
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

 

 

 

 

MULTI-FIDELITY MODELLING BASED ON 

ADAPTIVE SPARSE POLYNOMIAL CHAOS 

EXPANSION FOR BRIDGE DAMAGE 

IDENTIFICATION 

 

 

BEIYANG ZHANG 

 

 

 

PhD 

The Hong Kong Polytechnic University 

2022 



 

 

 

 

The Hong Kong Polytechnic University 

Department of Civil and Environmental Engineering 

 

 

 

Multi-fidelity Modelling Based on Adaptive Sparse 

Polynomial Chaos Expansion for Bridge Damage 

Identification 

 

 

Beiyang ZHANG 

 

 

A thesis submitted in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy 

 

March 2022 

  



I 

CARTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge and 

belief, it reproduces no material previously published or written, nor material that has been accepted 

for the award of any other degree or diploma, except where due acknowledgement has been made 

in the text. 

     (Signed) 

Beiyang ZHANG (Name of student) 



 

II 

 

 

 

 

 

 

 

Dedicated to my family 

for their love and support 

 



 

III 

ABSTRACT 

For bridge damage identification, two types of methods are popularly used, namely, physics-

based methods and data-driven approaches. Physics-based methods identify the structural damage 

with the aid of a physical model. The damage location and severity can be identified, but such 

methods are prone to the modelling error. Data-driven approaches directly interpret real 

observations from a structure of concern by using some statistical methods. The modelling error can 

be avoided, but a large amount of measurement data is required, and only the existence of damage 

can be detected upon most occasions. Therefore, this thesis intends to investigate a Multi-Fidelity 

(MF) modelling technique that can capitalise on the merits from both physics-based and data-driven 

methods. Accurate surrogate models will be trained to help in damage identification, in which the 

modelling error caused by temperature can be correctly eliminated. Moreover, the required 

measurements are far less than those used in data-driven approaches.  

In this thesis, Polynomial Chaos Expansion (PCE) method is employed to build the PCE 

surrogate model owing to its simple model structure and training process. However, challenges also 

exist in PCE, such as the “curse of dimensionality” issue and adaptive modelling problem. Therefore, 

we first introduce two novel adaptive modelling techniques to facilitate the PCE method in 

application to engineering problems. In order to adaptively collect samples for PCE training, a 

hybrid sequential sampling strategy is developed, which leverages both the input information of 
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PCE model and the output information from observations to instruct the sampling process. 

Meanwhile, the sparse regression procedure is used along with this strategy to train a sparse PCE 

model. As a result, the samples could be collected with high quality and in relatively small quantity. 

By evaluating on several benchmark functions, it is shown that the proposed strategy outperforms 

most existing methods. Next, a novel adaptive basis selection strategy is developed to adaptively 

determine the model structure, which consists of three procedures, basis expansion, pruning and 

refinement. By using this strategy, the proper truncation degree for PCE modelling can be selected 

automatically, and the training cost will also be reduced benefitting from removing the insignificant 

polynomial bases. To reconcile the sequential sampling and the adaptive basis selection in a 

consistent framework, a stability evaluation process which works in parallel with the sequential 

sampling process is introduced. As a result, this consistent PCE modelling framework can collect 

appropriate samples and determine the best model structure all in an automatic way. Through 

evaluating on several benchmark functions, this PCE modelling framework is demonstrated with 

satisfactory performance and high efficiency. By using this framework, the PCE models as surrogate 

to the physical model of the bridge structure are established, in which the pattern of frequency data 

concerning the structural parameters is of interest in this study.  

In real applications, however, it is more practical to predict the responses of real structure rather 

than the physical model to help in damage identification, since the physical model will inevitably 

contain modelling errors. As the most influential environmental factor, temperature affects bridge 
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structures in a complicated way, and such effect is generally difficult to be simulated correctly. Thus, 

to eliminate the temperature-induced modelling error in the surrogate model, a Transfer Learning 

(TL) based Multi-Fidelity PCE (MFPCE) modelling technique is presented. The PCE model 

stemming from a finite element model is regarded as Low-Fidelity (LF) model, and the frequencies 

collected from the real bridge under healthy condition belong to High-Fidelity (HF) data. By 

updating the temperature-related polynomial terms in the LF model with HF data, MFPCE model 

can be formulated, where the temperature effect is considered more accurately.  

Based on the formulated MFPCE model, the sparse damage identification is performed and 

discussed in the last part of the research. Since the PCE model generally has a strong nonlinear 

property, traditional sparse representation approaches that work for linear systems are unsuitable 

for this case. Therefore, an approximate 𝑙0 sparse damage identification approach is developed by 

combining a heuristic algorithm, i.e., Cuckoo Search Algorithm (CSA), with the discrepancy 

principle. We first give assumptions to the number of damages as prior information for the 

optimisation equation. Then, the optimal solution involving damage locations and severities under 

each assumption is obtained by using CSA. Through comparison among the optimisation residuals 

under different assumptions, the discrepancy principle is used to find the correct number of damages, 

and the damage locations and severities can thus be obtained. Finally, a numerical bridge model and 

an experimental beam model are explored for verification. Results demonstrate the effectiveness of 

the proposed MF modelling technique and the damage identification approach.  
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CHAPTER 1  

INTRODUCTION 

                                                                                

 

1.1 Research Background and Motivations 

Bridge is an important civil infrastructure to cross river, valley and even sea, which is 

commonly designed with long lifespan and high durability. Due to the operational and 

environmental effects, bridge will inevitably suffer from structural damages, and these damages 

may have a fatal impact to its performance during the life cycle period. Without timely maintenance, 

these damages will accumulate and ultimately lead to bridge collapse. Thus, it is expected that 

damages could be detected in their early stage to avoid the structural failure (Fan and Qiao, 2011). 

Currently, there are two primary techniques to assess the bridge condition, namely, the in-situ Non-

Destructive Testing (NDT) and Structural Health Monitoring (SHM) (Jayasundara et al., 2020; 

McKeon et al., 2014; Pérez and Serra-López, 2019). NDT is normally a periodical routine detection 

to identify the bridge condition. It is generally laborious, and the detection is not real-time. By 

contrast, SHM proposes to garner real-time measurements from a bridge through a number of 

permanently installed sensors. By processing measurements with some techniques, the anomalies 

on the bridge structure can be identified in time. Hence, SHM can work in a more efficient and 
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economical way. However, challenges still remain for the SHM application. For example, the 

number of deployed sensors might be limited due to the project budget, and exploring techniques 

for interpreting and storing massive data could be another challenge. Therefore, many studies have 

focused on developing the damage identification methods that can be applied based on spatially 

sparse measurements.  

Regarding the damage identification methods for bridges, the vibration-based approaches are 

a kind of mature technique that can recognise damage in a global way (Hou and Xia, 2021). They 

evaluate the dynamic features from the measured vibration signals and then assess the bridge 

condition by comparing the changes in the dynamic characteristics. The vibration measurements 

can be acceleration, velocity, displacement, or dynamic strain. With the development of sensing 

technology, measuring vibration signals has become more and more convenient and cheap, and the 

measuring precision has also been highly improved. Thus, such approaches have been widely 

implemented in many fields, involving mechanical, aerospace, and civil engineering, etc. 

(Abdeljaber et al., 2017; Lam et al., 1998; Liu et al., 2014).  

In general, there are two kinds of methods that were popularly used in the existing vibration-

based damage identification techniques, physics-based methods and data-driven approaches (Hou 

et al., 2018b, 2020; Huang and Beck, 2015; Jayasundara et al., 2020; Zhu et al., 2018, 2019). 

Physics-based methods identify damages by comparing the outputs from a physical model (e.g., 

finite element model) with the observations from real structure (Huang and Beck, 2015). Here, the 
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physical model can be substituted by a surrogate model for the sake of cost saving. The advantage 

is that both the location and severity of damage can be identified. But such methods are hard to 

consider the measurement noise, and they are prone to the modelling error, such as incorrect 

modelling of the environmental effects. Data-driven approaches employ statistical methods to 

directly process observations from the real structure in healthy or damaged state (Zhu et al., 2019). 

The modelling error can be avoided, and the measurement noise can be considered in the modelling 

process. However, such approaches were usually used to detect the existence of damage. The 

damage location and severity are difficult to be assessed since collecting comprehensive labelled 

data from real structure in damaged state is impractical. To summarise, physics-based methods have 

more challenges in building accurate physical models, and data-driven approaches have more 

limitations in actual applications. To overcome the drawbacks and capitalise on the merits from both 

methods, the combinational approaches were developed, such as model updating, digital twin and 

Multi-Fidelity (MF) modelling (Bigoni and Hesthaven, 2020; Das and Debnath, 2018; Diez-Olivan 

et al., 2019; Gregory et al., 2019). The principle behind the combinational approaches is to update 

a physical model or its surrogate model by using a small number of real observations. The modelling 

error is expected to be eliminated, and the measurement noise can be taken into account. 

Subsequently, damage identification can be performed based on the updated model to achieve 

results with higher precision than that based on the original model. At present, exploiting the 

combinational approaches has become a research hotspot, which is calling for more in-depth 
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investigations.  

Although numerous studies were conducted in developing the damage identification 

approaches, there are still several challenges that should be paid attention to: 

(1) The number of sensors in an SHM system is limited, that is, the available measurement 

points are finite. The quantity of potential damage locations is typically greater than that of available 

measurement points, which results in an underdetermined issue (Hou et al., 2018b). In other words, 

the problem has non-unique solutions. Hence, finding the unique optimal solution is a big challenge. 

Recently, the sparse representation techniques were utilised to cope with this issue and have 

received promising results (Ding et al., 2019; Hou et al., 2018b; Huang and Beck, 2013).  

(2) The vibration characteristics of a bridge are not only influenced by damage, but also 

affected by the environmental effects, such as temperature, humidity, and wind, etc., in which the 

temperature is generally considered the most influential factor (Sun et al., 2018). Response 

variations caused by the temperature effect in a bridge structure can often exceed those caused by 

damage (Bao et al., 2012; Erazo et al., 2019; Huang et al., 2018). If the temperature is not well-

considered, the damage is not able to be correctly recognised. Nonetheless, it was found that the 

impact mechanism of temperature on bridge is extremely sophisticated (Han et al., 2021). 

Identifying damage with consideration of the temperature effect still needs further studies.  

This thesis intends to investigate the surrogate modelling technique and damage identification 
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method for bridge structures considering temperature effect. To achieve the targets, Polynomial 

Chaos Expansion (PCE) is recommended to build the surrogate model. PCE is an outstanding 

polynomial regression method, which was broadly implemented in the field of uncertainty 

quantification, sensitivity analysis and reliability evaluation (Wan et al., 2020; Ng and Eldred, 2012; 

Zhou et al., 2020), owing to its simple modelling structure and training process. Nonetheless, it 

suffers from the “curse of dimensionality” issue when applied to problems with high input 

dimension or high polynomial degree (Lüthen et al., 2020). The PCE model will have an extremely 

large cardinality in modelling such problem so that massive samples and observations are required 

for training, and this will result in unacceptable computational cost. Besides, several other 

challenges in PCE should also draw our attention, such as choosing appropriate sample set, 

determining a proper sample quantity, and selecting the best truncation degree, etc. (Blatman and 

Sudret, 2010, 2011; Jakeman et al., 2015). Therefore, we first try to tackle these challenges by 

developing two adaptive modelling strategies. A novel sequential sampling strategy is developed to 

adaptively collect training samples. The input information from the PCE model and the output 

information from the target responses are both leveraged to instruct the sampling process, so the 

samples can be collected with high quality and in relatively small quantity, and the best sample 

quantity can be automatically determined. Then, an adaptive basis selection strategy is proposed. 

Three procedures involving basis expansion, pruning and refinement contribute to selecting the 

significant basis terms and removing the insignificant basis terms in the PCE model. Not only the 
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proper truncation degree can be chosen, but also the best model structure can be selected.  

Furthermore, a framework is introduced to reconcile the sequential sampling strategy and adaptive 

basis selection strategy into a consistent algorithm, in which a sparse representation method is 

employed for regression calculation. Benefitting from these adaptive modelling strategies, the PCE 

model can be adaptively built for a target task. The sparse representation and adaptive basis selection 

both contribute to reducing the training cost, which enable the implementation of PCE technique 

for complicated problems.  

For the target of damage identification, the surrogate model was generally built depending on 

a physical model (Gregory et al., 2019). However, the physical model will inevitably differ from 

the real structure due to the existence of modelling error. As the most influential environmental 

factor, temperature will affect the bridge structure in a complicated way. Rationally considering the 

temperature effect in the physical model or its surrogate model is a challenge. Here, we present to 

use the MF modelling technique to eliminate the temperature-induced modelling error in the PCE 

surrogate model. Regarding the PCE model as Low-Fidelity (LF) model and the observations from 

real bridge as High-Fidelity (HF) data, the MF modelling technique proposes to update the LF model 

by using the HF data. To overcome the difficulty that the observations (HF data) from bridge under 

damaged condition are commonly deficient in practice, the concept of Transfer Learning (TL) is 

introduced to the traditional Multi-Fidelity PCE (MFPCE) modelling process. The knowledge of 

damage that leant from the physical model is retained in the PCE model, and the temperature-related 
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polynomial bases are updated with the measurements from bridge in healthy condition. Ultimately, 

the MFPCE model can correctly consider the temperature effect and is further used to help in 

damage identification.  

In the final part of this thesis, an approximate 𝑙0  sparse damage identification method is 

developed based on the PCE model. The principle behind those damage identification approaches 

which employed data models or surrogate models is to find a set of damage parameter values that 

can minimise the residual between the model evaluations and real responses. The traditional sparse 

recovery algorithms will fail in this study since the system (PCE model) is nonlinear. Hence, a 

heuristic algorithm, Cuckoo Search Algorithm (CSA), is employed to solve the optimisation 

problem with nonlinear system, and a discrepancy principle is introduced to determine the solution 

sparsity. Finally, the damage can be recognised with its location and severity. By validating on a 

simulation bridge model and an experimental beam model, the TL based MFPCE modelling 

technique will be compared with the traditional MFPCE technique to demonstrate its effectiveness. 

Also, the performance of the approximate 𝑙0 sparse damage identification method will be verified 

on the two cases.  

1.2 Research Objectives 

This study intends to develop a completely adaptive PCE modelling framework and a novel 

MF technique for building accurate PCE model as surrogate to the real bridge structure. By 

introducing a novel sparse damage identification method, the damage occurred on the bridge can be 
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identified correctly based on the surrogate model. The detail objectives in this study are: 

1. To propose a hybrid sequential sampling strategy for sparse PCE modelling. The existing 

sequential sampling strategies mostly rely on information from single source, such as the 

information from input distribution, polynomial bases or observations already be collected. To 

consider information from different sources, a hybrid sequential sampling strategy is explored, in 

which sparse representation is recommended to further reduce training cost.  

2. To develop an adaptive basis selection strategy and combine it with the sequential sampling 

and sparse representation. Adaptive basis selection is an important strategy to help select the 

significant basis terms during the training process and determine the best PCE truncation degree 

automatically. Meanwhile, performing the adaptive basis selection and sequential sampling 

concurrently also has practical necessity. In this study, a novel adaptive basis selection strategy with 

high efficiency is pursued, and an adaptive PCE modelling framework is developed to effectively 

combine the adaptive basis selection and sequential sampling strategies.  

3. To capitalise on the concept of TL in the MFPCE framework to eliminate the temperature-

induced modelling error. Utilising real observations to update the temperature-induced modelling 

error in the surrogate model can be realised by MF modelling, whereas the observations from 

structure under damaged condition are generally unavailable. The concept of TL enables the 

updating process to reduce its dependence on the real observations. Accurate surrogate model to the 



 

9 

real bridge is expected to be trained without observations from damaged structure. 

4. To develop a sparse damage identification approach based on the PCE surrogate model. 

Sparse representation is an efficient tool in addressing damage identification problems, whereas the 

traditional sparse representation approaches are generally valid only for linear system. In this study, 

PCE model is a nonlinear system. A sparse damage identification approach for nonlinear system is 

required so that the damage can be identified with desired accuracy. 

1.3 Thesis Outline 

This thesis consists of seven chapters, which are briefly introduced as follows: 

Chapter 1 gives an overall introduction about this thesis, which involves the background and 

motivation, the introduction to the vibration-based damage identification methods and challenges, 

and the primary research objectives. 

Chapter 2 reviews the key contents in this study. The PCE technique and its pertinent 

developments are first introduced, including the brief history, sparse representation and adaptive 

modelling strategies. Then, the MF technique for PCE modelling is reviewed. After that, two kinds 

of damage identification methods, physics-based methods and data-driven approaches, are 

discussed. Finally, the temperature effects on bridge structures are reviewed, and their difficulties 

in numerical modelling are discussed. 

Chapter 3 proposes a hybrid sequential sampling approach for PCE model to adaptively collect 



 

10 

samples with high convergence rate, in which the Bayesian compressive sensing is employed as a 

sparse regression procedure to train a sparse PCE model. The idea of this sampling approach is to 

employ both the input information of PCE model and the output information from observations to 

instruct the sampling process in a sequential way. As a result, samples could be collected with high 

quality and in relatively small quantity, and the best sample quantity can be automatically 

determined. As an example, the coherence-optimal sampling method is combined with Bayesian 

experimental design to build a coherence-entropy method. This method is evaluated on several 

benchmark functions through comparison with three input-dependent only methods and two output-

dependent only methods. 

Chapter 4 presents a novel adaptive basis selection strategy, which is then combined with the 

sequential sampling method to build a fully adaptive PCE modelling framework. The adaptive basis 

selection strategy has three procedures, basis expansion, pruning and refinement, which can 

adaptively select the significant polynomial bases of proper degree during the modelling process. 

To reconcile the sequential sampling and adaptive basis selection into a consistent modelling 

framework, a stability evaluation process is introduced. As a result, this adaptive PCE modelling 

framework is able to automatically determine the appropriate truncation degree and training sample 

set simultaneously. By evaluating on several benchmark functions, the fully adaptive PCE 

modelling framework is demonstrated to have good performance and high efficiency. Beyond that, 

this framework is also extended for modelling the multi-output problem. 
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Chapter 5 investigates a TL based MFPCE modelling technique to eliminate the temperature-

induced modelling error in the surrogate model. Firstly, the adaptive PCE modelling framework is 

used to build LFPCE models depending on the data from finite element model. Then, the HF 

observations collected from the real structure in healthy condition under different temperatures are 

collected to update the temperature-related terms in the LFPCE models. The knowledge of damage 

is transferred from the finite element model to the MF models when the real observations from 

damaged structure are deficient. Finally, MFPCE models are built, which can predict the responses 

of real structure with high accuracy. This method is assessed on a simulation bridge and an 

experimental beam by comparing with the traditional MFPCE technique.  

Chapter 6 develops an approximate 𝑙0  sparse damage identification method based on the 

formulated MFPCE models. Discrepancy principle is employed to find the best solution sparsity, 

and CSA is employed to garner the damage results involving locations and severities. Performance 

of the proposed damage identification method is evaluated on a simulation bridge model and an 

experimental beam model.  

Chapter 7 gives the conclusions, major findings and potential future works.  
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CHAPTER 2  

LITERATURE REVIEW 

                                                                                

 

As introduced in Chapter 1, the purpose of this study is to develop accurate surrogate model 

for real structure based on the Polynomial Chaos Expansion (PCE) and Multi-Fidelity (MF) 

modelling techniques. In the surrogate model, the temperature-induced modelling error can be 

eliminated, and the model can be further used for damage identification. Therefore, the first part of 

this chapter is to review the PCE technique with some state-of-art modelling techniques such as 

sparse representation and adaptive modelling. The advantages and disadvantages of PCE compared 

to other surrogate modelling techniques are also reviewed. After that, the MF modelling techniques 

that applied on engineering cases are reviewed, following by the review of the historically used 

physics-based and data-driven damage identification methods. Finally, the overview of temperature 

effects on bridge is given, so the research gap concerned in this study can be clearly elaborated.  

2.1 Polynomial Chaos Expansion 

2.1.1 Introduction 

PCE is a kind of method to represent a target variable through a polynomial function of input 
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variables, and these variables are all random variables (Xiu and Karniadakis, 2002). A significant 

property of these polynomials is that they are orthogonal to each other with respect to the joint 

probability density function of the inputs. By the use of PCE model, the uncertainty propagated 

from the input variables to the target variable can be easily studied. Subsequently, the trained PCE 

model can be used for further analysis, such as Uncertainty Quantification (UQ) or sensitivity 

analysis (Ni et al., 2019; Sun et al., 2020).  

PCE originated from the so-called ‘homogeneous chaos’ that was presented by Wiener in 1938, 

which used Hermite polynomials to model the stochastic process with Gaussian random variables 

(Wiener, 1938). In applications, however, Wiener’s formulation was demonstrated difficult to 

include high-order terms so that its modelling accuracy cannot be guaranteed. Based on the Wiener-

Hermite expansion, a more explicit formulation was developed with high convenience in utility, 

named Wiener chaos expansion (Cameron and Martin, 1947). The core idea was to discretise the 

white noise process through its Fourier expansion, so this approach had a wide application in 

stochastic analysis involving white noise. The above models were proposed based on input variable 

with Gaussian distribution, but various variables with different distributions exist in reality. Hence, 

the generalised PCE (gPCE) was developed to summarise those polynomials that are orthogonal 

with respect to various types of distributions (Xiu and Karniadakis, 2002). In 2012, rigorous proofs 

of the existence and convergence of gPCE were provided (Ernst et al., 2012). Afterwards, the PCE 

technique became more and more mature, and it could be applied to many research areas 
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(Sepahvand et al., 2010; Sudret, 2008; Xu and Kong, 2018). Recently, the PCE technique was 

further developed to describe arbitrary variables with implicit distributions, which is called arbitrary 

PCE (aPCE) (Wan and Karniadakis, 2006). For those variables that do not have explicit or known 

distribution functions, aPCE can be employed to formulate the corresponding orthogonal 

polynomials through a data-driven process, and reliable PCE model can be built accordingly.  

Mathematically, the PCE model is a linear combination of different polynomials with unknown 

coefficients. These coefficients can be calculated through a training process, and the trained PCE 

model can then represent the target model. Generally, the training methods can be divided into two 

categories, intrusive and non-intrusive (Sudret, 2008). The intrusive method, or called Galerkin 

projection, is a kind of numerical analysis method (Crestaux et al., 2009). It requires the solving 

path adapted to the numerical code of the target problem, thereby calling intrusive. In the earlier 

studies, this method has been applied in several research areas, such as the seismic soil-structure 

interaction, stochastic constitutive relation, etc. (Ghanem and Ghiocel, 1998a, 1998b; Ghiocel and 

Ghanem, 2002). However, it would be challengeable for this approach to be applied on complicated 

problems since the modification of numerical code was arduous. Alternatively, non-intrusive 

methods emerged, which had a wider applicability than the intrusive method.  

In principle, the non-intrusive approaches do not require the numerical code or mathematical 

expression of the target problem. Instead, the evaluations of the target model under different input 

values are needed (Ng and Eldred, 2012). In other words, the solving path of the target problem is 
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inessential, and only the input-output data set is required. There are two kinds of methods in the 

non-intrusive approach, projection method and regression method (Sudret, 2008). Projection 

method leverages the orthogonal property of PCE bases. By multiplying a basis term to both sides 

of the PCE expression and taking integrals, the unknown coefficient that corresponds to the 

multiplied basis term will be retained while others will be eliminated (Blatman, 2009). Hence, the 

unknown coefficient can be received by calculating the integral. For most problems, however, the 

integral is analytical unsolvable, and thus the numerical integration techniques (e.g., Monte Carlo 

(MC), quadrature) were employed to receive the approximate solution (Debusschere et al., 2004). 

The regression method aims at computing the coefficients by minimising the mean square error of 

PCE approximations at sampled points (Blatman, 2009). These samples were named Experimental 

Design (ED) (Blatman and Sudret, 2010; Fajraoui et al., 2017). By collecting a set of ED and 

corresponding model evaluations, the coefficients can be calculated through regression estimation. 

It was indicated that the samples and corresponding model evaluations required by the regression 

method are far less than those needed by the projection method (Blatman, 2009). Thus, the training 

cost can be largely reduced in case the target model has a high complexity. Accordingly, a challenge 

of this method lies in the issue of selecting proper sample points so that the regression equations are 

well-conditioned. Developing the strategies to select samples with high quality has become a 

research hotspot, which will be elaborated in Section 2.1.4. To summarise, the regression method 

has a simple calculation process and a low training cost, so it is by far the most popular method in 
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training the PCE model.  

In applications, the PCE technique was generally used for solving UQ problem. Simulation 

models generated by computer to describe physical phenomena or engineering systems have been 

made available for decades with the development of computer technology. More and more complex 

simulation models are built to attain analysis results with high accuracy, and these models can be 

used as reliable references to help solve practical problems. However, the simulation modelling 

result will inevitably have discrepancy to the observations from real system. The uncertainty 

existent in the input parameters of a simulation model, which may induce estimation difficulty or 

inaccurate estimation of these parameters, is one of the causes, and this may produce erroneous 

judgement to the problems that we focus on (Blatman, 2009). The PCE technique can help explore 

the uncertainty propagation from the input parameters to the model output with lower cost than the 

traditional MC simulation, perturbation method, and first-order/second-order reliability methods 

(Kareem, 1988; Leng and He, 2006; Liu et al., 1986; Sepahvand et al., 2010; Vishwanathan and Vio, 

2019; Zhang and Du, 2010). Ng and Eldred (2012) applied the PCE technique to study the 

uncertainty propagation in some partially differential functions (e.g., Helmholtz equation in acoustic 

wave propagation). Wan et al. (2020) employed the aPCE technique to recognise the relation 

between design parameters and modal frequencies of bridge structures, and then the uncertainty 

propagated from the design parameters to the modal frequencies were studied. With the aid of UQ, 

further analysis on the input parameters or target system could be conducted, such as parameter 
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sensitivity analysis and system reliability analysis (Cheng and Lu, 2020; Ni et al., 2019; Sun et al., 

2020). Crestaux et al. (2009) employed the so-called Sobol’ indices to study the parameter 

sensitivity of some benchmark functions. Wan et al. (2020) investigated the sensitivity of each 

design parameter to the modal frequencies of bridge structures, which can provide reliable reference 

for structural design and monitoring. Marelli and Sudret (2018) compared the PCE technique with 

the MC simulation method and first-order/second-order reliability methods in investigating the 

reliability of a frame strucutre, in which the displacement was the target output. Zhou et al. (2020) 

investigated the reliability problem in vehicle crashworthiness, and the analysis results were further 

utilised to instruct the design optimisation. In addition to the research relying on the UQ outcomes, 

the PCE technique was also employed to build surrogate model in engineering problems. Here, the 

PCE model was commonly simplified as the response surface model, in which the polynomials are 

not orthogonal to each other. For instance, Stutz et al. (2018) adopted the response surface model to 

build a surrogate model of the flexibility matrix of a beam structure. Damages of the beam element 

could be identified by comparing the model outputs with the responses from structure under 

damaged state. Umar et al. (2018) utilised the second-order response surface models to describe the 

relations between the modal parameters (frequencies and mode shapes) and Young’s modulus of 

elements in a beam structure. Then, the model updating strategy was employed to identify damages. 

In these applications, it is worth noticing that the truncation degree of the model was very small 

because the training cost of high degree model was unacceptable.  
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As can be seen, the PCE model has a simple expression form, and its training process is easy 

to implement. However, the PCE model suffers from the “curse of dimensionality” issue that the 

quantity of unknown coefficients will grow exponentially with the increase of input dimensionality 

or truncation degree. The training cost, even with the regression method, will be unacceptable, 

which impedes the development of the PCE technique for surrogate modelling. In addition, the 

model selection is another challenge in PCE. The truncation degree for a PCE model should be 

selected before training but choosing the most appropriate degree value for an unknown problem is 

unpractical when no prior information is provided. Therefore, the PCE technique is currently 

popular in UQ and sensitivity analysis due to the low requirement on the truncation degree. For 

addressing problems with high complexity, more techniques should be introduced in PCE to ease 

the modelling process, which will be presented in the following sections. 

2.1.2 Compressive sensing and sparse representation 

As is introduced in the previous section, the regression method was a popular approach in PCE 

training due to its low requirement on the sample quantity. Even though, it still needs 𝑘𝑃 samples 

for getting robust solution, where 𝑃  denotes the number of unknown coefficients and 𝑘  is a 

constant which was recommended between 2 and 3 (Hosder et al., 2007). Since 𝑃  will grow 

exponentially with the increase of input dimensionality or truncation degree, the quantity of samples 

and corresponding model evaluations required by the regression method will also grow dramatically. 
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To facilitate the surrogate modelling via PCE technique, it is likely to use as less samples (model 

running times) to train a PCE model with as high precision as possible. In the past, one of the 

research areas in PCE focused on the development of state-of-art training strategies to reduce the 

dependency on the size of training dataset.  

The concept of sparse or compressibility was first introduced to PCE by Blatman and Sudret 

(Blatman, 2009; Blatman and Sudret, 2008, 2010). The so-called “sparsity of effects” principle 

stated that most phenomenon-describing models are dominated by the main effects and interactions 

of low order (Montgomery, 2006), so the real-world problems are generally considered 

compressible on polynomial chaos (Lüthen et al., 2021). This means that the PCE model can be 

expressed in a sparse way, in which most coefficients are zero. Based on the “sparsity of effects”, 

Blatman and Sudret (2011) created a truncation scheme called hyperbolic truncation. This scheme 

proposed to truncate the basis terms with high interaction effects under a given truncation degree, 

so the number of unknown coefficients could be largely reduced. Then, they developed an adaptive 

basis selection strategy based on the least angle regression method. By only retaining the basis terms 

that are significant to modelling the target model in the training process, the number of coefficients 

that needed to be solved were further reduced (Blatman and Sudret, 2011). Inspired by this concept, 

the sparse recovery technique has received considerable attention in PCE training.  

In 2006, the concept of Compressive Sensing (CS) was proposed. It is a signal processing 

technique for efficiently acquiring and reconstructing a signal. By assuming that the original signal 
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can be sparsely represented on a domain, CS theory demonstrated that the samples required to 

recover the original signal could be smaller than the samples collected based on the 

Nyquist/Shannon sampling theory (Candes et al., 2006; Donoho, 2006). As a result, only a small 

number of observations about the signal are necessary to be collected, and the original signal can 

be recovered with desired accuracy by using some optimisation tools. These tools were known as 

sparse representation methods. In CS, several sparse representation methods were proposed for 

recovering the original signal from sparse samples, such as Orthogonal Matching Pursuit (OMP), 

Basis Pursuit De-Noising (BPDN), iterative reweighted methods and Sparse Bayesian Learning 

(SBL), etc. (Chen et al., 1998; Mallat and Zhang, 1993; Needell, 2009; Tipping, 2001). In the last 

decade, the sparse representation methods have been broadly leveraged for training the Sparse PCE 

(SPCE) model. Jakeman et al. (2015) employed the OMP method to train the PCE model. In the 

modelling process, OMP was combined with an adaptive basis selection strategy, thereby further 

reducing the training cost. Based on the standard BPDN algorithm, a new weighted 𝑙1 

minimisation algorithm was proposed for PCE modelling by Peng et al. (2014). Comparing with 

the existing sparse representation methods, this weighted 𝑙1  minimisation algorithm was 

demonstrated to receive PCE model with better accuracy. Furthermore, the SBL method was also 

employed to train SPCE model (Zhou et al., 2019b). Under the Bayesian framework, a novel 

sampling strategy was proposed to enhance the sample quality, and the SPCE model was trained 

with robust performance. To summarise, it is often cheap to train an SPCE model with the aid of 
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sparse representation, which enables the PCE technique to deal with problems with high complexity.  

2.1.3 Adaptive modelling 

When solving the unknown PCE coefficients by using either regression approaches or sparse 

representation methods, it is no doubt that the sample quality will affect the PCE modelling 

precision, especially when the sample quantity is restricted. As a result, it is crucial to choose a set 

of well-designed samples for obtaining a reliable PCE model. The sample set was named as the 

Experimental Design (ED) (Blatman and Sudret, 2010; Fajraoui et al., 2017; Ni et al., 2017). In the 

context of PCE, many sampling strategies have been proposed, such as MC (Migliorati et al., 2014), 

Latin Hypercube Sampling (LHS) (Blatman and Sudret, 2010; Jakeman et al., 2015), D-optimal 

design (Burnaev et al., 2017; Diaz et al., 2018), and others (Alemazkoor and Meidani, 2018; Shin 

and Xiu, 2016; Thapa et al., 2020). Typically, samples will have good quality (e.g., the 

corresponding observations could discover more information about the target model) when they 

spread over the input domain in a space filling way (Crombecq et al., 2011; Sheikholeslami and 

Razavi, 2017). MC is a traditional way to generate random samples from a given distribution. 

However, when only a few samples are collected, the sample distribution may have a large 

discrepancy from the target distribution, that is, the samples will not be able to evenly spread across 

the probability space. LHS can overcome this drawback (Stein, 1987). Even when the sample 

number is small, the LHS method can collect samples from the target distribution in a space filling 
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way. Choi et al. (2004) leveraged the LHS method to collect samples for training the PCE model of 

the buckling eigenvalue of a joined-wing aircraft, which was then used for UQ. With the 

development of regression methods, some sampling strategies were presented for the target of 

receiving robust regression solutions. The D-optimal sampling strategy was proposed to make the 

samples contribute more to the training of the PCE model, which was originally designed for the 

Ordinary Least-Squares (OLS) method (Zein et al., 2013). To attain the smallest estimation 

uncertainty of coefficients in using the OLS method, samples are collected at those places which 

minimise the determinant of the information matrix. Thus, the training of PCE model with these 

samples will circumvent the ill-conditioned regression matrix. Moreover, there are some other 

similar criteria, such as S-optimal (Shin and Xiu, 2016), A-optimal (Thapa et al., 2018b) and K-

optimal (Loukrezis et al., 2020), etc., which were all proposed to optimise the sample distribution 

according to the information matrix in regression calculation. Apart from the strategies designed for 

regression-based PCE, it is also important to design appropriate sampling methods for PCE 

modelling with sparse representation. Diaz et al. (2018) extended the D-optimal design to collect 

samples for solving 𝑙1  minimisation problem by employing QR factorisation. The quantity 

limitation of samples in the least-square regression was removed. Based on the CS theory, Hampton 

and Doostan (2015) proposed a coherence-optimal sampling strategy, in which a lower bound of 

sample quantity which can cope with the 𝑙1 minimisation problem with desired accuracy in a high 

likelihood was deduced. In their work, the input distribution was modified by multiplying a weight 
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function to form a coherence-optimal distribution; thus, the regression matrix would have the lowest 

coherence when sampling from this distribution, and the samples needed for best recovery of sparse 

representation would be the minimum.  

Although the methods mentioned above were originated from different theories, they were 

designed to collect all samples at once. However, the best size (less but enough) of ED generally 

remains unknown when the target model information is not known a priori. It is hard to determine 

the best size of ED in advance. Sequential sampling strategy, or called active learning, has been 

proposed to cope with this problem in the field of PCE through refinement of the existed non-

sequential sampling methods. Subsequently, the concept of adaptive modelling for PCE emerged, 

and the sequential sampling has become one of the research hotspots. In principle, the sequential 

sampling strategy begins with a small ED size, and then gradually adds new samples and the 

corresponding model evaluations to the current selection set until a predefined stop criterion is 

satisfied (e.g., the precision of the trained PCE model). This kind of strategy is flexible to help 

determine the ED size because the previously selected samples and corresponding observations will 

be kept in the subsequent iterations, and the final sample size could be determined automatically. In 

the previous studies, LHS was coupled with sequential sampling to form a nested LHS method for 

the purpose of space filling (Blatman and Sudret, 2010). D-optimal design was refined with 

sequential sampling to achieve a robust evaluation of PCE model (Diaz et al., 2018). 

Besides the sampling problem, choosing an appropriate PCE model structure, which is known 
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as model selection problem, is also critical in getting precise modelling results (Tan, 2015). 

Basically, the model selection problem in PCE is to determine a proper truncation degree (Blatman 

and Sudret, 2011), or in a more complicated way, to choose the most significant basis terms (Ni et 

al., 2017). A PCE model is generally truncated with a given polynomial degree before training so 

that only a finite number of coefficients are needed to be solved. However, a small truncation degree 

cannot ensure promising accuracy of the trained PCE model, and an extremely large truncation 

degree will induce a heavy training cost in collecting massive samples and observations. When the 

sample quantity is restricted due to limitations in practice, the model cannot be trained with reliable 

solution. It is hard to determine an appropriate truncation degree in advance when little information 

about the target problem is available. To address this, adaptive basis selection strategies have been 

proposed, which aim to find the significant basis terms with low cost (less samples) (Jakeman et al., 

2015; Lüthen et al., 2020). The commonly used adaptive basis selection strategies can be 

summarised as follows: (1) Predefine a candidate set with basis terms of different degrees and add 

significant basis terms from this candidate set to the PCE model until the required modelling 

accuracy is achieved (Zhao et al., 2019); (2) Add basis terms of higher degree to the current PCE 

model iteratively for training while removing the insignificant basis terms until the required 

modelling accuracy is achieved (Blatman and Sudret, 2011; Jakeman et al., 2015; Loukrezis et al., 

2020; Thapa et al., 2020). Hence, if those basis terms which are not decisive in modelling the target 

problem are removed and only the significant basis terms are retained, a precise PCE model can be 
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trained with low training cost even if a high truncation degree is used. Blatman and Sudret (2011) 

predefined a degree upper bound and commenced the modelling process from a small degree value. 

In the iteration process, the PCE model with gradually increased truncation degree was trained. The 

Cross-Validation (CV) error was utilised to evaluate the performance of the trained PCE model in 

each iteration. Finally, the PCE model with the smallest CV error was considered as the best one, 

and the corresponding truncation degree was regarded as the most appropriate. Zhao et al. (2019) 

proposed a forward-backward strategy to select significant basis terms. A set of basis terms with 

different polynomial degrees was chosen as a candidate pool, from which one can choose basis 

terms to be added into the PCE model. In each iteration, only one basis in the candidate pool which 

contributes the most to the PCE modelling of the target problem was added, while a basis term 

which has the smallest coefficient value in the current PCE model was removed. Jakeman et al. 

(2015) proposed a forward neighbour expansion strategy, in which the 𝑙1 minimisation method was 

employed for regression calculation. After training the PCE model in each iteration, a set of 

neighbour basis terms were defined based on the basis terms with non-zero coefficients in the 

current PCE model. Then the PCE model would be re-trained after expanding with these neighbour 

basis terms. By continually expanding the PCE model and discarding the insignificant basis terms 

with zero-value coefficients, the PCE model could converge to an accurate solution rapidly.  

It deserves to note that using sparse representation methods to train the PCE model is also a 

kind of adaptive basis selection strategies. Compared with the popularly studied adaptive basis 
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selection strategies, sparse representation methods require the number of unknown coefficients and 

samples quantity be kept in an appropriate proportion (Jakeman et al., 2015). In other words, the 

adaptive basis selection strategies can solve problems with much more unknown coefficients than 

the sparse representation methods when the samples quantity is limited. 

Although the sampling problem and basis selection problem have been thoroughly studied in 

the past, in general one of the problems was pursued by leaving out the other. In real applications, 

however, the two problems co-exist, which should be solved simultaneously. Only a few studies 

have addressed these two problems in a concurrent way. Thapa et al. (2020) proposed an adaptive 

weighted least-squares PCE modelling method with basis adaptivity and sequential sampling. A 

two-loop framework was formulated, where the outer loop was to increase the basis terms of higher 

degree and the inner loop was to sequentially add samples. In parallel, the insignificant basis terms 

were removed from the PCE model during the iteration process to accelerate the convergence. 

Loukrezis et al. (2020) combined the alphabetic-optimal design with a basis expansion strategy to 

build an adaptive PCE modelling framework. The discrete least-squares method was employed for 

regression calculation, with a threshold being defined according to the alphabetic-optimal design. 

If the optimisation target value in the alphabetic-optimal design exceeds the threshold, the basis 

addition operation will be executed; otherwise, the sequential sampling process will be executed. 

The CV error was calculated to terminate the algorithm when the obtained PCE model is in desired 

accuracy.  
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In earlier studies, PCE was primarily applied in the fields of UQ, sensitivity analysis and 

reliability analysis, which have low requirements on the modelling accuracy, and thus the 

computational cost is low. Nevertheless, the merits of PCE model, such as simple model structure 

and convenient training process, facilitated this technique to be applied in more complicated 

problems. As a result, the adaptive modelling strategies become more and more critical in the PCE 

modelling, which attracts more and more attention and requires more in-depth investigations in 

future.  

2.1.4 Other surrogate modelling techniques 

In addition to the PCE technique, there are many other mathematical tools that can help build 

surrogate model, such as Gaussian Process Regression (GPR), regression trees, Relevance Vector 

Machine (RVM) and Artificial Neural Network (ANN), etc. (Chakraborty, 2021; De’Ath and 

Fabricius, 2000; Fricker et al., 2011; Lee et al., 2021; Zhou et al., 2013). Once an accurate surrogate 

model is obtained, the model responses can be collected with low computational cost. Compared to 

PCE, these surrogate modelling techniques have different merits and drawbacks in practice. For 

comparison, two popularly used surrogate modelling techniques in recent years, GPR and ANN, are 

briefly introduced. 

GPR was originated from the so-called Kriging that was proposed in geo-statistics (Matheron, 

1967). It belongs to the Bayesian regression method, which can discover the potentially unknown 
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relationship existed in data while no specific function form should be nominated beforehand 

(Rasmussen and Williams, 2006). This method supposes that each point of the target output is a 

random Gaussian variable, and any finite assembly of these variables have a joint Gaussian 

distribution. Embarking on giving a prior to the unknown function, the likelihood function can be 

formulated based on the available observations of the target output. By estimating the parameters 

in the GPR model through the maximum likelihood method, the posterior distribution of the 

unknown function can be derived, which can then be used to predict the points of interest 

(Rasmussen and Williams, 2006). It is worth noting that the predictions are all Gaussian 

distributions. We can not only get predictions at unobserved points (mean function) but also estimate 

the uncertainty about the predictions (variance function). This property has been leveraged to solve 

numerous practical problems. For example, Krause et al. (2008) proposed a near-optimal sensor 

placement strategy based on GPR and information theory for the sake of evaluating the temperature 

distribution in a room. The thermometers were sequentially placed at the positions where have large 

prediction uncertainties in the GPR model. As a result, the temperature distribution can be predicted 

with less and less uncertainty. Xu et al. (2011) employed GPR to model the spatiotemporal physical 

phenomena, and a mobile sensor network navigation strategy was proposed to minimise the 

prediction uncertainty from GPR. The active learning was achieved by absorbing new 

measurements and discarding old measurements so as to make the navigation real-time and effective. 

Apart from building model based on real observations, GPR was also utilised to build surrogate for 
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simulation models. For example, a GPR model was built for uncertainty quantification of the 

frequency response functions based on the Finite Element (FE) model (Fricker et al., 2011). 

Furthermore, the differential equations to describe physical laws could also be learnt (Gregory et 

al., 2019; Raissi et al., 2017), and the burden in solving the differential equations can be lightened. 

Even though GPR performs well in nonlinear modelling, it has nonnegligible drawback when 

processing data with large size. In the training process, the covariance matrix, which is calculated 

from the samples at the observed points, should be inverted to learn the hyperparameters. Clearly, 

the inverse operation has a 𝒪(𝑁3)  complexity (Rasmussen and Williams, 2006), in which 𝑁 

denotes the number of observations. Thus, the computational cost for GPR training will grow 

exponentially with the increase of data size.  

As an outstanding pattern recognition approach, ANN originated from the emulation of how 

human brain works, which performs well in modelling nonlinear and complex tasks (Gomes et al., 

2018; Liu et al., 2018b). Different from the GPR and PCE techniques that have explicit function 

expressions, ANN organises a neuron structure with several layers, and each layer contains a 

certain number of nodes that connect to each other. The input data could be transferred from one 

layer to another layer sequentially with some simple operations and ultimately output from the 

output layer. Parameters existed in each layer, or called weights, can change their values to record 

the data features. Using the labelled data to train the network, the information involved in the data 

will be learnt and reserved by estimating these parameters. Finally, the trained ANN can be utilised 
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for prediction or classification. Obviously, an ANN structure can involve different number of 

layers with different number of nodes, so this approach is flexible in dealing with numerous 

problems. According to the layer number, layer operation and learning mode, ANN can be 

categorised into various types, such as feedforward network, recurrent networks, modular 

networks, convolutional neural network and so on (Funahashi and Nakamura, 1993; Ramos and 

Martínez, 2013; Truong et al., 2020; Zhang and Berardi, 2001), and they have been applied in 

many areas including but not limited to damage identification, fault diagnosis and time series 

responses prediction (Guo et al., 2016; Ramos and Martínez, 2013; Ren et al., 2018; Tang et al., 

2019; Truong et al., 2020). With long-time studies, the merits of ANN can be summarised as: i) 

robust noise tolerance, which means that the errors contained in the training data will not affect 

the solution, ii) flexibility and adaptivity, that is, the model structure has a large design freedom to 

adapt to different kinds of problems, iii) parallel processing, which means they can handle more 

than one task at the same time. However, there is a fatal problem in ANN. The network and its 

behaviour are unexplainable. For a trained ANN model, the features in the target task cannot shown 

by the model structure. The ANN model can only be treated as a “black box”, which reduce our 

confidence to the trained model. Moreover, the flexibility and adaptivity of ANN make it hard to 

determine the model structure. There is no specific rule in choosing the quantity of layer and node 

so that the most appropriate network is only achieved by experience and trial. 

Through comparison among PCE and these two techniques, it can be summarised that PCE 
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has the following merits and drawback as a surrogate modelling method: 

The merits are: (1) PCE has a simpler model structure than GPR and ANN. The expression of 

a PCE model is a linear combination of polynomials with different degrees, so no intricate 

mathematical operation is involved. However, the expression of GPR is derived from Bayesian 

regression and ANN consists of numerous layers and neutrons; both of them are more difficult in 

formulation. Also, the simple model structure of PCE facilitates manipulations for in-depth analysis. 

(2) The PCE model has explicit functional expression, which enables direct analysis based on the 

components in the function. For example, the variance-based sensitivity analysis can be 

conveniently computed from the coefficient values. (3) The training process of PCE is simple, as 

the regression-based approaches are easy to be implemented. However, GPR generally employs a 

gradient descent method to find the optimal solution of the hyperparameters, in which the initial 

values of the hyperparameters have tremendous impact on the training results. In addition, an 

inverse calculation is required in GPR, which gives rise to a high computational burden. (4) The 

model selection is uncomplicated for PCE, where the truncation degree can be adaptively selected. 

But GPR requires to choose a proper kernel function for representing the target of interest, and ANN 

also needs an appropriate network structure including the determination of layer number and 

neutron number. Adaptive selection is not suitable for these two techniques. 

The drawback is: PCE only employs polynomials to represent the target of interest. However, 

GPR and ANN do not define the functional forms, so they have wider applicability than PCE. 
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2.2 Multi-fidelity Modelling Technique 

Intuitively, building surrogate model directly based on the model evaluations from the 

numerical model with high complexity is generally time-consuming and costly. In engineering 

simulations, the meshing size in the numerical model can be adjusted to achieve balance between 

the modelling precision and cost. The model with coarse mesh is in low cost to evaluate while has 

large modelling errors. Such model is known as Low-Fidelity (LF) model, and the corresponding 

model evaluations are called LF data. By contrast, the numerical model with high precision is named 

High-Fidelity (HF) model, e.g., the mesh size is small, and the corresponding data is called HF data. 

These data are time-consuming to collect. To train a reliable surrogate model with acceptable cost, 

the concept of Multi-Fidelity (MF) modelling was proposed by leveraging the information from 

both the LF and HF data (Forrester et al., 2007). As a result, the surrogate model can be built with 

high precision but less reliance on the HF data.  

The MF modelling technique originated from the so-called global-local approximation method 

proposed for Response Surfaces (RS) (Haftka, 1991). Knill et al. (1999) first presented the 

correction RS model in aerodynamic modelling, which is a prototype of the MF technique in current 

studies. This research utilised a correction RS function to fit the difference between the LF data and 

HF data. Subsequently, the MF RS model were established by adding the correction RS function to 

the LF model. In applying to a supersonic high-speed civil transport case, it was shown that the 

computational cost in solving problems with high input dimension could be reduced. In 2002, 
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another type of MF modelling was proposed by Vitali et al. (2002), called scaling operation. The 

ratio between the HF data and LF data was calculated, and this ratio was multiplied to the LF model 

to build the MF model.  

Apart from the research based on RS, Kenndy and O’Hagan (2000) proposed the MF 

framework based on Kriging method, which was named co-Kriging. A new modelling operation, 

autoregressive form, was developed. In the autoregressive modelling, the HF surrogate model is 

regarded as the addition of a scaled LF surrogate model with a discrepancy term. The LF surrogate 

model and the discrepancy term are modelled by GPR (Kriging), and the scaling value is called 

regression parameter. In 2017, Park et al. (2017) compared several different MF modelling 

frameworks based on co-Kriging. In contrast to the traditional training approach that estimating the 

regression parameter and the parameters in the discrepancy terms separately, this research 

demonstrated that the Bayesian calibration which trains the parameters all at once was the best. 

In the field of PCE, the MF modelling technique was first proposed by Ng and Eldred (2012) 

according to the correction and scaling operations developed by Vitali et al. (2002), in which the 

non-intrusive method (stochastic collocation) was employed to train the PCE model. The correction 

and scaling operations were named additive correction and multiplicative correction respectively. 

The additive correction was to model the discrepancy between the HF data and LF data by using a 

PCE model, and this corrective function was added to the Low-Fidelity PCE (LFPCE) model to 

build the Multi-Fidelity PCE (MFPCE) model. Similarly, the multiplicative correction was to model 
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the ratio of the HF data and LF data by using a PCE model and to multiply the ratio to the LFPCE 

model to build the MF model. Moreover, a combinative correction was proposed to combine the 

additive and multiplicative corrections. As the multiplicative and combinative corrections in 

MFPCE is too complicated in practice, the additive correction was the most widely implemented 

strategy in the previous studies (Palar et al., 2015, 2016, 2018; Wang et al., 2019). Originally, the 

MFPCE was trained by non-intrusive methods, such as stochastic collocation, sparse grid or 

regression (Ng and Eldred, 2012; Palar et al., 2016). With the development of CS theory, the sparse 

representation was recently employed in MF modelling to further save the training cost (Cheng et 

al., 2019; Eldred et al., 2017; Rumpfkeil and Beran, 2020).  

So far, the concept of MF modelling has been utilised in many fields for various targets. Zhou 

and Tang (2021) employed the MF modelling technique and GPR method for the purpose of 

uncertainty quantification of structural mode shape. Data from full-scale FE analysis was regarded 

as HF, and data from order-reduced FE model was deemed as LF. Compared to building surrogate 

model with LF data alone, the MF model had higher precision while similar computational cost. 

Yang et al. (2019) presented an MFPCE modelling framework for structural analysis, in which the 

sparse representation approach was leveraged to train the PCE coefficients. To analyse a damaged 

plate, the FE model considering material nonlinearities was regarded as HF model to afford HF data. 

The FE model which only considered linear material property was employed to generate LF data. 

Results shown that the MF modelling technique can reduce the computational cost while 
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maintaining the accuracy. Jin et al. (2021) implemented the MF technique to fuse strain data from 

sensors with different precisions. The point strain gauges could provide accurate monitoring data, 

but the measurements have a low-spatial resolution. The distributed strain sensor enabled collecting 

measurements in large areas (a high-spatial resolution) while the data had a relative low accuracy. 

Thus, the measurements from point strain gauges were LF data, and the observations from 

distributed sensors were HF data. The strain distribution over the whole structure was predicted 

with high precision under limited budgets by building the MF surrogate model. Furthermore, Olleak 

and Xi (2020) proposed to integrate the simulation data with limited experiment data by adopting 

the MF modelling technique. This so-called physics-based MF modelling approach was applied in 

the laser melting process to predict melt pool size under intended printing configurations. A similar 

framework was also adopted by Pepper et al. (2021). To conclude, the concept of MF modelling has 

potential to be applied in various scenarios for the sake of reducing modelling cost and increasing 

modelling precision. 

Even if the MF modelling technique has been studied for a long time, there are still some 

limitations: (1) The highest polynomial degree of the correction function should lower than the LF 

model. Since the HF data is far less than the LF data, a higher degree of the correction function than 

the LF model may induce overfitting problem (Palar et al., 2016). (2) The LF model should be able 

to capture the global trends of the target task, otherwise the accuracy of MF modelling cannot be 

ensured (Liu et al., 2018a).  
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2.3 Vibration-based Damage Identification Methods for Bridges 

In early 1990s, Rytter (1993) first suggested four levels of damage identification: detection of 

damage existence, identification of damage location, quantification of damage severity, and 

prediction of the remaining life. Since then, research efforts have been devoted into the first three 

levels and many damage identification methods have been proposed in the bridge engineering. 

Among those, methods based on the structural vibration features have become the popular ones 

because the vibration signals are easily to be measured with low cost. The theory of vibration-based 

methods is that the structural damage would alter the bridge physical properties, which can be 

reflected in the dynamic characteristics of bridge. Hence, the structural damage or variations of 

physical properties can be easily detected by merely comparing different stages of those identified 

characteristics. Furthermore, to recognise the damage location and severity, an inverse problem can 

be raised and solved if the relationship between the damage parameters and vibration characteristics 

could be well identified. Basically, the vibration-based damage identification methods were either 

physics-based or data-driven.  

Physics-based methods, also called model-based methods, are to establish a representative 

physical model of real structure. By comparing the model predictions with real observations, the 

parameter variations in the physical model can be identified. The physical model is generally 

established based on the physical laws, such as FE model or partial differential equation. For 

instance, Hou et al. built a FE model of bridge and solved an inverse problem based on the FE model 
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to identify damages (Hou et al., 2018b, 2020). According to the equations of motion and the 

characteristic equations, Huang et al. developed hierarchical SBL approaches for damage 

identification on structures (Huang et al., 2017a, 2017b; Huang and Beck, 2015). Gregory et al. 

(2019) employed the Euler-Bernoulli equation to characterise the relation between the external force 

and structural responses in a sleeper beam, and the GPR technique was then used to help detect 

damages. To summarise, there are several challenges in the physics-based methods. First of all, the 

physical model is established based on the physical laws instead of the real structure, so the 

modelling errors cannot be circumvented. Second, to identify the damage location and severity, an 

inverse problem is generally required to be addressed. However, the uniqueness and stability of the 

solution are hard to be guaranteed because the inverse problem may be ill-posed or ill-conditioned. 

Under this circumstance, the sparse representation methods help settle down the problem to some 

extent (Hou et al., 2020; Huang et al., 2017a). Last but not least, predictions from the physical model 

do not contain measurement noise. Ignoring measurement noise may result in unexpected results.  

Data-driven approaches do not rely on physical laws but directly conduct analysis based on 

real measurements. It is often convenient to discover the regularity in the measurements collected 

from structure in a reference state through developing statistical models, and the current structural 

condition can be evaluated by comparing the new measurements with the predictions from the 

statistical models. Beyond that, exploring damage indicators based on some techniques is another 

widely used data-driven approach. Obviously, the modelling error is circumvented in the data-
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driven approaches, and the measurement noise can also be taken into account. For example, ANN 

has been widely applied to build the data models that map the relation between the damage 

parameters and model responses, and the models were then used for damage identification 

(Jayasundara et al., 2020; Ni et al., 2000; Wang and Ni, 2015). Pathirage et al. (2019) presented a 

sparse encoder based deep neural network for pattern recognition, and the sparse regularisation was 

employed to identify sparse damages. Neves et al. (2017) combined ANN with GPR approach to 

enhance the damage detection ability. In addition to ANN, some other statistical models were also 

used, such as Kalman filter (Yan et al., 2004), autoregressive model (Mosavi et al., 2012), support 

vector machine (Worden and Lane, 2001), etc. To build damage indicators, Principal Component 

Analysis (PCA) was broadly applied by extracting damage sensitive responses from raw 

measurements (Sen et al., 2019a; Zhu et al., 2018, 2019). Clearly, some data-driven approaches 

should train statistical models in advance, in which sufficient measurements in both healthy and 

damaged conditions are required. However, data from the damaged structure is unavailable upon 

most occasions in practice. Subsequently, data-driven approaches were usually employed to detect 

the existence of damage, while the damage location and severity are hard to be recognised. 

Moreover, the statistical model training is also time consuming with the growth of data volume.  

It can be found in the past investigations that the modelling error issue in physics-based 

methods and the data deficiency problem in data-driven approaches were the primary challenges 

that hindered the progress of damage identification on bridges. To overcome these challenges, 
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several strategies were proposed to combine the physics-based methods and data-driven approaches, 

e.g., model updating and digital twin (Behmanesh and Moaveni, 2016; Bigoni and Hesthaven, 2020; 

Gregory et al., 2019; Schlune et al., 2009). The basic principle is that the physical model or its 

surrogate model is employed to describe the overall pattern of the bridge system, and the scarce 

measurements are leveraged to update the physical model (or its surrogate model). Therefore, the 

modelling error can be eliminated, and the measurement noise can be considered. In the meantime, 

the requirement on measurements is also reduced benefitting from the use of physical model. In 

such methods, furthermore, the use of a surrogate model rather than using a physical model can help 

release the computational burden in damage identification, because the surrogate model is much 

cheaper to be evaluated than the complex physical model. Besides, in the traditional model updating 

methods, only the value of structural parameters can be updated. The utilisation of a surrogate model 

enables the updating of the inaccurate physical law instead of only updating the parameter values. 

Ultimately, the damage identification can be performed based on the updated model. In recent years, 

such combined damage identification approaches have become more and more popular. Further 

research on applications to the bridge engineering is still required. 

With a model that can correctly describe the relation between the damage parameters and 

vibration characteristics, an inverse problem is ready to be solved for getting the damage location 

and severity. As aforementioned, the inverse problem will be ill-posed since the number of 

measurement points on the bridge is generally less than the quantity of monitored components. To 
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overcome this challenge, a reasonable prior was introduced, that is, the number of damages is sparse 

with respect to the monitored bridge components. Then, the sparse representation algorithms could 

be applied to garner the sparse solution. In the past decade, various sparse representation algorithms 

were employed in the field of damage identification for bridges. Zhou et al. and Hou et al. proposed 

to use 𝑙1 regularisation to induce sparsity on the damage solution (Hou et al., 2018b; Zhou et al., 

2015). The damage sensitivity matrix was calculated by taking derivative on the vibration responses 

with respect to the damage parameters, and the 𝑙1 regularisation term was added to induce sparsity 

on the damage parameters. SBL is another sparse representation algorithm that was introduced for 

damage identification in many studies (Chen et al., 2020; Hou et al., 2019, 2020; Huang et al., 

2017a). As a Bayesian regression approach, it can identify the sparse solution with a confidence 

level, so the damage can be quantified under a probabilistic framework. In addition, Entezami et al. 

(2017) developed a new iterative regularisation method for solving sparse damage identification 

problem in truss bridge. The measurement noise and modelling errors were both considered, and 

the proposed method shown promising performance in identifying the damage location and severity. 

Even though the sparse representation has been introduced to cope with the damage identification 

problems with good results, a limitation should be mentioned is that the system of problem should 

be linear. To handle problems with nonlinear system, the algorithms should be improved.  

2.4 Temperature Effects Overview 

As discussed previously, the environmental effects cannot be ignored in the damage 
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identification for bridge structures, such as temperature, humidity, and wind, etc. Many studies have 

demonstrated that temperature is the most influential factor among those environmental effects, and 

the impacts caused by humidity and wind are negligible (Huang et al., 2018; Kita et al., 2019; Sun 

et al., 2018; Xia et al., 2011). Therefore, research efforts have been devoted to the damage 

identification considering temperature variations for a quite long time. Generally, there are two 

categories in the damage identification methods considering the temperature effect: eliminating the 

temperature effect and utilising the temperature effect.  

As the temperature-induced variations in structural responses can often exceed the variations 

caused by damage (Bao et al., 2012; Erazo et al., 2019; Huang et al., 2018), a common idea is to 

eliminate the temperature effect from the observed structural responses. Many studies have 

discovered that the temperature has an approximately linear relation with the vibration frequencies 

of a structure (Bao et al., 2012; Magalhães et al., 2012). By investigating this linear relation, the 

thermal impact can be identified and eliminated from monitoring data. Comparison studies 

demonstrated that the accuracy of damage identification results was increased by incorporating the 

temperature variations. Shokrani et al. (2018) introduced a PCA-based method to distinguish the 

response variations caused by temperature and damages. In case that the relation between 

temperature and structural responses is linear or weakly nonlinear, it was manifested that PCA-

based method can successfully separate the temperature-induced response change, and the damage 

can be correctly localised. In addition to the linear assumption, some studies found that the relation 
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between the temperature and frequencies may be nonlinear for large bridge structures (Ni et al., 

2005; Zhou et al., 2011). Deng et al. (2010) utilised six-order polynomial models to describe the 

correlations of frequency-temperature and displacement-temperature. The variations in frequency 

and displacement caused by temperature could be effectively eliminated, and the damage was 

successfully detected. Furthermore, some damage indicators that are sensitive to damage but not 

sensitive to temperature were discovered, for example, frequency ratios (Deraemaeker et al., 2008; 

Surace and Bovsunovsky, 2020).  

However, several studies have found the relation between temperature and structural responses 

is indeterminate for various structures, which means that recognising such relation is challengeable, 

especially when data is not sufficient. Therefore, an alternative solution of utilising the temperature 

effect were developed, which detected damages by comparing the extracted temperature-responses 

relations before and after damage (Kromanis and Kripakaran, 2016; Xia et al., 2017). Zhu et al. 

(2019) extracted the temperature-strain relation over time by using a blind source separation 

technique. Combining with the moving PCA, the damages on a truss bridge were detected and 

localised. A merit of this study was that the thermal measurements are not required. Yarnold and 

Moon (2015) discovered a three-dimensional near-flat plane among the temperature, local 

mechanical strains and global displacements. Such relation was found insensitive to normal 

operational change, while some scenarios that would result in the structural performance change 

were able to be detected. To summarise, among the damage identification methods utilising the 
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temperature effect, damage should induce nonnegligible changes on the temperature-induced 

responses.  

Undeniably, understanding the mechanism of temperature on the bridge structure is crucial for 

developing damage identification methods. Basically, the influence of temperature on bridge can be 

described in the following aspects (Han et al., 2021): i) elastic modulus change; ii) thermal 

expansion; iii) boundary condition change. The elastic modulus of bridge material will change with 

temperature varying, while this relation is usually easy to be characterised with acceptable accuracy 

(Sun et al., 2018). The increasing temperature will also cause the expansion of bridge and then affect 

its dynamic characteristics. Comparing with the elastic modulus change, the mechanism of thermal 

expansion was found much weaker (Xia et al., 2012). More importantly, the change of boundary 

condition caused by temperature was deemed much more complicated in previous research (Han et 

al., 2021; Peeters et al., 2001). Under some circumstances, the boundary condition may exhibit a 

nonlinear variation with respect to the temperature change, and such variation is commonly difficult 

to be represented or simulated in a physical model. For instance, if the thermal expansion of bridge 

is constrained or partially constrained at supports, axial force will be generated on the bridge girder, 

and thus the structural frequencies will change (Han et al., 2021). Also, freezing of supports will 

cause a nonlinear change of bridge frequencies (Sen et al. 2019b). Sun et al. (2018) argued that 

correctly identifying bridge damages without considering the freezing effect is very difficult.  

In addition to the above issues, it deserves to note that evaluating the temperature distribution 
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on a bridge is always challengeable, since the distribution is generally non-uniform and time-

varying. Due to the limitation on the number of measurement points, the temperature distribution is 

difficult to be comprehensively recognised. In the past studies, three simplification methods were 

presented and used in the field of SHM:  

(1) Only one temperature variable is considered. For bridges with small scale, temperatures 

measured from different positions at the same time might be similar, so the analysis results can have 

acceptable accuracy if the average temperature is used (Erazo et al., 2019; Wang et al., 2020c). 

Besides, if a temperature variable is representative in correlating to the model responses, this 

variable can be regarded as the dominated temperature in the structure, e.g., canonical correlated 

temperature (Huang et al., 2020). For those bridges with large scale, such simplification will lose 

its efficacy.  

(2) The temperature gradient along the vertical direction of the bridge deck should be 

considered. Suffering from the solar radiation, temperature gradient will be nonnegligible in the 

vertical direction of bridge deck, and the temperature variation in the longitudinal direction of bridge 

is normally insignificant and can be ignored. Various studies considered the temperature gradient in 

the damage identification problem (Huang et al., 2019; Sun et al., 2019). Wang et al. (2021) studied 

the temperature gradient distribution in a steel-concrete composite bridge deck. The measurements 

obtained from an experimental test were compared with the simulation results and the 

recommendations in specifications. Results demonstrated that the specifications could provide 
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promising references for simulating the temperature gradient. Therefore, the distribution of 

temperature gradient can be determined according to the measurements from the bridge deck along 

the vertical direction and the specifications. In general, the linear or bilinear gradient model (two or 

three temperature variables) was enough to simulate the temperature gradient distribution with 

desired accuracy (Xia et al., 2018; Xu et al., 2019).  

(3) Considering single temperature variable for individual bridge component. Due to the 

complicated configuration of large-scale bridges, the temperature distribution on the whole bridge 

will be extremely complex. Xia et al. (2013) proposed to simplify the temperature distribution on a 

large suspension bridge by applying a single temperature value instead of a temperature distribution 

to each bridge component (cable, deck and tower). Results shown that the simulation results with 

the simplified temperature distribution can provide responses that agree well with the real 

measurements.  

To summarise, the temperature effect on bridge is extremely intricate, and it is rarely possible 

to completely characterise them in simulation, especially for large-scale bridges. Efforts on 

structural damage identification considering temperature effect are still inadequate and more 

investigations are required. 
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CHAPTER 3  

HYBRID SEQUENTIAL SAMPLING STRATEGY

 FOR POLYNOMIAL CHAOS EXPANSION 

                                                                                

 

3.1 Introduction 

Polynomial Chaos Expansion (PCE) has been widely applied in the field of Uncertainty 

Quantification (UQ) or sensitivity analysis since a small truncation degree could meet the 

requirements. Modelling problems with high input dimension and high truncation degree is still a 

challenge for PCE method. The main reasons behind the problem are the high cost of regression 

calculation and the demands on large amount of samples and model responses for training. 

Therefore, increasing research has been concentrated on the sampling techniques to help reduce the 

samples for training, which could help release the burden of acquiring massive model evaluations. 

In general, sparse representation and experimental design are two strategies that have been 

demonstrated to be effective in reducing the number of samples, as introduced in Chapter 2.  

Owing to the “sparsity of effect” principle, usually real-world problems are sparsely 

represented, or at least compressible on polynomial chaos (Montgomery, 2006). The sparse 

representation methods feature an appealing merit in garnering the PCE coefficients with less 
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amount of model responses. Bayesian Compressive Sensing (BCS) is one of the state-of-art sparse 

representation methods, which is used in this study to calculate the PCE coefficients. It introduces 

hierarchical priors instead of a direct Laplace prior to induce feasible Bayesian inference, and this 

operation still endows a similar effect to 𝑙1  minimisation (Babacan et al., 2010). An appealing 

benefit from BCS than other regularisation algorithms is that this method is under the Bayesian 

framework. It can make predictions to unknown points with a distribution instead of a deterministic 

way, which provides a reference of our confidence on the estimated value at a point. This property 

can be further utilised for experimental design.  

To collect a set of well-designed samples, or called Experimental Design (ED), for PCE 

modelling, many strategies were proposed to instruct the sampling process based on the 

distributions of input variables, model truncation degree and the corresponding orthogonal 

polynomials, which we refer to as input-dependent only approaches, such as Latin Hypercube 

Sampling (LHS) method, D-optimal sampling strategy and coherence-optimal sampling approach, 

etc (Blatman and Sudret, 2010; Burnaev et al., 2017; Hampton and Doostan, 2015; Jakeman et al., 

2015). The utilisation of input information improves the stability of the regression calculation during 

the sampling process. In addition to the input dependent sampling strategies, Bayesian Experimental 

Design (BED) was developed to collect samples in light of the information about experiment 

outcomes and modelling results. This strategy is capable of constructing suitable sampling processes 

for problems with distinct complexity. The collected samples will contain the most information 
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which is needed for accurate modelling. Thus, it will reduce the number of required samples.  

In this chapter, a hybrid sequential sampling strategy is proposed to take into account both the 

input information and the target model feature by combining compressive sampling and BED. Here, 

the compressive sampling method is named coherence-optimal sampling in the field of PCE, in 

which a lower bound of sample quantity for 𝑙1 minimisation is deduced. Samples are collected that 

contribute more to the regression accuracy when 𝑙1 minimisation methods are used. To make the 

coherence-optimal samples be collected in a sequential way, the progressive LHS method is adopted. 

This method is easier to be combined with the coherence-optimal sampling method to generate 

space-filling samples than the traditional Monte-Carlo methods. BED is the simplest output-

oriented approach that can be easily combined to build the hybrid method. The procedures of 

building the hybrid method are as follows. First, a sequential sampling framework is established to 

collect samples that approximately match the coherence-optimal distribution, which is derived from 

the compressive sampling theory, during the iteration process. Then, by resorting to the BCS method 

and information theory, favourable sampling points in each iteration are determined according to 

the modelling results, substituting for randomly selecting sampling points. Finally, the performance 

of the proposed sampling strategy is evaluated on several analytical functions case through 

comparison with three input-dependent only sampling methods and two output-dependent only 

sampling methods, and it is also applied on an engineering case for parameter sensitivity analysis.  

3.2 Polynomial Chaos Expansion and Sparse Representation 
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3.2.1 Polynomial chaos expansion 

For completeness of description and unity of symbols, the principle of PCE is briefed here. It 

represents the scalar model output 𝑦 as an expansion of a set of orthogonal polynomials of input 

variables 𝝃 = (𝜉1, 𝜉2, ⋯ 𝜉𝑑)  with 𝑑  dimensions. Here the orthogonal polynomials defined in a 

probabilistic space can be expressed as: 

∫𝜙𝑖(𝜻)𝜙𝑗(𝜻)𝑝(𝜻)𝑑𝜻 = 𝑤𝑖𝛿𝑖𝑗  (3.1) 

where 𝜙𝑖(𝜻),  𝜙𝑗(𝜻) are two orthogonal polynomials of random variable 𝝃 with different degrees 

and 𝑝(𝜻) is the probability density function of 𝝃; 𝑤𝑖 is a constant; 𝛿𝑖𝑗 is a Dirac function, which 

is equal to one when 𝑖 = 𝑗 and otherwise zero. For computational convenience, the orthogonal 

polynomials are commonly normalised with respect to the probability density function so that 𝑤𝑖 

is equal to one when 𝑖 = 𝑗, namely orthonormal polynomials (Xiu and Karniadakis, 2002). Thus, 

the PCE can be expressed as:  

𝑦 = ∑ 𝑐𝜶𝜓𝜶(𝝃)

𝜶∈ℕ𝑑

 (3.2) 

where 𝑐𝜶 are unknown coefficients; 𝜓𝜶(𝝃) are multivariate orthonormal polynomials, which can 

be written as a tensor product of univariate polynomials when the input variables are assumed to be 

independent from each other: 

 𝜓𝜶(𝝃) = ∏𝜙𝛼𝑖
(𝜉𝑖)

𝑑

𝑖=1

 (3.3) 
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and 𝜶 = (𝛼1, 𝛼2, ⋯𝛼𝑑)  represent the indices of the polynomial bases, in which 𝛼𝑖  (𝑖 ∈ [1, 𝑑]) 

denotes the degree of each independent variable 𝜉𝑖 in a polynomial term. Therefore, for different 

distributions, there are different types of orthogonal polynomials with respect to the Probability 

Density Functions (PDF). For example, the Hermite polynomials are associated with the Gaussian 

distribution and the Legendre polynomials are orthogonal with respect to the uniform distribution. 

Some of the commonly used polynomial types are summarised in Table 3-1 (Xiu and Karniadakis, 

2002): 

Table 3-1 Type of univariate orthogonal polynomials with different continuous variables 

Random variable Polynomial type Support 

Uniform Legendre [𝑎, 𝑏] 

Gaussian Hermite (−∞,+∞) 

Beta Jacobi [𝑎, 𝑏] 

Gamma Laguerre [0, +∞) 

Under the circumstance that no standard polynomials are defined for given input variables with 

known PDF, the isoprobabilistic transform technique can be adopted (Torre et al., 2019). 

Considering a vector of random variables 𝒁  with joint PDF 𝒁~𝑓𝒁(𝑧) , an isoprobabilistic 

transform operator 𝓕 exists such that: 

𝝃 = 𝓕(𝒁),     𝒁 = 𝓕−1(𝝃) (3.4) 

where 𝝃 is a random vector with independent components which generally distributes according 

to one of the distributions in Table 3-1. We can then rewrite Equation (3.2) as: 

𝑦 = ∑ 𝑐𝜶𝜓𝜶(𝓕(𝒁))

𝜶∈ℕ𝑑

 (3.5) 
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In practice, to facilitate calculation, PCE representation in Equation (3.2) will be truncated 

such that only a finite number of coefficients are kept in training. There are two commonly used 

truncation strategies. The standard truncation strategy is to keep the total degree of PCE not 

exceeding a given degree 𝑝: 

𝓐𝑝,𝑑 ≡ {𝜶 ∈ ℕ𝑑: ‖𝜶‖1 ≤ 𝑝} (3.6) 

and thus, the cardinality in the truncated PCE is: 

𝑃 = (
𝑑 + 𝑝

𝑑
) =

(𝑑 + 𝑝)!

𝑑! 𝑝!
 (3.7) 

The second truncation strategy, which is a modification of the standard truncation strategy, is called 

hyperbolic truncation as defined in Equation (3.8) (Blatman and Sudret, 2011): 

𝓐𝑝,𝑑,𝑞 ≡ {𝜶 ∈ ℤ𝑝,𝑑: ‖𝜶‖𝑞 ≤ 𝑝, 0 < 𝑞 ≤ 1} (3.8) 

It is obvious that the hyperbolic truncation strategy corresponds to the standard truncation strategy 

if 𝑞 = 1 . For 𝑞 < 1 , smaller 𝑞  represents truncating more basis terms with interaction effects 

among different variables. A simple 2D case is shown in Figure 3.1 with different values of 𝑝 and 

𝑞. Without specification, the standard truncation strategy is used hereinafter. 
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Figure 3.1 Simple 2D case of hyperbolic truncation (circle represents the indices of kept bases; 

cross denotes the indices of truncated bases) 

By using the truncation strategy, the model output 𝑦  is then expressed as a sum of the 

truncated PCE and a truncation error 𝜀: 

𝑦 = ∑ 𝑐𝜶 𝜓𝜶(𝝃)

𝜶∈𝓐𝑝,𝑑

+ 𝜀 = 𝚿(𝝃)𝒄 + 𝜀 (3.9) 

where 𝚿(𝝃) = [𝜓𝜶1
(𝝃), 𝜓𝜶2

(𝝃),⋯ , 𝜓𝜶𝑃
(𝝃)]  and 𝒄 = [𝑐𝜶1

, 𝑐𝜶2
,⋯ , 𝑐𝜶𝑃

]𝑇 . By resorting to the 

regression methods (e.g., the OLS method), if an ED with 𝑁 samples from the random variables 

{𝝃(𝑖)}
𝑖=1

𝑁
= {𝝃(1), 𝝃(2),⋯ , 𝝃(𝑁)} is made and the corresponding model observations 𝒀 = {𝑦(𝑖)}

𝑖=1

𝑁
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at these sampled places are obtained, we can reformulate the above equation as: 

𝒀 = 𝚿𝒄 + 𝜀 (3.10) 

[
 
 
 
𝑦(1)

𝑦(2)

⋮
𝑦(𝑁)]

 
 
 

=

[
 
 
 
 
𝚿(𝝃(1))

𝚿(𝝃(2))

⋮
𝚿(𝝃(𝑁))]

 
 
 
 

𝒄 + 𝜀 (3.11) 

The OLS method seeks to obtain the solution of 𝒄 by solving: 

�̂� = 𝑎𝑟𝑔min
𝒄

‖𝚿𝒄 − 𝒀‖2 (3.12) 

To get unique solution, the number of samples N should be larger or at least equal to the number of 

unknown coefficients, and an oversampling rate of 2~3 is recommended for obtaining reliable and 

robust results (Hosder et al., 2007).  

3.2.2 Bayesian compressive sensing 

From Equation (3.7), it is apparent that the cardinality of PCE will suffer from the “curse of 

dimensionality” issue. The required model observations by OLS method will grow exponentially 

with the increase of input dimension or PCE degree, which would be unaffordable for complex 

target models. Thus, the sparse representation methods that can solve Equation (3.12) with sampling 

number far less than the number of unknown coefficients become more promising. Some of them 

belong to 𝑙1 -norm regularisation methods and some have equivalent effect of 𝑙0 -norm 

regularisation. By placing penalty on the unknown coefficients, the regression problem in Equation 

(3.12) can be redefined as the following optimisation problem: 
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�̂� = 𝑎𝑟𝑔min
𝒄

{‖𝚿𝒄 − 𝒀‖2
2 + 𝜆‖𝒄‖} (3.13) 

where 𝜆 is a regularisation coefficient which controls the penalty weight to the coefficients, and 

the norm in ‖𝒄‖ can be either 𝑙0, 𝑙1 or 𝑙𝑝 (0 < 𝑝 < 1) norm to induce different sparsity. Among 

them, 𝑙1 minimisation is preferable since it can drive a sparse solution and meanwhile is more 

tractable than 𝑙0 - and 𝑙𝑝 -norm regularisation (Bruckstein et al., 2009). In this study, the BCS 

method proposed by Babacan et al. (2010), which has been demonstrated to endow a similar effect 

to 𝑙1 minimisation through introducing a hierarchical form of Laplace priors to the coefficients, is 

recalled as the sparse regression procedure to solve Equation (3.13). The principle of this method is 

briefly introduced in the following. 

Based on Equation (3.10), the likelihood function with model observations can be formulated 

by assuming the truncation error follows a zero mean Gaussian distribution: 

𝑝(𝒚|𝒄, 𝛽) = 𝑁(𝒚|𝚿𝐜, 𝛽−1) (3.14) 

where 𝛽  is assigned with a Gamma distribution as conjugate prior. To induce 𝑙1  minimisation, 

hierarchical priors are introduced to coefficients 𝒄 instead of a Laplace prior since this setting is a 

conjugate prior to the likelihood function for tractable Bayesian inference (Babacan et al., 2010; 

Jiang et al., 2018). The hierarchical modelling are as follows: 

𝑝(𝒄|𝝀) = ∏𝑁(𝑐𝑖|0, λ𝑖)

𝑃

𝑖=1

 (3.15) 

𝑝(λ𝑖|𝜅) = Γ(λ𝑖|1, 𝜅/2) =
𝜅

2
exp (−

𝜅λ𝑖

2
) (3.16) 
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Thus, the modelling result of the coefficients 𝒄 becomes 

𝑝(𝒄|𝜅) = ∫𝑝(𝒄|𝝀)𝑝(𝝀|𝜅)𝑑𝝀 = ∏∫𝑝(𝑐𝑖|λ𝑖)𝑝(λ𝑖|𝜅)𝑑λ𝑖

𝑖

=
𝜅𝑃/2

2𝑃
𝑒𝑥𝑝 (−𝜅1/2 ∑|𝑐𝑖|

𝑖

) 

(3.17) 

which is an expression of Laplace distribution. Likewise, 𝜅 is modelled with a Gamma hyperprior 

𝑝(𝜅).  

Then, the Bayesian inference can be deduced to obtain the posterior distribution of all 

parameters: 

𝑝(𝒄, 𝝀, 𝜅, 𝛽|𝒚) =
𝑝(𝒚|𝒄, 𝛽)𝑝(𝒄|𝝀)𝑝(𝝀|𝜅)𝑝(𝛽)𝑝(𝜅)

𝑝(𝒚)
 (3.18) 

𝑝(𝒚) = ∫𝑝(𝒚|𝒄, 𝛽)𝑝(𝒄|𝝀)𝑝(𝝀|𝜅)𝑝(𝛽)𝑝(𝜅)𝑑𝒄𝑑𝛽𝑑𝝀𝑑𝜅 (3.19) 

Nevertheless, the calculation of the marginal likelihood 𝑝(𝒚)  is analytically intractable. The 

calculation of optimal parameters values through maximum likelihood estimation becomes 

inaccessible. Thus, an asymptotic approximation is employed to generate an iteration process 

(Babacan et al., 2010; Beck and Katafygiotis, 1998). To this end, the posterior distribution is 

decomposed as: 

𝑝(𝒄, 𝝀, 𝜅, 𝛽|𝒚) = 𝑝(𝒄|𝝀, 𝜅, 𝛽, 𝒚)𝑝(𝝀, 𝜅, 𝛽|𝒚) (3.20) 

where the posterior distribution of the target coefficients 𝒄 conditional on all other parameters and 

observations can be calculated from: 

𝑝(𝒄|𝝀, 𝜅, 𝛽, 𝒚) ∝ 𝑝(𝒚|𝒄, 𝛽)𝑝(𝒄|𝝀) (3.21) 
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which is a Gaussian distribution 𝑁(𝒄|𝜇𝑐 , 𝛴𝑐) with 

𝜇𝑐 = 𝛴𝑐𝛽𝚿𝑇𝒚 (3.22) 

𝛴𝑐 = (𝛽𝚿𝑇𝚿 + diag(1/λ𝑖))
−1

 (3.23) 

Subsequently, the unknown parameters in Equation (3.22) and Equation (3.23) can be estimated 

through maximising 𝑝(𝝀, 𝜅, 𝛽|𝒚) . Since 𝑝(𝝀, 𝜅, 𝛽|𝒚) ∝ 𝑝(𝒚, 𝝀, 𝜅, 𝛽) , maximising 𝑝(𝝀, 𝜅, 𝛽|𝒚)  is 

alternatively pursued by maximising 𝑝(𝒚, 𝝀, 𝜅, 𝛽) , which can be readily calculated from 

𝑝(𝒚, 𝒄, 𝝀, 𝜅, 𝛽) by simply integrating out 𝒄. That is, 

𝑝(𝒚, 𝝀, 𝜅, 𝛽) = ∫𝑝(𝒚|𝒄, 𝛽)𝑝(𝒄|𝝀)𝑝(𝝀|𝜅)𝑝(𝛽)𝑝(𝜅)𝑑𝒄 (3.24) 

Lastly, by taking partial derivatives to the parameters 𝝀, 𝜅, 𝛽 to maximise the logarithm of Equation 

(3.24), the optimal values of them can be obtained, and 𝜇𝑐  and 𝛴𝑐 can be updated iteratively until 

convergence. However, the gradient algorithm is in low calculation efficiency due to calculation 

burden in Equation (3.22) and Equation (3.23). To reduce the computational cost and speed up the 

iteration process, a fast Laplace algorithm was proposed by Babacan et al. (2010) to make the BCS 

method more applicable to large-scale problems. The central idea is to update only a single λ𝑖 

instead of updating the whole 𝝀  in each iteration so that the updates of 𝜇𝑐  and 𝛴𝑐  become 

efficient. The details can be found in (Babacan et al., 2010). 

At the beginning of the algorithm, the model will be set as empty, namely 𝛌 = 𝟎 (Babacan et 

al., 2010). So only 𝛽 needs to be assigned with a proper value to launch the algorithm. Even though 

a fixed value, 𝛽−1 = 0.01‖𝒚‖2
2, was suggested by Babacan et al. (2010) for initialisation, it is found 
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that different values of 𝛽 will affect the solution. Cross-Validation (CV) has been proven a good 

tool to provide proper choice of the hyperparameters in PCE, such as estimating the polynomial 

degree and the error tolerance (Huan et al., 2018; Jakeman et al., 2015), when no validation dataset 

is available. Here we choose CV technique to help determine a proper value for 𝛽 as initialisation, 

which was also adopted by Lüthen et al. (2021). The principle of the so-called K-fold CV is to 

randomly partition the training data into K parts with equal size; one part is regarded as test data 

while the remaining 𝐾 − 1 parts are used as training data. Thus, the average predicted error on the 

test data could be evaluated. By taking each part as test data in turn, a total of K average predicted 

errors can be obtained, and the average of these K values is defined as the CV error. When applying 

the K-fold CV to choose a proper value of the model parameter, a bunch of values of the target 

parameter should be chosen in advance. For each value with given training data, a CV error will be 

estimated. The parameter value with the smallest CV error will be viewed as the best choice. In this 

study, 10-fold CV is used to select the initial value of the parameter 𝛽. 

BCS is a sparse representation method that can provide high degree sparsity to solutions 

(Babacan et al., 2010). As such, the PCE model resulting from BCS can be expressed with a very 

simple structure. An appealing benefit of BCS compared with other regularisation algorithms is that, 

based on the modelling result, this method can make predictions to unknown points with a 

distribution instead of a deterministic way, which provides a reference of our confidence on the 

estimated value at a point. This property will be utilised in BED as described in the next section. 
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3.3 Sequential Sampling 

In this section, two sampling schemes to be utilised in the proposed method are outlined. One 

is the coherence-optimal sampling strategy originated from the compressive sampling theory, and 

the other is the BED. It has been proven that the former can achieve the minimum sample quantity 

while preserving satisfactory recovery performance in solving 𝑙1 minimisation problem (Hampton 

and Doostan, 2015). This sampling method was compared with several input-dependent only 

sampling methods by verifying on several benchmark function tests by Lüthen et al. (2021) and was 

shown promising to collect high-quality samples. The latter capitalises on the information provided 

by model observations through Bayesian modelling techniques, which has a wider applicability to 

various problems (Chaloner and Verdinelli, 1995). Then, a hybrid sequential sampling method is 

proposed by combining two approaches. A sampling framework to sequentially sample from the 

coherence-optimal distribution is first introduced. Then, BED in conjunction with the differential 

entropy is fused with the coherence-optimal sampling to develop a hybrid sequential sampling 

strategy, which is expected to achieve high convergence rate and stable modelling performance. 

3.3.1 Coherence-optimal sampling 

The coherence parameter in the context of PCE is defined as (Hampton and Doostan, 2015):  

𝜇(𝝃, ℤ𝑝,𝑑) = sup max
𝜶∈𝓐𝑝,𝑑

|𝜓𝜶(𝜻)|2 (3.25) 

which has been testified to be a vital parameter of bounding the number of samples needed for 
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accurate recovery of 𝑙1  minimisation problem. A lower coherence parameter value represents a 

smaller bound of the sample number. Equation (3.13) can be rewritten in a weighted form: 

�̂� = 𝑎𝑟𝑔min
𝒄

{‖𝑾𝚿𝒄 − 𝑾𝒀‖2
2 + 𝜆‖𝒄‖1} (3.26) 

Here we focus on 𝑙1 minimisation problem. The weight matrix 𝑾 is an identity matrix in Equation 

(3.13) so that 𝑾𝚿 = 𝚿. The regression matrix 𝑾𝚿 is controlled by the truncated polynomials at 

sampled points. To achieve the lowest sample bound, the concept of isotropy of regression matrix 

is introduced. The regression matrix in the context of PCE is isotropy if the ED is sampled from the 

input distribution, and the lowest sampling number could be achieved in a large probability for 

accurate reconstruction (Hampton and Doostan, 2015; Krahmer and Ward, 2014). To conclude, with 

the input variables 𝝃 and the corresponding truncated polynomials, a coherence parameter value 

can be determined to bound the lowest sample number for accurate recovery of 𝑙1 minimisation 

problem in a high likelihood. To attain this bound, the samples should be collected from the input 

distribution. Therefore, in target to recover an 𝑙1  minimisation problem with satisfactory 

performance and as small number of samples as possible, one should reduce the coherence 

parameter value and sample from the corresponding distribution to make the regression matrix 

isotropic. 

Now we consider a new polynomial basis which is modified from the original standard 

polynomials by multiplying a weight coefficient, where the coherence parameter of the new 

polynomial basis would be the minimum as defined below: 
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𝜇𝑚𝑖𝑛(𝜸,𝓐𝑝,𝑑) = sup max
𝜶∈𝓐𝑝,𝑑

|𝑤(𝜻)𝜓𝜶(𝜻)|2 (3.27) 

in which the weight coefficient is determined by: 

𝑤(𝜻) =
1

𝑐𝐵(𝜻)
 (3.28) 

where 𝐵(𝜻) = max
𝜶∈𝓐𝑝,𝑑

|𝜓𝜶(𝜻)|. Then the new variables 𝜸 with distribution in compliance with the 

new orthogonal polynomial basis 𝜓𝜶
𝑛𝑒𝑤(𝜸) = 𝑤(𝜻)𝜓𝜶(𝜻) will have the PDF: 

𝑓𝜸(𝜻) =  𝑐2𝐵(𝜻)2𝑓(𝜻) (3.29) 

where 𝑐2 = ∫𝐵(𝜻)2𝑓(𝜻)𝑑𝜻  is a normalisation constant. Thus, the weight matrix could be 

calculated from the weight coefficient: 

𝑾(𝑖, 𝑖) = 𝑤(𝛾(𝑖)) (3.30) 

where 𝛾(𝑖) is a sample from the distribution 𝑓𝜸. The detailed statement of the coherence-optimal 

sampling and its convergence theorems can be found in (Hampton and Doostan, 2015).  

In principle, the coherence-optimal sampling strategy amounts to discovering a weighted 

orthogonal polynomial system 𝑤(𝜻)𝜓𝜶(𝜻)  that achieves the lowest coherence parameter value; 

then sampling from the corresponding new distribution will make the new regression matrix 𝑾𝚿 

isotropic. As a result, the perfect recovery of 𝑙1 minimisation problem will be guaranteed in a large 

probability while the samples can be controlled to a small quantity (Hampton and Doostan, 2015). 

The coherence-optimal sampling strategy instructs the sampling process based on the input 

variables, model degree, and the corresponding orthogonal polynomials. Thus, the regression matrix 

𝑾𝚿 will be well-conditioned to ensure stable computation of the coefficients. One difficulty in this 
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method is that the new distribution is generally not a standard or known distribution, and even the 

calculation of the normalisation constant might be difficult. Direct sampling from this distribution 

will be undoubtedly hard. Hampton and Doostan (2015) proposed to use the Monte Carlo Markov 

Chain approach to generate samples without calculating the specific expression of the distribution. 

This sampling method was originally proposed for Hermite and Legendre polynomials. For 

problems with input distribution that is neither uniform distribution nor Gaussian distribution but 

has known PDF, the isoprobabilistic transform can be adopted to convert the original input 

distribution to uniform or Gaussian distribution (Fajraoui et al., 2017). Then the coherence-optimal 

sampling method can be performed on the transformed distributions. 

3.3.2 Bayesian experimental design 

It is worth mentioning that, in the coherence-optimal sampling method, only input information 

from the input distribution and the truncated orthogonal polynomials is used; but the model 

observations, which represent the target model characteristic, are not considered. Most of the 

commonly used sampling methods such as LHS, D-optimal, etc., are all input-dependent only. For 

various problems which can be modelled by the PCE technique with the same input dimension, 

input distribution and total polynomial degree, the formulated coherence-optimal distributions in 

the coherence-optimal sampling method are identical to each other. However, for problems with 

different complexity, the target model characteristic will influence the sampling result. BED takes 
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advantage of this kind of information to instruct the sampling process (Ji et al., 2008; MacKay, 1992; 

Seeger and Nickisch, 2008). A noticeable metric used in BED to quantify the information inherent 

in variables is the Shannon entropy in the context of information theory. The core idea in BED with 

information theory is that samples will be collected from a predefined candidate pool to maximise 

the information gain about the target model (Papadimitriou et al., 2000). When applying BED for 

sequential sampling, the unobserved positions in the candidate pool are assumed as random 

variables, and the trained PCE model by the use of Bayesian modelling techniques can make 

predictions to the unobserved positions with distributions instead of deterministic evaluations. The 

unreliability of the trained model can be reflected in the predicted results by evaluating the 

prediction uncertainty at each unobserved point. Then, we intend to get the next sample at a location 

which owns a large prediction uncertainty, because the observation collected at this position will 

provide more information to train the PCE model in the next iteration (Ji et al., 2008). The PCE 

model trained using such collected samples and observations would reduce its uncertainty to a large 

extent. The target of interest is in usually assumed as a continuous variable, so the differential 

entropy which extends from the Shannon entropy is (Ji et al., 2008; Nielsen, 2019): 

𝐻𝐷(𝑋) = −∫𝑓(𝑥) log(𝑓(𝑥)) 𝑑𝑥 (3.31) 

where 𝑓(𝑥)  denotes the PDF of a continuous variable 𝑋 . The unit of the differential entropy 

depends on the base of the logarithm. The commonly used bases are 2, Euler’s number and 10, 

which generate entropy units of bits, nats and bans, respectively. A large entropy value implies that 
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less information is known about 𝑥 and more uncertainty exists in this variable.  

In this study by employing the BCS method to calculate the PCE coefficients, the trained PCE 

model can make predictions to those unknown places with Gaussian distributions. By considering 

a set of points 𝓧𝑁𝑡
= {𝝃(1), 𝝃(2),⋯ , 𝝃(𝑁𝑡)} to be predicted, the polynomial basis will form a new 

matrix 𝚿𝑛𝑒𝑤  with 𝑁𝑡  rows. According to the posterior distribution of the coefficients, 

𝑁(𝒄|𝜇𝑐 , 𝛴𝑐), the predictions to these points can be obtained as (Tipping, 2001): 

𝑌𝑝𝑟𝑒(𝓧𝑁𝑡
)~𝑁(𝚿𝑛𝑒𝑤𝜇𝑐 ,𝚿𝑛𝑒𝑤𝛴𝑐𝚿𝑛𝑒𝑤

𝑇) (3.32) 

Then the prediction 𝑌𝑝𝑟𝑒(𝝃
(𝑖))~𝑁(𝜇𝑖 , 𝜎𝑖

2)  at each prediction point 𝝃(𝑖)  can be obtained. Here 

𝑌𝑝𝑟𝑒
(𝑖)

 denotes the variable with its prediction at point 𝝃(𝑖). 𝑓(𝑌(𝑖)) represents the PDF of 𝑌𝑝𝑟𝑒
(𝑖)

. 

Thus, the differential entropy at each predicted point can be calculated by: 

𝐻𝐷(𝑌𝑝𝑟𝑒
(𝑖)

) = −∫𝑓(𝑌(𝑖)) ln(𝑓(𝑌(𝑖))) 𝑑𝑌(𝑖) (3.33) 

Here we use Euler’s number as base of logarithm. A point with high 𝐻𝐷 value denotes that the 

obtained PCE model is less certain at this point. Thus, this point has a higher priority to be selected 

than other points. Training a PCE model with this observation will reduce the prediction uncertainty 

to a large extent. For Gaussian distribution, the differential entropy can be elicited as: 

𝐻𝐷 (𝑌𝑝𝑟𝑒
(𝑖)

) =
1

2
ln| 𝜎𝑖

2| +
1

2
ln(2𝜋) +

1

2
 (3.34) 

which is related only to the variance value and easy to be calculated. Finally, the new sample and 

corresponding observation will be added to the training dataset, and the PCE model will be re-
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trained to evaluate that whether to add more samples.  

Clearly, BED will make better use of the modelling results to make the trained PCE model 

more and more accurate. In another aspect, however, this strategy is different from the input-

dependent approaches that the regression calculation stability in each iteration has no robust 

guarantee. Moreover, the Bayesian modelling approaches require enough data for training. The 

uncertainty will keep in a high level at almost all predicted points when scarce data is used. Under 

this circumstance, the predicted results are not accurate and will provide invalid instruction in the 

sampling process. The initial sample size for a sequential sampling process is usually arbitrary and 

in general insufficient for modelling. Purely relying on the BED will get samples with poor quality 

at the beginning of sampling process. In the next section, a new sequential sampling strategy in 

connection with BED will be proposed, where the samples will be constrained simultaneously to 

approximately follow the coherence-optimal distribution and to ensure the quality of samples.  

3.3.3 Coherence-entropy sampling method 

3.3.3.1 Sequential sampling strategy from coherence-optimal distribution 

To sequentially sample from a given distribution, a general framework is to first generate an 

initial sample set of small size from this distribution, and then gradually add samples until the 

quantity meets the requirement. There are two challenges in forming this framework.  

The first one is about the generation of a small size of initial samples from a given distribution. 
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In principle, the LHS method is amenable to generating small number of samples from a known 

distribution with good space filling property. In each dimension of a multi-dimensional space, the 

definition domain of the variable is uniformly divided into 𝑁 equal probability slices according to 

the marginal distribution, where 𝑁 is the target number of samples. By randomly generating one 

sample in each slice, a total of 𝑁 scalar samples are generated in this dimension. Then, the scalar 

samples from different dimensions are randomly matched together; the generated samples in this 

multi-dimensional space are referred to as LHS samples, and this distribution property is called 

Latin hypercube property. However, LHS is originally designed for problems with independent 

variables, while the coherence-optimal distribution may have non-negligible dependence among 

variables in a multivariable problem. To apply LHS, the dependence among input variables is 

ignored in this study. As a result, the collected LHS samples will follow a quasi-coherence-optimal 

distribution instead of the coherence-optimal distribution, but these samples can distribute over the 

input space in a more space filling way. Besides, the generation of LHS samples from the quasi-

coherence-optimal distribution is still hard since each univariate distribution is mostly not a standard 

distribution. Equally dividing the input space by probability distribution is intractable. In view of 

this, an approximate operation is proposed in this study. First, a large number of samples are 

generated from the target distribution by the use of MCMC method or other procedures. Then, 

according to the initial size of ED, the input space in each dimension is partitioned into slices so 

that each slice contains the same quantity of samples. As the sample quantity approaches infinity, 
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these slices will have the same probability. Therefore, with enough samples (e.g., 105) being 

generated from the target distribution, these divided slices in each dimension could be thought to 

have approximately equal probability, and random sampling from these slices will achieve a near 

LHS sample set. We refer to this method as Near-LHS (NLHS) algorithm, which will be 

implemented to generate LHS samples from a non-standard distribution. This near LHS sample set 

conforms to the quasi-coherence-optimal distribution in a space filling way. 

The second challenge is how to ensure that the samples always possess a promising space 

filling property during the sampling process, since each new sample will destroy the Latin 

hypercube property of the overall samples. Here, a “doubling procedure” adapted from the so-called 

Progressive-LHS (PLHS) algorithm (Sheikholeslami and Razavi, 2017) is employed to maintain 

the distribution property of samples during the sequential sampling process. When a near LHS 

sample set of size 𝑛1 has been generated by the NLHS algorithm, the input space is uniformly 

sliced into 𝑛1  equal probability slices by the marginal distribution in each dimension. To add 

samples, the “doubling procedure” is to perform extra 𝑛2 = 𝑛1 slicing operations in the input space 

of each dimension. A total of 2𝑛1 equal probability slices in each dimension are generated. In other 

words, each slice from the last operation is equally divided into two parts in each input dimension. 

Slice from different dimensions will form an input subspace, named a block. Those blocks, where 

slices in all dimensions have no samples located, are defined as active blocks. Subsequently, extra 

𝑛1 samples are randomly sampled from these newly generated active blocks, and the resulting 2𝑛1 
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samples in total are still LHS samples. For easy interpretation, a simple 2-D example is illustrated 

in Figure 3.2. 

 

 

Figure 3.2 Simple 2-D example of PLHS algorithm 

Assume that the initial sample set has two sample points, so the marginal probability 

distributions of two variables in this 2-D plane are uniformly divided into two slices, that is, four 

blocks, as shown in Figure 3.2(a). Two samples are generated so that each slice has one sample 

projection in this dimension. Then, to seek for news samples, the two distributions are doubly sliced 

as depicted in Figure 3.2(b). The newly generated active blocks are marked in white and inactive 

blocks are in grey. By randomly choosing one active block and sampling once from it, three of the 

original four active blocks become inactive according to the definition of active block, and they are 
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marked in blue in Figure 3.2(c). So, the last sample can only be collected in the final active block, 

as shown in Figure 3.2(d), and all the blocks become inactive. When no more active block exists, 

the “doubling procedure” will be executed again if more samples are needed. It is apparent that this 

algorithm imposes a constraint to each sampling operation, and finally the samples will be the near 

LHS samples. One drawback of this algorithm is that it is less flexible in controlling the sample size. 

It is known that the samples are near LHS samples only when no active block exists. After each 

“doubling procedure”, the number of samples in need to construct the LHS samples will be doubled 

(e.g., 2, 4, 8, 16, and so on in the previous case). But this is not a problem in this study since  

Algorithm 1. NLHS-DP algorithm 

Input: Coherence-optimal samples 𝓧𝑁 ; Initial sampling number 𝑁0 ; Total sampling number 

𝑁𝑠. 

Initialisation:  

1. Divide the coherence-optimal samples 𝓧𝑁 into 𝑁0 slices uniformly according to the input 

dimension 𝑑; Totally 𝑑 sets of slices will be obtained, and in each set, there are 𝑁0 slices; 

2. In each dimension, randomly collect one sample from each slice; 𝑑  sets of 𝑁0  samples 

corresponding to the input dimensions will be obtained, and they will be randomly combined in 

dimension to get the initial 𝑁0 samples. 

Iteration: 

1. Check the slices in each dimension; If no block is active, get into step 2; otherwise go to step 

3; 

2. Under the current sample number 𝑁𝑘, re-divide input space in each dimension into 2𝑁𝑘 slices 

so that each slice contains 
𝑁

2𝑁𝑘
  coherence-optimal samples. New 𝑁𝑘

𝑑  active blocks are 

generated; 

3. Randomly select one active block, and randomly collect one sample from this active block; 

4. With the newly added sample, some active blocks become inactive; re-evaluate the blocks to 

find the remained active blocks; 

5. If the total sampling number is reached, quit iteration. 
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generating LHS samples in a strict way during the iteration process is not imperative. By using the 

NLHS algorithm with “Doubling Procedure” (NLHS-DP), a sequential sampling framework can be 

formulated to sample from the quasi-coherence-optimal distribution. The detailed description of this 

algorithm is shown in Algorithm 1. 

3.3.3.2 Hybrid sequential sampling strategy 

Under the framework of NLHS-DP, samples are still randomly generated since at least one 

block is active in each iteration. One should first randomly choose an active block (if there are more 

than one active block), and then randomly sample once in this block. So, the NLHS-DP algorithm 

is thought to be less robust and slow to convergence. In view of this, BED is combined to build a 

hybrid sequential sampling strategy. Assume that a candidate set 𝓧𝑁𝑡
= {𝝃(1), 𝝃(2),⋯ , 𝝃(𝑁𝑡)} with 

𝑁𝑡 samples is generated in the input space beforehand. In each iteration, the model observations 

corresponding to the selected samples are collected to train the PCE model. Taking advantage of the 

BCS method, the obtained PCE model can make predictions to the points which belong to the active 

blocks in the candidate set. Then the differential entropy values of these points can be obtained from 

the prediction results, and the point with the maximum entropy value is selected as the next sample. 

As such, the random sampling operation in sequential sampling framework is replaced by a different 

sampling criterion which employs the differential entropy to instruct the sampling process. This 

new sampling strategy is termed coherence-entropy (Coh-entro) algorithm. The algorithmic 
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procedure is detailed in Algorithm 2. 

Algorithm 2. Coherence-entropy algorithm 

Input: Problem input dimension 𝑑; total degree 𝑝; initial sampling number 𝑁0; total sampling 

number 𝑁𝑡𝑠 or desired accuracy 𝜀; candidate set 𝓧𝑁𝑡
; selection set 𝑆 and observation set 𝑌. 

Initialisation:  

1. Generate 𝑁  coherence-optimal samples 𝓧𝑁  by employing MCMC sampling method 

according to the problem dimension and total degree; 

2. Generate 𝑁0  initial samples which yield the quasi-coherence-optimal distribution and add 

them into the selection set 𝑆 = 𝓧𝑁0
; 

3. Get model observations at sampled points in the selection set 𝑌 = 𝒀(𝓧𝑁0
). 

In the 𝒊th iteration: 

1. Build PCE model according to the selection set 𝑆 and the corresponding observations 𝑌 by 

employing the BCS method; 

2. If the total sampling number 𝑁𝑡𝑠  is reached or the desired accuracy 𝜀  is achieved, quit 

iteration; otherwise, get into step 3; 

3. Check all the blocks; If no more active block exists, get into step 4; otherwise get into step 5; 

4. Under the current sample number 𝑁𝑆 , re-divide the input space into 2𝑁𝑆  slices in each 

dimension so that each slice contains 
𝑁

2𝑁𝑆
 coherence-optimal samples. 𝑁𝑆

𝑑 new active blocks 

are generated; 

5. Abandon the candidate points which do not belong to active blocks temporarily; 

6. Make prediction to the remained candidate points and calculate the corresponding differential 

entropy; 

7. Add the candidate point 𝝃(𝑖) which owns the largest differential entropy value to the selection 

set 𝑆 = 𝑆 ∪ 𝝃(𝑖), and get model observation at this point 𝑌 = 𝑌 ∪ 𝒀𝝃(𝑖);  

8. According to the current sample set, re-evaluate the active blocks; 

9. Update the candidate set by deleting the selected point 𝓧𝑁𝑡
= 𝓧𝑁𝑡

\𝝃(𝑖). 

In the proposed method, the collected samples are controlled to conform to the quasi-

coherence-optimal distribution in each iteration. Even though the samples do not strictly obey the 

coherence-optimal distribution, they still have a good space filling property to cover the input space, 

and it is speculated that such distribution property could still help bound the number of samples. 

The isotropic property of the regression matrix cannot be achieved, but it is expected that the 
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regression matrix can be in good condition for regression calculation when using 𝑙1  sparse 

representation method. BED based on the BCS method and differential entropy is employed to 

substitute the random selection operation in sequential sampling framework. It can be deemed that 

the BED is constrained so that the samples can have a good distribution property while enriching 

the target model information received from the corresponding observations. Thus, the PCE model 

can be trained to be more and more accurate with the gradually increased target model information. 

In addition, even if the collected samples and the corresponding observations at the beginning of 

the iteration process are not enough for training an accurate PCE model, generating samples from 

the quasi-coherence-optimal distribution still provides a foundation for further sampling and PCE 

modelling. The proposed method not only makes full use of the input information, but also earns 

much information from the observations and modelling results. It is expected to have both better 

convergence rate and computational stability. 

3.3.4 Termination criterion 

Several criteria have been proposed to terminate the sampling process through evaluating the 

precision of the obtained PCE model, such as Kullback-Leibler Divergence (KLD) and Leave-One- 

Out (LOO) error (Blatman and Sudret, 2008; Thapa et al., 2020). Inspired by the idea of comparing 

the responses obtained from the PCE model in successive iterations for modelling accuracy 

evaluation, a simple criterion capitalising on the changes of the PCE model mean and standard 
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deviation (std) in successive iterations is employed in this study to assess convergence of the 

obtained PCE model. These values can be easily obtained from the PCE coefficients, and they are 

good statistical measures to represent the PCE model. When the PCE model mean and std values in 

successive iterations keep stable or the change values of these two statistical measures are smaller 

than a given threshold, the PCE model is considered to have converged with satisfactory modelling 

accuracy.  

3.4 Case Studies 

In this section, three analytical benchmark functions are used to validate the proposed method 

with different input dimensions and degrees. The PCE models are also truncated on different degrees 

to test the algorithm performance. Three state-of-art input-dependent only sampling methods (Coh-

Opt, D-Coh-Opt, and Seq-D-Coh-Opt) proposed by Diaz et al. (2018) and Hampton and Doostan 

(2015), which are based on coherence-optimal sampling and D-optimal design, are compared with 

the proposed method (Coh-entro). Among them, the Coh-Opt and D-Coh-Opt methods are non-

sequential sampling strategies while the Seq-D-Coh-Opt method is a sequential sampling strategy. 

In addition, two output-dependent sequential sampling methods are also compared in this study. 

One is the component of the proposed method, BED with differential entropy. The other is the 

Expected Improvement-based Expected Loss Function (EI-ELF) criterion which was proposed by 

Zhou, et al. (2019a). The EI-ELF criterion is based on the PCE modelling results inferred by sparse 

Bayesian learning to instruct the next sample, which is an output-oriented method. The detailed EI-
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ELF criterion is introduced in Appendix A. For convenience of comparison, the termination 

criterion used for the benchmark tests is set as sample upper limit instead of convergence evaluation. 

The size of the candidate sample set in the Coh-entro algorithm is set as 𝑁𝑡 = 104. In order to 

assess the real precision of the obtained PCE models, a validation set with 𝑁𝑣𝑎𝑙 = 104 random 

samples and the exact model values are used. The Relative Root Mean Square Error (RRMSE) 

𝜀𝑅𝑅𝑀𝑆𝐸 (Diaz et al., 2018) is calculated by: 

𝜀𝑅𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡𝑟𝑢𝑒

(𝑖) − 𝑦𝑃𝐶𝐸
(𝑖) )2𝑁𝑣𝑎𝑙

𝑖=1

∑ 𝑦𝑡𝑟𝑢𝑒
(𝑖) 2𝑁𝑣𝑎𝑙

𝑖=1

 (3.35) 

After the benchmark study, the proposed method will be applied to an engineering problem to 

validate its practicability. The convergence is assessed by the termination criterion which 

automatically determines the ED size with desired accuracy. 

The Matlab codes of the Coh-Opt, D-Coh-Opt, and Seq-D-Coh-Seq methods are available 

online (Diaz et al., 2018). An in-house code of the EI-ELF criterion has been developed according 

to Zhou et al. (2019a), but the sparse solver there has been changed in this study to BCS with 

Laplace prior for fair comparison. The code of the BCS method is also available (Jiang et al., 2018). 

For the sake of clarity, the methods of Coh-Opt, D-Coh-Opt, Seq-D-Coh-Seq and BED with 

differential entropy are denoted as Coh, D-coh, Coh-seq, and Entro hereafter. 
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3.4.1 Two-dimensional function 

The first test function is a low-dimensional analytical function as given in Equation (3.36), 

which has been studied as a benchmark test function for PCE modelling (Thapa et al., 2018a, 2020). 

The random input variables are uniformly distributed with a mean of 2.0 and a probability density 

function height of 0.7222. The analytical results of the mean and standard deviation (std) of this 

function are 0.079 and 1.124, respectively. 

𝑦 = ln(1 + 𝑥1
2) ∗ sin(5𝑥2) (3.36) 

Two total degrees, 9 and 11, are chosen as truncation degree of the PCE model, which will 

result in the full PCE expansions of P = 55 and P = 78 multivariate Legendre polynomials. The 

initial sampling number is set as 10. Each method is calculated for 30 times to ensure statistical 

stability. The RRMSE results with respect to the increase of ED size are shown by box plots in 

Figure 3.3 and Figure 3.4. 

 

Figure 3.3 RRMSE with different ED size under degree 9 
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Figure 3.4 RRMSE with different ED size under degree 11 

In the box plots, bold vertical lines represent the range between upper and lower quartiles of 

the 30 results, and fine vertical lines represent the 1.5 times interquartile range which constrains the 

normal value limitation. Values out of them are regarded as outliers, which are depicted as plus 

symbols in the plots. The dot inside the white circle denotes the median of RRMSE, and the lines 

that vary with respect to the ED size represent the variation of the median of RRMSE obtained by 

different methods. It can be observed that the EI-ELF criterion and the proposed Coh-entro strategy 

have lower validation error than other three input-dependent only sampling methods and the Entro 

sampling method under almost all circumstances. In the final converged results, except for the D-

coh strategy with PCE degree 9, the PCE models with samples generated by the Coh-entro strategy 

and the EI-ELF criterion both have smaller validation error than the other four methods. In the 

circumstance of ED size much larger than the number of unknown coefficients, samples from the 

D-coh strategy can construct a better regression matrix by sampling at once to form well-

conditioned equations which make the solutions stable. For the PCE models with degree 11, the 
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final converged results from the Coh-entro strategy have a bit higher validation error than the EI-

ELF criterion, but the Coh-entro strategy still has a better performance than the three input-

dependent only methods and the Entro method.  

To illustrate the solution stability of the regression calculation during the sampling process, the 

condition number of the regression matrix and the mean and std values of the obtained PCE model 

calculated during the iteration process are depicted. The condition number is defined as (Thapa et 

al., 2020): 

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 =  ‖𝚿𝒄‖ ∙ ‖𝚿𝑐
†‖ (3.37) 

where 𝚿𝒄 represents a submatrix of 𝚿 in Equation (3.10) with columns corresponding to non-zero 

coefficients; † denotes Moore–Penrose inverse. The norm can be of any form, such as 1-norm, 2-

norm, ∞-norm, etc. Here 2-norm is used. A large condition number represents poor performance of 

the regression matrix and implies that the regression solution becomes more sensitive to changes in 

the input values and observations, i.e., the correct solution is hard to find. Hence, a large condition 

number appearing in the sequential sampling process means that the corresponding regression 

solution may be incorrect. Three strategies, the proposed Coh-entro strategy, the Entro method and 

the EI-ELF criterion, which are all sequential sampling methods and output-oriented, are compared 

here. Figure 3.5 and Figure 3.7 show the mean and variance of the condition number during the 30 

repeated tests with respect to the increase of ED size. It can be seen that under the PCE degree 9, 

the condition number of the Entro method is always the largest among the three strategies. The 
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condition number of Coh-entro has its mean values mostly lower than EI-ELF during the whole 

iteration process and ultimately becomes stable at a very low value. The variance values of the 

condition number have a similar variation trend with the mean values, which demonstrates that the 

condition number is stable in the repeated tests with the increased samples. Under the PCE degree 

11, the results of the three methods all show large fluctuation, where the condition number of the 

Entro method is again the largest during nearly the whole iteration process. In the first half of 

iteration process before 50 samples, the Coh-entro strategy gives rise to lower condition number 

than the EI-ELF criterion; but they have similar performance in the second half of iteration process. 

The iteration stability of the obtained PCE models is represented by the model mean and std values. 

Figure 3.6 and Figure 3.8 show the statistical properties (mean and variance) of the obtained PCE 

model mean and std values during the 30 repeated tests against the increase of ED size. The PCE 

models with samples generated by Coh-entro and EI-ELF have better convergence performance 

than the Entro method. The PCE model obtained by the Coh-entro strategy is more stable than that 

resulting from the EI-ELF criterion under the PCE degree 11 as illustrated in Figure 3.8 since several 

large outliers emerge during the iteration process with the EI-ELF criterion. 
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(a)  

(b)  

Figure 3.5 (a) Mean and (b) variance of the condition number with increasing ED size under 

degree 9 

(a)  
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(b)  

Figure 3.6 (a) Mean and (b) variance of the model means and standard deviations with increasing 

ED size under degree 9 

(a)  

(b)  

Figure 3.7 (a) Mean and (b) variance of the condition number with increasing ED size under 

degree 11 
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(a)  

(b)  

Figure 3.8 (a) Mean and (b) variance of the model means and standard deviations with increasing 

ED size under degree 11 

The final samples from the three methods in one test under degree 11 are provided in Figure 

3.9 for comparison. It is clear that the samples generated by the Entro method almost concentrate 

on the corners and edges of the input space, and the samples generated by EI-ELF criterion 

concentrate more on the edges of the input space than Coh-entro. In contrast, the proposed Coh-

entro strategy places samples in a more space filling way.  
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   (a)                        (b)                        (c) 

Figure 3.9 Final samples from (a) Entro; (b) EI-ELF; (c) Coh-entro 

In summary, the proposed Coh-entro strategy and EI-ELF criterion outperform the input-

dependent only methods and the Entro method in terms of convergence rate, and the Entro method 

suffers from stability problem during the iteration process. Through constraining the samples 

distribution to approximately match the coherence-optimal distribution, the proposed strategy 

overcomes this drawback and improves the solution stability. It not only generates samples in a 

more space filling way but also results in a low condition number in regression calculation. 

3.4.2 The Ishigami function 

The second benchmark test function is the Ishigami function. This is a highly nonlinear and 

nonmonotonic function with three input variables which has been extensively studied in the past 

(Lüthen et al., 2021; Thapa et al., 2020; Zhou et al., 2019a). All the variables conform to uniform 

distributions on the interval [−𝜋, 𝜋]. The expression of this function is as follows: 

𝑦 = sin𝑥1 + 𝑎(sin𝑥2)
2 + 𝑏𝑥3

4 sin 𝑥1 (3.38) 

where 𝑎, 𝑏  are two parameters which are commonly chosen as 7 and 0.1, respectively. The 
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analytical mean is 3.5 and std value is around 3.7208. Three total degrees, 9, 12 and 14, are 

considered in this study, which generate different polynomial items with P = 220, P = 455, and P 

= 680. The initial sampling number is set as 20. Each method is calculated for 30 times to ensure 

statistical stability.  

The RRMSE results with respect to the increase of ED size are shown by box plots in Figure 

3.10, Figure 3.11 and Figure 3.12. It is seen that the validation error decreases with the increase of 

truncation degree, which implies increased precision of the obtained PCE models. In this case, the 

EI-ELF criterion and the proposed Coh-entro strategy have much faster convergence rate than the 

input-dependent only methods in all the cases with different degrees. The Entro method shows 

discrepant performance in different PCE degrees. It has similar convergence performance with EI-

ELF and Coh-entro with degree 9, while it performs worse than EI-ELF and Coh-entro when the 

PCE degree increases to 12. In degree 14, the validation errors from the Entro method still decrease 

fast but they cannot converge to a stable result with the increase of samples. Only around 60, 80 and 

80 samples are needed for convergence of Coh-entro with PCE degrees of 9, 12 and 14 respectively, 

and the input-dependent only methods need around 70, 100 and 120 samples respectively for 

convergence. The Entro method needs around 70 and 120 samples for convergence with PCE 

degrees of 9 and 12 respectively. The EI-ELF criterion requires 60, 70 and 100 samples for 

convergence with PCE degrees of 9, 12 and 14 respectively. This demonstrates that by the use of 

the model observation information under the Bayesian framework, the sampling process will have 
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a quite fast convergence rate; but using only BED may not be able to achieve stable solutions. 

Moreover, the proposed Coh-entro strategy has an apparently better convergence performance than 

the EI-ELF criterion, particularly for the PCE models with degree p = 14.  

 

Figure 3.10 RRMSE with different ED size under degree 9 

 

Figure 3.11 RRMSE with different ED size under degree 12 
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Figure 3.12 RRMSE with different ED size under degree 14 

To provide an intuitive insight into the computational stability of the Entro method, the Coh-

entro criterion and the EI-ELF method, the condition number of the regression matrix and the 

statistical properties (mean and variance) of the model mean and std values under different degrees 

are depicted in Figure 3.13 to Figure 3.18. It should be mentioned that we ignore some extremely 

large outliers in the statistical properties of the model mean and std values at the beginning of the 

iteration process, which have been hidden in the figures, to focus on their convergence conditions. 

(a)  
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(b)  

Figure 3.13 (a) Mean and (b) variance of the condition number with increasing ED size under 

degree 9 

(a)  

(b)  

Figure 3.14 (a) Mean and (b) variance of the model means and standard deviations with increasing 

ED size under degree 9 
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(a)  

(b)  

Figure 3.15 (a) Mean and (b) variance of the condition number with increasing ED size under 

degree 12 

(a)  
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(b)  

Figure 3.16 (a) Mean and (b) variance of the model means and standard deviations with increasing 

ED size under degree 12 

(a)  

(b)  

Figure 3.17 (a) Mean and (b) variance of the condition number with increasing ED size under 

degree 14 
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(a)  

(b)  

Figure 3.18 (a) Mean and (b) variance of the model means and standard deviations with increasing 

ED size under degree 14 

As illustrated in Figure 3.13 under the PCE degree 9, the condition numbers of the EI-ELF 

criterion and the Coh-entro method exhibit similar trends with increasing ED, while the condition 

numbers of the Entro method show a bit larger values than these two methods. For the PCE models 

of degrees 12 and 14 as shown in Figure 3.15 and Figure 3.17, the condition numbers from the Coh-

entro strategy mostly keep lower than those from the Entro method and the EI-ELF criterion, except 

for a few emerged peaks. These are influenced by a few extremely large condition numbers in the 

repeated tests. The variance of the condition numbers in these two cases shows that the Coh-entro 

strategy generates more stable and lower condition numbers than the Entro method and the EI-ELF 
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criterion in most instances, especially after convergence. In regard to the model mean and std under 

the PCE degree 9 in Figure 3.14, all the three methods make the PCE models converge to the target 

one. As illustrated by the variances of the model mean and std values, the Coh-entro strategy 

possesses a faster convergence performance than the Entro method and the EI-ELF criterion, and 

the three methods ultimately show similar trends. When the PCE degree is altered to 12, the Coh-

entro strategy can still have a quick convergence rate than EI-ELF, and the variances of model mean 

and std from Coh-entro mostly keep at low values after convergence, as shown in Figure 3.16(b); 

whereas the Entro method cannot converge well. It is observed that a few apparent outliers emerge 

in Coh-entro. These are due to inaccurate model training results that occasionally arise since the 

iteration processes are repeated 30 times. The outliers from Coh-entro show large amplitudes in the 

model mean and std, so they can easily be distinguished from the converged training solutions 

during the iteration process. The same phenomenon can be observed in Figure 3.18 for the PCE 

degree 14.  

The final samples of these three methods in one test under degree 14 are given in Figure 3.19 

for comparison. It is seen that the samples from the Entro method still concentrate more on the 

edges of the input space, and the samples from the Coh-entro strategy are more space filling than 

those from the EI-ELF criterion.  
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(a)                                 (b) 

 

(c) 

Figure 3.19 Final samples from (a) Entro; (b) EI-ELF; (c) Coh-entro 

In summary, the Coh-entro strategy is found to provide samples that can form the regression 

matrix with low condition number. It can get more stable solution in the regression calculation and 

lead to faster convergence rate than the Entro method and the EI-ELF criterion. In most 

circumstances, the proposed method has better convergence stability. 

3.4.3 High-dimensional function 

The third benchmark test function is a high-dimensional function (Lüthen et al., 2021; Thapa 

et al., 2020). Its expression is as follows: 
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𝑦 = 3 −
5
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4)

𝑑

𝑖=1

] (3.39) 

where 𝑑  is the input dimension chosen by user. All the input variables conform to uniform 

distributions defined on the interval [1, 2]. The input dimension is selected as d = 15, and the total 

degree of the PCE model is chosen as 3, which results in polynomial items with P = 816. The initial 

sampling number is set as 20. The operation is repeated for 30 times to ensure statistical stability.  

The RRMSE results with the increase of ED size are shown in Figure 3.20. The output-oriented 

methods display similar convergence trends and perform better than the input-dependent only 

methods in terms of convergence rate. All six methods converge to similar validation errors, and the 

proposed Coh-entro strategy has the lowest validation error at the end of the sampling process.  

 

Figure 3.20 RRMSE with different ED size under input dimension 15 

The condition number of the regression matrix and the obtained PCE model mean and std 

values of the three output-oriented sampling methods are depicted in Figure 3.21 and Figure 3.22.  
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(a)  

(b)  

Figure 3.21 (a) Mean and (b) variance of the condition number with increasing ED size under 

input dimension 15 

(a)  
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(b)  

Figure 3.22 (a) Mean and (b) variance of the model means and standard deviations with increasing 

ED size under input dimension 15 

It is apparent that the condition number from the Entro method and the EI-ELF criterion fluctuates 

more than the Coh-entro strategy during the whole iteration process, especially when the model has 

100 to 140 samples. By contrast, the Coh-entro strategy has less extremely large values, which all 

concentrate at the beginning of the iteration process where ED size is less than 60. When the samples 

are more than 60, the condition number keeps stable at a very low value. The variance of condition 

number shows that the proposed strategy is robust in the repeated tests.  

The solution stability of the regression calculation during the iteration process is demonstrated 

through the model mean and std in Figure 3.22. From the variance plot, we can see that all the three 

methods converge at around 180 samples, which is identical to that shown in Figure 3.20. After 

convergence, the PCE model from the Coh-entro strategy has no obvious outlier while the Entro 

method and the EI-ELF criterion show more fluctuations. Moreover, it can be found from the 

variances of the model mean and std that the Coh-entro strategy converges to a lower value of 

variance than the Entro method and the EI-ELF criterion, which indicates that the PCE model from 
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the Coh-entro strategy performs more stable than those from the Entro method and the EI-ELF 

criterion.  

In addition, another input dimension 𝑑 = 20  is tested with polynomial terms 𝑃 = 1771 

when the total truncation degree is chosen as 3. Due to the heavy calculation burden, the number of 

repeated tests in this case is set as 10. The initial sampling number is set as 20 which is the same as 

the previous case. The RRMSE results with the increase of ED size are shown in Figure 3.23. The 

three output-oriented methods outperform the input-dependent only methods, and both have similar 

convergence rate. In the end of iteration, however, the Entro method and the Coh-entro strategy 

have an equal precision with the D-coh and Coh-seq methods and performs a bit better than the Coh 

and EI-ELF methods. 

The condition number of the regression matrix and the obtained PCE model mean and std 

values from the output-oriented methods are plotted in Figure 3.24 and Figure 3.25.  

 

Figure 3.23 RRMSE with different ED size under input dimension 20 
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(a)  

(b)  

Figure 3.24 (a) Mean and (b) variance of the condition number with increasing ED size under 

input dimension 20 

(a)  



 

96 

(b)  

Figure 3.25 (a) Mean and (b) variance of the model means and standard deviations with increasing 

ED size under input dimension 20 

It can be seen from the condition number that the three methods have similar performance. All of 

them give rise to large fluctuations during the iteration process. The reason might be that the number 

of samples is too small compared with the polynomial terms, making the calculation unstable with 

sparse representation. However, even with large fluctuation on the condition number, the 

convergence performance of Coh-entro is still a bit better than the Entro method and the EI-ELF 

criterion, as illustrated in Figure 3.25. After convergence, the Coh-entro strategy shows less outliers 

than the Entro method and the EI-ELF criterion. Moreover, the variances of the model mean and 

std obtained by the Coh-entro strategy finally converge to lower values than those from the Entro 

method and the EI-ELF criterion, demonstrating that the proposed method can help obtain more 

stable PCE models during the sampling process.  

3.4.4 A large bridge structure 

Since the PCE technique is generally applied in the engineering field for UQ and sensitivity 
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analysis, the parameter sensitivity of an extradosed cable-stayed bridge is analysed to verify the 

applicability of the proposed sampling method. Here, the ANalysis Of VAriance (ANOVA, or called 

Sobol’ indices) method is used to analyse the parameter sensitivity in this case (Alış and Rabitz, 

2001; Sobol′, 2001; Sudret, 2008). The introduction to the ANOVA method can be found in 

Appendix B. 

In this case, the dynamic characteristics of the bridge structure with respect to structural 

material properties is modelled, and the sensitivity of the structural material parameters is analysed. 

The target structure is an extradosed cable-stayed bridge with three spans of 460 meters long in total. 

The girders are designed as single box with three rooms of 33.5 meters wide. Two towers of 40 

meters high each are rigidly consolidated with the girders. The girders are continuously supported 

on piers. A finite element model of the superstructure is built as the target model without modelling 

the piers, which is displayed in Figure 3.26. The girders and towers use C55 concrete, and 

displacements at the second support counted from the left end are constrained.  

 

Figure 3.26 Finite element model and partitioned substructures 
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Figure 3.27 First vertical mode 

Table 3-2 Input distributions of the extradosed cable-stayed bridge 

Variable Distribution Mean Standard deviation 

Elastic modulus 𝐸1~𝐸12 (girder) (Pa) Lognormal 3.55e10 3.55e9 

Elastic modulus 𝐸13, 𝐸14 (tower) (Pa) Lognormal 3.55e10 3.55e9 

Elastic modulus 𝐸15~ 𝐸18 (cable) (Pa) Lognormal 1.95e11 1.95e10 

Density 𝐷1~𝐷12 (girder) (kg/m3) Weibull 2549 254.9 

Density 𝐷13, 𝐷14 (tower) (kg/m3) Weibull 2549 254.9 

Density 𝐷15~ 𝐷18 (cable) (kg/m3) Weibull 8005 800.5 

Our target on the bridge dynamic characteristics is the first vertical natural frequency. The 

corresponding mode shape is shown in Figure 3.27. To identify the impact of the structure material 

properties on the target characteristic, each side span of the girder is divided into three equal-length 

regions and the middle span is divided into six equal-length regions. Moreover, the cables on the 

same side of each tower are grouped into one group, as shown in Figure 3.26. Together with the two 

towers, eighteen portions (substructures) are considered. The elastic moduli and densities of these 

eighteen substructures, 36 input variables in total, are taken as input variables in this study. 

Distributions of these variables are reported in Table 3-2, and they are assumed to be mutually 

independent. The mean values of these variables are their nominal values, and the variance is set as 
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0.1 coefficient of variation, which is defined as the ratio of the std to the mean (Wan et al., 2020). 

The input variables are transformed into standard Gaussian variables to build a Hermite PCE model. 

The total degree to truncate the PCE model is chosen as 3 to ensure the calculation accuracy, and 

this will generate a PCE model with 𝑃 = 9139 terms. The initial sampling number is set as 20. The 

threshold to terminate the sampling process is set as 10−5 . Finally, a total of 192 samples are 

obtained to attain the precision. The obtained PCE model is then used to quantify the parameter 

sensitivity by calculating the ANOVA indices. Moreover, due to the heavy calculation burden in 

generating massive MC simulations in this case, the reference solution of the ANOVA indices is 

obtained by building a sparse PCE model trained with 5000 LHS samples for comparison. The first-

order indices and the total indices of the 36 variables are shown in Figure 3.28 and Figure 3.29, in 

which 𝑆𝐹 and 𝑆𝑇 represent the ANOVA indices calculated with samples collected by the proposed 

Coh-entro strategy; 𝑆𝐹𝑟𝑒𝑓
 and 𝑆𝑇𝑟𝑒𝑓

 denote the reference values of the ANOVA indices. 

 

Figure 3.28 First-order indices of input variables of the extradosed cable-stayed bridge 
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Figure 3.29 Total indices of input variables of the extradosed cable-stayed bridge 

From the results of sensitivity analysis, it can be concluded that the ANOVA indices calculated 

with the proposed Coh-entro strategy have very tiny discrepancy compared with the reference 

solutions, which demonstrates that the PCE model trained with 192 samples collected by Coh-entro 

is reliable for sensitivity analysis. In 36 input variables, the material properties of the two towers, 

𝐸13, 𝐸14 and 𝐷13, 𝐷14, are insensitive to the first vertical nature frequency, which is in line with our 

knowledge that the towers have less influence on the girder vibration. Moreover, the densities of 

the stay cables, 𝐷15~𝐷18, are insensitive to the first vertical nature frequency; and the elastic moduli 

of the cables, 𝐸15~𝐸18 , are also in low sensitivity. 𝐸2  and 𝐷5~𝐷7  are the most sensitive 

parameters, and 𝐸1, 𝐸3, 𝐸6, 𝐸7, 𝐸9, 𝐸10, 𝐸11  and 𝐷2, 𝐷8  have the second most influence on the 

frequency. The remaining parameters have extremely small sensitivity values, which means that 

these parameters are less influential. Moreover, it is worth noting that the first-order indices and the 

total indices merely have tiny discrepancy, which implies that there are slight interaction effects 

among these parameters on the first vertical natural frequency. 
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3.5 Summary 

In this chapter, a new sampling theory for PCE modelling is developed, which proposes to take 

advantage of both the input information and model feature to instruct a sequential sampling process. 

Based on the new sampling theory, a novel sequential sampling method termed coherence-entropy 

strategy that comprises of two popular sampling approaches, coherence-optimal sampling and BED, 

is proposed. The BCS is employed as a sparse regression procedure to calculate the unknown 

coefficients associated with a simple representation of PCE model, which also provides the 

foundation for BED. The input information is first utilised to form a coherence-optimal distribution 

in line with compressive sampling theory. Sampling in this distribution ensures a lower bound on 

sample quantity for accurate recovery of the PCE coefficients. In order to build a sequential 

sampling framework, the LHS method is instead employed to collect samples from the quasi-

coherence-optimal distribution, which ignores the correlation among input variables in the 

coherence-optimal distribution. The output information in the modelling results is identified by 

using the differential entropy, and it is leveraged by BED, which is encompassed in the sequential 

sampling framework, to expedite convergence during the iteration process. The BED also benefits 

sampling in the quasi-coherence-optimal distribution at the beginning of iteration process in that 

the collected samples will always have an impressive space filling property.  

To validate the proposed method, three analytical functions with different complexity were 

studied, and the results obtained by the proposed method were compared with those from three 
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input-dependent only methods and two output-oriented methods, in which the Coh-Opt method and 

the Entro method are the components of the proposed method. It is shown that the proposed 

approach and the output-oriented methods generally outperform the input-dependent only methods 

in convergence rate, and meanwhile the modelling results have good accuracy after convergence. 

The proposed method generally has the fastest convergence rate. Among the output-oriented 

methods, the proposed strategy draws samples in a more space filling way than the Entro method 

and the EI-ELF criterion, and the obtained PCE models are in more stable convergence performance 

as shown in the repeated tests. For the problems with relatively less unknown PCE coefficients, the 

proposed strategy gives rise to the condition number of the regression matrix in a low value, thereby 

performing better than the Entro method and the EI-ELF criterion. For the problems with the number 

of unknown coefficients much higher than the required ED size, the condition number is hardly kept 

at a low value, but the proposed sampling strategy still ensures a fast convergence rate and a high 

PCE modelling accuracy after convergence. Also, it is observed that the proposed method has a 

faster convergence rate than the Coh-Opt method and gets more stable modelling results than the 

Entro method, which demonstrates that the combination of BED and coherence-optimal sampling 

could help improve both methods.  
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CHAPTER 4  

ADAPTIVE SPARSE PCE WITH BASIS 

ADAPTIVITY AND SEQUENTIAL SAMPLING 

                                                                                

 

4.1 Introduction 

In the previous chapter, a sequential sampling strategy which leverages both input and output 

information has been exploited. Based on this concept, samples are collected sequentially with high 

quality and in relatively small quantity. Besides the sampling problem, the model selection problem 

is also critical in getting precise modelling results (Tan, 2015). Basically, the model selection 

problem in PCE is to determine a proper truncation degree (Blatman and Sudret, 2011), or in a more 

complicated way, to choose significant basis terms (Ni et al., 2017). A PCE model is generally 

truncated with a given polynomial degree before training so that only a finite number of coefficients 

need to be solved. However, it is hard to determine an appropriate truncation degree in advance 

when little information about the target problem is available. To address this, adaptive basis 

selection strategies were proposed, which aim to adaptively find the significant basis terms with 

low cost (less samples) (Jakeman et al., 2015; Lüthen et al., 2020).  

As is introduced in Chapter 2, the commonly used adaptive basis selection strategy is: add 
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basis terms of higher degree to the current PCE model iteratively for training while removing 

insignificant basis terms until the required modelling accuracy is achieved (Blatman and Sudret, 

2011; Jakeman et al., 2015; Loukrezis et al., 2020; Thapa et al., 2020). If those basis terms which 

are not decisive in modelling the target problem are removed and only the significant basis terms 

are retained, a precise PCE model can be trained with low training cost even if a high truncation 

degree is used. Although many methods were developed to solve the adaptive basis selection 

problem, few studies proposed to solve it and the sequential sampling problem in a concurrent way. 

Generally, the truncation degree was assigned with a given value when solving the sampling 

problem, and sufficient samples were provided in addressing the basis selection problem. To 

integrate the sequential sampling and adaptive basis selection in one framework, the core is to 

determine whether to add basis terms or samples in each iteration since either insufficient training 

data (samples and observations) or inadequate basis terms will lead to inaccurate PCE modelling 

result. In the past, least-squares methods were employed for regression calculation, so the sample 

quantity requirement, i.e., the sample quantity was required to be more than the number of 

coefficients and preferably twice more than the number of coefficients (Hosder et al., 2007), was 

employed to settle this problem. When the sample quantity is less than the number of coefficients, 

the samples have to be enriched. When the sample quantity is twice more than the number of 

coefficients and the modelling result does not have the desired accuracy, more basis terms with 

higher degrees would be added (Thapa et al., 2020). Nevertheless, the efficiency of these strategies 
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is limited due to the “curse of dimensionality” issue. To author’s knowledge, there is a paucity of 

research on the sparse representation in PCE modelling with adaptive basis selection and sequential 

sampling strategies. 

In this chapter, a method of Adaptive Sparse PCE with Basis Adaptivity and Sequential 

Sampling (ASPCE-BASS) is proposed to fill in this gap, in which the BCS method is introduced 

for sparse regression. A novel adaptive basis selection strategy is developed, which involves three 

kernel operations, basis expansion, basis pruning and basis refinement. The basis expansion 

operation adds in the current PCE model with more basis terms of higher degree; the basis pruning 

operation removes the insignificant basis terms from the current PCE model with a view to expedite 

computation speed and efficiency; and the basis refinement operation is a remedy process, which 

can resume the significant basis terms that were incorrectly expunged in history. This new basis 

selection strategy can not only add basis terms with different degrees to the PCE model, but also 

remove the insignificant basis terms to speed up the algorithm and thus reduce the demand on 

sample quantity. To combine with the basis selection strategy, a hybrid sequential sampling method 

that distinct from the coherence-entropy strategy, which also capitalises on the input and output 

information in PCE, is introduced. A two-loop iteration framework is adopted, in which the inner 

loop is the sequential sampling process, and the outer loop is the adaptive basis selection process. 

Moreover, a stability evaluation method is presented to determine which loop should be performed 

in each iteration. To illustrate the efficiency and effectiveness, the proposed ASPCE-BASS 
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algorithm will be compared with another adaptive PCE modelling algorithm and a non-basis-

adaptive algorithm (sequential sampling-only algorithm) by validating on three analytical functions 

with different complexities. 

4.2 Method 

In pursuit of adaptive basis selection for PCE, a practical way is embarking on a simple PCE 

model with a small truncation degree and gradually adding bases with higher degree until the 

precision of the trained PCE model meets predefined requirement. When taking sequential sampling 

into account as well, the problem becomes more challenging: it starts with a simple PCE model with 

a small truncation degree and a small set of samples, and then proceeds with alternately adding 

samples and basis terms until the PCE model is trained with desired accuracy. Notice that either 

insufficient training dataset or inadequate basis terms would lead to inaccurate PCE modelling 

results. The key is to determine when more samples are needed and when more bases should be 

added. As mentioned before, this issue can be solved by the least-squares method in the existence 

of massive samples and observations. Rather, we aim to build an accurate PCE model with high 

truncation degree by use of as few samples as possible. Through analysing the intrinsic nature of 

PCE modelling in consideration of both basis adaptivity and sequential sampling, four issues are 

found to affect the sample quantity required in PCE modelling to a specific problem. 

(1) Sparse representation: The least-squares method has strict requirements on the sample 

quantity for PCE training. The sample quantity should be at least more than the number of unknown 
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coefficients and 2~3 times oversampling rate is recommended. The sparse property of the target 

problem is ignored. For problems that can be sparsely represented by PCE model, much fewer 

samples are needed for sparse representation than the least-squares method. Since 𝑙1 minimisation 

is employed for regression calculation in this study, we focus our discussions on the 𝑙1 

minimisation problem hereinafter.  

(2) Sample quality: Intuitively, the sample quality would significantly affect the solution 

quality when the sample quantity is restricted. If the samples are collected with high quality, the 

number of samples required for accurate PCE modelling can be reduced. The sequential sampling 

strategy proposed in the previous chapter has addressed this issue.  

(3) The highest polynomial degree required by the target model: It has been shown in Equation 

(3.7) that the cardinality of a PCE model is controlled by the input dimension and truncation degree. 

If the target problem seeks to be represented by a PCE model with high truncation degree, usually 

a large number of unknown coefficients should be solved.  

(4) Sparsity of the target problem: The sparsity 𝐾  is defined as the number of non-zero 

coefficients in a trained PCE model. For two problems having the same highest polynomial degree 

but disparate sparsity when expanding on PCE model, the one with larger 𝐾 generally requires 

more samples for training than the other one if sparse representation is employed for regression 

calculation (Hampton and Doostan, 2015). 
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Among the above issues, (3) and (4) are the inherent characteristics of a problem, which are 

neither known in advance nor can be changed. As shown in the previous studies (Loukrezis et al., 

2020; Hampton and Doostan, 2015), the lower bound of sample quantity required to get accurate 

solution by use of 𝑙1 minimisation is controlled by the cardinality 𝑃. If insignificant basis terms 

are removed from the current PCE model in each iteration, the number of unknown coefficients in 

the trained PCE model, namely cardinality 𝑃, will reduce; in parallel the lower bound of samples 

required for accurate PCE training will decrease. Some efforts in this research line have recently 

been made with promising results achieved (Lüthen et al., 2020; Zhao et al., 2019). In short, both 

sparse representation and the above strategy play an important role in reducing the sample quantity, 

which in combination are expected to generate better results. In this regard, a new hybrid sequential 

sampling method, which can be combined with the adaptive basis selection operation easier than 

the coherence-entropy method, is first introduced. Then, an adaptive basis selection strategy which 

involves three key operations, namely basis expansion, basis pruning and basis refinement, will be 

developed in this section. Finally, these two strategies will be combined with the sparse 

representation to build a fully adaptive PCE framework, which is expected to afford the dual merit 

of fast convergence rate and high computational accuracy.  

4.2.1 A new hybrid sequential sampling method 

As is shown in the previous chapter, the coherence-entropy sampling method requires to 
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sample from the quasi-coherence-optimal distribution which is obtained from the input information 

including the input distribution and truncated polynomial basis terms. When the adaptive basis 

selection operation is concurrently applied, the number of basis terms in the PCE model will vary 

during the iteration process, thereby changing the quasi-coherence-optimal distribution. Evaluating 

the distribution each time as the basis terms change is a heavy burden. To lighten this burden, 

another hybrid sequential sampling method which combines the EI-ELF criterion with LHS method 

is introduced.  

It can be seen from Section 3.4 that the modelling results by using EI-ELF criterion has similar 

convergence rate and accuracy with coherence-entropy method, but the samples are more likely to 

concentrate on the edge of the input space. Therefore, the PLHS method is introduced to restrict the 

sampling area in each iteration of EI-ELF so that the distribution property of the collected samples 

can be improved. This algorithm is called EI-PLHS method, and the detailed steps of this algorithm 

are shown in Algorithm 3. 

In summary, this algorithm leverages the LHS method to improve the distribution quality of 

samples that collected by the EI-ELF criterion. The samples can be collected in a more space filling 

way even if a small number of samples are collected, and the convergence rate of EI-ELF is expected 

to be retained in the new strategy. Compared to the coherence-entropy algorithm, the burden of 

evaluating and updating the coherence-optimal distribution is eliminated, so the EI-PLHS algorithm 

is more practical to be combined in the adaptive PCE modelling framework.  
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Algorithm 3. EI-PLHS algorithm 

Input: Initial sampling number 𝑁0 ; total sampling number 𝑁𝑡𝑠  or desired accuracy 𝜀 ; 

candidate set 𝓧𝑁𝑡
; selection set 𝑆 and observation set 𝑌. 

Initialisation:  

1. Generate 𝑁0 initial samples which yield the input distribution by LHS method and add them 

into the selection set 𝑆 = 𝓧𝑁0
; 

2. Get model observations at sampled points in the selection set 𝑌 = 𝒀(𝓧𝑁0
). 

In the 𝒊th iteration: 

1. Build PCE model according to the selection set 𝑆 and the corresponding observations 𝑌 by 

employing the BCS method; 

2. If the total sampling number 𝑁𝑡𝑠  is reached or the desired accuracy 𝜀  is achieved, quit 

iteration; otherwise, get into step 3; 

3. Check all the blocks; If no more active block exists, get into step 4; otherwise get into step 5; 

4. Under the current sample number 𝑁𝑆 , re-divide the input space into 2𝑁𝑆  slices in each 

dimension. 𝑁𝑆
𝑑 new active blocks are generated; 

5. Abandon the candidate points which do not belong to active blocks temporarily; 

6. Make prediction to the remained candidate points and calculate the corresponding 𝐸𝐿𝐹𝐸𝐼; 

7. Add the candidate point 𝝃(𝑖) which owns the largest 𝐸𝐿𝐹𝐸𝐼 value to the selection set 𝑆 =

𝑆 ∪ 𝝃(𝑖), and get model observation at this point 𝑌 = 𝑌 ∪ 𝒀𝝃(𝑖);  

8. According to the current sample set, re-evaluate the active blocks; 

9. Update the candidate set by deleting the selected point 𝓧𝑁𝑡
= 𝓧𝑁𝑡

\𝝃(𝑖). 

4.2.2 Basis expansion strategy 

Two issues are involved in the stage of basis expansion: (i) when should the current basis terms 

in the PCE model be expanded? and (ii) how many extra basis terms are appropriate to be added? 

On the first issue, the sample quantity requirement in the least-squares method cannot be leveraged 

when the sparse representation approach is applied. Hence, a new stability evaluation method is 

proposed to address this issue. After doing so, the number of extra basis terms to be added is 

recommended. 

4.2.2.1 Stability evaluation method 
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Assume that the problem of interest can be completely represented by PCE with degree 𝑝, 

which is: 

𝑦(𝝃) = ∑𝑐𝑖 𝜓𝑖(𝝃)

𝑃

𝑖=1

 (4.1) 

where 𝑃 is the cardinality of PCE model with degree 𝑝; 𝑐𝑖 is the 𝑖𝑡ℎ true coefficient which is 

unknown. Now the initial PCE degree and sample number are nominated as 𝑝0  and 𝑁0 , 

respectively. Thus, the target problem can be expressed by the current PCE model as follows: 

𝑦(𝝃) = ∑𝑐𝑖 𝜓𝑖(𝝃)

𝑃0

𝑖=1

+ 𝜀 (4.2) 

wherein 𝑃0 is the cardinality of the current PCE model with degree 𝑝0; 𝜀 represents the truncation 

error. Here the truncation error can be expressed as: 

𝜀 = ∑ 𝑐𝑖 𝜓𝑖(𝝃)

𝑃

𝑖=𝑃0+1

 (4.3) 

Then the initial samples and corresponding observations could be used as training data to estimate 

the coefficients in Equation (4.2) via BCS. It is in general unknown whether the samples and the 

corresponding observations are enough or not for training. Without loss of generality, 𝑁0 samples 

are assumed not enough, that is to say, these samples and observations cannot fully characterise the 

target model. By calculating the coefficients, we can write the mean function of the trained PCE 
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model as: 

𝑌𝑝𝑟𝑒 = ∑𝜇𝑐𝑖
 𝜓𝑖(𝝃)

𝑃0

𝑖=1

 (4.4) 

where 𝜇𝑐𝑖
  is the 𝑖𝑡ℎ  value of results calculated by Equation (3.22). The regression error of the 

trained PCE model can be represented as: 

𝛿 = 𝑌𝑝𝑟𝑒 − 𝑦 = ∑𝜇𝑐𝑖
 𝜓𝑖(𝝃)

𝑃0

𝑖=1

− ∑𝑐𝑖 𝜓𝑖(𝝃)

𝑃0

𝑖=1

− 𝜀 (4.5) 

Due to the existence of truncation error, the obtained coefficients mean value 𝜇𝑐𝑖
 will not be equal 

to the true value 𝑐𝑖 even if sufficient samples are used, because the features of the target problem 

which should be expressed by polynomial terms of high degree may be incorrectly expressed on the 

polynomial terms of low degree (Jakeman et al., 2015). Therefore, Equation (4.5) can be re-written 

as following: 

𝛿 = ∑𝜇𝑐𝑖
 𝜓𝑖(𝝃)

𝑃0

𝑖=1

− ∑𝑐𝑖 𝜓𝑖(𝝃)

𝑃0

𝑖=1

− 𝜀

= (∑𝜇𝑐𝑖
 𝜓𝑖(𝝃)

𝑃0

𝑖=1

− ∑�̃�𝑐𝑖
 𝜓𝑖(𝝃)

𝑃0

𝑖=1

)

+ (∑�̃�𝑐𝑖
 𝜓𝑖(𝝃)

𝑃0

𝑖=1

− ∑𝑐𝑖 𝜓𝑖(𝝃)

𝑃0

𝑖=1

) + (−𝜀) = 𝛿𝑡 + 𝛿𝜀1 + 𝛿𝜀2 

(4.6) 

in which �̃�𝑐𝑖
 denotes the mean value of the 𝑖𝑡ℎ estimated coefficient when sufficient training data 



 

113 

are afforded. 𝛿𝑡 implies the regression error due to insufficient training data. 𝛿𝜀1 denotes the error 

aroused by incorrect expression due to truncation, and 𝛿𝜀2 represents the truncation error excluded 

in 𝛿𝜀1. By increasing the samples through the sequential sampling strategy without changing the 

basis terms, the features of the target problem will be gradually discovered in the corresponding 

observations. As a result, the regression error 𝛿𝑡 will reduce while 𝛿𝜀1 and 𝛿𝜀2 keep at their values. 

We can infer that new basis terms with higher polynomial degree can be added to the current PCE 

model if the regression error 𝛿 does not decrease with the increased samples. 

Since the real model response 𝑦 is unknown, it is hard to directly evaluate the regression error 

𝛿 . Apparently, the variance of the real model response 𝑦  is a constant and independent of the 

regression errors 𝛿. Transforming Equation (4.6) into (4.7) and taking variance to both sides yield 

Equation (4.8).  

𝑌𝑝𝑟𝑒 = 𝑦 + 𝛿𝑡 + 𝛿𝜀1 + 𝛿𝜀2 (4.7) 

𝑉𝑎𝑟(𝑌𝑝𝑟𝑒) = 𝑉𝑎𝑟(𝑦) + 𝑉𝑎𝑟(𝛿𝑡 + 𝛿𝜀1 + 𝛿𝜀2) (4.8) 

With the increase of samples, the variance of the trained PCE model will approach the variance of 

the real model responses due to the decrease of 𝛿𝑡, but it will deviate from the real variance value 

to a certain extent because of the existence of 𝛿𝜀1 and 𝛿𝜀2. The variance can be changed as standard 

deviation (std) as well. The stability of modelling results can be leveraged to help determine when 

more basis terms can be added. To evaluate the fluctuation of the model variance (or std), we take 



 

114 

variance to both sides of Equation (4.8): 

𝑉𝑎𝑟 (𝑉𝑎𝑟(𝑌𝑝𝑟𝑒)) = 𝑉𝑎𝑟(𝑉𝑎𝑟(𝛿)) (4.9) 

Hence, the variance of the model output variance (or std) is related only to the regression error. 

To enable evaluating the variance of the model output variance (or std) under the sequential 

sampling framework, a moving-window strategy is introduced. An illustration example is shown in 

Figure 4.1. The top plot shows the change of model std with the increase of samples. In each iteration 

with one new sample added, the PCE model is trained with the updated training dataset. A window 

of length 𝐿𝑎 (𝐿𝑎 samples) is defined from the beginning of the sequential sampling process (red 

rectangle in the top plot). The variance of the model std in the window is calculated. When a new 

sample is drawn by the sequential sampling strategy, the window moves a step forward (green 

rectangle), and the variance of the model std in this new window is calculated. The variances 

alternation with respect to the window moving is recorded in the bottom plot. When the regression 

error of the trained model cannot decrease with the increase of samples, the variance of the model 

std will hold at a value with small fluctuation, as depicted in the bottom plot of Figure 4.1.  
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Figure 4.1 Stability evaluation process 

Subsequently, we can evaluate the stability of the trained PCE models according to the bottom plot. 

This is an open-mind issue. In this study, a real-time stability evaluation method is presented. As 

shown in the red rectangles in the bottom plot, a stability evaluation range of length 𝐿𝑏  is 

introduced from the beginning and it moves forward with the increased data points. When the 

window in the top plot moves 𝐿𝑏 − 1 steps from the starting position, 𝐿𝑏 variance values will be 

recorded in the bottom plot and fill up the range. The minimum value in this range is then recorded. 

With a new added sample, the range will move one step forward by including the new variance 

value and excluding the first value in this range. The newly included variance value will then be 

compared to the recorded minimum value. If the new value is smaller than the recorded value and 

the decrement exceeds a threshold, it can be deemed that the regression error 𝛿𝑡 has a nonnegligible 

reduction with the added sample, and the recorded value should be replaced by the new value. Here, 
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the threshold is used to speed up the evaluation process, which is recommended as one-tenth of the 

minimum variance value in the current range. If the new value is not smaller than the recorded value 

or the decrement does not exceed the threshold, the sequential sampling process will step into the 

next iteration. Once the recorded minimum value becomes the first value in the range, it is 

considered that the variance of model std cannot have an obvious decrease with the increased 𝐿𝑏 −

1 samples, and in this regard the PCE model should be expanded with more bases. In summary, if 

the variance of model std is keeping near a low value with very small fluctuations with the increase 

of 𝐿𝑏 − 1 samples, the PCE model with the current basis terms is deemed to have a stable training 

result. Then, more bases should be added.  

There are several points of caution in conducting the stability evaluation: (1) Inaccurate 

regression solutions may occasionally emerge during the sequential sampling process, which may 

give rise to outliers in model variance (or std) and have adverse impact to the stability evaluation. 

Such outliers should be excluded before the stability evaluation. (2) The precision of the trained 

PCE model may temporarily degenerate when adding too many new bases. At the juncture just after 

new bases have just been added, the variance values may ascend with the increased samples. In such 

a case, the stability evaluation should cease until the variances are in downtrend again. (3) If the 

sample quantity exceeds the number of basis terms, more basis terms can be added.  

4.2.2.2 Basis expansion 
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Premised upon the proposed stability evaluation method, the time point to carry out basis 

expansion operation can be determined. The other issue is regarding how many basis terms of higher 

degree need to be added to the current PCE model. The previous studies have shown that the sparse 

representation approach could work even if the unknown coefficients are more than the training 

samples, but naively adding too many basis terms of high degree might result in the degradation of 

modelling accuracy (Jakeman et al., 2015). Jakeman et al. (2015) clarified that the sparse 

representation via 𝑙1  minimisation can ensure stable computation when the quantity of the 

unknown coefficients is no more than 10 times the number of samples. Therefore, from the current 

PCE model with degree 𝑝, basis terms with polynomial degrees 𝑝 + 1, 𝑝 + 2, … will be added to 

the current PCE model in turn until the total number of basis terms in the PCE model is 10 times 

the current sample quantity. If all the basis terms of the same degree cannot be added to the PCE 

model at once due to the quantity limitation, basis terms with low interaction effect have the priority 

to be added than those with high interaction effect, according to the “sparsity of effects” principle. 

The remaining basis terms with high interaction effect will be added to the PCE model in the next 

basis expansion operation. 

4.2.3 Basis pruning strategy 

By the use of the basis expansion strategy, we can add massive basis terms to the current PCE 

model at once. However, the basis terms which can be added to the current PCE model would be 
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few if the basis terms already included in the current PCE model are in large quantity. Due to the 

sparse representation capability, insignificant basis terms in the PCE model will be trained with 

their coefficients equal (or nearly equal) to zero, thus having no or negligible influence on the 

modelling results. By removing these insignificant basis terms, the efficiency of the training process 

is improved while retaining the model precision. We name this operation as basis pruning, which 

will be implemented between the stability evaluation and the basis expansion. When it comes to tell 

that more basis terms are required, the basis terms with zero-value coefficients in the latest trained 

PCE model will be removed. Then new bases can be added to the PCE model in line with the basis 

expansion strategy. By performing the basis pruning strategy, not only the computational stability 

is expected to be enhanced, but also an opportunity to add more basis terms of higher degree is 

created. 

4.2.4 Basis refinement strategy 

With the basis expansion and pruning strategies, the basis terms can be adaptively selected to 

constitute the PCE model. However, some significant basis terms may be incorrectly removed in 

the basis pruning step since the samples and observations are perhaps insufficient to train a reliable 

PCE model during the iteration process. With the increase of samples, the hidden model features 

gradually appear in the observations, while those significant basis terms which have been 

permanently pruned cannot contribute to the building of accurate PCE model. In this regard, a basis 
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refinement strategy, which is inspired from the neighbour basis expansion (Jakeman et al., 2015), is 

introduced to resume the incorrectly removed basis terms. This strategy is performed in compliance 

with the basis pruning operation.  

Assume that the PCE model after pruning has 𝑃𝑘 basis terms and the number of historically 

removed basis terms is 𝑃𝑟. The cluster of polynomial indices of these 𝑃𝑘 bases are defined as: 

𝜶𝑃𝑘
= {𝜶: 𝜶 ∈ 𝓐𝑝,𝑑 , 𝜇𝑐𝜶

≠ 0} (4.10) 

wherein 𝓐𝑝,𝑑 has been defined in Equation (3.6);  𝜇𝑐𝜶
 denotes the coefficient estimated by BCS, 

and 𝜶 = (𝛼1, 𝛼2, ⋯𝛼𝑑) is a vector which represents the index of a polynomial basis as explained 

in Equation (3.3). Now define a set 𝜶𝑛 which represents the neighbours of the indices from 𝜶𝑃𝑘
: 

𝜶𝑛 = {𝜶𝑖 ± 𝒆𝑗: 𝜶𝑖 ∈ 𝜶𝑃𝑘
, 𝜶𝑖 ± 𝒆𝑗 ∈ 𝜶𝑃𝑟

 for 1 ≤ 𝑖 ≤ 𝑃𝑘 , 1 ≤ 𝑗 ≤ 𝑑} (4.11) 

where 𝒆𝑗 = {0,… ,1, … ,0} is a unite vector with non-zero value at the 𝑗𝑡ℎ position; 𝜶𝑃𝑟
 denotes 

the cluster of polynomial indices of historically removed basis terms. The proposed refinement 

strategy is to resume the historically removed basis terms with indices belonging to the neighbours 

of 𝜶𝑃𝑘
. Then the PCE model constituted by the basis terms of indices 𝜶𝑃𝑘

 and their neighbours 

𝜶𝑛 is re-trained to update the coefficients solution. Those basis terms with zero-value coefficients 

will be removed again. This basis refinement strategy expands the PCE model with the basis 

neighbours by one polynomial degree, but it might be necessary to expand more than once. To 

explore those basis terms that are far away from the current basis terms, this strategy could be 
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applied recursively up to a fixed number 𝑇. A simple case with two input variables is illustrated in 

Figure 4.2. As shown in Figure 4.2(a), the abscissa and ordinate represent the degree of each variable 

in the PCE model. Each circle denotes a basis term, in which grey ones have non-zero coefficients 

and white ones are what have been removed. The current basis terms are then expanded to their 

neighbours as shown in Figure 4.2(b). The expanded basis terms are marked in red. The basis terms 

in both grey and red will constitute a new PCE model, which will be trained using BCS method. 

After that, only basis terms with non-zero coefficients are retained, and others are removed again, 

as illustrated in Figure 4.2(c).  

 

 

Figure 4.2 Simple 2-D case of basis refinement strategy 
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It has been classified in the past study that the target model feature on a high degree polynomial 

basis may be expressed on its neighbours of lower polynomial degree when high degree polynomial 

basis is not yet available in the current PCE model (Jakeman et al., 2015). When the training dataset 

is sufficient, this strategy was demonstrated to be effective in selecting basis terms of higher degree 

than those in the current PCE model. In this study, the training dataset is generally inadequate during 

the iteration process, so some features of the target model may not be involved or have incorrect 

manifestations in the observations. We think that these incorrectly represented features are probably 

to be presented on the basis terms which are in high relevance to the real significant bases. As the 

samples increase, the hidden model features are gradually discovered in the observations, and the 

significant basis terms which are wrongly removed in the basis pruning stage are able to be 

recovered. The implementation procedures of this strategy are given in Algorithm 4.  

Algorithm 4. Basis refinement strategy 

Input: Current PCE model; refinement times 𝑇 ; training dataset (current samples and 

observations). 

In 𝒊th iteration: 

1. Expand the basis terms with non-zero coefficients in the current PCE model to their 

neighbours; 

2. Implement BCS to compute the coefficients; 

3. Remove the basis terms with zero-value coefficients; 

4. Calculate the CV error; If the error increases compared with the previous iteration step, resume 

to the last PCE model and quit iteration; If the error decreases, go to step 5; 

5. If 𝑖 > 𝑇, quit iteration. 

4.2.5 Adaptive PCE modelling 

Leveraging the proposed adaptive basis selection strategy with the sequential sampling 
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approach, an Adaptive SPCE method with Basis Adaptivity and Sequential Sampling (ASPCE-

BASS) is put forward. The flowchart of ASPCE-BASS is illustrated in Figure 4.3. This algorithm 

embarks upon a low truncation degree and a small number of samples. Then, the samples are 

enriched by EI-PLHS algorithm, along with assessing the stability of the trained PCE model. If the 

samples are sufficient to train a stable PCE model, the basis pruning strategy is executed to remove 

the insignificant basis terms with zero-value coefficients. Subsequently, the basis refinement 

strategy is performed 𝑇 times to recover incorrectly removed bases, along with pursuing the basis 

expansion strategy to expand the current PCE model with basis terms of higher degree up to 10 

times of the quantity of the current samples. Eventually, the algorithm falls into the next loop to 

draw more samples.  
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Figure 4.3 Flowchart of ASPCE-BASS 

Initialisation of the sample number and truncation degree and specification of the window 

length and refinement times should be determined in implementing the proposed algorithm. Owing 

to the sparse representation, the number of initial samples 𝑁0 can be a small value. Here, 10 to 20 

samples are recommended for initialisation. To collect the initial samples, the LHS method is 

employed in accordance with Algorithm 3. As is explained in Section 4.2.2.2, the sparse 

representation via 𝑙1  minimisation can ensure stable computation when the quantity of the 

unknown coefficients is no more than 10 times the sample number. Thus, the best choice of the 

initial truncation degree is that the cardinality of the initial PCE model is close to but no more than 

10 times the initial sample number, and any lower values are feasible as well. Since the truncation 
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degree is contingent on both sample quantity and input dimension as shown in Equation (3.7), the 

choice of the initial sample number and the initial truncation degree should be considered 

concurrently to ensure the above criterion is satisfied. 

In general, the precision of the trained PCE model which meets a predefined requirement is 

considered as the termination criterion of the proposed algorithm. Similar to the termination 

criterion shown in Section 3.3.4, the changes of the PCE model mean and std in successive iterations 

can be used to assess the convergence of the obtained PCE model. When the PCE model mean and 

std values in successive iterations keep stable or the change of these two statistical measures is less 

than a given threshold, the PCE model is viewed as having converged with satisfactory modelling 

accuracy, and the algorithm terminates. Otherwise, the stability of the PCE model during the 

sampling process will be evaluated. Appropriate values should be assigned to the window length 

𝐿𝑎 and stability evaluation range 𝐿𝑏 in the stability evaluation process. Large values of these two 

parameters can provide more precise stability evaluation results, but more samples and higher 

training cost are required. Small values of the parameters have the potential to generate incorrect 

stability evaluation results, which will result in a low convergence speed. Through testing on several 

benchmark functions, they are both recommended as 15. Once the trained PCE model is evaluated 

as stable during the sequential sampling process, the unnecessary basis terms are removed, while 

historically removed basis terms have the opportunity to be recovered via 𝑇 times basis refinement. 

In this study, the parameter 𝑇 is chosen as 3.  
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4.3 Case Studies 

In this section, three analytical benchmark functions with different input dimensions and 

complexities are used to validate the proposed method. An adaptive PCE approach (VARPCE) with 

basis adaptivity and sequential sampling presented by Thapa et al. (2020) is compared. The main 

difference between the proposed ASPCE-BASS method and the VARPCE method is that VARPCE 

employs a least-squares method for regression while ASPCE-BASS utilises BCS. The core idea 

behind VARPCE is adding a group of basis terms to the PCE model for training in each iteration 

and truncating the insignificant basis terms by evaluating their variance contributions to the whole 

model. A crucial parameter, named truncation threshold 𝜀𝑡𝑟𝑢𝑛𝑐, was defined in VARPCE to control 

the amount of basis terms which will be truncated. A large value of truncation threshold will help 

to truncate a large amount of basis terms. In this setting, the algorithm can converge fast, but the 

model precision is sacrificed. On the other hand, a small value of truncation threshold helps to retain 

some basis terms with small variance contributions, but the algorithm will be in low convergence 

speed, which implies that more samples and model responses for PCE training are required. The 

truncation threshold was recommended between {10−4, 10−3} by Thapa. Besides the truncation 

threshold, some other parameters should also be prescribed, such as the upper bound of the PCE 

degree 𝑝𝑚𝑎𝑥 to terminate the algorithm and the oversampling rate 𝑡 to stop the sampling process. 

In this study, different truncation threshold values will be tested. The upper bound of the truncation 

degree will be determined according to the problem complexity. The oversampling rate 𝑡  was 
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recommended between {2,4} (Thapa et al., 2020), which is set as 3 in this study. In addition to 

VARPCE, a sequential sampling strategy without basis adaptivity, EI-ELF, is also compared to 

illustrate the performance of the proposed adaptive basis selection strategy. A predefined candidate 

sample pool is required for both ASPCE-BASS and EI-ELF. To keep the sufficiency in candidate 

samples, a large size 104 is adopted in this study. These samples are generated by LHS method in 

advance. 

To facilitate comparison, the maximum sample quantity is restricted in the case studies beyond 

which the algorithms terminate. To assess the real precision of the obtained PCE models, a 

validation set with 𝑁𝑣𝑎𝑙 = 104  random samples and the exact model responses is used. The 

Relative Root Mean Square Error (RRMSE) 𝜀𝑅𝑅𝑀𝑆𝐸  (Diaz et al., 2018) is still calculated by 

Equation (3.35). The Matlab codes of the EI-ELF criterion and VARPCE method are developed in-

house according to references (Thapa et al., 2020; Zhou et al., 2019a).  

4.3.1 The Ishigami function 

The first test function is the Ishigami function, which is the same to Section 3.4.2. The equation 

is re-written here, and all the variables conform to uniform distributions on the interval [−𝜋, 𝜋].  

𝑦 = sin𝑥1 + 𝑎(sin𝑥2)
2 + 𝑏𝑥3

4 sin 𝑥1 (4.12) 

where 𝑎, 𝑏  are two parameters which are commonly chosen as 7 and 0.1, respectively, for 

benchmark test. The analytical mean is 3.5 and the std value is around 3.7208. The comparison is 
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first performed between ASPCE-BASS and VARPCE. Since an upper bound of truncation degree 

is required in VARPCE, we set the degree upper bound 𝑝𝑚𝑎𝑥 = 14  in both methods for fair 

comparison, which generates 𝑃 = 680 basis terms. In initialisation, VARPCE starts from degree 1, 

and the ED size is automatically determined as 8 according to Thapa et al. (2020). ASPCE-BASS 

starts with 20 samples, and the degree is chosen as 5 for initialisation. To avoid poor outcomes from 

VARPCE caused by the improper selection of truncation threshold parameter, four truncation 

threshold values, 10−3, 10−4, 10−5  and 10−6 , are compared in this study. Each method is 

calculated for 30 times to ensure the statistical stability. The RRMSE results with respect to the 

increase of ED size are shown by box plots in Figure 4.4.  

 

Figure 4.4 RRMSE with increasing ED size 

In the box plots, bold vertical lines represent the range between upper and lower quartiles of 

the 30 results, and fine vertical lines represent the 1.5 times interquartile range which constrains the 

normal value limitation. Values out of them are regarded as outliers, which are depicted as plus 

symbols in the figure. The dot inside the white circle denotes the median of RRMSE, and the lines 
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that vary with respect to the ED size represent the variation of the median of RRMSE obtained by 

different approaches (the plot is truncated at 300 ED size). In VARPCE, the algorithm will terminate 

when the basis terms of degree 𝑝𝑚𝑎𝑥 are all explored even if the sample quantity is smaller than 

300. Such results are hard to be shown in the plot since the algorithm may terminate with different 

ED sizes in the repeated tests. To facilitate comparison, those early terminated results in VARPCE 

are retained in the box plot as shown in Figure 4.4. It can be observed that VARPCE converges more 

and more slowly with the decrease of truncation threshold value, but the precision of the trained 

PCE model increases. ASPCE-BASS has the lowest validation error after convergence, and also, 

the convergence rate is the fastest as compared with the four VARPCE models.  

 

Figure 4.5 Degree changes with increasing ED size 

The PCE degree changes with the increase of ED size are depicted in Figure 4.5. Compared to 

VARPCE, ASPCE-BASS can quickly approach the highest degree. With the decrease of truncation 

threshold value, VARPCE becomes more and more slow in adding basis terms of higher degree. 

Some of the repeated tests cannot even reach the degree upper bound when the ED size is 300, since 
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too many insignificant basis terms are retained.  

The sample quantities used for terminating the VARPCE in the repeated tests are recorded as 

shown in Figure 4.6. With the decreasing of the threshold value, the samples needed for termination 

increase. The RRMSE results of VARPCE after termination are compared with results from ASPCE-

BASS under different ED sizes, which are portrayed in Figure 4.7. It can be concluded that ASPCE-

BASS with ED size larger than 100 performs better than VARPCE under all threshold values.  

 

Figure 4.6 Sample quantities for automatic termination of VARPCE 

 

Figure 4.7 RRMSE comparison between VARPCE and ASPCE-BASS with different ED sizes 

Then, the proposed method is compared with the EI-ELF method with different truncation 
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degrees. Four degrees, 9, 12, 14 and 16, are chosen in EI-ELF for comparison, which give rise to 

full PCE expansions of 𝑃 = 220, 455, 680 and 969, respectively. Here, we do not provide upper 

bound on the truncation degree in ASPCE-BASS. The initial sample number for EI-ELF is set as 

20. Each method is calculated for 30 times. The RRMSE results of the two methods are shown in 

Figure 4.8, and the degree changes of ASPCE-BASS with respect to ED size are given in Figure 

4.9. With the increase of truncation degree, EI-ELF converge more and more slow, which need 40, 

50, 60 and 70 samples for each truncation degree, respectively, but the precision of the obtained 

PCE model increase. Compared with EI-ELF, ASPCE-BASS shows a relatively slow convergence 

speed but has a similar convergence trend. It can automatically select the significant basis terms 

with different degrees without largely sacrificing the convergence speed and modelling accuracy. 

As shown in Figure 4.9, all the repeated tests can explore basis terms with degree 13 after having 

60 samples. Most of the repeated tests can explore degree 19 to 20 after having 110 samples.  

 

Figure 4.8 RRMSE comparison between EI-ELF and ASPCE-BASS with increasing ED size 
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Figure 4.9 Degree changes of ASPCE-BASS with increasing ED size 

The model mean and std values of 30 repeated tests with respect to the increase of ED size are 

shown in Figure 4.10. It is obvious that the PCE models have an evident fluctuation before 60 

samples and they converge to a stable state after collecting 70 samples. The stability evaluation 

process of 30 repeated tests is depicted in Figure 4.11. There are obviously two stable regions. The 

first region is before 30 iterations, and the second region is after 50 iterations. At 30 iterations, the 

PCE model is trained with 50-65 samples. This is in consistence with the time point that RRMSE 

decreases and degree increases as depicted in Figure 4.8 and Figure 4.9. The PCE models under 

initial truncation degree 5 are evaluated to be stable when the samples are increased to around 50, 

and then more basis terms of high degrees are added. At around 40 iterations in Figure 4.11, 60-75 

samples are collected for training. The variance of model std decreases rapidly ruing this period. 

After 50 iterations, the variance values converge to two clusters. The upper cluster is constituted by 

results with the highest polynomial degree 13 and the bottom cluster is constituted by results with 

the highest polynomial degree 14. Several outliers result in the phenomena in the red oval, but the 
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stability evaluation process still works when these outliers are excluded in the stability evaluation 

process. 

 

Figure 4.10 Model means (left) and standard deviations (right) with increasing ED size 

 

Figure 4.11 Stability evaluation process 

In summary, the proposed ASPCE-BASS which employs sparse representation outperforms 

the VARPCE method which employs the least-squares method. The former has a high computational 

efficiency in exploring basis terms with high polynomial degree while the modelling accuracy can 
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be kept. Compared to sequential sampling-only method, ASPCE-BASS can adaptively select basis 

terms without largely sacrificing convergence rate, which confirms the capability of the proposed 

adaptive basis selection strategy.  

4.3.2 High-dimensional function 

The second benchmark test function is a high-dimensional function, which is the same to 

Section 3.4.3. Its expression is re-written as follows: 

𝑦 = 3 −
5

𝑑
∑𝑖𝑥𝑖

𝑑

𝑖=1

+
1

𝑑
∑𝑖

𝑑

𝑖=1

𝑥𝑖
3 + 𝑙𝑛 [

1

3𝑑
∑𝑖(𝑥𝑖

2 + 𝑥𝑖
4)

𝑑

𝑖=1

] (4.13) 

where 𝑑  is the input dimension chosen by user. All the input variables conform to uniform 

distributions defined on the interval [1, 2]. The input dimension is selected as d = 30 in this study. 

The comparison is first performed between ASPCE-BASS and VARPCE. In initialisation, VARPCE 

starts from degree 1 and 62 samples according to Thapa et al. (2020), and ASPCE-BASS starts with 

degree 1 and 20 samples. Again, four truncation threshold values, 10−3, 10−4, 10−5 and 10−6, are 

tested in VARPCE. Due to the heavy computational burden, each method is repeated for 5 times. 

The RRMSE results and PCE degree changes with respect to the increase of ED size are depicted 

in Figure 4.12 and Figure 4.13. 
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Figure 4.12 RRMSE comparison between VARPCE and ASPCE-BASS with increasing ED size 

 

Figure 4.13 Degree changes with increasing ED size 

It can be seen from Figure 4.12 that the PCE model obtained by ASPCE-BASS show good 

performance after having 400 samples. In VARPCE, the PCE models obtained under truncation 

threshold value 10−3 show the worst performance. The PCE models obtained under other three 

threshold values all converge after collecting 600 samples. The PCE model obtained by ASPCE-

BASS converges to a similar validation error value with those obtained by VARPCE. As illustrated 

in Figure 4.13, ASPCE-BASS can explore more basis terms of higher degree than VARPCE.  
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Figure 4.14 RRMSE comparison between EI-ELF and ASPCE-BASS with increasing ED size 

Then, the proposed method is compared with EI-ELF with two truncation degrees, 3 and 4, 

which result in full PCE expansions with cardinality of 𝑃 = 5456 and 46376, respectively. The 

initial sample number for EI-ELF is set as 20. Only one calculation for each degree is provided due 

to the heavy regression calculation burden. The RRMSE results of ASPCE-BASS and EI-ELF are 

shown in Figure 4.14. The results of ASPCE-BASS here are the same as those depicted in Figure 

4.12, and the degree changes can refer to Figure 4.13. As is shown in Figure 4.14, the PCE models 

obtained from EI-ELF under different degrees have similar accuracy. The PCE model trained by 

ASPCE-BASS also have the similar precision to those obtained by EI-ELF during the whole 

iteration process, while the computational cost of ASPCE-BASS is lower than EI-ELF.  
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Figure 4.15 Model means (left) and standard deviations (right) with increasing ED size 

 

Figure 4.16 Stability evaluation process 

The model mean and std values of 5 repeated tests from ASPCE-BASS during the iteration 

process are shown in Figure 4.15. The red straight lines are the reference values of model mean and 

std calculated from 106 function evaluations. The reference values are -51.3468 and 2.2040 for 

model mean and std, respectively. It is shown in Figure 4.15 that the trained PCE models have large 

fluctuations when samples are less than 300. With the increase of samples, the trained PCE models 

gradually converge to the true value. The stability evaluation process is shown in Figure 4.16. The 
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variance of model std declines rapidly after collecting 300 samples, and they become stable with 

more than 400 samples. These results demonstrate that the adaptive basis selection strategy and the 

stability evaluation process work well in the proposed method, which make the PCE model more 

and more accurate.  

4.3.3 Algebraic test function 

The third benchmark test function is the algebraic corner-peak test function, which is expressed 

in Equation (4.14): 

𝑦 = (1 + ∑ 𝑐𝑘𝑥𝑘

𝑑

𝑘=1

)

−(𝑑+1)

 (4.14) 

where 𝒙 = {𝑥1, … , 𝑥𝑑} are uniformly distributed on [0,1]𝑑, and 𝑑 is the dimensionality chosen by 

user. This function is flexible in controlling the effective dimensionality and compressibility by 

assigning different values to the coefficients 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑑) . In this study, three different 

choices are provided (Jakeman et al., 2015): 

𝑐𝑘
(1)

= 𝑒(−8𝑘/𝑑), 𝑐𝑘
(2)

=
1

𝑘2
, 𝑐𝑘

(3)
=

𝑘 − 0.5

𝑑
      𝑘 = 1,2, … , 𝑑 

which are normalised such that ∑ 𝑐𝑘
𝑑
𝑘=1 = 0.25 . The coefficients 𝒄(1), 𝒄(2)  and 𝒄(3)  imply an 

increase of effective dimensionality, which means that Equation (4.14) with coefficients 𝒄(3) has 

the most significant polynomial terms, and Equation (4.14) with coefficients 𝒄(1) has the minimum 
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number of effective polynomial terms. The dimensionality 𝑑 is set as 10 in this case. The modelling 

results by different methods are compared under different 𝒄. The comparison is first conducted 

between ASPCE-BASS and VARPCE. The degree upper bound is set as 10 for both methods, which 

generates 𝑃 = 184756 polynomial basis terms. In initialisation, VARPCE starts from degree 1 and 

22 samples, and ASPCE-BASS starts with degree 2 and 20 samples. Similarly, four truncation 

threshold values, 10−3, 10−4, 10−5  and 10−6 , are set in VARPCE for comparison. Due to the 

heavy computational burden, each method is repeated for 5 times. Then, the proposed method is 

compared with EI-ELF. Three truncation degrees, 5, 7, and 9, are set for EI-ELF, which result in 

full PCE expansions of 𝑃 = 3003, 8976 and 92378, respectively. The initial sample number for EI-

ELF is set as 20, and the maximum sample quantity is 1000. Due to the computational burden for 

non-basis-adaptive method in this case, only one calculation for each degree is made.  

4.3.3.1 𝒄(𝟏) 

The RRMSE results of ASPCE-BASS and VARPCE with respect to the increase of ED size 

are shown by box plots in Figure 4.17, and the PCE degree changes with the increase of ED size 

are depicted in Figure 4.18. 
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Figure 4.17 RRMSE with increasing ED size 

 

Figure 4.18 Degree changes with increasing ED size 

As shown in Figure 4.18, when the ED size is increased to 1000, VARPCE with any truncation 

threshold value cannot explore basis terms with polynomial degree over 8, while ASPCE-BASS can 

explore basis terms with the highest degree 10. Under the same sample quantity, ASPCE-BASS can 

explore more basis terms of higher degree than VARPCE. In fact, not all the basis terms of degree 

10 are explored by ASPCE-BASS. Both algorithms terminate by ED size in this case, and the degree 

upper bound does not work. With the decrease of threshold value, the highest degree explored by 

VARPCE gradually decreases. The reason is that the increase of the retained basis terms of low 
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degree impedes the further addition of basis terms of high degree. From Figure 4.17, it can be seen 

that the RRMSE values under 1000 ED size decrease with the decrease of threshold value in 

VARPCE. Although VARPCE with small threshold value explores less basis terms than with large 

threshold value, the trained PCE models with small threshold value are of higher accuracy than 

those with large threshold value since more significant basis terms can be retained. Compared to 

VARPCE, the PCE models obtained from ASPCE-BASS have the lowest validation error during 

the whole iteration process.  

 

Figure 4.19 RRMSE comparison between EI-ELF and ASPCE-BASS with increasing ED size 

The RRMSE results of ASPCE-BASS and EI-ELF with respect to the increase of ED size are 

compared in Figure 4.19. The RRMSE results of ASPCE-BASS here are the same as those depicted 

in Figure 4.17 since the degree upper bound does not work. The degree change of ASPCE-BASS 

can refer to Figure 4.18 as well. It can be observed that results from ASPCE-BASS show similar 

performance with those from EI-ELF, which means that the proposed method does not sacrifice the 

convergence rate of the sequential sampling process while the basis terms can be adaptively selected. 
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More importantly, the number of unknown coefficients to be solved in ASPCE-BASS in each 

iteration is always less than that in EI-ELF with the same truncation degree. For example, ASPCE-

BASS could explore basis terms over degree 9 in this case with 1000 samples, so more than 92378 

basis terms have been explored. But the number of unknown coefficients solved in each regression 

calculation is always smaller than 10000 because it cannot exceed 10 times the sample quantity. In 

EI-ELF with truncation degree 9, however, the number of unknown coefficients to be solved is 

always 92378 in each iteration. So, the calculation cost in EI-ELF is much higher than ASPCE-

BASS. The proposed ASPCE-BASS method can not only adaptively select basis terms but also 

alleviate the computational burden in regression calculation. 

 

 

Figure 4.20 Model means (left) and standard deviations (right) with increasing ED size 
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Figure 4.21 Stability evaluation process 

To illustrate the iteration process of the ASPCE-BASS method, the model mean and std values 

of 5 repeated tests are shown in Figure 4.20, and the stability evaluation process is depicted in Figure 

4.21. The red straight lines in Figure 4.20 are the reference model mean and std values which are 

calculated from 106  function evaluations. The reference mean and std values are 0.30351 and 

0.13481, respectively. As is shown in Figure 4.20, the trained PCE model fluctuates more and more 

weakly with the increased samples, and the model mean and std values gradually converge to the 

reference values. In Figure 4.21, the variance of model std shows stable downward trend, which 

denotes that the adaptive basis selection strategy and stability evaluation process work well. 

4.3.3.2 𝒄(𝟐) 

In the case with coefficients 𝒄(2), the number of effective components in Equation (4.14) is 

more than the preceding case with coefficients 𝒄(1). More polynomial coefficients in the PCE model 

are non-zero. The RRMSE results and PCE degree changes of ASPCE-BASS and VARPCE with 

respect to the increase of ED size are portrayed by box plots in Figure 4.22 and Figure 4.23. The 

results show similar performance as to the case with 𝒄(1) . ASPCE-BASS has the fastest 
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convergence rate, and the PCE model obtained by ASPCE-BASS has the minimum validation error 

compared to those obtained by VARPCE. Most of the repeated tests by ASPCE-BASS can explore 

basis terms with the highest degree 10, while VARPCE can only explore basis terms of degree no 

more than 9. 

 

Figure 4.22 RRMSE comparison between VARPCE and ASPCE-BASS with increasing ED size 

 

Figure 4.23 Degree changes with increasing ED size 

The RRMSE results of ASPCE-BASS and EI-ELF with respect to the increase of ED size are 

shown in Figure 4.24. The degree changes of ASPCE-BASS can refer to Figure 4.23. We can 

observe from Figure 4.24 that results obtained from EI-ELF under different truncation degrees show 
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similar performance within 1000 ED size. Again, the results from ASPCE-BASS show quite similar 

performance with those from EI-ELF.  

 

Figure 4.24 RRMSE comparison between EI-ELF and ASPCE-BASS with increasing ED size 

 

 

Figure 4.25 Model means (left) and standard deviations (right) with increasing ED size 
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Figure 4.26 Stability evaluation process 

The model mean and std values of 5 repeated tests with respect to the increase of ED size by 

using ASPCE-BASS are shown in Figure 4.25. The red straight lines are also the reference values 

calculated from 106 function evaluations. The reference values are 0.30915 and 0.14724 for model 

mean and std, respectively. With the increase of samples, the mean and std values of the trained 

PCE model gradually converge to the true values. The stability evaluation processes of 5 repeated 

tests are depicted in Figure 4.26, which shows that the stability evaluation process is globally in 

steady downward trend. 

4.3.3.3 𝒄(𝟑) 

Among three values of 𝒄  in this section, 𝒄(𝟑)  gives Equation (4.14) the most effective 

polynomial terms than the other two, that is to say, Equation (4.14) with 𝒄(𝟑) will be expressed by 

PCE model with the most non-zero coefficients. The RRMSE results and PCE degree changes of 

ASPCE-BASS and VARPCE with respect to the increase of ED size are displayed in Figure 4.27 

and Figure 4.28.  
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Figure 4.27 RRMSE comparison between VARPCE and ASPCE-BASS with increasing ED size 

 

Figure 4.28 Degree changes with increasing ED size 

As shown in Figure 4.28, some of the repeated tests by ASPCE-BASS under ED size 1000 can 

only explore basis terms of degree 9. This is because the number of effective polynomial terms 

increases compared to the previous cases with 𝒄(𝟏) and 𝒄(𝟐). More basis terms are retained during 

the iteration process, thereby decreasing the number of basis terms of higher degree that can be 

added. However, ASPCE-BASS can still explore basis terms of higher degree in comparison with 

VARPCE. In Figure 4.27, the PCE models obtained by ASPCE-BASS during the iteration process 

cannot always have lower validation errors than those from VARPCE, but ASPCE-BASS can still 
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obtain better results than the VARPCE after having 600 samples.  

 

Figure 4.29 RRMSE comparison between EI-ELF and ASPCE-BASS with increasing ED size 

The RRMSE results of ASPCE-BASS and EI-ELF with respect to the increase of ED size are 

compared in Figure 4.29. The results from ASPCE-BASS still show similar convergence trends to 

those from EI-ELF.  

 

 

Figure 4.30 Model means (left) and standard deviations (right) with increasing ED size 
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Figure 4.31 Stability evaluation process 

The model mean and std values of 5 repeated tests with respect to the increase of ED size by 

using ASPCE-BASS are shown in Figure 4.30. The red straight lines are the reference values of 

model mean and std, which are 0.28385 and 0.07465, respectively. With the increase of samples, 

the trained PCE models gradually converge to the true values, but the converged precision is not as 

good as the previous two cases. The stability evaluation processes are shown in Figure 4.31. 

Globally, a downward trend is observed, but the trend is obviously slower than in the previous two 

cases. 

4.3.3.4 Discussions 

Here we provide a discussion and comparison over the results associate with the three equation 

coefficients 𝒄(𝟏), 𝒄(𝟐), 𝒄(𝟑). Premised on the fact that the compressibility of Equation (4.14) on PCE 

model decreases with the increased coefficient number 𝑖 in 𝒄(𝒊), the following observations can be 

made by comparing the results from the three cases. 

(1) With the increased coefficient order 𝑖 in 𝒄(𝒊), the PCE models obtained by ASPCE-BASS 

and EI-ELF with the same ED size show decreased modelling accuracy, but no obvious declination 
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in modelling precision is observed in the PCE model obtained by VARPCE. The reason is that the 

modelling accuracy by using sparse representation is affected by the target model complexity. For 

problem with low compressibility or high complexity, the sparse representation method requires 

more samples and observations to obtain results with high accuracy.  

 (2) With the increase of coefficient order 𝑖, the PCE model obtained by ASPCE-BASS has 

closer precision to those obtained by VARPCE, but comparable to EI-ELF. This indicates that the 

sparse representation approach will have no worse performance than the least-squares method in 

adaptively modelling problems with disparate complexities. Therefore, for a problem with unknown 

complexity, ASPCE-BASS is the most favourable choice. 

4.4 Adaptive PCE Technique for Multi-output Problem 

4.4.1 Method 

The proposed ASPCE-BASS method can adaptively build a simple and precise PCE model as 

surrogate to a target task with high complexity. However, this method is only proposed for single 

output problem. In real engineering applications, multi-output problem is usually needed to be 

considered. For instance, the change of structural parameters (e.g., the material elastic modulus and 

density) will induce the changes of multiple responses (e.g., the displacements at different locations 

or multiple orders of frequency). Therefore, the sampling method should be able to capitalise on 

information from multiple outputs. Subsequently, multiple PCE models with desired precisions can 
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be built simultaneously, and the required samples will less than those needed in modelling outputs 

separately. In EI-PLHS algorithm, the EI-ELF strategy leverages the output information to instruct 

the sampling process. Hence, this strategy is modified so that the EI-PLHS algorithm can fit the 

multi-output problem.  

For the sake of simple expression, Equation (A.6) is re-written here.  

𝐸𝐿𝐹𝐸𝐼(𝜻) = (𝑌(𝜻𝒎) − �̂�(𝜻))
2
𝑇(𝑁, 𝑃𝑠) + 𝜎2(𝜻) (4.15) 

Generally, Equation (4.15) from different outputs can be simply added as the optimisation target to 

instruct the sampling process. However, the optimisation should achieve balance among different 

outputs. As is shown, Equation (4.15) comprises of two parts. The first one is the regression error, 

which is calculated from the predicted mean function, and the second one is the variance function. 

Basically, the regression error and the variance function will be affected by the scaling effect and 

not affected by the translation effect. Therefore, by scaling the regression results of different outputs 

to the same level (e.g., the difference between the maximum value and minimum value of each 

output is scaled up to the same value), the optimisation is expected to achieve balance among 

different outputs. As a result, a normalisation coefficient is introduced. 

𝑁𝐶𝑗 = �̂�𝑚𝑎𝑥
𝑗 (𝜻) − �̂�𝑚𝑖𝑛

𝑗 (𝜻) (4.16) 

and the objective function in EI-ELF can be modified as 
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𝐸𝐿𝐹𝑚𝑢𝑙𝑡𝑖(𝜻) = ∑([(𝑌𝑗(𝜻𝒎) − �̂�𝑗(𝜻)) /𝑁𝐶𝑗]
2
𝑇(𝑁, 𝑃𝑠) + (𝜎𝑗(𝜻)/𝑁𝐶𝑗)

2
)

𝐽

𝑗

 (4.17) 

in which 𝐽 represents the number of modelling tasks in the multi-output problem. By replacing the 

optimisation function in Equation (4.17) with 𝐸𝐿𝐹𝑚𝑢𝑙𝑡𝑖, the collected samples and corresponding 

observations are expected to contribute to the modelling of multiple outputs.  

In summary, to apply ASPCE-BASS in multi-output problem, the sample collected in each 

iteration will take into account the information from all the outputs. Then, each output will 

correspond to a unique PCE model, and the adaptive basis selection operation will be executed 

separately for each PCE model. Similarly, the termination criterion is also evaluated separately for 

each PCE model. If a PCE model is assessed to have desired precision, the training process for this 

model will be terminated and the output information corresponds to this model will be excluded in 

the following modelling process. Finally, the algorithm will terminate if the modelling processes 

for all the outputs finish.  

4.4.2 Case study 

To verify the proposed strategy for multi-output problem, a 2-D truss structure is introduced 

here, which has been widely studied as a benchmark test in the past (Blatman and Sudret, 2008, 

2010; Marelli and Sudret, 2018). As depicted in Figure 4.32, this structure comprises 23 bars and 

13 nodes, and the targets are the deflections 𝑢1, 𝑢2, 𝑢3 under 6 vertical forces. The multi-output 
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ASPCE-BASS can build three PCE models to 𝑢1, 𝑢2, 𝑢3 simultaneously, and the modelling results 

will be compared to those obtained by ASPCE-BASS for single output to show the algorithm 

efficiency.  

 

Figure 4.32 Layout of the truss structure 

Table 4-1 Input distributions of the truss structure 

Variable Distribution Mean Standard deviation 

Elastic moduli 𝐸1, 𝐸2 (Pa) Lognormal 2.10e11 2.10e10 

Cross-section area 𝐴1 (m2) Lognormal 2.0e-3 2.0e-4 

Cross-section area 𝐴2 (m2) Lognormal 1.0e-3 1.0e-4 

Vertical forces 𝑃1 ~ 𝑃6 (N) Gumbel 5.0e4 7.5e3 

A total of ten input variables are considered in this case, which include six vertical forces 

(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6 ), the elastic moduli (𝐸1, 𝐸2)  and the cross-section areas (𝐴1, 𝐴2 ) of the 

horizontal bars and diagonal bars. The distributions of these variables are reported in Table 4-1 

(Blatman and Sudret, 2010), and they are assumed to be mutually independent. Three PCE models 

with Hermite polynomials are built to investigate the relations between three vertical deflections 

and the ten variables by using ASPCE-BASS. The input variables are transformed into standard 

Gaussian variables to ease computational burden. The values of each parameter in ASPCE-BASS 

algorithm are given as shown in Table 4-2.  
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Table 4-2 Parameter values in ASPCE-BASS 

Name Initial sample 

number 𝑁0 

Initial truncation 

degree 𝑃0 

Window 

length 𝐿𝑎 

Stability evaluation 

range 𝐿𝑏 

Recovery 

times 𝑇 

Value 20 2 15 15 3 

In addition, the changes of the PCE model mean and std in successive iterations is employed as the 

termination criterion, and the threshold to terminate the sampling process is set as 10−5. To test the 

algorithm robustness, the modelling process is repeated 10 times. All the settings in the ASPCE-

BASS algorithm for single-output and multi-output are the same. 

The RRMSE of the obtained PCE models after termination are shown by boxplots in Figure 

4.33. To show the modelling efficiency, the number of samples used for single-output modelling 

and multi-output modelling are compared in Figure 4.34 and Figure 4.35, and the highest 

polynomial degrees in the trained PCE models are depicted in Figure 4.36.   
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(a)  

(b)  

(c)  

Figure 4.33 Comparison of RRMSE between multi-output and single-output ASPCE-BASS after 

termination (a) 𝑢1; (b) 𝑢2; (c) 𝑢3 
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(a)  

(b)  

(c)  

Figure 4.34 Comparison of ED size between multi-output and single-output ASPCE-BASS after 

termination (a) 𝑢1; (b) 𝑢2; (c) 𝑢3 
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Figure 4.35 The total size of ED required in PCE modelling for three outputs 

(a)  

(b)  
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(c)  

Figure 4.36 Comparison of degree between multi-output and single-output ASPCE-BASS after 

termination (a) 𝑢1; (b) 𝑢2; (c) 𝑢3 

Obviously, the comparison of RRMSE of PCE models for three outputs indicates that the 

modelling precisions by using ASPCE-BASS for single-output and multi-output are similar. For 

each output, the number of samples to terminate the algorithms and the highest polynomial degrees 

in the trained models are also similar as shown in Figure 4.34 and Figure 4.36. Such phenomena 

implies that the multi-output modelling technique would not sacrifice the performance of ASPCE-

BASS algorithm in modelling each task. Seemingly, the quantity of samples required by ASPCE-

BASS for single-output and multi-output are similar. In multi-output modelling, however, the 

collected samples and corresponding model evaluations are partially shared in the multi-output 

modelling. The single-output modelling technique trains PCE models for three target outputs 

separately, so the total number of samples required in modelling three outputs is the summation of 

sample quantity required for each output. The total numbers of samples in multi-output modelling 

and single-output modelling are compared in Figure 4.35. It is clear that the samples used by multi-
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output modelling are far less than those required by single-output modelling in addressing the multi-

output problem. To summarise, the multi-output modelling strategy has desired efficiency than the 

single-output modelling in solving the multi-output problem while the modelling precision can still 

be retained.  

4.5 Summary 

In this chapter, a novel adaptive basis selection strategy is developed to automatically choose 

significant basis terms in the PCE model, which comprises of three core operations, basis expansion, 

pruning and refinement. The PCE model will begin with a low truncation degree, and basis terms 

with higher degree can be gradually added to the PCE model to achieve higher training precision 

by performing basis expansion. Then, the insignificant basis terms will be prudently truncated 

during the modelling process to lighten the training burden through the employment of basis pruning 

and basis refinement operations. By combining this basis selection strategy with the sparse 

representation method and the hybrid sequential sampling approach, an adaptive PCE modelling 

framework, named ASPCE-BASS, is built. It is worth mentioning that a new hybrid sequential 

sampling approach, EI-PLHS, is developed in this chapter, which is more appropriate to be used for 

building the fully adaptive modelling framework than the coherence-entropy method. In the 

proposed ASPCE-BASS, a two-loop framework is built, in which the sequential sampling process 

is introduced as the inner loop and the adaptive basis selection process is developed as the outer 

loop. A novel stability evaluation approach is presented to determine which loop should be 
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performed in each iteration, and this strategy enables the sparse representation to be integrated in 

the adaptive modelling framework. Finally, the proper training sample set and truncation degree (or 

significant basis terms) are both automatically determined. 

To illustrate the efficiency and effectiveness, the proposed ASPCE-BASS is compared with 

two existing approaches by validating on three benchmark functions. One of the approaches is an 

adaptive PCE modelling technique named VARPCE, in which a least-squares regression method 

rather than the sparse representation is used for regression calculation. The other one is a non-basis-

adaptive algorithm (sequential sampling-only algorithm) called EI-ELF. It can be seen from the 

results compared between ASPCE-BASS and VARPCE that the proposed method shows better 

convergence rate and modelling accuracy. ASPCE-BASS requires less samples to explore more 

basis terms with high degree than VARPCE, which demonstrates that the sparse representation 

approach is impressive in dealing with problem with high input dimension or high truncation degree. 

Compared with the sequential sampling-only method, EI-ELF, the proposed ASPCE-BASS shows 

similar performance under most circumstances, but ASPCE-BASS can automatically determine the 

best truncation degree. Meanwhile, the computational burden of the regression calculation is 

lightened by removing the insignificant basis terms in ASPCE-BASS. Thus, the effectiveness of the 

proposed adaptive basis selection strategy is demonstrated. Moreover, through validating on 

functions with disparate complexity, it is shown that the proposed ASPCE-BASS which employs 

sparse representation outperforms on problems with high compressibility than those with low 
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compressibility. Thus, the proposed method has a better practicability than the other two methods 

when there is no prior knowledge about the problem complexity. 

Furthermore, the proposed ASPCE-BASS is extended to solving multi-output problem. The 

proposed multi-output modelling strategy is able to build a PCE model for each output of interest 

simultaneously. By validating on an engineering case with comparison to building each PCE model 

separately, it is demonstrated that the multi-output modelling can help reduce the size of training 

dataset while retaining the modelling accuracy.  
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CHAPTER 5  

TRANSFER LEARNING BASED 

MULTI-FIDELITY PCE MODELLING METHOD 

                                                                                

 

5.1 Introduction 

By using the adaptive modelling approaches proposed in the previous chapters, we can build 

PCE surrogate models as alternative to the complex simulation model for analysis with low cost. In 

structural engineering, however, the simulation model will inevitably deviate from the actual 

structure due to the existence of modelling error. It is preferred to train surrogate models of the real 

structure rather than the simulation model to achieve more promising results for further analysis. In 

the damage identification for bridge structures, for example, the dynamic characteristics (frequency 

and mode shape) reflect the inherence properties of a bridge. Any damage on the bridge will cause 

the variations of frequencies, which can be leveraged to identify the damage. Nevertheless, the 

variations of structural responses will be affected by not only damages but also environmental 

effects, and the response variations caused by environmental effects can often exceed the variations 

caused by damage (Bao et al., 2012; Erazo et al., 2019). It is easy to receive incorrect damage 

identification results depending on the physical model without simulating the environmental effects 
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accurately. Data-driven approaches can overcome this challenge, but they usually require massive 

observations. It was argued that data from the damaged structure is scarce (Zhu et al., 2019). As a 

result, the combinational methods emerged, which propose to update the physical model using 

scarce measurements, such as model updating, digital twin and Multi-Fidelity (MF) modelling 

(Bigoni and Hesthaven, 2020; Das and Debnath, 2018; Diez-Olivan et al., 2019; Gregory et al., 

2019). Among them, the MF modelling technique has attracted great attentions recently.  

In brief, MF modelling is a technique to improve the traditional surrogate modelling method 

by leveraging training data with different levels of fidelity. A small number of high-cost High-

Fidelity (HF) data is utilised to update a Low-Fidelity (LF) surrogate model trained by LF data. 

Subsequently, the updated model will achieve balance between the training cost and modelling 

accuracy (Ng and Eldred, 2012). In this study, the physical model (or its surrogate model) is 

regarded as LF model, and observations from the real structure are the HF data. However, there are 

also limitations/premises in MF modelling. The LF model should at least capture the global trends 

of the target system. If the LF model only captures a part of the local trends, the other local trends 

which are mistakenly represented by the LF model cannot be precisely updated with insufficient HF 

data. Besides, the HF data should spread over the input domain. Under some specific circumstances, 

the HF samples are required to be a subset of the LF samples (Liu et al., 2018a).  

As discussed in Chapter 2, temperature is the most influential environmental factor on the 

bridge structure, and it is hard to be precisely simulated in the physical model due to its intricate 
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mechanism in reality. Spontaneously, we would like to eliminate the temperature-induced modelling 

error in the LF physical model by using the MF modelling technique. However, traditional MF 

modelling technique may fail to help solve the damage identification problem because the HF 

measurements are hard to spread over the input domain, i.e., measurements from damaged bridge 

are difficult to be collected. To overcome this difficulty, the concept of Transfer Learning (TL) is 

introduced to the Multi-Fidelity PCE (MFPCE) modelling technique to develop a TL-based MFPCE 

(TL-MFPCE) approach. The idea is to freeze the coefficients of basis terms associated with the 

damage parameters in the Low-Fidelity PCE (LFPCE) model and to update the coefficients of 

temperature-related basis terms to eliminate the temperature-induced modelling error. Firstly, the 

LFPCE models to describe the bridge frequencies concerning damage parameters and temperature 

are established with data from the Finite Element (FE) model by using ASPCE-BASS. Regarding 

the measurements from real structure in healthy condition as HF data, the coefficients of basis terms 

associated with temperature are then updated by using an MF modelling function. Ultimately, the 

formulated MFPCE models can not only learn from the FE model about the knowledge of damage 

but also study from the real measurements to correct the temperature-induced modelling error. For 

validation, the proposed TL-MFPCE method is compared with the traditional MFPCE method on a 

numerical bridge model and an experimental beam model.  

5.2 The proposed method 
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5.2.1 MFPCE method 

Traditionally, there are three different modelling forms in the MF technique, the additive 

correction, the multiplicative correction and the combinational correction (Ng and Eldred, 2012). 

By assuming that the relation between the LF data and HF data can be represented by a PCE function, 

the additive correction function and multiplicative correction function are represented as (Ng and 

Eldred, 2012): 

∆𝑃𝐶𝐸1(𝝃) = 𝑅ℎ𝑖𝑔ℎ(𝝃) − 𝑃𝐶𝐸𝑙𝑜𝑤(𝝃) (5.1) 

and 

∆𝑃𝐶𝐸2(𝝃) =
𝑅ℎ𝑖𝑔ℎ(𝝃)

𝑃𝐶𝐸𝑙𝑜𝑤(𝝃)
 (5.2) 

respectively. Then 

𝑃𝐶𝐸𝑚𝑢𝑙𝑡𝑖(𝝃) = 𝑃𝐶𝐸𝑙𝑜𝑤(𝝃) + ∆𝑃𝐶𝐸1(𝝃) (5.3) 

or 

𝑃𝐶𝐸𝑚𝑢𝑙𝑡𝑖(𝝃) = 𝑃𝐶𝐸𝑙𝑜𝑤(𝝃) ∙ ∆𝑃𝐶𝐸2(𝝃) (5.4) 

where 𝑃𝐶𝐸𝑙𝑜𝑤(𝝃)  and 𝑅ℎ𝑖𝑔ℎ(𝝃)  represent the LFPCE model and the unknown HF model, 

respectively; ∆𝑃𝐶𝐸1(𝝃) and ∆𝑃𝐶𝐸2(𝝃) are two corrective PCE functions. There might be several 

levels of fidelity in data, but the case with only two levels of fidelity is considered in this study. 

With the HF data, the MF model can be obtained by evaluating the unknown coefficients in the 
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corrective PCE function. A crucial criterion in MFPCE modelling is that the polynomial terms in 

the corrective function must be a subset of those in the LFPCE model (Palar et al., 2016). The reason 

is that the HF data can be used for training is basically far less than the LF data. The overfitting 

issue may occur if the corrective function has a higher truncation degree than the LFPCE model. In 

addition, a combinational form was defined based on the above two forms (Ng and Eldred, 2012): 

𝑃𝐶𝐸𝑚𝑢𝑙𝑡𝑖(𝝃) = γ(𝑃𝐶𝐸𝑙𝑜𝑤(𝝃) + ∆𝑃𝐶𝐸1(𝝃)) + (1 − γ)∆𝑃𝐶𝐸2(𝝃) ∙ 𝑃𝐶𝐸𝑙𝑜𝑤(𝝃) (5.5) 

where γ ∈ [0,1]  denotes a weight parameter that determines the proportion of the additive 

correction and the multiplicative correction. The combinational correction form will outperform 

other correction forms if there are large discrepancy between data with different fidelity, while the 

number of parameters and coefficients that should be solved increase and the model structure is 

much more complicated. Therefore, the combinational correction form was generally not 

recommended.  

Apart from the above-mentioned three correction forms, an autoregressive modelling form 

originated from the co-Kriging technique is also introduced (Kennedy and O’Hagan, 2000), which 

can be regarded as a special form of Equation (5.5): 

𝑃𝐶𝐸𝑚𝑢𝑙𝑡𝑖(𝝃) = 𝜌𝑃𝐶𝐸𝑙𝑜𝑤(𝝃) + ∆𝑃𝐶𝐸3(𝝃) (5.6) 

It can be deemed that the weighted multiplicative correction function in Equation (5.5) is simplified 

as a single weight coefficient 𝜌, so the number of unknown coefficients to be solved decreases. In 
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this study, the autoregressive form is used for MFPCE modelling.  

To train an MFPCE model, several procedures were developed (Park et al., 2017). A basic 

method is to train the corrective function based on the discrepancy or ratio between the LF and HF 

data at the overlapped sample points. The corrective function and LF surrogate model are then 

combined to constitute the MF model. Clearly, a limitation of this method is that the HF samples 

should be a subset of LF samples. In 2016, an improvement strategy was introduced to remove the 

limitation (Berchier, 2016). Taken the additive correction (Equation (5.3)) as an example, the steps 

of the improved strategy are shown in Figure 5.1:  

 

Figure 5.1 Procedure of training MFPCE model (additive correction) 

As can be seen, the LF data is first generated to train an LFPCE model. Then the discrepancies 

between the HF data and evaluations from the LFPCE model at the HF sample points are calculated, 

which are used to train the additive correction PCE model. Finally, by adding the corrective PCE 

model to the LFPCE model, an MFPCE model is obtained. Berchier (2016) also demonstrated that 

this approach has a higher modelling accuracy than the basic method. Similarly, this approach can 
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be extended to solve Equation (5.6) with autoregressive form. The training process is shown in 

Figure 5.2. 

 

Figure 5.2 Procedure of training MFPCE model (autoregressive form) 

Compared to the training process of additive correction, only one extra step is added to train the 

weight coefficient 𝜌 . Here, the weight coefficient 𝜌  and the corrective model ∆𝑃𝐶𝐸3(𝝃)  are 

trained separately. Yet, it was demonstrated by Park et al. (2017) that training 𝜌 with the additive 

correction function concurrently can achieve a more accurate MF modelling result. Even if this 

conclusion was drawn based on the Kriging method in their study, we believed that this operation 

is also valid when the PCE technique is used. Inspired by this, an improved training process for 

MFPCE with autoregressive form is proposed in this study. By expanding the corrective function, 

Equation (5.6) can be re-written as: 

𝑃𝐶𝐸𝑚𝑢𝑙𝑡𝑖(𝝃) = 𝜌𝑃𝐶𝐸𝑙𝑜𝑤(𝝃) + 𝚿(𝝃)𝒄3 = [𝚿(𝝃), 𝑃𝐶𝐸𝑙𝑜𝑤(𝝃)] ∙ [
𝒄3

𝜌 ] (5.7) 
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Hence, the unknown coefficients 𝒄3  and regression parameter 𝜌  can be solved via the BCS 

method in parallel.  

5.2.2 TL-based MFPCE modelling 

Machine learning technologies have been presented for many engineering tasks including 

classification, regression and clustering. However, the data limitation in some practical 

circumstances hinders the application of many of them, e.g., the training and test data in a task may 

change their feature space and distribution over time. When the distribution varies, most of the 

previously trained statistical models are needed to be re-built to match the new data, so more cost 

and time will be paid. For the sake of cost saving, the concept of TL was developed (Pan and Yang, 

2010). If some tasks have no sufficient data for training precise model while other different but 

similar tasks have trained models, TL proposes to re-train a model from an existing task for a new 

task. So, the training data required for the new task can be reduced. To facilitate understanding, the 

definition of TL is provided: Given a source domain 𝒟𝑆 = {𝒳𝑆, 𝑃(𝒳𝑆)}  and source task 𝒯𝑆 , a 

target domain 𝒟𝑇 = {𝒳𝑇 , 𝑃(𝒳𝑇)} and learning task 𝒯𝑇, TL aims to help handle the target task 𝒯𝑇 

with data from the target domain in 𝒟𝑇 using the knowledge from 𝒟𝑆 and 𝒯𝑆, where 𝒟𝑆 ≠ 𝒟𝑇, 

or 𝒯𝑆 ≠ 𝒯𝑇. Currently, TL has been applied in many areas, especially in image recognition using 

convolutional neural network (Pan and Yang, 2010). In a typical convolutional neural network, for 

example, low-level layers can be trained on an existing large database to extract low-level features 
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such as edges, corners and shapes, which are not specific for task 𝒯𝑆 . Therefore, these layers 

constitute a general feature extractor with well-trained parameters, which can be frozen and 

transferred to a new model. Then, the parameters in high-level layers are re-trained for the target 

task based on the data from target domain 𝒟𝑇. This kind of TL is called “parameter-based TL” (Pan 

and Yang, 2010; Chen et al., 2021).  

As aforementioned, we would like to use MF modelling technique to eliminate the modelling 

error caused by temperature in the LFPCE model, but the HF measurement data cannot spread over 

the input domain, that is, the observations from bridge under damaged condition are generally 

deficient. Subsequently, the MFPCE model most likely fails to represent the real bridge structure 

under damaged condition. As a solution, a TL-based MFPCE (TL-MFPCE) approach is proposed. 

From the perspective of TL, the physical model can be regarded as the source domain, from which 

the target responses of interest are generated to train the LFPCE model for the source task, i.e., the 

relation among the damage parameters, temperature, and the bridge frequency in the physical model. 

The real structure will be the target domain, and the real observations, or called HF data, are 

collected from the target domain to combine with the LFPCE model to handle the target task, i.e., 

the relation among the damage parameters, temperature, and bridge frequency in the real structure. 

The LFPCE model has been trained to describe the relation between the responses and damage 

parameters. This knowledge can be retained and transferred to the MF model. Then, the incorrect 

relation between the responses and temperature in the LFPCE model can be updated by using the 
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HF data. In other words, the LFPCE model and the MFPCE model can share the coefficients of 

basis terms that related to the damage parameters, and the HF data can be used to update the 

coefficients of basis terms associated with temperature. As a result, the modelling error can be 

updated, while the knowledge of damage from the source domain can be kept and leveraged. In the 

next section, the mathematical principle of TL-MFPCE will be provided.  

5.2.3 TL-MFPCE for surrogate modelling under varying temperature 

The LFPCE model built by ASPCE-BASS is first written here: 

𝐹𝑙𝑜𝑤(𝒒, 𝑻) = ∑𝑐𝑖𝜓𝑖(𝒒, 𝑻)

𝑃

𝑖=1

 (5.8) 

where 𝐹𝑙𝑜𝑤 represents the response of interest that is built as the LF model; 𝒒 denotes a vector of 

damage parameters; 𝑻 is a vector of temperature variables. In this study, 𝐹𝑙𝑜𝑤 is the frequency, 

and 𝒒 = (𝑿 − 𝑿𝒅)/𝑿, in which 𝑿,𝑿𝒅 are the parameters of bridge components under healthy and 

damaged conditions, respectively. The traditional autoregressive MF technique intends to update all 

the basis terms with expression as given in Equation (5.9): 

𝐹𝑚𝑢𝑙𝑡𝑖(𝒒, 𝑻) = 𝜌𝐹𝑙𝑜𝑤(𝒒, 𝑻) + ∆𝑃𝐶𝐸(𝒒, 𝑻) + 𝜖 (5.9) 

in which 𝜖  represents the measurement noise, which is assumed as a zero mean Gaussian 

distribution. Due to the lack of data from structure under damaged condition, the estimations of the 

corrective function ∆𝑃𝐶𝐸(𝒒, 𝑻) and the weight coefficient 𝜌 would be inaccurate. Therefore, we 
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re-written Equation (5.8) by re-organising the basis terms with different input variables: 

𝐹𝑙𝑜𝑤(𝒒, 𝑻) = 𝑓(𝒒) + ℎ(𝒒, 𝑻) + 𝑔(𝑻) (5.9) 

in which 𝑓(𝒒) denotes the cluster of basis terms that are only related to 𝒒; 𝑔(𝑻) is the cluster of 

basis terms that are only associated with 𝑻; and ℎ(𝒒, 𝑻) represents the cluster of basis terms that 

have interaction effect between 𝒒 and 𝑻. Since 𝒒 is calculated from the parameters of the bridge 

components, ℎ(𝒒, 𝑻) implies the part of responses dominated by the parameters change caused by 

temperature, e.g., the temperature-induced elastic modulus change. 𝑔(𝑻)  denotes the part of 

responses dominated by the thermal expansion and temperature-induced boundary condition change. 

Generally, the elastic modulus can be measured by ultrasonic methods or stress-strain diagram (Y. 

Xia et al., 2012). But the thermal expansion and the boundary condition change are difficult to be 

recognised because they will affect each other (Han et al., 2021). Thus, the basis terms in 𝑓(𝒒) and 

ℎ(𝒒, 𝑻) with trained coefficients can be frozen and transferred to the MF model, and 𝑔(𝑻) should 

be updated with the HF data to eliminate the modelling error. By employing Equation (5.6), the TL-

MFPCE model is: 

𝐹𝑚𝑢𝑙𝑡𝑖(𝒒, 𝑻) = 𝑓(𝒒) + ℎ(𝒒, 𝑻) + 𝜌 ∙ 𝑔(𝑻) + ∆𝑃𝐶𝐸(𝑻) + 𝜖 (5.11) 

With the HF data {(�̃�, �̃�), �̃�}, this model can be trained: 

�̃� − 𝑓(�̃�) − ℎ(�̃�, �̃�) = [𝑔(�̃�),𝚿(�̃�)] ∙ [
𝜌
𝒄𝒄

] + 𝜖 (5.12) 

which has the same expression form to Equation (3.10). Here, 𝒄𝑐 is the unknown coefficients of 

∆𝑃𝐶𝐸(𝑻). Hence, the BCS method can be employed to garner the solutions of 𝜌 and 𝒄𝑐. Moreover, 
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by assuming that the measurement noise follows the zero mean Gaussian distribution 𝜖~𝑁(0, 𝛽−1) 

like Equation (3.14), the variance of the noise, 𝜎2 = 𝛽−1 , can be estimated by using BCS 

delineated in Section 3.2.2.  

So far, an issue is still worthy to note that the truncation degree of the corrective PCE function 

should be properly selected to avoid overfitting. Here, a popularly used Cross Validation (CV) 

approach is employed to help choose the degree. The leave-one-out CV errors of the MF models 

under different degrees will be recorded. When the CV error cannot decrease with the increase of 

degree, the corresponding degree value will be treated as the best one. To summarise, the procedure 

of TL-MFPCE is given in Algorithm 5: 

Algorithm 5. TL-MFPCE 

Input: LF data from FE model (source domain); HF data from real structure (target domain) in 

healthy condition with different temperatures;  

Initialisation: Train LFPCE models by using ASPCE-BASS (trained models from source 

domain); Record the highest degree of the trained LF model as 𝑃ℎ. 

In 𝒊th iteration: 

1. Define the truncation degree of the corrective function ∆𝑃𝐶𝐸(𝑻) as 𝑖; 

2. Divide the basis terms in LFPCE models according to the variables in the basis term; 

3. Freeze the structural parameter-related basis terms according to the parameter-based TL; 

4. Update the basis terms that are not frozen based on Equation (5.11) and use BSC to calculate 

the unknown parameters; 

5. Calculate the CV error and recorded. 

6. If 𝑖 > 𝑃ℎ, quit iteration, and compare the CV error under different degree values defined for 

∆𝑃𝐶𝐸(𝑻) and choose the one with no more declined CV error. 

To summarise, the merits of this TL-MFPCE technique are: (1) The requirement on the HF 

data is reduced so that only data from structure in the healthy condition are needed; (2) Freezing 
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some of the trained basis terms in the LFPCE model ensures that the features learnt from the FE 

model can be retained. Thus, the MF surrogate model benefits from the knowledge in FE model 

when no measurement data from the damaged structure is available. (3) The variance of the 

measurement noise can be evaluated by using the BCS method, which is useful in the next chapter.  

Compared with the traditional multi-fidelity modelling methods based on other surrogate 

modelling techniques such as GPR and ANN, the advantage of the proposed method based on PCE 

is: The trained PCE can be easily divided according to the variables contained in each basis term, 

so the parameter-based TL can be used. On the contrary, the variables in GPR are coupled with each 

other in the expressions and the hyperparameters are learnt in a global way, which is not appropriate 

for addressing the problem in this thesis that the real measurements are absent in some portions of 

the definition domain. For ANN, it is convenient to employ TL by choosing the layers in ANN to 

be frozen or updated, but updating the model based on different input variables is still tricky because 

the trained ANN model is complex and unexplainable.  

5.3 Case Studies  

In this section, a numerical bridge and an experimental beam are explored to verify the 

proposed TL-MFPCE modelling method under different temperature distributions. The numerical 

bridge is applied with gradient temperature along vertical direction, and the experimental beam 

works under the uniform temperature. 
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5.3.1 Brief descriptions of two cases 

5.3.1.1 Numerical case of a three-span continuous beam bridge 

The numerical case is a three-span continuous beam bridge with single-box cross section. The 

layout of this bridge is given in Figure 5.3 and Figure 5.4. As can be seen, the second support 

counted from the left end constrains the lateral displacement of the beam. For analysis simplicity, 

the beam is equally divided into 26 parts with each of 5 m long, and the elastic modulus of each 

part is regarded as a structural parameter, as shown in Figure 5.3. To note, the structural material is 

temperature-related in this simulation. The elastic modulus under 20℃ is 3.55×1010 𝑃𝑎, and the 

relation between the elastic modulus and temperature are depicted in Figure 5.5 (Jiao et al., 2014). 

Besides, the mass density and the thermal expansion coefficient of the structural material are 2549 

𝑘𝑔/𝑚3 and 1×10-5, respectively. The simulation is realised by building the FE model with ANSYS.  

In this case, the temperature field is applied on this structure with vertical gradient, and the 

temperature along the lateral direction of bridge is assumed identical. Given the temperatures of the 

top and bottom surfaces, the distribution of temperature field along the vertical direction of the 

structure is simply assumed as linear (Xia et al., 2018). Therefore, the temperatures of the top and 

bottom surfaces are two independent variables in this case, which will vary between 0℃ and 50℃. 

In addition, the temperature of the bottom surface will always lower than that of the top surface.  
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Figure 5.3 Layout of three-span continuous beam bridge 

 

Figure 5.4 Layout of the cross section 

 

Figure 5.5 Elastic modulus versus temperature 

To validate the proposed TL-MFPCE method, the LF model and HF model should be 

established separately. Here, we use different mesh densities to build models with different fidelities, 

as shown in Figure 5.6. The LF model is meshed with element size of 1.0 m, while the HF model is 

meshed with element size of 0.5 m. In addition, the HF model is added with temperature-related 

axial forces to simulate the change of boundary condition, while the LF model has no axial force 

under any temperature to simulate its discrepancy with the HF model. As is portrayed in Figure 5.7, 

two pairs of concentrated forces are applied at both ends of the HF model. One pair is imposed at 

the central axis of the top surface and the other one is applied at the central axis of the bottom 
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surface. The values of two forces, 𝐹𝑡  and 𝐹𝑏 , are supposed to have functional relations to the 

temperature of top and bottom surfaces, respectively. In the past studies, it was found that the 

temperature-induced boundary condition change can cause a nonlinear variation of the model 

responses, and the frequencies may have changes over 10% (Peeters et al., 2001; Zhou and Song, 

2018). Hence, a nonlinear temperature-force function is designed in this case, which is displayed in 

Figure 5.8. Such relation may not exist in practical, but it can be used to verify the proposed method 

without loss of generality. By applying this force relation, the frequencies of this bridge could have 

a maximum variation of 10% with temperature changing.  

 

(a) 

 

(b) 

Figure 5.6 FE model of the bridge with mesh size (a) 1.0 m; (b) 0.5 m 

 

Figure 5.7 Simple drawing of the axial forces on the bridge 
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Figure 5.8 Boundary condition change (axial force) versus temperature 

The first 5 frequencies corresponding to the vertical mode shapes are of interest. The 

frequencies and the mode shapes from the HF model at 20℃ (no axial force) are depicted in Figure 

5.9.  

 

(a) Mode 1 (3.0150 Hz) 

 

(b) Mode 2 (5.6041 Hz) 

 

(c) Mode 3 (7.4741 Hz) 

 

(d) Mode 4 (9.6388 Hz) 
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(e) Mode 5 (10.5007 Hz) 

Figure 5.9 First 5 frequencies corresponding to the vertical mode shapes 

5.3.1.2 Experimental case of a two-span continuous beam  

The experimental case is a two-span continuous beam with a 38.02 mm×9.55 mm rectangular 

cross section, which is shown in Figure 5.10. The lengths of two spans are 900 mm and 1100 mm, 

respectively. For simplicity in analysis, the beam is equally divided into 20 elements, and the inertia 

moment of each element is a structural parameter that can be used to characterise structure damage. 

The material of the beam is aluminium, and the mass density and thermal expansion coefficients 

are estimated as 2669.7 𝑘𝑔/𝑚3 and 2.34×10-5, respectively. Moreover, the elastic modulus of the 

material is temperature-related, and the relation is depicted in Figure 5.11.  

 

Figure 5.10 Setup of the experimental case  
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Figure 5.11 Elastic modulus versus temperature 

To apply different temperatures, a heating panel was sticked on the bottom of the beam. The 

temperature was controlled between 25℃~50℃ by a control box, and the temperature on the beam 

was measured by a resistance thermometer PT100. The heating panel and the control equipment is 

shown in Figure 5.12.  

 

(a) 
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(b) 

Figure 5.12 (a) Installed heating panel and (b) Temperature control equipment 

Since the frequencies were the targets of interest, the impact hammer modal test was applied, 

and the accelerometers were used to measure the structural signals. In this test, we used 7 

accelerometers to ensure the robustness of the identified results, and the sensor installation positions 

have been shown in Figure 5.10. There is a magnetic base in each accelerometer to ease the 

installation. As the material of the beam used in this experiment is aluminium, several small steel 

plates are sticked on the beam so that the accelerometers can be easily mounted. The operating 

temperature range of these accelerometers is -74℃~250℃, so they are workable in this test. The 

data acquisition and control system as well as the impact hammer are shown in Figure 5.13.  
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(a) 

 

(b) 

 

(c) 

Figure 5.13 (a) Data acquisition system (EDX-100A and computer); (b) Hammer; (c) Signal 

amplifier 

According to the above information, an FE model of this beam is built as the LF model, which 

is shown in Figure 5.14. The first 5 frequencies corresponding to the vertical mode shapes are of 

interest. The frequencies and the mode shapes from the FE model at 25℃ are depicted in Figure 

5.15. 
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Figure 5.14 Finite element model of the experimental case 

 

(a) Mode 1 (18.8397 Hz) 

 

(b) Mode 2 (32.7243 Hz) 

 

(c) Mode 3 (65.6139 Hz) 

 

(d) Mode 4 (103.5837 Hz) 

 

(e) Mode 5 (148.6948 Hz) 

Figure 5.15 First 5 frequencies corresponding to the vertical mode shapes 
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Similar to the previous case, the experimental beam which represents the HF model is applied 

with a temperature-related axial force to simulate the boundary condition change caused by 

temperature, and such change is not considered in the FE model to represent the modelling error in 

the LF model. The axial force is controlled by using a jack and a load cell. The setting of the jack 

and load cell is displayed in Figure 5.16. The axial force is designed to have a nonlinear relation 

with temperature, which is given in Figure 5.17.  

 

Figure 5.16 Deployment of jack and load cell 

 

Figure 5.17 Boundary condition change (axial force) versus temperature 
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5.3.2 Numerical case of a three-span continuous beam bridge 

With the LF and HF FE models built in Section 5.3.1.1, the frequency data that vary with the 

structural parameters and temperatures can be provided. Following Algorithm 5, the LF data are 

first used to build the LFPCE models by employing the multi-output ASPCE-BASS algorithm. The 

input variables comprise of 26 structural parameters (elastic moduli of 26 parts) and 2 temperature 

variables (𝑇𝑡 , 𝑇𝑏). For building the surrogate models, all the input variables are assumed to conform 

uniform distribution. The distribution information is given in Table 5-1.  

Table 5-1 Input distributions of the three-span continuous beam bridge 

Variable Distribution Lower bound Upper bound 

Elastic modulus 𝐸1~𝐸26 (Pa) 

(under 20 ℃) 
Uniform 1.42e10 3.55e10 

Temperature 𝑇𝑡, 𝑇𝑏 (℃) Uniform 0 50 

The target outputs are the first 5 frequencies corresponding to the vertical mode shapes, so the 

number of outputs in ASPCE-BASS is 5. The threshold to terminate the algorithm is set as 10−5. 

With trained LFPCE models, the HF data are then leveraged to build the TL-MFPCE models. 

Regarding the HF data as the real observations, a zero-mean Gaussian white noise is added to the 

data of each frequency mode to simulate the measurement noise, where the signal-to-noise ratio 

(SNR) is 1%. For each output, the number of HF data is 150, which are randomly sampled in the 

input domain. In the training process, the CV error of each model with respect to the degree of 

corrective PCE function is shown in Figure 5.18(a), and the best degree can then be determined. 

Also, the estimated noise variances of the trained model for each frequency are shown in Figure 
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5.18(b), which could help choose the best degree.  

 

(a)                                     (b) 

Figure 5.18 (a) CV error versus degree of corrective function; (b) Estimated noise variance versus 

degree of corrective function 

As can be seen, the CV errors of the trained models representing the first two frequencies do not 

decrease when the truncation degree exceeds 4, and similar trends can also be observed in Figure 

5.18(b), so the best truncation degree for the corrective PCE models of the first two frequencies is 

4. Similarly, the best truncation degree of corrective function for the last three frequencies is 3. Then, 

the trained MF models are compared with the LF models and the HF models as shown in Figure 

5.19. It is obvious that the MF models approach more to the HF models than the LF models.  

 

(a) 1st frequency 

 

(b) 2nd frequency 
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(c) 3rd frequency 

 

(d) 4th frequency 

  

(e) 5th frequency 

Figure 5.19 Training results of TL-MFPCE 

Furthermore, the quantity of HF data affecting the training accuracy is studied. The Mean 

Square Error (MSE) that defined in Equation (5.13) is utilised to evaluate the training accuracy. The 

size of HF data varies from 50 to 250, and the MSE results with respect to the data size are shown 

in Figure 5.20.  

𝜀𝑀𝑆𝐸 = ∑ (𝐹𝑡𝑟𝑢𝑒
(𝑖) − 𝐹𝑇𝐿−𝑀𝐹𝑃𝐶𝐸

(𝑖) )2/𝑁𝑣𝑎𝑙

𝑁𝑣𝑎𝑙

𝑖=1
 (5.13) 
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Figure 5.20 MSE with respect to the number of HF data 

Clearly, the training accuracies of 5 models become stable when the number of HF data exceeds 

200. Hence, the TL-MFPCE models that trained with 200 HF data are used in this case.  

In order to validate the trained TL-MFPCE models under the circumstance that the structure is 

damaged, three damage scenarios are defined, and the responses from the HF model and the TL-

MFPCE models are compared. The damage scenarios are simulated by decreasing the elastic 

modulus of the structure segments, and the detailed information can be found in Table 5-2 and 

Figure 5.21.  

Table 5-2 Damage locations and severities of three damage scenarios 

Scenario Description 

Single damage 
DS1 Part No. 1 is damaged with elastic modulus reducing 30% 

DS2 Part No. 24 is damaged with elastic modulus reducing 50% 

Double damages DS3 
Parts No. 1 & 12 are damaged with elastic modulus 

reducing 20% and 40% respectively 

 

(a) DS1 
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(b) DS2 

 

(c) DS3 

Figure 5.21 Damage locations of three scenarios 

To demonstrate the improvement of the proposed TL-MFPCE method, the traditional MFPCE 

(tMFPCE) technique is employed for comparison. For the sake of fairness, the autoregressive form 

is used in tMFPCE. Here, the truncation degree of the corrective function in tMFPCE is chosen as 

3 because larger truncation degree will result in instable regression solution with only 200 HF 

training data. The comparison of modelling results for three damage scenarios are displayed in 

Figure 5.22 to Figure 5.24. 

 

(a) 1st frequency 

 

(b) 2nd frequency 
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(c) 3rd frequency 

 

(d) 4th frequency 

  

(e) 5th frequency 

Figure 5.22 Comparison of validation results under damage scenario DS1 

 

(a) 1st frequency 

 

(b) 2nd frequency 
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(c) 3rd frequency 

 

(d) 4th frequency 

  

(e) 5th frequency 

Figure 5.23 Comparison of validation results under damage scenario DS2 

 

(a) 1st frequency 

 

(b) 2nd frequency 
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(c) 3rd frequency 

 

(d) 4th frequency 

  

(e) 5th frequency 

Figure 5.24 Comparison of validation results under damage scenario DS3 

As is shown in Figure 5.22, the predictions from the TL-MFPCE models and tMFPCE models 

for damage scenario DS1 almost match well with those from HF models, except for the tMFPCE 

model of the 5th frequency. For damage scenario DS2 as depicted Figure 5.23, the predictions from 

TL-MFPCE models of 5 frequencies still close to the results from HF models, while the predictions 

from the tMFPCE models have large discrepancies, especially the predictions of the 4th and 5th 

frequencies. For damage scenario DS3, the tMFPCE models show a bit worse performance than the 

TL-MFPCE models. To make it clear, the MSE values of these predictions are given in Figure 5.25 

to Figure 5.27. 
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Figure 5.25 MSE comparison between TL-MFPCE and tMFPCE: damage scenario DS1 

 

Figure 5.26 MSE comparison between TL-MFPCE and tMFPCE: damage scenario DS2 

 

Figure 5.27 MSE comparison between TL-MFPCE and tMFPCE: damage scenario DS3 

Intuitively, the MSE values of the TL-MFPCE models are mostly smaller than those of the 

tMFPCE models. Only the tMFPCE models of the 1st frequency in DS1 and the 5th frequency in 
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DS3 show a bit better performance than the TL-MFPCE models. It deserves to note that the tMFPCE 

models for DS2 have extremely large prediction errors. The reason might be that the basis terms 

related to the damaged structural segment in this damage scenario are updated with incorrect 

coefficient values. To conclude, the TL-MFPCE models outperforms the tMFPCE models when the 

structure is damaged.  

5.3.3 Experimental case of a two-span continuous beam 

With the LF FE model and the HF experimental beam structure, the LF and HF frequency data 

that vary with the structural parameters and temperature can be collected. The LF data is first used 

to build the LFPCE models by using the multi-output ASPCE-BASS algorithm. In these models, 

the input variables comprise of 20 structural parameters (section inertia moment of 20 parts) and 1 

temperature variable. All the input variables conform to uniform distributions, and the distribution 

information is given in Table 5-3. 

Table 5-3 Input distributions of the two-span continuous beam 

Variable Distribution Lower bound Upper bound 

Section inertia moment 

𝐼1~𝐼20 (m
4) 

Uniform 1.1038e-9 2.7596e-9 

Temperature 𝑇 (℃) Uniform 25 50 

The target outputs are the first 5 frequencies corresponding to the vertical mode shapes. The 

threshold to terminate the multi-output ASPCE-BASS algorithm is set as 10−5. With the trained 

LFPCE models, the measurements collected from the healthy experimental beam under different 
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temperatures are then leveraged as the HF data to train the TL-MFPCE models. Here, 135 

measurement data for each frequency are collected for MF modelling. In the training process, the 

CV error of each frequency with respect to the degree of corrective PCE function is given in Figure 

5.28(a), and the estimated noise variances are shown in Figure 5.28(b).  

 

Figure 5.28 (a) CV error versus degree of corrective function; (b) Estimated noise variance versus 

degree of corrective function 

It can be seen in Figure 5.28 that the CV errors and the estimated noise variances of the 1st, 3rd, 

and 5th frequencies do not decrease when the truncation degree exceeds 4, so the best truncation 

degree for the corrective PCE models of these frequencies is 4. By contrast, the CV errors and the 

estimated noise variances of the 2nd and 4th frequencies keep decreasing with the increase of the 

degree of corrective function. However, purely increasing the truncation degree will cause 

overfitting issue. As the CV errors and estimated noise variances have relatively low values when 

the truncation degree exceeds 7, we choose 7 for modelling these two frequencies. Under the 

selected truncation degrees, the trained MF models are shown in Figure 5.29. Apparently, the MF 

models can update the discrepancy between the LF models and the HF data when the structure is in 

healthy condition. To note, it can be seen from Figure 5.29(b)&(d) that the measurements of 2nd and 



 

195 

4th frequencies show distinct regularity to others, and the TL-MFPCE models need larger truncation 

degree in the corrective function for updating. We infer that it is caused by the stiffness change of 

boundary with the increasing of axial force, which further affects these two frequencies.  

 

(a) 1st frequency 

 

(b) 2nd frequency 

 

(c) 3rd frequency 

 

(d) 4th frequency 

 

(e) 5th frequency 

Figure 5.29 Training results of TL-MFPCE 

In the validation stage, three damage scenarios are imposed on the experimental beam, and the 

responses from the experimental model and the TL-MFPCE models are compared. The damage 

scenarios are generated by cutting a part of the beam, and their detailed information is in Table 5-4 
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and Figure 5.30. To facilitate understanding, an example of damage scenario DS1 is shown in Figure 

5.31.  

Table 5-4 Damage locations and severities of three damage scenarios 

Scenario Description 

Single damage 
DS1 Part No. 18 is damaged with 11.4 mm cutting depth (30% damage) 

DS2 Part No. 18 is damaged with 19.0 mm cutting depth (50% damage) 

Double damages DS3 
Parts No. 3 & 18 are all damaged with 19.0 mm cutting depth (50% 

damage) 

 

(a) DS1 

 

(b) DS2 

 

(c) DS3 

Figure 5.30 Three damage scenarios of the experimental beam 
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Figure 5.31 An example of 30% damage (DS1) 

Table 5-5 Information of measurements under different damage scenarios 

Damage scenarios Temperature range Data quantity 

DS1 [25℃, 45℃] 71 

DS2 [33℃, 45℃] 47 

DS3 [35℃, 40℃] 23 

To simulate the real situations, measurements are collected within different temperature ranges 

in three damage scenarios, and the quantity of measurements are also different in these damage 

scenarios. The information of measurements in three damage scenarios are summarized in Table 

5-5. The model predictions from two methods, tMFPCE and TL-MFPCE, are compared with these 

measurements to verify their performance. Similar to the previous case, the truncation degree of the 

corrective function in tMFPCE cannot exceeds 3 due to the requirement on robust regression 

calculation. The comparison results are displayed in Figure 5.32 to Figure 5.34.  

 

(a) 1st frequency 

 

(b) 2nd frequency 
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(c) 3rd frequency 

 

(d) 4th frequency 

  

(e) 5th frequency 

Figure 5.32 Comparison of validation results under damage scenario DS1 

 

(a) 1st frequency 

 

(b) 2nd frequency 

 

(c) 3rd frequency 

 

(d) 4th frequency 
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(e) 5th frequency 

Figure 5.33 Comparison of validation results under damage scenario DS2 

 

(a) 1st frequency 

 

(b) 2nd frequency 

 

(c) 3rd frequency 

 

(d) 4th frequency 

  

(e) 5th frequency 

Figure 5.34 Comparison of validation results under damage scenario DS3 

Upon most circumstances, the tMFPCE and TL-MFPCE models can both predict the global 

trends of the structural responses with desired accuracy, while the TL-MFPCE models match more 



 

200 

with the measurements than the tMFPCE models because higher truncation degrees in the corrective 

function were chosen in the training stage of TL-MFPCE. More importantly, for predicting the 3rd 

frequency in three scenarios, the tMFPCE models have large deviations to the measurements and 

the TL-MFPCE models. The reason is that the weight coefficient 𝜌  in this tMFPCE model is 

trained with improper value. Then, the MSE values of these models under three damage scenarios 

are compared in Figure 5.35 to Figure 5.37. 

 

Figure 5.35 MSE comparison between TL-MFPCE and tMFPCE: damage scenario DS1 

 

Figure 5.36 MSE comparison between TL-MFPCE and tMFPCE: damage scenario DS2 
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Figure 5.37 MSE comparison between TL-MFPCE and tMFPCE: damage scenario DS3 

Intuitively, the tMFPCE models for the 3rd frequency have extremely large prediction errors in 

three damage scenarios, and the TL-MFPCE models have a higher accuracy than the tMFPCE 

models upon most occasions. However, a problem of TL-MFPCE is exposed in the results. As 

shown in Figure 5.32(b)&(d), the predictions from TL-MFPCE models show better performance at 

temperature over 35℃ than below. This is because the models overfit the training data as shown in 

Figure 5.29(b)&(d). Fortunately, the prediction errors of models for these two frequencies are tiny. 

5.4 Summary 

In this chapter, a Transfer Learning (TL)-based MFPCE (TL-MFPCE) modelling technique is 

proposed to build accurate surrogate model for bridge structures, which can further help in damage 

identification. Low-Fidelity PCE (LFPCE) surrogate models are first established based on the LF 

physical model of a bridge structure by using the ASPCE-BASS algorithm. Then, the concept of 

parameter-based TL and the MFPCE modelling technique are combined to eliminate the 

temperature-induced modelling error in the LFPCE models with measurements from the High-
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Fidelity (HF) model/real structure in healthy condition. Finally, the updated MFPCE models can be 

used to predict the structural responses with desired accuracy even if the structure is damaged. In 

principle, the parameter-based TL enables the retaining of information related to the structural 

parameters from the physical model, so the requirement on the real measurements can be reduced.  

For validation, a simulation case of a three-span continuous beam bridge is built, and an 

experimental model of a two-span continuous beam is constructed. In the training stage, it is shown 

that the trained TL-MFPCE models have high accuracy when the structure is in healthy condition, 

which indicates that the training is successful. In the validation stage, three damage scenarios 

involving single damage and multiple damages are defined for both cases, and the proposed method 

is compared with the traditional MFPCE (tMFPCE) method. Results manifest that the proposed 

method outperforms the tMFPCE method when the structure is damaged.  

It is worth mentioning that the proposed TL-MFPCE approach can work together with the 

popularly used model updating technique, as the modelling error may also exist in the structural 

parameters of a physical model, e.g., the incorrect estimation of element stiffness. To improve the 

modelling precision, model updating can be performed by defining a reference state to the structure. 

The real measurements obtained in the reference state can be used for model updating. Then, the 

TL-MFPCE modelling technique is applied with data collected in the operational stage. 
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CHAPTER 6  

SPARSE DAMAGE IDENTIFICATION 

BASED ON MFPCE MODEL 

                                                                                 

 

6.1 Introduction 

In the past decades, numerous structural damage identification methods have been developed 

for bridges, where frequency was one of the most widely used structural responses (Fang and Perera, 

2011; Peeters et al., 2001; Zhou et al., 2011). In the previous chapter, reliable PCE surrogate models 

have been constructed to describe the pattern of structural frequencies concerning the damage 

parameters and temperature, and such models can be further employed to help identify possible 

damages. Basically, the principle behind those damage identification approaches which employ the 

data models or surrogate models is to find a set of damage parameter values that can minimise the 

residual between the model evaluations and real responses (Wang et al., 2020a; Zhang and Xu, 2016; 

Zhou et al., 2015): 

�̂� = 𝑎𝑟𝑔min
𝒒

{‖𝑭(𝒒) − �̂�‖
2

2
} (6.1) 

in which 𝑭(𝒒) denotes the model evaluations (frequencies) and �̂� represents the measurements 

perturbed by noise; 𝒒 = (𝑿 − 𝑿𝒅)/𝑿 is a vector of damage parameters calculated by the structural 
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parameters 𝑿,𝑿𝒅 before and after damage, which indicates both the damage location and damage 

severity. Typically, it is often reasonable to deem that the damage occurs on a bridge in a sparse way, 

that is, the number of damages is very small compared with the quantity of total components 

(Hernandez, 2014; Huang et al., 2017a). So, 𝒒 is a sparse vector, and the sparse representation 

methods could help solve this problem. Similar to Equation (3.13), a regularisation term is added to 

induce sparsity on 𝒒.  

�̂� = 𝑎𝑟𝑔min
𝒒

{‖𝑭(𝒒) − �̂�‖
2

2
+ 𝜆‖𝒒‖} (6.2) 

Generally, 𝑙1-norm is selected for the regularisation term since it is the most tractable term to induce 

sparse solution (Bruckstein et al., 2009). By contrast, 𝑙0-norm can induce the most sparsity, but it 

has been demonstrated that Equation (6.2) with 𝑙0  regularisation is a Non-deterministic 

Polynomial-time hard (NP-hard) problem, which means that the time for getting the optimal 

solution is unacceptable (Natarajan, 1995). Therefore, 𝑙1 regularisation has become the dominant 

technique in the sparse representation algorithms for addressing structural damage identification 

problem (Guo et al., 2020; Hou et al., 2018a; Lai and Nagarajaiah, 2019; Wang et al., 2020b).  

However, solving Equation (6.2) by using the traditional sparse representation methods with 

𝑙1  regularisation is still complicated in this study. The reason is that the PCE model 𝑭(𝒒)  is 

possibly not linearly expressed by 𝒒 , which contradicts to the premise in the traditional sparse 

representation methods that the system should be linear (Zhang et al., 2015). In this study, an 
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approximate 𝑙0 sparse representation method for damage identification is developed based on the 

Discrepancy Principle (DP) and the Cuckoo Search Algorithm (CSA). DP was usually used for 

choosing a proper value of regularisation parameter for Tikhonov regularisation, and it was further 

applied in the field of structural damage identification with 𝑙1 minimisation (Hou, et al., 2018a). 

CSA is a kind of heuristic algorithm, which is superior in solving the NP-hard optimisation problem. 

In the proposed method, we first give assumptions to the number of damages, that is, the 

optimisation is performed with known damage number. Then, the optimisation problem is 

transferred into an approximate 𝑙0  regularisation problem. Regarding the damage location and 

severity as the optimisation objectives, CSA is then adopted to find the optimal solutions under each 

assumption. According to DP, the solutions calculated under different assumptions are compared to 

find the most possible damage scenario, and the corresponding solution obtained by CSA is the 

correct damage result. Finally, the proposed damage identification method is validated on a 

numerical bridge model and an experimental beam model.  

6.2 Theory 

6.2.1 Discrepancy principle for damage identification 

DP was commonly utilised for selecting proper regularisation parameter value in Tikhonov 

regularisation (Dong et al., 2018; Hämarik and Raus, 2006; Lukas, 1995). In 2018, Hou et al. (2018a) 

further extended this approach for parameter selection in 𝑙1 regularisation and demonstrated that 
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DP was promising in the field of structural damage identification. Compared with other sparse 

damage identification methods, this method is simple to be implemented, and it has been 

demonstrated to be effective in addressing similar issues (Hou et al., 2018a). In this section, the DP 

for parameter selection in 𝑙1 regularisation is introduced. 

Taking the norm of regularisation term in Equation (6.2) as 𝑙1, the optimisation problem can 

be expressed as: 

�̂� = 𝑎𝑟𝑔min
𝒒

{‖𝐹(𝒒) − �̂�‖
2

2
+ 𝜆‖𝒒‖1} (6.3) 

Here, �̂� represents the measurement data that is contaminated by noise, which is �̂� = 𝐹𝑡 + 𝜖; and 

𝐹𝑡 is the system true value. Under an unknown damage �̃�, the real residual between the model 

evaluations and measurements is 

‖𝐹(�̃�) − �̂�‖
2

2
= ‖𝐹(�̃�) − 𝐹𝑡 − 𝜖‖2

2 = ‖𝜖‖2
2 (6.4) 

when the system true value can be precisely predicted by the surrogate model 𝐹(𝒒). DP is to find 

a regularisation parameter 𝜆 ≥ 0 so that the solution 𝒒𝜆 of Equation (6.3) satisfies: 

‖𝐹(𝒒𝜆) − �̂�‖
2

2
= ‖𝜖‖2

2 (6.5) 

Then, 𝒒𝜆 will be equal to the actual damage �̃�. Generally, the condition in Equation (6.5) is too 

rigorous due to the existence of uncertainties, so Hou et al. (2018a) relaxed it by 

|‖𝑭(𝒒𝜆) − �̂�‖
2

2
− ‖𝜖‖2

2| ≤ 𝑇𝑜𝑙 (6.6) 
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Assuming the measurement noise follows a zero-mean Gaussian distribution, the optimal value of 

𝜆  can be selected by comparing between the calculated residual value and the variance of 

measurement noise.  

Generally, the noise in the frequency data is assumed as a stochastic process: 

�̂� = (1 + 𝝐)𝑭𝑡 (6.7) 

where �̂� represents a vector of measured frequency data of different orders; 𝝐~𝑁(0, 𝜎2𝑰 ). Then, 

Equation (6.3) can be re-organised as: 

�̂� = 𝑎𝑟𝑔min
𝒒

{
1

𝑚 × 𝑁𝑇
∑∑(

𝐹𝑖𝑗(𝒒) − 𝐹𝑖�̂�

𝐹𝑖�̂�

)

2𝑁𝑇

𝑗=1

𝑚

𝑖=1

+ 𝜆‖𝒒‖1} (6.8) 

in which 𝐹𝑖𝑗(𝒒)  and 𝐹𝑖�̂�  are the 𝑖𝑡ℎ  frequency under the 𝑗𝑡ℎ  temperature value from the 

surrogate model and experimental model, respectively. As a result, we would like to select a value 

of 𝜆 so that the residual value is: 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  
1

𝑚 × 𝑁𝑇
∑∑(

𝐹𝑖𝑗(𝒒𝜆) − 𝐹𝑖�̂�

𝐹𝑖𝑗(𝒒𝜆)
)

2𝑁𝑇

𝑗=1

𝑚

𝑖=1

= 𝐸(‖𝝐‖2
2) = 𝜎2 (6.9) 

To summarise, the procedure of DP is: (1) Predefine a set of candidate values of 𝜆, and solve 

Equation (6.8) for each given value of 𝜆; (2) Compute the residual value corresponding to each 𝜆; 

(3) Compare the calculated residual values with the variance of the measurement noise to find the 

optimal 𝜆 . As can be seen, the noise level is necessary in DP. Fortunately, the BCS method 

employed for TL-MFPCE modelling in the previous chapter has estimated the noise level, as 
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explained in Equation (5.12), which can be used in this study.  

6.2.2 Cuckoo search algorithm 

Heuristic algorithm is one that designed to solve a problem in a faster and more efficient 

fashion than traditional methods by sacrificing optimality, accuracy, precision or completeness for 

speed (Pearl, 1984). One advantage of heuristic algorithm is that it does not require the explicit 

expression function of the target problem, thus it is usually used to address NP-hard problems 

(Kesavan et al., 2020). Starting with any feasible solutions, heuristic algorithms will apply random 

changes on the values of variables in these feasible solutions for the sake of evolution. By employing 

the objective function and evaluation criteria, solutions with in relatively better objective value will 

be kept. With the termination criterion, the algorithm will stop the circulation and output the best 

solution. In order to solve Equation (6.8), an outstanding heuristic algorithm, Cuckoo Search 

Algorithm (CSA), is introduced. 

Cuckoo is a kind of birds which does not know how to build nest and brood for next generation 

(Yang and Suash Deb, 2009). They propagate their species over the course of history by a special 

brood strategy, brood parasitism, which is to lay their eggs in the nests of other birds. Some of the 

host birds may discover the cuckoo’s egg and get rid of them by throwing them away or abandoning 

the nest and building a new one elsewhere, and some of the host birds may bring them up. In the 

CSA theory, the cuckoo’s egg or the nest it located is regarded as a feasible solution. The criterion 
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to evaluate the solution is that whether cuckoo can normally grow up in this nest or not. Therefore, 

the process that cuckoos searching nests for laying eggs implies the process to search for better 

feasible solutions, and the survival of cuckoo denotes that the nest is a good solution.  

For the simplicity of application, four idealised assumptions were proposed in CSA (Yang, 

2010): (1) Each cuckoo only dumps one egg 𝑥(𝑡) in generation 𝑡; (2) The egg laid by a cuckoo 

will be discovered by the host bird in a generation with a fixed probability value 𝑃𝑑 (which is pre-

set before the calculation), and others will survive; (3) The number of cuckoos 𝑎 is always fixed 

during the iteration process; (4) The best nest with high objective value will be preserved in the next 

generation. At the beginning, initial 𝑎  nests are randomly generated. The performance of each 

cuckoo individual (or each nest) in this generation will then be evaluated according to the objective 

function. The cuckoos with high objective values can survival, while those will low objective values 

have a probability to be abandoned. To keep the population size, some new nests will be randomly 

generated via a bias random walk strategy for supplementing. This procedure also makes sure that 

the optimisation process would not fall into the local optima. Subsequently, all the cuckoos in this 

generation will search for nests to lay eggs and get into the next generation. In CSA, a searching 

strategy called Lévy flights is employed, which is defined by the following equation (Yang, 2010): 

𝑥𝑖
(𝑡+1) = 𝑥𝑖

(𝑡) + 𝛼⨂Lévy(𝜏) (6.10) 

where 𝑥𝑖 represents the 𝑖𝑡ℎ cuckoo in this generation; 𝛼 > 0 is the step size which relates to the 

scales of the problem of interest; ⨂ is the entry-wise multiplications; Lévy(𝜏) is the Lévy random 
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route which samples from the Lévy distribution, and 𝜏 is a parameter in this distribution.  

Lévy~𝑢 = 𝑡−𝜏,       (1 < 𝜏 < 3) (6.11) 

This distribution has an infinite variance with an infinite mean, so it is hard to sample from this 

distribution. To resolve this issue, an approximate calculation called Mantegna method was utilised 

to generate random samples under Lévy distribution (Yang and Suash Deb, 2009). Sampling under 

the Lévy fights will make the random walk have an alternate change between long distance move 

and short distance move so that the searching behaviour is in both local and global ways. Finally, 

the algorithm will terminate if the iteration time reaches the maximum generation. The best nest 

(cuckoo) kept in the last generation will be the final optimal solution.  

Algorithm 6. CSA (for minimum optimisation) 

Input: Objective function; measurements from damaged bridge structure; population size; 

discovery rate; maximum generation; other parameters required. 

Initialisation: Generate a population of feasible solutions; calculate the objective function value 

of each solution. 

In 𝒊th iteration: 

1. Choose a solution randomly among the population; 

2. Generate a new solution by Lévy flights and evaluate the objective function value of the new 

solution; 

3. Select a nest among the population randomly; replace the old solution with the new one if the 

objective function value of the new solution is smaller than that of the old solution; otherwise the 

old solution is retained. 

4. Abandon a fraction of the worse solutions and generate new solutions via bias random walk 

for supplementing; 

5. Evaluate the objective function values of all the solutions;  

6. Record the best solution in the present and past iterations; 

7. If 𝑖 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛, quit iteration. 

To solve Equation (6.8) via CSA, the objective function is: 



 

211 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

𝑚 × 𝑁𝑇
∑∑(

𝐹𝑖𝑗(𝒒) − 𝐹𝑖�̂�

𝐹𝑖�̂�

)

2𝑁𝑇

𝑗=1

𝑚

𝑖=1

+ 𝜆‖𝒒‖1 (6.12) 

Our target is to find the nest 𝒒𝑏𝑒𝑠𝑡 such that the objective function has the minimum value. Each 

value of 𝒒 in the definition domain is a feasible solution. The procedure of CSA is detailed in 

Algorithm 6. It is important to note that several parameters in CSA should be assigned proper values 

before starting the algorithm, such as the discovery rate, population size, step size in Lévy flights 

and maximum generation, etc. These parameters values are all chosen by experience in this study 

(Yang and Suash Deb, 2009). 

6.2.3 Approximate 𝒍𝟎 sparse damage identification approach 

By using CSA to solve Equation (6.8), the optimal solution can be obtained even though there 

is a nonlinear PCE function in the optimisation equation. However, dozens of candidate values of 

𝜆  are necessary to be tested in DP for determining the most appropriate one. Since the 

computational cost of performing CSA in DP is much higher than the traditional sparse recovery 

algorithms, the computational cost of performing CSA will become unacceptable. In order to 

improve the practicability of this damage identification approach, a modified DP that can work more 

efficient together with CSA is proposed in this section.  

In the past studies on damage identification for bridge structures, it was commonly assumed 

that the number of damages does not exceed three due to the sparsity assumption (Hou et al., 2019; 
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Magalhães et al., 2012; Xu et al., 2018; Zhang and Xu, 2016). In Equation (6.8), the regularisation 

term is added to induce sparsity on the solution, and parameter 𝜆 controls the solution sparsity. 

Choosing a proper regularisation parameter value by DP is, in fact, choosing the best solution 

sparsity. Thus, if predefining a set of candidate values of the regularisation parameter is changed as 

assuming the number of damages, the number of CSA calculations can be largely reduced, and the 

computational cost can be saved. Subsequently, the optimisation problem to be addressed becomes 

�̂� = 𝑎𝑟𝑔min
𝒒

{
1

𝑚 × 𝑁𝑇
∑∑(

𝐹𝑖𝑗(𝒒) − 𝐹𝑖�̂�

𝐹𝑖�̂�

)

2𝑁𝑇

𝑗=1

𝑚

𝑖=1

}  𝑠. 𝑡. ‖𝒒‖0 = 𝑁𝑑   (6.13) 

in which 𝑁𝑑 ∈ ℤ, and 0 ≤ 𝑁𝑑 ≤ 𝑁𝑘. To ease the comparison, 𝑁𝑘 could be a bit larger value than 

3 (e.g., 5). As can be seen, Equation (6.13) can be regarded as an approximate 𝑙0 minimisation 

problem, which is NP-hard. Fortunately, CSA is superior in solving the NP-hard problem. Hence, 

by employing CSA to solve Equation (6.13) under each 𝑁𝑑 , different residual values will be 

recorded. Then, the recorded residual values will be compared with the measurement noise to find 

the best 𝑁𝑑 . Note that even if Equation (6.12) and Equation (6.13) are not equivalent in 

mathematics, they are both proposed to constrain the solution sparsity for the regression-based 

problem described by Equation (6.1). In essence, the target of identifying sparse damage can still 

be achieved, and thus solving Equation (6.12) here can be converted to solving Equation (6.13). 

As an NP-hard problem, 𝑙0 minimisation was not recommended for application in the past 

studies. Even if the heuristic algorithm can be used to address the NP-hard problem, the 
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computational cost will be unaffordable when the problem has a large scale. In this study, the 

damage identification problem can be deemed as a small-scale issue (the number of damages is 

extremely small), so the cost of applying heuristic algorithm to the 𝑙0 minimisation problem is 

relatively low. To summarise, the steps of this approximate 𝑙0  sparse damage identification 

approach are: (1) Predefine the maximum number of damages 𝑁𝑘; (2) Solve Equation (6.13) by 

using CSA under each 𝑁𝑑 ; (3) Compute the residual value under each 𝑁𝑑 ; (4) Compare the 

calculated residual values with the variance of the measurement noise to find the optimal 𝑁𝑑.  

6.3 Case Studies 

To verify the proposed damage identification approach, two cases that have been introduced in 

the previous chapter are used.  

6.3.1 Numerical case of a three-span continuous beam bridge 

The detailed information about this bridge can be found in Section 5.3.1.1. Moreover, the TL-

MFPCE models that can precisely describe the relation between the frequencies and structural 

parameters of this bridge have been established in the previous chapter. Under the damage scenarios 

that defined in Table 5-2, the proposed approximate 𝑙0 sparse damage identification approach is 

applied to identify the damages. For each damage scenario, parameter 𝑁𝑘 is set as 5, so CSA will 

perform 5 times. Without loss of generality, 20 frequency data under the temperature range 𝑇 =

{𝑇𝑡, 𝑇𝑏: 𝑇𝑡 , 𝑇𝑏 ∈ [15℃, 25℃], 𝑇𝑡 ≥ 𝑇𝑏} are used.  
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For damage scenario DS1, the residual change with respect to the number of damages is 

depicted in Figure 6.1.  

 

Figure 6.1 Residual values of DS1 

The blue line with circles represents the calculated residuals, and the red line denotes the 

estimated noise variance when training the TL-MFPCE model. As can be seen, when assuming no 

damage occurs, the residual value is the largest and differs from the measurement noise variance. 

When the number of damages is assumed as 1, the calculated residual value decreases. Then, the 

increase of damage number will not contribute to the decrease of residual value. Therefore, the true 

damage number is 1. Figure 6.2 shows the optimal solutions obtained by CSA under each 

assumption. Since the true damage number is 1, the corresponding identification result is portrayed 

in Figure 6.2(a). The damage location and severity are correctly recognised. 
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(a) (b) 

 

(c) 

 

(d) 

 

(e) 

Figure 6.2 Damage identification results (DS1) under assumption of damage number (a) one; (b) 

two; (c) three; (d) four; (e) five 

For damage scenario DS2, the residuals compared to the estimated noise variance are depicted 

in Figure 6.3. Similar to Figure 6.1, the residual value is the largest when assuming no damage 

occurs. When the number of damages is assumed as 1, the residual value decreases and becomes 

very close to the estimated noise variance. After that, the residual value has no more fluctuation 

when more damage is assumed. Hence, the true damage number is recognised as 1. Then, the 

damage identification results from CSA under each assumption are given in Figure 6.4. As shown 

in Figure 6.4(a), the damage location and severity are almost correctly identified.  
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Figure 6.3 Residual values of DS2 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

 

(e)  

Figure 6.4 Damage identification results (DS2) under assumption of damage number (a) one; (b) 

two; (c) three; (d) four; (e) five 

For damage scenario DS3 with two damages, the residuals under different assumptions are 
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depicted in Figure 6.5. In this damage scenario, the residual value become close to the estimated 

noise variance as the assumed damage number exceeds 2, so the true damage number is 2. The 

corresponding damage identification result is shown in Figure 6.6. As displayed in Figure 6.6(b), 

the damage locations and severities are both obtained with desired accuracy. 

 

Figure 6.5 Residual values of DS3 

 

(a)  

 

(b)  

 

(c)  

 

(d)  
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(e) 

Figure 6.6 Damage identification results (DS3) under assumption of damage number (a) one; (b) 

two; (c) three; (d) four; (e) five 

6.3.2 Experimental case of a two-span continuous beam 

The detailed information about this experimental model has been elaborated in Section 5.3.1.2, 

and the TL-MFPCE models to describe the pattern between frequencies and the structural 

parameters have also been established in the previous chapter. Then, the proposed approach is 

applied to identify the damage in the scenarios as given in Table 5-4. For each damage scenario, 

parameter 𝑁𝑘 is set as 5, so CSA will perform 5 times. The measurements from structure under 

different damage scenarios are the same to those shown in Section 5.3.3 (Table 5-5).  

For damage scenario DS1, the variation of residual with respect to the assumed number of 

damages is displayed in Figure 6.7. 
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Figure 6.7 Residual values of DS1 

As can be seen, the residual value is the largest when assuming no damage occurs, and it 

decreases to a low value and has a small fluctuation when the assumed number of damages exceeds 

1. Therefore, the true damage number is 1. The optimal solution under each assumption is given in 

Figure 6.8, and Figure 6.8(a) gives the final result. Obviously, the damage location and severity are 

correctly recognised.  

 

(a)  

 

(b)  

 

(c)  

 

(d)  
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(e) 

Figure 6.8 Damage identification results (DS1) under assumption of damage number (a) one; (b) 

two; (c) three; (d) four; (e) five 

In damage scenario DS2, the variation of residuals is shown in Figure 6.9. Intuitively, we can 

recognise that the true damage is 1. Then, the optimal solution is displayed in Figure 6.10(a). The 

damage is successfully identified.  

 

Figure 6.9 Residual values of DS2 

 

(a)  

 

(b)  
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(c)  

 

(d)  

 

(e) 

Figure 6.10 Damage identification results (DS2) under assumption of damage number (a) one; (b) 

two; (c) three; (d) four; (e) five 

The results of damage scenario DS3 are portrayed in Figure 6.11 and Figure 6.12. As displayed 

in Figure 6.11, it is clear that there are two damages in the structure. As shown in Figure 6.12(b), 

the damage locations and severities are correctly quantified.  

 

Figure 6.11 Residual values of DS3 



 

222 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

 

(e) 

Figure 6.12 Damage identification results (DS3) under assumption of damage number (a) one; (b) 

two; (c) three; (d) four; (e) five 

6.4 Summary 

A novel sparse damage identification technique for nonlinear system, called approximate 𝑙0 

sparse damage identification, has been developed in this chapter. Through giving assumptions to 

the number of damages on the structure, the damage identification issue is transformed into an 

approximate 𝑙0  sparse representation problem. Subsequently, a heuristic searching algorithm, 

Cuckoo Search Algorithm (CSA), is leveraged to find the optimal solution of this problem under 
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each assumption. Ultimately, the best solution sparsity (number of damages) could be determined 

by employing the Discrepancy Principle (DP), and the corresponding damage locations and 

severities can both be obtained via CSA. Apparently, with the aid of CSA, the proposed approach 

overcome the challenge in the traditional sparse representation methods that the system should be 

linear. Meanwhile, choosing proper regularisation parameter value in DP is replaced by giving 

assumptions to the number of damages to control the solution sparsity. The computational burden 

of performing heuristic algorithm with DP is largely lightened. However, this strategy is limited to 

solving problem with small scale. For large scale problem, the computational cost of the heuristic 

algorithm is still a heavy burden.  

The proposed approach is validated on a simulation bridge model and an experimental beam 

model based on the TL-MFPCE models established in the previous chapter. Results show that the 

proposed approach has promising performance in identifying single and multiple damages. The 

variance of measurement noise that estimated in training the TL-MFPCE models contributes to the 

damage identification in this chapter. Furthermore, in the experimental case, different number of 

measurements are tested. Results manifest that the quantity of measurements has low impact to the 

performance of this strategy. However, the estimated noise variances of different frequencies in the 

experimental case are inconsistent with the assumption in Equation (6.7). The reason might be that 

the measurements were collected within short time intervals. In practice, it is recommended that the 

training data should be collected over a certain period to cover sufficient samples to increase the 
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modelling precision.   
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORKS 

                                                                                

7.1 Conclusions 

This thesis aims to apply the Polynomial Chaos Expansion (PCE) method for building 

surrogate model of a bridge structure and then use the surrogate model to help in damage 

identification. Due to the sophisticated mechanism of temperature effect on bridge structures, it is 

normally impractical to simulate the temperature effect correctly in a physical model. Thus, a 

Transfer Learning (TL) based Multi-Fidelity (MF) modelling technique is proposed to update the 

surrogate model instead of the physical model for the sake of eliminating the temperature-induced 

modelling error. As a result, damage identification based on the updated surrogate model can 

achieve accurate results.  

First of all, to enable the PCE method available for modelling problems with high input 

dimension or high complexity, a novel sequential sampling strategy and an adaptive basis selection 

strategy are proposed. The PCE model is thus established adaptively by determining the sample set 

and truncation degree automatically, and the computational burden in the training process is reduced 

to a large extent. Then, PCE models as surrogate to a bridge structure are established and trained 

depending on the finite element model. Next, a TL-based MFPCE (TL-MFPCE) approach is 
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developed to update the modelling error caused by temperature in the PCE models, where only the 

measurement data from structure in healthy condition is necessary. Ultimately, a sparse damage 

identification method for nonlinear system is presented, which is able to identify the damage 

locations and severities based on the updated PCE models. A numerical bridge case and an 

experimental beam structure are utilised to validate the effectiveness of the proposed TL-MFPCE 

approach and the sparse damage identification method. The primary contributions of this study are 

summarised and highlighted as follows: 

(1) A novel hybrid sequential sampling strategy is developed for PCE modelling.  

The quantity and distribution of samples will greatly affect the training precision of a PCE 

model. Generally, the traditional sampling strategies for PCE are input-dependent only or output-

dependent only, by which the modelling accuracy and results stability cannot be pursued 

simultaneously. Therefore, a novel sampling strategy for PCE modelling is developed, which 

intends to leverage both the input information and model feature to instruct a sequential sampling 

process. The samples can be collected with high quality and in relatively small quantity, and 

meanwhile, the best sample number can be automatically determined. Besides, sparse representation 

is employed in this strategy for regression calculation, thereby further reducing the computational 

cost. Benchmark tests on several functions and simulation cases have demonstrated that the 

proposed strategy has higher convergence speed and modelling stability compared with those 

traditional sampling approaches.  
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(2) An adaptive basis selection strategy is proposed for PCE modelling. 

It is always a challenge to determine the most appropriate truncation degree of PCE model in 

advance when little information about the target problem is available. In this study, a new adaptive 

basis selection strategy is proposed, which can automatically determine the best truncation degree 

by identifying significant basis terms and removing insignificant basis terms. Moreover, the 

regression calculation cost for PCE training is also reduced benefitting from removing the 

insignificant basis terms.  

(3) A stability evaluation strategy is proposed to reconcile the sequential sampling process 

and the adaptive basis selection process in an adaptive PCE modelling framework.  

In practice, the sampling issue and the adaptive modelling problem co-exist in an PCE 

modelling task, and they should be concurrently addressed. In this study, a two-loop framework is 

constructed, in which the sequential sampling process is nested as the inner loop and the adaptive 

basis selection process is introduced as the outer loop. A novel stability evaluation approach is 

presented to determine which loop should be performed in each iteration. More importantly, this 

framework enables the sparse representation to be integrated in the adaptive modelling for the sake 

of cost saving. By validating on several benchmark functions, it is demonstrated that the proposed 

adaptive modelling framework is more practical than the traditional adaptive modelling strategies. 

Furthermore, this framework is also developed for addressing the multi-output modelling problem.  
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(4) A TL-MFPCE approach is developed to eliminate the temperature-induced modelling 

error.  

Due to the complex mechanism of temperature in affecting bridge structures, the physical 

model of a bridge structure generally contains modelling errors that caused by the incorrect 

consideration of temperature. Based on the proposed adaptive PCE modelling framework, the PCE 

models as surrogate to the physical model is formulated. After that, a TL-MFPCE approach is 

proposed to update the PCE models under the circumstance that only the measurements from 

structure in healthy condition are available. The coefficients of the basis terms in the PCE models 

associated with the structural parameters are frozen, and the remaining coefficients related to the 

temperature variables are updated. Finally, the updated PCE models are able to predict the structural 

responses correctly. Through validating on a numerical bridge case and an experimental beam case 

by comparing with the traditional MFPCE (tMFPCE) method, it is demonstrated that the TL-

MFPCE models outperform the tMFPCE models and have the ability to predict the structural 

responses accurately even though the structure is damaged.  

(5) A sparse damage identification method for nonlinear system is proposed. 

As most of the traditional sparse representation methods were presented for linear system, a 

novel approximate 𝑙0 sparse damage identification method is developed in this study to work with 

nonlinear PCE model. By formulating the damage identification problem into an approximate 𝑙0 
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regularised optimisation problem, Discrepancy Principle (DP) is employed to help determine the 

solution sparsity, and Cuckoo Search Algorithm (CSA) is introduced to obtain the final solution of 

this problem. The damage locations and severities are both received. Studies on a numerical case 

and an experimental case demonstrate the effectiveness of the proposed method in identifying single 

and multiple damages.  

7.2 Recommendations for Future Works 

Although the improvements on the PCE surrogate modelling technique and damage 

identification methods are developed and demonstrated, there are still some issues that deserve 

further research: 

(1) The “curse of dimensionality” issue is an inherent challenge in the PCE method. Even 

though the proposed adaptive PCE modelling framework could help reduce the computational cost, 

it is still difficult for PCE to cope with problems with extremely large input dimension. For those 

large-scale bridges that have thousands of structural parts, thousands of input variables should be 

defined for building the corresponding surrogate model. Thus, more effective modelling approaches 

or strategies are required to overcome this challenge.  

(2) In this research, only frequency data is interpreted for damage identification, so further 

studies can investigate more other structural characteristics, such as modal shape, strain or even 

image.  
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(3) Apart from the temperature effect, many other factors may also lead to modelling errors in 

a physical model, such as the model simplification and incorrect parameter values, etc. Considering 

the situation of real structure in a comprehensive way still need more in-depth studies.  

(4) The proposed TL-MFPCE approach and sparse damage identification method have been 

validated in a simulation case and an experimental case. Further studies on their application to 

practical bridge structures are still required.  
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APPENDIX A 

                                                                                

 

The EI-ELF criterion is a sequential sampling method, which leverages the information from 

the PCE modelling result in each iteration to give sampling instruction of next point when Bayesian 

regression approaches are employed. A candidate samples pool 𝜻𝑐𝑎𝑛𝑑 is defined in advance, and 

samples drawn during the sampling process are all from this pool. With the calculated coefficients 

by Equations (3.22) and (3.23), the PCE model could make predictions at any point 𝜻  with a 

distribution: 

𝑌𝑝𝑟𝑒(𝜻)~𝑁(�̂�(𝜻), 𝜎2(𝜻)) (A.1) 

in which �̂�(𝜻) = 𝚿𝑛𝑒𝑤(𝜻)𝜇𝑐  and 𝜎2(𝜻) = 𝚿𝑛𝑒𝑤(𝜻)𝛴𝑐𝚿𝑛𝑒𝑤(𝜻)𝑇 + 𝛽−1 . By assuming that the 

observation of the target model at a point 𝜻 is 𝑌(𝜻), the quadratic loss function is defined as: 

𝐿(𝜻) = (𝑌(𝜻) − 𝑌𝑝𝑟𝑒(𝜻))
2
 (A.2) 

The expectation of the loss function is defined as the Expected Loss Function (ELF) which can be 

decomposed as (Zhou et al., 2019a): 
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𝐸(𝐿(𝜻)) = 𝐸 ((𝑌(𝜻) − �̂�(𝜻) + �̂�(𝜻) − 𝑌𝑝𝑟𝑒(𝜻))
2
)

= 𝐸 ((𝑌(𝜻) − �̂�(𝜻))
2
) + 𝐸 ((�̂�(𝜻) − 𝑌𝑝𝑟𝑒(𝜻))

2
)

+ 𝐸 ((𝑌(𝜻) − 𝐸(𝑌(𝜻)))
2
) 

(A.3) 

The first term 𝐸 ((𝑌(𝜻) − �̂�(𝜻))
2
) is the bias that represents the average difference between the 

predicted response and the target model output; the second term 𝐸 ((�̂�(𝜻) − 𝑌𝑝𝑟𝑒(𝜻))
2
) denotes 

the prediction variance of the PCE model, which equals to 𝜎2(𝜻) ; the third term 𝐸 ((𝑌(𝜻) −

𝐸(𝑌(𝜻)))
2
)  represents the intrinsic noise of the observations, which can be ignored since the 

prediction accuracy of PCE does not depend on this term. Then, ELF can be rewritten as: 

𝐸𝐿𝐹(𝜻) ≈ (𝑌(𝜻) − �̂�(𝜻))
2
+ 𝜎2(𝜻) (A.4) 

Clearly, the true observation 𝑌(𝜻) is unknown at an arbitrary point 𝜻 in the input space, so an 

approximation term is used to replace the first term in Equation (A.4), which is called expected 

improvement criterion (Beck and Katafygiotis, 1998; Zhou et al., 2019a): 

𝐸𝐼(𝜻) = (𝑌(𝜻𝒎) − �̂�(𝜻))
2
𝑇(𝑁, 𝑃𝑠) (A.5) 

where 𝑌(𝜻𝒎) represents the observed response of the target model at the known point 𝜻𝒎 which 

has the least Euclidean distance to the candidate point 𝜻 ∈ 𝜻𝑐𝑎𝑛𝑑 ; 𝑇(𝑁, 𝑃𝑠) =
𝑁

𝑁−𝑃𝑠
(1 +

𝑡𝑟 ((𝚿𝑻𝚿)
−1

)) is a correction factor for the regression with a small number of samples, which 

can reduce the sensitivity of the bias estimate to overfitting or underfitting (Chapelle et al., 2002); 
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𝑁 is the sample number for training the PCE model and 𝑃𝑠 denotes the cardinality of the trained 

PCE model. As a result, the EI-ELF criterion can be written as: 

𝐸𝐿𝐹𝐸𝐼(𝜻) = (𝑌(𝜻𝒎) − �̂�(𝜻))
2
𝑇(𝑁, 𝑃𝑠) + 𝜎2(𝜻) (A.6) 

Finally, the sequential sampling process based on the EI-ELF criterion is to select the new sample 

in each iteration to maximise the following equation: 

𝜻𝑛𝑒𝑤 = argmax
𝜻∈𝝃𝑐𝑎𝑛𝑑

𝐸𝐿𝐹𝐸𝐼(𝜻) (A.7) 

It can be seen that the first term in Equation (A.6) would like to improve the estimation 

accuracy at the neighbour of observed points and the second term prefers to collect more 

information in the regions with large uncertainty. So, this criterion acts to achieve trade-off between 

the global exploration and local exploitation. This criterion has been demonstrated to be an effective 

sequential sampling method that the trained PCE model will have a high precision while the samples 

can be controlled to a small quantity (Zhou et al., 2019a).
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APPENDIX B 

                                                                                

 

The ANOVA method is a variance-based global sensitivity analysis method, which works on 

the entire input domain and analyses the influence of each independent input variable on the model 

output. Suppose a model can be decomposed as the following summands (Crestaux et al., 2009): 

𝑓(𝜉1, 𝜉2, ⋯ , 𝜉𝑑) = 𝑓0 + ∑𝑓𝑖(𝜉𝑖)

𝑑

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝜉𝑖 , 𝜉𝑗)

1≤𝑖<𝑗≤𝑑

+ ⋯+ 𝑓12⋯𝑑(𝜉1, 𝜉2, ⋯ , 𝜉𝑑) (B.1) 

and 

∫ 𝑓𝑖1𝑖2⋯𝑖𝑘(𝜉𝑖1 , 𝜉𝑖2 , ⋯ , 𝜉𝑖𝑘)
𝐷

𝑝(𝜉𝑖𝑟)𝑑𝜉𝑖𝑟 = 0   𝑟 ∈ [1, 𝑘]   𝑘 ≤ 𝑑 (B.2) 

where 𝐷 is the definition domain of input variables; 𝑝(𝜉𝑖𝑟) is the marginal probabilistic density 

function of 𝝃𝑖𝑟 . The total variance of the model 𝑓(𝜉1, 𝜉2, ⋯ , 𝜉𝑑) is decomposed into the summation 

of each summand variance which can be simply calculated by integration. The total variance is 

obtained by: 

𝑉𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑉𝑖

1≤𝑖≤𝑑

+ ∑ 𝑉𝑖,𝑗

1≤𝑖<𝑗≤𝑑

+ ⋯+ 𝑉1,2,⋯𝑑 (B.3) 

where 
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𝑉𝑖1𝑖2⋯𝑖𝑘 = ∫ ⋯∫ 𝑓𝑖1𝑖2⋯𝑖𝑘(𝜉𝑖1 , 𝜉𝑖2 , ⋯ , 𝜉𝑖𝑘)
2

𝐷𝐷

𝑝(𝜉𝑖1 ⋯𝜉𝑖𝑘)𝑑𝜉𝑖1 ⋯𝑑𝜉𝑖𝑘    𝑘 ≤ 𝑑 (B.4) 

Subsequently, the variance of each summand can be normalised by the total variance 𝑉𝑡𝑜𝑡𝑎𝑙, and 

the variance contribution of each summand can be obtained by  

𝑆𝑖1𝑖2⋯𝑖𝑘 =
𝑉𝑖1𝑖2⋯𝑖𝑘

𝑉𝑡𝑜𝑡𝑎𝑙
 (B.5) 

To quantify the variance contribution of each variable, the first-order index is defined as the 𝑆 

value that only contains variance value from one variable in numerator, which represents the 

independent variance contribution from this variable to the model output. The total index is the sum 

of all 𝑆 values that involve the target variable in numerator, including interaction terms with other 

variables. By comparing the first-order index and the total order index, the interaction effect of input 

variables on the output can be identified. When applying ANOVA based on the PCE model, the 

calculation of indices becomes convenient since the multivariate orthogonal polynomials satisfy the 

condition in Equation (B.2). The ANOVA indices can be easily calculated from the PCE coefficients.  
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