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Abstract 

 

Tramp shipping accounts for more than 75% of the total tonnages of ships in the 

market. Different from the liner shipping, tramp shipping has no fixed route, schedule, 

and destination port. These characteristics lead to the supply and demand imbalance 

that is recognized as the spatial-temporal heterogeneity problem in transportation. 

Destination port prediction is fundamental and significant to solve this problem. Even 

though AIS (Automatic Identification System) can provide the destination port 

information, about 70% of the information is wrong. Hence, the vessel trajectory-based 

method has risen to prominence, which is available for any stage of sailing.   

Port calls are important to extract the voyages and semantic information. To 

recognize port calls rapidly and correctly, we develop an optimized CB-SMoT 

algorithm with less time complexity. Compared with other algorithms, our algorithm 

can correctly identify 84.6% of port calls for bulk carriers and 90.63% for tanker ships. 

Grounded on the identified port calls of VLCCs, we construct a framework of three 

models as follows: 

Model 1 is a high order sequence of port calls model. The definition of order is the 

number of previous ports. We build different order sequences with port names as 

semantic information. Then we train the random forest (RF) classifier with the feature 

X of high order sequences and the label Y of destination port. The accuracy increases 

with the growth of order, which means richer previous ports information is beneficial 

for destination classification. When the order is larger than 3, the accuracy can reach 

0.80 and above. 

Model 2 is a trajectory similarity model. We adopt the TRACLUS algorithm to 

produce representative trajectories. The representative trajectory is an extracted 

standard trajectory for a route but does not really exist. We calculate the similarity 

between the sailing trajectory and representative trajectories by SSPD (Symmetrized 

Segment-Path Distance) and convert them to probability matrices as semantic 

information. In our model, the similarity probability matrix, IMO number and DWT 
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(Deadweight tonnage) can be the features X and the destination port can be the label Y. 

We train the tree-based models and find GBDT (Gradient Boosting Decision Tree) 

achieves the best performance. The accuracy increases along with days and exceeds 

0.70 after 25 days. We also find the common segments of sailing trajectories has a 

negative effect on the prediction. 

Model 3 is a neural network model. We predict voyages for three frequent routes, 

respectively. The results show LSTM (Long Short-Term Memory) has the minimum 

RMSE (root mean squared error) of longitude and latitude for the predicted last few 

days’ trajectory. When the time length for prediction is shorter, the correct rate is higher. 

The correct rate can reach 0.83 by predicting the last-48h trajectory. The reliable results 

can be provided two days in advance before arriving.      

Our work provides an innovative integrated framework of models for destination 

port prediction covering different stages of a voyage and gives the application 

guidelines of these models. In the future, based on our study, the routing optimization 

problem for tramp shipping will be studied.   

 

Keywords: Destination port prediction; Tramp shipping; Port calls recognition; VLCC 

trajectory data mining; High order sequence of port calls; Trajectory similarity; Neural 

networks    
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Chapter 1: Introduction 

1.1 Research Background 

Shipping has been the most economical transportation mode in international trade. 

The International Marine Organization (IMO) reports more than 90% of commodities 

and goods in the world are transported by shipping (Sirimanne et al., 2019). As the 

growth of the global economy, the tramp ship capacity in the market increases rapidly. 

According to the statistics of the United Nations Conference on Trade and Development 

(UNCTAD), the tonnage of tramp ships accounts for about 75% of the total tonnages 

of all ship types. Tramp shipping business plays an important role in transporting cargo 

such as coal, crude oil and iron ore.  

Different from the liner shipping, in tramp shipping, the cargo owners are 

concentrated while the carriers are scattered. The route mode of tramp shipping is a 

point-to-point mode. Hence, tramp shipping has no fixed route, schedule, and 

destination port. Moreover, the sailing time under heavy ballast condition accounts for 

a high portion in tramp shipping. Taking the Capesize dry bulk carriers as the example, 

in iron ore trade, the time ratio of full loaded status is only 48.8% for China's flag fleet 

and 52% for Panama’s flag fleet. For shipping companies, the cost for operation 

management and the loss of profits are huge. In recent years, increasing researchers pay 

attention to this phenomenon. 

As most studies show, imbalance of supply and demand exists in the industry of 

tramp shipping. The tramp shipping market can be regarded as an unstable market. 

Volatility is the most important characteristic for tramp shipping. However, the tramp 
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ships' behaviors under the volatility are rarely researched. Because, in the real world, 

the spot market information is opaque and is hard to collect. The shipowners usually 

assign the ships to move toward the port with potential demands in a limited time 

window, aiming to conclude a transportation contract before other competitors. But the 

shipowners cannot know how many tramp ships will arrive at the same port. As a result, 

many tramp ships wait for loading in one port, but few tramp ships to load cargo in 

another port. The distribution of tramp ships is not homogeneous for the market. We 

call this phenomenon a spatial-temporal heterogeneity problem in tramp shipping.   

To solve this problem, the significant and fundamental work is the destination port 

prediction. How to predict the destination port accurately becomes the cornerstone to 

build the operations research model or the optimization model. As the development of 

Automatic Identification System (AIS), the destination port information can be 

provided directly. However, only 30% of the destination information in AIS is credible. 

Because the destination port item is submitted by shipowners. Some shipowners intend 

to hide the real information to take advantage of the market, while some shipowners 

cannot decide which port to load cargo. 

Even though most destination port information is wrong, the AIS system still 

brings the opportunity to mine the vessel trajectories. Based on these trajectories, the 

destination port can be predicted. One popular method is combining vessel trajectories 

with the machine learning models.  

Besides, VLCCs make up more than 60% of the crude oil transportation and 

contribute most of the profit elasticity for shipping companies. The ocean routes of 
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VLCCs are simple and the variations of destinations are limited. Therefore, the VLCC 

fleet can be a good research objective to ensure the feasibility of our study. It is 

important to develop a comprehensive framework of different models to predict the 

VLCCs’ destination ports. This framework can be extended and used for other tramp 

ship types in the future. 

 

1.2 Research Status of Related Work  

1.2.1 AIS data application 

AIS is a kind of self-reporting surveillance system and originally designed for 

traffic services to collect vessel information at a high frequency. Any vessel over 300 

GT needs to be equipped with AIS on board (Jia et al.,2019). AIS data mainly records 

the static information and dynamic information, including MMSI/IMO, timestamp, 

speed, draft, ship’s heading, ship’s name, longitude, latitude etc. AIS data has important 

research values and has been widely employed in maritime studies.  

For vessel trajectory, the path planning is one of the popular research topics. A 

suitable vessel path is important for shipowners to save fuel cost and keep safe. 

Different from the path planning for vehicles, sea weathers and speed variations make 

this work even more complicated for ships. Wen et al. (2014) designed a Route Miner 

System with AIS data to detect the movement behaviors in a free space and output a 

group of ship routes for planning. Zaccone and Martelli (2018) proposed a random 

sampling algorithm to avoid the obstacle in ship’s path. Yu et al. (2021) developed an 

A* algorithm for unmanned surface vehicles (USVs) to plan the routes and avoid other 

dynamic ship movements.  
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1.2.2 Destination prediction  

(1) Vessel destination prediction 

The designation information is hard to know because the vessel may change its 

target port during any stage of sailing. Vessel destination prediction is a kind of decision 

support tool to capture dynamic information. It is important for shipping companies to 

manage the operation and change the schedule, although the uncertainty of vessel 

destination is high, and the trajectory is complex. 

In recent years, many researchers have studied vessel destination prediction by 

data-driven methods. Xu et al. (2012) designed a neural network of three layers to track 

the vessel trajectory. Mao et al. (2018) proposed an Extreme Learning Machine (ELM) 

to predict the vessel path and find the possible destination. Magnussen (2021) 

developed a Recurrent Neural Network (RNN) with the graph abstraction to predict 

global destinations for oil tankers.  

 

(2) Travel destination prediction in transportation 

In the non-vessel field, many destination prediction studies are about the vehicle, 

flight, and pedestrian. For vehicles, Tiesyte and Jensen (2008) constructed a Nearest-

Neighbor Trajectory (NNT) technique to search destinations with history trajectories. 

Chen et al. (2010) proposed a Continuous Route Pattern Mining algorithm to build 

decision trees of destinations and predict movement patterns. For flight, Lin et al. (2018) 

developed a hidden Markov model to predict relative motion between positions. Chen 

et al. (2020) proposed a deep Gaussian process model to predict the temporal 
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correlations among flight positions. For pedestrians, Yi et al. (2016) designed a neural 

network (Behavior-CNN) to predict pedestrian destinations under crowded scenarios. 

Zhang et al. (2019) developed a Gaussian mixture model to detect stopover points and 

a BiGRU-based model to predict the pedestrian trajectory. 

Besides, Morzy (2007) proposed a Traj-PrefixSpan algorithm to mine the frequent 

movement patterns to predict the destination. Prabhala and La (2015) developed an 

algorithm called PeriodicaS to find the periodicity in users' mobility traces and marked 

the periodicity with explicit semantic annotations to classify the destinations. 

 

1.2.3 Trajectory models  

Spatial-temporal data are the base for modeling the trajectory. These data have the 

characteristics of multi-scale and multi-time. Langran and Chrisman (1988) reviewed 

previous research results to conclude a series of spatial-temporal data models, such as 

the simple timestamp model. This work marks the beginning of systematic modeling in 

Geographic Information System (GIS). In the subsequent studies, Peuquet (2001) 

developed a model using time series events. Worboys and Hornsby (2004) proposed a 

dynamic geospatial domain model based on the event and object. Pelekis et al. (2004) 

incorporated the spatial, temporal, and semantic information into a model to build the 

fields-based tree model. 

The trajectory model consists of various spatial-temporal data. The first trajectory 

model was designed to estimate the movements of hurricanes by Reap (1972). Parent 

et al. (1999) extended the traditional model such as the MADS model. Spaccapietra et 

al. (2008) merged the stop-move information of special events into the trajectory model. 
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Ying et al (2010) proposed a semantic model to find the relationship between different 

trajectories. Kwakye (2019) systematically summarized the development process of 

trajectory models and designed a synthetical and general platform to query and analyze 

the trajectory information. 

Moreover, to measure the trajectory similarity in the model, different distance 

concepts are proposed, such as the Fréchet distance. Naderivesal et al. (2019) developed 

a new similarity measurement using the interval distance to capture the uncertainty. 

These similarity measurements provide the opportunity to cluster the trajectories. 

TRACLUS algorithm and T-OPTICS algorithm are the typical clustering approaches. 

 

1.3 Research Motivation 

The destination port prediction for tramp ships is the sub-project of the spatial-

temporal heterogeneity problem that has not been researched well. In previous studies, 

in terms of the volatility of tramp shipping, scholars have not researched the short-term 

behaviors of tramp ships (one or two months) (Hennig et al., 2012; Wen et al.2016). 

Most papers focus on the macro freight rate (Tvedt, 2011; Yin et al., 2017), lacking the 

micro perspective. Some researchers consider the discrete choice models a possible way. 

But the discrete choice models have many limitations: Some variables such as the 

shipowner preference and the shipowner decision are difficult to quantify and collect; 

the endogeneity problem is hard to handle with; the performance of prediction is poor. 

Although recently the AIS big data can bring the opportunity for researchers to adopt 

the data-driven approaches to improve the prediction performance, it is still a gap to 
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develop the systemic prediction framework using these approaches that cover different 

stages of the sailing.  

Therefore, in this study, we make the first attempt to conduct an in-depth 

investigation on the destination port prediction for tramp ships. We propose an  

integrated framework with multi-models of machine learning to predict the destination 

port under different stages of the sailing for VLCCs. The associated algorithm and 

application are also researched. 

 

1.4 Research Content 

Our goal is the destination port prediction for tramp ships in a dynamic process. 

The dynamic process includes three stages of a voyage: the stage of before sailing, the 

stage of during sailing, and the stage of before arriving. It is the fundamental and 

significant work to fix the spatial-temporal heterogeneity problem. However, the 

destination prediction task faces several difficulties: 

⚫ High uncertainty of the voyages. 

⚫ A long travel time for VLCCs. 

⚫ Common trajectory segments in different routes. 

In this study, we use data mining techniques to search the hidden information of vessel 

trajectories. Based on the AIS data, we detect the stay regions and routes of VLCCs. 

Combining machine learning and trajectory information, we construct a destination 

prediction framework of three models. These models can predict the destination port in 

different stages of sailing. The high order sequence of port calls model is used before 
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sailing; the trajectory similarity model is used during sailing; the neural network model 

is used before arriving. All the models can be extended to other tramp ship types for 

prediction, such as bulk carriers. 

Our research contents are described as follows: 

(1) To begin with, we use the speed-based heuristic filtering method to clean the raw 

AIS data and use the Douglas–Peucker algorithm to compress the data. These 

preprocessing procedures can ensure the quality of our database and reduce the time 

cost of programs. 

 

(2) Then, combined with the world ports list, we develop an optimized CB-SMoT 

algorithm to recognize the port calls information rapidly and accurately. Every 

cluster of stay points is unique to represent a port of call. This algorithm constructs 

the basis to provide data materials for our models. The sequences of port calls and 

the voyages with trajectories of VLCCs are extracted. 

 

(3) Finally, based on the port calls information and the trajectories of VLCCs, we 

design a three models-based framework for destination port prediction. The model 

1 is a high order sequence of port calls model, using the previous ports to predict 

the destination before the voyage. The model 2 is a trajectory similarity model for 

prediction during sailing. The effects of the common segments of sailing trajectories 

are discussed. The model 3 is a neural network model to predict the last few days 

trajectory, which is reliable to identify the destination port with two days in advance 

before arriving. Besides, the application of these models is introduced with a 
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detailed example.  

 

According to our study, the framework to predict the destination ports of VLCCs 

can be modeled as the workflow shown in Figure 1.1.  
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Figure 1. 1 The framework flowchart for destination port prediction 

 

The chapter structures are organized as follows. Chapter 2 overviews the literature 

and states the ideas for research. Chapter 3 conducts the data preprocessing and 

elaborates on how to develop a new optimized algorithm to extract the sequence of port 

calls. Chapter 4 builds the framework of three models for prediction. The performances 

of models are analyzed, and the results are discussed. A guideline of application is 

explained. At last, Chapter 5 makes the conclusion and gives the suggestions for future 

work.  

 

1.5 Summary of the Chapter  

In this chapter, we introduce the research background and research motivation of 

our study in detail. We list some difficulties and state the research content to show what 

the logical structures of this study are. 
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Chapter 2: Literature Review 

In this chapter, we review the literature associated with our research and explain 

the inspiration source of our ideas. Three parts of different literature comprise this 

chapter. These parts are introduced according to the logical order of research. In the 

first part, in terms of the overall goal, we review the papers about vessel trajectory 

prediction and propose the primary frameworks for our study. The primary frameworks 

include spatial-temporal trajectory framework and semantic trajectory framework. AIS 

data can provide the spatial-temporal trajectory directly for machine learning models, 

but the semantic trajectory needs to be processed. Therefore, we review the papers 

related to the semantic trajectory construction in the next two parts. In the second part, 

we review the papers of stay points recognition. Stay points recognition is important to 

reflect the port calls of a vessel that is the key semantic information we can get before 

sailing. Besides, the port calls from stay points recognition can help extract the voyages 

and associated trajectories for above frameworks. In the third part, we review the papers 

about distances for trajectory similarity measures. The suitable distance theory can tell 

the semantic information of similarities between different trajectories during sailing.  

 

2.1 Vessel Trajectory Prediction  

Currently, the methodology for the vessel trajectory prediction can be divided into 

two kinds of the frameworks: spatial-temporal trajectory mining and semantic 

trajectory mining.  

 

2.1.1 spatial-temporal trajectory mining 
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(1) Statistical approach 

Most theoretical models for the vessel trajectory prediction have been developed with 

statistical approaches. These models adopt history trajectory data to calculate the 

likelihood distribution of vessel locations for prediction. Combining the ship velocity 

and its timestamp with the statistical likelihood, the model can search the space range 

in the neighborhood area of the ship to predict the future trajectory. But the accuracy of 

statistical approach is low in some scenarios due to the mean distribution of probability 

(Sun and Zhou, 2017; Murray and Perera, 2018; Üney et al., 2019). 

 

(2) Machine learning approach 

The development of machine learning provides the opportunity for trajectory 

prediction. Kalman filter (KF) is one kind of traditional machine learning approach. KF 

constructs the equation of ship movement state by comparing the real trajectory with 

the predicted trajectory. Then KF can predict the vessel trajectory from the previous 

position (Peng et al., 2010; Perera and Soares, 2010; Xu et al., 2014). Another 

traditional machine learning approach is the Markov model. Markov model builds the 

state transition matrix for ship movements and uses this matrix to predict the vessel 

trajectory at the next moment (Qiao et al., 2014; Guo et al., 2018). However, KF and 

Markov approaches can only obtain the local optimal solution for short-term prediction. 

To ensure the accuracy, the timeframe of the predicted trajectory is less than 1 hour.  

The neural network is another important branch of machine learning and has 

become popular in recent years, represented by the back propagation neural network 

(BP neural network), Gate Recurrent Unit (GRU) and Long Short-Term Memory 

(LSTM). These models are trained to achieve a high accuracy with historical trajectory 

data of a vessel. Then they can predict the vessel’s trajectory for a long-term of several 
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days (Xu., 2011; Gao et al., 2018; Zhou et al., 2019; Tang et al., 2019). But when the 

shape of the trajectory is complex, the accuracy of the predicted vessel trajectory is 

limited. Moreover, the cost of adjusting parameters is huge. 

 

(3) Grid-based approach 

To monitor and predict the variation of a vessel trajectory in different days, grid-

based approaches are proposed by many researchers. The route extraction and the 

motion pattern analysis represent one kind of grid-based approaches (Vespe et al., 2012; 

Pallotta et al., 2013; Liu and Chen, 2014). This approach requires the isolation of sea 

lanes by gridding to collect trajectories. It predicts the vessel trajectory by matching the 

closest known trajectory. Then use a “vectoral” approach to analyze the motion pattern 

for anomaly detection. In most studies, grid-based approaches focus on a specific 

geographical area to predict the target ship’s trajectory before arriving the destination 

port in 48h. 

Table 2.1 summarizes previous studies by the spatial-temporal trajectory mining. 

In this thesis, considering VLCCs often sail more than twenty days on their voyages, 

we try to use the BP neural network, LSTM and GRU in machine learning to predict 

the spatial-temporal trajectories of the last few days. Besides, we match the final 

locations of predicted trajectories with a VLCC ports list to estimate the destination 

ports. 
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Table 2. 1 Previous studies on vessel spatial-temporal trajectory mining 

 Source Content Methodology 

Üney et al., 2019 

Classify the vessel location and speed into 

different categories and calculated the 

likelihood distribution for future trajectory. 

  

Statistical probability 

Sun and Zhou, 2017 

Divide the regions and marked the probability 

of vessel appearance to predict the positions. 

  

Statistical probability 

Xu et al., 2014 

Develop an optimized Kalman filter model for 

vessel trajectory estimation. 

  

Kalman filter 

Peng et al., 2010 

Propose a self-adaptive Kalman filter model 

with speed, location to forecast a short-term 

vessel trajectory. 

  

Self-adaptive KF 

Guo et al., 2018 

Construct a K order Hidden Markov model 

using ship speed, ship’s heading, location, 

weather condition as variables to improve 

precision of prediction. 

  

Markov 

Qiao et al. 2014 

Design high-order standard Markov model of 

tree structures to predict vessel trajectory. 

  

Markov 

Zhou et al., 2019 

Train a Back Propagation neural network to 

predict the vessel trajectory on the river. 

  

BP neural network 

Tang et al., 2019 

Merge a sequence prediction method into 

LSTM to estimate the vessel trajectory. 

  

LSTM 

Gao et al., 2018 

Introduce a bidirectional LSTM model using 

AIS data for the online prediction of ship 

behaviour. 

  

LSTM 

Vespe et al., 2012 

Extract of waypoints connecting with sea lanes 

and routes for trajectory prediction. 

  

Grid-based approach 

Liu and Chen, 2014 

Revise the missing AIS data using temporal 

link prediction based on tensor CP 

(CANDECOM/PARAFAC) decomposition. 

Grid-based approach 

 

2.1.2 semantic trajectory mining 
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The semantic trajectory connects the semantic information with a spatial-temporal 

trajectory to reflect the behaviors, intentions, and habits of a vessel. The semantic 

information can be derived from the original trajectories for different objectives. In the 

research of vessel destination prediction, main semantic information includes the stay 

points and the similarity among trajectories. Hence, this section for semantic trajectory 

mining is divided into two parts: stay points-based approach and similarity-based 

approach. 

 

(1) Stay points-based approach 

Most research focuses on vessel stay points for anomaly detection and develops 

lots of algorithms to build the semantic trajectory with stay region information. After 

filtering the anomaly stopovers on the route of a vessel, the stay points in port regions 

can be obtained to extract the semantic trajectory of port calls. Based on the history 

trajectories with port calls, the next port of a vessel can be predicted directly using the 

Markov model or the higher order shipping network model (Yang et al., 2014; Tao et 

al., 2017). This approach can be employed before the voyage.  

 

(2) Similarity-based approach 

The spatial-temporal trajectory can be converted into the similarity matrix, 

comparing with selected trajectories. The similarity matrix as comparison features 

forms the semantic trajectory for a vessel. Then these similarity trajectories can be used 

to train the classification machine learning model. When inputting the similarity 

trajectory of a vessel on different days, the destination port will be estimated. However, 

this approach is limited by the selected trajectories for comparison (Zhang et al., 2020). 
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Overall, Table 2.2 summarizes the related work of semantic trajectory mining. 

While most studies pay attention to the detection of semantic events and their links to 

the movement patterns, the literature of vessel destination prediction is rare. In our 

research, we contribute to the destination port prediction with both stay points-based 

approach and similarity-based approach of semantic trajectory. For the former approach, 

we scan the trajectory with a time window and record associated information, including 

port name, port id, arrival time etc. So, we can extract different orders of sequences of 

port calls. Combined with the random forest classifier, we can predict the next port in 

advance. For the latter approach, we use the TRACLUS algorithm (Lee et al., 2007) to 

cluster and output the representative trajectories for different routes. Hence, the 

similarity probability can be calculated between a sailing trajectory and these 

representative trajectories. Based on the similarity probability of different sailing days 

and other features, such as departure port, IMO number and deadweight tonnage 

(DWT), we can train the GBDT classifier to predict the destination port in real time.  

Table 2. 2 Previous studies on vessel semantic trajectory mining 

Source Content Objective 

Vandecasteele et 

al., 2014 

Incorporate the concept of semantic 

events with semantic trajectories. 

  

Semantic trajectory 

framework 

Huang et al., 2020 

Detect the semantic descriptions for ship 

mobility patterns. 

  

Semantic trajectory 

framework 

Shahir et al., 2019 

Mine the semantic events for illegal 

fishing. 

  

Semantic events 

Villa and Camossi 

et al., 2011 

Infer the container itineraries with 

semantic risk routes. 

  

Semantic events 
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Tao et al., 2017 

Adopt HON algorithm to predict the 

future port sequence. 

  

Destination prediction by 

semantic trajectory 

Zhang et al., 2020 

Construct the similarity distance matrix 

among trajectories to estimate the vessel 

destination. 

Destination prediction by 

semantic similarity 

  

2.2 Stay Points Recognition 

In recent research, the stay points recognition plays an important role in trajectory 

data mining. The methods for stay points recognition have two categories: association 

rules-based method and clustering-based method.  

 

(1) Association rules-based method 

Stay points of most trajectories have a distinctive characteristic that the speed is 

nearly zero. This characteristic of stay points makes the association rules possible. Set 

a series of rules to associate with the speed and duration of a trajectory in advance. Then 

filter the points not meeting these rules to find the stay points of a trajectory. However, 

in the real world, many trajectories may have pseudo-stay points such as traffic jams. 

These pseudo points lead to the wrong recognition. To improve the recognition accuracy, 

more and more complex rules can be added but the efficiency and generality are limited. 

Hence, this method is often used for the preliminary recognition of stay points 

(Ashbrook and Starner, 2002; Schuessler and Axhausen, 2009; Huang, et al, 2016). 

 

(2) Clustering-based method 

To detect the continuous stay points of a trajectory, many researchers propose the 

clustering-based method. This method can recognize the stay points accumulating in 

the small space for a period. The aggregation region of many stay points is called a 
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cluster. Among different ways for clustering, density clustering for spatial-temporal 

trajectory is the typical one.  

The algorithms for density clustering include TDBC,POSMIT, ST-DBSCAN and 

CB-SMoT etc. TDBC algorithm regards the points with constraints of the time and 

number thresholds in timeline as stay points of a trajectory (Fu et al., 2016). POSMIT 

considers the likelihood distribution of points in different locations to detect the 

possible stay points (Bermingham and Lee, 2018). However, TDBC and POSMIT only 

take either the time interval or the space distance into consideration. ST-DBSCAN 

combines the time and space threshold to cluster the stay points, while the 

hyperparameters are hard to decide (Birant and Kut, 2007). But ST-DBSCAN has the 

overlapping region of stay points in different clusters. It also needs to recalculate the 

density regions when just a few points are changed. Therefore, the scanning trajectory 

sequence algorithm appears for clustering stay points. CB-SMoT algorithm is the 

typical one. It improves the performance by recognizing a low-speed sub-trajectory. 

The points of sub-trajectory are detected as stay points (Palma et al., 2008). Moreover, 

some studies also develop the data field theory for stay points detection (Zhao et al., 

2017). 

Overall, Table 2.3 summarizes the related work for stay points recognition. In our 

study, we develop an optimized CB-SMoT algorithm to detect the stay regions in 

sequence by scanning the AIS data of a vessel. Combined with the port coordinates, we 

can get the sequence of port calls for this vessel. Our optimized CB-SMoT algorithm 

can identify most port calls of tramp ships. Based on the sequences of port calls for 
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VLCC, we can extract the spatial-temporal or semantic trajectories to build three 

different models. These models form the framework of destination prediction  

Table 2. 3 Previous studies on stay points recognition 

Source Content Stay points recognition  

Ashbrook and Starner, 

2002 

Design an algorithm to detect the 

stay points of wearable 

computers. 

  

Association rules 

Schuessler and Axhausen, 

2009 

Process the GPS raw data for 

positions. 

  

Association rules 

Huang, et al, 2016 

Discover the repeated behaviors 

by stay points. 

  

Association rules 

Luo et al., 2017 

Adopt data filed theory to find  

stay points. 

  

Clustering-based 

Zimmermann et al., 2009 

Use the CB-SMoT to detect error 

stops. 

  

Clustering-based 

Chen et al., 2014 

Develop the T-DBSCAN 

algorithm for GPS trajectories. 

  

Clustering-based 

Zhao et al., 2017 

Detect the hotspots from 

trajectories. 

  

Clustering-based 

Damiani et al., 2014 

Propose a seqscan clustering 

algorithm to extract animal stay 

points. 

Clustering-based 

 

2.3 Distances for Trajectory Similarity Measure   

To measure the similarity between two trajectories, the trajectory distance can be 

adopted as a metric. In recent work, the trajectory distance can be divided into three 

categories: point-based distances, shape-based distances, and segment-based distances. 

 

(1) Point-based distances 
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This kind of point-based method calculates the distance by points of different 

trajectories, including Euclidean distance, Dynamic Time Warping (DTW), Longest 

Common Sub-Sequence (LCSS), Edit Distance on Real Sequence (EDR). Euclidean 

distance represents the true distance between a pair of corresponding points, only used 

for trajectories of the same length. DTW aims to get the smallest warping cost path 

between matched points of two trajectories. DTW takes the time differences into 

consideration but is sensitive to the noise (Keogh and Ratanamahatana, 2005). LCSS 

and EDR are distances with the adaptation of string similarity. LCSS counts the number 

of matched pairs and EDR counts the operation cost to fix unmatched pairs. However, 

both are limited by the matching threshold (Vlachos et al., 2002; Chen et al., 2005). 

 

(2) Shape-based distances 

The Hausdorff distance and Fréchet distance are two typical distances based on 

the shape of trajectories for calculating. Both distances work well when two trajectories 

have enough information to reflect the whole shape, but they are limited when missing 

parts of the trajectory records (Aronov et al., 2006; Min et al., 2007). Symmetrized 

Segment-Path Distance (SSPD) compares two trajectories as a whole and is not 

sensitive to the sudden variation of trajectories (Besse et al., 2016). 

 

(3) Segment-based distances 

The One-Way Distance and Locality In-between Polylines (LIP) distance 

represent the distance of segments. One-Way Distance considers a trajectory as the 

piecewise line segment and considers another trajectory as the series of points (Lin and 

Su, 2008). LIP distance calculates the polygon area between intersections points of 
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segments but is only available for 2D trajectories (Pelekis et al., 2007).   

Table 2.4 summarizes the trajectory distances for similarity measurement in 

previous research. Based on the above research, we prefer SSPD of the shape-based 

distances to calculate the similarity matrix among trajectories. Because SSPD takes the 

length and variation of two trajectories into consideration to measure their physical 

distance. Moreover, the numbers of trajectory points in SSPD are not limited and SSPD 

have a good performance even if the data quality is low.  

Table 2. 4 Previous works for similarity measurement with trajectory distances 

Source Content Trajectory distance 

Jin et al., 2017 

Propose a shipping frequency model 

with DTW to learn trajectory 

information. 

  

DTW 

Li et al., 2019 

Measure the trajectory similarity with 

LCSS. 

  

LCSS 

Liu and Yang., 2009 

Design an optimized EDR model to 

analyze the trajectory similarity. 

  

EDR 

Sheng and Yin., 2018 

Develop a trajectory clustering 

algorithm with Hausdorff distance. 

  

Hausdorff distance 

Mascret et al.; 2006 

Compute the coastlines with Fréchet 

distance for measurement. 

  

Fréchet distance 

Zhang et al., 2020 

Employ the Symmetrized Segment-

Path Distance with random forest to 

forecast the vessel destination. 

 

SSPD 

Pelekis et al., 2012 
Develop a similar trajectories 

visualization method with LIP distance 
LIP distance 

Ma et al., 2014 
Adopted One-Way Distance to assess 

the vessel trajectory similarity. 
One-Way Distance 
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2.4 Summary of the Chapter 

In this chapter, based on spatial-temporal trajectory and semantic trajectory, we 

conclude two kinds of frameworks for vessel destination port prediction. We explain 

how to employ these two frameworks in our research. Then we review the stay points 

recognition methods and the similarity distance metrics in the frameworks. Based on 

these methods and metrics, we propose an optimized CB-SMoT algorithm in the 

following chapter for stay points recognition and decide SSPD as the similarity distance.   
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Chapter 3: Development of an Optimized CB-SMoT Algorithm for 

Port Calls Recognition 

In this chapter, as the basis of research, high quality and reliable AIS data should 

be achieved at first by preprocessing that needs filtering and compressing. However, 

these data can just provide the fundamental information of a vessel. The trajectory 

patterns and associated voyages of the vessel still need further work to obtain. Therefore, 

we develop an optimized CB-SMoT algorithm to solve this problem and validate its 

performance. The optimized CB-SMoT algorithm can divide the trajectory of a vessel 

into the movement pattern and the port calls pattern rapidly and effectively by scanning 

the AIS data. It can also recognize the stay points. We can depend on the algorithm to 

extract voyages and more semantic information of port calls.  

 

3.1 AIS Data Preprocessing 

Before introducing the algorithm, some data preprocessing steps should be 

conducted to ensure the data quality in this study. AIS raw data contains many 

redundant information and noise points, which cannot be used directly. The data 

cleaning and compression is necessary. We conduct these tasks by two steps: 

Step 1: Speed-based heuristic filtering to clean data. 

Step 2: Douglas–Peucker (DP) algorithm to compress data. 

In step1, the noise point is the outlier that has an obvious deviation in position. The 

simple and effective way to remove noise is the speed limitation. For the continuous 

records of AIS, the distance between two consecutive locations cannot exceed the 
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product of maximum speed and time interval. Hence, we adopt the maximum speed 15 

knots of bulk carriers and 17 knots of tanker ships to filter noise. In general, the average 

service speed of VLCCs is 11~12 knots, which is not the same as the maximum speed. 

In step 2, to reduce the time cost, we employ DP algorithm to compress data for every 

vessel in our database. The compressed data capacity is about 70% of the raw data. 

 

3.2 Introduction to CB-SMoT Algorithm 

Clustering-based Stops and Moves of Trajectories (CB-SMoT) algorithm is 

presented for finding clusters in a single trajectory by Palma et al. (2008). It considers 

both the time and the distance of the sub-trajectory, aiming to recognize the low-speed 

region. Different from the well-known DBSCAN algorithm, this algorithm changes two 

important concepts for clustering: the Eps-linear-neighborhood of a point and the core 

point. These two concepts are described as the follow: 

⚫ Eps-linear-neighborhood. 

Assuming a trajectory with points sequence {p0, p1, ..., pk, pk+1, . . . , pN }, the Eps-

linear-neighborhood of a point pk is denoted via LBEPS(pk): 

 ( ) ( )
1

1 1
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dist , Eps dist , ,
k n

i i i i

i m i k

p p p p Eps
−

+ −

= = +

   
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   
    (1) 

where 𝑡0 ≤ 𝑡𝑚 < 𝑡𝑘 < 𝑡𝑛 ≤ 𝑡𝑁. As shown in Figure 3.1, in a trajectory, the red point O 

with the radius Eps of 50km has seven blue points as neighborhoods. But only point B, 

C, D, E can meet the above condition of LBEPS(po) and become the linear 

neighborhood of point O. All these points form the sub-trajectory. 
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Figure 3. 1 An illustration for Eps-linear-neighborhood 

 

⚫ Core point. 

If a point p = (xp, yp, tp) of a trajectory can meet the requirement: for points in 

LBEPS(p), exist the |tn −tm| ≥ MinTime, where m is the first point and n is the last point 

in the linear neighborhoods ordered by time. Then the point p can be regarded as a core 

point. The core point and its linear neighborhoods consist of a cluster as a set of 

contiguous time-space points. 

When the CB-SMoT algorithm works, it scans a trajectory to find core points and 

construct different clusters. The clusters with directly density-reachable core points can 

be merged into one cluster. Moreover, the parameter can be self-adaptive adjustment by 

the quantile function. In fact, for a single vessel trajectory with some labeled clusters 

in Figure 3.2, the CB-SMoT can detect the unknown clusters X and Y as a kind of 

unsupervised learning and overcome the problem of clustering an incomplete trajectory 

with missing data. 
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Figure 3. 2 The single raw trajectory and single semantic trajectory (Palma et al., 

2008) 

 

3.3 The Optimized CB-SMoT Algorithm 

The tramp services usually have no fixed schedules for port calls. Aiming to 

extract the sequence of port calls for a tramp ship in a fast and accurate way, we develop 

the optimized CB-SMoT algorithm with a world ports list. The key contribution of our 

algorithm can be summarized as follows:  

i. The port calls information and stay regions can be recognized. 

ii. Every cluster is spatially and temporally disjointed. For different port calls, the 

corresponding cluster is unique. 

iii. The time complexity O(n) of the optimized algorithm performs better than O(n2) 

of the original CB-SMoT algorithm. 

In this section, we will present how our algorithm works and give the illustration of an 

oil tanker. 

 

3.3.1 Basic definitions 

The conceptual views and definitions of a trajectory are based on the original CB-

SMoT algorithm. We change and put forward the following main definitions. They 

provide a foundation for our optimized algorithm. 
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Definition 1: Trajectory sample.  

A trajectory sample of a vessel consists of a series of consecutive points, as {p0, 

p1, ..., pN}. The point is in the form p = (xp, yp, tp), including the coordinates and 

timestamps. Hence, the trajectory sample can be denoted: 

 begin end   : .     Trajectory sample P P space and time  →    (2) 

 

Definition 2: Temporal sub-trajectory and Center point.  

Any consecutive segment of a trajectory sample can be presented by {pm, ..., pn}

∈{pstart, ..., pm, ..., pn..., pend}. If the segment can meet both the time threshold Tinterval 

and the speed threshold Maxspeed as: 

 
( )

1
,

1

m intervn al 

velocity p p
i i

i m  
n m

n

t t T

Time and speed thresholds: 

Maxspeed ,


+


−

−

=

 − 






  (3) 

then it can be called a temporal sub-trajectory for stay points. The median point of a 

temporal sub-trajectory can be regarded as the center point Pcenter, as the red point shown 

in Figure 3.3(a).  

 

Definition 3: Core point and cluster. 

If the point PK is the center point of a temporal sub-trajectory, and the number of 

points in the Eps-neighborhood of PK exceeds the MinP as: 

 ( ) ( ) dist ,k kN p q P p q Eps MinP=   ∣   (4) 
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then PK is called a core point. The core point and all its neighborhoods built a cluster 

for stay points, as the blue circle in Figure 3.3(b). If any point in the cluster belongs to 

the region of port, the cluster can be considered as the stay region of port calls. 

 

(a) The temporal sub-trajectory and center point 

 
(b) The core point and cluster of the port calls region 

Figure 3. 3 Concepts of sub-trajectory, points, and cluster 

 

Definition 4: Merging clusters. 

As Figure 3.4 (a) shows, for any two clusters of the sub-trajectory 1 and sub-

trajectory 2, if one point exists in the overlapping part of the two clusters, then both 

clusters can be merged into one cluster. When the overlapping part contains the core 

point of a cluster, the two core points are directly density-reachable and other points of 

the two clusters are density-reachable or connectable. Moreover, Figure 3.4 (b) 

describes the situation that a port of call region has more than one cluster. Even though 

two clusters have no overlaps but in the same port region, they should be merged.  
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Definition 5: Extending clusters. 

If two clusters of the sub-trajectory 1 and sub-trajectory 2 cannot be merged, and 

they are located at different regions of port A and port B. as shown in Figure 3.4 (c), the 

stay region of port calls should be extended to a new one.  

 

Definition 6: Anomaly detection.  

When a cluster B cannot neither be merged to previous cluster A in the port region 

nor be extended to form a new one, the cluster B is considered as the abnormal area of 

stay points. 

 

(a) One merging situation 

 

(b) Another merging situation 
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(c) The extending situation 

Figure 3. 4 Concepts of merging and extending clusters 

 

3.3.2 Algorithm workflow 

The optimized CB-SMoT algorithm is presented by time and speed-aware, dense-

based functions and by scanning the temporal sub-trajectories to merge or extend the 

cluster. The overall workflow and pseudo-code are described in Table 3.1 with many 

steps. In the first step, we extract the sub-trajectory from the complete trajectory with 

an ordered time window and find the center point. In the second step, we calculate the 

average velocity and Eps-neighborhood of the center point to identify whether the sub-

trajectory is nearly stopping at a very slow speed and construct the cluster. Here, the 

core point can be obtained. In the third step, we match the cluster with the closest port. 

In the final step, if the cluster is not the initial cluster, we determine whether to merge 

the cluster with the previous one or extend it as a new cluster based on definition 4 and 

5. When extending, the port of call information and associated stay region of the 

previous cluster can be recorded. After scanning the trajectory, the workflow can 

produce the sequence of port calls. 

More details about the parameters and functions are beneficial to explain the 

algorithm workflow. The time window Tinterval and the radius Eps are adjusted with 
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respect to different sampling frequencies of the trajectory. Considering the possible AIS 

signal drift, the Maxspeed is a threshold near zero but not zero to delimit the space range 

of sub-trajectory. When matching a cluster with the world ports list, the distance 

between the core point and port coordinates is calculated by Haversine distance. If this 

distance is less than 10 n mile or between 20~30 n mile, the vessel is located at the berth 

or anchorage of the port. Otherwise, the stay region is abnormal. 

Table 3. 1 The optimized CB-SMoT algorithm workflow 

Algorithm 1 Optimized CB-SMoT. 

1: Input: T=[P1, … ,Pn]  //the trajectory record from a vessel's AIS data 

2: Parameters:  

3:      TInterval    //the time threshold for extracting the temporal sub-trajectory 

4:      Maxspeed    //the average speed threshold of the sub-trajectory  

5:      MinP      //the minimum number of points in the Eps-neighborhood  

6:      Eps      //the radius for the range of neighborhoods around a core point  

7:      Worldportlist //the coordinates of world ports  

8:       

9: output: Port_call_inforamtion(Arrival_time, Departure_time, Stay_duration, 

Port_ID,Port_name) 

10:  

11: Method: 

12: cluster_core=Ø   //the set to collect core points 

13: cluster_point=Ø  //the set to collect points in cluster 

14: port_seq=Ø    //the set to collect the port calls information 

15: start_index=0  //initial trajectory point index 

16:  

17: while start_index<len(T): 

18:     //extract the temporal sub-trajectory and find the index of center point and last point 

19:     T_sub,center_index,end_index=getSubtrajectory(start_index,T,TInterval)  

20:     //calculate the spatiotemporal distance matrix between each point in sub-trajectory 

21:     timeDisMat, disMat=compute_squared_EDM(T_sub)  

22:     //calculate the average speed of the sub-trajectory 

23:     avg_v=speed(timeDisMat,disMat)   

24:     // search the number and points of neighborhoods 

25:     N,Neighbor_points=searchNeighbors(T_sub,center_index,disMat,Eps) 

26:      

27:     if avg_v<=Maxspeed and N>=MinP: 

28:         //match the port information 
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29:         port_id,port_name=portMatch(Worldportlist,T_sub,center_index) 

30:          

31:         if cluster_core,cluster_point,port_seq=Ø and port_id,port_name!=null value: 

32:             //find the first cluster 

33:             cluster_core.append(Point[center_index]) 

34:             cluster_point.append(Neighbor_points) 

35:             port_seq.append([port_id,port_name]) 

36:         elif port_id,port_name!=null value: 

37:             //identify whether two sub-trajectories can be directly density-reachable 

38:             link=linkDensity(cluster_core[-1],T_sub,Eps) 

39:              

40:             if link==True or (link==False and port_id== port_seq[-1][0]): 

41:                cluster_point,cluster_core=merge(cluster_point[-1],Neighbor_points, 

42:                                         cluster_core[-1],Point[center_index]) 

43:             elif (link==False and port_id!= port_seq[-1][0]):     

44:                Extend{cluster_core.append(Point[center_index]) 

45:                      cluster_point.append(Neighbor_points) 

46:                      port_seq.append([port_id,port_name])} 

47:              

48:             Arrival_time=Datetime(cluster_point[-2][0]) 

49:             Departure_time=Datetime(cluster_point[-2][-1]) 

50:             Stay_duration=Departure_time-Arrival_time 

51:              

52:             writetocsv(Arrival_time, Departure_time, Stay_duration, port_seq[-2][0], 

port_seq[-2][-1]) 

53:             endif  

54:         endif         

55:     endif   

56: endwhile 

 

3.3.3 Illustration of the algorithm 

To illustrate the optimized CB-SMoT algorithm, we choose an oil tanker of 

Spanish flag (MMSI 224432000) to extract its sequence of port calls in 2017. As shown 

in Figure 3.5, this ship visited 13 ports around Spain. For Gibraltar port, the stay region 

was in the berth and very close to the crude oil wharf. Table 3.2 presents the result of 

the sequence of port calls with 60 voyages in 2017. 
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    (a) All the visited ports              (b) The stay points in Gibraltar port 

Figure 3. 5 An illustration for the stay regions 

 

Table 3. 2 An illustration of the sequence of port calls  

Port calls 

order 

Arrival 

time 

Departure  

time 

Stay 

duration 

(days) 

Port ID Port name 

1 2017/1/1 9:33 2017/1/16 20:20 15.4491 14011 

Puerto de la 

Hondura Oil 

Terminal 

2 2017/1/20 15:23 2017/1/22 12:29 1.8794 13433 Sines 

3 2017/1/25 2:48 2017/1/27 5:49 2.1256 18937 Valencia 

4 2017/2/3 4:36 2017/2/18 23:13 15.7758 25923 Gijon 

… … … … … … 

57 2017/12/12 12:49 2017/12/14 11:34 1.9480 19610 

Punta Lucero 

Tanker 

Terminal 

58 2017/12/16 11:39 2017/12/17 9:51 0.9248 25923 Gijon 

59 2017/12/17 20:44 2017/12/20 11:28 2.6140 19610 

Punta Lucero 

Tanker 

Terminal 

60 2017/12/20 22:29 2017/12/22 19:17 1.8667 25923 Gijon 
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3.4 Performance of the Algorithm 

3.4.1 Data and metrics 

To validate our optimized CB-SMoT algorithm, we select 500 bulk carriers and 

500 tanker ships with known port calls in 2017, respectively. The frequency of port 

calls for bulk carriers is 17170 and for tanker ships is 43730. The categories of these 

tramp ships are described in Appendix A. 

The metric used to measure the algorithm performance is grounded on the longest 

common sequence (LCS). It can assess the text sequence similarity as the equation: 

 

2
,text

LCS

predicted known

Simi
L

L L
=

+   (5) 

Where LLCS means the length of LCS, Lpredicted and Lknown are the lengths of predicted 

and known sequences of port calls. We calculate the average similarity for bulk carriers 

and tanker ships to represent the accuracy ratio of the algorithm. Moreover, we compare 

our algorithm with ST-DBSCAN and POSMIT. 

 

3.4.2 Results 

The results of different algorithms for port calls recognition are presented in Table 

3.3. We can see our algorithm can achieve an accuracy larger than 85% for bulk carriers 

and an accuracy larger than 90% for tanker ships. In contrast, our algorithm’s 

performance is better than those of ST-DBSCAN and POSMIT. Therefore, the 

optimized algorithm can be depended on to extract the sequences of port calls for 

VLCCs in the next chapter.  
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Table 3. 3 Measurement of algorithm performance 

Algorithms 

Bulk carriers Tanker ships 

Number of detected 

port calls 

Accuracy 

ratio 

Number of 

detected port calls 

Accuracy 

ratio 

ST-DBSCAN  9765 57.45% 27974 64.12% 

POSMIT 13989 82.37% 37655 86.26% 

Optimized  

CB-SMoT 
14927 86.41% 40653 90.63% 

 

3.5 Summary of the Chapter 

In this chapter, we introduce the steps of AIS data preprocessing. Then we 

elaborate on how we develop the optimized CB-SMoT algorithm. The definitions and 

workflow are explained, and an illustration of an oil tanker is given. In addition, the 

algorithm performance is validated with a better accuracy than those of other similar 

algorithms. 
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Chapter 4: Destination Port Prediction Models 

The optimized CB-SMoT in Chapter 3 has a strong connection with this chapter. 

It helps build the bases of data material (samples) for all three models. Voyages of 

different routes and semantic information from port calls are extracted by the algorithm. 

In this chapter, considering the AIS data sampling frequency for VLCCs, we set the 

main parameters of the algorithm in accordance with TInterval=15min, Maxspeed=0.1 

knot, MinP=10, Eps=300m. Our AIS data of 402 VLCCs of a fleet in 2020 are from 

the company of CHINA MERCHANTS ENERGY SHIPPING. The distribution of 

extracted samples is different for every model. For model 1, we use the full samples. 

For model 2, to enhance the effectiveness of prediction, we use partial samples that are 

voyages of VLCCs departing from the Middle East, which account for more than 90% 

of voyages (see Appendix B). Similarly, for model 3, we use partial samples that are 

voyages of frequent routes appearing more than 60 times. Besides, we analyze the 

model performance and related results in more detail. We also discuss the research 

findings and describe how to apply these models for practices. 

 

4.1 Model 1-The High Order Sequence of Port Calls Model (Semantic-

Based)  

4.1.1 Data description  

In model 1, we select the sequences of port calls of 402 VLCCs. These ships have 

the port calls every month. In total, 9587 port calls are extracted and recorded. As the 

sequence of port calls heatmap of Figure 4.1 shows, most port calls are in the Mideast, 

East Asia, North Sea, Gulf of Mexico and Gulf of Guinea. These regions include main 
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groups of export ports and import ports for crude oil. Other port calls are the 

transshipment ports such as Singapore.  

 
Figure 4. 1 The heatmap for VLCC sequences of port calls 

 

4.1.2 Methodology and metrics  

(1) Methodology 

Before sailing, the vessel cannot produce the sailing trajectory. The possible and 

useful information is the historical records of port calls. These semantic records bring 

the chance to predict the destination port in advance. A random walk simulation with 

likelihoods in higher order networks is one typical method (Tao et al., 2017), but it is 

complex to find the weights of parameters. Hence, we attempt to train a simple but 

effective classification model with sequences of port calls to predict the destination.  

The sequences of port calls with different orders are extracted by the optimized 

CB-SMoT algorithm at first. As shown in Table 4.1, the definition of order is the 

number of previous ports. The more previous ports are counted, the higher order is. 

Then combining the sequences of port calls under different orders with the random 

forest classifier from the Scikit-learn library, we can construct the classification model 
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for prediction. In the model, X is the feature and Y is the labels of categories. We can 

denote them as: 

⚫ X: Different order sequences of previous ports (minimum frequency 2) 

⚫ Y: Destination ports. 

Here, we define the minimum frequency for a pair of departure and destination ports, 

which is at least more than 2. Because the single appearance of one pair cannot provide 

enough information and the movement pattern. 

Table 4. 1 An illustration for high order sequence of port calls (IMO 9805099) 

Order 
Previous 

port 5 

Previous 

port 4 

Previous 

port 3 

Previous 

port 2 

Previous 

port 1 

Destination 

port 

1     Das Island Fujairah 

2    Zirku 

Island 
Das Island Fujairah 

3   Sir Bani 

Yas Port 

Zirku 

Island 
Das Island Fujairah 

4  Mesaieed 
Sir Bani 

Yas Port 

Zirku 

Island 
Das Island Fujairah 

5 
Doha 

(Qatar) 
Mesaieed 

Sir Bani 

Yas Port 

Zirku 

Island 
Das Island Fujairah 

 

(2) Metrics 

To measure the performance of the random forest classifier, we should know the 

concepts of TP (True positive), FP (False positive), TN (True negative), FN (False 

negative). The detail concepts are given as follows: 

TP: The positive sample is classified into the positive group 

FP: The negative sample is classified into the positive group. 

TN: The negative sample is classified into the negative group. 

FN: The positive sample is classified into the negative group. 
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Based on the above concepts, we can calculate the precision, recall, F1-Measure 

and accuracy as the indicators for measurement. For multi-class tasks, these indicators 

are the macro average values of different classes for prediction. The formulas of the 

indicators are shown as: 

 
TP

Precision
TP FP

=
+

  (6) 

 

 
TP

Recall
TP FN

=
+

  (7) 

 

 
2 * Precision  Recall 

F1-score
 Precision  Recall 

=
+

  (8) 

 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
  (9) 

 

4.1.3 Results   

We study the effects of the order on the prediction by a random forest classifier. 

The datasets are divided into training and test sets randomly with the ratio 8:2. As the 

results shown in Table 4.2, the four indicators increase with the growth of order. When 

the order of the sequence of port calls is larger than 3, the F1-score and accuracy can 

exceed 0.80. Because the higher order contains more information about previous ports. 

For example, for an oil tanker, when the order is 1 including one previous port, the 

alternative destination ports are fifteen. But when the order is 2 including two previous 

ports, it has only ten alternative destination ports. As a result, the probability of being 
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correctly predicted becomes larger. Therefore, it is necessary to use a higher order 

sequence to achieve a good performance. 

Table 4. 2 The performance of destination port prediction with different orders 

Order Precision Recall F1-score Accuracy 

1 0.309 0.305 0.307 0.307 

2 0.489 0.475 0.481 0.480 

3 0.596 0.601 0.598 0.605 

4 0.817 0.801 0.809 0.807 

5 0.859 0.846 0.852 0.852 

 

4.2 Model 2-The Trajectory Similarity Model (Semantic-Based)  

4.2.1 Data description  

In model 2, we select 670 voyages from 329 VLCCs based on the port calls. The 

voyages are distributed among 108 sea routes. The departure ports of all routes are in 

the Middle East and Gulf (MEG). The destination ports are located at seven different 

regions, including West India, East India, South of China, Middle of China, North of 

China, Korea and Japan. 

 

4.2.2 Methodology and metrics  

(1) Methodology 

At first, we adopt the TRACLUS algorithm to extract the representative 

trajectories. The definition of representative trajectory is a trajectory with a series of 

points as the standard for the target route. The representative trajectory does not really 

exist and is produced by clustering the trajectories of different voyages along the same 
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route. We get 108 representative trajectories between different ports and get 7 

representative trajectories between different regions. As the illustration in Figure 4.2, 

the black dot-dash-line and black dotted line denote the representative trajectories. 

 

(a) The route from Middle East and Gulf region to Middle of China region 

 

(b) The voyage from port of Fujairah (United Arab Emirates) to port of Paradip 

(India) 
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(c) The voyage from port of Ju'aymah Crude and LPG Terminals (Saudi Arabia) to 

port of Onsan (Korea) 

Figure 4. 2 Illustrations for representative trajectories 

 

After extracting the representative trajectories, we use Symmetrized Segment-Path 

Distance (SSPD) to calculate the similarity for 670 voyages. The SSPD can be 

calculated as following equations: 

 ( )
( ) ( )1 2 2 1

1 2
, ,

, ,
2

SPD SPD

SSPD

D T T D T T
D T T

+
=   (10) 

Where DSPD is the average distance for points of one trajectory to another trajectory. 

Then we convert the DSSPD to the likelihood by: 

 
1

SSPDD
P

e−
=   (11) 

Here, we use δ={Prep-Tra 0, Prep-Tra 1, ..., Prep-Tra N} to indicate the similarity probability 

vector between a vessel trajectory and N representative trajectories. As Table 4.3 shows, 

we can construct the similarity probability matrix for vessel trajectories on different 

sailing days.  
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Table 4. 3 The similarity probability matrix 

 Day 1 Day 2 Day 3 ... Day j 

Vessel 1 similarity likelihood δ11 δ12 δ13 ... δ1j 

Vessel 2 similarity likelihood δ21 δ22 δ23 ... δ2j 

Vessel 3 similarity likelihood δ31 δ32 δ31 ... δ3j 

... ... ... ... ... ... 

Vessel i similarity likelihood δi1 δi2 δi3 ... δij 

Note: (δij is a similarity probability vector comparing with N representative trajectories) 

 

At last, combining the ship information with the similarity probability matrix of 

different sailing days, we can build the classification model using the Scikit-learn 

library for every sailing day. In the model, X denotes the features and Y denotes the 

labels of categories. The detailed form can be described as: 

⚫ X: IMO, DWT, similarity probability δ for different days 

⚫ Y: Destination port/region. 

 

(2) Metrics 

In this model, we use metrics as same as those in section 4.1.2. The metrics include 

precision, recall, F1-Measure and accuracy. 

 

4.2.3 Results   

(1) Model performance for destination port prediction 

We use DT, GBDT and XGBoost classifiers to predict 34 destination ports for 670 

voyages of every sailing day. We split the dataset into training and test sets randomly 

with the ratio 8:2. As the results shown in Figure 4.3, among three classifiers, the GBDT 
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performs best with the highest accuracy. The recall decreases and precision increases 

with the sailing days. Both F1-score and accuracy increase with the sailing days. The 

difference between the F1-score and accuracy is not significant, demonstrating the 

model has a good robustness and avoids the unbalanced samples.  

 

(a) Recall                          (b) Precision 

 

(c) F1-score                         (d) Accuracy 

Figure 4. 3 The classification performance for destination ports 

Note: (Each symbol represents the likelihood of the indicator for every sailing day) 

 

Before the 15 days, the accuracy is low in the range of 0.3~0.35. To explain this 

phenomenon, we plot the trajectories of the first fifteen days. As Figure 4.4 shows, from 

the Middle East to Asia, trajectories have the common trajectory segments to pass Sri 

Lanka and Malacca Strait. The shapes of the trajectories have no sharp distinction. 

Therefore, the classifier cannot make a correct classification. When the VLCCs sail for 



Chapter 4: Destination Port Prediction Models 

45 
 

more days, the shapes of trajectories change a lot with different ships’ headings to their 

destination ports. As a result, the similarity probabilities are very different from each 

other. The accuracy can exceed 0.6 after 20 days and reach 0.78 at the end. 

 

Figure 4. 4 The common trajectory segments in first fifteen sailing days 

 

(2) The relationship between sailing days and destinations 

To explore the relationship between sailing days and destinations, we study how 

many days are needed to identify different destination regions for VLCCs. As Figure 

4.5 shows, to achieve a high and believable accuracy above 0.6, the destination region 

of West India can be identified on the sixth day and East India on the ninth day. Then 

the South of China regions can be identified on the seventeenth day, while the Middle 

and North of China regions are recognized during nineteenth to twentieth days. Korea 

and Japan are geographically close to each other, it needs more days to predict correctly.  
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Figure 4. 5 The accuracy between sailing days and destination regions 

Note: (Each dot represents the accuracy for every sailing day) 

 

4.3 Model 3-The Neural Network Model (Spatial-Temporal-Based)  

4.3.1 Data description  

In model 3, we choose 200 voyages from three frequent routes of VLCCs, 

respectively. The detailed routes are: 

Route 1: Ju'aymah Crude & LPG Terminals → US Gulf Lightering Zones. (72 

voyages)  

Route 2: Ras Tanura → Kiire. (65 voyages) 

Route 3: Djeno → Qingdao. (63 voyages) 

 

4.3.2 Methodology and metrics  

(1) Methodology 

We build the BP, LSTM, GRU neural networks using the Keras library to predict 

the spatial-temporal trajectory of the last few days for a VLCC. The general parameters 
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of the neural networks are: one hidden layer of 5 neurons, one output layer of 5 neurons, 

the activation function for the hidden layer is Relu, the activation function for the output 

layer is linear, loss function is the mean squared error, the optimizer is adam, the batch 

size is 32. When training neural networks, input the time series data of latitude and 

longitude from the sailing trajectory that has been produced and fit these samples with 

a nonlinear mapping. Based on the fitting function, the last few days trajectory can be 

predicted for testing. Moreover, the destination port is regarded as located at the end of 

the last few days’ trajectory. 

As shown in Figure 4.6, the illustrations of three neural networks present the 

training trajectory, which is produced by the VLCC that has sailed for more than 20 

days, and the last-72h trajectory of the VLCC as the testing trajectory. Here, we focus 

on the predicted trajectory for testing in the red line. The end location of the predicted 

trajectory decides the destination port, which is adjacent to crude oil storage and berth 

facilities to accommodate the VLCC.   

 

(a) Route 1-Ju'aymah Crude & LPG Terminals to US Gulf Lightering Zones 
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(b) Route 2-Ras Tanura to Kiire 

 

(c) Route 3-Djeno to Qingdao 

Figure 4. 6 Illustrations of neural networks for trajectory prediction 

 

(2) Metrics 

To measure the difference between the raw trajectory and the predicted trajectory, 

we adopt the MAE (mean absolute error) and RMSE (root mean squared error) as 

metrics for longitude/ latitude. The MAE and RMSE are calculated as follows: 
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The correct rate of destination ports can be assessed by: 
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where the Nreal is the number of predicted trajectories that end at the real destination 

port of VLCC, the Ntotal is the total number of trajectories of the target route. 

 

4.3.3 Results 

(1) Assessment of neural networks 

We use BP, LSTM, GRU to simulate the trajectories of three frequent routes. We 

adopt the VLCC trajectories from starting to the last-72h as the training dataset and the 

trajectories of the last-72h as the testing dataset. As Table 4.5 shows, the LSTM has the 

best performance with the minimum average MAE and RMSE for testing trajectories. 

The average MAE and RMSE of longitude and latitude do not exceed 0.1. Hence, 

LSTM is selected for the following work.    

Table 4. 4 The performance of predicted last-72h trajectories  

Neural networks Routes 
Longitude Latitude 

Ave MAE Ave RMSE Ave MAE Ave RMSE 

BP 

route 1 0.095 0.096 0.063 0.064 

route 2 0.431 0.47 0.523 0.674 

route 3 0.185 0.148 0.292 0.236 

GRU 

route 1 1.375 1.384 6.209 6.250 

route 2 0.71 0.904 0.429 0.534 

route 3 1.836 2.212 0.733 0.871 

LSTM 

route 1 0.068 0.067 0.059 0.097 

route 2 0.029 0.036 0.037 0.039 

route 3 0.045 0.056 0.063 0.073 

 

Comparing the training trajectory with the test trajectory using LSTM, we can find 

the difference of absolute error distributions between them. As shown in Figure 4.7, the 

absolute error of training trajectory fluctuates in a wide range. One reason is that the 

sailing time for training is in the long term more than 20 days. Another reason is that 
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the error is sensitive to the ship’s heading, where the longitude and latitude change a 

lot. However, the absolute error of the testing trajectory is near zero. This result 

indicates the end location of the testing trajectory is near to the real destination region, 

and we can try to predict the destination port based on LSTM.     

  

(a) The absolute error of longitude 

 

  

(b) The absolute error of latitude 

Figure 4. 7 The absolute error distribution of locations in LSMT 

 

(2) Destination port prediction performance 

We use the LSTM to simulate the 200 trajectories for three routes according to 
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different prediction time lengths, respectively. We identify the ratio of trajectories 

ending at the real destination port of VLCC to reflect the correct rate. As shown in Table 

4.6, when the time length for prediction is shorter, the correct rate is higher. The correct 

rate can reach 0.83 by predicting the last-48h trajectory. It implies reliable results can 

be provided two days in advance before arriving. Therefore, during the last few days of 

the voyage, the neural network model is helpful to predict the destination port.  

Table 4. 5 The relationship between the correct rate and prediction time length    

Model  Routes 

Correct rate of different prediction time length 

last-72h 

trajectory 

last-60h 

trajectory 

last-48h 

trajectory 

last-24h 

trajectory 

last-12h 

trajectory 

LSTM 

route 1 0.651 0.731 0.836 0.854 0.892 

route 2 0.633 0.714 0.817 0.842 0.881 

route 3 0.648 0.725 0.828 0.853 0.887 

 

4.4 Research Findings and Application of the Destination Port 

Prediction Models 

4.4.1 Research findings 

Based on the above contents, we have some meaningful research findings deriving 

from the prediction framework of models. Before sailing, no trajectory is produced, and 

the important factor is the historical information of previous ports. It has a positive 

correlation between the likelihood of prediction result and the number of previous ports. 

During sailing, the trajectory can be recorded and updated every sailing day. The 

important factor is the trajectory similarity compared with representative trajectories of 
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known routes. But the common segments of sailing trajectories have a negative effect 

on the prediction until the target ship’s heading becomes different from those of other 

routes. Before arrival, the target ship is near the destination port. The important factor 

is the fitting performance of the sailing trajectory that has been produced during the 

voyage. This factor determines whether the predicted trajectory of the last few days 

ends at the destination port. 

 

4.4.2 Application of the destination port prediction models 

The description of how to apply our prediction models is necessary in the real 

world. Given the initial information of an interested VLCC, the model 1 is employed 

firstly to output a destination port for reference before sailing. When this VLCC starts 

its voyage, the model 2 begins to work and outputs the destination port for every sailing 

day. Do not update the original destination port produced by model 1 until the predicting 

likelihood of model 2 exceeds that of model 1. As the VLCC has finished most of the 

voyage and slows down below a specific threshold, transfer to the model 3 to predict 

the trajectory of the last few days and identify the destination port. In general, when the 

VLCC becomes closer to the destination, the result of model 3 will be more accurate 

than those of model 1 and 2.  

Here, an example can help understand the application process of three models: The 

target VLCC (IMO 9828950) was ready to depart from the port of Mina al Fahalon on 

2020/1/1. The model 1 predicted the destination port was the port of Yokkaichi with a 

probability of 0.69 before the voyage. When the target VLCC departed, the model 2 

gave the predicted destination port every day. At first, the probabilities of these 
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prediction ports were less than 0.69. Therefore, the port of Yokkaichi as the destination 

could not be replaced. But after the sixteen days’ sailing, the model 2 predicted the 

destination port was the port of Chiba with a probability of 0.75 lager than 0.69. The 

destination port was updated. Then the target VLCC tended to slow down on 2020/1/20 

and the model 3 were adopted for prediction. The model 3 produced the same prediction 

result that the destination port is the port of Chiba. Finally, the target VLCC arrived at 

the port of Chiba on 2020/1/22, which had been predicted correctly by the model. 

 

4.5 Summary of the Chapter  

In this chapter, we built three models with different sample distributions to predict 

the destination port. These models can cover different stages of sailing and provide the 

prediction results. The model 1 with a high order can predict the destination port before 

sailing; the model 2 can predict the destination port in the second half of the voyage; 

the model 3 can predict the destination port 48h in advance before arriving. Besides, 

we discuss some key points of our models and explain how to apply these models in 

the real world in detail with an example.       
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Chapter 5: Conclusion and Future Work 

The summary of every chapter has been given at the end of the corresponding 

chapter. The reviews of these summaries are that: Chapter 1 introduced the research 

background and motivations. The structure of the whole study was given. Chapter 2 

reviewed the related literature to tell how the inspiration of this study came. The 

theoretical foundations and frameworks of destination port prediction were determined, 

as well as the stay points recognition and the shape-based similarity distance. Chapter 

3 gave the general AIS data preprocessing steps. The optimized CB-SMoT algorithm 

was developed to detect the sequences of port calls and help segment the trajectory of 

different voyages for more semantic information, which was the cornerstone of 

modeling. Chapter 4 proposed and analyzed the prediction framework of three models 

that were used for different sailing stages. Some important characteristics and findings 

of these models were discussed and the application processes in the real world were 

introduced. Based on these highlights, in this chapter, we can make a conclusion of this 

study and give the possible future work.   

 

5.1 Conclusion of this Study 

Spatial-temporal heterogeneity problem reflects the imbalance of supply and 

demand in tramp shipping. The information opacity of the tramp shipping market 

increases the operation cost and decreases the management efficiency. To solve this 

problem, the fundamental and primary work is the destination port prediction. The 

results of the predicted destination ports provide the supply variation information in the 
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market. Based on this, the operations research model can be established in the follow-

up research. 

In this study, destination port prediction of tramp ships is researched as an 

independent project. The literature is rare about forecasting the designation port directly. 

At the same time, destination port records in AIS are unreliable and nearly 70% of 

records are wrong. It is a challenge to predict the destination port. To achieve the 

research objective, we combine the vessel trajectory analysis and machine learning 

approaches to develop three models for prediction in different stages of sailing.  

The detailed contributions of our study are presented as follows:  

(1) For our study, AIS raw data were cleaned and compressed to ensure the data quality 

and reduce time cost of programs. We cleaned the data by speed-based heuristic 

filtering algorithm and compressed the data by Douglas–Peucker algorithm. The 

compressed data size was about 70% of the raw data size. 

 

(2) Extracting the voyage and its trajectory of different routes needed to know the port 

calls information to determine the departure port and associated destination port. 

Our AIS data did not give the port calls for every vessel. Therefore, developing an 

algorithm to recognize port calls became the precondition. We proposed an 

optimized CB-SMoT algorithm. Combined with the world ports list, our algorithm 

adopted new definitions of cluster, merging cluster, and extending cluster. It reduced 

the time complexity to scan the AIS data of a vessel. The recognized port calls and 

associated cluster of stay points were spatially and temporally disjointed from each 
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other. To validate our algorithm, we compared it with other algorithms to detect the 

known sequence of port calls. As a result, our algorithm recognized 86.41% port 

calls for bulk carriers and 90.63% port calls for tanker ships. 

 

(3) Based on the optimized CB-SMoT algorithm and AIS data of VLCCs, the voyages 

with trajectories of different routes and sequences of port calls were extracted for 

feature engineering in machine learning. We depended on both the spatial-temporal 

trajectory and the semantic trajectory to develop the framework of three machine 

learning models. The framework covered different stages of a voyage: before sailing, 

during sailing and before arriving. All the models in our framework were data-

driven for prediction. The distribution of data samples was different for every model 

to enhance the effectiveness.    

  

(4) The model 1 was a high order sequence of port calls model. We proposed this model 

to predict the destination port before sailing. The most important factor in this 

model was the previous ports information. We defined the order to indicate the 

number of previous ports. The results of the random forest classifier showed the 

accuracy was related to the order. The higher order sequence of port calls of a VLCC 

was considered the higher accuracy was obtained. When the order was larger than 

3, the accuracy was more than 0.80. Therefore, it was suggested to use at least four 

previous ports of a VLCC to predict its destination. 

 

(5) The model 2 was a trajectory similarity model. We proposed this model to predict 
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the destination during sailing. When a VLCC sailed on the sea, the trajectory varied 

with the sailing day. To identify where the VLCC tended to arrive, some known 

routes were necessary for comparison. Hence, we used the TRACLUS algorithm to 

produce the representative trajectories that did not really exist. The similarity 

distance between the sailing trajectory of different sailing days and the 

representative trajectories was measured by Symmetrized Segment-Path Distance 

(SSPD). We converted the similarity distance to the likelihood matrix as the 

important feature. We also considered another two features of the IMO number and 

the DWT of a VLCC. The results of GBDT showed the accuracy increases with 

days and exceeds 0.6 after 20 sailing days. However, the accuracy was affected by 

the shape of a trajectory. At the beginning of sailing, most VLCCs’ trajectories had 

common trajectory segments that implied the probability distribution of destination 

ports was the same for every VLCC. As a result, it was hard to predict correctly. 

When the trajectory shape (ship’s heading) had a distinguished difference from 

others, it had a much better prediction performance. We also demonstrated this by 

the accuracy variation of prediction between sailing days and seven different 

destination regions. 

 

(6) The model 3 was a neural network model. We proposed this model to predict the 

destination port before arriving. The neural networks were trained with the sailing 

trajectory that had been produced during the voyage. Hence, it was used for 

prediction of the last few days’ trajectory before a VLCC's arrival. The results of 
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LSTM had the minimum error of latitude and longitude for three frequent routes. 

The ending location of the predicted trajectory by LSTM decided the destination 

port. Compared with the real destination port, the correct rate was more than 0.83 

by predicting the last-48h trajectory. It was available to decide the destination port 

two days in advance before arriving. 

 

(7) Based on the findings of three models, we also gave the guideline of our prediction 

framework for application with an example. The model 1 provided the initial 

prediction result of the interested VLCC before its voyage. When the VLCC started 

to sail, the model 2 gave the prediction result for every sailing day. The initial 

destination port produced by model 1 was not replaced until the predicting 

likelihood of model 2 exceeded that of model 1. When the VLCC had finished most 

of the voyage and slowed down below a specific threshold, it was transferred to the 

model 3 for prediction. 

 

Overall, we design a comprehensive framework with multi-models for destination 

port prediction. This framework represents a complete data mining process to realize 

the goal. Our study can be improved according to different purposes and extended with 

more functionality.  

 

5.2 Future Work 

The future research of this study will focus on modeling to solve the routing 

optimization problem for tramp shipping. Our destination port prediction framework 
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will provide the dynamic information of ship movements in the market, which is a very 

significant factor. In the real world, it is a game with incomplete information. As a result, 

the strategies of different shipping companies are unknown and hard to develop the 

model when missing the destination port information of competitors. Therefore, our 

trajectory-based models that use the AIS data to mine the dynamic destination port 

variation can bring a new avenue to develop the operations research model (see 

Appendix C for our initial model).  

Moreover, our study still has some limitations to be explored and completed in the 

future. Firstly, this study thesis lacks a systematic extension to other tramp ship types. 

In the future, it is meaningful to extend this work not only for VLCCs but for bulk 

carriers and other tanker ships. Secondly, it is suggested to collect the data of different 

years and companies to repeat our proposed models. Thirdly, it is necessary to consider 

the draught to infer whether the VLCC is in ballast status, which can help narrow the 

prediction range with the port characteristics of loading or unloading. We believe our 

study has opened a path to others.  
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Appendix 

Appendix A - the selected tramp ships to measure the performance of port calls 

recognition algorithms in Chapter 3. The Figure shows the frequency distribution of 

size categories for both ship types- bulker carrier and tanker ship. 

 

  



 

69 
 

Appendix B - the voyage distribution of VLCCs in Chapter 4 based on the regional 

pairs of departure and destination ports. The Table shows the statistics of voyages 

among different geographic regions.  

Destination     

region 

Departure 

region 

China 

North 

(CN-N) 

China 

Middle 

(CN-M) 

China 

South 

(CN-S) 

Japan 

(JP) 

Korea 

(KR) 

West  

coast 

India 

(WCI) 

East  

coast 

India 

(ECI) 

Middle East and 

Gulf (MEG) 
150 91 69 73 184 289 16 

Caribbean Sea 

(CBS) 
1 1 1 1 / / / 

South American 

(SA) 
14 1 1 1 / / / 

United Kingdom 

Continent (UKC) 
13 1 0 1 / / / 

United States Gulf 

(USG) 
18 4 5 5 3 5 2 

West African 

(WAF) 
43 1 10 10 / / 4 
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Appendix C - The initial operations research model of routing optimization problem for 

reference in the future work in Chapter 5. 

 

The selected variables of our operations research model include the cargo category and 

tonnage information of the target destination port, freight rate, bunker price, and fixed 

cost. The model objective is the maximum profit for a shipping company by the optimal 

speed. To simplify the model, we give some hypotheses: 

H1: One interested destination port is assessed every time. 

H2: The maximum profit is updated every day. 

H3: The commodity contract is first come first served. 

 

Based on above hypotheses, the operations research model can be written as: 
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Where 𝜋 is the profit, 𝑟 is the freight rate, 𝑄 is the total cargo tonnages in the target 

destination port, 𝑞 is the tonnages occupied by competitors, 𝜀bunker  is the unit bunker 

price in the market, 𝑚oil is the estimated oil consumption, 𝐶 is the fixed cost of every 

day, 𝑆 is the distance to the interested destination port, 𝑉 is the average speed of a 

sailing day. For the constraint conditions (16) ~ (19), k is the number of vessels in ballast 

that are estimated to the interested destination port in the same sea aera. 𝜃𝑘  is the 

binomial function to identify whether the competitor can acquire the cargo. 𝑊𝑘 is the 
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DWT of another company’ vessel and 𝑃𝑘 is the predicted likelihood to the same port. 

𝑚oil is calculated by the typical cubic law, where 𝛼 is acting as the scale parameter. 

 

Combined with the above framework of destination port prediction models, the key 

factors of k, 𝜃𝑘 , 𝑊𝑘 , 𝑃𝑘 in the constraint equation (16) and (17) can be achieved 

for different sailing stages of the competitive vessels. It helps to find the closed-form 

solutions. 

 


