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Abstract

The capacitated multi-trip vehicle routing problem with time windows is a very

challenging well-known vehicle routing problem, where each vehicle is allowed to

perform more than one trip to serve customers. This multi-trip characteristic is

required in wide practical applications, ensuring better utilization of the vehicles.

Such a characteristic, however, makes the problem much more difficult to solve, as

in the existing literature, only 14 of the 27 benchmark instances with 100 customers

have been solved to optimality.

In this thesis, we develop a novel three-phase exact method to tackle this chal-

lenging problem. In the first and the second phases, we utilize both a route-based

and a trip-based integer programming models together, solving their linear pro-

gramming relaxations sequentially through some column-and-cut generation proce-

dures. In the third phase, we then close the integrality gap by solving a trip-based

model through a dynamic time discretization technique. Results from extensive

computational experiments over benchmark instances demonstrate the effective-

ness and efficiency of our newly proposed exact method. For the first time in the

literature, all the 27 benchmark instances are solved to optimality in much less

average running time than the best-known exact method in the existing literature.

Our three-phase exact method is also flexible and can be adapted to solve several

other variants of the problem to optimality efficiently.
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Chapter 1

Introduction

Due to its computational challenges and wide applications, the vehicle routing

problem (VRP) is one of the most studied problems in operations research since the

pioneer study of Dantzig and Ramser [13]. It aims to design trips for available ve-

hicles such that each customer is visited exactly once, vehicle capacity constraints

are respected and the total travel cost is minimized. However, since customers may

not always be available to be visited all the time, it is often constrained that each

customer should be visited within a specified time interval, which is called a time

window. Under such a time window constraint, the problem becomes the vehicle

routing problem with time windows (VRPTW). Both the VRP and VRPTW are

strongly NP-hard since they are generalizations of the traveling salesman problem

(TSP), which is well-known to be strongly NP-hard. For comprehensive surveys

about the VRP, we refer the reader to Toth and Vigo [43], Laporte [30] and Toth

and Vigo [44].

In the settings of both the VRP and VRPTW, each vehicle can perform at

most one trip during a planning time horizon (e.g., one day). However, in some

practical applications, such as those in last-mile delivery, trips are usually short
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Chapter 1. Introduction

in terms of travel time and distance. To make better utilization of available ve-

hicles, each vehicle is often allowed to perform more than one trip during the

planning time horizon. Under such a setting with multiple trips allowed, the prob-

lem becomes the capacitated multi-trip vehicle routing problem with time windows

(CMTVRPTW), which is very challenging to solve and attracts a growing number

of studies in recent years.

The CMTVRPTW can be formally defined as follows. Consider a graph G =

(V0,A) where V0 = V ∪ {0} with V = {1, 2, . . . , N} denoting a set of customer

nodes and with node 0 denoting the depot node, and where A is a set of arcs. There

are K homogeneous vehicles available to deliver goods to serve the customers, with

each vehicle having a capacity denoted by Q, so that the total quantity of goods

loaded on each vehicle cannot exceed Q. The demand quantity of goods to be

delivered to customer i ∈ V is denoted by qi. The planning time horizon is [a0, b0].

The service for customer i ∈ V can only start within a time window, denoted by

[ai, bi], which implies that customer i cannot be visited after time bi, and a vehicle

should wait until time ai to start the service if it arrives at customer i before

ai. Let sti denote the service time at node i ∈ V. For the sake of presentation,

we also denote st0 = 0. Let cij and t
′
ij denote the travel cost and travel time

associated with arc (i, j) ∈ A, respectively. Without loss of generality, we can

assume that the travel times associated with the arcs satisfy the triangle inequality,

i.e., t
′
ij + t

′

jk ≥ t
′

ik for each (i, j), (j, k), and (i, k) in A, because otherwise we can

define the travel time of each arc (i, j) as the minimum time required to travel

between nodes i and j, which satisfies the triangle inequality. As multiple trips are

allowed, the number of times that each vehicle can depart from the depot is not

limited. Accordingly, the CMTVRPTW aims to design trips for all the vehicles to

visit each customer exactly once with the travel cost minimized. This problem is

still strongly NP-hard since it generalizes the strongly NP-hard problem VRPTW.

2



The multi-trip characteristic is required in wide practical applications, such

as the last-mile delivery [35], disaster logistics [38], urban waste collection [42],

perishable goods delivery [41], biomedical sample transportation [1], and so on.

However, such a characteristic makes the problem much more difficult to solve.

Specifically, for the CMTVRPTW, only 14 of the 27 benchmark instances with 100

customers, which are adapted from Solomon’s instances, are solved to optimality

in the existing literature.

As is pointed out in Laporte [30], exact methods and models in the exist-

ing literature for the VRP and its variants include branch-and-bound, dynamic

programming, vehicle flow formulations, commodity flow formulations, and set

partitioning formulations. Among them, methods based on set partitioning for-

mulations are state-of-the-art, including those for the VRP [37], VRPTW [36],

and CMTVRPTW [46]. Such exact methods generally consist of two phases,

where the linear programming (LP) relaxation of the problem’s integer program-

ming (IP) model is solved by column generation or column-and-cut generation

in the first phase, and the integrality gap between the LP relaxation and the IP

model is closed in the second phase. Furthermore, the solution strategies of the

second phase adopted in the existing literature can be mainly classified into two

categories. One is to develop efficient branch-and-bound algorithms where the LP

relaxation of the problem is solved by column generation at each node of the search

tree explored, such as the branch-and-price and the branch-and-price-and-cut al-

gorithms. The other is to enumerate all the possible columns that may appear in

an optimal solution and directly apply an IP solver to solve the IP model based

on these columns. Both the two categories of solution strategies require tight LP

relaxations of the problem.

As the VRP and most of its variants are minimization problems, the tightness
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Chapter 1. Introduction

of the lower bound provided by the LP relaxation is of great importance for the

efficiency of the solution methods that are based on set partitioning formulations.

This is because a tighter lower bound leads to fewer search tree nodes that need to

be explored in branch-and-price and branch-and-price-and-cut, as well as to fewer

columns that need to be generated in the column enumeration procedure. To

tighten the LP relaxation of the CMTVRPTW, one can reformulate the problem

based on different representations of columns, such as those using columns to

represent routes (where a route is a sequence of different nodes), to represent

trips (where a trip is a pair of a route and its associated departure time at the

depot), and to represent journeys (where a journey is a sequence of routes or trips).

However, different reformulations known in the literature have their advantages

and disadvantages, in aspects of tightness of the lower bound and required time of

computation. Specifically, for models based on routes, based on trips, and based

on journeys, the lower bounds obtained from their LP relaxations become tighter,

but the time required to compute the lower bounds becomes longer. Therefore, it

is challenging to compute a tighter lower bound in a shorter running time. In this

thesis, we tackle this challenge from our observation that once the LP relaxation of

the route-based model is solved, the LP relaxation of the trip-based model becomes

much easier to solve. Based on this observation, we can develop a novel approach

to compute a tighter lower bound for the CMTVRPTW efficiently.

Another direction to strengthen the lower bound is to identify valid inequalities

of the IP model. Such valid inequalities are satisfied by feasible integer solutions

to the IP model but may be violated by feasible fractional solutions to the LP

relaxation. Since the CMTVRPTW is a generalization of the VRP, some valid

inequalities used in solving the VRP are also valid for the CMTVRPTW. However,

not all of them have been applied in the studies of the CMTVRPTW. Moreover,

some valid inequalities used in the study of the CMTVRPTW can be further
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strengthened, to obtain a better lower bound from the LP relaxation. Since the

numbers of some valid inequalities grow exponentially with the problem size, it

is impractical to enumerate and incorporate all of them into the IP model. Due

to this, some cut generation procedures can be developed, so that only a small

number of violated inequalities (or cuts) need to be generated.

In addition to the tightness of lower bounds, the procedure for closing the

integrality gap is also critical to the computational efficiency of solution meth-

ods. Branch-and-price and branch-and-price-and-cut algorithms are often time-

consuming, because the pricing problem, which is NP-hard, should be solved at

search tree nodes where we need to compute their associated lower bounds, and

the number of search tree nodes is usually considerable for large-sized instances.

Alternatively, we can utilize the dual solution of the LP relaxation to identify

columns that may appear in optimal solutions for the problem. If the LP relax-

ation is tight, the number of columns identified becomes limited, so that an IP

model based on these columns can be solved to optimality by an IP solver directly,

closing the integrality gap. This technique is advantageous when the number of

identified columns is moderate. Although such a technique has been applied in

several recent studies on the CMTVRPTW (see, e.g., Paradiso et al. [35] and Yang

[46]), it is still of great interest to further enhance the efficiency.

Moreover, for methods relying on trip-based IP models, their efficiency is sig-

nificantly affected by how the planning time horizon is discretized into a set of

time points. In the VRPTW, since each vehicle can perform at most one trip,

we only need to require that the number of trips cannot be greater than K, and

thus, one does not need to discretize the planning time horizon. However, in the

CMTVRPTW, the number of trips during a planning time horizon is not limited

for each vehicle, but no more than K trips can be served by the vehicles at every
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time point. Since the planning time horizon is an interval that contains countless

time points, the complete trip-based IP model has an infinite number of variables

and constraints. Therefore, for tractability, one needs to discretize the planning

time horizon. Specifically, one can derive a trip-based IP model based on a re-

stricted number of discretized time points as a relaxation of the original problem,

so that its optimal solution provides a lower bound on the original problem. This

optimal solution is optimal to the original problem only if it is a feasible solution

to the original problem. If it is not a feasible solution to the original problem, one

needs to identify more time points to strengthen the relaxation. Following this ap-

proach, some existing studies, such as Hernandez et al. [23], proposed to discretize

the planning time horizon in an equidistant and half-reduced manner, where the

set of discrete time points is initialized by selecting equidistant time points within

the planning time horizon, and then, the distance between two consecutive time

points is reduced by half whenever further time discretization is needed. However,

such a time discretization approach often results in a considerable number of time

points incorporated into the IP model, so the resulting model is still very difficult

to solve.

In this thesis, we propose a novel three-phase exact method for the CMTVRPTW,

where LP relaxations of the route-based and trip-based models are solved in the

first two phases through some column-and-cut generation procedures, and we close

the integrality gap in the third phase by solving the trip-based model with a dy-

namic time discretization technique. For the first time in the literature, all the 27

benchmark instances with 100 customers are solved to optimality in much less av-

erage running time than the best-known method in the existing literature. Other

major contributions of this thesis are summarized as follows.

• We propose a more efficient approach to close the integrality gap by solving

6



the trip-based model instead of the route-based model. Because a separation

constraint of the route-based model usually involves fewer routes than the

trip-based model, so for problem instances with loose time windows (which

can be much more difficult than those with tight time windows), maybe

much more separation constraints need to be identified to separate infeasible

solutions under the route-based model than the trip-based model. This may

also explain why the procedure for closing the integrality gap is a critical

bottleneck in the up-to-date exact method developed by Yang [46]. We also

adopt a dynamic time discretization technique in our solution method, which

is more efficient than that in an equidistant and half-reduced style adopted

by Hernandez et al. [23].

• For the first time in the literature, our solution method for the CMTVRPTW

utilizes the advantages of both the route-based and trip-based models. By

solving the LP relaxation of the route-based model, only a set of candidate

routes that may appear in optimal solutions are generated, so only trips with

their node sequences included in the route set need to be considered in the

trip-based model. As a result, the trip-based model and its LP relaxation

become much easier to solve, which is critical in tightening the lower bound

effectively and closing the integrality gap efficiently.

• We propose a new class of valid constraints, named RWT constraints, which

generalize the RSF constraints introduced by Paradiso et al. [35] and strengthen

the LP relaxation of the route-based model.

• We introduce a new technique for identifying departure times which cannot

lead to any optimal solution, which can effectively reduce the numbers of

routes and trips that need to be considered.

• We newly apply some valid inequalities used in the literature on the VRP
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Chapter 1. Introduction

but never in the existing study on the CMTVRPTW, such as SR5-2, SR5-3,

EL, and SRC constraints (see, e.g., [36, 4]), so that the lower bound obtained

from the LP relaxation can be further strengthened.

The remainder of this thesis is organized as follows. We review the relevant

literature in Chapter 2, formulate the problem by the route-based and trip-based

models in Chapter 3, and illustrate our three-phase exact method in Chapter 4.

Computational results are presented in Chapter 5, followed by a conclusion in

Chapter 6.

8



Chapter 2

Literature Review

The CMTVRPTW is a generalization of the VRP and VRPTW. In this chapter,

we first review several representative works in the literature on the VRP and

VRPTW, and then review the literature on the CMTVRPTW. Since our study is

to develop exact methods for the CMTVRPTW, only works on exact methods are

reviewed here. For the review of heuristic methods of the VRP and its variants,

we refer the reader to two recent surveys conducted by Dixit et al. [17] and Elshaer

and Awad [19].

2.1 Exact Methods for the VRP

Many exact methods developed for the VRP are branch-and-bound algorithms.

It explicitly explores the solution space through a search tree, and prunes branches

of the search tree by using lower bounds computed at search tree nodes. Therefore,

the efficiency of such branch-and-bound algorithms relies heavily on the tightness

of the lower bounds. Christofides et al. [12] developed a branch-and-bound al-
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Chapter 2. Literature Review

gorithm for the VRP, where lower bounds are derived from k-degree center trees

and q-routes. Their computational experiments showed that the lower bounds de-

rived from q-routes are tighter than those derived from k-degree center trees, and

instances of the VRP with up to 25 customers can be solved to optimality.

The branch-and-cut algorithms extend the branch-and-bound algorithms by

adding valid inequalities to strengthen the lower bounds computed at search tree

nodes. Based on an arc-flow model, Lysgaard et al. [33] developed a branch-and-cut

algorithm for the VRP, where a variety of valid inequalities were imposed, such as

capacity inequalities, framed capacity inequalities, strengthened comb inequalities,

multistar inequalities, partial multistar inequalities, and hypotour inequalities.

Their methods can solve several large-sized instances of the VRP with up to 134

customers, including three new instances whose optimal solutions were not known

before.

The branch-and-price-and-cut algorithms extend the branch-and-cut algorithms

in the sense that, unlike the branch-and-cut algorithms, the branch-and-price-and-

cut algorithms need to solve both the pricing problems (for adding new variables)

and the separation problems (for adding new constraints) at each node of the search

tree. Thus, the branch-and-price-and-cut algorithms are suitable for models that

consist of both a large number of variables and a large number of constraints.

Based on a formulation that combines the arc-flow model and the set-partitioning

model, Fukasawa et al. [20] developed a branch-and-price-and-cut algorithm for the

VRP which can solve all the benchmark instances in the literature to optimality,

with up to 134 customers, where the pricing problem is to find the q-route without

2-cycles that minimizes the reduced cost, and the separation problem is to find

valid inequalities that are identified by the CVRPSEP package from [32].

The branch-and-price-and-cut algorithm is based on a set-partitioning model of

10
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the VRP, and the associated restricted master problem is usually highly degenerate

and has multiple optimal basic solutions. As a result, even after an optimal solution

to the restricted master problem is found by a simplex-based method, it may still

need to perform a large number of additional iterations in the column generation

procedure to prove the optimality. To avoid such a tailing-off effect, Baldacci

et al. [4] proposed an additive bounding method that combines three procedures

to produce a near-optimal dual solution to the restricted master problem. The first

two procedures solve the Lagrangean dual problem of the restricted master problem

without clique inequalities where one is based on q-routes and the other is based on

elementary routes. The third procedure solves the restricted master problem by a

column-and-cut generation procedure with a dual stabilization technique applied.

It was shown that only routes with reduced costs no greater than the gap between

the lower bound and the upper bound need to be enumerated and kept in the set-

partitioning model so that it can be solved by an IP solver directly to produce an

optimal solution for the VRP. Computational results showed that their method can

produce better lower bounds and is more efficient than that proposed by Fukasawa

et al. [20].

The best exact methods developed for the VRP at present are based on the

column-and-cut generation procedure. However, introducing those additional cuts

in a column-and-cut generation procedure often makes the pricing problem more

difficult to solve. Pecin et al. [37] devised a technique to keep the structure of the

pricing problem less affected when subset-row cuts are introduced. Moreover, by

incorporating some effective optimization techniques, such as dual stabilization,

route enumeration, variable fixing, and strong branching, Pecin et al. [37] was able

to solve all the benchmark instances with up to 199 customers to optimality.

11
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2.2 Exact Methods for the VRPTW

Similar to the VRP, the state-of-the-art methods for the VRPTW are also

based on a set-partitioning model. Desrochers et al. [16] is a pioneer work in this

direction, which proposed the first branch-and-price algorithm for the VRPTW

and formulated the pricing problem as an elementary shortest path problem with

resource constraints (ESPPRC). Since such a pricing problem is NP-hard [18],

Desrochers et al. [16] employed a q-route relaxation and developed a dynamic

programming algorithm to compute the q-route of the minimum reduced cost with

no 2-cycles. The branch-and-price algorithm proposed by Desrochers et al. [16]

was able to solve seven benchmark instances of [40] containing 100 customers to

optimality.

To improve the efficiency of the branch-and-price algorithm, the LP relaxations

of the set-partitioning models of the problem are often strengthened by valid in-

equalities. Not only pricing problems should be solved to identify variables with

negative reduced cost, but also separation problems should be solved to iden-

tify violated valid inequalities, which results in a branch-and-price-and-cut algo-

rithm. For the VRPTW, Jepsen et al. [28] introduced the subset-row inequalities

and developed a branch-and-price-and-cut algorithm which solved seven new 100-

customer instances of [40] to optimality. Based on the k-path inequalities proposed

by Kohl et al. [29], Desaulniers et al. [14] introduced the generalized k-path inequal-

ities, and their algorithm solved five new 100-customer instances of [40]. Other

valid inequalities, including the rounded capacity constraints [5] and the elemen-

tary inequalities [36] have also been introduced in the literature to strengthen the

LP relaxation of the set-partitioning model.

Although the LP relaxation of the set-partitioning model can be strengthened
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by using elementary routes to define columns, the resulting pricing problem ESP-

PRC is very hard to solve for large-sized instances. However, one can reduce the

computational time for solving the pricing problem by relaxing the requirement

for routes to be elementary, which is at the cost of weakening the resulting lower

bound. Desrochers et al. [16] adopted a q-route relaxation enhanced by a 2-cycle

elimination, which was later extended to a k-cycle elimination by Irnich and Vil-

leneuve [26]. Baldacci et al. [5] introduced the ng-route relaxation and was able to

solve four new 100-customer instances of [40]. The ng-route relaxation has turned

out to be very suitable for the VRPTW, and thus, it has been widely used in

recent studies.

The variable fixing technique fixes the non-negative integer variables whose

values cannot be positive in any optimal solution to zero. For example, if the

reduced cost of a column is greater than the integrality gap between the lower

bound and a valid upper bound, then the column cannot appear in any optimal

solution [8], and thus, its associated binary variable in the set partitioning model

can be fixed to zero. By applying this variable fixing technique, Baldacci et al.

[4] proposed to first enumerate all columns (which represent routes) with reduced

costs not greater than the integrality gap, then to use these columns to form a set

partitioning model, and to solve the resulting model directly by an IP solver. This

approach is efficient to obtain the optimal integer solution when the number of

the enumerated columns is moderate. The variable fixing technique can not only

be applied in reducing the number of columns considered in the set-partitioning

model, but also can eliminate arcs of the underlying graph [27] and thus reduce

the size of the search tree.

Incorporating some of the above-mentioned techniques and together with three

other techniques, including the bidirectional labeling, the decremental state-space
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relaxation, and the completion bound, Pecin et al. [36] were able to solve all the

56 instances of Solomon [40] that have 100 customers, and 51 of the 60 instances

of Gehring and Homberger [21] that have 200 customers, to optimality.

2.3 Exact Methods for the CMTVRPTW and

Its Variants

In the literature, different studies sometimes adopt different terms for the same

meaning or the same term for different meanings. To avoid ambiguity, in this thesis

we define a route as a sequence of nodes, a trip as a time-route pair, and a journey

as a sequence of routes or a sequence of trips. Since this thesis focuses on the

development of exact methods for the CMTVRPTW, existing works on heuristic

methods are not reviewed here. Since time window constraints play a critical role

in the CMTVRPTW, which complicates the problem and its solution methods,

we only review the studies on the CMTVRPTW and its variants that have time

window constraints, and the features of these problems are summarized in Table

2.1. For more comprehensive surveys about multi-trip vehicle routing problems,

we refer the reader to Cattaruzza et al. [9] and Cattaruzza et al. [10].

Azi et al. [2] studied a variant of the CMTVRPTW where a single vehicle is

allowed to perform multiple trips to visit customers within their time windows.

In their settings, each customer can be visited at most once, the loading time at

the depot is proportional to the total service time spent during the visit of the

customers, and a duration limit is imposed on each route. The objective has two

folds, as it aims to maximize the total number of customers visited, under which

to minimize the total travel cost. To solve this problem, they developed a two-

phase method. They enumerated all non-dominated routes in the first phase and
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used these routes to construct an instance of the ESPPRC, in which each node

of the underlying graph represented a non-dominated route. They then solved

this instance of the ESPPRC in the second phase to obtain an optimal journey

of the problem. Computational experiments performed on instances derived from

the 100-customer instances of Solomon [40] showed that the performance of this

solution method was sensitive to the duration limit.

Azi et al. [3] studied a more general problem than that of Azi et al. [2], where

multiple vehicles are allowed to perform multiple trips to visit customers within

their time windows. The problem also generalizes the CMTVRPTW by taking

into account multiple objectives, loading times at the depot, and route duration

limits. To solve this problem, Azi et al. [3] also developed a two-phase method.

They enumerated all the non-dominated routes in the first phase and used these

routes to construct a set-partitioning model for the problem. They then solved

the resulting model in the second phase by a branch-and-price algorithm where

columns of the restricted master problem represented journeys and nodes on the

underlying graph represented non-dominated routes. The computational results

indicated that most instances with 25 customers were solved to optimality. This

problem was later studied by Macedo et al. [34], and all the non-dominated routes

were also enumerated first. By defining nodes as time points and arcs as routes,

they proposed a pseudo-polynomial network flow model. Although the size of the

network flow model increases with the number of time points, the experimental

results on the same set of instances showed that the method of Macedo et al. [34]

outperformed that of Azi et al. [3].

By requiring each customer to be visited exactly once and redefining the ob-

jective as minimizing the total travel cost, Hernandez et al. [23] considered the

CMTVRPTWwith limited trip duration (CMTVRPTW-LD). A two-phase method
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was developed, where in the first phase, non-dominated routes were enumerated to

form a set-partitioning model, and then a trip-based branch-and-price algorithm

was carried out to solve the model in the second phase. The pricing problem of

the branch-and-price algorithm was solved by an inspection method, the running

time of which is pseudo-polynomial time and depends on the granularity of the dis-

cretized time points. Computational results on instances with 25 and 40 customers

showed that their method is on average more efficient than those of Azi et al. [3]

and Macedo et al. [34]. Without the duration limit imposed on routes, Hernan-

dez et al. [25] studied the CMTVRPTW with loading times (CMTVRPTW-LT),

and they developed two set-covering formulations based on journeys and trips,

respectively. Computational results on instances with 25 customers indicated that

solutions obtained from the trip-based model were of better quality than those

from the journey-based model.

Şahin and Yaman [39] studied another variant of the CMTVRPTW where the

multi-depot and heterogeneous fleet characteristics are considered. In their set-

tings, different types of vehicles are associated with different loading capacities,

fixed costs, and travel time matrices. There are more than one depot, and vehicle

trips can start and end at different depots, but for each vehicle type, the number of

vehicles at a depot at the beginning of the planning time horizon should be equal

to that at the end of the planning time horizon. To minimize the sum of the fixed

cost and travel cost of all vehicles, they adopted a branch-and-price algorithm

based on a set-partitioning model, where columns are represented with journeys.

An efficient heuristic method was developed to find columns with negative reduced

costs, and the exact labeling algorithm is evoked only when the heuristic method

fails. Computational results show that their method can solve some instances with

up to 40 customers, three depots, and two types of vehicles.
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Recently, Paradiso et al. [35] developed a novel route-based model for the

CMTVRPTW, where they used a team orienteering problem with time windows

(TOPTW) to formulate the separation problem for constraints that ensure no

more than K vehicles assigned to the selected routes. To solve the problem, they

first applied column generation to compute the lower bound provided by the LP

relaxation without considering the constraints on the number of vehicles assigned.

They then enumerated all the routes with reduced costs no greater than the inte-

grality gap between the lower bound and an upper bound. They further identified

the relaxed structure feasibility (RSF) constraints and SR3 valid inequalities that

excluded fractional solutions of the LP relaxation to tighten the lower bound. With

these, they reduced the integrality gap, and accordingly, were able to reduce the

number of routes to be considered. They then applied a branch-and-cut algorithm

to close the integrality gap. In addition to being able to solve almost all bench-

mark instances with 40 customers and some with 50 customers within a time limit

of 3 hours, their solution method can also be adapted to tackle other variants of

the CMTVRPTW, including the CMTVRPTW-LD and CMTVRPTW-LT.

Yang [46] still utilized the route-based model to further enhance the solution

method proposed by Paradiso et al. [35]. They first applied a heuristic method to

compute an upper bound of the problem and applied column-and-cut generation

to compute the lower bound provided by the LP relaxation, with a number of

RSF and SR3 valid inequalities taken into account. They then enumerated all the

routes with reduced costs no greater than the integrality gap. Next, they applied

the cutting-plane procedure to solve the strengthened LP relaxation of the set-

partitioning model defined on the enumerated routes and added all other violated

RSF and SR3 valid inequalities. Since a route can have different reduced costs

under different dual solutions, the number of enumerated routes can be different

under different dual solutions. Therefore, among all the optimal dual solutions for
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Table 2.1: Representative exact methods for the CMTVRPTW and its variants

Reference
Problem

abbreviation
The # of
vehicles

The #
of visit

Duration
limit

Loading
time

Min
cost

Azi et al. [2] - = 1 ≤ 1 ✓ ✓ ×
Azi et al. [3] - ≥ 1 ≤ 1 ✓ ✓ ×

Macedo et al. [34] - ≥ 1 ≤ 1 ✓ ✓ ×
Hernandez et al. [23] CMTVRPTW-LD ≥ 1 = 1 ✓ ✓ ✓
Hernandez et al. [24] CMTVRPTW-LT ≥ 1 = 1 × ✓ ✓
Paradiso et al. [35] CMTVRPTW 1 ≥ 1 = 1 × × ✓

Yang [46] CMTVRPTW 1 ≥ 1 = 1 × × ✓

the LP relaxation, they found the one that maximizes the sum of the reduced cost

of all the enumerated routes, by solving an LP problem. This reduced the number

of enumerated routes. Moreover, by aggregating some routes with certain condi-

tions satisfied, they further reduced the number of columns in the set-partitioning

model of the problem. The integrality gap was then closed by a branch-and-cut

algorithm. Computational results showed that the improved solution method of

Yang [46] was able to solve almost all benchmark instances with 80 customers and

some with 100 customers within a time limit of 3 hours to optimality, outperform-

ing the method of Paradiso et al. [35].

From the literature, we can see that the solution methods proposed by Azi et al.

[2], Azi et al. [3], Macedo et al. [34] and Hernandez et al. [23] involve enumerating

routes without applying the variable fixing technique and utilizing dual information

of the LP relaxation, which are doable in the presence of rigid duration limit

constraints and difficult to be applied to the CMTVRPTW and other variants

without such constraints. Hernandez et al. [25] proposed a trip-based model to

solve the CMTVRPTW-LT, but the pricing problem is very difficult to solve and

the branch-and-price algorithm that they used to close the integrality gap is also

very time-consuming. Relying on a journey-based model, Şahin and Yaman [39]

1Their method can also solve CMTVRPTW-LT, CMTVRPTW-LD, CMTVRPTW-R, DRP.
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designed a branch-and-price algorithm for a variant of the CMTVRPTW where

multi-depot and heterogeneous fleet characteristics are considered, but the pricing

problem is very difficult to solve so that only some small-sized instances can be

solved. Although the solution method based on route-based models, which was

first proposed by Paradiso et al. [35] and later improved by Yang [46], is superior

to other exact methods known in the literature, the branch-and-cut algorithm

that they used to close the integrality gap is a critical bottleneck. Among the

27 benchmark instances with 100 customers, only 14 instances can be solved to

optimality by their solution methods. In this thesis, our new exact method can

solve all these benchmark instances to optimality.
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Formulations

In Section 3.1 and Section 3.2 of this chapter, we apply some valid inequalities

to strengthen the LP relaxations of the route-based IP model and trip-based IP

model of the CMTVRPTW, which were first proposed by Paradiso et al. [35]

and Hernandez et al. [23], respectively. These valid inequalities include some

newly developed ones, which are named RWT constraints and strengthen the RSF

constraints proposed by Paradiso et al. [35]. We then compare the tightness of the

LP relaxations of these models in Section 3.3.

3.1 Route-Based IPModel and Its Valid Inequal-

ities

We define a route r = (0, i1, i2, . . . , inr , 0) as a sequence of nodes, so that

a vehicle that performs the route r departs from the depot 0, visits customer

nodes i1, i2, . . . , inr sequentially, and then returns back to the depot 0. We use

V(r) = {i1, i2, . . . , inr} to denote the set of customers visited on route r. Since
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unnecessary waiting time at customers cannot lead to better solutions, without

loss of generality, we can assume that every vehicle serves and then leaves each

customer visited as early as possible. In other words, for a vehicle arriving at

customer i at time t, it starts serving the customer at time ai if t < ai, at time

t if ai ≤ t ≤ bi, and it fails to serve the customer if t > bi. If the vehicle serves

the customer successfully, it is assumed to leave for the next node immediately

once the service is completed, i.e., at time (ai + sti) if t < ai, and at time (t+ sti)

if ai ≤ t ≤ bi. Accordingly, when a vehicle performs a route, given a departure

time from the depot, one can follow the argument above to either determine its

arrival time for every customer on this route, or to determine that the vehicle

cannot visit all of these customers within their time windows or return back to

the depot no later than time b0. Based on this observation, we define that a route

r = (0, i1, i2, . . . , inr , 0) is feasible if and only if (i) all the customers i1, i2, . . . , inr

of route r are different, (ii) the total demand quantity
∑

i∈V(r) qi of the customers

of route r does not exceed the vehicle capacity Q, and (iii) a vehicle that departs

from the depot at the earliest time a0 can visit all the customers i1, i2, . . . , inr along

route r within their time windows and return back to the depot no later than time

b0. The associated total cost of route r is given by cr = c0i1 +
∑nr−1

w=1 ciwiw+1 + cinr0.

As shown by Azi et al. [2], for any feasible route r, there exist a time interval

[er, lr] and a time duration dr, such that a vehicle can visit all the customers along

route r within their time windows and return back to the depot no later than time

b0, if and only if it departs from the depot at time t ∈ [a0, lr], and returns to the

depot at time t+ dr if t ∈ [er, lr] or at time er + dr if t ∈ [a0, er). For route r, we

thus refer to [a0, lr] as the interval of its feasible departure times from the depot,

lr as its latest departure time from the depot, and refer to er + dr and lr + dr as

its earliest and latest return time to the depot, respectively. It can also be seen

that the duration for a vehicle to perform route r is always greater than or equal
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0 1 2 010 10 10

[0, 50] [0, 20] [25, 50] [0, 50]

Figure 3.1: A route r = (0, 1, 2, 0) where travel times are on arrows, time windows
are above circles.

to dr. Thus, we refer to dr as the minimum duration associated with route r.

Figure 3.1 presents an example to illustrate the three parameters, er, lr and dr,

defined above for a route r = (0, 1, 2, 0), where service times are st0 = st1 = st2 =

0. Consider a vehicle performing this route and departing from the depot at time

t. The time window constraints must be violated if t > 10, because the vehicle

cannot arrive at customer 1 no later than b1 = 20. If t ∈ [5, 10], it can be seen that

the vehicle must start serving customer 1 at time (t+ 10), start serving customer

2 at time (t + 20), and return to the depot at time (t + 30). If t ∈ [0, 5), it can

also be seen that the vehicle must start serving customer 1 at time (t+ 10), start

serving customer 2 at time 25, and return to the depot at time 35. Therefore, by

definition, we have that er = 5, lr = 10 and dr = 30 for this route r.

Following Paradiso et al. [35] we can obtain a route-based IP model for the

CMTVRPTW. For this, we use R to denote the set of all feasible routes, cr to

denote the cost of each route r ∈ R, and αir = Ii∈V(r) to denote a binary parameter

indicating whether or not customer i is visited by route r for i ∈ V. For a subset

R̄ of R, let ζ(K, R̄) denote the maximum number of routes in R̄ that can be

performed by the K vehicles. Define xr as a binary variable indicating whether or

not route r is selected. The route-based IP model for the CMTVRPTW (referred

to as model RP in short) can thus be described as follows:

(RP) zRP = min
∑
r∈R

crxr, (3.1)
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s.t.
∑
r∈R

αirxr = 1, ∀ i ∈ V, (3.2)

∑
r∈R̄

xr ≤ ζ(K, R̄), ∀ R̄ ⊆ R, (3.3)

xr ∈ {0, 1}, ∀ r ∈ R. (3.4)

In model RP, the objective (3.1) is to minimize the total travel cost. Constraints

(3.2) ensure that each customer is visited exactly once. Constraints (3.3) state that

the number of selected routes in R̄ is less than or equal to the maximum number of

routes in R̄ that can be performed by the K vehicles. The domain of variables are

specified by constraints (3.4). We use LRP to denote the LP relaxation of model

RP. Moreover, define R̄x = {r ∈ R : xr = 1} for each x satisfying constraints

(3.2) and (3.4). It can be seen that
∑

r∈R̄x
xr = |R̄x|, x is feasible to model RP if

|R̄x| = ζ(K, R̄x), and it is infeasible if |R̄x| > ζ(K, R̄x).

In the literature, Paradiso et al. [35] and Yang [46] applied the RSF and SR3

constraints to strengthen the LP relaxation LRP of model RP. One can further

enhance LRP by imposing some other valid inequalities. As illustrated in the

remainder of this section, we derive a new class of valid inequalities, named RWT

constraints, which strengthen the RSF constraints. We then incorporate these

new valid inequalities to strengthen the LRP, together with several other valid

inequalities that have not been applied in the studies of the CMTVRPTW, such

as the SR5-2, SR5-3, EL, and SRC constraints.

3.1.1 Relaxed Structure Feasibility (RSF) Constraints

The RSF constraints, which were proposed by Paradiso et al. [35], form a relax-

ation of the constraints that prohibit more than K routes being performed at the
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same time. Let βtr be a binary parameter to indicate whether route r is always

performed at time t for all its feasible departure times from the depot in interval

[a0, lr]. For route r ∈ R, since lr is the latest departure time from the depot and

er + dr is the earliest return time to the depot, we obtain that βtr = 1 if and only

if lr ≤ t < er+dr. Accordingly, the RSF constraints can be represented as follows.

(RSF)
∑
r∈R

βtrxr ≤ K, ∀ t ∈ [a0, b0]. (3.5)

Since [a0, b0] is a continuous-time interval, there are an infinite number of RSF

constraints in (3.5). Incorporating all of them in model RP makes the model not

tractable. To address this issue, we replace [a0, b0] in constraints (3.5) with a dis-

crete set T, and strengthen model RP by incorporating only those RSF constraints

in T. In a cutting-plane procedure, one can initialize T with an empty set, and

iteratively solves model LRP, identify the violated RSF constraints not in T, and

add them into T.

Moreover, given a solution x of LRP, let Rx = {r ∈ R : xr > 0} denote

the set of routes with positive associated variable values. We have
∑

r∈R βtrxr =∑
r∈Rx

βtrxr. From the definition of parameter βtr we know that the value of∑
r∈Rx

βtrxr can increase only at t ∈ {lr : r ∈ Rx} and can decrease only at

t ∈ {er + dr : r ∈ Rx}. Thus,
∑

r∈Rx
βtrxr is a step function of t. Therefore, to

identify RSF constraints that are violated by x, we only need to check inequalities

in (3.5) with t ∈ {lr : r ∈ Rx}.

3.1.2 Relaxed Working Time (RWT) Constraints

We now derive a new class of valid inequalities, named RWT constraints, for

the CMTVRPTW, which strengthen the RSF constraints proposed by Paradiso

24



3.1. Route-Based IP Model and Its Valid Inequalities

et al. [35]. Consider any two time points t1 and t2 with t1 < t2, and any route

r ∈ R. Assume that sup(∅) = inf(∅) = 0. We define a function Ft1t2r(τ) as follows:

Ft1t2r(τ) = sup([τ, τ + dr] ∩ [t1, t2])− inf([τ, τ + dr] ∩ [t1, t2]). (3.6)

When τ ∈ [er, lr], the working time interval for a vehicle to performe route r is

[τ, τ + dr] (i.e., such vehicle departs from the depot at time τ and returns to the

depot at time τ + dr), then Ft1t2r(τ) is the length of the intersection of [t1, t2] and

working time interval [τ, τ + dr]. When a vehicle performing route r departs from

the depot at time τ ∈ [a0, er), the working time interval is [τ, er + dr], then the

length of the intersection of [t1, t2] and working time interval [τ, er + dr] is greater

than Ft1t2r(er). Therefore, the β̄t1t2r defined below is a lower bound on the length

of the intersection of [t1, t2] and the working time interval for a vehicle to perform

route r.

β̄t1t2r = min
τ∈[er,lr]

Ft1t2r(τ). (3.7)

To illustrate the function Ft1t2r(τ), consider a route r where, er = 2, lr = 4 and

dr = 2 and assume that t1 = 3, t2 = 6. Form (3.6) we have that Ft1t2r(τ) = τ − 1

for τ ∈ [2, 3] and Ft1t2r(τ) = 2 for τ ∈ (3, 4]. Thus, by (3.7), we obtain that

β̄t1t2r = minτ∈[2,4] Ft1t2r(τ) = Ft1t2r(2) = 1. This indicates that within the time

interval [3, 6], a vehicle performing route r is in working state at least for a time

duration of one unit.

Moreover, as illustrated in Figure 3.2, if t2 − t1 ≥ dr, we can see that Ft1t2r(τ)
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is a piecewise linear function and can be represented as follows:

Ft1t2r(τ) =



0, if τ ≤ t1 − dr,

τ + dr − t1, if t1 − dr < τ ≤ t1,

dr, if t1 < τ ≤ t2 − dr,

t2 − τ, if t2 − dr < τ ≤ t2,

0, if τ > t2,

(3.8)

and otherwise, t2 − t1 < dr, we can see that Ft1t2r(τ) is also a piecewise linear

function and can be represented as follows:

Ft1t2r(τ) =



0, if τ ≤ t1 − dr,

τ + dr − t1, if t1 − dr < τ ≤ t2 − dr,

t2 − t1, if t2 − dr < τ ≤ t1,

t2 − τ, if t1 < τ ≤ t2,

0, if τ > t2.

(3.9)

It can thus be verified that Ft1t2r(τ) is a quasiconcave function. This, together

with (3.7), implies that

β̄t1t2r = min
τ∈[er,lr]

Ft1t2r(τ) = min{Ft1t2r(er), Ft1t2r(lr)}. (3.10)

Moreover, we have Ft1t2r(er) = min{dr, t2 − t1, (er + dr − t1)
+} and Ft1t2r(lr) =

min{dr, t2 − t1, (t2 − lr)
+}. Furthermore, the value of β̄t1t2r can be computed by

equation (3.11) below, which can be derived based on the definitions of t1, t2, er,
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(a) the case for t2 − t1 ≥ dr

 
 

 

    

(b) the case for t2 − t1 < dr

Figure 3.2: Illustration of function Ft1t2r(τ).

lr, er + dr and lr + dr and their relationships:

β̄t1t2r =



t2 − lr, if t1 ≤ lr ≤ t2 ≤ er + dr,

min{er + dr − t1, t2 − lr, dr}, if t1 ≤ lr ≤ er + dr ≤ t2,

t2 − t1, if lr ≤ t1 ≤ t2 ≤ er + dr,

er + dr − t1, if lr ≤ t1 ≤ er + dr ≤ t2,

(t2 − lr)
+, if t1 ≤ er ≤ t2 ≤ lr + dr, lr > er + dr,

dr, if t1 ≤ er ≤ lr + dr ≤ t2, lr > er + dr,

min {(er + dr − t1)
+, (t2 − lr)

+} , if er ≤ t1 ≤ t2 ≤ lr + dr, lr > er + dr,

(er + dr − t1)
+, if er ≤ t1 ≤ lr + dr ≤ t2, lr > er + dr,

0, otherwise.

(3.11)

Consider any feasible solution, for which we know that
∑

r∈R β̄t1t2rxr is a lower

bound on the total length of durations performed by selected routes in time interval

[t1, t2]. Since there are K vehicles available, this lower bound cannot exceed K(t2−

t1). We thus obtain the following valid inequalities to model RP, which is referred
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to as the RWT constraints:

(RWT)
∑
r∈R

β̄t1t2rxr ≤ K(t2 − t1), ∀ t1, t2 ∈ [a0, b0], t1 < t2. (3.12)

Like the RSF constraints, the RWT constraints newly introduced above are also

a relaxation of the constraints that prohibit more than K routes from being per-

formed at the same time.

We now show as follows that the RWT constraints strengthen the RSF con-

straints. For any route r and time point t, by definitions of β and β̄, if βtr = 1,

then there exists a positive number ϵtr > 0 such that a vehicle performing route

r is in working state during [t, t+ ϵtr) for all its feasible departure times from the

depot, which implies that β̄t,t+ϵtr,r = ϵtr. If βtr = 0, then there exists a positive

number ϵtr > 0 such that a vehicle performing route r is not in working state

during [t, t + ϵtr) for some of its feasible departure times from the depot, which

implies that β̄t,t+ϵtr,r = 0. From this we obtain that β̄t,t+ϵ,r = ϵβtr for all ϵ ∈ (0, ϵtr].

Hence, for any given t and for ϵ = min{ϵtr : r ∈ R} > 0, we have that

∑
r∈R

βtrxr > K ⇒
∑
r∈R

ϵβtrxr > Kϵ⇒
∑
r∈R

β̄t,t+ϵ,rxr > K(t+ ϵ− t). (3.13)

This implies that if an RSF constraint is violated, there is an RWT constraint

that is also violated. Therefore, the RSF constraints form a relaxation of the

RWT constraints.

Moreover, there exist situations where all RSF constraints are satisfied but

some RWT constraints are violated. To see this, consider the example shown in

Figure 3.3 with three routes, where e1 = 0, l1 = 1, e2 = 1, l2 = 2, e3 = 2,

l3 = 3, d1 = d2 = d3 = 2, K = 1, x1 = x2 = x3 = 1. On the one hand, since∑3
r=1 βtrxr = 1 for t ∈ [1, 4) and

∑3
r=1 βtrxr = 0 for every other value of t, all
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0 1 2 3 4 5 6 time

route 1

route 2

route 3

Figure 3.3: An infeasible solution that satisfies all the RSF constraints but violates
a RWT constraint, where time intervals [lr, er+dr] for routes r = 1, 2, 3 are shown
in dashed lines.

RSF constraints are satisfied. On the other hand, for t1 = 0 and t2 = 4, since∑3
r=1 β̄0,4,rxr = 2 + 2 + 1 = 5 > 1× (4− 0), the corresponding RWT constraint is

violated.

Therefore, RWT constraints strengthen the RSF constraints, so that they can

be applied to improve the lower bound further. Given a solution x of LRP, we

define TRTW
x = {er, lr, er + dr, lr + dr : r ∈ Rx}. To shorten the running time

spent in solving the separation problem for the RWT constraints, one may only

check violations of the RWT constraints for some selected pairs of t1 and t2 in

{(t1, t2) : t1, t2 ∈ TRTW
x , t1 < t2}.

3.1.3 Subset-Row (SR3, SR5-2, SR5-3) Constraints

The subset-row constraints, introduced by Jepsen et al. [28], are widely applied

to the VRP and some of its variants. However, its application to the CMTVRPTW

is limited in the existing studies [35, 46]. Following Jepsen et al. [28], the subset-

row constraints for the CMTVRPTW can be represented as follows (where Z++ is

the set of positive integers):

∑
r∈R

⌊∑
i∈V̄

αir/k

⌋
xr ≤

⌊
|V̄|/k

⌋
, ∀ V̄ ⊆ V, k ∈ Z++. (3.14)
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To derive such constraints, we note that k
∑

r∈R
⌊∑

i∈V̄ αir/k
⌋
xr ≤

∑
r∈R

∑
i∈V̄ αirxr =∑

i∈V̄
∑

r∈R αirxr = |V̄|. Thus
∑

r∈R
⌊∑

i∈V̄ αir/k
⌋
xr ≤ |V̄|/k. Due to constraints

(3.4),
∑

r∈R
⌊∑

i∈V̄ αir/k
⌋
xr is an integer and we have

∑
r∈R

⌊∑
i∈V̄ αir/k

⌋
xr ≤⌊

|V̄|/k
⌋
.

Given any customer set V̄ ⊆ V, and any positive integer k, let us define an

integer parameter ηrV̄k =
⌊∑

i∈V̄ αir/k
⌋
. Accordingly, the SR3, SR5-2 and SR5-3

constraints, which are special cases of the subset-row constraints, are shown as

follows:

(SR3)
∑
r∈R

ηrV̄2xr ≤ 1, ∀ V̄ ⊆ V, |V̄| = 3, (3.15)

(SR5-2)
∑
r∈R

ηrV̄2xr ≤ 2, ∀ V̄ ⊆ V, |V̄| = 5, (3.16)

(SR5-3)
∑
r∈R

ηrV̄3xr ≤ 1, ∀ V̄ ⊆ V, |V̄| = 5. (3.17)

It can be seen that the number of SR3 constraints is proportional to |V|3, and

their separation problems can be solved efficiently by a direct enumeration, as

shown in [35, 46] for the CMTVRPTW. The SR5-2 and SR5-3 constraints have

not been applied to the CMTVRPTW in the literature, and the numbers of them

are proportional to |V|5. As a result, separating them by direct enumeration is

very time-consuming. For other VRP problems, such as the VRPTW, only some

local search heuristics are developed to solve the separation problems for the SR5-2

and SR5-3 constraints [36].

In our study, we apply the SR5-2 and SR5-3 constraints to the CMTVRPTW

for the first time in the literature. To solve their separation problems, we first

select only some subsets of five customers to verify. If all such SR5-2 or SR5-3

constraints are satisfied, then we propose to solve the IP model SR5-2 below for
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the SR5-2 constraints and the IP model SR5-3 below for the SR5-3 constraints,

respectively, where x is a given feasible solution to LRP, Rx = {r ∈ R : xr > 0} is

a set of routes r with xr > 0 in the given feasible solution to LRP, and Z+ is the

set of all non-negative integers.

(SR5-2) max zSR5-2(u,v) =
∑
r∈Rx

xrur − 2, (3.18)

s.t. ur −
1

2

∑
i∈V

αirvi ≤ 0, ∀ r ∈ Rx, (3.19)

∑
i∈V

vi = 5, (3.20)

ur ∈ Z+, ∀ r ∈ Rx, (3.21)

vi ∈ {0, 1}, ∀ i ∈ V. (3.22)

Here, for each route r ∈ Rx, constraints (3.19) and (3.21) mean that ur is an

integer variable equal to the value of ηrV̄2. For each i ∈ V, constraint (3.22) means

that vi is a binary variable indicating whether customer i is in V̄. Constraint (3.20)

requires that |V̄| = 5 hold true. The objective function (3.18) is to maximize the

violation of a SR5-2 constraint. Specifically, if there exists a feasible solution

(u,v) that satisfies zSR5-2(u,v) > 0, then the SR5-2 constraint defined on the set

V̄ = {i ∈ V : vi = 1} is violated.

(SR5-3) max zSR5-3(u,v) =
∑
r∈Rx

xrur − 1, (3.23)

s.t. ur −
1

3

∑
i∈V

αirvi ≤ 0, ∀ r ∈ Rx, (3.24)
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∑
i∈V

vi = 5, (3.25)

ur ∈ Z+, ∀ r ∈ Rx, (3.26)

vi ∈ {0, 1}, ∀ i ∈ V. (3.27)

Here, for each route r ∈ Rx, constraints (3.24) and (3.26) mean that ur is an

integer variable equal to the value of ηrV̄3. For each i ∈ V, constraint (3.27) means

that vi is a binary variable indicating whether customer i is in V̄. Constraint (3.25)

requires that |V̄| = 5 hold true. The objective function (3.23) is to maximize the

violation of a SR5-3 constraint. Specifically, if there exists a feasible solution

(u,v) that satisfies zSR5-3(u,v) > 0, then the SR5-3 constraint defined on the set

V̄ = {i ∈ V : vi = 1} is violated. We can set a time limit (e.g., 0.5 second in this

study) when applying an optimization solver to solve models SR5-2 and SR5-3.

3.1.4 Elementary (EL) Constraints

The EL constraints, introduced by Pecin et al. [36], are also known to be effec-

tive in solving the VRP and some of its variants. However, they have not been

applied to the CMTVRPTW in the existing studies. For any route r ∈ R, any

customer i ∈ V, and any nonempty customer set V̄ ⊆ V\{i}, let us define a binary

parameter λirV̄ as follows:

λirV̄ =

 |V̄| − 1

|V̄|
αir +

∑
j∈V̄

1

|V̄|
αjr

 . (3.28)

By following the literature [36], the EL constraints for the CMTVRPTW can
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be represented as follows:

∑
r∈R

λirV̄xr ≤ 1, ∀ i ∈ V, V̄ ⊆ V \ {i}, V̄ ̸= ∅. (3.29)

For any customer i and given nonempty customer subset V̄ ⊆ V \ {i}, the EL

constraint in (3.29) states that the number of routes r that visit all the customers

in V̄ or visit customer i together with at least one customer in V̄ cannot be greater

than one. Given a fractional solution x of the LP relaxation LRP of model RP,

to solve the separation problems of the EL constraints for the CMTVRPTW ef-

ficiently, we only consider the EL constraints for V̄ ∈ {V(r) : r ∈ Rx} in our

study.

3.1.5 Strengthened Rounded Capacity (SRC) Constraints

The SRC constraints, which were introduced by Baldacci et al. [4] for the VRP,

have not been applied to the CMTVRPTW in the existing studies. For any route

r ∈ R and any customer set V̄ ⊆ V, define a binary parameter µrV̄ = IV(r)∩V̸̄=∅ to

indicate whether or not route r visits at least one customer in set V̄. Following

Baldacci et al. [4], the SRC constraints for the CMTVRPTW can be represented

as follows: ∑
r∈R

µrV̄xr ≥

⌈∑
i∈V̄

qi/Q

⌉
, ∀ V̄ ⊆ V. (3.30)

It states that the number of routes that serve customers of set V̄ cannot be fewer

than ⌈
∑

i∈V̄ qi/Q⌉, which is due to the capacity limit of each vehicle.

In the literature, a software package, named CVRPSEP and developed by

Lysgaard [32] is widely used to solve the separation problem of the SRC con-

straints for the VRP and its variations by heuristics. In our study, we solve the
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separation problem of the SRC constraints for the CMTVRPTW to optimality, so

that more violated SRC constraints can be obtained. To achieve this, we propose

to solve the IP model SRC below, where x is a given feasible solution to LRP and

Rx = {r ∈ R : xr > 0} is a set of routes r with xr > 0 in the given feasible solution

to LRP.

(SRC) min zSRC(u,v, w) =
∑
r∈Rx

xrur − w, (3.31)

s.t. w −
∑
i∈V

qivi/Q ≥ 0, (3.32)

w −
∑
i∈V

qivi/Q ≤ 1− ϵ, (3.33)

ur − αirvi ≥ 0, ∀ i ∈ V, r ∈ Rx, (3.34)

ur ∈ {0, 1}, ∀ r ∈ Rx, (3.35)

vi ∈ {0, 1}, ∀ i ∈ V, (3.36)

w ∈ Z+. (3.37)

Here, for each i ∈ V, vi is a binary variable indicating whether customer i

is in set V̄. For each route r ∈ Rx, constraints (3.34) and (3.35) mean that ur

is a binary variable indicating whether µrV̄ = 1. Constraints (3.32), (3.33) and

(3.37) mean that w is an integer variable denoting the value of
⌈∑

i∈V̄ qi/Q
⌉
. The

parameter ϵ is a very small positive number, which equals 10−6 in our study, so

as to ensure w =
⌈∑

i∈V̄ qi/Q
⌉
. The objective function (3.31) is the violation of a

SRC constraint. Specifically, if model SRC above has a feasible solution (u,v, w)

that satisfies zSRC(u,v, w) < 0, then the SRC constraint for V̄ = {i ∈ V : vi = 1}

must be violated. We can also set a time limit (e.g., 0.5 second in our study) when

applying an IP solver to solve model SRC.
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3.2 Trip-Based IP Model and Its Valid Inequal-

ities

We define a trip s = (τ, r) as a time-route pair where r = (0, i1, i2, . . . , inr , 0) ∈

R is a feasible route and τ ∈ [a0, lr] is a feasible departure time from the depot of

route r. Such a representation of a trip indicates that a vehicle departs from the

depot at time τ , serves customers i1, i2, . . . , inr along the route r, and then returns

to the depot. As mentioned in Section 3.1, since unnecessary waiting time for

customers cannot lead to better solutions, when visiting a customer, each vehicle

can be assumed to start its service and then leave for the next node as early as

possible. Therefore, the arrival time for each customer along the route can be

determined by the departure time τ from the depot. Moreover, it can be seen that

the total cost of the trip s = (τ, r), denoted by cs, is the same as the total cost cr

of the associated route r.

Consider any solution to CMTVRPTW. If it contains a trip (τ, r) with τ ∈

[a0, er), then the trip (τ, r), which departs from the depot earlier than er, can be

replaced by another trip (er, r), which departs from the depot at time er, without

impairing the feasibility and total cost of the solution. This is followed by our

argument in Section 3.1, which implies that vehicles perform such two trips during

[τ, er + dr) and [er, er + dr) respectively, so that the latter trip dominates the

former. Therefore, without loss of generality, we require every trip (τ, r) satisfying

τ ∈ [er, lr] and refer to [er, lr] as the interval of its non-dominated departure times

from the depot.

Hernandez et al. [23] proposed a trip-based IP model for the CMTVRPTW-

LD, which can also be applied to formulate the CMTVRPTW as follows. Let S

denote the set of all trips. For each trip s ∈ S, let rs denote its associated route,
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τs ∈ [ers , lrs ] denote its associated departure time from the depot, and cs denote

its associated cost. For each customer i ∈ V and trip s ∈ S, let αis = Ii∈V(rs)
denote a binary parameter indicating whether customer i is visited by trip s. Let

γts denote a binary parameter indicating whether trip s is performed at time t.

This implies that γts = 1 if and only if τs ≤ t < τs + drs . Define ys as a binary

variable indicating whether trip s appears in the solution. We can formulate the

CMTVRPTW as the following trip-based IP model.

(SP) zSP = min
∑
s∈S

csys, (3.38)

s.t.
∑
s∈S

αisys = 1, ∀ i ∈ V, (3.39)

∑
s∈S

γtsys ≤ K, ∀ t ∈ [a0, b0], (3.40)

ys ∈ {0, 1}, ∀ s ∈ S. (3.41)

In model SP, the objective (3.38) is to minimize the total travel cost. Con-

straints (3.39) ensure that each customer must be visited exactly once. Constraints

(3.40), which are referred to as working time (WT) constraints, state that at most

K trips can be performed at any time. Constraints (3.41) specify the domain of

variables. We denote the LP relaxation of model SP as LSP.

Since [a0, b0] is a continuous time interval, there are an infinite number of WT

constraints in (3.40). Incorporating all of them in model SP makes the model not

tractable. To address this issue, we replace [a0, b0] in (3.40) with a discrete set T,

as shown below. ∑
s∈S

γtsys ≤ K, ∀ t ∈ T. (3.42)

From this, we obtain a relaxation of model SP, denoted by SP(T). We can then
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strengthen such a relaxation of model SP through a cutting-plane procedure, which

initializes T with an empty set, iteratively solves and strengthens the relaxation

SP(T) of model SP, and identifies violated WT constraints not in T, and add them

into T. This process ends when the optimal solution of the relaxation SP(T) is

feasible to model SP, i.e., the WT constraints are satisfied for all t ∈ [a0, b0].

Given a solution y of relaxation LSP or relaxation SP(T), let Sy = {s ∈

S : ys > 0} denote the set of trips with positive variable values. We have that∑
s∈S γtsys =

∑
s∈Sy γtsys. From the definition of parameter γts we know that the

value of
∑

s∈Sy γtsys can increase only at t ∈ {τs : s ∈ Sy} and can decrease only

at t ∈ {τs + drs : s ∈ Sy}. Thus,
∑

s∈Sy γtsys is a step function of t. Therefore, to

identify WT constraints that are violated by y, we only need to check inequalities

in (3.40) with t ∈ {τs : s ∈ Sy}.

Moreover, by definitions of the SR3, SR5-2, SR5-3, EL and SRC constraints,

it can be seen that these constraints can also be applied to strengthen the LP

relaxation of the trip-based model. Let us define parameters ηsV̄k = ηrsV̄k, λisV̄ =

λirsV̄ and µsV̄ = µrsV̄, then following the inequalities introduced in Section 3.42 for

the route-based IP model, we can obtain the following valid inequalities for the

trip-based IP model SP.

(SR3)
∑
s∈S

ηsV̄2ys ≤ 1, ∀ V̄ ⊆ V, |V̄| = 3, (3.43)

(SR5-2)
∑
s∈S

ηsV̄2ys ≤ 2, ∀ V̄ ⊆ V, |V̄| = 5, (3.44)

(SR5-3)
∑
s∈S

ηsV̄3ys ≤ 1, ∀ V̄ ⊆ V, |V̄| = 5, (3.45)

(EL)
∑
s∈S

λisV̄ys ≤ 1, ∀ i ∈ V, V̄ ⊆ V \ {i}, V̄ ̸= ∅, (3.46)

(SRC)
∑
s∈S

µsV̄ys ≥

⌈∑
i∈V̄

qi/Q

⌉
, ∀ V̄ ⊆ V. (3.47)
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To separate these valid inequalities of model SP, we can apply the methods sim-

ilar to those developed for separating valid inequalities of model RP in Section 3.1

with notations Rx, xr, αir, and ur replaced by Sy, ys, αis, and us.

3.3 LP Relaxation Models

We can now strengthen the LP relaxations, LPR and LSP, of model RP and

model SP, respectively, by incorporating the valid inequalities derived in Sec-

tion 3.1 and Section 3.2. As a result, we obtain the following two strengthened LP

relaxations of model RP and model SP:

(SLRP) zSLRP = min
∑
r∈R

crxr,

s.t. (3.2), (3.3), (3.5), (3.12), (3.15), (3.16), (3.17), (3.29), (3.30),

xr ≥ 0, ∀ r ∈ R,

(SLSP) zSLSP = min
∑
s∈S

csys,

s.t. (3.39), (3.40), (3.43), (3.44), (3.45), (3.46), (3.47),

ys ≥ 0, ∀ s ∈ S.

As shown in Paradiso et al. [35], to solve a separation problem of constraint

(3.3), one needs to solve a TOPTW on the route set Rx. It is known that the

TOPTW is NP-hard and |Rx| is often very large for a fractional solution x. More-

over, with SRC constraints (3.30) being further relaxed, the pricing problems of

the column generation approach in Chapter 4 become much easier to solve, since

a stronger dominance rule can be developed.

Due to the observations above, in our solution method to be presented in Chap-
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ter 4, we will utilize three LP relaxations, including SLSP and two relaxations of

SLRP. One relaxation of SLRP, referred to as SLRP1, relaxes constraints (3.3).

The other relaxation of SLRP, referred to as SLRP2, relaxes both constraints (3.3)

and constraints (3.30). Let zSLSP, zSLRP1, and zSLRP2 denote the objective values of

these three LP relaxations. We can now establish Proposition 1 below to compare

the tightness of the three LP relaxations to be utilized in our solution method.

Proposition 1. zSLSP ≥ zSLRP1 ≥ zSLRP2.

Proof. By definition, SLRP2 is a relaxation of SLRP1, implying that zSLRP1 ≥

zSLRP2. Thus, to prove Proposition 1 we only need to show that zSLSP ≥ zSLRP1.

To show zSLSP ≥ zSLRP1, consider any optimal solution y of SLSP. Consider the

trip subset Sy = {s ∈ S : ys > 0} and the route subset Ry = {rs : s ∈ Sy}. We can

now construct x for SLRP1 by setting xr =
∑

s∈Sy:rs=r ys for r ∈ Ry and setting

xr = 0 for r ∈ R \ Ry. Since γts ≥ βtrs , αis = αirs , ηsV̄k = ηrsV̄k, λisV̄ = λirsV̄ and

µsV̄ = µrsV̄, it can be seen that x satisfies constraints (3.2), (3.5), (3.15), (3.16),

(3.17), (3.29) and (3.30).

Moreover, for any t1, t2 ∈ [a0, b0], t1 < t2, according to definitions of Ry and x,

we have

∑
r∈R

β̄t1t2rxr =
∑
r∈Ry

β̄t1t2rxr =
∑
r∈Ry

β̄t1t2r

∑
s∈Sy:rs=r

ys =
∑
s∈Sy

β̄t1t2rsys. (3.48)

Using the definition of β̄t1t2r, we have

∑
s∈Sy

β̄t1t2rsys =
∑
s∈Sy

min
τ∈[ers ,lrs ]

{sup([τ, τ + drs ] ∩ [t1, t2])− inf([τ, τ + drs ] ∩ [t1, t2])} ys

≤
∑
s∈Sy

{sup([τs, τs + drs ] ∩ [t1, t2])− inf([τs, τs + drs ] ∩ [t1, t2])} ys. (3.49)
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According to the definition of γts, we have

sup([τs, τs + drs ] ∩ [t1, t2])− inf([τs, τs + drs ] ∩ [t1, t2]) =

∫ t2

t=t1

γtsdt, (3.50)

and

∑
s∈Sy

{sup([τs, τs + drs ] ∩ [t1, t2])− inf([τs, τs + drs ] ∩ [t1, t2])} ys

=
∑
s∈Sy

(∫ t2

t=t1

γtsdt

)
ys =

∑
s∈Sy

∫ t2

t=t1

(γtsys) dt =

∫ t2

t=t1

∑
s∈Sy

(γtsys) dt. (3.51)

Since y is feasible for SLSP,
∑

s∈Sy (γtsys) ≤ K, then we have

∑
r∈R

β̄t1t2rxr ≤
∫ t2

t=t1

∑
s∈Sy

(γtsys) dt ≤
∫ t2

t=t1

Kdt = K(t2 − t1). (3.52)

Thus, we obtain that x also satisfies the constraints (3.12), which implies that

x is a feasible solution to SLRP1. Since cs = crs for each s ∈ S, it is easy to

show that x and y have the same objective value. Because the objective value of

y equals zSLSP, and the objective value of x cannot be less than zSLRP1, we obtain

that zSLSP ≥ zSLRP1, which, together with zSLRP1 ≥ zSLRP2, completes the proof of

Proposition 1.
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The Three-Phase Exact Method

In this chapter, we illustrate the three-phase solution method for the CMTVRPTW

in detail, where LP relaxations of the route-based and trip-based models are solved

in the first two phases respectively, and the integrality gap is closed in the last

phase to obtain an optimal integer solution. The outline of the solution method

is given in Section 4.1, followed by the illustration of each phase in other sections.

Specifically, Step 1 of Phase 1 for solving SLRP2 is interpreted in Section 4.2,

Step 2 of Phase 1 for route enumeration is described in Section 4.3 and Step 3 of

Phase 1 for solving SLRP1 is presented in Section 4.4. Phase 2 for solving the

strengthened LP relaxation of the trip-based model SLSP is illustrated in Section

4.5, and Phase 3 for closing the integrality gap is presented in Section 4.6. We

then explain how to apply the variable fixing technique for shrinking the departure

time interval in Section 4.7.

To simplify the representation of labeling algorithms in solving SLRP2 and in

route enumeration, we define tij = t
′
ij + sti for each arc (i, j) ∈ A. For each (i, j),

(j, k), and (i, k) in A, it can be seen that the triangle inequality tij + tjk ≥ tik

also holds. This is because t
′
ij + t

′

jk ≥ t
′

ik holds for each (i, j), (j, k), and (i, k) in
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A under our assumption, and because the service time sti is nonnegative for each

i ∈ V0.

4.1 Outline of Solution Method

The variable fixing (also called variable elimination) technique aims to remove

non-negative integer variables whose values cannot be positive in any optimal

solution to an IP model. It has been widely applied to algorithms for various

combinatorial optimization problems, such as the 0-1 knapsack problem [45], the

VRP [22, 4, 27, 15], and so on. In our solution method, the variable fixing tech-

nique is applied in route enumeration, route elimination, trip elimination, and

Proposition 8. We formally state this technique in the following lemma.

Lemma 1. Consider any feasible IP model (named model P) with non-negative

integer variables and bounded optimal objective value, and the dual of its LP re-

laxation (named model D), which are formulated as follows, where Zn
+ is the set of

non-negative integer vectors in dimension n.

(P) zP = min
x∈Zn

+

{
cTx : A1x = w1,A2x ≤ w2,A3x ≥ w3

}
.

(D) zD = max
π1,π2≤0,π3≥0

{
πT

1 w1 + πT
2 w2 + πT

3 w3 : π
T
1 A1 + πT

2 A2 + πT
3 A3 ≤ cT

}
.

For any upper bound UB on zP and any feasible solution (π̄1, π̄2, π̄3) to model D,

if the reduced cost c
′
i of xi w.r.t. (π̄1, π̄2, π̄3) satisfies c

′
i > UB − π̄T

1 w1 − π̄T
2 w2 −

π̄T
3 w3, i.e., (c

T − π̄T
1 A1 − π̄T

2 A2 − π̄T
3 A3)i > UB − π̄T

1 w1 − π̄T
2 w2 − π̄T

3 w3, then

there exists no optimal solution x̄ to model P with x̄i > 0 (or x̄i ≥ 1).

We omit the proof of Lemma 1 since it can be directly derived from the proof

in Hadjar et al. [22], where only constraints with equal signs and with less than
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or equal signs are considered. In Lemma 1, we explicitly consider three sets of

constraints in model P (including constraints with equal signs, with less than or

equal signs, and with greater than or equal signs). This is because the route-based

and trip-based models studied in this work for the CMTVRPTW contain these

three sets of constraints.

With the variable fixing technique, only routes with reduced cost no greater

than the integrality gap between a valid upper bound and the lower bound need

to be considered. This can reduce the number of variables significantly. The

resulting IP model can be solved much more efficiently when the integrality gap

is small (see, e.g., its applications in Baldacci et al. [4, 5], Paradiso et al. [35]

and Yang [46]). In contrast, without applying the variable fixing technique, exact

algorithms, such as the branch-and-price and branch-and-price-and-cut algorithms,

can be very time-consuming, since the number of routes that need to be considered

grows exponentially on the problem size, and the pricing problem to be solved at

each search tree node is often strongly NP-hard and difficult to solve.

To apply the variable fixing technique, a valid upper bound UB is needed.

Baldacci et al. [4] set UB as the best upper bound known, while Pecin et al. [36]

and Yang [46] computed a valid upper bound through heuristic methods. In this

study, we follow an approach applied in Baldacci et al. [6] and Paradiso et al. [35]

to use a guessed upper bound UBg, which is initially set to be slightly greater than

the lower bound LB1 provided by SLRP2, and then increased whenever UBg is

found to be an invalid upper bound. We follow such a way due to its efficiency

and also because the lower bound LB1 provided by SLRP2 is usually very tight.

To present our three-phase solution method, we introduce some additional no-

tations as follows. We use gapini to denote an initial guessed gap between the lower

bound LB1 and the optimal objective value, use ∆gap to denote the increment of
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the guessed gap at each iteration, and use gapmax to denote the maximum value

of the guessed gap. These are hyperparameters of our solution method. More-

over, in addition to SP(T) defined in Section 3.2, we use SP(UBg), SP(T, UBg),

SLRP1(UBg), and SLSP(UBg) to denote restricted models of SP, SP(T), SLRP1,

and SLSP, where the guessed upper bound UBg is applied in variable fixing.

The outline of our solution method can be described in the following three

phases, which are also illustrated in Figure 4.1.

• Phase 1 (Solve the LP relaxation of the route-based model).

– Step 1 (Solve SLRP2). Initialize the guessed gap as gap ← gapini.

Solve SLRP2 through a column-and-cut generation procedure. Denote

its objective value as LB1 and the associated dual solution as π1.

– Step 2 (Route enumeration). If gap > gapmax, terminate the algorithm

with no optimal solutions found but with the lower bound LB1 re-

turned. Otherwise, set the guessed upper bound as UBg ← LB1 ∗ (1 +

gap). Enumerate the set R1 of all routes with reduced costs no greater

than UBg − LB1 w.r.t. π1.

– Step 3 (Solve SLRP1(UBg)). Solve SLRP1(UBg) based on R1 through

a column-and-cut generation procedure. Denote its objective value as

LB2 and the associated dual solution as π2. Remove from R1 all routes

with reduced costs greater than UBg − LB2 w.r.t. π2, and denote the

set of remained routes as R2.

• Phase 2 (Solve the LP relaxation of the trip-based model). Solve SLSP(UBg)

based on R2 through a column-and-cut generation procedure. Denote its

objective value as LB3 and the associated dual solution as π3. Remove

some routes from R2 by applying the variable fixing technique, and denote
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4.1. Outline of Solution Method

the set of remained routes as R3.

• Phase 3 (Close the integrality gap). Solve SP(T, UBg) through an IP solver

directly. (i) If SP(T, UBg) is infeasible or zSP(T,UBg) > UBg, then we let

gap← gap+∆gap and turn to Step 2 of Phase 1. (ii) If the optimal solution

of SP(T, UBg) is infeasible for SP, then we separate and add violated WT

constraints to enlarge T, and then repeat Phase 3. (iii) Otherwise, the op-

timal solution of SP(T, UBg) is also optimal for SP, and thus, we terminate

the algorithm.

We define the optimal objective value of an infeasible minimization problem to

be +∞. Note that SP(UBg) can be derived from SP by replacing R with R3, and

that SP(T, UBg) is a relaxation of SP(UBg) by considering WT constraints only

on a discrete set of time points T. It can thus be seen that zSP(UBg) ≥ zSP (since

R3 ⊆ R), and that zSP(UBg) ≥ zSP(T,UBg) (since T ⊂ [a0, b0]).

Moreover, when UBg is a valid upper bound (i.e., zSP ≤ UBg), R3 must contain

all routes that appear in all optimal solutions to the CMTVRPTW, which implies

that zSP(UBg) = zSP ≤ UBg. When UBg is not a valid upper bound (i.e., zSP >

UBg), some routes that appear in optimal solutions to the CMTVRPTW may

not be included in R3, and thus, the optimal solution of SP(UBg) may not be

optimal for SP, implying that zSP(UBg) ≥ zSP > UBg. For this reason, if condition

(i) of Phase 3 is satisfied, i.e., zSP(T,UBg) > UBg, then we konw that zSP(UBg) ≥

zSP(T,UBg) > UBg, implying that UBg is not a valid upper bound, and thus, we

need to increase the guessed value of UBg, accordingly.

The efficiency of the newly proposed solution method above relies on the tight-

ness of lower bounds and the efficiency of closing the integrality gap. To ensure

the tightness of the lower bounds, in addition to introducing and applying those

valid inequalities, we also solve the LP relaxation of a trip-based model, which can
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Figure 4.1: Outline of the solution method.
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be tighter than that of the route-based model in Paradiso et al. [35] and Yang [46].

To ensure the efficiency of closing the integrality gap, we utilize the enumerated

routes and close the integrality gap by solving trip-based models through an IP

solver directly and by applying a dynamic time discretization technique.

Our approach to closing the integrality gap is different from that of Paradiso

et al. [35] and Yang [46], which is based on the branch-and-cut algorithms and

relies on the route-based model. Constraints (3.3) of the route-based model are

weak, and the number of these constraints that need to be identified can be very

large for some instances. Although Hernandez et al. [23] and Hernandez et al.

[25] adopted a trip-based model for two variants of the CMTVRPTW, they closed

the integrality gap by applying branch-and-price algorithms, which can be very

time-consuming, since the NP-hard pricing problems need to be solved at a lot of

search tree nodes.

The variable fixing technique and column generation procedure can be applied

to models with a finite number of variables, which is not the case in the trip-based

model since the domain of the departure time at the depot for any trip is an

interval and the number of variables is infinite in the trip-based model. However,

if the travel time t
′
ij for all (i, j) ∈ A, the service time sti for all i ∈ V and the

endpoints of the time window [ai, bi] for all i ∈ V0 are rational numbers, then there

exists an optimal solution where departure times of selected trips at the depot are

all rational numbers. Furthermore, there must exist a positive integer M such that

by multiplying M all the departure times become integers. Thus, we can obtain an

optimal solution for the trip-based model by only considering departure times at

the depot in the form k/M , where k is a non-negative integer and a0 ≤ k/M ≤ b0.

Because the number of values of k satisfying such conditions is finite, the route

set R has a finite cardinality, and each trip can be determined by a route and
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the associated departure time at the depot, we can obtain an optimal solution

of the trip-based model by only considering a finite number of variables (trips).

Therefore, the variable fixing technique and column generation procedure can be

applied to the trip-based model by only considering such variables.

4.2 Step 1 of Phase 1: Solve SLRP2

We solve SLRP2 by a column-and-cut generation procedure where column gen-

eration and cut generation proceed alternately. To restrict the running time for

solving SLRP2, we impose a limit on the maximum number of valid inequalities

that can be added to the model, and the cut generation will not be called if the

number of added valid inequalities reaches this limit. We terminate the procedure

and obtain a lower bound LB1, if (i) no new cut is identified in a call of cut gen-

eration, or (ii) the elapsed running time is greater than a predefined time limit at

the end of a call of column generation, or (iii) the difference between the objective

values yield by two successive calls of column generation is less than a predefined

threshold.

We define the restricted master problem of SLRP2 by considering only a subset

of columns and constraints in SLRP2. Let T, Crwt, Csr3, Csr5-2, Csr5-3 and Cel de-

note sets of indices associated with constraints (3.5), (3.12), (3.15), (3.16), (3.17)

and (3.29), respectively. They are initialized to be empty, and then enlarged itera-

tively in cut generation by separating violated valid inequalities through methods

illustrated in Section 3.1.

To start column generation, an initial feasible solution is needed. For this,

we define a dummy feasible route r0 with cr0 = M where M is a large positive

constant, αir0 = 1 for all i ∈ V, er0 = lr0 = a0, dr0 = 0 and µr0V̄ = ⌈
∑

i∈V qi/Q⌉
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4.2. Step 1 of Phase 1: Solve SLRP2

for all V̄ ⊆ V. In the restricted master problem, we replace R, which consists of

an exponential number of routes, with a route subset R′ which is initialized to be

{r0}. Let x0 be the variable associated with route r0. The solution x where x0 = 1

and xr = 0 for all r ∈ R′ \ {r0} is always feasible to the restricted master problem.

However, when M is sufficiently large and the column generation terminates with

x0 > 0 in the optimal solution to the last restricted master problem, it can be

guaranteed that the original problem must have no feasible solution [7].

At each iteration of column generation, we denote the dual solution of the

current restricted master problem as π1 = (f ,g,h,k,m,o,u), where f ,g ≤ 0,h ≤

0,k ≤ 0,m ≤ 0,o ≤ 0,u ≤ 0 are associated with constraints (3.2), (3.5), (3.12),

(3.15), (3.16), (3.17), (3.29) respectively. The reduced cost of a route r ∈ R w.r.t.

π1 can thus be represented by

c
′

r(π
1) = cr −

∑
i∈V

fiαir −
∑
t∈T

gtβtr −
∑

(t1,t2)∈Crwt

ht1t2 β̄t1t2r −
∑

V̄∈Csr3

kV̄ηrV̄2

−
∑

V̄∈Csr5-2

mV̄ηrV̄2 −
∑

V̄∈Csr5-3

oV̄ηrV̄3 −
∑

(i,V̄)∈Cel

uiV̄λirV̄.
(4.1)

Accordingly, we can formulate the pricing problem of SLRP2 as follows:

(SubSLRP2) zSubSLRP2 = min
{
c
′

r(π
1) : r ∈ R

}
. (4.2)

It can be seen that this pricing problem is an ESPPRC, aiming to find an

elementary route r ∈ R such that the reduced cost c
′
r(π

1) is minimized. By

solving this pricing problem, if we obtain a route with negative reduced cost,

i.e., zSubSLRP2 < 0, we add the route to R′, and otherwise, we terminate column

generation, as the SLRP2 based on the complete route set R and cut index sets

T, Crwt, Csr3, Csr5-2, Csr5-3, Cel has been solved to optimality.
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4.2.1 Labeling Algorithm for Pricing Problem SubSLRP2

We solve the pricing problem SubSLRP2 by a labeling algorithm similar to

that of Yang [46], since the master problem SLRP2 is an extension of the LP

relaxation of their route-based model where additional constraints (3.12), (3.16),

(3.17) and (3.29) are taken into account. In our labeling algorithm, we adopt

label representation and state transition equations similarly to theirs, and we also

show that their dominance rules are still valid for solving SubSLRP2. However,

we apply a rollback pruning technique in our labeling algorithm, which has not

been applied in Yang [46], as well as utilize a new completion bound, to effectively

prune the labels.

Label Representation

Except for a different computation of the total reduced cost for each backward

path, our label representation is the same as that of Yang [46] and its detail is

described as follows for the completion of our presentation.

We define an elementary backward path p = (i0, i1, . . . , in) as a node sequence

indicating that a vehicle performing this backward path departs from node in, visits

in−1, . . . , i1 sequentially and arrives at i0 eventually, where i0 = 0, {i1, . . . , in−1} ⊆

V, and i1, . . . , in−1, in are different from each other. Such a backward path is

associated with a label, which is defined as L = (p, i, q, e, l, d, ξ, ρ), where i =

in, q =
∑n

w=1 qiw is the cumulative demand quantity, [e, l] is the non-dominated

departure time set and d is the minimum duration. It indicates that for any vehicle

that performs the backward path p and departs from node i at time t, the time

window constraints are satisfied if and only if t ∈ [a0, l], and the vehicle arrives

at node i0 at time t + d if t ∈ [e, l] and at time e + d if t ∈ [a0, e). Denote

V(p) = V ∩ {i0, i1, . . . , in}, ep = e, lp = l, and dp = d. Parameters βtp, β̄t1t2p, ηpV̄2,
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ηpV̄3, λjpV̄ can thus be defined in the same way as parameters βtr, β̄t1t2r, ηrV̄2, ηrV̄3,

λjrV̄. Accordingly, the arc-based reduced cost ξ and the total reduced cost ρ of

backward path p can be represented as follows.

ξ =
n∑

w=1

(ciwiw−1 − fiw), (4.3)

ρ = ξ −
∑
t∈T

gtβtp −
∑

(t1,t2)∈Crwt

ht1t2 β̄t1t2p −
∑

V̄∈Csr3

kV̄ηpV̄2 −
∑

V̄∈Csr5-2

mV̄ηpV̄2

−
∑

V̄∈Csr5-3

oV̄ηpV̄3 −
∑

(j,V̄)∈Cel

ujV̄λjpV̄.
(4.4)

A label L = (p, i, q, e, l, d, ξ, ρ) is feasible if and only if q ≤ Q and l ≥ ai. We

call L a complete label if i = 0 and n ≥ 1, for which p is a route. Otherwise, L

is called an incomplete label. Thus, finding feasible routes with negative reduced

cost is equivalent to finding labels that are feasible, complete, and with ρ < 0.

State Transition Equations

It is known that a label-setting algorithm for solving ESPPRC is a dynamic pro-

gramming algorithm, where starting from the initial label ({0}, 0, 0, a0, b0, 0, 0, 0),

unexplored labels are generated and explored by extending previously explored

labels. By extending a feasible and incomplete label L = (p, i, q, e, l, d, ξ, ρ) toward

a node j ∈ V0 \V(p), the newly generated label L′ = (p′, j, q′, e′, l′, d′, ξ′, ρ′) can be

determined by the following state transition equations, which are almost the same

with that of Yang [46] except that ρ′ is computed in a different way.

p′ = (i0, i1, . . . , in = i, in+1 = j), (4.5)

q′ = q + qj, (4.6)
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e′ =


bj, if e > bj + tji,

e− tji, if aj + tji ≤ e ≤ bj + tji,

aj, otherwise,

(4.7)

l′ = min{l − tji, bj}, (4.8)

d′ = d+max{tji, e− bj}, (4.9)

ξ′ = ξ + cji − fj, (4.10)

ρ′ is computed according to (4.4). (4.11)

According to (4.7) and (4.9), we can obtain that

e′ + d′ = max{e+ d, aj + tji + d}. (4.12)

Dominance Rule

In our labeling algorithm, a dominance rule is applied to significantly reduce

the number of labels that need to be explored. We define that label L1 dominates

label L2 if for every feasible route associated with a label that equals or extends

L2, there exists a feasible route associated with a label that equals or extends L1

but has an equal or smaller reduced cost. This implies that discarding label L2 but

keeping label L1 will not prevent the labeling algorithm from finding an optimal

solution to the pricing problem.

We can establish Lemma 2, which indicates that the dominance rule adopted

in the labeling algorithm of Yang [46] for solving their pricing problem is still valid

in our labeling algorithm for solving SubSLRP2.

Lemma 2. Let L1 = (p1, i1, q1, e1, l1, d1, ξ1, ρ1) and L2 = (p2, i2, q2, e2, l2, d2, ξ2, ρ2)

be two feasible labels, then L1 dominates L2 if all the following relations are satis-
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fied: (i) i1 = i2, (ii) V(p1) ⊆ V(p2), (iii) l1 ≥ l2, (iv) e1+d1 ≤ e2+d2, (v) d1 ≤ d2,

and (vi) ξ1 ≤ ξ2.

Proof. Relations (iii), (iv), (v) imply that βtp1 ≤ βtp2 and β̄t1t2p1 ≤ β̄t1t2p2 . Relation

(ii) implies that ηp1V̄2 ≤ ηp2V̄2, ηp1V̄3 ≤ ηp2V̄3 and λkp1V̄ ≤ λkp2V̄. This, together

with relation (vi) and g ≤ 0,h ≤ 0,k ≤ 0,m ≤ 0,o ≤ 0,u ≤ 0, implies that

ρ1 ≤ ρ2.

Moreover, Yang [46] showed that for any node j ∈ V0 \V(p2) such that L2 can

be extended to a feasible label L
′
2 = (p2

′, i2
′, q2

′, e2
′, l2

′, d2
′, ξ2

′, ρ2
′) by visiting j,

L1 can be extended to a feasible label L
′
1 = (p

′
1, i

′
1, q

′
1, e

′
1, l

′
1, d

′
1, ξ

′
1, ρ

′
1) by visiting

j with relations (i)–(vi) still valid for L
′
1 and L

′
2. Because relations (ii)–(vi) are

valid for L
′
1 and L

′
2, we obtain that ρ

′
1 ≤ ρ

′
2 for the same reason to ρ1 ≤ ρ2. It

shows that for every feasible route associated with L2, the route associated with

L1 is also feasible and has an equal or smaller reduced cost. It also shows that for

every feasible route associated with label L′
2 that extends L2, the route associated

with label L′
1 that extends L1 in the same way as L′

2 extends L2 is also feasible

and has an equal or smaller reduced cost. This proves that L1 dominates L2.

Rollback Pruning

One can apply the dominance rule to compare every pair of labels to prune

dominated labels as many as possible. However, this is very time-consuming since

the total number of label pairs can be considerably large.

To apply the dominance rule more efficiently, we utilize a rollback pruning ap-

proach introduced by Lozano et al. [31] for a relatively simple elementary shortest

path problem with resource constraints. In this approach, some sufficient condi-

tions need to be derived for a new label L to be dominated by some generated

labels that visit fewer nodes, and such sufficient conditions must be easy to be ver-
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ified, often involving a small number of simple arithmetic operations. As a result,

one can first evaluate whether a new label L satisfies these sufficient conditions. If

these sufficient conditions are satisfied, rollback pruning is applied to prune label

L. Otherwise, one then applies the dominance rule by comparing label L with

other generated labels and prune label L if it is dominated.

The problem considered by Lozano et al. [31] is much easier than SubSLRP2

studied here. The rollback pruning has never been applied in the development of

exact methods for the CMTVRPTW. We now establish Proposition 2 below to

show that the rollback pruning is valid to be applied in our labeling algorithm for

solving SubSLRP2.

Proposition 2. For a feasible label L2 = (p2, in, q2, e2, l2, d2, ξ2, ρ2) where p2 =

(i0, i1, . . . , in−1, in), if there exists an integer 0 ≤ w̄ ≤ n−2 , such that ciniw̄−fin ≤∑n
w=w̄+1(ciwiw−1−fiw), then label L2 can be pruned since it is dominated by another

label L1 = (p1, in, q1, e1, l1, d1, ξ1, ρ1) where p1 = (i0, i1, . . . , iw̄−1, iw̄, in).

Proof. To prove this proposition, we show as follows that relations (ii)–(vi) in

Lemma 2 are satisfied for labels L1 and L2.

Since backward path p1 can be derived by removing nodes iw̄+1, iw̄+2, . . . , in−1

from p2, we have V(p1) ⊂ V(p2), implying that (ii) in Lemma 2 is satisfied.

Consider a label L = (p, iw̄, q, e, l, d, ξ, ρ) where p = (i0, i1, . . . , iw̄), which can

be extended to L1 and L2. Due to the triangle inequality, tiniw̄ ≤
∑n

w=w̄+1 tiwiw−1 .

From equation (4.8) we have that l1 = min{l − tiniw̄ , bin}, l2 ≤ bin , and l2 ≤

l−
∑n

w=w̄+1 tiwiw−1 ≤ l− tiniw̄ . Thus, it can be seen that l1 ≥ l2, implying that (iii)

in Lemma 2 is satisfied.

From (4.9) and (4.12) we know that d and e+ d are non-decreasing after labels

are extended. It can also be seen that e1 + d1 = max{e + d, ain + tiniw̄ + d},
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Figure 4.2: A backward path where travel costs are on arrows and dual values fi
for i = 1, 2, 3 are above circles.

e2 + d2 ≥ e + d, and e2 + d2 ≥ ain +
∑n

w=w̄+1 tiwiw−1 + d ≥ ain + tiniw̄ + d. Thus,

e1 + d1 ≤ e2 + d2, implying that (iv) in Lemma 2 is satisfied.

From (4.9) we know that d1 = max{d+tiniw̄ , d+e−bin}, d2 ≥ d+
∑n

w=w̄+1 tiwiw−1 ≥

d + tiniw̄ , and d2 ≥ d + e − bin . Thus, d1 ≤ d2, implying that (v) in Lemma 2 is

satisfied.

Moreover, from (4.10), we have that ξ1 = ξ+ciniw̄−fin and ξ2 = ξ+
∑n

w=w̄+1(ciwiw−1−

fiw). Since ciniw̄ − fin ≤
∑n

w=w̄+1(ciwiw−1 − fiw), we obtain that ξ1 ≤ ξ2. Thus (vi)

in Lemma 2 is satisfied.

Therefore, by Lemma 2, we obtain that L2 is dominated by L1, and thus, L2

can be pruned. This completes the proof of Propostion 2.

To illustrate the application of Proposition 2, let us consider a label L2 with

backward path p2 = (0, 1, 2, 3) shown in Figure 4.2. Note that c31 − f3 = −15 <

(c32 − f3) + (c21 − f2) = −11. Thus, due to Proposition 2, label L2 is dominated

by another label L1 with p1 = (0, 1, 3), and can be pruned by rollback pruning.

Following this way, label L2 is pruned by a small number of simple arithmetic

operations and with no needs to compare L2 with other labels.

Completion Bound

The completion bound is widely used to prune labels [6, 31, 46], which can

reduce the number of explored labels significantly. Let input parameters ∆t and

∆q be step sizes associated with time and demand quantity respectively, and denote
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Z as the set of integers, then the state space for computing the completion bound

is as follows.

Ω =
{
(t, q, i) : i ∈ V0, q ∈ {qi} ∪ {k∆q : qi ≤ k∆q ≤ Q, k ∈ Z},

t ∈ {ai, bi} ∪ {k∆t : ai ≤ k∆t ≤ bi, k ∈ Z}
}
. (4.13)

For each (t, q, i) ∈ Ω, we compute a value ξ(t, q, i) as follows, which is the com-

pletion bound. Completion bound ξ(t, q, i) is initialized with zero if i = 0, and

initialized with +∞ otherwise. Let floor(q) = max{q : q ≤ q, q ∈ {qi} ∪ {k∆q :

qi ≤ k∆q ≤ Q, k ∈ Z}}, ceil(t) = min{t̄ : t̄ ≥ t, t̄ ∈ {ai, bi} ∪ {k∆t : ai ≤

k∆t ≤ bi, k ∈ Z}}. Moreover, we define L(t, q, i) as the set of all labels in

the form (p′, i′, q′, e′, l′, d′, ξ′, ρ′) which can be obtained by extending the label

((i), i, q, ai, t, 0, 0, 0), where either i′ = 0, or floor(q′) − floor(q) > nq∆q and

floor(q′ − qi′) − floor(q) ≤ nq∆q. And nq is an input non-negative integer pa-

rameter which can balance the tightness of the completion bound and the com-

puting time for obtaining such bound. Then the completion bound ξ(t, q, i) for all

(t, q, i) ∈ Ω is determined by

ξ(t, q, i) = min
(p′,i′,q′,e′,l′,d′,ξ′,ρ′)∈L(t,q,i)

{
ξ′ + ξ(ceil(l′), f loor(q′), i′)

}
. (4.14)

To compute the completion bound by utilizing completion bounds computed

previously, the computation is performed with three-nested loops, where i iterates

through each customer i ∈ V in the most inner loop, q goes from large to small

in the second loop, and t goes from small to large in the most outer loop. For

a state (t, q, i) ∈ Ω, we compute the completion bound ξ(t, q, i) by running the

labeling algorithm where the starting label is ((i), i, q, ai, t, 0, 0, 0), and labels out-
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side L(t, q, i) will not be explored since completion bounds computed previously

can be utilized with equation (4.14).

According to the above description, it is easy to know that the completion bound

ξ(t, q, i) is a lower bound on the minimum arc-based reduced cost of all labels that

can be derived by extending the label ((i), i, q, ai, t, 0, 0, 0) and are in the form

of L′ = (p′, 0, q′, e′, l′, d′, ξ′, ρ′) (i.e., the associated backward path p′ ends at the

depot). For any t̄ and q satisfying t ≤ t̄ ≤ bi and qi ≤ q ≤ q, it is easy to know

that ξ(t̄, q, i) ≤ ξ(t, q, i), since any label derived by extending ((i), i, q, ai, t, 0, 0, 0)

can also be derived by extending ((i), i, q, ai, t̄, 0, 0, 0).

Although the completion bound is applied in Paradiso et al. [35], they have

not illustrated it in detail. Yang [46] applied the completion bound in the form

of ξ(q, i), not depending on time t and might be loose. We apply the completion

bound in the form of ξ(t, q, i), compute it in a different way, and strike a balance

between the tightness of the completion bound and the computational efficiency

through some input parameters.

Let c
′

ub be an upper bound on the optimal objective value of SubSLRP2, which

can be initialized as zero and be updated whenever a better solution to SubSLRP2

is found. As indicated in Proposition 3 below, we can apply the completion bound

to prune labels.

Proposition 3. For any feasible incomplete label L = (p, i, q, e, l, d, ξ, ρ), if there

exist q and t̄ such that qi ≤ q ≤ q, l ≤ t̄ ≤ bi, (t̄, q, i) ∈ Ω and ρ + ξ(t̄, q, i) > c
′

ub,

then label L can be pruned, since no complete labels with reduced cost less than or

equal to c
′

ub can be derived by extending L.

Proof. Consider any complete label L′ = (p′, 0, q′, e′, l′, d′, ξ′, ρ′) which can be de-

rived by extending L. To prove Proposition 3, we only need to show that ρ′ > c
′

ub.
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First, we are going to prove as follows that ρ′ − ξ′ ≥ ρ − ξ. Without loss

of generality, we assume that p = (i0, i1, . . . , in = i) and p′ = (i0, i1, . . . , in =

i, j1, j2, . . . , jn′−n = 0) where n < n′. Since L can be extended to L′, we have

V(p) ⊂ V(p′). From (4.8), (4.9) and (4.12), we can see that l ≥ l′, e+ d ≤ e′ + d′

and d ≤ d′. Therefore, βtp ≤ βtp′ , β̄t1t2p ≤ β̄t1t2p′ , ηpV̄2 ≤ ηp′V̄2, ηpV̄3 ≤ ηp′V̄3, and

λjpV̄ ≤ λjp′V̄. Since g ≤ 0,h ≤ 0,k ≤ 0,m ≤ 0,o ≤ 0 and u ≤ 0, from (4.4) we

obtain that ρ′ − ξ′ ≥ ρ− ξ.

Next, consider a label L′′ = (p′′, 0, q′′, e′′, l′′, d′′, ξ′′, ρ′′) which is derived by ex-

tending label ((i), i, q, ai, l, 0, 0, 0), where p′′ = (i, j1, j2, . . . , jn′−n = 0). From

equation (4.10), it can be seen that ξ′ = ξ + ξ′′. Moreover, since ξ(l, q, i) is

a completion bound for labels extended from ((i), i, q, ai, l, 0, 0, 0), we have that

ξ′′ ≥ ξ(l, q, i), which, together with ξ(l, q, i) ≥ ξ(t̄, q, i) shown earlier, implies that

ξ′′ ≥ ξ(l, q, i) ≥ ξ(t̄, q, i). Hence, we obtain that ρ′ = (ρ′−ξ′)+ξ′ ≥ (ρ−ξ)+ξ+ξ′′ ≥

ρ+ ξ(l, q, i) ≥ ρ+ ξ(t̄, q, i) > c
′

ub. This completes the proof of Proposition 3.

A Heuristic Method for the Pricing Problem

For column-generation, it is not necessary to always find an optimal solution to

SubSLRP2 except for the last iteration. Due to this, we execute the exact labeling

algorithm only when a heuristic method fails to find routes with negative reduced

costs. It is known that the labeling algorithm is a dynamic programming algorithm

where each stage is defined by the number of arcs included in the backward path

associated with each label. Accordingly, we develop a heuristic method to solve

SubSLRP2 by adapting the exact labeling algorithm with only a limited number

of (e.g., 2000) labels that are of relatively small reduced costs kept at each stage

for further extensions.
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4.3 Step 2 of Phase 1: Route Enumeration

If UBg is a valid upper bound, then according to Lemma 1, only routes with re-

duced cost no greater than (UBg−LB1) w.r.t. π
1 can appear in optimal solutions.

Let R1 denote the set of all such routes. Accordingly, the set R, which may consist

of an exponential number of routes, can be replaced by R1. For a backward path

p = (i0, i1, . . . , in), let cp =
∑n

w=1 ciwiw−1 denote its associated travel cost. The

aforementioned labeling algorithm for solving SubSLRP2 can then be adapted to

enumerate all routes of R1.

Similar to the labeling algorithm for solving SubSLRP2, we can drive a domi-

nance rule to reduce the number of labels explored. However, the definition of the

dominance relation is different from that of the labeling algorithm for solving Sub-

SLRP2. Here, label L1 dominates label L2 if for any feasible route r2 associated

with a label that equals or extends L2, there exists a feasible route r1 associated

with a label that equals or extends L1 but having an equal or smaller travel cost,

such that any feasible solution of model RP containing r2 is still feasible when r2

is replaced by r1. The following lemma, established by Yang [46], is valid for the

labeling algorithm for route enumeration.

Lemma 3. Let L1 = (p1, i1, q1, e1, l1, d1, ξ1, ρ1) and L2 = (p2, i2, q2, e2, l2, d2, ξ2, ρ2)

be two feasible labels, then L1 dominates L2 if all the following relations are satis-

fied: (i) i1 = i2, (ii) V(p1) = V(p2), (iii) l1 ≥ l2, (iv) e1+d1 ≤ e2+d2, (v) d1 ≤ d2,

and (vi) cp1 ≤ cp2.

Unlike the labeling algorithm for solving SubSLRP2, which aims to find a route

with the minimum reduced cost, the route enumeration here aims to find all routes

with reduced costs no greater than (UBg − LB1) w.r.t. π
1. Thus, the completion

bound can also be applied by setting c
′

ub in Proposition 3 as (UBg−LB1). However,
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due to relation (ii) in Lemma 3, which requires the dominated label and dominating

label visit the same set of customers, the rollback pruning approach introduced

earlier for solving SubSLRP2 cannot be adapted for route enumeration here.

4.4 Step 3 of Phase 1: Solve SLRP1(UBg)

We solve SLRP1(UBg) through a column-and-cut generation procedure, where

the initial feasible solution is the optimal solution of SLRP2. If the guessed value

UBg is a valid upper bound on the optimal objective value, then routes that are

not in R1 cannot appear in any optimal solution. Thus, in this case, we can solve

the pricing problem in column generation directly by computing the reduced cost

of each route in R1 and finding the one with the smallest reduced cost.

Being different from the method for solving SLRP2, here we incorporate SRC

constraints (3.30). Let Csrc and v ≥ 0 denote the set of indices and dual value vec-

tor associated with constraints (3.30), respectively. Let π2 = (f ,g,h,k,m,o,u,v)

denote the optimal dual solution of the restricted master problem. For each route

r ∈ R1, its reduced cost w.r.t. π2 can be represented as follows:

c
′

r(π
2) = cr −

∑
i∈V

fiαir −
∑
t∈T

gtβtr −
∑

(t1,t2)∈Crwt

ht1t2 β̄t1t2r −
∑

V̄∈Csr3

kV̄ηrV̄2

−
∑

V̄∈Csr5-2

mV̄ηrV̄2 −
∑

V̄∈Csr5-3

oV̄ηrV̄3 −
∑

(i,V̄)∈Cel

uiV̄λirV̄ −
∑

V̄∈Csrc

vV̄µrV̄.

(4.15)

Accordingly, the pricing problem of SLRP1(UBg) can be formulated as

(SubSLRP1(UBg)) zSubSLRP1(UBg) = min
r∈R1

{
c
′

r(π
2)
}
. (4.16)
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After solving SLRP1(UBg), we remove routes with reduced cost greater than

(UBg −LB2) w.r.t. π
2 from set R1, and the set of remaining routes is denoted by

R2.

4.5 Phase 2: Solve SLSP(UBg)

We newly develop a column-and-cut generation procedure to solve SLSP(UBg)

based on the route set R2 in Phase 2. For the cut generation, we initialize the

constraint index sets, Csr3, Csr5-2, Csr5-3, Cel and Csrc, to their values obtained

in Phase 1, and initialize the set T to an empty set. For the column generation,

an initial feasible solution is needed. For this, we define a dummy feasible trip

s0 = (a0, r0) with cs0 = M , where M is a large positive constant, and r0 is a

dummy feasible route as defined in Section 4.2. The restricted master problem

of SLSP(UBg) contains only a subset of columns and constraints in SLSP(UBg),

where the complete trip set S is replaced by a trip subset S′, which is initialized to

{s0}. Let y0 denote a binary decision variable associated with trip s0. Accordingly,

the solution y with y0 = 1 and ys = 0 for all s ∈ S′ \ {s0} is always feasible to the

restricted master problem. However, when the column generation terminates with

y0 > 0 in the optimal solution of the last restricted master problem, and when

M is sufficiently large, it can be guaranteed that either the original problem is

infeasible or UBg is not a valid upper bound [7].

Consider each iteration of the column generation. With a slight abuse of nota-

tions, we use π3 = (f ,g,k,m,o,u,v) to denote the dual solution of the current

restricted master problem, where f ,g ≤ 0,k ≤ 0,m ≤ 0,o ≤ 0,u ≤ 0,v ≥ 0

are associated with constraints (3.39), (3.40), (3.43), (3.44), (3.45), (3.46), (3.47)

respectively. The reduced cost of a trip s ∈ S w.r.t. π3 can thus be represented
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as follows:

c
′

s(π
3) = cs −

∑
i∈V

fiαis −
∑
t∈T

gtγts −
∑

V̄∈Csr3

kV̄ηsV̄2 −
∑

V̄∈Csr5-2

mV̄ηsV̄2

−
∑

V̄∈Csr5-3

oV̄ηsV̄3 −
∑

(i,V̄)∈Cel

uiV̄λisV̄ −
∑

V̄∈Csrc

vV̄µsV̄.
(4.17)

For each route r ∈ R2, let S(r) denote the set of trips with their routes equal

to r, i.e., S(r) = {s ∈ S : rs = r} = {(τ, r) : τ ∈ [er, lr]}. If UBg is a valid upper

bound, routes that are not in R2 cannot appear in any optimal solution, and thus,

the trip set S in SLSP(UBg) can be substituted with
⋃

r∈R2
S(r). Accordingly, the

pricing problem of SLSP(UBg) can be formulated as follows:

(SubSLSP(UBg)) zSubSLSP(UBg) = min
r∈R2

min
s∈S(r)

{
c
′

s(π
3)
}
. (4.18)

According to equation (4.17) we can reformulate mins∈S(r)
{
c
′
s(π

3)
}
as follows

min
s∈S(r)

{
c
′

s(π
3)
}
= min

s∈S(r)

{
−
∑
t∈T

gtγts

}
+ cr −

∑
i∈V

fiαir −
∑

V̄∈Csr3

kV̄ηrV̄2 −
∑

V̄∈Csr5-2

mV̄ηrV̄2

−
∑

V̄∈Csr5-3

oV̄ηrV̄3 −
∑

(i,V̄)∈Cel

uiV̄λirV̄ −
∑

V̄∈Csrc

vV̄µrV̄.

(4.19)

We next show that the pricing problem SubSLSP(UBg) can be solved by in-

spection based on R2 and some discrete sets of time points. To achieve this, due

to (4.17) and (4.18) we only need to show that mins∈S(r)
{
−
∑

t∈T gtγts
}
can be

solved by inspection based on a discrete set of time points for each route r ∈ R2.

First, for T and each route r ∈ R2, we define a discrete set of time points,

DTr = {lr} ∪ {er ≤ t ≤ lr : t ∈ T} ∪ {er ≤ t − dr ≤ lr : t ∈ T}, and sort
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elements in DTr in a non-decreasing order so that DTr = {tr1, tr2, . . . , trn} with

er ≤ tr1 ≤ tr2 ≤ · · · ≤ trn = lr. Then, we establish Proposition 4 to facilitate the

proofs of Proposition 5, Proposition 7 and Proposition 8.

Proposition 4. Consider any feasible route r, any discrete set of time points T

and the associated DTr = {tr1, tr2, . . . , trn} defined above. For any 1 ≤ w ≤ n − 1,

any τ ∈ (trw, t
r
w+1] and any t ∈ T, τ ≤ t < τ + dr holds true if and only if

trw+1 ≤ t < trw+1+ dr. For any τ ∈ [er, t
r
1] and any t ∈ T, τ ≤ t < τ + dr holds true

if and only if tr1 ≤ t < tr1 + dr.

Proof. For any 1 ≤ w ≤ n− 1, any τ ∈ (trw, t
r
w+1] and any t ∈ T, according to the

definition of DTr, we have (t
r
w, t

r
w+1)∩T = ∅ and (trw, t

r
w+1)∩{t′− dr : t

′ ∈ T} = ∅.

(i) if τ ≤ t then trw+1 ≤ t, since (trw, t
r
w+1) ∩ T = ∅;

(ii) if t < τ + dr then t < trw+1 + dr since τ ≤ trw+1;

(iii) if trw+1 ≤ t then τ ≤ t since τ ≤ trw+1;

(iv) if t < trw+1 + dr then t < τ + dr, since (trw, t
r
w+1) ∩ {t′ − dr : t

′ ∈ T} = ∅.

Thus τ ≤ t < τ + dr holds true if and only if trw+1 ≤ t < trw+1 + dr.

For any τ ∈ [er, t
r
1] and any t ∈ T, the statement in this Proposition holds true

naturally if er = tr1, and can be verified in the same way with the above part if

er < tr1, which completes the proof of Proposition 4.

Now we establish Proposition 5 to simplify the computation of mins∈S(r)
{
−
∑

t∈T gtγts
}

for each route r ∈ R2.
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Proposition 5. Consider any feasible route r, any discrete set of time points T

and the associated DTr = {tr1, tr2, . . . , trn} defined above, we have

min
s∈S(r)

{
−
∑
t∈T

gtγts

}
= min

τ∈DTr

{
−

∑
t∈T:τ≤t<τ+dr

gt

}
. (4.20)

Proof. According to Proposition 4, we have

−
∑

t∈T:τ≤t<τ+dr

gt = −
∑

t∈T:tr1≤t<tr1+dr

gt, ∀ τ ∈ [er, t
r
1], (4.21)

−
∑

t∈T:τ≤t<τ+dr

gt = −
∑

t∈T:trw+1≤t<trw+1+dr

gt, ∀ 1 ≤ w ≤ n− 1, τ ∈ (trw, t
r
w+1].

(4.22)

By the definition of γts, we have

min
s∈S(r)

{
−
∑
t∈T

gtγts

}
= min

τ∈[er,lr]

{
−

∑
t∈T:τ≤t<τ+dr

gt

}

=min

{
min

τ∈[er,tr1]

{
−

∑
t∈T:τ≤t<τ+dr

gt

}
, min
1≤w≤n−1,τ∈(trw,trw+1]

{
−

∑
t∈T:τ≤t<τ+dr

gt

}}
.

(4.23)

According to equations (4.21) and (4.22), we have

min

{
min

τ∈[er,tr1]

{
−

∑
t∈T:τ≤t<τ+dr

gt

}
, min
1≤w≤n−1,τ∈(trw,trw+1]

{
−

∑
t∈T:τ≤t<τ+dr

gt

}}

= min
0≤w≤n−1

− ∑
t∈T:trw+1≤t<trw+1+dr

gt

 .

(4.24)
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With the definition of DTr, we have

min
0≤w≤n−1

− ∑
t∈T:trw+1≤t<trw+1+dr

gt

 = min
τ∈DTr

{
−

∑
t∈T:τ≤t<τ+dr

gt

}
, (4.25)

which completes the proof of Proposition 5.

Thus the pricing problem SubSLSP(UBg) can be reformulated as follows:

zSubSLSP(UBg) =min
r∈R2

{
min
τ∈DTr

{
−

∑
t∈T:τ≤t<τ+dr

gt

}
+ cr −

∑
i∈V

fiαir −
∑

V̄∈Csr3

kV̄ηrV̄2

−
∑

V̄∈Csr5-2

mV̄ηrV̄2 −
∑

V̄∈Csr5-3

oV̄ηrV̄3 −
∑

(i,V̄)∈Cel

uiV̄λirV̄ −
∑

V̄∈Csrc

vV̄µrV̄

}
,

(4.26)

which can be solved by enumerating all routes r ∈ R2 and all departure times

τ ∈ DTr, since both R2 and DTr for each r ∈ R2 are finite and are often of small

or moderate sizes.

Furthermore, the dual solution π3 of SLSP(UBg) can be utilized to eliminate

routes that cannot appear in any optimal solution from R2. To achieve this, we

define c
′
r(π

3) for each route r ∈ R2 as follows.

c
′

r(π
3) = cr −

∑
i∈V

fiαir −
∑
t∈T

gtβtr −
∑

V̄∈Csr3

kV̄ηrV̄2 −
∑

V̄∈Csr5-2

mV̄ηrV̄2

−
∑

V̄∈Csr5-3

oV̄ηrV̄3 −
∑

(i,V̄)∈Cel

uiV̄λirV̄ −
∑

V̄∈Csrc

vV̄µrV̄.
(4.27)

Proposition 6 below indicates that every route r with c
′
r(π

3) > UBg −LB3 can

be eliminated from R2. As a result, the set of remaining routes is denoted by R3.

Proposition 6. If UBg is a valid upper bound, then every route r ∈ R2 with

c
′
r(π

3) > UBg − LB3 cannot appear in any optimal solution.
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Proof. Consider the case where UBg is a valid upper bound of the problem. For

any trip s = (τs, rs) and any time point t ∈ T, by definition, we have γts ≥ βtrs .

This, together with g ≤ 0, implies that −
∑

t∈T gtγts ≥ −
∑

t∈T gtβtrs . Moreover,

by definition we know that cs = crs , αis = αirs , ηsV̄k = ηrsV̄k, λisV̄ = λirsV̄ and

µsV̄ = µrsV̄. Thus, it can be seen from (4.17) and (4.27) that

c
′

s(π
3) ≥ c

′

rs(π
3). (4.28)

According to the variable fixing technique indicated in Lemma 1, every trip s

with its reduced cost c
′
s(π

3) greater than (UBg − LB3) w.r.t. π3 cannot appear

in any optimal solution. Thus, if c
′
r(π

3) > UBg − LB3, then by (4.28) we have

c
′
s(π

3) > UBg−LB3 for every trip s with rs = r, and all such trips cannot appear

in any optimal solution. Hence, route r cannot appear in any optimal solution,

which completes the proof of Proposition 6.

4.6 Phase 3: Close the Integrality Gap

Consider relaxation SP(T) defined in Section 3.2 and relaxations SP(UBg) and

SP(T, UBg) defined in Section 4.1. We are now going to illustrate the details on

how to close the integrality gap in Phase 3 of our solution method.

First, we initialize set T with the time points that are obtained in the cut

generation for solving SLSP(UBg) in Phase 2. As introduced in Section 4.1, we

need to solve SP(T, UBg) in Phase 3, which results in the following three cases:

(i) If SP(T, UBg) is infeasible or zSP(T,UBg) > UBg, then we know that either

the CMTVRPTW instance is infeasible or UBg is not a valid upper bound.

Accordingly, we increase the value of UBg and turn to Step 2 of Phase 1, so
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as to repeat the route enumeration if the gap between UBg and LB1 does

not exceed gapmax.

(ii) If SP(T, UBg) is feasible and zSP(T,UBg) ≤ UBg, but the optimal solution y of

SP(T, UBg) is infeasible to SP, then there must exist some WT constraints

that are violated by y. Accordingly, we separate such constraints, add them

to enlarged set T, and repeat Phase 3 to solve SP(T, UBg) again.

(iii) If SP(T, UBg) is feasible, zSP(T,UBg) ≤ UBg, and the optimal solution y of

SP(T, UBg) is feasible to SP, then we obtain that zSP ≤ zSP(T,UBg) ≤ UBg

since y is feasible to SP. Moreover, since SP(T) is a relaxation of SP, we

have that zSP(T) ≤ zSP ≤ UBg. That it, UBg is also a valid upper bound

on SP(T), so we have zSP(T,UBg) = zSP(T). Therefore, it can be seen that

zSP(T,UBg) = zSP(T) ≤ zSP. Hence, zSP(T,UBg) = zSP and y is optimal for SP.

We next illustrate how to solve SP(T, UBg), which contains an infinite number

of variables since the domain of the departure time at the depot of each trip is

a continuous interval. To tackle this challenge, we establish Proposition 7 below,

where the discrete set of time points DTr is defined as in Section 4.5. It indicates

that only a limited number of trips need to be considered when solving SP(T, UBg).

Proposition 7. If a trip s = (τ, r), where τ ∈ [er, lr]\DTr, appears in an optimal

solution to SP(T, UBg), then trip s can be substituted with another trip s′ = (τ ′, r),

where τ ′ = min{t ∈ DTr : t ≥ τ}, without impairing the optimality of the solution.

Proof. According to Proposition 4, for any t ∈ T, τ ≤ t < τ + dr if and only if

τ ′ ≤ t < τ ′ + dr, thus we have γts = γts′ according to the definition of parameter

γ. Moreover, by definition it can be seen that αis = αir = αis′ for i ∈ V and

cs = cr = cs′ . For any optimal solution to SP(T, UBg) that contains trip s, one

can replace s with s′ without violating constraints (3.39) and (3.42) or changing
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the objective value, and thus, resulting in another optimal solution to SP(T, UBg).

This proves Proposition 7.

By Proposition 7, to solve SP(T, UBg), we only need to consider the trips in

S(T,R3) = {(τ, r) : r ∈ R3, τ ∈ DTr}, which is a discrete set with a finite number

of elements, so the resulting SP(T, UBg) can be solved directly by an IP solver.

Furthermore, the cardinality of S(T,R3) can further be reduced by removing trips

with reduced cost greater than (UBg − LB3) w.r.t. π
3.

For the time discretization in our three-phase solution method, we remove all

the elements in T when Phase 1 is completed, and initialize T with time points sep-

arated in Phase 2 at the beginning of Phase 3. In case (ii) considered after solving

SP(T, UBg) in Phase 3, we apply the separation method described in Section 3.2

to separate only a small number of time points (five at most) that correspond to

violated WT constraints. Following this way, |T| can be kept small and |S(T,R3)|

is in a moderate size, so that SP(T, UBg) can be solved more efficiently.

Note that SP(T, UBg) may have multiple optimal solutions, and maybe some

of them are infeasible to SP but others are feasible to SP. So in case (ii) con-

sidered after solving SP(T, UBg) in Phase 3, i.e., when SP(T, UBg) is feasible,

zSP(T,UBg) ≤ UBg and an optimal solution y of SP(T, UBg) is infeasible to SP, we

try to determine whether there exists another optimal solution of SP(T, UBg) fea-

sible to SP as follows. Denote Ry = {rs : s ∈ S, ys = 1} and xy where xy
r = 1 for

all r ∈ Ry and xy
r = 0 for all r ∈ R \ Ry. If |Ry| = ζ(K,Ry), then xy is a feasible

solution of RP, and there exists a feasible solution ŷ of SP where Rŷ = Ry, which

can be obtained by setting departure times associated with routes in Ry appropri-

ately. Note that ŷ is also feasible to SP(T, UBg) since T ⊂ [a0, b0] and fewer WT

constraints are considered in SP(T, UBg) than in SP. Because the objective values

of solutions y, xy and ŷ are equal, we conclude that ŷ is an optimal solution of
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SP(T, UBg) feasible to SP. To determine whether |Ry| = ζ(K,Ry) is satisfied, we

develop a set-partitioning model of the TOPTW as Paradiso et al. [35], and solve

the model with an IP solver where columns are enumerated directly since |Ry| and

the number of columns is often small.

4.7 Variable Fixing for the Departure Time

In this section, we apply the variable fixing technique to shrink the domain of

departure times that need to be considered in solving the CMTVRPTW. For any

feasible route r ∈ R, with the definition of tr0 = er and the discrete set of time

points DTr = {tr1, tr2, . . . , trn} defined in Section 4.5, we can establish Proposition 8

to identify departure time intervals that need not to be considered.

Proposition 8. For any feasible route r, any w ∈ {0, 1, . . . , n}, let c
′
rw denote

the reduced cost of trip s = (trw, r) w.r.t. π3. If UBg is a valid upper bound

and LB3 + c
′
rw > UBg, then trip (er, r) cannot appear in any optimal solution if

w = 0, and trip (τ, r) for any τ ∈ (trw−1, t
r
w] cannot appear in any optimal solution

if w ∈ {1, . . . , n}.

Proof. If w = 0 and LB3 + c
′
rw > UBg, according to the variable fixing technique,

the trip (tr0, r), i.e., (er, r), cannot appear in any optimal solution.

For any w ∈ {1, . . . , n} and τ ∈ (trw−1, t
r
w], denote trip s = (τ, r) with reduced

cost c
′
s w.r.t. π3 and trip s′ = (trw, r) with reduced cost c

′

s′ = c
′
rw w.r.t. π3.

Because rs = r = rs′ , we have cs = cs′ , αis = αis′ , ηsV̄2 = ηs′V̄2, ηsV̄3 = ηs′V̄3,

λisV̄ = λis′V̄, µsV̄ = µs′V̄. Moreover, according to Proposition 4, for any t ∈ T,

τ ≤ t < τ + dr if and only if trw ≤ t < trw + dr, so γts = γts′ . Therefore, we have

c
′
s = c

′

s′ = c
′
rw. Thus, if LB3 + c

′
rw > UBg, then LB3 + c

′
s > UBg, which, together
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with Lemma 1, implies that trip s = (τ, r) cannot appear in any optimal solution

to the CMTVRPTW. This completes the proof of Proposition 8.

The variable fixing technique indicated in Proposition 8 can be applied to

remove some trips from S(T,R3) and some routes from R3. In particular, if

LB3+c
′
rw > UBg, we can remove the trip (trw, r) from S(T,R3). If LB3+c

′
rw > UBg

for all trw ∈ {er} ∪ DTr, we can remove the route r from R3.
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Chapter 5

Computational Results

In this chapter, we report our computational results to demonstrate the ef-

fectiveness and efficiency of the newly proposed three-phase exact method for

solving the CMTVRPTW and its variants. We implemented the method in C++

and applied the optimization solver of CPLEX 12.10 to solve LP and IP models.

The computational experiments were conducted on a desktop PC with Intel(R)

Core(TM) i7-10700 CPU @ 2.90GHz (8 cores) and 32GB of RAM.

We compared the performance of our three-phase method (or TPM in short)

with that of Yang [46] (or EPCEM in short), as the EPCEM of Yang [46] is the

best exact method known in the literature for the CMTVRPTW and its variants.

They solve benchmark instances with no less than 70 customers on a workstation

running Red Hat Enterprise Linux 8.1 with Intel(R) Core(TM) i9-9900K CPU

@ 3.60GHz (8 cores) and 64GB of RAM. That is, they use a device with higher

performance than ours. Their program is implemented in C++, and Gurobi 9.1.1

is used as the LP and IP solver.

Each benchmark instance reported in this chapter is the same as that used by
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Yang [46], and has 70 or 100 customer nodes. All the 25-customer, 40-customer

and 50-customer benchmark instances are not reported in this chapter because

they can be solved very efficiently by both the two solution methods. To make the

comparisons concise, we either do not show computational results on 80-customer

instances because they are similar to that on 70-customer instances.

To find all the benchmark instances reported in this chapter, we refer the reader

to the link https://github.com/Yu1423/CMTVRPTW/tree/main/Data. From each

instance, we can obtain the following data directly or by computation: the set of

customers V, the set of arcs A, the fleet size K, the vehicle capacity Q, the demand

quantity qi, time window [ai, bi] and service time sti for each customer i ∈ V, the

planning time horizon (the time window for the depot) [a0, b0], the travel cost cij

and travel time t
′
ij for each arc (i, j) ∈ A.

We set some critical parameters as follows. When solving a pricing problem, at

most 50 columns with negative reduced cost are added into the restricted master

problem at each iteration of column generation. The time for solving a separation

problem is limited by 0.5 seconds, and at most 5 valid inequalities of each category

are added into the restricted master problem at each iteration of cut generation.

To control the time for solving SLRP2, the number of SR3 constraints separated

is limited by 1000, and the numbers of SR5-2, SR5-3, and EL valid inequalities

separated are limited by 100. However, when solving SLRP1 and SLSP, the max-

imum number of valid inequalities separated of each category is limited by 2000.

At the beginning of column generation, columns (excluding r0 and s0) in R′ and S′

with reduced costs greater than the integrality gap are removed according to the

variable fixing technique, thus |R′| and |S′| are kept small and restricted master

problems can be solved efficiently. When solving SLRP2, if the elapsed time is

greater than 1800 seconds at the end of column generation, we will terminate the
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column-and-cut generation procedure and turn to Step 2 of Phase 1. In Phase 3, if

the number of candidate trips |S(T,R3)| is greater than two million, we terminate

the algorithm without finding an optimal solution. Moreover, for guessing the

upper bound, we set ∆gap = 0.3% and gapmax = 12%. To strike a balance between

the tightness of the valid upper bound and the computing time for obtaining such a

valid upper bound, we set gapini = 1.2% for the CMTVRPTW and CMTVRPTW-

LT instances, gapini = 1.0% for the CMTVRPTW-LD, CMTVRPTW-R and DRP

instances. In computational results reported in this chapter, we did not apply the

variable fixing technique for departure time (Proposition 8) since it leads to longer

computing time for some instances.

All parameters about Cplex are set to default, except that the tolerance on the

optimality gap is set as 10−5, because its default value (10−4) leads to premature

terminations without achieving optimal objective values on a few instances. Yang

[46] set such parameter to its default value, which might be the reason for which the

objective values of four instances reported by Yang [46] are greater slightly than

that reported by us although Yang [46] stated that these instances were solved to

optimality (see Appendix A.2).

In the following sections, we report the computational results for the CMTVRPTW

and four variants on benchmark instances, where input values of travel cost and

time are all truncated to one decimal digit as is done in Paradiso et al. [35] and

Yang [46]. To tackle these variants, only the labeling algorithm for solving the

pricing problem SubSLRP2 should be adapted to handle side constraints, and

other components of the solution method need not be changed. Specifically, we

adapt feasibility conditions, state transition equations, and dominance rules of the

labeling algorithm the same with Yang [46].

Tables 5.1 to 5.5 compare the performance of EPCEM and TPM on the same
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set of instances, and the following information is included: the name of the group

(Group), the number of customers in each instance (N), the number of instances

solved to optimality (Solved), the average computing time for closing the integral-

ity gap (Tclose), the average computing time for solving an instance (Ttotal), the

average gap between the lower bound and the optimal objective value (LB%). The

average numbers are computed over instances that are solved to optimality by the

two solution methods respectively, and all the numbers for the EPCEM are copied

from or computed according to Yang [46]. For our detailed computational results,

we refer the reader to Appendix A.2.

There are 216 70-customer instances and 216 100-customer instances reported

in this chapter. With a time limit of 3 hours for each instance, Yang [46] can

solve 214 70-customer instances and 168 100-customer instances, whereas we can

solve all the 216 70-customer instances and 213 100-customer instances. Such ad-

vantage is much more obvious in difficult instances such as the CMTVRPTW and

CMTVRPTW-LT instances. Moreover, we can solve the 100-customer CMTVRPTW

instance R206 and the 100-customer CMTVRPTW-LT instance R206 within 5 and

6 hours respectively, so we are able to solve 215 100-customer instances.

5.1 Comparison on the CMTVRPTW

This test set includes 54 instances derived from type 2 Solomon instances for

the VRPTW using a procedure adopted by Yang [46], where the vehicle capacity

is changed to Q = 100, the numbers of available vehicles are changed to K = 6

and K = 8 for instances with 70 and 100 customers respectively. The reason for

not considering type 1 Solomon instances is that their short planning time horizon

and tight time windows prevent the vehicles from performing multiple trips [35].
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Table 5.1: Comparison on the CMTVRPTW

Group N
EPCEM TPM

Solved Tclose Ttotal LB% Solved Tclose Ttotal LB%
C2 70 8/8 3125.3 3198.9 1.1 8/8 1.6 240.2 0.12
R2 70 11/11 452.9 538.7 1.0 11/11 33.1 659.5 0.53
RC2 70 8/8 310.1 420.4 1.2 8/8 4.2 408.3 0.19
All 27/27 1202.4 1291.9 1.1 27/27 15.2 460.8 0.31

C2 100 5/8 6148.3 6693.1 1.0 8/8 8.3 424.5 0.01
R2 100 5/11 3428.4 4025.1 0.9 11/11 2901.1 4400.7 0.49
RC2 100 4/8 1539.9 1982.7 0.8 8/8 118.1 1151.3 0.37

All 14/27 3860.2 4394.4 0.9 27/27 1219.4 2259.8 0.31

The format “Group N” of the instance name contains two parts, where C2, R2,

and RC2 represent that they are derived from groups C, R, and RC of type 2

Solomon instances. In addition to the depot node, we consider the first 70 and all

the 100 customer nodes when N is set as 70 and 100 respectively.

Table 5.1 summarizes computational results on the CMTVRPTW. With a time

limit of 3 hours, EPCEM can solve only 14 of the 27 100-customer instances

whereas our TPM can solve 26 of them, and TPM can solve the remaining one

R206 within 5 hours (see Appendix A.2). For the 70-customer and 100-customer

instances, the average computing times (Ttotal) of TPM is about 36% and 52%

of that for EPCEM. Moreover, our procedure for closing the integrality gap is

much more efficient since the fractions Tclose

Ttotal
in TPM are about 3% and 54% in

70-customer and 100-customer instances respectively, whereas the fractions Tclose

Ttotal

in EPCEM are about 93% and 88% in 70-customer and 100-customer instances

respectively. In addition, the average value of LB% in TPM is much less than the

average value of LB% in EPCEM, so we offer much tighter lower bounds. Based on

the above observations, we can conclude that TPM performs better than EPCEM

on the CMTVRPTW instances.
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5.2 Comparison on the CMTVRPTW-LT

Introduced by Hernandez et al. [25], the CMTVRPTW-LT differs from the

CMTVRPTW in the sense that the time for loading goods at the depot is consid-

ered. Specifically, let lti be the time at the depot for loading goods which will be

delivered to customer i ∈ V, then the vehicle performing route r or trip s = (τs, rs)

where rs = r will spend a loading time
∑

i∈V(r) lti at the depot before departure.

Following Hernandez et al. [25], instances for the CMTVRPTW-LT are the same

with that for the CMTVRPTW, except that the loading time for each customer

i ∈ V is set as 20% of the service time sti, i.e., lti = 0.2sti.

As is shown in Table 5.2, with a time limit of 3 hours, EPCEM can solve

only 12 of the 27 100-customer instances for the CMTVRPTW-LT whereas our

TPM can solve 26 of them, and TPM can solve the remaining one R206 within

6 hours (see Appendix A.2). For the 70-customer and 100-customer instances,

the average computing times (Ttotal) of TPM is about 28% and 71% of that for

EPCEM, which shows that TPM is more efficient. Also, the average value of LB%

in TPM is about one-third of that in EPCEM, so TPM offers much tighter lower

bounds than EPCEM. So we conclude that TPM outperforms EPCEM on the

CMTVRPTW-LT instances.

5.3 Comparison on the CMTVRPTW-LD

The CMTVRPTW-LD studied by Hernandez et al. [23] differs from the CMTVRPTW-

LT in the sense that a limit d̄ is imposed on the time that goods can be on board

for each trip, where the loading time at the depot, the service time for the last

customer on the trip, and the travel time from the last customer to the depot are
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Table 5.2: Comparison on the CMTVRPTW-LT

Group N
EPCEM TPM

Solved Tclose Ttotal LB% Solved Tclose Ttotal LB%
C2 70 8/8 3941.6 4017.7 1.2 8/8 8.4 319.4 0.20
R2 70 11/11 164.8 253.7 1.0 11/11 29.0 517.1 0.48
RC2 70 8/8 693.2 938.4 1.3 8/8 5.9 460.6 0.26
All 27/27 1440.4 1571.8 1.1 27/27 16.0 441.8 0.33

C2 100 3/8 4858.7 5244.1 0.9 8/8 16.7 425.6 0.03
R2 100 5/11 1362.3 2237.1 0.9 11/11 3386.2 4958.8 0.50
RC2 100 4/8 3176.7 3810.4 0.8 8/8 242.2 1205.9 0.40

All 12/27 2841.2 3513.3 0.9 27/27 1456.3 2503.6 0.33

not included. That is, for each trip, the time difference between the departure

time at the depot and the arrival time at the last customer cannot be greater than

d̄. Following Yang [46], the benchmark instances are derived from type 2 Solomon

instances, where lti = 0.2sti for all i ∈ V, d̄ ∈ {220, 250} for instances in group

C2 and d̄ ∈ {75, 100} for instances in groups R2 and RC2. In these instances,

the vehicle capacities are the same as that of Solomon instances, i.e., Q = 700 for

group C2 and Q = 1000 for groups R2 and RC2.

Table 5.3 reports computational results on the CMTVRPTW-LD. Due to the

rigid duration limit parameters d̄, most of these benchmark instances can be solved

very efficiently by both the two solution methods. Still, our TPM can solve three

more 100-customer instances than EPCEM and yield tighter lower bounds. So

TPM is slightly superior to EPCEM on these CMTVRPTW-LD instances.

5.4 Comparison on the CMTVRPTW-R

Introduced by Hernandez et al. [25], neither considering the loading time nor

duration limit, the CMTVRPTW with release dates (CMTVRPTW-R) takes the
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Table 5.3: Comparison on the CMTVRPTW-LD

Group N d̄
EPCEM TPM

Solved Tclose Ttotal LB% Solved Tclose Ttotal LB%
C2 70 220 8/8 0.1 17.9 0.5 8/8 1.6 6.0 0.39
C2 70 250 8/8 0.4 12.2 0.3 8/8 3.9 9.3 0.19
R2 70 75 11/11 0.1 13.2 0.4 11/11 3.1 17.2 0.16
R2 70 100 11/11 0.1 37.4 0.3 11/11 0.3 30.1 0.14
RC2 70 75 8/8 0.3 25.6 0.7 8/8 4.6 37.5 0.35
RC2 70 100 8/8 2.4 40.8 0.7 8/8 3.1 85.8 0.47

All 54/54 0.5 24.6 0.5 54/54 2.7 30.2 0.27

C2 100 220 8/8 6.9 360.6 0.6 8/8 6.8 16.5 0.43
C2 100 250 8/8 5.6 61.5 0.8 8/8 32.1 65.0 0.51
R2 100 75 11/11 0.9 106.1 0.4 11/11 52.3 111.3 0.20
R2 100 100 7/11 3.2 639.2 0.3 10/11 23.2 306.5 0.24
RC2 100 75 8/8 68.4 116.7 0.3 8/8 24.5 47.4 0.19
RC2 100 100 8/8 26.9 213.0 0.4 8/8 8.9 129.6 0.22

All 50/54 17.9 233.1 0.5 53/54 26.2 120.0 0.29

release dates into account. Specifically, the release date rdi is the time at which

the goods for customer i become available at the depot, and the vehicle performing

route r or trip s = (τs, rs) where rs = r can depart from the depot only when the

goods for all customers on route r are available, i.e., no earlier than maxi∈V(r) rdi.

Following Yang [46], the instances for the CMTVRPTW-R are the same as that

for the CMTVRPTW, except that the former include release dates which are set

by the procedure proposed in Hernandez et al. [25] relying on the release date

parameter κ ∈ {0.25, 0.5, 0.75}.

Table 5.4 summarizes computational results on the CMTVRPTW-R, which

shows that TPM can solve all the 81 100-customer instances. However, EPCEM

can solve only 67 of them and cannot solve one 70-customer instance. Moreover,

the average time for closing the integrality gap (Tclose) in TPM is about 3% and

13% of that in EPCEM on 70-customer and 100-customer instances respectively.
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Table 5.4: Comparison on the CMTVRPTW-R

Group N κ
EPCEM TPM

Solved Tclose Ttotal LB% Solved Tclose Ttotal LB%
C2 70 0.25 8/8 113.4 166.4 1.0 8/8 1.8 210.8 0.00
C2 70 0.5 8/8 44.4 83.3 0.9 8/8 1.1 51.2 0.00
C2 70 0.75 8/8 4.0 39.5 0.6 8/8 1.3 70.0 0.00
R2 70 0.25 11/11 5.9 248.1 0.5 11/11 3.6 222.5 0.20
R2 70 0.5 11/11 4.3 169.4 0.4 11/11 3.8 246.3 0.13
R2 70 0.75 10/11 26.6 187.1 0.5 11/11 5.0 302.8 0.21
RC2 70 0.25 8/8 300.6 385.1 1.0 8/8 1.2 346.0 0.17
RC2 70 0.5 8/8 271.7 357.9 1.2 8/8 1.9 355.3 0.23
RC2 70 0.75 8/8 14.3 115.2 0.6 8/8 2.5 221.4 0.16

All 80/81 79.6 195.5 0.7 81/81 2.6 228.7 0.13

C2 100 0.25 7/8 3773.9 4181.5 1.4 8/8 2.0 693.2 0.02
C2 100 0.5 8/8 2640.6 2949.0 1.5 8/8 0.8 417.4 0.00
C2 100 0.75 6/8 1568.3 2279.7 1.2 8/8 6.4 346.0 0.00
R2 100 0.25 9/11 450.4 1806.9 0.5 11/11 411.7 1401.0 0.33
R2 100 0.5 8/11 57.5 1799.6 0.5 11/11 267.0 1366.2 0.35
R2 100 0.75 8/11 12.5 1284.7 0.4 11/11 182.3 1116.8 0.20
RC2 100 0.25 7/8 1298.4 1639.7 0.7 8/8 31.4 869.8 0.23
RC2 100 0.5 7/8 705.1 1122.4 0.7 8/8 190.4 1066.2 0.29
RC2 100 0.75 7/8 21.0 637.0 0.5 8/8 59.1 544.8 0.22

All 67/81 1130.4 1959.3 0.8 81/81 145.6 916.3 0.19

The average computing time (Ttotal) in TPM is about the half of that in EPCEM

on 100-customer instances, and the average gap between the lower bound and the

optimal objective value (LB%) provided by TPM is less than a quarter of that

provided by EPCEM. So we conclude that TPM performs better than EPCEM on

the CMTVRPTW-R instances.
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5.5 Comparison on the DRP

Taking the energy cost and battery capacity into account, the drone-routing

problem (DRP) considered by Cheng et al. [11] is a variant of the CMTVRPTW.

Specifically, the objective function is the sum of the travel cost and the energy cost

which depends on arcs traversed and load carried. Moreover, drones should return

to the depot before depleting the battery. Due to the change of objective function,

rollback pruning should be adapted according to Proposition 9 in Appendix A.1.

Two sets (A and B) of benchmark instances can be produced by the proce-

dure provided by Cheng et al. [11], where demand quantities of all customers are

multiplied by 0.03 for instances in set B. Since instances in set A can be solved

extremely quickly by both EPCEM and TPM, we only compare their performance

on set B, and provide the performance of TPM on set A in Appendix A.2.

Table 5.5 shows computational results on the DRP instances (set B), where

TPM can solve all benchmark instances to optimality whereas EPCEM cannot

solve one 70-customer instance and two 100-customer instances. For 100-customer

instances, the average time for closing the integrality gap (Tclose) and the average

time for solving an instance (Ttotal) in TPM are about 21% and 35% of that in

EPCEM. Furthermore, the average gap between the lower bound and the optimal

objective value (LB%) provided by TPM is about one-fifth of that provided by

EPCEM. So we conclude that TPM outperforms EPCEM on the DRP (set B)

instances.
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Table 5.5: Comparison on the DRP (set B)

Group N
EPCEM TPM

Solved Tclose Ttotal LB% Solved Tclose Ttotal LB%
C2 70 8/8 0.3 6.1 0.4 8/8 8.2 20.0 0.00
R2 70 11/11 4.2 15.0 0.6 11/11 8.7 95.8 0.23
RC2 70 7/8 72.8 87.7 0.9 8/8 1.5 48.3 0.06
All 26/27 21.5 31.8 0.6 27/27 6.4 59.3 0.11

C2 100 8/8 328.9 409.8 0.9 8/8 10.9 65.5 0.00
R2 100 10/11 17.8 52.8 0.4 11/11 268.7 454.3 0.21
RC2 100 7/8 2238.1 2314.0 0.5 8/8 150.2 267.5 0.10

All 25/27 739.0 800.2 0.6 27/27 157.2 283.8 0.11
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis, we propose a three-phase exact method for solving the CMTVRPTW

and relevant variants. The first phase aims to solve the LP relaxation of the route-

based model and enumerate a set of candidate routes containing those selected in

optimal solutions. Based on these enumerated routes, we solve the LP relaxation of

the trip-based model which can provide tighter lower bounds in the second phase.

In the last phase, the integrality gap is closed by solving the trip-based IP model

with dynamic time discretization. In this way, we can utilize both advantages

of the route-based and trip-based models. Specifically, the trip-based LP and IP

models have advantages in tightening the lower bound and closing the integrality

gap respectively, but solving them directly is very difficult. However, the route-

based model is relatively easy to solve, and once it is solved we can perform the

route-enumeration, then the trip-based LP and IP models become much easier to

solve based on these enumerated routes. Thus we solve the route-based LP model,

the trip-based LP model, and the trip-based IP model successively.
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In addition to adopting valid inequalities used for solving the CMTVRPTW

in the literature, we also apply some other valid inequalities used for solving the

VRP but not used in studies about the CMTVRPTW, and newly introduce RWT

constraints which strengthen RSF constraints. Moreover, we propose IP models

for separating some of these valid inequalities exactly when heuristic methods fail

to identify violated constraints. Strengthened by these valid inequalities, the newly

developed LP relaxations can provide much tighter lower bounds on the optimal

objective value of the CMTVRPTW.

Results from extensive computational experiments over benchmark instances

demonstrate that our newly proposed exact method is effective and efficient. We

solve all the 27 benchmark instances (including 13 open ones) with 100 customers

for the CMTVRPTW to optimality with a much shorter average computing time

compared with the best-known exact method in the existing literature. The so-

lution method is also adapted to solve four variants of the CMTVRPTW, and

it also performs better on the benchmark instances of these variants than the

best-known exact method in the existing literature. In addition to the number of

solved instances and the relatively short average computing time on each instance,

our solution method achieves much tighter lower bounds on the optimal objective

values and much higher efficiency for closing the integrality gap.

6.2 Future Research

Potential future research directions are as follows. Firstly, we observe that

for some instances, the relative gaps between the lower bounds obtained and the

optimal objective values are larger than that for other instances. To reduce the

relative gaps for these instances, we need to identify new valid inequalities which
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can strengthen the lower bounds effectively.

Secondly, from this thesis, we know that different models can provide different

lower bounds, and models which can provide tighter lower bounds can be more

difficult to solve. So a potential direction for future research is to develop new

models for this problem, or design more efficient methods to solve existing models

which can provide better lower bounds (e.g., the journey-based model).

Moreover, to further demonstrate the effectiveness and efficiency of our solution

method, more extensive computational experiments should be performed. On the

one hand, we should try to generate and solve instances with more than 100

customers. On the other hand, for each component of the method, we need to

identify the associated effectiveness and computing effort.

To further demonstrate the robustness of our solution method and distinguish

bottlenecks of instances, intensive sensitivity experiments should be done. we can

compare the performance of the method on instances with changed data, such as

modified time windows, fleet size, vehicle capacity, and demand quantities.

Lastly, we should consider more practical considerations in the future, such

as very large numbers of customers, consistency requirements between successive

planning time horizons, soft time windows, and stochastic factors (e.g., random

demands and travel times). For example, consider a delivery system in a district

with thousands of or even more customers, it might be impractical to apply our so-

lution method directly to obtain an optimal solution. However, a feasible solution

of good quality is often acceptable in practice even if it is not optimal. Accord-

ingly, the very large problem size can be handled by firstly clustering customers

according to their addresses and time windows, then our solution method can be

applied based on these clusters.
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Appendix A

A.1 Rollback Pruning for the DRP

In the labeling algorithm for the DRP, state transition equations and dominance

rules introduced by Yang [46] are still valid. However, rollback pruning is not

applied by them. Moreover, Proposition 2 is not valid for the DRP because the

objective function includes not only travel cost but also energy cost. Instead, we

apply rollback pruning with the following proposition for the DRP, where ceijq is

the energy cost for a drone to travel along arc (i, j) with load q.

Proposition 9. For a feasible label L2 = (p2, in, q2, e2, l2, d2, ξ2, ρ2) where p2 =

(i0, i1, . . . , in), denote qw̃ =
∑w̃

w=1 qiw . If there exists an integer 0 ≤ w̄ ≤ n − 2 ,

such that ciniw̄ +ceiniw̄qw̄−fin ≤
∑n

w=w̄+1(ciwiw−1 +ceiwiw−1qw−1−fiw), then label L2

can be pruned since it is dominated by another label L1 = (p1, in, q1, e1, l1, d1, ξ1, ρ1)

where p1 = (i0, i1, . . . , iw̄, in).

We omit the proof for Proposition 9 since it can be derived in the same way as

Proposition 2.
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Appendix A.

A.2 Detailed Computational Results

Detailed computational results are shown in Tables A.1 to A.6, where the follow-

ing information is included: the instance name (Name), the number of customers

(N), the duration parameter in the CMTVRPTW-LD (d̄), the release date param-

eter in the CMTVRPTW-R (κ), the relative gap between the valid upper bound

and the first lower bound UBg−LB1

LB1
(UBg%), the optimal objective value (opti-

mal), the relative gap between the first lower bound and the optimal objective

value optimal−LB1
optimal

(LB1%), the cardinality of R1 (|R1|), the relative gap between

the second lower bound and the optimal objective value optimal−LB2
optimal

(LB2%), the

cardinality of R2 (|R2|), the relative gap between the third lower bound and the

optimal objective value optimal−LB3
optimal

(LB3%), the cardinality of R3 (|R3|), the com-

puting time of Phase 3 under the valid upper bound for closing the integrality gap

in seconds (Tclose), the sum of the computing time of Step 1 of Phase 1 and the

computing time from Step 2 of Phase 1 to Phase 3 under the valid upper bound

in seconds (Tvalid), and the computing time for solving the instance in seconds

(Ttotal). Note that Ttotal − Tvalid is the computing time from Step 2 of Phase 1 to

Phase 3 under the invalid upper bounds in seconds. For instances which are not

solved to optimality, all values are reported as “-”.

The objective values of four instances (the 70-customer CMTVRPTW-LD in-

stance C206 with d̄ = 250, the 100-customer CMTVRPTW-LD instance C202 with

d̄ = 220, the 70-customer DRP instance R203 and the DRP instance Set A1 Cust 45 5)

reported by Yang [46] are greater slightly than that reported by us although Yang

[46] stated that these instances were solved to optimality. Particularly, the DRP

instance Set A1 Cust 45 5 was also solved by Paradiso et al. [35], and the objec-

tive value reported by them is 18727.9, which is the same as that reported by us.
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A.2. Detailed Computational Results

However, the value reported by Yang [46] is 18728.7. For other instances that Yang

[46] stated that they were solved to optimality, the objective values reported by us

and Yang [46] are the same. For the remaining instances shown in this appendix,

the objective values reported by us are less than or equal to that reported by Yang

[46].

Table A.1: Detailed computational results for the CMTVRPTW

Name N UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

C201 70 1.20 1052.2 0.66 198,834 0.00 9226 0.00 6077 0.7 41.9 41.9

C202 70 1.20 1047.7 1.16 204,256 0.21 3077 0.21 2880 1.5 353.5 353.5

C203 70 1.20 1040.4 0.98 396,955 0.12 8041 0.12 7663 1.9 200.5 200.5

C204 70 1.20 1036.8 1.04 575,382 0.10 6848 0.10 6466 1.1 216.3 216.3

C205 70 1.50 1047.9 1.27 599,850 0.17 15,118 0.15 11,030 3.3 337.3 553.9

C206 70 1.20 1042.0 1.05 295,799 0.08 2258 0.08 1772 0.7 201.8 201.8

C207 70 1.20 1040.3 1.09 296,863 0.18 4773 0.18 3389 2.1 226.7 226.7

C208 70 1.20 1040.3 1.11 271,326 0.12 1772 0.12 1468 1.2 127.2 127.2

R201 70 1.20 1118.4 0.72 17,306 0.38 8714 0.38 7951 4.8 158.2 158.2

R202 70 1.50 1041.1 1.34 83,295 1.00 38,439 1.00 37,452 53.7 385.4 639.0

R203 70 1.20 958.0 0.66 67,558 0.36 27,804 0.31 25,630 28.0 812.5 812.5

R204 70 1.20 921.8 0.81 148,267 0.28 26,397 0.28 25,973 16.7 592.2 592.2

R205 70 1.50 1033.4 1.46 110,719 1.04 37,813 1.03 36,130 66.2 523.9 872.2

R206 70 1.50 985.9 1.31 182,113 0.88 58,031 0.85 51,178 84.7 749.3 1258.1

R207 70 1.20 942.0 0.84 85,283 0.44 29,013 0.44 27,697 28.5 596.7 596.7

R208 70 1.20 917.5 0.90 127,662 0.41 36,953 0.41 28,787 17.4 424.0 424.0

R209 70 1.20 955.3 1.02 43,116 0.56 11,286 0.48 8623 10.3 403.7 403.7

R210 70 1.20 980.4 0.95 71,183 0.57 27,578 0.51 23,100 41.4 834.4 834.4

R211 70 1.20 914.8 0.71 81,675 0.12 15,659 0.12 12,689 12.5 663.1 663.1

RC201 70 1.20 1364.5 1.01 9152 0.25 1544 0.19 1076 0.3 152.2 152.3

RC202 70 1.20 1284.6 0.92 13,472 0.29 2565 0.29 2410 1.1 251.1 251.1

RC203 70 1.20 1230.5 0.53 31,975 0.00 9537 0.00 9217 2.1 85.8 85.8

RC204 70 1.20 1206.6 0.97 65,790 0.01 2522 0.01 2231 0.3 398.3 398.3

RC205 70 1.20 1335.3 0.84 19,276 0.43 7729 0.42 7358 8.1 330.0 330.0

RC206 70 1.50 1285.5 1.27 32,861 0.41 6339 0.38 5181 3.5 261.2 607.5

RC207 70 1.50 1236.5 1.19 68,673 0.05 3265 0.01 2158 0.7 394.1 677.2

RC208 70 1.50 1208.2 1.29 140,284 0.22 7912 0.20 5860 17.7 524.6 764.3

C201 100 1.20 1473.3 0.89 738,835 0.00 15,990 0.00 11,227 2.8 382.1 382.1

C202 100 1.20 1464.1 0.94 921,353 0.03 16,427 0.03 14,368 5.1 211.8 211.8

C203 100 1.20 1456.3 0.96 1,343,280 0.00 16,693 0.00 15,744 3.1 808.6 808.6

C204 100 1.20 1448.7 0.96 2,288,342 0.01 11,772 0.01 10,703 31.6 332.3 332.3

C205 100 1.20 1460.2 0.93 863,489 0.00 13,918 0.00 7184 1.0 269.1 269.1

C206 100 1.20 1455.1 1.02 970,975 0.00 8920 0.00 3306 0.6 716.1 716.1

C207 100 1.20 1454.5 0.73 1,267,310 0.02 93,595 0.01 56,113 20.1 346.8 346.8

C208 100 1.20 1451.9 0.95 989,453 0.00 8396 0.00 7388 1.8 329.4 329.4

R201 100 1.20 1399.6 1.13 210,163 0.90 109,846 0.88 99,742 235.1 679.8 679.8

R202 100 1.20 1304.7 1.13 975,352 0.85 402,949 0.82 348,670 5770.3 7310.9 7310.9

R203 100 1.20 1204.8 0.91 1,550,844 0.55 457,082 0.53 410,661 1954.4 3363.6 3363.6

R204 100 1.20 1162.2 0.68 3,714,822 0.20 532,665 0.19 465,467 402.7 2418.1 2418.1

R205 100 1.20 1267.3 1.12 458,574 0.90 237,194 0.83 160,142 807.3 1490.0 1490.0

R206 100 1.20 1220.9 1.08 1,385,502 0.74 453,397 0.69 341,222 13852.4 14799.9 14799.9

R207 100 1.20 1182.5 0.77 2,802,273 0.35 506,777 0.35 496,572 2116.4 4420.1 4420.1
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Name N UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

R208 100 1.20 1157.5 0.60 4,074,012 0.17 803,247 0.17 790,201 954.3 3110.6 3110.6

R209 100 1.20 1205.4 0.60 1,029,587 0.34 431,264 0.23 284,053 469.6 1604.1 1604.1

R210 100 1.20 1211.8 0.75 1,461,854 0.44 534,895 0.40 453,080 1216.4 2849.3 2849.3

R211 100 1.20 1160.6 0.85 3,673,428 0.34 408,525 0.29 324,276 4133.6 6361.2 6361.2

RC201 100 1.20 1806.8 0.58 103,287 0.34 43,495 0.34 41,777 35.8 314.1 314.1

RC202 100 1.20 1680.2 1.13 213,240 0.70 52,440 0.68 45,983 64.7 635.7 635.7

RC203 100 1.20 1601.0 0.78 765,378 0.34 133,681 0.26 102,707 79.0 1197.4 1197.4

RC204 100 1.20 1574.6 0.78 1,366,597 0.05 44,000 0.05 42,851 20.1 1052.2 1052.2

RC205 100 1.20 1732.6 1.16 277,102 0.76 70,026 0.76 67,277 464.8 1046.2 1046.2

RC206 100 1.50 1698.1 1.30 588,193 0.64 86,631 0.57 65,438 185.1 842.4 1330.9

RC207 100 1.50 1640.7 1.24 1,362,430 0.40 66,198 0.30 40,634 64.9 1097.2 2077.8

RC208 100 1.20 1570.7 0.78 1,740,493 0.00 86,410 0.00 44,611 30.5 1556.3 1556.3

Table A.2: Detailed computational results for the CMTVRPTW-LT

Name N UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

C201 70 1.50 1063.2 1.19 332,772 0.35 50,073 0.35 34,837 19.3 309.6 523.0

C202 70 1.20 1053.4 0.92 185,676 0.34 37,512 0.34 34,244 34.2 399.7 399.7

C203 70 1.20 1045.2 1.18 304,808 0.32 8936 0.32 7971 2.2 255.7 255.7

C204 70 1.20 1038.4 1.07 532,293 0.07 3977 0.07 3870 0.8 249.1 249.1

C205 70 1.20 1048.2 1.16 322,982 0.08 450 0.00 175 0.0 80.1 80.2

C206 70 1.50 1044.1 1.23 665,788 0.23 18,493 0.23 16,421 9.6 336.5 655.9

C207 70 1.20 1040.3 1.08 330,538 0.17 3740 0.15 2267 0.9 172.5 172.5

C208 70 1.20 1040.3 1.11 277,232 0.12 1846 0.12 1490 0.5 219.1 219.1

R201 70 1.20 1118.4 0.49 17,977 0.19 8797 0.18 8494 5.5 246.5 246.5

R202 70 1.20 1041.1 1.18 40,766 0.90 16,313 0.90 15,044 13.8 293.2 293.2

R203 70 1.20 959.5 0.76 60,554 0.40 29,440 0.39 27,935 33.2 700.5 700.6

R204 70 1.20 921.8 0.83 143,764 0.28 25,920 0.28 24,459 20.0 620.8 620.8

R205 70 1.20 1033.4 1.17 45,761 0.80 15,941 0.79 14,980 26.8 405.5 405.5

R206 70 1.20 985.9 1.16 67,499 0.72 19,371 0.71 17,131 17.5 492.5 492.5

R207 70 1.20 942.0 0.87 84,615 0.44 27,042 0.44 25,122 28.4 637.1 637.1

R208 70 1.20 917.5 0.93 134,754 0.41 28,052 0.41 26,388 20.5 465.6 465.6

R209 70 1.20 955.9 0.96 43,104 0.55 11,927 0.46 10,305 22.9 438.4 438.4

R210 70 1.20 983.4 1.04 73,423 0.69 25,140 0.65 22,980 120.7 892.2 892.2

R211 70 1.20 914.8 0.59 83,071 0.08 21,019 0.06 18,090 9.3 495.6 495.6

RC201 70 1.20 1367.5 1.00 8675 0.41 2590 0.36 2209 1.1 217.1 217.2

RC202 70 1.20 1284.6 1.04 11,456 0.13 777 0.11 580 0.2 223.8 223.8

RC203 70 1.20 1230.5 0.46 29,449 0.00 13,110 0.00 12,003 2.4 181.7 181.7

RC204 70 1.20 1206.6 1.00 64,849 0.00 1738 0.00 1420 0.2 268.2 268.2

RC205 70 1.20 1340.4 1.05 19,058 0.47 5022 0.45 4417 7.7 450.7 450.7

RC206 70 1.80 1290.2 1.54 52,672 0.63 12,100 0.60 10,196 9.0 258.9 747.9

RC207 70 1.50 1241.1 1.37 73,555 0.34 4611 0.29 3521 4.8 443.4 691.7

RC208 70 1.50 1209.4 1.30 140,840 0.30 10,676 0.26 8329 21.5 608.4 903.7

C201 100 1.50 1480.6 1.28 1,432,654 0.25 84,652 0.22 46,948 88.5 732.6 998.7

C202 100 1.20 1465.5 0.93 943,036 0.01 17,133 0.01 14,864 7.1 542.5 542.5

C203 100 1.20 1459.6 1.12 1,417,634 0.02 2119 0.02 1583 0.6 636.4 636.4

C204 100 1.20 1448.7 0.94 2,285,232 0.00 10,179 0.00 7766 0.8 289.7 289.7

C205 100 1.20 1461.9 0.90 1,045,308 0.06 29,847 0.00 10,619 2.1 289.7 289.7

C206 100 1.20 1456.9 1.11 1,079,269 0.02 639 0.02 419 0.1 248.3 248.3

C207 100 1.20 1454.8 0.64 1,216,803 0.04 221,335 0.01 163,144 31.5 220.5 220.5

C208 100 1.20 1451.9 0.76 1,019,353 0.00 32,071 0.00 20,536 2.8 178.7 178.7

R201 100 1.20 1403.1 0.98 216,125 0.79 116,005 0.79 107,809 188.4 619.6 619.6

R202 100 1.20 1305.8 0.99 897,474 0.71 366,804 0.69 346,213 1056.8 2605.7 2605.7
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Name N UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

R203 100 1.20 1206.4 0.96 1,423,648 0.59 395,109 0.59 372,522 3837.8 5376.4 5376.4

R204 100 1.20 1162.2 0.63 3,406,203 0.16 530,040 0.16 528,161 406.4 2271.8 2271.8

R205 100 1.20 1267.7 0.94 407,646 0.74 219,668 0.66 151,966 313.8 1097.9 1097.9

R206 100 1.20 1222.9 1.14 1,457,583 0.80 447,567 0.73 336,429 19601.6 20799.9 20799.9

R207 100 1.20 1182.5 0.76 2,834,595 0.37 629,831 0.37 576,178 1824.8 3724.7 3724.7

R208 100 1.20 1157.5 0.63 3,740,853 0.15 586,457 0.15 584,941 492.9 2808.9 2808.9

R209 100 1.20 1207.8 0.68 943,117 0.41 434,327 0.29 248,450 534.2 1811.7 1811.7

R210 100 1.20 1215.8 0.90 1,407,792 0.61 545,758 0.59 480,160 3497.6 5291.2 5291.2

R211 100 1.20 1164.0 1.07 3,574,570 0.50 292,393 0.44 198,917 5493.6 8138.4 8138.4

RC201 100 1.20 1809.5 0.57 98,430 0.33 46,103 0.32 42,769 19.1 338.7 338.7

RC202 100 1.50 1689.2 1.46 510,938 0.92 118,315 0.90 95,711 241.7 806.0 1215.7

RC203 100 1.20 1601.0 0.73 634,617 0.24 108,136 0.21 84,464 50.3 978.9 978.9

RC204 100 1.20 1574.6 0.79 1,408,969 0.04 38,021 0.03 33,757 23.2 985.3 985.3

RC205 100 1.20 1737.7 1.13 240,527 0.77 73,469 0.77 70,620 1062.1 1737.6 1737.6

RC206 100 1.50 1702.5 1.36 592,529 0.79 111,039 0.68 73,621 223.2 792.8 1334.8

RC207 100 1.20 1641.7 1.13 517,064 0.32 13,035 0.23 7948 25.8 1019.3 1019.3

RC208 100 1.20 1572.7 0.89 1,796,006 0.12 44,842 0.08 28,929 292.3 2036.7 2036.7

Table A.3: Detailed computational results for the CMTVRPTW-LD

Name N d̄ UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

C201 70 220 1.00 1918.7 0.00 270 0.00 264 0.00 263 0.0 1.3 1.3

C201 70 250 1.00 1587.5 0.00 368 0.00 348 0.00 346 0.0 1.4 1.4

C202 70 220 1.00 1896.6 0.30 785 0.16 655 0.16 651 0.0 2.2 2.2

C202 70 250 1.00 1582.7 0.03 2003 0.00 1871 0.00 1861 0.0 2.9 2.9

C203 70 220 1.00 1835.9 0.27 1708 0.05 1394 0.05 1386 0.1 4.3 4.3

C203 70 250 1.00 1571.6 0.77 5095 0.46 3229 0.46 3080 0.2 15.5 15.5

C204 70 220 1.00 1774.3 0.43 2846 0.39 2755 0.39 2716 12.6 18.1 18.1

C204 70 250 1.00 1557.8 0.96 7588 0.82 6575 0.82 6203 30.9 39.0 39.0

C205 70 220 1.00 1846.3 0.98 618 0.79 534 0.79 529 0.0 1.5 1.5

C205 70 250 1.00 1580.5 0.26 1011 0.11 903 0.11 896 0.0 3.5 3.5

C206 70 220 1.60 1842.3 1.37 1320 1.08 1229 1.08 1229 0.1 4.7 10.2

C206 70 250 1.00 1573.0 0.23 1997 0.05 1752 0.05 1752 0.1 4.5 4.6

C207 70 220 1.00 1798.6 0.41 1457 0.29 1357 0.29 1343 0.1 5.4 5.4

C207 70 250 1.00 1568.6 0.08 3774 0.04 3625 0.04 3618 0.1 4.0 4.0

C208 70 220 1.00 1815.5 0.41 1340 0.35 1271 0.35 1269 0.1 4.5 4.5

C208 70 250 1.00 1568.6 0.08 3087 0.04 2975 0.04 2975 0.1 3.7 3.7

R201 70 75 1.00 1838.1 0.06 807 0.00 756 0.00 709 0.5 3.4 3.4

R201 70 100 1.00 1597.0 0.00 1050 0.00 932 0.00 901 0.1 1.9 1.9

R202 70 75 1.00 1708.5 0.05 1949 0.00 1861 0.00 1822 0.0 3.3 3.3

R202 70 100 1.00 1469.4 0.00 2326 0.00 2187 0.00 2106 0.1 3.3 3.3

R203 70 75 1.00 1559.1 0.16 2716 0.00 1979 0.00 1929 0.0 6.3 6.3

R203 70 100 1.00 1305.6 0.00 5108 0.00 4157 0.00 3939 0.1 6.8 6.8

R204 70 75 1.00 1390.4 0.45 3785 0.29 2983 0.29 2776 7.5 19.7 19.7

R204 70 100 1.00 1110.3 0.03 10,192 0.00 8762 0.00 8330 0.3 25.0 25.0

R205 70 75 1.00 1608.9 0.66 1699 0.00 450 0.00 402 0.1 8.8 8.8

R205 70 100 1.00 1358.8 0.22 3110 0.22 2885 0.22 2803 0.1 5.7 5.7

R206 70 75 1.00 1531.3 0.22 2116 0.01 1449 0.01 1371 0.3 5.1 5.1

R206 70 100 1.00 1278.6 0.49 5389 0.34 3773 0.34 3695 0.5 33.5 33.5

R207 70 75 1.00 1454.8 0.21 3777 0.03 2328 0.03 2258 0.1 21.3 21.3

R207 70 100 1.00 1186.1 0.66 5902 0.32 2932 0.32 2872 0.5 74.0 74.0

R208 70 75 1.00 1376.1 0.40 4548 0.22 3471 0.22 3310 10.0 31.0 31.0

R208 70 100 1.00 1087.6 0.08 10,757 0.00 8919 0.00 7754 0.3 53.0 53.0
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Name N d̄ UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

R209 70 75 1.00 1476.4 0.44 2778 0.15 1664 0.15 1599 0.2 19.7 19.7

R209 70 100 1.00 1211.5 0.59 4010 0.52 3513 0.52 3512 0.6 42.2 42.2

R210 70 75 1.00 1543.5 0.78 2390 0.41 1254 0.41 1224 0.4 31.8 31.8

R210 70 100 1.00 1299.0 0.41 6015 0.12 3463 0.11 3187 0.4 51.4 51.4

R211 70 75 1.00 1375.4 0.77 5059 0.71 4655 0.65 4195 15.4 38.6 38.6

R211 70 100 1.00 1082.0 0.10 13,538 0.10 7390 0.00 5982 0.6 34.0 34.0

RC201 70 75 1.00 2392.0 0.09 407 0.00 374 0.00 353 0.2 2.8 2.8

RC201 70 100 1.00 1798.5 0.00 611 0.00 576 0.00 554 0.0 2.5 2.5

RC202 70 75 1.00 2167.3 0.50 691 0.43 645 0.43 619 0.1 3.2 3.2

RC202 70 100 1.00 1664.8 0.58 1291 0.42 1101 0.42 1076 0.2 8.3 8.3

RC203 70 75 1.00 1986.1 0.47 1071 0.21 786 0.21 772 0.3 4.5 4.5

RC203 70 100 1.00 1482.0 0.00 3545 0.00 3109 0.00 3048 0.1 7.3 7.3

RC204 70 75 1.00 1843.6 0.49 2414 0.20 1818 0.20 1614 3.8 29.7 29.7

RC204 70 100 1.00 1290.9 0.79 6460 0.54 4175 0.54 4137 1.5 118.1 118.1

RC205 70 75 1.00 2197.3 0.26 702 0.03 534 0.03 484 0.1 5.4 5.4

RC205 70 100 1.00 1723.5 0.04 1447 0.00 1125 0.00 1095 0.1 3.4 3.4

RC206 70 75 1.00 2095.4 0.79 729 0.35 497 0.35 454 0.6 14.8 14.8

RC206 70 100 1.30 1582.4 1.11 3508 0.86 2729 0.85 2510 1.5 33.5 57.4

RC207 70 75 1.60 1924.7 1.56 2755 0.86 1488 0.86 1449 0.6 38.8 103.0

RC207 70 100 1.60 1367.3 1.45 8060 1.01 3377 1.01 3308 0.1 13.6 29.5

RC208 70 75 1.30 1818.1 1.25 3811 0.88 2730 0.73 2326 31.2 73.0 136.3

RC208 70 100 1.60 1249.3 1.55 29,675 1.08 12,706 0.97 10,329 20.9 194.5 460.1

C201 100 220 1.00 2902.4 0.50 591 0.24 530 0.24 519 0.1 4.6 4.6

C201 100 250 1.00 2335.4 0.32 876 0.13 775 0.13 771 0.1 20.3 20.3

C202 100 220 1.00 2830.4 0.50 2131 0.46 2051 0.46 2051 0.2 7.2 7.2

C202 100 250 1.00 2311.8 0.56 8122 0.40 6386 0.40 6330 0.7 16.8 16.8

C203 100 220 1.00 2763.0 0.52 3912 0.45 3679 0.45 3652 16.4 22.1 22.1

C203 100 250 1.00 2292.2 0.78 16,724 0.56 11,612 0.56 11,311 42.4 67.4 67.4

C204 100 220 1.00 2704.4 0.56 5652 0.27 4560 0.27 4470 36.8 57.3 57.3

C204 100 250 1.00 2283.6 0.74 23,175 0.64 20,499 0.64 19,743 210.2 277.8 277.8

C205 100 220 1.00 2793.2 0.97 1352 0.63 1156 0.63 1153 0.1 10.4 10.4

C205 100 250 1.00 2320.4 0.92 2338 0.49 1612 0.49 1585 0.6 30.9 30.9

C206 100 220 1.30 2770.6 1.04 2296 0.88 2179 0.88 2179 0.2 6.9 11.3

C206 100 250 1.30 2308.8 1.00 5837 0.68 4345 0.68 4288 0.7 26.8 49.7

C207 100 220 1.00 2743.2 0.65 2423 0.26 1814 0.26 1721 0.1 12.5 12.5

C207 100 250 1.00 2305.7 0.78 6434 0.43 4682 0.43 4636 0.7 36.8 36.8

C208 100 220 1.00 2738.9 0.39 2575 0.22 2424 0.22 2424 0.3 6.7 6.7

C208 100 250 1.00 2302.2 0.93 6297 0.75 5535 0.75 5483 1.7 20.2 20.2

R201 100 75 1.00 2273.4 0.28 3157 0.10 2454 0.10 2299 0.1 6.4 6.4

R201 100 100 1.00 1916.9 0.00 6816 0.00 6215 0.00 6067 0.3 14.6 14.6

R202 100 75 1.00 2100.3 0.34 20,461 0.12 12,619 0.12 12,435 0.5 32.8 32.8

R202 100 100 1.00 1756.3 0.08 69,656 0.00 55,747 0.00 55,387 4.5 120.2 120.2

R203 100 75 1.00 1869.9 0.44 44,642 0.27 34,926 0.27 34,824 3.6 100.9 100.9

R203 100 100 1.00 1548.9 0.51 152,855 0.38 108,692 0.38 105,478 28.4 346.9 346.9

R204 100 75 1.00 1712.0 0.00 52,037 0.00 45,757 0.00 44,986 7.0 27.5 27.5

R204 100 100 1.00 1361.0 0.59 220,753 0.44 150,159 0.44 149,758 79.3 622.6 622.6

R205 100 75 1.00 1961.7 0.10 9199 0.03 8234 0.03 8150 1.4 36.2 36.2

R205 100 100 1.00 1604.5 0.39 24,961 0.22 16,466 0.22 16,026 3.4 117.8 117.8

R206 100 75 1.00 1854.1 0.47 27,476 0.25 19,852 0.25 19,766 7.3 65.9 65.9

R206 100 100 1.00 1518.9 0.26 116,993 0.22 104,714 0.22 104,367 16.8 235.3 235.3

R207 100 75 1.00 1771.5 0.57 40,936 0.43 34,368 0.43 34,274 6.2 102.4 102.4

R207 100 100 1.00 1411.7 0.70 125,968 0.45 63,377 0.45 62,130 18.7 407.0 407.0

R208 100 75 1.00 1687.7 0.37 49,796 0.27 39,364 0.27 38,287 231.1 318.7 318.7

R208 100 100 1.00 1322.7 0.47 267,824 0.23 113,929 0.23 113,150 64.6 700.2 700.2

R209 100 75 1.00 1833.2 0.53 21,958 0.41 18,251 0.41 17,978 2.2 83.5 83.5
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A.2. Detailed Computational Results

Name N d̄ UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

R209 100 100 1.00 1462.5 0.33 57,892 0.02 22,032 0.02 21,618 2.7 226.9 226.9

R210 100 75 1.00 1841.6 0.12 26,984 0.07 24,873 0.07 24,587 1.0 58.0 58.0

R210 100 100 1.00 1532.4 0.58 95,885 0.41 60,420 0.41 58,982 13.2 273.3 273.3

R211 100 75 1.00 1678.9 0.37 73,420 0.30 64,983 0.28 61,139 315.1 392.3 392.3

R211 100 100 - - - - - - - - - - -

RC201 100 75 1.00 3120.3 0.11 1437 0.04 1333 0.04 1236 0.5 7.8 7.8

RC201 100 100 1.00 2370.2 0.02 2929 0.00 2609 0.00 2404 0.3 6.4 6.4

RC202 100 75 1.00 2819.5 0.63 3263 0.56 2892 0.56 2829 0.9 14.3 14.3

RC202 100 100 1.00 2148.6 0.48 7949 0.36 6219 0.36 6160 0.7 44.3 44.3

RC203 100 75 1.00 2550.5 0.21 6137 0.06 4975 0.06 4759 0.1 21.6 21.6

RC203 100 100 1.00 1896.4 0.21 18,733 0.10 14,567 0.10 14,398 0.8 98.1 98.1

RC204 100 75 1.00 2430.3 0.50 11,611 0.31 8478 0.31 8115 0.8 42.1 42.1

RC204 100 100 1.00 1725.8 0.56 35,503 0.36 22,248 0.36 21,931 6.4 199.6 199.6

RC205 100 75 1.00 2874.8 0.13 3338 0.05 3042 0.05 2779 0.4 15.1 15.1

RC205 100 100 1.00 2206.2 0.13 8825 0.08 7582 0.08 7444 0.4 34.0 34.0

RC206 100 75 1.00 2724.7 0.09 3642 0.00 2976 0.00 2724 0.2 7.9 7.9

RC206 100 100 1.00 2064.1 0.35 11,184 0.13 7718 0.13 7549 0.6 68.9 68.9

RC207 100 75 1.00 2612.7 0.69 8071 0.47 5692 0.47 5195 3.2 41.3 41.3

RC207 100 100 1.00 1876.2 0.74 13,649 0.21 3940 0.21 3734 0.8 158.2 158.2

RC208 100 75 1.00 2381.3 0.23 15,025 0.09 11,634 0.04 10,516 189.9 229.0 229.0

RC208 100 100 1.00 1667.7 0.88 46,453 0.65 23,497 0.53 17,948 61.5 427.3 427.3

Table A.4: Detailed computational results for the CMTVRPTW-R

Name N κ UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

C201 70 0.25 1.60 1068.7 1.47 59,084 0.00 1056 0.00 415 0.0 185.1 533.6

C201 70 0.5 1.30 1072.0 1.24 21,592 0.00 143 0.00 123 0.0 21.7 30.4

C201 70 0.75 1.00 1080.9 0.33 9393 0.00 2780 0.00 2700 0.1 24.4 24.4

C202 70 0.25 1.00 1121.0 0.38 16,169 0.00 5885 0.00 5386 0.5 40.5 40.5

C202 70 0.5 1.00 1121.0 0.29 9581 0.00 5112 0.00 4756 0.3 14.9 14.9

C202 70 0.75 1.00 1121.0 0.33 8210 0.00 3317 0.00 3112 0.2 20.5 20.5

C203 70 0.25 1.00 1156.3 0.24 52,070 0.00 24,806 0.00 21,918 2.2 102.5 102.5

C203 70 0.5 1.00 1156.3 0.15 55,248 0.00 44,208 0.00 33,954 3.1 69.9 69.9

C203 70 0.75 1.00 1156.3 0.15 90,253 0.00 36,093 0.00 26,426 2.2 40.4 40.4

C204 70 0.25 1.00 1145.6 0.25 198,991 0.00 122,939 0.00 88,349 11.6 288.9 288.9

C204 70 0.5 1.00 1145.6 0.24 210,202 0.00 54,105 0.00 40,899 5.0 81.7 81.7

C204 70 0.75 1.00 1145.6 0.17 227,950 0.00 71,736 0.00 47,602 6.8 269.9 269.9

C205 70 0.25 1.60 1063.2 1.42 61,672 0.00 1451 0.00 1118 0.1 177.7 564.7

C205 70 0.5 1.00 1066.6 0.77 13,235 0.00 525 0.00 462 0.0 31.1 31.1

C205 70 0.75 1.00 1075.9 0.86 12,737 0.00 425 0.00 266 0.0 30.2 30.2

C206 70 0.25 1.60 1053.4 1.39 73,902 0.00 671 0.00 473 0.0 55.5 85.1

C206 70 0.5 1.60 1062.3 1.41 58,649 0.00 607 0.00 571 0.1 47.8 79.4

C206 70 0.75 1.30 1072.5 1.15 33,376 0.00 613 0.00 440 0.0 59.7 76.8

C207 70 0.25 1.00 1047.2 0.88 29,157 0.00 349 0.00 330 0.0 37.2 37.2

C207 70 0.5 1.00 1051.9 0.81 21,738 0.00 493 0.00 396 0.0 41.6 41.6

C207 70 0.75 1.00 1060.6 0.29 23,794 0.00 8521 0.00 8364 0.6 36.7 36.7

C208 70 0.25 1.60 1050.6 1.32 77,926 0.00 1020 0.00 909 0.1 22.6 33.8

C208 70 0.5 1.60 1055.9 1.31 50,908 0.00 1001 0.00 854 0.1 29.8 60.3

C208 70 0.75 1.00 1058.5 0.54 23,454 0.00 3679 0.00 2592 0.2 60.7 60.7

R201 70 0.25 1.00 1159.1 0.67 7323 0.47 3215 0.47 3107 1.0 81.7 81.7

R201 70 0.5 1.00 1173.9 0.62 4968 0.26 2405 0.26 1979 0.4 74.8 74.8

R201 70 0.75 1.00 1214.4 0.58 6143 0.38 4234 0.38 3833 1.6 94.3 94.3

R202 70 0.25 1.00 1115.4 0.00 12,145 0.00 4996 0.00 4787 0.3 48.6 48.6
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Appendix A.

Name N κ UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

R202 70 0.5 1.00 1125.5 0.00 13,441 0.00 6306 0.00 5247 0.3 65.3 65.3

R202 70 0.75 1.00 1125.5 0.00 4432 0.00 2917 0.00 2859 0.1 4.5 4.5

R203 70 0.25 1.00 1113.0 0.13 18,453 0.00 9911 0.00 9841 1.1 99.9 99.9

R203 70 0.5 1.00 1123.8 0.00 26,078 0.00 18,140 0.00 16,783 1.4 89.3 89.3

R203 70 0.75 1.00 1148.1 0.55 24,584 0.36 14,936 0.36 14,541 3.9 239.1 239.1

R204 70 0.25 1.00 1057.7 0.65 41,297 0.03 5259 0.03 5003 1.1 324.7 324.7

R204 70 0.5 1.00 1057.7 0.64 39,937 0.03 4917 0.03 4788 1.2 393.4 393.4

R204 70 0.75 1.00 1079.8 0.74 62,184 0.24 11,127 0.24 10,778 2.3 407.6 407.6

R205 70 0.25 1.00 1073.5 0.60 12,495 0.47 9452 0.47 8944 3.1 103.0 103.0

R205 70 0.5 1.00 1083.0 0.31 12,179 0.13 5697 0.13 5082 0.6 97.9 97.9

R205 70 0.75 1.00 1084.6 0.00 13,484 0.00 7582 0.00 7010 0.5 98.8 98.8

R206 70 0.25 1.00 1039.6 0.00 17,335 0.00 10,996 0.00 9976 0.7 140.4 140.4

R206 70 0.5 1.00 1059.3 0.51 22,212 0.20 8578 0.20 8090 3.4 440.1 440.1

R206 70 0.75 1.00 1070.6 0.45 21,856 0.24 9944 0.24 8998 3.8 336.9 336.9

R207 70 0.25 1.00 1049.3 0.65 24,721 0.17 5027 0.17 4880 0.8 155.1 155.1

R207 70 0.5 1.00 1056.5 0.34 36,566 0.00 15,798 0.00 14,783 2.2 222.0 222.0

R207 70 0.75 1.00 1056.5 0.33 26,619 0.00 10,653 0.00 9198 0.7 121.9 121.9

R208 70 0.25 1.00 997.4 0.00 79,976 0.00 37,224 0.00 32,199 4.9 332.3 332.3

R208 70 0.5 1.00 997.4 0.00 66,625 0.00 32,575 0.00 29,443 5.8 330.5 330.5

R208 70 0.75 1.00 997.4 0.00 76,866 0.00 34,134 0.00 31,093 5.3 367.2 367.3

R209 70 0.25 1.00 995.4 0.87 25,206 0.47 7655 0.47 6361 11.2 241.4 241.4

R209 70 0.5 1.00 997.4 0.73 19,766 0.40 8211 0.39 7183 6.0 232.4 232.4

R209 70 0.75 1.00 1033.8 0.60 13,071 0.42 8164 0.41 7589 6.7 323.4 323.4

R210 70 0.25 1.00 1026.5 0.45 18,768 0.23 8565 0.23 8382 2.5 204.1 204.1

R210 70 0.5 1.00 1032.7 0.10 15,450 0.00 8133 0.00 7557 0.6 138.6 138.6

R210 70 0.75 1.00 1094.5 0.33 16,267 0.02 10,084 0.02 9561 2.4 266.3 266.3

R211 70 0.25 1.00 930.4 0.85 30,249 0.40 6413 0.40 5372 12.4 716.1 716.1

R211 70 0.5 1.00 930.4 0.81 30,881 0.37 7614 0.37 6762 19.6 625.0 625.0

R211 70 0.75 1.30 958.8 1.09 67,007 0.66 22,094 0.66 21,151 27.8 574.6 1071.2

RC201 70 0.25 1.00 1367.5 0.07 3275 0.00 2169 0.00 2064 0.1 32.5 32.5

RC201 70 0.5 1.30 1397.6 1.07 5509 0.40 1700 0.40 1423 0.7 75.2 139.4

RC201 70 0.75 1.00 1434.6 0.82 3287 0.28 1134 0.28 1042 0.2 111.5 111.5

RC202 70 0.25 1.90 1409.8 1.59 18,011 0.77 6201 0.77 5566 2.6 86.0 294.4

RC202 70 0.5 2.20 1413.9 1.99 21,966 0.52 3366 0.52 3129 1.1 106.0 405.8

RC202 70 0.75 1.00 1438.3 0.23 2607 0.11 2028 0.11 1690 0.2 57.5 57.5

RC203 70 0.25 1.00 1397.9 0.21 10,442 0.00 5799 0.00 5127 0.5 156.9 156.9

RC203 70 0.5 1.00 1407.7 0.82 11,402 0.00 613 0.00 146 0.0 116.7 116.7

RC203 70 0.75 1.00 1483.9 0.00 9042 0.00 4979 0.00 4580 0.2 32.0 32.0

RC204 70 0.25 1.00 1354.0 0.86 27,186 0.00 1044 0.00 821 0.1 100.5 100.5

RC204 70 0.5 1.00 1354.0 0.88 27,335 0.00 836 0.00 623 0.1 97.8 97.8

RC204 70 0.75 1.00 1409.5 0.72 23,744 0.00 2088 0.00 1643 0.2 120.1 120.1

RC205 70 0.25 1.00 1361.5 0.51 5603 0.00 1725 0.00 1584 0.1 70.0 70.0

RC205 70 0.5 1.00 1433.0 0.56 6177 0.40 4907 0.40 4483 2.3 142.7 142.7

RC205 70 0.75 1.00 1474.6 0.42 3120 0.22 2415 0.22 2254 0.3 29.2 29.2

RC206 70 0.25 1.00 1309.1 0.51 5838 0.00 1712 0.00 1245 0.1 40.6 40.6

RC206 70 0.5 1.00 1309.9 0.51 5304 0.00 1659 0.00 1017 0.1 56.1 56.1

RC206 70 0.75 1.00 1347.7 0.10 4415 0.00 2901 0.00 2304 0.1 39.2 39.3

RC207 70 0.25 1.60 1281.8 1.49 37,993 0.31 2688 0.31 2561 2.9 302.6 685.1

RC207 70 0.5 1.60 1281.8 1.45 37,945 0.31 3482 0.31 3262 2.7 288.3 643.0

RC207 70 0.75 1.00 1382.5 0.66 10,482 0.34 5004 0.34 4609 5.1 200.5 200.5

RC208 70 0.25 1.60 1216.4 1.57 74,984 0.47 7771 0.30 3045 3.4 853.0 1388.0

RC208 70 0.5 1.60 1216.4 1.34 87,116 0.37 11,640 0.21 6630 7.9 720.5 1241.2

RC208 70 0.75 1.30 1235.3 1.02 36,259 0.37 9838 0.36 9138 13.5 652.5 1181.2

C201 100 0.25 1.90 1500.6 1.74 266,891 0.00 3412 0.00 2404 0.1 484.6 1314.6

C201 100 0.5 1.90 1500.6 1.80 178,432 0.00 727 0.00 248 0.0 106.1 206.8
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A.2. Detailed Computational Results

Name N κ UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

C201 100 0.75 1.30 1504 1.19 62,083 0.00 949 0.00 326 0.0 268.0 314.9

C202 100 0.25 1.30 1545.4 1.15 123,174 0.00 1333 0.00 1289 0.2 248.3 492.8

C202 100 0.5 1.00 1547.3 0.86 59,277 0.00 971 0.00 752 0.1 138.7 138.7

C202 100 0.75 1.30 1552.9 1.04 135,850 0.00 3806 0.00 3224 0.5 209.0 337.9

C203 100 0.25 1.30 1577.7 1.02 518,024 0.14 30,419 0.14 25,983 7.6 476.4 765.4

C203 100 0.5 1.30 1578.7 1.08 580,730 0.00 6832 0.00 6454 1.5 528.5 728.7

C203 100 0.75 1.30 1579.6 0.99 530,572 0.00 20,879 0.00 12,335 1.0 362.1 580.6

C204 100 0.25 1.00 1560.5 0.56 362,339 0.00 33,728 0.00 27,143 7.7 359.5 359.5

C204 100 0.5 1.00 1560.9 0.59 419,947 0.00 72,126 0.00 25,859 4.4 564.9 564.9

C204 100 0.75 1.00 1569.1 0.52 774,086 0.00 111,504 0.00 77,579 49.5 724.4 724.4

C205 100 0.25 1.90 1488.2 1.75 311,372 0.00 2212 0.00 1275 0.1 303.1 1067.6

C205 100 0.5 1.90 1490 1.84 230,873 0.00 272 0.00 126 0.0 98.9 162.3

C205 100 0.75 1.60 1491.7 1.56 131,531 0.00 265 0.00 116 0.1 110.4 151.3

C206 100 0.25 1.90 1476 1.59 429,401 0.00 9003 0.00 3940 0.4 239.0 597.0

C206 100 0.5 2.20 1481.7 1.89 425,267 0.00 3207 0.00 2874 0.3 134.5 198.7

C206 100 0.75 1.30 1490.5 1.15 104,412 0.00 667 0.00 592 0.0 114.1 141.5

C207 100 0.25 1.60 1472.8 1.38 250,704 0.00 4536 0.00 2179 0.2 347.2 797.3

C207 100 0.5 1.60 1474.4 1.33 200,045 0.00 3939 0.00 1697 0.2 145.6 259.8

C207 100 0.75 1.60 1480.4 1.36 194,882 0.00 1829 0.00 1493 0.2 150.2 217.4

C208 100 0.25 1.60 1471.2 1.57 319,713 0.00 139 0.00 108 0.1 122.8 151.0

C208 100 0.5 1.90 1477.4 1.76 346,233 0.00 1052 0.00 659 0.1 321.9 1079.6

C208 100 0.75 1.60 1481.2 1.54 180,788 0.00 453 0.00 157 0.1 180.8 300.2

R201 100 0.25 1.00 1435.6 0.65 59,336 0.42 31,118 0.42 28,847 26.5 418.5 418.5

R201 100 0.5 1.00 1442.6 0.63 51,206 0.47 31,105 0.47 27,801 14.0 464.7 464.7

R201 100 0.75 1.00 1483.6 0.64 43,259 0.29 17,008 0.29 16,696 9.8 439.9 439.9

R202 100 0.25 1.00 1401.4 0.53 154,117 0.23 57,261 0.22 55,014 26.8 568.2 568.2

R202 100 0.5 1.00 1413.8 0.68 175,594 0.46 102,061 0.45 93,429 97.5 750.6 750.6

R202 100 0.75 1.00 1429 0.38 217,895 0.26 164,761 0.25 154,330 145.7 760.8 760.8

R203 100 0.25 1.00 1370.9 0.14 312,566 0.00 226,472 0.00 216,761 44.5 461.1 461.1

R203 100 0.5 1.00 1372.8 0.14 331,679 0.00 266,036 0.00 231,170 46.5 562.8 562.8

R203 100 0.75 1.00 1394.7 0.26 344,209 0.07 189,723 0.07 188,698 66.5 654.7 654.7

R204 100 0.25 1.00 1324.6 0.76 793,150 0.42 221,122 0.41 203,329 107.9 1245.1 1245.1

R204 100 0.5 1.00 1324.6 0.75 882,365 0.42 226,484 0.41 200,874 212.4 1650.4 1650.4

R204 100 0.75 1.00 1334.6 0.41 800,625 0.10 241,278 0.10 235,647 192.9 1633.8 1633.8

R205 100 0.25 1.00 1314.4 0.61 120,733 0.45 69,084 0.45 66,784 40.3 651.5 651.5

R205 100 0.5 1.00 1332.3 0.60 105,529 0.41 49,592 0.41 49,401 34.5 576.0 576.0

R205 100 0.75 1.00 1361.8 0.54 116,846 0.37 71,661 0.37 68,376 51.6 572.4 572.4

R206 100 0.25 1.00 1274.8 0.01 297,371 0.00 246,956 0.00 241,390 41.8 640.3 640.3

R206 100 0.5 1.00 1298.1 0.34 395,190 0.21 198,079 0.20 175,261 88.3 1106.7 1106.7

R206 100 0.75 1.00 1323.5 0.51 403,273 0.21 110,954 0.21 103,722 111.0 951.0 951.0

R207 100 0.25 1.00 1286.7 0.68 442,145 0.45 221,834 0.45 218,842 196.6 1149.6 1149.6

R207 100 0.5 1.00 1297.3 0.50 371,829 0.18 154,100 0.18 136,334 82.8 1220.7 1220.7

R207 100 0.75 1.00 1304.7 0.27 622,611 0.04 316,142 0.04 298,663 313.0 1452.7 1452.7

R208 100 0.25 1.00 1253.1 0.44 1,082,095 0.24 422,997 0.24 417,102 341.9 1905.9 1905.9

R208 100 0.5 1.00 1253.1 0.46 1,033,092 0.25 400,897 0.25 392,067 295.1 1766.4 1766.4

R208 100 0.75 1.00 1253.1 0.34 996,291 0.17 507,153 0.17 492,997 711.6 2353.5 2353.5

R209 100 0.25 1.00 1255.8 0.92 280,085 0.67 122,158 0.66 117,610 488.7 1404.7 1404.7

R209 100 0.5 1.30 1258.8 1.04 882,673 0.84 446,688 0.84 439,714 1318.5 2458.1 3651.2

R209 100 0.75 1.00 1288.6 0.11 197,181 0.00 137,257 0.00 127,899 42.7 720.6 720.6

R210 100 0.25 1.30 1277.3 1.01 1,168,370 0.76 584,171 0.76 575,272 2704.8 3577.3 4790.6

R210 100 0.5 1.00 1283.7 0.58 325,645 0.34 175,314 0.34 173,704 180.9 1004.6 1004.6

R210 100 0.75 1.00 1341.5 0.44 282,194 0.26 170,330 0.26 152,454 121.9 972.7 972.7

R211 100 0.25 1.00 1171.4 0.40 545,818 0.10 185,060 0.06 161,465 509.1 2175.3 2175.4

R211 100 0.5 1.00 1175 0.61 591,090 0.26 141,473 0.26 133,176 566.4 2273.9 2273.9

R211 100 0.75 1.00 1199.3 0.90 508,339 0.41 52,886 0.41 50,783 238.9 1773.0 1773.0
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Name N κ UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

RC201 100 0.25 1.00 1839.1 0.97 29,557 0.51 6035 0.51 5445 3.7 169.8 169.8

RC201 100 0.5 1.00 1849.6 0.45 26,968 0.05 7541 0.05 6997 1.3 210.4 210.4

RC201 100 0.75 1.00 1871.2 0.32 23,307 0.00 9344 0.00 7802 0.8 109.8 109.8

RC202 100 0.25 1.00 1790.8 0.47 47,343 0.34 29,532 0.34 27,778 9.1 207.6 207.6

RC202 100 0.5 1.00 1813.4 0.43 47,706 0.28 29,624 0.28 27,437 8.6 209.1 209.1

RC202 100 0.75 1.00 1841.7 0.88 46,445 0.58 16,947 0.58 15,264 7.7 210.7 210.7

RC203 100 0.25 1.00 1808.2 0.31 355,647 0.12 146,937 0.12 140,917 60.6 1070.2 1070.2

RC203 100 0.5 1.00 1831.1 0.44 294,346 0.29 189,999 0.28 168,469 62.2 715.4 715.4

RC203 100 0.75 1.00 1880.7 0.55 382,517 0.43 210,105 0.43 208,814 183.1 852.4 852.4

RC204 100 0.25 1.00 1749.4 0.41 332,579 0.09 121,265 0.09 100,009 43.9 670.3 670.3

RC204 100 0.5 1.00 1749.4 0.39 325,110 0.09 122,194 0.09 99,858 70.7 818.2 818.2

RC204 100 0.75 1.00 1780.4 0.18 440,550 0.07 297,943 0.07 270,346 212.4 1249.3 1249.3

RC205 100 0.25 1.00 1760.4 0.54 64,928 0.27 26,984 0.26 25,717 25.7 594.8 594.8

RC205 100 0.5 1.00 1819 0.80 60,026 0.51 26,736 0.51 25,383 22.7 371.6 371.6

RC205 100 0.75 1.00 1877.8 0.61 51,447 0.30 19,702 0.30 18,877 21.0 319.8 319.8

RC206 100 0.25 1.00 1734.1 0.45 77,313 0.07 21,869 0.07 19,894 10.0 368.7 368.7

RC206 100 0.5 1.00 1746.9 0.57 59,056 0.27 27,001 0.27 25,132 13.0 309.2 309.2

RC206 100 0.75 1.00 1793.6 0.31 44,928 0.11 25,349 0.11 24,698 3.4 196.8 196.8

RC207 100 0.25 1.30 1694.4 1.07 367,965 0.31 26,329 0.31 22,825 54.5 498.4 871.0

RC207 100 0.5 1.30 1694.4 1.03 348,674 0.29 31,239 0.29 26,903 71.8 518.9 919.0

RC207 100 0.75 1.00 1780.4 0.37 88,065 0.09 36,129 0.08 33,255 18.4 355.4 355.4

RC208 100 0.25 1.30 1595.5 1.07 853,055 0.40 76,026 0.12 17,775 43.3 1947.3 3005.6

RC208 100 0.5 1.60 1602.5 1.49 2,150,557 0.75 258,446 0.56 91,396 1273.3 2834.3 4976.6

RC208 100 0.75 1.00 1620.1 0.95 221,868 0.27 10,571 0.19 5742 26.3 1064.0 1064.0

Table A.5: Detailed computational results for the DRP on Set A

Name UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

DRP A1 10 1 4.30 3132.0 4.00 30 3.86 25 3.27 22 0.0 0.2 1.6

DRP A1 10 2 1.00 4738.9 0.00 17 0.00 13 0.00 13 0.0 0.0 0.0

DRP A1 10 3 3.10 4556.3 2.85 48 1.42 25 0.00 14 0.0 0.2 0.9

DRP A1 10 4 9.10 4391.5 8.19 89 3.74 60 0.23 20 0.0 0.4 6.1

DRP A1 10 5 1.00 4524.2 0.19 19 0.12 12 0.00 5 0.0 0.2 0.2

DRP A1 15 1 1.00 7072.0 0.70 48 0.39 39 0.31 30 0.0 0.6 0.6

DRP A1 15 2 1.00 4397.8 0.15 49 0.00 38 0.00 24 0.0 0.4 0.4

DRP A1 15 3 6.40 5968.2 5.81 425 5.56 396 5.53 393 0.1 2.9 47.4

DRP A1 15 4 1.00 5491.0 0.81 43 0.00 25 0.00 16 0.0 0.2 0.2

DRP A1 15 5 3.40 7383.4 3.09 145 2.83 120 2.80 118 0.0 1.0 8.7

DRP A1 20 1 1.00 8284.9 0.00 48 0.00 31 0.00 27 0.0 0.1 0.1

DRP A1 20 2 1.00 9548.0 0.81 88 0.66 73 0.66 70 0.0 0.8 0.8

DRP A1 20 3 1.90 8816.1 1.71 174 0.40 57 0.09 33 0.0 0.3 0.7

DRP A1 20 4 1.30 6693.8 0.00 85 0.00 79 0.00 39 0.0 0.5 0.7

DRP A1 20 5 3.10 7782.1 2.73 290 1.74 196 1.45 171 0.1 2.2 10.8

DRP A1 25 1 2.20 10680.0 2.05 494 0.12 51 0.12 32 0.0 0.4 1.2

DRP A1 25 2 1.30 8636.2 1.10 166 0.76 85 0.43 48 0.0 3.1 4.8

DRP A1 25 3 2.50 10094.5 2.18 452 1.30 272 0.68 120 0.0 1.5 4.8

DRP A1 25 4 1.00 10146.6 0.00 130 0.00 123 0.00 103 0.1 0.4 0.4

DRP A1 25 5 1.60 11166.0 1.40 319 0.61 179 0.61 170 0.0 2.3 5.7

DRP A1 30 1 1.00 9831.6 0.00 230 0.00 207 0.00 185 0.0 2.2 2.2

DRP A1 30 2 1.00 12665.0 0.19 284 0.00 209 0.00 128 0.0 1.7 1.7

DRP A1 30 3 2.20 12359.4 2.08 798 1.25 485 0.95 367 0.2 12.8 51.3

DRP A1 30 4 1.00 12512.8 0.94 320 0.30 99 0.23 74 0.0 2.5 2.5

DRP A1 30 5 1.30 12086.1 0.81 501 0.00 122 0.00 91 0.0 1.1 1.9
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A.2. Detailed Computational Results

Name UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

DRP A1 35 1 1.60 12434.0 1.56 2320 0.91 1102 0.91 1025 0.8 13.0 35.9

DRP A1 35 2 1.00 13020.8 0.84 572 0.54 313 0.53 304 0.2 9.3 9.3

DRP A1 35 3 1.00 13230.4 0.00 293 0.00 293 0.00 265 0.0 3.3 3.3

DRP A1 35 4 1.00 13863.5 0.00 382 0.00 362 0.00 340 0.0 0.4 0.4

DRP A1 35 5 1.00 13281.6 0.51 339 0.43 299 0.43 288 0.2 12.5 12.5

DRP A1 40 1 1.00 15540.1 0.49 776 0.10 419 0.10 404 0.2 7.7 7.7

DRP A1 40 2 1.00 16881.3 0.35 384 0.11 323 0.07 309 0.2 11.0 11.0

DRP A1 40 3 1.00 14178.4 0.22 692 0.08 585 0.08 540 0.1 15.0 15.0

DRP A1 40 4 1.00 16286.8 0.21 532 0.02 476 0.00 452 0.5 3.1 3.1

DRP A1 40 5 1.00 15620.2 0.48 414 0.25 324 0.03 237 0.6 17.9 17.9

DRP A1 45 1 1.00 14569.0 0.31 2158 0.23 1945 0.21 1833 0.7 52.0 52.0

DRP A1 45 2 1.00 19727.5 0.88 952 0.55 632 0.45 487 1.9 19.8 19.8

DRP A1 45 3 1.00 18825.4 0.21 1425 0.07 1005 0.01 896 1.0 21.4 21.4

DRP A1 45 4 1.00 16298.5 0.60 1262 0.47 1109 0.37 913 0.2 29.9 29.9

DRP A1 45 5 1.00 18727.9 0.44 774 0.19 550 0.19 524 0.5 13.9 13.9

DRP A2 10 1 4.30 4999.0 3.98 24 2.11 17 0.00 11 0.0 0.1 0.2

DRP A2 10 2 1.00 5825.5 0.00 14 0.00 10 0.00 8 0.0 0.1 0.1

DRP A2 10 3 1.00 5269.9 0.00 9 0.00 9 0.00 6 0.0 0.1 0.1

DRP A2 10 4 5.20 6157.2 4.85 36 2.97 33 0.43 21 0.0 0.2 1.0

DRP A2 10 5 1.00 5534.0 0.78 13 0.59 13 0.00 12 0.0 0.3 0.3

DRP A2 15 1 1.00 6869.6 0.19 22 0.10 20 0.00 17 0.0 0.2 0.2

DRP A2 15 2 1.60 8535.0 1.43 43 1.43 43 1.42 43 0.1 0.3 0.8

DRP A2 15 3 1.00 6612.0 0.00 23 0.00 22 0.00 17 0.0 0.1 0.1

DRP A2 15 4 8.50 8777.9 7.69 78 7.69 78 5.46 51 0.0 0.1 2.6

DRP A2 15 5 1.00 8672.1 0.00 45 0.00 45 0.00 45 0.0 0.1 0.1

DRP A2 20 1 3.70 11422.7 3.35 107 1.73 80 0.39 41 0.0 0.7 5.1

DRP A2 20 2 3.70 9730.0 3.50 154 2.80 124 2.24 78 0.0 0.4 3.7

DRP A2 20 3 1.00 10093.7 0.00 37 0.00 37 0.00 31 0.0 0.2 0.2

DRP A2 20 4 1.00 9492.4 0.00 39 0.00 39 0.00 37 0.0 0.1 0.1

DRP A2 20 5 1.90 8299.5 1.73 126 1.47 101 1.43 99 0.0 0.7 3.1

DRP A2 25 1 1.00 11436.3 0.01 72 0.01 61 0.00 54 0.0 0.3 0.3

DRP A2 25 2 1.00 12426.4 0.00 57 0.00 52 0.00 50 0.0 0.2 0.2

DRP A2 25 3 4.00 10973.4 3.71 210 3.11 170 2.47 109 0.5 2.0 12.5

DRP A2 25 4 1.00 12275.4 0.69 65 0.01 46 0.01 41 0.1 0.5 0.5

DRP A2 25 5 1.00 11788 0.15 70 0.13 50 0.00 49 0.0 0.4 0.4

DRP A2 30 1 1.00 14997.4 0.18 112 0.00 101 0.00 91 0.1 1.4 1.4

DRP A2 30 2 1.00 12794.3 0.96 140 0.96 110 0.96 101 0.3 1.7 1.7

DRP A2 30 3 1.00 12234.4 0.79 224 0.10 100 0.08 80 0.0 2.5 2.5

DRP A2 30 4 1.00 11587.3 0.19 103 0.00 78 0.00 61 0.0 0.5 0.5

DRP A2 30 5 1.30 13261.5 1.23 224 1.23 206 1.04 168 0.3 2.5 4.5

DRP A2 35 1 1.00 14282.9 0.42 398 0.00 271 0.00 209 0.0 1.8 1.8

DRP A2 35 2 1.00 17443.4 0.27 114 0.13 100 0.03 89 0.2 3.2 3.2

DRP A2 35 3 1.00 14691.3 0.92 211 0.92 193 0.73 140 0.0 2.7 2.7

DRP A2 35 4 1.30 17689.3 1.20 330 0.94 274 0.72 200 0.1 5.7 10.2

DRP A2 35 5 1.00 16812.4 0.45 275 0.40 243 0.29 190 0.1 6.5 6.5

DRP A2 40 1 1.00 17002.9 0.06 328 0.00 293 0.00 269 0.2 4.6 4.6

DRP A2 40 2 1.30 17949 1.07 423 0.36 213 0.36 213 0.5 6.5 12.9

DRP A2 40 3 1.00 18078.8 0.16 196 0.00 178 0.00 168 0.2 2.2 2.2

DRP A2 40 4 1.00 18559.6 0.59 263 0.45 240 0.24 177 0.5 5.2 5.2

DRP A2 40 5 1.00 13798.5 0.51 250 0.38 207 0.19 127 0.1 7.6 7.6

DRP A2 45 1 1.00 18654.7 0.01 344 0.01 320 0.00 309 0.4 2.6 2.6

DRP A2 45 2 1.00 19590.6 0.21 438 0.11 412 0.08 383 1.0 7.0 7.0

DRP A2 45 3 1.00 20207.2 0.73 490 0.22 218 0.13 174 0.3 4.2 4.2

DRP A2 45 4 1.00 17306.9 0.52 553 0.09 364 0.08 321 0.5 12.4 12.4

DRP A2 45 5 1.00 24311.7 0.72 299 0.01 131 0.00 111 0.4 2.8 2.8
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Name UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

DRP A2 50 1 1.30 24698.5 0.76 1901 0.32 1342 0.22 1104 2.5 21.2 37.5

DRP A2 50 2 1.00 21939.4 0.83 534 0.23 221 0.12 182 0.2 23.7 23.7

DRP A2 50 3 1.00 19700 0.19 672 0.18 625 0.18 555 0.6 15.8 15.8

DRP A2 50 4 1.00 19841.8 0.12 416 0.05 327 0.00 262 0.6 11.9 11.9

DRP A2 50 5 1.00 23721.5 0.58 392 0.16 267 0.10 224 0.8 8.1 8.1

Table A.6: Detailed computational results for the DRP on Set B

Name N UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

C201 70 1.00 1862.8 0.48 10,372 0.00 3006 0.00 2251 0.4 13.0 13.0

C202 70 1.00 1856.9 0.28 12,198 0.00 6015 0.00 5538 0.5 19.3 19.3

C203 70 1.00 1852.1 0.34 17,104 0.00 7045 0.00 6797 0.5 12.2 12.2

C204 70 1.00 1851.6 0.34 23,939 0.00 8645 0.00 7560 58.6 69.1 69.1

C205 70 1.00 1853.0 0.30 11,965 0.00 5308 0.00 4507 2.1 18.5 18.5

C206 70 1.00 1851.9 0.29 13,931 0.00 6297 0.00 4861 0.9 12.5 12.5

C207 70 1.00 1851.9 0.36 13,929 0.00 5835 0.00 5086 1.1 7.3 7.3

C208 70 1.00 1851.9 0.36 12,619 0.00 5217 0.00 4387 1.5 7.7 7.7

R201 70 1.00 1531.5 0.63 4277 0.42 2830 0.42 2602 2.4 53.1 53.1

R202 70 1.00 1462.2 0.13 8207 0.03 6091 0.03 5877 1.2 122.0 122.0

R203 70 1.00 1412.9 0.39 14,174 0.21 9363 0.17 8111 2.8 87.4 87.4

R204 70 1.00 1393.1 0.51 19,248 0.29 11,293 0.29 11,068 1.7 87.8 87.8

R205 70 1.00 1458.7 0.39 7155 0.39 5694 0.39 5434 1.0 54.9 54.9

R206 70 1.00 1429.2 0.38 13,315 0.26 8554 0.09 5817 3.6 101.4 101.4

R207 70 1.00 1403.0 0.66 17,100 0.15 3838 0.15 3385 7.6 111.8 111.8

R208 70 1.00 1390.4 0.66 21,954 0.23 5886 0.23 5767 62.1 154.4 154.4

R209 70 1.00 1417.8 0.96 10,894 0.40 2359 0.38 1861 2.6 87.0 87.0

R210 70 1.00 1433.9 0.49 13,300 0.23 7704 0.22 6641 3.0 93.9 93.9

R211 70 1.00 1390.2 0.65 18,140 0.21 5564 0.21 4976 8.2 100.4 100.4

RC201 70 1.30 2328.5 1.18 3664 0.67 2079 0.36 1049 0.8 78.9 154.5

RC202 70 1.00 2253.2 0.93 3386 0.26 915 0.08 403 0.2 41.6 41.6

RC203 70 1.00 2227.5 0.68 5727 0.00 1586 0.00 1540 0.1 13.9 13.9

RC204 70 1.00 2225.4 0.74 6092 0.00 1489 0.00 1135 5.6 42.0 42.0

RC205 70 1.00 2270.7 0.77 3610 0.16 1456 0.03 756 0.8 42.4 42.4

RC206 70 1.00 2259.0 0.55 3701 0.12 1700 0.03 1373 0.3 40.9 40.9

RC207 70 1.00 2233.0 0.81 4668 0.01 785 0.00 644 0.9 24.1 24.1

RC208 70 1.00 2225.4 0.74 7596 0.00 1601 0.00 1274 3.0 27.2 27.2

C201 100 1.00 2733.4 0.91 33,519 0.00 551 0.00 545 0.1 41.8 41.8

C202 100 1.00 2729.1 0.84 61,406 0.00 1661 0.00 1599 0.2 37.4 37.4

C203 100 1.00 2725.8 0.84 93,269 0.00 2071 0.00 1963 0.2 39.0 39.0

C204 100 1.00 2720.8 0.83 112,111 0.00 2445 0.00 1872 86.4 206.0 206.0

C205 100 1.00 2726.9 0.91 45,593 0.00 677 0.00 448 0.1 36.8 36.8

C206 100 1.00 2722.3 0.80 51,165 0.00 1929 0.00 1530 0.2 54.1 54.1

C207 100 1.00 2720.9 0.80 50,728 0.00 1980 0.00 1950 0.2 21.8 21.8

C208 100 1.00 2720.7 0.81 53,587 0.00 1571 0.00 1249 0.2 87.4 87.4

R201 100 1.00 1974.3 0.34 39,996 0.22 28,017 0.22 26,987 7.3 143.0 143.0

R202 100 1.00 1919 0.80 91,207 0.60 48,069 0.47 23,962 38.3 205.3 205.3

R203 100 1.00 1845.7 0.51 215,733 0.39 152,251 0.37 141,314 798.4 1003.2 1003.2

R204 100 1.00 1819.2 0.14 360,427 0.03 271,302 0.03 268,692 47.9 288.9 288.9

R205 100 1.00 1884.4 0.42 84,548 0.26 58,097 0.22 48,458 125.4 293.1 293.1

R206 100 1.00 1852.8 0.41 168,921 0.20 92,802 0.19 86,235 188.8 365.5 365.5

R207 100 1.00 1831.5 0.33 265,423 0.16 144,097 0.16 134,790 259.3 489.1 489.1

R208 100 1.00 1815.5 0.13 458,365 0.00 292,576 0.00 287,701 31.2 129.9 129.9

R209 100 1.00 1846.0 0.48 150,953 0.28 73,870 0.27 69,280 57.8 260.6 260.6
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A.2. Detailed Computational Results

Name N UBg% optimal LB1% |R1| LB2% |R2| LB3% |R3| Tclose Tvalid Ttotal

R210 100 1.00 1853.6 0.52 179,653 0.37 111,594 0.35 92,755 517.4 707.3 707.3

R211 100 1.00 1815.5 0.19 487,283 0.00 240,795 0.00 230,958 884.0 1111.0 1111.0

RC201 100 1.00 2960.3 0.62 24,489 0.45 15,954 0.18 6274 8.7 99.0 99.0

RC202 100 1.00 2870.7 0.41 50,079 0.09 29,823 0.08 28,022 8.8 136.3 136.3

RC203 100 1.00 2853.0 0.42 94,980 0.08 47,050 0.08 44,204 46.4 206.4 206.4

RC204 100 1.00 2847.0 0.40 113,726 0.05 45,706 0.05 44,129 592.3 704.1 704.1

RC205 100 1.00 2898.2 0.52 39,082 0.28 25,855 0.22 21,968 16.3 134.0 134.0

RC206 100 1.00 2886.3 0.37 45,816 0.16 32,036 0.08 23,760 7.8 99.1 99.1

RC207 100 1.00 2854.6 0.42 58,647 0.05 29,176 0.04 26,238 174.0 281.3 281.3

RC208 100 1.00 2846.7 0.39 130,401 0.04 61,533 0.04 58,147 347.6 480.0 480.0
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