ∇w + γ

∫
Ω

uw(1 + lnu)−
∫

Ω

(u+ lu2 + lu2 lnu),

which completes the proof of the case l = 0 by 0 < w < K. When l > 0,

d

dt

∫
Ω

u lnu+

∫
Ω

u lnu+

∫
Ω

|∇u|2

u

≤χ
∫

Ω

∇u · ∇w + γK

∫
Ω

(u+ u lnu)−
∫

Ω

(u+ lu2 + lu2 lnu)

≤χ
∫

Ω

∇u · ∇w +

∫
Ω

{
γKu lnu− lu2 − lu2 lnu

}
+ γK

∫
Ω

u

≤χ
∫

Ω

∇u · ∇w − l

2

∫
Ω

u2 ln(u+ 1) + Ĉ + γK‖u‖L1(Ω).

Note that the last inequality above is obtained by [62, Lemma 3.1] when l > 0. More

precisely, a continuous function ϕ : [0,+∞)→ R, is defined by

ϕ(z) :=

{
az2 + bz ln z − cz2 ln z + λz2 ln(z + 1), z > 0;

0, z = 0,
(3.6)
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with c > 0, λ < c and a, b ∈ R, and then it satisfies

ϕ(z)

z2 ln z
−→ λ− c < 0, as z → +∞.

So there exists a z0 ∈ (0,+∞) making ϕ(z) ≤ 0 on (z0,+∞). Then it follows that

as z ≥ 0,

az2 + bz ln z − cz2 ln z ≤ −λ2z2 ln(z + 1) + Ĉ, with ϕ(z) ≤ max
[0,z0]
|ϕ(z)| =: Ĉ.

This completes the proof.

To counteract the χ
∫

Ω
∇u · ∇w, we give the following integral inequality.

Lemma 3.4. Assume (u,w) is the classical solution to (3.2) in QT . One may acquire

that

d

dt

∫
Ω

|∇w|2

w
+ 3r

∫
Ω

|∇w|2 +
ε

2

∫
Ω

w|D2 lnw|2

≤
‖w(·, t)‖L1(Ω)

2δ0

+

∫
Ω

|∇w|2

w
(r − u)− 2

∫
Ω

∇u · ∇w

for any constant δ0 > 0 to be small enough and independent of ε.

Proof. Observe that

∂

∂t

(
|∇w|2

w

)
= −|∇w|

2

w2
wt +

2∇w · ∇wt
w

,

and
∫

Ω
2∇w·∇wt

w
= 2

∫
Ω
∇ lnw · ∇wt = −2

∫
Ω
wt∆ lnw = −2

∫
Ω

(
∆w
w
− |∇w|2

w2

)
wt. To-

gether with the w-equation of (3.2) we have

d

dt

∫
Ω

|∇w|2

w
= −

∫
Ω

|∇w|2

w2
wt − 2

∫
Ω

(
∆w

w
− |∇w|

2

w2

)
wt

=

∫
Ω

|∇w|2

w2
wt − 2

∫
Ω

∆w

w
wt
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=

∫
Ω

|∇w|2

w2
{ε∆w − uw + rw(1− w)} − 2

∫
Ω

∆w

w
{ε∆w − uw + rw(1− w)}

=ε

∫
Ω

|∇w|2

w2
∆w +

∫
Ω

|∇w|2

w
(r − u)− r

∫
Ω

|∇w|2 − 2ε

∫
Ω

|∆w|2

w

− 2

∫
Ω

(r − u)∆w + 2r

∫
Ω

w∆w

=ε

∫
Ω

|∇w|2

w2
∆w − 2ε

∫
Ω

|∆w|2

w
+

∫
Ω

|∇w|2

w
(r − u)− 3r

∫
Ω

|∇w|2 − 2

∫
Ω

∇u · ∇w.

Concerning the first two terms in the last equality, one may acquire in light of

Lemma A.3 that

−
∫

Ω

|∇w|2

w2
∆w = −2

3

∫
Ω

|∆w|2

w
+

2

3

∫
Ω

|D2w|2

w
− 2

3

∫
Ω

|∇w|4

w3
− 1

3

∫
∂Ω

1

w

∂|∇w|2

∂~ν

which gives

ε

∫
Ω

|∇w|2

w2
∆w − 2ε

∫
Ω

|∆w|2

w

=− 4ε

3

∫
Ω

|∆w|2

w
− 2ε

3

∫
Ω

|D2w|2

w
+

2ε

3

∫
Ω

|∇w|4

w3
+
ε

3

∫
∂Ω

1

w

∂|∇w|2

∂~ν
.

Here
∫

Ω
|∇w|4
w3 can be bounded by

∫
Ω
w|D2 lnw|2 due to Lemma A.3, but a further

control of
∫

Ω
w|D2 lnw|2 needs to relate

∫
Ω
w|D2 lnw|2 to the rest terms in the above

equality. That is,

|D2 lnw|2 =
1

w2

n∑
i,j=1

(wxixj)
2 +

1

w4

n∑
i=1

(wxi)
2

n∑
j=1

(wxj)
2 − 2

w3

n∑
i,j=1

wxixjwxiwxj

=
|D2w|2

w2
+
|∇w|4

w4
− 2∇w · (D2w · ∇w)

w3

=
|D2w|2

w2
+
|∇w|4

w4
− ∇w · ∇(|∇w|2)

w3
,
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and then we may show through integration by parts that∫
Ω

w|D2 lnw|2 =

∫
Ω

|D2w|2

w
+

∫
Ω

|∇w|4

w3
+

∫
Ω

∇
( 1

w

)
· ∇(|∇w|2)

=

∫
Ω

|D2w|2

w
+

∫
Ω

|∇w|4

w3
+

∫
Ω

|∇w|2

w2
∆w − 2

∫
Ω

|∇w|4

w3

=

∫
Ω

|D2w|2

w
+

∫
Ω

|∇w|2

w2
∆w −

∫
Ω

|∇w|4

w3
.

This gives

ε

∫
Ω

|∇w|2

w2
∆w − 2ε

∫
Ω

|∆w|2

w

=− 4ε

3

∫
Ω

|∆w|2

w
− 2ε

3

∫
Ω

w|D2 lnw|2 +
2ε

3

∫
Ω

|∇w|2

w2
∆w +

ε

3

∫
∂Ω

1

w

∂|∇w|2

∂~ν

=
2

3

(
ε

∫
Ω

|∇w|2

w2
∆w − 2ε

∫
Ω

|∆w|2

w

)
− 2ε

3

∫
Ω

w|D2 lnw|2 +
ε

3

∫
∂Ω

1

w

∂|∇w|2

∂~ν

which indicates

ε

∫
Ω

|∇w|2

w2
∆w − 2ε

∫
Ω

|∆w|2

w
= −2ε

∫
Ω

w|D2 lnw|2 + ε

∫
∂Ω

1

w

∂|∇w|2

∂~ν
.

Substituting this equality into d
dt

∫
Ω
|∇w|2
w

yields immediately that

d

dt

∫
Ω

|∇w|2

w

=ε

∫
Ω

|∇w|2

w2
∆w − 2ε

∫
Ω

|∆w|2

w
+

∫
Ω

|∇w|2

w
(r − u)− 3r

∫
Ω

|∇w|2 − 2

∫
Ω

∇u · ∇w

=− 2ε

∫
Ω

w|D2 lnw|2 + ε

∫
∂Ω

1

w

∂|∇w|2

∂~ν
+

∫
Ω

|∇w|2

w
(r − u)

− 3r

∫
Ω

|∇w|2 − 2

∫
Ω

∇u · ∇w.

We may finally combine
∫
∂Ω

1
w
∂|∇w|2
∂~ν

with
∫

Ω
w|D2 lnw|2. Applying Lemma A.4,
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Lemma 2.2 of [68] (or cf. (3.13)) and Young’s inequality with small constant δ > 0,

one has

ε

∫
∂Ω

1

w

∂|∇w|2

∂~ν
≤ 2κε

∫
∂Ω

1

w
|∇w|2 = 2κε

∫
∂Ω

|w
1
2∇ lnw|2

≤2κεC̄
(
‖D(w

1
2∇ lnw)‖L2(Ω) + ‖w

1
2∇ lnw‖L2(Ω)

)
· ‖w

1
2∇ lnw‖L2(Ω)

≤2κεC̄

[
δ

2

(
‖D(w

1
2∇ lnw)‖L2(Ω) + ‖w

1
2∇ lnw‖L2(Ω)

)2

+
1

2δ
‖w

1
2∇ lnw‖2

L2(Ω)

]

≤2κεC̄
(
δ

∫
Ω

|D(w
1
2∇ lnw)|2 + δ

∫
Ω

|w
1
2∇ lnw|2 +

1

2δ

∫
Ω

|w
1
2∇ lnw|2

)
=2κεC̄δ

∫
Ω

|D(w
1
2∇ lnw)|2 + 2κεC̄(δ +

1

2δ
)

∫
Ω

|w
1
2∇ lnw|2

=2κεC̄δ

∫
Ω

|1
2
w−

1
2∇w · ∇ lnw + w

1
2D(∇ lnw)|2 + 2κεC̄(δ +

1

2δ
)

∫
Ω

|w
1
2∇ lnw|2

≤4κεC̄δ

∫
Ω

(1

4

|∇w|4

w3
+ |w

1
2D(∇ lnw)|2

)
+ 2κεC̄(δ +

1

2δ
)

∫
Ω

|w
1
2∇ lnw|2

≤κεC̄δ
∫

Ω

|∇w|4

w3
+ 4κεC̄δ

∫
Ω

w|D2 lnw|2 + 2κεC̄(δ +
1

2δ
)

∫
Ω

|∇w|2

w

≤κεC̄δ[(2 +
√
n)2 + 4]

∫
Ω

w|D2 lnw|2 + 2κεC̄(δ +
1

2δ
)

∫
Ω

|∇w|2

w

where C̄ is a constant independent of ε and the last inequality is obtained by

Lemma A.3. Moreover, again using Young’s inequality and Lemma A.3, there exists

a δ0 > 0 such that∫
Ω

|∇w|2

w
=

∫
Ω

|∇w|2

w
3
2

w
1
2 ≤ δ0

2

∫
Ω

|∇w|4

w3
+

1

2δ0

∫
Ω

w

≤δ0

2
(2 +

√
n)2

∫
Ω

w|D2 lnw|2 +
‖w‖L1(Ω)

2δ0

.

Then one may complete this proof by taking the δ > 0 to be small enough such that

κC̄δ[(2 +
√
n)2 + 4] ≤ 1,
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fixing such a δ, and then by taking above δ0 > 0 to be small which fulfills

δ0

2
(2 +

√
n)2 · 2κC̄(δ +

1

2δ
) ≤ 1

2
.

A combination of Lemma 3.3 and Lemma 3.4 yields the following results.

Corollary 3.1. If the estimates in Lemma 3.3 and Lemma 3.4 hold, then we may

acquire that∫
Ω

u(·, t) lnu(·, t), χ

2

∫
Ω

|∇w(·, t)|2

w(·, t)
≤ c1e

rt, t ∈ (0, T ), (3.7)

∫ T

0

∫
Ω

( |∇u|2
u

+
χε

4
w|D2 lnw|2

)
≤ (c2T + c1)erT , (3.8)

for any n ≥ 1, where we set c0 := χC0

4δ0
+C1+r|Ω|, c1 := 1+ c0

r
+
∫

Ω

(
u0 lnu0+ χ

2
|∇w0|2
w0

)
,

and c2 := c0 + rc1 (when l = 0 we replace all r by r+ γK). Moreover, we have that∫ T

0

∫
Ω

u2 ≤
(
c3T + (2C)4C2

0(c1 + 2)
)
erT , (3.9)

where we set c3 := c2(2C)4C2
0 when n = 1, 2, l ≥ 0 or c3 := γKC0/l when n ≥ 1, l >

0. Here the constant C is from Gagliardo-Nirenberg interpolation inequality.

Proof. When l > 0, Lemma 3.3 and Lemma 3.4 jointly indicate that

d

dt

∫
Ω

u lnu+

∫
Ω

u lnu+

∫
Ω

|∇u|2

u
+
l

2

∫
Ω

u2 ln(u+ 1)

+
χ

2

d

dt

∫
Ω

|∇w|2

w
+

3rχ

2

∫
Ω

|∇w|2 +
χε

4

∫
Ω

w|D2 lnw|2

≤χ
2

∫
Ω

|∇w|2

w
(r − u) + C2,

(3.10)

where C2 :=
χ‖w(·,t)‖L1(Ω)

4δ0
+ C1 ≤ χC0

4δ0
+ C1 by Lemma 3.2. Then it follows from
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z ln z > −1
e

for z ∈ R+ and positivity of (u,w) that

d

dt

∫
Ω

(
u lnu+

χ

2

|∇w|2

w

)
≤r
∫

Ω

(
u lnu+

χ

2

|∇w|2

w

)
− r

∫
Ω

u lnu+ C2

≤r
∫

Ω

(
u lnu+

χ

2

|∇w|2

w

)
+ c0,

which implies (3.7). In conjunction with (3.7), the inequality (3.10) also indicates

by z ln z > −e−1(z ∈ R+) that

d

dt

∫
Ω

(
u lnu+

χ

2

|∇w|2

w

)
+

∫
Ω

|∇u|2

u
+
χε

4

∫
Ω

w|D2 lnw|2 ≤ rc1e
rT + c0.

Integrating it from both sides with respect to t in (0, T ) may conclude (3.8). When

l = 0, in a similar way it suffices to replace r in (3.7) and (3.8) by r + γK.

Finally, an application of Ggaliardo-Nirenberg interpolation gives that

‖u‖2
L2(Ω) = ‖

√
u‖4

L4(Ω) ≤(2C)4
(
‖∇
√
u‖4θ

L2(Ω)‖
√
u‖4(1−θ)

L2(Ω) + ‖
√
u‖4

L2(Ω)

)
≤(2C)4C4

0

{
‖∇
√
u‖nL2(Ω) + 1

}
with θ = n

4
∈ (0, 1) as n = 1, 2. Then using (3.8) as well as Lemma 3.2 may yield

(3.9) when n = 1, 2 and l = 0. This is also true if l > 0. Alternatively, if l > 0 one

may see for any n ≥ 1 that

d

dt

∫
Ω

u+

∫
Ω

u(1 + lu) =

∫
Ω

γuw ≤ γKC0.

Integrating this inequality with respect to t ∈ (0, T ) may give (3.9) as well.

Note that below we shall no longer distinguish between the constant C of Gagliardo-

Nirenberg interpolation inequality and its certain powers or multiples, for simplicity.

We are in a position to estimate
∫

Ω
|∇w|p(p ≥ 2) as usual, and will display the de-

pendence on ε during the derivations. Directly one may estimate
∫

Ω
|∇w|2 in order

to obtain
∫ T

0

∫
Ω
|∆w|2.
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Lemma 3.5. Suppose Ω ⊂ Rn(n ≥ 1). Let (u,w) be the local classical solution of

(3.2) in (0, T ) ⊂ (0, Tmax). Then one may have

∫
Ω

|∇w(·, t)|2 + ε

∫ T

0

∫
Ω

|∆w(·, t)|2 ≤ ‖∇w0‖2
L2(Ω) +

(4c1

χ
+K2(c2T + c1)

)
erT .

Proof. By d
dt
|∇w| = ∇w·∇wt

|∇w| and zero-flux boundary condition on w we compute that

d

dt

∫
Ω

|∇w|2 + 2r

∫
Ω

|∇w|2 + 2ε

∫
Ω

|∆w|2 + 2

∫
Ω

u|∇w|2 + 4r

∫
Ω

w|∇w|2

=4r

∫
Ω

|∇w|2 − 2

∫
Ω

w∇u · ∇w

≤2r

∫
Ω

w|∇w|2 + 2r

∫
Ω

|∇w|2

w
+K2

∫
Ω

|∇u|2

u
+

∫
Ω

u|∇w|2,

where the last inequality is obtained by applying Young’s inequality to the two right-

hand terms of the equality to obtain that

4r

∫
Ω

|∇w|2 = 4r

∫
Ω

|∇w|√
w
·
√
w|∇w| ≤ 2r

∫
Ω

|∇w|2

w
+ 2r

∫
Ω

w|∇w|2

and that by 0 < w < K

2

∫
Ω

w∇u · ∇w ≤ 2K
|∇u|√
u

√
u|∇w| ≤ 4K2

2η

|∇u|2

u
+
η

2
u|∇w|2.

By setting η = 2, we may derive that

d

dt

∫
Ω

|∇w|2 + 2r

∫
Ω

|∇w|2 + 2ε

∫
Ω

|∆w|2 +

∫
Ω

u|∇w|2 + 2r

∫
Ω

w|∇w|2

≤2r

∫
Ω

|∇w|2

w
+K2

∫
Ω

|∇u|2

u

which means

d

dt

∫
Ω

|∇w|2 + 2r

∫
Ω

|∇w|2 + 2ε

∫
Ω

|∆w|2 ≤ 2r

∫
Ω

|∇w|2

w
+K2

∫
Ω

|∇u|2

u
(3.11)
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and thus ∫
Ω

|∇w|2 ≤e−2rt

∫
Ω

|∇w0|2 + 2r

∫ t

0

∫
Ω

|∇w|2

w
+K2

∫ t

0

∫
Ω

|∇u|2

u

≤e−2rt

∫
Ω

|∇w0|2 +
4c1

χ
ert +K2(c2t+ c1)ert

by (3.7) and (3.8). More generally, integrating (3.11) in t ∈ (0, T ) and using (3.7)

and (3.8) again may conclude that∫
Ω

|∇w|2 + 2r

∫ T

0

∫
Ω

|∇w|2 + 2ε

∫ T

0

∫
Ω

|∆w|2

≤
∫

Ω

|∇w0|2 + 2r

∫ T

0

∫
Ω

|∇w|2

w
+K2

∫ T

0

∫
Ω

|∇u|2

u

≤
∫

Ω

|∇w0|2 +

(
4c1

χ
+K2(c2t+ c1)

)
ert.

This completes the proof.

For any q > 2, we have the following estimate.

Lemma 3.6. Suppose that (u,w) is the classical solution of (3.2) in QT for any

0 < T < Tmax. Then one may have that

1

q

d

dt

∫
Ω

|∇w|q +
ε(q − 2)

8

∫
Ω

|∇w|q−2(∇|∇w|)2 +
ε

2

∫
Ω

|∇w|q−2|D2w|2

≤nq
ε

∫
Ω

|∇w|(q−2)λ +
C(T, q)

ε

(
1 +

∫
Ω

u
2λ
λ−1

)
where q ∈ (2,+∞), λ ∈ (1,+∞) and C(T, q) is independent of ε provided that ε is

bounded from above.

Proof. By d
dt
|∇w| = ∇w·∇wt

|∇w| and zero-flux boundary condition we compute

1

q

d

dt

∫
Ω

|∇w|q =

∫
Ω

|∇w|q−2∇w · ∇wt = −
∫

Ω

∇ · (|∇w|q−2∇w)wt
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=−
∫

Ω

∇ · (|∇w|q−2∇w)
{
ε∆w − uw + rw(1− w)

}
=− ε

∫
Ω

∇ · (|∇w|q−2∇w)∆w −
∫

Ω

∇ · (|∇w|q−2∇w)
{
− uw + rw(1− w)

}
= : I + II.

For I, we observe that

I =− ε
∫

Ω

∇ · (|∇w|q−2∇w)∆w

=− ε(q − 2)

∫
Ω

(|∇w|q−3∆w∇w) · ∇|∇w| − ε
∫

Ω

|∇w|q−2|∆w|2

=:IA + IB.

We keep IB unchanged. Herein using integration by parts and ∇w · ~ν
∣∣
∂Ω

= 0, one

may obtain

IA =− ε(q − 2)

∫
Ω

(|∇w|q−3∆w∇w) · ∇|∇w|

=ε(q − 2)

∫
Ω

∇ · (|∇w|q−3∆w∇w)|∇w| − ε(q − 2)

∫
∂Ω

(|∇w|q−3∆w|∇w|)∇w · ~ν

=ε(q − 2)(q − 3)

∫
Ω

|∇w|q−3(∆w∇w) · ∇|∇w|+ ε(q − 2)

∫
Ω

|∇w|q−2(∇∆w · ∇w)

+ ε(q − 2)

∫
Ω

|∇w|q−2|∆w|2

that is, for q > 2

−ε(q − 2)

∫
Ω

(|∇w|q−3∆w∇w) · ∇|∇w| = ε

∫
Ω

|∇w|q−2(∇∆w · ∇w) + ε

∫
Ω

|∇w|q−2|∆w|2.

Then applying ∆|∇w|2 = 2∇∆w · ∇w + 2|D2w|2 and again integration by parts to

the first right-hand term above may yield that

ε

∫
Ω

|∇w|q−2(∇∆w · ∇w)
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=
ε

2

∫
Ω

|∇w|q−2∆|∇w|2 − ε
∫

Ω

|∇w|q−2|D2w|2

=− ε

2

∫
Ω

∇|∇w|q−2 · ∇|∇w|2 +
ε

2

∫
∂Ω

|∇w|q−2∇|∇w|2 · ~ν − ε
∫

Ω

|∇w|q−2|D2w|2

=− ε(q − 2)

∫
Ω

|∇w|q−2(∇|∇w|)2 +
ε

2

∫
∂Ω

|∇w|q−2∇|∇w|2 · ~ν − ε
∫

Ω

|∇w|q−2|D2w|2.

It follows that for q > 2,

IA =− ε(q − 2)

∫
Ω

|∇w|q−2(∇|∇w|)2 +
ε

2

∫
∂Ω

|∇w|q−2∇|∇w|2 · ~ν − ε
∫

Ω

|∇w|q−2|D2w|2

+ ε

∫
Ω

|∇w|q−2|∆w|2,

which implies for q > 2 that

I =− ε(q − 2)

∫
Ω

|∇w|q−2(∇|∇w|)2 +
ε

2

∫
∂Ω

|∇w|q−2∇|∇w|2 · ~ν − ε
∫

Ω

|∇w|q−2|D2w|2.

In regard to II, letting h(u,w) := −uw+rw(1−w) and using Young’s inequality

with parameter 2nq
δ

(δ > 0), one may calculate that

II =−
∫

Ω

∇ · (|∇w|q−2∇w)h ≤
∫

Ω

|∇w|q−2
(
(q − 2)|∇|∇w||+ |∆w|

)
|h|

≤nq
δ

∫
Ω

|∇w|q−2h2 +
δ

4nq

∫
Ω

|∇w|q−2
(
(q − 2)|∇|∇w||+ |∆w|

)2

≤nq
δ

∫
Ω

|∇w|q−2h2 +
δ(q − 2)

2

∫
Ω

|∇w|q−2(∇|∇w|)2 +
δ

2

∫
Ω

|∇w|q−2|D2w|2

where we have used |∆u|2 ≤ n|D2u|2. Hence combined with I and II, letting δ = ε

will yield

1

q

d

dt

∫
Ω

|∇w|q +
ε(q − 2)

2

∫
Ω

|∇w|q−2(∇|∇w|)2 +
ε

2

∫
Ω

|∇w|q−2|D2w|2

≤nq
ε

∫
Ω

|∇w|q−2h2 +
ε

2

∫
∂Ω

|∇w|q−2∇|∇w|2 · ~ν
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≤nq
ε

∫
Ω

|∇w|(q−2)λ +
nq

ε

∫
Ω

h
2λ
λ−1 + κε

∫
∂Ω

|∇w|q (3.12)

by Lemma A.4 and via Young’s inequality with index λ and λ
λ−1

for any 1 < λ <∞.

Below we shall deal with the last two terms in (3.12).

For the κε
∫
∂Ω
|∇w|q in (3.12), using interpolation-trace inequality in [68, Lemma

2.2], one may find that

‖∇w‖Lq(∂Ω) ≤C̄(‖∇|∇w|‖Lq(Ω) + ‖∇w‖Lq(Ω))
1
q ‖∇w‖

1− 1
q

Lq(Ω), 1 < q <∞, (3.13)

where C̄ depends on Ω and q. Then using Young’s inequality with parameter η > 0

and with index q and q
q−1

may yield that

κε

∫
∂Ω

|∇w|q = κε‖|∇w|
q
2‖2

L2(∂Ω)

≤κεC̄2
(
‖∇|∇w|

q
2‖L2(Ω) + ‖|∇w|

q
2‖L2(Ω)

)2(1− 1
q

)‖|∇w|
q
2‖

2
q

L2(Ω)

≤κεC̄2η
(
‖∇|∇w|

q
2‖L2(Ω) + ‖|∇w|

q
2‖L2(Ω)

)2
+ κεC̄2η−

1
q−1‖|∇w|

q
2‖2

L2(Ω)

≤2κεC̄2η‖∇|∇w|
q
2‖2

L2(Ω) + κεC̄2
(
2η + η−

1
q−1
)
‖|∇w|

q
2‖2

L2(Ω)

≤ε(q − 2)

4

∫
Ω

|∇w|q−2(∇|∇w|)2 + εc4

∫
Ω

|∇w|q,

where we take η = q−2
2κC̄2q2 <

1
2κC̄2 and c4 := 1+κC̄2

(
2κC̄2q2

q−2

) 1
q−1

= 1+κC̄2e
1
q−1

ln 2κC̄2q2

q−2

will be bounded uniformly as q ∈ (2 + ι0,+∞) for any fixed ι0 > 0.

For
∫

Ω
h

2λ
λ−1 in (3.12), one may generally compute that for any 1 < σ <∞,

nq

ε

∫
Ω

hσ =
nq

ε

∫
Ω

(
uw + rw(1 + w)

)σ
≤c5

ε

∫
Ω

uσ +
c5

ε

with c5 := nq
2
·max

{
(2K)σ, (2rK(1 +K))σ|Ω|

}
as a result of 0 < w < K.
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Then we may update (3.12) by taking σ = 2λ
λ−1

and 1 < λ < +∞ that

1

q

d

dt

∫
Ω

|∇w|q +
ε(q − 2)

4

∫
Ω

|∇w|q−2(∇|∇w|)2 +
ε

2

∫
Ω

|∇w|q−2|D2w|2

≤nq
ε

∫
Ω

|∇w|(q−2)λ + εc4

∫
Ω

|∇w|q +
c5

ε

(
1 +

∫
Ω

u
2λ
λ−1

)
.

(3.14)

We proceed to decompose εc4

∫
Ω
|∇w|q in (3.14). Indeed, when 4 < q < +∞ one

may use generalized Gagliardo-Nirenberg interpolation inequality in Lemma A.2 to

show that ∫
Ω

|∇w|q =‖|∇w|
q
2‖2

L2(Ω)

≤C‖∇|∇w|
q
2‖2θ

L2(Ω) ‖|∇w|
q
2‖2(1−θ)

L 4
q

(Ω) + C‖|∇w|
q
2‖2

L 4
q

(Ω)

≤Cη‖∇|∇w|
q
2‖2

L2(Ω) + C(η−
θ

1−θ + 1)‖|∇w|
q
2‖2

L 4
q

(Ω)

with θ =
q
4
− 1

2
q
4
− 1

2
+ 1
n

∈ (0, 1) as long as 2 < q < +∞, where we have used Young’s

inequality with parameter η > 0 and with index 1
θ

and 1
1−θ . It follows from η = q−2

2q2c4C

that

εc4

∫
Ω

|∇w|q ≤ ε(q − 2)

8

∫
Ω

|∇w|q−2(∇|∇w|)2 + εc6‖∇w‖qL2(Ω) (3.15)

with c6 := c4C(η−
θ

1−θ + 1) and θ
1−θ = n(q−2)

4
.

On the other hand, when 1 < q ≤ 4, using the Gagliardo-Nirenberg interpolation

inequality in Lemma A.1 and Young’s inequality with parameter δ > 0 and with

index 1
β

and 1
1−β to show that∫

Ω

|∇w|q =‖|∇w|
q
2‖2

L2(Ω)

≤C‖∇|∇w|
q
2‖2β

L2(Ω) · ‖|∇w|
q
2‖2(1−β)

L1(Ω) + C‖|∇w|
q
2‖2

L1(Ω)
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≤Cδ‖∇|∇w|
q
2‖2

L2(Ω) + C(δ−
β

1−β + 1)‖|∇w|
q
2‖2

L1(Ω),

with β = n
n+2

. Thus taking δ = q−2
2q2c4C

will yield that

εc4

∫
Ω

|∇w|q ≤ ε(q − 2)

8

∫
Ω

|∇w|q−2(∇|∇w|)2 + εc7‖|∇w|
q
2‖2

L1(Ω), (3.16)

with c7 := c4C(δ−
β

1−β + 1) and β
1−β = n

2
.

For any 0 < T < Tmax one may further control the ‖∇w‖qL2(Ω) in (3.15) and the

‖|∇w| q2‖2
L1(Ω) in (3.16). Indeed, it follows from (3.7) that

‖∇w‖qL2(Ω) ≤ c
q
2

8 as 4 < q < +∞, and ‖|∇w|
4
2‖2

L1(Ω) ≤ c 2
8 as q = 4,

where c8 := 2Kc1e
rT/χ. Using Hölder’s inequality and again (3.7) may yield that

‖|∇w|
q
2‖2

L1(Ω) =
(∫

Ω

|∇w|
q
2

)2

≤ |Ω|
4−q

2

(∫
Ω

|∇w|2
) q

2 ≤ (1 + c8)|Ω|
4−q

2 , 1 < q < 4.

Thereupon, substituting (3.15) and (3.16) into (3.14) may lead us to

1

q

d

dt

∫
Ω

|∇w|q +
ε(q − 2)

8

∫
Ω

|∇w|q−2(∇|∇w|)2 +
ε

2

∫
Ω

|∇w|q−2|D2w|2

≤nq
ε

∫
Ω

|∇w|(q−2)λ +
c9

ε

(
1 +

∫
Ω

u
2λ
λ−1

) (3.17)

where either c9 := ε2c6c
q
2

8 + c5 as q > 4 or c9 := ε2c7 ·max{c 2
8 , (1 + c8)|Ω| 4−q2 }+ c5 as

q ∈ (1, 4].

Remark 3.2. In addition, setting λ(q−2) ≤ 2 in (3.17) and combining q > 2 therein

will yield 2 < q ≤ 2 + 2
λ

for 1 < λ <∞. Then a joint use of Hölder’s inequality and

(3.7) gives that∫
Ω

|∇w|λ(q−2) ≤ |Ω|1−
λ(q−2)

2

(∫
Ω

|∇w|2
)λ(q−2)

2 ≤ |Ω|1−
λ(q−2)

2 c
λ(q−2)

2
8
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when λ(q− 2) < 2, and the upper bound is still valid as λ(q− 2) = 2. We thus have

d

dt

∫
Ω

|∇w|q ≤ c10

ε

(
1 +

∫
Ω

u
2λ
λ−1

)
,

with c10 := nq|Ω|1−
λ(q−2)

2 c
λ(q−2)

2
8 + c9. This inequality immediately shows

∫
Ω

|∇w|q ≤ c11

ε
, (3.18)

where 2 < q < 4− 4
σ

for σ > 2 and c11 := c10

∫ T
0

(
1 +

∫
Ω
uσ
)
.

After these preparations, we next may derive ‖u‖L∞(Ω) through ‖a(·, t)‖L∞(Ω) in

the following two lemmas.

Lemma 3.7. Assume that (a, w) is a local classical solution of (1.13)– (1.15) in

t ∈ (0, Tmax). Then one may have for p ≥ 2 that

d

dt

∫
Ω

eχwap + r(p− 1)χ

∫
Ω

eχwapw +
p(p− 1)

2

∫
Ω

eχwap−2|∇a|2

+ p

∫
Ω

eχwap + pl

∫
Ω

e2χwap+1

≤εp2c̄1

∫
Ω

ap|∇w|2 + pc̄2

∫
Ω

ap+1 + pc̄3

∫
Ω

ap

(3.19)

where c̄1 := eχKχ2
(
1+ ε

2

)
, c̄2 := χKe2χK, and c̄3 := rχK2eχK+γeχKK. Furthermore,

assume that for some σ ∈ (2,+∞)

∫ T

0

∫
Ω

uσ ≤ c (3.20)

where c may depend on T ∈ (0, Tmax) and other parameters of the system (3.2) but

remains bounded as ε→ 0. Then we have for Ω ⊂ R2 that

∫
Ω

ap(x, t) ≤ c̄(p)ec̄(p)·t (3.21)
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where the constant c̄(p) is independent of ε > 0.

Proof. For any p ≥ 2 and (1.13)– (1.15), we may compute that

d

dt

∫
Ω

eχwap

=χ

∫
Ω

eχwapwt + p

∫
Ω

eχwap−1
{
− χawt + e−χw∇ · (eχw∇a) + γaw − a(1 + laeχw)

}
=− (p− 1)χ

∫
Ω

eχwapwt + p

∫
Ω

ap−1∇ · (eχw∇a) + pγ

∫
Ω

apeχww − p
∫

Ω

apeχw(1 + laeχw)

=− (p− 1)χ

∫
Ω

eχwap
{
ε∆w − aeχww + rw(1− w)

}
+ p

∫
Ω

ap−1∇ · (eχw∇a)

+ pγ

∫
Ω

apeχww − p
∫

Ω

apeχw(1 + laeχw)

=εχ2(p− 1)

∫
Ω

eχwap|∇w|2 + εχp(p− 1)

∫
Ω

eχwap−1∇a · ∇w + (p− 1)χ

∫
Ω

e2χwap+1w

− r(p− 1)χ

∫
Ω

eχwapw(1− w)− p(p− 1)

∫
Ω

eχwap−2|∇a|2

+ pγ

∫
Ω

apeχww − p
∫

Ω

apeχw − pl
∫

Ω

e2χwap+1

that is,

d

dt

∫
Ω

eχwap + r(p− 1)χ

∫
Ω

eχwapw + p(p− 1)

∫
Ω

eχwap−2|∇a|2 + p

∫
Ω

eχwap + pl

∫
Ω

e2χwap+1

=εχ2(p− 1)

∫
Ω

eχwap|∇w|2 + εχp(p− 1)

∫
Ω

eχwap−1∇a · ∇w + (p− 1)χ

∫
Ω

e2χwap+1w

+ r(p− 1)χ

∫
Ω

eχwapw2 + pγ

∫
Ω

apeχww.

An application of Young’s inequality leads us to

εχp(p− 1)

∫
Ω

eχwap−1∇a · ∇w ≤ p(p− 1)

2

∫
Ω

eχwap−2|∇a|2 +
p(p− 1)(εχ)2

2

∫
Ω

eχwap|∇w|2.

Combined with 0 < w < K, therefore, the integral inequality (3.19) is obtained.
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Furthermore, since assumption (3.20) indicates the estimate (3.18), then by (3.19)

a joint application of Hölder’s inequality and Gagliardo-Nirenberg inequality means

that

εp2c̄1

∫
Ω

ap|∇w|2 ≤εp2c̄1‖∇w‖2
L2τ ′ (Ω)‖a

p
2‖2

L2τ (Ω)

≤εp2c̄1(2C)2‖∇w‖2
L2τ ′ (Ω)

(
‖∇a

p
2‖2θ

L2(Ω)‖a
p
2‖2(1−θ)

L 2
p

(Ω) + ‖a
p
2‖2

L 2
p

(Ω)

)
with θ =

p− 1
τ

p−1+ 2
n

∈ (0, 1) as 1 ≤ n < 2τ
τ−1

and τ ′ = τ
τ−1

for τ ∈ (1,+∞). Then taking

2τ ′ = q in (3.18) which means τ > 2 + 2
σ−2

, and using Young’s inequality with one

parameter η > 0 will result in

εp2c̄1

∫
Ω

ap|∇w|2 ≤p2c̄4

(
η‖∇a

p
2‖2

L2(Ω) + η−
θ

1−θ ‖a‖pL1(Ω) + ‖a‖pL1(Ω)

)
≤p(p− 1)

8

∫
Ω

ap−2|∇a|2 + p2c̄4(η−
θ

1−θ ‖a‖pL1(Ω) + ‖a‖pL1(Ω)

) (3.22)

with c̄4 := ε
1
τ c̄1(2C)2c

1
τ ′
9 and η = p−1

2p3c̄4
.

Similarly, applying Gagliardo-Nirenberg interpolation inequality (n = 2) given in

[62, Lemma A.5] may yield that

pc̄2

∫
Ω

ap+1 =pc̄2‖a
p
2‖

2(p+1)
p

L 2(p+1)
p

(Ω)

≤pc̄5

(
δ‖∇a

p
2‖

2(p+1)
p
− 2
p

L2(Ω) ‖a
p
2 ln

p
2

(
a
p
2

)
‖

2
p

L 2
p

(Ω) + C‖a
p
2‖

2(p+1)
p

L 2
p

(Ω) + Cδ
)

=pc̄5

(
δ‖∇a

p
2‖2

L2(Ω) ‖a ln a‖L1(Ω) + C‖a‖p+1
L1(Ω) + Cδ

)
≤p(p− 1)

8

∫
Ω

ap−2|∇a|2 + pc̄5

(
C‖a‖p+1

L1(Ω) + Cδ
)

where we take δ = p−1
2p2c̄5(1+‖a ln a‖L1(Ω))

which makes sense by ‖a ln a‖L1(Ω) ≤ ‖u lnu‖L1(Ω).
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Consequently, we may derive from (3.19) that

d

dt

∫
Ω

eχwap + p

∫
Ω

eχwap ≤ p2c̄6 + pc̄3

∫
Ω

ap ≤ p2c̄6 + pc̄3

∫
Ω

eχwap

where c̄6 := c̄4(η−
θ

1−θ ‖a‖pL1(Ω)+‖a‖pL1(Ω)

)
+ c̄5

(
C‖a‖p+1

L1(Ω)+Cδ
)
. Solving this inequality

may conclude that∫
Ω

ap ≤
∫

Ω

eχwap ≤ epc̄3·t
(pc̄6

c̄3

+ ‖eχw0ap0‖L1(Ω)

)
.

Thus we complete the proof.

Remark 3.3. We need some illustrations on the sufficient condition (3.20) as follow:

(i) Without condition (3.20), it is not difficult to derive

‖u(·, t)‖L2(Ω) ≤
M̄(T )

ε
· e

M(T )
ε , t ∈ (0, T )

for some constants M(T ) and M̄(T ) independent of ε > 0, which is enough

to obtain the ‖u(·, t)‖L∞(Ω) for any fixed ε > 0. Based on this, we shall in

Lemma 3.9 prove that ‖u(·, t)‖L∞(Ω) remains bounded uniformly in ε > 0.

(ii) Condition (3.20) can be relaxed to allow

∫ T

0

∫
Ω

uσ ≤ c

ερ

for some ρ < 1− 2
σ

and σ > 2, where constant c remains bounded as ε→ 0.

(iii) Also, condition (3.20) can be replaced by

‖u‖L2(Ω) ≤ c

where constant c remains bounded as ε→ 0.
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Proof. For (i), one may compute that

1

2

d

dt

∫
Ω

u2 =

∫
Ω

u
{

∆u− χ∇ · (u∇w) + γuw − u(1 + lu)
}

=−
∫

Ω

|∇u|2 + χ

∫
Ω

u∇u · ∇w + γ

∫
Ω

u2w −
∫

Ω

u2(1 + lu).

≤− 1

2

∫
Ω

|∇u|2 +
χ2

2

∫
Ω

u2|∇w|2 + γK

∫
Ω

u2 −
∫

Ω

u2 − l
∫

Ω

u3

Applying Hölder’s inequality and Gagliardo-Nirenberg interpolation inequality

(n = 2) may yield that

χ2

2

∫
Ω

u2|∇w|2 ≤ χ2

2
‖u‖2

L4(Ω)‖∇w‖2
L4(Ω)

≤2χ2C2
(
‖∇u‖L2(Ω)‖u‖L2(Ω) + ‖u‖2

L1(Ω)

)
‖∇w‖2

L4(Ω).

Applying Young’s inequality gives that

2χ2C2‖∇u‖L2(Ω)‖u‖L2(Ω)‖∇w‖2
L4(Ω) ≤

1

4
‖∇u‖2

L2(Ω) + 4χ4C4‖u‖2
L2(Ω)‖∇w‖4

L4(Ω).

This means

χ2

2

∫
Ω

u2|∇w|2 ≤ 1

4
‖∇u‖2

L2(Ω) + 4χ4C4‖∇w‖4
L4(Ω)‖u‖2

L2(Ω) + 2χ2C2‖u‖2
L1(Ω)‖∇w‖2

L4(Ω),

thus

1

2

d

dt
‖u‖2

L2(Ω) + ‖u‖2
L2(Ω) +

1

4
‖∇u‖2

L2(Ω) + l‖u‖3
L3(Ω)

≤
{
γK + 4χ4C4‖∇w‖4

L4(Ω)

}
‖u‖2

L2(Ω) + 2χ2C2‖u‖2
L1(Ω)‖∇w‖2

L4(Ω).

Thereupon, we may find that

d

dt
‖u‖2

L2(Ω) ≤2
{
γK + 4χ4C4‖∇w‖4

L4(Ω)

}
‖u‖2

L2(Ω)

+ 4χ2C2‖u‖2
L1(Ω)‖∇w‖2

L4(Ω).
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Solving this integral inequality shows that

‖u(·, t)‖2
L2(Ω)

≤e2
∫ T
0 {γK+4χ4C4‖∇w‖4

L4(Ω)
}
{
‖u(·, 0)‖2

L2(Ω) + 2χ2C2‖u‖2
L1(Ω)

∫ T

0

(
1 + ‖∇w‖4

L4(Ω)

)}
≤M̄(T )

ε
· e

M(T )
ε

where M(T ) := 2(γKT + (4C)4(χK)3(c2T + c1)erT ), M̄(T ) := ‖u(·, 0)‖2
L2(Ω) +

2χC2‖u‖2
L1(Ω)

(
χT + 43(c2T + c1)K3erT

)
, and we have used∫ T

0

∫
Ω

|∇w|4 ≤ K3

∫ T

0

∫
Ω

|∇w|4

w3
≤ K3(2 +

√
2)2

∫ T

0

∫
Ω

w|D2 lnw|2 ≤ 43K3(c2T + c1)erT

χε

by Lemma A.3 and estimate (3.8), or by Lemma 3.5 and Gagliardo-Nirenberg inter-

polation inequality.

For (ii), when it is used in (3.22) and later in (3.23), one may require the power

of ε to be nonnegative in order to take ε → 0, that is, by the expression of c12 in

(3.23) with the c11 defined in (3.18), one have

1− 1 + ρ

τ ′
≥ 0, with τ ′ =

τ

τ − 1
and 2 +

2

σ − 2
< τ < +∞,

so ρ < 1− 2
σ
.

For (iii), one may use Gagliardo-Nirenberg interpolation inequality (n = 2) to

show that

‖u‖3
L3(Ω) = ‖

√
u‖6

L6(Ω) ≤ C6
{
‖∇
√
u‖2

L2(Ω)‖
√
u‖4

L4(Ω) + ‖
√
u‖6

L4(Ω)

}
and thus by the estimate (3.8) one may see that

∫ T

0

∫
Ω

u3 ≤ C6‖u‖2
L2(Ω)

∫ T

0

∫
Ω

|∇u|2

u
+C6‖u‖3

L2(Ω) ≤ C6‖u‖2
L2(Ω)

{
(c2T+c1)erT+‖u‖L2(Ω)

}
which satisfies the condition (3.20).
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Lemma 3.8. For Ω ⊂ R2 and ε ∈ (0, 1), under assumption (3.20) one may derive

‖a(·, t)‖L∞(Ω) ≤ max
{

1, C0(T )
}
, t ∈ (0, T ) ⊂ (0, Tmax).

Note that C0(T ) is additionally increasing in 1/ε if Remark 3.3 (i) is satisfied, and

depend on max{1, ε} if Remark 3.3 (ii) or (iii) holds.

Proof. We proceed to compute the right-hand terms in (3.19). Firstly, we note that

the only difference amongst using assumption (3.20), Remark 3.3 (i), (ii), and (iii)

lies in the obtained coefficients in dealing with εp2c̄1

∫
Ω
ap|∇w|2.

Indeed, if assumption (3.20) holds, then a joint application of Hölder’s inequality

and Gagliardo-Nrienberg interpolation inequality yield that

εp2c̄1

∫
Ω

ap|∇w|2 ≤εp2c̄1‖∇w‖2
L2τ ′ (Ω)‖a

p
2‖2

L2τ (Ω)

≤εp2c̄1C
2‖∇w‖2

L2τ ′ (Ω)

(
‖∇a

p
2‖2θ

L2(Ω)‖a
p
2‖2(1−θ)

L1(Ω) + ‖a
p
2‖2

L1(Ω)

)
where θ = 1 − 1

2τ
∈ (0, 1) and τ ′ = τ

τ−1
for τ ∈ (1,+∞). Taking 2τ ′ = q, by (3.18)

and Young’s inequality with parameter η > 0, we know that

εp2c̄1

∫
Ω

ap|∇w|2 ≤p2c12

(
‖∇a

p
2‖2θ

L2(Ω)‖a
p
2‖2(1−θ)

L1(Ω) + ‖a
p
2‖2

L1(Ω)

)
≤p2c12

(
η‖∇a

p
2‖2

L2(Ω) + (η−
θ

1−θ + 1)‖a
p
2‖2

L1(Ω)

) (3.23)

where c12 := 1 + C2ε
1
τ c̄1c

1
τ ′
11 . Setting η = p−1

2p3c12
leads us to that

εp2c̄1

∫
Ω

ap|∇w|2 ≤ p(p− 1)

8

∫
Ω

ap−2|∇a|2 + p4τc13‖a
p
2‖2

L1(Ω) (3.24)

with c13 := ((4c12)2τ−1 + 1)c12 and τ > 2 + 2
σ−2

.

The above computations remain almost unchanged if Remark 3.3 (ii) or (iii) holds

alternatively, that is, c12 depends on max{1, ε} instead of 1/ε. On the other hand,
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when Remark 3.3 (i) holds, the coefficient c12 and thus c13 may be increasing in 1/ε.

This difference does not occur in the rest right-hand terms of (3.19). Consequently,

we below shall no longer distinguish the assumption (3.20), Remark 3.3 (i), (ii), and

(iii).

Secondly, by applying Gagliardo-Nirenberg interpolation inequality and Young’s

inequality with parameter δ > 0 and with index 2p
p+2

and 2p
p−2

, we have∫
Ω

ap+1 =‖a
p
2‖

2(p+1)
p

L 2(p+1)
p

(Ω)

≤c14

(
‖∇a

p
2‖

2(p+1)θ
p

L2(Ω) ‖a
p
2‖

2(p+1)(1−θ)
p

L1(Ω) + ‖a
p
2‖

2(p+1)
p

L1(Ω)

)
=c14

(
‖∇a

p
2‖

p+2
p

L2(Ω) ‖a
p
2‖L1(Ω) + ‖a

p
2‖

2(p+1)
p

L1(Ω)

)
≤c14

(
δ‖∇a

p
2‖2

L2(Ω) + δ−
p+2
p−2‖a

p
2‖

2p
p−2

L1(Ω) + ‖a
p
2‖

2(p+1)
p

L1(Ω)

)
where θ = p+2

2(p+1)
∈ (0, 1) and c14 = (1 + C)4 ≥ C

2(p+1)
p with p > 2. Then taking

δ = p−1
2p2c̄2c14

will yield that

pc̄2

∫
Ω

ap+1 ≤p(p− 1)

8

∫
Ω

ap−2|∇a|2 + pc̄2c14

(
δ−

p+2
p−2 + 1

)(
‖a

p
2‖L1(Ω) + 1

) 2p
p−2

≤p(p− 1)

8

∫
Ω

ap−2|∇a|2 + c
2p
p−2

15 · p
1+ 2p

p−2
(
‖a

p
2‖L1(Ω) + 1

) 2p
p−2

(3.25)

with c15 := 4c̄2c14+1, in light of 2(p+1)
p

= 2p
p−2
· p2−p−2

p2 ≤ 2p
p−2

and p+2
p−2

= 2p
p−2
· p+2

2p
≤ 2p

p−2
.

Thirdly, similar to the derivation of (3.24), we know that

pc̄3

∫
Ω

ap ≤pc̄3C
2
(
‖∇a

p
2‖L2(Ω)‖a

p
2‖L1(Ω) + ‖a

p
2‖2

L1(Ω)

)
≤pc̄3C

2
(
ρ‖∇a

p
2‖2

L2(Ω) + (1 + ρ−1)(1 + ‖a
p
2‖L1(Ω))

2
)

≤p(p− 1)

8

∫
Ω

ap−2|∇a|2 + c16 · p2(1 + ‖a
p
2‖L1(Ω))

2

(3.26)
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with ρ = p−1
2p2c̄3C2 and c16 := 2c5C

2(1 + 4c̄3C
2).

Then in conjunction with (3.24)–(3.26), we may derive from (3.19) and eχw ≥ 1

that

d

dt

∫
Ω

eχwap +

∫
Ω

eχwap

≤
(
p4τc13 + c

2p
p−2

15 · p
1+ 2p

p−2 + c16 · p2
)(
‖a

p
2‖L1(Ω) + 1

) 2p
p−2

≤c17 · pµ ·
(
‖a

p
2‖

2p
p−2

L1(Ω) + 1
)

(3.27)

where c17 := 26 · 3 ·max{c13, c
6
15, c16} and µ := max{4τ, 7} with τ > 2 + 2

σ−2
, in view

of p
p−2
≤ 3 for p ≥ 3. Immediately it follows that∫

Ω

ap ≤
∫

Ω

eχwap ≤ c18 · ‖a0‖pL∞(Ω) + pµ · c17 ·
(

1 + sup
t∈(0,T )

(∫
Ω

a
p
2

) 2p
p−2

)

with a0 = u0e
−χw0 and c18 := |Ω| · eχ‖w0‖L∞(Ω) . Now we let pk = 3 · 2k, σk = 2pk

pk−2
, and

Mk := max
{

1, sup
t∈(0,T )

∫
Ω

apk
}
, k = 0, 1, 2, · · · .

Therefore, we have for k ≥ 1 that

Mk ≤ c18‖a0‖pkL∞(Ω) + c19 p
µ
kM

σk
k−1 (3.28)

with c19 := 2c17.

Now if there exist infinitely many k ≥ 1 such that pµkc19M
σk
k−1 < c18‖a0‖pkL∞(Ω),

then (∫
Ω

apk
) 1
pk ≤M

1
pk
k ≤ (2c18)

1
pk ‖a0‖L∞(Ω), k ≥ 1,

which means ‖a(·, t)‖L∞(Ω) ≤ ‖a0‖L∞(Ω) for any t ∈ (0, T ), by letting k → +∞.

On the contrary, there is a set I of finite many integers such that

pµkc19M
σk
k−1 < c18‖a0‖pkL∞(Ω) for k ∈ I,
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thus

Mk ≤ 2c18‖a0‖pkL∞(Ω) ≤ 2c18 max
k∈I

{
‖a0‖pkL∞(Ω)

}
=: N, k ∈ I,

Meanwhile, we have pµkc19M
σk
k−1 ≥ c18‖a0‖pkL∞(Ω) as long as k 6∈ I and k ≥ 1, then

Mk ≤ pµk · (2c19) ·Mσk
k−1 ≤ ιkMσk

k−1, for all k ≥ 1,

with some ι > 1 fulfilling ιk > max{Nk, 3µ · (2c19) · (2µ)k} > 1 for all k ≥ 0. A simple

induction shows that

Mk ≤ιk(Mk−1)σk ≤ ιk+(k−1)σk(Mk−2)σkσk−1 ≤ · · ·

≤ιk+
∑k
j=k0+1

(
(j−1)

∏k
i=j σi

)
·M

∏k
j=k0

σj

k0−1 , k0 ≥ 1.

Noting that for all k ≥ 0, σk ≥ σk+1 > 1 and σk = 2pk
pk−2

= 2(1 + 2
pk−2

) ≤ 2 + 4
2k

, thus

one may obtain that

k∏
i=j

σi ≤
k∏
i=j

2
(
1 +

2

2i
)

= 2k−j+1e
∑k
i=j ln

(
1+ 2

2i

)
≤ 2k−j+1e

∑k
i=j

2

2i ≤ 2k−j+1e4

and

M
1
pk
k ≤ ι

k
pk

+ 2k+1e4

pk

∑k
j=2

j−1

2j ·M
2k+1e4

pk2k0

k0−1

that is, by letting k → +∞,

‖a(·, t)‖L∞(Ω) ≤ ι
e4

3 ·M
2e4

3·2k0

k0−1 , t ∈ (0, T ).

Then together with (3.21) and the definition of Mk we may complete this proof.

Proof of Proposition 3.1: Since Remark 3.3 (i) holds for any finite ε > 0,

then Lemma 3.8 implies

‖a(·, t)‖L∞(Ω) ≤ C(1/ε, T ), t ∈ (0, T ) ⊂ (0, Tmax) (3.29)

where the constant C(1/ε, T ) is increasing in 1/ε and T . Alternatively, Remark 3.3
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(i) and Remark A.1 jointly show that

‖∇w(·, t)‖Lp(Ω) ≤
C(T )

ε
· e

C(T )
ε for p ∈ [1,+∞), t ∈ (0, T ) ⊂ (0, Tmax)

and for some constant C(T ) > 0 which increases in T and depends on max{1, ε}.

This certainly supports the derivation of (3.24) in the proof of Lemma 3.8 with

corresponding c12 and c13 increasing in 1/ε in such a case. Hence we have (3.29) as

well.

Thus the local unique classical solution of (3.2) claimed in Lemma 3.1 exists

globally in time, for any given ε > 0. This completes the proof.

3.2.3 The Strong Solution of (3.2)

We first prove a critical lemma which enables us to remove the dependence on

1/ε in the upper bound of ‖a(·, t)‖L∞(Ω), based on Remark 3.3 (i).

Lemma 3.9. For system (3.2) and any given 0 < T < +∞, there exists a finite

M = M(T ) > 0 such that

‖u(·, t)‖L∞(QT ) ≤M(T ), t ∈ (0, T )

where M(T ) remains bounded as ε→ 0.

Proof. By Remark 3.3 (i), Remark A.1, Lemma 3.7 and Lemma 3.8, for 0 < w < K

and the given T , ε > 0, one may derive from the derivation of (3.29) that

‖u(·, t)‖L∞(QT ) ≤ C(1/ε, T ) < +∞,

where the constant C(1/ε, T ) → +∞ as ε → 0. Obviously, this upper bound is

rather rough. So we shall below prove that there may be no 1/ε included in this

upper bound, as ε→ 0.

Let b ∈ (0, 1/2). A nonempty measurable set

Qb :=
{

(x, t) ∈ Ω× (0, T ) : u(x, t) > b · ‖u(·, t)‖L∞(QT )

}
⊂ QT = Ω× (0, T )
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satisfies Qb1 ( Qb2 as 0 < b2 < b1 < 1/2, and its measure is defined by |Qb| ≤ |QT | =

T |Ω|. Then by (3.9) we know that

(
c3T + (2C)4C2

0(c1 + 2)
)
erT ≥

∫ T

0

∫
Ω

u2 ≥
∫
Qb
u2(x, t)

≥|Qb|b2‖u(·, t)‖2
L∞(QT ).

(3.30)

In addition, for each ε > 0 one may have

⋃
b∈(0,1/2)

Qb = QT ,

where Qb 6= QT for all b ∈ (0, 1/2) due to u > 0 in QT and u ≥ 0 in Ω × [0, T )

(cf. Remark 3.1). In general, if there is a b0 ∈ (0, 1) such that Qb = QT for b ∈ (0, b0]

(i.e. u has a positive lower bound), one may replace all the intervals (0, 1/2) by (b0, κ)

with 0 < b0 < κ < 1.

Now for any fixed T , we have |QT | fixed. If ‖u(·, t)‖L∞(QT ) → +∞ as ε→ 0, then

letting ε→ 0 in (3.30) gives that

|Qb| → 0, for each b ∈ (0, 1/2),

and thus

|QT | =
∣∣∣ ⋃
b∈(0,1/2)

Qb
∣∣∣→ 0, as ε→ 0,

which is a contradiction. Then there exists some constant M(T ) > 0 bounded as

ε→ 0, such that

‖u‖L∞(QT ) ≤M(T ), for any ε > 0.

This completes the proof.

Lemma 3.9 means that for any given 0 < T < +∞, one may find

‖u(·, t)‖L∞(Ω) ≤ sup
t∈(0,T )

‖u(·, t)‖L∞(Ω) ≤ C(T ) and ‖a(·, t)‖L∞(Ω) ≤ C(T ), (3.31)
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where C(T ) is increasing in T and can be independent of ε ∈ (0, 1).

With this result at hand, we may estimate uniformly in ε the second order deriva-

tives of a and w as below.

Lemma 3.10. Let Ω ⊂ R2. We may derive that

∫
Ω

(|∇a(·, t)|2 + |∆w(·, t)|2) ≤ C(T ), and

∫ T

0

∫
Ω

|∆a(·, t)|2 ≤ C(T )

for any t ∈ (0, T ) ⊂ (0, Tmax), where C(T ) is increasing in T and independent of ε.

Proof. Invoking at = −χa{ε∆w − aeχww + rw(1− w)} + χ∇w · ∇a + ∆a + γaw −

a(1 + laeχw) and using zero-flux boundary condition on a, we may calculate that

1

2

d

dt

∫
Ω

|∇a|2 =

∫
Ω

∇a · ∇at = −
∫

Ω

∆a at

=−
∫

Ω

∆a
{
− χa{ε∆w − aeχww + rw(1− w)}+ χ∇w · ∇a+ ∆a+ γaw − a(1 + laeχw)

}
=−

∫
Ω

∆a
{
χa2eχww − rχaw(1− w) + γaw − a(1 + laeχw)

}
−
∫

Ω

|∆a|2 + χε

∫
Ω

a∆a∆w − χ
∫

Ω

∆a∇w · ∇a

≤C(T )

∫
Ω

|∆a| −
∫

Ω

|∆a|2 + χε

∫
Ω

a∆a∆w − χ
∫

Ω

∆a∇w · ∇a

with ‖ − χa2eχww + rχaw(1− w) + γaw − a(1 + laeχw)
∥∥
L∞(Ω)

≤ C(T ).

Furthermore, by Young’s inequality with parameter η > 0 one may derive that

C(T )

∫
Ω

|∆a| ≤ C2(T )|Ω|η
2

+
1

2η

∫
Ω

|∆a|2 ≤ 2C2(T )|Ω|+ 1

8

∫
Ω

|∆a|2, η = 4,

χ(ε+ 1)

∫
Ω

a∆a∆w ≤ 2
(
χ(1 + ε)‖a‖L∞(Ω))

2

∫
Ω

|∆w|2 +
1

8

∫
Ω

|∆a|2, η = 4χ(1 + ε)‖a‖L∞(Ω),

− χ
∫

Ω

∆a∇w · ∇a ≤ 2χ2

∫
Ω

|∇w · ∇a|2 +
1

8

∫
Ω

|∆a|2, η = 4χ,
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2χ2

∫
Ω

|∇w · ∇a|2 ≤ χ2η

∫
Ω

|∇w|4 +
χ2

η

∫
Ω

|∇a|4 ≤ ĉ0

∫
Ω

|∆w|2 +
1

8

∫
Ω

|∆a|2 + ĉ1

with η = 8χ2(2C)4‖a‖2
L∞(Ω), ĉ0 = ηχ2(2C)4K2, ĉ1 = 1

8
‖a‖2

L∞(Ω) +ηχ2(2C)4K4, where

we have applied Gagliardo-Nirenberg interpolation inequality (n = 2) to
∫

Ω
|∇w|4

and
∫

Ω
|∇a|4, that is,∫
Ω

|∇A|4 = ‖∇A‖4
L4(Ω) ≤ (2C)4

{
‖∆A‖2

L2(Ω)‖A‖2
L∞(Ω) + ‖A‖4

L∞(Ω)

}
. (3.32)

Combining these estimates may yield that

1

2

d

dt

∫
Ω

|∇a|2 +
1

2

∫
Ω

|∆a|2 ≤ ĉ2

∫
Ω

|∆w|2 + ĉ3 (3.33)

with ĉ2 := ĉ0 + 2
(
χ(1 + ε)‖a‖L∞(Ω))

2 and ĉ3 := ĉ1 + 2C2(T )|Ω|.

Below we proceed to estimate
∫

Ω
|∆w|2. Indeed, by ∇w · ~ν

∣∣
∂Ω

= 0, we have

∫
∂Ω

∆w∇wt · ~ν =

∫
∂Ω

∆w
d

dt
(∇w · ~ν) =

d

dt

∫
∂Ω

∆w(∇w · ~ν)−
∫
∂Ω

(∇w · ~ν)
d

dt
∆w = 0,

and thus by d
dt
|∆w| = ∆w

|∆w|∆wt and wt = ε∆w−aeχww+rw(1−w), one may compute

that

1

2

d

dt

∫
Ω

|∆w|2 =

∫
Ω

∆w∆wt = −
∫

Ω

∇∆w · ∇wt +

∫
∂Ω

∆w∇wt · ~ν

=−
∫

Ω

∇∆w ·
{
ε∇∆w − eχww∇a− χaeχww∇w − aeχw∇w + r∇w − 2rw∇w)

}
=− ε

∫
Ω

|∇∆w|2 +

∫
Ω

∆w∇ ·
{
− eχww∇a− χaeχww∇w − aeχw∇w + r∇w − 2rw∇w)

}
=− ε

∫
Ω

|∇∆w|2 +

∫
Ω

∆w
{
− 2(χw + 1)eχw∇w · ∇a− (χw + 2)χaeχw|∇w|2 − 2r|∇w|2

− (χaeχww + aeχw + 2rw)∆w + r∆w − eχww∆a
}
.

A joint use of 0 < w < K and Young’s inequality with parameter η > 0 will produce
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that

−2

∫
Ω

∆w(χw + 1)eχw∇w · ∇a ≤ ĉ4

∫
Ω

|∆w|2 +
ĉ4

2η

∫
Ω

|∇w|4 +
ηĉ4

2

∫
Ω

|∇a|4

with ĉ4 := (χK + 1)eχK . Then using (3.32) may yield that

ηĉ4

2

∫
Ω

|∇a|4 ≤ 1

8

∫
Ω

|∆a|2 + ĉ5, and
ĉ4

2η

∫
Ω

|∇w|4 ≤ ĉ6

∫
Ω

|∆w|2 + ĉ7

where we take η = 1
4ĉ4(2C)4‖a‖2

L∞(Ω)

, ĉ5 := 1
8
‖a‖2

L∞(Ω), ĉ6 := ĉ4
2η

(2C)4K2, and ĉ7 :=

ĉ4
2η

(2C)4K4. Another application of (3.32) yields that

−
∫

Ω

(
(χw + 2)χaeχw + 2r

)
|∇w|2∆w ≤ ĉ8

∫
Ω

|∆w|2 + ĉ9

with ĉ8 := ι
2

(
1+(2C)4K2

)
and ĉ9 := ι

2
(2C)4K4, and ι := 2r+χ(χK+2)eχK‖a‖L∞(Ω).

Similarly,

−
∫

Ω

eχww∆w∆a ≤ 1

8

∫
Ω

|∆a|2 + ĉ10

∫
Ω

|∆w|2

with ĉ10 := 2(eχKK)2.

Thereupon, substituting these estimates into d
dt

∫
Ω
|∆w|2 will lead us to

1

2

d

dt

∫
Ω

|∆w|2 + ε

∫
Ω

|∇∆w|2 +

∫
Ω

(χaeχww + aeχw + 2rw)|∆w|2

≤ĉ11

∫
Ω

|∆w|2 +
1

4

∫
Ω

|∆a|2 + ĉ12

(3.34)

with ĉ11 := ĉ4 + ĉ6 + ĉ8 + ĉ10 + r and ĉ12 := ĉ5 + ĉ7 + ĉ9. In conjunction with (3.33),

we thus may infer that

1

2

d

dt

∫
Ω

(|∇a|2 + |∆w|2) +
1

4

∫
Ω

|∆a|2 ≤ (ĉ2 + ĉ11)

∫
Ω

(|∇a|2 + |∆w|2) + (ĉ3 + ĉ12).

This implies for any t ∈ (0, T ) that
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∫
Ω

(|∇a(·, t)|2 + |∆w(·, t)|2) ≤ ĉ13, and thus

∫ T

0

∫
Ω

|∆a(·, t)|2 ≤ ĉ14

with ĉ13 := e2(ĉ2+ĉ11)T
{
ĉ3+ĉ12

ĉ2+ĉ11
+
∫

Ω
(|∇a0|2+|∆w0|2)

}
and ĉ14 := 2

∫
Ω

(|∇a0|2+|∆w0|2)+

2T
(
ĉ13(ĉ2 + ĉ11) + ĉ3 + ĉ12

)
. This completes the proof.

Corollary 3.2. Let Ω ⊂ R2. Then we have∫
Ω

|wt|2 +

∫ T

0

∫
Ω

(|ut|2 + |∆u|2) ≤ C(T ), for any t ∈ (0, T ),

where C(T ) is independent of ε.

Proof. By u = aeχw, we know that ∇u = eχw∇a+ χeχwa∇w and

∆u = eχw∆a+ 2χeχw∇a · ∇w + χ2eχwa|∇w|2 + χeχwa∆w.

In light of Lemma 3.1, Lemma 3.8, and Lemma 3.9, one may deduce from system

(3.2) that∫
Ω

|ut|2 ≤ 3

∫
Ω

(
|∆u|2 + 2χ2(|∇u · ∇w|2 + u2|∆w|2) + (γuw + u+ lu2)2

)
,

where

3

∫
Ω

|∆u|2 ≤ 12e2χK

∫
Ω

(
|∆a|2+2χ2|∇w|4+2χ2|∇a|4+χ4‖a‖2

L∞(Ω)|∇w|4+χ2‖a‖2
L∞(Ω)|∆w|2

)
and

6χ2

∫
Ω

|∇u · ∇w|2 ≤ 6χ2
{

2e2χK

∫
Ω

|∇a|4 + 2e2χK(1 + χ2‖a‖2
L∞(Ω))

∫
Ω

|∇w|4
}
.

Thereupon, we derive that∫
Ω

|ut|2 ≤ ĉ15

∫
Ω

|∆a|2 + ĉ16

∫
Ω

|∆w|2 + ĉ17

∫
Ω

|∇a|4 + ĉ18

∫
Ω

|∇w|4 + ĉ19

where ĉ15 := 12e2χK , ĉ16 := 18χ2e2χK‖a‖2
L∞(Ω), ĉ17 := 36χ2e2χK , ĉ18 := 12χ2e2χK(3 +
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2χ2‖a‖2
L∞(Ω)), and ĉ19 := 3|Ω|e2χK

(
γK + 1 + leχK‖a‖L∞(Ω)

)2‖a‖2
L∞(Ω). In addition,

applying (3.32) yields

ĉ17

∫
Ω

|∇a|4 ≤ ĉ17(2C)4‖a‖2
L∞(Ω)

∫
Ω

|∆a|2 + ĉ17(2C)4‖a‖4
L∞(Ω)

and

ĉ18

∫
Ω

|∇w|4 ≤ ĉ19(2C)4K2

∫
Ω

|∆w|2 + ĉ18(2C)4K4.

It follows that ∫
Ω

|ut|2 ≤ ĉ20

∫
Ω

|∆a|2 + ĉ21

∫
Ω

|∆w|2 + ĉ22 (3.35)

with ĉ20 := ĉ15 + ĉ17(2C)4‖a‖2
L∞(Ω), ĉ21 := ĉ16 + ĉ18(2C)4K2, and ĉ22 := ĉ19 +

ĉ17(2C)4‖a‖4
L∞(Ω) + ĉ18(2C)4K4. Likewise, one may derive that∫

Ω

|∆u|2 ≤ ĉ23

∫
Ω

|∆a|2 + ĉ24

∫
Ω

|∆w|2 + ĉ25 (3.36)

with ĉ23 := 4e2χK
(
1 + 2χ2(2C)4‖a‖2

L∞(Ω)

)
, ĉ24 := 4e2χK

(
‖a‖2

L∞(Ω) + (2 +χ2‖a‖2
L∞(Ω))

· (2C)4K2
)
, and ĉ25 := 8χ2e2χK(2C‖a‖L∞(Ω))

4 + 4χ2e2χK(2 + χ2‖a‖2
L∞(Ω))(2CK)4.

Moreover,∫
Ω

|wt|2 ≤
∫

Ω

|ε∆w − aweχw + rw(1− w)|2 ≤ (1 + 2ε2)

∫
Ω

|∆w|2 + ĉ26 (3.37)

with ĉ26 := 2K2
(
‖a‖L∞(Ω)e

χK + r + rK
)2

.

Consequently, we may complete this proof by integrating (3.35), (3.36), and (3.37)

with respect to t ∈ (0, T ), then by making use of Lemma 3.10.

Remark 3.4. Some illustrations are needed here:

(i) Estimate (3.31), Lemma 3.10, and Corollary 3.2 are used to discuss, as ε→ 0,

the convergence of the strong solution from (3.2) to (3.3) in section 3.3.

(ii) As a simple consequence, the following estimate (3.38) implies that the classical
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solution of (3.2), for each fixed ε > 0, is a strong solution. However, it is hard

to ensure that the c(T ) in (3.38) remains bounded as ε→ 0.

Lemma 3.11. Assume that (a, w) is the global-in-time classical solution of (1.13)—

(1.15). Then under assumption (3.4) and for each fixed ε > 0, one may have

‖w‖W 2,1
p (QT ) ≤ c(T ), 2 < p < +∞, (3.38)

and for any ε ∈ (0, 1),

‖∇w(·, t)‖L∞(Ω) ≤ C(T ), t ∈ (0, T ), ‖a‖W 2,1
p (QT ) ≤ C(T ), 2 < p < +∞, (3.39)

where two C(T ) in (3.39) remain bounded for finite values of T and are independent

of ε.

Proof. Note that for any ε > 0 fixed and any given 0 < T < +∞, the w fulfills


wt − ε∆w = −aweχw + rw(1− w), in QT ,

∇w · ~ν
∣∣
∂Ω

= 0,∇w0 · ~ν
∣∣
∂Ω

= 0, t ∈ (0, T ),

w(x, 0) = w0(x) > 0, x ∈ Ω,

which, combined with Lp-theory of linear parabolic equations, shows that

‖w‖W 2,1
p (QT ) ≤ c(T )

{
‖w0‖W 2

p (Ω) + ‖ − aweχw + rw(1− w)‖Lp(QT )

}
where c(T ) is bounded for any finite values of T but we may not ensure the bound-

edness as ε→ 0.

On the other hand, by semigroup theory (cf. the proof of Lemma A.5) the solution

w fulfills

w(x, t) = e−t(1−ε∆)w0(x) +

∫ t

0

e−(t−s)(1−ε∆)g(w, s)ds,

where g(w, t)(x) = −a(x, t)weχw + (r + 1)w − rw2 is locally Lipschitz continuous in

w and locally Hölder continuous in t, i.e., ‖g(w, t)− g(v, s)‖W 2
p (Ω) ≤ C(g){|t− s|β +

‖w − v‖W 2
p (Ω)} for some β ∈ (0, 1) and w, v ∈ D(1 − ε∆), and the constant C(g)
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remains bounded as ε → 0. This is not difficult to obtain if we can show the local

Hölder’s continuity in t (note 0 < w < K in this case). Indeed, for any t > 0, one

may compute the Hölder constant for a as

< a >t= sup
x,t∈QT

|a(x, t)− a(x, 0)|
|t− 0|β

≤ 1

tβ0
sup
t∈(0,T )

{
‖a(·, t)‖L∞(Ω) + ‖a0‖L∞(Ω)

}

for some t0 ∈ (0, T ] by regularity (3.5), and < a >t remains bounded as ε → 0 by

(3.31).

Thus by Remark A.1, one may obtain

‖∇w(·, t)‖L∞(Ω) ≤ C(T )

due to the boundedness of ‖w0‖C2(Ω) supposed in (3.4) and of ‖ − aweχw + rw(1 −

w)‖L∞(Ω), where C(T ) is dependent of ε as ε ∈ (0, 1).

Taking derivative from both sides with respect to t shows that

wt =− (1− ε∆)e−t(1−ε∆)w0(x)−
∫ t

0

(1− ε∆)e−(t−s)(1−ε∆)g(w, s)ds+ g(w, t)

=− (1− ε∆)e−t(1−ε∆)w0(x)−
∫ t

0

(1− ε∆)e−(t−s)(1−ε∆)g(w, s)ds

+

∫ t

0

(1− ε∆)e−(t−s)(1−ε∆)g(w, t)ds+ e−t(1−ε∆)g(w, t)

=− (1− ε∆)e−t(1−ε∆)w0(x) + e−t(1−ε∆)g(w, t)

+

∫ t

0

(1− ε∆)e−(t−s)(1−ε∆)
{
g(w, t)− g(w, s)

}
ds.

and thus for p ∈ (1,+∞) there exists some 0 < δ < Re(σ(1− ε∆)) such that

‖wt‖Lp(Ω) ≤‖(1− ε∆)e−t(1−ε∆)w0‖Lp(Ω) + ‖e−t(1−ε∆)g(w, t)‖Lp(Ω)

+

∫ t

0

‖(1− ε∆)e−(t−s)(1−ε∆)‖ · ‖g(w, t)− g(w, s)‖Lp(Ω)ds
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≤C
{
t−1e−δt‖w0‖Lp(Ω) + e−δt‖g(w, t)‖Lp(Ω) + C(g)

∫ t

0

(t− s)β−1e−δ(t−s)ds
}

<+∞,

for any ε ∈ (0, 1).

This combined with Lemma 3.10, means that wt,∇w ∈ Lp(QT ) for any finite

p ≥ 2. Together with a, w ∈ L∞(QT ) and thus g ∈ Lp(QT ), we may apply Lp-theory

of linear parabolic equations to


at −∆a− χ∇w · ∇a = −χawt + γaw − a(1 + laeχw), in QT ,

∇a · ~ν
∣∣
∂Ω

= 0, t ∈ (0, T ),

a(x, 0) = a0(x) > 0, x ∈ Ω,

to acquire

‖a‖W 2,1
p (QT ) ≤ c(T )

{
‖a0‖W 2

p (Ω) + ‖ − χawt + γaw − a(1 + laeχw)‖Lp(QT )

}
,

where c(T ) is bounded for any finite values of T .

Together with the L∞(Ω) boundedness of a given in (3.31) and 0 < w < K, one

may complete this proof.

3.3 Convergence of (3.2) to the System (3.3)

In section 3.2 we have proved, for any fixed ε > 0, that the unique classical

solution to (3.2) exits globally in time. Denote by (uε, wε) the classical solution of

(3.2), thus a strong solution of (3.2) due to Lemma 3.11. In this section we shall

check the convergence of (uε, wε), as ε→ 0.

3.3.1 Passing to the Limit as ε→ 0

For any given 0 < T < +∞, any (x, t) ∈ QT = Ω × (0, T ) and any ε > 0, one

may derive from Lemma 3.9 that:
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• by Lemma 3.7, and Lemma 3.8, we know uε, wε ∈ L∞(QT ) and

sup
t∈(0,T ]

‖(uε, wε)(·, t)‖L∞(Ω) ≤ C(T );

• by Lemma 3.10, Corollary 3.2, and Lemma 3.11, we see uε, wε ∈ W 2,1
2 (QT ) and

‖(uε, wε)‖W 2,1
2 (QT ) ≤ C(T ), ‖∇wε‖L∞(QT ) ≤ C(T ),

where C(T ) is independent of ε.

Below we still denoted by {uε}ε>0 and {wε}ε>0 their corresponding subsequences

as we desire, for brevity of notations. Then it is readily to see that there exists

only one pair of (u,w) ∈ W 2,1
2 (QT )×W 2,1

2 (QT ) (here (u,w) may not be the classical

solution of (3.3)) such that

uε ⇀ u in W 2,1
2 (QT ), wε ⇀ w in W 2,1

2 (QT ), as ε→ 0, (3.40)

by the weak compactness of a reflexive Banach space, and

‖(u,w)‖W 2,1
2 (QT ) ≤ lim inf

ε→0
‖(uε, wε)‖W 2,1

2 (QT ) ≤ C(T ) (3.41)

by boundedness of a weakly converging sequence. Furthermore, there exist

uε
∗
⇀ u in L∞(QT ) and wε

∗
⇀ w in L∞(QT ), (3.42)

by L∞(QT ) =
(
L1(QT )

)∗
in the sense of isometric isomorphism and ∗-weak compact-

ness of normed linear space L∞(QT ). One may infer

‖(u,w)‖L∞(QT ) ≤ lim inf
ε→0

‖(uε, wε)‖L∞(QT ) ≤ C(T ) (3.43)

from the boundedness of a ∗-weak convergent sequence in L∞(QT ).

Lemma 3.12. One may derive that the above (u,w) satisfies


ut = ∆u− χ∇ · (u∇w) + γuw − u(1 + lu), a.e. (x, t) ∈ QT ,

wt = −uw + rw(1− w), a.e. (x, t) ∈ QT ,

(∇u− χu∇w) · ~ν = 0, a.e., (x, t) ∈ ∂Ω× (0, T ).
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Proof. We shall first prove that for any φ ∈ L2(QT ) that

∫
QT

(
ut −∆u+ χ∇ · (u∇w)− γuw + u(1 + lu)

)
φ = 0

∫
QT

(
wt + uw − rw(1− w)

)
φ = 0,

(3.44)

by taking ε→ 0 in

∫
QT

(
uεt −∆uε + χ∇ · (uε∇wε)− γuεwε + uε(1 + luε)

)
φ = 0,

∫
QT

(
wεt − ε∆wε + uεwε − rwε(1− wε)

)
φ = 0.

(3.45)

This can be divided into the following four parts:

(i) Indeed, (3.40) allows us to collect that∫
QT

uεtφ→
∫
QT

utφ,

∫
QT

∆uεφ→
∫
QT

∆uφ,

and ∫
QT

wεtφ→
∫
QT

wtφ,

∫
QT

ε∆wεφ→ 0.

(ii) Thanks to (3.42), one may readily get that

∫
QT

uεφ→
∫
QT

uφ and

∫
QT

wεφ→
∫
QT

wφ,

for any φ ∈ L2(QT ) ⊂ L1(QT ) for 0 < T <∞.

(iii) By Lemma 3.10, Corollary 3.2, and Lemma 3.11, we see that for p ∈ [2,+∞),

uε ∈ Lp(0, T ;W 2
2 (Ω)), wε ∈ L∞(0, T ;W 2

2 (Ω)) and uεt, wεt ∈ L2(0, T ;L2(Ω)). In

addition, we know the compact Sobolev embeddings (cf. [69, Thm. 6.3]) that

74



for n = 2

W 2
2 (Ω) ↪→↪→ W 1

q (Ω), 1 ≤ q <∞ (3.46)

and that for q > n ∈ N+,

W 1
q (Ω) ↪→↪→ Lp(Ω), 1 ≤ p < +∞. (3.47)

Then we invoke Aubin-Lions lemma [70, 71, 72] (e.g. [70, Thm. 5 and Corol.4,

in Sect.8]) to infer that for 2 ≤ p < +∞ and 2 = n < q <∞,

uε → u in Lp(0, T ;W 1
q (Ω)) and wε → w in L∞(0, T ;W 1

q (Ω)). (3.48)

Hence by (3.43) and Hölder’s inequality, we have for ε→ 0 that∫
QT

|(uεwε − uw)φ|

≤‖wε‖L∞(QT )

∫
QT

|uε − u||φ|+ ‖u‖L∞(QT )

∫
QT

|wε − w||φ|

≤‖wε‖L∞(QT ) · ‖uε − u‖L2(QT ) · ‖φ‖L2(QT )

+ ‖u‖L∞(QT ) · ‖wε − w‖L2(QT ) · ‖φ‖L2(QT )

≤
{
‖wε‖L∞(QT ) · ‖uε − u‖L2(0,T ;W 1

4 (Ω))

+ T 1/2‖u‖L∞(QT ) · ‖wε − w‖L∞(0,T ;W 1
4 (Ω))

}
|Ω|1/4‖φ‖L2(QT )

→ 0,

and similarly∫
QT

|(u2
ε − u2)φ| ≤ ‖uε − u‖L2(QT ) · ‖uε + u‖L∞(QT ) · ‖φ‖L2(QT ) → 0,

as well as∫
QT

|(w2
ε − w2)φ| ≤ ‖wε − w‖L2(QT ) · ‖wε + w‖L∞(QT ) · ‖φ‖L2(QT ) → 0.
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In addition, we may deduce that∫
QT

|(∇uε∇wε −∇u · ∇w)φ| ≤
∫
QT

|∇uε −∇u||∇wε| |φ|+
∫
QT

|∇wε −∇w||∇u| |φ|

where by Hölder’s inequality one has∫
QT

|∇uε −∇u||∇wε| |φ| ≤‖∇uε −∇u‖L2(QT ) · ‖∇wε‖L∞(QT ) · ‖φ‖L2(QT )

≤‖uε − u‖L2(0,T ;W 1
4 (Ω)) · ‖∇wε‖L∞(QT ) · ‖φ‖L2(QT )|Ω|1/4

→0

and similarly∫
QT

|∇wε −∇w||∇u| |φ| ≤ ‖(∇wε −∇w)∇u‖L2(QT )‖φ‖L2(QT )

≤ sup
t∈(0,T )

‖wε − w‖W 1
4 (Ω) · ‖u‖L2(0,T ;W 1

4 (Ω)) · ‖φ‖L2(QT )

→0,

by the uniform (in ε > 0) upper bound of ‖∇wε‖L∞(QT ) and ‖u‖L2(0,T ;W 1
4 (Ω)).

(iv) The last one is to prove that∫
QT

uε∆wεφ→
∫
QT

u∆wφ, as ε→ 0. (3.49)

In fact, by uε∆wε − u∆w = uε∆wε − u∆wε + u∆wε − u∆w then we have

∫
QT

(u∆wε − u∆w)φ→ 0

in view of uφ ∈ L2(QT ) by u ∈ L∞(QT ), and of weak compactness of a sequence

in W 2,1
2 (QT ). In addition, we have∫

QT

|(uε − u)∆wεφ| ≤‖φ‖L2(QT )‖(uε − u)∆wε‖L2(QT )
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≤‖φ‖L2(QT ) sup
t∈(0,T )

‖uε − u‖L∞(Ω) · ‖∆wε‖L2(QT )

≤‖φ‖L2(QT )‖uε(·, t̃)− u(x, t̃)‖W 1
q (Ω) · ‖wε‖W 2,1

2 (QT ) → 0.

We remark that t̃ ∈ [0, T ] exists since the uniform (in ε > 0) boundedness of

‖u‖L∞(QT ) and ‖uε‖L∞(QT ) given in (3.42) will make sense ‖uε − u‖L∞(QT ) and

(3.39) will indicate the continuity in t. Then the Sobolev embedding (cf. [69,

II of Thm. 6.3] makes sense the last inequality above. Finally a joint use of

(3.40) (where QT can be replaced by [0, T ]×Ω) and compact embedding (3.46)

will show that this estimate tends to zero. Therefore, we may arrive at (3.49),

i. e., ∫
QT

(uε∆wε − u∆wε)φ→ 0.

Together (i)-(iv), we thus can take ε → 0 in (3.45) to obtain (3.44). Due to the

arbitrary φ ∈ L2(QT ), one may readily conclude that (u,w) in (3.40) satisfies

{
ut = ∆u− χ∇ · (u∇w) + γuw − u(1 + lu), a.e. (x, t) ∈ QT

wt = −uw + rw(1− w), a.e. (x, t) ∈ QT .
(3.50)

We are next to verify that this (u,w) fulfills the zero-flux boundary, i.e.,

(∇u− χu∇w) · ~ν = 0, a.e., (x, t) ∈ ∂Ω× (0, T ) (3.51)

by showing ∫ T

0

∫
∂Ω

|(∇u− χu∇w) · ~ν| = 0.

As a matter of fact, an application of (∇uε−χuε∇wε) · ~ν
∣∣
∂Ω

= 0 may yield that

‖(∇u− χu∇w) · ~ν‖L1(∂Ω)

=‖(∇u− χu∇w) · ~ν − (∇uε − χuε∇wε) · ~ν‖L1(∂Ω)

≤|∂Ω|
1
2‖∇u−∇uε‖L2(∂Ω) + χ‖uε∇wε − u∇w‖L1(∂Ω).
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Here we invoke a trace-interpolation inequality (cf. [64, Lemma 2.5] for n = 2), that

is,

‖∇A‖Lq(∂Ω) ≤ C‖A‖θW 2
q (Ω) · ‖A‖1−θ

Lp(Ω) with θ =

1
2
(1− 1

q
) + 1

p

1− 1
q

+ 1
p

∈ (0, 1) (3.52)

for q > 1 and p > 0. Therefore, by Hölder’s inequality with index 3
2

and 3 one may

calculate that

∫ T

0

‖∇u−∇uε‖2
L2(∂Ω) ≤C2

∫ T

0

‖u− uε‖
4
3

W 2
2 (Ω)
· ‖u− uε‖

2
3

L4(Ω)

≤C2
(∫ T

0

‖u− uε‖2
W 2

2 (Ω)

) 2
3 ·
(∫ T

0

‖u− uε‖2
L4(Ω)

) 1
3

≤T
1
3C2‖u− uε‖

4
3

W 2,1
2 (QT )

· ‖u− uε‖
2
3

L2(0,T ;W 1
4 (Ω))

→ 0

(3.53)

as ε→ 0, in light of (3.48) and uε, u ∈ W 2,1
2 (QT ).

In addition, it is easy to see that

‖uε∇wε − u∇w‖L1(∂Ω)

≤‖(uε − u)∇wε‖L1(∂Ω) + ‖u(∇wε −∇w)‖L1(∂Ω)

≤‖uε − u‖L2(∂Ω) · ‖∇wε‖L2(∂Ω) + ‖u‖L2(∂Ω) · ‖∇wε −∇w‖L2(∂Ω)

Then an application of [68, Lemma 2.2] will yield that

‖u‖L2(∂Ω) ≤ C‖u‖
1
2

W 1
2 (Ω)
· ‖u‖

1
2

L2(Ω)

and

‖uε − u‖L2(∂Ω) ≤ C‖uε − u‖
1
2

W 1
2 (Ω)
· ‖uε − u‖

1
2

L2(Ω).

Again making use of (3.52) shows that ‖∇wε‖L2(∂Ω) ≤ C‖wε‖
2
3

W 2
2 (Ω)
· ‖wε‖

1
3

L4(Ω) and

‖∇wε −∇w‖L2(∂Ω) ≤ C‖wε − w‖
2
3

W 2
2 (Ω)
· ‖wε − w‖

1
3

L4(Ω).
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Thereupon, by Hölder’s inequality and (3.48) we immediately arrive at∫ T

0

‖uε − u‖L2(∂Ω) · ‖∇wε‖L2(∂Ω) ≤
(∫ T

0

‖∇wε‖2
L2(∂Ω)

) 1
2
(∫ T

0

‖uε − u‖2
L2(∂Ω)

) 1
2

≤C
(∫ T

0

‖wε‖
4
3

W 2
2 (Ω)
· ‖wε‖

2
3

L2(Ω)

) 1
2
(∫ T

0

‖uε − u‖W 1
2 (Ω) · ‖uε − u‖L2(Ω)

) 1
2

≤C
(∫ T

0

‖wε‖2
W 2

2 (Ω)

) 1
3
(∫ T

0

‖wε‖2
L2(Ω)

) 1
6
(∫ T

0

‖uε − u‖2
W 1

2 (Ω)

) 1
2

≤C‖wε‖
2
3

W 2,1
2 (QT )

(
‖wε‖2

L∞(Ω)|Ω|T
) 1

6

(∫ T

0

‖uε − u‖2
W 1

4 (Ω)|Ω|
1
2

) 1
2 → 0,

and similarly∫ T

0

‖u‖L2(∂Ω) · ‖∇wε −∇w‖L2(∂Ω) ≤
(∫ T

0

‖u‖2
L2(∂Ω)

) 1
2
(∫ T

0

‖∇wε −∇w‖2
L2(∂Ω)

) 1
2

≤C
(∫ T

0

‖u‖W 1
2 (Ω) · ‖u‖L2(Ω)

) 1
2
(∫ T

0

‖wε − w‖
4
3

W 2
2 (Ω)
· ‖wε − w‖

2
3

L4(Ω)

) 1
2

≤C
(∫ T

0

‖u‖2
W 1

2 (Ω)

) 1
4
(∫ T

0

‖u‖2
L2(Ω)

) 1
4
(∫ T

0

‖wε − w‖2
W 2

2 (Ω)

) 1
3
(∫ T

0

‖wε − w‖2
L4(Ω)

) 1
6

≤2C‖u‖
1
2

W 2,1
2 (QT )

(
‖u‖L∞(QT )|Ω|T

) 1
4

(∫ T

0

‖wε‖2
W 2

2 (Ω) + ‖w‖2
W 2

2 (Ω)

) 1
3 (
T‖wε − w‖2

L∞(0,T ;W 1
4 (Ω))

) 1
6

≤4C‖u‖
1
2

W 2,1
2 (QT )

(
‖u‖L∞(QT )|Ω|T

) 1
4‖wε‖

2
3

W 2
2 (QT )

(
T‖wε − w‖2

L∞(0,T ;W 1
4 (Ω))

) 1
6 → 0

as ε→ 0, by means of (3.48).

We thus have

∫ T

0

‖(∇u− χu∇w) · ~ν‖L1(∂Ω) ≤
∫ T

0

‖∇u− χu∇w‖L1(∂Ω) = 0,

which means (∇u − χu∇w) · ~ν
∣∣
∂Ω

= 0 for almost everywhere (x, t) ∈ ∂Ω × (0, T ).

This proves (3.51).
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On the other hand, replacing uε − u in (3.53) by wε − w will lead us to

∫ T

0

‖∇wε −∇w‖2
L2(∂Ω) → 0, as ε→ 0

which combined with ∇wε · ~ν
∣∣
∂Ω

= 0, instantly indicates ∇w · ~ν = 0 for almost

everywhere (x, t) ∈ ∂Ω× (0, T ). Thus we have

∫ T

0

‖ε∇wε‖2
L2(∂Ω) ≤

∫ T

0

‖ε∇wε − ε∇w‖2
L2(∂Ω) → 0, as ε→ 0

which means

ε∇wε · ~ν → 0, a.e. (x, t) ∈ ∂Ω× (0, T ).

A combination of (3.50) and (3.51) may complete this proof.

3.3.2 Proof of Theorem 3.1

By Lp-theory and Schauder theory of linear parabolic equations, one may derive

the following regularity result.

Lemma 3.13. For any given T > 0, the (u,w) which is defined by (3.40) and satisfies

the system in Lemma 3.12, is a strong solution to (3.3), that is,

‖(u,w)‖W 2,1
p (QT ) ≤ C(T ), for p ∈ (2,+∞).

Furthermore, the strong solution (u,w) is a classical solution of (3.3) fulfilling

u, w ∈ C2+α,1+α
2 (Q̄T ), for some α ∈ (0, 1),

where Q̄T = Ω× [0, T ].

Proof. We first prove that (u,w) is a strong solution of (3.3). Indeed, in light of the

transformation given in (1.13)–(1.15), we can convert the u-component in (3.3) into
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the following a-component


at −∆a+ a = g(x, t), (x, t) ∈ QT ,

∇a · ~ν
∣∣
∂Ω

= 0, t ∈ (0, T ),

a(x, 0) = a0(x), x ∈ Ω.

(3.54)

with a0(x) := e−χw0(x)u0(x) and

g(x, t) =χ∇w · ∇a+ γaw + χa2eχww − rχaw(1− w)− la2eχw.

We first have ∇a0 ·~ν
∣∣
∂Ω

= 0 owning to (∇u0−χ∇w0) ·~ν
∣∣
∂Ω

= 0 assumed in (3.4).

Furthermore, in order to make use of Lp theory of linear parabolic equations which

concludes that

‖a‖W 2,1
p (QT ) ≤ c(T )

{
‖g‖Lp(QT ) + ‖a0‖W 2

p (Ω)

}
, 2 < p+∞,

we need to estimate

‖g‖pLp(QT ) ≤c1(T ) + χ

∫ T

0

‖∇w · ∇a‖pLp(Ω)

with c1(T ) = |QT |‖χa2eχww− rχaw(1−w)− la2eχw + γaw‖pL∞(QT ) < +∞ by (3.43).

Indeed, we use Young’s inequality with index q and q
q−1

for 1 < q < +∞ and with a

parameter η > 0, to calculate that

‖∇w · ∇a‖pLp(Ω) =

∫
Ω

|∇w · ∇a|p ≤ η

∫
Ω

|∇a|qp + η−
1
q−1

∫
Ω

|∇w|
qp
q−1

where an application of Gagliardo-Nirenberg interpolation inequality produces

‖∇a‖pqLpq(Ω) ≤ (2C)pq‖∆a‖pqθLp(Ω) · ‖a‖
pq(1−θ)
L∞(Ω) + (2C‖a‖L∞(Ω))

pq,

with θ =
1
2
− 1
pq

1− 1
p

∈ (0, 1) as long as p > 2. Letting pqθ = p will yield q = 2 and thus

θ = 1
2
. Then we see that

η

∫
Ω

|∇a|2p ≤ η(4C2‖a‖L∞(Ω))
p‖∆a‖pLp(Ω) + η(2C‖a‖L∞(Ω))

2p
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and

χ

∫ T

0

‖∇w · ∇a‖pLp(Ω) ≤ηχT (2C‖a‖L∞(Ω))
2p + ηχ(4C2‖a‖L∞(Ω))

p

∫ T

0

‖∆a‖pLp(Ω)

+
χ

η

∫ T

0

‖∇w‖2p
L2p(Ω).

In conjunction with these inequalities, we therefore have

‖a‖p
W 2,1
p (QT )

≤2pc(T )(‖g‖pLp(QT ) + ‖a0‖pLp(Ω))

≤2pc(T )
(
c1(T ) + ηχT (2C‖a‖L∞(Ω))

2p + ‖a0‖pLp(Ω)

+ ηχ(4C2‖a‖L∞(Ω))
p‖a‖p

W 2,1
p (QT )

+
χ

η
‖∇w‖2p

L2p(QT )

)
and then taking η = 1

χ2p+1c(T )(4C2
1‖a‖L∞(Ω))

p may produce that

‖a‖p
W 2,1
p (QT )

≤2p+1c(T )
(
c1(T ) + ηχ(2C‖a‖L∞(Ω))

2p + ‖a0‖pLp(Ω) +
χ

η
‖∇w‖2p

L2p(QT )

)
=:c2(T ) + c3(T )‖∇w‖2p

L2p(QT )

with c2(T ) := 2p+1c(T )
(
c1(T )+‖a0‖pLp(Ω)

)
+T
(
‖a‖1/2

L∞(Ω)

)2p
and c3(T ) := (χ2p+1c(T ))2·

(4C2
1‖a‖L∞(Ω))

p. Then one may have ‖∇w‖L2p(QT ) ≤ T · supt∈(0,T ) ‖w‖W 1
2p(Ω) < +∞

by (3.48), and thus

‖a‖W 2,1
p (QT ) ≤ C(T ) < +∞, 2 < p < +∞. (3.55)

On the other hand, w-equation in (3.3) satisfies

{
wt = −aeχww − rw(1− w), in QT ,

w(x, 0) = w0(x), in Ω,

which has a unique solution and thus

‖wt‖L∞(QT ) ≤ T
(
‖a‖L∞(Ω)e

χ‖w‖L∞(Ω)‖w‖L∞(Ω) + r‖w‖L∞(Ω)(1 + ‖w‖L∞(Ω))).
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Taking derivatives from both sides may yield that

∇wt = h∇w + ĝ or ∇w(x, t) = ∇w0(x)e
∫ t
0 h(x,s)ds +

∫ t

0

ĝ(x, τ)e
∫ t
τ h(x,s)dsdτ (3.56)

with h := −χaeχww − aeχw + r − 2rw ∈ L∞(QT ) by (3.43), and ĝ = −weχw∇a ∈

Lp(QT ) by (3.55), for p > 2, which gives

‖∇w‖Lp(QT ) ≤ C(T ), for 2 < p < +∞.

Furthermore, taking divergence from both sides of (3.56) will give us that

∆w(x, t) = ∇ · (∇w(x, t))

=∆w0(x)e
∫ t
0 h(x,s)ds +∇w0(x)e

∫ t
0 h(x,s)ds

∫ t

0

∇h(x, s)ds

+

∫ t

0

∇ĝ(x, τ)e
∫ t
τ h(x,s)dsdτ +

∫ t

0

ĝ(x, τ)e
∫ t
τ h(x,s)ds

∫ t

τ

∇h(x, s)ds dτ

(3.57)

where ∇h ∈ Lp(QT ) and thus ∇ĝ ∈ Lp(QT ) for p > 2 by (3.55), which concludes

‖∆w‖Lp(QT ) ≤ C(T ), for 2 < p < +∞.

Therefore, we have

‖w‖W 2,1
p (QT ) ≤ C(T ), for 2 < p < +∞.

This combined with (3.55) illustrates that (a, w), thus (u,w) obtained in Lemma 3.12,

is a strong solution.

Next we show that the strong solution (a, w) is classical solution by applying

Schauder theory to this a-component and by directly estimating w. Note that α

as follow may be different from line to line but we shall not change this notation

for brevity, based on a fact that two Hölder spaces differing only in Hölder indices

α ∈ (0, 1) are equivalent to each other.

In fact, using the Sobolev’s embedding W 2,1
p (QT ) ↪→ Cα,α

2 (Q̄T ) for 0 < α ≤ 2− 4
p
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and p > 2, may lead us to a, w ∈ C1+α, 1+α
2 (Q̄T ) for some α ∈ (0, 1), when the above

p > 4.

This immediately implies χ∇w ∈ Cα,α
2 (Q̄T ) and g−χ∇w ·∇a = γaw+χa2eχww−

rχaw(1 − w) − la2eχw ∈ Cα,α
2 (Q̄T ). Consequently, together with ∂Ω ∈ C2+α and

a0 ∈ C2+α(Ω) assumed in (3.4), an application of Schauder theory to (3.54) enables

us to infer that a ∈ C2+α,1+α
2 (Q̄T ) for some α ∈ (0, 1).

Since a, w ∈ C1+α, 1+α
2 (Q̄T ), we may derive wt ∈ Cα,α

2 (Q̄T ) due to wt = −aeχww+

rw(1−w). Furthermore, (3.57) may indicates that ∆w ∈ Cα,α
2 (Q̄T ) by a ∈ C2+α,1+α

2 (Q̄T )

and w,∇w ∈ Cα,α
2 (Q̄T ). Thus we have w ∈ C2+α,1+α

2 (Q̄T ).

Remark 3.5. From the (3.56), one may derive that

∇w · ~ν = e
∫ t
0 h(x,s)ds∇w0(x) · ~ν +

∫ t

0

e
∫ t
τ h(x,s)ds ĝ(x, τ) · ~ν dτ

with ĝ = −weχw∇a, which combined with ∇a · ~ν
∣∣
∂Ω

= 0 and w0, a ∈ C2+α,1+α
2 (Q̄T ),

shows that

∇w · ~ν
∣∣
∂Ω

= 0

if ∇w0 · ~ν
∣∣
∂Ω

= 0 is additionally assumed for (3.3).

Lemma 3.14 (Uniqueness). The classical solution derived in Lemma 3.13 is unique.

Proof. We first note that the Remark 3.1 holds for the classical solution (u,w) to

(3.3) after a similar discussion, where w-equation is an ODE in this case.

Assume that there exist two classical solutions of (3.3) in QT = Ω × (0, T ) (for

any 0 < T <∞), denoted by (u1, w1) and (u2, w2), respectively. Letting u := u1−u2
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and w := w1 − w2, we observe that (u,w) should fulfill that

ut = ∆u− χ∇ · (u1∇w1 − u2∇w2)

+γ(u1w1 − u2w2)− u− lu(u1 + u2), in QT

wt = −(u1w1 − u2w2) + rw − rw(w1 + w2), in QT

(∇ui − χui∇wi) · ~ν
∣∣
∂Ω

= 0, i = 1, 2, in (0, T )

u(x, 0) = 0, w(x, 0) = 0, in Ω.

(3.58)

Then the uniqueness holds by showing u ≡ 0 and w ≡ 0 through an inequality

f ′(t) ≤ cf(t) with c > 0 and f(t) ≥ 0, for t ∈ [0, T ).

Since upon a comparison of ODE it gives 0 ≤ f(t) ≤ f(0)ect which means f(t) ≡ 0

for t ∈ (0, T ) as f(0) = 0.

Indeed, multiplying the u-equation here by u and using integration by parts one

may infer that

1

2

d

dt

∫
Ω

u2 +

∫
Ω

u2 + l

∫
Ω

(u1 + u2)u2 +

∫
Ω

|∇u|2

=χ

∫
Ω

∇u · (u1∇w1 − u2∇w2) +

∫
∂Ω

(u1 − u2)
(
∇(u1 − u2)− χ(u1∇w1 − u2∇w2)

)
· ~ν

+ γ

∫
Ω

(u1 − u2)(u1w1 − u2w2)

=χ

∫
Ω

∇u · (u1∇w + u∇w2) + γ

∫
Ω

u(u1w + uw2)

≤χ‖u1‖L∞(Ω)

∫
Ω

( |∇u|2
β

+ β|∇w|2
)

+ χ

∫
Ω

|u∇u · ∇w2|

+ γ‖u1‖L∞(Ω)

∫
Ω

uw + γ‖w2‖L∞(Ω)

∫
Ω

u2

where we have used ‖u‖L∞(Ω) ≤ ‖ui‖L∞(Ω) by the nonnegativity of ui, i = 1, 2,

and Young’s inequality with parameter β > 0. Making use of Hölder’s inequality,

Gagliardo-Nirenberg interpolation inequality and of Young’s inequality with param-
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eter η, δ > 0, one may proceed to calculate that

χ

∫
Ω

|u∇u · ∇w2| ≤ χ‖∇u‖L2(Ω)‖∇w2‖L4(Ω)‖u‖L4(Ω)

≤χC‖∇w2‖L4(Ω)‖∇u‖L2(Ω)(‖∇u‖
1
2

L2(Ω)‖u‖
1
2

L2(Ω) + ‖u‖L2(Ω))

≤χC‖∇w2‖L4(Ω)(‖∇u‖
3
2

L2(Ω)‖u‖
1
2

L2(Ω) + ‖∇u‖L2(Ω)‖u‖L2(Ω))

≤χC‖∇w2‖L4(Ω)

(
(η + δ)‖∇u‖2

L2(Ω) +
( 1

η3
+

1

δ

)
‖u‖2

L2(Ω)

)
.

(3.59)

Now taking β = 8χ‖u1‖L∞(Ω) and η = δ = 1
8χC supt∈[0,T ] ‖∇w2‖L4(Ω)

which makes sense

due to (3.56) or wi ∈ C2,1(Q̄T ), one may show that

1

2

d

dt

∫
Ω

u2 +

∫
Ω

u2 + l

∫
Ω

(u1 + u2)u2 +
5

8

∫
Ω

|∇u|2

=8χ2‖u1‖2
L∞(Ω)

∫
Ω

|∇w|2 + c̃0

∫
Ω

u2 + γ‖u1‖L∞(Ω)

∫
Ω

w2,

(3.60)

with c̃0 := γ(‖u1‖L∞(Ω) + ‖w2‖L∞(Ω)) + χC sup[0,T ] ‖∇w2‖L4(Ω)

(
1
η3 + 1

δ

)
.

In addition, multiplying the w-equation in (3.58) by w may lead us to

1

2

d

dt

∫
Ω

w2 +

∫
Ω

u1w
2 + r

∫
Ω

(w1 + w2)w2 = −
∫

Ω

w2uw + r

∫
Ω

w2

≤‖w2‖L∞(Ω)

∫
Ω

u2 + (r + ‖w2‖L∞(Ω))

∫
Ω

w2.

(3.61)

Taking gradient ∇ from both sides of the w-equation in (3.58) and multiplying the

resulting equation by ∇w illustrate that

1

2

d

dt

∫
Ω

|∇w|2 +

∫
Ω

u1|∇w|2 + r

∫
Ω

(w1 + w2)|∇w|2

=−
∫

Ω

w∇u1 · ∇w −
∫

Ω

w2∇u · ∇w −
∫

Ω

u∇w2 · ∇w + r

∫
Ω

|∇w|2
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− r
∫

Ω

w∇w · (∇w1 +∇w2)

≤
∫

Ω

|w∇u1 · ∇w|+ ‖w2‖L∞(Ω)

∫
Ω

|∇u · ∇w|+
∫

Ω

|u∇w2 · ∇w|+ r

∫
Ω

|∇w|2

+ r

∫
Ω

|w∇w · (∇w1 +∇w2)|.

Similar to (3.59), we may obtain that∫
Ω

|w∇u1 · ∇w| ≤ 2C sup
(0,T )

‖∇u1‖L4(Ω) ·
∫

Ω

(
|∇w|2 + w2

)
,

r

∫
Ω

|w∇w · (∇w1 +∇w2)| ≤ 2rC sup
(0,T )

‖∇w1 +∇w2‖L4(Ω) ·
∫

Ω

(
|∇w|2 + w2

)
,

‖w2‖L∞(Ω)

∫
Ω

|∇u · ∇w| ≤ 1

8

∫
Ω

|∇u|2 + 2‖w2‖2
L∞(Ω)

∫
Ω

|∇w|2,

and ∫
Ω

|u∇w2 · ∇w| ≤ C‖∇w2‖L4(Ω)‖∇w‖L2(Ω)

(
‖∇w‖

1
2

L2(Ω)‖w‖
1
2

L2(Ω) + ‖w‖L2(Ω)

)
≤C2‖∇w2‖2

L4(Ω)‖∇w‖2
L2(Ω) + 2‖∇w‖L2(Ω)‖w‖L2(Ω) + 2‖w‖2

L2(Ω)

≤
(
C2 sup

(0,T )

‖∇w2‖2
L4(Ω) + 2

) ∫
Ω

|∇w|2 + 4

∫
Ω

w2.

Thus we have

1

2

d

dt

∫
Ω

|∇w|2 +

∫
Ω

u1|∇w|2 + r

∫
Ω

(w1 + w2)|∇w|2

≤c̃1

∫
Ω

|∇w|2 + c̃2

∫
Ω

w2 +
1

8

∫
Ω

|∇u|2,

with c̃1 := M + 2‖w2‖2
L∞(Ω) + r + 2 + C2 sup(0,T ) ‖∇w2‖2

L4(Ω), c̃2 := M + 4, and

M := 2C sup(0,T ) ‖∇u1‖L4(Ω) + 2rC sup(0,T ) ‖∇w1 +∇w2‖L4(Ω) which is finite by the
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regularity a, w ∈ C2,1(Q̄T ). This inequality combined with (3.60) and (3.61), may

indicate that

1

2

d

dt

∫
Ω

(u2 + w2 + |∇w|2) ≤ c̃3

∫
Ω

(u2 + w2 + |∇w|2)

where c̃3 := max
{
c̃0+‖w2‖L∞(Ω), c̃1+8χ2‖u1‖2

L∞(Ω), c̃2+γ‖u1‖L∞(Ω)+r+‖w2‖L∞(Ω)

}
.

Then we may complete this proof by letting

f(t) :=

∫
Ω

(u2 + w2 + |∇w|2)(x, t) dx

which is a continuous function in t ∈ [0, T ) owning to the solution (u,w) being contin-

uous to its initial value, and thus f(0) =
∫

Ω
(u(x, 0)2 +w(x, 0)2 + |∇w(x, 0)|2) dx = 0

as a result of (3.58).

Proof of Theorem 3.1: Lemma 3.13 implies that the solution (u,w) obtained

in Lemma 3.12 is a strong solution of (3.3), which combined with Lemma 3.11 proves

Theorem 3.1 (a). Consequently, the convergence given in (3.48) occurs between the

strong solution of (3.2) and that of (3.3), which proves Theorem 3.1 (b). In addition,

Lemma 3.13 shows that the strong solution of (3.3) is the classical solution of (3.3).

This alone with the uniqueness derived in Lemma 3.14 proves the Theorem 3.1 (c).

So we complete the proof.
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Chapter 4

Global Dynamics on Fully

Parabolic System with

Density-Dependent Indirect

Preytaxis

4.1 Models and Main results

In Chapter 2 and Chapter 3 we have studied the global-in-time existence and

uniqueness of classical solution to direct preytaxis models (1.10) and (1.11). We

shall in this chapter consider the global-in-time existence and large time behaviors

of the unique classical solution to indirect preytaxis model (1.17), that is,



ut = ∇ ·
(
d(v)∇u− uχ(v)∇v

)
+ γuF (w)− θu− `u2, t > 0, x ∈ Ω;

vt = dv∆v + βw − σv, t > 0, x ∈ Ω;

wt = dw∆w + wf(w)− uF (w), t > 0, x ∈ Ω;

∇u · ~n = 0, ∇v · ~n = 0, ∇w · ~n = 0, t > 0, x ∈ ∂Ω;

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ Ω,

(4.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, ~n is the unit

outer normal vector towards ∂Ω, ` ≥ 0, and dw, γ, θ > 0.

Before specifying our main results, several notations need to be explained. Let X
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be a metric space. We denote by Cm+1−(X) the set of functions with their k-times

(0 ≤ k ≤ m, k,m ∈ N) derivatives being Lipschitz continuous in X. Note that the

k-times derivatives are Lipschitz continuous if (k+ 1)-times derivatives are bounded

in X and the boundary of X is regular enough, e.g., Hölder space C2+α, α ∈ (0, 1).

To ensure the existence of solutions to (1.16) and (4.1), the real-valued functions

d(v), χ(v), f(w), and F (w) should satisfy that

(H1) d(v), χ(v) ∈ C1+1−([0,+∞)) and for v ∈ [0,+∞), χ(v) ≥ 0, d(v) > 0 and

d′(v) ≤ 0;

(H2) f ∈ C1+1−([0,+∞)
)

and there exists a constant K0 > 0 such that f(K0) = 0

and f(w) < 0 for all w > K0 and f(w) > 0 for w ∈ (0, K0);

(H3) F (w) ∈ C1+1−([0,+∞)) and there is a constant CF > 0 such that 0 ≤ F (w) ≤

CF |w|. Moreover, F ′(w) > 0 for all w ∈ [0,+∞).

Thus (H2) allows logistic f(w) and all F (w) in (1.8) support (H3). The (H1) is more

general than that of [73]1.

Note that our results are applicable to (1.16) since system (4.1) can reduce to

(1.16) when ` = 0. We have published these results in our paper [61]. We first derive

the existence of global-in-time classical solution to (4.1) as below:

Theorem 4.1. Let Ω ⊂ Rn (n ≥ 1) be a bounded domain with smooth boundary ∂Ω.

Under the hypotheses (H1)–(H3), if (u0, v0, w0) ∈ C2(Ω,R3) with u0, v0, w0 ≥ 0 (6≡ 0)

and fulfills 0-order compatibility condition (i.e. ∇u0

∣∣
∂Ω

= ∇v0

∣∣
∂Ω

= ∇w0

∣∣
∂Ω

= 0),

then the system (4.1) has a unique nonnegative (resp. positive) classical solution on

[0,∞) (resp. on (0,∞)) satisfying

(u, v, w)(t, x) ∈ C
(

[0,+∞)× Ω, R3
)
∩ C1,2

(
(0,+∞)× Ω, R3

)
. (4.2)

1 We remark that [73] is published independently at almost the same time as our paper [61] but
there is no any related information received by us until the publishing of [61].
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Furthermore, there is a constant C > 0 independent of t such that

‖u(t, ·)‖L∞(Ω) + ‖v(t, ·)‖W 1
∞(Ω) + ‖w(t, ·)‖W 1

∞(Ω) ≤ C for all t > 0, (4.3)

where 0 < w(t, x) ≤ max
{
K0, ‖w0‖L∞(Ω)

}
for all (t, x) ∈ (0,+∞)× Ω.

We next investigate the asymptotic behaviors of such a classical solution. Suppose

that (4.1) has a constant steady state denoted by (uc, vc, wc), then


γucF (wc) = uc(θ + `uc),

βwc = σvc,

wcf(wc) = ucF (wc).

(4.4)

If in addition each component of (uc, vc, wc) is nonnegative, three possible constant

steady states may be formulated as follow:

• extinction state: if uc = 0 and wc = 0 then (uc, vc, wc) = (0, 0, 0);

• exclusion (prey-only) state: if uc = 0 but wc > 0 then wc = K0 and (uc, vc, wc) =

(0, βK0

σ
, K0);

• coexistence state: uc, wc > 0 thus vc = βwc
σ

> 0, uc = wcf(wc)
F (wc)

and γF (wc) =

θ + `uc. Denote by (u∗, v∗, w∗) this positive constant solution.

To construct appropriate Lyapunov functions we desire, we have to impose that

(H4) for any w ∈ [0,+∞), ϕ(w) := wf(w)
F (w)

is continuously differentiable, ϕ′(w) < 0

and 0 < ϕ(0) = lim
w→0+

ϕ(w) exists.

This is not very stringent and can be achieved if f(w) = r(1 − w
K0

) and F (w) is

Holling type I or II with 0 < K0 ≤ c given in (1.8).

After these preparations, we can formulate our second result as below.

Theorem 4.2. Suppose that (u, v, w) is a global classical solution to the system (4.1)

fulfilling (H1)–(H4). Let K0 be defined in (H2).
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1) If γF (K0) ≤ θ, then the prey-only state (0, βK0

σ
, K0) exists and is globally

asymptotic stable. Furthermore, if γF (K0) < θ, there are constants ĉ1, ĉ2, T0 >

0 such that

‖u(t, ·)‖L∞(Ω) +
∥∥v(t, ·)− βK0

σ

∥∥
L∞(Ω)

+ ‖w(t, ·)−K0‖L∞(Ω) ≤ ĉ2e
−ĉ1t, t > T0.

2) If the coexistence steady state (u∗, v∗, w∗) exists and

max
0≤v≤K2

χ(v)2

d(v)
≤ 16dvγσ

β2u∗
min

w1∈[0,C1]
{−ϕ′(w1)} min

w2∈[0,C1]
{F ′(w2)}, (4.5)

with K2 from Remark 4.2 and C1 := max
{
K0, ‖w0‖L∞(Ω)

}
, then (u∗, v∗, w∗)

is globally asymptotic stable. Moreover, there are constants c̄1, c̄2, T1 > 0 such

that

‖u(t, ·)−u∗‖L∞(Ω)+‖v(t, ·)−v∗‖L∞(Ω)+‖w(t, ·)−w∗‖L∞(Ω) ≤ c̄1e
−c̄2t, t > T1.

Note that there is no γF (K0) > θ (biologically interpreted as “strong predation”)

assumed in 2) of Theorem 4.2 since it has been ensured by the existence of the

coexistence steady state along with (H2) and (H3). In fact, (H2) and (H3) imply

0 < w∗ < K0 and then γF (K0) > γF (w∗) = θ+ `u∗ ≥ θ by F ′(w) > 0 in (H3). Also,

(4.5) might be simplified by specific f and F , for example:

Corollary 4.1. If f(w) = r(1 − w
K0

) and F (w) = w
c+w

with 0 < K0 < c then the

coexistence steady state exits and (4.5) becomes

max
0<v≤K2

χ(v)2

d(v)
≤ 16dvγσ(c−K0)

cK0β2u∗
,

with K2 from Remark 4.2. Then the asymptotic stability above-mentioned remains

unchanged.
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4.2 Global Existence of the Classical Solution

We shall apply the celebrated results developed by H. Amann [65, 66] to derive

local and global existence of classical solution to (4.1). The conclusions and proofs

can be applied to (1.16) after slight modifications.

4.2.1 Local Existence

Lemma 4.1 (Local existence and uniqueness). Let Ω ⊂ Rn (n ≥ 1) be a bounded

open domain. If (H1)–(H3) hold, (u0, v0, w0) ∈ C2(Ω,R3) with u0, v0, w0 ≥ 0 (6≡ 0),

then there exists a Tmax ∈ (0,+∞] depending on (u0, v0, w0) such that the system

(4.1) has a unique nonnegative (resp. positive) classical solution on [0, Tmax) (resp.

(0, Tmax)) satisfying

(u, v, w)(t, x) ∈ C
(
[0, Tmax)× Ω, R3

)
∩ C1,2

(
(0, Tmax)× Ω, R3

)
. (4.6)

Proof. Note that we first strengthen the conditions in (H1)− (H3) by replacing the

interval [0,+∞) with R. Finally we will see the obtained results still make sense

without this enhancement. For clarity, we reformulate system (4.1) as


wt = ∇ · (A(w)∇w) + Ψ(w), x ∈ Ω, t > 0,

∇u · ~n = 0, ∇v · ~n = 0, ∇w · ~n = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = w0(x), x ∈ Ω,

(4.7)

where for x ∈ Ω and t ≥ 0, w = (u, v, w)τ and w0 = (u0, v0, w0)τ ∈ R3 (τ denoting

transposition) are two vector-valued functions, ∇w = (∇u,∇v,∇w)τ ,

A(w) =

(
d(v) −uχ(v)

dv
dw

)
3×3

and Ψ(w) =

(
γuF (w)− θu− `u2

βw − σv
wf(w)− uF (w)

)
.

It is easy to see that d(v) > 0 for v ∈ R by (H1). Then along with dv, dw > 0,

all ordering principal minor determinants of A(x) are positive, which implies that
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A(x) is positively definite for all x ∈ R3. Thus we know for all t > 0, x ∈ Ω,

wt −∇ · (A(w)∇w) is Petrowskii parabolic (cf. Eq (50) in [74]) and ∇ · (A(w)∇w)

is normally elliptic (cf. p.16 or Theorem 4.4 in [65]) with separated divergence form.

Moreover, ∇ · (A(w)∇w) coupled with the boundary condition in (4.7) is normally

elliptic as well.

By (H1) all elements of A(x) are in C1+1−(R) (functions and their first-order

derivatives being Lipschitz continuous on R). Similarly the regularity conditions in

(H2) and (H3) show every component of Ψ(w) is C1+1−(R3). In terms of Theorem

7.3-(ii), Theorem 9.2, and Corollary 9.3 of H. Amann [65], we know that given

w0 ∈ W 2
p (Ω,R3) with p > n and p ≥ 2, there exist a Tmax ∈ (0,+∞] relating to w0

and 0 < 2ε < min{2 − n/p, 1} such that (4.1) has a unique (cf. the Corollary 9.3)

maximal classical solution on [0, Tmax)× Ω satisfying

(u, v, w) ∈ B
(
J ′, C2+2ε(Ω,R3)

)
∩C0+ε

(
(0, Tmax), C2(Ω,R3)

)
∩C1+ε

(
(0, Tmax), C(Ω,R3)

)
for every compact subinterval J ′ of (0, Tmax), where B(X, Y ) (resp. Cm(X, Y )) de-

notes the set of all bounded mappings (resp. all m-th continuously differentiable

functions) from X to Y , and Cm+ι(X, Y ) is the set of all mappings from X to Y

which up to their m-th derivatives are ι- Hölder continuous on X with ι ∈ (0, 1) and

m ∈ N. Moreover, if w0 ∈ C2(Ω,R3), then by Theorem 1 of [66] we know that the

system (4.7) has a unique maximal classical solution

(u, v, w) ∈ C
(
[0, Tmax), C(Ω,R3)

)
∩C
(
(0, Tmax), C2(Ω,R3)

)
∩C1

(
(0, Tmax), C(Ω,R3)

)
(4.8)

As a result, (4.8) implies (4.6).

Then we may find this unique local classical solution is nonnegative on [0, Tmax).

Indeed, we may first rewrite the u-equation in system (4.1) as

ut = d(v)∆u+[d′(v)∇v−χ(v)∇v]·∇u−[χ′(v)(∇v·∇v)+χ(v)∆v]u+γuF (w)−θu−`u2.
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By the regularity (4.8), v, w in u-equation can be treated as known functions at

present. Then within any [0, T ] ⊂ [0, Tmax) one can apply comparison principle of

linear parabolic equations to such a equation coupled with ∇u · ~n = 0 and u0(x) ≥

0(6≡ 0). Thus we derive u ≥ 0 in [0, Tmax)× Ω and u > 0 in (0, Tmax)× Ω. Similarly,

one may acquire that v, w > 0 in (0, Tmax) × Ω, and v, w ≥ 0 in [0, Tmax) × Ω.

Therefore, R in (H1)− (H3) as supposed at the very beginning of this proof can be

replaced by [0,+∞). This completes the proof.

By Theorem 1 of [66], it suffices to verify that ‖(u, v, w)(t, ·)‖Hs
p(Ω) ≤ C(T ) < +∞

for any t ∈ (0, T ) ⊂ (0, Tmax), p > n and p ≥ 2 as well as some s satisfying

1 < s < min
{

1 + 1
p
, 2− n

p

}
, in order to extend such a local unique classical solution

to a global one. To make this extendability criteria easier to verify (i.e., to weaken

this Hs
p-topology, the Bessel potential space), we resort to Theorem 5.2 of [66] at the

cost of imposing an extra condition on the initial data. This can be formulated in

the following lemma.

Lemma 4.2. Suppose that (u0, v0, w0) ∈ C2(Ω,R3) additionally fulfills 0-order com-

patibility condition (i.e., ∇u0

∣∣
∂Ω

= ∇v0

∣∣
∂Ω

= ∇w0

∣∣
∂Ω

= 0). Then the above local

classical solution is global if

lim sup
t↗Tmax

{
‖u(t, ·)‖L∞(Ω) + ‖v(t, ·)‖L∞(Ω) + ‖w(t, ·)‖L∞(Ω)

}
< +∞.

4.2.2 L∞ Estimate on w(t, x), v(t, x) and u(t, x)

Lemma 4.3. Under the conditions in Lemma 4.1, it holds that

0 < w(t, x) ≤ max
{
K0, ‖w0‖L∞(Ω)

}
, for any (t, x) ∈ (0, Tmax)× Ω,

where K0 is from (H2) and is independent of Tmax.

Proof. One may use comparison principle to prove this result and more details can

be seen in Lemma 2.2 of [39].
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Remark 4.1. Under the conditions in Lemma 4.1, if (u, v, w) is a nonnegative clas-

sical solution to system (4.1) on (0, Tmax)× Ω, then

‖u(t, ·)‖L1(Ω) + ‖v(t, ·)‖L1(Ω) + ‖w(t, ·)‖L1(Ω) ≤ C (4.9)

where C is a positive constant and independent of Tmax.

It is easy to see that the solution to v-equation of system (4.1) can be formally

expressed via heat semigroup theory with zero-Neumann boundary condition. Pre-

cisely, the estimation on v(t, x) follows from Lemma 1 of Kowalczyk and Szymańska

[75] or Lemma A.5 as below.

Lemma 4.4. Assume that Ω ⊂ Rn(n ≥ 1), v0(x) ∈ W 1
∞(Ω) and

‖w(t, ·)‖Lp(Ω) < C for all t ∈ (0, Tmax).

Then for every t ∈ (0, Tmax), the classical solution v(t, x) of the v-equation in system

(4.1) satisfies

‖v(t, ·)‖W 1
q (Ω) ≤ C when


q < np

n−p , p < n;

q < +∞, p = n;

q = +∞, p > n.

Here C and C are positive constants and independent of Tmax.

In conjunction with Lemma 4.3 we thus have the followingW 1
∞ estimate on v(t, x).

Remark 4.2. There exists a constant K2 > 0 independent of Tmax such that if

v0 ∈ W 1
∞(Ω), then ‖v(t, ·)‖W 1

∞(Ω) ≤ K2 for all t ∈ (0, Tmax).

The next lemma is to show L∞ estimate on u(t, x).

Lemma 4.5. Let (H1)–(H3) hold. Suppose that (u, v, w) is the solution of sys-

tem (4.1) obtained in Lemma 4.1. Then there exists a positive constant C̃ indepen-

dent of Tmax such that

‖u(t, ·)‖L∞(Ω) ≤ C̃ for all t ∈ (0, Tmax).
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Proof. Here we adopt Moser’s iteration method. Indeed, we assume t ∈ (0, T ) ⊂

(0, Tmax) with 0 < T < Tmax. Multiplying the first equation in system (4.1) by

up−1(p ≥ 1) and integrating the result with respect to x in Ω may yield

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

d(v)up−2|∇u|2 + θ

∫
Ω

up + `

∫
Ω

up+1

=(p− 1)

∫
Ω

up−1χ(v)∇u · ∇v + γ

∫
Ω

upF (w).

Lemma 4.1 shows u(t, x), v(t, x), w(t, x) > 0 for all (t, x) ∈ (0, Tmax) × Ω. In

addition, Remark 4.2 concludes that ‖∇v‖L∞(Ω) ≤ ‖v(t, ·)‖W 1
∞(Ω) ≤ K2 (independent

of Tmax). Thus (H1) implies d(v) ≥ d(K2) =: c0 and |χ(v)| ≤ max0<v≤K2 χ(v) =: c1.

By 0 ≤ F (w) ≤ CFw in (H3) we then may obtain

1

p

d

dt

∫
Ω

up + (p− 1)c0

∫
Ω

up−2|∇u|2 + θ

∫
Ω

up + `

∫
Ω

up+1

≤(p− 1)c1

∫
Ω

up−1|∇u||∇v|+ CFγ

∫
Ω

upw.

Applying Cauchy’s inequality to the first right-hand term may lead us to

(p− 1)c1

∫
Ω

up−1|∇u||∇v| ≤(p− 1)c0

2

∫
Ω

up−2|∇u|2 +
(p− 1)c2

1

2c0

∫
Ω

up|∇v|2.

Hence

1

p

d

dt

∫
Ω

up +
(p− 1)c0

2

∫
Ω

up−2|∇u|2 + θ

∫
Ω

up + `

∫
Ω

up+1

≤(p− 1)c2
1K

2
2

2c0

∫
Ω

up + CFγ

∫
Ω

upw.

Below by setting p ≥ 2 and due to up−2|∇u|2 = |u p2−1∇u|2 = |2
p
∇u p2 |2 = 4

p2 |∇u
p
2 |2,

we have

d

dt

∫
Ω

up +
2(p− 1)c0

p

∫
Ω

|∇u
p
2 |2 + pθ

∫
Ω

up + p`

∫
Ω

up+1
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≤p(p− 1)c2
1K

2
2

2c0

∫
Ω

up + pCFC1γ

∫
Ω

up, ` ≥ 0,

with C1 = max
{
K0, ‖w0‖L∞(Ω)

}
. So it remains to consider: (I) θ − CFC1γ > 0 and

(II) θ − CFC1γ ≤ 0. For the case (I), one may have

d

dt

∫
Ω

up +
2(p− 1)c0

p

∫
Ω

|∇u
p
2 |2 + p(θ − CFC1γ)

∫
Ω

up

≤p(p− 1)c2
1K

2
2

2c0

∫
Ω

up;

(4.10)

and for the case (II),

d

dt

∫
Ω

up +
2(p− 1)c0

p

∫
Ω

|∇u
p
2 |2 + pθ

∫
Ω

up (4.11)

≤p(p− 1)c2
1K

2
2

2c0

∫
Ω

up + p(CFC1γ + θ)

∫
Ω

up. (4.12)

To conduct Moser’s iteration, we use Gagliardo-Nirenberg interpolation to decompose

the right-hand
∫

Ω
up into

∫
Ω
|u p2 | and

∫
Ω
|∇u p2 |2 so that the latter one can be cancelled

if its coefficient is set appropriately.

Indeed, by Gagliardo-Nirenberg interpolation inequality and Young’s inequality

with parameter η > 0 and with index 1
α

and 1
1−α one may have

∫
Ω

|u|p =‖u
p
2‖2

L2(Ω) ≤ c2‖∇u
p
2‖2α

L2(Ω)‖u
p
2‖2(1−α)

Lq(Ω) + c3‖u
p
2‖2

Ls(Ω)

≤c2η‖∇u
p
2‖2

L2(Ω) + c2

(1

η

) α
1−α‖u

p
2‖2

Lq(Ω) + c3‖u
p
2‖2

Ls(Ω)

(4.13)

with α =
1
q
− 1

2
1
n

+ 1
q
− 1

2

∈ (0, 1) as 1 ≤ q < 2. Then associated with (4.10), by taking

q = s = 1 in (4.13) we may infer that α = 1
2
n

+1
, α

1−α = n
2
, and

p(p− 1)c2
1K

2
2

2c0

∫
Ω

|u|p ≤ (p− 1)c0

p

∫
Ω

|∇u
p
2 |2 + pn+2 c4

(∫
Ω

|u
p
2 |
)2

(4.14)
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where we have taken η =
2c20

p2c2(c1K2)2 and c4 =
(
c3 +

c2(c1K2
√
c2)n

(
√

2c0)n

)
· (c1K2)2

2c0
. Therefore,

we derive

d

dt

∫
Ω

up + p(θ − CFC1γ)

∫
Ω

up ≤ pn+2 c4

(∫
Ω

|u
p
2 |
)2

.

In regard to (4.11), taking q = s = 1 in (4.13) again will produce that

p(CFC1γ + θ)

∫
Ω

up ≤ (p− 1)c0

p

∫
Ω

|∇u
p
2 |2 + pn+2 c5

(∫
Ω

|u
p
2 |
)2

(4.15)

where we have set η = (p−1)c0
p2c2(CFC1γ+θ)

and c5 =
(
c3 + (c2

√
CFC1γ+θ)n

(
√
c0)n

)
· (CFC1γ + θ).

Hence (4.14) and (4.15) jointly show that

d

dt

∫
Ω

up + pθ

∫
Ω

up ≤ pn+2 c6

(∫
Ω

|u
p
2 |
)2

(4.16)

with c6 = c4 + c5.

To sum up, by letting κ := θ − CFC1γ > 0 in case (I) or κ := θ > 0 in case (II),

there is a constant c7 := max{c4, c6} which is independent of p, such that

d

dt

∫
Ω

up + pκ

∫
Ω

up ≤ c7p
n+2
(∫

Ω

|u
p
2 |
)2

≤ c7p
n+2 sup

t∈[0,T )

(∫
Ω

|u
p
2 |
)2

, p ≥ 2,

on (0, T ) ⊂ (0, Tmax). Notice that the rightmost term above is unrelated to time

variable t. Then solving this inequality with respect to t on (0, T ) ⊂ (0, Tmax) gives∫
Ω

up(t, x) dx ≤
∫

Ω

up0(x) dx+
c7

κ
pn+1 sup

t∈[0,T )

(∫
Ω

|u
p
2 (t, x)| dx

)2

≤
(
|Ω|+ c7

κ
+ 1
)
pn+1 max

{
‖u0‖L∞(Ω), sup

t∈[0,T )

(∫
Ω

|u
p
2 (t, x)| dx

) 2
p

}p
.

This indicates

F̃ (p) ≤
(
|Ω|+ c7

κ
+ 1
) 1
pp

n+1
p F̃ (p/2)

with F̃ (p) := max
{
‖u0‖L∞(Ω), supt∈[0,T )

( ∫
Ω
up(t, x) dx

) 1
p
}
. Denoting c8 = |Ω| +
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c7
κ

+ 1 and setting p = 2i, i = 1, 2, 3, · · · , then we have

F̃ (2i) ≤ c
∑i
k=1 2−k

8 2
∑i
k=1

k

2(n+1)k F̃ (1) ≤ c8 2
2n+1

(2n+1−1)2 F̃ (1)

and F̃ (1) =
{
‖u0‖L∞(Ω), supt∈[0,T )

∫
Ω
u(t, x) dx

}
≤
{
‖u0‖L∞(Ω), C

}
where C is from

(4.9) and thus is independent of i, Tmax and T. Finally, letting i → +∞ concludes

that for all t ∈ (0, T ) ⊂ (0, Tmax),

‖u(t, ·)‖L∞(Ω) ≤ c8 2
2n+1

(2n+1−1)2
{
‖u0‖L∞(Ω), C

}
.

Hence such an estimate holds for all t ∈ (0, Tmax) due to T arbitrarily in (0, Tmax).

This completes the proof.

Remark 4.3. By rewriting the third component in system (4.1) as

wt = dw∆w − w +R

with R = w+wf(w)−uF (w), then one may apply Lemma 4.4 to this equation after

a rescaling. Since in view of Lemma 4.3 and Lemma 4.5, one may infer that

‖R(t, ·)‖L∞(Ω) ≤ C(‖w(t, ·)‖L∞(Ω) + ‖u(t, ·)‖L∞(Ω)) ≤ C for all t ∈ (0, Tmax),

with constants C, C independent of Tmax. It follows that

‖w(t, ·)‖W 1
∞(Ω) ≤ C for all t ∈ (0, Tmax),

if w0(x) ∈ W 1
∞(Ω) where constant C is independent of Tmax.

This remark is useful to prove asymptotic stability in the next section.

4.2.3 Proof of Theorem 4.1

Proof. Lemma 4.1 has shown the existence of local unique classical solution to system

(4.1). The extendability standard of such a classical solution in Lemma 4.2 can be

satisfied by Lemma 4.3, Lemma 4.5, and Remark 4.2. So one can obtain the global
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existence of unique classical solution to system (4.1), and the regularity (4.2). Finally

the estimate (4.3) holds for all t > 0 by Remark 4.2, Lemma 4.5 and Remark 4.3.

4.3 Global Asymptotic Stability

In the last section we have proved that system (4.1) possesses a unique global-

in-time classical solution under (H1)–(H3). In this section we concentrate on its

longtime behaviors if (H4) holds in addition. To this end, we introduce the following

two basic lemmas.

Lemma 4.6. If F fulfills condition (H3), then a function

ζ(z) :=

∫ z

κ

F (η)− F (κ)

F (η)
dη (4.17)

is nonnegative and convex. Furthermore, if z → κ then

F ′(κ)

4F (κ)
(z − κ)2 ≤ ζ(z) ≤ F ′(κ)

F (κ)
(z − κ)2.

This lemma can be proved by doing Talyor’s expansion of ζ(z) with respect to

z up to its second order derivative at z = κ (ζ(κ) = ζ ′(κ) = 0). One may refer to

Lemma 4.1 in [39] for more details.

We below summarize limit property of a dynamic system (cf. Chap.4 in [76])

that we will use later. Given a dynamic system (nonlinear semigroup) {S(t) : t ≥ 0}

on a complete metric space (M, ‖ · ‖). Then for a real-valued continuous function

L(x), x ∈ M, we say L(x) is a Lyapunov function of this dynamic system if for all

t ≥ 0,x ∈M and δ ∈ R,

dL(S(t)x)

dt
:= lim

δ→0+
sup

L(S(t+ δ)x)− L(S(t)x)

δ
≤ 0.

For any x ∈ M, Γ(x) := {S(t)x : t ≥ 0} denotes the trajectory through x. In

particular, we call x is an equilibrium point of the dynamic system if Γ(x) = {x}.

101



Lemma 4.7. Let E := {x ∈ M : dL(S(t)x)
dt

= 0}. Denote by Z := {x ∈ E : S(t)x ∈

E for all t ≥ 0} the largest invariant subset of E . For some x0 ∈M, if the trajectory

Γ(x0) = {S(t)x0 : t ≥ 0} is contained in a compact set of M, then there are two

properties for the ω-limit set Vω(x0) of Γ(x0) (or x0) as:

(i) Vω(x0) ⊂ Z;

(ii) S(t)x0 → Z as t→∞,

where Vω(x0) :=
{

lim
k→+∞

S(tk)x0 ∈M : ∃ tk > 0, lim
k→+∞

tk = +∞
}

=
⋂
τ≥0

{S(t)x0 : t ≥ τ}.

Additionally if all y ∈ E are equilibria and all elements of E are isolated from

each other, then Vω(x0) consists of equilibria and contains only one element.

Lemma 4.6 may help us to construct Lyapunov functions we need. Lemma 4.7

indicates that one may apply Lemma 4.7 to corresponding Lyapunov functions, in

order to investigate the global asymptotic stability of the prey–only state (0, βK0

σ
, K0)

and the coexistence state (u∗, v∗, w∗). Indeed, Theorem 4.1 means that system (4.1)

has the unique global-in-time classical solution (u, v, w) ∈ C2(Ω,R3) which is contin-

uous to its initial value (u0, v0, w0) =: u0(x) ∈ C2(Ω,R3). This indicates that system

(4.1) can generate a dynamic system on C2(Ω,R3), still denoted by {S(t) : t ≥ 0},

such that S(t)u0 := u(t, x;u0(x)) := (u(t, x;u0(x)), v(t, x; v0(x)), w(t, x;w0(x))) ∈

C2(Ω,R3), and S(0) is an identity, i.e., S(0)u0(x) = u0(x) for any u0(x) ∈ C2(Ω,R3).

Then {S(t)u0 : t ≥ 0} is a trajectory through u0(x) which can be contained in a

compact subset of C2(Ω,R3) by (4.3) and one estimation similar to the (46) and

(48) in Theorem 4.1 of [67]. The (0, βK0

σ
, K0) and (u∗, v∗, w∗) can be viewed as two

equilibria of this dynamic system.

In addition, (H2) and (H4) indicate that F ′(w) > 0 and −ϕ′(w) > 0 are contin-

uous on [0, C] for any C > 0. Thus

min
w∈[0,C]

F ′(w) min
w∈[0,C]

(−ϕ′(w)) (4.18)
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exists and is strictly positive.

With these preparations at hand, we below prove 1) of the Theorem 4.2.

4.3.1 Asymptotical Stability of Prey-only Steady State

Lemma 4.8. Let (H1)−(H4) hold and (u, v, w) be a global-in-time classical solution

of system (4.1) obtained in Theorem 4.1. Then the prey–only state (0, βK0

σ
, K0) is

globally asymptotic stable provided that F (K0) ≤ θ
γ

. Furthermore, if F (K0) < θ
γ
,

there are constants c̄1, c̄2, T0 > 0 such that for t > T0 > 0

‖u(t, ·)‖L∞(Ω) +
∥∥v(t, ·)− βK0

σ

∥∥
L∞(Ω)

+ ‖w(t, ·)−K0‖L∞(Ω) ≤ c̄2e
− c̄1t

2(n+1) .

Proof. We may construct a function for t > 0 that

L1(t) :=L1(u(t), v(t), w(t))

:=
1

γ

∫
Ω

u+
M

2

∫
Ω

(
v − βK0

σ

)2

+

∫
Ω

∫ w

K0

F (η)− F (K0)

F (η)
dη

where (u, v, w) is the classical solution to system (4.1) and the constant M > 0 is to

be determined after (4.21).

Next we show that L1 is a Lyapunov function, i.e., dL1

dt
≤ 0 for all (u, v, w) solving

system (4.1). Indeed, under the zero-Neumann boundary condition in system (4.1),

one has

dL1

dt
=

1

γ

∫
Ω

ut +M

∫
Ω

(
v − βK0

σ

)
vt +

∫
Ω

F (w)− F (K0)

F (w)
wt

=
1

γ

∫
Ω

(γuF (w)− θu− `u2) +

∫
Ω

F (w)− F (K0)

F (w)
wt

+M

∫
Ω

(
v − βK0

σ

)
vt.

(4.19)

Moreover, for the second right-hand term one may further infer that∫
Ω

F (w)− F (K0)

F (w)
wt

103



=

∫
Ω

F (w)− F (K0)

F (w)

(
dw∆w + wf(w)− uF (w)

)
=−

∫
Ω

dwF (K0)F ′(w)
|∇w|2

F 2(w)
+

∫
Ω

F (w)− F (K0)

F (w)
(wf(w)− uF (w))

and from f(K0) = 0 in (H2) we may derive that∫
Ω

F (w)− F (K0)

F (w)
wf(w) =

∫
Ω

(
wf(w)

F (w)
− K0f(K0)

F (K0)

)
(F (w)− F (K0))

=

∫
Ω

ϕ′(w1)F ′(w2)(w −K0)2

where ϕ(w) = wf(w)
F (w)

, wi is between w and K0, i = 1, 2, in addition to

−
∫

Ω

F (w)− F (K0)

F (w)
uF (w) =

∫
Ω

F (K0)u−
∫

Ω

F (w)u.

On the other hand, by βwc = σvc and wc = K0, one may infer that

M

∫
Ω

(
v − βK0

σ

)
vt

=M

∫
Ω

(
v − βK0

σ

)
(dv∆v + βw − σv)

=−Mdv

∫
Ω

∇
(
v − βK0

σ

)
∇v +M

∫
Ω

(
v − βK0

σ

)
(βw − σv)

=−Mdv

∫
Ω

∣∣∣∇(v − βK0

σ

)∣∣∣2 +Mβ

∫
Ω

(
v − βK0

σ

)
(w −K0)−Mσ

∫
Ω

(
v − βK0

σ

)2

and using the Young’s inequality with ε will yield

Mβ

∫
Ω

(
v − βK0

σ

)
(w −K0) ≤Mβ

∫
Ω

[
ε

2

(
v − βK0

σ

)2

+
(w −K0)2

2ε

]
(4.20)

for any ε > 0, Mβ > 0.

Then by using the assumption F (K0) ≤ θ
γ
, setting 0 < ε ≤ 2σ

β
, and by invoking

104



the estimates from (4.19) and (4.20) one may update (4.19) that

dL1

dt
=

∫
Ω

(
F (K0)− θ

γ

)
u−

∫
Ω

`u2

γ
− dwF (K0)

∫
Ω

F ′(w)
|∇w|2

F 2(w)

+

∫
Ω

ϕ′(w1)F ′(w2)(w −K0)2 −Mdv

∫
Ω

∣∣∣∇(v − βK0

σ

)∣∣∣2
−Mσ

∫
Ω

(
v − βK0

σ

)2

+Mβ

∫
Ω

(
v − βK0

σ

)
(w −K0)

≤
∫

Ω

(
F (K0)− θ

γ

)
u+

∫
Ω

(
ϕ′(w1)F ′(w2) +

Mβ

2ε

)
(w −K0)2

−M(σ − εβ

2
)

∫
Ω

(
v − βK0

σ

)2

≤
∫

Ω

(
ϕ′(w1)F ′(w2) +

Mβ

2ε

)
(w −K0)2.

(4.21)

In light of Lemma 4.3 we know 0 < w1, w2 ≤ C1 with C1 = max
{
K0, ‖w0‖L∞(Ω)

}
.

Hence making use of (4.18) and taking

0 < M ≤ 4σ

β2
min

w∈[0,C1]
F ′(w) min

w∈[0,C1]
(−ϕ′(w))

will conclude that dL1

dt
≤ 0.

For each t > 0, we let

L1(t) =

∫
Ω

u

γ
+

∫
Ω

M

2

(
v − βK0

σ

)2

+

∫
Ω

∫ w

K0

F (η)− F (K0)

F (η)
dη =:

∫
Ω

H1(u, v, w).

Here H1(u, v, w) := u
γ

+ M
2

(
v − βK0

σ

)2
+ ζ(w) is a convex function of (u, v, w) in

view of Lemma 4.6 with κ = K0. H1(u, v, w) has no more than one minimum point,

so does L1(t) in the sense of (u, v, w). The equation dL1(t)
dt

= 0 thus has at most

one solution in the sense of (u, v, w), which implies that dL1(t)
dt

= 0 if and only if

(u, v, w) = (0, βK0

σ
, K0). Then Lemma 4.7 concludes that the solution of (4.1) which
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is bounded will approach (0, βK0

σ
, K0) as t → ∞. In other words, (0, βK0

σ
, K0) is

globally asymptotic stable.

We can further ascertain the corresponding convergent rate. Due to F (K0) < θ
γ
,

the first inequality in (4.21), and Lemma 4.6, there exists a constant ĉ1 > 0 such

that

dL1(t)

dt
≤ −ĉ1L1(t), for t > 0.

Solving this inequality shows

L1(t) ≤ ĉ2e
−ĉ1t, for t > 0

where the constant ĉ2 > 0 depends only on L1(0). Lemma 4.6 also signifies that there

is a T1 > 0 such that

1

γ

∫
Ω

u+
M

2

∫
Ω

(
v − βK0

σ

)2

+

∫
Ω

F ′(K0)

4F (K0)
(w −K0)2 ≤ ĉ2e

−ĉ1t, for t ≥ T1

which means

‖u(t, ·)‖L1(Ω) +
∥∥v(t, ·)− βK0

σ

∥∥
L2(Ω)

+ ‖w(t, ·)−K0‖L2(Ω) ≤ ĉ3e
− ĉ1

2
t, for t ≥ T1

with ĉ3 = 3 max
{
ĉ2γ,

(
2ĉ2
M

)1/2,
(4F (K0)ĉ2

F ′(K0)

)1/2}
.

We next may strengthen this convergence rate. Since (u, v, w) is a classical so-

lution to (4.1), then by (4.3) there exists a constant ĉ4 > 0 such that ‖u‖L∞(Ω),

‖∇v‖L∞(Ω), ‖∇w‖L∞(Ω) ≤ ĉ4 when t > T1 > 0. Similar to the estimation of (46) and

(48) in Theorem 4.1 of [67] and by semigroup theory and Lp-Lq estimate, there exist

ĉ′4 > 0 and ε ∈ (0, 1) such that ‖w(t, ·)‖C2+ε(Ω̄), ‖v(t, ·)‖C2+ε(Ω̄) ≤ ĉ′4 for all t > T ′1 > 0.

Denote T0 = max{T1, T
′
1}. One can apply the Theorem 7.2 or 7.4 in Chap.V of [3] to

the first equation of (4.1) which can be rewritten as ut− d(v)∆u+ b(t, x, u,∇u) = 0

with

b(t, x, u,∇u) = −[d′(v)∇v−χ(v)∇v]·∇u+[χ′(v)(∇v·∇v)+χ(v)∆v]u−γuF (w)+θu+`u2.
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Then there exits another constant, still denoted by ĉ4, such that ‖∇u‖L∞(Ω) ≤ ĉ4 for

all t > T0.

An application of Gagliardo–Nirenberg interpolation inequality may yield that

for all t > T0,

‖u‖L∞(Ω) ≤ ĉ5(‖∇u‖
n
n+1

L∞(Ω)‖u‖
1

n+1

L1(Ω) + ‖u‖L1(Ω)) ≤ ĉ6e
− ĉ1t

2(n+1) ,

∥∥v − βK0

σ

∥∥
L∞(Ω)

≤ ĉ7

(∥∥∇(v − βK0

σ
)
∥∥ n
n+2

L∞(Ω)

∥∥v − βK0

σ

∥∥ 2
n+2

L2(Ω) +
∥∥v − βK0

σ

∥∥
L2(Ω)

)
≤ ĉ8e

− ĉ1t
n+2 ,

‖w −K0‖L∞(Ω) ≤ ĉ9

(
‖∇(w −K0)‖

n
n+2

L∞(Ω)‖w −K0‖
2

n+2

L2(Ω) + ‖w −K0‖L2(Ω)

)
≤ ĉ10e

− ĉ1t
n+2 ,

where ĉ6 := ĉ5(ĉ
n
n+1

4 ĉ
1

n+1

3 + ĉ3), ĉ8 := ĉ7(ĉ
n
n+2

4 ĉ
2

n+2

3 + ĉ3), and ĉ10 := ĉ9(ĉ
n
n+2

4 ĉ
2

n+2

3 + ĉ3).

Therefore,

‖u‖L∞(Ω) +
∥∥v − βK0

σ

∥∥
L∞(Ω)

+ ‖w −K0‖L∞(Ω) ≤ ĉ11e
− ĉ1t

2(n+1) , t > T0

with ĉ11 := ĉ6 + ĉ8 + ĉ10. This completes the proof.

4.3.2 Asymptotical Stability of Coexistence Steady State

As is shown in (4.4), the positive coexistence state (u∗, v∗, w∗) should satisfy

u∗F (w∗) = w∗f(w∗) =
u∗(θ + `u∗)

γ
> 0 , v∗ =

βw∗
σ

> 0, w∗ > 0.

We are now in a position to prove part 2) of the Theorem 4.2.

Lemma 4.9. Let (H1) − (H4) hold and (u, v, w) be the global classical solution of

system (4.1) obtained in Theorem 4.1. If the coexistence steady state (u∗, v∗, w∗)

exists and

max
0<v≤K2

χ(v)2

d(v)
≤ 16dvγσ

β2u∗
min

w̃1∈[0,C1]
{−ϕ′(w̃1)} min

w̃2∈[0,C1]
{F ′(w̃2)}, (4.22)

with K2 from Remark 4.2 and C1 = max
{
K0, ‖w0‖L∞(Ω)

}
and ϕ(w) = wf(w)

F (w)
, then
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the (u∗, v∗, w∗) is globally asymptotic stable. Moreover, there are three constants

c̃1, c̃2, T1 > 0 such that

‖u(t, ·)− u∗‖L∞(Ω) +
∥∥v(t, ·)− v∗

∥∥
L∞(Ω)

+ ‖w(t, ·)−w∗‖L∞(Ω) ≤ c̃1e
− c̃2t
n+2 , t > T1.

Proof. We may construct the following function for t > 0 that

L2(t) :=L2(u(t), v(t), w(t))

:=
1

γ

∫
Ω

(
u− u∗ − u∗ ln

u

u∗

)
+
M

2

∫
Ω

(v − v∗)2 +

∫
Ω

∫ w

w∗

F (η)− F (w∗)

F (η)
dη

where (u, v, w) is the global classical solution of system (4.1) and M > 0 is a constant

to be determined in system (4.25). Similar to Lemma 4.8, we first verify dL2(t)
dt
≤ 0.

Replacing ut, vt, wt in the following equality may yield

dL2(t)

dt

=
1

γ

∫
Ω

(ut −
u∗
u
ut) +M

∫
Ω

(v − v∗)vt +

∫
Ω

F (w)− F (w∗)

F (w)
wt

=
1

γ

∫
Ω

(γuF (w)− θu− `u2)

− u∗
γ

∫
Ω

(
d(v)
|∇u|2

u2
− χ(v)

∇u · ∇v
u

+ (γF (w)− θ − `u)
)

+M

∫
Ω

(
− dv|∇v|2 + (v − v∗)(βw − σv)

)
−
∫

Ω

dwF (w∗)
F ′(w)

F 2(w)
|∇w|2

+

∫
Ω

(wf(w)

F (w)
− u
)

(F (w)− F (w∗)).

(4.23)

For the terms above involving ∇u and ∇v and for u 6= 0, one may notice that

− u∗
γ

∫
Ω

(
d(v)
|∇u|2

u2
− χ(v)

∇u · ∇v
u

)
−M

∫
Ω

dv|∇v|2

=− u∗
γ

∫
Ω

(∇u
u
,∇v

)
H
(∇u
u
,∇v

)τ
≤ 0
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where τ refers to transpose and

H :=

(
d(v) −χ(v)

2

−χ(v)
2

γMdv
u∗

)

is positive semi-definite when

M ≥ max
0<v≤C1

u∗χ(v)2

4dvγd(v)
. (4.24)

Here 0 < v(t, x) < C1 for all t > 0 and all x ∈ Ω, owning to Remark 4.2 and the

regularity (4.2) in Theorem 4.1. In terms of u∗ = w∗f(w∗)
F (w∗)

one may obtain that∫
Ω

(wf(w)

F (w)
− u
)

(F (w)− F (w∗)) =

∫
Ω

(wf(w)

F (w)
− w∗f(w∗)

F (w∗)
+ u∗ − u

)
(F (w)− F (w∗))

=

∫
Ω

ϕ′(w̃1)F ′(w̃2)(w − w∗)2 −
∫

Ω

(F (w)− F (w∗))(u− u∗)

where ϕ(w) = wf(w)
F (w)

, w̃i lies between w and w∗, i = 1, 2. In light of `u∗+θ = γF (w∗),

we have

1

γ

∫
Ω

(γuF (w)− θu− `u2)− u∗
γ

∫
Ω

(γF (w)− θ − `u) =
1

γ

∫
Ω

(u− u∗)(γF (w)− θ − `u)

=
1

γ

∫
Ω

(u− u∗)
[
γF (w)− θ − `u− (γF (w∗)− θ − `u∗)

]
=

∫
Ω

(u− u∗)(F (w)− F (w∗))−
`

γ

∫
Ω

(u− u∗)2.

Note that (v− v∗)(βw− σv) = β(v− v∗)(w−w∗)− σ(v− v∗)2 by v∗ = βw∗
σ

. One can

derive from Young’s inequality that

M

∫
Ω

(v − v∗)(βw − σv)

=−Mσ

∫
Ω

(v − v∗)2 +Mβ

∫
Ω

(v − v∗)(w − w∗)
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≤M
(βε

2
− σ

)∫
Ω

(v − v∗)2 +
Mβ

2ε

∫
Ω

(w − w∗)2

≤Mβ

2ε

∫
Ω

(w − w∗)2,

for 0 ≤ βε
2
≤ σ or 0 < ε ≤ 2σ

β
. Consequently, we know

dL2(t)

dt
≤− dwF (w∗)

∫
Ω

F ′(w)

F 2(w)
|∇w|2 +

∫
Ω

(
ϕ′(w̃1)F ′(w̃2) +

Mβ

2ε

)
(w − w∗)2.

Lemma 4.3 shows 0 < w̃1, w̃2 ≤ C1 with C1 = max
{
K0, ‖w0‖L∞(Ω)

}
. Thus by (4.18)

we can set

0 < M ≤ 4σ

β2
min
[0,C1]

{
− ϕ′(w̃1)

}
min
[0,C1]

{
F ′(w̃2)

}
. (4.25)

Then (4.22) implies there exists a M > 0 such that both (4.24) and (4.25) hold,

which means dL2(t)
dt
≤ 0.

Next we claim that dL2(t)
dt

= 0 will lead to (u, v, w) = (u∗, v∗, w∗). In fact,

L2(t) =
1

γ

∫
Ω

(
u−u∗−u∗ ln

u

u∗

)
+
M

2

∫
Ω

(v−v∗)2+

∫
Ω

∫ w

w∗

F (η)− g(w∗)

F (η)
dη =:

∫
Ω

H2(u, v, w)

andH2(u, v, w) = 1
γ

(
u−u∗−u∗ ln u

u∗

)
+M

2
(v−v∗)2+

∫ w
w∗

F (η)−F (w∗)
F (η)

dη is a nonnegative

convex function of (u, v, w) based on Lemma 4.6, the expansion (4.26), and on (4.27)

as below. So the equation dL2(t)
dt

= 0 has at most one minimum point in the sense

of (u, v, w). Together with (u, v, w) = (u∗, v∗, w∗) leading to dL2(t)
dt

= 0, thus we may

infer that the equation dL2(t)
dt

= 0 indicates (u, v, w) = (u∗, v∗, w∗), which concludes

that dL2(t)
dt

= 0 if and only if (u, v, w) = (u∗, v∗, w∗). Then by Lemma 4.7 the solution

(u, v, w) of system (4.1) which is bounded will converges to (u∗, v∗, w∗) as t→∞. In

other words, (u∗, v∗, w∗) is globally asymptotic stable.

We can further acquire its the convergent rate. Indeed, letting κ = w∗ in
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Lemma 4.6 means

ζ(w) =ζ(w∗) + ζ ′(w∗)(w − w∗) +
1

2
ζ ′′(w̃)(w − w∗)2

=
F (w∗)F

′(w̃)

2F 2(w̃)
(w − w∗)2 ≥ 0,

(4.26)

with w̃ lying between w and w∗. Furthermore, denoting ρ(u) = u− u∗− u∗ ln u
u∗

and

doing its Taylor expansion at u = u∗ may show

ρ(u) = ρ(u∗) + ρ′(u∗)(u− u∗) +
1

2
ρ′′(ũ)(u− u∗)2 =

u∗
2ũ2

(u− u∗)2 ≥ 0, (4.27)

where ũ lies between u and u∗. Lemma 4.5 and the regularity (4.2) jointly show that

there exists a T̃1 > 0 such that 0 < δ ≤ u ≤ C2 < ∞ as t > T̃1 , which means

u∗
2C2

2
≤ u∗

2ũ2 ≤ u∗
2δ2 . Again observing the derivations from (4.23) to (4.25), there is a

constant c̃0 > 0 such that

dL2(t)

dt
≤ −c̃0L2(t), for all t > T̃1.

Analogous to the corresponding parts in proving Lemma 4.8, there exist two

constants c̃1, c̃2 > 0 and T1 ≥ T̃1 > 0 such that

‖u(t, ·)− u∗‖L∞(Ω) +
∥∥v(t, ·)− v∗

∥∥
L∞(Ω)

+ ‖w(t, ·)−w∗‖L∞(Ω) ≤ c̃1e
− c̃2t
n+2 , t > T1.

4.4 Linear Instability and Presentation of Patterns

The previous sections involve that there exists a unique global classical solution

to system (4.1) and it may approach its steady states exponentially under suitable

conditions. However, there is no discussion of instability on its steady states. To

figure this out, we below shall analyse linear instability of these constant steady
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states and then numerically explore the impact of density-dependent d(v) and χ(v)

on the patterns.

4.4.1 Linear Instability

Proposition 4.1. Assume that (uc, vc, wc) is the constant steady state of the system

(4.1). Then the (uc, vc, wc) is linearly instable if there exists at least one λj in (4.31)

having strictly positive real part (viz. one of (4.32)–(4.34) holds); It is linearly stable

if all the real parts of λj are strictly negative.

Proof. We first linearize the system (4.1) at (uc, vc, wc) as

∂

∂t

(
u
v
w

)
=

(
d(vc)∆ +B1 −ucχ(vc)∆ B2

0 dv∆− σ β
B3 0 dw∆ +B4

)(
u− uc
v − vc
w − wc

)

=:Bw̃

(4.28)

where w̃ := (u− uc, v − vc, w − wc)τ ,

B1 := γF (wc)− θ − 2`uc, B2 := γucF
′
w(wc),

B3 := −F (wc), B4 := f(wc) + wcf
′(wc)− ucF ′w(wc).

In order to obtain the eigenvalues (denoted by {λj}∞j=0) of the linear operator B,

we invoke the following eigenvalue problem:

{ −∆Φ(x) = µΦ(x), x ∈ Ω,

∇Φ(x) · ~n = 0, x ∈ ∂Ω,

the eigenvalues {µj}∞j=0 of which, without counting the finite multiplicities, can be

formulated as

0 = µ0 < µ1 < µ2 < · · · < µm < · · · .

Then to {µj}∞j=0 the corresponding eigenfunctions, denoted by {φj(x)}∞j=0 in L2(Ω),

constitute an orthonormal basis of L2(Ω). Plus ∂w̃
∂t

= ∂w
∂t
, we thus can formulate a

general solution w̃ to (4.28) (note ∂w̃
∂t

= Bw̃ = λw̃) in the form of components (in
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particular spatial parts in L2(Ω)) as

u−uc =
∞∑
j=0

ujφj(x)eλjt, v− vc =
∞∑
j=0

vjφj(x)eλjt, w−wc =
∞∑
j=0

wjφj(x)eλjt, (4.29)

where uj, vj, wj are constants for all j. Note that if there is a j such that uj = vj =

wj = 0, one may automatically remove the corresponding terms in (4.29). In this

fashion we have

Pjw̃ :=

( −d(vc)µj +B1 −ucχ(vc)µj B2

0 −dvµj − σ β
B3 0 −dwµj +B4

)
w̃ = λjw̃, (4.30)

which is equivalent to

det (λjI − Pj) = 0, j = 0, 1, 2, . . .

or the eigenpolynomial

λ3
j + a1λ

2
j + a2λj + a3 = 0, j = 0, 1, 2, . . . (4.31)

where I is a 3× 3 unit matrix and other real-valued coefficients are:

a1 =− Trace (Pj) =
(
d(vc) + dv + dw

)
µj + σ −B1 −B4,

a2 = det

( −d(vc)µj +B1 −ucχ(vc)µj

0 −dvµj − σ

)
+ det

( −dvµj − σ β

0 −dwµj +B4

)
,

a3 =− det(Pj) = (B1 − d(vc)µj)(σ + dvµj)(B4 − dwµj)

−B3B2(σ + dvµj) +B3βucχ(vc)µj.

Denote p = a2 − a1
2

3
, q = 2a1

3

27
− a1a2

3
+ a3, ϑ = ei

2π
3 = −1

2
+
√

3
2
i with i =

√
−1,

and Ξ = q2

4
+ p3

27
. Then by Cardano’s formula for every j one can specify three roots

of (4.31) as:

λ
(1)
j =− a1

3
+ 3

√
−q
2

+
√

Ξ + 3

√
−q
2
−
√

Ξ,
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λ
(2)
j =− a1

3
+ ϑ 3

√
−q
2

+
√

Ξ + ϑ2 3

√
−q
2
−
√

Ξ,

λ
(3)
j =− a1

3
+ ϑ2 3

√
−q
2

+
√

Ξ + ϑ 3

√
−q
2
−
√

Ξ.

Consequently, we may identify the linear instability by requiring one of the real parts

of these roots to be strictly positive in the following cases:

• When Ξ > 0, one may readily see that −q
2
±
√

Ξ ∈ R and thus λ
(1)
j is real and

λ
(2)
j , λ

(3)
j are complex numbers. So we require

max
{

Re(λ
(1)
j ), Re(λ

(2)
j ), Re(λ

(3)
j )
}

= −a1

3
+ max

{
Λ,
−Λ

2

}
> 0 (4.32)

with Λ := 3

√
−q
2

+
√

Ξ + 3

√
−q
2
−
√

Ξ;

• When Ξ = 0 then λ
(1)
j , λ

(2)
j and λ

(3)
j are real (by ϑ+ ϑ2 = −1) and λ

(2)
j = λ

(3)
j .

Then we demand

max
{

Re(λ
(1)
j ), Re(λ

(2)
j ), Re(λ

(3)
j )
}

= −a1

3
+ max

{
2Λ0, −Λ0

}
> 0 (4.33)

with Λ0 := 3

√
−q
2

;

• When Ξ < 0, λ
(1)
j , λ

(2)
j , and λ

(3)
j are real but different from each other. So we

need

max
{
λ

(1)
j , λ

(2)
j , λ

(3)
j

}
> 0. (4.34)

This completes the proof.

Note that Proposition 4.1 does not concisely show how the density-dependent d(v)

and χ(v) directly affect the patterns. So we next resort to numerical simulations with

parameters taken hypothetically. The units of these parameters can be inferred from

pp.252–262 of [17].
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4.4.2 Numerical Simulation in One-Dimensional Case

When motility function d(v) and prey-taxis sensitivity function χ(v) are con-

stants, one may find (cf. [16]) that the coexistence state of spatial one-dimensional

model (1.16) (i.e., system (4.1) with ` = 0) becomes unstable regarding small pertur-

bation (by increasing prey-taxis coefficient). In this subsection, we shall show that

some density-dependent d(v) and χ(v) can stabilize such a stationary state but this

stabilization effect can be weakened by enhancement of conversion rate.

To show this difference, we remain unchanged some parameters and functions

taken in [16], except for d(v), χ(v) and conversion rate γ. Specifically, the growth

rate function of prey is Θ-logistic type

f(w) = r
(

1−
(w
K

)Θ)
, r, K > 0, Θ ≥ 1,

and the functional response function is Ivlev type

F (w) = c(1− e−ςw), ς > 1, c > 0.

Let Ω = (0, L) and take other parameters in Table 4.1. Thus we derive from (4.4)

(with ` = 0) that (u∗, v∗, w∗) ≈ (1.2599, 1.3787, 0.6267). In addition, we set initial

data as u0(x) = u∗ + 0.01 · cos(πx), v0(x) = v∗ + 0.01 · sin(πx), w0(x) = w∗ + 0.01 ·

cos(πx).

Table 4.1: Parameters selection–I.

γ θ ` dv dw σ β K r c Θ ς L

1.2 0.45 0 0.0001 0.09 0.2 0.44 1 1 1 3 0.75 1

When d(v) = 0.002533 and χ(v) = 1, one can still derive the patterns (cf. (a) in

Figure 4.1) that are analogous to the first row of Figure 7 in [16]. However, if we

replace them by density-dependent forms such as d(v) = 1
1+e8v−1 or 1

1+8v
, things will

become different.
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Precisely, it is not difficult to see from (a) to (d) in Figure 4.1 that some density-

dependent d(v) and χ(v) of exponential or algebraic form may flatten, or we say

stabilize, the pattern bifurcating from the coexistence steady state (u∗, v∗, w∗) under

small perturbations. However, this effect might be suppressed by increasing conver-

sion rate. For example, after resetting conversion rate γ, approximate time-periodic

patterns can appear, like the change from (d) to (e) in Figure 4.1. In addition, by

enhancing γ in Figure 1(b), (c) (for instance, by letting γ = 26), the system may

produce patterns like Figure 1(d) as well.

4.4.3 Numerical Simulation in Two-Dimensional Case

An individual-based modelling method to simulate one population whose individ-

uals undergo density-dependent movement in 2-dimensional spatial domain can be

see in [77]. For two populations spatially in a 2-dimensional disc, i.e., one predator

and one prey considered in the system (4.1) with ` > 0, some density-dependent

d(v) and χ(v) may help to change the spatial distribution similarity which exists in

non-density-dependent case between predators and signals of prey.

We herein set the growth rate function of prey as

f(w) = r
(

1− w

K0

)
, r, K0 > 0,

and take the functional response function to be the Holling type II

F (w) =
w

c+ w
, c > 0,

together with different values of r and different forms of d(v) and χ(v) specified below

Figures 4.2 and 4.3. Without loss of generality, we may adopt initial values as

u0(x, y) = uc +Q(x, y), v0(x, y) = vc +Q(x, y), w0(x, y) = wc +Q(x, y),

where Q(x, y) = cosπx + cos πy, (x, y) ∈ B3(0)–a circle with radius 3 and centre
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(a) χ(v) = 1, d(v) = 0.002533

(b) χ(v) = 8/(1 + 8v)2, d(v) = 1/(1 + 8v)

(c) χ(v) = 8e8(v−1)/(1 + e8(v−1))2, d(v) = 1/(1 + e8(v−1))

(d) χ(v) = 8/(1 + 8v)2, d(v) = 1/(1 + e8(v−1))

(e) χ(v) = 8/(1 + 8v)2, d(v) = 1/(1 + e8(v−1)), γ = 18

Figure 4.1: Here (u∗, v∗, w∗) ≈ (1.2599, 1.3787, 0.6267) from (a) to (d) and
(u∗, v∗, w∗) ≈ (1.3502, 0.0743, 0.0338) in (e).
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at the origin, (uc, vc, wc) may equal to (0, 0, 0), (0, βK0

σ
, K0) or (u∗, v∗, w∗), the last

of which exists as γr > θ, u∗ = w∗ = K0(γr−θ)
K0`+γr

and v∗ = K0β(γr−θ)
σ(K0`+γr)

. Other specific

parameters are given in Table 4.2.

Table 4.2: Parameters selection–II.

γ θ ` β σ K0 dv dw c

10 1 1 10 12 10 0.1 0.1 1

Figures 4.2 and 4.3 present the spatial distribution of predator, chemicals released

by prey and of prey, in a circular domain at time t = 50 and t = 500. We may observe

that:

(i) non-constant steady states exist since the corresponding patterns have few

changes from time t = 50 to t = 500. Parameter r seems important in producing

more abundant patterns after other parameters are fixed, for example (a) and

(b) in Figure 4.2 and that in Figure 4.3, or (c) and (d) in Figure 4.2 and that

in Figure 4.3;

(ii) if d(v) and χ(v) are constants, spatial distribution of predators and chemoat-

tractant are very similar; The density-dependent decays of d(v) and χ(v) may

lower the similarities, but the extent may be effected by other parameters, like

r in f .

4.4.4 Biological Explanation of the Simulations

System (4.1) describes a spatiotemporal evolution process of an isolated ecosys-

tem within a domain Ω, which includes two populations i.e., one predator and one

prey. The most arresting feature in system (4.1) is that the predators may search for

the prey as their food, mainly through chemoattractants released by the prey, since

some factors including natural camouflage, the environment of the prey, range of

visibility of the predators, etc., result in many difficulties for the predators in finding
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(a) Time t=50, χ(v) = 1, d(v) = 4, r = 8

(b) Time t=500, χ(v) = 1, d(v) = 4, r = 8

(c) Time t=50, χ(v) = 10
(1+10v)2 , d(v) = 1

1+e10v−1 , r = 8

(d) Time t=500, χ(v) = 10
(1+10v)2 , d(v) = 1

1+e10v−1 , r = 8

Figure 4.2: By numerical simulation, different values of constant steady state
(uc, vc, wc) give the analogous resulting graphics. Here we take (u∗, v∗, w∗) =
(8.7778, 7.3148, 8.7778) for example. Density dependent d(v) and χ(v) may change
the patterns of the predator density u and the prey signal density v but have little
effect on that of prey density w.
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(a) Time t=50, χ(v) = 1, d(v) = 4, r = 10

(b) Time t=500, χ(v) = 1, d(v) = 4, r = 10

(c) Time t=50, χ(v) = 10
(1+10v)2 , d(v) = 1

1+e10v−1 , r = 10

(d) Time t=500, χ(v) = 10
(1+10v)2 , d(v) = 1

1+e10v−1 , r = 10

Figure 4.3: Here (u∗, v∗, w∗) = (9, 7.5, 9). Compared with Figure 4.2, we only change
the value of r and readily see that the impact of the density-dependent d(v) and χ(v)
on patterns of u and v, in particular for v, may be subjected to the value of r. Still
the d(v) and χ(v) cannot distinctly affect that of prey density w.
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the prey directly. So the chemoattractants usually have diffused relatively far from

the prey before they are perceived by the predators. Here u(x, t), v(x, t), and w(x, t)

refer to population density of the predators, concentration of the chemical signals,

and population density of the prey, respectively. The system being isolated means

that there might be negligible quantities of the predators, the prey, and the prey

signals crossing the boundary of Ω, compared with overwhelming majorities of them

(the predators, the prey, and the prey signals) within Ω. Other organisms living in

Ω are not taken into consideration in the system (4.1).

Theorem 4.1 states that the system (4.1) has a global-in-time classical solution

which is continuous to its initial value, when (H1)–(H3) are satisfied. As a result, for

given initial densities u0(x), v0(x) and w0(x), one can predict by the unique classical

solution of system (4.1) the density of the predators, the prey signals and the prey,

at any time 0 < t <∞ and any spatial position x ∈ Ω. The obtained L∞ bound in

Theorem 4.1 signifies that there is a maximal density for all three of them.

Theorem 4.2 illustrates that in some cases (if (H4) holds), the spatial distribu-

tions of the predators, the prey signals, and the prey in Ω may be approximately

homogeneous as the time goes by. This is, as it should be, a much ideal case, but

at least the large-time behavior of such a solution indicates a trend through which

one can foresee whether this ecosystem can evolve into exclusion state (prey being

extinct in Ω) or coexistence state over time. So this tendency which can be viewed

as an early warning, makes significantly biological sense to protect the biodiversity

and ecological balance in the domain Ω.

For simplicity, in regard to numerical simulations we only list the patterns which

bifurcate from coexistence steady state in Subsections 4.4.2 and 4.4.3 (the case of

exclusion state is similar). In Subsection 4.4.2, (a) of Figure 4.1 recovers the pat-

tern corresponding to the point A in Figure 7 obtained in [16] with d(v) and χ(v)

being constants, which is the starting point of our simulations. Then in (b) and

(c) of Figure 4.1, we set χ(v) = −d′(v) with d(v) satisfying algebraic decay and
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exponential decay respectively. Finally in Figure 4.1 (d) and (e) we remove the re-

lation χ(v) = −d′(v) and take χ(v) and d(v) to be algebraic and exponential decay

severally. From this process we see that random motility function d(v) and indi-

rect prey-taxis sensitivity χ(v), being density-dependent form, may help the spatial

distribution (of the predators, the prey signals, and the prey) to be approximately

homogeneous. Because one may observe that the spatial distributions of Figure 4.1

(b)–(e) become more even than that of Figuere 4.1 (a), although the approximate

time-periodic pattern may appear when the conversation rate γ is increased.

All simulations in Subsection 4.4.2 are spatial 1-dimensional case, which matter

in theory. What will happen in spatial 2-dimensional case makes more realistic sense,

which is the aim of Subsection 4.4.3. Firstly, we see the spatial distribution of high

density for both the prey signals and the prey, either in Figures 4.2 or 4.3, stagger a

little bit each other (instead of being overlap) in position (this point can also be seen

in Figure 4.1 but it is not so distinct). This is consistent with the feature of indirect

prey-taxis that signals of the prey have diffused a distance far from the prey before

they are captured by the predators. Secondly, when χ(v) and d(v) are constants

(cf. (a), (b) in Figures 4.2 and 4.3), we find that the spatial distribution of the

predators and of the prey signals are highly similar, since the predators conduct the

signals-based (indirect prey-taxis) foraging strategy to search for the prey. However,

the χ(v) and d(v) in density-dependent form (cf. (c), (d) in Figures 4.2 and 4.3) may

lower similarity of spatial distribution between the predators and the prey chemicals.

Finally, increasing the value of r (from f(w)) in Figure 4.2 may yield Figure 4.3 from

which one may infer that some parameters in system (4.1), like r, are important to

produce abundant patterns.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions in Biological Sense

In this thesis, we have studied the existence, uniqueness, and uniform bounded-

ness of the positive classical solution to the direct preytaxis model (1.11) in Chapter

2, which indicates the unique evolutionary state on predators and prey governed by

(1.11), and their densities are upper bounded uniformly in time. In particular, the

uniform-in-time boundedness of densities of predators and prey suggests prevention

of overcrowding, and thus the theoretical controllability of predators and prey (as

pests) [78]. Moreover, we have established in two-dimensional case in Chapter 3

the convergence relation between the strong solution of (1.10) and of (1.11) as the

diffusion coefficient of prey tends to zero. The convergence relation strictly proves

that there exists some spatiotemporal similarity of spatial distributions between the

densities described by (1.10) and by (1.11), when the diffusion rate of prey becomes

much weak.

On the other hand, we have in Chapter 4 explored the existence, uniqueness, uni-

form boundedness, and large-time behaviors of the classical solution to the indirect

preytaxis system (1.17). These results show that for density-dependent preytaxis

sensitivity, the evolutionary state of predators and prey is unique and their densities

are the bounded uniformly in time, when the predators conduct signal-based forag-

ing strategy. The global asymptotic behaviors show that if γF (K0) ≤ θ, then the
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predators will be extinct over time. If (4.4) has positive constant solution for suitable

growth rate function f , functional response function F and death rate h, then the

predators and prey may coexist over time. This asymptotical tendency in theory

can be used, as a biological warning or theoretical explorations on properties of the

predator-prey system, to predict the development of biodiversity of ecosystems, when

the predator-prey relation in the field experiment can be depicted by (1.17).

5.2 Future Works

Except for the problems addressed in this thesis, there are some other relevant

questions of interest left open. We below display some of them to pursue in the

future:

(1) For direct preytaxis model (2.1), the local-in-time existence of its classical

solution holds in Ω ⊂ Rn(n ≥ 1) by Theorem 2.1. Also, Theorem 2.1 or

Theorem 3.1-(c) shows that the global-in-time existence holds for n = 2 and

for any constant preytaxis sensitivity χ > 0. Then we may ask:

a) Does the global existence and convergence relation similar to Theorem 3.1-

(b) remain true for any finite n > 2 and for any χ > 0?

b) May a) be true when the d = d(w) and χ = χ(u,w) are density-dependent

(non-constant)?

(2) For indirect preytaxis system (4.1), the assumption (H2) supports logistic

growth (1.6) but excludes Allee’s effect (1.7). So what will happen if f is

replaced by (1.7)?

On the other hand, the spatiotemporal aggregation or heterogeneity of species

corresponds in a sense to the stable nonconstant steady states of related evolutionary

systems. So one may wonder:

(3) Does the nonconstant steady state of (4.1) exist? If it exists, can the classical

solution of (4.1) converge to such a nonconstant steady state in a sense?
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(4) Similarly, what about the large time behaviors of the classical solution of (2.1)?
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Appendix A

Auxiliary Inequalities

For clarity and completeness, we shall in this section list out some inequalities

that are frequently invoked in the main content. Firstly, the convexity of the function:

s ∈ R 7−→ s2 indicates that

|∆u|2 =
( n∑
i=1

uxixi

)2

≤ n
n∑
i=1

u2
xixi
≤ n|D2u|2, i.e., |∆u| ≤

√
n|D2u|.

Moreover, it follows from [79, Prop.3, pp.58-59] or [80, pp.230-235] that there exists

a constant C(n, p) such that

‖D2u‖Lp(Ω) ≤ C(n, p)‖∆u‖Lp(Ω), for 1 < p < +∞, (A.1)

where u ∈ W 2
p (Ω) 1and Ω is bounded. In particular, when u

∣∣
∂Ω

= 0 or ∇u ·~ν
∣∣
∂Ω

= 0,

one may find ‖∆u‖2
L2(Ω) = ‖D2u‖2

L2(Ω) through integration by parts (cf. [1, p.326]).

More generalizations can be seen in [81].

Below is the well-known Gagliardo-Nirenberg interpolation inequality in a bounded

domain (cf. [82] and [83]).

Lemma A.1. Assume that a m-times differentiable function u : Ω → R is defined

on a bounded domain Ω ⊂ Rn(n ≥ 1) with Lipschitz continuous boundary ∂Ω. Then

1 Note that in the origin inequality u ∈ C2
0 (Ω), here u ∈ W 2

p (Ω) since C∞0 (Ω) is dense in Wm
p (Ω)

when Ω is bounded and sufficient regular for 1 ≤ p <∞,m ∈ N.
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it holds that

‖Dju‖Lp(Ω) ≤ C
(
‖Dmu‖αLr(Ω)‖u‖1−α

Lq(Ω) + ‖u‖Ls(Ω)

)
,

where 1 ≤ q, r ≤ ∞, j
m
≤ α ≤ 1,

1

p
=
j

n
+

(
1

r
− m

n

)
α +

1− α
q

,

s > 0 is arbitrary, and constants C depend upon the domain Ω as well as m,n, etc.

Moreover, one may replace ‖D2u‖Lr(Ω) by ‖∆u‖Lr(Ω) in the above inequality due to

(A.1).

Note that by Hölder’s inequality, if 1 ≤ p < q <∞ and |Ω| :=
∫

Ω
dx < +∞, then

(∫
Ω

up
) 1
p ≤

(∫
Ω

uq
) 1
q |Ω|1−

p
q .

Take 0 < s < min{r, q}, one may rewrite the right hand of Gagliardo-Nirenberg

interpolation inequality as

‖Dju‖Lp(Ω) ≤C‖Dmu‖αLr(Ω)‖u‖1−α
Lq(Ω) + C‖u‖αLs(Ω)‖u‖1−α

Ls(Ω)

≤C‖Dmu‖αLr(Ω)‖u‖1−α
Lq(Ω) + C‖u‖αWm

s (Ω)‖u‖1−α
Ls(Ω)

≤C1‖u‖αWm
r (Ω)‖u‖1−α

Lq(Ω)

with C1 = C(1 + |Ω|(1−
s
r

)α+(1− s
q

)(1−α)).

Next, we use this lemma to see that q in Lemma A.1 may take values less than 1.

When Ω is replaced by Rn(n ≥ 1), one may refer to [84, Lemma 3.2]. When Ω ⊂ Rn

is an open bounded domain, there is no complete proof in the literature as far as we

know, and thus we supplement it as follow for the sake of completeness.

Lemma A.2. Suppose that 0 < µ ≤ r ≤ σ < +∞ and 0 < µ < 1 < σ < +∞. Let

ϕ ∈ Ls(Ω) ∩ Lµ(Ω) and Dϕ ∈ Lσ(Ω) for any s > 0, and Ω ⊂ Rn is an open and
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bounded domain with a Lipschitz continuous boundary. Then

‖ϕ‖Lr(Ω) ≤ c0‖Dϕ‖ρLσ(Ω)‖ϕ‖
1−ρ
Lµ(Ω) + c1‖ϕ‖θLµ(Ω)‖ϕ‖1−θ

Ls(Ω)

where constants c0 and c1 may depend on σ, µ, r, n and Ω, and ρ, θ ∈ (0, 1) satisfy

−n
r

= ρ
(
1− n

σ

)
− (1− ρ)

n

µ
,

rθ

µ
+
r(1− θ)

σ
= 1.

Proof. Suppose θ ∈ (0, 1). By Hölder’s inequality with index relation rθ
µ

+ r(1−θ)
σ

= 1,

we have∫
Ω

|ϕ|r =

∫
Ω

|ϕ|rθ+(1−θ)r ≤
(∫

Ω

|ϕ|rθ·
µ
rθ

) rθ
µ ·
(∫

Ω

|ϕ|(1−θ)r·
σ

(1−θ)r

) (1−θ)r
σ

=
(∫

Ω

|ϕ|µ
) rθ
µ ·
(∫

Ω

|ϕ|σ
) (1−θ)r

σ

that is,

‖ϕ‖Lr(Ω) ≤ ‖ϕ‖θLµ(Ω) ‖ϕ‖1−θ
Lσ(Ω), θ =

µ(σ − r)
r(σ − µ)

,

with µ > rθ and σ > r(1 − θ). Suppose r
µ
≥ 1 and thus r

σ
≤ 1, which means

0 < µ ≤ r ≤ σ <∞.

Below we restrict 0 < µ < 1. If taking r = 1 one may get that

‖ϕ‖L1(Ω) ≤ ‖ϕ‖βLµ(Ω) ‖ϕ‖
1−β
Lσ(Ω), β =

µ(σ − 1)

(σ − µ)
∈ (0, 1).

By Gagliardo-Nirenberg interpolation inequality with 1 < σ <∞,

‖ϕ‖Lσ(Ω) ≤ C1‖Dϕ‖αLσ(Ω)‖ϕ‖1−α
L1(Ω) + C2‖ϕ‖Ls(Ω),

1

σ
=

(
1

σ
− 1

n

)
α + 1− α,

and together with the last inequality,

‖ϕ‖Lσ(Ω) ≤C1‖Dϕ‖αLσ(Ω)

(
‖ϕ‖βLµ(Ω) ‖ϕ‖

1−β
Lσ(Ω)

)1−α
+ C2‖ϕ‖Ls(Ω)

≤C1‖Dϕ‖αLσ(Ω) ‖ϕ‖
β(1−α)
Lµ(Ω) ‖ϕ‖

(1−β)(1−α)
Lσ(Ω) + C2‖ϕ‖Ls(Ω).
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Now we may invoke an elementary function to establish the upper bound of

‖ϕ‖Lσ(Ω) from this inequality. Indeed, for any τ ∈ (0, 1), and a, b being two positive

constants, a function h(x) := axτ − x + b : x ∈ R+ 7−→ R has properties that

h(x)′ = aτxτ−1 − 1 > 0 if 0 < x < (aτ)
1

1−τ ; h′(x) < 0 if (aτ)
1

1−τ < x < +∞; and

h(x) = ax( 1
x1−τ − 1) + b→ −∞ if x→ +∞. So by limx→0+ h(x) = b > 0 there exists

only one point x0 ∈
(
(aτ)

1
1−τ ,+∞

)
such that h(x0) = 0 and h(x) ≥ 0 if x ∈ (0, x0).

Furthermore, we may give a rough upper bound for this x0. To this end, by

noting that h′(x) = a
x1−τ · τ − 1 is decreasing in x > (aτ)

1
1−τ , one may observe that

there exists a x1 > 0 such that h′(x1) = τ − 1 < 0, which indicates x1 = a
1

1−τ ≥

(aτ)
1

1−τ and h(x1) = b = limx→0+ h(x). This observation implies that there is a line:

f(x) = b+ (τ − 1)(x− x1) with slope τ − 1 which intersects h(x) at (x1, h(x1)) and

fulfills h(x) ≤ f(x), as x > x1. Then for some x2 > (aτ)
1

1−τ fulfilling f(x2) = 0 if

and only if x2 = x1 + b
1−τ . As a result, if h(x0) = 0 for the x0 > (aτ)

1
1−τ shall imply

x0 ≤ x2 = a
1

1−τ + b
1−τ .

Then by letting τ = (1 − β)(1 − α), a = C1‖Dϕ‖αLσ(Ω) ‖ϕ‖
β(1−α)
Lµ(Ω) , and b =

C2‖ϕ‖Ls(Ω), we know that

‖ϕ‖Lσ(Ω) ≤
(
C1‖Dϕ‖αLσ(Ω) ‖ϕ‖

β(1−α)
Lµ(Ω)

) 1
1−(1−β)(1−α)

+
C2

1− (1− β)(1− α)
‖ϕ‖Ls(Ω).

Therefore, combining all these inequalities may conclude that

‖ϕ‖Lr(Ω) ≤ ‖ϕ‖θLµ(Ω) ‖ϕ‖1−θ
Lσ(Ω)

≤‖ϕ‖θLµ(Ω)

((
C1‖Dϕ‖αLσ(Ω) ‖ϕ‖

β(1−α)
Lµ(Ω)

) 1
1−(1−β)(1−α) +

C2

1− (1− β)(1− α)
‖ϕ‖Ls(Ω)

)1−θ

≤C
1−θ

1−(1−β)(1−α)

1 ‖Dϕ‖
α(1−θ)

1−(1−β)(1−α)

Lσ(Ω) ‖ϕ‖
β(1−α)(1−θ)

1−(1−β)(1−α)
+θ

Lµ(Ω) +
( C2

1− (1− β)(1− α)

)1−θ
‖ϕ‖1−θ

Ls(Ω) ‖ϕ‖
θ
Lµ(Ω)
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and

α(1− θ)
1− (1− β)(1− α)

+
β(1− α)(1− θ)

1− (1− β)(1− α)
+ θ = 1.

Letting ρ := α(1−θ)
1−(1−β)(1−α)

∈ (0, 1) and substituting the expressions of θ, α, β into ρ

may show that

−n
r

= ρ
(
1− n

σ

)
− (1− ρ)

n

µ
, for µ < 1 < σ and µ < r < σ.

Finally, by Young’s inequality (aθb1−θ ≤ θa+(1−θ)b with a, b ≥ 0 and any θ ∈ (0, 1))

one may find that

( C2

1− (1− β)(1− α)

)1−θ
=
( C2

1− (1− β)(1− α)

)1−θ
·1θ ≤ C2

1− (1− β)(1− α)
+1 =: c0

and similarly

C
1
α
· α(1−θ)
1−(1−β)(1−α)

1 ≤ C
1
α
1 + 1 =: c1.

This completes the proof.

Now we introduce another powerful lemma, the proof details of which can be

found in [85, Lemma 3.1 and 3.3].

Lemma A.3. Suppose that h ∈ C2(R). Then for all φ ∈ C2(Ω) satisfying ∂φ
∂~ν

= 0

on ∂Ω ⊂ Rn−1(n ≥ 2), we have∫
Ω

h′(φ)|∇φ|2∆φ =− 2

3

∫
Ω

h(φ)|∆φ|2 +
2

3

∫
Ω

h(φ)|D2φ|2 − 1

3

∫
Ω

h′′(φ)|∇φ|4

− 1

3

∫
∂Ω

h(φ)
∂

∂~ν
|∇φ|2,

and ∫
Ω

|∇φ|4

φ3
≤ (2 +

√
n)2

∫
Ω

φ|D2 lnφ|2,

where D2φ denotes the Hessian of φ.
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Note that when n = 1, the first equality actually is
∫

Ω
h′(φ)φ2

xφxx = −1
3

∫
Ω
h′′(φ)φ4

x,

and when n ≥ 2, one should observe ∇|∇z|2 = 2D2z ·∇z for any z ∈ C2(Ω). The fol-

lowing lemma is often used to control outer normal derivatives (cf. [86, Lemma 4.2])

on the boundary.

Lemma A.4. Let Ω ⊂ Rn(n ≥ 1) be a bounded domain and w ∈ C2(Ω) fulfill

∂w
∂~ν

∣∣
∂Ω

= 0. Then one may have

∂|∇w|2

∂~ν
≤ 2κ|∇w|2, on ∂Ω,

where κ = κ(Ω) > 0 is an upper bound for the curvatures of ∂Ω.

The following estimate can be achieved by using the Lemma 1 in [75]. Here we

give its generalization and display the proof details in order to show the dependence

on the diffusion coefficient ε in the upper bound of ‖v‖W 1
q (Ω), for our purpose.

Lemma A.5. For any ε > 0, a bounded open domain Ω ⊂ Rn(n ≥ 1), suppose

v(x, t) is the classical solution of

{
vt − ε∆v = g(v, t), Ω× (t0, T ),

∇v · ~ν
∣∣
∂Ω

= 0, t ∈ (t0, T ),

where g is locally Lipschitz continuous function in v and locally Hölder continuous

in t. Then for all t ∈ (t0, T ) and any ε > 0,

‖v(·, t)‖W 1
q (Ω) ≤ ĉ

{
‖v(·, t0)‖W 1

q (Ω) + sup
t∈(t0,T )

‖v(·, t) + g(v, t)‖Lp(Ω)

}
(A.2)

where the constant ĉ depends on max{1, ε}, provided that


q < np

n−p , as p < n,

q < +∞, as p = n,

q = +∞, as p > n.
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Moreover, if v(x, t0) ∈ W 2
q (Ω) satisfies ∇v(x, t0) · ~ν

∣∣
∂Ω

= 0, then (A.2) holds

for t → t0 provided that we replace ‖v(·, t0)‖W 1
q (Ω) in (A.2), by ‖v(·, t0)‖W 2

q (Ω) when

q ∈ [1,+∞), and by v(·, t0) ∈ W 2
q̄ (Ω) for some q̄ > n when q = +∞, respectively.

Proof. We follow the ideas of [75, Lemma 1] and [67, Lemma 4.1] that let A := Ap

be the sectorial operator in Lp(Ω) (1 ≤ p < +∞) which is given by

Av := −ε∆v for v ∈ D(A) :=
{
v ∈ W 2

p (Ω); ∇v · ~ν
∣∣
∂Ω

= 0
}
. (A.3)

Then the p-independent spectra of A (denoted by σ(A)), without counting the mul-

tiplications, are

0 = Λ0 < Λ1 < Λ2 < · · · < Λm < · · ·

where Λj = ελj and λj is the j-th eigenvalue of the problem

{
−∆v = λv, x ∈ Ω,

∇v · ~ν = 0, x ∈ ∂Ω.

Hence as obtained in [87, Lemma 1, p.15], −A is the infinitesimal generator of the

analytical semigroup (e−tA)t≥0. Moreover, A+ 1 is also a sectorial in Lp(Ω) with its

domain given by D(A) (cf. [88, p.418] or [76, Theorem 1.3.2, p.19]). Thus −(A+ 1)

is the infinitesimal generator of the analytical semigroup of (e−t(A+1))t≥0 and in this

case (A + 1)β exists for β ∈ R since σ(A + 1) ≥ 1 > 0. Now letting h := v + g(v, t)

one may have the representation of v as

v(x, t) = e−(t−t0)(A+1)v(x, t0) +

∫ t

t0

e−(t−τ)(A+1)h(x, τ)dτ =: E0(t) + E1(t)

for t0 < t ≤ T , thanks to g(v, t) being locally Lipschitz continuous function in v and

locally Hölder continuous in t. We shall below deal with E0(t) and E1(t), respectively.

(1) Estimate of E0(t) for any t > t0. Indeed, when q ∈ [1,+∞) and β > 1/2, we

have

‖E0(t)‖W 1
q (Ω) ≤c‖(A+ 1)βe−(t−t0)(A+1)v(·, t0)‖Lq(Ω)
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≤c‖(A+ 1)βe−(t−t0)(A+1)‖ · ‖v(·, t0)‖Lq(Ω)

≤cβ(t− t0)−βe−δ(t−t0)‖v(·, t0)‖Lq(Ω)

for some 0 < δ < Re(σ(A + 1)), where we use the boundedness of linear operator

(A+ 1)βe−t(A+1) and a fact (cf. [76, Theorem 1.6.1]) that for β ∈ (0, 1)

D((Aq + 1)β) ↪→

 W 1
q (Ω), if β > 1

2
;

Cδ(Ω), if 2β − n
q
> δ ≥ 0.

(A.4)

Moreover, when q = +∞, by the embedding (A.4) we know for 2β − n
p
> 1 that

‖E0(t)‖W 1
∞(Ω) ≤ c‖E0(t)‖C1(Ω) ≤c‖(Ap + 1)βe−(t−t0)(Ap+1)v(·, t0)‖Lp(Ω)

≤cβ(t− t0)−βe−δ(t−t0)‖v(·, t0)‖Lp(Ω).

(A.5)

(2) Estimate of E0(t) when t→ t0. For any β ∈ (1/2, 1) we may have

lim
t→t0
‖E0(t)‖W 1

q (Ω) ≤c lim
t→t0
‖(A+ 1)βe−(t−t0)(A+1)v(·, t0)‖Lq(Ω) = c‖(A+ 1)βv(·, t0)‖Lq(Ω)

≤2cC̄0‖v(·, t0)‖βW 2
q (Ω)‖(A+ 1)v(·, t0)‖1−β

Lq(Ω) ≤ 2c̄C̄0‖v(·, t0)‖W 2
q (Ω)

where C̄0 is from the interpolation inequality of sectorial operator (cf. [76, Theo-

rem 1.4.4]) and c̄ depends on max{1, ε}.

Taking p > n and β ∈ (1/2, 1) such that 2β − n
p
> 1, then by the first row of

(A.5), we have

lim
t→t0
‖E0(t)‖W 1

∞(Ω) ≤ lim
t→t0

c‖(Ap + 1)βe−(t−t0)(Ap+1)v(·, t0)‖Lp(Ω) = c‖(Ap + 1)βv(·, t0)‖Lp(Ω)

≤2cC̄‖v(·, t0)‖βW 2
p (Ω) ‖(A+ 1)v(·, t0)‖1−β

Lp(Ω) ≤ 2c̄C̄‖v(·, t0)‖W 2
p (Ω),

where c̄ may depend on max{1, ε}.

(3) The estimate of E1(t) for t > t0. For 1 < p < q < +∞ and any z ∈ Lp(Ω) we
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invoke a fact (cf. [89, Lemma 4.1] or [90, Proposition 3.1]) that

‖e−tAz‖Lq(Ω) ≤ C(p, q)t−
n
2

( 1
p
− 1
q

)‖z‖Lp(Ω)

for t ∈ (0, T ], where C(p, q) is from Gagliardo-Nirenberg interpolation inequality.

Moreover, by the fact (cf. [76, Theorem 1.4.3]) that

‖(A+ 1)βe−t(A+1)‖ ≤ Cβt
−βe−δ0t, t > 0,

for any β ≥ 0 and some 0 < δ0 < Re (σ(A+ 1)), we may compute that

‖(A+ 1)βE1(t)‖Lq(Ω)

≤
∫ t

t0

‖(A+ 1)βe−(t−τ)(A+1)h(x, τ)‖Lq(Ω) dτ (by Minkoswki’s inequality)

≤
∫ t

t0

‖(A+ 1)βe−
(t−τ)

2
(A+1)e−

(t−τ)
2

(A+1)h(x, τ)‖Lq(Ω) dτ

≤2βCβ

∫ t

t0

(t− τ)−βe−
δ
2

(t−τ)‖e−
(t−τ)

2
(A+1)h(x, τ)‖Lq(Ω) dτ

≤2β+n
2

( 1
p
− 1
q

)C(p, q)Cβ

∫ t

t0

(t− τ)−β−
n
2

( 1
p
− 1
q

)e−
δ
2

(t−τ)‖h(x, τ)‖Lp(Ω) dτ

≤2β+n
2

( 1
p
− 1
q

)C(p, q)Cβ sup
t∈(0,T )

‖h(x, t)‖Lp(Ω)

∫ t−t0

0

ς−β−
n
2

( 1
p
− 1
q

)e−µς dς

(A.6)

for p ∈ (1, q) and some 0 < δ < Re (σ(A + 1)), thus −β − n
2
(1
p
− 1

q
) < 0 for any

n ∈ N+. Note that the last integral is essentially a Γ function which converges

absolutely when

1− β − n

2

(1

p
− 1

q

)
> 0 and µ > 0.

Therefore, by (A.4) if β ∈ (1
2
, 1) then (A.6) means

‖E1(t)‖W 1
q (Ω)

≤C‖(Aq + 1)βE1(t)‖Lq(Ω)
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≤C(p, q, β, n)Cβ sup
t∈(0,T )

‖h(x, t)‖Lp(Ω)

∫ ∞
0

ς−β−
n
2

( 1
p
− 1
q

)e−µς dς

<+∞

which holds for

q <
1

2(β−1)
n

+ 1
p

=
1

1
p
− 1

n
+ 2

n
(β − 1

2
)
, as p ≤ n.

On the other hand, when q is large enough, by (A.4) with 2β − n
q
> 1 one may have

by (A.6) that

‖E1(t)‖W 1
∞(Ω) ≤‖E1(t)‖C1(Ω) ≤ C‖(Aq + 1)βE1(t)‖Lq(Ω)

≤C(p, q, β, n)Cβ sup
t∈(0,T )

‖h(x, t)‖Lp(Ω)

∫ ∞
0

ς−β−
n
2

( 1
p
− 1
q

)e−µς dς < +∞

as long as

n

2q
+

1

2
< β < 1− n

2

(1

p
− 1

q

)
which is satisfied as p > n.

(4) Estimate of E1(t) when t→ t0. Here either p ≤ n or p > n, the (A.6) implies

that

lim
t→t0

{
‖E1(t)‖W 1

q (Ω) + ‖E1(t)‖W 1
∞(Ω)

}
≤ 2C(p, q, β, n)Cβ sup

t∈(0,T )

‖h(x, t)‖Lp(Ω).

This completes the proof.

Remark A.1. This result shows that when p = n = 2 and (u,w) is the local classical

solution of (1.10), if

‖u(·, t)‖Lp(Ω) ≤ c,

then ‖h‖Lp(Ω) = ‖w − uw + rw(1 − w)‖Lp(Ω) ≤ c‖u‖Lp(Ω) by 0 < w < K given in

Remark 3.1. Thus one may derive that for any t ∈ (0, T ) ⊂ (0, Tmax),

‖w(·, t)‖W 1
q (Ω) ≤ ĉ, q ∈ [1,+∞).
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