

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

EFFECTIVE AND EFFICIENT OPTIMIZATION

METHODS FOR DEEP LEARNING

YONG HONGWEI

PhD

The Hong Kong Polytechnic University

2022

The Hong Kong Polytechnic University

Department of Computing

Effective and Efficient Optimization Methods for Deep

Learning

Yong Hongwei

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

March 2022

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Yong Hongwei

Abstract

Optimization techniques play an essential role in deep learning, and a favorable opti-

mization approach can greatly boost the final performance of the trained deep neural

network (DNN). Generally speaking, there are two major goals for a good DNN op-

timizer: accelerating the training process and improving the model generalization

capability. In this thesis, we study the effective and efficient optimization techniques

for deep learning.

Batch normalization (BN) is a key technique for stable and effective DNN training.

It can simultaneously improve the model training speed and the model generalization

performance. However, it is well-known that the training and inference stages of BN

have certain inconsistency, and the performance of BN will drop largely when the

training batch size is small. In Chapter 2, we prove that BN actually introduces a

certain level of noise into the sample mean and variance during the training process.

We then propose a Momentum Batch Normalization (MBN) method to control the

noise level and improve the training with BN. Meanwhile, in Chapter 3, we put for-

ward an effective inference method of BN, i.e, Batch Statistics Regression (BSR),

which uses the instance statistics to predict the batch statistics with a simple linear

regression model. BSR can more accurately estimate the batch statistics, making

the training and inference of BN much more consistent. We evaluate them on CI-

FAR100/CIFAR100, Mini-ImageNet, ImageNet, etc.

Gradient descent is dominantly used to update DNN models for its simplicity and

i

efficiency to handle large-scale data. In Chapter 4, we present a simple yet effective

DNN optimization technique, namely gradient centralization (GC), which operates

directly on gradients by centralizing the gradient vectors to have zero mean. GC can

be viewed as a projected gradient descent method with a constrained loss function.

We show that GC can regularize both the weight space and output feature space so

that it can boost the generalization performance of DNNs. In Chapter 5, we present

a feature stochastic gradient descent (FSGD) method to approximate the desired fea-

ture outputs with one-step gradient descent. FSGD improves the singularity of feature

space and thus enhances feature learning efficacy. Finally, in Chapter 6 we propose

a novel optimization approach, namely Embedded Feature Whitening (EFW), which

overcomes the several drawbacks of conventional feature whitening methods while

inheriting their advantages. EFW only adjusts the gradient of weight by using the

whitening matrix without changing any part of the network so that it can be eas-

ily adopted to optimize pre-trained and well-defined DNN architectures. We testify

them on various tasks, including image classification on CIFAR100/CIFAR100, Im-

ageNet, fine-grained image classification datasets, and object detection and instance

segmentation on COCO, and them achieve obvious performance gains.

In summary, in this thesis, we present five deep learning optimization methods.

Among them, MBN and BSR improve the BN training and inference, respectively;

GC adjusts the gradient of weight with a centralization operation; FSGD provides a

practical approach to perform feature-driven gradient descent; and EFW embeds the

existing feature whitening into the optimization algorithms for effective deep learn-

ing. Extensive experiments demonstrate their effectiveness and efficiency for DNN

optimization.

ii

Publications Arising from the

Thesis

Conference Papers

1. Hongwei Yong, Jianqiang Huang, Xiansheng Hua, Lei Zhang. “Gradient

Centralization: A New Optimization Technique for Deep Neural Networks” ,

European Conference on Computer Vision (ECCV) 2020. (Oral)

2. Hongwei Yong, Jianqiang Huang, Deyu Meng, Xiansheng Hua, and Lei Zhang.

“Momentum Batch Normalization for Deep Learning with Small Batch Size”,

European Conference on Computer Vision (ECCV) 2020.

3. Hongyi Zheng*, Hongwei Yong*1, Lei Zhang. “Deep Convolutional Dictio-

nary Learning for Image Denoising”, IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2021.

4. Wangmeng Xiang, Hongwei Yong, Lei Zhang. “Second-order Camera-aware

Color Transformation for Cross-domain Person Re-identification”, Asian Con-

ference on Computer vision (ACCV), 2020

5. Jin Xiao,Hongwei Yong, Lei Zhang. “Degradation Model Learning for Real-

World Single Image Super-resolution”, Asian Conference on Computer vision

(ACCV), 2020

1* indicates co-first author, responsable for model building and methodology writing

iii

6. Zongsheng Yue, Hongwei Yong, Qian Zhao, Deyu Meng, Lei Zhang. “Vari-

ational Denoising Network: Toward Blind Noise Modeling and Removal”, Ad-

vances in neural information processing systems (NeurIPS), 2019

7. Jianrui Cai, Hui Zeng,Hongwei Yong, Zisheng Cao, Lei Zhang. “Toward Real-

world Single Image Super-resolution: A new Benchmark and A New Model”,

IEEE International Conference on Computer Vision (ICCV), 2019. (Oral)

Journal Papers

1. Hongwei Yong, Jianqiang Huang, Wangmeng Xiang, Xiansheng Hua, Lei

Zhang. “Panoramic Background Image Generation for PTZ Cameras”, IEEE

Transactions on Image Processing (TIP), vol. 28, no. 7, pp. 3162-3176, Jan.

2019

2. Zongsheng Yue*, Hongwei Yong*2, Deyu Meng, Qian Zhao, Yee Leung, Lei

Zhang. “Robust Multiview Subspace Learning With Nonindependently and Non-

identically Distributed Complex Noise”, IEEE Transactions on Neural Networks

and Learning Systems, 31(4), 1070-1083, June 2019

3. Hui Li, Kede Ma, Hongwei Yong, Lei Zhang. “Fast Multi-Scale Structural

Patch Decomposition for Multi-Exposure Image Fusion”, IEEE Transactions on

Image Processing (TIP), vol. 29, pp.5805-5816, April 2020

4. Zhihang Fu, Yaowu Chen, Hongwei Yong, Rongxin Jiang, Lei Zhang, Xian-

Sheng Hua. “Foreground Gating and Background Refining Network for Surveil-

lance Object Detection”, IEEE Transactions on Image Processing, vol. 28, issue

12, pp. 6077-6090. June 2019

Under Review

2* indicates co-first author, responsable for model building and experiment designing

iv

1. Hongwei Yong, Lei Zhang. “An Embedded Feature Whitening Approach to

Deep Neural Network Optimization” Submitted to European Conference on

Computer Vision (ECCV) 2022

2. Hongwei Yong, Lei Zhang. “Batch Statistics Regression for Effective Inference

of Batch Normalization” Submitted to European Conference on Computer

Vision (ECCV) 2022

3. Hongyi Zheng, Hongwei Yong, Lei Zhang. “Unfolded Deep Kernel Estima-

tion for Blind Image Super-resolution” Submitted to European Conference on

Computer Vision (ECCV) 2022

v

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Lei Zhang

for his continuous support of my Ph.D. study and related research with his generosity,

patience, motivation, and immense knowledge. I met Prof. Lei Zhang in 2015 when

I was a visiting research student in his group, I clearly remembered the tremendous

and valuable works done by his Visual Computing Lab and I was highly impressed

by his enduring commitment to serving society through his research results. During

my Ph.D. study, when I faced some difficulties in my research and study, Prof. Lei

Zhang can always get me out of trouble with his constructive and valuable guidance.

It is worth for me to spend four wonderful years with so many brilliant, positive

and hard-working researchers in his research group at the Hong Kong Polytechnic

University.

Besides my Ph.D. supervisor, I would like to thank my master supervisor Prof. Deyu

Meng, for his insightful comments and encouragement. He gave me a great help to

stimulate my interest in research and provided me with some basic training on how

to conduct research. His passion for research also inspires me a lot as far as now.

Meanwhile, I would like to thank my cooperators Dr. Kede Ma and Dr. Kai Zhang for

their insightful comments and encouragement. Discussing with them usually makes

me widen my research from various perspectives. My sincere thanks also go to DAMO

Academy, Alibaba Group who provided me an opportunity to join as an intern, and

who gave me access to the laboratory and research facilities. Without such precious

vi

support, it would not be possible to conduct this research.

Last but not the least, I would like to thank my family: my parents, my wife, and

my child for supporting me spiritually throughout writing this thesis and my life in

general.

vii

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments vi

List of Figures xiv

List of Tables xviii

1 Introduction 1

1.1 Overview of Optimization Techniques in Deep Learning 4

1.1.1 Feature Normalization and Whitening 4

1.1.2 Weight Normalization and Weight Constraints 6

1.1.3 Gradient Constraints . 7

1.1.4 Weight Update Algorithm . 7

1.1.5 Learning Rate Schedule . 8

1.2 Contributions and Organization of the Thesis 9

viii

1.3 Notation system . 12

2 Momentum Batch Normalization for Deep Learning with Small Batch

Size 14

2.1 Introduction . 15

2.2 Related Work . 16

2.3 The Regularization Nature of BN . 19

2.3.1 Noise Generation of BN . 19

2.3.2 Explicit Regularization Formulation 23

2.4 Momentum Batch Normalization . 26

2.4.1 Noise Estimation . 27

2.4.2 Momentum Parameter Setting 27

2.4.3 Algorithm . 29

2.5 Experimental Results . 30

2.5.1 Datasets and Experimental Setting 30

2.5.2 Parameters Setting . 31

2.5.3 Results on CIFAR10/100 . 33

2.5.4 Results on Mini-ImageNet-100 35

2.6 Conclusion . 37

3 Batch Statistics Regression for Effective Inference of Batch Normal-

ization 38

3.1 Introduction . 39

ix

3.2 Statistics of Batch Normalization . 41

3.2.1 Batch Normalization . 41

3.2.2 Problem of EMA for BN Inference 41

3.2.3 Stochasticity in Batch Statistics 42

3.2.4 Expectation of Batch Statistics 43

3.3 Batch Statistics Regression . 45

3.3.1 Batch Statistics Regression Model 45

3.3.2 Online Updating Formula . 47

3.3.3 Relationship with EMA . 50

3.3.4 Measure of Disparity . 50

3.4 Experiments . 52

3.4.1 CIFAR100/CIFAR10 . 52

3.4.2 ImageNet . 55

3.4.3 Fine-grained Image Classification 57

3.4.4 Object Detection . 59

3.5 Conclusion . 60

4 Gradient Centralization: A Simple and Effective Optimization Tech-

nique for Deep Learning 61

4.1 Introduction . 62

4.2 Related Work . 64

4.3 Gradient Centralization . 66

4.3.1 Motivation . 66

x

4.3.2 Formulation of GC . 67

4.3.3 Embedding of GC to SGDM/Adam 68

4.4 Properties of GC . 68

4.4.1 Improving Generalization Performance 69

4.4.2 Accelerating Training Process 73

4.5 Experimental Results . 76

4.5.1 Setup of Experiments . 76

4.5.2 Results on Mini-Imagenet . 77

4.5.3 Experiments on CIFAR100 . 79

4.5.4 Results on ImageNet . 80

4.5.5 Results on Fine-grained Image Classification 81

4.5.6 Object Detection and Segmentation 82

4.6 Conclusions . 85

5 Training Deep Neural Networks with Feature-based Gradient De-

scent 86

5.1 Introduction . 87

5.2 Related Work . 90

5.2.1 First-order Optimizers . 90

5.2.2 Second-order Optimizers . 91

5.2.3 Normalization and Whitening 91

5.2.4 Motivation . 92

5.2.5 Feature Gradient Descent . 94

xi

5.2.6 Detailed Implementation . 98

5.2.7 Extension to Other Optimizers 103

5.3 Discussions . 103

5.3.1 Relationship with Back-matching Propagation 103

5.3.2 Relationship with Feature Whitening 105

5.4 Experiment Results . 107

5.4.1 Experiment Setup . 107

5.4.2 Results on CIFAR100 and CIFAR10 109

5.4.3 Results on ImageNet . 110

5.4.4 Object Detection and Segmentation 111

5.4.5 Ablation Study . 114

5.5 Conclusion . 115

6 An Embedded Feature Whitening Approach to Optimize a Deep

Neural Network 117

6.1 Introduction . 118

6.2 Related Work . 120

6.3 Embedded Feature Whitening . 121

6.3.1 Overview of Batch Feature Whitening 121

6.3.2 Drawbacks of Feature Whitening 124

6.3.3 Removal of Recovery and Centralization Operations 125

6.3.4 Formulation of Embedded Feature Whitening 126

6.3.5 Implementation of EFW . 128

xii

6.4 Experiment Results . 131

6.4.1 Experiment Setup . 131

6.4.2 Image Classification . 132

6.4.3 Object Detection and Segmentation 136

6.4.4 Person Re-identification . 138

6.4.5 Ablation study . 139

6.5 Conclusion . 140

7 Conclusion and Future Work 142

7.1 Conclusion . 142

7.2 Future Work . 144

xiii

List of Figures

1.1 Illustration of the contributions of this thesis. 10

2.1 The mean and variance of mini-batches vs. iterations. The mean

(green points) and variance (blue points) are from one channel of the

first BN layer of ResNet18 in the last epoch when training with batch

size 16 on CIFAR100. The histograms of batch mean and variance are

plotted on the right, which can be well fitted by Gaussian distribution

and Chi-square distribution, respectively. 19

2.2 The influence of noise injection on classification hyperplane (shown

as red curve) learning with different noise levels. The yellow points

and blue points represent samples from two classes, and the Gaussian

noise with variance σ2 is added to the samples for data augmentation.

We can see that by increasing the noise level σ to a proper level (e.g,

σ “ 0.5), the learned classification hyperplane becomes smoother and

thus has better generalization capability. However, a too big noise level

(e.g, σ “ 1) will over-smooth the classification boundary and decrease

the discrimination ability. 24

2.3 Parameters tuning of MBN. 31

2.4 Testing accuracy on CIFAR10 of ResNet18 with training batch size

(BS) 8, 4, and 2 per GPU. 32

xiv

2.5 Testing accuracy on CIFAR100 of ResNet18 with training batch size

(BS) 8, 4, and 2 per GPU. 32

2.6 Comparison of accuracy curves for different normalization methods

with a batch size of 2 per GPU. We show the test accuracies vs. the

epoches on CIFAR10 (left) and CIFAR100 (right). The ResNet18 is

used. 33

2.7 Testing accuracy curves on CIFAR100 for different network architec-

tures with training batch size 2 (top) and 4 (bottom) per GPU. . . . 34

2.8 Testing accuracy on CIFAR100 for different network architectures with

training batch size 2 per GPU. 35

2.9 Testing accuracy on Mini-ImageNet of IN, LN, GN, BN and MBN with

training batch size 16, 8, 4 and 2 per GPU. 36

2.10 Testing accuracy curves on Mini-ImageNet of IN, LN, GN, BN and

MBN with training batch size 2 per GPU. 36

3.1 Illustration of the stochasticity in BN. For a specific sample (blue sam-

ple), in the training process, its statistics are deterministic but other

samples within the minibatch are stochastic. 44

3.2 The testing accuracy curves of ResNet50 and ResNet101 on CIFAR100

(top row) and CIFAR10 (bottom row) with 2 samples per GPU during

training. 54

3.3 The ∆x of EMA, EN and BSR ResNet50 on ImageNet. 55

4.1 Sketch map for using gradient centralization (GC). W is the weight, L

is the loss function, ∇WL is the gradient of weight, and ΦGCp∇WLq is

the centralized gradient. It is very simple to embed GC into existing

network optimizers by replacing ∇WL with ΦGCp∇WLq. 64

xv

4.2 Illustration of the GC operation on gradient matrix/tensor of weights

in the fully-connected layer (left) and convolutional layer (right). GC

computes the column/slice mean of gradient matrix/tensor and cen-

tralizes each column/slice to have zero mean. 65

4.3 The geometrical interpretation of GC. The gradient is projected on a

hyperplane eT pw ´ wtq “ 0, where the projected gradient is used to

update the weight. 70

4.4 The absolute value (log scale) of the mean of weight vectors for convo-

lution layers in ResNet50. The x-axis is the weight vector index. We

plot the mean value of different convolution layers from left to right

with the order from sallow to deep layers. Kaiming normal initializa-

tion [21] (top) and ImageNet pre-trained weight initialization (bottom)

are employed here. We can see that the mean values are usually very

small (less than e´7) for most of the weight vectors. 73

4.5 The L2 norm (log scale) and max value (log scale) of gradient matrix

or tensor vs. iterations. ResNet50 trained on CIFAR100 is used as

the DNN model here. The left two sub-figures show the results on

the first Conv layer and the right two show the FC layer. The red

points represent the results of training without GC and the blue points

represent the results with GC. We can see that GC largely reduces the

L2 norm and max value of gradient. 75

4.6 Training loss (left) and testing accuracy (right) curves vs. training

epoch on the Mini-ImageNet. The ResNet50 is used as the DNN model.

The compared optimization techniques include BN, BN+GC, BN+WS

and BN+WS+GC. 77

4.7 Training error (left) and validation error (right) curves vs. training

epoch on ImageNet. The DNN model is ResNet50 with GN. 81

xvi

4.8 Training accuracy (solid line) and testing accuracy (dotted line) curves

vs. training epoch on four fine-grained image classification datasets. 83

5.1 Illustration of the eigenvalue distribution of AAT in the first Conv

layer and the FC layer of ResNet18 trained by SGDM and FSGD on

CIFAR100 after one epoch, where A is the output feature. The Y-axis

is logpλ1{λiq, where λi is the ith eigenvalue of AAT in a descending

order. The condition number of AAT is 1.7e6 and 6.1e4 for SGDM

and FSGD, respectively, on the first Conv layer, and 1.7e4 and 9.7e3

on the FC layer. One can see that the AAT obtained by SGDM is

much more singular than FSGD. 88

5.2 Illustration of the optimization paths of (a) SGD; (b) SGD with feature

whitening; and (c) FSGD. 105

5.3 Training and validation accuracy curves of SGDM and FSGD on Ima-

geNet with ResNet18 and ResNet50. 112

5.4 Training loss curves of ResNet50 backbone trained by SGDM and

FSGD on COCO. 113

6.1 Training and validation accuracy curves of SGDM, W-SGDM, AdamW

and W-Adam on ImageNet with ResNet18 and ResNet50. 135

6.2 Training loss curves on COCO by ResNet50. 137

xvii

List of Tables

3.1 Testing accuracies (%) on CIFAR100/CIFAR10. 53

3.2 Validation accuracies (%) of ResNet50 on ImageNet. 55

3.3 Validation accuracies (%) of more models on ImageNet. 56

3.4 Testing accuracies (%) of ResNet50 on four fine-grained image classi-

fication. 58

3.5 Average Precision (AP) on COCO by using Faster-RCNN with ResNet50

backbone and FPN. 59

4.1 Testing accuracies of different DNN models on CIFAR100 78

4.2 Testing accuracies of different optimizers on CIFAR100 78

4.3 Testing accuracies of different weight decay on CIFAR100 with ResNet50. 80

4.4 Testing accuracies of different learning rates on CIFAR100 with ResNet50

for SGDM and Adam. 80

4.5 Top-1 error rates on ImageNet w/o GC and w/ GC. 81

4.6 The statistics of fine-grained datasets used in this chapter. 82

4.7 Testing accuracies on the four fine-grained image classification datasets. 82

xviii

4.8 Detection results on COCO by using Faster-RCNN and FPN with var-

ious backbone models. 83

4.9 Detection and segmentation results on COCO by using Mask-RCNN

and FPN with various backbone models. 84

5.1 The updating formulas of FC, Conv and Norm layers in FSGD. . . . 94

5.2 The three ways to add momentum. 98

5.3 Testing accuracies (%) on CIFAR100/CIFAR10. The best and second

best results are highlighted in bold and italic fonts, respectively. The

improvement of FSGD and FAdam over SGDM and AdamW are is

given in red color. ”-” means the result is not available. 108

5.4 Top 1 accuracy (%) on the validation set of ImageNet with ResNet18

and ResNet50. The best and second best results are highlighted in bold

and italic fonts, respectively. The improvement of FSGD and FAdam

over SGDM and AdamW are given in red color. 109

5.5 Detection results on COCO by using Faster-RCNN and FPN with

ResNet50 and ResNet101 backbone models. ∆ means the improve-

ment of FSGD over SGDM. 112

5.6 Detection and segmentation results on COCO by using Mask-RCNN

and FPN with ResNet50 and ResNet101 backbone models. ∆ means

the improvement of FSGD over SGDM. 113

5.7 Testing accuracies (%) of ResNet18 by FSGD on CIFAR100 for differ-

ent Txx and TInv. The best combination is highlighted in bold font. . 115

5.8 Testing accuracies (%) of ResNet18 by FSGD with different ϵ on CI-

FAR100. The best result is highlighted in bold font. 115

xix

6.1 The updating formulas and whitening matrices of FC, Conv and Norm

layers in SGD with the proposed EFW. 127

6.2 The learning rate (LR), weight decay (WD) and weight decay methods

for different optimizers on CIFAR100 and CIFAR10. The weight decay

methods include L2 regularization weight decay (WD1) and weight

decouple (WD2). 132

6.3 Testing accuracies (%) on CIFAR100/CIFAR10. The best and second

best results are highlighted in bold and italic fonts, respectively. The

numbers in red color indicate the improvement of W-SGDM/W-Adam

over SGDM/AdamW, respectively. ”-” means that the result is not

available due to the problem of ”out of memory”. 133

6.4 The learning rate (LR), weight decay (WD) and weight decay methods

and for different optimizers on ImageNet.The weight decay methods

include L2 regularization weight decay (WD1) and weight decouple

(WD2). 134

6.5 Top 1 accuracy (%) on the validation set of ImageNet. The num-

bers in red color indicate the improvement of W-SGDM/W-Adam over

SGDM/AdamW, respectively. ”-” means that the result is not avail-

able due to the problem of ”out of memory”. 135

6.6 Detection and segmentation results of Faster-RCNN on COCO. ∆

means the gain of W-SGDM over SGDM. 136

6.7 Detection results of Mask-RCNN on COCO. ∆ means the gain of W-

SGDM and W-Adan over SGDM and AdamW, respectively. 137

6.8 Rank1(%) and mAP(%) on Market1501 and DukeMTMC-reID. ∆ means

the gain of W-Adam over Adam. 138

6.9 Testing accuracy (%) of ResNet18 by W-SGDM on CIFAR100 w.r.tϵ. 138

xx

6.10 Testing accuracy (%) and training efficiency of ResNet18 by W-SGDM

and W-Adam on CIFAR100 w.r.tTxx and Tsvd. 140

6.11 Testing accuracy (%) and training efficiency (sec/epoch) of ResNet18

by SGDM/AdamW, ND [99] and EFW on CIFAR100. 140

xxi

Chapter 1

Introduction

Deep learning has achieved a great success in many applications, including image clas-

sification [22], object detection [72, 20], image and video segmentation [72, 20] and

image restoration [109], natural language processing [58] and computer games [62, 81],

etc. The success of deep neural networks (DNNs) comes from the advances in

higher computing power (e.g , GPUs), large scale datasets [15], and learning algo-

rithms [37, 86, 16]. In particular, advanced network architecture [22, 25] and opti-

mization techniques [37, 43] have been developed, making the training of very deep

networks from a large amount of training data possible.

The optimization methods plays a key role in DNN learning. Traditional machine

learning methods often formulate the optimization problem by using a convex objec-

tive function and constraints. Nevertheless, in deep learning, the objective function

is highly non-convex, and there can be a large number of local minima, which makes

it is almost impossible to find the global minimum of the loss function. The saddle

point also increases the difficulties of optimization. The gradient descent methods

will cost a lot of time to escape the region around the saddle points. Besides, one

of the most challenging issues in DNN optimization is the gradient vanishing and

exploding problem. Too large gradients make training inefficient, while too large gra-

1

Chapter 1. Introduction

dients make training unstable. For a long time, the gradient vanishing and exploding

problem impedes the development of optimization in deep learning.

There are two major goals for an ideal DNN optimizer: accelerating the training

process and improving the model generalization capability. The first goal aims to

spend less time and cost to reach a good local minimum, while the second goal

aims to ensure that the learned DNN model can make accurate predictions on test

data. By far, gradient descent methods still dominate the optimization algorithms

in deep learning because they are efficient and memory-saving. A commonly used

class of DNN optimizers are the stochastic gradient descent (SGD) [6, 7] and its

variants [68, 37], which iteratively update parameter in the opposite direction to the

gradient obtained by the backpropagation (BP) algorithm [74]. There are three steps

to optimize the parameters of a DNN: firstly, we need to compute the output of

the DNN, which is called the forward propagation; secondly, we measure the loss

between the output of the DNN with the target, and compute the gradient of the loss

w.r.tthe parameters of weights in the DNN, which is called the backward propagation;

finally, after the gradients of weights are obtained, we adopt a gradient descent based

optimization algorithm to update the weights. These three steps are repeated again

and again until convergence. In summary, the DNN optimization involves mainly

three components: forward propagation, backward propagation, and gradient descent

for weight update.

For the forward propagation, the information of input should be delivered effectively

to the output layer and a good feature space is expected, while for the backward

propagation, the information from the target is to be embedded into the gradient of

weight. However, due to the gradient vanishing and exploding problem, it is hard to

transmit such information in a very deep neural network. To address this problem, a

variety of methods have been proposed, such as weight initialization strategies [17, 21],

efficient active functions (e.g., ReLU [63]), skip connection [22], feature normalization

layer [32], and so on. Among the above techniques, the feature normalization and

2

whitening methods are typical ones to make feature propagation more stable and

effective in DNN optimization. The representative feature normalization methods

include batch normalization (BN) [32], instance normalization (IN) [88, 30], layer

normalization (LN) [44] and group normalization (GN) [93]. Among them, BN is

the most widely used one, which uses the mean and variance of the intermediate

features within a mini-batch to perform Z-score standardization. Though BN can

speed up the training process and improve the model generalization performance, it

ignores the feature correlation among different dimensions. Therefore, some feature

whitening methods, e.g , Decorrelated Batch Normalization (DBN) [28] and Iterative

Normalization (IterNorm) [29], have been proposed to perform whitening on interme-

diate features, which validates that making proper use of the statistics (e.g , covariance

matrix) of intermediate features to find a more isotropic feature space can improve

the learning of DNNs models. However, the feature whitening methods will cost sig-

nificant computation and memory resources, and they need to redefine the forward

and backward propagation by introducing the whitening module. Such limitations

hinder the use of whitening methods in practice.

For the weight update, various optimizers [68, 16, 37, 16, 37] have been proposed to

achieve efficient gradient descent. SGD [6, 7] and its extension SGD with momentum

(SGDM) [68] are among the most commonly used ones. They update the param-

eters along the opposite direction of their gradients in one training step. Most of

the current DNN optimization methods are based on SGD and improve it to better

overcome the gradient vanishing or explosion problem. For example, Adagrad [16]

adopts an adaptive learning rate strategy for different weights, i.e, a larger gradi-

ent step for infrequent parameters and a smaller step for frequent ones. RMSprop

and Adadelta [104] follow a similar adaptive learning rate strategy. Adam [37] intro-

duces the momentum of gradient into the the adaptive learning rate technique, which

largely stabilizes the training process. Meanwhile, some works take the second-order

information into consideration. Considering the large computation and memory cost

3

Chapter 1. Introduction

of second-order optimization, some approaches have been developed to exploit the

second-order information with acceptable cost. For instance, Adahessian [97] and

Apollo [59] only consider the diagonal elements of the Hessian matrix, and the Kro-

necker Factored Approximation Curvature (KFAC) [61] uses a block-diagonal version

of the Fisher matrix to approximate the natural gradient layer-wisely. Nowadays, the

the gradient vanishing and exploding problem has been eased to some extent, and

one can optimize very deep DNNs.

1.1 Overview of Optimization Techniques in Deep

Learning

1.1.1 Feature Normalization and Whitening

Many popular DNNs employ the feature normalization layer as a basic module, such as

ResNet50 [22] and DenseNet121 [25]. Batch normalization (BN) is the most widely-

used normalization technique. BN was originally introduced to solve the internal

covariate shift by normalizing the activations along the sample dimension. It has

several good properties, such as allowing higher learning rates [5], accelerating the

training speed, and boosting the generalization accuracy [56, 77]. Despite its great

success, a well-known drawback of BN is its inconsistency between training and in-

ference. That is, BN calculates the statistics over each mini-batch for normalization

during training, while it uses the exponential moving average (EMA) of these mini-

batch statistics in the inference. Unfortunately, this makes the training and inference

of BN inconsistent, especially when the training batch size is small.

Some variants of BN have been proposed to improve BN. For instance, Peng et al [67]

suggested performing the synchronized computation of BN statistics across GPUs

(synchronized BN) to obtain more accurate statistics estimation in training, which

4

1.1. Overview of Optimization Techniques in Deep Learning

can be viewed as enlarging the training batch size. Cross-Iteration BN (CBN) [98]

adopts the statistics in the recent several iterations to virtually enlarge the batch

size and compensate for the network weight changes. A technique based on Taylor

polynomials is developed to estimate batch statistics. Batch Re-normalization [31]

and Moving Average BN [96] use the moving average of batch statistics instead of

batch statistics for training, but elaborated hyper-parameter settings are needed.

Different from synchronized BN, Ghost-BN [23] can be adopted to simulate multiple

GPUs training with one GPU for BN, which divides the mini-batch in one GPU into

several small subgroups. When the overall training batch size is large, Ghost-BN

can significantly improve the generalization performance with a proper number of

subgroups.

Besides performing normalization on sample dimension, some methods have been pro-

posed to perform normalization along other dimensions. For example, layer normal-

ization (LN) [44] normalizes all activations or feature maps along feature dimension;

instance normalization (IN) [88] performs normalization for each feature map of each

sample individually, and group normalization (GN) [93] normalizes feature maps for

each input sample in a divided group. These normalization methods demonstrate

good performance for specific applications (e.g , LN for RNN, IN for style transfer,

and GN for object detection); however, their performance is usually not as good

as BN with a proper training batch size in general. The combination of BN with

these normalization methods is also proposed. For example, switchable normaliza-

tion [55, 78, 54] combines BN with LN and IN with learnable weights; batch group

normalization [85] combines BN and GN by performing normalization along the batch

dimension in a divided feature map group; batch-channel normalization (BCN) [69]

integrates BN with the momentum of batch statistics and channel-based normaliza-

tion. Dynamic normalization (DN) [57] combines IN, LN, GN and BN in a unified

formulation. Exemplar normalization [111] learns different data-dependent normal-

izations for different image samples.

5

Chapter 1. Introduction

Beyond normalization that only considers the mean and variance of features, the

feature whitening methods consider the correlation among different dimensions of

features. For example, DBN [28] conducts ZCA-whitening on features across the

channel dimension by eigen-decomposition and backpropagating the transformation.

To improve the efficiency of feature whitening, IterNorm [29] adopts Newton’s it-

eration on DBN. Meanwhile, Network deconvolution (ND) [99] uses deconvolution

filters to decorrelate both pixel-wise and channel-wise features before the convolution

layer. In general, feature whitening methods can not only speed up training pro-

cessing but also boost the generalization performance of DNNs [29, 99]. However,

their drawbacks, such as heavy additional computation and memory, inapplicable to

pre-trained DNN models, additional parameter introduction, etc, make them hard to

be adopted in real-world applications.

1.1.2 Weight Normalization and Weight Constraints

Weight normalization (WN) [76] re-parameterizes the weight vectors and decouples

the length of a weight vector from its direction. It speeds up the convergence of SGDM

algorithm to a certain degree. Weight standardization (WS) [69] adopts the Z-score

standardization to re-parameterize the weight vectors. Like BN, WS can also smooth

the loss landscape and improve training speed. Besides, binarized DNN [70, 13, 12]

quantifies the weight into binary values, which can improve the generalization capa-

bility for certain DNNs. Meanwhile, orthogonal constraints can be introduced into

the weight optimization of DNNs. Huang et al [26] proposed a weight reparameter-

ization method to solve the weight orthogonal constraints. However, a shortcoming

of those methods operating on weights lies in that they cannot be directly used to

fine-tune pre-trained models since the pre-trained weight may not meet their con-

straints. As a consequence, we have to design specific pre-training methods for them

in order to fine-tune the model. Besides the hard constraints on weight, there are

also some soft constraints or regularization on weight, such as kernel orthogonality

6

1.1. Overview of Optimization Techniques in Deep Learning

regularization [94] and convolutional orthogonality regularization [92]. Such soft con-

straints on weight can also boost the learning of weight and improve the generalization

performance of DNNs.

1.1.3 Gradient Constraints

The momentum of gradient [68] is a commonly-used operation on gradient. By using

the momentum of gradient, SGDM accelerates SGD in the relevant direction and

dampens oscillations. Besides, L2 regularization based weight decay, which introduces

L2 regularization into the gradient of weight, has long been a standard trick to improve

the generalization performance of DNNs [41, 106]. To make DNN training more stable

and avoid gradient explosion, gradient clipping [65, 66, 1, 36] has been proposed to

train a very deep DNNs. Gradient clipping operation has been widely used on training

deep neural networks, and it can avoid the case that the gradient is too large. In

addition, the projected gradient methods [19, 42] and Riemannian approach [11, 90]

project the gradient on a subspace or a Riemannian manifold to regularize the learning

of weights.

1.1.4 Weight Update Algorithm

The update algorithm of weights plays a key role in Deep learning. Popular DNN op-

timizers include SGDM [68], Adagrad [16], Adam [37], RAdam [49], etc. SGDM [68]

uses the momentum of the gradient to accelerate gradient descent along with relevant

directions and dampens oscillations. It has been widely used in the high-level vision

tasks of computer vision, e.g , image classification, object detection, and so on. In

spite of using the same learning rate to all weights, the adaptive learning rate meth-

ods are developed to allow each weight having its own learning rate. For instance,

Adagrad [16] adopts a smaller step for frequent ones and a larger gradient step for in-

frequent parameters. RMSprop and Adadelta [104] also employ the adaptive learning

7

Chapter 1. Introduction

rate strategy. Adam [37] combines the adaptive learning rate technique with gradient

momentum, largely stabilizing the training process. Based on Adam, RAdam [49]

controls the variance of the adaptive learning rate in the early stage of training to

warm up the training, and Adabelief [115] modifies the step length by the belief in

different observed gradients, which achieves satisfactory performance. Such adaptive

learning rate methods usually perform better than SGDM in some specific areas, such

as natural language processing, image low-level vision, etc.

Instead of first-order information, the second-order information can also be exploited

to improve the optimization of DNN. Since the dimension of parameter space in

DNNs is usually very high (e.g , 107), it is hard to directly compute with the full

second-order information because of overwhelming memory and computation cost.

Therefore, how to utilize the second-order information practically is the key issue for

applying second-order optimization algorithms in deep learning. For instance, Ada-

hessian [97] and Apollo [59] are proposed by updating only the diagonal elements of

the Hessian matrix. Particularly, Adahessian considers only the diagonal elements

of the Hessian matrix by using Hessian-free techniques, while Apollo simplifies the

BFGS algorithm with only diagonal elements. The Kronecker Factored Approxi-

mation Curvature (KFAC) [61] approximates the natural gradient layer-wisely by

using a block-diagonal version of the Fisher matrix, which adopts the statistics of

intermediate features and their gradients to adjust the original gradient of weights.

Nonetheless, in many computer vision tasks the first-order optimizers, such as SGDM

and Adam, are more popularly used than second-order optimizers because of their

simplicity and effectiveness.

1.1.5 Learning Rate Schedule

The learning rate schedule is also crucial for training DNNs. It determines the learning

rate during training, e.g , between epochs or iterations. Instead of using a fixed

8

1.2. Contributions and Organization of the Thesis

learning rate, an alternative is to vary the learning rate over the training process.

The approaches where the learning rate changes over epochs or iterations are referred

to as the learning rate schedule. The learning rate used in training can be decayed to a

very small value. For instance, the commonly used learning rate schedule is step-wise

learning rate decay, which decays the learning rate over a fixed number of training

epochs and then keeps it constant as a small value for the remaining training epochs

to facilitate fine-tuning. With a small learning rate, DNNs can learn high-frequency

information. Cosine annealing learning rate schedule and warm up strategy [50], as

well as cyclical learning rates schedule [84] can also help to improve the generalization

performance of DNNs.

1.2 Contributions and Organization of the Thesis

This thesis consists of five works on the optimization techniques and algorithms for

deep learning. Fig. 1.1 shows the focuses of the five developed methods in the thesis.

To be specific, we conducted researches on the improvement of Batch Normalization,

gradient-based optimization techniques, and effective weight update algorithms. For

the improvement of BN, we aim to explain why BN can improve the generalization

performance, how can we control its generalization strength, and how to make it

inconsistent between training and inference. For gradient-based optimization tech-

niques, we aim to propose simple yet effective techniques on gradient to speed up

training and improve the generalization so that they can be easily embedded into the

current popular optimizers. For the effective weight update algorithms, we aim to

propose effective stochastic gradient descent updating formulas, which can achieve a

great performance gain over the existing optimization algorithms and can be easily

adopted into various DNN models without extra hyperparameter tuning.

The thesis is organized as follows:

9

Chapter 1. Introduction

DNNs’ Optimization

Feature Normalization

Weight Constraints

Gradient Constraints

Optimization Algorithm

Learning Rate Schedule

Chapter 2: Momentum Batch Normalization for BN training

Chapter 3: Batch Statistic Regression for BN inference

Chapter 4: Gradient Centralization

Chapter 5: Feature Gradient Descent

Chapter 6: Embedded Feature Whitening

Figure 1.1: Illustration of the contributions of this thesis.

In Chapter 1, we introduce the background of DNN optimization and the major

techniques.

In Chapter 2, we first prove that BN actually introduces a certain level of noise

into the sample mean and variance during the training process, while the noise level

depends only on the batch size. It gives a deep understanding of why BN can gain

generalization performance. BN regularizes the training process by such a noise gen-

eration mechanism, and an explicit regularizer formulation of BN is also presented.

Since the regularization strength of BN is determined by the batch size, a small batch

size may cause the under-fitting problem, resulting in a less effective model. Mean-

while, to reduce the dependency of BN on batch size, we propose a Momentum BN

(MBN) scheme by averaging the mean and variance of the current mini-batch with

the historical means and variances. With a dynamic momentum parameter, we can

automatically control the noise level in the training process. As a result, MBN works

very well even when the batch size is very small (e.g., 2), which is hard to achieve by

traditional BN.

10

1.2. Contributions and Organization of the Thesis

In Chapter 3, we propose an effective inference approach of BN, i.e, batch statistics

regression (BSR). It uses instance statistics to predict the batch statistics with a

simple linear regression model. Compared with the conventional inference approach

of BN, i.e, EMA, BSR can estimate the batch statistics more accurately, and make

the training and inference of BN much more consistent. It is very easy to implement

by using an online updating formulation of four statistics, whose computation and

memory cost is negligible. The experimental results show that BSR can significantly

improve the inference performance of BN, especially when the training batch size is

small. For instance, it outperforms EMA by more than 7% in accuracy on ImageNet

with ResNet50 when the training batch size is 2.

In Chapter 4, we present a new optimization technique, namely gradient centraliza-

tion (GC), which operates directly on gradients by centralizing the gradient vectors

to have zero mean. GC can be viewed as a projected gradient descent method with a

constrained loss function. We show that GC can regularize both the weight space and

output feature space so that it can boost the generalization performance of DNNs.

Moreover, GC improves the Lipschitzness of the loss function and its gradient so that

the training process becomes more efficient and stable. It is very simple to implement

and can be easily embedded into existing gradient-based DNN optimizers with only

one line of code. It can also be directly used to fine-tune the pre-trained DNNs.

The experiments on various applications, including general image classification, fine-

grained image classification, detection and segmentation, demonstrate that GC can

consistently improve the performance of DNN learning.

In Chapter 5, we put forward a new optimizer for DNNs, namely Feature SGD

(FSGD), which takes the gradient descent on intermediate features into consideration.

Specifically, we use the second-order statistic matrix of intermediate features to adjust

the gradient of weight. An objective function is defined to relate the gradient descent

on weight to the gradient descent on feature so that FSGD can be implemented by

minimizing it. FSGD can be easily adopted into different linear layers in a DNN,

11

Chapter 1. Introduction

including a fully-connected layer, convolutional layer, and BN layer. It improves the

singularity of feature space and enhances feature learning efficacy. Meanwhile, we also

show that FSGD has a close link to back-matching and feature whitening. Experi-

mental results on CIFAR100/10, ImageNet and COCO demonstrate the superiority

of FSGD to state-of-the-art DNN optimizers.

In Chapter 6, we propose a novel optimization approach, namely Embedded Feature

Whitening (EFW), to DNN optimization by adjusting the gradient of weight with the

ZCA transformation matrix. There are several advantages of our proposed approach.

First, EFW inherits the advantages of feature whitening, i.e, accelerating the training

process and improving the generalization performance. Second, compared with exist-

ing feature whitening methods, EFW does not introduce any module into the DNN

model to be trained. As a result, it can be directly adopted to optimize most of the

existing DNN models without increasing the inference time. Third, its computation

and memory cost is acceptable because EFW only computes the ZCA transforma-

tion matrix once for many iterations (e.g , 500) and it does not store any additional

intermediate features. We apply EFW to two commonly used DNN optimizers, i.e,

SGDM and Adam (or AdamW), and name the obtained optimizers as W-SGDM and

W-Adam. Extensive experimental results on various vision tasks, including image

classification, object detection, segmentation and person ReID, illustrate the effec-

tiveness of W-SGDM and W-Adam.

In Chapter 7, we conclude this thesis and present some future research directions.

1.3 Notation system

In this thesis, we denote by W the weight matrix, whose dimension is Cout ˆ Cin for

fully connected layers (FC layers) and Cout ˆ Cin ˆ k1 ˆ k2 for convolutional layers

(Conv layers), where Cin is the number of input channels, Cout is the number of

12

1.3. Notation system

output channels, and k1, k2 are the kernel size of convolutional layers. Denote by

wi P RM (i “ 1, 2, ..., N) the i-th column vector of weight matrix W. We denote

by A “ rAnsNn“1 and X “ rXnsNn“1 the input and output features of the N samples

in one layer. For FC layers, A P RCoutˆN , X P RCinˆN , and A “ WX. For Conv

layers, A P RCoutˆhˆwˆN , X P RCinˆhˆwˆN and A “ W ˚ X, where h and w are the

height and width of a feature map and ”˚” is the convolution operator. µ and σ is

the mean and variance of feature X. ppxq is the distribution of x, and Erxs is the

expectation of x.Let L be the objective function, and BL
BA

and BL
BW

be its gradients

on activation and weight, respectively. U1p¨q denotes the mode 1 unfold operation of

a tensor. For example, for a convolution based weight matrix W P RCoutˆCinˆk1ˆk2 ,

U1pWq P RCoutˆCink1k2 . vecp¨q denotes the vectorization function. e “ 1?
M
1 denotes

an M dimensional unit vector and I denotes an identity matrix.

13

Chapter 2

Momentum Batch Normalization

for Deep Learning with Small

Batch Size

Normalization layers play an important role in deep network training. As one of

the most popular normalization techniques, batch normalization (BN) has shown its

effectiveness in accelerating the model training speed and improving model general-

ization capability. The success of BN has been explained from different views, such

as reducing internal covariate shift, allowing the use of large learning rate, smoothing

optimization landscape, etc. To make a deeper understanding of BN, in this chapter,

we prove that BN actually introduces a certain level of noise into the sample mean and

variance during the training process, while the noise level depends only on the batch

size. Such a noise generation mechanism of BN regularizes the training process, and

we present an explicit regularizer formulation of BN. Since the regularization strength

of BN is determined by the batch size, a small batch size may cause the under-fitting

problem, resulting in a less effective model. There are two approaches to solve this

problems: improving the training of BN or modifying the inference of BN. In this

14

2.1. Introduction

chapter, we choose to improve the training of BN, while in chapter 3, we solve the

problem of BN by modifying its inference. Specifically, to reduce the dependency of

BN on batch size in training, we propose a momentum BN (MBN) scheme by av-

eraging the mean and variance of the current mini-batch with the historical means

and variances. With a dynamic momentum parameter, we can automatically control

the noise level in the training process. As a result, MBN works very well even when

the batch size is very small (e.g , 2), which is hard to achieve by traditional BN. We

evaluate MBN on CIFAR100 and Mini-ImageNet image classification tasks, and it

achieves a significant performance gain on small training batch size.

2.1 Introduction

One of the key issues in DNN training is how to normalize the training data and

intermediate features. It is well-known that normalizing the input data makes train-

ing faster [43]. The widely used batch normalization (BN) technique [32] naturally

extends this idea to the intermediate layers within a deep network by normalizing

the samples in a mini-batch during the training process. It has been validated that

BN can accelerate the training speed, enable a bigger learning rate, and improve the

model generalization accuracy [22, 25]. BN has been adopted as a basic unit in most

of the popular network architectures such as ResNet [22] and DenseNet [25]. Though

BN has achieved a great success in DNN training, how BN works remains not very

clear. Researchers have tried to explain the underlying working mechanism of BN

from different perspectives. For example, it is argued in [32] that BN can reduce in-

ternal covariate shift (ICS). However, it is indicated in [77] that there is no clear link

between the performance gain of BN and the reduction of ICS. Instead, it is found

that BN makes the landscape of the corresponding optimization problem smoother

so that it allows larger learning rates, while stochastic gradient descent (SGD) with

a larger learning rate could yield faster convergence along the flat direction of the

15

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

optimization landscape so that it is less likely to get stuck in sharp minima [5].

Apart from better convergence speed, another advantage of BN is its regularization

capability. Because the sample mean and variance are updated on mini-batches during

training, their values are not accurate. Consequently, BN will introduce a certain

amount of noise, whose function is similar to dropout. It will, however, increase the

generalization capability of the trained model. This phenomenon has been empirically

observed from some experimental results in [93, 105]. Teye et al [87, 56] tried to give a

theoretical explanation of the generalization gain of BN from a Bayesian perspective;

however, it needs additional assumptions and priors, and the explanation is rather

complex to understand.

In this chapter, we present a simple noise generation model to clearly explain the

regularization nature of BN. Our explanation only assumes that the training samples

are independent and identically distributed (i.i.d.), which holds well for the randomly

sampled mini-batches in the DNN training process. We prove that BN actually

introduces a certain level of noise into the sample mean and variance, and the noise

level only depends on the batch size. When the training batch size is small, the

noise level becomes high, increasing the training difficulty. We consequently propose

a momentum BN (MBN) scheme, which can automatically control the noise level in

the training process. MBN can work stably for different mini-batch sizes, as validated

in our experiments on benchmark datasets.

2.2 Related Work

Batch Normalization (BN). BN [32] was introduced to address the internal co-

variate shift (ICS) problem by performing normalization along the batch dimension.

For a layer with d-dimensional input x “ pxp1q, xp2q, ..., xpdqq in a mini-batch XB with

16

2.2. Related Work

size m, BN normalizes each dimension of the input samples as:

pxpkq
“

xpkq ´ µk
B

b

σk
B
2

` ϵ
(2.1)

where µk
B “ 1

m

řm
i“1 x

pkq

i , σk
B “ 1

m

řN
i“1px

pkq

i ´ µk
Bq2, and ϵ is a small positive constant.

And for inference step, the mean and variance of mini-batch are replaced with that

of population, often estimated by moving average. It can stabilize the latent feature

distributions in deep neural network (DNN) training, and significantly improve the

training speed and model generalization ability in many applications [22, 105, 24,

109, 46, 53]. Unfortunately, BN does not perform well in the case of small batch size

because of the variation of batch statistics and the inconsistency between its training

and inference stages [31, 93].

Some variants of BN have been proposed to improve BN. For example, Peng et al [67]

proposed to perform the synchronized computation of BN statistics across GPUs

(synchronized BN) for more accurate statistics estimation, which is equivalent to

enlarging the training batch size. Cross-Iteration BN (CBN) [98] uses the statistics

in the recent several iterations to enlarge the virtual batch size and compensate for the

network weight changes. A technique based on Taylor polynomials was developed in

CBN to estimate batch statistics. Batch Re-normalization [31], Momentum BN [101]

and Moving Average BN [96] use the moving average of batch statistics for training,

but they need elaborated hyper-parameter settings. Different from synchronized BN,

Ghost-BN [23] divides the mini-batch in one GPU into several small subgroups, which

can be used to simulate the case of small batch size training with multiple GPUs.

Inference Methods of BN. While most of the previous works [31, 101, 96, 98]

focus on reducing the noise of batch statistics during training, some methods [85, 83]

have been proposed to improve the inference stage of BN. To reduce the gap between

training and inference of BN, Summers et al [85] combined the instance statistics and

the exponential moving average (EMA) of mini-batch statistics. However, one hyper-

17

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

parameter is introduced and it is not convenient to tune practice. EN [83] was also

developed to combine the instance statistics and batch statistics. In order to estimate

the hyper-parameter, Singh et aldefined a non-convex auxiliary objective function for

each BN layer to minimize by gradient descant. However, this method is complex to

implement. Compared to [85, 83], our proposed method in this chapter does not need

to tune any hyper-parameters and it is very easy to implement. Meanwhile, EMA

can be viewed as a special case of our method.

Other Normalization Methods. To reduce the impact of batch size in training,

some methods have been proposed to perform normalization along other dimensions.

For example, layer normalization (LN) [44] normalizes all activations or feature maps

along feature dimension; instance normalization (IN) [88] performs normalization for

each feature map of each sample individually, and group normalization (GN) [93]

normalizes feature maps for each input sample in a divided group. These normal-

ization methods demonstrate good performance for specific applications (e.g , LN for

RNN, IN for style transfer, and GN for object detection); however, they do not out-

perform BN with a proper training batch size in general. Some methods have also

been proposed to combine BN with other normalizations. For example, switchable

normalization [55, 78, 54] combines BN with LN and IN with learnable weights; batch

group normalization [85] combines BN and GN by performing normalization along

the batch dimension in a divided feature map group; batch-channel normalization

(BCN) [69] integrates BN with the momentum of batch statistics and channel-based

normalization. Dynamic normalization (DN) [57] was proposed to combine IN, LN,

GN and BN in a unified formulation. Exemplar normalization [111] was introduced

to learn different data-dependent normalizations for different image samples. Though

the above-mentioned methods can improve BN, they do not address the inconsistency

problem of BN in training and inference.

18

2.3. The Regularization Nature of BN

Figure 2.1: The mean and variance of mini-batches vs. iterations. The mean (green
points) and variance (blue points) are from one channel of the first BN layer of
ResNet18 in the last epoch when training with batch size 16 on CIFAR100. The
histograms of batch mean and variance are plotted on the right, which can be well
fitted by Gaussian distribution and Chi-square distribution, respectively.

2.3 The Regularization Nature of BN

2.3.1 Noise Generation of BN

Several previous works [93, 105] have indicated that the BN layer can enhance the

generalization capability of DNNs experimentally; however, little work has been done

on the theoretical analysis about why BN has this capability. The only work we can

find is [87], where Teye et altried to give a theoretical illustration for the generalization

gain of BN from a Bayesian perspective with some additional priors. In the work [56],

Luo et alpresented a regularization term based on the result of [87]. Shekhovtsov et

al [79] gave an interpretation of BN from the perspective of noise generation. However,

it is assumed that the input activations follow strictly i.i.d. Gaussian distribution and

there is no further theoretical analysis on how the noise affects the training process.

In this section, we theoretically show that BN can be modeled as a process of noise

generation.

Let’s first assume that one activation input in a layer follows the Gaussian distribu-

19

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

tion N px|µ, σ2q, where µ and σ2 can be simply estimated by population mean µP

and variance σP of training data. This assumption can be extended to more general

cases other than Gaussian distribution, as we will explain later. In stochastic opti-

mization [7, 6], randomly choosing a mini-batch of training samples can be considered

as a sample drawing process, where all samples xi in a mini-batch Xb “ txiu
m
i“1 are

i.i.d., and follows N px|µ, σ2q. For the mini-batch Xb with mean µB “ 1
m

řm
i“1 xi and

variance σ2
B “ 1

m

řm
i“1pxi ´ µBq2, we can define two random variables ξµ and ξσ as

follows [14]:

ξµ “
µ ´ µB

σ
„ N p0,

1

m
q, ξσ “

σ2
B

σ2
„

1

m
χ2

pm ´ 1q (2.2)

where χ2 denotes the Chi-squared distribution and ξσ follows a Scaled-Chi-squared

distribution with Epξσq “ m´1
m

and V arpξσq “
2pm´1q

m2 .

In Fig. 2.1 we plot the means and variances of mini-batches computed at the first

BN layer of ResNet18 in the last training epoch when training with batch size 16 on

CIFAR100 dataset. One can see that these means and variances are distributed like

biased random noise. Specifically, the histogram of mean values can be well modeled

as a Gaussian distribution, while the histogram of variances can be well modeled as

a scaled Chi-Square distribution. By neglecting the small constant ϵ in Eq.(2.1), the

BN in the training process can be rewritten as

px “
x ´ µB

σB

“
x ´ µ ` pµ ´ µBq

σ σB

σ

“

x´µ
σ

` ξµ
?
ξσ

“
rx ` ξµ
?
ξσ

(2.3)

where rx “
x´µ
σ

is the population normalized formula.

From Eq.(2.3), we can see that BN actually first adds Gaussian noise ξµ (additive

noise) to the sample after population normalization, and then multiplies with a

Scaled-Inverse-Chi noise 1?
ξσ

(multiplicative noise). That is, training with BN

is actually introducing a mixture of additive and multiplicative noise. With the

introduced additive noise ξµ and multiplicative noise ξσ, the output variable px follows

Ntprx,m ´ 1q, which is a noncentral t-distribution [45], and its probability density

20

2.3. The Regularization Nature of BN

function is very complex. Fortunately, we can still get the mean and variance of px as

follows:

Erpxs “ rx

c

m ´ 1

2

Γppm ´ 2q{2q

Γppm ´ 1q{2q
, V arrpxs “

1

m
p
m ´ 1

m ´ 3
p1 ` rx2

q ´ Erpxs
2
q (2.4)

When m is very large, Erpxs « rx and V arrpxs « 0. However, when m is small, the

noise generated by BN depends on not only the statistics of entire training data X

(e.g , mean µ and variance σ2) but also the batch size m.

With the above analyses, we can partition BN into three parts: a normalizer part

(i.e, rx “
x´µ
σ

); a noise generator part (i.e, px “
rx`ξµ?

ξσ
) ; and an affine transformation

part (i.e, y “ γpx ` β). In the training stage, only the noise generator part is related

to batch size m. In the inference stage, the batch mean and variance are replaced

with population mean and variance, and thus BN only has the normalizer part and

the affine transformation part. It should be emphasized that µ and σ are unknown in

training, and they also vary during the training process. At the end of training and

when statistics for activations of all samples are stable, they can be viewed as fixed.

Now we have shown that the BN process actually introduces noises ξµ and ξσ into

the BN layer in the training process. When the batch size is small, the variances

of both additive noise ξµ and multiplicative noise ξσ become relatively large, making

the training process less stable. In our above derivation, it is assumed that the

activation input follows the Gaussian distribution. However, in practical applications,

the activations may not follow exactly the Gaussian distribution. Fortunately, we have

the following theorem.

Theorem 1: Suppose samples xi for i “ 1, 2, ...,m are i.i.d. with Erxs “ µ and

V arrxs “ σ2, ξµ and ξσ are defined in Eq.(2.2), we have:

lim
mÑ8

ppξµq Ñ N pξµ|0,
1

m
q, lim

mÑ8
ppξσq Ñ

1

m
χ2

pξσ|m ´ 1q.

21

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

Proof. From the classical central limit theorem, we have

lim
mÑ8

pp

m
ÿ

i“1

xiq “ N p

m
ÿ

i“1

xi|mµ,mσ2
q,

that is

lim
mÑ8

ppmµBq “ N pmµB|mµ,mσ2
q.

Therefore limmÑ8 ppµBq “ N pµB|µ, σ
2

m
q, and ξµ “

µ´µB

σ
is a linear function of µB,

Then we can obtain that

lim
mÑ8

ppξµq “ N pξµ|0,
1

m
q.

For χ2 distribution, it has this property:

lim
mÑ8

χ2pm ´ 1q

m
“ lim

mÑ8

χ2pm ´ 1q

m ´ 1
“ N p1,

2

m
q.

And we have limmÑ8 µB “ µ, and then for ξσ we can also use the central limit

theorem to get:

lim
mÑ8

ppξσq “ lim
mÑ8

pp
1

mσ2

m
ÿ

i“1

pxi ´ µBq
2
q “ lim

mÑ8
pp

m
ÿ

i“1

p
xi ´ µ

σ
q
2
q “ N pξσ|1,

κ

m
q,

where κ is the kurtosis of x. When m is a very large number, both κ
m

and 2
m

are close

to zeros. Therefore, in this case the distribution of ξσ can be viewed as 1
m
χ2pm ´ 1q.

The proof is completed. ■

In particular, when m is larger than 5, ξµ and ξσ nearly meet the distribution assump-

tions. As for the i.i.d. assumption on the activations of samples in a mini-batch, it

generally holds because the samples are randomly drawn from the pool in training.

22

2.3. The Regularization Nature of BN

2.3.2 Explicit Regularization Formulation

It has been verified in previous works [93, 105] that introducing a certain amount

of noise into training data can increase the generalization capability of the neural

network. However, there lacks a solid theoretical analysis on how this noise injection

operation works. In this section, we aim to give a clear formulation.

Additive Noise: We first take additive noise ξµ into consideration. Let lpt, fpxqq

(abbreviate as lpxq in the following development) denote the loss w.r.t. one activation

input x, where t is the target, fp¨q represents the network and lp¨q is the loss function.

When additive noise ξµ is added to the activation, the loss becomes lpx ` ξµq. By

Taylor expansion [4], we have

Eξµrlpx ` ξµqs “ lpxq ` Radd
pxq, Radd

pxq “

8
ÿ

n“1

Erξnµs

n!

dnlpxq

dxn
. (2.5)

where Ep¨q is the expectation and Radd is the additive noise residual term, which is

related to the n-th order derivative of loss function w.r.t. activation input and the

n-th order moment of noise distribution.

According to [3], by considering only the major term in Radd, it can be shown that

Raddpxq «
Erξ2µs

2

ˇ

ˇ

ˇ

Bfpxq

Bx

ˇ

ˇ

ˇ

2

for mean square-error loss; andRaddpxq «
Erξ2µs

2
fpxq2´2tfpxq`t
fpxq2p1´fpxqq2

ˇ

ˇ

ˇ

Bfpxq

Bx

ˇ

ˇ

ˇ

2

for cross-entropy loss. This indicates that Radd regularizes the smoothness of the net-

work function, while the strength of smoothness is mainly controlled by the second

order moment of the distribution of noise ξµ (i.e, 1
m
), which is only related to training

batch size m. In Fig. 2.2, we illustrate the influence of additive noise on learning

a classification hyperplane with different noise levels. The yellow points and blue

points represent samples from two classes, and the Gaussian noise is added to the

samples for data augmentation. By increasing the noise level σ to a proper level (e.g ,

σ “ 0.5), the learned classification hyperplane becomes smoother and thus has better

generalization capability. However, a too big noise level (e.g , σ “ 1) will over-smooth

23

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

Figure 2.2: The influence of noise injection on classification hyperplane (shown as red
curve) learning with different noise levels. The yellow points and blue points represent
samples from two classes, and the Gaussian noise with variance σ2 is added to the
samples for data augmentation. We can see that by increasing the noise level σ to a
proper level (e.g , σ “ 0.5), the learned classification hyperplane becomes smoother
and thus has better generalization capability. However, a too big noise level (e.g ,
σ “ 1) will over-smooth the classification boundary and decrease the discrimination
ability.

the classification boundary and decrease the discrimination ability.

Multiplicative Noise: For multiplicative noise ξσ, we can use a simple logarith-

mic transformation lp x?
ξσ

q “ lpelog |x|´ 1
2
log ξσsignpxqq to transform it into the form of

additive noise. Then according to our analyses of additive noise in Eq. (2.5), we have:

Eξσ rlp
x

?
ξσ

qs “ lpxq ` Rmul
pxq, Rmul

pxq “

8
ÿ

n“1

d
ÿ

k“1

Ipx ‰ 0q
Erlogn ξσs

p´2qnn!

dnlpxq

pd log |x|qn
.

(2.6)

where Ipx ‰ 0q is an indicator function and Rmulpxq is the residual term of Taylor

expansion for multiplicative noise. Similar to the residual term of additive noise

Raddpxq, the major term of Rmulpxq can also be viewed as a regularizer to
ˇ

ˇ

ˇ

Bfpxq

B log |x|

ˇ

ˇ

ˇ

2

,

which controls the smoothness of network on log-scale, and Erlog2 ξσs is related to

the strength of the regularizer.

Compound Noise: In Section 2.3.1 we have shown that BN will introduce both

additive noise and multiplicative noise into the normalized activation input, i.e, px “

rx`ξµ?
ξσ

. In the following theorem, we present the joint residual formulation for the

compound of additive noise and multiplicative noise.

24

2.3. The Regularization Nature of BN

Theorem 2: If the infinite derivative of lpxq exists for any x, given two random

variables ξµ and ξσ (ą 0), then we have the Taylor expansion for lpx`ξµ?
ξσ

q:

Eξµ,ξσ rlp
x ` ξµ
?
ξσ

qs “ lpxq ` Radd
pxq ` Rmul

pxq ` Rpxq, Rpxq “

8
ÿ

n“1

Erξµ
n
s

n!

dnRmulpxq

dxn

(2.7)

where Raddpxq and Rmulpxq are defined in Eq.(2.5) and (2.6), respectively.

Proof.

Eξµ,ξσ rlp
x ` ξµ
?
ξσ

qs “ Eξµ,ξσ rlp
x

?
ξσ

`
ξµ

?
ξσ

qs

“ Eξσ rlp
x

?
ξσ

qs ` Eξµ,ξσ r

8
ÿ

n“1

p
ξµ?
ξσ

q
n

n!

dnlp x?
ξσ

q

dp x?
ξσ

qn
s

“ lpxq ` Rmulpxq ` Eξµ,ξσ r

8
ÿ

n“1

ξµ
n

n!

dnlp x?
ξσ

q

dxn
s

“ lpxq ` Rmulpxq ` Eξµr

8
ÿ

n“1

ξµ
n

n!

dnEξσ rlp x?
ξσ

qs

dxn
s

“ lpxq ` Rmulpxq ` Eξµr

8
ÿ

n“1

ξµ
n

n!

dnplpxq ` Rmulpxqq

dxn
s

“ lpxq ` Rmulpxq ` Eξµr

8
ÿ

n“1

ξµ
n

n!

dnplpxqq

dxn
s ` Eξµr

8
ÿ

n“1

ξµ
n

n!

dnpRmulpxqq

dxn
s

“ lpxq ` Rmulpxq ` Raddpxq ` Rpxq.

(2.8)

The proof is completed. ■

From Theorem 2, we can see the Taylor expansion residual can be divided into three

parts: a residual term Raddpxq for additive noise, a residual term Rmulpxq for multi-

plicative noise and a cross residual term Rpxq. When the noise level is small, Rpxq can

be ignored. Particularly, the distributions of ξµ and ξσ are give in Eq.(2.2) so that the

regularizer strength parameters Erξ2µs and Erlog2 ξσs can be easily calculated, which

are only determined by training batch size m. The noise is injected into the normal-

ized data rx “
x´µ
σ

. If the introduced noise by BN is strong (e.g , when batch size

25

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

is small), the training forward propagation through the DNN may accumulate and

amplify noise, which leads to undesirable model performance. Therefore, it is crucial

to choose a suitable batch size for training to make BN keep a proper noise level and

ensure a favorable regularization function. However, in some situations of limited

memory and computing resources, we can only use a small batch size for training. It

is hence important to find an approach to control the noise level of BN with small

batch size, which will be investigated in the next section.

2.4 Momentum Batch Normalization

As proved in Section 2.3, the batch size m directly controls the strength of the regu-

larizer in BN so that BN is sensitive to batch size. In most previous literature [93, 31],

the batch size m is set around 64 by experience. However, in some applications, the

batch size may not be set big enough due to the limited memory and large size of

the input. How to stably train a network with a small batch size in BN remains an

open problem. Owe to our theoretical analyses in Section 2.3, we propose a simple

solution to alleviate this problem by introducing a parameter to control the strength

of the regularizer in BN. Specifically, we replace the batch means and variances in

BN by their momentum or moving average:

µ
pnq

M “ λµ
pn´1q

M ` p1 ´ λqµB, pσ
pnq

M q
2

“ λpσ
pn´1q

M q
2

` p1 ´ λqσ2
B, (2.9)

where λ is the momentum parameter to control the regularizer strength and n refers

to the number of batches (or iterations). We name our new BN method as Momentum

Batch Normalization (MBN), which can make the noise level generated by using a

small batch size almost the same as that by using a large batch size when the training

stage ends.

26

2.4. Momentum Batch Normalization

2.4.1 Noise Estimation

At the end of the training process, all statistics of variables tend to be converged.

According to Eq. (2.9), it can be derived that

µ
pnq

M “ p1 ´ λq

n
ÿ

i“1

λn´iµB, pσ
pnq

M q
2

“ p1 ´ λq

n
ÿ

i“1

λn´iσ2
B (2.10)

When n is very large, let µM and σM denote the final momentum mean and variance,

we can derive that

ξµ “
µ ´ µM

σ
„ N p0,

1 ´ λ

m
q (2.11)

ξσ “
σ2
M

σ2 follows Generalized-Chi-Squared distribution, whose expectation is Erξσs “

m´1
m

and variance is V arrξσs “ 1´λ
1`λ

2pm´1q

m2 .

We can see that the variances of ξµ and ξσ approach to zero when λ is close to 1, MBN

degenerates into standard BN when λ is zero. This implies that the noise level can be

controlled by momentum parameter λ. A larger value λ will weaken the regularization

function of MBN, and vice versa. Even when the batch size m is very small, we are

still able to reduce the noise level by adjusting λ. This is an important advantage of

MBN over conventional BN. For instance, if we want to make MBN with batch size 4

have a similar noise level with batch size 16, the momentum parameter λ can be set

as 3/4 to make their variances of ξµ similar, (
1´ 3

4

4
“ 1

16
), and the multiplicative noise

ξσ will also be reduced.

2.4.2 Momentum Parameter Setting

Dynamic Momentum Parameter for Training: Since the momentum parameter

λ controls the final noise level, we need to set a proper momentum parameter to endow

the network with a certain generalization ability. Please note that our noise analysis

in Section 2.4.1 holds only when network statistics are stable at the end of training.

27

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

At the beginning of training, we cannot directly use the moving average of batch mean

and variance, because the population means and variance also changes significantly.

Therefore, we hope that at the beginning of training the normalization is close to

BN, while at the end of it tends to be MBN. To this end, we propose a dynamic

momentum parameter as follows:

λptq
“ ρ

T
T´1

maxpT´t,0q
´ ρT , ρ “ minp

m

m0

, 1q
1
T (2.12)

where t refers to the t-th iteration epoch, T is the number of the total epochs, m is

the actual batch size and m0 is a large enough batch size (e.g , 64).

We use the same momentum parameter within one epoch. λptq starts from zero. When

m
m0

is small, λptq tends to be a number close to 1 at the end of the training. Ifm is equal

to or larger than m0, λ
ptq is always equal to zero, and then MBN degenerates into

BN. The dynamic setting of momentum parameter ¦Ë ensures that at the beginning

of the training process, the normalization is similar to standard BN, while at the end

of the training the normalization approaches MBN with a noise level similar to that

of BN with batch size m0.

Momentum Parameter for Inference: For the inference step, we also need to

set a momentum parameter. For the clarity of description, here we use τ to denote

this momentum parameter to differentiate it from the momentum parameter λ in the

training stage. One can straightforwardly set τ as a constant, e.gτ “ 0.9, which is

independent of batch size. However, this setting is not very reasonable because it

cannot reflect the final noise level when training is ended, which is related to batch

size m. Therefore, we should set τ to be adaptive to batch size m. Denote by τ0 the

desired momentum value for an ideal batch size m0, to make the inference momentum

have the same influence on the last sample, we take τ
N
m as a reference to determine

28

2.4. Momentum Batch Normalization

Algorithm 1: Momentum Batch Normalization (MBN)

Input: Values of x over a training mini-batch Xb; parameters γ, β; current
training moving mean µ and variance σ2; current inference moving mean
µinf and variance σ2

inf ; momentum parameters λ for training and τ for
inference.

Output: tyi “ MBNpxiqu; updated µ and σ2; updated µinf and σ2
inf

1 Gt “ ∇WtL
2 if Training then
3 µB “ 1

m

řm
i“1 xi

4 σ2
B “ 1

m

řm
i“1 pxi ´ µbq

2

5 µ Ð λµ ` p1 ´ λqµB

6 σ2 Ð λσ2 ` p1 ´ λqσ2
B

7 pxi “
xi´µ

?
σ2`ϵ

8 yi “ γ pxi ` β
9 µinf Ð τµinf ` p1 ´ τqµB

10 σ2
inf Ð τσ2

inf ` p1 ´ τqσ2
B

11 else

12 yi “ γ
xi´µinf?
σ2
inf`ϵ

` β

13 end

the value of τ for batch size m as follows:

τ
N
m “ τ

N
m0
0 ñ τ “ τ

m
m0
0

(2.13)

where N is the number of samples, m0 is an ideal batch size and τ0 is its corresponding

momentum parameter. In most of our experiments, we set m0 “ 64 and τ0 “ 0.9

for the inference step. One can see that when the training batch size m is small, a

larger inference momentum parameter τ will be used, and consequently, the noise in

momentum mean and variance will be suppressed.

2.4.3 Algorithm

The back-propagation (BP) process of MBN is similar to that of traditional BN.

During training, the gradients of loss w.r.t. to activations and model parameters are

29

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

calculated and back-propagated. The formulas of BP are listed as follows:

BL

Bpxi

“
BL

Bpyi
γ,

BL

Bγ
“

m
ÿ

i“1

BL

Bpyi
pxi,

BL

Bβ
“

m
ÿ

i“1

BL

Bpyi

BL

BσB
2

“

m
ÿ

i“1

BL

Bpxi

ppxi ´ µMq
´1

2
pσM

2
` ϵq

´ 3
2 p1 ´ λq

BL

BµB

“ p

m
ÿ

i“1

BL

Bpxi

λ ´ 1
?
σM

2 ` ϵ
q `

BL

BσB
2

řm
i“1 ´2pxi ´ µBq

m

BL

Bxi

“
BL

Bpxi

1
?
σM

2 ` ϵ
`

BL

BσB
2

2pxi ´ µBq

m
`

BL

µB

1

m

(2.14)

Since the current moving averages of µM and σM
2 are related to the mean µB and

variance σB
2 of the current mini-batch, they also contribute to the gradient, while

the previous µM and σM
2 can be viewed as two constants for the current mini-batch.

The training and inference of MBN are summarized in Algorithm 1.

2.5 Experimental Results

2.5.1 Datasets and Experimental Setting

To evaluate MBN, we apply it to image classification tasks and conduct experiments

on CIFAR10, CIFAR100 [39] and Mini-ImageNet100 datasets [89].

Datasets. CIFAR10 consists of 50k training images from 10 classes, while CIFAR100

consists of 50k training and 10k testing images from 100 classes. The resolution of

sample images in CIFAR10/100 is 32 ˆ 32. Mini-ImageNet is a subset of the well-

known ImageNet dataset. It consists of 100 classes with 600 images each class, and

the image resolution is 84ˆ84. We use the first 500 images from each class as training

data, and the rest 100 images for testing, i.e, 50k images for training and 10k images

for testing.

Experimental Setting. We use SGD with momentum 0.9 and weight decay 0.0001,

30

2.5. Experimental Results

(a) Recognition rates of MBN with different
m0 on CIFAR100 by using different DNNs,
including ResNet18, ResNet34, ResNet50,
VGG11 and VGG16.

(b) Testing accuracy curves on CIFAR100 of BN
and MBN with different τ for inference and train-
ing batch size 2 per GPU.

Figure 2.3: Parameters tuning of MBN.

employ standard data augmentation and preprocessing techniques, and decreases the

learning rate when learning plateaus occur. The model is trained for 200 epochs and

100 epochs for CIFAR and Mini-ImageNet-100, respectively. We start with a learning

rate of 0.1 ¨ m
64

both for CIFAR10 and CIFAR100 and 0.1 ¨ m
128

for Mini-ImageNet-100,

and divide it by 10 for every 60 epochs and 30 epochs, respectively. We mainly

employ ResNet [22] as our backbone network and use similar experimental settings

to the original ResNet paper. All the experiments are conducted on the Pytorch1.0

framework.

2.5.2 Parameters Setting

There are two hyper-parameters in our proposed MBN, m0 and τ0, which are used to

determine the momentum parameters λ and τ for training and inference.

The Setting for m0: We first fix τ0 (e.g , 0.9) to find a proper m0. We adopt

ResNet18 as the backbone and train it with batch size 8 and 16 on 4 GPUs, i.e,

batch size 2 and 4 per GPU, to test the classification accuracy with different m0.

Particularly, we let m0 be 4, 8, 16, 32, 64, 128 in MBN. Fig. 2.3(a) shows the

accuracy curves on CIFAR100. We can see that if m0 is too small (e.g , 4), MBN

31

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

91

92

93

94

95

B8 B4 B2

Cifar10

IN LN GN BN MBN

Figure 2.4: Testing accuracy on CIFAR10 of ResNet18 with training batch size (BS)
8, 4, and 2 per GPU.

60

65

70

75

80

B8 B4 B2

Cifar100

IN LN GN BN MBN

Figure 2.5: Testing accuracy on CIFAR100 of ResNet18 with training batch size (BS)
8, 4, and 2 per GPU.

will be close to BN, and the performance is not very good. The accuracies of MBN

are very close for m0 from 16 to 128, which shows that MBN is not very sensitive

to parameter m0. Considering that if m0 is too large (e.g , 128), the momentum

parameter λ may change too quickly so that the training may not converge, we set it

to 32 in all the experiments.

The Setting for τ0: We then fix m0 as 32 and find a proper τ0 based on Eq.(2.13).

Fig. 2.3(b) shows the testing accuracy curves for for MBN with different values of τ .

τ “ 0.9 is the original BN setting, and τ “ 0.99 is our setting based on Eq.(2.13) with

τ0 “ 0.85. We can see that when τ is small the testing accuracy curves of both BN

and MBN have big fluctuations; while τ is large, the accuracy curves become more

stable and the final accuracies can be improved. We set τ0 “ 0.85 in the following

experiments.

32

2.5. Experimental Results

Figure 2.6: Comparison of accuracy curves for different normalization methods with
a batch size of 2 per GPU. We show the test accuracies vs. the epoches on CIFAR10
(left) and CIFAR100 (right). The ResNet18 is used.

2.5.3 Results on CIFAR10/100

We first conduct experiments on the CIFAR10 and CIFAR100 datasets [39]. We first

use ResNet18 as the backbone network to evaluate MBN with different batch sizes

and then test the performance of MBN with more networks.

Training with Different Batch Size: To testify whether MBN is more robust than

BN with a small batch size, we train Resnet18 on CIFAR10 and CIFAR100 by setting

the batch size m as 8, 4, 2 per GPU, respectively. We also compare the behaviors of

other normalization methods, including IN [88], LN [44] and GN [93], by replacing

the BN layer with them. For GN, we use 32 groups as set in [93]. And we set T “ 180

in Eq.(2.12) for MBN.

Fig. 2.4 and Fig. 2.5 show the results for different normalization methods on CIFAR10

and CIFAR100, respectively. We can see that on both CIFAR10 and CIFAR100 when

the batch size is relatively large (e.g , 8), the accuracy of MBN is similar to BN. This

is in accordance with our theoretical analysis in Sections 2.3 and 2.4. However, when

training batch size becomes small (e.g , 2), the accuracy of BN drops largely, while

the accuracy of MBN decreases slightly. This shows that MBN is more robust than

BN for training with a small batch size. Meanwhile, MBN works much better than

IN, LN, and GN.

Fig. 2.6 shows the training and testing accuracy curves vs. epoch of ResNet18 with

33

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

Figure 2.7: Testing accuracy curves on CIFAR100 for different network architectures
with training batch size 2 (top) and 4 (bottom) per GPU.

batch size 2. We can see that at the last stage of training when all statistics become

stable, MBN can still achieve a certain performance gain. This is because with MBN

the momentum mean and variance approach to the population mean and variance,

and hence the noise becomes small. Consequently, MBN can still keep improving

though other methods are saturated.

On More Network Architectures: We further test MBN with different network

architectures, including ResNet34, ResNet50, VGG11, and VGG16, by using batch

size 2 per GPU on CIFAR100. Fig. 2.7 shows the training and testing accuracy

curves vs. epochs, and Fig. 2.8 shows the final testing accuracies. We can have the

following observations. First, on all four networks, MBN always outperforms BN.

Second, under such a small batch size, the accuracy of deeper network ResNet50

can be lower than its shallower counterpart ResNet34. That is because the deeper

networks have more BN layers, and each BN layer would introduce relatively large

34

2.5. Experimental Results

0.6

0.65

0.7

0.75

0.8

ResNet34 ResNet50 VGG11 VGG16

CIFAR100

BN MBN

Figure 2.8: Testing accuracy on CIFAR100 for different network architectures with
training batch size 2 per GPU.

noise when batch size is small. The noise is accumulated so that the benefit of more

layers can be diluted by the accumulated noise. However, with MBN the performance

drop from ResNet50 to ResNet34 is very minor, where the drop by BN is significant.

This again validates that MBN can suppress the noise effectively in training.

2.5.4 Results on Mini-ImageNet-100

On Small Batch Size: On Mini-imageNet, we use ResNet50 as our backbone net-

work. The input size is the same as image size 84 ˆ 84. The settings for MBN is

the same as Section 2.5.3. Fig. 2.9 compares the testing accuracies of IN, LN, GN,

BN and MBN with batch sizes 16, 8, 4 and 2 per GPU. Fig. 2.10 shows their testing

accuracy curves with training batch size 2 per GPU. We can see that BN and MBN

achieve better results than other normalization methods when batch size is larger

than 2, while other normalization methods, such as IN, LN and GN, usually work

not very well on Mini-imageNet. But the performance of BN drops significantly when

batch size is 2, even worse than IN, while MBN still works well when batch size is 2.

35

Chapter 2. Momentum Batch Normalization for Deep Learning with Small Batch
Size

40

45

50

55

60

65

B16 B8 B4 B2

Mini-ImageNet
IN LN GN BN MBN

Figure 2.9: Testing accuracy on Mini-ImageNet of IN, LN, GN, BN and MBN with
training batch size 16, 8, 4 and 2 per GPU.

Figure 2.10: Testing accuracy curves on Mini-ImageNet of IN, LN, GN, BN and MBN
with training batch size 2 per GPU.

This clearly demonstrates the effectiveness of MBN. Furthermore, we also compare

MBN with BN on full ImageNet using ResNet50 with 64 GPUs and 4 batch size

per GPU. It is found that find MBN outperforms BN by 2.5% in accuracy on the

validation set.

Comparison with BreN: BreN [31] was also proposed to make BN work for train-

ing with a small batch size. It adopts a heuristic clipping strategy to control the

influence of the current moving average on the normalizer. Though BreN and our

proposed MBN have similar goals, they are very different in theoretical development

and methodology design. First, the dynamic momentum setting in MBNmakes it easy

to analyze the noise level in the final training stage, while in BreN it is hard to know

the noise level with the heuristic clipping strategy. Second, the hyper-parameters m0

36

2.6. Conclusion

and τ0 are very easy to be tuned and fixed in MBN (we fixed them in all our experi-

ments on all datasets), while the hyper-parameters (clipping bounds) in BreN are very

difficult to set. Although a strategy to set the clipping bound was given in [31], we

found that this setting usually leads to unsatisfactory performance when the dataset

or training batch size changes. We have tried various parameter settings for BreN

on Mini-ImageNet when the training batch size is 2 but found that in most cases the

results are even worse. So we report the best result of BreN on Mini-ImageNet with

rmax “ 1.5 and dmax “ 0.5, which is 55.47%, lower than the performance of MBN

(56.50%)

2.6 Conclusion

Batch normalization (BN) is a milestone technique in deep learning and it largely

improves the effectiveness and efficiency in optimizing various deep networks. How-

ever, the working mechanism of BN is not fully revealed yet, while the performance

of BN drops much when the training batch size is small because of the inaccurate

batch statistics estimation. In this chapter, we first revealed that the generalization

capability of BN comes from its noise generation mechanism in training, and then

presented the explicit regularization formulation of BN. We consequently presented

an improved version of BN, namely momentum batch normalization (MBN), which

uses the moving average of sample mean and variance in a mini-batch for training. By

adjusting a dynamic momentum parameter, the noise level in the estimated mean and

variance can be well controlled in MBN. The experimental results demonstrated that

MBN can work stably for different batch sizes. In particular, it works much better

than BN and other popular normalization methods when the batch size is small.

37

Chapter 3

Batch Statistics Regression for

Effective Inference of Batch

Normalization

It is well-known that the training and inference stages of BN have certain inconsisten-

cies. In training, BN computes the batch statistics to perform Z-score standardization,

while it adopts the exponential moving average (EMA) of batch statistics in inference.

Unfortunately, EMA is not accurate to approximate the batch statistics, especially

when the batch size is small, because it ignores the relationship between instance

statistics and batch statistics. In this chapter, we propose a new inference approach

of BN, namely batch statistics regression (BSR), by using the instance statistics to

predict the batch statistics with a simple linear regression model. Compared with

EMA, BSR can more accurately estimate the batch statistics, making the training

and inference of BN much more consistent. BSR is very easy to implement by using

an online updating formulation. It only needs to store four statistics during training

with the negligible cost of computation and memory. Our experiments show that it

can significantly improve the inference performance of BN. In particular, it outper-

38

3.1. Introduction

forms EMA by more than 7% in accuracy on ImageNet (backbone: ResNet50) when

the training batch size is 2.

3.1 Introduction

A variety of optimization techniques, including efficient activation function [63], skip

connection [22, 25], normalization [32, 88, 93], adaptive learning rate [16, 37], warm

up strategy [18], gradient centralization [100], etc, have been developed to effectively

train deep neural networks (DNNs). Among them, normalization methods are of

great importance. They normalize the network activations or weights by utilizing the

statistics of samples, such as mean and variance, to make the training process more

stable and efficient. The most representative method that performs normalization

on activations is batch normalization (BN) [32], which has been widely adopted in

advanced DNN architecture design [22, 25, 24, 112]. The success of BN has been ex-

plained from several aspects, such as reducing internal covariate shift [32], smoothing

optimization landscape [77] and the regularization capability [87, 105, 101].

Despite the great success, a well-known problem of BN is its inconsistency between

training and inference. Specifically, BN calculates the statistics over each mini-

batch for normalization during training, while it uses the exponential moving average

(EMA) of these mini-batch statistics (which can be viewed as the expectation of mini-

batch statistics) in the inference. However, this makes the training and inference of

BN inconsistent, especially when the training batch size is small. Actually, the EMA

of mini-batch statistics aims to approximate the sample statistics observed during

training. Due to the random sampling in the training process, unfortunately, the

mini-batch statistics vary a lot [87, 101]. When the training batch size is large, the

variation is small so that EMA provides a good estimation of sample statistics. When

the batch size is small, however, the variation is big, and EMA becomes inaccurate

for statistics estimation, resulting in a significant performance drop [31, 93].

39

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

From another perspective, EMA actually assumes that the batch statistics are uncor-

related with the instance statistics within the batch. When the training batch size is

large, this assumption nearly holds; but when the batch size is small, this assumption

is not true. For example, if the mini-batch only has one sample during training, the

statistics of the mini-batch are the statistics of the instance. In this case, BN reduces

to instance normalization (IN) [88] in training, but the inference schemes of them are

totally different. IN uses the instance statistics for inference while BN adopts the

EMA of instance statistics. This problem also exists when the training batch size is

larger than one. To solve this issue, some methods [85, 83] have been proposed to

combine instance statistics and EMA of batch statistics for BN inference, but they

introduce some hyper-parameters to tune. Summers et al [85] suggested to use an

additional validation set to tune the hyper-parameter and Singh et al [83] constructed

an auxiliary objective function for each BN layer. These methods are not convenient

to implement.

To address the inconsistency issue of BN, we propose a new inference approach,

namely batch statistics regression (BSR), by using the instance statistics to predict the

batch statistics with a simple linear regression model. BSR is very easy to implement.

Similar to EMA, BSR only needs to compute and store some statistics with negligible

computational and memory cost in training, while it can estimate the batch statistics

more accurately and largely reduce the gap between training and inference. BSR

outperforms EMA significantly when training with a small batch size, as demonstrated

in our experiments.

40

3.2. Statistics of Batch Normalization

3.2 Statistics of Batch Normalization

3.2.1 Batch Normalization

BN [32] performs normalization along the batch dimension of a mini-batch. For each

activation or channel of input features in a mini-batch XB “ pxk1 , xk2 , ..., xkmq of size

m, where B “ tk1, k2, .., kmu is the set of sampled index, BN normalizes each input

feature as:

px “
x ´ µB

?
σB2 ` ϵ

, (3.1)

where µB “ 1
m

ř

kPB xk, σ
2
B “ 1

m

ř

kPBpxk ´ µBq2, and ϵ is a small positive constant.

After normalization, BN also employs a learned affine transform to keep the repre-

sentative capacity of neural networks.

In convolutional neural networks (CNNs), the most commonly used BN is two dimen-

sional BN (2dBN). In this case, the input activation is a feature map xk P Rhˆw, where

h and w are the height and width of the feature map. The statistics of a mini-batch

is computed along batch, height and width directions, i.e, µB “ 1
hwm

ř

kPB,i,j xkpi, jq,

and σ2
B “ 1

hwm

ř

kPB,i,jpxkpi, jq ´ µBq2. In the following development, we focus on the

case of 2dBN. The cases of 1dBN and 3dBN are similar to 2dBN.

3.2.2 Problem of EMA for BN Inference

From Eq. (3.1), one can see that with BN the output activation of one sample

depends on the mean and variance computed from all samples in a mini-batch, which

are randomly sampled from the training dataset. However, in the inference stage, the

output activation of the given test sample is deterministic, and we need to find an

estimation of the batch statistics µB and σ2
B in Eq. (3.1). In the original paper of

BN [32], Ioffe and Szegedy suggested to replace µB and σ2
B with the statistics of the

population, i.e, EBpµBq and EBpσ2
Bq, which are often approximated by the EMA of

41

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

batch statistics as follows:

µn “ λµn´1 ` p1 ´ λqµBn , σ2
n “ λσ2

n´1 ` p1 ´ λqσ2
Bn
, (3.2)

where n “ 1, 2, ..., N and N is the total number of iterations. µN and σ2
N are the

statistics estimated by EMA in the N -th iteration during training, and EBpµBq « µN

and EBpσ2
Bq « σ2

N .

The EMA of batch mean and variance can be viewed as the expectation of population

statistics, and they are constant for any given instance in the inference stage. How-

ever, the batch statistics µB and σ2
B are related to the instances in each mini-batch

during training, and they are different for different batches. As a result, there exists

a certain statistics disparity between the training and inference stages of BN. Such a

disparity cannot be ignored when the training batch size is small. Let’s give a more

detailed analysis in the next section.

3.2.3 Stochasticity in Batch Statistics

The batch statistics µB and σB can be viewed as a function of input activation XB.

They actually depend on the instance statistics of each sample in the batch. For a

specific sample xs, we denote by

µs “
1

hw

ÿ

i,j
xspi, jq, σ2

s “
1

hw

ÿ

i,j
pxspi, jq ´ µsq

2, (3.3)

the instance statistics of xs and denote by

µBztsu “
1

hwpm ´ 1q

ÿ

kPBztsu,i,j,
xkpi, jq,

σ2
Bztsu “

1

hwpm ´ 1q

ÿ

kPBztsu,i,j,
pxkpi, jq ´ µBztsuq2,

(3.4)

42

3.2. Statistics of Batch Normalization

the statistics of mini-batch XB excluding sample xs (i.e, XBztsu). As in [83], we can

separate the instance statistics from the batch statistics as follows:

µB “ αµs ` p1 ´ αqµBztsu, σ
2
B “ βσ2

s ` p1 ´ βqσ2
Bztsu ` βp1 ´ βqpµs ´ µBztsuq2, (3.5)

where the hyper-parameters α “ β “ 1
m

control the impact of instance statistics

on batch statistics. Eq. (3.5) indicates that batch statistics are related to instance

statistics. When the training batch size m is small, α and β become big, and the

dependency of batch statistics on instance statistics is strong. Fig. 3.1 illustrates the

stochasticity in BN. In training, for a specific sample, its statistics (i.e, µs and σ2
s

) are deterministic, because we can obtain them only from the give sample, but the

statistics of other samples within the minibatch (i.e, µBztsu and σ2
Bztsu

) are stochastic

in different epochs.

In the inference step, for a given test sample, we can view it as the sample xs in the

training step and its instance statistics µs and σ2
s can be computed by Eq. (3.3). To

estimate µB and σ2
B, from Eq. (3.5) we can see that we need to estimate µBztsu and

σ2
Bztsu

. Since in inference only the given test sample is available, we approximate µBztsu

and σ2
Bztsu

by their expectations, i.e, EBztsupµBq and EBztsupσ2
Bq. However, EMA (refer

to Eq. (3.2)) directly takes the expectations EBpµBq and EBpσ2
Bq by using all training

batches as the estimations of µB and σ2
B, ignoring the specific instance statistics of

sample xs. Consequently, the statistics inconsistency between training and inference

stages of BN is introduced.

3.2.4 Expectation of Batch Statistics

As discussed in section 3.2.3, to estimate the statistics µB and σ2
B for a test sample

xs, we should first compute µs and σ2
s from itself by Eq. (3.3), and then compute

43

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

Deterministic Stochastic

…

Epoch 1 Epoch 2 Epoch 3

Figure 3.1: Illustration of the stochasticity in BN. For a specific sample (blue sample),
in the training process, its statistics are deterministic but other samples within the
minibatch are stochastic.

EBztsupµBq and EBztsupσ2
Bq. Therefore, from Eq. (3.5), we have:

EBztsupµBq “ αµs ` p1 ´ αqEBztsupµBztsuq,

EBztsupσ2
Bq “ βσ2

s ` p1 ´ βqEBztsupσ2
Bztsuq

` βp1 ´ βqpµ2
s ´ 2µsEBztsupµBztsuq ` EBztsupµ2

Bztsuqq.

(3.6)

If we assume that the elements of input activations are independently and identically

distributed (i.i.d.) and follow Gaussian distribution N pµ, σ2q, it can be derived that

EBztsupµBztsuq “ µ,EBztsupσ2
Bztsuq “

hwpm ´ 1q

hwpm ´ 1q ´ 1
σ2, EBztsupµ2

Bztsuq “
1

hwpm ´ 1q
σ2

` µ2,

(3.7)

where µ and σ2 can be estimated by the expectation of batch statistics, i.e, µ “

EBpµBq and σ2 “ hwm´1
hwm

EBpσ2
Bq. By introducing Eq. (3.7) into Eq. (3.6) and replacing

the instance statistics of sample xs with those of a testing sample, we can obtain an

inference formulation which actually combines the instance statistics and EMA.

The above analysis is based on the assumption that the input activations of different

samples are i.i.d. Unfortunately, there are usually many BN layers in a DNN, while

only the first BN layer satisfies the i.i.d. assumption. In other BN layers, the features

of all samples in previous BN layers have been used in the normalization step. As a

result, the input activations are actually correlated. Therefore, the inference formu-

lation in Eqs. (3.6) and (3.7) are not accurate and the settings for hyper-parameters

44

3.3. Batch Statistics Regression

tα, βu should not be 1{m for most BN layers.

To reduce the gap between normalized activations in training and inference, Singh

and Shrivastava [83] proposed to tune the hyper-parameters tα, βu for each BN layer

by optimizing an auxiliary nonconvex objective function, which is however difficult to

implement. Different from [83], in the next section, we propose to regress the batch

mean and variance with instance statistics. We show that this can be formulated

as a simple linear regression problem, which can be easily solved with a closed-form

solution. Meanwhile, the online updating formulation makes it very easy and efficient

to implement in real applications.

3.3 Batch Statistics Regression

3.3.1 Batch Statistics Regression Model

Suppose for any simple xs, fµpxsq and fσpxsq are the mean and variance that we will

use in the inference step, we hope that when xs in a training batch, its statistics used

in training are close as the statistics it used in inference. We propose the following

objective function for each channel of a BN layer:

minfµEBp
ÿ

sPB
||µB ´ fµpxsq||

2
2q, minfσEBp

ÿ

sPB
||σ2

B ´ fσpxsq||
2
2q, (3.8)

where fµ and fσ are two functions of instance xs to predict the batch statistics. Once

learned, in the inference step fµpxsq and fσpxsq can be used to estimate the batch

statistics for any given testing sample. We call our model batch statistics regression

(BSR), which uses instance statistics to regress batch statistics.

One key problem of BSR is the choice of fµ and fσ. From Eq. (3.6), it can be seen

that the instance statistics are related to batch statistics. More specifically, µs is

related to µB, while σ2
s , µs and µ2

s are related to σ2
B, and their relationship is linear.

45

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

Therefore, we think a linear regression is preferred for its simplicity. Based on Eq.

(3.6), we propose the following formulation:

fµpxsq “ ϕpxsq
Tα, fσpxsq “ φpxsq

Tβ, (3.9)

where ϕpxsq “ pµs, 1qT , φpxsq “ pσ2
s , µ

2
s, µs, 1qT are the basis functions, and α P R2

and β P R4 are the parameters to be learned. It should be noted that the predicted

variance fσpxsq should be nonnegative. If we directly use the linear function φpxsq
Tβ

to regress σ2
B, however, the non-negativity of predicted variance cannot be always

ensured. To solve this problem, we set φpxsq “ pσ2
s , pµs ´ µq2, 1qT , where µ is the

population mean that can be estimated by EMA (refer to Eq. (3.2)). And after

estimating β P R3, we let β “ maxpβ, 0q so that φpxsq
Tβ can be guaranteed to be

nonnegative for any instance xs.

We have the following objective functions to estimate α and β:

min
α

ÿN

n“1
pλN´n

ÿ

sPBn

||µBn ´ ϕpxsq
Tαq||

2
2q,

min
β

ÿN

n“1
pλN´n

ÿ

sPBn
||σ2

Bn
´ φpxsq

Tβ||
2
2q,

(3.10)

where Bn denotes the batch in the n-th iteration, N is the total number of batches,

and λ is the momentum parameter (e.g , λ “ 0.9) that balances the importance of

the current batch and past batches. Eq. (3.10) is a least square regression problem,

which has a closed-form solution:

αN “ pAµ
Nq

´1Bµ
N , βN “ pAσ

Nq
´1Bσ

N , (3.11)

46

3.3. Batch Statistics Regression

where

Aµ
N “ p1 ´ λq

N
ÿ

n“1

λN´n
ÿ

sPBN

ϕpxsqϕpxsq
T ,Bµ

N “ p1 ´ λq

N
ÿ

n“1

λN´n
ÿ

sPBN

ϕpxsqµBn ,

Aσ
N “ p1 ´ λq

N
ÿ

n“1

λN´n
ÿ

sPBN

φpxsqφpxsq
T ,Bσ

N “ p1 ´ λq

N
ÿ

n“1

λN´n
ÿ

sPBN

φpxsqσ
2
Bn
.

(3.12)

3.3.2 Online Updating Formula

The closed-form solution in Eq. (3.12), however, requires us to store the statistics of

past historical batches, which is not practical to implement. Fortunately, with the

online learning strategy [103], we can adopt the following online updating formula to

compute the statistics:

Aµ
N “ λAµ

N´1 ` p1 ´ λq
ÿ

sPBN

ϕpxsqϕpxsq
T ,Bµ

N “ λBµ
N´1 ` p1 ´ λq

ÿ

sPBN

ϕpxsqµBN
,

Aσ
N “ λAσ

N´1 ` p1 ´ λq
ÿ

sPBN

φpxsqφpxsq
T ,Bσ

N “ λBσ
N´1 ` p1 ´ λq

ÿ

sPBN

φpxsqσ
2
BN

.

(3.13)

It can be shown that the updating formula in Eq. (3.13) is equivalent to Eq. (3.12).

The proof is shown as follows:

Proof. According to Eq. (3.12), let the index N be N ´ 1, we have

Aµ
N´1 “ p1 ´ λq

ÿN´1

n“1
λN´1´n

ÿ

sPBn
ϕpxsqϕpxsqT ,

Bµ
N´1 “ p1 ´ λq

ÿN´1

n“1
λN´1´n

ÿ

sPBn
ϕpxsqµBn ,

Aσ
N´1 “ p1 ´ λq

ÿN´1

n“1
λN´1´n

ÿ

sPBn
φpxsqφpxsqT ,

Bσ
N´1 “ p1 ´ λq

ÿN´1

n“1
λN´1´n

ÿ

sPBn
φpxsqσ2

Bn
.

(3.14)

then

47

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

Aµ
N “ λp1 ´ λq

ÿN´1

n“1
λN´1´n

ÿ

sPBn
ϕpxsqϕpxsqT ` p1 ´ λq

ÿ

sPBN
ϕpxsqϕpxsqT

“ λAµ
N´1 ` p1 ´ λq

ÿ

sPBN
ϕpxsqϕpxsqT ,

Bµ
N “ λp1 ´ λq

ÿN´1

n“1
λN´1´n

ÿ

sPBn
ϕpxsqµBn ` p1 ´ λq

ÿ

sPBN
ϕpxsqµBN

“ λBµ
N´1 ` p1 ´ λq

ÿ

sPBN
ϕpxsqµBN

,

Aσ
N “ λp1 ´ λq

ÿN´1

n“1
λN´1´n

ÿ

sPBn
φpxsqφpxsqT ` p1 ´ λq

ÿ

sPBN
φpxsqφpxsqT

“ λAσ
N´1 ` p1 ´ λq

ÿ

sPBN
φpxsqφpxsqT ,

Bσ
N “ λp1 ´ λq

ÿN´1

n“1
λN´1´n

ÿ

sPBn
φpxsqσ2

Bn
` p1 ´ λq

ÿ

sPBN
φpxsqσ2

BN

“ λBσ
N´1 ` p1 ´ λq

ÿ

sPBN
φpxsqσ2

BN
.

(3.15)

■

Therefore, we only need to store four statistics Aµ
N P R2ˆ2, Bµ

N P R2, Aσ
N P R3ˆ3 and

Bσ
N P R3 for each channel during training, and update them with Eq. (3.13). The

number of parameters that needs to be stored for one BN layer is 18C, where C is the

number of channels. This number is negligible compared with the parameters in a

CNN layer. The computational complexity of BSR is the same as BN, i.e, OpNChwq.

So extra computational cost is very small compared with the normalization operation

on input activation. Moreover, in case these statistics are not stored in the training

process (e.g , the original BN), we can simply run several more training epochs (e.g ,

one epoch) to obtain these statistics.

To make a better understanding of BSR, from Eq. (3.11) and (3.13), it can be shown

that the objective functions in Eq. (3.10) are equivalent to the following objective

functions:

min
α

p1 ´ λq
ÿ

sPBN

||µBN
´ ϕpxsq

Tαq||
2
2 ` λ||α ´ αN´1||Aµ

N´1
,

min
β

p1 ´ λq
ÿ

sPBN

||σ2
BN

´ φpxsq
Tβ||

2
2 ` λ||β ´ βN´1||Aσ

N´1
,

(3.16)

where αN´1 and βN´1 are the regression parameters obtained in the pN ´ 1q-th

iteration, and ||x||A “ xTAx is the Mahalanobis distance. The proof is shown as

48

3.3. Batch Statistics Regression

follows:

Proof. we can first optimize Eq. (3.10) by letting its derivative be zero. There is

p1 ´ λq
ÿ

sPBN

ϕpxsqpµBN
´ ϕpxsqTαqq ` λAµ

N´1pα ´ αN´1q “ 0,

p1 ´ λq
ÿ

sPBN

φpxsqpσ2
BN

´ φpxsqTβq ` λAσ
N´1pβ ´ βN´1q “ 0,

(3.17)

From Eq. (3.17), we have

αN´1 “ pλAµ
N´1 ` p1 ´ λq

ÿ

sPBN

ϕpxsqϕpxsqT q´1pλAµ
N´1αN´1 ` p1 ´ λq

ÿ

sPBN

ϕpxsqµBN
q

βN´1 “ pλAσ
N´1 ` p1 ´ λq

ÿ

sPBN

φpxsqφpxsqT q´1pλAσ
N´1βN´1 ` p1 ´ λq

ÿ

sPBN

φpxsqσ2
BN

q

(3.18)

By letting N be N ´ 1 in Eq. (3.11), we have αN´1 “ pAµ
N´1q

´1Bµ
N´1,βN´1 “

pAσ
N´1q

´1Bσ
N´1, and consequently

Aµ
N´1αN´1 “ Bµ

N´1,A
σ
N´1βN´1 “ Bσ

N´1
(3.19)

According to Eq (3.13) and Eq (3.19), Eq (3.20) can be rewritten as

αN´1 “ pλAµ
N´1 ` p1 ´ λq

ÿ

sPBN

ϕpxsqϕpxsqT q´1pλBµ
N´1 ` p1 ´ λq

ÿ

sPBN

ϕpxsqµBN
q

“ pAµ
N q´1Bµ

N

βN´1 “ pλAσ
N´1 ` p1 ´ λq

ÿ

sPBN

φpxsqφpxsqT q´1pλBσ
N´1 ` p1 ´ λq

ÿ

sPBN

φpxsqσ2
BN

q

“ pAσ
N q´1Bσ

N

(3.20)

which is the solution of the objective functions in Eq. (3.10). The proof is completed.

■

From Eq. (3.16), we can see that the first term accounts for the observation term

from the current data and the second term accounts for the regularization from the

past historical data.

In the inference stage, we first use Eq. (3.11) to calculate the regression parameters

α and β, and let β “ maxpβ, 0q to ensure that the variance is nonnegative. Then

49

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

the final inference of the testing sample is applied to

px “
x ´ ϕpxqTα

a

φpxqTβ ` ϵ
. (3.21)

Compared with Eqs. (3.6) and (3.7), which employ fixed hyper-parameters, BSR

applies optimized parameters for different BN layers. The proposed BSR algorithm

for BN inference is summarized in Algorithm 2.

3.3.3 Relationship with EMA

It can be shown that the classical EMA in Eq. (3.2) is a special case of the proposed

BSR. Actually, if we set the basis functions of linear regression in BSR to constants,

e.g , ϕpxsq “ 1, φpxsq “ 1, and let α “ µ and β “ σ2, then the objective function of

BSR in Eq. (3.16) degrades to

µN “ argminµ p1 ´ λq||µBn ´ µ||
2
2 ` λ||µ ´ µN´1||

2
2,

σ2
N “ argminσ2 p1 ´ λq||σ2

Bn
´ σ2

||
2
2 ` λ||σ2

´ σ2
N´1||

2
2.

(3.22)

The solution of Eq. (3.22) is exactly the EMA updating rules for mini-batch statistics

in Eq. (3.2). Therefore, the original BN inference method of EMA is a special

case of BSR with constant basis functions, while our proposed BSR adopts more

informative basis functions ϕpxsq “ pµs, 1qT and φpxsq “ pσ2
s , pµs´µq2, 1qT of instance

statistics. BSR is a natural generalization of EMA and it achieves a more accurate

approximation to batch statistics than EMA.

3.3.4 Measure of Disparity

The regression problems in Eq. (3.10) or Eq. (3.16) are actually stochastic regression

problems, where both the targets µB and σ2
B and the input xs have certain stochastic-

ity. In order to validate whether the proposed BSR can reduce the disparity between

50

3.3. Batch Statistics Regression

Algorithm 2: Batch Normalization with Batch Statistics Regression (BSR)

Input: Sample x over a training mini-batch XB; statistics µ, A
µ, Bµ, Aσ and

Bσ, momentum parameters λ.
Output: tpx “ BNpxqu; Aµ, Bµ, Aσ and Bσ

1 if Training then
2 µB “ 1

hwm

ř

kPB,i,j xkpi, jq

3 σ2
B “ 1

hwm

ř

kPB,i,jpxkpi, jq ´ µBq2

4 pxk “
xk´µB?

σ2
B`ϵ

, k P B

5 µ Ð λµ ` p1 ´ λqµB
6 update Aµ, Bµ, Aσ and Bσ according to Eq. (3.13)

7 else
8 Solve α and β according to Eq. (3.11) and β “ maxpβ, 0q

9 px “
x´ϕpxqTα?
φpxqTβ`ϵ

.

10 end

the training and inference stages of BN, we need a measure to quantify the difference.

Here, we adopt the following measure:

∆x “ EBp
1

m

ÿ

sPB
||
xs ´ µB

?
σB2 ` ϵ

´
xs ´ fµpxsq
a

fσpxsq ` ϵ
||2q, (3.23)

where µB and σ2
B are the statistics of a training batch B, while fµpxsq and fσpxsq are

the predicted batch statistics by sample xs, suppose it is used for inference. For EMA

inference, fµpxsq “ µ and fσpxsq “ σ, which can be obtained by Eq. (3.2), while for

BSR inference, we have fµpxsq “ ϕpxqTα and fσpxsq “ φpxqTβ.

The ∆x in Eq. (3.23) measures the difference of output activations between training

and inference, which is also adopted in [29] to measure the stochasticity in BN for

different training schemes. In our work, we use the same training scheme of BN and

compare different inference approaches by their values of ∆x.

51

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

3.4 Experiments

A series of experiments are conducted in this section to evaluate the effectiveness of

BSR. We first conduct experiments on two commonly used small datasets, CIFAR100

and CIFAR10 [39], to analyze the performance of BSR with different batch sizes. We

then perform the experiment on ImageNet [75] to demonstrate that BSR can work

well on large-scale datasets. Moreover, to testify the performance of BSR on transfer

learning, we also evaluate it on four fine-grained image classification (FGVC) datasets

(Aircraft [60], Stanford Cars [38], Stanford Dogs [35] and CUB-200-2011 [91]) with

the pre-trained DNN models on ImageNet. Finally, we employ the COCO dataset

to show that BSR can boost BN on other tasks beyond image classification, such as

object detection.

All experiments are conducted under the Pytorch 1.5 framework with several NVIDIA

Tesla P100 machines. Ghost-BN [23] can be adopted to simulate multiple GPUs

training with one GPU for BN. Therefore, we can fix the total batch size and simulate

the training process with different numbers of GPUs with Ghost-BN so that the

GPUs can be fully taken use of. The statistics of the BN layer are computed within

one simulated GPU. We compare BSR with the widely used EMA and the recently

proposed EvalNorm (EN) [83]. Since the source code of EN is not publically available,

we implement it following the configurations in [83]. The implementation of BSR

is much simpler than EN since we have a closed-form solution, while EN needs to

first compute the gradient of the auxiliary objective function and then update the

parameters with gradient descent.

3.4.1 CIFAR100/CIFAR10

Experimental Settings: CIFAR100/CIFAR10 [39] include 60,000 images from 100

and 10 classes, respectively. 50K images are used for training and 10K images for

52

3.4. Experiments

Table 3.1: Testing accuracies (%) on CIFAR100/CIFAR10.

CIFAR100 / ResNet50
Samples/GPU 2 4 8 16 32 64

EMA 70.47 77.23 78.93 79.02 78.98 78.63
EN 74.30 78.03 79.35 79.15 79.00 78.63
BSR 75.88 78.30 79.53 79.50 79.28 78.80

∆BSR´EMA Ò5.41 Ò1.07 Ò0.60 Ò0.48 Ò0.22 Ò0.17
CIFAR100 / ResNet101

EMA 70.67 77.37 79.47 79.53 79.78 79.13
EN 74.85 78.18 79.83 79.63 79.78 79.15
BSR 76.30 78.23 80.03 79.97 79.90 79.35

∆BSR´EMA Ò5.63 Ò0.86 Ò0.56 Ò0.44 Ò0.12 Ò0.22
CIFAR10 / ResNet50

Samples/GPU 2 4 8 16 32 64
EMA 93.33 95.02 95.27 95.27 95.20 95.05
EN 94.25 95.22 95.37 95.27 95.22 95.05
BSR 94.60 95.27 95.40 95.37 95.25 95.10

∆BSR´EMA Ò1.27 Ò0.25 Ò0.13 Ò0.1 Ò0.05 Ò0.05
CIFAR10 / ResNet101

EMA 93.80 95.22 94.97 95.40 95.37 95.45
EN 94.65 95.40 95.13 95.40 95.37 95.45
BSR 95.00 95.42 95.17 95.45 95.40 95.47

∆BSR´EMA Ò1.2 Ò0.2 Ò0.2 Ò0.05 Ò0.03 Ò0.02

testing. The image resolution is 32ˆ 32. All DNN models are trained for 200 epochs.

We set the overall batch size as 128 and change the number of GPUs so that in training

the number of samples per GPU varies from 2 to 64. We repeat the experiments 5

times and report the average accuracy. We employ ResNet50 and ResNet101 [22] as

DNN models, which are optimized by SGDM with a momentum of 0.9. The weight

decay is set to 0.0005. The initial learning rate is 0.1 and it decays by 0.1 for every

60 epochs. For both EMA and BSR, the momentum parameter is set to 0.1.

Results: Since during training the normalization step in BN is the same for EMA,

EN and BSR, we only compare their results in inference. Table 3.1 reports the clas-

sification accuracies of ResNet50 and ResNet101 with a different number of samples

per GPU. The results show that BSR consistently outperforms EMA and EN. When

the training batch size is small, BSR can largely boost the performance over EMA.

In particular, with 2 samples per GPU, BSR achieves 5.54% and 5.63% performance

gain over EMA on CIFAR100 with ResNet50 and ResNet101 backbone, respectively,

and the gains are 1.27% and 1.2% on CIFAR10. When the batch size increases, the

53

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

0 50 100 150 200

Epoch

40

50

60

70

80

A
c
c
u
ra

c
y
(%

)

CIFAR100/ResNet50

EMA

EN

BSR

0 50 100 150 200

Epoch

40

50

60

70

80

A
c
c
u
ra

c
y
(%

)

CIFAR100/ResNet101

EMA

EN

BSR

50 100 150 200

Epoch

85

90

95

A
c
c
u
ra

c
y
(%

)

CIFAR10/ResNet50

EMA

EN

BSR

50 100 150 200

Epoch

85

90

95

A
c
c
u
ra

c
y
(%

)

CIFAR10/ResNet101

EMA

EN

BSR

Figure 3.2: The testing accuracy curves of ResNet50 and ResNet101 on CIFAR100
(top row) and CIFAR10 (bottom row) with 2 samples per GPU during training.

improvement by BSR decreases. This is because when the batch size is large, BSR

approaches EMA, and the inconsistency between BN training and inference stages

will be diluted.

Fig. 3.2 plots the testing accuracy curves of ResNet50 and ResNet101 for different

training epochs with 2 samples per GPU. It can be seen that BSR performs the best

during the whole training process. It is also observed that higher performance gain is

achieved on CIFAR100 than CIFAR10. This implies that BSR can bring more benefit

for more difficult problems (100 classes vs. 10 classes), where an accurate estimation

of BN statistics is more important.

Meanwhile, it is found that on both CIFAR100 and CIFAR10, the best results are

achieved when the number of samples is 8 or 16 within one GPU. This is because BN

54

3.4. Experiments

Table 3.2: Validation accuracies (%) of ResNet50 on ImageNet.

Samples/GPU 2 4 8 16 32
GN [93] 75.51 75.48 75.53 75.50 75.47
BRN [31] 70.70 73.30 74.24 75.70 76.23

BN+EMA [32] 65.70 72.92 75.24 75.88 76.35
BN+EN [83] 69.74 73.92 75.62 76.01 76.41
BN+BSR 72.24 74.45 75.66 76.20 76.58
∆BSR´EMA Ò6.54 Ò1.53 Ò0.42 Ò0.32 Ò0.23

Figure 3.3: The ∆x of EMA, EN and BSR ResNet50 on ImageNet.

also acts as a regularization function to regularize the stochasticity of batch statistics

during training [87, 105, 101]. Too-big batch size will weaken the regularization prop-

erty of BN. Therefore, a proper training batch size for BN can boost the generalization

performance of trained DNN models. In such a case, BSR can effectively improve the

inference performance of BN. For example, on CIFAR100 the best performance of

EMA is 79.02% when the batch size is 16, and BSR can further improve the accuracy

to 79.50%, which is much higher than the results with a commonly used large batch

size, e.g , 78.63% with batch size 64. Therefore, This means that BSR with Ghost-

BN [23] can significantly gain the performance with common training batch size for

some tasks.

3.4.2 ImageNet

Experimental Settings: We then evaluate BSR on ImageNet [75], which consists

of 1.28M images from 1,000 categories for training and 50K images for validation.

55

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

Table 3.3: Validation accuracies (%) of more models on ImageNet.

Modelz Samples/GPU 2 4 8 16 32

ResNet101

EMA 68.63 75.33 77.12 77.80 78.06
EN 72.70 76.30 77.48 77.93 78.08
BSR 75.01 76.43 77.60 78.24 78.22

∆BSR´EMA Ò6.38 Ò1.10 Ò0.48 Ò0.44 Ò0.16

VGG16

EMA 65.10 70.43 72.91 73.70 74.24
EN 70.71 72.25 73.27 73.77 74.25
BSR 71.41 72.54 73.53 73.90 74.37

∆BSR´EMA Ò6.31 Ò2.11 Ò0.62 Ò0.20 Ò0.13

ResNeXt50

EMA 68.40 74.61 77.00 77.68 77.71
EN 71.37 76.33 77.55 77.85 77.74
BSR 74.27 75.96 77.59 77.90 78.04

∆BSR´EMA Ò5.87 Ò1.35 Ò0.59 Ò0.22 Ò0.33

The resolution of input images is 224. All DNN models are trained for 100 epochs

with an overall batch size of 256. We use 128, 64, 32, 16, and 8 GPUs to train the

models, and the number of samples per GPU is accordingly 2, 4, 8, 16, and 32. All

networks are trained using SGDM with a momentum 0.9. The weight decay is set to

0.0001. The initial learning rate is 0.1 and it decays by 0.1 for every 30 epochs. The

momentum of EMA and BSR is set to be 0.1.

Results: We first compare BSR with GN [93] and BRN [31], as well as EMA and EN

for inference. GN and BRN are two well-known normalization methods to address

the problem of the small training batch size of BN. For GN, the group number is 32,

and for BRN, we set rmax “ 2 and dmax “ 1. Table 3.2 lists the validation accuracies

of ResNet50 on ImageNet with 2, 4, 8, 16 and 32 samples per GPU. From Table 3.2,

we can see that BSR performs consistently better than BRN, EMA and EN across

all batch sizes. Especially, when training batch size is 2, it achieves a significant

performance gain over EMA (i.e, 6.54%). Compared with GN, BSR outperforms it

when the batch size is larger than 4. It should be stressed that BSR does not change

the training scheme of BN, while GN uses a different normalization strategy from

BN.

56

3.4. Experiments

We then show in Fig. 3.3 the average value of ∆x (refer to Eq. (3.23)) over all

BN layers in ResNet50 for EMA, EN and BSR with training batch sizes 2, 4 and 8.

As explained in Section 3.3.4, ∆x measures the disparity of batch statistics between

BN training and inference. A smaller value of ∆x means that the batch statistics

in training and inference are more consistent, implying better prediction results in

general. We see that the ∆x of EMA is significantly larger than EN and BSR,

especially when the batch size is 2. BSR has the smallest ∆x, which means that it

can better reduce the gap of statistics between BN training and inference.

We also apply BSR on more DNNmodels, including ResNet101, VGG16 and ResNetX50.

Table 3.3 shows the validation accuracies on ImageNet with 2, 4, 8, 16 and 32 samples

per GPU. It can be seen that BSR consistently outperforms EMA under all batch

sizes for all DNN models. It works better than EN under most settings as well. Es-

pecially, when the training batch size is 2, BSR achieves 6.38%, 6.31% and 5.87%

performance gains over EMA, and 2.31%, 0.70% and 2.90% performance gains over

EN by using the three DNN models, respectively. Such improvements clearly validate

that BSR provides a much more accurate solution to estimate the batch statistics

when the batch size is small.

3.4.3 Fine-grained Image Classification

Experimental Settings: In our above experiments, the DNN models are trained

from scratch. To show that BSR can also be adopted in pre-trained models, we con-

duct experiments on four popular fine-grained visual classification (FGVC) datasets,

including Aircraft [60], Stanford Cars [38], Stanford Dogs [35] and CUB-200-2011 [91].

We use the pre-trained ResNet50 by Pytorch as the baseline on all four datasets. The

original images are resized into 256 ˆ 256, and then cropped to 224 ˆ 224 as inputs

for training and testing. The SGDM with a momentum of 0.9 is used to fine-tune

the pre-trained ResNet50. The initial learning rate is 0.1 and it decays by 0.1 at the

57

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

Table 3.4: Testing accuracies (%) of ResNet50 on four fine-grained image classifica-
tion.

Dataset Aircraft
Samples/GPU 2 4 8 16 32 64

EMA 80.63 84.72 84.30 83.60 82.77 82.35
EN 83.13 85.42 84.52 83.75 82.85 82.37
BSR 83.22 85.48 84.77 84.07 82.87 82.53

∆BSR´EMA Ò2.59 Ò0.76 Ò0.47 Ò0.47 Ò0.10 Ò0.18
Dataset Stanford Cars

Samples/GPU 2 4 8 16 32 64
EMA 83.90 89.45 89.78 89.08 88.67 88.03
EN 86.15 90.00 89.98 89.12 88.70 88.03
BSR 86.30 90.05 90.10 89.27 88.78 88.08

∆BSR´EMA Ò2.40 Ò0.60 Ò0.32 Ò0.19 Ò0.11 Ò0.05
Dataset Stanford Dogs

Samples/GPU 2 4 8 16 32 64
EMA 71.83 75.05 75.60 75.30 74.90 74.30
EN 72.72 75.83 76.05 75.48 74.98 74.32
BSR 73.98 76.20 76.35 75.90 75.22 74.50

∆BSR´EMA Ò2.15 Ò1.15 Ò0.75 Ò0.60 Ò0.32 Ò0.20
Dataset CUB-200-2011

Samples/GPU 2 4 8 16 32 64
EMA 72.60 77.37 77.60 77.10 75.95 75.58
EN 76.07 78.43 78.18 77.35 76.05 75.60
BSR 76.58 78.50 78.48 77.80 76.37 75.88

∆BSR´EMA Ò3.98 Ò1.13 Ò0.88 Ò0.70 Ò0.42 Ò0.30

50-th and 80-th epochs. We repeat the experiments 5 times and report the average

accuracy.

Results: Table 3.4 reports the accuracies of ResNet50 on the four FGVC datasets

with a different number of samples per GPU. We can have two findings. First, with

pre-trained DNN models (on ImageNet), the best classification results are often ob-

tained when the batch size is 8 or 4, instead of 32 or 64. This is because the batch

statistics computed from the ImageNet dataset will be transferred to the current

dataset via the pre-trained model so that a larger batch size may not bring many

benefits. On the other hand, relatively smaller batch size is good for BN to per-

form the regularization function [87, 105, 101], as we explained in the experiments on

58

3.4. Experiments

Table 3.5: Average Precision (AP) on COCO by using Faster-RCNN with ResNet50
backbone and FPN.

samples/GPU 2 4 8 16
EMA 34.2 35.9 36.9 37.4
EN 35.1 36.1 37.1 37.5
BSR 35.6 36.4 37.2 37.6

∆BSR´EMA Ò1.4 Ò0.5 Ò0.3 Ò0.2

CIFAR100/10. Therefore, for this task, Ghost-BN [23] can simulate multiple GPUs

training (e.g , 8 or 16 GPUs) with a large training batch size, e.g , 128, to initially im-

prove the generalization performance. And BSR can further boost the performance

over Ghost-BN. This also demonstrates the practical value of BSR for the general

optimization of a DNN.

3.4.4 Object Detection

Experimental Settings: Finally, we evaluate BSR on tasks other than classification,

e.g , object detection. The training batch size for object detection is usually very small

(e.g , 2 or 4) because of the high resolution of the input image and the limitation of

memory. The Feature Pyramid Network (FPN) [47] and the Faster R-CNN [72]

with ResNet50 backbone pre-trained on ImageNet are used as the detectors. The

MMDetection [10] toolbox is used as the detection framework. The models have

trained on COCO train2017 dataset (118K images) and evaluated on the COCO

val2017 dataset (40K images) [48]. The learning rate schedule is 1X for all models.

The BN layers are not frozen to compare the performance of BN inference methods.

The overall training batch size is 16 and the number of samples per GPU is set to 2,

4, 8, 16, respectively.

Results: Table 3.5 gives the Average Precision (AP) results of Faster-RCNN on

COCO. We can see that BSR outperforms EMA on all training batch sizes from 2

to 16. When the training batch size is 2, BSR can gain 1.4% AP over EMA. This

59

Chapter 3. Batch Statistics Regression for Effective Inference of Batch
Normalization

demonstrates that BSR can also boost the performance of BN on other tasks beyond

classification.

3.5 Conclusion

To reduce the statistics disparity of BN between training and inference, we proposed

a new inference approach of BN, namely batch statistics regression (BSR), which uses

instance statistics to predict the batch statistics with a simple linear regression model.

Without changing the training scheme of BN, the proposed BSR only needs to store

four statistics in training with the negligible cost of computation and memory, and it

updates the statistics with a simple online formulation. We also revealed that EMA

is actually a special case of BSR. Experiments on image classification and object

detection were conducted to evaluate the effectiveness of BSR. Compared with EMA,

BSR is more accurate to approximate the batch statistics and it significantly improves

the performance of BN when the training batch size is small. BSR is a good choice

to replace the commonly used EMA for BN inference.

60

Chapter 4

Gradient Centralization: A Simple

and Effective Optimization

Technique for Deep Learning

Different from these existing methods that mostly operate on features or weights,

in this chapter, we present a simple but effective optimization technique, namely

gradient centralization (GC), which operates directly on gradients by centralizing

the gradient vectors to have zero mean. GC can be viewed as a projected gradient

descent method with a constrained loss function. We show that GC can regularize

both the weight space and output feature space so that it can boost the generalization

performance of DNNs. Moreover, GC improves the Lipschitzness of the loss function

and its gradient so that the training process becomes more efficient and stable. GC

is very simple to implement and can be easily embedded into existing gradient-based

DNN optimizers with only one line of code. It can also be directly used to fine-tune

the pre-trained DNNs. Our experiments on various applications, including general

image classification, fine-grained image classification, detection, and segmentation,

demonstrate that GC can consistently improve the performance of DNN learning.

61

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

4.1 Introduction

The broad success of deep learning largely owes to the recent advances on large-scale

datasets [75], powerful computing resources (e.g , GPUs and TPUs), sophisticated

network architectures [22, 25] and optimization algorithms [6, 37]. Among these fac-

tors, the efficient optimization techniques, such as stochastic gradient descent (SGD)

with momentum [68], Adagrad [16] and Adam [37], make it possible to train very

deep neural networks (DNNs) with a large-scale dataset and consequently deliver

more powerful and robust DNN models in practice. The generalization performance

of the trained DNN models as well as the efficiency of the training process depends

essentially on the employed optimization techniques.

There are two major goals for a good DNN optimizer: accelerating the training process

and improving the model generalization capability. The first goal aims to spend less

time and cost to reach a good local minima, while the second goal aims to ensure

that the learned DNN model can make accurate predictions on test data. A variety of

optimization algorithms [68, 16, 37, 16, 37] have been proposed to achieve these goals.

SGD [6, 7] and its extension SGD with momentum (SGDM) [68] are among the most

commonly used ones. They update the parameters along the opposite direction of

their gradients in one training step. Most of the current DNN optimization methods

are based on SGD and improve SGD to better overcome the gradient vanishing or

explosion problems. A few successful techniques have been proposed, such as weight

initialization strategies [17, 21], efficient active functions (e.g , ReLU [63]), gradient

clipping [65, 66], adaptive learning rate optimization algorithms [16, 37], and so on.

In addition to the above techniques, the sample/feature statistics such as mean and

variance can also be used to normalize the network activations or weights to make the

training process more stable. The representative methods operating on activations

include batch normalization (BN) [32], instance normalization (IN) [88, 30], layer

normalization (LN) [44] and group normalization (GN) [93]. Among them, BN is

62

4.1. Introduction

the most widely used optimization technique which normalizes the features along

the sample dimension in a mini-batch for training. BN smooths the optimization

landscape [77] and it can speed up the training process and boost model generalization

performance when proper batch size is used [105, 22]. However, BN works not very

well when the training batch size is small, which limits its applications to memory-

consuming tasks, such as object detection [20, 72], video classification [34, 2], etc.

Another line of statistics-based methods operates on weights. The representative ones

include weight normalization (WN) [76, 27] and weight standardization (WS) [69].

These methods re-parameterize weights to restrict weight vectors during training. For

example, WN decouples the length of weight vectors from their direction to accelerate

the training of DNNs. WS uses the weight vectors’ mean and variance to standardize

them to have zero mean and unit variance. Similar to BN, WS can also smooth the

loss landscape and speed up training. Nevertheless, such methods operating on weight

vectors cannot directly adopt the pre-trained models (e.g , on ImageNet) because their

weights may not meet the condition of zero mean and unit variance.

Different from the above techniques which operate on activations or weight vectors,

we propose a very simple yet effective DNN optimization technique, namely gradient

centralization (GC), which operates on the gradients of weight vectors. As illustrated

in Fig. 4.1, GC simply centralizes the gradient vectors to have zero mean. It can

be easily embedded into the current gradient-based optimization algorithms (e.g ,

SGDM [68], Adam [37]) using only one line of code. Though simple, GC demonstrates

various desired properties, such as accelerating the training process, improving the

generalization performance, and the compatibility for fine-tuning pre-trained models.

The main contributions of this chapter are highlighted as follows:

‚ We propose a new general network optimization technique, namely gradient

centralization (GC), which can not only smooth and accelerate the training

process of DNN but also improve the model generalization performance.

63

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

Figure 4.1: Sketch map for using gradient centralization (GC). W is the weight, L is
the loss function, ∇WL is the gradient of weight, and ΦGCp∇WLq is the centralized
gradient. It is very simple to embed GC into existing network optimizers by replacing
∇WL with ΦGCp∇WLq.

‚ We analyze the theoretical properties of GC, and show that GC constrains

the loss function by introducing a new constraint on the weight vector, which

regularizes both the weight space and output feature space so that it can boost

model generalization performance. Besides, the constrained loss function has

better Lipschitzness than the original one, which makes the training process

more stable and efficient.

Finally, we perform comprehensive experiments on various applications, including

general image classification, fine-grained image classification, object detection and

instance segmentation. The results demonstrate that GC can consistently improve

the performance of learned DNN models in different applications. It is a simple,

general and effective network optimization method.

4.2 Related Work

In order to accelerate the training and boost the generalization performance of DNNs,

a variety of optimization techniques [32, 93, 76, 69, 68, 65] have been proposed to

64

4.2. Related Work

Figure 4.2: Illustration of the GC operation on gradient matrix/tensor of weights
in the fully-connected layer (left) and convolutional layer (right). GC computes the
column/slice mean of gradient matrix/tensor and centralizes each column/slice to
have zero mean.

operate on activation, weight and gradient. In this section, we briefly review the

related work from these three aspects.

Activation: The activation normalization layer has become a common setting in

DNN, such as batch normalization (BN) [32] and group normalization (GN) [93].

BN was originally introduced to solve the internal covariate shift by normalizing the

activations along the sample dimension. It allows higher learning rates [5], accelerates

the training speed and improves the generalization accuracy [56, 77]. However, BN

does not perform well when the training batch size is small, and GN is proposed

to address this problem by normalizing the activations or feature maps in a divided

group for each input sample. In addition, layer normalization (LN) [44] and instance

normalization (IN) [88, 30] have been proposed for RNN and style transfer learning,

respectively.

Weight: Weight normalization (WN) [76] re-parameterizes the weight vectors and

decouples the length of a weight vector from its direction. It speeds up the convergence

65

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

of SGDM algorithm to a certain degree. Weight standardization (WS) [69] adopts

the Z-score standardization to re-parameterize the weight vectors. Like BN, WS

can also smooth the loss landscape and improve training speed. Besides, binarized

DNN [70, 13, 12] quantifies the weight into binary values, which can improve the

generalization capability for certain DNNs. However, a shortcoming of those methods

operating on weights is that they cannot be directly used to fine-tune pre-trained

models since the pre-trained weight may not meet their constraints. As a consequence,

we have to design specific pre-training methods for them in order to fine-tune the

model.

Gradient: A commonly used operation on gradient is to compute the momentum of

gradient [68]. By using the momentum of gradient, SGDM accelerates SGD in the

relevant direction and dampens oscillations. Besides, L2 regularization based weight

decay, which introduces L2 regularization into the gradient of weight, has long been

a standard trick to improve the generalization performance of DNNs [41, 106]. To

make DNN training more stable and avoid gradient explosion, gradient clipping [65,

66, 1, 36] has been proposed to train a very deep DNNs. In addition, the projected

gradient methods [19, 42] and Riemannian approach [11, 90] project the gradient on

a subspace or a Riemannian manifold to regularize the learning of weights.

4.3 Gradient Centralization

4.3.1 Motivation

BN [32] is a powerful DNN optimization technique, which uses the first and second-

order statistics to perform Z-score standardization on activations. It has been shown

in [77] that BN reduces the Lipschitz constant of the loss function and makes the gra-

dients more Lipschitz smooth so that the optimization landscape becomes smoother.

WS [69] can also reduce the Lipschitzness of the loss function and smooth the opti-

66

4.3. Gradient Centralization

mization landscape through Z-score standardization on weight vectors. BN and WS

operate on activations and weight vectors, respectively, and they implicitly constrict

the gradient of weights, which improves the Lipschitz property of loss for optimization.

Apart from operating on activation and weight, can we directly operate on the gra-

dient to make the training process more effective and stable? One intuitive idea is

that we use Z-score standardization to normalize gradients, like what has been done

by BN and WS on activation and weight. Unfortunately, we found that normalizing

gradient cannot improve the stability of training. Instead, we propose to compute the

mean of gradient vectors and centralize the gradients to have zero mean. As we will

see in the following development, the so-called gradient centralization (GC) method

can have good Lipschitz property, smooth the DNN training and improve the model

generalization performance.

4.3.2 Formulation of GC

For a FC layer or a Conv layer, suppose that we have obtained the gradient through

backward propagation, then for a weight vector wi whose gradient is ∇wi
L (i “

1, 2, ..., N), the GC operator, denoted by ΦGC , is defined as follows:

ΦGCp∇wi
Lq “ ∇wi

L ´ µ∇wiL
(4.1)

where µ∇wiL “ 1
M

řM
j“1∇Wi,j

L. The formulation of GC is very simple. As shown

in Fig. 4.2, we only need to compute the mean of the column vectors of the weight

matrix, and then remove the mean from each column vector. We can also have a

matrix formulation of Eq. (4.1):

ΦGCp∇WLq “ P∇WL, P “ I ´ eeT (4.2)

The physical meaning of P will be explained later in Section 4.4.1. In practical

67

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

Algorithm 3: SGDM with Gradient Centralization

Input: Weight vector w0, step size η, momentum factor β, m0

Output: Weight vector wpT q

1 for t=1:T do
2 gt “ ∇wtL
3 ĝt “ ΦGCpgtq

4 mt “ βmt´1 ` p1 ´ βqĝt

5 wt`1 “ wt ´ ηmt

6 end

implementation, we can directly remove the mean value from each weight vector to

accomplish the GC operation. The computation is very simple and efficient.

4.3.3 Embedding of GC to SGDM/Adam

GC can be easily embedded into the current DNN optimization algorithms such as

SGDM [68, 7] and Adam [37]. After obtaining the centralized gradient ΦGCp∇wLq,

we can directly use it to update the weight matrix. Algorithm 3 and Algorithm 4

show how to embed GC into the two most popular optimization algorithms, SGDM

and Adam, respectively. Moreover, if we want to use weight decay, we can set ĝt “

Ppgt ` λwq, where λ is the weight decay factor. It only needs to add one line of

code into most existing DNN optimization algorithms to execute GC with negligible

additional computational cost. For example, it costs only 0.6 sec extra training time

in one epoch on CIFAR100 with ResNet50 model in our experiments (71 sec for one

epoch).

4.4 Properties of GC

As we will see in the section of the experimental result, GC can accelerate the training

process and improve the generalization performance of DNNs. In this section, we

perform some theoretical analysis to explain why GC works.

68

4.4. Properties of GC

Algorithm 4: Adam with Gradient Centralization

Input: Weight vector w0, step size η, β1, β2, ϵ, m
0,v0

Output: Weight vector wpT q

1 for t=1:T do
2 gt “ ∇wtL
3 ĝt “ ΦGCpgtq

4 mt “ β1m
t´1 ` p1 ´ β1qĝ

t

5 vt “ β2v
t´1 ` p1 ´ β2qĝt d ĝt

6 m̂t “ mt{p1 ´ pβ1q
tq

7 v̂t “ vt{p1 ´ pβ2qtq

8 wt`1 “ wt ´ η m̂t
?
v̂t`ϵ

9 end

4.4.1 Improving Generalization Performance

One important advantage of GC is that it can improve the generalization performance

of DNNs. We explain this advantage from two aspects: weight space regularization

and output feature space regularization.

Weight Space Regularization: Let’s first explain the physical meaning of P in

Eq.(4.2). Actually, it is easy to prove that:

P2
“ P “ PT , eTP∇WL “ 0. (4.3)

The above equations show that P is the projection matrix for the hyperplane with

normal vector e in weight space, and P∇WL is the projected gradient.

The property of projected gradient has been investigated in some previous works [19,

42, 11, 90], which indicate that projecting the gradient of weight will constrict the

weight space in a hyperplane or a Riemannian manifold. Similarly, the role of GC

can also be viewed from the perspective of projected gradient descent.. We give a

geometric illustration of SGD with GC in Fig. 4.3. As shown in Fig. 4.3, in the t-th

step of SGD with GC, the gradient is first projected on the hyperplane determined

by eT pw ´ wtq “ 0, where wt is the weight vector in the t-th iteration, and then

69

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

Figure 4.3: The geometrical interpretation of GC. The gradient is projected on a
hyperplane eT pw ´ wtq “ 0, where the projected gradient is used to update the
weight.

the weight is updated along the direction of projected gradient ´P∇wtL. From

eT pw´wtq “ 0, we have eTwt`1 “ eTwt “ ... “ eTw0, i.e, eTw is a constant during

training. Mathematically, the latent objective function w.r.t. one weight vector w

can be written as follows:

min
w

Lpwq, s.t. eT pw ´ w0
q “ 0 (4.4)

Clearly, this is a constrained optimization problem on weight vector w. It regular-

izes the solution space of w, reducing the possibility of overfitting on training data.

As a result, GC can improve the generalization capability of trained DNN models,

especially when the number of training samples is limited.

It is noted that WS [69] uses a constraint eTw “ 0 for weight optimization. It repa-

rameterizes weights to meet this constraint. However, this constraint largely limits its

practical applications because the initialized weight may not satisfy this constraint.

For example, a pre-trained DNN on ImageNet usually cannot meet eTw0 “ 0 for its

initialized weight vectors. If we use WS to fine-tune this DNN, the advantages of

pre-trained models will disappear. Therefore, we have to retrain the DNN on Ima-

70

4.4. Properties of GC

geNet with WS before we fine-tune it. This is very cumbersome. Fortunately, the

weight constraint of GC in Eq. (4.4) fits any initialization of weight, e.g , ImageNet

pre-trained initialization, because it involves the initialized weight w0 into the con-

straint so that eT pw0 ´w0q “ 0 is always true. This greatly extends the applications

of GC.

Output Feature Space Regularization: For SGD based algorithms, we have

wt`1 “ wt ´αtP∇wtL. It can be derived that wt “ w0 ´P
řt´1

i“0 α
piq∇wpiqL. For any

input feature vector x, we have the following theorem:

Theorem 4.1: Suppose that SGD (or SGDM) with GC is used to update the weight

vector w, for any input feature vectors x and x ` γ1, we have

pwt
q
Tx ´ pwt

q
T

px ` γ1q “ γ1Tw0 (4.5)

where w0 is the initial weight vector and γ is a scalar.

Proof. First we show below a simple property of P:

1TP “ 1T
pI ´ eeT q “ 1T

´
1

M
1T11T

“ 0T ,

where M is the dimension of e.

For each SGD step with GC, we have:

wt`1
“ wt

´ αtP∇wtL.

It can be easily derived that:

wt
“ w0

´ P
t´1
ÿ

i“0

αpiq∇wpiqL,

where t is the number of iterations. Then for the output activations of x and x` γ1,

there is

71

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

pwt
q
Tx ´ pwt

q
T

px ` γ1q “ γ1Twt

“ γ1T
pw0

´ P
t´1
ÿ

i“0

αpiq∇wpiqLq

“ γ1Tw0
´ γ1TP

t´1
ÿ

i“0

αpiq∇wpiqL

“ γ1Tw0.

(4.6)

Therefore,

pwt
q
Tx ´ pwt

q
T

px ` γ1q “ γ1Tw0. (4.7)

For SGD with momentum, the conclusion is the same, because we can obtain a term

γ1TP
řt´1

i“0 α
piqmi in the third row of Eq.(4.6), where mi is the momentum in the ith

iteration, and this term is also equal to zero.

The proof is completed. ■

Theorem 4.4.1 indicates that a constant intensity change (i.e, γ1) of an input feature

causes a change of output activation; interestingly, this change is only related to γ

and 1Tw0 but not the current weight vector wt. 1Tw0 is the scaled mean of the initial

weight vector w0. In particular, if the mean of w0 is close to zero, then the output

activation is not sensitive to the intensity change of input features, and the output

feature space becomes more robust to the training sample variations.

Indeed, the mean of w0 is very close to zero by the commonly used weight initial-

ization strategies, such as Xavier initialization [17], Kaiming initialization [21] and

even ImageNet pre-trained weight initialization. Fig. 4.4 shows the absolute value

(log scale) of the mean of weight vectors for Conv layers in ResNet50 with Kaiming

normal initialization and ImageNet pre-trained weight initialization. We can see that

the mean values of most weight vectors are very small and close to zero (less than

e´7). This ensures that if we train the DNN model with GC, the output features

will not be sensitive to the variation of the intensity of input features. This property

regularizes the output feature space and boosts the generalization of DNN training.

72

4.4. Properties of GC

Figure 4.4: The absolute value (log scale) of the mean of weight vectors for convolution
layers in ResNet50. The x-axis is the weight vector index. We plot the mean value
of different convolution layers from left to right with the order from sallow to deep
layers. Kaiming normal initialization [21] (top) and ImageNet pre-trained weight
initialization (bottom) are employed here. We can see that the mean values are
usually very small (less than e´7) for most of the weight vectors.

4.4.2 Accelerating Training Process

Optimization Landscape Smoothing: It has been shown in [77, 69] that both

BN and WS smooth the optimization landscape. Although BN and WS operate on

activations and weights, they implicitly constrict the gradient of weights, making the

gradient of weight more predictive and stable for fast training. Specifically, BN and

WS use the gradient magnitude ||∇fpxq||2 to capture the Lipschitzness of function

fpxq. For the loss and its gradients, fpxq will be L and ∇wL, respectively, and x

will be w. The upper bounds of ||∇wL||2 and ||∇2
wL||2 (∇2

wL is the Hessian matrix

of w) have been given in [77, 69] to illustrate the optimization landscape smoothing

property of BN and WS. Similar conclusion can be made for our proposed GC by

comparing the Lipschitzness of original loss function Lpwq with the constrained loss

function in Eq. (4.4) and the Lipschitzness of their gradients. We have the following

theorem:

Theorem 4.2: Suppose ∇wL is the gradient of loss function L w.r.t. weight vector

73

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

w. With the ΦGCp∇wLq defined in Eq.(4.2), we have the following conclusion for the

loss function and its gradient, respectively:

$

&

%

||ΦGCp∇wLq||2 ď ||∇wL||2,

||∇wΦGCp∇wLq||2 ď ||∇2
wL||2.

(4.8)

Proof. Because e is a unit vector, there is eTe “ 1. We can easily prove that:

PTP “ P.

Then for ΦGCp∇wLq, we have:

||ΦGCp∇wLq||
2
2 “ ΦGCp∇wLq

TΦGCp∇wLq

“ pP∇wLq
T

pP∇wLq

“ ∇wLTPTP∇wL

“ ∇wLTP∇wL

“ ∇wLT
pI ´ eeT q∇wL

“ ∇wLT∇wL ´ ∇wLTeeT∇wL

“ ||∇wL||
2
2 ´ ||eT∇wL||

2
2

ď ||∇wL||
2
2.

(4.9)

For ∇wΦGCp∇wLq, we also have

||∇ΦGCp∇wLq||
2
2 “ ||P∇2

wL||
2
2

“ ∇2
wLTPTP∇2

wL

“ ∇2
wLTP∇2

wL

“ ||∇2
wL||

2
2 ´ ||eT∇2

wL||
2
2

ď ||∇2
wL||

2
2.

(4.10)

74

4.4. Properties of GC

Figure 4.5: The L2 norm (log scale) and max value (log scale) of gradient matrix or
tensor vs. iterations. ResNet50 trained on CIFAR100 is used as the DNN model here.
The left two sub-figures show the results on the first Conv layer and the right two
show the FC layer. The red points represent the results of training without GC and
the blue points represent the results with GC. We can see that GC largely reduces
the L2 norm and max value of gradient.

The proof is completed. ■

Theorem 4.4.2 shows that for the loss function L and its gradient ∇wL, the con-

strained loss function in Eq. (4.4) by GC leads to a better Lipschitzness than the

original loss function so that the optimization landscape becomes smoother. This

means that GC has similar advantages to BN and WS on accelerating training. A

good Lipschitzness on gradient implies that the gradients used in training are more

predictive and well-behaved so that the optimization landscape can be smoother for

faster and more effective training.

Gradient Explosion Suppression: Another benefit of GC for DNN training is

that GC can avoid gradient explosion and make training more stable. This property

is similar to gradient clipping [65, 66, 36, 1]. Too large gradients will make the

weights change abruptly during training so that the loss may severely oscillate and

be hard to converge. It has been shown that gradient clipping can suppress large

gradients so that the training can be more stable and faster [65, 66]. There are two

popular gradient clipping approaches: element-wise value clipping [65, 36] and norm

clipping [66, 1], which apply thresholding to element-wise value and gradient norm to

gradient matrix, respectively. In order to investigate the influence of GC on clipping

75

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

gradient, in Fig. 4.5 we plot the max value and L2 norm of gradient matrix of the first

convolutional layer and the fully-connected layer in ResNet50 (trained on CIFAR100)

with and without GC. It can be seen that both the max value and the L2 norm of the

gradient matrix become smaller by using GC in training. This is in accordance with

our conclusion in Theorem 4.4.2 that GC can make the training process smoother

and faster.

4.5 Experimental Results

4.5.1 Setup of Experiments

Extensive experiments are performed to validate the effectiveness of GC. To make the

results as comprehensive and clear as possible, we arrange the experiments as follows:

‚ We start from experiments on the Mini-ImageNet dataset [89] to demonstrate

that GC can accelerate the DNN training process and improve the model gener-

alization performance. We also evaluate the combinations of GC with BN and

WS to show that GC can improve them for DNN optimization.

‚ We then use the CIFAR100 dataset [39] to evaluate GC with various DNN opti-

mizers (e.g , SGDM, Adam, Adagrad), various DNN architectures (e.g , ResNet,

DenseNet, VGG), and and different hyper-parameters.

‚ We then perform experiments on ImageNet [75] to demonstrate that GC also

works well on large-scale image classification, and show that GC can also work

well with normalization methods other than BN, such as GN.

‚ We consequently perform experiments on four fine-grained image classification

datasets (FGVC Aircraft [60], Stanford Cars [38], Stanford Dogs [35] and CUB-

200-2011 [91]) to show that GC can be directly adopted to fine-tune the pre-

76

4.5. Experimental Results

Figure 4.6: Training loss (left) and testing accuracy (right) curves vs. training epoch
on the Mini-ImageNet. The ResNet50 is used as the DNN model. The compared
optimization techniques include BN, BN+GC, BN+WS and BN+WS+GC.

trained DNN models and improve them.

‚ At last, we perform experiments on the COCO dataset [48] to show that GC

also works well on other tasks such as object detection and segmentation.

GC can be applied to either Conv layer or FC layer, or both of them. In all of our

following experiments, if not specified, we always apply GC to both Conv and FC

layers. Except for Section 4.5.3 where we embed GC into different DNN optimizers

for the test, in all other sections, we embed GC into SGDM for experiments, and

the momentum is set to 0.9. All experiments are conducted under the Pytorch 1.3

framework and the GPUs are NVIDIA Tesla P100.

We would like to stress that no additional hyper-parameter is introduced in our GC

method. Only one line of code is needed to embed GC into the existing optimizers

while keeping all other settings remain unchanged. We compare the performances of

DNN models trained with and without GC to validate the effectiveness of GC.

4.5.2 Results on Mini-Imagenet

Mini-ImageNet [89] is a subset of the ImageNet dataset [75], which was originally

proposed for few-shot learning. We use the train/test splits provided by [71, 33]. It

77

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

Table 4.1: Testing accuracies of different DNN models on CIFAR100

Model R18 R101 X29 V11 D121

w/o GC 76.87˘0.26 78.82˘ 0.42 79.70˘0.30 70.94˘ 0.34 79.31˘0.33

w/ GC 78.82˘0.31 80.21˘0.31 80.53˘0.33 71.69˘0.37 79.68˘0.40

∆ Ò1.95 Ò1.39 Ò0.83 Ò0.75 Ò0.37

Table 4.2: Testing accuracies of different optimizers on CIFAR100

Algorithm SGDM Adam Adagrad SGDW AdamW

w/o GC 78.23˘0.42 71.64˘0.56 70.34 ˘0.31 74.02˘0.27 74.12˘0.42

w/ GC 79.14˘0.33 72.80˘0.62 71.58˘0.37 76.82˘0.29 75.07˘0.37

∆ Ò0.91 Ò1.16 Ò1.24 Ò2.80 Ò0.95

consists of 100 classes and each class has 500 images for training and 100 images for

testing. The image resolution is 84ˆ84. We resize the images into 224ˆ224, which is

the standard ImageNet training input size. The DNN we used here is ResNet50, which

is trained on 4 GPUs with batch size 128. Other settings are the same as training

ImageNet. We repeat the experiments 10 times and report the average results over

the 10 runs.

BN, WS and GC operate on activations, weights and gradients, respectively, and

they can be used together to train DNNs. Actually, it is necessary to normalize

the feature space by methods such as BN; otherwise, the model is hard to be well

trained. Therefore, we evaluate four combinations here: BN, BN+GC, BN+WS and

BN+WS+GC. The optimizer is SGDM with a momentum 0.9. Fig. 4.6 presents

the training loss and testing accuracy curves of these four combinations. Compared

with BN, the training loss of BN+GC decreases much faster and the testing accuracy

increases more rapidly. For both BN and BN+WS, GC can further speed up their

training speed. Moreover, we can see that BN+GC achieves the highest testing

accuracy, validating that GC can accelerate training and enhance the generalization

performance simultaneously.

78

4.5. Experimental Results

4.5.3 Experiments on CIFAR100

CIFAR100 [39] consists of 50K training images and 10K testing images from 100

classes. The size of the input image is 32 ˆ 32. Since the image resolution is small,

we found that applying GC to the Conv layer is good enough on this dataset. All

DNN models are trained for 200 epochs using one GPU with batch size 128. The

experiments are repeated 10 times and the results are reported in mean ˘ std format.

Different Networks: We testify GC on different DNN architectures, including

ResNet18 (R18), ResNet101 (R101) [22], ResNeXt29 4x64d (X29) [95], VGG11 (V11) [82]

and DenseNet121 (D121) [25]. SGDM is used as the network optimizer. The weight

decay is set to 0.0005. The initial learning rate is 0.1 and it is multiplied by 0.1 for

every 60 epochs. Table 4.1 shows the testing accuracies of these DNNs. It can be

seen that the performance of all DNNs is improved by GC, which verifies that GC is

a general optimization technique for different DNN architectures.

Different Optimizers: We embed GC into different DNN optimizers, including

SGDM [68], Adagrad [16], Adam [37], SGDW and AdamW [51], to test their per-

formance. SGDW and AdamW optimizers directly apply weight decay on weight,

instead of using L2 weight decay regularization. Weight decay is set to 0.001 for

SGDW and AdamW, and 0.0005 for other optimizers. The initial learning rate is set

to 0.1, 0.01, and 0.001 for SGDM/SGDW, Adagrad, Adam/AdamW, respectively,

and the learning rate is multiplied by 0.1 for every 60 epochs. The other hyper-

parameters are set by their default settings on Pytorch. The DNN model used here is

ResNet50. Table 4.2 shows the testing accuracies. It can be seen that GC boosts the

generalization performance of all five optimizers. It is also found that adaptive learn-

ing rate based algorithms Adagrad and Adam have poor generalization performance

on CIFAR100, while GC can improve their performance by ą 0.9%.

Different Hyper-parameter Settings: In order to illustrate that GC can achieve

consistent improvement with different hyper-parameters, we present the results of GC

79

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

Table 4.3: Testing accuracies of different weight decay on CIFAR100 with ResNet50.

Weight decay 0 1e´4 2e´4 5e´4 1e´3

w/o GC 71.62˘0.31 73.91˘0.35 75.57˘0.33 78.23˘0.42 77.43˘0.30

w/ GC 72.83˘0.29 76.56˘0.31 77.62˘0.37 79.14˘0.33 78.10˘0.36

Table 4.4: Testing accuracies of different learning rates on CIFAR100 with ResNet50
for SGDM and Adam.

Algorithm SGDM SGDM SGDM Adam Adam Adam
Learning rate 0.05 0.1 0.2 0.0005 0.001 0.0015

w/o GC 76.81˘0.27 78.23˘0.42 76.53˘0.32 73.88˘0.46 71.64˘0.56 70.63˘0.44
w/ GC 78.12˘0.33 79.14˘0.33 77.71˘0.35 74.32˘0.55 72.80˘0.62 71.22˘0.49

with different settings of weight decay and learning rates on the CIFAR100 dataset.

ResNet50 is used as the backbone. Table 4.3 shows the testing accuracies with differ-

ent settings of weight decay, including 0, 1e´4, 2e´4, 5e´4 and 1e´3. The optimizer is

SGDM with learning rate 0.1. It can be seen that the performance of weight decay

is consistently improved by GC. Table 4.4 shows the testing accuracies with different

learning rates for SGDM and Adam. For SGDM, the learning rates are 0.05, 0.1 and

0.2, and for Adam, the learning rates are 0.0005, 0.001 and 0.0015. The weight decay

is set to 5e´4. Other settings are the same as those in the manuscript. We can see

that GC consistently improves performance.

4.5.4 Results on ImageNet

We then evaluate GC on the large-scale ImageNet dataset [75] which consists of 1.28

million images for training and 50K images for validation from 1000 categories. We

use the common training settings and embed GC to SGDM on the Conv layer. The

ResNet50 and ResNet101 are used as the backbone networks. For the former, we use

4 GPUs with batch size 64 per GPU, and for the latter, we use 8 GPUs with batch

size 32 per GPU.

We evaluate four models here: ResNet50 with BN (R50BN), ResNet50 with GN

(R50GN), ResNet101 with BN (R101BN) and ResNet101 with GN (R101GN). Table

80

4.5. Experimental Results

Table 4.5: Top-1 error rates on ImageNet w/o GC and w/ GC.

Datesets R50BN R50GN R101BN R101GN

w/o GC 23.71 24.50 22.37 23.34

w/ GC 23.21 23.53 21.82 22.14

∆ Ò0.50 Ò0.97 Ò0.55 Ò1.20

Figure 4.7: Training error (left) and validation error (right) curves vs. training epoch
on ImageNet. The DNN model is ResNet50 with GN.

4.5 shows the final Top-1 errors of these four DNN models trained with and without

GC. We can see that GC can improve the performance by 0.5% „ 1.2% on ImageNet.

Fig. 4.7 plots the training and validation error curves of ResNet50 (GN is used for

feature normalization). We can see that GC can largely speed up the training with

GN.

4.5.5 Results on Fine-grained Image Classification

In order to show that GC can also work with the pre-trained models, we conduct

experiments on four challenging fine-grained image classification datasets, including

FGVC Aircraft [60], Stanford Cars [38], Stanford Dogs [35] and CUB-200-2011 [91].

The detailed statistics of these four datasets are summarized in Table 4.6. We use

the official pre-trained ResNet50 provided by Pytorch as the baseline DNN for all

these four datasets. The original images are resized into 512 ˆ 512 and we crop the

81

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

Table 4.6: The statistics of fine-grained datasets used in this chapter.

Datasets #Category #Training #Testing

FGVC Aircraft 100 6,667 3,333
Stanford Cars 196 8,144 8,041
Stanford Dogs 120 12,000 8,580
CUB-200-2011 200 5,994 5,794

Table 4.7: Testing accuracies on the four fine-grained image classification datasets.

Datesets FGVC Aircraft Stanford Cars Stanford Dogs CUB-200-2011

w/o GC 86.62˘0.31 88.66˘0.22 76.16˘0.25 82.07˘0.26
w/ GC 87.77˘0.27 90.03˘0.26 78.23˘0.24 83.40˘0.30

∆ Ò1.15 Ò1.37 Ò2.07 Ò1.33

center region with 448 ˆ 448 as input for both training and testing. The models

are pre-trained on ImageNet. We use SGDM with a momentum of 0.9 to fine-tune

ResNet50 for 100 epochs on 4 GPUs with batch size 256. The initial learning rate is

0.1 for the last FC layer and 0.01 for all pre-trained Conv layers. The learning rate is

multiplied by 0.1 at the 50th and 80th epochs. Please note that our goal is to validate

the effectiveness of GC but not to push state-of-the-art results, so we only use simple

training tricks. We repeat the experiments 10 times and report the result in mean ˘

std format.

Fig. 4.8 shows the training and testing accuracies of SGDM and SGDM+GC for the

first 40 epochs on the four fine-grained image classification datasets. Table 4.7 shows

the final testing accuracies. We can see that both the training and testing accuracies

of SGDM are improved by GC. For the final classification accuracy, GC improves

SGDM by 1.1% „ 2.1% on these four datasets. This sufficiently demonstrates the

effectiveness of GC on fine-tuning pre-trained models.

4.5.6 Object Detection and Segmentation

Finally, we evaluate GC on object detection and segmentation tasks to show that GC

can also be applied to more tasks beyond image classification. The models are pre-

82

4.5. Experimental Results

Figure 4.8: Training accuracy (solid line) and testing accuracy (dotted line) curves
vs. training epoch on four fine-grained image classification datasets.

Table 4.8: Detection results on COCO by using Faster-RCNN and FPN with various
backbone models.

Backbone Method AP AP.5 AP.75 Backbone AP AP.5 AP.75

w/o GC 36.4 58.4 39.1 40.1 62.0 43.8
R50 w/ GC 37.0 59.0 40.2 X101-32x4d 40.7 62.7 43.9

∆ Ò0.6 Ò0.6 Ò 1.1 Ò0.6 Ò0.7 Ò0.1

w/o GC 38.5 60.3 41.6 41.3 63.3 45.2
R101 w/ GC 38.9 60.8 42.2 X101-64x4d 41.6 63.8 45.4

∆ Ò0.4 Ò0.5 Ò 0.6 Ò0.3 Ò0.5 Ò0.2

trained on ImageNet. The training batch size for object detection and segmentation

is usually very small (e.g , 1 or 2) because of the high resolution of the input image.

Therefore, the BN layer is usually frozen [22] and the benefits from BN cannot be

enjoyed during training. One alternative is to use GN instead. The models are trained

on COCO train2017 dataset (118K images) and evaluated on COCO val2017 dataset

(40K images) [48]. COCO dataset can be used for multiple tasks, including image

classification, object detection, semantic segmentation, and instance segmentation.

We use the MMDetection [10] toolbox, which contains comprehensive models on ob-

ject detection and segmentation tasks, as the detection framework. The official imple-

mentations and settings are used for all experiments. All the pre-trained models are

provided from their official websites, and we fine-tune them on COCO train2017 set

with 8 GPUs and 2 images per GPU. The optimizers are SGDM and SGDM+GC.

The backbone networks include ResNet50 (R50), ResNet101 (R101), ResNeXt101-

32x4d (X101-32x4d), ResNeXt101-64x4d (X101-32x4d). The Feature Pyramid Net-

83

Chapter 4. Gradient Centralization: A Simple and Effective Optimization
Technique for Deep Learning

Table 4.9: Detection and segmentation results on COCO by using Mask-RCNN and
FPN with various backbone models.

Backbone Method APb APb
.5 APb

.75 APm APm
.5 APm

.75
w/o GC 37.4 59.0 40.6 34.1 55.5 36.1

R50 w/ GC 37.9 59.6 41.2 34.7 56.1 37.0
∆ Ò0.5 Ò0.6 Ò 0.6 Ò0.6 Ò0.6 Ò0.9

w/o GC 39.4 60.9 43.3 35.9 57.7 38.4
R101 w/ GC 40.0 61.5 43.7 36.2 58.1 38.7

∆ Ò0.6 Ò0.6 Ò 0.4 Ò0.3 Ò0.4 Ò0.3
w/o GC 41.1 62.8 45.0 37.1 59.4 39.8

X101-32x4d w/ GC 41.6 63.1 45.5 37.4 59.8 39.9
∆ Ò0.5 Ò0.3 Ò 0.5 Ò 0.3 Ò0.4 Ò0.1

w/o GC 42.1 63.8 46.3 38.0 60.6 40.9
X101-64x4d w/ GC 42.8 64.5 46.8 38.4 61.0 41.1

∆ Ò0.7 Ò0.7 Ò 0.5 Ò0.4 Ò0.4 Ò0.2
w/o GC 37.5 58.2 41.0 33.9 55.0 36.1

R50 (4c1f) w/ GC 38.4 59.5 41.8 34.6 55.9 36.7
∆ Ò0.9 Ò1.3 Ò 0.8 Ò0.7 Ò0.9 Ò0.6

w/o GC 41.1 61.7 44.9 36.9 58.7 39.3
R101GN w/ GC 41.7 62.3 45.3 37.4 59.3 40.3

∆ Ò0.6 Ò0.6 Ò 0.4 Ò0.5 Ò0.6 Ò1.0
w/o GC 40.0 60.7 43.6 36.1 57.8 38.6

R50GN+WS w/ GC 40.6 61.3 43.9 36.6 58.2 39.1
∆ Ò0.6 Ò0.6 Ò 0.3 Ò0.5 Ò0.4 Ò0.5

work (FPN) [47] is also used. The learning rate schedule is 1X for both Faster

R-CNN [72] and Mask R-CNN [20], except R50 with GN and R101 with GN, which

use 2X learning rate schedule.

Tabel 4.8 shows the Average Precision (AP) results of Faster R-CNN. We can see

that all the backbone networks trained with GC can achieve a performance gain

about 0.3% „ 0.6% on object detection. Tabel 4.9 presents the Average Precision

for bounding box (APb) and instance segmentation (APm). It can be seen that the

APb increases by 0.5% „ 0.9% for object detection task and the APm increases by

0.3% „ 0.7% for instance segmentation task. Moreover, we find that if a 4conv1fc

bounding box head, like R50 (4c1f), is used, the performance can increase more by

GC. And GC can also boost the performance of GN (see R101GN) and improve

the performance of WS (see R50GN+WS). Overall, we can see that GC boosts the

generalization performance of all evaluated models. This demonstrates that it is a

simple yet effective optimization technique, which is general to many tasks beyond

84

4.6. Conclusions

image classification.

4.6 Conclusions

How to efficiently and effectively optimize a DNN is one of the key issues in deep

learning research. Previous methods such as batch normalization (BN) and weight

standardization (WS) mostly operate on network activations or weights to improve

DNN training. We proposed a different approach which operates directly on gradients.

Specifically, we removed the mean from the gradient vectors and centralized them to

have zero mean. The so-called Gradient Centralization (GC) method demonstrated

several desired properties of deep network optimization. We showed that GC actu-

ally improves the loss function with a constraint on weight vectors, which regularizes

both weight space and output feature space. We also showed that this constrained

loss function has better Lipschitzness than the original one so that it has a smoother

optimization landscape. Comprehensive experiments were performed and the results

demonstrated that GC can be well applied to different tasks with different optimiz-

ers and network architectures, improving their training efficiency and generalization

performance.

85

Chapter 5

Training Deep Neural Networks

with Feature-based Gradient

Descent

Most existing deep neural network (DNN) optimizers perform gradient descent on

weight to minimize the loss. However, we find that performing weight gradient descent

tends to update the features into a low dimensional space, which reduces the feature

learning efficacy. To address this problem, in this chapter, we propose a new DNN

optimizer, named Feature Stochastic Gradient Descent (FSGD), to approximate the

desired feature outputs with one-step gradient descent for linear layers. FSGD only

needs to store an additional second-order statistic matrix of the input features and use

its inverse to adjust the gradient descent of weight. FSGD improves the singularity

of feature space and enhances feature learning efficacy. We also show that FSGD

has a close link to back-matching and feature whitening. Experimental results on

CIFAR100/10, ImageNet and COCO demonstrate the superior performance of FSGD

to state-of-the-art DNN optimizers.

86

5.1. Introduction

5.1 Introduction

Deep neural networks (DNNs) have recently achieved a great success in many com-

puter vision applications, including image classification [22], object detection [72, 20],

image and video segmentation [72, 20] and image restoration [109], etc. The optimiza-

tion of DNNs, however, is highly non-convex, making it difficult to find a favorable

local minimum. The development of optimization techniques is thus crucial to train

a good DNN model from a large amount of data. One class of commonly used DNN

optimizers are the stochastic gradient descent (SGD) method [6, 7] and its vari-

ants [68, 37], which iteratively update the parameters along the opposite direction of

their gradients obtained by the back-propagation (BP) algorithm [74].

Most existing DNN optimizers are designed and investigated in the weight space,

including SGD with momentum (SGDM) [68], Adam [37], Radam [49] and Ad-

abelief [115]. However, such weight gradient descent methods cannot directly ensure

that the final image features will lie in the desired space. Actually, we find that when

the input features of a linear layer are correlated, the weight gradient descent tends to

update the features in a low dimensional space, which reduces the efficacy of informa-

tion prorogation and feature update, especially in the early stages of DNN training.

Denote by A the output feature of a linear layer, in Figure 5.1 we plot the eigenvalue

distribution of feature covariance AAT in the first Conv layer and the FC layer of

ResNet18 trained by SGDM on CIFAR100 after one epoch. We can see that the

eigenvalues of covariance AAT decay rapidly, which means that most of the energy

of features trained by SGDM concentrates in a low-dimensional subspace spanned

by the principal eigenvectors of AAT . This is however not favorable to effectively

update the features and improve their data representation power.

Some feature normalization and whitening methods have been proposed to make

feature propagation more stable and effective in DNN optimization. Among them,

Batch Normalization (BN) [32] is the most widely used one, which uses the mean

87

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

0 20 40 60

Index (i) of eigenvalue

0

1

2

3

4

5

6

lo
g

(
1
/

i
)

First Conv Layer

SGDM

FSGD

0 20 40 60 80 100

Index (i) of eigenvalue

0

1

2

3

4

5

FC Layer

SGDM

FSGD

Figure 5.1: Illustration of the eigenvalue distribution of AAT in the first Conv layer
and the FC layer of ResNet18 trained by SGDM and FSGD on CIFAR100 after one
epoch, where A is the output feature. The Y-axis is logpλ1{λiq, where λi is the ith

eigenvalue of AAT in a descending order. The condition number of AAT is 1.7e6

and 6.1e4 for SGDM and FSGD, respectively, on the first Conv layer, and 1.7e4 and
9.7e3 on the FC layer. One can see that the AAT obtained by SGDM is much more
singular than FSGD.

and variance of the intermediate features within a mini-batch to perform Z-score

standardization. Though BN can speed up the training process and improve the

model generalization performance, it ignores the feature correlation among different

dimensions. Therefore, Decorrelated Batch Normalization (DBN) [28] and Iterative

Normalization (IterNorm) [29] have been proposed to perform whitening on interme-

diate features, which validates that making proper use of statistics (e.g , covariance

matrix) of intermediate features to find a more isotropic feature space can improve

the learning of DNNs models. However, the feature whitening methods will cost sig-

nificant computation and memory resources, and they need to redefine the forward

and backward propagations by introducing the whitening module. Such limitations

hinder the use of whitening methods in practice.

In this chapter, we put forward a new optimizer for DNNs, namely Feature SGD

(FSGD), which takes the gradient descent on intermediate features into consideration.

However, directly performing gradient descent on features is difficult to implement

because it requires huge memory to store the intermediate features in training, and

88

5.1. Introduction

the feature gradients of query samples are not available in inference either. Fortu-

nately, we find that feature gradient descent can be achieved by updating weights.

Specifically, we use the second-order statistic matrix of intermediate features to ad-

just the gradient of weight. An objective function is defined to relate the gradient

descent on weight to the gradient descent on feature so that FSGD can be imple-

mented by minimizing it. FSGD can be easily adopted into different linear layers in a

DNN, including a fully-connected layer, convolutional layer and BN layer. As shown

in Figure 5.1, the eigenvalues of feature covariance matrix AAT obtained by FSGD

decay much more slowly than SGDM. The condition number of AAT is 1.7e6 and

6.1e4 for SGDM and FSGD, respectively, on the first Conv layer, and 1.7e4 and 9.7e3

on the FC layer. Clearly, FSGD improves much the singularity of matrix AAT over

SGDM, which generally implies a better feature space for data representation. Our

experimental results also show that FSGD performs significantly better than SGDM

in terms of accuracy and generalization capability while costing only 20% „ 30%

additional training time. The main contributions of this chapter are highlighted as

follows:

‚ We propose a practical feature gradient descent method (FSGD) to boost the

feature space for the optimization of DNN, which only modifies the gradient

of weight with the second-order statistics of the feature. The formulations of

FSGD on various linear layers, such as FC layer, Conv layer, and Norm layer,

are derived.

‚ A series of tricks of techniques and tricks, including the associated momentum

and weight decay, statistics matrix computation, damping and gradient norm

recovery, are proposed to improve the effectiveness and efficiency of FSGD.

‚ We investigate the relationship of FSGD between the existing optimization

method for deep learning, e.g , the back-matching propagation and feature

whitening to explain it from multiple views.

89

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

‚ We extend FSGD algorithm to other advanced optimizers, i.e, Adam to show

that FSGD has favorable compatibility with existing deep learning optimizers.

‚ We have conducted extensive benchmark experiments to show the superiority of

FSGD, including CIFAR100/CIFAR10, ImageNet, COCO and so on to testify

the performance of FSGD.

This chapter is organized as follows: Section 5.2 reviews some related works, includ-

ing optimization algorithm for deep learning and the normalization and whitening

method. Section ?? gives the formulation and algorithm of our proposed method

FSGD. Section 5.3 shows the relationship between FSGD and some existing optimiza-

tion techniques. Section 5.4 reports the experimental results on a variety of tasks and

benchmarks to substantiate the superiority of the proposed method. Discussions and

concluding remarks are finally given.

5.2 Related Work

5.2.1 First-order Optimizers

Popular DNN optimizers include SGDM [68], Adagrad [16], Adam [37], RAdam [49],

etc. SGDM [68] uses the momentum of gradient to accelerate gradient descent along

relevant directions and dampens oscillations. It has been widely used in the high-

level vision tasks of computer vision, e.g , image classification, object detection and so

on. However, SGDM applies the same learning rate to all weights, which slows down

its convergence speed. The adaptive learning rate methods are developed to allow

each weight to have its own learning rate. For instance, Adagrad [16] adopts a larger

gradient step for infrequent parameters and a smaller step for frequent ones. Similar

works include RMSprop and Adadelta [104]. Adam [37] combines the adaptive learn-

ing rate technique with gradient momentum, largely stabilizing the training process.

90

5.2. Related Work

Following Adam, RAdam [49] controls the variance of the adaptive learning rate in

the early stage of training, and Adabelief [115] adjusts the step size by the belief

in observed gradients, which achieves favorable performance. The adaptive learning

rate methods can perform better than SGDM in some specific areas, such as natural

language processing, image low-level vision and so on.

5.2.2 Second-order Optimizers

Besides first-order DNN optimizers, the second-order information has also been inves-

tigated to help the optimization of DNN recently. Computing with the full second-

order information will need extensive memory and computation cost because the

dimension of the parameter space in DNNs is usually very high (e.g , 107). There-

fore, how to approach the second-order information practically is the key problem

in deep learning. For instance, Adahessian [97] and Apollo [59] were proposed by

updating only the diagonal elements of the Hessian matrix. Particularly, Adahes-

sian considers only the diagonal elements of the Hessian matrix by using Hessian-free

techniques, while Apollo simplifies the BFGS algorithm with only diagonal elements.

Instead of the diagonal approach, the Kronecker Factored Approximation Curvature

(KFAC) [61] approximates the natural gradient layer-wisely by using a block-diagonal

version of the Fisher matrix, which adopts the statistics of intermediate features and

their gradients to adjust the original gradient of weights. Nonetheless, in many com-

puter vision tasks the first-order optimizers, such as SGDM and Adam, are more

popularly used than second-order optimizers because of their simplicity and effective-

ness.

5.2.3 Normalization and Whitening

Batch normalization (BN) [32] was originally introduced to address the internal co-

variate shift of DNNs by normalizing the activations along the sample dimension. It

91

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

has become a common layer in many DNNs, which allows higher learning rates [5], ac-

celerates the training speed, and improves the generalization accuracy [56, 77]. Later

on, layer normalization (LN) [44], instance normalization (IN) [88, 30] and group nor-

malization (GN) [93] were proposed to perform normalization along other dimensions.

Beyond standardization, the feature whitening methods take the feature correlation

among different dimensions of features into consideration. For example, DBN [28]

was proposed to conduct ZCA-whitening on feature across the channel dimension by

eigen-decomposition and backpropagating the transformation. IterNorm [29] adopts

Newton’s iteration on DBN to approach the ZCA-whitening matrix more efficiently.

Meanwhile, Network deconvolution (ND) [99] uses deconvolution filters to eliminate

both pixel-wise and channel-wise correlations before the convolution layer. Generally

speaking, the feature whitening methods can not only speed up training processing

but also boost the generalization performance of DNNs [29, 99]. However, their draw-

backs, including heavy extra computation and memory, inapplicable to pre-trained

DNN models, additional parameter introduction, etc, make them can not be widely

employed in real-world applications.

5.2.4 Motivation

Almost all existing DNN optimization methods focus on how to effectively perform

weight gradient descent, i.e,

Wt`1
“ Wt

´ η
BL

BWt
, (5.1)

where η is the learning rate and t denotes the iteration. Though many works [68, 16,

37] on weight gradient descent have been reported, few of them have discussed how

the update on weights affects the changing direction of intermediate features. Here

we attempt to make some analysis on this problem to better understand the update

of DNN features.

92

5.2. Related Work

In order to simplify the problem, we only take one layer into consideration and fix

the parameters of the other layers in a DNN. Considering one FC layer with input X

and output A, when we fix the parameters of the previous layers we have Xt`1 “ Xt,

and with the fact that A “ WX, by right multiplying Xt on both sides of Eq. (5.1)

and BL
BWt “ BL

BAtX
tT , we can easily derive that

At`1
“ At

´ η
BL
BAt

XtTXt. (5.2)

It can be clearly seen that the update of intermediate feature A is not exactly along

its gradient BL
BA

but along the direction determined by BL
BAtX

tTXt, which is related to

XtTXt. One problem of this feature updating strategy is that when the input features

Xt are highly correlated among different dimensions, the feature updating directions

will be dominated by the principal eigenvectors of XtTXt. As a result, the output

features in At`1 tend to fall into a lower dimensional subspace, reducing the efficacy

of information propagation and feature learning. More discussions on the statistics

of ATA have been made in Figure 5.1 and Section 5.1.

In order to obtain a more favorable feature space, a natural idea is that we can

perform gradient descent directly on the intermediate features, i.e,

At`1
“ At

´ η
BL
BAt

. (5.3)

However, there are some difficulties in directly implementing Eq. (5.3). First, it

requires large memory to store the intermediate features of all samples in the training

dataset at the same time for the next gradient descent iteration during training,

which is usually impractical for large-scale datasets. Second, in the inference step,

we cannot get the intermediate features of the query sample without the label and

its gradients. Fortunately, in the following sections, we present a novel solution to

address these difficulties and make the gradient descent on intermediate features in

Eq. (5.3) practical.

93

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

Table 5.1: The updating formulas of FC, Conv and Norm layers in FSGD.

Layer type Actual feature AtpWq Target feature At`1 Updating formula

FC layer WXt WtXt ´ η BL
BAt Wt`1 “ Wt ´ η BL

BWt

´

XtXtT
¯´1

Conv layer W ˚ Xt Wt ˚ Xt ´ η BL
BAt vecpWt`1q “ vecpWtq ´ ηU1p

BL
BWt q

`

XXT
˘´1

Norm layer γXt ` β γtXt ` βt ´ η BL
BAt

„

γt`1

βt`1

ȷ

“

„

γt

βt

ȷ

´ η

ˆ„

vecpXtqT

1T

ȷ

rvecpXtq,1s

˙´1 „

BL
Bγt

BL
Bβt

ȷ

5.2.5 Feature Gradient Descent

To achieve the feature gradient descent, we still update the weights of DNNs with

the stochastic gradient descent. However, the difference with SGD is that we need

to find a specific updating direction of the weight that can make the output features

change along their gradient direction. To be specific, supposing At`1 is the desired

output feature of a linear layer after one-step gradient descent (see Eq. (5.3)), and

AtpWq is the actual output feature obtained by using weight W, we hope AtpWq is

close to At`1 under some measurement after updating the weight. If using L2 Norm

as the measurement, we can have the following objective function w.r.tW in the t-th

step:

Wt`1
“ argmin

W
||At`1

´ At
pWq||

2
2. (5.4)

By solving Eq. (5.4), we can find an optimal weight Wt`1 to approximate the desired

feature in iteration t after one-step gradient descent. Eq. (5.4) can be viewed as

the local objective function, which only works on one linear layer of a DNNs. For

different layers, AtpWq and At`1 usually have different forms. As long as the layer

has a linear operation w.r.tthe parameters, we can construct such a local objective

function to update its parameters. The conventional linear layers in DNNs include the

FC layer and Conv layer. Meanwhile, since the affine transformation in the Norm layer

is also a linear operation w.r.tthe parameters, it can also adopt such a local objective

function. We present the solutions of Wt`1 for FC, Conv and Normalization layers

as follows.

94

5.2. Related Work

Fully-connected Layer

We first give the derivation of FSGD on the Fully-connected layer (FC layer). First,

we need to define the actual output activation AtpWq and At`1 the target output

activation. For the FC layer, they are obtained by AtpWq “ WXt and At`1 “

WtXt´η BL
BAt . We expect them to be as similar as possible. Therefore, by introducing

them into Eq. (5.4), we have the following objective function:

Wt`1
“ argmin

W
||WtXt

´ η
BL
BAt

´ WXt
||
2
2. (5.5)

We can see that it is a simple linear least square problem. Taking the derivative of

Eq. (5.5) w.r.t. W and letting it be zero, we have

WtXtXtT
´ η

BL
BAt

XtT
´ WXtXtT

“ 0. (5.6)

Note that BL
BWt “ BL

BAtX
tT . Then by solving Eq. (5.6), we can get a closed-form

solution for the weight updating rule of FC layer, which is

Wt`1
“ Wt

´ η
BL

BWt
pXtXtT

q
´1. (5.7)

Compared with the updating formula of W in SGD (i.e, Eq. (5.1)), the updating

formula in Eq. (5.7) needs to calculate the second-order statistic of input activation,

i.e, XtXtT , and its inverse. The second-order statistic matrix can be viewed as a local

Hessian [107] of the local objective function. According to Eq. (5.7), instead of storing

all the intermediate features during training, what we need to store additionally is

only the second-order statistic matrix of input activation. Therefore, in this case, It

can be shown that we can update the weight along a modified gradient direction to

achieve the feature gradient descent step. Although the actual output features do

not go along the exact feature gradient direction, because its information has been

embedded into the modified gradient direction of weight, its actual changing direction

95

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

after updating weight will be very close to the feature gradient direction.

Conv Layer

For the Conv layer, the actual output feature AtpWq and the target output feature

At`1 are obtained by AtpWq “ W ˚ Xt and At`1 “ Wt ˚ Xt ´ η BL
BAt . The derivation

process is similar to the FC layer. The difference is that we need to unfold the

convolution operation to matrix multiplication first. The convolution operation can

be formulated as matrix multiplication with the im2col operation [99, 108], and then

the Conv layer can be viewed as a FC layer with A “ U1pW qX, where A and X

are the output and input features after im2col operation and U1p¨q is the the mode

1 unfold operation of a tensor. The objective function Eq. (5.4) to be minimized

becomes:

min
W

||U1pW
t
qXt

´ η ¨ p
BL
BAt q ´ U1pWqXt

||
2
2, (5.8)

Taking the derivative of Eq. (5.8) w.r.t. U1pWq and letting it be zero, we have

U1pW
t
qXtTXt

´ η
BL
BAtX

tT
´ U1pWqXtTXt

“ 0. (5.9)

Note that U1p
BL

BWt q “ BL
BAtX

tT , and then we have the following weight updating for-

mula:

U1pWt`1
q “ U1pW

t
q ´ ηU1

ˆ

BL
BWt

˙

´

XtTXt
¯´1

. (5.10)

Therefore, similar to the FC layer, the updating formula of the Conv layer still needs

to compute an additional second-order statistic of input feature, i.e, XtTXt, and its

inverse. The original weight gradient is also modified with this second-order statistic.

Instead of im2col operation [99, 108], this statistic can also be obtained efficiently

from a convolution operation according to work in [113], which is a memory-saving

method for the large kernel size.

96

5.2. Related Work

Normalization Layer

The normalization layers usually have a channel-wise affine transformation, which is

also a linear function. Suppose that the normalized feature is Xt and the parameters

of affine transformation for one channel are γ and β. The actual output feature

Atpγ, βq and the target feature At`1 are obtained by Atpγ, βq “ γXt `β and At`1 “

γtXt `βt ´η BL
BAt . By introducing them into Eq. (5.4), we have the following objective

function to be solved:

min
γ,β

||rvecpXt
q,1s

»

–

γt

βt

fi

fl ´ η ¨ vecp
BL
BAt

q ´ rvecpXt
q,1s

»

–

γ

β

fi

fl ||
2
2. (5.11)

where vecp¨q is the Taking the derivative of Eq. (5.11) w.r.t.

»

–

γ

β

fi

fl letting it be zero,

we have

»

–

vecpXtqT

1T

fi

fl

¨

˝rvecpXt
q,1s

»

–

γt

βt

fi

fl ´ η ¨ vecp
BL
BAt

q ´ rvecpXt
q,1s

»

–

γ

β

fi

fl

˛

‚“ 0. (5.12)

Note that

»

–

BL
Bγt

BL
Bβt

fi

fl “

»

–

vecpXtqT

1T

fi

fl vecp BL
BAt q, and we can obtain the the updating rules

for γ, β as follows:

»

–

γt`1

βt`1

fi

fl “

»

–

γt

βt

fi

fl ´ η

¨

˝

»

–

vecpXtqT

1T

fi

fl rvecpXt
q,1s

˛

‚

´1 »

–

BL
Bγt

BL
Bβt

fi

fl . (5.13)

If the mean and the variance of Xt are zero and one,

»

–

vecpXtqT

1T

fi

fl rvecpXtq,1s will be

an isotropic diagonal 2 ˆ 2 matrix. If the mean and variance of Xt are zero and one,

the second-order statistics will be an isotropic diagonal 2 ˆ 2 matrix. For example,

when BN and IN are used, the update rules in Eq. (5.13) for pγ, βq will degrade to

97

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

Table 5.2: The three ways to add momentum.

Momentum Final updates

I
Mt

xx “ αMt´1
xx ` p1 ´ αqXtXtT

Mt
GpMt

xx ` ϵIq
´1

Mt
G “ βMt´1

G ` p1 ´ βqGt

II
Ĝt “ GtpMt

xx ` ϵIq
´1

Mt
GMt

G “ βMt´1
G ` p1 ´ βqĜt

III
Mt

xx “ αMt´1
xx ` p1 ´ αqXtXtT

Mt
GĜt “ GtpMt

xx ` ϵIq
´1

Mt
G “ βMt´1

G ` p1 ´ βqĜt

the case of SGD. However, for other normalization methods such as GN and LN, the

mean and variance of each channel may not be zero and one, and Eq. (5.13) should

be used to update pγ, βq.

In Table 5.1, we conclude the solutions of Wt`1 for the FC layer, Conv layer and

Normalization layer.

5.2.6 Detailed Implementation

Damping

In practice, when the dimension of XtXtT is high or the training batch size is small,

it tends to be a singular matrix. In such a case, its condition number is too large,

it would be unstable to calculate its inverse. To avoid this case, we should add an

extra term ϵI to the statistic matrix, where ϵ is the damping parameter and I is an

identity matrix. ϵ parameter is very essential to the final performance, and we find

that a proper ϵ can significantly boost the training. Too large damping may lose

the information of the statistics, while too small damping would not help improve its

condition number which leads to unstable training. We will tune it in the experiment

part.

98

5.2. Related Work

Momentum

By employing the momentum of gradient, SGDM accelerates SGD in the relevant

direction and dampens oscillations. Momentum has become a commonly used opera-

tion in SGD optimizers [86]. There are three ways to add momentum to our proposed

FSGD algorithm, as shown in Table 5.2, where G, Mt
xx and Mt

G refer to the gradient

of weight, the momentum of second-order statistics and the momentum of gradient,

respectively. It can be seen that the places where the momentum of statistics and

gradient is located are different for the three ways. We empirically find that the third

way usually achieves the best generalization performance. (please refer to Section

5.4.5 for details). The momentum of second-order statistics and the momentum of

the gradient are both crucial to the final performance. For the statistics, the mo-

mentum can help to reduce the noise so that a more accurate estimation of feature

statistics can be obtained.

Weight Decay

Weight decay is an effective technique to improve the generalization performance and

accuracy of DNNs [41, 40, 106]. The most commonly used weight decay is the L2

norm weight regularization on loss L, which can be implemented by introducing the

gradient of the regularizer into the gradient of loss. Loshchilov et al [51] found that

when using Adam as the optimizer, a decoupled weight decay usually keeps better

generalization than the L2 regularizer, which scales the weights by a factor less than

1 in each iteration. Therefore, finding a proper way to add weight decay is very

important to the generalization performance.

Since our goal is to perform gradient descent on features but not on weights, directly

adopting the standard L2 norm regularization weight decay cannot yield satisfactory

results. We then investigate a new weight decay formula, which actually imposes an

99

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

L2 norm feature regularization term on Eq. (5.4), i.e,

min
W

||At`1
´ At

pWq||
2
2 ` λ||At

pWq||
2
2. (5.14)

The solution can be easily obtained as follows:

Wt`1
“ Wt

´
η

1 ` λ

ˆ

BL
BWt

pXtXtT
q

´1
`

λ

η
Wt

˙

. (5.15)

One can see that we only need to add a term λ
η
Wt into the modified gradient, which

is very easy to implement. If not considering the momentum of the modified gradient,

this weight decay method is equivalent to the decoupled weight decay. But if there is

a momentum operation, the weight decay term also is involved in it.

Efficient Statistics Computation

Compared with SGDM, the additional computational cost in our algorithm mainly

comes from two parts: computing the second-order statistic matrix and its matrix

inverse. It will be a large computational burden if we compute them in each iteration.

Actually, we find the statistic changes slowly in the training, so it is unnecessary to

compute them in each iteration. Instead, to balance the efficiency and performance,

we only need to compute them once for several steps. Specifically, we introduce two

hyperparameters, i.e, Txx and TInv, to control the interval for updating the statistics

matrix and its inverse, respectively. Meanwhile, we use a matrix D “ pMxx `ϵIq´1 to

store the inverse of the statistics matrix. The updating interval TInv should be large

because its computation involves matrix inverse, which is a computationally expensive

operation. In our experiments, we found that setting Txx “ 50 and TInv “ 500 could

work effectively and efficiently. It would not cost much more computation than SGDM

while keeping a significant performance gain.

What is more, for multiple GPUs, the conventional implementation of computing

100

5.2. Related Work

statistics is only within one GPU. As a consequence, in this case, the computed

second-order statistic would have large noise, which leads to the inaccuracy result.

Therefore, we also develop a cross-GPU synchronization approach to expedite the

calculation of the feature statistics with multiple GPUs. the statistics are first com-

puted within each GPU and then synchronized across all GPUs. Synchronized BN

(SyncBN) [67, 10] also adopt a similar approach to synchronize the statistics across

the GPUs. The difference is that SyncBN synchronizes the statistics layer by layer

during the forward propagation. The latter layers need to wait for the results of the

former layers, which will cost a certain amount of time. While the synchronization

operation in the proposed method is independent of the forward propagation so that

the statistics of all layers can be synchronized at the same time. it only needs a

slight cost. Both the momentum operation and synchronization operation make the

obtained feature statistics more stable and more reliable.

Gradient Norm Recovery.

From the above discussion, we can know the proposed FSGD is very similar to the

SGDM. The difference is that FSGD adopts a modified gradient to replace the original

gradient. The modified gradient in FSGD may have a different scale from the vanilla

gradient in SGDM. As a consequence, the optimal hyperparameters of FSGD, such as

learning rate and weight decay, may also differ from SGDM. As the most commonly

used optimizers, SGDM has been adopted into many tasks with well-tuned hyperpa-

rameters. For instance, in objection detection, SGDM usually applies a learning rate

of 0.02 and weight decay of 0.0001 as its default settings. A natural question is, can

we keep these well-tuned hyperparameters in FSGD to alleviate the tedious work of

hyperparameter tuning? If this can be achieved, it would not need further tuning of

hyperparameters for FSGD to be used in various tasks that SGD has been well-tuned.

It could directly inherit the hyperparameters of SGDM to achieve a performance gain.

101

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

Algorithm 5: Feature Stochastic Gradient Descent (FSGD)

Input: W0, M0, M0
xx, η, α, β, λ, Txx, TInv, D

0, ϵ
Output: WpT q

1 for t=1:T do
2 Gt “ ∇WtL;
3 if t%Txx “ 0 then

4 Mt
xx “ αMt´1

xx ` p1 ´ αqXtXtT %Statistic momentum

5 else
6 Mt

xx “ Mt´1
xx

7 end
8 if t%TInv “ 0 then
9 Dt “ pMt

xx ` ϵIq´1 %Damping and matrix inverse

10 else
11 Dt “ Dt´1

12 end

13 Ĝt “ GtDt %Modified Gradient

14 G̃t “ Ĝt ||Gt||2

||Ĝt||2
` λWt; % Gradient norm recovery and weight decay

15 Mt
G “ βMt´1

G ` p1 ´ βqG̃t %Gradient momentum

16 Wt`1 “ Wt ´ ηMt
G

17 end

To achieve this goal, we propose a gradient norm recovery trick to make the norm of

the modified gradient the same as the norm of the original gradient. To be specific,

we need to find a scale variable to make the L2 norm of adjusted gradient Ĝt “ GtDt

change to ||Gt||2. Fortunately, It is easy to see that we can recover the gradient norm

as follows:

G̃t
“ Ĝt ||Gt||2

||Ĝt||2
, (5.16)

We can see that G̃t and Gt keep the same L2 norm. By using the gradient norm

recovery operation, the gradient G̃t can be readily adopted in the FSGD so that

it can boost the performance with no extra hyperparameter tuning based on SGD.

Definitely, the performance of FSGD can be further improved by tuning fine-grained

hyperparameters around the default settings of SGD.

102

5.3. Discussions

Overall Algorithm of FSGD

The overall algorithm of FSGD is summarized in Algorithm 5. The complexity of

FSGD for a FC layer is T pOp
C3

in

Tsvd
q ` Op

C2
inN

Txx
q ` OpC2

inCoutqq , and for a Conv layer

it is T pOp
C3

ink
3
1k

3
2

Tsvd
q ` Op

C2
ink

2
1k

2
2N

Txx
q ` OpC2

ink
2
1k

2
2Coutqq , where T is the total number of

iterations. As Txx and Tsvd can be set large in the implementation of FSGD (e.g , 50

and 500, respectively), the total complexity is acceptable.

5.2.7 Extension to Other Optimizers

From Algorithm 5, it is easy to see that FSGD can be divided into two parts: a

pre-conditioner and a main optimizer. The pre-conditioner part decomposes the orig-

inal gradient G into GD, while the main optimizer part remains the standard SGD

optimizer. Based on this fact, we can easily extend FSGD to other optimizers by in-

troducing the pre-conditioner of FSGD into the main part of the given optimizer. For

example, we can introduce the pre-conditioner of FSGD to the widely-used adaptive

learning rate optimizer, i.e, Adam, resulting in a new Feature Adam (FAdam) opti-

mizer. The detailed algorithm of FAdam is concluded in Algorithm 6. Although

this extension is straightforward, the experimental results show that FAdam does

speed up training processing and improve much the generalization performance over

Adam.

5.3 Discussions

5.3.1 Relationship with Back-matching Propagation

FSGD can be considered as a special back-matching propagation method [107, 108, 8],

which minimizes a sequence of local back-matching losses following the backward

order. Suppose QptWuKi“1q “ LpY, fptWuKi“1,X0qq is the loss function of one sample,

103

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

Algorithm 6: Feature Adam (FAdam)

Input: W0, M0, M0
xx, η, α, β1, β2, λ, Txx, TInv, D

0, ϵ
Output: WpT q

1 for t=1:T do
2 Gt “ ∇WtL;
3 if t%Txx “ 0 then

4 Mt
xx “ αMt´1

xx ` p1 ´ αqXtXtT%Statistic momentum

5 else
6 Mt

xx “ Mt´1
xx

7 end
8 if t%TInv “ 0 then
9 Dt “ pMt

xx ` ϵIq´1 %Damping and matrix inverse

10 else
11 Dt “ Dt´1

12 end

13 Ĝt “ GtDt %Modified Gradient

14 G̃t “ Ĝt ||Gt||2

||Ĝt||2
; % Gradient norm recovery

15 Mt
G “ β1M

t´1
G ` p1 ´ β1qG̃t

16 Vt
G “ β2V

t´1
G ` p1 ´ β2qG̃t d G̃t

17 M̂t
G “

Mt
G

1´βt
2
, V̂t

G “
Vt

G

1´βt
3

18 Wt`1 “ Wt ´ η
M̂t

G?
V̂t

G`ϵ2

19 end

where X0 is the input feature, Y is the target and fp¨, ¨q is the network mapping (e.g ,

ReLU(WX) or WX). According to [8], we can take the intermediate output of the

network as auxiliary variables and introduce a quadratic penalty:

QptW,Xu
K
i“1q “ LpY, fKpWK ,XK´1qq `

ÿK´1

k“1

γ

2
||Xk ´ fkpWk,Xk´1q||

2
2, (5.17)

where tWuKi“1 and tXu
K´1
i“1 are to be learned. It has been shown in [64] that when γ

is large enough, the solutions of Eq. (5.17) will be very close to the original problem

QptWuKi“1q. Carreira et al [8] suggested minimizing Eq. (5.17) by a block coordinate

descent algorithm with X-step and W-step. However, it will cost a large amount

of computation and memory cost compared with SGD, because in each X-step or

104

5.3. Discussions

(a) SGD (b) SGD with whitening (c) FSGD

Figure 5.2: Illustration of the optimization paths of (a) SGD; (b) SGD with feature
whitening; and (c) FSGD.

W-step, there are also several iterations to optimize the local objective function.

Instead of solvingX explicitly, we adopt a one-step SGD to updateX and solveW ex-

plicitly. Specifically, for a linear layer, the objective function becomes minWk
||Xt`1

k ´

WkX
t
pk´1q

||22, where Xt`1
k “ Xt

k ´ η BL
BXt

k
“ Wt

kX
t
pk´1q

´ η BL
BXt

k
is the intermediate fea-

ture after one-step feature gradient descent. The solution is actually the updating

formula of FSGD in Eq. (5.7). Therefore, FSGD can be considered as a specific

back-matching propagation method but with much higher efficiency.

5.3.2 Relationship with Feature Whitening

We also find that SGD with feature ZCA-whitening in the reparameterized weight

space is closely related to FSGD in the original weight space. Let’s use a simple

linear regression problem to illustrate this relationship. The objective function is

minW||Y ´ WX||22, where Y is the ground truth label to be regressed, X is the

feature and W is the weight to be optimized. If using gradient descent to optimize

this problem, there are three choices:

aq Original SGD :Wt`1 “ Wt ´ ηpWtXXT ´ YXq

bq SGD with whitening: W1t`1 “ W1t ´ pW1t ´YX1q “ p1´ ηqW1t ` ηW1
˚, where

X1 “ DX, W “ W1D, D “ UxΣ
´0.5
x UT

x and XXT “ UxΣxU
T
x . W

1
˚ “ YX1 is

105

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

the optimal solution in weight space W1.

cq FSGD: Wt`1 “ Wt ´ ηpWtXXT ´ YXqpXXT q´1 “ p1 ´ ηqWt ` ηW˚, where

W˚ “ pYXqpXXT q´1 is the optimal solution in weight space W.

Figure 5.2 illustrates the optimization paths of the above three solutions when training

with highly correlated data. The optimization path of the original SGD is jagged and

it needs a number of steps to reach the optimal point, while both SGD with feature

whitening and FSGD can go directly toward the optimal point. Meanwhile, in this

case, XXT is exactly the Hessian matrix and FSGD can also be viewed as a Newton

method.

For general DNNs, FSGD still has a close link to SGD with whitening. For a linear

layer with feature ZCA-whitening in a DNN, if only considering this one layer and

fixing the parameters of other layers, it is easy to obtained that X1 “ DX, W “ W1D

and BL
BW1 “ BL

BW
DT . The SGD updating formula for W1 is W1t`1 “ W1t ´ η BL

BW1t .

Multiply both sides of this equation byD, we can get thatWt`1 “ Wt´η BL
BWtD

TD “

Wt ´ η BL
BWt pXXT q´1, which is actually the update formula of FSGD. Therefore, we

can know that SGD with feature ZCA-whitening in the reparameterized weight space

is nearly the same as FSGD in the original weight space.

In practical applications, however, feature whitening methods need to redefine forward

and backward propagation. They cannot be directly adopted to optimize already-

defined DNNs, e.g , ResNet50 pre-trained on ImageNet. Moreover, in each iteration of

SGD, we have to compute the second-order statistic of the input feature and its SVD

decomposition for each whitening layer, which is computationally very expensive [28,

29, 99]. In addition, in most cases, the feature whitening methods can only use

the statistics of the current batch. When the batch size is small, the statistics are

not accurate and the performance will drop. Compared with the feature whitening

methods, FSGD only needs to update the second-order statistic matrix of features

and its inverse once for several iterations, which is much more efficient, and it is easy

106

5.4. Experiment Results

for FSGD to introduce the moving average of the second-order statistic matrix in

batches to reduce the noise in statistics.

5.4 Experiment Results

5.4.1 Experiment Setup

We perform experiments on image classification (on CIFAR100/CIFAR10 [39] and

ImageNet [75]) as well as detection and segmentation (on COCO [48]) to illustrate

the effectiveness of our proposed FSGD and FAdam method. We first test FSGD and

FAdam with different DNN models on CIFAR100/CIFAR10, including VGG11 [82],

ResNet18, ResNet50 [22] and DenseNet121 [25], in comparison with advanced opti-

mization algorithms, such as SGDM, Adam [37], AdamW [51], RAdam1 [49], Ranger2 [49,

110, 100] and Adabelief3 [115], AdaHessian4 [97] and Apollo5 [59], whose source codes

are officially provided. To validate whether FSGD and FAdam performs well on large-

scale data set, we further conduct experiments on ImageNet. Finally, we test FSGD

on COCO [48] to demonstrate its effectiveness on other vision tasks. And finally

we conduct ablation studies (see Section 5.4.5) to choose the momentum and weight

decay strategy and tune hyperparameters Txx and TInv on CIFAR100.

All experiments are conducted under the Pytorch 1.7 framework with eight NVIDIA

Tesla P100 GPUs. In FSGD, parameters α control the momentum for second-order

statistic matrix, and we set α “ 0.95 in all the experiments. In addition, we set the

small positive number ϵ “ 0.1 to make sure that the second-order statistic matrix can

inverse. For Txx and TInv, we set them to 50 and 500, respectively.

1https://github.com/LiyuanLucasLiu/RAdam
2https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
3https://github.com/juntang-zhuang/Adabelief-Optimizer
4https://github.com/amirgholami/adahessian
5https://github.com/XuezheMax/apollo

107

https://github.com/LiyuanLucasLiu/RAdam
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/juntang-zhuang/Adabelief-Optimizer
https://github.com/amirgholami/adahessian
https://github.com/XuezheMax/apollo

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

T
ab

le
5.
3:

T
es
ti
n
g
ac
cu
ra
ci
es

(%
)
on

C
IF
A
R
10
0/
C
IF
A
R
10
.
T
h
e
b
es
t
an

d
se
co
n
d
b
es
t
re
su
lt
s
ar
e
h
ig
h
li
gh

te
d
in

b
ol
d
an

d
it
al
ic

fo
n
ts
,
re
sp
ec
ti
ve
ly
.
T
h
e
im

p
ro
ve
m
en
t
of

F
S
G
D

an
d
F
A
d
am

ov
er

S
G
D
M

an
d
A
d
am

W
ar
e
is

gi
ve
n
in

re
d
co
lo
r.

”-
”

m
ea
n
s
th
e
re
su
lt
is
n
ot

av
ai
la
b
le
.

C
IF
A
R
10
0

M
o
d
el

S
G
D
M

A
d
am

W
R
A
d
am

R
an

ge
r

A
d
ab

el
ie
f

A
d
aH

es
si
an

A
p
ol
lo

F
S
G
D

F
A
d
am

R
18

77
.2
0˘

.3
0

77
.2
3˘

.1
0

77
.0
5˘

.1
5

76
.7
5˘

.1
1

77
.4
3˘

.3
6

76
.7
3˘

.2
3

76
.6
3˘

.2
7

7
9
.1
0

˘
.1
5(

Ò
1.
90
)

78
.1
8

˘
.2
5(

Ò
0.
95
)

R
50

77
.7
8˘

.4
3

78
.1
0˘

.1
7

78
.2
0˘

.1
5

78
.1
3˘

.1
2

79
.0
8˘

.2
3

78
.4
8˘

.2
2

78
.6
8˘

.1
1

8
1
.1
7

˘
.1
7(

Ò
3.
39
)

79
.9
0

˘
.0
7(

Ò
1.
80
)

V
11

70
.8
0˘

.2
9

71
.2
0˘

.2
9

71
.0
8˘

.2
4

70
.5
8˘

.1
4

72
.4
3˘

.1
6

67
.7
8˘

.3
4

70
.0
5˘

.1
1

7
3
.4
8

˘
.1
6(

Ò
2.
68
)

72
.4
8

˘
.1
3(

Ò
1.
28
)

D
12
1

79
.5
3˘

.1
9

78
.0
5˘

.2
6

78
.6
5˘

.0
5

78
.2
8˘

.0
8

79
.8
8˘

.0
8

-
79
.1
0˘

.2
1

8
1
.0
0

˘
.3
3
(Ò
1.
47
)

80
.0
3

˘
.0
8(

Ò
1.
98
)

C
IF
A
R
10

R
18

95
.1
0˘

.0
7

94
.8
0˘

.1
0

94
.7
0˘

.1
8

94
.7
5˘

.1
8

95
.1
2˘

.1
4

94
.7
0˘

.1
5

95
.0
3˘

.1
2

9
5
.5
0

˘
.0
7(

Ò
0.
40
)

95
.1
7

˘
.0
8(

Ò
0.
37
)

R
50

94
.7
5˘

.3
0

94
.7
2˘

.1
0

94
.7
2˘

.1
0

95
.2
7˘

.1
2

95
.3
5˘

.0
5

95
.3
5˘

.1
1

95
.2
7˘

.1
1

9
5
.9
0

˘
.1
0(

Ò
1.
15
)

95
.5
7

˘
.0
8(

Ò
0.
85
)

V
11

92
.1
7˘

.1
9

92
.0
2˘

.0
8

92
.0
0˘

.1
8

92
.1
0˘

.0
7

92
.4
5˘

.1
8

91
.8
5˘

.1
6

92
.3
8˘

.1
9

9
3
.2
8

˘
.0
8(

Ò
1.
11
)

92
.7
3

˘
.0
9(

Ò
0.
71
)

D
12
1

95
.3
7˘

.1
7

94
.8
0˘

.0
7

95
.0
2˘

.0
8

95
.4
5˘

.1
1

95
.3
7˘

.0
4

-
95
.4
7˘

.0
4

9
5
.8
7

˘
.0
8
(Ò
0.
50
)

95
.5
0

˘
.1
0(

Ò
0.
70
)

108

5.4. Experiment Results

Table 5.4: Top 1 accuracy (%) on the validation set of ImageNet with ResNet18 and
ResNet50. The best and second best results are highlighted in bold and italic fonts,
respectively. The improvement of FSGD and FAdam over SGDM and AdamW are
given in red color.

Model SGDM AdamW RAdam Ranger Adabelief AdaHessian Apollo FSGD FAdam
R18 70.47 70.01 69.92 69.35 70.08 70.08 70.39 71.04(Ò0.57) 70.69(Ò0.68)
R50 76.31 76.02 76.12 75.95 76.22 - 76.32 77.06(Ò0.75) 77.01(Ò0.99)

5.4.2 Results on CIFAR100 and CIFAR10

CIFAR100 and CIFAR10 [39] are two commonly used datasets to testify DNN op-

timizers. They consist of 50K training images and 10K testing images from 100

categories and 10 categories, respectively, and the size of the input image is 32 ˆ 32.

We train the DNN models for 200 epochs with batch size 128 on one GPU. The learn-

ing rate is multiplied by 0.1 for every 60 epochs. We test the proposed method with

four representative DNN models6, including VGG11 (V11) [82] , ResNet18 (R18),

ResNet50 (R50) [22] and DenseNet121 (D121) [25]. The compared methods are rep-

resentative and advanced optimizers, including SGDM, AdamW [51], RAdam [49],

Ranger [49, 110, 100] and Adabelief [115], AdaHessian7 [97] and Apollo [59].

We tune the hyperparameters, including learning rate and weight decay, for all these

methods to achieve their best results. Specifically, the learning rate is 0.1 and weight

decay is 5e-4 for SGDM. For Adam, the learning rate is 0.001 and weight decay is 5e-4.

For AdamW, Radam, Ranger and Adabelief, they all use the decoupled weight decay

method [51], and we find that a large weight decay usually leads to better results.

Hence, for these optimizers, the learning rate is set to 0.001 and weight decay is set to

0.5. For Adahessian and Apollo, the learning rate is 0.15 and 1, the weight decay is

0.0005 and 0.05, respectively. For FSGD, the learning rate is 0.05 and weight decay

is 0.001, and for FAdam the learning rate is 0.0005 and weight decay is 1. Other

hyperparameters follow their default settings.

6The models for CIFAR100/10 can be found at the repository https://github.com/weiaicunzai/

pytorch-cifar100
7AdaHessian needs huge memory, so we only give partial results.

109

https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/weiaicunzai/pytorch-cifar100

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

The experiments are repeated for 5 times and the results are reported in Table 5.3

in mean ˘ std format. ∆FSGD´SGDM is the improvement of FSGD over SGDM. It

can be seen from the results that FSGD achieves the best testing accuracy for all

the used DNN models. More specifically, FSGD improves SGDM from 1.47% to

3.39% on CIFAR100 dataset, and from 0.4% to 1.15% on CIFAR10 dataset. The

performance of AdamW, RAdam, Ranger, AdaHessian and Apollo is often worse

than SGDM. Adabelief outperforms SGDM but it is still much worse than FSGD.

Meanwhile FAdam also achieve remarkable improvement over AdamW.

We can see that the final generalization performance of FSGD and FAdam surpasses

other optimizers by a large margin. The better generalization performance of FSGD

and FAdam comes from the fact that it takes the feature gradient direction into con-

sideration to adjust the weight gradient. By employing the feature gradient direction

to update the weights, they can learn a more favorable feature space, making it easier

to reach a flat local minimum.

5.4.3 Results on ImageNet

We then evaluate the proposed FSGD and FAdam methods on the large-scale dataset

ImageNet [75], which is a benchmark for image classification. It consists of 1.28 million

images for training and 50K images for validation from 1000 categories. We employ

ResNet18 and ResNet50 as the backbone networks and train them with different opti-

mizers, including SGDM, AdamW, RAdam, Ranger, Adabelief, AdaHessian, Apollo

and our proposed FSGD and FAdam. The training batch size is 256 and four GPUs

are used to train the model. We use the standard settings in [9] for training. The

models are trained for 100 epochs, and the learning rate is multiplied by 0.1 for ev-

ery 30 epochs. We refer to the settings in [115, 9] and tune the learning rate and

weight decay around their default settings on ImageNet. The learning rate is set to

0.1 for SGDM, 0.001 for AdamW, RAdam, Ranger, Adabelief and FAdam, 0.15 for

110

5.4. Experiment Results

AdaHessian, 1 for Apollo, respectively. The weight decay is set to 1e-4 for SGDM

and Apollo, 0.1 for AdamW, Ranger and Adabelief, 0.005 for AdaHessian. FSGD

and AdamW share the same settings with SGDM and AdamW, respectively. RAdam

adopts a weight decay of 0.1 for ResNet‘8 and 0.05 for ResNet50, respectively.

The top 1 accuracies of different methods on the validation set are shown in Table

5.4. The training and validation accuracy curves of SGDM and FSGD are plotted

in Fig. 5.3. It can be seen that the proposed FSGD achieves the best result. It

outperforms SGDM by 0.57% and 0.75% for ResNet18 and ResNet50, respectively.

Meanwhile, the final training accuracy of FSGD surpasses SGDM by 1.56% and 4.14%

for ResNet18 and ResNet50, respectively. This means that FSGD can not only boost

the generalization but also speed up the optimization process. FAdam also gains

a certain performance over Adam. The results of other compared methods are all

worse than FSGD and FAdam. This is mainly because that the distributions of both

input data and intermediate features on large-scale datasets are more complex, and

hence it is more difficult to train the DNNs. The other compared optimizers do not

fully exploit the information of intermediate features to compute the weight gradient

direction so that their performance is mediocre. Whitening methods de-correlate

the features to make their distribution isotropic to avoid being stuck in a bad local

minimum [28, 29, 99]. FSGD can be viewed as a special whitening method, which

uses the distribution information of features to update the gradient weight. This is

why FSGD still keeps high performance on large-scale datasets.

5.4.4 Object Detection and Segmentation

Finally, we evaluate FSGD on COCO [48], which is widely used for object detection

and segmentation tasks, to show that FSGD is also effective for more tasks beyond

image classification. The models are trained on the COCO train2017 dataset (118K

images) and evaluated on the COCO val2017 dataset (40K images). We use the latest

111

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

0 20 40 60 80 100

epoch

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy
(%

)

Training

SGDM & R18

FSGD & R18

SGDM & R50

FSGD & R50

0 20 40 60 80 100

epoch

0.4

0.5

0.6

0.7

0.8

Validation

SGDM & R18

FSGD & R18

SGDM & R50

FSGD & R50

Figure 5.3: Training and validation accuracy curves of SGDM and FSGD on ImageNet
with ResNet18 and ResNet50.

Table 5.5: Detection results on COCO by using Faster-RCNN and FPN with
ResNet50 and ResNet101 backbone models. ∆ means the improvement of FSGD
over SGDM.

Backbone Method AP AP.5 AP.75 APs APm APl

SGDM 37.4 58.1 40.4 21.2 41.0 48.1
R50 FSGD 38.5 59.3 41.6 21.8 41.8 50.4

∆ +1.1 +1.2 +1.2 +0.6 +0.8 +2.3
SGDM 39.4 60.1 43.1 22.4 43.7 51.1

R101 FSGD 40.8 61.5 44.7 24.6 45.0 53.7
∆ +1.4 +1.4 +1.6 +2.2 +1.3 +2.6

version of MMDetection [10] toolbox, which contains comprehensive models on object

detection and segmentation, as the detection framework. The official implementations

and settings are used for all experiments here. All the pre-trained models are down-

loaded from their official websites, and we fine-tune them on COCO train2017 set

with 4 GPUs and 4 images per GPU. The backbone networks include ResNet50 (R50)

and ResNet101 (R101). The Feature Pyramid Network (FPN) [47] is also used. The

learning rate schedule is 1X for both Faster-RCNN [72] and Mask-RCNN [20].

Since SGDM is dominantly used on COCO for model optimization, we compare it

with FSGD. Table 5.5 shows the Average Precision (AP) results of Faster-RCNN.

We can see that the models trained with FSGD achieve a clear performance gain by

1.1% for ResNet50 and 1.4% for ResNet101 on object detection. Table 5.6 presents

112

5.4. Experiment Results

Table 5.6: Detection and segmentation results on COCO by using Mask-RCNN and
FPN with ResNet50 and ResNet101 backbone models. ∆ means the improvement of
FSGD over SGDM.

Backbone Method APb APb
.5 APb

.75 APm APm
.5 APm

.75

SGDM 38.2 58.8 41.4 34.7 55.7 37.2
R50 FSGD 39.3 60.6 42.7 36.1 57.5 38.4

∆ +1.1 +1.8 +1.3 +1.4 +1.8 +1.2
SGDM 40.0 60.5 44.0 36.1 57.5 38.6

R101 FSGD 41.0 61.8 44.5 37.3 58.8 39.7
∆ +1.0 +1.3 +0.5 +1.2 +1.3 +1.1

0 2 4 6 8

Iteration (10
4
)

0.4

0.6

0.8

1

L
o
ss

Faster-RCNN

SGD

FSGD

0 2 4 6 8

Iteration (10
4
)

0.5

1

1.5

Mask-RCNN

SGD

FSGD

Figure 5.4: Training loss curves of ResNet50 backbone trained by SGDM and FSGD
on COCO.

the Average Precision for bounding box (APb) and instance segmentation (APm) of

Mask-RCNN. It can be seen that by FSGD, the APb is increased by 1.1% and 1.0% on

object detection and 1.4% and 1.2% on segmentation for ResNet50 and ResNet101,

respectively. Fig. 5.4 shows the training loss curves of Faster-RCNN and Mask-RCNN

with ResNet50 backbone. It can be seen that FSGD can speed up training process

and achieve lower final training loss than SGDM. This demonstrates that FSGD is

an effective optimization algorithm for various tasks beyond image classification.

113

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

5.4.5 Ablation Study

Momentum and Weight Decay. As discussed in Section 5.2.6, there are three ways

to introduce the momentum into our proposed method FSGD. We perform a simple

experiment on CIFAR100 with ResNet18 to evaluate the three momentum methods.

All other hyperparameters are the same as in Section 5.4.2. The testing accuracies

of the three momentum methods are 78.72%, 78.36% and 79.10%, respectively. The

third momentum method shows obvious improvements over the other two, and hence

we choose it for use in FSGD.

In Section 5.2.6, we also presented two weight decay methods, including the original

L2 norm weight decay on gradient and the weight decay in Eq. (5.15). We test these

two weight decay strategies on CIFAR100 with ResNet18, and the testing accuracies

are 73.36% and 79.10%, respectively. Clearly, our weight decay strategy proposed in

Eq. (5.15) is much more effective and it is adopted in FSGD.

Hyperparameter Tuning We first tune Txx and TInv. A too small interval for

updating the input statistics will consume a large amount of computational cost,

while a too large interval may lead to unsatisfactory performance. A proper setting

of Txx and TInv can ensure good generalization results with little additional cost. Due

to the high computational cost of matrix inverse, TInv should be set larger than Txx.

As shown in Table 5.7, we test six groups of Txx and TInv and report their testing

accuracies and training time per epoch. The combination of Txx “ 50 and TInv “ 500

delivers the best result. Compared with those smaller settings of Txx, the accuracy

of Txx “ 50 does not drop much while it costs less training time. Compared with

those larger settings of Txx, the training time of Txx “ 50 only increases slightly but

better performance is kept. With this setting, FSGD only costs about 20% „ 30%

additional training time to SGDM (23.45 sec/epoch) while achieving much better

generalization performance. Meanwhile, we also compare with the whitening method

ND [99], which achieves 79.07% (184 sec/epoch) and 78.65% (65 sec/epoch) with 1

114

5.5. Conclusion

Table 5.7: Testing accuracies (%) of ResNet18 by FSGD on CIFAR100 for different
Txx and TInv. The best combination is highlighted in bold font.

Txx 5 10 20 50 100 200
TInv 50 100 200 500 1000 2000
Acc 79.07 79.15 79.23 79.10 78.85 78.75

Sec/epoch 86.05 58.51 39.78 30.30 26.21 24.57

Table 5.8: Testing accuracies (%) of ResNet18 by FSGD with different ϵ on CI-
FAR100. The best result is highlighted in bold font.

ϵ 0.001 0.01 0.1 1
Acc 73.47 77.72 79.10 78.55

and 3 (default) sampling strides, respectively. It consumes much more training time.

This illustrates that FSGD is more practical for real applications.

We then tune the damping parameter ϵ. The results with different ϵ (i.e, 0.001, 0.01,

0.1, 1) of ResNet18 trained by FSGD on CIFAR100 are shown in Table 5.8. It can

be clearly observed that ϵ “ 0.1 is the best choice. A too small ϵ makes the training

unstable because of the large condition number of the statistic matrix. A too large

ϵ will drop too much useful information from the second order statistics, which also

leads to unsatisfactory performance.

5.5 Conclusion

In this chapter, we proposed a new DNN optimizer, namely feature stochastic gra-

dient descent (FSGD), which takes the gradient of the intermediate features into

consideration to update weights. Specifically, we computed the second-order statistic

matrix of the input features in a liner layer and used its inverse to update the gradient

of weight. Compared with previous DNN optimizers that perform gradient descent

on weight, FSGD can find more informative directions to update the feature space.

Experimentally, FSGD demonstrated much better generalization performance than

SGDM, Adam, AdamW, RAdam and Adabelief on CIFAR100/CIFAR10, ImageNet

115

Chapter 5. Training Deep Neural Networks with Feature-based Gradient Descent

and COCO datasets for image classification, object detection and segmentation tasks,

with acceptable additional cost on training time and memory over SGDM.

116

Chapter 6

An Embedded Feature Whitening

Approach to Optimize a Deep

Neural Network

Compared with the feature normalization methods that are widely used in deep neural

network (DNN) training, feature whitening methods take the correlation of features

into consideration, which can help to learn more effective features. However, existing

feature whitening methods have several limitations, such as the large computation and

memory cost, inapplicable to pre-trained DNN models, the introduction of additional

parameters, etc., making them impractical to use in optimizing DNNs. To overcome

these drawbacks, in this chapter, we propose a novel Embedded Feature Whitening

(EFW) approach to DNN optimization. EFW only adjusts the gradient of weight

by using the whitening matrix without changing any part of the network so that it

can be easily adopted to optimize pre-trained and well-defined DNN architectures.

The momentum, adaptive damping and gradient norm recovery techniques associated

with EFW are consequently developed, which can be implemented efficiently with

acceptable extra computation and memory cost. We apply EFW to two commonly

117

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

used DNN optimizers, i.e, SGDM and Adam (or AdamW), and name the obtained

optimizers as W-SGDM and W-Adam. Extensive experimental results on various

vision tasks, including image classification, object detection, segmentation and person

ReID, demonstrate the superiority of W-SGDM andW-Adam to state-of-the-art DNN

optimizers.

6.1 Introduction

The remarkable success of Deep Neural Networks (DNNs) on various vision tasks,

including image classification [22], object detection [72, 20], segmentation [20], image

retrieval [114, 52], etc., largely owes to the development of DNN optimization tech-

niques. The main goal of DNN optimization is to find a favorable local minimum of

the objective function by using the given training data and ensure good generaliza-

tion performance of the trained model to testing data. Meanwhile, it is anticipated

that we can accelerate the converge speed and reduce the training cost. To achieve

these goals, a variety of DNN optimization techniques have been proposed, such as

weight initialization strategies [17, 21], efficient active functions (e.g , ReLU [63]),

batch normalization (BN) [32], gradient clipping [65, 66], adaptive learning rate op-

timizers [16, 37, 115], and so on. All these techniques facilitate the training of very

deep and effective DNN models.

Among the above techniques, normalization methods have been widely used as a

basic module to train a variety of DNN architectures [22, 25]. The most represen-

tative method is BN [32]. Similar to BN, instance normalization (IN) [88, 30], layer

normalization (LN) [44] and group normalization (GN) [93] have also been proposed

to perform Z-score standardization on other dimensions. It has been shown that

normalization methods can both speed up the training speed and improve the gener-

alization performance [77, 87, 105, 102]. However, normalization methods do not take

the correlation of features into consideration. Therefore, feature whitening or feature

118

6.1. Introduction

decorrelation methods have been developed to solve this problem. For instance, decor-

related batch normalization (DBN) [28] was proposed to perform ZCA-whitening on

each mini-batch with a ZCA transformation matrix obtained by eigen-decomposition.

IterNorm [29] aims at a more efficient approximation of the ZCA transformation ma-

trix with Newton’s iteration. Network deconvolution (ND) [99] extends the ZCA-

whitening transformation on a patch of features. The DNN models trained with

whitening methods can achieve certain performance gains over normalization meth-

ods.

Nevertheless, the existing feature whitening methods have several obvious weaknesses,

which make them hard to be widely used in practical applications. The major dis-

advantage of feature whitening lies in its large computational cost. In each iteration,

the ZCA transformation matrix has to be computed by eigen-decomposition, which

is computationally expensive when the dimension of features is high. Although some

works [29, 99] adopt Newton’s iteration to speed up the computation of ZCA trans-

formation, the training cost is still unacceptable compared with BN. Meanwhile, the

inference time of the network will increase largely when feature whitening is used.

Moreover, feature whitening methods are very memory-consuming in training because

more intermediate features need to be stored, especially for the iterative whitening

methods. Last but not the least, the existing feature whitening methods cannot be

directly applied to optimize pre-trained and well-defined DNN models. One needs

to add a feature whitening module into the proper layer and redefine the forward

propagation. For instance, if we want to adopt the ResNet50 [22] model pre-trained

on ImageNet to downstream tasks, we must redefine the ResNet50 with these whiten-

ing methods and train it again on ImageNet. All these drawbacks largely limit the

practical usage of feature whitening methods in DNN training.

To address these problems, we propose a novel approach, namely Embedded Feature

Whitening (EFW), to DNN optimization by adjusting the gradient of weight with the

ZCA transformation matrix. There are several advantages of our proposed approach.

119

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

First, EFW inherits the advantages of feature whitening, i.e, accelerating the training

process and improving the generalization performance. Second, compared with exist-

ing feature whitening methods, EFW does not introduce any module into the DNN

model to be trained. As a result, it can be directly adopted to optimize most of the

existing DNN models without increasing the inference time. Third, its computation

and memory cost is acceptable because EFW only computes the ZCA transforma-

tion matrix once for many iterations (e.g , 500) and it does not store any additional

intermediate features. In this chapter, we adopt EFW into two widely used DNN

optimizers: SGD with momentum (SGDM) [68, 37] and Adam (or AdanW) [37, 51],

and name the obtained optimizers as W-SGDM and W-Adam. Extensive experiments

are conducted to validate the effectiveness of EFW on various vision tasks.

6.2 Related Work

DNNOptimizers. The first-order optimization algorithms have been widely adopted

in training a DNN. For example, SGD with Momentum (SGDM) [68] makes use of

the momentum of the gradient to avoid oscillations and strengthen the relevant gra-

dient direction. Adagrad [16] adapts adaptive learning rates to different parameters,

performing larger/smaller gradient steps for infrequent/frequent ones. RMSprop and

Adadelta [104] use a similar mechanism to Adagrad, and Adam [37] further introduces

the momentum of gradient into adaptive learning rate methods. Based on Adam, Ad-

abelief [115] considers the belief of observed gradient to adjust the adaptive learning

rates.

For the second-order optimizers, AdaHessian [97] simplifies the Hessian matrix with

the diagonal elements through Hessian-free techniques. Similar to AdaHessian, Apollo [59]

simplifies the BFGS algorithm with only diagonal elements. Meanwhile, Kronecker

Factored Approximation Curvature (KFAC) [61] uses the Kronecker Factor decompo-

sition to approximate the natural gradient layer-wisely. However, in many computer

120

6.3. Embedded Feature Whitening

Algorithm 7: Overview of Batch Feature Whitening

Input: Mini-batch input X P RCoutˆN

Output: Output Y P RCoutˆN

1 if Training then

2 Centralization: X̂ “ Φ1pX|µBq, µB “ 1
N
X1;

3 Standardization or decorrelation: Y “ Φ2pX̂|ΣBq, ΣB “ 1
N
X̂X̂T ` ϵI;

4 Update the population statistics µ and Σ;

5 else
6 Calculate output Y “ Φ3pX|µ,Σq;
7 end

8 Recovery Operation Ŷ “ Φ4pYq

vision tasks, the generalization performance of these second-order methods does not

outperform SGDM.

Feature Whitening. Feature whitening methods remove the linear correlation

among different channel features to perform gradient descent more efficiently. Be-

yond standardization, DBN [28] was proposed to perform ZCA-whitening by eigen-

decomposition and backpropagating the transformation. IterNorm [29] aims at a

more efficient approximation of the ZCA-whitening matrix in DBN with Newton’s

iteration. Network deconvolution (ND) [99] adopts deconvolution filters to remove

pixel-wise and channel-wise correlations. It has been shown that feature whitening

methods can boost both the optimization and the generalization of DNNs [29, 99].

However, they usually need a lot of extra computation and memory, making them

impractical in real-world applications.

6.3 Embedded Feature Whitening

6.3.1 Overview of Batch Feature Whitening

We briefly summarize the batch whitening process in Algorithm 7. In training,

batch feature whitening [29, 99] usually involves two main steps, i.e, centralization

121

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

Φ1pXq and decorrelation Φ2pXq, which are defined as follows:

Φ1pX|µq “ X ´ µ1T , µ “
1

N
X1,

Φ2pX|Σq “ TX, Σ “
1

N
XXT

` ϵI,
(6.1)

where T is the whitening matrix, which is related to Σ. For different whitening

methods, T has different formulations [28, 29, 99, 80]. All the whitening matrices

should meet that 1
N
Φ2pXqΦ2pXqT “ I. Among those whitening transformations,

PCA and ZCA whitening are widely used, whose whitening matrices are T “ D´ 1
2UT

and T “ UD´ 1
2UT , respectively, where Σ “ UDUT is the eigen-decomposition of

Σ “ XXT {N ` ϵI.

In the training step, the batch statistics µB and ΣB are used to perform whitening.

Meanwhile, the population statistics µ and Σ are updated by exponential moving

average [29, 99]. In the inference step, the population statistics are used to replace

batch statistics, i.e, Φ3pX|µ,Σq “ Φ2pΦ1pX|µq,Σq. After the whitening operation,

an additional recovery operation Φ4p¨q is used to keep the representation capability

of the network. The recovery operation is usually a linear operation, such as affine

transformation [29] and coloring operation [80], which introduce extra parameters in

training.

During the DNN training process, due to the variation of input feature statistics,

the whitening matrix also changes. As a consequence, whitening may change the

intermediate features acutely, making the following layers hard to learn. It has been

shown that ZCA whitening can avoid such a Stochastic Axis Swapping (SAS) problem,

leading to better feature learning performance [28]. Actually, we can show that the

solution of the following objective function

minT||X ´ ΦpXq||
2
2, s.t. ΦpXq “ TX,

1

N
ΦpXqΦpXq

T
“ I (6.2)

is T “ pXXT {Nq´ 1
2 , which is just the ZCA whitening formulation. The proof is as

122

6.3. Embedded Feature Whitening

follows:

Proof. Suppose that UDUT is the SVD decomposition of Σ “ XXT {N . From the

constraint that 1
N
ΦpXqΦpXqT “ I, we know TΣTT “ I, and consequently we have

T “ MD´ 1
2UT , whereM is an arbitrary orthogonal matrix withMMT “ MTM “ I.

The objective to be minimized in Eq. (6.2) is

||X ´ TX||
2
2

“trppX ´ TXqpX ´ TXq
T

q

“trpXXT
´ XXTTT

´ TXXT
` TXXTTT

q

“trpXXT
q ` trpTXXTTT

q ´ 2trpTXXT
q

“N ¨ trpΣq ` N ¨ trpIq ´ 2N ¨ trpTΣq.

(6.3)

The first two terms of Eq. (6.3) are independent of T. Therefore, minimizing the

objective in Eq. (6.2) w.r.t. T is to maximize the last term in Eq. (6.3):

max
T

trpTΣq

“ max
MMT “I

trpMD´ 1
2UTUDUT

q

“ max
MMT “I

trpMD
1
2UT

q

“ max
MMT “I

trpD
1
2UTMq

“ max
Q“UTM,QQT “I

trpD
1
2Qq

“ max
Q“UTM,QQT “I

C
ÿ

i

D
1
2
iiQii,

(6.4)

where Dii and Qii are the i
th diagonal elements of D and Q, respectively. Please note

that D
1
2
ii is positive definite. Since Q is an orthogonal matrix, its diagonal elements

Qii ď 1. Therefore,
řC

i D
1
2
iiQii ď

řC
i D

1
2
ii. When Q “ I, the equality holds, and the

maximum value
řC

i D
1
2
ii is reached. Meanwhile, according to Q “ UTM “ I, we have

M “ U. Therefore, the optimal whitening matrix for Eq. (6.2) is T “ UD´ 1
2UT . ■

123

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

This ensures that the ZCA whitened feature ΦpXq is close to the original data X and

hence dilutes the SAS issue.

6.3.2 Drawbacks of Feature Whitening

Although many works have shown that feature whitening can both speed up training

and gain generalization performance, it has some obvious drawbacks that largely limit

its applications to DNN training. First, it needs to perform eigen-decomposition or

use Newton’s iteration to compute the whitening matrix, both of which will signifi-

cantly increase the computation and memory cost. Second, existing feature whitening

methods cannot be directly adopted to optimize pre-trained DNN models (e.g , Im-

ageNet pre-trained models). We have to redefine the forward propagation of DNNs

by introducing a whitening module and retrain the models. Third, the batch feature

whitening methods are very sensitive to the training batch size. When batch size

is small, the statistics will become inaccurate, leading to a large performance drop.

Fourth, most of the current whitening methods will introduce additional parameters

into the recovery operation step to keep the representation capability of the DNNs,

which increases the number of parameters to be optimized.

Due to the above limitations, though having many attractive properties, feature

whitening methods have not been widely used to optimize DNNs yet. To overcome

the above drawbacks of feature whitening while inheriting its advantages, we should

not change the forward propagation of DNN or introduce new modules (e.g , whiten-

ing layer) in DNN, and should reduce its extra computation cost. To achieve these

goals, we propose a novel approach to embed the feature whitening operation into

the optimization algorithms.

124

6.3. Embedded Feature Whitening

6.3.3 Removal of Recovery and Centralization Operations

Most batch whitening methods employ a recovery operation to keep the represen-

tation capability of DNNs. Actually, the recovery operation may not be necessary.

According to their locations in DNN layers, whitening methods can be divided into

pre-whitening and post-whitening ones. When the whitening layer is placed before the

convolutional layer, it is a pre-whitening layer, otherwise, it is a post-whitening layer.

Traditional normalization layers and whitening layers usually introduce an additional

recovery transformation, such as affine transformation [29] or coloring operation [80],

to keep the feature representation performance. When post-whitening is adopted, the

recovery transformation must be introduced after the whitening operation to keep the

performance.

When pre-whitening is adopted, however, the recovery transformation can be removed

without harming the representation power of DNNs, because it can be assimilated by

the following Conv layer. For instance, supposing that Wr ˚ X is the recovery trans-

formation (affine and coloring transformation can be viewed as a sparse convolutional

operation), where Wr is the extra parameters to be learned, W ˚ Wr ˚ X will be the

output feature of Conv layer. We can let W1 “ W ˚Wr and hence only optimize the

Conv layer with parameter W1. This property of pre-whitening inspires us to embed

the whitening layer into the optimization algorithm without changing any module of

the DNN.

Meanwhile, in the traditional whitening methods, there are two main operations:

centralization and decorrelation. In forward propagation, we need to introduce these

two operations into the whitening layer before optimization. However, for a well-

defined DNN, the mean of input feature to a Conv or FC layer is usually not zero

since there is no centralization operation before them. A practical way to achieve

feature centralization is to introduce an extra bias that is related to the mean of

input activation. However, since the normalization layers are usually located after

125

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

the Conv layer in many popular DNNs (e.g , ResNet), the bias in the Conv layer will

have no function. Moreover, since our goal is to optimize a well-defined DNN without

changing its forward propagation and introducing any extra parameters, we omit the

centralization operation and only take the decorrelation into consideration.

6.3.4 Formulation of Embedded Feature Whitening

For a FC layer Y “ WX, where W denotes the parameters to learn, suppose there

is a virtual whitening layer before FC layer, which is X̂ “ TX, where T is defined in

Eq. (6.1). We can reformulate this FC layer with a whitening transformation as Y “

W1TX, whereW1 is the new parameters to be optimized. In this way, we can optimize

the loss function w.r.tW1, and let W “ W1T once the training is finished. According

to the backpropagation algorithm, the gradient of W1 can be easily obtained by

BL
BW1 “ BL

BW
T. However, the above approach has several serious problems. First, the

whitening matrix T will change during the training process because of the update of

weights in the previous layers. As a consequence, the relationship between W and W1

is not fixed. Second, in the training process, T will contain a certain amount of noise

due to the random batch sampling, so it is hard to get an accurate T. Therefore, it

is difficult to obtain an accurate W from the optimization of W1.

To maintain the benefits of batch feature whitening on optimization, we propose to

use a modified gradient BL
BW

T to replace the original weight gradient BL
BW

, and name

the method Embedded Feature Whitening (EFW), which embeds the information of

feature whitening into the weight gradient. EFW can be introduced into the FC layer,

convolutional layer, and Norm layer. Compared with the weight updating formula of

SGD Wt`1 “ Wt ´ η BL
BWt , the updating formula of SGD with EFW is

Wt`1
“ Wt

´ η
BL

BWt
Tt. (6.5)

The detailed updating formulas are summarized in TABLE 6.1. We ignore the factor

126

6.3. Embedded Feature Whitening

Table 6.1: The updating formulas and whitening matrices of FC, Conv and Norm
layers in SGD with the proposed EFW.

Layer Updating formula Whitening matrix

FC layer Wt`1 “ Wt ´ η BL
BWtT

t Tt “

´

XtXtT
¯´ 1

2

Conv layer U1pWt`1q “ U1pWtq ´ ηU1p
BL

BWt qTt Tt “

´

XtXtT
¯´ 1

2

Norm layer

„

γt`1

βt`1

ȷ

“

„

γt

βt

ȷ

´ ηTt

„

BL
Bγt

BL
Bβt

ȷ

Tt “

ˆ„

vecpXtqT

1T

ȷ

rvecpXtq,1s

˙´ 1
2

1{N in the second-order statistic because of the gradient norm recovery operation,

which will be explained in Section 6.3.5.

For the FC layer, we need to calculate the second-order statistic of input activation,

i.e, XtXtT , and the whitening matrix Tt, which can be obtained by SVD decompo-

sition of XtXtT . For the Conv layer, the difference from the FC layer lies in that

we need to unfold the convolution operation to matrix multiplication first. The con-

volution operation can be formulated as a matrix multiplication with the im2col

operation [99, 108], and then the Conv layer can be viewed as an FC layer. The

updating formula of weights for the Conv layer is list in TABLE 6.1, where U1p¨q is

the mode 1 unfold operation of a tensor and X is the matrix of Xt after im2col op-

eration. The normalization layers usually have a channel-wise affine transformation,

which is also a linear operation. Suppose that the normalized features are Xt and the

parameters of affine transformation are γ and β for one channel, we can obtain the

updating rules for γ, β as shown in the bottom row of TABLE 6.1. If the mean and

variance of Xt are zero and one, the second-order statistics will be a diagonal 2 ˆ 2

matrix. For example, when BN [32] and IN [88, 30] are used, the update rules for

pγ, βq degrade to the case of SGD. However, for other normalization methods such

as GN [93] and LN [44], the mean and variance of each channel may not be zero and

one.

In practice, to avoid that the condition number of the statistic matrix XtXtT is too

127

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

large, we need to add an additional term ϵI to the statistic matrix, where I is an

identity matrix and ϵ is the damping parameter. We will discuss how to choose a

proper ϵ in the next section.

6.3.5 Implementation of EFW

Momentum. The estimation of the second-order statistics of X is very important

for the whitening methods. The original batch whitening method can only use the

current batch statistics for computation, and hence they are very sensitive to the

training batch size. When the training batch size is small, the batch statistics will

have large noise so that the training will be unstable. In contrast, our proposed EFW

method works directly on the final weight updating stage, and it does not change the

forward propagation and backward propagation during training. Therefore, EFW

can adopt the statistics from more batches to achieve a more accurate estimation of

feature statistics. Specifically, we compute the momentum of the batch statistics as

follows:

Mt
xx “ αMt´1

xx ` p1 ´ αqXtXtT , (6.6)

where Mt
xx is the momentum of statistics XXT in iteration t and α is the momentum

parameter. As an approximation to the population of feature statistics, momentum

can significantly reduce the noise caused by random batch sampling.

Statistics Computation. Feature whitening methods need to compute the second-

order statistics and then compute the whitening matrix for feature learning. The

previous batch whitening methods need to perform these computations in each iter-

ation for each batch because the batch statistics and whitening matrix are involved

in forward and backward propagations. This however introduces a large amount of

computational burden.

Different from the previous batch whitening methods, in our proposed EFW there

128

6.3. Embedded Feature Whitening

is no need to compute the second-order statistics and the whitening matrix in each

iteration. We only need to compute them once for many iterations. Two hyperparam-

eters, Txx and Tsvd, are introduced to control the interval for updating the statistics

matrix and the whitening matrix, respectively. For the whitening matrix, the updat-

ing interval should be set larger because its computation involves SVD decomposition,

which is more computationally expensive. In our experiments, we set Txx “ 50 and

Tsvd “ 500 and we find that they work effectively to improve the DNN optimization

performance without introducing much additional computation cost.

We also implement a cross-GPU synchronization method to facilitate the computation

of more reliable feature statistics when using multiple GPUs. For each linear layer,

the statistics are first computed on each GPU and then synchronized across all GPUs.

This method shares a similar spirit with Synchronized BN (SyncBN) [67, 10]. How-

ever, the synchronization operation in SyncBN needs to be performed during both

the forward propagation and backpropagation processes for each BN layer, which will

cost a certain amount of time. Fortunately, the synchronization operation in our

algorithm can be implemented independently after forward propagation and back-

propagation, so that its cost is negligible. With this synchronization operation, the

computation of feature statistics is more stable even when the per-GPU batch size is

small.

Adaptive Damping. The dimension of Mt
xx is very high and it is usually a very

singular matrix. When the condition number of Mt
xx is too large, it will be unstable

to compute the inverse square root of it. To avoid such a case, in practice we need to

add an additional term ϵI to the statistic matrix, where I is an identity matrix and

ϵ is a damping parameter.

Too-small damping may not improve the condition number of Mt
xx, while too strong

damping may reduce the accuracy of statistics. Therefore, it is important to choose a

proper damping parameter ϵ. For different layers in a DNN, the statistics Mt
xx may

have different magnitude. Thus, it is improper to use a uniform damping scheme for

129

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

Algorithm 8: Embedded Feature Whitening (EFW)

Input: Txx, Tsvd, α, M
t´1
xx , Tt´1, ϵ, input activation Xt, gradient ∇WtL

Output: G̃t

1 Gt “ ∇WtL
2 if t%Txx “ 0 then

3 Mt
xx “ αMt´1

xx ` p1 ´ αqXtXtT % Momentum step
4 else
5 Mt

xx “ Mt´1
xx

6 end
7 if t%Tsvd “ 0 then
8 UDUT “ Mt

xx % SVD decomposition

9 Tt “ UpD ` ϵdmaxIq
´1{2UT % Whitening matrix with adaptive damping

10 else
11 Tt “ Tt´1

12 end

13 Ĝt “ GtTt % Adjust gradient with whitening matrix

14 G̃t “ Ĝt ||Gt||2

||Ĝt||2
; % Gradient norm recovery

all layers. By taking the magnitude of different features into consideration, we choose

an adaptive damping parameter ϵdmax, where dmax is the max singular value of Mt
xx.

It is easy to show that the condition number of Mt
xx ` ϵdmaxI is dmax`ϵdmax

dmin`ϵdmax
ă 1`ϵ

ϵ
.

In practice, we can first compute the SVD decomposition of Mt
xx, i.e, UDUT “

Mt
xx, and then obtain the whitening matrix by Tt “ UpD ` ϵdmaxIq

´1{2UT . The

computation cost of adaptive damping is the same as fixed damping.

Gradient Norm Recovery. SGDM and Adam are among the most commonly used

optimizers in training DNNs. Their hyperparameters, including learning rate and

weight decay, have been well-tuned by researchers on many specific tasks. For exam-

ple, in objection detection, SGDM with a learning rate 0.02 and weight decay 0.0001

is widely adopted. A natural question is can we hold these well-tuned hyperparame-

ters in the proposed method to ease the tedious work of hyperparameter tuning? If

this can be done, EFW can be easily used for solving various vision tasks without

further hyperparameter tuning.

In the proposed EFW, the scale of adjusted gradient Ĝt “ GtTt might be changed.

130

6.4. Experiment Results

This implies that the optimal setting of hyperparameters should be changed for the

adopted optimizer, limiting the application of the proposed method. Fortunately, this

problem of gradient scale changing can be easily addressed by recovering the gradient

norm, which is

G̃t
“ Ĝt ||Gt||2

||Ĝt||2
, (6.7)

It is easy to see that G̃t and Gt have the same L2 norm. With the gradient norm re-

covery operation, G̃t can be readily used in the employed optimizers (e.g , SGDM and

Adam) to achieve favorable performance without additional hyperparameter tuning.

Of course, one may further improve the performance by tuning fine-grained hyperpa-

rameters around their default settings.

Algorithm of EFW. The complexity of EFW is T pOp
C3

in

Tsvd
q`Op

C2
inN

Txx
q`OpC2

inCoutqq

for a FC layer, and T pOp
C3

ink
3
1k

3
2

Tsvd
q ` Op

C2
ink

2
1k

2
2N

Txx
q ` OpC2

ink
2
1k

2
2Coutqq for a Conv layer,

where T is the total number of iterations. Since Txx and Tsvd can be set as large

numbers in our implementation (50 and 500, respectively), the complexity is accept-

able. The algorithm of EFW is summarized in Algorithm 8. In the experiments,

we apply EFW to the two commonly used DNN optimizers, i.e, SGDM and Adam

(or AdamW), and name the obtained new optimizers as W-SGDM and W-Adam

accordingly.

6.4 Experiment Results

6.4.1 Experiment Setup

We evaluate the proposed W-SGDM and W-Adam on various vision tasks, includ-

ing image classification (on CIFAR100/CIFAR10 [39] and ImageNet [75]), object

detection and segmentation (on COCO [48]), and Person Re-identification (Person

ReID, on Market1501 [114] and DukeMTMC-ReID [73]). The compared methods

131

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

Table 6.2: The learning rate (LR), weight decay (WD) and weight decay methods for
different optimizers on CIFAR100 and CIFAR10. The weight decay methods include
L2 regularization weight decay (WD1) and weight decouple (WD2).

Optimizer SGDM AdamW RAdam Ranger Adabelief AdaHessian Apollo W-SGDM W-Adam
LR 0.1 0.001 0.001 0.001 0.001 0.15 0.01 0.05 0.0005
WD 0.0005 0.5 0.5 0.5 0.5 0.0005 0.05 0.001 1

WD method WD1 WD2 WD2 WD2 WD2 WD2 WD2 WD1 WD2

include the representative and state-of-the-art DNN optimizers, including SGDM,

AdamW [51], RAdam [49], Ranger [49, 110, 100] and Adabelief [115], AdaHessian1 [97]

and Apollo [59]. For the competing methods, we use the default settings for most

of their hyper-parameters, and tune their learning rates and weight decays to report

their best results.

We first testify W-SGDM andW-Adam with different DNNmodels on CIFAR100/CIFAR10,

including VGG11 [82], ResNet18, ResNet50 [22] and DenseNet-121 [25]. Then we

perform experiments on ImageNet to validate their performance on the large-scale

datasets. After that, we test W-SGDM on COCO for detection and segmentation,

and test W-Adam on Market1501 [114] and DukeMTMC-ReID for Person ReID to

demonstrate that EFW can be easily adopted to finetune pre-trained models. All ex-

periments are conducted under the Pytorch 1.7 framework with eight NVIDIA Tesla

P100 GPUs. For the hyper-parameters of EFW, we set α “ 0.95, Txx “ 50 and

Tsvd “ 500, ϵ “ 0.001 throughout the experiments if not specified. Ablation studies

on hyperparameter selection are also provided.

6.4.2 Image Classification

Results on CIFAR100 and CIFAR10:

CIFAR100 and CIFAR10 [39] are two popular datasets to testify DNN optimiz-

ers. They include 50K training images and 10K testing images from 100 categories

1Since AdaHessian is very memory expensive, we can only give partial results in the following
experiments.

132

6.4. Experiment Results

T
ab

le
6.
3:

T
es
ti
n
g
ac
cu
ra
ci
es

(%
)
on

C
IF
A
R
10
0/
C
IF
A
R
10
.
T
h
e
b
es
t
an

d
se
co
n
d
b
es
t
re
su
lt
s
ar
e
h
ig
h
li
gh

te
d
in

b
ol
d
an

d
it
al
ic
fo
n
ts
,
re
sp
ec
ti
ve
ly
.
T
h
e
n
u
m
b
er
s
in

re
d
co
lo
r
in
d
ic
at
e
th
e
im

p
ro
ve
m
en
t
of

W
-S
G
D
M
/W

-A
d
am

ov
er

S
G
D
M
/A

d
am

W
,

re
sp
ec
ti
ve
ly
.
”-
”
m
ea
n
s
th
at

th
e
re
su
lt
is
n
ot

av
ai
la
b
le

d
u
e
to

th
e
p
ro
b
le
m

of
”o
u
t
of

m
em

or
y
”.

C
IF
A
R
10
0

M
o
d
el

S
G
D
M

A
d
am

W
R
A
d
am

R
an

ge
r

A
d
ab

el
ie
f

A
d
aH

es
si
an

A
p
ol
lo

W
-S
G
D
M

W
-A

d
am

R
18

77
.2
0˘

.3
0

77
.2
3˘

.1
0

77
.0
5˘

.1
5

76
.7
5˘

.1
1

77
.4
3˘

.3
6

76
.7
3˘

.2
3

76
.6
3˘

.2
7

7
9
.2
8

˘
.2
7
(Ò
2.
08
)

78
.7
5

˘
.1
6(

Ò
1.
52
)

R
50

77
.7
8˘

.4
3

78
.1
0˘

.1
7

78
.2
0˘

.1
5

78
.1
3˘

.1
2

79
.0
8˘

.2
3

78
.4
8˘

.2
2

78
.6
8˘

.1
1

8
0
.9
0

˘
.2
3
(Ò
3.
12
)

80
.1
5

˘
.2
2(

Ò
2.
05
)

V
11

70
.8
0˘

.2
9

71
.2
0˘

.2
9

71
.0
8˘

.2
4

70
.5
8˘

.1
4

72
.4
3˘

.1
6

67
.7
8˘

.3
4

70
.0
5˘

.1
1

7
3
.4
2

˘
.2
8
(Ò
2.
62
)

72
.9
2

˘
.1
4(

Ò
1.
72
)

D
12
1

79
.5
3˘

.1
9

78
.0
5˘

.2
6

78
.6
5˘

.0
5

78
.2
8˘

.0
8

79
.8
8˘

.0
8

-
79
.1
0˘

.2
1

8
1
.2
3

˘
.1
0
(Ò
1.
70
)

80
.1
0

˘
.2
5(

Ò
2.
05
)

C
IF
A
R
10

R
18

95
.1
0˘

.0
7

94
.8
0˘

.1
0

94
.7
0˘

.1
8

94
.7
5˘

.1
8

95
.1
2˘

.1
4

94
.7
0˘

.1
5

95
.0
3˘

.1
2

9
5
.4
3

˘
.0
8
(Ò
0.
33
)

95
.2
0

˘
.1
0(

Ò
0.
40
)

R
50

94
.7
5˘

.3
0

94
.7
2˘

.1
0

94
.7
2˘

.1
0

95
.2
7˘

.1
2

95
.3
5˘

.0
5

95
.3
5˘

.1
1

95
.2
7˘

.1
1

9
5
.8
0

˘
.1
5
(Ò
1.
05
)

95
.7
0

˘
.0
7(

Ò
0.
98
)

V
11

92
.1
7˘

.1
9

92
.0
2˘

.0
8

92
.0
0˘

.1
8

92
.1
0˘

.0
7

92
.4
5˘

.1
8

91
.8
5˘

.1
6

92
.3
8˘

.1
9

9
2
.9
5

˘
.2
0
(Ò
0.
78
)

92
.8
8

˘
.1
9(

Ò
0.
86
)

D
12
1

95
.3
7˘

.1
7

94
.8
0˘

.0
7

95
.0
2˘

.0
8

95
.4
5˘

.1
1

95
.3
7˘

.0
4

-
95
.4
7˘

.0
4

9
5
.7
2

˘
.1
4
(Ò
0.
35
)

95
.4
7

˘
.1
2(

Ò
0.
67
)

133

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

Table 6.4: The learning rate (LR), weight decay (WD) and weight decay methods
and for different optimizers on ImageNet.The weight decay methods include L2 reg-
ularization weight decay (WD1) and weight decouple (WD2).

Optimizer SGDM AdamW RAdam Ranger Adabelief AdaHessian Apollo W-SGDM W-Adam

R18
LR 0.1 0.001 0.001 0.001 0.001 0.15 1 0.1 0.001
WD 0.0001 0.1 0.1 0.1 0.05 0.0005 0.0001 0.0001 0.1

R50
LR 0.1 0.001 0.001 0.001 0.001 - 1 0.1 0.001
WD 0.0001 0.1 0.05 0.1 0.1 - 0.0001 0.002 0.2

WD method WD1 WD2 WD2 WD2 WD2 WD2 WD1 WD1 WD2

and 10 categories, respectively, and the resolution of the input image is 32 ˆ 32.

We conduct experiments on these two relatively small-scale datasets to illustrate

the effectiveness of W-SGDM and W-Adam with different DNN backbone mod-

els, including VGG11 (V11), ResNet18 (R18), ResNet50 (R50) and DenseNet121

(D121)2. All the DNN models are trained for 200 epochs with batch size 128 on

one GPU. The learning rate is multiplied by 0.1 for every 60 epochs. We tune

the learning rate in t1e´4, 5e´4, 1e´3, 5e´3, 1e´2, 5e´2, 0.1, 0.15u and weight decay in

t1e´4, 5e´4, 1e´3, 5e´3, 1e´2, 5e´2, 0.1, 0.5, 1u, and choose the best combination of them

for all methods. The detailed settings can be found in Table 6.2. We use the default

settings for other hyperparameters.

The experiments are repeated 4 times and the results are reported in Table 6.3 in

mean ˘ std format. We can see that W-SGDM and W-Adam achieve the best and

second-best testing accuracies for all the used DNN models. More specifically, W-

SGDM improves SGDM from 1.7% to 3.12% on CIFAR100, and from 0.33% to 1.05%

on CIFAR10, while W-Adam improves AdamW from 1.52% to 2.05% on CIFAR100,

and from 0.4% to 0.98% on CIFAR10. Among the adaptive learning rate methods,

Adam, AdamW, RAdam and Ranger perform worse than SGDM, while only Adabelief

outperforms SGDM but it is still much worse than W-SGDM and W-Adam. It can

be seen that the generalization performance of W-SGDM and W-Adam significantly

surpass other optimizers, validating the effectiveness of our proposed EFW scheme.

2These models for CIFAR100/10 can be downloaded at the repository https://github.com/

weiaicunzai/pytorch-cifar100.

134

https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/weiaicunzai/pytorch-cifar100

6.4. Experiment Results

Table 6.5: Top 1 accuracy (%) on the validation set of ImageNet. The numbers
in red color indicate the improvement of W-SGDM/W-Adam over SGDM/AdamW,
respectively. ”-” means that the result is not available due to the problem of ”out of
memory”.

Model SGDM AdamW [51] RAdam [49] Ranger Adabelief [115] AdaHessian [97] Apollo [59] W-SGDM W-Adam
R18 70.47 70.01 69.92 69.35 70.08 70.08 70.39 71.43 (Ò0.96) 71.59(Ò1.58)
R50 76.31 76.02 76.12 75.95 76.22 - 76.32 77.48(Ò1.17) 76.83 (Ò0.81)

0 20 40 60 80 100

epoch

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy
(%

)

Training

SGDM & R18

W-SGDM & R18

SGDM & R50

W-SGDM & R50

0 20 40 60 80 100

epoch

0.4

0.5

0.6

0.7

0.8
A

cc
u
ra

cy
(%

)
Validation

SGDM & R18

W-SGDM & R18

SGDM & R50

W-SGDM & R50

0 20 40 60 80 100

epoch

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy
(%

)

Training

AdamW & R18

W-Adam & R18

AdamW & R50

W-Adam & R50

0 20 40 60 80 100

epoch

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy
(%

)

Validation

AdamW & R18

W-Adam & R18

AdamW & R50

W-Adam & R50

Figure 6.1: Training and validation accuracy curves of SGDM, W-SGDM, AdamW
and W-Adam on ImageNet with ResNet18 and ResNet50.

Results on ImageNet:

We then evaluate W-SGDM and W-Adam on the large-scale image classification

dataset ImageNet [75], which consists of 1.28 million training images and 50K val-

idation images from 1000 categories. ResNet18 and ResNet50 are employed as the

backbone models with training batch size 256 on 4 GPUs. The standard settings

in [9] are used, where the models are trained for 100 epochs. We refer to the strate-

gies in [115] to set the learning rate and weight decay. The detailed settings for

different optimizers can be found in the Table 6.4. The top 1 accuracies of competing

optimizers on the validation set are reported in Table 6.5. We can see that W-SGDM

and W-Adam are the top 2 performers. Specifically, W-SGDM outperforms SGDM

by 0.96% and 1.17%, and W-Adam outperforms AdamW by 1.58% and 0.81% for

ResNet18 and ResNet50, respectively. The training and validation accuracy curves

of SGDM vs. W-SGDM and AdamW vs. W-Adam are plotted in Fig. 6.1. For

ResNet18, the learning rate and weight decays of W-SGDM and W-Adam are the

same as SGDM and AdamW, respectively. While for ResNet50, the weight decays

of W-SGDM and W-Adam are set larger than SGDM and AdamW. It can be seen

135

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

Table 6.6: Detection and segmentation results of Faster-RCNN on COCO. ∆ means
the gain of W-SGDM over SGDM.

Backbone Algorithm AP AP.5 AP.75 APs APm APl

SGDM 37.4 58.1 40.4 21.2 41.0 48.1
R50 W-SGDM 39.4 60.6 43.1 23.1 42.9 50.7

∆ Ò2.0 Ò2.5 Ò2.7 Ò1.9 Ò1.9 Ò2.6
SGDM 39.4 60.1 43.1 22.4 43.7 51.1

R101 W-SGDM 41.1 61.6 45.1 24.0 45.2 54.3
∆ Ò1.7 Ò1.5 Ò2.0 Ò1.6 Ò1.5 Ò3.2

that W-SGDM and W-Adam achieve both higher training accuracy and validation

accuracy than SGDM and AdamW. This indicates that EFW can not only boost the

generalization performance but also speed up the training process of DNN models on

large-scale datasets.

6.4.3 Object Detection and Segmentation

We then test W-SGDM on COCO [48] detection and segmentation tasks to show that

it can be adopted for finetuning pre-trained models without changing the hyperpa-

rameters of SGDM, which is the default optimizer with well-tuned hyperparameters

for these tasks. The pre-trained models are downloaded from the PyTorch official

websites. They are fine-tuned on COCO train2017 (118K images) with 4 GPUs

and 4 images per GPU, and then evaluated on COCO val2017 (40K images). The

latest version of MMDetection [10] toolbox is used as the framework. We adopt

the official implementations and settings for all experiments here. The backbone net-

works include ResNet50 (R50) and ResNet101 (R101). The Feature Pyramid Network

(FPN) [47] is also used. The learning rate schedule is 1X for both Faster-RCNN [72]

and Mask-RCNN [20].

As we discussed in Section 6.3.5, with the gradient norm recovery operation in EFW,

we can directly adopt the hyperparameters of SGDM into W-SGDM. Table 6.6 lists

the Average Precision (AP) of object detection by Faster-RCNN. One can see that the

136

6.4. Experiment Results

Table 6.7: Detection results of Mask-RCNN on COCO. ∆ means the gain of W-
SGDM and W-Adan over SGDM and AdamW, respectively.

Backbone Algorithm APb APb
.5 APb

.75 APm APm
.5 APm

.75

SGDM 38.2 58.8 41.4 34.7 55.7 37.2
R50 W-SGDM 39.8 60.8 43.4 36.4 57.6 38.9

∆ Ò1.6 Ò2.0 Ò2.0 Ò1.7 Ò1.9 Ò1.7
SGDM 40.0 60.5 44.0 36.1 57.5 38.6

R101 W-SGDM 41.7 62.5 45.5 37.9 59.4 40.8
∆ Ò1.7 Ò2.0 Ò1.5 Ò1.8 Ò1.9 Ò2.2

AdamW 42.7 65.2 46.8 39.3 62.2 42.2
Swin-T W-Adam 43.4 65.7 47.5 40.1 63.0 43.2

∆ Ò0.7 Ò0.5 Ò0.7 Ò0.8 Ò0.8 Ò1.0

0 2 4 6 8

Iteration (10k)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
o
ss

Faster-RCNN

SGDM

W-SGDM

0 2 4 6 8

Iteration (10k)

0.5

1

1.5
Mask-RCNN

SGDM

W-SGDM

Figure 6.2: Training loss curves on COCO by ResNet50.

models trained by W-SGDM achieve a clear performance boost of 2.0% for ResNet50

and 1.7% for ResNet101. Table 6.7 reports the APb of detection and APm of segmenta-

tion by Mask-RCNN. W-SGDM gains APb by 1.6% and 1.7% on object detection and

1.7% and 1.8% on segmentation for ResNet50 and ResNet101, respectively. Fig. 6.2

shows the training loss curves of Faster-RCNN and Mask-RCNN with ResNet50 back-

bone. One can see that W-SGDM accelerates the training process and achieves a more

favorable local minimum than SGDM. This experiment clearly validates that EFW

can be readily embedded into existing optimizers without extra hyper-parameter tun-

ing.

137

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

Table 6.8: Rank1(%) and mAP(%) on Market1501 and DukeMTMC-reID. ∆ means
the gain of W-Adam over Adam.

Dataset Market1501 DukeMTMC-reID
Backbone Algorithm Rank1 mAP Rank1 mAP

Adam 91.7 77.8 82.5 68.8
R18 W-Adam 91.8 79.2 83.5 70.4

∆ Ò0.1 Ò1.4 Ò1.0 Ò1.6
Adam 94.5 85.9 86.4 76.4

R50 W-Adam 94.5 86.5 87.5 77.2
∆ Ò0.0 Ò0.6 Ò1.1 Ò0.8

Adam 94.5 87.1 87.6 77.6
R101 W-Adam 95.0 87.9 88.2 78.3

∆ Ò0.5 Ò0.8 Ò0.6 Ò0.7

Table 6.9: Testing accuracy (%) of ResNet18 by W-SGDM on CIFAR100 w.r.tϵ.

ϵ 1e´5 1e´4 1e´3 1e´2 1e´1

Acc 78.97 79.05 79.28 78.88 78.50

6.4.4 Person Re-identification

In this section, we use two widely used Person ReID benchmarks, Market1501 [114]

and DukeMTMC-ReID [73], to show that W-Adam can also be easily adopted into

pre-trained models without extra hyperparameter tuning. In this task, the Adam

with L2 regularization weight decay usually outperforms other optimizers and its hy-

perparameters have been well-tuned. The person ReID baselines in [52] are used3.

The default hyperparameters of Adam, such as learning rate and weight decay, are

directly applied to W-Adam. The experiments are repeated 4 times, and the av-

erage results are reported. Table 6.8 shows the Rank1 and mAP on Market1501

and DukeMTMC-ReID with ResNet18, ResNet50, ResNet101 backbones. It is clear

that W-Adam outperforms much Adam, especially in mAP. This experiment again

demonstrates the advantages of EFW as a general DNN optimization technique.

3https://github.com/michuanhaohao/reid-strong-baseline

138

https://github.com/michuanhaohao/reid-strong-baseline

6.4. Experiment Results

6.4.5 Ablation study

Hyperparameter Tuning:

We first tune the damping parameter ϵ. A too small ϵ cannot improve the condition

number of the statistic matrix, while a too large ϵ will suppress the useful information

in the second order statistics. The results of ResNet18 trained by W-SGDM on

CIFAR100 with different ϵ in {1e´5, 1e´4, 1e´3, 1e´2, 1e´1} are shown in Table 6.9.

We can clearly see that ϵ “ 1e´3 is the best choice and we adopt it in our experiments.

We then tune Txx and Tsvd to balance the performance and efficiency. Because of

the high computational cost of SVD decomposition, Tsvd should be set larger than

Txx. We test six combinations of Txx and Tsvd, and report their testing accuracies

and training time per epoch (sec/epoch) in Table 6.10. We see that the combination

of Txx “ 50 and Tsvd “ 500 can balance the performance and efficiency well, and it is

chosen as our default setting in the proposed EFW.

Training Efficiency:

We conduct experiments on CIFAR100 with ResNet18 to study the training efficiency

of EFW. To better evaluate the efficiency of EFW, we compare it with a representative

whitening method ND [99] by applying them to SGD and AdamW. For EFW, we test

two settings: Txx “ 50 and Tsvd “ 500 (setting 1), and Txx “ 200 and Tsvd “ 2000

(setting 2). Table 6.11 shows the testing accuracies and training time of the original

SGDM/AdamW, ND and our EFW.

ND balances the accuracy and efficiency by adjusting the sampling stride, while EFW

trades off the accuracy and training time by adjusting Txx and Tsvd. From Table 6.11,

we can see that EFW costs less than 30% additional training time over the original

SGDM/AdamW but achieves convincing performance gain over them. Setting 2 is

faster but its accuracy is lower than setting 1 (default). In contrast, the whitening

139

Chapter 6. An Embedded Feature Whitening Approach to Optimize a Deep Neural
Network

Table 6.10: Testing accuracy (%) and training efficiency of ResNet18 by W-SGDM
and W-Adam on CIFAR100 w.r.tTxx and Tsvd.

Algorithm
Txx 5 10 20 50 100 200
Tsvd 50 100 200 500 1000 2000

W-SGDM
Acc 79.40 79.33 79.23 79.28 79.11 79.02

Sec/epoch 85.50 58.32 38.93 29.78 26.03 24.25

W-Adam
Acc 78.84 78.79 78.76 78.75 78.67 78.40

Sec/epoch 90.17 60.1 40.9 30.18 27.14 25.55

Table 6.11: Testing accuracy (%) and training efficiency (sec/epoch) of ResNet18 by
SGDM/AdamW, ND [99] and EFW on CIFAR100.

Algorithm Original
ND ND EFW EFW

stride=1 stride=3 setting 1 setting 2

SGDM
Acc 77.20 79.07 78.65 79.28 79.02

Sec/epoch 23.45 184.23 65.37 29.78 24.25

AdamW
Acc 77.23 78.02 77.82 78.75 78.40

Sec/epoch 24.21 188.97 66.25 30.18 25.55

method ND with stride 1 or stride 3 (default) consumes more than twice the training

time than original SGDM/AdamW, while its performance gain is not as solid as

EFW. Clearly, EFW is much more efficient to perform feature whitening and achieves

a more favorable performance boost than ND. It overcomes the major drawbacks of

whitening methods and inherits their advantages, providing a practical solution to

perform feature whitening under the deep learning framework.

6.5 Conclusion

In this chapter, we proposed a novel DNN optimization technique, namely Embedded

Feature Whitening (EFW), to address the drawbacks of conventional feature whiten-

ing methods, such as inapplicable to pre-trained DNN models, large computation

cost, extra parameter introduction, and so on. Different from the existing feature

whitening methods, which usually perform a whitening operation on features during

forward propagation, EFW only adjusts the gradient of weight with the whitening

140

6.5. Conclusion

matrix without changing the forward and backward propagation processes of DNN

model training. Meanwhile, we developed the associated momentum, statistics matrix

computation, adaptive damping and gradient norm recovery techniques to make EFW

effective and efficient to use. By adopting EFW to the popular SGDM and Adam

optimizers, the resulting W-SGDM and W-Adam methods demonstrated superior

performance to the leading DNN optimizers in various vision tasks with acceptable

extra computation, including image classification, detection, segmentation and person

ReID.

141

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Optimization methods play an essential role in deep learning, while it is very chal-

lenging to train a very deep neural network (DNN) because of the non-linearity of

network architecture, non-convexity of objectives function, too many local minima

and saddle points, gradient vanishing and exploding, etc. A desired optimization

technique or algorithm should speed up the training process and improve the final

generalization performance. Most existing optimization algorithms are mainly based

on the gradient descent technique due to its efficiency and effectiveness. It updates the

parameters along the opposite direction of gradient in each iteration, which contains

three steps: forward propagation, backward propagation, and updating parameters.

A lot of optimization methods have been developed from different perspectives, in-

cluding feature normalization, weight constraints, gradient constraints, optimization

algorithm, learning rate schedule, and so on. In this thesis, we made some attempts to

design reliable optimization methods on feature normalization, gradient constraints,

optimization algorithms.

Batch Normalization (BN) can largely improve the effectiveness and efficiency in

142

7.1. Conclusion

training various types of DNNs. Nevertheless, the working mechanism of BN is not

fully revealed yet. In Chapter 2, we first revealed that the generalization capability

of BN comes from its noise generation mechanism in training, and then presented an

explicit regularization formulation of BN to explain how it works. Consequently, we

presented a modified version of BN, namely Momentum Batch Normalization (MBN).

By using a dynamic momentum parameter, the noise level in the estimated mean

and variance can be well controlled in MBN. What’s more, the conventional inference

method of BN, i.e, EMA, makes the training and inference stages of BN have a certain

difference. To reduce the statistics disparity of BN between training and inference, in

Chapter 3, we proposed an effective inference approach of BN, namely batch statistics

regression (BSR). Without changing the training of BN, the proposed BSR does not

need to change the training of BN, and it only needs to store four statistics in training

with negligible cost of computation and memory. Both MBN and BSR improve BN

largely, especially when training with a small batch size.

For gradient constraints, in Chapter 4, we proposed a simple but effective approach

that operates directly on gradients. To be specific, it removes the mean from the

gradient vectors and centralizes them to have zero mean. We called it Gradient

Centralization (GC), which can not only smooth and accelerate the training process of

DNN but also improve the model generalization performance. Meanwhile, we showed

that GC actually constrains the loss function by introducing a new constraint on the

weight vector, which regularizes both weight space and output feature space. We also

showed that this constrained loss function has better Lipschitzness than the original

one so that it makes the training process more stable and efficient. We performed

comprehensive experiments to demonstrate that GC can consistently improve the

performance of learned DNN models in different applications. It is a simple, general

and effective optimization technique for deep learning.

For the weight update algorithm, based on the observation that performing weight

gradient descent tends to update the features into a low dimensional space so that

143

Chapter 7. Conclusion and Future Work

the feature learning efficacy is reduced, in Chapter 5 we proposed a new DNN opti-

mizer, namely feature stochastic gradient descent (FSGD), which takes the gradient

of the intermediate features into consideration to update weights. We calculated

the second-order statistic matrix of the input features in a liner layer and adopted

its inverse to modify the gradient of weight. Compared with existing DNN opti-

mizers that perform gradient descent on weight, FSGD can follow more informative

directions to reach a favorable feature space. Moreover, to address the drawbacks

of conventional feature whitening methods, in Chapter 6 we proposed a novel DNN

optimization technique, namely Embedded Feature Whitening (EFW). Different from

the existing feature whitening methods, which usually use a whitening operation on

features during forward propagation, EFW only adjusts the gradient of weight with

the whitening matrix without changing the forward and backward propagation during

training. EFW works effectively and efficiently. We applied it to two popular opti-

mizers, i.e, SGDM and Adam, and the resulting W-SGDM and W-Adam optimizers

achieve superior performance in various vision tasks.

7.2 Future Work

In future work, we will further conduct our study in the following possible directions:

‚ The first two works in this thesis, i.e, MBN and BSR, only aim to improve BN.

There are many other feature normalization methods besides BN. Investigating

more effective feature normalization for DNN optimization is still a hot research

topic, and we will investigate more powerful feature normalization methods.

‚ Our current implementation of GC only considers the mean of the gradients.

How to extend it with more constraints needs more investigation, e.g , con-

straints on the high-order statistics of the gradient. In the future, we will

investigate high-order statistics constraints on the gradient of weights.

144

7.2. Future Work

‚ The proposed FSGD and EFW consider the three conventional types of layer,

i.e, fully-connected layer, common convolutional layer, and normalization layer.

In the future, we will extend them on more types of layers, i.e, self-attention

layer and DW Conv layer.

‚ We will apply our proposed methods on more tasks, such as image restoration,

action recognition, speech recognition, visual object tracking, industrial defect

detection, person ReID, crowd counting, etc.

145

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, pages 308–318. ACM, 2016.

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George

Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan.

Youtube-8m: A large-scale video classification benchmark. arXiv preprint

arXiv:1609.08675, 2016.

[3] Guozhong An. The effects of adding noise during backpropagation training on

a generalization performance. Neural computation, 8(3):643–674, 1996.

[4] Christopher M. Bishop. Training with noise is equivalent to tikhonov regular-

ization. Neural Computation, 7(1):108–116, 1995.

[5] Johan Bjorck, Carla Gomes, Bart Selman, and Kilian Q. Weinberger. Under-

standing batch normalization. pages 7694–7705, 2018.

[6] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of

Neuro-Nımes, 91(8):12, 1991.

[7] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

146

References

[8] Miguel Carreira-Perpinan andWeiran Wang. Distributed optimization of deeply

nested systems. In Artificial Intelligence and Statistics, pages 10–19. PMLR,

2014.

[9] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan

Gu. Closing the generalization gap of adaptive gradient methods in training

deep neural networks. arXiv preprint arXiv:1806.06763, 2018.

[10] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,

Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open

mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155,

2019.

[11] Minhyung Cho and Jaehyung Lee. Riemannian approach to batch normaliza-

tion. In Advances in Neural Information Processing Systems, pages 5225–5235,

2017.

[12] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. In

Advances in neural information processing systems, pages 3123–3131, 2015.

[13] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks: Training deep neural networks with weights

and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[14] Linda Crocker and James Algina. Introduction to classical and modern test

theory. ERIC, 1986.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

147

References

[16] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

Research, 12(Jul):2121–2159, 2011.

[17] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pages 249–256, 2010.

[18] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher.

A closer look at deep learning heuristics: Learning rate restarts, warmup and

distillation. arXiv preprint arXiv:1810.13243, 2018.

[19] Harshit Gupta, Kyong Hwan Jin, Ha Q Nguyen, Michael T McCann, and

Michael Unser. Cnn-based projected gradient descent for consistent ct image

reconstruction. IEEE transactions on medical imaging, 37(6):1440–1453, 2018.

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision, pages

2961–2969, 2017.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE international conference on computer vision, pages

1026–1034, 2015.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[23] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better:

closing the generalization gap in large batch training of neural networks. In

Advances in Neural Information Processing Systems, pages 1731–1741, 2017.

148

References

[24] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 4700–4708, 2017.

[26] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and

Bo Li. Orthogonal weight normalization: Solution to optimization over multiple

dependent stiefel manifolds in deep neural networks. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[27] Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng Tao. Centered

weight normalization in accelerating training of deep neural networks. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages

2803–2811, 2017.

[28] Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normaliza-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 791–800, 2018.

[29] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization:

Beyond standardization towards efficient whitening. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 4874–4883,

2019.

[30] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adap-

tive instance normalization. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 1501–1510, 2017.

149

References

[31] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence

in batch-normalized models. In Advances in neural information processing sys-

tems, pages 1945–1953, 2017.

[32] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[33] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propa-

gation for deep semi-supervised learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5070–5079, 2019.

[34] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei. Large-scale video classification with convolutional neu-

ral networks. In Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 1725–1732, 2014.

[35] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li.

Novel dataset for fgvc: Stanford dogs. In San Diego: CVPR Workshop on

FGVC, volume 1, 2011.

[36] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1646–1654, 2016.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[38] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object represen-

tations for fine-grained categorization. In Proceedings of the IEEE International

Conference on Computer Vision Workshops, pages 554–561, 2013.

[39] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. Technical report, Citeseer, 2009.

150

References

[40] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[41] Anders Krogh and John A Hertz. A simple weight decay can improve general-

ization. In Advances in neural information processing systems, pages 950–957,

1992.

[42] Måns Larsson, Anurag Arnab, Fredrik Kahl, Shuai Zheng, and Philip Torr. A

projected gradient descent method for crf inference allowing end-to-end training

of arbitrary pairwise potentials. In International Workshop on Energy Mini-

mization Methods in Computer Vision and Pattern Recognition, pages 564–579.

Springer, 2017.

[43] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Ef-

ficient backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer,

2012.

[44] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[45] R V Lenth. cumulative distribution function of the non-central t distribution.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 38(1):185–

189, 1989.

[46] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. Adap-

tive batch normalization for practical domain adaptation. Pattern Recognition,

80:109–117, 2018.

[47] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,

and Serge Belongie. Feature pyramid networks for object detection. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

2117–2125, 2017.

151

References

[48] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common

objects in context. In European conference on computer vision, pages 740–755.

Springer, 2014.

[49] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jian-

feng Gao, and Jiawei Han. On the variance of the adaptive learning rate and

beyond. arXiv preprint arXiv:1908.03265, 2019.

[50] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm

restarts. arXiv preprint arXiv:1608.03983, 2016.

[51] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017.

[52] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei Jiang. Bag of tricks

and a strong baseline for deep person re-identification. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-

shops, pages 0–0, 2019.

[53] Hao Luo, Wei Jiang, Youzhi Gu, Fuxu Liu, Xingyu Liao, Shenqi Lai, and

Jianyang Gu. A strong baseline and batch normalization neck for deep person

re-identification. IEEE Transactions on Multimedia, 2019.

[54] Ping Luo, Zhanglin Peng, Jiamin Ren, and Ruimao Zhang. Do normaliza-

tion layers in a deep convnet really need to be distinct? arXiv preprint

arXiv:1811.07727, 2018.

[55] Ping Luo, Jiamin Ren, and Zhanglin Peng. Differentiable learning-to-normalize

via switchable normalization. arXiv preprint arXiv:1806.10779, 2018.

[56] Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng. Towards under-

standing regularization in batch normalization. 2018.

152

References

[57] Ping Luo, Peng Zhanglin, Shao Wenqi, Zhang Ruimao, Ren Jiamin, and

Wu Lingyun. Differentiable dynamic normalization for learning deep repre-

sentation. In International Conference on Machine Learning, pages 4203–4211,

2019.

[58] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective

approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

[59] Xuezhe Ma. Apollo: An adaptive parameter-wise diagonal quasi-

newton method for nonconvex stochastic optimization. arXiv preprint

arXiv:2009.13586, 2020.

[60] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and An-

drea Vedaldi. Fine-grained visual classification of aircraft. arXiv preprint

arXiv:1306.5151, 2013.

[61] James Martens and Roger Grosse. Optimizing neural networks with kronecker-

factored approximate curvature. In International conference on machine learn-

ing, pages 2408–2417. PMLR, 2015.

[62] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529, 2015.

[63] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010.

[64] Jorge Nocedal and Stephen J Wright. Sequential quadratic programming. Nu-

merical optimization, pages 529–562, 2006.

153

References

[65] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the ex-

ploding gradient problem. CoRR, abs/1211.5063, 2, 2012.

[66] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of

training recurrent neural networks. In International conference on machine

learning, pages 1310–1318, 2013.

[67] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang

Yu, and Jian Sun. Megdet: A large mini-batch object detector. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

6181–6189, 2018.

[68] Ning Qian. On the momentum term in gradient descent learning algorithms.

Neural networks, 12(1):145–151, 1999.

[69] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Weight

standardization. arXiv preprint arXiv:1903.10520, 2019.

[70] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.

Xnor-net: Imagenet classification using binary convolutional neural networks.

In European Conference on Computer Vision, pages 525–542. Springer, 2016.

[71] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learn-

ing. 2016.

[72] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[73] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi.

Performance measures and a data set for multi-target, multi-camera tracking.

In European conference on computer vision, pages 17–35. Springer, 2016.

154

References

[74] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[75] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

Imagenet large scale visual recognition challenge. International journal of com-

puter vision, 115(3):211–252, 2015.

[76] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparame-

terization to accelerate training of deep neural networks. In Advances in Neural

Information Processing Systems, pages 901–909, 2016.

[77] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How

does batch normalization help optimization? (no, it is not about internal co-

variate shift). pages 2483–2493, 2018.

[78] Wenqi Shao, Tianjian Meng, Jingyu Li, Ruimao Zhang, Yudian Li, Xiaogang

Wang, and Ping Luo. Ssn: Learning sparse switchable normalization via spars-

estmax. arXiv preprint arXiv:1903.03793, 2019.

[79] Alexander Shekhovtsov and Boris Flach. Stochastic normalizations as bayesian

learning. In Asian Conference on Computer Vision, pages 463–479. Springer,

2018.

[80] Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening and coloring

batch transform for gans. arXiv preprint arXiv:1806.00420, 2018.

[81] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural

networks and tree search. nature, 529(7587):484, 2016.

[82] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

155

References

[83] Saurabh Singh and Abhinav Shrivastava. Evalnorm: Estimating batch nor-

malization statistics for evaluation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3633–3641, 2019.

[84] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017

IEEE Winter Conference on Applications of Computer Vision (WACV), pages

464–472. IEEE, 2017.

[85] Cecilia Summers and Michael J Dinneen. Four things everyone should know to

improve batch normalization. arXiv preprint arXiv:1906.03548, 2019.

[86] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the

importance of initialization and momentum in deep learning. In International

conference on machine learning, pages 1139–1147, 2013.

[87] M Teye, H Azizpour, and K Smith. Bayesian uncertainty estimation for batch

normalized deep networks. arXiv preprint arXiv:1802.06455, 2018.

[88] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance nor-

malization: The missing ingredient for fast stylization. arXiv preprint

arXiv:1607.08022, 2016.

[89] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al.

Matching networks for one shot learning. In Advances in neural information

processing systems, pages 3630–3638, 2016.

[90] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On or-

thogonality and learning recurrent networks with long term dependencies. In

Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 3570–3578. JMLR. org, 2017.

[91] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Be-

longie. The caltech-ucsd birds-200-2011 dataset. 2011.

156

References

[92] Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal

convolutional neural networks. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 11505–11515, 2020.

[93] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 3–19, 2018.

[94] Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init:

Exploring better solution for training extremely deep convolutional neural net-

works with orthonormality and modulation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 6176–6185, 2017.

[95] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggre-

gated residual transformations for deep neural networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1492–1500,

2017.

[96] Junjie Yan, Ruosi Wan, Xiangyu Zhang, Wei Zhang, Yichen Wei, and Jian

Sun. Towards stabilizing batch statistics in backward propagation of batch

normalization. arXiv preprint arXiv:2001.06838, 2020.

[97] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and

Michael W Mahoney. Adahessian: An adaptive second order optimizer for

machine learning. arXiv preprint arXiv:2006.00719, 2020.

[98] Zhuliang Yao, Yue Cao, Shuxin Zheng, Gao Huang, and Stephen Lin. Cross-

iteration batch normalization. arXiv preprint arXiv:2002.05712, 2020.

[99] Chengxi Ye, Matthew Evanusa, Hua He, Anton Mitrokhin, Tom Goldstein,

James A Yorke, Cornelia Fermüller, and Yiannis Aloimonos. Network decon-

volution. arXiv preprint arXiv:1905.11926, 2019.

157

References

[100] Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient

centralization: A new optimization technique for deep neural networks. arXiv

preprint arXiv:2004.01461, 2020.

[101] Hongwei Yong, Jianqiang Huang, Deyu Meng, Xiansheng Hua, and Lei Zhang.

Momentum batch normalization for deep learning with small batch size. In

Proceedings of the European Conference on Computer Vision, 2020.

[102] Hongwei Yong, Jianqiang Huang, Deyu Meng, Xiansheng Hua, and Lei Zhang.

Momentum batch normalization for deep learning with small batch size. In

European Conference on Computer Vision, pages 224–240. Springer, 2020.

[103] Hongwei Yong, Deyu Meng, Wangmeng Zuo, and Lei Zhang. Robust online

matrix factorization for dynamic background subtraction. IEEE transactions

on pattern analysis and machine intelligence, 40(7):1726–1740, 2017.

[104] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[105] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning requires rethinking generalization. arXiv

preprint arXiv:1611.03530, 2016.

[106] Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mecha-

nisms of weight decay regularization. arXiv preprint arXiv:1810.12281, 2018.

[107] Huishuai Zhang, Wei Chen, and Tie-Yan Liu. On the local hessian in back-

propagation. Advances in Neural Information Processing Systems, 31:6520–

6530, 2018.

[108] Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Train feedfoward neural network

with layer-wise adaptive rate via approximating back-matching propagation.

arXiv preprint arXiv:1802.09750, 2018.

158

References

[109] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond

a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE

Transactions on Image Processing, 26(7):3142–3155, 2017.

[110] Michael R Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. Lookahead

optimizer: k steps forward, 1 step back. arXiv preprint arXiv:1907.08610, 2019.

[111] Ruimao Zhang, Zhanglin Peng, Lingyun Wu, Zhen Li, and Ping Luo. Ex-

emplar normalization for learning deep representation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

12726–12735, 2020.

[112] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile devices. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

6848–6856, 2018.

[113] Hongyi Zheng, Hongwei Yong, and Lei Zhang. Deep convolutional dictionary

learning for image denoising. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 630–641, 2021.

[114] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and

Qi Tian. Scalable person re-identification: A benchmark. In Proceedings of

the IEEE international conference on computer vision, pages 1116–1124, 2015.

[115] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek,

Xenophon Papademetris, and James S Duncan. Adabelief optimizer: Adapting

stepsizes by the belief in observed gradients. arXiv preprint arXiv:2010.07468,

2020.

159

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Overview of Optimization Techniques in Deep Learning
	Feature Normalization and Whitening
	Weight Normalization and Weight Constraints
	Gradient Constraints
	Weight Update Algorithm
	Learning Rate Schedule

	Contributions and Organization of the Thesis
	Notation system

	Momentum Batch Normalization for Deep Learning with Small Batch Size
	Introduction
	Related Work
	The Regularization Nature of BN
	Noise Generation of BN
	Explicit Regularization Formulation

	Momentum Batch Normalization
	Noise Estimation
	Momentum Parameter Setting
	Algorithm

	Experimental Results
	Datasets and Experimental Setting
	Parameters Setting
	Results on CIFAR10/100
	Results on Mini-ImageNet-100

	Conclusion

	Batch Statistics Regression for Effective Inference of Batch Normalization
	Introduction
	Statistics of Batch Normalization
	Batch Normalization
	Problem of EMA for BN Inference
	Stochasticity in Batch Statistics
	Expectation of Batch Statistics

	Batch Statistics Regression
	Batch Statistics Regression Model
	Online Updating Formula
	Relationship with EMA
	Measure of Disparity

	Experiments
	CIFAR100/CIFAR10
	ImageNet
	Fine-grained Image Classiﬁcation
	Object Detection

	Conclusion

	Gradient Centralization: A Simple and Effective Optimization Technique for Deep Learning
	Introduction
	Related Work
	Gradient Centralization
	Motivation
	Formulation of GC
	Embedding of GC to SGDM/Adam

	Properties of GC
	Improving Generalization Performance
	Accelerating Training Process

	Experimental Results
	Setup of Experiments
	Results on Mini-Imagenet
	Experiments on CIFAR100
	Results on ImageNet
	Results on Fine-grained Image Classification
	Object Detection and Segmentation

	Conclusions

	Training Deep Neural Networks with Feature-based Gradient Descent
	Introduction
	Related Work
	First-order Optimizers
	Second-order Optimizers
	Normalization and Whitening
	Motivation
	Feature Gradient Descent
	Detailed Implementation
	Extension to Other Optimizers

	Discussions
	Relationship with Back-matching Propagation
	Relationship with Feature Whitening

	Experiment Results
	Experiment Setup
	Results on CIFAR100 and CIFAR10
	Results on ImageNet
	Object Detection and Segmentation
	Ablation Study

	Conclusion

	An Embedded Feature Whitening Approach to Optimize a Deep Neural Network
	Introduction
	Related Work
	Embedded Feature Whitening
	Overview of Batch Feature Whitening
	Drawbacks of Feature Whitening
	Removal of Recovery and Centralization Operations
	Formulation of Embedded Feature Whitening
	Implementation of EFW

	Experiment Results
	Experiment Setup
	Image Classification
	Object Detection and Segmentation
	Person Re-identification
	Ablation study

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

