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Abstract of thesis entitled 'Parallel Mean Curvature Vector Submanifolds
in the Hyperbolic Space’
submitted by Leung Yiu Chung
for the degree of Master of Philosophy

at The Hong Kong Polytechnic University in June 2001

This thesis concerns with two applications of the Omori-Yau maximurm
principle for complete non-compact submanifolds whose Ricci curvature are
bound from below. The first of these is a pinching theorem for complete
parallel mean curvature submanifolds in the standard hyperbolic space while
the second one is an extrinsic diameter theorem for bounded mean curvature
submanifolds in the standard hyperbolic space. |

To obtain the pinching theorem for complete parallel mean curvature sub-
manifolds in the ssandard hyperbolic space, we generalize the results due to
Q.M. Cheng to certain class of submanifolds immersed isometrically in the
standard hyperbolic space. In order to do this, we studied carefully the proot
of Simons’ inequality in the work of Chern, do Carmo and Kobayashi to ob-
tain the generalized Simons’ inequality mentioned in Santos’ paper. By using
this inequality together with the maximum principle of Yau-Omori, we ob-
tained the pinching theorem for parallel mean curvature vector submanifolds
in the standard hyperbolic space which parallels the results of Cheng.

On the other hand, we studied the inequality on the Laplacian of the
hyperbolic cosine of the distance function for a submanifold in the stan-

dard hyperbolic space. We discover that this inequality, when used together

il



with the Omori type maximum principle, yields extrinsic diameter estimates
for submanifolds in the standard hyperbolic space. As a corollary, one can
recover the well-known result that there exists no compact constant mean

curvature submanifolds in the standard hyperbolic space if |H| <1.
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CHAPTER 1 INTRODUCTION

In this dissertation, we study the effect of the maximum principle of
Omori [11] on the behavior on parallel mean curvature vector submanifolds
in a space form. Historically, there are two main types of results which moti-
vated the theorems prbven in this work, both having proofs relying heavily on
a maximum principle originally proved by Omori which asserts the existence
of almost maximum points on a Riemannian manifold whose Ricci curva-
ture is bounded from below. The first kind of results concerns the extrinsic
diameter of a submanifold in ambient manifold. The prototype of which is
the classical result of Xavier (see e.g. [1] for a simple proof using maximum

principle of Omori) asserting the following:

Theorem.
Suppose M is a minimal submanifold in the FEuclidean space such that the
Ricci curvature of M is bounded from below, then M cannot be contained

in any ball of Euclidean space with finite radius.

The second type of the results based on Omori’s maximum principle is a
series of pinching theorems for submanifolds originating in the historic works
of Simons, Chern et. al. in the sixties. A typical result in this direction is
the pinching theorem for parallel mean curvature vector submanifolds in a
sphere, provided the length of the second fundamental form satisfies some
pointwise bound. Originally these results were proved for compact mini-
mal submanifolds in the sphere, and it was in the late eighties when Cheng

managed to generalize them to complete minimal submanifolds in a sphere.



In another direction, Santos [8] considered parallel mean curvature vector
submanfolds in the sphere and obtained similar results. Santos [8] proved

theorems like the following

Theorem.

Let M™ be a compact submanifold of the unit sphere S™*? (1) with paral-
lel mean curvature vector. Assume that the length of the traceless second
fundamental form (to be defined in Chapter 3) is less than or equal to some
universal constant depending only on the dimension, the codimension and
|H|, then either M™ is totally umbilic or M™ is a torus, a minimal Clifford

hypersphere or a Vernosese surface.

Analyzing the proofs of the above-mentioned theorems, we see that they
have two main ingredients: (i) a differential inequality and (ii) an Omori type

maximum principle.

For the first type of theorems, the differential inequality is an inequality
on the Laplacian of the extrinsic length function, whereas for the second type
of the theorems, the differential inequality is an inequality on the Laplacian
of the second fundamental form or some generalization of the second funda-

mental form (such as the traceless second fundamental form).

Based on this analysis, we are motivated to study related inequalities on
the Laplacian of the distance function or the second fundamental form for
submanifolds in various ambient spaces. Going through the literature, we
found two interesting inequalities, one on the Laplacian of the sinh of the

distance function for a submanifold in the hyperbolic space, as proved by



Choe and Gulliver [5]. We discover that this inequality, when used together
with the Omori type maximum principle, yields extrinsic diameter estimates
for submanifolds in the hyperbolic space. As a corollary, it gives also a
simple result that there exists no non-compact constant mean curvature 1

hypersurfaces in the standard hyperbolic space with sectional curvature —1.

. In the other direction, we study the Laplacian of the traceless second
fundamental form and a generalization of the results of Q.M. Cheng [3] on
the pinching of minimal submanifolds in a sphere to the pinching of parallel
mean curvature vector submanifolds in the standard hyperbolic space. This
kind of inequalities is well-known and is called Simons’ inequality. In our
work, we study carefully the derivation of Simons’ inequality in the work
of Chern, do Carmo and Kobayashi [4] to obtain the generalized Simons’
inequality mentioned in Santos’ paper. Using this inequality, we obtain the
pinching theorems for parallel mean curvature vector submanifolds in the

standard hyperbolic space which parallels the results of Cheng [3].

The plan of this thesis is as follows. In Chapter 2, preliminary results
concerning manifolds and differential forms are discussed. In Chapter 3, we
prove step by step the Simons’ inequality of Santos needed in the sequel.
Moreover, based on P.F. Leung's 7] results, we will give an estimate on the
Ricci curvature of a submanifold of the Riemannian manifold. Chapter 4
contains the main results of this thesis, in which we state and prove (i) the
extrinsic diameter theorem for bounded mean curvature vector submanifolds
in the standard hyperbolic space and (ii) the pinching theorem for parallel

mean curvature vector submanifolds in the standard hyperbolic space. In



the last chapter, some concluding remarks are given.



CHAPTER 2 STRUCTURE EQUATIONS
OF RIEMANNIAN MANIFOLD

In this section, we collect some important definitions and well-known

formulas in differential geometry which we will use later. For more details,

please see ([2]).

2.1 RIEMANNIAN MANIFOLD

Definition 2.1.1
A topological space M is called a Hausdorff space if given any two distinct

points of M, there exist neighborhoods of these points such that they do not

intersect.

Definition 2.1.2.
Suppose M is a Hausdorff space. If for any x € M, there exists a neighbcr-
hood U of z such that U is homeomorphic to an open set in R*, then M is

called an n-dimensional manifold.

Definition 2.1.3.

An n-dimensional differentiable manifold is a set M together with a family
of homeomorphisms f, : U, C R* — M of open sets U, in R" into M such
that:

1) Upfa(Ua) =M

2) For each pair a, 8 with fo(Us)N fo(Us) = W # ¢, the maps f5' o fo and
f-to fa are differentiable.

3)The family {(Uy, fo)} is maximal.



Definition 2.1.4.

A Riemannian manifold is a differentiable manifold M together with a choice,
for each point p € M, of a positive deﬁnitelinner product {,) p 10 T,M which
varies differentiably with p in the following sense: If X and Y are differen-
tiable vector fields in M, the function p +— (X,Y) is differentiable in M.

The inner product {, } is usually called a Riemannian metric on M.

2.2 STRUCTURE EQUATIONS

Next, we restrict our attention to the simple case of R". For this sim-
ple manifold, we introduce the concept of moving frames and hence define
the structure equations. Later on, we will generalize results obtained for
R™ to general differentiable manifolds. Our formulations are based on the

monographs of do Carmo (2] and Spivak [9].

Let U C R™ be an open set and let 4, es, ..., e, be n differe 1tiable vector
fields such that for each p € U, (e, ;), = i, where §; = 0 if ¢ # j and
6:;; = 1if i = j. Such a set of vector fields is called an orthonormal moving

frame. From now on, we will omit the adjective 'orthonormal’.

Given the moving frame {e;}, i = 1,...,n, we can define differential 1-
forms w* by the conditions w'(e;) = &;, j = 1,...,n; in other words, at each
p, the basis {(w") } is the dual basis of {(ei)p}. The set of forms {w'} is

called the coframe associated to {e;}.

r

Each vector field e; is a differentiable map e; : U ¢ BR® — R". The
differential at p € U, (dei)p : R* — R™, is a linear map. Thus, for each p and

6



each v € B™ we can write

(de), (0) = 3 (&), (v) e,

7

It is easily checked that the expression (wi )p (v) defined above depends
linearly on v. Thus (wf )p is a linear form in R™ and, since e; is a differentiable
vector field, wf is a differential 1-form. Keeping this in mind, we can write

the above as

The n? forms w! so defined are called the connection forms of R™ in the
moving frame {e;}. Not all the forms w? are independent. If we differentiate

(€i, e;) = &5, we obtain
0 = (de;, e;) + (es, de;) = w! + i,

that is, the connection forms w! = —w} are antisymmetric in the indices i, j.
Lemma 2.2.1. J
Let {e;} be a moving frame in an open set U C R*. Let {w;} be the coframe

associated to {e;} and w] the connection forms of U in the frame {e;}. Then
do' ==Y wiAwt,  dl = Y wiAwk,  Ghk=1.,m (222)
k k

Proof:

If we denote by z : U — R™ the inclusion map, to say that the forms «w* are

dual to the frame {e;} is equivalent to saying that



dzsz"ei, de,-=waej, = 1,...,71.
i J

For instance, the first structure equation can be obtained as follows:

0 = d{dx)

= ;we,——Zw"/\dei
- e~ (S Tt
e (550

3o (302

= - E wl Aw'.
[

hence

Similarly, we also have

0 = d(de)

= Zdw’ e; — Zw A dey,
= ZdLuJe] Zw A Zwke,
= z:a',w""eJ ZZw Awle;

= Z (M—Zw};/\w;‘) €;
k

k]



from which we immediately deduce the second structural equations.

Lemma 2.2.3.
Let V™ be a vector space of dimension n, and let w!,...,w™ : V* — R such
that iw" A 8; = 0. Then
6; = iaj—wj with a] = al.
j=1
Proof:

We complete the forms w* into a basis w!,...,w",w™ .. w" of V* and we

write
T n
8, =— E azw’ - E b, i=1,..,r
j=1 I=r+1

By using the hypothesis, we obtain

0 = Zr:wiABi
=1
r
= —Zajwi/\wj—z:bfw"/\w‘

i,j=1 il=1
= — E (a,“;’—a;)w'/\w’— E biw' A W
i) i<l

since w* Aw®, k < s, k,s = 1,...,n are linearly independent, we conclude that

I _ J_
b; = 0 and a; = aZ.

Lemma 2.2.4.
Let U C R™ and let w!,...,w™ be linearly independent differential 1-forms in

U. Assume that there exists a set of differential 1-forms {w]}, 4,7 =1,..,n



that satisfy the conditions:

w] = —wt dwj=—2w{c/\wk.

1 n
Then such a set is unique.

—_—

Proof: Suppose the existence of another set Ef with Df = —y,
dw! = — Z Wk A wk,

Then

and by Cartan’s lemma,

2 7
k wk" E :Bk;w B;; = sz’

N tice that

=2 Blw' == (@ - f) = z
since the w® are linearly independent, B}, = —BY. By using the fact that
Bl. = BJ, and B}, = — BY;, we obtain

k i _ i _ pi o opi k _ _ pk o_
Bji = _Bki = _Bik = lec = Bkj = "Bij - Bji =0,
that is, @, = w].
Now we will define the structure equations of a Riemannian manifold M.

Definition 2.2.5.

10



Let V., be the covariant differentiation with respect to e; and R be its cur-

vature tensor, then we have

Vee; = ZI‘:;‘jek (2.2.6)
k=1
R (e ej) e = ZRiﬁe;, (2.2.7)

=1

where I'}; is the Christoffel symbol.
Theorem 2.2.8. (Spivak, [9])
Let ey, ..., e, be an orthonormal moving frame on a Riemannian manifold M,

and let w',w?, (2% be the dual forms, connection forms and curvature forms

for this moving frame. Then we have the structure equations of M:

do' ==Y wi AWk (2.2.9)
k
dw? = wi Awf -, (2.2.10)
k
where
wl =Y DW= R Al (2.2.11)
k k<i
Proof:

By lemma 2.2.4, we can prove the first structure equation by defining w! =
ST Wk

0= vek (ei:ej) = (vekei!ej) + (Ei’vekej) = Piz + Fjcj

11



i
it

- Zw; At (ej, ek) = (Z ek) — W} (ek) : (ej))
{

!
= Zwl ex) 6i; — Wi (e;) b = w} (ex) — wi (e;)

this immediately implies that w? = —w

.= Ty —Th
= 0-0-u' (ngek - Vekej)
= Veuw' (ex) — Ve, oo’ (65) — o' ([ej, exl)
= dw' (e, ex)
By lemma 2.2.4, the set {wf} is unique.

For the second structure equation we expand

E R;He, = R (ek, ez) ej'
i=1
= Ve Vee; — Vo Ve e — Vi, 1€

= VckZF e, — VE,ZFkJep (V9. i — Vo, e65)

- Zr‘ ZF e,-{—z (VeuT2) € — ZF ZP =D (Valh) e
m
_ (Zl"’,:lveyej - Zf’f‘kvcﬂej)
o

H
= ) Tiliei— > ThTie+ > (Vo li)e—Y (Vali)e
ENT i i 1
(Zr Zr‘ e — Z[‘ Z[‘ )
therefore,
Ry =" (TLT = TLTE) + (Ve Ih) — (Vall) — 3 (D4l — ThIL) .
# I3

12



Comparing with

[d“’f - wh /\“’?J (ex, er)

m
= — ZFLjdw“ (ex, 1) — Zw"d (T%,) (ex, &) — Z [w}, (ex) ¥ (&) — W}, (&) W (ex)]
M u p
= =D N0 (Tl = T%) = (Ve T}) + (Vo Thy) — 3 [ThI% — 11
" #
_R_;'kl:
since

% (er, 1) = ZR;'M“"# Aw? (e, €) = Ry,
ud

we have

F_ i E_ O
dw; E Wy Aw) = €U
J

= = Yupnet -9
I

13



CHAPTER. 3 SIMONS’ INEQUALITY

In the first part of this chapter, we shall compute the Laplacian of the second
fundamental form of a parallel mean curvature vector submanifold in a symmetric
space of constant sectional curvature ¢. In the last part of this chapter, we will give
the definition of Ricci ‘c:ui‘vature and then give an estimate for the Ricci curvature

of an n-dimensional submanifold M immersed in N™* which was proved in [7].

3.1 THE LAPLACIAN OF THE SECOND FUNDAMENTAL
FORM

Let M be an n-dimensional manifold immersed in an (n + p)-dimensional Rie-
mannian manifold N. We choose a local field of orthonormal frames ey, ..., eq4p In N
such that, restricted to M, the vectors ey, ..., €, are tangent to M and the remaining
vectoTs €,41, ..., Entp are normal to M. We shall agree that repeated indices are
summed over the respective ranges. With respect to the frame field of N chosen
above, let w!, ..., w™ P be the field of dual frames. We shall make use of the following

convention on the ranges of indices (for more details, please see [4]):

1SA,B,C!"'S”'+p; ]‘Si!j?k)"'gn';

'n+1 S aw@:’)’}“' Sn+p1

Let K and R be the curvature tensors of N and M respectively, then the structure

equation of N are given by

den—ngAwB, wh +wh =0, (3.1.1)

1
A A L
dof=—) whrwi+¥5  Uh= 3 § Kfcpw® AwP, (3.1.2)

14



Kfep + Kfpe =0.

Restricting these forms to M, then

Therefore 0 = dw™ = — Y wf Aw', by Cartan’s lemma we may write

Wi =Y hgwl, kg =hE

where {h;‘_;} is called the second fundamental form of the submanifold M.

From the above formulas, we obtain

dcuiz—Zw;ij, w;--f-wf:(),
i i ; i _ 1 i !
dwj=—2wk/\w§+ﬂ;-, Qj=§ZRjk,wk/\w,

o o 1 [
duf = - w5 Awl+05, QE:QZRﬁHwk’\WI’

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

where R is the curvature tensor of M and R the curvature tensor of the normal

bundle to M.
By (3.1.2) we have

1
§ZK§CDwC AP =dup +> wiAwh + ) wl Aug
Restricting the indices range to A =¢ and B = j, we get

LS Kion®no? = i+ Y wh Ak + Y uh s

1 .
= 5D R AW =) AW AW
[+

Then we evaluate on e and e; to obtain

15
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Ry =Ky + Z h2 RS, (6767 — 6763)

ir _93

= Rzkl = jk! +Z hahji — «?th?k)
Similarly, we restrict the indices range of (3.1.8) to A = @ and B = 3, and obtain

1 a C D i
52 Khopw® AwP = dwE+Zw‘-‘Awﬁ+Zw"f\wE

= Z Rﬂ”w Aw® + z REAE W A WS
= R4y = K + Z REHE (8763 — 6763)

= Rgy = K5 + Z (k) - hanft) (3.1.10)
Next we define the covariant derivative of A b
VA = dhS — hgw! — hgwk + hiws (3.1.11)
Since VhE; is a 1-form, we set
Vhg = hfuwt (3.1.12)
Multiplying by «’ and using the wedge product A, equation (3.1.11) becomes
VhE Aw! = dh$ Aw! — hGwk AW — hwk Aw! + hiwg AW (3.1.13)
Subsequently we take exterior differentiation of (3.1.4) to obtain

dw? = d (h3w’) = dh3 AW’ — hGwh A W

16



= dh$ Aw’ = dw§ + hjwh Au’. (3.1.14)
Substitute back to (3.1.13), we have

Zh,ka ij:dw?+2w2‘/\wf+zwg/\w?
:>Zh LW AW = Z kw’/\w
iZ(gk—F f;k)wk/\wj=0.

Hence

o« — ~K3 = K3 (3.1.15)

17k zkg

Next we compute the covariant derivative of AJ, and try to show a relation
concerning hg,, and hiy,. Let us first define the term h%y by considering the
covariant derivative of Agj,. Following [3], we define the covariant derivative of hj;,

by:

VA, = dhSy — higwh — hgw' — RSwh + higws. (3.1.16)

ijk

Since the right-hand-side of equation (3.1.16) is a 1-form,we let

1._7k = § :h’z_jk!w

=) hGuw! = dhfy, — il — bl — Rwh + RS (3.1.17)
i

Multiplying by w* and using the wedge product A, we have
Zh”klw A U’J = dh"l]k h[ka A wk — hﬁkw; A w h,_ﬂwk A wk + flfjkwg A wk.
(3.1.18)

17



Next, we take exterior differentiation d of (3.1.11),

4 (Vhg) = d (dhg) — d (hget) — d (hgw}) +d (Hw)

131

since d (dw) = 0 for any form w and VAg = hw*, we have

d (hgu*) = —d (hiwt) — d (hiwt) + d (Wws)

= d (he) A+ hjed (*) = —d (i) — d (ki) + d (wg)
= d (h) Aw* = hwh Aw* - d (hfwh) - d (hfw!) +d (Rwg)

Substituting (3.1.19) into {3.1.18), we obtain

Zh‘ijklw A Cl.)k

= hfh Awk - d (hel) — d (hgut) +d (Rfws)

h,J,cw A w* hﬂkw A w* hmwk A w® + hukwﬁ AwF

= —d(hgwt) - d (hgwt) +d (g ) — At At

hffkw Aw® 4+ hf kwﬁ/\w

—d (K ) hgd( ) hawt Ak
+d (H )Awﬂ + K (w5) + Rws A w®.

By using the fact that dw’ = — 3" wj Aw + €, we have

Zh‘ukiw AWk

(—-d( ) + hSw) + hiw®) Aw; — RIS

15 Rl

+ (—d (hf}) + hSw +h3kw)/\w — h3SY

+ (@ () + hjwh - W) nwg + hE03

18
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= (h:;;jw — AW — hSw? + hﬁ.w“) Awh— RO

+(h:;iw;"— s—h“w,+hlwﬂ) W — hgot
+ (A + Rl + Hws + RJ0R) AWg+REQE (by (B11D) & (3.1.12))

= (~hows + Hwg) Ak - hgol
+ (- wi + hwg) Ak — ke
(hfjw, + K J) Awg + REQS,

By suitably rearranging the indices, we get

( —h2ws + hf.w“) Awh + (—h"‘w‘“ +h ,wﬁ) Al + (hf]w, + S J) Aw

= (A% —h%)w! A wj +(h h)wg/\wj-i—(hg—hg)wg/\wjzo.
Consequently, we obtain

D _hiuw' Awk = -kl — haQk + REQS. (3.1.20)

Since % = 3 3 Riyw* Aw', it follows that

1
k,l

(thjki 3 Z Ponj Bligy — E hoi R + -;* Z hﬂﬁgk,) WAL =0

= Zhﬁ'k‘ 2 Z h‘mJ ki 2 thl Jkl %Z h?jﬁgkl = 0,

19



Therefore,
Zh%kt - hin = Z P Bt + Z i Fk th R5p- (3.1.21)
Ik

Next we want to evaluate the Laplacian Ahg and hence find A (hg) 2,
Firstly, K}, is defined by

t}

K& =Kgu— Y Kuha - ) K o = ST KSRl + Y Kk (3.1.22)

Throughout this section, we shall assume that N is locally symmetric, i.e. K, = 0.

Therefore equation (3.1.22) becomes
au= K5hi+> Kphly+ > Kgghl — > Ko (3.1.23)
The Laplacian Ah; is defined by

Ahg = S‘h”kk (3.1.24)
y (3.1.15), we obtain
AbG = hi - Z K = Zh,ﬂjk Y K (3.1.25)
k k
By (3.1.21), we have

kt:fk hztk:r + Z hi tjk + Z o, kjk Z hgiﬁgjk- (3.1.26)

Using the fact that A, = Afy; — Kiy; and then substituting the right-hand- side
of (3.26) into Ag,;; of (3.1.25). Then

DG = 3 (g — K — Kiue) + 3 (P2 + W R — WG R
k km
(3.1.27)

20



From (3.1.9), (3.1.10), (3.1.23) and (3.1.27) we obtain
AV YIS Z hRij + Z (—Kf}ghfk +2 ,gkih?k - Kf,akhg + 2K§kjh£i)
% Bk

+ Z (ha N 'hfk + zhzmhfihgtj - zmhf:mh?j - ?nihfﬂtkhfj - h?njhfihfnk)

Bmk ) g
+ 3 (Kihe, + Kk + 2K5hny) - (3.1.28)
m,k

By multiplying the term hfj and rearranging the indices, we get

AR = 3 (~KGahEuhs + 2K5HONG — Kinchhy)  (31.29)
o, .1,7,
+ > ) (2K R + 2K ehinhi)
o,m,i.j,
- ,3Zk ((nenf, — i) (an = hih) + bkl )
+ ZJ he RERE HY,.
o, dmigk

Since we assurned that the sectional curvature of N is a constant ¢, we have the

following theorem ([6}).
Theorem 3.1.30

Let NV be a space of constant sectional curvature ¢ and R}, be the curvature tensor

of N, then
Rgep = ¢ (6265 — 655¢) - (3.1.31)

Proof:

Firstly, we exhibit some formulae for the curvature tensor K (see [10]), ( for con-
venience we adopt the following simplification for the basis vectors - we denote a
vector a—fj by A, i.e. the letter A can be interpreted either as an index or as basis

vector, depending on the context}

Ricp = —Racp (3.1.32)

21



Rgcp = R3as- (3.1.33)

Let K(A,B) = (R(A,B) B, A) and K (AN B) be the sectional curvature of the
subspace generated by A and B. Following [6] , we have

Rgep = (R(C,D)B,A) (3.1.34)
= K(C+AD+B)-K(C+A,D)
K(C+AB)-K(C,D+B)
K{(A,D+B)+ K (C,BY+ K (A, D)
K(D+AC+B)+K(D+AC)
K(D+A,B)+K(D,C+B)+ K (A,C+ B)
K(D,B)- K(A,C),

where K (A, B) = K (AA B) ({A,4) (B, B) — (A, B)?).
We will prove this lemm:. by showing that equation (3.1.31) is true for all A, B, C
and D.

Casel. (A= B = C = D). Here there is only one type, i.e. R444.
By equation (3.1.32}), we have

A A
Risn = =Risa= Rias=0.

Case2. (A= B =C # D). Here we have 4 types, Le. R445, Ripa, Rfaa ond

Rian
By (3.1.33), we have

RﬁAB =0
and by (3.1.33},
RgAA = RﬁAB =0.
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Hence
B  _ pA _ A _
Raaa=Rapa=—Risp=0.

Case3. (A= B # C = D). Here we have 3 types, i.e. R4igg, RA.s and Rig,.
By (3.1.32)

Ripp = —Rigp = Ripp =0
and by definition we have
REAB =c
Moreover
RgBA =—Rfp = —c.

Cased. A= B # C # D. Here we have 6 types, i.e. Rigc, Rioa, BEas, Riac
Rfca and Rf,c.

By (3.1.32) and (3.1.33),
RﬁBC = RgAA =0
and by (3.1.34),

Riso = c((4)(2)—4—4—2—2+1+1—(491)+(2—1)+2+2+(2—1)—1)

= 0.
Hence
RECA = _REAC = _RgCA = RﬁAc = 0.

Case5. All 4 indices are different, i.e. Rf-p.
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By (3.1.34)
Riop = c(4—2-2-2-2+141-4+42+2+2+2—-1-1)

= 0.

It is easy to show that equation (3.1.31) is true for each case by evaluating the right
hand side, then the result follows.

With the above theorem, (3.1.29) reduces to

Sohgang = 3 c(huhd - su (55)°)
12 (B (n)7 = (19)* + (h3)” — heuhsy ) — S heuhghl, b
=3 (hanh - bl (hanl — hf) + hhahlHd
= Yen(hg)" = chihd + > hahGhD R
=3 ((hanl, — naunl,) (hanf — hnh) + hehahfd,)

= mZtmg—cZ (trAa)’ +) (trds) (trA. 43)
a3
+Z tr[Aa, Ag)?) ~ z (trAqaAg)’
o8

=S hg AR = o) trAZ -3 (1Al + Y (trAd) (trAaAD)
o o a,ﬁ
+3 7 (tr [Aa, Agl?) = D (trAaAg)®. (3.1.35)
of

o,

It is easy to show that
—2(Song ahg+Y (VhY) )*)
= = A AP =3 "hg ARS+ Y VAL

Hence,
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%AW = cn;trAi—-cg(trAaf-{-Zﬁtr (A, Ag)? (3.1.36)

+3 (trds) (trAaAR) = > (trAadg)’ + ) [VAl.
o,

alﬂ

3.2 THE TRACELESS SECOND FUNDAMENTAL FORM

b

Following [8], we will define the linear maps ¢, and hence obtain the Simons
inequality for submanifolds with parallel mean curvature vector.

For each , n + 1 < £ n + p, define linear maps ¢, : TM — T, M by
(¢'aX! Y) = (X’Y) (h, ea) - (AQX, Y) »

and a bilinear map ¢ : T, M x T,M — T, M* by

ntp

P(X,Y)= D (. X,Y)eq

a=n+1
It is easy to check that each map ¢, is traceless and that

n+p

" = Y trel = AP —nH. (3.2.1)

a=n+1
We will call ¢ the traceless second fundamental form and |¢| its length.
Next we shall compute the Laplacian of ]¢|2. For that purpose, we choose a local
field of orthonormal frame {es,.....,en4p,} In a such way that e, ; = % With this

choice,

= HI = A1,
{ ¢ﬂ+1 +1 (3'2'2)

g =—Aa, n+2<a<n+p.

Lemma 3.2.3.
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Let ¢ be the bilinear map defined above, then we have

ntp n+p fnt+p

%(-\W = 3 VL An(c+ B IP+ S tr[pandal = D (trdads)
a=n+1 a,f>n+1 a,f=n+1
n+p
—nH Y (tr¢nndi) - (3.2.4)
a,d=n+1

Proof:

—

Firstly, we simplify the terms of (3.1.36) in terms of ¢ and ¢,,.

1 1 1
SONAP =5 A (1] +nH?) = - O g
2 2 2
n+p n+p 9 n+p
2 2
Yo VA= Y V(4P + |V(HI-6,0) = D Vel
a=n+1 a=n+2 a=n+1
n+p
en Y trAl=cn|A =cn |¢|? + en®H?
a=n+1
n+p 1 ntp
- 2 = — 2 e i - — =
c Z (trA,) en“H (smceh - z (trA,) eq and |h| H)
a=n+1 a=n+1
n+p n+p ntp n+p
ST trlAa Al = Y tr{AnAgl 4 Y tr[Aa, Aen]P+ D tr[Ani, Agl
a,f=n+1 a,f>n+1 a>n+1l B>n+1
But tr [Aa, Ans1) = 0 for all a, therefore
n+p n+p
Y tr(da Agl’ = ) tr[Aa, Agl’
a,fi=n+1 a,f>n+1
and
n+p n+p ) n+tp 9
2
S tr[AnAd’ = D tr[—de—dg) = D tr[da.ds]
a,B>nt1 a,f>n+1 a,A>n+1
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n+p

3 (trAa) (trAaAp)

a,f=n+1
n+p nip
= Z tr{—¢,)tr (—d)aAfg) + Z: trA,atr (AnHAi)
Efﬂi% a=n-+1
n+p
= (trAn.'f-l) Z tr ((HI - ¢n+1) A?:!) (Since ir (q{)a) = O)
=n+1
o -
= nH A’ —nH ) tr($n.1A42)
a=n-+1
n-+p )
= nH?|A|?-nH ( Z tr (PpgaB2) +tr (¢n+1 (HI — ¢pp11) ))
a=n+2
n+p
= nH?(|¢* + nH?) —nH ( > tr(fn.02) — 2Htr (¢§+1))
a=n+1
n+p
= nH? |¢$|2 +n?H' —nH Z tr (¢n+1¢§) + 2nHtr (qﬁﬁﬂ) ,
a=n-1
n+p
> (trA.Ag)
a,f=n+1
n+p 0 n+p n+p
Yo (treate)’ + Y (trAcAan)’+ Y (trAeade) + (trA2,,)
o, A>n+1 a=n+2 P=n+2
n4p ) n+p 0 n+p )
>, (tratg)” + D7 (trda (HI = 600))"+ D (tr (HI = 6,11) 45)
a,d>n+1 a=n+2 P=n+2
+ (tr (HQI —2He, 1 + 121+1))2
n+p 2 n+p y n-tp )
Yo (#r6abs) + D (trdabusn) + D (tréniids) + (nH+trgl )"
a,f>n+1 a=n+2 B=n+2
n-tp
ST (treags)’ +n2HY + 2nH2%r (¢2,,).
a,f=n-+1
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ntp n+p

SAlBE= Y VG Hnlc+ BB+ Y 17 (90 ds)’

a=n+1 a,8>n+1
n+p n+p
-y (trdads)’ —nH > tr(¢.dd) -
a,f=n+1 a=n-+1
Lemma 3.2.5.
Let z;, i = L, ..., n, be real numbers such that 3, z; =0 and >, 27 = 1. Then
n 2
4« LT.L__Q)_ 1
Z:v ST +—. (3.2.6)

Proof:

It is easy to see that (3.2.6) is true for n = 2,3. If n > 4, consider an n-tuple

(21, ...z,) such that 37, z; = 0 and 3, =7 = 1. We define a polynomial P (z),

P(z) = H (z —z;) =2" — éx"_:’ + (Z :nf) "3
1 i
-}-1 1—22:6‘-i "+
8 — !

such that P (z) has n real roots. Hence the (n — 4)-th derivative P"*~% (z) of P (z)

has four real roots. Since we have

_ ! n — 1)1 (n —2)!
Prt(z) = g _(2(2!)) (Zx)

+(n;3)! (1—22.@2) .

this implies that the equation

- 6 2 S(szf) . 3(1— 22;‘ a:f) .
n(n-l)x +n(n—1)(n—2) +n(n—1)(n—2)(n—3) =0

has only real roots. Since an equation of the form z* + 6 Az? + 4Bz + C = 0 has

only real roots then C + 3A? > 0, we have

3(1-2%, %) 1 2
nin—1)(n—-2)(n—-3) +9 (n(n— 1)) =0
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. n{n—1)(n-—2)(n-3) 1 2 1
=) 7 < 2 ((n(n——l)) +n(n—1)(n—-2)(n—3))

nin—1) 2n(n-~1) 2n(n—1)

=>Z$,_1S ((n—z)2 _ (n—2)° +(n2_2n+2))

4 n — 2)? 1
=>Zi:$i5 (ﬁ%—;)

Lemma 3.2.7.
Let A and B be symmetric matrices such that [A, B] = 0 and trA = trB = 0. Then

2 n—2 rA2) (irB2)2
trA’B < m(tA)(tB) : (3.2.8)

Proof:

Since [A, B] = 0, we can choose an orthonormal basis of R™ which simultaneously
diagonalize A and B, i.e. PT"AP = D, and PTBP = D, where D, and D, are diag-
onal matrices. So we must show that the eigenvalues {x,,...z,.} of A and {y,...yn}

of B satisfy

1
2

(3.2.9)

2 n—2 2 2
oy (24) (54)

Without loss of generality we may assume

D=3 ui=1

Since P is orthonormal, we have

trd = ZPjinPij = Z (Z Pg) zj = ij ={.

i j j
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Similarly,
> yi=0.
7

So we are looking for the extreme values of the function f (z;, %) = Y, z%y:, with
the constraints 3, z; = ¥, = 0 and >, 27 = 3,4 = 1. By the method of

Langrange’s multipliers, we let

g =Za:?y,-+AZ$,~+BZy,—+C (Zm?-— 1) +D (zyf — 1) . (3.2.10)

Setting the partial derivatives of g with respect to the variables z; and y; to zero we

obtain the following system of equations:

2z; + A+ 2Cx; =0 for i=1,..,n, (3.2.11)
224+ B+2Dy; =0 for  i=1,..,n. (3.2.12)
Summing up (3.2.12) for all ¢ we have B = —%. Moreover, it is easy to see that

C = 2D, therefore we have

Yy = A.’Bi + 1 (3213)

1
z? =y + —. (3.2.14)
Multiplying (3.2.13) by z; and summing up for all ¢, we have

A= Z.’nfy, {3.2.15)

Therefore ) is the extreme value we are looking for. Squaring both sides of (3.2.14)

and summing up over i, we obtain
2 1
4 2 2
z; = A i+ — i+ -
12. ® i ' + ﬂ‘ ; :E + ﬂ'
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= A T; — —.
- n
Lemma 3.2.5 implies that
— 2)2
2 (n=2)" 3.2.16
A s nn-1) ( )
Hence,
n—2 n—2
;Y S 3.2.17
\/n(n—-l z: ¥ = (n—l) ( )
implying

Zi:f"f-%' m (Zw) (Zy") . (3.2.18)

Recall that trA? = tr (PTDIP) = Y. (3, P2) «? ;T3 Similarly, trB? =
>; i and trA’B = 3, xly;. Substitute these to (3.2.18) we obtain (3.2.8).

Lemma 3.2.19. ([4], Lemma 1, p.65)

Let A and B be symmetric {n X n)-matrices. Then
N{AB - BA) <2N(A)N (B). (3.2.20)

Proof:
Since B is symmetric we can find an orthonormal matrix P such that PTBP = D.

By using the fact that N (A) = N (PTAP) for any orthogonal matrix P, we have
N(AB - BA)= N (P"(AB — BA)P) = N (PTAPD — DPTAP) .
Let by,..., b, be the diagonal entries in D and PTAP = (a;;). It is easy to show that

N(AB—BA)= N (P"APD — DPTAP) = o (b
i#j
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Since (b; — b;)° < 2 (b? + %), we obtain

N(AB — BA)
< 2> (b +5)
i

< 2 (Z afj) (Z bf) =2N (PTAP)N (D)= 2N (A) N (B).

With the above lemmas, we can prove the following assertions.

Assertion 1: ([8], p.8)

n+p n-+p 1 9
S0 tr[bate’ = Y (troats)’ > - (2 - p__"T) G
a,f>n+] a,f>n+1
(3.2.21)

Proof:
For a matrix A = (a;;) we denote by N (A) the square of the norm of 4, i.e.

N{(A)=tr (ATA) = > (ay)®.

ij

By direct calculation we have
17 [Gar 85] = =N (bats — dpba) - (3.2.22)
By lemma 3.2.19, we have

tr [¢a! ¢,a]2 =-N (¢a¢ﬁ - ¢ﬁ¢a) > —2N (¢a) N (qbﬁ) = —2r (ﬁﬁ) tr (¢;23)

ti-+p n+p
= > tr(gadg) = > 2t (82) tr (¢3). (3.2.23)
o,f>n+1 aff>n41

Let S, and S,z be defined by

5= ad Sw= XA,
LY

2,3
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respectively. Then we have

n+4p
2
> (trdads)’ = 3 (Sap)? (3.2.24)
a,f>nl a,f>n+1
> s
a>n+1
By (3.2.23) and (3.2.24), we have
. n-bp n+p
Yo tr(ads]l’ = Y (trduds)’ (3.2.25)
o, 3>n41 a.A>n+l
n+p
< —( D 2585+ Y sg)
aAd>n+1 a>n-+41
n+p n—+p
= -(2 Y SaSp+2 > SaSs+ 3 33,)
Bra>n+1 Aza>n+l a>ntl
( n+p 2
= -2 Y s;,sﬂq-(z S,,) :
Bra>n+l a>n+41
Since
> (Sa-8)" = -2 Y SaSs+ > (SE+83)
A>a>n+1 Ara>n+l Ara>n+l
= -2 ) S.S+(p—2) > 82
Ara>n+1 a>n+1
= -2 2{: S Sb'f D — 2 ( 2{: S ) -2 2{: Shsb
Bra>n+l a>n+1 Bra>n+l
= —2(p-1) > S.Sp+(p- 2)(23),
Ara>n+i a>n+1
this implies
1
-2 ) Sasﬁ=pTl > (Sa~Sp) ———(Z S) . (3.2.26)
B>a>n+1 B>a>n+1 a>n+1
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Substitute back into {3.2.25), we have

n-+4-p n+p .
Yo tr(batsl = D (trgads)
a,A>n+41 a,f=n+1
2
> = D (Sa=5) ——(Zs) (Zsa)
p ,3>cx>n+l a>n+1 a>n+l1
(2 (ne)
a>nl
2
> —|2- pTl) ('¢|2 - |¢n+1l2) .
Assertion 2: ([?], p.8)
n+p
a;d ir (¢n+1‘»16 ) \/—-—+T— |¢n+1| |¢l (3227)

Proof:
Recall that [qba, ¢n+1] = 0 and ir¢, = 0 for all . Hence for each &, n+1 < o < n4p,

we can apply lemma 3.2.7 to ¢, and ¢, to obtain

n—2
tr¢n+1¢2 S —V— I¢a‘2 |¢n+1' .
vn(n-1)
summing up for all &, we obtain (3.2.27).

Assertion 3: ([8], p.9)

n+p

Z (tr¢n+1¢’a |¢’n+1| (|¢|2 - |¢n+1|2) : (3.2.28)

a=n-+2
Proof:
By Cauchy-Schwarz’s inequality,

tr¢n+1¢' (Z ¢:1+1¢33) Z(¢ﬂ+l Z ¢f;) |¢n+1| |¢ ’

n+p

= Z (tT¢n+1¢a)2 < |¢‘n+1|2 (|¢|2 - |¢n+1l2) -

a=n+2
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By putting (3.2.21), {3.2.27) and (3.2.28) into (3.2.4), we obtain

-2
% Algl? 2 nlc+H?) |4 —nH ('—;\/—(r——l) |#ria] l¢|2)

ntp

2
(205 57) (98 l6nl") =2 3 (renatn)® = (rdh)’
L 6> 2 42 _ n(n—2) 2_( _——1—) .
= 5Ol 2n(c+ H) (9l n(n+1)H|¢n+1||¢'I 2= |¢]
1 4
+ (2 - ;p—_l) l¢n+1|2 (2 |6I* — |¢n+1|2) =2 |"'bﬂ+1|2 (|¢|2 B |¢”+1|2) = [énna]

1 2 2y g2 _(n—2) 3_( __1_) 4
= SAlr 2ot 1) o - SRl - (2- 557 )

1
+ (1 - ﬁ) |<‘"~'n+1'2 (2 |¢’|2 - |¢n+1|2) -

Since
1
(1 N ;..-—]_) |¢n+1|2 (2 |¢|2 - |¢n+1|2) > 0.
We obtain
Lalg 2 o (nle+ #7) - S22 pryg) - (2 - _1_) 6*). (3.2.29)
2 - n(n+1) p—1

3.3 THE RICCI CURVATURE OF A SUBMANIFOLD

Definition 3.3.1. (for more details, please see [7])

Given a point p and a unit tangent vector X at that point, we can define the
Ricci curvature in this direction by averaging all the sectional curvatures of the two
dimensional tangent planes which contain this tangent vector. This is given by

Ric(X) = zﬂ: R(es, X, e X) . (3.3.2)

i=]
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From (3.1.9), we have

Ric(er) = Y Kia+ ) (h3h% — (h5)%) (3.33)
= D _Kia+ D nHhi =3 (hG)
= D Kin+nHhg =3 ()"

o
Lemma 3.3.4. ([7])
Let (hij); 4,j = 1,...,n be a symmetric n X n matrix such that n > 2 and let

2 h:f:f =nH and Z hfj = S. Then

nhanH = 3 (hin)? > ;15{2 (n— 1) n2H? — n(n— 2) H/n (n = 1) (S = nE®)

-n(n-1)85}, (3.3.5)
where H is the norm of the mean curvature vector A, i.e. H = |h| > 0.

Proof:

We shall look for the minimum value of nhn, H -3, (hin)? among all n x n symmetric
matrices which have the same trace and the same square norm. Thus we prove the
lemma, by solving the following problem:

Minimize
f=nhanH = 3 (hin)* (3.3.6)
subject to the constraints
Y hy=nH (3.3.7)

and

Y RL+2> Kl =S, (3.3.8)

i<
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where (h;;) is a symmetric n X n matrix.
Let
g=nhpH = (ham)*+ A (Z hii — nH) +u (Z hi+2) R - S) (3.3.9)
i i<j
where A and g are the Lagrange multipliers. Setting the partial derivatives of g with

respect to the variables h;; to zero we obtain the following system of equations:

A+ 2uhy; =0 for i=1,..,n—1. (3.3.10)
nH — 2pp + A+ 2phn, = 0. (3.3.11)

dph; =0 for i<j<n. (3.3.12)

—2hin + 4y =0 for i=1,..,n—1. (3.3.13)

Now we shall consider three cases.
Case 1. p=0.
By (3.3.10) we have A = 0.Therefore (3.3.11) and (3.3.12) imply that

hin =0 for i=1,..,n—1

and

Hence

fo %nz g2 Ve Loope (3.3.14)
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Case 2: p = 3.
By (3.3.10), (3.3.11) and (3.3.12), we have

hi=—-A for 1=1,.n~1, (3.3.15)
By = nH + A, (3.3.16)
hij =0 for 1< j<n (3317)

Substitute (3.3.7) into (3.3.16) and by (3.3.15), we obtain

Pon = (= (1~ 1) A + Ang) + A = by + (0. — 2) A

= n-2)A=0. (3.3.18)
1) If n =2, then

fo= hoa(hun+ ha) — hiy — hi,
= hyhyy — A3,
= % (B2 + 2h11has + B3, — BY) — A3, — RY,).
By using (3.3.7) and (3.3.8), we have

f=z(n*H*-25). (3.3.19)

[

2) If n > 3, then (3.3.18) imply A = 0. By (3.3.15) and (3.3.17) we have
hij=0 for 'i,j=1,...,ﬂ.“1.
Then (3.3.8) becomes

h2,+2) hi =38

38



1
= thn =5 (§-nH’). (3.3.20)

Since the left hand side of (3.3.20) is non-negative, we have S > n?H? Also we

obtain

fo= ntH =) ()

= niH? - % (S—-nsz)

= -;— (n2H2 — S) .
Thus in this case, we have
If n=2, then f = % (112H2 - 5) (3.3.21)
1
and if n > 3 and § > n?H?, then f = 3 (n2H2 - 5) <o (3.3.22)
Case 3.4 # 0 and p # 3
From (3.3.10), (3.3.11) and (3.3.12), we have
hll = ... = hn—ln—l: (3323)
h,‘j =0 for 1< j <mn, (3324)
hin =0 for i=1,...,n—1. (3.3.25)

For convenience we put A, = 2. Then from (3.3.8), (3.3.23), (3.3.24) and (3.3.25),

we have
(n—1)hi, +22=5 (3.3.26)
However, by (3.3.7)

(ﬂ.'-—].)hu‘:nH—:E
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1

= (n—1)hf; = — o (nH -~ z)°. (3.3.27)
Therefore,
1 2 5
(nH-z)"+z°=8
n — ].
= nz’ —2mHz +n*H?> - (n - 1)5 =0. (3.3.28)
We also have
f=nHz - z*. (3.3.29)

By solving (3.3.28) we have

. nH —\/n(n—1)(5 —nH?) or m=nH+ vn(n—1)(S —nH?)

[ n

(3.3.30)

Su bstitute these values into (3.3.29), we obtain

f = % n? (n — HH? ~ ('n.(n— 1) (S—nHz)) —n{n— 2)H\/'n.(n - 1)(S —an)}
(3.3.31)

or

f= % {'n,2 (n—~1)H? ~ (n(n—1) (S—nH*))+n(n—2)Hy/n(n—-1)(S — T?.H2)}-
(3.3.32)

Since we have assumed that H > 0, we find that (3.3.31) is smaller than (3.3.32).

Hence the minimum value of f in this case is

f= ;15 {2,,,2 (n—1)H—n(n—2)H\/n(n-1)(S = nH?) —n(n—1) s} .
(3.3.33)
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Finally, we complete the proof by comparing the value of (3.3.14), (3.3.21), (3.3.22}
and (3.3.33). If n = 2, then (3.3.21) = (3.3.33) < (3.3.14). Ifn = 3, and n?H? > §,
then (3.3.22) does not occur and (3.3.33) < (3.3.14), so (3.3.33) is the minimum. If

n >3 and n?H? < S then

—1—2 {271,2 (n—1) H? —n{n—2)Hyn(n—-1)(S—nH?) —n(n- l)S}

< L= B -2 Hyaln= D) (PH —nH?) —n(n—1) 5}

_ %{21@2(71—I)Hz—nz(n—l)(n-—E)Hz—n(n—l)S}

< —1—{2n2(n—1)H2+n2(n—1) (%n—2)Hz-—n(n—~1)S}

n?
1 n—1

= Zn (n—1)H? -

S

1y, 1
<2nH 2.9.

Therefore (3.3.14) > (3.3.22) > (3.3.33) and hence (3.3.33) is the minimum, thus
completing the proof.

It is easy to see that when H = 0, (3.3.5) becomes
=1
=3 (ha) 2 T AP (3.3.34)

Theorem 3.3.35 ([7])

Let M™ be a submanifold immersed in a Riemannian manifold N"*? of constant sec-
tional curvature c. Let Ric, |A|* and H be the functions which assign to each point
po of M the minimum Ricci curvature, the square length of the second fundamental

form and the mean curvature respectively of M at py. We have

1
Ric > (n—1)c+ ;E{Qn.z (n—1)H?

~n(n—2) Hyfn(n—1) (|A" = nH?) —n(n - 1) |A]}. (3.3.36)
Proof:
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The Ricci curvature in the direction e; at pp is

Ric (e, ex) = ZK;;’& +nHAG — Z( %)

a,t

= Ric(ev,ex) = O Kigp +nHRG" = > (hE" - > (rg)?*. (3.337)
i ' i azn+2,i
Let
|Aal® = Z (h;})z for a=n+1,..,n+p (3.3.38)

i

Since H > 0, we apply lemma 3.3.4 to the matrix (h%) to obtain

1
R H Z (hz)” —{2(n - 1)n?H? (3.3.39)

— a(-Hynm 1) ([Aenl - nH2) = n (0 — 1) |Awn['}.

Since tr (hg) = 0 for & = n +2,..,n + p, we can apply (3.3.34) to these matrices

to obtain
_Z( ?k)2_ a|2 for a=n+2,.,n+p
and hence
D L o (3.3.40)
arnt2i " azn+2
Recall that
AP = 1Aal*. (3.3.41)

Therefore [Ap]? < |A|* and putting this into (3.3.39) we have

1
AR H Z (b5 2 2= )niH = n(n-2) Hyfn(n— 1) (|A] - nH?)

—n(n—1)|Aua |’} (3.3.42)
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Now adding (3.3.40) and (3.3.42) and using (3.3.41) we obtain

nhEH - S (R - DD (k)

a>nt2,i

> %{2 (n—1)n*H* —n(n—2) H\/'n (n—1) (1A|2 — nH?)
—n{n—1)|Aun|} - -"—:;—1 3 Al
a>zn+2

— 7_?1‘3{2 (n—1)n*H? ~n(n—2) H\/;(n ~1) (A" — nH?)
_n(n—1)}AP}.

Since N is a constant sectional curvature space we have

Z Ki,=(n-1ec (3.3.43)

Therefore we have

Ric> (n—1)c+ %{27:,2 (n—-1)H? - n(n—2) H\/;('n -1) (|A|2 ~nH?) —n(n—1) |A]?
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CHAPTER 4 MAIN RESULTS

In this chapter, we prove two results mentioned in chapter 1. The first of
thern is a pinching theorem for parallel mean curvature vector submanifolds in
the standard hyperbolic space. The second is an extrinsic diameter theorem
for bounded mean curvature vector submanifolds in the hyperbolic space.
Both of these theorems make essential use of the maximum principle for

certain class of complete Riemannian manifolds.

4.1 THE PINCHING THEOREM FOR PARALLEL MEAN
CURVATURE VECTOR SUBMANIFOLDS IN THE
STANDARD HYPERBOLIC SPACE

In this section, we shall generalize the results due to Q.M. Cheng (3] to cer-
tain class of submanifolds immersed isometrically in the standard hyperbolic

space.

First we recall the following maximum principle of Omori type (see [11])

Lemma 4.1.1.

Let M™ be a complete Riemannian manifold with Ricci curvature bounded
from below. Let f be a C? function bounded from above on M™, then for all

¢ > 0 there exists a point z in M™ such that at z (z depends on &),

f>supf—e, (4.1.2)

VAl <e, (4.1.3)
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Af <e. (4.1.4)

We will apply the maximum principle of Omori-Yau to the differential in-
equality on the traceless second fundamental form obtained in the preceeding

chapter to get the following

Theorem 4.1.5.

Let M™ be a complete non-compact parallel mean curvature vector sub-
manifold (p > 1) immersed isometrically in the standard hyperbolic space
H™*?P(—1) and R be the scalar curvature. Suppose that |H| > 1, then either

M™ is totally umbilic or

inf R < n(n—1) (|H —1) — ¢,

where

=21 \/n(n__f) |H[? +4n (—1 + [H[?) (2;;-3) L k) Y

225-9 || n 1) " =D
(4.1.6)
Proof:
By (3.2.29) we have
1 2 2 2 n(n - 2) 2p—3, 2
3018l 2 14l {ﬂ-(c+|H| )“mlcﬁl |H| - p— |¢] } (4.1.7)

1) Ifinf R<n(n—1) (|H|2 —1) - Ebz, then theorem 4.1.5 is true.
2) Ifinf R>n(n—1) (|H* - 1) - &2 then we get by using Codazzi equation
for submanifolds in a space of constant curvature ¢ (see Willmore [10] p.123,

equation (4.13)) that

45



R = cn(n-1)—|AP+n?|Hf?
= en(n—1)~|g]" —n|H|* +n* |H|*
= en(n-1)—|¢*+n(n—1)|H

= —n{n-1)=|g*+n(n—1)|H* (since in our case ¢ = ~1)

inf (-n(n—1)— |2 +n(n-1)[H?) >nn-1)(H?-1) - ¢
—n(n—1)+n(n—1)[H? +inf (- [¢]*) >n(n—-1) ((H?-1) — ¢
—sup|g| > -’

~2
¢ > sup|sf®

S R

therefore || is bounded.
By (3.3.36) and using the identity (3.2.1), we get

Ric(z,z) > (n—1)c
+$ {2n2 (n—1)|H|* —n(n-2)|H| \/”'(”— 1) (A" —n|H[") =n(n—1

= Ric(z,2) > (n— 1)(H? - 1) - 1:}' {n =2 H V=T + (- D lg}.
(4.1.8)

Therefore Ric(z,z) of M™ is bounded from below since ¢ is bounded from

above.
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We define |¢| = f, F = (f?+a)3(where a > 0 is any positive constant). F is

bounded because f is bounded.

By simple calculation we obtain

oF = V.V ((f*+a))

= V{(é (f2+a)-71) sz}

= P+ TAR - (0T [V

2

e

_ o1 e 1 2
therefore
%AF = FAF + |VF|?. (4.1.9)

Applying lernma 4.1.1 to F', we can find for each € > 0 a point z in M™ such

that at =
|VF(z)| <&, (4.1.10)
AF(z) < e, (4.1.11)
F(z) >supF —e. (4.1.12)
and by (4.1.9) we have
1
§Af2 <e?+eF =¢g(e+ F) (since F' > 0). (4.1.13)

We take a sequence {e,,} such that g, — 0( as m — oo ). There exists a
point z,, in M™ such that (4.1.10), (4.1.11) and (4.1.12) hold. Hence, &,,(em+

F(x,,}) — 0 for m — oo since F(z) is bounded.
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On the other hand, from (4.1.12)
F(z,) > sup F — g,.
Since F is bounded,{F'(z,,)} is a bounded sequence and
F(z,) — Fy
where we can choose subsequence if necessary. Hence
Fo > sup F.
According to the definition of supremum,we have
Fy=supkF.
From the definition of F', we get
f(zm) — fo=sup f.

From (4.1.7) and (4.1.13}, we have

f2{n(—1+H2)-._ﬂ;g—)f| | - 2;: 13f}S;Af < e’ +eF

n(n —1)

s (=1 + B — =2 e i 223,
= f(zm) {-( 1+ H%) \/mf( m) |H| p—lf( m)2}

< & +enF(z,)

EA

Efn + emFo.

Let m — oo, we have ¢,,, — 0 and f(z,,) — fo. Hence

nin—2 2p—3
5 {n(-l 1P = Do - f_—lfé} <0
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= fo=0or {n(—1+|H|2) %(f\/T—%fol -2

3
lﬁ}so
if fo = 0 = M™ is totally umbilic.

On the other hand, if {n(—l +|H|?) - \/—75._(————)_)f0| | — p— fo} <0
2
= sup |¢| > M{\/ﬂ’f'__—%)_|ﬂ|2+4n(—1+|m ( )

—2(2p-3) n
which contradicts our assumption sup |@| < é. Therefore sup |¢| > é or M™

=¢

is totally umbilic.
By the identity [¢]° = —R+n(n — 1) (|H|* - 1), we have

inf R < n{n—1) (|H*-1) -9

or M™ s totally umbilic.

Remark

A similar result can be proved for the codimensin 1 case by using the corre-

sponding differential inequality.

4.2 THE EXTRINSIC DIAMETER THEOREM FOR
PARALLEL MEAN CURVATURE VECTOR
SUBMANIFOLDS IN THE STANDARD HYPERBOLIC
SPACE

49

ﬂ('n—l)

= |H|



In this section, we prove an extrinsic diameter theorem for bounded mean
curvature vector submanifolds in the standard hyperbolic space. As a con-
sequence of it, we show the non-existence of parallel mean curvature vector
surfaces in the standard hyperbalic space if |H| < 1.

First we recall an important identity relating the Laplacian on a subman-

ifold to the Laplacian of the ambient manifold due to Choe and Gulliver

[5]

Lemma 4.2.1.

Let f € C®(N™) where N™ is an m-dimensional Riemannian manifold
and suppose Q" is an n-dimensional submanifold of N™. Denote by V, A
the connection and Laplacian on N™ and A the Laplacian on ", then the
following formula. relating A to A holds: -

Aflo) = Bf) lo+(nhVf)lo = D Vfleme) lo-  (422)

k=n+1

Applying this identity to a submanifold (not necessarily with parallel mean
curvature vector) of the standard hyperbolic space, one gets

Lemma 4.2.3. ([5])
Let M™ be a submanifold of the hyperbolic space in H™(—1), then

Ar = (n || Vr|*) cothr + (nh, Tr) | (4.2.4)

where r is the distance function on H™(—1) measured from a fixed point in

H(—1)\M™.
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Proof:
Applying Lemma 4.2.1 to the function coshr, we have

A(coshr |p) = (Acoshr) |y + (nh,Veoshr) |y — Z V2cosh7'(ek,ek) ¥Y;

k=n+1
= mecoshr + (nh, Vcoshr) | —(m — n)coshr

= ncoshr + sinhr (nh, mV-r) lar (4.2.5)

On the other hand,

A coshr = div(V coshr) = div((sinhr)Vr) = (coshr) ||Vr||* + (sinhr)Ar
(4.2.6)

From (4.2.5) and (4.2.6) we obtain

(coshr) ||Vr)|* + (sinhr)Ar = ncoshr + sinh7 (nh, Vr) |

= Ar = (n - ||Vr|]®) cothr + (nh, V) |ar -
Combining the preceeding lemma with Lemma 4.1.1, one obtains

Theorem 4.2.7.

Let M™ be a complete bounded parallel mean curvature vector submanifold
in the standard hyperbolic space H™ (—1), with Ricci curvature bounded
from below and suppose that it is contained in a bounded extrinsic ball, then
sup|H| > 1.

Proof:

Recall that

Ar = (n— [|Vr|*) cothr + (nh,Vr) | .
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Since

IA

|(nh, Vr)| nsup |H||Vr|

IA

nsup |H| (1) (- |vr€1)

< mnsup|H|
= —nsup|H| < (nh,ﬁ’r) < nsup |H|
and from (4.2.4) we have

Ar 2 (n— 1V7]1) cothr — nsup |H| . (4.2.8)

Since M™ is a complete Riemannian manifold with Ricci curvature bounded
from below and r is bounded from above on M™, applying lemma 4.1.1 to ,

we have for each ¢ > 0, there exists a point  in M™ such that at z,

IVr(z)] < e, (4.2.9)
Ar(z) < e, (4.2.10)
r(z) > (supr — g). (4.2.11)

We take a sequence {¢,,} such that €, — 0(m — o0) and for all m, there

exists a point z,, in M™ such that (4.2.9), (4.2.10) and (4.2.11) hold good.

S AT(Z) 2 (0 — V7 (z.m)||?) cothr(zm) — nsup |H|

= £ > AT(Tm) > (2 = (€m)?) cothr(z,,) — nsup |H|.
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Since n — (€m)? > 0 for €,, — 0 and cothr{z,,) > 1 because 0 < (Tm) < 00.

= €m > (n — (em)?) — nsup |H| for  m—o o
= 0> (n—0?) —nsup |H| = n — nsup |H|

= sup |H| > 1.

Remark

As an interesting corollary, one proves that there exists no compact parallel

mean curvature vector [H| = 1 submanifold in the standard hyperbolic space.
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CHAPTER 5 CONCLUSION

This study attempts to apply the method of Q.M. Cheng for certain
submanifolds in the hyperbolic space. In [3] Cheng proved a pinching theorem
for minimal submanifolds in a sphere. His method consists of two main
ingredients: a differential inequality and the maximum principle of Omori.
From this we are motivated to study related inequalities on variants of second
fundamental form for other kinds of submanifolds in different ambient spaces.
In line with this, we studied the Laplacian of the traceless second fundamental
form. In order to do this, we studied carefully the derivation of Simons’
inequality in the work of Chern, do Carmo and Kobayashi [4] to obtain the
generalized Simons’ inequality mentioned in Santos’ paper [8]. By using
this inequality together with the maximum principle of Omori, we obtained
the pinching theorem for parallel mean curvature vector submanifolds in the

standard hyperbolic space which parallels the results of Cheng.

On the other hand, we studied the inequality on the Laplacian of the cosh
function of the distance function for a submanifold in the hyperbolic space,
as proved by Choe and Gulliver [5) and proved a result concerning bounded
mean curvature submanifolds in the hyperbolic space. As a corollary of this
result, we obtained also a simple result which asserts that there exists no non-
compact constant mean curvature 1 hypersurfaces in the standard hyperbolic

space with sectional curvature -1.
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