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ABSTRACT 

Self-tracking and scene reconstruction are crucial for mobile platform navigation in 

unknown indoor environments. Red-Green-Blue Depth (RGB-D) camera is an ideal 

choice of the onboard sensor on the mobile platform, in consideration of its small size, 

light weight, and cheap price. However, the performance of RGB-D simultaneous 

localization and mapping (SLAM) is degenerated due to two main problems: (a) the 

SLAM system is prone to lost tracking under low textured scenes, and (b) the accuracy 

is inadequate for mobile platform navigation because of the accumulating drift. This 

thesis aims to solve the first problem by hybrid feature fusion and the second one by 

wheel odometer integration, and therefore improves the continuity and accuracy of 

the RGB-D SLAM system on the mobile platform.  

Firstly, a new RGB-D SLAM fusing point and line features is proposed. While 

previous line-based methods utilize either 3D-3D or 3D-2D line correspondences, the 

new method combines both and can exploit more line information. It is evaluated on 

Technical University of Munich (TUM) RGB-D datasets and real-world experiments. 

Experiment results show that the proposed method can yield better continuity than 

state-of-the-art (SOTA) methods. In addition, it can improve the localization accuracy 

of the method utilizing 3D line features by 22.5% and the mapping accuracy by 10.2%. 

The improvements over the method utilizing 2D line features are 25.8% and 14.7% in 

consideration of localization and mapping accuracies, respectively.  

Secondly, a new RGB-D SLAM fusing point and plane features is proposed. While 

previous plane-based methods assign experimental weights to the plane features, the 

new method derives the analytical covariances by plane fitting and covariance 

propagation. Point and plane features are optimally combined to construct the cost 

function based on the derived covariances. Furthermore, a new representation form 

for plane features is developed based on the parallel and vertical relationships among 

planes. It encodes the structural regularity in indoor scenes and is further utilized by 

factor graph optimization. Experiments on the TUM RGB-D datasets prove that the 
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proposed method yields better continuity than the feature point-based methods. In the 

lab room experiment, the proposed method can improve the localization accuracy by 

23.6% using the analytical covariances, and enhance that by 27.6% using the new 

representation form. In the corridor experiment, the improvements of the mapping 

accuracies are 11.5% owing to the analytical covariances, and 8.8% using the new 

representation form. 

Thirdly, a new localization and mapping method by tightly coupling the RGB-D 

camera and the wheel odometer is proposed. Previous methods assume the platform 

moves on a 100% flat floor which is unpractical and may lead to non-optimal 

estimation results. To avoid the disadvantage, the new method adopts a soft 

assumption that the platform moves with small perturbations due to uneven terrain 

and develops a two-step strategy to handle the perturbations: (a) firstly, the 

Mahalanobis distance test is applied to examine the motion assumption, and (b) 

secondly, the ground plane is detected to constrain the mobile platform. Moreover, 

the visual and wheel odometer constraints are tightly coupled in a new factor graph. 

The proposed method is evaluated by two real-world experiments in a lab room and a 

corridor, respectively. Compared with the previous loose-coupled method utilizing a 

hard planar motion assumption, it can improve the localization accuracy by 40.7% 

and the mapping accuracy by 33.8%.  

Finally, based on the algorithms developed in this study, a comprehensive real-time 

RGB-D SLAM system is developed for mobile platform navigation. Point, line, and 

plane features are simultaneously fused in the comprehensive system. Hybrid features 

are combined with the wheel odometer under the soft planar motion assumption. In 

real-world experiments, compared with the feature point-based system, the proposed 

system can improve the localization accuracy by 70.1% and the mapping accuracy by 

75.9%, combing the wheel odometer can improve these accuracies by 66.3% and 

72.1%, fusing points, lines, and planes can improve them by 57.2% and 62.6%, fusing 

plane features can improve them by 53.8% and 55.6%, and the smallest improvements 

are 33.6% and 39.1% by fusing line features. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The applications of autonomous mobile platforms have grown rapidly in recent 

decades, and various types of robots have been developed, such as Unmanned Aerial 

Vehicles (UAV), smart wheelchairs, and ground vehicles. For example, UAVs are 

employed for agriculture, traffic monitoring, and mine inspection, smart wheelchairs 

are designed for the safety, and mobility of disabled people, and ground vehicles are 

commonly applied in security, logistics, and autonomous driving (Siegwart et al., 

2011). In general, the operation scenes of these mobile platforms in the above 

applications can be categorized as: (a) the outdoor open-sky scene with reliable Global 

Navigation Satellite System (GNSS) signal, and (b) the indoor scene with GNSS 

denied environments. 

While the location can be provided by GNSS in outdoor scenes, alternative techniques 

are required for positioning in indoor scenes. Lidars and cameras are widely used on 

the mobile platform for self-localization and scene-perception in GNSS-denied 

environments. While Lidars outperform cameras in terms of the detection distance 

and ranging accuracy, cameras are also attractive in consideration of the low cost, 

high portability, and ability to provide additional colour information (Aulinas et al., 

2008). The technique of tracking the mobile platform and reconstructing the 

surrounding scene based on cameras is called Visual SLAM (Fuentes-Pacheco et al., 

2015). It can be further divided into three groups based on the utilized cameras: (a) 

monocular SLAM using a single camera; (b) stereo SLAM using stereo cameras; and 

(c) RGB-D SLAM using the RGB-D camera (Aulinas et al., 2008).  
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In these SLAM systems, depth images are utilized for dense scene reconstruction, 

which is essential for path planning of the mobile platform (Ling & Shen, 2019). In 

general, depth estimation is achieved by three traditional techniques:  

(a) Stereo matching. It matches the pixels on two rectified images and then computes 

the disparity between these pixels for depth estimation (Bleyer et al., 2011; Chang 

& Chen, 2018). 

(b) Structured Light (SL). It projects a known pattern onto the surface by a projector, 

captures a distorted image by an infra camera, and recovers the depth by image 

analysis (Bleyer et al., 2011; Chang & Chen, 2018). 

(c) ToF (Time of Flight). It emits light onto the surface, measures the travel time, and 

then computes the depth using the incident angle and the travel distance of the 

light (Fuchs & Hirzinger, 2008). 

Stereo matching is utilized for depth estimation using a single camera or stereo 

cameras. It requires a powerful Graphics Processing Unit (GPU) for real-time 

processing due to the high computation cost by pixel matching. On the other hand, SL 

or ToF technique is employed by the RGB-D camera, which consists of RGB and 

depth cameras within the small size, light weight, and cheap price (Zhang, 2012). 

Compared with a single camera or stereo cameras, an RGB-D camera can generate 

pixel-wise colour and depth images in real time on a commercial Central Processing 

Unit (CPU). Furthermore, the quality of the depth images from the RGB-D camera is 

much higher than those from stereo matching (Zhang, 2012). 

Therefore, utilizing the RGB-D camera is a potential solution for rea-time indoor 

mobile platform navigation, in consideration of the size, weight, price, and 

computation cost. However, two major problems prevent it from general usage: 

(a) Tracking failure in low textured scenes (Fu et al., 2019). Low textures are 

commonly generated by the white wall, occlusion, and illumination. Compared 
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with manual operation, the mobile platform lacks the ability to understand the 

environment, and cannot avoid low textures by selecting a good camera view. 

Traditional methods rely on point features to estimate the position and orientation 

of the mobile platform, but these features are hard to detect and match under low 

textured scenes. Therefore, the mobile platform may fail to track itself 

continuously. 

(b) Accumulating drift during mobile platform operation (Filipenko & Afanasyev, 

2018). The tracking result of the mobile platform has a drift due to the following 

factors: (a) image noise; (b) incorrect feature detection and matching; (c) low-

quality initial guess of the mobile platform pose. This drift is always accumulating, 

and the accuracy of the RGB-D SLAM system is reduced after long-term 

operation. This is unfavourable for the real-time operation of the mobile platform, 

which demands high-precision positions and orientations. 

The system continuity in low textured scenes can be enhanced by fusing other features 

(i.e., lines, planes, and objects) (Bowman et al., 2017; Gomez-Ojeda et al., 2019; 

Taguchi et al., 2013). These high-level features still exist in low textured scenes. They 

can provide additional feature matches for pose estimation when point features are 

unavailable. An alternative method to improve the system continuity is to combine 

with photometric information, which is less affected by low textures (Engel et al., 

2017; Engel et al., 2014). The system accuracy is commonly improved by backend 

optimization techniques, such as loop closing and bundle adjustment (Mur-Artal et al., 

2015). The former reduces the tracking drift when the mobile platform re-visits an old 

place, while the latter uses joint optimization to correct the localization error in a local 

sliding window. Sensor fusion is also a feasible way for drift compensation (Qin et 

al., 2018; Wu et al., 2017). Inertial measurement unit (IMU) and wheel odometer are 

commonly equipped on the mobile platform. They can measure the relative motion of 

the platform and provide a good initial guess for RGB-D SLAM. Furthermore, the 

integrated measurements of IMU and wheel odometer are accurate in a short period, 
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which can be coupled with visual measurements to further improve the system 

accuracy.  

This thesis aims to (a) solve the first problem and then enhance the continuity of the 

RGB-D SLAM system for the mobile platform by exploiting the features from the 

RGB-D camera; and (b) solve the second problem and then improve the system 

accuracy by utilizing the motion measurements from the wheel odometer. 

1.2 Objectives and contributions 

To achieve the above aim, two main objectives are addressed in this thesis.  

(a) Fusing hybrid features to avoid the tracking failure of the mobile platform.  

While point features are plentiful in rich textured scenes, they are hard to detect 

and match in low textured scenes. On the other hand, high-level features(i.e., lines 

and planes) still exist and are predominant in such challenging scenes. They are 

more reliable than point features because: (a) they are less affected by image noise; 

and (b) depth outliers can be detected and removed during line or plane fitting. 

The onboard computer on the mobile platform can afford the computation cost of 

handling line and plane features by utilizing a multi-thread design. Therefore, 

fusing hybrid features (i.e., points, lines, and planes) is feasible to avoid tracking 

failure in low textured scenes.  

(b) Combining the wheel odometer and the RGB-D camera to reduce the tracking 

drift.  

Though backend techniques (i.e., loop closing and bundle adjustment) have been 

applied to reduce the accumulating drift of the RGB-D SLAM system (Mur-Artal 

et al., 2015), the system accuracy can be further enhanced by combining an 

additional sensor installed on the mobile platform (i.e., a wheel odometer). The 

wheel odometer can measure the relative motion of the mobile platform and 
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predict an initial value for the RGB-D SLAM system. It helps the results of pose 

estimation avoid falling into local optima, which is a non-convex problem (Wang 

et al., 2017). In addition, the integrated measurements from the wheel odometer 

are accurate in a short period. They can provide additional constraints for mobile 

platform tracking and reduce the drift of the system using the graph optimization 

technique. 

Pursuing the above objectives, a lot of studies have been carried out. The main 

contributions of the thesis research are summarized as follows: 

(a) The first contribution is related to the fusion of the point and line features.  

The existing methods exploit either 3D–3D or 3D–2D line correspondences for 

pose estimation (Cheng & Wang, 2018; Fu et al., 2019; Lu & Song, 2015; Y. Zhou 

et al., 2018). This thesis proposes a new method to combine both correspondences 

and utilizes more line information than the previous methods. If the depth 

measurements on the detected 2D lines are valid and can be used to fit a 3D line 

with small fitting errors, 3D-3D line correspondences are employed in the new 

method, which contains more depth information than 3D-2D line correspondences. 

In contrast, if the depth measurements are invalid or the line fitting errors are too 

large, 3D-2D line correspondences are utilized, which are neglected by those 

methods using only 3D–3D correspondences. In the new method, the camera pose 

is estimated by minimizing a new cost function, which consists of the point 

reprojection errors, and the 3D and 2D line reprojection errors. Compared with 

the previous methods, the new cost function utilizes more constraints from line 

features and can therefore yield higher localization accuracy.  

The performance of the new method is evaluated on both TUM RGB-D datasets 

and real-world experiments and compared with SOTA methods. The results on 

public datasets show that it can yield higher continuity in low textured scenes than 

other point-based or line-based methods. In addition, it can improve the 
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localization accuracy of the method using 3D-3D line correspondences by 22.5% 

and enhance its mapping accuracy by 10.2%. The improvements over the method 

utilizing 3D-2D line correspondences are 25.8% and 14.7% in consideration of 

the localization and mapping accuracies, respectively. 

(b) The second contribution is related to the fusion of point and plane features. 

While most of the existing plane-based methods just assign experimental weights 

to the plane features (Guo et al., 2019; Hsiao et al., 2017; Kaess, 2015; Taguchi et 

al., 2013), this thesis derives the variance-covariance matrix of the plane 

measurements in the spherical form based on plane fitting and covariance 

propagation. A new cost function is constructed for pose estimation, which fuses 

the point reprojection error and the plane transformation error based on the derived 

variance-covariance matrix instead of experimental weights.  

Furthermore, the parallel and vertical relationships among the indoor structures 

are not exploited properly by the previous methods. Most of them assume that all 

the surfaces in the operation scenes are parallel to three main orthogonal directions, 

which is called Manhattan World (MW) assumption (Kim, Coltin, et al., 2018a, 

2018b; Yanyan Li, Nikolas Brasch, et al., 2020a; Yanyan Li, Raza Yunus, et al., 

2020; Zhou et al., 2016). Though the assumption is beneficial for exploiting 

structural regularity, it may lead to wrong tracking results when the assumption is 

not strictly satisfied. Less strict assumptions of the operation scene are utilized by 

some studies, such as the Atlanta World (Joo et al., 2019), the mixture of MW 

frames (Straub et al., 2014), and the Stata Center World (Kaneko & Ichinose, 

2019). Different from the previous work, this thesis develops a new representation 

form for plane features, which can avoid the backward of the MW assumption and 

also preserve the structural regularity. It represents a new plane using the parallel 

and vertical relationships among the planes and MW axes. A new factor graph 

utilizing the new representation form is built for pose optimization, which can 
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further enhance the localization and mapping accuracy of the RGB-D SLAM 

system. 

A new method for fusing point and plane features is proposed based on the 

analytical covariances and the new representation form for plane features. It yields 

higher continuity than feature point-based methods in low textured scenes, and 

outperforms other SOTA methods in rich textured scenes. In the lab room 

experiment, the localization accuracy is improved by 23.6% using the analytical 

covariances, and enhanced by 27.6% using the new representation form. In the 

corridor experiment, the proposed method can improve the mapping accuracy by 

11.5% owing to the analytical covariances, and by 8.8% using the new 

representation form. 

(c) The third part is related to the combination of the RGB-D camera and the wheel 

odometer. 

Few studies are conducted in this area (Labbé & Michaud, 2019; Ligocki & 

Jelínek, 2019; D. Yang et al., 2019). Some of them use a  loose-coupled design 

and do not exploit the potential of the integrated measurements from the wheel 

odometer. In addition, they assume the mobile platform moves on a flat ground 

plane without perturbation, which is not practical and may lead to non-optimal 

estimation results. This thesis proposes a tight-coupled method combining the 

RGB-D camera and the wheel odometer. It develops a two-step strategy to handle 

the perturbation of the mobile platform on the floor: (a) firstly, the Mahalanobis 

distance test is employed to detect the perturbation; (b) secondly, the ground plane 

is detected, and its coefficients are used to constrain the mobile platform. A new 

factor graph is constructed in the proposed method, which consists of the visual 

and wheel odometer constraints and the constraints from the planar motion 

assumption. The associated errors and covariances of these constraints are derived 

and fused in the new factor graph. The potential of the integrated measurements 

of the wheel odometer is further exploited by joint optimization. 
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The proposed method is evaluated using the experiments in a lab room and a 

corridor. It can outperform other SOTA methods in consideration of both 

localization and mapping. Compared with the loose-coupled method using a hard 

planar motion assumption, the proposed method can improve the localization and 

mapping accuracy by 40.7% and 33.8%, respectively. 

1.3 Structure of the dissertation 

The main contents of the remaining chapters are summarized as follows. 

Chapter 2 reviews the literature about mobile platforms, onboard sensors, scene 

representations, and SLAM algorithms. The mobile platforms are utilized to fulfill the 

navigation task, the sensors are equipped on the mobile platforms for localization and 

mapping, different types of maps are applied to represent the operation scenes for 

direct understanding, and finally, the SLAM algorithms are the core methodologies to 

localize the mobile platform and reconstruct the operation scene using the sensors 

equipped on the platform. 

Chapter 3 proposes a new RGB-D SLAM system fusing point and line features for 

low textured scenes. It firstly investigates the representation types of the point and 

line features for projection and optimization, and then introduces the extraction and 

matching pipeline of these features. Both the 3D and 2D line reprojection errors are 

exploited with the point reprojection errors, and a new cost function is built based on 

these errors for pose optimization. Finally, extensive experiments are conducted to 

prove the superiority of the proposed system by comparing it with other SOTA 

methods.  

Chapter 4 proposed s new RGB-D SLAM system fusing point and plane features. It 

first investigates the representation types for plane features and introduces a new 

representation form using the vertical and parallel relationships among planes and 

MW axes. Then it introduces the pipeline of extracting and matching plane features. 
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A new cost function is built by fusing the point reprojection errors and the plane 

transformation errors based on their analytical covariances. A new factor graph is 

constructed by utilizing the new representation type for plane features. Finally, 

extensive experiments are carried out to evaluate the performance of the proposed 

system and compare it with other SOTA methods.  

Chapter 5 introduces a tight-coupled localization and mapping system for the mobile 

platform navigation by fusing the RGB-D camera and the wheel odometer under the 

planar motion assumption. It first investigates the measurement model for wheel 

odometer integration. Then it derives the errors and covariances of the wheel 

odometer constraints and the planar motion constraints. After that, a new factor graph 

is built by fusing the visual, wheel odometer, and planar motion constraints. 

Experiments are conducted in a lab room and in a corridor, respectively, to prove that 

the proposed system generates higher localization and mapping accuracy than other 

SOTA methods.  

Chapter 6 proposes a comprehensive real-time RGB-D SLAM system by hybrid 

feature fusion and wheel odometer integration. The proposed system is based on the 

core techniques proposed in the last three chapters: (a) fusing point and line features; 

(b) fusing point and plane features; (c) fusing the RGB-D camera and the wheel 

odometer under the planar motion assumption. Experiments in the lab room and the 

corridor are carried out and show that the comprehensive system can outperform the 

systems presented in the last three chapters owing to both hybrid features fusion and 

wheel odometer integration. 

Chapter 7 draws the conclusions based on the methodologies and experiments results 

from Chapter 3 to Chapter 6, and then offers recommendations for future research 

plans. 
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CHAPTER 2 

RELATED WORKS  

This chapter aims to deliver a detailed and selective review of previous research works, 

with the purpose of offering an insight into the background of the research studies 

endeavoured in this thesis. It focuses on reviewing the localization and mapping 

algorithms but also attempts to give a basic introduction about the mobile platforms, 

the onboard sensors, and the scene representations.  

Mobile platforms are the main body to fulfill navigation or other high-level tasks 

(Rubio et al., 2019). They can be divided into the following types based on the 

locomotion system: (a) stationary; (b) water-based; (c) air-based; and (d) land-based.  

The most common mobile platform is land-based, which can be further classified into 

three sub-types: (a) wheeled (Chan et al., 2013); (b) legged (Wieber et al., 2016); and 

(c) tracked (Vu et al., 2008). This thesis mainly focuses on the wheeled mobile 

platform, which applies wheels for platform mobility. Compared with the legged and 

tracked mobile platforms using legs and threads respectively, wheels are cheap and 

easy to control on the flat ground.  

2.1 Onboard sensors 

Mobile platforms are equipped with sensors to locate themselves and percept the 

operation scenes, which is necessary for subsequent tasks, such as navigation, 

exploration, and grasping. In general, onboard sensors can be divided into two sub-

types: (a) the internal sensors, which measure the self-motion of the mobile platform, 

such as the angular rate, accelerometers, and wheel speed; (b) the external sensors, 

which measures the operation scenes, such as the light intensity and the distance from 

the sensors to the scene surfaces (Coiffet & Chirouze, 2012). The internal sensors and 

external sensors can be integrated to avoid the disadvantages of individual sensors. 
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Several popular sensors for mobile platforms are listed in Table 2.1 (Coiffet & 

Chirouze, 2012). In general, internal sensors, such as the IMU and the wheel odometer, 

are equipped on the mobile platform for motion control. They are applied on both 

indoor and outdoor scenes and can provide high-frequency output. An IMU is 

commonly equipped on a UAV for motion control as its roll and pitch are observable 

by aligning to the gravity direction. The disadvantage is the accumulating drift error 

of dead reckoning. In addition, the poses from the internal sensors are relative to the 

local coordinate system when the sensors start to work. On the other hand, GNSS can 

provide absolute positions for the mobile platform without the accumulating drift. But 

the results are only reliable in outdoor and open-sky scenes. Lidar and camera can be 

utilized in both indoor and outdoor environments for pose estimation. Compared with 

the camera, the Lidar has a long detection range and high-precision point cloud. On 

the other hand, the camera is also attractive because of its high-density pixels, low 

cost, and high portability. 

Table 2. 1 The advantages and disadvantages of several internal and external 

sensors. 

Onboard 

Sensors 

Operation 

Scenes 
Pros Cons 

internal 

sensors 

IMU 
indoor/ 

outdoor 

high-frequency output 

observable roll and pitch 

accumulating drift 

of dead reckoning 

wheel 

odometer 

indoor/ 

outdoor 

high-frequency output 

cheap and accessible 

accumulating drift 

of dead reckoning 

external 

sensors 

GNSS outdoor 
absolute position 

no accumulating drift 

no signal in indoor 

scenes 

Lidar 
indoor/ 

outdoor 

long detection range 

high-precision point 

cloud 

expensive 

big size 

camera 
indoor/ 

outdoor 

high-density pixels 

portability 

cheap 

short detection 

range 
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Among various kinds of  cameras, the RGB-D camera is the most suitable for indoor 

mobile platforms because it can provide high-quality depth images in real time on a 

commercial CPU. In terms of the principles to generate depth images, RGB-D 

cameras can be divided into two sub-types: (a) SL-based, such as Occipital Structure 

Sensor, Microsoft Kinect V1, and Asus Xtion PRO Live; (b) ToF-based, such as 

Microsoft Kinect V2, Intel Realsense L515, and Microsoft Azure Kinect (Albert et al., 

2020; Diaz et al., 2015; Lourenço & Araujo, 2021). Their parameters are compared in 

Table 2.2. Some cameras may have multiple resolutions, frequencies, and fields of 

views (FOVs), and only the suitable parameters for camera localization are listed 

below. 

Table 2. 2: Parameters of various types of RGB-D cameras. 

RGB-D 

camera 
Principle 

Depth 

Resolution 
Frequency FOV 

Working 

Range 

Occipital 

Structure 

Sensor 

SL 640×480 30/60 
H: 58.0° 

V: 45.0° 
0.4- 3.5m 

Microsoft 

Kinect V1 
SL 320×240 30 

H: 58.5° 

V: 46.6° 
1.2-3.5 m 

Asus 

Xtion 

PRO Live 

SL 640×480 60 
H: 58.0° 

V: 45.0° 
0.8-3.5 m 

Microsoft 

Kinect V2 
ToF 514×424 30 

H: 84.1° 

V: 53.8° 
0.5-4.5m 

Intel 

Realsense 

L515 

ToF 640×480 30 
H: 70.0° 

V: 55.0° 
0.25-9.0m 

Microsoft 

Azure 

Kinect 

ToF 640×576 30 
H: 75.0° 

V: 65.0° 
0.5-3.9m 
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2.2 Scene representations 

The operation scene is reconstructed by the onboard sensors. For purposes of 

visualization, interaction, localization, mapping, or planning, the reconstructed scene 

must be understood by the onboard computer (Slabaugh et al., 2001). Five types of 

maps are utilized corresponding to different purposes: (a) feature point map (Klein & 

Murray, 2007); (b) point cloud map (Rusu & Cousins, 2011); (c) voxel map (Muglikar 

et al., 2020); (d) mesh map (Cignoni et al., 2011); and (e) surfel map (Andersen et al., 

2010). In general, the voxel map is favoured by the navigation task of the mobile 

platform, point cloud and mesh are utilized for 3D reconstruction, the feature point 

map is applied in visual SLAM, and the surfel map is a mid-production for mesh 

generation. Their advantages and disadvantages are listed in Table 2.3 and discussed 

as follows.  

Table 2. 3: The advantages and disadvantages of scene representations. 

Scene representations Pros Cons 

feature point map lightweight too sparse 

point cloud map dense noisy; lack of relationship 

voxel map unified implicit 

mesh map explicit; lightweight 
unable to represent 

complicated scenes 

surfel map easy to update 
implicit; high 

computation cost 

2.2.1 Feature point map  

A feature point map stores the feature points in the operation scene and builds their 

relationships with selected camera poses. The indexes of the camera poses, and the 

pixel locations associated with the feature point are also contained in the map. This 

structure enables fast data association for bundle adjustment and re-localization, and 

is popularly applied in feature point-based SLAM methods, such as PTAM, ORB-

SLAM2, and VINS-mono (Klein & Murray, 2009; Mur-Artal & Tardós, 2017; Qin et 
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al., 2018). However, the feature points in this map are too sparse and thus not useful 

for obstacle avoidance and path planning. 

  

Figure 2. 1: Feature point map of Machine Hall in EuRoc MAV dataset (Burri et al., 

2016) constructed by FLVIS (Chen et al., 2020).  

2.2.2 Point cloud map  

A point cloud map stores a set of points in the operation scene, and these points are 

unique and have no relationship with each other. The advantage of the point cloud 

map is its convenience and ease of generation. Point clouds can be easily produced by 

Lidar, RGB-D camera, and photogrammetry techniques, and then integrated to build 

a more complete map (Rusu & Cousins, 2011). Voxel grid filter is essential when 

redundant points are inserted into the map, because it can keep fewer points in the 

region defined by the voxel resolution (Han et al., 2017). With the purpose of real-

time navigation based on a point cloud map, high-precision perception sensors are 

required to reduce the noise of the map, and the static operation scene is preferred 

because dynamic objects cannot be updated and removed quickly in the map (Gao et 

al., 2019; Whitty et al., 2010).   
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Figure 2. 2: Point cloud map of Navigation Lab in the Hong Kong Polytechnic 

University (PolyU).  

2.2.3 Voxel map  

A voxel or volumetric map divides the operation scene into voxels of equal size. These 

voxels are similar to the pixels in the 2D image plane. Each voxel can store its 

properties, such as colour, density, and species. Truncated Signed Distance Function 

(TSDF), Euclidean Signed Distance Function (ESDF), and occupancy maps are three 

popular voxel-based representation types. TSDF is popularly applied in direct SLAM 

methods (Dai et al., 2017; Newcombe, Izadi, et al., 2011). The signed distance to the 

nearest surface is maintained and updated in the voxel, and the surfaces of the objects 

and scenes can be easily extracted by the Marching Cubes algorithm (Lorensen & 

Cline, 1987). Occupancy and ESDF maps are gaining popularity in navigation 

applications. The former one stores the occupancy probability of each voxel, while 

the latter one stores the Euclidean distance to the nearest occupied voxel. A collision-

free path can be simply generated from an occupancy map (Hornung et al., 2013). 

ESDF further enables fast obstacle avoidance because the distance of every voxel to 

the nearby obstacle is straightforward (Chen et al., 2021).  
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Figure 2. 3: An occupancy map using octomap (Hornung et al., 2013).  

2.2.4 Mesh map  

Mesh is a collection of the vertices, edges, and faces, where the edges are the 

connection of the vertices and the faces are a close set of the edges (Smith, 2006). 

Owing to topological relationships inside the mesh, it becomes a popular intermediary 

for texture mapping. Mesh generation is also a hot topic in the area of computer 

graphics and geometric modeling. The main backward is that it is difficult to use mesh 

to represent scenes with complicated topological relationships, such as overlapping, 

separation, and containment. 

 

Figure 2. 4: A mesh model of a rabbit reconstructed by open3d (Q.-Y. Zhou et al., 

2018).  
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2.2.5 Surfel map 

Surfel is commonly used as a reference model for RGB-D frame alignment (Whelan 

et al., 2015; Whelan et al., 2016). Each surfel stores its position, normal, colour, 

weight, radius, initialization time, and last updated time. These properties are updated 

by weighted averaging when new depth images are inserted (Whelan et al., 2015). The 

noise of the depth is reduced by the averaging operation which is essential for 

producing a high-quality 3D mesh. In general,  due to the computation cost by 

updating the surfel and the memory cost by storing the surfel, GPU is required for the 

real-time processing (Andersen et al., 2010). 

 

Figure 2. 5: A surfel-based reconstruction model(Andersen et al., 2010).  

2.3 SLAM algorithms 

Localization and mapping are two basic tasks for the mobile platform’s navigation. In 

outdoor environments, the mobile platform is located by GNSS, and the map is 

constructed by ranging sensors. In indoor GNSS-denied scenes, the tasks of 

localization and mapping are simultaneously handled by the SLAM algorithms. This 

thesis focuses on using the RGB-D camera to track the mobile platform and 

reconstruct the operation scene. The attention of this section is paid to the SLAM 

algorithms based on the RGB-D camera. In addition, to show the origin and progress 
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of the RGB-D SLAM algorithms, related research works based on monocular and 

stereo cameras are also reviewed.  

In general, the SLAM algorithms can be divided into two categories based on their 

principles: (a) direct methods, which utilize all the photometric or geometric 

information from all the pixels; (b) feature-based methods, which exploits salient 

features(i.e., points, lines, and planes) (Aulinas et al., 2008). The advantages of the 

direct methods are twofold: (a) photometric or geometric information is less affected 

by low textures ; (b) direct methods provide a dense representation for mobile 

platform planning. The main backward is that high computation and memory 

resources are required, and these algorithms are usually implemented on a GPU. 

Feature-based methods are more lightweight and can run on a commercial CPU. 

Based on the exploited features, these methods can be further divided into: (a) point-

based methods (Mur-Artal et al., 2015); (b) line-based methods (Cheng & Wang, 

2018); and (c) plane-based methods (Ji et al., 2018). In addition, there are feature-

based methods attempting to build the MW frame for pose estimation, which is 

classified as MW-based methods (Zhou et al., 2016). MW axes are constructed using 

the parallel and vertical relationships among the point, line, and plane features (Zhou 

et al., 2016). In general, in the line-based methods, plane-based methods, and MW-

based methods, point features are also utilized to ensure tracking accuracy in rich 

textured scenes.  

To sum up, this section aims to review the research works about: (a) direct methods; 

and (b) feature-based methods, which is further divided into sub-types: (a) point-based 

methods; (b) line-based methods; (c) plane-based methods; and (d) MW-based 

methods. Their advantages and disadvantages are discussed as follows. 
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2.3.1 Direct methods  

This section first introduces the basic pipeline of the direct methods, then reviews the 

literature about monocular and RGB-D direct methods, and finally points out the 

drawback of these direct methods. 

In general, the basic pipeline of the direct methods includes (a) registering the current 

frame to the previous frame or a global model; (b) computing the camera pose by 

minimizing the photometric or geometric errors from all the pixels; (c) iteratively 

executing (a) and (b) until the update of camera pose reaches a threshold; (d) updating 

the global model using the new camera pose and point cloud (Izadi et al., 2011). 

The first complete direct monocular SLAM system is DTAM (Newcombe, Lovegrove, 

et al., 2011). The camera pose is computed by matching the current image with the 

synthetic view image from the 3D model. The cost function consists of the 

photometric errors from all the pixels. GPU is required for generating dense 3D 

models and registering the frames in DTAM. With the purpose of implementation on 

CPU, semi-dense direct methods and sparse direct methods are proposed to reduce the 

computation cost (Engel et al., 2017; Engel et al., 2014). A semi-dense map is used 

for scene representation in LSD-SLAM (Engel et al., 2014). Sparse points can be 

sampled from edges and weak intensity variations in DSO (Engel et al., 2017). 

Geometric camera calibration is integrated with photometric camera calibration to 

enhance the alignment quality. 

Kinect-Fusion is a masterpiece for direct RGB-D methods (Newcombe, Izadi, et al., 

2011). The current depth frame is aligned to a global volumetric model, and its pose 

is estimated by a coarse-to-fine Iterative Closest Point (ICP) algorithm. However, it 

is limited to small workspaces due to the high memory consumption. To lower the 

memory cost by map representation and updating, Whelan et al. (2012) present 

Kintinuous based on a shift volumetric map, and Nießner et al. (2013) maintain a 

lightweight map by combining the sparse volumetric grid and the voxel hashing.  
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The loop closure is also a hard task for direct methods, which commonly have the 

requirement to deliver consistent 3D models on the fly. Kähler et al. (2016) divided 

the scene into the submaps and associate them with their overlaps. Loop closure is 

detected by the randomized ferns (Glocker et al., 2013) and the poses of the submaps 

are refined by the global optimization. Then the individual submaps can be fused in 

real time. Elastic-Fusion develops a two-step approach to implement the loop closure 

(Whelan et al., 2015). Firstly, the local model-to-model optimization is applied to 

correct the local loop closure. Secondly, the randomized fern is applied to detect the 

global loop closure and the deformation graph is then refined after adding the loop 

closure constraint. Kerl et al. (2013) develop DVO-SLAM, which utilizes the 

photometric and depth geometry errors from all the pixels. It is much more efficient 

than other direct methods because it does not provide a dense voxel map. The loop 

closure is searched in a sphere around the keyframe position and selected based on 

the entropy ratio from the current keyframe to the loop candidate keyframe.  

Because of  the high computation cost by volume or surfel updating, most of the direct 

methods require GPU to perform in real time, which increases the surveying cost and 

limits their applications. 

2.3.2 Feature-based methods  

Feature-based methods are more efficient because they focus on only part of the 

salient features(i.e., points, lines, and planes). Therefore, they are preferred by the 

applications related to the mobile platform. Research works about point-based 

methods, line-based methods, plane-based methods, and MW-based methods are 

discussed in this section.  

2.3.2.1 Point-based methods 

Point-based methods detect and match the point features and then minimize the 

reprojection errors from the feature matches to compute the camera pose (Aulinas et 

al., 2008). This section first introduces the basic pipeline of these methods, and then 
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summarizes the literature about monocular and RGB-D point-based methods, and 

finally, conclude the disadvantages of these methods for indoor mobile platform 

navigation. 

In general, the basic pipeline of the feature point-based methods follows four steps: 

(a) Feature extraction.  

SIFT (Lowe, 1999) is the most popular handmade feature for Structure From 

Motion (SFM). However, its low speed is conflict with the requirement of the 

high-frequency output. With the purpose of the real-time implementation, low-

cost features are favoured by the SLAM algorithms, such as FAST, Brisk, Harris, 

and ORB (Leutenegger et al., 2011; Rosten & Drummond, 2006; Rublee et al., 

2011; Shi, 1994; Tareen & Saleem, 2018). Feature selection methods are studied, 

and different metrics are introduced to guide the feature selection, such as 

information gain, trace, and determinant (Davison, 2005; Kaess & Dellaert, 2009; 

Zhang et al., 2005; Zhao & Vela, 2018). Deep conventional neural networks are 

also explored for feature extraction with the development and availability of 

powerful hardware units (Di Febbo et al., 2018; Widya et al., 2018). 

(b) Feature matching (or data association).  

In general, point features are matched based on the descriptors (such as SIFT and 

ORB) or optical flow tracking (Horn & Schunck, 1981; Rublee et al., 2011; Tareen 

& Saleem, 2018). The outliers of feature matching can be removed by (a) ratio 

test; (b) cross-checking; and (c) geometry constraint. 

(c) Pose estimation (or frame alignment).  

The core of the SLAM algorithms is to compute the pose from valid feature 

matches. ICP and Perspective-n-Point (PnP) are two common algorithms for pose 

estimation in the point-based methods (Segal et al., 2009; Wu & Hu, 2006). The 
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former depends on 3D-3D point correspondences, while the latter focuses on 3D-

2D correspondences. Both algorithms attempt to minimize the geometric errors, 

while Liu et al. (2017) further combine the photometric errors to enhance the 

tracking accuracy of the RGB-D camera. In addition, the problem of pose 

estimation is often modelled as a factor graph in modern SLAM algorithms, and 

several optimization libraries are developed to provide fast and accurate solutions 

for this problem, such as g2o (Grisetti et al., 2011), ceres-solver (Agarwal & 

Mierle, 2012), iSAM2 (Kaess et al., 2012).   

(d) Loop closure.  

The SLAM algorithms should have the ability to detect and close the loop when 

the camera re-visits a place. The simplest way is to randomly match the current 

frame with the previous frames and then perform frame alignments. More 

effectively, loop candidates can be determined by Randomized Ferns (Glocker et 

al., 2014), Bag of Word (Gálvez-López & Tardos, 2012), and FABMAP 

(Cummins & Newman, 2008).  

The first successful monocular SLAM system is Mono-SLAM (Davison et al., 2007). 

It constructs a probabilistic feature point map consisting of camera poses, feature 

points, and their estimation uncertainties. The map is updated by Extended Kalman 

Filter (EKF) using a constant-velocity motion model. PTAM is the next milestone 

(Klein & Murray, 2009). In PTAM, bundle adjustment is executed in real time in a 

SLAM system for the first time, owing to the multi-thread design and the sparse 

structure of the Hessian matrix.  

An early RGB-D mapping system is developed by Henry et al. (2012), where FAST 

features and Calonder descriptors are applied to build the point feature matches. It 

uses the bag-of-word method to improve the speed of the loop closure detection and 

applies sparse bundle adjustment to improve the tracking accuracy. Engelhard et al. 

(2011) then introduce a hand-held RGB-D SLAM system for indoor mapping. The 
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basic pipeline includes SURF feature extraction and matching, ICP for pose 

estimation, and pose graph optimization for trajectory refinement. Endres et al. (2013) 

extend this work comprehensively with more types of features and map 

representations. It provides SURF, SIFT, and ORB features and evaluates their 

accuracy, robustness, and runtime on TUM datasets (Sturm et al., 2012). The 

experiment results indicate ORB is the most suitable for the real-time application. 

Both point cloud and octree-based maps are provided for 3D reconstruction (Hornung 

et al., 2013). Mur-Artal and Tardós (2017) propose ORB-SLAM2 that can handle 

monocular, stereo and RGB-D frames. It is the first work composed of three threads: 

(a) camera tracking, (b) local mapping; and (c) loop closing. The comprehensive 

backend is constructed by bundle adjustments and loop closing, which can 

significantly lower the trajectory drift. Tang et al. (2018) introduce a hybrid SLAM 

system handling the 2D–2D, 3D–2D, and 3D–3D point pairs, in which the initial 

camera pose is determined by the ICP using 3D–3D point pairs and then refined using 

all the pairs. Dai et al. (2017) develop Bundle-Fusion which applies a sparse-to-dense 

approach for the global pose estimation. Coarse camera poses are obtained by 

matching sparse SIFT features and refined by combining dense photometric and 

geometric information. Real-time mapping is achieved based on surface reintegration 

on GPU. 

Point features are essential for point-based methods. However, these features are hard 

to detect and match in low textured scenes, which may lead to the tracking failure of 

the mobile platform. On the other hand, line and plane features are still existing in 

such scenes, which can provide additional constraints for mobile platform tracking 

and enhance the continuity of the SLAM system. 

2.3.2.2 Line-based methods 

Line-based methods minimize the line reprojection errors from the line features for 

pose estimation. The basic pipeline is similar to that of point-based methods, but the 

method to detect and match line features is changed. This section introduces the 

progress of the line-based methods and shows their backward. 
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Lemaire and Lacroix (2007) propose a line-based monocular SLAM using EKF. The 

3D line is represented by a Plücker coordinate and stored in a vector state together 

with the camera pose. Pumarola et al. (2017) build PL-SLAM upon ORB-SLAM, 

which is a monocular SLAM system. The 3D line is represented by the endpoints on 

the line, and the endpoint-to-line error is combined with the point reprojection error 

for pose estimation. Gomez-Ojeda et al. (2019) extend it to a stereo version and apply 

the line descriptors in the bag-of-words approach for the loop closure detection. He et 

al. (2018) develop a tightly coupled visual-inertial odometry fusing point and line 

features. The Plücker coordinate and orthonormal representation are applied to 

represent and update the 3D line in a sliding-window framework (Bartoli & Sturm, 

2005). Lu and Song (2015) design a robust RGB-D odometry fusing both points and 

lines. It uses two endpoints to represent a 3D line. 3D points are sampled on the 3D 

line and used to build the 3D point-to-line errors. Fu et al. (2019) extend PL-SLAM 

to the RGB-D version. It also uses endpoints to parametrize the 3D line, and project 

the 3D line to the 2D line segment on an image. Zhou et al. (2018) present Canny-VO, 

which extracts Canny edge features and calculates the camera pose based on the 3D–

2D edge alignment. 

The inevitable backward of the line-based methods is the additional cost by the line 

features. In addition, these methods exploit either 3D–3D line correspondences or 3D–

2D line correspondences. For the methods based on 3D lines, 2D line segments are 

neglected. On the other hand, for the methods based on 2D lines, the depth 

measurements on the lines are ignored. Therefore, part of the line information is not 

utilized by these methods, which may reduce the tracking and mapping quality. To 

avoid the disadvantage, this thesis proposes a new method combining both 3D-3D and 

3D-2D line correspondences, which will be introduced in Chapter 3. 

2.3.2.3 Plane-based methods 

Plane-based methods pay attention to the plane transformation errors. The basic 

pipeline of these methods is similar to that of the point-based methods, but the 

methodologies to extract and match the plane features are different. This section 
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reviews the significant research works in the plane-based methods and point out their 

disadvantages.   

Kaess (2015) designs a 3D SLAM system using plane features and represents them 

by unit quaternions. However, there are not always enough planes to fully constrain 

the camera poses. Taguchi et al. (2013) propose a point-plane SLAM, which fuses 

point and plane features using a Random sample consensus (RANSAC) framework. 

Additional point features can provide more geometry constraints to help the pose 

estimation. Ma et al. (2016) develop CPA-SLAM, which performs a two-step 

approach to align the RGB-D frames: first frame-to-keyframe alignment and then 

frame-to-plane alignment. It applies planes for both scene representation and graph 

optimization. The disadvantage is that it requires GPU for real-time mapping. Hsiao 

et al. (2017) introduce a keyframe-based dense planar SLAM system. The initial 

camera pose is provided by a dense visual odometry (Kerl et al., 2013), and then used 

for plane association. It builds a factor graph to refine camera poses and plane features 

together, which consists of both visual odometry constraints and pose-to-plane 

constraints. Hsiao et al. (2018) extend this work to a planar-inertial system, which 

further exploits pre-integration IMU constraints and structural constraints between 

nearby planes. Zhang et al. (2019) develop a point-plane SLAM exploiting the 

supposed planes from the plane intersections. Contour points are used to robustly 

associate the planes and structural constraints are added to reduce the localization drift. 

Li et al. (2020) develop an improved plane fitting approach by minimizing the radial 

distances with a rigorous error model, which can fit planes from noisy depth images 

with high accuracy.  

Weighting point and plane measurements is essential for accurate pose estimation. 

However, most of these plane-based methods just assign experimental weights for 

different kinds of feature measurements, which is non-optimal for pose estimation. To 

avoid this disadvantage, this thesis derives the covariance of the plane measurements 

by plane fitting and covariance propagation, and fuse the point and plane features 

based on their analytical covariances in Chapter 4. 
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2.3.2.4 MW-based methods  

Besides the measurements from the point, line, and plane features, MW-based 

methods attempt to further constrain the camera pose by exploiting the MW 

assumption. It assumes that all the surfaces in the operation scenes are aligned with 

three orthogonal directions, which define the MW axes. This section introduces the 

basic pipeline of the MW-based methods, summarizes the important works, and 

finally points out the backward of these methods. 

The pipeline of the MW-based methods is different from other feature-based methods. 

In general, the rotation and translation of the camera pose are decoupled and computed 

separately in the MW-based methods. In addition, MW axes are built from the parallel 

lines and main planes for the rotation estimation.  

Zhou et al. (2016) propose a mean shift algorithm to track the plane directions for the 

rotation estimation, and the translation component is solved by three 1D density 

alignments. Kim et al. (2018b) combine the vanishing directions of lines and the 

normal vectors of planes to recover the drift-free rotation, and then compute the 

translation vector by minimizing the de-rotated reprojection errors. This work is then 

extended to a linear SLAM system based on Kalman Filter by Kim et al. (2018). The 

rotation matrix is computed using the structure regularity, and then the translation 

vector and the plane features are updated as a state vector in the EKF framework. Li 

et al. (2020a) propose Structure-SLAM, where camera rotation is estimated by the 

MW frame alignment using parallel lines and surface normals. Then the translation is 

computed from the reprojection errors of point and line features. It is extended to a 

more comprehensive framework by Li et al. (2020) which refines the translation 

estimation module by fusing point, line, and plane features. 

The main disadvantage of these MW-based methods is that they may fail in operation 

scenes not satisfying the MW assumption strictly, as shown in Figure 2.6. For example, 

while Planes 1-3 and 6 extracted from walls can be aligned with the MW axes, Planes 
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4-5 from the cabinet are not parallel to any direction of the MW axes. Instead of using 

the MW assumption to exploit the structural regularity, this thesis proposes a new 

representation form for the plane features in Chapter 4, based on the parallel and 

vertical relationships among planes and MW axes. 

      

(a)                                                   (b)  

Figure 2. 6: An indoor scene does not satisfy the MW assumption strictly. (a) RGB 

capture of the scene; (b) plane segmentation result. 

2.4 Sensor fusion  

Though the continuity of the point-based methods is enhanced by fusing line and plane 

features, the tracking drift of the mobile platform is still a problem. In modern SLAM 

systems, backend optimization techniques are usually applied to reduce the tracking 

drift  (Grisetti et al., 2011; Kaess et al., 2012). For a mobile platform equipped with 

additional internal sensors, sensor fusion is a commercial and effective solution to 

further reduce the drift and enhance the tracking accuracy (Campos et al., 2020; 

Leutenegger et al., 2015; Qin et al., 2018). Compared with the pipeline of Visual 

SLAM algorithms, the algorithms of sensor fusion need to additionally process the 

measurements from the internal sensors and fuse them with the feature measurements 

from the cameras. 

This section firstly introduces the importance of the sensor fusion algorithms and their 

difference with Visual SLAM algorithms. Then it summarizes the research works 

about sensor fusion algorithms. Finally, the disadvantages of these algorithms are 
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discussed. Specifically, the research works are divided into three parts: (a) fusing the 

camera and the IMU; (b) fusing the camera and the wheel odometer; (c) fusing the 

RGB-D camera and the wheel odometer. 

The algorithms fusing the IMU and the camera are called visual-inertial SLAM, and 

can be divided into the filtering-based approaches (Li, 2014; Li & Mourikis, 2012, 

2013; Zhang et al., 2020) and the optimization-based approaches (Campos et al., 2020; 

Leutenegger et al., 2015; Qin et al., 2018). MSCKF (Li & Mourikis, 2013) is an EKF-

based approach, which builds a sliding window to store the state vector of the latest 

keyframe poses. Its computation complexity is linear in the number of features by 

excluding them in the state vector. Forster et al. (2016) introduce a pre-integration 

theory to iteratively compute the inertial constraints between the consecutive 

keyframes. The theory is then commonly applied in the SOTA visual-inertial systems 

(Campos et al., 2020; Leutenegger et al., 2015; Qin et al., 2018). Leutenegger et al. 

(2015) propose OKVIS, where visual and inertial constraints are processed 

simultaneously in a nonlinear optimization framework. ORB-SLAM3 and VINS-

mono further implement the modules of loop closure and map reuse to improve the 

tracking accuracy (Campos et al., 2020; Qin et al., 2018).  

Similar to the IMU, the wheel odometer can be fused with the camera to enhance the 

tracking accuracy of the mobile platform (Kang et al., 2019; Liu et al., 2019; Wu et 

al., 2017; Zheng & Liu, 2019; Zheng et al., 2018). Wu et al. (2017) derive the 

unobservability of the visual-inertial system on the wheeled platform and then 

incorporate the planar motion constraints to improve the tracking and mapping 

accuracy. They compare the deterministic and stochastic constraints of planar motion 

and show the benefits of the stochastic one, which is also utilized by other visual-

wheeled localization systems (Liu et al., 2019; Quan et al., 2019; Zheng et al., 2018). 

Quan et al. (2019) design a novel odometer error by fusing the wheel encoder and 

gyroscope measurements, and combine this error with the point reprojection error 

using factor graph optimization. Liu et al. (2019) present a comprehensive positioning 

system by combining the IMU, the camera, and the wheel encoder. It calibrates the 
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extrinsic parameters among these sensors in real time, which can help to improve the 

accuracy of the vehicle pose. 

The above methods can provide accurate positions for the mobile platform, but they 

cannot reconstruct the dense surrounding scenes, which is essential for obstacle 

avoidance and path planning. Accurate localization and dense mapping can be 

simultaneously implemented on a CPU in real time by fusing the RGB-D camera and 

the wheel odometer. However, the related studies are still few (Labbé & Michaud, 

2019; D. Yang et al., 2019). RTAB-Map is a comprehensive localization and mapping 

system which supports a variety of sensors(i.e., IMU, camera, Lidar, and wheel 

odometry) (Labbé & Michaud, 2019). It assumes the platform moves on the ground 

plane with no perturbations and uses a loose-coupled design to combine the RGB-D 

camera and the wheel odometer. Yang et al. (2019) present DRE-SLAM, which 

tightly fuses the RGB-D camera and wheel encoders in a factor graph. Dynamic 

objects are detected and removed to improve the localization accuracy in the dynamic 

scenes. However, it also employs a deterministic constraint for the planar motion 

assumption. The tracking and mapping accuracy can be reduced by the platform 

vibration on the uneven floor. 

To sum up, the research works about fusing the wheel odometer and the RGB-D 

camera are still few. The main disadvantage of these methods is that they apply a strict 

assumption for the motion of the mobile platform, which is not practical and may lead 

to non-optimal estimation results. In Chapter 5, a soft planar motion assumption is 

applied and a two-stage strategy is proposed to examine the assumption. To further 

improve the accuracy of the RGB-D SLAM system, the constraints from the RGB-D 

camera, the wheel odometer, and the planar motion assumption are tightly fused in a 

factor graph. 
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CHAPTER 3 

RGB-D SLAM FUSING POINT AND LINE FEATURES 

FOR LOW TEXTURED SCENES 

As discussed in Section 2.3.2, point-based methods are efficient and can be 

implemented on a commercial CPU in real time, which makes it suitable for the 

application of the mobile platform. However, in low textured scenes, these methods 

cannot provide reliable constraints because few points are extracted and many of them 

are wrongly matched. Despite low texture, most indoor scenes contain abundant high-

level geometry primitives(i.e., line features), which can be fused to aid mobile 

platform tracking. Lines have been widely applied in monocular and stereo SLAM 

systems (Gomez-Ojeda et al., 2019; He et al., 2018; Jeong & Lee, 2006; Lemaire & 

Lacroix, 2007; Yanyan Li, Nikolas Brasch, et al., 2020a; Pumarola et al., 2017; Zuo 

et al., 2017) but attracted less attention in the RGB-D research area (Fu et al., 2019; 

Lu & Song, 2015; Y. Zhou et al., 2018). Moreover, the existing line-based methods 

exploit either 3D line features or 2D line features and neglect part of the line 

information. 

In this chapter, to improve the continuity of mobile platform tracking in low textured 

scenes, a new RGB-D SLAM system fusing point and line features are proposed. The 

main contributions are as follows: 

(a) It exploits both 3D-3D and 3D-2D line correspondences and builds a new cost 

function by fusing the 3D and 2D line reprojection errors, which can utilize more 

line information than the previous line-based methods.  

(b) A new factor graph is built based on the above reprojection errors. It exploits more 

line constraints than the previous line-based methods during bundle adjustment 

and therefore can improve the tracking quality. 
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(c) The proposed system is evaluated on a public dataset and two real-world 

experiments. It yields the same-level accuracy in rich textured scenes compared 

with SOTA methods, and generates high continuity and accuracy in low textured 

scenes. In a lab room experiment, owing to the fusion of 3D and 2D line features, 

the proposed system generates better localization results than the systems utilizing 

3D or 2D line features, and can improve their localization accuracies by 22.5% 

and 25.8%. In a corridor experiment, the improvements of the mapping accuracy 

over the methods utilizing 3D or 2D line features are 10.2% and 14.7%, 

respectively. 

The remaining content of this chapter is divided into five parts, which focus on the 

system overview, preliminaries, the full pipeline of the proposed system, the 

experiments and results, and the summary, respectively.  

3.1 System overview  

The proposed system is built upon the open-source visual-inertial system FLVIS 

(Chen et al., 2020), which develops a feedback/feedforward loop to fuse the data from 

IMU and stereo/RGB-D cameras. To work in low textured scenes with only an RGB-

D camera, the function for IMU processing is disabled and specific support for the 

line features is added. 

As shown in Figure 3.1, the proposed system has two parts: frontend and backend. A 

feature map is maintained to store the camera poses, points, and lines, which can be 

updated by both frontend and backend. 

(a) Frontend: the frontend has one thread for pose tracking. Firstly, point and line 

features are detected in the current frame and matched with the previous frame. 

Secondly, the 3D information of the matched features in the world coordinate is 

searched in the feature map. Thirdly, a robust pose solver is built based on the 

point and line reprojection errors, and the wrong matches are deleted by the 
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Mahalanobis distance test. Fourthly, the camera pose is outputted, and the 3D 

model is expanded. Finally, the keyframe decision is made based on the relative 

motion and the matched features from the previous keyframe. The feature map 

will be updated if a new keyframe comes. 

(b) Backend: the backend has two threads, local mapping and loop closing. In the 

local mapping thread, a novel factor graph is built to update the feature map when 

a new keyframe arrives. In the loop closing thread, firstly, the arrived keyframe is 

transferred to a word vector by the bag-of-word approach, and the loop candidate 

is detected by the word vector comparison. The loop candidate is then verified by 

a geometry test by a RANSAC PnP algorithm. Finally, the loop closure is 

corrected by pose graph optimization. 

 

Figure 3. 1:  Overview of the proposed system fusing point and line features. 

3.2 Preliminaries 

This section introduces the representation types of the camera poses, point and line 

features as shown in Figure 3.2. The motion of the mobile platform can be computed 
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based on the camera pose and the extrinsic matrix between the camera and the mobile 

platform.  

 

Figure 3. 2: An illustration of the RGB-D camera and point and line measurements. 

3.2.1 Camera pose representation 

This study assumes that all the depth measurements have been calibrated and 

registered to the RGB camera frame, so only the RGB camera frame is considered for 

the coordinate transformation. The world frame is defined as the initial frame of the 

RGB-D camera. The camera pose is defined as the 6-DoF motion between the world 

frame and the RGB-D frame, which consists of a 3-DoF translation and a 3-DoF 

rotation. The translation is simply represented by a 3×1 vector, while the rotation has 

various representation types (Barfoot, 2017): (a) rotation matrix; (b) rotation vector 

(Lie algebra); (c) unit quaternion; (d) Euler angles. 

(a) The rotation matrix is a 3×3 orthogonal matrix whose determinant equals 1. The 

set of rotation matrices forms a Lie group, specifically,3D Special Orthogonal 

Group (SO3). 

SO(3) = {𝑹3×3|𝑹𝑹𝑇 = 𝑰, det(𝑹) = 1}                      (3.1) 



RGB-D SLAM fusing point and line features for low textured scenes 

34 

 

(b) The rotation vector is the Lie algebra corresponding to SO(3). It consists of a 

rotation axis 𝒏 = [𝑛1, 𝑛2, 𝑛3]
𝑇  and a rotation angle 𝛼 , and can be transformed 

from a rotation matrix by 

𝑹 = cos𝛼𝑰 + (1 − cos𝛼)𝒏𝒏𝑇 + 𝑠𝑖𝑛𝛼𝒏^                     (3.2) 

𝒏^ = [
0 −𝑛3 𝑛2

𝑛3 0 −𝑛1

−𝑛2 𝑛1 0
]                                  (3.3) 

where  ^ indicates the transform from a vector to a skew-symmetric matrix.  

(c) The unit quaternion can be transformed from the rotation vector by 

𝒒 = [𝑞1, 𝑞2, 𝑞3, 𝑞4]
𝑇 = [cos

𝛼

2
, 𝑛1sin

𝛼

2
, 𝑛2sin

𝛼

2
, 𝑛3sin

𝛼

2
]
𝑇

            (3.4) 

(d) The Euler angles consist of three rotation angles around different axes.  

Euler angles suffer from the problem of singularity, so it is not suitable for the 

interpolation and iteration steps in the SLAM algorithms. Both rotation matrix and 

unit quaternion are not compact. The former has 9 parameters, and the latter has 4 

parameters, so additional constraints are required for 3-DoF rotation estimation. Lie 

algebra is adopted in this thesis for its compactness. For the representation of the full 

6-DoF camera pose, transformation matrix T is constructed by a rotation matrix and 

a translation vector, whose set forms 3D Special Euclidean Group (SE(3)).  

SE(3) = {𝑻4×4 = [
𝑹3×3 𝒕3×1

𝟎1×3 1
] |𝑹 ∈ SO(3)}                           (3.5) 

Its Lie algebra is utilized for the iterative motion estimation and is associated with 

the Lie group by the matrix exponentials and logarithms. 

𝝃6×1 = log(𝑻4×4)
∨, 𝑻4×4 = exp(𝝃6×1

∧ )                          (3.6) 
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3.2.2 Point representation 

Two types of representations for the point feature have been generally utilized in 

SLAM algorithms: (a) its 3D position in the world frame; (b) its inverse depth on the 

first keyframe observing it. The second type can deal with large-depth scenes, but it 

involves the keyframe pose and is more complicated for transformation between 

different frames. The first type is selected in this thesis, which is more widely used. It 

is assumed that the 2D pixel measurement of a 3D point 𝑃𝑖 is 𝒑𝑖𝑐 = [𝑢𝑖𝑐 , 𝑣𝑖𝑐]
𝑇 and its 

depth measurement is 𝑝𝑑𝑖𝑐. When 𝑷𝑖 is observed by a new keyframe for the first time, 

its 3D position in the world frame can be recovered 𝑷𝑖𝑤 = [𝑥𝑖𝑤 , 𝑦𝑖𝑤 , 𝑧𝑖𝑤]𝑇 and added 

to the feature map. 

3.2.3 Line representation 

Lines can be represented by various types: (a) two endpoints; (b) Cartesian coordinate; 

(c) Plücker coordinate; (d) orthonormal representation. Both the Plücker coordinate 

and orthonormal representation are utilized for line parameterization in this chapter. 

The Plücker coordinate is convenient for the line transformation and projection, while 

orthonormal representation is compact with four DoFs. 

As shown in Figure 3.3, the Plücker coordinate consists of two 3D vectors d and m. It 

can be initialized by two points on the 3D line: 
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Figure 3. 3: Plücker coordinate of a straight line. 

𝓛𝑗𝑐 = [
𝑬𝑗𝑐 × 𝑺𝑗𝑐

𝑬𝑗𝑐 − 𝑺𝑗𝑐
] = [

𝒎𝑗𝑐

𝒅𝑗𝑐
]                                  (3.7) 

where 𝓛𝑗𝑐 is the Plücker coordinate of the 3D line in the camera frame, 𝑺𝑗𝑐 and 𝑬𝑗𝑐 

are two points on the line, 𝒎𝑗𝑐 is the normal of the plane constructed by the line and 

the frame origin, and 𝒅𝑗𝑐 is the line direction.  

To avoid the overparameterization problem caused by the Plücker coordinate with six 

parameters, orthonormal representation (𝑼,𝑾) ∈ SO(3) × SO(2)  is applied. The 

convention between the orthonormal representation and the Plücker coordinate is 

simply given below, and the detail can be referred to (Bartoli & Sturm, 2005; Zuo et 

al., 2017). 

𝑼 =  𝑹(𝝋) = [
𝒎

‖𝒎‖

𝒅

‖𝒅‖

𝒎×𝒅

‖𝒎×𝒅‖
]                            (3.8) 

where 𝑼 is a 3D rotation matrix and 𝝋 = [𝜑𝑥 , 𝜑𝑦 , 𝜑𝑧]
𝑇
 is the rotation vector. 

𝑾 = [
cos𝜃  –  sin𝜃
sin𝜃 cos𝜃

] =
1

√‖𝒎‖2+‖𝒅‖2
[
‖𝒎‖  – ‖𝒅‖
‖𝒅‖ ‖𝒎‖

]            (3.9) 

where W is the 2D rotation matrix and 𝜃 is the rotation angle. 
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𝝍 = [𝝋𝑇 , 𝜃]𝑇  is used for the minimal representation during the sliding window 

bundle adjustment. The Plücker coordinate of the 3D line can be transferred from 

the optimized 𝝍 by 

𝓛 = [𝑐𝑜𝑠𝜃𝒖1
𝑇 𝑠𝑖𝑛𝜃𝒖2

𝑇]                                        (3.10) 

where u1 and u2 are the first and second columns of 𝑼. 

3.3 Fusing point and line features 

The full pipeline of fusing the point and line features is introduced in this section, 

which consists of feature extraction and matching, robust pose solver, factor graph 

construction, and loop closure. 

3.3.1 Extraction and matching of point and line features 

Shi-Tomasi is used as the point feature extractor, which is improved based on the 

Harris corner (Shi, 1994). As shown in Figure 3.4(a), the image plane is divided into 

16 regions and newly detected features are added to these regions based on the score 

of the Harris index (Harris & Stephens, 1988). The maximum number of features in 

every region is set as 30.  

For the first frame, points are extracted from the colour image and their depths are 

recovered from the depth image. These points are then added to the feature map as 

landmarks. For the following frames, these points are tracked by the Lucas–Kanade 

optical flow (Lucas & Kanade, 1981), and new points will be re-extracted and 

selected from the 16 regions until the maximum number is reached. 

A more uniform distribution of point features is achieved by dividing the image into 

smaller regions and controlling the number of features in these regions. The values 

of the region number and the feature number in the region are tuned, and it is argued 

that 16 regions with a maximum of 30 features are suitable for images with 640×480 

resolution. 
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Line Segment Detector (LSD) is applied as the line feature extractor as shown in 

Figure 3.4(b), which can detect the line segments with high accuracy and fast speed 

(Von Gioi et al., 2012). The binary descriptor for the line segment is extracted using 

Line Band Descriptor (LBD), which is an efficient line descriptor with both 

appearance and geometry constraints (Zhang & Koch, 2013). 

   

(a)                                (b) 

Figure 3. 4: Point and line feature extractor. (a) Improved Shi-Tomasi extractor; (b) 

LSD. 

The combination of LSD and LBD can be implemented on a CPU in real time, and 

therefore has been widely applied in the line-based SLAM methods (Fu et al., 2019; 

Gomez-Ojeda et al., 2019; Yanyan Li, Nikolas Brasch, et al., 2020b; Lu & Song, 

2015; Pumarola et al., 2017). To further improve the speed, the number of the line 

features is controlled, and its maximum is settled as 100. Line features are selected 

based on the length and distribution and those with small lengths or near the 

boundary of the image are less likely to be selected. 

To effectively remove the outlier matches of the line features, the appearance 

information from LBD and the geometry information from LSD are combined for 

line feature matching, and a comprehensive three-step method is detailed below: 

(a)  Cross-check. FLANN (Muja & Lowe, 2009) is applied twice to match the line 

descriptors. In the first matching, the descriptors from the previous frame are set 
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as the query set, and those from the current frame are set as the train set. A matched 

descriptor DesT1 in the train set can be found for a descriptor DesQ1 in the query 

set. By contrast, in the second matching, the descriptors from the previous frame 

are set as the train set, and those from the current frame are set as the query set. 

Again, DesT2 and DesQ2 can be found. DesT1 and DesQ2 are from the previous 

frame, while DesT2 and DesQ1 are from the current frame. If DesT1 and DesQ2 

are the same descriptors, then DesT2 and DesQ1 should also have the same 

descriptor indices. Otherwise, they will be removed as the wrong feature match. 

(b) Ratio-test. It is assumed that DesT1 is the matched feature of DesQ1 after cross-

check, which means DesT1 has the smallest distance from DesQ1 among the train 

set. The ratio between DesT1 and the second smallest distance should be smaller 

than 0.75. Otherwise, the feature match for DesT1 and DesQ1 is rejected. 

(c) Geometry test. Based on the indexes of DesT1 and DesQ1, corresponding line 

segments are associated. LSD provides the orientation, length, and endpoints of 

the line segments. If the line segments have highly different orientations, lengths, 

or endpoints, the line match will be discarded and not used for the pose estimation. 

For a new keyframe, if extracted line features are not matched to any line landmark 

in the feature map, their Plücker coordinates will be computed and then inserted into 

the feature map using Eq. (3.7). 

3.3.2 Robust pose solver utilizing point and line features 

In this part, an infinite impulse response (IIR) filter is firstly introduced for updating 

the point landmark in the feature map. The IIR filter is a recursive filter, which 

outputs the 3D position of the point landmark in the current camera frame based on 

the measured 3D position and the projected 3D position. As the depth measurements 

are utilized to compute the measured 3D position, they are neglected during the pose 

estimation and only the pixel measurements are used. The 2D point reprojection 

error, 2D and 3D line reprojection errors are then derived, respectively. Finally, they 
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are combined to build a new cost function and detect the wrong feature matches 

based on the Mahalanobis distance test. 

3.3.2.1 Infinite iImpulse rponse filter 

If the tracked point feature has a reliable depth measurement, e.g., 𝑝𝑑𝑖𝑐 is larger than 

0.2 m and smaller than 6.0 m, its measured 3D position in the camera frame is 

derived by 

𝑷𝑖𝑐
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  𝑝𝑑𝑖𝑐𝑲

 −1[𝑢𝑖𝑐 , 𝑣𝑖𝑐 , 1]𝑇 , 𝑲 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]             (3.11) 

where 𝑲 is the intrinsic parameter matrix. 

The 3D position in the camera frame can be also projected from that in the world 

frame using the transformation matrix  

𝑷𝑖𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

= 𝑹𝑤
𝑐 𝑷𝑖𝑤 + 𝒕𝑤

𝑐                                     (3.12) 

The IIR filter is then applied to update the 3D  position by 

𝑷𝑖𝑐 = 𝜆𝑷𝑖𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

+ (1 − 𝜆) 𝑷𝑖𝑐
𝑚𝑒𝑎𝑠𝑢𝑟𝑒                        (3.13) 

where 𝜆 is the parameter of the IIR filter. The advantage of the IIR filter is that it 

utilizes all the measurements of the point landmark throughout the lifespan. The 

position error of the landmark will converge faster, and the negative effect of the 

depth outlier will be lowered. From the experience of tuning, the IIR filter works 

better if  𝜆 is set between 0.6 and 0.9. The value of 𝜆 indicates the confidence in the 

historical information in the feature map, while the value of 1 − 𝜆 means the 

confidence of the quality of the feature extractor and the depth measurements. 

3.3.2.2 2D point reprojection error 

If point 𝑷𝑖𝑤 is tracked to the camera frame, and the pixel measurements on the 

image plane are 𝒑𝑖𝑐, 2D point reprojection error is derived as 
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𝒓𝑖𝑐
2𝑝 = 𝒑𝑖𝑐 − 𝑓(𝑲( 𝑹𝑤

𝑐 𝑷𝑖𝑤 + 𝒕𝑤
𝑐 )), 𝑓 ([

𝑎
𝑏
𝑐
]) = [

𝑎/𝑐
𝑏/𝑐

]           (3.14) 

where 𝑓 is a normalization function. 

3.3.2.3 3D line reprojection error 

Plücker coordinate 𝓛𝒋𝑤 can be transformed from the world frame to the camera 

frame by 

𝓛𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

= [
𝒎𝑗𝑐

𝑝𝑟𝑜𝑗𝑒𝑐𝑡

𝒅𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

] [
𝑹𝑤

c 𝒕𝑤
c ∧ 𝑹𝑤

c

𝟎 𝑹𝑤
c ]  𝓛𝑗𝑤                          (3.15) 

If its associated 2D line segment is detected on the current frame, then the 2D pixels 

are sampled on the line and projected to the 3D space. If more than 70% of these 

points have reliable depth measurements, it is argued that the depth measurements 

along the 2D line segment are reliable. These points can be robustly fitted to the 

Cartesian coordinate and then transferred  to the Plücker coordinate 𝓛𝒋𝑐. 

Because both 𝓛𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

 and 𝓛𝒋𝑐 have six parameters that are over-parameterized, they 

are not used to build the 3D line reprojection error. Instead, they are transformed to 

orthonormal representation 𝝍𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

 and 𝝍𝒋𝑐 for compact comparison by Eq. (3.8) 

and (3.9). The 3D line reprojection error is derived as 

𝒓𝑗𝑐
3𝑙 = 𝝍𝒋𝑐 − 𝝍𝑗𝑐

𝑝𝑟𝑜𝑗𝑒𝑐𝑡
                              (3.16) 

3.3.3.4 2D line reprojection error 

If the depth measurements along the matched 2D line segment are not reliable, the 

Plücker coordinate 𝓛𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

  are projected from the camera frame to the image plane 

by 
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𝒍𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

= [

𝑙1
𝑙2
𝑙3

] = 𝓴𝒎𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

= [

𝑓𝑦 0 0

0 𝑓𝑥 0
−𝑓𝑦𝑐𝑥 −𝑓𝑥𝑐𝑦 𝑓𝑥𝑓𝑦

]𝒎𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

           (3.17) 

where 𝒎𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

 is the plane normal of 𝓛𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

, 𝒍𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

 is the 2D projected line and 

𝓴 is the line projection matrix. 

As shown in Figure 3.3, the 2D line reprojection error is defined as the distance from 

the endpoints to the projected line 𝒍𝑗𝑐
𝑝𝑟𝑜𝑗𝑒𝑐𝑡

 

𝒓𝑗𝑐
2𝑙 = [𝑟𝑗𝑐

2𝑠, 𝑟𝑗𝑐
2𝑒]

𝑇
= [

𝑢𝑗𝑐
𝑠 𝑙1+𝑣𝑗𝑐

𝑠 𝑙2+𝑙3

√𝑙1
2+𝑙2

2
,

𝑢𝑗𝑐
𝑒 𝑙1+𝑣𝑗𝑐

𝑒 𝑙2+𝑙3

√𝑙1
2+𝑙2

2
]

𝑇

                 (3.18) 

where 𝒔𝑗𝑐 = [𝑢𝑗𝑐
𝑠 , 𝑣𝑗𝑐

𝑠 ]𝑇 and 𝒆𝑗𝑐 = [𝑢𝑗𝑐
𝑒 , 𝑣𝑗𝑐

𝑒 ]𝑇 are the endpoints of the detected 

line segment on the image plane. 

3.3.3.5 Novel cost function 

Eq. (3.14), (3.16), and (3.18) are combined to build a novel cost function below 

∑ 𝜌 (‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
)𝑖 + ∑ 𝜌 (‖𝒓𝑗𝑐

3𝑙‖
𝚺𝑗𝑐

3𝑙

2
)𝑗 + ∑ 𝜌 (‖𝒓𝑗𝑐

2𝑙‖
𝚺𝑗𝑐

2𝑙

2
)𝑗                   (3.19) 

where 𝜌 is the Huber function and 𝚺 is the covariance matrix associated with the 

reprojection error. The covariance of 𝒓𝑖𝑐
2𝑝

 is a 2×2 identity matrix times the variance 

of pixel measurements 

𝚺𝑖𝑐
2𝑝 = 𝜎𝑝

2 [
1 0
0 1

]                                        (3.20) 

where 𝜎𝑝
2 = 1/12 (Proença & Gao, 2018). Eq. (3.18) indicates that 𝚺𝑗𝑐

2𝑙 can be 

propagated from the covariance of the endpoint pixels 𝒔𝑗𝑐 and 𝒆𝑗𝑐.  

𝚺𝑗𝑐
2𝑙 =

𝜕𝒓𝑗𝑐
2𝑙

𝜕𝒔𝒆𝑗𝑐
𝑑𝑖𝑎𝑔 (𝜎𝑢𝑗𝑐

𝑠
2 , 𝜎𝑣𝑗𝑐

𝑠
2 , 𝜎𝑢𝑗𝑐

𝑒
2 , 𝜎𝑣𝑗𝑐

𝑒
2 )

𝜕𝒓𝑗𝑐
2𝑙

𝜕𝒔𝒆𝑗𝑐

𝑇

≈ [
𝜎𝑢𝑗𝑐

𝑠
2 0

0 𝜎𝑢𝑗𝑐
𝑒

2 ]          (3.21) 
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𝒔𝒆𝑗𝑐 = [
𝒔𝑗𝑐

𝒆𝑗𝑐
] ,

𝜕𝒓𝑗𝑐
2𝑙

𝜕𝒔𝒆𝑗𝑐
= [

𝑙1

√𝑙1
2+𝑙2

2

𝑙2

√𝑙1
2+𝑙2

2

0 0

    

0 0
𝑙1

√𝑙1
2+𝑙2

2

𝑙2

√𝑙1
2+𝑙2

2
]

𝑇

                (3.22) 

On the other hand, 𝚺𝑗𝑐
3𝑙 is equal to the covariance of 3D line measurements 𝝍𝒋𝑐 , 

which can be propagated from 𝚺𝓛𝒋𝑐
 and 

𝜕𝒓𝑗𝑐
3𝑙

𝜕𝓛𝒋𝑐
.  

𝚺𝑗𝑐
3𝑙 =

𝜕𝒓𝑗𝑐
3𝑙

𝜕𝓛𝒋𝑐
𝚺𝓛𝒋𝑐

𝜕𝒓𝑗𝑐
3𝑙

𝜕𝓛𝒋𝑐

𝑇

,
𝜕𝒓𝑗𝑐

3𝑙

𝜕𝓛𝒋𝑐
=

𝜕𝝍𝒋𝑐

𝜕𝓛𝒋𝑐
                                    (3.23) 

where  𝚺𝓛𝒋𝑐
 and 

𝜕𝝍𝒋𝑐

𝜕𝓛𝒋𝑐
 are computed during line fitting (Bartoli & Sturm, 2005).  

In general, point-based methods utilizes the PnP algorithm for pose estimation and 

the cost function is ∑ 𝜌 (‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
)𝑖  . The cost function for the line-based methods 

based on 3D-3D line correspondences is ∑ 𝜌 (‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
)𝑖 + ∑ 𝜌 (‖𝒓𝑗𝑐

3𝑙‖
𝚺𝑗𝑐

3𝑙

2
)𝑗 , and 

that for the methods based on 3D-2D line correspondences is ∑ 𝜌 (‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
)𝑖 +

∑ 𝜌 (‖𝒓𝑗𝑐
2𝑙‖

𝚺𝑗𝑐
2𝑙

2
)𝑗 . The novel cost function can improve the continuity of the RGB-D 

SLAM system in low textured scenes owing to fusing line features. Furthermore, 

compared with the methods using either 3D-3D or 3D-2D line correspondences, the 

novel cost function utilizes more constraints from line features and can generate 

better pose estimation results. 

The iterative Gauss-Newton method implemented in g2o is applied to minimize the 

cost function and solve the camera pose 𝝃𝑤
𝑐  (Grisetti et al., 2011). The Chi-Square 

test is applied during the pose estimation process to remove the outlier feature 

matches and enhance the tracking quality. The details are as below: 

(a) The initial camera pose is solved by the RANSAC PnP method before minimizing 

the function. The wrong matches among the 2D features are filtered out by 

RANSAC. If the relative motion between the previous frame and the initial camera 
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pose exceeds a threshold, the initial guess from RANSAC PnP will be rejected 

and is calculated again using a constant-velocity motion model. The 

implementation of RANSAC PnP from OpenCV is directly used (Bradski & 

Kaehler, 2008). After 100 iterations, the point feature will be removed if its 

reprojection error is larger than three pixels. It is assumed that the camera motion 

during a short period follows a constant-velocity assumption, so the camera pose 

of the current frame can be predicted using the velocity and the camera pose of 

the previous frame. 

(b) For all the line matches, their 2D line reprojection errors are calculated based on 

the initial camera pose and the 3D line landmarks in the feature map using Eq. 

(3.18). The line matches associated with large initial line reprojection errors are 

filtered out. 

(c) The remaining feature matches are then sent to Eq. (3.19) for optimization. After 

every four iterations, wrong matches will be removed if they fail in the 

Mahalanobis distance test. Optimization is continued using the remaining matches. 

‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
< 𝜒 𝛼,𝑛2𝑝

 , ‖𝒓𝑗𝑐
3𝑙‖

𝚺𝑗𝑐
3𝑙

2
< 𝜒 𝛼,𝑛2𝑙

, ‖𝒓𝑗𝑐
2𝑙‖

𝚺𝑗𝑐
2𝑙

2
< 𝜒 𝛼,𝑛3𝑙

               (3.24) 

where 𝛼 the threshold of Chi-Square distribution, and 𝑛2𝑝 = 2 , 𝑛3𝑙 = 4 and 𝑛2𝑙 = 2 

are the degrees of freedom associated with the reprojection error. 

The analytical Jacobian matrices of line reprojection errors with respect to camera 

pose are derived in previous line-based methods (Bartoli & Sturm, 2005; Zhang et 

al., 2015). The proposed system uses the automatic differentiation in g2o to compute 

the Jacobian matrices (Grisetti et al., 2011). 

3.3.3 Point-line factor graph construction 

As shown in Figure 3.5, the frontend will publish a keyframe message if a new 

keyframe is determined by the relative motion from the previous keyframe. For 
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example, if the relative translation exceeds 0.1 m, or the relative rotation angle 

exceeds 0.2 rad, it is argued that the camera has moved enough, and the feature map 

needs to be updated by a new keyframe. 

 

Figure 3. 5: Data communication between tracking thread and local mapping 

thread, and the novel factor graph based on point and line features. 

The keyframe message contains the camera pose, and point and line associations 

attached to the current frame. If the keyframe message arrives in the local mapping 

thread, it will delete the oldest keyframe and add the new keyframe to the sliding-

window framework to fix the keyframe number. As well, the features that are 

observed only by the oldest keyframe will be deleted accordingly. 

A new factor graph in the downer part of Figure 3.5 is constructed using all the point 

and line reprojection errors in the sliding window. It consists of more constraints 

than previous line-based methods owing to the comprehensive 3D-3D and 3D-2D 

line correspondences, which is derived as 

∑ ∑ 𝜌 (‖𝒓𝑖𝑘
2𝑝‖

𝚺𝑖𝑘
2𝑝

2
) +𝑖𝑘 ∑ ∑ 𝜌 (‖𝒓𝑗𝑘

3𝑙‖
𝚺𝑗𝑘

3𝑙

2
) +𝑗𝑘 ∑ ∑ 𝜌 (‖𝒓𝑗𝑘

2𝑙‖
𝚺𝑗𝑘

2𝑙

2
)𝑗𝑘          (3-25) 
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where k, i, and j are the indexes of the keyframe poses, points, and lines, 

respectively. The oldest keyframe pose is set fixed, and all the other keyframe poses 

and features (i.e., 𝑻𝑤
𝑘 , 𝑷𝑖𝑤 and 𝝍𝑗𝑤) will be refined by the iterative Gauss-Newton 

method in g2o. Finally, the local mapping thread will publish a correction message 

to the frontend. The pose of the current frame and the related features will be 

updated accordingly. 

3.3.4 Loop closing 

The keyframe message is also sent to the loop closing thread, which has three parts, 

loop closure detection, loop closure verification, and pose graph optimization. 

3.3.4.1 Loop closure detection 

DboW2 is applied to detect loop candidates, which is a bag-of-word approach 

(Gálvez-López & Tardos, 2012). DboW2 has been widely applied for loop detection 

and shows the advantages in consideration of speed and accuracy (Mur-Artal & 

Tardós, 2017; Qin et al., 2018). 

ORB descriptors are extracted from the new keyframe and transferred to a word 

vector by DboW2. The loop candidate is determined by comparing the similarity 

score between the word vector of the new keyframe and the previous keyframe. To 

ensure the detection speed, accuracy, and precision of the loop candidate keyframe, 

four conditions are set: (a) The difference between the indexes of the new keyframe 

and the candidate keyframe exceeds 100. Therefore, a keyframe close to the new 

keyframe will not be selected; (b) The candidate keyframe has the highest score; (c) 

The highest score should exceed 0.15. Otherwise, it is argued that the similarities 

between the two keyframes are insufficient. (d) The scores of continuous three 

keyframes before the candidate keyframe exceed 0.12. Thus, an isolated keyframe 

with the highest score will be rejected, which may be caused by perceptual aliasing. 
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3.3.4.2 Loop closure verification 

Wrong loop closure may occur due to perceptual aliasing, especially when the 

surveying environment contains a similar texture. Therefore, the loop candidate 

should be verified by a geometry constraint. To build correspondences between the 

new keyframe and the candidate frame, FLANN is applied to associate their ORB 

descriptors. The wrong matches are ruled out by cross-checking and ratio-test first. 

Then the relative motion between the new keyframe and the loop candidate is 

calculated by RANSAC PnP. The loop candidate will be rejected if insufficient 

inlier matches are found, or the relative motion exceeds a threshold. 

3.3.4.3 Pose graph optimization 

Pose graph optimization will be performed to correct the loop closure if the loop 

candidate is verified by the geometry constraint. For the pose graph optimization, 

the vertexes are the keyframe poses, and the edges are the transformation matrices 

between the adjacent keyframes and those between the loop keyframes  

𝒓𝑚,𝑛 = log ( 𝑻𝑤
𝑘𝑚 −1 ∗ 𝑻𝑘𝑛

𝑘𝑚 ∗ 𝑻𝑤
𝑘𝑛 )

∨
                            (3-26) 

where km and kn are the indexes of the two keyframes associated with the edges.  

The cost function of pose graph optimization is built as 

∑ 𝜌(‖𝒓𝑎,𝑎+1‖
𝚺𝒂,𝒂+𝟏
2 )𝑎 + ∑ 𝜌(‖𝒓𝑙1,𝑙2‖

𝚺𝒍𝟏,𝒍𝟐
2 )𝑙                               (3-27) 

where 𝒓𝑎,𝑎+1 is the transformation error between the adjacent keyframes and 𝒓𝑙1,𝑙2 is 

the error between the loop keyframes. The loop closure is corrected by the iterative 

Gauss-Newton method in g2o, and the keyframe poses are refined accordingly. 

3.4 Experiments and results 

In this section, the performance of the proposed system is evaluated by TUM RGB-

D datasets and real-world experiments and compared with SOTA methods (Sturm et 
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al., 2012). All the experiments of the proposed system are carried out on a standard 

laptop (CPU: Core i5-5200U; RAM 8G). 

3.4.1 Evaluation metrics 

The absolute pose error (APE) is used to reflect the drift between the ground truth 

trajectory and the estimated trajectory. The root mean square error (RMSE) of APE 

is applied to evaluate the localization accuracy of the proposed system. The 

definitions of APE and RMSE are shown below 

𝐞𝑖 = 𝑡𝑟𝑎𝑛𝑠( 𝑻𝑔𝑡
𝑖 ) −  𝑡𝑟𝑎𝑛𝑠( 𝑻 𝑻𝑔𝑡

𝑒𝑠𝑡
𝑒𝑠𝑡

𝑖 )                         (3-28) 

RMSE = √∑ 𝐞𝑖
𝑇𝐞𝑖

𝑛
𝑖=1

𝑛
                                           (3-29) 

where 𝑻𝑔𝑡
𝑖  is the ground truth for camera pose, 𝑻𝑒𝑠𝑡

𝑖  is the estimated pose from the 

SLAM system, and 𝑻𝑔𝑡
𝑒𝑠𝑡  is the transformation between two trajectories by Umeyama 

alignment (Umeyama, 1991), trans represents the translation part of the pose. 

The relative improvement of method A over method B is defined as 

1 −
RMSE𝐴

RMSE𝐵
                                           (3-30) 

Similarly, to evaluate the mapping performance of the proposed system, the RMSE 

of the point-to-point distance (PTPD) is computed. PTPD is the distance between a 

point on the outputted 3D model and its corresponding point on the ground truth 

model after aligning two models by ICP. 

3.4.2 TUM RGB-D datasets 

TUM RGB-D datasets consist of sequences recorded with a Microsoft Kinect RGB-

D camera in a variety of scenes. The frequency of the datasets is 30 frames per 

second (FPS), and the resolution is 640×480. The ground truth trajectory is recorded 

with a high-accuracy motion capture system with 100 Hz. Ten sequences are 

selected for trajectory evaluation. fr1_desk, fr1_floor, fr2_desk and fr3_long_office 
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are common indoor scenes with texture and structure, fr3_nstr_tex_far and 

fr3_nstr_tex_near lack structure, fr3_str_ntex_far and fr3_str_ntex_near lack texture, 

and fr3_str_tex_far and fr3_str_tex_near contain highly discriminative texture. 

The performance of the proposed system is compared with SOTA systems, i.e., 

ORB-SLAM2, DVO-SLAM, LSD-SLAM, DSO, PL-SLAM and Canny-VO (Engel 

et al., 2017; Engel et al., 2014; Kerl et al., 2013; Mur-Artal & Tardós, 2017; 

Pumarola et al., 2017; Y. Zhou et al., 2018). PL-SLAM (Pumarola et al., 2017) is 

evaluated using the implementation from https://github.com/HarborC/PL-SLAM, as 

its original code is not open-sourced. The scales of trajectories from LSD-SLAM, 

DSO, and PL-SLAM (Engel et al., 2017; Engel et al., 2014; Pumarola et al., 2017) 

are corrected by aligning to the ground truth trajectories. Table 3.1 shows the 

comparison results of APE RMSE, where “-” represents tracking failure. The 

smallest values are bolded and indicate the best accuracy. 

Table 3. 1: Comparison of APE RMSE (cm) on TUM RGB-D datasets. 

Sequence 
Length 

(m) 

Propose

d 

ORB-

SLAM

2 

DVO-

SLAM 

LSD-

SLAM 
DSO 

PL-

SLAM 

Canny

-VO 

fr1_desk 9.3 4.6 2.1 2.4 10.7 - 3.0 4.4 

fr1_floor 12.6 3.2 6.1 10.2 38.1 5.5 3.0 2.1 

fr2_desk 18.9 4.5 1.7 1.7 4.5 - 1.4 3.7 

fr3_long_o

ffice 
21.5 6.5 4.1 3.5 38.5 14.4 - 8.5 

fr3_nstr_te

x_far 
4.3 7.0 5.6 2.8 18.3 4.8 - 2.6 

fr3_nstr_te

x_near 
13.5 3.3 3.5 7.3 7.5 3.6 3.5 9.0 

fr3_str_nte

x_far 
4.4 9.0 - 3.9 14.6 18.4 - 3.1 

fr3_str_nte

x_near 
3.8 3.7 - 2.1 - - - - 

fr3_str_tex

_far 
5.9 1.3 1.3 3.9 8.0 7.9 0.9 1.3 

fr3_str_tex

_near 
5.1 1.2 1.4 4.1 - 24.1 2.6 2.5 

https://github.com/HarborC/PL-SLAM
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In Table 3.1, most of the systems can yield high accuracy (RMSE/Length < 1%) in 

most of the selected sequences. ORB-SLAM2 yields the best accuracy in 1 sequence 

out of 10. The proposed system, DVO-SLAM, and PL-SLAM yield the best 

accuracy in two sequences, and Canny-VO achieves the highest accuracy in three 

sequences. 

ORB-SLAM2 fails in fr3_str_ntex_far and fr3_str_ntex_near with low texture as it 

is highly dependent on the point features. The performance of LSD-SLAM will 

degrade if the camera is too close to walls or floors, i.e., in fr3_str_ntex_near and 

fr3_str_tex_near. DSO delivers much worse results than its original paper (Engel et 

al., 2017) because the original datasets prepare photometric calibration files while 

TUM RGB-D datasets do not. PL-SLAM is built based on the monocular version of 

ORB-SLAM2. It can outperform ORB-SLAM2 in some sequences owing to the 

fusion of the line features, but four sequences are not successfully tracked. Canny-

VO fails in fr3_str_ntex_near due to the ambiguous structure. 

The proposed system and DVO-SLAM success in all the sequences. DVO-SLAM is 

a direct SLAM system exploiting the photometric and depth information from all the 

pixels instead of partial point features, so it can avoid tracking failure in low 

textured scenes. On the other hand, the continuity of the proposed system is from the 

fusion of both 3D and 2D line features. Therefore, it is concluded that compared 

with SOTA works, the proposed system yields a similar level of accuracy and high 

continuity in a variety of scenes. 

3.4.3 Lab room experiment 

This experiment is conducted in a laboratory room with a Kinect V2 camera 

mounted on a wheelchair. Qualisys, the motion capture system, is installed in the 

room as shown in Figure 3.6, which provides the ground truth of the trajectory 

(Qualisys, 2008). The sequence collected by Kinect V2 covers some challenging 

scenes, i.e., low texture, illumination variation, and glass window as shown in 
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Figure 3.7. The main difficulty of the sequence is that the wheelchair will cross the 

low textured wall. 

       

(a)                                           (b) 

Figure 3. 6: Experiment device. (a) Kinect v2 is mounted on a wheelchair. (b) 

Qualisys, the motion capture system. 

   

(a) (b) (c) 

Figure 3. 7: Challenging scenes. (a) Low texture; (b) Illumination variation; (c) 

Glass window. 

To further verify the improvement of the localization accuracy by the fusion of 

comprehensive line features, five evaluations of the experiment sequence is 

presented in Table 3.2: (a) ORB-SLAM2; (b) point; (c) point + 3D line; (d) point + 

2D line and (e) the proposed system. In Evaluations (b)–(d), some functions in the 

proposed system are disabled, so it runs with point feature, point + 3D line feature, 

and point + 2D line feature, respectively. The RMSE of the APE is used to evaluate 

the localization accuracy again. The smallest values are bolded and indicate the best 

accuracy. 
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Table 3. 2: Comparison of APE RMSE (cm) on the room sequence. 

Sequence 
Length 

(m) 

ORB-

SLAM2 
Point 

Point + 3D 

Line 

Point + 2D 

Line 
Proposed 

room 28.4 - 14.9 9.3 9.7 7.2 

The results in Table 3.2 indicate the benefits of the proposed system. ORB-SLAM2 

loses tracking when crossing the low textured wall, while other evaluations succeed. 

Considering the decrease of RMSE, the proposed system yields the best accuracy 

and can improve the accuracy of Evaluations (b)–(d) by 7.7 cm, 2.1 cm, and 2.5 cm, 

respectively, and the relative improvements are  51.6%, 22.5%, and 25.8%, 

respectively. 

The trajectories of Evaluations (b)–(e) are shown in Figure 3.8. The red circle in 

Figure 3.8(a) indicates the partial trajectory crossing the low textured wall. The 

green circle in Figure 3.8(d) indicates the closed loop of the trajectory. The blue 

circle in Figure 3.8(d) indicates the end of the trajectory. 

Due to lacking reliable and sufficient point features, Evaluation (b) has the highest 

trajectory error when crossing the wall, which is still significant after loop closing. 

For Evaluations (c)–(e), with the help of line features, the trajectory errors crossing 

the wall are much smaller. The values of the colour bar in Figure 3.8 also indicate 

the accuracy improvement of the proposed system. 
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(a) (b) 

  

(c) (d) 

Figure 3. 8: Comparison of estimated trajectories with ground truth on room 

sequence. (a) Point; (b) Point + 3D Line; (c) Point + 2D Line; (d) Proposed. 

Figure 3.9 shows the reconstruction models from ORB-SLAM2 and the proposed 

system. The red circle in Figure 3.9(a) indicates the low textured wall where ORB-

SLAM2 loses tracking. Therefore, only the partial trajectory is outputted, and the 

partial model is reconstructed by ORB-SLAM2. On the other hand, the proposed 

system can generate a complete 3D model owing to the line fusion. 
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(a) (b) 

Figure 3. 9: Reconstruction 3D models from simultaneous localization and mapping 

(SLAM) systems (a) ORB-SLAM2; (b) Proposed. 

3.4.4 Corridor experiment 

An experiment sequence is collected in a corridor with an iPad and a structure 

sensor. The ground truth of the corridor model is provided by NavVis M6, a high-

precision Lidar-based indoor mapping system. Figure 3.10 shows the ground truth 

model.  

 

Figure 3. 10: Ground truth of the corridor provided by NavVis M6. 
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To further verify the improvement of mapping accuracy by the proposed system, 

five evaluations are presented in Table 3.3: (a) ORB-SLAM2; (b) point; (c) point + 

3D line; (d) point + 2D line and (e) the proposed system. 3D corridor model is 

incrementally built based on the outputted camera pose and registered RGB-D 

frames. It is then compared with the ground truth. The reconstruction model and the 

ground truth are aligned by ICP and the RMSE of the PTPD are used to evaluate the 

reconstruction quality. 

As shown in Table 3.3, the smallest value is indicated in bold. The proposed system 

yields the highest mapping quality among all the evaluations. It can improve the 

mapping accuracy of the point-based method by 28.9%, that of the method using 3D 

line features by 10.2%, and that of the method using 2D line features by 14.7%. 

Table 3. 3: Comparison of RMSE (cm) of the point-to-point distance on the corridor 

sequence. 

Sequence Length (m) 
ORB-

SLAM2 
Point 

Point+3D 

Line 

Point + 2D 

Line 
Proposed 

corridor 60.8 27.2 30.1 23.8 25.1 21.4 

For a more intuitive comparison, the reconstruction models from five evaluations are 

shown in Figure 3.11. The colour of the model indicates the value of the point-to-

point distance. The red circles indicate the biggest point-to-point distances after the 

second turning of the corridor. The five circles in Figure 3.11(a–e) are of the same 

size, and the areas with the biggest distances are selected to indicate the mapping 

quality of the five evaluations. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 3. 11: Point-to-point distances between the reconstruction models and the 

ground truth. (a) ORB-SLAM; (b) Point; (c) Point + 3D Line; (d) Point + 2D Line; 

(e) Proposed. 

Evaluation (e) has the smallest area, Evaluation (b) has the biggest area, while 

Evaluations (c)–(d) both improve the mapping accuracy and have smaller areas than 
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Evaluation (b). Though the area of Evaluation (a) from ORB-SLAM2 is the second 

smallest, its point-to-point distance at the end of the corridor is higher than the rest 

evaluations, which increases the value of the RMSE in Table 3. It is argued that 

fusing 3D or 2D line features can improve the mapping quality, and the combination 

of both 3D and 2D line features in the proposed system can yield the best mapping 

quality in the five evaluations. 

3.4.5 Computation speed 

The computation speed of the proposed system is then investigated using the 

sequence collected in the corridor. The time consumption by the loop closure 

module is not listed as it is highly dependent on the keyframe number. Similarly, the 

time cost of incremental mapping is also increasing with the frame number, so its 

processing time is not listed either. Table 3.4 shows the processing time of each part 

in the tracking thread and local mapping thread and compares the total time cost 

with ORB-SLAM2. 

Table 3. 4: Processing time (ms) of each part of the proposed system. 

Thread Part Proposed ORB-SLAM2 

Tracking 

Optical Flow 7.5  

Line Extraction and 

Matching 
42.1  

Robust Pose Solver 2.3  

Shi-Tomasi Detection 7.6  

IIR Filter 1.0  

Total 60.4 32.1 

Local 

Mapping 
Factor Graph Optimization 115.3 186.3 

Due to the time consumption by line extraction, the tracking frequency of the 

proposed system is only half of ORB-SLAM2. The proposed system sacrifices the 

computation speed for higher continuity in low textured scenes.  The factor graph 
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optimization of the proposed system is much faster than that of ORB-SLAM2 for 

two reasons: 

(a) In the factor graph, the number of keyframes of the proposed system is lower than 

ORB-SLAM2. While the proposed system maintains a sliding window with 8 

keyframes, ORB-SLAM2 builds a co-visibility map for every keyframe, where 

the connected keyframes can be more than 20.  

(b) While ORB-SLAM2 needs to build a new optimizer using g2o for every keyframe, 

the proposed system maintains the same optimizer for every keyframe. Therefore, 

the optimizer of the proposed system can converge faster, and it also saves time 

to build the new optimizer. 

The average number of correct feature matches is listed in Table 3.5. The fusion of 

3D and 2D line features increases the number of measurements and contributes to 

the performance of the proposed system. 

Table 3. 5: Average number of correct feature matches. 

Types 
2D Point Feature 

Matches 

2D Line Feature 

Matches 

3D Line Feature 

Matches 

number 251.4 22.3 25.5 

3.5 Summary 

To improve the continuity of the RGB-D SLAM system in low textured scenes, a 

new method using point and line features is presented in this chapter. In summary, 

(a) This chapter investigates the representation types for camera poses, point features 

and line features. Lie algebra is utilized for camera pose optimization, 3D position 

is adopted for point refinement, Plücker coordinate is selected for line projection, 

and orthonormal representation is used for line optimization. 
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(b) This chapter exploits both 3D-3D and 3D-2D line correspondences, and then 

builds a new cost function utilizing both 3D and 2D line reprojection errors, which 

can utilize more line constraints than the previous line-based methods. 

(c) Experiment results of the TUM dataset show that the proposed system can achieve 

the same-level accuracy in rich textured scenes compared with SOTA methods 

and can improve their continuity in low textured scenes. The room experiment 

shows the improvements of the localization accuracy of the proposed system over 

the method using 3D line features and the method using 2D line features, which 

are 22.5% and 25.8, respectively. In the corridor experiment, the proposed system 

can improve the mapping accuracies of these two methods by 10.2% and 14.7%, 

respectively, owing to fusing 3D and 2D line features.
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CHAPTER 4 

RGB-D SLAM FUSING POINT AND PLANE 

FEATURES FOR LOW TEXTURED SCENES 

As discussed in Section 2.3.2, point-based methods are efficient but may lose 

tracking in low textured scenes. High-level features (i.e., planes) are predominant in 

the indoor scenes and can be extracted from structures and objects (i.e., floor, wall, 

ceiling, desk, and cabinet). They are less affected by low textures and can provide 

more constraints for mobile platform tracking. Though various plane-based 

algorithms (Guo et al., 2019; Hosseinzadeh et al., 2017; Hsiao et al., 2017; Kaess, 

2015; Taguchi et al., 2013; Yang et al., 2016; Zhang et al., 2019) have been 

proposed to fuse point and plane features, most of them just assign the experimental 

weights to plane measurements, which are non-optimal for pose estimation. 

Furthermore, the potential of structural regularity can be exploited from the plane 

features to enhance the tracking quality. By extracting MW axes from plane 

directions, MW-based methods can constrain the rotation of the mobile platform 

with high accuracy (Kim, Coltin, et al., 2018a, 2018b; Yanyan Li, Nikolas Brasch, et 

al., 2020a; Yanyan Li, Raza Yunus, et al., 2020; Zhou et al., 2016). However, they 

may fail in the operation scenes which are not strictly satisfying the MW 

assumption. 

In this chapter, to improve the continuity of the RGB-D SLAM system and also 

avoid the disadvantages of the previous plane-based and MW-based methods, a new 

system fusing point and plane features is proposed. Its main contributions are as 

follows: 

(a) The covariance of plane measurements in the spherical form is derived and a novel 

cost function is developed by fusing the point re-projection errors and the plane 

transformation errors based on the covariances. The new cost function can help to 
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generate more accurate pose estimation results than the previous methods using 

the experimental weights. 

(b) A new form for plane representation is developed, which utilizes the parallel and 

vertical relationships among planes and MW axes. It preserves the structural 

regularity in the operation scenes and does not rely on the MW assumption. To 

further improve the localization accuracy, a novel factor graph utilizing the new 

form is constructed to optimize the keyframe poses and the point and plane 

features. 

(c) The proposed system is evaluated on TUM RGB-D datasets and shows superior 

performance compared with SOTA methods. In the lab room experiment, the 

proposed system can avoid tracking failure while the point-based system loses 

tracking due to a low textured wall. In addition, the proposed system can improve 

the localization accuracy by 23.6% using the analytical covariances, and enhance 

that by 27.6% using the new representation form. In the corridor experiment, the 

improvements of the mapping accuracies are 11.5% and 8.8%, respectively. 

The remainder of this chapter is organized as follows. The system is overviewed in 

Section 4.1, the new representation form for plane features is introduced in Section 

4.2, the methodology of fusing point and plane features is detailed in Section 4.3, the 

experiment results are compared in Section 4.4, and the conclusion is drawn in 

Section 4.5. 

4.1 System overview 

As shown in Figure 4.1, the proposed system is comprised of three threads running 

on the robot operation system (ROS) (Quigley et al., 2009): tracking, local mapping, 

and loop closing. It is built upon FLVIS (Chen et al., 2020) with additional support 

for plane feature processing. The tracking thread is called frontend and provides 
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approximate estimation for camera pose. The combination of local mapping and 

loop closing threads is called backend and serves for pose refinement. 

(a) Frontend: Firstly, point and plane features are detected from the current frame and 

matched with the previous frame. Secondly, the feature matches and the 

covariances of feature measurements are sent to the pose solver, which combines 

the pose-to-point and pose-to-plane constraints. Thirdly, the camera pose is 

outputted for the 3D modelling. Finally, if the current frame is determined as a 

new keyframe, its pose and the detected features will be added to the feature map. 

New planes will be inserted by the new representation form based on its parallel 

and vertical relationships with previous parent planes.  

(b) Backend: In the local mapping thread, a new factor graph is built which represents 

the plane features using the new form and therefore encodes the parallel and 

vertical constraints in the operation scenes. Bundle adjustment is performed based 

on the new factor graph, which updates the keyframe poses, point and plane 

features simultaneously. The loop closing thread consists of three parts: loop 

closure detection, loop closure verification, and pose graph optimization. If a loop 

candidate is found by the bag-of-word approach (Gálvez-López & Tardos, 2012) 

and verified by the geometry check, pose graph optimization will be applied to 

correct the keyframe poses. 
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Figure 4. 1: Overview of the proposed system fusing point and plane features.  

4.2 A new representation form for plane feature 

The representation of the camera pose and the point feature is similar to Chapter 3 

and detailed in Section 3.1. Four representation types for plane features are applied 

in the proposed system: (a) the Hessian form; (b) the spherical form (Yang & 

Huang, 2018); (c) the inverse depth form (Tang et al., 2011); and  (d) the new form 

using parallel and vertical relationship among planes. 

A plane j in the world frame {w} can be represented by the Hessian form 𝝅𝑗𝑤 =

[𝒏𝑗𝑤
𝑇 , 𝑑𝑗𝑤]

𝑇
, where 𝒏𝑗𝑤 = [𝑛𝑥𝑗𝑤 , 𝑛𝑦𝑗𝑤 , 𝑛𝑧𝑗𝑤]

𝑇
  is the unit normal vector of the 

plane j, and 𝑑𝑗𝑤 is the distance from the origin to the plane. The point i on the plane 

j should satisfy 

𝒏𝑗𝑤
𝑇 𝑷𝑖𝑤 + 𝑑𝑗𝑤 = 0                                           (4.1) 

𝝅𝑗𝑤 can be transformed to 𝝅𝑗𝑐 in the camera frame by  

𝝅𝑗𝑐 = 𝑻𝑤
𝑐 −𝑇𝝅𝑗𝑤                                            (4.2) 
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The Hessian form is over-parametrized as it has four parameters while a 3D plane 

has three DoFs. If we consider the normal vector as a point on a unit sphere and 

transfer it to two angles, plane j can be represented by the spherical form with 

minimal parameters 

𝝉𝑗𝑤 = 𝑞(𝝅𝑗𝑤) = [𝜙𝑗𝑤 = arctan
𝑛𝑦𝑗𝑤

𝑛𝑥𝑗𝑤
, 𝜓𝑗𝑤 = arcsin 𝑛𝑧𝑗𝑤 , 𝑑𝑗𝑤]

𝑇

         (4.3) 

The inverse depth form 𝝁𝑗𝑤 = 𝒏𝑗𝑤/𝑑𝑗𝑤 is also compact, and later used for plane 

fitting and covariance estimation. In the proposed system, the planes in the feature 

map are divided into parent planes and child planes by the new type. MW axes can 

be easily extracted using the new form. The pipeline of representing a new plane is 

shown in Figure 4.2. 

 

Figure 4. 2: Pipeline of representing a new plane with the new type. 

(a) If the MW axes are built, the new plane is first matched with three MW 

axes  MW = [𝒓𝑥, 𝒓𝑦, 𝒓𝑧] . If it is parallel to any MW axis 𝒓𝑥 , the plane j is 

represented by the direction of the MW axis and a distance: 
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𝝅𝑗𝑤 = 𝑓𝑀𝑊(MW, 𝑑𝑗𝑤 ) = [𝒓𝑥
𝑇 , 𝑑𝑗𝑤]

𝑇
                            (4.4) 

(b) If MW is not built or the new plane is not parallel to any MW axis, the new plane 

will be matched with the parent planes in the feature map. If it is not parallel or 

vertical to any parent planes, it is marked as a new parent plane 𝝅𝑗𝑤. 

(c) If it is parallel to a parent plane 𝝅𝑗1𝑤, we will represent it as a parallel child plane 

of 𝝅𝑗1𝑤. 

𝝅𝑗𝑤 = 𝑓𝑝(𝝅𝑗1𝑤, 𝑑𝑗𝑤  ) = [𝒏𝑗1𝑤
𝑇 , 𝑑𝑗𝑤]

𝑇
                            (4.5) 

(d) If it is vertical to a parent plane 𝝅𝑗2𝑤, we will further match it with other child 

planes of 𝝅𝑗2𝑤. 

(e) If it is not vertical to any other planes that vertical to the parent plane, we will 

represent it as a vertical child plane of 𝝅𝑗2𝑤  

𝝅𝑗𝑤 = 𝑓𝑣(𝝅𝑗2𝑤, 𝜃𝑗𝑤 , 𝑑𝑗𝑤  ) =

[
 
 
 
 
𝑹𝑗2

𝑇 [

0
cos𝜃𝑗𝑤

sin𝜃𝑗𝑤

]

𝑑𝑗𝑤 ]
 
 
 
 

                           (4.6) 

𝑹𝑗2 = [

cos𝜙𝑗2𝑤 −sin𝜙𝑗2𝑤 0

sin𝜙𝑗2𝑤 cos𝜙𝑗2𝑤 0

0 0 1

] [

cos𝜓𝑗2𝑤 0 sin𝜓𝑗2𝑤

0 1 0
−sin𝜓𝑗2𝑤 0 cos𝜓𝑗2𝑤

]                     (4.7) 

where 𝑅𝑗2 is a rotation matrix that leads to the normal of the parent plane to [1, 0, 0]T 

and the normal of 𝝅𝑗𝑤 to [0, cos𝜃𝑗𝑤, sin𝜃𝑗𝑤]T as shown in Figure 4.3.  
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Figure 4. 3: Directions of parent plane 𝝅𝒋𝟐𝒘 and child plane 𝝅𝒋𝒘 are rotated by 𝑹𝒋𝟐. 

(f) If it is vertical to a vertical child plane 𝝅𝑗3𝑤, the MW axes can be built easily by 

the plane normal using singular value decomposition (SVD) 

[𝒓𝑥 𝒓𝑦 𝒓𝑧] = 𝑼𝑽𝑇                                 (4.8) 

where [𝑼 𝑫 𝑽] = 𝑆𝑉𝐷[𝜆𝑥𝒏𝑗2𝑤 𝜆𝑦𝒏𝑗3𝑤 𝜆𝑧𝒏𝑗𝑤]  and 𝜆𝑥 , 𝜆𝑦 , and 𝜆𝑧  are the 

numbers of the points on the corresponding planes.  

In this chapter, the Hessian form is used for the plane transformation, and it is 

transferred to the Spherical form during the pose optimization. The inverse depth 

form is used to fit the plane and propagate to the plane covariance in the Spherical 

form. The new form is used for the factor graph construction. Compared with other 

representation types for the plane feature, the new form has two advantages: (a) it 

estimates fewer parameters; (b) it encodes the parallel and vertical relationships in 

the operation scenes. 

4.3 Fusing  point and plane features 

The full pipeline of fusing point and plane features is introduced in this section, 

which consists of plane extraction and matching, robust pose solver, factor graph 

construction, and loop closure. Loop closure and point feature processing are 

handled similarly with Chapter 3, so the details are not presented again.  

  2 

   cos     sin   
 

   0  0  
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4.3.1 Plane extraction and matching 

Point feature is extracted using the improved Shi-Tomasi detector, and matched by 

the optical flow tracking, as detailed in Chapter 3.4.1. The plane feature is extracted 

by a fast algorithm of agglomerative hierarchical clustering, which can be 

implemented on a CPU in real time (Feng et al., 2014). Firstly, an organized point 

cloud is extracted from the depth image and can be divided into non-overlapping 

groups. Then a graph is built whose nodes and edges are the group members and 

their neighbors. Finally, an agglomerative hierarchical clustering is performed to 

merge the nodes belonging to the same plane, as shown in Figure 4.4(b). 

The plane feature is matched based on its Hessian form in the world frame. The 

initial pose of the current frame 𝑻𝑤
𝑐  is estimated by a consistent-velocity motion 

model, and the Hessian form of the plane feature in the current frame 𝝅𝑗𝑐 is fitted 

using the segmented points from Figure 4.3. Then the Hessian form of the plane j in 

the world frame is predicted by 

𝝅𝑗𝑤
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

= 𝑻𝑤
𝑐 𝑇𝝅𝑗𝑐                                    (4.9) 

𝝅𝑗𝑤
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

 is compared with the existing planes in the feature map. The associated 

plane is matched if it satisfies the following conditions: 

‖(𝒏𝑗𝑤
𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

𝑇
𝒏𝑗𝑤‖

2

 < 𝑛𝑡ℎ𝑟𝑒 , ‖𝑑𝑗𝑤
𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑑𝑗𝑤‖ < 𝑑𝑡ℎ𝑟𝑒                 (4.10) 

where 𝑛𝑡ℎ𝑟𝑒 and 𝑑𝑡ℎ𝑟𝑒 are the thresholds for the plane association. 
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(a)                      (b) 

Figure 4. 4: Point and plane features. (a) Improved Shi-Tomasi detector (Shi, 1994); 

(b) Fast plane extraction (Feng et al., 2014). 

4.3.2 Robust pose solver utilizing point and plane features 

In this part, the 2D point reprojection error and the 3D plane transformation error are 

combined to build a novel cost function based on their covariance. While the 

covariance of the 2D point reprojection error is similar to that in Chapter 3, the 

covariance propagation of the plane measurements using the spherical form is 

derived in this section. 

4.3.2.1 Covariance propagation for the plane feature 

It is assumed that the plane j is observed by the current frame, and its Hessian form 

in the camera frame and the world frame are 𝜋𝑗𝑐 and 𝜋𝑗𝑤, respectively. The 

constraint between the camera pose and the plane feature can be represented by the 

3D plane transformation error 𝒓𝑗𝑐 and its covariance 𝚺𝑗𝑐 

𝒓𝑗𝑐 = 𝑞(𝝅𝑗𝑐) − 𝑞( 𝑻𝑤
𝑐 −𝑇𝝅𝑗𝑤)                                (4.11) 

𝚺𝑗𝑐 can be computed by the forward propagation (Proença & Gao, 2018; Y. Yang et 

al., 2019) or using the experimental value (Kaess, 2015; Ma et al., 2016; Tang et al., 

2011; Zhang et al., 2019). The main backward of the methods based on the forward 

propagation (Proença & Gao, 2018; Y. Yang et al., 2019) is that the Jacobians of the 

plane parameters with respect to points on the plane are required, which is time-
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consuming if the plane has a large number of points. Furthermore, the depth 

variances used in these methods (Proença & Gao, 2018; Y. Yang et al., 2019) are 

simply taken from the experimental function. More accurate depth variance can be 

obtained from plane fitting tests (Khoshelham & Elberink, 2012), but requires much 

more human labor. The method to derive the covariance of the plane feature in this 

chapter does not rely on the depth variance. Instead, it estimates the unbiased 

variance 𝜎𝑝𝑓
2  of the plane fitting errors, and then directly propagate it to compute 𝚺𝑗𝑐. 

It is more reasonable than using the experimental weights and more efficient that the 

methods based on the forwards propagation. The detail is introduced as below: 

(a) Firstly, because Eq. (4.1) is nonlinear in terms of the Hessian form 𝝅𝑗𝑤 =

[𝒏𝑗𝑤
𝑇 , 𝑑𝑗𝑤]

𝑇
, which has an inside condition that ‖𝒏𝑗𝑤

𝑇 ‖ = 1, the inverse depth form 

is adopted 𝝁𝑗𝑤 = 𝒏𝑗𝑤/𝑑𝑗𝑤 = (𝑎, 𝑏, 𝑐)𝑇 to rewrite Eq. (4.1).  

𝑛𝑥𝑗𝑤

𝑑𝑗𝑤
𝑥 +

𝑛𝑦𝑗𝑤

𝑑𝑗𝑤
𝑦 +

𝑛𝑧𝑗𝑤

𝑑𝑗𝑤
𝑧 + 1 = 0                                 (4.12) 

(b) Secondly, if the plane j has N points, the matrix form of Eq. (4.12) can be written 

as  

𝑨𝝁𝑗𝑤 + 𝑩 = 0                                         (4.13) 

where 𝑨 =  [𝑷1 ⋯ 𝑷𝑁]𝑇 , and 𝑩 =  [(1 ⋯ 1)]𝑇 . 𝑷𝑖 represents the point 

on the plane. 

(c) Thirdly, 𝝁𝑗𝑤 can be easily solved by  

𝝁𝑗𝑤 = −(𝑨𝑇𝑨)−1𝑨𝑇𝑩                                (4.14) 

(d) Fourthly, the covariance of 𝝁𝑗𝑤 is  

𝚺𝝁𝑗𝑤
= 𝜎𝑝𝑓

2 (𝑨𝑇𝑨)−1                                         (4.15) 

where 𝜎𝑝𝑓
2 = (𝑨𝝁𝑗𝑤 + 𝒃 )

𝑇
(𝑨𝝁𝑗𝑤 + 𝒃)/(𝑁 − 3) is the variance of plane fitting 

errors. 
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(e) Finally, the covariance of 𝒓𝑗𝑐 is derived as 

𝚺𝑗𝑐 = 𝚺𝝉𝑗𝑤
=  𝐽𝝉,𝝁𝚺𝝁𝑗𝑤

𝐽𝝉,𝝁
𝑇 , 𝝉𝑗𝑤 = [arctan

b

a
, arcsin

𝑐

√𝑎2+𝑏2+𝑐2
,

1

√𝑎2+𝑏2+𝑐2
 ]

𝑇

   (4.16) 

𝐽𝝉,𝝁 =
𝛿𝝉𝑗𝑤

𝛿𝝁𝑗𝑤

=  

[
 
 
 
 
 −

𝑏2

𝑏2+𝑎2

𝑎2

𝑏2+𝑎2
0

𝑎𝑐

(𝑎2+𝑏2+𝑐2)√𝑎2+𝑏2

𝑏𝑐

(𝑎2+𝑏2+𝑐2)√𝑎2+𝑏2

√𝑎2+𝑏2

𝑎2+𝑏2+𝑐2

−
𝑎

(𝑎2+𝑏2+𝑐2)
3
2

−
𝑏

(𝑎2+𝑏2+𝑐2)
3
2

−
𝑐

(𝑎2+𝑏2+𝑐2)
3
2]
 
 
 
 
 

            (4.17) 

4.3.3.2 Novel cost function 

Eq. (3.14), (3.20), (4.11), and (4.16) are combined to build a novel cost function 

below 

∑ 𝜌 (‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
)𝑖 + ∑ 𝜌 (‖𝒓𝑗𝑐‖𝚺𝑗𝑐

2
)𝑗                                   (4.18) 

where i and j are the indexes of the point and plane feature matches of the current 

frame, respectively, ρ represents the Huber function, and Σ is the covariance matrix 

associated with the feature measurement. Compared with the cost function of the 

point-based method ∑ 𝜌 (‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
)𝑖 , Eq. (4.18) provides additional plane-based 

constraints which are reliable in low textured scenes. Furthermore, the covariances 

of the plane feature 𝚺𝑗𝑐 is derived by covariance propagation and plane fitting, which 

is more reasonable than the previous plane-based methods using the experimental 

weights.  

The iterative Gauss-Newton method in g2o (Grisetti et al., 2011) is applied to 

minimize Eq. (4.18) and solve 𝝃𝑤
𝑐 . The Mahalanobis distance test is also employed 

after every four iterations.  

‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
< 𝜒𝛼,2, ‖𝒓𝑗𝑐‖𝚺𝑗𝑐

2
 < 𝜒𝛼,3                           (4.19) 

where 𝛼 is the threshold of Chi-square distribution, 2 and 3 are the DoFs of point 

and plane measurements, and ‖𝒓𝑖𝑐‖𝚺𝑖𝑐

2  and ‖𝒓𝑗𝑐‖𝚺𝑗𝑐

2
 are the Mahalanobis distances. 
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The feature matches with large Mahalanobis distance will be marked as the outliers 

and excluded in the next iteration for robustness. 

4.3.3 Point-plane factor graph construction 

As shown in Figure 4.5, the tracking thread will publish a new keyframe message if 

its relative motion to the previous keyframe exceeds a threshold or insufficient 

feature matches are found. The new keyframe and its features are contained in the 

keyframe message and sent to the local mapping thread for further refinement.  

 

Figure 4. 5: Data communication between tracking and local mapping threads and 

the novel factor graph based on point and plane features. 

In the tracking thread, the plane features are simply represented by the spherical 

form because they are considered fixed during pose optimization. However, in the 

local mapping thread, the plane features are adjusted together with the keyframe 

poses and the point features during bundle adjustment. A novel factor graph is 
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constructed in Figure 4.5, where the plane features are inserted and represented by 

the new form. The cost function for the novel factor graph is built by fusing Eq. 

(4.4-4.6), (3.14), (3.20), (4.11), and (4.16) 

∑ ∑ 𝜌 (‖𝒓𝑖𝑘
2𝑝‖

𝚺𝑖𝑘
2𝑝

2
) +𝑖𝑘 ∑ ∑ 𝜌 (‖𝒓𝑗𝑘‖𝚺𝑗𝑘

2
)𝑗𝑘                         (4.20) 

where k, i, and j are the indexes of the keyframe, point, and plane, respectively. The 

plane transformation error is represented by 𝒓𝑗𝑘 and computed by Eq. (4.11), and the 

plane feature 𝝅𝑗𝑤 in Eq. (4.11) is represented by the new form using Eq. (4.4-4.6). 

The iterative Gauss-Newton method in g2o is again applied to solve Eq. (4.20). 

Then the local mapping thread will publish a correction message to update the 

camera poses, point, and plane features in the tracking thread. 

In the novel factor graph, the pose-to-plane constraints are similarly built according 

to Eq. (4.11) and (4.16) when the plane feature j is observed by the keyframe k. 

However, the factors connected to these constraints are different based on Eq. (4.4-

4.6) which apply the new form for plane representation:  

(a) If j is a parent plane, then the constraint connects the keyframe k and the parent 

plane j.  

(b) If j is a parallel child plane of the parent plane j1, and represented by Eq. (4-5), 

then the constraint connects the keyframe k, the parent plane j1, and the child plane 

j. 

(c) If j is a vertical child plane of the parent plane j2, and represented by Eq. (4-6), 

then the constraint connects the keyframe k, the parent plane j2 and the child plane 

j. 

(d) If j is parallel to any MW axis and represented by Eq. (4-4), then the constraint 

connects the keyframe k, the plane j, and the MW axes. The MW axes are fixed 

during bundle adjustment. 
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Using the new form, the parent planes and child planes are connected in the new 

factor graph, which encodes parallel and vertical relationships among planes. The 

connections between the plane features and the MW axes also help to exploit more 

structural regularity. As shown in Figure 2.6, Plane 4-5 are not parallel to any of the 

MW axes and break the MW assumption. In the MW-based methods, MW axes are 

estimated from the surface normal vectors of all the points. Then the rotation matrix 

is obtained by aligning the MW axes of the current frame to that of the first frame. 

Because of the undesirable points on Plane 4-5, the accuracy of rotation estimation 

may be reduced. However, in the proposed system which adopts the new form for 

the plane representation, Planes 4-5 are represented by a vertical child plane using 

Eq. (4.6), while Planes 1-3 and 6 are represented by a plane parallel to the MW axis 

using Eq. (4.4). Therefore, the new form can exploit the structural regularity 

reasonably whether the scene satisfies the MW assumptions. 

4.3.4 Loop closing 

The pipeline of the loop closing module is similar to Section 3.3.4. The keyframe 

message is also received by the loop closing thread. The descriptors extracted on the 

new keyframe are encoded as a word vector by DBoW2. The loop candidate is 

detected by comparing the similarity scores between the word vectors of the 

keyframes. The geometry check is performed to verify the loop candidate. The 

relative motion between the new keyframe and the loop candidate frame is then 

computed, and the loop candidate will be accepted if: (a) the relative motion is 

small; and (b) sufficient feature matches are found. Finally, pose graph optimization 

is applied to correct the loop closure based on Eq. (3.26) and (3.27).  

4.4 Experiments and results 

In this section, experiments are conducted using TUM RGB-D dataset and self-

collected datasets. The performance of the proposed system is evaluated and 

compared with other SOTA SLAM systems. Similar to Section 3.4.1, the RMSE of 
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the APE and PTPD are adopted as evaluation matrices. The same room and corridor 

in Section 3.4.3 and 3.4.4 are selected as the operation scenes. All the experiments in 

this section run on a laptop with i5-5200U CPU and 8G RAM. 

4.4.1 TUM RGB-D datasets 

TUM RGB-D dataset is the standard dataset for evaluating the performance of 

SLAM systems. Six sequences with structural regularity are selected, including 

fr3_str_ntex_far, fr3_str_ntex_near, fr3_str_tex_far, fr3_str_tex_near, fr3_cabinet 

and fr3_large_cabinet. 

The example images in the first column of Figure 4.6 indicate that fr3_str_ntex_far, 

fr3_str_ntex_near, fr3_cabinet, and fr3_large_cabinet contain low textures. The 

trajectories from the proposed system are compared with the ground truth in the 

second column of Figure 4.6. The small differences between the compared 

trajectories demonstrate the high accuracy of camera localization. The outputted 3D 

models are shown in the third column of Figure 4.6. 
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Figure 4. 6: Trajectories by the proposed system in six sequences:(a) fr3_str_ntex_far; 

(b) fr3_str_ntex_near; (c) fr3_str_tex_far; (d) fr3_str_tex_near; (e) fr3_cabinet; (f) 

fr3_large_cabinet. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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The performance of the proposed system is then compared with other SOTA 

systems, i.e., ORB-SLAM2, DVO, LPVO, L-SLAM, and PS-SLAM (Kerl et al., 

2013; Kim, Coltin, & Jin Kim, 2018; Kim, Coltin, et al., 2018b; Mur-Artal & 

Tardós, 2017; Zhang et al., 2019). The comparison results are shown in Table 1, 

where “-” represents the tracking failure and the bolded value means the best 

accuracy.  

Table 4. 1: Comparison of APE RMSE (cm) on TUM RGB-D dataset.  

Sequence 
Length 

(m) 
Proposed 

ORB-

SLAM2 

DVO-

SLAM 
LPVO 

L-

SLAM 

PS-

SLAM 

fr3_str_ntex_far 4.4 1.6 - 3.9 7.5 14.1 2.0 

fr3_str_ntex_near 3.8 1.5 - 2.1 8.0 6.6 1.3 

fr3_str_tex_far 5.9 1.1 1.3 3.9 17.4 21.2 1.1 

fr3_str_tex_near 5.1 1.1 1.5 4.1 11.5 15.6 1.0 

fr3_cabinet 11.2 4.1 11.7 69.0 52.0 29.1 6.7 

fr3_large_cabinet 20.7 3.6 - 97.9 27.9 14.0 7.9 

ORB-SLAM2 is a famous feature point-based system. Due to the lack of point 

features, it fails in three low textured sequences: fr3_str_ntex_far, fr3_str_ntex_near, 

and fr3_large_cabinet. DVO-SLAM is a direct method that does not rely on the 

point features, so it can perform well in fr3_str_ntex_far and fr3_str_ntex_near 

despite of low textures. However, in fr3_cabinet and fr3_large_cabinet, its accuracy 

degrades due to insufficient gradient for the photometric error when the camera 

observes the floor. LPVO and L-SLAM are two MW-based methods. It can also 

avoid the tracking failure problem owing to the line features and the surface normal, 

which are utilized to estimate the MW frame and recover the rotation matrix. 

However, as indicated by the example images and the reconstructed models in 

Figure 4.6(e) and (f), fr3_cabinet and fr3_large_cabinet do not strictly satisfy the 

MW assumption which can lower the performance of the MW-based methods. PS-

SLAM and the proposed system are plane-based methods. They do not strictly rely 

on the MW assumption, and the plane features can be fused to improve the 

continuity of the SLAM systems in low textured scenes. 
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Among all the above methods, PS-SLAM achieves the highest accuracy in three 

sequences owing to the additional constraints from the supposed planes, and the 

proposed system yields the best accuracy in four sequences owing to (a) the new 

form for plane representation and (b) the analytical covariance for the plane 

measurements in the spherical form. 

4.4.3 Lab room experiment 

The operation scene and device are shown in Figure 4.7. A Microsoft Kinect V2 

camera is mounted on a wheelchair to capture the RGB-D sequence in a laboratory 

room. Qualisys motion capture system (Qualisys, 2006) is installed in the room to 

provide ground truth trajectories. As shown in Figure 4.7(b), the operation scene 

contains a low textured wall which is challenging for the feature point-based 

methods.  

    

(a)                         (b)                           (c)                            (d) 

Figure 4. 7: Room experiment setup. (a) Operation scene; (b) Low textured wall; (c) 

Surveying device; (d) Qualisys motion capture system. 

To show the help of the plane features in low textured scenes, we present a modified 

version of the proposed system with only point features and abbreviate it as PF. To 

demonstrate the advantage of the novel cost function with the analytical covariance 

for the plane measurement, we present a modified version without the covariance 

propagation (Zhang et al., 2019), and is abbreviated as PP+EC. To confirm the 

effectiveness of the novel factor graph using the new form for plane representation, 

we present a modified version without the new form, which simply uses the 

spherical form during bundle adjustment and is abbreviated as PP+SF.  

low textured 

wall 
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The comparison results between the modified versions and the proposed system are 

shown in Table 4.2. PF loses tracking in front of the low textured wall due to lacking 

sufficient point feature matches. The proposed system improves the localization 

accuracy of PP+EC by 1.3 cm and 23.6%, which indicates the benefit of the 

analytical covariance. Furthermore, the proposed system outperforms PP+SF by 

27.6% because the new form exploits more structural regularity.  

Table 4. 2: Comparison of APE RMSE (cm) in room experiment. 

Sequence 
Length 

(m) 
PF PP+EC PP+SF Proposed 

room 19.0 - 5.5 5.8 4.2 

Figure 4.8(a) compares the trajectories from various methods with the ground truth. 

After the alignment, the trajectories from these methods are very consistent except 

for the beginning and the end. In the red box, it is indicated that the trajectory from 

the proposed system is the most consistent with the ground truth. Figure 4.8(b) 

shows the APEs of these methods. During short periods, Qualisys fails to track the 

reflective balls on the Kinect V2 due to occlusion, therefore the ground truth 

trajectory is not complete which results in large gradients of the APE curve in Figure 

4.8(b). In the middle part of the sequence, the APE curve from the proposed system 

is close to those from PP+EC and PP+SF. But at the beginning and end, the 

proposed system generates smaller APE than them. To sum up, the proposed system 

is the most accurate among the four methods, which further confirms the effect of 

the analytical covariance and the new form for the plane representation. 
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(a) 

 

(b) 

Figure 4. 8: (a) Trajectories and (b) APE curves of PP+EC, PP+SF, and the proposed 

system. 

4.4.4 Corridor experiment 

An RGB-D sequence is captured in a 60-meter corridor using the same device in 

Figure 4.7(c). The ground truth of the corridor model is provided by NavVis M6 

(NavVis M6, 2018). The example image in Figure 4.9 shows that the corridor 

contains a long and low textured wall  
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Figure 4. 9: Long and low textured wall in the operation scene. 

The outputted model from the proposed system and the ground truth model are 

aligned by the ICP and then PTPD RMSE is computed for evaluating mapping 

quality. Table 4.3 shows the comparison results between the proposed system and 

the modified versions. The mapping quality of PF is low because point features are 

not reliable when the wheelchair passes the low textured walls. The difference 

between PP+EC and the proposed system is 2.5 cm, which reflects the advantage of 

using the analytical covariance. Moreover, the accuracy of the proposed system is 

better than PP+SF owing to the structural regularity exploited by the new form. The 

relative improvements by using the analytical covariance and the new representation 

form are 8.8% and 11.5%  

Table 4. 3: Comparison of PTPD RMSE (cm) in corridor experiment. 

Sequence 
Length 

(m) 
PF PP+EC PP+SF Proposed 

corridor 60.8 29.4 16.4 15.9 14.5 

The outputted models from four methods are shown in Figure 4.10. The colour on 

the models represents the value of the PTPD. For better visualization, the maximum 

value on the colour bar is set as 0.5 m. The red circles in Figure 4.10(d) indicate 

outliers due to the glass windows. As indicated by the colour map in Figure 4.10(a), 

the model from PF has a large drift because the performance of point features 

degrades due to the low textured wall. The models from PP+EC and PP+SF are 
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more accurate as shown in Figure 4.10(b) and (c) owing to the fusion of the plane 

features. The red boxes in Figure 4.10(b) and (c) indicate the bad-quality area from 

PP+EC and PP+SF, which are not observed in Figure 4.10(d). The comparison 

further proves the benefits of using the analytical covariance for the plane 

measurements and also the effects of using the new form for the plane 

representation. 

 

(a)                                   (b) 

 

(c)                                   (d) 

Figure 4. 10: Point-to-point distances between the outputted models and the ground 

truth model. (a) PF; (b) PP+EC; (c) PP+SF; (d) Proposed. 

4.4.5 Computation speed 

The computation speed of the proposed system is then investigated using the 

sequence collected in the corridor. The time consumption by loop closure and 
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incremental mapping is not listed as it is highly dependent on the keyframe number. 

Table 4.4 shows the processing time of each part in the tracking thread and local 

mapping thread and compares the total time cost with ORB-SLAM2. 

Table 4. 4: Processing time (ms) of each part of the proposed system. 

Thread Part Proposed ORB-SLAM2 

Tracking 

Optical Flow 8.1  

Plane Extraction and 

Matching 
36.5  

Robust Pose Solver 2.5  

Shi-Tomasi Detection 9.0  

IIR Filter 1.0  

Total 57.1 40.6 

Local 

Mapping 
Factor Graph Optimization 142.9 235.7 

Unlike Section 3.4.4, the image resolution from Kinect V2 is 960×540 instead of 

640×480 provided by the iPad and structure sensor. The time cost for the point 

feature extraction is improved by the larger resolution. The processing speed of the 

proposed system is not comparable to ORB-SLAM2 due to time-consuming plane 

extraction, but it can still output localization and mapping results at 15 HZ. 

Furthermore, higher continuity and accuracy are achieved by the fusion of the plane 

features.  

The average number of the correct feature matches is listed in Table 4.5. Though the 

plane features are much fewer than the point features, they are less affected by low 

textures and preserve more structure regularity. 

Table 4. 5: Average number of correct feature matches. 

Types 
2D Point Feature 

Matches 

3D Plane Feature 

Matches 

number 242.8 2.9 
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4.5 Summary 

As to perform successfully and completely in low textured scenes, a new RGB-D 

system using point and plane features is proposed in this chapter. In summary, 

(a) This chapter derives the analytical covariance of the plane measurement in the 

spherical form by plane fitting and covariance propagation, which can overcome 

the disadvantage of the experimental weights used in the previous plane-based 

methods. The point reprojection errors and the plane transformation errors are 

combined based on the derived covariances, to build a new cost function for high-

precision pose estimation. 

(b) This chapter investigates the representation forms for plane features and develops 

a new form based on the parallel and vertical relationships among planes and MW 

axes. The new representation form can encode the structural regularity and does 

not rely on the MW assumption. A novel factor graph is constructed utilizing the 

new form to further refine the keyframe poses, point, and plane features. 

(c) The experiment results of TUM RGB-D datasets prove that in low textured scenes, 

the proposed system yields higher continuity than the feature point-based method, 

and in rich textured scenes, the proposed system can generate higher accuracy than 

SOTA methods. The room and corridor experiments show that the proposed 

system can improve the localization and mapping accuracy, owing to the derived 

covariance and the new form for plane representation. 
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CHAPTER 5 

TIGHTLY COUPLING RGB-D CAMERA AND WHEEL 

ODOMETER FOR GROUND VEHICLE NAVIGATION 

As discussed in Section 2.4, the drift of the point-based methods is affecting the 

tracking quality of the mobile platform. Beyond the backend optimization 

techniques, fusing internal sensors is an effective method to reduce the drift. Though 

there are many visual-inertial systems (Li, 2014; Li & Mourikis, 2012, 2013; Zhang 

et al., 2020) and visual-odometric systems (Kang et al., 2019; Liu et al., 2019; Wu et 

al., 2017; Zheng & Liu, 2019; Zheng et al., 2018), the research works on fusing the 

wheel odometer and the RGB-D camera are still few (Labbé & Michaud, 2019; D. 

Yang et al., 2019). In addition, these works assume the mobile platform moves on a 

ground plane with no perturbation, which is not practical and may lead to non-

optimal estimation results. 

In this chapter, to reduce the tracking drift and avoid the backward of the previous 

methods, a tight-coupled system fusing the RGB-D camera and the wheel odometer 

is proposed. It softly assumes that a ground vehicle is equipped with an RGB-D 

camera and a wheel odometer with a rigid extrinsic transformation, and the vehicle 

moves on the ground plane with perturbations due to uneven terrain or platform 

vibration. To handle the perturbations on the ground plane, a two-stage strategy is 

employed to examine the planar motion assumption: (a) the Mahalanobis distance 

test in the frontend and (b) the ground plane estimation in the backend. The main 

contributions are listed as follows: 

(a) It proposes a two-step strategy to examine the planar motion assumption. 

Compared with the previous methods using a hard planar motion assumption, the 

strategy can detect the perturbation of the mobile platform and further reduce the 

localization drift. 



Tightly coupling RGB-D camera and wheel odometer for ground vehicle navigation 

85 

 

(b) It develops a novel factor graph consisting of all the constraints from the RGB-D 

camera, the wheel odometer, and the planar motion assumption. The associated 

covariances are also derived. This factor graph utilizes more information than the 

previous methods because of the derived covariances and the soft planar motion 

constraints.  

(c) The proposed system is evaluated on the real-world datasets collected from both 

a small room scenario and a large corridor scenario. In the lab room experiment, 

compared with RTAB-map (Labbé & Michaud, 2019), which fuses the RGB-D 

camera and the wheel odometer loosely under a hard planar motion assumption, 

the proposed system can improve the localization accuracy from 8.1 cm to 4.8 cm 

(40.7%). In the corridor experiments, the improvement of the mapping accuracy 

is from 13.6 cm to 9.0 cm (33.8%).  

The remainder of this chapter is designed as follows. Section 5.1 overviews the 

system, Section 5.2 introduces the notations, Section 5.3 presents the methodology, 

Section 5.4 shows the experiment results and Section 5.5 gives the conclusions.  

5.1 System overview 

The proposed system is built upon the open-sourced benchmark ORB-SLAM2 

(Mur-Artal & Tardós, 2017). The RGB-D processing module is modified, and 

relative functions are added to support the wheel odometer and planar motion 

constraints. As shown in Figure 5.1, the proposed system consists of two sections 

running on ROS, namely frontend, and backend. A two-step strategy is utilized in 

the proposed system to handle the perturbation of the ground plane. 
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Figure 5. 1: Overview of the proposed system fusing RGB-D camera and wheel 

odometry. 

(a) Frontend: RGB-D images and wheel odometer measurements are simultaneously 

fed into the frontend, and combined for the vehicle motion estimation. Firstly, 

ORB features are detected from the current RGB image and matched with the 

previous feature points in the map storage. Secondly, an initial guess of the vehicle 

pose is computed by the wheel odometer integration and its covariance is also 

propagated. Thirdly, a robust pose solver is built by jointly optimizing the visual, 

wheel odometer, and planar motion constraints. If a non-planar motion is detected 

by the Mahalanobis distance test, the planar motion constraint will be removed in 

the next iteration of the solver. Fourthly, the 3D occupancy map and the 2D grid 

map are constructed using the outputted vehicle pose and the down-sampled point 

cloud.  

(b) Backend: Firstly, if the current frame is determined as a new keyframe, its 

associated feature matches, and integrated wheel odometer measurement are fed 

to the map storage. Secondly, a ground plane is detected and used to refine the 

planar motion constraint. Thirdly, a new factor graph is built by adding all the 
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visual, wheel odometer, and planar motion constraints in a sliding window. Its 

optimization results are sent to the map storage to update the vehicle poses and 

map points. Fourthly, a loop closure candidate is searched by a bag-of-word 

approach and verified by a geometry check. Pose graph optimization is then 

performed to adjust the vehicle poses from the candidate frame to the current 

frame.  

(c) Two-step strategy: The first step is the Mahalanobis distance test in the frontend. 

Large vibration is detected and removed in the pose solver. The second step is the 

ground plane detection in the backend. If a ground plane is estimated, its 

coefficients will be used to replace the experimental weight of the planar motion 

constraint. The ground plane detection is implemented in the backend instead of 

the frontend, which saves the computation cost. Furthermore, as the ground plane 

is not always observable, e.g., when the RGB-D camera is in front of an object, it 

is useful to employ the Mahalanobis distance test for the first step. The benefits of 

the two-step strategy are threefold: (a) the uneven terrain or the bumping can lead 

to the vibration of the ground vehicle, which can be detected by the Mahalanobis 

distance test; (b) the ground plane coefficients can further constrain the motion of 

the ground vehicle; (c) the planar motion constraints can be added to the new 

factor graph for the vehicle motion refinement. 

5.2 Preliminaries 

Figure 5.2 presents a ground vehicle equipped with an RGB-D camera and a wheel 

odometer. It is assumed that the wheel odometer is equipped in the center of the 

vehicle, and the vehicle frame is coincident with the wheel odometer frame. {w} is 

employed to represent the world frame, {vk} and {ck} to denote the vehicle frame 

and the camera frame at instant k. The extrinsic transformation between the vehicle 

frame and the camera frame 𝑻𝑐
𝑣  are first calibrated by Zuñiga-Noël et al. (2019) and 

then refined by a full bundle adjustment. Feature point P is observed by the camera 

at consecutive instants.  
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Figure 5. 2: Notationsof camera and vehicle frames. 

The vehicle pose is defined as the transformation from {w} to {v}, and the camera 

pose is that from {w} to {c}. They are represented by 𝑻𝑤
𝑣  and 𝑻𝑤

𝑐  with six DoFs. 

𝑻𝑤
𝑣

4×4 = [
𝑹𝑤

𝑣
3×3 𝒕𝑤

𝑣
3×1

𝟎1×3 1
]  ∈ SE(3), 𝑻𝑤

𝑣 = 𝑻𝑐
𝑣 𝑻𝑤

𝑐                     (5.1) 

5.3 Tightly coupling RGB-D camera and wheel odometer 

The detail of tightly coupling RGB-D camera and wheel odometer is presented in 

Figure 5.1. It is further divided into five parts: (a) construction of visual, wheel 

odometer and planar motion constraints; (b) robust pose optimization; (c) ground 

plane detection; (d) construction of new factor graph; and (e) loop closure.  

5.3.1 Visual, wheel odometer, and planar motion constraints 

5.3.1.1 RGB-D image processing  

Instead of detecting improved Shi-Tomasi features, the proposed system relies on 

modified ORB features in ORB-SLAM2 owing to its uniformed distribution and its 

invariance to rotation (Mur-Artal & Tardós, 2017). To speed up the feature matching 

procedure, the map points are projected to the image plane using the initial guess 
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from the wheel odometer integration. Following conditions are set to ensure the 

correct matches: (a) the projected feature from the map point is closed to the 

detected feature; (b) the difference between their descriptors is small; (c) the 

detected feature and the map point are both projected back to the camera frame, and 

the difference between their 3-D positions in the camera frame is small. 

After feature matching, point 𝑷𝑖𝑤 is tracked to the camera frame, and the pixel 

measurements on the image plane are 𝒑𝑖𝑐. 𝑷𝑖𝑐 is projected to the current frame using 

the estimated vehicle pose 𝑻𝑤
𝑣  and the extrinsic transformation 𝑻𝑣

𝑐  

𝑷𝑖𝑐 = ( 𝑻𝑣
𝑐 𝑻 [

𝑷𝑖𝑤

1
]𝑤

𝑣 )
1:3

                                     (5.2) 

where ( )1:3 represents the first three elements of the homogeneous coordinate. 

The 2D point reprojection error is derived as 

𝒓𝑖𝑐
2𝑝 = 𝒑𝑖𝑐 − 𝑓(𝑲𝑷𝑖𝑐), 𝑓 ([

𝑎
𝑏
𝑐
]) = [

𝑎/𝑐
𝑏/𝑐

]                              (5.3) 

The covariance of  𝒓𝑖𝑐
2𝑝

 is similarly determined by Eq. (3.20). 

5.3.1.2 Wheel odometer processing 

To derive a general formulation for the wheel odometer integration, we assume that 

the wheel odometer provides a translation vector 𝝊 and a rotation angle 𝜔 between 

the consecutive instants t and t+1, and its noise follows a normal distribution. 

𝜸𝑡
𝑡+1

3×1 = [ 𝝊𝑡
𝑡+1 𝑇 , 𝜔𝑡

𝑡+1 ]𝑇                                     (5.4) 

𝜹𝜸𝑡
𝑡+1

3×1
= [ 𝜹𝝊𝑡

𝑡+1 𝑇
, 𝜹𝜔𝑡
𝑡+1 ]

𝑇

~ 𝑁(0, 𝜮𝜸𝑡
𝑡+1 )                     (5.5) 

where 𝜸𝑡
𝑡+1

3×1 is the Lie algebra of SE(2) and 𝜹 represents the noise. The state of 

𝜸0
𝑡+1  can be propagated by 
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�̅�0
𝑡+1 = ( 𝜸𝑡

𝑡+1 − 𝜹𝜸𝑡
𝑡+1 ) ⊕ ( 𝜸 − 𝜹𝜸0

𝑡
0
𝑡 ) = [

𝝊0
𝑡 + 𝜑( 𝜔0

𝑡 − 𝜹𝜔0
𝑡 )( 𝝊𝑡

𝑡+1 − 𝜹𝝊𝑡
𝑡+1 )

𝜔 − 𝜹𝜔0
𝑡

0
𝑡 + 𝜔𝑡

𝑡+1 − 𝜹𝜔𝑡
𝑡+1 ]      

(5.6) 

𝜑( 𝜔0
𝑡 ) = [

cos 𝜔0
𝑡 −sin 𝜔0

𝑡

sin 𝜔0
𝑡 cos 𝜔0

𝑡 ]                                  (5.7) 

where ⊕ is the addition function for Lie algebra, and 𝜑 is the function to convert 

rotation angle to a rotation matrix. 

For predicting the initial guess of the vehicle pose, the wheel odometer 

measurements between the previous keyframe and the current keyframe are 

integrated. 

�̅�𝑣𝑘
𝑣𝑐 = ∑ ( 𝜔𝑡

𝑡+1 − 𝜹𝜔𝑡
𝑡+1 )𝑣𝑐−1

𝑡=𝑣𝑘 = ∑ 𝜔𝑡
𝑡+1𝑣𝑐−1

𝑡=𝑤𝑘 − ∑ 𝜹𝜔𝑡
𝑡+1𝑣𝑐−1

𝑡=𝑣𝑘 = 𝜔𝑣𝑘
𝑣𝑐 − 𝜹𝜔𝑣𝑘

𝑣𝑐    (5.8) 

�̅�𝑣𝑘
𝑣𝑐 = ∑ 𝜑( 𝜔0

𝑡 − 𝜹𝜔0
𝑡 )( 𝝊𝑡

𝑡+1 − 𝜹𝝊𝑡
𝑡+1 )

𝑣𝑐−1

𝑡=𝑣𝑘

≈ ∑ 𝜑( 𝜔0
𝑡 ) (𝑰 − [

0 − 𝜹𝜔0
𝑡

𝜹𝜔0
𝑡 0

]) ( 𝝊𝑡
𝑡+1 − 𝜹𝝊𝑡

𝑡+1 )

𝑣𝑐−1

𝑡=𝑣𝑘

= ∑ 𝜑( 𝜔0
𝑡 ) 𝝓𝑡

𝑡+1

𝑣𝑐−1

𝑡=𝑣𝑘

− ∑ 𝜑( 𝜔0
𝑡 ) [

0 − 𝜹𝜔0
𝑡

𝜹𝜔0
𝑡 0

] 𝝊𝑡
𝑡+1

𝑣𝑐−1

𝑡=𝑤𝑘

− ∑ 𝜑( 𝜔0
𝑡 ) 𝜹𝝊𝑡

𝑡+1

𝑣𝑐−1

𝑡=𝑣𝑘

+ ∑ 𝜑( 𝜔0
𝑡 ) [

0 − 𝜹𝜔0
𝑡

𝜹𝜔0
𝑡 0

] 𝜹𝝊𝑡
𝑡+1

𝑣𝑐−1

𝑡=𝑤𝑘

≈ 𝝊𝑣𝑘
𝑣𝑐 − 𝜹𝝊𝑣𝑘

𝑣𝑐  

(5.9) 

where 𝜔𝑣𝑘
𝑣𝑐   and 𝝊𝑣𝑘

𝑣𝑐  are the integrated measurements for the rotation and the 

translation, and 𝜹𝜔𝑣𝑘
𝑣𝑐  and 𝜹𝝊𝑣𝑘

𝑣𝑐  are the associated noises. Specifically,  

𝜔𝑣𝑘
𝑣𝑐 = ∑ 𝜔𝑡

𝑡+1𝑣𝑐−1
𝑡=𝑣𝑘 , 𝝊𝑣𝑘

𝑣𝑐 = ∑ 𝜑( 𝜔0
𝑡 ) 𝝊𝑡

𝑡+1𝑣𝑐−1
𝑡=𝑣𝑘                       (5.10) 

𝜹𝜔𝑣𝑘
𝑣𝑐 = ∑ 𝜹𝜔𝑡

𝑡+1𝑣𝑐−1
𝑡=𝑣𝑘                                         (5.11) 

 𝜹𝝊𝑣𝑘
𝑣𝑐 ≈ ∑ 𝜑( 𝜔0

𝑡 ) ([
0 − 𝜹𝜔0

𝑡

𝜹𝜔0
𝑡 0

] 𝝓𝝊𝑡
𝑡+1 + 𝜹𝝊𝑡

𝑡+1 )𝑣𝑐−1
𝑡=𝑣𝑘              (5.12) 
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Its iterative form is derived for noise propagation. 

[
𝜹𝝊𝑣𝑘

𝑡+1

𝜹𝜔𝑣𝑘
𝑡+1 ] = [𝑰 𝜑( 𝜔0

𝑡 ) [
𝜐𝑦

−𝜐𝑥
]

0 1
] [

𝜹𝝊𝑣𝑘
𝑡

𝜹𝜔𝑣𝑘
𝑡 ] + [𝜑

( 𝜔0
𝑡 ) 𝟎
𝟎 1

] [
𝜹𝝊𝑡

𝑡+1

𝜹𝜔𝑡
𝑡+1 ]

= 𝑨 [
𝜹𝝊𝑣𝑘

𝑡

𝜹𝜔𝑣𝑘
𝑡 ] + 𝑩 [

𝜹𝝊𝑡
𝑡+1

𝜹𝜔𝑡
𝑡+1 ] 

(5.13) 

where 𝜐𝑥 and 𝜐𝑦 are the first and second elements of 𝝊𝑡
𝑡+1 , respectively. The 

covariance of the integrated wheel odometer measurements can be propagated by  

𝜮𝜸𝑣𝑘
𝑡+1 = 𝑨 𝜮𝜸𝑣𝑘

𝑡 𝑨𝑇 + 𝑩 𝜮𝜸𝑡
𝑡+1 𝑩𝑇                                  (5.14) 

The initial guess of the vehicle pose 𝜸𝑤
𝑣𝑐  can be predicted using 𝜸𝑤

𝑣𝑘  and 𝜸𝑣𝑘
𝑣𝑐 . The 

state 𝜸𝑤
𝑣𝑐  and its covariance Σ𝜸𝑤

𝑣𝑐  can be also predicted using Eq. (5.13) and (5.14). 

In the 3D space, with the assumption of the planar motion, 𝜸𝑤
𝑣𝑐  is extended to a 3D 

transformation matrix �̃�𝑤
𝑣𝑐  by 

�̃�𝑤
𝑣𝑐 = [

cos 𝜔𝑤
𝑣𝑐 −sin 𝜔𝑤

𝑣𝑐

sin 𝜔𝑤
𝑣𝑐 cos 𝜔𝑤

𝑣𝑐

0 𝑣𝑤
𝑣𝑐

𝑥

0 𝑣𝑤
𝑣𝑐

𝑦

0 0
0 0

1 0
0 1

    ]                (5.15) 

The initial guess �̃�𝑤
𝑣𝑐  can be an alternative if insufficient features are detected in the 

operation scene. Furthermore, it is also a prior constraint for pose optimization. The 

error of the wheel odometer constraint is modelled as 

𝒓𝑐
𝑤𝑜 = log( �̃�𝑤

𝑣𝑐 −1 𝑻𝑤
𝑣 )

∨

1,2,6
                                  (5.16) 

where the first and second elements of log( �̃�𝑤
𝑣𝑐 −1 𝑻𝑤

𝑣 )
∨
 correspond to the translation 

vector of 𝜸𝑤
𝑣𝑐 , and the sixth element corresponds to the rotation of 𝜸𝑤

𝑣𝑐 , respectively. 

The covariance of 𝒓𝑐
𝑤𝑜 is equal to 𝚺𝜸𝑤

𝑣𝑐 . 
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5.3.1.3 Planar motion assumption  

The planar motion assumption indicates that the roll, pitch, and translation on the z-

axis of vehicle motion should be close to zero with small variances. Therefore, we 

set the measurements for planar motion constraint as 

𝜿 = [0,0,0] 𝑇                                            (5.17) 

The covariances are set experimentally by 

𝚺𝑐
𝜿 = 𝑑𝑖𝑎𝑔(𝜎𝑟𝑥

2 , 𝜎𝑟𝑦
2 , 𝜎𝑧

2)                             (5.18) 

The error of planar motion constraint is constructed as 

𝒓𝑐
𝜿 = 𝜿 − log( 𝑻𝑤

𝑣 )∨
3,4,5

                                   (5.19) 

where the fourth and fifth elements of log( 𝑻𝑤
𝑣 )∨ correspond to the rotation on the x-

axis and y-axis, and the third element corresponds to the translation on the z-axis. 

5.3.2 Robust pose optimization 

The vehicle pose 𝝃𝑤
𝑣  can be optimized using the matched features, the prior states 

from the wheel odometer integration, and the planar motion assumption. The cost 

function is constructed as  

∑ 𝜌 (‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
)𝑖 + 𝜌 (‖𝒓𝑐

𝑤𝑜‖ 𝚺𝜸𝑤
𝑣𝑐
2 ) + 𝜌(‖𝒓𝑐

𝜿‖𝚺𝑐
𝜿

2 )                           (5.20) 

where i is the index of the matched features, 𝜌 is the Huber function, and 𝚺 is the 

associated covariance. Compared with the cost function of the point-based methods 

∑ 𝜌 (‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
)𝑖 , the new cost function utilizes additional constraints from the wheel 

odometer and the planar motion assumption. Instead of assuming a 100% flat ground 

plane, the planar motion constraint 𝜌(‖𝒓𝑐
𝜿‖𝚺𝑐

𝜿
2 ) is derived based on a soft assumption 
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that the ground plane is flat but with perturbations, which is more practical and can 

lead to optimal estimation results (Labbé & Michaud, 2019).  

Eq. (5.20) is iteratively solved using the Gauss-Newton algorithm implemented in 

g2o (Grisetti et al., 2011). The Mahalanobis distance test is employed after every 

four iterations. 

 ‖𝒓𝑖𝑐
2𝑝‖

𝚺𝑖𝑐
2𝑝

2
< 𝜒𝛼,2, ‖𝒓𝑐

𝑤𝑜‖ Σ𝜸𝑤
𝑣𝑐
2  < 𝜒𝛼,3, ‖ 𝒓𝜿

𝑐 ‖Σ𝑐
𝜿

2 < 𝜒𝛼,3             (5.21) 

where 𝛼 is the threshold of Chi-square distribution, 3 is the DoF of 𝒓𝜿
𝑐 , and ‖ 𝒓𝜿

𝑐 ‖Σ𝜿
𝒄

2  

is its Mahalanobis distance. If ‖ 𝒓𝜿
𝑐 ‖Σ𝑐

𝜿
2  is above the threshold 𝜒𝛼,3, a non-planar 

motion is marked that the ground vehicle is moving with large perturbations. Then 

the planar motion constraint will be excluded in the next iteration.  

After pose estimation, a new keyframe will be selected if: (a) the relative motion 

between the current frame and the previous keyframe is above a threshold, or (b) the 

number of the correct feature matches are insufficient. The unmatched features on 

the new keyframe are then projected to the world frame{w} using the vehicle pose 

𝑻𝑤
𝑣  and the extrinsic transformation 𝑻𝑐

𝑣 .  

The map storage is then updated by the following factors: (a) the new keyframe and 

the new map points; (b) the data associations between the detected features and the 

map points; (c) the integrated wheel odometer measurement from the previous 

keyframe to the new keyframe; (d) the non-planar motion flag which is marked by 

the Mahalanobis distance test. 

5.3.3 Ground plane detection 

The Mahalanobis distance test may fail to detect the vibration of the ground vehicle 

if the experimental covariance of planar motion constraint 𝚺𝑐
𝜿 is not tuned well. 

Ground plane detection is the second step for insurance. The estimated coefficients 

of the ground plane are used to refine the planar motion constraint. 
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Similar to Section 4.3.1, a fast algorithm of agglomerative hierarchical clustering 

(Feng et al., 2014) is employed for the plane segmentation on the new keyframe, as 

shown in Figure 5.3. The clustered points on the segmented planes are robustly fitted 

to compute their coefficients in the Hessian form 𝝅𝑗𝑘 = [𝒏𝑗𝑘
𝑇 , 𝑑𝑗𝑘]

𝑇. These planes are 

projected to the world frame {w} by 

𝝅𝑗𝑤 = ( 𝑻𝑣
𝑐 𝑻𝑤

𝑣 )𝑇𝝅𝑗𝑘                                         (5.22) 

 

Figure 5. 3: Ground plane detection. 

Four conditions are set to determine an accurate ground plane: (a) the included angle 

between 𝝅𝑗𝑤 and the z-axis is small; (b) 𝑑𝑗𝑤 is close to zero; (c) the plane j contains 

sufficient points; (d) the average of the plane fitting errors is small.   

If an accurate ground plane is found on the new keyframe, its Hessian form on the 

camera frame 𝝅𝑘
𝑔

= 𝝅𝑗𝑘 is applied to refine the planar motion constraint.  

𝝉𝑘
𝑔

= 𝑠(𝝅𝑘
𝑔
) = [arctan

𝑛𝑦𝑔

𝑛𝑧𝑔
, −arcsin 𝑛𝑥𝑔, 𝑑𝑔 ]

𝑇

                (5.23) 

where 𝝅𝑘
𝑔

= [𝑛𝑥𝑔, 𝑛𝑦𝑔, 𝑛𝑧𝑔, 𝑑𝑔]
𝑇
 and 𝝉𝑘

𝑔
= [𝑟𝑥𝑔, 𝑟𝑦𝑔, 𝑑𝑔]

𝑇
 . Noticed that, 𝑠( ) is 

different from 𝑞( ) in Eq. (4.3). They both convert the unit normal to two rotation 

angles, which can build a rotation matrix like Eq. (4.7). While the rotation matrix 

from Eq. (5.22) can bring the normal to [0, 0, 1]T (the normal of ground plane),  the 

matrix from Eq. (4.3) brings the normal to [1, 0, 0]T. The rotation matrix of 𝝉𝑘
𝑔

 is 

derived below and then extended to a full transformation matrix 𝑻𝑘
𝑔

. 

ground plane 
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𝑹𝑘
𝑔

= [

cos𝑟𝑦𝑔 0 sin𝑟𝑦𝑔

0 1 0
−sin𝑟𝑦𝑔 0 cos𝑟𝑦𝑔

] [

1 0 0
0 cos𝑟𝑥𝑔 −sin𝑟𝑥𝑔

0 sin𝑟𝑥𝑔 cos𝑟𝑥𝑔

]                  (5.24) 

 𝑻𝑘
𝑔

= [
𝑹𝑘

𝑔
𝒕𝑘
𝑔

𝟎 1
] , 𝒕𝑘

𝑔
= [0,0, 𝑑𝑔]

𝑇
                         (5.25) 

The planar motion constraint is re-written by  

𝒓𝑘
𝑔

= log(𝑻𝑘
𝑔

𝑻𝑣
𝑐 𝑻𝑤

𝑣𝑘 )
∨

3,4,5
                                    (5.26) 

where 𝑻𝑤
𝑣𝑘  is the vehicle pose of the keyframe k, 𝑻𝑣

𝑐  is the extrinsic calibration 

matrix between camera and vehicle frame,  𝑻𝑣
𝑐 𝑻𝑤

𝑣𝑘  is the camera pose, and 𝑻𝑘
𝑔

 aims 

to project the camera pose to the ground plane. The third, fourth, and fifth elements 

of log(𝑻𝑘
𝑔

𝑻𝑣
𝑐 𝑻𝑤

𝑣𝑘 )
∨
 should be close to zero, and indicates that the camera pose is 

transformed to the planar motion by  𝑻𝑘
𝑔

. The covariance of re-written planar motion 

constraint is 𝚺𝑘
𝑔

, which can be similarly derived by Eq. (4.16) and (4.17) 

𝚺𝑘
𝑔

=  𝐽𝒈,𝝁𝚺𝝁𝑗𝑤
𝐽𝒈,𝝁
𝑇 , 𝝉𝑘

𝑔
= [arctan

b

c
, −arcsin

𝑎

√𝑎2+𝑏2+𝑐2
,

1

√𝑎2+𝑏2+𝑐2
 ]

𝑇

       (5.27) 

𝐽𝒈,𝝁 =
𝛿

𝝉
𝑘
𝑔

𝛿𝝁𝑗𝑤

= 

[
 
 
 
 
 0

𝑐2

𝑏2+𝑐2 −
𝑏2

𝑏2+𝑐2

−
√𝑏2+𝑐2

𝑎2+𝑏2+𝑐2 −
𝑎𝑏

(𝑎2+𝑏2+𝑐2)√𝑏2+𝑐2
−

𝑎𝑐

(𝑎2+𝑏2+𝑐2)√𝑏2+𝑐2

−
𝑎

(𝑎2+𝑏2+𝑐2)
3
2

−
𝑏

(𝑎2+𝑏2+𝑐2)
3
2

−
𝑐

(𝑎2+𝑏2+𝑐2)
3
2 ]

 
 
 
 
 

          (5.28) 

5.3.4 Visual-odometric factor graph construction 

In Figure 5.4, after the ground plane detection, a new factor graph is constructed 

using all the visual, wheel odometer, and planar motion constraints in a sliding 

window. The vehicle poses outside the sliding window are set as fixed, and the map 

points are also fixed if they are observed by an early keyframe outside the window. 
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In addition, we assume that the extrinsic transformation 𝑻𝑐
𝑣 is fixed, so the camera 

poses are simply transformed from the vehicle poses, and no need to be optimized in 

the graph.  

 

Figure 5. 4: Factor graph with all the visual, wheel, and planar motion constraints.  

The wheel odometer constraint in Figure 5.4 is very different from the prior 

constraint in Section 4.2. Supposed that 𝜸𝑣𝑘
𝑣𝑘+1  is the integrated wheel odometer 

measurement between the keyframes k and k+1, it is extended to a 3D 

transformation matrix �̃�𝑣𝑘
𝑣𝑘+1  similarly by Eq. (5.15). The error of the wheel 

odometer constraint is constructed by 

𝒓𝑘
𝑤𝑜 = log ( �̃�𝑣𝑘

𝑣𝑘+1 −1 𝑻𝑤
𝑣𝑘+1 𝑻𝑤

𝑣𝑘 −1)
∨

1,2,6
                              (5.29) 

where 𝑻𝑤
𝑣𝑘  and 𝑇𝑤

𝑣𝑘+1  are the vehicle poses to be estimated in the factor graph. The 

covariance for the wheel odometer integration  𝜮
𝜸𝑣𝑘

𝑣𝑘+1  is propagated by Eq. (5.14). 

A novel cost function is built below with all the constraints in the sliding window 

∑ ∑ 𝜌 (‖𝒓𝑖𝑘
2𝑝‖

𝚺𝑖𝑘
2𝑝

2
)𝑖𝑘 + ∑ ‖𝒓𝑘

𝑤𝑜‖𝜮
𝜸𝑣𝑘

𝑣𝑘+1

2
𝑘 + ∑ ‖𝒓𝑘

𝜿‖𝚺𝑐
𝜿

2
𝑘 + ∑ ‖𝒓𝑘

𝑔
‖

𝚺𝑘
𝑔

2
𝑘           (5.30) 

where k and i are the indexes of the keyframes and feature points, 𝜌 is the Huber 

function and 𝚺 is the covariance matrix. The new cost function tightly fuses the 

                 

    +1   +2   +3
   1

                

                            

           

                 

                         

                       

                       

                 

                                 



Tightly coupling RGB-D camera and wheel odometer for ground vehicle navigation 

97 

 

constraints from the RGB-D camera, the wheel odometer, and the planar motion 

assumption, and utilizes more information than the point-based methods and 

previous methods fusing the wheel odometer and the RGB-D camera (Labbé & 

Michaud, 2019; D. Yang et al., 2019). In addition, it can work on uneven floors 

owing to the re-written planar motion constraints. Gauss-Newton method in g2o is 

applied to solve Eq. (5.30) again, which can provide the refined vehicle poses 𝝃𝑤
𝑣𝑘

  

and the map points 𝑷𝑖𝑤. The planar motion constraint is an optional factor based on 

the two-step strategy: 

(a) If the Mahalanobis distance test proves that the vehicle performs a non-planar 

motion, and an accurate ground plane is not found, neither 𝒓𝑘
𝜿 nor 𝒓𝑘

𝑔
 is applied in 

Eq. (5.30). 

(b) If the planar motion is marked by the Mahalanobis distance test, but an accurate 

ground plane is not found, 𝒓𝑘
𝜿 is utilized in Eq. (5.30). 

(c) If an accurate ground plane is detected, then 𝒓𝑘
𝜿 is removed in Eq. (5.30) and 𝒓𝑘

𝑔
 

is applied to re-write the planar motion constraint. 

5.3.5 Loop closing 

Firstly, loop candidate is found by a bag-of-word approach and checked by 

geometry test, similar to Section 3.3.4. Pose graph optimization is then performed to 

adjust the vehicle poses. Unlike Section 3.3.4, integrated wheel odometer 

measurements are also fused to the pose graph, which can help to reduce the drift of 

vehicle pose. More detail can be referred to Section 3.3.4.  

5.4 Experiments and results 

Experiments are carried out using a Turtlebot2 ground vehicle in a lab room and a 

corridor scenario. As shown in Figure 5.5, the ground vehicle is equipped with a 
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forward-looking Kinect V2 camera outputting RGB-D images and a Kobuki base 

providing wheel odometer measurements. Though 3-D LiDAR Velodyne VLP-16 is 

installed on the top of the vehicle, it is not used in the experiments. The onboard 

computer is an Intel NUC with i7-6770HQ CORE and 16 GB RAM. The power for 

Intel NUC and Kinect V2 is supplied by a GBTIGER power bank. Reflective balls 

are placed on the vehicle as markers for Qualisys, the motion capture system. In 

addition, an indoor mobile mapping system NavVis M6 is used to generate the 

ground truth for 3-D scene reconstruction, which is shown in Figure 3.10.     

 

Figure 5. 5: Turtlebot 2, the ground vehicle. 

The proposed system is compared with the wheel odometry, and two SOTA 

systems, RTAB-map (Labbé & Michaud, 2019) and ORB-SLAM2 (Mur-Artal & 

Tardós, 2017). The former one is a comprehensive system supporting a variety of 

sensors. This chapter uses the module of fusing the wheel odometer and the RGB-D 

camera for comparison. It loosely couples both sensors under a hard assumption that 

the robot is moving on a flat floor without perturbation. ORB-SLAM2 is also a 

comprehensive system supporting monocular, stereo, and RGB-D cameras. This 

chapter uses the module of RGB-D SLAM for comparison. In the room experiment, 

the APE between the ground truth and the trajectory from the proposed system is 

computed by aligning the latter to the former using Umeyama alignment (Umeyama, 

1991). Then the RMSE of APE is employed to evaluate its localization accuracy. In 

the corridor experiment, the 3-D model reconstructed by the proposed system is 
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aligned to the ground truth by the ICP. Then the RMSE of the PTPD is calculated to 

evaluate its mapping accuracy. 

5.4.1 Lab room experiment 

The lab room experiment covers several challenging instants for vehicle tracking. 

For example, two sampled images collected by RGB-D camera are shown in Figure 

5.6(a) with black sofas and cabinets, glass windows, and illumination variation, and 

in Figure 5.6(b) with a low textured wall. Figure 5.6(c) is collected from the third-

person view using a camera from a cell phone, and indicates the vibration of the 

ground vehicle due to the uneven floor in the clustered room. 

                

(a)                (b) 

 

(c) 

Figure 5. 6: Challenging scenes in the room. (a) Black sofas and cabinets, glass 

windows and illumination variation; (b) the low textured wall; (c) the uneven floor. 

 

uneven 

floor 
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The vehicle trajectories are estimated using various algorithms, including the 

proposed system, wheel odometry, RTAB-map, and ORB-SLAM2. They are aligned 

to the ground truth and compared in Figure 5.7(a). In addition, separate comparisons 

are presented in Figure 5.7(b)-(e). Above all, the most accurate trajectory is 

generated from the proposed system, which benefits from the two-stage strategy and 

the tight-coupling design. Though the trajectory of ORB-SLAM2 is aligned well 

with the ground truth, it loses tracking soon due to the low textured wall in Figure 

5.6(b). Followed is RTAB-map, which assumes a 100% flat floor and loosely fuses 

the RGB-D camera and the wheel odometry. The worst trajectory is provided by the 

wheel odometry. Compared with RTAB-map, the proposed system can improve the 

localization performance by 3.3 cm and 40.7%. 

In Table 5.1, the trajectory length is about 20.103 m, and the localization accuracy is 

defined as the ratio of APE RMSE to the length. The RMSEs of the x-axis, y-axis, z-

axis, and the translation of the estimated trajectories are also presented. Above all, 

the best accuracy is marked as bolded and yielded by the proposed system, which is 

followed by ORB-SLAM2, RTAB-map, and wheel odometer. Because ORB-

SLAM2 has no constraint for the planar motion assumption, its RMSE of the z-axis 

is not comparable to others. Both the wheel odometer and RTAB-map employ a 

hard planar motion constraint, which fixes the z-axis translation to zero. However, 

due to uneven floor, the ground vehicle may deviate on the ground plane and enlarge 

the localization error. The proposed system applies a two-stage approach for the 

planar motion constraint, and its motion in the z-axis is the most consistent with the 

ground truth.  
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(a) 

 

(b)                      (c) 

   

(d)               (e) 

Figure 5. 7:  Vehicle trajectories in the room experiment. (a) Trajectories estimated 

by various algorithms are aligned to the ground truth; (b) Separate comparison of 

the proposed system; (c) wheel odometry; (c) RTAB-map; (d) ORB-SLAM2. 
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Table 5. 1: Comparison of APE RMSE (cm) in lab room experiment. 

Room 

(20.103 m) 
Proposed 

Wheel 

odometry 
RTAB-map ORB-SLAM2 

x-axis 3.9 10.9 6.2 5.1 

y-axis 2.8 5.4 5.2 4.5 

z-axis 0.2 0.6 0.6 0.8 

APE RMSE 4.8 12.2 8.1 6.9 

accuracy 0.239% 0.607% 0.403% 0.343% 

Figure 5.8(a) presents the 3-D octomap, which is built by ray-casting using the 

camera poses and the point clouds. The voxel size of the octomap is set to 0.05 m. 

The red circles in Figure 5.8(a) indicate that dense keyframes are inserted due to 

insufficient feature matches occurring in Figure 5.6(a) and (b). The 3-D voxels in the 

octomap are projected to the ground plane as a 2-D grid map in Figure 5.8(b). A big 

meeting table is placed in the middle of the room and marked in a red box. There are 

lots of objects placed beside the walls, and they are projected to the ground together 

with the walls, so the boundary of the room is thick in the grid map. 

 

(a)              (b) 

Figure 5. 8: 3-D octomap (a) and 2-D grid map (b) in the lab room. 
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5.4.2 Corridor experiment 

The corridor experiment also covers some challenging scenes, e.g., glass windows 

and low textured walls as shown in Figure 5.9, which can affect the continuity of 

SLAM systems. However, as the ground vehicle has a good viewing angle, all the 

algorithms can successfully process the corridor sequence and generate full 

trajectories as shown in Figure 5.10. As to align these trajectories in the same 

coordinate system, the camera trajectory from ORB-SLAM2 is transformed to the 

vehicle trajectory using 𝑻𝑣
𝑐 , while other algorithms directly output vehicle pose. 

Then the trajectory from the proposed system is used as a reference for alignment. 

The green trajectory from RTAB-map is the most consistent with the reference. 

Followed are the trajectories from ORB-SLAM2 and wheel odometry.      

    

(a)                   (b) 

Figure 5. 9: Challenging scenes in the corridor. (a) glass windows; (b) low textured 

walls. 

 

Figure 5. 10: Vehicle trajectories in the corridor experiment. 
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3-D models of the corridor are built incrementally by projecting the point cloud of 

RGB-D frames to the world frame. As to evaluate the mapping accuracy of various 

algorithms, 3-D models are compared with the ground truth in Figure 3.10 and the 

comparison result is shown in Figure 5.11. In Figure 5.11(a), there are some outlier 

points close to the glass windows, which are resulted from glass transmission. In 

Figure 5.11(b) and (d), red circles are employed to mark the points with large errors 

due to the tracking drift. To compare the mapping accuracy of the proposed system 

and RTAB-map, red boxes are placed in the area with large errors in Figure 5.11(c).  

  

                                            (b) 

  

(c)                                         (d) 

Figure 5. 11: 3-D models generated by various algorithms. (a) the proposed system; 

(b) the wheel odometry; (c) RTAB-map; (4) ORB-SLAM2. 

In Table 5.2, the length of the model is about 60.792 m, and the mapping accuracy is 

defined as the ratio of the PTPD RMSE to the length. RMSEs of the distances in 
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three dimensions x-axis, y-axis, z-axis are also presented. The proposed system 

yields the best accuracy (9.0 cm and 0.148%) owing to the tight coupling of the 

RGB-D camera, wheel odometer, and planar motion constraints. Followed is RTAB-

map (13.6 cm and 0.224%), which benefits from the loose coupling of RGB-D 

camera and wheel odometer. Compared with RTAB-map, the proposed system can 

improve the mapping accuracy by 4.6 cm and 33.8%.  

Table 5. 2: Comparison of PTPD RMSE (cm) in corridor experiment 

Corridor 

(60.792 m) 
Proposed 

Wheel 

odometer 
RTAB-map ORB-SLAM2 

x-axis 6.4 16.6 7.4 15.9 

y-axis 5.5 28.3 10.5 6.4 

z-axis 3.1 4.9 4.3 8.7 

PTPD RMSE 9.0 33.2 13.6 19.2 

accuracy 0.148% 0.546% 0.224% 0.316% 

The 3-D octomap and the 2-D grid map of the corridor are shown in Figure 5.12, 

which can be used for path planning and obstacle avoidance of the ground vehicle.  

                      

(a)                                              (b) 

Figure 5. 12: 3-D octomap (a) and 2-D grid map (b) in the corridor. 
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5.4.3 Computation speed 

As to investigate the computation speed, the room sequence is processed using the 

proposed system, and the processing time of each part is listed in Table 5.3. The 

time consumption by the loop closure is not listed as it is highly dependent on the 

keyframe number. While ORB-SLAM2 maintains a co-visibility map for local 

bundle adjustment, the sliding window used in the proposed system is lighter and 

contains fewer keyframes and map points, which reduces the computation cost. On 

average,  the proposed system can output the vehicle pose and update the scene map 

within 52.5 (39.6+12.9) ms, which is sufficient for ground vehicle navigation.  

Table 5. 3: Processing time (ms) of each part of the proposed system. 

Thread Part Proposed ORB-SLAM2 

Tracking 

ORB Extraction 25.1  

ORB Matching 6.3  

Wheel Odometer Integration 1.0  

Planar Motion Assumption 1.0  

Robust Pose Optimization 6.2  

Total 39.6 41.2 

Local 

Mapping 
Factor Graph Optimization 55.8 235.7 

Octomap Map Update 12.9  

5.5 Summary 

This chapter proposes a localization and mapping system for ground vehicle 

navigation, which fuses the RGB-D camera and the wheel odometer under a soft 

planar motion assumption. In summary, 

(a) This chapter assumes the vehicle moves on the ground floor with perturbations. 

To deal with the perturbations, a two-stage strategy is proposed, which uses the 

Mahalanobis distance test in the frontend and the ground plane detection in the 
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backend. Large vibration of the ground vehicle is detected and removed during 

pose optimization. The coefficients of the ground plane are also useful for 

constraining the vehicle motion. This strategy can work properly on the uneven 

floor and avoid the disadvantage of the methods based on the hard planar motion 

assumption.  

(b) To further correct the drift of the vehicle tracking, a novel factor graph is 

constructed in this chapter, which tightly couples the visual, wheel odometer, and 

planar motion constraints. The associated covariances of these constraints are 

derived respectively. Compared with the previous methods fusing the wheel 

odometer and the RGB-D camera, the new factor graph exploits more constraints 

based on the results of ground plane detection. Therefore, it can help to reduce the 

accumulating drift and improve the accuracy of mobile platform tracking. 

(c) The proposed system is evaluated and compared with other algorithms using self-

collected datasets, which shows its superior performance in consideration of 

vehicle localization and scene reconstruction. Compared with RTAB-map, a 

loose-coupled system under hard motion assumption, the proposed system can 

improve the localization accuracy by 40.7% and the mapping accuracy by 33.8%. 



RGB-D SLAM by hybrid feature fusion and wheel odometer integration 

108 

 

CHAPTER 6 

RGB-D SLAM BY HYBRID FEATURE FUSION AND 

WHEEL ODOMDTER INTEGRATION 

6.1 Introduction and system overview 

Three SLAM systems are presented respectively in the last three chapters. Chapter 3 

focuses on fusing point and line features and extends previous works by combining 

both the 3D and 2D line reprojection errors. Chapter 4 pays attention to the fusion of 

point and plane features, and improves previous research from two aspects: (a) a 

new representation form for the plane features; (b) the analytical covariance of the 

plane measurement in the spherical form. Chapter 5 tightly couples RGB-D camera, 

wheel odometer under the planar motion assumption in a new factor graph, and 

proposes a two-step strategy to handle the perturbation of the ground plane. 

In this chapter, benefiting from the research points highlighted in the last three 

chapters, a comprehensive SLAM system is presented to further improve the 

tracking continuity and accuracy, which tightly couples RGB-D camera and wheel 

odometer, and fuse point, line, and plane features. To achieve real-time processing, 

hybrid features are extracted and matched in three different threads in the proposed 

system. As shown in Figure 6.1, it has mainly two parts, frontend, and backend. 

(a) Frontend. Firstly, the wheel odometer measurements are integrated to predict the 

initial pose of the mobile platform. Secondly, point, line, and plane features are 

simultaneously detected by ORB (Rublee et al., 2011), LSD (Von Gioi et al., 

2012), and fast plane extraction algorithm (Feng et al., 2014). Thirdly, ORB and 

LSD features are matched by descriptor comparison, and the outlier matches are 

removed by ratio test and cross-check. Plane features are associated with previous 

planes by computing their coefficients in the world frame. Specifically, the initial 



RGB-D SLAM by hybrid feature fusion and wheel odometer integration 

109 

 

guess of the mobile platform is used to aid the matching of hybrid features. 

Fourthly, a comprehensive and robust pose solver is built, which consists of pose-

to-point, pose-to-line, and pose-to-plane constraints and the prior constraints from 

wheel odometer integration and planar motion assumption. Specifically, outlier 

measurements are detected and removed by the Mahalanobis distance test. Finally, 

if the current frame is selected as a keyframe, the map storage will be updated by 

the vehicle pose, the feature matches, the integrated wheel odometer 

measurements, and the planar motion flag. The point cloud of the current frame is 

also integrated to build a global 3D model for mobile platform navigation. 

(b) Backend. The backend aims to compensate the vehicle drift in the frontend, and it 

consists of two threads for local mapping and loop closing, respectively. Firstly, 

in the local mapping thread, a new visual-odometric factor graph is constructed, 

which contains the wheel odometer constraint, the planar motion constraint, and 

the visual constraints from the hybrid features. The vehicle poses and hybrid 

features are simultaneously refined by the new factor graph. In the loop closing 

thread, the vehicle pose drift will be further reduced by pose graph optimization if 

the loop closure is detected by the bag-of-word approach and verified by the 

geometry check. 
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Figure 6. 1: Pipeline of the comprehensive SLAM system. 

The remaining content of this chapter is divided into three parts, which focus on the 

full pipeline of the comprehensive system, the experiments and results, and the 

summary, respectively.  

6.2 Hybrid feature fusion and wheel odometer integration 

The full pipeline of the proposed system is presented in this section. The first step is 

to construct the constraints from the hybrid features, wheel odometer, and planar 

motion assumption. The second step is robust pose optimization with all the 

constraints. The third and fourth steps are factor graph optimization and loop 

closing, respectively.  

6.2.1 Constraints from hybrid features, wheel odometer, and planar motion 

In this section, the construction of wheel odometer, planar motion, and pose-to-point 

constraints is the same as Section 5.3.1. Pose-to-line and pose-to-plane constraints 

are built similarly with Section 3.3.1 and 4.3.1. 
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Firstly, the vehicle pose is propagated by wheel odometer integration and the prior 

constraint of the vehicle pose is modelled by Eq. (5.16). Secondly, the planar motion 

constraint is constructed by Eq. (5.19). Thirdly, the point features are detected by 

and matched by ORB algorithms (Rublee et al., 2011). Pose-to-point feature 

constraint is constructed based on Eq. (5.3) using the correct point matches. 

Fourthly, the line features are extracted by LSD (Von Gioi et al., 2012) matched by 

LBD, and selected by the three-step method proposed in Section 3.4.1. The 2D pose-

to-line constraint is built using Eq. (3.14) if depth measurements on the detected line 

segments are not reliable. Otherwise, the 3D pose-to-line constraint is constructed by 

Eq. (3.16). Thirdly, the plane features are detected by a fast plane extraction 

algorithm (Feng et al., 2014), and matched based on their coefficients in the world 

frame. Eq. (4.11) is utilized to develop pose-to-plane constraints. 

6.2.2 Robust pose optimization 

The vehicle pose 𝝃𝑤
𝑣  can be robustly estimated using the guess from wheel odometer 

integration, the planar motion assumption, and hybrid feature measurements. The 

comprehensive cost function is designed below 
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where i,  j, and m are the indexes of the point, line, and plane features, 𝜌 is the Huber 

function, and 𝚺 is the associated covariance. Owing to the wheel odometer 

integration and the hybrid feature fusion, the comprehensive cost function utilizes 

more constraints than the cost functions of the proposed systems in the last three 

chapters. These constraints are beneficial for high-precision pose estimation. 
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 defines 2D 

and 3D pose-to-line constraints, respectively,  ‖𝒓𝑚𝑐‖𝚺𝑚𝑐

2 is the pose-to plane 

constraint by Eq. (4.11) with a different symbol. ‖𝒓𝑐
𝑤𝑜‖ 𝚺𝜸𝑤
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constraints from the wheel odometer and the planar motion assumption, and derived 

from Eq. (5.16) and (5.19), respectively. The comprehensive cost function exploits 

constraints from hybrid features, the wheel odometer prediction, and the planar 

motion assumption, which can help to generate more accurate pose estimation 

results than individual modules presented in the last three chapters. 

The cost function can be iteratively minimized using the Gauss-Newton algorithm 

implemented in g2o (Grisetti et al., 2011), and the outlier measurements are detected 

and removed by the Mahalanobis distance test after every four iterations. A new 

keyframe is determined using the same criteria in the last three chapters: (a) the 

relative motion between the current frame and the previous keyframe; (b) the 

number of the correct feature matches. The unmatched point, line, and plane features 

of the new keyframe are inserted into the map storage together with the keyframe 

pose, the integrated wheel odometer measurement, and the non-planar motion flag. 

6.2.3 Comprehensive factor graph construction 

As shown in Figure 6.2, a comprehensive visual-odometric factor graph is built 

based on the visual constraints from the point, line, and plane features, and the wheel 

odometer and the planar motion constraints. The vehicle poses and hybrid features 

outside the window are considered fixed. Specifically, the 2D and 3D pose-to-line 

constraints are inserted in the factor graph based on Eq. (3.14) and (3.16). Four types 

of point-to-plane constraints are designed based on the new representation form of 

plane features by Eq. (4.4-4.6), and the detail is presented in Section 4.3.3.  
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Figure 6. 2: Comprehensive factor graph with the visual, wheel and planar motion 

constraints.  

A novel cost function is built below with all the constraints in the sliding window 
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where k is the index of the keyframe poses, i , j, and m are the indexes of the point, 

line, and plane features, respectively. The factor graph consists of comprehensive 

constraints from the hybrid features, the wheel odometer integration, and the planar 

motion assumption, which are more beneficial for pose estimation than the factor 

graphs in the last three chapters. ‖𝒓𝑚𝑘‖𝚺𝑚𝑘

2  is constructed based on the new 

representation form for the plane features. The wheel odometer constraint is derived 

from Eq. (5.29). A two-step strategy is employed to select the planar motion 

constraint optionally, which is detailed in Section 5.3.4. The cost function of Eq. 

(6.2) is again solved by the Gauss-Newton method in g2o, where the vehicle poses 

𝝃𝑤
𝑣𝑘  and the map features are refined iteratively. 
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6.2.4 Loop closing 

The pipeline of the loop closing is the same as Section 3.3.4. In general, the 

similarity score between two frames is low in low textured scenes, and loop closure 

is only triggered in textured scenes, where the point feature matches are sufficient 

for loop closure verification. Therefore, the relative motion between the loop 

candidate and the current frame is computed using point features only, though 

hybrid features are detected.  

6.3 Experiments and results 

The proposed system is mainly built upon the navigation system proposed in 

Chapter 5. The processing modules of line and plane features in Chapters 3 and 4 are 

added to construct the pose-to-line and pose-to-plane constraints, respectively. All 

the experiments are conducted based on a Turtlebot2 ground vehicle, as shown in 

Figure 5.6. The ground truth of the vehicle trajectory is generated by Qualisys 

motion capture system in Figure 3.6, and that of the 3D scene reconstruction is 

obtained using NavVis M6 mobile mapping system in Figure 3.10.  

In the last three chapters, three SLAM systems are proposed and then compared with 

SOTA systems by sufficient experiments and thorough analysis. In this chapter, a 

comprehensive RGB-D SLAM system by hybrid feature fusion and wheel odometer 

integration is presented. It is then compared with the previous systems to prove the 

advantages of sensor fusion and feature fusion. Similar to the last three chapters, 

RMSEs of the APE and the PTPD are employed to evaluate the localization 

accuracy and mapping accuracy, respectively. Furthermore, two additional 

experiments are carried out in two rooms with high rich and low textures, 

respectively. The ground vehicle starts and ends at the same position. The closing 

errors is defined as the difference between the estimated start and end points from 

SLAM systems, and is utilized to evaluate the continuity and accuracy of SLAM 

systems. 
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6.3.1 Lab room experiment 

We collect a new dataset in the lab room using the Turtlebot2 ground vehicle. It also 

contains a challenging scene as shown in Figure 6.3. The vehicle trajectories are 

estimated by six methods: (a) point-based SLAM (abbreviated as P); (b) point + line 

SLAM proposed in Chapter 3 (abbreviated as PL); (c) point + plane SLAM 

proposed in Chapter 4 (abbreviated as PP); (d) point + line + plane SLAM 

(abbreviated as PLP); (e) tightly coupling of RGB-D camera and wheel odometer, 

proposed in Chapter 5 (abbreviated as WP); (f) comprehensive RGB-D SLAM by 

wheel odometer integration and hybrid feature fusion (abbreviated as WPLP). 

 

Figure 6. 3: A challenging scene where the camera view is blocked by a black sofa.  

These trajectories are aligned to the ground truth and compared in Figure 6.4(a). In 

addition, separate comparisons are presented in Figure 6.4(b)-(g). A large drift is 

observed in Figure 6.4(b) and marked by a red circle, which indicates the 

performance degeneracy of point-based SLAM in the low textured scene in Figure 

6.3. Such drift can corrupt the localization continuity and result in tracking failure of 

the ground vehicle. It can be compensated by fusing line and plane features in Figure 

6.4(c)-(e). Specifically, the improvement by fusing the plane feature is more 

significant than fusing the line features. Figure 6.4(f) indicates that the prior 

constraints from the wheel odometer and the planar motion assumption can also 

reduce the drift. With the aid of hybrid features, the accuracy of vehicle pose is 

further improved in Figure 6.4(g).  
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(a) 

 
(b)                                     (c) 

 

(d)                                            (e) 

 

(f)                                              (g) 

Figure 6. 4: Vehicle trajectories in the room experiment. (a) Trajectories estimated 

by six methods are aligned to the ground truth; (b) Separate comparison of P; (c) 

PL; (c) PP; (d) PLP; (f) WP; (g) WPLP. 
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In Table 6.1, the trajectory length is about 18.405 m, and the RMSEs and 

localization accuracies of six methods are also presented. The accuracy of the point-

based SLAM is promoted by the fusion of line features, plane features, and wheel 

odometer, respectively. Above all, the best accuracy of 0.337% and the lowest 

RMSE of 6.2 cm are generated by the comprehensive RGB-D SLAM by wheel 

odometer integration and hybrid feature fusion. It takes advantage from two aspects: 

(a) the prior constraints from the wheel odometer and the planar motion assumption, 

which can help to select correct feature matches and guide the optimization of the 

vehicle pose; (b) robust and accurate line and plane features, which can reduce the 

drift when point feature is insufficient or with low quality. Compared with the 

feature point-based system, the comprehensive system can improve the localization 

accuracy by 70.1%, fusing the wheel odometer can improve it by 66.3%, the fusion 

of the points, lines, and planes can improve it by 57.2%, combining plane features 

can improve it by 53.8%, and adding line features can improve it by 33.6%. 

Table 6. 1: Comparison of APE RMSE (cm) in lab room experiment. 

Room 

(18.405 m) 
P PL PP PLP WP WPLP 

RMSE 20.8 13.8 9.6 8.9 7.0 6.2 

accuracy 1.130% 0.750% 0.522% 0.484% 0.380% 0.337% 

Figure 6.5 presents a snapshot of the comprehensive RGB-D SLAM system. Three 

images in the left part of Figure 6.5 show the extraction and matching results of 

point, line, and plane features, respectively. The vehicle poses of the keyframes, the 

3D octomap and the 2D grid map are depicted in the right part. Specifically, the 

octomap is built by ray-casting and the grid map is generated by projecting the 

octomap to the ground plane.  
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Figure 6. 5: Snapshot of the comprehensive RGB-D SLAM system in the lab room 

experiment. 

6.3.2 Corridor experiment 

We collect a new dataset in the corridor, where the Turtlebot2 ground vehicle 

performs fast rotations in the turnings of the corridor. Two example images captured 

in the turnings are shown in Figure 6.6, which shows motion blur and low texture, 

respectively.  

           

(a)                        (b) 

Figure 6. 6: Example image captured in the first (a) and second (b) turnings. 

Figure 6.7 is the snapshot of the comprehensive system in the corridor experiment, 

and the fast motion parts are marked by red circles. 
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Figure 6. 7: Snapshot of the comprehensive RGB-D SLAM system in the corridor 

experiment. 

The trajectories of the ground vehicle are computed by six methods and compared in 

Figure 6.8. We argue that with the fusion of the wheel odometer and hybrid features, 

the comprehensive system generates the most accurate results, which can be utilized 

as a reference for trajectory comparison. The tracking accuracy of the point-based 

SLAM is the worst, and its trajectory deviates the most from the reference, 

especially in the turning parts with fast motion. With the fusion of the line and plane 

features, the trajectories of PL, PP, and PLP are more consistent with the reference. 

Specifically, the improvement by the plane feature is more essential than that by the 

line feature. By tightly coupling the RGB-D camera and the wheel odometer, the 

accuracy of WP is also promoted, which is the most consistent with the reference.  
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Figure 6. 8.  Vehicle trajectories in the corridor experiment. 

3-D models of the corridor are built incrementally by projecting the point cloud of 

RGB-D frames to the world frame. Their accuracies are evaluated by comparing 

with the ground truth model in Figure 3.10, and shown in Figure 6.9. The red circles 

in Figure 6.9(f) indicate the outliers due to opened door, glass transmission and 

unobservable area in ground truth model, which are observed in all the 3D models. 

In Figure 6.9(a), the model of point-based SLAM shows a large drift compared with 

the ground truth mode. This drift is reduced by the fusion of the line and plane 

features in Figure 6.9(b-d) significantly. With the aid of the wheel odometer and the 

planar motion assumption, WP can generate a high-quality 3D model, but the outlier 

points are still observed and marked by red circles in Figure 6.9(e). By further fusing 

hybrid features, these outliers disappear in Figure 6.9(f), which can prove the benefit 

of the comprehensive RGB-D SLAM system. 
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(a)                             (b)  

 

(c)                              (d)  

 

(e)                            (f) 

Figure 6. 9: 3-D models generated by six methods. (a) P; (b) PL; (c) PP; (d) PLP; 

(e) WP; (f) WPLP. 

Table 6.2 lists the PTPD RMSE of the 3D models by the six methods, and their 

accuracies are defined as the ratio of PTPD RMSE to the length. The accuracy of the 

comprehensive system (RMSE: 8.3 cm, and RMSE/length: 0.136%) is the highest 
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owing to sensor fusion and hybrid feature fusion. The line features, plane features, 

and the wheel odometer can all improve the performance of the feature point-based 

method, and the biggest improvement is resulted by wheel odometer fusion (from 

34.5 cm to 9.6 cm), which is followed by the plane fusion (from 34.5 cm to 15.3 

cm ) and then the line fusion (from 34.5 cm to 21.0 cm). Compared with the feature 

point-based system, the highest improvement of the mapping accuracy is 75.9% by 

the comprehensive system, followed by 72.1% from the system fusing the wheel 

odometer and the RGB-D camera, fusing point, line, and plane features can improve 

the accuracy by 62.6%, and the improvements by fusing plane and line features are 

55.6% and 39.1%, respectively. 

Table 6. 2: Comparison of PTPD RMSE (cm) in corridor experiment. 

Corridor 

(60.792 m) 
P PL PP PLP WP WPLP 

PTPD RMSE 34.5 21.0 15.3 12.9 9.6 8.3 

accuracy 0.567% 0.345% 0.251% 0.212% 0.157% 0.136% 

6.3.3 Highly low textured room  

We collect a new dataset in a highly low textured room. As shown in Figure 6.10, it 

covers white curtains, walls, and glass window with invalid depth. It is difficult to 

detect sufficient point features in this room. In Figure 6.11, the trajectory and 3D 

octomap of the comprehensive SLAM system in the highly low textured room are 

presented. The ground vehicle starts and ends at the same position. The loop closing 

modules of SLAM systems are disabled for the evaluation of the closing errors. 
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(a)                                         (b) 

  

(c)                                         (d) 

Figure 6. 10: Highly low textured room. (a) whitle curtain; (b) wall; (c) galss 

window; (d) invalid depth. 

 

Figure 6. 11: 3D model and trajectory in the highly low textured room. 
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In Table 6.3, P and PL fail while others run successfully. Among them, the 

comprehensive method generates the smallest closing error, owing to hybrid feature 

fusion and wheel odometer integration. Its relative improvements over PP, PLP and 

WP are 79.0%, 67.3% and 39.3%, respectively. The trajectories of various SLAM 

systems are also shown in Figure 6.12. As shown in the zoomed figure, the smallest 

drift is achieved by the comprehensive SLAM system. 

Table 6. 3: Comparison of closing errors(cm) in the highly low textured room. 

Low texture 

(18. 325 m) 
P PL PP PLP WP WPLP 

x-axis - - 3.8 2.9 0.1 0.0 

y-axis - - 6.8 3.7 2.8 1.7 

z-axis - - 2.3 2.2 0.0 0.0 

closing error - - 8.1 5.2 2.8 1.7 

 

Figure 6. 12: Closing trajectories in the highly low textured room. 

6.3.4 Highly rich textured room  

In the last experiment, the ground vehicle moves in a highly rich textured room, 

where textured images are printed and sticked on the walls (Olson, 2011), as shown 
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in Figure 6. 13. Figure 6.14 presents the trajectory and 3D octomap of the 

comprehensive method, where the start and end positions of the ground vehicle are 

the same.  

   

(a)                                         (b) 

  

(c)                                         (d) 

Figure 6. 13: Textured images (a) and (b) on the walls (c) and (d). 

 

Figure 6. 14: 3D model and trajectory in the highly rich textured room. 
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In Table 6.4, all the methods run successfully in the high rich textured room because 

of sufficient point features. Among them, the smallest closing error is generated by 

the comprehensive method, and its relative improvement over others is at least 

18.5%.  Owing to hybrid feature fusion and wheel odometer integration, it can 

improve P by 86.4%, PL by 84.0%, PP by 74.1%, PP by 51.1%,  and WP by 18.5%. 

Figure 6.15 presents the trajectories of six methods in the highly rich textured room. 

The zoomed figure also indicates the smallest accumulating drift by the 

comprehensive method. 

Table 6. 4: Comparison of closing errors(cm) in the highly rich textured room. 

Low texture 

(18. 325 m) 
P PL PP PLP WP WPLP 

x-axis 12.9 5.1 -6.8 3.1 0.7 1.0 

y-axis 2.9 10.1 -3.9 2.0 2.6 2.0 

z-axis 9.4 6.5 3.3 2.6 0.0 0.0 

closing error 16.2 13.0 8.5 4.5 2.7 2.2 

 

Figure 6. 15: Closing trajectories in the highly rich textured room. 
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6.3.5 Computation speed 

We process the corridor dataset using the comprehensive system and list the 

processing time of each part in Table 6.5. The time cost by loop closing is not listed 

as it is highly dependent on the keyframe number, which is continuously growing. It 

should be noticed that the point, line, and plane features are extracted and matched 

on three independent threads, to speed up the pipeline and reduce the computation 

time.    

Table 6. 5: Processing time (ms) of each part of the comprehensive system. 

Thread Part Time 

Tracking 

Wheel Odometer 

Integration 
1.0 

Planar Motion 

Assumption 
1.0 

ORB Extraction 
 

62.3 
LSD Extraction 

Fast Plane Extraction 

ORB Matching 

18.6 LBD Matching 

Plane Association 

Robust Pose Optimization 9.8 

Total 92.7 

Local 

Mapping 

Factor Graph 

Optimization 
186.1 

Octomap Map Update 13.6 

Though the system applies a multi-thread design, the computation burden still 

increases for processing the hybrid features. The average time cost of hybrid feature 

extraction is 62.3 ms, and that of hybrid feature matching is 18.6 ms. On the other 

hand, the extraction and matching times of the point features are only 24.1 ms and 

7.5 ms, respectively. On average, the comprehensive system can complete the 
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localization and mapping task within 106.3 ms (92.7+13.6). It is sufficient for a low-

speed ground vehicle to perform path planning and obstacle avoidance. If the 

onboard computer has lower performance, both the processing functions of the line 

and plane features can be disabled to improve the computation speed and save the 

computation memory. 

In addition, the average number of hybrid feature matches is shown in Table 6.4. 

Though the number of the line and plane feature matches is lower than that of the 

point feature matches, they are less affected by low textures and can provide 

additional and reliable constraints in low textured scenes. 

Table 6. 6: Average number of hybrid feature matches. 

Types 
Point Feature 

Matches 

Line Feature 

Matches  

Plane Feature 

Matches 

number 225.3 37.1 2.9 

6.4 Summary 

Based on the contributions listed in the last three chapters, this chapter presents a 

comprehensive RGB-D SLAM system with the aid of the wheel odometer and 

hybrid features, for ground vehicle navigation. In summary, 

(a) It builds a comprehensive cost function, consisting of the constraints from hybrid 

features, wheel odometer, and planar motion assumption. It relies on more 

constraints and can generate higher localization accuracy than the previous 

methods in the last three chapters. 

(b) It fuses point, line and plane features, combines wheel odometer constraints under 

the planar motion assumption, and then builds a comprehensive factor graph. Both 

3D and 2D line features are utilized. The new representation type of the plane 

feature is also employed and the covariance of the plane measurements in the 

spherical form is computed. A two-stage strategy is used to handle the 
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perturbations of the mobile platform. All the constraints are tightly coupled in the 

factor graph, which can further improve the accuracy of vehicle tracking and scene 

reconstruction. 

(c) The comprehensive system is evaluated and compared with the modified versions 

using self-collected datasets in a lab room and a long corridor, which proves its 

superior performance of tracking and mapping. In the lab room experiment, the 

comprehensive system generates the highest localization accuracy 6.2 cm, which 

is followed by the system fusing the wheel odometer and the RGB-D camera (APE 

RMSE: 7.0 cm), the system fusing hybrid features (APE RMSE: 8.9 cm), the 

system fusing point and plane features (APE RMSE: 9.6 cm), the system fusing 

point and line features (APE RMSE: 13.8 m) and the point-based system (APE 

RMSE: 20.8 cm). In the corridor experiment, the highest mapping accuracy 8.3 

cm is generated by the comprehensive system, which is followed by the system 

fusing the wheel odometer and the RGB-D camera (PTPD RMSE: 9.6 m), the 

system fusing hybrid features (PTPD RMSE: 12.9 m), the system fusing point and 

plane features (PTPD RMSE: 15.3 cm), the system fusing point and line features 

(PTPD RMSE: 21.0 cm) and the point-based system (PTPD RMSE: 32.5 cm). In 

the high low textured room, the point-based system and the system fusing point 

and line features fail, while the comprehensive method generates the smallest 

accumulating drift (closing error: 1.7 cm), which is followed by the system fusing 

the wheel odometer and the RGB-D camera (closing error: 2.8 cm), the system 

fusing hybrid features (closing error: 5.2 cm), and the system fusing point and 

plane features (closing error: 8.1 cm). In the highly rich textured room, all the 

methods run successfully. The smallest closing error is generated by the 

comprehensive method (2.2 cm), followed by the system fusing the wheel 

odometer and the RGB-D camera (2.7 cm), the system fusing hybrid features (4.5 

cm), the system fusing point and plane features (8.5 cm), the system fusing point 

and line features (13.0 cm) and the point-based system (16.2 cm).  
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(d) The computation burdens increase due to the hybrid feature extraction and 

matching, though a multi-thread design is applied. Compared with the point-based 

system, the time cost of feature extraction increases from 24.1 ms to 62.3 ms, and 

that of feature matching increases from 7.5 ms to 18.6 cm. Above all, the proposed 

system can run a commercial CPU within about 10 FPS, which is sufficient for 

indoor low-speed applications. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

RGB-D SLAM can localize the mobile platform and reconstruct the surrounding 

scenes simultaneously in unknown indoor environments. Compared with Lidars, 

RGB-D cameras are small in size, light in weight, and cheap in price. While 

monocular and stereo cameras require GPU for real-time processing, RGB-D 

cameras have the ability of real-time dense mapping on a commercial CPU. 

Therefore, utilizing RGB-D cameras is an attractive choice for mobile platform 

navigation in indoor scenes.  

However, the continuity of RGB-D SLAM system is reduced under low textured 

scenes. While humans can avoid low textures during manual operation, the mobile 

platform lacks the ability to understand the environments and may fail to select a 

camera view with rich textures. Thus, RGB-D SLAM system may lose tracking in 

low textured scenes where few point features are detected and matched. 

Furthermore, the accuracy of RGB-D SLAM system is lowered because of the 

accumulating drift during mobile platform operation. The result of mobile platform 

tracking may fall into a local optimum if the initial guess is not accurate. The 

tracking accuracy is also reduced by images noises and incorrect feature matches.  

Targeting on improving the continuity and accuracy of RGB-D SLAM for real-time 

indoor mobile platforms, this study is conducted with the following two main 

objectives: 

(a) Fusing hybrid features to avoid tracking failure under low textured scenes.  
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(b) Combining the wheel odometer and the RGB-D camera to reduce the tracking 

drift. 

Four major tasks were pursued and carried out in this thesis. The experiment results 

and discussions lead to the following specific conclusions: 

(a) A new RGB-D SLAM system fusing point and line features has been 

proposed. The previous line-based methods either exploit 3D-3D or 3D-2D line 

correspondences and neglect part of line information. The new system combines 

both correspondences and develops a new cost function consisting of both 3D and 

2D line reprojection errors. The new cost function can generate higher continuity 

and accuracy owing to more constraints utilized from line features. 

In the experiments using TUM RGB-D datasets, the proposed system outperforms 

other SOTA methods in consideration of continuity and yields the same-level 

accuracy. In the lab room experiment, the proposed system can improve the 

localization accuracy of the method using 3D line features by 22.5%, and improve 

that of the method using 2D features by 25.8%. In the corridor experiments, the 

improvements of the mapping accuracy over the methods using 3D or 2D line 

features are 10.2% and 14.7, respectively. 

(b) A new RGB-D SLAM system fusing point and plane features has been 

proposed. The previous plane-based methods use experimental weights for plane 

measurements, which are non-optimal for pose estimation. The new system 

derives the covariances of the plane features by plane fitting and covariance 

propagation. Point reprojection errors and plane transformation errors are 

combined optimally based on the derived covariances. In addition, the new system 

develops a new representation form for plane features based on the parallel and 

vertical relationships among planes and MW axes. The new representation form 

encodes the structural regularity and is employed in the factor graph optimization 

to further improve the tracking performance. 
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In the experiments using TUM RGB-D datasets, the proposed system generates 

higher localization accuracy than SOTA methods and achieves higher continuity 

than the feature point-based method. With the derived covariances of plane 

features, the proposed system can improve the localization and mapping 

accuracies of the method using experimental weights by 23.6% and 11.5%, 

respectively. The improvements of the proposed system owing to the new 

representation form are 27.6% and 8.8%, respectively. 

(c) A new localization and mapping system tightly coupling the RGB-D camera 

and the wheel odometer has been proposed. The research works about fusing 

the RGB-D camera and the wheel odometer are few. They employ a hard 

assumption that the mobile platform moves on the ground plane without 

perturbations, which is not practical and non-optimal. Unlike them, the new 

system assumes the platform moves with perturbations on the floor and develops 

a two-stage strategy to handle the perturbations. In the frontend, the Mahalanobis 

distance test is used to detect large perturbations. In the backend, the coefficients 

of the ground plane are computed to constrain the mobile platform. To further 

improve the tracking accuracy, the new system proposes a tight-coupled factor 

graph, which consists of all the visual, wheel odometer, and planar motion 

constraints. Compared with the previous methods, it pays attention to the platform 

perturbations and exploits more motion constraints from the ground plane. 

In real-world experiments, the proposed system is compared with the wheel 

odometer, the visual odometer, and a loose-coupled method using a hard planar 

motion assumption. It can outperform the other methods owing to the tight-

coupled design and the two-stage strategy. Specifically, compared with the loose-

coupled method using a hard planar motion assumption, it can improve the 

localization and mapping accuracies by 40.7% and 33.8%, respectively. 

(d) A comprehensive real-time RGB-D SLAM system by hybrid feature fusion 

and wheel odometer integration has been proposed. In the comprehensive 
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system, point, line, and plane features are simultaneously exploited from the RGB-

D images, and they are then combined with the wheel odometer under the planar 

motion assumption. 

The proposed system is evaluated by real-world experiments, and compared with 

other SLAM systems. By comparing with the feature point-based system, the 

proposed system can improve the localization accuracy by 70.1% and the mapping 

accuracy by 75.9%, utilizing the wheel odometer can improve the accuracies by 

66.3% and 72.1%, hybrid feature fusion can improve them by 57.2% and 62.6%, 

fusing plane features can improve them by 53.8% and 55.6%, and the smallest 

improvements are 33.6% and 39.1% by fusing line features.  

7.2 Future works 

Here, the research interest is briefly stated: 

(a) Robust tracking in dynamic scenes (Cui & Ma, 2019; Henein et al., 2020; Xiao et 

al., 2019; Yu et al., 2018). This thesis assumes that the mobile platform is moving 

in a static scene, so the features extracted from the dynamic objects may corrupt 

the quality of mobile platform tracking. To robustly estimate the pose of the 

mobile platform in dynamic scenes, dynamic objects should be identified and 

removed for feature extraction and matching. Furthermore, the point cloud 

belonging to the dynamic objects should not be inserted into the global map for 

navigation, and only the long-term static objects should remain. 

(b) Seamless indoor and outdoor positioning system (Basiri et al., 2016; Cao et al., 

2021; Chu et al., 2012; Li et al., 2019). This thesis assumes the mobile platform 

moves in indoor environments. The navigation task in large-scale outdoor 

environments cannot be fulfilled by the proposed system because it has no global 

reference. To seamlessly locate the mobile platform in indoor and outdoor 

environments, GNSS receivers should be equipped, which can provide reliable 
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global positioning results in open-sky scenes. When the performance of GNSS 

degrades in indoor or clustered scenes, V-SLAM can be applied to compute the 

relative motion of the mobile platform. 
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