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Abstract 

In the past decades, the power system is integrated with increasing renewable energy 

resources (RES) to combat climate change and mitigate the energy crisis. The uncertainty 

and intermittency of RESs cause significant impacts on the distribution system operation. 

This change in the distribution system composition spurs the requirement of timely 

monitoring of the distribution system states. Different from the transmission system with 

redundant monitoring, the distribution system lacks sufficient measurements. Another 

distinguished difference is the frequent changing topology. Thus, there remains a gap in 

the distribution system topology identification and state estimation. In addition, the gap 

also exists in probabilistic power flow for the system planning. Therefore, this thesis 

focuses on addressing developing progressive state monitoring approaches based on graph-

oriented artificial intelligence technologies.  

To timely identify the distribution grid topology, a power distribution grid topological 

generative adversarial network (Gridtopo-GAN) model is proposed for the topology 

identification considering the challenging situations of limited measurements and meshed 

structure. Specifically, an innovative topology preserved node embedding architecture is 

introduced to represent and compress the numinous topologies such that the topology 

identification of large-scale systems with varying topologies can be handled. The bad 

measurement data and missing data inspire the application of the GAN with the generative 

capability to render the robustness to the proposed topology identification model. 

Numerical simulations represent the effectiveness and time saving of the proposed model.  

To timely track the states of distribution systems with high penetration of RES, an 

unrolled spatiotemporal graph convolutional network (USGCN) is developed for 

distribution system state estimation and forecasting that is exposed to complex correlations 
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among the renewable power outputs. Specifically, the proposed unrolled spatiotemporal 

graph model can capture the spatiotemporal correlations simultaneously to obtain 

ameliorated forecasting accuracy. Then, the node-embedding is proposed to represent the 

hidden spatiotemporal correlations so that automatically learning the correlations and 

distribution system parameters can be achieved. Furthermore, the multiple stacking 

spatiotemporal convolutional layers can achieve the ahead-of-time system states. The 

simulation results verify the accuracy and efficiency of the proposed model. 

To represent the uncertain distribution system states quantificationally, a graph-aware 

deep learning network (GADLN) is proposed. To fully capture the mapping from the 

fluctuated power injections and the uncertain system states, the convolutional operation is 

introduced to aggregate the correlations among renewable power outputs to facilitate the 

PPF. In this way, improved effectiveness and speed-up calculation can be achieved in the 

proposed model. Moreover, the numerical results show the superior of the GADLN over 

the state-of-art with accurate and effective manners.  

 To calculate the probabilistic power flow (PPF) with complex correlations, a graph 

attention enabled convolutional network (GAECN) is proposed to approximate PPF. 

Specifically, the graph attention enabled convolutional layer is proposed to aggregate the 

correlations of the power injections during the training process. Within this layer, the full 

self-adaptive graph convolutional operation is proposed to capture and learn any implicit 

correlation automatically so that significantly enhanced accuracy can be achieved. The 

improved accuracy and efficiency achieved by the proposed model are indicated by the 

simulation results.   
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Chapter 1  Introduction  

1.1  Background and Research 

In the past decade, the world has experienced an increasing proliferation of 

renewable energy resources (RES) due to the rapidly booming advances in 

renewable energy technology and indurates, e.g. solar photovoltaic (PV) panels and 

wind turbines. The global total installed capacity of distributed energy resources 

has achieved the biggest increase ever, by more than 256 gigawatts (GW), and 

reached 1668 GW by the end of 2020 [1]. Among various distributed energy 

resources, e.g. bioenergy, ocean power, geothermal power, wind power, etc. solar 

power and wind power are growing rapidly in many countries. The total capacity 

of solar PV and wind power have reached 760 GW and 743 GW, respectively. More 

than nine countries generated more than 20% of their electricity from solar 

photovoltaics panels and wind turbines in 2020. Favorable economics have boosted 

interest in distributed rooftop solar PV systems. South Australia achieved one of 

the world’s highest levels of solar penetration in 2020. Wind power accounted for 

a substantial share of electricity generation in Denmark with the highest penetration 

in the world at over 58% at the end of 2020 [1].  

The widespread adoption of RES may bring about lots of economic, 

environmental, and technical benefits, such as reducing greenhouse gas emissions, 

reducing transmission losses, and so on. However, the proliferation of RES is 

dramatically changing the operation states of the distribution systems. Traditionally, 
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the distribution systems deliver the electricity from the large-scale central power 

plants to the consumers via the radial distribution networks. On contrary, the 

electricity is generated locally and consumed by customers directly. Since the 

outputs of RES are inherently intermittent and uncertain, the increasing 

proliferation of RES in the distribution system brings new challenges. For example, 

the uncertain fluctuation of RES will introduce significant uncertainty to the system 

state monitoring functions, such as topology identification, state estimation, and 

probabilistic power flow [2]. More specifically, the conventional transmission 

system enjoys redundant measurements to obtain the system topology via logic 

signal data processing, while the topologies change frequently in distribution 

systems where the measurement is limited due to expensive installation costs. This 

phenomenon arouses a significant requirement for advanced approaches to 

distribution system topology identification. Besides, instead of a few RES plants in 

a transmission system that covers a large area and are assumed independent, the 

RESs in the distribution system are close to each other, leading to dependent power 

output. The traditional state estimation for transmission systems cannot adapt to 

this change efficiently so that more appropriate methods are needed.  Furthermore, 

the forceful fluctuations brought by the high penetration of RES introduce 

inevitable uncertainties in system states. To timely acquire the system states 

uncertainties also call for new techniques. Therefore, the changes in the distribution 

system diagram spur the progressive approaches for timely monitoring of the 

distribution system states. 

Recently, thanks to the widespread adoption of measurement devices, such as 

smart meters, massive historical data are available [3]. To better leverage such 

measurement data to facilitate the monitoring of the system states, data-driven deep 

learning methods are proposed. This is because the deep learning approach has the 

powered capability of data mining and high latitude fitting. However, the 

application of the traditional system state monitoring functions is limited to specific 

scenarios, which rarely take full advantage of abundant measurement data. The 
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inappropriate implementation of these functions may give incorrect distribution 

system states, misleading the operators and thus threatening the normal operation 

of the distribution system. Therefore, it is crucially important to utilize deep 

learning to fully facilitate the system state monitoring functions.  

The network topology gives the connection of the components of the power 

system to maintain its aim of power transmission and distribution to the consumers. 

In comparison with the transmission network that is structured in looped with full 

observability, the distribution network is operated in radial. The architecture of the 

distribution system consists of several feeders delivering the electricity from the 

substation that connects with the transmission system to the consumers. It is 

deployed with limited measurement devices and thus with poor observability. This 

is because unlike transmission systems that enjoy a high level of data redundancy, 

it is too limited financial budget to deploy enough digital (on/off) measurement 

devices which represent the state of the line breaker in such a large-scale 

distribution system [4]. Besides, the aged and outdated monitoring devices also 

result in inadequate monitoring and measurement of electrical distribution systems. 

Based on these reasons, it is rare to ensure a full-scale monitoring distribution 

system.  However, challenged by the uncertainty due to the proliferation of RES, 

to maintain the reliable and economical operation of the distribution system, the 

topology changes frequently in practice, sometimes several times an hour [5]. It 

requires timely identify the distribution system topology to facilitate the decision-

makers. Considering aforementioned factors, alternative topology identification 

approaches such as the data-driven ones can be investigated to handle limited 

measurements.  

The distribution system state estimation provides the system states to the 

operators according to the available measurements. The increasing adaption of RES 

in the distribution system brings significant challenges to the state estimation due 

to complex correlations in nodal power injections. Different from the transmission 

system covering a wide area, the distribution system covers a relatively small area 
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but with more feeder lines and switching devices, and limited measurement devices 

as well as integrated with dispersed RES. In this situation, the renewable energy 

deployment sites are close to each other, sharing similar weather and environment, 

leading to similar power profiles generated by these renewable energy units [6]. 

Thus, there are significant complex correlations among nodal power injections, 

resulting in hidden spatiotemporal correlations among nodal measurements of 

distribution systems [7]. These correlations pose inevitable bias in the system state 

estimation calculations and thus render a significant challenge to be addressed [2]. 

However, many previous works in DSSE ignore this gap due to no immature 

approach available to fill it. Thus, it is an extremely urgent task to explore a data-

based approach to DSSE and state forecasting with the proliferation of RES.  

The probabilistic power flow qualifies the uncertainties of nodal power 

injections spread to the nodal voltage, line power flow, and other system operation 

states. The growing adoption of RES in distribution systems introduces unmissable 

fluctuations in system states due to the dramatic stochastic and intermittent nature 

of RES. This uncertainty will propagate from the nodal power injections to all 

system states during the operation of the distribution system. In addition, high 

penetrated wind power and solar panels resources are deployed in one low voltage 

distribution system which generally covers a relatively smaller area geographically. 

In such a situation, the wind and solar power generation profiles tend to share 

similar patterns of power output features and thus represent high complex 

significant correlation [6]. Since the distinguished ability of the PPF allows the 

uncertain distribution of the system states to be represented, it is an important basic 

analysis function for reliable power system management. The high-penetrated RES 

brings complexity to the PPF calculation and thus leading the errors, which may 

further mislead the correct decision-making of operators [8]. Thus, these challenges 

require a data-enabled PPF calculation tool to handle the dense uncertainties and 

complex correlations.  
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1.2  Motivation and Purpose  

At present, the state monitoring functions of distribution system states, e.g. 

topology identification, state estimation, as well as the system planning basis 

function the probabilistic power flow, have attracted much academic attention. 

There is a great number of approaches being proposed to solve these problems. As 

mentioned above, the challenges introduced by the low observability and the 

proliferation of RES give the considerable complexity in the monitoring of 

distribution system states. It is crucially important to overcome this complexity, 

otherwise, it would give error information on distribution system states and thus 

mislead the operators to make unreliable management decisions. However, the 

conventional approaches for transmission systems cannot directly fit these issues 

in the distribution system. Thus, advanced approaches are required to be developed 

for distribution system state monitoring.  

 This thesis aims at proposing effective approaches for the monitoring of 

distribution system states under the limited measurements and uncertainty brought 

by the proliferation of RES. Specifically, by combining the graphical nature of 

physical distribution systems, several graph-oriented learning models are 

developed, including the grid topological generative adversarial network for 

topology identification, the spatiotemporal graph convolutional network for state 

estimation and forecasting, the graph attention enabled convolutional network for 

probabilistic power flow calculation. These approaches can also be applied to other 

specific operational applications.  

As for the grid topological generative adversarial network for topology 

identification, it aims at the topology identification problem in distribution systems 

with very limited measurements. As mentioned above, unlike transmission systems 

that enjoy a high level of data redundancy, the distribution systems are generally 

with poor observability due to the too expensive cost to fully deploy measurement 

devise in such a large-scale distribution system. Besides, with the proliferation of 
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RES, the distribution system’s topology varies frequently and sometimes even 

several times per hour in practice. The topology identification utilizes the available 

measurements to infer the distribution system's topology. So far, several related 

studies have been carried out, including the Markov Random Field (MRF) based 

method [9], mutual information method [10], graphical learning approach [11], and 

so on. However, most related research leverages the conditional independence 

among measurements to infer the topology through enumerating the dependence 

among every possible node pair which is time-consuming. Besides, these methods 

are restricted to identifying the limited topologies. Therefore, timely identifying 

numerous topologies of the distribution system with limited measurements 

becomes a formidable gap. To fill up this gap in supporting the reliable operation 

of the system, in this work, a grid topological generative adversarial network is 

proposed. It aims at identifying the topology of the distribution system in an 

effective and efficient manner with very limited measurement data collected from 

the smart meters, given disturbing factors such as missing or bad data etc.  

As for the unrolled spatiotemporal graph convolutional network for state 

estimation and forecasting, it aims at the state estimation and state forecasting 

synchronously considering the spatial and temporal correlations among nodal 

power injections. With the proliferation of the RES, it is well known that the 

distribution system is integrated with various renewable energy sources, while it 

covers a relatively small area geographically. This phenomenon results in 

renewable energy deployment sites being close to each other and thus they are 

generally shared similar weather and environment. Similar profiles generated by 

these renewable energy units lead to complex correlations among nodal power 

injections, leading to significant state estimation error in traditional approaches, e.g. 

WLS, LAV. Thus, the impact of the nonlinear spatiotemporal correlations on state 

estimation remains a significant gap. These challenges inspire related approaches 

in some research, such as WLS based method [12], [13], that linearizes the 

correlations. Some machine learning-based methods [14], [15] try to characterize 
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the complex spatiotemporal correlations while full knowledge on correlations’ 

distribution is required. As such, advanced approaches should be put forward to 

deal with this problem. With the boom in measurement data collected from the 

smart meters, numerous measurements can be leveraged to extract the distribution 

between the measurements and the system states. This inspires the proposed 

spatiotemporal graph convolutional network model to address the state estimation 

and state forecasting ahead of time, avoiding being disturbed by the complex 

correlations.  

Although the state estimation provides the system states according to the 

measurement data, the distributions of the system states are also needed to be 

investigated. The probabilistic power flow calculation qualifies the uncertainty of 

the RES and spreading to the system states. As mentioned above, the correlations 

among RES exist, which also leads to a significant error in the probabilistic power 

flow calculation according to the traditional methods, like PEM. Although some 

methods, e.g. Nataf transformation [16] and polynomial chaos [17], can remove the 

correlation’s impact to a certain degree, they cannot adapt to the distribution system 

with high penetration of RES featuring complex correlations. The impact of 

uncertainty and correlations of RES on probabilistic power flow remains a gap. The 

graph attention enabled convolutional network is proposed for the probabilistic 

power flow calculation problem, aiming at representing the distributions of the 

system states introduced by the uncertainty of the RES. In this way, the novel graph 

attention enabled convolutional network is developed to approximate the power 

injections and the system states with a low computational error and high efficiency.  

1.3  Objectives and Primary Contributions 

As discussed previously, the research on artificial intelligence-based power 

system states perception is at its early stage. Moreover, with the rapidly increasing 
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integration of renewable energy, the traditional approaches are unsuitable to 

address the challenges. More advanced approaches are required to be precisely 

aware of the operational states of the distribution system to provide more accurate 

information to operators for reliable management. To fill up these research gaps, 

progressive methods are developed for graph-oriented awareness of distribution 

system states in the following four aspects. The main contributions are summarized 

below. 

1) The Gridtopo-GAN is innovatively proposed to adapt to the topology identification 

problem in the distribution system under the challenges of limited measurements 

and with radial/meshed topologies. To this end, firstly, by proposing the topological 

Markov Blanket, both the radial and meshed topologies can be inferred effectively 

using the measurements within the given window size. Then, by leveraging the 

graph embedding techniques with the topological Markov Blanket, the TPNE 

model is proposed, which compresses the numerous changing topologies in a low 

dimension space to achieve the high topology identification accuracy in a large-

scale system. Furthermore, the GAN model with an auxiliary classifier allows the 

partial observation up to the extent of half bad or missing nodal voltage 

measurements based on the case study. Different from the traditional topology 

identification approaches that require full observability and numerous training 

parameters, the proposed model compresses numerous topologies using limited 

measurements to improve the identification accuracy.  

2) The unrolled spatiotemporal graph convolutional network model has been proposed 

in this work to be better aware of the distribution system states that are exposed to 

complex correlations among the renewable power outputs. Instead of considering 

the spatial and temporal correlations separately in the previous works, three aspects 

of spatiotemporal correlations are captured simultaneously by the proposed 

unrolled spatiotemporal graph model that leveraged the splicing of the spatial 

graphs across adjacent time steps. In this way, ameliorated forecasting accuracy 

and computational efficiency can be achieved. Then, the node embedding is 
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leveraged to construct the dependence described inside the unrolled spatiotemporal 

graph to learn the nonlinear spatiotemporal correlations automatically instead of 

utilizing the linear correlation coefficient matrix. Further, the ahead-of-horizon 

state forecasting is achieved effectively by the multi-module layers that capture the 

long-range spatiotemporal correlations. 

3) A graph-aware deep learning network model is innovatively leveraged to handle 

the probabilistic power flow (PPF) that is exposed to complex dependence among 

renewable power outputs. Specifically, to fully capture the mapping from the 

fluctuated power injections and the uncertain system states, the convolutional 

operation is introduced to aggregate the correlations among renewable power 

outputs according to their geographical locations to facilitate the PPF. In this way, 

the deviation pattern of the system state variables can be well learned. Thus, the 

proposed GADLN can learn the implicit distribution of the correlation of renewable 

power autonomously according to the historical data, and thus the improved 

effectiveness and speed-up calculation can be achieved. 

4) Graph attention enabled convolutional network is proposed to calculate PPF 

considering the hidden correlation of the wind and solar power resource injections. 

This model utilizes the graph attention enabled convolutional layer to fully extract 

and leverage the correlations of the nodal power injections to improve the PPF 

calculation accuracy. Besides, within this layer, different from only utilizing the 

Euclidean structure adapted convolutional neural network, the node embedding 

technique is integrated into the graph convolutional operation to extract the non-

Euclidean structure of the power system. In this way, instead of using the linearized 

correlations of nodal power injections from historical data, the self-adaptive graph 

convolutional operation based on the graph embedding technique can capture the 

complex correlations automatically. Furthermore, the convolutional neural network 

operation is followed to handle the violent fluctuations of the outputs of renewable 

energy.  
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1.4  Outlines of the Thesis  

The thesis is organized as follows. In Chapter 2, a novel grid topological generative 

adversarial network model is presented to identify the topology of the distribution 

system with limited measurements. In Chapter 3, an unrolled spatiotemporal graph 

convolutional network is developed for distribution system state estimation and 

forecasting with spatiotemporal correlations on RES outputs considered. In Chapter 4, 

a graph-aware deep learning network model is built to calculate the probabilistic power 

flow considering the unknown correlation distribution pattern between the wind and 

solar power generation. In Chapter 5, the graph attention enabled convolutional 

network model is innovatively proposed to approximate probabilistic power flow to 

consider the complex correlations among nodal power injections. In Chapter 6, the 

conclusion of this thesis is given, and the future works are introduced.  
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Chapter 2  Gridtopo-GAN for 

Distribution System Topology 

Identification 

2.1 Introduction  

The control of the distribution system is threatened by the proliferation of renewable 

energy sources, energy storage, and electric vehicles. In this situation, the deepening 

of the complexity of power grid operation depends on more timely monitoring 

information than ever before. Such monitoring information includes the topology status 

[18], which changes frequently in practice, and sometimes even several times an hour 

[19]. Thus, quick distribution topology identification becomes a more important than 

ever task to facilitate the reliable operation of the distribution system [20]. 

Transmission systems are designed to carry large volumes of electricity from 

generators via the high voltage power lines to the distribution system sides, so strict 

monitoring is required to ensure the safety of system operation. On the contrary, 

traditional power distribution systems typically operate in radial configurations, 

delivering power from the substation connected to the transmission grid to individual 

customers without strict monitoring, for the following reasons. The distribution 

network often covers a relatively small area geographically while with a large number 

of load demand nodes, feeder lines and switching devices.  In this situation, installing 
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a large number of measurement devices to ensure complete monitoring is extremely 

expensive and rarely practical. Thus, there is the limited measurements in distribution 

systems [21]. Even though this problem can be alleviated by pseudo-measurement that 

is generated according to the historical data, the obtained measurements are not 

accurate enough to make sure the topology is identified with high accuracy [22]. In 

addition, aging and outdated monitoring equipment also lead to insufficient monitoring 

of power distribution systems [23]. Therefore, comprehensive monitoring systems for 

distribution networks are uncommon, which becomes a huge challenge for distribution 

system topology identification. Moreover, in some urban areas with high power 

requirements, the topology here is set as meshed with loops. This poses another threat 

by introducing high computational complexities in the topology identification 

problem[24]. Therefore, it is an urgent task to develop a progressive approach to obtain 

a timely topology both in radial and meshed distribution systems [25]. 

In the previous work, a lot of approaches are employed to focus on the distribution 

system topology identification problem. The additional variables that describe the 

branch status are leveraged in the Weighted Least Square (WLS) function on [26]. 

Maximum-a-Posteriori (MAP) estimation leveraging the line impedance parameters is 

utilized in [27] for topology identification according to the historical active power 

injections. Since the complete line impedance information which is rarely available is 

the premise, these methods are unsuitable in practice. To mitigate this challenge, a lasso 

regression model that linearizes WLS is introduced in [28] and [29] for topology 

identification. However, these approaches are highly sensitive to measurement errors 

due to nonlinear power flow equations being ignored, which results in unsatisfactory 

accuracy. 

To release the dependence on the system parameters and improve the ability against 

errors, the graph features on the distribution system states are leveraged for topology 

identification by inferring the topology according to the measurements. A Markov 

Random Field (MRF) that describes the nonlinear dependence among nodal voltages 

is proposed in [9] to estimate the topology. Since the topology configuration change is 
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frequent, the MRF is also leveraged in [30] to learn the dependence of all nodes 

represented by the feature function. The graphical learning approach is developed in 

[11] to identify topology by conditional independence tests, requiring complete line 

impedance information which is not available in practice. By employing the graphical 

features hidden in the system states, the principal component analysis is leveraged in 

[31] to identify a distribution system with a radial structured topology. The Chow-Liu 

algorithm is leveraged in [32] to guarantee that the pairwise mutual information among 

phasors can be used to depict the radial topology so that the topology identification can 

be achieved. Based on the work for non-radial topology identification in [32], [10] 

detects a loop by searching the maximum mutual information of all nodes with two 

possible parent nodes which involve high-order time complexity of the calculation, and 

then applies the spanning minimum tree algorithm to identify the radial topology. The 

inverse covariance matrix is utilized on [24] to search the neighborhood of each node 

to search the meshed topology, but also full knowledge about line impedance is 

required. These methods are with heavy computational burden especially in the large-

scale distribution system due to it traverses all possible dependence between all node 

pairs.  

To ameliorate the computational efficiency, a support vector machine approach is 

pre-trained in [33] so as to achieve real-time topology identification. However, this 

method needs too much measurement data to be applied in a large-scale system. The 

Kullback-Leibler divergence is leveraged in [34] to guide the indicator to be trained for 

topology identification. Compressive sensing (CS) and graph theory are utilized in [35], 

[36] to release the reliance on numerous measurement collections. However, these 

approaches need full nodal observation via full-scale system monitoring which is not 

yet common. To remove the full observation dependence, the meter placement 

strategies are leveraged in [37] and [38] that optimize the limited sensors’ locations to 

ameliorate the accuracy of topology identification. By leveraging the measurements at 

the terminal or leaf nodes, a learning scheme is leveraged in [39] iteratively identifying 

the dependencies between the leaf and the root node. This learning scheme is extended 
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by [40] via the linear power flow function when some nodal measurements are 

unavailable. However, the locations of measurement devices are limited to specific 

places, such as the end of a feeder, which only adapts to limited configurations rather 

than frequent changing topologies and thus it is not applicable. The CS method is 

leveraged in [41] to identify topology based on partial observation but this method is 

highly sensitive to the measurement noise. Therefore, these approaches cannot be 

applied in distribution system topology identification under limited measurements with 

noise.  

To identify distribution systems under the challenges of limited measurements and 

with radial/meshed topologies, this section proposed a novel Gridtopo-GAN model to 

adapt to the topology identification problem in the distribution system directly and 

accurately in real-time [42]. Specifically, by proposing the topological Markov Blanket, 

both the radial and meshed topologies can be inferred effectively using the 

measurements within the window. Then, by leveraging the graph embedding 

techniques, the Topology Preserved Node Embedding (TPNE) is able to utilize the 

local nodal measurements rather than the entire measurement data to predict the status 

of the edges. In this way, numerous changing topologies are compacted into a low 

dimension space so as to achieve high topology identification accuracy in a large-scale 

system. Moreover, the Gridtopo-GAN allows the generator to complement missing 

data so that the proposed model can be achieved under limited measurement situations. 

Furthermore, the impact of the measurement locations is excluded by the simulation 

results. The effectiveness of the Gridtopo-GAN model is verified by conducting the 

IEEE 33-node, 118-node, and 415-node distribution test systems. In summary, the 

contributions are summarized as follows. 

1) To adapt to a distribution system with radial/meshed topologies, the topological 

Markov Blanket model is proposed to characterize mapping from the measurements 

and the topologies to infer both the radial and meshed topologies directly.  

2) Instead of a conventional neural network with numerous training parameters, the 

TPNE leveraging the graph embedding techniques is proposed to compact numerous 
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changing topologies into a low dimension space to achieve high topology identification 

accuracy in a large-scale system.  

3) Different from the few missing measurement assumptions in the previous work, 

the Gridtopo-GAN model allows the generator to complement missing data so that this 

model can be applied to the missing data situation.  

The remaining sections are organized as follows. The TPNE-based topology 

identification in the mathematical format is proposed in Section 2.2. The novel 

Gridtopo-GAN model as well as its procedure are developed in Section 2.3. The 

experimental results and the corresponding discussions are introduced in Section 2.4. 

Finally, the works of this section are concluded in Section 2.5.  

2.2 Topology Preserved Node Embedding 

Firstly, the MB model is introduced to describe the basic logic in the topology 

identification of the proposed model. Then, the TPNE is proposed to represent the 

relationship between the measurements and the topology so that the compact format 

with low dimension can be achieved, which will later be integrated into the GAN.  

2.2.1 Topological Markov Blanket Model 

In the previous works, the graph theory is leveraged to explore the topology 

identification problem [11]. This remains a gap is that the number of topologies that 

can be identified by these approaches is very limited because the computational 

complexity increases exponentially with system size. Due to the frequent changing 

topologies in the modern distribution system, it is essential to develop a new model to 

identify as possible as many topologies. This inspires the introduction of the Markov 

Blanket concept to describe the topology identification problem. This is because the 

distribution system can be defined as a Bayesian Network ( , )= , where  denotes a 
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set of random variables 1={ , , , }i Nv v v  which also indicates the nodes of the system, 

1={ , , , , }l Ls s s  presents conditional dependencies between these random variables  

which also presents edges of the system [10].  

For node iv  in , the Markov Blanket of iv , ( )iMB v , is defined as any subset of , 

conditioned on which other variables are independent with iv . That is 

{ } ( ( ) { }) | ( )i i i iv MB v v MB v⊥ −  . It represents the fact that the information in ( )iMB v  can be 

utilized to infer the iv  rather than the information of ( ( ) { })i iMB v v−  . Based on this 

assumption, the topology Markov Blanket concept is proposed to build the 

corresponding topology identification model.  

When the nodal voltage measurement data set V  is available, a subset lV  of V  is 

defined as the window nodes of edge ls  within a window, w, in a feeder. The status 

(on/off) of each edge ls  can be inferred by the expression 

1 1 2 2( | ) ( |{ , , , , })u l u l w wP s P s v v v v− −=lV . An example to illustrate this concept is depicted in 

Figure 2.1. When the window size of w is set 3, this definition can be rewritten 

according to the above definition as: (a) 1 3 1 2 1 1 1( | ) ( |{ , , , ,u l u lP s P s v v v v− − −=lV  

2 2 1 2 2 2 3 3 1 3 2 3 3, , , , , , })v v v v v v v− − − − − −
; (b) 1 3 1 2 1 1 1 2 2 1 2 2 2 3( | ) ( |{ , , , , , , , })u l u lP s P s v v v v v v v v− − − − − −=lV  and (c) 

1 3 1 2 1 1 1 2 2 1 2 2 2 3 3 1 3 2 3 3( | ) ( |{ , , , , , , , , , , })u l u lP s P s v v v v v v v v v v v− − − − − − − − −=lV . Note that the meshed topology with 

the loop is contained in case (c). Thus, the problem of topology identification focused 

here is to use historical voltage magnitudes lV  and known topology ls  to obtain the 

argmax ( | )lP s lV  so that the timely unknown topology can be inferred according to the 

maximum a-posteriori probability ( | )lP s lV . To this end, the Kullback-Leibler (KL) 

divergence is leveraged to calculate the closeness between two distributions ( | )lP s lV  

and ( | )Ture lP s lV .  

( | )
( ( | ) || ( | ))= ( | )log

( | )

Ture l
KL Ture l l Ture l

l

P s
D P s P s P s

P s
 l

l l l

l

V
V V V

V
                        (2.1) 
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The distribution ( | )lP s lV  is equivalent to maximizing the KL divergence as follows.  
 

argmin ( ( | ) || ( | ))=argmin [log( ( | ))]KL Ture l l lD P s P s P sl l lV V V                      (2.2) 
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Figure 2.1.Topological Markov Blanket model. 

2.2.2 Topology Preserved Node Embedding Architecture  

Because the scale of the distribution system is generally large and the topology 

changes greatly, the parameters of the general neural network model for such a situation 

are massive, which is difficult to train with extreme computing resources and obtain a 

stable trained model. Based on the introduction of the topological Markov Blanket 

model, the graphical nature of the distribution system inspires the leverage of the graph 

embedding (GB) topologies, which is popular with its graph representation capability 

from high dimension to low dimension. In this way, the various topologies can be 

compressed into low dimension numerical matrix.  

More specifically, the classic GB uses a numerical vector, commonly defined as 

node embedding, to describe each node in a graph. These vectors can compact the exact 

dependence among nodes to a low- dimensional space [43]. On the contrary, in the 

topology identification problem, the nodal dependences are unknown such that the 

topology identification cannot be modeled directly by the GB. Despite this, the 
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thoughts of GB can be learned. This is why the topological MB is introduced. Based 

on the topological MB, the system states and the implicit topology information can be 

compressed in an efficient manner. Thus, a new neural network combining the 

topological MB and GB techniques is innovatively represented, defined as Topology 

Preserved Node Embedding (TPNE).  

The advantages of the proposed TPNE are obvious. It fully leverages the merits of 

the non-Euclidean data processing ability from the graph neural network (GNN) 

technique [44]. Specifically, different from the general graph embedding technique that 

utilizes the nodal pair dot product to describe the dependence of the nodal pair, the 

TPNE utilizes the concatenation of the node embedding within the topological MB to 

represent the implicit connectivity among nodes. After this process, the TPNE ignores 

redundant nodal information, which contributes little to the topology identification 

while introducing a significant computational burden and modal complexity. Therefore, 

the model's efficiency and effectiveness can be enhanced.  

To achieve the topology identification model, there innovatively introduces two 

categories of graph embedding parameters. The first one is the node embedding, 

defined as | |

1 : kR → , which is a matrix with the size of | | k , where each row of this 

matrix represents a node embedding vector. The second one is the edge embedding, 

defined as | |

2 : kR → , where each row of this matrix represents an edge embedding 

vector of the distribution system. k  is the dimension of the node embedding and the 

edge embedding. Thus, by leveraging the neural network model to approximate the 

topology identification model in (2.2), the probability distribution of the edges can be 

characterized. 

1 1 2 2= (ReLU( ))l n b

l l lf + +V G b G b                                        (2.3) 

In (2.3), lV  is the measurements on nodal voltage magnitudes, whose size is defined as 

Batch | | l , where the batch denotes the sampling number, and l  is the window size for 

edge ls . ReLU( )=max(0, )x , rectified linear unit (ReLU) function, which is defined as the 
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activate function. The bias parameters 1b  and 2b  are in the vector formats with the sizes 

k and | |l , respectively, where l  denotes the edge ls . Although more than one matrix 

can be utilized as graph embedding parameters, two matrices are representing the graph 

embedding parameters in the proposed model architecture, which is determined by 

optimal hyperparameters selection as well as the ReLU activation function. 

Then, to select the node within the topological MB, the embedding extraction 

matrices n

lG  and b

lG  are introduced, which are parameterized with | | | |l   and | | | |l  . In 

this way, the node embedding and the edge embedding within the topological MB 

corresponding to the edge ls  can be selected.  

1 | |
=[ ; ; ; ;    h

n n n n

l i lg g g i ]，G                                              (2.4) 

In (2.4), n

ig  is the ith row of n

lG , which is a | |  dimensional one-hot vector with jth 

element as 1, where j is the jth node in . Similarly, the edge embedding parameters for 

each area can be defined as follows.  

1 | |
=[ ; ; ; ;    h

b b b b h

l ig g g i ]，G                                             (2.5) 

In (2.5), b

ig  is the ith row of b

lG , which also denotes a | |  one-hot vector with jth element 

as 1, where j is the jth edge in .  
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Figure 2.2. The structure of the TPNE.  
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The voltage magnitude is commonly collected by smart meters in the distribution 

system so that it is utilized as the input of the proposed model. The parameters in TPNE 

are shared. However, in the training process, only the node/edge embedding parameters 

within a topological MB are updated together under the guidance of the objective 

function. In this way, the topology identification model conditioning on the 

measurements is compacted in the TPNE, intuitively shown as the bars in Figure 2.2. 

Thus, this model releases the rely on the massive parameters learning so that enhanced 

efficiency can be achieved. Later, to handle the lack of measurement data problem, the 

TPNE is served as the architecture block inside the GAN framework.  

2.3 Grid Topological Generative Adversarial Network Model  

Firstly, the topology identification based on the Gridtopo-GAN is introduced, 

including the discriminator, the generator, and the auxiliary classifier. Secondly, the 

formulations of the entire framework are represented. Finally, the procedure of this 

framework is listed.  

2.3.1 Gridtopo-GAN Framework 

Since the full observability is rarely in the distribution system, GAN is developed 

to address the missing measurement issue in this section. Based on the game theory, 

the GAN is introduced by Goodfellow et al. [45]. GAN is famous for its generative 

ability which has been applied in many tasks with sound effects [46]. This is because 

GAN leverages two neural networks, generator and discriminator, to compete with 

each other so that the generative can learn the nearly true distribution of data to 

generative samples that can fool the discriminator. Specifically, the generator is defined 

as G, whose input is the random noise z, and output is the fake samples (z)fakeV G= . The 

discriminator is defined as D, whose inputs are the real samples and the generated 
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samples from the G, and outputs are the probability of samples, indicating their real or 

not. D is trained to maximize the log-probability as: 

[log ( | )] [log ( | )]real fakeLoss E P C real V E P C fake V= = + =                          (2.6) 

In (2.6), the second term is the objective of G.   

Conventionally GAN utilizes the convolutional neural network as the internal 

structure of GAN. Different from the conventional GAN, the TPNE proposed in the 

above section is introduced to construct the GAN to adapt the GAN in the topology 

identification model. Moreover, in other perspectives, the problem of missing 

measurements is considered by leveraging an auxiliary classifier. The advantage of 

introducing the auxiliary classifier is that the Gridtopo-GAN infers the branch status 

directly according to the measurement data instead of the traditional GAN’s single 

function of distinguishing whether the measurement is real or not.  

In the G of Gridtopo-GAN, the inputs consist of the measurement data av

lV  and the 

noise z. The measurement data is the available voltage magnitudes while the noise is 

the randomly generated normal distribution value. Thus, the proposed GAN is 

conditional. G is utilized to generate voltage magnitude ( , )fake av

l lG z=V V . The output of D 

provides a probability ( | )l lP C V  that distinguishes the real or the generated 

measurements from the inputs. Besides, the auxiliary classifier provides a probability  

( | )l lP s V  that indicates the status of the edge. The probability closing to 1 means a high 

possibility on connectivity. More specifically, the purposes of Gridtopo-GAN are to 

obtain the models as listed.  

Generator: ( , )av

lG zV tries to learn the implicit distribution on the relationship between 

the nodal voltages and the branch status.  

Discriminator: 1( | ) ( | )l l lD C P C=lV V  aims to find out the false measurements.  

Auxiliary classifier: 2( | ) ( | )l lD s P s=l lV V  is to infer the status of the branch according to 

the generated measurements from the G.  
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The loss function of the D is to maximize the log-probability as shown in the 

following.  

1

max  = ( [log ( | )]

              [log ( | )])

L
real

c l l

l

fake

l l

L P C real

P C fake

=

=

+ =

 V

V

                                               (2.7) 

The AC’s loss function is to maximize the log-probability according to the 

guidance of the branch status labels.  

1

max  = ( [log ( | )] [log ( | )])
L

real fake

s l l l l

l

L P s s P C s
=

= + = V V                          (2.8) 

where s is the status of the branches labels by 1/0 indicating on/off.  

The G’s loss function is to minimize the s cL L− . 

min  g s cL L L= −                                                              (2.9) 

According to the mentioned equations, by alternately maximizing and minimizing 

the loss function cL , the parameters of the G and the D can be updated. In addition, by 

alternately maximizing and minimizing the loss function sL , the parameters of the 

auxiliary classifier are also updated. In other words, the competing game in G and D 

allows G to ameliorate its generative effectiveness to fool the D. The game stops when 

the generated measurement from G is near the real one that can confuse D. The alternate 

learning process in the G and auxiliary classifier can ameliorate the ability of AC to 

outputs the status of branches.  

2.3.2 Gridtopo-GAN’s Learning procedure 

(1) Discriminator  

In Gridtopo-GAN, the sigmoid function ( )   is leveraged in the TPNE to define 

the last layer of the D.  

1

1
( | ) ( )

1 exp( )

l

l l
D C f

f
= =

+ −
lV                                           (2.10) 
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where lf  is D’s structure.  

The log probability as the output in the loss function can indicate the real or false 

of the input so that the D is to maximize this loss function. In the proposed GAN, by 

receiving the available nodal voltage magnitudes as the conditional inputs and the 

generated measurements, the D updates its parameters by the cross-entropy loss 

function as follows.  

*

1

1

 =arg max

arg max (log ( | )

                 (1 log ( | )))

D c

L
real

l l

l

fake

l l

L

D C real

D C fake



=

= =

+ − =

 V

V

                                   (2.11) 

The Adam gradient descent is leveraged to search for the optimal parameters 
1D

  of 

D according to the cross-entropy loss function.  

1

1

1

log ( | ),    = 
 = 

(1 log ( | ),   

D

D

D

real

l l l

c fake

l l l

D C real if C real
L

D C fake if C fake







 =
 

 − = =

V

V
                          (2.12) 

(2) Auxiliary classifier 

Different from the D which aims to distinguish whether the measurement data is 

the real ones or the generated measurements from the G, the AC provides the direct 

inferred results on the status of the branches. Since the number of branches in a 

distribution system is not small, and each branch has two labels, the cross-entropy loss 

function is also utilized in training the auxiliary classifier. Besides, the Adam gradient 

descent is also utilized to optimize the parameters 
2D

  of the AC.  

*

2

1

 =arg max

(log ( 1| ) (1 log ( 0 | ))

            log ( 1| ) (1 log ( 0 | )))

D s

L
real real

l l

l

fake fake

l l

L

D s D s

D s D s



=

= = + − =

+ = + − =

 V V

V V

                               (2.13) 

(3) Generator  

Different from the D, the loss function of the G consists of two parts. The first part 

is the minimization of the log-probability conducted by the log-probability from the D 

fed with samples generated by G. The second part is the maximization sof the log-
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probability conducted by the edges with correct labels. When training the G, the 

parameters of the D and the auxiliary classifier are constant. The G is updated by the 

following equation. Note that the parameters are also updated by the Adam gradient 

descent.  

* = argmin argmin G g s cL L L = −                                            (2.14) 

(4) Regularization 

Due to the limitation on the training samples, the over-fitting problem is 

unavoidable. To alleviate this problem, the regularization technique is introduced by 

adding the penalty function to the loss function [47]. In this part, the L2 norm is 

leveraged as the penalty item of the loss functions.  

2( ) = ||  ||r                                                        (2.15) 

where λ is the coefficient indicating the degree of penalty on model parameters. The λ 

value controls the balance between the loss function and the objective function.  
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Figure 2.3. Gridtopo-GAN’s procedure.  

2.3.3 Training Procedure of Gridtopo-GAN 

The training details of the training process represented in Figure 2.3 are introduced 

by Algorithm 1 listed as follows.  
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Algorithm 1 Gridtopo-GAN model 

1. Initialize: Size of batch m, dimension of embedding k; the node 

embedding matrices and the edge embedding matrices of parameters of 

generators and discriminator with normal distribution N(0,1); the noises for 

missing data nodes with normal distribution N (0, 0.001).  

2. While Gridtopo-GAN does not converge do:  

3.         For D-steps do:  

5. Samples Bs batch data from real data  

6. Update 
1D  by running Adam algorithm by Md times: 

11

1 1

1
  [ [ log ( | )

                  +(1 ( | ))]+ ( ) 
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l l
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11 1 1  ( , ) 
DD D DAdam  −    g  

7.         End for  

8.         For AC-steps do: 

9. Samples Bs batch data from real data and ( , )av

lG zV  

10. Update 
2D  by running Adam algorithm by Md times: 
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22 2 2  ( , ) 
DD D DAdam  −    g  

11.       End for 

12.       For G-steps do: 

13. Samples Bs batch data by noise generating.  

14. Update 
1G  and 

2G  according to by running Adam algorithm 

by Mg times: 

1 1

1
  ( )+ ( ) 

G

Ls

G s c

m l

B

Bs
L L r

= =

  −   

  ( ,  )
GG G GAdam  −    g  

15.       End for  

16. End while 

2.4 Case study 

The IEEE 33-node system, the 118-node system and the large 415-node distribution 

system are employed as the test systems to explore the performance of the Gridtopo-
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GAN model [48].  The training data consists of the voltage magnitudes as the 

measurements and the corresponding topologies. This training data is generated by the 

following two steps. In the first step, the Monte Carlo simulation is introduced to 

randomly generate the topologies [5]. The island topologies are not included. The 

labels of 0/1 are utilized to denote the tatus off/on of the branches. For each topology, 

a vector consists of 0/1 as its elements are introduced as the labels of a topology. In the 

second step, to generate the nodal voltage magnitudes as the measurements, the power 

flow is calculated for each topology. Then, the IID Gaussian noises following the 

normal distribution as 2~ (0, )noise vNV   are introduced in the nodal voltage magnitudes.  

Note that the standard deviation 2

v  is set in different cases in the following sections. In 

addition, the load demand is set according to the uniform distribution U(0.9, 1.1) for 

different topologies. Note that not all topologies can converge or satisfy the constraints. 

More than 80% of generated topologies are unqualified that are excluded.  After the 

training data are ready, the data set sizes of the 33/118/415 are 20K, 30K, and 40K, 

respectively. The data sets are separated with 90% being the training data and 10% 

being the testing data.  

(1) Normalization 

To enhance the training effect, the normalization technique is leveraged as follows.  

' ( )

( )

mean



−
=

v v
v

v
                                                   (2.16) 

where v is the nodal voltage magnitude vector.  

(2) Evaluation index 

The F1 score is introduced as the index to evaluate the performance of the Gridtopo-

GAN in topology identification. The F1 score is from the confusion matrix [49], which 

can represent the accuracy of the classification tasks. This matrix is conducted by four 

indexes: true positive, false positive, false negative, true negative, as shown in Table 

2.1. There are two comprehensive indexes, Recall (R) and Precision (P), employed to 

characterize the classifier’s capability on recognizing positive examples.  
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P
TP

TP FP
=

+
 , R

TP

TP FN
=

+
                                         (2.17) 

Table 2.1. Confusion Matrix.  

Predict value Actual value 

Positive Negative 

Positive TP FP 

Negative FN TN 

 

It is a fact that 13.5% of the branches tend to be in off status, leading to a high P, 

such that P is unable to be applied.  For this reason, the comprehensive index F1 score 

is employed to be the main index to evaluate the performance of the proposed model. 

A higher F1 score indicates better identification accuracy.  

2* *
F1

P R

P R
=

+
                                                      (2.18) 

(3) Hyperparameters setting: 

The same learning rate setting as 10-5 is conducted in G, D, and AC, where there are 

shared with the same structure. The batch size is set as 100 and the window size is set 

as 4. The regularization coefficient is set 10-12. The details of the parameters 
1  and 

2  

are summarized in Table 2.2.  These parameters are selected by optimization. The test 

system with the proposed model is implemented by python and performed in a 

computer with Intel(R) Xeon(R) CPU E5-2650 v4 @ 4.4 GHz processer and 64 GB 

RAM, running Windows 10. 

Table 2.2. The Sizes of the Parameters.  

IEEE 33- node 118-node 415-node 

1  2  1  2  1  2  

33 x100 37x100 118x500 132x500 415x800 480x800 
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2.4.1 The Performance of the TPNE architecture 

The D is structured by the TPNE architecture, whose performance is the basis of the 

proposed Gridtopo-GAN model. To explore the classification accuracy of the TPNE 

architecture, a classifier with three full connected neural network layers, defined as 

onenet and the graph convolutional network (GCN) [29]. The last layer of these 

classifiers is the sigmoid function that indicates the 1/0 of the branches. Note that the 

branch status is available in the training data set. 50 dimensions in node embedding are 

applied in the TPNE architecture. 50, 300 neurons are set in the middle layer of the 

onenet for 33/118-node systems, respectively. Besides, the 50, 300 neurons are also set 

in the GCN in 33/118-node systems, respectively.   

 Figure 2.4 shows the F1 scores from onenet and TPNE with different parameter 

sizes. With 50 neurons in the hidden layer, the onenet and GCN achieve F1 scores of 

0.9866 and 0.9908, respectively. With 300 neurons, two corresponding models obtain 

0.9932 and 0.9943 F1 scores, respectively. The TPNE obtains a better F1 score of 

0.9973. This indicates that TPNE achieves higher accuracy in topology identification. 

The learning convergence speed is also represented in Figure 2.4. It shows that the 

convergence speed of TPNE is faster than onenet and GCN models even when TPNE 

has a smaller size on learning parameters. Besides, with the close F1 score, the sizes of 

learning parameters in onenet and GCN models are nearly 10 times the number of the 

distribution system’s nodes. This fact demonstrates that a larger size of parameters is 

needed in the traditional classifier, especially in a large-scale system. Therefore, the 

proposed TPNE outperforms onenet and GCN models with smaller parameters and 

faster convergence speed.  

Since the training data set has a significant effect on the evaluation results, it is 

essential to explore the impact of the training data’s size on the topology identification 

accuracy. Thus, there are several experimental cases set with several sizes of data in 33 

and 118-node systems. For the 33-node distribution system, the scales of the data set 

are assigned at 10K, 20K, 30K, and 40K. For the 118-node distribution system, the 
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scales of the data set are assigned at 10K, 20K, 30K, and 40K. Figure 2.5 presents the 

learning process curves. It shows that with the increase in the training data set, the 

topology identification F1 scores improve slightly. This phenomenon indicates that the 

proposed sizes in the training data set are representative enough to be used to evaluate 

the effectiveness of the proposed model.  

 

(a) IEEE 33 node system              (b) 118-node system 

Figure 2.4. Convergence curves on onenet, GCN, and TPNE.  

 

(a) IEEE 33 node system              (b) 118-node system 

Figure 2.5. Results of different sizes of data sets.  
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2.4.2 The Performance of the Gridtopo-GAN Model 

The above section explores the TPNE’s effectiveness, which is the basic structure of 

the proposed model Gridtopo-GAN, which will be explored in the next step. The D and 

G play a game with each other to prompt the G to achieve the purpose in data 

supplement to fool the D’s judgment.  

 In order to evaluate the Gridtopo-GAN’s topology identification results with 

different levels of missing, five levels of data missing are set, as shown in Table 2.3 

and Table 2.4 for 33-node and 118-node distribution systems, respectively. The 

numbers of missing data in the five cases are 6, 10, 16, 21, 26 for the IEEE 33 node 

system. The numbers of missing data in the five cases are 23, 43, 59, 83, 94 for the 

118-node system.  

(1) In comparison with conventional methods  

The state-of-the-art topology identification models, Mutual Informatics (MI) [10], 

and the group Lasso (GL) [50], are utilized as the comparison to evaluate the Gridtopo-

GAN’s performance. In these methods, the inputs where the data is missing are set at 

zero value. Both the MI and GL are simulated 100 times. The mean values of F1 scores 

obtained from the MI, GL, and Gridtopo-GAN for both the 33/118-node distribution 

systems are listed in Figure 2.6. The F1 scores obtained from the MI and GL are less 

than 0.9 for all cases. This demonstrates that the MI and GL cannot be applied to the 

topology identification under the situation of missing data. In comparison with the MI 

and GL methods, the Gridtopo-GAN outperforms by at least 11%. This is due to the 

powerfully generative capability of the G in Gridtopo-GAN that can learn the implicit 

joint distribution of the measurements in the historical data so that to achieve generate 

the missing data conditioning on the available measurements. This demonstrates that 

the Gridtopo-GAN is superior in supplementing missing data for improving the 

topology identification accuracy.  
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Table 2.3. Missing Data Numbers on the IEEE 33-node System.  

Measurement cases Measurement installation node 
No. of missing 

measurement 

m6 
1,2,3,5,6,7,9,10,11,13,14,15,17,18,19,20,21,23,24,25,27,28,29,

30,31,32,33 
6 (18.18%) 

m10 1,2,3,5,7,9,10,11,13,15,17,18,20,21,23,24,25,27,28,30,31,32,33 10 (30.30%) 

m16 1,3,5,7,9,11,13,15,17,18,20,21,23,25,28,30,32 16 (48.48%) 

m21 1,3,5,9,11,13,17,19,23,25,29,33 21 (63.64%) 

m26 1,5,11,19,23,29,33 26 (78.79%) 

Table 2.4. Missing Data Numbers on the 118-node System 

Measurement cases m23 m43 m59 m83 M94 

No. of missing 

measurement 

23 

(19.49%) 

43 

(36.44%) 

59 

(50.00%) 

83 

(70.34%) 

94 

(79.66%) 

 

m23 m43 m59 m83 m94
0.2

0.4

0.6

0.8

1.0

F
1

 S
co

re
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Figure 2.6. F1 scores of MI, GL, and Gridtopo-GAN.  
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(2) In comparison with other learning-based methods 

 

 

Figure 2.7. F1 scores of different learning methods with different cases of missing data.  

The F1 scores obtained by Onenet, GCN, TPNE, and Gridtopo-GAN are shown in 

Figure 2.7 for IEEE 33 and 118-node distribution systems, respectively. In these cases, 

except for the missing data, 5% noise is added to the measurements of each case. In 

comparison with the MI in Figure 2.6, the F1 scores obtained by onenet, GCN, and 

TPNE are more than 0.9 for all missing data cases. However, with missing data 

increases, the F1 scores of onenet, GCN, and TPNE degrade rapidly to less than 0.95, 

especially when missing data reaches three-quarters. This demonstrates that the 

classifiers, onenet, GCN and TPNE, cannot adapt to topology identification well with 

missing data. For all situations of missing data, F1 scores of the Gridtopo-GAN model 

are still above 0.97 for IEEE 33 system and 0.96 for the 118-node system, respectively. 

This result indicates that Gridtopo-GAN is highly outperforming other classifiers in 



 

33 

 

 

 

 

identifying topology with incomplete measurements.  

(3) With the different locations of measurements 

The location of the measurements can pose an impact on the topology identification 

results. To evaluate this factor in the proposed model, different locations of 

measurements are set. There are ten cases with 26 missing measurements and 5% noise 

added. Note that the locations of the available measurements are randomly selected. 

The F1 scores obtained by Gridtopo-GAN with different combinations of measurement 

locations are shown in Figure 2.8. It shows that the F1 scores are 0.97 for all cases. 

This indicates that the Gridtopo-GAN has little impact on the locations of 

measurements.  

Furthermore, the calculating time for topology identification in different learning 

methods is shown in Table 2.5. It shows that the time consumptions of Gridtopo-GAN 

are 0.17ms and 5.68ms for 33/118-node systems, respectively. The MI requires 8.56s 

and 222.02s for these two systems, which is time-consuming due to tremendous 

enumerating behavior. The onenet has a less computation time than Gridtopo-GAN due 

to only one neural network being required while Gridtopo-GAN requires several levels 

of neural networks. However, the Gridtopo-GAN achieves higher topology 

identification accuracy and the computation time of close to a few microseconds can 

be neglected in practice. Thus, the Gridtopo-GAN achieves a more prominent 

performance in topology identification under missing data situations.  
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Figure 2.8. The F1 scores from ten cases of the measurement locations.  

Table 2.5. Computation Time.  

Methods MI Onenet Gridtopo-GAN 

IEEE 33 8.56s 0.04633ms 0.1658ms 

118-node 222.02s 0.1431ms 5.684ms 

 

2.4.3 Topology Identifications with Loops  

 

Figure 2.9. (a) F1 scores of different missing data situations with mixed topology. (b) The F1 

scores of different measurement locations with mixed topology. 
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The distribution system topology in the cases discussed above is set radial. However, 

in some distribution systems in the urban area, the topology is not only radial but also 

consists of loops, defined as meshed topology. Since the meshed topology cannot be 

ignored in the modern distribution systems, the proposed Gridtopo-GAN is also 

conducted in such a topology.  

There are up to five loops in the IEEE 33-node distribution system. According to the 

training data generation steps mentioned above, 17000 meshed topologies are 

randomly generated. The loop’s number in these topologies is from one to five. Then, 

the radial topologies are added to these meshed topologies. Finally, a 20000 training 

data set is obtained, defined as mixed topology. In the 33-node system, the minimum 

window nodes’ number in a loop is 7. The window size is set 4 in this section. Thus, 

the maximum window nodes’ number in the loops within the mixed topology is 9. In 

this setting, the range of the window nodes contains loops so that this setting can be 

utilized to verify the effectiveness of the Gridtopo-GAN in the mixed topology 

identification. The F1 score obtained by Gridtopo-GAN with complete measurements 

is 0.993. This indicates that the Gridtopo-GAN can adapt to the distribution system 

topology identification problem with loops.  

 The F1 scores obtained by Gridtopo-GAN with different missing data cases and 

measurement locations using the mixed topology for the IEEE 33-node system are 

depicted in Figure 2.9. It shows that Gridtopo-GAN achieves high F1 scores in different 

levels of missing data and different measurement locations with mixed topology. This 

indicates that the distribution system structure with loops brings little impact in the 

proposed Gridtopo-GAN.  

2.4.4 Results with Different Levels of Noises  

Because the measurement errors are unavoidable, there are five levels of noises set 

as the cases as 0.1%, 0.5%, 1%, 2.5%, and 5% [51]. For different cases, these 

noises are added so that there are five cases to be utilized to verify the effectiveness of 
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the proposed model.  

As mentioned above, the TPNE is the basic structure of the Gridtopo-GAN, its 

learning performance plays an important role in the topology identification results of 

the proposed model. Thus, the TPNE is firstly conducted with complete data under 

different levels of noise and is listed in Table 2.6 and Figure 2.10(a). Then, with the 

missing data cases m26’s setting, the performance of the Gridtopo-GAN is verified and 

the corresponding F1 scores are depicted in Figure 2.10.  

 As it is shown in Table 2.6 and Figure 2.10(a), F1 scores obtained by the TPNE are 

more than 0.99 with all cases in different levels of noise. This result indicates that the 

TPNE can infer the status of the branches with high accuracy and at the same time 

hedge against noises. Since the TPNE obtains a significant topology identification 

accuracy against noise, the Gridtopo-GAN’s performance with different noise under 

the case m26 is further verified in Figure 2.10(b). The F1 scores obtained from the 

Gridtopo-GAN are more than 0.97 for all noise settings. This indicates that the 

Gridtopo-GAN can handle the noise measurements even with limited available 

measurements.  

 

 

            (a) TPNE                                       (b) Gridtopo-GAN 

Figure 2.10. The F1 scores from TPNE and Gridtopo-GAN under different noises.  
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Table 2.6. F1 Scores of TPNE with complete measurements and different noises.  

          Noise 

F1 Score 

0% 0.1% 0.5% 1% 2.5% 5% 

TPNE 0.9996 0.9997 0.9996 0.9996 0.9996 0.9996 

 

2.4.5 Applying Gridtopo-GAN in Large Scale Distribution System 

 

Figure 2.11. The F1 score and accuracy from the 415-node system with different levels of 

missing data.  

Since the scale of the modern distribution system is relatively large with the boost 

of load demand, the Gridtopo-GAN is conducted in a 415-node distribution system 

[48], where 415 nodes and 480 lines with 65 tie lines are included. The number of 

missing measurements is set to be 20%, 35%, 50%, 65%, and 80%, which is defined 

as the cases as Case A, Case B, Case C, Case D, and Case E. The F1 score and accuracy 

obtained by Gridtopo-GAN are shown in Figure 2.11. This picture shows that the 

proposed Gridtopo-GAN outperforms other methods for all cases. This is because the 

TPNE architecture is designed to be able to extensibility to large-scale systems. In this 

way, the Gridtopo-GAN can still achieve a higher F1 score and accuracy in a large-
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scale distribution system effectively without the impact of the system scales.  

2.5 Summary 

The Gridtopo-GAN is innovatively proposed to adapt to the topology identification 

problem in the distribution system under the challenges of limited measurements and 

with radial/meshed topologies. To this end, firstly, by proposing the topological 

Markov Blanket, both the radial and meshed topologies can be inferred effectively 

using the measurements within the window. Then, by leveraging the graph embedding 

techniques with the topological Markov Blanket, the TPNE model is proposed, which 

compacts the numerous changing topologies in a low dimension space so as to achieve 

the high topology identification accuracy in a large-scale system. Finally, the Gridtopo-

GAN allows the generator to complement missing data so that nearly more than 10% 

in improved topology identification F1 score can be achieved under the limited 

measurement situations. Furthermore, the impact of the measurement locations is 

excluded by the simulation results. In a word, the Gridtopo-GAN has a significant 

performance in topology identification for distribution systems with efficiency, and 

robustness against data scarcity.  
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Chapter 3  Unrolled Spatiotemporal 

Graph Convolutional Network for 

Distribution System State Estimation and 

Forecasting 

3.1  Introduction  

The proliferation of renewable energy brings significant uncertainty to active 

distribution systems due to its intermittent and stochastic nature. Such a new scene in 

the distribution system unavoidably introduces challenges to the reliable operation of 

power systems. To consider the impact of uncertainty on distribution system operation, 

the DSSE gains many academic eyes due to it plays a distinguishing role in the real-

time awareness of system states for delivering enhanced monitoring, control, and 

management functionalities [52], [53]. Thus, it arouses a new model in DSSE to 

achieve more effective and efficient state estimation and extend the application in 

modern distribution systems.  

Generally, an active distribution system covers a relatively small area but more 

integrated dispersed RES and limited measurements. In this situation, the renewable 

energy deployment sites are close to each other, sharing similar weather and 

environment, leading to similar profiles generated by these renewable energy units [6]. 
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Thus, there are significant complex correlations among nodal power injections, 

resulting in hidden spatiotemporal correlations among nodal measurements of 

distribution systems [7]. More specifically, these correlations consist of three aspects 

as introduced in the following. The first one is the spatial correlation. It means that at 

the same time slot, the measurements in a node are affected by its neighbor nodes. The 

second one is the temporal correlation. It represents a fact that the measurements of a 

node are influenced by itself across different time periods. The third one is the 

spatiotemporal correlation. It means a node is affected by its neighbor nodes across 

time slots.  These correlations pose inevitable bias in the system state estimation 

calculations and thus remain a significant challenge to be addressed  [2]. However, 

many previous works in DSSE ignore such a gap due to no immature is available to fill 

it. Thus, it is an extremely urgent task to explore a suitable approach to DSSE and state 

forecasting with the proliferation of RES.  

The weighted least square (WLS) is the most classic solution in DSSE. It is a 

nonconvex optimization problem that minimizes the residual between the measurement 

and the estimated states, where the optimal searching process is based on the Gauss-

Newton algorithm [54]. In this method, the correlation among different measurements 

is ignored and thus its application is limited to the scenarios without correlations. 

However, since the correlations are unavoidable in the distribution system, the WLS-

based method will introduce considerable error in DSSE [4]. To address this issue, the 

WLS is ameliorated by replacing the weighting matrix with the correlation coefficient 

matrix, leading to improved accuracy [12]. Similarly, the covariance matrix is 

leveraged in [55] to degrade the impact of the correlation. The correlation among nodal 

measurements is employed to construct the weighting matrix in [56] for ameliorating 

the estimation accuracy. However, these correlations are assumed linear and time-

invariant. To remove this assumption, an artificial neural network is introduced in [13] 

to get the correlation coefficient matrix in the WLS for microgrid state estimation. 

However, the temporal correlations are not taken into account in these works. Without 

spatial correlations considered, the violent fluctuations on RES and their impact on 
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DSSE are neglected, leading to unsatisfactory accuracy.  

According to the review above, the temporal correlations are also important in 

facilitating the DSSE. Inspired by his, the valuable information hidden in the historical 

data is leveraged to be extracted to ameliorate the conventional DSSE methods. The 

RES’s temporal correlations are utilized to improve the accuracy of the EKF-based 

DSSE method in [57]. Similarly, the Complex Kalman filter (CKF) in [58] is leveraged 

to characterize the changes in time-series measurements so that the state estimation 

errors can be reduced. However, only a single type of correlation, either spatial or 

temporal correlation on measurements is considered in these works. These approaches 

limit their applications in DSSE with spatiotemporal correlations virtually existing.  

There are few works presented to deal with this problem. The Conditional 

multivariate complex Gaussian distribution is leveraged in [14] to describe the 

spatiotemporal correlations among RES unbalance loads to ameliorate the DSSE 

accuracy, requiring comprehensive information on the correlations which is rarely 

common in practice. A vector auto-regressive approach is introduced in [15] to describe 

the spatial and temporal correlation between the demands and RES to facilitate the 

DSSE to achieve enhanced forecasting accuracy. However, the spatial and temporal 

correlations are considered individually, which is inappropriate since the coupled 

spatiotemporal correlations must be considered. The vector autoregressive is also 

introduced in [59] to forecast the voltage phase angles according to the assumption of 

linear correlations. However, it cannot take the nonlinear dynamic characters of system 

states into account, and thus leading to insufficient precision results. Besides, these 

methods are introduced on top of the traditional WLS method, which is 

computationally cumbersome.  

To ameliorate these challenges, the learning-based approaches are introduced to the 

DSSE and state forecasting in recent years. The physics-guided neural network is 

developed in [60] to conduct a new state estimation model with temporal correlations 

considered. Similarly, the physics-inspired deep learning model is introduced in [61] 

to address the real-time state estimation on transmission systems, leading to enhanced 
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accuracy. Besides, a physics-aware neural network is leveraged in [62] to speed up the 

state estimation. A deep learning model is introduced in [63] to degrade the 

computational burden. However, these methods do not consider the spatiotemporal 

correlations which cannot adapt to a distribution system with violent fluctuations on 

RES. With the proliferation of smart meters, rich measurement data is available in the 

modern distribution system. Based on this opportunity, the potentially powerful 

learning capability of deep-learning techniques can be leveraged to extract useful 

information from numerous measurements so as to enhance the accuracy of the DSSE 

with spatiotemporal correlations. The spatial-temporal graph convolutional network 

(STGCN) has attracted more and more attention in different fields, such as traffic 

forecasting [64], social pedestrian behavior prediction  [65], skeleton-based action 

recognition [66], and so on. They capture the correlations from the data to achieve 

enhanced performance. However, these works treat the spatial and temporal 

correlations separately, which ignore the spatiotemporal correlations and may lead to 

unsatisfactory results. To address this issue, a spatial-temporal synchronous graph 

convolutional network is proposed for network data forecasting to consider the 

spatiotemporal simultaneously [67]. The graphical structure properties of the power 

system and the spatial-temporal graph convolutional network techniques inspires a new 

way to consider the correlations’ impact on distribution system state estimation. 

Therefore, it is unprecedentedly essential to leverage the spatiotemporal correlations to 

enhance the real-time state estimation performance with simultaneous spatiotemporal 

correlations considered. In this perspective, the spatiotemporal correlations can serve 

as helpful information rather than the challenges in the conventional DSSE.    

To solve these problems, the unrolled spatiotemporal graph convolutional network 

model is proposed in this work to be better characterize of the distribution system states 

that are exposed to complex correlations among the renewable power outputs. Instead 

of considering the spatial and temporal correlations separately in the previous works, 

three aspects of spatiotemporal correlations are captured simultaneously by the 

proposed unrolled spatiotemporal graph model that leveraged the splicing of the spatial 
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graphs across adjacent time steps. In this way, ameliorated forecasting accuracy and 

computational efficiency can be achieved. Then, the node embedding is leveraged to 

construct the dependence on the unrolled spatiotemporal graph to learn the nonlinear 

spatiotemporal correlations automatically instead of utilizing the linear correlation 

coefficient matrix. Further, the ahead-of-horizon state forecasting is achieved 

effectively by the multi-module layers that capture the long-range spatiotemporal 

correlations. The experiments are conducted on a 118-node distribution system and a 

1746-node distribution system.  

The remaining sections are organized as follows. The state estimation considering 

the spatiotemporal correlations is developed in Section 3.2. The USGCN model is 

introduced both for DSSE and state forecasting in Section 3.4.  The experimental 

results and the corresponding discussions are introduced in Section 3.5. Finally, the 

works of this section are concluded in Section 3.6.  

3.2  State Estimation with Spatiotemporal Correlations  

The basic equation for DSSE is introduced as follows.  

( )= +z h x e                                                          (3.1) 

In (3.1), z  denotes the measurements that are collected by the devices, such as smart 

meters. h  represents the measurement function that maps the actual state variables x  

to the measurements. e  is the errors between actual measurements and the estimated 

measurements. The traditional state estimation can be built based on the WLS 

optimization.  

ˆ  argmin( ( )) ( ( ))T=
x

x z - h x W z - h x                                        (3.2) 

In (3.2), x̂  is the estimated state variables. T denotes the matrix transposition operation. 

W  is the weight matrix. This model can only adapt to the state estimation with 

independent Gaussian measurements. Thus, it is inappropriate in the modern 
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distribution system when implicit correlations are considered [68]. Motivated by this 

gap, without the prior Knowledge on correlations, the Bayesian rule is leveraged to 

model the posterior distribution for estimating states conditioning on measurements.  

( ) ( )
( )

( )

f f
f

f
=

z | x x
x | z

z
                                               (3.3) 

In (3.3), ( )f x | z  denotes the posterior probability density function (PDF) of the state 

variables. ( )f z | x  denotes conditional PDF of the measurements, which is generally 

commutated by the maximum likelihood function of the state variables under the given 

measurements set. ( )f x  represents the prior distribution of the state variables. ( )f z  

represents the distribution of the measurements. In this model, the ( )f z | x  is difficult to 

obtain due to the complex distribution for RES outputs brought by their uncertain and 

intermittent nature. Moreover, obtaining ( )f z  needs massive historical measurement 

data, which is rarely commonly available due to the low observability of the 

distribution system. These challenges motivate the practice of posterior conditional 

distribution-based estimation states. Specifically, conditioning on the measurements z , 

the estimation state x̂  is equivalent to the expectation of the posterior conditional 

distribution ( )f x | z .  

|
ˆ [ ] ( | )E f d= =  zx x | z z                                              (3.4) 

In (3.4), the integral operation is performed in the whole state space.   denotes the 

integration variable that can span all the values x . In this way, the expectation of this 

posterior distribution can be utilized to replace the state estimation, which is formulated 

as follows.  

ˆ [ ] ( )E= =x x | z h z                                                       (3.5) 

In (3.5), h  denotes the several layers 0[ , , , ]l out
h h h  of the proposed USGCN model.  
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3.3  Unrolled Spatiotemporal Graph Convolution Networks 

3.3.1 Unrolled Spatiotemporal Graph 

Conventionally, the previous models introduced the convolutional neural network 

(CNN) into the recurrent neural network (RNN) to capture the spatial and temporal 

correlations across time steps, while CNN can only feature the Euclidian data structure 

[69]. The graph neural network (RNN) is combined with the RNN to improve the non-

Euclidian data feature extraction [70]. However, either the spatial or temporal 

correlations are singly considered, resulting in neglecting the correlations across time 

between different nodes. Thus, an unrolled spatiotemporal graph model is developed 

to directly extract the spatial and temporal correlations simultaneously. Specifically, 

the effect from the neighbors on each node within the current and the adjacent time 

steps can be perceived synchronously, which can be illustrated in Figure 3.1. 

 

 

To characterize the correlations of the nodal measurements in a graphical format, 

the bus in the distribution system is defined as nodes, and the correlations among these 

nodes are defined as edges. In this way, a graph ( , )=  can denote the spatial 

correlations among nodes, where 
1{ , , , }i Nv v v=  is the set of all nodes with the number 

of N  and  is the set of edges with the number of L .  

To characterize this graph quantitatively, the adjacent matrix N NA R  is developed.  

1,  if , ,and ( , )

0, else

i j i j

ij

v v v v 
= 


A                                       (3.6) 

Since the aim is to model spatial and temporal correlations at the same time across 

different time slots, the graphs in different time slots are connected chronologically, as 

shown in Figure 3.1(b). By connecting the graph of all the nodes belonging to the 

previous, current, and next time slots, a spatiotemporal graph is obtained, which is 
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denoted by the adjacent matrix 3 3N NA . For each node i  in the spatial graph, its new 

index can be calculated by ( 1)t N i− + , where t (1 3)t   indicates the time step number 

in the spatiotemporal graph model. In Figure 3.1(b), the elements ijA  in the 1t

adpA  present 

the spatial correlation between node i  and node j  in time step 
1t . The diagonal 

elements 
iiA  in 1 2( )t t

adp

−
A  denote the temporal correlation of node i  across the time steps 

1t  

and 
2t . The off-diagonal elements ijA  in 1 2( )t t

adp

−
A  denote the spatiotemporal correlation of 

node i  and node j  across the time steps 
1t  and 

2t . In a word, the unrolled 

spatiotemporal graph across three continuous time steps. The diagonal adjacency 

matrices denote the spatial correlation of each node with others in the current time step. 

The diagonal elements of the off-diagonal adjacency matrix represent the spatial 

correlation of each node with itself. The non-diagonal elements of the off-diagonal 

adjacency matrix represent the spatiotemporal correlation of each node with other 

nodes across time steps. In this model, the spatiotemporal correlations between 

neighbors can be extracted directly.  

 

Figure 3.1. Unrolled Spatiotemporal Graph Structure.  

3.3.2 Self-adaptive Unrolled Spatiotemporal Graph 

It is important to build up a graph model to describe the adjacent matrix that 
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represents the correlations. Traditionally, the historical nodal measurements can be 

used to model the deterministic spatial correlations by using the static correlation 

coefficient matrix. However, the spatial correlations and the temporal correlations are 

nonlinear and vary over time. It is not appropriate to utilize deterministic values to 

describe these correlations. Therefore, it is an urgent task to develop a new model in 

DSSE to achieve more effectively and efficiently in modern distribution systems with 

spatiotemporal correlations. 

Traditionally, the fixed spatial correlation is characterized by the adjacency matrix 

N NA . Inspired by the node embedding technique that is powerful in graph 

representation, it is leveraged in this work to feature the spatiotemporal dependence 

among nodes. To this end, a self-adaptive adjacency matrix 3 3N N

adp

A  is proposed for 

each time step without the requirement of any prior knowledge. The hidden complex 

spatial correlations can be discovered automatedly through this model during the 

training process. This self-adaptive adjacency matrix is defined by the dot-product by 

two node embeddings parameterized via 3

1 2, N kE E , where k denotes the dimension 

of embedding. 

1( ( ))adp SoftMax ReLU T

2A = E E                                              (3.7) 

In (3.7), 
1E  and 

2E  present the parameters in the corresponding two nodes. The dot-

product of 
1E  and 

2E  represents the spatial dependence between two nodes, where the 

weak connectivity is removed by the active function ReLU. The activation function 

SoftMax is leveraged to normalize the self-adaptive adjacency matrix.   

3.3.3 Unrolled Spatiotemporal Graph Convolution Operation 

The general convolutional neural network can only adapt to the data with Euclidean 

pixel structure. Different from this, the graph convolutional neural network can be 

utilized in the data with a non-Euclidean graph structure [71]. Specifically, this kind of 

neural network structure can aggregate the neighbor’s information for any node so that 
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efficiency can be achieved [72].  ( ) 3 3n N NA  is defined to represent the adjacency of 

the spatiotemporal graph model. 
'( 1) 3l N D− h  denotes the inputs of the l-th layer in the 

proposed model, where D  is the feature size of the input. 
'( ) 3l N Dh  denotes the output 

of the l-th layer in the proposed model. 
'D DW  is the learnable parameters. 

'Db  is 

the bias.   is the activation function. The proposed graph convolutional operation is 

formulated as follows.  

'( ) ( 1) ( ) ( 1) 3( ) ( )l l n l N DUSGCN − − = = + h h A h W b                            (3.8) 

The diffusion convolutional operation in [73] is popular for its brilliant power in 

spatial modeling. Generally, the diffusion convolutional operation is formulated as: 

'( ) ( 1) 3

0

M
l c l N D

m

m

− 

=

= h P h W                                               (3.9) 

In (3.9), m
P  denotes the power series of the transition matrix. Since the nodal 

measurement data can be modeled as an undirected graph, such that / ( )m rowsum=P A A , 

where rowsum  compute column sums across rows of A . By combining the above self-

adaptive spatiotemporal graph model and the diffusion convolutional operation, the 

innovative spatiotemporal graph convolutional layer can be defined as follows.   

'( ) ( 1) ( ) ( 1) 3

1 2

0

M
l m l n l N D

m adp m

m

− − 

=

= + h P h W A h W                                 (3.10) 

Note that in the situation where the graph is unknown, only the second term remains in 

the spatiotemporal graph convolutional layer.  

'( ) ( ) ( 1) 3

2

0

M
l n l N D

adp m

m

− 

=

= h A h W                                        (3.11) 

3.3.4 Gated Operation 

The gated linear unit (GLU) is a representative operation in the deep learning 

methods. It is popular for its powerful ability to control whether the information is 
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being flowed into the next layer or not [74]. This operation is combined with the 

proposed spatiotemporal graph convolutional operation, and it is formulated as follows.  

'

( ) ( 1) ( ) ( 1)

1 2 1

0

( 1) ( ) ( 1) 3

1 2 2

0

( )

( )

M
l m l n l

m adp

m

M
m l n l N D

m adp m

m

sigmoid

− −

=

− − 

=

= + +

 + + 





mh P h W A h W b

P h W A h W b

                        (3.12) 

In (3.12), 
'

1

D DW   and 
'

2

D DW  are the learnable parameters. 
'

1

Db  and 
'

2

Db  are 

the bias parameters. sigmoid denotes the sigmoid activation function 

( ( ) 1/(1 )xsigmoid x e−= + ).   represents the element-wise product. Note that by multiply 

stacking the proposed spatiotemporal convolutional layers, the receptive range of the 

time-series data can be achieved.  

3.4  USGCN Model 

3.4.1 USGCN for State Estimation  

The historical measurement data with spatial and temporal correlations can be used 

to facilitate the DSSE. The proposed USGCN is utilized to learn the expectation of the 

posterior conditional distribution (Eq. (3.5)) that accounts for the spatial and temporal 

correlations hidden in the measurement data. To achieve this goal, the proposed 

unrolled spatiotemporal graph convolution operation and the gated operation are 

utilized to construct the USGCN for state estimation and state forecasting.  

The framework of USGCN for state estimation is shown in Figure 3.2(a). This 

framework consists of a USGCN layer, three CNN layers, and a fully connected neural 

network layer as the output layer. The USGCN layer is utilized to capture the 

spatiotemporal correlations at the beginning. The CNN layers are employed to further 

capture the hidden features within the measurement data.  

The measurement data includes the active and reactive power injections, denoted 
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by N C T Z , where N is the number of nodes. T is the sequence length. C is the hidden 

dimension, which presents the measurement data in each node, e.g. four dimensions 

include the nodal active/reactive power injection and active/reactive line flow. Note 

that the measurement data includes the active/reactive power injections and the 

active/reactive line power flows, which are available from smart meters. Since the 

estimated states are the voltage magnitudes and the phase angles, the number of the 

measurements are satisfied with the observability without full deploying instruments 

in all nodes, e.g. above 50% of the system node number. Generally, the branch number 

in the distribution system is less than the node number due to the radial structure so 

that the first dimension N is enough for nodal and line measurements. Note that the 

nodal and line input without the measurements are replaced with zero.  

The measurement data N C T Z  is then utilized to extract the slices of unrolled 

spatiotemporal graphs’ series as 0 3N C

s

 h  which can be reshaped 0 3 1N C

s

 h .  Instead 

of utilizing the fixed value-based adjacency matrix as the aggregate weight between 

nodes in the conventional graph convolutional operation, the node embedding product 

is leveraged to be the aggregate function. This aggregate function features the 

dependence among nodes according to the information extracted from the 

measurements. After this setting, the slices of T-2 unrolled spatiotemporal graphs 

across different time slots can be obtained. By splicing these spatiotemporal graphs by 

row, the input 0 3 ( 2)N C T  −h  of USGCN can be obtained.  

Since the input and the USGCN are defined above,  

Based on the definition of the input and the USGCN, the unrolled spatiotemporal 

graph convolutional layer’s output is defined as 3 ( 2)l N C T  −h , where C  is the hidden 

dimension of the layer l . To obtain the target channel dimensional of features in each 

node, the 2-d convolutional neural network layers are also utilized to transfer the 

3 ( 2)l N C T  −h  into 3 ( 2)l N C T  −h . In addition, the fully connected network is employed 

to transfer the 3N dimensional outN  so that the target output dimensional can be 

achieved. Therefore, the output of the proposed USGCN is ( 2)outN C Tout   −
h . C   is the 
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hidden dimension of the layer, e.g. 2C =  means two dimensions of channels, 

presenting the voltage magnitude and the voltage phase angle. outN  is the number of 

voltage magnitudes or phase angles.  

Due to the less sensitive ability of the Huber loss [75], which is leveraged to be the 

loss function.  

( ) ( ) 2

( ) ( ) 2
1 4 1

ˆ0.5( ) ,1ˆ( )
ˆ| | 0.5

t j t jj TN k C
ik ik

t j t j
i j k

ik ik

Loss
TNC  

+ += =

+ +
= = =

 −
= 

− −


h h
h,h

h h

                        (3.13) 

In (3.13), ĥ  is the outputs of the model. h  denotes the corresponding actual values.   

represents the threshold that controls the range of squared error loss. 

3.4.2 USGCN for State Forecasting  

Generally, the predicted states are corrected relying on complete real-time 

measurements. Then the corrected states are utilized to predict the next single-step 

system states [61], such that the predicted states rely on the accuracy of the previously 

estimated states. Instead of utilizing the previously estimated states, the proposed 

method can directly forecast the system states based on the previous measurements. In 

this way, the proposed method can fully leverage the features of the spatial and 

temporal correlation in measurements to forecast the states directly with available 

measurements so that the improved awareness of system states ahead of time can be 

achieved.  

The framework of USGCN for state forecasting is shown in Figure 3.2(b). Different 

from the USGCN for DSSE, it consists of two stacked spatiotemporal graph 

convolutional layers, three CNN layers, and a fully connected neural network layer. 

When the several spatiotemporal graph convolutional layers are stacked, the proposed 

USGCN can perceive spatiotemporal correlations across adjacent time steps as well as 

more than adjacent time steps.  

The previous works in [69] require T time steps to generate the time-series t
h  . 
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Different from this, the proposed model directly generates the entire ( 1):( )t t T+ +
h  . 

Specifically, to this end, the temporal dimension in the spatiotemporal graph 

convolutional layers is set at T-3. In this way, the input of the USGCN for state 

forecasting is 0 3 ( 3)N C T  −h  and the output is 3 ( 3)l N C T  −h .  

 

Node embedding Node embedding

Graph convolution Conv1 Conv2 Conv3 FCN
Input

OutputGLU

USGCN

(a)(b)

h0 hout

E1
t-1 E1

t E1
t+1 E2

t-1 E2
t E2

t+1

h0

2-d CNN

USGCN

USGCN

h
out

2-d CNN

2-d CNN

FCN

 

Figure 3.2. (a) The structure of the USGCN for DSSE. (b) The structure of the USGCN for state 

forecasting.  

3.5 Case study 

To verify the effectiveness of the proposed model, an 11kV 118-node distribution 

system [76], and a 130.8kV 1746-node distribution system [77] are introduced.  

Because the historical measurements of the real power systems are rarely available, 

the outputs of the RES are collected from the 2012 Global Energy Forecasting 

Competition. The training and testing datasets are generated based on this. The data 

generation process is based on the following two steps. The first one is to prepare the 

outputs of RES and the load demand and then calculate the nodal power injections.  

The second one is to obtain the system states by leveraging the AC power flow 
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procedure in the Matpower to generate the voltage magnitudes (Vm) and the voltage 

phase angles (Va). Thus, the measurements are obtained, including the active/reactive 

power injections and the active/reactive line power flows, which are available from 

smart meters. The number of the measurement instruments is set at 55% of the system 

node number. These measurement data are the input of the proposed model, and the 

voltage magnitudes and phase angles are the output. The measurement noise 

distribution is the gaussian with zero mean and 1% of the expected measurements as 

the standard deviation. Specifically, the noises for each measurement data in different 

time steps are new error values. The noises for different measurement data in a time 

step are also randomly added. When the data set is ready, there are near 1500K and 

20000K for the 118-node distribution system and 1746-node distribution system, 

respectively. 90% of this data is set as training data, and 10% of them is set as testing 

data.  

(1) USGCN’s Performance index 

Several evaluation indexes are leveraged to verify the proposed model.  

1) Mean Absolute Error (MAE): 

1

1 ˆMAE   = 
samn

i i

isamN =

− h h                                         (3.14) 

2) Mean Absolute Percentage Error (MAPE): 

1

ˆ1
MAPE = 100%

samn

i i

isam iN =

−


h h

h
                            (3.15) 

3) Root Mean Square Error (RMSE): 

2

1

1 ˆRMSE = ( )
samn

i i

isamN =

− h h                                   (3.16) 

In (3.16), ˆ
ih  represents the estimated values outputted by the model. ih  denotes the 

actual corresponding state variable values.  
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(2) Hyperparameters setting 

The channels of the 2-D CNN are set 4, 8, and 2, and the corresponding kernel sizes 

are (5,1). The dimension of the node embedding is set at 10. The same learning rate 

setting as 0.01.  The batch size is set at 1000. The regularization coefficient is set 10-

12. These parameters are selected by optimization. The training process is conducted on 

a windows 10 computer with an NVIDIA GeForce GTX 3090 with 24 GB RAM. The 

language used is python. 

(3) Renewable Energy Sources (RES) setting 

The outputs of wind turbines and photovoltaic panels according to the historical 

data are depicted in Figure 3.3. Note that it is the average output of a location with 

wind turbines or photovoltaics. The total rated power from the wind turbines at one site 

is set 0.06 MW. The rated power from the photovoltaic is set 0.08 MW. The locations 

of these RES employment sites in the test systems are shown in Table 3.1. The RES’s 

average correlation coefficient matrix is depicted as heatmap in Figure 3.4.  

 

 

Figure 3.3. RES power output with each curve depicting one day.  
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(a) 118-node system                            (b) 1746-node system 

Figure 3.4. RES output’s average correlation coefficient.  

Table 3.1. The locations of the wind turbines and solar panels  

118-node 
Location 13 32 42 22 25 74 101 86 54 

Renewable W1 W2 W3 W4 W5 W6 S1 S2 S3 

1747-node 

Location 34 73 172 191 1277 1387 1517 260 377 

Renewable W1 W2 W3 W4 W5 W6 W7 W8 W9 

Location 434 587 615 803 948 1050 1064 1116 1719 

Renewable W10 W11 W12 S1 S2 S3 S4 S5 S6 

 

3.5.1 USGCN in State Estimation  

(1) Comparison to Traditional Methods:  

The conventional methods for DSSE, including weight (Weighted Least Squares) 

WLS [78], (Least Absolute Value) LAV [79] are conducted as the comparison methods 

to verify the effectiveness of the proposed model. These conventional methods are 

optimized by the Gaussian-Newton algorithm.  

Since the historical data of the wind and solar power outputs shown in Figure 3.4 are 

available with correlations, to investigate the state estimation on traditional methods 

and the proposed USGCN with and without correlations. The normal distribution is 
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leveraged to generate the RES’s outputs, where the mean is the rated power, and the 

standard deviation is set as 15% of the mean. In this way, the independent RES outputs 

can be obtained. Then, the power flow is conducted to generate the state variables, 

where the additional 1% noise is added. The procedures of WLS and LAV are 

performed for 480 scenarios selected from the testing data set. The average evaluation 

indexes, including the MAE, MAPE, and RMSE from the WLS and LAV methods are 

summarized in Table 3.2.  

From Table 3.2, it can be seen that without correlations, in comparison with the 

proposed model, the WLS and LAV can provide a lower accuracy result in state 

estimation in terms of the MAE, MAPE, and RMSE. The evaluation indexes obtained 

by the USGCN almost are very close to that of the WLS and LAV. This indicates that 

the proposed model has effectiveness in the DSSE. When the correlations are 

considered, the evaluation indexes obtained by the USGCN are lower than that 

obtained by the traditional methods. Specifically, in the 118-node distribution system 

with correlations, voltage magnitudes’ MAE obtained by USGCN are degraded by 

91.77% and 91.79% compared with the WLS and LAV, respectively. The voltage 

magnitudes’ MAPE are degraded by corresponding 91.82% and 91.82%, respectively. 

In addition, for the 1746-node distribution system, voltage magnitudes’ MAE obtained 

by USGCN are also reduced by 85.64%, 85.64% and the corresponding MAPE are 

85.21%, 85.21%, respectively. The voltage magnitudes’ MAPE and RMSE obtained 

by USGCN are also lower than the traditional methods. The MAE and RMSE in 

voltage phase angles of the USGCN state estimation results considered either with or 

without correlation are near that of the traditional methods, while the MAPE is smaller. 

Since the MAPE index is much more sensitive to errors, the smaller MAPE 

demonstrates that the proposed can give acceptable state estimation results. This is due 

to the USGCN’s outstanding ability in extracting information from complex 

spatiotemporal correlations. Thus, there comes the conclusion that the USGCN gives 

high accuracy state estimation results with hidden spatiotemporal correlations 

considered.  
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Table 3.2. The evaluation index of USGCN compared with traditional methods with and without 

correlations 

System node States Methods 
Without Correlation With Correlation 

WLS LAV USGCN WLS LAV USGCN 

118 

Vm 

MAE 7.67E-03 7.67E-03 7.13E-04 7.53E-03 7.55E-03 6.20E-04 

MAPE (%) 7.92E-01 7.92E-01 7.36E-02 7.87E-01 7.88E-01 6.44E-02 

RMSE 9.68E-03 9.68E-03 8.93E-04 9.49E-03 9.51E-03 8.39E-04 

Va 

MAE 2.11E-03 2.11E-03 4.07E-03 2.67E-03 2.68E-03 4.68E-03 

MAPE (%) 7.95E-01 7.95E-01 4.18E-01 7.91E-01 7.90E-01 2.36E-01 

RMSE 8.56E-03 8.56E-03 6.73E-03 8.78E-03 8.78E-03 7.24E-03 

1746 

Vm 

MAE 7.87E-03 7.87E-03 1.14E-03 7.88E-03 7.88E-03 1.01E-03 

MAPE (%) 7.98E-01 7.98E-01 1.18E-01 7.98E-01 7.98E-01 1.09E-01 

RMSE 9.87E-03 9.87E-03 1.44E-03 9.87E-03 9.87E-03 1.12E-03 

Va 

MAE 5.23E-03 5.23E-03 4.84E-03 5.24E-03 5.24E-03 4.24E-03 

MAPE (%) 7.97E-01 7.97E-01 2.44E-01 7.97E-01 7.97E-01 2.21E-01 

RMSE 5.62E-03 5.62E-03 4.46E-03 5.64E-03 5.64E-03 4.15E-03 

 

The voltage magnitudes and phase angles estimated at 121 in the 1746-node 

distribution system during different time periods are depicted in Figure 3.5. From this 

picture, it can be seen that for the conventional methods, WLS and LAV, the bias 

between the estimated values and the actual values with correlation are much larger 

than that without correlations. This intuitively indicates a fact that RES’s correlations 

bring a significant effect on the distribution system state estimation. This will further 

lead to negative operational decisions on the management of the power system. Besides, 

the state estimated voltage magnitudes and phase angles are also depicted in Figure 3.5. 

It intuitively shows that the voltage magnitudes and phase angles from the proposed 

USGCN have a smaller bias with the corresponding real value in comparison with the 

traditional WLS and LAV methods.  

 



 

58 

 

 

 

 

10 11 12 13 14 15
0.980

0.985

0.990

V
o
lt

ag
e 

m
ag

n
it

u
d
e 

(p
.u

.)

Time slot (h)

 Real value

 WLS-with corr

 WLS-without corr

 LAV-with corr

 LAV-without corr

 USGCN-with corr

 USGCN-without corr

10 11 12 13 14 15

-0.28

-0.24

-0.20

-0.16

V
o
lt

ag
e 

p
h
as

e 
an

g
le

 (
ra

d
)

Time slot (h)

 Real value

 WLS-with corr

 WLS-without corr

 LAV-with corr

 LAV-without corr

 USGCN-with corr

 USGCN-without corr

 

Figure 3.5. The estimated value of voltage magnitudes and phase angles of node 121 of the 

1747-node distribution system.  

 

Figure 3.6. The estimation time of USGCN and traditional methods.  



 

59 

 

 

 

 

Moreover, to verify the efficiency of the USGCN, the computational times of 

USGCN, WLS, and LAV for 118/1746-node systems are depicted in Figure 3.6. 

Specifically, the calculating times for the 118-node system from WLS, LAV, and 

USGCN are 0.1758, 0.0624, and 0.0006s respectively. The corresponding times for 

1746-node system are 0.0928, 0.5201, 0.0064s, respectively. It is obvious that 

USGCN’s computational time is less than 1ms, but the traditional method needs more 

than 60ms. This fact demonstrates that the USGCN can save about 100 times 

calculating time compared with the traditional methods. This implies the potential 

applicational ability of the USGCN in real-time DSSE. This is because the proposed 

USGCN can learn the expectation of the posterior conditional distribution that 

describes the complex relationship between the measurements and the system states. 

In this way, the USGCN directly performs state estimation different from traditional 

methods that involve many time-consuming iteration processes so that reducing 

computational time can be achieved. The USGCN can be adapted to the distribution 

system state estimation efficiently.  

(2) Comparison to Data-driven Methods  

To verify the USGCN’s effectiveness in comparison with other learning models, the 

Full Connected Network (FCN), Convolutional neural network (CNN), Graph 

Convolutional Network (GCN) [71], and Spatiotemporal graph convolutional network 

(SGCN) are conducted as the comparison methods. There are five fully connected 

network layers with 1000, 2000, 1000, 500, and 118 neurons in each layer. The 

adjacency matrix in the GCN is formed by the topology of the distribution system. 

There are two convolutional graph layers in GCN. There are three 2-d convolutional 

layers in CNN where each kernel size of the CNN layer is 5, the channel sizes are 8, 

16, and 8, respectively, and three fully connected network layers with 1000, 500, and 

118 neurons. Note that the distribution system states are estimated based on the 

measurement at the current time step and the previous two time steps. Thus, the time 

step setting in USGCN for distribution system state estimation USGCN is 22.  
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Table 3.3. The Evaluation Index in State Estimation of USGCN in Comparison with Data-driven 

Methods with Correlations 

System node States Methods FCN GCN CNN  SGCN USGCN 

118 

Vm 

MAE 3.48E-03 8.25E-03 2.20E-03 2.50E-03 6.20E-04 

MAPE (%) 3.64E-01 8.67E-01 2.29E-01 2.61E-01 6.44E-02 

RMSE 5.32E-03 1.24E-02 3.30E-03 3.89E-03 8.39E-04 

Va 

MAE 1.87E-02 3.24E-02 1.20E-02 2.41E-02 4.68E-03 

MAPE (%) 9.37E-01 1.61E+00 6.04E-01 1.20E+00 2.36E-01 

RMSE 3.15E-02 5.38E-02 2.01E-02 4.12E-02 7.24E-03 

1747 

Vm 

MAE 3.98E-03 2.95E-03 2.12E-02 1.25E-03 1.01E-03 

MAPE (%) 4.12E-01 3.04E-01 2.15E+00 1.29E-01 1.09E-01 

RMSE 7.26E-03 4.91E-03 2.66E-02 2.06E-03 1.12E-03 

Va 

MAE 8.55E-01 8.86E-02 6.04E-02 1.36E-02 4.24E-03 

MAPE (%) 4.62E+01 4.81E+00 3.26E+00 7.68E-01 2.21E-01 

RMSE 8.60E-01 1.11E-01 7.66E-02 2.17E-02 4.15E-03 

 

 

The state estimation results are listed in Table 3.3. For the IEEE 118-node system, 

it shows that the proposed USGCN gains improved 82.18%, 92.48%, 71.82%, and 

75.20% in voltage magnitude MAE in comparison with FCN, GCN, CNN, and SGCN, 

respectively. Besides, USGCN also enhances voltage magnitude RMSE at 82.23%, 

32.34%, 74.58%, and 78.43% in comparison with FCN, GCN, CNN, and SGCN, 

respectively. Moreover, for the 1747-node system, the USGCN reduces voltage phase 

angle MAE at 74.62%, 96.58%, 95.24%, and 68.82% in comparison with FCN, GCN, 

CNN, and SGCN, respectively. This indicates that the proposed USGCN can achieve 

a better accurate state estimation. The state estimation of voltage magnitudes and phase 

angles in nodes 5-15 of the 118-node system is depicted in Figure 3.7. Curves illustrate 

that the proposed USGCN model outperforms other data-driven models in state 

estimation. 
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Figure 3.7. The state estimation of voltage magnitudes and phase angles of the 118-node 

distribution system at hour 12.  

Furthermore, to inventively deliver the correlations learned by the USGCN, the 

parameter in the self-adaptive unrolled spatiotemporal graph is depicted. Each element 

in this graph is calculated by the inner product of the corresponding node embeddings. 

Figure 3.8(a) denotes the correlations of RES. Figure 3.8(b) denotes the adjacent matrix 

of topology. Figure 3.8(c) denotes the correlations learned by the self-adaptive unrolled 

spatiotemporal graph. In comparison with the heatmaps in (a) and (b), (c) presents more 

complex correlations in unrolled spatiotemporal graph models between nodes across 

time steps. This indicates that the correlation coefficient matrix and the adjacent matrix 

of topology cannot fully represent the complex correlations between nodes. However, 

the proposed node embedding can capture the correlations from the measurement data 

automatically. In this way, the state estimation accuracy can be improved.  
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Figure 3. 8. (a) Correlations of RES. (b) Adjacent matrix of topology. (c) Parameters in the 

unrolled spatiotemporal graph.  

Since the number of the convolutional layers affects the state estimation results, a 

different number of CNN layers are set to verify their effect on the performance of the 

USGCN. Figure 3.9 depicts the MAE and MAPE of state estimation for USGCN with 

different numbers of CNN layers. The biases between the training data and the testing 

data increase with the increase of the CNN layers. This indicates that the overfitting 

rises with eh increasing number of CNN. Besides, the three CNN layers achieve the 

lowest MAE and MAPE so three CNN layers are chosen in the proposed model.  
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Figure 3.9. The state estimation for a different number of CNN layers in USGCN.  

3.5.2 USGCN in State Forecasting  

To verify the USGCN’s effectiveness in comparison with other learning models, the 

Full Connected Network (FCN), Convolutional neural network (CNN), Graph 

Convolutional Network (GCN), Long Short-Term Memory (LSTM), GCN-LSTM [69], 

and SGCN are introduced as the comparison methods.  The FCN, GCN, and CNN have 

the same setting as mentioned in the above section. There are three layers in LSTM. 

Then, the CNN is combined with LSTM to form the CNN-LSTM method. The voltage 

magnitudes and phase angles’ forecasting results are summarized in Table 3.4. Note 

that state forecasting refers to the single step following the last observed time step. The 

time step used in SGCN, USGCN and LSTM is set at 21.  

As shown in Table 3.4, voltage magnitudes’ MAE, MAPE, RMSE obtained by 

USGCN are lower than the comparison methods. This demonstrates that the USGCN 

achieves better forecasting system states than other data-driven methods. Specifically, 

the voltage magnitudes’ MAE obtained by the USGCN are degraded by 11.7%, 27.3%, 
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56.9%, 77.8%, 92.2%, and 41.28% in comparison with the FCN, GCN, CNN, LSTM, 

CNN-LSTM, and SGCN methods, respectively. In addition, the voltage phase angles’ 

MAPE obtained by the USGCN are also degraded by 51.8%, 59.3%, 51.6%, 76.4%, 

82.8%, and 70.59%, respectively.  

 

 

Figure 3.10. The prediction results of voltage magnitudes and phase angles of node 55 in the 

118-node distribution system.   
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Table 3.4. The evaluation index in State forecasting of USGCN compared with deep learning methods 

with correlations 

States Methods FCN GCN CNN  LSTM CNN-LSTM SGCN USGCN 

Vm 

MAE 1.45E-03 1.76E-03 2.93E-03 5.78E-03 1.65E-02 2.18E-03 1.28E-03 

MAPE (%) 1.51E-01 1.84E-01 3.06E-01 6.00E-01 1.69E+00 2.28E-01 1.33E-01 

RMSE 2.23E-03 2.63E-03 4.03E-03 1.02E-02 4.05E-02 3.53E-03 1.68E-03 

Va 

MAE 1.25E-02 1.50E-02 1.32E-02 2.64E-02 3.55E-02 1.89E-02 6.06E-03 

MAPE (%) 6.37E-01 7.54E-01 6.65E-01 1.30E+00 1.79E+00 9.48E-01 3.07E-01 

RMSE 1.98E-02 2.33E-02 2.59E-02 4.40E-02 5.78E-02 3.09E-02 9.62E-03 

 

The predicted voltage magnitudes and phase angles in node 55 on the 118-node 

system are depicted in 3.10. From this figure, it can be seen that the state variables 

obtained by USGCN have a more similar trend to the actual values than the comparison 

methods. More specifically, LSTM and CNN-LSTM show a relatively low accuracy in 

state forecasting due to their limited learning ability in the power systems’ data. Besides, 

the SGCN captures the spatial and temporal correlations separately, leading to low 

accurate state forecasting results. This indicates the distinguished prediction ability of 

the proposed model. This is because the spatiotemporal correlations are extracted by 

the unrolled spatiotemporal graph model so that enhanced accuracy can be achieved. 

Furthermore, the predicted voltage magnitudes and phase angles in different time 

periods are depicted in Figure 11. This figure intuitively shows that the USGCN 

provides more accurate predicted values than the comparison methods. This is because 

both the temporal and spatial correlations are fully captured and thus the ahead-of-time 

DSSE can be achieved effectively. 
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Figure 3.11. The prediction results of voltage magnitudes and phase angles of node 14-30 of the 

118-node distribution system at hour 12.  

3.5.3 USGCN in Large-scale Distribution System  

To verify the USGCN’s performance in the large-scale distribution system, a 1746-

node distribution system is conducted as the test system, where 18 locations are 

deployed with RES units. Due to the data scale being too large to be learned by the 

FCN, GCN, and LSTM methods. the CNN is maintained to be the baseline method.  

The predicted voltage magnitudes and phase angles obtained by USGCN and the 

comparison methods are depicted in Table 3.5. It can be seen that the voltage 

magnitudes’ MAE, MAPE, and RMSE obtained by USGCN are degraded by 86.3%, 
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86.1%, and 63.3%, respectively. The phase angles’ MAE, MAPE, and RMSE obtained 

by USGCN are degraded by 59.3%, 80.4%, and 7.3%, respectively. Besides, the MAE, 

MAPE, and RMSE of voltage phase angles forecasted by the USGCN also outperform 

SGCN by 76.92%, 53.87%, and 51.64%, respectively. Thus, the USGCN achieves high 

accuracy in state forecasting for large-scale distribution systems in terms of accuracy 

and efficiency.  

 

Figure 3.12. The prediction results of voltage magnitudes and phase angles for bus 500 of the 

1746-node distribution system.  

The forecasting voltage magnitudes and phase angles at node 500 in the 1746-node 

distribution system are shown in Figure 3.12. It is intuitively that biases between the 

predicted values and the actual values obtained by the USGCN are much smaller than 

that obtained by the comparison method. It intuitively shows that USGCN can archives 

the state forecasting in a large-scale distribution system with a high accuracy so that 

the ahead of time system operational decisions can be made by the operators.  
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Table 3.5. The evaluation index of USGCN of 1746-node distribution system 

States Methods CNN SGCN USGCN 

Vm 

MAE 1.23E-02 7.10E-03 1.69E-03 

MAPE (%) 1.25E+00 7.19E-01 1.74E-01 

RMSE 1.55E-02 9.16E-03 5.68E-03 

Va 

MAE 3.54E-02 1.56E-02 1.44E-02 

MAPE (%) 1.94E+00 8.26E-01 3.81E-01 

RMSE 3.98E-02 7.63E-02 3.69E-02 

 

3.6 Summary 

The unrolled spatiotemporal graph convolutional network model is innovatively 

proposed in this work to timely estimate and forecast distribution system states with 

high-penetrated renewable power energy that exhibits complex correlations 

temporarily and spatially. More than 16.42% improvement in the evaluation indexes 

of estimated states is superiorly achieved over the traditional methods due to the 

complex correlations being captured by the proposed unrolled spatiotemporal graph 

model effectively. Besides, the proposed USGCN also speeds up the computational 

time by more than 100 times. Moreover, the ahead-of-time forecasting states are 

achieved by the proposed USGCN due to multiple stacked of the unrolled 

spatiotemporal graph model that allows a large field of correlations to be perceived. 

The proposed USGCN represents the ability in DSSE and state forecasting in terms of 

accuracy and efficiency.  
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Chapter 4  Probabilistic Power Flow of 

Distribution System Based on a Graph-

Aware Deep Learning Network 

4.1  Introduction  

The proliferation of renewable energy brings significant uncertainty to active 

distribution systems due to its intermittent and stochastic nature. Such a new scene in 

the distribution system unavoidably introduces challenges to the reliable operation of 

power systems. To represent the impact of uncertainty on distribution system planning 

and operation, the PPF computation gains many academic eyes due to its distinguishing 

ability on quantifying the uncertain impact on system states induced by the fluctuated 

power injections [80]. Thus, it is of great importance to develop a more effective model 

for PPF.  

The probabilistic power flow provides the distribution features of the system states 

for the power system planning to hedge against uncertainty. It is unprecedentedly 

important to take the complex uncertainty of RES into account in the PPF. It is well 

known that the distribution system is integrated with various renewable energy sources 

while it covers a relatively small area geographically. This phenomenon results in 

renewable energy deployment sites being close to each other and thus they are 

generally sharing similar weather and environment. Similar profiles generated by these 
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renewable energy units lead to complex correlations among nodal power injections. It 

poses an inevitable bias in PPF calculations [81]. Thus, there remains a problem to 

handle PPF while taking the complex correlation characteristic of RES into account.  

Many works reported in literatures have been focused on the PPF calculation. The 

Monte Carlo (MC) simulation method repeatedly computes the deterministic power 

flow for as many as possible scenarios of the wind and solar power injection to obtain 

the statistical characteristic of the system state variables. In this way, the PPF can 

achieve accurate results and is often utilized as the baseline [82], [83]. However, the 

MC-based PPF suffers from a heavy computational burden. To alleviate this issue, 

many approaches are utilized to attempt to reduce the number of power injection 

scenarios via generating representative samples, including the stratified Latin 

Hypercube Sampling [84], the Latin Supercube sampling [85], and so on. However, a 

great many samples may still be required in these numerical methods to represent the 

uncertain patterns of state variables accurately.  

To further alleviate the calculation burden in PPF, some analytical methods are 

introduced in the previous work. The cumulant-based method [86], [87] is introduced 

to compute the PPF in a linear manner on the power flow, which is not very adaptive 

to distribution system PPF with high nonlinearity. However, it is not suitable for a 

distribution system, whose power flow equation is difficult to linearize due to the high 

impedance ratio. The generalized polynomial chaos is proposed in [88] for reducing 

the computational complexity of PPF. Point estimation methods (PEM) [89], [90] 

calculate the nonlinear power flow at the moment of the system condition so that the 

approximated density function of the system states can be obtained. Thus, by solving 

the deterministic power flow with limited classical scenarios, the PPF computational 

efficiency can be ameliorated. However, the non-gaussian distribution on nodal power 

injections brings bias to classical PEM. In [91], the Cornish-Fisher expansion approach 

is introduced for fitting complex data features extracted from the renewable power 

injections, including wind and solar power. Limited deterministic power flow 

calculations are required in these methods, resulting in computationally tractable. 
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However, these approaches are only fit to PPF with power injections with dependence.  

To handle the correlations on the PPF problem, the common practice is to utilize 

the transformation methods to decouple the correlations and then apply the PPF 

calculation reported above. An approach is introduced in [89] to transform the input 

random variables set into a non-physical uncorrelated reference frame, then the PEM 

is employed to PPF. Similarly, in [16] the Nataf transformation is leveraged to transfer 

the estimation point with correlations into independence before PEM application. In 

[92] and [93], the Nataf transformation is combined with the Latin Hypercube 

Sampling to handle the correlations before the PPF calculation and thus enhance the 

accuracy and efficiency. A Hierarchical Adaptive Polynomial Chaos-ANOVA Method 

is proposed in [17] to extend the application of the polynomial chaos method [88] on 

PPF with correlations. The temperature-related errors are taken into account in the 

temperature-augmented model proposed in [94]. However, these reported methods 

assumed that the prior distribution of the correlations is known. Then this is pre-

processed by the mathematical transform methods and combined with either the 

numerical methods or the analytical methods to calculate the PPF. This relies on the 

full knowledge of the correlations and it is not practical in realistic PPF implementation.  

Smart meters are greatly deployed in the distribution system, recent works try to 

develop data-driven methods to deal with the PPF problem. Inspired by this, a Model-

Based Deep Learning Approach is proposed in [95] to remove the computational 

burden, which ignores the correlations brought by the renewable energy units. A 

convolutional neural network is proposed in [96] to speed up PPF calculation. However, 

this training process involves plenty of learnable parameters. Thus, a more efficient 

learning-based PPF model is essentially required to be studied.  

In this Chapter, a Graph-Aware Deep Learning Network (GADLN) model is 

leveraged to handle the probabilistic power flow (PPF) that is exposed to complex 

dependence among renewable power outputs. Specifically, to fully capture the 

mapping from the fluctuated power injections and the uncertain system states, the 

convolutional operation is introduced to aggregate the correlations among renewables 
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outputs according to their geographical locations to facilitate the PPF. In this way, the 

deviation pattern of the system state variables can be well learned. Therefore, by 

extracting the implicit distribution features in the measurements, the GADLN allows 

the graph-aware learning model to map the power injections into the system states 

autonomously while considering the complex correlations among renewable power 

outputs so that the improved effectiveness and speed-up calculation can be achieved. 

Moreover, the numerical results show the superior of the GADLN over the state-of-

the-arts with accurate and effective manners in the IEEE 33-node distribution system.  

The remaining sections are organized as follows. The definition of the probabilistic 

power flow with the corresponding mathematical format is proposed in Section 4.2. 

The novel graph-aware learning model is developed in Section 4.3. The experimental 

results and the corresponding discussions are introduced in Section 4.4. Finally, the 

works of this section are concluded in Section 4.5.  

4.2  Probabilistic Power Flow Problem  

In this section, the PPF formulation with uncertainty as well as the correlations on 

the renewable energy outputs is represented, which will later be considered by the 

proposed model.  

4.2.1 Deterministic Power Flow  

Among the functions to maintain the reliable monitoring and management of power 

system operation in the modern distribution system, the probabilistic power flow is the 

basic tool to perceive the system states. It delivers the uncertain impact of renewable 

energy outputs on the distribution pattern of the system states directly.  

A set of equations that are restricted to Kirchhoff's law is employed to describe the 

operation of the power system. Such equations represent the mapping from the nodal 
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power injections to the voltage.  

=1

=1

( cos( ) sin( ))

( sin( ) cos( ))

n

i i j ij i j ij i j

j

n

i

ij

iji j ij i j ij i j

j

P v v s g b

Q v v s g b

   

   

= − + −

= − − −




                               (4.1) 

In (4.1), iP  is the net active power injection at node i. iQ  denotes the net reactive 

power injection at node i. iv  is the voltage magnitude at node i. i  denotes the voltage 

phase angle at node i. 
ijg  is the conductance at branch sij. ijb  is the susceptance at 

branch sij.  
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                                             (4.2) 

In (4.2), G

iP  is the active RES output at node i. D

iP  denotes the active load demand at 

node i. G

iQ  is the reactive RES output at node i. D

iQ  denotes reactive load demand at 

node i. Note that for the node without RES or load demand, the corresponding G

iP , D

iP , 

G

iQ  and D

iQ  are set zeros.  

4.2.2 Probabilistic Power Flow  

The outputs of the RES are uncertain due to their stochastic and intermittent nature. 

Such uncertain impact on the system states can be calculated and represented by PPF, 

which is formulated by a function of system conditions. The relationship between the 

system states and the system conditions can be expressed by:  

( )f=Y X                                                     (4.3) 

The input of the PPF can be formulated as a vector.  

=[ , ]X P Q                                                     (4.4) 

The input of the PPF consists of the network conditions, the load demand, and the 
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renewable power outputs. The outputs of the PPF can be expressed as: 

=[ , ]Y V                                                      (4.5) 

In (4.5), it is obvious that the system states as the outputs are determined by the 

inputs.  

4.2.3 The Uncertainty of the RES Power Output  

The distribution of the wind speed is generally described by the Weibull 

probabilistic distribution function. 

1( ) ( ) exp[ ( ) ]k kk v v
f v

  

−= −                                            (4.6) 

In (4.6), v is the actual wind speed. k  is the shape parameter in this function.   is the 

scale parameter in this function. After the wind speed distribution is modeled, the 

power outputs of wind turbines can be obtained by the wind speed-power curve. 

1 2 ,    

,            

0,               otherwise

i r

w r r o

k v k v v v

P P v v v

+  


=  



                                          (4.7) 

In (4.7), the 1k  and 2k  can be obtained by the following equations, 1 / ( )r r ik P v v= − , 

2 1 ik k v= − . rv  denotes the rated wind speed of wind turbines. iv  is the cut-in wind speed. 

ov  represents the cut-off wind speed. rP  is the rated wind power. wP  denotes actual 

active wind power output.  

The Beta probabilistic distribution function is generally leveraged to characterize 

solar irradiance. 

1 1( )
( ) (1 )

( ) ( )
f E E E  

 

− − +
= −

 
                                  (4.8) 

where E  is the solar irradiance (W/m2).  

Similarly, after the solar irradiance is obtained, the power outputs of the panels can 

be commutated by the solar radiation-power curve. 
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PV PV PVP E S=                                                    (4.9) 

In (4.9), PVS  is the Photovoltaic panel area (m2). PV  denotes the solar power conversion 

efficiency. PVP  is the actual PV power output.  

4.2.4 The Correlation Among RES  

Conventionally, the correlation coefficient matrix C  is employed to model the 

correlation among RES.  

12 1

21 2

1 2

1      

  1   
=

          

     1

g

g

g g

 

 

 

 
 
 
 
 
  

C                                                (4.10) 

where g is the correlation nodal injections’ number. The element of C  is obtained by 

the following equation.  

cov( , )
=

i j

ij

i j

X X


 
                                               (4.11) 

where iX  is the variable presenting the nodal injection in node i; cov( , )i jX X  denotes 

the covariance of variables iX  and jX ; and i  is the standard deviation of variables 

iX . Since the matrix C  is a symmetric positive definite matrix, it can be decomposed 

into  

T=C LL                                                     (4.12) 

where L is an inferior triangular matrix. The inverse 
1−

L  is generally leveraged to 

decouple the dependent variables so that the independent variables can be obtained by  

1

in = −X L X . However, due to the violent fluctuation in renewable energy outputs, the 

corresponding correlations among them usually represent nonlinearity and complexity. 

The linear correlation coefficient matrix can no longer be utilized to describe such 

features. Thus, it is the motivation of the proposed GADLN to explore this issue.  
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4.3 Graph-aware deep learning Network 

Firstly, the graph-aware scheme is introduced to fully capture the features of the 

nodal power injections and then the entire structure of the proposed GADLN model is 

formulated in detail.  

4.3.1 Graph-Aware Scheme 

The convolutional operation is one of the technologies of the neural network. To 

adapt the nodal power injections vector of the power system, the one-dimensional 

convolutional operation is proposed to extract the features of the nodal power injections 

instead of a three-dimensional convolutional operation which requires too many 

parameters. The one-dimensional convolutional operation is parameterized by the 

following equation with the input vector 1B NR  X .  

1

0

( , , 1)= + ( , ) ( , , )
C

c

B c N ks C c B c N
−

=

− + Y b W X                               (4.13) 

In (4.13),   is the dot-product. c  represents the number of channels; b  denotes the 

bias; W  is the kernel parameters; ks  is the kernel’s size; B denotes the batch size; N  

indicates the length of the power injection sequence. During the training process, the 

kernel can aggregate the data features within the window size.  

To make sure the nodal power injections vector is compatible with the one-

dimensional convolutional operation while with graph nature preserved, the graph-

aware scheme-based inputs are defined as =[ , ]i iX P Q .  

1 2

1 2

[ , , , ]

[Q ,Q , , ]

fh fh fhk n

fh fh fhk n

P P P P

Q Q

P =

Q =
                                         (4.14) 

where fh  denotes feeder h; k  denotes the number of lines in feeder h. This 

definition of the data inputs can facilitate the data being captured by the model 

graphically. This is because the nodes in a feeder are more related to each other 
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geographically. Their data can be aggregated by the convolutional operation more 

directly. Furthermore, the nearby wind and solar generation outputs can be aggregated 

after several convolutional operations. In this way, the complex correlations are 

extracted by several convolutional operations.  

4.3.2 Structure of GADNL Model 

The GADNL’s architecture is characterized in Figure 4.1. It shows that the data 

pass through six hidden layers from the input layer to the output layer. These six hidden 

layers are conducted by three convolutional neural network layers and three fully 

connected neural network layers. The kernel size and the neurons’ sizes are also marked 

in the picture. Only three convolutional neural network layers are conducted is to 

alleviate the overfitting problem as well as avoid numerous parameters training.  

Input

1x64 6x60 12x56 16x52

Relu Relu Relu

832 120 84 64

Output

Flatten

Full-

connected

Full-

connected

Full-

connectedKernel(5) Kernel(5)

Kernel(5)

Kernel(5)

 

Figure 4.1. The structure of the GADLN. 

4.4  Case study 

To verify the performance of the GADNL, the IEEE 33-node system [2] is 

introduced to be the test system where renewable generation is integrated, including 

PV and wind turbines. Before the experimental simulation, the training data set is 

required to be generated. The generated training data set consists of the net active and 
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reactive power injections as the inputs of the model, the voltage magnitudes and voltage 

phase angles, and the active line flow and the reactive line flow as the outputs of the 

model. This data set can be achieved by the following steps. Firstly, the outputs of PV, 

wind turbines are generated according to the Weibull and Beta functions based on the 

Monte Carlo (MC) methods. The load demand is generated according to the normal 

distribution. Secondly, AC power flow is leveraged to obtain the system states taking 

the generated injections above as the inputs. This data generation process is conducted 

in Matlab. After the training data set is ready, 100K samples are obtained, where 90% 

of samples as the training data and 10% of samples as the testing data. 

 

(1) Error metrics for voltage magnitudes and phase angles 

In order to provide the indexes in evaluating the performance of the GADNL, the 

mean error of voltage magnitudes and phase angles is quantitatively formulated.  

100%m x MC

MC



 




−
=                                           (4.15) 

In (4.15), x represents the PPF approaches apart from the MC methods. MC represents 

the MC methods in PPF.   denotes the average value for each nodal system state, 

voltage magnitudes and phase angles, active line flow, and the reactive line flow. m 

represents the mean or maximum errors.  

(2) GADNL’s Performance index 

In order to verify the learning effectiveness of the GADNL, the Mean Absolute Error 

(MAE), and Mean Absolute Percentage Error (MAPE) indexes are leveraged.  

1

1
ˆMSE=

samn

i i

isam

y y
N =

−                                               (4.16) 

1

ˆ1
MAPE= 100%

samn

i i

isam i

y y

N y=

−
                                  (4.17) 

In (4.16) and (4.17), ˆ
iy  is the direct outputs of the GADNL. iy  denotes the actual 

values corresponding to the outputs.  
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(3) Hyperparameters setting 

During the training process, the learning rates of GADNL and the employed 

baselines methods are set at 0.01. The size of the batch is set at 1000. The regularization 

coefficient is set at 10-12. These parameters are selected by optimization. The test 

system conducted by the GADNL is applied by python and performance in a computer 

with the windows 10 environment and Intel(R) Xeon(R) CPU E5-2650 v4 @ 2020GHz, 

and the graphics card of NVIDIA GeForce GTX 3090 24G. 

(4) The parameters of the wind and solar power models 

 

Table 4.1. Wind Speed and Solar Irradiance Distribution Functions’ Parameters  

RES PDF types Parameters 

a b 
W1 Weibull 6.00 2.00 
W2 Weibull 6.21 1.98 
W3 Weibull 6.01 2.17 

W4 Weibull 5.89 2.05 

W5 Weibull 6.08 2.14 
S1 Beta 2.06 2.5 

S2 Beta 2.12 2.8 
S3 Beta 2.17 3.0 

S4 Beta 2.08 2.6 

Table 4.2. Correlation Coefficient Matrix of the RES  

 W1 W2 W3 W4 W5 S1 S2 S3 S4 

W1 1 0.49 0.301 0.551 0.450 0.522 0.350 0.242 0.352 

W2 0.490 1 0.345 0.263 0.301 0.550 0.270 0.231 0.271 

W3 0.301 0.345 1 0.641 0.125 0.260 0.420 0.222 0.282 

W4 0.551 0.263 0.641 1 0.261 0.316 0.250 0.322 0.346 

W5 0.449 0.301 0.125 0.261 1 0.760 0.366 0.262 0.356 

S1 0.522 0.550 0.260 0.316 0.76 1 0.350 0.231 0.256 

S2 0.350 0.270 0.420 0.250 0.366 0.350 1 0.242 0.341 

S3 0.242 0.231 0.222 0.322 0.262 0.231 0.242 1 0.366 

S4 0.352 0.271 0.282 0.346 0.356 0.256 0.341 0.366 1 
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The wind speed and solar irradiance distribution functions’ parameters are listed in 

Table 4.1 [97]. The correlation coefficient matrix of the RES is shown in Table 4.2 

[98]. The parameters wind-power curve are vi = 4 m/s, vr = 14 m/s and vo = 25 m/s, 

respectively. 

4.4.1 Considering Independent RES Power Outputs  

In order to verify the GADLN’s performance in PPF calculation with independent 

renewable energy. Two traditional approaches, MC and PEM (Three-point) are 

introduced as the comparison methods. The distribution of the voltage magnitudes and 

active line power flow is characterized in Figure 4.2, where the nodes 7 and 17, lines 

(9,10) and (17,18) are selected. Taking the results of MC methods as the baseline, the 

results of PEM and GADLN almost coincide with that of MC. This indicates that the 

proposed GADLN can calculate PPF with high accuracy under the independent 

renewable energy injections.  

 

 

Figure 4.2. The voltage magnitudes and line active power flow. 
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Table 4.3. The mean error of comparison of different methods without correlation 

Method Error (%) V  P Q 

PEM 

mean

  0.0012 0.0210 0.1274 0.0769 

max

  0.0028 0.0909 0.8111 0.4983 

GADLN 

mean

  0.0085 0.0406 0.0502 0.0792 

max

  0.0326 0.0854 0.4061 0.4635 

 

To represent the total simulation results of the GADLN, in comparison with the 

PEM, the relative error with MC on voltage magnitudes, phase angles, active line flow, 

and reactive line flow are summarized in Table 4.3. The relative errors are all less than 

0.5%. These results further demonstrate the effectiveness of the proposed GADLN in 

PPF under the independent renewable energy injections. 

4.4.2 Considering Correlation on RES Units  

 

Figure 4.3. The voltage magnitudes and line active power flow. 
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In order to verify the GADLN’s performance in PPF with renewable energy 

correlations, the correlation coefficient parameters are set in Table 4.3. The distribution 

of the voltage magnitudes and active line power flow is characterized in Figure 4.3, 

where the nodes 7 and 17, lines (9,10) and (17,18) are selected. It indicates that the 

comparison method PEM is unable to calculate the PPF with correlations considered. 

The GADLN achieves accurate enough results with MC.  

Table 4.4. The mean error of comparison of different methods with correlation 

Method Error (%) V  P Q 

PEM 

mean

  0.2927  2.0810  15.6586  6.1703  

max

  0.5116  4.9379  237.9131  44.2972  

GADLN 

mean

  0.0071  0.0918  0.0423  0.0758  

max

  0.0206  0.1716  0.3452  0.5382  

 

The relative error with MC on voltage magnitudes, phase angles, active line flow, 

and reactive line flow is summarized in Table 4.4. The errors obtained by GADLN are 

all less than 0.1%. It indicates that the proposed GADLN can achieve high 

effectiveness in PPF calculation with correlations considered. Furthermore, if the 

realistic data if utilized in the proposed model, the efficiency can also be guarantee this 

is because the strong graphical learning ability of the proposed model.  

4.4.3 The performance of the proposed model 

To verify the GADLN’s convergence, a fully connected neural network (NN) with 

five layers and the graph convolutional neural network (GCN) with three layers [71] 

are introduced as the comparison methods. The performance evaluation index MAE 

and MAPE are selected as mentioned above. The convergence curves of MAE and 

MAPE on GCN, NN, and GADLN are shown in Figure 4.4. It shows that the 

convergence values obtained by GADLN are higher than that of NN and GCN. This 
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demonstrates that the proposed GADLN can achieve higher accuracy. Moreover, the 

MAE and MAPE curves of GCN and NN are below that of GADLN, which means that 

the convergence speed of GCN and NN are much lower than GADLN. This is because 

the GADLN can fully capture the correlation between power injections and the system 

states efficiently. Therefore, the GADLN can give a high accuracy in PPF calculation 

as well as with a fast training speed.  

The computational time for MC, PEM, and GADLN are listed in Table 4.5. Note 

that the number of samples utilized in MC and GADLN is set at 5000. In comparison 

with MC, the GADLN provides a smaller calculation time, which indicates the 

efficiency of the GADLN.  

 

Figure 4.4. The training performance of the GADLN. 

Table 4.5. The calculation time of comparison of different methods with correlation  

Methods MC  PEM  GADLN 

Time (s) 11.5831 1.0487 0.0220 
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4.5  Summary 

A GADLN model is employed to calculate the PPF considering the complex 

correlations among nodal power injections. The high effectiveness and efficiency of 

the GADLN model are demonstrated by the accurate simulation results. This is due to 

the hidden distribution pattern on correlations among wind and solar power generation 

outputs being well captured by the proposed model. Furthermore, the proposed model 

also represents the capability of saving computational time.   
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Chapter 5  Graph Attention Enabled 

Convolutional Network for Distribution 

System Probabilistic Power Flow 

5.1  Introduction  

In previous Chapter 4, by using the merits of CNN's powerful feature extracting 

ability, the GADNL is proposed to [99] to characterize the correlations between solar 

and wind power units and results in more accurate results in the mean value of 

distribution system state variables in PPF calculation. However, GADNL neglects the 

high-dimensional statistical features of the system states. Thus, more efficient, and 

accurate data-driven PPF calculation methods are still needed to be studied.  

In this Chapter, a graph attention enabled convolutional network (GAECN) is 

proposed to calculate PPF considering the hidden correlation of the wind and solar 

power resource injections [100]. This model utilizes the graph attention enabled 

convolutional layer to aggregate the neighboring information to improve the accuracy. 

Within this layer, different from only utilizing the Euclidean structure adapted 

convolutional neural network, the graph conductional network is employed to extract 

the non-Euclidean structure of the power system. Besides, instead of using the 

linearized correlations of nodal power injections from historical data, the self-adaptive 

graph convolutional operation based on the graph embedding technique can capture the 
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complex correlations automatically. Then, the convolutional neural network operation 

is followed to handle the violent fluctuation of the outputs of renewable energy. The 

performance of the proposed GAECN is investigated through extensive case studies on 

the IEEE 33-node, PG&E 69-node, and 118-node distribution systems. The 

contributions are summarized as follows. 

(1) The graph convolutional operation is employed to fully extract and leverage the 

correlations of the nodal power injections to improve the PPF calculation accuracy. 

(2) The node embedding technique is integrated into the graph convolutional 

operation to automatically capture the nonlinear nature of the correlations so that the 

lower errors in the standard deviation of the system states can be achieved. 

(3) The convolutional neural network is employed to adapt to the stochastic 

fluctuations to achieve higher accuracy with high penetration of RES. 

The remaining sections are organized as follows. The definition of the probabilistic 

power flow with the corresponding mathematical format is proposed in Section 5.2. 

The GAECN model and its framework are proposed in Section 5.3. The experimental 

results and the corresponding discussions are introduced in Section 5.4. Finally, the 

works of this section are concluded in Section 5.5.  

5.2 Graph Attention Enabled Convolutional Network  

The conventional PPF calculation model introduced in Section II depends on the 

specific prior knowledge, including the information on the correlation coefficient 

matrix. At the same time, PPF is a time-sensitive task that requires quick computation 

results. To overcome these difficulties, the GAECN model is introduced to solve the 

probabilistic power flow problem efficiently. Firstly, the graph convolutional operation 

combining the node embedding technique is proposed to handle the implicit 

correlations automatically. Then, the framework of the GAECN model is introduced 

following.   
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5.2.1 Graph Convolutional Operation 

Generally, the physical topology of the power system is designed in a non-

Euclidean structure. The correlations among different nodal power injections are also 

represented as a non-Euclidean structure. This data structure is described as a graph 

structure rather than a grid or line. It is this natural essence that inspires the choice of 

graph convolutional network (GCN). By representing the data in the form of a graph, 

GCN [71] is popularly implemented on plenty of tasks to deal with the non-Euclidean 

structure data, such as node classification, and traffic forecasting [101].  

The measurement sites of the distribution system can be seen as nodes, and the 

correlations among these nodes can be depicted as edges. A graph ( , )=  is utilized 

to represent the graphical structure among nodes, where 1{ , , , }i Nv v v=  is the set of all 

nodes and  is the set of edges. To describe this graph structure quantitatively, the 

adjacent matrix N NA  is introduced such that:  

1,  if , ,and ( , )

0, else

i j i j

ij

v v v v 
= 


A                                 (5.1) 

Besides, the Laplacian matrix L is defined as = −L D A , where 
ii ijj

= D A  is the 

degree matrix. The normalized Laplacian matrix L can be calculated as: 

1/ 2 1/ 2 1/ 2 1/ 2( ) N

− − − −= − = −L D D A D I D AD                          (5.2) 

The nodal power injection data can be handled as the features of each node, denoted 

by 
N dX , where d is the dimension of features. The neighbor features can be 

aggregated by the aggregation scheme in the graph convolutional operation, which is 

the core part of GCN. This aggregation scheme is a function over the nodal features, 

such as an add or means, which can be dived into two categories: the spectral domain 

and the spectral domain. Spectral-based methods update the node’s representation by 

multiplying its Fourier transform with its neighbor’s Fourier transform. Spatial-based 

methods update the node’s representation by convolutional itself directly with its 

neighbor’s representation, which obtains more attention due to their high effectiveness. 
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The latter one is used to construct the graph convolutional operation of the proposed 

model. The spectral graph convolutional operation is defined as the input N dX  and 

the filter ( )g L  parameterized by  :  

( ) * Tg g =L X U U X                                            (5.3) 

where U  is the eigenvector of normalized Laplacian matrix L and T
U X  is the Fourier 

transform of X . Due to the heavy computational burden of this Fourier transform 

calculator, a simplified graph convolutional operation is proposed [71], shown as: 

( ) ( 1)( )l l l −=H AH W                                             (5.4) 

where ( )l
H  is the output of layer l and (0)

H  denotes the input; ( )l
W  is the trainable 

parameters of the layer l;   denotes the active function; A is the normalized format 

of the adjacency matrix plus self-loop connections A , 1/ 2 1/ 2 1/ 2 1/ 2( )N

− − − −= = +A D AD D A I D . 

NI  is the identity matrix.  

5.2.2 Self-adaptive Graph Convolutional Operation  

The most important task in the graph convolutional layer is to determine the 

adjacency matrix A . Since the physical distribution power system can be seen as a 

graph, the adjacent matrix corresponding to the branch information of the distribution 

system can be extracted to form A  in the GAECN. In this way, the neighbor 

information can be aggregated via the connections inside A , so that enhanced 

accuracy can be achieved. This process treats the correlations as a fixed matrix 

according to the natural connection of the power system. However, it cannot represent 

the implicit correlations among power injections brought by the dramatical uncertain 

nature of RES.  To address this issue, the node embedding [102] that can represent the 

graph structure adaptively is employed to facilitate the graphical representation ability 

of the adjacency matrix A . To achieve this goal, the self-adaptive adjacency matrix 

adpA  is defined as: 
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1(1 ) ( ( ))adp SoftMax EeLU + − T

2A = A E E                                     (5.5) 

In (5.17), [0,1]   are the weights of the A , which reflects the importance of the 

information of branches. Node embeddings 
1 2, N kE E  are the learnable parameters; 

The elements of 1E  and 2E  are randomly initialized and are updated during the 

learning process; k is the dimension of embedding. 1E  and 2E  present two nodes, 

respectively. The multiplied value of them is used to denote the weights of correlation 

between the corresponding two nodes. During the training process, the implicit 

correlations can be learned and preserved 
adpA  automatically. The ReLU activation 

function is employed to eliminate weak connections, while the SoftMax activation 

function is employed to normalize the self-adaptive adjacency matrix.  Note that when 

adpA = A equivalent to 1 =  with no node embedding, the model is defined as Non-adp-

GAECN. Besides, when 0  , the corresponding model is defined as Bi-adp-GAECN. 

Most importantly, if 0 = , the self-adaptive graph convolutional operation is fully 

adaptive without any information of adjacent matrix, which is defined as Full-adp-

GAECN. This setting allows the self-adaptive graph convolutional operation to fully 

capture the implicit correlations from the data itself.  The performance of these models 

is represented later.  

5.2.3 Convolutional Neural Network 

The neural network obtains more and more academic attention due to its powerful 

ability of approximation. Conventionally, the fully connected neural network [103] 

treats the input information indiscriminately and ignores the uncertain influence among 

neighboring nodal features of the data. However, it is proved that the uncertain features 

of data can be learned via the convolutional operation layer by layer to improve the 

learning performance such as the image data [104]. Thus, the convolutional neural 

network is also utilized to handle the uncertainty of the power injections to facilitate 
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the approximation of the PPF.  

The convolutional operation is one of the technologies of the neural network. To 

adapt the nodal power injections vector of the power system, the one-dimensional 

convolutional operation is proposed to extract the features of the nodal power injections 

instead of a three-dimensional convolutional operation which requires too many 

parameters. The one-dimensional convolutional operation is parameterized by the 

following equation with the input vector 1B NR  X .  

1

0

( , , 1)= + ( , ) ( , , )
C

c

B c N ks C c B c N
−

=

− + Y b W X                          (5.6) 

In (5.6),   the dot-product. c represents the number of channels. b denotes the bias; 

W  is the kernel parameters. ks is the kernel’s size. B denotes the batch size. N is the 

number of elements in the power injection sequence. During the training process, the 

features inside the window size of the kernel can be aggregated by a kernel convolution 

operation.  

Then, the graph-aware scheme is introduced to capture the uncertain influence of 

the neighboring power injections, which is realized by defining the structure of the 

input of the proposed model. As it is defined and emphasized above, =[ , ]X P Q  is the 

input of the proposed model. To fully utilize the neighboring information among nodes 

including the uncertain correlations of power injections due to the dependence of the 

output of wind, solar generations, and load demands, the sequence of the elements ,P Q  

is defined as follows.  

1 2

1 2

[ , , , ]

[Q ,Q , , ]

fh fh fhk n

fh fh fhk n

P P P P

Q Q

P =

Q =
                                        (5.7) 

where fh  denotes feeder {1, , , }h h H ; {1, , , }k k K denotes the number of lines in 

feeder h. This definition of the data inputs can facilitate the data being captured by the 

model graphically. This is because the nodes in a feeder are more related to each other 

geographically. Their data can be aggregated by the convolutional operation more 

directly. Furthermore, the nearby wind and solar generation outputs can be aggregated 
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after several convolutional operations. In this way, the complex correlations are 

extracted by several convolutional operations. 

5.2.4 Structure of GAECN  

The structure of the model is also shown in Figure 5.1. It consists of an adaptive 

graph convolutional layer, two 1-D convolutional neural networks (CNN) layers, and 

a fully connected neural layer. The adaptive graph convolutional layer can perceive 

and learn the correlations hidden in the input data from the beginning. This is the reason 

it served as the first layer. The convolutional neural network layers can deeply learn 

the uncertainties brought by the RES. Thus, two 1-D convolutional layers are employed 

here instead of the conventional neural network. A fully connected neural layer is the 

output layer to obtain the aiming output size. Before the CNN layer, the dimension of 

the input data is reshaped form B N  to 1B N  . And after the CNN layer, the data is 

flattened into two dimensions.  

 

 

Figure 5.1. The structure of the GAECN. 
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The mean absolute error (MAE) is chosen to be the loss function of the proposed 

model, which is defined as: 

1

1
( ) | |

N

i

Loss
N =

= −Y Y Y                                            (5.8) 

In (5.20), Y  is the output of the proposed model, Y  and denotes the actual value to 

guide the training process.  

5.3 Case study 

Several distribution systems, including the IEEE 33-node system, PG&E 69-node 

distribution system [5], 118-node system [105], and a real 76-node distribution system 

are employed to evaluate the performance of the proposed model. The Monte Carlo 

simulation is utilized to generate the power outputs of wind and solar, and load demand 

according to their parameters is shown in Table 5.1 and Table 5.2. The power outputs 

of wind and solar generators are generated by the following steps. Firstly, the wind 

power and solar power are generated following the Weibull and Beta density 

distribution functions (Parameters are in Table 5.1) and the load demand is assumed 

following the normal distribution with 20% of the mean value as the standard deviation. 

Secondly, the correlation coefficient matrix (Shown in Table 5.2) is utilized to generate 

the correlation injections via the in= cX L X  (Eq. (5.13)). Note that the correlation 

coefficient matrix is added with the noise following the normal distribution (1,0.1)Nor  

in each injection sample. Based on these scenarios, the AC power flow is conducted by 

the Matpower toolbox to generate the data set. The generated data set includes the nodal 

net active and reactive power injections, which are the input data, and the nodal voltage 

magnitudes, voltage phase angles, and the line active and reactive power flow, which 

are the outputs of the model. After this data preparation process, the data size of the 

IEEE 33-node, PG&E 69-node, 118-node, and 76-node distribution systems are set to 

be 6.4M, 13.6M, 23.4M, and 19.4M respectively, with 90% as the training data and 10% 
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as the test data. 

(1) System state variable error metrics: 

In order to provide the indexes for evaluating the performance of the GAECN, the 

mean error and standard deviation error calculation is formulated.   

100%m x MC

MC



 




−
=                                         (5.9) 

100%m x MC

MC



 




−
=                                       (5.10) 

In (5.9) and (5.10), x represents the PPF approaches apart from the MC methods. MC 

represents the MC methods in PPF, whose results are served as the true ground;   is 

the mean error of the expected value of PPF results between the method x and MC;   

is the mean error of the standard deviation value of the PPF results between the method 

x and MC; m denotes the mean or maximum (max) value of the error.  

(2) Hyperparameters setup: 

During the training process, the learning rates of GADNL and the employed 

baselines methods are set at 0.01. The size of the batch is set at 1000. The regularization 

coefficient is set at 10-12. These parameters are selected by optimization. The test 

system conducted by the GADNL is applied by python and performance in a computer 

with the windows 10 environment and Intel(R) Xeon(R) CPU E5-2650 v4 @ 2020GHz, 

and the graphics card of NVIDIA GeForce GTX 3090 24G. 

(3) The parameters of the wind and solar power models:  

The rated power of W1, W2, W3, and W4 are set at 0.06MW, and the rated power 

of W5 is 0.18MW. The rated powers of solar panels are 0.03MW. The wind speed and 

solar irradiance distribution functions’ parameters are listed in Table 4.1. The 

correlation coefficient matrix of the RES is shown in Table 4.2. The location of the 

RES is listed in Table 5.1. The parameters wind-power curve are vi = 4 m/s, vr = 14 m/s 

and vo = 25 m/s, respectively. 
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Table 5. 1 The Locations of the RES units 

33 

Location 5 14 18 22 25 6 10 29 33 

Renewable W1 W2 W3 W4 W5 S1 S2 S3 S4 

Rated power (MW) 0.06 0.06 0.06 0.06 0.18 0.03 0.03 0.03 0.03 

69 

Location 11 24 34 68 38 50 53 18 7 

Renewable W1 W2 W3 W4 W5 S1 S2 S3 S4 

Rated power (MW) 0.06 0.06 0.06 0.06 0.18 0.03 0.03 0.03 0.03 

118 

Location 13 32 42 22 25 74 101 86 54 

Renewable W1 W2 W3 W4 W5 S1 S2 S3 S4 

Rated power (MW) 0.6 0.6 0.6 0.6 1.8 0.3 0.3 0.3 0.3 

 

5.3.1 Considering Independent RES Power Outputs  

In order to verify the GAECN’s  performance in PPF calculation with independent 

renewable energy. Two traditional approaches, MC and PEM (Three-point) are 

introduced as the comparison methods. The PPF results of the MC method is served as 

the ground truth.  

Table 5. 2 The mean error of comparison of different methods without correlation of IEEE 33 system. 

Method Error (%) V  P Q 

PEM  

mean

  0.0012 0.0210 0.1274 0.0769 

max

  0.0028 0.0909 0.8111 0.4983 

mean

  1.3873 1.0123 1.8185 1.1087 

max

  2.8460 2.3169 4.1460 3.0690 

Full-adp-

GAECN 

mean

  0.0012 0.0759 0.1164 0.0553 

max

  0.0029 0.1488 0.5283 0.1594 

mean

  1.1810 1.0014 0.9875 2.5813 
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max

  4.0839 2.1299 6.4197 4.7623 

 

To represent the total simulation results of the GAECN, in comparison with the 

MC, the relative error with MC on voltage magnitudes, phase angles, active line flow, 

and reactive line flow are summarized in Table 5.2. The relative errors are all less than 

7%. These results further demonstrate the effectiveness of the proposed GAECN in 

PPF under the independent renewable energy injections.  

The distribution of the voltage magnitudes and active line power flow is 

characterized in Figure 5.2, where the nodes 7 and 17, lines (9,10) and (17,18) are 

selected. Note that the voltage magnitudes and the active line power flow are assumed 

normal distribution, which is based on the mean values and standard deviations 

extracted from the MC, PEM, GPE, PCE, and GAECN. In comparison with the 

baseline methods MC and PEM, the GAECN shows a highly similar distribution. 

Taking the results of MC methods as the baseline, the results of PEM and GADLN 

almost coincide with that of MC. This indicates that the proposed GADLN can 

calculate PPF with a high accuracy under the independent renewable energy injections.  
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Figure 5.2. The voltage magnitudes and line active power flow without correlations.  

Since the statistics information is compared for MC and GEACN without 

correlations, to further investigate the effectiveness of the proposed GEACN, the 

histograms of MC and GEACN are depicted in Figure 5.3. It shows that the distribution 

of the voltage magnitudes and the active line power flow are not a precise normal 

distribution. Besides, the histograms of GEACN are consistent with MC, which 

demonstrates that the GEACN effectively gives a high calculation accuracy in PPF 

without correlations.  
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Figure 5. 3. The histograms of MC and GEACN without correlations. 

5.3.2 Considering Correlation on RES Units  

In order to verify the GADLN’s performance in PPF with renewable energy 

correlations, the correlation coefficient parameters are set in Table 4.2. The relative 

error with MC on voltage magnitudes, phase angles, active line flow, and reactive line 

flow is summarized in Table 5.3. It shows that the GAECN outperforms PEM by the 

percentages of 99.13%, 99.04% in mean value, the maximum value of the expected 

value of the voltage magnitudes, and 97.40%, 96.42% mean value, the maximum value 

of the standard deviation of the voltage magnitudes, respectively. Besides, The 

GAECN also outperforms PEM by the percentages of 99.99%, 99.20% in the mean 

value, the maximum value of the expected value of the active line power flow, and 

95.27%, 95.85% in the mean value, the maximum value of the standard deviation of 

the active line power flow, respectively. This indicates that the proposed GAECN has 

a much smaller error in PPF calculation compared with that of the PEM. Therefore, the 
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proposed GAECN can well calculate the PPF in terms of effectiveness and robustness 

under the correlation of RES.  

The distribution of the voltage magnitudes and active line power flow is 

characterized in Figure 5.4, where the nodes 7 and 17, lines (9,10), and (19,20) are 

selected. It shows that there is a significant bias between the distributions of state 

variables calculated by the PEM and the MC. It indicates that the comparison method 

PEM is unable to calculate the PPF with correlations considered. The GAECN can well 

fit the distribution of the state variables calculated by the MC method. This 

demonstrates that the GAECN outperforms the PEM method on the PPF calculation 

with correlations.  

Table 5. 3. The mean error of comparison of different methods with the correlation of IEEE 33 system.  

Method 
Error 

(%) 
V  P Q 

PEM  

mean

  0.2927 2.0810 15.6586 6.1703 

max

  0.5116 4.9379 237.91 44.2972 

mean

  28.915 4.932 14.391 6.259 

max

  38.594 10.697 41.427 24.171 

Full-adp-

GAECN 

mean

  0.0025 0.3519 0.4049 0.8598 

max

  0.0049 0.7251 1.9623 4.3723 

mean

  0.7541 1.1052 0.6810 1.6550 

max

  1.3821 1.9287 1.7057 5.5728 



 

99 

 

 

 

 

 

Figure 5. 4. The voltage magnitudes and line active power flow with correlations.   
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Figure 5. 5. The errors of voltage magnitudes with correlations.  
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To further investigate the performance of the proposed GAECN model, the errors of 

voltage magnitude mean value (Vm u.), and errors of voltage magnitude standard 

deviation (Vm s.t.) of PEM and GEACN compared with MC for IEEE 33-node system, 

PG&E 69, and 118-node system are depicted in Figure 5.5. The relatively large error 

of PEM shows that the correlations have a significant impact on conventional PPF 

results. The proposed GEACN can reduce the errors to below 5% for most of the 

voltage magnitude mean values and standard deviations.  

Similarly, the statistics information for MC and GEACN with correlations is 

compared. To further investigate the effectiveness of the proposed GEACN, the 

histograms of MC and GEACN with correlations are depicted in Figure 5.6. It also 

shows that the histograms of GEACN are consistent with MC, which indicates that the 

GEACN effectively gives a high calculation accuracy in PPF with correlations.  
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Figure 5. 6. The histograms of MC and GEACN with correlations. 
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5.3.3 The Performance of the GAECN 

To verify the GADLN’s performance in comparison with other deep learning 

methods, there are several cases employed as the baseline model. (1) a fully-connected 

neural network (FCN), with five layers parameterized by 100, 1500, 100, and 500 

neurons for the first four layers; (2) A Convolutional Neural Network (CNN) model 

with three convolutional layers and three fully connected layers, where the sizes of its 

channels are 8, 8, and 8, respectively, and the kernel sizes are 5; (3) A graph 

convolutional network (GCN) [71] with two layers of graph convolutional layers, 

whose adjacent matrix is conducted based on the branch information; (4) The proposed 

GAECN model without adaptive operation, named Non-adp-GAECN; (5) The 

proposed GAECN with 0.1 = , named Bi-adp-GAECN; (6) The proposed GAECN 

with 0 = , named Full-adp-GAECN.  The sizes of the channels of the proposed 

GAECN are 8, 8, and 8 respectively and the kernel sizes are 5. The structure of the 

methods (4), (5), and (6) are the same except for the parameters  . Note that the 

structure of the CNN layers is chosen based on the following reasons. Because the 

nodes in a feeder of the distribution system are generally from 4 to 15, the kernel size 

is chosen to be 5 to make sure that the CNN can capture the information with 5 nodes 

together in the first CNN layer. By adding more than one CNN layer, the information 

outside 5 nodes while in a feeder can be further captured through the later CNN layers. 

Three CNN is enough to adapt to the distribution system and at the same time avoid 

the training burden. The size of channels is selected based on the GEACN performance.  

The PPF calculation errors with the MC derived from different data-driven methods 

of the IEEE 33, PG&E 69, and 118-node distribution system are reported in Table 5.4. 

For IEEE 33 distribution system, compared with FCN, CNN, and GCN, the Full-adp-

GAECN has a better performance on the mean error of expected value of voltage 

magnitudes with the percentages of 7.41%, 99.71%, and 99.11%, and the mean error 

of the standard deviation of the voltage magnitudes by 22.2%, 99.76%, and 99.14%, 

respectively. Besides, the Full-adp-GAECN also obtains much smaller maximum 
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errors of standard deviation in voltage phase angles by 75.78%, 72.07%, and 98.05%, 

respectively, compared with the baseline methods. This significant improvement of 

PPF by Full-adp-GAECN indicates the effectiveness of the proposed model. 

Table 5. 4. The mean error of different data-driven methods with correlation.  

Systems 
Error (%) 

IEEE 33 PG&E 69 118-node 

Methods V  V  V  

FCN 

mean

  0.0027 0.3262 0.0004 0.0564 0.0018 2.7278 

max

  0.0063 0.6912 0.0013 0.1555 0.0064 204.67 

mean

  1.164 0.8675 2.599 6.0818 6.9979 8.7629 

max

  8.358 7.9670 70.641 80.525 61.946 65.450 

CNN 

mean

  0.8560 1.6663 0.2044 4.4926 0.2203 144.20 

max

  2.0174 4.7534 0.6856 10.958 1.4778 6391.7 

mean

  6.9961 2.7658 7.0241 5.410 22.516 25.245 

max

  17.791 6.9103 54.094 22.688 64.748 71.337 

GCN 

mean

  0.2819 0.5777 0.0061 0.1127 0.0067 1.8832 

max

  0.5385 1.1007 0.0254 0.4199 0.0178 128.24 

mean

  87.560 96.523 65.318 79.328 86.724 99.111 

max

  99.858 99.984 99.768 99.989 99.543 100.00 

Non-adp-GAECN 

mean

  0.0270 0.2228 0.0058 0.0710 0.0078 2.3583 

max

  0.1197 0.4158 0.0266 0.2345 0.0350 187.58 

mean

  89.690 96.447 65.191 79.362 86.934 99.111 

max

  99.843 100.00 99.224 100.00 99.890 100.00 

Bi-adp-GAECN 

mean

  0.0022 0.0400 0.0050 0.0021 0.0034 2.0103 

max

  0.0048 0.0938 0.0253 0.0113 0.0133 62.087 

mean

  1.0773 1.5503 1.4730 0.9972 1.0903 0.8437 

max

  6.1055 10.8101 3.5129 3.2800 5.4879 6.1453 

Full-adp-GAECN 
mean

  0.0025 0.3519 0.0017 0.1668 0.0048 0.8243 
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 max

  0.0049 0.7251 0.0077 0.7645 0.0272 40.972 

mean

  0.7541 1.1052 0.4281 1.3939 0.9486 0.6840 

max

  1.3821 1.9287 1.0427 2.8602 3.5158 4.5896 

For the CNN and GCN, the accuracy reduces when the system scale increases, which 

demonstrates that the CNN cannot fully capture the complex graphical structure of the 

data, and the GCN cannot fully learn the uncertainties hidden in the data. The better 

performance of the Full-adp-GAECN indicates that it can fully perceive implicit 

correlations and the uncertainties of the data so that enhanced accuracy can be achieved.  

Furthermore, compared with the Non-adp-GAECN, Bi-adp-GAECN, the Full-adp-

GAECN improves the mean error of the expected value of voltage magnitudes by the 

percentages of 90.74%, 21.87%, and mean error of the standard deviation of the voltage 

magnitudes by 99.15%, 29.91%, respectively. And the Full-adp-GAECN also 

outperforms other PPF calculation results metrics. Besides, the Bi-adp-GAECN has a 

better performance compared with the Non-adp-GAECN, which demonstrates the 

effectiveness of the proposed full adaptive graph convolutional operation. This is 

because the full adaptive graph convolutional operation can capture the complex 

correlations among the injections extracted from the training data. The reported results 

indicate that the proposed Full-adp-GAECN can enhance the accuracy of the prediction 

results significantly either with or without correlations.  

The calculation times of PPF with methods MC, PEM, GAECN for a 118-node 

distribution system are shown in Table 5.7.  Note that the number of samples utilized 

in MC and GAECN is set at 5000. The average training tome of each epoch for GAECN 

training is 3s and about 10000 epoch is needed. However, in comparison with the MC 

and PEM methods, the GAECN has a better calculation performance, which 

demonstrates the GAECN’s efficiency.  

Moreover, to intuitively deliver the correlations learned by the proposed GAECN, 

the proposed node embedding techniques based on self-adaptive graph convolutional 

operation parameters are depicted. Figure 5.7(a) is the heatmap of the IEEE 33 bus 

system’s topology. Figure 5.7(b) denotes the correlation coefficient matrix. Figure 
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5.7(c) represents the parameters of the self-adaptive graph. In comparison with Figure 

5.7(a) and Figure 5.7(b), it is obvious that the heatmap in Figure 5.7(c) is more 

complicated on the variety of the correlations among different nodes. This phenomenon 

indicates that only the linear correlation assumption and the topological structure 

cannot fully characterize the complex correlations hidden in the nodal power injections. 

On contrary, the proposed GAECN can capture hidden mapping from the injections to 

the power system states that involve correlations among nodal power injections and the 

physical topology.  

Table 5.5. The calculation time of comparison of different methods.  

Methods MC  PEM  GAECN 

Time (s) 18.44 2.304 0.4567 
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Figure 5. 7. (a) Adjacency matrix of topology. (b) Correlation coefficient matrix of RES. (c) 

Self-adaptive graph. 

5.4  Summary 

A novel GAECN approach is innovatively proposed to compute the PPF considering 

the implicit correlation of renewable energy. Compared with the conventional methods, 

the experiment results demonstrate that the proposed model has a significant 
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improvement in PPF calculation accuracy with less than 7% maximum error under 

correlations. Compared with the state-of-art deep learning methods, the maximum PPF 

accuracies are less than 10% either in test distribution systems or in the real system. 

This is because the full adaptive graph convolutional operation of the GAECN can 

deeply capture nodal power injections’ correlation so that the enhanced effectiveness 

and efficiency of the PPF can be achieved. Thus, the GAECN model has a significant 

performance in PPF in terms of effectiveness, efficiency, and robustness against 

correlation power injections. And it shows an excellent application prospect in real 

power system operation.   
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Chapter 6  Conclusions and Future 

Works  

6.1 Conclusions  

The monitoring of the distribution system states faces considerable challenges due to 

uncertainty and intermittency brought by the increasing deployment of RES and limited 

measurement devices. The focus of this thesis is on overcoming these challenges 

through advanced system state estimation approaches. The graph embedded deep 

learning techniques is proposed to deal with the topology identification with very 

limited measurements, state estimation, and probabilistic power flow under high 

integrated RES. In particular, the author investigates the monitoring of distribution 

system states in the following four aspects.  

1) To address the timely distribution grid topology identification problem with the 

limited presence of monitoring and measurement devices, a power distribution 

grid topological generative adversarial network (Gridtopo-GAN) model is 

proposed to deal with the distribution system topology identification issue 

threatened by the challenges of limited measurements and meshed structure. 

Specifically, an innovative topology preserved node embedding architecture is 

introduced to represent and compact the numinous topologies such that the 

topology identification in large-scale systems can be dealt with. The bad 

measurement data, as well as missing data, are not rare in practice, which inspires 



 

107 

 

 

 

 

the GAN with the generative capability the leveraged to ameliorate the robustness 

in the topology identification model. Numerical simulation results conducted on 

the 33/118/425-node systems demonstrate the effectiveness and time saving of 

the proposed model.  

2) To timely perceive the distribution system states in a distribution system with 

high penetration of RES, the unrolled spatiotemporal graph convolutional 

network model is developed in this work for distribution system state estimation 

and forecasting that is exposed to complex correlations among the renewable 

power outputs. Specifically, three aspects of spatiotemporal correlations are 

captured simultaneously by the proposed unrolled spatiotemporal graph model 

that leverages the splicing of the spatial graphs across adjacent time steps. In this 

way, ameliorated forecasting accuracy and computational efficiency can be 

achieved. On top of this, the node embedding is leveraged to construct the 

dependence on the unrolled spatiotemporal graph to learn the nonlinear 

spatiotemporal correlations automatically instead of utilizing the linear 

correlation coefficient matrix that relies on full prior knowledge. Moreover, by 

stacking the spatiotemporal graph convolutional layers, the ahead-of-horizon 

state forecasting is achieved effectively. The simulation results based on the 118-

node and 1746-node systems verify the accuracy and efficiency of the proposed 

model. 

3) To represent the uncertain distribution system states quantificationally, a graph-

aware deep learning network is leveraged to handle the probabilistic power flow 

that is exposed to complex dependence among the renewable power outputs. To 

fully capture the mapping from the fluctuated power injections and the uncertain 

system states, the convolutional operation is introduced to aggregate the 

correlations among renewables power outputs to facilitate the PPF so that the 

deviation pattern of the system state variables can be well learned. In this way, 

improved effectiveness and speed-up calculation can be achieved in the proposed 

model. Moreover, the numerical results conducted in the IEEE 33-node system 
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show the superior of the GADLN over the state-of-art with accurate and effective 

manners.  

4) To calculate the PPF with the underlying complex correlation of uncertainties, 

graph attention enabled convolutional network is proposed to approximate PPF. 

Specifically, the graph attention enabled convolutional layer is proposed to 

aggregate the correlations of the power injections during the training process. 

Within this layer, the full self-adaptive graph convolutional operation is proposed 

to capture and learn any implicit correlation automatically so that significantly 

enhanced accuracy can be achieved. This layer is then followed by the 

convolutional neural network to capture the uncertain outputs of renewable 

energy to achieve the robust results of system state variable distributions. The 

numerical results conducted on the 33/69/118-node systems demonstrate the 

accuracy and efficiency of the proposed model.  

6.2 Future Works 

This thesis has proposed several advanced approaches for system state monitoring. 

Artificial intelligence-based methods have been developed to solve the topology 

identification, state estimation, and the probabilistic power flow. To extend this kind 

of approach to adapt to more application scenarios, the author will investigate the 

following problems in the future.  

1) The distribution system is sometimes operated in meshed topology. Such 

structure with the integration of RES that presents a correlation nature will bring 

significant challenges to the topology identification problem. Therefore, the 

author will first endeavor to develop more deep learning-based methods to assist 

the distribution system topology identification problem with correlations.  

2) Besides the impact factor of the correlations among the nodal power injections 

considered in chapter 3, the frequent topological changes will introduce a big 
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error in state estimation if it is ignored. Thus, the author will investigate an 

effective state estimation model to hedge against topology changes.  

3) The probabilistic power flow represents the uncertain pattern on the system states.   

More efficient data-driven methods will be investigated to obtain higher moment 

information of the system states in PPF so that more accurate probabilistic 

distribution information can be leveraged to support the system operator 

decision-making.    
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