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Abstract 

In the modern aging society, health care has been a major concern among people. 

Ballistocardiography (BCG) is a vibration signal related to cardiac activity, which 

can be obtained in a non-invasive way by optical fiber sensors. In this work, an 

optical fiber interferometer-based BCG monitoring system has been developed. 

Several deep learning models are explored to optimize this monitoring system.  

Firstly, a BCG monitoring system based on the optical fiber sensor is proposed. 

A moving-coil transducer-based new phase modulation method is developed to 

address the signal fading problem in the optical fiber interferometer, which can keep 

the output of the system in quadrature by a closed-loop controller. As a result, a 

BCG signal without baseline drift can be obtained. This optical fiber interferometer-

based BCG monitoring system offers the benefits of being tiny, low-cost, portable, 

and user-friendly.  

Secondly, we study the individual heartbeat waveform detection algorithm 

based on BCG signals. A convolutional neural network (CNN) is first built to 

classify the IJK-complex, background, and body movement signals. Since this CNN 

model needs a series of time-consuming pre-processing works, we propose an end-

to-end modified U-net to improve the individual heartbeat waveform detection 

algorithm. This network has demonstrated its capacity to segment the IJK complex 

and body movement in the BCG signal with great accuracy.  

Then, a modified generative adversarial network (GAN) is presented to 

reconstruct BCG signals in an optical fiber interferometer with the intensity 

interrogation mode. This method eliminates the need for extra modulators and 
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demodulators in the interferometer, lowering costs and simplifying the hardware. 

The results show that the algorithm can reconstruct the BCG signal successfully.  

To further test the model performance, we have analyzed the reconstruction results 

based on the collected data on sinus arrhythmia and post-exercise cardiac activities. 

In conclusion, this signal reconstruction algorithm simplifies the BCG monitoring 

system by solving the signal fading problem in the optical fiber interferometer in a 

novel way. 

Finally, a compressed sensing (CS) framework is built for the BCG signal 

based on the optical fiber sensing system. Four types of CS reconstruction 

algorithms, Basis Pursuit (BP), orthogonal matching pursuit (OMP), and two block 

sparse Bayesian learning (BSBL) algorithms are used to verify the reconstruction 

performance in BCG signals under different CRs. The performance of two BSBL 

algorithms outperforms the other two algorithms. Traditional reconstruction 

algorithms perform poorly when CR is greater than 90%. Therefore, an end-to-end 

deep learning model is developed to reconstruct BCG. The performance of the 

model is good when CR increases from 50% to 90%. For the high CR over 90%, 

though the performance is slightly degraded, the IJK complex in the BCG can be 

recovered, and the MAE of the HR is low than 1 bpm when the CR is below 95%. 
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Chapter 1 

Introduction 

 

1.1  Overview and research motivations 

In the modern aging society, health care has always been a major concern, 

especially in some developed countries. Vital signs, such as respiration, 

heartbeat, temperature, blood pressure, and blood glucose, are the main health 

indications of the human body. Vital signs monitoring can help to assess the 

health condition of the human body, which is significant in many healthcare 

applications. Due to rising concerns about health problems, researchers are 

interested in the development of user-friendly and convenient vital signs 

monitoring methods. Among them, heartbeat monitoring is particularly 

important as cardiovascular diseases (CVDs) have become the leading death 

cause among various fatal diseases in the world [1]. For heartbeat monitoring, 

long-term service is essential no matter in the clinic or at home.  

Electrocardiography (ECG) and photoplethysmography (PPG) are the 

mainstream methods to detect heartbeat signals. ECG signal is the record of 

the electrical activity of the heart pumping blood, and it has been widely 

accepted as the main method to diagnose CVDs. During ECG monitoring, 
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multiple electrodes are required to attach to specific positions of the body, 

and each pair of electrodes is called the lead. The 12-lead ECG is widely used 

in clinics [2]. Other than ECG, PPG is the biological signal measured via the 

optic method, which can obtain the plethysmography of organs by placing a 

pulse oximeter on the finger [3]. PPG signal is based on the blood flow change 

and thus can be collected from the variation in the intensity of transmitted 

light (or reflected light) on the skin. Both PPG and ECG signal collections 

require skin contact, and they are developed as wearable devices. The 

wearable devices will inevitably discomfort the users, especially for heartbeat 

monitoring in the long-term way. For long-term heartbeat monitoring, non-

invasive and non-wearable heartbeat monitors will be preferred and may 

become popular in near future. Therefore, various new technologies have 

been investigated in the field of vital signs monitoring to replace traditional 

measurements. 

Ballistocardiography (BCG) is a biomedical signal reflecting the body 

recoils in reaction to heart ejection during each cardiac cycle, in which the 

body recoils refer to global movements of the body. It is a combination of 

multiple forces including blood flow within the heart, blood flow within 

arteries (mainly the aorta), and heart movement. BCG signals can be detected 

in a non-invasive and non-wearable way [4]. Many research groups have 

explored various sensing schemes to track the BCG waveform. Among them, 

electronic sensors are the most common type adopted to fabricate the BCG 

monitor. O. T. Inan et al. developed a standing heartbeat monitoring based on 

a modified bathroom scale in 2009 [5]. Users could obtain their 
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ballistocardiography (BCG) signal by standing on the scale and keeping still. 

In addition, J. Alametsa et al. proposed a sitting position heartbeat monitor 

that utilized an electromechanical film (EMFi) sensor [6]. They embedded 

the EMFi sensor into the cushion and users could obtain the heartbeat signal 

when they sat on the cushion. More than that, M. Liu et al. demonstrated a 

heartbeat monitor based on a low-power piezoelectric film sensor, which 

could track the BCG signal in both sitting and standing positions [7]. In 

addition, remote vital signs monitoring based on video or radar technologies 

has also caused a lot of concern in recent years. M. A. Hassan et al. developed 

a remote health monitoring system through a video-based signal processing 

method. They obtained the approximative BCG signals by estimating the 

microscopic color change or rigid motion in the face [8]. O. Postolache et al. 

proposed to utilize 24GHz microwave FMCW (frequency modulated 

continuous wave) Doppler radar to monitor radar ballistocardiography of 

people [9]. Though these technologies provide feasible schemes to monitor 

heartbeat or breath, some drawbacks will greatly reduce the performance of 

sensors. For example, the limited sensitivity could result in the loss of details 

in biomedical signals, and electromagnetic interference can also affect 

performance. In addition, for video or radar technologies-based remote health 

monitoring, motion artifacts will introduce large errors into the monitoring 

systems. 

Optical fiber-based sensors as a novel sensing technology own many 

merits including low cost, high sensitivity, electrical isolation, and immune 

to electromagnetic interference, which is intrinsically safe and reliable. 
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Optical fiber-based sensing technologies have been widely used in strain [10], 

temperature [11], acceleration [12], and refractive index [13] measurements. 

In addition, there are several vital signs monitors based on different types of 

optical fiber sensors. For example, X. Yang et al. built a wearable textile fiber 

optic micro-bend sensor to monitor heartbeat and respiration according to the 

principle of micro-bend loss [14]. Ł. Dziuda et al. developed a fiber Bragg 

grating (FBG) strain sensor to acquire the heartbeat and respiration signals of 

the user during the magnetic resonance imaging (MRI) survey [15]. However, 

mentioned optical fiber sensor-based technologies have some defects: the 

sensitivity of the micro-bend loss-based sensing method is limited and the 

demodulation technology of FBG is expensive. To address these problems, 

our group focuses on phase-based optical fiber sensors. 

For optical fiber interferometers, the signal fading effect makes the 

sensor unsuitable for long-term monitoring. Although numerous modulation 

and demodulation technologies, including 3x3 coupler-based signal 

demodulation [16] and piezoelectric transducer-based (PZT) phase 

modulation [17], can be used to solve the signal fading problem, they have 

significant limitations for BCG monitoring. Piezoelectric cylinders, for 

example, are large and cannot be integrated into a compact BCG monitoring 

system. The first task of this thesis is to solve this problem and obtain long-

term, real-time and stable BCG signals. 

Deep learning algorithms have advanced quickly in recent years and are 

now widely used in a variety of fields. Many academics have used deep 

learning algorithms to solve both image and sequence signal issues in 
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biomedical applications in recent years. For 1-D biomedical signals, such as 

ECG, electroencephalogram (EEG), electromyography (EMG), and 

electrooculogram (EOG), several topics have drawn great attention and been 

widely investigated, including detection of cardiovascular diseases [18], 

classification of sleep stages [19], and analysis of mental stress [20]. Since 

the BCG signals can be interfered and distorted easily by the motion artifact 

and ambient noise during the measurement, deep learning models are suitable 

to solve various issues in the BCG-related signal processing tasks, such as 

individual heartbeat detection, heart rate (HR) calculations, and CVDs 

detection. The second tasks of this thesis are to explore the application of deep 

learning models in the BCG signals. 

In general, the research motivations of this thesis are to study the BCG 

monitoring system based on optical fiber interferometers and solve the signal 

fading problem. At the same time, this thesis is aimed to explore the 

possibility of using deep learning to optimize monitoring systems. This long-

term and real-time BCG monitoring system has tremendous potential in future 

healthcare applications. 

1.2  Ballistocardiography 

1.2.1  Overview 

BCG is the measurement of body recoils produced by heart ejection during 

every cardiac cycle, which can be used to monitor cardiac activities in an 

unobtrusive way. The BCG signal was firstly observed by Gordon in 1877 

[21], and Isaac Starr et al. developed an instrument to measure this signal in 
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a scientific manner in 1939 [22]. However, due to some limitations on 

measurement methods, the BCG-related technology was not developed 

further and was gradually replaced by ECG. Nowadays, BCG regains the 

spotlight with evolved sensing techniques and signal processing methods. 

The blood travels along the vascular tree with each heartbeat, which 

causes changes in the body’s center of mass. Then, body micromovements 

caused by recoil forces can maintain the overall momentum. BCG is a 

recording of these movements, and it can be obtained as a displacement, 

velocity, or acceleration signal. BCG can be divided into longitudinal and 

transverse BCG depending on the movements in different axes. The 

longitudinal BCG represents the head-to-foot vibration of the body while the 

transverse BCG is the dorso-ventral direction. The longitudinal BCG is the 

largest projection of 3-D forces caused by cardiac ejection. In particular, for 

some measurement ways, the head-to-foot and dorsoventral forces are mixed 

unavoidably. Though BCG owns a 3-D nature, only the longitudinal BCG 

was investigated by researchers for a long time in past. The main 

measurements of longitudinal BCGs were based on the force sensor placed 

on a weighing scale or a chair, and thus the subject could be in a vertical 

position to detect the change of head-to-foot force. Subsequently, lots of bed-

based sensors were widely studied to detect transverse BCG successfully. 

BCG waveform is generated with each cardiac contraction, and each 

waveform owns several peaks and valleys. As shown in Fig. 1.1, a completed 

BCG signal is composed of multiple peaks including H, I, J, K, and L peaks, 

and these peaks have corresponding physiological significance. For instance, 
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the amplitude of the major wave J peak, or IJK complex, is related to the 

aortic pulse pressure [23]. BCG can be used to calculate the HR and heart rate 

variability (HRV) of the subject, which has great potential in cardiac health 

care. 

I

J

K

L
H

 

Fig. 1.1. A BCG waveform. 

1.2.2  Measurement methods 

There are three methods to detect BCG signals, which can be divided into 

weighing-scale-based BCG systems, bed-based BCG systems, and chair-

based BCG systems. 

The weighing-scale-based BCG system was first proposed by Jim 

Williams in 1990, which was based on an electronic scale [24]. Williams built 

a high-precision electronic scale (4.5 g resolution up to 136 kg) and then 

found the motion artifacts during the measuring process, which is mainly 

composed of the BCG signal. The standing posture of the subject in the 

weighing-scale-based BCG system guarantees the measurement is purely 

longitudinal, which is the main advantage of this type of measurement. 

Moreover, since weighing scales are a common household device, it is easy 
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to popularize this heartbeat monitoring system by enhancing the capabilities 

of the traditional weighing scale. Therefore, many researchers have 

investigated this BCG measurement. O. T. Inan et al. proposed a standing 

BCG monitor based on a modified commercial bathroom scale in 2009 [5]. 

The obtained BCG recording matched well with the synchronously measured 

Doppler echocardiography. Gonzalez-Landaeta et al. [25] and Shin et al [26] 

have also successfully built BCG monitors based on weighing scales. In all 

studies, the BCG signals have a similar shape and amplitude to the traditional 

recordings detected by Starr et al. At the same time, however, this kind of 

measurement also exists the issue of being susceptible to motion artifacts and 

floor vibrations. In addition, the weighing-scale-based BCG system also 

limits the duration of the measurement since it is uncomfortable for the 

subject to stand still on the scale for a long time, especially for a patient. 

Bed-based BCG systems can access the BCG signals during sleep, which 

can be used in the evaluation of sleep stages and sleep-related disorders. Since 

the BCG devices do not need to attach electrodes to the skin of subjects, they 

will not disturb the sleep behaviors of subjects compared to ECGs during the 

data collection stage. Bed-based BCG systems can be integrated with the 

sleeping environment based on different types of sensors. For example, 

Alihanka et al. proposed a static charge-sensitive bed in 1981, which was the 

first time such a bed-based BCG sensor has been proposed [27]. Subsequently, 

film-type force sensors [28], EMFi sensors [29], piezoelectric film sensors 

[30], polyvinylidene fluoride sensors [31], and hydraulic sensors [32] have 

been proposed to detect BCG on the bed. In addition, sensor arrays have been 
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developed to replace the single sensor to improve performance [33]. These 

sensors can not only detect heartbeat signals, but also other physiological 

information such as respiration signals and body movements, which can be 

used to improve the accuracy of sleep analysis.  

Chair-based BCG systems can obtain the BCG in the sitting position. 

Walter et al. proposed an EMFi sensors-based BCG monitor embedded in the 

driver’s seat in the car, which could be used to monitor the fitness of the driver 

[34]. J. Alametsa et al. also built a sitting position monitor based on an EMFi 

sensor to measure BCG signals and demonstrated its better performance than 

acceleration sensors [35]. In general, chair-based BCG monitors provide a 

heartbeat monitoring way during the day, and they can work with bed-based 

BCG monitors to realize a sound cardiac health monitoring system in daily 

life. However, chair-based BCG signals own less signal amplitude compared 

to bed-based BCG and weighing-scale-based BCG signals, which need more 

sensitive sensors to detect. 

1.3  Optical fibers and optical fiber sensors 

1.3.1  Optical fibers 

Optical fibers were firstly invented by K. C. Kao in 1966, which is a dielectric 

waveguide operating in the optical band [36]. The refractive index of the fiber 

core is higher than its surrounding region in a dielectric fiber, which enables 

the transmission of energies at optical frequencies to travel in optical fibers 

according to the total internal reflection phenomenon. Optical fibers have 
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been extensively studied since then, and single-mode fibers (SMFs) have 

been produced for use in practical communication systems. 

An optical fiber consists of core, cladding, and jacket. The cylindrical 

core of silica glass is surrounded by the cladding, in which the refractive index 

of the core is slightly larger than that of the cladding. According to the 

variation of refractive index, there are two types of optical fibers: step-index 

fibers and graded-index fibers. Step-index fibers have an abrupt refractive 

index change at the core-cladding interface while the refractive index of the 

core reduces gradually and then is equal to that of the cladding at the interface 

in graded-index fibers. The cross section and the corresponding index profile 

of a step-index SMF are shown in Fig. 1.2, where a and b are radii of the core 

and the cladding, and n1 and n2 are the refractive indexes of the core and the 

cladding. Generally, a and b are 8 μm and 125 μm in the SMF. Other than the 

common SMF, several structures of optical fibers are designed and fabricated 

based on various requirements, such as few-mode fibers (FMFs) [37], multi-

mode fibers (MMFs) [38], multi-core fibers (MCFs) [39], and photonic 

crystal fibers [40]. 
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Fig. 1.2. The cross section (a) and the corresponding index profile (b) of a single-mode 

fiber. 

Optical fibers have been widely used in communications due to the 

intrinsic merits of long transmission distance, large information capacity, 

lightweight, immune to electromagnetic interference, and safety. In recent 

years, optical fibers have also been investigated and utilized in the application 

of sensing. Optical fiber sensors have been demonstrated to be available for 

strain, temperature, acceleration, and refractive index sensing. The principle 

of optical fiber sensors is that the light from a laser or light-emitting diode 

(LED) propagates through the optical fiber and interacts with measured 

parameters in the sensing area. The optical properties of light, such as optical 

intensity, wavelength, frequency, phase, and polarization state, will be 

changed. The formed modulated signal can be delivered to the demodulation 

system to obtain the measured parameter. At present, fiber optic sensors have 

been widely used in the field of structure health monitoring [41], well logging 

technology [42], and medical applications [43]. Furthermore, a fiber-optic 

sensor can be utilized in many extreme conditions, such as high temperature 

[44] and intensity magnetic field [45], owing to its remarkable properties of 

which. 
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As mentioned, variational measured parameters can change the optical 

properties of light. Therefore, there are several types of optical sensors based 

on different principles including intensity-based, wavelength-based, and 

phase-based, which will be introduced briefly in the following part. 

1.3.2  Optical fiber sensors 

For intensity-based optical fiber sensors, the optical intensity will change with 

the measured parameter, and variation of the transformed electrical signal 

from the photodetector (PD) is related to the measured parameter. There are 

several types of intensity-based sensors. The first type is based on the 

transmission/reflection light. The example shown in Fig. 1.3(a) is a fiber-

optic displacement sensor [46] based on transmission light. The light intensity 

can change with the lateral displacement between the sensing arm and the 

reference arm. The second type is utilizing the principle of bending loss. 

Figure. 1.3(b) is a micro-bend fiber-optic sensor [47]. Cyclic bending of 

optical fiber resulting from comb deformer with fixed spatial period can 

convert part of guided modes to radiation modes, which changes the light 

intensity. The third type is based on the varying refraction index. Figure. 1.3(c) 

is a liquid-level detector [48] using an optical fiber and a prism. When the 

probe enters the liquid, the light intensity can change with the variational 

critical angle. The device is used to detect the refractive index of the liquid. 
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Fig. 1.3. (a) Fiber-optic displacement sensor. (b) Micro-bend fiber-optic sensor. (c) Liquid 

level detector. 

For wavelength-based optical fiber sensors, the spectrum can be 

modulated by the measured parameters. An optical fiber-based sensor based 

on the black body radiation principle can realize high-temperature 

measurements [49]. As shown in Fig. 1.4(a), the temperature probe, the black 

body cavity, is fabricated by covering a thin metal film on the sapphire fiber. 

The optical radiation spectrum of the black body cavity can change at 

different temperatures. Another example is an FBG sensor [50]. FBG 

distributed sensors are widely utilized in structure health monitoring, which 

can monitor the internal strain in a long range. The structure of FBG is 

fabricated by etching a grating pattern in the core of the optical fiber, as shown 

in Fig. 1.4(b). The measurement principle of the FBG sensor is that a certain 

wavelength will be reflected by the fiber grating according to the grating 

period  The value  can change with measured parameters, such as strain 

and temperature.  
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Fig. 1.4. (a) Temperature probe used in black body-based optical fiber sensor. (b) FBG 

sensors. 

For phase-based optical fiber sensors, phase variation cannot be obtained 

directly by PD. Therefore, interferometers are utilized to convert phase 

change into optical intensity variation. There are several typical types of 

interferometers. The first one is a fiber-optic Michelson interferometer (MI) 

[51], as shown in Fig. 1.5(a). There are two reflective mirrors placed at the 

end of the sensing and reference arm, respectively. The phase of sensing light 

can change with measured parameters. Two reflected light form interference 

at the coupler and the varying light beam can propagate back to PD. The 

second type is a fiber-optic Mach-Zehnder interferometer (MZI) [52], as 

shown in Fig. 1.5(b). The light beam is split into two paths by the first coupler, 

which work as sensing and reference arms, respectively. Similarly, the 

modulated sensing light and reference light are coupled at the second coupler, 

and the interference light can be obtained by PD. The third type is a fiber-

optic Fabry-Perot interferometer (FPI) [53], which is shown in Fig. 1.5(c). A 

microcavity is fabricated by coating two high reflection films in the fiber, as 

shown in Fig. 1.5(d), and then multiple reflective lights generate interference 
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in the optical fiber. The length of microcavity changes with the measured 

parameter and the variational light intensity can be obtained in the PD. 

 

Fig. 1.5. (a) Fiber-optic Michelson interferometer. (b) Fiber-optic Mach-Zehnder 

interferometer. (c) Fiber-optic Fabry-Perot interferometer. (d) Microcavity. 

1.4  Deep learning models 

1.4.1  Overview 

Deep learning is an extension type of neural network that has two or more 

hidden layers. Many applications of deep learning have proven to be 

successful, such as image and speech recognition. McCulloch and Pitts 

presented the McCulloch–Pitts (MCP) neuron, which is the first artificial 

neuron model in 1943 [54]. At the time, researchers aimed to use computers 

to imitate the response process of human neurons. Rosenblatt built a 

perceptron using the MCP neuron in 1958, which was the first application of 

artificial neurons in machine learning [55]. The perceptron could divide 
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multidimensional input samples into two classes and update the weights using 

a gradient descent approach. In 1962, the approach was shown to be 

convergent, and the good performance drew a lot of attention from 

researchers. However, in 1969, Minsky demonstrated that the perceptron is a 

linear model that can only be used to solve linear classification problems. As 

a result, the neural network has remained unchanged for nearly two decades. 

Hinton developed a multi-layer perceptron (MLP) in 1986 that 

performed nonlinear mapping using the Sigmoid activation function rather 

than hard thresholding [56]. This approach was able to solve the nonlinear 

classification problem, which has received a lot of attention again. However, 

the vanishing gradient problem was discovered in the backpropagation 

algorithm adopted in the MLP in 1991. The issue is that during 

backpropagation, the gradient may become tiny, preventing the weight from 

changing its value. In 2006, Hinton used a restricted Boltzmann machine 

(RBM) to create a deep belief network (DBN) to solve the vanishing gradient 

problem [57]. Subsequently, the ReLU activation function was developed in 

2011 to replace the Sigmoid activation function, which can also address the 

problem of vanishing and explosive gradients [58]. Hinton and his team 

participated in the ImageNet in 2012 to demonstrate the potency of deep 

learning, and the convolutional neural network (CNN), AlexNet, proposed by 

them won the first prize [59]. Deep learning drew a lot of interest from 

researchers after that.  

1.4.2  Multilayer perceptron 
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The MLP is a feedforward fully connected network including multiple 

artificial neural networks. An MLP consists of several layers, including an 

input layer, several hidden layers, and an output layer, the architecture of 

which is shown in Fig. 1.6. The layer refers to one column of neurons in the 

network. The input layer serves as a distribution point, and hence there is no 

input summation. Except for the input layer, the output of a neuron is the sum 

of neurons from the previous layer. As a result, each neuron has only one 

output, which is connected to the next layer as an input to create a fully 

connected network. The output of neuron i in layer l is shown as 

𝑎𝑖(𝑙) = ℎ(𝑧𝑖(𝑙)), (1.1) 

𝑧𝑖(𝑙) = ∑ 𝑤𝑖𝑗(𝑙)𝑎𝑗(𝑙 − 1) + 𝑏𝑖(𝑙)

𝑛𝑙−1

𝑗=1

, (1.2) 

where i = 1, 2, …, nl, and nl is the number of neurons in layer l. j = 1, 2, …, 

nl-1, and nl-1 is the number of neurons in layer l-1. ai and aj are the output of 

neuron i in layer l and neuron j in layer l-1 passing through the activation 

function, respectively. wij are the weights between neuron i in layer l and 

neuron j in layer l-1, and bi is the bias of neuron i in layer l. h is the activation 

function of neuron i in layer l. The class of the input vector is determined by 

the output layer values, which can be determined by 

𝑎𝑖(𝐿) = ℎ𝐿(𝑧𝑖(𝐿)), (1.3) 

where i = 1, 2, 3, …, nL, and nL is the number of neurons in the output layer. 

hL is the activation function of the output layer, such as Sigmoid for the binary 

classification and SoftMax for multi-class classification. 
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Fig. 1.6. The architecture of multilayer neural network. 

The weights, biases, and activation function of a neural network 

characterize it completely. To minimize the error, the network is trained using 

labeled training samples and the loss function. The sum of squared error can 

be used to calculate the error of neuron j in the output layer, which is given 

by 

𝐸𝑗 =
1

2
(𝑟𝑗 − 𝑎𝑗(𝐿))

2

, (1.4) 

where j = 1, 2, 3, …, nL, and rj = 1 if the input is of class j. aj(L) is the output 

of neuron j. The output error is the sum of errors from all output neurons, 

which can be calculated using 

𝐸 = ∑ 𝐸𝑗

𝑛𝐿

𝑗=1

. (1.5) 

The total network output error of all training samples can be obtained by 

the sum of errors from each sample. The backpropagation and gradient 

descent algorithms are adopted to minimize total error and update the weights 

and biases. First, the sensitivity of neuron j in the output layer is defined as 
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𝛿𝑗(𝐿) =
𝜕𝐸

𝜕𝑧𝑗(𝐿)
. (1.6) 

The backpropagation begins from the output layer and works backward. In 

hidden layer l, the sensitivity of neuron j is given by 

𝛿𝑗(𝑙) =
𝜕𝐸

𝜕𝑧𝑗(𝑙)
. (1.7) 

After expressing the above two equations, we can get two equations shown 

as 

𝛿𝑗(𝐿) = ℎ𝐿 (𝑧𝑗(𝐿)) [1 − ℎ𝐿 (𝑧𝑗(𝐿))] [𝑎𝑗(𝐿) − 𝑟𝑗], (1.8) 

𝛿𝑗(𝑙) = ℎ′ (𝑧𝑗(𝑙)) ∑ 𝑤𝑖𝑗(𝑙 + 1)𝛿𝑖(𝑙 + 1)

𝑖

. (1.9) 

Finally,  
𝜕𝐸

𝜕𝑤𝑖𝑗(𝑙)
 and 

𝜕𝐸

𝜕𝑏𝑖(𝑙)
 are obtained by 𝛿𝑗(𝑙) =

𝜕𝐸

𝜕𝑧𝑗(𝑙)
. Weights and biases 

are updated by gradient descent, and they can be given by 

𝑤𝑖𝑗(𝑙) = 𝑤𝑖𝑗(𝑙) − 𝛼𝛿𝑖(𝑙)𝑎𝑗(𝑙 − 1), (1.10) 

𝑏𝑖(𝑙) = 𝑏𝑖(𝑙) − 𝛼𝑏𝑖(𝑙), (1.11) 

where l = L-1, L-2, L-3, …, 2. aj is the result computed in the forward 

propagation and δi is obtained during the backpropagation. 

1.4.3  Convolutional neural network 

As mentioned, the MLP adopts the full connection strategy, which treats all 

the inputs equally. However, this fully connected network ignores the local 

features of images. For a real image, nearby pixels have a stronger correlation 

than distant pixels. In addition, the full connection produces a large number 

of parameters, which is easy to lead to overfitting. Therefore, a CNN with the 

properties of local connection and weight sharing was proposed by LeCun et 
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al. in 1989, which was used for handwritten digit recognition [60]. In 1998. 

LeCun et al. have proposed LeNet-5, which is one of the most simplified and 

commonly used CNN architectures [61]. Currently, CNN is widely applied in 

the field of computer vision and achieves great success. 

The structure of a typical CNN is shown in Fig. 1.7, which is a 7-layer 

convolutional network. During the training phase, the filter moves over the 

picture in a fixed stride to calculate the convolution. The convolution is 

computed as the sum of the products of the kernel weights and the pixels in 

the receptive field, the calculation rule of which is shown in Fig. 1.8. Each 

convolution result has a bias applied to it before passing through the 

activation function. As a consequence, convolution can extract features from 

the input picture such as edges, points, and blobs, which are then stored in 

feature maps. A convolutional layer is made up of various kernels that can 

create diverse feature maps. 

Input

Output

Convolutions Subsampling

Full 

connection
SubsamplingConvolutions

 

Fig. 1.7. The structure of a CNN. 
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Fig. 1.8. The calculation rule of convolution. 

The spatial resolution of feature maps will be decreased by a pooling 

layer after going through the convolution layer. Max pooling and average 

pooling are two typical pooling methods. In Fig. 1.9, the calculation rules for 

max pooling and average pooling are given, with max pooling producing the 

highest value of the receptive field and average pooling producing the mean 

value. The pooling layer is a significant part of the feature extraction. The 

pooling layer can suppress noise, and reduce the dimension together with 

information redundancy. In addition, it can also realize the translation 

invariance, rotation invariance, and scale invariance for the input data. 
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Fig. 1.9. The calculation rules of max pooling and average pooling. 
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In the second convolutional layer, different kernels are applied to each 

pooled feature map and then subsampled by the second pooling layer. The 2-

D feature maps are flattened and connected with a fully connected layer 

(FCL). Finally, the output layer gives predicted results, and the model can be 

trained by the backpropagation strategy.  

1.4.4  Recurrent neural network 

The recurrent neural network (RNN) is a temporal sequence model, which 

can exhibit temporal dynamic behavior. RNNs have been widely used in the 

field of speech recognition [62], machine translation [63], and video activity 

[64]. The structures of an RNN are shown in Fig. 1.10, which are a 

compressed type (left) and an unfolded type (right), respectively. The 

sequence sample 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇𝑥
 with the length of 𝑇𝑥 can be fed into the 

network in a timed sequence. Compared to the MLP, the RNN has a hidden 

state  𝑎𝑡, which is also referred as a hidden variable. 𝑎𝑡 stores the sequence 

information before time step 𝑡. Therefore, the hidden state at time step 𝑡 + 1, 

𝑎𝑡+1 , can be calculated based on the current input 𝑥𝑡+1  and the previous 

hidden state 𝑎𝑡, which can be defined as 

𝑎𝑡+1 = 𝑓(𝑥𝑡+1, 𝑎𝑡). (1.12) 

It is noteworthy that hidden states in RNN are different from hidden layers in 

the MLP. The hidden state  𝑎𝑡 can store the previous sequence information, 

which is crucial for the prediction of the next output. 
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Fig. 1.10. The structures of an RNN. 

The structure of a neuron in a typical RNN is shown in Fig. 1.11. In a 

forward propagation process, the hidden state at time step t, 𝑎〈𝑡〉, will update 

first, which can be defined as 

𝑎〈𝑡〉 = ℎ𝑎(𝑊𝑎𝑎 ∙ 𝑎〈𝑡−1〉 + 𝑊𝑎𝑥 ∙ 𝑥〈𝑡〉 + 𝑏𝑎). (1.13) 

where 𝑊𝑎𝑎  and 𝑊𝑎𝑥  are weights related to the previous hidden state 𝑎〈𝑡−1〉 

and the current input 𝑥〈𝑡〉. ℎ𝑎 is the activation function of the hidden state, in 

which tanh and ReLU are common choices. 𝑏𝑎 is the bias. Then, the output 

at time step t, 𝑦〈𝑡〉, can be expressed as 

𝑦〈𝑡〉 = ℎ𝑦(𝑊𝑦𝑎 ∙ 𝑎〈𝑡〉 + 𝑏𝑦). (1.14) 

where 𝑊𝑦𝑎 and 𝑏𝑦 are the weight and the bias relevant to the output. ℎ𝑦 is the 

activation function, which is determined by the task type, such as SoftMax 

for the multi-classification task. Finally, the RNN can be updated based on 

the backpropagation through time. 
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Fig. 1.11. The structure of a typical RNN cell. 

1.5  The application of deep learning in the 1-D 

biomedical signal 

In recent years, many researchers have applied deep learning algorithms to 

solve various issues in the biomedical field. For 1-D biomedical signals, such 

as ECG, EEG, EMG, and EOG, several topics have attracted great attention, 

including detection of cardiovascular diseases, classification of sleep stages, 

and analysis of mental stress, which are introduced in the following. 

1. Detection of cardiovascular diseases 

CVDs have been the leading death cause among various fatal diseases 

around the world. Every year, around 300 million ECGs are used to identify 

various types of CVDs. CVDs are usually diagnosed by a medical expert 

according to the ECGs of patients. Recently, a variety of deep learning models 

have been adopted and investigated to realize automatic CVDs detection in 

the ECG. 

Hannun et al. suggested a cardiologist-level arrhythmia classification 

system based on the residual network (ResNet), which consists of 33 
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convolutional neural networks [65]. They gathered almost 90,000 ECG 

recordings from 53,549 individuals, which is 500 times more than the prior 

research. The network can classify 10 different forms of arrhythmias, sinus 

rhythm, and noise, with 12 outputs in total. In addition, Xu et al. proposed an 

end-to-end ECG classification system based on the deep learning model, in 

which the input is raw ECG data and the output is beat-by-beat classification 

decisions [66]. The new preprocessing methods involving heartbeat 

segmentation and alignment are innovative and vital to improving 

performance. The model can learn the features from both time-domain ECG 

signals and R-peak positions of each heartbeat and realizes the end-to-end 

prediction. 

2. Classification of sleeping stages 

Sleep disorder is a symptom of various neurological diseases, which is 

common among people and may affect the quality of daily life. Sleep stages 

classification is a typical method to help detect neurological disorders 

accurately, which has been widely investigated. The sleep stage consists of 

three classes, including wake, rapid eye movement (REM) sleep, and non-

rapid eye movement (NREM) sleep. Among them, NREM can be further 

divided into three sub-stages, including stage N1, stage N2, and stage N3. 

Polysomnogram (PSG) is a traditional method to access the sleep stages, 

which is conducted by attaching several sensors to the body in a laboratory 

environment [67]. PSG contains a series of vital sign recordings, such as EEG, 

ECG, EMG, and EOG. However, PSG is time-consuming, onerous, costly, 

and also needs manual scoring. Many researchers are devoted to classifying 
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the sleep stage based on a deep learning model using fewer channels of vital 

signs recording. For example, Yildirim et al. proposed a 19-layer CNN to 

classify the sleep stage based on the EEG and EOG [68]. It is noteworthy that 

the model owns the end-to-end complete architecture, which combines the 

extraction/selection and classification stages. The results show that the model 

can achieve the classification accuracies for two to six sleep classes as 

98.06%, 94.64%, 92.36%, 91.22%, and 91.00%, respectively.  

In addition, many studies are focused on classifying the sleep stage based 

on the ECG and respiratory, since the ECG signal is easier to access compared 

to other recordings. For example, Li et al. proposed a CNN model and a 

support vector machine (SVM) to classify sleep stages based on ECG signals 

[69]. First, ECG-derived respiration (EDR) signals and HRV time series are 

extracted from ECG through robust algorithms. In the following, the 

coherence and cross-spectrogram of EDR and HRV signals are calculated in 

a 5-min window, which is the cardiopulmonary coupling (CPC). Finally, the 

CNN model can be trained to classify the sleep stages including wake, REM 

sleep, NREM light sleep, and NREM deep sleep from the corresponding CPC 

spectrograms, and the SVM is adopted to combine the above features and 

give a final decision of sleep stages. 

3. Analysis of mental stress 

In recent years, besides physical health, mental health has been 

considered a matter of concern. EEG is a kind of small-size, low-cost and 

high temporal resolution signal containing several hundred channels, which 

is widely used in the study of brain disorders such as depression. In addition, 
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EEG is also a common method to evaluate mental stress. Recently, deep 

learning models have been adopted to analyze mental health based on EEG. 

Acharya et al. used a CNN to analyze the EEG signals of depressed and 

normal subjects [70]. Through the study, they found that the EEG signals 

from the right hemisphere of the brain are more distinctive than that of the 

left hemisphere for depression detection. It provides some evidence that 

depression is related to the hyperactivity of the right hemisphere. Mohan et 

al. used an MLP to distinguish the EEG of depressed patients from normal 

subjects [71]. The results show that the performance of the model is better 

when the signals from central regions (electrodes C3 and C4) are used as input. 

Zhang et al. proposed a concatenated structure of RNN and 3D CNN to learn 

the spatial-spectral-temporal features of EEG. Among them, 3D CNN is used 

to obtain spatial and spectral representations while RNN is adopted to extract 

the temporal characteristics. The network outperforms the traditional machine 

learning model based on hand-crafted features in the task of mental workload 

assessment. 

1.6  Research objectives 

The research objectives of this study are to develop the cardiac health 

monitoring system based on the optical fiber sensor and investigate the 

application of deep learning algorithms in the BCG signal processing and the 

optimization of sensing systems, which can be summarized as follows: 

• To fabricate a long-term and real-time BCG monitoring system based 

on the optical fiber interferometer. To solve the signal fading problem 
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that affects the signal quality greatly in the optical fiber interferometer 

through phase compensation methods. 

• To develop an individual heartbeat detection algorithm based on the 

deep learning model. To solve the issue about extraction of the 

individual heartbeat from dirty BCG signals, such as body movements 

signals  

• To solve the signal fading problem based on the mapping model, in 

which the hardware of phase modulation and demodulation is 

replaced by a reconstruction algorithm based on the deep learning 

model. 

• To develop a compressed sensing framework for BCG monitoring 

based on the optical sensor, which can be applied to the practical 

cardiac health monitoring scenario. 

1.7  Organization of the thesis 

The research contributions of this thesis are composed of 6 chapters. 

Chapter 1 gives an overview of this thesis first. Then four sections BCG, 

optical fiber sensors, deep learning, and its applications are introduced 

detailly, respectively. In section 1.2, the types and waveform features of BCG 

are described first, followed by the different measurement methods. Section 

1.3 reviews the common types of optical fiber sensors including the intensity-

based, wavelength-based, and phase-based optical fiber sensors. Sections 1.4 

and 1.5 introduce the theories of the MLP, the CNN, and the RNN, and also 
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the application of deep learning in the 1-D biomedical signal. Finally, the 

research objectives and organization of this thesis are presented. 

Chapter 2 introduces a novel BCG monitor based on an optical fiber 

interferometer. The problem of signal fading in the intensity interrogation 

mode-based optical fiber interferometers is described first. And then, the 

traditional phase modulation and demodulation schemes including the 3×3 

coupler interrogation scheme and the phase generated carrier interrogation 

scheme followed by drawbacks of these interrogation methods are presented. 

Subsequently, a novel phase compensation method based on a moving-coil 

transducer is presented. Details about the working principle of the moving-

coil transducer, and the compensation strategy of the proportional-integral-

derivative (PID) controller are shown. Finally, the performances of BCG 

monitoring toward several subjects with different HRs are presented. 

Chapter 3 presents two individual heartbeat detection algorithms based 

on deep learning algorithms. First, a heartbeat detection algorithm based on a 

10-weight-layers CNN is proposed. To further improve the algorithm, an end-

to-end heartbeat detection algorithm based on U-net is developed. The 

detailed parameters of the network are described, and the performance of the 

model is evaluated by three metrics. BCG signals from several subjects 

together with body movement signals are analyzed based on the proposed 

end-to-end heartbeat detection algorithm. 

Chapter 4 introduces a BCG reconstruction algorithm based on the 

generative adversarial network (GAN) in the optical fiber interferometer. A 

brief overview of the background and the GAN is presented first, followed by 
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the principle of the proposed mapping method. Then, the experiment setup 

and the process of data collection are presented. The structure of the modified 

GAN together with the evaluation metrics are described. Parameters in the 

model are optimized and the reconstruction results of BCG signals with 

different deformed degrees are analyzed. Finally, two special cases including 

sinus arrhythmia data and post-exercise data are adopted to further test the 

model. 

Chapter 5 is related to a CS framework for BCG monitoring based on 

the optical fiber sensor, which can be applied in the practical healthcare 

scenario. The principle of CS and three crucial parts including the sparse 

representation, measurement matrices, and reconstruction algorithms are 

introduced. Subsequently, several traditional reconstruction algorithms 

including basis pursuit (BP), orthogonal matching pursuit (OMP), and block 

sparse Bayesian learning (BSBL) algorithms are used to verify the 

reconstruction performance in the BCG signals under different compression 

ratios (CR). Finally, a deep learning-based reconstruction algorithm is 

proposed to reconstruct BCG under the high CR (over 90%). 

Chapter 6 gives a summary of works in this thesis and possible 

suggestions for the following work. Two future directions for the application 

of deep learning models in BCG monitoring and BCG signal processing are 

presented, including a new mapping model to reconstruct BCG signals, a 

combined algorithm of CS and phase demodulation, and sleep stages 

classification based on BCG signals.  
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Chapter 2 

Ballistocardiography monitoring based on 

an optical fiber interferometer with phase 

compensation system 

 

2.1  Introduction 

In recent years, various BCG detection methods have been proposed, as 

mentioned in section 1.2. Most BCG detection approaches are based on 

electronic sensing technologies, which own the intrinsic disadvantages of low 

sensitivity and incapability for some applications, such as vital signs 

monitoring in the MRI. Therefore, new sensing schemes are investigated to 

detect BCG signals.  

Optical fiber sensors-based vital signs monitors have attracted much 

attention among researchers due to their intrinsic merits such as high 

sensitivity, immunity to electromagnetic interference, and low cost. For 

example, an FBG strain sensor was proposed to acquire BCG and respiration 

signals of patients during the MRI survey and the high accuracy was proved 

by the Bland-Altman analysis [45]. A micro-bend optical fiber sensor was 

demonstrated to measure breath rate (BR), HR, and BCG waveform [72]. 

However, the demodulation devices of FBG sensors are bulky and quite 
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expensive, which is not suitable for practical applications. The sensitivity of 

micro bending-based sensors is limited, which may lose the BCG details.  

To overcome these drawbacks, our group adopts the phase-sensitive 

optical fiber interferometer schemes, and several vital signs monitors have 

been demonstrated [73-75]. However, optical fiber interferometers are 

subject to the signal fading effect, which also makes the sensor unsuitable for 

long-term monitoring. Although many modulation and demodulation 

technologies can be utilized to address the signal fading problem, such as 3x3 

coupler-based signal demodulation and PZT-based phase modulation, they 

are also exposed to some limitations for specific BCG monitoring. For 

example, piezoelectric cylinders are bulky and cannot be integrated into a 

compact BCG monitoring system.  

Therefore, in this chapter, several types of optical fiber interferometers-

based vital signs monitoring are introduced first. Subsequently, two kinds of 

phase demodulation methods adopted in the MZI-based vital signs sensors 

are demonstrated. In the last part, a BCG monitoring system utilizing a new 

phase compensation method based on the moving-coil transducer is proposed 

to realize long-term and stable heartbeat monitoring. The proposed transducer 

is compact and low-cost, which can be easily integrated into the sensing 

system without any bulk component. The phase compensation method can 

keep the interferometric output signal in quadrature by the closed-loop 

controller and transducer. 

2.2  Optical fiber interferometers-based BCG monitoring  
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For the optical fiber interferometer, any change of phase difference between 

light through two arms can be transformed into light intensity variation in the 

output end, which enables the interferometer to detect weak signals. To 

achieve vital signs measurement in a comfortable way, the optical fiber 

interferometers are packaged into the mattress and cushion-type sensors for 

signal monitoring under different positions. When the subject lays or sits on 

the sensing area, the body recoils resulting from the activity of the heart and 

lung will introduce a phase shift in the interferometer, which can be 

transformed into a variation of intensity. Based on this principle, the vital 

signs signals obtained by optical fiber interferometers are shown in Fig. 2.1(a). 

The heartbeat and respiration information can be observed in the raw BCG 

signal. Through signal processing such as filters, the heartbeat and respiration 

signals can be extracted for further processing and analysis, as shown in Fig. 

2.1(b) and Fig. 2.1(c). To achieve vital signs monitoring with high-

performance, different types of optical fiber interferometers are investigated, 

which are shown in the following. 
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Fig. 2.1. Vital signs signals detected by optical fiber interferometers: (a) raw signal; (b) 

extracted heartbeat signal; (c) extracted respiration signal. 

1. Mach-Zehnder interferometers 

An optical fiber MZI is used to fabricate the vital signs monitor by Yu 

et al. [73]. The MZI can be integrated into a mattress or a cushion for different 

position measurements such as lying and sitting positions. The optical fiber 

MZI consists of two 3dB couplers, which are used as the light splitter and 

coupler, as shown in Fig. 2.2. The incident light from the laser diode is 

divided into two beams by the lead-in 3dB coupler, and then enters the 

reference and sensing arms. Since there is a slight difference between the 

length of two arms, the phase difference is introduced. The two beams 

recombine and form interference at the lead-out 3dB coupler. The low-speed 

PD placed at the end of the sensor can convert the variational optical signal 

into an electrical signal. Thus, the vibration signal derived from the subject 

sitting or laying on the sensing arm can introduce phase changes in the 

interferometer and be detected by PD, which is the BCG signal. 
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Fig. 2.2. The structure of optical fiber MZI. 

2. Michelson interferometers 

There are also some studies using MI to fabricate the BCG monitor, such 

as works from Šprager et al. [76]. The structure of a MI is shown in Fig. 2.3, 

which contains a 2×2 coupler, two mirrors, and SMFs. The 2×2 coupler in the 

MI can divide the light from the laser source into two beams and enter the 

reference and sensing arms, respectively. The two lights will be reflected by 

the mirror placed at the end faces of two arms, and then coupled by the 2×2 

coupler. The interference light can be detected by the PD. Similar to MZI, the 

phase changes introduced in the MI by BCG signals can be detected.  

3dB coupler Single-mode fiber 

Optical input

Optical output

Sensing arm

Reference arm

 

Fig. 2.3. The structure of optical fiber MI. 

3. Sagnac interferometer 
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An optical fiber Sagnac interferometer (SI) is also investigated in vital 

signs monitoring by Qu et al. [77]. In the experiment, a section of single-mode 

polarization maintaining fiber (PMF) is inserted in the Sagnac loop, as shown 

in Fig. 2.4. Due to the specific structure of PMFs such as panda and elliptical-

clad types, these fibers own two polarization modes including vertical and 

horizontal polarization modes. These two modes have slightly different phase 

velocities and thus the phase difference is introduced. Inside the 

interferometer, the incident light from the laser diode is split into two counter 

light beams by the 3dB coupler and propagates in the Sagnac loop. After 

passing through the PMF, the phase difference of two light beams is formed. 

Finally, they interfere with each other within the 3dB coupler. According to 

this principle, the PD placed in the lead-out single-mode fiber can detect the 

heartbeat and respiration signals from the subject laying on the mattress with 

a Sagnac loop. 

3dB coupler Single-mode fiber PMF

Optical input

Optical output

Sagnac loop

 

Fig. 2.4. The structure of optical fiber SI based on PMF. 

4. In-line interferometer 

In recent years, in-line MZI based on modal interference has been widely 

investigated and developed for the application of sensing due to the compact 
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structure. Various special optical fibers-based in-line MZIs are also used to 

detect BCG signals. For example, FMF-based in-line MZIs have been 

demonstrated for vital signs monitoring, in which two types of FMF, dual-

mode fibers and four-mode fibers are adopted. FMF can support a few high-

order modes propagating in the fiber and thus the interference can be formed 

between different modes in the single fiber. The core offset is a common 

method to excite different modes in the FMF and fabricate the in-line MZI. 

An SMF-FMF-SMF with a single core-offset structure is adopted to fabricate 

an in-line MZI-based BCG monitor [78]. 

Dual-mode fiber is a type of FMF, which can support the first two modes, 

LP01 and LP11 modes, in the fiber. Misaligning a fused cross section between 

lead-in SMF and dual-mode fiber can excite the LP11 mode. The excitation 

ratio of LP01 and LP11 will change at different core-offset distances. LP11 

mode will have the highest excitation ratio at a suitable distance, and the 

excitation ratio of LP01 and LP11 modes are equal at this distance. LP01 and 

LP11 modes will form modal interference and the light can be collected at the 

second junction between dual-mode fiber and lead-out SMF without another 

core-offset structure. Four-mode fiber is another kind of FMF that can support 

the first four modes, LP01, LP11, LP21, and LP02 modes in the fiber. The SMF-

FMF-SMF structure with an optimized core-offset distance can also excite 

high order modes and form modal interference in the four-mode fiber. The 

mode field distributions of LP01, LP11, LP21, and LP02 are shown in Fig. 2.5(a) 

to (d). 
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Fig. 2.5. The mode field distributions of (a) LP01, (b) LP11, (c) LP21 and (d) LP02. 

MCF has several cores arranged in different ways in a single fiber, which 

aims to improve communication capacity. An in-line MZI based on the seven-

core fiber is proposed to monitor BCG signals [79]. To excite seven cores in 

the fiber, MMF is utilized. The mode field distributions of MMF and seven-

core fiber (SCF) are shown in Fig. 2.6(a) and (b). SMF-MMF-SCF-MMF-

SMF structure, MSM for short, is adopted to fabricate the in-line MZI. The 

MMF at the first junction between lead-in SMF and SCF works as a light 

beam splitter and coupler, which can enlarge the light beam. The propagating 

light from SMF can be better coupled to seven cores in the SCF. Moreover, 

the MMF at the second junction between SCF and lead-out SMF is to collect 

the interference light from SCF. Therefore, each core can be excited, and then 

lights will form interference in the optical fiber. 
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(b)(a)  

Fig. 2.6. The mode field distributions of (a) MMF and (b) SCF. 

2.3  Traditional phase interrogation schemes 

Though the optical fiber interferometer owns many merits, the problem of 

signal fading will also degrade the signal quality, which results in unsatisfied 

performance in long-term vital signs monitoring. Many demodulation 

schemes including homodyne and heterodyne methods are applied to address 

the signal fading problem. However, there are also some limitations on 

demodulating the vital signs signals from optical fiber interferometers with 

special structures. Some signal demodulation methods such as the PZT-based 

phase demodulation cannot be integrated into the compact vital signs monitor 

due to its bulky size. There are two feasible methods to solve the signal fading 

problem, which achieve desirable results. 

1. 3×3 coupler interrogation scheme 

3×3 coupler interrogation scheme is a common method to demodulate 

the phase information in the interferometer. It can also be used in the 

interferometer-based BCG monitoring system to reconstruct BCG signals and 

solve the signal fading problem [80]. The structure of an MZI based on a 3×3 

coupler interrogation scheme is shown in Fig. 2.7, in which the system 

consisted of a distributed feedback laser (DFB laser), an MZI, and three PDs. 
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In this interrogation scheme, the lead-out coupler has three outputs with a 

phase difference of 120° between any two PDs, and the output optical 

intensities from three PDs can be measured as 

𝐼1 = 𝐷 + 𝐼0 𝑐𝑜𝑠 [𝜑(𝑡) −
2𝜋

3
], 

𝐼2 = 𝐷 + 𝐼0 𝑐𝑜𝑠[𝜑(𝑡)] , (2.1) 

𝐼3 = 𝐷 + 𝐼0 𝑐𝑜𝑠 [𝜑(𝑡) +
2𝜋

3
], 

where 𝜑(𝑡)  contains the initial phase difference and phase difference 

variation introduced by vital signs and environmental noise. D and I0 are 

constants related to optical intensities. I1, I2, and I3 are the optical intensities 

of PD1, PD2, and PD3, respectively. Through the differentiate and cross-

multiplying demodulation algorithm, 𝜑(𝑡) can be extracted.  
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Fig. 2.7. The structure of an MZI based on 3×3 coupler interrogation scheme. 

2. Phase generated carrier interrogation scheme 

In addition to the 3×3 coupler interrogation scheme, the phase generated 

carrier (PGC) interrogation scheme is also applied to demodulate the BCG 
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signal [81]. The PGC interrogation scheme is a widely used passive 

demodulation method, which owns the merits of high resolution, large 

dynamic range, and good linearity [82]. In principle, the PGC demodulation 

method introduces a high-frequency signal in the interferometer and the 

measurand is modulated to the sideband of the carrier signal. Thus, the 

measurand can be free from low-frequency noise and then interrogated by the 

demodulation algorithm such as differential cross multiplication (DCM) and 

arctangent. There are two modulation methods in the PGC scheme, including 

internal and external modulation. The internal modulation generates the 

carrier signal by modulating the frequency of the laser while the external 

modulation completes it by driving the PZT wrapped with one arm of the 

interferometer. As the large size of PZT is difficult to be integrated into the 

cushion or mattress-type sensing system, the internal modulation is adopted 

in the experiment. 

The structure of a PGC demodulation method-based vital signs monitor 

is shown in Fig. 2.8. The light source is a vertical-cavity surface-emitting 

laser (VCSEL). The wavelength of this laser can be modulated by driven 

voltage and thus a high-frequency carrier signal can be introduced in the 

interferometer. The modulated interference signal detected by PD is described 

as 

𝐼 = 𝐴 + 𝐵 𝑐𝑜𝑠[𝐶 𝑐𝑜𝑠(𝜔0𝑡) + 𝜑(𝑡)] , (2.2) 

where constant A and B are the direct current component and the mixing 

efficiency of the interferometer. C and w0 are the amplitude and frequency of 
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the modulation signal. (t) contain the intended signal and phase drift. After 

signal processing, heartbeat and respiration signals can be obtained. 
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Fig. 2.8. The structure of an MZI based on the PGC demodulation method. 

Though these traditional phase interrogation schemes can solve the 

problem of signal fading in the BCG monitoring system, they greatly increase 

the cost and complexity of hardware in the system. Therefore, we proposed a 

new phase compensation method based on the closed-loop system. 

2.4  An MZI-based BCG monitor with phase 

compensation system 

2.4.1  Experiment setup 

The BCG monitoring system is shown in Fig. 2.9. It consists of the MZI-

based  BCG monitor, phase shifter, and PID controller, the detailed 

introduction of which is presented in the subsequent section. The MZI and 

phase shifter are fixed on a plastic substrate, which can be packaged as a smart 

cushion to achieve non-invasive BCG monitoring. The sensing area for BCG 
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signal detection of sitting subjects is highlighted as the yellow dotted box. 

The light source is a DFB laser operating at 1550 nm while the receiver is a 

low-speed PD. The arms of MZI, including the sensing arm and reference arm, 

are fixed in parallel form. The phase shifter is placed outside the sensing area, 

which is used to maintain the interferometer system in quadrature by a PID 

controller. The received signal in the PD will be divided into two channels. 

Channel 1 (CH1) is the raw data and channel 2 (CH2) is obtained results 

through a low-pass filter (LPF), which will be fed into the PID controller. The 

controller can compensate for the phase drift to make sure the system works 

at the quadrature point (Q-point) through the phase shifter. The raw data from 

CH1 is collected by a data acquisition (DAQ) card (National Instrument, 

USB6001).  
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Fig. 2.9. The BCG monitoring system. 

The BCG monitor is based on the highly sensitive optical fiber MZI. The 

optical fiber MZI contains two 3dB couplers, which work as optical splitter 

and optical coupler to form interference. A PD is used to convert the BCG-



44 

 

related variational optical intensity signal to the electrical signal. The output 

optical intensity I can be expressed by 

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 𝑐𝑜𝑠(𝜑) , (2.3) 

where I1 and I2 are output optical intensities from two arms and φ is the optical 

phase difference within these two arms, which can be given by 

𝜑 =
2𝜋𝑛

𝜆
(𝐿1 − 𝐿2) =

2𝜋𝑛

𝜆
𝛿𝐿, (2.4) 

where λ is the central wavelength of the laser and n is the refractive index of 

standard optical fiber. L1 and L2 are the lengths of two arms while L is their 

length difference. The effective length difference between the sensing and 

reference arms can be adjusted to improve the sensitivity and dynamic range 

of the system.  In MZI design, the two arms of the interferometer are about 

40 cm long and their length difference is 5 mm. These two arms are bent side 

by side without overlap in a semicircle form and packaged on a plastic 

substrate integrated into a cushion. When the subject sits on the cushion, the 

body recoils resulting from heartbeats introducing phase difference in the 

interferometer, and the corresponding intensity variation can be used for BCG 

signal extraction.  

For MZI, the signal fading effect is a common problem, in which the 

bias point will shift, and the sensitivity will change accordingly. Finally, it 

can lead to BCG signal distortion. There are many phase modulation methods 

to solve this problem, such as active homodyne and passive homodyne. Our 

proposed phase modulation method is based on the active homodyne method, 

in which a moving-coil transducer is used as the phase shifter to keep the 
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system in quadrature (φ = π/2). The phase shifter with a compact size can be 

easily integrated into the smart cushion without any bulk component. 

2.4.2  Phase shifter based on moving-coil transducer 

In the BCG monitoring system, we use a compact moving-coil transducer as 

the phase shifter, the size of which is 18(Length)×12(Width)×3(Height) mm. 

It is an off-the-shelf component with low cost. Compared with bulky PZT, 

the moving-coil transducer can be easily integrated into the cushion-type 

BCG monitor. In addition, unlike the PZT-based method, additional bending 

loss will not be introduced by the transducer since the optical fiber is directly 

fixed on the transducer instead of coiling. As shown in Fig. 2.10(a), the 

transducer is embedded in the plastic substrate and the reference arm of MZI 

is tightly fixed on the surface of the transducer. Figure. 2.10(b) is the sketch 

of the moving-coil transducer, in which the coil is placed in the magnetic field. 

When the driven current changes, a tiny displacement, which is perpendicular 

to the fixed optical fiber, is introduced by the transducer resulting from the 

electromagnetic induction, as shown in Fig. 2.10(b). The relationship between 

the displacement x and driven current I can be given by 

𝑥 =
𝐵𝐼𝐿𝑁

𝑘
, (2.5) 

where B, L, N, and k are magnetic field intensity, length of the coil in the 

magnetic field, number of turns in the coil, and the elastic coefficient of spring, 

respectively. Therefore, the strain will be introduced in the optical fiber by 

the tiny displacement derived from the transducer, and thus the phase can be 

modulated and controlled by the transducer. 
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Fig. 2.10. (a) Integrated MZI with a transducer. (b) Sketch of the moving-coil transducer. 

The output intensity of MZI presents a cosine waveform with the 

increasing driven current from -100 mA to 100 mA on the transducer, as 

shown in Fig. 2.11. Then, the induced phase change under the driven current 

can be calculated as 0.22 rad/mA. Therefore, by altering the driven current of 

the transducer, the phase drift will be compensated, and the system can be 

kept in quadrature. 
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Fig. 2.11. The relationship between resultant output cosine signal in the MZI (a) and driven 

current (b). 

2.4.3  Compensation method 

To maintain the MZI system in quadrature, we use a PID controller to control 

the moving-coil transducer-based phase shifter. The MZI, phase shifter, and 

PID controller form a closed-loop control system. The PID controller consists 
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of the proportional, integral, and derivative terms. The detailed principle is 

described in Fig. 2.12(a). The set point (SP) and process variable (PV) are the 

desired value and the feedback value, respectively. Error is the difference 

between SP and PV. Based on the error obtained from the subtractor, the PID 

controller outputs the control variable (CV) according to the following 

equation: 

𝑈(𝑡) = 𝐾𝑃 (𝑒(𝑡) +
1

𝑇𝐼
∫ 𝑒(𝑡)𝑑𝑡 + 𝑇𝐷

𝑑𝑒(𝑡)

𝑑𝑡
) , (2.6) 

where U(t) and e(t) represent CV and error at time t, and KP, TI and TD are the 

coefficients of proportional, integral, and derivative controller [83]. The 

phase shifter will work to compensate for the phase drift and output PV 

accordingly, and the PID controller will work after receiving PV and calculate 

the error to update the CV in the closed-loop control system according to Eq. 

(2.6). 
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Fig. 2.12. (a) Principle of the closed-loop control system with PID controller. (b) Variation 

of optical intensity toward driven current. (c) Electrical signals in the time domain. 
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The detailed compensation process is shown in Fig. 2.12(b) and (c). 

Figure. 2.12(b) represents the variation of output optical intensity toward 

driven current and Fig. 2.12(c) is the electrical signals from PD in the time 

domain. In our BCG monitoring system, SP is the desired value (Q-point, φ 

= π/2), which is set as half of the peak-to-peak value in the output waveform. 

PV is the filtered signal in CH2, and CV is the driven current of the phase 

shifter. The error at time tx is the value of SP minus PV, as shown in Fig. 

2.12(c), which can be obtained by the PID controller. Based on the calculated 

error and Eq. (2.6), the PID controller will adjust the phase shifter, in which 

the moving-coil transducer works based on Eq. (2.5) to eventually keep the 

MZI system in quadrature. When the error is less than 0, as shown in area 1 

and area 3 of Fig. 2.12(b), CV will decline accordingly to keep the system in 

quadrature. Inversely, in area 2 and area 4 of Fig. 2.12(b), the error is large 

than 0, and CV will increase to pull the bias point back to the Q-point. The 

time constant of PID is 5 ms. In consequence, the bias point will be kept in 

the Q-point of the rising edge. Prior to data collection, the system needs 

calibration. A manual mode is set in the system, in which the phase shifter is 

triggered to generate cosine waves, and SP is obtained as half of the peak-to-

peak value. As presented before, the dynamic range of the phase shifter is 44 

rad. In addition, to keep the system up, a CV reset method is introduced and 

the driven current will be reset to 0 mA when the driven current reaches the 

limit of ±100 mA. Therefore, according to this compensation way, the BCG 

monitoring system can always work in the Q-point of a rising edge with stable 

performance and the BCG signal can be obtained with the desired waveform. 
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2.4.3  Result and discussion 

The experiment setup is shown in Fig. 2.13. When the subject sits on the smart 

cushion, vibration signals from the body recoils in reaction to the heartbeat 

can be caught, and the BCG signal is recorded by the DAQ card. Since the 

sensor does not directly attach to the skin surface, it belongs to non-invasive 

and non-attached heartbeat monitoring. To compare the results with and 

without the proposed phase modulation method, we directly collect the signal 

from CH1 first and then activate the closed-loop control system for 

continuous new data collection. The summarized results are shown in Fig. 

2.14. In the first 7-second duration marked with the red background, only part 

of BCG can be obtained due to the aforementioned signal fading effect, and 

these signals are distorted as the result of bias point deviation. In contrast, 

when the closed-loop control system is activated, the signal fading effect is 

mitigated and the system keeps working on the Q-point. The collected new 

BCG signal is shown in the last 13 seconds. It can be seen that the baseline 

drift introduced by ambient noise is removed and desired BCG signal with 

specific peaks, including I, J, and K peaks, can be obtained successfully and 

continuously. In BCG-related healthcare applications, I, J, and K peaks play 

important roles in specific vital signs measurement and even disease 

diagnosis. The result demonstrates that our proposed phase modulation and 

compensation method can realize long-term BCG monitoring.  



50 

 

Laser

Closed loop control

PD
DAQ card

Plastic substrate

Sensing area
CH1

CH2
LPF

Phase shifter

Smart cushion

Optical fiber

3dB coupler

PID controller

Wire

BCG

sensors

 

Fig. 2.13. The experiment setup. 
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Fig. 2.14. Raw data of BCG signals. 

Since the BCG waveform changes from person to person, we collected 

signals from 7 subjects in health conditions to evaluate the performance of 

our sensor, of which three are male and four are female. Figure. 2.15 shows 

the raw BCG signals from these subjects based on the MZI with phase 

compensation, and each data lasts for 10 seconds. It can be seen that the 

baseline introduced by breath and ambient noise can be eliminated by the 

phase compensation method for 7 subjects. Most J peaks of subjects with 

different HRs can be detected clearly by the sensor. The results show that the 

proposed BCG monitor has good adaptability for different subjects. 
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Fig. 2.15. Raw BCG signal from 7 subjects. 

2.5  Summary 

In this chapter, the optical fiber interferometer-based vital signs monitor and 

traditional phase interrogation schemes are introduced first. Then, we propose 

a BCG monitoring system based on an optical fiber interferometer with a low-

cost and easily integrated phase shifter. The proposed moving-coil 

transducer-based phase shifter can maintain the optical fiber interferometer 

system in quadrature by the PID controller. The signal fading problem can be 

solved successfully and a BCG signal with good quality can be obtained. The 

proposed BCG monitoring system can implement long-term and stable BCG 
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monitoring for users, which has tremendous potential in future healthcare 

applications.  
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Chapter 3 

Individual heartbeat detection algorithms 

 

3.1  Introduction 

A complete BCG consists of H, I, J, K, and L waves, as described in chapter 

1. The J peak is the most obvious in the BCG and it is usually used to calculate 

the HR. Since BCG is related to the body recoils of the subject, it can be 

interfered and distorted by the motion artifact and ambient noise during the 

measurement. A segment of BCG is shown in Fig. 3.1, which contains the IJK 

complex and body movement noise. To calculate the HR and further analyze 

the IJK complex, the individual heartbeat detection algorithm is crucial for 

BCG signal processing. 

 

Fig. 3.1. A BCG segment. 

Currently, many signal processing methods are proposed to locate the J 

peak or IJK complex in the BCG signals. Among them, template matching is 

a common method based on the correlation between a fixed heartbeat 

I

J

K

Body Movement NoiseJ-J Interval
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template and the obtained signal [84]. Other than that, the dispersion-

maximum algorithm is also adopted to detect the J peak and calculate the HR 

[85]. In addition, machine learning algorithms, such as k-means clustering 

[86] and SVM [87], are proposed to classify different peaks and thus extract 

J peaks from BCG signals. Also, a composite method consisting of CNN and 

an extreme learning machine (ELM) is used to detect the IJK complex [88]. 

However, these methods are limited on some points. For example, the 

template matching method depends heavily on the fixed individual heartbeat 

template while the waveforms of BCG signal are variable, which results in 

low robustness. Traditional machine learning algorithms, which are 

commonly used in classification tasks, need to design and extract features. 

The process is time-consuming and largely depends on expert knowledge. 

Although the deep learning algorithm, which can directly extract features, is 

used in [88], the ECG is necessary to assist in the segmentation of the BCG 

signal to find the approximate location of J peaks.  

In this chapter, we first present a CNN model to recognize the induvial 

heartbeat IJK-complex from background and body movement data based on 

the collected signal. The accuracy of the test set is 98.3%, indicating that the 

network performs well in this classification task. Though the accuracy of the 

model is high, this algorithm needs a series of pre-processing works, which 

are time-consuming and unrealistic in a real-time system. Therefore, we 

propose an end-to-end deep learning algorithm based on a modified U-net to 

segment the IJK complex and body movement signal in high resolution from 

the BCG. The features can be learned by the network during training without 
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other features engineering. More importantly, the BCG signal can be directly 

fed into the network without much processing, such as removing the body 

movement signal, which largely simplifies the signal processing.  

3.2  Heartbeat detection based on convolutional neural 

network 

3.2.1  Method 

CNN is one of the most popular algorithms in deep learning, which is widely 

used in the task of image processing [89-90]. The CNN is well suited for the 

classification tasks and thus many researchers utilize CNN to identify 

different types of individual heartbeat segments. Whiting et al. proposed an 

RNN model to identify waveforms with cardiac abnormalities in the PGG 

signals [91]. Kachuee et al. built a 13 weight layers CNN to classify five 

different arrhythmias based on ECG signals [92]. Inspired by this research, 

we develop a 10-layer CNN to identify the IJK complex in the BCG signal. 

The obtained BCG signals are used as inputs and fed into the proposed 

CNN model for the J peak detection task, the network architecture of which 

is shown in Fig. 3.2. The network consists of 1-D convolutional layers, max 

pooling layers, an FCL, and an output layer. Each 1-D convolutional layer in 

the network has 16 filters, the size of which is 5. ReLU activation function is 

used in each convolutional layer. In addition, the size and stride of max 

pooling layer are both 2. We use a global max pooling followed by an FCL 

with 64 neurons instead of directly flattening the last convolution layer, which 

is less prone to overfitting [93]. Finally, the output layer with SoftMax 
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activation function can generate a distribution over 3 types of classes, 

including IJK complex, background, and body movement signals. In total, the 

network has 10 weight layers.  
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Max Pool

Conv1D

Conv1D

Max Pool
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Conv1D

Max Pool
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Conv1D

Global Max Pool

FC

Softmax  

Fig. 3.2. The architecture of a proposed CNN. 

The raw data is collected from different subjects in healthy conditions 

and the sampling rate is 1000 Hz. During data collection, the subjects are 

required to sit on the smart cushion and remain still for several minutes. To 

collect uniform body movement data, subjects are asked to move multiple 

times. In the collected data, baseline drift is removed by the phase 

compensation system and the signal is normalized to the range of  0 to 1. A 

segment of raw BCG data lasting for 1000 ms is shown in Fig. 3.3(a). The 

200 ms data before and after the J peak in the red dashed box is selected as 

the IJK complex segment, which contains useful information including I, J, 
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and K peaks for further study. The 400 ms data segment followed by the 

extracted IJK complex segments in the yellow dashed box is selected as the 

background signal segment. In addition, the collected body movement signals 

are divided into 2250 data segments, each lasting 400 ms. Due to the intensity 

of the BCG signal varying among different subjects, IJK complex segments 

will be zoomed into different intensity scales and fed into the network to 

enhance the performance of the model. Three types of samples including IJK 

complex segments, background segments, and body movement segments are 

shown in Fig. 3.3(b) to (d). In total, 11664 samples are fed into the network 

to train the model, and the ratio between the training set and the validation set 

is 8 to 2.  
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Fig. 3.3 A detailed BCG signal segment (a) and training samples of IJK complex segment 

(b), background segment (c) and body movement segment (d). 
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3.2.2  Result and discussion 

In the experiment, the Adam optimization method [94] with default 

parameters (learning rate: 0.001, beta-1: 0.9, beta-2: 0.99) and cross entropy 

loss are used as the optimizer and the loss function to train the network. 

During the training process, the best parameters of the network are saved 

when the highest accuracy of the validation set is obtained. To test the 

performance of the network, we use 3293 samples including IJK complex 

segments, background segments, and body movement segments as the test set. 

Finally, the accuracy result of the test set is 98.3%, which shows the network 

performs well on the task of identifying the IJK complex in the BCG signals.  

The workflow of the heartbeat detection algorithm is shown in Fig. 3.4. 

The candidate J peaks are first selected by the local maxima method. Then, 

the 200 ms data before and after the candidate J peak is segmented as the 

candidate IJK complex segment. Finally, the CNN model can give a 

prediction of the input segment. Figure. 3.5 shows four groups of BCG data 

lasting for 10 seconds from three subjects in the test set. The red, yellow, and 

green dots in the figure represent IJK complex, background, and body 

movement signals respectively based on the prediction of the network. It can 

be clearly seen that the correct positions of the IJK complex can be detected 

in the BCG signal. In addition, the BCG data including sinus arrhythmia can 

be detected, as shown in Fig. 3.5(c). The sinus arrhythmia signal includes a J 

peak segment followed by a background segment, which is different from the 

common noise signal such as disruption of system reset shown in Fig. 3.5(d). 
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Though the accuracy of the test data is high, the proposed CNN-based 

heartbeat detection scheme needs to select and segment candidate J peaks in 

advance, which is time-consuming and unrealistic in a real-time system. As a 

result, we present an end-to-end algorithm based on the modified U-net to 

improve the heartbeat detection algorithm. 

Candidate J peak 

selection
Segment CNN & Prediction

 

Fig. 3.4. The workflow of the heartbeat detection algorithm based on CNN. 
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Fig. 3.5. BCG data with the prediction from CNN: (a) BCG signal of subject 1. (b) BCG 

signal of subject 2. (c) BCG signal with sinus arrhythmia from subject 3. (d) BCG signal 

with the noise of system reset from subject 3. 

3.3  End-to-end heartbeat detection algorithm based 

on U-net 

3.3.1  Method 

U-net [95] is a widely used high-resolution segmentation algorithm and it has 
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been demonstrated with excellent performance in the task of biomedical 

image segmentation. U-net can perform pixel-wise classification, which 

means each pixel is assigned to one type of class. U-net is based on the CNN, 

consisting of the contracting path and expansive path. In the contracting path, 

the size of the feature map will be reduced by the pooling operation, and in 

contrast, the output resolution can be increased by the upsampling operation 

in the expansive path. Therefore, the segmentation map in the output layer 

will have the same size as the input segment, and it can give the prediction of 

the input segment at the pixel level, which is a pixel-to-pixel mapping. 

BCG is a flexible signal and varies from person to person. The U-net is 

modified to extract the location information of the IJK complex and body 

movement signal, which can be used for beat-wise BCG analysis. The 

architecture of the modified U-net is shown in Fig. 3.6, in which three 

contracting and expansive stages are included. The left part is the contracting 

path, each stage in which consists of repeated two 15×1 1-D convolutional 

layers with ReLU activation function followed by a 2×1 max pooling layer 

with stride 2 to halve the size of feature maps. The number of filters (nf) in 

the convolutional layer doubles at each downsampling stage. The right part is 

the expansive path, and at each stage, an upsampling layer followed by a 2×1 

convolutional layer is used to double the size of the feature map and halve the 

number of feature channels. The feature map in the corresponding contracting 

stage is directly duplicated and combined with the upsampled feature map in 

the expansive path. The combined feature map is followed by two 15×1 1-D 

convolutional layers with ReLU and the filter number of convolutional layers 
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is halved at each upsampling stage. Compared with the conventional U-net, 

since we use the same padding instead of valid padding in the convolutional 

layer, cropping is not needed in the concatenation process. Finally, a 

convolutional layer with a SoftMax activation function, the kernel size and 

filter number of which are 1×1 and 3, is used in the output layer to predict the 

class of each sampling point, including IJK complex, body movement signal, 

and background. In total, the network consists of 18 convolutional layers. 
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Fig. 3.6. The architecture of modified U-net. nf is the number of filters in 1-D convolution 

layer. 

Compared to the previous CNN-based heartbeat detection algorithm, the 

raw data are downsampled from 1000 Hz to 500 Hz to reduce the size of the 

modified U-net. All the raw data are segmented with the same data length of 

2048 and one of these segments lasting for 4.096 seconds with both heartbeat 
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and body movement signals is shown in Fig. 3.7(a), in which the intensity is 

normalized. The background, IJK complex, and body movement signal are 

labeled as 0, 1, and 2 in the corresponding sampling point and we can get the 

label with the same size as input data, as shown in Fig. 3.7(b). 
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Fig. 3.7. A BCG segment (a) with corresponding label (b). 

To train the network, we totally collect 1147 segments, in which 4948 

individual heartbeat (IJK complex) and body movement signals are included. 

The ratio between the training set and validation set is 8 to 2. Adam 

optimization method with default parameters (learning rate: 0.001, beta-1: 0.9, 

beta-2: 0.99) is used as the optimizer. The cross-entropy loss is adopted as the 

loss function. In addition, mini-batch gradient descent is adopted and the 

batch size of which is 16. During the training stage, when higher accuracy of 

the validation set is achieved, the parameters of the network will be saved. 

3.3.2  Evaluation metrics 

To evaluate the segmentation performance of the network, three metrics 

including pixel accuracy (PA), mean pixel accuracy (MPA) and mean 
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intersection over union (MIOU) are adopted [96]. PA is the percentage of the 

correctly labeled pixels to the total pixel, which can be given by 

𝑃𝐴 =
∑ 𝑛𝑖𝑖𝑖

∑ ∑ 𝑛𝑖𝑗𝑗𝑖
, (3.1) 

where nij means the number of pixels in class i are assigned to class j. MPA 

represents the mean of pixel accuracy in each class, which can be described 

as 

𝑀𝑃𝐴 =
1

𝑛𝑐𝑙
∑

𝑛𝑖𝑖

∑ 𝑛𝑖𝑗𝑗
𝑖

, (3.2) 

where ncl is the number of different classes. MIOU is a commonly used metric 

in the task of segmentation, which represents the similarity between the 

predicted region and the actual region. MIOU can be given by 

𝑀𝐼𝑂𝑈 =
1

𝑛𝑐𝑙
∑

𝑛𝑖𝑖

∑ 𝑛𝑖𝑗𝑗 + ∑ 𝑛𝑗𝑖 − 𝑛𝑖𝑖𝑗
𝑖

. (3.3) 

Since the BCG signal is one-dimension data, the number of pixels in the 

above equation can be replaced by the number of sampling points in the data. 

3.3.3  Result and discussion 

To test the modified U-net, we use 511 BCG segments from 7 subjects as a 

test set, including 2107 individual heartbeat (IJK complex) and body 

movement signals. These test data were collected on different days and 3 

subjects did not participate in the data collection of the training set. Figure. 

3.8(a) shows the confusion matrix of the test set in the pixel-wise 

classification task. We can calculate the PA, MPA, and MIOU through the 

confusion matrix, which is 99.66%, 99.59%, and 99.18%, respectively. In 

addition, to verify the accuracy of I-K intervals in the predicted IJK complex, 
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we calculate the mean absolute error (MAE) between predicted and actual I-

K intervals in the test set and the result of which is 1.75 ms. The scatterplot 

of predicted versus actual I-K intervals is shown in Fig. 3.8(b). The results 

show the modified U-net performs well on the task of IJK complex and body 

movement segmentation in the BCG data. 
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Fig. 3.8. (a) Confusion matrix of test set. (b) The scatterplot of predicted versus actual I-K 

interval. 

Figure. 3.9 shows five kinds of segmentation results of BCG signal, the 

red line of which is the classification result. Figure. 3.9(a) is a BCG segment 

from one of the subjects, in which we can find that there are six heartbeats 

during 4.096 seconds (82 bpm) and the position of each IJK complex can be 

predicted by the network accurately. Also, to confirm the feasibility of IJK 

complex detection for subjects with different HRs, we select two sets of BCG 

segments from another two subjects with the lower HR (67 bpm) and the 

higher HR (97 bpm) shown in Fig. 3.9(b) and (c), respectively. In addition, 

though the 7 subjects in the experiment are all in healthy condition, we also 

find some BCG segments with occasional sinus arrhythmia from one subject, 
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which may be caused by nervous, as shown in Fig. 3.9(d), and the IJK 

complex can also be segmented accurately. Apart from the IJK complex, the 

network can also implement the segmentation of body movement signals. A 

BCG segment recording the body movement on the chair is shown in Fig. 

3.9(e), and the IJK complex and body movement signal can be segmented 

perfectly by the network. In summary, compared with many existing 

algorithms, our modified U-net is an end-to-end algorithm, and it can 

accurately detect the location information of the IJK complex and body 

movement in the BCG signal without much processing, which is time-saving 

for BCG signal analysis. 
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Fig. 3.9. BCG segmentation results based on modified U-net: (a) BCG signal with HR of 82 

bpm; (b) BCG signal with HR of 67 bpm; (c) BCG signal with HR of 97 bpm; (d) BCG 

signal with occasional sinus arrhythmia; (e) BCG signal with body movement. 
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3.5  Summary 

An accurate individual heartbeat signal extraction algorithm in the BCG 

signal is critical for subsequent HR analysis and CVD diagnosis since motion 

artifacts and ambient noise can interfere with the BCG signal during 

measurement. In this chapter, we first propose a CNN model to identify the 

induvial heartbeat IJK-complex from the background and body movement 

signals. The accuracy result of the test set is 98.3%, and it shows that the 

network performs well on this classification task. However, this model needs 

a series of pre-processing works, which is time-consuming and not realistic 

in the real-time system. Therefore, we develop an end-to-end IJK detection 

algorithm based on the modified U-net to replace it. The PA, MPA, and 

MIOU of the network in the test set are 99.66%, 99.59%, and 99.18%. The 

MAE of the predicted IK interval in the test set is 1.75 ms. The results reveal 

that our proposed network performs well in the job of segmenting IJK 

complex and body movement signals. 
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Chapter 4 

Ballistocardiography reconstruction 

algorithm based on the pix2pix Generative 

Adversarial Network 

 

4.1  Introduction 

To solve the signal fading problem in optical fiber interferometers and obtain 

good-quality BCG recording with I, J, K waves, many modulation and 

demodulation technologies are adopted and investigated. For example, 

traditional schemes, such as 3 × 3 coupler-based demodulation and phase 

generated carrier technique, are introduced to reconstruct the heartbeat and 

breath signals. Furthermore, we adopt the phase compensation method based 

on a close loop control system to address this problem in the previous work 

[97]. The mentioned schemes need additional hardware in the system. 

Therefore, we intend to reduce the complexity and cost of the hardware by 

replacing the modulator and demodulator with a reconstruction algorithm. In 

theory, the detected intensity signal is linear with BCG when the operating 

point is biased at the Q-point in the interferometer. In practice, however, the 
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operating point will deviate from Q-point due to the ambient noise, which 

results in the nonlinear problem in the detected signals. Because of the 

complex mathematical model caused by the dynamic drift of the operating 

point, it is difficult to develop a traditional algorithm to reconstruct BCG 

signals detected from an interferometer based on the intensity interrogation 

mode. 

Deep learning algorithms have evolved rapidly recently and been widely 

employed in various fields [98]. Many deep learning models are successfully 

applied to BCG signal processing, such as BR and HR calculation [99] and 

individual heartbeat detection [100]. In addition, reconstruction algorithms 

have also been extensively investigated based on the deep learning model. 

Among them, various models are applied in the research of optical fiber 

devices to replace traditional solutions. For example, deep neural networks 

[101], U-net [102], and GAN [103] are adopted in image reconstruction 

through multi-mode fibers. Convolutional neural networks are used for mode 

decomposition in the few-mode fibers [104] and multi-mode fibers [105-106]. 

Inspired by these studies, we propose to adopt the GAN to build a 

reconstruction model. GANs are the common generative models, which can 

generate the desired distribution and improve the generative results through 

an adversarial process between generator and discriminator models [107]. 

pix2pix generative adversarial network (pix2pix GAN) is a variant of GAN 

[108]. Its generator has a structure of the encoder-decoder network, which 

can learn the mapping function and be used to build the reconstruction model. 

Although pix2pix GAN is a powerful model for two-dimension image 
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processing, it cannot be directly applied to analyze the time-series signals, 

such as BCG. 

Therefore, the present study is conducted to reconstruct signals from an 

optical fiber interferometer based on the intensity interrogation mode. A BCG 

reconstruction algorithm inspired by pix2pix GAN is proposed based on this 

purpose. To our knowledge, it is the first time to utilize an algorithm to solve 

the signal fading problem in the optical fiber interferometer-based BCG 

monitoring system. It means that additional phase modulators and 

demodulators are no longer needed in the interferometer. In our work, 

parameters of the neural network architecture are investigated and optimized, 

and several metrics are adopted to evaluate the accuracy of reconstructed 

BCG signals and I, J, and K waves. Moreover, we test the performance of the 

BCG reconstruction algorithm with two special BCG signals, which are sinus 

arrhythmia data with specific heartbeat patterns and post-exercise data 

owning variational inter-beat intervals (IBIs), respectively. In conclusion, the 

proposed BCG reconstruction algorithm can solve the signal fading problem 

in optical fiber interferometers innovatively, which could be further applied 

in related applications, such as pulse wave reconstruction in the 

interferometer. 

4.2  Principle 

Our BCG monitoring system is an optical fiber MZI based on the intensity 

interrogation mode. As shown in Fig. 4.1(a), the optical system contains a 

DFB laser, an MZI-based BCG monitor, a PD, and a DAQ card. The optical 
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fibers in the system are SMFs. BCG is a vibration signal that comes from 

body recoils resulting from cardiac activities. When subjects sit on the sensor, 

the phase change introduced by body recoils in the MZI can be detected by 

the optical intensity, which is referred to as raw BCG signals. Since the 

operating point deviates from the Q-point affected by the ambient noise, the 

obtained I, J, and K waves in the BCG will be distorted. It makes the 

subsequent signal processing tasks difficult, such as HR calculation and HRV 

analysis. Instead of using complex modulation and demodulation devices to 

solve the problem, we propose to reconstruct BCG signals based on an 

algorithm by building a mapping model. The model can map raw signals to 

the BCG signal with standard I, J, and K waves, which is called the reference 

BCG signal. As shown in Fig. 4.1(b), reference BCG signals can be collected 

by the reference system [97] and work as the ground truth. In addition to the 

MZI-based BCG monitor, the reference system has a phase compensation 

system to keep the operating point at Q-point. 
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Fig. 4.1. The optical systems of (a) the BCG monitor and (b) the reference BCG monitor 

with a phase compensation system. (c) The overview of the reconstruction method. 

The overview of the reconstruction method is shown in Fig. 4.1(c). We 

assume that the operating point of the raw BCG signal drifts to the red point 

in the change curve of optical intensity with phase. Meanwhile, the operating 

point of the reference system is kept at Q-point, which is the blue point in the 

curve. The output optical intensity of the MZI can be given as 𝐼 = 𝐴 +

𝐵cos(𝜑), where constants A and B are related to the light intensities of two 

arms in the MZI. We use x and y to represent the optical intensities of the raw 

BCG signal and the reference BCG signal, respectively. Therefore, x and y 

can be simplified to 

𝑥 = 𝑐𝑜𝑠[𝜑𝐵𝐶𝐺(𝑡) + 𝜑𝑛(𝑡)] , (4.1) 

𝑦 = 𝑐𝑜𝑠[𝜑𝐵𝐶𝐺(𝑡) + 𝜑𝑛(𝑡) + 𝜑𝑐𝑜𝑚𝑝(𝑡)] , (4.2) 
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where BCG(t) and n(t) are phases introduced in the MZI by cardiac activities 

and ambient noise. 𝜑𝑐𝑜𝑚𝑝(𝑡) = 3𝜋 ∕ 2 + 2𝑛𝜋 − 𝜑𝑛(𝑡)  is the phase 

introduced by the real-time phase compensation system, which keeps the 

operating point at the Q-point of the rising edge by eliminating n(t). Since 

the change curve of optical intensity with phase is approximately linear in the 

reference system, y can be obtained as 𝑦 ≈ 𝐶𝜑𝐵𝐶𝐺(𝑡), where C is a constant. 

The waveforms of x and y are shown in the green and blue lines in Fig. 4.1(c). 

We want to obtain y based on x but it is hard to be solved directly. Therefore, 

we propose to build the mapping model between x and y based on the deep 

learning method, which can be briefly described as 

�̂� = 𝑓𝜃(𝑥) ≈ 𝑦, (4.3) 

where 𝑓𝜃: ℝ𝑁 → ℝ𝑁 is the mapping function and  contains the parameters in 

the mapping model, such as weights in the neural network. x and y are 

discretized by the DAQ card, and ŷ is the reconstructed result based on x. The 

goal of the deep learning algorithm is to optimize  that minimizes the error 

between ŷ and y.  

4.3  Modified algorithm 

The proposed deep learning-based BCG reconstruction algorithm is modified 

from pix2pix GAN. The pix2pix GAN is a kind of conditional generative 

adversarial network (conditional GAN) whose generator and discriminator 

are conditioned on the given information [109]. Compared to the typical 

conditional GAN which generates data based on some simple features, the 

generator structure in the pix2pix GAN is an encoder-decoder network and it 
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can predict from pixels to pixels. Therefore, it can be used to build the 

mapping model between raw and reference BCG signals. However, pix2pix 

GAN is optimized in the image processing and it cannot be directly applied 

in the time domain signals. To cope with this, we modify the pix2pix GAN 

into a 1-D model to fit the BCG reconstruction. 

The modified model consists of a generator (G) and a discriminator (D). 

In our case, G learns the mapping between raw and reference BCG signals, 

and its input is raw BCG data and output is the reconstructed BCG result. D 

helps improve G’s performance through the adversarial process. The training 

process of GAN is shown in Fig. 4.2(a) and there are three steps involved at 

each iteration. In step 1, D is trained to distinguish the true data with the input 

of reference data y. The label of y is 1, which means D is told that the input 

data are true. In step 2, D is trained to distinguish the fake data by feeding the 

generative data G(x). G(x) is generated by G based on raw data x. The label 

of G(x) is 0 representing the fake input data. In step 3, we combinate D and 

G, and the parameters in D are frozen. G(x) is fed into D with label 1, and 

thus G tries to generate data that is close to true data to fool D in this process. 

G will update its parameters in this step. In three steps, raw data x is paired 

with the input data fed into D to improve the performance. The loss function 

in the network refers to [26], which can be shown as 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝛦𝑥,𝑦[𝑙𝑜𝑔 𝐷 (𝑥, 𝑦)] + 𝛦𝑥 [𝑙𝑜𝑔 (1 − 𝐷 ((𝑥, 𝐺(𝑥))))] , (4.4) 

𝐿𝐿1(𝐺) = Ε𝑥,𝑦[‖𝑦 − 𝐺(𝑥)‖1], (4.5) 

𝐺 ∗= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐿𝐿1(𝐺), (4.6) 



74 

 

where x, y, and G(x) are raw, reference, and generated signals as mentioned. 

LcGAN is the conditional GAN loss. LL1 is the Manhattan distance between 

reference and generated samples, which ensures that G is also trained to be 

close to the ground truth instead of only fooling D. Total loss G* mixes the 

conditional GAN loss LcGAN and the traditional Manhattan distance loss LL1 

with weight .  
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Fig. 4.2. (a) Training process of GAN. (b) Architecture of the BCG reconstruction 

algorithm. 
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The architecture of the BCG reconstruction algorithm is shown in Fig. 

4.2(b). The network structure of G is similar to that of the 1-D U-net. During 

the encoding step, the size of feature maps is compressed to half at each 

encoder block. The number of filter channels is double that of the previous 

encoder block, and the initial number is nf. The encoder block consists of a 1-

D strided convolutional layer with LeakyReLU activation function [110] 

followed by batch normalization. In the decoding stage, inversely, the size of 

the feature map doubles, and the channel halves at each symmetric decoder 

block. The skip connections are added between the symmetric layers in the 

encoding and decoding stages. Thus, the input size is equal to the output size, 

which is N × 1. LG represents the number of encoder blocks in G, which is 

related to the performance of G. The network of D is a convolutional 

PatchGAN classifier, which penalizes the input at the scale of patches and 

averages all results as output. The LD is the number of encoder blocks in D 

and the strided convolutional layer can adjust the size of the patch. In the 

experiment, we investigated various combinations of different values of LG 

and LD to optimize the model. 

4.4  Experiment setup and evaluation methods 

To build the mapping model between raw and reference BCG signals, we 

packaged the mentioned two sensors together in a cushion, ensuring that raw 

and reference BCG signals can be detected simultaneously. In the data 

collection stage, the sensors are placed on a stable chair, and the subjects are 

asked to sit on it and keep still. The raw and reference signals from two 
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sensors will be collected simultaneously by the DAQ card (National 

Instrument, USB6001) with a sampling rate of 1000 Hz, and then transferred 

to the computer for further processing, as shown in Fig. 4.3. We collected 

data from multiple healthy participants for a two-week period to make the 

mapping model more resistant to small variations like distinct sitting postures. 

DAQ card PC

sensors

Raw BCG

Reference BCG

 

Fig. 4.3. The experiment setup. 

Since BCG signals cannot be detected when the subject is moving, the 

useless segments of signals caused by body movement are removed 

simultaneously in both raw and reference signals. The sampling rate of signals 

is reduced to 500 Hz in order to limit the peak of memory usage during 

training. A high-pass filter is applied to raw signals to eliminate the baseline 

drift. Since there is a slight time delay between the raw and reference signals 

due to the different working mechanisms of sensors, manual time calibration 

is needed. In addition, the raw and reference signals are divided into segments 

of consistent length N = 2048 (4.096s duration) without overlapping and 

normalized to a range of -1 to 1. These data are used as a basic dataset to train 

and optimize the model. 

In the model, the reconstructed performance is affected by several 

parameters. Three metrics are adopted to estimate the model and optimize 
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these parameters, including Pearson correlation coefficient (PCC), percent 

root mean square difference (PRD), and regression coefficient (bx) [111]. 

PCC refers to the correlative degree between reconstructed and reference 

BCG signals, and a value of 1 indicates a strong positive correlation between 

the two signals. PRD represents the error between reconstructed and reference 

BCG signals and a smaller PRD means the higher performance of the 

reconstruction algorithm. Furthermore, bx estimates the amplitude difference 

between the two BCG signals with a value closer to 1 being better. These 

metrics are shown in Eq. (4.7)-(4.9), where N is the number of samples, and 

Gx, y are reconstructed and reference BCG signals. 

PCC =
∑ (𝐺𝑥(𝑛) − 𝐺𝑥)(𝑦(𝑛) − 𝑦)𝑁

𝑛=1

√∑ (𝐺𝑥(𝑛) − 𝐺𝑥)
2

𝑁
𝑛=1 √∑ (𝑦(𝑛) − 𝑦)2𝑁

𝑛=1

, (4.7)
 

PRD (%) = √
∑ (𝐺𝑥(𝑛) − 𝑦(𝑛))

2𝑁
𝑛=1

∑ (𝑦(𝑛))
2𝑁

𝑛=1

× 100, (4.8) 

𝑏𝑥 =
∑ 𝐺𝑥(𝑛)𝑦(𝑛)𝑁

𝑛=1

∑ (𝑦(𝑛))
2𝑁

𝑛=1

. (4.9) 

Furthermore, another measure adopted to assess the model is based on 

the reconstructed IJK complex in BCG signals. IJK complex, consisting of I, 

J, and K waves, is the most visually obvious part of BCG. The I, J, and K 

waves can be used to estimate important cardiovascular parameters. As 

shown in Fig. 4.4, we use I, J, K waves and I’, J’, K’ waves to distinguish the 

IJK complex in the reference and reconstructed BCG signals. The MAE 

between J-J intervals and J’-J’ intervals is adopted as one metric to evaluate 

the time error of the IBI. Meanwhile, we use the error between I, J, K waves 
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and I’, J’, K’ waves as the additional metrics to evaluate the time delay of the 

reconstructed BCG signals. 

J-J IntervalJ wave

I wave

K wave
J' wave

I'  wave K'  wave

Time delay

J'-J'  Interval

Reference BCG signal Reconstructed BCG signal
 

Fig. 4.4. I, J, K waves in the BCG signal. 

In the basic dataset, the heartbeat patterns are regular and HRs mainly 

range from 60 to 100 bpm. However, the BCG signals may become complex 

in some special cases. For example, the HR may exceed 100 bpm in the post-

exercise condition. To evaluate the performance of the model in different 

scenarios, we collected special BCG signals including sinus arrhythmia data 

and post-exercise data, which own irregular heartbeat patterns and variational 

IBI, respectively. The details of reconstruction results are shown as follows. 

4.5  Result and discussion 

In the training process, since D usually converges faster than G, it is hard for 

the GAN model to balance G and D. If so, the model may fail to learn. 

Therefore, a series of parameters are investigated to balance the performance 

between G and D networks during the adversarial process and get a high-

quality BCG reconstruction result. According to the preliminary experiment, 
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some parameters are determined first. The kernel sizes of G and D networks 

are both 15 × 1, and the number of initial filter channel nf in the first encoder 

block is 16. Adam with a learning rate of 0.0002 is chosen as the optimizer in 

both G and D networks. Mini-batch gradient descent is adopted, and the batch 

size is 32. Weight  in Eq. (4.6) is set as 100. 

In the following experiment, the collected 7256 BCG segments are 

randomly divided into the training set and the test set, the ratio of which is 8 

to 2. The test set has not been used in the preliminary experiment. Since the 

training loss cannot directly reflect the training phase of the GAN model, we 

display a batch of generative signals at a certain iteration cycle and calculate 

mentioned metrics based on the test set to evaluate the training progress. We 

set different combinations of block numbers in the G and D and monitor the 

model performance. Mean PCC, PRD, bx, and MAE between reconstructed 

and reference signals in the test set with different values of LG and LD are 

shown in Table 1. We find that increasing the LG value enhances the 

performance of the model greatly, while the LD value affects the performance 

less. The performance improves marginally when the LG value is set to 8 and 

the size of the model grows dramatically. Therefore, we set the number of 

encoder and decoder block LG as 7 in the G network, and LD in the D network 

is set as 4. 
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Table. 4.1. Mean PCC, PRD, bx, and MAE in the test set with the combination of different 

numbers of blocks in G and D networks. 

LG LD PCC PRD (%) bx MAE 

4 

3 0.915 38.879 0.888 0.117 

4 0.920 38.004 0.897 0.115 

5 

3 0.926 36.459 0.899 0.113 

4 0.930 35.658 0.908 0.110 

6 

3 0.945 31.490 0.910 0.098 

4 0.943 32.007 0.912 0.100 

7 

3 0.952 29.683 0.918 0.093 

4 0.952 29.875 0.920 0.094 

8 

3 0.953 29.936 0.918 0.095 

4 0.953 29.838 0.922 0.094 

As mentioned, two metrics are developed to verify the correctness of the 

reconstructed IJK complex in BCG signals. In the test set, the MAE between 

J-J intervals of reference BCG signals and J’-J’ intervals of reconstructed 

BCG signals is 3.24 ms. The scatterplot of reconstructed J’-J’ intervals versus 

reference J-J intervals is shown in Fig. 4.5(a). In addition, Fig. 4.5(b) is the 

box plot about absolute errors of time delay between I, J, K waves and I’, J’, 

K’ waves, the median of which are all 2 ms. A small minority of the IJK 

complex, which is not detected in the reconstructed and reference segments, 

are excluded from the statistics. The results show the reconstructed IJK 

complex is closed to the reference IJK complex. 
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MAE = 3.24 ms
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Fig. 4.5. (a) Scatterplot of reconstructed J’-J’ intervals versus reference J-J intervals. (b) 

Box plot of absolute errors of time delay between I, J, K waves and I’, J’, K’ waves. 

Then, the heartbeat patterns in the raw BCG signals with varying degrees 

of distortion are demonstrated. Figure. 4.6 is four common types of heartbeat 

patterns in the raw BCG signals. The inset picture is the change curve of 

optical intensity with phase in the MZI, and space , , ,  are corresponding 

to positions where operating points are biased in Fig. 4.6(a) to (d), 

respectively. Among them, the green line in the first row represents raw BCG. 

Red and blue lines in the second row are the reconstructed BCG and reference 

BCG. In Fig. 4.6(a), the operating point is very close to the Q-point on the 

curve with a positive slope, and thus the raw signal is linearly positive with 

the reference BCG signal. As the operating point moves from space  to , 

the raw signal has a nonlinearly positive correlation with the reference BCG 

signal, which results in signal distortion in Fig. 4.6(b). For Fig. 4.6(c), 

although the raw signal is linear with the reference BCG signal, it records 

reversal phase information, which is derived from the operating point being 

near the Q-point on the curve with a negative slope. Finally, the raw signal is 
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nonlinearly negative with the reference BCG signal as the operating point 

drift to space , as shown in Fig. 4.6(d). It can be found that in either case, the 

reconstructed BCG is very close to the reference signal, and PCC between the 

reconstructed and reference BCG signals in Fig. 4.6 are 0.974, 0.979, 0.980, 

and 0.976.  
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Fig. 4.6. Reconstructed BCG waveforms with different operating points in (a) to (d). 

For the worst case, the pattern of the IJK complex in BCG signals is 

difficult to distinguish when the operating point drifts to the critical point (C-

point in Fig. 4.6 inset picture), the waveforms of which are shown in Fig. 4.7. 

Based on the features of I, J, and K waves found in the raw signal, the 

mapping model can reconstruct the BCG signal. The PCCs of reconstructed 

BCG in Fig. 4.7 are 0.969 and 0.976, respectively. Furthermore, the BCG 

segments of subjects with different HRs are shown in  Fig. 4.8(a) and (b). The 
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model maintains high performance for both faster HR (97 bpm) and slower 

HR (66 bpm), in which the PCCs are 0.990 and 0.979, respectively.  

Raw BCG Reconstructed BCG Reference BCG
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Fig. 4.7. Reconstructed BCG waveforms with poor quality of raw signals. 

(a) (b)
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Fig. 4.8. Reconstructed BCG waveforms with different HRs: (a) HR is 97 bpm and (b) HR 

is 66 bpm. 

The heartbeat patterns in the BCG change randomly with the drifting 

operating point. In addition, the number of heartbeat patterns in each segment 

depends on the HR of different subjects. Under such a complicated condition, 

the results show that the model has good adaptability to reconstruct BCG 

signals and the performance is satisfying, which means the BCG 

reconstruction algorithm can be used in further cardiac health analysis. 

Compared to the traditional modulation and demodulation methods, our 

method can reduce the hardware complexity in the system, which makes the 

sensor more portable. In further studies, we will try to reduce the complexity 

of the reconstruction algorithm. Moreover, to further validate the model, we 
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also present the reconstructed BCG of two special cases collected in different 

scenarios in the following two parts. 

4.6  Special cases 

Sinus arrhythmia refers to an irregular heartbeat pattern that happened in 

healthy people, especially the young [112]. The cause of sinus arrhythmia is 

that the sinoatrial node does not pace the heart at a regular rate. Respiration 

is a common cause of sinus arrhythmia, which is called respiratory sinus 

arrhythmia. The HR usually fluctuates in the process of breathing derived 

from the change in vagal tone during different respiratory phases. Therefore, 

respiratory sinus arrhythmia is a significant indicator related to cardiac vagal 

function.  

In the experiment, we found that a few irregular heartbeat patterns are 

collected from one subject. Therefore, we made the subject wear an ECG 

monitor (SparkFun, AD8232) and sit on the sensor to collect ECG, raw BCG, 

and reference BCG simultaneously. Finally, we detected some heartbeat 

segments with sinus arrhythmia and fed them into the model. Part of the 

results is shown in Fig. 4.9, in which the red, blue and purple lines represent 

the reconstructed BCG, reference BCG, and ECG separately. The grey dotted 

boxes show the irregular heartbeat patterns in collected signals. According to 

the ECG patterns, the presented segments are identified as sinus arrhythmia. 

The PCC between the reconstructed and reference segments are 0.915 and 

0.932 in Fig. 4.9. Although the PCC decreases a bit compared to that of the 
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normal BCG reconstructed segment, the reconstruction algorithm still works 

well. 
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Fig. 4.9. Reconstructed BCG, reference BCG, and ECG segments with sinus arrhythmia. 

HRV refers to the temporal variation between the time intervals of 

consecutive heartbeats, which originates from the autonomic nervous system 

of humans [113]. These temporal variations are in connection with a variety 

of physiological disorders, and thus HRV is a significant indicator to access 

physical condition, especially cardiac health. IBI, which is the time interval 

between individual heartbeats, is used to measure the HRV. Officially, the R-

R interval time series in ECG is recommended as the reference IBI. 

Furthermore, the J-J interval time series in BCG has also been successfully 

validated as IBI for HRV analysis during post-exercise conditions [114].  
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Fig. 4.10. The reconstructed post-exercise BCG segments during 3 minutes. (b) The post-

exercise IBI variation of BCG and ECG during 5 minutes. 

Exercise is a noninvasive method to alter the time interval of heartbeats 

and is widely used in HRV analysis experiments [115]. In our work, we 

conducted the experiment of post-exercise BCG signals collection to test the 

performance of the model in variational IBI reconstruction. During data 

collection, one subject whose BCG data were not included in the basic dataset, 

was asked to run for 3 minutes. After that, the post-exercise BCG and ECG 

signals were collected simultaneously for 5 minutes by the sensors. Totally, 

we collected 554 heartbeats, and among them, 551 heartbeats were 

successfully reconstructed. Three segments of reconstructed post-exercise 

BCG segments are shown in Fig. 4.10(a). It can be found that the HR drops 

gradually from 153 bpm to 107 bpm after 3 minutes. Figure. 4.10(b) shows 

the post-exercise IBI variation of BCG and ECG in 5 minutes, of which the 

R-R time interval in the ECG is used as the reference IBI. The PCC between 

the BCG IBI variation and ECG IBI variation is 0.985, which shows the 

reconstructed IBI variations are close to the reference values. 
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4.7  Summary 

In this chapter, we have presented a BCG reconstruction algorithm based on 

the modified pix2pix GAN, which can retrieve BCG signals by solving signal 

fading problems in the MZI without using any additional hardware. This 

model greatly reduces the cost and complexity of the BCG monitoring system. 

The reconstructed BCG signals in the test data achieve satisfying results, of 

which the mean PCC, PRD, bx, and MAE are 0.952, 29.875, 0.920, and 0.094, 

respectively. In addition, we collected special BCG data including sinus 

arrhythmia data and post-exercise data, and the model can reconstruct these 

BCG data in high performance. The BCG reconstruction algorithm creatively 

solves the signal fading problem in the interferometer, and it could be further 

applied in related applications, such as pulse waves reconstructed from the 

interferometer. 
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Chapter 5 

Compressed sensing framework for 

ballistocardiography monitoring based on 

the optical fiber sensor 

 

5.1  Introduction 

Long-term and real-time services are essential for heartbeat monitoring 

whether in the clinic or at home. They can provide early detection of CVDs 

and avoid severe cardiovascular events. Benefiting from the development of 

information technology, vital signs sensors can be integrated with the internet 

of things (IoT) systems to monitor the physiological status, which is called 

the internet of medical things (IoMT) systems. The sensors can monitor the 

vital signs such as heartbeat, breathing, and temperature from users 

continuously and transmit these data to remote facilities for further analysis. 

However, long-term monitoring can produce a lot of data, and IoMT systems 

need to collect and store data from abundant sensors, which both results in 

high pressure on the transmission systems. Thus, it is necessary to develop 

signal compression algorithms for BCG signals. 
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CS is a new signal sampling technique, which can efficiently acquire 

signals with a fewer sampling rate and reconstruct the signals by utilizing its 

intrinsic sparsity [116]. The traditional Shannon sampling theorem requires a 

higher sampling, which results in the requirement of a larger data rate. CS 

overcomes this problem subjecting to certain conditions. Compared to other 

compression methods, CS moves the computational load from sensors to the 

receiving end, which is typically located on the Internet cloud with great 

computational resources. Reconstruction algorithms of CS can be carried out 

in the cloud, and thus reduces the hardware complexity and energy 

consumption of sensors with constrained resources. Benefiting from this, CS 

is widely used for data compression in IoT systems. In recent years, there are 

various research related to physiological signal compression based on CS. For 

example, Xiao et al. adopt an improved segmented weak OMP algorithm for 

compression and reconstruction of ECG and PPG [117]. Chen et al. propose 

a two-stage reconstruction method to recover heart sound signals [118]. 

However, there are few studies about BCG signal compression based on CS. 

Therefore, we prepare to design a CS framework for BCG signals based on 

the optical fiber sensor. 

CS consists of data acquirement, compression, and reconstruction. In the 

first step, signals are obtained and compressed simultaneously through the 

sensing matrix at the sensing end, and then transmitted to the receiving end. 

Low computational complexity is needed since only a matrix multiplication 

is conducted at the sensing end. In the second step, different reconstruction 

algorithms are used to recover signals at the receiving end. Traditional 
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reconstruction algorithms can be broadly divided into three types: greedy 

algorithms, convex optimization algorithms, and Bayesian learning 

algorithms [119]. The principle of most traditional reconstruction algorithms 

is to search for the optimal solution iteratively according to prior knowledge. 

These algorithms are time-consuming and require an assumption about the 

structure of signals, which are not suitable for real-time performance. 

Therefore, fast algorithms are developed to reconstruct the compressed 

signals [120]. Currently, data-driven deep learning models have also been 

applied to address these problems, which can support real-time monitoring  

[121]. 

In this chapter, the principle of CS, as well as three key components 

including sparse representation, measurement matrices, and reconstruction 

algorithms are introduced. To verify the reconstruction performance in the 

BCG signals based on the traditional algorithms, several reconstruction 

algorithms including BP, OMP, and BSBL are applied. Finally, an end-to-end 

deep learning-based reconstruction method for reconstructing BCG signals is 

proposed. The results show that the deep learning model can perform well 

when the CR ranges from 50% to 95%. 

5.2  Compressed sensing 

5.2.1  Principle 

The traditional signal sampling frequency should be subject to the Nyquist 

sampling theorem, which requires the sampling rate to be at least twice the 

highest frequency of the measurement signal to guarantee faithful 
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representation and reconstruction. However, this traditional signal acquisition 

technique has met some challenges. For example, in many situations, the 

frequency of measurement signals is so large that the DAQ cards cannot 

bearable. Even for signals with low frequency, such as heartbeat signals, the 

Nyquist sampling rate will produce a lot of redundant information, which 

increases the burden of wireless transmission. 

CS is a novel signal acquisition technique, and it can reconstruct signals 

using a sampling rate far below the frequency of Nyquist sampling based on 

the sparsity of the detected signals. A basic noisy model can be given as 

𝒚 = 𝚽𝒙 + 𝒗, (5.1) 

where 𝒙 ∈ ℝ𝑁×1  is the measurement signal and its dimension is N. 

𝚽 ∈ ℝ𝑀×𝑁(𝑀 ≪ 𝑁) is the measurement matrix, which is designed to linearly 

compress x. In the 𝚽, any M columns are linearly independent. v is the noise 

introduced by the CS system. In our case, x is the segment of obtained BCG 

signals from the optical fiber sensor. y is the compressed signal with the 

dimension of M and transmitted by the IoMT to the receiving end. Since v 

can be ignored in our case, the model can be reduced to 

𝒚 = 𝚽𝒙. (5.2) 

For many measurements, most natural signals are not sparse in practice. 

The signal can be transformed into the sparse domain by some transform 

algorithms, such as Fourier transform and wavelet transform. Therefore, x 

can be described as 

𝒙 = 𝚿𝜽, (5.3) 
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where 𝚿 ∈ ℝ𝑁×𝑁 is an orthonormal basis matrix of the selected transformed 

domain and 𝜽 is a sparse vector with N dimension. For example, heartbeat 

signals can be expressed by a linear superposition of an orthonormal wavelet 

basis with 𝑆 elements. The equation can be given by 𝒙 ≈ ∑ 𝜃𝑘
𝑆
𝑘=1 𝛹𝑘

2, where 

𝑆 ≪ 𝑁 and 𝛹𝑘 is the wavelet basis. Thus, Eq. (5.2) can be rewritten as 

𝒚 = 𝚽𝚿𝜽 = 𝛀𝜽, (5.4) 

where 𝛀 ≜ 𝚽𝚿 is called a sensing matrix. As mentioned above, 𝜽 is a sparse 

vector, and thus the CS algorithm can reconstruct 𝜽 based on the y and 𝛀. 

Finally, x can be reconstructed by Eq. (5.3). 

To ensure that the S-sparse vector 𝜃 can be efficiently reconstructed by 

y and 𝛀, the sensing matrix 𝛀 must satisfy the restricted isometry property 

(RIP),  

(1 − 𝛿𝑆)‖𝜽‖2 ≤ ‖𝛀𝜽‖2 ≤ (1 + 𝛿𝑆)‖𝜽‖2, (5.5) 

for all S-sparse vectors 𝜽. 𝛿𝑆 is the isometry constant and it must be not too 

close to 1. The RIP ensures that the most important S components of the 

original sparse signal 𝜽 are recorded, and the energy of the original signal can 

be transferred to the sampled signal y. 

Since Eq. (5.4) is an underdetermined equation, it has infinitely many 

solutions. Among all the solutions, the sparsest solution is the desired 

reconstructed signal. Therefore, the problem of solving the equation 𝒚 = 𝚽𝒙 

can be transformed into the minimum 0-norm problem: 

𝑚𝑖𝑛‖𝜽‖0      subject to      𝛀𝜽 = 𝚽𝚿𝜽 = 𝒚. (5.6) 
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Actually, the signal reconstruction issue in the CS is equivalent to the sparse 

decomposition problem, so the existing algorithms of sparse decomposition 

can be applied to the CS signal reconstruction. 

CS theory mainly includes three parts: sparse representation of signals, 

design of the measurement matrices, and signal reconstruction algorithms. 

5.2.2  Sparse representation 

A signal is sparse in one domain when it comprises largely zero entries in that 

domain. For a sparse signal, zero entries can be effectively discarded, and the 

relevant signal information will not lose. The signal is considered to be S-

sparse if it has S nonzero elements in a sparse signal. For a signal of length N, 

𝑁 − 𝑆 signal coefficients can be deleted while the significant information of 

the signal is preserved.  

Most natural signals are not sparse in practice. Therefore, different 

transformation methods such as Fourier transform, discrete cosine transform 

(DCT), and wavelet transform are adopted to find out the features of the signal 

and represent them sparsely. Then, a set of basis in the transformed space is 

used to represent the signal, the decomposition coefficients of which show 

the degree of energy concentration or sparsity of the signal. The 

transformation of the signal in the orthogonal space 𝚿 can be expressed as 

𝑺 = 𝚿𝑇𝒙. S is sparse when the formula can be satisfied: 

‖𝑺‖𝑝 = (∑|𝑠𝑖|
𝑝

𝑖

)

1
𝑝⁄

≤ 𝑅, (5.7) 

where 0 < 𝑃 < 2  and 𝑅 > 0 . How to find the best signal sparse 

representation is the key to CS theory and application. Using an appropriate 
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basis to represent the signal can guarantee the sparsity of the signal and also 

the accuracy of the reconstructed signals. 

5.2.3  Measurement matrices  

Random matrices, such as random matrices with independent and identically 

distributed, are universally appropriate choices for the measurement matrix. 

It is found that a simple pseudorandom design can be used to fabricate several 

efficient measurement matrices, which own low computational power and is 

suitable for embedding in the sensing end. Currently, there are some 

commonly used measurement matrices including random Gaussian matrix, 

random Bernoulli matrix, partial Hadamard matrix, and sparse random matrix. 

1. Random Gaussian matrix 

The random Gaussian matrix is the most extensively used measurement 

matrix. The distribution of each element in the matrix is independent of each 

other and satisfies the Gaussian distribution with the mean value of 0 and the 

variance of 1 𝑀⁄ . Therefore, the 𝑀 × 𝑁 matrix can be expressed as 

𝚽𝑖,𝑗~𝑁 (0,
1

𝑀
) . (5.8) 

The RIP property of the Gaussian random matrix can be satisfied when M 

meets the following formula: 

𝑀 ≥ 𝑐𝑆 log (
𝑁

𝑆
) , (5.9) 

where c is a small constant and S is the sparsity of the original signal. 

2. Random Bernoulli matrix 

In a random Bernoulli matrix, each element is subject to the Bernoulli 

distribution, which can be shown as  
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Φ𝑖,𝑗 = {
+

1

𝑀
    𝑃 =

1

2

−
1

𝑀
    𝑃 =

1

2

  =   
1

𝑀
{

+1    𝑃 =
1

2

−1    𝑃 =
1

2

, (5.10) 

where P is the probability. As a discrete probability distribution, the random 

Bernoulli matrix realizes the randomness of the measurement matrix with 

great probability, thus satisfying the randomness of the process of CS. When 

M satisfies Eq. (5.9), it can satisfy RIP. 

3. Partial Hadamard matrix 

The partial Hadamard matrix is created by randomly selecting several 

rows from the Hadamard matrix. Hadamard matrix is an orthogonal square 

matrix, in which any two rows or columns of the matrix are orthogonal, and 

the determinant of the matrix is ±1. The sum of squares of all elements in any 

row or column is equal to the order of the square matrix, which can be given 

by 

𝑨𝑨𝑇 = 𝑁𝑬, (5.11) 

where A is the Hadamard matrix and 𝑨𝑇 is the transpose of A. E is the identity 

matrix. N is the order of the matrix. For Nth-order Hadamard matrices, N needs 

to satisfy the following conditions, 

𝑁 = 2𝑘, (5.12) 

where k is a positive integer. After the Hadamard matrix is constructed, 

random functions are used to extract M rows from N rows randomly, which 

is a partial Hadamard matrix. 

4. Sparse random matrix 

The sparse random matrix owns a simple structure, which makes it more 

suitable for hardware devices with limited computation. To obtain a sparse 
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random measurement matrix, an empty matrix with a dimension of 𝑀 × 𝑁 is 

built, and then L elements in each column are selected randomly to set to 1, 

and the remaining 𝑀 − 𝐿 elements are set to 0. 

5.2.4  Reconstruction algorithms 

Signal reconstruction is to use the M-dimension measurement signal 𝒚 and 

measurement matrix 𝚽 to reconstruct the N-dimension original signal 𝒙 by a 

reconstruction algorithm. Currently, the widely used reconstruction 

algorithms in CS can be divided into convex optimization algorithms, greedy 

algorithms, and Bayesian learning algorithms, which are shown in the 

following. 

1. Convex optimization algorithms 

In Eq. (5.6), an optimal solution can be obtained only by giving all 

possible linear combinations of 𝐶𝑁
𝑆  positions of non-zero terms in θ. 

Therefore, the solution of Eq. (5.6) belongs to the NP-hard problem. The BP 

algorithm is a type of convex optimization algorithm [122], which converts 

the 0-norm problem into a simpler 1-norm minimum optimization problem. 

Therefore, Eq. (5.6) can be changed into 

𝑚𝑖𝑛‖𝜽‖1      subject to      𝛀𝜽 = 𝚽𝚿𝜽 = 𝒚. (5.13) 

Thus, the sparse signal reconstruction problem becomes a convex 

optimization problem.  

2. Greedy algorithms 

The 1-norm minimization algorithm is not the only method to find sparse 

solutions. Greedy algorithms, such as matching pursuit (MP) and OMP, have 

also been proposed to solve this problem [123]. These algorithms greatly save 
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calculation time and are easy to implement. We set 𝛀 = [𝒃𝟏, 𝒃𝟐, … , 𝒃𝑵], of 

which 𝒃𝒊 is called as the basis or atoms. The algorithm first searches for 𝒃𝒊 

that has the maximum correlation with measurements y. Then, in each 

iteration, it looks for 𝒃𝒊 with maximum correlation with the current residual. 

The estimation of the signal vector is updated according to the index of 𝒃𝒊 

which has the highly correlation with the current residual. The vectors are 

updated iteratively until the set number of iterations is reached or the residual 

is less than the set threshold. 

3. Bayesian learning algorithms 

Most natural signals have a complex structure, and the block structure is 

one of the common structures in natural signals [124]. A sparse signal 𝒙 with 

block structure can be considered as a collection of blocks, which can be 

shown as 

𝒙 = [𝑥1, … , 𝑥ℎ1, … , 𝑥ℎ𝑔−1+1, … , 𝑥ℎ𝑔
]

𝑇

, (5.14) 

{

𝒙𝟏 = [𝑥1, … , 𝑥ℎ1]𝑇 .
…

𝒙𝒈 = [𝑥ℎ𝑔−1+1, … , 𝑥ℎ𝑔
]

𝑇

.

 

where 𝒙𝒊 ∈ ℝℎ𝑖×1, and ℎ𝑖(𝑖 = 1, … , 𝑔) are not necessarily identical. Only a 

few blocks in the sparse signal are nonzero. A signal with this block structure 

is defined as a block sparse signal. Utilizing this block structure can further 

improve the reconstruction result. 

For a block sparse signal, the BSBL framework models each block 𝒙𝒊 ∈

ℝℎ𝑖×1 as a parameterized multivariate Gaussian distribution: 

𝑝(𝒙𝒊; 𝛾𝑖; 𝐁𝑖)~𝒩(0, 𝛾𝑖𝐁𝑖),   𝑖 = 1, … , 𝑔. (5.15) 
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where 𝛾𝑖 is a non-negative parameter, which can control the block-sparsity of 

the signal. 𝛾𝑖 = 0 represents that the 𝑖th block, xi, is a zero block. 𝐁𝑖 ∈ ℝℎ𝑖×ℎ𝑖 

is a positive-definite matrix and it can capture the correlation structure of the 

block xi. Assuming that blocks are uncorrelated to one another, Eq. (5.15) can 

be rewritten as 𝑝(𝒙)~𝒩(𝟎, 𝚺𝟎) , where 𝚺𝟎  is a block-diagonal matrix, in 

which the 𝑖th principal block is equal to 𝛾𝑖𝐁𝑖. The noise vector is assumed to 

follow the multivariate Gaussian distribution and it can be shown as 

𝑝(𝐯)~𝒩(𝟎, λ𝐈) , where λ  is a positive scalar and 𝐈  is an identity matrix. 

Therefore, the block sparse signal can be obtained by estimating all 

parameters of {𝛾𝑖𝐁𝑖}1
𝑔

 and λ based on the maximum-a-posterior estimation, 

and it is commonly done with the Type-II maximum likelihood estimate 

method [125]. 

Three iterative algorithms have been proposed and derived to recover 

the signal, including the expectation-maximization method (BSBL-EM), the 

bound-optimization method (BSBL-BO), and a hybrid of BSBL and group-

lasso type algorithms (BSBL-l1). The BSBL-BO has been applied to 

reconstruct the fetal ECG and achieve a great performance [126]. The 

algorithm can reconstruct the non-sparse signal by setting a 𝛾𝑖 -pruning 

threshold to a small value. In addition, BSBL-BO and other derived 

algorithms from [125] can explore and exploit the correlation structure in 

each block 𝒙𝒊  by estimating the matrices 𝐁𝑖 , which further improves the 

reconstruction performance. 
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5.3  Performance evaluation of traditional 

reconstruction algorithms in BCG signals 

5.3.1  Method 

Currently, most research on CS for biomedical sequence signals is related to 

ECG, PPG, and EEG, while there are few works about the CS framework for 

BCG signals. Therefore, we first verify the CS performance on BCG based 

on several traditional reconstruction algorithms. In the experiment, the DCT 

is used to convert BCG signals into the sparse domain. The random sparse 

matrix is adopted as the measurement matrix. According to the different CRs, 

corresponding measurement matrices are designed, and two examples with 

CR of 50% and 80% are shown in Fig. 5.1. 

CR: 50% CR: 80%  

Fig. 5.1. Measurement matrices with CR of 50% and 80%. 

To explore the performance of reconstruction algorithms in BCG signals, 

we have referred to different studies of reconstruction algorithms in the 

biomedical sequence signal mentioned before. Four kinds of commonly used 

reconstruction algorithms are chosen to investigate the reconstructed 

performance in BCG signals, which are BP, OMP, BSBL-BO, and BSBL-FM. 

As introduced in the last section, BP and OMP are based on the convex 

optimization method and the greedy algorithm, respectively. BSBL-BO and 

BSBL-FM are based on Bayesian learning algorithms. BSBL-BO uses the 
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bound-optimization method to minimize the cost function while BSBL-FM 

adopts the fast marginalized (FM) likelihood maximization method, which is 

a fast algorithm. The algorithms are all implemented in MATLAB, among 

which the CVX toolbox is used to solve the convex optimization issue. 

The performance evaluation process of CS reconstruction algorithms 

consists of four steps: signal sparse representation, signal compression, signal 

reconstruction, and performance evaluation. Each step contains several sub-

steps, and the workflow is shown in Fig. 5.2. In step 1, BCG data are 

converted into a sparse domain based on the DCT. In step 2, the measurement 

matrices based on the sparse random matrices with different values of CRs 

are used to sample the signal. In step 3, several reconstruction algorithms 

including BP, OMP, BSBL-BO, and BSBL-FM are used to recover 

compressed signals. In step 4, three metrics are adopted to evaluate the 

performance of reconstruction under different CRs. 

  

Input

Sparse Representation

Compression

CR = 10 % CR = 80 %

Reconstruction

Evaluation

PCC MSE

BP OMP BSBL-BO BSBL-FM

CR = 70 %CR = 20 %

Step 1

Step 2

Step 3

Step 4

PRD
 

Fig. 5.2. The workflow of CS. 
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5.3.1  Evaluation method 

CR is the measure of the decrease in data required to express a signal. For CS, 

it is a ratio between the lengths of the original and compressed signal vectors, 

which means that the measurement with a fewer dimension of M can 

accurately reconstruct the original signal. CR can be defined as 

𝐶𝑅 =
𝑁 − 𝑀

𝑁
× 100. (5.16) 

where N is the length of the original signal and M is the dimension of the 

compressed signal.  

To evaluate the performance of reconstruction algorithms, we obtain 

compressed BCG signals with different CRs and use PRD, PCC, and MSE to 

evaluate the error between reconstruction signals and original signals. 

5.3.2  Result and discussion 

In this experiment, we collect 2874 segments of BCG signals from our MZI-

based BCG monitor with a phase compensation system. Each segment has 

512 sampling points, and the sampling rate is 250 Hz. The CR ranges from 

10% to 90% and increases by a gradient of 10%. The average PRD, PCC, and 

MSE of each record recovered by four types of reconstruction algorithms 

under different CRs are shown in Fig.5.3. It can be found that BSBL-BO and 

BSBL-FM outperform other reconstruction algorithms. With the increase of 

CR from 10% to 80%, the PRD, PCC, and MSE of BSBL-BO and BSBL-FM 

change in an acceptable range. For BP and OMP, when the CR is low than 

70%, they present good results. However, when the CR reaches 80%, the 

performance of reconstruction results dramatically decreases. The 
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reconstruction waveform of BP and OMP with the CR of 80% are shown in 

Fig. 5.4(a) and (b). 
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Fig. 5.3. The average (a) PRD, (b) PCC, and (c) MSE based on four types of reconstruction 

algorithms under different CRs. 
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Fig. 5.4. Reconstruction results by (a) BP and (b) OMP under CR of 80%. 

The reconstruction results of BSBL-BO and BSBL-FM under the CR of 

80% are shown in Fig. 5.5(a) and (b), in which the BCG waveform can be 

recovered successfully by these two algorithms. Though the performance of 

BSBL-FM is slightly worse than that of BSBL-BO when CR ranges from 10% 

to 80%, the BSBL-FM is dozens of times fast than the BSBL-BO, which is 

more suitable for a real-time monitoring system. However, in the experiment, 

we found that when the CR increases up to 90% or more, the performance of 

these two algorithms deteriorates dramatically, especially BSBL-FM. The 

examples are shown in Fig. 5.6(a) and (b), where are the reconstruction results 

from BSBL-BO and BSBL-FM with CR equaling 93%. Therefore, to solve 

the problem in the CS signal reconstruction with a high CR, we propose to 

use an end-to-end deep learning model to reconstruct BCG signals. 
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Fig. 5.5. Reconstruction results by (a) BSBL-BO and (b) BSBL-FM under CR of 80%. 
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Fig. 5.6. Reconstruction results by (a) BSBL-BO and (b) BSBL-FM under CR of 93%. 

5.4  Deep learning model-based reconstruction 

algorithms for BCG reconstruction with a high CR 

5.4.1  Method 

Traditional CS reconstruction algorithms are based on iteration and need 

more running time, which is not suitable for a real-time monitoring system. 

Though the fast reconstruction algorithm BSBL-FM can solve this problem, 
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its performance in the high CR, such as CR over 90%, is poor. Inspired by 

our previous works, we proposed to use an end-to-end deep learning model 

to reconstruct the compressed BCG signals. The compression and 

reconstruction process can be divided into two steps. In step 1, a sparse 

random matrix with a size of 𝑀 × 𝑁 is adopted as the measurement matrix to 

sample and compress BCG signals simultaneously. In step 2, an end-to-end 

deep learning model is used to reconstruct the compressed BCG signals. 

The architecture of the deep learning model is shown in Fig. 5.7. It is an 

end-to-end model, which means that the compressed signals can be directly 

input into the model. The proposed deep learning model consists of an FCL 

and a modified U-net network. The FCL is used to map the compressed signal 

from M dimension to N dimension. The activation function of FCL is tanh, 

which outputs the value from -1 to 1. It can speed up the following training 

process and improve the accuracy of the model. The feature map with the size 

of 𝑁 × 1 is then fed into a modified U-net, which can reconstruct the BCG 

signals. The architecture of the U-net is modified from our previous work in 

chapter 3. We have conducted a series of experiments to optimize the hyper-

parameters in the neural network. Compared to our previous network, we use 

a larger kernel size of 25×1 to extract features in the raised-dimension signals. 

The number of filters (nf) is 64, which doubles at each down-sampling stage 

while halves at each up-sampling stage. The activation function in the 1-D 

convolutional layers is ReLU except for the last output layer, in which we do 

not use any activation function. 
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Fig. 5.7. The architecture of the CS reconstruction algorithm. 

To train the network, we have collected 14370 segments from our MZI-

based BCG monitor with a phase compensation system. Each segment owns 

512 sampling points, and the sampling rate is 250 Hz. The ratio between the 

training, validation, and test sets is 6, 2, and 2. Adam optimization method 

[49] with default parameters (learning rate: 0.001, beta-1: 0.9, beta-2: 0.99) 

is used as the optimizer. MSE is used as the loss function, and mini-batch 

gradient descent is adopted, in which the batch size is 16. 

5.4.2  Result and discussion 

In the experiment, we first use BCG signals with the CR ranging from 50% 

to 90% to verify the reconstruction performance of the deep learning model. 

The average PRD, PCC, and MSE in the test data are shown in Fig. 5.8, in 

which results from BSBL-BO, and BSBL-FM are used as the reference. The 

CR increases from 50% to 90% here since the performances of traditional 

reconstruction algorithms are good enough in the low CR. When the CR is in 

the range of 50% to 70%, the performances of BSBL-BO and BSBL-FM are 
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slightly better than the proposed deep learning model, especially for the PRD. 

When the CR is large than 80%, the performance of BSBL-BO and BSBL-

FM declines noticeably while the performance of the deep learning model is 

still good. In addition, the running time of the deep learning model is much 

shorter than that of BSBL-BO. In general, the proposed deep learning model 

can give satisfying results with the CR ranging from 50% to 90%.  
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Fig. 5.8. The average PRD, PCC, and MSE in the test data by three types of reconstruction 

algorithms under different CRs. 
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The average PRD, PCC, and MSE of reconstruction results in the test set 

using the deep learning model with the CR exceeding 90% are shown in Table. 

5.1. The comparison results using BSBL-BO and BSBL-FM are shown in 

Table 5.2. We only show the reconstruction results from BSBL-BO and 

BSBL-FM with CR ranging from 91% to 93% since the results are poor when 

CR is over 93%. It can be found that the deep learning model outperforms 

BSBL-BO and BSBL-FM in the high CR.  

Table. 5.1. The average PRD, PCC, and MSE of reconstruction results in the test set using 

the deep learning model with the CR exceeding 90%. 

CR PRD PCC MSE 

91% 12.542 0.992 0.007 

92% 15.309 0.987 0.012 

93% 20.193 0.978 0.018 

94% 23.593 0.968 0.019 

95% 28.284 0.954 0.034 

96% 36.680 0.920 0.039 

Table. 5.2. The average PRD, PCC, and MSE of reconstruction results in the test set using 

BSBL-BO and BSBL-FM with the CR exceeding 90%. 

CR 

BSBL-BO BSBL-FM 

PRD PCC MSE PRD PCC MSE 

91% 19.768 0.976 0.034 30.395 0.943 0.045 

92% 27.679 0.951 0.106 32.256 0.939 0.170 

93% 35.634 0.917 0.053 97.223 0.391 0.340 

The reconstructive BCG waveforms using the deep learning model with 

CR from 91% to 96% are shown in Fig. 5.9(a) to (f). From these figures, we 

can find that though PCC reduces and the PRD/MSE increases with the 
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increase of CR, the IJK complex in the BCG can still be reconstructed. The 

change in evaluation indicators is mainly from the not-so-good recovery 

results of the non-IJK complex. It is quite different from the other cases based 

on traditional algorithms, in which the performance is poor for both the IJK 

complex and the non-IJK complex with a high CR. The IJK complex can be 

used in the HR and HRV calculation, which is more important than the other 

waves. The MAE of HR in the test data with CR increasing from 91% to 96% 

is shown in Table. 5.3. It can be found that with the CR below 95%, the MAE 

of HR is less than 1 bpm.  

In addition, we use MSE as the loss function to train the neural network 

in this experiment. The model optimizes the parameters only depending on 

this metric. To further improve the result, we will attempt to design a 

combinative loss function to train the model. 
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Fig. 5.9. The reconstruction results of deep learning model under different CRs: (a) 91%, 

(b) 92%, (c) 93%, (d) 94%, (e) 95%, and (f) 96%. 
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Table. 5.3. The MAE of HR in the test data with CR increasing from 91% to 96%. 

CR 91% 92% 93% 94% 95% 96% 

MAE/bpm 0.258 0.272 0.331 0.542 0.715 1.641 

5.5  Summary 

In this chapter, we propose a CS framework for BCG signals. Four types of 

traditional CS reconstruction algorithms, BP, OMP, BSBL-BO, and BSBL-

FM are used to verify the reconstruction performance in the BCG signals with 

different CRs. Among them, BSBL-BO and BSBL-FM algorithms 

outperform BP and OMP algorithms. When CR is over 90%, the 

performances of traditional reconstruction algorithms decline significantly. 

Therefore, we proposed an end-to-end deep learning model to reconstruct 

BCG, which contains consists of an FCL and a modified U-net network The 

performance of the model is good when CR ranges from 50% to 90%. For the 

high CR exceeding 90%, though the performance is slightly degraded, the IJK 

complex in the BCG can be reconstructed and the MAE of HR is less than 1 

bpm when the CR is below 95%. 
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Chapter 6 

Conclusion and future works 

 

6.1  Conclusion 

In this thesis, we solve the signal fading problem in the optical fiber 

interferometer-based BCG monitoring system with a new type of phase 

shifter. Based on this BCG monitoring system, three deep learning algorithms 

including CNN, U-net, and pix2pix GAN are adopted to process the BCG 

signal and optimize the sensing system. 

Firstly, we propose a new type of phase shifter, a moving-coil transducer, 

to compensate for the phase drift in the optical fiber interferometer-based 

BCG monitoring system. The proposed phase shifter maintains the optical 

fiber interferometer at Q-point with the aid of a PID controller, which solves 

the signal fading problem and high-quality BCG signals can be acquired. 

Compared to traditional phase modulation and demodulation schemes, such 

as 3×3 coupler and PGC interrogation schemes, our scheme owns the merits 

of low cost, easy integration, and fast response. The suggested BCG 

monitoring system can provide users with long-term, real-time and consistent 
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BCG monitoring, which has huge implications for future healthcare 

applications. 

Secondly, we proposed two deep learning algorithms, CNN and U-net, 

to solve the issue of individual heartbeat segment extraction in the BCG signal. 

As the BCG signal is easy to be interfered with by the motion artifact and 

ambient noise during the measurement, effective individual heartbeat 

segments detection algorithm in the BCG signal is crucial for further HR 

analysis and CVDs diagnosis. We first use a CNN model to distinguish the 

induvial heartbeat segments, IJK complex, from the background (non-IJK 

complex), and body movement signals. The accuracy of the model in the test 

set is 98.3%, which shows that the network performs well on this 

classification task. Since this model needs a series of pre-processing works, 

which is time-consuming and cannot be implemented in a real-time BCG 

monitoring system, we propose an end-to-end algorithm to replace it. This 

end-to-end algorithm is based on a modified U-net, which can segment IJK 

complex, background, and body movement signals in a BCG segment. BCG 

signals from 7 healthy subjects are used to test the network, and the PA, MPA, 

and MIOU are 99.66%, 99.59%, and 99.18%. The MAE of the predicted IK 

interval is 1.75 ms. The results show that our proposed network owns good 

performance in the task of individual heartbeat segments extraction, and this 

end-to-end algorithm can be integrated into the real-time BCG monitoring 

system in the future. 

Thirdly, we present a BCG reconstruction algorithm based on a modified 

pix2pix GAN, which can recover BCG signals by solving signal fading 
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problems in the interferometer without any additional phase modulation and 

demodulation devices. The cost and complexity of the BCG monitoring 

system are considerably reduced with this reconstruction algorithm-based 

scheme. In the test data, the reconstructed BCG signals produce satisfactory 

results, with mean PCC, PRD, bx, and MAE of 0.952, 29.875, 0.920, and 

0.094, respectively. In addition, we have collected special BCG data 

including sinus arrhythmia and post-exercise samples, and the model can 

reconstruct these data with acceptable accuracy. The BCG reconstruction 

algorithm overcomes the signal fading problem in the interferometer in a 

novel way, and it could be used in other relevant applications as well, such as 

reconstructed pulse waves. 

Finally, we propose to build a CS framework for the BCG signal. Four 

types of CS reconstruction algorithms, BP, OMP, BSBL-BO, and BSBL-FM 

are used to verify the reconstruction performance for BCG signals under 

different CRs. The BSBL-BO and BSBL-FM algorithms outperform the other 

two algorithms. Traditional reconstruction algorithms perform much worse 

when CR is large than 90%. As a result, we propose to develop an end-to-end 

model to reconstruct BCG, which contains an FCL and a modified U-net 

network. The performance of the model is good when CR increases from 50% 

to 90%. For the high CR over 90%, though the performance is slightly 

degraded, the IJK complex in the BCG can be reconstructed and the MAE of 

HR is less than 1 bpm when the CR is below 95%. For the CS scheme, only 

low computational complexity is needed at the sensing end and thus it can be 

applied in practical scenarios, such as a nursing house. 
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6.2  Future works 

Based on the current monitoring system and research outcomes presented in 

this thesis, several extensive investigations about the application of deep 

learning models in BCG monitoring and the BCG signal processing are 

illustrated in this section. 

1. The application of deep learning models in BCG monitoring. 

As introduced in chapter 4, a modified pix2pix GAN is proposed to map 

BCG signals from an optical fiber MZI based on the intensity interrogation 

mode to reference BCG signals without signal fading problems. Among them, 

we use an MZI with a phase compensation system to collect reference signals. 

Reference BCG signals can also be obtained from the MZI with a 3×3 coupler 

interrogation scheme. Compared to the phase compensation scheme, the 3×3 

coupler interrogation scheme can retain the respiration information in the 

BCG. A mapping model based on the deep learning model between the raw 

optical intensity and the demodulated result can be built to replace the 

complex hardware and algorithm in the 3×3 coupler interrogation scheme. 

As introduced in chapter 5, a CS framework is built for the optical fiber 

interferometer-based BCG monitoring system. For high CRs, we propose a 

deep learning model to reconstruct BCG signals. MSE is adopted as the loss 

function to train the neural network in this experiment. The model optimizes 

the parameters only depending on this metric. To further improve the result, 

we can design a loss function to train the neural network, such as a loss 

function based on PCC. In addition, we prepare to use the sensor with a 

simpler structure, an MZI based on the intensity interrogation mode, as the 
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BCG monitor. To solve the signal fading problem in the intensity 

interrogation mode, we attempt to train the model based on that in chapter 5 

by freezing the parameters in the previous layer to build a mapping model in 

the last few layers. This model can recover the compressed signal while 

solving the signal fading problem. 

2. The application of deep learning models in BCG signal processing. 

As introduced in section 1.5, the deep learning model can be used in 

various application scenarios, such as the detection of cardiovascular diseases, 

classification of sleep stages, and analysis of mental stress. Since HRV and 

respiration of subjects can be obtained by BCG, it can replace ECG in some 

of these application scenarios. For example, ECG can be used to classify the 

sleep stages based on HRV and respiration, and in this case, BCG may replace 

the function of ECG. Since BCG can be detected in a non-invasive and non-

wearable way, it is more suitable for sleep monitoring compared to the ECG-

based method, which gives the subject a comfortable monitoring environment. 
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