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Abstract 

 

Indoor environmental quality (IEQ) has become one of the main concerns in built 

environment due to its effects on productivity, health and well-being. Poor IEQ can lead 

to discomfort and sickness, and businesses may need to suffer tremendous cost associated 

with the negative influences induced by substandard IEQ. Therefore, IEQ shall not be 

overlooked in building development and facility management practice. 

 

IEQ can be categorized into a number of aspects, most popular ones include thermal 

comfort and indoor air quality (IAQ). Overall IEQ itself is also another perspective to 

evaluate building performance. The intra-relationship between factors of a particular 

aspect and the inter-relationship between aspects on overall IEQ have been found to be 

exceedingly complex, and these associations are usually task- and occupant-specific, 

which may change over time with lived experience by developing adaption and tolerance. 

 

To tackle the intrinsic property of IEQ of being both subjectively and objectively 

influenced, this study proposes three assessment approaches to evaluate overall IEQ, 

thermal comfort and IAQ based on their respective natures. The inadequacy of current 

assessment methods and models is first identified. Literature search of thermal comfort 

field data and field study on sleeping thermal comfort are conducted to evaluate the 

performance of exiting thermal comfort models. Effects and implications of using 

inaccurate prediction models are also discussed. 
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Field surveys on physical environmental conditions and subjective IEQ responses are 

conducted in extreme living environments to determine the relationship between 

environmental quantities and occupant’s acceptance, and to compare the new 

observations with established beliefs by acceptance prediction models. Discrepancies are 

found between predictions and actual data, suggesting the influence of contextual factors 

and adaptation on subjective responses to perceived environment. 

 

In order to acknowledge and reflect the influence of occupant’s response in prediction 

model, and allow flexibility of model parameters, an open probabilistic acceptance model 

using frequency distribution function is developed to handle diverse range of descriptive 

IEQ parameters. It makes model updating easier and is more robust in reflecting 

occupant’s environmental perception compared to existing logistic regression model. It 

is recognized that the characteristics of data used for model development strongly affect 

the accuracy, therefore the relationship expressed by prediction model shall be updated 

with newly observed field data. 

 

Subsequently, Bayesian updating protocol for thermal comfort and overall IEQ model is 

developed to propose a framework for updating the above-mentioned relationship. It is 

demonstrated with practical examples of existing thermal comfort model and IEQ 

regression model. Bayesian approach allows systematic updates of current beliefs (i.e. 

acceptance prediction models) with openly available field data and new observations. 

With the selection of target sample size and acceptable error based on managerial decision, 

this approach incorporates field settings into any existing model by considering the 

statistical significance of field data, even with a small sample size. It shall provide an 
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achievable solution to the present challenges in establishing a reliable environmental 

acceptance prediction model. 

 

Additionally, being the one with severe health consequences, IAQ assessment can be 

conducted objectively based on health standard, rather than solely relying on subjective 

sense. To minimize the demand for conducting full IAQ assessment which is resource 

intensive, this study proposes a step-wise IAQ screening protocol with various 

combinations of surrogate IAQ parameters. It successfully screens out premises with high 

risk of problematic IAQ and those with low probability. Further to this, a large-scale IoT-

based IAQ screening using low-cost sensors grid is conducted to demonstrate the 

identification of environmental attributes that contributed to poor IAQ and to evaluate the 

performance of IAQ index. 

 

The proposed novel assessment methods evaluate and predict IEQ from different 

perspectives – subjective-objective approach and objective-criteria approach, which shall 

facilitate indoor environmental management by providing an inclusive way to assess 

building performance. 
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Chapter 1. Introduction 

1.1. Background 

 

Indoor environmental quality (IEQ) is a major concern in built environment as it affects 

productivity, health and well-being. It is a broadly defined building performance indicator 

that can be determined by many factors including but not limited to environmental 

conditions and occupant’s acceptance. IEQ in commercial buildings has been extensively 

studied due to the detrimental loss in productivity from substandard indoor environment 

(Nagata, Mori et al., 2018). Many design guides and building standards have been 

developed for office buildings to assess and evaluate the building performance against a 

set of comfort criteria. As workplaces are more uniform, and occupants have less control 

over the environmental settings, the extent of adaption behaviour is limited. Occupant’s 

responses towards the perceived environment in office are therefore relatively consistent.  

 

Less focus has been put onto evaluating IEQ at home despite people spend over 65% of 

their time in residence (Klepeis, Nelson et al., 2001). Indoor environment in a residential 

building is more dynamic and varying than that in an office (Ioannou and Itard, 2015). 

More interactions between occupants and dwellings can be expected at home since they 

have greater control over the surroundings. Adaptation behaviours, for example opening 

or closing window for ventilation and adjusting the level of insulation provided by 

clothing, may be taken to improve comfort. Occupant’s perception and adaption to the 

environment may also greatly influence the satisfaction and comfort level towards IEQ 

(Mui, Tsang et al., 2019, Tsang, Mui et al., 2019). With population expansion and 

urbanization, more people are now living in high-rise multi-unit residential buildings in 
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cities (Andargie, Touchie et al., 2019). Given this fast-changing housing situation of the 

world, our understandings on IEQ in residential environments shall be enhanced and 

updated.  

 

In addition, urban development has prompted the emergence of large-scale 

multifunctional mall designed to provide high-quality and comfortable shopping 

experience for customers. Developers in Hong Kong have expressed their interests in 

adopting sustainable building development and operation strategies by actively engage in 

Building Environmental Assessment Method (BEAM) assessment and Leadership in 

Energy and Environmental Design (LEED). Some even seek ways to further improve the 

IEQ to provide an indoor environment above local standards through the use of smart 

technologies and user engagement (NWD, 2019).  

 

With growing attentions on IEQ and its effects on health, comfort and productivity, 

comprehensive methods for assessing overall IEQ and the related environmental 

components are therefore necessary for building designers and engineers to evaluate 

occupant’s satisfaction and comfort level at various places. Existing assessment methods 

evaluate an environment objectively, subjectively or from a combination of both 

perspectives. All having their own pros and cons with respect to resource requirement, 

ease of implementation, accuracy, representation and effectiveness. This thesis aims at 

identifying the major inadequacies of current IEQ assessment methods and developing 

novel assessment approaches to evaluate building performance and to improve IEQ 

satisfaction predictions, which shall facilitate indoor environmental management. 
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1.2. Existing approaches and assessment methods for evaluating IEQ 

 

IEQ is an intricate issue. Environmental comfort can be interpreted as “the absence of 

unpleasant sensations which has a positive effect on well-being” (Feige, Wallbaum et al., 

2013, p. 11). It can be highly subjective, still it is possible to identify factors that most 

people agree to be unappealing. Comfort can be categorized into three main aspects: i) 

physical comfort, which describes the comfort brings about by environmental parameters 

like air temperature (Ta), air quality and noise; ii) functional comfort, which refers to 

factors that affect work productivity, for example disturbances and distance from 

functional areas; and iii) psychological comfort, which concerns about the individual and 

interpersonal space-related factors like space, privacy and control over the environment 

(Feige, Wallbaum et al., 2013). This quantitative mechanical objective-criteria approach 

evaluates the building performance through collective assessment of individual factors 

within premises (Fleming, 2004). Overall comfort is therefore the combination of 

occupant’s productivity, physical and psychological health.       

 

Some take an alternative subjective behavioural approach as the indicator of building 

environmental performance. Rather than comparing the indoor environment with a 

number of technical performance metrics, this combined quantitative and qualitative 

approach views occupant’s perception towards the environment as more relevant 

assessment criteria (Fleming, 2004). Behavioural environment includes distraction, 

interaction and informal interaction points, which alongside with physical environment, 

is found to have an impact to overall comfort and thus productivity (Haynes, 2007). 
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Subjective-objective approach therefore relates occupant’s subjective responses with 

environmental quantities, using occupant’s acceptance as evaluation metrics. 

 

IEQ assessment can be done by investigating one or more factors that affect occupant’s 

comfort and satisfaction towards the perceived environment. Single-domain studies 

evaluate the building performance based on a particular aspect of IEQ, with thermal 

comfort and indoor air quality (IAQ) as more popular areas of research (ISO, 2005, 

Andargie, Touchie et al., 2019, ASHRAE, 2019). Multi-factor studies on the other hand 

assess two or more IEQ factors concurrently, regardless the factors are discrete or 

continuous. The relative importance of factors is usually identified and the overall IEQ 

may be considered as a combination of weighed individual parameters (ISO, 2012, 

Andargie, Touchie et al., 2019).  

 

There are objective and subjective ways to assess IEQ. Objective assessments utilize 

devices and instruments to capture a selected period of spatial and temporal physical state 

of IEQ in premises, while subjective assessments rely on surveys and interviews to 

understand occupant’s comfort and satisfaction, which are the major interests of building 

operators (Heinzerling, Schiavon et al., 2013). Both methods have their own benefits and 

drawbacks, which are further discussed in Chapter 2 of this thesis.  

 

Research on IEQ modelling aims at identifying the deterministic causal relationships 

between environmental quantities and occupant’s comfort. To this end, these associations 

are assumed to be purely physical and can be expressed by mathematical equations 

(Baggs and Chemero, 2019, Willems, Saelens et al., 2020). Two basic types of models 
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have been established: i) subjective-objective method, which relates subjective comfort 

collected by surveys and objective measurements, and gives single-variable, linear or 

multivariate regression equations that predict individual and overall IEQ satisfaction; and 

ii) objective-criteria, which comfort criteria, established by previous subjective-objective 

studies or by expert’s opinion, are compared with objective measurements to determine 

the IEQ assessment class (Heinzerling, Schiavon et al., 2013). Both methods eventually 

combine sub-indices into overall IEQ index through weighting process and compare the 

overall index with a fixed set of range that defines IEQ level. 

 

Many adopt the objective-criteria method to evaluate building IEQ, since the subjective 

nature of survey lack universal judgement (Asadi, Mahyuddin et al., 2017). For those use 

both subjective and objective methods to assess an indoor environment, some would 

further identify the association between subjective responses and objective measurements. 

One very common example is thermal comfort research that relates thermal sensation 

vote (TSV) (a subjective response) with operative temperature (To) (an objective 

parameter), and compares the relationship with the well-established PMV model (Fanger, 

1970). 
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1.3. Discrepancies between predicted and actual comfort and satisfaction 

 

A lot of IEQ-related subjective research has found that occupant’s actual responses 

towards the perceived environment are different from predictions by existing models. 

Discrepancies found in thermal comfort models and IEQ models can be attributed to 

contextual factors and perception, which are seldom considered in physical models due 

to their subjective nature. There have been attempts to address the inadequacy by 

collecting and incorporating adaption behaviour from field survey into prediction model. 

An adaptive thermal comfort model based on large sample size of thermal comfort field 

studies was therefore developed to take occupant’s behaviour adjustment, physiological 

and psychological adaption into account (de Dear and Brager, 1998), which has been 

implemented in ANSI/ASHRAE Standard 55-2010 Thermal Environmental Conditions 

for Human Occupancy (ASHRAE, 2010). 

 

Notwithstanding the improvements made to existing models, studies suggest people still 

feel dissatisfied even if building comfort requirements are met (Burge, 2004). Although 

some comfort criteria are originally derived from subjective-objective studies, the 

relations may be outdated and do not necessarily fit for all premises. Biases may exist in 

the dataset used for model development. Other subjective comfort factors that can affect 

comfort and satisfaction may not be reflected in these criteria. The selection of statistical 

processes for analysing the data also significantly affects the prediction results (Majcen, 

Itard et al., 2013). Existing models may not consider the differences of various types of 

indoor environments, and as for the overall IEQ prediction, the effect of inter-category 

relationship between individual IEQ factors and overall IEQ has not been addressed in 
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most IEQ models. The assessment classes of comfort criteria also lack justification and 

are not always aligned with occupant’s actual sensations (Heinzerling, Schiavon et al., 

2013). 

 

From the above, it can be seen that IEQ has been defined with a broad spectrum of comfort 

features, including physical environment, psychological health, interaction and 

disturbance, etc., each having different degrees of objectivity. Thermal comfort, for 

example, is objectively modelled by identifying the relationship between physical heat 

balance mechanism and thermal sensation, and thus the acceptance. It is however that the 

effect of thermal load on thermal sensation and acceptance can be largely depended on 

subjective factors include perception, adaption and tolerance. Therefore, a pure objective-

criteria approach for assessing thermal comfort cannot truly reflect occupant’s comfort 

sense. Subjective-objective assessment with updated relationship can then minimize the 

discrepancies between prediction models and actual responses. Some aspects, for instance 

IAQ, can be evaluated subjectively by sense when pollutant levels are below health 

hazard level. Sense becomes rather unreliable when pollutant levels approach hazardous 

limits, as a result objective-criteria approach is required to identify problematic IAQ. It is 

therefore essential to evaluate IEQ using different approaches based on the nature and 

characteristics of the assessment. 
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1.4. Objectives 

 

As IEQ significantly affects our health and comfort, IEQ assessment is essential in 

determining whether the environment can provide a good staying experience. Despite all 

the research efforts on identifying the discrepancies between predicted and actual comfort 

and satisfaction, existing buildings are still designed and operated according to comfort 

criteria such as comfort zone, building standards and guidelines, without factoring in the 

actual occupant’s response towards the perceived environment. 

 

To minimize the performance gap and improve current assessment methods for individual 

and overall IEQ satisfaction prediction, incorporation of the missing elements in existing 

methods for a more comprehensive, realistic and efficient IEQ assessment is of utmost 

importance. An accurate and updated subjective-objective comfort model that 

incorporates the significance of field data may help to improve comfort and satisfaction 

prediction, and therefore assessing an indoor environment based on the distinctive 

thoughts and perceptions of the building occupants (Fleming, 2004). While it is no doubt 

that a mathematical model with more factors and is derived from a large database gives 

more precise predictions, more resources will be required for conducting the assessment, 

which may not be cost-effective from an engineering point of view. 

 

This study aims at proposing three novel IEQ assessment approaches for evaluating 

individual and overall IEQ. Proposed frameworks are designed to minimize the resources 

required for assessment while balancing the assessment and model prediction accuracy. 

Subjective-objective prediction models are developed to improve prediction accuracy by 
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ameliorating the relationship between environmental quantities and occupant’s 

satisfactions. The open acceptance model for IEQ and Bayesian updating framework for 

existing thermal comfort and IEQ models provide the flexibility in incorporating more 

model parameters and allow model updating with newly observed field data. 

 

In addition to improving the subjective-objective modelling approach, an objective-

criteria screening approach is proposed to reduce the number of parameters to be 

measured and derive risk of problematic IAQ with engineering accuracy. An Internet of 

Things (IoT)-based sensing network is applied to identify the environmental attributes 

that contribute to IAQ problems for long-term IAQ monitoring. 

 

The objectives of this study are: 

1. To review and identify the obstacles and difficulties in current IAQ, thermal comfort 

and IEQ assessment and satisfaction modelling; 

2. To identify the discrepancies between thermal comfort field responses and predictions 

by existing models, and to recognize the consequences of using inaccurate prediction 

models for research and practical purposes; 

3. To evaluate the performance of IEQ comfort model in extreme environment and to 

develop a novel IEQ satisfaction prediction model with flexibility in number and type 

of parameters based on occupant’s psychological perception; 

4. To develop mathematical approaches for thermal comfort and IEQ model updating 

based on newly observed field information; and 

5. To develop IAQ screening assessment protocol and implement IoT-based low-cost 

sensing network for monitoring and facilitating cost-effective IAQ management. 
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1.5. Research scope 

 

In regard to the objectives listed in the above paragraph, this study is divided into the 

following five tasks: 

 

Task 1: Understanding the difficulties of IEQ assessment and modelling 

Literature review is conducted to understand the essence of IEQ, IEQ assessment methods 

and models and to identify the impediment and complication in the process. IAQ and 

thermal comfort, which are the major environmental factors that influence overall IEQ 

satisfaction, are first discussed, and later the overall IEQ as a whole is considered. This 

task aims at recognizing current obstacles and aversion in assessing IEQ, thus paves the 

way for the development of simpler, appropriate and cost-effective assessment 

approaches for evaluating IAQ, thermal comfort and overall IEQ with minimum 

investment of material and manpower resources. 

 

Task 2: Identification of discrepancies between thermal comfort field responses and 

model predictions 

Step 2.1 Identification of performance gap in prediction model and its effects and 

implications 

To recognize the performance gap between field data and predictions by models, and the 

consequential problems of misusing these inaccurate models, a thorough literature search 

is conducted to gather field thermal responses. Example application of prediction model 

is presented, and the resulting disparities estimated by field responses and prediction 
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model are determined. This task identifies and demonstrates the negative consequences 

of using an inaccurate and outdated prediction model in research and practical application. 

 

Step 2.2 Investigation of sleeping thermal comfort responses in dorm 

Dormitory thermal environment during sleep is also studied. Thermal sensation responses 

are compared to model predictions, and association between sensation and sleep quality 

is determined. Results demonstrate that consistent and unified building thermal 

environment and thermal comfort model may not be suitable for all settings. Occupant’s 

perceptions and preferences observed in different indoor space play crucial roles in 

determining the level of satisfaction to an environment, which shall be reflected in 

existing satisfaction prediction models. 

 

Task 3: Evaluation and development of IEQ comfort model 

Step 3.1 Investigation of IEQ responses in extreme living environments 

To identify the discrepancies between actual field responses and predictions by existing 

models, surveys are conducted to investigate the IEQ responses from occupants living in 

very small residential units. Thermal comfort, IAQ, visual and aural environments are 

evaluated objectively by physical measurements and subjectively through interviews. 

Results from this task help us understand the effect of perception, adaption and tolerance 

on subjective IEQ responses in extreme environment, which provide insights into 

improving existing IEQ assessment models by incorporating subjective responses 

collected in field. 
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Step 3.2 Development of open acceptance model for IEQ 

To acknowledge and reflect the influence of contextual factors on IEQ acceptability, an 

open probabilistic acceptance model that uses frequency distribution functions of 

occupant’s responses towards four major IEQ parameters (i.e. thermal comfort, IAQ, 

aural and visual comfort) is proposed and developed. While extreme environment is rarely 

seen in buildings, zero acceptance beyond measurement range in cumulative frequency 

distribution can be inferred as environmental acceptance from occupants rather than just 

the building designers or operators. This model is flexible in a diverse range of descriptive 

IEQ parameters as well as feasible to be adopted using openly available IEQ acceptance 

data. Simple modelling method also allows easy model updating by adding newly 

observed data incrementally. The task presents a new approach to weigh in occupant’s 

perception and subjective responses into prediction model. 

 

Task 4: Development of Bayesian updating framework for model updating 

In this task, Bayesian updating framework is introduced for thermal comfort and IEQ 

model updating. Based on existing prior information (i.e. existing model) and newly 

observed data, the posterior can be estimated with respected to a selected acceptable error 

and a target sample size. This updating framework allows the incorporation of field 

settings and occupant’s perception into existing models even with a small sample size. 

Bayesian updating shall be able to improve model accuracy and give more realistic 

predictions that reflect occupant’s subjective responses. 
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Task 5: Development of objective-criteria approach for IAQ assessment  

Step 5.1 Development and implementation of step-wise IAQ screening strategies 

Current objective-criteria IAQ assessment methods are resource-intensive. People may 

lack incentive to monitor and maintain good IAQ, thus exposing themselves and others 

to potential health risks. This task develops a step-wise screening approach with the use 

of dominant and representative IAQ parameters to assess an indoor environment. IAQ 

indices with one, two and three parameters are proposed to identify poor IAQ with respect 

to a range of engineering acceptable accuracies. A decision-making framework for IAQ 

monitoring and mitigation is also proposed to facilitate better and more cost-effective 

IAQ management. 

 

Step 5.2 Implementation of IoT-based low-cost sensing module for IAQ monitoring 

To demonstrate the use of IAQ index in identifying problematic IAQ, a large-scale IoT-

based sensor network is implemented in a shopping mall to collect long-term spatial and 

temporal IAQ information. Different IAQ indices are used to identify environmental 

attributes that contribute to poor IAQ. This task signifies the feasibility of using low-cost 

IAQ sensors to monitor and screen potential risks of problematic IAQ for precautionary 

remediation measures. 
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1.6. Organization of thesis 

 

The introductory chapter has set forth the background and research interests of this study. 

The aim is to recognize the performance gap of existing prediction models and to develop 

simple yet effective IEQ assessment approaches for evaluating individual and overall IEQ. 

The objectives and research scope have been identified and described in the above sub-

sections. The structures and findings of this study are introduced in the following chapters. 

A flowchart of the organization of this thesis is summarized in Figure 1.1. Figure 1.2 

shows an overview of how this thesis tackles on each of their unique natures by 

introducing new assessment methods through different approaches.  

 

Reviews on current IEQ assessment methods and models are exhibited in Chapter 2. The 

complexity of IEQ influencing factors are studied and categorized. Methods for assessing 

IAQ, thermal comfort and overall IEQ, and occupant’s responses prediction models are 

reviewed and discussed. Research gaps in the field are defined and the research needs for 

developing suitable and cost-effective assessment approaches for evaluating individual 

and overall IEQ with justifiable resources investment are proposed. 

 

With the aim to identify the performance gap of thermal comfort assessment models, 

Chapter 3 investigates the discrepancies between field data available in literature and 

predictions by the Fanger’s PMV/PPD model to discuss the consequences of relying on 

an inaccurate model. Application of PMV model for estimating energy saving potential 

is presented, and the resulting energy consumptions estimated by field responses and 

PMV model are determined. The deviation of the results indicates the potential problems 
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of using inaccurate prediction models for research and practical uses. Further to 

evaluating thermal comfort model for awakening state, sleeping thermal comfort in 

dormitory is examined. The performances of existing sleeping thermal comfort models 

are assessed and the associations between sleeping thermal environment and thermal 

satisfaction are established. The importance of identifying different thermal comfort 

requirements and prediction models for different daily activities is discussed.  

 

In Chapter 4, IEQ responses from occupants living in very small residential units in Hong 

Kong is investigated. Field measurements and interviews with occupants are conducted 

to collect objective IEQ parameters and subjective IEQ responses in order to identify the 

subjective-objective relationship between occupant’s responses and perceived indoor 

environment. The uniqueness of these environments and its impact on our understanding 

on IEQ in residential environments are discussed. IEQ data gathered from average 

residential buildings in Hong Kong are compared and a residential IEQ model developed 

previously is evaluated with the newly acquired data. Based on the field results obtained, 

an open probabilistic acceptance model for IEQ is proposed which can genuinely reflect 

occupant’s responses to environmental conditions. This model uses frequency 

distribution functions of occupant’s responses towards major IEQ factors, which allows 

flexibility in model updating with the addition of newly obtained data. Simple modelling 

process also enables a diverse range of descriptive IEQ parameters to be factored in. Its 

prediction performance is compared to existing IEQ logistic regression model. 

 

To improve the prediction accuracy of existing model, Chapter 5 proposes a Bayesian 

updating protocol to systematically update current environmental comfort beliefs. With 
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openly available IEQ data, Bayesian updating framework incorporates the statistical 

significance of field settings and occupant’s perceptions into existing models. It is 

demonstrated using Fanger’s PMV/PPD model and IEQ regression model. Updated 

model shall give predictions closer to results collected in the field, therefore reflecting 

occupant’s subjective responses that are distinct from purely physiological responses to 

environment obtained in experiments. This allows updating of the subjective-objective 

relationship of current prediction models to improve model accuracy and applicability. 

The results shall provide an analytical solution to building operators regarding the choice 

of environmental parameters in building design and management. 

 

With reference to an IAQ index methodology proposed formerly, Chapter 6 takes a step 

further to develops a step-wise IAQ screening protocol that uses representative IAQ 

parameters to assess an indoor environment. The sensitivity, specificity and effectiveness 

in identifying IAQ problems using one, two and three surrogate parameters are evaluated 

and discussed. A screening and decision-making framework for IAQ management is 

presented and the usefulness of each screening step is assessed. Further to this, the 

feasibility of using IoT-based IAQ sensing modules for problematic IAQ screening is 

investigated. Relations between IAQ indices and environmental attributes that contribute 

to poor IAQ are explored. High-risk factors are determined such that corresponding 

precautionary measures can be done to prevent the occurrence of IAQ problems. 

 

At last, Chapter 7 summarizes the key developments of this thesis. The significances and 

contributions of research efforts presented in different chapters are highlighted and 

discussed. Future research opportunities are also explored. 



17 

 

 

Figure 1.1 Organization of thesis 
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Figure 1.2 Overview of methodology
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Chapter 2. Literature Review 

2.1. Introduction 

 

Indoor environmental quality (IEQ) relates to the environmental conditions that affect the 

acceptability of the indoor environment. With increasing concerns about building 

sustainability, compatibility between aesthetic, green and IEQ are sought to safeguard a 

healthy, comfortable and productive indoor environment (ASHRAE, 2016). The below 

paragraphs in this sub-chapter put together a brief introduction on the importance of 

assessing IEQ and the effects and impacts of substandard IEQ on building occupants. The 

remaining parts of this chapter are organized into two sections to review i) IEQ 

influencing factors in indoor environment; and ii) methods for assessing and modelling 

IAQ, thermal comfort and IEQ. Lastly, a summary of the literature review and the 

research gaps identified are outlined. The research needs for developing simpler and cost-

effective assessment approaches for evaluating thermal comfort, IAQ and overall IEQ 

with justifiable resources investment are propounded. 
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2.1.1. Health impacts 

 

Research has linked a range of environmental factors with both short- and long- term 

impacts on building occupants. Common short-term health impacts include Sick Building 

Syndrome (SBS), which describes various nonspecific signs and symptoms that evidently 

link to the overall IEQ in an indoor environment. The symptoms, for example headache, 

respiratory irritation and distress, dizziness and fatigue, are usually relived while away 

from the building (Burge, 2004), therefore it is regarded to be induced by indoor 

environmental stressors. Indoor factors including ventilation system type, lighting, indoor 

chemicals and biological factors have been found to be potential inducers of SBS 

(Seppanen and Fisk, 2002, Takigawa, Wang et al., 2009). Hitherto, neither the specific 

causal factors nor an indication of a particular disease have ever been discovered. 

 

Long-term health impacts in relation to poor IEQ are classified as Building Related Illness 

(BRI), which refers to adverse health effects with evidential linkages between 

environmental factors and illnesses (Seltzer, 1994). Legionnaires’ disease, tuberculosis 

and dermatitis are examples of BRI caused by transmissible pathogens, fungi and air 

pollutants found in indoor environments (Menzies and Bourbeau, 1997). 

 

A number of studies have evaluated the health impacts of indoor conditions on occupant’s 

health at home. Ahrentzen, Erickson et al. (2016) examined 53 apartment units with 

energy retrofits and found that improvement in thermal conditions correspond to self-

reported improvement of general quality life, general health, emotional distress and sleep. 

Földváry, Bekö et al. (2017) addressed the health concerns of energy renovations in 
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residential buildings as higher prevalence of SBS and increased levels of formaldehydes 

(HCHO) and volatile organic compounds (VOCs) were found after building retrofit. 

 

It is notable that some aspect of IEQ, specifically IAQ, can sometimes trigger adverse 

health effects, even death, without being noticed by human sense. Acute health effects 

imposed by air pollutants include lung cancer caused by prolonged exposure to radon (Rn) 

in building materials (Catelinois, Rogel et al., 2006), encephalopathy or death caused by 

acute carbon monoxide (CO) poisoning (Huang, Peng et al., 2020), etc. Many of these 

health risks inflicted by poor IAQ are accumulative and delayed, making it difficult to be 

discovered by sense straight away. 

 

Recognizing the subtle yet concerning health effects of poor IEQ, it is unequivocally that 

IEQ assessment is fundamental to maintaining a healthy indoor environment by 

identifying the underlying problems before it is too late.   
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2.1.2. Effects on productivity 

 

Effects of poor IEQ on productivity have been well-established. Substandard IEQ can 

lead to absenteeism and presenteeism – working with a reduced productivity due to health 

problems or distraction (Johns, 2010). A cross-sectional study in Japan found the 

monetary value imposed by absenteeism and presenteeism was $520 and $3055 per 

person per year (Nagata, Mori et al., 2018). Fisk, Black et al. (2012) estimated that the 

annual economic benefits of $13 billion to $38 billion could be achieved across the United 

States simply by increasing the minimum ventilation rate from 8 L/s to 10–15 L/s, which 

far exceeded the additional energy cost. 

 

Compared with workplaces, effects on productivity at home have rarely been investigated. 

Jamaludin, Keumala et al. (2014) conducted a post-occupant evaluation (POE) on the 

satisfaction and perception of indoor environment with bioclimatic design strategies, with 

productivity reported to have increased due to improved indoor comfort. Strom-Tejsen, 

Zukowska et al. (2016) examined the effect of bedroom air quality on next-day 

performance and concluded that the ability to concentrate and logical thinking improved 

significantly when carbon dioxide (CO2) level was lower during sleep. 

 

Even though the effects of poor IEQ on productivity are not as dangerous and life-

threatening as the health impacts, it nevertheless has great influences on business and 

economy. Having IEQ assessment to identify problematic indoor parameters can be 

beneficial by improving productivity and minimizing building energy consumption. 
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2.2. IEQ influencing factors 

 

Many factors have been identified to have effects on occupant’s satisfaction and 

productivity. Influencing factors may include building features like indoor climate, air 

quality, visual comfort, noise, sound privacy, disturbance, interruptions, layout, views 

and biophilia, model of ventilation, control over the environment and building 

maintenance (Feige, Wallbaum et al., 2013, Al Horr, Arif et al., 2016); or individual 

characteristics like gender, age and job satisfaction (Frontczak and Wargocki, 2011). 

 

 Kim and de Dear (2012) classified IEQ factors into three categories:  

i. Basic factors: minimum requirement that occupants expect them to be fulfilled. 

Attaining the standard does not necessarily enhance the satisfaction but under-

performance can cause dissatisfaction. 

ii. Bonus factors: contrary to basic factors, bonus factors have strong positive effects 

on satisfaction. Under-performance does not necessarily incur displeasure. 

iii. Proportional factors: performances of these factors proportionally affect 

occupant’s satisfaction. 

 

Based on a total of 43,021 occupants’ surveys from 351 office buildings in Center for the 

Built Environment (CBE) database, researchers further identified temperature, noise level, 

amount of space, visual privacy, adjustability of furniture, colour and textures, and 

workspace cleanliness as the basic factors, air quality, amount of light, visual comfort, 

sound privacy, ease of interaction, comfort of furnishing, building cleanliness and 

building maintenance as proportional factors and none for bonus factors. Basic factors 
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like amount of space, visual privacy and noise level also received higher ranks than 

proportional factors for their impacts on overall IEQ satisfaction (Kim and de Dear, 2012).  

 

On the other hand, IEQ influencing factors and their impacts on occupants in residential 

settings may be different from those in workplace. Ho, Leung et al. (2004) developed an 

assessment framework for healthy apartment buildings in Hong Kong, with key 

environmental quantities including density, air, light, noise, thermal comfort, drinking 

water, waste and cleanliness. Cho, Lee et al. (2011) evaluated the importance of IEQ 

factors at home based on a survey of occupant’s perception and expert’s opinions. It was 

found that experts viewed illumination, air and noise attributes more important factors for 

IEQ, while occupants prioritized noise, illumination and facility conditions instead. 

LEED green building certification program evaluates the IEQ aspect of residential 

buildings based on air quality (ventilation, combustion venting, garage pollutant 

protection, radon-resistant construction, air filtering, and environmental tobacco smoke) 

and compartmentalization. Table 2.1 summarized some factors that influence occupant’s 

satisfaction (Al Horr, Arif et al., 2016). It is by no mean an exhaustive list but an 

indication of the many different factors that affect occupant’s satisfaction to each IEQ 

aspect. 

 

To provide a holistic understanding of IEQ in enclosed area as a foundation for the 

development of IEQ model, this section reviews individually the major IEQ influencing 

factors that affect occupant’s comfort and satisfaction. To achieve an acceptable indoor 

environment, it is essential that both individual IEQ aspects and overall IEQ are at 

satisfactory level (ASHRAE, 2016). Four principal environmental aspects, namely 
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thermal comfort, IAQ, visual and aural environment, are explored. The interconnections 

between factors and the space- and occupant- specific prioritization of factors are also 

discussed to apprehend the complexity of determining overall IEQ. 

 

Table 2.1 Factors that influence occupant’s satisfaction to each IEQ aspect (Al Horr, Arif 

et al., 2016) 

Category Influencing factors 

IAQ 

Air temperature (Ta), relative humidity (RH), air movement (va), 

level of air pollutants, ambient air quality, ventilation mode/ 

system, ventilation rate, building materials, human activity 

Thermal comfort 

Ta, mean radiant temperature (Trad), RH, va, outdoor climate, 

human variables (clothing value (Icl), metabolic rate (M), posture, 

race, age and gender, body weight, psychological perception, 

expectation, adaptation)  

Lighting & 

daylighting 

Illuminance level, daylight and artificial light ratio, solar radiation 

and altitude, color, contrast, glare, window access, window size, 

window orientation, outside temperature, season and time, human 

behavior 

Noise & acoustics 
Magnitude of sound, indoor and outdoor source, building 

envelope, design and material, layout 

Office layout 
Work process, task, size of workspace, organizational culture, 

national culture 

Biophilia & view Views of nature and greenery, indoor biophilia feature, artwork  

Look & feel Indoor aesthetics design, color, shape, texture, spatial shape  
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2.2.1. Thermal comfort 

 

Thermal comfort is defined as “the condition of mind that expresses satisfaction with the 

thermal environment and is assessed by subjective evaluation” (ASHRAE, 2017, p. 3), 

which is a subjective condition for humans. Thermal comfort is the predominant aspect 

of IEQ to be studied in residential buildings. Andargie, Touchie et al. (2019) identified 

81% of single-domain IEQ studies at home were about thermal comfort, with IAQ taking 

up 9% and the rest shared by aural and visual comfort. In office, thermal comfort is one 

of the most important parameters of IEQ as it greatly affects productivity, and has a direct 

impact on building energy consumption (Al horr, Arif et al., 2016). Thermal comfort 

discusses about the many factors that influence one’s thermal experience, which include 

environmental factors like Ta, Trad, RH and va, and occupant’s characteristics like M, Icl, 

sociological status and adaption. The combined effects of these objective and subjective 

factors can be seasonal, occupant- and space- specific. 

 

Thermal comfort of an indoor environment is often evaluated with respect to thermal 

sensation, thermal neutrality and thermal acceptability. ASHRAE (2017) defines thermal 

sensation as a “conscious subjective expression of thermal perception of the 

environment”. While thermal sensation contains certain extent of subjective elements, for 

example behavioural adaption (de Dear and Brager, 1998), it is generally recognized as 

an objective expression of the direction and magnitude of sensory response to surround 

thermal environment, which is largely influenced by six factors: Ta, Trad, RH, va, M and 

Icl (Fanger, 1970). A seven-point thermal sensation scale (-3: Cold, -2: Cool, -1: Slightly 

cool, 0: Neutral, +1: Slightly warm, +2: Warm, +3: Hot) was therefore developed to 
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quantify occupant’s thermal sensation by relating to the aforementioned factors. Thermal 

sensations can be directly determined through field survey with building occupants (TSV) 

or estimated by thermal comfort model based on measured environmental parameters.  

 

Thermal neutrality on biological level describes a state that heat generated by metabolism 

is dissipated and heat balance is achieved (Hey, 1975). It is used to represent a state which 

occupant’s thermal sensation is neutral (0). By exploring the relationship between TSV 

and Ta, neutral temperature (Tn) can be obtained. Thermal sensation and neutrality can 

help building engineers understand the perception of an thermal environment, however, 

using thermal neutrality to evaluate the performance of an enclosed area may not be the 

most suitable as occupants have been found to prefer a non-neutral sensation (van Hoof, 

2008). It has been discovered that thermal sensations besides -1, 0 and +1 were also 

considered as thermally acceptable (Han, Zhang et al., 2007).  

 

Thermal acceptability describes the percentage of occupants who find a thermal condition 

acceptable, which is a more straight-forward way to assess a thermal environment. It can 

be evaluated using a continuous or seven-point scale from -3: very dissatisfied to +3: very 

satisfied (ASHRAE, 2017), or estimated by thermal comfort model based on established 

thermal sensation–acceptability relationship. An environment with substantial majority 

of occupant accepting its thermal condition is regarded as thermal acceptable 

environment. Thermal acceptance on the other hand depends on psychological factors, 

expectation, control, etc. (Indraganti, 2010). In non-uniform condition, thermal 

acceptability was found to be better in describing thermal comfort than thermal sensation 

(Zhang and Zhao, 2008).   
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2.2.2. Indoor air quality 

 

Unlike other IEQ influencing factors that rarely trigger adverse health effects unless in 

extreme and perceptible conditions, poor IAQ can lead to a number of serious health 

consequences, even death, without being noticed. Susceptibility to indoor air pollution 

depends on various factors including meteorological, demographic and socio-economic 

reasons (WHO, 2000). As IAQ discusses about the influences of perceived air on health 

and comfort, it is not necessary for a person being affected by indoor air pollution to be 

dissatisfied with the IAQ or the other way around, and an IAQ accepted by occupants 

does not always suggests a healthy IAQ. Since the health consequences of indoor air 

pollution are dire, building engineers must ensure an IAQ that can secure both comfort 

and health of general public.   

 

When IAQ is discussed, people usually refer to one particular parameter: CO2. CO2 is 

mainly generated by building occupants and diluted by mixing with outdoor air, therefore 

it is considered a good surrogate to represent the occupant load and the ventilation 

efficiency of an environment. Normal range of indoor CO2 (350–2,500ppm) is not 

considered to be a direct health risk for occupants, but evaluated CO2 was found to be 

positively associated with increased prevalence of SBS symptoms including headache, 

fatigue and other respiratory symptoms (Seppänen, Fisk et al., 1999). Apte, Fisk et al. 

(2000) also found significant dose-response relationships between dCO2 (indoor minus 

average outdoor CO2) and a number of SBS symptoms, but the authors concluded that 

the relationships did not suggest direct causal linkages, with CO2 being correlated with 

other indoor pollutants that may cause these symptoms. Causal relationships between 
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indoor CO2 level and health symptoms remain inconclusive, nevertheless, its capacity as 

a surrogate indicator for IAQ is universally recognized. 

 

Particulate matter (PM) is another dominant indoor air pollutant which can be originated 

from outdoor environment or generated from indoor activities like cooking, smoking and 

building materials (Lee, Guo et al., 2002). Various particle sizes determine the health 

impacts. The smaller the particle, the deeper it can deposit into the respiratory tract by 

inhalation, causing severe effects like respiratory distress, asthma, cardiovascular 

diseases, lung cancer and ultimately, death (WHO, 2013). PM is considered as a surrogate 

indicator for filtration performance of building ventilation system (Mui, Wong et al., 

2006), therefore evaluation of IAQ in premises served by mechanical ventilation and air-

conditioning system (MVAC) usually includes the assessment of PM. In residential 

settings where split-type and window type air-con are employed, PM instead represents 

the intensity of PM-generating human activity. It has been found that modern high-rise 

residential buildings generally suffer higher indoor PM levels than office. With a fair 

amount of time people spent at home, PM exposure at home contributes to a majority of 

personal integrated exposure to PM (Yang, Lau et al., 2019). 

 

Volatile organic compounds (VOCs) are wide range of organic compounds that have high 

vapour pressure at room temperature, therefore having a high volatility and easily 

evaporate or sublimate. VOCs have long been found to be associated with adverse non-

acute health effects such as SBS and sensory irritation (Andersson, Bakke et al., 1997). 

Some VOCs are linked to severe health consequences like myeloid leukemia and 

lymphocytic leukemia by benzene exposure (Snyder, 2012), and various kind of cancers 
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by prolong exposure to formaldehyde (Swenberg, Moeller et al., 2013). Since there may 

be numerous kinds of VOCs in an indoor environment, for simpler and faster reporting 

purpose, the term total volatile organic compounds (TVOCs) is generally adopted to 

describe the indoor exposure to total concentration of VOCs and to estimate the health 

risk. TVOCs has been considered as a surrogate indicator for emissions from building 

materials, ventilation efficiency and high polluting activities (Molhave, Clausen et al., 

1997).  

 

Besides the surrogate indicators described above, many parameters can pose threats to 

occupant’s health if the level is high. For example, the concentration of airborne bacteria 

in air is often measured to evaluate the infection risk. In developing countries which coal 

and biomass fuels are still used as energy sources, CO poisoning is one of the major 

causes of death from poor IAQ (Smith, Mehta et al., 2004). Ozone (O3) generated by 

indoor sources like printers and air cleaners is another concerned air pollutant as long-

term exposure to high O3 level can cause permanent damage to lung and various kinds of 

respiratory dysfunctions (Sheffield, Zhou et al., 2015). Rn exposure is also a subject of 

matter for IAQ as it can be found in soil and building materials. Though susceptibility to 

Rn varies from person to person, it has been confirmed that prolonged low and moderate 

Rn exposure increase the risk of lung cancer (Zeeb, 2009). In addition to air pollutants 

generated from indoor sources, pollutants originated from outdoor sources, for example 

nitrogen oxides (NOx) and sulphur dioxide (SO2), are sometimes monitored as they can 

infiltrate into enclosed environments through windows, door openings and ventilation 

systems. 
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2.2.3. Visual comfort 

 

Visual comfort can be defined as “a subjective condition of visual well-being induced by 

the visual environment” (BSI, 2018). Some parameters have been found to influence 

visual comfort, including glare, solar radiation, daylight, illuminance level, access to 

exterior view, uniformity of lighting, abundance of daylight hours, direct sunlight hours, 

controllability, perceived spaciousness and quality of light in rendering colors (Carlucci, 

Causone et al., 2015).  

 

Lightings in dwellings are typically divided into: i) ambient lighting, which describes the 

light required for basic activities; ii) task lighting, the visual requirement for specific 

functional task; and iii) accent lighting, which provides visual relief and attraction 

(Holton, 2012). In residential settings, as occupants have more control over the lighting 

than in office (Galasiu and Veitch, 2006), they may accept a visual environment with 

illuminance level lower than comfort threshold. Lai, Mui et al. (2009) also found that 

among the four major IEQ factors, visual environment was less considered, and that 

overall acceptance would not increase further when horizontal illuminance reached 50lux. 

It can be interpreted that as long as the ambient lighting is sufficiently provided in an 

apartment, residents can easily adjust the lighting level with additional task light for 

specific task, making visual comfort trifling among other IEQ factors in residential 

settings. 

 

On the contrary, due to the functionality of premises, amount of lighting in workplace is 

crucial to occupant’s well-being and productivity. Adequate amount and high quality of 
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light give higher visual satisfaction and comfort, therefore enhance job performance (Lee 

and Guerin, 2010). In addition to the lighting condition, as office workers have limited 

control over the visual environment, visual comfort may also be affected by perceived 

views and environmental conditions. Positive psychological responses were associated to 

perceived window views and the presence of indoor plants in office. Given no view and 

plant, occupants showed the highest degree of tension and anxiety (Chang and Chen, 

2005). Aries, Veitch et al. (2010) also identified window view type, view quality and 

social density to have significant influences on physical and psychological discomfort. 

These discomforts can subsequently affect worker’s sleep quality at home.  

 

Given so many subjective parameters that can influence visual comfort, to simplify the 

assessment procedure, the evaluation of visual performance of an environment is often 

achieved by an index focuses on only one of the above-mentioned factors that can be 

objectively assessed, for example glare or the amount of light (Carlucci, Causone et al., 

2015). 
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2.2.4. Aural comfort 

 

Aural comfort can be described as the provision of an acoustic environment that protects 

occupants from noise and annoyance, and is acceptable for the purpose of the premises. 

Prolonged exposure to high-frequency noise, both continuous and impulse noise, can 

induce hearing impairment (Lie, Skogstad et al., 2016), which may be seen in industrial 

environments. In residential and office environment, unwanted noise can be harmful to 

psychological health, resulting in nervousness, loss of focus and reduced productivity 

(Mujan, Anđelković et al., 2019). With growing trend of open-plan office and studio flats, 

it is important to maintain an aural environment that occupants find comfortable and 

desired for various activities. 

 

Building design plays an important role in maintaining an acceptable acoustic 

environment. Noise is transmitted from outdoor, for example traffic, into the indoor 

environments through building façade and windows. To reduce such transmission, 

building structure and building envelope shall be designed to enhance sound reduction 

property to minimize outdoor noise (Al Horr, Arif et al., 2016). Indoor noise can be 

originated from building system and activities like conversation and use of office 

equipment. These inconsistent annoyances greatly lower worker’s concentration and 

work performance (Banbury and Berry, 2005). Internal noise can be minimized with the 

use of partition, sound insulation and better layout. Despite the impacts of noise on 

productivity, research into aural comfort in relation to IEQ is lacking. Evaluation of 

acoustic environment is usually attained by simply measuring the noise level to ensure an 

acceptable noise level as required by building regulations and occupational standards.  
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2.2.5. Interconnections and interdependency between factors 

 

While the above-mentioned factors seemingly describe IEQ from entirely different 

aspects, research has shown a complex relationship between individual factors which 

produces combined effects on overall IEQ satisfaction. Interaction between factors can 

be defined as “the combined effect on building occupant of two or more environmental 

factors or their aspects” (ASHRAE, 2016, p. 3). These effects can be from actual physical 

influences of different aspects on each other, or from the alteration of occupant’s 

psychological perception on environmental conditions with the given stimulation. 

Interaction among IEQ factors can be classified as independent, additive, synergistic, 

antagonistic, prophylactic, cumulative and unintended. Table 2.2 shows the explanation 

of each interaction that can be found in indoor environments. As the combined effects 

vary among different types of occupants, and the type and intensity of interactions differ 

among various circumstances, it is recognized as one of the limits to existing building 

standards and guidelines (ASHRAE, 2016). 

 

Table 2.2 Explanation of interconnections between indoor environmental factors 

(ASHRAE, 2016) 

Interaction Explanation 

Independent Effects of environmental factors are independent of each other 

Additive 
Each factor has its own effect, with joint effect being the sum of 

effects of all factors  

Synergistic 
Each factor has its own effect, with joint effect being greater than the 

sum of effects of all factors 

Antagonistic 
Each factor has its own effect, with joint effect being less than the sum 

of effects of all factors, or even cancel out the effects of each other 

Prophylactic 
Factors are maintained as preventive measures against adverse impacts 

on health and productivity 

Cumulative Effects of factor are cumulative over prolonged exposure 

Unintended 
Factors are maintained with the intention to improve one of the aspects 

of IEQ, but in turn producing negative effects on another 
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Interconnection between factors can be classified into different orders. First-order 

interaction describes the interactions among factors of same environmental aspect, for 

example the combined effects of indoor temperature and clothing insulation in free-

running buildings, resulting in different thermal responses to perceived thermal 

environment as described by Fanger’s PMV/PPD model (de Dear and Brager, 1998). 

Other first-order interactions between factors have been discussed in previous sub-

chapters regarding the four principal environmental aspects. 

 

Second-order interaction concerns about the interaction between different aspects, which 

is more complex than first-order interaction. For example, significant interactions 

between visual and thermal environment has been found in literature. Chinazzo, Wienold 

et al. (2019) found that daylight substantially influenced thermal comfort and 

acceptability, but had no effects on thermal sensation and preference. They further 

confirmed that daylight could only affect thermal perception psychologically, not 

physiologically, in contrast to the conclusion drawn by te Kulve, Schellen et al. (2016) 

that light could affect thermoregulation and therefore alter thermal sensation and comfort. 

Alternatively, thermal environment also affects visual perception. te Kulve, Schlangen et 

al. (2018) investigated the interaction between perception of light and temperature and 

found a positive relationship between visual and thermal comfort, i.e. when temperature 

was perceived as comfortable, the visual conditions were also considered as more 

comfortable. Preferred correlated color temperature and ambient temperature were also 

found to be positively correlated.  
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Effects of thermal environment on perceived IAQ were also examined. A number of 

studies have found that high air temperature and humidity negatively affect IAQ 

acceptability. Fang, Wargocki et al. (1999) found from a controlled experiment that levels 

of indoor air enthalpy had significant negative effects on acceptability of perceived air 

quality. Lan, Wargocki et al. (2011) also confirmed such negative relationship between 

thermal comfort sensation and perception of air quality from field studies. 

 

Interaction between thermal and acoustic environment was also investigated. High noise 

level was found to cause a poorer thermal perception (Tiller, Wang et al., 2010). As for 

the effects of temperature on aural comfort, conflicting conclusions were made. Some 

found that perception of noise was not affected by ambient temperature (Tiller, Wang et 

al., 2010); others like Nagano, Nagano et al. (2001) found that thermal condition 

significantly affected noise sensation. Huang, Zhu et al. (2012) discovered that when 

thermal environment was satisfactory, occupants regarded a higher noise level acceptable, 

suggesting that IEQ factors could even offset each other’s effect on overall IEQ. 

 

The interaction between factors, despite that complexity, can sometimes be identified and 

factored in to minimize the discrepancies between occupant’s actual responses and model 

predictions. For instance the aforementioned disparity in thermal comfort was improved 

by the adaptive thermal comfort model developed specifically for buildings with natural 

ventilation, where adaptive measures are expected and therefore included in the 

assessment (de Dear and Brager, 1998). Others attempted to use weighting schemes, 

usually in form of linear regression model, to relate overall IEQ with individual factors 

(Wong, Mui et al., 2008, Lai, Mui et al., 2009, Cao, Ouyang et al., 2012). However, due 
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to the intricacy of interaction between IEQ factors, IEQ modellings are usually discussed 

with a limited number of four principal environmental aspects, i.e. thermal comfort, IAQ, 

aural and visual comfort (Heinzerling, Schiavon et al., 2013). 
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2.2.6. Prioritization of factors on overall IEQ 

 

A prioritization of factors (i.e. perceived importance/ ranking) on overall IEQ has been 

observed to vary among building and occupant types (Sakhare and Ralegaonkar, 2014). 

Frontczak and Wargocki (2011) reviewed the ranking of importance of factors on overall 

IEQ from various field studies based on subjective responses, discovering that in general 

thermal comfort was ranked more important than aural comfort and IAQ, with visual 

comfort being the least important. Field research arrived later also showed the same 

ranking in different types of indoor environments (Cao, Ouyang et al., 2012, Huang, Zhu 

et al., 2012). 

 

Besides a general prioritization, preferences for specific IEQ factor were observed in 

buildings with different usages. For example, a quiet acoustic environment was deemed 

more important than other aspects in learning environment (Lee, Mui et al., 2012). 

Thermal environment was less concerned than air quality and aural comfort in 

commercial buildings, but the case was reversed in residential settings (Lai and Yik, 

2009).  

 

Alternatively, even for buildings with similar usage, ranking of factors could vary among 

occupants of different demographics. In Lai and Yik (2009) mentioned above, it was 

found that aural comfort was more important than IAQ for lower income group, while 

high income people preferred better IAQ over better acoustic environment. Choi, Aziz et 

al. (2009) suggested that both genders ranked IAQ and thermal comfort the most 

important; female valued visual comfort more than aural comfort, but male concerned 
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more about aural than visual environment instead. Age, nationality, job nature, job 

satisfaction and work space also strongly affected the perception of indoor environment 

in office (Haghighat and Donnini, 1999), contradicting to findings by Erlandson, Cena et 

al. (2003) and Newsham, Brand et al. (2009), in which no significant influence of 

occupant’s characteristics on environmental satisfaction was found. 

 

Frontczak and Wargocki (2011) concluded from the review on influences of factors on 

IEQ that, despite significant difference on perceived importance was found to depend on 

a number of environmental and occupant’s characteristics, no general conclusion on 

ranking of factors could be formulated due to the inconsistency. While it is important to 

model overall IEQ satisfaction with individual factors for the purpose of improving the 

indoor environment and set up remediation strategies, it is nevertheless challenging due 

to the fact that individual impacts are not systematic.   

  



40 

 

2.3. Assessment methods and models 

 

There are many different ways to assess an indoor environment. Majority of existing 

literature investigate the indoor environment based on single-domain method – studying 

occupant’s satisfaction on one particular environmental aspect, or more than one aspect, 

separately. Research into multi-domain environmental quality, i.e. the combine effects on 

overall IEQ, is on the other hand rather limited (Schweiker, Ampatzi et al., 2020). 

 

Single- and multi-domain evaluations can be achieved by subjective and objective 

assessment methods. Subjective assessment considers building user’s feelings and 

comfort inside the premises the prime interest, regardless the actual physical 

environmental conditions they are experiencing (Heinzerling, Schiavon et al., 2013). It 

utilizes surveys to collect occupant’s responses and satisfaction towards perceived 

environment, which is deemed the simplest and most straight-forward way to evaluate 

IEQ (Nicol and Wilson, 2011). However, subjective surveys sometimes result in diverse 

or even contradicting opinions for similar physical environment. Operating buildings 

based only on occupant’s satisfaction may also create undesired energy wastage 

(Heinzerling, Schiavon et al., 2013). Difficulties in finding a representative period for 

measurement, interpreting the results and asking the appropriate questions were 

suggested to be the drawbacks for relying only on subjective assessment for IEQ 

evaluation (Nicol and Wilson, 2011).  

 

Alternatively, objective assessment methods, for instance conducting field measurements 

of physical environmental conditions without evaluating occupant’s satisfaction, can 
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avoid the problems of subjective nature of results and lack of universal judgement (Asadi, 

Mahyuddin et al., 2017). Nevertheless, time and monetary cost for field measurements 

are often expensive. Constant calibration of measurement instrument is also needed to 

ensure data quality. Judgement on representative measurement periods, locations and 

environmental parameters, and interpretation of results require experts and professionals, 

while monitoring and analysing large amount of data may not be practical (Heinzerling, 

Schiavon et al., 2013). 

 

In the following sub-chapter, different kinds of subjective and objective assessment 

methods for thermal comfort, IAQ and overall IEQ are reviewed. Thermal comfort is 

focused as it is often the most concerned and heavily investigated factor of IEQ. It also 

dominantly affects the building energy consumption. IAQ is also paid attention to as it is 

the second-most investigated topic in IEQ, and in particular as it is health-related, which 

in addition to be assessed by subjective sense, shall also be investigated objectively based 

on health standard. Subjective sensation on IAQ can ensure comfort, but more are needed 

to be done to protect the occupants from poor IAQ. The pros and cons of each method are 

discussed and the research gaps in the field are identified. The research needs for 

developing simpler, cost-effective, accurate and comprehensive assessment approaches 

for indoor environment evaluation are explicated. 
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2.3.1. Thermal comfort 

 

Thermal comfort is the most discussed IEQ aspect in the field as it has a significant impact 

on productivity and health. Energy implication of heating, ventilation, and air 

conditioning (HVAC) system for maintaining a comfortable thermal environment is also 

one of the biggest concerns for building engineers (Perez-Lombard, Ortiz et al., 2008) as 

the system accounts for about 25% of the total building energy load (OECD, 2016). 

 

Assessment methods 

Thermal comfort can be assessed subjectively and objectively. Subjective thermal 

comfort assessment involves asking the occupants a set of questions regarding the thermal 

sensation, thermal preference, thermal satisfaction and/ or thermal acceptance. It allows 

us to obtain occupant’s thermal comfort perception directly. ASHRAE (2017) details the 

subjective survey criteria that substantial response rate is required to make a 

representative sample size. Subjective thermal survey is conducted through a scale – 

thermal satisfaction with a scale from “very dissatisfied” to “very satisfied”; thermal 

acceptability with a continuous or seven-point scale from “very unacceptable” to “very 

acceptable”; and thermal sensation with ASHRAE seven-point sale of -3: Cold, -2: Cool, 

-1: Slightly cool, 0: Neutral, +1: Slightly warm, +2: Warm and +3: Hot. In practice, some 

may prefer to use direct “yes”/ “no” questions when asking about thermal acceptance and 

satisfaction. Regarding thermal sensation “-1”, “0” and “+1” as thermally acceptable, “-

3”, “-2”, “+2” and “+3” as unacceptable, is also a common practice. Thermal preferences 

for indoor temperature and air velocity are also used, especially in adaptive thermal 

comfort study such as ASHRAE RP-884 database (de Dear and Brager, 1998). Beside, to 
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identify the source of problem of thermal discomfort, additional questions may aid the 

formulation of improvement strategies. 

 

In cases which the involvement of occupant’s thermal response is not feasible (for 

example, new buildings), objective measurements of physical thermal environment can 

be done to indirectly predict occupant’s responses through pre-determined thermal 

comfort models, which are established previously from subjective-objective studies that 

relate subjective responses to objective physical environmental conditions. 

 

Prediction model 

PMV model proposed by Fanger (1970) is currently one of the most highly cited indoor 

thermal comfort models in the field. It has been the basis of building standards like 

ANSI/ASHRAE 55-1992 and ISO 7730:1994. PMV model is an empirical comfort 

equation developed based on the consideration of steady-stage heat balance between body 

and thermal environment. Given the assumption that thermal sensation is driven by only 

physiological stimulations, based on the experimental results collected from 1296 test 

subjects conducted in a controlled environmental chamber, Fanger related four indoor 

parameters: indoor air temperature (Ta), mean radiant temperature (Trad), relative 

humidity (RH) and air velocity (va), and two occupant’s criteria: metabolic rate (M) and 

clothing value (Icl), to ASHRAE seven-point thermal sensation scale. Equations 2.1–2.5 

shows the method for calculating the PMV suggested by ISO 7730.  

 

 

– (2.1) 
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– (2.2) 

  

  

 

– (2.3) 

  

  

 

– (2.4) 

  

  

 

– (2.5) 

 

While knowing the thermal sensation without understanding whether occupants are 

satisfied with the thermal condition or not does not help with improving the indoor 

environment. Therefore, Fanger further related PMV with PPD, which quantitatively 

predicts the percentage of people being dissatisfied with the thermal condition. It is 

assumed that people with thermal sensation “-3”, “-2”, “+2” and “+3” are thermally 

dissatisfied and thermal dissatisfaction is symmetric. PPD can be expressed by Equation 

2.6. Figure 2.1 exhibits the graphical presentation of the correlation between PMV and 

PPD. In practice, comfort zones for acceptable range of the four environmental 

parameters given by the two occupant’s criteria are usually adopted to determine 

environmental conditions that meet with 80% thermal acceptability (based on 10% whole 

body thermal discomfort given by PMV/PPD model and 10% local body thermal 
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discomfort), with approximately 5% of population being thermally dissatisfied even at 

PMV = 0. 

 

 

– (2.6) 

 

 
 

Figure 2.1 Correlation between predicted mean vote (PMV) and predicted percentage 

dissatisfied (PPD) 

 

Discrepancies between PMV/PPD model predictions and thermal sensation and 

dissatisfaction from field surveys have been found in many studies covering various kinds 

of indoor environments. Humphreys (1978) investigated the effect of prevailing outdoor 

climate on Ta, discovering that thermal sensation and Tn strongly depended on outdoor 

mean temperature. For free-running buildings (building without heating or cooling), 94% 

of Tn was associated with the variation of outdoor mean temperature, suggesting that 

outdoor climate could strongly influence occupant’s thermal comfort especially in 

building with natural ventilation. 
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Brager and de Dear (1998) also challenged the universal applicability of PMV/PPD model 

as it mostly ignored the contextual influences that could alter thermal experience. Given 

that, in addition to conventional belief of physical and physiological interactions between 

occupants and the thermal environments, social, cultural and personal (i.e. adaptation) 

factors have been found to affect thermal comfort, especially in buildings with natural 

ventilation, they proposed an adaptive hypothesis to include occupant adaptive behaviour 

into thermal comfort prediction (de Dear and Brager, 1998). This belief acknowledges 

the involvement of occupants in thermal interaction with the environment through change 

in behaviour (e.g. change in position and clothing insulation), expectation and adaption, 

and eventually changes the thermal preferences. Three thermal adaptations were 

categorized: i) behavioural adjustment, which describes personal, technological and 

cultural actions taken by a person in order to govern body’s thermal balance; ii) 

physiological adaptation, which refers to alteration to the physiological responses upon 

prolonged exposure to certain thermal condition, either genetically adapts to the climate 

which takes generations, or acclimatizes to the thermal conditions over months and years 

of exposure; and iii) psychological adaptation, which includes the change in perception 

and reaction to thermal condition due to past experience and expectations (de Dear and 

Brager, 1998). 

 

Assuming that thermal adaptation could be obtained from field data, de Dear and Brager 

(1998) developed the adaptive thermal comfort model based on RP-884 database, which 

contained 21,000 standardized thermal comfort field data from a wide range of places 

covering a spectrum of climatic zones. It was found that for buildings with centralized 

HVAC system, predictions by PMV/PPD model and adaptive model were very close, 
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suggesting that some of the adaptation behaviour like clothing and air velocity adjustment 

were well accounted for in PMV/PPD model. On the other hand, in buildings with natural 

ventilation, predictions by PMV/PPD model and adaptive model varied differently from 

each other (slope of adaptive model was twice the one in PMV/PPD). It was proposed 

that psychological adaptation, for instant expectation and habituation, was a probable 

explanation for such discrepancies. Adaptive thermal comfort model has been 

implemented in ANSI/ASHRAE 55-2004 and 55-2010 for natural ventilated buildings 

and EN 15251 for mixed-mode buildings under natural ventilation.     

 

van Hoof (2008) summarized in his review the discrepancies between actual field data 

and predictions by the PMV/PPD model, and suggested that prediction can be improved 

by validating the PMV/PPD model, better specifying the model parameters and 

incorporating more influencing parameters like outdoor thermal condition.  

 

Recognizing the inadequacy of the PMV/PPD model, some adjustments and 

modifications have been proposed to improve the accuracy, reliability and application 

range of the model, for example using PMVe to include the thermal expectancy of 

occupants, which aimed at expanding the PMV model to non-air-conditioned buildings 

in warm climate (Fanger and Toftum, 2002). In addition to lowering the metabolic rates 

of activities in warm environments to adjust to human body mechanism, an expectancy 

factor, e, was introduced to account for the expectation of occupants due to adaption to 

warm climate. e was believed to depend on the duration of the warm weather over the 

year. PMVnew was also introduced to reduce bias against contributing parameters and to 

extend the application range of the PMV model (Humphreys and Nicol, 2002). Yao, Li 
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et al. (2009) developed a theoretical adaptive thermal comfort model based on PMV and 

the “Black Box” theory. The model takes cultural, climatic and social factors into account 

and incorporates an adaptive coefficient into the PMV model. Adaptive behaviour can 

thus be related to the experimental results by Fanger, and the differences between 

measured and predicted mean votes shall be minimized. Langevin, Wen et al. (2013) used 

Bayesian parameter estimation approach to extend the PMV model to field use. They 

developed Bayesian thermal sensation, acceptability and preference distributions to 

formulate a new relationship between PMV and PPD. Wong, Mui et al. (2014) presented 

a Bayesian approach to refine Fanger’s model with the use of field survey data. The 

approach allows systematic updates on our current beliefs about thermal dissatisfaction. 

Based on the best information available (i.e. existing models and field survey data), it 

evaluates the statistical importance of field data with a chosen target sample size and an 

acceptable error value. By integrating the PMV model with the adaptive approach, 

Marino, Nucara et al. (2015) developed a subjective-adaptive thermal comfort model for 

predicting thermal sensation. This approach, which uses a multi-agent system to survey 

user thermal preferences and adapts itself to user choices, is able to achieve personalized 

thermal comfort controls.  

 

Alternatively, thermal comfort can be assessed individually. In fact, the number of 

personal comfort models is on the rise. Personal thermal comfort model is a data-driven 

approach to assess thermal comfort by predicting individual’s responses instead of 

averaging the thermal comfort of a group of occupants. Individual’s thermal comfort data 

are directly fed back to the system with the help of IoT, and with the additional personal 

data, machine learning algorithms, such as logistic regression techniques, support vector 
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regression and Bayesian network are employed to train a personal comfort model 

(Hamzah, Gou et al., 2018). With six different machine learning algorithms 

(Classification Tree, Gaussian Process Classification, Gradient Boosting Method, Kernel 

Support Vector Machine, Random Forest, Regularized Logistic Regression), Kim, 

Schiavon et al. (2018) showed that personal comfort models gave much better prediction 

performance than conventional PMV and adaptive thermal comfort models. Although a 

personal comfort model has its data-driven flexibility, its machine learning approach 

requires an expensive feedback and sensing system for identifying actual individual’s 

preferences. Besides, it is not feasible for buildings in design stages. 

 

Moreover, human body thermal sensation and comfort can also be modelled by 

mimicking human thermal regulation by simulating convective heat transfer between 

body segments and tissues using thermal manikin. Unlike the PMV/PPD model and 

adaptive thermal comfort model that can only predict thermal comfort under steady-state 

thermal conditions, thermoregulation models are able to simulate transient and spatially 

non-uniform environmental conditions, therefore identifying local thermal discomfort 

(Zhang, Huizenga et al., 2005). Famous ones include Stolwijk’s 25-node model of 

thermoregulation (Stolwijk and Hardy, 1966) and the Berkeley Comfort Model 

(Huizenga, Hui et al., 2001). Nevertheless, further discussions regarding personal comfort 

models and thermoregulation models are not included as these are out of the scope of this 

study. 

 

While considerable research has been devoted to developing or improving thermal 

sensation models, far too little effort has been directed towards assessing thermal 



50 

 

acceptance. Despite the fact that new Bayesian approaches have been developed for the 

improvement of PMV/PPD representation, e.g. Langevin, Wen et al. (2013) Wong, Mui 

et al. (2014), the conventional PMV/PPD model is still the primary tool for assessing the 

thermal acceptance of occupants in most thermal comfort research studies. 

 

In spite of everything, attempts to improve PMV/PPD model seem to fail in generalizing 

the original model in terms of types of environments and occupants. At the moment, 

PMV/PPD model remains the most generally accepted one due to its simplicity and 

objectivity, which is especially important and useful for the determination of thermally 

comfort environment during building design stage. The original PMV/PPD model is still 

the number one method for thermal comfort evaluation, and is highly recognized and 

widely adopted in building research and as design reference. 
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2.3.2. Indoor air quality 

 

Compared to other aspects of IEQ, subjective sensation of IAQ can evaluate comfort, but 

may not be a good indicator of the health consequences posed by poor IAQ. Pollutants 

like CO and Rn are colourless, odourless and tasteless, therefore cannot be detected by 

human senses. Some indoor air pollutants, for instance some VOCs and PM, can certainly 

make you feel uncomfortable if the levels are high enough to be detected by human senses 

(WHO, 2013), but prolonged exposure to low levels of these pollutants can still pose 

negative health effects. WHO (2010) also detailed a number of air pollutants commonly 

found in indoor environments that are known to be health hazards. Many of them, 

especially in the VOCs category, can produce carcinogenic effects (cancer-causing 

effects) on human upon long-term exposure to low concentration through inhalation of 

particles. Since human sometimes is not a reliable “detector” of poor IAQ, and 

accumulative effects of long-term exposure to indoor air pollutants are relatively common, 

assessing IAQ is often done in objective ways rather than subjectively.   

 

Assessment methods 

Subjective perceived IAQ assessment involves questionnaires asking occupants to rank 

the acceptability of IAQ using scales. Objective measurement of representative IAQ 

pollutants, mainly CO2, may also be conducted at the same time to identify the 

associations between satisfaction to IAQ and pollutant levels. Subjective IAQ assessment 

is usually done to evaluate comfort instead of health hazard, and it is an essential step to 

identify the acceptability to overall IEQ when IAQ is considered.  
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Objective IAQ assessment is conducted through field survey of IAQ parameters, ranging 

from as simple as one parameter, usually CO2, to more than 10 commonly seen air 

pollutants, include but not limited to CO, HCHO, lead (Pb), O3, Rn, and TVOC. It is 

necessary for building professionals to preliminarily assess the environment in order to 

identify the representative periods and sampling locations based on educated judgement. 

It is also essential to ensure the accuracy and sensitivity of measurement instruments by 

laboratory calibrations (Heinzerling, Schiavon et al., 2013). 

 

Due to the detrimental health impacts of poor IAQ, many places and international bodies 

have developed standardized IAQ assessment protocols and IAQ standards in order to 

ensure the provision of up-to-standard IAQ. For instance, China published the “Indoor 

Air Quality Standard (GB/T18883-2002)” in 2002, which included four physical 

parameters: Ta, RH, va, and fresh air rate, 13 chemical parameters: SO2, NO2, CO, CO2, 

Ammonia (NH3), O3, HCHO, benzene (C6H6), toluene (C7H8), ethylbenzene (C8H10), 

PM10, TVOC and benzo(a)pyrene), one biological IAQ parameter: airborne bacteria count 

(ABC) and one radioactive parameter: Rn . The government of South Korea has put into 

effective the “Indoor Air Quality Control in Public Use Facilities, etc. Act” since 2004, 

which is applicable to most kinds of public indoor places, with two levels of control: 

mandatory standard covering PM10, CO, CO2, HCHO and ABC, and recommended 

standard covering TVOC, NO2, Rn, asbestos and O3. Penalty is given to any violation of 

the mandatory standard. 

 

Some countries, instead of issuing laws and regulations to control IAQ, they set up goals, 

guidelines and code of practices for controlling IAQ. For example, Finland published 
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“Indoor Air Guidelines” in 1997 requiring responsible parties to take remediation 

measures against health hazards caused by poor IAQ. In Germany, IAQ-related problems 

are managed by building codes. Air pollutants include C7H8, styrene (C8H8), 

dichloromethane (CH2Cl2), pentachlorophenol (PCP), CO and NO2 are monitored. 

Exposure limits shall be of no concern of any adverse health effects, with Guideline value 

I suggests pollutant value that does not cause adverse health effects under life-long 

exposure; and Guideline value II gives a concentration that health threats are anticipated 

especially for vulnerable people like children and elderlies (Seifert, Englert et al., 1999) 

 

As an internationally recognized public health agency, World Health Organization (WHO) 

also published the “WHO Guidelines for Indoor Air Quality: Selected Pollutants” to 

provide guidance on reducing health impacts caused by prolonged exposure to indoor air 

pollutants. This guideline serves as a scientific basis for decision making in 

environmental and public health management, as well as individual facility design and 

management. The guideline covers a number of hazardous chemicals such as C6H6, CO, 

HCHO, etc. The indoor sources, toxicities, exposure pathways, health impacts and 

methods for controlling the levels are detailed in the publication (WHO, 2010). 

 

Hong Kong has started to combat the problem of IAQ way back since 1989. The very 

first preliminary IAQ assessment conducted in 1990 in 70 air-conditioned offices and 

street-level shops revealed serious IAQ problems in Hong Kong including poor 

ventilation and elevated CO2 and VOCs levels (Liao, Baconshone et al., 1991). The 

government therefore addressed the health effects, economic impacts and necessary 

actions to tackle IAQ problems in the “Second Review of the 1989 White Paper on 
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Pollution in Hong Kong”. The “Hong Kong Interim IAQ Guidelines” was proposed in 

the next year by the Environmental Protection Department (EPD) and the “Indoor Air 

Quality Management Group” was set up in 1998 for the purpose of planning for IAQ-

related policies and management strategies to improve the overall IAQ in Hong Kong.  

 

In 2003, the “Guidance Notes for the Management of Indoor Air Quality in Offices and 

Public Places (Guidance Notes)”, a non-legally binding practical guide for building 

owners and managers to manage the IAQ of premises, was published. A voluntary “IAQ 

Certification Scheme for Offices and Public Places (the Scheme)” was also endorsed. The 

Scheme is a voluntary benchmarking system for offices and public places served by 

MVAC systems. In order to improve IAQ and promote public awareness, the Scheme put 

forward two benchmarks of IAQ objectives: Excellent Class – a high-class and 

comfortable building should have; and Good Class – an IAQ that can provide protection 

to the public at large.  

 

Unfortunately, despite the efforts by the authority, low participant rate was recorded with 

a total of 1,871 premises in mid-2020 (51.7% from non-governmental agencies, 41.5% 

from governmental organizations, 4.1% from semi-public administrative body, 2.7% 

from educational institutions), suggesting a low incentive in engaging in this certification 

process. While the Scheme aims at improving Hong Kong’s overall IAQ situation by 

recognizing good IAQ management practices, increasing IAQ complaints have been 

received over the years, as shown in Table 2.3.  
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Table 2.3 Indoor air quality (IAQ) complaints received by the government (EPD, 2012, 

EPD, 2014, EPD, 2017, EPD, 2018) 

Type of complaint 2012 2014 2017 2018 

Poor ventilation 161 110 285 284 

Too high or too low indoor temperature 182 385 467 586 

Dust problems 26 70 16 25 

Odour 134 114 48 84 

Chemicals (e.g. VOCs, HCHO, etc.) 21 14 11 15 

Fungi/ mold 17 7 13 1 

Non-specific complaint 17 6 30 55 

Total 558 706 870 1,050 

 

Drawbacks of the Scheme and reasons for low motivation for participation have been 

suggested in literatures. One of the major reasons for weak incentive is high 

implementation cost. Burnett (2005) estimated a total cost of around US$40,000 is 

required for solely certifying a typical 40-storey office building (Burnett, 2005). With 

lower certification costs being offered nowadays, resources, manpower and money 

invested into this voluntary certification process in terms of surveying, result 

interpretation, calibration and maintenance of instrument, is still high. Given no benefit 

to the business is guaranteed, the cost can be a burden to small and mid-size enterprise 

(Wong, Mui et al., 2006). It is also expensive to improve IAQ if the IAQ problems come 

from the building itself, for example high VOCs emission from building materials, high 

CO2 level due to high occupancy or low ventilation rate, etc. It has been estimated that 

increasing the air change rate (ACH) to enhance ventilation efficiency and lower CO2 

level by 200ppm can lead to 5–10% increase in energy consumption of the ventilation 

system (Burnett, 2005). 

 

Building professions also doubt the rationale behind the selection of IAQ parameters and 

the exposure limits. Some parameters like CO2 do not pose health hazards even the indoor 

concentration exceeds the exposure limit. Items like Ta, RH and va do not directly affect 
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the IAQ but rather the comfort level of occupants. Failing the Scheme does not necessarily 

imply a bad IAQ (Burnett, 2005). In response to the comments made by the practitioners, 

the objectives were later reviewed and updated in 2019 based on the latest IAQ guidelines 

by WHO. Physical parameters including Ta, RH and va were removed while mold was 

added into the 9 existing IAQ parameters. Exposure levels of CO, PM10 and Rn were, 

however, tightened, and short-term exposure levels for HCHO and NO2 were included. 

Table 2.4 exhibits the previous and updated IAQ objectives in the Scheme.  

 

Table 2.4 IAQ objectives in IAQ Certification Scheme for Offices and Public Places 

Parameter Unit 
Averaging 

time (hr) 

Old objective New Objective 

Good 

Class 

Excellent 

Class 

Good 

Class 

Excellent 

Class 

Ta  °C 8 <25.5 20–<25.5 

Removed RH % 8 <70 <40-70 

va m/s 8 <0.3 <0.2 

CO2 ppmv 8 <1,000 <800 1,000 800 

CO ppmv 8 <8.7 <1.7 6.1 1.7 

PM10 μg/m3 8 <180 <20 100 20 

NO2 μg/m3 
8 <150 <40 150 40 

1 - - 200 100 

O3 μg/m3 8 <120 <50 120 50 

HCHO μg/m3 
8 <100 <30 100 30 

0.5 - - 100 70 

TVOC μg/m3 8 <600 <200 600 200 

Rn Bq/m3 8 <200 <150 167 150 

ABC cfu/m3 8 <1,000 <500 1000 500 

Mold - - - - prescriptive checklist 

 

In addition, the Scheme is also being criticized for its lack of flexibility in measurement 

procedures. Technical difficulties and uncertainties of the whole IAQ assessment process 

have also been reported. Wong, Mui et al. (2006) pointed out that details like correction 

of survey data for alternative measurement protocols and criteria for sampling density 

determination were not specified. Lengthy sampling period, high sampling point density 

and operating measurement instruments may be a nuisance to building occupants during 
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the assessment period. Alternatively, to avoid undesired disturbance, some new offices 

opt to conduct the certification process before the tenants move in, which cannot represent 

the actual IAQ situation caused by human activities during occupancy period. 

 

A number of studies have provided alternative sampling schemes with shorter 

measurement period and simplified procedures, which were proven to be able to give 

accurate assessment results with less resources invested. Mui and Wong (2004) and Mui, 

Wong et al. (2006) evaluated the necessity of conducting 8-hr measurement on Rn and 

CO2 and proposed that intermittent measurement periods could provide the same 

measurement results at certain confidence level with 50% and 30% less time required, 

respectively. Mui, Wong et al. (2006) studied the significance of different sampling point 

density scenarios as compared with the Scheme and found that when the number of 

sampling points was reduced by 50%, the probability of getting the CO2 level at the same 

confidence level would only decrease by 10%.  

 

To minimize the efforts for measuring so many IAQ parameters, two approaches were 

proposed to assess IAQ: i) health-related approach; and ii) surrogate indicator approach. 

Health-related IAQ assessment methods target on identifying a dose-response 

relationship, also known as an exposure-response relationship, which describes the 

change in the magnitude of health effects when exposed to a stressor over a range of 

exposure levels and times. One example was for every 10µg/m3 increase in PM10, 0.69% 

increase in mortality is observed (Daniels, Dominici et al., 2000). Although a clear 

relationship between PM10 level and mortality rate was established, some other IAQ 

parameters do not cause observable health effects unless at extremely high concentrations. 
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CO2, for example, is found to be closely associated with SBS (Seppänen, Fisk et al., 1999), 

yet its effects on health are subtle and non-lethal. As extensive research and testing are 

required, it can be extremely expensive to develop a health-related IAQ assessment tool. 

 

Under such circumstance, surrogate indicator approach may be helpful to evaluate IAQ 

with less resources. Hui, Wong et al. (2006) proposed an Express Assessment Protocol 

(EAP) to evaluate IAQ problems in offices by identifying the main contributors to 

unacceptable IAQ. It was found that for Excellent Class, 96% of unacceptable IAQ could 

be identified by measuring TVOC, PM and HCHO; for Good Class, 93% could be 

screened out from the measurement of TVOC, ABC, RH, HCHO and O3. The EAP 

provides an alternative for IAQ assessment by screening out the majority of premises with 

poor IAQ without the need to conduct a full assessment. Further to that, by investigating 

the probable correlations among the 12 IAQ parameters, Wong, Mui et al. (2006) 

proposed using CO2, PM and TVOC, parameters that are independent to each other while 

having significant correlations with other parameters, as the surrogate indicators for 

evaluating IAQ in offices. CO2, PM and TVOC represent occupant load and ventilation 

rate, system filtration performance and indoor activities, and emissions from building 

materials and finishes respectively, which serve as good indictors for general IAQ of an 

environment with ventilation system.  

 

Prediction models 

Based on the aforementioned efforts for simplifying IAQ assessment, an efficient and 

cost-effective IAQ surveillance protocol was proposed by Wong, Mui et al. (2007) for 
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identifying asymptomatic IAQ problems. IAQ index, the average fractional dose to 

exposure limits of the representative pollutants, is defined in Equation 2.7. 

 

 

– (2.7) 

 

Using surrogate indicators CO2, PM10 and TVOC, and Good Class exposure limits, the 

proposed IAQ index was used to diagnose unsatisfied IAQ in air-conditioned offices (Mui, 

Hui et al., 2011). IAQ indices from 525 offices were evaluated using a 5-level screening 

test with thresholds determined by likelihood ratios (Lr) of unsatisfactory IAQ. A Lr > 1 

indicates a high-risk sample having an excessive occurrence of unsatisfactory IAQ, 

whereas a Lr < 1 identifies a low risk sample. The calculation steps of Lr are shown in 

Equations 2.8–2.9 and the levels are listed in Table 2.5.  

 

 

– (2.8) 

  

  

 

– (2.9) 

 

Table 2.5 Screening test of 525 air-conditioned office (Mui, Hui et al., 2011) 

Test result IAQ index 
Fail IAQ Pass IAQ Likelihood 

ratio Counts % Counts % 

Very negative <0.32 5 3% 93 26% 0.1 

Moderately 

negative 
0.32–0.42 24 14% 131 37 0.4 

Slightly negative 0.43–0.53 33 20% 85 24% 0.8 

Moderately 

positive 
0.54–0.64 33 20% 43 12% 1.7 

Very positive ≥0.65 72 43% 6 1.7% 25 

 Total 167 100% 358 100%  
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Given the pre-test probability (Pd) of unsatisfactory IAQ and the regional failure 

percentage of the Scheme, post-test probability (Pd') of office with unsatisfactory IAQ 

can be estimated using the IAQ screening test. Equations 2.10–2.11 show the computation 

of pre-test probability and post-test probability of unsatisfactory IAQ. 

 

 

– (2.10) 

  

  

 

– (2.11) 

 

This screening test with representative IAQ parameters provides a much simpler and cost-

effective alternative for IAQ assessment. If an environment “fails” in the screening test 

(i.e. either one of the three surrogate indictors exceeds the exposure limit), immediate 

remedies can be decided on to improve the IAQ. If not, based on the post-test probability 

given by the screening test, facility management can determine the threshold of test and 

threshold of remedy in regard to the willingness to invest manpower and resources on 

improving IAQ. Further tests, a comprehensive one, will only be needed if the screening 

test result is in between the two thresholds (Mui, Hui et al., 2011). 

 

Despite the fact that economical IAQ assessment is proposed, and tremendous efforts 

have been put onto encouraging IAQ management, IAQ situation in Hong Kong does not 

seem to be improved. Existing IAQ assessment methods are not able to identify IAQ 

problems instantaneously. Problems are only spotted if complaints are received, or if IAQ 

assessment is scheduled to be conducted, which leaves occupants prone to IAQ-related 

sicknesses and diseases. Furthermore, premises lacking IAQ management would put 

users at high risk of exposure to elevated levels of IAQ pollutants without even knowing 
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about it. A simple and economical IAQ evaluation framework for long-term IAQ 

monitoring is therefore required to quickly identify IAQ problems, recognize the possible 

sources and therefore allow the facility management/ building management system to act 

accordingly to mitigate the problems. Only in case the problem persists, a full IAQ 

assessment is needed to find out the root cause of problematic IAQ. 
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2.3.3. Overall IEQ 

 

Overall IEQ discusses about the effects of a combination of various environmental 

aspects on occupant’s satisfaction. Scope of overall IEQ can be anything that affects 

environmental quality, including physical environment and psychological perception. As 

discussed in previous sub-chapter, the intricacy and subjective nature of comfort sense 

has made it arduous to conduct a comprehensive assessment on IEQ that covers all IEQ 

influencing factors, let alone developing a mathematic model to predict IEQ acceptance 

that is universal for all environments. To simplify IEQ evaluation process, subjective 

assessments that explore occupant’s comfort and satisfaction, objective assessment 

methods that capture the physical state of IEQ, or both, are conducted to determine the 

level of IEQ based on the aspects of thermal comfort, IAQ, aural and visual comfort, the 

major physical factors that have been found to largely influence occupant’s satisfaction. 

 

Assessment methods 

Subjective IEQ assessment reflects actual occupant’s satisfaction in form of evaluation 

survey. Conducting survey is simple and cost-effective as it does not require professional 

technique. There are many different survey tools available in literature for IEQ 

assessment (Peretti and Schiavon, 2011), some significant ones are exhibited in Table 2.6. 

All of them investigate the past IEQ experience of occupants in premises, thereby taking 

into the account of adaptation and subjective perception. Some further identify occupant’s 

right-now satisfaction towards the indoor environment. One of the problems encountered 

for past experience assessment is to identify the most suitable time that is representative 

enough for surveying. It can be days, weeks, months, or even years before one’s 
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perception towards a particular environment becomes steady. Evaluating the environment 

based on an overall satisfaction for a period of time may create bias and as a result 

affecting any environmental management strategies established based on the assessment 

result. Alternatively, repeated right-now survey asking for the satisfaction of the 

environmental conditions at the exact moment of survey over the course of time can 

address the aforementioned problem (Heinzerling, Schiavon et al., 2013), however, too 

many surveys may eventually lead to survey fatigue (Porter, Whitcomb et al., 2004). 

 

Objective measurement of physical environment is required for some subjective 

assessment protocols, but the determination of IEQ for these subjective assessment 

methods are given by considering only the occupant’s opinion regardless the actual 

physical condition of the environment (Heinzerling, Schiavon et al., 2013). While survey 

captures the qualitative evaluation of an environment, without an established linkage 

between subjective evaluation and objective parameters, practitioners fail to improve the 

IEQ by adjusting the environmental parameters to standardized acceptable limits. 
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Table 2.6 Subjective IEQ surveys (Peretti and Schiavon, 2011) 

Reference Survey Mode IEQ aspects Physical measurement Survey structure 

Womble, 

Girman et al. 

(1995) 

Building 

Assessment 

Survey and 

Evaluation 

Long-term 

Physical environmental 

information and conditions, 

health and well-being, job 

details 

CO, CO2, VOCs, PM2.5, 

PM10, air temperature, 

relative humidity, fresh air 

supply 

33 questions and 

additional comments 

Nicol and 

McCartney 

(2001) 

Smart Controls 

and Thermal 

Comfort 

Long-term 

Thermal comfort, IAQ, visual 

and aural comfort, 

productivity, general comfort 

CO2, temperature, relative 

humidity, air velocity, 

illuminance, noise level, 

outdoor environmental 

parameters 

16 questions in transverse 

survey, 5 in longitudinal 

survey 

Huizenga, 

Laeser et al. 

(2002) 

CBE survey 
Long-term 

& right-now 

Layout and furnishings, 

thermal comfort, IAQ, visual 

and aural comfort, cleanliness 

and maintenance, general 

satisfaction 

 

Not required 

60 questions and more for 

custom modules 

Toftum and 

Lantner 

(2005) 

Remote 

Performance 

Measurement 

ICIEE-DTU 

Long-term 

& right-now 

Thermal comfort, IAQ, visual 

and aural comfort, health and 

productivity, personal control 

opportunity, general comfort 

and satisfaction 

Not required 

General perception of the 

environment, effects on 

occupants of intervention 

performed 

Leaman 

(2010) 

BUS occupant 

survey 
Long-term 

Thermal comfort, IAQ, 

perceived comfort, health, 

self-assess productivity, 

personal control 

Not required 

24 questions on comfort, 

10 on personal control, 17 

on occupant’s 

background, health, 

productivity and design 

Bluyssen, 

Aries et al. 

(2011) 

HOPE project Long-term 
Thermal comfort, IAQ, aural 

comfort, health 

Chemical, biological and 

physical parameters 

5 comfort questions, 7 

SBS-related questions, 12 

illness indicators 
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Objective assessment methods, on the other hand, quantitatively evaluate IEQ by 

measurement of physical parameters, which requires professionals to handle some 

expensive instruments, hence a much higher cost than subjective evaluations. The 

measurement results are compared to comfort criteria to define the category or class of 

the IEQ, which are established beforehand by experts, or developed by previous studies 

that investigate the linkage between subjective evaluations and objective parameters. 

Complex and time-consuming measurement process also limits the scale of assessment.  

 

To summarize the overall IEQ performance through measurement, standardizing the 

measurement protocols is necessary. Table 2.7 lists out some IEQ measurement protocols 

available in literature. The protocols have different measurement duration requirements, 

ranging from minutes to up to a week. Still, it captures only a snapshot of IEQ of premises 

(Heinzerling, Schiavon et al., 2013). The spatial and temporal resolutions that make up a 

representative sample size to determine the overall IEQ depend largely on the 

characteristic and dynamic of the environment. 

 

Table 2.7 Objective IEQ measurement protocols 

Reference Protocol Location IEQ aspects 

Chiang, Chou et 

al. (2001) 
POE Elderly center 

Thermal comfort, IAQ, 

lighting, and acoustics 

USEPA (2003) EPA protocol Office 
Thermal comfort, IAQ, 

lighting, and acoustics 

Hunn, Haberl et 

al. (2012) 

Performance 

Measurement 

Protocols 

Commercial 

Buildings 

Energy, water, thermal 

comfort, IAQ, lighting, 

and acoustics 

Choi, Loftness et 

al. (2012) 
POE Office 

Thermal comfort, IAQ, 

lighting, and acoustics 

ISO (2012) ISO28802:2012 
All indoor 

environment 

Thermal comfort, IAQ, 

lighting, and acoustics, 

vibration 

Turunen, Leivo et 

al. (2016) 
INSULATE project 

Multi-family 

buildings 
Thermal comfort, IAQ 
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Prediction models 

IEQ modelling looks for the deterministic causal connections between environmental 

quantities and occupant’s comfort. It is assumed that these relationships are purely 

physical which can be expressed in a mathematical equation or model (Baggs and 

Chemero, 2019, Willems, Saelens et al., 2020). Therefore, IEQ model attempts to 

correlate multiple IEQ parameters into a single index representing the overall IEQ, which 

is further related to occupant’s subjective satisfaction. These established linkages 

between subjective evaluations and objective parameters are essential especially for 

design planning and formulating mitigation strategies, when either one of the assessment 

approaches is not feasible (Catalina and Iordache, 2012). Table 2.8 summarizes some 

subjective-objective IEQ models developed previously with weightings of individual 

aspects reported. Due to the interconnections and interdependency, as well as the 

prioritization of IEQ parameters on overall IEQ discussed in the previous sub-chapter, 

weightings (relative importance) of IEQ aspects determined from subjective survey vary 

among studies. It can be concluded that the quality of subjective satisfaction data 

collected from field survey greatly influences the relative weightings of each component 

to overall IEQ. The currently established relationships between satisfactions and 

environmental conditions depend on a number of features including occupants, building 

usage, task, etc.  

 

 

  



67 

 

Table 2.8 Selected subjective-objective IEQ models with weightings reported 

Reference Physical measurement Subjective survey Location 
Sample 

size 
Statistical relationship IEQ weighting 

Mui and 

Chan (2005) 

Thermal comfort: Ta, Trad, Tg 

IAQ: CO2 

Visual: horizontal illuminance 

Aural: noise level 

Sensation vote 

and acceptability 
Office 422 

Linear regression for 

individual aspects, 

multivariate regression 

for overall IEQ 

Thermal: 0.42 

IAQ: 0.09 

Aural: 0.28 

Wong, Mui et 

al. (2008) 

Thermal comfort: To 

IAQ: CO2 

Visual: illumination level 

Aural: equivalent noise level 

Acceptability Office 293 

Linear regression for 

individual aspects, 

multivariate regression 

for overall IEQ 

Thermal: 6.09 

IAQ: 4.88 

Aural: 4.74 

Visual: 3.7 

Lai, Mui et 

al. (2009) 

Thermal comfort: Ta, Tg, RH, va 

IAQ: CO2 

Visual: horizontal illuminance 

Aural: sound pressure level 

Evaluation scale 

and acceptability 

Residential 

building 
125 

Linear regression for 

individual aspects, 

multivariate regression 

for overall IEQ 

Thermal: 22.1 

IAQ: 1.609 

Aural: 11.77 

Visual: 21.86 

Cao, Ouyang 

et al. (2012) 

Thermal comfort: PMV, PPD 

IAQ: CO2 

Visual: horizontal illuminance 

Aural: sound pressure level 

Acceptability 
School and 

office 
500 

Linear regression for 

individual aspects, 

multivariate regression 

for overall IEQ 

Thermal: 0.32 

IAQ: 0.118 

Aural: 0.224 

Visual: 0.171 

Ncube and 

Riffat (2012) 

Thermal comfort: PPD 

IAQ: CO2 

Visual: horizontal illuminance 

Aural: sound pressure level 

Evaluation scale 

and acceptability 
Office 68 

Multivariate regression 

for overall IEQ 

Thermal: 0.30 

IAQ: 0.36 

Aural: 0.18 

Visual: 0.16 



68 

 

Some researchers disapprove the subjective nature of IEQ evaluation based on correlating 

occupant’s satisfaction with field measurement data of individual aspects and overall IEQ, 

as subjective assessment by occupants can only reveal perceptible qualities or problems, 

which tends to be comfort-based and lacks health implications. Another major limitations 

is that subjective responses are highly influenced by environmental performance at the 

time of the survey, therefore the resulting weightings are building and season-specific 

(Rohde, Steen Larsen et al., 2020). Humphreys (2005) also stated the difficulty of using 

a combined index to evaluate IEQ as it depends too much on the relative importance of 

individual aspects which is task-specific, occupant-specific and time-dependent. While 

large sample size of subjective survey may be able to reduce the bias, health-related IEQ 

issues, especially for IAQ, are still likely to be underrepresented.     

 

Alternatively, some support the determination of IEQ criteria and weightings through 

expert opinions, as building experts are equipped with experience and research 

knowledge to avoid personal preferences and to decide on an agreed set of weightings 

based on potential risks and consequences (Rohde, Steen Larsen et al., 2020). Chiang and 

Lai (2002) proposed a set of physical environmental indicators covering thermal comfort, 

IAQ, acoustic, illumination and electromagnetic field to assess the IEQ of dwellings and 

offices. Based on feasibility, practicability, resource consideration as well as expertise 

consultation, the assessment criteria and the weightings of each category to the overall 

IEQ were established. Larsen, Rohde et al. (2020) also developed an IEQ-Compass to 

evaluate residential buildings based on 16 indoor parameters from thermal comfort, IAQ, 

acoustic and visual aspects. The overall IEQ is assessed by a fixed set of weightings of 

the parameters and assessment criteria determined by building professionals and experts. 
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In fact, IEQ aspect of some sustainable building certification schemes adopted such 

approach to benchmark an environment. For example, LEED evaluates the IEQ category 

of building sustainability by adopting a weighting scheme for each impact category, 

determined by volunteer experts in green building, based on its severity, scope and scale, 

reversibility, contribution of built environment and solutions addressed (USGBC, 2012).   

 

While most buildings are designed and operated according to comfort criteria 

recommended by building standards or certification schemes, it has been found that even 

if comfort requirements were met, occupants still felt unsatisfied (Burge 2004). The 

assessment classes of IEQ criteria also lack justifications and are not always aligned with 

occupant’s actual satisfaction (Heinzerling, Schiavon et al., 2013). It has been 

acknowledged by ASHRAE (2016) that “Meeting the requirements of standards for 

various aspects of indoor environments, such as air quality, thermal conditions, acoustics, 

or illumination, is not always sufficient to ensure the acceptability of the environment to 

all relevant parties.” 

 

In spite of the robustness of detailed assessment criteria and strong professional and 

academic backup for the determination of assessment basis, these weighting tools 

evaluate, from an expert point of view, the building’s potential to provide a comfortable 

and healthy indoor environment, without reflecting the actual environmental conditions 

perceived by occupants. Both occupant influences on the indoor environment as well as 

their personal preference and adaption, which have substantial impacts on perceived IEQ, 

are not considered in these assessment methods (Larsen, Rohde et al., 2020). In addition, 

these weightings treat individual aspect separately, despite research has indicated, as 
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discussed in previous sub-chapter, interaction between aspects exist in which occupants 

would balance the good one with the bad one to reach overall satisfaction (Humphreys, 

2005). Interconnections and interdependency of IEQ aspects have not been considered in 

any existing objective-criteria model. 

 

Subjective-objective approach correlates environmental parameters with occupant’s 

subjective satisfaction, which can genuinely reflect the perceived IEQ as well as establish 

the relationship between environmental parameters and satisfaction, but lacks energy, 

health implications and objectivity (Heinzerling, Schiavon et al., 2013, Rohde, Steen 

Larsen et al., 2020). On the other hand, objective-criteria approach using expert’s opinion 

models the overall IEQ by objectively relating environmental parameters with building 

IEQ performance, which appears to be impartial, standardized and professional to assess 

the IEQ capability, but neglects the influence of one of the most important IEQ factors – 

the occupants. As much as the building fulfils comfort criteria, it does not necessarily 

satisfy the building occupants.  

 

Heinzerling, Schiavon et al. (2013) emphasized in their review that as much as a 

combined overall IEQ index based on weightings of individual aspects can be beneficial 

for benchmarking and rating an environment, a loss of information may be resulted as the 

model fails to universally address all environment aspects for all indoor environments. 

Willems, Saelens et al. (2020) also agreed that considering occupant’s perception towards 

an environment as a causal, reducible relationship (i.e. a mathematical model) may be 

easier for setting up building guidelines and comfort requirements, but it may not be able 

to truly reflect the actual experience when it comes to different occupants. There is an 
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undeniable fact supported by literature that relative weightings of IEQ aspects on overall 

IEQ depend on so many factors, including physical, functional (task-related) and 

psychological (occupant-related) factors, and these linkages between subjective 

evaluations and objective parameters are likely to change with time and lived experience. 

It is apparent that the causal relationship sometimes cannot explain people’s conscious 

experience to environmental conditions that is ever-changing (Stanton, 1983). IEQ 

modelling therefore cannot fully adopt a reductive physicalism in exploring the 

relationship between environmental quantities and occupant’s satisfaction. Even though 

phenomenal characteristics of mental state, perception, feelings and emotions can be 

revealed through surveys and questionnaires with occupants, we cannot solely rely on 

field questionnaires to evaluate building IEQ performance due to its subjective nature and 

the lack of universal judgement (Asadi, Mahyuddin et al., 2017). For that reason, the best 

approach is to incorporate certain extent of subjective assessments such that the unique 

relationship between environmental parameters and occupant satisfaction are conveyed 

in IEQ model.  
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2.4. Summary 

 

IEQ is of great importance to building owners, businesses and occupants due to its effects 

on health, comfort and productivity. Comprehensive assessment methods for IEQ aspects 

and overall IEQ are therefore crucial for building designers, engineers and operators to 

evaluate building performance based on health risks, occupant’s satisfaction and comfort 

levels. This chapter reviews the impacts of IEQ, related influencing factors and methods 

and models for evaluating IEQ of premises. 

 

This review begins by introducing the impacts of IEQ on health and productivity. Health 

effects by poor IEQ include short-term SBS, long-term BRI and a number of acute health 

consequences caused by poor IAQ. Substandard IEQ can lead to absenteeism and 

presenteeism, as a result lowering productivity and increasing production cost. To 

maintain a healthy, comfort and productive environment, IEQ assessment is essential to 

identify underlying environment problems and subsequently formulate mitigation 

measures to improve the building performance. 

 

IEQ influencing factors, especially focusing on thermal comfort, IAQ, visual and aural 

comfort, are also examined and presented in this chapter. Thermal comfort, being the 

most discussed domain of IEQ, explores the environmental and occupant’s factors that 

influence the thermal experience, which is found to be seasonal, occupant- and space- 

specific. It is often evaluated with respect to thermal sensation, neutrality and 

acceptability. IAQ, as the culprit of most acute health consequences, is another aspect of 

IEQ that must pay attention on. Three IAQ parameters, namely CO2, PM and VOCs, have 
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been identified to be representative as indicators for building performance, representing 

the occupant load and ventilation efficiency, filtration performance of ventilation system 

and emission from building materials, ventilation efficiency and high polluting activities 

respectively. Visual comfort, defined as a subjective condition of visual well-being 

induced by the visual environment, is found to be influenced by a number of physical and 

subjective factors. It is also occupant-, space- and task-specific, and highly subjective 

depending on one’s preference and psychological state. To simplify assessment procedure, 

visual performance of an environment is usually objectively assessed by illuminance level. 

Aural comfort describes the quality of acoustic environment that protects occupants from 

noise and disturbance, which greatly jeopardizes productivity and work performance. As 

an acceptable acoustic environment is mainly task-based, amount of noise is maintained 

at an acceptable level suggested by building regulations and occupational standards. 

 

Interconnections and interdependency between IEQ influencing factors are examined. 

These combined effects by two or more factors can be from actual physical influences of 

different aspects on each other, or from the alteration of occupant’s psychological 

perception on environmental conditions with the given stimulations. A lot of research has 

recognized these complex interactions between various environmental parameters, 

classifying them as first-order interaction – interactions among factors of same 

environmental aspect, and second-order interaction – interactions between different 

environmental aspects. In addition, a prioritization of factors on overall IEQ has been 

observed to be occupant-, space- and task-specific, with certain degree of inconsistency. 

While it is important to model overall IEQ satisfaction with individual factors for the 
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purpose understanding and improving the IEQ, it is nevertheless challenging due to the 

fact that individual impacts are not systematic.   

 

The remaining part of this chapter is devoted to discuss the assessment methods and 

models for thermal comfort, IAQ and overall IEQ. Subjective and objective assessment 

methods are introduced. Subjective assessments involve asking the feelings, comfort and 

satisfaction of building occupants, which are the prime interests of building operators. 

Objective assessment methods, for example comparing field measurement data of 

physical environmental conditions to comfort criteria, can objectively evaluate the IEQ 

of an environmental without the concern of occupant’s state of mind. Both approaches 

have their advantages and drawbacks. Subjective survey is able to capture the qualitative 

evaluation of an environment, while objective measurement can quantitatively evaluate 

IEQ by measurement of physical parameters. Nevertheless, without an established 

linkage between satisfaction and environmental condition, practitioners fail to improve 

the IEQ by adjusting the environmental parameters to standardized acceptable limits. IEQ 

modelling is therefore the key to the ultimate goal of improving IEQ. 

 

IEQ modelling attempts to understand the deterministic causal relationships between 

environmental parameters and occupant’s comfort by expressing these relationships using 

a mathematical equation or model. Multiple IEQ parameters are combined into a single 

index representing the overall IEQ, which is further correlated to occupant’s subjective 

satisfaction. Review of existing studies found diverse range of weightings, suggesting 

that the quality of subjective satisfaction data greatly influences the relative weightings 

of each component to overall IEQ. Also, subjective assessment by occupants can only 
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reveal perceptible IEQ problems, which tends to be comfort-based and lacks health 

implications. Alternatively, some determine the weightings by expert’s opinions, which 

can avoid personal bias and provide professional judgement on weightings that are based 

on potential risks and consequences. However, these weightings fail to reflect the actual 

environmental conditions perceived by occupants, and occupant’s influences on IEQ 

satisfaction is not considered. 

 

Either way, none of these weightings, when used alone, can genuinely reflect the IEQ 

satisfaction of occupants. These linkages have been proven to depend on many factors 

including physical, functional and psychological elements, and are likely to change with 

time and lived experience. While surveys and questionnaires can reveal the mental state, 

perception, feelings and emotions of occupants, objective basis is required to ensure fair 

judgement and universality. On this account, there is a need to have an accurate and 

updated comfort model that incorporates the significance of field data to improve IEQ 

satisfaction prediction, wherefore assessing an indoor environment based on the 

distinctive thoughts and perceptions of the building occupants. 
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Chapter 3. Performance of thermal comfort models 

3.1. Introduction 

 

A lot of IEQ research focuses on thermal comfort rather than the other three aspects. It is 

probably because of the huge energy consumption of the system in providing a 

comfortable thermal environment. Thermal comfort models adopt a subjective-objective 

approach to relate physical thermal loads with thermal sensations and satisfaction 

acquired in controlled experiment or in field. One of the most popular ones is Fanger’s 

PMV/PPD model. Many existing building design guidelines and building standards use 

PMV/PPD model as the basis of assessment criteria. However, discrepancies between 

model predictions and actual thermal sensations and satisfaction from field survey have 

been observed in many studies covering various kinds of indoor environments. 

 

To recognize and understand such inadequacy, a thorough literature search is conducted 

to gather thermal comfort field response data available in open literature. These data are 

compared to predictions by PMV/PPD model to identify the disparities. Application of 

PMV/PPD model for energy saving potential is presented, and the resulting disagreement 

estimated by field responses and prediction model are determined. 

 

In additional to evaluating thermal comfort model in awakening state, which has been 

extensively researched on, sleeping thermal environment, thermal sensation, satisfaction 

and sleep quality in dormitory are also studied. Given that sleep quality is largely affected 

by physiological, psychological and external stimulations, based on physical 

measurements and comfort questionnaires, associations between sleeping thermal 
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environment and subjective comfort are identified. The main aim is to identify the effect 

of contextual factors on thermal comfort sensations which is not considered and factored 

into conventional thermal comfort models based on heat balance of human body, and to 

demonstrate the importance of having different thermal comfort requirements for 

different kind of daily activities, therefore having thermal comfort models that are 

appropriate to various settings and types of occupants. 

 

By studying the existing thermal comfort models, this chapter presents the negative 

impacts of using an inaccurate prediction model in research and practical application, 

demonstrating the importance of having accurate and updated comfort prediction models. 
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3.2. Thermal comfort field data and predictions by model 

 

A comprehensive literature search is carried out to search for and collect openly available 

thermal comfort field data. Discrepancies between actual and predicted results of thermal 

sensations (TSV and PMV) and thermal satisfactions (actual percentage dissatisfied 

(APD) and PPD) of occupants can be found in literature. The correlation between TSV 

and PMV can be expressed by Equation 3.1. 

 

 – (3.1) 

 

Research has shown that this correlation depends on the following: ventilation system 

type, thermal perception, tolerance and adaptation of occupants, occupant characteristics 

(gender and age), climatic or seasonal variation, and the state of environmental 

characteristics (i.e. steady or transient) (Cardoso, Ramos et al., 2018, Lu, Pang et al., 2018, 

Rupp, de Dear et al., 2018). Table 3.1 summarizes some on-site thermal comfort 

assessment results from 2014 to 2018. C1 and C0 shown were either acquired from the 

data reported in the study, or estimated from graph provided. The differences found 

between TSV and PMV suggest that PMV model adjustment is required for actual field 

use. 
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Table 3.1 Occupant’s TSV in various studies from 2014 to 2018 (continued on next page) 

Reference Location Building Ventilation 
Köppen–Geiger 

climate 
Season 

Sample 

size 
C1 C0 

TSV (no. of vote) 

-3 -2 -1 0 1 2 3 

Lu, Pang et 

al. (2018) 

Hainan, 

China 

Residential 

building 
FR 

Dry-winter humid 

subtropical 

Transitional 

season 
1944 0.94 -0.31 – – – – – – – 

Cheng, Fu et 

al. (2018) 

Tibet, 

China 

Stone 

dwellings 
NV Cold semi-arid Winter 327 1.37 0.98 27 41 154 95 11 0 0 

Yu, Li et al. 

(2017) 

Tibet, 

China 

Residential 

building 
NV Cold semi-arid 

Summer 609 0.69 0.38 8 26 129 351 74 17 4 

Winter 573 0.76 0.39 13 18 51 202 173 79 37 

Ning, Wang 

et al. (2016) 

Harbin, 

China 

Residential 

building 
H 

Monsoon-

influenced hot-

summer humid 

continental 

Cool 

exposure 
304 1.13 0.76 4 6 62 187 24 19 2 

Warm 

exposure 
321 0.73 0.02 0 2 28 209 40 20 22 

Yang, Nam 

et al. (2016) 
Korea 

Elderly 

centre 
NV/AC/H 

Hot-summer humid 

continental 

Cooling 114 0.32 0.15 0 0 4 68 40 2 0 

Mid-season 182 1.16 0.44 8 22 50 80 22 0 0 

Heating 102 0.84 0.15 2 26 42 20 10 2 0 

Jiao, Yu et 

al. (2017) 

Shanghai, 

China 

Elderly 

home 
FR Humid subtropical 

Winter 342 0.60 0.39 1 52 33 212 43 1 0 

Summer 330 0.37 0.04 0 0 11 188 82 46 3 

Rupp and 

Ghisi (2017) 
Brazil 

Office 

building 

AC 
Tropical savanna/ 

Humid subtropical 

Spring to 

early winter 

1236 (A) 0.51 0.15 5 48 328 713 132 10 0 

AC/NV 823 (B) 0.49 0.22 3 24 180 461 139 13 3 

AC/NV 530 (C) 1.08 0.66 0 6 115 266 106 27 10 

Thapa, 

Bansal et al. 

(2018) 

India Office AC 
Hot semi-arid/ 

Tropical savanna 
All year 444 0.96 0.27 1 33 166 165 71 8 0 

Kajtar, Nyers 

et al. (2017) 
Hungary Office AC 

Warm humid 

continental 
Winter 278 1 0.28 NA 50 106 72 31 19 NA 

Gallardo, 

Palme et al. 

(2016) 

Quito, 

Ecuador 
NV office NV Temperate oceanic Summer 441 0.32 0.07 7 12 88 246 81 7 0 

Manu, 

Shukla et al. 

(2016) 

India Office 

NV 
Hot semi-arid/ 

Tropical savanna 
All year 

2005 0.8 0.66 – – – – – – – 

NV/AC 2470 0.76 -0.49 – – – – – – – 

AC 1849 0.65 -0.53 – – – – – – – 
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Table 3.1 Occupant’s TSV in various studies from 2014 to 2018 (continued on next page) 

Reference Location Building Ventilation 
Köppen–Geiger 

climate 
Season 

Sample 

size 
C1 C0 

TSV (no. of vote) 

-3 -2 -1 0 1 2 3 

Luo, Cao et 

al. (2015) 

Shenzhen, 

China 
Office 

AC Monsoon-

influenced humid 

subtropical 

Summer 
321 0.57 0.14 3 9 16 174 102 11 6 

NV 513 0.46 0.06 21 45 17 241 183 4 2 

Hamzah, Gou 

et al. (2018) 

Makassar, 

Indonesia 

Secondary 

school 
NV Tropical monsoon Summer 1594 0.68 -1.05 0 21 317 588 493 167 8 

Fang, Zhang 

et al. (2018) 

Hong Kong, 

China 

University 

classroom 

(Chamber) 

HVAC 

Monsoon-

influenced humid 

subtropical 

Summer 946 0.67 0.38 – – – – – – – 

Liu, Jiang et 

al. (2017) 

Weinan and 

Wuwei, 

China 

Rural school NV Cold semi-arid Winter 763 0.42 -0.10 11 58 230 362 82 17 3 

Wang, Jiang 

et al. (2017) 

Shaanxi, 

China 

School H/NH 

Cold semi-arid 

All year 

345 0.45 0.1175 14 45 110 131 36 8 1 

Gansu, China Cold semi-arid  360 0.35 0.13 6 16 70 213 40 11 4 

Qinghai, 

China 

Cold semi-arid 421 0.39 -0.51 3 14 68 126 126 69 15 

Calis and 

Kuru (2017) 

Aegean, 

Greek 
Classroom HVAC 

Hot-summer 

Mediterranean 

Heating 449 0.97 0.29 0 14 36 139 139 85 36 

Cooling 345 1.29 0.03 14 24 42 62 69 55 79 

Hamzah, 

Ishak et al. 

(2016) 

Indonesia 
University 

classroom 
NV Tropical rainforest Autumn 118 0.46 0.43 0 0 19 26 50 20 3 

Cardoso, 

Ramos et al. 

(2018) 

Porto, 

Portugal 
Bus station MVS 

Warm-summer 

Mediterranean 
Summer 240 0.60 1.07 0 1 17 105 71 38 8 

Wang, Sun et 

al. (2018) 

Shandong, 

China 
Rubber factory NV 

Hot humid 

continental 
Summer 40 0.89 -1.21 0 0 2 10 16 10 2 
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Table 3.1 Occupant’s TSV in various studies from 2014 to 2018 

Reference Location Building Ventilation 
Köppen–Geiger 

climate 
Season Sample size C1 C0 

TSV (no. of vote) 

-3 -2 -1 0 1 2 3 

Sattayakorn, 

Ichinose et 

al. (2017) 

Bangkok, 

Thailand 
Hospital AC Tropical savanna Summer 

451 (Patient) 0.52 0.004 5 45 74 255 41 25 6 

146 (Staff) 1.24 -0.98 8 27 45 25 20 14 7 

331 (Visitor) 0.63 0.05 8 36 61 182 26 18 0 

Liu, Lian et 

al. (2018) 

China 

subtropical 

monsoon area 

Ship cabin AC 

Monsoon-

influenced humid 

subtropical 

Winter 

100 (Seated) 0.97 0.44 – – – – – – – 

100 (Light 

working) 
1.24 1.13 – – – – – – – 

Yang, Liu et 

al. (2015) 
Henan, China 

Cotton 

textile 

workshop 

AC 
Humid 

subtropical 
Summer 

123 

(Worker) 
0.59 0.34 0 0 0 6 42 48 27 

69 (Student) 0.91 0.76 0 0 0 0 16 29 24 

Yang, Li et 

al. (2015) 

Chongqing, 

China 

Environ-

mental 

chamber 

Controlled 

Humid 

subtropical 

climate 

All year 440 0.45 -0.1 – – – – – – – 

Hussin, 

Salleh et al. 

(2015) 

Penang, 

Malaysia 
Mosque AC 

Tropical 

rainforest 

Cooler and 

hotter 

seasons 

330 0.25 -0.39 1 5 39 108 105 69 3 

MVS–mechanical ventilation system; AC–air-conditioned; FR–Free-running; HVAC–Heating, ventilation, and air conditioning; NV–natural 

ventilation; H/NH–Heating/ no heating. 

 

Remark: '–' indicates that the TSV values are not available in the corresponding studies; *a 5-point scale was used for thermal sensation 

evaluation.
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As buildings are designed to provide an acceptable environment for the occupants, 

extreme TSV values (i.e. +/ -3, representing hot and cold) are rarely seen in field settings. 

According to Table 3.1, +/ -3 votes contributed an average of 5.08% to the total number 

of thermal votes. Depending on the analysis method adopted, such a small sample size 

(e.g. less than 5 extreme votes in some assessments) will make the regression output either 

statistically insensitive or biased. As a result, the reliability of the extrapolated PMV–

TSV regression is questionable (Wong, Mui et al., 2014). 

 

Similarly, the thermal acceptance of occupants was found different when compared to 

Fanger’s PPD model. Some field study results from 2014 to 2018 are summarized in 

Table 3.2 for the purpose of comparing the predicted and the actual dissatisfaction under 

various thermal sensation votes. A field study conducted in a tropical island region–

Hainan, China, reported that the APD at an extreme value of TSV (-3: 8.7% or +3: 40.91%) 

was much lower than the corresponding PPD (99%). In that study, there were 59.7% and 

43.5% of occupants expecting no changes in indoor temperature at TSV = -2: cool and 

TSV = -3: cold respectively (Lu, Pang et al., 2018). Another study carried out in Bangkok 

hospitals showed that while the medical staff were satisfied with thermal neutrality, 

patients and visitors preferred a warmer environment (Sattayakorn, Ichinose et al., 2017). 

In fact, many studies of thermal preferences revealed a broader thermal acceptance range 

among building occupants (Rupp and Ghisi, 2017, Sattayakorn, Ichinose et al., 2017, 

Hamzah, Gou et al., 2018, Kim and de Dear, 2018, Liu, Lian et al., 2018), which can be 

due to thermal tolerance and adaption (Mui, Tsang et al., 2019, Ghaffari Jabbari, Maleki 

et al., 2020). These findings suggested a certain degree of disagreement between field 

outcomes and PPD by Fanger’s model.
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Table 3.2 Review of actual percentage dissatisfied (APD; %) in various studies from 2014 to 2018 

Reference Location Building 
Types of 

ventilation 

Köppen–Geiger 

climate 
Season 

Total 

sample 

size, ∑n 

 TSV 

 -3 -2 -1 0 1 2 3 

Lu, Pang et al. 

(2018) 

Hainan, 

China 

Residential 

building 
FR 

Dry-winter 

humid 

subtropical 

Transitional 

season 
1944 

APD 

(%) 

8.7 2.3 2.8 2.8 19.3 23.2 40.9 

Sattayakorn, 

Ichinose et al. 

(2017) 

Bangkok, 

Thailand 
Hospital AC 

Tropical 

savanna 
Summer 

451 

(Patient) 
66.2 31.5 8.5 0 3.1 9.2 22.3 

146 

(Staff) 
91.5 62.3 26.2 7.7 11.5 23.1 38.5 

331 

(Visitor) 
71.5 34.6 8.5 0 2.3 6.2 16.2 

Kim and de 

Dear (2018) 

New South 

Wales, 

Australia 

Primary 

school 
NV/AC 

Humid 

subtropical 

climate 

Summer 

3545 85 49 16 8 17 38 65 

Secondary 

school 
1321 60 23 8 9 20 43 72 

Dias Pereira, 

Raimondo et 

al. (2014) 

Beja, 

Portugal 

Classroom 

A 
HVAC 

Hot-summer 

Mediterranean 

Spring to 

summer 

26 NA NA 17 0 0 NA NA 

Classroom 

B 
19 NA NA NA 1 0 0 NA 

Jiao, Yu et al. 

(2017) 

Shanghai, 

China 

Elderly 

home 
FR 

Humid 

subtropical 

Winter 342 100 94 79 0 7 100 NA 

Summer 330 NA NA 27 0 84 87 100 

       Min 8.7 2.3 2.8 0 0 0 16.2 

       Max 100 94 79 9 84 100 100 

       Mean 69.0 42.4 21.4 2.9 16.4 36.6 50.7 

        PMV 

        -3 -2 -1 0 1 2 3 

   Predicted percentage dissatisfied % (PPD) in Fanger’s model 99 75 25 5 25 75 99 

FR–Free-running; NV–natural ventilation; AC–air-conditioned; HVAC–Heating, ventilation, and air conditioning. 

 

Remark: ‘NA’ due to 0 sample size under the vote.
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While thermal sensation is related to thermal environmental parameters, thermal 

acceptance examines whether the thermal environment is acceptable to building 

occupants. From a practical point of view, discussing the sensation may not be useful if 

the correlation between sensation and acceptance is inconsistent most of the time. 

According to the field study results, a -3: cold, -2: cool, +2: warm or +3: hot sensation 

does not necessarily mean unacceptable thermal environments, and a 0: neutral sensation 

does not imply an acceptable thermal environment. 
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3.3. Effects and implications of performance gap in prediction models 

 

The development of thermal comfort models has not made much progress due to the 

complex relationships between physical parameters and choice-making aspects. Although 

Fanger tried hard to make his model as objective as possible, subjective psychological 

effects have increasingly been proven to exert great influences on thermal sensations and 

acceptance. The discrepancies between predicted and measured results suggest a 

performance gap in the PMV/PPD model, and that may induce research errors. 

 

A number of studies applied PMV control to improve energy performance together with 

thermal comfort. For instance, a study using PMV as the reference parameter for 

controlling ground-source heat pump system (GSHP) to maintain thermal comfort 

showed that a 20% of energy could be saved without jeopardizing thermal comfort (Fang, 

Feng et al., 2018). Another study employing PMV control rather than dry-bulb air 

temperature control reported 7.3% less annual energy consumed by gas boilers and 28.8% 

less annual electricity used for cooling (Hong, Lee et al., 2018). Yet, regardless of how 

impressive these findings appear to be, their implications would not be valid or useful if 

the model basis itself is inaccurate.  

 

According to the field survey, PMV = 0 does not necessarily give TSV = 0. In Table 3.1, 

the corresponding range of PMV to TSV = -1, 0 and +1 by Equation 3.1, and the 

corresponding PPD are illustrated in Table 3.3. It can be seen that TSV of -1 to +1 give a 

range of PMV from -3.59 to +5.64 (mean: -1.79 to +1.51), which basically cover the 

whole range of PPD (mean: 66.7% to 51.7%). If PMV is assumed to be equal to TSV, i.e. 
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as presumed in most thermal comfort studies, the PPD values for the votes TSV = -1, 0 

and +1 shall be 26.1%, 5% and 26.1% respectively, indicating a PPD difference up to 

73.9%. 

 

Table 3.3 Corresponding PMV and PPD for TSV = -1, 0 and 1 

TSV 
Transforming TSV to 

PMV by Equation 3.1 

PPD (Assume 

TSV = PMV) 

PPD (Transforming TSV to 

PMV by Equation 3.1) 

-1 
-3.59–0.24 

(Mean = -1.79) 
26.1% 

100%–6.2% 

(Mean = 66.7%) 

0 
-1.77–1.58 

(Mean = -0.14) 
5% 

65.3%–55.2% 

(Mean = 5.4%) 

1 
-0.11 5.64 

(Mean = 1.51) 
26.1% 

5.2%–100% 

(Mean = 51.7%) 

 

The use of Fanger’s model as the basis of thermal comfort research also results in 

differences between PPD and APD. Currently, maintaining a minimum value of 5% 

thermally dissatisfied persons for PMV = 0 is adopted in thermal comfort management 

practices and research related to system control and simulation. However, the field study 

outcomes in Table 3.2 revealed that occupants were actually satisfied with a wider PMV 

range when PMV = TSV. Examples include a study by Lu, Pang et al. (2018) that 

demonstrated a TSV range from -2 to 0 corresponded to ADP < 2.8%, and an assessment 

by Dias Pereira, Raimondo et al. (2014) that reported a minimum percentage dissatisfied 

when TSV ≠ 0.  

 

If the discrepancies between PMV and TSV as well as those between PMV and PPD are 

taken into consideration, the PMV/PPD model may be unfit for thermal comfort analysis. 

This can be shown using the GSHP study by Fang, Feng et al. (2018) as an example. In 

that study, a non-linear relationship between PMV = -0.05–0.4 and power consumption 

= 1.4–2.5 kW (power consumption = 1.77 kW at PMV = 0) was described. The study also 
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reported that a 20% of energy could be saved by maintaining the PMV at a level of -0.07, 

corresponding to a PPD of 5.1%. According to Table 3.4, which presents the 

corresponding TSV values at PMV = 0 and -0.07 determined from the assessment results 

in Table 3.1, however, thermal comfort (PPD < 5%) can neither be maintained at PMV = 

0 nor -0.07. On the other hand, thermal comfort can be achieved at PMV = -0.14 

(corresponding to a mean value of TSV = 0), while energy reduction can be attained at 

PMV = -0.24 (corresponding to a mean value of TSV = -0.07). The difference between 

PMV and TSV can be easily noticed. 

 

Table 3.4 Corresponding TSV and PPD for PMV = 0 and -0.07 

 Minimum Maximum Mean 

PMV = 0 
TSV -1.21 TSV 1.13 TSV 0.14 

PPD 35.7 PPD 32.0 PPD 5.4 

PMV = -0.07 
TSV -1.27 TSV 1.05 TSV 0.086 

PPD 38.8 PPD 28.1 PPD 5.2 

 

Figure 3.1 shows the power consumption for the PMV data extracted from the GSHP 

study, with the assumption of PMV = TSV. It should be noted that a linear relationship 

was assumed to simplify the calculation. Based on the field data collected from the 

literature search, the actual PMV values, which are calculated using Equation 3.1 and 

mean C1 and C0 from all studies (shown in Table 3.1), are plotted in the figure for 

comparison. The uncertainty range resulted from the difference between PMV and TSV 

was from 31.5% to 3.0%, with an average of 14.8%. This range is extremely significant 

when compared to the 20% energy savings claimed in the study. 
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Figure 3.1 TSV against power consumption (Fang, Feng et al., 2018), actual votes were 

calculated using coefficients gathered from field studies 

 

Another uncertainty can be found in the range of PMV/TSV that represents the 5% 

dissatisfied. Figure 3.2 exhibits the relationship between PMV and thermal dissatisfaction. 

It can be seen that the APD is generally lower than the PPD, resulting in a wider PMV 

range (i.e. PMV = -0.64–0.58) for maintaining thermal comfort level with less than 5% 

dissatisfied while achieving higher energy efficiency. Since the GSHP study did not 

discuss about the power consumption below PMV = -0.07, the effect of energy savings 

with a wider range of acceptable PMV values cannot be quantified when no actual energy 

data is available. Nevertheless, a wider acceptable PMV range offers greater energy 

savings potential for both heating and cooling systems.  
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Figure 3.2 PMV against thermal dissatisfaction 
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3.4. Overview of sleeping thermal environment 

 

Human spend about one-third of time sleeping, which allows recovery of body through 

various processes including replenishment of cerebral glycogen storage, cellular 

maintenance, etc. (Vyazovskiy and Delogu, 2014). It also helps remove the neurotoxins 

accumulated in the central nervous system during awake period (Xie, Kang et al., 2013). 

Sleep disruption can result in short-term health problems like headache, pain, depression 

and anxiety (Tkachenko, Olson et al., 2014). Poor sleep quality also impairs cognitive 

ability and performance (McCoy and Strecker, 2011). In long-term, sleep deprivation 

increases health risks like cardiovascular diseases (Narang, Manlhiot et al., 2012). 

Therefore, maintaining good sleep quality is important in enhancing productivity and 

health. Given that sleeping thermal environment has great effects on occupant’s sleep 

quality, evaluation of sleeping thermal environment is valuable to our understanding of 

IEQ in living environment.  

 

Relationship between thermoregulation and sleep has been identified, which is mainly 

facilitated by circadian rhythm of core temperature. Murphy and Campbell (1997) found 

that rapid decline in body core temperature enhanced sleep initiation and facilitated the 

entering of deeper stages of sleep. Kräuchi, Cajochen et al. (1999) further confirmed the 

contribution of thermoregulation on sleep onset, concluded from the observation of a 

functional linkage between vasodilation of distal skin regions and subsequent skin 

temperature increase at the extremities and the ability to fall asleep. 
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Thermal environment, besides influencing the transition from wakefulness to early stage 

of non-rapid eye movement (NREM) sleep, it often affects the quality of sleep. 

Experimental study conducted in sleep laboratory found decreases in slow wave sleep 

(SWS) and rapid eye movement (REM) sleep and increase in wakefulness under humid 

heat exposure at 35°C and 75% humidity (Okamoto-Mizuno, Mizuno et al., 1999). Hot 

and humid environment in summer also impaired sleep efficiency by increasing the 

duration of mid-night awakenings (Tsuzuki, Mori et al., 2015). On the other hand, 

Okamoto-Mizuno, Tsuzuki et al. (2009) suggested that cold exposure could affect cardiac 

autonomic responses by altering heart rate variability in stage 2 sleep and SWS, but would 

not affect sleep stage and subjective sensations, making an individual prone to adverse 

cardiac events during transition of sleep stage in winter (Viola, Simon et al., 2002). It can 

be concluded that maintaining a comfortable thermal environment is crucial to good sleep 

quality and even health. Nonetheless, most of the thermal environmental guidelines or 

standards were formulated to satisfy awaken people instead of sleeping people, despite 

that studies have shown significant difference between thermal requirements of sleeping 

people and their awaken counterparts (Lan, Tsuzuki et al., 2017, Song, Liu et al., 2020). 

 

Thermal comfort studies in sleeping environment are limited, and those related to actual 

field data collection are lacking. The majority of sleeping thermal comfort studies 

investigated thermal comfort of sleeping people under controlled thermal conditions to 

determine the effect a particular factor on thermal comfort and/or sleep quality. For 

example, Pan, Lian et al. (2012) simulated winter environments (17°C, 20°C and 23°C) 

and investigated the sleep quality of 8 young adults based on subjective and physiological 

measurements. The study found that under thermal resistance of 3.12 clo, 23°C was the 
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most satisfactory for sleeping. The sleep onset latency was also the shortest and the SWS 

was the longest at this temperature. Lan, Pan et al. (2014) studied the effects of 3 pre-set 

air temperature (23°C, 26°C and 30°C) on sleep quality and thermal comfort of sleeping 

people and found that sleep quality was sensitive to change in air temperature. Under 

clothing resistance of 1.64 clo, Tn at sleep (slightly above 26°C) was higher than that in 

awakening state (23°C), suggesting a difference in thermal sensation during sleep and 

wakefulness. On the contrary, a recent field study found that people had a lower Tn during 

sleep than when awake (Zhang, Cao et al., 2018). While these studies collected subjective 

sleep quality data, the data were only evaluated together with indoor temperature instead 

of the thermal sensations and satisfaction. 

 

To identify the thermal neutral environmental conditions for sleeping people, Lin and 

Deng (2008) developed a theoretical thermal comfort model for sleeping environment 

based on energy balance of human body and Fanger’s PMV model (Fanger, 1970). By 

introducing assumptions and modifications necessary for a sleeping person, for example 

metabolic rate, total thermal resistance by bedding system, etc., comfort equation for 

sleeping environment, hereby annotated as PMVsleep, was derived, and comfort charts for 

sleeping environment were established by solving the comfort equation. The model 

suggests that total thermal insulation of bedding system significantly influences Tn, with 

a linear relationship with slope of -0.189 clo/°C at 50% relative humidity. Lan, Zhai et al. 

(2018) later developed a two-part model, labelled as PMV2-part, for evaluating thermal 

neutrality for sleeping people by considering the thermal balance of body parts in contact 

with the bed and not separately. The model’s ability to predict Tn was validated using 

experiment results found in literature. Comparing to predictions made by PMVsleep, 



93 

 

PMV2-part gave estimations that agreed better with the experimental results with less than 

5% deviations. 

 

Sleep quality is affected by physiological, psychological and external stimulations (Chen, 

Guo et al., 2013). Subjective thermal comfort survey is therefore more realistic and 

reliable in evaluating sleeping thermal environment than objective polysomnography 

assessment by also considers the physiological adaptability and psychological satisfaction 

of the subjects (Wang, Liu et al., 2015). In order to find out the linkage between subjective 

thermal sensations, thermal satisfaction and sleep quality, and to evaluate the ability of 

the two above-mentioned models to accurately predict the thermal sensation and thermal 

neutrality of sleeping people, actual sleeping thermal comfort field data were collected 

from university students residing in dormitory in Hong Kong. Thermal environmental 

parameters and subjective thermal sensations, satisfaction and sleep quality data were 

gathered and evaluated. The associations between thermal sensation, thermal satisfaction 

and sleep quality were also analyzed.  
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3.5. Field measurement of sleeping thermal condition in dorm 

 

Field measurements were conducted in a university dormitory in Hong Kong during 

winter time from November 2018 to March 2019. To assess the thermal environment, 

indoor environmental parameters including Ta, Tg, RH, va were measured by Lutron Heat 

Index WBGT Meter (WBGT-2010SD) and TSI Air Velocity Transducer (TSI-8475) 

throughout the night with a logging interval of 1 min, started from before the subject sleep 

and ended after they woke up. Devices were placed near the head area of the subject. In 

thermal comfort study, convective and radiative heat loss from skin shall be expressed in 

terms of To and Trad, which can be computed with Equations 3.2–3.4 below, where ε and 

d are the emissivity and diameter of the globe, hc is the convective heat transfer coefficient. 

 

 
– (3.2) 

  

  

 
– (3.3) 

  

  

 

– (3.4) 

 

In addition to collecting thermal environmental data, interviewees were required to report 

their time of sleep and awakening. With reference to thermal insulation by bedding 

systems commonly used in Hong Kong (Lin and Deng, 2008), students were asked to 

select the combinations of bedding cover (i.e. blanket or quilt of various thicknesses) and 
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sleepwear (i.e. naked, half or full-slip) they adopted during sleep and the percentage 

coverage of body surface area by bedding and bed (A). Since the dorm provided the same 

type of conventional mattress for everyone, the total clothing insulation values (Icl) 

provided by bedding system and clothing can be estimated according to Lin and Deng 

(2008), and the total thermal resistance can be determined by Equation 3.5, where K is a 

unit constant of 6.45 clo W/m2°C. 

 

 – (3.5) 

 

It is noteworthy that as though other environmental factors have been found to influence 

sleep quality, for example noise (Libert, Bach et al., 1991), the purpose here is to 

investigate the effect of thermal conditions on sleep quality, therefore other factors are 

not considered. The prime interest is to evaluate the sleeping thermal environments, and 

the relationship between sleeping thermal sensation, thermal satisfaction and sleep quality. 

Students were free to select their most comfortable environmental conditions to conduct 

questionnaire. 

 

10 university students (6 males; 4 females; 18–25 years old) residing in double rooms and 

triple rooms of 9-person suites, shown in Figure 3.3, were interviewed. Comparable 

number of subjects were considered in most of the sleeping thermal comfort studies 

established previously. A repeated measurement design was adopted to allow fewer 

subjects for more efficient data collection with less variance. Students were asked to take 

part in the field measurement for more than 2 times, depending on their availabilities. All 

of them were non-smoker and non-alcoholic, and were free of chronic diseases, diagnosed 

sleeping disorders and any long-term medication. They were required to avoid intense 
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physical activities like exercising, consumption of alcohol and caffeine at least 8 hours 

prior to the test period to minimize the influence of daytime activities on sleep quality. 

 

Figure 3.3 Layout of a typical 9-person suite with details of double rooms, triple rooms, 

communal space and toilet facility 

  

Interviewees were asked to complete a questionnaire, shown in Table 3.5, immediately 

after they woke up. The questionnaire included subjective thermal sensation and 

satisfaction assessments using ASHRAE seven-point thermal sensation scale and a 

dichotomous yes/ no question respectively (ASHRAE, 2017), and subjective assessment 

of sleep quality based on Pittsburgh Sleep Quality Index (PSQI). PSQI is a self-report 

subjective measure of quality of sleep and sleep patterns by evaluating seven domains 

including quality, latency, duration, habitual sleep efficiency, disturbances, use of sleep 

medication, and daytime dysfunction over the past month (Buysse, Reynolds III et al., 

1989). To serve the purpose of this investigation, the questionnaire was modified to 

collect data about sleep quality, latency and disturbance only. Questions relating to use 

Double rooms Triple room 

Communal space Toilet 
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of sleep medication, habitual sleep efficiency and daytime dysfunction were not included 

as these items were not applicable to the research scope. Instead, subjective questionnaire 

employed by Lan, Pan et al. (2014) was considered as their study also investigated last-

night sleep quality. Questions regarding ease of awakening and sufficient sleep were 

added into the modified PSQI questionnaire. Sleep quality was therefore assessed by a 

total of 12 yes/ no questions and an overall sleep quality scale. The global PSQI score 

was calculated by adding together the score of 13 individual questions. A higher score 

suggested a better sleep quality. 

 

Table 3.5 Subjective questionnaire for thermal sensations, satisfaction and sleep quality 

Thermal sensation vote 

What was your thermal sensation during sleep? 

-3 -2 -1 0 +1 +2 +3 

Cold Cool Slightly cool Neutral Slightly warm Warm Hot 

Thermal satisfaction 

Were you satisfied with your thermal environment during sleep? 

Satisfied (1) Dissatisfied (0) 

Sleep quality 

1 
I could not get to sleep within 30 

minutes last night. 

Yes (0) No (1) 

2 
I woke up in midnight and/ or 

early morning. 

Yes (0) No (1) 

3 
I had to get up in the middle of 

night to use the bathroom. 

Yes (0) No (1) 

4 I had trouble breathing last night. Yes (0) No (1) 

5 
I coughed and/ or snored loudly 

last night. 

Yes (0) No (1) 

6 I felt too cold last night. Yes (0) No (1) 

7 I felt too hot last night. Yes (0) No (1) 

8 I had bad dreams last night. Yes (0) No (1) 

9 I had pain last night. Yes (0) No (1) 

10 
It was easy to wake up this 

morning. 

Yes (1) No (0) 

11 
I felt refreshed right after waking 

up. 

Yes (1) No (0) 

12 I had enough sleep. Yes (1) No (0) 

13 Overall sleep quality 
Very 

good (3) 

Fairly 

good (2) 

Fairly 

bad (1) 

Very 

bad (0) 
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Thermal load (L) can be expressed by Equations 3.6–3.7, where Qsk is the heat flow from 

skin, Qres is the heat flow by respiration, Ql,c and Ql,r are the convection and radiation heat 

loss from outer surface of a clothed body, Esk is the total evaporative heat loss from skin, 

Ql,sn,res and Ql,e,res are sensible and evaporative heat loss by respiration. 

 

 – (3.6) 

  

  

 – (3.7) 

 

Sensible heat loss from skin is achieved by convection and radiation through clothing, 

which can be expressed by Equation 3.8, where hc and hr are the respective heat transfer 

coefficient, Tsk is the skin temperature, Rcl is clothing thermal resistance, fcl is the clothing 

area factor. 

  

 
– (3.8) 

 

For sleeping person in a bedding system, clothing area factor and clothing thermal 

resistance cannot be determined. Instead, a total thermal resistance (Rt) consisted of the 

entire bedding system, sleepwear and surrounding air is adopted such that Equation 3.8 

is simplified (Lin and Deng, 2008): 

 

 
– (3.9) 
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To evaluate the thermal comfort sensation and satisfaction, Fanger proposed a PMV index 

with heat balance equations and experimental results collected from climate chamber 

study, shown in Equation 3.10, where M is the metabolic rate and L is the thermal load 

on the body defined by the difference between body heat production and heat loss to the 

surroundings, α is a sensitivity coefficient obtained in the controlled experiment with 

human subjects conducting activities with various metabolic rates (Fanger, 1970). 

 

 – (3.10) 

 

In Fanger’s PMV expression, a seated person is believed to have a metabolic rate of 1 

met (58.15 W/m2). For a sleeping person, metabolic rate drops to 0.7 met (40 W/m2). 

Based on the belief that the α value can be applied to activity with lower metabolic rate, 

and with the assumption of no regulatory sweating during sleep (i.e. skin wittedness (w 

= 0.06)) (Gagge, Fobelets et al., 1986), Tsk = 34.6°C, water vapor pressure in saturated 

air at Tsk (psk = 5.52 kPa), estimation of Ql,sn,res = 0.0014M(34 – Ta) and Ql,e,res = 

0.0173M(5.87 – pa) (ASHRAE, 2001), Lin and Deng (2008) developed a thermal comfort 

model for sleeping environment expressed in Equation 3.11, with pa be the water vapor 

pressure in ambient air. 

 

 

– (3.11) 

 

Lan, Zhai et al. (2018) developed a two-part model for evaluating the thermal neutrality 

for sleeping Chinese individuals. In the model, the thermal balance of body parts in 

contact with the bed and the rest are considered separately. Equation 3.7 is therefore 
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expressed with a coefficient of (1 – 𝜍), which describes the body area that are not in 

contact with the bed. 𝜍 was estimated to be 0.39 for body in supine position (Zhao, Liu et 

al., 1984, Zhao, Liu et al., 1987). Equation 3.6 is expressed as Equation 3.12 below, where 

Ql,df,sk and Ql,cod,b are the heat loss by skin diffusion and by conduction through bed, 

estimated by Equations 3.13–3.14 respectively, with λ be the heat of vaporization of water 

(2418 kJ/kg at 34°C), D the permeance coefficient of the skin (1.27×10-6 g/sm2Pa), psk,nb 

the water vapor pressure in saturated air at Tsk,nb, the mean skin temperature of body not 

in contact with bed (34.6°C), c the thermal conductivity of bed (0.048 W/m2K), psk,b the 

water vapor pressure in saturated air at Tsk,b, mean skin temperature of body in contact 

with bed (35.4°C), Tb the surface temperature of bed (assume to be equal to Ta), and t the 

thickness of bed in meter.  

 

 
– (3.12) 

  

  

  – (3.13) 

  

  

  
– (3.14) 

 

Instead of estimating the Ql,sn,res and Ql,e,res according to the ASHRAE handbook, Lan, 

Zhai et al. (2018) expressed the sensible and evaporative heat loss by respiration by 

Equations 3.15–3.16, where ṁ is the pulmonary ventilation rate of sleeping people (0.128 

g/s) (Douglas, White et al., 1982), Tex is the temperature of expired air (34°C), RHex – 

RH = 29 – 0.0049pa is the difference in humidity ratio between expired air and inspired 
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air expressed in McCutchan and Taylor (1951), AD is the body surface area of Chinese 

people estimated by Zhao, Liu et al. (1984) and Zhao, Liu et al. (1987). 

 

 
– (3.15) 

  

  

 
– (3.16) 

 

Based on the Equations 3.12–3.16, PMV predicted by 2-part model can therefore be 

expressed as: 

 

 

– (3.17) 
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3.5.1. Sleeping thermal condition 

 

A total of 38 sets of environmental data and questionnaires were collected. Since the 

survey was conducted in winter, air conditionings and fans were not used. Rooms were 

ventilated naturally with open window. Interviewees had an average of 7.8 hr (SD = 1.2) 

of sleep, which fell within the recommended sleep duration by National Sleep Foundation, 

American Academy of Sleep Medicine and Sleep Research Society in the United State. 

Measurement data taken between 30 minutes after the subject was on bed and 30 minutes 

before waking up were adopted in data analysis to ensure adaptation to thermal 

environment. Table 3.6 shows the measurement data of female and male students.  

 

Table 3.6 Measurement data of female and male students 

  Female (n = 9) Male (n = 29) p-value, 

t-test  unit Mean SD Mean SD 

Outdoor       

Temperature (Tout) °C 18.9 2.1 19.7 2.1 0.41 

Relative humidity (RHout) % 85.1 8.2 83.1 10.4 0.58 

Indoor       

Air temperature (Ta) °C 22.3 1.5 23.6 1.9 0.06 

Globe temperature (Tg) °C 22.1 1.6 23.4 1.9 0.07 

Radiant temperature (Trad) °C 22.1 1.6 23.4 1.9 0.07 

Operative temperature (To) °C 22.2 1.6 23.5 1.9 0.07 

Relative humidity (RH) % 78.2 7.1 72.1 9.8 0.06 

Air velocity (va) ms-1 0.0004 0.00026 0.00043 0.00022 0.74 

Bedding system       

Clothing value (Icl) clo 4.1 0.6 3.4 1.0 <0.05 

Coverage percentage (A) % 90.4 8.5 80.3 16.4 <0.05 

 

Figure 3.4 shows the clothing values selected by male and female students at different 

operative temperature. The sizes of the bubbles indicate the coverage percentages. There 

were well-fit trends of decreasing clothing value (R2 = 0.88) and coverage percentage (R2 
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= 0.75) with increasing operative temperature for male students. No such trends were 

observed for female students.  

 
Figure 3.4 Clothing values and coverage percentages selected by students at different 

operative temperatures 

 

Results suggested some degree of gender difference in sleeping thermal comfort. 

Although the environmental conditions experienced by students of both genders were 

statistically the same, the beddings and coverage percentages chosen by female students 

generally provided a higher total thermal resistance. As females have a 23% lower resting 

metabolic rate than males due to body mass composition, peak oxygen uptake and gender 

difference (Arciero, Goran et al., 1993), higher thermal resistance is needed to maintain 

the core body temperatures. Females are also more sensitive to cool environment, whereas 

warm environments are less tolerable to males (Pan, Lian et al., 2012). 

 

Besides having different responses towards the same perceived thermal condition due to 

physiological difference of the two genders, gender-specific psychological difference 

could also be the cause of distinct choice of bedding systems. A high coverage percentage 

may provide females with a sense of comfort, as research has linked the use of weighted 
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blanket to improved sleep quality, potentially due to the increase of serotonin, a 

neurotransmitter that lowers anxiety and produces a calming effects (Gee, Peterson et al., 

2016). Male students, on the other hand, would adjust the thermal resistance accordingly 

for a desired thermal condition for sleep onset. These findings suggested that bedding 

systems chosen by male students was mainly associated with ambient thermal conditions, 

while female students would select the preferred thermal insulation according to their 

own preferences in addition to thermal needs. 
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3.5.2. Subjective thermal sensations and thermal comfort model predictions 

 

Thermal comfort was evaluated by TSV, thermal satisfaction and the two above-

mentioned sleeping thermal comfort models. Table 3.7 shows the measurement data of 

thermally satisfied and dissatisfied groups of students. Results suggested that thermal 

satisfactions were sensitive to operative temperature. Significant differences were found 

in TSV and PMV2-part of the two groups but not PMVsleep. Both sleeping thermal comfort 

models overestimated the thermal sensations of students during sleep, surprisingly with 

negative correlations given by Equations 3.18–3.19. Figure 3.5 demonstrates the 

correlations between TSV, PMVsleep and PMV2-part; Figure 3.6 shows the relationship 

between TSV/ PMVs and selected total clothing values. 

 

 – (3.18) 

  

  

 – (3.19) 

  

Table 3.7 Thermal sensation results by satisfied and dissatisfied groups 

 Satisfied (n = 23) Dissatisfied (n = 15) p-value, 

t-test  Mean SD Mean SD 

Indoor      

Operative temperature (To) 23.9 1.7 22.2 1.7 <0.05 

Air velocity (va) 0.0004 0.00028 0.0005 0.00012 0.39 

Bedding system      

Clothing value (Icl) 3.5 1.0 3.7 0.9 0.72 

Coverage percentage (A) 82.9 14.9 82.4 16.3 0.92 

Thermal Vote      

|TSV| 0.4 0.6 1.5 0.5 <0.05 

|PMVsleep| 1.4 1.5 1.1 0.5 0.17 

|PMV2-part| 1.5 0.2 1.3 0.3 <0.05 
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Figure 3.5 Correlations between TSV and PMVs by selected sleeping thermal comfort 

models 

 

 

Figure 3.6 Correlations between TSV/ PMVs and selected total clothing values 

 

Figure 3.7 exhibits a positive correlation between TSV and operative temperature, with 

R2 = 0.73, suggesting subjective thermal sensation was sensitive to the change in ambient 
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thermal condition. In order to determine the preferred Tn for sleeping young adults, 

interviewees were divided into Group –: voted for a cool TSV (prefer warmer; n = 19) 

and Group +: voted for a warm side TSV (prefer cooler; n = 5). Figure 3.8 shows the 

percentiles ϕ of the two groups at various operative temperatures approximated by normal 

distributions. From the result, Tn for sleeping university students was determined as 

23.05°C, where the two lines intercept with each other, i.e. ϕ–|To = ϕ+|To. Alternatively, Tn 

can be computed simply by taking the average of operative temperatures which the 

interviewees had a neutral thermal sensation (i.e. TSV = 0), which was 23.81°C with 

average Icl = 3.54 clo.  

 

 
Figure 3.7 Correlation between TSV and operative temperatures 
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Figure 3.8 Neutral temperature of university students with average Icl = 3.58 clo and M 

= 0.7 met 

 

Subjective sensation results showed that existing models cannot accurately predict actual 

thermal sensations. TSV was, unexpectedly, found to be negatively correlated with the 

PMVs predicted by selected models. Figure 3.7 exhibits a strong positive correlation 

between total insulation values and PMVs, indicating that PMVs given by both prediction 

models depended largely on the total clothing values. 

 

On the other hand, TSV was negatively associated with clothing values, which seems to 

be unorthodox to thermal comfort belief, given that a positive correlation between TSV 

and operative temperature was observed and shown in Figure 3.8. The results concurred 

with studies that observed dissimilar physiology in sleeping and awakening state. 

Jennings, Reynolds III et al. (1993) suggested that thermal sensitivity is greatly reduced 

during REM compared to NREM stage and wakefulness. Sweat onset is delayed and 

sweat rate is decreased during REM, leading to a reduced heat dissipation by evaporation 

and heat tolerance (Sagot, Amoros et al., 1987). Moreover, a constant skin temperature 

was assumed in the models. Skin temperature variation has been found to play a crucial 

0

1

17 19 21 23 25 27 29

P
er

ce
n
ti

le
s

Operative temperature(°C)

Warmer (n=19)

Cooler (n=5)

Tn = 23.05°C



109 

 

role in heat dissipation for sleep onset, acting as an input signal for sleep regulation and 

maintaining SWS (van Someren, 2000). These findings indicated that conventional belief 

of thermal load is not applicable to sleeping person. Parameters in relation to heat flow 

and heat loss from body during sleep with bedding system are therefore needed to be 

identified by experiment. 

 

In addition to the difference between thermal load due to dissimilar physiology in sleeping 

and awakening state, behavioral thermoregulations during sleep cannot be explained by 

physical sleeping thermal comfort models. Clothing values of bedding systems estimated 

by immobile thermal manikin (Lin and Deng, 2008) are not able to reflect the actual 

thermal resistance since sleeping person may adjust his posture throughout the night. 

During awakening state, constant adjustment of clothing insulation can be done according 

to thermal condition to maintain a neutral thermal sensation. During sleeping state, one 

may adjust the coverage percentage of body, especially on area with higher thermal 

sensitivity, according to changing indoor temperature (Okamoto-Mizuno, Tsuzuki et al., 

2003). Sleeping individual may also change from supine position to lateral position when 

the bed climate is hot, allowing effective local cooling of back by heat dissipation in 

proximal area (Qian, Lan et al., 2017). It is therefore necessary to explore further on 

clothing insulations and behavioral adjustments during sleep in order to determine the 

sleeping thermal sensation.  

 

Besides, existing sleeping thermal comfort models may overestimate the effect of ambient 

thermal conditions on sleeping thermal sensations. Even though a positive correlation 

between operative temperature and TSV was observed, multiple studies have suggested 
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that bed microclimate has a greater effect on thermal comfort and sensations during sleep 

period than ambient thermal conditions (Song, Liu et al., 2015, Wang, Liu et al., 2015). 

Bischof, Madsen et al. (1993) illustrated from experiment that large variation in bedding 

microclimate could exist even under the same ambient conditions. Therefore, a 

comprehensive approach would be to study the bedding environment as a whole rather 

than the ambient environment. 

 

Tn given in this investigation (23.05°C or 23.81°C) agreed with the sleeping thermal 

comfort study conducted in winter by Pan, Lian et al. (2012), which suggested that at the 

given bedding system similar to this one, 23°C was the optimal condition for shortest 

sleep latency and maintaining deep sleep. However, this Tn was much higher than the 

comfort temperature (<18°C) predicted by both sleep thermal comfort models at 3.58 clo. 

The underestimated Tn by models echoed with the overestimation of thermal sensations. 

The discrepancies may be due to the assumption in the models that the sleeping thermal 

comfort requirement (i.e. α value) can be extrapolated to a lower metabolic rate of 40 

W/m2. This linear relationship between thermal load and thermal sensation may even be 

incorrect, as suggested by many research focusing on physiological responses towards 

thermal conditions, responses towards cold and hot exposure of an individual are 

asymmetrical (Okamoto-Mizuno and Mizuno, 2012). 

 

A recent experimental study of local body thermal condition for sleeping comfort 

suggested that the thermal sensation in sleeping state and waking state were different 

under the same thermal environment (Song, Liu et al., 2020). Lan, Pan et al. (2014) also 

found that under the same thermal environment, subject’s thermal sensations decreased 
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when they were asleep. The difference in thermal sensation may be explained by the 

decrease in core body temperature during sleep induced by underlying circadian rhythm 

that allows greater blood flow to the skin, thus enhancing heat loss to the environment 

(Kräuchi, Cajochen et al., 1999). In addition, local body cooling at back and head were 

found to effectively improve thermal comfort and sleep quality in hot environments (Lan, 

Qian et al., 2018). All these findings indicated that thermal sensation during sleep is 

distinct and localized. It is essential for sleeping thermal comfort model to address the 

discrepancies.  
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3.5.3. Sleep quality and thermal comfort 

 

Sleep quality of students were evaluated by a modified PSQI questionnaire consisted of 

13 questions and an aggregate global PSQI score. Questions 4–9 recorded a less than 5 

“Yes (0)” count. Majority of the interviewees had problems with sleep latency (Q1: 

31.6%), mid-sleep/ early awakenings (Q2: 52.6%), difficulty waking up (Q10: 42.1%) 

and tiredness after waking up (Q11: 36.8%). It is noteworthy that the students had an 

average of 7.8 hr of sleep during the measurement, which were deemed adequate for this 

age range. Sleep problems identified by interviewees could indicate poor sleep quality 

caused by environmental factors. Associations between individual questions with 

meaningful sample size (i.e. both Yes and No count ≥ 5) (Q1–3, 10–12) and self-assessed 

overall sleep quality (Q13) were evaluated using point-biserial correlation. Table 3.8 

exhibits the point-biserial correlation coefficient (rpb) which measures the strength of 

association, and p-value by t-test. It was concluded that self-assessed overall sleep quality 

was positivity correlated with mid-sleep/ early awakenings, refreshment and duration of 

sleep. 

 

Table 3.8 Associations between individual sleep aspects and overall sleep quality 

 Q1 Q2 Q3 Q10 Q11 Q12 

Sleep problem 
sleep 

latency 

mid-sleep/ early 

awakenings 

ease for 

waking up 
refreshment duration 

rpb 0.24 0.46 0.36 0.3 0.58 0.39 

p-value, t-test 0.14 <0.005 <0.05 0.06 <0.005 <0.05 

 

To find out the effect of thermal environment on sleep quality, data were categorized into 

groups for analysis. The first comparison was done between sleep quality data collected 

from students with neutral TSV (TSV = 0) and those without (TSV = -2/-1/+1/+2), and 
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the second was between sleep quality data collected from interviewees who were 

thermally satisfied with the environment and those who were dissatisfied. Table 3.9 

describes the data in each group. Results suggested that when people had a neutral TSV, 

they tended to be thermally satisfied (= 0) than those who voted the rest. Self-assessed 

overall sleep quality and global PSQI score were also significantly higher if they had a 

neutral TSV. It was also found that thermally satisfied group had significantly higher self-

assessed overall sleep quality and global PSQI score. Figure 3.9 shows the boxplots of 

overall sleep quality and global PSQI score of non-neutral/neutral TSV group and 

dissatisfied/satisfied groups. Associations between thermal sensation/satisfaction and 

overall sleep quality/global PSQI score were indicated by point-biserial correlation 

coefficient shown in the figure. 

 

Interestingly, students voted for a cool TSV (TSV = -2/-1) had slightly higher average 

global PSQI score and thermal satisfaction than those who voted for a warm TSV (TSV 

= +1/+2) (p-value, t-test = 0.05). Figure 3.10 exhibits the relationships between TSV, 

average global PSQI score and thermal satisfaction. 

 

Table 3.9 Thermal sensations, thermal satisfaction and sleep quality 

 TSV = 0 

(n = 14) 

TSV = -2/-1/+1/+2 

(n = 24) 
p-value, 

t-test 
 Mean SD Mean SD 

Thermal satisfaction 1 0 0.38 0.48 <0.001 

Overall sleep quality 2.43 0.49 1.71 0.54 <0.001 

Global PSQI score 13.86 1.25 10.46 1.58 <0.001 

 Satisfied 

(n = 23) 

Dissatisfied 

(n = 15) 
p-value, 

t-test 
 Mean SD Mean SD 

Overall sleep quality 2.30 0.46 1.47 0.50 <0.001 

Global PSQI score 13.09 1.47 9.6 1.25 <0.001 
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(a)  

   

(b)  

   

Figure 3.9 Overall sleep quality and global PSQI score of (a) neutral and non-neutral 

TSV groups; and (b) thermally dissatisfied and satisfied groups 

rpb 0.77 

p-value <0.001 

 

rpb 0.65 

p-value <0.001 

 

rpb 0.55 

p-value <0.001 

 

rpb 0.75 

p-value <0.001 
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Figure 3.10 Average global PSQI score and thermal satisfaction at various TSVs 

 

Many have discussed the correlation between ambient temperature and sleep quality with 

diverse results and opinions. However, discussing sleep quality only with ambient 

temperature may not be appropriate as positive effects of bed cover and quilt on cold 

exposure are often ignored. Bedding system can sustain an isolated high temperature bed 

microclimate for maintaining high level of skin blood flow and skin temperature, leading 

to better thermal sensation in cold exposure (van Someren, 2000). Because of the above-

mentioned reasons, in this investigation, association between thermal comfort and sleep 

quality was investigated instead of ambient temperature. Both thermally satisfied students 

and students with neutral thermal sensation had significantly higher self-assessed overall 

sleep quality and global PSQI score, with statistically significant positive associations 

indicated by point-biserial correlation coefficients, suggesting that sleep quality was 

largely influenced by thermal comfort.  
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Average global PSQI score and thermal satisfaction at various TSV (Figure 3.10) 

indicated that students who felt cold were less dissatisfied and had a better sleep quality 

than those who felt hot. This result revealed an interesting phenomenon that sleeping 

people have different physiological and psychological reactions towards hot and cold 

environments. In fact, mixed viewpoints towards the effects of cold and heat exposure on 

sleep quality were concluded from various studies, which can be caused by difference in 

experimental characteristics including subject’s ethnicity and climate (Buguet, 2007). 

Some research suggested that cold exposure disrupts sleep more than heat exposure for 

naked subject (Lan, Tsuzuki et al., 2017). However for subjects with bedding system, 

increased toleration to cold air and improved sleep quality were observed (Tsuzuki, Mori 

et al., 2015). A number of studies found no significant difference in sleep quality with 

temperatures ranging from 9°C to 20°C (Okamoto-Mizuno, Tsuzuki et al., 2009), 13°C 

to 23°C (Muzet, Libert et al., 1984) and 3°C to 17°C (Okamoto-Mizuno and Tsuzuki, 

2010), suggesting with adequate clothing insulation to maintain a constant bed climate, 

cold exposure does not affect sleep much. 

 

With bedding system, heat exposure may pose more disturbance to sleep than cold 

exposure (Okamoto-Mizuno and Mizuno, 2011). In heat exposure at about 35°C, 

shortened sleep duration and increased wakefulness was observed (Libert, Di Nisi et al., 

1988). It is also common to see a decrease in SWS and REM in hot sleeping environments 

(Karacan, Thornby et al., 1978). People may adopt behavioral thermoregulation to reduce 

heat stress, for example changing sleeping posture, use of air flow, etc. (Tsuzuki, 

Okamoto-Mizuno et al., 2008). However, these behavioral thermoregulations in mid-

sleep indicate wakefulness and therefore degrading the sleep quality. 
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3.6. Summary 

 

Current research gaps in thermal comfort modelling are discovered. The discrepancies 

found between the actual thermal comfort field data and PMV/PPD model predictions 

indicate a potential risk of misusing the inaccurate model for research and practical uses. 

The subsequent errors incurred by the use of incorrect thermal comfort predictions can 

lead to substantial uncertainties in energy estimations and satisfaction evaluations. 

 

In spite of the fact that the PMV/PPD model may not be able to accurately evaluate 

thermal comfort, it is still being used as the basis of most thermal comfort research, 

especially for research related to indoor environment simulation and system control.  

 

This chapter also identifies dormitory sleeping thermal conditions, sensations, 

satisfaction and sleep quality. Under the same thermal environment, females generally 

opt for a bedding system with higher total thermal resistance, which may not be for the 

purpose of maintaining body temperature, but instead for a sense of comfort and better 

sleep quality. Current thermal sensation prediction models based on heat balance of 

human body, a similar approach to Fanger’s PMV model, overestimates the thermal 

sensations and underestimates the Tn, suggesting the PMV expression is not be applicable 

to sleeping individuals due to differences in thermal sensation to thermal conditions in 

sleeping and awakening state, possibly caused by dissimilar physiology in the two states, 

behavioral thermoregulations during sleep, overestimation of the effect of ambient 

conditions on sleeping thermal sensation, asymmetrical thermal responses towards cold 

and hot exposure and localized thermal sensation during sleep. Both thermally satisfied 
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students and students with neutral thermal sensation have significantly better self-

assessed sleep quality, suggesting thermal comfort largely influences sleep quality.  

 

Sleeping thermal comfort survey demonstrates the importance of identifying and 

maintaining different thermal comfort requirements for different kinds of daily activities. 

Consistent and unified building thermal conditions and thermal comfort models may not 

be suitable for all settings.  

 

In order to reduce the uncertainties caused by inaccurate model input, minimizing the 

disagreement between actual dissatisfaction and predicted dissatisfaction is of utmost 

importance. Before a model that can truly represent thermal comfort, sensation and 

acceptance is available, the PMV/PPD representation shall at least be updated accordingly 

using field data gathered from worldwide research efforts to minimize the performance 

gap of the PMV/PPD model.  
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Chapter 4. Evaluation and improvement of IEQ modelling 

4.1. Introduction 

 

Modern people stay indoor most of the time. IEQ has become a major concern for 

sustainable development as it affects occupant’s health and well-being as discussed 

before. IEQ problems shall be addressed at design stage and throughout the lifecycle of 

the building to protect the occupants (Al horr, Arif et al., 2016). IEQ acceptance 

prediction models therefore are important and useful for building designers and facility 

management when making decisions regarding the building performance. 

 

Physical environmental parameters such as thermal environment, acoustics, air quality 

and lighting are all interrelated and associated with occupant comfort. An integrated 

subjective-objective approach is often used to address IEQ by multivariate-logistic 

regression models, which define IEQ in a 2-fold process, occupant responses towards 

individual IEQ aspects and to the overall IEQ, i.e. a double layer logistic model. 

Multivariate-logistic model for IEQ acceptance for various environments have been 

developed based on occupant’s acceptance on four environmental aspects, namely IAQ, 

thermal, aural and visual comfort. The models can be used as quantitative assessment 

criteria for similar environments where various human response factors matter (e.g. 

occupant comfort, well-being, health and productivity). 

 

To identify the discrepancies between predictions by pre-established subjective-objective 

models and actual field responses, in this chapter, IEQ responses from occupants living 

in very small residential units are investigated objectively and subjectively. Results allow 



120 

 

us to understand the effects of perception, adaption and tolerance on subjective IEQ 

responses in extreme environment, which provide insights into improving existing IEQ 

assessment models by incorporating subjective responses collected in field. 

 

A reliable IEQ model with robust predicting ability and small discrepancies between 

predicted and actual acceptance is crucial to sustainable building development (Andersen, 

Fabi et al., 2016). On top of that, model updating to minimize the difference between 

additional measured data and predictions is also highly preferred (Lam, Zhao et al., 2014). 

 

In this chapter, based on available field data in literature, an open probabilistic IEQ 

acceptance model that uses frequency distribution functions of occupant’s responses 

towards four major IEQ parameters (i.e. thermal comfort, IAQ, aural and visual comfort) 

is also proposed and developed. The aim is to provide another comfort modelling method 

for occupant’s acceptance prediction which allows simpler model updating with 

frequency distributions used, and is more robust in reflecting occupant’s psychological 

perception towards the indoor environment. The proposed model is free from assumptions 

of regressions and is flexible to a diverse range/ types of IEQ parameters as well as to the 

inclusion of new parameters. 
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4.2. Overview of very small residential units 

 

Rapid population increase and urbanization have promoted the migration from rural and 

suburban areas to urban cities, more and more small houses and high-rise multi-unit 

residential buildings will be developed in cities (Andargie, Touchie et al., 2019). It is a 

known fact that high occupancy density has the effect of magnifying the variability of 

environmental conditions, our understandings on IEQ in residential environments shall 

be enhanced and updated. As the extreme environmental conditions in a very small living 

environment are unbearable to most people, responses of those living under such 

conditions to IEQ may not follow the trends described in other studies on IEQ acceptance 

in residential environments. 

 

Hong Kong, a metropolitan city of over 7 million inhabitants, has been facing a housing 

shortage for years due to limited land supply. In recent years, as housing price kept rising, 

some very small living environments have emerged as affordable choices of 

accommodation. These spaces include temporary shelters, rooftop structures, bedspaces, 

cocklofts and subdivided units (SDUs), and are usually high in occupancy density and 

poor in hygiene (Lai, Lee et al., 2017). According to CUHK (2015), the average per capita 

living area for these environments is 4.44 m2ca-1, which is much smaller than the 

minimum living standards for USA (14 m2ca-1), Japan (19 m2ca-1), Taiwan (7 m2ca-1), 

South Korea (12 m2ca-1) and Hong Kong (6.5 m2ca-1) (CPA, 2008). It was estimated that 

there were over 199,900 residents living in approximately 90,000 small residential units 

in Hong Kong (CSD, 2016). 
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Figure 4.1 illustrates some examples of typical SDUs by government report (CSD, 2016). 

Figure 4.1(a) shows examples of SDUs partitioned from an apartment of 5 m  20 m. The 

example units are equipped with private toilets and independent cooking space in an area 

of about 7−10 m2. Figure 4.1(b) demonstrates an SDU created in the quarter on 3/F by 

newly constructed wall with a wall opening (4/F plan shows no alteration for 

comparison). The unit can be further sub-divided into smaller units by additional walls 

and openings as shown in Figure 4.1(c). 

 

 

 
Figure 4.1 Example arrangement of subdivided units (SDUs) 
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4.3. Survey of IEQ in very small residential units (SDUs) 

 

Subjective IEQ responses and on-site field measurements were collected through 

individual interviews conducted in small residential units in Hong Kong from October to 

December 2016. A total of 52 residents were interviewed: 8 living in single units, 37 in 

refurnished SDUs, 1 in a bedspace unit and 6 in rooftop houses. Resident’s Icl and M at 

the time of interview were determined using ASHRAE Standard 55 (ASHRAE, 2010). 

The single units and rooftop houses were in general bigger in size with floor area about 

18.6–37.2 m2; SDUs and bedspace were smaller with floor area of 6.0–18.6 m2. 

 

In order to make direct comparison with previously developed IEQ model for residential 

buildings (Lai, Mui et al., 2009), Ta, Trad, va, RH were measured by Lutron Heat Index 

WBGT Meter (WBGT–2009) and Lutron Hot Wire Anemometer (AM–4204HA) for 

evaluating the thermal environment using PMV, CO2 by TSI Q–Trak IAQ Monitor (TSI–

8551), horizontal illuminance level by Lutron Digital Lux Meter (LX–1108) and 

equivalent noise level by Lutron Digital Sound Level Meter (SL–4001) for determining 

the IAQ, quality of visual and aural environments respectively. Since most of the 

interviewed living spaces were extremely small and without partitioning, a 15-min 

physical measurement was carried out in each unit, which was considered to be ‘steady’ 

enough for assessing occupant’s response to perceived indoor environmental factors. This 

protocol was also adopted in previous study (Lai, Mui et al., 2009). 

 

Interviewees were invited to rate thermal sensations via a seven-point semantic 

differential thermal sensation scale (-3: Cold, -2: Cool, -1: Slightly cool, 0: Neutral, +1: 
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Slightly warm, +2: Warm, +3: Hot) (ASHRAE, 2010). In addition, they were asked to 

evaluate IAQ acceptance via a five-point scale: very good, good, neutral, bad and very 

bad. Aural comfort and visual comfort were assessed using a maximum of 100 marks. 

 

To validate the differential responses, a direct polar acceptable/ unacceptable question “Is 

the thermal environment/ indoor air quality/ aural environment/ visual environment of the 

indoor living environment perceived by you satisfactory?” was asked alongside the 

differential questions (Portney and Watkins, 2009). Validation was based on the 

consistency of the answers to the differential and polar questions. For the thermal 

environment differential scale, TSV = -3/ -2/ +2/ +3 were considered as unacceptable, 

and TSV = -1/ 0/ +1 as acceptable. For IAQ, very good, good and neutral were acceptable, 

while bad and very bad were unacceptable. If the respondent voted unacceptable for the 

differential question but voted satisfactory for the polar question, the contradictory 

response was considered as invalid. Extreme cases (e.g. an acceptable visual environment 

with a score of 0) were also considered to be invalid. Finally, they were required to 

determine the satisfaction towards the overall IEQ. 
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4.3.1. General environmental condition 

 

52 per capita apartment areas were surveyed, with size ranging from 2.3 to 16.3 m2 ca−1, 

5.7 m2 ca−1 on average. The average value was comparable to the average size of SDUs 

of 5.8 m2 ca−1 found in a former research by the government (p-value > 0.05, t-test) (CSD, 

2016), which was well below the Hong Kong average living space of 13.1 m2 ca−1 (p-

value < 0.0001, t-test) by Hong Kong Housing Authority (HKHA, 2016). Most of the 

apartments were equipped with window-type air-conditioner, but 85% of them were not 

operating during the interview. Ambient weather condition was recorded with an average 

outdoor Ta of 26.9°C (SD = 2.2) and RH of 71.3% (SD = 13.5). 

 

Table 4.1 summarizes the number of votes on acceptance towards the overall IEQ and the 

four environmental aspects. Votes made in the previous study are shown alongside for 

comparison (Lai, Mui et al., 2009). Only slightly more than half (62%) of the respondents 

were satisfied with the overall IEQ in their homes, given that over 95% of residents in 

average residential buildings showed satisfaction. Regarding the four environmental 

aspects, satisfaction votes were much lower in small units than average houses. A 

significantly different voting pattern was observed (p-value < 0.0001, Chi-square test). 

 

 Table 4.1 Votes on IEQ acceptance 

  Overall IEQ Thermal IAQ Visual Aural 

 vote 0 1 0 1 0 1 0 1 0 1 

Very small residential units 20 32 25 27 28 24 18 34 20 32 

Average residential buildings 9 166 13 112 7 118 10 115 12 113 
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Table 4.2 presents the measurement results of physical parameters in average residential 

buildings (Lai, Mui et al., 2009) and very small residential units. Small variations over 

the 15-min measurement period suggested a ‘steady’ environment for investigation. PMV 

index proposed by Fanger (1970) was determined using environmental parameters – Ta, 

Trad, va, RH, and two occupant parameters – Icl and M. Significant differences between 

small unit residents being unsatisfied and satisfied with overall IEQ were observed in a 

number of thermal parameters, including PMV, Ta, Trad and To (p-value < 0.05, t-test), 

indicating the residents were sensitive to thermal environment.  

 

As it can be seen that no significant differences were observed in all temperatures (i.e. Ta, 

Trad and To) and the average horizontal illuminance levels, the thermal and visual 

environments of both living environments were comparable. Although there were 

significantly higher PMV in small units possibly due to higher M and thus lower Icl to 

achieve thermal comfort, the differences in PMV between voting groups of the two 

environments were insignificant. 

 

Some very small units were found to have no or only very small openable windows, 

therefore they were poorly natural-ventilated. As a result of higher occupancy density and 

poor ventilation, the average CO2 (1,046ppm) and average va (0.2ms−1) recorded in very 

small units were significantly higher and lower than those reported in average residential 

units (675ppm and 0.37ms−1 respectively). In contrast, the average equivalent noise level 

in small unit was significantly lower than the average houses.  
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Table 4.2 Measurement results of indoor environmental parameters for average 

residential buildings (Lai, Mui et al., 2009) and very small residential units 

Parameter 

Average 

residential 

buildings 

Very small 

residential units 

p-value, 

t-test 

Per capital area (m2) 13.1  5.7 (3.4) <0.0001 

Predicted mean vote (PMV) 

Unsatisfied 

 Satisfied 

0.27 (0.88)  

 0.65 (0.95) 

 0.24 (0.86) 

0.56 (0.82)** 

0.94 (0.43) 

0.32 (0.92) 

<0.05 

 0.43 

 0.65 

Air temperature Ta (°C) 

Unsatisfied 

Satisfied 

27.3 (2.2)  

 28.1 (2.3) 

 27.3 (2.2) 

27.4 (2.2)** 

28.3 (1.2) 

26.9 (2.5) 

0.81 

 0.86 

 0.43 

Radiant temperature Trad (°C) 

Unsatisfied 

Satisfied 

27.5 (2.0)  

 28.1 (2.4) 

 27.4 (1.9) 

27.3 (1.8)** 

28.2 (1.2) 

26.8 (2.0) 

0.63 

 0.94 

 0.12 

Air velocity va (ms-1) 

Unsatisfied 

Satisfied 

0.37 (0.2)  

 0.49 (0.3) 

 0.36 (0.2) 

0.2 (0.19)  

0.18 (0.2) 

   0.21 (0.2) 

<0.05 

 <0.05 

 <0.05 

Operative temperature To (x1) (°C) 

Unsatisfied 

Satisfied 

27.4 (2.0)  

 28.1 (2.4) 

 27.3 (2.0) 

27.3 (2.0)** 

28.2 (1.2) 

26.9 (2.2) 

0.93 

 0.91 

 0.25 

Relative humidity RH (%)  

 Unsatisfied 

 Satisfied 

83.9 (10.5)  

 84.1 (10.3) 

 83.9 (10.4) 

73.5 (12.3)  

76.1 (10.3) 

    71.8 (13.2) 

<0.05 

   0.09 

 <0.05 

Metabolic rate M (Met)  

 Unsatisfied 

 Satisfied 

1.06 (0.11)  

 1.11 (0.13) 

 1.05 (0.10) 

1.13 (0.10)  

1.15 (0.09) 

    1.12 (0.10) 

<0.05 

   0.45 

 <0.05 

Clothing value Icl (clo)   

 Unsatisfied 

 Satisfied 

0.48 (0.11)  

 0.48 (0.11) 

 0.48 (0.11) 

0.40 (0.11)  

0.39 (0.10) 

    0.41 (0.12) 

<0.05 

 <0.05 

 <0.05 

Carbon dioxide (x2) (ppm)  

 Unsatisfied 

 Satisfied 

675 (328)  

 497 (345) 

 689 (327) 

1046 (500)  

1240 (609) 

 925 (369) 

<0.05 

 <0.05 

 <0.05 

Horizontal illuminance level (x3) (lux) 

 Unsatisfied 

 Satisfied 

187 (273)  

 307 (435) 

 178 (252) 

191 (127)  

156 (112) 

    213 (131) 

0.88 

 0.36 

 0.29 

Equivalent noise level (x4) (dBA) 

 Unsatisfied 

 Satisfied 

67.3 (6.2)  

 70.6 (7.9) 

 67.1 (6.0) 

62.6 (4.8)  

62.4 (5.0) 

   62.8 (4.7) 

<0.05 

 <0.05 

 <0.05 

Remark: Standard deviation in brackets; t-test between satisfied and unsatisfied groups 

of residents in very small residential units for each indoor environmental parameter, 

where **–p-value ≤ 0.05.  
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4.3.2. Acceptance of thermal, IAQ, visual and aural environments 

 

18 voted for neutral (0), 8 voted for slightly warm (+1) and 24 voted for hot (+3), with no 

votes for cold side (-3–-1) and warm (2). Respondents living in small unit demonstrated 

a similar thermal sensation pattern to those in average houses – skewed towards the warm 

side. The TSV against PMV is given by Equation 4.1 (R = 0.72, p-value < 0.05, t-test). 

 

 – (4.1) 

 

Both living environments reported a narrower thermal acceptability range (slopes of 2.2 

and 2.79 respectively) than the Fanger’s PMV model. Besides, the occupants of small 

units preferred a slightly cool environment as a thermal neutral setting, i.e. PMV = -0.12 

at TSV = 0 (PMV = -0.15 in the average houses). This outcome suggested that small unit 

occupants were more sensitive to heat and tended to be dissatisfied with a hot 

environment, despite the environmental conditions were in fact comparable to the average 

living environments. 

 

Figure 4.2 graphed the correlation between PMV and thermal acceptance. Thermal 

acceptance in warm environments was skewed to the cool side, indicating a preference 

for slightly cool environment. Given a hot environment (i.e. PMV ≥ 2), there was still 

some degree of acceptance as compared to zero acceptance beyond PMV = 1.5 in average 

houses, suggesting that occupants of small units, although were more sensitive to warmth, 

they have already developed some level of tolerance to the hot environment. 
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Figure 4.2 Acceptance of PMV in living environments 

 

Figure 4.3(a) illustrates thermal acceptance (δ1) as a function of To. Greater sensitivity to 

variation of To than the average houses were observed. The acceptance was only 0.09 for 

To = 32C, which was much lower than the value of 0.74 for average residential buildings. 

Figures 4.3(b)−4.3(d) exhibit the acceptance for CO2 (2), horizontal illuminance level 

(3) and equivalent noise level (4). Since occupant’s responses specific to each of these 

independent factors were collected, it was assumed that occupant’s acceptance of one 

aspect was solely dependent on the surrogate parameter of that aspect. In general, higher 

level of illuminance, lower levels of CO2 and equivalent noise were preferred. Acceptance 

variabilities for these three aspects were very small over the ranges of 2 = 0.53−0.22 for 

CO2 of 800−1800ppm, 3 = 0.62−0.70 for horizontal illuminance levels of 10−500lux, 

and 4 = 0.66−0.54 for equivalent noise levels of 50−80dBA. The very flat curves in the 

figures reflected that small unit occupants were more concerned about the thermal aspect 

and less emphasized on the other three aspects. Table 4.3 summarizes the regression 

constants given by Equation 4.2.  

 

 

– (4.2) 
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Figure 4.3 Acceptance of operative temperature, CO2 level, horizontal illuminance level 

and equivalent noise level in living environments 

 

Table 4.3 Coefficients for logistic regression equations of acceptance 

i Acceptance variable C0,i C1,i C2,i C3,i C4,i 

0 IEQ 0 -0.0062 0.1710 -0.0140 0.5711 0.2695 

1 Operative temperature 1 14.3210 -0.5181 − − − 

2 CO2 level 2 -0.0014 1.2544 − − − 

3 Horizontal illuminance level 3 0.0007 0.5001 − − − 

4 Equivalent noise level 4 -0.0171 1.5466 − − − 
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4.3.3. Overall indoor environmental quality acceptance 

 

Table 4.4 exhibits the overall IEQ acceptance of occupants living in the two environments 

under different environmental cases j. A total of j = 24, i.e. 16 cases of combinations of 

contributors i for i = 1,...,4 with binary notation for the acceptance of individual IEQ 

aspects (i.e. 0 for ‘unsatisfied’ and 1 for ‘satisfied’) are presented. The variations of 

acceptance of environmental aspects i were given by Equation 4.3. Cases with zero 

samples in both studies were excluded from this calculation. 

 

Table 4.4 Overall IEQ acceptance 

Case j 

Contributors Very small residential units Average residential building 

1 2 3 4 
Overall IEQ 

acceptance (0,j) 

Sample size 

(nj) 

Overall IEQ 

acceptance 

(0,avg,j) 

Sample size 

(nj,avg) 

1 0 0 0 0 0.167 6 0 1 

2 0 0 0 1 0.2 5 − 0 

3 0 0 1 0 0.333 3 0 1 

4 0 0 1 1 0.875 8 0.5 2 

5 0 1 0 0 0 1 − 0 

6 0 1 0 1 − 0 0 1 

7 0 1 1 0 0 1 0 2 

8 0 1 1 1 1 1 0.833 6 

9 1 0 0 0 − 0 0 1 

10 1 0 0 1 0 2 − 0 

11 1 0 1 0 1 2 − 0 

12 1 0 1 1 1 2 1 2 

13 1 1 0 0 0 3 − 0 

14 1 1 0 1 1 1 1 7 

15 1 1 1 0 0.75 4 0.857 7 

16 1 1 1 1 1 13 1 95 

Total      52  125 

 

 

– (4.3) 
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Using i to indicate the expected acceptance change between the votes 0 and 1 for each 

environmental aspect, the results are shown in Figure 4.4. i identifies the changes in 

overall IEQ acceptance when the vote for each environmental aspect changes from 

unaccepted to accepted, given that the acceptances towards other aspects remain 

unchanged. It can identify the difference in the effect of environmental aspects on overall 

IEQ acceptance by the two groups of occupants. Equation 4.3 gives 1 = 0.22, 2 = 

0.14, 3 = 0.43 and 4 = 0.47 for occupants from small units, compared to 1 = 0.62, 

2 = 0.11, 3 = 0.28 and 4 = 0.49 for residents of average houses. Insignificant 

differences in i between the two environments were found (p-value > 0.05, t-test), 

especially for the IAQ and aural aspects (p-value > 0.9, t-test). It is noteworthy that there 

might be a slight difference in the thermal aspect (p-value = 0.2, t-test).  

 

 
 

Figure 4.4 Expected acceptance change of environmental aspects 

 

The adaptation to reality of small unit’s occupants was also reflected in the environmental 

cases. Figure 4.5 shows the overall IEQ acceptance for all cases j when 0 = 0.1 

(unweighted) and 0,w = 0.04 (weighted by sample size nj), in which 0 and 0,w are 

quantified by Equation 4.4. Weighting can adjust the statistical significance of the results. 

Cases with zero sample are excluded from the computation. 

0

0.5

1

 i=1           2              3             4 




i p>0.9 

p>0.9 

p=0.2 

p=0.6 
Very small residential unites 

 

Average residential buildings 



133 

 

 
– (4.4) 

 

    
 

 

Figure 4.5 Overall IEQ acceptance 
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< 0.05, t-test), gives a narrow predicted acceptance ranging from 0.47 to 0.75 for i[0, 

1], which reflects not only the hidden occupant’s responses (no significant overall trend) 

against individual environmental parameters for CO2, horizontal illuminance and 

equivalent noise levels but also the occupant adaptation to the reality of a hot 

environment.  

 

    

    

    
        PMV         x2 (ppm)       x3 (lux)    x4 (dBA) 

 

 

Figure 4.6 Increase in environmental acceptance over example ranges of parameters 
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To examine the dependence and sensitivity of the predicted overall IEQ acceptance on 

the variations of the IEQ aspects, example values x2 = 800 ppm and 1800 ppm, x3 = 10 

lux and 100 lux, and x4 = 50 dBA and 80 dBA were selected to present an observable 

range of indoor environmental conditions, with reference to the IEQ acceptance study in 

average residential buildings in Hong Kong (Lai, Mui et al., 2009). Same examples were 

demonstrated in previous study, therefore using these nominal conditions in this study 

allows simple and direct comparison. Figure 4.7 shows the dependency of IEQ acceptance 

given by two fixed contributors. As expected, the overall IEQ acceptance predicted for 

small units is very insensitive to the four IEQ parameters as compared with the average 

residential buildings, shown by narrow gap between the lines of different conditions. The 

changes in IEQ acceptance over the To range (20−32C) were not significant (0  0.051), 

where changes of 0 0.5 were reported for the average residential ones, which differs by 

10-fold. 
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Figure 4.7 Predicted occupant’s acceptance of IEQ at various example environmental 

conditions 
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4.4. Overview of IEQ logistic regression models 

 

Given the intricacy of IEQ factors, responses and acceptance, existing multivariate 

logistic regression models for IEQ acceptance prediction focus on only four major IEQ 

aspects, namely thermal comfort, IAQ, visual comfort and aural comfort were proposed 

(Wong, Mui et al., 2008, Lai, Mui et al., 2009, Lee, Mui et al., 2012). In addition, an 

indexing approach for IEQ assessment was proposed to correlate a set of independent 

parameters (including climate, building shape and window/wall noise attenuation) with 

the four major IEQ aspects (Catalina and Iordache, 2012). A Dwelling Environmental 

Quality Index was developed to reflect the indoor quality based on the air temperature, 

relative humidity and CO2 level (Laskari, Karatasou et al., 2017). 

 

Despite large database was used to develop the existing IEQ multivariate logistic 

regression models, which shall be statistical comprehensive enough to represent most 

indoor environments, in the previous sub-chapter, it was discovered that regression 

models are not promising to describe less favourable indoor environments with poor 

environmental conditions. It was reported that changing the environmental conditions do 

not significantly affect the IEQ acceptance when the perception of an indoor space is 

already adapted by occupants. Psychological effects also influence occupant’s IEQ 

acceptance of an environment. It seems that the predicted acceptance to IEQ parameters 

is also influenced by the selection of logistic regression. Discrepancies between predicted 

IEQ and the actual results of a building performance model were reported of policy 

significance and the selection of regression model had significant influences on the 

assessment results (Majcen, Itard et al., 2013). Another study reported huge differences 
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among predictions of seven thermal sensation models, suggesting the consequences of 

model selection in environmental prediction practice (Koelblen, Psikuta et al., 2017). 

 

Furthermore, a recent study suggested additional IEQ parameters, such as privacy, 

cleaning and maintenance, vibration and movement, and technology could influence 

occupant’s perception on indoor environment quality (Bae, Asojo et al., 2017). With more 

contributing parameters being suggested to model IEQ, developing a flexible model 

framework open to more parameters and their contributions to IEQ with latest available 

data is therefore essential (Lam, Zhao et al., 2014). 

  

The robustness of IEQ acceptance prediction models is crucial to sustainable building 

development. The earlier proposed IEQ models for air-conditioned offices, classrooms 

and residential buildings (Wong, Mui et al., 2008, Lai, Mui et al., 2009, Lee, Mui et al., 

2012) showed limited flexibility to align with the call for the inclusion of additional IEQ 

parameters. Collective occupant responses expressed by multivariate logistic regressions 

were not promising. Indeed, the proposed regressions are yet to be confirmed for other 

similar environments with deviated conditions (Mui, Tsang et al., 2019). 

 

The following sub-chapter first describes the method for developing the open 

probabilistic acceptance model and evaluates its prediction performance by comparing 

with existing IEQ logistic regression models with data available in open literature (Wong, 

Mui et al., 2008, Lai, Mui et al., 2009, Lee, Mui et al., 2012). The characteristics of the 

two models and future development of IEQ modelling are then discussed. 
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4.5. Development of IEQ acceptance model 

 

Existing IEQ logistic regression model is not promising to represent occupant’s responses 

and acceptances especially in less favourable environments. A novel open IEQ 

acceptance model is proposed here based on frequency distribution functions of 

occupant’s responses towards IEQ parameters. It shall be flexible to various IEQ 

parameters and allow easy model updating. 

 

The overall acceptance of an indoor environment is defined by a number of acceptances 

i of the respective environmental parameters xi, as shown in Equation 4.5. 

 

 – (4.5) 

 

A total of j = 1, 2, 3,…, i2−1, i2 environmental conditions can be formed as a result. The 

occurrence of these conditions j is given by Equation 4.6, while the acceptance ρj with 

respect to each environmental condition can be expressed by Equation 4.7. The overall 

IEQ acceptance δ0 is given by Equation 4.8. 

 

 

– (4.6) 

  

  

 – (4.7) 
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– (4.8) 

 

The acceptance of an environmental parameter x in the range x[a, b] can be from 

acceptance (=1) to unacceptance (=0) and vice visa. Hence, the acceptance function  

of an environmental parameter is expressed in Equation 4.9. 

 

 

– (4.9) 

 

x̃ is the probability density function of normalized occupant votes for the environmental 

acceptance  as expressed in the Equations 4.10–4.11, where  = 1 indicates there are no 

dominant votes for acceptance or unacceptance, i.e. s = u at x = xsu 

 

 
– (4.10) 

  

  

 – (4.11) 

 

Percentage votes for acceptance s and unacceptance u with sample sizes ns and nu are 

given by the Equations 4.12–4.13, where ys and yu are the cumulative frequency 

distributions for the mass density functions of parameters x̃s and x̃u respectively. x̃s and x̃u, 

which are the collective occupant responses to the environment, can be obtained from 

field survey studies. 
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– (4.12) 

  

  

 
– (4.13) 

 

Occupant responses to four indoor environmental aspects, namely thermal comfort, IAQ, 

noise level and illumination level, in air-conditioned offices, residential buildings and 

university classrooms were reviewed (Mui and Wong, 2006, Mui and Wong, 2007, Wong, 

Mui et al., 2008, Lai, Mui et al., 2009, Lee, Mui et al., 2012). Table 4.5 summarizes the 

response data under two groups (satisfaction and dissatisfaction) in terms of four 

(surrogate) parameters: operative temperature x1, CO2 level x2, equivalent noise level x3 

and illumination level x4. The probability density functions of x̃s and x̃u, are approximated 

by Equation 4.14, where  and  are the mean and standard deviation respectively. 

 

 – (4.14) 

 

Generally, the sample size of the dissatisfaction group was around 5−15% of that of the 

satisfaction group (a typical result from surveys for any built environments designed to 

suit the majority). However, for the CO2 levels in classrooms and offices, the sample sizes 

of the dissatisfaction groups increased to 20−40%. It was noted that classroom and office 

occupants usually could not adjust the quantity of fresh air supply, which might be the 

reason for higher dissatisfaction rate. 

  

It was also noted that although relatively large deviations were found within the response 

data, the average values between satisfaction and dissatisfaction groups in the survey 
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studies were similar, e.g. the illumination level in classrooms (p = 0.8, t-test) and the CO2 

level in residential buildings (p = 0.7, t-test). For the equivalent noise level in classrooms, 

the means were equal between the two groups (p-value > 0.95, t-test). There was one case 

in which the standard deviation was larger than the mean (i.e. the illumination level in 

residential buildings).  

 

Table 4.5 IEQ parameters of various indoor environments 

Parameters 
Satisfaction Dissatisfaction 

s s ns u u nu 

Residential (n = 125) 

Operative temperature (x1) (C) 27.3 2.0 113 28.8 1.9 12 

CO2 level (x2) (ppm) 678 327 118 629 370 7 

Equivalent noise level (x3) (dBA) 66.8 5.8 113 72.5 7.7 12 

Illumination level (x4) (lux) 179 281 116 74.5 85.5 9 

Classroom (n = 312) 

Operative temperature (x1) (C) 22.2 1.5 301 22.8 1.9 25 

CO2 level (x2) (ppm) 1014 278 247 1190 356 79 

Equivalent noise level (x3) (dBA) 61.4 9.4 291 61.4 4.0 33 

Illumination level (x4) (lux) 369 115 294 363 124.9 29 

Office (n = 293) 

Operative temperature (x1) (C) 21.1 1.3 264 21.4 1.2 29 

CO2 level (x2) (ppm) 935 320 208 1147 268 85 

Equivalent noise level (x3) (dBA) 55.3 3.4 242 58.7 4.2 51 

Illumination level (x4) (lux) 674 277 246 560 384 47 

 

Table 4.6 summarizes the occupant acceptances δ0 under 16 environmental conditions in 

residential buildings, classrooms and offices regarding the four environmental parameters 

x1 to x4. Predicted acceptances made by the existing IEQ equations (i.e. the existing IEQ 

logistic regression model) from previous studies are presented for comparison (Wong, 

Mui et al., 2008, Lai, Mui et al., 2009, Lee, Mui et al., 2012). It can be seen that the 

predictions made were good for offices but not so for residential buildings and classrooms. 

It should be noted that small sample sizes (n ≤ 5) were reported in 6, 12 and 11 (out of 

16) environmental conditions for residential buildings, classrooms and offices 
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respectively. Data in Tables 4.5 and 4.6 were adopted to evaluate the input parameters of 

the IEQ model proposed. 

 

Table 4.6 IEQ acceptance from various indoor environments 

Case 
Acceptance of 

parameter 

Residential 

(n=125) 

Classroom 

(n=312) 

Office 

(n=293) 
Residential Classroom Office 

j 1 2 3 4 Survey ρj,n Predicted j,p 

1 0 0 0 0 0* 0.6* ** 0 0.15 0 

2 0 0 0 1 0* 0.29 0 0 0.35 0 

3 0 0 1 0 ** 0* 0* 0 0.57 0 

4 0 0 1 1 0.5* 0.57 0 0.50 0.80 0 

5 0 1 0 0 ** ** 0* 0 0.32 0 

6 0 1 0 1 0* 0.67* 0* 0 0.58 0 

7 0 1 1 0 0* 0.75* 0 0 0.78 0 

8 0 1 1 1 0.833 0.94 0.15 0.83 0.91 0.15 

9 1 0 0 0 0* 0* 0* 0 0.37 0 

10 1 0 0 1 ** 0.67* 0.2 0.55 0.63 0 

11 1 0 1 0 ** 0.4* 0 1 0.81 0.02 

12 1 0 1 1 1* 1 0.38 1 0.93 0.38 

13 1 1 0 0 ** 0.6* 0* 0 0.61 0.02 

14 1 1 0 1 0.857 0.57* 0.41 0.86 0.82 0.41 

15 1 1 1 0 1 0.83* 0.67 1 0.92 0.67 

16 1 1 1 1 1 0.95 0.99 1 0.97 0.99 

Remark: Sample size: * 5, **0.  
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4.5.1. Acceptance of environmental parameters 

 

Figure 4.8 plots the voting percentages for acceptance s and unacceptance u of the four 

parameters x1 to x4 in residential buildings, classrooms and offices. To range is 19−32C, 

CO2 level range is 400−2000ppm, equivalent noise level range is 50−85dBA and 

illumination level range is 10−1500lux. Responses to the operative temperature and 

equivalent noise level are sensitive to different premises categories and they are clearly 

distinguished in Figures (a) and (c). As illustrated in Figure (b), responses to the CO2 

level are overlapping among the three premises categories. Figure (d) shows that the 

illumination level in classrooms is usually around 500lux, while the range of illumination 

levels is wider in residential buildings and offices. 

 

  

  

  

Figure 4.8 Percentage votes for acceptance (i = 1) and unacceptance (i = 0) with (a) 

operative temperature; (b) CO2 levels; (c) equivalent noise levels; and (d) illumination 
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Determined by s and u, the probability density functions of normalized votes x̃ for x1–

x4 are shown in Figure 4.9(i). Results show significant mean differences of x̃ between 

functions (p  0.01, t-test), except for CO2 levels (Figure 4.9(b)) and illumination levels 

between residential buildings and classrooms (p-value > 0.01, t-test). Figures 4.9(ii)−(iv) 

suggest that reasonable normal approximations can be made with x̃ ~ x(,).  

 

Parametric distributions, presented in Table 4.7, were adopted as the model parameters 

x1 to x4. The goodness of fit was examined using the cumulative frequency distributions 

 for x̃ and x(,) shown in Figures 4.10(i) and 4.10(ii) respectively. The maximum 

absolute errors M, determined by Equation 4.15, were 0.01−0.08. 

  

 
– (4.15) 
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 All environments  Residential  Classroom  Office 
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Figure 4.9(i) Probability density functions of normalized votes x̃ approximated with x(,); (ii)–(iv) Reasonable normal approximations 

made with x̃~x(,); for (a) operative temperature; (b) CO2 levels; (c) equivalent noise levels; and (d) illumination
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Figures 4.10(i) and 4.10(ii) present zero acceptances at/ beyond the measurement 

boundaries of dissatisfaction as no occupant responses were previously recorded in 

typical built environments under extreme environmental conditions. These acceptances 

can be interpreted as the environmental acceptances from both the occupants and the 

building designers. Occupant acceptance predictions for environment parameters  made 

in the previous studies are shown in Figure 4.10(iii) for comparison (Wong, Mui et al., 

2008, Lai, Mui et al., 2009, Lee, Mui et al., 2012) 

 

In Figure 4.10(a)(iii), the thermal comfort acceptance calculated using Fanger’s PMV is 

plotted against the operative temperature. A line of case maximum values is shown to 

indicate the thermal acceptance through clothing adjustment. At 31.4C, the maximum 

indoor operative temperature recorded, the minimum predicted acceptance was 0.54. 

Similar results were observed for IAQ and aural environment. At the recorded maximum 

CO2 levels of 1627ppm and 1883ppm, the predicted acceptance values for classrooms 

and offices were 0.54 and 0.51 respectively; for the entire measurement range of CO2 

levels up to 1499ppm in residential buildings, the predicted acceptance value was 1. At 

the maximum equivalent noise levels of 78dBA, 67dBA and 68dBA, the predicted 

acceptance values for residential buildings, classrooms and offices were 0.61, 0.88 and 

0.62 respectively. Regarding the visual environment, at the measured minimum 

illumination level of 189lux, the minimum predicted acceptance for offices was 0.51; and 

for the entire illumination range recorded in residential buildings and classrooms, the 

predicted acceptance values were 1 and 0.90−0.92 respectively. However, a rapid (almost 

a step) change in acceptance from 1 to 0 was found at around 10lux in residential 

buildings.
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Figure 4.10(i) Cumulative frequency distributions  for x̃; (ii) Cumulative frequency distributions  for x(,); (iii) Predicted occupant 

acceptance ; for (a) operative temperature; (b) CO2 levels; (c) equivalent noise levels; and (d) illumination
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Within the measurement range, the proposed model would result in zero acceptances at/ 

beyond the boundaries, while prediction from previous studies most of the time would 

give an acceptance ≠ 0 at the measurement boundaries. The acceptance results from 

proposed model are distinguished from those obtained from the earlier studies (Wong, 

Mui et al., 2008, Lai, Mui et al., 2009, Lee, Mui et al., 2012). It can be explained with 

reason that the built environmental conditions were constrained by some design norms, 

the predicted acceptance was comparatively higher in the measurement parameter range 

than in the observable parameter range. As the collective results from a field survey are 

not only directly from the respondents but also indirectly from those who have contributed 

to the environmental settings (i.e. building designers and operators), the fundamental 

settings of a field survey should be taken as constraints for occupant responses. Therefore, 

when logistic regression model was used in extreme environment as demonstrated 

previously, occupant’s responses did not follow the trend described in model developed 

using average environmental condition, as the measurement parameter range this time 

was beyond the boundary in normal environments. 

 

Moreover, acceptance of environmental parameters is model dependent. In a multivariate 

logistic regression model, the higher prediction may be interpreted as a bias towards the 

acceptable environment, whereas in a frequency distribution model, the higher prediction 

may be interpreted as a bias towards the comfortable environment. 
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4.5.2. Acceptance of indoor environment 

 

IEQ acceptances j under environmental conditions j for residential buildings, classrooms 

and offices are shown above in Table 4.6. For those conditions without any survey data, 

predictions from the previous studies were adopted, demonstrated in Table 4.7. 

 

Table 4.7 Model parameters 

  Residential Classroom Office 

Parameter Symbol       

Operative temperature (C) x1 28.1 1.76 24.2 0.91 22.7 0.86 

CO2 level (ppm) x2 1135 212 1219 179 1168 144 

Equivalent noise level (dBA) x3 75.0 3.3 65.0 2.0 58.9 1.8 

Illumination level (lux) x4 538 202 499 79 855 253 

Probability of environmental 

acceptance j 

 

1 0 0.60 0** 

2 0 0.29 0 

3 0** 0.57 0 

4 0.5 0.57 0 

5 0** 0.32** 0 

6 0 0.67 0 

7 0 0.75 0 

8 0.83 0.94 0.15 

9 0 0.37 0 

10 0.55** 0.67 0.2 

11 1** 0.40 0 

12 1 1 0.38 

13 0** 0.60 0 

14 0.86 0.57 0.41 

15 1 0.83 0.67 

16 1 0.95 0.99 

j–acceptance scenarios according to Table 4.6. 

 

Remark: sample size: **0. 

 

Figure 4.11(a) graphs the predictions against the measurements for this proposed model. 

Figure 4.11(b) plots the results obtained from the existing IEQ equations for comparison 

(Wong, Mui et al., 2008, Lai, Mui et al., 2009, Lee, Mui et al., 2012). As the predicted 
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values from this and the previous studies were found to be highly correlated with a slope 

of 1 and a constant of 0 (p-value < 0.0001, t-test), the model proposed (i.e. Equation 4.8) 

should statistically give the same overall IEQ acceptance as the existing IEQ logistic 

regression model.  

 

  

  

Figure 4.11 Occupant acceptances of environmental conditions j (a) The proposed 

model (white); and (b) IEQ equations (black) 
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4.6. Model predictions and performance 

 

Figure 4.12 illustrates the predicted IEQ acceptances by the proposed model for 

residential buildings, classrooms and offices under typical indoor environmental 

conditions: operative temperature x1 = 20−32C, CO2 level x2 = 800−1800ppm, 

equivalent noise level x3 = 50−75dBA and illumination level x4 = 10−500lux, alongside 

with acceptances by the existing IEQ equations (Wong, Mui et al., 2008, Lai, Mui et al., 

2009, Lee, Mui et al., 2012). According to Figure 4.12(a), variations in acceptance are 

small over a wide range of environmental conditions in residential buildings, except for 

a sharp drop predicted by the IEQ equations at around 30C in a dark environment (i.e. 

x4 = 10lux). 

 

Existing IEQ equations work very well for offices. Under typical design conditions of 

24C, 800ppm, 50dBA and 500lux, the predicted acceptance is 0.93. Besides, variations 

in acceptance are reasonable and no sharp turns or flat variations are observed in Figure 

4.12(b). Although the model proposed gives similar prediction patterns, it is less sensitive 

to parameter changes. However, data available are insufficient to judge the prediction 

accuracy of the proposed model or the IEQ equations. Overall, the proposed model 

presents notable resolutions for the environmental differences. 
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Figure 4.12(a) Predicted IEQ acceptances for (i) Residential buildings; (ii) Classrooms; (iii) Offices with (a) CO2 level = 800ppm 
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Figure 4.12(b) Predicted IEQ acceptances for (i) Residential buildings; (ii) Classrooms; (iii) Offices with (b) CO2 level = 1800ppm 
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4.7. Summary 

 

Population growth and urbanization have promoted the development of small houses and 

high-rise multi-unit residential buildings. The fast-changing housing situation of the 

world encourages the enhancement of understandings on IEQ in residential environments. 

In this chapter, field surveys are conducted in very small residential units to investigate 

the IEQ responses from occupants. Through the changes in thermal, IAQ, visual and aural 

environmental parameters, it is demonstrated that the overall IEQ acceptance of 

occupants in small units is different from those residing in average residential buildings. 

Small unit residents are more sensitive to warmth and operative temperature change as 

compared to occupants of average houses. A small variation in thermal acceptance 

suggested that the small unit residents have developed certain degree of tolerance to hot 

conditions. The adaptation to the reality of a hot environment is also reflected in the 

overall IEQ acceptance. It is believed that they have already developed tolerance and 

adaptation to an unchangeable reality, changing environmental conditions does not 

necessarily alter their acceptance to individual IEQ aspects and overall IEQ. 

 

This survey reveals the effects of perception, adaption and tolerance on subjective IEQ 

responses towards perceived environment, despite the environmental conditions of small 

units and average houses were actually similar. Compared to using objective criteria to 

assess an environment, subjective evaluation, in certain circumstance, may be more 

reliable in reflecting occupant’s feelings and comfort inside the premises, which are the 

prime interests of building operators. It is therefore crucial to incorporate subjective 

elements into IEQ prediction models. IEQ responses collected in field can improve model 
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prediction accuracy by considering also the user’s point of view, instead of just from the 

building professional’s perspective. 

 

Multivariate logistic regression IEQ prediction models have been found to be not accurate 

in describing less favourable indoor environments with poor environmental conditions. 

Within the measurement range, prediction by IEQ equations most of the time would give 

an acceptance ≠ 0 at the measurement boundaries. Given that built environmental 

conditions usually follow some design norms, the predicted acceptance by IEQ equations 

are comparatively higher in the measurement parameter range than in the observable 

parameter range. As the collective results from a field survey reflect not only the comfort 

responses from occupants, but also from those who have contributed to the environmental 

settings (i.e. building designers and operators), the fundamental settings of a field survey 

should be taken as constraints for occupant responses. 

 

In addition, acceptance of environmental parameters is model dependent. The higher 

acceptance prediction by multivariate logistic regression model may be interpreted as a 

bias towards the acceptable environment, whereas in a frequency distribution model, the 

higher prediction may be interpreted as a bias towards the comfortable environment. 

 

In view of the above reasons, this chapter also proposes an open acceptance model that 

uses frequency distribution functions of occupant responses towards IEQ parameters to 

assess IEQ. The proposed model gives zero acceptances at/ beyond the boundaries, which 

can be interpreted as the environmental acceptances by both the occupants and the 

building designers. 
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Acceptances of individual IEQ parameters and of the overall IEQ predicted by this model 

are tested against those predicted by an existing IEQ logistic regression model (i.e. the 

existing IEQ equations). While the individual acceptance results are compatible, the 

overall acceptance values predicted by both models are statistically the same.  

 

Tested compatible with the existing IEQ equations for environmental acceptance 

predictions in residential buildings, classrooms and offices, the proposed model is 

considered to be valid. The overall acceptance values predicted by both models are 

statistically the same. The proposed model is not only flexible enough to encapsulate a 

diverse range of descriptive model parameters but also feasible for openly available IEQ 

acceptance data. Simple modelling method offers the flexibility to add data incrementally 

to allow easy model updating when a new set of observations arrives, this model can be 

a solution to the existing problems and limitations encountered in IEQ modelling. 
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Chapter 5. Development of Bayesian updating protocols 

5.1. Introduction 

 

In previous chapters, the subjective-objective nature of thermal comfort and overall IEQ 

has been greatly explored. Objective-criteria assessment approach provides a 

standardized and objective way to evaluate building performance potential, it however 

lacks the elements of occupant’s influence and subjective perceptions, therefore even if 

comfort requirements are met, occupants may still feel unsatisfied (Burge, 2004). On the 

other hand, subjective-objective approach relates environmental quantities with 

occupant’s responses, which reflects occupant’s state of mind and preference for 

environmental conditions. Occupant’s responses to perceived environment, however, 

may change over time with adaption, tolerance and lived experience.  

 

In addition, the interconnection and prioritization of IEQ factors on overall IEQ have been 

some of the greatest obstacles for developing a generalized and comprehensive 

subjective-objective IEQ acceptance prediction model. These relationships between 

factors are often task and/ or occupant-specific, therefore the characteristics of database 

used for model development significantly affect the quality and applicability of IEQ 

models. 

 

Conducting subjective survey can therefore identify these uncertainties and discrepancies 

between model predictions and actual responses, and incorporating the new subjective 

assessment results into existing prediction models helps improve the model accuracy by 
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updating the relationship between environmental parameters and occupant satisfaction in 

prediction model.  

 

To improve the prediction accuracy of existing model in a particular setting, this chapter 

proposes the Bayesian updating protocols to systematically update current subjective-

objective beliefs. It is demonstrated with IEQ regression equation and Fanger’s 

PMV/PPD model. With openly available field data in literature, Bayesian approach can 

allow the incorporation of statistical significance of field settings and occupant’s 

perceptions into existing model, therefore reflecting occupant’s subjective responses that 

are distinct from purely physiological responses to environments obtained in experiments, 

or deviate from prior belief of subjective-objective relationship established previously. 

The results shall provide an analytical solution to building owners and operators regarding 

the choice of IEQ parameters in environmental design and management. It is believed 

that with limited resources, this Bayesian approach for model updating can be a solution 

to improve thermal comfort and overall IEQ prediction accuracy. 
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5.2. Bayesian estimates and parameter 

 

Bayes’ theorem, which relates the conditional and marginal probabilities of stochastic 

events A and B (where B has a non-vanishing probability), asserts that the probability of 

event A given event B depends not only on the relation between events A and B but also 

on the marginal probability of occurrence of each event. This theory can be applied to a 

sample size not large enough for decision-making purposes, yet relevant enough for 

statistical analysis. Its general formulation and various applications are available in 

literature (Vick, 2002). 

  

The proposed approach predicts collective acceptance of an environmental condition 

using the readily available information (event A) and the new measurements from an 

indoor environment (event B) (Wong, Mui et al., 2014). If a measured acceptance value 

n is significantly different from a prior belief of the acceptance 0, then |0 − n| > , 

where  is the cut-off value of an acceptable error. Given a measured acceptance value  

of an environment with attributes j approximated by a normal distribution, j,n~ N(,2), 

the posterior estimate of the acceptance j,1~N(1,1
2) is expressed by the following 

Bayesian rules (Lee, 2004), shown in Equations 5.1–5.2, where j,0~ N(0,0
2) is the prior 

estimate of the acceptance towards environmental attributes j, P is the probability,  and 

2 are the mean and variance of the normal distribution function, and , 0, and 1 are the 

best estimates of the measured, prior and posterior acceptance values respectively. 

 

 – (5.1) 
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– (5.2) 

 

In these rules, the weightings are proportional to their respective variances, and the 

posterior mean is a weighted average of the prior mean and the measured value given. 

This posterior mean can be characterized in Equation 5.3 by the ratio of standard 

deviations and expressed as a parameter 2. 

  

 
– (5.3) 

 

Suppose repeated measurements will deliver the measured acceptance n and denote:  

then the posterior estimates 1, and 

2, …, n are given by Equation 5.4. 

 

 

– (5.4) 

 

In Equation 5.4, N→ when N→. Taking N as a finite number of the repeated 

observations such that the N-th estimate shows no significant difference from the 

measured acceptance, i.e. |N − |  , then 2 can be determined by Equations 5.5–5.6. 

Constant cr is the ratio of the acceptable error to the difference between the prior 

percentage dissatisfied (PD) value 0 and the measured PD value . 
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– (5.5) 

  

  

 
– (5.6) 

 

With a sample size n < N and  2 as given in Equation 5.6, the Bayesian estimate for the 

PD value ' is expressed by Equation 5.7. 

 

 
– (5.7) 
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5.3. Bayesian updating for overall IEQ model 

 

Bayesian updating framework for IEQ model aims at updating the existing subjective-

objective relationship of model in order to improve the accuracy and model applicability. 

The flow of Bayesian approach is presented in Figure 5.1 for easy understanding. 

 

 
Figure 5.1 Schematic diagram of Bayesian updating approach on IEQ acceptance model   

Obtain prior belief from 
existing IEQ model

Acquire field 
survey data 

Select target sample size 
N and acceptable error 
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2, 

X & Y

Calculate posterior '
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5.3.1. Bayesian updating procedures and results  

 

In order to present this Bayesian approach for IEQ model updating, target sample sizes N 

of 5 (choice A) and 10 (choice B), and an acceptable error  of 0.01 are chosen as example 

managerial decisions. Two prior beliefs are adopted. First, a uniform prior j,0 which 

environment contributors weigh equally in the overall IEQ acceptance (i.e. thermal 

comfort, IAQ, visual and aural condition affect occupant’s IEQ acceptance in equal 

manner) is assumed to represent a situation when we do not have any previous IEQ 

understandings of a new environment. Second, the predicted probability of acceptance of 

16 environmental cases generated by logistic regression model for average residential 

buildings by Lai, Mui et al. (2009) are also adopted. This prior belief represents an 

example where some degree of understandings of a certain environment are known, and 

newly acquired information are available to improve the accuracy of existing model. 

 

Table 5.1 shows the prior IEQ acceptance under different cases of environmental 

conditions (total number of cases j = 24
 = 16 cases). IEQ contributors with binary notation 

0 = unsatisfied and 1 = satisfied for thermal comfort, IAQ, visual and aural acceptance 

are presented. In average residential buildings, most of the occupants voted for case j = 

16, which indicated that they were mostly satisfied with the environment conditions. It is 

assumed that people have more control over the living environments and therefore they 

adjust to those that fit them. It is also noteworthy that only 11 out of 16 cases were 

recorded with votes, and only 4 cases with n ≥ 5. In regression analysis, survey data with 

small sample size are not included, making the model less sensitive to poor conditions. 

On the other hand, for residents of very small flat units, substantial of them voted for case 
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j = 1 to 4, indicating that the majority of them were not satisfied with the environmental 

conditions. Only 2 out of 16 cases did not record any vote, showing that the occupant’s 

opinions towards the environmental conditions were more diverse. 

 

Table 5.1 Prior IEQ acceptance (ρj,0) in case j = 1, 2, 3, …, 16 in (a): uniform prior 

acceptance; (b): multivariate logistic regression model (Lai, Mui et al., 2009); (c) 

measured environmental acceptance ρj,n in very small flat units  

Case IEQ Contributor 
(a) Uniform 

Prior 

(b) Regression 

model 

(c) Very small 

flat units 

j Thermal IAQ Visual Aural ρj,0 n ρj,0 n ρj,n 

1 0 0 0 0 0 1 2×10-15 6 0.167 

2 0 0 0 1 0.25 0 8×10-6 5 0.2 

3 0 0 1 0 0.25 1 3×10-10 3 0.333 

4 0 0 1 1 0.5 2 0.5 8 0.875 

5 0 1 0 0 0.25 0 1×10-14 1 0 

6 0 1 0 1 0.5 1 4×10-5 0 – 

7 0 1 1 0 0.5 2 2×10-9 1 0 

8 0 1 1 1 0.75 6 0.83 1 1 

9 1 0 0 0 0.25 1 9×10-6 0 – 

10 1 0 0 1 0.5 0 0.9999 2 0 

11 1 0 1 0 0.5 0 0.55 2 1 

12 1 0 1 1 0.75 2 1 2 1 

13 1 1 0 0 0.5 0 5×10-5 3 0 

14 1 1 0 1 0.75 7 0.9999 1 1 

15 1 1 1 0 0.75 7 0.86 4 0.75 

16 1 1 1 1 1 95 1 13 1 

Total – 125 – 52 – 

 

Bayesian approach has the power to evaluate the statistical significance of field 

measurement data based on its sample size and relate it to existing model with a choice 

of target sample size N and acceptable error  (Wong, Mui et al., 2014). Different target 

sample size N would result in different posterior probability j'.  

 

Table 5.2 exhibits the posterior acceptance (j') with (a) uniform prior and (b) probability 

of acceptance by regression model under managerial decisions choice A (N = 5,  = 0.01) 
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and choice B (N = 10,  = 0.01). Figure 5.2 is the graphical presentation of the Bayesian 

estimations. It is noteworthy that in some cases no sample were recorded (i.e. n = 0, 

annotated with ‘σ’), prior acceptance becomes the sole and the best information available 

for prediction, therefore the posterior acceptance is the same as prior acceptance (i.e. j,0 

= j'). 

 

Table 5.2 Posterior acceptance with (a) uniform prior and (b) regression model under 

managerial decisions choice A (target sample size N = 5, acceptable error  = 0.01) and 

choice B (N = 10,  = 0.01) 

Case 
Very small flat units (a) Uniform Prior (b) Regression model 

   Posterior (ρj')  Posterior (ρj') 

j n Measured (ρj,n) Prior (ρj,0) A B Prior (ρj,0) A B 

1 6 0.167 0 0.167# 0.136 2×10-15 0.167# 0.136 

2 5 0.2 0.25 0.2# 0.222 8×10-6 0.2# 0.155 

3 3 0.333 0.25 0.310 0.289 3×10-10 0.292 0.217 

4 8 0.875 0.5 0.875# 0.854 0.5 0.875# 0.854 

5 1 0 0.25 0.132 0.181 1×10-14τ 1×10-14 1×10-14 

6 σ 0 – 0.5 0.5 0.5 4×10-5 4×10-5 4×10-5 

7 1 0 0.5 0.229 0.339 2×10-9τ 2×10-9 2×10-9 

8 1 1 0.75 0.869 0.819 0.83 0.904 0.872 

9 σ 0 – 0.25 0.25 0.25 9×10-6 9×10-6 9×10-6 

10 2 0 0.5 0.105 0.229 0.9999 0.158 0.398 

11 2 1 0.5 0.895 0.771 0.55 0.902 0.790 

12 2 1 0.75 0.931 0.869 1* 1 1 

13 3 0 0.5 0.048 0.155 5×10-5τ 5×10-5 5×10-5 

14 1 1 0.75 0.869 0.819 0.9999τ 0.9999 0.9999 

15 4 0.75 0.75* 0.75 0.75 0.86 0.766 0.792 

16 13 1 1* 1# 1# 1* 1# 1# 
τ–difference between prior acceptance and measured acceptance is smaller than the 

acceptable error; *–prior acceptance is the same as measured acceptance; #–sample size 

meets with the target sample size and therefore the posterior acceptance is equal to the 

measured acceptance. 

 

Remark: Measured acceptance of cases with no sample (i.e. n = 0) is marked as “–”. These 

cases are annotated with ‘σ’. Column “j'” shows the posterior acceptance updated by 

Bayesian approach based on prior estimate (ρj,0) and measured acceptance (ρj,n) collected. 
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Figure 5.2 Graphical presentation of the Bayesian estimation of (a) IEQ model with 

uniform prior acceptance; (b) Multivariate logistic regression model for IEQ in average 

residential buildings (Lai, Mui et al., 2009) 
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When the sample size is small comparing to target sample size, e.g. case j = 5, 7, 8 and 

14 of choice B, by Bayesian approach, survey data have small influences on the prior 

acceptance, resulting a posterior acceptance that is closer to prior than measured 

acceptance. On the other hand, for cases with larger sample sizes, e.g. case j = 15 of 

choice A and case j = 4 of choice B, influences of survey data on prior belief are larger 

and therefore posterior estimation is closer to measured acceptance. For cases which 

sample size is larger or equal to target sample size (annotated with ‘#’), i.e. n ≥ N, e.g. 

case j = 1, 2, 4 and 16 of choice A and case j = 16 of choice B, the posterior estimate is 

equal to measured acceptance plus acceptable error (i.e. N =  ± , where j'~N(','2)). 

From the above, it can be seen that the target sample size significantly affects the resulting 

posterior estimations by Bayesian approach. 

 

Some cases with measured acceptance equal to the prior belief (annotated with ‘*’), e.g. 

case j = 15 and 16 of uniform prior, case j = 12 and 16 of regression model, posterior 

acceptance is the same as the measured and the prior because the predicted and actual 

data agree with each other (i.e. if j,0 = j,n, then j,0 = j,n = j'). When the difference 

between measured acceptance and prior acceptance is equal or smaller than acceptable 

error (annotated with ‘τ’), i.e. |0 − |   but ≠ 0, e.g. case j = 5, 7, 13, and 14 of regression 

model, no significant difference between measured data and prior belief is considered, 

therefore posterior estimate is equal to prior belief. It is also recognizable that the 

selection of acceptable error greatly influences the estimations. For a large error, accuracy 

of the model is lower because a large difference between survey data and prior belief is 

accepted as measurement error, and therefore failing to update the prior with actual 

occupant’s response. 
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5.4. Bayesian updating for thermal comfort model 

 

Thermal comfort has always been the most discussed topic in IEQ. Given a number of 

thermal comfort model developed, Fanger’s PMV/PPD model remains the most generally 

accepted, despite the acknowledgement of performance gap in PMV/PDD model by many 

thermal comfort field surveys. Some adjustments and modifications have been proposed 

to improve the accuracy, reliability and applicability of the model, they however seem to 

be unable to generalize the original PMV model and make it applicable to all types of 

environment and all kinds of people. The original PMV model is still the most cited one 

and widely adopted in building research and design reference. 

 

To improve the prediction accuracy of existing PMV/PPD model in a particular setting, 

this sub-chapter attempts to propose two Bayesian updating protocols to systematically 

update the PMV–PPD belief. With thermal comfort field data openly available in 

literature, Bayesian approach allows the update of pre-established thermal sensation-

satisfaction relationship with newly observed field data, which reflects and represents the 

effects of particular field settings and occupant’s perceptions on thermal satisfaction. 

Occupant’s subjective elements can therefore be incorporated into PMV/PPD relationship, 

which was developed entirely based on reductive physicalism of causal relationship of 

sensation and satisfaction. 
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5.4.1. Thermal comfort database 

 

Thermal comfort database selection aims to demonstrate the percentage effects of field 

data sample size (n) on target sample size (N) under the Bayesian approach. A total of 4 

thermal comfort datasets, outlined in Table 5.3, were selected for the demonstration: 1) 

residential buildings in Hainan, China (n = 1944) (Lu, Pang et al., 2018); 2) hospitals in 

Bangkok, Thailand (n = 928) (Sattayakorn, Ichinose et al., 2017); 3) elderly homes in 

Shanghai, China (n = 672) (Jiao, Yu et al., 2017); and 4) residential buildings in Hong 

Kong, China (n = 177) (Lai, Mui et al., 2009, Mui, Tsang et al., 2019). 

 

Showing typical field survey results, all datasets have votes heavily concentrated (about 

78%) in the range from -1 to +1; and their percentages of extreme votes (i.e. -3 and +3) 

are all below 10 % except for the +3 votes in Dataset 4. In Table 5.3, the PMV values 

(corresponding to each TSV) were calculated using the correlation coefficients C1 and C0, 

while APD as measured acceptance (μ) and the sample size of each TSV (n), with PPD 

(corresponding to each PMV) as the prior acceptance (μ0), were used to compute the 

posterior acceptance (μ'). 
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Table 5.3 Selected databases for Bayesian thermal comfort model demonstration  

Reference Sample size (n)  C1 C0 
 TSV 

 -3 -2 -1 0 1 2 3 

Lu, Pang et al. (2018) 1944 0.94 -0.31 

n – – – – – – – 

PMV -2.86 -1.80 -0.73 0.33 1.39 2.45 3.51 

APD (%) 8.7 2.3 2.8 2.8 19.3 23.2 40.9 

Sattayakorn, Ichinose et 

al. (2017) 

451 (Patient) 0.52 0.004 

n 5 45 74 255 41 25 6 

PMV -5.79 -3.86 -1.93 -0.01 1.92 3.85 5.78 

APD (%) 66.2 31.5 8.5 0 3.1 9.2 22.3 

146 (Staff) 1.24 -0.98 

n 8 27 45 25 20 14 7 

PMV -1.64 -0.83 -0.02 0.79 1.60 2.41 3.21 

APD (%) 91.5 62.3 26.2 7.7 11.5 23.1 38.5 

331 (Visitor) 0.63 0.05 

n 8 36 61 182 26 18 0 

PMV -4.86 -3.27 -1.68 -0.08 1.51 3.10 4.70 

APD (%) 71.5 34.6 8.5 0 2.3 6.2 16.2 

Jiao, Yu et al. (2017) 

342 0.60 0.39 

n 1 52 33 212 43 1 0 

PMV -5.68 -4.00 -2.33 -0.66 1.01 2.69 4.36 

APD (%) 100 94 79 0 7 100 NA 

330 0.37 0.04 

n 0 0 11 188 82 46 3 

PMV -8.14 -5.46 -2.78 -0.10 2.58 5.26 7.94 

APD (%) NA NA 27 0 84 87 100 

Lai, Mui et al. (2009) 

Mui, Tsang et al. (2019) 
177 2.49 -0.02 

n 0 2 15 76 47 12 25 

PMV -1.20 -0.80 -0.39 0.01 0.41 0.81 1.21 

APD (%) NA 50 0 0 8.51 66.7 100 

Remark: PMV values (corresponding to each TSV) were calculated using the correlation coefficients C1 and C0; '–' indicates that TSV values 

are not available; ‘NA’ due to 0 sample size under the vote. 
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5.4.2. Procedures, results and practical implications 

 

Two updating protocols, namely individual and global, are proposed to update the current 

PMV/PPD belief. Since individual updating uses one single dataset to update the prior 

belief, the sample size of each TSV is required (Datasets 2–4). This kind of updating, 

which is based on both prior information (PMV–PPD relationship) and new information 

(survey data), generates a unique relationship between PMV and PD of a particular 

environmental setting. 

 

Figure 5.3 shows the posterior PD estimated by the updated Bayesian thermal comfort 

model. With a selected acceptable error  = 0.001 (i.e. 0.1%) and a target sample size N 

= 1000, posterior estimation of PD can be computed using Equations 5.4–5.7. Results 

show that the posterior PD estimated is always closer to the measured APD than PPD. If 

the sample size n of each vote is significant comparing to the target sample size N, the 

posterior estimate will be closer to the APD. This can be observed generally at vote = 0, 

since most of the environments are designed to provide comfort for occupants. On the 

other hand, the sample size of an extreme vote (i.e. -3 or +3) is usually small, therefore 

the posterior PD is closer to PPD instead. As Bayesian estimation can evaluate the 

significance of a small dataset (as small as a one-sample dataset) and update the prior 

belief (the PPD in this case), the reliability concerns in regression analysis when the 

extreme vote sample size is too small are eliminated (Wong, Mui et al., 2014). This 

individual updating protocol gives a thermal comfort model that incorporates the adaptive 

and contextual parameters from occupants in a specific type of environment (or even as 



173 

 

specific as from a particular environment). After updating with available field data, the 

posterior PD can act as an updated tailor-made model for further thermal comfort study.  

 

 

Figure 5.3 Posterior PD by Bayesian thermal comfort model using individual updating 

method with   = 0.001 and N = 1000; (a) Patient, (b) Staff, (c) Visitor (Sattayakorn, 

Ichinose et al., 2017); (d) Winter, (e) Summer (Jiao, Yu et al., 2017); (f) Residential 

(Lai, Mui et al., 2009, Mui, Tsang et al., 2019) 
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Global updating treats each dataset as one sample and updates the PPD belief for a general 

indoor environment rather than a particular environmental setting. Presently, PMV/PPD 

based comfort standard is widely used regardless of the type of environment. Although 

contextual factors and adaptive behaviours strongly influence thermal comfort 

acceptability, modelling thermal comfort for each unique environment is resource 

demanding as field data collection is inevitable. By adopting the PMV/PPD concept, 

global updating can update the PPD belief using field data from different environments 

to generate a model that incorporates the influence of field settings on thermal comfort. 

Figure 5.4 graphs the posterior PD estimated by the Bayesian thermal comfort model with 

acceptable error  = 0.05 and different target sample size N = 5, 10 and 20 to demonstrate 

the effects of target sample size difference. It can be seen that since one vote is regarded 

as one sample, when sample size is considered small and less significant compared to a 

pre-set target number (in case of N = 20), the posterior estimates are closer to the prior 

PPD belief (i.e. Fanger’s as demonstrated) than the actual field data. With a smaller target 

sample size (in case of N = 5), Bayesian estimate will give an updated PMV/PPD model 

that makes prediction closer to actual data than the original model. Figure 5.4 

demonstrates that Bayesian updating can significantly improve prediction quality. 

 

To further illustrate the practical implications of using Bayesian updating, the proposed 

global protocol was applied to the GSHP study by Fang, Feng et al. (2018) discussed in 

Chapter 3, with error  = 0.05 and target sample size N = 10. Showing a PMV range from 

-0.062 to +0.062 for having 5% thermally dissatisfied people, the updated PMV–PPD 

relationship was found to be slightly narrower than the original PMV–PPD. As a result, 

the minimum power consumption would be approximately 1.46kW at a PMV of -0.062.  
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Figure 5.4 Posterior PD by Bayesian thermal comfort model with  = 0.05 and N = 5, 10 

and 20; a) Residential (Lu, Pang et al., 2018); (b) Patient, (c) Staff, (d) Visitor 

(Sattayakorn, Ichinose et al., 2017); (e) Elderly home (Jiao, Yu et al., 2017); (f) 

Residential (Lai, Mui et al., 2009, Mui, Tsang et al., 2019) 
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5.5. Summary 

 

Assessing IEQ cannot solely rely on objective tools or subjective surveys. Thermal 

comfort and overall IEQ field studies revealed that occupant’s responses towards a similar 

environment can be different due to their own perceptions and/ or adaptions. Considering 

occupant’s perceptions towards an environment as a causal, reducible relationship may 

be easier for setting up guidelines and comfort requirements, but it may not truly reflect 

the actual experience (Willems, Saelens et al., 2020). The fundamental problem is that 

the pre-established models are derived from previous subjective-objective studies, and 

the relationship between subjective votes and objective physical measurements may 

change with different group of occupants. The perceptions toward environmental 

conditions and the above-mentioned relationship can change over time and with lived 

experience even with the same group of people.  

 

Accurate subjective-objective thermal comfort and overall IEQ prediction models are 

therefore crucial for building engineers to predict occupant’s satisfaction. They are also 

necessary for other related indoor environment research. Existing models are not yet 

comprehensive enough to give accurate environmental acceptance predictions. Previous 

research efforts for model modifications are restricted in terms of application. Given that 

the performance gap between actual field data and model predictions can lead to 

substantial errors and uncertainties in research, it is essential for existing prediction 

models to be updated based on new observations in field. 
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In order to overcome these research obstacles that may lead to further errors in related 

indoor research, a novel Bayesian approach for model updating is proposed in this 

chapter. Bayesian approach benefits IEQ modeling by allowing easy updating with newly 

acquired data, which handles the limitations of existing IEQ models. In addition, this 

approach is not limited to continuous IEQ parameters, discrete parameters that can be 

used to anticipate IEQ acceptance can also be processed by Bayesian approach if field 

data is available. 

 

This chapter demonstrates two examples of Bayesian updating using highly cited 

PMV/PPD model and IEQ regression model. Two Bayesian updating protocols, namely 

individual and global, are presented to systemically update current PMV–PPD beliefs 

with openly available field data. Bayesian updating of previous residential IEQ model is 

also demonstrated by using subjective IEQ responses from very small units as inputs. 

 

This method provides a systematic approach to related additional survey data to current 

belief. With selected target sample size and acceptable error, statistical significances of 

data are considered and incorporated into Bayesian analysis. It shows that the posterior 

acceptance is close to prior belief when the sample size is small. With large sample size, 

the posterior is instead close to the measured acceptance. For sample size that meets with 

the target sample number, posterior is equal to measured acceptance plus acceptable error. 

Updating of prediction models can therefore be achieved even with a small quantity of 

field data from a similar environment.  
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The proposed Bayesian updating protocols shall provide a general analytical solution for 

thermal comfort and overall IEQ modelling, which could be a useful tool for indoor 

environmental design with a selection of target sample size and acceptable error based on 

managerial decision. It also helps to improve model prediction accuracy by updating it 

with newly available observations on the relationship between environmental quantities 

and occupant’s responses, before any holistic data-driven prediction model that can 

resolve the epistemic nature of occupant’s perception is developed. 
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Chapter 6. Development of step-wise IAQ screening strategies protocol and IoT-

based IAQ sensing network 

6.1. Introduction 

 

Modern people spend over 90% of their time indoors (Burroughs and Hansen, 2004). 

Maintaining an acceptable IAQ is therefore of utmost importance to protect the health of 

the general public. In view of the increasing IAQ concerns and complaints, there is an 

urgent need for a practical yet economical diagnostic tool for proper IAQ management.  

 

Unlike other IEQ aspects which are easily detected by sense and mainly affect one’s 

comfort with small chance of posing health consequences, IAQ can cause severe health 

problems, therefore shall not solely rely on subjective sense to determine the IAQ 

performance of an indoor environment. Objective-criteria approach can ensure the 

provision of a healthy environment. 

 

Traditional IAQ assessment methods involve measuring a number of IAQ parameters and 

comparing them against a set of standards or health objectives. However, conducting a 

full IAQ assessment requires vast amount of resources and manpower. To minimize the 

need for and the cost of a comprehensive IAQ assessment, surrogate indicators approach 

provides an alternative to assess IAQ in air-conditioned offices. The concentration of 

three independent yet closely related IAQ parameters, namely CO2, PM, and TVOC, was 

proposed to predict IAQ dissatisfaction without assessing other IAQ parameters (Wong, 

Mui et al., 2006). Further to that, an IAQ surveillance protocol, IAQ index, was proposed 

by Wong, Mui et al. (2007) for identifying asymptomatic IAQ problems in offices. This 
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screening test was proven to provide a much simpler and cost-effective alternative for 

IAQ assessment. 

 

IAQ screening tools reduce the cost and resources required for IAQ assessment, which is 

beneficial for large-scale IAQ screening to understand the overall IAQ situation in the 

region. Still, IAQ problems cannot be identified instantaneously, leaving occupants prone 

to IAQ-related sicknesses and diseases. 

 

Build upon the idea of screening strategies proposed by (Wong, Mui et al., 2007), this 

chapter investigates the use of different combinations of dominant IAQ parameters in a 

step-wise IAQ screening protocol for identifying undesirable IAQ with engineering 

acceptable accuracy. A simple and economical decision-making framework for IAQ 

monitoring and mitigation is proposed to facilitate IAQ management. To demonstrate and 

evaluate the feasibility of using low-cost IAQ sensors to monitor and screen potential 

risks of problematic IAQ, a large-scale IoT-based IAQ screening is conducted in a 

multifunctional shopping mall to collect spatial and temporal IAQ information. 

Environmental attributes that contribute to poor IAQ are determined. This chapter aims 

to present a holistic IAQ monitoring framework for cost-beneficial IAQ management 

with minimum resources. 
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6.2. Concept of screening strategy 

 

Adopting the threshold approach for screening test decision making proposed by Pauker 

and Kassirer (1980), the post-test probability of unsatisfactory IAQ determined by IAQ 

screening test indicates the level of required action. If it falls below the testing threshold 

(also known as the no action threshold), no action is required for maintaining the current 

IAQ level since it is considered as acceptable. If the post-test probability is beyond test-

treatment threshold, immediate remediation should be given to improve the IAQ level. 

Further tests should only be performed if the post-test outcome falls between the two 

thresholds, indicating an uncertain result that requires subsequent investigations. All the 

thresholds are predetermined based on resource and health considerations. 

 

Using the concept of IAQ index described in Equation 2.7, the IAQ assessment 

framework proposed here uses a step-wise IAQ screening protocol that involves different 

screening stages where additional IAQ parameters can be included in the index 

calculation. Three IAQ indices, namely θ1 (with one parameter: CO2), θ2 (with two 

parameters: CO2 and PM10), and θ3 (with three parameters: CO2, PM10, and TVOC) are 

proposed. Figure 6.1 illustrates the framework of the screening and decision-making 

process for IAQ management under this approach. Likelihood ratio, indicted in Equation 

2.8, assesses the ability of the screening test in diagnosing problematic IAQ. A likelihood 

ratio larger than 1 indicates a high-risk sample having an excessive occurrence of 

unsatisfactory IAQ, whereas a likelihood ratio smaller than 1 identifies a low risk sample. 

The likelihood ratio of an IAQ index in diagnosing unsatisfactory IAQ can be determined 

by Equation 2.9, given an available comprehensive IAQ assessment database as reference. 
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Figure 6.1 Screening and decision-making framework for IAQ assessment using step-

wise IAQ screening protocol 
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6.2.1. IAQ assessment dataset 

 

To demonstrate the proposed step-wise IAQ screening approach, IAQ Dataset A 

containing a total of 525 random samples of Hong Kong air-conditioned open-plan offices 

with similar building materials, style and age is taken from some previous studies (Hui, 

Wong et al., 2006, Mui, Hui et al., 2011). Surveyed locations include individual offices 

and conference rooms with the size of 10–300 m2. 358 of them fulfill the Good Class 

exposure limits stated in IAQ Certification Scheme. This database is adopted to determine 

the screening levels (i.e., thresholds) of three different IAQ indices (i.e., θ1, θ2, and θ3) 

for assessing Hong Kong air-conditioned offices based on the likelihood ratio of having 

unsatisfactory IAQ.  

 

IAQ Dataset B consists of 2248 offices IAQ data randomly collected from various IAQ 

investigations conducted in the year 2008, covering a diverse range of regions, building 

grades and sizes, therefore is able to represent the overall IAQ situation in Hong Kong 

offices. Among them, 2002 offices meet the criteria for Good Class. This database serves 

as a comprehensive dataset for demonstrating and evaluating the feasibility and 

effectiveness of the proposed step-wise screening strategies for IAQ pre-assessment.  

 

Table 6.1 summarizes the pairwise comparison of the two datasets, showcasing the 

arithmetic means, arithmetic standard deviations, and expected failure rates of the nine 

indoor air pollutants against the respective 8-hr exposure limits recommended by the 

Scheme. High failure rates are observed for CO2 and TVOC in both Dataset A and B, 

suggesting those are common problems identified in Hong Kong office. PM10, NO2, 
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HCHO, TVOC, Rn, and ABC in Dataset A are significantly different from those in 

Dataset B (p-value ≤ 0.05, t-test). The rest show no difference. No correlation is shown 

between the two datasets, indicating independency. The IAQ dissatisfaction rates for 

office in Dataset A and B are 32% and 11% respectively. 

 

Table 6.1 IAQ assessment data for air-conditioned offices in Hong Kong  

Parameter Unit 

8-hr 

Exposure  

Limit 

Database A  

AM (SD) [EFR%] 

Database B  

AM (SD) [EFR%] 
p-value 

CO2 ppm 1000 658 (151) [7%] 665 (203) [50%] 0.17 

CO µg/m3 10,000 1105 (4594) [1%] 1372 (825) [1%] 0.09 

RSP µg/m3 180 30 (20) [0%] 27 (30) [3%] ≤0.05 

NO2 µg/m3 150 27 (17) [0%] 33 (14) [0.4%] ≤0.05 

O3 µg/m3 120 40 (38) [13%] 40 (19) [3%] 0.39 

HCHO µg/m3 100 48 (103) [15%] 29 (22) [13%] ≤0.05 

TVOC µg/m3 600 358 (328) [42%] 176 (176) [24%] ≤0.05 

Rn Bq/m3 200 46 (39) [0.6%] 68 (41) [6%] ≤0.05 

ABC CFU/m3 1000 505 (385) [38.4%] 238 (175) [6%] ≤0.05 

AM–arithmetic means; SD–arithmetic standard deviations; EFR–expected failure rate. 

  



185 

 

6.2.2. Illustration of IAQ indices 

 

Likelihood ratios for unsatisfactory IAQ identification using IAQ indices θ1, θ2, and θ3 

are compared with the assessment results by IAQ Certification Scheme. The three indices 

are categorized into five screening levels based on the testing thresholds (i.e., multilevel 

likelihood ratios with an order of magnitude of 10 or 0.1) used in medical test for 

diagnoses (Sackett, Straus et al., 2000). Except for θ1, each level consists of at least five 

samples to ensure statistical significance. The intermediate levels are distributed evenly 

for consistency so that direct comparisons can be made.  

 

Table 6.2 exhibits the screening test results and the corresponding likelihood ratios for 

IAQ indices θ1, θ2, and θ3. The sensitivity and specificity of screening test increase when 

more surrogate parameters are incorporated into the index calculation, and an IAQ 

diagnosis using fewer parameters increases uncertainty of the pre-assessment. 

 

Table 6.2 IAQ index screening levels for unsatisfactory IAQ in air-conditioned Hong 

Kong offices 

Screening Level 

for θ1, θ2, θ3 

Unsatisfactory IAQ Satisfactory IAQ Likelihood Ratio 

(Lr) Counts (%) Counts (%) 

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 

<0.32 
0 

(0%) 

11 

(6.6%) 

5 

(3%) 

0 

(0%) 

74 

(21%) 

93 

(26%) 
/ 0.3 0.1 

0.32–0.42 
1  

(0.6%) 

64 

(38%) 

24 

(14%) 

10 

(2.8%) 

165 

(46%) 

131 

(37%) 
0.2 0.8 0.4 

0.43–0.53 
19 

(11%) 

61 

(37%) 

33 

(20%) 

62 

(17%) 

96 

(27%) 

85 

(24%) 
0.7 1.4 0.8 

0.54–0.64 
47 

(28%) 

23 

(14%) 

33 

(20%) 

116 

(32%) 

19  

(5%) 

43 

(12%) 
0.9 2.6 1.7 

≥0.65 
99 

(59%) 

8  

(4.8%) 

72 

(43%) 

161 

(45%) 

4  

(1%) 

6  

(1.7%) 
1.3 4.3 25 

Total count 167 (100%) 358 (100%)  
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The post-test probabilities of selected likelihood ratios for IAQ indices θ1, θ2, and θ3 

against pre-test probabilities ranging from 0.1 to 0.7 for air-conditioned offices are 

illustrated in Figure 6.2. Pre-test and post-test probability can be calculated using 

Equation 2.10 and 2.11. The post-test probabilities given by the three IAQ indices indicate 

the probabilities of having an unsatisfactory IAQ, it is therefore necessary to set the 

boundaries for each screening level using a post-test probability that is significantly high 

or low in order to rule out most uncertainties. To ensure the screening test can diagnose 

most unsatisfactory IAQ, thresholds of screening level should be set with maximum 

sensitivity, but the specificity of the screening test will unavoidably be lower (Gilbert, 

Logan et al., 2001).  

 

For practical uses, numerical post-test probabilities are translated into verbal probability 

expressions (VPEs) to describe the quantitative concepts (Reagan, Mosteller et al., 1989, 

Vick, 2002). Screening levels are therefore expressed as follow: 

1. Very improbable (Pd' ≤ 0.05); 

2. Improbable (Pd' = 0.05–0.2) 

3. Possible (Pd' = 0.2–0.4); 

4. Probable (Pd' = 0.4–0.7); 

5. Very probable (Pd' = 0.7–0.9); and 

6. Almost certain (Pd' > 0.9).  

 

At Lr = 25 (i.e., the highest likelihood ratio), θ3 is highly sensitive in identifying 

unsatisfactory IAQ cases ranging from “4. Probable” to “6. Almost certain”, while θ1 is 

the least sensitive. θ2 can identify most cases of higher than average unsatisfactory IAQ. 
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At Lr = 0.1–0.3 (i.e., the lowest likelihood ratios), all of the three IAQ indices can identify 

“improbable” cases with pre-test failure rate up to 0.4. For instance, the screening results 

of a pre-test “improbable” case (Pd = 0.15, indicated by line) for θ1, θ2, and θ3 are “2. 

Improbable”, “3. Possible”, and “5. Very probable”, respectively at highest likelihood 

ratio of tests, while at lowest likelihood ratio, all tests result in “1. Very improbable”. The 

case of a pre-test “Possible” (Pd = 0.35) is also illustrated in Figure 6.2 for comparison. 

 

 

 

 

 

Figure 6.2 Pre- and post-test probabilities with IAQ indices θ1, θ2, and θ3 
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6.3. Performance of IAQ screening strategies 

 

Table 6.3 presents Dataset B screening results using IAQ indices θ1, θ2, and θ3. Two pre-

test probabilities representing two different scenarios of regional IAQ dissatisfaction rate, 

Pd = 0.35, corresponds to “3. Possible”, a higher pre-test failure rate, and Pd = 0.15, “2, 

improbable”, a compatible pre-test failure rate suggested by Dataset B, are adopted. For 

each screening level, the failure probability P is calculated based on the IAQ Certification 

Scheme (i.e., a full test) using the true positive (dissatisfaction) counts (nu) over the total 

number of offices (n) in the screening level. Test results show that, in general, by 

assuming one rank higher in the pre-test failure probability rankings, the corresponding 

post-test results are of one rank higher as compared with the full test results. When a 

compatible pre-test probability assumed, the assessment results of the screening test are 

very similar to the full test.  

 

Looking at the distribution assessment class of the screening levels, it can be seen that the 

resolution of the IAQ index θ1 is relatively low, as the assessment results involve only 

two to three out of six VPEs. IAQ index θ1 can only identify a small group of samples 

(183 out of 2248 offices) that are with lower chance of having unsatisfactory IAQ. On the 

other hand, screening using IAQ indices θ2 and θ3 give assessment results with higher 

resolutions, involving three to four out of six VPEs. IAQ indices with more parameters 

can identify not only the lower risk groups, but also the higher risk ones.  



189 

 

Table 6.3 Screening levels and assessment results of 2248 offices using IAQ indices 

Screening 

Level 
Lr n 

(i) Screening Test (Pd = 0.35) (ii) Screening Test (Pd = 0.15) Full Test 

Od' Pd' Assessment Result Od' Pd' Assessment Result P Assessment Result 

(a) θ1 

0.32–0.42 0.2 183 0.11 0.10 2. Improbable 0.04 0.03 1.Very improbable 0.03 1. Very improbable 

0.43–0.53 0.7 444 0.38 0.27 3. Possible 0.12 0.11 2. Improbable 0.05 1. Very improbable 

0.54–0.64 0.9 521 0.49 0.33 3. Possible 0.16 0.14 2. Improbable 0.07 2. Improbable 

≥0.65 1.3 1100 0.70 0.41 4. Probable 0.23 0.19 2. Improbable 0.17 2. Improbable 

(b) θ2 

<0.32 0.3 510 0.16 0.14 2. Improbable 0.05 0.05 2. Improbable 0.05 1. Very improbable 

0.32–0.42 0.8 870 0.43 0.30 3. Possible 0.14 0.12 2. Improbable 0.05 1. Very improbable 

0.43–0.53 1.4 570 0.76 0.43 4. Probable 0.25 0.20 3. Possible 0.07 2. Improbable 

0.54–0.64 2.6 211 1.40 0.58 4. Probable 0.47 0.32 3. Possible 0.42 4. Probable 

≥0.65 4.3 87 2.32 0.70 4. Probable 0.76 0.43 4. Probable 0.56 4. Probable 

(c) θ3 

<0.32 0.1 865 0.05 0.05 1. Very improbable 0.02 0.02 1. Very improbable 0.02 1. Very improbable 

0.32–0.42 0.4 819 0.22 0.18 2. Improbable 0.07 0.07 2. Improbable 0.03 1. Very improbable 

0.43–0.53 0.8 327 0.43 0.30 3. Possible 0.14 0.12 2. Improbable 0.16 2. Improbable 

0.54–0.64 1.7 144 0.92 0.48 4. Probable 0.30 0.23 3. Possible 0.56 4. Probable 

≥0.65 25 93 13.5 0.93 6. Almost certain 4.41 0.82 5. Very probable 0.74 5. Very probable 
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Figure 6.3 compares the full test unsatisfactory rates with post-test failure probabilities 

by IAQ indices. The screening tests give good predictions in general, with IAQ indices 

θ2 and θ3 better at identifying the high-risk groups for unsatisfactory IAQ. Estimating a 

higher pre-test failure probability results in overestimation of failure probability by 

screening test. 

 

Figure 6.3 Full test unsatisfactory rates versus post-test failure probabilities by IAQ 

indices 
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Table 6.4 IAQ classifications for 2248 offices using step-wise IAQ screening protocol 

Screening 

Tests 

No. of offices with predicted unsatisfactory IAQ (Unsatisfactory rate) 

1. Very 

Improbable  

(Pd' ≤ 0.05) 

2. Improbable  

(0.05 < Pd' ≤ 

0.2) 

3. Possible  

(0.2 < Pd' ≤ 

0.4) 

4. Probable  

(0.4 < Pd' ≤ 

0.7) 

5. Very probable  

(0.7 < Pd' ≤ 0.9) 

6. Almost 

Certain  

(Pd' > 0.9) 

Thresholds 

0.05 < Pd' ≤ 0.9 

Thresholds  

0.2 < Pd' ≤ 0.9 

n P n P n P n P n P n P n P 

 Pd = 0.35 

θ1   183 0.03 965 0.06 1100 0.17     2248 2065 

θ2   510 0.05 870 0.05 868 0.20     2248 1738 

θ3 865 0.02 819 0.03 327 0.16 144 0.56   93 0.74 1290 471 

(a) θ1, θ2 126 0.05 435 0.04 872 0.06 741 0.18 74 0.59   2122 1687 

(b) θ1, θ3 737 0.02 448 0.06 837 0.09 133 0.58 3 1 90 0.73 1421 973 

(c) θ2, θ3 852 0.02 407 0.04 630 0.04 190 0.31 80 0.76 89 0.73 1307 900 

(d) θ1, θ2, θ3 760 0.03 544 0.03 475 0.04 291 0.21 92 0.73 86 0.72 1402 858 

 Pd = 0.15 

θ1 183 0.03 2065 0.12         2065 0 

θ2   1380 0.05 781 0.16 87 0.56     2248 870 

θ3 865 0.02 1146 0.07 144 0.56   93 0.74   1383 237 

(a) θ1, θ2 546 0.04 937 0.05 682 0.18 83 0.58     1702 765 

(b) θ1, θ3 903 0.02 1119 0.06 133 0.58 3 1 90 0.73   1345 226 

(c) θ2, θ3 945 0.02 968 0.05 166 0.27 80 0.76 35 0.89 54 0.63 1249 281 

(d) θ1, θ2, θ3 1007 0.02 806 0.05 255 0.20 91 0.70 35 0.89 54 0.63 1187 381 
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Except for strategy (b) using IAQ index θ1 first then θ3 (i.e. screen with CO2 first, then 

CO2, PM10 and TVOC afterwards), where there is an underestimation in the intermediate 

risk group, the results show that by assuming one rank higher in the pre-test failure 

probability, the post-test assessment results are one rank higher than the full test results, 

and by assuming a compatible pre-test probability, the assessment results and full-test 

results are be compatible.  

 

Threshold examples are proposed to represent stringent and lenient IAQ management 

requirements. All screening strategies successfully screen out some offices that do not 

require a full test to determine if the IAQ is satisfied or not, as a result reducing the 

resources required. Overall, the strategies are useful in ranking the offices based on the 

probability of having unsatisfactory IAQ, and therefore having the potential to facilitate 

cost-effective IAQ management. 
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6.4. IoT-based IAQ sensing network 

 

Long-term IAQ surveillance is a state-of-art technique for continuously monitoring of the 

concentrations of indoor air pollutants. Unlike annual IAQ assessment, long-term 

monitoring can instantly reveal possible IAQ problems and identify any acute exposure 

to air pollutants which can be harmful to occupants. It also provides spatial 

characterizations and temporal understandings of IAQ of an environment, which aid the 

identification of emitting sources, problematic design layouts and building operation 

strategies, and the formulation of mitigation plans.  

 

Long-term monitoring also allows instant intervention. Given the spatial resolution of 

IAQ profile revealed by the sensing network, ventilation strategies can be localized and 

therefore achieve higher energy efficiency (de Vito, Fattoruso et al., 2011). Marques, 

Roque Ferreira et al. (2018) demonstrated the use of Internet of Things (IoT) system for 

monitoring PM levels, enabling the scalability (the addition of more sensors) and 

flexibility (sensor mobility) of the system. With the IoT system, chronological history of 

PM levels can be retrieved, therefore assisting facility management to formulate strategies 

to enhanced IAQ standard. Long-term IAQ monitoring has been used in some developed 

places like Doha and Taiwan for maintaining good IAQ. Unfortunately, such technology 

still has not been implemented publicly in Hong Kong so far. 

 

With increasing concern over IAQ, more and more building developers seek ways to 

maintain good IAQ for a healthy indoor environment for building users and tenants 

(NWD, 2019). In order to fulfil the industry demands, health risks of poor IAQ shall be 
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addressed during daily building operation period. A long-term continuous monitoring of 

IAQ which reflects the health risks of building occupants is therefore deemed important.  

 

Approached with an opportunity, the use of IoT-based low-cost IAQ sensing network for 

problematic IAQ screening was demonstrate in a newly constructed multifunctional mall 

with floor size of 5,000m2 in Hong Kong. A total of 80 IAQ sensing modules were 

installed in various places on different floors of the mall in order to identify potential 

sources of air pollutants and recognize the effects of environmental attributes on IAQ. 

The modules collected IAQ data, including Ta, RH, PM10, PM2.5, CO2, TVOC and CO, 

three times a day at 7am, 3pm and 11pm consecutively for 3 months covering spring and 

early summer of Hong Kong. Measured data were transmitted and stored in the Building 

Management System for processing into IAQ index for public display to customers in the 

mall. Table 6.5 displays the IAQ data collected in 3 months.  

 

Table 6.5 3-month IAQ data collected by IoT-based monitoring system in a 

multifunctional mall in Hong Kong  

Parameter Max Min Average SD 

Ta (°C) 28.40 18.36 24.34 1.43 

RH (%) 84.84 24.48 61.15 7.04 

CO2 (ppm) 1029.63 387.08 462.10 50.59 

CO (µg/m3) 2.31 0 0 0.03 

PM10 (µg/m3) 293.69 3.04 82.92 35.53 

PM2.5 (µg/m3) 278.12 0.76 66.56 26.66 

TVOC (ppm) 10# 0.04 0.64 1.32 

IAQ index θ2 1.04 0.21 0.46 0.10 

IAQ index θ3 19.70 0.32 1.70 2.53 
#–Maximum detection limit of TVOC sensor. 

 

Remark: Some data were screened out due to sensor/ signal problems. 

 

Focusing on individual parameters, 2.1% of PM10 exceeded the Good Class exposure 

limit of 100μg/m3. High PM10 was observed mostly on lower floor of the mall, with 
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basement level suffered a higher chance of elevated PM10 than above-ground levels. 90% 

of high PM10 were discovered to be in food and beverage area, 70% in back of house 

corridor. To improve the PM10 situation, it was suggested to have more frequent cleanings 

in the food and beverage area and back of house corridor. The filter in ventilation system 

shall also be cleaned regularly. Additional air cleaner with HEPA filter can be adopted in 

area with high PM10 level. 

 

For CO2, there was only one data exceeded the Good Class level of 1000ppm, five 

exceeded the Excellent Class of 800ppm, with an overall average of 462.1ppm. As CO2 

is a surrogate indicator for ventilation efficiency, ventilation performance of shopping 

mall was considered to be excellent. 

 

Alarmingly, over 50% of TVOC exceeded Good Class level of <261ppb, with an average 

of 640ppb. TVOC was higher in the morning than in the afternoon and at night, but in 

general high TVOC could be found in any time of a day. Basement suffered a higher 

chance of high TVOC than above-ground levels, and 80% of high TVOC were discovered 

in food and beverage area, 61% in back of house corridor. Compared to first week TVOC 

data, significantly lower TVOC were measured by 80% of sensors during the last 

measurement week. It is most likely that the emission from building materials and 

finishing was gradually dropping to a background level throughout the three-month 

measurement period. High TVOC could therefore be attributed to other environmental 

factors like location, function of the area, activities of the area, etc. Unusually high TVOC 

level could be the result of malfunctioning sensor or nearby TVOC generating activities, 

for example use of air freshener. Unfortunately, it was unable to pinpoint the causes of 
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such high levels of TVOC in the mall through the above analysis. As a result, facility 

management of the mall was recommended to pay special attentions on those areas with 

high TVOC level to identify possible sources of pollutants and formulate mitigation 

strategies accordingly. 

 

IAQ indices θ2 and θ3 calculated from the IAQ data are shown in Table 6.6. Since no IAQ 

Certification Scheme data for shopping mall was available from open literature, a pre-test 

probability could not be determined. As such, office pre-test probability of 0.35 was 

adopted. For IAQ index θ2, the majority of them fell into the “2. Moderately negative” 

and “3. Slightly positive” rank of having dissatisfied IAQ, which was considered to be 

performing well in general. For IAQ index θ3, over 95% of time the IAQ fell into “5. Very 

positive”, suggesting a very high chance of suffering from poor IAQ. Such alarming 

results suggested by IAQ index θ3 could be attributed to unexpectedly high TVOC.  

 

With such large volume of valuable spatial IAQ data, IAQ index θ2 results were used to 

identify environmental attributes that contribute to poor IAQ. By determining the fail 

ratio of high-risk data (i.e. 4. Moderately positive and 5. Very positive) to overall sample 

of each environmental attributes, attributes with higher risk of problematic IAQ can be 

identified. Corresponding precautionary measures can therefore be formulated to prevent 

the occurrence of IAQ problems.  
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Table 6.6 IAQ index results of IAQ data collected by IoT-based monitoring system 

in a multifunctional mall in Hong Kong  

 Screening level Likelihood Ratio Count % Result 

θ2 

<0.32 0.3 1125 5.8% 1. Very negative 

0.32-0.42 0.8 6313 32.7% 2. Moderately negative 

0.43-0.53 1.4 8728 45.2% 3. Slightly positive 

0.54-0.64 2.6 1732 9.0% 4. Moderately positive 

>=0.65 4.3 1403 7.3% 5. Very positive 

NA  18   

 Total  19319   

θ3 

<0.32 0.1 0 0.0% 1. Very negative 

0.32-0.42 0.4 48 0.3% 2. Moderately negative 

0.43-0.53 0.8 212 1.1% 3. Slightly negative 

0.54-0.64 1.7 323 1.8% 4. Moderately positive 

>=0.65 25 17867 96.8% 5. Very positive 

NA  869   

 Total  19319   

Remark: Some data are missing due to sensor/ signal problems, annotated as “NA”. 

 

Environmental characteristics, for example above or below ground, food and beverage 

area, back of house area, supermarket, cosmetic store, near toilet and lobby, were 

investigated. p-value <0.01 by Chi-square tests between all pairs of characteristic 

suggested that the IAQ performances of different environment characteristics were 

significantly different. Table 6.7 shows the fail ratio of each pair of environmental 

attributes. It can be seen that basement area, food and beverage area, back of house, 

supermarket and cosmetic area had poorer IAQ, which could be due to the nature of the 

business and high occupancy. On the other hand, lobby and near toilet had better IAQ, 

which could be explained by higher natural and mechanical ventilation rate respectively.
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Table 6.7 IAQ index results of various environmental characteristics 

θ2 Above Ground Lobby Food and beverage Back of house Supermarket Cosmetic Near toilet 

<0.32 325 252 784 539 610 539 365 

0.32-0.42 3718 10 3643 1289 784 852 1078 

0.43-0.53 6928 0 6904 1832 1017 1192 722 

0.54-0.64 1188 0 1798 155 716 144 11 

>=0.65 579 0 1523 809 137 809 0 

Fail ratio 0.14 0.00 0.23 0.21 0.26 0.27 0.01  
Basement Not lobby Not Food and beverage Not Back of house Not supermarket Not Cosmetic Not near toilet 

<0.32 419 492 325 570 499 570 744 

0.32-0.42 817 4062 1070 3424 3929 3861 3635 

0.43-0.53 2126 8973 2151 7223 8038 7863 8333 

0.54-0.64 860 2048 250 1893 1332 1904 2037 

>=0.65 946 1525 2 716 1388 716 1525 

Fail ratio 0.35 0.21 0.07 0.19 0.18 0.18 0.22 
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6.5. Summary 

 

Traditional objective-criteria IAQ assessment method measures and compares a number 

of IAQ parameters listed in standards and health criteria. It usually requires massive 

material and manpower resources. The daunting assessment process and use of numerous 

bulky equipment become nuisances to occupants and building owners, making IAQ 

assessment less popularized. Over the years, IAQ concerns have increased drastically 

especially when it is related to health risks. Nevertheless, despite the efforts of the 

development of IAQ index that can screen out problematic IAQ premises without 

conducting a full IAQ assessment, neither the government nor the industry has taken a 

step forward to embrace the new form of IAQ assessment and monitoring method.   

 

IAQ index has been proven to be a handy screening tool to identify indoor environments 

with high chance of poor IAQ that require further comprehensive IAQ assessments, and 

those with lower chance of problematic IAQ can be maintained, therefore saving 

resources by prioritizing IAQ improvements. In this chapter, based on the theory and 

methodology of IAQ index, different combinations of dominant IAQ parameters are 

adopted in a step-wise IAQ screening protocol to facilitate cost-effective IAQ 

management. IAQ index θ1 with CO2 alone, IAQ index θ2 with CO2 and PM10 and IAQ 

index θ3 with CO2, PM10 and TVOC are proposed and their performance for identifying 

undesirable IAQ are evaluated. In general, by assuming a pre-test probability of one rank 

higher than the actual failure probability by full test, the screening results will be of one 

rank higher than the full test results. If a compatible pre-test probability is assumed, the 

screening test will give results similar to full test results. Screening using IAQ index θ1 
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give a low-resolution assessment with only two to three out of six VPEs, being able to 

identify only a small group of IAQ data with low chance of poor IAQ. Higher assessment 

resolutions are resulted by screening with IAQ indices θ2 and θ3, involving three to four 

categories out of six. θ2 and θ3 are able to screen out not only low but also high-risk group 

of having unsatisfied IAQ. 

 

Further to this, a step-wise IAQ screening protocol is proposed by screening the IAQ data 

consecutively using different IAQ index combinations. It is again demonstrated that a 

high estimate on the pre-test failure probability will result in an overestimation of failure 

probability by similar degree. Given a predetermined threshold based on resource and 

health considerations, results suggest that all screening strategies can successfully reduce 

the number of premises required to undergo a full IAQ assessment. It can be seen that 

IAQ screening strategies can assist the identification of undesirable IAQ with engineering 

acceptable accuracy, at the same time screen out those do not require attention. IAQ 

screening strategies are simple and economical for IAQ monitoring and mitigation, 

therefore will be beneficial for large-scale IAQ screening to evaluate the overall IAQ 

situation in the region.  

 

Since current IAQ measurement methods cannot identify IAQ problems instantaneously, 

building occupants are usually prone to IAQ-related sicknesses and diseases. With 

technological advancement, long-term IAQ surveillance becomes feasible and 

economical. In order to demonstrate and evaluate the feasibility of using low-cost IAQ 

sensors to monitor and screen out problematic IAQ, a large-scale IoT-based IAQ 
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screening is conducted in a multifunctional shopping mall to collect spatial and temporal 

IAQ information. 

 

By looking at the 3-month IAQ data collected by 80 IAQ sensing modules installed in 

various locations of the mall, IAQ problems were discovered, which include high TVOC 

levels in majority of sampling locations, especially in basement, food and beverage area 

and back of house area, which could be attributed to environmental factors like location, 

function of the area, activities of the area, etc. High PM10 are observed on basement and 

lower floor of the mall, mainly in food and beverage area and back of house corridor. 

IAQ index with 2 parameters can successfully identify the environmental characteristics 

with higher chance of poor IAQ. 

 

All things considered, this chapter proposes and evaluates the feasibility of IAQ screening 

strategies and the use of IoT-based low-cost IAQ screening system for large-scale IAQ 

monitoring. Although they are highly dependent on the surrogate parameters selected, 

they are proven to be useful for identifying problematic IAQ, sources of problems and 

high-risk factors, with lower cost and resource requirement. The proposed assessment 

methods shall facilitate IAQ management in indoor environments. 
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Chapter 7. Conclusion 

 

IEQ is a complex issue with numerous physical, subjective and contextual influencing 

factors. Interconnection, interdependency and prioritization of IEQ factors have been 

observed, making it difficult to assess an environment in terms of the provision of a 

healthy, comfortable and productive space. 

 

This thesis identifies the inadequacy of current IEQ, thermal comfort and IAQ assessment 

methods and model, and develops novel assessment approaches to evaluate building 

performance and accurately predict occupant’s satisfaction to perceived environment.  

 

Overall indoor environmental quality (IEQ) and thermal comfort 

IEQ responses from very small residential units are investigated, discussed and compared 

to already establish subjective-objective belief in average residential buildings, revealing 

the inadequacy of IEQ regression models of not able to give accurate predictions if 

occupants have developed their own perceptions and/ or adaptions towards the 

environment. Moreover, sleeping thermal comfort survey demonstrates the needs for 

different task-specific comfort requirements. Consistent and unified building comfort 

conditions may not be suitable for all settings. Given no currently available model for 

every environmental setting, thermal comfort and IEQ models shall be able to update 

based on newly acquired subjective responses by occupants in the field.  

 

In fact, as many have observed certain degree of performance gap in existing comfort 

prediction models, which can lead to errors and uncertainties in research and practical 
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purposes. It has come to concern that prediction models that look for the deterministic 

causal relationships between environmental quantities and occupant’s comfort may not 

be able to fully reflect one’s opinions on perceived environments. Discrepancies can be 

caused by limited number of factors being used in model development, descriptive 

contextual factors that cannot be expressed in quantity, insufficient sample size, bias in 

modelling dataset, adaption and tolerance, etc.  

 

Undoubtedly, subjective evaluation is the most effective way to identify occupant’s 

responses and acceptance towards the environmental conditions. It is able to overcome 

the above-mentioned limitations of existing models by examining occupant’s mental state, 

perceptions, feelings and emotions. It is however lacking universal judgement and 

practical implication of improving the IEQ, health and energy usage (Asadi, Mahyuddin 

et al., 2017). It is therefore essential to establish linkage between subjective assessment 

results with objective environmental conditions. However, given the complex 

relationship between IEQ factors discovered by previous research efforts, IEQ responses 

have been proven to be influenced by numerous features including environmental factors, 

functional factors (task-related) and psychological influences (occupant-related), and 

with the possibility of developing tolerance and adaptation, the linkages between all these 

factors and IEQ responses may change over time. IEQ modelling cannot be fully 

expressed in a reductive physical manner of causal relationship between environmental 

quantities and occupant’s responses.    

 

In view of the limitations, an open probabilistic acceptance model using frequency 

distribution function is developed to handle diverse range of descriptive IEQ parameters 
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in addition to the four major numerical factors forming the argument of environmental 

quality. It makes model updating easier and is more robust in reflecting occupant’s 

environmental perception. Nevertheless, the characteristics of data used strongly affect 

the accuracy, relevance and applicability of any model (Heinzerling, Schiavon et al., 

2013). The best approach would be to incorporate the statistical significance of subjective 

responses by occupants into acceptance prediction models such that the relationship 

between environmental quantities and occupant’s responses is updated with the influence 

of contextual factors and perceptions. 

 

To this end, Bayesian updating protocols for thermal comfort and overall IEQ model are 

developed and demonstrated. It is understood that the sample size in model and protocol 

development may be too small for establishing the validity. This thesis aims at providing 

a methodology, a framework, or a strategy for addressing the problem exist in current 

IEQ modelling. The intention is not to proposed an updated model for IEQ prediction, 

but to demonstrate the proposed modelling method using existing data as an example. 

Bayesian approach allows systematic updates of current thermal comfort and IEQ beliefs 

(i.e. acceptance prediction models) with openly available field data. This approach 

incorporates field settings into any existing model by considering the statistical 

significance of field data, even with a small sample size. Presented with practical 

examples of existing thermal comfort model and IEQ regression model with the best 

information available, the proposed Bayesian updating procedure can be useful for indoor 

environmental management with a selection of target sample size and acceptable error 

based on managerial decision. It provides an achievable solution to the present challenges 

in establishing a reliable environmental acceptance prediction model.  
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Indoor air quality (IAQ) 

Due to the adverse health effects seen with poor IAQ, including acute physical symptoms 

induced by exposure to high levels of air pollutants, and the development of long-term 

sicknesses caused by accumulative exposure to low to medium levels of pollutants, IAQ 

assessment cannot solely rely on subjective sense, and shall also be evaluated objectively 

against health standards. In fact, standardized protocols for IAQ assessments have been 

developed. However, these protocols require sophisticated instruments operated by 

professionals. It is expensive, and cannot identify IAQ problems instantaneously. In the 

absence of continuous IAQ monitoring, building occupants are exposed to the risks of 

poor IAQ without noticing. 

 

In view of this, this thesis proposes a step-wise IAQ screening protocol using different 

IAQ index combinations. With a predetermined threshold based on resource and health 

considerations, IAQ screening strategies reduce the need for conducting full IAQ 

assessment. IAQ screening protocol can identify undesirable IAQ with engineering 

acceptable accuracy and screen out those do not require attentions. Measuring only few 

parameters, IAQ screening strategies are simple and economical for IAQ monitoring and 

mitigation, which is beneficial for large-scale IAQ screening.   

 

In addition to developing IAQ screening protocol for simple and fast IAQ evaluations, 

this thesis also demonstrates and evaluates the feasibility of using low-cost IAQ sensors 

to monitor and screen out problematic IAQ. A large-scale IoT-based IAQ screening is 

conducted in a multifunctional shopping mall to collect spatial and temporal IAQ 
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information. IAQ index successfully identified the environmental characteristics that 

contributes to poor IAQ. 

 

To sum, IAQ screening protocol and IoT-based IAQ screening practice are useful for 

preliminary identification of problematic IAQ, sources of problems and high-risk factors, 

with substantially lower cost and resource requirements compared to traditional IAQ 

assessment methods. The proposed novel approaches for IAQ evaluation and monitoring 

shall facilitate IAQ management in indoor environments. 

 

Perspective on future research direction 

This thesis reveals huge research potential for environmental acceptance modelling. 

Development of holistic subjective-objective prediction models with comprehensive 

parameters was limited due to the constraints of field data acquisition in the past. With 

scientific research and development of big data collection, extraction and analysis in 

recent year, large volume of various forms of IEQ data can be gathered at an 

unprecedented speed. IoT-based and wireless low-cost sensors, as demonstrated, provide 

an alternative method for data collection and a new perspective of data management and 

exploration. Measurements of environmental quantities and surveys of responses and 

acceptance, in foreseeable future, will be at a much lower cost and a faster speed 

compared to at present. Data acquired, even though may not be as precise as those 

collected using expensive instruments, will allow us to gain spatial and temporal 

understandings of the environmental conditions. With such all-inclusive data, IEQ 

prediction models that can encapsulate and express all IEQ influencing factors will be 

possible.   
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