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Abstract

Automatic equipment plays an increasingly important role in human daily life,

for which can free human beings from tedious and repetitive tasks, can improve

effectiveness and can standardize the workflow of implementation. Therefore, the

automation level of a country somehow marks the industrialization degree and the

development of manufacturing industry. Robot arms are typical representatives

in automatic equipment. The wide application of them, such as in manufactur-

ing industry, medical surgery, and search and rescue, have contributed to effec-

tiveness enhancement and cost decrease. Especially with the rapid development

of Artificial Intelligence (AI), robot arms are capable of completing complicated

tasks requiring little human intervention. This indeed promotes the flexibility

in achieving diversified tasks, and the collaboration with human workers or with

other robots creates more possibility in replacing traditional working steps. Con-

ventionally, rigid robot arms are common in applications because of the high pose

precision, load-carrying performance and robustness. However, due to their inher-

ent structural characteristics including rigid robot body, bulky encoders, motors

and transmission mechanisms, rigid robot arms may not be applicable in con-

strained environments.

In contrast, soft robots that are made of hyper elastic materials exhibit obvious

advantages in terms of the safety issue, cost, flexibility, dexterity, and compliance.

Through diversified fabrication technologies, many soft robots have been created

for specific scenarios, like exploring undersea scenarios and minimally invasive

surgery (MIS). Biology has inspired researchers to explore soft robots that are

capable of locomotion and manipulation in cluttered environments. Therefore,
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researchers desired to develop robots with flexible body. Continuum robots whose

body is similar to snakes, elephant’s trunk and octopus tentacles, have drawn sig-

nificant research interest in the past two decades. The definition of a continuum

robot can be a continuously deformable, infinite DoF and elastic manipulator and

they can mitigate some drawbacks of cumbersome rigid robot arms. There are gen-

erally three chambers radially distributed inside a single soft segment, where the

longitudinal forces along them lead to length difference in each chamber, such that

the deformation towards omni direction occurs. The soft material and structure

also render continuum robots safe to touch, which further benefits manipulating

soft objects, working in narrow space and safe collaboration with human. On the

other hand, the high degree of compliance also poses difficulty in against exter-

nal loads, attracting significant interest of designing robust controllers. Contin-

uum robots are also easy to be disturbed by external forces, making a traditional

analysis-based controller infeasible. Researchers in recent years paid significant

attention to designing robust controllers for diversified continuum robots.

Although remarkable achievements have been made in continuum robotics,

pursuing better actuation mechanisms, finding sensors and achieving high accu-

racy of control schemes are still hot spots for researchers. As externally configured

sensors like stereocameras, can real-time sense the shape and the tip configuration

of the continuum robot, this sensing mechanism is not able to work in constrained

and occluded scenarios. The first contribution of this thesis is proposing a shape

estimation module and a closed-loop controller, forming visualization manipula-

tion system. Strain gauges were employed to act as embedded sensors to sense the

robot deformation, and curve fitting algorithms connect the predicted key points

by LSTM-MLP NNs. This data-driven method provides a simple solution with the

mapping between sensor readings and the true shape configuration. Closed-loop

controller scheme integrating accurate feedback contributes to high accuracy of

tip configuration control, and the shape reconstruction module can not only sense

the shape but the tip position, so that the controller directly obtains the real-time
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tip position. Data-driven method was also considered to simplify the control ar-

chitecture, which was based on the inverse of Jacobian matrix. An adaptive step

distance mechanism was proposed to adjust the step distance between steps to

automatically bypass the obstacles. Specifically, when the tip position is close to

the destination, smaller step distance was set, and when the deviation between

the planned and the actual is larger, showing obstacles or external forces present,

robot system considered bigger step distance to offset the influence.

Additionally, it would reduce complexity of designing controller if the external

forces could be accurately obtained, including the acting direction, position and

the magnitude. Working in unstructured environment means any external force

could present uncertainly, and the shape of the manipulator is jointly determined

by the external force and actuation inputs. The second objective of this thesis is

to propose a method to estimate the information of the external force. Similarly,

proprioceptive mechanism should be pursued to sense the uncertain external force

(UEF). Being different from some existing works, we aim at estimating the UEF

acting at the circumferential surface of the soft manipulator, and the area where

an UEF is likely to present was labelled by a 2D map. Each area was marked by a

row position and a column position accordingly. Once detecting the presence of an

external force, the column position indirectly reflects the deviation orientation and

the row position was related to the deviation degree. Therefore, Hidden Markov

Model(HMM) was employed to estimate the column position. Then, to find the

corresponding row position and the magnitude, virtual work principle assuming

the robot was in balance was utilized. To simplify the calculation process and to

pursue accurate estimation, iteration algorithm integrating an optimization factor

was designed in finding the magnitude.

Apart from investigating deformation and load-compensation characteristics,

this thesis also proposed a novel mechanism that enables omnidirectional bending

and continuous rotation simultaneously. The challenge lies achieving rotation

along the deformed backbone while maintaining the shape unchanged. To the best
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of our knowledge, this is the first rotational continuum robot with the capability of

omnidirectional bending and rotation. To address the tube twining issue between

the actuators and the manipulator, a slip ring was employed to decouple the

transmission of the pressurized air. As the newly added revolve joint did not

expand the task space, the motion velocity of the manipulator could be enhanced.

Based on this, an optimization algorithm was proposed using Genetic Algorithm

(GA) to control the tip configuration with the objective of time effectiveness. The

continuous rotation along the deformed backbone was achieved by integrating the

motion of the base and the deformation. This thesis additionally designed the

algorithm to control the rotational behaviour.
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Chapter 1

Introduction

Remarkable achievements in technical innovations have bettered daily life of hu-

man beings. Traditional manual production modes can not satisfy the fundamental

requirements of social development, so they should be upgraded and replaced by

advanced automatic equipment, which provides high-level, effective, low-cost, and

high-quality products. The implementation of ’Industrial 4.0’ and ’Made in China

2025’ promotes the advancement of intelligent instruments. The whole indus-

trialization ecosystem has been developed a lot including high-end instruments,

complicated industrial software, and industrial communication systems.

Robot is one of the typical representative in modern industrialization. It cov-

ers knowledge ranging from mechanical design, manufacturing, mechanics, sensors,

actuators, to algorithms, etc. Robots also play a significant role in modern society.

Tedious and repetitive jobs have gradually be modified or replaced by industrial

robots, and the work done by robots sometimes is with higher quality. Rapid pro-

gramming technology enables flexible motion for robots, which is also a fundamen-

tal requirement in actual application. Robots also exhibit smarter performance.

They will replace humans in many kinds of dull, dirty and dangerous jobs, reliev-

ing them for more creative pursuits. ’Industrial 4.0’ describes a bright future of

intelligent and productive factories where the production pipelines are optimized

real-time in response to the variations arising from factors like socio-economic

and political changes. Intelligent robot systems would make this possible. These

robots can complete tasks in unstructured and dynamic environments, and can
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learn to collaborate with humans and other robots, while learning new skills and

sharing knowledge with them. Such robots can be rented cheaply by small and

medium enterprises. The global changes will give rise to robot-based automation

at an affordable cost. Typically, by connecting rigid bars in series with 6 Degree

of Freedom (DoFs), a dexterous robot arm can be built. Equipped with a proper

end effector, the motion of the robot arm can bring the end effector into diversified

position and orientation in its workspace. Similarly, once mounting the robot arms

on a mobile platform, the task space is greatly expanded, so that a mobile robot

can be more flexible and contribute more to human beings. Diversified robots

have been successfully applied in manufacturing, medical surgery, exploration and

rescue, etc.

Conventional rigid robot arms are typical representatives, and manipulation

with different end effectors has indeed benefited many aspects. However, the

shortcomings of rigid robot arms are also obvious, such as high cost in mainte-

nance, cumbersome body, and unsafe to perform collaborative with human. As a

functional replenish for rigid robot arms, soft robots gradually attracted much at-

tention in the past two decades owing to their great advantages. Organized by soft

or elastic materials and actuated by effective mechanisms, novel continuum robots

have achieved remarkable results in the past years. A soft robot characterizes light

weight, high degree of compliance, low cost, and miniature in size. Continuum

robot is one hot topic in this research community. The novel fabrication methods,

appropriate sensors, actuators, and algorithms together lead to better continuum

robot systems and broaden application horizons.

The flexible body is generally realized by soft materials or local rigid rings

connected flexibly. Low Young’s Modulus of material enables safe contact with

human, and this also provides capabilities of easy interaction and manipulation.

Fig. 1.1 shows several common continuum robots with slender backbone, enabling

navigation inside constrained environments and manipulating objects dexterously

equipped with proper end effectors. Generally, its motion is realized by unsym-

2



CHAPTER 1. INTRODUCTION 3

Fig. 1.1. Some common continuum robots.

metrical force or bending moment acted on the flexible body, and the shape is

like an arch after deformation. Concentric continuum robot is a special case. It is

assembled by multiple pre-deformed arc NiTi tendons. The tendons with smaller

curvature are configured through the one with bigger curvature, and the elonga-

tion from its host tube make the whole manipulator deformable towards different

direction.

1.1 Basics of Continuum Robot

To mitigate the shortcomings of conventional rigid robots, researchers have tried

to find more inspirations from other fields. Biology provides examples to inves-

tigate novel soft robots. Flexible animals like snakes, elephant’s trunks, tongues,

and octopus tentacles have inspired researchers to develop continuum robots based

on their incredible capabilities in locomotion, manipulation, and dexterity in con-

fined environments. The origin of continuum robot can date back early to 1960s

(see [1] page 110 and [2] page 115). They were organized by spaced joints and

form the shape of soft body. However, the continuum robots characterized low

precision and poor payload capacity. In 1970s, sustained development in this area

re-emerged, with pioneering work achieved by Hirose and his team [3]. During this

time, industrial continuum manipulators were developed including spine robot,

and miniature fluid-driven actuators. Other remarkable contribution continued in

many new and innovative applications, in both commercial and academic research

3
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forums [4]. Later in 1980s, continuum robots stepped further into industrial sce-

narios, where the flexible and slender shapes were applicable in spray-painting [5]

and grasping [6]. Before 1990s, many continuum robots were not well controlled

due to the marginal progress in computation performance and control algorithms.

As stated in [7] and [3], significant progress was achieved in 1990s in modelling

the controller of continuum robots, which laid theoretical foundation for future

models. The first decade of the 21st century witnessed lots of advancements in

design, fabrication, modelling and application of continuum robotics. Fundamen-

tal analysis towards this area came from the group of Walker et al [8–10]. Active

areas of current research by many groups include continued advancement in the

application of beam theory to create increasingly sophisticated models of contin-

uum robots, and the constant-curvature approximation. In addition to models,

advanced sensors, materials and actuators all contribute to progress in contin-

uum robotics. Current continuum robots are developing towards compact body,

accurate sensing mechanisms, and precise control schemes.

In terms of the applications, Anderson and Horn [11] proposed a continuum

robot system to manipulate objects in undersea environment in 1970s, where no

electronic parts were attached at the soft manipulator so that waterproof issue was

avoided. In 1993, Owen [3] developed a car painter through soft continuum robots.

The central hollow configuration enabled continuous painting transmission, and

the flexible motion collaborated well with workers. Later, in 1999, Morecki further

employed the hollow central backbone to conduct liquid transport tasks, which

did not need accurate dimension like rigid pipes and the central backbone can

be controlled well through actuators, so that the transportation of liquid was

greatly automated [12]. Natural disasters pose emergent requirements of rescue

and search in confined ruins. The slender and compact soft continuum robots are

able to locomote inside these areas carrying with sensors and foods for the stucked

people [13]. More industrial applications of continuum robots can be found in

the Table 1 of work [14], including waste storage tank remediation, inspection

4
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of unstructured environments and pipes. Another notable application exists in

medical surgery. With the valuable application, patients are only operated with

a small incision, making them can recover within a shorter time and little pain

will cause to them, which is also named as Minimal Invasive Surgery (MIS). In

recent decade, lots of useful medical devices like catheters and colonoscopes were

developed based on tendon-driven continuum robots, aiming at different specific

operations. Surgeons just control the devices via teleoperation, while Magnetic

Resonance Imaging (MRT) or color ultrasound vision provides them with true

shape configuration of the devices. It is not necessary to conduct big incision.

For example, forceps is attached at the tip area and its closure or open can be

controlled via a tendon. Combining the flexibility of soft manipulator, laparoscopic

surgery can be effectively conducted [15]. Similarly, tools like flexible needles [16],

endoscopes [17], arthroscopes [18], colonoscopy [19], and laser manipulators [20]

attached on the tip as an end effector enables more useful instruments. Examples

of the specifically designed surgical devices also include multi-backbone surgery

system, the hyper-redundant cardio arm, and concentric tube robots. Of course,

the advantages also pose challenges in implementation. For example, the hyper

compliance makes it unable to maintain working state when faced with external

payloads. Therefore, more and more researchers have done deep investigation on

control schemes. There are also some bottlenecks that restrain the development

and application of continuum robots, as summarized in the next section.

1.2 Problem Statement

Currently, although diversified kinds of continuum robots have come into being, it

is still unable to put into practice in a large scale. The main bottlenecks include:

1) Developing internal sensors for control and for visualization

Continuum robots are anticipated to work in constrained environment, where users

are unable to observe the actual shape. The inherent fabrication imperfections and

compliance pose much difficulty for open-loop control because uncertain external

5
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forces deteriorate an control scheme. Using feedback to adapt controller with

working environment benefits users manipulating continuum robots as desired.

Therefore, sensing the shape and position of end effector becomes a necessary task

in practice. Using externally configured sensors like cameras is a direct method,

but they are not feasible in some occluded scenarios (holes, caves, and dark area).

Being structurally different from rigid robot arms, soft robots are not easy to in-

tegrate encoders to sense the shape, such that developing self-sensing mechanisms

for this task should be a good alternative. It means that sensor should be embed-

ded into the flexible body, and the deformation of continuum robot leads to signal

change in the sensors. In addition, the integration of the sensors should not cause

side effect such as resistance in the original deformation towards robot itself. Some

existing proprioceptive mechanisms are time-consuming and labour-consuming in

fabrication.

2) Constructing control schemes for practical application

Developing kinematic models is key to realize precise control of continuum robots,

which relate between the tip configuration/ shape configuration and actuators in-

puts. In practice, the actual task configuration is expected to move as desired,

like given path points and users’ setting points, but the complex structure and the

uncertain cluttered environments pose much difficulty. On one hand, the models

are essentially non-linear, as material properties, structural setup, and working

conditions should be considered to build an analytical control scheme. In general,

a delicate set controller can only work on one platform because mounting methods,

actuation mechanisms and other environmental factors could make a sophisticated

model infeasible. More importantly, the uncertainty of external payloads poses dif-

ficulty in building the controller, for the action position, direction and magnitude

are all unknown for robot system. Besides, to manipulate proper objects, dynam-

ics model should also be considered for the motion precision is highly involved in

inertia and acting forces.

3) Reconstructing external forces

6
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In an open-loop control, the task configuration is only related to actuators in-

puts, but in application external forces are unavoidable. The forces not only make

controllers inaccurate, but also make some given path points unattainable. It

would be significant advancement if the external forces acting on the soft body

can be accurately estimated, which means the barrier in workspace can be in-

directly observed. Controller can specifically adjust actuation configuration to

adapt environment, such as avoiding hard barriers and overcoming soft barriers.

The challenge lies in finding the position, direction and the magnitude of a single

force. The external force can present at any position along the soft body, and

three components in three directions (x, y, z) of the force should be estimated.

This also requires sensors output proper readings and requires models should be

properly designed.

4) High motion velocity with accuracy

Conventionally, there is a trade-off between the motion velocity and the accuracy

in controlling a soft manipulator. Due to the softness in nature, deforming the

soft body at a high velocity could cause significant vibration and inaccuracy in

positioning the end-effector. Purely adjusting the controller of the actuators may

not be able to achieve satisfactory result in reducing the fluctuation. To address

this issue, adding additional degree of freedoms to the soft manipulator through

mounting on a mobile platform is a possible solution, which thereby increases the

redundancy of the overall system. For example, to reconfigure a single-segment

soft manipulator in positioning its end-effector, part of the position discrepancy

can be corrected through the linear stage, reducing the degree of deformation and

the velocity required by the soft body.

5) Rotation along the deformed backbone

Although the deformation behaviour of continuum robot has been widely explored,

making continuum robots work in diversified conditions, it is still expected that

they can rotate within the limited space. Ideally, with the deformation, they

can rotate around the deformed backbone, such that holes can be drilled without

7
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adding a flexible central shaft to transmit drilling motion.

Apart from structural innovation, algorithms should also be investigated to

conduct proper self-rotation mechanism. The rotation should not influence the

bending state, and rotation precision should be maintained. This requires two

controllers to be synchronized. Similarly, the newly added DoF can also ease the

design of kinematics since the rotation of the manipulator could be achieved by

the original actuators and the newly added collaboratively.

In summary, both the hardware and software need further investigation to

lower down cost and to improve control precision. This research focuses on the

four main tasks, researching different internal sensors to realize proprioceptive

sensing mechanisms both for shape reconstruction and external force estimation.

Controllers can be extended to other similar configurations.

1.3 Outline of This Dissertation

This dissertation aims to provide some feasible solution for the above-mentioned

problems in continuum robotics, especially focusing on the control with embed-

ded sensors, real-time shape reconstruction, estimating the external acting on the

robot whole body, and developing novel continuum-robot-based tools in actual

applications. The rest of this dissertation is organized as follows:

In Chapter 2, I summarized the overall technical innovations in continuum

robotics. This chapter starts from the origin of continuum robots and the gradual

development of them since the midterm of the last century. The technical inno-

vations in this area was also summarized, including novel actuators, fabrication

methods, sensing mechanisms, and control strategies. Most achievement concern-

ing the approaches to deal with the mentioned problems was also included in this

chapter.

In Chapter 3, a shape reconstruction method with proprioceptive sensing mech-

anism using AI model and piecewise curve fitting methods was detailed, with

which a novel control strategy also integrating the feedback was built. Consider-
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ing that one obvious characteristic of continuum robot is working in narrow and

constrained environment so that external configured sensors are not applicable, I

developed an embedded sensing system to estimate the true shape of the backbone

in a real-time. The estimation also includes the tip position, playing a significant

role for the subsequent feedback control. Apart from proposing a controller for

the inverse kinematics model, an adaptive step distance mechanism was put up

when the robot was performing a point-to-point task. The two modules worked

in collaboration while moving, benefiting users to visualize the robot shape and

to control the bending motion. They were both built with data-driven method.

In Chapter 4, the method that estimating the external force acting on the

robot body rather than the tip area solely was detailed. First, the area where

an uncertain external force is likely to present was labelled by a 2D map. The

presence of the force was detected by the position deviation in the tip when the

robot is acted. This deviation between the load-free and load scenarios in a same

actuation input was built via ANN model, which can be applied on other similar

platforms. Each of a small area on it was indexed by a column position and a row

position. Then, the column position that is involved in the deviation direction

was solved by a probability model. All the forces, including internal actuation

forces and the external force, will make the robot reach a balance state, such that

virtual work principle can be employed to further find the row position and the

corresponding magnitude. The whole sensing mechanism was built using eutectic

gallium indium (eGaIn) sensors.

In Chapter 5, I designed a novel mechanism to achieve full rotation along

the deformed backbone, and novel algorithm to control the whole robot was out-

lined. This was inspired by some applications where a dexterous manipulator was

required to perform manipulation in constrained space and rotation was also si-

multaneously anticipated, while the two behaviors have not been simultaneously

achieved yet. To avoid tube twining issue, a slip ring was employed to decouple

the air transmission in the actuation hardware. Another DoF, stepper motor was

9
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mounted at the robot base to rotate the deformable manipulator continuously.

This brings two advantages: 1) the shape configuration can be achieved by more

combinations of actuation inputs, and 2) continuous rotation along the deformed

backbone, is realized. With the novel structure, I designed algorithms to control

the movement with fast response and to control the rotation motion.

Finally, chapter 6 concluded this work and detailed the future work.

10



Chapter 2

Literature Review

A continuum robot system consists of robot body, actuators, sensors, and control

models. Technical innovations in recent decades have pushed the rapid develop-

ment of continuum robotics, making them can be widely applied in diversified

scenarios. In this chapter, key components of a continuum system is summarized.

2.1 Soft slender manipulator design

Multiple design with diversified materials and structures formed the robot body.

The central backbone is generally the core of some designs, and some soft manip-

ulators have no backbone.

1) Soft concentric tube design

As a special design in continuum robotics, concentric tube robot has been attrac-

tive for the high length-to-diameter ratio. It was first proposed by Webster et

al. [21] in 2006, as Fig. 2.1 shows. Most of them were made of Nitinol alloy and

some were developed by polyether block amide using 3D printing [22]. They are

organized by hollow pre-curved tubes inserted into each other in series, and the

stiffness of them decreases from the proximal segment to the distal one. Rotation

and translation between each segment make the entire shape deform and elongate

in task space. The actuators are configured behind the manipulator base, so the

obvious advantage of them is compactness, such as the 0.8mm-diameter manipu-

lator in [23], which is beneficial for robot surgery. However, the kinematics model

of them is also special, and the snapping problem that the robot snaps quickly

11



12 2.1. SOFT SLENDER MANIPULATOR DESIGN

Fig. 2.1. Concentric-tube design.

at the connection part poses challenge to the controller. Additionally, the friction

between tubes should be very minimal to ensure smooth extension. Kim et al. [24]

proposed a variable-stiffness design to enhance the stiffness of concentric tubes for

manipulating heavy payloads.

2) With-backbone design

This design style includes an elastomer configured at the central backbone. The

backbone, secondary backbones, and rigid disks are assembled to form the manip-

ulator, and the material of the backbone is commonly NiTi and polypropylene, as

Fig. 2.2 shows. The secondary backbone are used for actuation, in which actua-

tors generate tension to deform the manipulator. The length restore depends on

the elasticity of the backbone and other secondary backbones. The control model

for this design is relatively easier to build since the deformation can be directly

quantified through the length variation of the secondary backbones, but the stiff-

ness of them is difficult to regulate.

3) Without-backbone design

12
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Fig. 2.2. The design with an elastic central backbone.

In contrast to the with-backbone design whose shape is not a smooth arch and the

rigid disk may hurt ambient environment, without-backbone design was proposed.

⋄ Soft tube design

The whole robot body is an elastomer, as Fig. 2.3 shows. The chambers along the

axial direction play a role of guidance, through which the cables can be mounted

to tense to bend. With the low stiffness of the material, such as silicone rub-

ber, the manipulator often characterizes high compliance. On the other hand, the

low rigidity also leads to buckling upon actuation. To deal with this problem,

researchers considered twining thin threads around the robot body to limit the

radial expansion [25], and algorithm to avoid over actuation [26].

⋄ Notched backbones.

As Fig. 2.4 shows, a flexible manipulator was cut to form notches and deformation

towards the notched sides occurs easily [27]. The distance between the notches is

very minimal so the deformation is almost an arch after tension.

⋄ Spring-based backbone

Low-stiffness springs are compliant and it can be used to build the elastic body.

After deformed by actuators, the strain stored in the spring returns the manipu-

lator to the rest state, as Fig. 2.5 shows. Actuators are required to provide higher

13



14 2.1. SOFT SLENDER MANIPULATOR DESIGN

Fig. 2.3. Soft-tube design.

Fig. 2.4. Notched design.

14
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Fig. 2.5. Spring-based backbone.

Fig. 2.6. Manipulator with joints rotating around the previous unit.

force if deformation degree is anticipated to increase because larger force is needed

to deform a spring.

⋄ With joint design

Similar to the with-backbone design, joints with small thickness rotates around

the previous joint, as Fig. 2.6 illustrates. In each joint, there are holes to set

cables for tension. Most joints are fabricated by polyethylene acrylonitrile butadi-

ene styrene (ABS), and NiTi. In deformation, the relative rotation angle between

joints is roughly same, making it easier to design the kinematics model [28]. The

stiffness of this design is higher, but it can only deform towards one direction

because the rotation can only occur in 2D manner.

⋄ Bellow design

For most of the aforementioned designs, they can deform while maintaining the

original backbone length. The task space is therefore, limited within a small area.

Fig. 2.7 shows this design. Inside the manipulator, chambers are set radially for

deformation, which are actuated by fluids. The gap distance between the bellows

can be adjusted by the actuation inputs, enabling backbone-elongation design [29].

15



16 2.1. SOFT SLENDER MANIPULATOR DESIGN

Fig. 2.7. Bellow design.

It is light weight and is with a smooth shape. The stiffness is also marginal be-

cause of the soft material.

⋄ Origami design

Foldable mirror and bombs inspired origami-styled soft robots [30], as Fig. 2.8

shows. They are made of photopolymer resin or similar flexible material, and

actuated by cables. Being actuated, it can perform 2D or 3D deformation, and

the connection part between each piece can be regarded as a revolute DoF. Also,

Fig. 2.8. Origami style.
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the soft structure is beneficial for contact with ambient environment.

2.2 Stiffness Adjustable Manipulator

In load-free condition, soft continuum robots are anticipated to locomote faster

with little energy, which means the stiffness is desired to be smaller. On the

contrary, while in manipulating objects and in meeting external disturbances, they

should characterize higher stiffness to minimize the effect from external forces.

Therefore, the robot manipulator would be better if it can adjust the stiffness

to adapt specific tasks. Researchers investigated particle jamming, special alloys,

and antagonistically-driven approaches and designed mechanisms to change the

stiffness quickly.

2.2.1 Particle Jamming

Actually, the robot can be designed with multiple hollow areas to fill other rigid

materials. The density of the material is involved in the stiffness. Fig. 2.9 shows

the basic working principle [31]. It includes layer jamming and granular jamming.

The stiffness is determined by the friction between the soft layer and the particles.

To regulate the friction, namely the interaction among the particles, air pressure

is considered, where higher pressure (negative pressure) promotes larger friction.

To avoid buckling, negative pressure is generally used. In terms of the particles,

rigid granules, layer jamming, layer jamming with supporting internal structure,

and hybrid mode were employed [32].

2.2.2 Special Alloy

Special alloy like shape memory alloy (SMA) exhibits phase transition in temper-

ature variation, which can be controlled by electrical current. The SMA-made

spring functions ’lock’ and ’unlock’ to adjust the stiffness. Additionally, low-

melting alloy, such as eGaIn whose melting temperature relies on the component

ratio of the alloy, increases the overall stiffness of the manipulator when the tem-

perature is lower than the melting point. Peters et al. embedded this alloy into

17
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Fig. 2.9. The robot body is designed with hollow part where granular particles
can be filled.

Fig. 2.10. Low-melting alloy for actuation and stiffness regulation.

a silicone manipulator [33] for actuation and stiffness controlling, where the tube

for the alloy transmission was coated with Nichrome wire for heating, as Fig. 2.10

illustrates. This benefits actuation and stiffness variation, but cooling and heat-

ing require long time. The alloy is not cost-friendly, and the fabrication process

is complicated.

2.2.3 Delicate Design for Stiffness Control

Stiffness is manifested by EI (E is Young’s Elasticity modulus and I is the inertia),

so through controlling I the stiffness can also be changed, which is relatively simple

and requires little response time. Fig. 2.11 shows two typical designs to control

the stiffness. In [24], relative rotation between segments was employed to change

the inertia of a concentric tube robot. In each tube surface, a array of notches was

engraved by laser cutting, and the length of the notch is only 0.5mm, benefiting

18
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Fig. 2.11. Structural design for stiffness controlling.

small-sized soft manipulator design in MIS. In [34], authors considered a ’Locking

lever’ mechanism to constrain the cable length and actuation forces (Fig. 2.11-

left). The locker was individually controlled by SMA actuators. With the short

locomotion distance, the response is faster.

2.3 Actuators

Omni deformation in task space is the fundamental function that a continuum

robot system should exhibit, and the deformation enables the end effector mounted

at the tip area to complete diversified tasks, which is the balance between actua-

tion forces and the elastic forces in load-free condition. There are generally three

chambers distributed radially along the manipulator for actuation, where the dif-

ference in the force leads to deformation degree and orientation. The working

principle of the actuation inputs varies, but all the actuators act by varying the

length of the chambers. The bending of the whole manipulator is reflected by

length difference in the chambers. It is the unsymmetrical force on the manipula-

tor’s chambers that contributes to moment and further generates various shape.

In order to elongate or shorten chambers, diversified actuator mechanisms have

been developed.

2.3.1 Tendon-Driven Methods

Tendon-sheath mechanism is a common method [35–39]. The length variation

of the chambers is realized by pulling the tendons mounted inside the chambers.

Through pulling the tendon, the length is decreased and elastic property of the
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robot returns the chamber to the rest length. Generally, a rigid ring is attached

at the top side of a manipulator and three tendons are respectively connected to

the rings with 120◦ radially apart. The length variation is precisely regulated to

ensure one actuation input maps to one shape/tip configuration, so the tendon is

inextensible and thin, like NiTi coil. At the other side of the tendon, actuators

are needed to provide tension. Stepper motors and servo motor [36, 37, 40] were

employed to pull or release the tendon. Tendons are connected to the motor shaft

through pulleys so that the rotation of motor will pull the tendons to change the

chamber length. The rotation velocity and displacement of the motors can be

accurately regulated by pulse cycle and counts. To decrease the friction between

the tendon and the chamber surface, the cables are housed inside sheath with lu-

bricative oil. Miniature of tendons benefits fabricating compact continuum robots

that are flexible in Minimal Invasive Surgeries (MIS) [41–43] and other constrained

environments. However, it needs relatively complicated configuration to transmit

motion when a continuum robot has multiple segments, making cumbersome me-

chanical structures behind the soft manipulator, and the thin cable is twined at

motor shaft so that the rotation of shaft can not be directly used to calculate

chamber length. Besides, tendon can not generate tension for the chamber, and

the stiffness is somehow reduced because of the tensioned coil.

Apart from motors, Shape Memory Alloy (SMA) provides another alterna-

tive [44–48] for actuation, as shown in Fig. 2.12. SMA is a material that under-

goes phase transition when exposed in temperature gradients. Namely, when being

heated, phase transition from martensite to austenite presents, which contracts the

material and leads to deformation. The temperature of the material maps to the

deformation degree of SMA. Because of the metal property that it has electronic

resistance essentially, electrifying SMA generates Joul heat and deformation ap-

pears. Thus, a tendon connected to SMA coil can contract the chamber and it

can be used as soft actuators. As for this configuration, the actuators can be

small and simple in comparison to motor-driven tendons, and transmission of the
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tension could be easier, since only two electric wires are needed for each cham-

ber. Controlling the voltage of current of the circuit can regulate the power of

the actuator. However, in terms of the effectiveness, the heating and cooling both

require relatively longer time and thus robot cannot response rapidly as compared

to motor-driven setup. Researchers added cooling system [49] (water cooling and

fan) to accelerate the temperature variation process.

For the both actuators, returning from shorten state to the rest state of cham-

bers just depends on elastic energy stored during manipulation, which is not robust

enough and hysteresis of material leads to uncertainty for further control. Then

pre-tensioned tendons somehow stiffen the manipulator, so controlling the length

and the tension enable controlling shape configuration and stiffness regulation.

Fig. 2.12. SMA-driven continuum robots.

2.3.2 Fluid-Driven Actuators

In contrast with tendon-driven mechanisms, elongation in length is achieved in

the chambers by fluid-driven actuators [30, 50], which also can generate length

difference in the chambers. Each chamber is connected to a tube to transmit

fluid. This does not need specific design on energy transmission parts, and the

pressure of the fluids (air or water) quantifies the actuation inputs. Without

complicated energy transmission components, the effectiveness is relatively higher

and the response time is shorter than that of SMAs.

Pneumatic-driven continuum robot systems are also notable [51–55]. The tech-
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nical development in pneumatic transmission is sophisticated in recent years, and

the precision in terms of the pressure and flowrate can be very high via advanced

valves and accessories. The pressurized air directly acts at the chambers, elon-

gating the chambers and deforming the manipulator. While shortening, the pres-

surized can be released to ambient environment. The tubes for transmission can

be flexibly configured, which eliminates significant cost in preparing mechanical

structure. Fig. 2.13 shows three pneumatic-driven continuum robots. Basically,

the length of backbone is limited to maintain elastic property. Besides, expansion

of pressurized chambers consists of radial and longitudinal directions, but only

axial expansion is desired so that radial expansion should be constrained during

fabrication [30,56,57]. At the power source side, pump, gas regulators and pressure

sensors are indispensable because the precision of pneumatic pressure is highly in-

volved in precision of controller. Since the pressurized fluid acts at omni direction

of the chamber, constraints should be added at the circumferential direction and

to promote length in axial direction, such as twining thin Nylon thread spirally

along the outer surface of the manipulator. Other fluids, like water and oils can

also be employed, and the effectiveness will be higher for they are regarded as

incompressible, but they should not be ejected into air when decreasing pressure.

At this end, fluid-driven mechanisms also require delicate design.

In addition, some fluids present stiffness under lower temperatures, which

achieves deformation controlling and stiffness controlling simultaneously [58]. This

is desirable when manipulating objects, where lower temperature could be set to

enhance the stiffness of the soft arm, and higher temperature is prepared in load-

free motion. Consequently, the collaboration between multiple 2D-deformation

elastomers can be integrated into an artificial hand.

2.3.3 Dielectric Elastomer Actuators

The need of developing actuators with high flexibility, compliance and compactness

is still a hot research orientation. Dielectric elastomers (DE) provides a solution.
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Fig. 2.13. Snapshots of pneumatic-driven continuum robots

Fig. 2.14. Illustration of DEA’s working principle.

Voltage applied the thickness ends of a soft material could generate large strain, as

a result of Maxwell stress between charges on the two electrodes [59–61]. Fig. 2.14

shows the fundamental working principle of DEAs. It features high elongation rate

(>100%), high energy density (0.4 J/g) and high energy efficiency (>80%) [62]. A

large number of works have shown that soft actuators based on DE are extraordi-

narily attractive because they exhibit big energy density and muscle-like response.

Another advantage of this actuator is that the shape variation of the elastomer

can also lead to capacitance variation, so that it can provide sensor readings with-

out need of other sensors in application [61], which is also named as self-sensing

mechanism. Some relevant examples of DEA include manipulators [63], prosthe-

ses [64], and stiffness-tunable muscles [65]. Fig. 2.15 shows several DEA-based

soft robots. This actuation method is structurally different from others. Dielectric

field directly acts at thin membrane which is also an unique motion part in the

robots. On the basis of this, notably rolled configuration like spring-roll actuators

exhibits large strains and forces, where pre-strain process is simplified. It also
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Fig. 2.15. DEA-driven soft robots.

does not need complicated power transmission parts and the effectiveness is high.

On the other hand, it needs high voltage to drive the thin membrane, which is

up to 6KV [66]. Thus, some modules involved in transferring low direct voltage

into high-frequency AC should be employed. Additionally, when the actuators are

required to interact with dynamic environment, the position and the actuation

force are both anticipated to be controlled.

2.3.4 Magnetic Actuation

The configuration of magnet inside a continuum robot can also miniaturize the

entire manipulator, because the magnetic field is generally added externally. This

non-touching actuation mechanism does not require complicated mechanical struc-

tures, and enhances dexterity of the robot [67]. External magnetic fields can deflect

the tip and deform the robot by attracting or pushing the magnet mounted at the

tip [68]. In addition, during fabrication, magnetic powder can also be evenly incor-

porated into the liquid silicone, which generates uniform force at the robot body
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and brings flexibility in control. Interestingly, the distance between two adjacent

magnets can act as sensors to detect the tip configuration. The challenge lies

in fabricating a soft elastomer with desired amount of magnetic powder, so this

work [69] considered 3D printing technology——magnetic field-assisted projection

stereolithography process. At the anterior and posterior legs, two magnets are at-

tached playing a role of worm’s legs. Also, [69] proposed a soft microrobot steering

a guidewire within a 3D phantom vascular network. By applying external mag-

netic field, this microrobot can locomote inside very tiny space, and the change

of the magnetic field guides the locomotion direction and velocity. Researchers in

recent years investigated the dexterity of magnetic-driven continuum robot with-

out hinder the miniaturization. Although it provides an untethered solution for

soft robotics, they are not able to work within a big space range and ferromag-

netic environment will significantly influence actuation effectiveness. The setup of

accurate external magnetic field is expensive and time-consuming.

2.4 Sensors for Continuum Robots

The shape and the tip position of a rigid robot arm can be directly obtained

through the encoder mounted at the motor or other external vision systems. How-

ever, it is impossible to consider encoders for continuum robots due to the distinct

working principle, so investigating proper sensors is indispensable in this field.

Real-time and accurate sensing the key points and the whole shape of a con-

tinuum robot are fundamental to achieve visualization and to achieve feedback

control. Therefore, sensors are necessary, which can be categorized into external

sensors and internal sensors, based on the mounting location.

2.4.1 External sensors

External sensors are mounted outside of continuum robot, such that the shape and

any interested key point can be easily and directly observed. Optical cameras [70]
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are commonly employed to sense the markers attached at the robot body. Fusing

digital image process technologies eliminates background noise and the position

of ROI w.r.t the universal frame is obtained via calibration system. Therefore,

the precision of results depends on the precision of camera matrix and position

of markers. Besides, near-infrared camera [71,72], RGB-D camera [73], structural

light vision, and optical trackers [74] are also applied to sense tip position and

shape of manipulator. As for cameras, they set some basic requirements such as

dark environments are not allowed and more importantly scope between object and

camera cannot be occluded, making they are not applicable in some constrained

environments. This promotes the requirement of investigating internal sensors to

build proprioceptive mechanisms.

2.4.2 Internal sensors

To mitigate the disadvantages of external sensors, internal sensors gradually play

important roles. They are embedded inside manipulator and work with the shape

change of the chambers. There are generally three aspects should be considered:

1) sensors should be easy to integrate into robot, 2) sensors should leave little

negative influence on deformation, 3) precise and unique sensor signals should be

output during operation, namely one deformation status maps to one set of sensor

readings.

Scharff et al. [75] proposed a novel color-based 2-D shape measurement method,

where the deformation of the soft manipulator leads to the change in color and

the change was detected by color sensors. Nevertheless, payloads were not con-

sidered, for which may distort the bellows such that the color sensors could not

percept the detecting area. Similarly, deformation of elastomer can lead to length

change in the chamber filled with liquid metal, like EGaIn, resulting the change

of electronic resistance [76]. EGaIn-based sensors are widely embedded into soft

robotics [77,78]. The volume of EGaIn metal is constant, and the elongation in ax-

ial direction leads to sectional area decrease. This increases electronic resistance,
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and the signal can be transferred into voltage for measurement. A novel soft sensor

made by embedding conductive silicon into nonconductive silicone was proposed

by Thomas et al. [79]. They succeeded sensing the shape and estimating external

force applied on the robot’s tip. Venka-tasubramanian et al. [80] discretized a

flexible robot as multiple serially connected pseudo rigid links, but solving the

unknown angle of each joint to obtain the shape is computationally burdensome.

Measuring the length of the actuated chamber with linear Hall sensors is also

feasible [81]. However, this shape-sensing method is based on piecewise constant

curvature (PCC) model that is not necessarily exact when robot interacts with

payloads. Electromagnetic (EM) sensors are another way to measure the rela-

tive pose (distance) between a reference point (sensor) and the deformable body

(magnet) [39, 82–85]. It works with an externally configured magnetic field and

the area of task space is limited. Similar to Hall sensor, its performance could be

interfered by strong magnetic fields, which also features high cost in application.

Non-toxic liquid metal provides another alternative. Different degrees of deforma-

tion can lead to strain change on a local area of robot, which inspired the use of

strain/stress related sensors. For instance, Fiber Bragg Gratings (FBG) [80,86–88]

can sense the change in the curvature of an optical fiber by detecting the shift in

the wavelength travelling in the fiber. The fiber can be very small in diameter

and is immune to noise. FBG-related models generally regard the strain change

of FBG as linearly elastic. As a result, it has marginal ability to elongate, limiting

the deformation degree of soft robot. Besides, optical fibers need to be manually

inserted after fabrication of the soft body, increasing the overall manufacturing

cost.

2.5 Development of Controllers

Controller design is a core in this research field, for which maps between the desired

tip/shape configuration and the actuation inputs. No matter in any condition, the

end effector mounted at the robot tip should be controlled accurately for achieving
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Fig. 2.16. Illustration of PCC model, where the backbone is assumed as an arch.

tasks, requiring accurate models between actuation inputs and configuration of end

effectors. Also, the controller in load-free condition can be modelled using PCC

assumption, since the position of end effector is just related to actuation inputs.

Fig. 2.16 shows the shape of backbone with the PCC assumption [14]. The shape

of the backbone is assumed as an arch with curvature κ = 1/r, bending angle θ

and direction angle ϕ. Therefore, the position of the tip is determined by the shape

configurations. The kinematics models (including forward and inverse kinematics

models) can be built using the three parameters. First, the mapping of the tip

position P (x, y, z) and the three parameters is:

ϕ= atan2(y, x), θ = 2acos(
z√

x2 + y2 + z2
), r = l/θ. (2.1)

Second, the length of each chamber is also related to the three parameters:

l1 = l(1− κ)r cos(ϕ), l2 = l(1− κ)r cos(ϕ+ 2
3
π), l3 = l(1− κ)r cos(ϕ+ 4

3
π) .

(2.2)

where r denotes the configuration radius of the chambers. In this way, the mapping

both for inverse kinematics and forward kinematics models can be built via the

shape configuration. However, for tendon-driven robots, this is feasible, but for

others like pneumatic actuators, the actuation inputs are implicitly related to

the chamber length, so that this model is not accurate. It is then necessary

to find another mapping between the length and the pressure. In addition, as

the shape can sometimes be assumed as an arch, (2.2) is not right because the
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shape configuration, especially when the direction angle is not solely determined

by actuators but also influenced by external forces. With the knowledge of robot

arms, the kinematics could be built using D-H model, where the deformed arch

is virtually connected by multiple rigid bars. The connection part is assumed

as a joint that controls the relative angle between two bars. In theory, more

bars contribute to more accurate kinematics but the computation of the inverse

kinematic model is complex [89].

More importantly, to control a soft continuum manipulator accurately under

disturbance, versatile methods have been investigated. The uncertainties of ma-

terial and external forces are essentially unavoidable, so fuzzy control theory with

Neural Networks [90] and with Jacobian-based method [91] are feasible. Jacobian

matrix maps between the velocity of end effector and change of actuation inputs.

Therefore, in a short interval, the velocity can be revised as displacement, but it

is not always with full rank. To overcome the limitation of Jacobian matrix that

singular position occurs for robots with infinite DoFs, Giorelli et al. [92] fused Ja-

cobian and Neural Networks, and solved the inverse kinematics of a cable-driven

robot. Singular value decomposition (SVD) method is often employed to address

the inverse of Jacobian matrix. Yip et al. [93] proposed an convex optimization al-

gorithm to form feedback control in constrained environments. Online estimation

was investigated by Fang in [94], where kinematics can be assumed as a local Gaus-

sian model and updated continuously. Notably, some continuum robots [95–97]

can adjust the stiffness of robot to alleviate the influence of external payloads.

Reinforcement learning provides a novel solution [98] to this challenge, where soft

robot is commanded to learn the optimal control model, requiring little human

intervention. It, however, needs longer time to train the model. Li et al. [99]

assumed the Jacobian matrix is constant within a local area, and estimated it by

moving actuators with small increments and sensing the change of the end effec-

tor, which is time-consuming. Similarly, a novel Strong Tracking Kalman Filter

(STKF), was proposed by Li et al. [100] to work adaptively, in which a fading
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factor was introduced to accelerate the convergence and the covariance matrix

was updated by an innovation sequence. Apart from them, model-based methods

also contribute to the controller of continuum robot. Cosserat rod theory [101],

virtual work [34], improved PCC algorithm [102] and stiffness of material [103,104]

are employed to find the mapping between forces (actuation inputs and external

forces) and the pose of robot’s end effector, which is an inverse process in control.

One segment of continuum robot can also be virtually modelled as multiple rigid

revolve joints connected serially, and the configuration of each joint determines

the task configuration, which can be modelled using Denavit-Hartenberg param-

eters [27, 105, 106]. In theory, more virtual revolve joints contribute to higher

accuracy, but it also sets higher computation requests.

Besides, dynamics models are also pursued during application since the acting

force of end effector is also an important object. Rucker et. al [107] proposed stat-

ics and dynamics models with Cosserat rod theory on a tendon-driven continuum

robot platform. Mustaza et. al [108] proposed a dynamics model with Lagrangian

algorithm, which considered Euler-Lagrange equation and energy formulation. Re-

inforcement learning [109] provides another solution for this problem. However,

the dynamic control in soft robotics is still an open problem to be explored and

analysed.

2.6 Shape Reconstruction Approaches

For users or handlers, the shape of the continuum robot is desired to be visualized

during operation and they could perform better manipulation based on the actual

shape feedback. To further visualize the robot in motion, converting sensor read-

ings into shape information is also an important step to achieve, which is generally

the subsequent work of internal sensor setup. Analysing above sensors, some can

directly find the position of key points while others just show a variation trend.

Sensors generally are not able to measure the 3D information or even the length

of backbone, so the raw sensor readings should be modelled in response to the
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Fig. 2.17. Some shape sensing experimental settings.

true shape state. In load-free condition, the shape of manipulator is traditionally

treated as an arch, namely PCC assumption, and the length of each chamber can

be directly obtained from actuators like motor encoders, pneumatic pressure and

temperature of SMA. However, this assumption is not accurate enough when the

robot is experiencing external payloads.

Like the linear elastic approximation applied on FBG sensors, it is equally im-

portant to build mathematical models to relate between the sensor readings and

the manipulator shape (Fig. 2.17 (a) and (b)). Song et al. [110, 111] fitted back-

bone using piecewise quadratic Bezier curve and the position of key points were

obtained by EM sensors. Constraints were set at the connection points between

adjacent Beizer curves, which strictly require the two curves should be tangent

with each other. For large-scale continuum robots, inertial sensors are competitive

(Fig. 2.17 (c)), which can be mounted at the end of each segments to sense the rel-

ative posture variation [112]. Inderjeet et al. [113] adopted Hodograph curve to fit

3-D backbone, where the original curve function is essentially too complicated to

achieve real-time calculation. Other related methods include: cubic spline [114],

microarc interpolation [115, 116], and cubic Bezier curve [117]. However, most

existing curve fitting algorithms only focused on 2-D curves, which did not con-

sider the spatial shape of robot when it’s influenced by external force, so the

fundamental curve function should be at least a 3D curve. As for all curve fitting

algorithms, the accuracy of given points is highly involved the final fitted curve,

so that the fitting method should be tolerate with this error in some extent. In
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addition, Scimeca et al. [118] fabricated a capacitive tactile array that is mounted

at the bottom of continuum robot. By sensing the force change of the sensors

and using Neural Networks, they solved the shape in 2D manner. This is a simple

solution, but ‘one to many’ issue exists due to indirect measurement. Regard con-

tinuum robot as a cantilever beam, and the 3D shape can be modelled by material

properties and all forces acting on it. Beam theory [95,119–121] regards a flexible

manipulator as a cantilever beam, and the spatial displacement of a manipulator

is solved using internal payloads (from actuators) and external forces. This is the-

oretically feasible but quantifying every external force is indeed not practical. The

acting point of external forces and the corresponding magnitude are both uneasy

to solve during computation.

2.7 External Force Localization Solutions

As external forces pose significant challenge in designing control schemes, esti-

mating them will be useful in practical control. Intuitively, robot could bypass

the uncross-able barriers and specifically control actuators to overcome smaller or

fragile obstacles. Since the end effectors are generally mounted at the tip, external

forces acting at the tip areas are often the focus in estimation. A multi-DoF force

gauge can be mounted at the tip area [122], to estimate the force and wrench.

Additionally, Thuruthel et al. [79] considered embedded sensors and deep learning

to estimate the load at the tip (Fig. 2.18 (a)). Venkiteswaran etal. [80] virtu-

ally discretized a small-diameter catheter with pseudo rigid body and estimated

the load along the manipulator using electronic coils (Fig. 2.18 (b)). Ashwin et

al. [123] proposed an optimization-based method estimate an obstacle present in

task space, which the motion is only two-dimensional (Fig. 2.18 (c)). Qiao et

al. [124] localized and estimated the magnitude of external force acting on flexible

instruments (Fig. 2.18 (d)), and the real-time shape was simultaneously solved.

The flexible body was modelled using Cosserat rod theory. The magnitude and

the positions were assumed as states to be estimated in each control instances,
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Fig. 2.18. Several existing external force estimation experimental setups.

which were then solved using Extended Kalman Filter (EKF).

With the information of real-time external forces, the complexity in designing

controllers will be reduced since some excitations (disturbances) to the beam are

known. However, most existing works only focused on small interested areas and

assumed a single acting force, while the external forces are uncertain. In terms of

hardware, embedded flexible sensors are still more attractive and applicable since

continuum robots are anticipated to work in confined scenarios, so force estima-

tion is built on the basis of internal sensors. In applications, when the diameter

increases, the areas where external forces may present increase significantly, which

differs from thinner designs. Accordingly, the complexity of finding the areas in-

creases a lot.
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Fig. 2.19. Continuum robot designs mounted on mobile platforms. (a) On linear
stage. (b) On a revolve motor. (c) On a six-DoF rigid robot.

2.8 Multiple Motions with More DoFs

Essentially, it is difficult to integrate a three-segment continuum robot pursuing

small diameters, for each segment needs three chambers for actuation. Common

continuum robots have only one or two segments and the length is generally con-

stant. Each segment deforms in task space and the tip’s movement is with the

change of position and orientation. For two-segment designs, the orientation and

position could not be decoupled, while in some scenarios simple translation or ro-

tation is indispensable, which requires more DoFs. Adding the soft manipulator at

a linear platform is a common alternative. It generates translation motion to the

tip and the orientation variation depends on the soft robot itself [125], as shown in

Fig. 2.19 (a). In this configuration, the tip can conduct planar movement keeping

vertical to the horizontal plane. Similarly, Fei et al. [126] considered a 3-D gantry

robot to translate a soft gripper. It expands the task space. To simplify the ac-

tuators, a revolve joint was designed at the flexible manipulator’s base [127], so

that the proximal segment only needs to deform to generate bending angle while

the direction angle is varied by the revolve joint (Fig. 2.19 (b)). In MIS, flexible

manipulator is mounted on a thin catheter which is pushed/pulled by a surgeon.

A rigid robot arm could conduct this work automatically [127], enabling diversi-

fied pose of the soft robot (Fig. 2.19 (c)). More importantly, the imported DoFs

not only promote new motions, but contribute to higher redundancy. However,

the integration may also cause complexity in actuating the soft manipulators. For

example, the revolve joint is unable to rotate constantly since the tendons for
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actuation will be twined around the motors shaft. For the UR5 robot, the entire

actuators that were bulky were attached at its end effector, which did not promote

to enhance task space because the mobile bulky actuators are not applicable in

constrained spaces. In designing controllers, the precision of the new actuators

is regarded as much higher than that of the soft manipulators. Also, they bring

difficulty for controllers, as a desired tip configuration maps to multiple actuators

inputs for the hyper redundant settings.
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Chapter 3

Shape Reconstruction and Control
under Uncertain External
Disturbance

3.1 Motivation

Continuum robots have been attractive for use in surgery, inspection/repair, and

self-exploring applications. No matter for any operation, flexible continuum robots

need to be controlled accurately. In addition, the shape of the flexible manipulator

is anticipated to be visualized so that surgeons can perform better handling. In

load-free condition, the visualization and the control can be roughly achieved by

PCC model. However, manoeuvring and visualizing flexible manipulators in un-

structured environments with high precision is challenging, as uncertain external

payloads are unavoidable.

First, the visualization issue is to find the position of points located on the

backbone of manipulator. The visualization problem can also be regarded as a

shape reconstruction (SR) issue. This is also equal to finding the position of

key points on the backbone, where more accurate position and more key points

contribute to better SR results, and computation complexity should also be con-

sidered to ensure obtaining the result in a real time. It means that external sensors

(like cameras) are not practical in constrained environments, so that developing

proprioceptive shape sensing is indispensable. Sensors and algorithm to trans-

late the sensor readings into shape information are two important modules for
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this issue. Current internal sensors include: FBG, EM, color-based deformation

measurement, and Hall effect-based. They need complicated fabrication process

and are not robust in some environments. Therefore, I tried to explore an easier

fabrication method to embed internal sensors with high robustness. The mapping

between sensor readings and shape position was built using a simple approach, so

as to apply this method to other categories of continuum robots. This also requires

SR model to work in both load-free and load scenarios. As such, the estimated

shape can not only act as a feedback for users but an important position feedback

for the controllers, since compensation the effect of load is a core part.

Second, manoeuvring a continuum robot accurately requires robust and proper

kinematics models both in the two scenarios. Due to the uncertainty of EF, con-

ventional analytical models are not practicable in non-free conditions, because

system can not find the precise acting position and the magnitude of all external

forces. Any of them can invalidate an analytical controller. For example, the direc-

tion angle of the PCC model deviates from the theoretical value due to an lateral

external force; Jacobian matrix reaches a singular value position with the force,

and then the controller fails to set proper actuation inputs for the task; Statics

models need the information of all acting forces, but external forces’ position and

magnitudes are unknown. In path-following tasks, robot is likely to face kinds of

disturbance, which is required to pass through consecutive points. Therefore, con-

troller in the tasks should characterize load-compensation ability to flexibly adjust

the actuators to approximate the destination. The hyper redundancy and high

compliance of continuum robots pose difficulty in building a desirable controller.

To control it well, integrating the real-time pose error is a feasible alternative and

models could compensate the deviation. Ideally, the results of real-time shape

reconstruction can act as pose feedback for the controller, inspiring to develop a

self-feedback mechanism for continuum robot. A simple sensor system was em-

bedded into a dual-segment soft manipulator to deform together with the robot

itself, while little reduce was generated.
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3.2 System Description

Before proposing the methodology, an experimental testbed was fabricated at

first for further validation. As analysed above, pneumatic actuators were finally

selected as the actuation mechanism because gas can be exhausted into atmo-

sphere directly when setting a lower pressure and air transmission does not need

complicated parts. The material of the robot body is silicone, which is highly soft,

and it consists of two segments so that the end-effector can form different pose

through different actuator inputs.

3.2.1 Fabrication of Soft Manipulator

Fig. 3.1 (a) shows the fabrication process for a segment of the soft manipulator.

First, silicone rubber (E605, Hongyejie, Shenzhen, China) was poured into a 3D-

printed mold (Fig. 3.1 (a)-(I)) and cured in an oven (60oC). Then, two rings (PLA

material) with a diameter of 35mm were placed at the two ends respectively, and

an inextensible Nylon thread was attached at the center of the rings to limit

the total length of one segment as 150mm long (Fig. 3.1 (a)-(II)). Three channels

(chambers) with a length of 130mm were created along the body to enable inflation

and they are distributed at 120◦ apart (Fig. 3.1 (a)-(IV)). To constrain the body to

expand radially, Nylon thread was spirally wrapped around the manipulator. Then

the chambers can only be elongated by the pressurized air and the effectiveness

of the actuators is enhanced.

Three sophisticated commercial strain gauges were placed approximately at the

midpoint of one segment, to measure large bending-induced stresses during defor-

mation. Strain gauges were first housed in a 3D-printed Thermoplastic Urethane

(TPU) box, and they were embedded beneath the surface of the manipulator.

These TPU boxes are flexible with negligible effect on the bending, and they can

help to synchronize the bending experienced by the sensors and the manipulator,

and to protect the sensors from breakage (Fig. 3.1 (a)-(III)). The change in the

sensors’ resistance values were converted into voltage signals through a converter.
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Fig. 3.1. Illustration of a soft manipulator. (a) Fabrication process. (b) Configu-
ration of sensors. (unit: mm)

Fig. 3.1 (b) illustrates dimensions of the manipulator and the locations of the sen-

sors. To enable visual verification, pink markers were labelled along the body as

the key control points and the intermediate points were labelled in blue marker.

For higher degree of dexterity, another segment was fabricated using the same

method and was attached at the end of the first segment with 60◦ phase shifted.

The whole pneumatic-driven manipulator was mounted on an aluminium frame,

as shown in Fig. 3.2. The inner tubes were connected to pneumatic pressure

regulators (SMC, ITV0030-BL). To evaluate the true position of the backbone,

an RGB-D camera (Intel Realsense D415) was employed at a rate of 60 fps. The

RGB-D camera was properly calibrated which can detect the Cartesian positions

of different markers as the ground truth. Readings from the bending sensors were

collected via Arduino, and sent to MATLAB 2019b for further processing. Fig.

3.2 (a) shows the commands and signals stream among hardware.
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Fig. 3.2. Overview of the experimental testbed. (a) System operation flowchart
among hardware. (b) Overview of hardware setup. (c) Detail of manipulator. (d)
Electronic resistance to voltage converter. (e) Pneumatic pressure regulators.

3.2.2 Sensor Selection and Performance

A total of six strain gauges (BF350-6AA) were employed to sense the deformation

of the continuum robot for the two segments. As the robot continues to bend,

the sensors can output a signal according to the change in the curvature due

to the bending. The advantages of thin strain gauges over other sensors such

as FBG is that it has a relatively low stiffness, which can cause less influence

to the specimen being measured. In addition, strain gauges can be mounted on

the surface of the manipulator, rather than at a distance from the neutral axis,

which can help to improve the maximize the sensor reading due to the bending

effect. The advantages of thin strain gauges over other sensors such as FBG is that

the readings can better sense the change in the curvature on the surface of the

manipulator due to its large deformation angle, and immunity to environmental

change. A single-segment manipulator was used as an example to investigate the

performance of the bending sensors. We actuated two chambers and increased

the pressure from 0 bar to 0.7 bar at an increment of 0.1 bar. Load-free and

load conditions were compared to investigate sensors’ performance. For the load

scenario, an aluminum block (119g) was attached at the distal end of manipulator.
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Fig. 3.3. Sensor readings from two strain gauges under load-free and load scenarios.
Take a single segment and two sensors to investigate the sensor performance.

Fig. 3.3 shows the comparison of the readings from the two sensors in the two

scenarios. Increasing actuation pressure leads to a higher degree of deformation,

and the sensor readings responded accordingly. The effect of the additional load on

the sensor readings was obvious, which confirms that the sensors output a different

sets of sensor readings. In addition, as shown in Fig. 3.3, both pressure inputs

and sensor readings can provide useful information to evaluate the shape of the

manipulator, but the sensor readings are unique to the load status. Although an

analytical approach could be used to convert the sensor readings into the degree

of deformation of the manipulator, other information parameters, such as the

material properties, geometrical parameters of the manipulator as well as the

sensor locations are all required. Hence, Neural Networks (NNs) will be employed

to build a black box to map between deformation and sensor readings.
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Fig. 3.4. Illustration of continuum robot being disturbed by external forces.
F1, · · · , F4 are lateral forces, which lead to spatial backbone not a simple arch.

3.3 Shape Reconstruction Approach

To reconstruct the shape of continuum robot both in free scenario and in situations

with uncertain payloads, a data-driven approach was considered in this work.

When a continuum robot is experiencing an external payload, as shown in Fig.

3.4, the shape does not necessarily follow the PCC approximation (the projection

in XOY is not a line). An alternative way to reflect the shape is through the

backbone, and the shape reconstruction problem can be converted as finding the

accurate position of the points on the backbone as many as possible. This can

also be divided into two steps: 1) find the control points on the backbone with

reference to the global coordinate system, and then 2) use a curve fitting method

to connect these control points together. To balance between the accuracy and

the computation burden, one continuum robot with length of L is divided into N

subsegments, labelled as lj (See Fig. 3.4). The curvature of a subsegment can be

represented by three key points (P2j−2, P2j−1, P2j). Therefore, the first step is to

find the position of all key points in each segment, which is achieved via NNs in

this work, and the second step is to estimate the backbone using the key points
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Fig. 3.5. (a) Framework of one key point prediction Neural Network. (b) Illustra-
tion of a LSTM cell.

with proper fitting algorithm.

3.3.1 Key Points Prediction

Due to the uncertainty of external loads and imperfection of fabrication, it is

challenging to find the explicit mapping between the position of the key points

with the sensor readings. As the actuator inputs and sensor readings are both

related to the shape of robot, a data-driven approach was employed to evaluate

the position of the key points and factors involved in them. Intuitively, the shape

of the manipulator depends on internal forces and external forces, so actuation

inputs and external payloads (reflected via sensor readings) were both regarded

as the factors. Let An and Sn respectively denote the actuator inputs and the

sensor readings in control instance n, and the position of the ith key point Pi_n is

(xi_n, yi_n, zi_n). Let X(n) = {An, Sn} denote the input and Y (n) = Pi_n is the

data to be estimated. Since the positions of different key points are sequentially

dependent to each other over time, the temporal relationship (w states before

epoch n) between data are included, and the signal data and output data for the
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key point Pi_n are:{
X(n− w : n) = {An−w, Sn−w, · · · , An, Sn}
Y (n) = {xi_n, yi_n, zi_n}

. (3.1)

The data was normalized within [−1, 1] using Z-score method before training. We

set w = 5 in this work. A separate model was used to train and evaluate each

key point, as shown in Fig. 3.5 (a). The network architecture mainly includes

two components: 1) Sequence Feature Extractor (SFE ) and 2) Position Decoder

(PD). First, the SFE extracts all the input data and obtains a feature vector

H(n), which represents the status at current instance and previous information.

Then, PD decodes this feature and estimates the position of the key point.

1) SFE Layer : the SFE Layer was constructed using long short-term memory

Neural Networks (LSTM-NNs), which is powerful in processing sequence data.

A basic illustration of LSTM cell is shown in Fig. 3.5 (b). There are three

gates, namely input gate, forget gate and output gate. They work effectively to

memorize pheromone in sequence and selectively forget unimportant features. It

can be mathematically expressed as:

ft = σ(WfXt + wfht−1 + bf )

it = σ(WiXt + wiht−1 + bi)

C̃t = tanh(WcXt + wcht−1 + bc)

Ot = (WoXt + woht−1 + bo)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = Ot ∗ tanh(Ct)

, (3.2)

where Wf ,Wi,Wc,Wo respectively denote the weight matrices of Xt, and wf , wi,

wc, wo are the weight matrices of ht−1. bf , bi, bc, bo are bias vectors, and σ(·) is

sigmoid function.

2)PD Layer : This component is a fully connected NN (FCN), which has a hidden

layer and an output layer. In the hidden layer, the kth node processes the sequence

feature H(n) by:

fk(H(n)) = σ(ukH(n) + bk), (3.3)
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where σ(·) = 1
1+e−x is activation function, and uk, bk are weight and bias, respec-

tively. In the output layer, there are three nodes to compute the coordinate of

key point P̃i(x̃i_n, ỹi_n, z̃i_n), each of which is obtained using linear activation

function. It is calculated by:

T̃i_n =
w∑

k=1

ujfk + bj, (3.4)

where T̃i_n denotes an item in the output layer, and uj, bj are weight and bias

of the jth node, respectively. During the implementation, to avoid overfitting,

a dropout layer with rate of 0.3 is designed between SFE and PD. The Adam

optimization algorithm was used in training and the initial learning rate was set

to 0.001. Mean square error was used to define the loss function in training, which

is:

L(Pi, P̃i) =
1

3M

M∑
j=1

∥∥∥Pj,i − P̃j,i

∥∥∥, (3.5)

where M is the total number of training data, and ∥·∥ is L2 norm. Since the error

between P̃i and Pi always exists for each application, the maximum deviation

between the true value (obtained from vision system) and the predicted value (via

SFE-PD NNs) can be denoted as

ξ = max
1≤i≤6

∥∥∥P̃i − Pi

∥∥∥ , (3.6)

which is also shown in Fig. 3.6 (a) (blue sphere). This deviation is highly involved

in the accuracy of the estimated backbone.

3.3.2 Backbone Fitting

After finding the value of all the key points, system then should connect them

smoothly to approximate the true backbone with curve fitting algorithm. Fig.

3.6 (a) shows the backbone of the first subsegment, in which the three key points

are O,P1, P2. The origin O is assumed to be fixed. The continuum robot has two

segments with a total of seven key points, leading to three subsegments to be fitted.

For any subsegment lj, it can be represented by a spatial function zj = ψj(x, y). A
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(a) (b)

Fig. 3.6. (a) Illustration of the first subsegment, whose backbone is projected onto
XOY and XOZ planes for fitting separately. (b) Basic illustration of ISF. This
function is smooth and the initial part (marked by yellow rectangle) is tangent
with Y axis, so it is applied to fit Zj(x, y).

two-stage evaluation scheme was considered and the backbone was first projected

onto the XOY plane and the XOZ plane to evaluate the y coordinates and z

coordinates in terms of x. The new spatial curve functions become:

{
y = Yj(x)
z = Zj(x, y)

. (3.7)

1) Fitting in XOY plane: Since the backbone projection on theXOY plane should

exhibit a curvilinear shape, a parabolic equation was considered to approximate

the Yj(x) function. For the key points with x-coordinates (x ∈ [x2j−2, x2j]), the

function can be expressed as: Yj(x) = Ajx
2 + Bjx + Cj, where Aj, Bj, Cj are

parameters to be solved. This function should satisfy two conditions: 1) output

of this function at the three key points must be equal to their respective true y

value, and 2) the slope at the starting end of the segment must be equal to the

slope at the end of the previous segment Yj−1(x) for continuity. With totally four

constraints and three parameters, an optimization algorithm was used to solve for
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the unknown parameters, which is:

minimize
2j∑

i=2j−1

∥Yj(xi)− yi∥

s.t.

{
Y ′

j−1(x2j−2) = Y ′
j(x2j−2)

Yj(x2j−2) = y2j−2
.

(3.8)

2) Fitting in XOZ plane: The three key points were then projected onto the

XOZ plane and Pi(xi, yi, zi) was updated to: P ′
i = (

√
x2i + y2i , 0, zi), as depicted

in Fig. 3.6 (a). Due to the large variation on the z-curve for different backbone

shapes, the inverse of sigmoid function (ISF) was considered to approximate the

z function. The basic illustration of ISF is illustrated in Fig. 3.6 (b). It consists

of two parts: convex part and the concave part, divided by the symcenter. The

convex part is similar to the shape of the backbone. It is tangent with the y axis

and keeps smooth with the increase of x. Therefore, the fitting can be expressed

as: {
t =

√
x2 + y2

Zj(x, y) = Zj(t) = Dj log[
t−Ej

Fj−(t−Ej)
] +Gj

. (3.9)

where x ∈ [x2j−2, x2j], y ∈ [y2j−2, y2j] , and Dj · · ·Gj are parameters to be solved.

Similar to fitting Yj(x), constrained optimization algorithm was applied to solve

the control parameters, which is:

minimize
2j∑

i=2j−1

∥Zj(xi, yi)− zi∥

s.t.


0 < Dj

Ej < min(t)
2max(t− Ej) < Fi

Zj(x2j−2, y2j−2) = z2j−2

Z ′
j−1(x2j−2, y2j−2) = Z ′

j(x2j−2, y2j−2)

.

(3.10)

The five constrains are summarized as follows. 1) to ensure that Zj(x, y) is posi-

tive; 2) to ensure that numerator of (3.9) is positive; 3) to ensure Zj(x, y) is in the

convex part of ISF, which is similar to the backbone; 4) to ensure the continuity

between Zj(x, y) and Zj−1(x, y); and 5) to ensure the continuity of slope. Note that

the last constraint in (3.10) is only feasible for j ≥ 2, and Z ′
1(x0, y0) = tan(89◦)

was set for j = 1.

48



CHAPTER 3. SHAPE RECONSTRUCTION AND CONTROL UNDER
UNCERTAIN EXTERNAL DISTURBANCE 49

Fig. 3.7. Closed-loop control scheme with self-feedback mechanism.

3.4 Control Scheme

The properties of a flexible manipulator under uncertain external payloads make

it difficult to control the robot accurately. Hence, closed-loop control was incor-

porated to deal with this problem. Based on the position estimated from the SR

module, a control scheme was developed as shown in Fig. 3.7. It should be noted

that robot’s tip is the same as a key point predicted by one SFE-PD frame. Let Qd

and Qn respectively denote the desired position and current position of the tip,

and Ad_n is the theoretical actuation inputs computed via controller in control

instance n.

3.4.1 Jacobian-Based Control Scheme

In robotics, the Jacobian matrix can be used to map between the velocity of end

effector and the actuator configuration, which is:

Q′
n = JA′

n, (3.11)

where J is Jacobian matrix, and (·)′ is the first derivative. Theoretically, within

a short time interval, (3.11) can be rewritten as:

Qd −Qn ≈ J(Ad_n − An). (3.12)

Using (3.12), the required Ad_n for a given Qd can be computed as: Ad_n ≈

J−1(Qd − Qn) + An. It should be noted that (3.12) is derived from velocity-

level mapping and transferred into displacement-level relationship, such that only

quasi-static behavior of robot is considered and the effect of inertial is neglected.
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Furthermore, the Jacobian matrix varies at different locations and J is not a

constant matrix. The the term J can be updated to Jn to represent the value,

and Ad_n can be obtained via:

Ad_n = J−1
n (Qd −Qn) + An. (3.13)

The challenge for this solution is to precisely find Jn at different locations, though

external payloads have not been considered and Jn is likely to be not full rank,

making it not unable to find its inverse. To address this issue, a mapping function

gn(·) was designed with the aim of covering the whole task space just with this

model, since Artificial Neural Networks have the powerful ability of generality.

Beside, the effect of external forces should be considered, and gn(·) taking sensor

reading Sn into account can be expressed as:

Ad_n = gn(Qd, Qn, An, Sn), (3.14)

where ∥Qd −Qn∥ = d, such that gn(·) is only feasible in a small task space. A

learning approach was implemented to find the required actuator inputs based on

the known information, and gn(·) can be replaced by a well trained NN framework

to cover whole task space. Notably, in work [128], the mapping relationship is as-

sumed to be locally linear, which was proven to be robust to against disturbances.

Therefore, the local mapping which also factors the loading effect can be updated

to:

Ad_n ← g(Qd, Qn, An, Sn). (3.15)

Since this local mapping is only feasible in a small region, the robot system should

generate a temporal position Qt_n if Qd is located far away from Qn, via:

Qt_n = Qn + d

−−−→
QnQd∣∣∣−−−→QnQd

∣∣∣ , (3.16)

and the end-effector will gradually move to the desired position. The step distance

d can be adaptively updated based on the external payloads and to minimize the

error between Qt_n and Qn. In general, a larger d should be used when external
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payloads exist, while a smaller d can be adopted when the end-effector is close to

the destination. The robot can stop moving if ∥Qd −Qn∥ ≤ E, in which E is the

acceptable error between current position and destination.

3.4.2 Adaptive Step Distance Mechanism (ASDM)

The step distance d can be replaced to dn, which can be adjusted according to the

error between the temporal destination Qt_n−1 planned in instance (n − 1) and

the actual current position Qn in epoch n. The error en is:

en =
∥∥Qt_n−1 −Qn

∥∥ . (3.17)

The error was considered to update the dn adaptively, and the equation is:

dn = dn−1 + sgn(
−−−−−→
Qn−1Qn ·

−−−−−−−−→
Qn−1Qt_n−1) ·K · en, (3.18)

where sgn(·) is sign function and K is a gain constant regulating the influence

from position error en. To avoid the instability of the local controller, we limit

2mm ≤ dn ≤ 15mm.

3.4.3 Architecture of Locally Learned Controller

A Multiple Layer Perceptron (MLP) was used to build the mapping g(·). The

input layer has 18 nodes (A1×6
n

, Q1×3
n , Q1×3

t_n, S
1×6
n ) and the output layer has 6 nodes

for A1×6
d_n

. Two hidden layers are attached after the input layer with size of 7 and

5 respectively. The activation function of hidden layer is also sigmoid. Rectified

Linear Unit (ReLU) is selected as the activation function of the output layer

because the output pressure of pneumatic regulators is always non-negative, and

ReLU is:

ReLU(x) =max(0, x). (3.19)

Thus, the loss function of this framework is derived as:

L(A, Ã) =
1

6M

∑
M

6∑
i=1

∥∥∥A(i)− Ã(i)∥∥∥, (3.20)
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where M is the number of training data and i is the index of pneumatic regulators.

The operation process of the robot system, fusing SR module and controller, is

outlined in Algorithm 1.

Algorithm 1: Operation process of the robot system.
Input: Qd, K, E, n = 1, d1
Sample sensor readings: S1

Calculate: Q1=SFE-PD(6)
while ∥Qd −Qn∥ > E do

Set temporary destination Qt_n using (3.16)
Compute: Ad_n ← g(Qt_n, Qn, An, Sn)
Actuate pneumatic regulators using Ad_n

Sample sensor readings: Sn+1

for i = 1 to 6 do
predict key points: P̃i ← SFE-PD(i)

end
Fit the backbone and visualize it
Calculate: en =

∥∥∥Qt_n − P̃6

∥∥∥
Update dn+1 using (3.18)
n← n+ 1
Compute current position of end effector: Qn = P̃6

end

3.5 Simulation

Before testing the proposed algorithm, simulation was conducted. To examine the

performance of the proposed Shape Reconstruction method, it was first compared

with the shape generated by finite element method (FEM). The control scheme

was also compared with the performance based on piecewise constant curvature

model.

3.5.1 SR Simulation Using FEM

The error function used to evaluate the position deviation on the shape between

the fitted backbone and the backbone from FEM can be defined as:

Err =
1

60

60∑
k=1

∥∥Ptrue_k − Pfitted_k

∥∥, (3.21)
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Table 3.1: Material Properties of the Manipulator.

Part Elasticity Modulus Poisson’s Ratio Density(g/cm3)

Soft Manipulator 15 Psi 0.48 1.07
Ring and Fixator 3 GPa 0.35 1.29

Table 3.2: Mean Error of Each Fitted Backbone with Different Error of Key Points
(unit:mm).

Actuated Chambers ξ = 0 ξ = 2 ξ = 3 ξ = 4

1,4 2.83 3.08 3.29 3.46
1,5 3.16 3.88 3.97 3.61
2,4 2.91 3.31 3.58 3.68
2,5 3.18 3.23 3.35 3.59
3,5 2.55 2.69 2.92 3.34
3,6 2.69 2.73 3.17 3.41

1,2,4,5(Tors.) 2.42 2.76 3.21 3.53
2,3,4,6(Tors.) 2.53 2.87 3.32 3.59

where 60 points on the backbone were used to compare the shape and their values

can be obtained from the FEM simulation, denoted as the true (theoretical) back-

bone Ptrue_k, and through the fitting algorithm, denoted as Pfitted_k accordingly.

The material properties used in the simulation are listed in Table 3.1. Other pa-

rameters and settings are learned from literature [129]. Ogden material model

was selected to model the stress-strain behavior of the soft body, and the body

was meshed using tetrahedral elements, as depicted in Fig. 3.8 (a). A total of

20254 linear elements and 38212 nodes were generated. The centreline along the

backbone was extracted to evaluate the positions of the true backbone (including

60 points), as well as the seven key points (gapped with 50mm) used in the fitting

algorithms. Six chambers were used to actuate the two segments, where number

1-3 were supplied to the proximal chambers, and number 4-6 were supplied to the

distal chambers. Four forces (1N) that were evenly distributed along the 300mm

long backbone (60mm apart), and they were 90◦ shift to spirally act on the manip-

ulator, mimicking the external payloads (Fig. 3.8 (a)). Eight different actuation

configurations covering the entire task space were examined, where each actuated

chamber is pressurized with 1 bar at a time. To mimic error in estimating the
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Fig. 3.8. Illustration of FEA results. (a) Meshed plot of continuum robot, with
four external forces. (b) Deformation of the robot under six scenarios. (c)-(d)
Comparison of fitted backbone and true backbone.

six key points through NNs, a random error ξ, in a range between 0 to 4mm, was

deliberately added to the six key points (except the origin), and new key points

used in the fitting algorithm become P̃i = Pi + U(−ξ, ξ), where U(·) is Uniform

Distribution. The results of the bending status are shown in Fig. 3.8 (c)-(d). The

acting position of F1 is changed to the edge of the manipulator, such that torsion

and deformation occur simultaneously. It can be observed that the shape from

the fitting algorithm is matched with the FEM simulation. The fitting error under

different actuation configurations are listed in Table 3.2. It can be seen that when

the error of the key points increases (i.e. a larger ξ), the fitting curve starts to

deviate from the FEM simulation results and a larger Err was observed, as sum-

marized in Table 3.2. Based on the results, the maximum error of the estimated

key points should be limited within 3mm, otherwise the estimated shape from the

proposed algorithm will not be accurate enough.
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Fig. 3.9. Simulation results for the control scheme. (a)-(b) the path following
tests on a star-shaped path, where noise is variable. (c)-(d) tests on a spiral path,
where noise is constant and different step distance is used.

3.5.2 Path Following Simulation

To test the proposed control scheme in a simulation manner, a computer model

for a two-segment continuum robot based on PCC assumption was set up for col-

lecting training data and validating the performance of the trained model. Dur-

ing data collection, the length of each chamber was commanded to vary within

[140mm, 160mm]. It should be noted that all the six chambers can only elongate

by 2mm or −2mm randomly in an exploration, to ensure that adjacent position

data are located nearly. As a result, 4000 sets of training data were obtained in

load-free manner. Since sensor readings are not available in the simulation, the

input layer of MLP was reduced to 12 nodes (An ∈ R6×1, and Qn, Qdn ∈ R3×1).

Other settings about training controller is the same as that defined in section-

3.4. Two experiments related to testing the disturbance handle ability and the

performance of ASDM were conducted, where E is 2mm and K is 0.12 (through

empirical setting). First, a star-shaped path following task was prepared, includ-

ing continuous discrete points on the path, and end effector was commanded to

arrive them one by one. The step distance dn was set as 5mm, and different dis-
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turbance was considered for comparison. The effect from external payload was

simplified as error leading to the position offset on the end-effector, which means

Qn ← Qn +N(0, δ) (N(0, δ) is Gaussian white noise with mean of zero and vari-

ance of δ). The results are shown in Fig. 3.9 (a)-(b). When δ = 0, the true path

was almost consistent with the desired path, and when a larger δ was considered,

the actual path gradually deviated the desired path, but the end effector could

still reached the destinations and complete the path.

Second, the feasibility of the proposed ASDM was examined, where the noise

δ was set to 5, and the step distance dn was updated adaptively. In this test, a

spiral path was prepared. We initially set dn = 4mm to follow the desired path.

As shown in Fig. 3.9 (c), the end effector fluctuated near Qdn , and it took 182

steps to finally arrive the destination. Several phenomenon can be observed from

the simulation. First, when a smaller step distance (dn = 3mm) was selected,

the effect from the external payload on the end-effector becomes more obvious,

leading to a larger error. When the step distance increases to 5mm, and it only

took 125 steps and the actual path is closer to the desired path, as shown in

Fig. 3.9 (d). When the ASDM was adopted, the robot only needed 116 steps to

complete the path. The fluctuation on the end-effector was very minimal, showing

the robustness of the proposed adaptive controller to handle external disturbances.

3.6 Experimental Results

While the results from simulation confirm the feasibility of the proposed method-

ology, the algorithms were implemented onto the robot system to examine exper-

imentally. Since both the SR module and control scheme are built using data-

driven approach, training data was sampled first, and the actual performance of

the two modules are respectively evaluated. In testing, the RGB-D camera only

collected the true position of backbone and key points for comparison, providing

no information for the robot system.
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3.6.1 Model Preparation

The robot was commanded to randomly explore within the task space by supplying

different pressures to the six chambers. The maximum pressure was limited to 0.8

bar to avoid over-pressure. At each instance, any two of the six chambers were

randomly adjusted to increase or decrease the pressure by 0.05 bar so as to ensure

a small, incremental change in the shape between the previous and the new state.

After 1 second, the position of the backbone was obtained through the RGB-D

camera, which was assumed as the ground truth, and the sensor readings were

simultaneously recorded too. 6000 groups of data were collected, including the

position of the backbone, the position of key points, sensor readings and actuation

configurations. 4000 groups of them were collected from the free state (no load),

and the remaining 2000 were from the load state. A weight with 75 grams was

attached to the tip of robot, resulting a 0.75N downward pulling force at the

end-effector. After data collection, each data was normalized within [−1, 1], and

the output of each NN was converted back to its original scale after inference to

equalize the range of each variable. In training, each NN was commanded to be

trained at most 1000 iterations or RMSE is smaller than 0.001, where the former

5500 sets were used for training and the rest was set for validation. As a result,

the RMSE of SFE-PD and MLP were respectively 0.00093 and 0.00089, indicating

the models were well trained.

3.6.2 Characterization of SR Module

Fig. 3.10 (a) shows the true bending state and the fitted backbone of this robot,

where the six pneumatic pressure regulators were set to: 0, 0.5, 0.6, 0.8, 0.7,

0 (unit: bar). The coordinates of the corresponding key points that were sam-

pled by RGB-D camera and predicted through SFE-PD, are listed in Table 3.3,

which confirms that the error from each key point is smaller than 3mm, namely

ξ =
∥∥∥P̃i − Pi

∥∥∥ < 3mm. The fitted backbone was almost consistent with the true

backbone (obtained by RGB-D camera). The fitting task needs only 0.28s in
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Table 3.3: Comparison on key points between the truth and the predicted value
(unit: mm).

Key Point True Position Predicted Position Error

P0 (0,0,0) Needn’t Prediction
P1 (-0.1,0.5,49.6) (-0.1,0.4,48.3) 1.31
P2 (4.2,4.9,90.1) (3.9,4.35,91.2) 1.3
P3 (3.8,9.6,133.2) (4.1,10.3,135.2) 2.14
P4 (-22.6,19.9,172.9) (-21.7,21.1,172.1) 1.7
P5 (-35.9,35.2,210.8) (-36.2,34.1,211.7) 1.45
P6 (-58.7,64.7,248.5) (-59.2,65.3,250.2) 1.51

MATLAB 2019b Optimization Toolbox, which can almost ensure the SR module

working in real time. The mean error calculated by (3.21) was 5.85mm. Another

11 actuation inputs were set to get more shape states covering the whole task

space for comprehensive testing. Fig. 3.10 (b) shows the fitted results and the

true backbone, where the fitting errors were consistent with the previous testing.

This further confirms the accuracy and feasibility of the proposed shape recon-

struction method. The fitting results in load scenarios are also our focus, so we

also compared the error in load and load-free conditions, where actuation inputs

in one comparison were same but loads differed each other. For the load exper-

iments, weight with 50g, 75g, 119g, and 150g were hung at the tip, where same

actuation inputs were applied in an independent scenario to compare the position

errors. Fig. 3.10 (c) shows the snapshots and the fitted backbone for four different

actuation inputs, where the weight is 119g. The mean position error between the

fitted backbone and the true shape(set four different actuation inputs and each of

them consists of four external payloads), were computed and summarized in Ta-

ble 3.4. From the results, the errors from the load scenarios were generally higher

than that in load-free scenarios, indicating the external load can lead to larger

errors in the prediction. However, the increase in the error was small, showing

the proposed method is able to predict the key points for both load and load-free

scenarios.
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Fig. 3.10. (a) Illustration backbone fitting with one actuation configuration. (b)
Shape reconstruction in the entire work space. (c) Fitted backbone in load and
load-free conditions using the same actuation configurations.
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Table 3.4: Fitting results between load free and load conditions (maximum er-
ror/mean error, unit:mm).

weight 1 2 3 4

free load 6.87/5.63 6.67/5.78 6.92/6.01 6.58/5.57
50g 6.78/5.64 6.71/5.81 6.94/5.97 6.73/5.62
75g 7.06/6.13 6.94/6.03 7.11/6.21 6.93/6.34
119g 7.12/6.24 7.26/6.31 7.34/6.41 7.05/6.28
150g 7.32/6.56 7.38/6.49 8.03/6.94 7.87/6.45

Fig. 3.11. Results of point-to-point movement task. (a)-(d) load-free scenario.
(e)-(h) robot is moving with uncertain external payload. (i)-(j) snapshots of load-
free state and uncertain disturbance state.
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3.6.3 Point-to-Point Movement Task

The SR module can effectively provide accurate information on the position of the

robot system, particularly the end-effector. In this experiment, the end effector

was set to move from point (40,20,300) to point (-50,70,210) (unit: mm). E is set

to 4mm, and K is also set to 0.12 empirically.

1) Performance of Addressing Different Disturbances

To investigate the performance of ASDM and the performance of the controller,

four conditions were considered to achieve this point-to-point movement task,

namely: I) dn = 8, II) dn = 2, III) ASDM (d1 = 8), IV) ASDM with different

loads (statically hanging a tip load with 50g, 75g and 100g). Fig. 3.11 (a) and

(b) shows the true path of I)- II) and III)-IV), respectively. Fig. 3.11 (c) shows

the actual distance to destination for the four scenarios. When dn = 8, the end-

effector can reach to the desired point after 24 steps but it starts to fluctuate

when approaching the destination (in the last 4 steps). In contrast, when dn = 2,

the end-effector can steadily reach the desired point but it took 75 steps. When

ASDM was applied, the end-effector moved directly to the destination in 14 steps,

and Fig. 3.11 (d) illustrates the corresponding change of actuation configuration

of III). Fig. 3.11 (i) shows the snapshots of the III) scenario. Therefore, the results

from the former three conditions prove the feasibility of ASDM. In condition IV),

when tip load was not beyond 50g, robot followed the desired path well, and when

the load increased, the true path deviated the desired more at initial steps, but

it gradually moved towards destination, which demonstrates the controller can

address external payloads.

2) Performance of Addressing Changeable Payloads

An additional experiment was conducted to test hybrid payloads. Initially,

a swaying aluminium block (119g), was attached to the end-effector and caused

position deviation from the desired path, but the error was generally reduced. At

the 7th step, the aluminium block was replaced by a manual disturbance acting at

the mid-point of the manipulator, which pulled the end effector to a new position
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Fig. 3.12. Results of path following task, including true path corresponding
step distance, and distance to temporal destination. (a) Load-free state. (b)
Disturbance-added state.

(19.8, 10.2, 303.6). At this moment, robot system sensed the disturbance then

increased the step distance to 15mm (Fig. 3.11 (g) and (h). From step 7 to step

12), the robot tried to reject the external disturbance by adjusting the actuation

configuration. At step 12, the manual disturbance was removed, and the robot

gradually corrected the error and followed the planned path to reach the desired

position. Fig. 3.11 (e) shows the true path from top view. The actuator inputs

are comparable to the load-free scenario once the load was removed at step 12

(Fig. 3.11 (d) and (h)). This shows that our controller can also work when faced

with changeable external payloads.

3.6.4 Path Following Task

Path following tasks were also examined with the proposed controller, and the

path is composed of continuous path points. A circular path with a diameter of
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100mm, was first examined. The initial step distance was set to 8mm, as shown

in Fig. 3.12 (a). Experimental results confirm that the end-effector can follow

closely to the desired path, and the step distance changes adaptively. Second,

external disturbance was added during the operation along the same path, and

the results are shown in Fig. 3.12 (b). At the 29th step, an aluminium block (with

263g) was added at the end-effector, making its position deviate sharply from the

desired path, but robot system gradually adjusted the step gap distance to follow

the target points. At the 60th step, the aluminium block was removed, leading to

a large position error again (See Fig. 3.12 (b)). The robot can still handle it and

return to the desired path after 4 steps. Therefore, the proposed adaptive step

distance mechanism plays a critical role in overcoming the influence from external

payloads.

3.6.5 Experimental Results and Discussion

Time efficiency is a critical concern in motion. The time costs are about 0.013527s

and 0.007275s respectively for one SFE-PD and the MLP-based controller (Intel i7

processor with NAVIDIA GeForce MX250), such that the time cost of all the NNs

computation is 0.0884s. It averagely needs 0.28s to fit robot’s backbone. The total

time cost is 0.37s for one epoch. Furthermore, the shape estimation and control

methods can be extended to robots with different dimensions and configurations.

since the training data is unique to a particular robot configuration, new training

datasets should be collected accordingly. Different scenarios, including free-load,

point-load and distributed load, can all be included in collecting the data for

training.

The maximum shape sensing error in our work is around 8mm with OD 35mm

and length 310mm. The error is highly involved in the length and OD. In compar-

ison, most existing works obtained the key points directly using multiple sensors,

such as RMSE=13mm using vision system (Length: 287mm, OD: 24mm) in [130].

In [131], the error is 2.27mm using FBG with length around 40mm. The error of
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the key points is additionally considered in this work. As for the controller, it can

adapt to different uncertain loads: point load, distributed load and mixing load.

The control error is less than 4mm for this longer-and-bigger-diameter manipula-

tor, which is comparable with other slender ones (2mm in [132], 2.89% of length

160mm [133], and 2.23% of length 880mm [34]), so we believe this control is of

high precision.

3.7 Chapter Summary

This chapter presents two important modules that are relevant towards precise

control of a continuum robot subject to external payloads, namely the real-time

shape reconstruction and the local inverse kinematics model. Based on the actua-

tor inputs, SFE-PD NNs were first employed to estimate the different key points

along the backbone and the shape was estimated through a fitting algorithm.

Then, strain gauge signals were incorporated to into SFE-PD NNs model so as

to compute the required actuator inputs to bring the end-effector to the desired

position. An adaptive step distance scheme was used in the controller so that

it can minimize the effect from external payloads. Simulation and experimental

results both confirm that the SR module can effectively estimate the shape of the

robot, while the local IK module can guide the end-effector to different positions,

in both load and load-free scenarios.

The proposed shape reconstruction approach considered that the actual shape

may not be a desired two-dimensional arch, especially when it is experiencing lat-

eral external forces. While for long-scale continuum robots, the shape tends to be

like a 3D curve. Additionally, the SR module was not only used for visualization,

but also for practical control. It provides feedback for controller inputs.
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Chapter 4

Uncertain External Force
Estimation with Proprioceptive
Mechanism

4.1 Motivation

Although the rapid technical innovation has promoted the development of contin-

uum robotics in new material, robust control schemes and others, continuum robot

also comes with challenges. Specifically, it is difficult to pinpoint the location and

estimate the magnitude of an external force (EF) acting on a continuum robot in

a constrained environment. The lack of information about the uncertain external

force (UEF) can cause different degrees of changes on the shape of a soft manipu-

lator, posing difficulty to design a proper control scheme for the robot. The UEFs

are likely to present at any position of the robot body. The shape configuration

is comprehensively determined by actuators and the forces. It requires delicate

design of controller to minimize the influence of UEF and to maintain its previous

shape configuration. Conventionally, controllers were built with complex algo-

rithms to achieve this task, which generally causes burdensome computation. To

this end, controllers should adjust actuators in a relatively blind manner. There-

fore, it would be easier in designing controller and the control precision would be

higher for the same computation complexity degree if the information of UEF is

known by system. The information includes the acting positions and the magni-

tude.
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Finding the location of the force can help users (e.g. surgeons) to better in-

teract with the ambient environment, and adjust the actuation inputs accordingly

to compensate the load effect. Thereby, sensors are indispensable. Externally

located camera [134] is a good option to directly monitor the robot as well as

the surrounding obstacles, but occlusion could be a problem in some scenarios.

Therefore, research towards proprioceptive sensing has been developed. Exam-

ples of existing works include employing Fiber Bragg Grating (FBG) [135], Elec-

tromagnetic (EM) [84], Hall effect [48], stretchable optical waveguides [136], and

color-related sensors [75] to achieve shape sensing and force sensing for soft robots,

where the signal outputs correspond to the change in the robot shape. Similarly,

there are some limitations in these sensing mechanisms. For example, FBG is not

cost-friendly and has limited bending flexibility. EM and Hall-effect sensors are

sensitive to the surrounding magnetic field presented in the environment. Optical

waveguides and color sensors need complicated fabrication procedures for sensor

integration and are not feasible for small-sized robots. Recently, intrinsic prop-

erties of the robot have also been used for self-sensing. The shape of a dielectric

actuated elastomer [61] is related to its capacitance values, and measuring the

voltage and the current value can help to derive external force from the change

in the shape accordingly. The signals provided to the pneumatic chamber is an-

other useful information, acoustic or pressure signal can be collected to estimate

the robot shape [29, 137]. While the overall shape is known, the effect from the

external force is hard to be evaluated separately from the actuation inputs. In

recent decades, the development of flexible electronics paves a way of compact

and soft internal sensors for soft robots. Flexible and conductive materials, like

eGaIn (eutectic gallium indium, a liquid alloy) [138,139] and ionic solution [140],

can be integrated into soft non-conductive silicone to form compliant skin sensors,

which are employed to sense the stress in MIS [141], strain [142], and shape [41]

for robots.

In addition to sensors, establishing a proper model of the continuum robot is
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also essential for control and force estimation. Piecewise constant curvature ap-

proximation [143] regards the shape of a single continuum robot as an arch, which

is determined by the length of each actuation chamber, but the direction angle

and the bending angle of the PCC model are jointly affected by actuators and the

external forces. The other stream of modelling is to assume a flexible manipulator

as an Euler-Bernoulli beam [144] or a Kirchhoff elastic rod [145]. Therefore, the

kinematics can be obtained by solving the displacement of robot’s backbone with

all the acting forces, but an UEF can act at any position and any direction. In

the velocity domain, Jacobian matrix maps between the velocities of actuators

and the end effector [146], so that in a short interval, the position change of the

tip can be solved using the change of actuation configuration. Analytical mod-

els are problematic in an unstructured environment due to the uncertainty of the

UEF. Thus, models considering the environmental information are likely to achieve

higher precision so that machine learning [147] and fuzzy control models [91] were

investigated. Building machine learning models is time-consuming and the envi-

ronmental information in model training is often static, which is not consistent

with dynamic UEF, and fuzzy control methods aim to bring the robot tip to

a desired position which may not be attainable in some applications. Thereby,

accurately estimating the UEF faced by soft robots not only benefits handlers

but also contributes to building better control schemes. For instance, in [61], a

feedback control scheme was proposed based on the estimated force. The shape

of an elastomer was modelled by the actuation force and the external force, so

that the system can intelligently avoid obstacles and adjust the controller out-

puts. In [148], contact detection was realized along a pneumatic-driven flexible

manipulator. Similar to kinematics, estimating the UEF can be an inverse process

when the manipulator is assumed as a Cosserat Rod [149], where the actuation

configuration and the robot shape were both known. Nevertheless, existing works

only considered the force applied at the tip, or sense the deformation type of the

robot caused by an EF [150]. The essential difficulty of estimating the UEF has
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twofold: 1) UEF can fall into any position along the manipulator, and 2) the

direction of the UEF at an action point has three components (x, y, z), thus, its

magnitude varies irregularly. To find the location of the force acting arbitrarily

on the body, Qiao et al. [151] and Venkiteswaran et al. [152] combined FBG sig-

nals with Cosserat model and Pseudo Rigid Body model, respectively, to solve the

position information. However, these approaches are computationally intensive.

Alternatively, an array of force sensors can be wrapped along the surface of the

continuum robot. This method, however, requires many sensors in order to cover

the entire surface. The prevalence of Deep Learning provides a novel method [79];

for example, in [73, 153], a Deep-Table frame and RNN model were respectively

applied to estimate loads on a robot arm and to estimate hard inclusions of soft

tissue. Most of existing works just focused on some specific small areas of the

elastomer in estimating the UEF, or only the posture of the soft robot [154], and

the motion of the robot is only two-dimension [155].

In contrast, this chapter aims to find the external force acting on the cir-

cumferential body of a soft manipulator, including the acting position and the

magnitude. That is a relatively larger area and the information of the estimated

EF is more complete. The contribution includes:

1) A liquid metal made soft sensor was integrated into a soft manipulator and the

signal was extracted to act as bending sensor.

2) The surface of the robot was considered as a 2D map with multiple grids, and

a probability approach was used to find the likelihood of the column position.

3) The row position of the 2D map and the corresponding magnitude were esti-

mated by virtual work principle and regularization algorithm.

4.2 System Setup and Configuration

In order to validate our methodology experimentally, a continuum robot system

with one segment was first built. It includes the fabrication of a soft manipulator

and the method to embed an internal sensor. The manipulator was also driven by
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pressurized air.

Silicone molding technology was employed to fabricate the soft manipulator,

and the fabrication procedures are illustrated in Fig. 4.1 (a). Silicone rubber

(E605, Hong Yejie, Shenzhen, China) was poured into a 3D-printed mold (Fig. 4.1

(a)-(I)) to form the inner component of the manipulator, which was then wrapped

by a Nylon thread to limit the radial expansion once the chambers are pressurized.

Two helical grooves were designed in the mold, preventing the wrapped threads

from slipping during the operation (Fig. 4.1 (a)-(II)). Next, the inner component

was secured by two disks at the two ends, and three insulated thin silicone tubes

(OD:1mm, ID:0.5mm), which serve as the channels for eGaIn, were connected

to the two disks (Fig. 4.1 (a)-(III)). Then, the entire component was placed into

another mold to form the outer layer (Fig. 4.1 (a)-(IV)). After demolding, an outer

layer surface consisting of twenty concave faces (4 columns and 5 rows) along the

manipulator were obtained. Then, eGaIn was injected into the three thin tubes

(Fig. 4.1 (a)-(V)), where the elongation of the tube will simultaneously decrease

its cross-sectional area, such that the electronic-resistance change of eGaIn sensors

(R = ρ l
S
) can reflect the deformation of the manipulator. The three sensors are

connected in series and a constant current power source of 1A is then supplied,

as Fig. 4.1 (c) shows. The voltage difference across each sensor is measured via

an oscilloscope (Tektronik TBS 1064), which converts the resistance change into

voltage signal. Finally, three supporting steel bars (marked in blue in Fig. 4.1 (a))

that are located 120◦ apart were removed, providing the space as the chambers

for actuation. Two rings were then glued at the two ends, allowing a marker to

be placed at the top for tip position evaluation and mounting at the bottom (Fig.

4.1 (a)-(V)). The region that an UEF is likely to present along the circumferential

body can be indexed by the column and the row numbers radially. A schematic

view of the circumferential surface is shown in Fig. 4.1 (d)-(right), and the problem

lies in accurately finding the two positions to pinpoint the external force and then

to estimate its magnitude, with an assumption that the UEF is always pointing
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Fig. 4.1. (a) Fabrication of the manipulator. (b) System setup. (c) Circuit
of electronic resistance measurement. (d) Schematic view of the circumferential
view of the soft manipulator.
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towards the backbone of the manipulator.

To actuate this soft manipulator, the three chambers were connected to three

pneumatic pressure regulators (ITV-0030, SMC), and the pressurized air can be

controlled at an accuracy of 0.01 bar. The manipulator was mounted vertically in

an aluminium frame, and a calibrated RGB-D camera (Realsense D415, Intel) was

set up at the top of the frame to sample the true position at the tip, as illustrated

in Fig. 4.1 (b). A single-axis force sensor (ZNLBS-VII, Zhongnuochuanli, Bengbu,

Anhui, China, range: [−5, 5]N) was placed next to the manipulator, providing the

true external force magnitude for validation. A control interface was developed

using MATLAB 2019b.

4.3 UEF Estimation

The tip position is the combined result from the actuation inputs and the external

force, as shown in Fig. 4.3 (a), where the shape of the manipulator at step k can

be deemed as an arch defined by three parameters: the direction angle ψk, the

bending angle θk and the bending radius Rk. All of them can be solved via

ψk = atan2(yk, xx), θk = 2acos( zk√
x2
k+y2k+z2k

), Rk = l/θk , (4.1)

if the tip position Pk(xk, yk, zk) is obtained. Since the three eGaIn sensors are

mounted adjacent to the three chambers respectively, the sensor readings directly

correlate with the chamber length, so that the real-time tip position both in load-

free and load conditions can be computed based on the sensor readings Sk. Namely,

the true tip position Pk can be mapped between Sk.

In load-free condition, the tip position can be regarded as solely depending on

actuation inputs Ak, which means that the tip position Pk|free can be solved just

using Ak. In contrast, as Fig. 4.3 (b) shows, an external force Fe,k causes the

true tip position Pk to deviate from the theoretical load-free value Pk|free. When

the external load is present, the position deviation ∆Pk = Pk − Pk|free in the tip

position is large due to Fe,k. Therefore, by knowing the current actuation inputs

Ak, the deviation can imply whether or not Fe,k is present.
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Fig. 4.2. Overall frame of the UEF estimation process.

Fig. 4.3. Illustration of deformed flexible arm. (a) Coordinate frames. (b) Tip
position in XfOZf only due to an external force.

The evaluation method consists of three parts. First, the models to find Pk|free

and Pk are constructed using Neural Network. Then, the column position of an

UEF is estimated with HMM. Finally, the row position and the magnitude are

calculated using the principle of virtual work. The overall framework is illustrated

in Fig. 4.2.

4.3.1 Tip Position Prediction

Sensor readings are highly and directly related to the shape and the tip position,

such that a mapping g(·) between Pk and Sk: Pk(xk, yk, zk) = g(Sk) can be built

to form a proprioceptive sensing mechanism, both in load and load-free condi-
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tions. Fabrication imperfection and uncertainty of the EF increase the difficulty

to find an analytical mapping, so using data-driven method to build Neural Net-

work model provides a feasible alternative. Similarly, Pk|free is also solved by

considering the actuation inputs, which is Pk|free = f(Ak). Since the input data

and the position data do not vary significantly over time, an embedded dimension

d was considered to estimate the position using last d records of data, and the two

mappings are updated as:{
Pk|free = f(Ak−d:k)

Pk(xk, yk, zk) = g(Sk−d:k)
. (4.2)

Two Multilayer Perceptron (MLP) Neural Networks were respectively constructed

to find f(·) and g(·). We set the embedded dimension d = 5. The output layer and

input layer of the two models has 3 and 15 nodes, respectively, and the activation

functions in hidden layer and output layer are ’Sigmoid’ (y = 1
1+e−x ) and ’ReLu’

(y = max(0, x)), respectively. A threshold ϑ is set to account for model error.

Through comparing between ∆Pk and ϑ, UEF is detected as:{
UEF ∥∆Pk∥ ≥ ϑ

Load Free else
. (4.3)

4.3.2 Column Position Estimation towards UEF via HMM

After identifying the presence of an UEF, its position can be estimated based on

the tip position deviation ∆Pk. As Fig. 4.3 (b) and Fig. 4.1 (d) illustrate, there are

20 regions where an UEF is likely to present, one of which is denoted by (m,n)

(m ∈ [1, 5], n ∈ [1, 4] are row position and column position, respectively). We

firstly solve nk because it is involved in the deviation direction of the tip position,

and the row position mk as well as the magnitude affects deviation degree (i.e.

bending angle). In the robot system, only Ak,∆Pk, and Sk are known, which

refers to observation data, and the column position nk is hidden. Because of the

uncertainty of the EF and slow motion of the robot, the state is only mapped

with the current observation data. This satisfies the property of HMM that the

observation outcome in current step does not affect the outcome in the previous
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step, providing us a technique to estimate the hidden state nk. The observation

sequence O = (o1, · · · , ok) and a well learned HMM λ are employed to find the

column position:

n̂k = argmax
1≤i≤5

Pr(nk = i|λ,O), (4.4)

where n̂k = 5 means no UEF, and the observation data ok depends on the actuation

inputs and the position deviation: o1×6
k = {A1×3

k ,∆P 1×3
k }. To reduce the unit

discrepancy, the actuation inputs were normalized with [0, 1] and further expressed

as:

ok(l)
1≤l≤3

=


−1 Ak(l) ∈ [0.0, 0.33)
0 Ak(l) ∈ [0.34, 0.66)
1 Ak(l) ∈ [0.67, 1]

ok(l)
4≤l≤6

=

{
0 ∥∆Pk(l − 3)∥ ≤ ξ
sgn(∆Pk(l − 3)) else

, (4.5)

where ξ = 3 mm is a threshold considering the measurement error. The hidden

state of our HMM is the column position nk and the state transition probability

between two continuous steps i and j is: aij = Pr(nk+1 = j|nk = i). In addition,

the emission probability is defined as: bj(ok) = Pr(ok|nk = j). As a result, there

are possibly in total N = 36 different observation data, which is difficult to mani-

fest their corresponding emission probability. This issue was previously tackled by

multivariate Gaussion distribution [156], requiring a large amount of data to find

the mean value and variance. Therefore, K-means algorithm is employed to reduce

the dimension of the observation data, and the observation data is classified into

one hundred categories (input one observation data with 6 dimensions to get one

dimension). The observation data ok is updated to vk: vk1×1 ← Kmeans(ok
1×6),

and the observation sequence O is: {v1, · · · , vk}.

Initially, the state transition probability is assumed as an uniform distribution,

so that the initial probability for each hidden state is πi = 1
5
. Now, this HMM is

defined as: λ = {π, aij, bj(vk)}. With Bayesian’s rule, (4.4) is updated to:

n̂k = argmax
1≤i≤5

Pr(nk = i, O|λ)
Pr(O|λ)

. (4.6)

In order to calculate Pr(O|λ), forward and backward probability are defined as:

αk(i) = Pr(v1, · · · vk, nk = i|λ)
βk(i) = Pr(vk, · · · , vT | , nk = i, λ)

. (4.7)
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so Pr(O|λ) can be further calculated by:

Pr(O|λ) =
5∑

i=1

5∑
j=1

αk(i)aijbj(vt+1)βt+1(j). (4.8)

Let γk(i) denotes the probability of hidden state i with knowing λ and O at step

k, and ξk(i, j) represents the probability of hidden state j at step (k + 1) if the

hidden state is i at step k, both of which are then denoted as:

γk(i) = Pr(nk = i|O, λ) = αk(i)βk(j)
5∑

j=1
αk(i)βk(j)

ξk(i, j) = Pr(nk = i, nk+1 = j|O, λ)
=

αk(i)aijbj(ok+1)βk+1(j)
5∑

i=1

5∑
j=1

αk(i)aijbj(ot+1)βt+1(j)

. (4.9)

To obtain a well-learned HMM model, T sets of data including the observation

data and the column position are collected, and the Baum-Welch algorithm is

employed. Finally, the parameters of λ are learned via:

an+1
ij =

T−1∑
k=1

ξk(i, j)

T−1∑
k=1

γk(i, j)

, bj(k)
n+1 =

T∑
k=1,ok=vk

γk(j)

T∑
k=1

γk(j)

. (4.10)

The initial probability is πn+1
i = γ1(j). After iterations, we can get:

λ(n+1) = {π(n+1), a
(n+1)
ij , b

(n+1)
j (nk)}, (4.11)

so the estimated column position at step k is:

n̂k = argmax
1≤i≤5

[γk(i)]. (4.12)

4.3.3 Row Position and Magnitude Estimation

After estimating the column position of a single EF (n̂k ̸= 5), the algorithm still

needs to find the row position mk, which is related to the moment that the robot

is experiencing. The robot can reach a static equilibrium with a tip position after

all the acting forces are in balance, and the equilibrium can be established by

virtual work principle as:

δW = δWg + δWel + δWac + δWe = 0, (4.13)
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where δWg, δWel, δWac and δWe respectively denote the virtual work of gravity,

elastic force from the robot itself, the actuators, and the external force. The

centroid Ck locates at the center of the robot backbone, as calculated by:

Ck =
l

θk

[
(1− cos θk

2
) cosψk, (1− cos θk

2
) sinψk, sin

θk
2

]T
, (4.14)

so δWg = G · δCk(3). The length of each chamber is solved using

lk,1 = l(1− (θk/l)r cos(ψk))
lk,2 = l(1− (θk/l)r cos(ψk +

2
3
π))

lk,3 = l(1− (θk/l)r cos(ψk +
4
3
π))

, (4.15)

and the elongation of each chamber is: ∆lk,i = lk,i − l. Therefore, δWel can be

calculated by: δWel =
∑3

i=1
1
3
EI∆l2k,i, where E is the Young’s Modulus and I is the

inertial moment. Similarly, the virtual work of the actuators is the accumulation of

the three chambers: δWac =
∑3

i=1Ak(i)πrc
2∆lk,i (rc is the radius of the chamber).

All virtual work can be expressed as functions in term of bending angle θk. The

external force can be present in any position of the 20 areas, so δWe = Feδe,

where δe is involved in δθk and the row position m̂k. Although all of them can

be solved, (4.13) includes both the magnitude and the row position of an external

force. It would be difficult to evaluate them simultaneously. Considering that the

tip position deviation is purely caused by the external force, we can use ∆Pk to

establish another mapping: ∆Pk ← (Fe,k,mk).

The flexible manipulator is assumed as a system and the tip position Pk reflects

its system response influenced by the external force and the actuation inputs,

which is expressed as:

Pk = H(Ak)Ak +He(mk)Fe,k +Q, (4.16)

where H(Ak) ∈ R3×3 is a system matrix relating between the tip position (system

response) and the actuator inputs (i.e. f(·)), and He(mk) is a matrix involved in

the position of the external force Fe,k. The tip position change caused by an UEF

at a certain row position, namely He(mk)Fe,k, is calculated by

He(mk)Fe,k = rotz(θf )


Fe,kh(mk)

2(3l−h(mk))

6EI

0
2EIl

Fe,kh(mk)
2 sin(

Fe,kh(mk)
2

2EI
)


θf = 2n̂k−1

4
π(n̂k ̸= 5)

, (4.17)
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where rotz(θf ) denotes a rotation matrix around Z axis to θf , as shown in Fig.

4.3, and θf is involved in the estimated column position. Since we have found

the column position in the previous section, only mk and Fe,k are unknown in this

equation. Q is the Gaussian white noise indicating the systematic error. H(Ak)Ak

denotes the pure systematic response from the actuators, so (4.16) is updated as:

∆Pk = He(mk)Fe,k +Q. (4.18)

∆Pk is the pure systematic response due to Fe,k. Therefore, the row position of

Fe,k can be solved by:

m̂k = argmin
mk

∥∆Pk −He(mk)Fe,k∥22 . (4.19)

However, finding the optimal solution is not easy with many local minima. Since

the equation may not yield to the global minima due to the noise and local minima,

a regularization factor is also added to the equation to ensure convergence:

argmin
mk

(
√
∥∆Pk −He(mk)Fe,k∥22 + χ

√
∥Fe,k∥22), (4.20)

where χ is a regularization parameter. After finding the row position mk, the

magnitude of the external force can be accordingly solved via (4.18). However,

the value of χ is really important for the results, and setting a proper χ requires

delicate calculation. We employ gradient descent algorithm to set different values

of χ to address the issue. In virtual work principle, the ideal value of δW is close

to zero, but an improper χ may lead to a large error in δW (χ). As a result, an

iteration process was employed to update χ such that δW (χ) can converge to an

value within an user-defined threshold ς: ⌢
χ = χ−ηδW (χ), where η is the learning

rate. When the algorithm finds the most possible position of the external force

with different χ, the magnitude can also be calculated through (4.18).

4.4 Experimental Validation

Experiments were conducted to test the performance of the sensors and each

module of the algorithm.
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Fig. 4.4. Fundamental test about the experimental setup. The soft manipulator
was commanded to explore the task space randomly. The sensor readings and the
tip position were simultaneously collected. (a) Sensor readings. (b) (x, y, z) of the
tip position in task space.

4.4.1 Sensor Performance

Robot was commanded to explore its task space by randomly setting the air pres-

sure of each chamber for 2000 times in load-free condition, where the pressure

was increased or decreased 0.05 bar, or kept unchanged between steps, and the

tip varied continuously. After the robot became stable after each step, the sen-

sor readings were collected ten times to store their mean value. Fig. 4.4 shows

400 sets of data, indicating the sensors are capable of outputting different values

based on the shape of the robot. The data was also used to train the two tip

position sensing models. The sensors are further examined about robustness and

temperature-resistance ability.

1) Robustness

First, only one chamber was actuated in load-free state for ten times using the

same actuation inputs: varied from 0 to 0.6 bar with an increment of 0.05 bar (13

actuation inputs in total, in room temperature 25◦C), and the eGaIn sensor beside

the chamber directly detected the length change. The whole data collection was
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conducted five times, and Fig. 4.5 (a) shows the variation of the sensor reading,

from which the maximum variance with 0.016 V appears at 0.4 bar. This indicates

the robustness of the sensor and can clearly map with the shape change of the

robot.

2) Performance in different temperatures

The value of electric resistance corresponds with the ambient temperature accord-

ingly, so the performance of the sensors in higher temperature environment was

tested. The manipulator was heat in an oven with 45◦C for one hour, and re-

mount back to the platform for another testing. Using the same actuation inputs,

we obtained similar sensor readings data, as shown in Fig. 4.5 (a). The data is

almost similar to that obtained in 25◦C, showing the eGaIn can work robustly in

common temperature range.

3) Comparison with strain gauge

To further validate the performance of the eGaIn sensor, a commercial strain gauge

(BF-350-6AA) was used for comparison. As Fig. 4.5 (b) shows, an a cantilever-

like silicon elastomer was fabricated and the eGaIn was integrated on the top

to measure the bending strain. Since the bending would exceed the operating

range of the strain gauge, a miniature flexible protective housing (made of TPU)

was used to provide a scaling effect on the bending strain as experienced by the

strain gauge. The housing was adhered to the elastomer and the strain gauge was

mounted on the top surface of the housing, allowing the strain gauge to experience

a scaled tensile or compressive strain as the eGaIn to avoid damage. The pressure

for actuating the elastomer was increased from 0 to 0.21 bar at an increment of

0.03 bar, and the sensor readings at each deformation were collected 10 times.

Fig. 4.5 (c) shows the comparison between the two sensors. Both sensor readings

demonstrate that as the bending increases, the voltage output increases as well,

indicating an increase in the sensor’s resistance value. From the results, the vari-

ance of the strain gauge is slightly larger than the eGaIn sensor, indicating that

strain gauge is subject to more fluctuation due to the environment.
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Fig. 4.5. (a) Performance of robustness and in different temperature. (b) Experi-
mental setup for comparing the sensor and commercial strain gauge. (c) Results
between the eGaIn sensor and the strain gauge.
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Table 4.1: Data and results for the tip position sensing models (’Y’: use the data,
and ’N’: not use.)

Training data
load free
2000 sets

20g weight at tip
1000 sets

20g weight at mid.
1000 sets

f(·) Y N N
g(·) Y Y Y

Testing data (max. err./ mean err. unit: mm)
load free
100 sets

dual 20g weight
(tip. and mid.) 100 sets

30g weight at tip
100 sets

f(·) Y (3.98/3.19) N N
g(·) Y (3.87/3.26) Y (3.94/3.31) Y (4.13/3.45)

4.4.2 Results of Tip Position Proprioceptive Mechanism

The position deviation ∆Pk is one important input data for HMM, so its accuracy

is highly involved in the UEF estimation result. To train f(·), the data collected

in Section-4.4.1 (load-free condition) was used. To mimic the robot operation

under a load (i.e. with EF), a weight with 20g was hung at the robot tip and at

the middle part, and random actuation inputs were commanded to robot to reach

another 1000 new positions, respectively. The true tip position was collected using

the RGB-D camera. The data for training and testing the two models is listed in

TABLE 4.1. In training, the maximum iteration in each model was set to 1000,

and the learning rate was 0.1.

In terms of validation, one hundred new data of random actuation inputs were

commanded to the robot in load-free condition, covering almost the entire task

space of the tip. The ground truth was also collected by the RGB-D camera for

comparison. Fig. 4.6 (a) shows the comparison between the actual tip position and

the values predicted by f(·) in load-free condition. The maximum error between

the predicted and the actual values in all the 100 steps is 3.98mm, while the mean

position error is 3.19mm.

To test the performance of g(·), in addition to the new 100 data for f(·), 100

sets of data with two 20g loads at the tip and in the middle, and 100 sets of

data with a 30g weight at the tip were considered, as listed in TABLE 4.1-Testing

81



82 4.4. EXPERIMENTAL VALIDATION

Table 4.2: Predicted tip position under the same actuation inputs (up: Pk|free,
mid: Pk, bottom: ∆Pk, unit: mm).

Act. Inputs
(bar) load free dual 20g weights 30g weight at tip.

(0.1,0.2,0.5)
(19.7,-2.9,150.7)
(20.8,-3.4,151.6)

1.5

(19.7,-2.9,150.7)
(40.4,92.2,83.5)

118.3

(19.7,-2.9,150.7)
(34.5,-84.1,100.2)

96.8

(0.4,0.4,0)
(-45.4,29.9,88.5)
(-46.6,30.2,89.2)

1.4

(-45.4,29.9,88.5)
(-74.1,-35.5,132.6)

83.9

(-45.4,29.9,88.5)
(-64.7,16.5,147.8)

63.8

(0.6,0.2,0.3)
(-101.8,42.8,102.7)
(-102.3,43.6,104.8)

2.4

(-101.8,42.8,102.7)
(-108.4,-58.7,56.6)

111.6

(-101.8,42.75,102.7)
(-122.2,21.1,67.2)

46.3

data. The multi-load case was not included in the training data, and the results

demonstrate the predicted tip position is generally accurate compared with the

ground truth. The position value on each axis for the 100 data (two 20g weights)

is plotted in Fig. 4.2. As Fig. 4.2 (a) shows, f(·) can properly predict the tip

in load-free scenario, and no significant error was observed as compared with the

measurement from RGB-D. Similarly, even with the unseen multiple loads, g(·)

can also properly predict the tip, as shown in Fig. 4.2 (b). To ensure that ∆Pk

can effectively detect the presence of UEF in all three scenarios: no load, load at

the tip, and multiple loads, three random actuation inputs were selected and the

predicted from f(·) and g(·) under the three scenarios are summarized in TABLE

4.2. Results confirm that ∆Pk is small when there is no load and is large in the

presence of loads. Based on the results, the threshold ϑ used to determine the

force for ∆Pk was set to 5mm.

4.4.3 Testing on Column Position Estimation

The above experiments validated the performance of the sensors and the mecha-

nism to sense the presence of an UEF. Once the force is detected, HMM can be

employed to find the column position accordingly. To examine the model, 500

sets of data were first prepared for training and another 100 sets were prepared

for validation. The robot was randomly moved to a new location, and a metal bar
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Fig. 4.6. Validation towards f(·) and g(·). (a) load-free testing. (b) load (20g
weight was added to mimic static external force) condition testing.
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Fig. 4.7. (a) State transition probability. (b) Snapshots robot experiencing differ-
ent EF. (c) and (d) Column position estimation results when robot was excited
by a bar (pushing force) and thread (tension), respectively.
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was used to poke on the surface and exerted a force onto the robot. The location

where the bar poked at (i.e. the column and row positions) was randomly selected.

At some steps, no force was exerted onto the robot to also include the no-load

case to the data. The learned state transition probability matrix is illustrated in

Fig. 4.7 (a). Validation using the 100 sets of data is summarized in Fig. 4.7 (c).

It can be observed that HMM can predict the column position properly and only

three of the estimated results (the 4th, 42th and 88th) did not match, reaching an

accuracy of 97% . To better show the accuracy of the model, a simpler prediction

method, inspired by [157], to predict the force direction, which is based on the

change in tip position (x, y) due to the force, was considered for comparison, and

the algorithm is listed as:

n̂k =


1 ∆Pk(1) < 0,∆Pk(2) < 0
2 ∆Pk(1) > 0,∆Pk(2) < 0
3 ∆Pk(1) > 0,∆Pk(2) > 0
4 ∆Pk(1) < 0,∆Pk(2) > 0
free ∥∆Pk∥ < ϑ

. (4.21)

The results of this method is also shown in Fig. 4.7 (c)(threshold). While the

column position can still be predicted, but the accuracy is only 90%. In addition,

this simpler prediction method can only work with 4 quadrants, and the HMM

method is needed for higher column resolution.

In addition to pushing force, tension was also considered to test the trained

HMM. Four threads were secured to the surface of robot to generate pulling force

at the four columns, as shown in Fig. 4.7 (b)-(Right). 100 sets of random actuation

inputs and random pulling were prepared and the results are shown in Fig. 4.7

(d). Both HMM and the simpler prediction methods can still predict the column

position, the accuracy using HMM (96%) remains higher than the simple method

(91%).

4.4.4 Estimating the Row Position and UEF Magnitude

TABLE 4.3 lists the material properties of the robot that are required for esti-

mating the row position and the magnitude. Since the algorithm uses an iterative
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Table 4.3: Material properties

Property Value Property Value
E Young’s Modulus 2.7 MPa rc Chamber Radius 2 mm
ρ Density 1.07 (g/cm3) l Backbone Length 120 mm
r Distribution Radius 13 mm G Gravity 0.86 N

approach to find the optimal values and the model was built assuming the robot

is in balance, the system starts to estimate the row position and magnitude 1s

after setting an actuation input (robot is stable). The parameter χ is set to 1

and the maximum iteration epoch is 10. In addition, the mean value and the

variance of the Gaussian white noise in (4.18) were set to 0 and 5, respectively. In

testing, the two hundred sets of actuation inputs were commanded to robot and

the bar always excited the robot ensuring ∥∆Pk∥ ≥ ϑ (EF always acts). The final

estimated row positions and the true ones are illustrated in Fig. 4.8 (a), proving

that only 3 (67th, 148th, and 172th) estimated positions failed to meet with the

true results, reaching an accuracy of 98.5%.

In terms of validating the magnitude estimation method, the force sensor was

mounted at different positions, as Fig. 4.8 (c) shows, which means the position

and magnitude of the external force were both known, and then robot was com-

manded to touch the force sensor, whose output was regarded as the ground truth

for validation. The force sensor was fixed beside the four columns of the manip-

ulator, and different actuation inputs were set to command the manipulator to

contact the force sensor while the row position was also changed at each column

position by manually adjusting the height of the force sensor. In this way, sixteen

regions on the manipulator surface were tested by the force sensor, and three ac-

tuation inputs were considered for each region to set different magnitudes. The

row position calculation was based on the results from the column position esti-

mation, which means θf can be obtained for further calculation. The estimated

results are illustrated in Fig. 4.8 (b). During all the 48 steps, only two (23th

and 41th) estimated positions were deviated from the true value, which mainly

results from the inaccurate row position. As for the magnitude, a maximum force
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of 2N was applied for testing, and the maximum error happened on the inaccurate

step is 0.71N which is caused by the inaccurate estimation of the row position.

Other than that, the mean error of the estimated magnitude in other 46 steps

is 0.23N , showing this estimation method combining virtual work principle and

regularization algorithm is effective.

The time consumption in estimating the presence of an EF (Machine Learn-

ing), finding the column position (HMM), and solving the row position and the

magnitude (virtual work principle) are 0.078s, 0.008s, and 0.85s, respectively. The

third item is more time-consuming due to the iteration process and the process

started after the robot was stable, which would take a longer time. The first

and the second items took less time and they can be evaluated in real-time. In

addition, the probability model requires fewer data in training.

4.5 Chapter Summary

Finding the external force acting on a soft robot is important in the field. While

majority of work focused on the effect at the end-effector, this paper presents a

new method to estimate an unknown force acting on the body of a continuum

robot. The robot was fabricated with integrated eGaIn sensors to provide useful

information related to the shape of the robot. This proprioceptive sensing mecha-

nism can eliminate the use of common external measurement devices, allowing the

robot to operate in a confined and occluded environment. A model-free approach

based on Artificial Neural Network was employed to predict the tip position based

on the sensor information, and compared with the tip position under a load-free

scenario so that the presence of an external force can then be determined. To find

the exact location of the force, the circumferential body of the robot was repre-

sented by a 2D map, and the indices of the map were evaluated accordingly. HMM

was employed to find the column position, and the principle of virtual work with a

regularization term was used to find the row position and the magnitude. Experi-

mental results confirmed that the model-free approach can predict the tip position
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Fig. 4.8. (a) Row position estimation results. (b) True magnitude and the esti-
mated value. (c) Snapshots of robot disturbed by the force sensor at different area
(column position, row position).

with an error of about 4mm. Different scenarios, including different weights of

load, multiple loads, and load-free were examined to ensure the robustness of the

prediction method. Random force was exerted onto the robot and this algorithm

can achieve an accuracy of 97% and 98.5% in finding the column and row positions,

respectively. The error in finding the force magnitude is 0.23N . This propriocep-

tive sensing and evaluation algorithms enable the robot to easily sense the force

information, allowing better interaction with the surrounding environment.
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Chapter 5

Dual-Segment Manipulator with
Continuous Rotational Motion
along the Backbone

5.1 Motivation

Since the concept of continuum robot was first matured in 1990s [7], it has re-

ceived much interest from researchers and engineers. A continuum robot generally

consists of an elastic body actuated by tendon-sheath mechanisms [36, 39], pres-

surized fluids [25, 54], dielectric elastomer actuators (DEA) [60, 61] or magnetic

power [158]. These actuators generate tension or compression force along the axial

direction of the chambers distributed radially along the soft manipulator, where

the change in length consequently leads to overall deformation of the robot. With

the body made of an elastic material, continuum robots exhibit excellent dexterity

in task space, high compliance to deal with obstacles, and complicated deforma-

tion motion with infinite degree of freedom (DoF). Therefore, they are suitable to

work in unstructured environments, such as working in Minimal Invasive Surgery

(MIS) with safe touch capability [159, 160], research and rescue in narrow space,

and maintenance [161].

The merit of high compliance and safe interaction with human from continuum

robots also pose difficulty in designing a robust and accurate controller. The soft

body made of low-stiffness materials (e.g. Young’s Modulus< 109pa [162]), can

be easily influenced by the external environment. Many existing works simplified
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Fig. 5.1. Rotation motion of soft continuum robots in confined environments.
(Upper) Existing deformed rotation employs a flexible shaft configured centrally,
and the outer soft layer only works for bending. (Bottom) The proposed dual-
segment deformed rotation can both bend and rotate along its backbone.

the problem and developed controllers based on kinematic models to bring the

robot to a desired pose under quasi-static assumption, which is a tradeoff between

motion accuracy and effectiveness.

Additionally, as the soft manipulators are able to deform dexterously, in some

scenarios, such as decompressing femoral head osteonecrosis [163], treating pelvic

osteolysis [160], visual occlusion avoidance [164], prostate biopsy [165] and drilling

holes in a sinuous tunnel (Fig. 5.1), continuum robots are anticipated to offer rota-

tion motion to clear obstacles as well. Simply mounting a motor at the base is not

applicable because the rotation motion may not be properly transmitted to the

end effector without proper control algorithm. In detail, when the two axes (mo-
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tor’s shaft and the deformed backbone of the continuum robot) are not collinear,

the fixed-axis rotation at the base would lead to a large motion to the robot

body as well as the end-effector. The entire robot shape will rotate around the

motor’s shaft if the shape configuration keeps constant, without rotation along

the robot backbone. A compliant shaft can be considered to mount inside the

hollow soft manipulator and motor rotates it at the base, as shown in Fig. 5.1

(upper), but the deformation of the metal compliant shaft may cause resistance

to the bending of the soft continuum robot. Additionally, the frictional inter-

action between the compliant shaft and the manipulator would cause vibration

and abrase the soft material. Therefore, it requires delicate design and controller

for multi-segment manipulators to realize continuous rotation along the deformed

backbone (CRADB). To the best of our knowledge, there is no similar research for

a multi-segment continuum robot with positioning and CRADB implementation

simultaneously.

5.2 System Description

5.2.1 Working Principle of CRADB

Fig. 5.2 illustrates the working principle. Take a single-segment manipulator verti-

cally mounted on a rotatable platform as an example, and its deformation depends

on the pneumatic pressure inside the three chambers (Fig. 5.2 (a)). The shape

of it can be assumed as an arch (Fig. 5.2 (b)), described by shape configuration

parameters: direction angle φk, bending angle θk and bending radius rk. Ideally,

if the actuators inputs Ak are properly set, the tip of the flexible manipulator can

be moved to follow a circular path (see Fig. 5.2 (c)), where the bending angle is

unchanged (θk+1 = θk). The direction angle varies as: ωk+1 = φk+1 − φk, and k

denotes control instance. Simultaneously, the base rotates towards the opposite

direction by ωk+1 (i.e. −ωk+1), to compensate the direction angle variation, and

then the direction angle of the manipulator can restore back to the previous value

φk (Fig. 5.2 (d)). The whole shape of the manipulator can be kept, but it has been
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Fig. 5.2. Working principle of CRABD motion. (a) Shape/tip varies actuated
only by air pressures. (b) Robot shape is parameterized by φk, θk, and rk. (c) Top
view for a circular path achieved by pressurized air. (d) CRADB is achieved by
air pressures and the rotatable base simultaneously.

rotated along the deformed backbone. Therefore, CRADB is the resultant motion

from pneumatic regulators inputs and the motorized rotatable base. To illustrate

the working principle more clearly, the kinematic model relating the length change

of the ith chamber to the resultant shape configuration parameters is:

li =
l

θ
(1− rc cos(φ+

2π

3
(i− 1))), (5.1)

where rc is the distance between chamber’s center to the backbone and l denotes

the length of backbone. Fig. 5.3 (a) and (b) show robot shape and the chamber

length for a circular-path movement, respectively. Simulation towards CRADB is

provided in the supplementary video.

5.2.2 Design and Fabrication

Fabrication focuses on the two motions: actuation for deforming the robot and

rotation of the base. The design scheme is illustrated in Fig. 5.4. The deformation

of the manipulator is achieved by inflating pressurized gas into the chambers and

the base is rotated by a stepper motor. As Fig. 5.4 (a) shows, the rotation of
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Fig. 5.3. (a) Tip path and robot shape. (b) Chamber length variation.

base will tangle the tubes around the motor shaft, which constrains the rotation

within [−180◦, 180◦]. To address this issue, a slip ring is imported to improve the

design scheme (Fig. 5.4 (b)), where the transmission of gas goes through the rotor

and stator, so that gas tubes will not twine during the base rotation. Fig. 5.4 (c)

shows the sectional view of a three-channel slip ring whose central hollow hole can

be used to connect stepper motor’s shaft and slip ring’s rotor. The manipulator’s

base is mounted at the rotor, and the stator is fixed on the frame. In Fig. 5.4

(d), CAD model of the entire system further shows the design scheme. The reason

why we select pneumatic-driven mechanism is that gas tube can be changed into

any shape and can be easily transmitted, and sophisticated slip ring can decouple

the transmission without air leakage concern.

To fabricate the compliant manipulator, mold cast technology was employed. A

3D-printed mold was prepared first and silicone rubber (E605, Hongye, Shenzhen,

China) was then poured into it to obtain a flexible manipulator (see Fig. 5.5 (a))

after casting. After demolding, one thread was twined around the manipulator’s

surface groove to limit radial expansion when being pressurized (Fig. 5.5 (b)). To

limit the total length of the manipulator, another thread connects between the

cap ring and the base. Similarly, another slender segment (red in Fig. 5.5 (d))

was fabricated and connected in series with the proximal segment (blue in Fig. 5.5

93



94 5.2. SYSTEM DESCRIPTION

Fig. 5.4. Inspiration and design scheme. (a) Tubes are tangled around motor
shaft during rotation. (b) Design with a slip ring to decouple air transmission. (c)
Sectional view of a three-channel slip ring. (d) CAD model of the design.

(d)). Next, air tubes for actuation were sequentially connected among pneumatic

regulators, the slip ring and the robot.

The entire experimental setup is shown in Fig. 5.5 (e) and (f). Pneumatic

regulators (SMC, ITV0030-BL) were employed to precisely control the pneu-

matic pressure of each chamber at an accuracy of 0.01 bar, and a stepper motor

(57BYG250B) mounted at the aluminium frame rotates the base. In order to

sense the shape and tip position configurations, a well calibrated RGB-D camera

(Intel Realsense, D415) was considered, and two colorful markers are attached at
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Fig. 5.5. System setup. (a) 3D printed mold. (b) Soft manipulator with twined
thread. (c)-(d) Snapshot of a single and the dual-segment continuum robot. (e)
Overall system. (f) Main hardware configuration.

the end of each segment to label the tip position. Two checkerboards were em-

ployed to initially calibrate the two cameras to evaluate their respective position

with respect to the robot base. An optoelectronic switch (Omoron, EE-SX672P),

whose signal is transmitted to Arduino Mega 2560, provides a reference origin of

the motor.

5.3 Controller Design

As can be seen in Fig. 5.2, the motor and air pressures jointly determine the

direction angle of the proximal segment, and the motor performs well in terms of

rotation accuracy and velocity. Therefore, an optimization-inspired method was

proposed for tip configuration control. Next, the algorithm to synchronize the two

motions is presented to achieve CRADB motion.

5.3.1 Shape Configuration

As shown in Fig. 5.6 (a), the shape of the entire manipulator can be assumed

as two arches connected in series. Since the length of each segment is constant,

only four variables [φ1, θ1, φ2, θ2] can parameterize the shape configuration, w.r.t

frame {1}. With the stepper motor, the actual direction angle of the proximal

segment becomes: Ψ1 = φ1 + θM (θM is the angular displacement of the motor),

and frame {0} is fixed. The true position of the proximal tip Q = (x2, y2, z2) and

the distal tip P = (x4, y4, z4), w.r.t frame {0}, can be directly obtained via the
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Fig. 5.6. (a) Illustration of deformation and coordinate frames. (b) Dimension
of the dual-segment manipulator, and the length of the two segments are 100mm
and 80mm, respectively.

vision system, with which the shape parameters are:

Ψ1 = atan2(y2, x2), θ1 = 2acos(
z√

x22 + y22 + z22
), R1 = l1/θ1, (5.2)

where l1 is the length of proximal backbone. The shape configuration of the distal

segment can also be solved similarly and is omitted for brevity. As a result, the tip

pose is then obtained using five variables [θM , φ1, θ1, φ2, θ2], through Homogeneous

transformation: 0
4T (θM , φ1, θ1, d, φ2, θ2) =

0
1T

1
2T

2
3T

3
4T (d = 10mm is the connector

thickness shown in Fig. 5.6 (a)). Therefore, a given desired tip configuration maps

with a shape configuration. Due to the hyper redundancy, there may exist multiple

shape configurations for a desired tip configuration, inspiring us to employ opti-

mization algorithm to find the optimal solution, which is detailed in Section-5.3.2.

Then, Jacobian-based control scheme maps with the optimal shape configuration

with proper actuators inputs, which will be elaborated in Section-5.3.3.

5.3.2 Finding the Optimal Shape Configuration

Let ψ = (θM , φ1, θ1, φ2, θ2) denote the shape configuration. For a desired tip

configuration Td, the optimization problem becomes: finding the optimal ψs under

96



CHAPTER 5. DUAL-SEGMENT MANIPULATOR WITH CONTINUOUS
ROTATIONAL MOTION ALONG THE BACKBONE 97

the current shape configuration ψc to make Td = Ts (Ts is the tip configuration

calculated using the optimal ψs), which also means minimizing the error between

Td and Ts via finding the optimal ψs. Herein, we consider Genetic Algorithm (GA)

to solve the optimal ψs.

1) Loss Function

Loss function is defined as the Euclidean distance between Td and Ts, each

of which consists of a rotation matrix (Rd/Rs) and a translation vector (Pd/Ps).

The orientation and position are comprehensively considered in solving the optimal

parameters via multiplying a weighting in loss function:

L = ω ∥Rd −Rs∥+ (1− ω) ∥Pd − Ps∥ , (5.3)

where ω and (1 − ω) are respectively weightings for orientation and position. It

should be noted that the position vectors are normalized within [0,1] to eliminate

the influence of different units. To enable fast point-to-point movement, we can

set a larger weighting in the error between the current motor displacement θMc

and the solved value θMs, so that the loss function is updated to:

L = ω ∥Rd −Rc∥+ (1− ω) ∥Pd − Pc∥+
ωM

∥θMc − θMs∥
. (5.4)

Notably, when setting ωM = 0, the algorithm works for a conventional dual-

segment continuum robot without the rotatable base.

2) System Constraints

To avoid buckling, the bending angle and the direction angle of each segment

are limited by:

0 ≤ θMs ≤ 2π; 0 ≤ φ1d ≤ 2π; 0 ≤ φ2d ≤ 2π
θ1,min ≤ θ1d ≤ θ1,max; θ2,min ≤ θ2d ≤ θ2,max

. (5.5)

3) Genetic Algorithm for Solving ψs

Genetic Algorithm (GA) is considered to solve the optimal shape configuration

ψs. In designing the algorithm, each individual in population has one chromosome

with five genes. The chromosome represents the five variables that we need to

solve, and each gene is coded using binary numbers for further crossover and
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mutation process. The optimal chromosome is chosen for random evolution, where

the fitness value is evaluated by loss function L. The optimization process was

implemented in Matlab 2019b Optimization Toolbox. Specifically, the number

of the individual is set to 80, and the initial population is generated randomly.

The probability of crossover and mutation are set to 0.8 and 0.05 respectively,

where only one binary number of a gene is reversed in each mutation. ’Stochastic

Tournament’ method is employed in selecting individuals for crossover in next

generation.

5.3.3 Jacobian Estimation

After finding the optimal shape configuration ψs, system then should set proper

pneumatic pressure for each chamber to reach Ts. The chamber length is not

directly involved in the air pressure, and more importantly, other factors like

uncertain external disturbances and fabrication imperfections, all pose difficulty

in finding direct air pressures.

In robotics, Jacobian matrix J maps between the velocity of actuators and

tip pose, which can also be converted into the mapping between actuators and

shape configuration: ∆ψ = J∆A. Within a short interval, this equation can be

converted as a local mapping in control instance k: ψk+1 − ψk = Jk(Ak+1 − Ak),

so for an optimal ψk+1 calculated from Td, the theoretical actuation inputs Ak+1

is:

Ak+1 = J†
k(ψk+1 − ψk) + Ak, (5.6)

where J†
k = (JT

k Jk)
−1JT

k denotes the pseudo inverse of Jk. To promote effective-

ness, J†
k only maps between pneumatic regulators and [φ1, θ1, φ2, θ2]. Namely, we

find Jacobian matrix Jk to control the shape configuration: [φ1, θ1, φ2, θ2] w.r.t

frame {1} shown in Fig. 5.6 (a), because the control towards stepper motor is so-

phisticated and accurate. However, J†
k is still not reliable enough due to uncertain

disturbances, such that online estimated Jacobian matrix would be an alternative.

Air pressure and shape configuration do not vary significantly within a short
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interval, so that Jk can be assumed as partially dependent on previous M con-

trol instances. Inspired by [166], we proposed a method to online update Jk by

minimizing the sum of previous M steps’ mapping:

Jk = argmin
Jk

k−M∑
i=k−1

∥Wi(ψk+1 − ψi)−WiJk(Ak − Ai)∥, (5.7)

where Wi = 1
1+exp(Ei)

denotes the weight of the ith previous step, and Ei =

∥ψi − ψi−1,p∥ is Euclidean distance between the planned and the actual shape

configuration. This indicates the inaccuracy of the ith step, so a lower weighting

is considered.

In addition, the task space can be divided into N sub-spaces, and the Jacobian

matrix in a sub-space can be pre-calculated to provide a reference Js for the online

estimation algorithm, so (5.7) become:

Jk = argmin
Jk

k−M∑
i=k−1

(∥Wi(ψk+1 − ψi)−WiJk(Ak − Ai)∥

+ws ∥Jk − Js∥),
(5.8)

where ws = 0.1 is the weighting of the reference Jacobian matrix in the sth sub-

space.

5.3.4 Controller for CRADB

As analyzed in Section-5.2.1, when executing CRADB task, controller sets proper

air pressure to maintain the bending angle while controlling the direction angle

varies continuously. Controlling the angular displacement of the stepper motor’s

shaft is relatively easier, which was commanded to follow the direction angle of

the proximal segment oppositely. It is theoretically feasible to employ (5.8) to

control the air pressures, but CRADB motion requires time effectiveness in terms

of calculation. Due to the softness of the manipulator, this work assumes the

robot is load-free in executing CRADB motion.

Therefore, a simpler controller only towards the direction angle control is in-

dividually designed. As expressed in (1) of [167], the pressure of each chamber
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follows a mapping between the bending angle and between the direction angle:

φ1 = f(p1, p2, p3) = atan2(
√
3(p2 − p3), p2 + p3 − 2p1)

θ1 = g(p1, p2, p3) = κ
√
p21 + p22 + p23 − p1p2 − p1p3 − p2p3

, (5.9)

where κ denotes the stiffness of the soft manipulator that is experimentally ob-

tained, and pi is the air pressure in the ith chamber. For the desired direction

angle φ1d and the bending angle θ1d, systems can find the optimal actuation inputs

(p1, p2, p3) via:
(p1, p2, p3) = argmin

p1,p2,p3

∥f(p1, p2, p3)− φ1d∥

w.r.t :

{
0 ≤ pi ≤ pmax(i = 1, 2, 3)
g(p1, p2, p3) = θ1d

.
(5.10)

The two constraints were respectively designed to avoid over-pressurization and

to maintain the bending angle.

Since the atan2(·) function is non-linear, the optimization would be challeng-

ing. Taylor expansion is employed to simplify f(p1, p2, p3) :

φ1 = φ1c +
∂f

∂p1
(p1 − p1c) +

∂f

∂p2
(p2 − p2c) +

∂f

∂p3
(p3 − p3c), (5.11)

where φ1c denotes the current direction angle, and pic is the current pressure in the

ith chamber. This simplification holds because in operation the direction angle

varies gradually for achieving a circular movement. For the distal segment, the tip

of the proximal segment acts as its base and the distal segment rotates towards

the opposite direction to maintain the shape configuration. (5.10) is also feasible

for calculating the air pressure in the distal segment, namely φ2d = −φ1d and

g(p4, p5, p6) = θ2d. The calculation was exceeded in Matlab 2019b Constrained

Optimization fmincon. It results the whole soft manipulator to rotate around the

deformed backbone while holding the shape unchanged.

5.4 Experimental Validation

Experiments were conducted to validate this work, including the fundamental

functions of the design, movement of the tip and more importantly the perfor-

mance of CRADB.
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5.4.1 Experiment Setup

Through calibration, the measurement precision of the vision system is around

1.5mm, which was assumed as ground truth in implementation. To find the real-

time actual position of the tips (Q and P ), RGB and HSV characteristics of the

sampled pictures were considered to extract the pixel position of the markers, and

the calibration model further solved the tip’s position. The rotation of the base and

movement of the two segments are displayed in the supplementary video, showing

that the base’s rotation does not influence the transmission of the pressurized air.

Robot was randomly commanded with a ±0.05 bar pressure changed randomly in

each chamber, to explore its task space and to solve the local Jacobian matrix.

As a result, 1000 sets of data was collected and 8 sub-spaces were divided based

on the shape configuration of the entire manipulator to find local Jacobian matrix

Js.

5.4.2 GA to Search the Optimal SC

GA plays a critical role in finding the optimal shape configuration for a given

tip configuration, so its accuracy is highly involved in the motion velocity and

precision.

First, the weight ω is set to 0.5, averagely considering orientation and position

accuracy. The current shape configuration is ψc = [0, π
6
, π
3
, π
5
, π
4
] and the desired

tip configuration is set to Td = transl(82, 35, 160) · trotz(π/6) · trotx(π/4). The

finally solved ψs = [0.523, 0.001, 0.5636, 1.0472, 0.3143] (unit: rad), such that the

Loss function is only 0.157 with the position error of 1.7084 mm. The imported

weight in (5.4) contributes to smaller value in direction angle φ1 and bigger value

in θM . Besides, as depicted in Fig. 5.7 (a), GA reached convergence at the

40th generation after 0.08s, which is regarded as time effective. Moreover, a

circular path was considered to implement the algorithm, where the diameter of

the path was 180mm and totally 12 path points with 30◦ radially apart were

tested. The desired tip configuration varied at each path point to further test the
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Fig. 5.7. (a) Searching process of GA. (b) position error between the solved and
the given. (c) and (d) comparison between the solved pose and the given with
ω = 0.5 and 0.3, respectively.

performance, and the results are displayed in Fig. 5.7 (c). The solved tip pose

was almost consistent with the desired, and the maximum position error was only

2.15mm shown in Fig. 5.7 (b). In addition, the weight ω between the position

and orientation was adjusted from 0.5 to 0.3 to investigate the final position error,

which means we care more about the position compared to orientation. As shown

in Fig. 5.7 (b), smaller ω benefits higher position accuracy, but the orientation

accuracy is low. When ω = 0.3, the maximum position error ∥Pd − Ps∥ = 0.62mm

but the orientation Rs deviates obviously between the desired Rd, as Fig. 5.7

(d) shows. Therefore, we select ω = 0.5 as the optimal weight. The time cost

for each optimization was about 0.18s, which we believe is sufficient for online

implementation.
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5.4.3 Point-to-Point Movement

The pressures inside the six chambers were set to [0.8, 0, 0, 0.35, 0.35, 0] (unit:bar)

and the position of the tip was regarded as the starting point for point-to-point

movement test. The destination was set to [−63, 62, 165](x, y, z) and the desired

orientation represented by Euler angle was [7◦, 17◦,−50◦]. For this desired tip

configuration, GA solved the optimal shape configuration ψs = [122.96◦, 8.57◦, 56◦,

232◦, 73.5◦], and the initial tip configuration ψc = [0◦, 8.6◦, 52.4◦, 289.9◦, 38.7◦].

Then robot system adjusted the pressures to reach the solved ψs. The weight ωM

was also set to 0.1, and M is 10. Robot was commanded to move to ψc with 10

steps, to solve the corresponding Jacobian matrix.

In the first testing, the stepper motor was kept idle to test the accuracy of the

Jacobian estimation method and to investigate the motion time cost. The robot

took 10 steps to finish the point-to-point movement task. The path points of the

two tips (Q and P ) are illustrated in Fig. 5.8 (a). As Fig. 5.8 (e) and (f) show

(cyan curves), the direction angle and the bending angle gradually reached to the

optimal values.

Secondly, both the stepper motor and pneumatic regulators was used to execute

the same task. Since the motor can provide fast response, the rapid start/stop

could cause a large vibration to the robot. In this work, proper transition time

from acceleration/deceleration stage to the constant speed was provided and the

speed was set to a small value to minimize the vibration. The maximum velocity of

the motor is 60rpm. The motor rotated by 122.96◦, and simultaneously pneumatic

regulators started to approach the destination. The direction angle of the proximal

segment just needed to change 8.57◦ in the subsequent motion process. In Fig. 5.8

(e) (purple curves), the direction angle Ψ1 directly increased from 0 to 122.96◦, and

the bending angles gradually reached the desired values actuated by air pressure.

To test the performance of disturbance adaption, random manual disturbance

was added just after motor rotation (the 2nd step, see Fig. 5.8 (d)), making the

robot deviate from its planned path point. Then, the Jacobian matrix updated
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Fig. 5.8. (a) Tips path in motor-idle mode. (b) Tips path with motors and
pneumatic regulators both worked. (c) Tips path with disturbance. (d) snapshot
of manual disturbance. (e) Variation of direction angle. (f) Variation of bending
angle.

accordingly under the disturbance, bringing the tip to the destination. At the

4th step, the disturbance was removed. The Jacobian updated accordingly as well

and brought the tip back to the desired value smoothly with air pressure. It can

be seen from Fig. 5.8 (e) and (f) (blue curves), Ψ1 did not change significantly

even when the disturbance was introduced and then removed. The change in the

bending angle due to the disturbance is more obvious. After the disturbance, they

reached the desired values, similar to that in load-free condition. It totally took 7

steps to reach the destination, showing that the Jacobian matrix works effectively.

In the above experiments, M = 10 was a constant and the maximum position

error between the planned position and the actual is 6.73mm. To investigate the

influence of M , different values were set. By setting 5 different values of M for
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Table 5.1: Position error between the planned position and the actual with differ-
ent values of M .

M 8 10 14 16 20
Max. Err.(mm) 8.29 6.73 7.36 9.35 12.35
Mean Err.(mm) 6.87 5.31 6.52 7.46 10.65

the same path in load-free condition, the positional error shows the performance.

The result is listed in TABLE-5.1. The optimal value is M = 10, and the time

cost of the calculation is around 0.34s for each step. Larger M considered too

much information from the previous steps, which does not satisfy the principle of

Jacobian matrix that maps actuators and tip position within a local area, while

smaller value can not fully make use of the local information. Therefore, in the

following experiments, M was set to 10.

5.4.4 Path-Following Testing

Apart from the point-to-point movement tests, path-following tasks were also pre-

pared on the basis of the optimal parameters, where both the pneumatic regulators

and the motor worked. The motor maximum velocity was set to 48rev/min, and

the direction angle φ1 was set to zero, which aims to enhance the overall motion

velocity. Namely the direction angle of the proximal segment Ψ1 was only achieved

by the stepper motor, and air pressure in the proximal segment only worked for

the bending angle θ1.

First, a 3D square-shaped path was designed with discrete path points, and

the tip orientation was set to trotz(atan2(y, x)) · trotx(π/4), where x, y denotes

the coordinate of the path points. Because of the inertial effect, vision system

collected the two tip positions 2s after setting actuation inputs. Fig. 5.9 (a)

shows the comparison between the actual path points and the desired points,

demonstrating that the tip generally followed the desired path. As shown in

Fig. 5.9 (b), the shape configuration parameters were also generally consistent

with the values calculated by GA algorithm. There was little deviation in Ψ1

since the motion accuracy of the stepper motor is much higher than that of air
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Fig. 5.9. (a),(d) Path-following results. (b),(e) Variation of shape configuration
parameters. (c),(f) Actuation configurations.

pressure. The bending angle of the distal segment deviated relatively significant

from the optimal value, due to the moment of gravity. This mainly leads to the

positional error in the tip. Fig. 5.9 (c) shows the variation of air pressure in the

actuated chambers. Only the 2nd, 3rd and 5th chambers were actuated because

the proximal segment only needs to bend (φ1 = 0) and the direction angle of the

distal segment should approach to 60◦ to maintain the given orientation. Next,

another planar triangular path was designed to do similar test. As Fig. 5.9 (d)

shows, the actual path deviated more from the desired one, because the robot

cannot ensure both orientation and position simultaneously. Corresponding shape

configuration parameters are shown in Fig. 5.9 (e), and the positional deviation

falls into the bending angle θ1 and θ2. Fig. 5.9 (f) shows the air pressures variation.

For the first path, the whole process only took 32s in comparison with 98s used

in the mode of without the stepper motor. The decrease in the operating time

shows that the added DoF enhances the motion velocity of continuum robot effec-

tively. The two experiments further demonstrate the the success of the imported

revolve joint and the feasibility of the Jacobian matrix estimation method.
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5.4.5 CRADB Testing

1) One-Segment Testing

The three chambers in the distal segment were inflated and kept at an accuracy

of 0.2 bar, to provide the basic rigidity for the same. Different pneumatic pressure

values were set at the proximal segment to test the performance of circular path

movement of using one segment.

The air pressure at the proximal segment were set to [0.8, 0, 0] bar initially,

after which the shape configuration was accordingly solved to ensure the tip Q can

follow a circular path. Using (5.10), the corresponding air pressure was obtained

for each path point at the circular path with a radius gap of 10◦, which took

in total 2s for the all 36 path points. The pressure values were then gradually

commanded to the robot to follow the circular path, and the results is shown in

Fig. 5.10 (a). The 12th path point exhibited low accuracy due to fabrication

imperfection.

Then, the stepper motor started to rotate clockwise (θ̇M = 48rpm) and the

direction angle φ1 changed counterclockwise simultaneously, with a gap of 10◦.

The marker’s position shows the rotation performance. Better circular degree

represents more accurate motion, showing the feasibility of the controller. The

true position of two markers at the two segments during all the 36 steps are shown

in Fig. 5.10 (b). They generally followed a circular path around the true tip, and

the maximum error is around 15mm due to inertial effect and soft material. With

the characteristics of soft continuum robot, the result shows the success of the

proposed CRADB motion.

2) Two-Segment Testing

The success of the single-segment rotation provides the foundation for imple-

mentation on two-segment setup. Similarly, the distal segment was also com-

manded to follow a circular path while the proximal segment was deformed. The

actual path of the distal tip is shown in Fig. 5.10 (c), where the gravity of the

distal segment led to vibration in the entire manipulator. Consequently, the actual
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Fig. 5.10. (a) Circular path movement of tip Q (Q and P respectively indicate the
tip in the proximal and the distal segment.) (b) CRADB of the proximal segment.
(c) Circular path movement of tip P . (d) CRADB of the whole manipulator.

path deviated downwards from the desired circular path, in which the maximum

position error is around 7mm.

Next, the two segments and the stepper motor both started to work simulta-

neously, and the pneumatic pressure in the distal segment varied as planned. The

two markers beside the two tips were also considered to manifest the CRADB be-

havior, and the results are shown in Fig. 5.10 (d). During this process, the inertial

of the two segments jointly influence the rotation precision so that the position

error of the two makers are 18mm and 29mm. The compliance of the manipulator

would cause almost no harm to the ambient environment, such as working in MIS.

Therefore, we believe that the accuracy is acceptable for this novel design, and in

future closed-loop control or robot with stiffer material will be employed.

5.4.6 Applications

The proposed robot was tested to show its capability for various potential appli-

cations.

1) Tea Water Suction
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Fig. 5.11. (a) Tea water suction. (b) Drilling.

In this demonstration, a soft tube was fixed at the robot tip and a suction

pump was attached at the tube’s another end to provide negative pressure. As

Fig. 5.11 (a) shows, the tip of the manipulator was commanded to reach the

two small cups, and the pump started to collect the fluid accordingly. When

approaching cup 1, pneumatic actuators were only commanded as bending angles

were needed to be varied. After finishing the suctioning task in cup 1, both

pneumatic inputs and the stepper motor were used to help positioning the tip to

cup 2, and slowly moved downwards to suck the water. With proper motion control

towards the stepper motor, no significant vibration was observed when the motor

stopped. Therefore, the use of the stepper motor could benefit shape configuration

variation. Supplementary video showcases the whole suctioning process.

2) Drilling Task

In the second demonstration, an drill bit (ϕ4mm) was mounted a the tip of

the robot, and a flat surface made of plasticine was prepared to mimic the object

to be drilled, as shown in Fig. 5.11 (b). After reaching the specified point on the

surface, the pneumatic inputs and the stepper motor worked together to provide

the rotational motion while maintaining the same shape configuration. The plastic

fixture holding the plasticine set the distance to be drilled, and fluctuation at the
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Fig. 5.12. (a) Snapshots of tea-water transmission. (b) Snapshots of drilling.

distal segment was observed when reaching the fixture. This demonstration shows

that a small hole was successfully created on the plasticine. The roundness of the

hole is 0.3mm. Some snapshots of the robot are shown in Fig. 5.12.

5.5 Chapter Summary

This work proposed a new design of dual-segment continuum robot, with the

capability to provide a rotational motion along the soft body. This additional

motion can also help to improve the time effectiveness in reconfiguring the robot

tip to reach a particular point. To assure the tip to remain at the same point, a

novel control algorithm utilizing the pneumatic inputs and the stepper motor was

developed so that the robot body can be rotated continuously, regardless the cur-

rent shape of different segments. The added DoF does not expand the task space

of the robot, but it promotes the response of the first segment. While the new

actuator added the redundancy towards the controller, the proposed optimiza-
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tion controller is capable of finding the proper shape configuration, and Jacobian

method maps the shape configuration to an actuation inputs. Another contribu-

tion of this part is that I combined a slip ring in air transmission. Tube twining

issue was well processed by this slip ring, so that the rotation of the base would

not be limited. With this design, I considered the integration of base’s rotation

and manipulator’s deformation to propose a CRADB motion, which is the first

one in continuum robotics community.

Experiments were conducted to show the performance of the robot, and demon-

strations were also performed to show potential applications. First, I considered

PCC-based simulation to verify the proposed CRADB motion scheme. Then, the

proposed controllers were individually tested on the prototype, including pure

deformation motion and CRADB on each segment. Additionally, two potential

useful applications were prepared to respectively demonstrate the two motions.

However, there are still some limitations in this part especially in terms of

algorithm. Robot could only deformation or only rotation, and they cannot be

integrated simultaneously. The controller about CRADB only works in load-free

scenarios. External effect would make the rotation inaccurate.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In this dissertation, some key problems in continuum robotics were solved and

the methodology for each of them were validated in the corresponding pneumatic-

driven continuum robot.

My work starts from providing a novel solution for users who needs real-time

visual feedback of the shape and controls the locomotion of the dual-segment soft

manipulator. Both load-free and load conditions were considered. After given a

desired position in the tip, system will gradually move towards the goal, with real-

time 3D virtual shape provided. Therefore, the solution includes two key parts:

shape estimation and control with external disturbances. Since the infeasibility of

external sensors, commercial strain gauges were used as internal sensors to quan-

tify the deformation of the manipulator. Delicate fabrication method exhibited

appropriate integration between the robot body and the sensors. To map between

the sensor readings and the 3D shape, some key points located on the backbone

were predicted via data-driven mechanism, and spatial curve fitting algorithm con-

nects them sequentially. The proposed data-driven method takes actuation inputs

and sensor readings into account to find the key points because external forces

also pose influence to the shape, and the basic functions for the curve fitting suits

well with the actual backbone. The shape estimation provides a good tip position

feedback for the controller, which was built based on Jacobian matrix that dif-

fers from area to area. ANN features comparable generality performance and was
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employed to build a data-driven model covering the whole task space. In actual

locomotion, an adaptive step distance mechanism (ASDM) was proposed to adapt

the uncertainty of external disturbances and enhance locomotion accuracy. Simu-

lation and experiments were conducted to fully validate the two modules. Finite

element method (FEM) simulates the robot shape under diversified scenarios, with

the inaccuracy of the key points. The control scheme was also initially validated

on the basis of PCC model in simulation manner. Results demonstrated that

the reconstructed shape matched well with the actual one, and the actual path

was almost consistent with the desired with the ASDM. In experiments, point

load, distributed load and torsion load were added at a random position of the

robot, and the shape reconstruction succeeded estimating the actual shape. The

controller was also successfully tested in diversified conditions with point-to-point

movement and path-following tasks, proving the proposed method is conducive

for users handling the robot needing visual feedback.

To find the uncertain external force acting on robot circumferential body which

is a bigger area in comparison to some existing works focusing on the tip, pro-

prioceptive mechanism was developed first. EGaIn alloy was injected inside the

manipulator to measure the deformation, leading to overall sensing system. ANN

model compares the current tip position with the theoretical value to identify the

presence. Then, the surface area was divided by a 2D map (grid). Each grid was

labelled by column position and row position. To find them and corresponding

magnitude of the force, probability model and virtual work principle were sequen-

tially used. Results confirmed that this method is able to reconstruct the external

force with the assumption that only a single force acts. Results also demonstrate

the feasibility of the sensing model, position estimation model and magnitude

solving method. This approach provided useful information for users to know the

ambient environment, such as static obstacles.

Aiming at another continuous rotation issue in continuum robotics, I designed

a novel structure and algorithm to enable continuous rotation and omni defor-
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mation simultaneously. Adding a new revolute DoF at the base enhanced the

dexterity and response velocity during operation. To the best of my knowledge,

slip ring was first imported to the design of multi-segment continuum robots, with

which the air transmission was decoupled. The added DoF also contributes to

higher degree of redundancy, so this work investigated GA optimization algorithm

to find the optimal shape configuration. More importantly, the synchronization

algorithm between the revolute motion and the pneumatic actuators were inves-

tigated to build rotation along the deformed backbone. Experiments showed that

the locomotion time with the DoF was far less than the conventional design for

a given point-to-point movement. Successful application on water suction and

drilling also demonstrated the potential of this design. This provides a novel

function of continuum robot based on its deformation, making it applicable in

exploring constrained environment.

6.2 Future Work

In my future research, some points should be extended based on the previous

achievements:

1) The task space of the soft manipulator is marginal. Although connecting

more segments in series could expand it, the fabrication challenge also increases.

The whole robot base will be mounted at a linear stage, thereby facilitating fast

movement of the manipulator. Then, the whole manipulator can perform wider

range of tasks, with deformation, translation, and rotation.

2) The control scheme of the continuous rotation currently is separated with

the deformation. Investigating simultaneous movement is also my future work,

making the robot can rotate wile shape configuration varies as desired.

3) During rotation, the desired shape was influenced by inertia. To pursue

better rotation accuracy and real-time shape configuration, controller with the

error of the rotation will be considered in future work. This mitigates fabrication

imperfections, and improves the whole locomotion.
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