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Abstract

In recent years, the rapid expansion of variety, velocity, and volume of data leads

to various challenges on efficiency of querying and mining data. In this thesis, we

identify three challenging problems on querying and mining data, and propose opti-

mized solutions by exploiting modern hardware like GPUs and emerging non-volatile

memory.

Data mining enables us to discover hidden knowledge from data. The past decades

have witnessed the great successes of data mining in many applications such as bioin-

formatics and software engineering, business intelligence, and search engines. Simi-

larity computation is a core subroutine of many mining tasks on multi-dimensional

data, which are often massive datasets at high dimensionality. However, the ever-

expanding volumes and dimensionality of data lead to similarity computation being

the bottleneck that prolongs the process of mining. In these mining tasks, the per-

formance bottleneck is caused by the memory wall problem as a substantial amount

of data needs to be transferred from the memory to processors. Recent advances in

non-volatile memory (NVM) based processing-in-memory (PIM) enjoy the ability to

process the data without moving them out of memory, which can reduce data trans-

fer and thus alleviate the performance bottleneck of the mining tasks. Nevertheless,

NVM PIM supports specific operations only but not arbitrary operations. We tackle

the challenge and carefully exploit NVM PIM to accelerate similarity-based mining

tasks on multi-dimensional data without compromising the accuracy of results. Ex-
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perimental results show that our proposed method achieves up to 11.0x speedup for

representative mining algorithms such as kNN classification and k-means clustering.

Blockchains are distributed systems that provide decentralized, secure, and shared

data access among untrusted parties. They have been used in applications such as

banking, supply chain, healthcare, and IoT scenarios. New data such as transactions

are recorded into a block in the append-only (and immutable) manner. Blockchain

maintains a linked list of blocks and grows by mining new blocks. However, the

mining process consumes significant computational overhead and easily prolongs the

progress of data storage. This is because the mining processing requires the valid-

ity of new data to be verified through consensus mechanism - proof-of-work, which

expends computational effort solving an arbitrary mathematical puzzle. To improve

the data storage performance, we propose a NVM PIM architecture to accelerate

blockchain mining. NVM PIM can directly process data at the memory arrays. The

large number (e.g., dozens of thousands) of memory arrays of NVM release mas-

sive parallelism, and thus is promising to speed up blockchain mining that demands

expensive computation resources. We utilize matrix transformation to map the op-

erations in blockchain mining into the matrix multiplication operation, which is sup-

ported by NVM PIM. We further propose an intra-transaction and inter-transaction

parallel framework to make full use of the parallelism of NVM PIM. The experimen-

tal results show that our proposed method outperforms CPU-based and GPU-based

implementations significantly.

Analytical query processing is an important function in data warehouses, for sys-

tematical data reporting and analysis. Efficient query processing is significant to

support sound and timely strategic decisions in todays competitive, fast-evolving

enterprise industry. However, with the increase of data volume and complexity of

analysis scenarios in real applications, a query with joining multiple relations can

easily cost hours and even days. Cardinality estimation estimates the size of the
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intermediate result relations. The query processing relies on the estimated cardinal-

ities to evaluate the costs of the execution plans and can find the optimal execution

plan if the estimations are error-free. Deep learning has shown attractive effective-

ness to provide more accurate estimation than traditional methods. Nevertheless,

learning-based estimators consume more estimation time since the model inference

triggers expensive computation. GPU is a prevalent accelerator for deep learning

model inference due to its high parallelism with many cores. We propose a GPU-

enabled learning-based progressive cardinality estimator (LPCE) to speed up query

end-to-end execution. LPCE runs on GPUs and enjoys both short inference time and

high estimation accuracy. In addition, to serve cardinality estimation before query

execution, LPCE can progressively refine the estimations during the query execution

process. We integrate LPCE into PostgreSQL and conduct extensive experiments

on real datasets. The results show that LPCE significantly outperforms existing

cardinality estimators in end-to-end query execution time.

In summary, in this thesis, we study how to leverage modern hardware, especially

NVM and GPU, to optimize three types of querying and mining operations on data:

similarity-based data mining, blockchain mining, and analytical query execution.
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Chapter 1

Introduction

Big data in the present era has been exerting an increasingly profound influence on

data management. For example, the social network such as Facebook and Twitter

produces over 500 TB of data over the time frame of one day [190]. Processing such

huge volumes of data brings about extraordinarily complex challenges to the efficient

data management. In this thesis, we identify three challenging problems on querying

and mining data, and propose optimized solutions with modern hardware such as

emerging non-volatile memory (NVM) and graphics processing units (GPUs).

Recently, the NVM techniques such as phase-change memory (PCM) [198] and re-

sistive memory (ReRAM) [9], have been demonstrated the promising potential of pro-

cessing the stored data in-situ, namely NVM processing-in-memory (PIM) [91, 60].

The efficiency of NVM PIM comes from two-fold: reduction of data transfer and

massive data parallelism [21, 140]. First, NVM PIM enables us to directly process

the stored data, avoiding data movement from the memory to host processors (e.g.,

CPU). Second, NVM is composed of a large number (e.g., dozens of thousands)

of memory arrays. Each array works as a processing unit that enables concurrent

computing. NVM PIM has been applied in many applications including neural net-

work [140, 164, 36], graph computing [169, 221], and DNA alignment [88]. GPU

is another prevalent hardware due to its higher computing parallelism and mem-
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Figure 1.1: Unified research framework.

ory bandwidth than traditional processor - CPU. GPU has been intensively used

in compute-intensive applications such as video coding [133, 166], image process-

ing [66, 42].

Figure 1.1 illustrates the overview of our research framework. As shown in the

layer of user application, our target users can be programmers and naive users such

as web users, and also sophisticated users such as analysts and database adminis-

trators. The naive users might invoke the functionality of data mining at the layer

of processing through application program interfaces. The analysts and database

administrators can utilize query language statements (e.g., SQL) to facilitate analyt-

ical query processing. We study to shorten the latency of data mining and analytical

query processing by utilizing modern hardware. In addition to data processing, our

research also includes the optimization of data storage. We study leveraging the

modern hardware to improve the efficiency of blockchain mining process, through

which the data at underlying physical storage can enjoy effectively decentralized and

secure storage.
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Table 1.1: The summary of research problems.

Problem Targeted platform Application
Hardware

for optimization

Co-

processing

Similarity-based data

mining (Chapter 3)

Distributed/

centralized system

Bioinformatics,

search engine
NVM X

Blockchain

mining (Chapter 4)

Distributed

system

Banking,

supply chain
NVM ˆ

Analytical query

execution (Chapter 5)

Distributed/

centralized system

Business

analysis
GPUs X

Table 1.1 summarizes the three parts of our research framework. In the first part

(Chapter 3), we propose to utilize NVM PIM co-processing with host processors to

alleviate the performance bottleneck of the data mining tasks. In the second part

(Chapter 4), we study utilizing the massive parallelism of NVM PIM to accelerate

blockchain mining, which can improve the storage performance of blockchain appli-

cations such as banking management. In the third part (Chapter 5), to speed up the

analytical query execution, we propose a learning-based cardinality estimator LPCE

that efficiently runs on GPUs.

The rest of this chapter is organized as follows. We first briefly the three main

components of the unified research framework in Section 1.1 - 1.3. We then give the

structure of this thesis and summarize main contributions in Section 1.4.

1.1 Accelerating Similarity-based Mining Tasks by

NVM PIM

In this section, we present NVM-based techniques to accelerate similarity-based

data mining tasks. Data mining enables us to discover hidden knowledge from data.

The past decades have witnessed the great successes of data mining in many ap-

plications such as bioinformatics [194, 139], science analysis [71], and search en-

gines [75, 219]. Similarity computation is a core subroutine of many mining tasks

on high-dimensional data. Such mining tasks include clustering, classification, motif

3
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Figure 1.2: Example of similarity-based mining tasks: 1 NN classification.

discovery, and anomaly detection [80]. For instance, Figure 1.2 plots an example of

mining tasks in the application of image search - 1 NN classification. These min-

ing tasks often deal with massive datasets at high dimensionality. However, due

to the ‘memory wall’ challenge caused by the ever-growing gap between processor

speed and memory speed [153], the substantial amount of data transferred from the

memory to processors in mining tasks becomes the performance bottleneck.

We propose a novel framework to utilize NVM PIM to accelerate a given similarity-

based mining algorithm. NVM PIM enables us to process the data at place it resides,

which is an ideal approach to address the issue of data transfer. Limited functionality

of NVM PIM makes it infeasible to run the entire algorithm. In our approach, NVM

PIM works as an assisted processor for similarity computation and the host proces-

sors (e.g., CPU) coordinate the remaining operators that incur little data transfer.

We design PIM-aware decomposition for a similarity function so that most of its

computation can be done by PIM with the supported operations. Moreover, we

develop PIM-aware bound function so that it guarantees correct results for the algo-

rithm when the data is floating-point value. The experimental results show that our

proposed method achieves up to 11.0x speedup for representative mining algorithms,

kNN classification and k-means.
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Figure 1.3: Workflow of blockchain-based data storage.

1.2 Accelerating Blockchain Mining by NVM PIM

In this section, we present NVM-based techniques to accelerate blockchain min-

ing, which contributes to the high data storage performance in distributed systems.

Blockchain techniques have been intensively used in distributed systems to provide

decentralized, secure, and public data management [16]. Blockchain allows shared

data access for parties among the untrusted parties in distributed systems [55], which

has been used in applications such as banking [74], supply chain [15, 205], health-

care [57, 6] and IoT scenarios [89]. As shown in Figure 1.3, new data such as transac-

tions are recorded into a block in the manner of immutable append-only. Blockchain

maintains a linked list of blocks and grows by mining new blocks. However, the min-

ing process consumes significant computational overhead, which causes extremely

low data storage performance [55]. For example, the state-of-art blockchain system

- Ethereum [199], can only achieve up to 100s of transactions per second [47]. This

is because blockchain mining requires the validity of new data to be verified through

consensus mechanism - proof-of-work [50], which expends computational effort solv-

ing an arbitrary mathematical puzzle [61].

We propose a NVM PIM architecture to accelerate the mining process, to im-

prove the data storage performance of blockchain-based distributed systems. NVM

PIM enjoys the massive data parallelism and we offload all the computation of min-

ing into NVM PIM. In order to bridge the gap between the abilities of NVM PIM

5



and blockchain mining, we design a message schedule module and a SHA computa-

tion module. We further devise an intra-transaction parallel framework to accelerate

the SHA computation process for each transaction, and an inter-transaction parallel

framework to accelerate the blockchain Merkle tree construction and proof-of-work

computation process. Experimental results show that the proposed method signifi-

cantly outperforms up to 778x than CPU-based implementation, and up to 3.8x than

GPU-based implementation.

1.3 Speeding Up End-to-end Query Execution Via

Learning-based Progressive Cardinality Esti-

mation

In this section, we present fast and accurate techniques to perform cardinality es-

timation for analytical queries. Analytical query processing is an important func-

tion in data warehouses, for systematical data reporting and analysis. For example,

through a relational query language (SQL) query, the analyst at a retailer can obtain

the report of “the total sales of the last quarter, grouped by branch”. Efficient query

processing is significant to support sound and timely strategic decisions in today’s

competitive, fast-evolving enterprise industry. However, with the increase of data

volume and complexity of analysis scenarios in real applications, a query with join-

ing multiple relations can easily cost hours and even days [22, 67, 157]. Figure 1.4

presents the end-to-end workflow of query execution. Given a query, cardinality es-

timation estimates the size of the intermediate result relations. The query optimizer

relies on the estimated cardinalities to evaluate the costs of the execution plans, and

can find the optimal execution plan if the estimations are error-free [122]. Traditional

cardinality estimators fail to account for the correlations among the relations so that

suffer from large errors [45, 201, 130, 5].
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Deep learning has shown the attractive effectiveness to provide more accurate es-

timation than traditional methods, which can effectively model the joint correlations

among tables and extract knowledge from historical query samples [82, 213, 53, 200].

Nevertheless, learning-based estimators consume more estimation time since the

model inference triggers expensive computation. GPU is a prevalent accelerator

for deep learning model inference due to its high parallelism with many cores [150].

We propose a novel learning-based progressive cardinality estimator (LPCE) to

speed up end-to-end analytical query execution. For query processing, GPU is used

as assisted processor for efficient cardinality estimation, and host processors (e.g.,

CPUs) still deal with the query execution on the data. LPCE can progressively re-

fine the cardinality estimations during the query execution, such that the execution

plan can be adjusted with more accurate estimates. LPCE consists of two major

components: an initial cardinality estimation model and a progressive cardinality

refinement model. We integrate LPCE into PostgreSQL [1] and conduct extensive

experiments on real datasets. The results show that LPCE significantly outperforms

existing learning-based estimators, reducing up to 99.7% of end-to-end query execu-

tion time.
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1.4 Thesis Organization and Contributions

In this section, we present the organization of this thesis, through which we point

out the main contributions.

• In Chapter 2, we present the background knowledge related to the basic tech-

niques throughout the thesis.

• Chapter 3 (based on [193]) studies the acceleration of similarity-based data

mining with NVM. We explore utilizing NVM PIM to minimize data move-

ment overhead. We apply performance profiling to identify the performance

bottleneck of mining tasks and estimate the potential performance gain of us-

ing NVM PIM. We propose PIM-aware decomposition for similarity function

so that most of its computation can be offloaded to PIM. We analyze the data

compression based on the hardware configuration of NVM, which can avoid the

expensive data re-programming on memory.

• Chapter 4 (based on [191]) studies the acceleration of blockchain mining with

NVM. For efficient data storage in blockchain distributed systems, we inves-

tigate exploiting NVM to improve the performance of the blockchain mining

process. We carefully design the matrix transformation to map the complex

bitwise operations in mining such as right and left shift, to matrix multipli-

cation supported by NVM PIM. We further devise an intra-transaction and

inter-transaction parallel framework to make full use of NVM PIM computa-

tional parallelism.

• Chapter 5 (based on [192]) studies the speedup of analytical query execu-

tion. We propose a learning-based progressive cardinality estimator, which

contributes to fast analytical query execution with better execution plan. We

first observe that estimation errors of existing estimator increase with query

8



complexity and propose progressive cardinality estimation so that the large er-

rors can be detected and amended. To meet the requirements of both accuracy

and efficiency, we design the novel techniques of the node-wise loss function,

SRU-based model, and knowledge distillation. Moreover, a progressive refine-

ment model is designed to extract information from the executed sub-plans

and refine the estimations for the remaining operators. LPCE enjoys both

high effectiveness and efficiency of cardinality estimation when runs on GPU.

• In Chapter 6, we present the conclusions of proposed methods and discuss

potential future research directions arising from this thesis.
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Chapter 2

Literature Review

In this chapter, we review the existing works related to this thesis. Section 2.1

presents the techniques of NVM PIM. Section 2.2 discusses the advances of GPU. Sec-

tion 2.3 reviews similarity-based data mining tasks. Section 2.4 elaborates blockchain

mining. Section 2.5 presents the methods of cardinality estimation for analytical

query execution.

2.1 Non-volatile Memory Processing-in-memory

In this section, we first review the development of NVM PIM. We then present

the basics of ReRAM, one kind of NVM that has superior characteristics to support

efficient processing-in-memory. In this thesis, we focus on exploiting ReRAM PIM

to optimize data mining and querying.

2.1.1 Processing-in-memory

Conventional computers are typically based on the Neumann architecture, in which

the memory is separated from the processing space, and programs are executed

by moving data between the processing units and memory devices, as shown in

Figure 2.1. The idea of offloading the computation into memory traces back to
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Figure 2.1: Evolution from Neumann architecture (left) to PIM architecture (right).

1970s [65]. In recent years, state-of-the-art memory techniques make it gain extensive

attention to accelerate data-intensive applications.

The development of non-volatile memory creates a new horizon for PIM with its

capabilities of in-situ analog computation. The efficiency of NVM PIM comes from

two sources: reduction of data transfer and massive parallelism [140, 60]. First, NVM

PIM avoids the data transfer between CPU and memory, which always causes high

latency and power consumption. Second, massive arrays compose NVMs, and each

of them serves as a processing unit to compute multiple data concurrently. Recently,

Fujiki et al. [60] designed an NVM-based in-memory processor that enjoys up to 4681

times computational parallelism than modern CPU.

There are several kinds of NVM devices that have been studied to support PIM -

spin-transfer torque RAM (STT-RAM) [35], phase-change memory (PCM) [198] and

resistive RAM (ReRAM). STT-RAM has the fast read and write speed as reported

in Table 2.1, yet the cell size is large and can only store one-bit data. PCM and

ReRAM can store multi-bit data in one cell. Compared to PCM, ReRAM is more

energy-efficient and provides faster data access.

The various features lead to different supported functions of processing data, as

shown in Table 2.2. The most attractive function of ReRAM is vector-matrix compu-

tation. [36, 168] are ReRAM-based PIM architectures to accelerate neural network

by using the vector-matrix computation. [169, 81, 39] utilize ReRAM crossbars to
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Table 2.1: Characteristics of representative NVM techniques [21].

Type DRAM ReRAM PCM STT-RAM

Volatile ˆ X X X

Endurance 1015 108-1011 108-109 1012-1015

Read latency (ns) „10 „10 20-60 2-35

Write latency (ns) „10 „50 20-150 3-50

Cell size (F2) 60-100 4-10 4-12 6-50

Multibit 1 2-7 ą2 1

Write energy (J/bit) 10´14 10´13 10´11 10´13

store graphs, and release the massive parallelism to accelerate graph processing. Be-

sides, MAGIC [117] proposes bit-wise operations and multi-bit adders with ReRAM.

PCM shares the similar supported functions with ReRAM. [24, 162] investigate the

analog vector-matrix multiplications when arrange PCM as a crossbar. [119, 120]

extend the applications to transfer learning and compressed sensing. The designs of

STT-RAM for PIM focus on bit-wise operations (i.e., AND, XOR) due to its single-

bit storage in cells. [96] extends the functions to support basic arithmetic and vector

operations. The applications such as text processing, encryption [152] have placed

STT-RAM next the host processors to improve computation power.

The superior performance of NVM PIM encourages the exploration of optimizing

database. [176] proposes ReRAM PIM approach that allows efficient query pro-

cessing operations such as projection and aggregation. [92] presents a NVM-based

accelerator to perform operations such as MIN, MAX, and Average.

2.1.2 ReRAM Basics

In this thesis, we focus on ReRAM in our PIM design due to its low read latency

and energy cost, higher density, and efficient in-situ vector-matrix multiplication.

ReRAM has been presented as a promising candidate for future memory systems
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Table 2.2: An overview of NVM devices to support PIM.

Types Functions Applications

ReRAM

‚ Vector-matrix multiplication

‚ Logic (i.e., OR, AND)

‚ Arithmetic (i.e., addition,

multiplication)

‚ Deep learning [164, 168, 36, 140]

‚ Graph computing [169, 81, 39]

‚ DNA sequence alignment [88, 77]

‚ Approximate string matching [26]

PCM

‚ Vector-matrix multiplication

‚ Logic (i.e., NOR, NAND)

‚ Arithmetic (i.e., addition,

subtraction)

‚ Deep learning [162, 161, 24, 23]

‚ Compressed sensing and recovery [120]

‚ Stochastic computing and security [28]

STT-RAM
‚ Logic (i.e., AND, XOR)

‚ Addition

‚ Encryption [152]

‚ Convolutional neural network [151]

due to its superior properties [21, 207]. A top electrode, a bottom electrode, and

a metal-oxide layer compose the sandwiched structure of ReRAM cell [9], as shown

in Figure 2.2(a). It has two switching modes: unipolar and bipolar. The difference

of the two modes is switching direction depending on amplitude or polarity of the

applied write voltage. Figure 2.2(b) shows the current-voltage curve of a bipolar cell.

Applying positive voltage across the cell could switch it from high resistance state

(HRS ) into low resistance (LRS ). Correspondingly, the negative voltage switches the

cell from LRS into HRS. LRS and HRS are used to represent logical ‘1’ and ‘0’

respectively. Moreover, in order to support higher storage density, state-of-the-art

technologies present multi-bits in single cell (MLC) [147, 208], in which the resistance

is changed among multiple levels with finer write control. Recent works reported 1-8

bits precision for each cell [220, 10].

Each cell is connected by two orthogonal nanowires - wordline and bitline. Mul-

tiple wordlines and bitlines compose a crossbar [116]. Existing study [147] reported

the crossbar size from 4*4 to 1024*1024. Based on Ohm’s and Kirchhoff’s current

law [148], the structure of crossbar makes it natively support dot-product operation:

by injecting voltages into wordlines, currents measured at end of bitlines are the dot-
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Figure 2.2: Basic of ReRAM: (a) structure of ReRAM cell. (b) current-voltage
characteristics of bipolar switching mode. (c) schematic of performing dot-product
on crossbar structure.

product results of input voltages and conductances on cells. Figure 2.2(c) depicts

an example on 2*2 crossbar, one multiplier Vi is represented as voltages applied into

wordlines, and the other multipliers Ci,1, Ci,2 are programmed into bitlines [81], cur-

rent I1, I2 sensed at end of bitlines represent
ř2
i“1 Vi ¨Ci,1,

ř2
i“1 Vi ¨Ci,2 respectively.

The efficiency of ReRAM PIM is promising to speed up both memory and com-

pute intensive applications. We discuss more details of ReRAM PIM at the later

chapters.

2.2 GPU

In this section, we discuss the design and usage of GPUs. Figure 2.3 shows the

overview architecture of GPUs on a modern machine. Streaming multiprocessor (SM)

is the basic execution unit of GPU, which consists of hardware resources including

compute cores and register file. The state-of-art GPUs (e.g, Nvidia A100 GPU [3])

can have up to 80 SMs, and 5012 compute cores. The program function is executed

by many threads that are assigned to SMs for processing. One SM can typically hold

up to 2048 threads that are organized into warps. The threads are executed in the

manner of single instruction multiple threads (SIMT) model [179], which provide the
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high computing parallelism.

In the memory hierarchy of modern GPUs, high bandwidth memory (HBM) [129]

is utilized as global memory that can provide 1200 GB/s bandwidth. The on-chip

memory such as L2 cache can provide high bandwidth of several TB/s. The capacity

of global memory has been steadily scaled up over the past years, achieving up to

32 GB. GPUs typically connect with CPU system through the interconnect bus,

such as PCIe. Most modern GPUs adopt PCIe 3.0 [8] that provides up to 16 GB/s

bandwidth for data communication between CPU and GPU.

High computing power and memory bandwidth offered by GPU makes it promis-

ing to deal with many data-intensive applications. In addition to the successful

acceleration efforts on video analysis [133, 166] and image processing [66, 42], GPUs

have been extended to support scientific computations such as molecular model-

ing [173, 11] and DNA sequence alignment [183]. Starting from accelerating single

operation including select [165], joins [167, 210] and group by [101, 180], exploiting

GPUs for database analytics has been studied for several years. However, the low

bandwidth for data communication between CPU and GPU limits the performance

benefit on analytical query processing [165].

15



2.3 Similarity-based Data Mining

In this section, we review the common similarity measures and similarity-based

mining algorithms.

2.3.1 Similarity Measure

Distance computation for measuring similarity between objects is an essential sub-

routine in many mining algorithms. Euclidean distance (ED), cosine similarity (CS),

and Pearson correlation coefficient (PCC) are three common measures on floating-

point vectors. Besides, binary vector has been an alternative to describe objects in

many applications. For instance, image classification tends to compact an image

to short binary code using techniques such as locality sensitive hashing (LSH) [30].

Hamming distance (HD) is a common measure on binary codes that preserves the

similarity of original objects [98].

Table 2.3: Equation of similarity functions.

Symbol Equation

ED
řd
i“1ppi ´ qiq

2

CS
řd

i“1 piqi?
řd

i“1 p
2
i

?
řd

i“1 q
2
i

PCC
řd

i“1ppi´µppqqpqi´µpqqq?
řd

i“1ppi´µppqq
2
?

řd
i“1pqi´µpqqq

2

HD

řd
i“1 ∆ppi ´ qiq

(∆ppi´qiq=0, if pi=qi; or 1)

Table 2.3 lists the equations of similarity measures. Let p (resp. q) denote a

d-dimensional vector. pi is the value on i-th dimension. µppq (resp. µpqq) is the

mean value of vector p (resp. q). distpp, qq denotes the distance between p and q,

such as EDpp, qq. Especially, p (resp. q) is instead a binary vector for hamming

distance.
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2.3.2 Similarity-based Data Mining Algorithms

Similarity-based mining tasks often involve similarity computation among data ob-

jects. Such tasks include the algorithms of partitioning/density-based clustering,

lazy learning-based classification, distance-based outlier detection [80]. Especially,

kNN classification and k-means clustering are two of the most widely used mining

algorithms [80, 95].

Given a query object q, kNN classification is to identify k objects nearest to q [80,

102]. kNN classification often deal with massive datasets at high dimensionality. For

example, recent media search engines often transform an image to a high-dimensional

vector of 50 to 1000+ dimensions [68]. To speed up the classification, index-based

data structures such as hierarchical tree [29] show notable success on low-dimensional

data, but suffer from “curse of dimensionality”, degenerating to be linear scan when

dimensionality is large [41, 143]. Distance bounds become an effective alternative

for high-dimensional data. Unpromising candidates are pruned by the bounds, so

as to reduce calling expensive exact computation. Several works [125, 177, 90, 214]

proposed the lower bounds LB of exact Euclidean distance EDpp, qq that satisfies

LBpp, qqďEDpp, qq. The bounds often adopt dimensionality reduction techniques.

k-means clustering is an ubiquitous tool for data mining in many areas such as

bioinformatics. For instance, gene expression data analysis adopts k-mean to identify

the functionally related genes. It partitions genes into groups based on the similarity

between their expression profiles [132]. ED is the most popular distance function for

k-means [95]. Despite its age, Lloyd’s algorithm has shown efficiency of converging in

a small number of iterations to near-optimal solution [46]. Several studies [19, 78, 49]

developed techniques to speedup the Lloyd’s algorithm. The common idea is to

use triangle inequality to reduce the distance computation between data points and

centers.
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2.4 Blockchain Mining

In this section, we first present the procedures of blockchain mining. We then

discuss a common cryptographic hash algorithm, which is the basic computation

task for blockchain mining.

2.4.1 Mining Process

Blockchain was introduced in 2008 as part of a proposal for a virtual currency system,

bitcoin [144]. Its novel decentralized mechanism provides an effective solution to

guarantee public privacy without threats to data integrity. Each party or participant

has the right to access the data, but can not temper any historical data. In the past

decade, Blockchain has been widely studied in database, IoT, network security, and

digital financial [38].

The new data added into the blockchain can be any kind type of data, such as user

trade transactions in banking systems [74]. Then the data are selected by participants

in blockchain network who are trying to create new blocks. The participants received

a lively name due to the impact of bitcoin - “miner”. The process of creating new

blocks is called “mining”. The miners will verify the transactions to avoid any invalid

transactions. Verifying data is not compulsory in blockchain, optional depending on

applications. As blockchain is public, every participant has the right to create a

new block. While there are many participants trying to create new blocks at same

time, only one block will be accepted and added into the chain. Hence, to determine

which block, blockchain needs consensus mechanisms, such as proof-of-work and

proof-of-stock [76]. Especially, proof-of-work is the most common among blockchain

platforms. Finally, after proof-of-work, the block will be broadcasted into the network

and others will accept it.

Mining process is composed by two parts: Merkle tree construction and proof-of-
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Figure 2.4: The overview process of blockchain mining.

work. Figure 2.4 illustrates the process of blockchain mining. Specifically, blockchain

conducts the cryptographic hash computation on each new data. The hashes are

stored in the manner of Merkle tree structure that each hash is linked to its parent

following a parent-child tree-like relation. Eventually, there is one hash for the entire

block at the tree root. Proof-of-work then solves a mathematical puzzle - finding a

nonce value, which concatenates to the information at block header including the tree

root hash to produce a hash that meets predefined difficult criteria. The criteria is

generally a number ‘difficulty’ starting with many zeros. Due to the high security of

cryptographic hash computation, there is no more efficient way than blindly trying

the random numbers until finding the nonce. Hence, the mining process requires

massive computational efforts.

The expensive computation of blockchain mining leads to an obvious drawback:

performance. New data in blockchain has high confirmation latency until physically
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stored. In bitcoin [144], the latency is 10 minutes, and the throughput is 7 transac-

tions per second [20]. In Ethereum [199], the throughput can only achieve up to 100s

of transactions per second [47]. GPU is popular processor to accelerate the mining

process due to its higher parallelism than CPU [141].

2.4.2 Cryptographic Hash Algorithm

Cryptographic hash function is the key component of blockchain mining to ensure

data integrity, as discussed in Section 2.4.1. The mining process is to conduct massive

hash computations. SHA is a family of cryptographic hash functions issued by the

National Institute of Standards and Technology [31]. SHA-256 is a class of the

SHA family, which generates a 256-bit message digest from data of an arbitrary

size. SHA-256 is currently assumed as unbreakable and has been widely used in

state-of-art blockchain systems and applications [40, 58].

2.5 Cardinality Estimation

Efficient cardinality estimation contributes to fast analytical query execution. In

this section, we review the advances of cardinality estimation related to the pro-

posed methods in this thesis. We first review the existing learning-based cardinality

estimation, and then discuss the progressive cardinality estimation for query re-

optimization.

2.5.1 Learning-based Cardinality Estimation

Given a query, cardinality estimation estimates the size of the intermediate result

relations. The query optimizer relies on the estimated cardinalities to search the

execution plans of high quality. The optimal execution plan can be identified if the

estimations are error-free [122].
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Histogram-based cardinality estimation methods [45, 5, 73] have been widely

used in many industrial database systems as they are simple and have very low

overhead. However, they cannot capture the data correlations among the tables

as they make the attribute-value-independence assumption. Sampling-based ap-

proaches [34, 62, 188] outperform histogram-based methods as the correlations in

data are naturally captured by data samples. However, sampling-based approaches

have two limitations: (i) empty sampling set of join result; and (ii) high sampling

overhead.

Recently, the database community recognized the potential of replacing tradi-

tional cardinality estimation methods by learning-based models (e.g., neural net-

work, autoregressive model) [195, 118]. Existing learning-based estimators can be

classified into three categories: query-driven, data-driven and hybrid.

Data-driven cardinality estimators [85, 212, 213] share the same idea with tra-

ditional cardinality estimation methods, i.e., they hope to capture the correlations

and distributions of data across the tables. For example, [85] adopts relational sum

product networks (RSPN) to capture the probability distribution among relations,

and translates a query into the evaluations of probabilities and expectations based

on RSPN. Query-driven cardinality estimators [172, 109, 175, 82, 53] formulate car-

dinality estimation as a regression problem. The contents of queries and their true

cardinalities are used as training data to learn a mapping from queries to cardinali-

ties. [52] uses regression techniques such as XGBoost, to train the model to produce

approximate cardinality labels. Hybrid cardinality estimator [200] learns the joint

data distribution among the tables as in the data-driven estimators, and uses query

samples as auxiliary information at the same time.
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2.5.2 Query Re-optimization

Though extensive efforts have been made to improve the accuracy of cardinality

estimation, the errors can still be large for complex queries, e.g., those with multiple

joins. Query re-optimization techniques [13, 99, 4, 51, 201, 146] have been proposed

to combat the influence of large estimation errors on query optimization. There

are two classes of query re-optimization techniques. (1) Re-optimizing during query

execution. [4] samples data from the intermediate results, and tries different operator

implementations and join orders on the samples to adjust the remaining execution

plan. The re-optimization can be adopted into large-scale data processing systems

such as Hadoop that continuously collecting statistics to feedback query optimizer

during execution. (2) Re-optimizing before query execution. [100] proposes the “pilot

runs” to execute the query over a set of data samples to estimate cardinalities, after

which the optimizer relies on the cardinalities to choose an initial execution plan.
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Chapter 3

Accelerating Similarity-based

Mining Tasks by NVM PIM

Similarity computation is an essential building block in many mining tasks on multi-

dimensional data. Examples of similarity-based mining tasks include kNN classifica-

tion [33], k-means clustering [95], motif discovery and anomaly detection [142, 80].

These mining tasks often deal with massive datasets at high dimensionality. For in-

stance, in kNN classification for images, each object is normally modeled as a vector

with hundreds of dimensions, and every classification requires examining a database

of millions of images.

The ever-growing gap between processor speed and memory speed brings about

the memory wall issue. Contemporary processor speed improves at 70% annually

but memory speed increases by only 7% annually [153]. This renders similarity

computation in mining algorithms expensive due to the substantial amount of data

transfer between processors and memory.

Recently, emerging NVM devices like ReRAM [9, 164], STT-RAM [97], and

PCM [145], enable processing-in-memory [60], which is an efficient approach to di-

minish expensive data transfer (to processors) by directly processing the data stored

in such devices. Among these candidates of NVM devices, ReRAM has superior

characteristics such as lower read latency, higher data density and lower write en-
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ergy, as discussed in Section 2.1. In the past decade, the industry (e.g., HP [174],

Samsung [14], Toshiba [128]) has been developing ReRAM to support PIM.

In this chapter, we investigate how to accelerate similarity-based mining tasks by

using ReRAM PIM without compromising the accuracy of results. Our challenges

stem from the following characteristics of ReRAM. First, ReRAM relies on crossbars

for processing data, and it only supports specific operations (e.g., dot-product or

vector-matrix multiplication) but not arbitrary operations. Second, the operands in

ReRAM PIM can only be non-negative integers (with limited precision), due to the

nature of analog computation in ReRAM crossbars. Third, the write endurance of

ReRAM is limited compared to DRAM, and the unessential data rewritten should

be avoided.

We are aware of prior works on utilizing ReRAM PIM in several application do-

mains, e.g., neural network [36, 164], graph computing [221, 81], and DNA alignment

[88]. However, they have not studied how to accelerate similarity computation on

multi-dimensional data.

To tackle the aforementioned challenges, we propose a framework that exploits

ReRAM PIM to accelerate a given similarity-based data mining algorithm, while

preserving the accuracy of results.

‚ First, we conduct performance profiling on similarity-based mining algorithms

to identify their performance bottleneck, and then estimate the potential performance

gain of using PIM.

‚ Second, we propose to decompose a similarity (or its bound) function into

different parts so that: (i) most of the computation can be quickly performed by using

ReRAM PIM, and (ii) the remaining parts can be executed in the host processor (e.g.,

CPU) with little data transfer. We establish PIM-aware bound computation so that

the accuracy of results won’t be compromised. In addition, we propose techniques

for PIM memory management and execution plan optimization.
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Experimental results on real datasets show that our proposed method achieves up

to 11.0x and 8.5x speedup for state-of-art kNN classification and k-means clustering

algorithms, respectively.

The remainder of this chapter is organized as follows. Section 3.1 introduces the

background and motivation. Section 3.2 presents the overview of our framework.

Section 3.3 and Section 3.4 discuss the details of our proposed framework. The

experimental results are discussed in Section 3.5. Section 3.6 concludes the chapter

with future research directions.

3.1 Preliminaries

In this section, we introduce the details of ReRAM PIM about how to support

computation on multi-dimensional data at high-precision. We then review state-of-

art similarity-based mining algorithms.

3.1.1 ReRAM Processing-in-memory

ReRAM PIM can support the dot-product efficient computation in analog manner.

A ReRAM cell can switch its state among different resistance levels, which can be

used to represent a 1-7 bits integer [10]. Each cell is connected by two orthogonal

nanowires - wordline and bitline, and multiple wordlines and bitlines compose a

crossbar. Figure 3.1 shows an example of dot-product computation on a 3x3 2-bit

crossbar. Three 3-dimensional vectors [3, 1, 0], [1, 2, 3] and [2, 0, 1] as multipliers

are pre-programmed vertically along bitlines. The multiplicand vector [3, 1, 2] is

directly injected to wordlines after converting to input voltages. Then the crossbar

concurrently generates three dot-product results.

Then we discuss how to deal with high-precision data (bą h), where b denotes

the bit size of data operand, and h denotes the bit precision of a ReRAM cell. In

this case, a b-bit operand (multiplier) is segmented into multiple h-bit parts and then
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Figure 3.1: Example of PIM dot-product operation on ReRAM crossbar.

stored in adjacent cells of the same row. Similarly, multiplicands are segmented and

converted to input voltages by every h bits. Dot-product is decomposed into several

sub-operations, and the final result is obtained by shifting and adding result of each

sub-operation with circuit S&A [169]. Figure 3.2 depicts an example of processing

6-bit data on 2-bit ReRAM cells. The decimal value ‘25’, which is ‘011001’ in binary,

is segmented to ‘01’ (1), ‘10’ (2), ‘01’ (1), and then stored in cells of the first row.

For each sub-operation, the partial results are shifted and added to get final result.

Next we discuss how to compute dot-product on high-dimensional data, when

the dimensionality exceeds the crossbar size. A crossbar is typically smaller than

1024ˆ1024 [147]. Given a crossbar with size of mˆm, d-dimensional vector can

be decomposed to a group of m-dimensional vectors, each of which is mapped to a

crossbar (denoted as ‘data crossbar’ ). Then each data crossbar provides an output as

partial results, and a crossbar (denoted as ‘gather crossbar’ ) storing all-ones vector

e=r1, ..., 1s is employed to sum up partial results vertically. Figure 3.3 presents an

example of handling 6-dimensional vector on a 3x3 crossbar.

Due to the analog computation in crossbars, ReRAM PIM supports the dot-

product operation on non-negative integer vectors only but not arbitrary opera-

tions. A few works proposed customized PIM designs for different applications.
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ISAAC [164] adds sigmoid unit and ReLU logic to support the computing function-

ality in neural network; however, those units cannot be used in similarity computa-

tion. GraphR [169] uses fixed-point numbers to approximate floating-point values in

graph computing, and claims that such precision loss is acceptable in the PageRank

algorithm. However, such precision loss may compromise the accuracy of results in

data mining tasks (e.g., kNN classification). In this work, we will utilize ReRAM

PIM to compute bound functions and filter irrelevant objects, in order to preserve
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Figure 3.3: Example of PIM dot-product operation on high-dimensional (i.e., dąm)
data, example crossbar contains 3x3 2-bit cells (omit peripheral circuits for simplic-
ity).

the accuracy of results.

3.1.2 Similarity-based Data Mining Algorithms

We focus on the similarity-based mining tasks that involve similarity computation

among data objects. Especially, kNN classification and k-means clustering are two

of the most widely used mining algorithms [80, 95], and we use them as examples in

this chapter. We introduce some relevant symbols in this chapter. Let p denote a

d-dimensional vector in dataset D. pi is the value on i-th dimension and takes b-bit.

N is the number of vectors in D. q is another d -dimensional vector related to the

applications, such as the query object in kNN classification. distpp, qq is distance

between p and q, such as EDpp, qq.

kNN classification: While index structures such as hierarchical trees suffer from

28



“the curse of dimensionality”, the distance bounds become an alternative to speed

up the classification. Existing works [125, 214, 90, 177] proposed various bounds for

different distance measures such as ED, CS and PCC. Table 3.1 shows representative

bounds of ED, where prefix LB denotes lower bounds of exact distance distpp, qq that

satisfies LBpp, qqďdistpp, qq. The bounds adopt dimensionality reduction techniques.

For example, LBFNN divides d-dimensional vector into d1 segments with equal length

l (l¨d1“d), and p̂i denotes i-th segment. The bound is then computed by using mean

value (e.g., µpp̂iq) and the standard deviation (e.g., σpp̂iq) of each segment [90]. For

CS and PCC, as terms independently involving p such as
b

řd
i“1 p

2
i , can be pre-

computed, the computation can be reduced to the maximum dot-product search

problem that retrieves vectors having large dot-product result with query vector.

Prior works focus on devising upper bound UB that satisfies UBpp, qqědistpp, qq,

such as UBpart [177]. For kNN on HD, [138] observed that there is no obvious

efficient technique significantly better than linear scan.

Table 3.1: Representative bounds for kNN classification: LBOST [125], LBSM [214],
LBFNN [90], and UBpart [177].

Symbol Equation Dis.

LBOST pp, qq
řd1

i“1ppi ´ qiq
2 + p

b

řd
i“d1`1 p

2
i ´

b

řd
i“d1`1 q

2
i q

2 ED

LBSMpp, qq l ¨
řd1

i“1pµpp̂iq ´ µpq̂iqq
2 ED

LBFNNpp, qq l ¨
řd1

i“1ppµpp̂iq ´ µpq̂iqq
2 ` pσpp̂iq ´ σpq̂iqq

2q ED

UBpartpp, qq
řd1

i“1 piqi `
b

řd
i“d1`1 p

2
i

b

řd
i“d1`1 q

2
i

PCC

CS

k-means clustering: Lloyd’s algorithm is the most common implementation for

k -means clustering [46]. Two-step iterative refinement composes Lloyd’s algorithm.

In the assign step, each data point is assigned to the cluster whose center is the

nearest. In the update step, centers are updated in accordance with assigned points.

Several studies [56, 49, 46] developed techniques to speedup the Lloyd’s algorithm,
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which use triangle inequality to reduce distance computation between data points

and centers. Let c be one of k cluster centers, and cappq be the center closest to

data point p. Elkan [56] employs an upper and k lower bounds. The upper bound

UBppq is bounding on the distance between p and cappq (i.e, UBppqědistpp, cappqq).

For each center c, Elkan keeps a lower bound LBpp, cq of distance between p and

c. UBppq is updated by adding the moved distance of cappq after each iteration.

The bounds are used to effectively avoid unnecessary ED distance calculation. For

example, to determine whether c is closer to p, the calculation of distpp, cq can be

avoided if UBppqďLBpp, cq. Drake [49] and Yinyang [46] follow the similar strategy

with employing less bounds.

3.2 Overview

In this section, we present a general ReRAM PIM architecture for speeding up

similarity-based data mining algorithms, and briefly discuss the proposed systematic

framework.

3.2.1 PIM Architecture

Figure 3.4 depicts an overview of heterogeneous architecture with ReRAM PIM,

compared to conventional Neumann architecture. With ReRAM PIM, functionalities

of storage and processing are integrated into the main memory. Host processor (e.g.,

CPU) supports complex arithmetic and logic computation but suffers from moving

data through memory hierarchy. PIM provides efficient in-suit computation without

moving data but supports specific operations. Host processor and PIM collaborate

for general-purpose computation, yet are independently responsible for different tasks

that meet respective superiority. In ReRAM-based memory, each bank contains three

parts: memory array, buffer array, and PIM array.

Memory array works as standard memory for storage, playing the same role as
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Figure 3.4: Overview of (a) conventional architecture and (b) ReRAM-based
processing-in-memory architecture.

in traditional architecture to exchange data with the host processor. PIM array

is composed of multiple crossbars that are capable of processing the resided data.

Next to PIM array, there is buffer array used to cache PIM results, as the massive

parallelism of PIM produces abundant results concurrently. With help of the buffer,

PIM array can work with CPU in parallel. CPU can collect PIM results in buffer

array without waiting for PIM array. Though PIM array heavily relies on ReRAM

device, DRAM is flexible to be used for memory array to eliminate the impact of high

access latency of ReRAM. Controller is instruction interface between software and

hardware. It also coordinates the dataflow among different array parts. I/O interface

is used to load data into memory array, or instructions into controller. Most data

movement during PIM happens on memory internally and enjoys high in-memory

bandwidth. This simple architecture is widely adopted in prior works [60, 140].

3.2.2 Systematic Framework

ReRAM PIM offers an opportunity of reducing data transfer from memory to pro-

cessor. However, ReRAM PIM does not support arbitrary computation. Then two

question arises.
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‚ Given a similarity-based mining algorithm, could ReRAM PIM be exploited to

accelerate the computation?

‚ How to implement it efficiently without comprising the accuracy of results?

We propose a framework to make a similarity-based mining algorithm aware of

characteristics of ReRAM PIM. The limited functionality of PIM makes it infeasi-

ble to run the entire algorithm. We use PIM for the similarity computation, and

host processor (e.g., CPU) to coordinate the remaining steps. Given an algorithm,

the first step is to conduct performance profiling (Section 3.3), which helps to un-

derstand data transfer pressure of the algorithm and identify the function causing

major bottleneck. If the function is a similarity or bound function feasible to expose

most computational task as dot-product, we define it as PIM-aware function that

can enjoy offloading computation to PIM (Section 3.4.1). We exploit PIM to as-

sist processing the functions, benefiting from a significant decrease in data transfer.

We next present PIM-aware bound function based on non-negative integers, which

helps to prune unpromising candidates and guarantee correct result (Section 3.4.2).

PIM array typically has limited space, which might be infeasible to accommodate

the entire dataset. We then compress the dataset based on given hardware config-

uration to avoid re-programming the crossbars (Section 3.4.3). In addition, further

optimization can be achieved by properly combining PIM and original operations in

the algorithm (Section 3.4.4).

3.3 Algorithm Profiling

In this section, we present performance profiling which helps us identify the bot-

tleneck of an algorithm, and estimate the potential performance gain of using PIM.

The performance profiling can answer that whether ReRAM PIM could be exploited

to speed up the algorithm. We present two kinds of profiling: 1) performance break-
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down by hardware components; 2) performance breakdown by functions.

3.3.1 Performance Breakdown by Hardware Components

We first explain how to profile an algorithm in terms of hardware components. The

profiling results can be used to justify whether it is promising to utilize PIM to

accelerate the algorithm. We then show profiling results for the kNN and k-means

algorithms. We conducted experiments on a machine with Intel Xeon E5-2620 CPU,

16 GB DRAM, and Linux 4.15.0. The algorithms are implemented in C++, compiled

by GNU C++ with -O3 option, and executed in a single thread.

According to Intel performance analysis guide [124], the execution time of an

algorithm on modern processors can be characterized as: 1) The computation time

(Tc) is the actual time spent by CPU on computation. 2) The memory stall time

(Tcache) is caused by L1/L2/L3 and TLB cache misses, which are triggered by data

transfer from memory. 3) The ALU execution stall time (TALU) is caused by long

latency operations such as division. 4) The branch misprediction stall time (TBr)

occurs because of branch misprediction in CPU. 5) The front-end stall time (TFe)

occurs during fetching and decoding instructions. Total execution time (Ttotal) is as:

Ttotal “ Tc ` Tcache ` TALU ` TBr ` TFe (3.1)

In modern processors, hardware counters are embedded to monitor processing

states and provide statistics on performance metrics. PAPI [178, 2] is an operating

system independent API to access the counters, which has been widely used for

performance analysis. We used PAPI to measure time components in Equation 3.1.

Note that the profiling by hardware components has the assumption of no major

overlap of pipeline processing [7]. We adopt the profiling to roughly explore memory

pressure of the algorithm, not compulsorily used in our proposed technical design.

Such preliminary profiling can help us to easily identify the algorithm whether suffers
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Figure 3.5: Performance breakdown of representative kNN and k-means algorithms.

from data transfer, and thus save efforts to further employing PIM.

Table 3.4 (in Section 3.5) lists the statistics of datasets for experiments. We fix

k as 10 for kNN. We show profiling results of state-of-art algorithms FNN [90], OST

[125], and SM [214], which employ the bounds on ED discussed in Section 3.1.2.

For empirical completeness, we also show standard linear scan method (‘Standard’).

For k-means, we conducted profiling on methods discussed in Section 3.1.2 including

standard Lloyd’s algorithm (‘Standard’). The same initial 64 (k=64) centers are

chosen.

Figure 3.5 depicts the proportion of each component on total execution time.

For kNN algorithms, we observe that Tcache dominates the stall time, accounting for

65-83% of total time. For k-means algorithms, the majority (62-75%) of execution

time is caused by Tcache. The profiling results imply that the kNN and k-means

algorithms suffer from the latency of data transfer. It is thus promising to exploit

PIM for optimization.

3.3.2 Performance Breakdown by Functions

We then discuss the profiling of an algorithm by functions, in order to identify the

function causing performance bottleneck. The execution time of an algorithm can be
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Figure 3.6: Execution time breakdown of representative kNN and k-means algo-
rithms.

decomposed to the components spent on each function and time Tother caused by all

other operations such as condition check. Assume the algorithm contains t functions

f1, f2, ..., ft, and the time spent on each function is Tf1 , Tf2 , ..., Tft respectively.

Then total execution time Ttotal of algorithm is Ttotal=
řt
i“1 Tfi ` Tother. To measure

each Tfi , we can simply adopt time system calls such as clockpq and clock gettimepq

that provide fine-grain measurement at function-level.

Figures 3.6 depicts the execution time breakdown of the kNN and k-means algo-

rithms. For kNN algorithms, calculation of ED dominates the total execution time

for Standard, and bound functions such as LBFNN incur the majority (72%-86%) of

total time for other algorithms. For k-means algorithms, calculation of ED takes

52-96% of the execution time. The profiling results indicate that the distance com-

putation causes the performance bottleneck of the algorithm, which is expected to

be optimized.

3.3.3 Potential Performance Gain of using PIM

The profiling results in Section 3.3.2 also help us estimate the optimal performance

gain of using PIM. Recall that the execution time of an algorithm can be character-
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ized using time spent on each function. Let F be the subset of functions that can be

optimized with PIM (we shall discuss the functions in set F in Section 3.4). Ideally, if

the computation time of functions in F can be reduced to 0, we have the theoretical

optimal running time TPIM´oracle as:

TPIM´oracle “ Ttotal ´
ÿ

fiPF

Tfi (3.2)

Note that TPIM´oracle serves as a lower bound of any PIM implementation of the

given algorithm. This insight of TPIM´oracle helps us further verify the adoption of

PIM. If TPIM´oracle is high and close to Ttotal, we might not consider exploiting PIM.

Figure 3.7 plots the execution time of No-PIM and PIM-oracle for kNN and

k-means, where No-PIM is the native algorithm running on CPU, and PIM-oracle

is based on the estimation of Equation 3.2. Figure 3.7(a) shows that PIM-oracle is

much faster than No-PIM for the kNN algorithms. For instance, PIM-oracle is 183.9x

faster than No-PIM for Standard. The high potential improvement is because that

the function set F includes ED and bound functions such as LBFNN , which accounts

for the most computation overhead. This implies that it is promising to speed up

the kNN algorithms with PIM. Besides, for k-means algorithms, the set F contains

distance ED (in assign step). For Standard, PIM-oracle is 51.4x faster than No-

PIM. However, PIM-oracle is 7.5x, 5.3x and 2.2x faster than No-PIM respectively,

for Drake, Yinyang and Elkan. The lower potential improvement is because the

distance computation accounts for comparatively less overhead of the algorithms.

3.4 Accelerating Algorithm With PIM

In this section. we present how to compute the similarity and bound functions with

ReRAM PIM by addressing the limitations. In addition, we propose an optimization

to further reduce the data transfer cost of algorithm.
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Figure 3.7: Performance comparison between algorithms without PIM and PIM-
oracle (i.e., TPIM´oracle) for kNN and k-means.

3.4.1 PIM-aware Function Decomposition

We identify a similarity or bound function as PIM-aware function if it can be decom-

posed to expose most computation as dot-product. Recall that ReRAM crossbars

support specific operations (e.g., dot-product) but not arbitrary operations. Fortu-

nately, it is possible to decompose a function into two parts: (i) sub-operations that

can be processed by ReRAM PIM, and (ii) sub-operations that can be pre-computed.

PIM readily processes on vector data at the online stage, the results of which are

merged with pre-computed data in host processor for the final result. ReRAM PIM

and host processor compute the similarity or bound function in the manner of co-

processing. In this way, we decompose similarity or bound function F pp, qq into

PIM-aware format as follows:

F pp, qq “ GpΦppq,Φpqq, p¨qq (3.3)

‚ Φppq takes a vector p from a dataset D as input and returns a fixed-size output.

This function can be computed at offline stage. The same function Φpqq can be

applied on a given vector q involving applications, such as query object in kNN. It
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Table 3.2: PIM-aware decomposition of similarity function and bound function.
Offline Online

Function Φppq Φpqq p¨q G

ED
řd

i“1 p
2
i

řd
i“1 q

2
i

řd
i“1 piqi Φppq ` Φpqq ´ 2¨p¨q

CS
b

řd
i“1 p

2
i

b

řd
i“1 q

2
i

řd
i“1 piqi

p¨q
ΦppqΦpqq

PCC
Φa:

b

d
řd

i“1 p
2
i´p

řd
i“1 piq

2 Φa:
b

d
řd

i“1 q
2
i ´p

řd
i“1 qiq

2
řd

i“1 piqi
d¨p¨q´ΦbppqΦbpqq

ΦappqΦapqq
Φb:

řd
i“1 pi Φb:

řd
i“1 qi

HD p̃i “

#

0 if pi “ 1

1 if pi “ 0
q̃i “

#

0 if qi “ 1

1 if qi “ 0

p¨q :
řd

i“1 piqi d´ p¨q ´ p̃¨q̃
p̃¨q̃ :

řd
i“1 p̃iq̃i

LBFNN l ¨
řd1

i“1pµpp̂iq
2 ` σpp̂iq

2q l ¨
řd1

i“1pµpq̂iq
2 ` σpq̂iq

2q
µpp̂q¨µpq̂q:

řd1

i“1 µpp̂iqµpq̂iq Φppq`Φpqq´2l¨µpp̂q¨µpq̂q

´2l¨σpp̂q¨σpq̂qσpp̂q¨σpq̂q:
řd1

i“1 σpp̂iqσpq̂iq

LBSM l ¨
řd1

i“1 µpp̂iq
2 l ¨

řd1

i“1 µpq̂iq
2

řd1

i“1 µpp̂iqµpq̂iq Φppq ` Φpqq ´ 2l¨p¨q

LBOST
Φa:

řd1

i“1 p
2
i Φa:

řd1

i“1 q
2
i řd1

i“1 piqi
Φappq ` Φapqq ´ 2 ¨ p ¨ q

`pΦbppq ´ Φbpqqq
2

Φb:
b

řd`1
i“d1 p

2
i Φb:

b

řd`1
i“d1 q

2
i

UBpart

b

řd
i“d1`1 p

2
i

b

řd
i“d1`1 q

2
i

řd1

i“1 piqi Φppq ¨ Φpqq ` p ¨ q

suffices to evaluate Φpqq once. This can be computed in the host processor at the

online stage.

‚ The dot-product operation p ¨ q can be computed on PIM. This requires only

constant data transfer cost.

‚ The function G is used to combine Φppq, Φpqq and p ¨ q into final result of

F pp, qq at online stage. This function can be calculated in host processor because of

the constant time complexity.

ED is a PIM-aware function as it can be rewritten as follows:

EDpp, qq
looomooon

F

“

d
ÿ

i“1

p2
i

loomoon

Φppq

`

d
ÿ

i“1

q2
i

loomoon

Φpqq

´2
d
ÿ

i“1

pi ¨ qi
looomooon

p¨q

(3.4)

Indeed, similarity function CS, PCC and HD, and bound functions in Table 3.1

are also PIM-aware functions. We list the PIM-aware function of each similarity or

bound function in Table 3.2.

PIM-aware function can enjoy offloading most computation to PIM. The bene-

fit is significant reduction of data transfer. As depicted in Figure 3.8, computing

EDpp, qq demands transferring d¨b bits between memory and CPU on conventional
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architectures, where b is bit size of each operand. In contrast, computation on vector

data in G is done by pre-processing or PIM, which reduces the data transfer to 3¨b

bits. Exploiting PIM requires the vector data from dataset are pre-programmed on

crossbars in PIM array. For example, vector p for computing ED costs the cross-

bar space of N ¨ d ¨ b bits. PIM array might have insufficient capacity to maintain

them. Section 3.4.3 discusses how to compress the dataset based on given hardware

capacity.

3.4.2 PIM-aware Bound Computation

Some similarity functions such as HD typically operate on integer vectors, so they

can be computed exactly by using PIM. The other similarity or bound functions such

as ED take often floating-point vectors, so PIM cannot be used to directly compute

the exact value of the functions. Hence, the correct results of algorithm cannot be

guaranteed.

ReRAM PIM demands specific data type (i.e., non-negative integer), and it can-

not readily support floating-point values. To tackle this, we utilize PIM to compute

lower/upper bounds of distance functions, which still benefits from the significant

reduction on data transfer. The lower/upper bounds are used to prune unpromising

objects following filter-and-refinement strategy, which still guarantees the correct

results. For example, while the update step of k-means algorithms requires exact

ReRAM CPU

𝐺

1∙b

1∙b

1∙b

𝑝 𝐸𝐷(𝑝, 𝑞)

DRAM CPU

d∙b

(a) (b)
p∙q

Φ(𝑝)

Φ(𝑞)

Figure 3.8: Overview of data transfer cost of computing (a) EDpp; qq and (b) G
(unit: Bit).
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computation of ED, PIM can accelerate the algorithms by supplying lower bounds

of exact ED in assign step. The far-away centers are readily pruned by invoking com-

parison between bounding values and the threshold (i.e., the distance to currently

assigned center).

Given dataset D, we initially normalize the floating-point values to be range of [0,

1]. Scalar pi is non-negative value within [0, 1]. We then enlarge pi by multiplying

constant α as scaling factor, and truncate the integer part tp̄iu. Then we have a

vector tp̄u with only non-negative integers:

p̄i “ pi ¨ α (3.5)

tp̄u “ ptp̄1u , tp̄2u , ..., tp̄duq (3.6)

Similarly, we can have non-negative integer vector tq̄u. We then propose PIM-

aware bound function, which serves as a bound of PIM-aware function. The involved

dot-product operation just deals with non-negative integer vectors. As discussed

in Section 3.4.1, ED, CS, PCC, and their bound functions (in Table 3.1) are PIM-

aware functions. For ED and its bounds such as LBFNN , we are interested in their

lower bounds. For CS, PCC, and the related bounds, we are interested in their

upper bounds. We then present the PIM-aware bound of the similarity and bound

functions as follows.

Theorem 1. Squared Euclidean distance of two d-dimensional vectors p and q has

a lower bound:

LBPIM´EDpp, qq“
1

α2
pΦpp̄q`Φpq̄q´2¨tp̄u¨tq̄u´2dq (3.7)

where Φpp̄q“
řd
i“1 p̄i

2´2
řd
i“1 tp̄iu(resp. Φpq̄q), and tp̄u¨tq̄u =

řd
i“1 tp̄iutq̄iu. Here, d is

number of dimensions, and p̄i is the positive floating-point value normalized from pi

with α, tp̄iu is integer part of p̄i. Φpp̄q (Φpq̄q) is a floating-point value.
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Proof. As tp̄iu (tq̄iu) is integer part of p̄i (q̄i), we have:

tp̄iutq̄iu ď p̄iq̄i ď ptp̄iu` 1qptq̄iu` 1q

then we have lower bound:

LBPIM ÉDpp, qq “
1

α2
pΦpp̄q`Φpq̄q´2¨tp̄u¨tq̄u´2dq

“
1

α2

d
ÿ

i“1

pp̄i
2`q̄i

2´2tp̄iutq̄iu´2tp̄iu´2tq̄iu´2q

“
1

α2
p

d
ÿ

i“1

pp̄i
2`q̄i

2q´2
d
ÿ

i“1

ptp̄iu`1qptq̄iu`1qq

ď
1

α2

d
ÿ

i“1

pp̄i
2`q̄i

2´2p̄iq̄iq “ EDpp, qq

Theorem 2. Cosine similarity between two d-dimensional vectors p, q has an upper

bound as following:

UBPIM´CSpp, qq “
tp̄u¨tq̄u`Φbptp̄uq`Φbptq̄uq`d

Φapp̄qΦapq̄q
(3.8)

where Φapp̄q “
b

řd
i“1 p̄i

2, Φbptp̄uq “
řd
i“1 tp̄iu (resp. Φapq̄q and Φbpq̄q), and tp̄u ¨

tq̄u=
řd
i“1 tp̄iutq̄iu. Here, d is number of dimensions, and p̄i is the positive floating-

point value normalized from pi with α, tp̄iu is integer part of p̄i. Φapp̄q (Φapq̄q) and

Φbptp̄uq (Φbptq̄uq) are floating-point values.

Proof. As tp̄iu (tq̄iu) is integer part of p̄i (q̄i), we have:

p̄iq̄i ď ptp̄iu` 1qptq̄iu` 1q
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then we have upper bound:

UBPIM´CSpp, qq “

řd
i“1ptp̄iu tq̄iu` tp̄iu` tq̄iu` 1q

b

řd
i“1 p̄i

2

b

řd
i“1 q̄i

2

“

řd
i“1pptp̄iu` 1q ptq̄iu` 1qq
b

řd
i“1 p̄i

2

b

řd
i“1 q̄i

2

ě

řd
i“1 p̄iq̄i

b

řd
i“1 p̄i

2

b

řd
i“1 q̄i

2

ě
α2

řd
i“1 pi ¨ qi

α2

b

řd
i“1 p

2
i

b

řd
i“1 q

2
i

“ CSpp, qq

Theorem 3. Pearson correlation coefficient between two d-dimensional vectors p, q

has an upper bound as following:

UBPIM ṔCCpp,qq “
d¨tp̄u¨tq̄u´Φbpp̄qΦbpq̄q ` dΦcptp̄uq ` dΦcptq̄uq ` d

2

Φapp̄qΦapq̄q
(3.9)

where Φapp̄q “
b

d
řd
i“1 p̄i

2´p
řd
i“1 p̄iq

2, Φbpp̄q “
řd
i“1 p̄i, and Φcptp̄uq “

řd
i“1 tp̄iu,

(resp. Φapq̄q, Φbpq̄q and Φcptq̄uq), and tp̄u ¨ tq̄u =
řd
i“1 tp̄iutq̄iu. Here, d is number

of dimensions, and p̄i is the positive floating-point value normalized from pi with

α, tp̄iu is integer part of p̄i. Φapp̄q (Φapq̄q), Φbpp̄q (Φbpq̄q) and Φcptp̄uq (Φc tq̄u) are

floating-point values.
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Proof.

UBPIM ṔCCpp, qq “
d
řd
i“1 tp̄iu tq̄iu´

řd
i“1 p̄i

řd
i“1q̄i ` d

řd
i“1tp̄iu`d

řd
i“1tq̄iu`d

2

b

d
řd
i“1 p̄i

2 ´ p
řd
i“1 p̄iq

2

b

d
řd
i“1 q̄i

2 ´ p
řd
i“1 q̄iq

2

“
d
řd
i“1pptp̄iu` 1qptq̄iu` 1qq ´

řd
i“1 p̄i

řd
i“1 q̄i

b

d
řd
i“1 p̄i

2 ´ p
řd
i“1 p̄iq

2

b

d
řd
i“1 q̄i

2 ´ p
řd
i“1 q̄iq

2

ě
d
řd
i“1 p̄iq̄i ´

řd
i“1 p̄i

řd
i“1 q̄i

b

d
řd
i“1 p̄i

2 ´ p
řd
i“1 p̄iq

2

b

d
řd
i“1 q̄i

2 ´ p
řd
i“1 q̄iq

2

ě
α2pd

řd
i“1 piqi´

řd
i“1pi

řd
i“1qiq

α2

b

d
řd
i“1p

2
i´p

řd
i“1piq

2

b

d
řd
i“1q

2
i ´p

řd
i“1qiq

2
“PCCpp, qq

Theorem 4. Squared Euclidean distance between two d-dimensional p and q has a

lower bound:

LBPIM F́NNpp,qq“
l

α2
pΦpp̂q ` Φpq̂q ´ 2 ¨tµpp̂qu¨ tµpq̂qu´ 2 ¨ tσpp̂qu ¨ t σpq̂qu´ 4d1q

(3.10)

where Φpp̂q “
řd1

i“1 µpp̂iq
2 `

řd1

i“1 σpp̂iq
2 ´ 2

řd1

i“1 tµpp̂iqu ´2
řd1

i“1 tσpp̂iqu(resp.Φpq̂q).

tµpp̂qu¨tµpq̂qu“
řd1

i“1 tµpp̂iqu tµpq̂iqu, and tσpp̂qu¨tσpq̂qu“
řd1

i“1 tσpp̂iqu tσpq̂iqu. Here, d-

dimensional p̄ is partitioned into d1 segments of same length and p̂i is i-th segment.

µpp̂iq and σpp̂iq are mean and standard deviation of i-th segment, tµpp̂iqu and tσpp̂iqu

are their integer parts. Φpp̂q (Φpq̂q) is a floating-point value.

Proof. As tp̂iu (tq̂iu) is integer part of p̂i (q̂i), we have:

tp̂iutq̂iu ď p̂iq̂i ď ptp̂iu` 1qptq̂iu` 1q

then we have lower bound:
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LBPIM F́NN pp, qq “
l

α2

d1
ÿ

i“1

pµpp̂iq
2`µpq̂iq

2´2tµpp̂iqu´2tµpq̂iqu´2tµpp̂iqutµpq̂iqu

` σpp̂iq
2`σpq̂iq

2´2tσpp̂iqu´2tσpq̂iqu´2tσpp̂iqutσpq̂iqu´4q

“
l

α2

d1
ÿ

i“1

pµpp̂iq
2 ` µpq̂iq

2 ´ 2ptµpp̂iqu` 1qptµpq̂iqu` 1q

` σpp̂iq
2 ` σpq̂iq

2 ´ 2ptσpp̂iqu` 1qptσpq̂iqu` 1qq

ď
l

α2

d1
ÿ

i“1

pµpp̂iq
2`µpq̂iq

2´2µpp̂iqµpq̂iq`σpp̂iq
2`σpq̂iq

2´2σpp̂iqσpq̂iqq

ď
l

α2

d1
ÿ

i“1

ppµpp̂iq´µpq̂iqq
2 ` pσpp̂iq´σpq̂iqq

2q “ LBFNN pp, qq

ď EDpp, qq

Theorem 5. Squared Euclidean distance between two d-dimensional p and q has a

lower bound:

LBPIM ŚMpp,qq“
l

α2
pΦpp̂q ` Φpq̂q´2 ¨tµpp̂qu ¨ tµpq̂qu´ 2d1q (3.11)

where Φpp̂q“
řd1

i“1 µpp̂iq
2´2

řd1

i“1 tµpp̂iqu(resp.Φpq̂q), andtµpp̂qu¨tµpq̂qu“
řd1

i“1tµpp̂iqu tµpq̂iqu.

Here, d-dimensional p̄ is partitioned into d1 segments of same length. p̂i is i-th seg-

ment. µpp̂iq is mean of i-th segment, and tµpp̂iqu is the integer part. Φpp̂q (Φpq̂q) is

a floating-point value.
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Proof.

LBPIM´SM pp, qq “
l

α2

d1
ÿ

i“1

pµpp̂iq
2 ` µpq̂iq

2 ´ 2tµpp̂iqu tµpq̂iqu´2tµpp̂iqu´ 2tµpq̂iqu´2q

ď
l

α2

d1
ÿ

i“1

pµpp̂iq
2 ` µpq̂iq

2 ´ 2ptµpp̂iqu` 1qptµpq̂iqu` 1qq

ď
l

α2

d1
ÿ

i“1

pµpp̂iq
2 ` µpq̂iq

2 ´ 2p̂iq̂iq

ď
l

α2

d1
ÿ

i“1

pµpp̂iq ´ µpq̂iqq
2 “ LBSM pp, qq ď EDpp, qq

Theorem 6. Squared Euclidean distance between two d-dimensional p and q has a

lower bound:

LBPIM´OST pp,qq

“
l

α2
pΦapp̄q`Φapq̄q´2 tp̄u ¨tq̄u´2d1 ´ pΦbpp̄q ´ Φbpq̄qq

2
q

(3.12)

where Φapp̄q “
řd1

i“1 p̄i
2 ´ 2

řd1

i“1 tp̄iu and Φbpp̄q “
b

řd
i“d1`1 p̄i

2 (resp.Φapq̄q and

Φbpq̄q). tp̄u ¨ tq̄u “
řd1

i“1 tp̄iu ¨ tq̄iu. Here, d-dimensional p̄ is partitioned into two

segments of length d1 and d ´ d1. p̄i is the positive floating-point value normalized

from pi with α, and tp̄iu is the integer part. Φapp̄q (Φapq̄q) and Φbpp̄q (Φbpq̄q) are

floating-point values.
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Proof.

LBPIM´OST pp, qq “
1

α
p

d1
ÿ

i“1

pp̄i
2 ` q̄i

2´2tp̄iu´2tq̄iu´2tp̄iu tq̄iu´2q `p

g

f

f

e

d
ÿ

i“d1`1

p̄i2 ´

g

f

f

e

d
ÿ

i“d1`1

q̄i2q
2q

“
1

α2
p

d1
ÿ

i“1

pp̄i
2 ` q̄i

2q ´ 2
d1
ÿ

i“1

ptp̄iu` 1qptq̄iu` 1q `p

g

f

f

e

d
ÿ

i“d1`1

p̄i2 ´

g

f

f

e

d
ÿ

i“d1`1

q̄i2q
2q

ď
1

α2
p

d1
ÿ

i“1

p̄i
2 ` q̄i

2 ´ 2
d1
ÿ

i“1

p̄iq̄i ` p

g

f

f

e

d
ÿ

i“d1`1

p̄i2 ´

g

f

f

e

d
ÿ

i“d1`1

q̄i2q
2q

ď
1

α2
p

d1
ÿ

i“1

pp̄i ´ q̄iq
2 ` p

g

f

f

e

d
ÿ

i“d1`1

p̄i2 ´

g

f

f

e

d
ÿ

i“d1`1

q̄i2q
2q

ď LBOST pp, qq ď EDpp, qq

Theorem 7. Cosine similarity between two d-dimensional vectors p, q has an upper

bound as following:

UBCS
PIM´part“

tp̄u tq̄u` Φbpp̄qΦbpq̄q ` Φcpp̄q ` Φcpq̄q ` d
1

Φapp̄qΦapq̄q
(3.13)

where Φapp̄q “
b

řd
i“1 p̄i

2, Φbpp̄q “
b

řd
i“d1`1 p̄i

2, and Φcpp̄q “
řd1

i“1 tp̄iu (resp.

Φapq̄q, Φbpq̄q and Φcpq̄q), tp̄u tq̄u “
řd1

i“1 tp̄iu tq̄iu. Here, d-dimensional p̄ is parti-

tioned into two segments of length d1 and d´d1. p̄i is the positive floating-point value

normalized from pi with α, and tp̄iu is the integer part. Φapp̄q (Φapq̄q), Φbpp̄q (Φbpq̄q),

and Φcpp̄q (Φcpq̄q) are floating-point values.
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Proof.

UBCS
PIM´part“

řd1

i“1tp̄iutq̄iu`
b

řd
i“d1`1p̄i

2

b

řd
i“d1`1q̄i

2`
řd1

i“1ptp̄iu`tq̄iu`1q
b

řd
i“1 p̄i

2

b

řd
i“1 q̄i

2

“

řd1

i“1ptp̄iutq̄iu`tq̄iu`tp̄iu 1̀q`
b

řd
i“d1`1p̄i

2

b

řd
i“d1`1q̄i

2

b

řd
i“1 p̄i

2

b

řd
i“1 q̄i

2

“

řd1

i“1ptp̄iu` 1qptq̄iu` 1q `
b

řd
i“d1`1 p̄i

2

b

řd
i“d1`1 q̄i

2

b

řd
i“1 p̄i

2

b

řd
i“1 q̄i

2

ě

řd1

i“1 p̄iq̄i `
b

řd
i“d1`1 p̄i

2

b

řd
i“d1`1 q̄i

2

b

řd
i“1 p̄i

2

b

řd
i“1 q̄i

2
“ CSpp, qq

Theorem 8. Pearson correlation coefficient between two d-dimensional vectors p, q

has an upper bound as following:

UBPCC
PIM´partpp,qq “

d ¨ tp̄u ¨ tq̄u´Φbpp̄qΦbpq̄q`dΦcpp̄qΦcpq̄q`dΦdpp̄q`dΦdpq̄q ` d¨d
1q

Φapp̄qΦapq̄q
(3.14)

where Φapp̄q“
b

d
řd
i“1 p̄i

2´p
řd
i“1 p̄iq

2, Φbpp̄q “
řd
i“1 p̄i, Φcpp̄q “

b

řd
i“d1`1 p̄i

2, and

Φdpp̄q “
řd1

i“1 tp̄iu (resp. Φapq̄q, Φbpq̄q, Φcpq̄q, and Φdpq̄q), and tp̄u¨tq̄u =
řd1

i“1 tp̄iutq̄iu.

Here, d-dimensional p̄ is partitioned into two segments of length d1 and d´d1. p̄i is the

positive floating-point value normalized from pi with α, and tp̄iu is the integer part.

Φapp̄q (Φapq̄q), Φbpp̄q (Φbpq̄q), Φcpp̄q (Φcpq̄q), and Φdpp̄q (Φdpq̄q) are floating-point

values.
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Proof.

UBPCC
PIM´part “

d
řd1

i“1 tp̄iutq̄iu´
řd
i“1 p̄i

řd
i“1 q̄i`d

řd1

i“1 tq̄iu`d
řd1

i“1 tp̄iu
b

d
řd
i“1p̄i

2 ´ p
řd
i“1 p̄iq

2

b

d
řd
i“1 q̄i

2 ´ p
řd
i“1q̄iq

2

`d
b

řd
i“d1`1p̄i

2

b

řd
i“d1`1q̄i

2 ` d ¨ d1

b

d
řd
i“1 p̄i

2 ´ p
řd
i“1 p̄iq

2

b

d
řd
i“1 q̄i

2 ´ p
řd
i“1 q̄iq

2

“
dp
řd1

i“1ptp̄iu` 1qptq̄iu` 1q`
b

řd
i“d1`1 p̄i

2

b

řd
i“d1`1 q̄i

2q
b

d
řd
i“1 p̄i

2 ´ p
řd
i“1 p̄iq

2

b

d
řd
i“1 q̄i

2 ´ p
řd
i“1 q̄iq

2

´
řd
i“1 p̄i

řd
i“1 q̄i

b

d
řd
i“1 p̄i

2 ´ p
řd
i“1 p̄iq

2

b

d
řd
i“1 q̄i

2 ´ p
řd
i“1 q̄iq

2

ě
dp
řd1

i“1 p̄iq̄i`
b

řd
i“d1`1 p̄i

2

b

řd
i“d1`1 q̄i

2q´
řd
i“1p̄i

řd
i“1q̄i

b

d
řd
i“1 p̄i

2 ´ p
řd
i“1 p̄iq

2

b

d
řd
i“1 q̄i

2 ´ p
řd
i“1 q̄iq

2

ě
d
řd
i“1 p̄iq̄i ´

řd
i“1 p̄i

řd
i“1 q̄i

b

d
řd
i“1p̄i

2´p
řd
i“1p̄iq

2

b

d
řd
i“1q̄i

2´p
řd
i“1q̄iq

2
“PCCpp,qq

In above PIM-aware bound functions, the term of Φpp̄q (e.g., Φapp̄q, Φbpp̄q) or

Φpp̂q can be pre-computed. The terms involving dot-product such as tp̄u ¨ tq̄u and

tµpp̂qu¨tµpq̂qu, are computed by ReRAM PIM. This demands that the data vector tp̄u

or tµpp̂qu, is pre-programmed (written) on crossbars of PIM array, which costs the

space of N ¨d¨b or N ¨d1 ¨b bits, where b denotes the bit size of each operand.

Figure 3.9 shows an example of computing LBPIM ÉDpp, qq. At offline stage, the

value of Φpp̄q and vector tp̄u are pre-computed, then stored on memory array and

programmed on PIM array, respectively. After receiving vector q at online stage, we

calculate Φpq̄q and tq̄u once, and reuse them. After PIM generates tp̄u ¨ tq̄u, only the

pre-computed value of Φpp̄q and value of tp̄u ¨ tq̄u are transferred into CPU. Finally,
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the result of LBPIM ÉDpp, qq is cheaply obtained after simple adding and subtracting

operations.

x1000

x1000

take integer

ҧ𝑝 Φ ത𝑞ത𝑞
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Pre-processing

𝑆𝑡𝑜𝑟𝑒
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Φ ҧ𝑝

Figure 3.9: Example of computing LBPIM ÉDpp, qq.

Recall that α enlarges the normalized values into large values so that we can

take the integers. α it impacts the error between LBPIM ÉDpp, qq and EDpp, qq, or

LBPIM F́NNpp, qq and LBFNNpp, qq. To determine proper α, we have:

Theorem 9. The error between LBPIM ÉDpp, qq and EDpp, qq has upper bound as:

Error ď
4d

α
`

2d

α2
(3.15)

Proof.

Error “ EDpp, qq´ LBPIM ÉDpp, qq

“

d
ÿ

i“1

pppi ´ qiq
2 ´

1

α2
pp̄i

2 ` q̄i
2 ´ 2 tp̄iu tq̄iu´ 2 tp̄iu´ 2 tq̄iu´ 2qq
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As 0 ď pi ď 1, tp̄iu ď p̄i “ α¨pi (resp. qi), then we have:

Error ď
d
ÿ

i“1

pppi´qiq
2 ´

1

α2
pα2p2

i ` α
2q2
i ´ 2α2pi ¨ qiq `

2

α2
pp̄i ` q̄i ` 1qq

ď

d
ÿ

i“1

p
2

α2
pp̄i ` q̄i ` 1qq

ď
2

α

d
ÿ

i“1

ppi ` qiq `
2d

α2
ď

4d

α
`

2d

α2

Theorem 9 implies that Error is inversely proportional to α. Error is inversely

proportional to α. Large α makes the bounds tighter. Experimental studies in

Section 3.5 illustrate sound tightness of the bounds on real datasets. For example,

when using α=106, LBPIM F́NN is tight enough to prune 99% of unpromising objects.

3.4.3 PIM Memory Management

PIM-aware bound computation enjoys slight data transfer, but demands to store

integer vectors such as tp̄u and tµpp̂qu on crossbars, occupying the space of N ¨d¨b and

N ¨d1¨b bits respectively. The typical capacity of contemporary PIM array is only

2GB [60, 81]. PIM array may not have sufficient capacity to accommodate the entire

dataset. The simple solution is to divide the dataset into multiple small parts, and

each time the crossbars are re-programmed with one part for processing. However,

due to the limited write endurance of ReRAM, we should avoid re-programming

crossbars. Hence, we propose to compress the dataset based on a given capacity.

Indeed, traditional architecture confronts the same dilemma, and dimensionality

reduction techniques employed by the bound functions in Table 3.1 effectively reduce

memory usage. The techniques can be adopted for PIM-aware bound functions to

decrease the dimensionality from d (d1) to s. Then space cost is adjusted to N ¨s¨b bits,

where s is the reduced dimensionality. Figure 3.10 depicts an example of computing
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LBPIM F́NN on the compressed s-dimensional vector. Note that compressing the

dataset works when the data is integer or floating-point, not binary code.
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Figure 3.10: Example of reducing the dimension of vector from 8 to 4 (i.e., 2+2) for
computing PIM-aware bound.

Theorem 10 establishes the condition of the dimensionality s so that the dataset

can fit in PIM array and be processed in the right manner. It suffices to find the

maximum value of s such that the approximation of PIM-aware bound obtains the

highest possible closeness to the exact value.

Theorem 10. Given hardware PIM array, and dataset having N d-dimensional

vectors, the dimensionality s of compressed vectors is chosen as following conditions:

Maximize: s (3.16)

subject to:

#

ndata ď C s ď m

ndata ` ngather ď C s ą m

where ndata “
N ¨b¨s
m2¨h

is the number of crossbars serving as data crossbar, and ngather “

N ¨b
m¨h

ř m
?
s

i“2
s
mi is the number of crossbars serving as gather crossbar. C is the number

of crossbars in PIM array. Each crossbar contains mˆm cells in h-bit precision. b

is the bit size of each operand.

Proof. For easy understanding, we first analyze the crossbar cost for dot-product

operation on one pair of vectors. Having two s-dimensional vectors tp̂u and tq̂u, as

discussed in Section 3.1, single crossbar can support processing tp̂u ¨ tq̂u if sďm. The

vector tp̂u occupies s
m

of one crossbar, and all crossbars can serve as data crossbars.
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Besides, if s ą m, vector tp̂u is programmed into multiple data crossbars. In addition

to data crossbars, gather crossbars are required to aggregate intermediate results.

Specifically, dot-product of tp̂u¨tq̂u costs s
m

data crossbars in first cycle, and s
m2 gather

crossbars at second cycle to sum up results from first cycle. Hence, s
mi crossbars are

required at i-th cycle, and there are m
?
s depth of cycles in total (the result of division

is an integer, otherwise rounded up to integer). Then the number of crossbars that

tp̂u¨tq̂u consumes is as:

crossbarps,mq“

#

s
m

s ď m
ř m

?
s

i“1
s
mi s ą m

(3.17)

We next present the crossbar cost for the whole dataset having N vectors. Pro-

cessing one pair of vectors demands s
m

data crossbars and
ř m

?
s

i“2
s
mi gather crossbars

if s ą m. Moreover, s
m

data crossbars actually store vector tp̂u for m¨h
b

objects, which

can be processed concurrently. Hence, total number of data crossbars and gather

crossbars are:

ndata “
N ¨ b ¨ s

m2 ¨ h

ngather “
N ¨ b

m ¨ h

m
?
s

ÿ

i“2

s

mi

(3.18)

𝑠

𝑚

data crossbar 

𝑠

gather crossbar

𝑠

𝑚2

𝑠

𝑚3
ොp

cycle

Figure 3.11: Example of crossbar cost for dot-product operation on one pair of vectors
(e.g., s = 8, m = 2).

Given PIM hardware and a dataset, s, ndata and ngather are confirmed using

theorem 10. Then vector such as tp̂u, and all-ones vector e are programmed to data
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crossbars and gather crossbars respectively at offline stage. Besides, recall that we

offload the function causing bottleneck to PIM, thus assume that the computation

of one PIM-aware bound costs all crossbars of PIM array. Note that it is flexible to

separate the crossbars into multiple groups according to practical applications, for

parallelly computing multiple functions.

3.4.4 Execution Plan Optimization

Previous subsections present how to process PIM-aware bound function with ReRAM

PIM. To exploit ReRAM PIM in an algorithm, we can replace the similarity or bound

functions natively running on CPU by their PIM-aware bounds. However, this sim-

ple implementation might miss the optimization opportunities to further reduce the

unnecessary computation of the algorithm. In this section, we study combining the

PIM capability and features of the original algorithm. PIM-aware bound can be

inserted at better place of the algorithm, and some existing bounds can be removed.

candidates 𝐿𝐵𝐹𝑁𝑁
𝑑/64

(𝑑/64 ∙ 𝑏)

𝐿𝐵𝐹𝑁𝑁
𝑑/16

(𝑑/16 ∙ 𝑏)

𝐿𝐵𝐹𝑁𝑁
𝑑/4

(𝑑/4 ∙ 𝑏)

𝐸𝐷
(𝑑 ∙ 𝑏)

𝐿𝐵𝑃𝐼𝑀−𝐹𝑁𝑁
𝑠

(3 ∙ 𝑏)
candidates

(b)

(a)

𝐸𝐷
(𝑑 ∙ 𝑏)

𝐿𝐵𝐹𝑁𝑁
𝑑/4

(𝑑/4 ∙ 𝑏)

replace remove

Figure 3.12: Examples of execution plans for FNN algorithm [90]. (d{64¨b) denotes
the data transfer of computing bound for one object is d{64¨b bits.

The optimization can be achieved by removing some existing bounds. To make

it clear, we take kNN algorithm FNN [90] as example. The algorithm FNN applies

three bounds based on LBFNN with incremental tightness to progressively prune

objects, as depicted in Figure 3.12(a). Here, LB
d{64
FNN denotes the dimensionality of

compressed vector for computing bound is d{64. Assuming LB
d{64
FNN causes the major

bottleneck, the computation of which is offloaded to PIM. We thus replace LB
d{64
FNN
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by its PIM-aware bound LBs
PIM F́NN . Theorem 10 discusses how to choose s with the

hardware budget and dataset. LBs
PIM F́NN is used to prune objects, and s is chosen

as large as it could be, even larger than d{64. Hence, LBs
PIM F́NN might own better

pruning power when compared to other original bounds. For example, if sąd{16,

the objects survived from LBs
PIM F́NN are hard to be filtered by LB

d{16
FNN . Removing

LB
d{16
FNN helps to reduce unnecessary computation. If s ă d{4, LB

d{4
FNN can remain to

filter the objects survived from LBs
PIM F́NN .

Assume that the original bounds fB and PIM-aware boundG compose a candidate

bound set. There exists a best algorithm that employs a sequence of bound functions

(e.g.,B1, ...,Bi, ...,Bg) from the candidate bound set, incurring lowest data transfer

cost. Suppose that the candidate bound set has L bounds, then there are 2L possible

algorithm execution plans to enumerate. The dataset has the initial object set D0

(|D0|“N). Objects are gradually filtered by the bounds. After applying bound Bi

on Di´1, we obtain a smaller object set Di. Assume that Bi can prune the objects

at percentage of PrpBiq, we have |Di| “ N ¨
ś

j“1,...,ip1 ´ PrpBjqq. To identify the

best algorithm, we develop a cost equation to estimate the data transfer cost of an

algorithm as:

Tcost“N ¨
ÿ

i“1,...,g

TcostpBiq
ź

j“1,...,i

p1´PrpBjqq,

Bi P pfB XGq

(3.19)

where TcostpBiq denotes the data transfer cost for computing bound Bi. For exam-

ple, the cost of LB
d{64
FNN is d{64 ¨ b bits. The least total cost Tcost indicates the best

execution plan. As to estimate PrpBjq, we propose to measure pruning ratio of the

bound, which has been used in the data search literature [54]. Though PIM-aware

bound is indeed processed with PIM, it is practical to run the bound with CPU for

purpose of measuring the pruning ratio at offline stage.
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3.4.5 Discussion

Our technique has limitation due to the constraint of PIM supported operations. In

addition the example functions shown in Table 3.2, as long as one distance function

can be transformed as a form that exposes dot-product operation, it is available to

adopt PIM-aware decomposition and offload partial computation to PIM. However,

when the function does not essentially contain dot-product operation, our technique

fails to provide the solution of using PIM. One case is Jaccard distance 1 ´ |AXB|
|AYB|

,

which is defined as the size of intersection divided by the size of union of two sample

sets (i.e., set A and B).

We use k-means and kNN as application examples, yet our technique is applicable

to data mining applications that involve similarity and dot-product computation as

significant component, such as data visualization [158], data cube aggregation [80],

data cleaning and reduction [80], frequent pattern mining [79].

3.5 Evaluation

In this section, we present experimental analysis of PIM-optimized algorithms using

ReRAM PIM, compared to original algorithms running on conventional architecture.

3.5.1 Experimental Setup

As commercial ReRAM PIM device is still not available, like prior NVM [107, 36, 186]

and PIM [105] for database research, we resort to simulation. Specifically, similar

to [204, 17], we combine two simulators, a memory simulator NVSim [48] and a

system-level tool Quartz [189], to accurately model PIM architecture. NVSim is

a prevalent circuit-level simulator based on CACTI [25], which provides a hardware

platform to model NVM-based memory such as STT-RAM, ReRAM. We use NVSim

to model ReRAM-based memory that enables storage and processing ability, like
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Table 3.3: The configuration of hardware platform.

CPU
Broadwell 2.10 GHz Intel Xeon E5-2620;

Cache 1/2/3 : 32 KB/256KB/20MB;

DRAM 16GB DIMM DDR4

ReRAM-based

memory

Memory array 14GB ReRAM

Buffer array 16MB eDRAM

PIM array 2GB ReRAM

Internal bus 50GB/s

ReRAM crossbar

256ˆ256 2-bit precision cells;

read/write latency: 29.31/50.88ns;

read/write energy cost: 1.08 pJ/3.91nJ

prior works [36, 169, 81]. Quartz is a software-based NVM performance emulator

from Hewlett Packard and has been widely adopted to emulate NVM integrated

architectures [222, 149]. It estimates application end-to-end latency by injecting

software delays into each epoch. We use Quartz to report system-level performance

when assuming main memory is ReRAM.

The configurations of ReRAM PIM and baseline architecture platforms are illus-

trated in Table 3.3. The only difference between these two architectures is to use

ReRAM-based memory or DRAM. The ReRAM-based memory has the same total

size as DRAM in baseline platform, i.e., 16GB, in which 2GB is used as PIM array

by default. The ReRAM read/write latency and energy cost is 29.31/50.88ns, and

1.08 pJ/3.91nJ respectively, and the parameters are derived from [147, 169]. We

follow [60] and configure each crossbar to contain 256*256 cells with 2-bit precision.

Then there are default 131072 crossbars to compose PIM array.

We measure the end-to-end execution time of algorithms. The original algorithms

are executed on real hardware platform. The execution time of our proposed PIM-

optimized algorithms is measured by using NVSim and Quartz. Specifically, NVSim

estimates the time of PIM-involved processing executed on ReRAM-based memory,
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which includes computing PIM-aware bound on crossbars and buffering PIM results.

Quartz is to estimate the time of remaining non-PIM computation in CPU that

requires data transfer from memory (including vector data of original dataset stored

in memory array, or PIM results in buffer array). Finally, the total execution time

of a PIM optimized algorithm is taken as the sum of execution time reported by

NVSim and Quartz. We measure the energy consumption for CPU using PAPI [2],

and obtain the power usage for PIM from NVSim.

3.5.2 Methodology

Regarding kNN classification, we call the original algorithms as Standard (i.e., linear

scan), OST [125], SM [214], and FNN [90]. We name the respective PIM-optimized al-

gorithms as Standard-PIM, OST-PIM, SM-PIM, and FNN-PIM. For PIM-optimized

algorithms, we conduct profiling to identify the function causing bottleneck and the

ideal performance gain TPIM´oralce, as discussed in Section 3.3. Then we follow the

techniques in Section 3.4 to offload computation of the function into PIM. Especially,

for kNN onHD, we only compare Standard and Standard-PIM algorithms.

For k-means, the same initial centers are selected for each experiment. We call

the original algorithms as Standard [95], Elkan [56], Drake [49], and Yinyang [46].

We name the respective PIM-optimized algorithms as Standard-PIM, Elkan-PIM,

Drake-PIM, and Yinyang-PIM. For each algorithm, we conduct profiling to identify

the bottleneck function (i.e., ED) and TPIM´oralce. Then PIM is used to reduce the

distance calculation by providing bound LBPIM ÉD.

Table 3.4 lists the real datasets used in our experiments. We normalize the

floating-point values into range of [0, 1], and chose α as 106 to transform to be non-

negative integers. We maintain 32-bit integers for dot-product on crossbars to keep

consistent with host processor, and employ the least significant 64-bit of PIM results

to avoid overflow. Particularly, the dataset instead is binary vector for kNN on HD.
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Table 3.4: Statistics of real datasets.

Dataset N d Size

kNN

classification

ImageNet [115] 2340173 150 3.5GB

MSD [137] 992272 420 2.9GB

GIST [181] 1000000 960 6.6GB

Trevi [196] 100000 4096 3.0GB

k-means

clustering

Year [184] 515345 90 388MB

Notre [196] 332668 128 118MB

NUS-WIDE [37] 269648 500 280MB

Enron [110] 100000 1369 268MB

We follow [30] to learn 10 million binary codes with length 128-1024 bits from the

GIST dataset [181]. We instead take the least significant 32-bit of PIM results on

binary vectors.

3.5.3 kNN Classification

We first investigate the performance improvement that ReRAM PIM can contribute

to the kNN algorithms. Figure 3.13-3.17 shows the execution time of baseline kNN

and PIM-optimized algorithms with the varying datasets, k, and distance functions.

We set k=10, distance ED, and MSD as default setting and dataset. Standard is

the default kNN algorithm. If the PIM array is sufficient to process the dataset,

LBPIM ÉD is computed with PIM to serve as the bound of exact distance ED. When

the dataset is too large to maintain in the PIM array, the vector is compressed into

the one with dimensionality s as discussed in Section 3.4.3, and we let LBPIM F́NN

serve as the bound of exact distance. For example, the dataset MSD is larger than

size of PIM array. The data dimensionality is compressed from 420 of the original

vector to 105, which is used to compute LBPIM F́NN .

Varying datasets: Our PIM framework yields the algorithm acceleration on
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Figure 3.13: kNN classification execution time with varying datasets.

various datasets. Figure 3.13 shows the end-to-end execution time respect to dif-

ferent datasets. Standard-PIM achieves up to 453x speedup compared to Standard.

The significant improvement is due to the reduction of data transfer. We observe

that the speedup becomes more significant as the increase of dimensionality d of ori-

gin vector data. Trevi occurs most significant speedup due to the largest reduction

of data transfer: from 4096 ¨b to 3 ¨b bits for each distance computation. Particularly,

Standard-PIM shows slight optimization on GIST. This is because the PIM-aware

bound LBPIM F́NN is based on LBFNN , and LBFNN natively shows weaker pruning ef-

ficiency on GIST than other datasets. For example, using d1=d{4 for LBFNN provides

average 71.3% approximation of exact distance on GIST, yet 95.4% on MSD.
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Figure 3.14: kNN classification execution time with varying algorithms.
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Varying algorithms: The proposed PIM framework contributes significant im-

provement on different algorithms. We compare OST, SM, and FNN, to their PIM-

optimized algorithms respectively in Figure 3.14. Note that the algorithms are with-

out execution plan optimization proposed in Section 3.4.4. The bottleneck function

is replaced by its PIM-aware bound, and other original bounds are still in the algo-

rithms. The state-of-art algorithms are 3.9x faster than Standard on average, and

adopting PIM further improves the speedup to 40.8x. Specifically, adopting PIM for

algorithm OST, SM and FNN leads to 11.0x, 10.2x, and 10.4x speedup respectively.

Moreover, we observe that the performance of PIM-optimized algorithms are close

to the optimal gain PIM-oracle. Here, PIM-oracle accounts for the time spent on

all other operations except ED and bound functions. This implies that our method

makes full use of PIM to effectively alleviate the cost of distance computation in the

kNN algorithms.
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Figure 3.15: kNN classification execution time with varying k.

Varying number of nearest neighbors: The number of nearest neighbors

k causes slight impact on the efficiency of our method. Figure 3.15 depicts the

execution time respect to different k. Standard-PIM yields 71.5x, 57.1x, and 29.2x

speedup compared to Standard respectively. The time ascends slightly with increase

of k. This is because the larger k leads to more objects that need exact computation
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for candidate refinement.
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Figure 3.16: kNN classification execution time with varying distance.

Varying distance measures: The proposed PIM framework has stable effi-

ciency on different distance measures. Figure 3.16 shows that the performance gap

between Standard-PIM and Standard on three distance measures are close. Espe-

cially, we observe that slighter speedup on PCC is because that LBPIM´FNN shows

weak pruning efficiency on PCC, as the computation of both are based on the same

statistics - the mean and standard deviation.

Binary vectors: The core contribution of our PIM framework is reducing the

computation cost on high-dimensional data, and algorithms operating the data with

higher dimensionality can obtain more improvement. Figure 3.17 shows the effect of

data dimensionality on PIM-optimized algorithm. We encode the dataset GIST into

binary codes of different lengths and choose HD as the distance measure. We observe

that PIM does not accelerate the algorithm much for 128-bit codes. This is because

that computing HDpp, qq with PIM demands loading two dot-product results into

host processor, which essentially costs data transfer of 64-bit. Hence, PIM is not a

reasonable choice for short binary code. The algorithm benefits from PIM when the

dimensionality is high, such as larger than 128-bit. The speedup is significant when

the vector is at 1024 dimensions.
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Figure 3.17: kNN classification execution time on binary vector data of varying
dimensions.

Energy consumption: Figure 3.18 reports the energy consumption of baselines

and Standard-PIM. The power consumption of running algorithms mainly comes

from two aspects: processor computation and data transfer. Standard incurs the

highest energy cost due to the massive data transfer of entire dataset of all di-

mensions. OST and SM have lower energy cost because the proposed bounds help

alleviate data transfer amount. FNN is the most energy-efficient among baselines,

and this is because its bounds have high pruning power. Standard-PIM can save

4.6x energy compared to FNN due to the combined effect of reduced data transfer

cost and shortened execution time.

Execution plan optimization: The execution plan optimization (proposed in

Section 3.4.4) contributes to the further algorithm acceleration. Figure 3.19 com-

pares the native algorithm FNN and the optimized ones using PIM. FNN-PIM is to

accelerate the native FNN by merely using PIM-aware bound. FNN-PIM-optimize

denotes the further optimized execution based on FNN-PIM. The result shows that

compare to FNN-PIM, FNN-PIM-optimize is closer to FNN-PIM-oracle. This is be-

cause FNN-PIM-optimize removes some unnecessary bounds and avoids redundant

computation.

We then investigate how the proposed execution plan optimization improves the
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Figure 3.19: kNN classification execution time with execution plan optimization.

algorithm execution. Recall that the native FNN applies three bounds to progres-

sively prune objects (in Figure 3.12). Our profiling results show the bottleneck

typically is the first or second bound. FNN-PIM replaces the bottleneck bound by

LBs
FNN ṔIM , and keeping other original bounds. Specifically, we found that first bound

(LB7
FNN) causes the bottleneck. LBs

PIM F́NN is thus used to replace LB7
FNN , working

on filtering objects. Theorem 10 suggests s chosen as 105. At offline stage, we in-

vestigated the pruning ratio and data transfer cost of original bounds (e.g., LB7
FNN ,

LB28
FNN , LB105

FNN) and PIM-aware bound (e.g., LB105
PIM F́NN), as shown in Figure 3.20.

Pruning power of LB105
PIM F́NN is stronger than LB7

FNN and LB28
FNN , and slightly weaker
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than LB105
FNN . Equation 3.19 suggests that removing all original bounds and only us-

ing LB105
PIM F́NN leads to least data transfer. The algorithm execution thus avoids the

computation cost caused by the three unnecessary bounds.
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Figure 3.20: Pruning ratio and data transfer cost of computing bound for dataset.

Time breakdown after applying PIM: Recall that kNN algorithm profiling in

Section 3.3 by both hardware components and functions indicate that data transfer

is the performance bottleneck. We report the time breakdown after applying PIM.

Tcache is reduced from up 65-83% to 5-9%, and Tc instead dominates the execution

time as shown in Figure 3.21(a). Note that Tc includes two parts - the time spend-

ing on exact distance by CPU and computing the bounds by PIM. Figure 3.21(b)

shows that PIM computation accounts for over 85% of execution time. Specifically,

applying PIM to FNN can effectively prune most candidates, and the exact distance

computation for survived ones only takes 8.9% of execution time.

Pre-processing cost: we evaluate the pre-processing time cost before the algo-

rithm execution. Pre-processing is an essential procedure for the baselines (except

Standard) and PIM-optimized algorithms. The baseline algorithms rely on pre-

processing to conduct dimensionality reduction on the data and store it in DRAM

for computing bounds. PIM-optimized algorithms pre-compute Φpp̄q and tp̄u of PIM-

aware bound functions, but instead store in ReRAM-based memory. Figure 3.22 com-

pares the pre-processing time of FNN and FNN-PIM-optimize. The pre-processing
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Figure 3.21: Performance breakdown of kNN algorithms after applying PIM.
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Figure 3.22: Pre-processing time at offline stage for kNN classification.

time of FNN-PIM-optimize is 1.9x slower than FNN on average. The time is im-

pacted by the access speed of memory device and the data amount to write. PIM

suffers from longer write latency of ReRAM, but the data amount might be smaller.

For instance, FNN needs to prepare three types of vectors for computing LB7
FNN ,

LB28
FNN , LB105

FNN on MSD, FNN-PIM-optimize prepares only one type for computing

LB105
PIM F́NN , achieving about 33.3% less write access.

3.5.4 k-means Clustering

Table 3.5 depicts the performance of k-means algorithms and PIM-optimized ones

with varying datasets and the number of centers. ED calculation in assign step is
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Table 3.5: Execution time on k-means clustering.
Data

set

k-means execution time/iteration (ms)

k Stand. Elkan Drake Yinyang
Stand-

dard-PIM

Elkan-

PIM

Drake-

PIM

Yinya-

ng-PIM

Year

4 127.6 46.6 53.2 49.7 36.0 42.4 45.2 41.6

64 478.8 130.3 132.0 119.5 258.2 121.5 74.6 72.8

256 2032.5 398.4 514.8 290.8 684.5 369.5 183.8 173.3

1024 7121.3 1533.5 2151.4 1127.9 1888.7 1364.3 796.8 539.6

Notre

4 67.9 34.1 36.6 31.5 36.8 32.3 34.1 29.7

64 549.8 86.6 87.0 110.7 162.2 78.9 53.8 70.9

256 2136.1 258.4 230.0 219.7 425.3 245.5 117.1 158.4

1024 8000.2 1048.1 1453.4 1073.3 1027.2 931.2 512.4 574.8

NUS-

WIDE

4 153.6 39.8 61.1 56.5 95.0 37.3 52.0 54.4

64 1437.9 119.7 605.8 528.5 218.8 94.8 130.4 177.8

256 5636.9 351.1 2451.2 1778.4 463.9 253.7 305.1 364.9

1024 22273.1 1569.2 10545.3 5957.2 1274.7 1201.0 1240.8 1210.5

Enron

4 156.6 20.1 54.8 62.1 49.5 18.2 43.6 47.0

64 1259.6 96.9 447.4 382.5 141.7 82.8 85.5 86.9

256 4764.5 179.6 252.5 759.7 287.7 162.4 180.9 187.6

1024 18984.5 317.2 4102.9 879.6 566.9 282.6 486.5 507.3

typically the bottleneck. PIM is used to compute LBPIM ÉD. The bound contributes

to filter far-away centers, and survived ones call exact ED calculation. Table 3.5

shows that leveraging PIM yields speedup on all algorithms. This is because expen-

sive ED calculation is reduced. The nearest center of each data point is identified

faster using PIM-aware bounds. Note that though the overall speedup for k-means

clustering is not significant as kNN classification, recall that the goal of our work is

to accelerate a given algorithm, rather than a certain application. The experimental

results demonstrate the acceleration to each algorithm itself.

PIM gives consistent speedup for Standard, up to 33.4x. Standard severely suffers

from heavy data transfer. During assign step, finding the nearest cluster center for

data points results in the data transfer of N ¨k¨d¨b bits. PIM dramatically decreases

it to N ¨k¨3¨b bits. With the increase of k or d, the improvement becomes more

substantial. Standard-PIM-oracle denotes the theoretical optimal gain with PIM,

66



4 6 4 2 5 6 1 0 2 41 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6

 k-
me

an
s e

xe
cu

tio
n t

im
e (

ms
/ite

r.)

k

 S t a n d a r d
 S t a n d a r d - P I M
 S t a n d a r d - P I M - o r a c l e

(a) Standard

4 6 4 2 5 6 1 0 2 41 0 1

1 0 2

1 0 3

1 0 4

 k-
me

an
s e

xe
cu

tio
n t

im
e (

ms
/ite

r.)

k

 E l k a n
 E l k a n - P I M
 E l k a n - P I M - o r a c l e

(b) Elkan

4 6 4 2 5 6 1 0 2 41 0 1

1 0 2

1 0 3

1 0 4

1 0 5

 

 

 k-
me

an
s e

xe
cu

tio
n t

im
e (

ms
/ite

r.)

k

 D r a k e
 D r a k e - P I M
 D r a k e - P I M - o r a c l e

(c) Drake

4 6 4 2 5 6 1 0 2 41 0 1

1 0 2

1 0 3

1 0 4

 

 

 k-
me

an
s e

xe
cu

tio
n t

im
e (

ms
/ite

r.)

k

 Y i n y a n g
 Y i n y a n g - P I M
 Y i n y a n g - o r a c l e

(d) Yinyang

Figure 3.23: Comparison between PIM-optimized and PIM-oracle for k-means clus-
tering algorithms.

i.e., TPIM óracle. TPIM óracle accounts for the execution time except ED calculation in

assign step. Figure 3.23(a) shows the obvious gap between Standard and Standard-

PIM, and the narrow gap between Standard-PIM and Standard-PIM-oracle. Higher

k makes Standard enjoy greater benefits from PIM.

Elkan-PIM slightly outperforms Elkan, as showed in Figure 3.23(b). This is

because ED calculation is not always dominating task for Elkan. Updating original

bounds often occupies up to 45% of total time. Elkan maintains k lower bounds for

each data point. Though it contributes to prune far-away centers effectively, updating

k bounds incurs obvious overhead, leading to high value of TPIM óracle. Elkan-PIM
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illustrates an example that PIM might be not considered to be exploited.

Drake-PIM yields the significant speedup when compared to Drake. Not like

Elkan, ED computation takes the majority of execution time of Drake consistently.

As Figure 3.23(c) shows, the gap between Drake and Drake-PIM-oracle is obvious.

Drake-PIM achieves up to 8.5x speedup because it bridges the gap effectively, being

very close to Drake-PIM-oracle.

Yinyang also enjoys improvement caused by PIM. The significant speedup occurs

on high-dimensional datasets, up to 4.9x. To avoid unnecessary ED computation,

rather than using k lower bounds like Elkan, the global and local filters in Yinyang

keep fewer bounds and decrease condition checks. This makes it efficient in clus-

tering low-dimensional data points. However, when the dimensionality is high, the

performance degrades fast due to dramatic growth of inevitable ED calculation. Fig-

ure 3.23(d) shows that Yinyang-PIM mitigates the weakness and eliminates most ED

calculation, resulting in consistent performance on high-dimensional data.

Figure 3.24 shows that PIM can reduce the energy cost of k-means algorithms in

general. The energy saving benefit from PIM follows the trend of execution speedup.

Standard-PIM has highest execution speedup, and enjoys the significant energy sav-

ing from 2405 to 312J. However, PIM is not effective in reducing the energy cost of

Elkan.

Recall that Section 3.3 presents the k-means algorithm profiling by both hardware

components and functions. We report the execution time breakdown after applying

PIM. Figure 3.25(a) shows that Tcache is significantly reduced on the algorithms

except Elkan. The reason is that Elkan’s bound updating still accounts for the

major part of execution time as shown in Figure 3.25(b). Tc dominates the execution

time of Standard, Drake and Yinyang after applying PIM. This is because the most

computation overhead is producing bounds by PIM. The exact distance computation

is effectively alleviated using the PIM bounds. Specifically, Standard-PIM reduces
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Figure 3.24: Energy consumption of k-means algorithms.

S t a n d a r d E l k a n D r a k e Y i n y a n g0 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
1 2 0 %  T c        T c a c h e   T B r

 T F e   T A L U

Pe
rce

nta
ge

 of
 ex

ec
uti

on
 tim

e

k - m e a n s  a l g o r i t h m  w i t h  P I M
(a) Time breakdown by hardware component

S t a n d a r d E l k a n D r a k e Y i n y a n g0 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
1 2 0 %

Pe
rce

nta
ge

 of
 ex

ec
uti

on
 tim

e

k - m e a n s  a l g o r i t h m  w i t h  P I M

 O t h e r   E D
 b o u n d  u p d a t e   P I M  b o u n d

(b) Time breakdown by function

Figure 3.25: Performance breakdown of k-means algorithms after applying PIM.

the time on ED computation from over 97% to 6.8% of total execution time.

3.6 Chapter Summary

In this section, we conclude the work presented in this chapter, and discuss the

related future research directions.

3.6.1 Conclusion

In this chapter, we propose a novel framework to accelerate similarity-based min-

ing algorithm on high-dimensional data by using ReRAM PIM. PIM is an efficient

approach to decrease the substantial amount of data transfer. Previous works have
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widely exploited dot-product operation of ReRAM PIM for several applications but

not similarity computation.

Our PIM framework solves the several challenges of using ReRAM PIM for

similarity-based data mining. First, we conduct the performance profiling to analyze

the optimal improvement that the algorithm could expect when adopting ReRAM

PIM. Second, we identify PIM-aware function in the algorithm, and then offload

most computation of the function into PIM. To combat the limited computational

functionality of ReRAM PIM, we propose PIM-aware bound function so that its com-

putation can be accelerated and the accuracy of results won’t be compromised. Last,

exploiting PIM leads to some computation of the algorithm designed for running on

CPU redundant, the further execution plan optimization is proposed to avoid the un-

necessary computation and improve the efficiency of PIM. The experiments on kNN

classification and k-means clustering indicate that the proposed method is capable

of leveraging PIM as modern accelerator to speed up the data mining algorithms.

3.6.2 Research Directions

Emerging NVM PIM has new characteristics different from existing processors and

leads to opportunities for further optimization. We consider future research direc-

tions as follows.

First, NVM PIM often has a small memory size. When NVM PIM is designed

to support processing on high-precision data, the sophisticated circuits such as DAC

and S&A, are required to integrate in memory, which makes it suffers from low

scalability. To deal with a very large dataset or large intermediate results on NVM

PIM of small size, data re-programming on crossbars is inevitable. A space-friendly

PIM scheme is thus needed to minimize the impact on re-programming latency and

endurance.

Second, it is interesting to examine our techniques beyond similarity-based data
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mining tasks. The mining tasks have a wide range of applications. Similarity com-

putation is not involved in many of them, such as decision tree-based classification

and grid-based clustering. Exploiting PIM for these tasks introduces new research

challenges.

Third, the design of a hierarchical computing system that includes CPU, NVM

PIM, GPU and FPGA is an open issue. The modern hardware such as GPU and

ASIC can offer the high computing parallelism. The data mining algorithm can

offload the partial computation having complex logic to CPU, the part triggering

heavy data transfer to NVM PIM, and the part consuming high processing resources

to GPU and FPGA.

Forth, our work adopts the common PIM design widely used for many application

domains. It is interesting to explore new architectures customized for data mining

applications. For example, the organization of crossbars can be redesigned to achieve

more effective scatter-gather on high-dimensional vector data. The data mapping

onto crossbars might be investigated to support more complex computation such as

power mean in Minkowski distance [70] on vector data.
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Chapter 4

Accelerating Blockchain Mining by

NVM PIM

Blockchain was first proposed in Bitcoin [144] and attracted extensive attentions

from both industry and academia. Blockchain could be seen as a public ledger

that records all committed transactions with a list of blocks in a decentralized en-

vironment. Blockchain has been used in a diverse of fields with various purposes,

including Internet of Things (IoT) and social media [38], smart grid networks and

edge computing [111]. Blockchain is a decentralized network that avoids single point

of failure [43]. As long as the data was added into the chain, the data is always

securely stored and can be accessed from any node of the network. Moreover, the

data is encrypted with applying time stamping and then added to the blockchain.

The source, sequential updates and destination of data are transparent and traceable

along the chain [154].

In this work, we focus on the application scenarios that utilize blockchain for

the safe and traceable data storage [131, 209, 44, 218, 155, 199]. For example, Orig-

inChain [131, 209] is blockchain-based supply chain management system to track

product information including originality and components during production, the

trajectory during delivery, and the market statistics during sales. [44] designs a
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reputation system that records the web browsing trace of users, which helps identify

the risky users. [218, 155] use blockchain to store the transactions of remittance

and online payment at E-business. Ethereum [199] is a smart contract platform that

stores the user transaction records on blockchain.

The applications of using blockchain for data storage often involve a larger num-

ber of users in frequent interactions, and thus have to deal with high data write

throughput [43]. However, the new data is appended into new blocks, and then the

blocks are added into the public chain by performing a mining process. This mining

process consumes significant energy, time, and computational overhead, which leads

to low performance of data storage [199, 16]. For instance, in Ethereum [199], the

throughput can only achieve up to 100s of transactions per second [47], and most

transactions take over 3 minutes to be included in the chain [170].

Blockchain mining was firstly performed with CPU platforms that suffer from

limited repetitive mathematical calculation capability. Then, GPU platforms, ben-

efiting from their highly parallel structure, have replaced CPU to accelerate the

mining process. However, GPU platforms experience higher power consumption and

higher cost [141]. ASICs, which is customized for specific mining algorithm, have

shown their great potential in blockchain mining. Nevertheless, ASIC is application-

specific, and cannot be used once the mining algorithm is updated. Thus, ASICs

suffer from higher design cost and lower reusability [126]. FPGA, which is pro-

grammable hardware that supports reconfiguration after manufacturing, is adopted

to assist the mining process [160]. However, it also suffers from unfavored program-

ming difficulty. In this paper, we propose to use ReRAM, which supports in-memory

computations, to optimize the blockchain mining.

ReRAM is a kind of emerging non-volatile memory that performs matrix-vector

multiplication and sum operation efficiently in a crossbar structure. With ReRAM-

based PIM, data movement between memory and CPU is eliminated, thus, releasing
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computational resource, saving energy, and reducing latency. In addition, massive

crossbars of ReRAM PIM provide high computing parallelism. ReRAM has been

widely studied to perform processing-in-memory (PIM) for several kinds of appli-

cations. Prime [36] uses ReRAM crossbars to represent synapses and designs a

novel PIM architecture to accelerate neural network applications. GraphR [169] and

RPBFS [81] are ReRAM-based graph processing accelerators that map graph ad-

jacency matrix to ReRAM matrix-vector crossbar arrays and exploit the massive

parallel capability of ReRAM. The integration of applications and ReRAM-based

in-memory computing have shown great potential in improving applications’ perfor-

mance.

However, there are several challenges to design a ReRAM-based blockchain min-

ing accelerator since blockchain mining is not a standard matrix-vertex multiplication

process. Specifically, 1) Transformation: how to transfer blockchain mining to basic

ReRAM crossbar multiplication modules. 2) Data mapping: how to design efficient

mapping schemes to map blockchain transaction data into ReRAM crossbar based

modules to perform computations. 3) Parallelism: how to efficiently explore the

parallelism potentials between blockchain algorithm and ReRAM crossbar design.

To address these challenges, we for the first time propose Re-Mining, a ReRAM-

based processing-in-memory architecture for blockchain mining. To transfer blockchain

mining process to ReRAM matrix-vector multiplication operations, Re-Mining is de-

signed to consist of a message schedule module (MeS MU) and a SHA computation

module (SHA MU). In these modules, we first utilize matrix transformation to trans-

fer rotate right shift (ROR) and right shift (RSF) operations into matrix multiplica-

tion operations, then map these matrix operations to ReRAM crossbars and design

the ROR and the RSF units. The modules also include an XOR unit, a SUM

unit and an AND unit, by extending the corresponding peripheral circuit of ReRAM

crossbars. We further propose an intra-transaction parallel framework to accelerate
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the SHA computation process for each transaction, and an inter-transaction parallel

framework to accelerate the blockchain Merkle tree construction and proof-of-work

computation process. The experimental result shows that Re-Mining outperforms

778.5x and 3.8x for blockchain mining process when compared and CPU-based with

GPU-based implementation, respectively.

The rest of this chapter is organized as follows. Section 4.1 presents the back-

ground and motivation of this chapter. Section 4.2 describes the design and imple-

mentation. Experimental results are presented in Section 4.3. Section 4.4 concludes

the paper.

4.1 Preliminaries

In this section, we present the background information about blockchain mining

process, and discuss the motivation of exploiting ReRAM PIM.

4.1.1 Blockchain Mining

Blockchain works as a decentralized public ledger that stores data, such as records of

transactions, with a linked list of blocks. Blocks are generated and shared over

the entire blockchain network to prevent system failure, data manipulation and

cyberattacks [223]. The foundation of guaranteeing data integrity and validity in

blockchain is a computational process – blockchain mining. To generate a new block,

a blockchain node, i.e., miner, is required to solve a computing-intensive proof-of-

work to obtain a hash value that satisfies a predefined difficulty threshold. After

solving the proof-of-work, the result is broadcast to other miners in the networks for

validation. The new block is successfully added if the majority of miners agree or

reach consensus [206].

Currently, blockchain mining process typically adopts the cryptographic hash

algorithm SHA-256 to perform the computation [223]. Our design will also be illus-
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trated with the algorithm SHA-256. As shown in Algorithm 4.1, SHA-256 includes a

Message Scheduler Process that prepares the 512-bit basic computational units

and a SHA Computation Process that is used to perform the hash operations

for these 512-bit computational units.

For the Message Scheduler Process, parameters σ0 and σ1 are needed. Let

RORipxq denote shifting x by i bits rotate right shift, and RSFipxq denote shifting

x by i bits right shift. b is the XOR operation. We can use the following equations

to get these parameters.

σ0pxq “ ROR7pxq bROR18pxq bRSF3pxq (4.1)

σ1pxq “ ROR17pxq bROR19pxq bRSF10pxq (4.2)

For the SHA Computation Process, parameters
ř

0pxq, and
ř

1pxq, Chpx, y, zq,

also Majpx, y, zq are required. We can use the following equations to get these pa-

rameters.

Σ0pxq “ ROR2pxq bROR13pxq bROR22pxq (4.3)

Σ1pxq “ ROR6pxq bROR11pxq bROR25pxq (4.4)

Chpx, y, zq “ px^ yq b px̄^ zq (4.5)

Majpx, y, zq “ px^ yq b px^ zq b py ^ zq (4.6)

By analyzing these equations, we can conclude that the basic logic computation

units for the blockchain mining process consist of ROR, RSF , XOR, SUM , and

AND operations. Thus, to accelerate the ReRAM-based blockchain mining, we need

to design a architecture that supports the basic logic computation with ReRAM.
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Algorithm 4.1 SHA 256

Input: M // a transaction of blockchain

Output: HN
0 |H

N
1 |H

N
2 |H

N
3 |H

N
4 |H

N
5 |H

N
6 |H

N
7

1: Initialize: Pad and cut M into 32-bits

pM
p1q
1 ,M

p1q
2 , ...,M

p1q
16 ,M

p2q
1 , ...M

piq
j , ...,M

pNq
16 q

2: // Message Schedule Process for each block

3: for j = 0 to 15 do

4: Wj “M
piq
j

5: end for

6: for j = 16 to 63 do

7: Wj “ σ1pWj´2q `Wj´7 ` σ0pWj´15q `Wj´16

8: end for

9: // SHA Computation Process for the Message

10: for i = 1 to N do

11: for j = 1 to 64 do

12: T1 “ hj `
ř

1pejq ` Chpej , fj , gjq `Kj `Wj

T2 “
ř

0pajq `Majpaj , bj , cjq

aj`1 “ T1 ` T2, bj`1 “ aj , cj`1 “ bj dj`1 “ cj

ej`1 “ dj ` T1, fj`1 “ ej , gj`1 “ fj , hg`1 “ gj

13: end for

14: H i
0 “ ai´1 `H i´1

0 , H i
1 “ bi´1 `H i´1

1 , ...

15: end for

4.1.2 Motivation

Figure 4.1 shows examples of computing ROR, XOR, SUM , and AND operations

with ReRAM. For ROR operation, we first transfer a vertex rotate operation to its

corresponding matrix-vertex multiplication with Equation 4.7, and then program the

modified identity matrix into ReRAM crossbar. Figure 4.1(a) shows that by using

the vertex (e.g., 0110) as the wordline input, the output are generated by sensing

the current flow (e.g., 1001). Figure 4.1(b) shows an AND example with ReRAM.
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By modifying the sense amplifier (e.g., SA1), we make it output logical ‘1’ when

two cells are both of low resistance status (e.g., 1). Otherwise, SA1 outputs logical

‘0’. Figure 4.1(c) shows the XOR operation. Similarly, the sense amplifier SA2 is

modified to support not only AND but also OR operations, so as to achieve XOR

operations [93]. While vertex-matrix multiplication inherently supports SUM oper-

ations, to achieve the 32-bits sum operation in blockchain computation, we simply

employ the shift and add (S/A) unit to shift and add results of bitlines on ReRAM

crossbars [36], as Figure 4.1(d) shown.

ROR2 p0 1 1 0q “ p0 1 1 0q

¨

˚

˚

˚

˝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

˛

‹

‹

‹

‚

“ p1 0 0 1q (4.7)

0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0

1

1

0

1 0 10

0

ROR2(0110) = 1001

0 1 0

0 0 1 1

0 0 0 0

1

1

0

0 0 10

1

AND

SA1

(b)(a)

0 0 1

1 0 0 1

1 0 1 0

1

1

1

0 1 10

0

SUM

SA   S/A

(c)

0 1 0

0 1 0 1

0 0 0 0

1

1

0

0 0 10

1

XOR

SA2

(d)

Figure 4.1: Examples of logical operations based on ReRAM.
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4.2 Re-Mining: ReRAM Processing-in-memory Ar-

chitecture for Blockchain

In this section, we first present an overview of the Re-Mining design, and then give

the detailed descriptions for each of its function modules.

4.2.1 Design Overview

Figure 4.2 shows the architecture overview. In Re-Mining, each ReRAM bank is par-

titioned into three regions: memory array, Re-Mining engine, and transaction buffer.

The ReRAM memory array serves as conventional memory to store the blockchain

transaction data. The Re-Mining engine consists of a Message Schedule Module (MeS

MU) and a SHA Computation Module (SHA MU). As shown in algorithm 4.1, both

of these two function modules are composed by some basic ROR, RSF, XOR, SUM,

and AND operations. We map these basic logical operations on ReRAM crossbars,

and perform the computation with matrix-vertex multiplication. Each Re-Mining

engine contains several ReRAM crossbars for the operations during the SHA com-

putation process. Transaction buffer is used to buffers message schedule data (e.g.,

Wj) and intermediate hash results. Connection bridges data transfer between Re-

Mining engine and transaction buffer. The controller is used to decode instructions

and generate instructions that coordinate the working process of the Re-Mining en-

gine. The architecture of Re-Mining actually follows the common PIM design that

includes three components - storage, computing, and buffer [60, 140].

4.2.2 SHA Computation Module

As shown in algorithm 4.1, when performing the SHA computation process, parame-

ters
ř

0pxq,
ř

1pxq, Chpx, y, zq, and Majpx, y, zq are required, and those parameters

can be obtained using the equations in Section 4.1.1. We conclude that the SHA

computation process is composed by a series of ROR, RSF, XOR, SUM, and AND
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Figure 4.2: Overview of Re-Mining architecture.

operations. In this section, we present the design details of these logical computation

units with ReRAM crossbars, and incorporate these basic ReRAM crossbar units to

perform the SHA computation.

‚ROR and RSF Operation Units: ROR operations occupy the significant compu-

tation workload of SHA2. However, ROR operations are not inherently matrix-vertex

multiplication operations, and cannot be directly mapped to ReRAM crossbars. To

design the ReRAM-based ROR unit, we first need to transfer ROR operations to

matrix-vertex multiplication operations. As the example shown in Section 4.1.2, we

use Equation 4.7 to transfer the ROR operation into a multiplication operation of a

vertex and an identity matrix. Then we map the transformed matrix into ReRAM

crossbars. The transformation matrix in our ROR unit can be abstracted to the

following formula:

$

’

&

’

%

Epi,N`iq “ 0 p1 ď i ďM ´Nq

Epi,i´M`Nq “ 1 pM ´N ă i ď Nq

Epi,jq “ 0 pOthersq

(4.8)

Here, Wpi,jq is denoted as the cell connected by wordline i and bitline j in a crossbar.

M is denoted as the length of the input vector, N represents the number of bits for

shift operations. The proposed matrix transformation is based on the property of

80



identity matrix in linear algebra, AE “ EA “ A, in which E is denoted as an identity

matrix, and A is denoted as an arbitrary matrix. We transfer the identity matrix into

a new matrix Etra to achieve rotate shift and shift operations: AEtra “ RORnpAq

and RSFnpAq. Our ROR unit can be expended to support right shift, left rotate

shift, and left shift operations. For example, for right shift operation, we only need

to program cells of Wpi,N`Iq p1 ď i ďM ´Nq to be 0.

Figure 4.3 shows an example of the mapping mechanism of our ROR unit. To

shift 5 bits for a given 8-bits number ‘0110 0101’, the ROR unit maps a transfered

identity matrix Etra into a 8*8 ReRAM crossbar. In our design, Etra is obtained by

performing 5-bits rotate right shift of the identity matrix E. So after mapping Etra

into the crossbar, the cells Wp4,1q, Wp5,2q, Wp6,3q, Wp7,4q, Wp8,5q, Wp1,6q, Wp2,7q, Wp3,8q

are programmed to be logic ‘1’. ‘0110 0101’ serves as vertex input, and each bit

corresponds to one wordline. The worldines that corresponding bit is logical ‘1’ are

selected to input discharging voltage, while others are not selected. The result at the

output port in the bitlines will be ‘00101011’.

While above example is discussed by assuming each ReRAM stores one bit data

(SLC), our mapping mechanism also apply to ReRAM cells which store multiple bits

(MLC). The state-of-the-art technologies used in ReRAM have allowed from 1-bit

to 8-bit precision for each cell to support high storage density [220]. Figure 4.3(b)

extends the example given in Figure 4.3(a) with ReRAM cells that store 4-bit. The

matrix size is minimized to 8*2, so every four 1-bit adjacent cells in ReRAM in each

row are integrated into one 4-bit cell.

Benefits of our mapping mechanism for shift operation are three-fold: 1) It sup-

ports all kinds of shift operations with arbitrary bits. 2) Once a crossbar for shift

operation are programed, it can be utilized repeatedly without consuming more

computing resources, which is well-suited for computation that contains tremendous

repetitive shift operations, such as proof-of-work in blockchain. In our ROR oper-
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Figure 4.3: An example of ROR operation with ReRAM PIM.

ation unit, all crossbars are merely pre-programmed for one time. 3) Implementing

our module in ReRAM only needs to add some simple existing peripheral circuits,

such as SA and WDD.

‚ AND and XOR operation Unit: As shown in Section 4.1, AND and XOR

operations occupy the other majority of SHA computation. To support AND and

XOR operations, we modify the sense amplifiers (SAs). AND operation in equation

Ch and Maj requires two inputs, which results in three situations: if both cells are

of high resistance (logical ‘0’), the bitline current is of low level (Iw); On the contrast,

the bitline current is of high level (Ih), when both cells represent logical ‘1’; If one of

two cells is of high resistance (logical ‘0’), the bitline current is in relatively medium

level (Im). In order to support AND operations, we modify the reference value of

current detection in SA to output ‘1’ when it detects high current Ih. Similarly, we
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modify the reference value of current in SA to output ‘1’ when it detects current

lager than Im to support OR operation. The modifications are achieved by adding

two sense resistances RAND, ROR in SAs. XOR operation is implemented based on

the results of AND and OR operations. Specifically, the SA outputs ‘1’ when the

results of AND and OR operations are ‘0’ and ‘1’, respectively. We adopt the design

details of the SA modules from [93]. As Figure 4.2 1© shows, the modified SA1 serves

AND operation and the modified SA2 serves XOR operation.

4.2.3 Message Schedule Module

Similarly, when performing the message schedule process, parameters σ0 and σ1 are

needed, and these parameters can also be obtained using Equation 4.1 and 4.2 in

Section 4.1.1. Since there is no AND operation in both equations, the message

schedule process are composed by a series of ROR, RSF, XOR, SUM operations,

and we also design these logical computation units with ReRAM crossbars. The

design details of these units are the same as described in Section 4.2.2, we will omit

the design details here.

4.2.4 Intra-transaction Parallelism

The SHA algorithm contains two components: Message Scheduler Process and SHA

Computation Process. During these processes, each transaction is divided into 32-

bit level computation. In this subsection, we explore the parallelism among different

32-bit computation data sectors to accelerate the transaction SHA process.

First, we note that there is no rigorous data dependency between SHA compu-

tation process and message schedule process. SHA computation process requires

results from the last cycle of the message schedule process. Thus, these two pro-

cesses can still work in parallel. Secondly, the 32-bit operands in the equations in

Algorithm 4.1 are data-independent with each other. Figure 4.4 shows the paral-
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lelism of the message schedule process. To compute Wj, the parameter σ0 requires

Wj´15 while the parameter σ1 requires Wj´2. Hence, MeS MU can perform ROR

and RSF operations in parallel, and then their results can perform XOR operations

concurrently. Similarly, during each hash computation loop, equation ch, Maj,
ř

0

and
ř

1 can be computed in parallel, and their results are used in function T1 and

T2 to be processed parallelly.

Since intra-transaction parallel is achieved among basic 32-bit operands, the most

suitable size of ReRAM crossbars is 32*32 that enables us to reach optimal paral-

lelism. However, ReRAM crossbar size ranges from 4*4 to 1024*1024 [220]. While

Re-Mining is also applicable for ReRAM crossbar size which is larger than 32*32, it

leads to a trade-off between memory usage and latency when mapping the MeS MU

and the SHA MU onto ReRAM crossbars.

ROR18

T

ROR7

RSF3

XOR

ROR19

ROR17

RSF10

XOR

SUM

    

     

    

     

  

… …

Figure 4.4: Intra-transaction parallel.

Figure 4.5 shows an example of two extremes when mapping the MeS MU module

into 64*64 crossbars: 1) the matrices for ROR7, ROR18 operations are mapped into

one crossbar in diagonal, while matrices for RSF3 and ROR17, RSF19 and RSF10

operations are mapped into other two crossbars, respectively. After Wj´15 and Wj´2
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are decoded into wordlines, the function σ0 and σ1 can be processed in parallel. 2)

mapping all matrices for shift operations in one equation into one matrix needs fewer

ReRAM crossbars, whereas it leads to longer latency. Similarly, the trade-off also

applies in the SHA MU module.
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Figure 4.5: Implementation alternatives for 64*64 crossbar.

4.2.5 Inter-transaction Parallelism

As discussed in Section 4.1, the blockchain mining process is separated into two

phases: construction of Merkle tree and proof-of-work. In this subsection, we propose

the inter-transaction parallelism mechanism to accelerate both of these two phases.

‚ Construction of Merkle Tree: During the construction of Merkle tree, all ver-

ified transactions are independent of each other, which can be hashed and decoded

in parallel as leaf nodes in the tree with multiple Re-Mining Engines. As shown

in Figure 4.2, the leaf nodes in level 1, HashTx1, HashTx2, HashTx3 and HashTx4

are processed in parallel. The results are concatenated and updated as child nodes

Hash1-2, Hash3-4 in level 2. Obviously, the children nodes in each level are also in-

dependent, and can be processed in parallel with multiple Re-Mining engines. Thus,

with more computing engines, Re-Mining achieves a high parallelism level.

‚ Proof-of-work: When we get the root hash value after the construction of the

Merkle tree, the proof-of-work phase would start. During the proof-of-work process,

the testing process of several nonces could be done simultaneously. Thus, our Re-
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Mining architecture will test several nonces with several mining engines in parallel.

Having n mining engines means n nonces can be tried concurrently within a single

hash latency. The hash value of each testing process is checked then. If it meets

the difficulty threshold, a new block is generated and broadcasted to the blockchain

network. Otherwise, Re-Mining starts to test another set of nonces with value from

n` 1 to 2n until the hash value meets the difficulty threshold.

4.3 Evaluation

4.3.1 Experimental Setup

To evaluate our proposed Re-Mining accelerator, we implement our Re-Mining based

on the ReRAM simulation platform NVSim [48]. The ReRAM read and write la-

tency are derived from [169] as 29.31ns and 50.88ns, respectively. The read and write

energy cost are 1.08 pJ/3.91nJ respectively. Other related circuit parameters are ref-

erenced from [164]. The capacity of ReRAM applied in Re-Mining is of the same

size of memory space in GPU (e.g., 11GB). The size of ReRAM crossbars is 64*64.

We assume 4-bits MLC for each cell in store array while 1-bit SLC for each cell in

Re-Mining array. We utilize 10% of memory capacity for computation. Each compu-

tation unit in Re-Mining costs 21 crossbars. For comparison, we also implement the

blockchain mining process with CPU and GPU platforms. Table 1 shows hardware

specifications of CPU-based and GPU-based platforms. We measure the energy con-

sumption for GPU using NVIDIA system management interface (NVIDIA-SMI) [94],

and obtain the power usage for PIM from NVSim. The hardware area usage is also

measured by using NVSim.

We extract transaction blocks with varied number of transactions (usually less

than 3000) from a most well-known blockchain application - bitcoin [144]. In bitcoin,

the number of transactions in each block varies from hundreds to several thousands,
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Table 4.1: The configurations of CPU and GPU platforms.

CPU:
Intel(R) Xeon(R) CPU

E5-2620 v4 @ 2.10GHz

CPU L1 cache 8*32KB

Memory: 16GB

GPU: NVIDIA GTX 1080i

NVIDIA CUDA Cores 3584

Graphic Memory: 11 GB GDDR5

but generally less than 3000. The computation in blockchain mining process mainly

includes two parts: hash of Merkle tree and proof-of-work. We firstly show the

performance of Re-Mining when computing the root hash value of Merkle tree. Then,

we compare Re-Mining with CPU and GPU to show the performance improvement

for proof-of-work and throughput under different difficulties.

4.3.2 Micro Performance

We randomly select 5 blocks with increasing sizes, which contain around 1000, 1500,

2000, 2500, 3000 transactions, respectively, from bitcoin as the workloads. Figure 4.6

shows the performance comparison of Re-Mining, CPU, and GPU in terms of latency

(ms). Generally, Re-Mining has the lowest latency across the board. With the

number of transactions in the blocks increasing, the latency also increase, but Re-

Mining suffers the lowest incremental rate. When the number of transactions in

blockchain blocks is increased to 3000, Re-Mining outperforms 80.1x than CPU-

based implementation, and 2.6x than GPU-based implementation.

4.3.3 Macro Performance

The performance of Re-Mining for proof-of-work computation in blockchain is de-

picted in Figure 4.7. We vary the difficulties required by blockchain algorithm from
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Figure 4.6: Running time for Merkle tree computation.

5 to 9 zero bits. Our proposed Re-Mining accelerator outperforms up to 778.5x than

CPU-based implementation, and up to 3.8x than GPU-based implementation. The

reason is that our Re-Mining architecture reduces the data movement overhead be-

tween processing unit and memory, and achieves high parallelism by testing multiple

nonces in parallel during poof-of-work process.

Compared with improvement of micro workloads, the performance improvement

of macro workloads is much higher. This is because the volume of data in each

block is limited, the computation of which is far away to reach the full potential

parallelism of GPU and Re-Mining. On the other hand, the proof-of-work process

in blockchain requires a huge amount computation, which could better utilize the

parallel processing capability of our Re-Mining architecture.
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Figure 4.7: Running time for proof-of-work computation.

4.3.4 Throughput Performance

Figure 4.8 shows the throughput performance (the number of transactions per sec-

ond) of Re-Mining on varying difficulties. CPU has the lowest throughput, and yields

below 1 TPS when the difficulty has 9 zero bits. GPU shows higher throughput than

CPU, reaching over 15K when the difficulty has 5 zero bits, but significantly dropping

at around 110 when the difficulty has 9 zero bits. Re-Mining achieves the optimal

performance, showing up to 3.6x higher throughput than GPU. The throughput

performance follows the observation of macro performance, since the mining pro-

cess is dominated by proof-of-work computation. The throughput performance of

Re-Mining demonstrates its efficiency to improve data storage in blockchain appli-

cations.

89



5 6 7 8 9

2 , 0 0 0

4 , 0 0 0

6 , 0 0 0

8 , 0 0 0

1 0 , 0 0 0

Th
rou

gh
pu

t (T
PS

)

D i f f i c u l t i e s  o f  P r o o f - o f - w o r k  ( b i t s )

 C P U
 G P U
 R e - M i n i n g

Figure 4.8: Performance for transaction throughput.

4.3.5 Energy Consumption

Figure 4.9 reports the energy consumption of Re-Mining on varying difficulties. CPU

has lowest average power (185 watts) on mining computation, while the longer exe-

cution time leads to the highest energy cost. Re-Mining has higher average power,

but still achieves energy reduction due to the reduced execution time. Specifically,

Re-Mining achieves up 2.6x energy saving compared to GPU when the difficulty

has 9 zero bits. The energy consumption of CPU-based and GPU-based implemen-

tations mainly consist of two aspects: processor computation power and memory

access power. Re-Mining eliminates the data access and shortens execution time,

and thus consumes less energy compared to CPU and GPU.

4.3.6 Hardware Area

We compare Re-Mining to CPU and GPU on hardware area. The CPU’s chip area

is 912 mm2 [185, 60] and GPU’s chip area is 471 mm2 [159, 171]. Re-Mining has

three components - memory array, Re-Mining engine and transaction buffer, of which
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Figure 4.9: Energy consumption of proof-of-work computation.

Re-Mining engine is the part that works like CPU and GPU to process data. The

simulation results show that Re-Mining engine is more area-efficient than GPU and

CPU, and only takes around 452 mm2 area. The circuit that consumes the largest

area is ADC to support dot-product computation. If we include the area usage of

memory array and transaction buffer, the area of Re-Mining is 1.3x larger than CPU

and 2.5x than GPU. The area is expected to decrease effectively with advance 3D

NVM stacking [156] and multi-level storage [217] techniques.

4.4 Chapter Summary

In this section, we conclude the work presented in this chapter, and discuss the

related future research directions.
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4.4.1 Conclusion

In this chapter, we propose Re-Mining, a novel ReRAM PIM accelerator for blockchain

mining process. The blockchain mining algorithm is mapped on ReRAM crossbars

with efficient parallelism. We transform the logical operations such ROR, to matrix-

vertex multiplication supported by ReRAM PIM. We propose the parallelism op-

timization to make full use of ReRAM crossbar resources. Experimental results

show that Re-Mining outperforms GPU-based and CPU-based implementations sig-

nificantly with both micro and macro workloads. The accelerated mining can con-

tribute to fast data storage in blockchain systems. Re-Mining includes processing

cryptographic hash (i.e., SHA-256) as main component. Beyond the Blockchain,

cryptographic hash function is also widely used in many application domains such

as image encryption [59, 72], web server [136] and RFID [64], which can adopt our

design to accelerate the hash computation.

4.4.2 Research Directions

To exploit NVM PIM for blockchain applications, we consider future research direc-

tions as follows.

First, high energy consumption of blockchain mining is a typical issue for industry

applications. One attractive characteristic of NVM PIM is lower energy cost than

the processors including CPU and GPU. The straightforward way to decrease energy

cost is adopting fewer memory crossbars for processing, which yet leads to lower

computing parallelism. How to balance the trade-off between computing parallelism

and the energy consumption is significant to further improve practicality of NVM

PIM. Recent NVM simulators [48, 203, 32] provide the functionality to model energy

consumption of PIM designs.

Second, the blockchain is trusted only if over 51% computing resources is con-
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trolled by trusted parties. When NVM PIM is ready to be involved in a blockchain

network, NVM PIM as new processor participates mining new blocks, cooperating

with other processors such as GPU and ASIC in manner of heterogeneous comput-

ing. Various processors have different properties and computing power. One issue

arises that how to ensure over 51% computing power is always occupied by NVM

PIM, and at same time, to achieve high performance of mining by making full use

of all processors.
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Chapter 5

Speeding Up End-to-end Query

Execution Via Learning-based

Progressive Cardinality Estimation

Query optimizers of database systems rely on the estimated cardinalities to eval-

uate the costs of the execution plans, and can find the optimal execution plan if

the estimations are error-free [122]. Traditional approaches exploit statistics of the

tables (e.g., via histogram or sampling) for cardinality estimation [201, 130, 45, 5].

Their errors are large (e.g., many orders of magnitude) as they fail to account for the

correlations among the tables [130, 122]. Recently, many learning-based cardinal-

ity estimation methods have been proposed [109, 175, 195, 213], which significantly

improve the accuracy of traditional methods. These learning-based estimators often

involve complex model designs that trigger higher computation overhead than tradi-

tional approaches. Modern GPUs provide high computing parallelism, thus they are

widely used in the learning-based estimators [109, 212, 195, 84, 127, 200, 175].

Existing learning-based cardinality estimators can be classified into three cate-

gories [200, 195]: data-driven, query-driven and hybrid. Data-driven estimators [85,

82, 212] regard cardinality estimation as an unsupervised learning problem and model

the joint distribution of the relation tables. Query-driven estimators [109, 175, 53]
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Table 5.1: A comparison of some learning-based cardinality estimators.

Estimator
Data

access

q-error for

estimation

Inference

time (ms)

Hybrid UAE [200] Yes 5.05 20.6

Data-driven
NeuroCard [212] Yes 6.39 20.2

DeepDB [85] Yes 8.62 29.5

Query-driven

MSCN [109] No 54.1 0.01

TLSTM [175] No 39.8 0.52

LPCE (our work) Yes 15.7 0.27

treat cardinality estimation as a regression problem that maps feature vectors ex-

tracted from the query content to cardinality values. Hybrid estimators [200] learn

from both data and query for better accuracy.

In this work, we focus on query-driven estimators for three reasons. First, they

can be easily integrated into existing database systems in a fashion we call model-

as-a-service. They require only query samples and result cardinalities, and thus

model training and inference can be provided as a service (e.g., on the cloud). The

database system and query optimizer are regarded as black boxes, and thus query-

driven estimators can be upgraded transparently. This is important given the rapid

development of learning-based estimators (e.g., from MSCN [109] in 2019 with about

600 LoC to NeuroCard [212] in 2021 with 8000+ LoC). In addition, their training and

inference costs do not have to scale with data size, and hence are more friendly to

large-scale data. Second, query-driven estimators do not access the relational tables,

and thus are free from data security problems, which are important for areas such

as finance and medicine [12]. Third, query-driven estimators typically have shorter

inference time than data-driven and hybrid estimators, as we will show shortly in

Table 5.1, and thus add less overhead to end-to-end query execution time.

To understand the trade-offs of existing learning-based estimators, we conduct

a preliminary test on the IMDB dataset [122]. We generate a set of queries with 8
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joins by following [109], and report the estimation error and average inference time of

existing learning-based estimators in Table 5.1. The results show that query-driven

estimators have larger errors but shorter inference time than data-driven and hybrid

estimators. This can be partially explained by the fact that query-driven estimators

use less information than data-driven and hybrid estimators. To investigate the effect

of query complexity (e.g., the number of joins) on existing learning-based estimators,

we generate a set of queries whose number of joins ranges from 2 to 8. We plot the

estimation error of different estimators in Figure 5.1. Figures 5.1(a) and (b) show

that the errors of query-driven estimators are small for simple queries (e.g., with 2

or 4 joins) but become large for complex queries with more joins (e.g., ą100x for

8 joins). One reason is that estimation errors propagate and amplify when more

operators are involved. Guided by inaccurate estimations, the initial execution plan

found by the query optimizer via query-driven estimators can be far from optimal,

especially for complex queries.

Inspired by the observations above, we propose a novel query-driven estimator,

i.e., progressive cardinality estimator, which dynamically refines cardinality estima-

tions for the remaining operators in the execution process using the exact cardinality

of the executed operators, such that the query optimizer can adjust the execution

plan to reduce end-to-end execution time. Thus, cardinality estimation enjoys the

short inference time of query-driven estimators and high accuracy at the same time.

Interestingly, we found that data-driven and hybrid estimators also have larger er-

rors for complex queries, as shown in Figures 5.1(c) and (d). We plan to extend our

progressive cardinality estimation framework to them in the future.

We provide one schematic illustration of progressive cardinality estimation in

Figure 5.2, where the left panel shows the initial execution plan. After executing

the operator at bottom of the join tree (i.e., Rσ ’ Tσ), we obtain its exact cardinal-

ity (i.e., 1,128), which enables more accurate cardinality estimations for sub-plans
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Figure 5.1: Cardinality estimation accuracy for the queries with different number of
joins.

that involve the result of Rσ ’ Tσ (e.g., pRσ ’ Tσq ’ Uσ, pRσ ’ Tσq ’ Sσ, and

pRσ ’ Tσq ’ Sσ ’ Uσ). With the refined estimations, the optimizer may find that the

plan in Figure 5.2(b) is better, whose join order (for table Uσ and Sσ) and operator

execution method (from hash join to nested loop join) are different from Figure 5.2(a).

Progressive cardinality estimation poses challenges on both the effectiveness and ef-

ficiency of the estimator. Specifically, effectiveness means that the estimator should

fully utilize the information of the executed operators to provide more accurate cardi-

nality estimations for the remaining operators. Efficiency means that the estimation

model should have a short inference time as the overhead of progressive estimation

adds to end-to-end query execution time.

To address the challenges above, we propose a framework named Learning-based
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Figure 5.2: Query re-optimization example, upright number for real cardinality and
italic number for estimated value. ’L indicates nested loop join and ’H is hash join.

Progressive Cardinality Estimation (LPCE). It consists of an initial cardinality esti-

mation model (LPCE-I) and a progressive cardinality refinement model (LPCE-R).

LPCE-I is designed to provide accurate initial estimation with low cost. In par-

ticular, LPCE-I utilizes a node-wise loss function to learn from the internal operators

in an execution plan (instead of only the final query result as in existing estimators),

which leads to high estimation accuracy. In addition, LPCE-I employs a SRU-based

model backbone, and thus enables fast inference as SRU has fewer parameters than

LSTM used in existing query-driven estimators and enjoys parallel matrix compu-

tation. Last but not least, we use a knowledge distillation-based model compression

technique to further improve the inference efficiency of LPCE-I. The SRU-based

design and model compression lead to short inference time on GPU.

LPCE-R is designed to progressively refine cardinality estimations for the remain-

ing operators in the execution process. LPCE-R consists of three modules: one module

is trained to extract the query contents of the executed operators, the second module

focuses on the exact cardinalities of the executed operators, while the third module

fuses the information provided by the former two modules to conduct estimation

for the remaining operators. All three modules adopt the lightweight structure of
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LPCE-I, and thus LPCE-R also enjoys efficient inference.

The reasons that we choose GPU instead of NVM PIM for cardinality estimation

are two-fold: 1) Advances database engines such as HeavyDB [83], Kinetica [108]

and BlazingSQL [18], have already adopted GPU as accelerator to speedup query

execution. Instead of introducing new hardware, it is cost-effective to further explore

utilizing GPU for cardinality estimation. 2) Existing learning-based estimators (e.g.,

DeepDB, NeuroCard) are widely used with GPU, though they cannot achieve accuracy

and efficiency simultaneously. LPCE on GPU can meet the urgent needs of user to

shorten query end-to-end execution time with both accurate and effective cardinality

estimation, by easily replacing the estimator without waiting for a ready commercial

NVM PIM device. We leave the implementation issues on NVM PIM as future work.

To summarize, we made the following contributions in this work:

‚ We observe that the estimation errors of query-driven cardinality estimators in-

crease with query complexity and propose progressive cardinality estimation to

combat estimation errors and reduce end-to-end query execution time.

‚ We design the LPCE framework for progressive cardinality estimation, which con-

sists of an initial estimation model (LPCE-I) and a progressive refinement model

(LPCE-R). LPCE-I adopts node-wise loss function, SRU-based backbone and knowl-

edge distillation to achieve accuracy and efficiency (Section 5.2). LPCE-R uses a

structure with three modules to effectively extracts information from the executed

sub-plans and accurately refines the cardinality estimations for the remaining op-

erators (Section 5.3).

‚ We integrate LPCE into PostgreSQL, a well-known SQL engine (Section 5.4) and

conduct extensive experiments on the widely used IMDB dataset (Section 5.5).

The results show that LPCE outperforms recent query-driven, data-driven and

hybrid estimators in end-to-end query execution time because of its high estimation
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accuracy, fast inference and progressive estimation refinement.

The remainder of the paper is organized as follows. Section 5.1 introduces the

overall framework and design goals of LPCE. Section 5.2 presents our initial cardi-

nality estimation model LPCE-I. Section 5.3 discusses the design of our progressive

cardinality refinement model LPCE-R. Section 5.4 describes how we integrate LPCE

into PostgreSQL. Section 5.5 reports our extensive experimental evaluation. Sec-

tion 5.6 reviews the most relevant works while Section 5.7 draws the concluding

remarks.

5.1 Overview of the LPCE Framework

We consider select-project-equijoin-aggregate [134, 109] queries in the following form:

SELECT COUNTp˚q

FROM R, U, S, T

WHERE Rσ “ Uσ AND Uσ “ Sσ AND Sσ “ Tσ,

where R, U, S and T are relational tables, σ represents the filtering predicates (e.g.,

R.a ă 10, which returns tuples in R whose attribute a is smaller than 10) and the

filtering operator can be ă, ď, “, ą and ě. For a query, query optimizers find an ef-

ficient execution plan (usually expressed as a join tree) by enumerating feasible plans

using algorithms such as dynamic programming [122]. The cost of a plan is calculated

based on cardinality estimations of its sub-plans (e.g., Rσ ’ Tσ and pRσ ’ Tσq ’ Uσ

for the plan in Figure 5.2(a)). We focus on query-driven cardinality estimators and

design LPCE to combat the large estimation errors for complex queries.

5.1.1 End-to-end Query Execution with LPCE

LPCE aims to reduce the end-to-end execution time of queries and consists of an

initial estimation model LPCE-I and an estimation refinement model LPCE-R. LPCE
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cooperates with the modern query engines (e.g., PostgreSQL) in manner of co-

processing. LPCE serves the cardinality estimation in the query optimizer, which

is processed by GPU. The other components in the query optimizer such as plan

enumeration are processed by CPU. The query execution is processed by CPU. Fig-

ure 5.3 shows how LPCE works in the execution process of a query.

1. The query is sent to LPCE-I for initial cardinality estimations of all possible

sub-plans when it is submitted;

2. Using the initial estimations, the query optimizer chooses a good execution

plan using its plan search algorithm;

3. The chosen plan is executed and estimation refinement is triggered if the actual

cardinality of some sub-plan differs significantly from the initial estimation;

4. For the feasible sub-plans of the remaining operators, LPCE-R is invoked to

refine their cardinality estimations by exploiting the actual cardinalities of the

executed sub-plans;

5. Based on the refined estimations, the query optimizer adjusts execution plan

of the remaining operators for better efficiency.

The idea behind LPCE is simple: during the query execution process, the result

tables of the executed sub-plans are available, which serve as inputs to the opera-

tors that remain to be executed and thus provide crucial information to refine their

cardinality estimations (w.r.t. the initial estimations). LPCE is most beneficial for

complex and long running queries, for which query-driven estimators can have large

estimation errors and thus the initial execution plan may be far from optimal.
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Figure 5.3: Using LPCE for query end-to-end execution.

5.1.2 Design Goals of LPCE

To reduce the end-to-end execution time of queries, LPCE needs to meet three

key goals, i.e., high accuracy, progressive refinement and fast inference, which we

elaborate as follows.

High Accuracy: Theoretically, query optimizers can find the optimal execution

plan if the cardinality estimations and cost model are exact [122]. However, the er-

rors of existing query-driven cardinality estimators can reach several orders of mag-

nitude [122, 130]. To guide query optimizers to a good initial plan, LPCE-I should

provide high accuracy for initial cardinality estimations. Accurate initial estima-

tion also reduces the frequency of estimation refinement and query re-optimization,

which incur extra overhead. For this goal, we design the node-wise loss function in

Section 5.2.

Progressive refinement: LPCE-R should effectively reduce estimation error when

more operators are executed such that re-optimization can find good execution plans.
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For this purpose, the refinement model should fully utilize information of the exe-

cuted sub-plans, especially their real cardinalities. To achieve this goal, we design a

model structure with three modules for estimation refinement in Section 5.3, which

explicitly considers the executed sub-plans.

Fast inference: Learning-based cardinality estimators are shown to significantly

outperform traditional ones (e.g., histogram-based, sampling-based) in accuracy [109,

175, 212, 85, 82, 213]. However, a key concern of their applications in real database

systems is the long inference time, which may outweigh their advantages in accuracy.

Thus, both the initial estimation and progressive refinement models of LPCE should

support fast inference. To achieve this goal, we use a light-weight model backbone

and further compress it via knowledge distillation in Section 5.2.

5.2 Cardinality Estimation Model

In this part, we first introduce the generic pipeline for learning-based query-driven

cardinality estimation models as background (Section 5.2.1), which we also follow in

LPCE. Then we present the key designs of our initial cardinality estimation model

(i.e., LPCE-I), including node-wise loss function, SRU-based light-weight model and

knowledge distillation assisted model compression (Section 5.2.2„5.2.4), which lead

to high accuracy and fast inference.

5.2.1 Model Learning Pipeline

Given an execution plan, learning-based cardinality estimation models predict the

cardinalities of the result tables (both indeterminate and final) [109, 175, 212, 82, 53].

As illustrated in Figure 5.4, training learning-based cardinality estimation models

takes three steps, i.e., sample collection, feature encoding and model learning, which
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we elaborate as follows.

Sample collection: Cardinality estimation is usually formulated as a regression

problem, in which the execution plan is the input and the cardinalities are the output.

Training samples can be collected from historical execution log. In the case of new

database at “cold start”, sample queries can be randomly generated according to

the relational graph of the underlying dataset [109] and the execution plans can

be obtained from database engines (e.g., via the ‘EXPLAIN QUERY’ command in

PostgreSQL). As shown in Figure 5.4, an execution plan is usually a tree, in which

each node represents an operator (e.g., hash join, index scan and filter). Each node

also contains detailed information about the query, such as filtering predicate (e.g.,

t.kind id ą 7) and join condition (e.g., R.a “ U.a). We can execute the plans and

obtain the cardinality of each node using the ‘Explain Analyze Query’ command

or by adding counters.

Feature encoding: As machine learning models usually take vector input, the

nodes in an execution plan are encoded into a feature vector during prepossessing.

Following existing works [109, 175], we encode the function, join condition, predicate

of each node as illustrated in Figure 5.5. Function is the logical operator at a node

(e.g., join, scan) and we encode it as a one-hot vector with length |P |, where P is the

set of all possible operators. Note that we consider function as logical operator rather

than physical operator such as hash join and index scan. This is because cardinality

estimation is done before physical operator chosen during plan generation. Join

condition are the columns that are joined and we encode it as a two-hot vector with

length |C|, where C is the set of all table columns for the dataset. For example,

the join condition of node 3 is r0, 0, 1, 0, 1, 0s in Figure 5.5, which indicates that the

attribute value of column 3 needs to be equal to column 5 in the join. For nodes

that do not conduct join, the join condition is a zero vector. Predicate is in the
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Figure 5.5: Example for feature encoding.

form of [columnid, operatorid, operand] (e.g., t.kind id ą 7), where columnid and

operatorid use one-hot encoding while the value of operand is recorded as float after

normalization. We concatenate the function, join condition, predicate vectors of a

node to obtain a single feature vector and readers can refer to [109, 175] for more

details about feature encoding.

Model learning: MSCN [109] and TLSTM [175] are two state-of-the-art models

for query-driven cardinality estimation with different structures. MSCN stacks the

feature vectors of all nodes in an execution plan and uses a multi-set convolution

network [216] to map them to cardinality estimation. TLSTM processes an execution

plan recursively following its tree structure using LSTM [86]. The embedding of the

root node is treated as the query representation and used to predict cardinality.

MSCN has large estimation errors as it does not utilize the structure of the execution

plan while TLSTM suffers from the high computation complexity of LSTM. Our
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LPCE-I also processes an execution plan recursively using RNN as in TLSTM but

designs are introduced to boost both accuracy and efficiency.

5.2.2 SRU-based Light Weight Model

Our SRU-based model is illustrated in Figure 5.6, which is used to process each

node in an execution plan. The model consists of three modules, i.e., embed module,

SRU module and output module. The embed module is used to map the sparse

feature embedding of a node (introduced in Section 5.2.1) to dense embedding x.

We use a two-layer fully-connected neural network with ReLU activation function as

the embed module. The output module is used to map the node representation h

(which encodes the sub-plan rooted at the node) to cardinality estimation, which is

also two-layer fully-connected neural network. The final layer of the output module

uses the sigmoid activation function to generate a float in [0,1], which is interpreted

as the ratio of the estimated cardinality over the maximum cardinality observed in

the train set.

For a node in an execution plan, the SRU module takes its query content embed-

ding x, the encodings of its left and right child in the execution plan tree (i.e., cl and

cr), as input to generate the node encoding c and node presentation h. The SRU
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module is an RNN as node encoding c is passed to its parent node, which reuses the

SRU module with the same parameter. The SRU module uses the simple recurrent

unit (SRU) [121] as the model, which conducts computation following

x̃ “ Wxx

f “ ρpWfx` bf q

r “ ρpWrx` brq

c “ f d pcl ` crq ` p1´ fq d x̃

h “ r d tanhpcq ` p1´ rq d x

(5.1)

where Wx, Wf and Wr are parameter matrices, bf and br are bias vectors, d denotes

element-wise multiplication and ρ is the activation function sigmoid. f is the forget

gate, which controls the weight of the children encodings (i.e., cl and cr) and projected

node embedding (i.e., x̃) when generating encoding c for the current node. r is the

reset gate, which uses the node embedding x and node encoding c to generate node

representation for cardinality estimation.

We choose SRU as the RNN model in LPCE-I as it has higher computation effi-

ciency than the LSTM in TLSTM. LSTM needs 8 matrix multiplications while SRU

needs only 3. In addition, the 3 matrix multiplications (to compute x̃, f and r,

respectively) in SRU can be parallelized while the matrix multiplications in LSTM

have data dependencies. In the experiments, we show that our SRU-based model is

2.1x smaller in memory consumption, and 1.5x faster in inference speed compared

with TLSTM when running on GPU. We also show that changing from LSTM to

SRU has negligible loss in estimation accuracy.
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5.2.3 Node-wise Loss Function

Both MSCN and TLSTM use the mean q-error as the loss function, which is defined

as

L “ 1

n

n
ÿ

i“1

qi with qi “
maxpci, c̃iq

minpci, c̃iq
, (5.2)

where ci and c̃i are the real and model estimated cardinalities for the final result

table of the ith execution plan, and the train set contains n plans. qi is the q-error of

the ith plan, which measures the estimation accuracy and lower value indicates better

estimate (note that qi ě 1). As Equation (5.2) only considers estimation errors for

the final result of each query, we call it the query-wise loss function. In LPCE-I, we

use the node-wise loss function defined as

L “ 1

n

n
ÿ

i“1

mi
ÿ

j“1

qij with qij “
maxpcij, c̃ijq

minpcij, c̃ijq
, (5.3)

where cij and c̃ij are the real and model estimated cardinality for the jth node in the

ith execution plan, and mi is the number of nodes in the ith execution plan. Different

from the query-wise loss function, the node-wise loss function considers the q-error

of all nodes in each execution plan.

We observe that the node-wise loss function significantly improves estimation

accuracy and the reasons are two-fold. First, it is a kind of data augmentation that

enlarges the train set. For example, for a single execution plan pA ’ Bq ’ pC ’ Dq

in the train set, the node-wise loss function actually uses the estimation error of

three execution plans, i.e., pA ’ Bq, pC ’ Dq and pA ’ Bq ’ pC ’ Dq. As complex

queries contain many internal nodes, the data augmentation effect is significant.

Second, it allows supervision for every node in the execution plan. TLSTM (and

our LPCE-I) uses RNN to embed an execution plan from leaf to root along its tree

structure and the query-wise loss function only provides supervision for the root node,
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which means that the gradients need to back-propagate in time to reach the internal

nodes. By providing direct supervision signal for the internal nodes, the node-wise

loss function produces more informative embedding for the internal nodes, which

yields more accurate representation and thus cardinality estimation for the entire

query. We observe that the gain of the node-wise loss function is significant for

complex execution plans with a deep tree structure (Section 5.5).

5.2.4 Knowledge Distillation for Compression

The model structure parameters of LPCE-I (e.g., the size of the embedding vectors and

number of hidden units in the neural networks) control the complexity and accuracy

of the model. Although using a small model provides fast inference, we found directly

training the small model yields poor accuracy. This is because smaller models have

weaker ability to learn and generalize. To train small model with high accuracy, we

use knowledge distillation [69], which uses a large (thus accurate) teacher model to

guide the learning of the small student model. The idea is that the student model

can learn useful knowledge by matching the output of the teacher model as shown in

Figure 5.7, which is easier to fit than training data as it is produced by the teacher

model whose structure is the same as the student model.

To conduct knowledge distillation, we first train a teacher model with high com-

plexity and accuracy. Then, we train the student model using the following hint

loss

Lhint “
1

n

n
ÿ

i“1

mi
ÿ

j“1

}xtij ´ pepx
s
ijq}1 ` }h

t
ij ´ psph

s
ijq}1. (5.4)

For the jth operator in the ith execution plan, xtij and xsij are the output of the

embed module of the teacher model and student model, respectively. Similarly, htij

and hsij are the node representation produced by SRU module of the teacher model

and student model. pep.q and psp.q are two single-layer neural networks that are used
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Figure 5.7: Model compression via knowledge distillation.

to adjust the outputs of the student model to the same size as the teacher model.

After that, we further calibrate the student model using the following prediction loss

Lpredict “
1

n

n
ÿ

i“1

mi
ÿ

j“1

αqsij ` p1´ αq
ˇ

ˇytij ´ y
s
ij

ˇ

ˇ , (5.5)

where qsij is the q-error for the cardinality estimation of the student model, ytij and

ysij are the logit before the sigmoid activation function in the output module of the

teacher and student model. We train the student model to fit the logit of the teacher

model as it has a direct impact on cardinality estimation. α is a weight used to

balance the two loss terms and usually set as 0.5. In the experiments, we show that

knowledge distillation can compress the LPCE-I model by more than 10x and speed

up inference without degrading accuracy. The model inference is faster on GPU due

to the smaller model size.

5.3 Cardinality Refinement Model

Query-driven estimator produces cardinality prediction at large errors for queries

that model has not learned. We propose to query re-optimization with cardinality
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refinement to combat the large errors and adjust the execution plan to be better one.

In this part, we present the design of LPCE-R, our model for progressive cardinality

estimation refinement.

5.3.1 The Model Structure of LPCE-R

As illustrated in Figure 5.8, query execution in database systems is conducted from

leaf to root along the execution plan tree. At some points in time, some nodes

in the query plan (shadowed in Figure 5.8) are finished while some remain to be

executed. The idea of LPCE-R is to use the information of the finished nodes to

refine cardinality estimations for the remaining nodes as the cardinalities of the

remaining nodes depend on the intermediate result tables of the finished nodes. Thus,

LPCE-R needs to solve three problems: (i) what information should we extract from

the executed sub-plan, (ii) how to effectively exploit the information for cardinality

refinement and (iii) how to efficiently refine the cardinality estimations in the query

execution process.

To address the problems above, LPCE-R adopts a hybrid structure with three

modules as illustrated in Figure 5.8. All three modules adopt the same structure as

LPCE-I in Section 5.2.2 but are trained differently (will be discussed in Section 5.3.2).

Cardinality module and content module are used to extract different information from

the executed sub-plan. A connect layer merges the information from cardinality mod-

ule and content module as input for refine module, which refines the cardinality

estimation for the remaining nodes. In the following, we introduce the design of each

of these components.

Information extraction with two modules: Two kinds of information can and

should be extracted from the executed sub-plan, i.e., real cardinality and query con-

tent. For example, if the cardinality of a node is estimated as 10 originally but the

real cardinality is found to be 1000 after finishing it. Noticing this 100x underesti-
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Figure 5.8: An overview of LPCE-R for estimation refinement.

mation is crucial for refining the estimations for the remaining nodes as the results of

these nodes depend on the finished nodes. In addition, the semantics of the executed

sub-plan (i.e., query content), such as the type of the operators, joined columns

and filtering predicates, are also important for estimating the cardinalities of the

remaining nodes. For example, a filtering predicate in the executed sub-plan (e.g.,

R.a ă 10) could have a direct impact on the remaining join operators (e.g., R ’ U

with R.a “ U.a). Therefore, cardinality module is used to extract the real cardinality

of the executed sub-plan and adopts the structure of LPCE-I. Content module is used

to extract the query content and its structure is also exactly the same as LPCE-I.

One can append the real cardinalities of its two children to the query content fea-

ture encoding of an executed node, which is used as input for the single module.

However, in the experiments, we observed using both cardinality and content module

yields significantly higher accuracy than using only one module, which suggests that

both real cardinality and query content are important for estimation refinement.

Learned information merge: Both cardinality and content module produce an
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embedding (i.e., cA and cB), which encodes the executed sub-plan. As shown in

Figure 5.8, we train a connect layer to merge the two embedding as input for refine

module. The connect layer uses a single-layer neural network with sigmoid activa-

tion function to learn the merge weights for cA and cB, respectively. The weighted

combination of cA and cB is processed by a single-layer neural network with ReLU

activation function. Specifically, the connect layer conducts the following computa-

tion

wA “ ρpWAcA ` bAq

wB “ ρpWBcB ` bBq

cAB “ ReLU
`

WABpwA d cA `WB d cBq ` bAB
˘

,

(5.6)

where ρp¨q is the sigmoid function and d denotes element-wise multiplication. WA,

WB and WAB are parameter matrices. We use a learned connect layer because we

observed empirically that the contributions of real cardinality (i.e., cB) and query

content (i.e., cA) to accuracy vary in different scenarios. For example, when the

number of remaining operators is small, using only real cardinality already provides

good estimation accuracy. However, the query content is important when there are

many remaining operators due to more dependencies on the semantics of the finished

sub-plan. The connect layer can learn to adjust the weights of real cardinality and

query content according to the scenario.

Efficient progressive refinement: Refine module is used to refine the cardinal-

ity estimations of the remaining operators and its structure is exactly the same as

LPCE-I. The embedding of the executed sub-plan (i.e., cAB) is fed as input to the

SRU of refine module, which replaces both or either of cl and cr (see Figure 5.6)

according to the execution situation. When an operator finishes, both cardinality

and content module update their embedding according to the previously executed

sub-plan (which has already been processed by the modules) and the just finished

113



operator. Using the updated embedding, refine module refines the estimations for

all remaining operators. Progressive refinement is efficient as cardinality and content

module do not need to process the entire finished sub-plan from scratch. Instead,

the embedding is updated incrementally with each finished operator.

5.3.2 Training Procedures

As illustrated in Figure 5.9, the training of LPCE-R consists of two stages, i.e., pre-

train and adjustment. In the pre-train stage, content module is trained in the same

way as LPCE-I and refine module shares the same parameters as content module. For

cardinality module, we concatenate the feature encoding (for the query content) of

each operator with the real cardinalities of its two children as input, and train the

module to minimize the node-wise loss function in Equation (5.3). Note that for the

leaf nodes in an execution plan, their real cardinalities are the number of tuples in

the considered attributes.

In the adjustment stage, we froze cardinality and content module, and fine-tune

refine module. In this case, an execution plan with m operators provides m-1 training

samples for refine module. Specifically, when each operator finishes, content and

cardinality module are used to obtain the embedding of the executed sub-plan, and

refine module is trained to predict the cardinalities of the remaining operators. The

loss function is also the node-wise loss function in Equation (5.3). We provide such

an example in the lower part of Figure 5.9, in which operators 4, 5, 6 are executed

and the cardinalities of operators 0 and 2 need to be re-estimated.

5.4 Integrating LPCE into PostgreSQL

The query optimizer of PostgreSQL uses dynamic programming to enumerate all

possible execution plans. For a query that joins n relation tables, enumeration starts

at level-1 for the base tables (e.g., Rσ, along with possible filtering predicates) and
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Figure 5.9: The training workflow of LPCE-R.

ends at level-n for the entire query (e.g., Rσ ’ Tσ ’ Uσ). To find the best execution

plan for a sub-query at level-i, the optimizer decomposes it into smaller sub-queries

at lower levels (called children) and requires cardinality estimations of all children.

For example, optimizing Rσ ’ Tσ ’ Uσ requires cardinality estimations of Rσ, Tσ, Uσ,

Rσ ’ Tσ, Tσ ’ Uσ and Rσ ’ Uσ. Thus, a query that joins n relations requires up to

2n ´ 1 cardinality estimations (when all relations can join with each other).

Integrating LPCE-I: We replace the histogram-based cardinality estimator of Post-

greSQL with LPCE-I. Following [175], a memory pool is used to store the cardinality

estimations and execution costs of sub-queries. We batch the inference for all sub-

queries on the same level as they have the same number of inputs and the feature

vectors of a sub-query are small. For PostgreSQL, query execution time can be

decomposed into planning time TP and execution time TE as its histogram-based

cardinality estimator has negligible overhead. For learning-based estimators, end-to-
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Figure 5.10: Example of query re-optimization with LPCE-R.

end query execution time can be expressed as

Tend “ TP ` TI ` TE, (5.7)

where TI is the model inference time. For queries with a short execution time TE, TI

can easily dominate Tend, in which case learning-based estimators may have longer

end-to-end time than PostgreSQL. In the experiments in Section 5.5, we show that

LPCE-I outperforms PostgreSQL in most cases due to its short inference time.

Integrating LPCE-R: As PostgreSQL does not provide native support for query re-

optimization, we follow the checkpoint scheme in [135]. As shown in Figure 5.10, we

place checkpoints at all join operators in the execution plan, which assert whether the

real cardinality of the operator is significantly different from the (initially) estimated

cardinality. Join implementations in PostgreSQL include hash join, merge join, and

nested loop join. Hash join and merge join are blocking operations, which need to

terminate before subsequent operations start. Checkpoints are placed at hash table

building stage for hash join, and before sorting starts for merge join. Nested loop

join is pipelined with subsequent operations in PostgreSQL, and thus we block nested

loop join and place checkpoint at the outer side of the nested loop.

We use the q-error to measure the difference between the actual cardinalities
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and initially estimated cardinalities, and continue executing the original plan if the

q-error is below a threshold (empirically set as 50). Otherwise, re-optimization is

triggered and the intermediate results are packaged into a materialized view, which

can be used by subsequent operators. During re-optimization, LPCE-R is invoked

to provide refined cardinality estimations, and the optimizer searches the optimal

execution plan among those that continues from the materialized view and those

that restarts query processing from scratch. The end-to-end execution time of a

query that triggers re-optimization can be expressed as

Tend “ TP ` TI ` TR ` TE, (5.8)

where TR is the re-optimization time, which includes the plan search and model

inference time during re-optimization. Therefore, re-optimization should be trig-

gered when its execution time reduction outweighs TR. Currently, we use a simple

threshold, which may invoke unnecessary re-optimizations or miss re-optimization

opportunities. The experiments in Section 5.5 show that re-optimization with this

simple rule already brings benefits and we leave designing more sophisticated poli-

cies to trigger re-optimization as future work. From Equation (5.8), we also observe

that the short inference time of LPCE-R is crucial for enjoying the benefits of re-

optimization.

5.5 Experimental Evaluation

In this section, we present our empirical studies. Section 5.5.1 introduces the exper-

iment settings. Section 5.5.2 evaluates the end-to-end query execution time of LPCE

and compares with state-of-the-art solutions. Section 5.5.3 validates the effectiveness

of the key designs (e.g., node-wise loss function, model compression) of LPCE.
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5.5.1 Experiment Settings

Workloads: We used the IMDB dataset [122] for the experiments, which contains

22 tables recording facts (e.g., actors, directors and companies) about over 2.1M

movies. IMDB is widely utilized in related researches [175, 109, 213, 212, 118, 123]

as a challenging benchmark for cardinality estimation due to its non-uniform data

distributions and complex correlations among the tables. We generate the training

and testing queries according to the relational graph for the tables in IMDB follow-

ing [109]. The training set contains 10,000 sample queries with 6-8 joins, and 10%

of these queries are randomly selected as validation. We used two query sets for

performance testing: (1) Join-six, 500 queries with 6 joins; and (2) Join-eight, 500

queries with 8 joins. As shown in Figure 5.11, we select the test queries such that

their end-to-end execution time on PostgreSQL spreads over a wide range (i.e., from

1s to 1,500s).

Baselines: We compared our LPCE with the following state-of-the-art learning-

based cardinality estimators.

‚ 2 query-driven estimators, i.e., MSCN [109] and TLSTM [175]. MSCN uses a multi-

set convolution network to map the query feature vector to cardinality value while

TLSTM uses an LSTM (a kind of recurrent neural network) to estimate the cardi-

nality of a query according to its execution plan.

‚ 2 data-driven estimators, i.e., DeepDB [85] and NeuroCard [212]. DeepDB adopts

the sum product networks (SPN) to capture the joint distribution of the relations

and assumes conditional independence across the relations. NeuroCard removes

the independence assumption and builds a single deep autoregressive (AR) model

over all relations.

‚ 1 hybrid estimator, UAE [200], which learns from data in an unsupervised manner

118



and query samples in a supervised manner.

Our methods include LPCE-I, which only conducts cardinality estimation before

query execution (the same as existing learning-based estimators), and LPCE-R, which

uses LPCE-I for initial estimation and may trigger query re-optimization and progres-

sive estimation refinement if the errors are found to be large. We use end-to-end query

execution time as the main performance metric.

Implementation details: For MSCN1, DeepDB2, TLSTM3, and NeuroCard4, we

used their open-source implementations and adopted the hyper-parameters recom-

mended by their authors. For UAE, we obtained the implementation from its authors.

Since MSCN and DeepDB do not support range queries on categorical string columns,

we encode these columns into integers using dictionary encoding. As described in

Section 5.4, we replace the histogram-based cardinality estimator of PostgreSQL with

the learning-based estimators for performance evaluation.

For our LPCE-I, the number of hidden units for the embedding module, SRU

module and output module are 64, 196 and 1024, respectively. LPCE-I is compressed

from a large model via knowledge distillation, for which the number of hidden units

for the embedding module, SRU module and output module are 256, 1024 and 1024,

respectively. For LPCE-R, cardinality refinement is triggered when the q-error be-

tween the actual cardinality of an intermediate result table and the initial estimation

is above 50. The models are trained with a batch size of 50 and the Adam optimizer.

Our implementations were based on Python (v3.7.5), PyTorch (v1.5.1), and

PostgreSQL (v13.0). All experiments were conducted on a machine with Intel(R)

Xeon(R) Gold 5122 CPU, 512 GB DRAM, and Nvidia Tesla V100s GPU. GPU is

1https://github.com/andreaskipf/learnedcardinalities/

2https://github.com/DataManagementLab/deepdb-public

3https://github.com/greatji/Learning-based-cost-estimator

4https://github.com/neurocard/neurocard
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Figure 5.11: Execution time of the test queries on PostgreSQL. Queries are ordered
in the ascending order of the execution time.

used as default processor for the learning-based estimators. Our method LPCE, and

baselines MSCN, TLSTM, NeuroCard and UAE are processed with GPU by default.

DeepDB does not support running on GPU, and is processed with CPU by default.

Our source code and query sets are open-source on github5.

5.5.2 End-to-End Query Execution Time

For a query, we define the execution time reduction (reduction for short) of a learning-

based estimator w.r.t. PostgreSQL as

R “
TPostgres ´ TLearn

TPostgres
, (5.9)

in which TPostgres and TLearn are the end-to-end query execution time of PostgreSQL

and the learning-based estimator, respectively. A negative reduction means that the

learning-based estimator has longer execution time than PostgreSQL, and a large

reduction indicates a significant speedup (e.g., a reduction of 99% means a 100x

speedup over PostgreSQL). In Table 5.2, we report some percentiles of the reduction

for the learning-based methods, in which the 5th percentile and 95th percentile cor-

respond to worst and best cases. We also plot the end-to-end execution time for the

5https://github.com/Eilowangfang/LPCE
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Table 5.2: Percentiles of execution time reduction compared to PostgreSQL (large
the better, best marked in bold).

Join-six 5th 25th 50th 75th 95th

DeepDB -226% 7.87% 56.4% 88.6% 98.2%

NeuroCard -115% 11.9% 45.9% 71.8% 97.4%

UAE -116% 44.7% 64.4% 89.7% 98.9%

MSCN -240% 37.7% 70.8% 91.2% 99.4%

TLSTM -118% 40.3% 72.9% 92.3% 98.0%

LPCE-I -11.17% 69.3% 85.5% 94.2% 99.6%

LPCE-R -3.00% 71.4% 86.9% 96.6% 99.7%

Join-eight 5th 25th 50th 75th 95th

DeepDB -445% -22.6% 22.9% 71.7% 95.6%

NeuroCard -370% -14.3% 29.6% 74.5% 95.7%

UAE -360% -8.85% 35.2% 75.8% 95.8%

MSCN -975% 22.1% 72.4% 82.4% 98.1%

TLSTM -389% 34.3% 75.8% 92.1% 98.6%

LPCE-I -28.7% 73.1% 86.9% 95.9% 99.5%

LPCE-R -9.52% 74.7% 87.0% 96.3% 99.4%

learning-based estimators as scatter plot in Figure 5.12. A point on the left of the

diagonal line indicates the learning-based estimator has longer execution time than

PostgreSQL, and the dotted line indicates the model inference time. The scatter

plots for the Join-six queries resemble Figure 5.12. We make 3 observations from

Table 5.2 and Figure 5.12.

1. Short model inference time is crucial: Table 5.2 shows that data-driven

and hybrid estimators (i.e., DeepDB, NeuroCard and UAE) have poor performance

at 5th percentile (also 25th percentile for Join-eight), and can significantly prolong

the execution time of PostgreSQL for some queries. Figure 5.12 shows that this can

be explained by their long inference time, which is several to tens of seconds and

they cannot speed up queries whose execution time on PostgreSQL is shorter than

their inference time (i.e., queries on the left of the dotted line in Figure 5.12). The
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cost of model inference also explains why data-driven and hybrid estimators have

worse 5th percentile on Join-eight than Join-six—a query needs up to 127 and 511

cardinality estimations for Join-six and Join-eight, respectively. In contrast, the

query-driven estimators (i.e., MSCN, LSTM and LPCE-I) generally performs better

at 5th percentile because of their short inference time, which is typically below 1

second (including the time of parsing query and encoding feature).

2. High estimation accuracy matters: Table 5.2 also shows that the learning-

based estimators speed up PostgreSQL in most cases. For example, LPCE achieves

a reduction of 99.7% at 95th percentile for Join-six queries, which corresponds to a

speedup of about 330x. We also observed that learning-based estimators can reduce

the execution time from around 1,000s for PostgreSQL to several seconds. This is

because the histogram-based estimator of PostgreSQL has poor accuracy and thus

leads to poor execution plans. Among the same type of learning-based estimators,

estimation accuracy is also important to performance. Although DeepDB, NeuroCard

and UAE have similar inference time according to Figure 5.12, UAE has the best

reduction in Table 5.2 because it jointly utilizes data-based training and query-based

training to achieve high accuracy. In contrast, DeepDB has the worst reduction in

Table 5.2 due to the poor accuracy caused by its independence assumptions. In the

query-driven estimators, MSCN has significantly shorter inference time than LSTM

and LPCE-I, but its reduction is much worse than LSTM and LPCE-I because of poor

estimation accuracy.

3. LPCE balances inference time and estimation accuracy: Both Table 5.2 and

Figure 5.12 show that LPCE consistently outperforms the baselines across different

query sets and percentiles. The 5th percentiles of LPCE are small (below 10%),

which resolves the popular concern that a learning-based estimator may significantly

degrades performance for some queries. For more optimistic cases (e.g., 75th or

122



1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 31 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

 

 

Ne
uro

ca
rd 

ex
ec

uti
on

 tim
e (

s)

P o s t g r e S Q L  e x e c u t i o n  t i m e  ( s )

I n f e r e n c e  t i m e

(a) NeuroCard

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 31 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

De
ep

DB
 ex

ec
uti

on
 tim

e (
s)

P o s t g r e S Q L  e x e c u t i o n  t i m e  ( s )

I n f e r e n c e  t i m e

(b) DeepDB

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 31 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

UA
E e

xe
cu

tio
n t

im
e (

s)

P o s t g r e S Q L  e x e c u t i o n  t i m e  ( s )

I n f e r e n c e  t i m e

(c) UAE

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 31 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

MS
CN

 ex
ec

uti
on

 tim
e (

s)

P o s t g r e S Q L  e x e c u t i o n  t i m e  ( s )

I n f e r e n c e  t i m e

(d) MSCN

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 31 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

TL
ST

M 
ex

ec
uti

on
 tim

e (
s)

P o s t g r e S Q L  e x e c u t i o n  t i m e  ( s )

I n f e r e n c e  t i m e

(e) TLSTM

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 31 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

R e o p t i m i z a t i o n
t i m e

LP
CE

-R
 ex

ec
uti

on
 tim

e (
s)

P o s t g r e S Q L  e x e c u t i o n  t i m e  ( s )

I n f e r e n c e  t i m e

(f) LPCE-R

Figure 5.12: End-to-end execution time of the learning-based estimators and Post-
greSQL for Join-eight queries.

123



L P C E - R
L P C E - I
T L S T M
M S C N

U A E
N e u r o C a r d

D e e p D B
P o s t g r e S Q L

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0

 Q u e r y  e x e c u t i o n
 P l a n  s e a r c h  
 M o d e l  i n f e r e n c e
 R e o p t i m i z a t i o n  

E n d - t o - e n d  t i m e  ( s )

 

(a) Join-six

L P C E - R
L P C E - I
T L S T M
M S C N

U A E
N e u r o C a r d

D e e p D B
P o s t g r e S Q L

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0

 

E n d - t o - e n d  t i m e  ( s )

 Q u e r y  e x e c u t i o n
 P l a n  s e a r c h  
 M o d e l  i n f e r e n c e
 R e o p t i m i z a t i o n  

(b) Join-eight

Figure 5.13: Decomposition of end-to-end query execution time, statistics are aggre-
gated over the 500 test queries.

95th percentile), LPCE achieves larger or comparable speedup over PostgreSQL when

compared with other learning-based estimators. LPCE has good performance because

it balances inference time and estimation accuracy, which we show in Figure 5.13 by

decomposing the end-to-end execution time of the queries. The results show that for

methods with poor cardinality estimation accuracy (e.g., PostgreSQL and MSCN),

the query execution time is long as bad execution plans are used. For methods with

a long inference time (e.g., UAE and NeuroCard), although query execution time is

short, model inference could dominate end-to-end query execution. LPCE-R benefits

from using LPCE-I for an efficient and accurate initial estimation, and progressively

refining the estimations during re-optimization. Although the re-optimization time of
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LPCE-R is long as reported in Figure 5.12, Figure 5.13 shows that the re-optimization

time is negligible in end-to-end time. This is because re-optimization time is only

triggered for a few queries with large estimation errors, which we will show shortly.

Advantages of progressive estimation refinement: Among the 500 test queries,

49 and 27 queries incur progressively estimation refinement for Join-six and Join-

eight, respectively. To show the gain of progressive refinement, we compare the

execution time of these queries with LPCE-I and LPCE-R in Figure 5.14. The results

show that LPCE-R speeds up most of the queries and the speedup is the most signif-

icant for queries whose execution time is long with LPCE-I. This is because LPCE-R

can correct the significant estimation errors of LPCE-I, which leads to bad execution

plans. For a few queries, LPCE-R has longer end-to-end execution time than LPCE-I

but the performance degradation is small. This is because LPCE-R still has large

errors on some difficult queries and re-optimization comes with overhead. In Fig-

ure 5.15, we report the time decomposition for the re-optimized queries. The results

show that LPCE-R significantly reduces the overall execution time of the re-optimized

queries and the re-optimization overhead is small. The re-optimization time includes

model inference and materialization of intermediate results by checkpoint. We ob-

served that materialization cost typically dominates the re-optimization time and is

determined by the size of the intermediate results.

To explain the performance gain of LPCE-R over LPCE-I, Figure 5.16 shows how

the estimation errors of LPCE-R change in the query execution process. The query

plan has 14 operators and 18 operators for Join-six and Join-eight, respectively. The

results in Figure 5.16 shows that LPCE-R effectively reduces the estimation error in

the query execution process. For example, when the number of executed operators

increases from 3, 6, 9 to 12 on Join-six, LPCE-R gradually reduces the mean q-error

from 33.5, 22.7, 17.4 to 10.3. One interesting observation is that there are some
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Figure 5.14: Re-optimization of LPCE-R.
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Figure 5.16: The change of the mean q-error for LPCE-R in the query execution
process.

difficult queries whose estimation errors are large even when many operators are

executed. We conjecture that this is because these queries do not having matching

samples in the training set and thus the model cannot generalize to them.

Limitations of LPCE: Although LPCE-R outperforms the baselines in the previous

experiments, there can be cases in which the baselines have short end-to-end execu-

tion time than LPCE. One such case is when the queries have a small number of joins.

For a query joining n relations, plan search in PostgreSQL needs to estimate up to

2n-1 cardinalities. Thus, when n is small, the high inference overhead of data-driven

and hybrid estimators becomes less significant. In addition, data-driven and hybrid

estimators typically have better estimation accuracy than query-driven estimators.

To provide such an example, we report the end-to-end execution time of 500 queries

with 3 joins in Figure 5.17. The results show that NeuroCard and UAE perform the

best among the estimators, and the primary reason is that model inference overhead

is lower compared with more complex queries.

LPCE on varying datasets and workloads: We compare the LPCE with baseline

estimators on more datasets and workloads. We use the standard dataset TPC-

H [182] with scale factor 5 (GB) and two query sets: TPC-ben has 22 queries from the
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Figure 5.17: End-to-end execution time for 3-join queries.

standard benchmark; TPC-join-six has 300 queries with 6 joins, which we generate

according to the relational graph for the tables in TPC-H. We use 10K samples to

train the LPCE. We also follow the recent works [195, 106, 202] to generate Synthetic

dataset with multiple tables. Specifically, the dataset has 10 tables and each table

has 1M data tuples. The tables are correlated with primary key and foreign key

join pairs. The query set Synthetic-join-eight has 300 queries with 8 joins, and the

training set has 10K samples with 8 joins.

Figure 5.18(a) shows LPCE has slight improvement on TPC-ben compared to

PostgreSQL. Though LPCE designed for select-project-join (SPJ) queries, we fol-

low [163, 211] to decompose the query with sub-queries into SPJ blocks and optimize

them in manner of block-by-block. Note that DeepDB and MSCN do not support

complex predicates with string values such as ‘like’, and thus not included for com-

parison. The results show that the estimators NeuroCard, UAE and TLSTM have

similar performance with LPCE. The limited speedup is because that cardinality

estimation is not hard on TPC-ben, and PostgreSQL has small estimation errors on

the queries. We conjecture there are two reasons. First, TPC-H are generated using

the simplifying assumptions of uniformity and independence, which follows the same

assumptions that query optimizer of PostgreSQL makes [122]. Second, queries of

TPC-ben has small number of joins and filters, thus easy tasks for cardinality esti-
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Table 5.3: Cardinality estimation q-error on PostgreSQL for TPC-ben and Join-eight.

q-error 25th 50th 75th 90th 95th 99th max

TPC-ben 1.00 1.01 1.90 12.9 626 4886 12472

Join-eight 16.3 463 9302 153174 752717 5165938 32179314

mation. 12 of 22 queries have less than 2 joins, and only 6 queries have over than

4 joins. LPCE-I still contributes to the speedup for query 5, query 8 and query 9

by 1.2x, 1.2x and 1.4x respectively. Though the re-optimization of LPCE-R is trig-

gered for query 8, the refined cardinality does not help further shorten the query.

To understand the cardinality estimation on TPC-ben, we report estimation q-error

of PostgreSQL and compared to Join-eight in Table 5.3. At the 90th percentile, the

q-error on TPC-ben is 12.9, smaller by four orders of magnitude on Join-eight. The

cardinality estimation on TPC-ben is not a hard task for PostgreSQL with its native

estimator.

Figure 5.18(b) presents LPCE makes the execution 1.3x faster than PostgreSQL

on TPC-join-six. Each query of TPC-join-six has 6 joins, and the estimation is more

challenging than TPC-ben. LPCE-I outperforms PostgreSQL because of accurate esti-

mation, and the most benefits come from the adjusted join ordering. LPCE-R further

re-optimizes 10 queries, reducing the aggregate end-to-end time execution from 795

to 756s. The data-driven baselines NeuroCard, UAE, and DeepDB perform even worse

than PostgreSQL due to the long model inference time. This phenomenon shows that

for workloads that cardinality estimation is easy task, short model inference time is

key to performance. Compared to query-driven baselines MSCN and TLSTM, LPCE

still has shorter end-to-end execution. This is because when the model inference is

fast, the estimation accuracy can still have significant impact on end-to-end execution

time.

LPCE has significantly shorter aggregate end-to-end time than PostgreSQL on
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(a) End-to-end execution time for TPC-ben queries.
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(b) End-to-end execution time for TPC-join-six queries.
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(c) End-to-end execution time for Synthetic-join-eight queries.

Figure 5.18: End-to-end execution time on varying datasets and workloads.

130



Synthetic-join-eight, as shown in Figure 5.18(c). Though Synthetic is human-generated

dataset, its cardinality estimation is challenging due to the high distribution skew-

ness and correlation among columns [106, 202]. The native estimator of PostgreSQL

has poor accuracy, and the high accuracy of LPCE-I produces better execution plan.

Synthetic-join-eight also enjoys the gain of re-optimization with LPCE-R, 27 of 300

queries trigger re-optimization, reducing the end-to-end time from 605 to 538s.

Thanks to their good estimation accuracy, the data-driven and hybrid estimators

DeepDB, NeuroCard and UAE generally spend short time for query execution. How-

ever, their long inference time leads to longer end-to-end time than LPCE. The

query-driven baselines MSCN and TLSTM have low the model inference cost, but

long query execution time due to worse accuracy. The general performance follows

the trend of IMDB, and we conjecture the reason is partly due to the data distribu-

tion of Synthetic closing to a real world dataset, and partly the more joins (i.e., 8)

of queries make estimation significant for quality of execution plan.

5.5.3 Design Choices of LPCE

In this part, we evaluate the designs of LPCE-I and LPCE-R. Recall that LPCE-I has

three differences from existing query-driven estimators, i.e., the SRU model, model

compression via knowledge distillation, and the node-wise loss function, which we

test at first.

SRU model and knowledge distillation: The SRU model and knowledge distilla-

tion contribute to the short inference time of LPCE-I because SRU lighter than LSTM,

and knowledge distillation compresses LPCE-I to smaller size. We check how the two

designs affect inference time and estimation accuracy in Figures 5.19 and 5.20, re-

spectively. LPCE-T adopts the LSTM model while LPCE-S uses the SRU model, and

both LPCE-T and LPCE-S are not compressed. LPCE-C directly trains a model with

the same size as LPCE-I (i.e., without knowledge distillation) while LPCE-I uses both
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Table 5.4: Effect of SRU and knowledge distillation on model size.

Method LPCE-T LPCE-S LPCE-C LPCE-I

Model size (MB) 37.5 17.9 1.5 1.5

SRU and knowledge distillation. The results (i.e., LPCE-T vs. LPCE-S) show that

changing the model from LSTM to simpler SRU has almost no influence on accuracy

but speeds up inference by 1.5x on GPU. This is because the SRU model uses fewer

matrices and thus reduces the model size to 17.9 MB from 37.5 MB for LSTM, as

shown in Table 5.4. With a model of only 1.5 MB, LPCE-C and LPCE-I further speed

up LPCE-S by 1.2x on GPU because they use a smaller model. However, LPCE-C has

significantly larger estimation error than LPCE-S while LPCE-I matches the accuracy

of the full LPCE-S model. This is because the LPCE-C model is over 10x smaller

than LPCE-S and thus has weaker ability to learn. However, knowledge distillation

effectively helps LPCE-I to learn by fitting the output of the full LPCE-S model.

Figure 5.19 also shows the inference time comparison when using GPU and CPU.

GPU can speed up the inference by up to 2.0x compared to CPU. LPCE-T shows

the significant improvement with GPU since the LSTM model triggering intensive

matrix multiplications can benefit more from the parallelism of GPU. The light

weight design of LPCE achieves the speedup on both GPU and CPU. Particularly,

the knowledge distillation shows higher efficiency on CPU. This is because CPU has

weaker parallelism than GPU, and the decrease of model size can release the pressure

of parallelism consumption. However, GPU is still the effective processor for LPCE

due to the faster inference time.

Node-wise loss function: Recall that our LPCE-I and LPCE-R are trained with

the node-wise loss function while both MSCN and LSTM are trained using the query

wise-loss function. We check how the node-wise loss function affects estimation

accuracy in Figure 5.21, in which LPCE-Q shares the structure of LPCE-I but adopts
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Figure 5.20: Effect of SRU and knowledge distillation on estimation accuracy.

the query-wise loss function in Equation 5.2. The results show that using the node-

wise loss function significantly improves accuracy, which may be explained from two

aspects. First, the node-wise loss function enlarges the training set by considering the

estimation errors of all sub-plans and can be regarded as a form of data augmentation.

Second, the node-wise loss function allows supervision for all internal nodes in an

execution plan, which leads to more informative intermediate representations and

consequently better final accuracy.

Design of LPCE-R: Recall that our progressive cardinality refinement model LPCE-R

uses a hybrid design with three modules. Module cardinality and content are used to

embed the executed operators, and their difference is that the cardinality module has

133



LPCE-Q LPCE-I10
1

10
1

10
3

Es
tim

at
io

n 
q-

er
ro

r

(a) Join-six

LPCE-Q LPCE-I10
1

10
1

10
3

Es
tim

at
io

n 
q-

er
ro

r

(b) Join-eight

Figure 5.21: Effect of node wise loss function on estimation accuracy.

access to the cardinalities of (the result of) the executed operators while the content

module does not. The Refine module merges the embedding produced by cardinality

and content, and processes the remaining operators (which are not executed) for

the final result. We compare LPCE-R with two alternative (perhaps more natural)

designs: (1) LPCE-R-Single uses only one module sharing the same structure as the

cardinality module in LPCE-R, which has access to the cardinalities of intermediate

results. The real cardinalities are used for training while for inference the executed

operators use the real cardinalities and the remaining operators use the estimated

cardinalities. (2) LPCE-R-Two uses module cardinality and refine of LPCE-R, in which

module cardinality processes the executed operators with real cardinalities while mod-

ule refine (which does not access cardinalities) takes inputs from module cardinality

and processes the remaining operators.

We compare the estimation error of LPCE-R, LPCE-R-Single and LPCE-R-Two

in Table 5.5. The results show that LPCE-R consistently outperforms LPCE-R-

Single and LPCE-R-Two. Among the three models, LPCE-R-Single has the worst

performance in most cases. This is because LPCE-R-Single is trained using the real

cardinalities but uses the estimated cardinalities of the remaining operators for in-

ference. As the estimations are inaccurate, errors will accumulate along the join
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Table 5.5: q-error of the cardinality estimation provided by different designs of the
progressive model for Join-eight.

Methods LPCE-R LPCE-R-Single LPCE-R-Two

Executed

operators
4 8 12 4 8 12 4 8 12

50th 7.15 6.93 5.41 17.1 12.6 8.69 10.0 9.11 7.16

75th 21.6 18.9 16.2 83.1 68.9 45.1 37.0 33.9 25.3

95th 66.3 65.8 56.9 396 314 148 123 102 97.8

99th 1203 1877 1561 5377 5294 2688 3006 2956 1921

max 8161 5743 3820 81022 20536 13139 11778 11223 8133

mean 72.6 67.8 51.7 433 247 156 123 88.3 64.8

tree in the model. LPCE-R-Two performs better because its refine module does not

rely on cardinality estimations for the remaining operators. Compared with LPCE-R,

LPCE-R-Two does not use module content, which embeds the contents of the exe-

cuted operators (e.g., R.a ă 10 and R.b ą 100) without using cardinalities. We

conjecture that module cardinality tends to focus on the real cardinalities when em-

bedding the executed operators but the contents of the executed operators (such as

a selection on one column) are also important as they may influence the remaining

operators. Therefore, in LPCE-R, module cardinality complements module content by

providing more information about the executed operators.

Training cost: LPCE-I is trained using 10,000 sample queries, and error stabilizes

after about 50 epochs for the test queries. Module content and cardinality of LPCE-R

are pre-trained using the same procedure as LPCE-I. Module refine is fine-tuned

based on module content and cardinality, and can converge within 10 epochs. The

total training time of LPCE is about 50 minutes.

We study the training efficiency of LPCE with GPU and CPU in Figure 5.22. The

training process conducts model inference on each sample recursively and terminates

when the loss value keeps steady. A set of 50 query samples is packaged into a batch,
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Figure 5.22: Training time with GPU and CPU.

and concurrently processed to make full use of parallelism. GPU provides higher

parallelism than CPU to accelerate the training. Hence, we conclude that GPU is

an effective processor for LPCE due to both the shorter model inference and training

time.

5.6 Related work

In this part, we review works that are most relevant to ours.

Traditional cardinality estimators: Histogram-based cardinality estimation meth-

ods [45, 5, 73] have been widely used in many industrial database systems as they

are simple and have very low overhead. However, they lack the ability to capture the

data correlations among the tables as they make the attribute-value-independence

assumption. Sampling-based approaches [34, 62, 188] outperform histogram-based

methods as the correlations in data are naturally captured by data samples. How-

ever, sampling-based approaches have two limitations: (i) empty sampling set of

join result; and (ii) high sampling overhead. Recent works [215, 123] have proposed

index-based and materialized sampling strategies to alleviate the problem of empty

result. However, it is still difficult to use sampling to evaluate the cost of all execution
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plans as it incurs high space- and time- costs.

Learning-based cardinality estimators: With the advance of machine and deep

learning techniques, researchers proposed many learning-based solutions for various

problems [113, 114, 134, 112] in the database community. Recently, the database

community recognized the potential of replacing traditional cardinality estimation

methods by learning-based models (e.g., neural network, autoregressive model) [195,

118]. Existing learning-based estimators can be classified into three categories: query-

driven, data-driven and hybrid.

Data-driven cardinality estimators [85, 212] share the same idea with traditional

cardinality estimation methods, i.e., they hope to capture the correlations and dis-

tributions of data across the tables. DeepDB [85] adopts relational sum product

networks (RSPN) to capture the probability distribution among relations, and trans-

lates a query into the evaluations of probabilities and expectations based on RSPN.

Naru [213] adopts autoregressive models, i.e., masked autoencoder [63] and trans-

former [187] to estimate the selectivity of equal and range predicates. NeuroCard [212]

trains a single deep autoregressive model based on samples collected from the full

outer join result of all relations. The model can be used to answer complex queries

with joins on any subset of the relations.

Query-driven cardinality estimators [172, 109, 175, 82, 53] formulate cardinality

estimation as a regression problem. The contents of queries and their true cardinal-

ities are used as training data to learn a mapping from queries to cardinalities. [52]

uses regression techniques such as XGBoost, to train the model to produce approx-

imate cardinality labels. MSCN transforms a query into a feature vector and uses

a multi-set convolution network [216] to map it to cardinality estimation. TLSTM

processes a query execution plan recursively following its tree structure using LSTM

(a kind of RNN) [86].
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Hybrid cardinality estimator UAE [200] learns the joint data distribution among

the tables as in the data-driven estimators, and uses query samples as auxiliary

information at the same time. With an unified deep autoregressive model, UAE

learns from data in an unsupervised manner and query samples in a supervised

manner.

Existing cardinality estimators cannot achieve high accuracy and fast inference

simultaneously, which are necessary for short end-to-end query execution time. Our

LPCE is general framework, which enjoys the fast inference of query-driven estimators

and progressively refines estimations to correct large errors. We have shown that

data-driven and hybrid estimators also have larger errors for complex queries, and

thus may also benefit from our progressive cardinality estimation methodology.

Query re-optimization: Although extensive efforts have been made to improve the

accuracy of cardinality estimation, the errors can still be large for complex queries,

e.g., those with multiple joins. Query re-optimization techniques [13, 99, 4, 51, 201,

146] have been proposed to combat the influence of large estimation errors on query

optimization. The general idea is that the query optimizers first choose an initial

execution plan, and then exploit extra knowledge to adjust to a better execution

plan. There are two classes of query re-optimization techniques. (1) Re-optimizing

during query execution. For example, ROX [4] samples data from the intermediate

results, and tries different operator implementations and join orders on the samples

to adjust the remaining execution plan. (2) Re-optimizing before query execution.

For example, Wu et al. [201] use a sampling-based method to detect estimation errors

and then adjust the execution plan before running it. Our LPCE differs from these

query re-optimization techniques in that they are sampling-based while LPCE uses

machine learning to exploit information in the executed sub-queries for estimation

refinement.
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5.7 Chapter Summary

In this section, we conclude the work presented in this chapter, and discuss the

related future research directions.

5.7.1 Conclusion

We propose LPCE, a learning-based cardinality estimator that progressively refines

the cardinality estimations during the query execution process. GPU is used to

support the fast estimation of LPCE. We observed that to reduce the end-to-end

execution time of queries, both fast inference and high accuracy are necessary but

no existing cardinality estimators can satisfy the two requirements simultaneously.

Thus, LPCE adopts a novel framework, which uses a query-driven estimator for fast

initial estimation and exploits the executed sub-plans to correct large estimation

errors for the remaining operators. We propose techniques including node-wise loss

function, knowledge distillation-based model compression and refinement model with

three modules to instantiate LPCE. Extensive experiments show that our LPCE

outperforms existing learning-based estimators in reducing the end-to-end execution

time of queries, especially in worst cases.

5.7.2 Research Directions

There are many interesting problems in applying learning-based progressive car-

dinality estimation to speed up query execution, including devising tailored plan

enumeration algorithms and improving the performance of data-driven or hybrid

learning-based estimators. Specifically, we consider future research directions as fol-

lows.

First, the policy to judge the benefit of query re-optimization is an interesting and

complex issue. In LPCE, we simply set a fixed parameter (i.e., the q-error between
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estimated and real cardinalities) to determine re-optimization triggering. The side

effect is the case that even when the estimated cardinality is at large error, the execu-

tion plan remains unchanged after re-optimization, and the cost of re-optimization

instead prolongs the execution. LPCE expects an effective and reliable policy to

trigger the re-optimization only when a better execution plan can be guaranteed.

Second, the query re-optimization can be extended to data-driven and hybrid

learning-based estimators. The challenges might be what information to extract

from the completed subplans, and how to learn the information in a short time.

Third, GPU can be used to speed up the other components of end-to-end execu-

tion. In LPCE, GPU is only used to provide fast cardinality estimation. However,

the end-to-end execution includes the other components such as plan enumeration.

For a complex query involving many tables, the plan space can be huge, and plan

search is time-consuming [118]. How to utilize the parallelism of GPU to accelerate

the search among a large number of plans is a promising research problem.

Last, LPCE as a deep learning backbone design cannot provide guarantee on the

prediction accuracy. LPCE may produce inaccurate estimations for a small fraction

of queries when it does not learn the queries from training samples. It is promising

to study the prediction uncertainty measurements for the learning-based estimators,

and further provide the performance guarantee to the query execution time. The

work in this trend would make learning for database more practical in real applica-

tions.
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Chapter 6

Conclusions and Future Works

In this chapter, we conclude the works presented in this thesis, and discuss the

related future works.

6.1 Conclusions

The fast-expanding variety, velocity, and volume of data lead to various challenges on

the efficiency of querying and mining data. The new advances of modern hardware

open a new horizon to solve the challenges. In this thesis, we propose exploiting

modern hardware like GPUs and NVM to optimize three challenging problems on

querying and mining data.

The first one is for similarity-based data mining algorithm in Chapter 3. The

motivation is to use NVM PIM to tackle the “memory wall” challenge. We identify

the bottleneck functions of a given algorithm and offload the most computation

to NVM PIM without compromising the accuracy of results. Our work effectively

reduces the data transfer overhead, achieving up to 11.0x speedup for state-of-art

kNN classification and k-means clustering algorithms.

The second one is for blockchain mining in Chapter 4. The motivation is to

utilize the parallelism of NVM PIM for repetitive computation. The mining process

requires massive cryptographic hash computation to ensure that the data is secure
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and immutable. We map the hash computation onto NVM PIM, and propose the

optimization techniques to make full use of the parallelism of NVM PIM. Our work

speeds up blockchain mining by up to 778x than CPU-based implementation and up

to 3.8x than GPU-based implementation

The third one is for analytical query execution in Chapter 5. The motivation

is using GPU to support the fast inference for a deep learning model. We propose

LPCE, a learning-based cardinality estimator that progressively refines the cardi-

nality estimations during the query execution process. The information of executed

operations is used to refine the estimations for unexecuted ones. We carefully design

the estimator to meet both accuracy and efficiency simultaneously. LPCE outper-

forms existing learning-based estimators and reduces up to 99.7% of end-to-end query

execution time.

6.2 Future Works

There are many potential research challenges of speeding up mining and querying on

data. We present several opportunities as future research.

Firstly, our work in Chapter 3 only focuses on accelerating the data mining tasks

through optimizing the computation of similarity functions on high-dimensional data.

We propose three research future directions. Firstly, our method may fail to apply

for the tasks that similarity computation on vector data is not involved, such as

decision tree-based classification and graph clustering. To speed up these tasks with

NVM PIM, new challenges arise such as how to identify the bottleneck, and how

to transform the computation to the specific operations supported by NVM PIM.

Secondly, the modern hardware such GPU and FPGA has been intensively studied

and adopted in real industrial database. For example, PolarDB X-engine at Alibaba

utilizes FPGA to accelerate the log-structured tree compaction [87, 27]. While NVM
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PIM, GPU and FPGA are not general-purpose processors and superior at various

operations, it is interesting to investigate that how to cooperate the each other to

compose a powerful heterogeneous computing architecture. Figure 6.1 illustrates a

possible design for data mining applications with hierarchical storage. Lastly, our

work focuses on utilizing the computing feature of PIM, yet the related techniques

such as data compression, data locality during PIM [104, 197] are also very promising

for some scenarios. For example, when applying NVM PIM to the session-based

recommendation in e-commerce and social media [103], we might organize the data

location based on the common dependent processing operations or data features so

as to share some computation.

FPGA/GPU-
accelerated
data mining

Warm data on NVM

Cold data on SSD/HDD

NVM
PIM

Figure 6.1: An example of cooperating NVM PIM with GPU and FPGA.

Secondly, we develop a solution to speed up the blockchain mining process in

Chapter 4. This work focuses on making full use of the high parallelism of NVM

PIM. However, NVM PIM has been proven the high potential to reduce the energy

consumption for compute-intensive tasks. Blockchain applications typically cost huge

energy consumption. Firstly, our next goal is to extend the proposed techniques to

achieve an ultra-energy-efficient mining process, and at the same time, the mining

speedup is not compromised. Secondly, Blockchain has been widely used in cloud

edge computing and Internet-of-things. Such scenarios often include hundreds even

thousands devices within in a network. The devices might have different hardware

processors such as FPGA and ASIC, providing various computational power. It is
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interesting to study how cooperate NVM PIM with the hardware processors, and

achieve the efficient proof-of-work in network as shown in Figure 6.2. Lastly, though

most applications of using Blockchain now are target on efficient and safe data stor-

age [16], the next step are often mining and analyzing on the data [74]. For example,

a bank first collects and stores the transaction records on Blockchain-based network,

and then analyzes financial and business reports based on the records. Hence, it is

interesting to design a NVM PIM framework that combine both data storage and

analysis functionality.

NVM 
PIM

FPGA

FPGA

ASIC

NVM 
PIM

NVM 
PIM

Figure 6.2: An example of using NVM PIM and other hardware in a Blockchain-
based network.

Lastly, we propose a progressive learning-based cardinality estimator to optimize

the query end-to-end execution in Chapter 5. We consider the three issues as future

works. Firstly, an efficient and reliable policy to judge if the query re-optimization is

worth triggered. Such policy expects scientific guarantee and works for unique query.

The re-optimization is triggered only when we have certainty that the overhead pays

off. Secondly, we has shown that learning estimators have various accuracy and

estimation overhead. It might be not wisdom that blindly trusts one estimator and

uses it all the time. For example, the estimator MSCN might be better choice than

NeuroCard for one query, since the it has learned from very similar samples and

thus more accurate. We may adopt the multiple estimators as candidates and learn
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to identify which one is best choice for given query. Lastly, the recent learning

estimators are enhanced along with complicated model design and intricate setting,

which requires the computational resource and hardware configuration to provide

training and estimation. We think one trend is that commerce cloud offers the user-

friendly management as ‘model-as-service’. As shown in Figure 6.3, the cardinality

estimators as a block box running at cloud devices with sufficient hardware resources,

and feed the needs during plan search for query execution at user end.

Future Picture 

Re-mining
FPGA/GPU-
accelerated
data mining

Extent Extent

Extent Extent Extent

Warm data
on NVM

Cold data
on SSD/HHD

NVM
PIM

Re-
mining

Re-
mining

Re-
mining

Re-
mining

Re-
mining

Re-
mining

2
Figure 6.3: An example of using learning-based cardinality estimators for cloud
service.

We believe the rapid development of modern hardware always brings new chal-

lenges and opportunities on accelerating data mining and querying. The research of

exploiting modern hardware is always exciting and meaningful.
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[19] Johannes Blömer, Christiane Lammersen, Melanie Schmidt, and Christian
Sohler. Theoretical analysis of the k-means algorithm–a survey. In Algorithm
Engineering, pages 81–116. 2016.

[20] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A
Kroll, and Edward W Felten. Sok: research perspectives and challenges for
bitcoin and cryptocurrencies. In S&P, pages 104–121, 2015.
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