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Abstract
In view of the widespread use of social platforms, interpersonal com-

munications have come to play an increasingly crucial role in our daily

activities. Nevertheless, although every individual is part of our society,

many of them have not yet gathered the ability to socialize well with

others. For these people, they may unintentionally ruin a conversation

or be reluctant to voice their opinions. To help them perform in so-

cial interactions better, this thesis proposes novel solutions to employ

data-driven natural language processing (NLP) methods to provide sup-

port and guidance to users for them to better engage in online social

interactions.
To that end, we first measure the understanding ability of NLP models

on the user-generated content on social media. Specifically, we present

the first benchmark to investigate how well the state-of-the-art natural

language understanding (NLU) models tackle social media tasks, where

the texts usually exhibit the inherent noise (e.g., informal writings)

underlying the user-generated contents. To build the benchmark, we

gather two large-scale Chinese datasets from Weibo — 80K posts with

crowd-sourcing annotations and 3K posts with expert annotations for

three fundamental tasks (Chinese word segmentation, part-of-speech

tagging, and named-entity recognition) to examine how well models gain

the generic language understanding. In addition, model performance

on popular social media applications, such as rumor detection, emoji

prediction, sentiment analysis, and hashtag classification, are examined

to investigate NLU models’ capability of capturing specific semantics

from social media messages. The experimental results demonstrate the
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effectiveness of trendy language encoders from the BERT family to to

understand social media messages, which even obtained better results

than human readers.
Then, we examine user participants’ behavior in conversations via

estimating their effects on the residual life for conversations, which

is defined as the count of new turns to occur in a conversation thread.
While most previous work focuses on the coarse-grained estimation that

classifies the number of coming turns into two categories, we study

fine-grained categorization for varying lengths of residual life. To this

end, we propose a hierarchical neural model that jointly explores in-

dicative representations from the content in turns and the structure of

conversations in an end-to-end manner. Extensive experiments on both

human-human and human-machine conversations demonstrate the supe-

riority of our proposed model and the potential NLP models to evaluate

the engaging degree of user discussions.

At last, we research how to actively draw the engagement of users

who prefer not to comment with words. A novel task is proposed to

generate vote questions for social media posts. It offers an easy way to

hear the voice of the public and learn from their feelings about important

social topics. While most related work tackles formal languages (e.g.,

exam papers), we generate vote questions for short and colloquial social

media messages exhibiting severe data sparsity. To deal with that, we

propose to encode user comments and discover latent topics therein as

contexts. They are then incorporated into a sequence-to-sequence (S2S)

architecture for question generation and its extension with dual decoders

to additionally yield vote answers. For experiments, we collect a large-

scale Chinese dataset from Sina Weibo. The results show that our model
outperforms the popular S2S models without leveraging topics from

comments and the dual decoder design can further benefit the prediction

of both questions and answers.
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Chapter 1

Introduction

The last decade has witnessed the flourish of Internet. It broadly affects

people’s daily life attributed to the substantial advances made in both the

infrastructure (e.g., the speed-up of mobile networks) and applications

(e.g., the technology of instant messaging). Consequently, many of

people’s everyday activities and interpersonal communications have been

gradually moved to the online world, such as meetings and chitchats,

largely benefit from the development and implementation of the Internet.

In context of the worldwide expansion of the Internet, social media

platforms play essential roles in our daily connections to others, such as

the opinion exchange from diverse educational and cultural backgrounds

and the sharing of information that is breaking or widely discussed.

Social media has essentially revolutionized our living manners. Millions

of users are turning to micro-blogging platforms, such as Sina Weibo,

1



Twitter, and Facebook, to share ideas with friends and voice viewpoints

to the public; especially during the lockdown period of COVID-19 crisis,

people have to stay at home and social media is the only outlet to allow

individuals to stay in touch with this world.

1.1 Motivation

Although every individual is a part of our society, many of them have

not yet gained the capability to socialize with others well. Some people

are willing to discuss but fail to engage appropriately. For example, they

may unintentionally kill a conversation because of the improper behavior

in the discussion, e.g., raising an irrelevant point or dropping wordy and

boring messages. Meanwhile, many others, for various reasons (e.g., the

introverted personality), may not be well-motivated to explicitly voice

their opinions, rendering it difficult for them to navigate social life online

from the very beginning. All such cases would result in unwanted social

experiences and as a worse consequence, those people may refuse to

socialize with others afterwards ascribed to the negative effects of these

unpleasant experiences.

Under this circumstance, it is vital to encourage the effective and

engaging interpersonal communications on social media while many

individuals have not been well trained to gain the useful people skills.
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The possible reason is that in our education system, especially in the

Asian area, limited attention has been paid to teach students how to

socialize with others well.

On the other hand, social media platforms also provide us with rich

resources to learn how to enable positive user engagements, such as

the engaging conversations with successful outcomes. It is potential

to make good use of those materials, such as other people’s chatting

history and high-quality comments, to help individuals gain a better

engagement in social media discussions. Considering the good capability

of Natural Language Processing (NLP) models in digesting big data and

distilling salient content therein, in this thesis, we propose to employ

NLP technology to leverage large-scale social media data, automatically

learn from large volume of users’ social behavior, and automatically

assist individuals’s engagement in social media conversations.

1.2 Challenges

In this subsection, we discuss the challenges of using NLP techniques in

the modeling of user engagements on social media. First of all, models

should help users understand others’ messages, whereas the inherent

noise exhibited in the user-generated data on online social network plat-

forms may inevitably hinder NLP models from understanding the context

3



and thus worsen the performance of the applications. Second, the online

social environment is complex and uncontrollable because participants

might vary in their personality and purposes. For instance, good inter-

actions may become out of control when a conversation killer appears.

Third, some people may inherently not want to explicitly voice in on-

line discussions for many reasons, e.g., the introverted personality, and

how to engage them into social interactions hence becomes a concrete

challenge. In the following, we will discuss the challenges in details

with the corresponding solutions presented in Chapter (3, 4, 5) and the

contributions summarized in 1.3.

1.2.1 Special Tokens and Data Noisiness

Social media exhibits an informal and colloquial language style, where

we can observe the prominent use of special social media tokens (e.g.,

emojis, slangs, and special punctuation). These tokens, either intention-

ally (e.g., abbreviation, slang, and exaggeration) or unintentionally used

(e.g., typo and missing blank), present the concrete challenge for the

language understanding models to capture the essential meanings well,

because it usually requires the prior knowledge (e.g., common sense and

culture understanding) probably absent in the limited context of a short

piece of text.
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The cutesssst DOG ever lol, RT if U likeit

Figure 1.1: An example tweet with informal language styles.
The user types cutesssst to emphasize the degree of cuteness
for the dog. lol is a slang that means happy. RT stands for
re-tweet, U is slang or abbreviation of YOU. likeit could be
the missing blank.

In Figure 1.1, as can be seen, to understand the meaning of the tweet,

one should priorly know how to interpret the abbreviation, slang, exag-

geration, missing blank, etc. All these factors will result in a deviated

and much larger vocabulary compared to that of formal texts, e.g., news

articles. In other words, as the data sample increases, the vocabulary

table will dramatically expanded and the word distribution over the vo-

cabulary will be sparse, whereas the existing NLP models largely rely

on the rich and dense context to gain the generic language understanding

capability.

A: I got 99 points in the Calculus class!

B:

Figure 1.2: A sample tweet requiring cultural background for
understanding. The emoji smile is a polysemy, even antonym,
in Chinese culture.

What’s more, the understanding of some social media tokens (e.g.,

emojis or memes) further requires background knowledge. For example,

in Figure 1.2, the emoji conventionally has the meaning of smile

or happy. However, many young people in China today prefer to use
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it for expressing sarcasm and scoff. Conditioned on the age of user

B, the reply may convey very different meanings – older person may

simply want to congratulate user A’s achievement while younger person

may sneer at user A because of jealousy. Therefore, without the prior

knowledge of such culture, the NLP models might be confused about

how to correctly understand the smile face in the reply.

To examine this challenge, we build the first social media benchmark

to investigate the NLP model’s understanding ability and the discussion

will be present in Chapter 3.

1.2.2 Uncontrollable Environments in Conversations

In online conversations, it is very likely that discussion may go awry

and the environments may become out of control. For example, the

occurrence of conversation killers may end a heated debate because of

the unappropriated wordings. On the other hand, the rise of red herrings

probably distracts the focus of a meeting and further results in a lengthy

and unpleasant discussion.

As the toy example shown in Figure 1.3, the boy is a conversation

killer in the discussion with a girl he wants to date. The girl shared her

personal experience at the beginning and raised a question to move the

conversation forward. However, the boy simply said “I don’t know”,
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Figure 1.3: An example conversation with a boy participant
mistakenly kill a conversation because of the inappropriate
response. He does not know how to well respond the girl’s
prompts and then turned the girl away.

which tends to end up the conversation. When the conversation continues

with this pattern, the girl started to become bored and did not want to

talk with him anymore. It is because the girl starts to feel uncomfortable

in the conversation discourse. Few people would like to continue the talk

in this unpleasant environment. However, the boy probably wanted to

talk more with the girl. Because of his introverted personality, he didn’t

know how to carry on the discussion without turning the girl away.
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As can be seen above, the conversation environments might be com-

plicated and uncontrollable, which might be challenge the models to be

on track of what is happening in the context. To address this problem,

we propose to estimate the residual life (which is defined as how many

new messages a conversation thread will continue) for conversations in

Chapter 4 and guide users to communicate in a proper way.

1.2.3 Reluctance to Online User Engagements

In the previous subsection, we discussed the scenarios where users at-

tempted to engage in online conversations yet somehow faced some

difficulties in keeping the conversation on track. Here we focused on

a more challenging scenario where users may be reluctant to explicitly

voice their opinions in online discussions. For example, people with

the physiological preference of extroversion are willing to spend time

on communication and interaction with the outside world. On the con-

trary, introverted people are described as reserved and solitary. They’re

energetic on reflection or thinking, i.e., focusing on their inner world,

whereas would be uncomfortable when communicating with others.

On social media platforms, people do not need to talk face-to-face.

It gives an excellent chance for introverted people to express their ideas

and communicate with others behind their computers or cell phones.
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However, some introverted people may still be reluctant to drop messages

explicitly. Instead, these people may prefer to read others’ posts or

information rather than share viewpoints with words.

How shall we engage those users who are unwilling to voice their

thoughts on social media platforms, and encourage them to be involved

in interpersonal communications? To address this challenge, we propose

a solution to automatically generate poll questions for social media posts,

which allows us to actively engage users who are reluctant to explicitly

talk. The details will be discussed in Chapter 5, where we will show that

a poll question not only offers the channel for users to voice opinions

via easy voting, but also demonstrates the potential to draw later user

engagements in online conversations.

1.3 Contributions

As discussed above, to help users better engage in social activities, we

propose employing natural language processing methods to assist users

to understand others’ posts, get on track of the conversation context

for those involved in discussions, and draw user engagements for those

reluctant to talk.

To tackle these tasks, we first investigate NLP models’ understanding

ability on noisy social media text over a newly built benchmark and
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found out that the performance of cutting-edge NLP models based on

pre-trained BERT [24] is competitive to human beings, which suggests

that NLP models are able to well understand social media posts despite

of the noise after examining abundant data. Based on that, we propose

two applications to help people’s engagement on social media. One is

for those who have already been in a conversation and signal the possible

results of their replies; the other is for people who do not want to engage

in a discussion explicitly and we can generate a poll question for them

to hear their voice.

1.3.1 Evaluation of Social Media Language Understand-

ing Models

To comprehensive examine models’ capability in handling noisy data

from social media, we present the first benchmark for social media lan-

guage understanding (SMLU). While most existing benchmarks concern

formal texts in common domains (e.g., news), we explore social me-

dia language exhibiting informal writings and noisy data, presenting

the challenges to capture valuable features. To build the benchmark,

we gather three large-scale Chinese datasets from Weibo — 80K posts

with manual annotations and 3K posts with expert annotations for three

fundamental tasks (Chinese word segmentation, part-of-speech tagging,
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and named-entity recognition) and 46K involving user-generated emoji

labels to explore a popular social media application: emoji prediction.

Rumor detection, sentiment analysis, and hashtag classification are also

incorporated into our SMLU benchmark with existing datasets. The

experimental results demonstrate the effectiveness of trendy language

encoders from the BERT family to handle fundamental tasks well and

their limited capability to master post-level context understanding in

handling some social media applications. Two conclusions have been

drawn. First, the overall understanding ability of the NLP machine is

competitive to human beings. Second, in some scenarios, social media

posts should be put in richer context of user interactions to allow better

understanding.

1.3.2 Conversation Context Modeling for Residual Life

Estimation

To enable models to handle uncontrollable conversation environments

and offer help to participants involved, we provide a solution to quantify

user replies’ quality with a new concept of “residual life”, which is

defined to be the possible number of new turns that will be followed

by a response. For the modeling of conversation context, we propose a

hierarchical neural model that jointly explores indicative representations
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from the content in turns and the structure of conversations in an end-to-

end manner.

While previous work focus on coarse grained categorization of

whether or not a conversation will end, our model is not only able

to answer the “yes-or-no” question of conversation ending, but also

estimate the fine-grained remaining life to be “very short”, “short”,

“long”, or “very long”. Extensive experiments on various social media

conversations demonstrate the superiority of our proposed model in

measuring conversation environments. Moreover, we experiment with

human-machine conversations and pointed out our potential to potential

helpfulness in chatbot response selection, while previous studies concern

human-human conversations only.

1.3.3 Poll Question Generation in External Context

To engage users reluctant to talk in online interactions, we propose a

new task to automatically generate poll questions. Previous work mainly

concerns question generation in formal language, such as essay questions

or exam questions. Because of the potential data noisiness and context

sparseness of social media posts, richer context might be needed to

allow a better understanding on post level, which has also been shown

in Section 1.3.1. We therefore propose to encode user comments and
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discover latent topics therein as context. They are then incorporated into

a sequence-to-sequence (S2S) architecture for question generation and

its extension with dual decoders to additionally yield poll answers. For

experiments, we collect a large-scale Chinese dataset from Sina Weibo.

The results show that our model outperforms the popular S2S models

without leveraging topics from comments and the dual decoder design

can further benefit the prediction of both questions and answers.
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Chapter 2

Background Study

In this section, we introduce our research background knowledge by

reviewing related work and cut-edge papers, which mainly focus on user

engagement prediction, evaluation of natural language understanding,

pre-training technology, question generation, muti-task learning, etc.

We first explain the concept of user engagement and its scope in

our research. Two applications – residual life prediction and question

generation – are introduced respectively in the subsection, which aims

to improve user engagement. Additionally, since both two applications

will explore multi-task learning technique, we study this point in section

2.2. Also, we will introduce the neural topic model and pre-training

techniques in section 2.3 and section 2.4 respectively. Both of them

would provide some help in our generation task. Besides, we investigate

the benchmark domain in section 2.5 because we need to evaluate the
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understanding ability of our natural language model on social media

data, which is a foundation to build an application.

2.1 User Engagement

To begin with, we would like to introduce what is online user engagement.

The term online user engagement can be applied in many activities, such

as human online shopping [42] and gaming applications [60]. Here it

refers to helping people better socialize with others. In other words,

we would like to improve people’s experiences when socializing with

other human beings through technology [63]. And thus everyone can

have better engagement in our online social activity, such as chitchat or

interaction on social media platforms.

To this end, we propose to predict the conversation residual life for

participants and to generate questions for reluctant interaction users. We

will introduce the background and related work for these two applications

in section 2.1.1 and section 2.1.2.

2.1.1 Residual Prediction

Conversation residual life is defined as how many new messages a con-

versation thread will continue. We would like to predict the conversation

residual life for the users and give them an early warning if the com-
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ing result is not what they want. With the help of such early warning,

users can avoid being conversation killers by rewriting messages before

sending them out.

In previous work, there are studies analyzing the number of retweets

or replies for social media messages [5, 6, 36, 71, 82], which focus on

human engagements on social media and measuring various of features.

Distinguished from these studies, our work does not rely on a labor-

intensive process of feature engineering and provides an alternative with

neural models for this task. More importantly, in addition to human-

human conversations, we also investigate the residual life for human-

machine conversations as well as its application on dialogue response

selection for chatbots, which is, to our best knowledge, the very first

research of its kind. Although there are recent studies on thread ending

posts on social media [41], they only investigate the binary prediction

of ended conversations. Different from them, we focus on fine-grained

categorization of future turn numbers, which is beyond a simple “yes or

no” answer to whether new turns will be received.

Our work is also related to state tracking in conversations [64], e.g.,

the prediction of user engagement degree [48, 106, 107, 108]. These

studies measure speech features and involve human annotation for en-

gagement degree. Instead, our approach does not require such features
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and can be conducted without manually annotated labels, which enables

its ability to be scaled for large datasets.

2.1.2 Question Generation

Another application is poll question generation for social media posts.

This work aims to draw reluctant people’s attention and boost them to

express their opinion starting by voting or discussing this poll question.

Our work is in line with question generation, where most prior efforts

focus on how to ask good exam questions given an article and the pre-

defined answers. Some adopt manually-crafted rules or features [25, 28,

35, 40, 47, 55], largely relying on the labor-intensive process for rule

design or feature engineering. To simply the training, automatic feature

learning hence becomes increasingly popular. For example, [13] first

employs a Bayesian model to learn topic features and then leverages

them to yield questions. These pipeline methods require the expertise

involvement to manually customize the model inference algorithms,

while our neural network design allows end-to-end training of topic

modeling and question generation.

Recently, built upon the success the encoder-decoder framework,

S2S-based question generation architecture has demonstrated promising

results [12, 27]. To better encode the input, researchers adopt suc-
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cessful training design from other tasks, such as self-attention mech-

anism [75, 116], language model pre-training [65], variational infer-

ence [105], and reinforcement learning [65, 109]. Heuristic features,

e.g., the answers’ positions in the article [43, 56, 83, 117] are sometimes

considered. For question decoding, certian contraints are added to con-

trol the generation, such as some aspects to be contained [39], varying

levels of difficulty [29] and specificity [11].

2.2 Multi-task Learning

Multi-task learning, also named joint learning, is mainly used for im-

proving model generalization ability. Usually, it can share parameters or

model blocks by hard parameter sharing [8] or soft parameter sharing

[2].

Predicting conversation residual life is our first application attempt

to leverage multi-task learning. we combine fine-grained categorization

with coarse-grained classification to find that two tasks can help each

other reach a better optimum.

Our question generation is also related with previous work handling

the generation of questions and answers in a multi-task learning set-

ting [84, 88, 96]. Nonetheless, none of the aforementioned research

concern vote questions and answers on social media, which exhibit very
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different language styles compared with any existing studies and has

been extensively explored.

2.3 Topic Modeling

In the question generation task, we leverage the neural topic model to

extract latent topic information and fed this feature to enhance the s2s

framework.

Topic models aim to discover topic words from word co-occurrence

at a document level. The most famous traditional topic model is latent

Dirichlet allocation (LDA), which is based on Bayesian graphical models

[9]. However, these models rely on the expertise‘s participation to

customize the model based on specific situations [15].

Since machine learning stepped into the era of deep learning, the neu-

ral topic model [62] emerged in response to this right moment. Recent

works use the neural topic model to infer latent topics and then further to

facilitate s2s framework training, which no longer requires expert effort.

The neural topic model has proven useful for downstream tasks,

such as citation recommendation [7], keyphrase generation [97], and

conversation understanding [110]. Different from them, our topic model

is to learn from comment data and explore the question generation task

in a multi-task learning setting.
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2.4 Pre-training

With the advent of pre-training and fine-tuning paradigm, the perfor-

mance of various natural language processing tasks has been revolution-

ized. In Chapter 5, we will investigate whether the pre-trained models

can boost our question quality in a social media setting. Here we have a

preliminary study on pre-training techniques.

Trendy pre-trained models are ELMo[67], ULMFiT[38],

BERT[24], ALBERT[49], ERNIE[115], RoBERTa[57], XLNet[104],

GPT-3[10], etc.

Autoencoding training. Google’s BERT[24] is a pre-trained encoder

from a Transformer[91] model with unlabeled text. One additional out-

put layer can be introduced to create state-of-the-art models for a wide

range of tasks. The researchers reported that eleven NLP tasks surpassed

previous results of accuracy, such as pushing the GLUE score to 80.5%

(7.7% point absolute improvement). Baidu’s ERNIE[115] incorporates

knowledge graphs to model external knowledge and thus provide rich

structured knowledge facts for better language understanding, resulting

in significant improvements on various knowledge-driven tasks. Face-

book’s RoBERTa[57] is an optimized method for BERT’s training, such

as masking strategy, key hyper-parameters, and data size, which leads
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to better downstream task performance and thus illustrates that BERT

was significantly undertrained. Google’s ALBERT is a lite BERT, an up-

grade to BERT that advances the state-of-the-art performance on twelve

NLP tasks. ALBERT uses 89% fewer parameters than the BERT model,

with two optimizations to reduce model size — (1)factorization of the

embedding layer and parameter, (2)sharing across the hidden layers of

the network.

Autoregressive training. Based on the bidirectional LSTM language

model, ELMo[67] is pre-trained on a large text corpus to extract deep

contextualized word representation which can be easily added to existing

models and significantly improve state of the art across six challenging

NLP problems, including question answering, textual entailment, and

sentiment analysis. ULMFiT[38] is another pre-trained model in the

style of the language model, which is inspired by inductive transfer

learning and aims to be applied for any general task in NLP. Based

on the Transformer-XL model[22], XLNet[104] has been pretreated

on a generalized autoregressive method and has surpassed BERT in 20

tasks. By scaling up the transformer-based language model to 175 billion

parameters, 10x more than any previous non-sparse language model,

GPT-3[10] is applied without any gradient updates or fine-tuning. This
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giant model significantly improves task-agnostic, few-shot performance.

In addition, the researcher reported that GPT-3 sometimes even reaches

competitiveness with prior state-of-the-art fine-tuning approaches.

2.5 Benchmark Evaluation

As we mentioned above, model understanding social media data is the

foundation of building applications. In this subsection, we study the

benchmark for evaluating the understanding ability of the NLP model.

The evaluation of the natural language understanding (NLU) models

is drawing growing attention in the NLP community. However, how to

compare the capabilities of the various models is still challenging. To

that end, SENTEVAL [21] benchmark presents seven tasks to compare

the language representation abilities of various word embeddings. Based

on that, GLUE [93] provides new NLU tasks to ensure consistency and

comparability between different models. Afterward, as the advances

achieved by pre-trained models, the results of BERT [24] family models

are found to be better than human performance on GLUE. In view of

that, the SUPERGLUE [92] benchmark recently comes out with more

reasonable tasks to probe the NLU abilities of modern models. Besides

English, benchmarks in various languages are proposed, e.g., Polish [72],

Korean [33], Indonesian [44], and Chinese [102]. Nevertheless, none of
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the existing benchmarks examine the informal styles and data sparsity in

social media language and how they affect models’ NLU abilities.

Our work is also related with handcrafted benchmark Twitter datasets

for tasks like POS tagging (1,827 tweets) [30] and NER (2,400 tweets)

[68]. These small datasets are unable to examine the trendy NLU models

based on deep learning (concerning overfitting). Moreover, they focus on

specific tasks while we study general SMLU involving multiple tasks.
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Chapter 3

A Chinese Benchmark for

Social Media Language

Understanding

As we mentioned in 1.2.1, social media exhibits an informal and col-

loquial language style, where the problem of special tokens and data

noisiness is prominent. In this section, we propose a natural language

understanding benchmark to investigate models’ understanding ability

over social media text.

3.1 Introduction

In view of the growing popularity of social media, the last decade has

witnessed a large revolution of individuals’ everyday communication

manners. As more and more people turn to the online world to voice
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rP1s:挺好看的 #鬼吹灯之黄皮子坟# 第04集 阮经天携
探险团绝地求生 一起来看O网页链接 (来自@腾讯视
频) xNice #TheWeaselGrave# episode 4 Ethan Juan and his
expedition survived from the danger. Oh, let’s watch this
together. URL (From @TencentVideo)y

rL1s:挺\AD 好看\VA 的\DEC #鬼吹灯之黄皮子
坟#\HASH第04\OD集\M阮经天\NR$PER携\VV探
险团\NN 绝地\NN 求生\VV 一起\AD 来\VV 看\VV
O\FW 网页\NN 链接\NN (\PU 来自\VV @腾讯视
频\MENT )\PU
rP2s:我了宰宰到底经历了什么xWhat happened to our
beloved Jae Jaey

rL2s: doge xteasey

Figure 3.1: Two example Weibo posts. P1 and P2 are origi-
nally in Chinese with its translation put in xy. L1 indicates
the annotation for Chinese word segmentation (separated by
space), POS tagging (after \), and NER (after $). L2 shows
the emoji added by the author.

opinions or exchange ideas, they jointly contribute to the formation of a

new language genre — social media language, which is widely adopted

by today’s social media users to initiate or engage in discussions. It

exhibits short and colloquial styles, which is beneficial to carry user-

generated content for wide broadcast and easy communications.

In this chapter, we study social media language understanding (SMLU),

which focuses on developing the automatic ways to encode social me-

dia messages and discover the essential features therein for handling

downstream tasks. It has been shown in previous work that models’

SMLU abilities will largely benefit various social media applications,
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such as emotion analysis [1, 4] and keyphrase prediction [97], all helpful

in facilitating people’s decision makings and allowing quick accesses to

the salient contents from massive amounts of social media data.

Nevertheless, the informal styles of social media language present

concrete challenges for SMLU models to capture meaningful represen-

tations [97]. To better illustrate that, Figure 3.1 shows two posts from

Weibo1, P1 to advertise a TV series (The Weasel Grave) and P2 to flirt the

idol celebrity (Jae Jae). As can be seen, there appear many fresh words

and slangs, such as我了 (a fandom slang as an intimate “our”2), which

may substantially hinder NLU models’ capability to make sense of them.

It is because the dynamically evolving words and language patterns on

social media might result in the severe data sparsity problem, where

NLU models are unable to gain the essential semantics from limited

features.

To evaluate the existing NLU models’ capabilities to handle social

media language, we present the first Chinese benchmark with six datasets

from Weibo. We contribute one 80K large-scale dataset and one 3K tiny

version, all of which are manually annotated for three fundamental

Chinese processing tasks — Chinese word segmentation, part-of-speech

1weibo.com. A popular Chinese social media platform, exhibiting Twitter alike
styles.

2The Chinese word “我了” is derived from the Korean word “wuli” through the
similar pronunciation, as Chinese fandom culture is largely influenced by South Korea.
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(POS) tagging, and named-entity recognition (NER). We also contribute

46K posts with user-tagged emoji for a popular social media application

— emoji prediction. Another 3 social media application datasets are

adopted form existing works to investigate SMLU in several aspects, i.e.

rumor detection, sentiment anylyse and hashtag classification. Compared

with the existing benchmark focusing on formal languages from common

domains (e.g., news articles and Wikipedia), our benchmark concerns

texts on social media exhibiting different language styles attributed to

the informal writings and noisy data.

To the best of our knowledge, we are the first to study social media

language understanding (SMLU) benchmark with four large-scale and

two small datasets presented for the easy comparison and evaluation of

how models understand social media language.

Extensive experiments are carried out on our benchmark. We ex-

amine the SMLU capabilities of the state-of-the-art pre-trained models

from BERT family in both separate training and multi-task learning

settings. The results show that trendy pre-trained models can capture a

good understanding of social media language via fine-tuning on large

task-specific and well-annotated datasets. Nevertheless, they are still

unable to perform applications well, involving more noisy user-annotated

labels. Multi-task training can boost the performance of baseline models
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but their performance gain over the advanced pre-trained models are very

limited. Then, we quantify model performances over varying post length

in the NER task (the most challenging one among the three fundamental

tasks), where the additional layers or multi-task training consistently

present the performance gain. Finally, we discuss the existing model’s

limitation on SMLU to provide insights for future work.

3.2 Study Design

This section firstly introduced seven tasks for our SMLU benchmark.

And then, we show the datasets, including preprocessing method, datasets

statistics information, and preliminary data analysis.

3.2.1 Tasks

We designed seven tasks to evaluate model understanding ability, which

can be mainly divided into two types: traditional tasks and social media

applications. Traditional tasks are Chinese Word Segmentation (SEG),

Part-of-Speech Tagging (TAG), and Named Entity Recognition (NER),

which are syntactic tasks based on character-level hidden state classi-

fication in a local perspective. These tasks are denoted as STAR for

abbreviations. As for social media applications, it includes Rumor Detec-

tion, Emoji Prediction, Sentiment Analysis, and Hashtag Classification,
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henceforth RESH, which are classification tasks based on the final state

of the encoder in a global perspective. All tasks are introduced as follows.

Chinese Word Segmentation (SEG). For this task, the goal is to

delimit word boundaries in a Weibo post. The motivation behind the task

is that Chinese (like many Asian languages) do not have word delimiters

and they are widely-used text units for Chinese processing [51].

Part-of-Speech Tagging (TAG). Given a word sequence, the target is

to predict the part-of-speech (POS) tag for each word. The Weibo POS

tagset is customized following CTB standard (for Chinese POS tagging)

[103] with new POS tags introduced by the previous Twitter POS dataset

[30], resulting in 40 tags.

Named Entity Recognition (NER). We aim to extract words from a

post to form named entities and label their NER type, e.g., person names.

The NER tagset (with 10 tags) is designed following the Twitter NER

dataset [68].

Rumor Detection (RUM). Rumors spread dramatically fast through

online social media platforms [81]. To automatically detect rumors

before they cause severe social disruption poses a high requirement on

text understanding. This task is mainly to identify rumors from posts.
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Emoji Prediction (EMO). Weibo users may label emojis to posts to

express feelings. Here we focus on the 24 official tags [26] and train

models to predict the emoji given a post. It can be considered a 24-class

classification task.

Sentiment Anylyse (SEN). Social posts can be used as sensors to

perceive users’ feelings, which can be beneficial to collecting mood

swings for the government. We aim to identify labels for posts out of

6 classes varying from ”surprise” to ”neutral” and to ”fear”, which is

based on a discourse-level understanding of posts.

Hashtag Classification (HAS). A hashtag is a form of user-generated

text label for their own social media message, which is usually prefaced

by the hash symbol #. Hashtags enable users to search cross-user posts

if related posts have been tagged with that hashtag. This hashtag task is

designed to classify posts out of predefined 50 hashtags.

3.2.2 Dataset

In this subsection, we firstly introduce our datasets, then show the data

processing, and finally, data analysis. Our SMLU benchmark provides

6 Weibo datasets for evaluation, among which are two datasets with

manual annotation labels for STAR tasks and four datasets for RESH
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tasks. The statistics of our datasets are displayed in Table 3.1.

Task Class Dataset Size Post Len

SEG 4

STAR
Large 80,000 47.77

TAG 41

NER 21 Tiny 3,000 53.15

RUM 2 CED 3,300 110.15

EMO 24 EMO 46,022 59.28

SEN 6 EWECT 34,768 42.78

HAS 50 HASHTAG 94,732 10.14

Table 3.1: Dataset statistics. Task: evaluation task of SMLU;
Class: type of classification label; Dataset: dataset name;
Size: size of dataset; Post Len: average count of characters
per post.

STAR-Large is a dataset at a large scale of 80K with crowdsourcing

manual annotation labels for SEG, TAG, and NER, while STAR-Tiny

is a lite version, a refined dataset by experts with a 3K sample. SEG

and NER are defined as 4, 21 classification tasks following BIOES and

BIO rules respectively. As for TAG, one additional label ”unknown”

is introduced to be compatible with the noisy labels (annotation typo),

which finally results in 41 classes. EMO is a dataset for emoji prediction,

with post and user-generated labels.

The rest datasets named CED, EWECT, and JUNE for their corre-

sponding task are reused from existing publications and competitions.

CED is adopted form [81], which provides the true or false result for
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Weibo post. Probably posts for rumor detection tend to tell breaking

news. CED has longer posts on average, almost double as many as

others. EWECT was released in a competition named The Evaluation of

Weibo Emotion Classification Technology (SMP2020-EWECT). JUNE

is a dataset with posts under 50 topics in the month of June 2014, which

comes from [52]. As can be seen, JUNE posts exhibit much fewer Chi-

nese characters on average because stop words are removed away in the

original dataset.

Data Collection and Processing. Here we firstly provide the process

to build the dataset STAR and EMO. Then shows the methods to split

datasets to train, valid and test subsets.

To build STAR, the 83K raw data is gathered with Weibo search

API 3fed with the hashtags (queries) trended in Sep-Dec 2018 .4 We

recruited experienced annotators to conduct manual annotation. Here

we separated the annotators into two groups to work independently. The

inter-annotator agreement is measured on SEG, TAG, and NER based on

data from two sides, which results in 0.873, 0.782, and 0.686 Cohen’s

Kappa [99], indicating fair and moderate agreement.

Then we randomly selected 3K posts for experts to further fine

3https://open.weibo.com/wiki/C/2/search/statuses/
limited

4https://open.weibo.com/wiki/Trends/en
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trimming. For the disagreed labels, the third annotator group (experts)

reviewed and picked a side. At last, we obtained 80K posts with noisy-

labeled (STAR-Large) and 3K posts with fine-trimmed labeled (STAR-

Tiny) for STAR, all with high-quality tags. We measure the vocabulary

frequency over 83K STAR and observe that almost 83.4% of the vocab-

ulary appears less than five times, whereas 59.2% of them appear only

once. The sparse distribution of vocabulary patterns in STAR sheds light

on the challenges of SMLU.

For the second dataset (EMO), its raw data collection process is

similar to STAR, though the data was collected in 2020. Then we

selected the posts containing the 24 official emojis and adopt majority

vote to handle posts with multiple emoji labels. We further analyze

the emoji label distribution on EMO. The top four emojis ( (heart),

(facepalm), (cry), and (doge)) take 53.1%. This indicates users’

diverse preferences over emojis and the label imbalance challenge in

EMO task.

Sparsity Analysis. To investigate the difference and tendency between

social media and formal text in a quantified and visualized perspective,

we firstly sample a subset in the same data size from STAR-Large and

Chinese Treebank 9.0 (henceforth, CTB) respectively for statistics, vary-
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ing the size of the subset from 500 to 18K. CTB is a formal text dataset

which mainly collected from news and magazine. And then, we show

the vocabulary distribution of shared words under 18K samples from

each side.

(a) Vocabulary Size (b) Character Size

Figure 3.2: The left figure shows vocabulary size grows with
data size. The dashed lines mean to filter out non-Chinese
characters from solid lines in the same color respectively.
The right one display the size of basic character set in corre-
sponding data size.

In Figure 3.2(a), it shows the size of vocabulary set in social media

posts and formal text respectively, varying the sampling data size from

500 to 18K. The number of shared words between both vocabularies is

also plotted to distinguish the gap. The dashed line in the same color as a

solid line is in the same setting but filtering out non-Chinese symbols. In

contrast, the Figure 3.2(b) shows these statistics based on single Chinese

character level. All statistical values with star symbol * are average

values with five repeated sampling from the corresponding full datasets.
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Observations are summarized as follows.

For vocabulary, 1) Social media have richer and distinctive vocabu-

laries. Vocabulary size increase with the data size, while the tendency

of social media is more dramatic compared with formal text but shared

word grows obvious slowly. The main reason comes from fresh words,

typos, and word-symbol combinations that are created every day, which

may not be used in the news; 2) Non-Chinese symbols accelerate the

explosion of social media vocabulary. Chinese social language is usu-

ally decorated with symbol emoticon(e.g., TAT denotes cry) and initials

alphabet (e.g., YYDS means eternal god in Chinese pinyin of ”永远的

神”).

For character, 1) Character sizes in two domains are both relatively

small. For example, the number of social language characters is one-

tenth that of social vocabulary under 18K samples; 2) Social media

and formal text consistently share a high proportion of characters with

respect to different data sizes, although Non-Chinese symbols continue

to prop up the gap between statistics of social media.

The comparison of vocabulary and characters indicate that vocab-

ulary space can be sharply reduced by leveraging character tables, al-

though the same character has a different meaning in a different context.

Thus, Bert’s family [24] shows great potential to solve this dilemma,
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(a) Social Media (b) Formal Text

Figure 3.3: This figure shows the vocabulary frequency num-
bers over shared words. The left figure is social media vocab-
ulary distribution while the left one is a formal text version.

with the pre-trained models’ embedding for each character based on

context.

Figure 3.3 shows the vocabulary frequency numbers over shared

words which mean appear in both social media and formal datasets,

with the X-axis being the shared word id. We set the ceiling as 800 for

frequency numbers to zoom in on the distribution because the span of

the range is quite large. The left figure 3.3(a) shows the social media

data distribution while the right figure 3.3(b) is for formal text version.

It can be obviously observed that the tendency of the distribution of

social media does not always overlap with formal text. We print the top

10 frequency word in both side and find this following observation. ”企

业” (enterprise) highly appear in informal text but seldom in social media

while ”视频” (video) reverse. What is more, the informal text is more

concentrated while the social media distribution trend is decentralized.
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This tendency poses a great challenge for the social media model to

handle every word well.

3.3 Experiments

This section firstly shows the experimental setup, which includes model

setup, training setup, and evaluation then exhibits the main SMLU bench-

mark results. And finally, give some auxiliary analysis which includes

control-variable analysis, cross-domain analysis, error analysis, and case

study.

3.3.1 Experimental Setup

Comparison Models. We first adopt the RNN encoder as the baseline

[19]. Then, two state-of-the-art pre-trained encoders from BERT family

— BERT and ROBERTA [57] — are considered in SMLU comparison.

A two-layer biGRU is adopted as an instance of RNN and the BERT

family is implemented with Transformers toolkit [100].

Training Setup. All datasets are split into 80% for training, 10% for

validation, and 10% for the test, except for EWECT (split by the official

competition organizer) and the STAR-Tiny. One thousand data points

are sampled from the STAR-Tiny to build a test set for fair evaluation

over all experiments related to STAR tasks. We train and save the model
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by epoch and use the early stops strategy if the average loss of that

epoch is not decreasing. In each epoch, a mini-batch iteration is used

for parameter updating. To optimize parameters, we apply the Adam

optimizer and set gradient clipping as 1.0. The initial learning rate for the

pre-trained model is 1e-5, and that for RNN is 0.001. In STAR training,

we both separately explore single-task training for a task-specific model

and multi-task training. To further explore the effects on data scale, we

examine two different training datasets: LARGE and TINY.

Evaluation. All results of STAR are measured in F1-score, using the

standard conlleval script5which is commonly used for measuring the

quality of sequence labeling prediction [58]. As for RASH classification

tasks, we adopt accuracy as the evaluation metric.

3.3.2 Experimental Results

Our SMLU benchmark contains STAR and RESH tasks. The STAR

result is shown in table 3.2 and the RESH result is displayed in table 3.3.

From the table 3.2 of the STAR results, we draw the following

observations. First, models all rely on the scale of data and all models

perform worse on TINY than LARGE. Especially for NER, almost

5https://github.com/sighsmile/conlleval
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MODEL
SEG TAG NER

LARGE TINY LARGE TINY LARGE TINY

SINGLE-TASK TRAINING

RNN 91.20 81.22 80.25 65.22 62.35 37.09

BERT 94.80 92.08 87.29 81.70 74.63 53.41

ROBERTA 94.72 92.16 87.43 82.30 76.40 46.65

MULTI-TASK TRAINING

RNN 91.25 82.28 80.31 65.97 62.04 38.42

BERT 94.87 92.30 87.20 81.40 76.55 52.60

ROBERTA 94.88 95.57 87.14 81.44 76.26 53.25

Table 3.2: STAR results. Models conduct sequence tagging
and neural ones employ MLP-based output layer. We report
performance in two training settings, i.e. single task and
multi-task learning. These experiments are tested in the
same testing set (1K randomly selected from expert data)
and measured in F1-score.

all models have 20% gap between two datasets. Second, pre-trained

models result in better results. On a small data scale, the pre-trained

model help to boost the performance significantly. As for large data

size, the pre-trained model still provides a significant contribution. In

the TAG and NER task, pre-trained models exhibit 6% to 10% relative

improvement in general. Third, the pre-trained model help to reduce

the performance gap between large and tiny dataset in Segmentation

and Pos Tagging while providing limited help for NER. Surprisingly, a

pre-trained model trained on tiny data is competitive with that on Large

data in Segmentation, and this ”pre-trained” plus ”tiny data” setting even

39



(a) Segmentation. (b) Pos Tagging.

(c) NER.

Figure 3.4: This figure shows the F1-score (y-axis) of Seg-
mentation, Pos Tagging, and NER tasks varying with data
size (x-axis). These experiments are tested in the same testing
set and measured in F1-score. In the tasks of Segmentation
and Pos Tagging, the performance of Bert is comparable to
that of RoBERTa. Fine-tuning with Tiny data (3K) is suf-
ficient for the pre-trained models to thoroughly beat RNN
with a large amount of data (80K). In the third subfigure,
RoBERTa turns defeat into victory to Bert as data size in-
creases. Fine-tuning over small data in NER has a limited
advantage when compared to RNN trained over big data.

can defeat the performance of RNN on Large data in both SEG and TAG.

Fourth, RoBERTa is competitive with Bert but fails to follow up with

Bert in NER under tiny data. We will have a detailed discussion on the

last two surprising findings in the next section.

Inspired by the previous findings [93], individual and related tasks
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(SEG, TAG and NER) might help each other and thus multi-task train-

ing may deliver gains over separate training. Interesting, we see from

Table 3.2 (the lower half) that multiple-task training indeed boosts per-

formance on TINY, especially for RoBERTa to do SEG and NER tasks.

However, for TAG, multiple-task training provides limited help in both

small and big data size. As for big data setting, single-task training

overall do as well as multi-task training. The reason may be that the

classification size of the TAG task is much larger than that of SEG and

NER, with 41 vs 4 and 21. So it is harder for the TAG task to converge

in multitask learning.

MODEL RUM EMO SEN HAS

RNN 59.09 34.30 70.26 52.11

BERT 65.45 38.89 77.22 55.88

RoBERTa 62.12 38.97 77.78 55.72

Table 3.3: RESH results. All these applications are formu-
lated as classification tasks. Rumor Detection (RUM), Emoji
Prediction (EMO), Sentiment Anylyse (SEN), and Hashtag
Classification (HAS) have 2, 24, 6, and 50 classes respec-
tively. Accuracy is adopted as evaluation metrics.

We further examine the RESH tasks and report the results in Table 3.3.

Observations are summarized as follows. First, although pre-trained mod-

els obtain substantial gains, all models perform poorly, which implies

that social media post is beyond the capability of existing NLU models

to well understand. For example, as mentioned above, Rumor Detection
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is formulated binary classification problem, which picks a side ”True”

that can reach 60% accuracy while the best performance of models is

only 65.45%. Second, user-generated are much noisier than expert an-

notations. The labels for EMO and Hash tasks are user-generated and

the labels for RUM and SEN are annotated by a specialist. Obviously,

the accuracy of EMO and HAS is relatively lower. Third, similar to the

last observation in STAR, RoBERTa is competitive with Bert but fails

behind Bert in RUM tasks. Again, the data size of RUM is relatively

small, which can give a preliminary sense that RoBERTa is not good

as Bert at a small data size. This conclusion will be verified in the next

section.

Further Discussions on EMO. As shown above, advanced models

can perform well on fundamental tasks, yet the EMO task is still very

challenging for them. Even for humans, it is sometimes hard to predict

which emoji authors tend to use from a short and informal post. In

Figure 3.1, P2, “我了宰宰” (our beloved Jae Jae) is crucial to predict

the emoji, while as an uncommon slang, catching its semantics may be

hard. Besides, the emoji (doge) has ambiguous meanings (here it

means flirting) and our models wrongly predict (facepalm).

Furthermore, we probe into the model outputs and analyze the errors.
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First, the prominence of fresh words largely affects the model results. For

instance, the uncommon named-entity “泪花灰” (a series of cosmetic

contact lenses) cannot be recognized by our models. Second, for EMO,

the label imbalance discussed in (§5.2.2) presents concrete challenges.

The existing models can hardly predict some uncommon emojis, such as

(wow).

Human Rating. Here we sample 100 source posts for each task and

invite four native Chinese speakers to do the social media task, which

will compete with the output of NLP models.

Human RoBERTa
EMO 16% 41%
HASH 20% 50%

Table 3.4: Average human rating accuracy. Higher scores
indicate better results. Models exhibit the good potential to
outperform humans under noisy data.

Table 3.4 shows the average accuracy of the four annotators and

the model RoBERTa. We can observe that machines can outperform

human beings in social media applications. This may be because ma-

chine models read more training data and master more background and

knowledge.

Here gold standard labels is user-generated. The ground truth label

for the corresponding post is user-generated, while in human rating
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evaluation, the post is not generated from the participant. The prediction

for the social media task is very challenging for human because there is

a gap between the blogger and reader. For example, the blogger may use

’dog’ emotion to express unhappy, while participant prefer to use ’cry’

emotion to rate the unhappy context.

3.4 Conclusion

We present the first benchmark for Chinese social media language under-

standing (SMLU), with two large-scale datasets. The empirical results

show that trendy pre-trained NLU models can perform well via fine-

tuning on large-scale, task-specific, and well-annotated data, though

the understanding of noisy emoji labels tagged by social media users

is still beyond their capability. These findings suggest that SMLU is

still challenging and we believe the availability of our benchmark will

advance forward future work on social media analysis.

3.5 Appendix
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宋茜 吴亦凡 快乐大本营 重返20岁 朴有天
exo快乐大本营 伯贤 郑爽 世界杯 韩庚
爸爸回来了 父亲节 金曲奖 郑秀晶 穆勒
鹿晗 天天向上 戚薇 金泰妍 tfboys
iphone6 不一样的美男子 周笔畅 尼坤 爸爸去哪儿
c罗 刘烨 郑容和 西班牙 赵丽颖
泰妍 梅西 陆毅 花儿与少年 摩纳哥王妃
柯震东 王俊凯 时间煮雨 何以笙箫默 我是女王
佑荣 言承旭 男神顾长官 佟丽娅 金秀贤
蔡依林 鬼鬼吴映洁 小苹果 宁财神 钟汉良

Table 3.5: Hashtag labels.

Table 3.6: Emotion labels.

b-time i-time b-loc i-loc b-per i-per
b-math i-math b-org i-org b-book i-book
b-brnd i-brnd b-ent i-ent b-money i-money
b-song i-song no-ner

Table 3.7: NER labels.

nr lb nt url ij ment nn vc email p
emoj hash lc cd fw msp sb as ve on
pn ad va sp ba dev od m vv deg
dec cs emot der dt jj pu phone cc unk

Table 3.8: TAG labels.
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Chapter 4

Getting Your Conversation

on Track: Estimation of

Residual Life for

Conversations

Based on Chapter 3, which indicates NLP models possess the ability

to understand social media language, we propose two applications to

improve user engagement. This chapter is the first one to improve the

experience when users engage in the conversation, as we mentioned in

Challenge 1.2.2.
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4.1 Introduction

Conversations play an important role in opinion exchange and idea shar-

ing in our daily life. We are involved in a wide variety of conversations

every day, ranging from meetings for project collaboration to chitchats

for forming our personal ideology. Being in these conversations, it some-

times occurs to us that the conversation is out of control. One example is

the raise of red herrings that distracts the focus of a meeting and result in

lengthy and meaningless arguments. Another example is the appearance

of a conversation killer in an interesting and active chat that turns all

other participants away and ruins their experience of being engaged.

In light of these concerns, there exits a pressing need to track the

conversation progress [77, 79, 90] and advancing the user interaction

experience [6, 41, 16]. It is hence interesting to investigate whether the

progress of a conversation can be algorithmically predicted, given the

first few turns. To that end, we approach this problem via estimating

the conversations’ residual life, which is defined as how many new

turns a conversation thread will receive [6]. Specifically, following

previous work [89] roughly dividing conversations into four stages,

we define conversations’ residual life in each stage to be very long,

long, short, and very short. Foreseeing a conversation’s progress
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[T1]: I was a registered libertarian for 10 years. I left after 2008 financial
meltdown, which proved conclusively we MUST have regulations.

[T2]: interesting, how will having more rules stop people from committing
crimes? Death penalty doesn’t stop murder

[T3]: great topic that has absolutely nothing to do with financial regulation.
Any other non sequiturs?

[T4]: no. Alot of good it did stopping the Wells Fargo fiasco tho

[T5]: it did stop it. Don’t you get that? Laws existed so they couldn’t willfully
continue. Which is my point. Lib would make that legal
...

Figure 4.1: A Twitter conversation snippet. [Ti]: The i-th
turn in the conversation snippet. There are nine new turns to
occur.

will help one in doing the right things at the right time. For instance,

when curating conversations, it is inappropriate to recommend ending

discussions for users to be involved. Another promising application

is on response selection [87, 112], where participants might want to

forecast the risks in their responses that will inadvertently kill an active

conversation. Particularly in human-computer interactions, our study can

help chatbots in identifying responses that actively move a conversation

forward. Without adopting such strategy, it is likely that a chatbot

yield generic and boring responses, such as “ I don’t know” and “Me

too” [101, 78, 46, 34], and thus turn human participants away.

To date, most progress made in related fields has been limited to the

coarse-grained categorization for human-human conversations, such as
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the detection of “active” discussions [36, 6] and ended chats [41]; while

we look at a wider range of conversation genres in both human-human

and human-machine conversations, where a conversation’s progress is

estimated via fine-grained residual life prediction in four ordered cate-

gories. Such study, to the best of our knowledge, has never been explored

before. Another line in previous research predicts user responses for

individual social media messages, such as the number of replies or

retweets [82], message diffusion patterns [45, 50, 95], etc. Different

from them, we focus on response prediction at conversation level, where

the entire context of a conversation is examined for estimating its future

trajectory.

To illustrate how the history contexts can affect residual life of

conversations, Figure 4.1 displays a snippet of Twitter conversation

about “financial regulation”. From the snippet, it is observed that the

conflicting opinions voiced via making statements (in T1), showing

doubts (in T2), expressing disagreement and asking questions (in T3),

etc., result in the back-and-forth debate fashion, which in fact carries

the discussion on for another nine turns. Thus we argue that effective

estimation of residual life requires an understanding on both turn content

and conversation structure. To this end, we propose a hierarchical

neural model that jointly exploits the content representations of turns
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and the structure representations from turn interactions in an end-to-end

manner. In contrast to most existing methods that rely on manually-

crafted features, such as topology structure of conversations [50, 95],

simple lexical statistics [82, 70], and social networks of users [36, 45,

6], our model does not require features from either manual design or

external resource. Such capability ensures our generality in the scenarios

where some certain information is unavailable. Moreover, our model

explores two tasks simultaneously, one is to distinguish ongoing and

ended conversations, and the other is to tackle fine-grained categorization

for the residual life, where the latter one serves as our focus and is in a

more challenging scenario.

To evaluate our proposed model, we experiment on both human-

human and human-machine conversation datasets in our experiments.

The results show that our model outperforms baselines based on hand-

crafted features. For example, our model achieves 48.0% accuracy on

human-machine conversations, compared with 35.3% given by a prior

model based on hand-coded features [6]. To better understand our supe-

riority, a case study on Twitter conversations is provided and the results

demonstrate that our model is able to capture indicative representations

in the conversation history. More interestingly, we present a preliminary

discussion on the correlation between the predicted residual life and
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manual annotation of the response quality and point out our potential to

benefit response selection for chatbots.

4.2 Preliminaries

4.2.1 Basic Notions for Conversations

We follow the definitions for common concepts of conversations from

previous studies [73, 80]. The unit of a conversation is a turn, defined

as an utterance given by one participant. Specifically, for most social

media conversations [74], e.g., Twitter and online forums, a message

being part of a discussion is considered as a turn. For human-machine

conversations, a human-written prompt or a machine-generated response

refers to a turn.

A sequence of turns forms a conversation thread where normally,

for each two adjacent turns, the latter one replies to the previous one.1

We then clarify this definition for two different cases. For multi-party

conversations, e.g., most social media discussions, an entire conversation

(with an original post and all its direct and indirect replies) is organized in

tree structure [52], because a message may spark multiple replies. Under

this circumstance, we consider a root-to-leaf path of such trees as a con-

versation thread. For conversations held between two participants, e.g.,

1In this thesis, unless otherwise stated, a conversation is used as the short form for
a conversation thread.
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Dataset # of Avg turns Avg length
|Vocab|convs per conv per turn

Twitter 49,290 8.67 16.58 194,629
Movie 100,648 4.77 10.41 67,247
Wiki 40,890 4.05 38.87 118,111
ChatbotCN 34,270 7.09 5.74 35,393

Table 4.1: Statistics of datasets. # of convs: conversation
count. Avg turns per conv: average turns per conversation.
Avg length per turn: average word number per turn.

most human-machine conversations, the turns in a conversation thread

can be modeled in the chronological order. For our task, a conversation

thread serves as a data instance, and for human-machine conversations,

their residual life only takes human turns into account as machines will

always answer a human prompt.

To track the progress of a conversation, we follow previous study [89]

to assume that a conversation, from the greetings at the very beginning

to the farewells at the closing, can be roughly segmented into four stages,

each interpreted as childhood, adolescence, adulthood, and old age

in its life cycle. Conversations in each stage in order further have their

residual life to fall into one of the following categories: very short,

short, long, and very long.
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4.2.2 A Study on Conversation Data

To study residual life of real-life conversations, we conduct a pilot data

analysis. Here we collect and investigate four conversation datasets, three

of which are human-human conversations and the rest human-machine

conversations. Statistics of the four datasets are shown in Table 4.1: 80%

for training, 10% validation, and 10% test.

Data Collection. We collect three human-human conversation datasets,

one from Twitter (henceforth Twitter), one movie scripts (henceforth

Movie), and one Wikipedia talk-pages2(henceforth Wiki).

For Twitter, we first collected seed tweets initializing conversations

using Twitter Streaming API3from January to December, 2016. Then, we

used the names of authors and the IDs of seed tweets to locate the cor-

responding discussion pages and obtained the conversations via HTML

page crawling and parsing. Finally, we recovered the missing messages

using Twitter search API4recursively with “in-reply-to” relations (the

HTML pages only display partial conversations). The Movie dataset is

released by [23], which contains fictional conversations held between

two characters from movie scripts. It is close to off-line conversations

held in our daily life [41]. The Wiki dataset is released by [6] consist-

2https://en.wikipedia.org/wiki/Help:Talk pages
3https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
4https://developer.twitter.com/en/docs/tweets/search/overview/standard
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(a) Residual Life (b) All Turns

Figure 4.2: The turn distributions for conversations corre-
sponding to residual life (on the left) and all turns (on the
right). The historical axis shows the number of turns and the
vertical axis indicates the proportion of conversations (%).

ing of editor discussions on Wikipedia projects and exhibiting working

discussion styles. 5 In particular, as Twitter and Wiki conversations

are multi-party conversations in tree structure, we randomly select a

root-to-leaf path from each tree as a conversation thread as [41].

Besides talks among human participants, we also study human-

machine conversations and collect a dataset from the chatting logs

between anonymous users and a Chinese online chatbot (henceforth

ChatbotCN), where users may chitchat on a wide range of topics. For

each user, we segment the corresponding logs into varying conversations

using timings via assuming that a new conversation is initialized if the

user comes back after a long time.6

5http://www.mpi-sws.org/ cristian/Echoes of power.html
6Assuming that users’ response time for inter-conversation and intra-conversation

turns satisfy two distinct Gaussian distributions, we assign the time spans between a
machine turn and the next human turn into two clusters via Gaussian mixture model [69],
one with smaller mean for inter-conversation spans, and the other intra-conversation
spans.
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Residual Life Analysis. Here we further analyze on the data distribu-

tions of residual life on these real-life cases. Each thread is randomly cut

into two parts: the history part, as observable context, and the future part,

whose turn number is considered as the residual life. For human-machine

conversations, we let the last turn in history to come from the machine

and predicts how many human turns will be received. Afterwards, for

each dataset, we study the residual life distributions on training data

and the results are displayed in Figure 4.2(a). We can observe a severe

imbalance for varying numbers of future turns. To understand the cause

of such imbalance, in Figure 4.2(b), we show the distributions of the total

turn numbers, including both the history and future turns in conversa-

tions.7We observe that only a small proportion of conversations can grow

into lengthy discussions, which is consistent with the discoveries from

previous studies [41, 14]. Based on the data distributions, we further

determine our four residual life categories in the similar manner of [6]

(used to separate “active” and “inactive” discussions). Specifically, we

order instances by their residual life and divide them into four equal

segments. For all the four residual life categories, i.e., very short, short,

long, and very long, we determine their boundaries at 25%, 50%, and

75% of the instances in increasing order according to future turn numbers.
7Conversations ended in 1-2 turns are not considered for better display.
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Figure 4.3: The hierarchical BiLSTM model for estimating
residual life categories of conversations. Here h refers to
final state of their corresponding encoder cell.

In doing so, we can adapt residual life definitions to new data in varying

distributions. Thus our framework can better fit diverse conversation

genres, whose residual life distributions might be very different (as indi-

cated by Figure 4.2(a)). For boundary cases, we assign them to one side

of categories if more instances are found in the corresponding quantile.8

4.3 Our Model for Residual Life Estimation

To examine the conversation history for residual life estimation, our

model employs a hierarchical Bidirectional Long Short-Term Memory

8Boundary cases refer to instances shared in two adjacent quantiles. For example,
if instances with zero and one future turn each holds 18% of the data. The instances
with one future turn (at 25%) are the boundary cases for the first two quantiles. We
assign them to the second category, i.e., short residual life, where 11

18 (over 50%) of
the instances are found.
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(BiLSTM) network [53] and jointly explores the content of turns and

the structure of conversations. Our overall architecture is illustrated in

Figure 4.3.

Inputs and Outputs. Our model takes the input of a conversation

xi formulated as the sequence of its history turns: xxi,1,xi,2, ...,xi,|xi|y,

where |xi| denotes the number of history turns in xi. Each turn xi,t in

xi is formulated as a word sequence xxi,t,1, xi,t,2, ..., xi,t,|xi,t|y, where |xi,t|

is the number of words in turn xi,t and xi,t,w denotes the w-th word

in turn xi,t. Our final output yi indicates the residual life category of

conversation xi, where yi P tvery short, short, long, very longu.

Model Description. To jointly capture turn content and conversation

structure, here we present our two BiLSTM models in hierarchical

structure, one for content modeling and the other for structure modeling.

Content Modeling. The content representations are captured on

turn level with a BiLSTM encoder, namely content encoder. Given the

conversation turn xi,t, each word xi,t,w is represented as a embedding

vector vi,t,w with an embedding layer Ip¨q, which is initialized by pre-

trained embeddings and updated in the training. vi,t,w is then fed into the

content encoder and the learned representation is denoted as hc
i,t.

Structure Modeling. To learn structure representations for xi, which

indicate the interaction between adjacent turns in its history, our model
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applies another BiLSTM, namely structure encoder. Its t-th state takes

the content representation of the t-th turn xi,t as input and the learned

structure representation is denoted as hs
i .

Joint Prediction. Inspired by [114] (applying a multi-task learner for

keyphrase extraction), our model owns two types of outputs in prediction

layer and jointly tackles two tasks, one predicts whether there will be

new turns and the other estimates the fine-grained residual life category.

In other words, in addition to our final output yi to produce residual

life category, our model uses a binary output bi P tended, ongoingu to

indicate whether xi will carry on. In doing so, bi would benefit to the

prediction for conversations with many future turns, such as the example

in Figure 4.1, because the prediction of bi “ ongoing can strengthen the

confidence of yi to predict very long residual life for such conversations.

For the similar reason, bi can also help in predicting conversations with

very short residual life. Formally,

bi “ softmaxphs
i q (4.1)

where hs
i is the structure representation of xi. To coordinate the two

outputs, we first let hs
i to serve as the input for the third BiLSTM to

explore the hidden states ho
i . Then, we compute the final output by:

yi “ softmaxpho
i q (4.2)
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(a) Twitter (b) ChatbotCN

Figure 4.4: F1 scores for the conversations with varying
residual life categories. Horizontal axis: residual life cate-
gories from very short to very long. Vertical axis: F1 scores
(%). For each category, from left to right shows the results of
BiLSTM (Last turn), BiLSTM (All turns), H-BiLSTM (One
output), and H-BiLSTM (Two outputs).

To further combine the joint effects of our two outputs, we define

our final objective function as:

LpΘq “ α
N
ÿ

i“1

dpbi, b̂iq ` p1 ´ αq

N
ÿ

i“1

dpyi, ŷiq (4.3)

where Lp¨q is our loss function, Θ is the set of parameters, α is a hyperpa-

rameter for trading off the two effects, N denotes the count of instances,

dpx,yq is the divergence measure between x and y (here we use cross

entropy), and b̂i and ŷi denote the gold-standard category labels.

4.4 Experiments

Setup. Here we describe how we setup our experiment.

Data Preprocessing. For English datasets, i.e., Twitter, Movie, and

Wiki, we used Stanford NLP toolkit [59] for tokenization and lemma-
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tization.9For Chinese (ChatbotCN), we applied NLPIR tool [113] for

Chinese word segmentation.10

Comparison Models. We first consider a weak baseline majority vote

(assigning the major labels in training set to all the test instances). Then,

we employ logistic regression (LR) [37] and support vector machine

(SVM) [17] with features proposed in [6] and [41]. For LR and SVM,

we test two versions: one with features extracted from the last turn

(henceforth LR (Last turn) and SVM (Last turn)), and the other from the

entire history (henceforth LR (All turns) and SVM (All turns)). Similar

models are built with BiLSTM: BiLSTM (last turn) and BiLSTM (All

turns), where the latter model takes a long word sequence constructed

by chronologically ordered turns in conversation history.

In addition, we compare with a variant of our model, i.e., H-BiLSTM

(One output), which contains only one output for predicting a conversa-

tion’s residual life category. For convenience, our full model with two

outputs (bi and yi) will be referred to as H-BiLSTM (Two outputs).

Model Settings. All hyperparameters are turned on development sets

by grid search. For BiLSTM models, we set their state size of each

direction to 150, RMSProp [31] as the optimizer for parameter updating,

and the trade-off parameter α to 0.5 for balancing bi and yi. Pre-trained

9https://github.com/stanfordnlp/CoreNLP
10https://github.com/NLPIR-team/NLPIR
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embeddings are used. For Twitter, we employ the embeddings learned

from a collection of 99M tweets. For Wiki and Movie, we use the

embeddings released by [20].11. For Chinese ChatbotCN dataset, word

embeddings are pre-trained on 467M posts from Weibo (a Chinese social

media platform). We also tested embeddings pre-trained with standard

RoberTa, which didn’t provide much performance gain. It is probably

because non-trivial designs are needed to adapt them to social media

data (noisy and colloquial), which is beyond the scope of this thesis and

we leave the adaption work to future studies.

Twitter Movie Wiki ChatbotCN
F1 Acc F1 Acc F1 Acc F1 Acc

Comparison models
Majority Vote 13.3 36.3 11.2 28.8 10.9 27.8 12.0 31.6
LR (Last turn) 22.0 25.8 24.8 28.1 27.8 31.9 24.1 25.2
LR (All turns) 26.7 27.2 28.4 31.1 32.7 36.9 30.2 35.3
SVM (Last turn) 17.5 36.8 9.7 23.8 17.4 29.7 21.1 24.4
SVM (All turns) 25.1 35.0 28.9 33.1 32.8 39.9 24.6 26.9
BiLSTM (Last turn) 30.2 30.3 28.6 29.3 33.2 36.3 25.7 25.9
BiLSTM (All turns) 36.7 35.6 36.2 37.4 42.0 45.2 39.5 39.6
Our models
H-BiLSTM (One output) 40.1 41.0 44.2 49.0 45.6 54.5 45.0 47.5
H-BiLSTM (Two outputs) 41.1 42.1 46.9 49.3 53.2 64.3 46.2 48.0

Table 4.2: Classification results of the four categories of
residual life, where Acc refers to accuracy and F1 denotes
the average F1 scores over the four residual life categories
(%).

Residual Life Estimation Results. We show the main comparison

results for residual life categorization in Table 4.2, where we report

accuracy and average F1 scores for the four possible outcomes. The

11https://spinningbytes.com/resources/word-embeddings/
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following observations are drawn:

‚ Manually-crafted features are not enough. SVM or LR mod-

els with manually-crafted features yield generally worse results than

neural models. It means that conversations’ residual life estimation is

challenging and impossible to rely on hand-coded features or rules.

‚ History information is important. LR and SVM perform better

when they are combined with rich history features. Similar observations

can be seen for neural models where H-BiLSTM and BiLSTM (All turns)

produce better results than BiLSTM (Last turn), which only relies on the

content of the last turn.

‚ Jointly modeling of content and structure is effective. By jointly

learning representations from turn content and conversation structure,

the H-BiLSTM models achieve better results than the BiLSTM (All

turns) model. This demonstrates that both turn content and conversation

structure are useful in indicating residual life of conversations.

‚ Multi-task learning helps each other. The results of H-BiLSTM

(Two outputs) are better than H-BiLSTM (One output) on all datasets.

This indicates the effectiveness to simultaneously tackle the two tasks

with shared parameters, because they are highly related to each other.

To further investigate the model performance over varying residual

life categories, we select four models: BiLSTM (Last turn), BiLSTM
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(All turns), H-BiLSTM (One output), and our H-BiLSTM (Two outputs),

given relatively better performance in Table 4.2. Their F1 scores in

predicting residual life ranging from very short to very long are shown

in Figure 4.4. We see the two H-BiLSTM models have consistently

better performance than others, which again shows the joint effects of

content and structure to conversations’ residual life. We also find that the

H-BiLSTM (Two outputs) tends to outperform H-BiLSTM (One output)

for conversations with very short and very long residual life. The

possible reason is that the “yes” prediction of new turns (bi “ ongoing)

helps increase model’s confidence to predict very long residual life for

conversations, so does the very short cases.

Effects of Conversation History. Results in the previous discussions

show the usefulness of conversation history. Here we take Twitter con-

versations as an example to further analyze how it affects the residual

life.

First, we quantitatively analyze the residual life distributions for

conversations with varying turns in their history. Such distributions

are visualized via the heatmaps in Figure 4.5. The left one shows the

gold-standard distributions and the right the results predicted by our H-

BiLSTM (Two outputs) model. Their similar color patterns demonstrate

that our predicted distributions roughly fit with the real. We also observe
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(a) Gold-standard Results (b) Predicted Results

Figure 4.5: Heatmaps showing the turn number correlations
of history and future in Twitter conversations. The left one
shows the gold-standard results and the right one shows the
predictions. Horizontal axis: the # of history turns. Vertical
axis: the category of residual life where VS, S, L, and VL
indicates very short, short, long, and very long residual life.
Darker color in px, yq indicates more conversation instances
containing x turns in the history and y turns in the future.

that for a dark grid in the gold-standard heatmap, its upper or lower

neighbor of the corresponding grid in the predicted heatmap tends to be

highlighted. This shows the particular challenge to distinguish adjacent

categories, such as short and very short residual life.

From the gold-standard heatmap, we also find something interesting.

For the conversation history ě 5 turns, there are two possible outcomes

indicated by the darkest grids: very short or very long residual life.

This implies that most conversations with a long history either end

soon (maybe because users get tired of being engaged) or they would

possibly grow into heated debates and thus have very long residual life.
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Differently, for the conversations with only one history turn, they tend

to have long residual life because these conversations are in relatively

early stages.

To better understand how the history and residual life are related, we

conduct a case study on the Twitter conversation in Figure 4.1. Recall

that the conversation ,with a tenor of argument, does not end until nine

turns later, whose residual life should be categorized as very long. The

BiLSTM (All turns) outputs short for it because it is unable to explore

conversation structure and capture the argumentative fashion presented

by turn interactions. BiLSTM (Last turn) yields a closer answer with

long residual life. It may notices the rhetorical question in the last turn

“Don’t you get that?”. Such content is likely to move a discussion forward

and ignored by BiLSTM (All turns) entrapped with other information.

By examining turn interactions, H-BiLSTM (One output) also predict

long residual life as it learns useful features from conversation structure.

Nevertheless, only H-BiLSTM (Two outputs) successfully predicts very

long residual life, because the prediction of ongoing from bi makes it

become more confident to predict very long residual life.

Residual Life in Varying Granularity. In the aforementioned discus-

sions, we focus on residual life with four categories. Here we discuss

the estimation results on varying granularity of residual life categories.
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(a) Twitter (b) ChatbotCN

Figure 4.6: Estimation accuracies given varying granularity
of residual life (%). Historical axis: the total number of
categories. Vertical axis: the corresponding accuracy. H-
BiLSTM (Two outputs) performs consistently better.

To this end, we test the performance of SVM (All turns), BiLSTM (Last

turn), and our H-BiLSTM (Two outputs) when estimating residual life

with two to six categories (defined similarly in preliminaries). The ac-

curacies on Twitter and ChatbotCN are shown in Figure 4.6, where the

parallel decrease curves indicate the increasing difficulty to estimate

residual life categories with finer granularity. We also find that our

H-BiLSTM (Two outputs) produces consistently better accuracies and

shows its effectiveness to estimate varying residual life granularity.

Residual Life vs. Response Selection. To provide more insights, here

we present a preliminary discussion on the correlation between the

estimated residual life and the manually annotated quality of responses.

To this end, we first follow the procedure in [94] to collect a 10K prompt-

response pairs from Weibo, where a prompt-reply pair refers to a Weibo

post and one of its replies. We then invite two experienced annotators
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to label the quality of each reply as bad and good, where bad replies

are off-topic or incoherent to the prompt, and good should be assigned

to on-topic and interesting responses. Later, for each quality level,

we sample 1K responses with the corresponding label agreed by both

annotators. Based on these selected data, we apply our H-BiLSTM (Two

outputs) trained on the ChatbotCN dataset to estimate the residual life of

conversations with two turns in history, i.e., a prompt and its reply. We

then measure the proportions of bad and good responses with varying

predicted categories for their residual life. In the results, less than 10% of

the instances are predicted to have long or short residual life. It may be

ascribed to the difficulty to distinguish these two categories from others

given such short history with two turns. For the rest two categories, i.e.,

very short and very long residual life, we show the results in Figure 4.7.

As can be seen, our model tends to estimate longer residual life for

responses with better quality. The observation implies that the estimated

residual life may serve as automatic annotations for response quality and

useful features to train dialogue systems.

4.5 Conclusion

We have presented a framework for estimating four categories of con-

versations’ residual life, corresponding to varying stages in conversation
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Figure 4.7: The proportions of bad and good responses pre-
dicted to have very long (VL) and very short (VS) residual
life (%). For each category, the upper and lower bar shows
the results for bad and good responses, respectively.

progress. To tackle this task, a hierarchical neural model has been pro-

posed to jointly learn representations from the content of each turn and

the structure of turn interactions. Experimental results on both human-

human and human-machine conversations show that our model is able to

capture indicative features from conversation history and thus give supe-

rior performance. A further study shows the potential of the predicted

residual life in benefiting response quality annotation for chatbots.
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Chapter 5

Engage the Public: Poll

Question Generation for

Social Media Posts

In the last chapter, we discuss the first attempt to help the users keep

track of conversations and predict corresponding residual life to avoid

some out-of-control situations, such as being conversation killers. As

for this chapter, we propose to generate questions for social media posts

that aim to help those people that are reluctant to voice their opinion

(Challenge 1.2.3) and then draw their attention to engage in discussion.

5.1 Introduction

Social media is a crucial outlet for people to exchange ideas, share

viewpoints, and keep connected with the world. It allows us to hear the
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public voice for decision making and better understanding our society.

Nevertheless, for the silent majority, they tend to read others’ messages

instead of voicing their own opinions with words, possibly because of

the introvert personality, busy schedule, and others. How shall we better

engage them into the discussions and learn from their thoughts?

In this work, we present a novel application to automatically gen-

erate a poll question for a social media post. It will encourage public

users, especially those reluctant to comment with words, to input their

reflections via voting. For example, the statistics of our dataset show that

13K users on average engaged in a poll compared with 173 commented

to a post. For a better illustration of the task, Figure 5.1 shows two

example poll questions on Sina Weibo1, henceforth Weibo, a popular

Chinese microblog. The goal of our task is to output an opinion question,

such as Q1 and Q2, and invite other users to engage in the discussion to a

source post (e.g., P1 and P2); poll choices (answers like A1 and A2) can

be produced together to allow easy public engagement (via voting).

To date, most progress made in question generation is built upon the

success of encoder-decoder frameworks [27]. Despite of the extensive

efforts made in this line [83, 105, 12, 84], most previous work focus

on the processing of formally-written texts, such as exam questions

1weibo.com
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rP1s: ...B站市值超过爱奇艺 (The market value of B site
exceeds iQiyi)...

rQ1s: 你们平时常用那个app看视频？ (Which app do you
usually use to watch videos?)

rA1s: 腾讯视频 (Tencent Video); 优酷 (Youku); 爱奇艺
(iQiyi); B站 (B site)
rP2s: ...理性分析一下赵粤和希林娜依高：希林vocal确
实厉害，但是...舞蹈实力有点不够看；赵粤呢舞蹈厉
害...但是唱歌实力较弱些... (A rational analysis of Akira
and Curley G: Curley’s vocal is indeed great, but ... her
dancing is not that good; Akira dances well ... but her singing
is weaker...)

rQ2s: 谁更适合当c位？ (Who should take the center posi-
tion?)

rA2s: 赵粤 (Akira);希林娜依高 (Curley G)

Figure 5.1: Example polls from Sina Weibo. Pi, Qi, and Ai

(i “ 1, 2) refer to the i-th source post, its poll question, and
the corresponding poll choices (answers). Different choices
are separated by the “;”. Italic words in “()” are the English
translation of the original Chinese texts on their left. In the
source posts, we fold the words irrelevant to polls in “...” for
easy reading.

in reading comprehension tests. The existing methods are therefore

suboptimal to handle social media languages with short nature and

informal styles, which might present challenges to make sense of the

source posts and decide what to ask. For example, from the limited

words in P1, it is hard to capture the meanings of “B站” (B site) and “爱

奇艺” (iQiyi) as video apps, which is nevertheless crucial to predict Q1.

Moreover, the question itself, being in social media fashion, is likely

to contain fresh words, such as “c位” (center position) in Q2, which
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may further hinder the models’ capability to predict the poll questions in

social media style.

To tackle these challenges, we first enrich the short contexts of source

posts with other users’ comments; a neural topic model is employed

to discover topic words therein and help identify the key points made

in source posts. It is based on the assumption that the salient words in

a source post are likely to be echoed in its comments [98], potentially

useful to learn the map from posts to poll questions. For example, the

core words in Q1 — “app” and “视频” (video) — co-occur frequently

in the comments with “B站” (B site) and “爱奇艺” (iQiyi), which may

help the model to link their meanings together. The topic representations

are then incorporated into a sequence-to-sequence (S2S) architecture to

decode poll questions word by word. Furthermore, we extend the basic

S2S to a version with dual decoders to generate questions and answers

in a multi-task learning setting and further exploit their correlations. For

example, modeling answers in A2 might help indicate that P2 centers

around “赵粤” (Akira) and “希林娜依高” (Curley G), two celebrities.

To the best of our knowledge, this work is the first to study poll ques-

tions on social media, where their interactions among answer choices,

source posts, and reader users’ comments are comprehensively explored.

As a pilot study over social media polls, we also contribute the very first
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dataset containing around 20K Weibo polls associated with their source

posts and user comments.2We believe our dataset, being the first of its

kind, will largely benefit the research on social media polls and how they

help promote the public engagements.

On our dataset, we first compare the model performance on poll ques-

tion generation in terms of automatic evaluation and human evaluation.

The automatic evaluation results show that the latent topics learned from

the first few pieces of user comments is already helpful — they result in

our models’ significantly better performance than the S2S baselines and

their trendy extensions proposed for other tasks. For example, our full

model achieves 38.24 ROUGE-1 while S2S with RoBERTa [57] yields

34.08. Human evaluation further demonstrates our models’ capability to

generate poll questions relevant to the source post, fluent in language,

and particularly engaging to draw user attentions for discussions. We

then quantify models’ sensitivities to the length of varying source posts

and poll questions, where the scores of our model are consistently better.

Next, we find our model exhibits an increasing trend in predicting poll

questions that will engage more comments in the future, which suggests

the potential helpfulness of comments to indicate engaging questions.

At last, the performance of dual decoder designs are discussed and it is

2Our dataset and code are publicly available in https://github.com/polyusmart/Poll-
Question-Generation
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shown that joint prediction of questions and their answers can benefit

both tasks.

5.2 Study Design

5.2.1 Task Formulation

Our major input is a social media post (i.e., source post) and the main

output a poll question that continue the senses of the source post and

encourage public users to voice opinions. For each question, possible

answer choices (i.e., answers) may also be yielded as a side product to

enable participants to easily input their thoughts. To enrich the contexts

of source posts, their reply messages (i.e., user comments) are also

encoded as external features.

5.2.2 Data Description

Here we describe the dataset we collect to empirically study social media

polls.

Data Collection. Weibo allows users to create polls, asking questions

to the public and inviting others to share their thoughts via voting. It

enables the construction of a dataset with user-generated polls. At the

beginning, we gathered around 100K random Weibo posts, whereas less

than 0.1% of them contain polls. The sparse distribution of polls presents
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the challenge to scale up the dataset. To deal with that, we looked in to

the sampled polls and draw two interesting points: first, many polls carry

trendy hashtags (user-annotated topic labels like #COVID19) to draw

user attentions; second, a user who once created a poll is likely to do it

again.

Inspired by these observations, we first obtained the popular hashtags

since Nov 2019.3Then, we gathered the posts under the hashtag through

the Weibo search API, from which the ones containing polls are picked

out.4Next, we examined the authors of these polls and access their posting

history to gather more polls they created from Weibo user timeline API.5

Afterwards, for each post, we crawled its comments via the comment

API.6Finally, 20,252 polls were obtained from 1,860 users.

Data Analysis. The statistics of the dataset is displayed in Table 5.1.

As can be seen, comments are shorter than posts, probably because

users tend to put more efforts in crafting original posts than replying

to others and hence comments may be relatively nosier than original

posts; both questions and answers are short, which follow the fashion of

user-generated contents on social media.

3https://open.weibo.com/wiki/Trends/en
4https://open.weibo.com/wiki/C/2/search/statuses/

limited
5https://open.weibo.com/wiki/C/2/statuses/user tim

eline batch
6https://open.weibo.com/wiki/2/comments/show
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Post Comment Qs Ans Choice Voter
Num Len Num Len Len Num Len Num

20,252 54.0 173 16.9 11.0 3.4 5.9 13,004

Table 5.1: Statistics of our dataset. Num: number; Num:
average number per post. Len: average count of words per
post; Qs: question; Ans: answer.

To further investigate the data sparsity in social media contents, we

sample some texts from LDC news corpus (formally-written texts) [3]

— the samples contain the same token number as our social media texts.

Our corpus’s vocabulary size and entropy are 24,884 and 7.46, while

those for news corpus are 9,891 and 5.98. This suggests the sparsity of

social media data.

We also observe that each post exhibits more voters than comments,

implying that users may prefer to voice opinions via voting, which is

easier than commenting with words. We further analyze the effects

of polls on user engagements and draw an interesting finding. For the

same author, their posts with polls exhibit 1.65, 22.2, and 1.80 times

comments, likes, and reposts on average compared to posts without polls.7

This implies that adding polls indeed help to draw user engagements to

a post.

For each poll, there are less than 4 answer choices on average. To

further characterize that, Figure 5.2(a) shows the count of polls over
7For each author, we additionally sample 500 posts without polls for comparison.
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(a) Choice Number Statistics (b) Topic Categories

Figure 5.2: The left figure shows the count of polls over vary-
ing choice number in their answers (x-axis: choice number;
y-axis: vote count). The right one displays the distribution
of the polls’ topic categories.

varying numbers of answer choices appearing in them and the statistics

suggest that most users are not willing to craft over 5 poll choices, which,

interestingly, exhibit similar statistics in exam questions. In addition, we

probe into what types of topics are more likely to contain polls. To that

end, we examined source posts with hashtags and manually categorized

the hashtags into 11 topics. Figure 5.2(b) shows the poll distribution

over topics. Most polls fall in “social events” category, which mostly

concern public emergency and in our dataset tremendous posts focus on

the outbreak of COVID-19. There are also a large proportion of polls

concern entertainment topics such as celebrities and TV shows, probably

initiated for advertising purpose.
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Figure 5.3: The architecture of the dual decoder S2S
(sequence-to-sequence) model to jointly generate questions
and answers. It contains a neural topic model for context
modeling (in the bottom), a sequence encoder fed with the
source post (in the center), and two sequence decoders to
handle the output, where the left one predicts questions (Q)
and the right answers (A).

5.3 Poll Question Generation Framework

This section introduces our framework with two variants: one based

on a basic S2S (single decoder) and the other is its extension with dual

decoders to predict poll questions and answer choices in a multitask

learning setting. The model architecture of the dual decoder model is

shown in Figure 5.3.
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5.3.1 Source Posts and Comments Encoding

Following the common practice in S2S [27], we encode a source post P

in the form of word sequence xw1, w2, ..., w|P |y, where |P | is the number

of words in the post. For user comments C, bag of words (BOW)

representations are employed for topic modeling, henceforth Cbow over

BoW vocabulary. More details are provided below.

Source Post Encoding. To encode the post sequence P , a bidirectional

gated recurrent unit (Bi-GRU) [18] is adopted. For the i-th word wi P P ,

we first convert it into an embedding vector νi, which is later processed

into hidden states in the forward (ÝÑhi) and backward (ÐÝhi) directions,

respectively. They are then concatenated as hi “ r
ÝÑ
hi;

ÐÝ
his and sequentially

put into a memory bank M “ xh1,h1, ...,h|P |y, which will be further

delivered to decoders for their attentive retrieval.

User Comments Modeling. Considering the noisy nature of user com-

ments, latent topics are employed to recognize the salient contents

therein. They are explored based on word statistics and represented

as clusters of words tending to co-occur in the comments of some posts

(probably concerning similar topics), such as the names of video apps

in Figure 5.1. In topic modeling, we assume there are K topics and

each topic k is represented with a topic-word distribution over the BoW
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vocabulary. A post P has a topic mixture θ, which is learned from the

words appearing in its comments Cbow.

Our topic learning methods (from comments) are inspired by the

neural topic model (NTM) based on variational auto-encoder (VAE) [62,

111], which allows the end-to-end training of NTM with other modules

in an unified neural architecture. It employs an encoder and a decoder to

resemble the data reconstruction process of the comment words in BoW.

Concretely, the input Cbow is first encoded into prior parameters µ

and σ using neural perceptrons. Then, through Gaussian transformation,

they are applied to draw a latent variable: z “ N pµ, σ2q, which is further

taken to produce the topic composition of comments (θ) with softmax

transformation. At last, the decoder reconstructs comments and produces

a BOW vector C 1
bow (conditioned on the latent topic θ) through another

neural perception.

5.3.2 Poll Decoding

Here we further describe how we generate questions (and answers in the

dual decoders settings) with the encoded source posts and comments.

Question Generation. To handle the output of a question Q, the

corresponding decoder (i.e., question decoder) is formed with a uni-

directional GRU and fed with the memory bank M from source post
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encoding and the topic distribution θ from user comment modeling. The

words in Q are predicted sequentially with the following formula:

PrpQ | P,Cbowq “

|q|
ź

j“1

Pr pqj | qăj,M, θq (5.1)

where qj means the j-th word in Q and qăj refers to Q’s predicted word

sequence from slot 1 to j ´ 1. To leverage comment modeling results in

the decoding, we incorporate θ into the attention weights (defined below)

over source posts and concentrate on topic words therein for question

generation.

αij “
exp pfα phi, sj, θqq

ř|P |

i1“1 exp pfα phi1 , sj, θqq
(5.2)

sj is the GRU decoder’s j-th hidden states and:

fα phi, sj, θq “ vT
α tanh pWα rhi; sj; θs ` bαq (5.3)

In addition, we adopt copy mechanism [76] to allow the generated

questions to contain the keywords from the source posts:

pj “ λj ¨ pgen ` p1 ´ λjq ¨ pcopy (5.4)

pgen refers to the likelihood to generate a word while pcopy is the extrac-

tive distribution derived from the attention weights over the source input.

The soft switcher λj P r0, 1s can determine whether to copy a word or

generate a new one in aware of the comments’ topics:

λj “ sigmoid pWλ ruj; sj; tj; θs ` bλq (5.5)
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tj is the context vector (weighted sum) of the attention to predict the

Q’s j-th word, whose embedding is uj . Wλ and bλ are both learnable

parameters.

Answer Generation. To further explore the relations between ques-

tions (Q) and answers (A), we “replicate” the question decoder’s archi-

tecture and form another decoder to handle answer generation (answer

decoder). The answer choices are concatenated to form an answer

sequence and neighboring choices are separated with a special token

“<sep>”. The answer decoder also adopts the same topic-aware atten-

tions (Eq. 5.2) as the question decoder (denoted as βij here) and copy

mechanisms (Eq. 5.4) to be able to put topic words from the source into

the answer choices, such as “赵粤” (Akira) and “希林娜依高” (Curley

G) in Figure 5.1.

Question decoder and answer decoder work together in a dual de-

coders setting, whose parameters are updated simultaneously to exploit

the essential correlations of poll questions and their answers.

5.3.3 Model Training

This subsection describes how we jointly train the neural topic model

(henceforth NTM) for comment modeling and the decoders for question

and answer generation with multi-task learning. The loss function for
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NTM is defined as:

LNTM “ DKLpppzq || qpz |Cqq ´ Eqpz|CqrppC|zqs (5.6)

The C above refers to Cbow. The first term is the KL divergence loss and

the second is the reconstruction loss in VAE. For question generation,

the loss is:

LQG “ ´

N
ÿ

n“1

log pPr pQn | Pn, θnqq (5.7)

N is the number of training samples; Qn, Pn, and θn are the target poll

question, source post, and topic distribution of the n-th training sample.

LAG “ ´

N
ÿ

n“1

log pPr pAn | Pn, θnqq (5.8)

Answer generation loss LAG is defined similarly. The training loss

of the entire model are defined as:

L “ LNTM ` γQ ¨ LQG ` γA ¨ LAG (5.9)

where γQ and γA balance the weights over NTM and the two decoders.

5.4 Experimental Setup

Data Preprocessing. First, we removed meta data (e.g., author’s lo-

cations and emoji labels) and replaced links, mentions (@username),
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and digits with generic tags “URL”, “MENT”, and “DIGIT”. Then, for

some poll questions echoed in the source posts, we took them away

for fair experiments. Next, an open-source toolkit jieba is employed

for Chinese word segmentation.8Afterwards, we filtered out stop words

and for the remaining, we maintained two vocabularies with the most

frequent 50K words for sequences (input and output) and another 100K

words for BoW. Finally, comments are capped at the first 100 words

to examine poll question generation with the early comments and their

potential to draw future user engagements.

In evaluations, we split our data into 80% for training, 10% for

validation and 10% for test.

Baselines and Comparisons. For baselines, we first consider the basic

S2S [86] (i.e., BASE); also compared are the S2S with pre-trained mod-

els from the BERT family — tiny ERINE [85] (i.e., ERINE), BERT [24]

(i.e., BERT), and RoBERTa [57] (i.e., ROBERTA), which were imple-

mented with the paddle hub platform9. For all S2S with pre-trained

models, their pre-trained parameters were further fine-tuned on our train-

ing data.

Then, we consider the following S2S extensions with copy mecha-

8https://github.com/fxsjy/jieba
9https://www.paddlepaddle.org.cn/hub
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nism (i.e., COPY) [61], topic modeling from posts (i.e., TOPIC) [97],

and bidirectional attentions over posts and comments (i.e.,

CMT (BIATT)) [98]. All of them were proposed for keyphrase genera-

tion tasks and set up following their original papers.

For our models, we consider two variants — CMT (NTM) in the

single decoder archetecture and its dual decoder version DUAL DEC.10

Model Settings. All the hyperparameters are tuned on the validation

set via grid search. For NTM, it is pre-trained for 50 epochs before joint

training and afterwards different modules take turns to update parameters.

We adopt two-layers bidirectional GRU to build source post encoder and

one-layer unidirectional GRU question and answer decoders. The hidden

size of each GRU is 300. For a word embedding, the size is set to 150

and randomly initialized. In training, we apply Adam optimizer with

initial learning rate as 1e-3, gradient clipping as 1.0, and early-stopping

strategy adopted. The weights to trade off losses in multi-task learning

is set to γQ “ γA “ 1 (Eq. 5.9).

10We also finetuned BERT with our models yet cannot observe much performance
gain. It is because NTM is able to learn essential features from the input and BERT
cannot provide additional benefits. Another possible reason is that social media BERT
is unavailable in Chinese and that trained on out-domain data (e.g., news) might not fit
well with Weibo languages. Large-scale Weibo data might be acquired for continue
pre-training [32], which is beyond the scope of this thesis and will be explored in future
work.
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Evaluation Metrics. We adopt both automatic measures and human

ratings for evaluations. For the former, we examine two popular metrics

for language generation tasks — ROUGE [54] and BLEU [66]. For the

latter, human annotators rates with 4 point Likert scale (i.e., t0, 1, 2, 3u)

and over three criteria are considered: the relevance to the source posts

(relevance), how fluent the generated language reads (fluency), the

attractiveness degree of the questions in drawing people’s engagements

(engagingness).

5.5 Experimental Results

In this section, we first show the main comparison results on poll question

generation involving both automatic evaluations and human ratings (in

§5.5.1). Then, model sensitivity to varying lengths of source posts

and poll questions are discussed in §5.5.2, followed by the analyses of

models’ capability to handle poll questions exhibiting varying degrees

of user engagements (§5.5.3). Next, §5.5.4 discusses the performance of

dual decoders that jointly generate questions and answers. A case study

is presented at last (in §5.5.5) to interpret the sample outputs.

86



5.5.1 Comparison on Poll Question Generation

We first show the comparison results on poll question generation, where

we will discuss automatic evaluations and human ratings in turn below.

MODEL ROUGE-1 ROUGE-L BLEU-1 BLEU-3
S2S Baselines
BASE 21.62˘0.7 20.64˘0.7 20.35˘0.7 2.11˘0.5

+ERNIE 29.62˘0.5 27.82˘0.4 21.66˘0.5 3.25˘0.4

+BERT 33.62˘1.2 31.57˘1.1 24.43˘0.7 4.54˘0.4

+ROBERTA 34.08˘1.3 31.98˘1.2 24.88˘1.0 4.85˘0.5

S2S Extensions
+COPY 35.13˘0.4 33.20˘0.4 30.27˘0.4 7.95˘0.3

+TOPIC 36.65˘0.6 34.70˘0.6 31.11˘0.5 8.66˘0.5

+CMT (BIATT) 27.74˘0.4 26.21˘0.4 23.97˘0.3 4.15˘0.2

Our Models
+CMT (NTM) 37.95˘0.4 35.97˘0.3 32.07˘0.2 8.89˘0.3

+DUAL DEC 38.24˘0.3 36.14˘0.3 32.27˘0.4 9.04˘0.3

Table 5.2: Main comparison results for poll question gen-
eration. The underlined scores are the best in each column.
Average scores are before ˘ and the numbers after are the
standard deviation over 5 runs initialized with different seeds.
Our models CMT (NTM) and DUAL DEC significantly out-
performs all the other comparison models (paired t-test; p-
value ă 0.05).

Automatic Evaluations. Table 5.2 reports the automatic measured

results on question generation.

As can be seen, our task is challenging and basic S2S performs

poorly. Pre-trained models from the BERT family can offer some help

though limited. It is probably because the pre-training data is from other

domains (e.g., news and online encyclopedia), where the representations

learned cannot fully reflect the styles of social media languages.
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We then observe copy mechanism and latent topics (learn from posts)

are both useful, where the former allows the keyword extracted from the

post to form a question while the latter further helps find topic words to

be copied. On the contrary, user comments, though able to provide useful

information, are noisy (also implied by Table 5.1). So, it is important to

encode the comments in an appropriate way — CMT (NTM) captures

salient topic features from the comments and performs much better than

CMT (BIATT), which might be hindered by the noise and exhibit the

second worst results.

In addition, we notice DUAL DEC slightly outperforms its single

decoder variant CMT(NTM), though the gain is small. To better examine

their prediction results, we conduct human evaluations.

Human Ratings. Here we sampled 400 source posts (and their out-

puts), and invited four PhD students (native Chinese speakers) to rate

the poll questions in a 4 point Likert scale — 0 for extremely bad, 1 for

bad, 2 for good, and 3 for extremely good — without knowing where

the results come from. Each annotator reviews 100 samples and one’s

assignments vary with others’ and Table 5.3 shows the average ratings

over the four annotators.

All the models are rated worse than the gold standard, which means
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Relevance Fluency Engagingness
Gold Standard 2.79 2.84 2.74
BASE 1.26 2.14 1.35
ROBERTA 1.33 1.06 0.96
TOPIC 1.81 1.66 1.50
CMT (NTM) 1.91 1.67 1.55
DUAL DEC 2.02 1.87 1.67

Table 5.3: Average human ratings. Higher scores indicate
better results. DUAL DEC exhibits good potential generate
questions likely to draw user engagements.

automatic poll question generation still has a long way to go. We also

observe that models with latent topics exhibit relatively better relevance.

This may be because topic models allow the capture of salient contents

from the input and detail injection to the output. Besides, CMT (NTM)

and DUAL DEC perform the best in engagingness, probably because

user comments and poll answers might provide implicit clues (e.g.,

fresh words) helpful to predict engaging questions. For fluency, BASE

outperforms our models by a small margin, as it tends to yield short

and generic questions, such as “你怎么看” (What’s your viewpoint?)

based on our observation. Moreover, we measure the length of questions

generated by BASE and DUAL (our full model) and find that 11.0%

questions generated by BASE contain less than 5 words whereas the

number for DUAL is only 1.6%. This again demonstrates our potential

to generate longer questions with richer details.
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5.5.2 Effects of Post and Question Length

We further quantify the question generation results over varying lengths

of source posts and poll questions and show the corresponding ROUGE-1

scores in Figure 5.4. Here, we compare BASE and ROBERTA, TOPIC,

and our CMT (NTM).11

Figure 5.4: ROUGE-1 scores (y-axis) over varying length
(word count in x-axis) of source posts (on the left) and
poll questions (on the right). For both subfigures, the bars
from the left to right shows the results of BASE, ROBERTA,
TOPIC, and CMT (NTM).

Post length seems not to affect much on the models’ performance,

probably attributed to the length limitation in Weibo — even the rel-

atively longer posts contain limited words. On the contrary, for the

question length, the two S2S baselines both exhibit obvious performance

drops when generating long questions, while TOPIC and CMT (NTM)

perform steadily. This suggests that latent topics, either captured from

posts or comments, may have the potential to enrich questions with

11In §5.5.2 and §5.5.3, we experiment in the single decoder settings so as to focus on
the quality of generated questions. We will further discuss the dual decoders in §5.5.4.
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detailed descriptions, and hence can better tackle long questions. Never-

theless, CMT (NTM) presents consistently better ROUGE-1 in diverse

scenarios.

5.5.3 Polls Questions vs. User Engagements

As shown in the human ratings (§5.5.1), comments might help to gener-

ate engaging poll questions. For a further discussion, Figure 5.5 shows

the ROUGE-1 of ROBERTA, TOPIC, and CMT (NTM) in handling

questions for polls that later engage varying user comment numbers.

Interestingly, CMT (NTM) performs better when predicting questions

that engage more comments at the end. This means that early comments

might provide useful clues for models to distinguish attractive questions

with the potential to draw more public engagements in the future. Lack-

ing the ability to learn from comments, TOPIC exhibits relatively more

stable trends.

5.5.4 Discussion on Dual Decoders

The previous two subsections are discussed in the single decoder setting

and here we further examine the effectiveness to jointly predict questions

and answers. BASE, COPY, TOPIC, and CMT (NTM) with single and

dual decoders are discussed.

We first compare question generation results and Figure 5.6 shows
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Figure 5.5: Model performance in handling polls that result
in varying comment numbers (x-axis). Y-axis: ROUGE-1.
Bars from left to right represent ROBERTA, TOPIC, and
CMT (NTM).

the ROUGE-1 scores. It is seen that dual decoders can boost the results of

BASE and COPY, implying that questions and answers are indeed related

and exploiting their interactions can successfully bring performance gain.

However, we cannot observe large-margin improvements in TOPIC and

CMT (NTM), probably because many words in answers, such as “赵粤”

(Akira) and “希林娜依高” (Curley G) in Figure 5.1, are also topic words

that can be discovered with topic models. Therefore, jointly generating

answers only provides limited help to their question generation results.

Then, we analyze how the multitask learning ability of dual decoders

influence the prediction of poll answers. Table 5.4 displays the compar-

ison results with pipeline models that sequentially generate questions

and then answers. By examining the pipeline results, we first find that

source posts are helpful in answer generation, which results in the out-
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Figure 5.6: ROUGE-1 scores of BASE, COPY, TOPIC, and
CMT (NTM) from left to right. For each model, left bars (in
blue) shows them in single decoder setting while the right
bars (in orange) dual decoders.

performance of PT+QS over QS ONLY. Besides, answer generation

trained with predicted questions or the gold standards do not make much

difference. Gold standard questions might exhibit higher quality while

predicted questions may better fit the tests (answer choices should be

predicted without knowing the human-crafted questions).

For dual decoders, CMT (NTM) still performs the best, implying that

latent topics from user comments can also contribute to better prediction

of poll answers. In comparison with the best pipeline model (PT+QS),

the scores from CMT (NTM) are competitive, though the dual decoder

allows end-to-end training and is easier to be used (with less manual

efforts in model training and application).
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MODEL ROUGE-1 ROUGE-L BLEU-1 BLEU-3
Pipeline Models
QS ONLY (PRED) 26.65˘0.2 25.09˘0.2 22.50˘0.8 4.27˘0.5

QS ONLY (GOLD) 25.51˘0.5 24.17˘0.4 22.43˘0.3 3.76˘0.3

PT+QS (PRED) 31.29˘0.6 29.18˘0.5 26.35˘0.1 8.15˘0.3

PT+QS (GOLD) 31.78˘0.6 29.63˘0.6 26.39˘0.6 8.14˘0.3

Dual Decoders
BASE 24.68˘0.7 22.59˘0.5 21.38˘0.3 3.22˘0.4

+COPY 30.03˘0.5 28.02˘0.5 25.55˘0.5 8.28˘0.3

+TOPIC 30.56˘0.8 28.49˘0.8 26.00˘0.5 8.26˘0.4

+CMT (NTM) 31.72˘0.7 29.54˘0.7 26.55˘0.2 8.65˘0.2

Table 5.4: The comparison results of models with dual de-
coders (on the bottom half) and pipeline models (on the top).
For the pipeline models, we first produce questions (QS)
using CMT (NTM), from which we further generate answers
with the S2S model. QS ONLY is fed with QS only while
PT+QS the concatenated sequence of posts (PT) and QS. In
the training of answer generation, PRED means the predicted
questions are employed as input while for GOLD, we adopt
gold standard questions (they are assumed to be unavailable
for test).

5.5.5 Case Study

To provide more insights, we further take the two Weibo posts in Figure

5.1 as the input cases and examine the output of varying models in

Table5.5.12

Unsurprisingly, BASE tends to yield generic questions as limited

features are encoded from the noisy source. ROBERTA sometimes

produces repeated words (e.g., its output to P1), hindering its capability

to generate fluent language (also indicated by Table 5.3). This is possibly

caused by the overfitting problem as RoBERTa might rely on large-scale

12Here we analyze the case with two examples while similar observations can be
drawn from many output cases. More cases will be discussed in Figure 5.6 (in the
Appendix).
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BASE 你会看吗
(Would you watch)

ROBERTA 你平时喜欢哪个视频频频
(Which videooooo do you usually like)

TOPIC 你平时常用哪个视频
(Which video do you usually use)

CMT (NTM) 你平时在哪个视频网站
(Which video site are you on)

DUAL DEC 你平时用哪个视频 app
(Which video app do you usually use)
>bili 哔哩 (Bilibili); 爱奇艺 (iQiyi); 腾讯视频 (Tencent
Video);芒果tv (Mango TV);优酷 (Youku);其他评论区补
充 (Comment with other choices)

BASE 你觉得谁的表现更强
(Who do you think is better)

ROBERTA 你觉得谁更好
(Who do you think is better)

TOPIC 你觉得谁出道了
(Who do you think debuted)

CMT (NTM) 你觉得谁更适合c位
(Who do you think is more suitable for the center position)

DUAL DEC 你觉得赵粤和希林娜依高谁更可
(Who do you prefer, Akira or Curley G)

>赵粤 (Akira);希林娜依高 (Curley G)

Table 5.5: Questions generated for the source posts in Figure
5.1: P1 (top) and P2 (bottom). For DUAL DEC (i.e., CMT
(NTM) with dual decoders), the question is followed by the
answer in the next row.
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in-domain data for fine-tuning.

We also find that modeling topics and user comments may enable

the output to contain trendy wordings, making it more engaging, such

as “c位” (center point) in CMT (NTM)’s output question for P2 and

the names of many new video apps in DUAL DEC’s generated answer

choices for P1. Furthermore, the dual decoders might learn the cohesive

relations between questions and answers, such as the Akira and Curley

G occurring in both the generated questions and answer choices (P2).

5.6 Conclusion

We have presented a novel task to generate social media poll questions.

User comments encoded with a neural topic model are leveraged in a

S2S framework; dual decoder architecture is further adopted to explore

the interactions between questions and answers. Extensive experiments

on a large-scale dataset newly collected from Weibo have demonstrated

the effectiveness of our proposed model.

5.7 Appendix
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rPosts: #2020百大最美女星#刘亦菲和迪丽热巴都上榜啦！！！都
是天然美女啊～两个人一个人演过电影版的三生三世，一个演过
剧版的三生三世。 (#100 Most Beautiful Women in the World 2020#
Liu Yifei and Dilraba Dilmurat are both on the list!!! Both of them are
natural beauties˜One of them played in the movie Eternal Love while the
other played in its TV series version)
rQuestions: 谁的颜让你心动呢 (Whose face makes you heart flip)
rAnswers: 刘亦菲 (Liu Yifei);迪丽热巴 (Dilraba Dilmurat)
rBases: 你最喜欢谁 (Who do you like the best)
rRoBERTas: 你更喜欢谁 (Who do you prefer)
rTopics: 你更喜欢哪一个(Which one do you prefer)
rCmtpNTMqs: 你更喜欢谁的造型 (Whose look do you prefer)
rDualDecs: 你觉得谁更有cp感 (Who do you think is better coupled
with the leading man)
>刘亦菲 (Liu Yifei);迪丽热巴 (Dilraba Dilmurat)

rPosts: 有意见建议同性婚姻合法化写入民法典 (Some people sug-
gest that same-sex marriage be legalized into the Civil Code)
rQuestions: 你支持同性恋结果合法化吗 (Do you support the legal-
ization of same-sex marriage)
rAnswers: 同意 (Agree);不同意 (Disagree)
rBases: 你怎么看 (What do you think)
rRoBERTas: 你支持同性结婚化吗 (Do you support the same-sex
marriage)
rTopics: 你支持同性恋合法化吗 (Do you support the legalization of
homosexuality)
rCmtpNTMqs: 你支持同性恋婚姻合法化吗 (Do you support the
legalization of the same-sex marriage)
rDualDecs: 你支持同性恋婚姻合法化吗(Do you support the legaliza-
tion of the same-sex marriage)
>支持 (Support);不支持 (Objection)
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rPosts: #瑞幸咖啡伪造交易22亿#在否认业绩造假两个月后，瑞幸
今日盘前发布公告：内部调查显示，从2019年第二季度到2019年
第四季度与虚假交易相关的总销售金额约为22亿元。于是，#瑞幸
暴跌#。 (#Ruixing Coffee forged 2.2 billion transactions# Two months
after denying fraud, Luckin released an announcement before the market
today: An internal investigation showed that total sales related to invalid
transactions from the second quarter of 2019 to the fourth quarter of
2019 amounted to about 2.2 billion Yuan. Consequently, #Luckin Coffee
stock plummet#)
rQuestions: 你还会喝瑞幸咖啡吗 (Will you still drink Luckin coffee)
rAnswers: 会，我券还没用完呢 (Yes. I still have the coupons to use);
不会，没券就不喝 (No. No coupon, no coffee.);从来就没有喝过 (I’ve
never drunk the coffee there);不管如何都是死忠粉 (Die-hard fan no
matter what)
rBases: 你会买 iphone吗 (Would you buy an iphone)
rRoBERTas: 你喝过瑞幸咖啡吗 (Have you ever drunk Luckin coffee)
rTopics: 你会买瑞幸咖啡吗 (Would you buy Luckin coffee)
rCmtpNTMqs: 你觉得瑞幸咖啡合理吗 (Do you think Luckin Coffee
is reasonable)
rDualDecs: 你还会买瑞幸咖啡吗 (Will you still buy Luckin coffee)
>会 (Yes);不会 (No);看情况 (It depends)

rPosts: 杨丽萍因为没有结婚生孩子，过着与花草舞蹈为伴的生
活，被网友diss是一个失败的范例，真正的女人应该要儿孙满堂，
才是幸福的。 (Yang Liping, who has no marriage or children, lives
a life with flowers and dancing. However, she has been ridiculed by
netizens and viewed as a typical loser — a real woman should have a
large family of children and grandchildren to live in happiness.)
rQuestions: 如何定义成功女性(How to define a successful woman)
rAnswers: 事业有成 (Success in career);儿孙满堂 (Have children and
grandchildren);家庭事业双丰收(Success in family and career);充实
的灵魂 (Interesting soul)
rBases: 你觉得哪种行为有问题 (What kind of behavior do you think is
problematic)
rRoBERTas: 女女是女人是女人是什么 (What is woman is woman)
rTopics: 你觉得结婚应该定义成功吗 (Do you think marriage should
come to define success)
rCmtpNTMqs: 你怎么看待成功的女性杨丽萍 (How do you think of
the successful woman Yang Liping)
rDualDecs:你觉得如何定义成功女性 (How would you define success-
ful women)
>应该 (Should);不支持(Objection);评论区补充 (Add more details in
comments)
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rPosts: #杨幂魏大勋恋情实锤#杨幂魏大勋恋情再次被实锤，现在
已经成了圈子内外不是秘密的秘密了。 (#Smoking gun of Yang Mi
and Wei Daxun# Yang Mi and Wei Daxun’s love affair has been verified
again, and it has now become a secret inside and outside the circle.)
rQuestions: 你看好杨幂魏大勋的恋情吗(Are you optimistic about
Yang Mi’s romantic relationship with Wei Daxun)
rAnswers: 看好 (Optimistic);不看好 (Pessimistic);有波折终能修成
正果 (There will be twists and turns but the ending will be good)
rBases: 你觉得这个做法怎么样 (What do you think of this approach)
rRoBERTas: 你觉得魏魏勋勋恋爱吗(Do you think Wei Wei Xun Xun
is in love)
rTopics: 你觉得谁更渣 (Who do you think is more scummy)
rCmtpNTMqs: 你怎么看待这恋情的 (What do you think of the roman-
tic relationship)
rDualDecs: 你觉得杨幂魏大勋有必要吗 (Do you think Yang Mi and
Daxun Wei are necessary to do so)
>杨幂 (Yang Mi);魏大勋 (Wei Daxun);都不喜欢 (Do not like either of
them);吃瓜 (I’m an onlooker)

Table 5.6: Five additional cases. One block refers to one
case, including its source post (Post), ground truth question
(Question) and answer (Answer), followed by and the re-
sults generated by varying models (model names are in []).
For answers, different choices are separated by “;” and the
outputs of DualDec appear after a ą. Italic words in “()” are
the English translation of the original Chinese texts on their
left.
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Chapter 6

Conclusion and Future

Work

6.1 Conclusion

With the worldwide expansion of the Internet, interpersonal communi-

cations have been gradually moved to the virtual world. Despite the

essential need to talk with others on social media, some individuals may

not experience good online interactions because of the informal language

styles adopted by other online users, uncontrollable environments in on-

line discussions, and the reluctance to explicitly engage in social media

conversations. To allow a better online engagement experience in social

interactions, we have proposed to employ natural language processing

methods to assist users to understand others’ posts, get on the track of

the conversation context for those involved in discussions, and draw user
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engagement for those reluctant to talk.

This thesis mainly consists of three research work.

In the first work, we build a social media understanding benchmark

to investigate the NLP models’ ability to handle the social media lan-

guage. We are the first to study the social media language understanding

benchmark with datasets on both fundamental and popular social media

tasks presented to evaluate how models understand social media lan-

guage. The experimental result shows that the overall understanding

ability of the NLP machine is better than human beings while it also

uncovers the limitation of state-of-the-art models in handling post-level

context.

In the second and third work, we present two application scenarios

to help the online user engagement — one is for users who have been

involved in a discussion and the other is for those reluctant to explicitly

interact with others.

For those involved in discussions, we measure the quality of user

replies with a novel concept of conversation residual life, which reflects

the number of coming turns to occur in the future. To model the conversa-

tion discourse and measure the environments, we leverage a hierarchical

neural model that jointly explores indicative representations from the

content in turns and the structure of conversations in an end-to-end man-
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ner. It can be used to keep track of dialogue and thus help response

selection to move the discussion forward.

Another application is poll question generation for engaging people

who may be reluctant to join a discussion and thus help them to interact

more actively, which is a new task on social media. We explore new

features from comments by the neural topic model and demonstrate that

it can help the S2S model improve the quality of generating questions.

We also have explored multitask learning on this model with the question

and answer jointly trained and demonstrated that multitask learning

works for this task.

6.2 Future Work

This thesis has studied how to use NLP methods to improve user en-

gagements on social media. This is an important topic worth long-term

exploration and we will point out some interesting directions of the

future work here.

For the work of social media language understanding benchmark,

more social media applications can be incorporated to test the under-

standing ability from a more comprehensive point of view. Specifically,

we only consider classification tasks in this work yet ignore generation

tasks. Since the generation ability is downstream of understanding, we
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can consider testing the encoder from the decoder’s standpoint, such as

hashtag generation and question generation. Also, some techniques and

external knowledge can be proposed or introduced to design or improve

the understanding model’s inference ability. Limited efforts have been

made to explore how the pre-trained models can learn useful language

representations from the noisy social media data. Especially a dynamic

and scalable vocabulary table can be considered in this design because

of the limited attention paid to this issue as far aw we know.

For the estimation of residual life for conversations, we can explore

a better modeling structure in the future. The existing model simulates

the thread and reads the message by turns. However, sometimes one

sentence will kill the conversation but nothing with the chatting history.

So, separately modeling the history turns and the current message is a

potential attempt to improve the performance. Besides, the preprocessing

of the dataset can be improved. We randomly split the chatting log

and sort by the number of the rest turns. But how to map it to long

or short residual life requires a more wise method, rather than equal

segments according to rest turns. What is more, to make suggestion for

the improper behavior users is also a meaningful topic.

For the question generation task, some other techniques can be con-

sidered to control the sentence diversity or difficulty, such as GANs and
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reinforcement learning. And then the next step, where the question is

better for the post to improve people’s engagement. This question can

be cooperated with ‘repost’ and ‘like’ data to model a more charming

question. Besides, multi-modal is a new way to explore the question

since picture usually provides more vivid information, thus illustrating

pictures from the post as input is a potential way to enhance the under-

standing ability. On the other side, generating a question and a funny

illustration picture simultaneously is also a more attractive way. From

a practice standpoint, semi-supervising is a potential method because

question label is not always easily collected in many scenarios.
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pression in social media using fine-grained emotions. In Jill

105



Burstein, Christy Doran, and Thamar Solorio, editors, Proceed-

ings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language

Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June

2-7, 2019, Volume 1 (Long and Short Papers), pages 1481–1486.

Association for Computational Linguistics, 2019.

[5] Yoav Artzi, Patrick Pantel, and Michael Gamon. Predicting re-

sponses to microblog posts. In NAACL, pages 602–606, 2012.

[6] Lars Backstrom, Jon M. Kleinberg, Lillian Lee, and Cristian

Danescu-Niculescu-Mizil. Characterizing and curating conversa-

tion threads: expansion, focus, volume, re-entry. In WSDM, pages

13–22, 2013.

[7] Haoli Bai, Zhuangbin Chen, Michael R. Lyu, Irwin King, and

Zenglin Xu. Neural relational topic models for scientific arti-

cle analysis. In Alfredo Cuzzocrea, James Allan, Norman W.

Paton, Divesh Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mo-
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ings of the 57th Conference of the Association for Computational

Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,

Volume 1: Long Papers, pages 2978–2988. Association for Com-

putational Linguistics, 2019.

[23] Cristian Danescu-Niculescu-Mizil and Lillian Lee. Chameleons

in imagined conversations: A new approach to understanding

coordination of linguistic style in dialogs. In CMCL@ACL, pages

76–87, 2011.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: pre-training of deep bidirectional transform-

ers for language understanding. In Proceedings of the 2019

109



Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies,

NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Vol-

ume 1 (Long and Short Papers), pages 4171–4186. Association

for Computational Linguistics, 2019.

[25] Kaustubh D. Dhole and Christopher D. Manning. Syn-qg: Syn-

tactic and shallow semantic rules for question generation. In

Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, ACL 2020, Online, July 5-10, 2020,

pages 752–765. Association for Computational Linguistics, 2020.

[26] Keyang Ding, Jing Li, and Yuji Zhang. Hashtags, emotions, and

comments: A large-scale dataset to understand fine-grained social

emotions to online topics. In Bonnie Webber, Trevor Cohn, Yulan

He, and Yang Liu, editors, Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing, EMNLP

2020, Online, November 16-20, 2020, pages 1376–1382, 2020.

[27] Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural

question generation for reading comprehension. In Proceedings

of the 55th Annual Meeting of the Association for Computational

Linguistics, ACL 2017, Vancouver, Canada, July 30 - August

4, Volume 1: Long Papers, pages 1342–1352. Association for

Computational Linguistics, 2017.

[28] Alexander R. Fabbri, Patrick Ng, Zhiguo Wang, Ramesh Nallapati,

and Bing Xiang. Template-based question generation from re-

trieved sentences for improved unsupervised question answering.

In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, ACL 2020, Online, July 5-10, 2020,

110



pages 4508–4513. Association for Computational Linguistics,

2020.

[29] Yifan Gao, Jianan Wang, Lidong Bing, Irwin King, and Michael R.

Lyu. Difficulty controllable question generation for reading com-

prehension. CoRR, abs/1807.03586, 2018.

[30] Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan

Das, Daniel Mills, Jacob Eisenstein, Michael Heilman, Dani Yo-

gatama, Jeffrey Flanigan, and Noah A. Smith. Part-of-speech

tagging for twitter: Annotation, features, and experiments. In

The 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, Proceedings of the

Conference, 19-24 June, 2011, Portland, Oregon, USA - Short

Papers, pages 42–47. The Association for Computer Linguistics,

2011.

[31] Alex Graves. Generating Sequences With Recurrent Neural Net-

works. arXiv pre-print, abs/1308.0850, 2013.

[32] Suchin Gururangan, Ana Marasovic, Swabha Swayamdipta, Kyle

Lo, Iz Beltagy, Doug Downey, and Noah A. Smith. Don’t stop

pretraining: Adapt language models to domains and tasks. In

Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault,

editors, Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, ACL 2020, Online, July 5-10, 2020,

pages 8342–8360. Association for Computational Linguistics,

2020.

[33] Jiyeon Ham, Yo Joong Choe, Kyubyong Park, Ilji Choi, and

Hyungjoon Soh. Kornli and korsts: New benchmark datasets for

korean natural language understanding. In Trevor Cohn, Yulan

111



He, and Yang Liu, editors, Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing: Findings,

EMNLP 2020, Online Event, 16-20 November 2020, pages 422–

430. Association for Computational Linguistics, 2020.

[34] Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazaré, and
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Fox, and Roman Garnett, editors, Advances in Neural Information

Processing Systems 32: Annual Conference on Neural Informa-

tion Processing Systems 2019, NeurIPS 2019, December 8-14,

2019, Vancouver, BC, Canada, pages 3261–3275, 2019.

[93] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer

Levy, and Samuel R. Bowman. GLUE: A multi-task benchmark

and analysis platform for natural language understanding. In Tal

Linzen, Grzegorz Chrupala, and Afra Alishahi, editors, Proceed-

ings of the Workshop: Analyzing and Interpreting Neural Net-

works for NLP, BlackboxNLP@EMNLP 2018, Brussels, Belgium,

November 1, 2018, pages 353–355. Association for Computational

Linguistics, 2018.

[94] Hao Wang, Zhengdong Lu, Hang Li, and Enhong Chen. A dataset

for research on short-text conversations. In EMNLP, pages 935–

945, 2013.

[95] Jia Wang, Vincent W. Zheng, Zemin Liu, and Kevin Chen-Chuan

Chang. Topological recurrent neural network for diffusion predic-

tion. In ICDM, pages 475–484, 2017.

[96] Tong Wang, Xingdi Yuan, and Adam Trischler. A joint

model for question answering and question generation. CoRR,

abs/1706.01450, 2017.

[97] Yue Wang, Jing Li, Hou Pong Chan, Irwin King, Michael R. Lyu,

122



and Shuming Shi. Topic-aware neural keyphrase generation for

social media language. In Anna Korhonen, David R. Traum, and
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