
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

RESOLUTION-LOSSLESS ULTRASOUND 

TOMOGRAPHY FOR HEALTH 

MONITORING OF COMPOSITE 

STRUCTURES:  

FROM NANOCOMPOSITE SENSOR 

NETWORK DEVELOPMENT TO MACHINE 

LEARNING-ENABLED IMAGING 

 

 

 

 

JIANWEI YANG 

 

 

 

 

PhD 

The Hong Kong Polytechnic University 

2022 

 



The Hong Kong Polytechnic University 

Department of Mechanical Engineering 

Resolution-lossless Ultrasound Tomography for 

Health Monitoring of Composite Structures:  

from Nanocomposite Sensor Network 

Development to Machine Learning-enabled 

Imaging 

Jianwei YANG 

A thesis submitted in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy 

June 2022 



CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my 

knowledge and belief, it reproduces no material previously published or written, nor 

material that has been accepted for the award of any other degree or diploma, except 

where due acknowledgment has been made in the text. 

YANG Jianwei 



i 

ABSTRACT 

Ultrasound tomography (UT), by virtue of its high accuracy, intuitive presentation of 

results and standardized implementation, has gained prominence in structural health 

monitoring (SHM)-driven integrity assurance and health management of composite 

structures. With an appropriately selected type of sensor, UT for SHM canvasses 

subtle variation in ultrasound signals by benchmarking pristine counterparts, 

subsequently associates the variation to material deterioration or damage occurrence, 

and projects evaluation results in pixelized images through proper tomographic 

imaging algorithms. 

 

However, a densely configured sensor network, either externally mounted on or 

internally implanted in composites, alters the microstructure of the fibre-reinforced 

matrix, influences the interlaminar stress distribution in the sensor vicinity, 

introduces artificial defect, and consequently lowers the structural load-carrying 

capacity. On the other hand, any attempt to minimize such intrusion by limiting the 

sensor number is usually at the cost of undermining the detection resolution and 

accuracy. Indeed, it is a challenging task to strike a balance between the sensing cost 

(i.e., the number of sensors) and sensing effectiveness (i.e., the accuracy of 

tomography) when implementing UT-based SHM. 

 

In this PhD study, an implantable, nanocomposite-inspired, piezoresistive sensor 

network is developed for implementing UT-based SHM of carbon fibre-reinforced 

polymer (CFRP) laminates. The nanocomposite ink, formulated with graphene 

nanosheets (GNSs) and polyvinylpyrrolidone (PVP), is tailored to acquire the 
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percolation threshold of conductive nanofillers. The above ink is then deposited on 

partially precured B-stage epoxy films using spray deposition process and circuited 

via highly conductive carbon nanotube fibres (CNT-fibres) as wires, to form a dense 

sensor network, which is then implanted into CFRP laminates during autoclaving 

procedure. With a morphologically optimized nano-architecture in nanocomposites, 

the quantum tunnelling effect can be triggered in percolated networks, which enables 

the sensors to faithfully response from quasi-static loads to high-frequency guided 

ultrasonic waves (GUWs). Quasi-static tensile test is performed to gauge possible 

degradation in tensile properties and change in failure modes of the CFRP laminates 

owing to the implantation of a sensor network. 

 

Using the developed implantable sensor network, in conjunction with the use of only 

a handful of surface-mounted PZT wafers as excitation sources, a dense sensor 

network can be configured, to circumvent the limited-angle problem that 

conventional UT-based imaging algorithms may have. The implanted sensor network 

has been proved owing the capability in perceiving GUWs in a broad frequency 

regime with high precision up to 450 kHz experimentally. The enhanced 

reconstruction algorithm for the probabilistic inspection of damage (RAPID)-based 

imaging algorithm, which is revamped by continuously iterating and updating the 

scale parameter , presents superior accuracy, compared with the conventional 

RAPID algorithm when used to evaluate both the location and shape of anomaly, 

endowing the UT-based SHM with higher imaging resolution while not at the cost of 

sacrificing the composites’ original integrity. 

 

To further achieve real in-situ UT-based SHM and solve the restricted sensing 

capability due to inadequate sensing paths in the implanted sensor network, a 
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hierarchical, algebraic reconstruction technique (ART) based tomographic imaging 

approach, facilitated by convolutional neural network (CNN) based machine learning 

(ML), is developed, targeting resolution-lossless tomography for SHM of composites. 

The blurry ART images, as the inputs to train a CNN with an encoder-decoder-type 

architecture, are segmented using convolution and max-pooling to extract defect-

modulated image features. The max-unpooling boosts the resolution of ART images 

with transposed convolution. Trained with the insufficient databases via a mixed 

numerical and experimental method, the CNN is used to detect and characterize 

artificial anomaly and delamination in the CFRP laminates. Results demonstrate that 

the developed approach accurately images artificial anomaly and delamination, in the 

meantime it minimizes the false alarm by eliminating image artifacts. 

 

In conclusion, starting from mechanism study, through design to fabrication of 

sensors, new breeds of implantable, nanocomposite-inspired, piezoresistive sensor 

network is developed. Successful application paradigms in UT of the implanted 

sensor network, either using the enhanced RAPID or ML-enabled imaging, have 

accentuated the alluring potentials of in-situ UT-based SHM. 
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CHAPTER 1  

 

Introduction 

1.1 Background and Motivation 

Composite structures have been increasingly adopted by the aerospace industry to 

provide significant weight reduction and substantial performance enhancement. 

However, composite structures are highly vulnerable to low-velocity impacts for 

their low transverse strength, resulting in various types of defect such as 

delamination, indentation, fibre breakage or matrix cracking, leading to catastrophic 

failure of the entire structure without timely detection of the defect after it 

accumulates above a critical threshold. This has entailed strong needs of effective, 

rapid and efficient inspection technique which can characterize the defect in its early 

stage, so as to ensure the durability and reliability of composite structures. 

 

Facilitated by recent scientific advances and technological breakthroughs in sensing 

technology, material sciences, additive manufacturing, electronic packaging, and 

signal processing, structural health monitoring (SHM)-driven integrity assurance and 

health management has evolved to become a standard building block in various 

industrial sectors. SHM denotes a system with the ability to detect and interpret 

adverse “changes” in a structure under inspection in a real-time manner when the 

structure is subjected to progressive ageing and material deterioration throughout 
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service life [1]. Successful implementation of SHM on composite structures has been 

proven effective in reducing maintenance cost, accompanying the substantial 

improvement of reliability and safety. 

 

Amidst diverse SHM approaches, ultrasound tomography (UT), irrespective of the 

popularity and demonstrated effectiveness of for damage evaluation, has become an 

attractive technique by interpreting the transmission of ultrasonic energy through an 

object, on which basis UT approaches characterize material properties and detect 

material defect [2-11]. Sharing a similar principle with that of the X-ray-based 

computed tomography (CT) in clinics, UT-based SHM explores subtle variation in 

propagation characteristics of ultrasonic waves guided by the object under inspection, 

to image changes in the object caused by structural damage or material degradation, 

via appropriate tomographic imaging algorithms such as fan-beam projection (FBP), 

algebraic reconstruction technique (ART), full waveform inversion (FWI), and 

reconstruction algorithm for probabilistic inspection of damage (RAPID). However, 

conventional UT by virtue of imaging algorithms including FBP, ART, FWI and 

RAPID often shows inferior accuracy when insufficient sensors are used, due to the 

narrow scanning angle and inadequate number of sensing path available in the sensor 

network, during tomographic image reconstruction – a deficiency referred to as 

limited-angle problem [12]. The limited-angle scanning can make signal acquisition 

incomplete, potentially leading to ignorance of damage in certain areas within the 

inspection region. To warrant a broad scanning angle and sufficient sensing paths for 

reconstruction of a precise tomographic image, sensors have to be configured in a 

dense manner. Nevertheless, a densely configured transducer network alters the 

microstructure of the fibre-reinforced matrix, influences the interlaminar stress 

distribution in the sensor vicinity, introduces artificial defect, and consequently 
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lowers the structural load-carrying capacity. Indeed, it is a challenging task to strike a 

balance between the sensing cost (i.e., the number of sensors) and sensing 

effectiveness (i.e., the resolution and accuracy of tomography) when implementing 

UT-based SHM for composite structures. 

 

In terms of the sensing cost, to perceive signals for implementing UT, a deliberately 

designed transducer network [12-28], in either a dense or sparse a configuration, has 

to be externally mounted to or internally implanted into the composite structures 

under monitoring. However, among commercially available transducers, there is 

barely one with both qualified sensitivity and compatibility, either the sensitivity is 

limited by its intrinsic capacity, or the sensor is too rigid and brittle. Moreover, with 

inevitable intrusion to the original structure, a multitude of sensors, in whichever 

type, may degrade the structural integrity to some extent, regardless of their intended 

role of detecting defect or damage-caused structural deterioration. This possibly 

lowers local material strength, introduces defect/stress concentration/debonding, 

downgrades resistance to corrosion, and imposes weight and penalty to original 

structures due to unwieldy cables and wires used in a sensor network. The advances 

and technological breakthroughs in emerging nanotechnology make it possible to 

develop new kinds of sensors capable of accommodating demanding sensing 

requirements for high-precision SHM. In such a backdrop, it is imperative to develop 

new genres of sensor that are able to strike a compromise among flexibility 

(adaptability to curved structures), weight (low mass addition to inspected structures), 

volume (ignorable degradation in mechanical properties of inspected structures), and 

very importantly, responsivity and sensitivity (capability of perceiving broad signals 

up to an ultrasonic frequency regime), whereby to implement in-situ UT-based SHM. 
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Taking into account the sensing effectiveness, machine learning (ML), as represented 

by artificial neural network (ANN) and convolutional neural network (CNN), has 

emerged as a prevalent data-driven technique to predictively model high-degree 

complexity and abstraction. As mentioned previously, any attempt to minimize such 

intrusion by limiting the transducer number is usually at the cost of undermining the 

detection resolution and accuracy, because the reconstruction of a precise ultrasound 

tomographic image is guaranteed only when the sensor network for signal acquisition 

is of adequate density. To overcome this common problem, the matrix convolution 

operation is introduced, in which only key features of inputs are extracted for the 

training – known as CNN [29]. CNN has proven capability of exploring complex 

non-linear mappings between inputs and outputs – a daunting task to conventional 

ANN [30-36]. The introduction of CNN-based ML endows UT with the ability in 

targeting resolution-lossless tomography of composite structures with a restricted 

sensing capability. However, the accuracy and effectiveness of CNN depend 

substantially on a multitude of factors including mainly the training algorithms 

adopted, completeness of data available for training, and compatibility of a trained 

database to new inputs which are not included in the training. These factors, by 

nature, may narrow the application spectrum of ML-driven SHM. The significance of 

enhancing the compatibility and applicability of a trained database, with minimal 

extra effort to re-train an CNN, cannot be overemphasized. 

 

1.2 Research Objectives 

Aimed at circumventing the above commented deficiencies in prevailing UT-based 

SHM for composite structures, this PhD study is dedicated to developing a new 
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nanocomposite-inspired sensor network, which can be implanted into composite 

structures, featuring sufficient sensitivity to guided ultrasonic waves (GUWs), for 

implementing in-situ resolution-lossless tomography based on CNN-based ML and 

facilitated by ART and RAPID. Driven by this target, the following objectives are 

embraced in this study: 

 

(i) to fabricate a new breed of implanted nanocomposite-inspired sensor network 

with an enhanced sensing capability, improved mechanical properties and reduced 

weight; 

 

(ii) to optimize and simplify the manufacturing process of implanted nanocomposite-

inspired sensor network; 

 

(iii) to demonstrate the capability of implanted nanocomposite-inspired sensor 

network of capturing dynamic signals from low frequency dynamic vibration, 

through medium frequency impact, to guided ultrasonic waves; 

 

(v) to deliver resolution-lossless tomography for SHM of composite structures, based 

on CNN-based ML and facilitated by ART-based imaging algorithm. 

 

1.3 Scope of the Thesis 

In this PhD study, an implantable, nanocomposite-inspired, piezoresistive sensor 

network is developed for implementing in-situ resolution-lossless UT-based SHM of 

composite structures. This thesis is systematically organized in the order of 
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fabrication of implantable piezoresistive sensor network, acquisition of GUWs using 

implanted sensor network, enhancement of RAPID imaging, construction of CNN-

enabled ART imaging, and proof-of-concept application paradigms. 

 

In Chapter 2, to start with, the basic concept of GUW-based SHM – a non-invasive 

and real-time technique of monitoring the integrity of composite structures, is 

introduced, and the theoretical fundamentals of guided ultrasonic waves are briefly 

summarized. Irrespective of the popularity and demonstrated effectiveness of UT for 

damage evaluation, several practical tomographic imaging approaches are presented 

and compared. Central to the realization of UT-based SHM is extracting structural 

health information from acquired wave signals. Ultrasonic wave signals are acquired 

by ultrasound sensors, and thus ultrasound sensors play the irreplaceable yet 

paramount role in an SHM system. Various categories of ultrasound sensors for this 

purpose are also summarized, including nanocomposite-inspired sensors and 

implanted sensors. Finally, considering the superior capability of ML in improving 

the sensing effectiveness of UT, recent studies on ML-facilitated SHM are reviewed, 

including the application of ANN and CNN. At the same time, the theoretical 

fundamentals of CNN are briefly summarized according to the categories of network 

architectures and activation functions. 

 

In Chapter 3, in recognition of the deficiency of existing UT approaches for 

composite structures, a new breed of nanocomposite-inspired, piezoresistive sensor 

network is developed using a spray deposition process. Individual sensors, deposited 

on a pre-treated B-stage epoxy film, are networked via highly conductive carbon 

nanotube fibres as wires, to form a dense sensor network. Flexible, light, sensitive to 

broadband dynamic signals, the sensor network is implanted into CFRP laminates, to 
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fulfil GUWs-based UT. Morphological characterization is performed to observe the 

interface between the CFRP laminate and implanted sensing unit, meanwhile to 

investigate the intrusion of the implanted sensor network to the host composites. 

Quasi-static tensile test is performed to gauge possible degradation in tensile 

properties and change in failure modes of the CFRP laminates owing to the 

implantation of a sensor network. 

 

In Chapter 4, using the developed implantable sensing units, a dense sensor network 

can be configured, to circumvent the limited-angle problem that conventional UT-

based imaging algorithms may have. Especially for the conventional RAPID 

algorithm, the selection of a constant parameter  is inadequate to warrant accurate 

depiction of defect when the defect is at an arbitrary position within the inspection 

region. By introducing the continuously iterated and updated scaling parameter , 

the RAPID-based imaging algorithm is enhanced to facilitate processing of 

inadequate signals rendered by the sensor network, resulting in not only the 

improved accuracy of defect localization, but also the enhanced geometrical 

depiction and severity estimate of defect. Experiment is conducted to demonstrate 

fidelity of acquired GUW signals, showing no remarkable discrepancy in sensing 

performance between the developed implantable sensor network over a broad 

frequency range, and examine accuracy of the enhanced RAPID algorithm. 

 

In Chapter 5, a hierarchical, ART-based UT approach, facilitated by CNN-based ML, 

is developed, targeting resolution-lossless tomography for SHM of composite 

structures, even when the sensing capability of the composite structures is restricted 

owing to inadequate transducers of the sensor network. In this approach, a CNN, 

which features encoder-decoder-type architecture including the convolution and 
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transposed convolution blocks with residual connections, is configured. The blurry 

ART images, as CNN inputs, are segmented using convolution and max-pooling to 

extract defect-modulated image features. The max-unpooling boosts the resolution of 

ART images with transposed convolution. For validation, the sensing capability of a 

sensor network, which is pre-implanted in a CFRP laminate, is purposefully 

restricted, to obtain an insufficient number of GUW signals via a mixed numerical 

and experimental method. Trained by the insufficient inputs, the CNN is used to 

detect and characterize artificial anomaly and delamination in the CFRP laminate. 

 

Chapter 6 serves as the conclusion of the thesis, where recommendations for future 

research are also made. 
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CHAPTER 2  

 

State of the Art: A Literature Review 

2.1 Introduction 

With the motivation to enhance structural safety, and drive down exorbitant 

maintenance cost of composite structures, this PhD study is dedicated to developing 

implanted nanocomposite-inspired sensor network for in-situ resolution-lossless UT-

based SHM and ML techniques. This chapter reviews the state of the art of some key 

aspects of UT-based SHM and ML techniques that are related to this PhD study. To 

start with, the basic concept of GUW-based SHM – a non-invasive and real-time 

approach of monitoring the integrity of composite structures, is introduced, and the 

theoretical fundamentals of GUWs are briefly summarized. Irrespective of the 

popularity and demonstrated effectiveness of UT for damage evaluation, several 

practical tomographic imaging approaches are presented and compared. Central to 

the realization of UT-based SHM is extracting structural health information from 

acquired wave signals. As the most rudimental but a critical step throughout the 

implementation, ultrasound sensors play the irreplaceable yet paramount role. 

Various categories of ultrasound sensors for this purpose are also summarized, 

including nanocomposite-inspired sensors and implanted sensors. Considering the 

superior capability of ML in improving the sensing effectiveness of UT, recent 

studies on ML-facilitated SHM are reviewed, including applications of ANN and 
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CNN. At the same time, the theoretical fundamentals of CNN are briefly summarized 

according to the categories of network architectures and activation functions. 

 

2.2 Guided Ultrasonic Wave-based Health 

Monitoring of Composite Structures 

2.2.1 Basic Concept of SHM 

In the past decades, composite structures have been widely used in various industrial 

sectors (e.g., aerospace industries, civil infrastructure, and energy engineering, etc.) 

for its specific properties compared with metallic counterparts, such as high strength, 

high stiffness and light weight. However, composite structures are often damaged by 

low-velocity impacts, while such damages are often invisible and may lead to 

catastrophic failure. Hence, it calls for an effective and efficient inspecting technique 

which could detect the damage promptly and thus ensure the safety of these 

composite structures. Non-destructive evaluation (NDE) techniques, when included 

within the framework of structural health monitoring (SHM), offers exciting and 

challenging possibilities to meet such requirements. The advantages of bringing NDE 

and SHM together are that it facilitates life cycle management decisions, reduces 

inspection down time, eliminates component tear down, provides early warning of 

failure during operation, and brings about life cycle cost reduction [38]. Amongst the 

various industries that stand to benefit from such a combined approach, the aircraft 

industry perhaps is the most visible beneficiary, as it spends 27% of the life cycle 

cost on inspection [39]. 
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SHM can be operated in two different manners: one is passive SHM and another is 

active SHM. Passive SHM is mainly used to measure the real-time parameters and 

then deduce the status of structural health by using same algorithms. For instance, 

thousands of sensors should be placed beforehand to supervisory control the flight 

status of an aircraft (e.g., velocity of wind, turbulence, g-factors, aircraft structural 

vibration) and then use the prepared algorithms to deduce whether the aircraft still 

can fly safely or not and how much the remaining life is. It’s difficult to locate where 

the damage occurred when using passive SHM. In comparison, active SHM is 

concerned with addressing the exact location of damage. Active SHM systems utilize 

actively generated GUWs of specific frequency and magnitudes. Such an active 

manner effectively minimizes the negative influence of signal noise, and enhances 

the system controllability and diagnosis accuracy. By interpreting changes of subtle 

GUWs features, multiscale damage or faults in an inspected structure can be 

pinpointed and characterized, either qualitatively or quantitatively, and the remaining 

service life of the structure can also be derived. 

 

2.2.2 Fundamentals of Guided Waves 

Elastic waves in a solid medium can be one of the modalities (e.g., Rayleigh waves, 

Lamb waves, Stonely waves and Creep waves), distinguished by the motion of 

particles [1]. Particularly, among above modalities, Lamb waves are selected as the 

GUWs in SHM, based on the merits of Lamb waves under high frequency. 

Meanwhile, Lamb waves refer to those in thin plates that provide upper and lower 

boundaries to guide continuous propagation of the waves [40]. 
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In a thin isotropic and homogeneous plate as shown in Figure 2.1, no matter what 

kind of wave modes is, elastics waves can be represented by the Cartesian tensor 

notation as [41] 
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In the above, u and f are the displacement and body force, respectively; ρ and μ are 

the density and shear modulus of the plate, respectively; λ signifies the Lamé 

constant that is related to the Young’s modulus E and Poisson’s ratio ν of the plate; 
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Figure 2.1 An infinite isotropic thin plate of 2h in thickness. 
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Lamb waves are guided to propagate in an isotropic and homogeneous plate, 

consisting of symmetric (in-plane motion) and anti-symmetric modes (out-of-plane 

motion). Both symmetric and anti-symmetric modes are of dispersive nature, 

showing strong dependence on wave excitation frequency, and Lamb waves can be 

expressed as [40] 
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where h, kwave,  and λwave are the half-thickness of the plate, wavenumber, circular 

frequency and wavelength of the wave, respectively. CL and CT are the velocities of 

longitudinal and transverse/shear modes (L stands for the longitudinal modes and T 

the transverse/shear modes hereafter), respectively, defined by 
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In short, the Lamb wave can be divided into two different modes, using Si and Ai (i = 

0, 1) as the symbols, one is symmetric and the other is anti-symmetric. The lowest 

order of symmetric and anti-symmetric have the same subscript (showing as S0 and 
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A0, respectively). Equations 2.4 and 2.5 are known as the Rayleigh-lamb equations. 

The schematics of particle motion in the symmetric and anti-symmetric Lamb wave 

modes are plotted in Figure 2.2, indicating the displacement direction of particles 

and the resulting motion. Si modes predominantly have radial in-plane displacement 

of particles, Figure 2.2(a), while Ai modes mostly have out-of-plane displacement, 

Figure 2.2(b). 

 

  

 (a) (b) 

Figure 2.2 (a) Symmetric Lamb wave modes; (b) anti-symmetric Lamb wave modes 

 

2.3 Ultrasound Tomography 

UT, by virtue of its high accuracy, intuitive presentation of results and standardized 

implementation, has gained prominence in SHM-driven integrity assurance and 

health management of engineering assets. With an analogous principle as the CT 

using X-ray radiography in clinic, UT for SHM canvasses subtle variation in 

ultrasound signals by benchmarking pristine counterparts, subsequently associates 

the variation to material deterioration or damage occurrence, and projects evaluation 

results in pixelized images through proper tomographic imaging algorithms. SHM 
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applications require that sensors be permanently installed on or implanted in 

structures. Consequently, only a limited number of sensors can be installed on a 

structure. This limited number of sensors impacts the resolution of the reconstructed 

tomographic image and the sensitivity of the inspection approach. In UT, it is 

important to choose a practical tomographic imaging approach in order to get a 

precise reconstructed tomographic image. Table 2.1 summarizes the various UT 

techniques to date. Considering the advantages and limitations of each technique, 

common similarities emerge. 

 

UT for SHM has been the core of intensive research over the years. Representatively, 

Hinders et al. [42-46] are among those trailblazers who first exploited guided wave-

based tomography. In this series of pioneering studies, comprehensive theory of 

implementing UT for damage detection was developed, with proven effectiveness in 

detecting flaws and anomalies in metallic and composite structures [44]. Jansen et al. 

[47] used Lamb waves to reconstruct tomographic images for visualizing defect in 

metallic and composite structures via an ultrasonic immersion. McKeon et al. [43, 44] 

compared the FBP and ART – two popular approaches to implement UT, for 

characterizing damage in multi-layered aircraft structures, and concluded that ART 

showed higher accuracy and fidelity over FBP. Rose et al. [48, 49] extended the 

RAPID-based tomographic imaging to damage localization and growth monitoring, 

and compared RAPID against FBP and ART, in terms of the image quality and image 

construction efficiency, to argue that RAPID offered higher flexibility in sensor 

network configuration, greater tolerance to ambient noise, and faster image 

construction with higher resolution. Rao et al. [50, 51] proposed a full waveform 

inversion (FWI)-based tomography method and demonstrated its precision by 

evaluating the remaining wall thickness of an isotropic plate. 
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Table 2.1 Overview of existing UT techniques. 

Technique Description Advantages and limitations 

Contact 

tomography 

Contact tomography uses standard 

piezoelectric sensors to excite and 

receive guided waves. The sensors 

are displaced using standard 

mechanical scanning 

instrumentation. Alternatively, the 

inspected part can be rotated 

while keeping the sensor position 

fixed. 

Advantages: high spatial 

resolution and image resolution 

due to fine mechanical scanning 

indexing. 

Limitations: consistent coupling 

must be maintained between 

transducer and specimen; 

scanning hardware is bulky and 

expensive. 

Air-coupled 

tomography 

Air-coupled transducers excite 

and receive tomography guided 

waves at some lift-off from the 

specimen surface. The transducers 

and specimen are manipulated 

using mechanical scanning 

instrumentation similar that used 

with contact tomography. 

Advantages: high spatial 

resolution and image resolution 

due to fine mechanical scanning 

indexing; no direct contact 

between transducer and specimen 

is required. 

Limitations: scanning hardware 

is bulky and expensive. 

Immersion 

tomography 

Immersion tomography 

submerges the specimen in 

ultrasonic immersion tanks. 

immersion transducers can be 

moved in one or two dimensions. 

Similarly, the specimen can be 

rotated on a turntable while 

keeping transducer position fixed. 

Advantages: high spatial 

resolution and image resolution 

due to fine mechanical scanning 

indexing; no direct contact 

between transducer and specimen 

is required. 

Limitations: scanning hardware 

is bulky and expensive; specimen 

must be submerged in immersion 

tank. 

Laser 

generation 

tomography 

In laser generation tomography, a 

pulsed laser is used to excite a 

guided wave in the specimen. The 

transducer position is 

automatically controlled by a 

translation and/or rotation stage. 

Contact, air-coupled, and EMAT 

transducers can be used as 

receivers. 

Advantages: high spatial 

resolution and image resolution 

due to fine mechanical scanning 

indexing; no direct contact 

between transducer and specimen 

is required. 

Limitations: scanning hardware 

is bulky and expensive; laser 

generation instrumentation is also 

bulky and expensive. 
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2.4 Nanocomposites Sensors and Implanted Sensors 

Regardless of the popularity and proven effectiveness of UT for SHM, 

implementation of UT usually entails a deliberately designed transducer network in a 

dense configuration, using commercially available transducers shown in Figure 2.3 

and Table 2.2, as typified by metal-foil strain gauges [13], lead zirconate titanate 

(PZT) wafers [14-20], optical fibres [21], electromagnetic acoustic transducers 

(EMAT) [22], and piezoelectric polymer film-type sensors (e.g., polyvinylidene 

fluoride (PVDF) and its copolymers) [23-28]. Among them, the sensitivity of strain 

gauges and PVDFs is limited inherently to signals of low frequency (lower than 

hundred kilohertz [52]), as a result of the low piezoelectric coefficients that PVDF-

type sensors possess [53]; PZT wafers are rigid and unwieldy to adapting to a curved 

surface, and a transducer network with multitudinous PZT wafers introduces 

intrusion to host structures; optical fibre-based sensors are fragile, necessitating extra 

protection, and in generally they are insensitive to damage far from sensor vicinity. 

Implanting optical fibres into a structure not only complicates the fabrication process 

but may degrade local material strength; EMATs are typically used for evaluation of 

metallic structures only, and moreover the transduction efficiency is normally 

insufficient compared with most piezoelectric transducers. 

 

    

 (a) (b) (c) (d) (e) 

Figure 2.3 (a) Metal-foil strain gauge; (b) PZT wafers; (c) optical fibre; (d) acoustic 

transducers; (e) PVDF. 
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Table 2.2 Overview of commercially available transducers used in SHM. 

Transducer Applications Installation 

Metal-foil gauge 
Detecting large and low-

frequency deformations 
Surface-mounted 

PZT wafer 
Detecting damage or working as 

active sensor 

Surface-mounted or 

implanted 

Optical fibre 
Detecting deformation and 

damage 

Surface-mounted or 

implanted 

EMAT 
Detecting structural damage or 

measuring thickness 

Surface-mounted or 

air/fluid-coupled 

PVDF 
Detecting damage for large area 

and curved surface 

Surface-mounted or 

implanted 

 

With an appropriately selected type of transducer, a transducer network can be either 

externally mounted on or internally implanted in composites to implement UT. 

However, a densely configured transducer network, as shown in Figure 2.4(a), when 

implanted, alters the microstructure of the fibre-reinforced matrix, influences the 

interlaminar stress distribution in the sensor vicinity, introduces artificial defect, and 

consequently lowers the structural load-carrying capacity, regardless of the fact that 

the intended role of the implanted transducer network is to monitor structural 

integrity degradation. On the other hand, any attempt to minimize such intrusion by 

limiting the transducer number is usually at the cost of undermining the detection 

resolution and accuracy, as illustrated in Figure 2.4(b), because reconstruction of a 

precise tomographic image is guaranteed by rich information that can only be 

provided by a dense transducer network. Indeed, it is a challenging task to strike a 

balance between the sensing cost and sensing effectiveness when implementing UT-

based SHM for composites using implanted transducers. 
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 (a) (b) 

Figure 2.4 (a) Dense sensor network with high resolution and accuracy; (b) sparse 

sensor network with low resolution and accuracy. 

 

2.4.1 Nanotechnology 

Nowadays, the most urgent thing for improving the SHM is to find out a new type of 

material to fabricate advanced sensors with new function and superior performance. 

Conductive polymer composites (CPCs) have proved to meet all the requirements, 

which can be typified by carbon black (CB), carbon nanotubes (CNTs), and graphene, 

as shown in Figure 2.5. The nanoscale of the nanofillers and mature synthetic 

technology allows them to be dispersed in polymer matrices uniformly, and the 

coalescence between nanofillers and polymers introduces some appealing and unique 

material features, such as low fabrication cost, low density, desired flexibility, easy 

tailorability in shape, immunity to corrosion, and favourable electrical-mechanical 

performance [54, 55]. 
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 (a) (b) (c) 

Figure 2.5 (a) Carbon black; (b) carbon nanotubes; (c) graphene. 

 

CB is a material produced by the incomplete combustion of heavy petroleum 

products such as coal tar, ethylene cracking tar, and a small amount from vegetable 

oil. CB is a form of paracrystalline carbon that has a high surface-area-to-volume, 

but still lower than that of activated carbon. CB has been widely used as a conductive 

particle and in filled isolating polymer, because it is relatively inexpensive and 

manufacturing process is simple, but the most important property of CB is the 

superior performance in terms of its high electrical conductivity [54]. 

 

CNTs are allotropes of carbon with a cylindrical nanostructure, as a kind of novel 

functional material that has superiority in optical, electrical and mechanical 

properties, chemical and thermal stability. CNTs can be structured with length-to-

diameter ratio of up to 132,000,000:1, significantly larger than for any other material. 

CNTs get its name from their surface morphology-long, hollow structure with the 

walls formed by one-atom thick sheets of carbon [56]. 

 

Graphene is an allotrope of carbon in the form of a two-dimensional, atomic-scale, 

hexagonal lattice in which one atom forms each vertex. It is the basic structural 

element of other allotropes, including graphite, charcoal, CNTs and fullerenes. The 

strength of graphene is about 200 times stronger than the strongest steel while the 
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conductivity of graphene is 10-6 Ω·cm. Because of the single layer of atom which 

restricted the electrons can only transfer in a specific plane, graphene possesses a 

unique property that the kinematic velocity of electrons can reach 1/300 of the speed 

of light, far more than the kinematic velocity in general materials. Graphene also 

shows a large and nonlinear diamagnetism, even greater than graphite. Researchers 

have identified the bipolar transistor effect, ballistic transport of charges and large 

quantum oscillations in the material [57]. 

 

Upon evenly dispersed in a dielectric polymer, conductive nanofillers, such as 2-D 

graphene nanoparticles, can create an electrical network in the polymer. The 

electrical properties of the composites can be described, according to the percolation 

theory [58, 59], as 

 

 ( )c tp p  − , (2.9) 

 

where  signifies the electrical conductivity of the nanofiller-dispersed composites, p 

the volume fraction of nanofillers, pc the percolation threshold of the composites, and 

exponential t a constant associated with the composites. The percolation threshold 

represents a critical volume fraction of the nanofillers, beyond which a slight 

increase in the nanofiller content can give rise to a tremendous leap in the 

conductivity of the composites [58, 59]. In a nanoparticles-formed conductive 

network, the electrical resistance consists of three key components: the intrinsic 

resistance of nanoparticles (Rnanoparticle), the constriction resistance owing to direct 

contact of nanoparticles (Rcontact), and the tunnelling resistance between two 

neighbouring nanoparticles (Rtunnel), namely 
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  nanoparticle contact tunnelR R R R= + + . (2.10) 

 

In particular, the tunnelling effect describes the phenomenon that when the insulative 

barrier between two neighbouring nanoparticles becomes thinner than a critical 

threshold, a tunnelling current can be triggered when electrons move through a 

barrier that they classically should not be able to move through. It is the quantum 

tunnelling effect that brings somewhat appealing and unique properties to 

nanocomposites such as semi-conductive properties. In Equation 2.10, Rtunnel is 

defined as [60] 
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where V denotes the electrical potential difference, J the tunnelling current density, At 

the cross-sectional area of the tunnel, hplanck the Planck’s constant, dn the distance 

between two nanoparticles, e the quantum of electricity, m the mass of electron, and 

l the potential height of insulating layer. The tunnelling resistance, Rtunnel, depends 

on the thickness and material properties of the insulating layer, which is much higher 

than the other two types of resistance (Rnanoparticle and Rcontact) by a multitude of orders 

of magnitude. The tunnelling effect is particularly prominent when two nanoparticles 

are in a close proximity (of the order of several nanometres) but not in a direct 

contact. This stresses that at the percolation threshold, the quantum tunnelling effect 

dominates the electrical resistance manifested by the nanocomposites; beyond the 

threshold, nanoparticles become contacted or overlapped, under which the tunnelling 

effect tends to be weak and the conductivity of the nanocomposites saturates. 
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It is such an electro-mechanical property of the nanocomposites that serves the 

underlying mechanism to be harnessed, on which basis the conventional composites 

are functionalized, and endowed with a capability to respond to GUWs, as illustrated 

schematically in Figure 2.6. It is noteworthy that the GUW-induced strain features 

an extremely low magnitude that is of the order of several micro-strain, under which 

the tunnelling effect is the key mechanism resulting in change in the conductivity of 

the nanoparticles-formed sensing network as interpreted earlier. In virtue of the 

GUW-triggered tunnelling effect in the nanoparticles-formed percolating network, 

properly fabricated and optimized nanoparticles-dispersed composites can warrant 

desired sensitivity to propagating GUWs. 

 

  

 (a) (b) 

Figure 2.6 (a) GUW excitation and propagation in a composite plate; (b) GUW-

triggered tunnelling effect in the nanoparticles-formed percolating network, leading 

to change in local electrical resistance. 

 

2.4.2 Nanocomposite-inspired Sensors 

Recent advances in emerging nanotechnology have paved a new trail towards 

innovative sensors made of nanocomposites, to remarkably downsize a sensor but 

enhance its sensing capability. Nanocomposite sensors made of various carbon 
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nanofillers show appealing features such as low density, good flexibility, 

environmental and chemical stability, along with superb sensitivity. This category of 

sensors has secured the superiority in measurement, detection and monitoring. 

Favourable examples include the measurement of material strain induced by quasi-

static loads [61, 62] or under low-frequency dynamic loads [63, 64], and 

identification of structural damage [65, 66]. Representatively, Qin et al. [67] reported 

a type of graphene/PI nanocomposites that showed enhanced sensitivity to structural 

deformation under compression, bending, stretching and torsion. Wu et al. [68] 

designed piezoresistive strain sensors consisting of vertical graphene nanosheets that 

were arranged in a maze-like network and sandwiched between two 

polydimethylsiloxane substrates, and the sensors presented good stretchability, 

excellent linearity and high sensitivity to dynamic strains when compared with 

conventional metal-foil strain sensors. Qiu et al. [63] fabricated graphene-based 

cellular elastomers with reduced graphene oxide, and thus-produced elastomers 

could provide instantaneous and high-fidelity electrical response to dynamic 

pressures up to 2 kHz. Zeng et al. [69, 70] developed a CB/PVDF sensor that was 

able to respond to dynamic responses in a broadband frequency regime from static 

strain, through medium-frequency structural vibration, to high-frequency ultrasound. 

Liu et al. [52] attempted a new nanocomposite sensor, coatable on a structural 

surface, in lieu of conventional PZT wafers. This type of sensor showed high fidelity, 

ultrafast response, and great sensitivity to broadband acoustic-ultrasonic signals, and 

captured signals were comparable with those obtained using commercial sensors 

such as PZT wafers. Liao et al. [71, 72] investigated a nano-engineered thin film-

type piezoresistive sensor, as shown in Figure 2.7, coatable or sprayable on a 

structural surface for in-situ acquisition of dynamic strain up to 1.4 MHz. 

Nevertheless, traditional metallic cables and wires, to network individual sensors for 
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forming a sensor network, are still of necessity in these approaches. The use of 

printed circuits [73, 74] may, to some extent, reduce the weight and volume of cables 

and wires, but the surface-mounted printed circuits show high likelihood of 

detachment from the host structures under cyclic loads. 

 

  

 (a) (b) 

Figure 2.7 Produced spray-on nanocomposite sensor: (a) a screen-printed 

nanocomposite flake, showing resilience; (b) a self-contained sensor with electrode 

pair. 

 

2.4.3 Implanted Sensors 

In various current applications, signals are collected using surface-mounted 

transducers, for their convenience of attachment, maintenance and replacement. 

However, with inevitable intrusion to composite structures, these sensors (e.g., PZT) 

per se, degrade the structural integrity to some extent, regardless of their intended 

role of detecting damage-caused structural degradation. They possibly lower local 

material strength, introduce defect, stress concentration and debonding, downgrade 

resistance to corrosion, and, owing to the use of cables and wires for networking 

individual sensors, impose weight and penalty to original composite structures. Such 
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degradation due to sensor intrusion is further intensified when structures are 

manipulated in cruel environment. Under cyclic loads, integrated sensor networks, 

along with shielded cables and wires, are running a high risk of de-attaching from 

host structures. Moreover, with sensors directly exposed to the working environment, 

the capture of signals can be severely compromised by noise from a variety of 

sources. Therefore, the reliability and repeatability of signal acquisition may be 

inadequate. 

 

Several studies implanted separated piezoelectric transducers into the composite 

structures to create in-situ sensor network. Su et al. [75] used an implanted 

piezoelectric network composed of miniaturized circuited wafers to locate and gauge 

delamination in CFRP laminates thanks to Lamb wave sensing, as shown in Figure 

2.8. This technique shown excellent identification results combined to good 

robustness to environmental noise as well as stability and repeatability in data 

acquisition, when compared to ex-situ sensors methods. Masmoudi et al. [76-82] 

inserted PZT wafers of various dimensions inside composite laminates, to perform 

SHM of these materials using the PZTs as in-situ AE sensors during mechanical 

loading. The intrusiveness studies showed that the implanted PZTs caused only slight 

degradation of the composite’s mechanical properties if the PZT dimensions did not 

exceed certain limits. Chilles et al. [83] did it with a standard PZT transducer able to 

remotely send information to an external SHM acquisition unit thanks to a coil 

system using electromagnetic coupling. This inductively coupled transducer (ICT) 

system was used to perform GFRP laminates cure monitoring and damage detection 

thanks to bulk waves and guided waves generation and reception with a single in-situ 

ICT sensor performing pulse-echo measurements. Dziendzikowski et al. [84-86] 

used different kinds PZT wafers of implanted and surface-mounted transducers to 
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perform a sensitivity comparison. The indication of damage was found in to be more 

significant for implanted sensors compared to surface-attached ones, with good 

stability and irrespective of PZTs relative orientation, network geometry or material 

anisotropy. Katunin et al. [87] also pointed out the fact of adding more sensors in the 

implanted network to enhance its accuracy in detecting impacts using damage 

indexes (DIs). 

 

 

 (a) (b) 

Figure 2.8 (a) Set-up of CFRP laminate in test; (b) delamination searching strategy 

and results (grey circle: actual delamination; white circle: region of high probability 

for the occurrence of delamination). 

 

Multiple layers can also be implanted inside the composite structures to create 

multiple sensing paths. Wang et al. [88] and Qing et al. [89] implanted SMART 

Layers in built-in-plane paths and through-the-thickness paths inside a multiple-layer 

thick ceramic-composite armour panel and a filament-wound bottle to be able to 

monitor impact damage, as shown in Figure 2.9. Qing et al. also noticed that the 

PZTs contained in the layers fully implanted in the bottle produced stronger 

diagnostic signals than the one only attached to its surface, which once again 
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confirms the interest of fully in-situ sensor networks. 

 

 

Figure 2.9 2-D to 3-D conversion process of a diagnostic SAMRT Layer. 

 

Some researchers preferred using piezoelectric polymer film-type sensors to perform 

in-situ AE and SHM. De Rosa et al. [90] and Caneva et al. [91] worked on the 

integration of commercially available PVDF elements into glass/epoxy and 

aramid/epoxy composites to perform AE, and prove that these sensors can be used as 

in-situ low-cost, light, flexible and reliable SHM devices. Park et al. [92] did the 

same kind of calibration tests with two PVDF sensors implanted in GFRP laminates 

made with different hardeners, and also found a good correlation between generated 

and detected PLBs. Caneva et al. and Park et al. noticed that the PVDF had more 

difficulties to localize damage coming from long distances and attributed it to the 

low sensitivity of PVDF and damping of the viscoelastic matrix. Blanas et al. [93], 

Schulze et al. [94] and Bae et al. [95] implanted PVDFs into GFRP and CFRP 

laminates to realize in-situ impact detection thanks to the film detecting the 

propagation of the elastic wave generated by the impact. 
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2.5 Machine Learning Facilitated SHM 

2.5.1 Basic Concept of ML 

With demonstrated effectiveness in predictively modelling complexity and 

abstraction of engineering problems [96-98], ML has secured its popularity in data-

driven SHM. Chief amongst the use of ML for SHM is the ANN [99, 100], with 

examples including localization of impact [98], construction of force history [99], 

assessment of delamination in composites [100]. Biologically inspired, an ANN is a 

computational model comprising a multitude of layers of computational units, known 

as artificial neurons, which are analogous to those of the neurons of a biological 

nervous system. An ANN predicts or forecasts new outputs, in response to new 

stimuli via probability-weighted associations that are obtained via training using a 

series of known input-output pairs. The validity of the ANN metamodels directly 

depend on the training process and the amount of data available. Sensor data should 

not be input as a discrete signal as it contains too much information and it requires 

extraction of specific features such as time of flight (ToF) of signals for impact 

detection on a plate, which is problem-dependant and cannot be generalized [101]. 

ANNs are generally accurate for the scope of a given training data, so for a real-life 

impact identification and characterization, a large range of training data is required 

[102]. Other ML algorithms that have been tested for simple applications including 

support vector machine (SVM) [101], extreme learning machine (ELM) [103, 104], 

probabilistic neural network (PNN) [105, 106], fuzzy ARTMAP network (FAN) 

[107-109], least square support vector machine (LSSVM) [101]. However, all these 

methods can be applied for relatively-simple structures only and lack of 

generalization. 
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To overcome a common problem that the ANN and other prevailing ML algorithms 

confront – the drastic decrease in computational efficiency as the quantity of data for 

training increases, the matrix convolution operation is introduced, in which only key 

features of inputs are extracted for the training – known as CNN [110]. CNN has 

proven capability of exploring complex non-linear mappings between inputs and 

outputs – a daunting task to conventional ANN [111-117]. CNN has found its 

superior niches in ML-facilitated image classification [118], object recognition [119], 

speech recognition [120], semantic segmentation [121], medical studies [122], 

computer vision [123], and damage diagnosis [124] to name a few. Abdeljaber et al. 

[125] proposed a new, real-time vibration-based structural damage detection system 

based on one-dimension (1-D) CNN. One of the main advantages of this method is 

that raw signals are used for the optimal damage-sensitive feature extraction. Further 

study [126] emphasized how CNNs can fuse and simultaneously optimise feature 

extraction and classification into a single task: a learning block in the training phase 

of the CNN, such that it eliminates the need of feature extraction beforehand. Thus, 

using a CNN with raw data as input will be more advantageous than traditional 

extraction methods. De Oliveira et al. [127] developed a CNN-based SHM technique 

for an aluminium specimen for damage detection. Moreover, the rotating machinery 

domain features other studies using CNNs such as [128], that uses images with the 

actual damage as training data [129-133], which emphasize that traditional methods 

ignore abundant information from the signals when extracting only a few features, 

such as mean value, standard deviation and kurtosis. 

 

As will be readily seen, when extended to SHM and damage identification, the 

accuracy and effectiveness of CNN, as well as other prevailing ML algorithms, 
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depend substantially on a multitude of factors including mainly the training 

algorithms adopted, completeness of data available for training, and compatibility of 

a trained database to new inputs which are not included in the training. These factors, 

by nature, may narrow the application spectrum of ML-driven SHM. The 

significance of enhancing the compatibility and applicability of a trained database, 

with minimal extra effort to re-train an CNN, cannot be overemphasized. What is 

more, most of the reported work with CNN have been on simple structure with 

isotropic properties and the scalability of the method on real structures under 

operational load have not been demonstrated. 

 

2.5.2 Fundamentals of CNN 

Although there are many variations in the CNN, the main composition of the 

architecture includes convolution layers, pooling layers and full connection layers 

[134-148]. The convolution layer is the core of the CNN. It is used for extracting 

information from its input using a number of filters that are automatically learned to 

detect certain features in an image. Each filter will scan through the input from the 

upper left hand side corner to the bottom right hand side corner, each creating a 

feature map. As more convolutional layers are connected in series the output of one 

such layer becomes the input of another, and its features are extracted again 

increasing the level of complexity, and hence the accuracy, but also increasing the 

training time and the risk of overfitting. Thus, there is a trade-off, and the number of 

convolution layers, as well as the number of filters and their sizes in the metamodel, 

are chosen by performing the trial-and-error method. 

 

The pooling layer performs the down-sampling in the width and height, reducing the 
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dimensions of its input and, hence, reducing the number of parameters to be 

computed [30]. This reduces the complexity of the network and the possibility of 

overfitting. The pooling operation operates on each depth slice of the input separately, 

down-sampling them all in the same manner. Each of the slices will be divided into 

several patches, equal in area to the filter size set by the user when defining the 

pooling layer. The most used filter size is (2, 2), so each slice can be divided into 

several adjacent but disjoint patches of two neurons high and two neurons long. The 

output of the pooling layer is a smaller volume, but equal in depth to the input. 

 

The full connection layer is a regular densely connected layer. Each of its output 

neurons is connected to all the neurons from the input [30]. This is implemented at 

the output together with an activation function to give the predictions. The nodes at 

the output of the layer contain the probabilities of the input to the CNN belonging to 

all classes. As each of those nodes is connected to all the neurons of the input to the 

layer, each receives all the information from the first half of the network, containing 

the convolutional and pooling layers. 

 

In addition to the above layers, activation function is also a key part in CNN. The 

main purpose of activation function is to introduce nonlinearity in the relationship 

between the output of a node and the input of another node [149]. There are multiple 

types of activation function, and the main ones are described as follows: 

 

(i) Sigmoid function: The curve has an ‘S’ shape as shown in Figure 2.10, and it is 

given by the following equation [150] 

 



33 

 
1

( )
1 x

g x
e

si
−

=
+

 (2.12) 

 

Since the function is not centred on the origin but on the (0, 0.5) point, as well as the 

limited region of high sensitivity, when using Sigmoid function, the learning 

algorithms have difficulties in updating the weights to improve the performance 

causing a difficult process of optimisation and a slow convergence. In addition, as 

the output varies between 0 and 1, if a large input is applied, it will be scaled down 

significantly. Therefore, a large change in the input will result in a small change in 

the output. This problem is called the vanishing gradient, and it can be problematic 

when using multiple layers in the network. 

 

 

Figure 2.10 Illustration of Sigmoid activation function. 

 

(ii) Tanh function: The hyperbolic tangent function is a slightly improved version of 

the Sigmoid function, in which the activation function is centred on the origin. The 

function has an ‘S’ shape, as shown in Figure 2.11, and saturate at −1 for x = − , 
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and 1 for x =  [151] 
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Using the Tanh function, the optimisation can be easier compared with the Sigmoid 

function. However, the output still saturates, the high sensitivity region is still small, 

and the vanishing gradient is still a critical problem. 

 

 

Figure 2.11 Illustration of Tanh activation function. 

 

(iii) ReLU function (Rectified Linear Unit): the function curve has two regions, as 

shown in Figure 2.12, depending on the value of the input. For negative inputs, the 

function output is 0, while for positive inputs, the result is equal to the input itself 

[152] 
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The ReLU function has numerous advantages when comparing with the Sigmoid or 

the Tanh functions. Firstly, it was proven to be approximately six times faster in 

convergence comparing to the hyperbolic tangent. Secondly, as the function increases 

from 0 to ∞ for positive inputs, a large variation in the input will be translated to a 

large variation in the outputs so the vanishing gradient problem is avoided. The 

function is no longer saturated and have one non-linear region (i.e., for x<0) and one 

linear region (i.e., for x≥0), but overall it is still a non-linear function. Nevertheless, 

when using backpropagation for training the network, the linear region will bring 

many desirable advantages of linear activation functions. It is computationally easier 

performed than the previous two activation functions. 

 

 

Figure 2.12 Illustration of ReLU activation function. 

 

(iv) Softmax function: the function is used to normalise the output vector of the CNN 

to a vector of length K, whose values sum to 1. This final vector contains a range of 

probabilities, and the position of the maximum one can be the predicted. The 
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Softmax function can be mathematically written as [30] 
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2.6 Summary 

In this chapter, the basic concept of guided ultrasonic wave-based SHM is introduced, 

and the theoretical fundamentals of guided ultrasonic waves are briefly summarized. 

Among the existing SHM approaches, passive SHM is mainly used to measure the 

real-time parameters and then deduce the status of structural health by using specific 

algorithms, while active SHM utilizes actively generated GUWs of specific 

frequency and magnitudes to monitoring   structural integrities. As the popularity and 

demonstrated effectiveness of UT in active SHM, several practical tomographic 

imaging approaches are presented and compared. However, conventional UT by 

virtue of imaging algorithms often shows inferior accuracy when insufficient sensors 

are used. Central to the realization of UT-based SHM is extracting structural health 

information from acquired wave signals, thus ultrasound sensors play the 

irreplaceable yet paramount role in an SHM system. Various categories of sensors for 

this purpose are surveyed and summarized, including nanocomposite-inspired 

sensors and implanted sensors. Finally, considering the superior capability of ML in 

improving the sensing effectiveness of UT, recent studies on ML-facilitated SHM are 

reviewed, including the application of ANN and CNN. At the same time, the 

theoretical fundamentals of CNN are briefly summarized according to the categories 

of network architectures and activation functions. As will be readily seen, when 
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extended to SHM and damage identification, the accuracy and effectiveness of CNN, 

as well as other prevailing ML algorithms, depend substantially on a multitude of 

factors including mainly the training algorithms adopted, completeness of data 

available for training, and compatibility of a trained database to new inputs which are 

not included in the training. These factors, by nature, may narrow the application 

spectrum of ML-driven SHM. In conclusion, this PhD thesis will start from the 

design and fabrication of an implantable, nanocomposite-inspired sensor network, 

through the improvement of RAPID imaging to ML-enabled imaging, to truly 

implement in-situ UT-based SHM. 
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CHAPTER 3  

 

Fabrication of Implantable Piezoresistive 

Sensor Network 

3.1 Introduction 

In this chapter, a new breed of nanocomposite-inspired, piezoresistive sensor 

network is developed using a spray deposition process. Individual sensors, deposited 

on a pre-treated B-stage epoxy film, are networked via highly conductive carbon 

nanotube fibres as wires, to form a dense sensor network. Flexible, light, sensitive to 

broadband dynamic signals, the sensor network is implanted into CFRP laminates, to 

fulfil GUWs-based UT. Morphological characterization is performed to observe the 

interface between the CFRP laminate and implanted sensing unit, meanwhile to 

investigate the intrusion of the implanted sensor network to the host composites. 

Quasi-static tensile test is performed to gauge possible degradation in tensile 

properties and change in failure modes of the CFRP laminates owing to the 

implantation of a sensor network. 

 

3.2 Pre-curing of B-staged Epoxy Film 

For fabricating a compatible, implantable sensing unit with minimized intrusion to 
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the host composites, a B-staged epoxy is pre-cured for depositing sensing units and 

unit-associated wires/circuits, and in the meantime insulating sensing units from 

conductive fibres in CFRPs. A high temperature-resistant release film (AIRTECH® 

WL5200B nonperforated peel ply) is selected as the substrate, onto which the B-

staged epoxy is deposited. The release film is immersed in acetone and sonicated in 

an ultrasonic bath (Branson® 5800 Ultrasonic Cleaner, 40 kHz) for 30 min to remove 

contaminants, and is heated at 65 C in a vacuum oven for 15 min to evaporate the 

residual acetone. The B-staged epoxy is poured on one end of the release film and 

then evenly squeezed to the other end of the film using an applicator at 80 C. The 

thickness of the coated B-staged epoxy is ~20 m, measured using an electronic 

spiral micrometre. Up to this stage, the B-staged epoxy on the film is still chemically 

reactive. To reduce the resin flowability and maintain a desired morphology of the 

spray-coated sensing units, the epoxy film is pre-cured in a vacuum environment at 

130 C to achieve 40 % of the full degree of curing. Figure 3.1 illustrates the main 

process of fabricating precured B-staged epoxy films. 

 

 

Figure 3.1 Schematic diagram of fabricating precured B-staged epoxy films 
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3.3 Fabrication of Spray-coated Nanocomposite 

Sensing Units 

A standard solution mixing process is applied to prepare nanocomposite ink. PVP 

(Sigma-Aldrich® PVP K-30) is chosen as the matrix, and GNSs (TANFENG®, 

thickness: ~1 nm, diameter: ~50 μm, SSA: ~1200 m2/g, and purity: > 99 wt.%) as the 

modified nanofillers (mass ratio of GNSs to PVP is 1:19). The GNS/PVP hybrid (1 g) 

is dispersed in ethanol (20 ml), and magnetically stirred at 500 rpm at an ambient 

temperature (25 C) for two hours, followed with a sonication in the ultrasonic bath 

for one hour. Thus-produced nanocomposite ink is sprayed directly onto the above 

prepared pre-cured epoxy film using an airbrush (HD-130). The scanning speed of 

the nozzle (5 cm/s), stream pressure (0.35 MPa) and distance of target to nozzle (10 

cm) are precisely controlled during the spraying process, to warrant a consistent 

initial resistance of the ink. During deposition, the B-staged epoxy is adhesive, in 

which a small amount of ethanol remains, and the morphology of the ink tends to be 

affected by the residual ethanol in the subsequent procedure of heating treatment. To 

eliminate such effect, the ink deposited on the pre-cured epoxy film is placed in a 

frozen drying oven to vaporize the residual ethanol. 

 

During the spraying process, a thin polyimide (PI) film with a desired hollowed-out 

is prepared, serving as a moulding layer. The film is pressed onto the pre-cured 

epoxy film. The hollowed-out precisely defines the geometry of a sensing unit, to be 

5 mm in width and 20 mm in length, after the nanocomposite ink is sprayed on the PI 

film and then the moulding layer is peeled off from the pre-cured epoxy film. A pair 

of electrodes is introduced to each sensing unit, by aligning two CNT-fibres 
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(DexMat® CNT-film) along the two long edges of a unit. Another identical pre-cured 

B-staged epoxy film is placed atop each sensing unit which has been deposited on 

the substrate, whereby to encapsulate each sensing unit and insulated it from 

conductive fibres upon implantation into CFRPs. Each encapsulated sensing unit is 

fully cured at 130 C for 30 min under a vacuum condition. With such a 

manufacturing approach, the thickness of each sensing unit is ~45 m only, 

measured in scanning electron microscope (SEM) images, inflicting minimal 

intrusion to the host composites. The manufacturing procedure of preparing the 

nanocomposite sensing units is flowcharted in Figure 3.2, and thus-fabricated 

sensing units with CNT-fibre-based electrodes and wires are photographed in Figure 

3.3. With a resistance of ~20 Ω/m only, the CNT-fibres also function as wires to 

network individual sensing units. The wire is ~1 mm in width and ~10 m in 

thickness only, impacting ignorable intrusion to the composites. 

 

 

Figure 3.2 Flowchart of fabricating the spray-coated nanocomposite sensing units. 
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 (a) (b) 

Figure 3.3 Photographs of (a) fabricated nanocomposite sensing units; (b) sensing 

unit showing a high degree of flexibility (diameter of the plastic rod in photo: 8 mm). 

 

3.4 Implantation of Sensor Network into CFRP 

Laminates 

A series of quasi-isotropic CFRP laminates (500 × 500 × 1.15 mm3) is prepared in 

accordance with a standard autoclaving procedure. Each laminate is of 8-layer 

unidirectional prepregs (T300, Torayca®) with the stacking sequence of [0/90/45/-

45]s. For proof-of-concept validation, 16 sensing units are networked with CNT-

fibre-based wires to form a sensor network, which is then implanted between the 4th 

and 5th layers of each laminate during autoclaving, as illustrated schematically in 

Figure 3.4. The autoclave mould is heated at a rate of 1.5 C /min from an ambient 

temperature to 80 C, followed with a post-curing at 130 C for another one hour. 

The curing pressure remains at 160 psi. The strong adhesion of prepreg and the high 

pressure of autoclaving ensure accurate position of each sensing unit in the CFRP 

laminate during fabrication. Upon full curing, the nominal thickness of each laminate 

measures ~1.15 mm. Each laminate is trimmed using a water jet cutter (OMAX® 

PROTOMAX). 
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Figure 3.4 Schematic illustration of a CFRP laminate with an implanted sensor 

network comprising nanocomposite sensing units. 

 

3.5 Morphological Characterization and Mechanical 

Properties 

Morphological characterization of the spray-coated sensing units is performed using 

SEM (TESCAN® Vega 3), to observe good homogeneity, Figures 3.5(a) and (b), in 

which the GNS aggregates are observed to distribute in PVP densely and evenly. 

Such a trait is conducive to the creation of a uniform conductive network in the 

sensing unit. Figures 3.5(c) and (d) show the intersection of the CFRP laminate with 

an implanted sensing unit (cross-section view), to reveal that the interface between 

the CFRP laminate and implanted sensing unit is indistinguishable, implying an 

ignorable intrusion of the implanted sensor network to the host composites. 
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 (a) (b) 

  

 (c) (d) 

Figure 3.5 SEM images of (a, b) spray-coated nanocomposites showing densely and 

evenly distributed GNSs in PVP, in two different scales; (c, d) intersecting surface of 

CFRP laminate with an implanted sensing unit showing ignorable intrusion of the 

sensing unit to the host composites. 

 

Quasi-static tensile test, in accordance with ASTM D3039 [153], is performed to 

gauge possible degradation in tensile properties and change in failure modes of the 

CFRP laminates owing to the implantation of a sensor network. To this end, two 

types of CFRP laminates are fabricated with and without an implanted sensing unit, 

each measuring 250 × 25 × 1.15 mm3. Both laminates are adhered with two 

aluminium end tabs before test to avoid premature failure around the gripping device 
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(Scotch-Weld® 2216 Epoxy Adhesive). Laminates are pulled at a constant crosshead 

speed of 2 mm/min on a universal testing system (INSTRON® 5982) until the 

fracture, during which strain is recorded using an advanced video extensometer 

(AVE). Figure 3.6 represents the tensile testing results of the two types of laminates, 

to note no measurable difference in between. The averaged tensile moduli of the two 

types of laminates are 45.86 GPa and 44.80 GPa, respectively, implying a slight 

decrease of ~2.31% only, due to the implantation of the sensing unit. The slight 

variation in failure tensile stress/strain between laminates with and without an 

implanted sensing unit is attributed to the discrepancy in specimen preparation and 

tests. 

 

 

Figure 3.6 Tensile strain-stress relation of CFRP laminates with and without an 

implanted sensing unit. 
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3.6 Summary 

In this chapter, an implantable, nanocomposite-inspired, piezoresistive sensor 

network is developed for implementing UT-based SHM of CFRP laminates. The 

nanocomposite ink, formulated with GNSs and PVP, is tailored to acquire the 

percolation threshold of conductive nanofillers. The above ink is then deposited on 

partially precured B-stage epoxy films using spray deposition process and circuited 

via highly conductive CNT-fibres as wires, to form a dense sensor network, which is 

then implanted into CFRP laminates during autoclaving procedure. With a 

morphologically optimized nano-architecture in nanocomposites, the quantum 

tunnelling effect can be triggered in percolated networks, which enables the sensors 

to faithfully response from quasi-static loads to high-frequency GUWs. Quasi-static 

tensile test is performed to gauge possible degradation in tensile properties and 

change in failure modes of the CFRP laminates owing to the implantation of a sensor 

network. 
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CHAPTER 4  

 

UT Imaging for Composites Using 

Enhanced RAPID Algorithm 

4.1 Introduction 

In this chapter, using the developed implantable sensing units, a dense sensor 

network can be configured, to circumvent the limited-angle problem that 

conventional UT-based imaging algorithms may have. Especially for the 

conventional RAPID algorithm, the selection of a constant parameter  is inadequate 

to warrant accurate depiction of defect when the defect is at an arbitrary position 

within the inspection region. By introducing the continuously iterated and updated 

scaling parameter , the RAPID-based imaging algorithm is enhanced to facilitate 

processing of inadequate signals rendered by the sensor network, resulting in not 

only the improved accuracy of defect localization, but also the enhanced geometrical 

depiction and severity estimate of defect. Experiment is conducted to demonstrate 

fidelity of acquired GUW signals, showing no remarkable discrepancy in sensing 

performance between the developed implantable sensor network over a broad 

frequency range, and examine accuracy of the enhanced RAPID algorithm. 
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4.2 Enhanced RAPID Imaging 

Conventional UT by virtue of imaging algorithms including FBP, ART, FWI and 

RAPID often shows inferior accuracy when insufficient sensors are used, due to the 

narrow scanning angle and inadequate number of sensing path available in the sensor 

network, during tomographic image reconstruction – a deficiency referred to as 

limited-angle problem [12]. The limited-angle scanning can make signal acquisition 

incomplete, potentially leading to ignorance of damage in certain areas within the 

inspection region. To warrant a broad scanning angle and sufficient sensing paths, 

sensors have to be configured in a dense manner. Using the developed implantable 

sensing units, in conjunction with the use of only a handful of surface-mounted PZT 

wafers as excitation sources, a dense transducer network can be configured, to 

circumvent the limited-angle problem that conventional UT-based imaging 

algorithms may have. 

 

In addition, aimed at precisely estimating the geometrical features and severity of 

defect (e.g., uneven resin during curing, or impact-induced delamination), 

conventional RAPID algorithm is revamped here, in which the probability of a defect 

presence at a pixel within the inspection region is calibrated, in terms of (i) the 

severity of defect-induced change in signals captured by different sensing paths, and 

(ii) the relative position of the defect with regard to all sensing paths in the 

transducer network. To quantify defect-induced change in signals, signal difference 

coefficient (SDC) – a GUW feature, is defined for tomographic imaging. SDC is 

statistical difference in signals between the current status and the reference status, 

which reads 
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 , (4.1) 

 

where Cov(X, Y) signifies the covariance of the reference signal X and the current 

signal Y, given by 

 

 , (4.2) 

 , (4.3) 

 

where Xk and Yk (k=1, 2, …, K) are discretized forms of X and Y, each with K 

discretized data; μX and μY are the mathematical expectation of X and Y. The defect 

distribution probability, P(x, y), can be defined as a linear summation of SDC 

calculated by all sensing paths rendered by the transducer network with a total of M 

actuators and N sensors, as 
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where (x, y) is the coordinate of an arbitrary point within the inspection region; Pij(x, 

y) denotes the probability of defect occurrence at (x, y) that is estimated by the 

sensing path linked by actuator i (located at (xi, yi)) and sensor j (located at (xj, yj)); 

SDCij is the SDC value calculated by that sensing path; wij(x, y) signifies the 

weighted matrix related to the spatial distribution of the defect, and it, for the sensing 

path i-j, is defined as 
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 , (4.5) 

 , (4.6) 

 

where l is the distance between the two points indicated in subscript;  is a scaling 

parameter which controls the size of the effective elliptical distribution area, and the 

amplitude of which tapers from its maximum value along the line connecting the two 

ellipse foci to zero on the periphery of the ellipse [154], as illustrated in Figure 4.1. 

 

 

Figure 4.1 Illustration of the elliptical distribution area of the RAPID algorithm. 

 

Provided that an unreasonably small value of  is selected, artifacts can be 

introduced in the reconstructed image; in the contrast, imaging resolution degrades if 

 is unjustly large. In prevailing RAPID algorithms, the scaling parameter  is 

usually selected as the consistent of 1.05, with the assumption that the distances from 

the defect to all the sensing units are the same – that, however, is not the case in 

reality. It is therefore that the selection of a constant parameter  is inadequate to 

warrant accurate depiction of defect when the defect is at an arbitrary position within 

the inspection region. 

 

In this enhanced RAPID imaging algorithm, based on the principle of iteration, the 

scaling parameter  and the defect distribution probability P(x, y) is continuously 

( , ) ( ( , )) ( 1)ij ijw x y R x y = − −

( , ) ( , ) ( , ) ( , ) ( , ) ( , )( , ) ( ) /
i i j j i i j jij x y x y x y x y x y x yR x y l l l→ → →= +
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iterated and updated, using every single sensing path in the transducer network, after 

initial calculation of the approximate defect location using Equations 4.1 − 4.6, as 

 

 , (4.7) 

 1 1 1

1 1 1 1

( , ) ( , ) SDC ( , )
M N M N

n n n

ij ij ij

i j i j
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where (x
0 

d , y
0 

d ) is the coordinate of the defect as initially estimated by Equations 4.1 

− 4.6, and (x
n 

d , y
n 

d ) the coordinate of the updated location after n iterations. In each 

iteration,  and Pij (x, y) for a sensing path is updated in accordance with the defect 

location determined by previous paths. It can be derived from Equation 4.8 that if 

the distance of the defect to all sensing paths is identical, the values of the scaling 

parameter  are a constant; otherwise the values can be various based on the 

distances. Continuous updating  and P(x, y) not only improves the accuracy of 

defect localization, but also enhances the geometrical depiction and severity estimate 

of the defect. 

 

4.3 Acquisition of GUWs Using Implanted Sensor 

Network 

To experimentally examine the fidelity of the spray-coated sensing units for 

perceiving GUW signals in a broadband frequency regime, two CFRP laminates are 

prepared, with the identical configuration as that of the laminates detailed in Chapter 

3.4. Four PZT wafers (labelled as P1 − P4) (PSN-33, Ø 12 mm, 1 mm thick) – used 

1
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as wave actuators – are surface-mounted on each CFRP laminate, see Figure 4.2. 

One of the two CFRP laminates is pre-implanted with a sensor network comprising 

16 nanocomposite sensing units (denoted by S1 − S16) between the 4th and 5th layers 

which are arranged in circular fashion – used as the wave receivers; and the other 

laminate is pre-implanted with a PZT wafer (PSN-33, Ø 12 mm, 1 mm thick) 

between the 4th and 5th layers as a benchmark laminate, for comparison and 

calibration. 

 

 

Figure 4.2 Dimensional sketch of the CFRP laminate with an implanted sensor 

network. (black dot: PZT wafer as wave actuator; grey rectangular: implanted 

sensing unit) 

 

The experimental set-up is shown in Figure 4.3. In the set-up, the signal generation 

module consists of an arbitrary waveform generator on NI® PXIe-1071 platform, and 

a linear power amplifier (Ciprian® US-TXP-3); the data acquisition module includes 

a self-developed amplification unit for mitigating ambient noise, a resistor-adjustable 

Wheatstone bridge converting piezoresistive variation to electrical signals, and an 
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oscilloscope (Agilent® DSO 9064A). Four PZT wafers are connected with the signal 

generation module, while the implanted sensor network and the implanted PZT wafer 

are respectively linked to the data acquisition module. 

 

 

Figure 4.3 Experimental set-up for in-situ generation and acquisition of GUWs. 

 

A series of five-cycle Hanning-function-modulated sinusoidal tonebursts with the 

central frequency varying from 150 kHz to 450 kHz (with an increment of 25 kHz) is 

generated with the arbitrary waveform generator, and applied on each PZT wafer in 

turn via the power amplifier, to emit GUWs into CFRP laminates. The modulated 

excitation provides concentrated energy in a narrowed frequency band, efficiently 

reducing wave dispersion and benefiting signal interpretation. Figure 4.4 compares 

the signals, generated by P1 at 175 kHz, captured by S5 (i.e., the sensing path P1 − 

S5), against the counterpart signal captured by the implanted PZT wafer in the 

benchmark laminate. Captured signals are processed with a first-order Butterworth 

filter to eliminate measurement noise. The first-arriving wave component (i.e., the 

zeroth-order symmetric Lamb wave mode, denoted by S0 in what follows) is clearly 
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observed in both signals, showing quantitative agreement in terms of the arrival time 

and signal waveform. Not only the S0 mode but also the zeroth-order anti-symmetric 

Lamb wave mode (denoted by A0) is faithfully captured by the sensing units. 

 

 

Figure 4.4 GUWs signals respectively captured by the implanted sensing unit and 

implanted PZT wafer along sensing path P1 − S5 at 175 kHz. 

 

Figure 4.5 comparatively presents the signals captured by the same sensing path (P1 

− S5) at 150, 175, 200, 225, and 250 kHz, respectively, arguing that the magnitudes 

of both the S0 and A0 modes are dependent on the excitation frequency. The 

maximum magnitudes of both wave modes are recorded at 175 kHz, as at this 

frequency the PZT wave actuator resonates. 
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Figure 4.5 GUWs signals respectively captured by the implanted sensing unit along 

sensing path P1 − S5 at 150, 175, 200, 225, and 250 kHz. 

 

Sweeping the excitation frequency from 150 to 450 kHz, Figure 4.6 shows the 

spectrum of signals captured via P1 − S5, compared with the counterpart spectrum 

obtained by the implanted PZT wafer, to observe no remarkable discrepancy in 

sensing performance between these two types of sensor over a broad frequency range. 

 



56 

 

(a) 

 

(b) 

Figure 4.6 Spectra of signals under sweep frequency excitation for (a) the implanted 

sensing unit; (b) the implanted PZT wafer (captured along sensing path P1 − S5). 
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To further examine the sensitivity of the nanocomposite sensing unit when it is 

internally implanted in or surface-mounted on CFRP composites, an additional 

sensing unit is mounted atop the benchmark laminate. Figure 4.7 displays the signals 

captured by the implanted and surface-mounted sensing units, respectively, showing 

good accordance in between. Note that the crosstalk included in signals at the 

commencement of excitation is generated by the high-voltage power amplifier, 

which, however, does not interfere with signal interpretation. 

 

 

Figure 4.7 GUWs signals respectively captured by the implanted and surface-

mounted sensing units along sensing path P1 − S5 at 175 kHz. 

 

4.4 Proof-of-Concept: Anomaly Imaging 

A steel cylinder (diameter: 20 mm, mass: 200 g) is surface-coupled with the above 

CFRP with the implanted sensor network using glycerol as a coupling agent, as 
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artificial anomaly. Note the CFRP laminate before the introduction of the artificial 

anomaly is used as the reference condition for imaging. In view of the transducer 

network configuration (four PZT wafers as actuators and 16 nanocomposite sensing 

units as receivers, in Figure 4.2), a total of 60 sensing paths are technically available. 

As a typical signal for illustration, Figure 4.8 compares the signals generated by P1 

at 175 kHz and captured by S5, before and after the anomaly is introduced. Using 

Equation 4.1, SDC values for all the sensing paths are calculated and presented in 

Figure 4.8. The SDC value for the sensing path P1 – S5, which reads 0.0328, is 

higher than those for other sensing paths in which P1 serves as the actuator, Figure 

4.8(a), implying higher possibility of defect presence along P1 – S5. Similarly, 

higher SDC values are also observed for P2 − S1, P3 − S3 and P4 − S3, in Figures 

4.8(b), (c) and (d), respectively. With calculated SDC values throughout the entire 

transducer network, the tomographic images are constructed using the conventional 

and enhanced RAPID algorithms (Equations 4.4 − 4.8), respectively, in Figure 4.9. 

It is apparent that there is no remarkable difference in the accuracy of anomaly 

positioning for two algorithms, while the enhanced RAPID algorithm using the 

iteratively updated scaling parameter  based on Equation 4.7 shows superior 

accuracy when evaluating the shape of the anomaly, compared with the conventional 

algorithm which forces  as a constant of 1.05. 
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(a) (b) 

 

 (c) (d) 

Figure 4.8 Calculated SDC values for different sensing paths when (a) P1, (b) P2, (c) 

P3, and (d) P4 are used as the wave actuator. 
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(a) 

 

(b) 

Figure 4.9 Tomographic images constructed using (a) conventional, and (b) 

enhanced RAPID algorithms. 
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4.5 Summary 

In this chapter, using the developed implantable sensor network, in conjunction with 

the use of only a handful of surface-mounted PZT wafers as excitation sources, a 

dense sensor network can be configured, to circumvent the limited-angle problem 

that conventional UT-based imaging algorithms may have. The implanted sensor 

network has been proved owing the capability in perceiving GUWs in a broad 

frequency regime with high precision up to 450 kHz experimentally. The enhanced 

RAPID-based imaging algorithm, which is revamped by continuously iterating and 

updating the scale parameter , presents superior accuracy, compared with the 

conventional RAPID algorithm when used to evaluate both the location and shape of 

anomaly, endowing the UT-based SHM with higher imaging resolution while not at 

the cost of sacrificing the composites’ original integrity. 
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CHAPTER 5  

 

CNN-facilitated Resolution-lossless UT of 

Composites with Restricted Sensing 

Capability 

5.1 Introduction 

In this chapter, a hierarchical, ART-based UT approach, facilitated by CNN-based 

ML, is developed, targeting resolution-lossless tomography for SHM of composite 

structures, even when the sensing capability of the composite structures is restricted 

owing to inadequate transducers of the sensor network. In this approach, a CNN, 

which features encoder-decoder-type architecture including the convolution and 

transposed convolution blocks with residual connections, is configured. The blurry 

ART images, as CNN inputs, are segmented using convolution and max-pooling to 

extract defect-modulated image features. The max-unpooling boosts the resolution of 

ART images with transposed convolution. For validation, the sensing capability of a 

sensor network, which is pre-implanted in a CFRP laminate, is purposefully 

restricted, to obtain an insufficient number of GUW signals via a mixed numerical 

and experimental method. Trained by the insufficient inputs, the CNN is used to 

detect and characterize artificial anomaly and delamination in the CFRP laminate. 
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5.2 The Algebraic Reconstruction Technique 

UT using tomographic algorithms such as FBP, ART, FWI and RAPID, manifests 

strong dependence on the number of transducers of a sensor network, as well as the 

locations of individual transducers. By way of illustration, Figure 5.1 shows 

schematically two sensor network configurations for UT of a plate waveguide, 

featuring 32 actuators/32 sensors, Figure 5.1(a), and 4 actuators/32 sensors, Figure 

5.1(b), respectively. In both scenarios, 32 sensors are collocated in a circular fashion 

with an interval of 11.25° between two neighbouring sensors. The two sensor 

network configurations respectively render 1,024 and 128 sensing paths for UT 

construction, implying significant loss of sensing paths when the number of actuators 

is reduced from 32 to 4, while the number of sensors remains unchanged. Such loss 

potentially leads to restricted sensing coverage, incomplete data acquisition and 

accordingly ignorance of damage. 

 

 

 (a) (b) 

Figure 5.1 Sensor network configurations for UT imaging with (a) 32 actuators and 

32 sensors (red dot: a pair of collocated sensor and actuator); (b) 4 actuators (yellow 

dots) and 32 sensors (red dots). 
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Given the same sensing coverage, ART is superior to FBP in terms of imaging 

precision and accuracy, and ART shows greater convenience and simplicity than 

RAPID does [9]. UT based on iterative ART is implemented by virtue of the 

following five key steps: (i) the inspected area is virtually meshed into dense grid 

cells, Figure 5.1(b); (ii) for an actuator-sensor pair of the sensor network, the change 

in signal features extracted from GUWs (e.g., wave velocity, attenuation in 

magnitude, difference in time of flight or other wave features) is deemed as the sum 

of collective contribution from all the cells that lie on the straight sensing path 

between the actuator and sensor; (iii) the contribution of any cell is proportional to 

the length of the path in that cell, serving as a weight to regulate the contribution of 

individual cells; (iv) the presence of damage in any cell changes signal features, and 

the field value at individual cell along a path can therefore be defined in terms of the 

change; (v) fusion of field values established by all the available paths of the sensor 

network across the entire inspection area constructs a tomographic image, in which 

damage, if any, will be highlighted. 

 

In this proposed approach, the change in the magnitude of a GUW signal owing to 

the attenuation of the probing GUW in grid cells along propagation path, is extracted 

for UT image construction, with which the field value of UT image is defined. For a 

sensor network with a total of I actuators and J sensors, it has 
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where A[i, j] is the magnitude of a captured GUW signal after the probing GUW 

propagates from the ith actuator to the jth sensor; Aini is the initial amplitude of the 
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probing GUW; µ[m, n] represents the attenuation of GUW in cell [m, n] along path [i, 

j]; d[i, j, m, n] is the distance in cell [m, n] that the wave travels along path [i, j]; C is 

a constant related to the wave attenuation [155]. 

 

Knowing cell distance d[i, j, m, n] – that is the field value defined in terms of the 

attenuation of GUW in individual cell, µ[m, n] can be obtained from the measured 

A[i, j] by solving Equation 5.1 with iteration using all the available sensing paths of 

the sensor network. With an estimated initial attenuation value in the cell, µ0[m, n], 

the average difference of attenuation value, Δaverageµ[m, n], can be expressed as 
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where k signifies the iteration number; L[i, j] is the length of the sensing path [i, j], 

namely from the ith actuator to the jth sensor. In a single iteration, all available 

sensing paths are involved in the calculation of Equation 5.2. Via each sensing path, 

the change in wave attenuation is obtained, and the change for each individual cell is 

updated by taking the average difference of attenuation value Δaverageµ[m, n] obtained 

for that cell, which is then added to the current attenuation, as 

 

      1 , , ,k k

averagem n m n m n  + = +  . (5.3) 

 

The above steps are repeated till the desired accuracy is met, namely when Ak[i, j] 

converges to the measured magnitude from either simulation or experiment. Upon 

extending the iteration via Equation 5.2 to all the available sensing paths of the 

sensor network, the field value, µ[m, n], at each grid cell of the inspection area (i.e., 
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the field value) is obtained, with which the UT image is constructed. The constructed 

UT image reflects changes in wave attenuation magnitude across the entire 

inspection area, to highlight structural damage or material degradation which 

attenuates GUW signals at a higher degree than that induced by inherent 

viscoelasticity of the waveguide material. 

 

5.3 CNN-enabled ART Imaging 

The iterative nature of ART for calculating wave attenuation along a GUW 

propagation path, as detailed in the above, entails a dense meshing of the inspection 

area, as well as a dense sensor network to render a high degree of coverage of 

meshed cells. In the contrast, a sparse sensor network, with insufficient sensing paths, 

tends to inferior accuracy and ill-posed UT images, provided ART algorithm is 

adopted. To circumvent this deficiency, a hierarchical CNN is developed to 

supplement the above ART-based UT, targeting resolution-lossless tomographic 

imaging, even when the sensing capability of the sensor network is restricted. 

 

The CNN is a feed-forward neural network, consisting of convolution layers, pooling 

layers and full connection layers, and it uses the convolutional layers to filter inputs 

and extract essential input features. Among convolution layers, the output Cl of the lth 

convolution layer is obtained by convoluting the convolution kernels Kl with input 

Cl-1, consequence of which is then added with an offset, bl, via a non-linear activation 

function f, as 
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where denotes the convolution operation; the input Cl-1 and output Cl are in the 

form of a vector or a matrix; the convolution kernels Kl performs as a filter; the offset 

bl remains the value of one for a standard convolutional operation; the non-linear 

activation function fact is selected as the ReLU function to ensure computational 

efficiency [30]. 

 

Upon the above convolutional operation via Equation 5.4, the outputs are transferred 

to the pooling layer for feature selection and filtering. The pooling layer features a 

pre-set pooling function, with which the original feature elements in the feature 

vector are superseded with its statistics. To achieve this, the max-pooling, instead of 

average-pooling, is used to recognize image edge, by only choosing the maximum 

values in the feature vectors as the key features. The outputs are down-sampled 

feature vectors that highlight the most prominent features of the image edge, rather 

than the average values of the features in average-pooling. For an ART image that is 

defined with a two-dimensional matrix, the larger the matrix value the lower the 

probability of defect it will be. This facilitates recognition of the edge of the defect 

and implementation of the down-sampling by using max-pooling. The down-

sampling of feature vectors based on the max-pooling rule is defined as 

 

 
1 ( )l lC down C+ = . (5.5) 

 

After feature extraction and selection from the input data with the convolutional 

layers and pooling layers, the updated feature vectors are combined with selected key 

features in the full connection layers or transposed convolution layers, to deliver the 

outputs. Driven by such a training philosophy, the proposed CNN – a fully 
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convolutional network, has of a hierarchical architecture of an encoder-decoder type 

with multiple skip connections. 

 

Now consider a sparse sensor network with a restricted sensing capacity. Each 

actuator-sensor pair in the sensor network acquires the magnitudes of GUW signals, 

on which basis a UT image is constructed using ART algorithm. Owing to the 

restricted sensing capability and therefore insufficient GUWs to fulfil ART, the 

constructed image is expected to be low-resolution and blurry. The constructed image 

is the input of the hierarchical CNN. As seen in Figure 5.2, the proposed CNN 

embraces the encoder (indicated as encoding layers) and decoder (indicated as 

decoding layers). The encoder progressively enhances the blurry ART image into 

high-dimensional feature vectors via multiple layers. Subsequently, the decoder 

decodes the features that are generated and aggregated by the encoder via multiple 

layers, to produce a resolution-enhanced image as the output. The operational unit of 

the encoder is the convolution/max-pooling block with a residual connection (Res-

Conn) block. 

 

For illustration, use an ART image of 200200 pixels – defined in a matrix of 

200200 elements, as an example. The inputted ART image is filtered by convoluting 

a 33 convolution kernel. In this process, the image matrix is down-sampled via 

Equation 5.5, to remain 100100 matrix elements using the max-pooling with the 

stride equal to 2, which are the essential features of the original ART image. Res-

Conn block carries out a batch normalization (BN) and a non-linear activation with 

ReLU in sequence. To avoid overfitting, the drop-out regularization layers are 

included in the Res-Conn block, to mitigate overfitting. Each convolution/max-

pooling step with Res-Conn block is repeated three times, to facilitate remaining 
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learning and to deep train the CNN efficiently. Similarly, the fundamental operational 

unit of the decoder is the transposed convolution/max-unpooling block with the Res-

Conn block. Both the transposed convolution and max-unpooling double the up-

sampling of the inputted feature vectors, each repeating three times. At the last, a 

resolution-enhanced ART image, with an augmented resolution of 16001600 pixels, 

is produced, by utilizing down-sampling (half) three times and up-sampling (double) 

six times. Throughout the CNN training, all the filters of the convolutional networks 

are updated based on the results from immediate past training. 

 

 

Figure 5.2 Hierarchical architecture of the proposed CNN 

 

With the deep-trained CNN, an ART image of low resolution due to insufficient 

GUW signals provided by a sparse sensor network with a restricted sensing capacity, 

is enhanced significantly. In the meantime, the drop-out regularization layers and BN 

layers effectively avoid the overfitting in the Res-Conn blocks. 
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5.4 Numerical Simulation and Experiment for 

Training Data Generation 

To fulfil the above deep-training, labelled image databases are of necessity that 

constitute pixel-wise labelled input/output image pairs for training and validation. To 

this end, a mixed approach, via numerical simulation and experiment, is developed to 

generate GUW signals under a diversity of damage scenarios and accordingly 

develop the labelled image databases using the ART algorithm. 

 

5.4.1 Numerical Simulation for Training Data Generation 

Three-dimension (3-D) finite element (FE) simulation is carried out to simulate 

GUW propagation under different damage scenarios. Figure 5.3 displays the FE 

model of an 8-layer, 1.15 mm-thick, quasi-isotropic CFRP laminate with the stacking 

sequence of [0°/90°/45°/-45°]s. The key material properties and parameters used in 

simulation are summarized in Table 5.1. The in-plane, radial tractions are applied on 

the surface of the CFRP laminate model, as shown in Figure 5.3, to introduce a 

probing GUW which takes the waveform of a 5-cycle toneburst with a centre 

frequency of 175 kHz. Under this wave excitation, the corresponding GUW 

wavefields in the CFRP laminate are acquired numerically at 32 sensing points, 

which are arranged in a circular manner with an interval of 11.25° and between the 

4th and 5th layers of the laminate. 
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Figure 5.3 3-D FE model of a CFPR laminate for simulating GUW propagation 

under different damage scenarios 

 

Table 5.1 Key material properties of CFRP laminate used in simulation 

Properties Value 

Density () 1550 kg/m3 

Young’s modulus (Longitudinal) (E1) 144 GPa 

Young’s modulus (Transverse) (E2) 10 GPa 

Shear modulus (G12) 4.2 GPa 

Poisson’s ratio (12) 0.25 

 

Without loss of generality, the specific type of defect considered is an adhesive 

anomaly on the surface of the CFRP laminate. Various sizes and locations of the 

defect, either of a circular or a rectangular shape, are simulated, leading to a total of 

120 scenarios. Note that the sizes and locations of the defect are selected randomly 

from the Gaussian distribution, with the mean radius of 25 mm and the standard 

deviation of 12.5 mm for the circular defect, and the mean side length of 50 mm and 



72 

the standard deviation of 25 mm for the rectangular defect. It takes ~120 min to 

accomplish the simulation of each scenario, based on a computer having 12 CPUs 

with 2.6 GHz of clock speed and 16 GB RAM. 

 

5.4.2 Experiment for Training Data Generation 

To improve the accuracy of the database for CNN training that is developed via 

numerical simulation in the above, a number of damage scenarios are created 

experimentally, in which GUWs under individual scenarios are acquired to 

supplement numerical simulation. A quasi-isotropic CFRP laminate (500 × 500 × 

1.15 mm3) is prepared in accordance with a standard autoclaving procedure. The 

laminate is of 8-layer unidirectional prepregs (T300, Torayca®) with the stacking 

sequence of [0/90/45/-45]s. 

 

The sensing units, as shown in Figure 5.4(a), are formulated with GNSs and PVP, 

fabricated using a spray deposition process, and electrified via highly conductive 

CNT-fibres as wires. The width and length of the sensing unit are precisely 

controlled to be ~5 mm and ~20 mm respectively, and the thickness of each sensing 

unit is ~45 m only – as calibrated in SEM images. A total of 32 thus-fabricated 

sensing units (denoted by S1 − S32) are networked with CNT-fibres-based wires to 

form a sensor network, which is then implanted between the 4th and 5th layers of each 

laminate during autoclaving, as illustrated schematically in Figure 5.4(b). The 

autoclave mould is heated at a rate of 1.5 C /min from an ambient temperature to 80 

C, followed with a post-curing at 130 C for another one hour. The curing pressure 

remains at 160 psi, ensuring accurate positioning of each sensing unit in the CFRP 

laminate during fabrication. Upon full curing, the nominal thickness of the laminate 
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measures ~1.15 mm. The CFRP laminate is then trimmed using a water jet cutter 

(OMAX® PROTOMAX). Four PZT wafers (labelled as P1 − P4) (PSN-33; Ø 12 mm, 

1 mm-thick) – used as wave actuators – are surface-mounted on the CFRP laminate, 

in conjunction with the use the pre-implanted 32 sensing units, to form 4 × 31 = 124 

sensing paths (note that each of the four surface-mounted PZT wafers is atop a pre-

implanted sensing unit, accordingly reducing four actuator-sensor pairs). 

 

  

 (a) (b) 

Figure 5.4 (a) Fabricated light-weight, flexible sensing units formulated with 

nanocomposite hybrid; (b) conceptual illustration of CFRP laminate with pre-

implanted sensing units. 

 

The experimental set-up for in-situ generation and acquisition of GUWs is shown in 

Figure 4.3 in Chapter 4.3. In the set-up, the signal generation module consists of an 

arbitrary waveform generator on NI® PXIe-1071 platform, and a linear power 

amplifier (Ciprian® US-TXP-3); the data acquisition module includes a self-

developed amplification unit for mitigating ambient noise, a resistor-adjustable 

Wheatstone bridge for converting piezoresistive variation to electrical signals, and an 

oscilloscope (Agilent® DSO 9064A) for registering GUW signals. Four PZT wafers 

are connected with the signal generation module, while the 32 sensing units are 

linked to the data acquisition module. A five-cycle Hanning-function-modulated 
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sinusoidal toneburst with the central frequency at 175 kHz is excited with the 

arbitrary waveform generator and applied on each PZT wafer in turn via the power 

amplifier, to emit probing GUW into the CFRP laminate. The modulated excitation 

provides concentrated energy in a narrowed frequency band, efficiently reducing 

wave dispersion and benefiting signal interpretation. 

 

As representative signals acquired, Figure 5.5 compares the GUW signals generated 

with P1 and captured with S9, before and after a rectangular anomaly (a rectangular 

steel block; measuring 50  30  50 mm3, weighting mass 500 g) is adhered to the 

laminate using a glycerol as the coupling agent on the midpoint of the sensing path 

P1 − S9. Both the S0 mode and A0 mode are recognized in captured signals, 

according to their respective arrival time. The introduction of artificial anomaly on 

the laminate surface is observed to attenuate the magnitude of the probing GUW 

signal at a higher degree, in comparison with the counterpart signal. 

 

 

Figure 5.5 GUW signals captured via the sensing path P1 − S9 at 175 kHz before 

and after the artificial anomaly introduced. 
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Once the GUW databases are obtained via the mixed approach including numerical 

simulation and experiment, the labelled input/output image databases are computed 

using the ART algorithm as described in Chapter 5.2. For the configured labelled 

image databases, the CNN is trained with 128 labelled image pairs (96 scenarios 

from numerical simulation and 32 from experiment). Table 5.2 shows the 

distribution of defect sizes and locations in numerical simulation and experiment for 

training databases. The inspection region is divided into Area I, II, III, and IV 

according to the four quadrants of the Cartesian coordinate system, as shown in 

Figure 5.6. Note that the sizes and locations of the defect are selected randomly from 

the Gaussian distribution. 

 

Table 5.2 The distribution of defect sizes and locations in numerical simulation and 

experiment for training databases. 

Types of 

defect 

Locations 

of defect 

Sizes of defect 
Numbers of 

simulation 

scenarios 

Numbers of 

experiment 

scenarios 

Radius / 

length 

(mm) 

Height 

(mm) 

Circular 

anomaly 

Area I 

25  12.5 30  20 

12 4 

Area II 12 4 

Area III 12 4 

Area IV 12 4 

Rectangular 

anomaly 

Area I 

50  25 30  20 

12 4 

Area II 12 4 

Area III 12 4 

Area IV 12 4 

Total 

scenarios 
   96 32 
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Figure 5.6 The inspection region with four divided areas. 

 

5.5 Validation, Results and Discussion 

To validate the developed CNN-facilitated resolution-lossless tomography approach, 

another 32 damage scenarios (24 from numerical simulation and eight from 

experiment) are obtained using the same simulation and experiment approach. 

Figure 5.7 shows the UT image of a circular anomaly (a circular block; Ø 50 mm, 50 

mm-thick) on the laminate surface, in numerical simulation. The ART image 

obtained via conventional ART algorithm as described in Chapter 5.2 is shown in 

Figure 5.7(a), in which the image intensity is normalized with regard to its maximal. 

The image, in a low resolution, pinpoints the anomaly but with artifacts, as a result of 

the insufficient GUW signals for ART-based UT that are rendered by the sparse 

sensor network. The UT image is then used as the input to the deep-trained CNN, 

and the output image is compared in Figure 5.7(b), in which the defect is precisely 

revealed with high resolution and minimized artifacts, in quantitative agreement with 

the real anomaly. 



77 

 

 

(a) 

 

(b) 

Figure 5.7 UT images of a circular anomaly on the CFRP laminate (in simulation): 

(a) image obtained using conventional ART algorithm; (b) resolution-enhanced 

image using trained CNN (with the image in (a) as CNN input). 

 

In addition to the above validation using a simulated damage scenario, Figure 5.8 

shows the UT image of a circular anomaly (a rectangular steel block; measuring 50  
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30  50 mm3, weighting 500 g) on the laminate surface, in experiment. Analogously, 

the CNN-facilitated UT demonstrates enhanced resolution, adequate accuracy and 

minimized artifacts. 

 

 

(a) 

 

(b) 

Figure 5.8 UT images of a rectangular anomaly on the CFRP laminate (in 

experiment): (a) image obtained using conventional ART algorithm; (b) resolution-

enhanced image using trained CNN (with the image in (a) as CNN input). 
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To take a step further, to testify the compatibility of the trained CNN when extended 

to new inputs which are not included in the training, interlaminar delamination, 

rather than surface-adhered artificial anomaly used for database development, is also 

considered in the validation. Figure 5.9 shows the UT images constructed of 

interlaminar delamination which is introduced by low-velocity impact using a 

hemispherical impactor in the CFRP laminate, in which more artifacts and lower 

image resolution are noted, compared with the UT images in Figure 5.7(a) and 

Figure 5.8(a) for surface anomaly. The low-resolution image is fed into the trained 

CNN, with result in Figure 5.9(b), manifesting remarkably elevated contrast, 

minimized artifacts and enhanced resolution. 

 

 

(a) 

Figure 5.9 UT images of interlaminar delamination in the CFRP laminate (in 

experiment): (a) image obtained using conventional ART algorithm; (b) resolution-

enhanced image using trained CNN (with the image in (a) as CNN input). 
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(b) 

Figure 5.9 Cont. 

 

Extending the above validation from singular defect to multiple-defect, two sites of 

delamination are introduced by using a hemispherical impactor in the laminate. 

Figure 5.10 displays the UT images constructed, to observe similar enhancement in 

imaging quality, in Figure 5.10(b). This result is further compared with the image 

obtained using 32 surface-mounted PZT wafers, as shown in Figure 5.10(c), in 

which are collocated consistently with the implanted sensors to form a dense sensor 

network on the same laminate. The CNN processed defect imaging result 

demonstrates lossless recovery of the delamination defect details from the low-

resolution ART image. At the same time, it is also proved that the proposed method is 

effective in solving restricted sensing capability experimentally. Compared with the 

experimental tomography imaging result in Figure 5.10(d) using the same 

arrangement of PZT wafers, the quantitative performance evaluation metric (Dice 

coefficient) values for the two delamination defect close to 95%, which achieved a 

true resolution-lossless tomography imaging. 
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(a) 

 

(b) 

Figure 5.10 UT images of two sites of interlaminar delamination in the CFRP 

laminate (in experiment): (a) image obtained using conventional ART algorithm with 

a sparse sensor network (offering 124 sensing paths); (b) resolution-enhanced image 

using trained CNN (with the image in (a) as CNN input); (c) a dense sensor network 

on CFRP laminate surface consisting of 32 PZT wafers (offering 992 sensing paths); 

(d) image obtained using conventional ART image with the dense sensor network. 
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(c) 

 

(d) 

Figure 5.10 Cont. 

 

5.6 Summary 

In this chapter, a new tomographic imaging approach, enabled by CNN-based ML 
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and facilitated by ART, is developed to deliver resolution-lossless tomography for 

SHM of composite structures. The CNN features an encoder-decoder-type 

architecture including the convolution and transposed convolution blocks with 

residual connections. The blurry ART images are segmented using convolution and 

max-pooling to extract defect-associated details. The max-unpooling boosts the 

resolution of ART images with transposed convolution. To avoid overfitting, drop-

out regularization layers and BN layers are also included in the Res-Conn blocks. To 

train and validate the CNN, a series of numerical simulations and experiments using 

implanted sensor network in CFRPs are conducted to generate GUW databases with 

inadequate sensing capability. This result demonstrates that the proposed approach 

can accurately image artificial anomaly and delamination in the laminate, effectively 

solve the restricted sensing capability and restore the defect details from a blurry 

ART image, and in the meantime remarkably reduce the false defect detection rate by 

suppressing misleading image artifacts. 
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CHAPTER 6  

 

Conclusions and Recommendation for 

Future Study 

6.1 Concluding Remarks 

In this PhD study, an implantable, nanocomposite-inspired, piezoresistive sensor 

network is developed for implementing UT-based SHM of carbon fibre-reinforced 

polymer (CFRP) laminates. The nanocomposite ink, formulated with graphene 

nanosheets (GNSs) and polyvinylpyrrolidone (PVP), is tailored to acquire the 

percolation threshold of conductive nanofillers. The above ink is then deposited on 

partially precured B-stage epoxy films using spray deposition process and circuited 

via highly conductive carbon nanotube fibres (CNT-fibres) as wires, to form a dense 

sensor network, which is then implanted into CFRP laminates during autoclaving 

procedure. With a morphologically optimized nano-architecture in nanocomposites, 

the quantum tunnelling effect can be triggered in percolated networks, which enables 

the sensors to faithfully response from quasi-static loads to high-frequency guided 

ultrasonic waves (GUWs). Quasi-static tensile test is performed to gauge possible 

degradation in tensile properties and change in failure modes of the CFRP laminates 

owing to the implantation of a sensor network. 
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Using the developed implantable sensor network, in conjunction with the use of only 

a handful of surface-mounted PZT wafers as excitation sources, a dense sensor 

network can be configured, to circumvent the limited-angle problem that 

conventional UT-based imaging algorithms may have. The implanted sensor network 

has been proved owing the capability in perceiving GUWs in a broad frequency 

regime with high precision up to 450 kHz experimentally. The enhanced 

reconstruction algorithm for the probabilistic inspection of damage (RAPID)-based 

imaging algorithm, which is revamped by continuously iterating and updating the 

scale parameter , presents superior accuracy, compared with the conventional 

RAPID algorithm when used to evaluate both the location and shape of anomaly, 

endowing the UT-based SHM with higher imaging resolution while not at the cost of 

sacrificing the composites’ original integrity. 

 

To further achieve real in-situ UT-based SHM and solve the restricted sensing 

capability due to inadequate sensing paths in the implanted sensor network, a 

hierarchical, algebraic reconstruction technique (ART) based tomographic imaging 

approach, facilitated by convolutional neural network (CNN) based machine learning 

(ML), is developed, targeting resolution-lossless tomography for SHM of composites. 

The blurry ART images, as the inputs to train a CNN with an encoder-decoder-type 

architecture, are segmented using convolution and max-pooling to extract defect-

modulated image features. The max-unpooling boosts the resolution of ART images 

with transposed convolution. Trained with the insufficient databases via a mixed 

numerical and experimental method, the CNN is used to detect and characterize 

artificial anomaly and delamination in the CFRP laminates. Results demonstrate that 

the developed approach accurately images artificial anomaly and delamination, in the 

meantime it minimizes the false alarm by eliminating image artifacts. 
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In conclusion, starting from mechanism study, through design to fabrication of 

sensors, new breeds of implantable, nanocomposite-inspired, piezoresistive sensor 

network is developed. Successful application paradigms in UT of the implanted 

sensor network, either using the enhanced RAPID or ML-enabled imaging, have 

accentuated the alluring potentials of in-situ UT-based SHM. 

 

6.2 Remaining Issues and Recommendation for 

Future Study 

(i) Aerosol jet printing: aerosol jet printing is an emerging contactless direct write 

approach aimed at the production of fine features on a wide range of substrates, as 

shown in Figure 6.1. Compared with spray-coating and ink jet printing, aerosol jet 

printing has the following advantages: (i) aerosol jet printing allows to achieve a 

higher print resolution, namely, almost two to four times higher than ink jet printing; 

(ii) method of aerosol jet printing have less strict requirements for the viscosity of 

ink, and therefore, a larger amount of materials can be printed by using aerosol jet; 

(iii) aerosol jet printing has a greater opportunity to vary the distance between the 

print head to the substrate. Therefore, it is possible to print on non-flat (non-smooth) 

substrates. 
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Figure 6.1 Schematic of Aerosol jet printing process. 

 

(ii) Print circuit: with inevitable intrusion to composite structures, not only sensors 

but also cables and wires could degrade the structural integrity to some extent, 

regardless of their intended role of detecting defect- or damage-caused structural 

degradation and impose weight and penalty to original composite structures. The 

reliance on cables and wires to network individual sensors is still persistent. The use 

of printed circuits may reduce the weight and volume of cables and wires. Figure 6.2 

shows an example of using printed circuits as wires to form a dense sensor network. 

 

 

Figure 6.2 Illustration of using printed circuits to form a dense sensor network. 
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(iii) Sensor direction: in the process of making the nanocomposite ink, the nanofillers 

have been evenly dispersed inside the epoxy and ethanol. For an individual sprayed 

nanocomposite-inspired sensor, it can be considered as isotropic. But with the 

introduction of the electrode, the isotropic property already has been changed for the 

sensing unit Considering that the wave propagation is also directional. Hence, the 

characteristic of sensor direction is also part of the future works. 

 

(iv) Laser ultrasonic: laser-ultrasonics uses lasers to generate and detect ultrasonic 

waves. It is a non-contact technique used to measure materials thickness, detect flaws 

and carry out materials characterization, as shown in Figure 6.3. Using laser 

ultrasonic as excitation to replace PZT wafers, which can further reduce the weight 

and volume penalty to the host composite structures. 

 

 

Figure 6.3 Schematic of the noncontact laser ultrasonic wavefield imaging system. 
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