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Abstract 

Emergency especially routine emergency that happens on a daily basis poses great threat to our 

health, life, and property. Immediate response and treatment can greatly mitigate these threats. 

This research optimizes location of ambulance stations, deployment of ambulances, and vehicle 

dispatching under demand and traffic uncertainty, which are the main factors that influence 

response time. The problem is formulated as a dynamic scenario-based two-stage stochastic 

programming model with the aim of minimizing total cost under service level requirements and 

is solved by Sample Average Approximation. Finally, we conduct numerical experiments using 

real-world emergency data to evaluate the performance of our methods, which yields valuable 

managerial insights for the design of EMS response system.  

 

Keywords: Emergency medical services, Location-allocation problem, Stochastic program, 

Sample average approximation 
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Chapter 1: Introduction 

1.1 BACKGROUND 

Emergency is a kind of situation that can happen anywhere and anytime, posing 

great risks to people's health, life, and properties. Routine emergency, such as heart 

attack, road accident, and residential fire, is a type of emergency that happens on a 

daily basis and has a small scope of influence. According to the research by Vos et al. 

(2020), this type of emergency is one of the leading causes of death globally. Therefore, 

immediate response and treatment to such emergency are of great importance. The 

treatment can be divided into pre-hospital treatment and in-hospital treatment. The 

former usually involves emergency medical services (EMS) department while the 

latter highly depends on process design and operations management of patient flows, 

which is not considered in this research. For readers who are interested in efficiency 

and effectiveness of in-hospital treatment, please refer to Kuo (2014) and Kuo et al. 

(2016). For pre-hospital treatment, when an emergency call comes, the receptionist 

determines the severity of the situation and then dispatches responding vehicles 

accordingly. Considering that survival rate highly depends on response time, i.e., the 

time interval between reception of call and arrival of vehicle at the emergency site, the 

dispatched vehicles must arrive at the emergency site as soon as possible or within 

certain time limits (Bürger et al., 2018; Erkut, Ingolfsson, & Erdoğan, 2008; Knight, 

Harper, & Smith, 2012). Response time is directly affected by location of ambulance 

stations, the number of available vehicles, and dispatching decisions. Therefore, 

optimizing factors that directly influence response time is essential to guarantee 

efficient and high-quality EMS services for the public. 

The optimization problem mentioned above is called location-allocation 

problem. It is quite challenging, because it is usually formulated as a mixed-integer 

programming model with a large number of decision variables and constraints. When 

uncertainty is incorporated into problem, it becomes more complicated. This research 

addresses location-allocation problem with system congestion under demand and 

traffic uncertainty. System congestion refers to a situation where there are not enough 

vehicles available to respond to demand, which in this article is captured by vehicle 
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availability, i.e., the number of vehicles that could respond to demand. It is influenced 

by vehicles dispatched to demands that overlap in time with current demand. The 

uncertainty in demand includes the number of emergencies, location, occurrence time, 

and the number of ambulances and the service time needed, which directly influence 

optimization decisions. Service time is the time interval between the arrival of a 

vehicle at the emergency site and its return to station. Traffic uncertainty is mainly 

represented by travel time, which influences the coverage set of each demand, i.e., the 

subset of facility sites that can cover demand within time standard. These uncertainties 

are captured by scenarios and the problem is formulated as a dynamic two-stage 

stochastic model. In the first stage, the model determines the optimal location of 

ambulance stations and the deployment of ambulances without considering the 

realization of uncertainties. In the second stage, recourse decisions on vehicle 

dispatching are made based on realization of uncertainties, first-stage decisions, and 

state of available vehicles. The objective of the model is to achieve the required service 

level at minimal cost, which is comprised of station set-up cost, vehicle purchasing 

cost, demand fulfillment cost, and the penalty for failing to respond to the demand 

within required time standard. The problem is solved by Sample Average 

Approximation (SAA) where a balance between precision and computational 

tractability has to be achieved. To evaluate the performance of the method, we conduct 

numerical experiments using real-world emergency data. Through comparison 

between stochastic and deterministic method and results of sensitive analysis, we 

obtain several valuable managerial insights. 

1.2 THESIS OUTLINE 

The remainder of the thesis is organized as follows. Chapter 2 reviews relevant 

literature and illustrates contribution. The problem description is presented in Chapter 

3 where the deterministic model is first introduced and then extended to consider 

random demands and travel time. Chapter 4 introduces solution approach. We conduct 

numerical experiments in Chapter 5. Chapter 6 concludes this research and introduces 

future research questions. 
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Chapter 2: Literature Review1 

The research in routine EMS can be divided into many branches, such as 

dispatching, location, deployment, assignment, and relocation. Dispatching problem 

decides which ambulances are dispatched to serve each demand. Location problem 

determines where to set up stations that can host ambulances. Deployment problem 

optimizes the number of ambulances hosted at each station. Assignment problem 

assigns serving stations to demand. Relocation problem identifies where ambulances 

are moved to. Readers who are interested in these topics can refer to Aringhieri, Bruni, 

Khodaparasti, and van Essen (2017) and Bélanger, Ruiz, and Soriano (2019). Due to 

complexity of dispatching and location problem, a lot of research investigates these 

two problems separately. However, as all of the branches are essential components for 

an efficient EMS system, research that makes a combination of these branches gains 

popularity in recent decades. The combination further complicates the problem, 

especially when uncertainty is considered. Therefore, in this chapter, we first introduce 

dispatching and location problem separately. Then we comprehensively review 

research that integrates several types of decisions. Finally, we analyze research gaps 

in existing literature and illustrate how this research fills the gaps. 

2.1 DISPATCHING PROBLEM 

According to Lee (2012), dispatching can be divided into two types: call-

initiated and server-initiated. Call-initiated dispatching is to choose an appropriate 

ambulance to respond to an emergency call, while server-initiated dispatching is to 

decide the demand in the waiting list to be served when a server is available. 

Regardless of the type of dispatching, decision makers usually adopt certain 

dispatching policy when making dispatching decisions. The most commonly used 

dispatching strategy is nearest available policy, which means that an emergency call is 

most likely to be served by available vehicles that are closest to it (Dean, 2008; Lee, 

2011; Zarkeshzadeh, Zare, Heshmati, and Teimouri, 2016). In addition to nearest 

 
1 Wang, W., Wu, S., Wang, S., Zhen, L., & Qu, X. (2021). Emergency facility location problems in logistics: Status and 
perspectives. Transportation research part E: logistics and transportation review, 154, 102465. 
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available policy, several other rules are proposed based on characteristics of the 

problem. Lee (2011) adopts the concept of preparedness, a quantitative function of the 

number of available ambulances and call rate, when designing dispatching algorithm 

for ambulance services. Lee (2012, 2013) define centrality that reflects the density of 

emergency calls and propose a dispatching policy based on this definition. McLay and 

Mayorga (2013a) proposes Markov decision process that dispatches distinguished 

ambulances (i.e., ambulances with different response and service time) to prioritized 

demand and at the same time considers estimation error of patient priority to calculate 

the optimal dispatching policies. The purpose is to maximize the expected coverage of 

true high-risk calls. It is extended by McLay and Mayorga (2013b) to consider both 

efficiency and equity. Efficiency is represented by expected coverage of high-priority 

demand. Equity is captured by four types of equity constraints, two of which reflect 

customer equity and the remaining two reflect server equity. Sudtachat, Mayorga, and 

McLay (2014) further extends the problem by dispatching two types of ambulances to 

three-priority-level demand. Zarkeshzadeh, Zare, Heshmati, and Teimouri (2016) 

develops a weighted hybrid method that combines centrality, nearest neighbor, and 

first-in-first-out into one model to take advantage of each method. After developing 

different strategies, performance evaluation is also important. Haghani, Tian, and Hu 

(2004) uses simulation to evaluate three response strategies, namely the first called 

first served strategy, the nearest origin assignment strategy, and the flexible 

assignment strategy that uses real-time traffic information. Bandara, Mayorga, and 

McLay (2014) also tests different response strategies to find the optimal dispatching 

strategy for EMS systems considering demand priority. The above models are 

formulated under deterministic environment. Jenkins, Robbins, and Lunday (2021) 

optimizes dispatch of military medical evacuation assets considering uncertain 

demand where the uncertainty is represented by scenarios. The problem is formulated 

as a discounted, infinite-horizon Markov decision process model and solved by two 

approximate dynamic programming methods. 

2.2 LOCATION PROBLEM 

Research on EMS location problem has a long history which can date back to 

1970s. Most of the studies are extensions of two classic coverage models: location set 

covering problem (LSCP) and maximal covering location problem (MCLP). LSCP is 
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first proposed by Toregas, Swain, ReVelle, and Bergman (1971), which minimizes the 

number of facilities to cover all demands. The requirement of a mandatory coverage 

of all demand points may be impossible to implement under some situations, such as 

budget shortage. Church and ReVelle (1974) proposes MCLP to maximize the demand 

coverage under facility number constraint. When designing fire protection system 

where two different types of equipment have to be considered, Schilling, Elzinga, 

Cohon, Church, and ReVelle (1979) changes definition of coverage in MCLP and 

proposes FLEET model that requires demand be covered only when it is 

simultaneously within distance standard of two types of equipment. Daskin and Stern 

(1981) extends location problem to consider system congestion, which allows 

demands to be covered by multiple locations so that even the nearest vehicles are 

engaged, other vehicles within coverage radius can serve demands. Gendreau, Laporte, 

and Semet (1997) considers redundant coverage and proposes double coverage model 

(DCM), in which two response distances are considered. All demands are required to 

be covered within the larger response distance and at the same time a proportion of 

demands must be covered within smaller response distance. 

The models in above articles are deterministic, which can obtain optimality or 

near-optimality in simplified assumptions of the real-life practices. However, as the 

operational environment keeps changing, the deterministic inputs may cause biased 

results. Therefore, probability is added into the model to represent system instability. 

Daskin (1983) is one of the early research that adopts busy fraction, i.e., the probability 

that a server (i.e., ambulance) cannot respond to the demand within time requirements, 

and proposes a model called MEXCLP, which maximizes the expected coverage. 

ReVelle and Hogan (1988, 1989a, 1989b) embed busy fraction into chance constraints 

that require that the probability of the demand being responded is no less than a 

reliability level, resulting in a problem called maximum availability location problem 

(MALP). Sorensen and Church (2010) combines MALP with MEXCLP and compares 

this new model with the two original models in a range of test problems. Liu, Li, Liu, 

and Patel (2016) combines MALP with DCM to maximize coverage of demand at 

guaranteed service reliability in a primary distance standard and at the same time to 

ensure a full coverage in a secondary distance standard. When traffic situation is 

uncertain, Goldberg and Paz (1991) considers the distribution of the travel time when 

locating ambulance stations to maximize the expected coverage. The distribution 
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determines the probability that the demand could be responded by the vehicle at certain 

station within the threshold time. Schmid and Doerner (2010) develops multi-period 

model to take into account time dependent speed. Berman, Hajizadeh, and Krass (2013) 

uses MEXCLP where travel time uncertainty is represented by scenarios with certain 

probability to maximize expected coverage. El Itani, Abdelaziz, and Masri (2019) 

considers the combination of MEXCLP and MALP and proposes a bi-objective model 

that simultaneously maximizes expected coverage and minimizes expected cost when 

paying for external ambulances is allowed. In addition to system efficiency, some 

research considers equity of the system. Chanta, Mayorga, Kurz, and McLay (2011) 

defines the concept of envy to model equity when location ambulance stations. 

Customer envy is calculated based on the distance between demand area and stations 

on a pre-determined preference list. The objective is to minimize weighted envy where 

demand density and vehicle availability obtained through queuing theory are two 

weights used in objective function. Chanta, Mayorga, and McLay (2014) 

simultaneously considers efficiency and equity by developing a bi-objective covering 

location model where the former is captured by the first objective and the latter is 

represented by one of three second objectives at a time. 

2.3 HYBRID PROBLEM 

The combination of several problems will complicate research. In early days, the 

combination is usually done at the same level, e.g., strategic location, deployment and 

assignment, or operational dispatching, deployment, and relocation are combined in 

one research. Ingolfsson, Budge, and Erkut (2008) optimizes the deployment of 

ambulances to stations and the assignment to demand under random pre-travel delay, 

travel time, and vehicle availability. The randomness in the pre-travel delay and travel 

time is captured by the deviation from the mean time. Beraldi and Bruni (2009) 

innovatively incorporates joint probabilistic chance constraints into the traditional 

two-stage stochastic programming model to explore base station location, fleet size, 

and ambulance assignment problem for EMS under demand uncertainty. van den Berg 

and Aardal (2015) extends the MEXCLP into a multi-period version with the goal to 

maximize the expected coverage, minimize start-up cost, and minimize penalty for 

relocation throughout the day. Degel, Wiesche, Rachuba, and Werners (2015) also 

uses time-dependent parameters to obtain the more precise and practical solutions for 
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maximum demand coverage. To improve the coverage level and system efficiency, the 

relocation and additional flexible stations are considered in the model. Liu, Li, and 

Zhang (2019) uses two-stage distributionally robust model with joint chance 

constraints to optimize location and deployment considering two types of uncertainties 

related with demand. Boutilier and Chan (2020) uses two-stage robust optimization 

model, which makes sure that the worst-case solution is also optimal, to determine 

location and routing of emergency response vehicles in low- and middle-income 

countries under demand and travel time uncertainty. 

  Vehicles are dispatched to satisfy certain demand. To make sure that enough 

demands are served, the number of ambulances deployed at each station is often jointly 

optimized with dispatching. Bertsimas and Ng (2019) uses both stochastic and robust 

two-stage models to solve ambulance dispatching and deployment problem under 

demand uncertainty. It requires that the number of vehicles dispatched do not exceed 

the total number deployed. The uncertainty set of robust optimization is calculated 

based on data-driven approach. When a vehicle is dispatched, the location of the 

vehicle is empty, reducing protection for surrounding areas. This phenomenon is 

especially severe in areas with high demand density. An effective method to improve 

the situation is to relocate vehicles from other less busy stations. Nasrollahzadeh, 

Khademi, and Mayorga (2018) optimizes real-time ambulance dispatching and 

relocation, which is formulated as an infinite-horizon Markov decision process. The 

model is solved by approximate dynamic programming. Park, Waddell, and Haghani 

(2019) optimizes dispatch of emergency vehicles in freeway under randomness of 

requests. Different from research that only looks at past and current demand 

information, this article further looks ahead a short-term future demand based on 

incident distribution to dispatch and relocate vehicles. A dynamic programming based 

method is proposed to solve the problem. 

As researchers have deeper understanding about hybrid problem, more 

complicated combinations (e.g., location and dispatching) are taken into account. 

Toro-Díaz, Mayorga, Chanta, and McLay (2013) integrates mixed-integer 

programming model for location and dispatching and hypercube queuing model for 

system congestion considering fixed priority list for each demand area. Nickel, Reuter-

Oppermann, and Saldanha-da-Gama (2016) uses two-stage stochastic programming 
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model to optimize ambulance location, fleet deployment, and the number of vehicles 

dispatched from stations to serve demands under demand uncertainty. Boujemaa et al. 

(2018) extends the problem to consider two types of vehicles. Nelas and Dias (2020) 

proposes a new integer linear programming model that allows vehicle substitution and 

considers system congestion. Bélanger et al. (2020) proposes a recursive simulation-

optimization framework that iterates between an integer programming model and a 

discrete event simulation model. The integer programming model determines optimal 

ambulance location and dispatching list for each demand area under given response 

probability. The discrete event simulation model dispatches vehicles and updates 

response probability under solution obtained from integer programming model. Peng, 

Delage, and Li (2020) extends the problem to multiperiod and proposes envelop 

constraints to guarantee coverage under extreme scenarios. Yoon, Albert, and White 

(2021) improves solution technique for two-stage stochastic programming model. 

2.4 RESEARCH GAP AND CONTRIBUTION 

As location and dispatching belong to different decision levels, the combination 

of these two-level problems is computationally intensive, resulting in not much hybrid 

research. This article combines location, dynamic real-time dispatching, and fleet 

deployment, which is rarely explored in combination in existing literature. Location 

and fleet deployment problem are usually formulated as a mixed-integer programming 

model, while dispatching problem is usually solved by queuing theory considering 

dispatching policies and preference lists. However, this research innovatively uses a 

mixed-integer programming model to formulate the hybrid problem. When selecting 

vehicles to be dispatched, we further incorporate system congestion into the model. 

The most commonly used methods to model system congestion in literature are busy 

fraction and queuing theory. Busy fraction is generally assumed to be fixed, 

independent and exogeneous, which cannot reflect the dynamic and endogenous 

characteristics of system congestion. When dispatching is modeled by Markov 

decision process, it usually adopts certain assumptions (e.g., assumption of arrival and 

service process) and dispatching policies (e.g., nearest available, preparedness, or 

centrality policy). Each assumption and policy have their suitable applications. If they 

are applied in an inappropriate problem setting, the results may be suboptimal. 

Therefore, in this research, we do not use these two methods. Instead, system 
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congestion is represented by functions of a parameter indicating the overlap between 

demands, deployment decision, and previous dispatching decisions, while dispatching 

policy is not pre-defined but determined by objective function. Besides, we incorporate 

both uncertain demand and uncertain travel time into the model, whereas most 

literature considers at most one of them. Demand and travel time uncertainties are 

usually represented by scenarios and time-dependent travel time, respectively. We 

adopt the scenario method for demand uncertainty as the accurate demand information 

in each scenario is helpful to model vehicle availability, while for travel time 

uncertainty, we combine scenario and multi-period methods. We first generate 

scenarios, each of which represents one day traffic information. Then we divide each 

scenario into 24 equal segments, each of which is one hour, and calculate segment-

dependent travel time. The method to deal with travel time uncertainty is helpful to 

calculate actual coverage set of each demand, which is essential in calculating total 

cost.
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Chapter 3: Problem Description and 
Formulation 

This research deals with ambulance location-allocation problem with vehicle 

availability under demand and traffic uncertainty. We first present a deterministic 

model in Chapter 3.1 to make it easier to understand the reasoning and logic behind 

the model. Then in Chapter 3.2, a scenario-based two-stage stochastic model is 

proposed to deal with uncertainties.  

3.1 DETERMINISTIC MODEL 

In this chapter, we assume that the information about demand and traffic 

situation is known a priori. We denote all demands by an ordered set 𝐼 = {1,… , |𝐼|} 

where demand 𝑖 − 1 occurs before demand 𝑖, 𝑖 ∈ 𝐼\{1}. The whole research region is 

divided into several zones, each of which is represented by its centroid. The location 

of demand 𝑖 is the centroid of the zone where 𝑖 occurs. As the model is deterministic, 

the occurrence time 𝑡!, the number of required vehicles 𝑑!, and the required service 

time 𝑙! (time interval between the arrival of a vehicle at the location of demand 𝑖 and 

its return to station) are also given.  

 The set of candidate facilities is denoted by 𝐽. Note that in this research, facility, 

site, and station refer to the same thing and are used interchangeably. The location of 

each facility 𝑗, 𝑗 ∈ 𝐽 is given. One decision of this research is to determine which sites 

to open, represented by a binary variable 𝑥", which equals 1 if facility 𝑗 is open and 0 

otherwise. Once facility 𝑗 is open, it will incur a set-up cost 𝑓". The number of vehicles 

deployed at open station 𝑗 is denoted by 𝑦" which is a decision variable. Each vehicle 

is purchased at a cost ℎ and can serve any demand, but will be penalized if it is located 

outside the coverage set 𝑁! of demand 𝑖. The coverage set of demand 𝑖 is the set of 

facilities that can cover demand 𝑖  within response time standard 𝑅 ; 𝑁! ⊆ 𝐽 . Each 

vehicle has the workload limit, the maximum number of demands the vehicle can serve. 

The purpose of this limit is to balance the workload between stations. 
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 We adopt first-come-first-serve policy for demand service and allow demands 

to be partially served. The first-come-first-serve policy is widely used in the EMS 

response, which means if there is an overlap between the service time of two demands 

requiring the vehicle from the same station, the one that comes first will be served by 

the vehicle at this station, while the one that comes later will experience one of the 

three situations: 1) It will be served by vehicles from the same station if there are 

enough available vehicles left; 2) It will be served by available vehicles from another 

station; 3) It will be partly served by vehicles from the same station and the rest is 

served by available vehicles from another station. This can be illustrated by an example 

in Figure 3-1, which shows 5 demands. The left side, right side, and length of rectangle 

represent the occurrence time, finish time, and time interval from occurrence to 

completion, respectively. The number of vehicles needed is also shown in the figure. 

These demands will be served by vehicles from two stations, each of which hosts two 

vehicles. We assume that station 1 is preferred to all the demands than station 2. The 

number of available vehicles to each demand and the dispatching decisions are shown 

in Table 3-1. Demand 1 happens first, so two vehicles from station 1 are dispatched to 

demand 1. When demand 2 occurs, these two vehicles are still engaged in the last 

service, so the vehicle from the less preferred station 2 is dispatched. The same rule is 

applicable to demand 3 and 4. When demand 5 occurs, only two vehicles are available, 

but it requires three vehicles. Thus, two vehicles are dispatched and demand 5 is 

partially served. To calculate the vehicle availability, we need to define a binary 

parameter 𝛿!!#", which indicates whether there is overlapping time between demand 𝑖 

and 𝑖′ for vehicles at station 𝑗 to serve them. 

𝛿!!#" = ;
0, if 𝑡! ≥ 𝑡!! + 𝑇!!" + 𝑙!!
1, otherwise

, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑖# ∈ {1, 2, … , 𝑖 − 1}.   (3.1) 

Notice that when 𝛿!!#" = 0, demand 𝑖 and 𝑖′ are disjoint. The service to 𝑖′ will 

not influence the available vehicles to 𝑖 . However, when 𝛿!!#" = 1 , the allocation 

decision of 𝑖′ has influence on vehicle availability to 𝑖. 
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Figure 3-1: One example of demand in one day period 

 

Table 3-1: One example of vehicle allocation 

 Station 1 Station 2 

 Available Allocated Available Allocated 

d1 2 2 2 0 

d2 0 0 2 1 

d3 2 1 1 0 

d4 1 1 1 1 

d5 1 1 1 1 

 

 The goal of the research is to identify the optimal location of stations, the 

number and deployment of vehicles, and the allocation of demand at a minimum cost 

while maintaining the required service level. All the notations for the deterministic 

model are introduced in Table 3-2 and the model is given as follows: 
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Table 3-2: Notations for deterministic model 

Sets 

𝐼 The set of a sequence of demand, where the demand 𝑖 − 1 happens before 𝑖 

𝐽 The set of candidate facility sites 

𝑁" The coverage set of demand 𝑖, i.e., the set of facility sites that can cover demand 𝑖 within 

time standard (𝑁" = {𝑗 ∈ 𝐽, 𝑇"# ≤ 𝑅}) 

Parameters 

𝑓# The fixed cost of opening station 𝑗 

ℎ The purchasing cost of a vehicle 

𝑐"# The unit transportation cost for vehicle at station 𝑗 to serve demand 𝑖 

𝛾 The unit penalty for violating the response time standard 

𝑇"# The travel time for vehicle at station 𝑗 to serve demand 𝑖 

𝑅 The response time standard 

𝑄# The maximal number of vehicles that can be hosted at station 𝑗 

𝑑" The number of vehicles needed for demand 𝑖 

𝛼 The minimum service level (𝛼 ∈ [0,1]) 

𝜇# The maximum number of demands each vehicle at station 𝑗 could serve 

𝑡" The occurrence time of demand 𝑖 

𝑙" The service time of demand 𝑖, the time needed after vehicle arriving at the emergency site 

until the vehicle goes back to station again 

𝛿""$# 1 if there is overlapping time between demand 𝑖 and 𝑖′ for vehicles at station 𝑗 to serve 

them, 0 otherwise 

Decision variables 

𝑥# 1 if a station is set up at site 𝑗, 0 otherwise 

𝑦# The number of vehicles hosted at location 𝑗 

𝑧"# The number of vehicles at location 𝑗 that are dispatched to demand 𝑖 

 
[M1]  

Min ∑ 𝑓"𝑥""∈% +∑ ℎ𝑦""∈% +∑ ∑ 𝑐!"𝑇!"𝑧!""∈%!∈& + ∑ ∑ 𝛾(𝑇!" − 𝑅)𝑧!""∈%\(%!∈&   (3.2) 

subject to 

∑ 𝑧!""∈% ≤ 𝑑!, ∀𝑖 ∈ 𝐼 (3.3) 

∑ ∑ 𝑧!""∈%!∈& ≥ 𝛼∑ 𝑑!!∈&   (3.4) 

𝑧!" ≤ 𝑦" − ∑!!)*
!+* 𝛿!!#"𝑧!#", ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  (3.5) 

∑ 𝑧!"!∈& ≤ 𝜇"𝑦", ∀𝑗 ∈ 𝐽  (3.6) 

𝑦" ≤ 𝑄"𝑥", ∀𝑗 ∈ 𝐽  (3.7) 



 

 

Chapter 3: Problem Description and Formulation 15 

𝑥" ∈ {0,1}, ∀𝑗 ∈ 𝐽  (3.8) 

𝑦" ∈ ℤ,-, ∀𝑗 ∈ 𝐽  (3.9) 

𝜎! ∈ {0,1}, ∀𝑖 ∈ 𝐼  (3.10) 

𝑧!" ∈ ℤ,-, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽.  (3.11) 

 The objective function (3.2) minimizes total cost, which consists of station set-

up cost, vehicle purchasing cost, demand fulfillment cost, and the penalty for not 

responding the demand in required time standard. For the last term, we only account 

for the vehicles located outside the coverage set because only these vehicles cannot 

respond to demand within time standard. Constraints (3.3) state that demand can be 

partially satisfied. Constraint (3.4) ensures a minimum service level, which sets a 

lower bound for the demands to be served. Constraints (3.5) require that only vehicles 

available at station when demand occurs are available to serve it. The second term on 

the right-hand side is the number of unavailable vehicles when demand 𝑖 occurs, which 

is determined by 𝛿!!#" and 𝑧!#". 𝛿!!#" indicates whether different demands would have 

overlap if they are allocated to the same station, which is illustrated by Equation (3.1). 

If when demand 𝑖 occurs, any service to demand 𝑖′ that occurs before demand 𝑖 has 

already been completed, there is no overlap between 𝑖 and 𝑖′ and 𝛿!!#" = 0. If when 

demand 𝑖 occurs, there are demands being served, the overlap exists and 𝛿!!#" = 1. 𝑧!#" 

is the number of vehicles at location 𝑗 that are dispatched to demand 𝑖′ that occurs 

before demand 𝑖. When 𝛿!!#" = 0, i.e., there is no overlap between demand 𝑖 and 𝑖′, 

whatever the decision 𝑧!#" is, the available vehicles at station 𝑗 will not be influenced. 

When 𝛿!!#" = 1, i.e., there is overlap between demand 𝑖 and 𝑖′, if 𝑧!#" = 0, the available 

vehicles at station 𝑗 will not be influenced. If 𝑧!#" > 0, 𝑧!#"number of the vehicles are 

engaged in demand 𝑖′ when 𝑖 occurs, thus the available vehicles at station 𝑗 will be 

reduced by 𝑧!#" . Then the total number of unavailable vehicles because of the 

preexisting demands is ∑!!)*
!+* 𝛿!!#"𝑧!#". Constraints (3.6) state that the demands served 

by each station cannot exceed the workload of the vehicle at this station. Constraints 

(3.7) require that vehicles can only be located at open station and the number cannot 

exceed the station capacity. Constraints (3.8) to (3.11) set the domain of decision 

variables. 
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3.2 STOCHASTIC MODEL 

One of the important limitations of deterministic model is the assumption that 

all the parameters are known in advance. However, in practice, it is hard to know what 

will happen in the future, especially the demand and traffic condition. For this reason, 

we have to develop a model that could take the uncertainty into consideration. The 

model developed in this chapter is a scenario-based two-stage stochastic programming 

model. In the first stage, the model determines the optimal location of ambulance 

stations, fleet size, and the deployment of ambulances without considering the 

realization of uncertainties. In the second stage, recourse decisions on ambulances 

dispatching are made based on scenarios, first-stage decisions, and state of available 

vehicles. We denote by 𝑆  the set of scenarios. Each scenario 𝑠 ∈ 𝑆  contains the 

information of demand and traffic situation during a one-day period and is associated 

with a probability of occurrence 𝑝.. The information includes a sequence of demands 

that happen during the day, their location and occurrence time, the travel time between 

candidate stations and demand sites when the demand occurs, and the service time. 

Under the changing scenarios, the value of some parameters and variables may change 

accordingly. The demand coverage set 𝑁! is different because the demand location and 

the travel time between demand and candidate locations change. Parameter 𝛿!!#" and 

decision variables 𝑧!"  and 𝜎!  also change. The definition of 𝛿!!#"  under scenario 𝑠 is 

given as follows: 

𝛿!!#". = ;
0, if 𝑡!

. ≥ 𝑡!!
. + 𝑇!!"

. + 𝑙!!
.

1, otherwise
, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑖# ∈ {1, 2, … , 𝑖 − 1}, 𝑠 ∈ 𝑆.   (3.12) 

 The objective function turns to calculate the minimum expected total cost. The 

additional parameters and variables for stochastic model are listed in Table 3-3 and the 

scenario-based two-stage stochastic programming model is as follows: 
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Table 3-3: Additional notations in stochastic model 

Sets 

𝑆 The set of scenarios 

𝐼& The set of a sequence of demand under scenario 𝑠 

𝑁"& The coverage set of demand 𝑖 under scenario 𝑠 

Parameters 

𝑇"#&  The travel time for vehicle at station 𝑗 to serve demand 𝑖 under scenario 𝑠 

𝑑"& The number of vehicles needed for demand 𝑖 under scenario 𝑠 

𝑡"& The occurrence time of demand 𝑖 under scenario 𝑠 

𝑙"& The service time of demand 𝑖	under scenario 𝑠 

𝛿""$#&  1 if there is overlapping time between demand 𝑖 and 𝑖′ for vehicles at station 𝑗 to serve them 

under scenario 𝑠, 0 otherwise 

Decision variables 

𝑧"#&  The number of vehicles at location 𝑗 that are dispatched to demand 𝑖 under scenario 𝑠 

 

Min∑ 𝑓"𝑥""∈% + ∑ ℎ𝑦""∈% +∑ 𝑝..∈/ R∑ ∑ 𝑐!"𝑇!".𝑧!"."∈%!∈&' +∑ ∑ 𝛾(𝑇!". − 𝑅)𝑧!"."∈%\(%
'!∈&' S 

  (3.13) 

subject to 

∑ 𝑧!"."∈% ≤ 𝑑!., ∀𝑖 ∈ 𝐼., 𝑠 ∈ 𝑆 (3.14) 

∑ ∑ 𝑧!"."∈%!∈&' ≥ 𝛼∑ 𝑑!.!∈&' , ∀𝑠 ∈ 𝑆  (3.15) 

𝑧!". ≤ 𝑦" − ∑!!)*
!+* 𝛿!!#". 𝑧!#". , ∀𝑖 ∈ 𝐼., 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆  (3.16) 

∑ 𝑧!".!∈&' ≤ 𝜇"𝑦", ∀𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆  (3.17) 

𝑦" ≤ 𝑄"𝑥", ∀𝑗 ∈ 𝐽  (3.18) 

𝑥" ∈ {0,1}, ∀𝑗 ∈ 𝐽  (3.19) 

𝑦" ∈ ℤ,-, ∀𝑗 ∈ 𝐽  (3.20) 

𝜎!. ∈ {0,1}, ∀𝑖 ∈ 𝐼., , 𝑠 ∈ 𝑆  (3.21) 

𝑧!". ∈ ℤ,-, ∀𝑖 ∈ 𝐼., 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆.  (3.22) 
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Chapter 4: Solution Approach 

The scenario-based two-stage stochastic programming model is challenging to 

solve because in real life the demand and traffic situation are changing all the time, 

resulting in a large number of scenarios, which makes the problem computationally 

intractable. To solve this challenge, we use SAA, which is a Monte Carlo simulation-

based approach to solve stochastic optimization problems. The basic idea of this 

approach is to approximate the true distribution by empirical distribution obtained 

from samples. The sample is represented by 𝑆′, which is a finite set of scenarios 

sampled from 𝑆 with the same probability of occurrence, i.e., 𝑆′ ⊆ 𝑆, |𝑆′|	is the sample 

size, and each scenario in 𝑆′ has the same probability 1/|𝑆′|. The SAA formulation is 

given as follows:  

Min ∑ 𝑓"𝑥""∈% + ∑ ℎ𝑦""∈% + *
|/#|
R∑ ∑ ∑ 𝑐!"𝑇!".𝑧!"."∈%!∈&'.∈/# + ∑ ∑ ∑ 𝛾"∈%\(%

'!∈&'.∈/# (𝑇!". − 𝑅)𝑧!". S 

  (4.1) 

subject to (3.14)–(3.22) in which 𝑆 is replaced by 𝑆′. 

When using SAA to solve the problem, one essential procedure is to determine 

the number of scenarios in 𝑆′. The solution quality will be improved with the increase 

of sample size, while the model will become computationally intractable. We need to 

strike a balance between precision and computational tractability. Algorithm 1 

describes the procedure to evaluate the solution quality of SAA under given sample 

size, which includes the calculation of confidence intervals (CIs) for lower bound, 

upper bound, and optimality gap under given sample size. We will discuss the choice 

of |𝑆′| in Chapter 5 using real-world emergency data. 
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Algorithm 1 Estimate (1 − 𝜏)-CI for lower bound, upper bound, and optimality gap of two-

stage stochastic program 

1. Generate a set of scenarios 𝑆′. 

2. Solve the SAA problem with 𝑆′ and obtain the optimal first-stage solution 𝑥∗, 𝑦∗. 

3. for 𝑚 = 1, 2,… ,𝑀 do 

4.  Generate a set of new independent scenarios 𝑆", |𝑆"| = |𝑆′|. 

5.  Solve the SAA problem with 𝑆" and obtain the objective value 𝑣". 

6.  Generate a set of new independent scenarios 𝑆"# , |𝑆"# | ≫ |𝑆"|. 

7. Evaluate the quality of the first-stage solution 𝑥∗, 𝑦∗ on scenarios in 𝑆"# . The resulting 

cost is 𝑣$∗,&∗" , 𝑣$∗,&∗" = min∑ 𝑓'𝑥'∗'∈) +∑ ℎ𝑦'∗'∈) + *
|,"# |

;∑ ∑ ∑ 𝑐-'𝑇-'.𝑧-'.'∈)-∈/$.∈,"# +

∑ ∑ ∑ 𝛾(𝑇-'. − 𝑅)𝑧-'.'∈)\1%
$-∈/$.∈,"# A subject to Eq. (14)–(22) in which 𝑆 is replaced by 𝑆"# . 

8.  Let 𝑔": = 	 𝑣$∗,&∗" 	− 𝑣". 

9. end for 

10. Estimate (1 − 𝜏)-CI for lower bound 

11. Let 𝐿:= *
2
∑ 𝑣"2
"3*  and 𝑆4: =

*
25*

∑ (𝑣" − 𝐿)62
"3* . 

12. The (1 − 𝜏) -CI for lower bound is F𝐿 −
7&'(,*+

8,,

√2
, 𝐿 +

7&'(,*+
8,,

√2
	G , 𝑡25*,*+

 is the t-value 

obtained from t-distribution with degrees of freedom 𝑀 − 1 and confidence level 1 − 𝜏. 

13. Estimate (1 − 𝜏)-CI for upper bound 

14. Let 𝑈:= *
2
∑ 𝑣$∗,&∗"2
"3*  and 𝑆:: =

*
25*

∑ (𝑣$∗,&∗" − 𝑈)62
"3* . 

15. The (1 − 𝜏)-CI for upper bound is F𝑈 −
7&'(,*+

8,-

√2
, 𝑈 +

7&'(,*+
8,-

√2
	G. 

16. Estimate (1 − 𝜏)-CI for optimality gap 

17. Let 𝐺:= *
2
∑ 𝑔"2
"3*  and 𝑆;: =

*
25*

∑ (𝑔" − 𝐺)62
"3* . 

18. The (1 − 𝜏)-CI for optimality gap is K0, 𝐺 + 7&'(,*8,.
√2

	M. 
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Chapter 5: Numerical Experiments 

To evaluate the performance of our method, we conducted numerical 

experiments using real-world emergency data. We first determined how many 

scenarios are needed to obtain a high level of approximation precision while at the 

same time make the model computationally tractable. Then we evaluated the benefit 

of using stochastic programming approach over deterministic model. Next, we show 

the robustness of solution method. Finally, we conducted sensitive analysis to show 

how the value of some crucial parameters will influence the optimal objective value of 

our model, which yields some valuable managerial insights. All the experiments were 

carried out on a Dell XPS 15 9500 laptop with i7-10750H CPU, 2.60 GHz processing 

speed and 16 GB of memory. The model and the algorithm were implemented in C++ 

programming and both SAA and deterministic model were solved by CPLEX 12.10. 

5.1 PARAMETER SETTING 

We used the emergency incident data of Manhattan, which is provided by Fire 

Department of New York City (FDNY). The data spans from the time the incident is 

created to the time the incident is closed in the system, including the incident datetime, 

incident location, response time, response police precinct, etc. We finally chose the 

data of year 2011, which includes 225634 emergency call logs occurring at 22 police 

precincts, as the data of the other years has a large number of missing values. The 22 

police precincts were regarded as the demand areas. The candidate facility site was 

obtained from the website of New York City Fire Department Bureau of Emergency 

Medical Services (FDNY EMS), which is divided into four sectors, but nearly all the 

incidents are served by two sectors: FDNY EMS municipal (FEM) and Voluntary 

Hospital EMS (VHE). The former controls 70% of the ambulances in the New York 

City 911 System and serves 63% of ambulance tours while the latter controls the rest 

of the ambulances and serves 37% of the ambulance tours. FEM now operates 6 

stations in Manhattan and VHE provides emergency services through 10 stations. 

Totally, 16 stations were used as the candidate facility sites in this section. The demand 

area and candidate stations are shown in Figure 5-1, where the numbers and letters are 

the indices of the police precinct and candidate station, respectively. The red and blue 
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circles represent the location of stations operated by FEM and VHE, respectively. In 

order to reflect the fact that the 6 stations operated by FEM work as the main 

emergency facilities, the fixed cost was set lower and facility and service capacity were 

higher than those of stations operated by VHE. The vehicle travel speed data was 

calculated using the 2011 yellow taxi trip data, which includes trip distance and trip 

duration. We divided each day into 24 equal segments, i.e., each segment is one hour, 

and we calculated the average speed of each segment as the speed at which vehicles 

responded to emergency calls occurring during that segment. The response time 

standard was set to 9 minutes according to National Fire Protection Association 

benchmark. The fixed cost to set up a station, including land cost, construction cost, 

material cost, etc., is amortized according to service life of buildings to $1500 and 

$4500 per day for stations belong to FEM and VHE, respectively. The reason for cost 

difference between FEM and VHE stations is that FEM stations are more convenient 

and flexible for vehicle deployment and dispatching. When an emergency occurs, 

FEM stations are preferred for service. Therefore, facility capacity and vehicle service 

capacity for FEM stations are also greater than that of VHE stations. Vehicle purchase 

cost, including ambulance cost, equipment cost, maintenance cost, etc., is amortized 

to $300 per vehicle per day according to service life of ambulance. Unit transportation 

cost, including labor cost, fuel cost, etc., is $30 per minute. The penalty cost is set to 

5 times the transportation cost because survivability is highly dependent on response 

time and the response that is later than response time standard may have serious 

consequences to life and property. The values of parameters used in numerical 

experiments are listed in Table 5-1. 
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Figure 5-1: The demand area and candidate stations 
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Table 5-1: The values of parameters used in numerical experiments 

Parameter Value 

𝑓' $1500 per day if 𝑗 belongs to FEM 

$4500 per day if 𝑗 belongs to VHE 

ℎ $300 per vehicle per day  

𝑐-' $30 per minute 

𝛾 $150 per minute 

𝑄' 10 vehicles if 𝑗 belongs to FEM 

5 vehicles if 𝑗 belongs to VHE 

𝛼 90% 

𝜇' 20 demands per day if 𝑗 belongs to FEM 

5 demands per day if 𝑗 belongs to VHE 

 

5.2 DETERMINATION OF SAMPLE SIZE 

In this chapter, we will determine the sample size for the following numerical 

experiments. We first introduce how a sample is generated. Then, we illustrate the 

procedures and results of solution quality evaluation. Accordingly, we finally 

determine the sample size. 

5.2.1 SAMPLE GENERATION 

A sample is made up of a specific number of scenarios. A scenario is real 

emergency rescue data for a day, including demand and travel speed data. The specific 

number of scenarios is called sample size. We have emergency call logs and yellow 

taxi trip data of year 2011, which spans over 365 days. We randomly generated a 

number between 1 and 365 and extracted all emergency call logs and yellow taxi trip 

data for the day corresponding to this number as scenario data. We repeated this 

procedure in the remaining data set until the number of scenarios equals the sample 

size. 

5.2.2 SOLUTION QUALITY EVALUATION 

We used Algorithm 1 to evaluate the performance of different sample sizes, 

which were set to 10, 20, 30, 40, and 50. We first ran line 1 and 2 of Algorithm 1 to 

obtain the optimal first-stage solution. Then we iterated line 4 to 8 for 10 times where 

|𝑆1# | was set to 100. Finally, we calculated solution quality, which is shown in Table 
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5-2. NS, PE, CI, CI-L, CI-U, and Time represent sample size, point estimate, 95% 

confidence interval, ratio between 95% confidence interval for optimality gap and 

point estimate of lower bound, ratio between 95% confidence interval for optimality 

gap and point estimate of upper bound, and running time, respectively. When sample 

size is 40, the error rate is below 1% with a high probability. Considering the trade-off 

between solution quality and computational tractability, we set the sample size to 40 

in the following calculation. 

Table 5-2: Solution quality of different sample sizes (95% CIs) 

NS 
Lower bound Upper bound Optimality gap 

CI-L CI-U Time 
PE CI PE CI PE CI 

10 146000 (142350, 149650) 144700 (143500, 145900) 2157 (0, 4604) 3.15% 3.18% 3801 

20 142700 (139700, 145700) 143900 (142850, 144950) 1898 (0, 3795) 2.66% 2.64% 11420 

30 143500 (140750, 146250) 143800 (142800, 144800) 1428 (0, 2614) 1.82% 1.82% 22210 

40 143300 (141050, 145550) 143800 (142950, 144650) 643 (0, 1370) 0.96% 0.95% 32800 

50 143800 (142900, 144700) 143700 (143050, 144350) 501 (0, 1018) 0.71% 0.71% 43610 

Note: NS represents sample size. PE represents point estimate. CI represents 95% confidence interval. CI-L represents ratio 

between 95% confidence interval for optimality gap and point estimate of lower bound. CI-U represents ratio between 95% 

confidence interval for optimality gap and point estimate of upper bound. Time represents running time. 

5.3 THE BENEFIT OF STOCHASTIC PROGRAMMING 

We evaluate the benefit of stochastic programming by comparing the 

performance of the mean value solution with the stochastic solution under the same 

sample. The mean value solution was obtained by taking the mean value of the sample 

into the deterministic model [M1]. For a sample with 40 scenarios, we first ignored 

the date of the emergency calls and summed up all the emergency calls that happened 

at the same demand area and during the same time segment. There were 24 time 

segments, each representing one hour of the 24 hours. Therefore, we obtained demand 

distribution over 22 demand areas × 24 time segments. Then we divided the 

distribution by 40, i.e., the number of scenarios, and obtained the average number of 

emergency calls occurred at each demand area during each time segment, which is the 

mean value of a sample. We put the average data into the deterministic model [M1] 

and obtained the first-stage solution. Then we solved the second-stage problem by 

fixing the first-stage solution in SAA under the same sample, the result of which was 

compared with that of the SAA using the same scenarios. The results are shown in the 

Table 5-3. The first and second row are performance of mean value solution and 
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stochastic solution, respectively. Improvement indicates the percentage cost saving 

and coverage improvement of stochastic model. The second column is the total cost. 

FC, PC, TRC, and Penalty represent fixed cost of opening stations, purchasing cost of 

ambulances, transportation cost of demand fulfillment, and penalty for overtime, 

respectively. NM and NV represent the number of opening stations run by FEM and 

VHE, respectively. VM and VV represent the number of ambulances purchased in the 

opening stations operated by FEM and VHE, respectively. CL is the coverage level, 

i.e., the percentage of demand covered by opening stations. RL is the response level, 

i.e., the percentage of demand being served within response time standard. The last 

column is the computation time.  

The results show that stochastic programming could reduce the total cost by 

6.27%, which is achieved by opening more facilities and purchasing more vehicles to 

reduce the demand fulfillment cost and delay penalty. As there are more facilities and 

vehicles, the coverage level and response level are improved by 4.17% and 9.21%, 

respectively. Therefore, stochastic programming could achieve a better coverage with 

less cost compared with deterministic one. 

Table 5-3: The performance of the mean value solution and the stochastic solution 
under the same sample 

 TC FC NM NV PC VM VV TRC Penalty CL RL Time 

MV 156400 22500 6 3 15900 38 15 107300 10700 92.09% 81.78% 38.41 

SAA 146600 27000 6 4 20100 47 20 98230 1270 95.93% 89.31% 2381.66 

Improvement 6.27% −20% - - −26.42% - - 8.45% 88.13% 4.17% 9.21% - 

Note: TC means total cost. FC means fixed cost of opening stations. NM means the number of opening stations run by FEM. NV 

means the number of opening stations run by VHE. PC means purchasing cost of ambulances. VM means the number of ambulances 

purchased in the opening stations operated by FEM. VV means the number of ambulances purchased in the opening stations operated 

by VHE. TRC means transportation cost of demand fulfillment. Penalty means penalty for overtime. CL means the coverage level. 

RL means the response level. Time means computation time. 

 

5.4 ROBUSTNESS EVALUATION 

Optimal solutions obtained through SAA are based on generated scenarios. It is 

highly possible that in practice the realized demand is not a member of used samples, 

resulting in poor performance of solution approach. To test the robustness of SAA 

method, we conduct out-of-sample analysis, which evaluates performance of optimal 

solutions using out-of-sample data. The procedures are shown in Algorithm 2. We 
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divide all scenarios into two sets: in-sample scenario 𝑆!2 and out-of-sample scenario 

𝑆345, where 𝑆!2 ∪ 𝑆345 = 𝑆. All scenarios in 𝑆!2 are input into SAA to obtain optimal 

first-stage solution 𝑥∗  and 𝑦∗ . Then 𝑁  scenarios are randomly selected from 𝑆345 , 

each of which is input into deterministic model [M1] to calculate optimal dispatching 

decisions. There are two possible outcomes: optimal solution exists and optimal 

solution does not exist. In the first case, calculate response level, i.e., the proportion of 

demand that is responded within response time standard. Robustness is measured by 

robustness level, the proportion of scenarios where optimal solution can be found, and 

(1 − 𝜏)-CI of response level.  

Algorithm 2 Robustness evaluation 

1. Generate a set of scenarios 𝑆-<. 

2. Solve the SAA problem with 𝑆-< and obtain the optimal first-stage solution 𝑥∗ and 𝑦∗. 

3. for 𝑛 = 1, 2, … ,𝑁 do 

4.  Generate a new independent scenario 𝑠< from 𝑆=>7, 𝑠< ∈ 𝑆=>7. 

5. Solve deterministic model [M1] with 𝑠< , 𝑥∗ and 𝑦∗.  

6. If optimal solution can be found, calculate response level 𝑅𝐿< , i.e., the proportion of 

demand that is responded within response time standard. 

7. end for 

8. Calculate the number of iterations 𝑁= where optimal solution can be found. 

9. Calculate robustness level 𝐵𝐿 = 1/
1

. 

10. Let 𝐴:= ∑ @40
1/
02(
1/

 and 𝑆A: =
*

1/5*
∑ (𝑅𝐿< − 𝐴)6
1/
<3*  

11. The (1 − 𝜏)-CI of response level is F𝐴 −
71/'(,

*
+
8,3

81/
, 𝐴 +

71/'(,
*
+
8,3

81/
	G. 

 

We ran SAA 10 times. Only one of the optimal first-stage location solutions is 

different. The rest have the same location solution but different deployment solutions. 

Therefore, we selected two solutions with the fewest and most vehicles from the 

remaining iterations. Totally, we got three different optimal first-stage solutions. Then 

we conducted procedures described in Section 5.3 to get one optimal first-stage 

solution obtained from the mean value model. The four solutions were put into 

Algorithm 2 to calculate robustness level and 95% CI of response level where 𝑁 was 

set to 150. The 95% CI of response level and robustness level for four solutions are 

shown in Figure 5-2 and Table 5-4, respectively. 
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Figure 5-2: 95% CI of response level for one deterministic and three stochastic 
solutions 

In Figure 5-2, MV and SAA1–3 represent optimal first-stage solutions for mean 

value model and stochastic models, respectively. The results show that in comparison 

with deterministic model, stochastic model can obtain solutions that respond more 

emergency calls within response time standard with high probability. Even though 

these solutions are tested in out-of-sample data, at least 83% of the emergency 

demands can be responded in time with high probability. Table 5-4 shows that 

solutions obtained by SAA can find optimal value under nearly every scenario in out-

of-sample analysis. Therefore, we can conclude that results of SAA method are robust. 

Table 5-4: Robustness level for one deterministic and three stochastic solutions 

 Robustness level 

SAA1 100.00% 

SAA2 99.33% 

SAA3 100.00% 

 

5.5 SENSITIVE ANALYSIS 

We conducted the sensitive analysis to evaluate the influence of the value of 

crucial parameters on the optimal value of the stochastic programming. The following 

parameters are considered: response time standard, service level, facility capacity, 

service capacity, and facility heterogeneity.  
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5.5.1 IMPACT OF RESPONSE TIME STANDARD 

Table 5-5 reports the effect of response time standard on cost, the number of 

facilities opened, the number of vehicles purchased, coverage level, and response level. 

RT means the value of response time standard. We can see that with the release of 

response time standard, total cost will reduce to certain value and then stay unchanged. 

Because when response time standard is relaxed, more demands can be served within 

time requirement, greatly reducing penalty. At the same time, with the enlarge of 

coverage radius, stations and vehicles can cover further demands without bearing 

penalty, reducing the number of stations and vehicles needed and thus reducing set-up 

and purchasing cost. When response time standard is raised to certain level, demands 

are fully covered and can be responded without any penalty under the required service 

level. The best combination of costs components is achieved so that further increasing 

response time standard will not influence the system performance. 

The results suggest that increasing response time standard under threshold can 

reduce total cost but does not have any effect when response time standard is already 

beyond the threshold. Besides, response time standard highly determines emergency 

survivability. When authorities set up response time standard, it is important to make 

a balance between cost and survivability. 

Table 5-5: The influence of response time standard 

RT TC FC NM NV PC VM VV TRC Penalty CL RL 

1 493100 40500 6 7 24600 47 35 88730 339270 1.80% 1.68% 

3 305900 40500 6 7 24600 47 35 88750 152050 33.21% 24.42% 

5 194000 40500 6 7 24300 46 35 88920 40280 72.27% 58.13% 

7 154900 36000 6 6 23100 47 30 90360 5440 89.09% 80.93% 

9 143500 22500 6 3 19200 49 15 99340 2460 95.72% 86.97% 

11 139100 18000 6 2 16800 46 10 104100 200 97.70% 89.58% 

13 138900 18000 6 2 16500 45 10 104400 0 100.00% 90.07% 

15 138900 18000 6 2 16500 45 10 104400 0 100.00% 90.07% 

17 138900 18000 6 2 16500 45 10 104400 0 100.00% 90.07% 

Note: RT means response time standard. TC means total cost. FC means fixed cost of opening stations. NM means the number 

of opening stations run by FEM. NV means the number of opening stations run by VHE. PC means purchasing cost of ambulances. 

VM means the number of ambulances purchased in the opening stations operated by FEM. VV means the number of ambulances 

purchased in the opening stations operated by VHE. TRC means transportation cost of demand fulfillment. Penalty means penalty 

for overtime. CL means the coverage level. RL means the response level. 
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5.5.2 IMPACT OF SERVICE LEVEL 

Table 5-6 shows the influence of service level on optimal value. The first column 

is the value of service level. When service level is reduced, all cost components 

decrease. As less demands are required to be served, redundant stations and vehicles 

are no longer needed, saving a large amount of cost. At the same time, coverage level 

and response level decrease accordingly.  

The results indicate a positive relationship between total cost and service level. 

If authorities want to provide emergency service with high service level, costs are 

bound to be high. Therefore, authorities must make a trade-off between cost and 

service level when making decisions. 

Table 5-6: The influence of service level on optimal value 

SL TC FC NM NV PC VM VV TRC Penalty CL RL 

0.9 139900 22500 6 3 18900 48 15 96460 2040 96.06% 87.31% 

0.8 112000 13500 6 1 14700 44 5 83350 450 89.02% 79.17% 

0.7 90280 9000 6 0 10500 35 0 70750 30 78.67% 69.96% 

0.6 72440 9000 6 0 9600 32 0 53840 0 78.67% 60.05% 

0.5 56970 9000 6 0 8100 27 0 39870 0 78.67% 50.03% 

0.4 43890 9000 6 0 6000 20 0 28890 0 78.67% 40.05% 

0.3 31610 6000 4 0 5100 17 0 20510 0 59.26% 30.06% 

0.2 19850 4500 3 0 3300 11 0 12050 0 40.56% 20.04% 

0.1 9248 3000 2 0 1800 6 0 4448 0 33.61% 10.05% 

Note: SL means service level. TC means total cost. FC means fixed cost of opening stations. NM means the number of opening 

stations run by FEM. NV means the number of opening stations run by VHE. PC means purchasing cost of ambulances. VM 

means the number of ambulances purchased in the opening stations operated by FEM. VV means the number of ambulances 

purchased in the opening stations operated by VHE. TRC means transportation cost of demand fulfillment. Penalty means penalty 

for overtime. CL means the coverage level. RL means the response level. 

5.5.3 IMPACT OF FACILITY CAPACITY AND VEHICLE SERVICE 
CAPACITY 

The impact of facility capacity is reflected by Table 5-7. The first and second 

column are the capacity of stations operated by FEM and VHE, respectively. We 

assume that fixed cost of station does not change with capacity. We can see that 

increasing the capacity of stations operated by FEM does not change the model 

performance while increasing the capacity of stations operated by VHE first decreases 

total cost and when the capacity increases to 15 vehicles, the optimal value does not 

change anymore. Because current station capacity of FEM is enough to achieve the 

required service level, making increased capacity redundant. However, increasing 
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station capacity of VHE, which is originally set to a low value, allows more demands 

to be served by closer vehicles, and therefore reducing the number of stations, 

transportation cost, and penalty. It is worth noting that even though the number of 

stations is reduced, the coverage level stays the same and what’s more, response level 

is improved, which means that restricting station capacity of VHE will waste money 

building redundant stations and forcing demands to be served by further vehicles. 

Results in Table 5-7 suggest that there is a threshold for station capacity where 

when the value is below the threshold, increasing capacity can reduce total cost 

because more vehicles can be used to serve demands, thus reducing station set-up cost, 

transportation cost, and penalty, while when the value is above the threshold, 

increasing capacity does not influence the performance of the system because existing 

vehicles can already achieve the required service level at the minimal cost and 

additional capacity dose not contribute to better service, thus being redundant. 

Table 5-7: The impact of facility capacity on optimal value 

CM CV TC FC NM NV PC VM VV TRC Penalty CL RL 

10 5 142600 27000 6 4 19800 46 20 94940 860 95.69% 88.57% 

15 5 142600 27000 6 4 19800 46 20 94940 860 95.69% 88.57% 

20 5 142600 27000 6 4 19800 46 20 94940 860 95.69% 88.57% 

25 5 142600 27000 6 4 19800 46 20 94940 860 95.69% 88.57% 

30 5 142600 27000 6 4 19800 46 20 94940 860 95.69% 88.57% 

10 5 142600 27000 6 4 19800 46 20 94940 860 95.69% 88.57% 

10 10 132500 22500 6 3 21000 41 29 88840 160 95.69% 89.76% 

10 15 131500 22500 6 3 22800 39 37 86150 50 95.69% 89.99% 

10 20 131500 22500 6 3 22800 39 37 86150 50 95.69% 89.99% 

10 25 131500 22500 6 3 22800 39 37 86150 50 95.69% 89.99% 

10 30 131500 22500 6 3 22800 39 37 86150 50 95.69% 89.99% 

Note: CM means the capacity of stations operated by FEM. CV means the capacity of stations operated by VHE. TC means total 

cost. FC means fixed cost of opening stations. NM means the number of opening stations run by FEM. NV means the number of 

opening stations run by VHE. PC means purchasing cost of ambulances. VM means the number of ambulances purchased in the 

opening stations operated by FEM. VV means the number of ambulances purchased in the opening stations operated by VHE. 

TRC means transportation cost of demand fulfillment. Penalty means penalty for overtime. CL means the coverage level. RL 

means the response level. 

Table 5-8 shows impact of service capacity, where the first and second column 

are the vehicle service capacity of stations operated by FEM and VHE, respectively. 

Table 5-8 has the same results as Table 5-7, because increasing vehicle service 

capacity under fixed facility capacity has a similar effect to increasing facility capacity 
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under fixed vehicle service capacity, both of which increase demands served by each 

station. 

Table 5-8: The impact of service capacity on optimal value 

SM SV TC FC NM NV PC VM VV TRC Penalty CL RL 

20 5 147000 27000 6 4 21600 52 20 96640 1760 96.02% 88.33% 

20 10 132900 27000 6 4 19500 45 20 85680 720 96.02% 89.53% 

20 15 127700 27000 6 4 18000 40 20 82320 380 96.02% 89.83% 

20 20 126700 25500 5 4 18300 41 20 82560 340 96.02% 89.85% 

20 25 126700 25500 5 4 18300 41 20 82560 340 96.02% 89.85% 

20 5 147000 27000 6 4 21600 52 20 96640 1760 96.02% 88.33% 

25 5 146700 27000 6 4 21000 50 20 96750 1950 96.02% 88.30% 

30 5 146700 27000 6 4 21000 50 20 96750 1950 96.02% 88.30% 

35 5 146700 27000 6 4 21000 50 20 96750 1950 96.02% 88.30% 

40 5 146700 27000 6 4 21000 50 20 96750 1950 96.02% 88.30% 

Note: SM means the vehicle service capacity of stations operated by FEM. SV means the vehicle service capacity of stations 

operated by VHE. TC means total cost. FC means fixed cost of opening stations. NM means the number of opening stations run 

by FEM. NV means the number of opening stations run by VHE. PC means purchasing cost of ambulances. VM means the 

number of ambulances purchased in the opening stations operated by FEM. VV means the number of ambulances purchased in 

the opening stations operated by VHE. TRC means transportation cost of demand fulfillment. Penalty means penalty for overtime. 

CL means the coverage level. RL means the response level. 

Results of Table 5-7 and Table 5-8 inform us that there are thresholds for facility 

and vehicle service capacity. Setting both capacities to their thresholds could achieve 

maximal coverage with minimal cost. 

5.5.4 IMPACT OF FACILITY HETEROGENEITY 

To reflect the fact that stations of FEM control 70% of the ambulances in the 

New York City 911 System and serve 63% of ambulance tours while stations of VHE 

control the rest of the ambulances and serve 37% of the ambulance tours, we 

differentiated these two types of stations in terms of cost and capacity. In this section, 

we will compare results of problem setting with facility heterogeneity to those of 

problem setting where all facilities are assumed homogenous in term of cost and 

capacity.  

  We ran 10 times of each problem setting. The optimal location solutions are the 

same for 10 iterations, which are shown in Figure 5-3. Figure 5-3(a) and Figure 5-3(b) 

show optimal location solutions for heterogenous and homogenous facilities, 

respectively. We can see that when heterogeneity is considered, all the 6 stations 

operated by FEM, i.e., the red circles, are selected for the following reasons: first, these 
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stations are cheaper than the rest of the stations; second, they can serve more demands; 

third, they are sparsely distributed throughout the whole region. When the 6 stations 

cannot meet the requirements, stations in the middle and east part, i.e., stations 𝑗, 𝑘, 𝑙, 

and 𝑛, are selected because there are no FEM stations in these places and the selected 

4 stations can fill the vacancy. This suggests that with heterogeneity, municipal 

stations are the best choice to serve emergency calls and when demands exceed their 

service capacity, stations that can fill the vacancy are preferred. 

 

 
 (a) Heterogenous facilities (b) Homogenous facilities 

Figure 5-3: Comparison of optimal location solutions for heterogenous and 
homogenous facilities 

 
If we assume that all facilities are the same, results will change. The number of 

selected stations of FEM and VHE are 4 and 6, respectively. Stations 𝑏, 𝑑, and 𝑙 are 

replaced by station 𝑔, ℎ, and 𝑚. The coverage level and response level are shown in 

Table 5-9, which indicate better performances of location solutions for homogenous 

facilities. 
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Table 5-9: The coverage level and response level of optimal location solutions for 
heterogenous and homogenous facilities 

 CL RL 

Homogenous 98.61% 90.07% 

Heterogenous 95.99% 88.60% 

 

Results of comparison indicate that even though stations of FEM are preferred 

by New York City 911 System for various reasons, increasing utilization of VHE 

stations will improve system performances. 
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Chapter 6: Conclusions and Future 
Research 

6.1 CONCLUSION 

In this research, we propose a dynamic scenario-based two-stage stochastic 

programming model to optimize location of ambulance stations, deployment of 

ambulances, and vehicle dispatching under uncertain demand and traffic situation. The 

objective is to minimize total cost composed of station set-up cost, vehicle purchasing 

cost, demand fulfillment cost, and the penalty for overtime under service level 

requirements. We apply Sample Average Approximation to solve the problem and 

conduct numerical experiments to evaluate the performance of the solution method. 

Results show that stochastic program could achieve a better coverage with less cost 

compared with deterministic one and that solutions obtained by SAA are proved to be 

robust. We also conduct sensitive analysis to evaluate the influence of the value of 

crucial parameters on the optimal value of the stochastic programming model. Results 

suggest that there exist thresholds for response time standard, facility capacity, and 

vehicle service capacity. Increasing each of them under threshold can reduce total cost 

but does not have any effect when the threshold is reached. Response time standard 

highly determines emergency survivability. Authorities should make a balance 

between cost and survivability when setting up response time standard. For facility 

capacity and vehicle service capacity, it is recommended to set both to their thresholds 

in order to achieve maximal coverage with minimal cost. Second, service level is 

positively related to total cost. Improving service level will inevitably increase total 

cost. Besides, facility heterogeneity will also influence problem solutions and 

performances. When considering heterogeneity, municipal stations are the best choice 

to serve emergency calls and when demands exceed their service capacity, stations that 

can fill the vacancy are preferred. When all facilities are homogeneous, better 

performances can be achieved. Therefore, even though stations of FEM are preferred 

by New York City 911 System for various reasons, increasing utilization of VHE 

stations will improve system performances. 
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6.2 FUTURE RESEARCH 

Future research can be extended in two ways: problem-related extension and 

solution-related extension.  

Problem-related extension can be conducted in four directions. First, emergency 

demands can be prioritized with the level of priority representing severity of 

emergency. We can require that high priority calls be served first. Second, we can use 

multi-type vehicles to serve demands, such basic life support ambulance and advanced 

life support ambulance. Each type of vehicle can only serve specified demands. Third, 

we allow vehicles not to respond immediately to a demand because a more severe 

emergency may happen in the near future, resulting in no vehicle response. Fourth, as 

vehicles may not be able to serve all demands, we can consider demand queuing. 

Solution-related extension means we can apply heuristics or exact algorithms 

that solve problems in shorter time, such as L-shaped method and Branch-and-Cut. 
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