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ABSTRACT

Two-sided market is a marketplace where participants on demand- and supply-side

transact with each other through a platform to create economic values. How to select

selling strategies to improve the matching efficiency of service goods has become the

key to service providers. In this paper, we compare post pricing and k-double auction

mechanism, and explore the role of upgrading and opaque selling mechanism in disposing

of leftovers. How to manage the pricing, selling strategies selection and resource allocation

problems of above mechanisms in two-sided market is the focus of this paper.

Firstly, we compare dynamic pricing with k-double auction in the presence of strate-

gic providers. Under dynamic pricing mechanism, the platform sets prices, customers

and providers are matched randomly. Under k-double auction mechanism, the platform

announces a matching policy, participants on two sides are matched based on a bidding

priority. To capture providers’ strategic behaviour, we construct a two-period model in

which a sub-game Nash equilibrium is characterized. Results indicate that the lower the

demand-supply intensity and the higher the bidding power, the more likely that the plat-

form chooses post pricing. Because the transaction price is higher in post pricing than

in k-double auction, customers are better off in k-double auction than in dynamic pric-

ing. Both providers and the whole society are always better off under k-double auction

except Buyer’s Bid Double Auction. By considering static post pricing, we show that the

platform with more pricing flexibility prefers post pricing to k-double auction. And by

considering one-period model, we find that providers’ strategic behaviour motivates the

platform to adopt k-double auction.

Secondly, we examine the relationship between two typical probabilistic mechanisms,

upgrading and opaque selling, against a backdrop of vertical differentiated markets. In

upgrading mechanism, high-quality capacities are offered as upgrades with a much lower

price to customers who have purchased low-quality capacity. In opaque selling mecha-

nism, high- and low-quality capacities are offered as an opaque mix with the same selling

price. To capture different roles of two probabilistic mechanisms played in the seller’s

salvage value generation process, we construct a two-stage model, including a regular and

salvage stage, to integrate these two mechanisms into a unified framework. Result shows

even though the price discrimination and demand segmentation effect make upgrading

dominate opaque selling, the two mechanisms are either complementary or substitutable.

That is, the two probabilistic mechanisms are substitutes when high-quality capacity is

extremely small when no upgrading platform participates, are either complementary or

substitutable when high-quality capacity is in the medium level, or are substitutes when
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upgrading comes first or complements when opaque selling comes first if high-quality

capacity is rather large.

This paper provides managerial insights for service providers and platforms regarding

operations decisions, and lays a foundation for the follow-up research on mechanism design

in two-sided market.
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CHAPTER 1

INTRODUCTION

Recognizing that unused service goods at the end of the selling season has no salvage

value, we find that many researchers have examined different pricing mechanisms, such

as dynamic pricing, probabilistic selling, strategic stockout, and reservations, to extract

consumer surplus as much as possible (Georgiadis and Tang 2014). In this paper, we

explore the optimal selling strategies of service goods with limited capacity in two-sided

market. In what follows, we first introduce the background, recognize the research gap,

then identify the main research questions, and finally point out main conclusions and

contributions of this work.

Background

The platform acts as an intermediary to effectively match customers on the demand side

with providers on the supply side. It involves in daily life, such as transportation, accom-

modation, online shopping, catering consumption, investment and financing, etc. The

platform has developed rapidly in recent years. For example, Amazon generated net

sales of 280.5 billion in 2019, exceeding 102.64 billion of 2017. The transaction volume of

Taobao reached 268.4 billion yuan during double 11 in 2019, which is more than 5368 times

of the one in 2009. Platforms can be divided into different types based on the main busi-

nesses it conducts, such as sharing economy platform (i.e., Uber, Lyft, Airbnb), tourism

reservation platform (i.e., Hotwire, Priceline), task rabbit platform (i.e., WeWork), retail

platform (i.e., Amazon), and communication platform (i.e., WhatsApp). Among which

service platforms play a vital role in the platform economy. Service providers can use their

own skills, resources, or creativity to serve customers so as to generate economic values.

Because service goods cannot be reproduced and utilized and have low residual value,

mitigating demand-supply mismatch is vital in operations management. In this paper,
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we investigate the optimal selling strategies of service providers, such as the third-party

platform or the seller in two-sided market.

Pricing and auction mechanisms are widely used in two-sided market to coordinate

demand with supply. For example, Didi Chuxing adopted both auction and pricing mech-

anism before 2017. In pricing mechanism, drivers have no choice but to accept service

assignments from the platform. In auction mechanism, drivers choose whether and when

to serve customers. In addition, Yahoo! Shopping and Yahoo! Auction are two indepen-

dent online platforms for customers to choose. List pricing and NYOP (name-your-own-

price) auction mechanism coexist on Priceline. On eBay, the second price sealed bid and

post pricing are used. Based on the coexistence of two pricing mechanisms and distinct

features of two-sided market, we explore the platform’s optimal mechanism between post

pricing and k-double auction mechanism in the presence of strategic providers.

Selling strategy with a probabilistic nature has become a common way to dispose of

leftovers in online travel agencies. Opaque selling and upgrading are two probabilistic

selling mechanisms with capacity offering uncertainties. In opaque selling mechanism, ca-

pacities with similar attributes or differentiated quality are sold collectively, and the prob-

ability of customers obtaining a specific type of capacity depends on the service provider’s

decision. Amazon’s lucky bag, Germanwings’s blind booking, and blind box are typical

opaque selling examples. In upgrading mechanism, high-quality capacities are offered to

fulfill demand from customers who have purchased low-quality ones, and the probability

of customers getting upgraded successfully also depends on the service provider’s deci-

sion. Upgrades include conditional upgrades, such as eStandby, and last-minute upgrades,

such as front-desk upgrading. Both upgrading and opaque selling mechanisms act on the

salvage value generation process of service goods. We compare upgrading and opaque

selling mechanism in a vertical differentiated market to clarify the relationship between

two probabilistic mechanisms in disposing of leftovers.

The two-sided market proposed by (Rochet and Tirole 2003) is the basis for the study

of platform economy. In this paper, we first compare post pricing and k-double auction

mechanism, and discuss the optimal selling strategy of homogeneous service goods. Then,
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we compare upgrading and opaque selling mechanism, and discuss the optimal selling

strategy of heterogeneous service goods.

Brief Research Overview

Platform economy is also known as two-sided market economy. Many researchers have

discussed the impact of peer-to-peer and business-to-business selling mechanisms on cus-

tomers’ participation and service provider’s fulfillment strategies (Benjaafar et al. 2022),

resource allocation within time and space dimensions, and information disclosure (Jin et

al. 2018, Ke et al. 2017) or signaling (Allon et al. 2017). Topics regarding pricing strategy

in two-sided market include the exploration of the optimal pricing decision of two-sided

market, the optimal contract design (Halaburda et al. 2018), the optimal matching mech-

anism design (Hu and Zhou 2022), and the choice of open or closed selling strategies

of the platform (Hagiu and Wright 2015, Johnson 2020). We compare post pricing and

two-sided auction, which differ in both the price determination and the matching policy.

Opaque selling is widely explored in marketing and operations management. Research

topics include the economic impact of opaque selling mechanism on platform’s operation

management (Post 2010), and comparative analysis of opaque selling and other selling

mechanisms, such as markdown pricing, advance selling and last-minute selling. Upgrad-

ing research topic is mainly about pricing and capacity allocation of upgrades (Ceryan

et al. 2018). Recognizing that there are few studies studying probabilistic selling mecha-

nism with vertical differentiation, we integrate opaque selling and upgrading into a unified

framework so as to clarify the complementary or substitutable role of these two mecha-

nisms.

Research Questions

Based on the popularity of two-sided market economy and the research gaps, we want

to explore the optimal pricing decision, the optimal selling strategy selection, and the

optimal resource allocation of service goods in two-sided market.

Firstly, based on the characteristics of two-sided market, we investigate the optimal

selling strategy between post pricing and k-double auction in the presence of strategic
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service providers. We aim to highlight the important role of demand-supply intensity,

the platform’s pricing flexibility, pricing entity and providers’ strategic behavior on the

platform’s selling strategy selection. The specific research questions are as follows: What

are the optimal prices under post pricing and k-double auction? What is the optimal

participation behavior of customers and providers under two pricing mechanisms? Which

pricing mechanism, dynamic pricing or k-double auction, is more beneficial to the shar-

ing platform, customers, and the whole society? Which parameter, such as the pricing

flexibility, the bidding power of customers, or the demand-supply intensity, explains the

dominance?

Secondly, recognizing the fact that opaque selling and upgrading both act on the seller’s

salvage value generation process, we integrate these two probabilistic selling mechanisms

into a vertical market, and explore the condition, such as the high-quality capacity level,

the platform’s participation or the adoption sequence, that permits the complementary

or substitutable role of opaque selling and upgrading. The specific research questions

are as follows: What is the fundamental difference between pure opaque selling and pure

upgrading? Which pure probabilistic selling mechanism is more beneficial to the seller? In

terms of the mixed use of two probabilistic mechanisms, are opaque selling and upgrading

complements or substitutes? Which parameter, such as the high-quality capacity level,

the platform’s intervention, or the adoption sequence, that explains the complementary,

and/or substitutable role of two probabilistic mechanisms?

Brief Introduction of Research Content

First, for the selling strategy selection between post pricing and k-double auction mech-

anism in two-sided market, we build a two-period model to capture providers’ strategic

service fulfillment behavior. Customers arrive in each period while the number of providers

is fixed over the selling season. The platform determines a transaction price under post

pricing mechanism, and announces a matching policy under k-double auction mechanism.

We formulate the interaction between the platform and participants on two sides as a

sequential game, and derive the sub-game Nash equilibrium and mixed fulfillment equi-

librium by solving the nonlinear optimization problem under each mechanism.
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Second, for the selling strategy selection of two probabilistic selling strategies with

capacity offering uncertainties, we build a two-stage model to capture the role of prob-

abilistic selling mechanism in the seller’s salvage value generation process. The seller

with limited capacity makes pricing decisions in the regular stage and cooperates with a

third-party platform or not to deal with leftovers in the salvage stage. The platform, if

any, makes pricing decisions. Customers coming at each stage are myopic. We compare

scenarios with pure and mixed use of opaque selling and upgrading. A rational expecta-

tion equilibrium is characterized in opaque selling mechanism, and backward induction is

employed to solve a sub-game Nash equilibrium under each scenario.

Research Innovation

As for the work on selling strategies of homogeneous service capacity in two-sided mar-

ket, we consider strategic service providers who have work flexibility. We also consider

k-double auction mechanism, which is in line with the characteristics of multi-party partic-

ipation in two-sided market. By comparing post pricing and k-double auction mechanism,

we identify the key factors including pricing entity, pricing flexibility, demand-supply in-

tensity and providers’ strategic behavior that determine the optimal selling strategy of

the sharing platform. We extend the model to another two-sided auction so called bid-ask

mechanism, to enrich the analysis of auction mechanism in two-sided market.

As for the work on the probabilistic selling strategies of heterogeneous service capacity

in two-sided market, we are among the first to compare opaque selling and upgrading with

vertical differentiation. By comparing scenarios where opaque selling and upgrading are

adopted singly or jointly, we identify that the adoption sequence between two probabilistic

mechanisms, the platform’s participation and the high-quality capacity level are the key

elements that determine the complementary or substitutable role of two mechanisms.

We also characterize the optimal capacity offering, the optimal pricing and the optimal

resource allocation strategies of limited capacity within both time and channel dimensions.

Structure of Thesis

The reminder of this paper proceeds as follows. Chapter 2 details the model settings and

model assumptions, summarizes related literature, characterizes the equilibrium prices
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under post pricing and k-double auction mechanisms, and uncovers the parameters that

explain the dominant pricing mechanism. Chapter 3 introduces the model descriptions

of opaque selling and upgrading mechanisms, summarizes related literature, compares

these two probabilistic selling mechanisms in pure use and mixed use, and reveals the

conditions under which two probabilistic mechanisms are complementary, substitutable,

or either complementary or substutitable. Chapter 4 summarizes this paper and points out

several avenues for future research. All mathematical proofs are referred to the appendix.
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CHAPTER 2

POST PRICING VS. DOUBLE AUCTION IN

TWO-SIDED MARKET

2.1 Introduction

The intervention of an online platform is a fundamental characteristic of two-sided

market. How to match demand with supply efficiently is a key to the sharing platform.

One of the main strategies that the platform adopts is post pricing mechanism, such as

Uber’s surge pricing and static pricing mechanism. Another strategy is auction mecha-

nism, such as the second price sealed auction on eBay, and double auction in call market.

Empirical study reveals that auction mechanism yields a higher likelihood of successful

sales while pricing mechanism yields higher transaction prices (Einav et al. 2018). Even

though auction achieves a revenue dominance (Hammond 2010), the shift from auctions

to post pricing is widely observed. For instance, eBay was a pure online auction site

till 2002, after that time post pricing prevails. Didi Chuxing previously allowed drivers’

cherry-picking behavior, but now drivers have no choice but to fulfill assignments from the

online platform. Motivated by the trend from auction to pricing, we aim to investigate

the performance of these two pricing mechanisms from the sharing platform’s perspective.

In two-sided market, there are several sellers who hold items for sale or rental and sev-

eral buyers who consider buying or renting these items. Examples are stock exchanges,

used-car markets, emission trading markets, and Internet advertisements. A double auc-

tion (DA) is a mechanism for organizing a two-sided market-deciding who will buy, who

will sell and at what prices (Segal-Halevi et al. 2018). Double auction (also called two-

sided auction) which is widely used in financial markets, call markets and automated

control (McAfee 1992, Chu and Shen 2006) can incorporate the dynamic interaction be-

tween customers and providers, and the intermediary role of the platform as well. For
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markets with finitely many traders, the best-known mechanism of this kind is the k-DA,

such as the uniform k-DA or discriminatory k-DA, which provides an explicit formula for

calculating market-clearing prices (Jantschgi et al. 2022). Choosing a mechanism with

the most economic efficiency is not the focus of our paper. Instead, we compare post

pricing with k-double auction in main analysis. The price setting entity is shifted from

the platform in pricing mechanism to participants on two sides in auction mechanism,

and the corresponding matching rule is shifted from random rationing to priority bidding.

Recognizing that researchers have separately examined the economic impact of pricing

in two-sided market and double auction mechanism design in stock markets, we aim to

uncover whether there is a dominant selling strategy between post pricing and k-double

auction in the presence of strategic providers. Questions we want to pursue are as follows:

(i) Which pricing mechanism, post pricing or k-double auction, is more beneficial to

the sharing platform, customers, and the whole society? Which parameter (i.e.,

demand-supply intensity, bidding power, pricing flexibility, or providers’ strategic

behavior) explains the dominance?

(ii) What is the optimal pricing policy for the sharing platform under post pricing and

k-double auction?

(iii) Does providers’ fulfillment equilibrium strategy differ in two mechanisms? Do the

optimal transaction prices and the optimal transaction volumes differ in two mech-

anisms?

To answer these questions, we build a two-period model in which a pool of providers

are available over two periods, while a stream of customers arrive in each period. In post

pricing mechanism, the platform sets prices, service providers decide whether and when

to work, and customers at the same time choose whether to participate. Customers and

providers are randomly rationed. In k-double auction mechanism, the platform announces

the matching and price determination rules before the start of the selling season. Providers

who plan to fulfill demand at that time period and customers propose bids simultaneously.
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The higher the customer’s (resp., provider’s) bid, the higher (resp., lower) the matching

probability. We formulate the interaction between the platform and participants on two

sides as a sequential game, and backward induction is employed to seek the subgame

perfect Nash equilibria. Moreover, a mixed strategy1 is employed to characterize service

providers’ demand fulfillment decision.

We have the following main insights: (a) The platform’s pricing flexibility, customers’

bidding power, demand-supply intensity and providers’ strategic behavior all play vital

roles in influencing platform’s strategy selection between post pricing and k-double auc-

tion. Specifically, if the demand-supply intensity is low, and the bidding power is high,

then the likelihood of using post pricing is high. If the platform owns more pricing flexibil-

ity, then the platform is more likely to use post pricing. And providers’ strategic behavior

is a strong incentive for the platform to use k-double auction. (b) Because the transac-

tion price is higher under both dynamic and static pricing than under k-DA, hence, only

customers are better off under k-DA than under post pricing. Both providers and the

whole society are better off under SODA and GDA. Under BBDA, providers are worse

off for the price distortion effect is more evident than the demand expansion effect in

BBDA, and the whole society is better off only when there are few last-minute customers

and more regular customers. (c) In k-DA, no matter what the transaction price is (i.e., a

market-clearing price in uniform k-DA, and prices vary with matching pairs in discrimina-

tory k-DA), providers (resp., customers) bid at their discounted reservation prices (resp.,

valuations) if customers have (resp., do not have) the bidding power. In addition, the

optimal linear bidding policies on demand and supply sides show the same structure in

general case in uniform k-DA.

The reminder of this study proceeds as follows. The following part of this section

introduces related works. Section 2.2 details the model setting. Section 2.3 and 2.4 are

devoted to equilibrium characterization in dynamic pricing and k-double auction, respec-

1. A mixed strategy equilibrium is defined as the probability of joining in period one such that given

one provider’s optimal participation strategy, the best response of other providers is also to choose the

same probability of participation.
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tively. Section 2.5 compares two mechanisms and section 2.6 uncovers two extensions.

Section 2.7 summarizes this work and points out several avenues for future research. All

mathematical proofs are referred to the appendix.

2.1.1 Literature Review

Our work relates to three streams of literature: dynamics of sharing economy, double

auction mechanism design, and mechanisms comparison between pricing and auction.

An extensive literature examines the dynamics of sharing economy. A body of this

research explores the economic impact of sharing economy on sellers’ operation strategies.

(Benjaafar et al. 2021 ) investigate the impact of car owners choosing to share their cars

through the platform (i.e., business-to-customer service, under which full-time drivers ful-

fill demand even though it is not driven by their personal needs) or not (i.e., peer-to-peer

service, under which drivers share cars with riders when they fulfill their own transporta-

tion needs) on the congestion effect, and they claim that if the ratio of the ownership

to usage is low (resp., high), peer-to-peer (resp., business-to-customer) service emerges

in equilibrium. (Benjaafar et al. 2019) explore the impact of collaborative consumption

on consumers’ endogenous choice between renters and owners. They claim that low-use

individuals choose to be renters and high-use individuals choose to be owners. (Jiang

and Tian 2018) and (Tian and Jiang 2018) study the impacts of consumer-to-consumer

product sharing on consumer’s owning or renting choice and retailers and manufacturers’

profits, respectively. They conclude that product sharing can be a win-win or lose-lose

situation depending the transaction cost (Jiang and Tian 2018) or the capacity building

cost (Tian and Jiang 2018).

Another body of this research investigates the role of the sharing platform in balancing

demand and supply over time and space. (Taylor 2018) studies how delay sensitivity and

agent independence impact the platform’s per-service price and wage. With uncertainty

incorporated neither in the customers’ valuation or in agents’ opportunity cost, price

decreases while wage increases with the delay sensitivity. While incorporated uncertainty
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reverses the results. (Bai et al. 2019) use a queueing model to figure out the optimal price,

wage and payout ratio when considering price and waiting-time sensitive consumers and

earnings sensitive providers. They claim that the optimal price increases with demand

while is not monotonic with capacity or waiting cost.(Hu and Zhou 2020) study the

performance of the fixed commission contract. (Gurvich et al. 2019) examine how a firm

balance the tradeoff between maintaining an adequate pool of agents on a long-term basis

and attracting enough agents for each time interval over a short time horizon. The staffing

problem is modeled as a newsvendor problem, and the optimal decision is a variant of

the critical-fractile equation. (Bimpikis et al. 2019) derive the pricing and compensation

strategy which facilitates the demand-supply matching in space, and they show that the

price and compensation achieve maximum when balanced demand pattern arises over the

network’s locations. Other topics include regulation control (Benjaafar et al. 2022, Yu

et al. 2020), information asymmetry (Jin et al. 2018, Ke et al. 2017, Allon et al. 2017),

matching mechanism design (Hu and Zhou 2022) and competition (Cohen and Zhang

2017) are also explored.

All these papers consider a single pricing scenario, while we explore the implications

of sharing platform by unifying post pricing (i.e., dynamic and static pricing) with double

auction (i.e., uniform and discriminatory k-double auction) in two-sided market.

The following papers relate to our work regarding dynamic pricing in two-sided mar-

ket. (Cachon et al. 2017) consider a two-period model to investigate the performance of

surge pricing mechanism. Self-scheduled providers make joining decision before demand

realization or cost revelation in the first period, and make participation decision in the

second period. Result implies that both customers and providers are better off under

surge pricing. (Guda and Subramanian 2019) investigate the optimal time and space

to implement surge pricing. They consider a two-period model in which customers and

providers interact with the platform over two market zones. They show that surge pric-

ing employed with excess supply motivates workers to move across zones. No research

work except (Chen and Hu 2020) considers participants’ forward-looking behavior, they

examine whether a fixed or dynamic pricing policy is optimal in two-sided market. They
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confirm managerial insights of (Cachon et al. 2017). In contrast, we are among the first

to study the strategic interactions among customers, providers and the sharing platform

in a dynamic environment featured with providers’ strategic demand fulfillment.

Our work also connects to the literature on double auction mechanism design. A lot

of papers explore the efficient double auction mechanism that satisfies the properties of

individual rationality, balanced budget, incentive compatibility and economic efficiency

(McAfee 1992, Chu and Shen 2006, Chu and Shen 2007, 2008). Other research works

regarding k-double auction focus on the existence and the rate of convergence to efficiency

of equilibria. For instance, (Williams 1991) studies buyer’s bid double auction with k = 1.

(Satterthwaite and Williams 1989a) consider k-double auction with a single buyer and a

single seller. (Rustichini 1990) generalize the model to k-double auction and extend

the analysis to unequal number of customers and sellers. Results show that traders’

bids converge to their reservation values when the number of traders is rather large.

Mechanism design is not the focus of our paper, we consider k-double auction and bid-

ask mechanism, which are feasible in capturing two-sided market features. Our aim is

to explore the underlying incentive that explains the dominance of post pricing/k-double

auction.

Our paper is built off of the literature on auction and pricing comparison. One part

of this stream compares auction and posted price theoretically. (Wang 1993) compares

posted pricing mechanism (which involves displaying cost) and second-price sealed bid

auction (which involves storing and displaying cost) in an offline market. He proves that

auctioning dominates pricing when conducting auction is costless for displaying is usually

cheaper than storing. Moreover, if auction cost is considered, auctions are more attractive

in occasions of more dispersed valuation distribution. (Ziegler and Lazear 2003) focus on

the role of customers’ waiting cost and product’s discount rate on the seller’s revenues.

They claim that stores are superior than auctions when products deteriorate quickly.

(Etzion et al. 2006) explore the optimal design of dual channel (i.e., posted price, auction

duration and quantity) where posted price and seal-bid q + 1-price auction are employed

online simultaneously. They prove that customers with valuation lower than the posed
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price have no choice but to bid and those with high valuation can choose between bidding

and pricing based on a threshold policy. With this market segmentation, short one-unit

auctions and long multi-unit auctions are optimal. They also claim that joint adoption

dominates single post pricing mechanism. Different from (Etzion et al. 2006), (Caldentey

and Vulcano 2007) consider supply scarcity and a multiplicative utility function instead

of an additive one. They examine how customers behave when the seller only controls

auction format or manages auction and post price channels. They find that the number

of units offered to sale is a nonmonotonic function of the posted price if the seller controls

only the auction format, and dual channel reduces to single posted price channel if the

seller’s capacity is small or the discount factor is rather large.

Another part of this stream conducts numerical analysis. A set of empirical papers

show that the dominance may depends on market shareholders and product features,

such as research cost in pricing and revenue risk together with monitoring cost in auction

(Zeithammer and Liu 2006) and sellers with valuable outside options (Bauner 2015).

(Hammond 2013) also shows that seller’s choice of mechanisms is based on the opportunity

cost of selling, sellers with a valuable alternative use favor the posted-price mechanism.

(Einav et al. 2018) prove that customers’ inconvenience cost and reservation utility have

important effects on the seller’s mechanism choice.

Our paper falls into the selling strategies comparison, customers make separate partic-

ipation decisions in two pricing strategies. To our knowledge, we are the first to prove the

importance of the pricing entity, demand-supply intensity, pricing flexibility and providers’

strategic behavior in shaping the performance of post pricing and k-double auction mech-

anism.

2.2 Model Setup

Consider a two-period model in which the sharing platform chooses two selling strate-

gies, post pricing or k-double auction, to maximize its profit. Participants include cus-

tomers on the demand side and providers on the supply side are payoff maximizers. Each
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customer (she) submits one fulfillment request, and each provider (he) serves one customer

during each time period.

Customers’ Behavior

Customers are heterogeneous in valuation v, which is uniformly distributed over interval

[0, 1], with cumulative distribution function (cdf) G(.) and corresponding probability den-

sity function (pdf) g(.). This heterogeneous valuation can be interpreted as the maximum

price the sharing platform can post in post pricing mechanism and the maximum price

that customers can bid in double auction mechanism. To capture the feature that mul-

tiple transactions take place on the sharing platform during a time period, we consider

mi customers joining in each period, where the subscript i ∈ {1, 2} indicates the time

period. Here mi can be regarded as the number of customers who would like to request

the service when it is offered for free. We consider varied demand across periods (i.e., m1

and m2 are not always equal), because demand depends on multiple sources of variability,

such as weather, holidays, or- morning and evening peak periods (Hu and Zhou 2020).

If a customer joins the platform and being matched successfully, she will incur a utility

which is defined as the difference between the valuation and the service payment. If she

turns to other alternatives, the corresponding utility is normalized to zero. Customers

are price-takers in post pricing and bidders in double auction mechanism. Unmatched

customers at the end of each period are lost.

Service Providers’ Behavior

Providers are heterogeneous in their reservation price c, which is uniformly distributed

over interval [0, 1], and the cdf and pdf are denoted by F (.) and f(.), respectively. Here

the reservation price represents the minimum price that providers are willing to serve

for the platform (i.e., the cost of participation). There are n providers available on the

platform over two periods. The supporting evidence is the government’s regulatory policy,

there always exists a finite pool of independent drivers in ride-hailing industry (J. J. Yu et

al. 2020). The relationship between demand across periods is given by m2 = δm1, and the

demand-supply relationship is captured by n = βm1, where β > 1
2
to ensure equilibrium

exists and δ > 0. If a provider participates and fulfills demand successfully, he obtains
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a utility which is defined as the payment from the platform less than the reservation

value. Unmatched providers at the end of period one are left to the second period, while

unmatched providers at the end of the selling season are lost. Providers make fulfillment

decisions based on the transaction prices and the successful matching probabilities, and a

symmetric mixed equilibrium such that all participating providers are indifferent between

in serving in period one and period two can be realized.

The Sharing Platform’s Role

The sharing platform determines a commission rate γ, where γ ∈ (0, 1], for each successful

transaction. For instance, Uber and StubHub charge service providers a percentage fee

(usually 15%-25%) for each successful matching.

(a) Post pricing mechanism.

The platform sets price pi at the beginning of period i in dynamic pricing. Random

rationing rule is employed in demand-supply mismatch (Hu and Zhou 2020, Cachon et

al. 2017). We assume that customers are aggregated over a certain time period, and

transactions take place at the end of that time period.

(b) Double auction mechanism.

The platform determines a matching policy including the matching and the transaction

price determination rules, in which customers along with providers’ bids are ordered in an

ascending order, a market-clearing price equals the convex combination of the m− th and

(m + 1) − th lowest bidding/asking price. Matchings take place among customers with

bidding prices no less than the market-clearing price and providers with asking prices no

more than this price. Specifically, the customer with the highest bidding price is matched

with the provider with the lowest asking price, the customer with the second highest

bidding price is assigned to the provider with the second lowest asking price, so on and

so forth. The matching process terminates when there are lack of customers or providers.

To conduct game-theoretic analysis, we approximate that sales can occur in fractions.

Moreover, we call customers (resp., providers) planning to join, available to be matched

and being matched successfully as potential, effective and successful demand (resp., sup-
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ply), respectively. The number of successful matches is defined as the minimum number

of effective demand and effective supply. We assume that the sharing platform employs

either pure dynamic pricing (abbreviated as DP) or pure double auction (abbreviated as

DA) scenario. In what follows, we analyze two scenarios subsequently.

2.3 Dynamic Pricing

The sequence of events is summarized as follows, as is also depicted in Figure 2.1:

First the sharing platform declares a price at the beginning of period one, upon observing

the posted price, customers make participation decisions and providers decide whether

to serve or to wait till the next period based on a mixed strategy. Unmatched providers

linger in the system while unmatched customers are lost. At the beginning of period

two, the platform sets another price, unmatched providers and providers waiting till this

time period, and newly come customers make participation decisions simultaneously. The

unmatched on both sides leave the market at the end of period two.

𝑚𝑚2 customers 
arrive.

Customers decide 
whether to participate. 

Time

Customers decide 
whether to participate.

𝑚𝑚1 customers 
arrive.

First Period Second Period

Service 
providers decide 
whether to serve.

Providers decide 
whether and 
when to serve.

The sharing 
platform sets 
price 𝑝𝑝2.

The sharing 
platform sets 
price 𝑝𝑝1.

Figure 2.1: Sequence of Events in Dynamic Pricing Mechanism

Customers will seek service upon arrivals if v − pi ≥ 0, then the effective demand

equals miḠ(pi). Providers will participate in period i if γpi − c ≥ 0. The demand

fulfilling decision of the supply side is described as: nF (γp1) providers make decisions
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about when to serve upon observing price p1. Suppose that the fraction of providers

choosing period one is given by α, then providers including nF (γp1)(1 − α) who choose

period two, nF (γp1)α − min{nF (γp1)α,m1Ḡ(p1)} unmatched ones and nF̄ (γp1) who

have a negative payoff when participating in period one defer their service fulfillments.

Denote nF (γp1)α by s, we have supply-demand state (s,m1Ḡ(p1)) in period one and

((n −min{s,m1Ḡ(p1)})F (γp2),m2Ḡ(p2)) in period two. Then, the indifference function

of providers is described as equation 2.1:

min{1, m1Ḡ(p1)

s
}γp1 = min{1, m2Ḡ(p2)

(n−min{s,m1Ḡ(p1)})F (γp2)
}γp2. (2.1)

The probability of being matched successfully is defined as the fraction of effective cus-

tomers over effective providers, which is no more than one. No heterogeneity is consid-

ered in shaping providers’ fulfillment decisions. This is in line with the concern that once

providers choose to join the sharing platform, they give up outside option, that is, the

participation cost is a sunk cost no matter which period they will serve.

2.3.1 Optimization Problem of Period Two

Given providers’ participation behavior and price p1, the profit function for the sharing

platform in the second period equals:

πDP
2 (p2) = (1− γ)p2min{(n−min{s,m1Ḡ(p1)})F (γp2),m2Ḡ(p2)}. (2.2)

The following lemma characterizes the platform’s optimal price and profit of period two.

Lemma 2.3.1(Optimal Solutions of Period Two) Given price p1 and the number of

providers s joining in period one, the platform’s optimal price of the second period equals

p∗2 =


1

2
if(n−min{s,m1Ḡ(p1)})γ > m2,

m2

m2 + γ(n−min{s,m1Ḡ(p1)})
otherwise.

The platform’s optimal profit equals

π∗
2(p

∗
2) =


(1− γ)m2

4
if(n−min{s,m1Ḡ(p1)})γ > m2,

(γ − γ2)m2
2(n−min{s,m1Ḡ(p1)})

(m2 + γ(n−min{s,m1Ḡ(p1)}))2
otherwise.

17



Lemma 2.3.1 reveals that when the effective demand is less than the effective supply, then

it is optimal for the platform to propose price 1
2
to extract the maximum surplus from the

demand side. Otherwise, the platform increases the posted price to shut a proportion of

customers out of the market.

2.3.2 Optimization Problem of Period One

With the optimal solution of period two, the sharing platform announces price p1 to

maximize the total profit πDP over two periods:

πDP (p1) = (1− γ)p1min{s,m1Ḡ(p1)}+ π∗
2(p

∗
2). (2.3)

Proposition 2.3.2 summarizes the optimal pricing policy under dynamic pricing.

Proposition 2.3.2 (Optimal Strategy Under Dynamic Pricing Mechanism)

(i) If m2 > γn − γm1

2
, then the optimal strategy is a stable pricing policy p∗1 = p∗2 =

ADP
1 > 1

2
, the optimal fraction of providers joining in period one equals α∗ =

m2
1

m2n
(ADP

1 + n
m1

− 1), and the number of successful transactions of two periods equal

D∗
1 = s∗ = m1A

DP
2 and D∗

2 = m2A
DP
2 .

(ii) If γm1

2
− γm2

1

4n
≤ m2 ≤ γn− γm1

2
, then the optimal strategy is a stable pricing policy

p∗1 = p∗2 = 1
2
, the optimal service fulfillment decision equals α∗ =

2m1n−m2
1

2m2n
, the

equilibrium number of providers choosing period one equals s∗ =
2γm1n−γm2

1

4m2
, and

the number of successful transactions of period i equals D∗
i =

mi

2
.

(iii) If 0 < m2 < γm1

2
− γm2

1

4n
, then the optimal strategy is a markup pricing policy

p∗1 = ADP
3 < p∗2 = 1

2
, the equilibrium fraction of providers joining in period one

equals α∗ =
2m2

1

m2n
(ADP

3 + n
m1

− 1− m2

2γm1
), and the number of successful transactions

of two periods equal D∗
1 = s∗ = m1A

DP
4 and D∗

2 =
m2

2
.

Proposition 2.3.2 shows that if the second-period demand is much lower than the first-

period demand (δ < γ
2
− γ

4β
),then a mark-up pricing policy is employed (Area (III) in

Figure 2.2). Otherwise, a stable pricing policy is employed (Areas (I) and (II) in Figure
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Figure 2.2: The Optimal Pricing Strategy of Dynamic Pricing

2.2). If supply is less than the realized market demand, then the supply is completely

cleared, this price price is referred to as the supply clearance price. If supply is more than

the realized market demand, then there will be some unmatched providers. In this case,

the price will drop to the level such that all customers will be served, and the price is so

called as the maximum demand coverage price.

Part (i) of Proposition 2.3.2 reveals that all providers choosing to fulfill demand in

period one are matched successfully. The total number of providers leaving the market

equals n− (m1 +m2)A
DP
2 . The number of customers seeking outside options in period i

equals mi(1−ADP
2 ). In equilibrium, the transaction volumes over two periods depend on

the effective supply. If the number of customers at a certain time period increases, then

competition on the demand side is fierce. So, the platform will raise price to retain cus-

tomers with high valuation so as to match providers with customers who value the service

most (
∂p∗i
∂mi

> 0). High prices also attract more providers to join because of anticipation

effect ( ∂s∗

∂m1
> 0, ∂s∗

∂m2
< 0). In the other period, in order to retain more providers, the

platform increases prices correspondingly. When the total supply increases, the compe-

tition effect on the demand side is mitigated because of the enlarged providers pool, so,

prices decrease (
∂p∗i
∂n

< 0).
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Part (ii) indicates that there are unmatched participants on both demand- and supply

side over two periods. The number of unmatched providers equals
2γm1n−γm2

1−2m1m2

4m2
in

period one and equals n − m1+m2

2
in period two. The number of unmatched customers

equals mi

2
in period i. In equilibrium, the transaction volumes over two periods depend

on the effective demand. So, the platform charges the price that extracts the maximum

surplus from customers.

Part (iii) highlights that all providers choosing to fulfill demand in period one are

matched successfully. The total number of unmatched providers equals n−(m1A
DP
4 +m2

2
).

The number of customers seeking outside options in period one (two) equals m1(1−ADP
4 )

(m2

2
). In equilibrium, the transaction volume of period one depends on the effective supply

while the one of period two depends on the demand side. So the impact of the market size

on the posted price of period one and period two can be explained by the logic described

in Part (i) and Part (ii), respectively.

Proposition 2.3.2 also indicates that the larger the market size of period two, the

lower the number of providers choosing to fulfill demand in period one: s(i) < s(ii) <

s(iii). The higher the posted price in period one, the higher the probability of providers

choosing period one: α(i) > α(ii) > α(iii). Moreover, the number of unmatched providers

(customers) becomes larger and larger when there are fewer and fewer providers available

on the platform, that is, n− (m1+m2)A
DP
2 > n− m1+m2

2
> n− (m1A

DP
4 + m2

2
). The total

unmatched probability, which is defined as the ratio of all unmatched participants over

all participants, decreases as n increases (
n+(m1+m2)(1−2ADP

2 )

n+m1+m2
> n

n+m1+m2
>

n+m1(1−2ADP
4 )

n+m1+m2
).

Detailed analysis that explains the impacts of model parameters on equilibrium out-

comes (price and demand) is summarized as Corollary 2.3.1.

Corollary 2.3.1

(i) If m2 > γn − γm1

2
, then the impact of m1, m2, n and γ on the optimal prices and

transaction volumes:
∂p∗i
∂m1

> 0,
∂p∗i
∂m2

> 0,
∂p∗i
∂n

< 0, and
∂p∗i
∂γ

< 0;
∂D∗

1

∂m1
> 0,

∂D∗
1

∂m2
< 0,

∂D∗
1

∂n
> 0,

∂D∗
1

∂γ
> 0, and

∂D∗
2

∂m1
> 0,

∂D∗
2

∂m2
> 0,

∂D∗
2

∂n
> 0 and

∂D∗
2

∂γ
> 0.

(ii) If γm1

2
− γm2

1

4n
≤ m2 ≤ γn − γm1

2
, then the optimal prices are independent of those
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platform parameters, and the optimal transaction volume only increases with mi:

∂D∗
i

∂mi
> 0.

(iii) If m2 < γm1

2
− γm2

1

4n
, then the impact of m1, m2, n and γ on p∗1 and the optimal

transaction volumes:
∂p∗1
∂m1

> 0,
∂p∗1
∂m2

> 0,
∂p∗1
∂n

< 0 and
∂p∗1
∂γ

< 0;
∂D∗

1

∂m1
> 0,

∂D∗
1

∂m2
< 0,

∂D∗
1

∂n
> 0,

∂D∗
1

∂γ
> 0 and

∂D∗
2

∂m2
> 0.

We also summarize how fulfillment equilibrium change with parameters as Corollary

2.3.2.

Corollary 2.3.2

(i) The impact of m1, m2, n and γ on the fulfillment equilibrium is described as:

∂s∗

∂m1
> 0, ∂s∗

∂m2
< 0, ∂s∗

∂n
> 0, and ∂s∗

∂γ
> 0.

(ii) The impact of m1, m2, n and γ on α∗: ∂α∗

∂m2
< 0; ∂α∗

∂n
> 0; ∂α∗

∂m1
> 0 if m2 ≥ γm1

2
− γm2

1

4n

and m1 < n or γn− γn2

2m1
< m2 <

γm1

2
− γm2

1

4n
; ∂α∗

∂γ
< 0 if m2 > γn− γm1

2
, ∂α∗

∂γ
= 0 if

γm1

2
− γm2

1

4n
≤ m2 ≤ γn− γm1

2
, or ∂α∗

∂γ
> 0 if γn− γn2

2m1
< m2 <

γm1

2
− γm2

1

4n
.

Corollary 2.3.2 indicates that large number of regular (last-minute) customers leads to

large (small) number of providers in period one, this is due to the positive network effect.

And because of the market expansion effect induced by the labour pool size increment,

or by the payment increment from the sharing platform, the number of providers serving

in period one also increases.

As for the impact of system parameters on the fulfillment probability, the logic behind

∂α∗

∂m2
< 0 and ∂α∗

∂n
> 0 is the same as the one regarding s∗. When there are more and

more customers in period one, both the number of providers choosing period one and the

optimal posted price increase. When the number of regular customers exceeds the total

supply, the effective supply is more than the effective demand, providers will find that

the probability of being matched successfully decreases, so, they are more willing to wait

for the second period.
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2.4 K-Double Auction

In uniform k-double auction, all bidding and asking prices at a specific time period are

aggregated and ordered in an ascending order, then the order statistics of m customers

along with n providers’ bids is described as T(1) ≤ ... ≤ T(m) ≤ T(m+1) ≤ ... ≤ T(m+n), the

transaction price equals (1−k)T(m)+kT(m+1), where k ∈ [0, 1]. Parameter k represents the

bidding power of customers, the higher the value, the stronger the bidding power. And k

is usually exogenous, each different choice of k represents different mechanisms. Moreover,

the available supply equals available demand when T(m) ̸= T(m+1), this is because the sum

of the number of asking and bidding prices no more than the transaction price equals m,

which is the total number of bidding prices. So, the number of asking prices no more

than T(m) equals the number of bidding prices no less than T(m+1). Shortages/surpluses

in demand (supply) may exist at this clearing price if T(m) = T(m+1). For model tractabil-

ity, we assume that demand equals supply in equilibrium no matter whether condition

T(m) ̸= T(m+1) holds. This is consistent with (Rustichini 1990), and consistent with the

assumption that large labour pool and demand size is considered in matching game.

For participation behavior, we consider symmetric bidding strategy such that bidders’

bidding strategies follow the same structure. Because participants only know the distribu-

tions of others’ private values, they bid against others’ strategies by choosing their bids as

functions of their private values. Consistent with the argument that bidding policy must

be nondecreasing with valuations (Chatterjee and Samuelson 1983), we assume a linear

bidding structure. That is, customers make bidding decisions based on B(v) = ac + bcv,

and providers propose asking prices based on S(c) = ap + bpc, where bc > 0 and bp > 0

(refer to the appendix for proof).

The order of play in the double auction unfolds as follows, as is also depicted in

Figure 2.3: First, the sharing platform declares a matching policy including matching

and transaction price determination rule. Then, in period one, customers arrive and each

one submits a bidding price based on the aforementioned bidding strategy, at the same

time, a subset of providers anticipating a lower price or higher matching probability in
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period one plan to serve and propose asking prices. Customers and providers are matched

based on predetermined matching rule. Unmatched customers turn to other alternatives

while unmatched providers will linger in the platform till the next period. In period

two, newly come customers propose bidding prices and providers who postpone their

service fulfillment along with those unmatched ones from previous period submit asking

prices simultaneously. Matches take place among available customers and providers, and

unmatched participants on both sides are lost forever at the end of period two.

𝑚𝑚2 customers 
arrive.

Providers and customers
bid simultaneously. 

Time

Providers and customers
bid simultaneously. 

𝑚𝑚1 customers 
arrive.

First Period Second Period

Providers decide 
when to serve.

The sharing determines 
the matching policy.

K-double auction

Figure 2.3: Sequence of Events In Double Auction

Given these preliminaries, we solve the Bayesian Nash equilibrium for the optimal

bidding decisions of participants on two sides, that is, every player participating in the

platform adopts the bidding strategy to maximize their utility given other players propose

their own optimal strategies. And we solve the mixed strategy equilibrium for providers’

fulfillment decision.

2.4.1 Customers and Providers’ Bidding Equilibrium

Because of endogenous transaction price and unknown bids from others, a participant

at the time of submitting a bid will weigh the likelihood that his/her bid can affect the

transaction price, which in turn will influence the expected gain or loss.
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Specifically, a specific customer weighs two factors as she raises her bidding price from

b to b +∆b, the first factor is that if her bidding price determines the transaction price,

that is, (1 − k)T(m) + kb, then, raising her bid a little bit increases the price she pays

(provided that b+∆b still determines the transaction price when ∆b is arbitrarily small).

The second factor is that the customer with bidding price b + ∆b makes a profitable

transaction that she fails to make with bidding price b. In other words, the customer’s

bidding price b is between T(m−1) and T(m) among total n+m− 1 bids and bidding price

b+∆b must surpass T(m). Bid T(m) specified here can be a bidding or an asking price.

To this end, the probability of a specific customer’s bidding price is within interval

(T(m), T(m+1)) in the pool of m − 1 customers with bidding strategy B and n providers

with bidding strategy S (or equivalently, the probability that b is the (m+1)− th lowest

bid in the order statistics of all m+ n bids) is denoted by

P1(b) =

i+j=m∑
0≤i≤m−1,0≤j≤n

(
n

j

)(
m− 1

i

)
G(v)iF (c)j(1−G(v))m−1−i(1− F (c))n−j,

where v = b−ac
bc

and c = b−ap
bp

. The term G(v)iF (c)j implies that the total number of

providers together with customers whose bids less than b is exactly m (for i + j = m)

because b is the (m+1)− th lowest bid among all n+m bids. On the contrary, the term

(1 − G(v))m−1−i(1 − F (c))n−j indicates that there are n − 1 participants whose bids are

more than b (for m− 1− i+n− j = n− 1). The expected loss of customer increasing her

bid equals kP1∆b (i.e., (v− ((1−k)T(m)+k(b+∆b)))− (v− ((1−k)T(m)+kb)) = −k∆b).

If a customer’s bid is too small to make her get matched successfully, then increasing

her bid may lead her to surpass the bid of a customer or a provider to move to the pool of

successful matches. That is, if the customer with bid b+∆b surpasses a provider, then the

probability equals f(c)∆b
S′(c)

, which is derived by P (S ∈ (b, b+∆b)) = P (S ≤ b+∆b)−P (S ≤

b) = P (c ≤ b+∆b−ap
bp

) − P (c ≤ b−ap
bp

) = ∆b
bp
. Let P2 denote the probability that exactly

m−1 of the remaining n+m−2 bids (excluding the specified customer with bidding price

b/b+∆b and the specified provider whose bid is the m− th lowest among n+m− 1 bids)

including bidding prices from m− 1 customers and asking prices from n− 1 providers are
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no more than b, we have the following:

P2(b) =

i+j=m−1∑
0≤i≤m−1,0≤j≤n−1

(
n− 1

j

)(
m− 1

i

)
G(v)iF (c)j(1−G(v))m−1−i(1− F (c))n−1−j.

The marginal gain of customers increasing her bid from b to b+∆b is given by v− b. The

reason behind this can be explained by the following: suppose that the bid within interval

(b, b+∆b) is denoted by b•, the selected customer with bid b can not be matched because

the transaction price is equal to (1 − k)b + kb• and (1 − k)b + kb• > b. If she increases

her bid by ∆b, then she will be matched with transaction price (1− k)b• + k(b+∆b) for

(1−k)b•+k(b+∆b) < b+∆b. The payoff from such a bidding price is between v− b and

v− (b+∆b) and is reduced to v− b when ∆b is close to zero. Another explanation is that

the transaction price is within the interval (b, b + ∆b) when the second factor accounts.

Correspondingly, the expected marginal gain for the customer surpassing a provider is

denoted by nP2
f(c)∆b
S′(c)

(v− b) because of randomness in choosing a specific provider among

n providers.

Analogously, if a bidding price lies in (b, b +∆b), then we have P (B ∈ (b, b +∆b)) =

g(v)∆b
B′(c)

= ∆b
bc
. The corresponding gain is denoted by (m− 1)P3

g(v)∆b
B′(c)

(v − b− k∆b), where

the probability that exactly m− 1 of the remaining n+m− 2 bids less than or equal to

b equals

P3(b) =

i+j=m−1∑
0≤i≤m−2,0≤j≤n

(
n

j

)(
m− 2

i

)
G(v)iF (c)j(1−G(v))m−2−i(1− F (c))n−j.

To sum up, the marginal expected gain of a specific customer is given by Equation

2.4:

lim
∆b→0

rc(b+∆b)− rc(b)

∆b
= (v − b)(nP2

f(c)

S ′(c)
+ (m− 1)P3

g(v)

B′(v)
)− kP1. (2.4)

The marginal payoff function here can be interpreted as the difference between the

marginal gains and loss from changing customer’s bid b with b + ∆b. Through math-

ematical transformation, we have the reduced form of Equation 2.4:

lim
∆b→0

rc(b+∆b)− rc(b)

∆b
=(v − b)(

1

bpF (c)

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(m− i)Ai
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+
1

bcG(v)

m−1∑
i

(
n

m− i

)(
m− 1

i

)
iAi)− k

m−1∑
i

(
n

m− i

)(
m− 1

i

)
Ai,

where A is defined as G(v)(1−F (c))
F (c)(1−G(v))

.

The analysis of deriving the marginal expected payoff of a specific provider is similar

to that of a customer (the logic is summarized in Figure 2.4). By increasing the asking

𝑎𝑎 𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷

𝑇𝑇(𝑚𝑚−1) 𝑇𝑇(𝑚𝑚)

𝑏𝑏

𝑇𝑇(𝑚𝑚−1) 𝑇𝑇(𝑚𝑚)

𝑏𝑏 𝑏𝑏+∆𝑏𝑏𝑏𝑏+∆𝑏𝑏

𝐷𝐷 + 𝐷𝐷 − 1

𝑏𝑏 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷

𝑏𝑏+∆𝑏𝑏

𝑇𝑇(𝑚𝑚−1) 𝑇𝑇(𝑚𝑚)

𝑏𝑏

𝑇𝑇(𝑚𝑚−1) 𝑇𝑇(𝑚𝑚)

𝑏𝑏𝑏𝑏+∆𝑏𝑏

𝐷𝐷 + 𝐷𝐷 − 1

Bidding/Asking price

Bidding/Asking price

Figure 2.4: Bidding Strategy Characterization

price, the provider will encounter two possibilities: First, the provider will still be matched

successfully with a higher transaction price. Second, the provider will surpass a provider’s

asking price or a customer’s bidding price and will not be matched anymore at this

increased bid. The gain is given by γ((1 − k)(b + ∆b) + kT(m+1)) − c − (γ((1 − k)b +

kT(m+1))− c) = γ(1−k)∆b, while for the loss, we know that the provider can be matched

when the transaction price is equal to γ((1− k)b+ kb⋄) (or equivalently, the asking price

is between T(m−1) and T(m) among n + m − 1 bids), where b⋄ denotes the bidding price

between b and b+∆b. And he will not be matched when he increases his bidding price to

b+∆b for the transaction price becomes γ((1− k)b⋄+ k(b+∆b)) (the bidding price must

surpass the bid T(m) specified here). Thus, the marginal net loss equals γb− c. Let P4 be

the probability that the bid is between the (m − 1) − th and m − th lowest bids within

a pool of m customers and n − 1 sellers, P5 be the probability that the bid lies between

(m− 1)− th and m− th lowest bids among total n+m− 1 bids including bidding prices
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from m customers and asking prices from n− 1 sellers. The specific expressions are given

in the appendix. The differential equation on the supply side is given by:

lim
∆b→0

rp(b+∆b)− rp(b)

∆b
= −(γb− c)((n− 1)P4

f(c)

S ′(c)
+mP2

g(v)

B′(v)
) + γ(1− k)P5. (2.5)

Similarly, we have simplified form for equation 2.5:

lim
∆b→0

rp(b+∆b)− rp(b)

∆b
=− (γb− c)(

1

bp(1− F (c))

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(n−m+ i)Ai

+
1

bc(1−G(v))

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(m− i)Ai)

+γ(1− k)
m−1∑
i

(
n

m− i

)(
m− 1

i

)
Ai.

To solve above best-response functions, we choose bids B(v) = S(c) = b to form

linked differential equations. Note that the first-order approach will fail if B(v) ̸= S(c)

(Yang et al. 2017). The necessary and sufficient conditions of the bidding equilibrium are

characterized by Lemma 2.4.1.

Lemma 2.4.1(Necessary and Sufficient Conditions of the Bidding equi-

librium)

(a) Necessary condition: if B together with S characterizes an equilibrium, then B′(v)

satisfies the equation 1
B′(v)

= kP1

(v−b)(m−1)P3g(v)
− nP2f(c)

S′(c)(m−1)P3g(v)
, and S ′(c) satisfies the

equation 1
S′(C)

= γ(1−k)P5

(γb−c)(n−1)P4f(c)
− mP2g(v)

B′(v)(n−1)P4f(c)
, where v = b−ac

bc
and c = b−ap

bp
;

(b) Sufficient condition: if B′(v) and S ′(c) respectively satisfy above equations, then B

along with C characterizes an equilibrium.

2.4.1.1 Optimal Bidding Strategy

For model tractability, we first introduce the dynamics of k-double auction with two

special cases, then turn to the general case. The increase of k makes the fraction of the

profit go from the demand side to the supply side. Case k = 1 represents the situation
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where service providers own more fraction of the profit, case k = 0 represents the sit-

uation where customers own more fraction of the profit, and case k = 1
2
represents the

situation where customers and providers own the same fraction of the profit. Moreover,

known as double auction with average mechanism when k = 1
2
, uniform k-DA exhibits

individual rationality, budget balance, and economic efficiency properties, and only in-

centive compatibility is lacking (Lin et al. 2019). We believe that these three cases are

representative.

Lemma 2.4.1.1 indicates that customer’s bidding strategy converges to their valuations

when the number of customers is rather large, and it is optimal for providers to bid c
γ

under case k = 1, which we call buyer’s bid double auction. When a specific provider find

that his bid determines the transaction price (i.e., his bid is on the RHS of the convex

combination), then increasing the bid a little bit does not change the transaction price

for his bid does not account for the price anymore when k = 1.

Lemma 2.4.1.1 (Optimal Bidding Strategies When k = 1) Under buyer’s bid

double auction, providers bid c
γ
, and customers bid m

m+1
v, where m denotes the number

of customers at that time period.

Similarly, when k = 0, which we call seller’s offer double auction, then providers

have the pricing power, so the optimal strategy for customers is to truthfully report their

valuations. The underlying reason is similar to BBDA: customers’ bids do not account for

the price anymore when k = 0. As for providers, their bidding policy follows the structure

ap + bp = 1 and both ap and bp are functions of the number of available providers at that

time period. In particular, it is optimal for providers to bid their reservation prices when

the amount of supply is extremely large and γ = 1. Details are summarized as Lemma

2.4.1.2.

Lemma 2.4.1.2 (Optimal Bidding Strategies When k = 0) Under seller’s offer

double auction, customers bid v, and providers’ optimal bidding strategy follows structure

ap+ bp = 1, ap =
γ(nb+b−1)−nb
γ(nb+b−1)−n

, bp =
nb−n

γ(nb+b−1)−n
, and b = ab+ bpc. Especially, providers bid

1
n+1

+ n
n+1

c when γ = 1. By Lemmas 2.4.1.1 and 2.4.1.2, the higher the value of k, the
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lower the bidding prices of customers, this confirms the claim that the higher the value

of k, the stronger the customers’ bidding power.

Case k ∈ (0, 1) implies that both customers and providers have the bidding power,

and the optimal bidding strategy is as Lemma 2.4.1.3 shows.

Lemma 2.4.1.3 (Optimal Bidding Strategies When k ∈ (0, 1)) Under gen-

eral k-double auction, with the number of customers and providers satisfy m > 1 and

n > 1, the optimal bidding strategies satisfy ac = ap and bc = bp, where ac = ap =

(1−k)(k+m)γb2p−(1−k)γmbp

bp((k−1)γm+γnk)+mn−γmn
, and bc = bp > 0.

Lemma 2.4.1.3 reveals that in general double auction with k ∈ (0, 1), the optimal

bidding policy of customers and providers follows the same structure: equal intercepts

and equal slopes. Moreover, the bidding parameters is closely related. Especially, bc =

bp = m
k+m

when ac = ap = 0 and ac = ap = (1−k)γk
(k−1)γm+γnk+mn−γmn

when bc = bp = 1. All

these are consistent with the optimal solutions of special cases k = 1 and k = 0.

To sum up, when the transaction price depends on the demand (supply) side, providers’

asking prices (customers’ bidding price) do not change the final transaction price, then

providers (customers) will bid as low (high) as possible to increase the matching probabil-

ity so as to maximize their expected utility. This conclusion is still valid when considering

discriminatory k-DA (see Appendix A.2 for details). When the transaction price counts

on both demand- and supply-side, then customers (providers) want to decrease (increase)

the transaction price, and the decrement and increment must be the same.

2.4.2 Provider’s Demand Fulfilling Equilibrium

Denote the probability and the number of providers joining in period one by α and

s, respectively. Then providers joining in period two include n − s providers planning

to serve in period two and unmatched ones from period one. With the optimal bidding

strategy of customers (resp., providers) in period one and two denoted by ac1+bc1v (resp.,

ap1 + bp1c) and ac2 + bc2v (resp., ap2 + bp2c), respectively, equating effective supply with
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effective demand in two periods yields

sF (
p1 − ap1

bp1
) = m1Ḡ(

p1 − ac1
bc1

), (2.6)

(n− sF (
p1 − ap1

bp1
))F (

p2 − ap2
bp2

) = m2Ḡ(
p2 − ac2

bc2
). (2.7)

In equilibrium, providers are indifferent between serving in two periods:

γp1F (
p1 − ap1

bp1
) = γp2F (

p2 − ap2
bp2

). (2.8)

The corresponding platform’s profit equals:

πDA = (1− γ)(p1m1Ḡ(
p1 − ac1

bc1
) + p2m2Ḡ(

p2 − ac2
bc2

)). (2.9)

2.4.3 The Optimal Strategy Characterization

In what follows, we derive the equilibrium results of BBDA, SODA and GDA one by

one.

2.4.3.1 BBDA

Plugging the number of potential customers and providers into their bidding strategies

and Equations 2.6, 2.7 and 2.8 simultaneously yields the optimal pricing strategy. The

optimal results under BBDA are summarized as Proposition 2.4.3.1.

Proposition 2.4.3.1 In BBDA (k = 1), equilibrium exists if
m1(1+γn)2+m2

1(1+γn−γ2n)

(1+γn+m1)(1+γn)
≤

m2 ≤ m1 + γm1n. The optimal strategy is a stable pricing policy p∗1 = p∗2 = 2m2

E
, the

equilibrium fraction of providers joining in period one equals α∗ = Em1−2m2(m1+1)
2γm2n

, and the

equilibrium transaction volumes equal D∗
1 = m1 − 2m2(m1+1)

E
and D∗

2 = m2 − 2m2(m2+1)
E

.

Proposition 2.4.3.1 shows that there exists an equilibrium when the demand intensity

across periods is not significantly large or small, and the optimal prices over two periods

are stable. This is because large demand gap causes providers to join the period with

higher demand. To this end, prices across periods are not equal in equilibrium. Neither
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all available customers or providers at a time period are matched successfully: the number

of unmatched customers (providers) equals 2m2(m1+m2+2)
E

( (n−m1−m2)E+2m2(m1+m2+2)
E

), and

the total unmatched proability equals n−m1−m2

n+m1+m2
. When compared with Proposition 2.3.2,

the total matching probability is larger under BBDA than under DP when the number

of last-minute customers is not rather large, and both the optimal prices and transaction

volumes are larger under DP than under BBDA otherwise.

Moreover, when the number of regular customers increases, then the order statistics

of the transaction price at that time period increases, so, the endogenously determined

transaction price also increases (
∂p∗1
∂m1

> 0). High price attracts more service providers to

fulfill demand in the first period. So, the transaction volume increases correspondingly

∂D∗
1

∂m1
> 0. With fewer providers waiting for the second period, the order statistics of the

transaction price increases, so the transaction price also increases (
∂p∗2
∂m1

> 0). Because

effective demand equals effective supply in equilibrium, so the transaction volume in the

second period decreases when s increases.

When the number of last-minute customers increases, then because of the order statis-

tics changing effect, the transaction price at that time period increases (
∂p∗2
∂m2

> 0). Simi-

larly, high prices lead to more providers pour into the second period ( ∂s∗

∂m2
< 0). The trans-

action volume increases correspondingly. When the number of providers fulfilling demand

in the first period decreases, the order statistics of the transaction price increases, and

the successful transaction volume is positively related to the amount of effective supply.

When the number of service providers becomes large, the order statistic of transaction

prices over two periods decrease, so as the optimal transaction prices (
∂p∗i
∂n

< 0). Because

the positive relationship between the successful demand and successful supply, the in-

creased number of providers available on the platform enhances the transaction volume

of each period (
∂D∗

i

∂n
> 0).

All these comparative analyses are summarized as Corollary 2.4.3.1.

Corollary 2.4.3.1

(i) The impact of m1, m2, and n on the optimal prices and transaction volumes:
∂p∗i
∂m1

>
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0,
∂p∗i
∂m2

> 0,
∂p∗i
∂n

< 0;
∂D∗

1

∂m1
> 0,

∂D∗
1

∂n
> 0,

∂D∗
1

∂m2
< 0,

∂D∗
2

∂m1
< 0,

∂D∗
2

∂m2
> 0,

∂D∗
2

∂n
> 0.

(ii) The impact of m1, m2, and n on the fulfillment equilibrium: ∂s∗

∂m1
> 0 when m2 is

low, ∂s∗

∂m2
< 0, ∂s∗

∂n
> 0.

When compared with Corollaries 2.3.1 and 2.3.2, Corollary 2.4.3.1 shows that the stable

pricing strategy in BBDA is attributed to the dynamics of the order statistics changing

effect and the anticipation effect instead of the dynamics of the competition effect and

anticipation effect in DP.

2.4.3.2 SODA

In seller’s offer double auction (with k = 0), we focus on case γ = 1 for mathemat-

ical tractability. Given the number of potential players in two periods (i.e., (m1, s) and

(m2, n − (s + 1)p1 + 1)), providers’ bidding policy in period one and two are denoted

by S1(c) =
1

s+1
+ s

s+1
c, and S2(c) =

1
n−(s+1)p1+2

+ n−(s+1)p1+1
n−(s+1)p1+2

c, respectively. Proposition

2.4.3.2 summarizes the optimal outcomes.

Proposition 2.4.3.2 In SODA (k = 0, γ = 1), equilibrium exists if

2
√
δ(1 +m1)(1 + δm1) ≤ F ≤ 2δ(1+m1+δm1)(1+δm1)√

δ(1+m1)(1+δm1)
. The optimal transaction prices

equal p∗1 =
F−2(1−m1+δm1+βm1)

2m1
and p∗2 =

2(1+δm1)
F

, the optimal fraction of providers joining

in period one equals α∗ =

√
δ(1+m1)(1+δm1)F−2δ(1+m1)(1+δm1)

2δ(1+δm1)δm1
, and the equilibrium transac-

tion volumes equal D∗
1 =

2(βm1+δm1+1)−F
2

and D∗
2 =

m2F−2m2(δm1+1)
F

.

Note that p∗1 − p∗2 =
2(
√

δ(1+m1)(1+δm1)−δm1−1)

F
, numerical analysis shows that the plat-

form’s optimal strategy under SODA approximates to a stable pricing policy (p∗1 ≈ p∗2).

By comparing Propositions 2.4.3.1 and 2.4.3.2, we find that the impacts of cross-

demand intensity and demand-supply intensity on the optimal prices and transaction

volumes are consistent under two double auction mechanisms (i.e.,
∂p∗i
∂δ

> 0,
∂p∗i
∂β

< 0; and

∂D∗
1

∂δ
< 0,

∂D∗
i

∂β
> 0), the main difference lies in the impact of the first-period demand on the

price and transaction volume (i.e.,
∂p∗i
∂m1

< 0 and
∂D∗

i

∂m1
> 0) and the impact of cross-demand

intensity on the second-period demand (
∂D∗

2

∂δ
< 0). This can be attributed to the driving
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forces of providers’ fulfillment equilibrium. That is, providers making demand fulfillment

decision have to take the matching probability and the transaction price into account

under SODA. While the matching probability does not count in BBDA.

2.4.3.3 GDA

With system state given by (m1, s) in period one and (m2, n − m1s
m1+s

) in period two,

we have results summarized in Proposition 2.4.3.3.

Proposition 2.4.3.3 In GDA (k ∈ (0, 1)), the optimal transaction prices equal p1 =

m1sbp1
m1+s

+
(1−k)γ((k+m1)b2p1−m1bp1 )

bp1 ((k−1)γm1+γsk)+m1s−γm1s
and p2 =

m2(m1+s)bp2
(n+m2)(m1+s)−m1s

+
(1−k)γ(m1+s)((k+m2)b2p2−m2bp2)

(γk(m1n−m1s+ns)−γm2(1−k)(m1+s))bp2+m2(1−γ)(m1n−m1s+ns)
, where m1

m1+s
p1 =

m2(m1+s)
(n+m2)(m1+s)−m1s

p2,

the optimal fraction of providers joining in period one equals α∗ = s
n
, and the equilibrium

transaction volumes equal D∗
1 =

m1s
m1+s

and D∗
2 =

m2(n(m1+s)−m1s)
(n+m2)(m1+s)−m1s

.

Proposition 2.4.3.3 introduces the optimal pricing structure for the sharing platform.

By deriving the optimal solutions under case that ap = ac = 0, bp = bc =
m

k+m
, and k = 1

2
,

we find that the optimal prices over two periods approximate to be stable (p∗1 ≈ p∗2)

(details are referred to the appendix).

By comparing Propositions 2.4.3.1 and 2.4.3.3, we find that the transaction price is

higher under BBDA than under GDA (pBBDA > pGDA), so, the transaction volume is

higher under GDA than under BBDA (
∑

i∈{1,2}mi(1 − mi+k
mi

pGDA
i ) >

∑
i∈{1,2}mi(1 −

mi+k
mi

pBBDA
i )).

2.5 Mechanisms Comparison

In this section, we compare Scenarios DP and DA, with an emphasis on identify-

ing conditions under which the platform, customers and providers can (individually and

jointly) enjoy higher benefits.
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2.5.1 Profit Comparison

2.5.1.1 BBDA vs. DP

Note that when equilibria of dynamic pricing and BBDA coexist, the optimal pricing

strategy in pricing mechanism is a stable pricing strategy. Theorem 2.5.1.1 summarizes

the comparison results.

Theorem 2.5.1.1 (BBDA vs. DP Regarding Platform’s Profit) Two mecha-

nisms coexist if min{m1(1+γn)2+m2
1(1+γn−γ2n)

(1+γn+m1)(1+γn)
, γn− γm1

2
} < m2 ≤ γm1n+m1, and πBBDA <

πDP .

Theorem 2.5.1.1 indicates that the pricing entity (the bidding power) is a key in

characterizing the relationship between two selling mechanisms. That is, the platform

earns higher revenues when it has price setting power than does not have. In equilib-

rium, the successful transaction price in BBDA is always smaller than the one in DP

(pDP
i > pBBDA

i ). The optimal transaction volume is larger in BBDA than in DP if

m1(1+γn)2+m2
1(1+γn−γ2n)

(1+γn+m1)(1+γn)
< m2 < γn − γm1

2
. Hence, the dominance of dynamic pricing

mechanism is attributed to the evident price increment effect when last-minute customers

pool is not large, or is attributed to both the price increment and demand expansion effect

otherwise.

2.5.1.2 SODA vs. DP

Note that SODA and DP coexists if 2
√
δ
√
m1 + 1

√
δm1 + 1 ≤ F ≤ 2

√
δ
√
δm1+1(δm1+m1+1)√

m1+1
.

There is no difference between dynamic pricing and SODA when γ = 1. With the follow-

ing parameter setting: m1 = 3000, γ = 0.25, β = 2, δ ∈ (0, 0.09375), δ ∈ (0.09375, 0.375),

δ ∈ (0.375, 2), where domains of δ represents the dynamic pricing scenario of (3), (2) and

(1) in Proposition 2.3.2, respectively. Numerical analysis shows that the platform has

higher transaction volumes in SODA than in DP, and higher transtion prices in DP than

in SODA (i.e., ∆pSODA−DP
i < 0 in Figure 2.5 and

∑
i∈{1,2}

∆DSODA−DP
i > 0 in Figure 2.6).
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Figure 2.7: Differences in Platform’s Profit Between Mechanisms GDA and DP

2.5.1.3 GDA vs. DP

When GDA and DP coexist, the optimal pricing strategy in dynamic pricing is p∗i =

ADP
1 . With the following parameter setting: m1 = 2000, γ = 0.25, β = 1, δ ∈ (0.8, 1.5),

results are illustrated by Figures 2.7 and 2.8. Numerical analysis shows that the platform

earns higher revenue in GDA than in DP, and the optimal prices and transaction volumes

satisfy ∆pGDA−DP
i < 0, and

∑
i∈{1,2}

∆DGDA−DP
i > 0. Hence, the priority of GDA over DP

is attributed to the market expansion effect.

Note that the mechanism under which the platform (resp., participants rather than

the platform) determines the transaction price is so called as the closed (resp., open)
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Figure 2.8: The Equilibrium Price and Demand under BBDA and DP

platform strategy (Economides and Katsamakas 2006,Hagiu 2007,Rysman 2009,Ryan et

al. 2012,Hagiu and Wright 2015,Johnson 2020). (Hagiu and Wright 2015) shows that the

open or closed strategy depends on the platform’s control rights over pricing, advertising,

and service fulfillment responsibility. For instance, great discounts, such as no delivery fee

and large number of coupons, adopted on JD.com in early stages, at which it is a closed

B2C platform. While we prove that the transaction price is higher on closed platform (with

dynamic pricing mechanism) than on open platform (with k-double auction mechanism).

We also claim the importance of pricing entity in influencing the open or closed strategy

of the sharing platform (i.e., πGDA > πDP and πBBDA < πDP ).

2.5.2 Surpluses and Social Welfare Comparison

Because of controversial practices, such as racial discrimination, safety concerns, pri-

vate information and labor law problems in ride-haling industry, platforms have to take

into account consumer/provider surplus. In what follows, we compare total consumer

surplus (abbreviated as CS), which is defined as the cumulative integration of the net

utility over valuation across two periods, provider surplus (abbreviated as PS), which

is defined as the cumulative integration of the net reservation value across two periods,

and social welfare (abbreviated as SW ), which is defined as the sum of consumer surplus,

provider surplus and platform’s profit. Formulas are as follows:

CS =min{s,m1Ḡ(p∗1)}
∫ 1

p∗1

(v − p∗1)g(v)dv
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+min{(n−min{s,m1Ḡ(p∗1)})F (γp∗2),m2Ḡ(p∗2)}
∫ 1

p∗2

(v − p∗2)g(v)dv.

PS =min{s,m1Ḡ(p∗1)}
∫ γp∗1

0

(γp∗1 − c)f(c)dc

+min{(n−min{s,m1Ḡ(p∗1)})F (γp∗2),m2Ḡ(p∗2)}
∫ γp∗2

0

(γp∗2 − c)f(c)dc.

SW =π∗ +min{s,m1Ḡ(p∗1)}(
∫ 1

p∗1

(v − p∗1)g(v)dv +

∫ γp∗1

0

(γp∗1 − c)f(c)dc)

+min{(n−min{s,m1Ḡ(p∗1)})F (γp∗2),m2Ḡ(p∗2)}(
∫ 1

p∗2

(v − p∗2)g(v)dv +

∫ γp∗2

0

(γp∗2 − c)f(c)dc)

where pi refers to the optimal posted price of period i in post pricing mechanism and the

successful transaction price in k-double auction.

2.5.2.1 BBDA vs. DP

Expressions of CS, PS and SW are complicated in BBDA and DP which makes theo-

retical analyses difficult. We numerically investigate how the pricing entity changed from

the platform to the participants on two sides affects different stakeholders’ benefits with

varying system parameters. Figures 2.9, 2.10, and 2.11 present the value of CSBBDA−DP ,

PSBBDA−DP and SWBBDA−DP , respectively, when a focal parameter δ changes. Other

parameters take the following values: m1 = 1500, γ = 0.25, β = 4.5, which ensure the

conditions in Propositions 2.3.2 and 2.4.3.1 hold and non-trivial equilibrium results exist.

Consumer Surplus.

By Figure 2.9, BBDA always benefits customers, the rationale lies in the formulation

of consumer surplus. In both mechanisms, consumer surpluses are composed of two

segments: (i) the net utility v−p∗i , and (ii) the total transaction volumes D∗
i . Recall that

the optimal price is smaller under BBDA than under DP, and the price effect is more

evident when the optimal transaction volume under BBDA is smaller than under DP.

Hence, customers are better off when they have the power of determining the transaction

price.

Provider Surplus.

37



0.90 0.92 0.94 0.96 0.98 1.00
δ

5

10

15

20

25

30

CSBBDA-DP

1.05 1.10 1.15 1.20 1.25
δ

0.067

0.068

0.069

0.070

0.071

0.072

0.073

CSBBDA-DP
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Figure 2.10: Differences in Provider Surplus Between Mechanisms BBDA and DP

By Figure 2.10, DP always benefits providers, the rationale also lies in the formulation of

provider surplus. In both mechanisms, provider surpluses are composed of two segments:

(i) the net utility γp∗i − c, and (ii) the total transaction volumes D∗
i . Recall that the

optimal price under BBDA is smaller than the one under DP, the optimal transaction

volume under BBDA is higher than the one under DP, and the price distortion effect is

more evident than the demand expansion effect in BBDA. Hence, providers are better off

under dynamic pricing mechanism.

Social Welfare.

By Figure 2.11, social welfare gap SWBBDA−DP changes with demand-intensity across

periods. When the number of last-minute customers is rather low, social welfare gap is

positive. This is because the difference in social welfare SWBBDA−DP is mainly driven

by CSBBDA−DP . When the number of last-minute customers increases, negative provider

surplus and profit gap as well as reduced consumer surplus leads to negative social welfare.
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Figure 2.11: Differences in Social Welfare Between Mechanisms BBDA and DP

2.5.2.2 SODA vs. DP

Resemblances are found between SODA and BBDA: consumer surplus is higher under

SODA than under DP for ∆pSODA−DP < 0, ∆DSODA−DP
i > 0. As for provider surplus,

the dominance depends on the tradeoff between price distortion (enhancement) effect

and demand expansion (contraction) effect. By conducting numerical analysis, we have

PSSODA−DP > 0 (see Figure 2.12). Hence, SODA is more beneficial to the whole society

when compared with DP.
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Figure 2.12: Differences in Provider Surplus Between Mechanisms SODA/GDA and DP

2.5.2.3 GDA vs. DP

Similar to SODA, customers and providers are better off under GDA than under DP,

and GDA is more beneficial to the whole society when compared with DP.
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2.6 Extensions

In this section, we test the robustness of our model and generate new insights by

considering other forms of selling strategies, and extending analysis to a one-period model.

2.6.1 Other Forms of Selling Strategies

Unfairness emerges when implementing price discrimination, and transaction prices of

each matching pair are unequal in practice. Here we consider static pricing (abbreviated

as SP) and discriminatory mechanism (refer to Appendix A.2) to capture more realistic

features.

2.6.1.1 Static Pricing Policy

With price p announced at the beginning of period one, the effective demand in period i

ismiḠ(p) and the effective supply over two periods is nF (γp). The number of transactions

in period one and two are defined as min{nF (γp)α,m1Ḡ(p)} and min{nF (γp)(1 − α) +

(nF (γp)α −m1Ḡ(p))+,m2Ḡ(p)}, respectively. Providers are indifferent between serving

in period one or waiting for the next period if

min{1, m1Ḡ(p)

nF (γp)α
} = min{1, m2Ḡ(p)

nF (γp)(1− α) + (nF (γp)α−m1Ḡ(p))+
}.

The platform’s profit equals πSP (p) = (1−γ)p(min{nF (γp)α,m1Ḡ(p)}+min{nF (γp)(1−

α) + (nF (γp)α −m1Ḡ(p))+,m2Ḡ(p)}). Proposition 2.6.1.1 characterizes the optimal so-

lutions.

Proposition 2.6.1.1 (Optimal Strategy Under Static Pricing Mechanism)

(i) If m2 > γn−m1, then p∗ = m2

γn(1−α∗)+m2
, D∗

1 =
γnαm2

γn(1−α)+m2
, D∗

2 =
γn(1−α)m2

γn(1−α)+m2
if α∗ ∈

[0, m1

m1+m2
); or p∗ = m1

γnα∗+m1
, D∗

1 =
γnαm1

γnα+m1
and D∗

2 =
γn(1−α)m1

γnα+m1
if α∗ ∈ [ m1

m1+m2
, 1];

(ii) If m2 ≤ γn−m1, then p∗ = 1
2
, α∗ =

m1nγ−m2
1

m2nγ
and D∗

i =
mi

2
.

Proposition 2.6.1.1 indicates that when the number of customers is large (m1+m2 > γn),

then there is no differece in serving two periods for providers. When there are more
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customers than providers in the first period (α∗ ∈ [0, m1

m1+m2
)), as more providers pour in,

the platform will increase the posted price to attract more providers ( ∂p
∗

∂α∗ > 0). When

there are more providers than customers in the first period (α∗ ∈ [ m1

m1+m2
, 1]), as more

providers pour in, the platform will decrease the posted price to shut providers out. When

supply exceeds demand (m1+m2 ≤ γn), providers are more willing to serve in the period

with higher demand, and maximum demand coverage price is proposed.

Dynamic Pricing vs. Static Pricing

Theorem 2.6.1.1 (Dynamic Pricing vs. Static Pricing)

(i) If m2 ≤ min{γn−m1,
γm1

2
− γm2

1

4n
}, then πDP < πSP

max.

(ii) If min{γn − m1,
γm1

2
− γm2

1

4n
} < m2 < max{γn − m1,

γm1

2
− γm2

1

4n
}, then there is no

absolute dominance between two pricing mechanisms.

(iii) If m2 ≥ max{γn−m1,
γm1

2
− γm2

1

4n
}, then πDP > πSP .

Theorem 2.6.1.1 shows that whenm2 ≤ min{γn−m1,
γm1

2
− γm2

1

4n
}, the platform’s maximum

profit in SP is higher than the platform’s profit in DP, the corresponding optimal price is

higher in SP than in DP, and the optimal transaction volume is lower in SP than in DP

(ADP
3 < 1

2
< ADP

4 ). Because the number of customers is rather small, the profit increment

of static pricing induced by price enhancement effect exceeds the profit increment of

dynamic pricing induced by transaction volume enhancement effect.

When m2 ≥ max{γn−m1,
γm1

2
− γm2

1

4n
}, the platform earns higher profit in DP than in

SP, and DP (resp., SP) has an advantage over the transaction volume (resp., transaction

price), because the number of customers is rather large, then the profit increment of DP

induced by transaction volume enhancement effect exceeds the profit increment of SP

induced by price enhancement effect.

When min{γn−m1,
γm1

2
− γm2

1

4n
} < m2 < max{γn−m1,

γm1

2
− γm2

1

4n
}, there is no absolute

dominance between two mechanisms. Specifically, if γm1

2
− γm2

1

4n
< m2 < γn−m1, then the

platform earns the same profit under two mechanisms. Otherwise, the platform is better

off under SP if and only if the number of customers is rather small.
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K-Double Auction vs. Static Pricing

We first compare BBDA with SP, then conduct numerical analysis to compare SODA

with SP and GDA with SP.

Theorem 2.6.1.2 (BBDA vs. SP) Two mechanisms coexist if min{m1(1+γn)2+m2
1(1+γn−γ2n)

(1+γn+m1)(1+γn)
, γn−

m1} < m2 ≤ γm1n +m1. Moreover, SP dominates BBDA if
m1(1+γ)(γn+1)+m2

1(1+γn−γ2)

(1+γ)m1+(1+γ)2
<

m2 < γn−m1 + 2
√
2γn. BBDA dominates SP if max{m1(1+γn)2+m2

1(1+γn−γ2n)

(1+γn+m1)(1+γn)
, γn−m1 +

2
√
2γn} < m2 ≤ γm1n+m1.

By Theorem 2.6.1.2, there is no absolute dominance between pricing and double auc-

tion when the platform does not have enough pricing flexibility. In addition, the posted

price is higher in SP than in BBDA, while the transaction volume is lower in SP than

in BBDA, this is in consistent with (Hammond 2010). By comparing Theorems 2.5.1.1

and 2.6.1.2, we find that both static and dynamic pricing dominates buyer’s bid double

auction when the number of customers is small, while when the number of customers

is large and demand gap across periods is small, static pricing is inferior to buyer’s bid

double auction. This is consistent with the practice that license tag auction is prevalent

in the market with multiple demand requests, such as in Shanghai.

Numerical analysis shows that comparable results between SODA and SP and GDA

and SP are consistent with the ones under dynamic setting. Specifically, with the following

parameters setting: m1 = 3000, γ = 0.25, β = 2, δ ∈ [0.375, 2], the optimal prices and

transaction volume in SODA satisfy: pSP > pSODA
i and DSP

1 +DSP
2 < DSODA

1 +DSODA
2 .

With the following parameters setting: m1 = 2000, γ = 0.25, β = 1, δ ∈ [0.8, 1.5],

the optimal prices, the transaction volume and the platform’s profit in GDA satisfy:

pSP > pGDA
i , DSP

1 +DSP
2 < DGDA

1 +DGDA
2 , and πSP < πGDA (Figure 2.13).

To sum up, by putting all comparisons together, we claim that the pricing flexibility,

pricing entity and demand-supply intensity play a vital role in influencing platform’s

strategy selection. The platform with more pricing flexibility are more willing to use post

pricing. The lower the demand-supply intensity and the higher the bidding power, the

higher the likelihood that the platform uses post pricing.
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Figure 2.13: Differences in Platform’s Profit Between Mechanisms GDA and SP

2.6.2 One-period Model without Strategic Behavior of Providers

We incorporate providers’ strategic behavior in the main analysis, we want to explore

whether this strategic behavior influences the platform’s strategy selection by considering

a one-period model.

2.6.2.1 Post Pricing & K-double Auction

In post pricing (abbreviated PP), the effective demand and supply equals mḠ(p) and

nF (γp), respectively, and the platform’s profit equals π(p) = (1−γ)pmin{mḠ(p), nF (γp)}.

The optimal solutions are summarized as the following lemma.

Lemma 2.6.2.1 (Optimal Solutions of Post Pricing) The optimal solutions of

the platform equal p∗ = 1
2
, D∗ = m

2
, and π∗(p∗) = (1−γ)m

4
if m < γn, or p∗ = m

m+γn
,

D∗ = γmn
m+γn

, π∗(p∗) = (1−γ)γnm2

(m+γn)2
otherwise.

In double auction mechanism, the effective demand equals effective supply: nF (p−ap
bp

) =

mḠ(p−ac
bc

). The optimal results are described as the following lemma.

Lemma 2.6.2.2 (Optimal Solutions of k-Double Auction)

(i) If k = 1, then the optimal solutions equal p∗ = m
γn+m+1

, D∗ = γmn
γn+m+1

, and π∗ =

(1−γ)γm2n
(m+1+γn)2

;

(ii) If k = 0 and γ = 1, then the optimal solutions equal p∗ = m+1
n+1+m

, D∗ = mn
n+1+m

, and

π∗ = 0;
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(iii) If k ∈ (0, 1), then the optimal solutions equal p∗ = m2

(m+n)(k+m)
, D∗ = mn

n+m
, and

π∗ = (1−γ)m3n
(k+m)(m+n)2

when ap = ac = 0.

By Lemmas Lemma 2.6.2.1 and Lemma 2.6.2.2, post pricing does not have price advantage

in the absence of providers’ strategic behavior: except SODA, both BBDA and GDA

generate lower prices than PP. And only GDA generates higher transaction volume than

PP.

2.6.2.2 Post Pricing vs. K-double Auction

Proposition 2.6.2.2 (Post Pricing vs. K-double Auction) PP dominates BBDA.

PP dominates GDA if n > min{m
γ
,
m(1−γ)

√
γm(k+m)−γmk

γk+γm−γ2m
} when ac = ap = 0. Proposition

2.6.2.2 shows that the platform still earns higher revenue in PP than in BBDA, and PP

is superior than GDA if there are enough providers. This is because GDA (PP) has an

advantage over the transaction volume (transaction price), and as more providers join

in, the demand expansion effect of GDA becomes less evident (i.e., ∂(DGDA−DPP )
∂n

< 0

if n >
√
γm

γ
). Proposition 2.6.2.2 confirms that the pricing entity and demand-supply

intensity are the keys in explaining performance of post pricing and k-double auction.

By the comparable results of DP vs. DA, SP vs. DA and PP vs. DA, we claim that

the presence of providers’ strategic behavior is a strong incentive for the platform to use

k-double auction rather than post pricing. This is because the platform can mitigate the

demand-supply mismatch induced by providers’ strategic behavior by giving up its pricing

power.

2.7 Concluding Remarks

The sharing platform can use various pricing mechanisms to mitigate demand-supply

mismatch in two-sided market. We examine the optimal pricing mechanism, dynamic pric-

ing or k-double auction, for the sharing platform in the presence of strategic providers.

We consider a two-period model, in which the platform sets prices in dynamic pricing
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mechanism, or determines the transaction policy in k-double auction. Results show that

there is no absolute dominant strategy for the sharing platform, the pricing entity, the

pricing flexibility and the demand-supply intensity are the keys that explain the perfor-

mance of pricing and k-double auction. Pricing dominates Buyer’s Bid Double Auction

if the platform has pricing flexibility, or when there are many customers if the platform

does not have pricing flexibility. General Double Auction dominates pricing no matter

whether the platform has pricing flexibility or not. Moreover, customers are always better

off under k-double auction, providers and the whole society are always better off under

k-double auction except BBDA.

There are several avenues for our work extension. First, we consider rational and

risk-neutral participants, behavior economics, such as risk attitude or overconfidence, is

worth attention. Second, asymmetric information is also worth investigation. Third,

the two-period matching model is not applicable to some online sharing platforms, and

the two-period model we consider is a simplification of a multi-period model setting, we

can extend our model to a multi-period one to capture more realistic features. Finally,

competition among platforms also needs further discussion, such as the single- and multi-

homing behavior of participants on two sides. More complicated but possibly insightful

results can be derived and we leave the analysis to our future work.
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CHAPTER 3

AN INVESTIGATION INTO PROBABILISTIC

SELLING: OPAQUE SELLING OR UPGRADING

3.1 Introduction

The travel industry has been sold excess capacity with a discount over the recent years.

Examples include the weekend getaways program on starwoodhotels.com and last-minute

travel deals on Hotwire prevail in hotel industry. Selling mechanism with probabilistic

nature has become a popular way to handle excess capacity. Opaque selling and upgrading

are two typical probabilistic selling mechanisms with capacity offerings uncertainties.

Opaque intermediaries, exemplified by Priceline, Hotwire and Amazon, have emerged

as main channels to sell excess capacities. For instance, Express Deals and Pricebreakers

on Priceline.com and Hot Rate Hotels on Hotwire.com offer a discount price by hiding

the identity of the item, such as the location of a hotel room, or an airline rout of an

airline ticket. Customers are not informed of this information until payment is submitted.

Capacities within an opaque mix are horizontally or vertically differentiated. For example,

a lucky bag consisting of at least two products varied in colors is put on sale. Hotwire and

Priceline provide hotel rooms which differ in brands, such as 4-star opaque hotel including

Hyatt, Holiday Inn and Sheraton. The final capacity allocated to customers depends on

the provider’s decisions. Opaque selling may bring about benefits or losses to different

stakeholders. For instance, price discrimination facilitation, demand-supply mismatches

coordination, consumer segmentation, or inventory utilization effects make opaque selling

mechanism beneficial. While cannibalization effect and the presence of opaque selling

platforms taking a revenue share make aforementioned beneficial effects less evident.

Upgrading, which refers to the replacement of an old product (i.e., a low-quality

product) with a new one (i.e., a high-quality product), is also prevalent in travel industry.
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Nor.1.com and Optiontown.com are two typical websites that handle upgrading business.

Different from opaque selling, upgrading involves vertical differentiation. For instance,

hotels and airlines handle excess business-class fares and luxury rooms with a front-desk

upselling mechanism, under which customers who have booked economic-class fares or

standard rooms now get upgraded by paying an additional fee. eStandby upgrades are

available at the booking time in hotel industry, customers who accept this upgrade will

pay this offer once the upgrading fulfillment is successfully completed at the check-in

time. The probability of customers getting upgraded successfully in either last-minute

and conditional upgrade also depends on provider’s decisions. Upgrading offers the seller

another avenue in price discrimination, risk pooling and demand uncertainty mitigating.

While concerns over unfairness and illegal capacity hoarding, and prohibitive cost induced

by additional software and staff can not be ignored.

Both upgrading and opaque selling involve at least two kinds of capacities to create

opacity or to provide upgrades, and both mechanisms are targeted for low-valuation cus-

tomers. That is, customers with low valuation participate in upgrading/opaque selling

mechanism anticipate a possibility of obtaining high-quality capacities with a discounted

price. While upgrading (resp., opaque selling) is employed mainly for high-quality (resp.,

low-quality) capacities disposal. Specifically, high-quality capacities used as upgrades are

offered to customers having purchased low-quality capacities. High- and low-quality ca-

pacities are mixed together and offered as an opaque mix with the same price. Moreover,

opaque selling can be managed by a third-party platform in a more organized manner

(Fay 2008). While parties that manipulate regular selling without probabilistic nature

and the ones operating upgrading can be the same or different. Opaque selling and up-

grading differ in pricing, capacity offerings, timing, market manipulation and positioning.

Hence, performance of these two mechanisms on the seller deserves in-depth explorations.

We aim to explore how a monopolist seller with limited capacity can employ two mecha-

nisms individually or jointly to manage excess capacity offerings in vertical differentiated

markets.

Previous studies have examined the economic impacts of opaque selling and upgrading
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separately. The incorporation of two mechanisms in a unified framework is rarely seen

in the extant literature and the reality as well. Recognizing this research gap, we aim to

answer the following questions:

(i) Under pure use, which probabilistic selling mechanism is more beneficial to the

seller? Do the optimal prices and transaction volumes of probabilistic selling and

upgrading differ? What is the main difference between two probabilistic mecha-

nisms?

(ii) Under mixed use, whether opaque selling and upgrading are complementary or

substitutable? What is the main driving force, the adoption sequence between two

mechanisms, the capacity level, or a third-party platform’s intervention?

We construct a two-stage model, in which two types of capacities are sold by a seller in

the regular stage and leftovers are sold through or not through probabilistic mechanisms

in the salvage stage. Under pure pricing mechanism, the seller makes pricing decisions to

sell capacities to customers coming in each stage. Under pure upgrading mechanism, a

proportion of unsold high-quality capacities are offered as upgrades to regular customers

having purchased low-quality ones. After successful upgrading, all unsold capacities are

sold regularly to last-minute customers. Under pure opaque selling mechanism, all unsold

capacities are offered by an opaque platform as an opaque mix to target last-minute

customers. Under the joint adoption of two probabilistic mechanisms, the seller first

determines the number of high-quality capacities used for upgrades, then the opaque

platform mixes all remaining ones to sell as opaque capacities when upgrading comes first,

or the opaque platform first sells capacities collectively then the seller offers remaining

high-quality capacities as upgrades when opaque selling comes first. We use backward

induction to seek sub-game Nash equilibrium to solve the sequential game in each scenario.

Our main management insights are summarized as follows: (i) Under pure use, up-

grading is superior than pricing, and pricing is superior than opaque selling. This is

attributed to the pricing flexibility and demand segmentation optimization of upgrading,

and high-quality sales cannibalization effect of opaque selling. (ii) Under mixed use, two
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probabilistic mechanisms are substitutes when the high-quality capacity level is extreme

low without upgrading platform’s participation, while the complementary and substi-

tutable relationships are mixed when the high-quality capacity is in the medium level.

If the seller owns large amount of high-quality capacities, then the two mechanisms are

substitutes when upgrading comes first or complements when opaque selling comes first.

(iii) In addition, we analyze several variants of the model to check the robustness of our

main results. First, we introduce conditional upgrading, and results show that the opti-

mal solutions under the joint adoption with conditional upgrade mimick the one of pure

opaque selling mechanism.

The reminder of this study proceeds as follows. The following part of Section 3.1.1

introduces some related works. Section 3.2 details model setting. Sections 3.3 and 3.4 are

devoted to equilibrium characterization of pure use of probabilistic selling mechanisms and

mixed use of probabilistic mechanisms, respectively. Section 3.5 unfolds model extension.

Section 3.6 summarizes the study and points out several avenues for future research. All

mathematical proofs are referred to the appendix.

3.1.1 Literature Review

Our work relates to three streams of literature: opaque selling mechanism, upgrading

mechanism, and vertical product line design.

An extensive literature examines the dynamics of opaque selling. One part of this

stream studies the impact of opaque selling on a firm’s marketing and operations deci-

sions. (Elmachtoub et al. 2015) explore the role of opaque selling in saving ordering and

holding costs in supply chains, and they claim that opaque selling improves the retailer’s

profit because of significant cost reduction. (Fay and Xie 2015) compare PS-Early (where

the seller makes assignments before demand realization) and PS-Late (where the seller

makes assignments after demand realization), they show that PS-Early is superior than

PS-Late, because the seller can charge higher price when consumers value opaque products

more in PS-Late with random allocation than in PS-Early with determined allocation.
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(Zhang et al. 2015) characterize the market expansion effect of opaque selling in vertical

differentiated markets, and they claim that opaque selling is beneficial for the implemen-

tation of opaque selling introduces a new type of products with quality in-between high-

and low-level.

Above papers assume that customers are rational, while customers’ behavior economics

play a vital role in capturing the optimality of opaque selling. For example, (Huang and

Yu 2014) examine the role of bounded rationality (in the sense of anecdotal reasoning) on

the implementation of opaque selling, and they highlight the benefit of opaque selling in

softening price competition in the presence of customers’ bounded rationality. (Chao et

al. 2016) focus on anticipated regret, which implies that consumers will experience post-

purchase regret when the opaque product turns out to be a low-type one. They prove

that anticipate regret makes probabilistic selling more attractive for the firm, because

this regret increases product differentiation, which increases the firm’s price. (Zheng et

al. 2019) study the impact of context-dependent preference (i.e., salient thinking), which

refers to the practice that consumers evaluate each choice taking into account it’s absolute

and relative position in an option with several choices, on the pricing and product line

design problems of probabilistic products. Because probabilistic selling mechanism makes

consumers’ choice set in a more favorable way, the seller obtains benefit in the presence

of salient thinkers.

Another part of this stream is to compare opaque selling with other selling mecha-

nisms. (Fay and Xie 2010) compare opaque selling and advance selling which both involve

buyer uncertainty, and they find that the dominance between two mechanisms depends

on buyers’ heterogeneity. (Jerath et al. 2010) build a two-stage model, where transparent

selling is employed in the first stage and last-minute selling or opaque selling is prevalent

in the second stage. They compare opaque selling and last-minute selling in the pres-

ence of strategic customers in horizontal differentiated market. They show that opaque

selling yields higher profits than last-minute selling for the seller, because opaque selling

attracts customers who would not have purchased in last-minute selling to purchase in

opaque selling channel now. (R. R. Chen et al. 2014) construct a two-period model to
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compare PP (posted price) and NYOP (name-your-own-price) mechanism in the context

of opaque selling. They show that the dominance of PP over NYOP depends on the power

of extracting postponers’ expected surplus. Under PP, the retailer sets price while under

NYOP the retailer has no choice but to accept or reject bids.

(Ren and Huang 2017) is the most relevant work to ours. They investigate how

the firm makes pricing and inventory decisions when employing opaque selling in vertical

differentiated markets. Unlike (Zhang et al. 2015) who consider simultaneous use of trans-

parent and opaque selling, (Ren and Huang 2017) introduce transparent selling (in the

regular-season) and opaque selling (in the sales-season) in a sequential manner, and they

clarify that opaque selling increases regular-season revenue because of inter-temporal can-

nibalization reduction. Similar to (Ren and Huang 2017), probabilistic mechanisms are

employed as capacity clearance policy in our model, while inter-temporal cannibalization

is not effective in our model with myopic customers. We highlight the price discrimina-

tion and demand segmentation of upgrading and demand fulfillment flexibility of opaque

selling. Moreover, our paper aims to explore the complementary or substitutable role be-

tween two probabilistic mechanisms in vertical differentiated markets. To our knowledge,

we are the first to incorporate opaque selling and upgrading in disposing of leftovers in

the context of vertical differentiation.

Our paper also connects to the literature on upgrade, which can be classified as firm-

driven upgrade and consumer driven upgrade. Firm-driven upgrade is provided at the

discretion of the firm to manage stockout demand, and customers do not have to pay

(Ceryan et al. 2018; Y. Yu et al. 2015; Çakanyıldırım et al. 2020). As for consumer-

driven upgrade, (Yılmaz et al. 2017) prove that conditional upgrading, which can be

act as a price discrimination tool, is beneficial to the Hotel in the presence of myopic

customers. (Cui et al. 2019) study the optimal pricing problem of conditional upgrade,

they conduct both theoretical and empirical analysis to verify the optimality of upgrades

for the firm. By introducing upgrades, customers will pour in as the firm will decrease

the price of base product (admission effect), and as customers value the purchase more

with the upgrading availability (valuation effect). Both effects boost revenues. (Cui et
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al. 2018) explore the economic impact of condition upgrade in the presence of strategic

customers, and they show that the inventory allocation and demand segmentation effects

of condition upgrades utilize demand-supply matching, which generates more revenues

for the firm. All these papers focus on the pricing and role exploration of upgrades,

whereas we integrate opaque selling and upgrading to identify conditions that permit the

complementary or substitutable role of two mechanisms.

Moreover, our paper is built off of the literature on vertical product line design. Topics

can be separated into two sides. On the supply side, research focuses include the optimal

product line design under monopoly and duopoly setting (Desai 2001), simultaneous or

sequential product introduction, variety design in co-products (Y.-J. Chen et al. 2013)

and resources management with allocation flexibility (Yayla-Küllü et al. 2021). On the

demand side, information asymmetry in customers’ valuation (Biyalogorsky and Koenigs-

berg 2014), and behavior economies including uninformed quality perception (Guo and

Zhang 2012) or anticipated regret (Zou et al. 2020) are explored. We extend literature

on product variety management to consider capacity allocation within time and channel

dimensions.

3.2 Model Setup

Consider a monopolist sells vertical differentiated capacities to two streams of cus-

tomers over a two-stage selling season, which includes stage 1, termed the regular stage,

and stage 2, termed the salvage stage. In the regular stage, capacities are sold regularly

by the seller through pricing. In the salvage stage, unsold capacities are disposed of, ei-

ther by the seller through upgrading, pricing or by a third-party platform through opaque

selling. Capacities are service goods, which are not consumed till the end of the selling

season. Stakeholders including the seller (he), the platform (it), and each customer (she)

are payoff maximizers.

Customers’ Behavior

Di customers arrive in stage i, where i ∈ {1, 2}. Here assuming two separate streams
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of demand allows us to capture situations such that not all customers are aware of the

salvage selling process. Customers are heterogeneous in their preference (denoted by θ)

towards quality, which is uniformly distributed over interval [0, 1], and does not change

with customers’ types. Customers are myopic, and each of them consumes at most one

unit of capacity so as to maximize her individual surplus, we model the surplus of capacity

with quality q as directly proportional to her valuation level θ, so that the consumption

surplus equals U = θq − p. The consumption surplus is normalized to zero for customers

without purchasing.

The Seller’s Behavior

The seller owns KH high-quality capacity with quality level qH and KL low-quality ca-

pacity with quality level qL. We assume that capacities are exogenously given in the main

analysis, because building and expanding capacity is time- and money-consuming, such as

hotel room amenities construction. We will explore the dynamics under endogenous ca-

pacity in the extension part. Quality levels are also exogenous. For notation convenience,

we normalize low-quality level to one and high-quality level to δ times of low-quality level.

We assume that the relative quality level satisfies δ ∈ (1, 1 +
3D1D2+3D2

2

D2
1

)1.

In the regular stage, the seller sets prices p1H and p1L for high- and low-quality ca-

pacities, respectively. In the salvage stage, the seller manages upgrading and pricing by

himself, or seeks help from a third-party platform in employing opaque selling mecha-

nism. We assume that deliberate capacity hoarding is absent in different selling formats.

Detailed dynamics are as follows.

Upgrading

Under pure upgrading (denoted by U), in the situation where high-quality capacities have

leftovers in the salvage stage, the seller offers upgrades to customers having purchased

low-quality capacities in the regular stage by charging an additional price p (the actual

price satisfies pU = p + p1L) or determining the upgrading quantity S2. In the situation

where capacities remain unsold after upgrading, then the seller sets prices to sell through

1. We clarify that our main results are robust when we allow δ ≥ 1 +
3D1D2+3D2

2

D2
1

.

2. Pricing and quantity decision are perfect substitute for the seller, refer to Section 3.3.2 for details.
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pricing. The case that the seller does not offer upgrades is equivalent to pure pricing

mechanism (denoted by P ). And we assume that unsold capacities and abandoned ones

from low-valuation customers at the end of the selling season have no value to the seller.

Opaque Selling

Under pure opaque selling (denoted by O), a third-party platform manages the opaque

selling mechanism in disposing of high- and low-quality capacities jointly. And a two-

part tariff contract (namely, a two-way revenue sharing contract) is used to capture the

interaction between the seller and the platform. Specifically, the seller collects γO (γO ∈

[0, 1]) proportion of revenues from each transaction, and pays the rest to the platform.

And the seller pays a long-term fee FO to the platform to encourage it’s participation.

This revenue sharing contract is widely used in practice. Common examples include cover

charges and per-drink prices at bars, registration fees and per-ride fees at amusement

parks, and wholesale sourcing memberships. The sequence of events in the salvage stage

is described as: Before the start of the salvage stage, the third-party platform determines a

demand fulfilling strategy ϕ (i.e., the probability that the platform will assign high-quality

capacity to customers when they purchase the opaque mix), where ϕ ∈ [0, 1], together with

an opaque price pO. Last-minute customers decide whether to consume opaque capacities

anticipating the expected quality of the opaque mix. Finally, the platform shares revenues

with the seller based on the predetermined contract.

The sequence of events in pure adoption of opaque selling/upgrading is depicted in

Figure 3.1.

Upgrading & Opaque Selling

Upon joint adoption of upgrading and opaque selling, the sequence between upgrading

and opaque selling and a third-party platform’s participation give rise to different market

structures. For instance, UO stands for the system where the seller manages upgrading

and the platform manages opaque selling sequentially to dispose of leftovers, system OU

is the opposite to UO. In this paper, we assume exogenous market structures for our core

interest is to explore how different system structures affect equilibrium outcomes rather

than to investigate system emergence per se.
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D2
customers 
arrive.

Customers
decide whether 
to purchase. 

Time

With leftovers, 
the seller sets 
price 𝑝𝑝 to offer 
upgrades.

D1
customers 
arrive.

Regular Stage Salvage Stage

With leftovers, the platform sets price 
𝑝𝑝O and demand fulfillment strategy 𝟇𝟇.

The seller sets 
price 𝑝𝑝1H and 𝑝𝑝1L.

Upgrading

Opaque selling

Customers decide 
whether to purchase. 

Customers having 
purchased low-
quality ones decide 
whether to upgrade. 

The seller 
sets price 
𝑝𝑝2H and 𝑝𝑝2L.

Figure 3.1: Sequence of Events in Pure Adoption of Probabilistic Mechanisms

If upgrading mechanism comes first, remaining low-quality capacities from the regular

stage, abandoned low-quality capacities from customers accepting upgrades and high-

quality leftovers from upgrading mechanism form the opaque mix. This is consistent

with (Cui et al. 2018) and (Çakanyıldırım et al. 2020), in their models, the same amount

of regular capacities are released for possible future sales when customers requesting up-

grades get upgraded. If opaque selling mechanism comes first, then all unsold high-quality

capacities from opaque selling mechanism are sent directly to the upgrading mechanism.

The sequence of events in the joint adoption scenario that upgrading mechanism comes

first is depicted in Figure 3.2: The seller in the regular stage makes pricing decisions

for both high- and low-quality capacities, regular customers arrive and decide whether

and which type of capacities to purchase upon observing the posted prices. At the end

of regular stage, in the situation where capacities left unsold, the seller first disposes of

high-quality capacities through an upgrading mechanism with an additional price charged

for upgrades, then disposes of all remaining capacities if any through an opaque platform.

The platform decides the opaque price and the demand fulfillment strategy. Last-minute

customers anticipating the fulfillment probability decide whether to consume. The se-

quence of events in the joint adoption scenario that opaque selling comes first mimicks

the one aforementioned, and we omit the details.

56



Customers having 
purchased low-quality 
products decide 
whether to upgrade.

The seller 
prices 𝑝𝑝1𝐻𝐻 , 𝑝𝑝1𝐿𝐿 for 
regular products.

With leftovers, the 
seller offers upgrades 
with price 𝑝𝑝 + 𝑝𝑝1𝐿𝐿.

Customers 
make purchase 
decisions.

Time

𝐷𝐷2 customers 
arrive.

𝐷𝐷1 customers 
arrive. 

Regular Stage Salvage Stage

With leftovers, the opaque 
platform proposes price 𝑝𝑝𝑂𝑂 and 
fulfillment probability 𝟇𝟇.

Customers make 
purchase decisions.

Figure 3.2: Sequence of Events in Joint Adoption

Given these preliminaries, we seek a subgame perfect Nash equilibrium of the sequen-

tial game in each scenario, and rational expectation equilibrium of customers’ anticipation

on the fulfillment strategy.

3.3 Pure Use of Pricing, Upgrading and Opaque Sell-

ing

High-quality capacity is a prerequisite for the existence of upgrading mechanism, and

opaque selling mechanism is infeasible when either type of capacities are out of stock

(Li et al. 2020; Ren and Huang 2017). To study the implications of probabilistic selling

mechanisms, we assume that the capacity is sufficient to cover demand in the regular

stage3.

The seller’s pricing decisions can be decoupled into (i) choosing the price range to

decide the types of capacities to be sold in each stage in a given scenario, and (ii) choosing

prices within the range to maximize the total profit under that capacity offering. Hence,

our analysis follows two steps: first enumerate all capacity offerings, then compare profit

under all capacity offerings.

We define (HΩ, LΩ;HΩ, LΩ) for capacity offerings, where the first (resp., third) term

3. Specific constraints are proposed in each mechanism, details are referred to Section 3.3.1, 3.3.2,

3.3.3, 3.4.1, and 3.4.2.
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represents the capacity offering of high-quality capacity in the regular (resp., salvage)

stage, and the corresponding Ω includes capacity type {P,∅} (resp., {P,U,O, U +P,U +

O,∅}), the second (resp., fourth) term represents the capacity offering of low-quality

capacity in the regular (resp., salvage) stage, and the corresponding Ω includes capacity

type {P,∅} (resp., {P,O,∅}), note that type ∅ represents the case that no capacities

are sold in equilibrium.

To facilitate scenarios comparison, we assume KH ≤ KL and t = D2

D1
< 1, where

t > 0 captures the demand gap across two types. Condition KH ≤ KL is consistent

with the evidence that the seller keeps more low-quality capacities than high-quality

ones for procurement or production cost consideration, and t < 1 means that last-minute

customers are fewer than regular customers. In travel industry, price insensitive customers

book in advance while price sensitive customers wait for discounts. The number of the

former is more than that of the latter.

3.3.1 Pure Pricing Mechanism

In pure pricing mechanism, tie-breaking rules are as follows: (i) Customers will pur-

chase if they are indifferent between purchasing and no purchasing. (ii) Customers will

purchase high-quality capacities if they are indifferent between buying two types of ca-

pacities.

With customer’s utility in purchasing j-type capacity in stage i denoted by Uj =

θqj−pij, where i ∈ {1, 2}, j ∈ {H,L}, customers in stage i purchase high-quality capacities

if θδ − piH ≥ (θ − piL)
+ or choose low-type ones if θ − piL > (θδ − piH)

+, where x+ =

max{x, 0}. Define θiH = piH−piL
δ−1

and θiL = piL, customers with preference higher than or

equal to θiH choose high-quality capacities, and customers with preference no less than

θiL and less than θiH choose low-quality capacities. The high-quality effective demand is

Di(1− θiH) and low-quality effective demand is Di(θiH − θiL) in stage i.

Given θ1L and θ1H and the one-to-one correspondence between prices and indifference
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thresholds, the seller’s optimization problem of stage two is written as

max π2P (θ2H , θ2L) = (θ2L + θ2H(δ − 1))min{D2(1− θ2H), KH −D1(1− θ1H)}

+ θ2L min{D2(θ2H − θ2L), KL −D1(θ1H − θ1L)}

s.t. 0 ≤ θ2L ≤ θ2H ≤ 1,

where term θ2L + θ2H(δ − 1) (resp., θ2L) represents high (resp., low) posted price, and

the transaction volume is defined as the minimum of available demand and capacity.

The constraint is imposed to guarantee well-defined consumer segments without loss of

generality (Pan and Honhon 2012). That is, the θ line parts must form a mutually

exclusive and collectively exhaustive partition of θ line (Kornish 2001). The seller sets

prices in the regular stage anticipating the outcomes in the salvage stage to optimize the

profit over the selling season

max πP (θ1H , θ1L) = (θ1L + θ1H(δ − 1))D1(1− θ1H) + θ1LD1(θ1H − θ1L) + π∗
2P (θ

∗
2H , θ

∗
2L)

s.t.


KH −D1(1− θ1H) ≥ 0,

KL −D1(θ1H − θ1L) ≥ 0,

0 ≤ θ1L ≤ θ1H ≤ 1.

The first and second constraint means that high- and low-quality capacities remain

unsold at the beginning of the salvage stage, respectively.

Lemma 3.3.1 is formally restated in the appendix, and we present the equilibrium

capacity offerings and corresponding properties under pricing mechanism as follows:

Lemma 3.3.1 Under pure pricing mechanism, the equilibrium strategy can be divided

into three areas as shown in Figure 3.3. The seller’s optimal capacity offerings over the

whole selling season must be (HP , L∅;HP , L∅) (Area (I)) or (HP , LP ;HP , LP ) (Areas (II)

and (III)). In equilibrium,

(i) The optimal prices of a certain type of capacity over two stages are equal: p∗1H =

p∗2H > p∗1L = p∗2L;

(ii) Either maximum demand (D1+D2

2
) is covered if KH + KL > D1+D2

2
or all supply

(KH +KL) is cleared if KH +KL ≤ D1+D2

2
.
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Area (I)

Area (II)

Area (III)

0

(𝑡𝑡 + 1)𝐷𝐷1

𝐾𝐾𝐿𝐿

𝐾𝐾𝐻𝐻

(𝑡𝑡 + 1)𝐷𝐷1

(𝑡𝑡 + 1)𝐷𝐷1
2

(𝑡𝑡 + 1)𝐷𝐷1
2

𝐾𝐾𝐻𝐻= (𝑡𝑡+1)𝐷𝐷1
2

- 𝐾𝐾𝐿𝐿

𝐾𝐾𝐻𝐻= 𝐾𝐾𝐿𝐿

(𝑡𝑡 + 1)𝐷𝐷1
4

(𝐻𝐻𝑃𝑃 , 𝐿𝐿𝑃𝑃;𝐻𝐻𝑃𝑃, 𝐿𝐿𝑃𝑃)

(𝐻𝐻𝑃𝑃 , 𝐿𝐿𝑃𝑃;𝐻𝐻𝑃𝑃 , 𝐿𝐿𝑃𝑃)

(𝐻𝐻𝑃𝑃, 𝐿𝐿∅;𝐻𝐻𝑃𝑃 , 𝐿𝐿∅)

𝐾𝐾𝐻𝐻+ 𝐾𝐾𝐿𝐿

𝐷𝐷1 + 𝐷𝐷2
2

𝐷𝐷1 + 𝐷𝐷2
2

Figure 3.3: State-dependent Generation Process Under Pricing Mechanism

By part (i) of Lemma 3.3.1, when there are both types of capacities at the beginning of

each stage, and demand over stages are independent, then the optimal prices of capacities

with certain types charged at each stage are stable (i.e., p∗1H = p∗2H and p∗1L = p∗2L). And

the seller has no incentive to differentiate the capacity offerings in two stages. That is, the

seller prices higher to sell only high-quality capacities or prices lower to sell both types of

capacities. Moreover, we confirm two standard properties regarding price competition in

terms of vertical differentiation as (Shaked and Sutton 1982): The price charged for high-

quality capacity is higher than the low posted price, and the seller’s total profit increases

with the vertical differentiation parameter δ.

By part (ii) of Lemma 3.3.1, when the amount of high-quality capacities is sufficient

in Area (I) (i.e., the capacity level is more than the maximum demand coverage KH >

D1+D2

2
), the seller only sells high-quality capacities to customers who value the capacity

most, that is, the optimal capacity offering is (HP , L∅;HP , L∅). The amount of high-

quality capacities sold with price δ
2
, at which we call the maximum coverage price, in

stage i equals Di

2
.

When the amount of high-quality capacities is less than the maximum demand cov-

erage, while the amount of total capacity is more than the maximum demand coverage
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in Area (II) (i.e., KH < D1+D2

2
and KH + KL > D1+D2

2
), the seller sells both types of

capacities in each stage, that is, the optimal capacity offering is (HP , LP ;HP , LP ). DiKH

D1+D2

high-quality capacities are sold with price δ − 1
2
− (δ−1)KH

D1+D2
and Di

2
− DiKH

D1+D2
low-quality

capacities are sold with price 1
2
in stage i. Note that both revenues from high-quality

capacities and revenues over the whole selling season increase with KH , while revenues

from low-quality capacities decrease with KH . This is because when the seller owns

more high-quality capacities, high posted price decreases, then customers who plan to

buy low-quality capacities now turn to purchase high-quality ones. To this end, when

the high-quality capacity level increases, the seller abandons low-quality sales, and the

optimal capacity offering reduces to (HP , L∅;HP , L∅).

When the total capacity is less than the maximum demand coverage in Area (III) (i.e.,

KH +KL < D1+D2

2
), the seller sells out all capacities KH +KL, both types of capacities

are sold in each stage, that is, the optimal capacity offering is (HP , LP ;HP , LP ). DiKH

D1+D2

high-quality capacities are sold with price δ − δKH+KL

D1+D2
and DiKL

D1+D2
low-quality capacities

are sold with price 1− KH+KL

D1+D2
in stage i. The price at which all capacities are completely

depleted is so called the supply clearance price. Note that revenues from high-quality

capacities increase (resp., decrease) with capacity level KH (resp., KL) while revenues

from low-quality capacities decrease (resp., increase) with KH (resp., KL). When both

KH and KL increase a little bit, the seller’s revenues from high-quality capacities remain

unchanged. This is because the increment driven by the increase of KH is mitigated by

the decrement induced by the increase of KL. When total capacity level is above the

threshold D1+D2

2
, the seller’s profit only increases with KH while is independent of KL,

and the optimal capacity offering reduces to (HP , L∅;HP , L∅) when KH increases.

3.3.2 Pure Upgrading Mechanism

In what follows, we first introduce the dynamics of pure upgrading model, then com-

pare Scenarios P and U with an emphasis on identifying conditions under which the seller

can enjoy higher benefits.

61



3.3.2.1 Pure Upgrading Model

In pure upgrading mechanism, with remaining high-quality capacity KH−D1(1−θ1H)

and low-quality capacity KL − D1(θ1H − θ1L), the seller offers S high-quality capacities

(which are unobservable to customers) as last-minute upgrades and sets price p1L + p to

target customers with preferences within interval [θ1L, θ1H). Since pricing and rationing

are strategic substitutes, rationing is less likely to happen (Maglaras and Meissner 2006),

there is a one-to-one correspondence between pricing and allocation.

Customers’ utility of accepting the upgrade and getting upgraded successfully is de-

fined as UU = θδ − (p + p1L), and we assume that customers are more willing to accept

upgrades than to keep with low-quality capacities when the two yields the same util-

ity. Hence, customers having consumed low-quality capacities will accept the upgrade if

Pr(θδ− p1L − p) + (1−Pr)(θ− p1L) ≥ θ− p1L (or equivalently, θ ≥ θU = p
δ−1

), where Pr

denotes the probability of getting upgraded successfully.

Note that the amount of high-quality capacities used for upgrades is capped by the

number of customers having purchased low-quality capacities and high-quality capacities

in the regular stage: S ∈ [0,min{D1(θ1H − θ1L), KH −D1(1− θ1H)}]. Hence, the number

of successful transactions equals min{S,D1(θ1H − θU)} provided that θU ∈ [max{θ1L, 1−
KH

D1
}, θ1H ].

In the salvage stage, the seller’s problem after upgrading is described as:

max π2U(θ2H , θ2L) = (θ2L + θ2H(δ − 1))min{D2(1− θ2H), KH −D1(1− θU)}

+ θ2L min{D2(θ2H − θ2L), KL −D1(θU − θ1L)}

s.t. 0 ≤ θ2L ≤ θ2H ≤ 1,

The seller’s problem in the salvage stage is described as:

max π2(θU) = D1(δ − 1)(θ1H − θU)θU + π∗
2U(θ

∗
2H , θ

∗
2L)

s.t. max{θ1L, 1−
KH

D1

} ≤ θU ≤ θ1H .

The constraint means that the price charged for the upgrade can not exceed the high

posted price charged in the regular stage. And the number of upgrades is no less than
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either the amount of customers having purchased low-quality capacities or the amount of

remaining high-quality capacities from the regular stage.

In the regular stage, the seller anticipating the optimal solutions of the salvage stage

solves the following optimization problem:

max πU(θ1H , θ1L) = (θ1L + θ1H(δ − 1))D1(1− θ1H) + θ1LD1(θ1H − θ1L) + π∗
2(θ

∗
U)

s.t.


0 ≤ θ1L ≤ θ1H ≤ 1,

KH ≥ D1(1− θ1H),

KL ≥ D1(θ1H − θ1L).

The equilibrium capacity offerings and properties regarding the transaction prices and

transaction volumes under pure upgrading mechanism are as follows:

Lemma 3.3.2.1 Under pure upgrading mechanism, the equilibrium strategy can be

divided into four areas as shown in Figure 3.4 (the blank area is not applicable (NA)). The

seller’s optimal capacity offerings over the whole selling season must be (HP , LP ;HU+P , LP )

(Areas (I) and (II)), (HP , L∅;HU+P , LP ) (Area (III)) or (HP , L∅;HU+P , L∅) (Area (IV)).

In equilibrium,

(i) The optimal prices charged for high- and low-quality capacities satisfy: p∗1H > p∗2H >

p∗U , p
∗
1L ≤ p∗2L, p

∗
1H + p∗U = 2p∗2H , and p∗1H + p∗1L < 2p∗U .

(ii) The amount of high-quality capacities sold in the regular stage and those offered as

upgrades are equal in size: D1(1− θ∗1H) = D1(θ
∗
1H − θ∗U).
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Figure 3.4: State-dependent Generation Process Under Upgrading Mechanism
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Lemma 3.3.2.1 reveals that it is neither optimal for the seller to dispose of high-quality

leftovers not through pricing in the salvage stage, or only through pricing in the sal-

vage stage. This is because high-quality leftovers sold regularly in the salvage stage will

be transacted with a higher price than sold as upgrades (p∗2H > p∗U). In addition, up-

grades help the seller separate regular customers with high valuation inter-temporally by

selling high-quality capacities sequentially with a premium price in regular stage and a

discounted price in salvage stage (p∗1H > p∗U), and upgrades also offer another lever of

price discrimination (p∗1H > p∗2H and p∗1L ≤ p∗2L).

Specifically, when the total capacity level is low as shown in Area (I), the profit from

high-quality (resp., low-quality) capacities increases (resp., decreases) with KH while

decreases (resp., increases) with KL. The total profit increases with both KH and KL.

The underlying reason is explained as follows: When high-quality capacity level increases,

both high and low posted prices decrease, and the downward trend of the high posted price

is more evident, then customers who plan to purchase low-quality capacities now choose to

purchase high-quality capacities. When low-quality capacity level increases, high and low

posted price decreases with the same degree, but customers who can not afford previously

now choose to purchase low-quality capacities. When only the high-quality capacity level

is low as shown in Areas (II) and (III), the the profit from high-quality (resp., low-quality)

capacities increases (resp., decreases) with KH while is independent of KL. The seller’s

total profit increases with KH while is independent of KL. With high-quality capacity

increases, high posted price increases while low posted price remains unchanged. So,

purchasing high-quality capacities becomes more attractive to customers who plan to

purchase low-type ones. When the total capacity level is rather high as shown in Area

(IV), then the seller’s total profit is independent of the capacity level.

When compared with pure pricing mechanism, we also find that the seller’s total

profit increases with the vertical differentiation parameter (
∂π∗

U

∂δ
> 0). And if the seller

prices stable prices for two types of capacities over stages (p∗1H + p∗U = 2p∗2H and p∗1L =

p∗2L), then the optimal capacity offerings are symmetric (i.e., (HP , LP ;HU+P , LP ) and

(HP , L∅;HU+P , L∅)) given that the amount of high-quality capacities sold regularly and

64



the number of upgrades are equal in size. While the emergence of (HP , L∅;HU+P , LP )

can be attributed to a higher price margin of low-quality capacities sold in the salvage

stage than in the regular stage (p∗1L < p∗2L). Moreover, if KH < 4D1+3D2

8
, then the seller

fulfills only part of the upgrading demand, and the total transaction volumes are the same

in Scenarios U and P. Otherwise, the seller fulfills all the upgrading demand, and the total

transaction volumes are higher in Scenario U than in Scenario P.

3.3.2.2 Pricing v.s. Pure Upgrading

Theorem 3.3.2.2 (Pricing vs. Pure Upgrading) Pure upgrading dominates pricing

mechanism: π∗
U > π∗

P .

Theorem 3.3.2.2 shows that introducing upgrades sequentially helps the seller collects

higher revenues (∆πU−P > 0) by managing the capacity through the ex post availability-

based substitution tool (i.e., upgrading) in addition to the ex ante price-based substitution

tool (i.e., pricing). And the profit gap between upgrading and pricing mechanisms gets

larger as the high-quality capacity level increases (∂∆πU−P

∂KH
≥ 0). Furthermore, upgrading

benefits the seller in both types of capacities (∆πU−P
H > 0, ∆πU−P

L ≥ 0). Corollary 3.3.2.2

shows how the equilibrium prices and transaction volumes vary under two mechanisms.

Corollary 3.3.2.2 (Transaction Price and Transaction Volume Comparison

(U-P))

(i) For high-quality capacities, the revenue generated in Scenario U is higher than in

Scenario P, moreover, ∆pU−P
1H > 0, pU1H + p∗U − 2pP1H ≥ 0, ∆DU−P

1H < 0, ∆pU−P
2H ≥ 0,

and ∆DU−P
2H > 0.

(i) For low-quality capacities, the revenue generated in Scenario U is no less than in

Scenario P, moreover, ∆pU−P
1L ≤ 0, ∆DU−P

1L ≤ 0, ∆pU−P
2L = 0, and ∆DU−P

2L ≥ 0.

By Corollary 3.3.2.2, upgrading gives the seller a finer segmentation of high-quality de-

mand and helps the seller attract more low-valuation customers by decreasing low posted

price. That is, the revenue increment of upgrading can be attributed to the demand
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segmentation and pricing flexibility of high-quality capacities and price discrimination of

low-quality capacities. Details are as follows.

When the high-quality capacity is rather large (KH > D1+D2

2
), only high-quality ca-

pacities are sold. In the regular stage, prices charged for high-quality capacities in two

scenarios are the same (pU1H + p∗U = 2pP1H), while the transaction volume is higher in Sce-

nario U than in Scenario P. In the salvage stage, both the price and transaction volume

are equal in two scenarios.

When the high-quality capacity is neither large or small (4D1+3D2

8
< KH ≤ D1+D2

2
),

all upgrading demand is fulfilled in Scenario U. The total transaction volumes of high-

quality capacities and prices charged for low-quality capacity in the salvage stage under

two scenarios are the same, while the total transaction volume of low-quality capacities,

and prices charged for high-quality capacities in both stages are higher in Scenario U than

in Scenario P.

When the high-quality capacity is small (KH ≤ 4D1+3D2

8
), the seller offers the same

capacity offerings and has the same sales composition. Prices charged for high-quality

capacities in both stages are higher Scenario U than in Scenario P, while prices charged

for low-quality capacities in two stages are the same.

3.3.3 Pure Opaque Selling Mechanism

In this subsection, we first explore the dynamics of pure opaque selling model followed

by the influences of pure opaque selling by comparing the equilibrium results in Scenarios

O and P.

3.3.3.1 Pure Opaque Selling Model

In pure opaque selling mechanism, we assume no regular selling after opaque selling

process. This is consistent with the claim that opaque selling is mainly used for leftovers

disposal (Jerath et al. 2010 and references therein).

In the salvage stage, the platform’s fulfillment strategy depends on the remaining
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capacity. Customers make purchase decisions upon observing the posted price, they do not

know the demand fulfilling strategy but develop expectations, under rational expectation

equilibrium, rational expectation is fulfilled in equilibrium.4 Hence, the utility is defined

as UO = θ(ϕδ+1−ϕ)−pO provided that their requests will be fulfilled. They will purchase

if θ ≥ θO = pO
ϕδ+1−ϕ

.

For mathematical tractability, we assume γO = 1, and the fixed cost FO does not

influence the pricing decisions given any capacity configuration. Hence, the seller’s opti-

mization problem is given by

π2O = θO(ϕδ + 1− ϕ)min{D2(1− θO), KH +KL −D1(1− θ1L)}

s.t. 0 ≤ θO, ϕ ≤ 1.

For the composition of the total supply, there areKH−D1(1−θ1H)−min{D1(θ1H−θU), S}

high-quality and KL −D1(θ1H − θ1L) + min{D1(θ1H − θU), S} low-quality capacities.

The following lemma characterizes the unique Nash equilibria of the salvage stage.

Lemma 3.3.3.1 (Optimal Solutions of the Opaque Selling Mechanism)

Given θ1H and θ1L, in equilibrium,

(i) The platform’s pricing decision

p∗O =


ϕδ + 1− ϕ

2
ifKH −D1(1− θ1L) +KL >

D2

2
,

(1− KH −D1(1− θ1L) +KL

D2
)(ϕδ + 1− ϕ) otherwise.

(ii) The seller’s corresponding profit equals

π∗
2O(p

∗
O) =


D2

4
(ϕδ + 1− ϕ)− FO,

(KH −D1(1− θ1L) +KL − (KH −D1(1− θ1L) +KL)
2

D2
)(ϕδ + 1− ϕ)− FO.

4. Note that without uncertainty or unobservable decision variable (the remaining capacity is a state

rather than decision variable), we analyze the rational expectation equilibrium by replacing participants’

beliefs with actual outcomes.
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(iii) The probability that customers will be assigned by the high-quality capacities is given by

ϕ∗ =



KH −D1(1− θ1H)

KH +KL −D1(1− θ1L)
ifD2 ≥ KH +KL −D1(1− θ1L),

KH −D1(1− θ1H)

D2
ifD2 < KH +KL −D1(1− θ1L),KH −D1(1− θ1H) >

D2

2
,

1

2
ifD2 < KH +KL −D1(1− θ1L),KH −D1(1− θ1H) ≤ D2

2
.

By Lemma 3.3.3.1, when capacity is insufficient to satisfy demand, the platform will

increase the posted price to sell all capacities collectively to customers who value the

capacity most. The price that clears all capacities is so called as the supply-clearance

price, and the probability of obtaining high-quality capacity equals the proportion of

high-quality leftovers over the total remaining capacities. Otherwise, the platform prices

1
2
to extract maximum surplus from the demand side. When the high-quality capacity

is ample to fulfill one half demand, the probability of obtaining high-quality capacity is

more than 1
2
. Otherwise, the platform will allocate two types of capacities equally.

In the regular stage, the seller’s optimization problem is given by

πO(θ1H , θ1L) = θ1H(δ − 1)D1(1− θ1H) + θ1LD1(1− θ1L) + π∗
2O(θ

∗
O)

s.t.


KH −D1(1− θ1H) ≥ 0,

KL −D1(θ1H − θ1L) ≥ 0,

0 ≤ θ1L ≤ θ1H ≤ 1.

The equilibrium results under pure opaque selling mechanism are as follows:

Lemma 3.3.3.2 Under pure opaque mechanism, the equilibrium results can be di-

vided into four areas as shown in Figure 3.5. The seller’s optimal capacity offerings

over the whole selling season must be (HP , LP ;HO, LO) (Areas (I), (II) and (IV)) or

(HP , L∅;HO, LO) (Areas (III)). Note that Areas (III) and (IV) exist if and only if D1 <

8D2. In equilibrium,

(i) The optimal prices charged for low-quality capacities satisfy: p∗1L < p∗O.

(ii) The effective demand of a specific capacity across stages satisfy:
∑

j∈{H,L}D
∗
1j >
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∑
j∈{H,L}D

∗
2j;
∑

i∈{1,2}D
∗
iH = KH <

∑
i∈{1,2}D

∗
iL = KL ifKH < D1

2
, or

∑j∈{H,L}
i∈{1,2} D∗

ij =

D1+D2

2
and

∑
i∈{1,2}D

∗
iH >

∑
i∈{1,2}D

∗
iL otherwise.

(t + 1)𝐷𝐷1
2

𝐾𝐾𝐻𝐻 = 𝐾𝐾2𝑂𝑂

0

(𝑡𝑡 + 1)𝐷𝐷1

𝐾𝐾𝐻𝐻

𝐾𝐾𝐿𝐿

𝐷𝐷1
4

𝐷𝐷1
2

(2𝑡𝑡 + 1)𝐷𝐷1
2

(𝑡𝑡 + 1)𝐷𝐷1
(𝑡𝑡 + 1)𝐷𝐷1

8
(2t + 1)𝐷𝐷1

4
(2 + 𝑡𝑡)𝐷𝐷1

2

(2 + 𝑡𝑡)𝐷𝐷1
2

(2𝑡𝑡 + 1)𝐷𝐷1
2

(t + 1)𝐷𝐷1
2

(7 + 3𝑡𝑡)𝐷𝐷1
12 1 + 𝑡𝑡

𝐾𝐾𝐻𝐻 = 𝐾𝐾1𝑂𝑂

𝐾𝐾𝐻𝐻 = 𝐾𝐾3𝑂𝑂

𝐾𝐾𝐻𝐻 = 𝐾𝐾𝐿𝐿

Area (III)

Area (II)

(7 + 8t)𝐷𝐷1
16

Area (IV)

(3 + 8t)𝐷𝐷1
8

𝑁𝑁𝐴𝐴

𝑁𝑁𝐴𝐴

(b) −2 + 3𝑡𝑡 + 3𝑡𝑡2 ≤ 0

(2t + 1)𝐷𝐷1
4

(t + 1)𝐷𝐷1
2

(t + 1)𝐷𝐷1
2

(2𝑡𝑡 + 1)𝐷𝐷1
2

(𝑡𝑡 + 1)𝐷𝐷1
(𝑡𝑡 + 1)𝐷𝐷1

8
0

(𝑡𝑡 + 1)𝐷𝐷1

𝐾𝐾𝐻𝐻

𝐾𝐾𝐿𝐿
𝐾𝐾𝐻𝐻 = 𝐾𝐾1𝑂𝑂

𝐾𝐾𝐻𝐻 = 𝐾𝐾2𝑂𝑂

(2t + 1)𝐷𝐷1
4

𝐷𝐷1
4

(2 + 𝑡𝑡)𝐷𝐷1
2

(2 + 𝑡𝑡)𝐷𝐷1
2

(8t + 7)𝐷𝐷1
16

𝐷𝐷1
2

𝐾𝐾𝐻𝐻 = 𝐾𝐾3𝑂𝑂

𝐾𝐾𝐻𝐻 = 𝐾𝐾𝐿𝐿
(2𝑡𝑡 + 1)𝐷𝐷1

2

Area (II)

Area (III)

Area (IV)

(3 + 8t)𝐷𝐷1
8

𝑁𝑁𝐴𝐴

𝑁𝑁𝐴𝐴

Figure 3.5: State-dependent Generation Process Under Opaque Selling Mechanism

Lemma 3.3.3.2 claims that the regular posted price of low-quality capacity is less than

the opaque selling price (p∗1L < p∗O), this is because with the opaque capacity quality no

less than the low quality, the seller suffers loss if leftovers are sold through the opaque

platform when p∗1L > p∗O. And because of the higher demand in the regular stage than

in the salvage stage and the presence of price discrimination effect in selling individually,

the seller sells more capacities individually in the regular stage than collectively in the

salvage stage.

If high-quality capacity is small (KH < D1

2
), then the probability of purchasing an

opaque mix to obtain a high-quality one can be higher or lower than 1
2
(ϕ∗

I =
−(D1+2D2)KH+D1KL

(δ−1)D1KH−2D2(KH+KL)

in Area (I) and ϕ∗
II = 4KH−D1

2D2
in Area (II)). The seller’s total profit decreases with KL,

while increases with KH in Area (I) and increases with KH only when the vertical dif-

ferentiation is evident (δ > 4(KH+KL)+D1−2D2

D1
) in Area (II). The underlying reasons are as

follows.

In Area(I), in the regular stage, when high-quality capacity increases, low-posted

price decreases, and the high- and low-posted price gap first decreases then increases

(
∂(p∗1H−p∗1L)

∂KH
< 0 if δ < 1 + 2D2

D1
). Hence, new customers always pour into the market. And

high-quality capacity becomes less attractive when vertical differentiation is not evident

(δ < 1 + 2D2

D1
) So, low-quality demand always increases, while high-quality demand first

increases then decreases (
∂D∗

1H

∂KH
> 0 if δ < 1 + 2D2

D1
). When low-quality capacity increases,

69



low-posted price first decreases then increases (
∂p∗1L
∂KL

< 0 if δ < 1 + 4D2

D1
), and price gap

p∗1H−p∗1L always decreases. Hence, more customers will choose to buy high-quality capac-

ities, while low-quality demand first increases then decreases (
∂D∗

1L

∂KL
> 0 if δ < 1 + 2D2

D1
).

In the salvage stage, when low-quality capacity increases, opaque selling price decreases

(
∂p∗O
∂KL

< 0), more and more last-minute customers will pour in (
∂(D∗

2H+D∗
2L)

∂KL
> 0). When

high-quality capacity increases, opaque selling price decreases if vertical differentiation is

not evident (
∂p∗O
∂KH

< 0 if δ < 1 + 2D2

D1
). Because all capacities are sold out in equilibrium,

so, the higher the capacity level of a specific type, the higher (resp., lower) the transac-

tion volume of the same capacity type (resp., the other capacity type):
∂D∗

2H

∂KH
=

∂D∗
2L

∂KL
> 0,

∂D∗
2H

∂KL
< 0,

∂D∗
2L

∂KH
< 0. In Area(II), in the regular stage, high- and low-posted prices decrease

with KH and KL with the same degree, so, when capacity of a specific type increases,

new customers will join to purchase low-quality capacity (
∂D∗

1L

∂KH
=

∂D∗
1L

∂KL
> 0). In the

salvage stage, opaque selling price only increases with high-quality capacity. With total

transaction volume equals D2

2
, we have

∂D∗
2H

∂KH
> 0 and

∂D∗
2L

∂KH
< 0.

If high-quality capacity is high, then the probability of buying an opaque capacity to

obtain a high-quality one is no less than 1
2
(ϕ∗

III = 1
2
and ϕ∗

IV = 8KH−3D1

8D2
). The seller’s

total profit is independent of KL, while is independent of KH in Area (III) and increases

with KH in Area (IV). This is because all posted prices except opaque selling price in Area

(IV) are independent of the capacity level. That is, the opaque selling price increases with

high-quality capacity. So, sales from high-quality (low-quality) capacities in the opaque

mix increases (decreases) for the total transaction volume in the salvage stage equals D2

2
.

When compared with pure pricing mechanism, we find that all capacities are used up

when the high-quality capacity is less than D2

2
rather than when the total capacity is less

than D1+D2

2
. When the high-quality capacity is large, the total transaction volume equals

D1+D2

2
. The difference highlights the importance of high-quality capacities to opaque

selling mechanism.
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3.3.3.2 Pricing v.s. Pure Opaque Selling

Theorem 3.3.3.2 (Pure Pricing vs. Pure Opaque Selling) Pure pricing domi-

nates pure opaque selling mechanism: π∗
P > π∗

O.

Theorem 3.3.3.2 claims that opaque selling with segmentation inflexibility can bring

losses to the seller. This complements the literature on contrasting mechanisms of opaque

selling in different settings. (Zhang et al. 2015) shows that the seller should always offer

opaque capacities (alongside transparent capacities) in vertical differentiated markets,

because opaque selling helps to segment the market by introducing a new capacity type

with quality in-between high and low level. Moreover, (Jerath et al. 2010) shows that the

seller can increase the sales-season revenue in horizontally differentiated markets, because

opaque selling helps to salvage leftovers more effectively. If the regular channel is still

available in the salvage stage, then opaque selling dominates pure pricing. Opaque selling

makes providers avoid head-to-head competition for regular customers. This is analogy

to the sequential game between pricing and opaque selling in the presence of strategic

customers. Opaque selling reduces the quality of capacities offered to high-valuation

customers and thus makes them more willing to buy in the regular stage.

Corollary 3.3.3.2 shows how the equilibrium prices and transaction volumes vary under

two mechanisms.

Corollary 3.3.3.2 (Transaction Price and Transaction Volume Compari-

son)

(i) If 3D1+4D2

8
< KH ≤ 3D1+8D2

8
, then ∆pO−P

1H > 0, ∆DO−P
1H < 0, ∆pO−P

1L = 0, ∆DO−P
1L >

0, ∆pO−P
2H < 0, ∆DO−P

2H < 0, ∆pO−P
2L > 0, and ∆DO−P

2L > 0.

(ii) If min{D1+2D2

2
−KL,

D1

2
} < KH ≤ 3D1+4D2

8
, then ∆pO−P

1H > 0, ∆DO−P
1H < 0, ∆pO−P

1L =

0, ∆DO−P
1L < 0, ∆pO−P

2H < 0, ∆DO−P
2H < 0, ∆pO−P

2L > 0, and ∆DO−P
2L > 0.

(iii) Otherwise, then ∆pO−P
1H depends, ∆DO−P

1H < 0 if KH is above a threshold, ∆pO−P
1L <

0, ∆DO−P
1L > 0 if KH is above a threshold, ∆pO−P

2H < 0, ∆DO−P
2H < 0 if KH is below

a threshold, ∆pO−P
2L > 0, and ∆DO−P

2L > 0 if KH is below a threshold.
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Corollary 3.3.3.2 indicates that because of the fulfillment flexibility of opaque selling, the

seller can sell more capacities and reshape the demand composition (capacity utilization).

With the absence of price discrimination effect and reduced quality of high-quality capaci-

ties sold as opaque mix, opaque selling cannibalizes high-quality sales. Hence, introducing

opaque selling makes the seller suffer losses when compared with pricing mechanism. De-

tails are as follows.

When high-quality capacity is large (KH > D1+D2

2
), then the seller sells the same

quantity (D1+D2

2
) in two scenarios, while the seller only sells high-quality capacities in

Scenario P, and uses high-quality capacities to dispose of low-quality capacities in Scenario

O. Low-quality sales cannibalizes high-quality one (∆πO−P
H < 0 and ∆πO−P

L > 0).

When 7D1+8D2

16
< KH ≤ D1+D2

2
, the seller has the same capacity offerings and the

same sales quantity in two scenarios. In the regular stage, high posted-price is higher

in Scenario O than in Scenario P, while low posted-prices in two scenarios are the same.

And the transaction volume of high-quality (resp., low-quality) capacity is lower (resp.,

higher) in Scenario O than in Scenario P. In the salvage stage, both price and transaction

volume of high-quality (resp., low-quality) capacities are lower (resp., higher) in Scenario

O than in Scenario P. Low-quality sales cannibalizes high-quality one (∆πO−P
H < 0 and

∆πO−P
L > 0).

When min{D1+2D2

2
−KL,

D1

2
} < KH ≤ 7D1+8D2

16
, then the seller sells the same quantity

(D1+D2

2
) in two scenarios, while the seller only sells high-quality capacities in the regular

stage in Scenario O. In the regular (resp., salvage) stage, the seller obtains gains from

high-quality (resp., low-quality) capacity and suffers losses from low-quality (resp., high-

quality) capacity in Scenario O, and gains in the regular stage are mitigated by losses in

the salvage stage.

When the high-quality capacity is small, the seller has the same capacity offerings in

two scenarios, and the sales quantity in Scenario O is no less than in Scenario P. Opaque

selling lowers the low-posted price in the regular stage (pO−P
1L < 0) to attract more low-

valuation customers, and the opaque selling price is in-between high- and low-posted
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prices in the salvage in Scenario P (pP2L < p∗O < pP2H).

3.3.3.3 Pure Upgrading v.s. Pure Opaque Selling

By Theorems 3.3.2.2 and 3.3.3.2, we have the following corollary.

Corollary 3.3.3.3 (Pure Upgrading v.s. Pure Opaque Selling) The seller earns

higher profit in pure upgrading than in pure opaque selling: π∗
U > π∗

O. Moreover, pU−O
2L < 0

and DU−O
2H > 0.

Corollary 3.3.3.3 claims that pure upgrading dominates pure opaque selling. Reports

show that the dominance of upgrading can be attributed to the lower cost of maintaining

current customers when compared with new customers, increasing customer lifetime value

makes the seller benefit under upgrading5. And the seller sells more high-quality capacities

in the upgrading channel than in the opaque selling channel (∆DU−O
2H > 0), while the

price of low-quality capacity sold regularly in the upgrading mechanism is lower than

sold collectively in opaque selling mechanism (∆pU−O
2L < 0), this further confirms that the

superiority of upgrading can be attributed to the demand segmentation optimization and

price discrimination effect.

Reports show that the dominance of upgrading can be attributed to the lower cost of

maintaining current customers when compared with new customers, increasing customer

lifetime value makes the seller benefit under upgrading6.

3.4 Mixed Use of Opaque Selling and Upgrading

Note that upgrading targets regular customers, and opaque selling targets last-minute

customers, so we use a sequential adoption sequence to integrate upgrading and opaque

selling, and focus on the optimal allocation of limited capacity across different stages and

different probabilistic mechanisms.

5. https://hoteltechreport.com/news/upselling-tactics.

6. https://hoteltechreport.com/news/upselling-tactics.
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In this section, we first introduce the joint adoption model with upgrading comes first,

then introduce the joint adoption model with opaque selling comes first. By comparing

pure and mixed use, we aim to characterize the conditions that permit the complementary

or substitutable role of two probabilistic mechanisms.

3.4.1 Mixed Use with Upgrading Comes First

The mixed use of two probabilistic mechanisms is similar to pure upgrading mechanism

except that last-minute customers are offered with opaque mix. In what follows, we

conduct analysis by backward induction.

3.4.1.1 Optimization Problem in the Salvage Stage

We start analysis with the optimization problem of opaque selling mechanism, then

turn to derive upgrading price, and find the optimal allocation quantity in upgrading

mechanism.

Optimal Decision in Opaque Selling Mechanism In the salvage stage, the seller’s

problem under the opaque selling mechanism is formulated as

max πJ
2O(θO) = θO(ϕδ + 1− ϕ)min{KH +KL −D1(1− θ1L), D2(1− θO)} − FO

s.t. 0 ≤ θO, ϕ ≤ 1.

Following the results aforementioned, we have the optimal solutions in opaque selling

mechanism described as Lemma 3.3.3.1, the only difference lies in the composition of

opaque mix, and the probability that customers will be assigned by the high-quality

capacities equals

ϕ∗ =



KH −D1(1− θU )

KH +KL −D1(1− θ1L)
ifD2 ≥ KH +KL −D1(1− θ1L),

KH −D1(1− θU )

D2
ifD2 < KH +KL −D1(1− θ1L),KH −D1(1− θU ) >

D2

2
,

1

2
ifD2 < KH +KL −D1(1− θ1L),KH −D1(1− θU ) ≤

D2

2
.

Optimal Decision in Upgrading Mechanism The seller’s problem in the salvage

stage is formulated as

max πJ
2 (S, p) = pmin{D1(θ1H − θU), S}+ π∗

2O(θ
∗
O)
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s.t.

p ≤ p1H − p1L,

0 ≤ S ≤ min{D1(θ1H − θ1L), KH −D1(1− θ1H)}.

Pure opaque selling mechanism is a special case of the joint adoption of upgrading and

opaque selling (i.e., when θU = θ1H), and case θU = 1− KH

D1
indicates that opaque selling

mechanism is unavailable.

3.4.1.2 Optimization Problem in the Regular Stage

In the regular stage, the optimization problem of the seller is denoted by:

πJ(θ1H , θ1L) = (θ1H(δ − 1) + θ1L)D1(1− θ1H) + θ1LD1(θ1H − θ1L) + π∗
2(S

∗, p∗),

subject to 0 ≤ θ1L ≤ θ1H ≤ 1, KH −D1(1− θ1H) ≥ 0, and KL −D1(θ1H − θ1L) ≥ 0.

The equilibrium capacity offerings and properties regarding the optimal prices and

transaction volumes under joint adoption are described as the following proposition.

Proposition 3.4.1.2 Under joint upgrading and opaque selling mechanism, the seller’s

optimal capacity offerings over the whole selling season must be (HP , LP ;HO, LO), (HP , LP ;HU , L∅),

(HP , L∅;HO+U , LO), or (HP , LP ;HO+U , LO). In equilibrium,

(i) The optimal prices charged for high- and low-quality capacities, the upgrading price

and the opaque selling price satisfy: p∗1H ≥ p∗U > p∗1L, p
∗
1H+p∗1L < 2p∗U , and p∗1L < p∗O;

(ii) The number of high-quality capacities sold in the regular stage and those offered as

upgrades are equal in size: D1(1− θ∗H) = D1(θ
∗
H − θ∗U).

Part (i) and (ii) of Proposition 3.4.1.2 demonstrates that properties regarding the posted

prices and the transaction volumes are consistent in pure and mixed use.

Proposition 3.4.1.2 also reveals that pure upgrading without opaque selling is an equi-

librium strategy even though the fixed fee paid to the opaque platform is regarded as

a sunk cost. Capacity offering (HP , LP ;HU , L∅) emerges for both the profit generated

from upgrades and the seller’s total profit increase with the high-quality capacity level

(details are summarized as the following table). This means that the benefit from offering
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upgrades is more evident when there are more and more high-quality capacities, and there

is no need for the seller to seek help from the opaque platform. In terms of other capacity

offerings with available opaque selling, conditions ∂(pUDU )
∂KH

> 0 and ∂πJ

∂KH
> 0 do not hold

simultaneously.

Table 3.1: Relationship Characterization of Partial Derivatives of Upgrading and Total

Profit

Capacity Offerings pUDU
∂(pUDU )

∂KH

∂πJ

∂KH

(HP , LP ;HU , L∅)
(δ−1)(D1KH−K2

H )

2D1
> 0 > 0

(HP , LP ;HO+U , LO)
4D1δ+2D1+3(D2−2(KH+KL))

36
< 0

> 0 if KH + KL <
D1+D2

2
, or δ >

4(KH+KL)−(D1+2D2)
D1

&
D1+D2

2
< KH <

2D2
1+3D2

2+5D1D2
4D1

(HP , L∅;HO+U , LO)
(δ2+δ)δD1
(3δ+1)2

= 0 = 0

(HP , L∅;HO+U , LO)
δD1
8

= 0 > 0

By considering an upgrading platform’s participation in the joint adoption with up-

grading comes first, we claim that cooperating with the platform is always optimal for

the seller, and details are referred to Appendix B.2.1.

3.4.2 Mixed Use with Opaque Selling Comes First

When opaque selling mechanism is employed before upgrading mechanism in the sal-

vage stage, then the seller first seeks help from the opaque platform to dispose of remaining

capacities to last-minute customers. In the situation where high-quality capacity remains

unsold after opaque selling, the seller uses those high-quality capacities as upgrades.

The demand formulation is the same as the main analysis. In the opaque selling

mechanism, all remaining capacities form the opaque mix, and the platform makes pricing

decision pO to maximize π2O = (ϕδ+1− ϕ)θO min{D2(1− θO), KH +KL −D1(1− θ1L)}.

Among total transaction volume min{D2(1− θO), KH +KL −D1(1− θ1L)}, ϕ proportion

are high-quality sales, which is denoted by DOH . If KH − D1(1 − θ1H) − DOH > 0,

suppose that the amount of high-quality capacity used as upgrades is given by S, where

S ≤ min{D1(θ1H − θ1L), KH − D1(1 − θ1H) − DOH} if allocation comes first or S ≤

min{D1(θ1H − θU), KH − D1(1 − θ1H) − DOH} if pricing comes first. Hence, the seller’s
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profit generated in the upgrading mechanism equals π2U = (δ−1)θU min{S,D1(θ1H−θU)}

or π2U = (δ − 1)θUS.

The optimal solutions under joint adoption with opaque selling first and upgrading

second are summarized as Proposition 3.4.2.

Proposition 3.4.2 Upon joint adoption with opaque selling comes first, the seller’s opti-

mal capacity offerings over the whole selling season must be (HP , LP ;HO, LO), (HP , LP ;HO+U , LO),

or (HP , L∅;HO+U , LO). In equilibrium,

(i) The optimal prices charged for high- and low-quality products, the upgrading price

and the opaque selling price satisfy: p∗1H ≥ p∗U > p∗1L, p
∗
1H+p∗1L < 2p∗U , and p∗1L < p∗O;

(ii) The number of high-quality capacities sold in the regular stage and those offered as

upgrades are not always equal in size.

By Proposition 3.4.2, we find that the fixed payment for the opaque platform can be

regarded as a sunk cost and incentivizes the seller to dispose of leftovers through opaque

selling mechanism. By Propositions 3.4.1.2 and 3.4.2, we conclude that when a third-

party platform managing a probabilistic selling mechanism moves first in the sequential

adoption, then the seller has an incentive to corporate with this platform to dispose of

leftovers.

Proposition 3.4.2 also claims that properties regarding posted prices are consistent in

sequential adoption of two probabilistic selling mechanisms 7. While the amount of high-

quality capacity sold in the regular stage does not always equal the amount of high-quality

capacity sold as upgrades when opaque selling mechanism comes first. This is attributed

to the differentiated changing patterns of
∂p∗O
∂KH

and
∂p∗U
∂KH

. Specifically, if opaque selling price

is independent of the high-quality capacity level, then the number of high-quality capacity

sold regularly in the regular stage and the number of high-quality capacity sold as upgrades

in the salvage stage are equal in size (D∗
1H = D∗

U). If opaque selling price increases with

7. If there are only high-quality leftovers, then properties regarding prices and transaction volumes are

no longer consistent. Refer to Appendix B.2.2 for details.
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KH while upgrading price decreases with KH , then there are fewer customers purchasing

opaque capacities and more customers accepting upgrades. As the high-quality capacity

level increases, then the amount gap first becomes positive then negative (D∗
1H > D∗

U if

KH < D1

2
). If only opaque selling price increases with the high-quality capacity level,

then more high-quality capacities will be left to the upgrading process (D∗
1H < D∗

U).

3.4.3 Complementary or Substitutable Role Characterization

Note that two mechanisms are complementary if the joint adoption generates a supper-

additive benefit (Cachon and Swinney 2011; Huang et al. 2018): the incremental value

of a joint adoption of two mechanisms is higher than the combined incremental values

of the pure upgrading and opaque selling mechanism in isolation. That is, π∗
J/J1 − π∗

P ≥

π∗
U − π∗

P + π∗
O − π∗

P , or equivalently, π
∗
J/J1 + π∗

P ≥ π∗
U + π∗

O.

3.4.3.1 Relationship Investigation with Upgrading Comes First

Theorem 3.4.3.1 offers insights about whether the complementary/substitutable role

of upgrading and opaque selling depends, monotonically, on the high-quality capacity

level.

Theorem 3.4.3.1 (The Relationship between Upgrading and Opaque Sell-

ing)

(i) When the high-quality capacity is either large or small, then upgrading and opaque

selling are substitutable.

(ii) When the high-quality capacity is in the medium level, then upgrading and opaque

selling mechanisms are either complements or substitutes.

Producing and maintaining the operation of high-quality capacities is more time- and

money-consuming than low-quality ones. So, from the perspective of the seller, the higher

amount of high-quality capacities, the seller’s brand is famous and the scale is large.

78



When the high-quality capacity level is high, then the joint adoption with upgrad-

ing mechanism comes first is inferior to pure opaque selling. The underlying reason is

attributed to the upgrading process, which cannibalizes the sales of high-quality capac-

ities sold to regular customers. In the opaque selling channel, the release of low-quality

capacities from successful upgrading increases the ratio of low-quality capacities to the

total capacities in the opaque mix which in turn results in low opaque selling price.

Pure opaque selling dominates joint adoption and pure upgrading dominates pure pricing.

Hence, opaque selling and upgrading are substitutes. Because pure upgrading dominates

pure opaque selling, adopting upgrading mechanism makes the seller have more economic

advantages than adopting opaque selling mechanism.

When the high-quality capacity is in the medium level, then the demand segmenta-

tion optimization and price discrimination effect of upgrading interact with the capacity

utilization effect of opaque selling. Hence, the complementary and substitutable relation-

ships between two probabilistic mechanisms are mixed. Moreover, when the high-quality

capacity level is high, then two mechanisms are complements. Otherwise, they are sub-

stitutes.

This is consistent with the phenomenon that it is costly for midscale and economy

hotels to manage upgrading through software or additional staff for the limited service,

on-site amenities, and room types 8. For large brand sellers, their customers are loyal

or with high valuation. Therefore, when there are high-quality leftovers, they are more

willing to provide upgrades to customers who have purchased in the early stage rather

than to sell to customers who are price sensitive and arrive in later stage. For instance,

Hyatt reported that it would like to launch loyalty program (World of Hyatt) to drive

more direct bookings through its own website rather than through OTAs, such as Expedias

channels including Hotel.com, Travelocity, and Hotwire9.

When the high-quality capacity level is low, then the joint adoption with upgrading

8. Refer to https://hoteltechreport.com/news/oracle-nor1-machine-learning.

9. Refer to https://skift.com/2017/06/15/is-hyatt-playing-hardball-with-expedia-over-contract-

negotiations/.
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mechanism comes first reduces to pure opaque selling mechanism. So, opaque selling and

upgrading are substitutable for the pure upgrading mechanism dominates pure pricing

mechanism. The seller does not need to use opaque selling when the amount of high-

quality capacities is low.

3.4.3.2 Relationship Investigation with Opaque Selling Comes First

We identify the conditions that permit the complementary or substitutable role of two

probabilistic selling mechanisms by comparing the joint adoption scenario with opaque

selling comes first, pure upgrading, pure opaque selling and pure pricing scenario, details

are articulated in Theorem 3.4.3.2.

Theorem 3.4.3.2 (The Relationship between Upgrading and Opaque Sell-

ing With Alternative Sequence)

(i) When the high-quality capacity level is rather high, then upgrading and opaque

selling are complements.

(ii) When the high-quality capacity level is in the medium level, then upgrading and

opaque selling mechanisms are either complements or substitutes.

(iii) When the high-quality capacity level is rather low, then upgrading and opaque

selling are substitutes.

Consistent with Theorem 3.4.3.1, Theorem 3.4.3.2 shows that adopting both opaque sell-

ing and upgrading strategies to dispose of leftovers is not beneficial to the seller when

high-quality capacity level is low. This is because small amount of high-quality capac-

ity is not sufficient to fulfill both upgrading demand and opaque selling requests. Two

probabilistic mechanisms are either complementary or substitutable when high-quality

capacity is in the medium level, the underlying reason mimicks the one aforementioned

in Theorem 3.4.3.1.

Note that upgrading and opaque selling are complementary rather than substitutable

in joint adoption with upgrading comes first when high-quality capacity level is rather
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high. This is because the seller has an incentive to cooperate with the opaque platform

when opaque selling comes first.

(Gao and Su 2017) shows that two mechanisms are complementary if these two mech-

anisms have overlaps in how they impact customer behavior. Results in Theorems 3.4.3.1

and 3.4.3.2 claim that these two mechanisms have overlaps when the high-quality capacity

level is in the medium level. Opaque selling and upgrading have overlaps in customers’

purchase behavior and the seller together with the platform’s pricing policy. From the

perspective of customers, low-valuation customers are the target customers of both mech-

anisms. They aim to obtain the high-quality capacities with discounts. From the seller

and platform’s perspective, both mechanisms are adopted to generate sales from the sal-

vage selling stage, while upgrading is disposed of high-quality leftovers and opaque selling

is disposed of low-quality capacities.

3.5 Extensions

In this section, we check the robustness of our main results by considering endogenous

capacity and introducing conditional upgrades.

3.5.1 Endogenous Capacity

Due to perishable service and unstable market demand, service providers can real-

ize the sale of multi-level fare structure not only through probabilistic selling, but also

through capacity expansion, such as seats adjustment within business and economy class

in aviation industry. Hence, we consider endogenous capacity. The sequence of events

with endogenous capacity is described as follows: first, the seller makes production deci-

sion before the start of the selling season. Second, the decision sequence is the same as

the one with exogenous capacity.

Theorem 3.5.1 confirms that upgrading dominates opaque selling when the seller can

make production decision, and Corollary 3.5.1 gives the comparative analysis on upgrading

and pricing, and opaque selling and pricing.
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Theorem 3.5.1 (Pure Probabilistic Mechanisms vs. Pricing Under Endoge-

nous Capacity) Pure upgrading always dominates pricing mechanism, pricing always

dominates pure opaque selling mechanism.

Corollary 3.5.1 (Transaction Price and Transaction Volume Comparison

(U-P))

(i) Upgrading vs. pricing:

(a) For high-quality capacities, revenue generated in Scenario U is higher than

in Scenario P, moreover, ∆pU−P
1H > 0, pU1H + p∗U − 2pP1H ≥ 0, ∆DU−P

1H < 0,

∆pU−P
2H ≥ 0, and ∆DU−P

2H > 0.

(b) For low-quality capacities, revenue generated in Scenario U is no less than in

Scenario P, moreover, ∆pU−P
1L ≤ 0, ∆DU−P

1L ≤ 0, ∆pU−P
2L = 0, and ∆DU−P

2L ≥ 0.

(ii) Opaque selling vs. pricing:

(a) For high-quality capacities, revenue generated in Scenario P is more than in

Scenario O, moreover, pO−P
1H ≥ 0, ∆DO−P

1H ≤ 0, pO−pP2H ≤ 0, and ∆DO−P
2H ≤ 0.

(b) For low-quality capacities, revenue generated in Scenario P is less than in

Scenario O, moreover, pO−P
1L ≤ 0, ∆DO−P

1L ≥ 0, pO − pP2L > 0, and ∆DO−P
2L ≥ 0.

Theorem 3.5.2 shows that our results are robust under the joint adoption scenario that

upgrading comes first with exogenous capacity. Moreover, two probabilistic mechanisms

are substitutes when KH is small. Under the joint adoption scenario that opaque selling

comes first with exogenous capacity, Theorem 3.5.2 highlights that opaque selling and

upgrading mechanisms are substitutes when the high-quality capacity level is high. This

is because the seller’s profits in pure upgrading and pricing mechanisms are independent

of KH or first increase then decrease with KH and Scenario P’s inflection point comes

before Scenario U, and the seller’s profits in both pure opaque selling and joint adoption

mechanisms are increasing with the high-quality capacity level under this circumstance.

While the maximum production that the seller can reach in the joint adoption mechanism
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(K∗
H = D1+8D2

8
) is smaller than in the pure opaque selling mechanism (K∗

H = 3D1+8D2

8
),

and the increase in the output of high-quality capacity leads to a more obvious increase

in revenue under pure opaque selling mechanism (or equivalently, ∆πJ1−O decreases from

(δ−1)(25δ+7)D1

64(3δ+1)
to (δ−1)(13δ+3)D1

64(3δ+1)
).

Theorem 3.5.2 (Relationship Between Opaque Selling and Upgrading Mech-

anisms Under Endogenous Capacity)

(i) If KH > D1+D2

2
, or KH < D1+D2

2
− KL, then upgrading and opaque selling are

substitutes.

(ii) If D1+D2

2
−KL ≤ KH ≤ D1+D2

2
, then upgrading and opaque selling are either comple-

ments or substitutes. Moreover, two probabilistic mechanisms are substitutes when

KH is small.

3.5.2 Conditional Upgrading

In conditional upgrading, customers purchasing regular capacities are offered with an

additional price charged for upgrades, and upgrading demand are fulfilled at the end of the

selling season if there are some high-quality capacities left, customers who accept upgrades

have to bear the risk of not obtaining the high-quality capacities, which is denoted by

1− ξ, where ξ ∈ [0, 1].

In the regular stage, the seller announces price p1H , p1L and p + p1L for high-quality,

low-quality capacities and upgrades, respectively, where p < p1H−p1L. Upon observing the

posted price, regular customers make purchase decisions among high-quality capacity with

utility θδ−p1H , low-quality ones with upgrade with utility ξ(θδ−p−p1L)+(1−ξ)(θ−pL),

low-quality capacity without upgrade with utility θ− p1L and not purchasing with utility

0.

We denote demand of capacity H, U and L in the regular stage by DH , DU and

DL. The seller’s total profit equals πC(p1H , p1L, p) = p1HDH + p1L(DL + DU) + π∗
2,

where π2U(S) = pS and π∗
2 = π2U(S) + π2O(θO) if opaque selling is available, π∗

2 =
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π2U(S)+π2P (θ2H , θ2L) if pricing is available, or π
∗
2 = π2U(S) if neither strategy is available.

Details are as follows.

In the salvage stage, the seller determines the amount of high-quality leftovers S to

satisfy upgrading demand, where S ∈ [0,min{DU , KH −DH}]. Hence, the probability of

receiving upgrades equals ξ = S
DU

, and the seller’s corresponding profit equals π2U(S) =

pS. The number of high- and low-quality leftovers after upgrading equal KH−DH−S and

KL−DL−DU +S, respectively. If opaque selling mechanism is available, then the seller’s

corresponding profit equals π2O = pO min{D2(1− θO), KH −DH +KL −DL −DU} − FO

provided that 0 ≤ θO ≤ 1. If regular selling mechanism is available, then the seller’s profit

equals π2P = (θ2H(δ − 1) + θ2L)min{KH −DH − S,D2(1− θ2H)} + θ2L min{KL −DL −

DU + S,D1(θ2H − θ2L)} provided that 0 ≤ θ2L ≤ θ2H ≤ 1. If neither opaque or regular

selling is available, then all unsold capacities are lost.

Results in conditional upgrading followed by an opaque selling mechanism are sum-

marized as Proposition 3.5.2.

Proposition 3.5.2 Under conditional upgrading mechanism, the seller’s optimal ca-

pacity offering must be (HU , LP ;HO, LO), (HP , LP ;H∅, L∅), or (HU , L∅;HO, LO). In

equilibrium,

(i) The optimal prices charged for high- and low-quality capacity, the upgrading price

and opaque selling price satisfy: p∗1H ≥ p∗U > p∗1L, and p∗1L < p∗O;

(ii) The amount of high-quality capacity offered as upgrades is more than the amount

offered as opaque mix: D1(1− θ∗U) > D2(1− θ∗O)ϕ.

Proposition 3.5.2 shows that when introducing conditional upgrade, all high-quality ca-

pacities are sold as conditional upgrades if opaque selling is available. This is equivalent

to the capacity offering, the total transaction volume clarified in Lemma 3.3.3.1. To this

end, conditional upgrading and opaque selling are substitutes rather than complements,

and details are articulated in Theorem 3.5.2.

Theorem 3.5.2 (The Relationship between Upgrading and Opaque Selling
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With Conditional Upgrading) Upgrading and opaque selling are substitutes under

conditional upgrading.

3.6 Concluding Remarks

Perishable leftovers incur revenue losses for service marketers. Opaque selling and

upgrading are two probabilistic mechanisms that help the seller manage the salvage value

generation process. We consider a two-stage model in which the seller sells capacities

regularly in the regular stage, and employs opaque selling and upgrading singly/jointly

to dispose of leftovers in the salvage stage. We highlight the vital role of the high-quality

capacity level, the adoption sequence, and the platform’s participation in characterizing

the complementary/substitutable relationship between opaque selling and upgrading.

Results show that when high-quality capacity is rather small, opaque selling and up-

grading are substitutes. This is because low high-quality capacity is insufficient to fulfill

both upgrading demand and opaque selling demand. When high-quality capacity is in

the medium level, two mechanisms are either complementary or substitutable, and the

relationship depends on the tradeoff between beneficial effects of upgrading and canni-

balization effect of opaque selling. When high-quality capacity is rather large, two mech-

anisms are complements if opaque selling comes first or substitutes if upgrading comes

first. We also show that the seller has a strong incentive to cooperate with a third-party

platform who manages the probabilistic selling mechanism and moves first in the salvage

value generation process.

There are several possible avenues for our work extension. First, we consider a monop-

olistic setting, and we can extend our analysis to allow for competition within multiple

sellers and platforms. Moreover, since contract design within service providers plays a

vital role in shaping pricing decisions, it will be interesting to verify whether our key find-

ings are robust under richer contract mechanisms. Second, we ignore operational costs of

probabilistic selling mechanisms. Third, consumer economics, such as anticipated regret

and bounded rationality, may yield interesting results. Last but not least, information
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asymmetry, such as the lack of detailed sales data, may arise within service providers and

different selling formats. All these complicate the analysis and we leave the analysis to

our future work.
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CHAPTER 4

CONCLUDING REMARKS

4.1 Summary of Research Work

First, we explore the optimal pricing decisions under post pricing and k-double auction

mechanism and compare the platform’s profits. To capture service providers’ strategic

fulfillment decision, we construct a two-stage model in which the platform plays different

roles under two mechanisms. Under post pricing mechanism, the platform sets prices,

under k-double auction mechanism, the platform determines the matching policy including

the matching and price determination rule. We use a mixed strategy equilibrium to

analyze strategic service providers’ fulfillment decision, and use backward induction to

solve the sequential game between the platform and the participants on demand- and

supply-side. Specifically, under post pricing, we construct differential equations to solve

the nonlinear optimization problem. Under k-double auction mechanism, we use order

statistics to construct differential equations so as to derive customers and service providers’

optimal bidding policies.

Results of post pricing vs. k-double auction in two-sided market are summarized as

follows: First, we find that the optimal price under post pricing is higher than under

k-double auction mechanism. And there is no dominant strategy between post pricing

and k-double auction, and the pricing entity, the demand-supply intensity, the pricing

flexibility and providers’ strategic behavior play a vital role. That is, The lower the

demand-supply intensity and the higher the bidding power, the higher the likelihood

that the platform uses post pricing; the platform prefers post pricing with more pricing

flexibility; and the presence of providers’ strategic behavior is a strong incentive for the

platform to use k-double auction rather than post pricing. Second, in both k-double

auction and bid-ask double auction mechanisms, when customers (resp., service providers)
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have the pricing power, then service providers (resp., customers) propose bid which equals

their discount reservation prices in equilibrium. In addition, in k-double auction, when

both customers and providers determine the transaction price, then the optimal bidding

strategy of customers and providers shows the same structure, that is, the same slope and

same intercept of the linear bidding functions.

We are the first to study the optimal selling strategy of the platform in the presence

of strategic service providers in two-sided market, we are also the first to propose that

customers’ bidding power, the platform’s pricing flexibility, the demand-supply intensity,

and providers’ strategic behavior all play important roles in the selling strategies selection

of the sharing platform.

Second, we unify opaque selling and upgrading into a vertical differentiated framework

to investigate the role of these two mechanisms in the seller’s salvage value generation

process. To highlight the role of probabilistic selling mechanisms in disposing of leftovers,

we construct a two-stage model. In the regular stage, the seller sells two types of capacities

regularly. In the salvage stage, the seller with remaining capacities sells through opaque

selling and upgrading individually or jointly. The seller can seek help from a third-

party platform who uses high-quality leftovers along with low-quality ones to create an

opaque mix in opaque selling mechanism. Or, the seller can use high-quality leftovers to

upgrade demand from customers having purchased low-quality capacities in previous stage

in upgrading mechanism. We use backward induction to characterize the sub-game Nash

equilibrium, and use a rational expectation equilibrium to explore customers’ anticipation

towards platform’s demand fulfillment decision.

Results of opaque selling and upgrading in the seller’ salvage value generation process

are summarized as follows: pure upgrading is superior to pure dynamic pricing mechanism

due to demand segmentation and price discrimination effect, while high-quality sales

cannibalization makes pure opaque selling inferior to pure dynamic pricing mechanism.

When high-quality capacity is rather small, opaque selling and upgrading are substitutes.

This is because low high-quality capacity is insufficient to fulfill both upgrading demand

and opaque selling demand. When high-quality capacity is in the medium level, two
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mechanisms are either complementary or substitutable, and the relationship depends on

the trade-off between beneficial effects of upgrading and cannibalization effect of opaque

selling. When high-quality capacity is rather large, two mechanisms are complements if

opaque selling comes first or substitutes if upgrading comes first. We also show that the

seller has a strong incentive to cooperate with a third-party platform who manages the

probabilistic selling mechanism and moves first in the salvage value generation process.

We are the first to compare upgrading mechanism and opaque selling mechanism under

vertical competition. We highlight the demand segmentation and price discrimination

role of upgrading, and high-quality sales cannibalization effect of opaque selling. We

are also the first to integrate upgrading and opaque selling mechanism into a sequential

model to characterize that the adoption sequence, the high-quality capacity level and

the participation of platforms are the key elements in determining the complementary or

substitutable role between two mechanisms.

4.2 Future Research Work

There are several avenues for our first work extension. First, we consider rational and

risk-neutral participants, customers, providers and the sharing platform are rational and

are all payoff maximizers. Behavior economics, such as risk attitude or overconfidence, is

worth attention. For instance, service providers may overestimate the transaction price

and the matching probability, or they may be risk averse when they make fulfillment

decisions. Overconfidence makes service providers more likely to wait for the second

period, while risk aversion makes them more likely to fulfill demand without delay. Second,

asymmetric information is also worth investigation. For instance, demand over stages

in real life are relevant under certain circumstances. In the ride-hailing industry, the

number of customers in peak and off peak hours of holidays will be more than that

in non holidays. to this end, providers making service fulfilling decisions can infer the

second period demand from previous one. Finally, competition among platforms also

needs further discussion, such as multi-homing behavior of participants on two sides, and
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loyalty programs design including reward timing, reward types and discount amount to

enlarge loyal customers’ lifetime value.

There are several possible avenues for our second work extension. First, we consider

a monopolistic setting, while in the hotel industry, there exists almost no monopoly on

the market. We can extend our analysis to allow for competition within multiple sellers

and platforms. Moreover, contract design within service providers also plays a vital role

in shaping pricing decisions, it will be interesting to verify whether our key findings are

robust under richer contract mechanisms, such as the bargaining framework. Second,

we ignore operational costs of probabilistic selling mechanisms, and our analysis can be

classified as the pricing problem in revenue management. The production cost is a major

concern when we consider endogenous capacity decision. Third, consumer economics

including anticipated regret and bounded rationality are widely considered in customers’

anticipation, such as customers’ anticipation towards the platform’s demand fulfillment

decision. Last but not least, information asymmetry, such as the lack of detailed sales

data, may arise within the seller and platforms and sellers in different selling formats.

More complicated but possibly insightful results can be derived from aforementioned

directions and we leave the analysis to our future work.
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APPENDIX A

PROOF OF CHAPTER 2

A.1 Proof of Main Results

Proof 1 Proof of Lemma Lemma 2.3.1.

(i) If (n−min{s,m1Ḡ(p1)})F (γp2) > m2Ḡ(p2) (or equivalently, p2 >
m2

m2+γ(n−min{s,m1Ḡ(p1)})),

then the optimization problem is to find p∗2 = argmax{(1−γ)m2p2Ḡ(p2)}. The profit

function is concave w.r.t p2 and reaches maximum at p∗2 =
1
2
if m2

m2+γ(n−min{s,m1Ḡ(p1)}) <

1
2
. Correspondingly, π∗

2(p
∗
2) =

(1−γ)m2

4
.

(ii) If (n−min{s,m1Ḡ(p1)})F (γp2) ≤ m2Ḡ(p2) (or equivalently, p2 ≤ m2

m2+γ(n−min{s,m1Ḡ(p1)})),

then the optimization problem is to find p∗2 = argmax{(1−γ)p2(n−min{s,m1Ḡ(p1)})F (γp2)}.

The profit function increases with p2 and reaches maximum at p∗2 =
m2

m2+γ(n−min{s,m1Ḡ(p1)}) .

Correspondingly, π∗
2(p

∗
2) =

(γ−γ2)m2
2(n−min{s,m1Ḡ(p1)})

(m2+γ(n−min{s,m1Ḡ(p1)}))2 .

Proof 2 Proof of Proposition 2.3.2.

(i) If m1(1 − p1) ≥ s, and m2 > (n − s)γ, then p∗2 = m2

m2+γ(n−s)
, p1 = p∗2, and s =

n+ m2

γ
− m2

γp1
, the platform’s problem over two periods is described as

max πDP (p1) =
−(1− γ)γm2p

2
1 + (1− γ)(m2 + γm2 + γn)p1 − (1− γ)m2

γ

s.t.

1
2
< p1 ≤ 1,

m1p1 − m2

γp1
≤ m1 − n− m2

γ
.

The effective domain for price p1 is given by (1
2
,− m2

2γm1
− n

2m1
+1

2
+
√

( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
]

provided that 1
4
− n

2m1
+ m2

2γm1
> 0.
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Because d2πDP (p1)

dp21
< 0, the profit function πDP (p1) increases in p1 if p1 <

n
2m2

+ 1
2
+ 1

2γ

and decreases otherwise. Because n
2m2

+ 1
2
+ 1

2γ
> 1, so, πDP (p1) increases with p1

over interval [0, 1]. Hence, p∗1 = − m2

2γm1
− n

2m1
+ 1

2
+
√
( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
, and

π∗
DP = (1−γ)((n+ m2

γ
+ m2n

m1
+

m2
2

γm1
)(− n

2m1
− m2

2γm1
+ 1

2
+
√

( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
)−

m2
2

γm1
− m2

γ
). The optimal value of s∗ = n + m2

γ
− m2

γp∗2
equals s∗ = m2+γ(m1+n)

2γ
−

m1

√
( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
, and α∗ = s∗

γnp∗1
equals α∗ =

m2
1

m2n
(− m2

2γm1
+ n

2m1
− 1

2
+√

( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
).

To ensure that equilibrium exists, we have 0 ≤ s∗ ≤ n. Note that condition 0 < s∗ =

m1B < n always holds.

(ii) If m1(1 − p1) < s, and m2 > (n − m1(1 − p1))γ, then p1
m1(1−p1)

s
= p∗2, p∗2 =

m2

m2+γ(n−m1(1−p1))
, and s = m1p1(1−p1)(m2+γn−γm1(1−p1))

m2
. Hence, the platform’s problem

over two periods is described as

max πDP (p1) = (1− γ)(m1p1(1− p1) + γ(n−m1(1− p1))(
m2

m2 + γ(n−m1(1− p1))
)2)

s.t.


m2p1+γp1(n−m1(1−p1))

m2
> 1,

p1 < 1− n
m1

+ m2

γm1
.

The effective domain for price p1 is given by (− m2

2γm1
− n

2m1
+1

2
+
√

( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
,min{1−

n
m1

+ m2

γm1
, 1}) if 1

4
− n

2m1
+ m2

2γm1
> 0.

Because d2πDP (p1)

dp21
< 0, the profit πDP (p1) is concave with p1, and we assume that

it decreases with p1 over the effective domain for model tractability. Note that

dπDP (p1)
dp1

∣∣∣
p1=− m2

2γm1
− n

2m1
+ 1

2
+
√

(
m2

2γm1
+ n

2m1
− 1

2
)2+

m2
γm1

= (1− γ)h1(γ), where

h1(γ) =
−

√
γ2(n−m1)

2+2γm2(m1+n)+m2
2

γ2m2
1

+m2+γn

γ
−

4γm1m2
2

(
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(√
γ2(n−m1)

2+2γm2(m1+n)+m2
2

γ2m2
1

−1

)
−3m2+γn
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(
γm1

(√
γ2(n−m1)

2+2γm2(m1+n)+m2
2

γ2m2
1

−1

)
+m2+γn

)
3

,

h1(γ) increases with γ for ∂p1
∂γ

< 0, d2πDP (p1)

dp21
< 0. Functions h1(γ) and h2(γ) =

1
4
−

n
2m1

+ m2

2γm1
interact at ( 2m2

2n−m1
). Hence, dπDP (p1)

dp1

∣∣∣
p1=− m2
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− n

2m1
+ 1

2
+
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(
m2

2γm1
+ n
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− 1

2
)2+

m2
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<

0. So, there is no optimal solution.
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(iii) If m1(1− p1) ≥ s, and m2 ≤ (n− s)γ, then p∗2 =
1
2
, p1 =

m2

2γ(n−s)
, and s = n− m2

2γp1
.

The platform’s problem over two periods is described as

max πDP (p1) = (1− γ)(np1 −
m2

2γ
+

m2

4
)

s.t.
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.
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2m1

+ 1
2
+
√
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2
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√
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−m2

2γ
+m2

4
),

s∗ = m1+n
2

−m1

√
( n
2m1

− 1
2
)2 + m2

2γm1
, and α∗ = 2m1

m2
( n
2m1

− 1
2
+
√

( n
2m1

− 1
2
)2 + m2

2γm1
)−

2m2
1

m2n
( n
2m1

− 1
2
+
√

( n
2m1

− 1
2
)2 + m2

2γm1
)2; otherwise, π∗

DP (p
∗
1) = (1− γ)(n

2
− m2

2γ
+ m2

4
),

s∗ = n− m2

γ
, and α∗ = 2

γ
− 2m2

nγ2 .

To ensure equilibrium exists, we have 0 ≤ s∗ ≤ n. When 1
4
− n

2m1
+ m2

2γm1
≤ 0, we

have m1+n
2

− m1

√
( n
2m1

− 1
2
)2 + m2

2γm1
> 0 if 2γn > m2 and s∗ < n is always true.

When 1
4
− n

2m1
+ m2

2γm1
> 0, condition s∗ < n always holds and condition s∗ > 0 holds

if γn > m2.

(iv) If m1(1 − p1) < s, and m2 ≤ (n − m1(1 − p1))γ, then
m1(1−p1)p1

s
= m2

2γ(n−m1(1−p1))
,

p2 =
1
2
, and s = 2γm1p1(1−p1)(n−m1(1−p1))

m2
. The platform’s problem over two periods is

described as

max πDP (p1) = (1− γ)(m1p1(1− p1) +
m2

4
)

s.t.

p1 ≥ 1− n
m1

+ m2

γm1
,

2γm1p
2
1 + (2γn− 2γm1)p1 −m2 > 0.

The effective domain for p1 is given by [1 − n
m1

+ m2

γm1
, 1] if 1

4
− n

2m1
+ m2

2γm1
> 0

and γn > m2 or (− n
2m1

+ 1
2
+
√

( n
2m1

− 1
2
)2 + m2

2γm1
, 1] if 1

4
− n

2m1
+ m2

2γm1
≤ 0 and

2γn > m2.

If 1
4
− n

2m1
+ m2

2γm1
> 0, then p∗1 = 1− n

m1
+ m2

γm1
, π∗

DP = (1−γ)(m2

4
+n− n2

m1
− m2

2

γ2m1
−m2

γ
+
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2m2n
γm1

), s∗ = 2n− 2m2

γ
− 2n2

m1
+ 4m2n

γm1
− 2m2

2

γ2m1
and α∗ = 2γn−2m2

γ2n
. If 1

4
− n

2m1
+ m2

2γm1
≤ 0,

then p∗1 =
1
2
, π∗

DP = (1− γ)m1+m2

4
, s∗ =

2γm1n−γm2
1

4m2
, and α∗ =

2m1n−m2
1

2m2n
.

To ensure equilibrium exists, we have 0 ≤ s∗ ≤ n. If 1
4
− n

2m1
+ m2

2γm1
> 0, then

s∗ = 2(m2+γm1−γn)(γn−m2)
γ2m1

> 0 if m2 ∈ (γn − γm1

2
, γn), and s∗ < n is always true

for s∗ < n reduces to −2m2
2 − 2γ(m1 − 2n)m2 + γ2n(m1 − 2n) < 0, which is true if

m1 < 2n. If 1
4
− n

2m1
+ m2

2γm1
≤ 0, condition s∗ > 0 holds if m1 < 2n and s∗ < n if

m2 ∈ (γm1

2
− γm2

1

4n
, 2γn].

To sum up,

(i) If 1
4
− n

2m1
+ m2

2γm1
> 0, then

(a) p∗1 = p∗2 = − m2

2γm1
− n

2m1
+ 1

2
+
√
( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
, π∗

DP = (1− γ)((n+

m2

γ
+ m2n

m1
+

m2
2

γm1
)(− n

2m1
− m2

2γm1
+ 1

2
+
√

( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
)− m2

2

γm1
− m2

γ
),

and α∗ =
m2

1

m2n
(− m2

2γm1
+ n

2m1
− 1

2
+
√

( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
);

(b) p∗1 = 1− n
m1

+ m2

γm1
, p∗2 =

1
2
, π∗

DP = (1− γ)(m2

4
+ n− n2

m1
− m2

2

γ2m1
− m2

γ
+ 2m2n

γm1
),

and α∗ = 2γn−2m2

γ2n
given that m1 < 2n and m2 ∈ (γn− γm1

2
, γn);

(c) p∗1 = p∗2 = 1
2
, π∗

DP = (1 − γ)(n
2
− m2

2γ
+ m2

4
), and α∗ = 2γn−2m2

γ2n
provided that

γn > m2.

(ii) If 1
4
− n

2m1
+ m2

2γm1
≤ 0, then

(a) p∗1 = − n
2m1

+ 1
2
+
√
( n
2m1

− 1
2
)2 + m2

2γm1
, p∗2 = 1

2
, π∗

DP = (1 − γ)(− n2

2m1
+ n

2
+

n
√
( n
2m1

− 1
2
)2 + m2

2γm1
−m2

2γ
+m2

4
), and α∗ = 2m1

m2
( n
2m1

−1
2
+
√

( n
2m1

− 1
2
)2 + m2

2γm1
)−

2m2
1

m2n
( n
2m1

− 1
2
+
√
( n
2m1

− 1
2
)2 + m2

2γm1
)2 given that m2 < 2γn;

(b) p∗1 = p∗2 = 1
2
, π∗

DP = (1 − γ)m1+m2

4
and α∗ =

2m1n−m2
1

2m2n
given that m2 ∈ [γm1

2
−

γm2
1

4n
, 2γn].

Note that (a) dominates (b), and (b) dominates (c) if 1
4
− n

2m1
+ m2

2γm1
> 0; or (b) dominates
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Table A.1: The Equilibrium Number of Unmatched Providers and Customers

Participants Providers Customers

range of m2 s∗ −D∗
1 n−D∗

1 −D∗
2 α∗ m1 −D∗

1 m2 −D∗
2

(γn− γm1
2

, γn) 0 n− (m1 +m2)AP
2

m2
1

m2n
(AP

1 + n
m1

− 1) m1(1−AP
2 ) m2(1−AP

2 )

[ γm1
2

− γm2
1

4n
, γn− γm1

2
]

2γm1n−γm2
1−2m1m2

4m2
n− m1+m2

2

2m1n−m2
1

2m2n
m1
2

m2
2

(0, γm1
2

− γm2
1

4n
) 0 n− (m1AP

4 + m2
2

)
2m2

1
m2n

(AP
3 + n

m1
− 1− m2

2γm1
) m1(1−AP

4 ) m2
2

(a) if γm1

2
− γm2

1

4n
≤ m2 ≤ γn− γm1

2
. Define

ADP
1 = − m2

2γm1

− n

2m1

+
1

2
+

√
(

m2

2γm1

+
n

2m1

− 1

2
)2 +

m2

γm1

,

ADP
2 =

m2

2γm1

+
n

2m1

+
1

2
−
√

(
m2

2γm1

+
n

2m1

− 1

2
)2 +

m2

γm1

,

ADP
3 = − n

2m1

+
1

2
+

√
(

n

2m1

− 1

2
)2 +

m2

2γm1

, ADP
4 =

n

2m1

+
1

2
−
√

(
n

2m1

− 1

2
)2 +

m2

2γm1

,

then the optimal strategies are given by

(i) If m2 > γn − γm1

2
, then p∗1 = p∗2 = ADP

1 , π∗
DP = (1 − γ)(m1 + m2)A

DP
1 ADP

2 ,

α∗ =
m2

1

m2n
(ADP

1 + n
m1

− 1), D∗
1 = s∗ = m1A

DP
2 , and D∗

2 = m2A
DP
2 .

(ii) If γm1

2
− γm2

1

4n
≤ m2 ≤ γn − γm1

2
, then p∗1 = p∗2 = 1

2
, π∗

DP = (1 − γ)m1+m2

4
, α∗ =

2m1n−m2
1

2m2n
, s∗ =

2γm1n−γm2
1

4m2
, and D∗

i =
mi

2
.

(iii) If 0 < m2 <
γm1

2
− γm2

1

4n
, then p∗1 = ADP

3 , p∗2 =
1
2
, π∗

DP = (1− γ)(m1A
DP
3 ADP

4 + m2

4
),

α∗ =
2m2

1

m2n
(ADP

3 + n
m1

− 1− m2

2γm1
), D∗

1 = s∗ = m1A
DP
4 , and D∗

2 =
m2

2
.

Recall that

CS =min{s,m1(1− p∗1)}(
1

2
(p∗1)

2 − p∗1 +
1

2
)

+min{(n−min{s,m1(1− p∗1)})γp∗2,m2(1− p∗2)}(
1

2
(p∗2)

2 − p∗2 +
1

2
),

PS =min{s,m1(1− p∗1)}
γ2

2
(p∗1)

2 +min{(n−min{s,m1(1− p∗1)})γp∗2,m2(1− p∗2)}
γ2

2
(p∗2)

2,

SW =π∗
DP +min{s,m1(1− p∗1)}

(γ2 + 1)(p∗1)
2 − 2p∗1 + 1

2

+min{(n−min{s,m1(1− p∗1)})γp∗2,m2(1− p∗2)}
(γ2 + 1)(p∗2)

2 − 2p∗2 + 1

2
.
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(i) Ifm2 > γn−γm1

2
, then p∗1 = p∗2 = ADP

1 , D∗
1 =

m2+γ(m1+n)
2γ

−m1

√
( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
=

m1A
DP
2 and D∗

2 =
m2

2+γm2(m1+n)

2γm1
−m2

√
( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
= m2A

DP
2 , hence,

CS =
(m1+m2)(ADP

2 )3

2
, PS =

γ2(m1+m2)(ADP
1 )2ADP

2

2
, and SW = CS + PS + π∗

DP =

(m1+m2)ADP
2 ((ADP

2 )2+γ2(ADP
1 )2+2(1−γ)ADP

1 )

2
, where π∗

DP = (1−γ)(m1+m2)(− m2

2γm1
− n

2m1
+

1
2
+
√
( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
)( m2

2γm1
+ n

2m1
+ 1

2
−
√

( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
).

(ii) If γm1

2
− γm2

1

4n
≤ m2 ≤ γn− γm1

2
, then p∗1 = p∗2 =

1
2
and D∗

i =
mi

2
, hence, CS = m1+m2

16
,

PS = γ2(m1+m2)
16

. and SW = (γ2−4γ+5)(m1+m2)
16

.

(iii) If m2 <
γm1

2
− γm2

1

4n
, then p∗1 = ADP

3 , p∗2 =
1
2
, D∗

1 = m1D, and D∗
2 =

m2

2
. Hence, CS =

m1(ADP
4 )3

2
+m2

16
, PS =

γ2m1(ADP
3 )2ADP

4

2
+γ2m2

16
, and SW =

m1((ADP
4 )3+γ2(ADP

3 )2ADP
4 +2(1−γ)ADP

3 ADP
4 )

2
+

(γ2−4γ+5)m2

16
.

Proof 3 Proof of Corollary 2.3.1.

(i) m2 > γn− γm1

2
.

Deriving the FOCs of the optimal prices w.r.t m1, m2, n and γ yields:

∂p∗1
∂m1

=
∂p∗2
∂m1

=
(m2 + γn)(

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
+ 1

2 − n
2m1

− m2

2γm1
)−m2

2γm2
1

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

> 0,

∂p∗1
∂m2

=
∂p∗2
∂m2

=
−
√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
+ 1

2 + n
2m1

+ m2

2γm1

2γm1

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

> 0,

∂p∗1
∂n

=
∂p∗2
∂n

= −

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
+ 1

2 − n
2m1

− m2

2γm1

2m1

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

< 0,

∂p∗1
∂γ

=
∂p∗2
∂γ

=
m2(

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
− 1

2 − n
2m1

− m2

2γm1
)

2γm2
1

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

< 0.

Deriving the FOCs of the optimal transaction volume of period one w.r.t m1, m2,

n, and γ yields:

∂D∗
1

∂m1
=

γ (−γm1 −m2 + γn) + γ
√

4γm1m2 + (−γm1 +m2 + γn) 2

2γ
√
4γm1m2 + (−γm1 +m2 + γn) 2

> 0,

∂D∗
1

∂m2
=

−γ (m1 + n) +
√

4γm1m2 + (−γm1 +m2 + γn) 2 −m2

2γ
√
4γm1m2 + (−γm1 +m2 + γn) 2

< 0,
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∂D∗
1

∂n
=

γ
√

4γm1m2 + (−γm1 +m2 + γn) 2 − γ (−γm1 +m2 + γn)

2γ
√
4γm1m2 + (−γm1 +m2 + γn) 2

> 0,

∂D∗
1

∂γ
=

m2

(
γm1 −

√
4γm1m2 + (−γm1 +m2 + γn) 2 +m2 + γn

)
2γ2
√
4γm1m2 + (−γm1 +m2 + γn) 2

> 0.

Deriving the FOCs of the optimal transaction volume of period two w.r.t m1, m2,

n, and γ yields:

∂D∗
2

∂m1
=

m2

(
γm1 (m2 − γn)− (m2 + γn)

(√
γ2 (n−m1) 2 + 2γm2 (m1 + n) +m2

2 −m2 + γ(−n)
))

2γm2
1

√
4γm1m2 + (−γm1 +m2 + γn) 2

> 0,

∂D∗
2

∂m2
=

(
γm1 −

√
4γm1m2 + (−γm1 +m2 + γn) 2 +m2 + γn

)(√
4γm1m2 + (−γm1 +m2 + γn) 2 −m2

)
2γm1

√
4γm1m2 + (−γm1 +m2 + γn) 2

> 0,

∂D∗
2

∂n
=

m2

(
γ
√
4γm1m2 + (−γm1 +m2 + γn) 2 − γ (−γm1 +m2 + γn)

)
2γm1

√
4γm1m2 + (−γm1 +m2 + γn) 2

> 0,

∂D∗
2

∂γ
=

m2
2

(
γm1 −

√
4γm1m2 + (−γm1 +m2 + γn) 2 +m2 + γn

)
2γ2m1

√
4γm1m2 + (−γm1 +m2 + γn) 2

> 0.

(ii) γm1

2
− γm2

1

4n
≤ m2 ≤ γn− γm1

2
. The optimal prices are independent of system param-

eters and
∂D∗

i

∂mi
> 0.

(iii) m2 <
γm1

2
− γm2

1

4n
.

The FOCs of the optimal price of period one w.r.t m1, m2, n, and γ are given as

follows:

∂p∗1
∂m1

=
γn(
√
( n
2m1

− 1
2 )

2 + m2

2γm1
+ 1

2 − n
2m1

)− m2

2

2γm2
1

√
( n
2m1

− 1
2 )

2 + m2

2γm1

> 0,
∂p∗1
∂m2

=
1

4γm1

√
( n
2m1

− 1
2 )

2 + m2

2γm1

> 0,

∂p∗1
∂n

=
−
√
( n
2m1

− 1
2 )

2 + m2

2γm1
− 1

2 + n
2m1

2m1

√
( n
2m1

− 1
2 )

2 + m2

2γm1

< 0,
∂p∗1
∂γ

=
−m2

4γ2m1

√
( n
2m1

− 1
2 )

2 + m2

2γm1

< 0.

Deriving the FOCs of the optimal transaction volume of period one w.r.t m1, m2,

n, and γ yields:

∂D∗
1

∂m1
=

γ (−γm1 −m2 + γn) + γ
√
γ (γ (n−m1) 2 + 2m1m2)

2γ
√

γ (γ (n−m1) 2 + 2m1m2)
> 0,

∂D∗
1

∂m2
= − m1

2
√
γ (γ (n−m1) 2 + 2m1m2)

< 0,

∂D∗
1

∂n
=

γ2 (m1 − n) + γ
√
γ (γ (n−m1) 2 + 2m1m2)

2γ
√
γ (γ (n−m1) 2 + 2m1m2)

> 0,
∂D∗

1

∂γ
=

m1m2

2γ
√
γ (γ (n−m1) 2 + 2m1m2)

> 0.

The optimal price of period two is independent of system parameters and
∂D∗

2

∂m2
> 0.

Proof 4 Proof of Corollary 2.3.2.
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(i) If 1
4
− n

2m1
+ m2

2γm1
> 0, then deriving the FOCs of the equilibrium number of providers

joining in period one w.r.t m1, m2, n, and γ yields:

∂s∗

∂m1
=

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
− 1

2 + n
2m1

− m2

2γm1

2
√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

> 0,

∂s∗

∂m2
=

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
− ( 12 + n

2m1
+ m2

2γm1
)

2γ
√

( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

< 0,

∂s∗

∂n
=

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
+ 1

2 − n
2m1

− m2

2γm1

2
√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

> 0,

∂s∗

∂γ
=

m2(−
√

( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
+ 1

2 + n
2m1

+ m2

2γm1
)

2γ2
√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

> 0.

(ii) If γm1

2
− γm2

1

4n
≤ m2 ≤ γn − γm1

2
, then s∗ = γm1(2n−m1)

4m2
. Hence, ∂s∗

∂m1
> 0, ∂s∗

∂m2
< 0,

∂s∗

∂n
> 0, and ∂s∗

∂γ
> 0.

(iii) If m2 <
γm1

2
− γm2

1

4n
, then deriving the FOCs of s∗ w.r.t m1, m2, n, and γ yields:

∂s∗

∂m1
=

γm1(
√
( n
2m1

− 1
2 )

2 + m2

2γm1
+ n

2m1
− 1

2 )−
m2

2

2γm1

√
( n
2m1

− 1
2 )

2 + m2

2γm1

> 0,
∂s∗

∂m2
=

−1

4γ
√

( n
2m1

− 1
2 )

2 + m2

2γm1

< 0,

∂s∗

∂n
=

m2

4γ2
√
( n
2m1

− 1
2 )

2 + m2

2γm1

> 0,
∂s∗

∂γ
=

m1(
√

( n
2m1

− 1
2 )

2 + m2

2γm1
− n

2m1
+ 1

2 )

2m1

√
( n
2m1

− 1
2 )

2 + m2

2γm1

> 0.

Recall that α = s∗

γnp∗1
, we deriving the FOCs of α∗ w.r.t m1, m2, n and γ if any yields:

(i) If 1
4
− n

2m1
+ m2

2γm1
> 0, then

∂α∗

∂m1
=

2(γm2
1 − γm1n)

√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
+ (2m1n−m2

1 − n2)γ −m1m2 −m2n

4γm2
2n
√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

,

∂α∗

∂m2
=

−2γm1(m2 + γ(2m1 − n))
√

( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
+ (2m2

1 − 3m1n+ n2)γ2

4γ2m1m2n
√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

+
(3m1m2 + 2m2n)γ +m2

2

4γ2m1m2n
√

( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

< 0,

∂α∗

∂n
=

2γm1(m2 + γm1)
√

( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
+ (m1n−m2

1)γ
2 − (2m1m2 +m2n)γ −m2

2

4γ2m2n2
√
( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

> 0,
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∂α∗

∂γ
=

m1(
√

( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1
− ( 12 + n

2m1
+ m2

2γm1
))

2γ2n
√

( m2

2γm1
+ n

2m1
− 1

2 )
2 + m2

γm1

< 0.

As for ∂α∗

∂m1
, the simplified form of the numerator

√
( m2

2γm1
+ n

2m1
− 1

2
)2 + m2

γm1
+

−(m1−n)2γ−(m1+n)m2

2γm1(m1−n)
is positive if m1 < n, or is negative otherwise. So, ∂α∗

∂m1
> 0 if

m1 < n or ∂α∗

∂m1
< 0 if m1 > n.

(ii) If γm1

2
− γm2

1

4n
≤ m2 ≤ γn − γm1

2
, then α∗ = m1(2n−m1)

2m2n
, hence, ∂α∗

∂m1
> 0 if m1 < n,

∂α∗

∂m2
< 0, and ∂α∗

∂n
> 0.

(iii) If m2 <
γm1

2
− γm2

1

4n
, then

∂α∗

∂m1
=

(√
γ (γ (n−m1) 2 + 2m1m2)− γm1

)(
−γm1 +

√
γ (γ (n−m1) 2 + 2m1m2)−m2 + γn

)
γm2n

√
γ (γ (n−m1) 2 + 2m1m2)

,

∂α∗

∂m2
=

(2γm2
1 − 2γm1n)

√
( n
2m1

− 1
2 )

2 + m2

2γm1
− (γn2 + γm2

1 − 2γm1n+m1m2)

2γm2
2n
√

( n
2m1

− 1
2 )

2 + m2

2γm1

< 0,

∂α∗

∂n
=

(m2
1 +

m1m2

γ )
√

( n
2m1

− 1
2 )

2 + m2

2γm1
− (

m2
1

2 − m1n
2 + m1m2

γ )

m2n2
√
( n
2m1

− 1
2 )

2 + m2

2γm1

> 0,

∂α∗

∂γ
=

m1

(√
γ (γ (n−m1) 2 + 2m1m2)− γm1

)
γ2n

√
γ (γ (n−m1) 2 + 2m1m2)

.

As for ∂α∗

∂m1
, the term in the second bracket of the numerator is positive. Hence, ∂α∗

∂m1

and ∂α∗

∂γ
show the same pattern: the numerators are positive if m2 > γn − γn2

2m1
. Hence,

∂α∗

∂m1
> 0 if γn− γn2

2m1
< m2 <

γm1

2
− γm2

1

4n
or ∂α∗

∂m1
< 0 otherwise.

Proof 5 Proof of Increasing Bidding Policy on the Demand Side.

Consider customers with valuation v′ and v′′, where v′′ > v′, and let B(v′) and B(v′′)

be customer’s respective bidding prices, then we have

rc(v
′, B(v′))− rc(v

′, B(v′′)) ≥ 0, rc(v
′′, B(v′′))− rc(v

′′, B(v′)) ≥ 0.

Adding above two inequalities yields

rc(v
′′, B(v′′))− rc(v

′, B(v′′)) + rc(v
′, B(v′))− rc(v

′′, B(v′)) ≥ 0,
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where rc(v,B(v)) = (v−p)Pr{B(v)}. Note that the transaction price is a market-clearing

price and probabilities for customers with the same bids being matched are equal, the

above inequality reduces to (v′′ − v′)(Pr{B(v′′)} − Pr{B(v′)}) ≥ 0. If v′′ > v′, then

Pr{B(v′′)} ≥ Pr{B(v′)}. Hence, bc > 0 and bp > 0.

Proof 6 Simplification of Differential Equations.

(i) Simplification of Equation 2.4.

To simplify P1, P2 and P3, we rewrite using only the index i:

P1(b) =

m−1∑
i

(
n

m− i

)(
m− 1

i

)
G(v)iF (c)m−i(1−G(v))m−1−i(1− F (c))n−m+i,

P2(b) =

m−1∑
i

(
n− 1

m− 1− i

)(
m− 1

i

)
G(v)iF (c)m−1−i(1−G(v))m−1−i(1− F (c))n−m+i,

P3(b) =

m−2∑
i

(
n

m− 1− i

)(
m− 2

i

)
G(v)iF (c)m−1−i(1−G(v))m−2−i(1− F (c))n−m+i+1.

Substituting

(
n− 1

m− 1− i

)
= m−i

n

(
n

m− i

)
, and

(
m− 2

i− 1

)
= i

m−1

(
m− 1

i

)
into P2 and P3, respectively, and replacing index i with i− 1 in P3 yield:

P1(b) =

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(
G(v)(1− F (c))

F (c)(1−G(v))
)iF (c)m(1−G(v))m−1(1− F (c))n−m,

P2(b) =

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(
G(v)(1− F (c))

F (c)(1−G(v))
)i
m− i

n
F (c)m−1(1−G(v))m−1(1− F (c))n−m,

P3(b) =

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(
G(v)(1− F (c))

F (c)(1−G(v))
)i

i

m− 1
G(v)−1F (c)m(1−G(v))m−1(1− F (c))n−m.

Correspondingly, denoted G(v)(1−F (c))
F (c)(1−G(v)) by A and equation 2.4 reduces to:

lim
∆b→0

rc(b+∆b)− rc(b)

∆b
=(v − b)[

1

bpF (c)

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(m− i)Ai

+
1

bcG(v)

m−1∑
i

(
n

m− i

)(
m− 1

i

)
iAi]− k

m−1∑
i

(
n

m− i

)(
m− 1

i

)
Ai.

(ii) Simplification of Equation 2.5.

The following two equations define the formula of P4 and P5 respectively:

P4(b) =

i+j=m−1∑
0≤i≤m,0≤j≤n−2

(
n− 2

j

)(
m

i

)
G(v)iF (c)j(1−G(v))m−i(1− F (c))n−2−j ,

106



P5(b) =

i+j=m−1∑
0≤i≤m,0≤j≤n−1

(
n− 1

j

)(
m

i

)
G(v)iF (c)j(1−G(v))m−i(1− F (c))n−1−j .

Similarly, we have the simplified forms of P4 and P5:

P4(b) =

m−1∑
i

(
n

m− i

)(
m− 1

i

)
Aim(n−m+ i)

n(n− 1)
F (c)m−1(1−G(v))m(1− F (c))n−m−1,

P5(b) =

m−1∑
i

(
n

m− i

)(
m− 1

i

)
Aim

n
F (c)m−1(1−G(v))m(1− F (c))n−m.

Plugging the simplified forms of P2, P4 and P5 into equation 2.5 yields:

lim
∆b→0

rp(b+∆b)− rp(b)

∆b
=− (γb− c)(

1

bp(1− F (c))

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(n−m+ i)Ai

+
1

bc(1−G(v))

m−1∑
i

(
n

m− i

)(
m− 1

i

)
(m− i)Ai)

+γ(1− k)
m−1∑

i

(
n

m− i

)(
m− 1

i

)
Ai.

Proof 7 Proof of Lemma 2.4.1. Suppose that the bidding policies B and S characterize an

equilibrium, then the necessary condition is obtained by solving two differential equations

simultaneously:

1

B′(v)
=

kP1

(v − b)(m− 1)P3g(v)
− nP2f(c)

S′(c)(m− 1)P3g(v)
,

1

S′(C)
=

γ(1− k)P5

(γb− c)(n− 1)P4f(c)
− mP2g(v)

B′(v)(n− 1)P4f(c)
.

We prove the necessary and sufficient conditions based on Satterthwaite and Williams

1989b and Figure 2.4.

(a) Necessary Part.

On the demand side, let y = T(m), z = T(m+1) and f(y, z) denote the joint density of

y and z. If customers’ bid satisfies b ∈ (y, z), then the utility equals v−(1−k)y−kb,

if customers’ bid satisfies b > z, then the utility equals v − (1 − k)y − kz. Hence,

customers’ expected utility equals

rc =

∫ 1

b

∫ b

0

(v − (1− k)y − kb)f(y, z)dydz +

∫ b

0

∫ z

0

(v − (1− k)y − kz)f(y, z)dydz.

By double integral derivation theorem, differentiating the utility function w.r.t b

yields

drc
db

= −
∫ b

0

(v − (1− k)y − kb)f(y, b)dy +

∫ 1

b

(v − (1− k)b− kb)f(b, z)dz
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− k

∫ 1

b

∫ b

0

f(y, z)dydz +

∫ b

0

(v − (1− k)y − kb)f(y, b)dy.

Note that the first and the fourth terms of the above equation are cancelled out, hence,

the differential equation reduces to drc
db

=
∫ 1

b
f(b, z)dz(v − b) − k

∫ 1

b

∫ b

0
f(y, z)dydz,

where
∫ 1

b
f(b, z)dz (resp.,

∫ 1

b

∫ b

0
f(y, z)dydz) is the probability that the customer

increases her bidding price with gains (resp., losses) and being matched success-

fully (refer to theorem 5.4.4 in (Casella and Berger 2021), p.229). Specifically,∫ 1

b
f(b, z)dz is the density of the order statistic y judged at b, and

∫ 1

b

∫ b

0
f(y, z)dydz

(i.e., Pr{y < b < z}) is the probability that the customer’s bidding price satisfies

b ∈ (T(m), T(m+1)) in the pool of n+m− 1 bids.

Similarly, a provider with bid b can be matched if x < b < y or b < x < y, where

x = T(m−1). Let g(x, y) denote the joint density of x and y, we have the expected

utility of providers given by

rp =

∫ 1

x

∫ 1

b

(γ((1− k)x+ ky)− c)g(x, y)dxdy +

∫ 1

b

∫ b

0

(γ((1− k)b+ ky)− c)g(x, y)dxdy.

Differentiating the utility function w.r.t b yields

drp
db

= −
∫ 1

b

(γ((1− k)b+ ky)− c)g(b, y)dy +

∫ 1

b

(γ((1− k)b+ ky)− c)g(b, y)dy

−
∫ b

0

(γ((1− k)b+ kb)− c)g(x, b)dx+ γ(1− k)

∫ b

0

∫ 1

b

g(x, y)dxdy.

The first and second term of the above equation are cancelled out, hence, the differ-

ential equation on the supply side reduces to drp
db

= −(γb − c)
∫ b

0
g(x, b)dx + γ(1 −

k)
∫ b

0

∫ 1

b
g(x, y)dxdy, where

∫ b

0
g(x, b)dx and

∫ b

0

∫ 1

b
g(x, y)dxdy corresponds to the

first and second probabilities defined in equation 2.5, respectively.

(b) Sufficient Part.

We need to prove that the payoff function of customers (resp., providers) is maxi-

mized at b = B(v) (resp., b = S(c)).

On the demand side, (a) drc
db

= F (v, b, B)(v−b)−kP1, where K(v, b, B) = nP2
f(c)
S′(c)

+

(m− 1)P3
g(v)
B′(v)

. Note that drc
db

= 0 if b = B(v): K(v,B(v), B)(v −B(v))− kP1 = 0.
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(b) Because K(v, b, B) = nP2
f(c)
S′(c)

+ (m− 1)P3
g(v)
B′(v)

, then drc
db

= K(B−1(b), b, B)(v −

B−1(b)) +K(B−1(b), b, B)(B−1(b)− b)− kM . If v = B−1(b), then the FOC reduces

to drc
db

= K(B−1(b), b, B)(v − B−1(b)). Note that the marginal expected payoff of

customers is positive, it reaches zero at b and changes from positive to negative as

b = B(v) increases. Thus, customer’s payoff function is maximized at b. On the

supply side, the analysis is similar, we omit the details for simplicity.

Proof 8 Simplification of Bidding Equilibrium Derivation.

From the simplified forms of differential equations, we obtain the vector field:

1

bc
=

G(v)k −G(v) (v−b)(m−i)
bpF (c)

(v − b)i
,
1

bp
=

− (m−i)(γb−c)(1−F (c))
bc(1−G(v))

+ γ(1− k)(1− F (c))

(n−m+ i)(γb− c)
,

where c = b−ap
bp

, v = b−bc
bc

.

By rearranging the terms (the LHS are reduced to two terms with and without the index

and RHS is reduced to zero, then both terms on LHS are equal to zero), we have equations

labeled as equation 1 to 4:

1

bc
(
b− ac
bc

− b) =
b− ac
bc

b−ac
bc

− b

b− ap
,

b− ac
bc

(k −m
b−ac
bc

− b

b− ap
) = 0,

(1− b− ap
bp

)(γ(1− k)−m
γb− b−ap

bp

bc − b+ ac
) = (n−m)

1

bp
(γb− b− ap

bp
),

(1− b− ap
bp

)
γb− b−ap

bp

bc − b+ ac
=

1

bp
(γb− b− ap

bp
).

Note that b−ac
bc

̸= 0 and 1− b−ap
bp

̸= 0 for equation b−ac
bc

= 0 leads to − b
bc

= 0 and equation

1− b−ap
bp

= 0 results in γb− b−ap
bp

= 0 which are not reasonable. Moreover, b−ac
bc

−b = 0 and

γb− b−ap
bp

= 0 can not hold simultaneously for the first (resp., second) equation indicates

that k = 0 (resp., k = 1), and two cases violate each other.

So, condition b−ac
bc

− b ̸= 0 along with γb − b−ap
bp

= 0, b−ac
bc

− b = 0 together with

γb − b−ap
bp

̸= 0, and b−ac
bc

− b ̸= 0 together with γb − b−ap
bp

̸= 0 corresponds to case k = 1,

k = 0 and k ∈ (0, 1), respectively.
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Proof 9 Proof of Lemma 2.4.1.1.

(a) Supply Side.

Equation γb − b−ap
bp

= 0 implies that b = γc, so, ap = 0 and bp = 1
γ
. This can be

verified by the following logic: Providers’ bidding policy includes b0, b and b1, where

b0 b1b =
𝑐

𝑟

𝑝
(𝑎)

b0 b1b =
𝑐

𝑟

𝑝
(𝑏)

b0 b1b =
𝑐

𝑟

𝑝
(𝑐)

(1) 𝑆𝑢𝑝𝑝𝑙𝑦 𝑠𝑖𝑑𝑒 𝑜𝑓 BBDA

b0 b1b = 𝑣

𝑝
(𝑎)

b0 b1b = 𝑣

𝑝
(𝑏)

b0 b1b = 𝑣

𝑝
(𝑐)

(2) 𝐷𝑒𝑚𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 𝑜𝑓 SODA

Figure A.1: Possible Consideration of Case (a) in Lemma 4 & 5

b0 < b = c
γ
< b1 when k = 1 (refer to Figure A.1 of (1)). If the transaction price

is larger than b1, then the provider will be successfully matched with b1, b and b0,

while the net surplus γb− c of proposing bid b0 is negative. If the transaction price

is within (b, b1), then providers with bidding price b will be matched instead of b1. If

the transaction price is within interval (b0, b), providers with bidding price b0 have

the chance of being matched while the net surplus is negative. Hence, it is optimal

for providers to bid the discounted reservation prices in BBDA.

(b) Demand Side.

Plugging ap = 0 and bp = 1
γ
into simplified equations of 1 and 2 (i.e., ac = ap

and 1 − m
b−ac
bc

−b

b
= 0) yields ac = 0 and bc(

1
m

+ 1) = 1 correspondingly. Hence,

B(v) = m
m+1

v.

Proof 10 Proof of Lemma 2.4.1.2.
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(a) Demand Side.

Equation b−ac
bc

− b = 0 implies that b = v, so, ac = 0 and bc = 1. This can also

be verified by the following logic: Customers’ bidding policy includes b0, b and b1,

where b0 < b = v < b1 when k = 0 (refer to Figure A.1 of (2)). If the transaction

price is smaller than b0, then the provider will be successfully matched with b0, b

and b1, while the net surplus v− b of proposing bid b1 is negative. If the transaction

price is within (b0, b), then providers with bid b will be matched instead of with bid

b0. If the price is within interval (b, b1), providers with bid b1 have the chance of

being matched while the net surplus is negative. Hence, it is optimal for customers

to bid their valuation under SODA.

(b) Supply Side.

Replacing v with b, and k with 0 into the equations 3 and 4 leads to (γb− b−ap
bp

)n =

γ(ap + bp − b) and ap + bp = ac + bc, respectively, solving these two equations yields

ap = 1
n+1

and bp = n
n+1

when γ = 1 or ap + bp = 1, ap = γ(nb+b−1)−nb
γ(nb+b−1)−n

, and

bp =
nb−n

γ(nb+b−1)−n
when γ ∈ (0, 1), where b = ab + bpc, c ∈ [0, 1].

Proof 11 Proof of Lemma 4.2.1.3. To solve the aforementioned four equations, we focus

on conditions γb − b−ap
bp

̸= 0 and b−ac
bc

− b ̸= 0, for b−ac
bc

− b = 0 indicates that k = 0 and

γb− b−ap
bp

= 0 indicates that k = 1, while k ∈ (0, 1).

If γb − b−ap
bp

̸= 0 and b−ac
bc

− b ̸= 0, then equation 1 and 4 reduce to ac = ap and

ac+ bc = ap+ bp, respectively. Equation 2 reduces to b = apbck−acm

bc(k+m)−m
and equation 3 reduces

to b =
b2p(γ−γk)+apbp(γ−γk)−apn

−n+bp(γ−γk+γn)
. By replacing ac (resp., bc) with ap (resp., bp) and equating

apbck−acm

bc(k+m)−m
with

b2p(γ−γk)+apbp(γ−γk)−apn

−n+bp(γ−γk+γn)
, we have ap =

(1−k)γ((k+m)b2p−mbp)

bp((k−1)γm+γnk)+mn−γmn
.

Proof 12 Proof of Proposition 2.4.3.1. Given (m1, s) in period one, and (m2, n− γsp1)

in period two, customers’ bidding policies are given by B1(v) =
m1

m1+1
v in period one and

B2(v) =
m2

m2+1
v in two periods. Plugging bidding policies of both sides into Equations 2.6,

2.7 and 2.8 leads to:

γsp1 = m1(1−
m1 + 1

m1

p1), (n− γsp1)γp2 = m2(1−
m2 + 1

m2

p2), p1 = p2.
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Table A.2: The Equilibrium Number of Unmatched Providers and Customers

Participants Equilibrium number Outcomes

Providers

s−D∗
1

m1E
2−2m2(m1+1+γm1)E+4γm2

2(m1+1)

2γm2E

n− (D∗
1 +D∗

2)
(n−m1−m2)E−2m2(m1+m2+2)

E

α∗ m1E−2m2(m1+1)
2γm2n

Customers
m1 −D∗

1
2m2(m1+1)

E

m2 −D∗
2

2m2(m2+1)
E

Solving three equations leads to s∗ =
m1−2m2−m1m2−γm2

1+γm1n+m1

√
m2

2+(1+γn−γm1)2+2m2(1+γ(2+m1+n))

2γm2
.

Hence, p∗1 = p∗2 = 2m2

1+m2−γm1+γn+
√

m2
2+(1+γn−γm1)2+2m2(1+γ(2+m1+n))

, D∗
1 = m1 − 2m2(m1+1)

E
,

D∗
2 = m2 − 2m2(m2+1)

E
, and π∗ =

2m2(1−γ)(E(m1+m2)−4m2−2m2
2−2m1m2)

E2 , where E = 1 +m2 −

γm1 + γn+
√
m2

2 + (1 + γn− γm1)2 + 2m2(1 + γ(2 +m1 + n)).

Because s∗ ∈ [0, n], that is, 0 ≤ Em1−2m2(m1+1)
2γm2

≤ n. Or equivalently,
m1(1+γn)2+m2

1(1+γn−γ2n)

(1+γn+m1)(1+γn)
≤

m2 ≤ m1 + γm1n.

Social Surpluses and Social Welfare.

CS = (E−2m2)2(E(m1+m2)−2m2(2+m1+m2))
2E3 , PS =

2γ2m2
2(E(m1+m2)−2m2(2+m1+m2))

E3 , and SW =

(E2−4γm2E+4(1+γ2)m2
2)(E(m1+m2)−2m2(2+m1+m2))

2E3 .

Proof 13 Proof of Corollary 2.4.3.1.

(i) The FOCs of the optimal price w.r.t m1, m2, and n are denoted by:

∂p∗1
∂m1

=
2γm2(1− m2−(1+γn−γm1)√

m2
2+(1+γn−γm1)2+2m2(1+γ(2+m1+n))

)

E2
> 0,

∂p∗1
∂m2

=
2((1− γm1 + γn)E + 2γm2(m1 + 1))√

m2
2 + (1 + γn− γm1)2 + 2m2(1 + γ(2 +m1 + n))E2

> 0,

∂p∗1
∂n

= − 2γm2√
m2

2 + (1 + γn− γm1)2 + 2m2(1 + γ(2 +m1 + n))E
< 0.

(ii) The FOCs of the optimal transaction volumes w.r.t m1, m2, and n are denoted by:

∂D∗
1

∂m1
=

−γm1 +
√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2 −m2 + γn+ 1

2
√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2

> 0,

∂D∗
1

∂m2
=

−γ (m1 + n+ 2) +
√

(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2
2 −m2 − 1

2γ
√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2

< 0,

∂D∗
1

∂n
=

γm1 +
√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2 −m2 + γ(−n)− 1

2
√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2

> 0,

112



∂D∗
2

∂m1
=

2γm2 (m2 + 1)

(
γm1+m2+γ(−n)−1√

(−γm1+γn+1)2+2m2(γ(m1+n+2)+1)+m2
2

− 1

)
(
−γm1 +

√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2 +m2 + γn+ 1
)

2
< 0,

∂D∗
2

∂m2
= − 2m2

−γm1 +
√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2 +m2 + γn+ 1

+

2 (m2 + 1)m2

(
γm1+m2+γ(n+2)+1√

(−γm1+γn+1)2+2m2(γ(m1+n+2)+1)+m2
2

+ 1

)
(
−γm1 +

√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2 +m2 + γn+ 1
)

2

− 2 (m2 + 1)

−γm1 +
√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2 +m2 + γn+ 1
+ 1 > 0,

∂D∗
2

∂n
=

2γm2 (m2 + 1)

F
√
(−γm1 + γn+ 1) 2 + 2m2 (γ (m1 + n+ 2) + 1) +m2

2

> 0.

(iii) The FOCs of s∗ w.r.t m1, m2, and n are denoted by:

∂s∗

∂m1

=
(E − 2m2)(E − 1−m2 − γn)

2γm2

√
m2

2 + (1 + γn− γm1)2 + 2m2(1 + γ(2 +m1 + n))
,

∂s∗

∂m2

=
−m1(2γm2(1 +m1) + (1− γm1 + γn)E)

2γm2
2

√
m2

2 + (1 + γn− γm1)2 + 2m2(1 + γ(2 +m1 + n))
< 0,

∂s∗

∂n
=

m1E

2m2

√
m2

2 + (1 + γn− γm1)2 + 2m2(1 + γ(2 +m1 + n))
> 0,

∂s∗

∂m1
> 0 if

√
γ2m2

1 + 4γ(m1 + 1)(1 + γ + γn)− (1+ γ(2+m1 +n)) < m2 < γn+1.

Proof 14 Proof of Proposition 2.4.3.2. Given (m1, s) in period one, and (m2, n − (s +

1)p1+1) in period two, then providers’ bidding policies are denoted by S1(c) =
1

s+1
+ s

s+1
c,

and S2(c) =
1

(n−(s+1)p1+2)
+ n−(s+1)p1+1

(n−(s+1)p1+2)
c. Plugging the bidding policies of both sides into

Equations 2.6, 2.7 and 2.8 leads to:

(s+ 1)p1 − 1 = m1(1− p1), (n− (s+ 1)p1 + 2)p2 − 1 = m2(1− p2), p1
(s+ 1)p1 − 1

s
= p2

(n− (s+ 1)p1 + 2)p2 − 1

n− (s+ 1)p1 + 1
.

Replacing m2 with δm1 and n with βm1 into the equilibrium conditions leads to:

s∗ =
−2δ(1 +m1)(δm1 + 1) + (1 + (−1 + δ + β)m1)

√
δ(1 +m1)(1 + δm1)

2δ(1 + δm1)

+

√
(1 +m1)δ(1 + δm1)((1 + (−1 + δ + β)m1)2 + 4m1

√
δ(1 +m1)(1 + δm1))

2δ(1 + δm1)
,

p∗1 =

√
((1 + (−1 + δ + β)m1)2 + 4m1

√
δ(1 +m1)(1 + δm1))− (1 + (−1 + δ + β)m1)

2m1
,
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p∗2 =
2 (δm1 + 1)√

((1 + (−1 + δ + β)m1)2 + 4m1

√
δ(1 +m1)(1 + δm1)) + βm1 + δm1 −m1 + 1

.

Let F =
√
((1 + (−1 + δ + β)m1)2 + 4m1

√
δ(1 +m1)(1 + δm1)) + βm1 + δm1 −m1 +1,

hence, s∗ =

√
δ(1+m1)(1+δm1)F−2δ(1+m1)(1+δm1)

2δ(1+δm1)
, p∗1 = F−2(βm1+δm1−m1+1)

2m1
, p∗2 = 2(δm1+1)

F
,

D∗
1 = 2(βm1+δm1+1)−F

2
, D∗

2 = m2F−2m2(δm1+1)
F

, π∗ = 0, CS =
m1(−(p∗1)

3+3(p∗1)
2−3p∗1+1)

2
+

m2(−(p∗2)
3+3(p∗2)

2−3p∗2+1)

2
= 1

2

(
m2(F−2δm1−2)3

F 3 + (−F+2m1(β+δ)+2)3

8m2
1

)
, PS =

γ2m1((p∗1)
2−(p∗1)

3)

2
+

γ2m2((p∗2)
2−(p∗2)

3)

2
=

F 3(2(γ2+3)m1(F−2m1(β+δ−1)−2)2−(γ2+1)(F−2m1(β+δ−1)−2)3−12m2
1(F−2m1(β+δ−1)−2)+8m3

1)
16F 3m2

1
+

8m2
1m2(F 3−6F 2(δm1+1)+4(γ2+3)F (δm1+1)2−8(γ2+1)(δm1+1)3)

16F 3m2
1

, and SW =
m1(−(γ2+1)(p∗1)

3+(3+γ2)(p∗1)
2−3p∗1+1)

2
+

m2(−(γ2+1)(p∗2)
3+(3+γ2)(p∗2)

2−3p∗2+1)

2
.

Because 0 ≤ s∗ ≤ n, that is, 2δ(1+m1)(1+δm1)√
δ(1+m1)(1+δm1)

≤ F ≤ 2δ(1+m1+δm1)(1+δm1)√
δ(1+m1)(1+δm1)

Proof 15 Proof of Proposition 2.4.3.3. Because ap1 = ac1, bp1 = bc1, ap2 = ac2 and

bp2 = bc2, equations capturing fulfillment equilibrium are simplified into the following:

s
p1 − ap1

bp1
= m1(1−

p1 − ap1
bp1

), (n− s
p1 − ap1

bp1
)
p2 − ap2

bp2
= m2(1−

p2 − ap2
bp2

), p1
p1 − ap1

bp1
= p2

p2 − ap2
bp2

.

The first and second equation leads to p1−ap1
bp1

= m1

m1+s
and p2−ap2

bp2
= m2(m1+s)

(n+m2)(m1+s)−m1s
,

respectively. Correspondingly, D∗
1 =

m1s
m1+s

and D∗
2 =

m2(n(m1+s)−m1s)
(n+m2)(m1+s)−m1s

.

Give system state (m1, s) in period one and (m2, n− m1s
m1+s

) in period two, then

p1 =
m1sbp1

m1 + s
+

(1− k)γ((k +m1)b
2
p1

−m1bp1
)

bp1
((k − 1)γm1 + γsk) +m1s− γm1s

,

p2 =
m2(m1 + s)bp2

(n+m2)(m1 + s)−m1s
+

(1− k)γ(m1 + s)((k +m2)b
2
p2 −m2bp2)

(γk(m1n−m1s+ ns)− γm2(1− k)(m1 + s))bp2 +m2(1− γ)(m1n−m1s+ ns)
.

Hence, m1

m1+s
p1 =

m2(m1+s)
(n+m2)(m1+s)−m1s

p2, and πGDA = (1− γ)( m1s
m1+s

p1 +
m2(n(m1+s)−m1s)
(n+m2)(m1+s)−m1s

p2).

To obtain insightful results, we consider one specific case: ap = ac = 0, bp = bc =
m

k+m
,

and k = 1
2
. By conducting numerical analysis, we find that parameter k taking value at

(0, 1) does not influence the optimal transaction prices of both periods. Solving equations

p1 =
m2

1

(m1+k)(m1+s)
, p2 =

(m1δ)2(m1+s)
((m1δ+βm1)(m1+s)−m1s)(m1δ+k)

, and m1

m1+s
p1− m2(m1+s)

(n+m2)(m1+s)−m1s
p2 = 0

simultaneously yields

s∗ =
m1

(
(β − 1)

√
2δm1 + 1− 2δ3/2

√
2m1 + 1 + δ

√
2δm1 + 1

)
2δ3/2

√
2m1 + 1
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+
1

2

√
m2

1

(
(β + δ − 1)2 + 2δm1(β + δ − 1)2 + 4δ3/2

√
2m1 + 1

√
2δm1 + 1

)
δ3 (2m1 + 1)

,

p∗1 =
4δ3/2m2

1

√
2m1 + 1

(√
m2

1

(
(β + δ − 1)2 + 2δm1(β + δ − 1)2 + 4δ3/2

√
2m1 + 1

√
2δm1 + 1

)
+m1(β + δ − 1)

√
2δm1 + 1

) ,

p∗2 =
4δ2m2

1
√
2δm1 + 1

√
m2

1

(
(β + δ − 1)2 + 2δm1(β + δ − 1)2 + 4δ3/2

√
2m1 + 1

√
2δm1 + 1

)
+ 2δm2

1(β + δ − 1) +m1(β + δ − 1)
,

D∗
1 = 1

2

(
m1(β + δ + 1)−

√
m2

1((β+δ−1)2+2δm1(β+δ−1)2+4δ3/2
√
2m1+1

√
2δm1+1)

√
2δm1+1

)
, and D∗

2 =

√
δm1((β−1)

√
2δm1+1+2

√
δ
√
2m1+1+δ

√
2δm1+1)

2
√
2m1+1

−
√

m2
1((β+δ−1)2+2δm1(β+δ−1)2+4δ3/2

√
2m1+1

√
2δm1+1)

2
√
2m1+1

.

Proof 16 Proof of Theorem 2.5.1.1. Becausem1+γm1n > γn−γm1

2
and

m1(1+γ)(γn+1)+m2
1(1+γn−γ2)

(1+γ)m1+(1+γ)2
>

γm1

2
− γ2

1m1

4n
. So, the optimal pricing strategy in DP and BBDA are stable prices, and two

mechanisms coexist if min{m1(1+γ)(γn+1)+m2
1(1+γn−γ2)

(1+γ)m1+(1+γ)2
, γn− γm1

2
} ≤ m2 ≤ γm1n+m1.

(i) If
m1(1+γ)(γn+1)+m2

1(1+γn−γ2)

(1+γ)m1+(1+γ)2
< m2 < γn− γm1

2
, then

πBBDA − πDP =
2m2(1− γ)(E(m1 +m2)− 4m2 − 2m2

2 − 2m1m2)

E2
− 1

4
(1− γ) (m1 +m2)

=
−(m1 +m2)E

2 + 8m2(m1 +m2)E − 16m2(2m2 +m2
2 +m1m2)

4E2
,

The numerator is negative for the discriminant formula of the quadratic function of

E is negative ∆ = −128m2
2 (m1 +m2) < 0. So, πBBDA − πDP < 0. In addition,

pBBDA − pDP < 0. By conducting numerical analysis, we have DBBDA
1 +DBBDA

2 >

DDP
1 +DDP

2 .

(ii) If max{m1(1+γ)(γn+1)+m2
1(1+γn−γ2)

(1+γ)m1+(1+γ)2
, γn− γm1

2
} ≤ m2 ≤ γm1n+m1, then

πBBDA − πDP =
2m2(1− γ)(E(m1 +m2)− 4m2 − 2m2

2 − 2m1m2)

E2
− (1− γ) (m1 +m2)A

DP
1 ADP

2

=(1− γ)
−(m1 +m2)A

DP
1 ADP

2 E2 + 2m2(m1 +m2)E − 4m2(2m2 +m2
2 +m1m2)

E2
.

The discriminant of the quadratic function in the numerator is always positive, that

is, ∆ = 4m2
2

(
−4ADP

1 ADP
2 (m1 +m2 + 2) +m1 +m2

)
= 4(m1+m2+2)( n

2m1
+ m2

2γm1
−√

( n
2m1

+ m2

2γm1
− 1

2
)2 + m2

γm1
)2 − 2 > 0. The roots for this function are equal to E =

(m1+m2)m2−m2

√
(−4ADP

1 ADP
2 (m1+m2+2)+m1+m2)

(m1+m2)ADP
1 ADP

2
and E =

(m1+m2)m2+m2

√
(−4ADP

1 ADP
2 (m1+m2+2)+m1+m2)

(m1+m2)ADP
1 ADP

2
.

115



Numerical analysis shows that pBBDA − pDP < 0, DBBDA
1 +DBBDA

2 < DDP
1 +DDP

2 ,

and πBBDA < πDP .

Proof 17 Proof of Proposition 2.6.1.1.

(i) If nF (γp)α ≤ m1Ḡ(p) and nF (γp)(1−α) ≤ m2Ḡ(p), then π(p) = γ(1−γ)np2. The

profit function increases with p over interval [0,min{ m1

γnα+m1
, m2

γn(1−α)+m2
}]. Hence,

p∗ = min{ m1

γnα+m1
, m2

γn(1−α)+m2
}, and π∗(p∗) = γ(1− γ)n(min{ m1

γnα+m1
, m2

γn(1−α)+m2
})2,

where α ∈ [0, 1].

The profit function increases with α if α < m1

m1+m2
, and decreases with α otherwise.

Hence, πSP
max = (1−γ)γn(m1+m2)2

(γn+m1+m2)2
if p∗ = m1+m2

γn+m1+m2
and α∗ = m1

m1+m2
.

(ii) If nF (γp)α ≤ m1Ḡ(p) and nF (γp)(1 − α) > m2Ḡ(p), then α = 1 and π(p) =

(1 − γ)((nγα − m2)p
2 + m2p), which is concave with p if nγα < m2. Hence,

p∗ = m2

2(m2−nαγ)
provided that p∗ ≤ m1

γnα+m1
and p∗ > m2

γn(1−α)+m2
. While these two

constraints contradict with each other when α = 1.

(iii) If nF (γp)α > m1Ḡ(p) and nF (γp) − m1Ḡ(p) ≤ m2Ḡ(p), then α = 0 and π(p) =

(1 − γ)γnp2, which increases with p, hence, p∗ = m1+m2

γn+m1+m2
provided that p∗ ∈

( m1

γnα+m1
, m1+m2

γn+m1+m2
]. While the price is more than one when α = 0.

(iv) If nF (γp)α > m1Ḡ(p) and nF (γp) − m1Ḡ(p) > m2Ḡ(p), then α =
(m1nγ+m2

1)p−m2
1

m2nγp

and π(p) = (1 − γ)(m1 + m2)(p − p2), which reaches maximum at point 1
2
if

max{ m1

γnα+m1
, m1+m2

γn+m1+m2
} < 1

2
. Hence, α∗ =

m1nγ−m2
1

m2nγ
and π∗ = (1 − γ)m1+m2

4
.

The constraints are simplified into 1
2
> max{ m2

m2+nγ−m1
, m1+m2

γn+m1+m2
}. Note that when

m2

m2+nγ−m1
> m1+m2

γn+m1+m2
(or equivalently, 1

2γ
+ m2

2γm1
− n

2m1
> 0), m2

m2+nγ−m1
> 1

2
, thus

the optimization problem has no optimal solution. If m2

m2+nγ−m1
≤ m1+m2

γn+m1+m2
(or

equivalently, 1
2γ

+ m2

2γm1
− n

2m1
≤ 0), then m1+m2

γn+m1+m2
< 1

2
, thus the platform’s profit

reaches maximum at p = 1
2
.

To sum up,

(i) If 1
2γ

+ m2

2γm1
− n

2m1
≤ 0, then p∗ = 1

2
, α∗ =

m1nγ−m2
1

m2nγ
and π∗ = (1− γ)m1+m2

4
;
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(ii) Otherwise, p∗ = m2

γn(1−α)+m2
and π∗ = γ(1− γ)n( m2

γn(1−α)+m2
)2 if 0 ≤ α∗ < m1

m1+m2
or

p∗ = m1

γnα+m1
and π∗ = γ(1− γ)n( m1

γnα+m1
)2 if m1

m1+m2
≤ α∗ ≤ 1.

Consumer surplus and social welfare

(i) If 1
2γ
+ m2

2γm1
− n

2m1
≤ 0, then CS = m1+m2

16
, PS = γ2(m1+m2)

16
and SW = (γ2−4γ+5)(m1+m2)

16
,

respectively.

(ii) If 1
2γ

+ m2

2γm1
− n

2m1
> 0, then CS = (1−α)2m2n3γ3

2(m2+γn(1−α))3
, PS =

m3
2nγ

3

2(m2+γn(1−α))3
and

SW =
m2nγ(2(1−α)m2n(1−γ)γ+(1−α)2n2γ2+m2

2(γ
2−2γ+2))

2(m2+γn(1−α))3
when 0 ≤ α∗ < m1

m1+m2
, or SW =

(m1nγ(2αm1n(1−γ)γ+α2n2γ2+m2
1(γ

2−2γ+2)))

2(m1+γnα)3
, CS = α2m1n3γ3

2(m1+γnα)3
, and PS =

m3
1nγ

3

2(m1+γnα)3
when

m1

m1+m2
≤ α∗ ≤ 1.

Because the surpluses and social welfare depends on α when 1
2γ

+ m2

2γm1
− n

2m1
> 0, we

explore the impact of α on surpluses and social welfare in the following part.

(i) Consumer Surplus.

Consumer surplus increases with α over interval [0, 1 − 2m2

γn
] and decreases with

α over interval (1 − 2m2

γn
, m1

m1+m2
) if 0 ≤ α∗ < m1

m1+m2
. Or consumer surplus in-

creases (resp., decreases) with α over interval [ m1

m1+m2
, m1

γn
] (resp., (m1

γn
, 1]) otherwise.

Hence, CS|α= m1
m1+m2

= n3γ3(m1+m2)
2(m1+m2+γn)3

, CS|α=0 = n3γ3m2

2(m2+γn)3
and CS|α=1 = n3γ3m1

2(m1+γn)3
,

CS|
α=1− 2m2

γn
= 2γn

27
, and CS|α=m1

γn
= γn

16
.

(ii) Provider Surplus.

Provider surplus increases with α over interval [0, m1

m1+m2
) while decreases over [ m1

m1+m2
, 1].

Hence, PS|α= m1
m1+m2

= (m1+m2)3nγ3

2(γn+m1+m2)3
, PS|α=0 =

m3
2nγ

3

2(γn+m2)3
and PS|α=1 =

m3
1nγ

3

2(γn+m1)3
.

(iii) Social Welfare.

Social welfare increases with α over [0, m1

m1+m2
) while decreases over [ m1

m1+m2
, 1]. Hence,

SW |α= m1
m1+m2

= (m1+m2)γn(2(m1+m2)n(1−γ)γ+n2γ2+(m1+m2)2(γ2−2γ+2))
2(m1+m2+γn)3

. Boundary solu-

tions equal SW |α=0 =
m2γn(2m2n(1−γ)+n2γ2+m2

2(γ
2−2γ+2))

2(m2+γn)3
and SW |α=1

=
m1γn(2m1n(1−γ)+n2γ2+m2

1(γ
2−2γ+2))

2(m1+γn)3
.
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Proof 18 Proof of Theorem 2.6.1.1.

(i) If γn−m1 <
γm1

2
− γm2

1

4n
, there are four cases.

(a) When m2 ≤ γn−m1, then πSP = (1− γ)m1+m2

4
, πDP = (1− γ)(m1A

DP
3 ADP

4 +

m2

4
), and πDP − πSP = −(1− γ)m1(

√
( n
2m1

− 1
2
)2 + m2

2γm1
− n

2m1
)2 < 0.

(b) When γn−m1 < m2 <
γm1

2
− γm2

1

4n
, then πDP = (1− γ)(m1A

DP
3 ADP

4 + m2

4
) and

πSP = (1 − γ)γn( m1+m2

γn+m1+m2
)2. Numerical results show that πDP − πSP < 0 if

m2 < mDS
2 , where mDS

2 solves equation πDP − πSP = 0.

(c) When γm1

2
− γm2

1

4n
≤ m2 ≤ γn − γm1

2
, then πDP = (1 − γ)m1+m2

4
and πSP =

γ(1 − γ)n( m2

γn(1−α)+m2
)2 if 0 ≤ α∗ < m1

m1+m2
or πSP = γ(1 − γ)n( m1

γnα+m1
)2 if

m1

m1+m2
≤ α∗ ≤ 1. Proposition 2.6.1.1 reveals that the maximum profit in static

pricing (i.e., πSP = (1 − γ)γn( m1+m2

γn+m1+m2
)2) is no more than the profit under

dynamic setting: πDP > πSP
max > πSP

min.

(d) When m2 > γn − γm1

2
, then πDP = (1 − γ)(m1 + m2)A

DP
1 ADP

2 , πSP = (1 −

γ)γn( m1+m2

γn+m1+m2
)2, and πDP − πSP

max = 1
(m1+m2+γn)2

(2m2
1(m1 +m2)γ

3n + (m1 +

m2 + γn)2( m2

2γm1
+ 1

2
+ n

2m1
−
√

( m2

2γm1
− 1

2
+ n

2m1
)2 + m2

γm1
))(− m2

2γm1
+ 1

2
− n

2m1
+√

( m2

2γm1
− 1

2
+ n

2m1
)2 + m2

γm1
) = 1

(m1+m2+γn)2
(2m2

1(m1 + m2)γ
3n + (m1 + m2 +

γn)2ADP
1 )ADP

2 > 0. For price comparison, suppose that ADP
1 − p∗ < 0, then

−n((1−γ)(m1+m2)+γn)
(m1+m2+γn)2

< 0. For transaction volume gap, suppose that (m1 +

m2)A
DP
2 − γn(m1+m2)

m1+m2+γn
< 0, then n((1−γ)(m1+m2)+γn)

(m1+m2+γn)2
> 0.

(ii) If γm1

2
− γm2

1

4n
≤ γn − m1 < γn − γm1

2
, there are also four cases needed further

discussion.

(a) When m2 <
γm1

2
− γm2

1

4n
, then πSP = (1−γ)m1+m2

4
, πDP = (1−γ)(m1A

DP
3 ADP

4 +

m2

4
). The profit gap is negative, which is the same as condition (a) of case (i).

(b) When γm1

2
− γm2

1

4n
≤ m2 ≤ γn−m1, then πSP = πDP = (1− γ)m1+m2

4
.

(c) When γn − m1 < m2 ≤ γn − γm1

2
, then πDP = (1 − γ)m1+m2

4
, πSP = (1 −

γ)γn( m1+m2

γn+m1+m2
)2. The comparison is the same as condition (c) of case (i).
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(d) When m2 > γn − γm1

2
, then πDP = (1 − γ)(m1 + m2)A

DP
1 ADP

2 , πSP = (1 −

γ)γn( m1+m2

γn+m1+m2
)2. The comparison is the same as condition (d) of case (i).

Proof 19 Proof of Theorem 2.6.1.2. BBDA and SP coexist if min{m1(1+γ)(γn+1)+m2
1(1+γn−γ2)

(1+γ)m1+(1+γ)2
, γn−

m1} ≤ m2 ≤ γm1n+m2.

(i) If
m1(1+γ)(γn+1)+m2

1(1+γn−γ2)

(1+γ)m1+(1+γ)2
≤ m2 ≤ γn−m1, then

πBBDA − πSP =
2m2(1− γ)(E(m1 +m2)− 4m2 − 2m2

2 − 2m1m2)

E2
− 1

4
(1− γ) (m1 +m2) < 0.

(ii) If max{m1(1+γ)(γn+1)+m2
1(1+γn−γ2)

(1+γ)m1+(1+γ)2
, γn−m1} ≤ m2 ≤ γm1n+m1, then

πBBDA − πSP =
2m2(1− γ)(E(m1 +m2)− 4m2 − 2m2

2 − 2m1m2)

E2
− (1− γ)γn(

m1 +m2

γn+m1 +m2
)2

=(1− γ)
−γn( m1+m2

γn+m1+m2
)2E2 + 2m2(m1 +m2)E − 4m2(2m2 +m2

2 +m1m2)

E2
.

The numerator is negative if the discriminant formula of the quadratic function

of E is negative, that is, ∆ = 4m2
2 (m1 +m2)

2
(
1− 4γ(m1+m2+2)n

(m1+m2+γn)2

)
< 0, or equiv-

alently, γn − m1 − 2
√
2γn < m2 < γn − m1 + 2

√
2γn. So, πBBDA − πSP ≥ 0 if

m2(γn+m1+m2)
2−m2(γn+m1+m2)

√
(m1+m2−γn)2−8γn

γn(m1+m2)
≤ E ≤ m2(γn+m1+m2)

2+m2(γn+m1+m2)
√

(m1+m2−γn)2−8γn

γn(m1+m2)
,

which is always true. Moreover, pSP > pBBDA, DSP
1 +DSP

2 < DBBDA
1 +DBBDA

2 .

Proof 20 Proof of Lemma 2.6.2.1.

(i) If nγp > m(1− p) (i.e., p > m
m+γn

), then π = (1− γ)pm(1− p). Hence, p∗ = 1
2
and

π∗ = (1−γ)m
4

if 1
2
> m

m+γn
.

(ii) If nγp ≤ m(1 − p) (i.e., p ≤ m
m+γn

), then π(p) = (1 − γ)γnp2. Hence, p∗ = m
m+γn

and π∗ = (1−γ)γnm2

(m+γn)2
.

Proof 21 Proof of Lemma 2.6.2.2.

(i) When k = 1, we have ap = 0, bp = 1
γ
, ac = 0 and bc =

m
m+1

. Hence, p∗ = m
γn+m+1

,

D∗ = γmn
γn+m+1

, and π∗ = (1−γ)γm2n
(m+1+γn)2

.
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(ii) When k = 0 and γ = 1, then ap = 1
n+1

, bp = n
n+1

, ac = 0 and bc = 1. Hence,

p∗ = m+1
n+1+m

and π∗ = 0.

(iii) When k ∈ (0, 1), if ap = ac = 0, then bc = bp = m
k+m

. Hence, p∗ = mbp
m+n

and

π∗ = (1−γ)m3n
(k+m)(m+n)2

.

Proof 22 Proof of Proposition 2.6.2.2.

(i) Post pricing vs. Buyer’s Bid Double Auction. If m < γn, then πPP−BBDA =

(1−γ)m
4

− (1−γ)γm2n
(m+1+γn)2

= m(1−γ)((m−γn)2+2(m+γn)+1)
4(1+m+γn)2

> 0; if m ≥ γn, then πPP−BBDA =

(1−γ)γnm2

(m+γn)2
− (1−γ)γm2n

(m+1+γn)2
= (1−γ)γm2n(2γn+2m+1)

(m+1+γn)2(m+γn)2
> 0. So, post pricing dominates BBDA.

(ii) Post pricing vs. Seller’s Offer Double Auction. The platform’s profits both equal

zero when γ = 1.

(iii) Post pricing vs. General Double Auction. If m < γn, then πPP−GDA = (1−γ)m
4

−
(1−γ)m3n

(k+m)(m+n)2
= (1−γ)m

4
(k+m)n2+2(k−m)mn+km2+m3

(k+m)(m+n)2
; if m ≥ γn, then πPP−GDA = (1−γ)γnm2

(m+γn)2
−

(1−γ)m3n
(k+m)(m+n)2

= m2n(1−γ) (γk+γm−γ2m)n2+2γkmn+m3(−1+γ)+kγm2

(m+γn)(k+m)(m+n)2
. The numerator of the

first profit gap is always positive for the discriminant of the quadratic function about

n (i.e., (k +m)n2 + 2(k−m)mn+ km2 +m3) is negative (i.e., −16km3 < 0). The

numerator of the second profit gap is positive if
m(1−γ)

√
γm(k+m)−γmk

γk+γm−γ2m
< n ≤ m

γ
or is

negative if m
γ
≤ m(1−γ)

√
γm(k+m)−γmk

γk+γm−γ2m
.
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A.2 Discriminatory k-DA Mechanism

The difference between two double auction mechanisms lies in ways of ordering and the

transaction price formation: We list the order statistics of providers as S(1) ≤ S(2) ≤ ... ≤

S(n) and of customers as B(1) ≥ B(2) ≥ ... ≥ B(m) in a certain period with n providers and

m customers. A successful matching takes place if and only if the bidding price is no less

than the asking price in a matching pair, which refers to a customer with the same order

statistic with the provider. Each matching pair is transacted with a transaction price,

which is a convex combination of the asking and bidding prices of that matching pair.

Note that customers and providers propose symmetric bidding policy (i.e., S(c) =

ap + bpc and B(v) = ac + bcv), denote the respective cdf and pdf of customer’s bidding

strategy by functions F1(B) and f1(B), and the cdf and pdf of provider’s bidding strategy

by F2(S) and f2(S), then the pdf of B(i) and of S(j) (Silvey 2017) are given by

f(B(i)) =
m!

(i− 1)! (m− i)!
f1(B)[F1(B)]m−i[1− F1(B)]i−1,

f(S(j)) =
n!

(j − 1)! (n− j)!
f2(S)[F2(S)]

j−1[1− F2(S)]
n−j.

where B(i) is the i− th highest (or the (m− i + 1)− th lowest) bidding price and S(j) is

the (n− j + 1)− th lowest (or the j − th highest) asking price.

The Expected Utility Function.

For a specific customer, we assume that her bidding price B(x) is the x − th high-

est among all bids, where x ∈ {1, 2, ...,m}, m here denotes m1 in period one or m2 in

period two. The probability that there are m − 1 competitors is denoted by P6(m,x) =(
m− 1

x− 1

)
G(v)m−x(1 − G(v))x−1, where v =

B(x)−ac

bc
. A customer’s expected utility is

defined as her valuation less the transaction price given that her bid is greater than or

equal to the corresponding provider’s asking price. Denote the asking price of the specific

provider in the matching pair by S(x), we have:

rc(B(x)) = (v − ((1− k)E[S(x)|B(x) ≥ S(k)] + kB(x)))P6(m,x)Pr{B(x) ≥ S(x)},
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where

Pr{B(x) ≥ S(x)} =

∫ B(x)

ap

n!

(x− 1)! (n− x)!
f2(S)[F2(S)]

x−1[1− F2(S)]
n−xdS.

The term v − ((1 − k)E[S(x)|B(x) ≥ S(k)] + kB(x)) is the net surplus of the customer,

and the term P6(m,x)Pr{B(x) ≥ S(x)} captures the probability that the customer will be

matched successfully.

For a specific provider, we assume that the order statistic of his asking price is S(y),

where y ∈ {1, 2, ..., n}. The probability that there are n−1 competitors such that y−1 have

lower asking prices than his asking price is denoted by P7(n, y) =

(
n− 1

y − 1

)
F (c)y−1(1−

F (c))n−y, where c =
S(y)−ap

bp
. Hence the provider proposes asking price S(y) in order to

maximize his expected utility:

rp(S(y)) = (γ((1− k)S(y) + kE[B(y)|B(y) ≥ S(y)])− c)P7(n, y)Pr{B(y) ≥ S(y)},

where

Pr{B(y) ≥ S(y)} =

∫ ac+bc

S(y)

m!

(y − 1)! (m− y)!
f1(B)[F1(B)]m−y[1− F1(B)]y−1dB,

E[B(y)|B(y) ≥ S(y)] =

∫ ac+bc
S(y)

m!
(y−1)!(m−y)!

f1(B)[F1(B)]m−y[1− F1(B)]y−1BdB

Pr{B(y) ≥ S(y)}
.

Note that the order statistics of a specific matching pair can not exceed the minimum num-

ber of customers and providers, that is, both x and y take values over {1, 2, ...,min{m,n}}.

The Optimal Bidding Strategy.

The following lemma characterizes the optimal bidding policy of both customers and

providers.

Lemma A.2 (Optimal Bidding Strategy of Both Sides In Discriminatory

k-DA Mechanism) Under bid-ask mechanism,

(i) Customers’ unique optimal bidding strategy B(k) solves the equation (v−B(x))(
B(x)−ap

bp
)x−1(1−

B(x)−ap

bp
)n−x − k

∫ B(x)−ap

bp

0 [F2(S)]
x−1[1 − F2(S)]

n−xdF2(S) = 0 provided that B(x) ∈

(
B1−

√
B2

1−4(n+k)B2

2(n+k) ,
B1+

√
B2

1−4(n+k)B2

2(n+k) ), where x ∈ {1, 2, ...,min{m,n}}.
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(i) Providers’ unique optimal bidding strategy S(y) solves the equation −(γS(y) − c)(
S(y)−ac

bc
)m−y(1−

S(y)−ac

bc
)y−1 + γ(1− k)

∫ 1
S(y)−ac

bc

[F1(B)]m−y[1− F1(B)]y−1dF1(B) = 0 provided that

S(x) ∈ (
S1−

√
S2
1−4γ(m+k−1)S2

2γ(m+k−1) ,
S1+

√
S2
1−4γ(m+k−1)S2

2γ(m+k−1) ), where y ∈ {1, 2, ...,min{m,n}}.

Results in Lemma A.2 show that it is optimal for providers to uniformly bid c
γ
when

the transaction price of a matching pair equals the bidding price, and it is optimal for

customers to uniformly bid v when the price is equal to the asking price of that matching

pair. While the optimal bidding strategy on the demand-side (resp., supply-side) when

k = 1 (resp., k = 0) depends on the number of participants on the other side, their

own order statistics at that time period, and the commission rate as well. Details are as

Corollary A.2, in which part (i) and (ii) confirms the optimal bidding policy of provider

side in Lemma 2.4.1.1 and of customer side in Lemma 2.4.1.2, respectively.

Corollary A.2

(i) If k = 1, providers bid c
γ
, and customers’ bid B(k) satisfies (v−B(x))(γB(x))

x−1(1−

γB(x))
n−x −

∫ γB(x)

0
[F2(S)]

x−1[1− F2(S)]
n−xdF2(S) = 0 provided that

B(x) ∈ (
1+x−γv+γnv−

√
(−1−x+γv−γnv)2+4(γ+γn)(v−xv)

2(γ+γn)
,
1+x−γv+γnv+

√
(−1−x+γv−γnv)2+4(γ+γn)(v−xv)

2(γ+γn)
),

where x ∈ {1, 2, ...,min{m,n}}.

(ii) If k = 0, customers bid v, and providers’ unique optimal bidding strategy S(y) satis-

fies −(γS(y) − c)(S(y))
m−y(1−S(y))

y−1 + γ
∫ 1

S(y)
[F1(B)]m−y[1−F1(B)]y−1dF1(B) = 0

provided that S(y) ∈ ( c
γ
, m−y
m−1

) if c
γ

< m−y
m−1

or S(y) ∈ (m−y
m−1

, c
γ
) otherwise, where

y ∈ {1, 2, ...,min{m,n}}.

Providers’ Fulfillment Equilibrium.

Suppose s providers join in period one, then the number of successful transactions

equals z, where z = max{j ∈ [0,min{m1, s}]|S(j) ≤ B(j)}. Denote the effective number

of transactions in period two by w, where w = max{j ∈ [0,min{m2, n− z}]|S(j) ≤ B(j)}.

Hence, the demand-supply state is (m1, s) in period one and (m2, n − z) in period two.

Suppose a provider with order statistic x in period one and y in period two, then there is
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no difference for him to serve in two periods if

P7(s, x)γ((1−k)S(x)+kB(x))Pr{B(x) ≥ S(x)} = P7(n−z, y)γ((1−k)S(y)+kB(y))Pr{B(y) ≥ S(y)}.

The platform’s profit is defined as the multiplier of 1 − γ and the sum of effective

transaction prices over two periods, that is, from (1− k)S(1)+ kB(1) to (1− k)S(z)+ kB(z)

in period one and from (1− k)S(1) + kB(1) to (1− k)S(w) + kB(w) in period two.

Proof 23 Proof of Lemma A.2. P6 and P7 do not affect participants’ bidding equilibrium

(bidders proposing bids care about the bid with the same order statistics on the other side

instead of bids on their same side). Hence,

rc(B(x)) = (v − ((1− k)E[S(x)|B(x) ≥ S(x)] + kB(x)))Pr{B(x) ≥ S(x)},

rp(S(y)) = (γ((1− k)S(y) + kE[B(y)|B(y) ≥ S(y)])− c)Pr{B(y) ≥ S(y)},

where

E[S(x)|B(x) ≥ S(x)] =

∫ B(x)

ap
n!

(x−1)!(n−x)!
f2(S)[F2(S)]

x−1[1− F2(S)]
n−xSdS

Pr{B(x) ≥ S(x)}
,

E[B(y)|B(y) ≥ S(y)] =

∫ ac+bc
S(y)

m!
(m−y)!(y−1)!

f1(B)[F1(B)]m−y[1− F1(B)]y−1BdB

Pr{B(y) ≥ S(y)}
.

By applying the the formula of changing element of definite integral, we have the

interval of the cdf of F1(B) denoted by [
S(y)−ac

bc
, 1] when B ∈ [S(y), ac + bc]. Similarly, the

interval for the cdf of F2(S) is given by [0,
B(x)−ap

bp
] when S ∈ [ap, B(x)]. Replacing B with

bcF1(B) + ac for F1(B) = B−ac
bc

yields

rc(B(x)) = (v − kB(x) − (1− k)ap)

∫ B(x)−ap

bp

0

n!

(x− 1)! (n− x)!
[F2(S)]

x−1[1− F2(S)]
n−xdF2(S)

− (1− k)bp

∫ B(x)−ap

bp

0

n!

(x− 1)! (n− x)!
[F2(S)]

x[1− F2(S)]
n−xdF2(S),

rp(S(y)) = (γ(1− k)S(y) − c+ γkac)

∫ 1

S(y)−ac

bc

m!

(y − 1)! (m− y)!
[F1(B)]m−y[1− F1(B)]y−1dF1(B)

+ γkbc

∫ 1

S(y)−ac

bc

m!

(y − 1)! (m− y)!
[F1(B)]m−y+1[1− F1(B)]y−1dF1(B).
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By deriving the FOCs and SOCs of customers and providers’ payoff functions, we have

the effective domain on the demand side given by (n + k)B2
(x) − ((n + 2k + 1)ap + (k +

x)bp + (n− 1)v)B(x) + (k + 1)ap(ap + bp) + (n− 1)apv + (x− 1)bpv < 0 (or equivalently,

B(x) ∈ (
B1−

√
B2

1−4(n+k)B2

2(n+k)
,
B1+

√
B2

1−4(n+k)B2

2(n+k)
), where B1 = ap+bpx+apn+2kap+kbp−v+nv

and B2 = a2p + apbp + ka2p + kapbp − apv − bpv + bpxv + apnv), and the effective domain

on the supply side given by γ(m + k − 1)S2
(y) − (γ(m + 2k − 1)ac + γ(m + k − l)bc +

(m − y)c)S(y) + γkac(ac + bc) + ((m − 1)ac + (m − y)bc)c < 0 (or equivalently, S(y) ∈

(
S1−

√
(S1)2−4γ(m+k−1)S2

2γ(m+k−1)
,
S1+

√
S2
1−4γ(m+k−1)S2

2γ(m+k−1)
), where S1 = −cy+ cm−γac−γbcy+γacm+

γbcm+ 2γkac + γkbc and S2 = −acc− bccy + accm+ bccm+ γka2c + γkacbc).

Proof 24 Proof of Corollary A.2.

(a) If k = 1, then S(y) = c
γ
, and B∗

(x) satisfies equation (v − B(x))(γB(x))
x−1(1 −

γB(x))
n−x −

∫ γB(x)

0
[F2(S)]

x−1[1− F2(S)]
n−xdF2(S) = 0 provided that (γn+ γ)B2

(x) +

((1−n)γv−x− 1)B(x)+(x− 1)v < 0. Solving equation (γn+γ)B2
(x)+((1−n)γv−

x− 1)B(x) + (x− 1)v = 0 yields B(x) =
1+x−γv+γnv−

√
(−1−x+γv−γnv)2+4(γ+γn)(v−xv)

2(γ+γn)
or

B(x) =
1+x−γv+γnv+

√
(−1−x+γv−γnv)2+4(γ+γn)(v−xv)

2(γ+γn)
. Hence,

(
1+x−γv+γnv−

√
(−1−x+γv−γnv)2+4(γ+γn)(v−xv)

2(γ+γn)
,
1+x−γv+γnv+

√
(−1−x+γv−γnv)2+4(γ+γn)(v−xv)

2(γ+γn)
).

(b) If k = 0, then B∗
(x) = v, and S∗

(y) satisfies equation γ
∫ 1

S(y)
[F1(B)]m−y[1−F1(B)]y−1dF1(B)−

(γS(y) − c)(S(y))
m−y(1 − S(y))

y−1 = 0 provided that S(y) ∈ ( c
γ
, m−y
m−1

) if c
γ
< m−y

m−1
or

S(y) ∈ (m−y
m−1

, c
γ
) otherwise.
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APPENDIX B

PROOF OF CHAPTER 3

B.1 Proof of Main Results

The analysis follows three steps: (i) First check whether the objective functions are

(jointly) concave with the indifference thresholds on a convex set (i.e., the Hessian matrix

is negative definite) which permits the FOCs together with feasible conditions to charac-

terize the optimal solutions. (ii) Then check feasible conditions labeled as condition (a) to

(e): (a) 0 ≤ θiL ≤ θiH ≤ 1, (b) KH −D1(1− θ1H) ≥ 0, (c) KL −D1(θ1H − θ1L) ≥ 0, (d)

0 ≤ θO, ϕ ≤ 1, (e) max{θ1L, 1− KH

D1
} < θU < θ1H . To verify whether those constraints are

satisfied when δ ∈ (1, 1+
3D1D2+3D2

2

D2
1

). (iii) Finally figure out equilibrium selling strategies

which strictly dominate other selling strategies in the same feasible region.

Proof 25 Proof of Lemma 3.3.1. The optimal solutions satisfy conditions (a), (b), and

(c) mentioned above.

(i) If D2(1− θ2H) < KH −D1(1− θ1H) and D2(θ2H − θ2L) < KL −D1(θ1H − θ1L), then

the seller’s profit in the salvage stage equals π2P (θ2H , θ2L) = θ2H(δ−1)D2(1−θ2H)+

θ2LD2(1− θ2L). Because it’s Hessian matrix is negative definite, equating the FOCs

to zero yields θ∗2H = θ∗2L = 1
2
. The seller’s optimal profit in the salvage stage equals

π∗
2P = D2

4
δ. The seller’s total profit equals

πP (θ1H , θ1L) = θ1H(δ − 1)D1(1− θ1H) + θ1LD1(1− θ1L) +
D2

4
δ.

Because the Hessian matrix of πP is negative definite, equating the FOCs to zero

yields θ∗1H = θ∗1L = 1
2
. Hence, π∗

P = D1+D2

4
δ provided that D1 +D2 < 2KH .

(ii) If D2(1 − θ2H) ≥ KH − D1(1 − θ1H) and D2(θ2H − θ2L) ≥ KL − D1(θ1H − θ1L),

then the seller’s profit in the salvage stage equals π2P (θ2H , θ2L) = θ2H(δ − 1)(KH −
D1(1 − θ1H)) + θ2L(KH + KL − D1(1 − θ1L)). By deriving FOCs and SOCs w.r.t
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θ2H and θ2L, we find that π2P increases with both θ2H and θ2L, hence, θ
∗
2H = 1 −

KH−D1(1−θ1H)
D2

,θ∗2L = 1− KH+KL−D1(1−θ1L)
D2

, and the seller’s total profit equals

πP (θ1H , θ1L) = θ1H(δ − 1)D1(1− θ1H) + (1− KH +KL −D1(1− θ1L)

D2
)(KH +KL −D1(1− θ1L))

+ θ1LD1(1− θ1L) + (1− KH −D1(1− θ1H)

D2
)(δ − 1)(KH −D1(1− θ1H)).

Because the Hessian matrix of πP is negative definite, equating the FOCs w.r.t

θ1H and θ1L to zero yields θ∗1H = 1 − KH

D1+D2
and θ∗1L = 1 − KH+KL

D1+D2
. Hence, θ∗2H =

1− KH

D1+D2
, θ∗2L = 1−KH+KL

D1+D2
, and π∗

P = KH(1− KH

D1+D2
)(δ−1)+(KH+KL)(1−KH+KL

D1+D2
)

provided that D1 +D2 ≥ KH +KL.

(iii) If D2(1 − θ2H) ≥ KH − D1(1 − θ1H) and D2(θ2H − θ2L) < KL − D1(θ1H − θ1L),

then the seller’s profit in the salvage stage equals π2P (θ2H , θ2L) = θ2H(δ − 1)(KH −
D1(1− θ1H)) + θ2L(KH −D1(1− θ1H)) + θ2LD2(θ2H − θ2L). By deriving FOCs and

SOCs w.r.t θ2H and θ2L, we find that π2P increases with θ2H and is concave with

θ2L. Hence, θ
∗
2H = 1− KH−D1(1−θ1H)

D2
and θ∗2L = 1

2
, and the seller’s total profit equals

πP (θ1H , θ1L) = θ1H(δ − 1)D1(1− θ1H) + θ1LD1(1− θ1L)

+ (1− KH −D1(1− θ1H)

D2
)(δ − 1)(KH −D1(1− θ1H)) +

D2

4
.

Because the Hessian matrix of πP is negative definite, hence, θ∗1H = θ∗2H = 1− KH

D1+D2
,

θ∗1L = θ∗2L = 1
2
, and π∗

P = KH(1− KH

D1+D2
)(δ−1)+ D1+D2

4
provided that D1+D2

2
−KL <

KH ≤ D1+D2

2
.

(iv) If D2(1 − θ2H) < KH − D1(1 − θ1H) and D2(θ2H − θ2L) ≥ KL − D1(θ1H − θ1L),

then the seller’s profit of the salvage stage equals π2P (θ2H , θ2L) = θ2H(δ − 1)D2(1−
θ2H)+θ2L(KL−D1(θ1H−θ1L))+θ2LD2(1−θ2H). By deriving FOCs and SOCs w.r.t

θ2H and θ2L, we find that π2P increases with θ2L and is concave with θ2H . Hence,

θ∗2H = D2(δ−1)+KL−D1(θ1H−θ1L)
D2(2δ−1)

, θ∗2L = D2(δ−1)−2(KL−D1(θ1H−θ1L))(δ−1)
D2(2δ−1)

, and the seller’s

total profit equals

πP (θ1H , θ1L) = θ1H(δ − 1)D1(1− θ1H) + θ1LD1(1− θ1L) +
(δ − 1)(D2

2δ
2 − 4δ(KL −D1(θ1H − θ1L))

2)

D2(1− 2δ)2

+
(δ − 1)(KL −D1(θ1H − θ1L))(−D2 + 3(KL −D1(θ1H − θ1L)))

D2(1− 2δ)2
.

The Hessian matrix of πP is negative definite. Hence, θ∗1H = 4D1δ2+4D2δ2−3D1δ−4D2δ+8KLδ+2D2−6KL

2(4D1δ2+4D2δ2−3D1δ−4D2δ+D2)
,

θ∗1L = 4D1δ2+4D2δ2−8KLδ
2−3D1δ−5D2δ+14KLδ+2D2−6KL

2(4D1δ2+4D2δ2−3D1δ−4D2δ+D2)
, θ∗2H = 4D1δ2+4D2δ2−5D1δ−6D2δ+4KLδ+2D2−2KL

2(4D1δ2+4D2δ2−3D1δ−4D2δ+D2)
,
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θ∗2L = 2D1δ2+2D2δ2−4KLδ
2−2D1δ−3D2δ+6KLδ+D2−2KL

4D1δ2+4D2δ2−3D1δ−4D2δ+D2
, and π∗

P = −4δ(D2−7KL)KL+4KL(D2−3KL)
4(4D1δ2+4D2δ2−3D1δ−4D2δ+D2)

+

4δ3(D1+D2)2−δ2(3D2
1+7D1D2+4(D2

2+4K2
L))

4(4D1δ2+4D2δ2−3D1δ−4D2δ+D2)
.

Because θ∗2L ≤ θ∗2H reduces to fP
1 (δ) = 8KLδ

2 − (D1 + 8KL)δ + 2KL > 0, and

θ∗1H ≤ 1 reduces to fP
2 (δ) = 4(D1 +D2)δ

2 − (3D1 + 4D2 + 8KL)δ + 6KL ≥ 0 when

δ ∈ (1, 1+
3D1D2+3D2

2

D2
1

). Note that fP
1 (δ) > 0 if KL > D1

2
, and fP

2 (δ) ≥ 0 if KL ≤ D1

2
.

The two violates each other. Hence, there are no optimal solutions.

The profit gap between cases (i) and (ii) equals ∆πi−ii
P =

δ(D1+D2−2KH)2−4KL(D1+D2−2KH)+4K2
L

4(D1+D2)
>

0, and cases (iii) and (ii) equals ∆πiii−ii
P = (D1+D2−2(KH+KL))

2

4(D1+D2)
> 0. Hence, the optimal

prices are denoted by

(p∗iH , p∗iL) =



(
δ

2
,
1

2
) ifKH >

D1 +D2

2
,

(
(2δ − 1)(D1 +D2)− 2(δ − 1)KH

2(D1 +D2)
,
1

2
) if

D1 +D2

2
−KL < KH ≤ D1 +D2

2
,

(δ − δKH +KL

D1 +D2
, 1− KH +KL

D1 +D2
) otherwise.

The seller’s profit equals

π∗
P =



D1 +D2

4
δ ifKH >

D1 +D2

2
,

KH(1− KH

D1 +D2
)(δ − 1) +

D1 +D2

4
if

D1 +D2

2
−KL < KH ≤ D1 +D2

2
,

KH(1− KH

D1 +D2
)(δ − 1) + (KH +KL)(1−

KH +KL

D1 +D2
) otherwise.

Lemma 25 uncovers the optimal fraction of customers accepting upgrades.

Lemma (Optimal Solutions in Upgrading Mechanism) Given θ1H and θ1L and

θ∗U ∈ [max{θ1L, 1− KH

D1
}, θ1H ], the seller prices p∗ = θ∗U(δ− 1), where the cutoff value such

that customers are indifferent between accepting and not accepting upgrades equals

θ∗U =



θ1H
2

if
θ1H
2

> 1 +
D2

2D1
− KH

D1
&
θ1H
2

< θ1L +
KL

D1
,

D2(1 + (1− 2δ)2θ1H) + 2(−3 + 4δ)(KL +D1θ1L)

2((−3 + 4δ)D1 + (1− 2δ)2D2)
ifθ∗U >

(D1 −KH)(2δ − 1) + δD2 −KL −D1θ1L
2D1(δ − 1)

,

2D1 +D2 − 2KH +D2θ1H
2(D1 +D2)

otherwise.

129



Proof 26 Proof of Lemma 25. We focus on case KH ≥ D1(1−θ1H) and KL ≥ D1(θ1H−

θ1L), and the optimal solutions satisfy conditions (a), (b), (c), and (e) mentioned above.

(i) If D2(1 − θ2H) < KH −D1(1− θU) and D2(θ2H − θ2L) < KL −D1(θU − θ1L), then

the seller’s profit selling through pricing equals π2U = D2(1 − θ2H)(θ2L + θ2H(δ −

1)) + D2(θ2H − θ2L)θ2L. The Hessian matrix of π2U is negative definite. Equating

the FOCs of π2U w.r.t θ2H and θ2L to zero yields θ∗2H = θ∗2L = 1
2
. Hence, π∗

2U = D2δ
4
,

and the seller’s profit in the salvage stage equals πU
2 = (δ− 1)θUD1(θ1H − θU) +

D2δ
4

provided that θU > 1 + D2

2D1
− KH

D1
and θU < θ1L + KL

D1
. Because π∗

2U is concave with

θU , hence, θ
∗
U = θ1H

2
provided that θ1H

2
∈ (max{θ1L, 1− KH

D1
}, θ1H).

(ii) If D2(1−θ2H) ≥ KH −D1(1−θU) and D2(θ2H −θ2L) ≥ KL−D1(θU −θ1L), then the

seller’s profit selling through pricing equals π2U = (KH −D1(1− θU))(θ2L + θ2H(δ−

1)) + (KL − D1(θU − θ1L))θ2L, which increases with θ2H and θ2L. Hence, θ∗2H =

1− KH−D1(1−θU )
D2

, θ∗2L = 1− KH+KL−D1(1−θ1L)
D2

, and πU
2 = π∗

2U +(δ−1)θUD1(θ1H−θU).

Because
∂2πU

2

∂θ2U
< 0, hence, θ∗U = 2D1+D2−2KH+D2θ1H

2(D1+D2)
.

(iii) If D2(1− θ2H) ≥ KH −D1(1− θU) and D2(θ2H − θ2L) < KL −D1(θU − θ1L), then

the seller’s profit selling through pricing equals π2U = (KH − D1(1 − θU))(θ2L +

θ2H(δ − 1)) + D2(θ2H − θ2L)θ2L, which increases with θ2H while is concave with

θ2L. Hence, θ∗2H = 1 − KH−D1(1−θU )
D2

, θ∗2L = D2θ2H+KH−D1(1−θU )
2D2

= 1
2
provided that

θ1L > 1 + D2

2D1
− KH+KL

D1
. Because ∂2π2

∂θ2U
< 0, hence, θ∗U = 2D1+D2−2KH+D2θ1H

2(D1+D2)
provided

that θU ∈ (max{θ1L, 1− KH

D1
}, θ1H).

(iv) If D2(1 − θ2H) < KH − D1(1 − θU) and D2(θ2H − θ2L) ≥ KL − D1(θU − θ1L),

then the seller’s profit selling through pricing equals π2U = D2(1 − θ2H)(θ2L +

θ2H(δ− 1))+ (KL −D1(θU − θ1L))θ2L, which is concave with θ2H and increases with

θ2L. Hence, θ∗2H = −D2+D2δ+KL+D1θ1L−D1θU
D2(2δ−1)

and θ∗2L = (δ−1)(D2−2KL−2D1θ1L+2D1θU )
D2(2δ−1)

provided that θU > (D1−KH)(2δ−1)+δD2−KL−D1θ1L
2D1(δ−1)

. Because ∂2π2

∂θ2U
< 0, hence, θ∗U =

D2(1+(1−2δ)2θ1H)+2(−3+4δ)(KL+D1θ1L)
2((−3+4δ)D1+(1−2δ)2D2)

.

Boundary solutions: θ∗U = θ1L means that upgrades are sent to all customers who have
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purchased low-quality capacities in the regular stage, θ∗U = θ1H means that no upgrading

is available, and θ∗U = 1− KH

D1
means that all unsold high-quality capacities are offered as

upgrades.

Proof 27 Proof of Lemma 3.3.2.1 . Following Lemma 25, we derive the optimal solutions

in the regular stage taking into account the optimal solutions in the salvage stage.

(i) If D2(1 − θ2H) < KH −D1(1− θU) and D2(θ2H − θ2L) < KL −D1(θU − θ1L), then

the Hessian matrix of the seller’s total profit πU = D1(1− θ1H)(θ1L + θ1H(δ − 1)) +

D1(θ1H−θ1L)θ1L+π∗
2 is negative definite. Equating the FOCs to zero yields θ∗1H = 2

3

and θ∗1L = 1
2
. While θ∗U = 1

3
violates condition θ∗U ≥ θ∗1L.

Boundary solution θU = θ1L.

If θU > 1 + D2

2D1
− KH

D1
and θ1H

2
< θ1H , then θU = θ1L. The Hessian matrix of

π2U is negative definite. Hence, θ∗2H = θ∗2L = 1
2
and π∗

2U = D2δ
4
, and the seller’s

total profit equals πU(θ1H , θ1L) = D1(δ − 1)(θ1H − θ21H + θ1Hθ1L − θ21L) + D1(θ1L −

θ21L) +
D2δ
4
. The Hessian matrix of πU is negative definite, hence, θ∗1H = 2δ+1

3δ+1
,

θ∗U = θ∗1L = δ+1
3δ+1

, and π∗
U = δ2D1

3δ+1
+ D2δ

4
provided that fU

1 (δ) = (6KH −4D1−3D2)δ+

2KH − D2 ≥ 0 and fU
2 (δ) = (3KL − D1)δ + KL ≥ 0. Note that fU

1 (δ) ≥ 0 if

KH ≥ 4D3
1+16D2

1D2+21D1D2
2+9D3

2

8D2
1+18D1D2+18D2

2
, and fU

2 (δ) ≥ 0 if KL ≥ D3
1+3D2

1D2+3D1D2
2

4D2
1+9D1D2+9D2

2
. So, the

effective domain is KH ≥ 4D3
1+16D2

1D2+21D1D2
2+9D3

2

8D2
1+18D1D2+18D2

2
and KL ≥ D3

1+3D2
1D2+3D1D2

2

4D2
1+9D1D2+9D2

2
.

(ii) If D2(1 − θ2H) ≥ KH − D1(1 − θU) and D2(θ2H − θ2L) ≥ KL − D1(θU − θ1L), the

Hessian matrix of πU is negative definite. Equating the FOCs w.r.t θ1H and θ1L to

zero yields θ∗1H = 4D1+3D2−2KH

4D1+3D2
, θ∗1L = θ∗2L = D1+D2−(KH+KL)

D1+D2
, θ∗U = 4D1+3D2−4KH

4D1+3D2
,

θ∗2H = 4D1+3D2−3KH

4D1+3D2
, and π∗

U =
δ(D1+D2)(4D1+3D2−3KH)KH+4D2

1KL+3D2(D2−2KH−KL)KL

(D1+D2)(4D1+3D2)
−

D1(K2
H−7D2KL+8KHKL+4K2

L)

(D1+D2)(4D1+3D2)
provided that KH < min{D1+D2−KL,

4D1D2+3D2
2

2D2
1+D1D2

KL,
4D1+3D2

D2
KL}.

If we assume KH < KL, then the effective domain is given by KH < min{D1+D2−

KL,
4D1D2+3D2

2

2D2
1+D1D2

KL}.

Boundary solution θU = θ1L.

If D2(1− θ2H) ≥ KH −D1(1− θ1L) and D2(θ2H − θ2L) ≥ KL, then π2U = (θ2H(δ −
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1) + θ2L)(KH − D1(1 − θ1L)) + θ2LKL, which increases with θ2H and θ2L. Hence,

θ2H = 1− KH−D1(1−θ1L)
D2

, θ2L = θ2H − KL

D2
, and πU = D1(δ− 1)(θ1H − θ21H + θ1Hθ1L −

θ21L) +D1(θ1L − θ21L) + π∗
2U . The Hessian matrix of πU is negative definite. Equat-

ing the FOCs of πU w.r.t θ1H and θ1L to zero yields θ∗1H = (4D1+3D2−2KH)δ+D2−2KL

4δD1+D2+3δD2
,

θ∗1L = θ∗U = (4D1+3D2−4KH)δ+D2−4KL

4δD1+D2+3δD2
, θ∗2H =

(4D1+3D2−3KH)D2δ+D2
2−D2KH+4D1KL

D2(4δD1+D2+3δD2)
, θ∗2L =

(4D1D2−4D1KL+3D2
2−3D2KH−3D2KL)δ+D2

2+4D1KL−D2(KH+KL)

D2(4δD1+D2+3δD2)
, and π∗

U = D2(4D1+3D2−3KH)KHδ2

D2(4D1δ+D2+3D2δ)
+

KL(D
2
2+4D1KL−D2(2KH+KL))+(−4D1K2

L+D2
2(KH+3KL)−D2(K2

H−4D1KL+6KHKL+3K2
L))δ

D2(4D1δ+D2+3D2δ)
provided

that KH > D1

D2
KL, KH > D1

D1+2D2
KL, KH > 4D1+3D2

D2
KL, fU

3 (δ) = (4D1 + 3D2 −

4KH)δ +D2 − 4KL ≥ 0, fU
4 (δ) = (4D1(D2 −KL) + 3D2(D2 −KH −KL))δ +D2

2 +

4D1KL−D2(KH+KL) ≥ 0, and fU
5 (δ) = (−2D1KH+4D1KL+3D2KL)δ+(−2D1+

D2)KL ≥ 0. Note that fU
3 (δ) ≥ 0 if KH ≤ min{D1+D2−KL,

4D3
1+16D2

1D2+21D1D2
2+9D3

2−4D2
1KL

4D2
1+12D1D2+12D2

2
},

fU
4 (δ) ≥ 0 if KH ≤ min{D1+D2−KL,

4D3
1+16D2

1D2+21D1D2
2+9D3

2−(16D2
1+21D1D2+9D2

2)KL

4D2
1+9D1D2+9D2

2
},

and fU
5 (δ) ≥ 0 if KH ≤ min{2D3

1+16D2
1D2+21D1D2

2+9D3
2

2D3
1+6D2

1D2+6D1D2
2

KL,
D1+2D2

D1
KL}. Note that

4D1+3D2

D2
KL < KH violates assumption KH < KL. So, there are no optimal solu-

tions.

Boundary solution θU = θ1H.

If 2D1+D2−2KH+D2θ1H
2(D1+D2)

> θ1H , or equivalently, θ1H < 1− 2KH

2D1+D2
, then θU = θ1H . The

Hessian matrix of πU is negative definite. Hence, θ∗1H = 1− KH

D1+D2
, which is larger

than 1− 2KH

2D1+D2
. So, θ∗U ̸= θ1H .

Boundary solution θU = 1− KH

D1
.

If 2D1+D2−2KH+D2θ1H
2(D1+D2)

< 1 − KH

D1
and 1 − KH

D1
> θ1L, then θU = 1 − KH

D1
, the Hessian

matrix of πU is negative definite. Hence, θ∗1H = 1− KH

2D1
, θ∗1L = θ∗2L = 1− KH+KL

D1+D2
and

θ∗2H = 1. Note that
2D1+D2−2KH+D2θ∗1H

2(D1+D2)
< 1− KH

D1
does not hold. So, θ∗U ̸= 1− KH

D1
.

(iii) If D2(1−θ2H) ≥ KH −D1(1−θU) and D2(θ2H −θ2L) < KL−D1(θU −θ1L), then the

Hessian matrix of πU is negative definite, equating the FOCs of πU w.r.t θ1H and θ1L

to zero yields θ∗1H = 4D1+3D2−2KH

4D1+3D2
, and θ∗1L = θ∗2L = 1

2
. Hence, θ∗U = 4D1+3D2−4KH

4D1+3D2
,

θ∗2H = 4D1+3D2−3KH

4D1+3D2
, and π∗

U =
4D2

1+D1(7D2+16(δ−1)KH)+3(D2
2+4(δ−1)D2KH−4(δ−1)K2

H)

4(4D1+3D2)
pro-

vided that KH > D1+D2

2
−KL, KH < 4D1+3D2

8
and KH ≥ 4D2

1+3D1D2−(8D1+6D2)KL

4D1
.
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Boundary solution θU = θ1L.

Note that π2U = ((δ− 1)θ2H + θ2L)(KH −D1(1− θ1L)) + θ2LD2(θ2H − θ2L) increases

with θ2H and is concave with θ2L. So, θ2H = 1−KH−D1(1−θ1L)
D2

and θ2L = 1
2
. The Hes-

sian matrix of πU is negative definite, equating the FOCs of πU w.r.t θ1H and θ1L to

zero yields θ∗1H = 4D1(δ−1)+3δD2+2KH−2δKH

4δD1+D2+3δD2−4D1
, θ∗U = θ∗1L = 4D1(δ−1)+3δD2+4KH−4δKH−D2

4δD1+D2+3δD2−4D1
,

θ∗2H = D1(4δ−2)+(3δ+1)(D2−KH)
4δD1+D2+3δD2−4D1

, θ∗2L = 1
2
, and π∗

U = (D2−2KH)2+4δ2(4D1+3D2−3KH)KH

4(4δD1+D2+3δD2−4D1)
+

δ(3D2
2+4D1(D2−4KH)−8D2KH+8K2

H)

4(4δD1+D2+3δD2−4D1)
provided that KH > D1

2
, KH > D1

4
, KH > 4D1+3D2

8
,

fU
6 (δ) = (4D1+3D2−4KH)δ−4D1−D2+4KH ≥ 0, fU

7 (δ) = (4D1+3D2−6KH)δ+

D2−2KH ≥ 0, fU
8 (δ) = (−2D1KH+4D1KL+3D2KL)δ−D1D2+2D1KH−4D1KL+

D2KL ≥ 0, and fU
9 (δ) = (−4D1D2 + 8D1KL − 3D2

2 + 6D2KH + 6D2KL)δ − D2
2 −

8D1KL + 2D2(KH + KL) > 0. Note that fU
6 (δ) ≥ 0 if KH ≤ 14D2

1+21D1D2+9D2
2

12D1+12D2
,

fU
7 (δ) ≥ 0 if KH ≤ D1+D2

2
, fU

8 (δ) ≥ 0 if KH ≤ −D3
1+(16D2

1+21D1D2+9D2
2)KL

6D2
1+6D1D2

and KL ≥

D1

4
, and fU

9 (δ) > 0 if KH > max{4D3
1+16D2

1D2+21D1D2
2+9D3

2−(32D2
1+42D1D2+18D2

2)KL

8D2
1+18D1D2+18D2

2
, D1+D2

2
−

KL}. So, the effective domain is 4D1+3D2

8
< KH < min{D1+D2

2
,
−D3

1+(16D2
1+21D1D2+9D2

2)KL

6D2
1+6D1D2

}.

Boundary solution θU = θ1H.

By solving the FOCs of πU w.r.t θ1H and θ1L, we have θ∗1H = 1 − KH

D1+D2
, where

1− KH

D1+D2
> 1− 2KH

2D1+D2
. So, θ∗U ̸= θ1H .

Boundary solution θU = 1− KH

D1
.

If D2(θ2H − θ2L) < KH +KL −D1(1− θ1L), then π2U = θ2LD2(θ2H − θ2L) increases

with θ2H and is concave with θ2L, so, θ
∗
2H = 1, θ∗2L = 1

2
. The Hessian matrix of

πU = D1(δ− 1)(θ1H − θ21H)+D1(θ1L− θ21L)+
D2

4
+D1(δ− 1)(1− KH

D1
)(θ1H − 1+ KH

D1
)

is negative definite, by deriving the FOCs of πU w.r.t θ1H and θ1L, we have θ∗1H =

1 − KH

2D1
, θ∗1L = 1

2
, and π∗

U =
D2

1−3(δ−1)K2
H+D1(D2+4(δ−1)KH)

4D1
provided that KH < D1

2
,

KH > D1+D2

2
− KL, and KH > D1 − 2KL. While condition 2D1+D2−2KH+D2θ1H

2(D1+D2)
<

1− KH

D1
does not hold. So, θ∗U ̸= 1− KH

D1
.

(iv) If D2(1 − θ2H) < KH − D1(1 − θU) and D2(θ2H − θ2L) ≥ KL − D1(θU − θ1L),

then the Hessian matrix of πU is negative definite. By equating the FOCs of πU

w.r.t θ1H and θ1L to zero, we have θ∗1H = (−3−2δ+8δ2)D1+(3−8δ+8δ2)D2+2(4δ−3)KL

(−3−5δ+12δ2)D1+3(1−2δ)2D2
, θ∗1L =
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2(−3+δ+4δ2)D1+3((2−5δ+4δ2)D2−2(3−7δ+4δ2)KL)
2((−3−5δ+12δ2)D1+3(1−2δ)2D2)

, θ∗U = (−3+δ+4δ2)D1+(3−4δ+4δ2)D2+4(−3+4δ)KL

(−3−5δ+12δ2)D1+3(1−2δ)2D2
,

θ∗2H = 3((−2−3δ+4δ2)D1+2(−1+2δ)((−1+δ)D2+KL))
2((−3−5δ+12δ2)D1+3(1−2δ)2D2)

, θ∗2L = (δ−1)((3+4δ)D1+3(−1+2δ)(D2−2KL))
(−3−5δ+12δ2)D1+3(1−2δ)2D2

,

and π∗
U =

4δ3(4D2
1+7D1D2+3D2

2)−12KL(D1−D2+3KL)+4δKL(7D1−3D2+21KL)

4((−3−5δ+12δ2)D1+3(1−2δ)2D2)

+
δ2(12D2

1+25D1D2+12D2
2+16D1KL+48K2

L)

4((−3−5δ+12δ2)D1+3(1−2δ)2D2)
.

Because θ∗2H ≥ θ∗2L, and θ∗U < θ∗1H reduce to fU
10(δ) = 4(D1 + 6KL)δ

2 − (7D1 +

24KL)δ + 6KL ≥ 0 and fU
11(δ) = 4(D1 +D2)δ

2 − (3D1 + 4D2 + 8KL)δ + 6KL > 0,

respectively. Note that fU
10(δ) ≥ 0 if KL ≥ D1

2
, and fU

11(δ) > 0 if KL < D1

2
. So, there

are no optimal solutions.

Boundary solution θU = θ1L.

Note that π2U = ((δ− 1)θ2H + θ2L)D2(1− θ2H) + θ2LKL is concave with θ2H and in-

creases with θ2L, hence, θ2H = D2(δ−1)+KL

(2δ−1)D2
and θ2L = D2(δ−1)−2KL(δ−1)

(2δ−1)D2
. The Hessian

matrix of πU is negative definite, by deriving the FOCs of πU w.r.t θ1H and θ1L,

we have θ∗1H = 2δ+1
3δ+1

, θ∗1L = δ+1
3δ+1

, θ∗2H = D2(1−δ)−KL

D2(1−2δ)
, θ∗2L = (δ−1)(D2−2KL)

D2(2δ−1)
, and π∗

U =

δ4D2(4D1+3D2)+(D2−3KL)KL+2δ(D2−KL)KL

(1−2δ)2(D2+3δD2)
+

−2δ3(2D1D2+D2
2+6K2

L)+δ2(D1D2−D2
2−3D2KL+17K2

L)

(1−2δ)2(D2+3δD2)
.

Because θ∗1L >
D2(1+(1−2δ)2θ∗1H)+2(−3+4δ)(KL+D1θ∗1L)

2((−3+4δ)D1+(1−2δ)2D2)
reduces to fU

12(δ) = 4(D2−6KL)δ
2+

(−7D2+10KL)δ+6KL > 0. Because fU
12(δ)

∣∣
δ=1

= −3D2−8KL < 0, which indicates

that fU
12(δ) > 0 does not always hold when δ ∈ [1, 1 +

3D1D2+3D2
2

D2
1

]. So, there are no

optimal solutions.

Boundary solution θU = θ1H.

The analysis is the same as case (iv) in Lemma 3.3.1, and there are no optimal

solutions.

Boundary solution θU = 1− KH

D1
.

If D2(θ2H − θ2L) ≥ KH +KL−D1(1− θ1L), then π2U = θ2L(KH +KL−D1(1− θ1L))

increases with θ2L, so, θ2H = 1 and θ2L = 1 − KH+KL−D1(1−θ1L)
D2

. The Hessian

matrix of πU is negative definite. By deriving the FOCs of πU w.r.t θ1H and θ1L,

we have θ∗1H = 1 − KH

2D1
, θ∗1L = 1 − KH+KL

D1+D2
, θ∗2H = 1, θ∗2L = 1 − KH+KL

D1+D2
, and

π∗
U =

δ(D1+D2)(4D1−3KH)KH+3D2K2
H+4D2

1KL−D1(K2
H+8KHKL+4KL(−D2+KL))

4D1(D1+D2)
.

Because 1 − KH

D1
>

D2(1+(1−2δ)2θ∗1H)+2(−3+4δ)(KL+D1θ∗1L)

2((−3+4δ)D1+(1−2δ)2D2)
reduces to fU

13(δ) = 4(D1 +
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D2)(2D1−3KH)δ
2−4(2D2

1−3D2KH+D1(2D2+KH+4KL))δ+9D1KH−3D2KH+

12D1KL > 0. Note that fU
13(δ)

∣∣
δ=1

= −7D1KH−3D2KH−4D1KL < 0, which means

that fU
13(δ) > 0 does not always hold when δ ∈ [1, 1 +

3D1D2+3D2
2

D2
1

]. So, there are no

optimal solutions.

If D1 > D2 and KH < KL, then we have the optimal solutions summarized as:

(i) If KH ≥ 4D3
1+16D2

1D2+21D1D2
2+9D3

2

8D2
1+18D1D2+18D2

2
and KL ≥ D3

1+3D2
1D2+3D1D2

2

4D2
1+9D1D2+9D2

2
, then θ∗1H = 2δ+1

3δ+1
, θ∗U =

θ∗1L = δ+1
3δ+1

, θ∗2H = θ∗2L = 1
2
, and π∗

U = δ2D1

3δ+1
+ D2δ

4
.

(ii) If KH < min{D1 +D2 −KL,
4D1D2+3D2

2

2D2
1+D1D2

KL}, then θ1H = 4D1+3D2−2KH

4D1+3D2
, θ∗1L = θ∗2L =

D1+D2−(KH+KL)
D1+D2

, θ∗U = 4D1+3D2−4KH

4D1+3D2
, θ∗2H = 4D1+3D2−3KH

4D1+3D2
, and π∗

U = δ(D1+D2)(4D1+3D2−3KH)KH

(D1+D2)(4D1+3D2)
+

4D2
1KL+3D2(D2−2KH−KL)KL−D1(K2

H−7D2KL+8KHKL+4K2
L)

(D1+D2)(4D1+3D2)
.

(iii) If KH > max{4D2
1+3D1D2−(8D1+6D2)KL

4D1
, D1+D2

2
−KL} and KH < 4D1+3D2

8
, then θ∗1H =

4D1+3D2−2KH

4D1+3D2
, θ∗1L = θ∗2L = 1

2
, θ∗U = 4D1+3D2−4KH

4D1+3D2
, θ∗2H = 4D1+3D2−3KH

4D1+3D2
, and π∗

U =

4D2
1+D1(7D2+16(δ−1)KH)+3(D2

2+4(δ−1)D2KH−4(δ−1)K2
H)

4(4D1+3D2)
.

(iv) If 4D1+3D2

8
< KH < min{D1+D2

2
,
−D3

1+(16D2
1+21D1D2+9D2

2)KL

6D2
1+6D1D2

}, then θ∗1H = 4D1(δ−1)+3δD2+2KH−2δKH

4δD1+D2+3δD2−4D1
,

θ∗U = θ∗1L = 4D1(δ−1)+3δD2+4KH−4δKH−D2

4δD1+D2+3δD2−4D1
, θ∗2H = D1(4δ−2)+(3δ+1)(D2−KH)

4δD1+D2+3δD2−4D1
, θ∗2L = 1

2
, and

π∗
U =

(D2−2KH)2+4δ2(4D1+3D2−3KH)KH+δ(3D2
2+4D1(D2−4KH)−8D2KH+8K2

H)

4(4δD1+D2+3δD2−4D1)
.

Overlap Characterization

Cases (ii) and (iii): ∆πii−iii < 0, so, case (iii) dominates case (ii).

Cases (ii) and (iv): The coefficient of δ− 1 of the numerator of ∆πii−iv is a quadratic

function of KH , its discriminator and roots are ∆U = 16D1 (D1 +D2) (4D1 + 3D2)
2 (D2 − 8KL)

2 >

0, K1U
H =

(4D1+3D2)(3D2(D1+D2)−2(4D1+3D2)KL)−
√

D1(D1+D2)(4D1+3D2)2(D2−8KL)2

2D2(8D1+9D2)
< 0, and K2U

H =

(4D1+3D2)(3D2(D1+D2)−2(4D1+3D2)KL)+
√

D1(D1+D2)(4D1+3D2)2(D2−8KL)2

2D2(8D1+9D2)
< 4D1+3D2

8
, respectively.

Recall that the effective domian of the overlap is given by 4D1+3D2

8
< KH < min{D1+D2

2
, D1+

D2 −KL}. So, the numerator decreases with δ and the maximum value obtained at δ = 1

is negative. So, case (iv) dominates case (ii).
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Define KU
1 =

4D1D2+3D2
2

2D2
1+D1D2

KL, K
U
2 =

4D2
1+3D1D2−(8D1+6D2)KL

4D1
, and KU

3 =
4D3

1+16D2
1D2+21D1D2

2+9D3
2

8D2
1+18D1D2+18D2

2
,

then the region D1+D2

2
< KH < min{KU

3 , KL} in Figure 3.4 is not applicable.

Proof 28 Proof of Theorem 3.3.2.2 . By comparing Lemmas 3.3.1 and 3.3.2.1, we have

∆πU−P =



(δ2 − δ)D1

4(3δ + 1)
> 0 if

(4 + 16t+ 21t2 + 9t3)D1

8 + 18t+ 18t2
< KH < KL,

(δ − 1)D1(4(−5 + δ)K2
H + 16(D1 +D2)KH − (4D2

1 + 7D1D2 + 3D2
2))

4(D1 +D2)(4(δ − 1)D1 + (3δ + 1)D2)
> 0 if

4D1 + 3D2

8
< KH < min{

D1 +D2

2
,KL},

(δ − 1)D1K2
H

(D1 +D2)(4D1 + 3D2)
> 0 if

D1 +D2

2
−KL < KH < min{KL,

4D1 + 3D2

8
},

(δ − 1)D1K2
H

(D1 +D2)(4D1 + 3D2)
> 0 ifKH < min{KL,

D1 +D2

2
−KL}.

Proof 29 Proof of Corollary 3.3.2.2.

Table B.1: Comparisons Between Scenarios U and P

Range of KH Volume gap Capacity offering H in 1 L in 1 H in 2 L in 2

[0, 4D1+3D2
8

]
i∈{1,2}∑
j∈{H,L}

DU−P
ij = 0

(HP , LP ;HU+P , LP ) ∆pU−P
1H > 0 ∆pU−P

1L = 0 ∆pU−P
2H > 0 ∆pU−P

2L = 0

(HP , LP ;HP , LP ) ∆DU−P
1H < 0 ∆DU−P

1L < 0 ∆DU−P
2H > 0 ∆DU−P

2L > 0

[ 4D1+3D2
8

, D1+D2
2

]
i∈{1,2}∑
j∈{H,L}

DU−P
ij > 0

(HP , L∅;HU+P , LP ) ∆pU−P
1H > 0 ∆pU−P

1L < 0 ∆pU−P
2H > 0 ∆pU−P

2L = 0

(HP , LP ;HP , LP ) ∆DU−P
1H < 0 ∆DU−P

1L < 0 ∆DU−P
2H > 0 ∆DU−P

2L > 0

[D1+D2
2

,KL]
i∈{1,2}∑
j∈{H,L}

DU−P
ij > 0

(HP , L∅;HU+P , L∅) ∆pU−P
1H > 0 ∆pU−P

1L < 0 ∆pU−P
2H = 0 ∆pU−P

2L = 0

(HP , L∅;HP , L∅) ∆DU−P
1H < 0 ∆DU−P

1L = 0 ∆DU−P
2H > 0 ∆DU−P

2L = 0

If KH > (4+16t+21t2+9t3)D1

8+18t+18t2
& KH ≤ KL, then ∆πU−P

H = (δ−1)δD1

12δ+4
> 0, ∆πU−P

L = 0.

If 4D1+3D2

8
< KH < min{D1+D2

2
, KL}, then ∆πU−P

H = (δ−1)D1KH(2(D1+D2)+(δ−5)KH)
(D1+D2)(4(δ−1)D1+(3δ+1)D2)

> 0,

∆πU−P
L = − (δ−1)D1(4D1+3D2−8KH)

4(4(δ−1)D1+(3δ+1)D2)
> 0.

If D1+D2

2
− KL < KH < min{KL,

4D1+3D2

8
}, then ∆πU−P

H =
(δ−1)D1K2

H

(D1+D2)(4D1+3D2)
> 0,

∆πU−P
L = 0.

If KH < min{KL,
D1+D2

2
−KL}, then ∆πU−P

H =
(δ−1)D1K2

H

(D1+D2)(4D1+3D2)
> 0, ∆πU−P

L = 0.

Proof 30 Proof of Lemma 3.3.3.1. The optimal solutions satisfy conditions (a), (b), (c),

and (d) mentioned above.

(a) Pricing decision.
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If KH −D1(1− θ1L) +KL ≤ D2(1− pO
ϕδ+1−ϕ

), then π∗
2O increases with pO, thus, the

maximum π∗
2O equals π∗

2O|p∗O=(1−KH−D1(1−θ1L)+KL
D2

)(ϕδ+1−ϕ)
= (KH−D1(1−θ1L)+KL−

(KH−D1(1−θ1L)+KL)
2

D2
)(ϕδ+1−ϕ)−FO. If KH−D1(1−θ1L)+KL > D2(1− pO

ϕδ+1−ϕ
), then

π∗
2O is concave with pO and the maximum π∗

2O equals π∗
2O|p∗O= 1

2
= D2

4
(ϕδ+1−ϕ)−FO.

(b) Demand fulfillment decision.

The seller’s optimal profit increases with ϕ.

If D2 ≥ KH+KL−D1(1−θ1L), then all capacity are sold out, and ϕ = KH−D1(1−θU )
KH+KL−D1(1−θ1L)

(resp., ϕ = KH−D1(1−θ1H)−S
KH+KL−D1(1−θ1L)

).

If D2 < KH + KL − D1(1 − θ1L), then for random allocation policy, ϕ = 1
2
. For

policy of high-quality capacity with priority (i.e., fulfill demand with high-quality ca-

pacity first), ϕ = min{KH−D1(1−θU )
D2

, 1} (resp., ϕ = min{KH−D1(1−θ1H)−S
D2

, 1}). For

policy of low-quality capacity with priority, 1 − ϕ = min{KL−D1(θU−θ1L)
D2

, 1} (resp.,

1 − ϕ = min{KL−D1(θ1H−θ1L)+S
D2

, 1}). Because KH−D1(1−θU )
D2

> 1 − KL−D1(θU−θ1L)
D2

(resp., KH−D1(1−θ1H)−S
D2

> 1 − KL−D1(θ1H−θ1L)+S
D2

), hence, ϕ = KH−D1(1−θU )
D2

(resp.,

ϕ = KH−D1(1−θ1H)−S
D2

) if KH −D1(1− θU) >
D2

2
(resp., KH −D1(1− θ1H)−S > D2

2
)

or ϕ = 1
2
otherwise.

Proof 31 Proof of Lemma 3.3.3.2.

(i) If θ1L ≤ 1 + D2

2D1
− KH+KL

D1
, then πO = D1(δ − 1)(θ1H − θ21H) + D1(θ1L − θ21L) +

(KHδ +KL −D1(1 − θ1L) −D1(δ − 1)(1 − θ1H))(1 − KH+KL−D1(1−θ1L)
D2

) − FO. The

Hessian matrix of πO is negative definite. By deriving the FOCs of πO w.r.t θ1H

and θ1L, we have θ∗1H =
−D2

1δ+D1KHδ+D2
1+4D1D2+4D2

2−D1KH−2D2KH−2D2KL

4(D1+D2)D2−D2
1(δ−1)

and θ∗1L =

−D2
1δ+D1KHδ+D2

1+4D1D2+4D2
2−D1KH−2D2KH−4D2KL−2D2KHδ+D1KLδ−D1KL

4(D1+D2)D2−D2
1(δ−1)

. Consequently,

θ∗O = 2θ∗1H − 1 =
(2D1KH−D2

1)(δ−1)+4D2(D1+D2−(KH+KL))

4(D1+D2)D2−D2
1(δ−1)

, ϕ∗ = (−D1−2D2)KH+D1KL

(δ−1)D1KH−2D2(KH+KL)
,

where 0 ≤ ϕ∗ =
KH−D1(1−θ∗1H)

KH+KL−D1(1−θ∗1L)
≤ 1, and π∗

O = δ2D1KH(D1−KH)

−4(D1+D2)D2+D2
1(δ−1)

+
δ(D2

1(−KH+KL)+4D2KH(−D1−D2+KH+KL)−D1(−K2
H+2KHKL+K2

L))

−4(D1+D2)D2+D2
1(δ−1)

+
KL(−D2

1+4D2(−D1−D2+KH+KL)+D1(2KH+KL))

−4(D1+D2)D2+D2
1(δ−1)

− FO provided that fO
1 (δ) = (4D1KH −
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D2
1)(δ − 1) + 4D2(D1 + D2 − 2(KH + KL)) ≥ 0, fO

2 (δ) = (−D1KL + 2D2KH)δ +

D1KL + 2D2KL ≥ 0, fO
3 (δ) = −D1KH(δ − 1) + 2D2(KH + KL) ≥ 0, fO

4 (δ) =

(−D2
1 + D1KH − 2D2KH + D1KL)(δ − 1) + 4D2(D1 + D2 − (KH + KL)) ≥ 0,

fO
5 (δ) = 2D2KH+D1(KH−KL) ≥ 0, fO

6 (δ) = −D1KHδ+D1KL+2D2KL ≥ 0, and

fO
7 (δ) = (2D1KH−D2

1)(δ−1)+4D2(D1+D2−(KH+KL)) ≥ 0. Note that fO
1 (δ) ≥ 0

if 2D1

D1+3D2
KL − D1(D1+D2)

4D1+12D2
≤ KH ≤ D1+D2

2
−KL provided that D1 + 2D2 − 4KL ≥ 0,

fO
2 (δ) ≥ 0 if KH ≥ D2

1+3D1D2

2D2
1+6D1D2+6D2

2
KL, f

O
3 (δ) ≥ 0 if KH ≤ 2D1

D1+3D2
KL, f

O
4 (δ) ≥ 0 if

KH ≤ min{ (3D1D2−D2
1)KL+D3

1+D2
1D2

D2
1+3D1D2+6D2

2
, D1 +D2 −KL}, fO

5 (δ) ≥ 0 if KH ≥ D1

D1+2D2
KL,

fO
6 (δ) ≥ 0 if KH ≤ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL, and fO

7 (δ) ≥ 0 if 2D1

D1+3D2
KL − D2

1+D1D2

2D1+6D2
≤

KH ≤ D1 +D2 −KL provided that D1 + 2D2 − 2KL ≥ 0. So, the effective domain

is given by D1

2D2+D1
KL < KH ≤ min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
−KL}.

Boundary solution.

If θ∗1L > 1 + D2

2D1
− KH+KL

D1
, or equivalently, (4D1KH −D2

1)(δ − 1) + 4D2(D1 +D2 −

2(KH +KL)) < 0, then θ∗1H = 3
4
, θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗O = 1

2
, ϕ∗ = 4KH−D1

2D2
,

and π∗
O =

(D2
1+8D1KH)δ−D2

1−4D1D2+8D1KH+16D1KL−4(D2−2(KH+KL))
2

16D1
− FO provided that

D1

4
< KH < min{8D1KL−D1(D1+D2)

4D1+12D2
, 2D1+D2

2
−KL,

D1+2D2

4
}.

(ii) If 1 + D2

2D1
− KH+KL

D1
< θ1L ≤ 1 + D2

D1
− KH+KL

D1
, then πO = D1(θ1L − θ21L) +

D1(δ − 1)(θ1H − θ21H) +
D2

4
KH−D1(1−θ1H)

KH−D1(1−θ1L)+KL
(δ − 1) + D2

4
. Because ∂3πO

∂θ31L
< 0, and

∂2πO

∂θ21L

∣∣∣
θ1L=1+

D2
2D1

−KH+KL
D1

,θ1H= 3
4

=
D1(−(δ−1)D1(D1−4KH)−2D2

2)
D2

2
< 0 if KH <

3D2
1+5D1D2

12(D1+D2)
.

So, the optimal solutions are obtained by solving the FOCs w.r.t θ1H and θ1L simul-

taneously:

4D2(KH +KL)(2θ
∗
1H − 1)− 2D1D2(2θ

∗
1H − 1)−D2

2 − 8D1(δ − 1)(KH −D1(1− θ∗1H))(2θ∗1H − 1)3 = 0,

θ∗1H =
1

2
+

D2

8(KH +KL −D1(1− θ∗1L))
.

Note that ∂πO

∂θ1L
< 0 if θ1L ≥ 1

2
. So, if θ1L = 1 + D2

2D1
− KH

D1
≤ 1

2
(or equivalently,

D1 + D2 ≥ 2(KH + KL)), there are no optimal solutions. Hence, the effective

domain is given by D1+D2

2
− KL < KH <

3D2
1+5D1D2

12(D1+D2)
. Because θ∗O = 1

2
, θ∗1H ̸= θ∗1L,

and θ∗1H ̸= 1, so the optimal capacity offering is given by (HP , LP ;HO, LO).

Boundary solution.
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The optimal interior solution is a convex combination of the boundary solutions.

(a) θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗1H = 3

4
, θ∗O = 1

2
, ϕ∗ = 4KH−D1

2D2
, and π∗

O =

(δ−1)D2
1+D1(−4D2+8(δ+1)KH+16KL)−4(D2−2(KH+KL))

2

16D1
− FO. The effective domain is

given by max{D1

4
, D1+2D2

4
−KL} ≤ KH ≤ min{D1+2D2

4
, 2D1+D2

2
−KL}.

(b) θ∗1L = 1 + D2

D1
− KH+KL

D1
, θ∗1H = 5

8
, θ∗O = 1

2
, ϕ∗ = 8KH−3D1

8D2
, and π∗

O =

9(δ−1)D2
1+16D1(−3D2+(δ+3)KH+4KL)−64(−D2+KH+KL)

2

64D1
− FO. The effective domain

is given by max{3D1

8
, 3D1+8D2

8
−KL} ≤ KH ≤ min{3D1+8D2

8
, D1 +D2 −KL}.

(iii) If D2 < KH −D1(1− θ1L) +KL, KH −D1(1− θ1H) >
D2

2
, then the Hessian matrix

of πO is negative definite, hence, θ∗1H = 5
8
, θ∗1L = 1

2
, ϕ∗ = 8KH−3D1

8D2
, and π∗

O =

(9D1+16KH)δ−16KH+7D1+16D2

64
− FO provided that 2(KH +KL) > D1 + 2D2, 8KL ≥ D1

and 3D1 + 4D2 ≤ 8KH ≤ 3D1 + 8D2.

(iv) Otherwise, θ∗1H = θ∗1L = θ∗O = 1
2
, ϕ∗ = 1

2
, and π∗

O = 2D1δ+D2(δ+1)
8

− FO provided that

D1 ≤ 2KH ≤ D1 +D2 and 2(KH +KL) > D1 + 2D2.

To summarize,

(i) If D1

2D2+D1
KL < KH ≤ min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
−KL}, then

θ∗O =
(2D1KH−D2

1)(δ−1)+4D2(D1+D2−(KH+KL))

4(D1+D2)D2−D2
1(δ−1)

, θ∗1H =
−D2

1δ+D1KHδ+D2
1+4D1D2+4D2

2−D1KH−2D2KH−2D2KL

4(D1+D2)D2−D2
1(δ−1)

,

θ∗1L =
−D2

1δ+D1KHδ+D2
1+4D1D2+4D2

2−D1KH−2D2KH−4D2KL−2D2KHδ+D1KLδ−D1KL

4(D1+D2)D2−D2
1(δ−1)

,

π∗
O =

δ2D1KH(D1−KH)+δ(D2
1(−KH+KL)+4D2KH(−D2+KH+KL)−D1(4D2KH−K2

H+2KHKL+K2
L))

−4(D1+D2)D2+D2
1(δ−1)

+

KL(−D2
1+4D2(−D2+KH+KL)+D1(−4D2+2KH+KL))

−4(D1+D2)D2+D2
1(δ−1)

− FO, and ϕ∗ = (−D1−2D2)KH+D1KL

(δ−1)D1KH−2D2(KH+KL)
.

(ii) If D1

4
< KH < min{8D1KL−D1(D1+D2)

4D1+12D2
, 2D1+D2

2
−KL,

D1+2D2

4
}, then θ∗1H = 3

4
, θ∗1L = 1+

D2

2D1
− KH+KL

D1
, θ∗O = 1

2
, π∗

O =
(D2

1+8D1KH)δ−D2
1−4D1D2+8D1KH+16D1KL−4(D2−2(KH+KL))

2

16D1
−

FO, and ϕ∗ = 4KH−D1

2D2
.

(iii) If max{D1+2D2

2
− KL,

3D1+4D2

8
} < KH ≤ 3D1+8D2

8
and KL ≥ D1

8
, then θ∗1H = 5

8
,

θ∗1L = 1
2
, θ∗O = 1

2
, π∗

O = (9D1+16KH)δ−16KH+7D1+16D2

64
− FO, and ϕ∗ = 8KH−3D1

8D2
.
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(iv) If max{D1+2D2

2
− KL,

D1

2
} < KH ≤ D1+D2

2
, then θ∗1H = θ∗1L = θ∗O = 1

2
, π∗

O =

2D1δ+D2(δ+1)
8

− FO, and ϕ∗ = 1
2
.

Overlap Characterization

Cases (iii) and (iv): case (iii) dominates case (iv) if KH > 7D1+8D2

16
.

To simplify notation, we have KO
1 = D1

2D2+D1
KL, K

O
2 =

D2
1+2D1D2

D2
1+3D1D2+3D2

2
KL, and KO

3 =

8D1KL−D1(D1+D2)
4D1+12D2

. Hence, the region KH +KL ≤ D1+D2

2
except Area (I) and region KH >

3D1+8D2

8
in Figure 3.5 are not applicable.

Proof 32 Proof of Theorem 3.3.3.2. We compare the seller’s profit based on Figure 3.3

and 3.5.

(i) KH ≤ min{KL,
D1(1+t)

2
−KL}.

If D1

D1+2D2
KL < KH < min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
−KL}, then

∆πO−P = π∗
O − π∗

P =
D2(δ − 1)(D1δK

2
H − 2(D1 + 2D2)KH +D1K

2
L)

(D1 +D2)(4D1D2 + 4D2
2 − (δ − 1)D2

1)
− FO < 0,

(ii) D1(1+t)
2

−KL < KH ≤ min{KL,
D1(1+t)

2
}

(a) If D1

4
< KH < min{D1+2D2

4
, KL}, then

∆πO−P =
(δ − 5)D3

1 + ((δ − 13)D2 − 8(δ − 3)KH + 16KL)D
2
1 − 4D2(D2 − 2(KH +KL))

2

16D1(D1 +D2)

−4(3D2
2 + 2((δ − 5)KH − 4KL)D2 − 4(δ − 2)K2

H + 8KHKL + 4K2
L)D1

16D1(D1 +D2)
− FO < 0.

(b) If D1

2
< KH < min{7D1+8D2

16
, KL}, then

∆πO−P =
(δ − 1)(2D2

1 + 3D1D2 +D2
2 − 8D1KH − 8D2KH + 8K2

H)

8(D1 +D2)
− FO < 0.

(c) If 7D1+8D2

16
< KH < min{D1+D2

2
, KL}, then

∆πO−P =
(δ − 1)(9D2

1 + 9D1D2 − 48D1KH − 48D2KH + 64K2
H)

64(D1 +D2)
− FO < 0.

(iii) D1(1+t)
2

< KH ≤ KL.

∆πO−P =
(δ − 1)(16KH − (7D1 + 16D2))

64
− FO < 0.
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Proof 33 Proof of Corollary 3.3.3.2. The comparison between Scenarios P and O are as

follows.

(i) If KH > D1+D2

2
& KH ≤ KL,

∆πO−P
1H = − 1

64
(δ + 3)D1 < 0, ∆πO−P

1L =
D1

16
> 0.

∆πO−P
2H =

(3D1 + 8D2 − 8KH) (3(δ − 1)D1 − 8δ (D2 +KH) + 8KH)

256D2
> 0,

∆πO−P
2L =

(3D1 + 8D2 − 8KH) ((δ − 1) (8KH − 3D1) + 8D2)

256D2
> 0,

(ii) If 7D1+8D2

16
< KH < min{D1+D2

2
, KL},

∆πO−P
1H =

D1 (3D1 + 3D2 − 8KH) ((5δ − 1)D1 + (5δ − 1)D2 − 8(δ − 1)KH)

64 (D1 +D2) 2
< 0,

∆πO−P
1L =

1

16
D1

(
8KH

D1 +D2
− 3

)
> 0,

∆πO−P
2H =

D2KH ((1− 2δ)D1 + (1− 2δ)D2 + 2(δ − 1)KH)

2 (D1 +D2) 2
+

(8KH − 3D1) ((δ − 1) (8KH − 3D1) + 8D2)

256D2
< 0,

∆πO−P
2L =

(3D1 + 8D2 − 8KH) ((δ − 1) (8KH − 3D1) + 8D2)

256D2
+

1

4
D2

(
2KH

D1 +D2
− 1

)
> 0ifD1 < 4D2.

(iii) If min{D1+2D2

2
−KL,

D1

2
} < KH < min{KL,

7D1+8D2

16
},

∆πO−P
1H =

D1 (D1 +D2 − 2KH) (δ (D1 +D2)− 2(δ − 1)KH)

4 (D1 +D2) 2
> 0, ∆πO−P

1L =
1

4
D1

(
2KH

D1 +D2
− 1

)
< 0.

∆πO−P
2H =

1

16
D2

(
δ +

8KH ((1− 2δ) (D1 +D2) + 2(δ − 1)KH)

(D1 +D2) 2
+ 1

)
< 0,

∆πO−P
2L =

1

16
D2

(
δ +

8KH

D1 +D2
− 3

)
> 0.

(iv) If min{D1+D2

2
−KL,

D1

4
} < KH < min{8D1KL−D1(D1+D2)

4D1+12D2
, 2D1+D2

2
−KL,

D1+2D2

4
},

∆πO−P
1H =

1

16

(
D1

(
3δ +

8KH ((1− 2δ) (D1 +D2) + 2(δ − 1)KH)

(D1 +D2) 2
+ 1

)
+ 2 (D2 − 2 (KH +KL))

)
< 0,

∆πO−P
1L =

1

8

(
−2 (D2 − 2 (KH +KL))

2

D1
− 5 (D2 − 2 (KH +KL)) +D1

(
4KH

D1 +D2
− 4

))
,

∆πO−P
2H =

(D1 − 4KH) ((δ − 1)D1 − 2D2 − 4(δ − 1)KH)

16D2
− D2KH ((2δ − 1)D1 + (2δ − 1)D2 − 2(δ − 1)KH)

2 (D1 +D2) 2
,

∆πO−P
2L =

1

16

(
(D1 + 2D2 − 4KH) ((1− δ)D1 + 2D2 + 4(δ − 1)KH)

D2
+ 4D2

(
2KH

D1 +D2
− 1

))
.

∆πO−P
1L < 0 if KH < 7(D1+D2)

32
. Otherwise, ∆πO−P

1L > 0 if
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Table B.2: The optimal price and transaction volume comparison under O and P

p and D Case Gap (O-P) Relationship

∆p∗1H

1 δ−1
8

> 0

2 δ−1
8

( 8KH
D1+D2

− 3) > 0

3 − δ
2
+

(δ−1)KH
D1+D2

+ 1
2

> 0

4 1
4

(
−δ +

4(δ−1)KH
D1+D2

+
2(D2−2(KH+KL))

D1
+ 3
)

> 0 if KL < − 1
4
(δ − 3)D1 +

((δ−2)D1−D2)KH
D1+D2

+ D2
2

5 − (δ−1)D2(δD1KH−(D1+2D2)KL)

(D1+D2)((δ−1)D2
1−4D2D1−4D2

2)
< 0

∆D∗
1H

1 −D1
8

< 0

2 1
8
D1

(
3− 8KH

D1+D2

)
< 0

3 D1
2
(1− 2KH

D1+D2
) < 0

4 1
4
D1

(
1− 4KH

D1+D2

)
< 0 if KH > D1+D2

4

5
D1D2(D1((δ+1)KH−2KL)+2D2(KH−KL))

(D1+D2)((δ−1)D2
1−4D2D1−4D2

2)
< 0 if δ >

(−D1−2D2)KH+2(D1+D2)KL
D1KH

∆p∗1L

1 0

2 0

3 0

4
D1+D2−2(KH+KL)

2D1
< 0

5
(δ−1)D2(D1(KH−KL)+2D2KH )

(D1+D2)((δ−1)D2
1−4D2D1−4D2

2)
< 0

∆D∗
1L

1 D1
8

> 0

2 D1
8
( 8KH
D1+D2

− 3) > 0

3 D1
2
( 2KH
D1+D2

− 1) < 0

4 D1

(
KH

D1+D2
− 3

4

)
− D2

2
+KH +KL > 0 if KH >

−4D1KL−4D2KL+3D2
1+5D2D1+2D2

2
4(2D1+D2)

5
D1D2(((δ+1)D1+2D2)KL−2δ(D1+D2)KH )

(D1+D2)((δ−1)D2
1−4D2D1−4D2

2)
> 0 if δ >

(D1+2D2)KL
2(D1+D2)KH−D1KL

p∗O − p∗2H

1 − (δ−1)(3D1+8D2−8KH )
16D2

< 0

2 − (δ−1)(D1(19D2−8KH )+8D2(2D2−3KH )+3D2
1)

16D2(D1+D2)
< 0

3 1
4
(δ − 1)

(
4KH

D1+D2
− 3
)

< 0

4 − (δ−1)(D1(5D2−4KH )+4D2(D2−2KH )+D2
1)

4D2(D1+D2)
< 0

5 −δ + δKH+KL
D1+D2

+ p∗O < 0

∆D∗
2H

1 1
16

(−3D1 − 8D2 + 8KH) < 0

2 1
2

(
1− 2D2

D1+D2

)
KH − 3D1

16
< 0

3 1
4
D2

(
1− 4KH

D1+D2

)
< 0

4 1
4
D1

(
4KH

D1+D2
− 1
)

> 0 if KH > D1+D2
4

5 D2

(
2(D1(KH−KL)+2D2KH )

(1−δ)D2
1+4D2(D1+D2)

− KH
D1+D2

)
< 0 if δ <

(−D1−2D2)KH+2(D1+D2)KL
D1KH

p∗O − p∗2L

1 − (δ−1)(3D1−8KH )
16D2

> 0

2 − (δ−1)(3D1−8KH )
16D2

> 0

3 δ−1
4

> 0

4 − (δ−1)(D1−4KH )
4D2

> 0

5 p∗O + KH+KL
D1+D2

− 1 > 0

∆D∗
2L

1 1
16

(3D1 + 8D2 − 8KH) > 0

2
(D2−D1)KH
2(D1+D2)

+ 3D1
16

> 0

3 1
4
D2

(
4KH

D1+D2
− 1
)

> 0

4 1
4
D1

(
1− 4KH

D1+D2

)
> 0 if KH < D1+D2

4

5 D2

(
2(D1(KL−δKH )+2D2KL)

(1−δ)D2
1+4D2(D1+D2)

− KL
D1+D2

)
> 0 if δ >

(D1+2D2)KL
2(D1+D2)KH−D1KL

Notes. case 1: KH > 7D1+8D2
16

& KH ≤ KL, case 2: 3D1+4D2
8

<

KH < min{ 7D1+8D2
16

,KL}, case 3: min{D1+2D2
2

− KL,
D1
2
} <

KH < min{KL,
3D1+4D2

8
}, case 4: min{D1+D2

2
− KL,

D1
4
} <

KH < min{ 8D1KL−D1(D1+D2)
4D1+12D2

, 2D1+D2
2

− KL,
D1+2D2

4
}, and case

5: D1
D1+2D2

KL < KH < min{ D2
1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2
2

− KL}.

p∗O =
((1−δ)D1(D1−2KH )+4D2(D1+D2−KH−KL))(2D2(δKH+KL)+(1−δ)D1KL)

((1−δ)D2
1+4D2(D1+D2))((1−δ)D1KH+2D2(KH+KL))

142



1
8

(
4 (D2 − 2KH) +D1

(
5−

√
32KH−7(D1+D2)√

D1+D2

))
< KL <

1
8

(
4 (D2 − 2KH) +D1

(√
32KH−7(D1+D2)√

D1+D2
+ 5

))
. ∆πO−P

2H < 0 if KH > D1+D2

4
.

∆πO−P
2L > 0 if KH < D1+D2

4
. Otherwise, ∆πO−P

2L > 0 if δ > 1+ 2D1D2(D1+D2−4KH)
(D1+D2)(D1−4KH)(D1+2D2−4KH)

.

(v) If D1

2D1+D2
KL < KH < min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
− KL}, then expressions of

∆πO−P
ij are more complicated than their counterparts in other cases. Note that if

δ > (−D1−2D2)KH+2(D1+D2)KL

D1KH
, then πO−P

1H < 0; if δ < (−D1−2D2)KH+2(D1+D2)KL

D1KH
, then

πO−P
2H < 0. If δ < (D1+2D2)KL

2(D1+D2)KH−D1KL
, then πO−P

1L < 0; if δ > (D1+2D2)KL

2(D1+D2)KH−D1KL
, then

πO−P
2L > 0.

Proof 34 Proof of Corollary 3.3.3.3. By Theorems 3.3.2.2 and 3.3.3.2, we have π∗
O < π∗

U ,

∆pU−O
2L < 0, and ∆DU−O

2H > 0.

Before analyzing the seller’s optimal decision over the whole selling period, we propose

a lemma characterizing the optimal decisions of the upgrading mechanism.

Lemma 34 (Optimal Solutions of the Upgrading Mechanism) Given θ1H and

θ1L, and θ∗U ∈ [max{θ1L, 1− KH

D1
}, θ1H ], the optimal additional fee charged for the upgrade

equals p∗ = (δ − 1)θ∗U , where

θ∗U =



θ1H
2

+
1

2
− KH −D1(1− θ1L) +KL

2D2
ifD2 ≥ 2(KH −D1(1− θ1L) +KL),

θ1H
2

+
D2

8(KH −D1(1− θ1L) +KL)
ifKH −D1(1− θ1L) +KL ≤ D2 < 2(KH −D1(1− θ1L) +KL),

θ1H
2

+
1

8
ifD2 < KH −D1(1− θ1L) +KL,

D2

2
< KH −D1(1− θU ) ≤ D2

θ1H
2

otherwise.

Proof 35 Proof of Lemma 34.

(i) D1(θ1H − θU) ≤ S. Case D1(θ1H − θU) ≤ S means that the seller makes pricing

decision.

(a) D2 ≥ 2(KH −D1(1− θ1L) +KL).
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Equating the FOC of π2 to zero yields θ∗U = θ1H
2

+ 1
2
− KH−D1(1−θ1L)+KL

2D2
. The

seller’s optimal profit in the salvage stage equals π∗
2 =

4KH−3D1+2D1θ1H+D1θ21H
4

(δ−

1)+D1(δ−1)−4D2

4D2
2

(KH−D1(1−θ1L)+KL)
2+ 2D2−(2KH−D1+D1θ1H)(δ−1)

2D2
(KH−D1(1−

θ1L) +KL)− FO.

(b) KH −D1(1− θ1L) +KL ≤ D2 < 2(KH −D1(1− θ1L) +KL).

Equating the FOC of π2 to zero yields θ∗U = θ1H
2

+ D2

8(KH−D1(1−θ1L)+KL)
, which

is within the interval [max{θ1L, 1 − KH

D1
}, θ1H ]. The seller’s optimal profit in

the salvage stage equals π∗
2 = D2(2KH−2D1+D1θ1H)(δ−1)

8(KH−D1(1−θ1L)+KL)
+

D1D2
2(δ−1)

64(KH−D1(1−θ1L)+KL)2
+

D2qL+D1(δ−1)θ21H
4

− FO.

(c) D2 < KH +KL −D1(1− θ1L) & KH −D1(1− θU) >
D2

2
.

Equating the FOC of π2 to zero yields θ∗U = θ1H
2

+ 1
8
, provided that θ∗U ∈

[max{θ1L, 1− KH

D1
}, θ1H ] and ϕ = KH−D1(1−θU )

D2
≤ 1. The seller’s optimal profit

in the salvage stage equals π∗
2 =

(δ−1)(16D1θ21H+8D1θ1H−15D1+16KH)

64
+ D2

4
− FO.

(d) D2 < KH +KL −D1(1− θ1L) & KH −D1(1− θU) ≤ D2

2
.

Equating the FOC of π2 to zero yields θ∗U = θH
2
. The seller’s optimal profit in

the salvage stage equals π∗
2 =

(δ−1)D1θ21H
4

+ D2(δ+1)
8

− FO.

Boundary solutions: θ∗U = max{θ1L, 1− KH

D1
} or θ∗U = θ1H .

(ii) D1(θ1H − θU) ≥ S.

Case D1(θH − θU) ≥ S means that the seller first makes allocation then the upgrade

pricing decision.

(a) D2 ≥ 2(KH−D1(1−θ1L)+KL). The seller’s profit function of the salvage stage

π2(S) = (1− KH−D1(1−θ1L)+KL

D2
)(δ − 1)(KH −D1(1− θ1H)− S) + (δ − 1)(θ1H −

S
D1

)S−FO is concave w.r.t. S, hence, S∗ = D1θ1H
2

− D1

2
+ D1(KH−D1(1−θ1L)+KL)

2D2
,

and θ∗U = θ1H
2

+ 1
2
− KH−D1(1−θ1L)+KL

2D2
.

(b) KH −D1(1− θ1L)+KL ≤ D2 < 2(KH −D1(1− θ1L)+KL). The seller’s profit

function of the salvage stage π2(S) =
D2(δ−1)

4
KH−D1(1−θ1H)−S
KH−D1(1−θ1L)+KL

+ (δ − 1)(θ1H −
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S
D1

)S − FO is concave w.r.t. S, hence, S∗ = D1θ1H
2

− D1D2

8(KH−D1(1−θ1L)+KL)
, and

θ∗U = θ1H
2

+ D2

8(KH−D1(1−θ1L)+KL)
.

(c) D2 < KH + KL − D1(1 − θ1L) & KH − D1(1 − θU) >
D2

2
. The seller’s profit

function of the salvage stage π2(S) = D2(δ−1)
4

KH−D1(1−θ1H)−S
D2

+ (δ − 1)(θ1H −
S
D1

)S − FO is concave w.r.t. S, hence, S∗ = D1θH
2

− D1

8
and θ∗U = θ1H

2
+ 1

8
.

(d) D2 < KH + KL − D1(1 − θ1L) & KH − D1(1 − θU) ≤ D2

2
. S∗ = D1θ1H

2
and

θ∗U = θ1H
2
.

To sum up, case D1(θ1H − θU) ≤ S and case D1(θ1H − θU) > S are equivalent.

Proof 36 Proof of Proposition 3.4.1.2. There are at most 4×4 cases (four possible cases

in each mechanism) in the joint adoption, and the optimal solutions satisfy conditions (a)

to (e) mentioned above.

Special case. θU = θ1H

If θU = θ1H , then the optimal outcomes are equivalent to Lemma 3.3.3.1 in pure opaque

selling with condition θU = θ1H verified. Specifically, in case (i) of Lemma 3.3.3.1, θU =

θ1H
2

+ 1
2
− KH+KL−D1(1−θ1L)

2D2
reduces to θU = θ1H for 1− θ1H = KH+KL−D1(1−θ1L)

2D2
. Similarly,

θU reduces to θ1H for 1
2
− θ1H + D2

8(KH+KL−D1(1−θ1L))
= 0 in case (ii) of Lemma 3.3.3.1.

While θU ̸= θ1H in cases (iii) and (iv) of Lemma 3.3.3.1.

Special case. θU = 1− KH

D1

If θU = 1 − KH

D1
, then πJ(θ1H , θ1L) = D1(δ − 1)(θ1H − θ21H) + D1(θ1L − θ21L) + (δ −

1)(1 − KH

D1
)(KH −D1(1 − θ1H)). By solving the FOCs, we have θ∗1H = 1 − KH

2D1
, θ∗1L = 1

2
,

S∗ = KH

2
, θ∗U = 1− KH

D1
and π∗

J = D1

4
+KH(δ − 1)(1− 3KH

4D1
) provided that KH ≤ D1

2
and

KH

2
+KL ≥ D1

2
. Moreover, conditions that permit the existence of this boundary solution

are given by 1 − KH

D1
> θ1H

2
+ 1

2
− KH+KL−D1(1−θ1L)

2D2
, 1 − KH

D1
> θ1H

2
+ D2

8(KH+KL−D1(1−θ1L))
,

1− KH

D1
> θ1H

2
+ 1

8
, or 1− KH

D1
> θ1H

2
, and the reduced forms are KL > (3D2−2D1)KH

2D1
+ D1

2
,

KL >
2D2

1+D1D2−7D1KH+6K2
H

4D1−6KH
, KH < D1

2
, or KH < 2D1

3
. So, the effective domain is given

by KH ≤ D1

2
together with KL ≥ max{D1−KH

2
,
2D2

1+D1D2−7D1KH+6K2
H

4D1−6KH
}.

General case.
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(i) D2 ≥ 2(KH −D1(1− θ1L) +KL).

Condition 1. θU = θ1H
2

+ 1
2
− KH+KL−D1(1−θ1L)

2D2

If θ1L ≤ 1 + D2

2D1
− KH+KL

D1
, the Hessian matrix of πJ is negative definite. Hence,

by solving the FOCs, we have θ∗1H =
(2D2

1−D1KH)(δ−1)−6D1D2−6D2
2+2D2KH+2D2KL

2(D2
1δ−D2

1−3D1D2−3D2
2)

, and

θ∗1L =
(2D2

1−2D1KH+3D2KH−2D1KL)(δ−1)−6D1D2−6D2
2+6D2KH+6D2KL

2(D2
1δ−D2

1−3D1D2−3D2
2)

. Correspondingly, θ∗U =

2θ∗1H − 1 =
(D2

1−D1KH)(δ−1)−3D1D2−3D2
2+2D2KH+2D2KL

D2
1δ−D2

1−3D1D2−3D2
2

, ϕ∗ = −2D1KH−6D2KH+4D1KL

3(δ−1)D1KH−6D2(KH+KL)
,

θ∗O =
(2D2

1−3D1KH)(δ−1)−6D1D2−6D2
2+6D2KH+6D2KL

2(D2
1δ−D2

1−3D1D2−3D2
2)

, where ϕ∗ =
KH−D1(1−θ∗U )

KH+KL−D1(1−θ∗1L)
always

satisfies 0 ≤ ϕ∗ ≤ 1, and π∗
J =

−4D2
1KL+12D2KL(KH+KL−D2)+D1(K2

H+8KHKL+4KL(−3D2+KL))

4(D2
1δ−D2

1−3D1D2−3D2
2)

+

D1KH(4D1−3KH)δ2−2(6D2KH(D2−KH−KL)+2D2
1(KH−KL)+D1(6D2KH−K2

H+4KHKL+2K2
L))δ

4(D2
1δ−D2

1−3D1D2−3D2
2)

− FO.

Because θ∗1H ≤ 1 and KH −D1(1 − θ1H) ≥ 0 reduce to D1KH(δ − 1) − 2D2(KH +

KL) ≤ 0 and D2
1KH(δ − 1) − 6D2

2KH + 2D1D2(−2KH + KL) < 0, respectively.

We define f1(δ) = D1KH(δ − 1) − 2D2(KH + KL) and f2(δ) = D2
1KH(δ − 1) −

6D2
2KH + 2D1D2(−2KH +KL). Note f1(δ) ≤ 0 if KH ≤ 2D1

D1+3D2
KL and f2(δ) < 0

if KH > 2D1

D1+3D2
KL. Hence, there are no optimal solutions.

Boundary solution. θ1L = 1 + D2

2D1
− KH+KL

D1
.

If θ∗1L > 1+ D2

2D1
−KH+KL

D1
, then θ∗1L = 1+ D2

2D1
−KH+KL

D1
, θ∗1H = 3−3θ1H

2
−KH+KL−D1(1−θL)

2D2
=

5
6
, θ∗U = 2θ∗1H − 1 = 2

3
, θ∗O = 3θ∗1H − 2 = 1

2
, ϕ∗ = 6KH−2D1

3D2
, and

π∗
J =

(D2
1+6D1KH)δ−D2

1−3D1D2+6D1KH+12D1KL−3(D2−2(KH+KL))
2

12D1
−FO provided that D1

3
≤

KH < min{2D1+3D2

6
, 2D1+D2

2
−KL,

2D1

D1+3D2
KL}.

Condition 2. θU = θ1L

If θU = θ1L when θ1L > 1−KH

D1
, then π2 = (1−KH+KL−D1(1−θ1L)

D2
)(KHδ+KL−D1(1−

θ1L)δ)+D1(δ−1)(θ1Hθ1L−θ21L)−FO. The Hessian matrix of the seller’s total profit πJ

is negative definite. By equating the FOCs of πJ w.r.t θ1H and θ1L to zero, we have

θ∗1H = −2KHδ−KL−KLδ+4D1δ+3D2δ+D2

4D1δ+3D2δ+D2
, θ∗1L = θ∗U = −4KHδ−2KL−2KLδ+4D1δ+3D2δ+D2

4D1δ+3D2δ+D2
,

θ∗O =
(4D1D2−2D1KL+3D2(D2−KH−KL))δ+D2

2+2D1KL−D2(KH+KL)

D2(4D1δ+3D2δ+D2)
,

ϕ∗
J = 3D2(−δD1+D1+2D2)KH+2D1((δ−1)D1−3D2)KL

3D2(D1(KH−δKH)+2D2(KH+KL))
, where ϕ∗

J =
KH−D1(1−θ∗1L)

KH+KL−D1(1−θ∗1L)
always

satifies 0 ≤ ϕ∗ ≤ 1, and π∗
J =

D2(D2−KH−KL)(3δ+1)(KHδ+KL)+D1(K2
L(δ−1)2+4D2δ(KHδ+KL))

D2(4D1δ+3D2δ+D2)
−
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FO provided that (3D2KH − 2D1KL)δ + D2KH − 2D1KL > 0, (4D1(D2 − KL) +

3D2(D2 − 2(KH + KL)))δ + D2
2 + 4D1KL − 2D2(KH + KL ≥ 0, (4D1 + 3D2 −

4KH − 2KL)δ + D2 − 2KL ≥ 0, and (−2D1KH + 3D1KL + 3D2KL)δ + D2KL −

D1KL ≥ 0. We define f3(δ) = (3D2KH − 2D1KL)δ + D2KH − 2D1KL, f4(δ) =

(4D1(D2 − KL) + 3D2(D2 − 2(KH + KL)))δ + D2
2 + 4D1KL − 2D2(KH + KL),

f5(δ) = (4D1+3D2−4KH −2KL)δ+D2−2KL, and f6(δ) = (−2D1KH +3D1KL+

3D2KL)δ + D2KL − D1KL ≥ 0. Note that f3(δ) > 0 if KH > D1

D2
KL, f4(δ) ≥ 0

if KH ≤ min{ (D1+D2)(2D1+3D2)2−2(10D2
1+15D1D2+9D2

2)KL

8D2
1+18D1D2+18D2

2
, D1+D2

2
− KL}, f5(δ) ≥ 0 if

KH ≤ min{D1 + D2 − KL,
(D1+D2)(2D1+3D2)2−(4D2

1+6D1D2+6D2
2)KL

4D2
1+12D1D2+12D2

2
}, and f6(δ) ≥ 0

if KH ≤ min{D1+2D2

D1
KL,

2D3
1+13D2

1D2+18D1D2
2+9D3

2

2D3
1+6D2

1D2+6D1D2
2

KL}. Condition θ∗1L ≥ θ∗H
2

+ 1
2
−

KH+KL−D1(1−θ∗L)

2D2
reduces to (−3D2KH + 2D1KL)δ +D2KH − 2D1KL − 2D2KL ≥ 0,

which does not hold. So, there are no optimal solutions.

(ii) KH −D1(1− θ1L) +KL ≤ D2 < 2(KH −D1(1− θ1L) +KL) .

Condition 1. θU = θ1H
2

+ D2

8(KH+KL−D1(1−θ1L))

If D2

2D1
+ 1− KH+KL

D1
< θ1L ≤ D2

D1
+ 1− KH+KL

D1
, then the optimal solutions satisfy the

folllowing best response functions if the Hessian matrix is negative definite:

θ∗1H =
2

3
+

D2

12(KH +KL −D1(1− θ1L))
,

−D2
2 − 2D2(D1 − 2(KH +KL))(3θ

∗
1H − 2)− 8D1(δ − 1)(KH + 2D1(θ

∗
1H − 1))(3θ∗1H − 2)3

2D2(3θ∗1H − 2)
= 0.

Because θ∗1H ̸= θ∗1L, θ1H ̸= 1, θ∗U = 2θ∗1H − 1 and θ∗O = 1
2
. Hence, the optimal

capacity offering can be (HP , LP ;HU+O, LO) or (HP , L∅;HU+O, LO). Note that

∂πJ

∂θ1L
< 0 when θ1L ≥ 1

2
, or equivalently, 2(KH +KL) ≤ D1 +D2. So, there are no

optimal solutions when 2(KH +KL) ≤ D1 +D2.

Boundary solution.

The optimal interior solution is a convex combination of the boundary solutions.

(a) θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗1H = 5

6
, θ∗U = 3

4
, θ∗O = 1

2
, ϕ∗ = 4KH−D1

2D2
, and

π∗
J =

11(δ−1)D2
1+36D1(−D2+2(δ+1)KH+4KL)−36(D2−2(KH+KL))

2

144D1
− FO. The effective

domain is given by max{D1+2D2

4
−KL,

D1

4
} ≤ KH ≤ min{2D1+D2

2
−KL,

D1+2D2

4
}.
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(b) θ1L = 1 + D2

D1
− KH+KL

D1
, θ∗1H = 3

4
, θ∗U = 1

2
, θ∗O = 1

2
, ϕ∗ = 2KH−D1

2D2
, and π∗

J =

3(δ−1)D2
1+4D1(−3D2+(δ+3)KH+4KL)−16(−D2+KH+KL)

2

16D1
− FO. The effective domain is

given by max{D1+2D2

2
−KL,

D1

2
} ≤ KH ≤ min{D1 +D2 −KL,

D1+2D2

2
}.

Condition 2. θU = θ1L

The seller’s profit of the salvage stage equals π2 =
D2(KH−D1(1−θ1L))

4(KH+KL−D1(1−θ1L))
(δ− 1) + D2

4
+

D1(δ − 1)(θ1Hθ1L − θ21L) − FO if θ1L > 1 − KH

D1
, and the Hessian matrix of πJ is

negative definite. Consequently, the optimal solutions satisfy

D1(1− 2θ1L) +
D1D2KL(δ − 1)

4(KH +KL −D1(1− θ1L))2
+D1(δ − 1)(θ1H − 2θ1L) = 0, θ∗1H =

1 + θ1L
2

.

Because θ∗1H ̸= θ∗1L = θ∗U , θ1H ̸= 1, and θ∗O = 1
2
. Hence, the optimal capacity offering

is (HP , LP ;HU+O, LO).

Note that ∂2πJ

∂θ21L
< 0, if ∂πJ

∂θ1L
|
θ1L=1+

D2
2D1

−KH+KL
D1

< 0, or equivalently, KH <

min{ (D1+D2)(2D1+3D2)2−2(10D2
1+15D1D2+9D2

2)KL

8D2
1+18D1D2+18D2

2
, D1+D2

2
−KL}, then ∂πJ

∂θ1L
< 0 over (1 +

D2

2D1
− KH+KL

D1
, 1 + D2

D1
− KH+KL

D1
].

Boundary solution.

The optimal interior solution is a convex combination of the boundary solutions.

(a) θ∗1L = θ∗U = 1 + D2

2D1
− KH+KL

D1
, θ∗1H = 1 + D2

4D1
− KH+KL

2D1
, θ∗O = 1

2
, ϕ∗ =

2KH−2KL+D2

2D2
, and π∗

J = 4D1(−δD2+4δKH+2(δ+1)KL)−(3δ+1)(D2−2(KH+KL))
2

16D1
−FO. The

effective domain is given by −D2

2
≤ KH−KL ≤ D2

2
as well as D2

2
≤ KH+KL ≤

2D1+D2

2
.

(b) θ∗1L = θ∗U = 1+ D2

D1
− KH+KL

D1
, θ∗1H = 1+ D2

2D1
− KH+KL

2D1
, θ∗O = 1

2
, ϕ∗ = KH−KL+D2

2D2
,

and π∗
J = (−3δ−1)(−D2+KH+KL)

2+D1(−3δD2+4δKH+3δKL+KL)
4D1

− FO. The effective

domain is given by KL−D2 ≤ KH ≤ D2 as well as D2 ≤ KH +KL ≤ D1+D2.

(iii) D2 < KH −D1(1− θ1L) +KL & KH −D1(1− θU) >
D2

2
.

Condition 1. θU = θ1H
2

+ 1
8

If θ1L > 1 + D2

D1
− KH+KL

D1
and θ1H > 7

4
+ D2

D1
− 2KH

D1
, then the Hessian matrix of

πJ is negative definite. Hence, θ∗1H = 3
4
, θ∗1L = 1

2
, θ∗O = 1

2
, ϕ∗ = 2KH−D1

2D2
, θ∗U = 1

2
,
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and π∗
J = 4(D1+D2)+(4KH+3D1)(δ−1)

16
− FO provided that D1 < 2D2, KL > D1

4
and

KH +KL > D1

2
+D2.

(iv) D2 < KH −D1(1− θ1L) +KL & KH −D1(1− θU) ≤ D2

2
.

Condition 1. θU = θ1H
2

If θ1L > 1 + D2

D1
− KH+KL

D1
and θ1H ≤ 2 + D2

D1
− 2KH

D1
, then θ∗1H = 2

3
, θ∗1L = 1

2
, and

θU =
θ∗1H
2
, while θ∗U = 1

3
< θ∗1L = 1

2
, thus θ∗U = max{θ1L, 1− KH

D1
}.

Condition 2. θU = θ1L

If θ1L ≥ θ1H
2

and θ1L > 1− KH

D1
, then π2 =

D2

8
(δ+1)+D1(δ− 1)(θ1Hθ1L − θ21L)−FO

if θ1L > 1 − KH

D1
. The Hessian matrix of πJ is negative define, hence, θ∗1H = 2δ+1

3δ+1
,

θ∗1L = θ∗U = δ+1
3δ+1

, θ∗O = 1
2
, ϕ∗ = 1

2
, and π∗

J = (8D1+3D2)δ2+4D2δ+D2

8+24δ
− FO provided

that 2δ
3δ+1

D1 < KH ≤ 2δ
3δ+1

D1 +
D2

2
, KL > δ

3δ+1
D1 and KH + KL > 2δ

3δ+1
D1 + D2.

Conditions (3KH − 2D1)δ +KH > 0 and (3KL − D1)δ +KL > 0 reduce to KH >

2D3
1+6D2

1D2+6D1D2
2

4D2
1+9D1D2+9D2

2
and KL >

D3
1+3D2

1D2+3D1D2
2

4D2
1+9D1D2+9D2

2
, respectively. We define f7(δ) = (4D1+

3D2−6KH)δ+D2−2KH and f8(δ) = (3KH+3KL−2D1−3D2)δ+KH+KL−D2. Note

that f7(δ) ≥ 0 if KH ≤ D1+D2

2
, and f8(δ) ≥ 0 if KH >

2D3
1+10D2

1D2+15D1D2
2+9D3

2

4D2
1+9D1D2+9D2

2
−KL.

So, the effective domain is given by max{2D3
1+6D2

1D2+6D1D2
2

4D2
1+9D1D2+9D2

2
,
2D3

1+10D2
1D2+15D1D2

2+9D3
2

4D2
1+9D1D2+9D2

2
−

KL} < KH < D1+D2

2
and KL >

D3
1+3D2

1D2+3D1D2
2

4D2
1+9D1D2+9D2

2
.

To summarize,

(i) If D1

3
< KH < min{2D1+3D2

6
, 2D1+D2

2
− KL,

2D1

D1+3D2
KL} provided that D1 < 3D2,

then θ∗1H = 5
6
, θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗U = 2

3
, and θ∗O = 1

2
, ϕ∗ = 6KH−2D1

3D2
, and

π∗
J =

(D2
1+6D1KH)δ−D2

1−3D1D2+6D1KH+12D1KL−3(D2−2(KH+KL))
2

12D1
− FO.

(ii) If KH < D1

2
and KL ≥ max{D1−KH

2
,
2D2

1+D1D2−7D1KH+6K2
H

4D1−6KH
}, then θ∗1H = 1 − KH

2D1
,

θ∗1L = 1
2
, θ∗U = 1− KH

D1
, θ∗O = 1, and π∗

J = D1

4
+KH(δ − 1)(1− 3KH

4D1
)− FO.

(iii) If D1

2D2+D1
KL < KH ≤ min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
−KL}, then

θ∗1H =
−D2

1δ+D1KHδ+D2
1+4D1D2+4D2

2−D1KH−2D2KH−2D2KL

4(D1+D2)D2−D2
1(δ−1)

, θ∗O =
(2D1KH−D2

1)(δ−1)+4D2(D1+D2−(KH+KL))

4(D1+D2)D2−D2
1(δ−1)

,

θ∗1L =
−D2

1δ+D1KHδ+D2
1+4D1D2+4D2

2−D1KH−2D2KH−4D2KL−2D2KHδ+D1KLδ−D1KL

4(D1+D2)D2−D2
1(δ−1)

,
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ϕ∗ = (−D1−2D2)KH+D1KL

(δ−1)D1KH−2D2(KH+KL)
, and π∗

J =
KL(−D2

1+4D2(−D2+KH+KL)+D1(−4D2+2KH+KL))

4(D1+D2)D2−D2
1(δ−1)

+

δ2D1KH(D1−KH)+δ(D2
1(−KH+KL)+4D2KH(−D2+KH+KL)−D1(4D2KH−K2

H+2KHKL+K2
L))

4(D1+D2)D2−D2
1(δ−1)

− FO.

(iv) If max{D1+2D2

2
−KL,

D1+D2

2
} < KH ≤ D1+2D2

2
given that D1 < 2D2, and KL > D1

4
,

then θ∗1H = 3
4
, θ∗1L = θ∗U = 1

2
, θ∗O = 1

2
, ϕ∗ = 2KH−D1

2D2
and π∗

J = 4(D1+D2)+(4KH+3D1)(δ−1)
16

−

FO.

(v) If max{2D3
1+6D2

1D2+6D1D2
2

4D2
1+9D1D2+9D2

2
,
2D3

1+10D2
1D2+15D1D2

2+9D3
2

4D2
1+9D1D2+9D2

2
− KL} < KH < D1+D2

2
and KL >

D3
1+3D2

1D2+3D1D2
2

4D2
1+9D1D2+9D2

2
, then θ∗1H = 2δ+1

3δ+1
, θ∗1L = θ∗U = δ+1

3δ+1
, θ∗O = 1

2
, ϕ∗ = 1

2
, and π∗

J =

(8D1+3D2)δ2+4D2δ+D2

8+24δ
− FO.

(vi) If D1

4
< KH < min{8D1KL−D1(D1+D2)

4D1+12D2
, 2D1+D2

2
− KL,

D1+2D2

4
}, then θ∗1H = θ∗U = 3

4
,

θ∗1L = 1+ D2

2D1
−KH+KL

D1
, θ∗O = 1

2
, ϕ∗ = 4KH−D1

2D2
, and π∗

J =
(D2

1+8D1KH)δ−D2
1−4D1D2+8D1KH+16D1KL

16D1
−

(D2−2(KH+KL))
2

4D1
− FO.

Overlap Characterization

(a) Cases (vi) and (i): ∆πi−vi > 0.

(b) Cases (vi) and (ii): ∆πii−vi increases with δ if D1

6
< KH < D1

2
, and reaches

minimum when δ = 1: 4(4K2
H + (−4D1 − 4D2 + 8KL)KH + D2

1 + D1D2 + D2
2 −

4D1KL − 4D2KL + 4K2
L), this value is negative when D1+D2−

√
D1D2

2
−KL < KH <

D1+D2+
√
D1D2

2
−KL. Note that the intersection between these two cases (the shaded

area is D1

4
< KH < min{D1

3
, D1+2D2

4
}, D1+2D2

4
< KL < 3D1+2D2

4
) satisfies D1+D2

2
−

KL < KH < 2D1+D2

2
−KL. Because

D1+D2−
√
D1D2

2
−KL < D1+D2

2
−KL < D1+D2+

√
D1D2

2
−

KL < 2D1+D2

2
− KL, so, we conclude that case (ii) dominates case (vi) if KH >

D1+D2+
√
D1D2

2
−KL. If

D1+D2

2
−KL < KH < D1+D2+

√
D1D2

2
−KL, then case (ii) dom-

inates case (vi) if δ >
4D1(D2−6KH−4KL)+4(−4D2(KH+KL)+D2

2+8KHKL+7K2
H+4K2

L)+5D2
1

(D1−6KH)(D1−2KH)
.

(c) Cases (vi) and (v): Because ∂2∆π
∂δ2

> 0, and ∂∆π
∂δ

∣∣
δ=1

> 0. So, ∂∆π
∂δ

> 0, note that

∆πv−vi|δ=1 > 0. So, case (v) dominates case (vi).

(d) Cases (ii) and (i): Because ∂∆π
∂δ

> 0, ∆π|δ=1 > 0 if D1+D2−
√
D1D2

2
− KL < KH <

D1+D2+
√
D1D2

2
−KL, ∆π|

δ=1+
3D1D2+3D2

2
D2
1

> 0 if
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−D2
1(D2+4KL)+

√
D2

1D2(−2D2
1(D2+6KL)+6D1(−8D2KL+D2

2+6K2
L)+9D2(D2−2KL)2+5D3

1)+2D3
1−3D2

2D1

(D1−3D2)(4D1+3D2)
<

KH < −
D2

1(D2+4KL)+
√

D2
1D2(−2D2

1(D2+6KL)+6D1(−8D2KL+D2
2+6K2

L)+9D2(D2−2KL)2+5D3
1)−2D3

1+3D2
2D1

(D1−3D2)(4D1+3D2)
.

Note that the region of the shaded area is given by D1

3
< KH < min{D1+3D2

6
, D1

2
} and

D1+3D2

6
< KL < 4D1+3D2

6
. If 3D2 ≤ D1, then the optimal strategy defined in case (ii)

does not exist. Otherwise, case (i) dominates case (ii) ifKL < min{2D1+3
√
D1D2

6
, D2+

√
D1D2

2
}.

If min{2D1+3
√
D1D2

6
, D2+

√
D1D2

2
} < KL < 4D1+3D2

6
, then ∆πi−ii > 0 if

δ >
3D1(D2−6KH−4KL)+3(−4D2(KH+KL)+D2

2+8KHKL+7K2
H+4K2

L)+4D2
1

(D1−3KH)2
.

(e) Cases (v) and (i): Because ∂2∆π
∂δ2

< 0, ∂∆π
∂δ

∣∣
δ=1

< 0. So, ∂∆π
∂δ

< 0, note that

∆πi−v|δ=1 < 0. So, case (v) dominates case (i).

(f) Cases (ii) and (ii): Because ∂2∆π
∂δ2

< 0, ∂∆π
∂δ

∣∣
δ=1

> 0, ∂∆π
∂δ

∣∣
δ=1+

3D1D2+3D2
2

D2
1

> 0 if D1 >

2D2, and ∆π|δ=1 < 0 if
D1+D2−

√
D2(D1+D2)

2
−KL < KH <

D1+D2+
√

D2(D1+D2)

2
−KL.

Note that the range of the shaded area is given by
D2

1

3D1+4D2
< KH <

D2
1+2D1D2

4D1+6D2
along

with
D3

1+3D2
1D2+3D1D2

2

3D2
1+8D1D2+6D2

2
< KL < D1+2D2

4
. So, we conclude that ∆π|δ=1 < 0.

(g) The right boundary point of condition 1 in case 2 has intersactions with case (iv)

and (v), and ∆πcase2−(iv) > 0, and ∂∆πcase2−(v)

∂δ
> 0, and ∆πcase2−(v)

∣∣
δ=1

> 0. The

left boundary point of condition 1 in case 2 has intersaction with case (vi), and

∆πcase2−(vi) < 0.

Proof 37 Proof of Proposition 3.4.2. Recall that

DOH =



D2

4
ifθ1L > 1 +

D2

D1
− KH +KL

D1
, θ1H ≤ 1 +

D2

2D1
− KH

D1
,

KH −D1(1− θ1H)

2
ifθ1L > 1 +

D2

D1
− KH +KL

D1
, θ1H > 1 +

D2

2D1
− KH

D1
,

D2(KH −D1(1− θ1H))

2(KH +KL −D1(1− θ1L))
ifθ1L ∈ (1 +

D2

2D1
− KH +KL

D1
, 1 +

D2

D1
− KH +KL

D1
],

KH −D1(1− θ1H) ifθ1L ≤ 1 +
D2

2D1
− KH +KL

D1
.

Upgrading mechanism prevails if and only if KH −D1(1− θ1H)−DOH > 0. The optimal

solutions satisfy conditions (a) to (d), modified condition (e) (i.e., θU ∈ [max{θ1L, 1 −
KH−DOH

D1
}, θ1H ]) and newly defined condition (f) (i.e., θ1H > 1− KH−DOH

D1
).
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(i) θ1L > 1 + D2

D1
− KH+KL

D1
& 1 + D2

4D1
− KH

D1
< θ1H ≤ 1 + D2

2D1
− KH

D1

The seller’s total profit equals

πJ1 = D1(θ1L − θ21L) +D1(δ − 1)(θ1H − θ21H) +
D2(δ + 1)

8
+ π∗

2U − FO, (B.1)

where π∗
2U =

D1(δ−1)θ21H
4

if θU = θ1H
2
, π∗

2U = D1(δ − 1)(θ1HθL − θ21L) if θU = θ1L,

or π∗
2U = (δ − 1)(1 − KH−DOH

D1
)(KH − D1(1 − θ1H) − DOH) if θU = 1 − KH−DOH

D1
.

Moreover, ϕ∗ = 1
2
.

(a) θ1H
2

≥ max{θ1L, 1−
KH−D2

4

D1
}

Equation B.1 becomes πJ1 = D1(θ1L−θ21L)+D1(δ−1)(θ1H−θ21H)+
D1(δ−1)θ21H

4
+

D2(δ+1)
8

− FO, the Hessian matrix of πJ1 is negative definite, hence, θ∗1H = 2
3
,

θ∗1L = θ∗O = 1
2
and θ∗U = 1

3
. While θ∗U < θ∗1L, which is unreasonable.

(b) θ1H
2

< θ1L, θ1L > 1− KH−D2
4

D1

The Hessian matrix of πJ1 is negative definite, hence, θ∗1H = 2δ+1
3δ+1

, θ∗U =

θ∗1L = δ+1
3δ+1

, θ∗O = 1
2
, ϕ∗ = 1

2
, and π∗

J1 = (8D1+3D2)δ2+4D2δ+D2

8+24δ
− FO pro-

vided that 2δD1

3δ+1
+ D2

4D1
< KH ≤ δD1

3δ+1
+ D2

2
, KL > δD1

3δ+1
and KH + KL >

2δ
3δ+1

D1 + D2. Define g1(δ) = (3KH − D1)δ + KH > 0, g2(δ) = (3KL −

D1)δ +KL > 0, g3(δ) = (3(KH +KL) − 2D1 − 3D2)δ −D2 +KH +KL > 0,

g4(δ) = (2D1 + 3D2 − 6KH)δ + D2 − 2KH ≥ 0, and g5(δ) = (12KH − 8D1 −

3D2)δ + 4KH −D2 > 0, then above conditions hold if KH >
D3

1+3D2
1D2+3D1D2

2

4D2
1+9D1D2+9D2

2
,

KL >
D3

1+3D2
1D2+3D1D2

2

4D2
1+9D1D2+9D2

2
, KH >

2D3
1+10D2

1D2+15D1D2
2+9D3

2

4D2
1+9D1D2+9D2

2
− KL, KH ≤ D1+2D2

4
,

and KH >
8D3

1+28D2
1D2+33D1D2

2+9D3
2

16D2
1+36D1D2+36D2

2
, respectively. So, the domain is given by

max{2D3
1+10D2

1D2+15D1D2
2+9D3

2

4D2
1+9D1D2+9D2

2
−KL,

8D3
1+28D2

1D2+33D1D2
2+9D3

2

16D2
1+36D1D2+36D2

2
} < KH ≤ D1+2D2

4
as

well as KL >
D3

1+3D2
1D2+3D1D2

2

4D2
1+9D1D2+9D2

2
.

(c) θ1H
2

< 1− KH−D2
4

D1
, 1− KH−D2

4

D1
> θ1L

The Hessian matrix of πJ1 is negative definite, hence, θ∗1H = 1 − 4KH−D2

8D1
,

θ∗O = θ∗1L = 1
2
, ϕ∗ = 1

2
, π∗

J1 =
8D1((3−δ)D2+8(δ−1)KH)−3(δ−1)(D2−4KH)2+16D2

1

64D1
− FO

provided that D2

4
≤ KH ≤ 3D2

4
and KH +KL > D1

2
+D2.
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(ii) θ1L > 1 + D2

D1
− KH+KL

D1
& θ1H > 1 + D2

2D1
− KH

D1

Equation B.1 becomes πJ1 = D1(θ1L−θ21L)+D1(δ−1)(θ1H−θ21H)+
D2+(δ−1)(KH−D1(1−θ1H))

4
+

π∗
2U − FO, DOH = KH−D1(1−θ1H)

2
, and ϕ = KH−D1(1−θ1H)

D2
.

(a) θ1H
2

≥ max{θ1L, 1−
KH−KH−D1(1−θ1H )

2

D1
}

The optimal solutions equal θ∗1H = 5
6
, θ∗U = 5

12
, θ∗1L = θ∗O = 1

2
, and ϕ∗ = 6KH−D1

6D2
,

while θ∗U < θ∗1L does not hold.

(b) θ1H
2

< θ1L, θ1L > 1− KH−KH−D1(1−θ1H )

2

D1

The Hessian matrix of πJ1 is negative definite, hence, θ∗1H = 5δ+2
6δ+2

, θ∗U = θ∗1L =

5δ+3
12δ+4

, θ∗O = 1
2
, ϕ∗ = (6δ+2)KH−δD1

(6δ+2)D2
, and π∗

J1 =
(13D1+12KH)δ2+(3D1+12D2−8KH)δ+4D2−4KH

48δ+16
−

FO.

Because conditions g6(δ) = (12KL− 5D1)δ+4KL−D1 > 0, g7(δ) = (12(KH +

KL) − 7D1 − 12D2)δ − D1 − 4D2 + 4(KH + KL) > 0, g8(δ) = (6KH − D1 −

3D2)δ + 2KH −D2 > 0, g9(δ) = (6KH − 6D1)δ + 2KH −D1 > 0 and g10(δ) =

(6KH − 6D2 − D1)δ + 2(KH − D2) ≤ 0 reduce to KL >
6D3

1+15D2
1D2+15D1D2

2

16D2
1+36D1D2+36D2

2
,

KH >
8D3

1+37D2
1D2+57D1D2

2+36D3
2

16D2
1+36D1D2+36D2

2
− KL, KH >

D3
1+7D2

1D2+12D1D2
2+9D3

2

8D2
1+18D1D2+18D2

2
, KH >

7D3
1+18D2

1D2+18D1D2
2

8D2
1+18D1D2+18D2

2
, and KH ≤ D1+8D2

8
respectively. So, the effective domain

is given by max{8D3
1+37D2

1D2+57D1D2
2+36D3

2

16D2
1+36D1D2+36D2

2
− KL,

7D3
1+18D2

1D2+18D1D2
2

8D2
1+18D1D2+18D2

2
} < KH ≤

D1+8D2

8
provided that 24D3

1 + 31D2D
2
1 − 9D2

2D1 − 72D3
2 < 0.

(c) θ1H
2

< 1− KH−KH−D1(1−θ1H )

2

D1
, 1− KH−KH−D1(1−θ1H )

2

D1
> θ1L

The optimal solutions equal θ∗1H = 5
6
, θ∗O = θ∗1L = 1

2
, θ∗U = 11

12
− KH

2D1
, ϕ∗ =

6KH−D1

6D2
, and π∗

J1 =
(D2

1+36D1KH+12K2
H)(δ−1)+12D2

1+12D1D2

48D1
−FO provided that KL >

D1

3
and max{D1+3D2

6
, D1+2D2

2
−KL} < KH < min{D1+6D2

6
, 5D1

6
}.

(iii) 1 + D2

2D1
− KH

D1
< θ1L ≤ 1 + D2

D1
− KH

D1

Equation B.1 becomes πJ1 = (δ−1)D1 (θH − θ2H)+
(δ−1)D2(KH−D1(1−θH))
4(D1(θL−1)+KH+KL)

+D1 (θL − θ2L)+

D2

4
+ π∗

2U , and DOH = D2(KH−D1(1−θ1H))
2(KH+KL−D1(1−θ1L))

.

(a) θU = θ1H
2
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If the Hessian matrix of πJ1 is negative definite, then the optimal solutions are

obtained by solving the FOCs of πJ1 w.r.t θ1H and θ1L:

∂πJ1

∂θ1H
= D1(δ − 1)(1− 2θ1H +

θ1H
2

) +
D1D2(δ − 1)

4(KH +KL −D1(1− θ1L))
= 0,

∂πJ1

∂θ1L
= D1(1− 2θ1L)−

D1D2(δ − 1)(KH −D1(1− θ1H))

4(KH +KL −D1(1− θ1L))2
= 0.

Because θ∗1H ̸= θ∗1L, θ
∗
1H ̸= 1, θ∗O = 1

2
. Note that ∂πJ1

∂θ1L
< 0 if D1+D2 ≥ 2(KH +

KL). Hence, there are no optimal solutions when D1 +D2 ≥ 2(KH +KL).

Boundary solution.

The optimal interior solution is a convex combination of the boundary solu-

tions.

(a1) θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗1H = 1, θ∗U = θ∗O = 1

2
, ϕ∗ = 2KH

D2
, and π∗

J1 =

(δ−1)D2
1+D1(−D2+2(δ+1)KH+4KL)−(D2−2(KH+KL))

2

4D1
− FO. The effective domain

is given by D1+D2

2
−KL ≤ KH ≤ min{D2

2
, 2D1+D2

2
−KL}.

(a2) θ∗1L = 1 + D2

D1
− KH+KL

D1
, θ∗1H = 5

6
, θ∗U = 5

12
, θ∗O = 1

2
, ϕ∗ = 6KH−D1

6D2
, and

π∗
J1 =

13(δ−1)D2
1+12D1(−3D2+(δ+3)KH+4KL)−48(−D2+KH+KL)

2

48D1
−FO. The effective

domain is given by max{5D1+12D2

12
− KL,

D1

6
} ≤ KH ≤ min{D1+6D2

6
, D1 +

D2 −KL}.

(b) θU = θ1L

If the Hessian matrix of πJ1 is negative definite, then the optimal solutions are

obtained by solving the FOCs of πJ1 w.r.t θ1H and θ1L:

∂πJ1

∂θ1H
= D1(δ − 1)(1− 2θ1H + θ1L) +

D1D2(δ − 1)

4(KH +KL −D1(1− θ1L))
= 0,

∂πJ1

∂θ1L
= D1(1− 2θ1L) +D1(δ − 1)(θ1H − 2θ1L)−

D1D2(δ − 1)(KH −D1(1− θ1H))

4(KH +KL −D1(1− θ1L))2
= 0.

Because θ∗1H ̸= θ∗1L, θ∗1H ̸= 1, θ∗O = 1
2
. Note that ∂πJ1

∂θ1L
< 0 if D1 + D2 ≥

2(KH +KL). Hence, there are no optimal solutions.

Boundary solution.

The optimal interior solution is a convex combination of the boundary solu-

tions.

(b1) θ∗U = θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗1H = 5D1+D2−2(KH+KL)

4D1
, θ∗O = 1

2
, ϕ∗ =
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D1+D2+2KH−2KL

2D2
, and π∗

J1 =
(δ−1)D2

1+2D1((1−3δ)D2+2(5δ−1)KH+2(3δ+1)KL)−(3δ+1)(D2−2(KH+KL))
2

16D1

− FO.

(b2) θ∗U = θ∗1L = 1 + D2

D1
− KH+KL

D1
, θ∗1H = 9D1+4D2−4KH−4KL

8D1
, θ∗O = 1

2
, ϕ∗ =

4(D2+KH−KL)+D1

8D2
, and π∗

J1 =
(δ−1)D2

1+8D1((1−7δ)D2+(9δ−1)KH+(7δ+1)KL)−16(3δ+1)(−D2+KH+KL)
2

64D1

− FO.

(c) θU = 1− KH−DOH

D1

Equation B.1 becomes πJ1 = D1(θ1L−θ21L)+D1(δ−1)(θ1H−θ21H)+
D2(δ−1)(KH−D1(1−θ1H))
4(KH+KL−D1(1−θ1L))

+

D2

4
+(δ−1)(KH−D1(1−θ1H)−DOH)(1−KH−DOH

D1
), and DOH = D2(KH−D1(1−θ1H))

2(KH+KL−D1(1−θ1L))
.

So, πJ1 = 1
4 (D2 − 4(δ − 1)D1 (θ1H − 1) θ1H) + (δ−1)D2(D1(θ1H−1)+KH)

4(D1(θ1L−1)+KH+KL)

+(δ−1)

(
1−

KH− D2(D1(θ1H−1)+KH)
2(D1(θ1L−1)+KH+KL)

D1

)(
D1 (θ1H − 1)− D2(D1(θ1H−1)+KH)

2(D1(θ1L−1)+KH+KL) +KH

)
−D1 (θ1L − 1) θ1L.

By deriving the FOCs w.r.t θ1H and θ1L and equating them to zero, we obtain

the relationship between θ1H and θ1L.

Boundary solution. The optimal interior solution is a convex combination

of the boundary solutions.

(a1) θ∗U = θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗1H = θ∗U = 3

4
, θ∗O = 1

2
, ϕ∗ = 4KH−D1

2D2
, and

π∗
J1 =

(δ−1)D2
1+D1(−4D2+8(δ+1)KH+16KL)−4(D2−2(KH+KL))

2

16D1
− FO.

(a2) θ∗U = θ∗1L = 1+D2

D1
−KH+KL

D1
, θ∗1H = 5

6
, θ∗U = 11

12
− KH

2D1
, θ∗O = 1

2
, ϕ∗ = 6KH−D1

6D2
,

and π∗
J1 =

(δ−1)D2
1+12D1(−3D2+3δKH+KH+4KL)−12(−8D2(KH+KL)+4D2

2+(δ+3)K2
H+8KHKL+4K2

L)
48D1

−

FO.

(iv) θ1L ≤ 1 + D2

2D1
− KH

D1

If DOH = KH −D1(1−θ1H), then πJ1 = D1(θ1L−θ21L)+D1(δ−1)(θ1H −θ21H)+(1−
KH+KL−D1(1−θ1H)

D2
)(KHδ+KL−D1δ+D1θ1L+D1(δ−1)θ1H). The optimal outcomes

mimick the one in pure opaque selling (i.e., case (i) of Lemma 3.3.3.2).

To summarize,

(i) If D2

4
≤ KH ≤ 3D2

4
, and KH +KL > D1

2
+D2, then θ∗1H = 1− 4KH−D2

8D1
, θ∗O = θ∗1L = 1

2
,

θ∗U = 1− 4KH−D2

4D1
, and π∗

J1 =
8D1((3−δ)D2+8(δ−1)KH)−3(δ−1)(D2−4KH)2+16D2

1

64D1
− FO.
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(ii) If max{8D3
1+37D2

1D2+57D1D2
2+36D3

2

16D2
1+36D1D2+36D2

2
−KL,

7D3
1+18D2

1D2+18D1D2
2

8D2
1+18D1D2+18D2

2
} < KH ≤ D1+8D2

8
provided

that 24D3
1+31D2D

2
1−9D2

2D1−72D3
2 < 0, then θ∗1H = 5δ+2

6δ+2
, θ∗U = θ∗1L = 5δ+3

12δ+4
, ϕ∗ =

(6δ+2)KH−δD1

(6δ+2)D2
, and θ∗O = 1

2
, and π∗

J1 =
(13D1+12KH)δ2+(3D1+12D2−8KH)δ+4D2−4KH

48δ+16
− FO.

(iii) If max{D1+3D2

6
, D1+2D2

2
−KL} < KH < min{D1+6D2

6
, 5D1

6
} and KL > D1

3
, then θ∗1H =

5
6
, θ∗O = θ∗1L = 1

2
, θ∗U = 11

12
−KH

2D1
, ϕ∗ = 6KH−D1

6D2
, and π∗

J1 =
(D2

1+36D1KH+12K2
H)(δ−1)+12D2

1+12D1D2

48D1
−

FO.

(iv) If D1

2D2+D1
KL < KH ≤ min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
− KL}, then θ∗1H = θ∗U =

−D2
1δ+D1KHδ+D2

1+4D1D2+4D2
2−D1KH−2D2KH−2D2KL

4(D1+D2)D2−D2
1(δ−1)

, θ∗O =
(2D1KH−D2

1)(δ−1)+4D2(D1+D2−(KH+KL))

4(D1+D2)D2−D2
1(δ−1)

,

θ∗1L =
−D2

1δ+D1KHδ+D2
1+4D1D2+4D2

2−D1KH−2D2KH−4D2KL−2D2KHδ+D1KLδ−D1KL

4(D1+D2)D2−D2
1(δ−1)

, and π∗
J1 =

δ2D1KH(D1−KH)+δ(D2
1(−KH+KL)+4D2KH(−D2+KH+KL)−D1(4D2KH−K2

H+2KHKL+K2
L))

4(D1+D2)D2−D2
1(δ−1)

+
KL(−D2

1+4D2(−D2+KH+KL)+D1(−4D2+2KH+KL))

4(D1+D2)D2−D2
1(δ−1)

− FO.

(v) If D1

4
< KH < min{8D1KL−D1(D1+D2)

4D1+12D2
, 2D1+D2

2
− KL,

D1+2D2

4
}, then θ∗1H = θ∗U = 3

4
,

θ∗1L = 1+ D2

2D1
−KH+KL

D1
, θ∗O = 1

2
, and π∗

J1 =
(D2

1+8D1KH)δ−D2
1−4D1D2+8D1KH+16D1KL−4(D2−2(KH+KL))

2

16D1
−

FO.

Overlap Characterization

Cases (iii) and (i): ∆πi−iii > 0 if

(
6D1+9D2−

√
3(2D1−3D2)2

)
24

< KH <

(
6D1+9D2+

√
3(2D1−3D2)2

)
24

.

Note that the intersection between these two cases is D1+3D2

6
< KH < 3D2

4
provided that

2D1 < 3D2. So, case (i) dominates case (iii) if D1+3D2

6
< KH <

(
6D1+9D2+

√
3(2D1−3D2)2

)
24

,

otherwise, case (iii) dominates case (i).

Cases (v) and (i): Because ∂∆πi−v

∂δ
< 0 if KH < 2D1+3D2

12
, and ∆πi−v|δ=1 > 0. So,

∆πi−v > 0 if KH > 2D1+3D2

12
or if KH < 2D1+3D2

12
and δ <

−64KL(D1+D2−2KH)−96D1KH−88D2KH+20D2
1+40D2D1+19D2

2+112K2
H+64K2

L

(3(D2−4KH)+2D1)(2D1+D2−4KH)
.

Cases (v) and (iii): Because ∂∆πiii−v

∂δ
> 0 if KH > (

√
15−3)D1

6
, ∂∆πiii−v

∂δ
> 0, and

∆πiii−v|δ=1 > 0. So, case (iii) dominates case (v).

Proof 38 Proof of Theorem 3.4.3.1. Comparison between the sum of Proposition 3.4.1.2

and Lemma 3.3.1 and the sum of Lemma 3.3.2.1, and Lemma 3.3.3.2.
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(i) KH > D1+D2

2
.

If KH >
4D3

1+16D2
1D2+21D1D2

2+9D3
2

8D2
1+18D1D2+18D2

2
, then πJ + πP − (πO + πU) = −D1(δ−1)(7δ−3)

64(1+3δ)
< 0.

(ii) D1+D2

2
−KL < KH < D1+D2

2
.

(a) If max{4D1+3D2

8
, 7D1+8D2

16
} < KH < D1+D2

2
, then

πJ + πP − (πO + πU )

=
(δ − 1)

(
D2

1

((
355δ2 + 210δ + 59

)
D2 − 64

(
3δ2 + 10δ + 3

)
KH

)
+ 8(3δ + 1)2D2

2 (D2 − 2KH)
)

64(3δ + 1) (D1 +D2) (4(δ − 1)D1 + (3δ + 1)D2)

+
(δ − 1)

(
4
(
37δ2 + 18δ + 9

)
D3

1 + (3δ + 1)D1

(
31(3δ + 1)D2

2 − 16(7δ + 13)D2KH − 64(δ − 5)K2
H

))
64(3δ + 1) (D1 +D2) (4(δ − 1)D1 + (3δ + 1)D2)

.

Because ∂(πJ+πP−(πO+πU ))
∂KH

∣∣∣
KH=

D1+D2
2

< 0, ∂(πJ+πP−(πO+πU ))
∂KH

∣∣∣
KH=

4D1+3D2
8

< 0,

and ∂(πJ+πP−(πO+πU ))
∂KH

∣∣∣
KH=

7D1+8D2
16

< 0 if D1 < 2D2, then the profit gap de-

creases with KH , π
J + πP − (πO + πU)

∣∣
KH=

4D1+3D2
8

> 0 if D1 < 2D2,

πJ + πP − (πO + πU)
∣∣
KH=

7D1+8D2
16

> 0, and πJ + πP − (πO + πU)
∣∣
KH=

D1+D2
2

<

0. Hence, πJ + πP − (πO + πU) > 0 if KH > KH1, where KH1 solves the

equation πJ + πP − (πO + πU) = 0.

(b) If
2D3

1+6D2
1D2+6D1D2

2

4D2
1+9D1D2+9D2

2
< KH < 4D1+3D2

8
provided that

2D3
1+6D2

1D2+6D1D2
2

4D2
1+9D1D2+9D2

2
> 7D1+8D2

16
,

or if
2D3

1+6D2
1D2+6D1D2

2

4D2
1+9D1D2+9D2

2
< KH < 7D1+8D2

16
provided that

2D3
1+6D2

1D2+6D1D2
2

4D2
1+9D1D2+9D2

2
<

7D1+8D2

16
, then

πJ + πP − (πO + πU ) =
1

64
(δ − 1)

(
D1

(
37δ + 7

3δ + 1
− 64K2

H

(D1 +D2) (4D1 + 3D2)

)
+ 8 (D2 − 2KH)

)
.

Because ∂2(πJ+πP−(πO+πU ))

∂K2
H

< 0, ∂(πJ+πP−(πO+πU ))
∂KH

∣∣∣
KH=

2D3
1+6D2D

2
1+6D2

2D1

4D2
1+9D2D1+9D2

2

< 0, and

∂(π+πP−(πO+πU ))
∂KH

∣∣∣
KH=

4D1+3D2
8

< 0. Therefore, the profit gap decreases with KH ,

and the minimum value of the profit gap satisfies πJ + πP − (πO + πU)
∣∣
KH=

4D1+3D2
8

>

0 if −D2
1+2D1D2+2D2

2 > 0, under which we have πJ+πP−(πO+πU) > 0. The

maximum value is obtained at KH =
2D3

1+6D2
1D2+6D1D2

2

4D2
1+9D1D2+9D2

2
. If the maximum value

is positive while the minimum value is negative, then πJ + πP − (πO + πU) > 0

if KH > KH2, which solves the equation πJ + πP − (πO + πU) = 0.
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(c) If 7D1+8D2

16
< KH < 4D1+3D2

8
provided that

2D3
1+6D2

1D2+6D1D2
2

4D2
1+9D1D2+9D2

2
< 7D1+8D2

16
, then

πJ + πP − (πO + πU ) =
1

4
(δ − 1)D1

(
δ

3δ + 1
− 4K2

H

(D1 +D2) (4D1 + 3D2)

)
.

Because ∂(πJ+πP−(πO+πU ))
∂KH

< 0, πJ + πP − (πO + πU)
∣∣
KH=

4D1+3D2
8

> 0 if 15D2
1−

16D2
2 > 0, and πJ + πP − (πO + πU)

∣∣
KH=

7D1+8D2
16

> 0. Hence, if 15D2
1 > 16D2

2,

then πJ + πP − (πO + πU) > 0. Otherwise, πJ + πP − (πO + πU) > 0 if

KH >
√
δ
√
D1+D2

√
4D1+3D2

2
√
3δ+1

.

(d) If D1

2
< KH < min{D1+3D2

6
,
2D3

1+6D2
1D2+6D1D2

2

4D2
1+9D1D2+9D2

2
} provided that 2D1 < 3D2, then

πJ + πP − (πO + πU )

= −
D2

(
(3δ + 23)D2

2 − 4D2 ((3δ + 17)KH + 20KL) + 56 (KH +KL)
2
)

8 (D1 +D2) (4D1 + 3D2)

−
D1

(
(11δ + 31)D2

2 − 4D2 ((7δ + 15)KH + 22KL) + 8
(
(δ + 3)K2

H + 8KHKL + 4K2
L

))
8 (D1 +D2) (4D1 + 3D2)

− 8(2δ + 1)D4
1 +D3

1 (10(4δ + 5)D2 − 48 ((δ + 1)KH + 2KL)) + 18D2
2 (D2 − 2 (KH +KL))

2

24D1 (D1 +D2) (4D1 + 3D2)
.

Because ∂(πJ+πP−(πO+πU ))
∂KL

< 0, and πJ + πP − (πO + πU)
∣∣
KL=

D1+3D2
4

< 0,

hence, πJ + πP − (πO + πU) < 0.

(e)

πJ + πP − (πO + πU ) =
1

48
(δ − 1)D1

(
1− 48K2

H

(D1 +D2) (4D1 + 3D2)

)
.

Note that πJ + πP − (πO + πU) > 0 if KH >
√
D1+D2

√
4D1+3D2

4
√
3

.

(f)

πJ + πP − (πO + πU )

=
3D2

2

(
−4D2 (KH +KL) +D2

2 + (7− 3δ)K2
H + 8KHKL + 4K2

L

)
4D1 (D1 +D2) (4D1 + 3D2)

+
D2

(
D2 ((6δ − 46)KH − 40KL) + 10D2

2 + 7
(
(7− 3δ)K2

H + 8KHKL + 4K2
L

))
4 (D1 +D2) (4D1 + 3D2)

+
D3

1 ((51− 7δ)D2 + 32 ((δ − 3)KH − 2KL))− 4(δ − 5)D4
1

16D1 (D1 +D2) (4D1 + 3D2)

+
D1

(
(59− 3δ)D2

2 + 8D2 ((7δ − 29)KH − 22KL)− 64
(
(δ − 2)K2

H − 2KHKL −K2
L

))
16 (D1 +D2) (4D1 + 3D2)

.

Because ∂(πJ+πP−(πO+πU ))
∂KH

decreases with δ if KH >
4D3

1+7D2D2
1+3D2

2D1

16D2
1+21D2D1+9D2

2
, and

∂(πJ+πP−(πO+πU ))
∂KH

∣∣∣
δ=1

< 0. Therefore, the profit gap decreases with KH and
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the maximum value is obtained at KH = 0: πJ + πP − (πO + πU)
∣∣
KH=0

=

(5−δ)D2
1+4D1(D2−4KL)+4(D2−2KL)

2

16D1
.

(iii) KH < D1+D2

2
−KL.

D1

D1+2D2
KL < KH ≤ min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
−KL}. Profit

comparison reduces to comparison between Scenarios U and P, hence, πJ + πP −

(πO + πU) < 0.

Proof 39 Proof of Theorem 3.4.3.2. By comparing Proposition 3.4.1.2 and Lemmas

3.3.1, 3.3.2.1, and 3.3.3.2, we have the following:

(i) D1(1+t)
2

< KH ≤ KL.

(a) If
7D3

1+18D2D2
1+18D2

2D1

2(4D2
1+9D2D1+9D2

2)
> D1+D2

2
, then

π∗
J1 + π∗

P − (π∗
O + π∗

U ) =
(δ − 1)(9δ + 7)D1

64(3δ + 1)
> 0.

(b) If max{7D1+8D2

16
, 4D1+3D2

8
} <

7D3
1+18D2D2

1+18D2
2D1

2(4D2
1+9D2D1+9D2

2)
< D1+D2

2
, then

π∗
J1 + π∗

P − (π∗
O + π∗

U ) =
(δ − 1)D1

(
4(5δ + 3)2D1 + 5(3δ + 1)(5δ + 11)D2

)
64(3δ + 1) (4(δ − 1)D1 + (3δ + 1)D2)

−
(δ − 1)D1

(
256(3δ + 1) (D1 +D2)KH + 64(δ − 5)(3δ + 1)K2

H

)
64(3δ + 1) (D1 +D2) (4(δ − 1)D1 + (3δ + 1)D2)

.

Because
∂(π∗

J1+π∗
P−(π∗

O+π∗
U ))

∂KH
< 0, and π∗

J1 + π∗
P − (π∗

O + π∗
U)|KH=

D1+D2
2

> 0.

Hence, π∗
J1 + π∗

P − (π∗
O + π∗

U) > 0.

(ii) D1(1+t)
2

−KL < KH ≤ min{KL,
D1(1+t)

2
}

(a)

π∗
J1 + π∗

P − (π∗
O + π∗

U ) =
1

192
(δ − 1)

(
− (117δ + 23)D1

3δ + 1
− 48K2

H

D1
+ 96KH

)
,

π∗
J1 + π∗

P − (π∗
O + π∗

U) > 0 if −
√
27δ+25D1

4
√
9δ+3

+D1 < KH <
√
27δ+25D1

4
√
9δ+3

+D1.

(b) D1

2
< KH < min{7D1+8D2

16
, KL}.

Numerical results show that the profit gap can be negative or positive.

(c) D1

4
< KH < min{2D1+D2

2
−KL,

D1+2D2

4
, 8D1KL−D1(D1+D2)

4D1+12D2
}. Comparison reduces

to comparison between Scenarios P and U, hence, π∗
J1 + π∗

P − (π∗
O + π∗

U) < 0.
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(d) KH ≤ min{KL,
D1(1+t)

2
− KL}. Comparison reduces to comparison between

Scenarios P and U, hence, π∗
J1 + π∗

P − (π∗
O + π∗

U) < 0.

Proof 40 Proof of Theorem 3.5.1 Capacity satisfies conditions KH ≥ 0, KL ≥ 0, and

KH ≤ KL.

Proof of Pricing.

(i) If KH > D1+D2

2
, then π∗

P = D1+D2

4
δ is independent of the capacity level.

(ii) If D1+D2

2
−KL < KH ≤ D1+D2

2
, then ∂πP

∂KH
> 0, hence, K∗

H = D1+D2

2
. Correspondingly,

π∗
P |K∗

H=
D1+D2

2
= D1+D2

4
δ.

(iii) If KH ≤ D1+D2

2
−KL, then the Hessian matrix of πP is negative definite, by solving

the FOCs w.r.t KH and KL, we have K
∗
H = D1+D2

2
and K∗

L = 0. Note that K∗
H ≤ K∗

L.

Hence, π∗
P |K∗

H=
D1+D2

4
,K∗

L=
D1+D2

4
= D1+D2

16
+ 3(D1+D2)

16
δ.

Proof of Pure Upgrading.

(i) If KH >
4D3

1+16D2
1D2+21D1D2

2+9D3
2

8D2
1+18D1D2+18D2

2
, KL >

D3
1+3D2

1D2+3D1D2
2

4D2
1+9D1D2+9D2

2
, then π∗

U = δ(4δD1+(3δ+1)D2)
12δ+4

.

(ii) If 4D1+3D2

8
< KH ≤ D1+D2

2
, then ∂πU

∂KH
> 0 over interval [4D1+3D2

8
, D1+D2

2
]. Hence,

π∗
U |K∗

H=
D1+D2

2
=

(δ−1)(5δ−1)D2
1+4δ(2δ−1)D2D1+δ(3δ+1)D2

2

16(δ−1)D1+4(3δ+1)D2
.

(iii) If D1+D2

2
−KL < KH < 4D1+3D2

8
, then ∂πU

∂KH
> 0. Hence, K∗

H = 4D1+3D2

8
, KL > D2

8
,

and π∗
U |K∗

H=
4D1+3D2

8
= 1

64
(4(5δ − 1)D1 + (15δ + 1)D2).

(iv) If KH < min{D1+D2

2
− KL,

4D1D2+3D2
2

2D2
1+D1D2

KL}, the Hessian matrix of πU is negative

definite. Hence, K∗
H = 1

6
(4D1 + 3D2), and K∗

L = −D1

6
, which are not reasonable.

Hence, K∗
H = max{D1+D2

4
,
3D2

2+4D1D2

4D1+6D2
}, correspondingly, K∗

L = max{D1+D2

4
,
2D2

1+D1D2

4D1+6D2
},

π∗
U |

K∗
H=

3D2
2+4D1D2

4D1+6D2
,K∗

L=
2D2

1+D1D2
4D1+6D2

=
16δD2D2

1+3(8δ−1)D2
2D1+9δD3

2+4D3
1

4(2D1+3D2)2
, and π∗

U |K∗
H=

D1+D2
4

,K∗
L=

D1+D2
4

=

(D1+D2)((13δ+3)D1+3(3δ+1)D2)
64D1+48D2

. Note that condition
3D2

2+4D1D2

4D1+6D2
> D1+D2

4
holds if 2D2

1 <

3D1D2 + 3D2
2, and condition

3D2
2+4D1D2

4D1+6D2
<

2D2
1+D1D2

4D1+6D2
holds if 2D2

1 ≥ 3D1D2 + 3D2
2.

While these two inequalities contradict with each other. So, π∗
U |K∗

H=
D1+D2

4
,K∗

L=
D1+D2

4
=

(D1+D2)((13δ+3)D1+3(3δ+1)D2)
64D1+48D2

.
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Proof of Pure Opaque Selling.

(i) [(i)] If D1

D1+2D2
KL < KH ≤ min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
− KL}, then the Hessian

matrix is indefinite which indicates that there are no optimal solutions.

(ii) If D1

4
< KH < min{D1+2D2

2
− KL,

D1+2D2

4
}, then the Hessian matrix indicates that

the optimal solutions are obtained at the boundary points: K∗
L = D1+2D2

4
. ∂πO

∂KH
can

be positive or negative for
∂(

∂πO
∂KH

)

∂δ
> 0, ∂πO

∂KH

∣∣∣
δ=1

< 0, and ∂πO

∂KH

∣∣∣
δ=1+

3D1D2+3D2
2

D2
1

> 0

if −2D2
1 + 3D1D2 + 3D2

2 > 0. So, ∂πO

∂KH
> 0 if δ > −D1+2D2−4(KH+KL)

D1
. Then

K∗
H = D1+2D2

4
. If δ < −D1+2D2−4(KH+KL)

D1
, then K∗

H = D1

4
. If −2D2

1 + 3D1D2 +

3D2
2 < 0, then ∂πO

∂KH

∣∣∣
δ=1+

3D1D2+3D2
2

D2
1

> 0 if KH < 1
4

(
3D2

2

D1
+ 5D2 + 2D1 − 4KL

)
or

∂πO

∂KH

∣∣∣
δ=1+

3D1D2+3D2
2

D2
1

< 0 otherwise. Hence, πO|K∗
H=

D1+2D2
4

,K∗
L=

D1+2D2
4

= 1
16

(
4δD2 + (3δ + 1)D1 − 4D2

2

D1

)
− FO.

(iii) If max{D1+2D2

2
− KL,

3D1+4D2

8
} < KH ≤ 3D1+8D2

8
, then ∂πO

∂KH
> 0. Hence, K∗

H =

3D1+8D2

8
, KL ≥ D1

8
, and π∗

O|K∗
H=

3D1+8D2
8

= ((15δ+1)D1+16δD2)
64

− FO.

(iv) The optimal profit equals π∗
O = (2D1+D2)δ+D2

8
−FO if max{D1+2D2

2
−KL,

D1

2
} < KH ≤

D1+D2

2
.

Comparison between Scenarios U and P and Scenarios O and P

∆πU−P =



(δ − 1)δD1

12δ + 4
> 0,

(δ − 1)D1 ((δ − 1)D1 + δD2)

16(δ − 1)D1 + 4(3δ + 1)D2

> 0,

1

64
(δ − 1) (4D1 −D2) > 0,

(δ − 1)D1 (D1 +D2)

64D1 + 48D2

> 0.

∆πO−P =



− (δ − 1)D2
1 + 4D2

2

16D1

− FO < 0,

− 1

64
(δ − 1)D1 − FO < 0,

− 1

8
(δ − 1)D2 − FO < 0.

Proof 41 Proof of Theorem 3.5.2 Proof of Joint Adoption with Upgrading Comes

First.
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(i) If D1

3
< KH < min{D1+3D2

6
, 2D1+D2

2
− KL,

2D1

D1+3D2
KL} provided that D1 < 3D2,

then the FOCs can be positive (if δ > 4(KH+KL)−(D1+2D2)
D1

) or negative (if δ <

4(KH+KL)−(D1+2D2)
D1

). Hence, πJ |K∗
H=

D1
3

,K∗
L=

D1+3D2
6

= 1
4
(δD1 +D2) − FO, which is

omitted for δ < 1 does not hold. πJ |K∗
H=

D1
3

,K∗
L=

4D1+3D2
6

= 1
4
((δ − 1)D1 +D2) − FO

if δ < 3. πJ |K∗
H=

D1+3D2
6

,K∗
L=

(D1+3D2)
2

12D1

=
(8δ+1)D4

1+12(δ+1)D2D3
1+6D2

2D
2
1−36D3

2D1−27D4
2

48D3
1

− FO

if δ >
2D1D2+3D2

2

D2
1

.

(ii) If D1 − 2KL < KH < D1

2
, then ∂πJ

∂KH
= (δ − 1)(1 − 3KH

2D1
) > 0, hence, K∗

H = D1

2
,

KL > D1

4
, and π∗|

K∗
H=

D1
2
= (5δ−1)D1

16
− FO.

(iii) The same as pure opaque selling. The Hessian matrix is indefinite and there are no

optimal solutions.

(iv) If max{D1+2D2

2
−KL,

D1+D2

2
} < KH ≤ D1+4D2

4
provided that D1 < 2D2, then

∂πJ

∂KH
=

δ−1
4

> 0, hence, K∗
H = D1+4D2

4
, KL > D1

4
, and π∗

J |K∗
H=

D1+4D2
4

= 1
4
δ (D1 +D2)− FO.

(v) The optimal profit equals π∗
J =

8δ2D1+(3δ2+4δ+1)D2

24δ+8
− FO.

(vi) The same as pure opaque selling: πJ |K∗
H=

D1+2D2
4

,K∗
L=

D1+2D2
4

= 1
16

(
4δD2 + (3δ + 1)D1 − 4D2

2

D1

)
−

FO.

Comparison between Scenarios O, U, P and J

(i) If KH > D1+D2

2
, then the intersection is given by KH >

4D3
1+16D2

1D2+21D1D2
2+9D3

2

8D2
1+18D1D2+18D2

2
, the

profit gap equals ∆π = π∗
O + π∗

U − (π∗
J + π∗

P ) =
(δ−1)(13δ−1)D1

64(3δ+1)
> 0.

(ii) If D1+D2

2
−KL < KH < D1+D2

2
,

(a) If max{4D1+3D2

8
, 7D1+8D2

16
} < KH < D1+D2

2
, then the profit gap equals ∆π =

π∗
J + π∗

P − (π∗
O + π∗

U) =
(δ−1)(−4(δ−1)(7δ−3)D2

1+(3δ+1)(29δ−33)D2D1+8(3δ+1)2D2
2)

64(3δ+1)(4(δ−1)D1+(3δ+1)D2)
> 0 if

D1 <
−87δ2D2−(3δ+1)

√
1737δ2−3194δ+1473D2+70δD2+33D2

2(−28δ2+40δ−12)
.

(b) ∆π = π∗
O + π∗

U − (π∗
J + π∗

P ) = − (δ−1)((7δ−3)D1−7(3δ+1)D2)
64(3δ+1)

> 0 if D2 >
(7δ−3)D1

3δ+1
.

(c) ∆π = π∗
O + π∗

U − (π∗
J + π∗

P ) = − (δ−1)(4(δ−1)D1+(3δ+1)D2)
64(3δ+1)

< 0.
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(d) ∆π = π∗
O + π∗

U − (π∗
J + π∗

P ) =
1
64
(4(δ + 3)D1 + 7(δ − 1)D2) > 0 or ∆π = π∗

O +

π∗
U − (π∗

J +π∗
P ) =

1
192

(
−3(9δ + 7)D2 + 4(7δ − 4)D1 +

108D4
2

D3
1

+
144D3

2

D2
1

− 24D2
2

D1

)
>

0.

(e) 1
2
(D1 +D2) −KL < KH < D1

2
, ∆π = π∗

O + π∗
U − (π∗

J + π∗
P ) =

15
64
(δ − 1)D2 −

D2
2

4D1
+ D1

4
> 0, or ∆π = π∗

O + π∗
U − (π∗

J + π∗
P )

= 1
192

(
−3(δ + 15)D2 + 4(4δ − 1)D1 +

108D4
2

D3
1

+
144D3

2

D2
1

− 72D2
2

D1

)
> 0.

(f) ∆π = π∗
O + π∗

U − (π∗
J + π∗

P ) =
1
64

(
(15δ + 1)D2 − 4(δ − 1)D1 − 16D2

2

D1

)
> 0.

(iii) If KH < D1+D2

2
−KL, the intersection is given by

D1

D1+2D2
KL < KH ≤ min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
− KL}, profit gap comparison

within four scenarios reduces to profit comparison between Scenario U and P, and

∆π = π∗
O + π∗

U − (π∗
J + π∗

P ) > 0.

Proof of Joint Adoption with Opaque Selling Comes First.

(i) If D2

4
≤ KH ≤ 3D2

4
, and KH +KL > D1

2
+D2, then

∂πJ1

∂KH
> 0. Hence, π∗

J1|K∗
H=

3D2
4

=

−3D2((1−3δ)D1+(δ−1)D2)
16D1

.

(ii) If max{8D3
1+37D2

1D2+57D1D2
2+36D3

2

16D2
1+36D1D2+36D2

2
−KL,

7D3
1+18D2

1D2+18D1D2
2

8D2
1+18D1D2+18D2

2
} < KH ≤ D1+8D2

8
provided

that 24D3
1 +31D2D

2
1 − 9D2

2D1 − 72D3
2 < 0, then ∂πJ1

∂KH
> 0. Hence, π∗

J1|K∗
H=

D1+8D2
8

=

1
32

(
(δ(29δ+4)−1)D1

3δ+1
+ 8δD2

)
.

(iii) If max{D1+3D2

6
, D1+2D2

2
− KL} < KH < min{D1+6D2

6
, 5D1

6
} and KL > D1

3
, then

∂πJ1

∂KH
> 0. Hence, π∗

J1|K∗
H=

D1+6D2
6

= 1
36

(
−9(δ−1)D2

2

D1
+ 3(8δ − 5)D2 + (5δ + 4)D1

)
or

π∗
J1|K∗

H=
5D1
6

= 1
36
((17δ − 8)D1 + 9D2).

(iv) If D1

2D2+D1
KL < KH ≤ min{ D2

1+2D1D2

D2
1+3D1D2+3D2

2
KL,

D1+D2

2
−KL}, then the Hessian matrix

is not negative definite. Hence, there are no optimal solutions.

(v) If D1

4
< KH < min{8D1KL−D1(D1+D2)

4D1+12D2
, 2D1+D2

2
− KL,

D1+2D2

4
}, then the result is the

same as pure opaque selling: πJ |K∗
H=

D1+2D2
4

,K∗
L=

D1+2D2
4

= 1
16

(
4δD2 + (3δ + 1)D1 − 4D2

2

D1

)
−

FO.
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Comparison between Scenarios O, U, P and J1

(i) IfKH > D1+D2

2
, then π∗

J1+π∗
P−(π∗

O+π∗
U) = −3(δ−1)2D1

64(3δ+1)
< 0 when

7D3
1+18D2D2

1+18D2
2D1

2(4D2
1+9D2D1+9D2

2)
>

D1+D2

2
or π∗

J1 + π∗
P − (π∗

O + π∗
U) =

(δ−1)2D1(4(δ−1)D1−3(3δ+1)D2)
64(3δ+1)(4(δ−1)D1+(3δ+1)D2)

< 0 otherwise.

(ii) If D1+D2

2
−KL < KH ≤ D1+D2

2
, then results show that π∗

J1 + π∗
P − (π∗

O + π∗
U) can be

positive or negative.

(iii) If KH ≤ D1+D2

2
− KL, then the profit comparison reduces to comparison between

Scenarios P and U, and π∗
J1 + π∗

P − (π∗
O + π∗

U) < 0.

Proof 42 Proof of Proposition 3.5.2.

(i) The salvage stage.

Case S∗ = KH −DH indicates that opaque selling is unavailable. In what follows,

we focus on the case that opaque selling is available.

(a) If D2 ≥ 2(KH +KL−DH −DL−DU), then π2C(S) = (KH +KL−DH −DL−

DU)(1−KH+KL−DH−DL−DU

D2
)(ϕδ+1−ϕ)+pS, where ϕ = KH−DH−S

KH+KL−DH−DL−DU
and

S ∈ [0,min{DU , KH−DH}]. So, S∗ = 0 if p−(1−KH+KL−DH−DL−DU

D2
)(δ−1) <

0, S∗ = DU if DU < KH −DH and p− (1− KH+KL−DH−DL−DU

D2
)(δ − 1) > 0.

(b) If KH + KL − DH − DL − DU ≤ D2 < 2(KH + KL − DH − DL − DU),

then π2C(S) = D2

4
(ϕδ + 1 − ϕ) + pS, where ϕ = KH−DH−S

KH+KL−DH−DL−DU
and S ∈

[0,min{DU , KH − DH}]. So, S∗ = 0 if p − D2(δ−1)
4(KH+KL−DH−DL−DU )

< 0, or

S∗ = DU if p− D2(δ−1)
4(KH+KL−DH−DL−DU )

> 0 and DU < KH −DH .

(c) If D2 < KH +KL−DH −DL−DU and D2 < 2(KH −DH −S), then π2C(S) =

D2

4
(ϕδ + 1 − ϕ) + pS, where ϕ = KH−DH−S

D2
. So, S∗ = 0 if p − δ−1

4
< 0, or

S∗ = DU if p− δ−1
4

> 0 and DU < KH −DH .

(d) If D2 < KH +KL−DH −DL−DU and D2 ≥ 2(KH −DH −S), then π2C(S) =

D2

4
(ϕδ + 1 − ϕ) + pS, where ϕ = 1

2
. π2(S) increases with S, so, S∗ = DU if

DU < KH −DH .
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(ii) The regular stage.

Scenario 1. p1L < p
δ−1

and p1H
δ

≥ p1L+ξp
ξδ+1−ξ

In this scenario, D1H = D1(1 − θ1H), DU = D1(θ1H − θU), D1L = D1(θU − θ1L),

where θ1H = p1H−p1L−ξp
(1−ξ)(δ−1)

, θU = p
δ−1

and θ1L = p1L.

Boundary Solution S = KH −D1H.

If θU ≤ 1 − KH

D1
, then ξ = KH−D1(1−θ1H)

D1(θ1H−θU )
, π∗

2C = θU(δ − 1)(KH − D1(1 − θ1H)).

The seller’s total profit equals πC = D1(1 − θ1H)(θ1L + (δ − 1)ξθU + (1 − ξ)(δ −

1)θ1H) + D1(θ1H − θ1L)θ1L + (δ − 1)θU(KH − D1(1 − θ1H)), by deriving the FOCs

with respect to θ1H , θU and θ1L, we have θ∗1H = 1− KH

D1
, θ∗U = 1− 2KH

D1
, θ∗1L = 1

2
, and

π∗
C = D1

4
+ (δ − 1)(KH − K2

H

D1
)− FO provided that KH ≤ D1

4
and D1

2
< KH +KL.

(a) D2 ≥ 2(KH +KL −D1(1− θ1L))

(a1) If θU < 1 − KH+KL−D1(1−θ1L)
D2

, then S∗ = 0, ξ = 0, and πC = (θ1H(δ −

1) + θ1L)D1(1− θ1H) + θ1LD1(θ1H − θ1L) + (KH +KL −D1(1− θ1L))(1−
KH+KL−D1(1−θ1L)

D2
)(ϕδ+1−ϕ), by solving the FOCs, we find that the optimal

solutions are the same as Lemma 3.3.3.1 (case (i)). Note that condition

p
δ−1

< 1 − KH+KL−D1(1−θ1L)
D2

reduces to θU = θ1H < 3θ1H − 2, which does

not hold. So, there are no optimal solutions.

(a2) If θU > 1 − KH+KL−D1(1−θ1L)
D2

and θU > 1 − KH

D1
, then S = D1(θ1H − θU),

ξ = 1, θ1H = 1, ϕ = KH−D1(1−θU )
KH+KL−D1(1−θ1L)

, and πC = θ1LD1(1 − θ1L) +

(KH +KL −D1(1− θ1L))(1− KH+KL−D1(1−θ1L)
D2

)( KH−D1(1−θU )
KH+KL−D1(1−θ1L)

(δ− 1) +

1) + θU(δ − 1)D1(1 − θU). By solving the FOCs, we find that θU cor-

responds to θ∗1H under case S∗ = 0 and θ1L resembles θ∗1L under case

S∗ = 0. The effective domain is given as D1

D1+2D2
KL < KH < min{D1+D2

2
−

KL,
4D1D2KL

D2
1+6D2

2+3D1D2
, D2

D1
KL}.

(b) KH +KL −D1(1− θ1L) ≤ D2 < 2(KH +KL −D1(1− θ1L))

Note that cases S∗ = 0 and S∗ = D1(θ1H − θU) reduce to the pure opaque

selling. Recall that there are no optimal solutions under this case if D1+D2 ≥

2(KH +KL).
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(c) D2 < KH +KL −D1(1− θ1L) and D2 < 2(KH −D1(1− θ1H)− S)

Note that cases S∗ = 0 amd S∗ = D1(θ1H − θU) reduce to pure opaque selling.

Specifically, if p < δ−1
4
, then S∗ = 0, ξ = 0. Hence, θ∗1H = 5

8
, θ∗1L = 1

2
. Note

that θU < 1
4
, which is not true.

If p > δ−1
4
, then S∗ = D1(θ1H − θU), ξ = 1, and θ1H = 1. Hence, θ∗U = 5

8
,

θ∗1L = 1
2
, S∗ = 3D1

8
, and π∗

C = (9D1+16KH)δ−16KH+7D1+16D2

64
− FO provided that

2(KH +KL) > D1 + 2D2, KL ≥ D1

2
and 8KH ≥ 3D1 + 4D2.

(d) D2 < KH +KL −D1(1− θ1L) and D2 ≥ 2(KH −D1(1− θ1H)− S)

Note that case S∗ = D1(θ1H−θ1L) reduces to pure opaque selling. Then, ξ = 1,

θ1H = 1. Hence, θ∗U = 1
2
= θ∗1L = θ∗O = 1

2
, S∗ = D1

2
, and π∗

C = 2D1δ+D2(δ+1)
8

−FO

provided that 2(KH +KL) > D1 + 2D2 and D1

2
≤ KH ≤ D1+D2

2
.

Scenario 2. p1L ≥ p
δ−1

and p1H
δ

≥ p1L+ξp
ξδ+1−ξ

In this scenario, D1H = D1(1 − θ1H), DU = D1(θ1H − θU) and D1L = 0, where

θ1H = p1H−p1L−ξp
(1−ξ)(δ−1)

, and θU = p1L+ξp
ξδ+1−ξ

.

Boundary Solution S = KH −D1(1− θ1H).

If S = KH −D1(1−θ1H), then ϕ = 0, ξ = KH−D1(1−θ1H)
D1(θ1H−θU )

, p1H = (ξδ+1−ξ)θU +(1−

ξ)(δ− 1)θ1H , p1L = (ξδ+1− ξ)θU − ξp, and πC = D1(1− θ1H)((ξδ+1− ξ)θU +(1−

ξ)(δ − 1)θ1H) + D1(θ1H − θU)(ξδ + 1 − ξ)θU . By deriving the FOCs w.r.t θ1H and

θU , we have θ∗U = 1− KH

D1
and θ∗1H = D1δ−KH−δKH

D1(δ−1)
.Note that θ1H ≥ θU and θ1H ≤ 1

reduce to KH ≤ D1

2
and KH > D1

2
, respectively. So, there are no optimal solutions.

(i) D2 ≥ 2(KH +KL −D1(1− θU))

If S = D1(θ1H − θU), then ϕ = KH−D1(1−θU )
KH+KL−D1(1−θU )

, ξ = 1, θ1H = 1, θU = p1L+p
δ

,

and πC = (KH+KL−D1(1−θU))(1−KH+KL−D1(1−θU )
D2

)(1+ KH−D1(1−θU )
KH+KL−D1(1−θU )

(δ−

1))+θUδD1(1−θU). By solving the FOC, we have θ
∗
U = 2D1δ+2D2δ−2KHδ−KLδ−KL

2(D1+D2)δ
,

θ∗O = δ(2D2(D1+D2−(KH+KL))−D1KL)+D1KL

2D2(D1+D2)δ
, and π∗

C =

−4D2K2
Hδ2+4D2δ(D1δ+D2δ−KL−KLδ)KH+4D2δ(D2−D1)KL+(D1+D1δ2−4D2δ+2D1δ)K2

L

4D2δ(D1+D2)
. Note

that θU > 1 − KH

D1
reduces to KH > D1

D2
KL, which does not hold, so, there are

no optimal solutions.
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(ii) KH +KL −D1(1− θU) ≤ D2 < 2(KH +KL −D1(1− θU))

If S = D1(θ1H−θU), then ϕ = KH−D1(1−θU )
D2

, and πC = D2

4
(1+ KH−D1(1−θU )

KH+KL−D1(1−θU )
(δ−

1))+θUδD1(1−θU), which decreases with θU if KH <
D3

1+4D2
1D2+6D1D2

2+3D3
2−(5D2

1+9D1D2+6D2
2)KL

2D2
1+6D1D2+6D3

2
.

Boundary solution.

The interior solution is a convex combination of the boundary points.

(a) θ∗U = 1 + D2

2D1
− KH+KL

D1
, θ∗1H = 1, S∗ = KH +KL − D2

2
, ϕ∗ = D2−2KL

2D2
.

(b) θ∗U = 1 + D2

D1
− KH+KL

D1
, θ∗1H = 1, S∗ = KH +KL −D2, ϕ

∗ = D2−KL

D2
.

(iii) D2 < KH +KL −D1(1− θU) and D2 < 2(KH −D1(1− θ1H)− S)

If S∗ = D1(θ1H − θU), then ϕ = KH−D1(1−θU )
D2

, ξ = 1, θ1H = 1, θU = p1L+p
δ

,

and πC = θUδD1(1− θU) +
D2

4
(1 + (δ − 1)KH−D1(1−θU )

D2
). By deriving the FOC,

we have θ∗U = 5δ−1
8δ

, ϕ∗ = 8δKH−(3δ+1)D1

8δD2
, and π∗

C = 16(δ2−δ)KH+16D2δ+D1(3δ+1)2

64δ

provided that D1+D2

2
< KH ≤ 4D3

1+17D2
1D2+33D1D2

2+24D3
2

8D2
1+24D1D2+24D2

2
, KL > D1

2
, and KH >

D1+2D2

2
−KL.

(iv) D2 < KH +KL −D1(1− θU) and D2 ≥ 2(KH −D1(1− θ1H)− S)

If S∗ = D1(θ1H −θU), by deriving the FOC of π∗
C = D2

8
(δ+1)+ θUδD1(1−θU),

we have θ∗U = 1
2
provided that KH ≤ D1+D2

2
, KH+KL > D1

2
+D2, and KL ≥ D1

2
.

Scenario 3. p1L ≥ p
δ−1

and p1H
δ

< p1L+ξp
ξδ+1−ξ

In this scenario, D1H = D1(1− θ1H), DU = D1L = 0, and S = 0, where θ1H = p1H
δ
.

The optimal results mimick the one of S∗ = D1(θ1H − θU) of Scenario 2.

To summarize,

(i) If KH ≤ D1+D2

2
, KH + KL > D1

2
+ D2, and KL ≥ D1

2
, then θ∗1H = 1, θ∗1L = θ∗U =

θ∗O = 1
2
, and π∗

C = 2D1δ+D2(δ+1)
8

− FO.

(ii) If D1+D2

2
< KH ≤ 4D3

1+17D2
1D2+33D1D2

2+24D3
2

8D2
1+24D1D2+24D2

2
, KL > D1

2
, and KH > D1+2D2

2
−KL, then

θ∗1H = 1, θ∗1L = θ∗U = 5δ−1
8δ

, θ∗O = 1
2
, and π∗

C = 16(δ2−δ)KH+16D2δ+D1(3δ+1)2

64δ
− FO.

(iii) If KH ≤ D1

4
along with D1

2
< KH +KL, then θ∗1H = 1− KH

D1
, θ∗U = 1− 2KH

D1
, θ∗1L = 1

2
,

θ∗O = 1, and π∗
C = D1

4
+ (δ − 1)(KH − K2

H

D1
)− FO.
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(iv) If 2(KH +KL) > D1 + 2D2, KL ≥ D1

2
and 3D1 + 4D2 ≤ 8KH ≤ 3D1 + 8D2, then

θ∗1H = 1, θ∗U = 5
8
, θ∗1L = θ∗O = 1

2
, and π∗

C = (9D1+16KH)δ−16KH+7D1+16D2

64
− FO.

(v) If D1

D1+2D2
KL < KH < min{D1+D2

2
− KL,

4D1D2KL

D2
1+6D2

2+3D1D2
, D2

D1
KL}, then the optimal

solutions are the same as case (i) of Lemma 3.3.3.2.

Overlap Characterization.

Cases (iv) and (ii): ∆ii−iv < 0. Cases (iv) and (i): ∆iv−i > 0 if KH > 7D1+8D2

16
. Cases

(iii) and (i): Because ∂∆i−iii

∂δ
> 0, and ∂∆i−iii

∂δ

∣∣∣
δ=1

> 0. So, case (i) dominates case

(iii). Cases (v) and (iii): Because ∂∆v−iii

∂δ
> 0, and the minimum value ∂∆v−iii

∂δ

∣∣∣
δ=1

> 0 if

1
2

(
D1 +D2 −

√
D2 (D1 +D2)− 2KL

)
< KH < 1

2

(
D1 +D2 +

√
D2 (D1 +D2)− 2KL

)
.

So, case (v) dominates case (iii).

Proof 43 Proof of Theorem 3.5.2.

(i) If KH > D1+D2

2
, then π∗

C + π∗
P − (π∗

U + π∗
O) = − (δ−1)δD1

12δ+4
< 0.

(ii) D1+D2

2
−KL < KH ≤ min{KL,

D1+D2

2
}. If 7D1+8D2

16
< KH ≤ min{KL,

D1+D2

2
}, then

π∗
C+π∗

P −(π∗
U +π∗

O) =
(δ − 1)D1

(
−16 (D1 +D2)KH + 4D2

1 + 7D2D1 + 3D2
2 − 4(δ − 5)K2

H

)
4 (D1 +D2) (4(δ − 1)D1 + (3δ + 1)D2)

< 0.

If D1+2D2

2
−KL < KH < min{7D1+8D2

16
, KL}, and 7D1+8D2

16
> 4D1+3D2

8
, then

π∗
C+π∗

P −(π∗
U +π∗

O) =
(δ − 1)D1

(
−16 (D1 +D2)KH + 4D2

1 + 7D2D1 + 3D2
2 − 4(δ − 5)K2

H

)
4 (D1 +D2) (4(δ − 1)D1 + (3δ + 1)D2)

< 0.

If D1+D2

2
−KL ≤ KH ≤ D1+2D2

2
−KL, then

π∗
C + π∗

P − (π∗
U + π∗

O) =
1

16

(
D1

(
−δ − 16(δ − 1)K2

H

(D1 +D2) (4D1 + 3D2)
+ 5

)
+ 4 (D2 + 2(δ − 3)KH − 4KL)

)

+
1

16

(
4
(
−4D2 (KH +KL) +D2

2 − 4(δ − 2)K2
H + 8KHKL + 4K2

L

)
D1

)
< 0.

Otherwise, π∗
C + π∗

P − (π∗
U + π∗

O) = − (δ−1)D1K
2
H

(D1+D2)(4D1+3D2)
< 0.

(iii) If KH ≤ D1+D2

2
−KL, then π∗

C + π∗
P − (π∗

U + π∗
O) < 0 for π∗

C ≤ π∗
O and π∗

P < π∗
U .
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B.2 Other Considerations

B.2.1 Platform Intervention in Upgrading

When a third-party platform manages the upgrading mechanism, we make the following

assumptions: (i) There is no information asymmetry or deliberate capacity hoarding.

(ii) The revenue sharing between the seller and the upgrading platform is captured by a

commission rate rU and fixed fee FU , where rU = 1.

The seller’s total profit equals π(p1H , p1L) = p1HD1(1 − θ1H) + p1LD1(θ1H − θ1L) +

π∗
2U(S

∗, p∗) + π∗
2O(p

∗
O), where π2U(S, p) = pmin{D1(θ1H − θU), S}. By computational

analysis, we find that the optimal strategy with an upgrading platform is a special case of

the one without an upgrading platform.

Proposition B.2.1 Under joint adoption with an upgrading platform, the seller’s opti-

mal product offerings over the whole selling season must be (HP , LP ;HU , L∅), or (HP , L∅;HU+O, LO).

In equilibrium,

(i) The optimal prices charged for high- and low-quality products, the upgrading price

and the opaque selling price satisfy p∗1H > p∗U > p∗1L, p
∗
1H+p∗1L < 2p∗U , and p∗1L < p∗O;

(ii) The number of high-quality products sold in the regular stage and those offered as

upgrades satisfy D1(1− θ∗1H) = D1(θ
∗
1H − θ∗U).

Proposition B.2.1 indicates that the fixed cost gives the upgrading platform an incentive

to participate, so the seller always sells through upgrading. And properties regarding the

optimal prices and transaction volumes are consistent with those without platform inter-

vention. As for the role of opaque selling and upgrading with an upgrading platform, we

find that all results are consistent with Theorem 3.4.3.1 except that opaque selling and

upgrading are no longer substitutes when high-quality capacity level is rather low.

Proof 44 Proof of Proposition B.2.1. In upgrading mechanism, give S, the the seller

announces p to maximize π2U = θU(δ − 1)min{S,D1(θ1H − θU)}. If S > D1(θ1H − θU),
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then π2U(θU) = D1(δ − 1)θU(θ1H − θU) is concave with θU and yields maximum at θU =

θ1H
2
. Otherwise, π2U(θU) increases with θU , so, θU = θ1H − S

D1
for θU ≤ θ1H − S

D1
.

Correspondingly, π2U(S) =
D1(δ−1)θ21H

4
if S > D1θ1H

2
or π2U(S) = (δ − 1)(θ1H − S

D1
)S

otherwise. Constraints are θ∗U ≥ θ1L and S ≤ min{KH −D1(1− θ1H), D1(θ1H − θ1L)}.

By deriving the FOC of π2U(θU) w.r.t S, we have S
∗ = D1θ1H

2
and π∗

2U(θU) =
D1(δ−1)θ21H

4

iff D1θ1H
2

< min{KH − D1(1 − θ1H), D1(θ1H − θ1L)}. Otherwise, S∗ = D1(θ1H − θ1L)

and π∗
2U = D1(δ − 1)(θ1Hθ1L − θ21L) if θ1L ≥ 1 − KH

D1
or S∗ = KH − D1(1 − θ1H) and

π∗
2U = (δ − 1)(1− KH

D1
)(KH −D1(1− θ1H)) if θ1L < 1− KH

D1
.

(i) θ1H
2

> max{θ1L, 1− KH

D1
}.

The number of high-quality capacities in the opaque mix equals KH −D1(1− θ1H
2
).

(a) KH +KL −D1(1− θ1L) > D2 & KH −D1(1− θ1H
2
) ≤ D2

2
.

The Hessian matrix of the seller’s profit function πJ2 is negative definite.

Hence, θ∗1H = 2
3
, θ∗1L = θ∗O = 1

2
and θ∗U = 1

3
. While θ∗U < θ∗1L is not true.

(b) KH +KL −D1(1− θ1L) > D2 and KH −D1(1− θ1H
2
) > D2

2
.

The Hessian matrix of the seller’s profit function πJ2 is negative definite.

Hence, θ∗1H = 3
4
, θ∗1L = θ∗O = 1

2
and θ∗U = 3

8
. While θ∗U is not in the effec-

tive domain.

(c) KH +KL −D1(1− θ1L) ≤ D2 < 2(KH +KL −D1(1− θ1L)).

The seller’s profit function πJ2 = D1(δ − 1)(θ1H − θ21H) + D1(θ1L − θ21L) +

D1(δ−1)θ21H
4

+
D2(δ−1)(KH−D1(1−

θ1H
2

))

4(KH+KL−D1(1−θ1L))
+ D2

4
−FO−FU is concave with θ1H , so, θ1H =

2
3
+ D2

12(KH+KL−D1(1−θ1L))
. Because ∂3πJ2

∂θ31L
< 0, ∂2πJ2

∂θ21L

∣∣∣
θ1L=1+

D2
2D1

−KH+KL
D1

,θ1H= 5
6

<

0 if KH < D1(7D1+9D2)
12(D1+D2)

. The seller’s profit function decreases with θ1L over

(1 + D2

2D1
− KH+KL

D1
, 1 + D2

D1
− KH+KL

D1
] if the FOC is negative. Note that when

θ1L ≥ 1
2
(or equivalently, D1+D2 ≥ 2(KH +KL)), Hence, there are no optimal

solutions.

So, the optimal solutions with complicated forms exist if D1+D2

2
−KL < KH <

D1(7D1+9D2)
12(D1+D2)

.
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Boundary solution.

The optimal interior solution is a convex combination of the boundary solu-

tions.

(c1) θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗1H = 5

6
, θ∗U = 5

12
, θ∗O = 1

2
, ϕ∗ = 12KH−7D1

6D2
, and

π∗
J =

11(δ−1)D2
1+12D1(−D2+2(δ+1)KH+4KL)−12(D2−2(KH+KL))

2

48D1
−FU−FO. The ef-

fective domain is given by max{7D1+6D2

12
−KL,

7D1

12
} ≤ KH ≤ min{2D1+D2

2
−

KL,
7D1+6D2

12
}.

(c2) θ∗1L = 1 + D2

D1
− KH+KL

D1
, θ∗1H = 3

4
, θ∗U = 3

8
, θ∗O = 1

2
, ϕ∗ = 8KH−5D1

8D2
, and

π∗
J =

17(δ−1)D2
1+16D1(−3D2+(δ+3)KH+4KL)−64(−D2+KH+KL)

2

64D1
− FU − FO. The

effective domain is given by max{5D1+8D2

8
−KL,

5D1

8
} ≤ KH ≤ min{D1 +

D2 −KL,
5D1+8D2

8
}.

(d) D2 ≥ 2(KH +KL −D1(1− θ1L)).

The Hessian matrix of the seller’s profit function πJ2 is negative definite.

Hence, θ∗1H =
2((−D2

1+D1KH)(δ−1)−2D2(3(D1+D2)−(KH+KL)))

D2
1−D2

1δ+12D1D2+12D2
2

,

θ∗1L =
(−D2

1+3D1D2+D1KH−6D2KH+D1KL)(δ−1)+12D2(D1+D2−(KH+KL))

D2
1−D2

1δ+12D1D2+12D2
2

provided that

1 + D2

2D1
− KH+KL

D1
− θ∗1L =

D2((7D2
1−12D1KH)(δ−1)−12(D1+D2−2(KH+KL)))

2D1(−D2
1+D2

1δ−12D1D2−12D2
2)

≥ 0. Cor-

respondingly, θ∗O = 3θ∗1H − 2 =
2((2D2

1−3D1KH)(δ−1)−6D2(D1+D2−(KH+KL)))

−D2
1+D2

1δ−12D1D2−12D2
2

, θ∗U =

θ∗1H
2

=
(−D2

1+D1KH)(δ−1)−2D2(3(D1+D2)−(KH+KL))

D2
1−D2

1δ+12D1D2+12D2
2

, ϕ∗ = − 2(D1(3D2−5KH+KL)−6D2KH+3D2
1)

3((δ−1)D2
1−2(δ−1)D1KH+4D2(KH+KL))

.

Because condition h1(δ) = (−D2
1+3D1D2+D1KH −6D2KH +D1KL)(δ−1)+

12D2(D1+D2−(KH+KL)) ≥ 0 holds if KH ≤ min{ (D1D2−3D2
1)KL+D1(3D2

1+6D1D2+3D2
2)

3D2
1+5D1D2+6D2

2
, D1+

D2 − KL}, condition h2(δ) = (−2D1KH + D2
1)(δ − 1) + 4D2(KH + KL) ≤ 0

holds if KH ≤ 4D1KL+3D2
1+3D1D2

2D1+6D2
, condition h3(δ) = (−7D2

1 + 12D1KH)(δ −

1) + 12D2(D1 + D2 − 2(KH + KL)) ≥ 0 holds if
8D1KL+3D2

1+3D1D2

4D1+12D2
≤ KH ≤

D1+D2

2
−KL provided that D1 − 6D2 + 12KL < 0, condition h4(δ) = (−D3

1 −

D2
1(3D2 −KH) + 6D1D2KH)(δ − 1) + 8D1D2KH − 4D1D2KL − 12D2

2KL < 0

holds if KH < min{ (4D2
1+12D1D2)KL+3D3

1+12D2
1D2+9D1D2

2

11D2
1+21D1D2+18D2

2
, D1+3D2

2D1
KL}, condition

h5(δ) = (−2D2
1 + 3D1KH)(δ − 1) + 6D2(D1 + D2 − (KH + KL)) > 0 holds

if 2D1

D1+3D2
KL ≤ KH ≤ D1+D2−KL provided that KL < D1+3D2

3
, and condition
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h6(δ) = (−3D1D2+6D2KH−D1KL)(δ−1)+2D2(−3(D1+D2)+5(KH+KL)) >

0 holds if KH > max{6D3
1+15D2

1D2+9D1D2
2+(−7D2

1+3D1D2)KL

10D2
1+18D1D2+18D2

2
, 3D1+3D2

5
−KL}. Note

that 3D1+3D2

5
−KL > D1+D1

2
−KL, so, there are no optimal solutions.

Boundary solution θ1L = 1 + D2

2D1
− KH+KL

D1
.

The seller’s profit function πJ2 increases with θ1L if (−7D2
1 + 12D1KH)(δ −

1) + 12D2(D1 +D2 − 2(KH +KL)) < 0, or equivalently, D1+D2

2
−KL < KH <

8D1KL+3D2
1+3D1D2

4D1+12D2
and KL > −D1+6D2

12
. Hence, θ∗1H = 5

6
, θ∗1L = 1+ D2

2D1
− KH+KL

D1
,

θ∗O = 1
2
, θ∗U = 5

12
, ϕ∗ = 12KH−7D1

6D2
, and

π∗
J2 =

(D2
1+24D1KH)δ−D2

1−12D1D2+24D1KH+48D1KL−12(D2−2(KH+KL))
2

48D1
−FO −FU pro-

vided that max{7D1

12
, 7D1+6D2

12
−KL} < KH < min{D1+3D2

6
, 2D1+D2

2
−KL,

8D1KL+3D2
1+3D1D2

4D1+12D2
}

and 5D1 < 6D2.

(ii) θ1L > max{1− KH

D1
, θ1H

2
}.

Customers who have purchased low-quality capacity all get upgraded, so, there are

KL low-quality and KH − D1(1 − θ1L) high-quality capacities in the opaque mix.

The analysis is an analogy to Proposition 3.4.1.2 except that condition θ1L > θ1H
2

is verified in each case here. Note that θ1L > θ1H
2

does not change the opti-

mal outcomes of cases (ii), (iii) and (iv), while condition in case (i) reduces to

(4D1 + 3D2 − 6KH − 3KL)δ − 3KL +D2 > 0, which holds if KH < min{2D1+2D2

3
−

KL,
4D3

1+16D2
1D2+21D1D2

2+9D3
2−(6D2

1+9D1D2+9D2
2)KL

6D2
1+18D1D2+18D2

2
}. Because condition KH > D1

D2
KL

does not hold when D2 < D1. So, the optimal solutions under this case are equivalent

to case (iii) and (iv) in Proportion 3.4.1.2.

(iii) 1− KH

D1
> max{θ1L, θ1H2 }.

Opaque selling mechanism is not available. By deriving the FOCs of the seller’s

profit function πJ2 = D1(δ− 1)(θ1H − θ21H) +D1(θ1L − θ21L) + (δ− 1)(1− KH

D1
)(KH −

D1(1 − θ1H)) − FO − FU w.r.t θ1H and θ1L, we have θ∗1H = 1 − KH

2D1
and θ∗1L = 1

2

provided that KH < D1

2
and KH

2
+KL > D1

2
.

To summarize,
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(i) If max{2D3
1+6D2

1D2+6D1D2
2

4D2
1+9D1D2+9D2

2
, D1+2D2

2
−KL} < KH < D1+D2

2
and KL >

D3
1+3D2

1D2+3D1D2
2

4D2
1+9D1D2+9D2

2
,

then θ∗1H = 2δ+1
3δ+1

, θ∗1L = θ∗U = δ+1
3δ+1

, θ∗O = 1
2
, and π∗

J2 =
(8D1+3D2)δ2+4D2δ+D2

8+24δ
−FO−FU .

(ii) If KH < D1

2
and KH

2
+KL > D1

2
, then θ∗1H = 1 − KH

2D1
, θ∗1L = 1

2
, θ∗U = 1 − KH

D1
, and

π∗
J2 =

D1

4
+KH(δ − 1)(1− 3KH

4D1
)− FO − FU .

(iii) If max{D1+2D2

2
−KL,

D1+D2

2
} < KH ≤ D1+2D2

2
and KL > D1

4
provided that D1 < 2D2,

then θ∗1H = 3
4
, θ∗1L = θ∗U = 1

2
and π∗

J2 =
4(D1+D2)+(4KH+3D1)(δ−1)

16
− FO − FU .

(iv) If max{7D1

12
, 7D1+6D2

12
− KL} < KH < min{D1+3D2

6
, 2D1+D2

2
− KL,

8D1KL+3D2
1+3D1D2

4D1+12D2
}

provided that 5D1 < 6D2, then θ∗1H = 5
6
, θ∗1L = 1 + D2

2D1
− KH+KL

D1
, θ∗O = 1

2
, θ∗U = 5

12

and π∗
J2 =

(D2
1+24D1KH)δ−D2

1−12D1D2+24D1KH+48D1KL−12(D2−2(KH+KL))
2

48D1
− FO − FU .

Overlap Characterization.

Case (i) and case (iv): Because ∂2∆πiv−i

∂δ2
< 0, and ∂∆πiv−i

∂δ

∣∣∣
δ=1

< 0. So, ∂∆πiv−i

∂δ
< 0. Note

that ∆πiv−i|δ=1 < 0. So, case (i) dominates case (iv).

B.2.2 Unavailable Opaque Selling When Opaque Selling Comes

First

If only high-quality capacities are left, and last-minute customers are only informed of

the opaque selling mechanism, the optimal solutions are summarized as Lemma B.2.2.

Lemma B.2.2 (Optimal Solutions of the Upgrading Mechanism Without

Last-minute Customers) The equilibrium exists if and only if KL ∈ [ 3D1D2(D1+D2)

D2
1+9D2D1+9D2

2
, D1].

In equilibrium,

(i) If high-quality capacity is large, then the seller uses partial high-quality leftovers to

fulfill upgrading demand. Moreover, p∗1H + p∗1L = 2p∗U , D
∗
1H > D∗

U .

(ii) If high-quality capacity is small, then the seller uses all high-quality leftovers to fulfill

upgrading demand. Moreover, p∗1H + p∗1L > 2p∗U if KH > 2δD1−KL

3δ−1
, D∗

1H > D∗
U .

By Lemma B.2.2, if the seller does not target last-minute customers, then high posted price

is higher than upgrading price, and the amount of high-quality capacities sold regularly is
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more than the amount of high-quality capacities sold as upgrades. This is consistent with

the statement that upgrades are complementary capacities, and the additional sales from

upgrades are smaller than the original sales 1.

Proof 45 Proof of Lemma B.2.2 . In the salvage stage, recall that the seller’s profit from

upgrading mechanism equals

π2U =



D1(δ − 1)θ21H
4

if
θ1H
2

≥ max{θ1L, 1−
KH

D1
},

D1(δ − 1)(θ1Hθ1L − θ21L) ifθ1L ≥ max{1− KH

D1
,
θ1H
2

},

(δ − 1)(1− KH

D1
)(KH −D1(1− θ1H)) if1− KH

D1
≥ max{θ1L,

θ1H
2

}.

In the regular stage,

(i) θU = θ1H
2
.

The seller’s total profit πU(θ1H , θ1L) = (θ1H(δ − 1) + θ1L)D1(1 − θ1H) + θ1LKL +

D1(δ−1)θ21H
4

is concave with θ1H and increases with θ1L. Hence, θ∗1H = 2(D1(δ−1)+KL)
D1(3δ−1)

,

θ∗1L = (δ−1)(2D1−3KL)
D1(3δ−1)

, θ∗U = D1(δ−1)+KL

D1(3δ−1)
, and π∗

U =
(δ−1)((1+3δ2)D2

1+(3δ−5)D1KL+3(2−3δ)K2
L)

D1(1−3δ)2

provided that KH > max{2D3
1+6D2

1D2+6D1D2
2−D2

1KL

2D2
1+9D1D2+9D2

2
, D1 − KL

2
} and

3D2
1D2+3D1D2

2

D2
1+9D1D2+9D2

2
<

KL ≤ 2D1

3
.

(ii) θU = θ1L.

The Hessian matrix of πU is negative definite. Hence, θ∗1H = 2δ2D1+δKL−3δD1−2KL

D1(3δ−4)δ
,

and θ∗1L = (δ−1)(δD1+2KL)
D1(3δ−4)δ

. Because θ1L ≥ 0 does not always hold when δ ∈ (1, 1 +

3D1D2+3D2
2

D2
1

). So, there are no optimal solutions.

(iii) θU = 1− KH

D1
.

By solving the FOCs of πU w.r.t θ1H and θ1L, we find that πU is concave with θ1H and

increases with θ1L. Hence, θ
∗
1H = 2δD1−δKH+KH+KL−2D1

D1(2δ−1)
, θ∗1L = 2δD1−δKH−2δKL+KH+2KL−2D1

D1(2δ−1)
,

and π∗
U =

(δ−1)(D2
1−3δ2K2

H+3KL(KH+KL)+D1((−1−2δ+4δ2)KH+4(δ−1)KL)+2δ(K2
H−2KHKL−2K2

L))

D1(1−2δ)2

provided that D1 −KL < KH ≤ min{2D1 − 2KL,
2D3

1+6D2
1D2+6D1D2

2−D2
1KL

2D2
1+9D1D2+9D2

2
}.

1. Refer to https://hoteltechreport.com/news/suggestive-selling.
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