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Abstract

Dual sourcing, a strategy frequently employed by original equipment manufactur-

ers (OEMs), may result in ex-post quality heterogeneity among the final products.

This heterogeneity is typically a result of the unpredictability of the production

processes of various suppliers. When ex-post quality heterogeneity exists, a cus-

tomer may feel unfairly treated when she pays the same price but gets a lower-

quality product than that received by a peer customer. Our paper will investigate

how these issues interact and impact the supply chain parties.

In this study, we examine a supply chain in which an original equipment man-

ufacturer sources from two suppliers and sells the final products to customers with

peer-induced fairness concerns. The suppliers are ex-ante identical but may be

ex-post heterogeneous with respect to the realized quality (either high or low) and

quantity levels, with the quantity heterogeneity resulting from yield uncertainty:

their production processes are unreliable and modeled by correlated proportional

random yields. The suppliers compete on wholesale price for the OEM’s order and

the OEM decides the order quantities to each supplier. Customers are fairness-

concerned and incur psychological disutility if they pay the same price as their

peers but receive a product of inferior quality.

We find that, when the degree of fairness concern becomes higher, the OEM

is more willing to source from a single supplier. Moreover, suppliers’ wholesale

prices are non-increasing in fairness concern, and in particular, wholesale prices

will be equal to their marginal cost in the end. Interestingly, as the consumer’s

fairness concern increases, we show that the consumer surplus first decreases and

then increases.
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Chapter 1

Introduction

Outsourcing helps an original equipment manufacturer (OEM) to focus on value-

added activities such as research and development. When outsourcing their man-

ufacturing operations, OEMs often adopt dual sourcing, as this approach can help

them mitigate supply risks (Tomlin 2006 and Wang et al. 2010) and enhance their

bargaining power (Maurer et al. 2004 and Li and Wan 2017). However, a notable

consequence of dual sourcing is heterogeneity in ex post quality among the final

products from different suppliers. In October 2015, Apple encountered a problem

known as the “iPhone 6s chipgate” (Tyrone 2015). It was reported that not all

iPhone 6s units had the same battery capacity. The underlying reason was that

the A9 chip processors installed on the iPhone 6s were sourced from two suppliers,

namely Samsung and Taiwan Semiconductor Manufacturing Company (TSMC).

Testing results revealed that iPhones with TSMC A9 chips had longer battery life

(by about two hours) than those with Samsung chips under certain usage condi-

tions (Dremali 2015). Since battery life is one key measure of the performance of

a smartphone, this caused a great deal of complaints and dissatisfaction among

customers who bought iPhones with Samsung chips (PatentlyApple 2015).

The essential reason for the “iPhone 6s chipgate” was Apple’s dual sourcing

strategy from both Samsung and TSMC for its A9 chip processors. Apple’s

adoption of this dual sourcing strategy is to mitigate the uncertain yield issue

through diversification and induce supplier competition (Panzarino 2015, Dillet

2016,Tayal 2017). The semiconductor industry is famous for its random yield

issue; i.e., the number of qualified units from a manufacturing process is randomly
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distributed. By sourcing from two suppliers, Apple can ensure a steady supply

of iPhone 6s (Panzarino 2015). Besides, inducing two suppliers to compete with

each other can help Apple drive the wholesale price down (Dillet 2016).

The advantages of diversification and supplier competition through dual sourc-

ing have been well documented in the literature; see Tomlin (2006), Babich et al.

(2007), Wang et al. (2010) and Li et al. (2017) and the instances described therein.

However, the potential drawback of such dual sourcing strategy, that is, inconsis-

tent quality in the delivered components from the two suppliers, have not been

considered. One reason is that such quality inconsistency between the suppliers’

components is usually not a problem for manufacturers because the differences

are normally well within the manufacturing tolerances. In the chipgate incident,

Samsung and TSMC used different processes with different characteristics be-

cause of their independent research and development (Smith 2015). The realized

qualities of their final products could exhibit certain differences. Nevertheless,

Apple claimed that the differences are well below the tolerance level, and Apple

argued that the large battery life differences shown by some third parties were

tested under unrealistic conditions (Panzarino 2015). Apple further claimed that

its own testing and data gathered from customers showed 2-3% difference in the

actual battery life. Techcrunch noted that such a difference was far too low to

be noticeable in real-world usage, and even two iPhones with the same processor

can vary more than 3% (Panzarino 2015). Another independent test conducted

by Consumer Reports revealed only 1% difference in battery life between iPhones

with Samsung chips and those with TSMC chips (Gikas 2016).

Despite knowing that the battery life difference in real-world usage was almost

unnoticeable, many customers still complained fiercely about getting an iPhone

with a Samsung chip, and some even wished to return it (PatentlyApple 2015,

Leong 2015). One user on an online forum stated the following (Macrumors 2015):

“I paid a pretty big lump sum to have the newest and greatest! Not to have a

2-3% less than someone who paid the same price I did!” This statement explains

the logic behind a lot of customers: They are displeased with the fact that their
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products are inferior to those of others who have paid the same amount, even

though the differences are barely noticeable. Such a behavior can be explained

as a concern for peer-induced fairness ; that is, customers dislike being treated

unfairly relative to peer customers (Ho and Su 2009). This paper experimentally

verify that a player incurs a disutility if the player’s payoff is lower than the

player’s peers. Because of this peer-induced fairness concern, although the qual-

ity difference induced by dual sourcing does not affect the product performance

in a noticeable way, it still causes unhappiness/dissatisfaction among customers

if they can and do perceive it. It is worth mentioning that even two units of

iPhone 6s with identical components from the same supplier can vary in their

battery performance (Panzarino 2015), which, however, is hardly noticeable by

users given that individual usage patterns can be quite difficult to compare. In

contrast, if such quality difference is due to the components from different sup-

pliers, then customers are able to perceive it through identifying the supplier of

the component used in their purchased products. For example, some apps can

help identify the supplier of the A9 processor for each iPhone 6s. Such a quality

difference and the subsequent consumer fairness concern might potentially affect

an OEM’s dual sourcing practice. Their impact and the underlying implica-

tions, however, are not well understood. Therefore, it is essential to characterize

the effect of the ex-post product quality heterogeneity induced by components

from different suppliers and the resulting consumer fairness concern on the origi-

nal equipment manufacturer’s (OEM’s) sourcing strategy selection, the supplier’s

wholesale pricing, and the OEM’s optimal ordering decision. Specifically, we are

going to investigate the following research questions that previous studies have

not yet adequately explored:

(1). When the suppliers face random yields and quality uncertainty, how shall

the OEM place the orders between the two suppliers?

(2). How do the random yields and quality uncertainty affect the suppliers’

pricing?
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(3). How does customers’ fairness concern (in the sense that they dislike paying

the same price but receive products of uneven quality) affect the OEM’

sourcing decision? Under what conditions will the OEM single (dual)

source?

(4). What are the overall effect of consumer fairness concern arising from the

potential ex-post product quality heterogeneity and the supplier’s yield un-

certainty on the system performance?

To answer these questions, we consider a supply chain in which an OEM

sources from two suppliers and sells the end products to customers with peer-

induced fairness concerns. The suppliers are ex ante identical whose product

quality is uncertain but maybe ex post heterogeneous with respect to their re-

alized qualities. The suppliers face yield uncertainty: their production processes

are unreliable and modeled by correlated proportional random yields. The sup-

pliers compete on wholesale price for the OEM’s order and the OEM decides the

order quantities to each supplier. Note that under dual sourcing, the OEM orders

positively from both suppliers. Customers are fairness-concerned and incur psy-

chological disutility if they pay the same price as their peers but receive a product

of inferior quality. We adopt the backward induction to derive the equilibrium

outcomes including the optimal wholesale price and order quantities. Specifically,

we first characterize how fairness concern induced consumer disutility from the ex

post quality heterogeneity affects the OEM’s profit. We then examine the OEM’s

sourcing strategy and the supplier’s wholesale pricing decisions.

Following is an outline of the remainder of this study. In chapter 2 we review

some of the most relevant studies. The model formulation and assumptions are

presented in chapter 3. In chapter 4, we derive the equilibrium outcomes for

the OEM and suppliers as well as fairness-seeking consumers under both single

sourcing and dual sourcing and analyze the OEM’s optimal sourcing strategies

selection. Conclusions are presented in chapter 5. All proofs are included in

chapter A.
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Chapter 2

Literature Review

A growing literature has examined the impact of fairness concerns on firms’ strate-

gic decisions and this study contributes to that literature. One strand focuses on

distributional fairness, which describes a player’s behavior of comparing its pay-

off with that of other players. Fehr and Schmidt (1999) propose a distributional

fairness concern model where a player incurs a disutility if its payoff is different

from other players’. This model has been widely used to study the roles of distri-

butional fairness concern between supply chain members (Haitao Cui et al. 2007,

Wu and Niederhoff 2014), and between retailers and consumers (Guo 2015, Guo

and Jiang 2016, Yi et al. 2018). We are closely involved with the area of research

that focuses on peer-induced fairness, in which an agent’s perception of fairness is

closely related to their peers’ rewards (Campbell 1999, Kukar-Kinney et al. 2007,

Ho and Su 2009, Chen and Cui 2013). Through experimental studies, Haws and

Bearden (2006) show the possible negative impact of price difference under dy-

namic pricing methods for price fairness concerned consumers. Ho and Su (2009)

experimentally verify that a player incurs a disutility if the player’s payoff is lower

than the player’s peers. According to their estimates, peer-induced fairness con-

cerns can be twice as strong as distributional fairness concerns. Chen and Cui

(2013) use consumers’ peer-induced fairness concern to explain the frequently ob-

served uniform pricing of a firm for its horizontally differentiated products. Li

and Jain (2016) demonstrate that price discrimination between consumers based

on preferences learned from histories can help a retailer generate a higher profit

if consumers exhibit strong peer-induced fairness concerns.
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It is closely related to research that investigates the issue of supplier diversifi-

cation in supply-uncertainty situations; see, e.g., Kazaz (2004), Tomlin and Wang

(2005), Tomlin (2009), Li et al. (2013), Hu and Kostamis (2015) and the references

therein. Wang et al. (2010) consider that a firm can either use dual sourcing or

make efforts to improve supplier reliability to mitigate supply uncertainty. Tang

and Kouvelis (2011) investigate the benefit from supplier diversification when a

manufacturer faces competition in the end market. They find that dual sourcing

still benefits manufacturers by reducing random yield inefficiency, but a man-

ufacturer does not necessarily aim to minimize output variability. Calvo and

Mart́ınez-de Albéniz (2016) consider that a buyer sells short-life-cycle products.

They find that dual sourcing performs worse than single sourcing in terms of sup-

ply chain efficiency and buyer profitability. Different from aforementioned studies,

we consider a situation in which dual sourcing may lead to ex post product quality

heterogeneity (in the components/products produced by different suppliers) and

provoke peer-induced fairness concerns among consumers. We then investigate

how this affects an OEM’s sourcing decision.

Our work is also related to those studies on supplier competition when the

buyer diversifies its supply source. For instance, Babich et al. (2007) consider

supplier diversification when a monopolist buyer is concerned about supplier de-

fault risk, They show that increased correlation in supplier default risks enhances

price competitiveness, resulting in a higher profit for the sourcing firm. Yang

et al. (2012) analyze dual sourcing in a procurement contract setting where sup-

pliers hold private information about their probability of disruption. They find

that with better information the buyer benefits more from diversification but less

from competition. Li and Wan (2017) show there can be both positive and nega-

tive effects of competition on suppliers’ incentives to improve, depending on the

information structure. The aforementioned studies focus on the diversification

and cost reduction advantages of a supplier portfolio with competing supplier.

They do not consider that dual sourcing may lead to ex post product quality

heterogeneity, which, however, is our focus.
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The purpose of this study is to investigate the interaction between consumer

fairness concerns and the OEM’s sourcing strategy. Supplementing the aforemen-

tioned studies, we demonstrate that consumers’ fairness-seeking behavior can sig-

nificantly influence firms’ sourcing decisions and that sole sourcing can be superior

to dual sourcing when there are strong fairness-minded consumers present.
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Chapter 3

Model Setup

Consider a supply chain in which an original equipment manufacturer (OEM)

purchases a critical component from two suppliers (denoted by i, i ∈ {1, 2}) and

sells products to consumers with fairness concerns about qualities. We assume

that the two suppliers are ex-ante identical in the sense that they are symmetric

in their cost structure (each supplier has a positive unit production cost c), yield

distribution, and quality distribution, but ex-post heterogeneous regarding the

delivered quantity and the realized quality. Specifically, the supplier’s production

process is unreliable so that the quantity delivered may not be equal to the ordered

size, and the realized quality si of each supplier might be different. Following

(Tang and Kouvelis 2011), for a given order of size qi received by supplier i, we

assume the actual quantity delivered is Yiqi. Yi is a random variable with support

on [0, 1], mean µ, and stand deviation σ. In addition, we assume that g(·) and

G(·) are the probability density function and cumulative distribution function,

respectively. Their yields from the two suppliers are correlated with each other,

and the correlation coefficient of Y1 and Y2 is denoted by ρ ∈ [−1, 1]. We assume

that µ ≥ σ to ensure that E[Y1Y2] = µ2 + ρσ2 ≥ 0. This means that both

delivered order quantities are non-negative. Moreover, due to the compatibility of

a supplier’s technology and facility settings with the product design, the realized

qualities of the suppliers may differ from each other. That is, the quality from

supplier i might be relatively higher than that from supplier j, where j ∈ {1, 2},

j 6= i. Clearly, this cannot be determined before the mass production. The
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random Si is characterized as follows:

Si =

{
sH , with probability β;

sL, with probability 1− β.

Here, β ∈ [0, 1] and sH ≥ sL. Throughout the paper, we assume sL ≥ c to ensure

a non-negative profit of a supplier. Define s̄ = βsH +(1−β)sL, which denotes the

average quality level; and ∆ = sH − sL, which represents the quality difference.

Moreover, we assume the expected delivered ration is not too small to ensure that

it is profitable for the OEM to source from supplier; specifically, we assume µs̄ > c.

Notice that s̄ is the expected quality. Since the upper bound of valuation v is one,

s̄ is also the maximum valuation. Multiplying this term with the average yield

µ results in the maximum expected revenue from a consumer. The expression

µs̄− c is the maximum expected margin from a consumer. Thus, this condition

ensures that the maximum margin should be positive. The objective of supplier

i is to determine its wholesale price wi ≥ c to maximize its profit.

The OEM decides the order quantity qi to supplier i to maximize the expected

profit. We assume the OEM pays to the suppliers based on an order quantity.

That is, it pays wiqi to supplier i for the procurement. It is common that suppliers,

in certain hi-tech and biotech industries where there is high yield uncertainty,

overestimate the amount of product being produced in order to meet all the

ordered quantity; buyers bear a portion of this extra cost, with managers in such

industries commenting that ”almost always, we pay for the (supplier’s) startup

volume, rather than just the output.” In the literature on random yields (Babich

et al. 2007, Tang and Kouvelis 2011, etc.), this is not an uncommon assumption.

After the qualities are realized and receiving the delivered quantities, the OEM

sells the product to the end consumers at the market-clearing price p. This

assumption is widely used in supply chain yields (Jung and Kouvelis 2022, Kong

et al. 2013, ect.).

Consumers have heterogeneous valuations on the product quality. In particu-

lar, a type-v consumer can gain vsi reward for a received product from supplier i.

We assume that v is uniformly distributed on [0, 1]. All consumers are perfectly

rational decision makers, and each consumer purchases at most one unit product.
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Without loss of generality, the population of consumers is normalized to 1. When

the product is released to the market, a third party tests and reveals the quality

realization from different suppliers to consumers. Consumers know the quality

distribution among the product before purchase, but they learn the quality of

their own units only after the purchase. If qualities of all the unites are ex-post

equal (s1 = s2 = sH or s1 = s2 = sL), then consumers have no fairness concerns

and obtain a utility U = vsk − p, k ∈ {H,L}. However, if part of the units

are of high quality, and the remaining units are of low quality, say, s1 = sH and

s2 = sL, then consumers who receive a product with high quality obtains a utility

vsH − p; whereas a consumer who receives a product with low quality obtains

vsL− p− nα∆, where α > 0 measures a consumer’s psychological disutility from

fairness concerns, and n is the number of consumers who receive a high-quality

product (note that n is random and determined by the distributions of Yi and

Si). Clearly, the larger the quality difference ∆, the higher the disutility induced

by fairness concern(i.e., α∆). A consumer purchases the product if and only if

the ex-ante expected utility, which is jointly affected by the quantity and quality

distributions, is non-negative (we will describe the ex-ante expected utility in

detail in the subsequent analysis of each model). Table 3.1 summarizes the key

notation used in our paper.

The sequence of events is illustrated in Figure 3. First, the supplier i an-

nounces the wholesale price wi. Then, the OEM orders quantity qi to supplier

i. Next, the quantity and quality are realized. The OEM releases the product

to the market. After that, a third party tests and reveals the product quality

to consumers. Finally, consumers purchase the product by paying p, where p is

a market-clearing price and endogenously determined by the realized quantities

and consumers’ types.
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Table 3.1: A List of Key Notation

Symbol Description;
i Subscript for the two suppliers, i ∈ {1, 2}
c The unit production cost for the symmetric suppliers
Yi Random variables with support on [0, 1], the realized proposition

of the quantity order of supplier i
g(·) The probability density function of Yi
G(·) The cumulative distribution of Yi
µ The mean of Yi
σ The standard deviation of Yi
ρ ∈ [−1, 1] The correlation coefficient between Y1 and Y2

Si Random variable, product’s quality of supplier i
β The probability that the realized quality is high
sH High quality level
sL Low quality level
∆ ∆ = sH − sL ≥ 0, the quality difference between high- and

low-level of product
s̄ The average quality level, s̄ = βsH + (1− β)sL
α Fairness concern parameter
ΠM OEM’s profit
Πi Supplier i’s profit
wi Supplier i’s wholesale price

Figure 3.1: Sequence of events



Chapter 4

Results and Analysis

4.1 A Benchmark: Single Sourcing

In this section, we analyze a benchmark where the OEM adopts the single sourcing

strategy. The OEM places an order q after the supplier sets w, and the actual

delivered quantity is Y q, where Y has the same distribution with Yi under the dual

sourcing model. Clearly, the fairness concerns are absent because there is only

one source of the products, which have equal quality level. Denote k ∈ {H,L}

by the realization of product’s quality state. For any given market-clearing price

pk and quality sk, a type-v consumer obtains a utility U = vsk − pk. If and only

if U ≥ 0, the consumer would buy the product. The endogenous market-clearing

price pk is determined by the following equation

Dk = 1− pk
sk

= Y q,

from which we obtain pk = (1−Y q)sk. The OEM maximizes the ex-ante expected

profit function

ΠM = βE[(1− Y q)sH · Y q] + (1− β)E[(1− Y q)sL · Y q]− wq (4.1)

by selecting q∗(w) for any given wholesale price w. The supplier sets w to maxi-

mize

ΠS = (w − c)q∗(w). (4.2)

We use superscript ”b” (for benchmark) to denote the results associated with the

single sourcing case. The following proposition summarizes supplier’s and OEM’s

optimal decisions and expected profits.
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Proposition 4.1. Under single sourcing, the supplier’s optimal wholesale price

and the OEM’s optimal order quantity are respectively,

wb∗ =
µs̄+ c

2
, qb∗ =

µs̄− c
4(µ2 + σ2)s̄

,

The supplier’s optimal profit and the OEM’s optimal expected profit are respec-

tively,

Πb∗
S =

(µs̄− c)2

8s̄(µ2 + σ2)
, Πb∗

M =
(µs̄− c)2

16s̄(µ2 + σ2)
.

Since there is only one supplier and all products on the market are of the

same quality, all equilibrium outcomes in the proposition are indifferent in terms

of consumers’ fairness concerns. We will discuss the model with two suppliers in

the next section.

4.2 Dual Sourcing Model

In this section, we analyze the case in which the OEM sources from two suppli-

ers. We use “H” and “L” to denote the cases with different realizations of the

products’ quality state. For example, “HL” means the case in which supplier

1’s realized quality is sH , and supplier 2’s is sL. In the “HH” case, for a given

market-clearing price pHH , the consumer’s utility function is similar to the bench-

mark model: UHH = vsH − pHH . Similarly, in the “LL” case, the utility function

is ULL = vsL− pLL. In the “HL” or “LH” case, however, consumers have fairness

concerns, which affect the utility function. We define θ = Y1q1
Y1q1+Y2q2

, which is the

probability of getting a product with the component from supplier 1.

Before purchasing, a consumer’s expected utilities in these cases are

UHL = θ(vsH − pHL) + (1− θ)[vsL − pHL − Y1q1α∆],

ULH = (1− θ)(vsH − pLH) + θ[vsL − pLH − Y2q2α∆].

If and only if U ≥ 0, the consumer would bue the product. The endogenous
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market demand D is as follows:

DHH = 1− pHH
sH

, DLL = 1− pLL
sL

,

DHL = 1− pHL + (1− θ)Y1q1α∆

θsH + (1− θ)sL
, DLH = 1− pLH + θY2q2α∆

θsL + (1− θ)sH
, (4.3)

The endogenous market-clearing price is determined by the equation D = Y1q1 +

Y2q2, from which we obtain:

pHH = sH (1− Y1q1 − Y2q2) , pLL = sL (1− Y1q1 − Y2q2) ,

pHL = [θsH + (1− θ)sL] (1− Y1q1 − Y2q2)− (1− θ)Y1q1α∆,

pLH = [θsL + (1− θ)sH ] (1− Y1q1 − Y2q2)− θY2q2α∆. (4.4)

The OEM maximizes the ex-ante expected profit function

ΠM =E[β2pHHDHH + (1− β)2pLLDLL + β(1− β)pHLDHL + (1− β)βpLHDLH ]

− w1q1 − w2q2, (4.5)

by selecting q∗1(w1, w2) and q∗2(w1, w2) from any given wholesale prices w1, w2.

Substituting the expressions of market demand in (4.3) and market-clearing

price in (4.4) into the expression of the expected profit in (4.5), we can obtain

the following problem for the OEM:

max
q1,q2

ΠM =µs̄(q1 + q2)− (q1w1 + q2w2)− s̄(q2
1 + q2

2)(µ2 + σ2)

− 2q1q2(µ2 + ρσ2)[s̄+ α∆β(1− β)]

s.t. qi ≥ 0, i ∈ {1, 2}. (4.6)

For simplicity of discussion, we define Z = α∆β(1 − β), which can be in-

terpreted as a measure of the fairness concerns. We present OEM’s equilibrium

order quantities for any given wholesale price w1, w2 in the following lemma.

Proposition 4.2. For given wholesale prices (w1, w2) under dual sourcing, the
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OEM’s optimal order quantity q∗i (w1, w2) to supplier i is as follows:

q∗i =



(µs̄−wi)s̄(µ2+σ2)−(µs̄−wj)(Z+s̄)(µ2+ρσ2)

2{[s̄(µ2+σ2)]2−[(Z+s̄)(µ2+ρσ2)]2} , if wi, wj < µs̄, Z < Z̄(w1, w2);
µs̄−wi

2s̄(µ2+σ2)
, if wi < µs̄ ≤ wj,

or (wi < wj < µs̄, Z ≥ Z̄(w1, w2));

0, if wi ≥ µs̄,

or (wj < wi < µs̄, Z ≥ Z̄(w1, w2)),

(4.7)

where j = 3 − i and Z̄(w1, w2) = (µs̄−max{w1,w2})s̄(µ2+σ2)
(µs̄−min{w1,w2})(µ2+ρσ2)

− s̄. Especially, if w1 =

w2 ≤ µs̄, Z ≥ Z̄(w1, w2), we can show the OEM only orders µs̄−wi
2s̄(µ2+σ2)

from supplier

1 with probability 0.5, and from supplier 2 with the same probability.

Proposition 4.2 shows that the order quantity is always zero when the corre-

sponding supplier quotes a very high wholesale price, i.e. wi ≥ µs̄. This result is

trivial. Accordingly, we will only discuss the case in which wi < µs̄.

Then, we will analyze suppliers’ decisions. The supplier i sets wi to maximizes

Πi = (wi − c)q∗i (w1, w2). We use superscript “d” (for dual sourcing) to denote

the results associated with the dual sourcing case. Their optimal decisions are

summarized in the following proposition.

Proposition 4.3. Under dual sourcing, the optimal wholesale prices charged by

the suppliers are

wd∗ = wd∗1 = wd∗2 =

{
s̄(µ2+σ2)(µs̄+c)−(Z+s̄)(µ2+ρσ2)µs̄

2s̄(µ2+σ2)−(Z+s̄)(µ2+ρσ2)
, if Z < Ẑ,

c, if Z ≥ Ẑ,
(4.8)

where Ẑ = s̄(µ2+σ2)
(µ2+ρσ2 − s̄.

Proposition 4.3 shows that suppliers will set wholesale prices as their marginal

production costs when consumers’ concerns regarding fairness are significant.

There is a principal reason for this result because the OEM prefers to purchase

from only one supplier, and then two suppliers must lower their wholesale prices

to obtain the order. It resembles the well-known model “Bertrand Competition”.

Next, we present the OEM’s equilibrium order quantities in the following

corollary.
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Corollary 4.1. The OEM’s equilibrium order quantities are as follows:

If Z < Ẑ, then

qd∗1 = qd∗2 =
s̄(µ2 + σ2)(µs̄− c)

2[2s̄(µ2 + σ2)− (Z + s̄)(µ2 + ρσ2)][(Z + s̄)(µ2 + ρσ2) + s̄(µ2 + σ2)]
;

(4.9)

otherwise, the OEM only orders µs̄−c
2s̄(µ2+σ2)

from supplier 1 with probability 0.5, and

from supplier 2 with the same probability.

Corollary 4.1 shows that the OEM will purchase components from a single

supplier when consumers are strongly fairness-minded. It well explains Apple’s

actions in adopting a sole sourcing strategy after the chipgate.

Finally, after we obtain the OEM’s optimal order quantities and suppliers’

optimal wholesale prices, we can derive their profits. The following proposition

summarizes the OEM’s and suppliers’ equilibrium profits.

Proposition 4.4. The optimal expected profits of the OEM and two suppliers

are:

1. If Z < Ẑ, Πd∗
M = (s̄µ−c)2[s̄(µ2+σ2)]2

2[s̄(µ2+σ2)+(Z+s̄)(µ2+ρσ2)][2s̄(µ2+σ2)−(Z+s̄)(µ2+ρσ2)]2
,

and Πd∗
1 = Πd∗

2 = (s̄µ−c)2s̄(µ2+σ2)[s̄(µ2+σ2)−(Z+s̄)(µ2+ρσ2)]
2[]s̄(µ2+σ2)+(Z+s̄)(µ2+ρσ2)][2s̄(µ2+σ2)−(Z+s̄)(µ2+ρσ2)]2

;

2. If Z ≥ Ẑ, Πd∗
M = (s̄µ−c)2

4s̄(µ2+σ2)
,Πd∗

1 = Πd∗
2 = 0.

In the next section, we will examine the effect of market factors, such as

consumer fairness concerns, on the performance of the OEM and suppliers.

4.3 Sensitivity Analysis

Here, we investigate the effect of α, the consumer fairness concern on system

performance. As their performances under benchmark setting are unaffected by

α, we focus on these results under the dual sourcing model. First, we rewrite the

condition Z < Ẑ in Proposition 4.3 and 4.4 as α < α̂, where α̂ = s̄(µ2+σ2)
∆β(1−β)(µ2+ρσ2 −

s̄
∆β(1−β)

. Note that the consumer fairness concern does not affect OEM’s and

suppliers’ performance when α ≥ α̂. Therefore, we focus on the case in which
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α < α̂ when we discuss the sensitivity. Moreover, for simplicity of discussion, we

will analyze the total order quantities qd∗(qd∗ = qd∗1 + qd∗2 ) instead of qd∗1 and qd∗2 .

Because the OEM’s order quantity is influenced not only by the fairness is-

sue, but also by wholesale prices charged by suppliers, we should analyze how

the fairness concern affects order quantity when wholesale prices are fixed. Ac-

cording to proposition 4.3, the equilibrium wholesale prices of two suppliers are

always the same. Hence, the focus of our discussion is qd∗(w1, w2) when w1 = w2,

where qd∗(w1, w2) = qd∗1 (w1, w2)+ qd∗2 (w1, w2). From proposition 4.2, we can show

qd∗(w1, w2) = (µs̄−w1)
s̄(µ2+σ2)+(Z+s̄)(µ2+ρσ2)

. The following lemma illustrates how the fair-

ness concern and wholesale price affect OEM’s order quantities.

Lemma 4.1. For given wholesale prices, the order quantities q∗(w1, w2) is de-

creasing in wholesale price and fairness concern.

We will now discuss the final equilibrium results. The following proposition

presents our results.

Proposition 4.5. 1. The OEM’s optimal total order quantities qd∗ decreases

in α when α < α while increases when α ≥ α, where α = s̄[2(µ2+ρσ2)−(µ2+σ2)]
2∆β(1−β)(µ2+ρσ2)

.

2. The optimal wholesale price wd∗ is decreasing in α.

3. The OEM’s profit Πd∗
M increases in α.

4. The two suppliers’ profits Πd∗
1 and Πd∗

2 both are decreasing in α.

Figure 4.1 summarizes results in Proposition 4.5. According to proposition

4.5, suppliers charge a lower price when consumers’ fairness concern levels be-

comes higher. This is because a higher level of fairness leads the OEM to pur-

chase from only one supplier, and then it strengthens the competition between

suppliers. Proposition 4.5 also shows the total order quantities decrease in the

consumer fairness concern at first, then increase. This is because there are two

forces driving OEM’s decision. On the one hand, OEM tends to order fewer quan-

tities when consumers are more sensitive to fairness. On the other hand, OEM

tends to order more when the wholesale price becomes lower(see Lemma 4.1).
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Figure 4.1: The impact of consumer fairness seeking on system performance

When α is small, the second force is dominated by the former, the optimal total

order quantities qd∗ is decreasing in α. When α is large, however, it reverses.

Proposition 4.5 implies that by enhancing the fairness concern, OEM is more

profitable, but suppliers are less. These sensitivity analysis results imply that the

fairness concern actually strengthens supplier competition. In next section, we

will compare the benchmark model and the dual sourcing model.
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4.4 Comparison between the Benchmark model

and the Dual Sourcing Model

Here, we compare the OEM’s profit under the benchmark setting and the dual

sourcing setting. We want to know which model benefits the OEM more. The

following proposition summarizes the results.

Proposition 4.6. Even if consumers are fairness seeking, the OEM always prefer

the dual sourcing model. Moreover, there are qb∗ ≤ qd∗, and wb∗ ≥ wd∗.
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Figure 4.2: Benchmark vs. Dual Sourcing

As figure 4.2 shows, the OEM is more profitable under the dual sourcing

model. This is because the supplier competition is intense when the OEM pur-

chases from two suppliers. Although dual sourcing may decrease OEM profits

due to consumer disutility, the lower wholesale price will fully compensate for

this loss. According to proposition 4.6, the OEM always prefers to bring in an-

other supplier when consumers are fairness-seeking.
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4.5 Analysis of Consumer surplus

In this section, we will focus on how the fairness concern affects consumer surplus.

As their performances under benchmark setting are unaffected by α, we focus on

these results under the dual sourcing model. For simplicity of analysis, we need

to make extra assumption on the distribution of supply uncertainty. Following

(Babich et al. 2007), we consider a special case in which the delivered quantity Yiqi

only has two results 0 and qi. In other words, suppliers provide either complete

orders or nothing to the OEM. The joint distribution of Y1, Y2 is determined by

the probabilities

ry1y2 = P [Y1 = y1, Y2 = y2], yi ∈ {0, 1}, i ∈ {1, 2}.

We will indicate marginal probabilities by replacing appropriate indices of ry1y2

by ∗. The joint probabilities, r00, r01, r10, r11, satisfying the following equations.

r00 + r01 + r10 + r11 = 1,

r11 + r10 = r1∗,

r11 + r01 = r∗1. (4.10)

For the purpose of characterization of the joint distribution, these three parame-

ters can be used: r1∗, r∗1, and r11, i.e., the marginal completely delivered proba-

bilities for each supplier as well as the probability of exactly two completely orders

from suppliers. The supplier correlation can be modeled in this way in an easy

manner. Consequently, if r11 = r1∗ = r∗1, then r01 = r10 = 0, meaning that the

yields are perfectly positive correlated. By contrast, if r11 = 0 and r1∗ + r∗1 = 1,

then the yields are perfectly negatively correlated, since r00 = 0, r01 = r∗1, and

r10 = r1∗.

Additionally, we can characterize the different correlations by keeping π1 and

π2 constant and varying r11. For example, as r11 increases so does (and thus r01

and r10 decrease), the correlation increases. Therefore, in order to capture the

full range from perfect negative correlation to perfect positive correlation in this

way, r1∗ and r1∗ should be equal to 1
2

and to allow r11 to vary between 0 and 1
2
.

Under this setting, we can show µ = σ = 1
2

and ρ = 4p11 − 1.
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Since the OEM only purchases from two suppliers when α < α̂, we will focus

on this case. Next, we will show how to derive the consumer surplus. For example,

when the realization of the products’ quality state is “HL”, the utility function

is

UHL = θ(vsH − pHL) + (1− θ)[vsL − pHL − Y1q1α∆],

where θ = Y1q1
Y1q1+Y2q2

. According to corollary 4.1, we can show q1 = q2 = qd∗.

Moreover, the expected utility is

E[UHL] =
(v − 1)(3− ρ)(sH + sL) + 4qd∗(sH + sL)

8
.

Because a consumer purchases the product if and only if the ex-ante expected

utility is non-negative, we can show E[UHL] ≥ 0 only and if only v ≥ 3−ρ−4qd∗

3−ρ . By

integral, the consumer surplus in “HL” case is (qd∗)2(sH+sL)
3−ρ . Keeping the same

logic, the consumer surplus in other cases can be derived. Finally, we conclude

that the ex-ante consumer surplus is

CS = (qd∗)2

[
β2sH + (1− β2)sL

2
+

2β(1− β)(sH + sL)

3− ρ

]
.

The following proposition summarizes the impact of fairness concerns on con-

sumer surplus.

Proposition 4.7. When the OEM purchase from two suppliers, the consumer

surplus decreases in α if α < α and then increases in it.

As a result of this proposition, it is shown that consumers do not always

benefit from their concerns about fairness. Consumer surplus decreases in α

when fairness concerns are not significant (see figure 4.3). In other words, when

consumers become concerned about fairness, they may harm themselves. Despite

the fact that this analytical result is derived under a strong assumption, numerical

experiments have shown that it also holds for other common distributions. For

example, we illustrate in figure 4.4 how the consumer surplus is affected by α

when suppliers’ yields follow truncated normal distribution.
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Figure 4.3: The impact of fairness seeking on consumer surplus
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Figure 4.4: The impact of fairness seeking on consumer surplus under truncated
normal distribution
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Chapter 5

Conclusion and Future Work

Original equipment manufacturers (OEMs) can concentrate on value-added ac-

tivities such as research and development thanks to outsourcing. Dual sourcing

is frequently employed by original equipment manufacturers (OEMs) when out-

sourcing their manufacturing operations, as it can help them mitigate supply

risks and increase their bargaining power. However, there is one notable conse-

quence of dual sourcing — heterogeneity in terms of quality between the final

products sourced from different suppliers. While the quality difference caused by

dual sourcing does not affect the product performance in a noticeable manner,

it still causes consumers unhappiness/dissatisfaction due to peer-induced fairness

concerns. It is possible that an OEM’s dual sourcing practice could be adversely

affected by the quality difference and consumer fairness concerns. However, the

extent of their impact and the implications underlying them are not fully under-

stood. It is important to elucidate how ex-post quality heterogeneity due to com-

ponents sourced from different suppliers, as well as consumer fairness concerns,

influence the OEM’s sourcing decisions and the supplier’s wholesale pricing.

To this end, we set up a model to characterize the OEM’s sourcing strategy

selection and investigate how the fairness concern affects the supply chain per-

formances. We obtain the following main insights. One, the OEM purchases

components from only one supplier when fairness concerns are significant. Two,

suppliers set wholesale prices as marginal costs and get zero profit when the

OEM only chooses one supplier. We also show that the OEM’s optimal total or-

der quantities decrease in fairness concern at first and then increase. Two forces
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are primarily responsible for OEM’s decision-making regarding quantities: disu-

tility due to fairness concerns and competition between two suppliers. Lastly,

we investigate the specific effect of the fairness concern on the consumer surplus.

Interestingly, when consumers are not very sensitive to fairness concerns, they

might be hurt by a larger degree of fairness concern. However, when consumers

are significantly fairness-seeking, consumer surplus increases in the degree of fair-

ness concern. As a result of our findings, we believe it is crucial to incorporate

consumers’ fairness concerns into the selection of sourcing strategies.

However, in practice, there is another reason why OEMs choose to source from

two or multiple suppliers. To be more specific, a single supplier may not be able to

provide enough components to the OEM. In other words, suppliers’ production

capacity is limited. The limited capacity of suppliers can soften competition

among suppliers when the degree of fairness concern increases. From this aspect,

we may explore how such production capacity limitation influences the OEM’s

sourcing decision when consumers are fairness-seeking. Furthermore, this thesis

sets a very strong assumption when discussing the impact of fairness concerns on

consumer surplus. In the future, we will examine some more general distributions

of yield uncertainty.
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Appendix A

Proofs and Derivations for
Chapter 4

A.1 Proof of Proposition 4.1

Recall the OEM’s ex-ante expected profit function in (4.1). It is concave in q.

Hence, given any wholesale price w, the OEM’s optimal order quantity is

qb∗(w) =
{µs̄− w}

2s̄(µ2 + σ2)
. (A.1)

Substituting (A.1) into the supplier’s profit function (4.2), we can show the func-

tion is also concave, and then we obtain the equilibrium wholesale price is µs̄+c
2

.

Substituting the equilibrium wholesale price into (A.1), we obtain the equilibrium

order quantity is qb∗ = µs̄−c
4(µ2+σ2)s̄

. According to the equilibrium order quantity and

wholesale price, we derive the OEM’s and supplier’s equilibrium profits easily.

A.2 Proof of Proposition 4.2

Substituting the expressions of market demand in (4.3) and market clearing price

in (4.4) into the expression of the expected profit in (4.5), we can obtain the

following problem for the OEM:

max ΠM(q1, q2) =s̄
[
(q1 + q2)µ− (q2

1 + q2
2)(µ2 + σ2) + 2q1q2(µ2 + ρσ2)

]
− 2q1q2(µ2 + ρσ2)Z − (q1w1 + q2w2)

s.t. qi ≥ 0, i ∈ {1, 2}.
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We can derive the Hessian matrix:

H =

[
2s̄ (µ2 + σ2) 2(Z + s̄) (µ2 + ρσ2)

−2(Z + s̄) (µ2 + ρσ2) −2s̄ (µ2 + σ2)

]
.

We can show the definiteness ofH depends on
[
s̄2 (µ2 + σ2)

2 − (Z + s̄)2 (µ2 + ρσ2)
2
]
.

Hence, we next analyze the following cases:

(i)
[
s̄2 (µ2 + σ2)

2 − (Z + s̄)2 (µ2 + ρσ2)
2
]
> 0;

(ii)
[
s̄2 (µ2 + σ2)

2 − (Z + s̄)2 (µ2 + ρσ2)
2
]

= 0;

(iii)
[
s̄2 (µ2 + σ2)

2 − (Z + s̄)2 (µ2 + ρσ2)
2
]
< 0.

(Case i)

By changing terms, this condition
[
s̄2 (µ2 + σ2)

2 − (Z + s̄)2 (µ2 + ρσ2)
2
]
> 0

can be rewritten as ρ < ρ̂, where

ρ̂ =
s̄(µ2 + σ2)

(Z + s̄)σ2
− µ2

σ2
. (A.2)

Because H is negative definite, the profit function ΠM is concave. We can use

K.K.T conditions to solve this problem. The K.K.T. conditions are(
s̄[2q∗1(µ2 + σ2) + 2q∗2(µ2 + ρσ2)]− µs̄+ 2q∗2(µ2 + ρσ2)Z + w1

s̄[2q∗2(µ2 + σ2) + 2q∗1(µ2 + ρσ2)]− µs̄+ 2q∗1(µ2 + ρσ2)Z + w2

)
+λ1

(
−1
0

)
+ λ2

(
0
−1

)
= 0, (A.3)

λi ≥ 0, i ∈ {1, 2}, (A.4)

q∗i ≥ 0, i ∈ {1, 2}, (A.5)

−λ1q
∗
1 = 0, (A.6)

−λ2q
∗
2 = 0. (A.7)

Next, we focus on the case in which w1 ≤ w2. Since the two firms are symmet-

ric, the results for the case in which w1 ≥ w2 can be obtained just by switching

the index. We next analyze the following four cases: (case i-1) λ1 = 0 and λ2 = 0;

(case i-2) λ1 > 0 and λ2 = 0; (case -3) λ1 = 0 and λ2 > 0; (case i-4) λ1 > 0 and

λ2 > 0.

(Case i-1)
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By solving equation (A.3), we have

q∗1(w1, w2) =
[(w1 − µs̄)s̄(µ2 + σ2) + (µs̄− w2)(Z + s̄)(µ2 + ρσ2)]

2 {[(Z + s̄)(µ2 + ρσ2)]2 − s̄2(µ2 + σ2)2}
,

q∗2(w1, w2) =
[(w2 − µs̄)s̄(µ2 + σ2) + (µs̄− w1)(Z + s̄)(µ2 + ρσ2)]

2 {[(Z + s̄)(µ2 + ρσ2)]2 − s̄2(µ2 + σ2)2}
. (A.8)

Clearly, conditions (A.4), (A.6), and (A.7) are satisfied. We will verify con-

dition (A.5) to ensure the solution above is optimal. Since the condition (A.5)

depends on the sign of (µs̄ − wi), with the condition w1 ≤ w2, we discuss the

following scenarios: (Scenario i) w1 < µs̄ and w2 < µs̄, (Scenario ii) w1 < µs̄ and

w2 ≥ µs̄, and (Scenario iii) w1 ≥ µs̄ and w2 ≥ µs̄.

(Scenario i)

Because the condition (A.2), the denominator of q∗i is always negative. We

can show q∗1 ≥ 0 if and only if

(µs̄− w2)(Z + s̄)(µ2 + ρσ2)− (µs̄− w1)s̄(µ2 + σ2) ≤ 0 (A.9)

In addition, we can show q∗2 ≥ 0 if and only if

(µs̄− w1)(Z + s̄)(µ2 + ρσ2)− (µs̄− w2)s̄(µ2 + σ2) ≤ 0 (A.10)

Because w1 < µs̄ and w2 < µs̄, we can rewrite conditions (A.9) and (A.10) as

ρ ≤ ρ̄1 and ρ ≤ ρ̄2, respectively, where,

ρ̄1 =
(µs̄− w1)s̄(µ2 + σ2)

(µs̄− w2)(Z + s̄)σ2
− µ2

σ2
, (A.11)

ρ̄2 =
(µs̄− w2)s̄(µ2 + σ2)

(µs̄− w1)(Z + s̄)σ2
− µ2

σ2
. (A.12)

Because ρ̄2 < ρ̄1, we can show min{q∗1, q∗2} ≥ 0 if ρ ≤ ρ̄2. And we can show

ρ̄2 < ρ̂.

In (Scenario i), we show that the solution in (A.8) is feasible optimal if ρ ∈

[−1, ρ̄2].

(Scenario ii)

In this case, the condition (A.10) can be rewritten as ρ ≤ ρ̄2. We can show

ρ̄2 ≤ −1 because

ρ̄2 ≤ 1− (µ2 + σ2)[(µs̄− w1)s̄+ Z(µs̄− w1)]

(s̄+ Z)(µs̄− w1)σ2
= −µ

2

σ2
≤ −1.
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The first inequality is from w1 < µs̄ ≤ w2, and the second inequality is from

σ ≤ µ. Hence, q∗2 always negative and the solution in (A.8) is not optimal.

(Scenario iii)

In this case, we first consider the situation when w1 = w2 = µs̄. Obviously,

both (A.9) and (A.10) hold and the optimal solution q∗1 = q∗2 = 0. Then we

consider the situation when µs̄ = w1 < w2. The condition (A.10) cannot hold.

Finally, we consider it when µs̄ < w1 ≤ w2. We can rewrite the condition (A.9)

as ρ ≥ ρ̄1. Because ρ < ρ̂ < ρ̄1, this condition cannot hold.

In (Case i-1), we conclude that the solution in (A.8) is optimal when w1 < µs̄

and w2 < µs̄ or w1 = w2 = µs̄.

(Case i-2)

By solving equation (A.3) and (A.6), we have

q∗1(w1, w2) = 0,

q∗2(w1, w2) =
(µs̄− w2)

2s̄(µ2 + σ2)
,

λ1 =
(µs̄− w2)(µ2 + ρσ2)

s̄(µ2 + σ2)
(s̄+ Z) + w1 − µs̄. (A.13)

Since signs of q∗2(w1, w2) and λ1 in (A.13) depend on the sign of (µs̄−wi), with

the condition w1 ≤ w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.

(Scenario i) With the condition µs̄ ≥ w2, we can show q∗2(w1, w2) ≥ 0. We also

need to verify λ1 ≥ 0 (the condition in (A.4)), which is equivalent to ρ ≥ ρ̄1. In

addition, we can show ρ̄1 ≥ ρ̂. Because the condition (A.2), λ1 always negative

in this case. This solution is not optimal.

(Scenario ii) With the condition µs̄ < w2, we can show q∗2(w1, w2) < 0. Hence,

we prove the solution in (A.13) is not optimal.

(Scenario iii) This case is same as (Scenario ii).

In (Case 2), we conclude that the solution in (A.13) is not optimal.

(Case i-3)
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By solving (A.7) and (A.3), we have

q∗1(w1, w2) =
(µs̄− w1)

2s̄(µ2 + σ2)
,

q∗2(w1, w2) = 0,

λ2 =
(µs̄− w1)(µ2 + ρσ2)

s̄(µ2 + σ2)
(s̄+ Z) + w2 − µs̄. (A.14)

Since signs of q∗1(w1, w2) and λ1 in (A.14) depend on the sign of (µs̄− wi), with

the condition w1 ≤ w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.

(Scenario i) With the condition w1 ≤ µs̄, we can show q∗1(w1, w2) ≥ 0. We also

need to verify λ2 ≥ 0 (the condition in (A.4)), which is equivalent to ρ ≥ ρ̄2.

Hence, we prove that qi ≥ 0 and the solution in (A.14) is optimal if ρ ∈ [ρ̄2, ρ̂).

(Scenario ii) With the condition w1 ≤ µs̄, we can show q∗1(w1, w2) ≥ 0. In

addition, because w1 ≤ µs̄ and w2 > µs̄, we can show λ2 ≥ 0 in (A.14) always

holds. Hence, we prove that qi ≥ 0 and the solution in (A.14) is optimal in this

case.

(Scenario iii) With the condition µs̄ < w1, we can show q∗1(w1, w2) < 0. Hence,

we prove the solution in (A.14) is not optimal.

In (Case 3), we conclude that the solution in (A.14) is optimal if ρ ∈ [ρ̄2, ρ̂)

in (Scenario i) and is optimal for all ρ in (Scenario ii).

(Case i-4)

We get the solution q∗1 = 0 and q∗2 = 0. By solving (A.3), we have λ1 = w1−µs̄

and λ2 = w2−µs̄. Since signs of λ1 and λ2 depend on the sign of (µs̄−wi), with

the condition w1 ≤ w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.

(Scenario i) Obviously, with conditions w1 ≤ µs̄ and w2 ≤ µs̄, this solution is

optimal if and only if wi = µs̄.

(Scenario ii) Obviously, with the condition w1 ≤ µs̄, this solution is optimal if

and only if w1 = µs̄.
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(Scenario iii) When w1 > µs̄ and w2 > µs̄, we can show λ1 > 0, λ2 > 0 In this

case, this solution which q∗1 = 0 and q∗2 = 0 is optimal.

In (case i), we conclude the OEM’s optimal order quantity q∗i to supplier i is

as follows:

q∗i =


[(wi−µs̄)s̄(µ2+σ2)+(µs̄−wj)(Z+s̄)(µ2+ρσ2)]

2{[(Z+s̄)(µ2+ρσ2)]2−s̄2(µ2+σ2)2} , if wi, wj < µs̄, ρ ≤ ρ̄;
(µs̄−wi)

2s̄(µ2+σ2)
, if wi < wj < µs̄, ρ > ρ̄, or wi < µs̄ ≤ wj;

0, if wj < wi < µs̄, ρ > ρ̄, or wi ≥ µs̄,

(A.15)

where j = 3− i and ρ̄ = 1− (µ2+σ2)[|w2−w1|s̄+Z(µs̄−min{w1,w2})]
(s̄+Z)(µs̄−min{w1,w2})σ2 .

(Case ii)

In this case, we have this condition
[
s̄2 (µ2 + σ2)

2 − (Z + s̄)2 (µ2 + ρσ2)
2
]

=

0. And we still focus on the case in which w1 ≤ w2. Since the two firms are

symmetric, the results for the case in which w1 ≥ w2 can be obtained just by

switching the index.

We can rewrite the problem (4.6) by a matrix form as follows:

max ΠM(q1, q2) =
[
q1 q2

]
A

[
q1

q2

]
+ b

[
q1

q2

]
s.t. qi ≥ 0, i ∈ {1, 2}, (A.16)

where

A =

[
−s̄(µ2 + σ2) −s̄(µ2 + σ2)
−s̄(µ2 + σ2) −s̄(µ2 + σ2)

]
and b =

[
µs̄− w1

µs̄− w2

]
According the property of quadratic function, when A is semi-definite, the func-

tion has a local maximum value if and only if b is the image of A. And then the

unconstrained optimizer is −v
2

such that Av = b. We can show b is the image

of A when w1 = w2. This means that we can find an optimal solution such that

A[−2q∗1, −2q∗2]T = b when w1 = w2. By solving this system, we can show the

optimal condition is q∗1 + q∗2 = (µs̄−w1)
2s̄(µ2+σ2)

. Let q∗2 = 0, we can show one of optimal

solutions.

q∗1 =

{
(µs̄−w1)

2s̄(µ2+σ2)
, if w1 = w2 < µs̄,

0, if w1 = w2 ≥ µs̄,
, and q∗2 = 0. (A.17)

When w1 < w2, b is not the image of A. There is no local maximum value

if the problem is unconstrained. Because the K.K.T conditions are the necessary
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conditions of the optimal solution, we can find some solutions and then compare

them to obtain the optimal one. The K.K.T. conditions are(
2s̄ (µ2 + σ2) (q1 + q2)− µq + w1

2s̄ (µ2 + σ2) (q1 + q2)− µq + w2

)
+ λ1

(
−1
0

)
+ λ2

(
0
−1

)
= 0, (A.18)

λi ≥ 0, i ∈ {1, 2}, (A.19)

q∗i ≥ 0, i ∈ {1, 2}, (A.20)

−λ1q
∗
1 = 0, (A.21)

−λ2q
∗
2 = 0. (A.22)

We next analyze the following four cases: (case ii-1) λ1 = 0 and λ2 = 0; (case

ii-2) λ1 ≥ 0 and λ2 = 0; (case ii-3) λ1 = 0 and λ2 ≥ 0; (case ii-4) λ1 ≥ 0 and

λ2 ≥ 0.

(Case ii-1) Because w1 < w2, there do not exist a solution such that(
2s̄ (µ2 + σ2) (q1 + q2)− µq + w1 = 0
2s̄ (µ2 + σ2) (q1 + q2)− µq + w2 = 0

)
.

Hence, we cannot find a solution satisfying K.K.T conditions in this case.

(Case ii-2)

By solving equation (A.3) and (A.6), we have

q∗1(w1, w2) = 0,

q∗2(w1, w2) =
(µs̄− w2)

2s̄(µ2 + σ2)
,

λ1 = w1 − w2. (A.23)

Since signs of q∗2(w1, w2) and λ1 in (A.23) depend on the sign of (µs̄−wi), with

the condition w1 < w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.

(Scenario i) With the condition µs̄ ≥ w2, we can show q∗2(w1, w2) ≥ 0. However,

because w1 < w2, λ1 is negative. This means that the solution is not satisfying

K.K.T conditions.

(Scenario ii) With the condition µs̄ < w2, we can show q∗2(w1, w2) < 0. In other

words, the solution is not feasible.
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(Scenario iii) This case is same as (Scenario ii).

(Case ii-3)

By solving (A.7) and (A.3), we have

q∗1(w1, w2) =
(µs̄− w1)

2s̄(µ2 + σ2)
,

q∗2(w1, w2) = 0,

λ2 = w2 − w1. (A.24)

Since signs of q∗1(w1, w2) and λ1 in (A.24) depend on the sign of (µs̄− wi), with

the condition w1 < w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.

(Scenario i) With the condition w1 ≤ µs̄, we can show q∗1(w1, w2) ≥ 0. Because

w1 < w2, we can show λ1 > 0 always holds. Hence, the solution is feasible and

satisfying K.K.T conditions.

(Scenario ii) This case is same as (Scenario i).

(Scenario iii) With the condition µs̄ < w1, we can show q∗1(w1, w2) < 0. Hence,

the solution is not feasible.

(Case ii-4)

We get the solution q∗1 = 0 and q∗2 = 0. By solving (A.3), we have λ1 = w1−µs̄

and λ2 = w2−µs̄. Since signs of λ1 and λ2 depend on the sign of (µs̄−wi), with

the condition w1 ≤ w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.

(Scenario i) Obviously, with conditions w1 ≤ µs̄ and w2 ≤ µs̄, this solution is

feasible if and only if wi = µs̄.

(Scenario ii) Obviously, with the condition w1 ≤ µs̄, this solution is feasible if

and only if w1 = µs̄.

(Scenario iii) When w1 > µs̄ and w2 > µs̄, we can show λ1 > 0, λ2 > 0 In this

case, this solution which q∗1 = 0 and q∗2 = 0 is feasible.

By combining all these conditions in (case ii), we can conclude the OEM’s
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optimal order quantity q∗i to supplier i is as follows:

q∗i =

{
(µs̄−wi)

2s̄(µ2+σ2)
, if wi ≤ wj ≤ µs̄, , or wi ≤ µs̄ < wj;

0, if wj < wi ≤ µs̄, , or wi > µs̄,
(A.25)

where j = 3− i.

(Case iii)

By changing terms, this condition
[
s̄2 (µ2 + σ2)

2 − (Z + s̄)2 (µ2 + ρσ2)
2
]
< 0

can be rewritten as ρ > ρ̂. In this case, because the Hessian matrix of profit

function is indefinite, there is no local maximum value of the problem is un-

constrained. Because the K.K.T conditions are the necessary conditions of the

optimal solution, we can find some solutions and then compare them to obtain

the optimal one. The K.K.T. conditions are the same as (case i).

Next, we focus on the case in which w1 ≤ w2. Since the two firms are symmet-

ric, the results for the case in which w1 ≥ w2 can be obtained just by switching

the index. We next analyze the following four cases: (case 1) λ1 = 0 and λ2 = 0;

(case 2) λ1 > 0 and λ2 = 0; (case 3) λ1 = 0 and λ2 > 0; (case 4) λ1 > 0 and

λ2 > 0.

(Case iii-1) By solving equation (A.3), we have

q∗1(w1, w2) =
[(w1 − µs̄)s̄(µ2 + σ2) + (µs̄− w2)(Z + s̄)(µ2 + ρσ2)]

2 {[(Z + s̄)(µ2 + ρσ2)]2 − s̄2(µ2 + σ2)2}
,

q∗2(w1, w2) =
[(w2 − µs̄)s̄(µ2 + σ2) + (µs̄− w1)(Z + s̄)(µ2 + ρσ2)]

2 {[(Z + s̄)(µ2 + ρσ2)]2 − s̄2(µ2 + σ2)2}
. (A.26)

Clearly, conditions (A.4), (A.6), and (A.7) are satisfied. We will verify con-

dition (A.5). Since the condition (A.5) depends on the sign of (µs̄ − wi), with

the condition w1 ≤ w2, we discuss the following scenarios: (Scenario i) w1 < µs̄

and w2 < µs̄, (Scenario ii) w1 < µs̄ and w2 ≥ µs̄, and (Scenario iii) w1 ≥ µs̄ and

w2 ≥ µs̄.

(Scenario i)

In (case iii), the denominator of q∗i is always positive. We can show q∗1 ≥ 0 if

and only if

(µs̄− w2)(Z + s̄)(µ2 + ρσ2)− (µs̄− w1)s̄(µ2 + σ2) ≥ 0 (A.27)
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In addition, we can show q∗2 ≥ 0 if and only if

(µs̄− w1)(Z + s̄)(µ2 + ρσ2)− (µs̄− w2)s̄(µ2 + σ2) ≥ 0 (A.28)

Because w1 < µs̄ and w2 < µs̄, we can rewrite conditions (A.9) and (A.10) as

ρ ≥ ρ̄1 and ρ ≥ ρ̄2, respectively.

Because ρ̄2 < ρ̄1, we can show min{q∗1, q∗2} ≥ 0 if ρ ≥ ρ̄1. And we can show

ρ̄1 > ρ̂.

In (Scenario i), we show that the solution in (A.26) is feasible solution if

ρ ∈ [ρ̄1, 1].

(Scenario ii)

In this case, the condition (A.27) cannot hold because (µs̄−w2) ≤ 0, −(µs̄−

w1) < 0, and other terms in (A.27) all are non-negative. Hence, the solution in

(A.26) is not feasible in this scenario.

(Scenario iii)

In this case, we first consider the situation when w1 = w2 = µs̄. Obviously,

both (A.27) and (A.28) hold and the optimal solution q∗1 = q∗2 = 0. Then we

consider the situation when µs̄ = w1 < w2. The condition (A.27) cannot hold.

Finally, we consider it when µs̄ < w1 ≤ w2. We can rewrite the condition (A.28)

as ρ ≤ ρ̄2. Because ρ̄2 < ρ̂ < ρ, this condition cannot hold.

In (Case iii-1), we conclude that the solution in (A.8) is a feasible when

w1 < µs̄ and w2 < µs̄ or w1 = w2 = µs̄.

(Case iii-2)

By solving equation (A.3) and (A.6), we have

q∗1(w1, w2) = 0,

q∗2(w1, w2) =
(µs̄− w2)

2s̄(µ2 + σ2)
,

λ1 =
(µs̄− w2)(µ2 + ρσ2)

s̄(µ2 + σ2)
(s̄+ Z) + w1 − µs̄. (A.29)

Since signs of q∗2(w1, w2) and λ1 in (A.29) depend on the sign of (µs̄−wi), with

the condition w1 ≤ w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.
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(Scenario i) With the condition µs̄ ≥ w2, we can show q∗2(w1, w2) ≥ 0. We also

need to verify λ1 ≥ 0 (the condition in (A.4)), which is equivalent to ρ ≥ ρ̄1. In

addition, we can show ρ̄1 ≥ ρ̂. In this scenario, we can show q∗2 ≥ 0 and λ1 ≥ 0

when ρ ∈ [ρ̄1, 1]. This means that the solution is feasible if ρ ∈ [ρ̄1, 1].

(Scenario ii) With the condition µs̄ < w2, we can show q∗2(w1, w2) < 0 and the

solution is not feasible.

(Scenario iii) This case is same as (Scenario ii).

(Case iii-3)

By solving (A.7) and (A.3), we have

q∗1(w1, w2) =
(µs̄− w1)

2s̄(µ2 + σ2)
,

q∗2(w1, w2) = 0,

λ2 =
(µs̄− w1)(µ2 + ρσ2)

s̄(µ2 + σ2)
(s̄+ Z) + w2 − µs̄. (A.30)

Since signs of q∗1(w1, w2) and λ1 in (A.30) depend on the sign of (µs̄− wi), with

the condition w1 ≤ w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.

(Scenario i) With the condition w1 ≤ µs̄, we can show q∗1(w1, w2) ≥ 0. In (case

iii), because ρ > ρ̂, by changing terms, we can show µ2+ρσ2

µ2+σ2 > s̄
Z+s̄

. Hence, we

can show

λ2 >
(µs̄− w1)

s̄

s̄

Z + s̄
(s̄+ Z) + w2 − µs̄ = w2 − w1.

The first inequality from µ2+ρσ2

µ2+σ2 > s̄
Z+s̄

. Because w1 ≤ w2, we can show λ2 ≥ 0

always hold. In other words, the solution is always feasible in this scenario.

(Scenario ii) It is same as (scenario i).

(Scenario iii) With the condition µs̄ < w1, we can show q∗1(w1, w2) < 0. Hence,

we prove the solution in (A.14) is not feasible.

(Case iii-4)

We get the solution q∗1 = 0 and q∗2 = 0. By solving (A.3), we have λ1 = w1−µs̄

and λ2 = w2−µs̄. Since signs of λ1 and λ2 depend on the sign of (µs̄−wi), with
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the condition w1 ≤ w2, we discuss the following scenarios: (Scenario i) w1 ≤ µs̄

and w2 ≤ µs̄, (Scenario ii) w1 ≤ µs̄ and w2 > µs̄, and (Scenario iii) w1 > µs̄ and

w2 > µs̄.

(Scenario i) Obviously, with conditions w1 ≤ µs̄ and w2 ≤ µs̄, this solution is

feasible if and only if wi = µs̄.

(Scenario ii) Obviously, with the condition w1 ≤ µs̄, this solution is feasible if

and only if w1 = µs̄.

(Scenario iii) When w1 > µs̄ and w2 > µs̄, we can show λ1 > 0, λ2 > 0 In this

case, this solution which q∗1 = 0 and q∗2 = 0 is feasible. We see the solution in

(case iii-4) is the only feasible solution satisfying K.K.T conditions when w1 ≥ µs̄

and w2 ≥ µs̄. Hence, if both wi ≥ µs̄, then ordering nothing is the optimal for

the OEM. In addition, the solution in (case iii-3) is the feasible solution satisfying

K.K.T conditions when w1 < µs̄ and w2 ≥ µs̄, and then it is optimal. Especially,

when both wi < µs̄, these solutions we obtained in (case iii-1), (case iii-2), and

(case iii-3) all are feasible, and we refer them as l1, l2, and l3, respectively.

Next, we will compare l1, l2, and l3 and derive the optimal one. We can show

l3 is feasible for all ρ ∈ (ρ̂, 1] but l2 and l1 are feasible only when ρ ∈ [ρ̄1, 1].

Hence, when ρ ∈ (ρ̂, ρ̄1), the l1 is the only one feasible solution satisfying K.K.T

conditions, and then it is the optimal solution. When ρ ∈ [ρ̄1, 1], we need to

compare ΠM(l1), ΠM(l2) and ΠM(l3). Obviously, because w1 ≤ w2, we can show

ΠM(l3) ≥ ΠM(l2). By substituting l3 and l1 into the profit function, we can show

ΠM(l3) ≥ ΠM(l1) if ρ ≥ ρ̄1. Hence, when both wi < µs̄, we can show sl is the

optimal solution. By combining these results, in (case iii), we can conclude the

OEM’s optimal order quantity q∗i to supplier i is as follows:

q∗i =

{
(µs̄−wi)

2s̄(µ2+σ2)
, if wi < wj < µs̄, , or wi < µs̄ ≤ wj;

0, if wj < wi < µs̄, , or wi ≥ µs̄,
(A.31)

where j = 3− i.

Combining (case i), (case ii), and (case iii), we can conclude the OEM’s opti-
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mal order quantity q∗i to supplier i is as follows:

q∗i =


[(wi−µs̄)s̄(µ2+σ2)+(µs̄−wj)(Z+s̄)(µ2+ρσ2)]

2{[(Z+s̄)(µ2+ρσ2)]2−s̄2(µ2+σ2)2} , if wi, wj < µs̄, ρ ≤ ρ̄;
(µs̄−wi)

2s̄(µ2+σ2)
, if wi < wj < µs̄, ρ > ρ̄,

or wi < µs̄ ≤ wj;

0, if wj < wi < µs̄, ρ > ρ̄, or wi ≥ µs̄,

(A.32)

where j = 3 − i and ρ̄ = 1 − (µ2+σ2)[|w2−w1|s̄+KM(µs̄−min{w1,w2})]
(s̄+KM)(µs̄−min{w1,w2})σ2 . Especially, if

w1 = w2 < µs̄, ρ > ρ̄, we can show the OEM only orders M(µs̄−wi)
2s̄(µ2+σ2)

from supplier

1 with probability 0.5, and from supplier 2 with the same probability. Moreover,

by changing terms, we can rewrite ρ < ρ̄ as Z < Z̄.

A.3 Proof of Proposition 4.3

In this proof, given the OEM’s best response function, we are going to derive the

equilibrium wholesale prices of both two suppliers. According to Proposition 4.2,

we can show that the profit of suppliers will be zero if they choose a wholesale

price w that is greater than µs̄, because the order quantity is zero. However, if

supplier i’s wholesale price is between µs̄ and c, i.e. c ≤ wi < µs̄, he always

obtains a non-negative profit. Hence, we only need to consider the case with

wi < µs̄.

Since suppliers 1 and 2 are symmetric, we focus on the best response func-

tion of supplier 1. The best response function of supplier 2 can be obtained by

following the same procedure. To prepare for the proof, we need to change the

constraint in proposition 4.2 to be based on w1 instead of ρ. Notice that the

expression of ρ̄ will change when the relation between w1 and w2 changes. Hence,

for better analyzing, we discuss the following two cases: (case i) w1 ≤ w2 and

(case ii) w1 > w2.

(Case i)

According to proposition 4.2, the function of order quantity from supplier 1

can be rewritten as follows:

q∗1 =

{
q

(d)
1 , if w1 ≥ t(1);

q
(s)
1 , if w1 ≤ t(1),

(A.33)
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where q
(d)
1 =

[(w1−µs̄)s̄(µ2+σ2)+(µs̄−w2)(Z+s̄)(µ2+ρσ2)]
2{[(Z+s̄)(µ2+ρσ2)]2−s̄2(µ2+σ2)2} , q

(s)
1 = (µs̄−w1)

2s̄(µ2+σ2)
, and

t(1) = µs̄− (µs̄− w2)s̄(µ2 + σ2)

(Z + s̄)(µ2 + ρσ2)
. (A.34)

Based on (A.33), we discuss two sub-cases: (case i-1) w1 ≥ t(1) and (case i-2)

w1 ≤ t(1), respectively.

(Case i-1)

We can show the supplier 1’s pricing problem is as follows:

max
w1

Π1 = (w1 − c)q(d)
1 (A.35)

s.t. w1 ≤ w2,

w1 ≥ c,

w1 ≥ t(1).

Because there are three inequalities, we want to find whether the feasible region

exists, and if it exists, what it is. Apparently, w2 ≥ c. In addition, we can show

t(1) ≤ w2 only when ρ ≤ ρ̂. This means that there is no feasible solution when

ρ > ρ̂. Hence, we conclude that there is no feasible solution when ρ > ρ̂ and the

feasible region exists only when ρ ≤ ρ̂.

Now, we focus on the case with existing feasible solutions. Then we need to

compare t(1) with c. We can show t(1) ≥ c when w2 ≥ w(1), where

w(1) = µs̄− (µs̄− c)(Z + s̄)(µ2 + ρσ2)

s̄(µ2 + σ2)
. (A.36)

Next, we discuss these two scenarios: (scenario i) t(1) ≥ c and (scenario ii) t(1) < c.

(Scenario i)

In this scenario, we obtain the feasible region is that t(1) ≤ w1 ≤ w2. The

problem (A.35) can be rewritten as:

max
w1

Π1 = (w1 − c)q(d)
1 (A.37)

s.t. t(1) ≤ w1 ≤ w2.

We can show the profit function is concave. According to FOC, we can derive

the unconstrained optimizer w
(i)
1 , where

w
(i)
1 =

µs̄+ c

2
− (µs̄− w2)(Z + s̄)(µ2 + ρσ2)

2s̄(µ2 + σ2)
. (A.38)
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Next, we need to verify whether w
(i)
1 is feasible. If it is feasible, then it is the

optimal feasible solution. Because of the convexity, if w
(i)
1 is larger than the upper

bound, then the upper bound w2 is the optimal feasible solution. On the other

hand, when w
(i)
1 is less than the lower bound, then the lower bound t(1) is optimal

feasible.

We can show w
(i)
1 ≤ w2 only when w2 ≥ w(2),where

w(2) =
s̄(µs̄+ c)(µ2 + σ2)− µs̄(Z + s̄)(µ2 + ρσ2)

2s̄(µ2 + σ2)− (Z + s̄)(µ2 + ρσ2)
. (A.39)

In addition, if w2 ≤ w(3), then w
(i)
1 ≥ t(1), where

w(3) = s̄− (s̄− c)s̄(µ2 + σ2)(Z + s̄)(µ2 + ρσ2)

2[(Z + s̄)(µ2 + ρσ2)]2 − [s̄(µ2 + σ2)]2
. (A.40)

We can show w(2) ≤ w(1) ≤ w(3)(See the Appendix for the proof), where w(1)

is from (A.36). Notice that we only consider w2 ≥ w(1) because it is the sce-

nario condition. Hence, if w2 ≤ w(3), the solution to the problem (A.37) is w
(i)
1 ;

otherwise, the solution is the lower bound of the feasible set, t(1).; i.e. the best

response function is

w∗1(w2) =

{
w

(i)
1 , w(1) ≤ w2 ≤ w(3),

t(1), w2 ≥ w(3).
(A.41)

(Scenario ii)

In this scenario, we obtain the feasible set is that c ≤ w1 ≤ w2. The problem

(A.35) can be rewritten as follows:

max
w1

Π1 = (w1 − c)q(d)
1 (A.42)

s.t. c ≤ w1 ≤ w2.

In this problem, the unconstrained optimizer is still wi1. The procedure is the

same as (scenario i). We need to verify whether w
(i)
1 is feasible. If it is feasible,

then it is the optimal feasible solution. Because of the convexity, if w
(i)
1 is larger

than the upper bound, then the upper bound w2 is the optimal feasible solution.

On the other hand, when w
(i)
1 is less than the lower bound, then the lower bound

c is optimal.
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We can show wi1 ≥ c when w2 ≥ w(4), where

w(4) =
s̄ [c (µ2 + σ2) + Zµ (µ2 + ρσ2) + µs̄(ρ− 1)σ2]

(Z + s̄) (µ2 + ρσ2)
(A.43)

In addition, we can show w
(i)
1 ≤ w2 when w2 ≥ w(2). We can show w(4) ≤ c ≤

w(2)(see the Appendix for the proof). Hence, if w2 ≥ w(2), the solution to the

problem (A.37) is w
(i)
1 ; otherwise, the solution is the upper bound of the feasible

set, w2.; i.e. the best response function is

w∗1(w2) =

{
w2, c ≤ w2 ≤ w(2),

w
(i)
1 , w(2) ≤ w2 ≤ w(1).

(A.44)

Combining all conditions in (case i-1), we can conclude that if ρ > ρ̂, there

do not exist feasible solution; otherwise, the best response function is

w∗1(w2) =


w2, c ≤ w2 ≤ w(2),

w
(i)
1 , w(2) ≤ w2 ≤ w(3),

t(1), w2 ≥ w(3).

(A.45)

Case i-2

Recall the case condition w1 ≤ t(1). Because the OEM takes mixed strategy

in this case when w1 = w2, we show that the supplier 1 expected sales is

E[q1] =

{
q

(s)
1 , w1 < w2,
q
(s)
1

2
, w1 = w2.

In this case, we can show the supplier 1’s pricing problem is as follows:

max
w1

E[Π1] = (w1 − c)E[q1] (A.46)

s.t. w1 ≤ w2,

w1 ≥ c,

w1 ≤ t(1).

Keeping the same procedure in (case i-1), we want to find whether the feasible

region exists, and if it exists, what it is. Apparently, w2 ≥ c. In addition, we can

show t(1) < w2 only when ρ < ρ̂. Then we need to compare t(1) with c. We can

show t(1) ≥ c when w2 ≥ w(1). Hence, we discuss these three scenarios: (scenario
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i) c ≤ t(1) < w2, (scenario ii) t(1) < c and t(1) < w2, (scenario iii) t(1) ≥ w2 and

t(1) ≥ c, and (scenario iv) t(1) ≥ w2 and t(1) < c.

(Scenario i)

Because E[q1] is not continuous, we divide the problem into two parts, w1 < w2

and w1 = w2. Notice that w1 < w2 always holds in this scenario. We rewrite the

condition c ≤ t(1) < w2 as w2 ≥ w(1) and ρ < ρ̂. In this scenario, we obtain the

feasible set is that c ≤ w1 ≤ t(1). The problem (A.46) can be rewritten as follows:

max
w1

Π1 = (w1 − c)q(s)
1 (A.47)

s.t. c ≤ w1 ≤ t(1).

We can show the profit function is concave. According to FOC, we can derive

the unconstrained optimizer w(i′), where

w(i′) =
c+ µs̄

2
. (A.48)

Next, we need to verify whether w(i′) is feasible. If it is feasible, then it is the

optimal feasible solution. Because of the convexity, if w(i′) is larger than the

upper bound, then the upper bound t(1) is the optimal feasible solution. On the

other hand, when w(i′) is less than the lower bound, then the lower bound c is

optimal feasible.

From the assumption µs̄ > c, we can show w(i′) ≥ c always hold. And we can

show w(i′) ≤ t(1) when w2 ≥ w(5), where

w(5) =
µs̄2(µ2 + σ2) + (c− µs̄)(Z + s̄)(µ2 + ρσ2)

2s̄ (µ2 + σ2)
(A.49)

We can show w(5) ≥ w(1) (See Appendix for the proof). Hence, if w2 ≥ w(5), the

solution to the problem (A.47) is w(i′); otherwise, the solution is the upper bound

of the feasible set, t(1).; i.e. the best response function is

w∗1(w2) =

{
t(1), w(1) ≤ w2 ≤ w(5),

w(i′), w2 ≥ w(5).
(A.50)

(Scenario ii)

If t(1) < c, then the feasible set of the problem is empty. Hence, in this

scenario, there do not exist any solution.
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(Scenario iii)

Because E[q1] is not continuous, we divide the problem into two parts, w1 < w2

and w1 = w2. We can show w1 = w2 is dominated by w1 < w2. Hence, we only

consider the case in which w1 < w2. We rewrite the condition c ≤ t(1) and

t(1) ≥ w2 as w2 ≥ w(1) and ρ ≥ ρ̂, respectively.

In this scenario, we obtain the feasible set is that c ≤ w1 < w2. The problem

(A.46) can be rewritten as follows:

max
w1

Π1 = (w1 − c)q(s)
1 (A.51)

s.t. c ≤ w1 < w2.

We can show the profit function is concave. In this problem, the unconstrained

optimizer is still wi′1 . The procedure is the same as (scenario i). Next, we need

to verify whether w(i′) is feasible. If it is feasible, then it is the optimal feasible

solution. Because of the convexity, if w(i′) is larger than the upper bound, then

the upper bound w2 is the optimal feasible solution. On the other hand, when

w(i′) is less than the lower bound, then the lower bound c is optimal feasible.

From the assumption µs̄ > c, we can show w(i′) ≥ c always hold. Notice that

w(i′) is a constant. We can show w(i′) ≥ c ≥ w(1) when ρ ≥ ρ̂ (See the Appendix

for the proof).

Hence, if w2 ≥ w(i′), the solution to the problem (A.47) is w(i′); otherwise, the

solution is the upper bound of the feasible set, w2.; i.e. the best response function

is

w∗1(w2) =

{
max{w2 − ε, c}, c ≤ w2 ≤ w(i′),

w(i′), w2 > w(i′),
(A.52)

where ε is a minor positive real number.

(Scenario iv)

In this scenario, the feasible set of the problem is empty.

Combining all conditions in (case i-1), we can conclude that if ρ > ρ̂, the best

response function is

w∗1(w2) =

{
max{w2 − ε, c}, c ≤ w2 ≤ w(i′),

w(i′), w2 > w(i′);
(A.53)
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otherwise, the best response function is

w∗1(w2) =


∅, c ≤ w2 < w(1),

t(1), w(1) ≤ w2 ≤ w(5),

w(i′), w2 ≥ w(5).

(A.54)

Case ii

According to proposition 4.2, the function of order quality to supplier 1 can

be rewritten as follows:

q∗1 =

{
q

(d)
1 , if w1 ≤ t(2);

0, if w1 ≥ t(2),
(A.55)

where t(2) = µs̄− (µs̄−w2)(Z+s̄)(µ2+ρσ2)
s̄(µ2+σ2)

. Based on (A.55), we discuss two sub-cases:

(case ii-1) w1 ≤ t(2), and (case ii-2) w1 ≥ t(2), respectively.

Case ii-1

We can show the supplier 1’s pricing problem is as follows:

max
w1

Π1 = (w1 − c)q(d)
1 (A.56)

s.t. w1 ≥ w2,

w1 ≤ t(2).

Obviously, if t(2) ≥ w2, the feasible set is not empty. We can show that if ρ ≤ ρ̂,

then t(2) ≥ w2 holds; otherwise, the feasible set is empty. Now, we focus on the

case with existing feasible solutions.

We can show the profit function is concave. According to FOC, we can still

obtain the unconstrained optimizer wi1. The procedure is the same as before cases.

We need to verify whether w
(i)
1 is feasible. If it is feasible, then it is the optimal

feasible solution. Because of the convexity, if w
(i)
1 is larger than the upper bound,

then the upper bound t(2) is the optimal feasible solution. On the other hand,

when w
(i)
1 is less than the lower bound, then the lower bound w2 is optimal.

We can show wi1 ≤ t(2) if w2 ≥ w(4). In addition, if w2 ≤ w(2), then we have

w
(i)
1 ≥ w2. In this case, we can show w(4) ≤ c ≤ w(2).

Hence, if w2 ≤ w(2), the solution to the problem (A.47) is w
(i
1 ; otherwise, the

solution is the lower bound of the feasible set, w2.; i.e. the best response function
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is

w∗1(w2) =

{
w

(i)
1 , c ≤ w2 ≤ w(2),

w2, w2 > w(2).
(A.57)

Case ii-2

We can show the supplier 1’s pricing problem is as follows:

max
w1

Π1 = 0 (A.58)

s.t. w1 ≥ w2,

w1 ≥ t(2).

We want to find the feasible set. Furthermore, we have known t(2) ≥ w2 can be

rewritten as ρ < ρ̂. Hence, if ρ < ρ̂, the feasible set is w1 ≥ t(2); otherwise, it is

w1 ≥ w2. Without of loss generality, let the lower bound as the optimal solution.

Hence, if ρ < ρ̂, the best response function is w1 = t(2), otherwise, it is w1 = w2.

According to all results in (case i) and (case ii), we find the best response

function depends on ρ. That means that we have one best response function

when ρ ≤ ρ̂ and another one when ρ > ρ̂. Hence, we will discuss the case

when ρ ≤ ρ̂ at first. According to (A.45), (A.54), and (A.57), we can see there

are five different intervals for w2:[c, w(2)], [w(2), w(1)], [w(1), w(3)], [w(3), w(5)], and

[w(5), µs̄). Notice that we can show c ≤ w(2) ≤ w(1) ≤ w(3) ≤ w(5) < µs̄ in this

case.(see Appendix for proof). For the 1st interval w2 ∈ [c, w(2)], we derive the

best response function from (A.45), (A.54), and (A.57):

w∗1(w2) =


∅, w1 ≤ t(1),

w2, t(1) < w1 < w2,

w
(i)
1 , w2 ≤ w1 ≤ t(2),

t(2), w1 > t(2).

(A.59)

When t(1) < w1 < w2 and w1 > t(2), we can show corresponding optimal solutions

are its upper bound and lower bound, respectively. Hence, we only need to

consider the range between t(1) < w1 < w2 and w1 > t(2). In the range w2 ≤ w1 ≤

t(2), the best response is w
(i)
1 . The best response function for w2 ∈ [c, w(2)] is as

follows:

w∗1(w2) = w
(i)
1 . (A.60)
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For the 2nd interval w2 ∈ [w(2), w(1)], we derive the best response function

from (A.45), (A.54), and (A.57):

w∗1(w2) =


∅, w1 ≤ t(1),

w
(i)
1 , t(1) < w1 < w2,

w2, w2 ≤ w1 ≤ t(2),

t(2), w1 > t(2).

(A.61)

When w2 < w1 ≤ t(2) and w1 > t(2), we can show corresponding optimal solutions

both are lower bound. Hence, we only need to consider the range t(1) < w1 < w2.

In the range, the best response is w
(i)
1 . The best response function for w2 ∈

[w(2), w(1)] is the same as (A.60).

For the 3rd interval w2 ∈ [w1, w(3)], we derive the best response function from

(A.45), (A.54), and (A.57):

w∗1(w2) =


t(1), w1 ≤ t(1),

w
(i)
1 , t(1) < w1 < w2,

w2, w2 ≤ w1 ≤ t(2),

t(2), w1 > t(2).

(A.62)

When w1 ≤ t(1), w2 ≤ w1 ≤ t(2), and w1 > t(2), we can show correspond-

ing optimal solutions are its upper bound, lower bound, and lower bound, re-

spectively. Hence, we only need to consider the range between them. In the

range t(1) < w1 < w2, the best response is w
(i)
1 . The best response function for

w2 ∈ [w(1), w(3)] is the same as (A.60).

For the 4th interval w2 ∈ [w(3), w(5)], we derive the best response function

from (A.45), (A.54), and (A.57):

w∗1(w2) =


t(1), w1 ≤ t(1),

t(1), t(1) < w1 < w2,

w2, w2 ≤ w1 ≤ t(2),

t(2), w1 > t(2).

(A.63)

When w2 ≤ w1 ≤ t(2), and w1 > t(2), we can show corresponding optimal solutions

both are lower bounds. Hence, we only need to consider c ≤ w1 < w2. In the

range, the best response is t(1). The best response function for w2 ∈ [w(3), w(5)]

is as follows:

w∗1(w2) = t(1). (A.64)
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For the 5th interval w2 ∈ [w(5), µs̄), we derive the best response function from

(A.45), (A.54), and (A.57):

w∗1(w2) =


w(i′), w1 ≤ t(1),

t(1), t(1) < w1 < w2,

w2, w2 ≤ w1 ≤ t(2),

t(2), w1 > t(2).

(A.65)

When t(1) < w1 < w2, w2 ≤ w1 ≤ t(2), and w1 > t(2), we can show corresponding

optimal solutions both are lower bounds. Hence, we only need to consider c ≤

w1 ≤ t(1). In the range, the best response is w(i′). The best response function for

w2 ∈ [w(5), µs̄) is as follows:

w∗1(w2) = w(i′). (A.66)

By combining all the scenarios above and the best response functions in

(A.60), (A.64), and (A.66), we can obtain the best response function for sup-

plier 1 as follows:

w∗1(w2) =


w

(i)
1 , w2 ≤ w(3),

t(1), w(3) < w2 ≤ w(5),

w(i′), w2 > w(5).

(A.67)

See (A.38), (A.34), and (A.48) for the expressions of w
(i)
1 , t(1), and w(i′).

Then we focus on the best response function when ρ > ρ̂. By combining

(A.53) and (case ii-2), we can see there are two different intervals for w2: [c, w(i′)]

and [w(i′), µs̄). For the 1st interval w2 ∈ [c, w(i′)], we derive the best response

function from (A.53) and results in (case i-1) and (case ii):

w∗1(w2) =

{
max{w2 − ε, c}, c ≤ w1 ≤ w2,

w2, w1 > w2.
(A.68)

From (A.68), we can show the best response function for supplier 1 is as follows:

w∗1(w2) = max{w2 − ε, c}. (A.69)

For the 2nd interval w2 ∈ [w(i′), µs̄), we derive the best response function from

(A.53) and results in (case i-1) and (case ii):

w∗1(w2) =

{
w(i′), c ≤ w1 ≤ w2,

w2, w1 > w2.
(A.70)
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When w1 ≥ w2, we can show the corresponding optimal solution is the lower

bound. Hence, we only need to consider c ≤ w1 ≤ w2. From (A.68), we can show

the best response function for supplier 1 is as follows:

w∗1(w2) = w(i′). (A.71)

By combining the best response functions in (A.69) and (A.71), we can obtain

the final best response function for supplier 1 is as follows:

w∗1(w2) =

{
max{w2 − ε, c}, c ≤ w2 < w(i′),

w(i′), w2 ≥ w(i′).
(A.72)

Finally, by combining (A.67) and (A.72), we conclude the supplier 1’s best

response function is as follows: if ρ < ρ̂, we have

w∗1(w2) =


w

(i)
1 , w2 ≤ w(3),

t(1), w(3) < w2 ≤ w(5),

w(i′), w2 > w(5);

(A.73)

otherwise, we have

w∗1(w2) =

{
max{w2 − ε, c}, c ≤ w2 < w(i′),

w(i′), w2 ≥ w(i′).
(A.74)

The best response function for supplier 2 can be obtained by following the

same procedure: if ρ < ρ̂, we have

w∗2(w1) =


µs̄+c

2
− (µs̄−w1)(Z+s̄)(µ2+ρσ2)

2s̄(µ2+σ2)
, w1 ≤ w(3),

µs̄− (µs̄−w1)s̄(µ2+σ2)
(Z+s̄)(µ2+ρσ2)

., w(3) < w1 ≤ w(5),

w(i′), w1 > w(5);

(A.75)

otherwise, we have

w∗2(w1) =

{
max{w2 − ε, c}, c ≤ w2 < w(i′),

w(i′), w2 ≥ w(i′).
(A.76)

By solving (A.73) and (A.75) simultaneously, we can show the equilibrium

wholesale price when ρ < ρ̂,

w∗1 = w∗2 =
s̄[µs̄(1− ρ)σ2 + c(µ2 + σ2)− Zµ(µ2 + σ2)]

s̄[µ2 + (2− ρ)σ2 −KM(µ2 + ρσ2)]
.
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In addition, by solving (A.74) and (A.76) simultaneously, we can show the equi-

librium wholesale price when ρ ≥ ρ̂,

w∗1 = w∗2 = c.

In conclusion, we show the equilibrium wholesale price is as follows:

w∗1 = w∗2 =

{
s̄[µs̄(1−ρ)σ2+c(µ2+σ2)−Zµ(µ2+σ2)]

s̄[µ2+(2−ρ)σ2−KM(µ2+ρσ2)]
, if ρ < ρ̂,

c, if ρ ≥ ρ̂

By changing terms, we can rewrite ρ < ρ̂ as Z < Ẑ.
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Additional proof of Proposition 4.3

When ρ ≤ ρ̂

We can show w(4) ≤ c ≤ w(2) ≤ w(1) ≤ w(3) ≤ w(5) < µs̄.

We want to show w(4) ≤ c. Let

h4c(c) = w(4) − c. (A.77)

We can show h4c(c) = 0 if and only if µs̄ = c. And the slope of s̄(µ2+σ2)
(Z+s̄)(µ2+ρσ2)

− 1,

which is larger than 0. From the assumption µs̄ > c, we find that h4c < 0 always

holds. Hence, we have w(4) ≤ c.

We want to show w(2) ≥ c. Let

h2c(c) = w(2) − c. (A.78)

We can show h2c(c) = 0 if and only if µs̄ = c. And the slope of h2c(c) is

s̄(µ2+σ2)
2s̄(µ2+σ2)−(Z+s̄)(µ2+ρσ2)

− 1, which is less than 0. From the assumption µs̄ > c, we

find that h2c > 0 always holds. Hence, we have w(2) ≥ c.

We want to show w(2) ≤ w(1). Let

h21(c) = w(2) − w(1). (A.79)

We can show h21(c) = 0 if and only if µs̄ = c. From the assumption µs̄ > c, we

find that h21 < 0 always holds. Hence, we have w(2) ≤ w(1).

We want to show w(1) ≤ w(3). Let

h13(c) = w(1) − w(3). (A.80)

We can show h13(c) = 0 if and only if µs̄ = c. And dh15

dc
=

(µ2+ρσ2)

 (µ2+σ2)
2

(µ2+ρσ2)2−2(µ2+σ2)2 +1


µ2+σ2 >

0. From the assumption µs̄ > c, we find that h13 < 0 always holds. Hence, we

have w(1) ≤ w(3).

We want to show w(3) ≤ w(5) Let

h53(c) = w(5) − w(3). (A.81)
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We can show h53(c) = 0 if and only if µs̄ = c. And dh53

dc
is less than 0. From

the assumption µs̄ > c, we find that h53 < 0 always holds. Hence, we have

w(3) ≤ w(5).

We want to show w(5) ≤ µs̄. Let

h5µs̄(c) = w(5) − µs̄. (A.82)

We can show h5µs̄(c) = 0 if and only if µs̄ = c. And dh5µs̄

dc
= µ2+ρσ2

2(µ2+σ2)
is larger

than 0. From the assumption µs̄ > c, we find that h3µs̄ < 0 always holds. Hence,

we have w(5) ≤ µs̄.

A.4 Proof of Corollary 4.1

Using Proposition 4.2 and 4.3, we can easily obtain this corollary.

A.5 Proof of Proposition 4.4

We can easily obtain this corollary using Proposition 4.3 and Corollary 4.1.

A.6 Proof of Proposition 4.5

For part (1):

We can rewrite ρ ≥ ρ̂ as α ≥ α, where α = s̄(1−ρ)σ2

∆β(1−β)(µ2+ρσ2)
. If α ≥ α, we can

show q∗ = µs̄−c
2Z

that does not depend on α. Then, we consider the case which

α < α. In this case, q∗ = Z(µs̄−c)
(2Z−A)(A+Z)

. We can show that:

dq∗

dα
= − (β − 1)β∆s̄ (µ2 + σ2) (µs̄− c) (µ2 + ρσ2)

(−α(β − 1)β∆ (µ2 + ρσ2) + 2µ2s̄+ (ρ+ 1)s̄σ2)2

·(s̄ (µ2 + (2ρ− 1)σ2)− 2α(β − 1)β∆ (µ2 + ρσ2))

(α(β − 1)β∆ (µ2 + ρσ2) + s̄ (µ2 − (ρ− 2)σ2))2 .

According to the equation, we can show dq∗

dα
≤ 0 if and only if α ≤ α, where

α = s̄[2(µ2+ρσ2)−(µ2+σ2)]
2∆β(1−β)(µ2+ρσ2)

.

For part (2):
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We can show the optimal wholesale price w∗ = c if α ≥ α. When α < α, we

can show

dw∗

dα
= − (1− β)β∆s̄ (µ2 + σ2) (µs̄− c) (µ2 + ρσ2)

(α(β − 1)β∆ (µ2 + ρσ2) + s̄ (µ2 − (ρ− 2)σ2))2 ≤ 0

For part (3): When α < α, we can show

dΠd
M

dα
=

3(1− β)β∆s̄2 (µ2 + σ2)
2

(c− µs̄)2 (µ2 + ρσ2)
2

(s̄+ α(1− β)β∆)

2 [−α(β − 1)β∆ (µ2 + ρσ2) + 2µ2s̄+ (ρ+ 1)s̄σ2]2

· 1

[α(β − 1)β∆ (µ2 + ρσ2) + s̄ (µ2 − (ρ− 2)σ2)]3
> 0.

For part (4): When α < α̂, we can show

dΠd
1

dα
=

−(1− β)β∆s (µ2 + σ2) (c− µs)2 (µ2 + ρσ2)

(−α(β − 1)β∆ (µ2 + ρσ2) + 2µ2s+ (ρ+ 1)sσ2)2

·

{
α2(β − 1)2β2∆2 (µ2 + ρσ2)

2
+ s2 (µ2(ρ+ 1)σ2 + µ4 + (ρ2 − ρ+ 1)σ4)

(α(β − 1)β∆ (µ2 + ρσ2) + s (µ2 − (ρ− 2)σ2))3

+
α(1− β)β∆s (µ2(3ρ− 1)σ2 + µ4 + ρ(2ρ− 1)σ4)

(α(β − 1)β∆ (µ2 + ρσ2) + s (µ2 − (ρ− 2)σ2))3

}
< 0.

A.7 Proof of Proposition 4.6

Based on Proposition 4.1 and 4.4, we can obtain this proposition.

A.8 Proof of Proposition 4.7

Recall the ex-ante consumer surplus is

(qd∗)2

[
β2sH + (1− β2)sL

2
+

2β(1− β)(sH + sL)

3− ρ

]
.

Because the consumer surplus is affect by α only from the term qd∗ and qd∗ are

non-negative, the monotonicity is the same as qd∗.
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