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ABSTRACT

This dissertation is concerned with improvement and identification of the
mathematical model for viscoelastic dampers, development of analytical methods
for structures with such dampers, design of damping devices for horizontal and

vertical vibration control and their application to building structures.

Experimental investigations on the selected viscoelastic dampers have been
carricd out. The hysteresis loops of such dampers under different excitation
conditions have been found and their associated equivalent stiffness, damping

ratio and energy dissipation ability have been determined.

Based on the review of the commonly used mathematical models for viscoelastic
dampers and the dynamic characteristics obtained in the experimental studies, the
fractional derivative model has been chosen and improved to describe the
dynamic behaviours of viscoelastic dampers. To evaluate the parameters of the
proposed model, two kinds of identification method which can facilitate the use
of all test data simultaneously in the identification process have been developed.
Parameter values of the proposed model for the two selected dampers have been
obtained by the developed methods. By comparison between the hysteresis loops
defived from the proposed model and the corresponding loops of the tested
results, and also those derived from the commonly used Kelvin-Voigt model, it
has been found that the proposed model can well describe the dynamic
behaviours of various viscoelastic dampers, and is more versatile and can be used
more widely for various kinds of viscoelastic damper than the Kelvin-Voigt
model. Moreover, parametric studies on the proposed mathematical model have

been carried out and the features of the model have been discussed in detail.

Two schemes for modelling viscoelastic dampers in the structural response
analysis have been proposed. An analytical method in time domain in association

with the modelling schemes has been developed. Since the proposed model has
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simple expression in frequency domain, an analytical method in hybrid time-
frequency domain has also been developed. This method can save more
computing time than the method in time domain and can be used for structures
subject to not only sinusoidal excitation, but also random excitation like seismic
loading. In addition, the damping matrix of structures incorporated with
viscoelastic dampers can be obtained by the proposed analytical methods, which
is useful for carrying out dynamic analysis with other commercial software

packages.

A practical damping device has been designed for horizontal vibration control of
framed structures. It has been proved experimentally that such damping device is
effective in attenuating horizontal vibration. By comparison of experimental and
analytical results, the proposed analytical methods for predicting the dynamic
responses of structures incorporated with such damping devices have been
verified. A large amount of numerical simulation work with various parameters
has been carried out on a multi-story building structure. Some useful guidelines
for practical design of horizontal vibration control with such damping devices

have been obtained.

To control vertical vibrations of long span structures, a beam-column connection
incorporated with viscoelastic dampers has been proposed. Great effectiveness in
control the vertical vibration of beam structures can be achieved, which has been
demonstrated by the experimental tests carried out on a long span beam with such
beam-column connections. Comparisons between the analytical results and the
experimental results have been made with which the analytical methods have
been verified. Numerical simulation has been carried out on a real long span
beam with and without such beam-column connections. The effects of various
parameters on vertical vibration control have been studied and useful design
guidelines for the design of vibration control for long span structures with the

proposed beam-column connections have been drawn.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

In recent years, along with the development of building materials and
construction technology, a great number of contemporary slender structures,
including television towers, high-rise buildings and long-span cable-stayed or
suspension bridges, have been rapidly built in large cities. It is expected that more
and more such structures with greater height or longer span will be erected in the
near future. Because of their low natural frequencies, these flexible structures are
vulnerable to dynamic loading such as wind load, seismic excitation, vehicles
load and other environmental excitation (Ding W. J., 1988). Violent vibration of
slender structures caused by such loading may induce damage to these structures,
discomfort to occupants or malfunction of equipment housed in the structures.
Therefore, it is of great significance to develop effective and practical measures
to suppress structural vibrations induced by dynamic loading. Vibration control
technology also plays an important role for continuing development of large-scale
slender structures. It is because cost may be cut down greatly in building a
structure satisfying the same requirements if vibration control techniques are
applied. For seaside cities such as Hong Kong with high incidence of typhoons
and for cities in seismic areas like Beijing wi‘th high incidence of earthquakes,
vibration control of slender structures is in particular a special challenge to
structural engineers. Recently, many researchers have been attracted to this area.

A large amount of useful researches findings and meaningful practical
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applications have been achieved. As one of the control method, viscoelastic
dampers with proper installation can reduce dynamic response of a structure
significantly. A lot of research work on vibration control with viscoelastic
dampers has been done in past years by many researchers (Soong T. T. et al,

1990).

It is popularly known that viscoelastic material is good at dissipating energy.
Upon cyclic displacement, the stress and strain of a damper made of such
material are out of phase. This phenomenon which éan be represented by a
hysteresis loop with an enclosed area proportional to the energy dissipated in a
complete damper displacement cycle is illustrated in Figure 1.1 (Lai Ming-Lai,
1993). Hysteresis loops depict generic nonlinear feature of such material under
sinusoidal excitation, in which the restoring force depends not only on
instantaneous deformation, but also on the exciting frequency and temperature of
environment (Chang K. C. et al, 1992). Since different dampers would have
different properties, in order to predict more accurately their behaviours for
practical design purpose, properties of the selected viscoelastic dampers should

be obtained based on experimental work.

To analyze a structure with viscoelastic dampers, a suitable mathematical model
should be built to represent the dampers. In past years, various types of model
such as Kelvin-Voigt model, Maxwell model, complex modulus model and
fractional derivative models have been developed. Each model has its advantages
and disadvantages. Some of them are too simple to be able to describe various
kinds of viscoelastic dampers. And parameters of some other models are too

difficult to be identified. To develop a suitable model which is versatile enough

1-2
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to describe the dynamic behaviours of various dampers and can be handled
conveniently in the identification and analysis processes is of great significance

in vibration control with viscoelastic dampers.

Viscoelastic damper properties are dependent on excitation frequency. A proper
mathematical model being able to describe the behaviours of a damper under
different excitation conditions may be affected by several parameters. As the
model with different sets of parameter value can describe the same behaviour of a
damper in certain cases, to identify the parameters more accurately, all the test
data obtained in different cases, especially those obtained at different excitation
frequencies, should be considered at the same time. However, as a large amount
of test data normally will be involved in the identification of parameters of a
sophisticated model for viscoelastic dampers, it is in fact a rather difficult task.
So far, very little work has been done to solve this problem in past years and

further development work is required.

The dynamic responses of a structure incorporated with viscoelastic dampers
should be determined to study their effectiveness in vibration control. Much work
has been done on the analysis of structures with viscoelastic dampers in time
domain or in frequency domain. Analysis of non-linear structures in time domain
however costs much computing time and the time step is difficult to be
determined for achieving solution convergence (Hsu Sheng-Yung, 1992, Tan X.
M., 1995). Analysis in frequency domain on the other hand cannot predict
response accurately for instantaneous state. Hybrid frequency-time-domain
method has been used in dynamic analysis of soil-structure interaction. Darbre

Georges R. et al applied this method in seismic analysis of non-linearly base-
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isolated soil-structure interacting reactor building (1988) and derived a criterion
of stability pertaining to this method (1990). For frequency dependent
viscoelastic dampers, the hybrid time-frequency domain method should have
more advantages than the methods in time domain and in frequency domain. The
application of this method for structures incorporated with viscoelastic dampers

18 promising.

Viscoelastic dampers and the structure itself have their own damping ratios. The
damping ratio of the whole system can embody the effectiveness in vibration
control with viscoelastic dampers. Some researchers (Nashif Ahid D., 1985) have
performed related research work already. Sause R. et al (1994) assumed the
hysteretic behaviours of viscoelastic elements to be linear and modeled the
viscoelastic elements with K, and loss factor 7). Tong M. et al (1994) proposed
an index of damping non-proportionality for a Vlumped—mass vibrating system.
However the damping ratio obtained by such methods is inadequate for real
analysis and design. If viscoelastic dampers are represented by proper models
which are applied directly to determine the damping matrix of the hysteretic
SUI;cmre system, the result thus obtained should be more reliable in predicting the

dynamic response of structures incorporated with viscoelastic dampers.

Many devices for vibration control with viscoelastic dampers have been designed
by other researchers. It can be classified broadly into two groups, namely,
horizontal vibration control and vertical vibration control. Vibration control
devices should be designed according to the practical conditions and should be

convenient for installation and maintenance. When a damping device is figured
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out, its effectiveness in vibration control should be worked out analytically and if

necessary, confirmed experimentally.

In practical design, damper type, damper sizes, damper number, damper location
would be determined before proceeding to any structural analysis, which are
mainly based on previous design and research experience. So far, most research
work are concentrated on the effectiveness in vibration control of structures
under special conditions, and not much work has been done for optimal design by
former researchers. Effectiveness in vibration attenuation for structures with
dampers under various conditions should be carried out by numerical simulation
and comparison can thus be made, based on which design guidelines can be

established.

1.2 Objectives of the Thesis
The main objectives to be achieved in this dissertation are as follows:

1. To select and improve if necessary a mathematical model suitable to describe
the dynamic behaviours of various viscoelastic dampers and to develop
identification methods to evaluate the model parameters based on test data

obtained from dynamic tests on the dampers.

2. To develop methods of analysis both in time domain and hybrid time frequency
domain with the proposed mathematical model for structures incorporated with
viscoelastic dampers and to obtain the equivalent stiffness and damping matrix

for the hysteretic structures based on the developed methods.

3. To design suitable viscoelastic damping devices for vertical and horizontal

vibration control of two selected structures and to carry out experimental work on

1-5
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these two selected structures for the verification of the proposed methods and
also to investigate their effectiveness in vibration control. Based on parametric
studies, to establish design guidelines for vibration control of structures with

these devices.

1.3 Organization of the Thesis

According to the objectives of the research, organization of the thesis is presented

as follows,

Firstly, literature reviews are presented in Chapter Two. As the research basis,
vibration control history and its state of art with emphasis on vibration control
with viscoelastic dampers, mathematical models for viscoelastic dampers, system
identification methods and methods of analysis for structures with viscoelastic

dampers have been introduced and discussed in detail.

Dynamic tests on viscoelastic dampers are introduced in Chapter Three.
Viscoelastic dampers, test set-up, test methods and results are described.
Conclusions on the damper properties have been drawn from the comparisons of

different test cases.

Based on the comparisons of different mathematical model, the fractional
derivative model has been selected and further developed to simulate the dynamic
behaviours of viscoelastic dampers in Chapter Four. The parameters of the
models have been identified by two developed methods. Verification of the
model with test results and comparisons of the model with normally used Kelvin-
Voigt model have been made. Studies of the characteristics of the model have

been carried out by numerical simulation.

1-6
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In Chapter Five, two schemes for modelling of viscoelastic dampers have been
proposed for response analysis of structures. Analytical methods both in time
domain and in hybrid time-frequency domain have been developed, where the
fractional derivative model is used to represent the damper. Equivalent stiffness
and damping matrix of the hysteretic structure system which can also be used by
other analytical methods and commercial softwares have been derived. Based on
the proposed method, the associated computer programs have been developed

and the program structure is introduced.

A damping device has been designed for horizontal vibration control and
dynamic tests have been done on a designed framed structure with and without
viscoelastic dampers, which are presented in Chapter Six. Comparisons of the
responses of the structure with and without dampers have been made. The tested
structure has also been analyzed by the developed program both in time and
hybrid time-frequency domain. Comparisons of analytical and experimental
results have been done. Parametric studies on a multi-story building structure
have been carried out and useful design guidelines have been obtained for

structures with such damping devices.

A beam-column connection with viscoelastic dampers has been designed to
reduce the vertical dynamic response of long span structures and dynamic tests on
a long span beam with and without dampers under different conditions have been
done, which are presented in Chapter Seven. Comparisons of responses of the
beam with and without dampers and comparisons of experimental and analytical

results have been made. Parametric studies on a long span beam have also been

1.7
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carried out and some meaningful design guidelines have been drawn for long

span structures with such beam-column connections.

Lastly, concluding remarks based on the research work have been made in
Chapter Eight and further research and development work has also been

suggested.
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Figure 1.1 Hysteresis loop of a viscoelastic damper
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CHAPTER 2
LITERATURE REVIEW

2.1 Vibration control with viscoelastic dampers
2.1.1 History of vibration control

Vibration control technology has been developed for nearly one century. The
original idea of vibration control was base-isolation, this concept was given in
early 1910's in U.S. (Way D. et al, 1992). In the following several decades, many
base-isolation methods using different devices like springs, balls, ball bearings,
steel plates with graphite between layers and plastic material, etc., were worked
out and ﬁroposed to be applied in real structures. The techniques of seismic
1solation have been widely used in many places of the world (Skinner et al,
1993). These methods have been proved to be very effective in vibration
attenuation in the design for machinery foundation and low-story structures. But
for large-scale structures such as high-rise buildings and long span bridges, base-

isolation is not so practical.

Many types of devices have been designed and installed to control the vibration
of structures, where dynamic energy is dissipated passively.' Various of tuned
mass damper (Hartog Den, 1956, Hunt J. B., 1979, Kaynia A. M. et al, 1981,
Kwok K. C. S., 1984 and Yamaguchi H. et al, 1993) and tuned liquid damper
(Kareem A. et al, 1987, Welt F. et al, 1989, Xu Y.L. et al, 1992, Koh C. G. et al,
1995 and Sun L. M. et al, 1995) methods have been studied and utilized for
structures subjected to wind and seismic excitation since 1950's. The working

mechanism of a multi-mass tuned damper system is shown in Figure 2.1.
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Damping of the structures with such systems increases considerably and dynamic
response decreases greatly. But to realize a successful practical application of
such systems in a large scaled structure, a great mass need to be added and a
special structure has to be designed for building up such a system which is very

costly and also very spacious.

Recently, many hysteretic damping systems such as metallic dampers, friction
dampers, sliding friction systems, semi-rigid or flexible joints, viscoelastic
dampers and viscous fluid dampers have been proposed to be used to dissipate
energy while vibration takes place in structures (Soong T. T., 1997). These
~ energy-absorbing devices can be used for the design of buildings of any height
including super high-rise buildings and can also be used for the disaster
rehabilitation of existing buildings. There are two examples of devices based on
dissipating energy through plastic deformation of mild steel or frictional loss in
sliding joint as shown in Figure 2.2 and Figure 2.3 respectively, which have been
proposed and used in real structures in recent years. However, these devices also
have disadvantages, for mild steel devices with an initial elastic range of
beilaviour, it can only dissipate significant amount of energy when undergoing
large plastic deformation. For friction devices, it can only take great effect until
being loaded beyond the slip threshold. In other words, they are ineffective under

small vibration.

Vibration control of structures with viscoelastic dampers has attracted
considerable interest of researchers and has developed rapidly in recent several
decades. As the background of this thesis, it will be described in more detail in

the next section.
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In order to improve the effectiveness and efficiency of vibration control, semi-
active and active vibration control technology started to be developed in 1980's
based on the passive vibration control methods (Sause R. et al, 1994). It is an
area of structural protection in which the motion of a structure is controlled or
modified by means of a control system through some external energy supply.
Although considerable attention has been paid to active control research in recent
years, with particular emphasis on the suppression of wind and seismic response,
instruments of such system are very costly and a relative short service life is still

a problem for these instruments.

2.1.2 Vibration control with viscoelastic dampers

Viscoelastic dampers installed in a structure can increase the structural damping,
thereby reducing sway and oscillation of the structure. Such dampers are readily
preferred in many slender structures where vibrations are likely to be noticeable
and objectionable. No matter these are new structures to be designed (Ito Yoshio,
1995) or old structures to be retrofitted (Maison Bruce F., 1994), passive
damping supplied by viscoelastic dampers may significantly improve their
dynamic and acoustic performance. Viscoelastic dampers are not only used for
vibration control of slender structures under wind loading or other environmental
excitation, but also used for vibration control of those in earthguake areas to

resist seismic loading (Aiken Ian D., 1990).

Viscoelastic dampers were studied experimentally and theoretically in past years.
Hsu Sheng-Yung et al (1992) developed a kind of viscoelastic connection in

framed structures and obtained satisfactory results. Kirekawa A. et al (1992)
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carried out a study on a damper composed of lamination of steel plates and
viscoelastic material and incorporated such dampers in diagonals of high-rise
buildings. Bergman D. M. and Hanson R. D. (1990) installed devices made up of
steel plates with added viscoelastic damping in a building frame so that story drift
causes the steel plates moving relative to each other to shear the viscoelastic

material.

Various types of viscoelastic damper have been found in many applications for
vibration attenuation in real structures (P. Mahmoodi et al). Viscoelastic dampers
were conceived and developed as a part of the structural design for the twin
towers of the World Trade Center Towers in New York in 1969 and they were
proved to be very effective. In 1982, a non-structural passive damping system
was designed and installed in the Columbia Sea First Building in Seattle,
Washington and a unique passive viscoelastic damping system was installeq n
the Two Union Square Building located in the same city in 1988. Recently,
viscoelastic dampers were utilized for seismic retrofit in the 13 story San Jose
GSA building in the United States. In Japan, dampers were installed in a 29 story
ste)el moment frame building, the Chiba Portside Tower, to reduce vibration
induced by wind and small to moderate earthquake in 1992 (Ito Yoshio et al,
1995). Some structures are also attempted to apply viscoelastic dampers as
vibration control measure in recent years. It is a tendency that more and more
building structures, especially high-ﬁse buildings, will hire viscoelastic dampers

to safeguard against being damaged by dynarnié loading.
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2.2 Mathematical Models for Viscoelastic Dampers and System

Identification

For viscoelastic dampers, customary elementary and linear material models
describing the time-dependent response of damping materials have certain
difficulties, the predicted damping value by such a linear elastic model is zero,

which shows that actual viscoelastic materials cannot be adequately described.

Dynamic characteristics of viscoelastic dampers have been described in many
ways according to the experimental conditions and the methods for structural
analysis. The basis of the mathematical approach to modelling the damping
phenomena 1s rheology, the science of deformation and flow of matter. Dynamic
properties are mainly embodied by the relation of restoring stréss to strain.
Generally, they can be expressed in mathematical form by five different types of
models viz. standard linear model, generalized standard model, complex modulus

model, integral model and generalized derivatives model.

Simplest linear viscoelastic relationships (standard linear models and generalized
standard model) are widely used by researchers to analyze structures incorporated
with viscoelastic dampers (Crandall S. H., 1970, Scanlan R. H., 1970). These
models are often characterized as one spring and one dashpot (standard linear
model) or a series of springs and dashpots (generalized standard model)
connected in parallel. For example, one of the standard models, the Kelvin-Voigt
model consists of two elements as showﬂ in Figure 2.4. It is expressed as
G = Ee+mné, where E is the elastic modulus, 1 is the viscosity coefficient and
overdot indicates time derivative. The energy dissipated per cycle by such models

18 proportional to, or inversely proportional to the frequency. It appears that such
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models require a large number of constitutive terms such as springs and dashpots
to cover a large frequency range of interest and the models are usually not good

enough to describe accurately the viscoelastic material (Nashif Ahid D., 1985).

The complex model, wherein the elastic modulus is replaced by a complex
constant, has been proposed as a means to describe material damping (Torvik P.
J. et al, 1987). This device creates a component of stress out of phase with the
strain, thereby leading to an energy dissipation per cycle which is proportional to
the square of the strain amplitude and independent of frequency. The simplicity
and relative effectiveness of this approach have made it popular and is now
nearly a standard model for describing slightly inelastic materials. Viscoelastic
material is often characterized by storage modulus (G’) and loss modulus (G”)
to represeht the elastic and viscous properties respectively (Lai Ming-Lai, 1995,
Kasai Kazuhiko et al, 1995). The ratio of the loss modulus to the storage modulus
is the loss factor (7). It is convenient to use complex variables to describe the
viscoelastic material as G =G’+ jG”, where, j=+/-1. Direct curve fitting
techniques are also employed to obtain expressions for the real and imaginary
parts of the complex modulus, which leads to the generalized complex modulus
method. Such a modelling process works well in applications involving only a
single and fixed frequency. But it is not suitable for viscoelastic dampers of

which their properties change with the excitation frequency.

To describe the dynamic characteristics of viscoelastic material which are
frequency and temperature dependent, Kirekawa A. et al (1992) proposed a
Degrading Maxwell Model, where one of the three Maxwell elements connected

in parallel is replaced by the spring element (5-eclement model) as shown in
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Figure 2.5. It was also expressed by the complex modulus, which were functions

of temperature and excitation frequency.

In addition to linear models, generalized standard models and complex models,
integral equation based on the Boltzmann's superposition principle was also

developed to describe the behaviours of viscoelastic dampers (Shen K. L. et al,
1995). It was expressed as o(1) = j(’)G('r)é(t—'t)dt, in which G(t) was the stress

relaxation modulus. Since the function G(t) is always represented by empirical

formulation and defined as the ratio of stress to strain at constant deformation,

which is not easy to be determined accurately.

In the models mentioned above, linear viscous damping is usually assumed,
which means that the loss factor is linearly proportional to the strain rate. It is not
always true for the viscoelastic materials. In order to reduce the number of terms
required by the generalized standard model to take adequate account of the
slower rate of change of properties with frequency as observed from experimental
results, a fractional derivative model for the elastomer damper was developed by
Bagley in 1979. A theoretical basis drawn from the molecular theory for the new
constitutional relationships was also established and generalized derivative
models was built based on this relationships (Bagley 1983). A simplest form of

the constitutional relationship has a fractional derivative form as
o(t) = Ege(r)+ E,;D%[e(1)}, O<a <1, where T and v are the shear stress and
shear strain respectively, E, and E, represent the modulus corresponding to the

storage energy and the loss energy, respectively. Limitation also exists in the
original fractional derivative model. Since the model will be chosen to be

developed in this thesis, it will be introduced in detail in Chapter Three.
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Before mathematical models of dampers being applied for dynamic analysis, their
parameters need to be determined first. Identification procedure for dynamic
system has received wide attention in recent years because of the development in
measurement and instrumentation technology facilitating the acquisition and the
analysis of data with sufficient accuracy. Many common system identification
methods were introduced by Ljun Lennart et al (1987). Recently, more and more
attention has been paid to identification procedure of non-linear dynamic system.
Parametric and non-parametric identification techniques have been studied
intensively by many researchers. However, most of these procedures have
problems of mathematical complexity, convergence rate, storage requirements
and a large amount of computation time. For some simple mathematical models
used for viscoelastic dampers, parameters of them can be measured directly from
test results. And parameters of some other models are identified by the least
square methods with sufficient number of special data points measured in time

domain.

During past years, much work for system identification has been done in time
do;nain, especially for nonlinear system (Julius S. Bendat et al, 1990, Koh Chan
Ghee et al, 1991). Mottershead J. E. et al (1986) proposed a method to identify
the two damping parameters associated with the non-linear nth-power velocity
model from time series records of the displacement and velocity responses to
sinusoidal excitation. Hollowell William T. et al (1988) developed a method to
determine the mass and the nonlinear stiffness and damping characteristics of
structures subjected to crash-loading environments using adaptive time domain
and constrained minimization techniques. Mook D. Joseph (1989) presented a

technique for processing noisy state-observable time domain measurements of a
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nonlinear dynamic system to optimally estimate both the state vector trajectory
and any model error that may be present. These methods proposed by the
researchers were mostly improved for special objectives. And time consuming is

a big problem for these methods.

A paper which accommodates the multi-harmonic solution of hysteretic system in
frequency domain was reported by Capecchi D. et al (1990), where the GNR
method (Galerkin procedure followed by a Newton-Raphson approach) was used
in conjunction with FFT technique to solve steady-state response of a single-
degree-of-freedom hysteretic system. With respect to the model developed in the
thesis, the idea to identify parameters of a sophisticated model in frequency

domain is of much value.

2.3 Dynamic Analysis of Structures with Viscoelastic Dampers

General dynamic analytical methods for structures have been introduced by
Clough RW. et al (1993).. To analyze a structure with viscoelastic dampers is a
different subject. Some methods for viscoelastic systems have been developed by
former researchers. Linear viscoelastic approaches were applied in the past for
the analysis of such structures by Johnson and Kienholz (1982), Sun et al (1987)
and Hu and Dokainish (1993). The concept of a complex modulus in viscoelastic
theory provides a basic and mathematically consistent approach. The modal
Strain Energy method (MSE) was first suggested by Ungar and Kerwin in 1962,
then it has been used in tackling viscoelastic damping problems of sandwich
structures by Johnson and Kienholz (1982), Soni and Bogner (1982) and Rogers

(1989). The MSE approach has the advantage that it allows one to compute
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modal damping by a real, instead of a complex, eigenvalue solution.
Consequently, the computational cost is greatly reduced. Based on MSE,
modified MSE methods have been developed by Javeed Munshi A. et al (1994)
and Hu B-G. et al (1995). Nevertheless, these methods did not pay much attention

to the frequency factor of the damper.

Damping ratio of structures will increase greatly with viscoelastic dampers being
incorporated in, which is the main reason why the damper can attenuate the
dynamic response of a structure. Some researchers looked for an equivalent
damping ratio and equivalent stiffness to represent the effect of dampers (Kasai
Kazuhiko et al, 1995), and the dynamic analysis of a structure with viscoelastic
dampers can be easily done as for the linear structures. But the problem is that it
1s difficult to determine accurately the equivalent damping ratio of a real structure
with viscoelastic dampers, therefore the above-mentioned method cannot

accurately predict the response of such a structure.

Some researchers have applied the Kelvin-Voigt mathematical model for the
dampers throughout the complete dynamic analysis of a structure and solve the
equilibrium equation by numerical methods in time domain (Tan X. M., et al, |
1995). It is reasonable to do like this, but the analysis procedure is very
complicated especially when the dampers are represented by sophisticated

mathematical models and the calculation is very time consuming.

2.4 Discussions and Conclusions

The state of arts of vibration control of building structures is described briefly in

this chapter briefly. From the work done in recent years, it can be found that
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vibration control of structures with viscoelastic dampers has attracted more and
more attentions. Achievements by other researchers and the practical applications
of vibration control of structures with viscoelastic dampers have been discussed.
It can be seen that there is still much work on material selection, damping device,

mathematical modelling and structural analysis needed to be done.

Dampers can be of different materials, with different hardness and dimensions.
Characteristics of different viscoelastic dampers are different, experimental work
should be done to obtain the characteristics of a damper. For dampers like the
ZJD-1 which will be introduced in the following Chapter, simple generalized
derivative mathematical model such as Kelvin-Voigt model is accurate enough to
simulate their dynamic behaviours. But for dampers like HD91 which has also
been investigated in the present study, it is hard for generalized derivative models
to describe their characteristics properly. That is to say, mathematical models
should be chosen according to results of the dynamic tests on the dampers and the
requirements of application. Although viscoelastic dampers always have high
damping ratio, they are not purely viscous, and their properties change with
ex;:itation frequency. It can be seen that among those mathematical models
described above, most of them can not describe the dynamic behaviours of
viscoelastic dampers satisfactorily except the fractional derivative model.
Application area of this model is more widely than other models, thus the
fractional derivative model has been selected and developed to simulate the

dynamic behaviours in the present study.

Vibration problems exist in various forms in real structures. In addition to the

vibration caused by wind or seismic loading, vibrations caused by walk or dance
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steps and machines in long span beam or floors of buildings are also required to
be controlled. In order to fully utilize the energy dissipation ability of viscoelastic
dampers, dampers are always installed at positions where relative displacement is
comparatively large. For building structures, story drifts are considered as the
movement to activate the dampers. Various types of damping devices are
configured by many researchers. Dampers can be effective only if it is installed
with proper device and located at suitable positions. Actually, for building
structures, dampers can be installed at many places such as beam-column
connections, area between neighbour stories and seismic resistance gaps, etc. In
the present study, two kinds of damping devices have been designed to control

vertical and horizontal vibration respectively.

To identify parameters of the models, the least square concept is usually adopted.
Because of the complication of the fractional derivative model, it is difficult to
get accurately the parameter values from many independent sets of experimental
data in time domain, which are under different excitation frequency or with
different shear displacement amplitude. If to accomplish this task in time domain,
ea;:h set of data would provide a set of parameter values, which is different from
each other. To average them to obtain the final results is surely not a good
approach. Therefore, parameter identification methods in frequency domain have

been developed, which can deal with all sets of experimental data simultaneously.

In the past research work, structures with viscoelastic dampers were mostly
analyzed with constant complex stiffness or approximate damping ratio and
carried out in time domain, which is of course very time consuming. And direct

substitution of the complex modulus is only valid for steady state, time harmonic,

2-12



Chapter 2 Literature Review

forced vibrations of a viscoelastic material (Hu B-G. et al, 1995). However, the
improved fractional derivative model in this thesis have simple form in frequency
domain, if an analytical method in hybrid time-frequency domain can be
developed, a great amount of time will be saved in the calculation work and the
accuracy of the analytical result can also be improved. In the present study, a
method of analysis in hybrid-time-frequency domain for the dynamic response of
structures with viscoelastic dampers has been proposed and has been verified by

experimental tests.
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CHAPTER 3
DYNAMIC TESTS ON VISCOELASTIC DAMPERS

3.1 Introduction

Viscoelastic dampers are glassy substances or high polymer made of natural
rubbers or synthétic rubbers, which have high damping. They can have different
hardness, mass density, and can be produced by factories with different shapes.
Properties of the dampers are determined by these factors. Before viscoelastic
dampers are utilized in structures for vibration control, their dynamic behaviours
under different conditions should be known. Although user guide and related data
are usually supplied by the manufacturer, they cannot necessarily meet the need
of every user. Data in the user guide are always not detail enough to provide all
the properties that are required for the design of vibration control of a structure
with viscoelastic dampers. If that is the case, dynamic tests should be performed
on some specimens. Normally, damper properties can be obtained by the
following experimental methods: Oberst beam vibration method, sinusoidal
excitation method, phase-lag measurement method and free attenuation method
(Sun Q. H. et al, 1993). For different experimental objectives, different kinds of

method will be used with different test set-up.

Viscoelastic dampers always have good energy dissipation ability in their shear
direction. Shear dynamic tests on various viscoelastic dampers have been carried
out by many researchers with similar devices as shown in Figure 3.1. For
instances, tests were carried out by using a standard MTS closed loop hydraulic

test machine for material shear properties (Aiken Ian D. et al, 1990); dynamic
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properties of a sheet of acrylic viscoelastic material with sizes of
4mmx>Smmx2mm in its shear direction have been investigated at various
temperature between 5°C and 35°C by Kirekawa A. et al (1992). Damper
properties were obtained by both these two tests. Experimental results by the
researchers mentioned above and the other researchers like Chang K. C. et al
(1992, 1993) have shown that factors such as excitation frequencies, maximum
shear strain and environmental temperature should be taken into account properly

for practical design.

Dynamic test on viscoelastic dampers is also a way to know more about the
damper material. From the tests, phenomena such as the behaviour of the
dampers for vibration attenuation and energy dissipation can be observed clearly
and this can also give us a better understanding how the dampers work when they
are incorporated in real structures. Moreover, results from experimental work can
help us to choose a proper model to describe the damper and the test data also

forms the basis for the identification of model parameters.

Experimental investigations on the dynamic properties of two kinds of
viscoelastic damper have been carried out and are presented in this chapter.
Properties of these two kinds of damper, such as hysteresis loops, damping ratios,
and equivalent stiffness have been studied based on the test results and difference
between these two kinds of damper have been discussed. During the dynamic
shear tests, shear displacement amplitude and excitation frequency are chosen as

the variables,

Since the axial behaviour of dampers has to be considered in the analysis of

structures with viscoelastic dampers in Chapter Five, the dynamic behaviours of
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the dampers in axial direction which has been presented and referred to in this
chapter is based on the experimental studies carried out by two former research

students of this department.

3.2 Experimental Test
3.2.1 Test set-up

To obtain the dynamic properties of viscoelastic dampers in their shear direction,
a double pendulum system is designed to conduct the shear tests under dynamic
loading. Specimens are glued to two metal plates on both sides by Aradite glue,
which has enough strength, and then installed between the two steel plates of the
pendulum sjstem by bolts. These two steel plates can move freely in parallel. The
upper plate is connected to a rigid frame through a force transducer and three
accelerometers, which are used to measure the shear displacement, velocity and
acceleration, are fixed on the bottom plate and aligned in horizontal direction.
The bottom plate is connected to an exciter, which is controlled by a signal
generator via a signal amplifier. When the bottom plate being excited by the
exciter, the specimen will undergo pure éhear. Signals picked up by the
transducer and accelerometers pass through the charge amplifiers with proper
setting and then pass through the frequency filters to remove the disturbance of
high frequency. When signals are observed to be stable from the digital
oscilloscope, they are sent to the computer for analog to digital conversion by the
A/C board. Restoring force, shear displacement, shear velocity and shear

acceleration of the damper will be recorded in the computer simultaneously by
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means of the software Global Lab. The set-up of the test system is shown in

Figure 3.2. And the appearance of the test system can be seen from Photo 3.1.

When the test is performed, shear displacement is the control parameter, While
setting the excitation frequency at a certain value, amplitude of acting force
generated by the exciter is increased by tuning the buttons of the signal generator.
The buttons should be tuned slowly to avoid the disturbance due to fast changiﬁg.
When the shear displacement indicated on the oscilloscope reaches the required
value and the hysteresis loop of the restoring force to shear displacement
displayed on the oscilloscope is stable, data can be collected. Taking into account
the need in data analysis by FFT, data collecting density is set to 128 points per

cycle and at least 32 cycles of data are needed to be collected for each test case.

3.2.2 Dampers used for test

Viscoelastic dampers selected for tests are those which are used in the damping
devices for the structures subjected to dynamic testing at allater stage in the
present study. Two kinds of viscoelastic dampers, which are manufactured by
Wuxi Vibration Isolator Company of the People's Republic of China, have been
selected for tests. One is called ZJD-1, which is mounted on both sides in
different directions as shown in Figure 3.3. It can be glued with other material
firmly. Size of the damper ZJD-1 is 12cmx9cmx2cm. The other one, namely
HD91, is 2mm thick only. A specimen with‘area of 7.5cmx7.5cm is cut from a

big sheet.
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3.2.3 Test cases

Damper specimens are installed in the test system and tested under sinusoidal
forces at different excitation frequency with different shear displacement
amplitude. With consideration of the excitation frequency range and maximum
shear displacement in the dampers which are used at a later stage in the present
study, the excitation frequencies are set to 3Hz, 6Hz, 9Hz, 12Hz, 15Hz, 18Hz,
20Hz, 25Hz, 30Hz, 35Hz, 40Hz and 45Hz. And the shear displacement
amplitudes are chosen at the levels of 0.05mm, 0.10mm, 0.15mm, 0.20mm,
0.25mm, 0.30mm, 0.35mm and 0.40mm for both these two kinds of damper.
During the test, it has been found that the hysteresis loops displayed on the
oscilloscope may shift away from the original point of the cross axis. To
guarantee the accuracy of the test results, no matter the loops shift or not, test

data should be collected only when the hysteresis loop is stable enough.

3.3 Test Results

The hysteresis loop of restoring force with shear displacement, which is the most
typical characteristic of viscoelastic dampers, has been studied. It is caused by
phase-lag between the restoring force and the shear displacement of the damper.
Energy dissipation ability, damping ratio and equivalent stiffness of a damper can
be embodied by the hysteresis loop. The equivalent stiffness is taken as the slope
of the line from center of the hysteresis loop to the point of the loop at the
maximum displacement. During the tests, it éan be found from the oscilloscope
that a viscoelastic damper will give hysteresis loops with different shape and size
under different conditions. Since the mathematical model to be adopted are based
on the relationship between restoring force and shear displacement, relationship
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between restoring force and shear velocity as well as that between restoring force

and shear acceleration will not be discussed in this thesis.

The hysteresis loop should be in the same trail under the same conditions,
however, it may shift with an acceptable error in reality, which can be seen from
an example of damper ZJD-1 with shear displacement amplitude of 0.10mm at
excitation frequency of 15Hz as shown in Figure 3.4. In order to compare the
loops among different cases clearly, one-cycle loops taken from different cases
have been drawn together in the following figures. Because the shear
displacement amplitude of test results may have discrepancy with the
predetermined value and the loop centre may shift away from zero point, raw test
data has been adjusted to satisfy the predetermined displacement amplitude of the
test case. For example, if the displacement of the test results is 0.99 of the

predetermined value, all the test data in this case will be amplified by a factor

599 ;9 ; if the maximum displacement is 0.11mm and the minimum displacement is

0.099mm, all the displacerneht values in this case will be added with -0.01lmm
while the restoring force values remain unchanged. To make the illustration
distinct enough and keep figures clear, several test cases instead of all of them are

listed in the following parts.

From the test results, it has been found that within the tested range, these two
kinds of damper have some similar behaviors. No matter how the conditions
change, the shape of hysteresis loop is elliptical with slanting major axis and the
loop is nearly smooth with few mutations. If the shear displacement amplitude
decreases while the excitation frequency is fixed, the loop size is reduced also.

But the loop shape and equivalent stiffness do not change, which means the
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damping ratio of the damper keeps at a constant value. Figure 3.5 and Figure 3.6
are examples of the test results with shear displacement amplitude changing from
0.05mm to 0.20mm for ZJD-1 and HD91 respectively, in which the exciting

frequency is fixed at 9Hz.

When shear displacement amplitude is fixed, the hysteresis loop will swell if the
excitation frequency increases. It means the energy dissipation ability of a damper
is enhanced when the excitation frequency increases. The phenomena can be seen
from Figure 3.7 for ZID-1 and Figure 3.8 for HD91, in which the shear
displacement amplitude is fixed at 0.10mm. Tt is not difficult to imagine that
when the exciting frequency is reduced to a low enough value, the hysteresis loop

would degenerate to a single line.

Difference between these two kinds of damper has also been found. When the
excitation frequency changes, the equivalent stiffness of ZJD-1 changes little
because the point at maximum displacement remains stationary as shown in
Figure 3.7. However, the equivalent stiffness of HD91 increases with the
excitation frequency. It can be seen from Figure 3.8 that the point at maximum

displacement moves upward when the excitation frequency increases.
Damping ratios of the dampers have been calculated from test data by phase-lag

method (Sun Q. H. et al, 1993), { = %tan ¢, where ¢ is the phase-lag between the

restoring force and the shear displacement. It has been found that the damping
ratio of both these two kinds of damper does not change much with the shear
displacement amplitude while the excitation frequency is fixed. But when the
excitation frequency increases, the damping ratio will increase also. It can be seen

from Figure 3.9 that damping ratio of damper ZJD-1 increases nearly linearly
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with excitation frequency. However, the damping ratio of damper HD91 changes
with the excitation frequency in a nonlinear curve, which can be seen from Figure

3.10. For both dampers, if linear relation is assumed as follows:
{=co+f 3.1

where, ® = frequency x 2x, the parameters ¢ and f have been determined to be
0.00261 and -0.0115 for damper ZJD-1, 0.00138 and 0.156 for damper HD91,
respectively. Comparisons of the real damping curve with the linear damping
curve have also been made in Figure 3.9 and Figure 3.10. It can be seen that the
linear damping model can well simulate the damping ratio of damper ZJD-1,

while it is poor for damper HD91.

Area of hysteresis loop indicates the capacity of energy being dissipated per cycle
by the damper. The larger the area is, the higher the energy being dissipated will
be. The Areas of loops in different cases are calculated by integration method. It
is clear from Figure 3.11 and Figure 3.12 for damper ZJD-1 and damper HD91
respectively that energy dissipated per cycle increases with shear displacement
with a nonlinear relation, which has been identified to be quadratic. Energy
dissipated per cycle by damper ZJD-1 is nearly in lincar relation with excitation
frequency, which can be seen from Figure 3.13. But energy dissipated per cycle
by damper HD91 is in a nonlinear relation with excitation frequency as Figuré
3.14. Energy problem will be discussed again based on the mathematical model

in Chapter Four.

Limited by the thesis page, test results of all test cases are not presented by

figures. The equivalent stiffness, energy dissipated per cycle and damping ratio of

3-8



Chapter 3 Dynamic Tests on Viscoelastic Dampers

damper ZJD-1 and HD91 of all test cases have been calculated and shown in

Appendix 1 and Appendix 2.

3.4 Dynamic Behaviours of the Dampers in Axial Direction

Dynamic tests on these two kinds of viscoelastic dampers in their axial direction
have been done by the research students Mak M. F.(1991) and Lam J. Y. H.
(1993} in the same department of the university. The test set-up is shown in
Figure 3.15. During the tests, the axial displacement amplitudes were set from
0.05mm to 0.5mm and the excitation frequencies were set from 3Hz to 60Hz.
Restoring force and axial displacement were recorded simultaneously for all test
cases. From the test results, it has been found that the dynamic characteristics of
the dampers in their axial direction have the similar behaviours as those in their
shear direction. It can be seen from the hysteresis loops with different
displacement amplitudes and at different excitation frequencies as reproduced in

the figures from Figure 3.16 to Figure 3.19.

For the research work which was performed by Mak and Lam have been
described in their thesis in detail. It will not be repeated here. Some of the test
results (excitation frequency from 3Hz to 40Hz and shear displacement amplitude
from 0.05mm to 0.40mm) are given in Appendix 3 and Appendix 4 for

references.

3.5 Discussions and Conclusions

As the basis of model selection for viscoelastic dampers, dynamic characteristics

of two Kinds of viscoelastic dampers in their shear direction have been studied by
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experimental work and discussed in detail in this chapter. The dynamic
behaviours of these two kinds of dampers in their axial direction have been
briefly described based on the research work carried out by others. Compared
with the test results of other kinds of viscoelastic damper carried out under
excitation of different shear displacement amplitudes and at different excitation
frequencies by other researchers (Aiken Ian D. et al, 1990, Kirekawa A. et al,
1992, Chang K. C. et al, 1993), it can be found that those viscoelastic dampers
also have the similar properties. It means that the properties of these two kinds of
dampers carried out in the present study have covered those of the commonly
used viscoelastic dampers. The properties of the dampers can be reflected

accurately enough by the mathematical model proposed in the following chapter.

From the test results, it has been found that the hysteresis loops of restoring force
against shear displacement change with shear displacement amplitude and
excitation frequency. When the excitation frequency is fixed, area of the
hysteresis loop, which presents the energy dissipation ability, increases with shear
displacement amplitude while the loop shape remains unchanged. On the other
ha;ld, when the shear displacement amplitude is fixed, area of the loop increases

with the excitation frequency and the loop shape changes also.

Differences in properties between different kinds of damper have been found. No
matter under any shear displacement amplitude and at any excitation frequency,
the equivalent stiffness of the damper ZJD-1 changes very little, however, that of
the damper HD91 and other dampers investigﬁted by other researchers increases
noticeably with the excitation frequency. Damping ratio of damper ZJD-1

increases linearly with the excitation frequency, but that of the dampers like
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HD91 changes nonlinearly with the excitation frequency. Furthermore, difference
in energy dissipation ability between dampers like ZID-1 and dampers like HD91

has also been found.

Figures shown in this chapter are only some examples of the experimental work
which are considered to be clear enough to explain the properties of the dampers.
Although test data of only a few cases are presented in the figures of this chapter,
test data of other cases not presented have demonstrated similar behaviours. All
the test data have been used for system identification of model parameters in

Chapter Four.

When the tests were performed, environmental temperature was about 25°C.
Limited by the laboratory facilities, temperature factor has not been considered in
the experimental tests. However, since the property of viscoelastic dampers
would vary with the change of temperature. The temperature effect is discussed
in the formulation of mathematical model with reference to the results obtained
by other researchers in the following chapter. For practical design in those cities
like Hong Kong, where the temperature variation in a year is small, the dynamic
behaviours of the viscoelastic dampers installed inside the buildings in particular
those with air-condition, is not expected to have significant change due to

temperature effect.
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Figure 3.1 Shear test set-up for viscoelastic dampers
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Figure 3.2  Set-up of the dynamic test system
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Figure 3.3 Appearance of damper ZJD-1
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1 Setup of damper test

Photo 3

3-23



CHAPTER 4
MODELLING AND IDENTIFICATION

4.1 Introduction

In order to take the damper behaviour into account in vibration calculations such
as to predict the response of a structure incorporated with viscoelastic dampers,
the mathematical forms embodying the dynamic characteristics of the dampers
have to be obtained. Commonly used mathematical models for viscoelastic
dampers have been introduced and discussed in Chapter Two. From the
experimental test of the two kinds of viscoelastic damper, it has been found that
the dynamic properties such as storage modulus, loss modulus and damping ratio
of viscoelastic dampers depend on the excitation frequency. Mathematical models
like structural damping model with complex constants, or generalized derivative
models which can be characteristiced by constant loss modulus and storage
modulus are not accurate and versatile enough to describe the behaviour of
various viscoelastic dampers. However, the fractional derivative model can
prédict the dynamic properties of dampers that vary with excitation frequency
(Pritz T., 1996). Fractional derivative models can lead to well-posed equations of
motion with causal solutions when used in modal analysis (Bagley R. L., 1983).
Variety of materials employed in previous researches demonstrates that the
fractional calculus model is a robust descriptor of the behavior of real materials
(Bagley R. L. et al, 1986). In this thesis, by comparisons of commonly used
mathematical models, the fractional derivative model has been selected and

further developed to describe the dynamic behaviour of viscoelastic materials.
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For frequency dependence of the damper, it is difficult to identify parameters of
the model with accurate values by generally used least square method based on
many groups of test data gathered in time domain. In the present study, to get the
parameter value with sufficient accuracy, two kinds of identification methods for
the fractional derivative model have been developed. By considering all the test
data simultaneously, parameters of each damper have been obtained by the
developed methods. Comparisons of the hysteresis loops of the improved model
with those of the test results have been made to verify the reliability of the model
as well as comparisons with the hysteresis loops of the widely used Kelvin-Voigt
model to illustrate the advantage of the improved model. Moreover,
charactenistics of the model have been investigated in detail by numerical

simulation.

4.2 Improved Fractional Derivative Model
4.2.1 Generalized Derivative Models

The characteristics of the hysteresis loops can be described by mathematical
models which contain various factors affecting the relationship. Such models can

be written in a very general form as
f[D.(0), D, (&), 1, T, -] =0 (4.1)
where, f represents a vector function of variables, ¢ is the stress tensor, € is the

strain tensor, ¢ is the time, T is the temperature, D, and D, represent

differential, integral, or combined operators, which are in general nonlinear

(Nashif Ahid D., 1985). It is a general practice that experimental data of dynamic
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tests on a specific damping material are used to build a mathematical model to

describe the dynamic behaviour of dampers made of such material.

Frequency dependence of a viscoelastic damper can be realized by the material
constitutive equations relating stress to strain. There are two types of constitutive
equations as mentioned in Chapter Two both defining the stress-strain
relationship in the time-domain. One is an integral equation based on the
Boltzmann superposition principle; the other is a linear differential equation. The
latter is most useful for finding frequency functions. The differential equation in

its classical form contains time derivatives of integer order and can be written as

d"o(:) N e(t)

0ﬂ0+2 (4.2)

() + ib,.-

where ¢ is the time, a,, @, and b, are parameters depending on the material.

The specific forms of the above equation are the mathematical basis of the widely
used generalized standard models consisting of ideally elastic springs and viscous
dashpots. If complex modulus models are used, the complex moduli for these
models can easily be derived by taking the Fourier transform of both sides of the

o — ¢ differential equation,

o(®)+ ):b d's(0) = ape(w)+ Za (jo) —— 4 E(m)

- 4.3
i=1 df i=1 df ( )

The generalized standard models have been used for a long time (Harris Cyril M.
and Crede Charles E., 1976; Lazan B. J., 1968), however, their qualitative
behaviour is different from the real behaviour of viscoelastic dampers. This
shortcoming of the generalized standard models can be immediately recognized

from the hysteresis loops of HD91 damper under different excitation frequency.

4-3



Chapter 4 Modelling and Identification

The characteristic of frequency dependence could be similar, however, the
experimental equivalent stiffness decreases with excitation frequency while the
theoretical equivalent stiffness described by generalized standard models does not
change. For viscoelastic materials, the complex modulus models have been
developed and are widely used in structural dynamics, with an assumption that
the loss modulus is constant for all frequencies. However, this assumption is
found to be incorrect based on the experimental results and the complex modulus
models are considered to be not accurate enough to represent various viscoelastic

material.

4.2.2 Improved Fractional Derivative Model
4.2.2.1 Fractional Derivative Model

The qualitative behaviour of the generalized derivative model cannot be
improved by increasing the number of terms. Therefore, it seems to be reasonable
to assume that the source of inappropriateness of the generalized standard models
is in the basic elements themselves. Moreover, it is reasonable to seek the source
of inappropriateness in the viscous dashpot, instead of the elastic spring. When
using the dashpot, it is implicitly assumed that the internal friction of the solid
has a viscous nature like a fluid. Newton's viscosity law predicts that the stress in

a fluid is proportional to the first time derivative of strain, that is

o(r) ~ 220 | (4.4)
dt

However, it is evident that pure viscous friction cannot describe the
characteristics of a solid. For some solid materials, it is more realistic to assume

that the stress due to the internal friction depends to a “lesser extent” on the time
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variation of strain than in the case of a fluid. The “lesser extent" can be expressed
mathematically by introducing a time derivative of order smaller than unity,

called a fractional derivative, in the stress-strain relationship as

de(t)
dr®

o(t) ~ (4.5)

where, O<a<1.
The oth order fractional derivative of a function £(¢) is defined with the gamma

function T as

e(r)
t—1)%

* 1 d,
e S0 = T(-o)dt I0(

(4.6)

where 1 is an integral variable. Fortunately, the equation can be transformed

easily to the frequency-domain,
o

L ety (jo) e() .7
dr

The introduction of fractional derivatives into the differential type constitutive
equations of materials results in the so-called fractional derivative models of
materials. The general form of this model can be derived by replacing the integer

order derivatives in equation (4.2) with fractional order ones,

o(f) + ib,.Df’* [o(n)] = aye(t) + E‘,aiD“‘ [e())] (0<a,<1,0<B, <1) (4.8)
i=l i=1 .

where D denotes the operator of fractional differentiation, a,,a,, b,, o, and B,
are parameters dependent on the material.

It is clear from above equation that the introduction of fractional order time-
derivatives results in power functions with powérs smaller than unity in the
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complex modulus frequency function. In this way, equivalent stiffness changing
with frequency can be simulated, which is not possible with the generalized
derivative models. Fractional derivative models of different behaviour can be
developed, depending on the number of parameters which differ from zero in the

above equation.

4.2.2.2 Improvement of the Fractional Derivative Model with parameter range

Parameter o of the normally used fractional derivative models is in the range of
0 <a <10 for "lesser extent” solid materials. It is not suitable for pure spring and
pure viscous materials. It has also been found from experimental work that the
range is not suitable for "more extent" materials- like ZID-1. It is necessary to
redefine the range. The gamma function is defined as (Writer Group of

Mathematics Guide, 1979),

1 | L
e — t*dr, larg ¢l 4.9
T(z)  2mit=" (largl<m) (42)

where, the integral trail starts from ¢ = —, after going around the original point
in positive direction and it returns to the start point. The variable z can be any

value.

It can be seen that the range is not constrained by the gamma function. The
parameter o should be 0.0 for pure spring, 1.0 for pure viscous and larger than
1.0 for "more extent” materials. In order to make the original model more
versatile, a new range of parameter o is defined as o>0. Therefore, the

generalized derivative models can be improved as

o)+ 3 b, D [6(1)] = a,e(r) + S0, D% [e(t)] (o; 20, B, 20) (4.10)
i=1 =1
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Although the form is the same as equation (4.8), it covers more kinds of models
than the original fractional derivative models and it still possesses all the
advantages which equation (4.8) has. The nature of this equation is not different
from the classical constitutive equations of viscoelasticity, since both the
differential operator type equation with integer order derivatives and the
Boltzmann-type integral equation (Shen K. L., 1995) are heuristic, the fractional
derivative model with redefined parameter range is also heuristic. The improved
fractional derivative model is capable of accurately describing quantitatively the
dynamic behaviour of viscoelastic dampers. Furthermore, since only a few
parameters are needed to describe the variations of dynamic properties in wide
frequency ranges, the model is practical for vibration calculations. For
viscoelastic dampers in applications, the frequency range is limited, a three-
parameter model is sufficient to describe the dynamic behaviour of the dampers
(Bagley R. L. et al, 1985). In the present study, the following simple form is
chosen as the Improved Fractional Derivative Model (IFDM) to describe the

relationship between the shear stress and the shear strain of a damper,
T=Goy()+G D% [y(] (az20) (4.11.a)

And relationship between stress and strain in axial direction can be written as
o=Eye(t)+ E,D%™[e()]) (o, 20) (4.11.b)

When o =0 (or o, =0), the model degrades to the pure linear model and when

o =1.0 (or a, =1.0), the model turns to be the Kelvin-Voigt model.
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4.2.2.3 Development of the model with temperature consideration

For different kind of viscoelastic damper, the temperature effect is different.
Tests should be performed at different temperatures to get the corresponding

parameters Gy, G; and o. Thus, the temperature effect can be considered based

onthe curvesof G, ~T, G, ~T and o~ T.

The effect of temperature on some viscoelastic dampers is studied based on the
test results carried out by other researchers (Kirekawa A. et al, 1992, Soong T. T.
et al, 1997). It has been found that the storage modulus and loss modulus of the
damper would decrease while temperature increases. From the figures presented
by Soong T. T. et al (1997), the correlation between temperature and storage
modulus and that between temperature and loss modulus of the dampers they
have investigated are similar. And the correlation between modulus (storage
modulus and loss modulus) and excitation frequency would not change with
temperature, which means that temperature would not affect parameter o . If the
IFDM is used to describe the dynamic behaviour of those viscoelastic dampers,

the temperature effect could be considered with parameter G, and G, only.

From the above findings, the fractional derivative model for those dampers can

be modified as follows,
W) =y (T)-Go¥(D) + (1) - G D*y(1) (4.12)

where, y,(T) and y,(T) are functions of témperature T. Since parameters o,
G, and G, are determined by test data obtained at a certain temperature T,,

y,(T) and w,(T)can be written as y,(T-T,) and y,(T -T,). If the correlation
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with temperature for storage modulus and loss modulus are the same for a
damper, one function can be used to represent the temperature effect and the final

form of the IFDM with AT =T - T, can be written as
() = Y(AT) Gov(t) + G, Dy (1)] (4.13)

Normally, the functions concerned with temperature effect should be expressed
according to the test results and the related parameters should be identified by the
test data. Based on the results obtained by some researchers (Soong T. T., 1997,
Tsai C. S. et al, 1993), the temperature function of the materials they studied

could be written in an exponential form as

W(AT) = e-(ﬁlAT"'BzATZ) (4 14)

4.3 Parameters Identification of the Improved Model

Restoring force F(t) of a damper can be calculated from the shear displacement
X(r) based on the proposed model taking into consideration of the geometric

dimensions of the damper. It can be written as
Fo) = %wmn [GOX(t) +G, D“X(t)] (4.15)

where A, is the damper area, & is the damper thickness.

Since temperature does not change during tests on damper ZJD-1 and damper

HD91, i.e., AT =0, the temperature function is omitted in this section as

F(t)= %[GOX(I) + G D“X(r)] (4.16)
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From most of the past research work, it can be seen that the fractional derivative
equations were solved in time domain with approximate methods (Tsai C. S.,
1993, Makris Nicos et al, 1991, Koh Chan Ghee et al, 1990). It is difficult to
calculate the fractional derivative part in time domain not only because the
amount of calculation work is large, but also because the calculation is related to
history of the damper deformation. In practice, a series of test data are obtained at
arbitrary time, it is not suitable to use them without considering deformation
history to identify the parameters of the model. And if the parameters are
identified in time domain, different parameter values will be obtained from
different data group, especially from data groups collected under different
excitation frequencies. Although the average value of those parameter values
identified from different data groups can be taken as the final result, the
weightings for different data groups are hard to be determined. Therefore, the
parameters obtained in this way are usually not accurate enough for analysis of

structures incorporated with dampers.

However, as one of the advantages of the IFDM, the formulation form in
fre;quency domain is very simple and it is not difficult to be solved. Moreover,
different data groups can be applied simultaneously to identify the parameters.
When the fractional derivative model is transformed to frequency domain by

FFT, restoring force can be written as
A e
F(@) = -;l_[GoX(m) +G,(jo)* X(@)] 4.17)

F(w)and X(w)can be obtained by FFT from each data group as F(®;) and

X(w;), i=1,2, ....,M, where M is the number of data points applied for FFT.
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Because signals have been filtered before data being collected, the super-
harmonic factor of the experimental results is very small, it should be good

enough to get one or two pairs of [ F(®), X (w)] for each data group.

4.3.1 Proposed system identification methods
4.3.1.1 Linear frequency-domain identification method for IFDM

An identification method, namely the linear frequency domain identification
method (LFIM), is developed to identify values of the parameters of the IFDM,

in which parameters G;, G, and o can be obtained by finding the minimum

difference of an Euclidean norm.

For all the test cases, assume that N pairs of [ F(w), X (®)] have been obtained for

parameter identification. The restoring force of the i-th pair can be written as

Fi(o;) =%[A,-G0 + B;G,] (4.18)
where,

A =X (@)= Ay +jAy (4.19)

B, = X,(0,)(j®,)* = B, + jB, (4.20)

And the left term can be written as
F;((Di) = F;‘R +jF;1 (4.21)
Putting all test cases together, it can be written in a matrix form as

F=CG (4.22)

where,
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F=(F,F, - F F, - FyF,) (4.23)

NR

C:,,A_r’:AlR Au “'Ai Aw"'ANR AN! ]T (4.24)
h Bm Bu BiR Bil BNR B.w

T
G=(2 8) =(Gy G) (4.25)

An approximate solution to this problem may be obtained by minimizing an
Euclidean norm of the difference between the right and left sides of (4.22). The

Euclidean norm of this difference is given by the following expression,
le*] = (¥ -cGy"(F-CG) (4.26)

The minimum of this norm can be calculated as a closed form solution, yielding

the following expression,

i]|e2|| =-2CTF+2C7CG=0 (i=1,2) 4.27)
dg;

The above equation can be solved for the coefficients G as
G=(C"C) C'F (4.28)
Since matrix C changes with parameter o, for each o, a set of Gcan be

obtained. Then the curves of G, ~«, G, ~ o and "82" ~ o can be obtained. And

the optimization point can be achieved at the point of ||82” equal to the minimum
value. Thus, corresponding to o, values of G, and G, can be determined from

the curves.

4-12



Chapter 4 Modelling and Identification

4.3.1.2 Non-linear frequency-domain identification method for IFDM

The LFDM is a little bit complicated for operation. To check whether the
parameter values identified by LFIM are reliable or not and make the
identification procedure easier and more convenient, another identification
method, namely the non-linear frequency-domain identification method (NFIM),
1s developed to identify values of the parameters of the IFDM. The parameters

G,, G, and o can be obtained by solving a nonlinear least squares problem using

a modified Levenberg-Marquardt algorithm (IMSL, 1989, Ni Y. Q., 1997). The

problem is stated as follows,

min ~F(x)TF(x) =~ 3 f.(x)? 4.29)
xelR" 2 20

where, m2n, F:IR" — IR™, and f,(x) is the i-th component function of F(x).

From a current point, the algorithm uses the trust region approach,

min [F(xo) +J(xe)x, = x)], (4.30)

xeIR

subject to ||x, - x|, <3, .

to get a new point x,, which is computed as

x, = x, —[J(xC)TJ(xC)+uCI]_1J(xC)TF(xC) (4.31)

where p_ =0 if 8, 2 [J(xC)TJ(xC)Jrucl]_]J(xC)TF(xc)z and p_. >0 otherwise.

F(x.) and J(x_) are the function values and the Jacobian evaluated at the current
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point x_, respectively. This procedure is repeated until the stopping criteria are

satisfied.
For the IFDM, x = (G,, G|, o)’ , and the functions f;(x) are as follows,
fori=13---- 2ZN-1,

f‘(x) =Re al(F((t),—) - F;—((D,- ))

N (4.32.2)
] Real(-h—r[GoX,-((x)i) + G] (j(])‘-)a X[((Dl)] - E((D:))
and fori=24-..... 2N,
fi(x) = Imag(F(0,) - F;(0,))
(4.32.b)

A
= Imag(—i-l’—[GoX,-(co,- )+ Gy (jw;)* X; (‘Di)]— Fi(ﬂ)f))

where, N is the number of pair of [F(w;),X(w;)] applied for parameter

identification.

The one-order derivations of parameters can be determined by the following

equations,
ag" ((;:’) = %’-X((o) (4.33)
aa?F, - 22 (o) X(@) (4.34)
9F(w) _ iG, (j@)® In(j®)X(w) (4.35)
Ja. h .

And the Jacobian can be obtained from the following equations,

A
fJac.Go.i = Real('h_r Xi(mi)) s 1=13- 2N -1 (4363)
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A

frac,Gyi = Imag(-];'— X; (035)), [=2,4 2N (4.36.b)
Ar . a .

f1ac,6,i =Real 7;(]035) X;(w;) |, i=1,3 2N -1 (4.37.2)
Ar . o .

f1ac.Gi =1mag —h—(fw,-) X ()|, i=24-2N (4.37.b)

f.]a(_‘,(l,i = Real(%(}l (j(!)l)a ln(_](.t)l )Xi(m:)] ’ i= 1,3 """ 2N -1 (4383)

Sraeo =1m 38(%61 (Jo)* ln(jmi)Xi(wf)] ,i=240n 2N (4.38.b)

With the function F(x) and the Jacobian J(x) obtained by the above equations,

the parameter values can be determined directly from x when the convergence

criterion is satisfied.

4.3.2 Parameter identification for the dampers
4.3.2.1 Data preprocess before FFT to improve accuracy

Since test data recorded in computer is collected at arbitrary time, generally, the
first point of a data group was not the one with maximum displacement or zero
displacement. And difference exists between value of the first point and that of
the last point of test data chosen for FFT. Leakage will occur during standard
FFT if such test data is used directly. Locating the proper starting point and

adjusting values of the test data properly for FFT is necessary.

Limited by the test condition or affected by test environment, the signal obtained
from the instruments may contain data floating, for example, when shear

displacement amplitude is set at 0.1mm for a damper, data recorded from test
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may have the peak values of maximum 0.11mm and minimum -0.099mm. Error

in FFT will also occur if such situation exists.

For test data from cyclic excitation, if the number of data points collected in one
period is not 2%, it is hard for FFT to work accurately. Even when the sampling
velocity is set to 2V per cycle while test is performed, error still exists due to
system precision. When data points per cycle is not satisfied to the requirement,

interpolating points for the whole test data before FFT are necessary.

According to the above considerations, all test data are pre-processed before

being transformed by FFT. The procedures are as follows,

1. Find the positive maximum value of shear displacement in the first period and

set it as the first point;

2. Find the positive peaks and negative peaks for the remainder test data, if the
positive peak number is equal to the negative peak number, then calculate the
average value of whole peaks and adjust all the test data. This step should be

done for shear displacement and restoring force simultaneously;

3. JChcck the points between peaks, if it is not satisfying 2", then adjust all the
points of each period, each point value can be determined by the values of

neighbouring points by two-point interpolation or three-point interpolation.

After the test data being pre-processed, it will be transformed by FFT. From the
results of FFT, large difference can be found between the test data before (case 1)
and after (case i1} being processed from some examples shown in Table 4.1.

Values of [F(w;),X(w;)] for several groups of test data under shear

displacement of 0.1mm are compared here. All values in the table are obtained by
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FFT with 4096 points (32 periods). It can be seen that the values are more regular

after being pre-processed.

Table 4.1 FFT results of the test data before and after preprocess

Term Excitation Fr(ax) Fi(wy) Xr(0x) Xi(ox)
frequency
1 3Hz i 37.327 103.891 -0.00304 0.09847
i 109.952 9.849 0.09818 0.00057
) 6Hz i 40.006 104.212 0.00265 -0.10026
i 109.621 19.993 0.09861 0.00283
3 9Hz i 47919 103.848 -0.00598 0.09723
ii 109.482 30.255 0.09863 -0.00108

4.3.2.2 Parameter values for the dampers and Comparison of identification

methods

Parameters of the IFDM for the damper ZJD-1 and damper HD91 are identified
here by both LFIM and NFIM. With preprocess of all the test data collected
under different conditions, these data are transformed to frequency domain by
FFT and then used to identify the parameters of IFDM for the damper
simultaneously.

For damper ZJD-1 with LFIM, when parameter o changes from 0 to 2.0, the

corresponding values of G,, G, and "52“ have been calculated for each damper

and relations of G,,G, ~a and "82" ~ o are shown in Figure 4.1 and Figure 4.2,

respectively. Value of o corresponding to the lowest point of the curve in Figure

4.2 is determined to be 1.02 with the corresponding [[e?| equal to 2222.68. Thus

G, and G, are determined from Figure 4.1 as G, =1618and G; =0.0072. For
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damper HD91 with LFIM, relations of G,,G; ~o and Hazn ~ o are shown in

Figure 4.3 and Figure 4.4, respectively. Parameter values are worked out in the

same way as above-mentioned and are determined as o = 072404, G, = 0.79459

and G, = 00285 while [¢?] =343098.

Parameter values for both dampers are also identified by NFIM. They are
compared with those identified by LFIM as shown in Table 4.2 and Table 4.3 for
damper ZJD-1 and HD91, respectively. It is obvious from these tables thaf the
parameters identified by two methods are nearly the same. However, the
parameter identification by NFIM only costs about several seconds while much

more time is needed to find the parameter values by LFIM.

Table 4.2 Parameter values for ZJD-1 by the two identification methods

Method Go G, o
LFIM 1.61689 - 0.00712 1.02135
NFIM 1.61674 0.00708 1.02117

Table 4.3 Parameter values for HD91 by the two identification methods

Method Gy Gy o
LFIM 0.79459 - 0.02853 0.72404
NFIM 0.79451 0.02847 0.72388

Since the characteristics of the dampers in axial direction are similar to those in
shear direction, the IFDM is also used for these dampers in axial direction,
Parameters of the model for both dampers in axial direction have also been

identified by NFIM and the values are found to be o=1011, E; =5577,

E, =0.01464 for ZJD-1 and o= 0.684, E, = 3225, E, =0.087 for HD91.
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Parameters can also be identified in time domain with solution of the derivative
parts obtained by approximate method. The calculation is very time consuming
and because the solution is worked out approximately, error will be accumulated
during the calculation. Even if only typical points of each case are used to
identify the parameters, at least eight points should be chosen for each test case.
If the chosen point is not suitable or only a few points are chosen for each data
group, the identification will be inaccurate. Moreover, if data of all test cases are
considered simultaneously, number of equations to be solved by the non-linear

least square method will be very large.

4.4 Verification of the Improved Model with Test Results

After the parameter values being obtained, the IFDM can be verified by test data.
For each case, displacement in time domain generated by x = Asinw: can be
transformed to frequency domain by FFT, then the corresponding restoring force
in frequency domain can be calculated by the model with the identified
parameters. Then the restoring force in time domain can be obtained by inverse

FFT. The procedure can be written as

X35 X (0 F(w)S F() (4.39)

Hysteresis loops of both damper ZJD-1 and damper HD91 at different shear
displacement amplitude under different excitation frequency are obtained by the
IFDM. No matter how many cycles are calcuiated, the loop of the model is in the
same path, while the loops of test results shift with time. Figure 4.5 and Figure
4.6 are two examples of the comparison of hysteresis loops obtained from tests

with the loops calculated by the model. The symbols on these two figures are data
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points of 16 cycles. And the white curve in each figure is the loop of the model.
The thickness of the model loop is enlarged to show the figures clearly. In order
to make the comparisons convenient, one cycle loop of test results with
adjustment of position and size as mentioned in Chapter Three is used for each

case.

From examples shown in Figure 4.7 to Figure 4.11, it can be seen that the
hysteresis loops calculated by the IFDM are in good agreement with the test
results of damper ZJD-1 at different excitation frequency and the loops calculated
by the model are also nearly the same as those of test results with different shear
displacement amplitudes as shown in Figure 4.12. The same conclusions can be
drawn for damper HD91 from Figure 4.13 to Figure 4.18. The maximum error of
the hysteresis loop area between the loop of model and that of test results is less
than 4% for all cases. From the above comparisons, conclusion can be drawn that
the IFDM can well describe the dynamic behaviour of various viscoelastic

dampers such as ZJD-1 and HD91.

45 Comparison of the Improved Model with Popularly Used Kelvin-
Voigt Model

The advantages of the IFDM can be found by the comparisons of the loops with
those calculated by other popularly used models such as Kelvin-Voigt Model.
The relationship between restoring force and shear displacement of a damper

with area A, and thickness k can be expressed by Kelvin-Voigt model as

F = fh’— [Gx(#) + nx(6)] (4.40)
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where, G is the shear modulus and 1] is the viscosity coefficient,

When a damper is excited with a shear displacement of x(f) = Asinwt, the

restoring force can be written as

F(t)= %[GA sin ¢ + NA®cos f | = Bsin(wt + @) (4.41)
in which,
B= A;f‘ JGZ +nle? (4.42.2)
nw
= — 4.42b
== ( )

Damping ratio {can be calculated by the phase-lag method and can be written as

(= %tan(p =-;—tan(%) (4.43)

According to equation (3.1),

1= arctan(2co +2) (4.44)
®

Fc;r different test cases, the parameter G can be obtained directly from the
hysteresis loops and n can be calculated by (4.44). With these two parameters
averaged for all cases, parameters G and m have been identified to be 1.6201
and 0.0072 for ZJD-1, 1.2238 and 0.0075 for HD91, respectively. Comparisons
of the loops calculated by the Kelvin-Voigt model under shear displacement
amplitude of 0.1mm at different excitation fl;equencies from 3Hz to 15Hz for
damper ZJD-1 with those of test results are made as shown in Figure 4.19 to

Figure 4.23. It can be seen that loops calculated by the model are in good
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agreement with those of the test results. Comparisons of hysteresis loops
calculated by the Kelvin-Voigt model under shear displacement amplitude of
0.Imm at different excitation frequencies from 3Hz to 15Hz for damper HD91
with those of the test results have also been made and shown in Figure 4.24 to
Figure 4.28. It can be seen that under some conditions such as the damper being
excited at excitation frequency of 15Hz, there is only little difference between
hysteresis loops of model and those of test results. But under the other conditions,

the discrepancy between them is quite large.

That is to say, although the Kelvin-Voigt model can be used for some kinds of
viscoelastic damper like ZJD-1, it is not suitable for describing the behaviour of
other kinds of damper like HD91. Therefore, Kelvin-Voigt model is not good
enough to describe the behaviour of various viscoelastic dampers under dynamic

loading.

From the above comparisons, it can be seen that the IFDM is more versatile than
the Kelvin-Voigt model. Actually, as mentioned in section 4.2.3, the Kelvin-
Voigt model is a special case of the [IFDM with o =10, because parameter o of
the IFDM is nearly equal to 1.0 for damper ZID-1, the Kelvin-Voigt model can
thus well describe the behaviour of damper ZJD-1 at any cases. However, o is
only 0.724 for damper HD91, so it is hard for the Kelvin-Vogit Model to describe

the behaviour of HD91 under various frequencies and shear displacements.

4.6 Characteristics of the Improved Model

From the above study, it can be seen that the IFDM can well describe the

dynamic behaviour of different kinds of viscoelastic damper under different
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excitation conditions. For a damper, what we care about most is its damping ratio,
storage modulus and loss modulus. The first term G,y(t) of the IFDM is a linear
term synchronous with shear displacement and gives contribution to the storage
modulus only. The second term G,D°[y(r)], which has a phase-lag with shear
displacement, embodies the nonlinearity of the model. It contains two

components, one 1s in linear with shear displacement and the other is in linear

with shear velocity. In fact, the nonlinear term can be written in frequency
domain to be G,(jw)*y(®w). The real part of the term contributes to storage
modulus and the imaginary part contributes to loss modulus. Thus, the storage

modulus is G, +[G,(®j)*]_ and the loss modulus is [G, («))*] g The phase-lag

of the restoring stress to the shear strain can be obtained by

[Gi@*] G,0% sin %
£ arctan — (4.45)
Gy + G,0% cos >

(¢ = arctan Gt [Gl (mj)a]

real

Damping ratio of a damper is half of the tangent of the phase lag. It is concerned

with o, Gy, G, and excitation frequency. It does not have relation with

displacement amplitude. Therefore, damping ratio of a damper under different
shear displacement but at the same excitation frequency will be the same. Large
amount of energy dissipated per cycle by a damper does not mean that the damper
has high damping value. The energy can be calculated from the area of hysteresis

loop as

= ——M'A‘i’” Giw® sin 2% (4.46)
5 )

A -
E, = TA i I:‘—hL Ay G (@) ] P

imag
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where E, is the energy dissipated by the damper for each cycle; A,_ is the shear

disp

displacement amplitude. The energy is in quadric relation with A, which

disp
conforms to the test results. It is in linear with parameter G,. The storage

modulus does not give any contribution to energy dissipation at all.

It can also be known from the model that when o =0, the model degrades to a

pure linear model, E, =0 and when a =1.0, the model degrades to the Kelvin-

Voigt model and the energy dissipated per cycle is in linear with excitation

frequency,

disp

A, AL G o
E, = —

(4.47)

Thus, when the energy curve changing with excitation frequency is obtained,
value of parameter « can be estimated approximately. For example, when tests
on the two kinds of damper are finished, it can be determined that o for damper
ZID-1 i1s close to 1.0 and that for HD91 is less than 1.0 as indicated from Figure
3.13 and Figure 3.14.

The hysteresis loop of the model can be considered as the superposition of two

parts, one part is an inclined line which is contributed by the storage modulus

expressed as G, + G0 cos%1E and the other part is an ellipse with major and

minor axis in the direction of X-axis and Y-axis, which is the effect of the loss

modulus G,0® sin%. It can be illustrated by Figure 4.29.

To know more about the model, characteristics of model have been studied based

on numerical simulation in the following sections.
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4.6.1 Effect of parameter o

Parameter o plays an important role in the [FDM. Characteristics such as
damping ratio, loss modulus and storage modulus are all concerned with
parameter o.. With different value of o, the fractional derivative model can
degrades to different kind of model like linear model and generalized derivative
models. Special frequency dependence of some viscoelastic dampers, like storage
modulus changes with excitation frequency, which can not be embodied by

commonly used models, can be represented by the IFDM.

To study the nonlinear term clearly, parameter G, is set to zero, a damper with
area of 10800mm? and height of 20mm is assumed to be excited under shear
displacement of x(r)=0.lcos(ws). The period of the shear displacement is
T =1/2n, while parameter G, = 0.007. The hysteresis loops with different o are
shown in Figure 4.30.

It is clear that when o = 0.0, the loop is an inclined line with area equal to zero,
the nonlinear term degrades to G,y(r) like a spring, it is a pure storage term,

ph:clse-lag of the restoring force to shear displacement is zero and the storage

modulus is G,. When o = 1.0, the loop is an ellipse, the major and the minor axis
of which are along with X and Y axis, the nonlinear term becomes G,¥(?), it is a

pure loss term, phase-lag of the restoring force to the shear displacement is n/2

and the loss modulus is G,. When «=2.0, the nonlinear term is expressed as
G,¥(r), the hysteresis loop is also a slanting line with loop area equal to zero, the
phase-lag is n and the storage modulus is —G,. When o changes from 0 to 1.0,

the storage modulus changes from G, to zero, damping changes from zero to
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pure viscous damping and phase-lag is between zero and n/2, and when o

changes from 1.0 to 2.0, the storage modulus changes from zero to —G,, damping

changes from pure viscous damping to zero and phase lag is between n/2 and=.

The variation of storage and loss modulus along with o can be seen from Figure
4.31. It 1s obvious that under the current parameter assumption, when o =10,

loss modulus reaches its largest value.

The above study is based on w=10, when ® is of other values, the
characteristics will change. The behaviour of the nonlinear term under o = 1.5
has been investigated and the hysteresis loops are shown in Figure 4.32. It can be
seen that the storage modulus is related to the excitation frequency. When the
frequency is getting large, the influence to the storage modulus will be greater.
The variation of storage modulus and loss modulus along with o can be seen in

Figure 4.33.

For real materials, normally the linear term is not zero and it gives the main
contribution to the storage modulus in a low frequency range. In another word,

parameter G, is much larger than the real part of G,(®j)*. The hysteresis loops
of the model with different o at G, =0.01 and G, = 0.02 are also calculated and

shown in Figure 4.34 and Figure 4.35, respectively, where @ =1.5. It can be seen

that when G, increases, the shape of hysteresis loops become thinner, while loss

modulus still reaches its largest value when o =1.0.

The energy dissipated per cycle is also related to o. The curves of energy
dissipated per cycle by the damper represented by the model with different
parameter o under excitation frequency of 0.5, 1.0, and 1.5 are shown in Figure

4.36. It can be seen when the excitation frequency is less than 1.0, the maximum
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energy dissipation occurs with o less than 1.0, and when the frequency is larger

than 1.0, the maximum energy dissipation occurs with o larger than 1.0.

4.6.2 Effect of parameter G,

Since the real part of the model determines the equivalent stiffness of a damper
represented by the model and the imaginary part determines its hysteresis loop

area, when parameter G, increases, both the imaginary part and the real part

increase and therefore both the storage modulus and the energy dissipation ability
increase. It can be seen clearly from the hysteresis loops in Figure 4.37 and

Figure 4.38, where, o =1.5 and o =038.
When G, =0, the restoring force at time t can be written as

— o —
F(t) = Anonlinear COS((DI + enonlinear) 3 where Anonl:'near - Glm and enonlincar =no./2 ’

when G, changes, 9 will not change and when cos(®t; + 0, .imear ) =0, the

nonlinear
restoring force is zero, so all hysteresis loops with different parameter G, pass
through the same point at time t;. When parameter G, is not equal to zero,
Fl) = Gy cos(®t) + A, ntinear COS(OE + 0, imeqr) - Since the first term of right side

does not change with G,, when cos(®; +9,,,mear ) =0, F(t) = G, cos(wr;) is of

the same value, thus all hysteresis loops also pass through the same point at time

t;. This property can explain the phenomena in Figure 3.7 that the restoring force

at a certain displacement is the same for different excitation frequency.
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4.6.3 Effect of parameter G,

Parameter G, is the main part of the storage stiffness, when it becomes larger,

the equivalent stiffness of the damper will increase also. Since it does not have

relation with the imaginary part, area of the loop will not change with G,. The
hysteresis loops of the model with different value of G, are drawn in Figure
4.39, where w=15 and o=08. However, when G, increases, the storage

modulus of the model will increase while the loss modulus keeps unchanged, the
hysteresis loop shape will become thinner and the tangent of phase-lag will

decrease. It is obvious from Figure 4.40 that when G, is small, the phase lag
changes greatly with G,, however when G, is large enough, the phase lag
changes slightly with G,. It is because when G, is small, the phase-lag is mainly

determined by the ratio of the imaginary part to the real part of the nonlinear term

however when G, is large, the phase lag is mainly determined by the ratio of the

imaginary part of the nonlinear term to G,.

4.6.4 Model behaviour for different excitation frequency

For the model with constant parameters, the amplitude of the nonlinear term
G,(wj)” increases with the excitation frequency. When G, value is much larger
than the real part of G,(wj)”, tangent of the phase-lag will increase which means

the damping ratio increases. In fact, the characteristics of the model subject to
different excitation frequency are similar to those of the model with different
values of G, when the excitation frequency remains unchanged. The hysteresis

loops of the model with the excitation frequency changing from 0.1Hz to 0.5Hz
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while other parameters are kept constants are shown in Figure 4.41. From Figure
4.42, it can be seen that the phase-lag increases with the excitation frequency.

When the excitation is large enough, no matter what value G, is, the phase-lag

will be o /2.

For the model with constant parameters, the energy dissipation ability increases
with the excitation frequency. The energy dissipated per cycle under different
excitation frequencies is illustrated with an example as indicated in Figure 4.43 in

which a=06, 0.8, 1.0 and 1.2, G, =0.007 and frequency changes from 0 to

0.5Hz.

. 4.6.5 Model behaviour for different shear displacement

For different shear displacement amplitudes, the shape of hysteresis loop of the
model keeps unchanged, which means the damping ratio will not change. The
restoring force however is in linear relation with the displacement amplitude.
Therefore when the amplitude changes, the hysteresis loop will amplify
correspondingly and the area of the hysteresis loop will change in quadric relation
with the amplitude. It can be seen obviously from Figure 4.44, in which the shear
displacement changes from 0.10 to 0.30 while other parameters are kept the

same.

4.6.6 Model behaviour for different temperature

An example for temperature effect on the IFDM is illustrated as follows. It is
assumed that the IFDM can be used for a damper which has the characteristics

given in figures (5.8, 5.9 and 5.10) of the book written by Soong T. T. et al
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(1997). Parameters of the model have been identified by the developed methods
based on the data groups calculated from the modulus supplied by the figures.

The model can be written as

1(t) = e COT1210[0,0717y(1) + 01186 DOy (1) (4.48)

Storage modulus and loss modulus of the damper have been calculated with the
model and compared with the data provided in T. T. Soong's bock as shown in
Figure 4.45 and Figure 4.46. It can be Seen that the model can well describe the
storage modulus and loss modulus varying with excitation frequency and
temperature.

2

Let damper area A, =18in° and damper thickness A =0.2in. The hysteresis

loops of the damper under excitation frequency of 3Hz and shear displacement of
x(t) = 0.1sin ot (in) at different temperature have been calculated and drawn in the
Figure 4.47. It can be seen that both the equivalent stiffness and the loop area
decrease greatly when the temperature increases. From test results of some
dampers by some other researchers, it can be seen that damping ratio does not
chJange too much with temperature. Damping ratios of the damper at different
temperatures under excitation frequency of 3Hz have been calculated and all of
them are equal to 0.74. Since the loss stiffness of the damper will decrease when
the temperature increases, the energy dissipated per cycle by the damper will

reduce greatly also which can be seen from the Figure 4.48.

4.7 Discussions and Conclusions

In this chapter, the Fractional Derivative Model has been chosen and developed

to simulate the dynamic behaviour of viscoelastic dampers. With redefined range
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of parameter o and temperature consideration, the IFDM can be used much more
widely for different materials or mediums and under various conditions other

than the commonly used model.

To make use of all the test data simultaneously and more conveniently for the
identification of parameters of the sophisticated model, two kinds of system
identification methods, namely LFIM and NFIM, have been developed in
frequency domain for the IFDM. In order to eliminate the experimental errors
during data collection, data pre-processed method has been proposed and all the
experimental data has been pre-processed before identification. The parameters
of the model for the two kinds of damper used in the present studies have both

been 1dentified.

Hysteresis loops calculated by the IFDM under different conditions have been
compared with those obtained from experiments. It has been found that the IFDM
can well describe the dynamic behaviour of both damper ZJD-1 and damper
HD91 at different excitation frequencies and subject to different shear
displacements. Hysteresis loops calculated by the Kelvin-Voigt model with
identified parameters for various cases have also been compared with those of
test results. Although this model can well simulate the dynamic behaviour of
ZJD-1 damper, it is not able to describe the behaviour of HD91. Conclusion can
be drawn based on the comparison that the IFDM is a more versatile model for
viscoelastic dampers than the other commonly used models which have been

established in the past.

Characteristics of the model have been studied in detail. Storage modulus, loss

modulus, phase-lag of stress to strain and energy dissipation ability of the IFDM
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have been discussed based on numerical simulation. It can be seen that the
parameter o plays the most important role in the IFDM and the model can
simulate the real behaviour of viscoelastic dampers under different excitation and

temperature conditions.
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Figure 4.29 Hysteresis loop constitution of the IFDM
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CHAPTER 5

MODELLING AND ANALYTICAL METHODS FOR
STRUCTURES WITH VISCOELASTIC DAMPERS

5.1 Introduction

A necessary prerequisite to vibration control of structures with viscoelastic
dampers is an understanding of the detailed dynamic behaviour of the system
under excitation. Many approaches toward this task have been taken, including
mathematical modelling and exact solution of the resulting partial differential
equation(s) of motion (Chen Q. et al, 1989), discrete finite element modelling and
solution of the large array of second-order differential equations (Tan X. M. et al,
1995, Tan X, M. et al, 1996), energy methods like Modal Strain Energy Method
(MSE) (Chang K. C., 1993, Hu B-G., 1995), and combination of solutions |
corresponding to the subsets of the entire system (Kasai Kazuhiko et al, 1995).
As discussed in Chapter Two, all these approaches have advantages and

disadvantages.

Viscoelastic dampers can be designed to control vibration of structures in
different directions. As discussed in Chapter Six and Chapter Seven, dampers
have been utilized to attenuate horizontal vibration of framed structures and to
suppress vertical vibration of long span beams with specially designed damping
devices. In the present study, based on the IFDM and the installation conditions,
two schemes dealing with viscoelastic damperé have been developed for response
analysis of structures. An analytical method in time domain for structures with
viscoelastic dampers has been proposed making use of the IFDM. Since the

dynamic behaviours of viscoelastic dampers change with excitation frequency,



Chapter 5 Modelling and Analytical Methods for Structures with Viscoelastic Dampers

enlightened by the frequency domain idea used in other research areas (Cameron
Timonthy M., 1988), response analysis of structures with viscoelastic dampers by
hybrid time-frequency domain method has been developed together with an

associated computer program.

5.2 Modelling Schemes for Viscoelastic Dampers in FEM

For a structure without viscoelastic dampers, the complete set of dynamic

equilibrium equations can be given by,
MX(1) + CX(#) + KX(r) = P(¢) (5.1

where M 1s the mass matrix of the structure, C is the damping matrix, K is the
stiffness matrix, X(¢) is the vector of the displac_ement and P(¢) is the vector of
the external force. In general, structures are analyzed by Finite Element Method
(FEM) with normal structural elements like beam element. Contributions of these
elements to structure stiffness consist of terms for shear, bending and tension or

compression. For example, the stiffness matrix of normal beam element is,

EA 0 _EA 0 0
! !
12EI  6EI 12E1 6El
0 rr 0 - NE
B 0 _6:;?,‘1 51_,::_1 0 651 2;51
[k] =| . (5.2)
=20 0 £a 0 0
1 !
12EI  6EI 12E1 6El
0 - e 0 JE g
0 _6£2€I 2E1 0 61;"1 4E]
i ! / I I
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The normal frame elements are mostly assumed to be of linear behaviour and
their stiffness remain unchanged during vibration. The damping ratio of the

structure without dampers is assumed to be proportional, which can be written as

[c}=a[M]+B[K], where, o= 2((02%' — (Z‘Cz)mlm;;‘,r B= 2((’)2%2 —(g’g') , in which
Wz — w3 — W,

parameters ®, and ®, are the first two natural frequencies of the structure, {,
and {, are the damping ratios corresponding to the first and second natural
frequency respectively. The direct integration methods namely Wilson-0 and

Newmark-p (Clough Ray W., 1993) can be used for the dynamic analysis of

normal structures.

However, for a structure with viscoelastic dampers, the dynamic behaviour of the
structure is different from that of a structure without dampers. To consider the
effect of dampers on the structure properly, two schemes for modelling of
viscoelastic dampers have been proposed for the response analysis of structures.
When a structure is incorporated with viscoelastic dampers, the complete set of

dynamic equilibrium equations can be written in two ways as follows,
MX(1)+ CX(0) +[K* + K? (n]X(2) = P(r) (5.3.2)
MX (1) + CX(1) + K3X() + R(1) = P() (5.3.b)

where K° is the stiffness matrix of the structure without damper, K? is the

additional stiffness matrix caused by viscoelastic dampers and R(¢) is the

restoring force vector induced by viscoelastic dampers.

Equation (5.3.a) or (5.3.b) can be chosen for response analysis according to

different contribution of the viscoelastic dampers. If the restoring force of the
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i

damper in shear direction (or axial direction) gives the FEM node, with which the
damper connects, a contribution of a force and the shear displacement {(or axial
displacement) of the damiaer has direct relation with the FEM node, then the
damper can be considered as a special element namely viscoelastic element or
considered as a support namely viscoelastic support, either equation (5.3.a) or
(5.3.b) can be applied. However, if the restoring force of the damper in shear
direction (or axial direction) gives the FEM node another kind of contribution
such as bending moment and the shear displacement (or axial displacement) of
the damper does not have direct relation with the FEM node, the damper should
be considered as a support, thus only equation (5.3.b) can be adopted. These two
different schemes are described in detail in the following two sections

respectively.

5.2.1 Viscoelastic elements

When viscoelastic dampers are considered as elements, stiffness of each
viscoelastic element changes with time during vibration of the structure. The
stiffness matrix of a viscoelastic element with displacement coordinates shown as

Figure 5.1 can be modified as

|— ki O 0 kia O 0
0 kx» 0 0 ks O
=1 ] 0 0 0 0 0 4
|iki|— kg1 O 0 kaga O 0 (>-4)
0 ks 0 0  kss O
| 0 0o 0o o o o]

Since viscoelastic dampers always undergo mainly shear deformation in practical

application, only those terms concerned with shear restoring force are considered
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to be effective and other terms are set to zero. As shown in Figure 5.2, assuming

a damper is connected with node / and node j, displacement of which at time ¢
are v; and v, then shear displacement of the damper is v, —v,. By applying the

mathematical model IFDM, the forces induced by the damper at node i and node

j can be written as,

Ay
kapvitkasv;=f; = W Y(AT)[Gy(vi—v;)+ G D% (v, ~ vill
(5.9)
Ar
ksavithkssvj= fJ. = —_h Y(AT)[Go(v;— Vj)'*'GlDa(Vi _Vj)]

where A, 1s the shear area of the damper and h is the thickness of the damper.
By considering the symmetry of the viscoelastic damper,

{kzz =kss =k (5.6)

kys = ksy =k

k, and k, can be obtained by solving Equation (5.5) and can be written as,

k= iw(AT)[GO + G D% (v; —v; )] (5.7.2)
h. v‘ - Vj
ky = -ﬁw(ar)[Go +—S_pog, -y j)] (5.7.b)
h Vi =V,

In some applications, dampers undergo axial deformation in addition to shear
deformation. As mentioned in Chapter Three, it has been found from tests
performed in axial direction by the other researchers on the same dampers ZJD-1
and HD91 that the dampers have similar characteristics in axial direction as those
in shear direction. Therefore, the IFDM has also been used to simulate the

behaviour of these dampers in axial direction and the corresponding parameters
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of the IFDM for these dampers have been identified in Chapter Four. If the axial
terms are needed to be considered, they can be obtained in the same way as those .

for shear terms and they have the similar expressions as equation (5.7),

W: — U

k“=k44=%1|1(AT)[EO+ £ Da"(ui—uj)] (5.8.2)
i Y

kg =kgy = —ﬁw(AT)lEO + E D% (u, —u; )‘I (5.8.b)
h ul' _uj

where «; and u; are the displacement of the nodes in the axial direction of the
damper.

If the bending moment effect has to be included, more elements should be
included for one damper and discretization of the structure should be modified.

Thus effect of the bending moment can be embodied by the axial restoring forces

of the elements acting at different positions of the structure.
Since the mass of the damper is much less than those of other members, terms of
the element mass matrix can be omitted or simplified as follows,

1
My = My = Mg = mss =g (5.9)

where m, is mass of the damper. Other terms of the element mass matrix are set

to zero.

All the nonlinearity and damping increment caused by dampers have been
considered in the stiffness matrix of the viscoelastic element, the damping matrix

of the structure should remain the same as that of the structure without dampers.
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5.2.2 Viscoelastic supports

When the restoring force of a damper installed between two neighbouring normal
FEM elements provides a bending moment to the node where the two normal
elements are connected, it is difficult to treat the viscoelastic damper as a
viscoelastic element without disturbing the original element discretization of the

whole structure. Therefore, it is necessary to propose the following scheme.

If a damper is considered as a viscoelastic support, it will be separated from the
linear structure during analysis. There is no need to modify the damping matrix
and the stiffness matrix of the structure because the restoring forces have already
coped with all the effects of the damper. Therefore, the structure can be analyzed
easily without any special treatment and the study is then concentrated on the

restoring force.

Viscoelastic dampers HD91 installed in the beam-column connections of a long
span beam to suppress vertical vibration of the beam in Chapter Seven is a typical
example that the dampers should be treated as supports. Dampers with
dimensions shown in Figure 5.3 are glued between the beam flange and the angle
bolted onto the column. When the beam is excited by dynamic loading, relative
rotation of the beam around the beam-column connection will occur and the
viscoelastic damper will mainly undergo shear deformation as shown in Figure
5.4. As a basis for the analysis discussed in Chapter Seven, the following
derivation is carried out with reference to the setup of the dampers in the beam-

column connection
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When the beam is excited by dynamic loading, the relative rotation angle @ in
Figure 5.4(a) 1s very small, shear displacement of the damper at the beam flange

can be approximated as

H
=—-0 5.10
v=s (3.10)

where, H is the height of the beam section.

Then the shear restoring force of each viscoelastic damper is
_Ar a
F, = —h—w(AT)[GOv +G,D (v)] (5.11)

With consideration of Equation (5.10}, the restoring force can be written as

o _ A HY(AT)

;= H = Gob+ G D% 0)] (5.12)

Herewith, the moment about the centroidal axis produced by one damper can be

obtained easily by,
_ s H_H®AW@AD) o
M,=F, = T[GOEH G,D*(6)] (5.13)

For most conditions, the damper installed at the beam-column connection subject
to axial force as well as shear force. When a rotation angle occurs at one end of
the beam as shown in Figure 5.5, the damper will undergo axial deformation in
addition to shear deformation. And the axial deformation is not uniform across
the length of the dampér. It changes along the longitudinal direction of the
damper. As shown in Figure 5.6(a), left side of the damper on the upper flange is

in tension and the right side is in compression. The damper on the lower flange is
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wholly in tension, which can be seen in Figure 5.6(b). The deformation in axial

direction of the dampers can be expressed as follows,
for the upper damper, Ah, =06x— g(l —cos9) (0<£x<a) (5.14.a)
for the lower damper, Ak, =0x+ %(1 —cos0) (0<x<a) (5.14.b)

where the damper edge is set as the origin of the X axis.

The restoring force in axial direction of a damper can be written as

F, = j;cxbdx (5.15)
where,
O, =Y, (AT)|Ege, + E\ D% (e,)] (5.16)

in which, E,, E, and a, are the parameters of the fractional derivative model for
viscoelastic dampers in axial direction, y,(AT) is the temperature factor in axial

direction.

Substitution of the axial strain € _ = a:‘ into (5.16), it yields

W, (AT)
G, = A

[Eoth, + E D% (ah,)] (5.17)

Then, by applying (5.14) and (5.17), the restoring forces of the upper damper and

the lower damper can be calculated by the following equation,
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for the uppér damper,

2
_ a“b a, abH
F,= wa(AT){—E [E09+ £,D (9)]— o

[E(J (1-cos8)+ E;D% (cos 9)]}

(5.18.a)

and for the lower damper,

2

b [E09+E1D°‘a (9)]+%[E0(1 —c0s0)+ E; D% (cos e)]}

a
E, =y (AT} —
a Wa( ){ 2h

(5.18.b)

And the additional moment around the centroidal axis of the beam end section 1s

in the same direction as M, and can be obtained in the same way for the upper

and lower damper respectively as,

a H
M, = jooxb(x - 8)dx

b a H H H H  H._
- Z“’Q(AT)JQ[EO(BX’?+?C°S“’)+ E\D% (ﬂx“5+3"°089)]< x = O)dx

_a2b ad H a . a, H .
—T\Ifa(ﬂT){Eo[a——T(l—cose)]+El[gD (9)+—4—D (cose):l}

_ Habb
4h

Yo (AT By a8 — H(1 - cos8)}+ E; [aD% (8) + HD® (cos e)]}
(5.19.2)

a H
M, = jooxb(x+?e)dx

= %wa(AT)J:[EO(Bx + g - g—cos 8)+ E, D% (0x + —Izi - %cos 9):|(‘x + g—ﬂ)dx

_ab a®  H 4 H o
—T‘I!a(ﬂT){Eo[?*L‘Z(l‘COSG)]““El[‘gD (9)——4—-D (cose)]}

Hab0
4h

v, (AT){EO [a6 + H(1 - cos®)] + E; [aD" (8) - HD" (cose)]}
(5.19.b)
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For the beam-column connection, two FEM nodes, i at the beam side and j at

the column side, are set as shown in Figure 5.7. Relative rotation of the beam to

the column around the joint is 9, —0 ;. The restoring force vector R(#) caused by

the dampers at this connection can be written as,

Hnn
)Y F-‘ii
ii=1
nn
in Z Fﬂﬁ
ii=1
FJ":‘ nn M M
Mo, | {2 Mot M) 1 (one damper)
R(t)=<--- S r an =5 or (520)
Fx}_ —E F, 2 (two dampers)
..=1 14
My -X F,
i ii=1
LY rn
-2 (Msi,- + Mac )
fi=1

in which, F; and F, are the forces in horizontal direction and vertical direction
respectively induced by the ii-th damper at the joint i, M, is the moment around
the joint ¢ induced by the shear restoring force of the ii-th damper, M, is the

moment around joint i induced by the axial restoring force of the ii-th damper

and M, is the moment around node j induced by the axial restoring force of

the ii-th damper. The term M, caused by the ii-th damper can be obtained by the

following equations,
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for the upper damper,

H H
M, = jgcxb(Tz+ x ——O)dx

_ a’b ad H a_o H o
=22y, (AT){EO [? - (1= cos 9)]+ E, [3 D% (8)+ D% (cos e)]}
+ %}3_9) v, (AT){EU (a8 — H(1 - cos8)]+ E; [aD* (8) + HD** (cos e)]}

(5.21.2)

and for the lower damper,

M, = jgcxb(% +x+ ge)dx

a’b ab H a o H o
"TWa(AT){EO[_;"‘I(I“Cose)]"‘El[‘é‘D (9)+—ID (COSG)]}

, Hab(H, +86)

eV (AT){EO [a - H(1 - cos8)] + £, [aD® (8) + HD® (cos e)]}

(5.21.b)

5.3 Response Analysis by Time Domain Method (TDM)

After the viscoelastic damper is treated with one of the above mentioned
schemes, the structure can be analyzed with step-by-step integration methods in
time domain, which is called in this thesis as time domain method (TDM). The
stiffness of damper elements or the restoring force induced by dampers are
calculated based on the displacement (4, v, 0) of the nodes, with which the
damper is connected, at the end of last time step. The problem here is how to
calculate the fractional derivative part in the equations. An approximate method
has been derived in the present study and each fractional derivative term can be

solved in time domain as follows.

5-12



Chapter 5 Modelling and Analytical Methods for Structures with Viscoelastic Dampers

For a derivative term D%y(r), which is written as

" 1 dp v
D%u(t) = i a)dtIO(;—q:) dr (5.22.2)

and its equivalent form is

o _ 1 V(O) i V(T)
Dov(t) = m_a)[ ot dt] (5.22.b)

Change of variables in the above integral gives

D“v(r)—r(ll_q)[v(o) j“’(’ )d*c:| (5.23)

It is noted that the first term is a singular term. However, the system is always
assumed to be initially at rest, 1.e. v(0)=0, so this term vanishes. Since t=0 is

used as the initial time to determine the responses that follow, rather than a time
at which the solution is to be determined, this term will be retained for

convenience in the derivation of the linear numerical algorithm.

The integral in Equation (5.23) at ¢ = nAt can be written as

Jr v(t—'t) o — ZJ-(;H)N V(t—‘i) (5.24)

If v(r) is assumed to be piecewise linear in each subinterval [jAr, (j +1)Ar], the

velocity term in the subinterval can be approximated by

Wt —1) =-‘fi':-f-:§i | (5.25)

where, jAr<T<(j+DAt.
Hence the linear algorithm for Equation (5.23) is
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I v 1 . - -
D= S T B e 1

(5.26)

where, 1< j<n-1.

For some fractional derivative parts like D*(v; —v;) in former equations, it can
be separated and written as D(v; —v;)= D%v; —D%v;. With the fractional

derivative parts obtained, response of the structure with viscoelastic dampers can

be calculated by the direct integration method at each time step.

5.4 Response Analysis by Hybrid Time-frequency Domain Method

When the equation of motion contains parameters, which might be frequency
dependent, such as the stiffness matrix or damping matrix, analysis of the
structure by approaches in frequency domain should be much superior to
approaches in time domain. For analysis of structures incorporated with
viscoelastic dampers, an approach namely hybrid time-frequency domain method
(PiTFDM) has been developed with the application of the FFT technique and
numerical procedures have been established for evaluating the response of

structures subject to arbitrary loading in this section.

The HTFDM involves superposition of the effects on coordinate j of a load acting
at coordinate i and in this case both the load and the response are harmonic.

Assuming the loading is a force vector p(#) having all zero components except

the i-th term which is a harmonic loading, p;(r) = Aexp(jor), where j in the

bracket is imaginary unit, j=+-1. The steady-state response of the i-th
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component of the displacement vector x(r) will be AH;(w)exp(jor), in which

H;(®) 1s defined as the frequency response transfer function.

If the loading in coordinate i is a general time varying load p;(r) like wind,

earthquake or other stochastic loading rather than a harmonic loading, the forced

vibration response in coordinate j can be obtained by superposing the effects of
all the harmonics contained in p;(t). For this purpose, the time domain

expression of the loading can be obtained by Fourier transformation,
pi(@) =] p;(t)exp(~jords (5.27)

and then by inverse Fourier transformation, the responses to all of these
harmonics can be combined to obtain the total structural response by the force in

coordinate j as follows,
1 e .
Xy (0= [~ Hy(@)p,(@)exp(jondo (5.28)

Then the total response in coordinate j produced by a general loading involving
all components of the load vector P(r) can be obtained by superposing the

contributions from all the load components,
1 Nroo . :
xj(0) == s[2 By (@P @) exp(jonde] j=12,...N (5.29)
i=1 .

With all transfer functions Hj;(w) being obtained, the response vector X(w) can

be éasily obtained by
X(w) = H(w)P(m) (5.30)

where, H(®) is the NxN frequency response transfer matrix.
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Hj(®) Hpw) - Hpy(o)
H H

H(o) = 2:1(0)) z?(ﬂ)) | Hzni(m) (531)
Hy (@) Hyy(0) - Hyy(w)

obtained for each frequency required in the response analysis. Once this
frequency response transfer matrix has been obtained, the responses of the system

under multiple sets of loading can be obtained. When vector X(w) for each set is

determined, inverse FFT procedure can be applied to obtain the corresponding set

of displacement vector X(t).

Fourier transformation of the equation (5.3) for a general multi-degree-of-

freedom system with viscoelastic dampers can be written as:
~0’MX(0) + joCX(®) + K X(®) + KP (0)X(®) = P(®) (5.32.a)
—0*MX(®) + joCX(®) + K5 X(®) + R(®) = P(0) (5.32.b)

When a damper supplies restoring force to the FEM node directly,
K?(0)X(w) = R(w), the above two equations for different damper modelling

schemes are basically the same. The following procedures are based on (5.32.b).

Assuming a damper is incorporated between coordinate i and coordinate j, the

shear restoring force vector can be written as,

R(w) = [0,0,,0, (), 0, -+-,0, r; (), 0,0]" (5.33)
in which,
A
(@) = ~E (AT Go + Gy (jo)* [ i (@) = x ()] (5.34.2)
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A
ri(@)= Tr\y(ar)[co +Gy(jo)* [ x; () - x,(w)] (5.34.)

With consideration of the damper positions, the restoring force vector can be

written as,
A
R(®) = —h’-\p(AT)[GO + Gy (jo)* |, X(w) (5.35)

where, I, is damper position matrix, it can be denoted as

0 0 0 0
0 1 ~1 0 i
v 0 -« =1 - 1 - 0 j (5.36)
o - 0 - 0 - 0
U J

Therefore, the matrix equation of the motion can be given by

[—sz +(jo)C+K* + ——HA’W;A‘T)

(Gy + G, j“m“)lv]X(m) =P(®) (5.37)

Symbolically, it may be written as
I(®)X(®) = F(®) (5.38)
where,

A W(AT)
h

H(w)= [—m2M+ (jO)C+K5 + (Go + Glj“ma)lv] (5.39)

If different kinds of dampers are installed in a structure with different installation
methods, the last term of equation (5.39) should be obtained by superposition of

the contribution of each damper.
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Hence, the response vector X(w) can be obtained by
X(w) = I(0)” F(w) (5.40)

which is the same as Equation (5.30). In the associated program, to get the

transfer matrix I(w)™!, a complex inverse matrix sub-program, which satisfies

I(w)I(w)~" = I, has been developed, where I is a unit NxN matrix.

With the obtained X(w), response X(¢) in time domain can be calculated by

inverse FFT. Consequently, X(r) and X(s) can be determined as well.

This method is a general method not only suitable for structures with viscoelastic
dampers, but also for normal structures or structures with other additional
components if the mathematical model for the components is provided. For

normal structures without damper, the damper position matrix I, is zero and

I(w) is only needed to be calculated by the first three terms on the right side of

Equation (5.39). If this method is used for structures with other components, only

the restoring force term in I{®) should be modified.

5.5 Comparison of TDM and HTFDM for Response Analysis

Both analytical methods have their advantages and disadvantages. The response
analysis by the TDM can give the response of the structure step by step during
calculation. By the TDM, the whole set of equilibrium equations should be solved
in each time step. However, the set of equatioﬁs is only needed to be solved once
for the whole calculation process if the HTFDM is applied. Therefore it is
obvious that much greater efficiency can be achieved in terms of computational

effort if the HTFDM is applied for structures with viscoelastic dampers which are
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represented by sophisticated mathematical models like the IFDM. Time
consumption comparison will be made between the TDM and the HTFDM in

Chapter Six and Chapter Seven.

Depending on the nonlinearity of the structure system and the excitation
condition, the HTFDM may also achieve better accuracy than the TDM. For
solving the problem with the IFDM, Equation (5.26) is an approximate method
and the accumulated errors will affect the accuracy of the results greatly.
Moreover, analysis results by the TDM are concerned with the original
conditions, and the actual value of which is hard to be determined, so normally
the original shear displacement of the dampers are assumed to be zero. This

difficuity can also be overcome by the HTFDM.

5.6 Equivalent Stiffness and Damping Matrix

Equivalent stiffness and damping of a structure with viscoelastic dampers have
been used for analysis by many researchers. Normally it is hard to determine the
values of them. As an additional result of the analytical method developed above,
equivalent stiffness and damping matrices can be derived. For the equilibrium
equations of a structure with viscoelastic dampers, effect of the dampers can be
represented by an additional damping term and an additional stiffness term if the
mathematical model for viscoelastic dampers is related to displacement and

velocity, which can be written as,
MX(2) + CX(2) + KX(r) + CX(1) + KX (1) = P(2) (5.41)

For example, if the damper is described by Kelvin-Voigt model, the restoring

forces of a damper connected with coordinate i and j are,
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x,-(t)—xj(t)+nA %(0) =% (1)

R,(t)=GA, . - (5.42.a)
x;(1)—x; (1) x(6)—x;(1)

R;(1)= GA, T———+nA4, ’T (5.42.b)
Then the additional stiffness and damping matrix can be written as

~  GA,

K= P I, (5.43)

~ A

C=Tr, (5.44)
where, I, is the matrix of damper positions.
They are constant matrices when the damper positions are defined.
Then the equilibrium equation can be re-written as,

MX(1) + CX(1) + KX(r) = P(r) (5.45)
where,

C=C+C and K=K+K (5.46)

The revised stiffness matrix K and damping matrix C can be called as
equivalent stiffness matrix and equivalent damping matrix of the structure. When
the equivalent matrices of stiffness and damping are obtained, for a structure
incorporated with viscoelastic dampers, it can be analyzed as a normal structure

without any difficulties.

But when the IFDM is used to represent the viscoelastic dampers, the restoring
force vector can not be separated directly into two parts of which one is related to

shear displacement and the other is related to shear velocity in time domain. If the
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equivalent stiffness matrix and damping matrix are needed to be obtained here,

the additional stiffness matrix of a structure with a damper can be written as

A Y(AT)
h

K= [Go +GiS, DI, (5.47)

And the additional damping matrix is

Gy A, W(AT)
h

C= S, (DT, (5.48)

where, 5, (t) and S_(f) are functions which have relation with shear displacement

and shear velocity. They are more complicated than those obtained with the
Kelvin-Voigt model. From equation (5.26), it can be seen that they are not only
related to the shear displacement of the damper, but also to the damper's past

history, the working history of the damper.

However, if considering this problem in frequency domain, the additional
equivalent stiffness matrix and damping matrix at different frequencies can be
obtained conveniently as

A W(ATYG, +G,0® cos %)

= ; I, (5.49)

=)

A W(AT)G,0% sin ==
= - 2y, | (5.50)

@l

If more than one damper is used in the structure, the equivalent matrices can be
obtained in the same way by superposition of the additional matrices for each

damper.
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5.7 Discussions and Conclusions

Viscoelastic dampers can be installed in a structure by different measures and at
different locations. Two kinds of modelling schemes for viscoelastic dampers
incorporated in structures have been proposed according to their methods of
installation. To determine the structural response, analytical methods in time
domain (TDM) and in hybrid time-frequency domain (HTFDM) have been
developed. The advantages and disadvantages of these two methods have been
discussed. And a powerful associated program based on the proposed methods
has been developed. Different damper schemes for modelling viscoelastic
dampers and different analytical methods are all covered by the program. The
structure of the program is shown in Figure 5.8, in which, the dot line is the
running path when the dampers are treated as elements. The main program and
some impdrtant sub-programs are illustrated by diagrams as shown in Figure 5.9,
Figure 5.10, Figure 5.11 and Figure 5.12. The sub-program HTFDM and some

other related sub-programs are listed in Appendix 5.

Although both modelling schemes are suitable for most applications, computing
time is different in response analysis by linear acceleration method in time
domain. For dampers being treated as elements, number of FEM nodes of a
structure does not change when dampers are installed, the dimension of the
stiffness matrix always keeps the same. But since the stiffness matrix varies at
each time step, the inverse matrix of the effective stiffness should be calculated at
each time step for the solution of the equations. However, for dampers being
treated as supports, stiffness matrix of the structure with dampers is the same as

that of the structure without damper, and the effective stiffness does not change
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1

with time, its inverse matrix only need to be calculated once. The calculation time
for the remainder work is nearly the same for both methods. Therefore, it is better

to consider a damper as a support whenever it is appropriate.

The equivalent stiffness matrix and damping matrix of structures with
viscoelastic dampers, which are commonly used by normal structural analysis
software, have been derived by the proposed analytical method for those cases
with sophisticated mathematical model for viscoelastic dampers. It is of much
value to all those commercial software packages commonly used to carry out

dynamic analysis.
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Figure 5.1 Displacement coordinates Figure 5.2 A damper between two nodes
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Figure 5.4 Effect of the shear restoring force of viscoelastic dampers
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Figure 5.6 Distribution of axial deformation of the damper
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Figure 5.8 Structure of the computing program
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General information: Number of node, normal element, normal support, viscoelastic
element, loading, lumped mass, viscoelastic support, etc..

'

Call DATA: get the geometric information of the structure, loading information, damper
information and loading information, etc..

#

ICall CODED: get the code for node displacements l

!

|Call PARA: get the parameter values of the proposed model for different dampers |

'

I].Call SSM: get the stiffness matrix and mass matrix of the siructure . o |

!

|Call FREQ: get the natural frequencies and mode shapes |

!

lCaII GETCC: get the damping matrix of the structure without dampers |

1

|0utput information: determine the code for output I

!

|Call DAMPPOSI:  get the damper position matrix |

'

Call RESP; et the réspGnses (acceleration, velocity and displacement) by TDM o
. HTFDM subject to sinusoidal Ioadingfm's_;eismic loading '

!

Call DAMPCAL: get the damping ratio of the structure subject to sinusoidal loading

Figure 5.9 Diagram of the main program
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[ SSM |
I Stiffness matrix of the structure J I Mass matrix of the structure |
Element stiffness Additional Element mass Element mass
matrix stiffness matrix matrix
y y y {

Call SCL: Call VESM: Call ELEMASS: | [Call VELEMASS:
normal element viscoelastic element normal element viscoelastic element

Figure 5.10 Diagram of the sub-program SSM

| RESP

Sinusoidal loading Seismic loading

—>| Excitation frequency

|Call SINLOAD or SEISLOAD: compute the loading

’ +Time domain +Frcqucncy domain
Call TDM: get the responses in time ;Gf'all?l-l"IlFDM:: et the responsessim. times
domain ' domain '

I — T
Y

Call MAXRES: get the maximum responses

Sinusoidal loading

Figure 5.11 Diagram of the sub-program RESP
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HTFDM ./
./
Call FFT: get the loading in frequency CMHW and BCINV: get the frequency
domain response transfer matrix

! !

| Get the frequency response subject to dynamic loading ]

lCall FFT (inverse) : get responses in time domain J

Figure 5.12 Diagram of the sub-program HTFDM
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" CHAPTER 6

CONTROL OF HORIZONTAL VIBRATION FOR FRAMED .
STRUCTURES

6.1 Introduction

Horizontal vibrations of building structures are always induced by wind or
earthquake. It is the main problem to be solved for tall buildings, especially for
those in seismic areas and seaside cities subject to typhoon attack (Davenport
A.G., 1986; Davenport A.G., 1991). During past years, a lot of research work has
been done on structures incorporated with viscoelastic damping devices to
suppress such vibrations. When a building structure is excited by dynamic
loading, story shifts will occur. Viscoelastic damping devices are mostly installed
between neighboring stories to attenuate the story shifts of building structures.
They can be incorporated in structures in different ways as shown in Figure 6.1.
Dynamic behaviour of structures with viscoelastic damping devices connecting
two members in one diagonal direction as shown in Figure 6.1(a) has been
studied by Chang K. C. et al (1995) and Ito Yoshio et al (1995). Research work
on structures with two inclined members incorporated with viscoelastic damping
devices at each story as shown in Figure 6.1(b) has been done by Kasai Kazuhiko
et al (1994). Studies on structures with high damping devices such as friction,
yielding steel and fluid viscous dampérs installed between the braced structure
and the upper floor or instailed in the bracing system as shown in Figure 6.1(c)
and Figure 6.1(d) respectively have been carried out by Niwa Naoki et al (1995)
and Constantinou M. C., (1994). Effectiveness in vibration control for structures

with these kinds of damping devices has been evaluated.
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It has been found by experimental work in Chapter Three that viscoelastjcl
damper ZJD-1 has good energy dissipation ability. If this kind of damper 1is
installed in structures, it is expected that it would be effective in controlling
vibration. In the present study, a damping device has been designed and installed
in a framed structure. The effectiveness in vibration control of a framed structure
with such a damping device has been studied by dynamic tests. The structure has
also been analyzed by the developed method in Chapter Five and the comparison

of experimental and analytical results has been made.

Dynamic behaviour of structures incorporated with viscoelastic dampers vary
with many factors such as properties of the structure, damper material, damper
size, damper area and loading conditions, etc.. Constrained by the test conditions,
dynamic tests can only be carried out with limited changes of parameters.
Comprehensive parametric studies have been performed to give some guidelines
on design of vibration control either for the retrofit of old buildings or for the
design of new buildings (Maison Bruce F., 1994). With the proposed analytical
method which has been proved to be accurate enough to predict the response of
sttiuctures with viscoelastic dampers, a four-story building have been studied by

varying the design parameters and some useful conclusions have been drawn.

6.2 Description of Test set-up

A viscoelastic damper ZJD-1 stuck by glue with metal plates on both sides is
fixed by inner bolts to two 10mm thick stee! plates whose mass is 5.706Kg each
as shown in Figure 6.2 and then connected with a braced structure by bolts to

form the damping device. The braced structure is made up of 102x51 Channels.
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The damping device is installed in a single story frame. The frame is constructed
by members of standard 102x64 JOISTS. All the column-bases and member
connections are fully welded. The elevation of the frame with damping device

can be seen in Figure 6.3. And the appearance of the frame can be seen in Photo

6.1.

An exciter is applied to excite the frame in horizontal direction through a force
transducer. The excitation signal is supplied by a sine random generator via a
power amplifier and then sent to the exciter, which harmonically drives the frame
at beam level in the direction of beam axis. Eight accelerometers are located at
positions (CH1 to CHS in Figure 6.3) along the right column to measure their
responses. When the dynamic test is performed, excitation force and responses
can be gathered by the DTAS (Dynamic Test and Analysis System) developed by
the Research Institute of Nanjing Aeronautical Institute (1992). The set-up of the

whole test system can be seen in Figure 6.4.

6.3 Experimental Test

Firstly, the frame is knocked by a hammer or excited by random excitation with-
white-noise signal. The first natural frequency of the frame can be obtained from
the response in frequency domain processed by the DTAS software. Then the
frequency step for tests with sinusoidal loading at different frequency range can
be determined according to the natural frequency. For frequency range far away
from the natural frequency, step can be set very large such as SHz to 10Hz, and
for frequency range near the natural frequency, step should be set very small like

0.05Hz. At each excitation frequency, while keeping the amplitude of the
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sinusoidal loading at a certain value with the assistance of the digital‘
oscilloscope, responses of the points along the column can be collected with
proper parameter setting of the DTAS. To improve the resolution of the response
spectrum, time length is set long enough for gathering large amount of data in
each group. In order to keep the precision of test data, response range 1S auto-
regulated before data being collected. The maximum responses of the frame
under cyclic loading at each excitation frequency can be obtained by the DTAS

system.

6.4 Effectiveness in Horizontal Vibration Control

From the hammer tests, it can be observed that the response of the frame can be
suppressed greatly by adding a viscoelastic damper. And vibration of the frame
with a damper decreases very quickly, while that of the frame without damper
lasts for a long time. The first resonant frequency of the frame without damping
device is 41.5Hz, and it changes to 39.28Hz when the damping device is installed
in’the frame system. The decreasing is due to the mass of the steel plates of the

damping device.

The maximum accelerations at different positions on the column of the frame
without damper under sinusoidal loading with amplitude of 10N at various
frequencies are shown in Figure 6.5. And those of the frame with dampers are
shown in Figure 66 Comparing these two figures, it can be found that great
effectiveness in vibration control can be achieved by the designed damping
device. The maximum response at node A of the frame with the damping device

under excitation at the resonant frequency is 20.13m/s”> and that of the frame
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without a damper is 144.145m/s. The great difference in acceleration at node A
is demonstrated in Figure 6.7. Obviously, the damper is effective in attenuating
response of the whole structure. The maximum resonant accelerations of the eight
positions along the column of the frame with and without damper are presented in
Figure 6.8, which shows the first mode of the frame. Effectiveness can also be
embodied by damping ratio. Damping ratios of the frame with and without
damping device have been calculated by half-band method from test data to be

0.56% and 0.27%, respectively.

6.5 Comparison of Experimental and Analytical Results

The tested frame incorporated with and without a viscoelastic damper have both
been analyzed by the methods TDM and HTFDM proposed in Chapter 5 under
the same conditions as those of the tests. The damper in the frame is considered

as a viscoelastic damper element for analysis by the TDM and as a viscoelastic

support by the HTFDM.

Table 6.1 Discretization of the framed structure for FEM analysis

Nodes Elements
1 : Point D 6 : PointF 1 : DC 6 : GH
2 : Point C 7 : Point G 2:CB 7 : HI
3 : Point B 8 : Point H 3:BA 8 : 1
4 : Point A 9 : Point1 4 : AE 9 : BH*
5 : PointE 10: PointJ 5: FG

Atten: when the damper is considered as a support, the 9th element does not exist.
Responses at any point of the frame can be obtained by finite element analysis

with proper discretization of the structure. To determine the responses at point A



Chapter 6 Control of Horizontal Vibration for Framed Structures

at the beam level of the frame, discretization of the structure is made as shown in
Table 6.1. Maximum accelerations at the beam level of the frame without damper
under different excitation frequencies by the TDM and the HTFDM are compared
with the experimental values in Figure 6.9. Maximum accelerations at the beam
level of the frame with damper under different excitation frequency by both
analytical methods are compared with those of the experimental values in Figure
6.10. It can be seen that both the two analytical methods can well predict the
dynamic response of the frame with and without viscoelastic damper. However,
discrepancy exists between the experimental results and the analytical results.
The causes for the discrepancy are two folds, firstly, the damping ratio of the
tested structure is not exactly proportional, which leads to the error in the
analytical results, secondly, the precision of the instruments and environmental

disturbance results in the error of the experimental results.

From the figures, it can be found that the analytical curve by the HTFDM is
closer to the expérimental curve than that determined by the TDM no matter
whether the viscoelastic damper is incorporated in the framed structure or not.
The difference between the two analytical methods can also be expressed by
damping ratio. The damping ratio of the frame without and with a damper
calculated by the TDM are 0.275% and 0.586%, respectively while those
calculated by the HTFDM are 0.273% and 0.572%. The experimental results are
0.27% and 0.56%, respectively. It can be seen that damping ratios calculated by
the HTFDM are closer to the experimental results than those calculated by the
TDM. Computing time of the TDM and the HTFDM for the same task has also
been compared. For the frame incorporated with damper, to get the stable

responses of the structure under excitation frequency which is close to the
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resonant frequency, responses in more than one period should be computed by the
TDM and the time step should be small enough. However, responses of the
structure could be obtained by HTFDM in one period only. To calculate the
response of the frame with damper for each excitation frequency by Pentium
100MH2z/16M, only about 1.82 seconds are needed by the HTFDM while nearly
63.99 seconds are needed by the TDM. Therefore, to analyze a structure with
viscoelastic dampers, great amount of computing time will be saved if the

HTFDM is applied.

6.6 Parametric Studies on Framed Structures

Experimental and analytical results of the framed structure have given us the idea
that the viscoelastic damping device is capable of reducing vibration of the tested
frame in horizontal direction and enhance the damping ratio of the framed
structure. The effectiveness in vibration control is affected by many factors, such
as the properties of the braced structure, damper material, damper dimensions,
damper location and loading conditions, etc.. Comparisons of experimental and
analytical results have proved that the analytical methods can well predict
responses of structures with the designed damping devices. The influence caused
by various factors can be evaluated by the HTFDM. Parametric studies on the
tested frame have been performed. Since the proposed damping device is
intended to be designed for full-scaled fr_amed building structures, whose
characteristics such as stiffness and mass are different from the tested frame,
parametric studies have also been carried out on a four-story real building

structure. Because both the results obtained from the studies by changing
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parameters like damper material, damper dimension, loading condition and
temperature give the same trends, it is believed that the proposed method .is
accurate enough to predict the dynamic behaviours of the full-scaled structures
and the parametric studies based on the four-story building structure would be
useful for developing some guidelines for practical design in vibration control.
The work introduced in the following sub-sections are based on the studies on the

latter one.

The four-story building structure model is built based on the information
provided by the book "Design of Structural Steelwork" (Bates W., 1973).
Properties of the structure are listed briefly in Table 6.2. The resonant frequencies
of the structure are 5.80Hz, 17.18Hz, and 36.37Hz. Referred to "Vibration of
Building Structures” (Wang G. Y., 1978), damping ratio of the structure before
- dampers being incorporated in is assumed to be 1.0%. Dampers are installed in
the same way as illustrated in the experimental test.

Table 6.2 Properties of the building structure

Story Story height (m) Mass (kg) Shear stiffness (N/m)
1 4.5 700000 4905283424.0.
2 4.0 650000 6984280500.0
3 4.0 650000 6984280500.0
4 3.5 350000 10425514915.0

For parametric studies in the following sub-sections, parameters except those to
be studied are set as follows. For the wind effect, a sinusoidal force with
amplitude of 5000N is assumed to act at the roof level of the building. In
practical application, different kinds of damper can be chosen for controlling the
vibration of structures. Referring to the dampers supplied by 3M corporation

(Soong T. T., 1997), a kind of viscoelastic dampers with parameters G, = 0.6,
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G; =007 and «=102 is assumed to be applied in the building at the

environmental temperature of 25°C, the thickness of the damper is 4mm and the

area of the damper for each story is 80 A, (4, = 10800 mm?).

Responses such as acceleration, velocity and displacement have all been
calculated for the parametric studies. Although the scales of them may be
different, their changing trends are similar, in the following sections, studies are

concentrated on acceleration.

6.6.1 Variation of brace stiffness

The ratio ( R,;,d) of shear stiffness of the brace to equivalent shear stiffness of the

damper is one of the main factors affecting the capability of energy dissipation.
When dampers are installed between two neighboring stories of a building
structure with the support of braces, if the braced structure is too flexible, much
of the relative displacement between stories will be attributed to the braced
structure, which results in little deformation in the damper. Thus the damper can
not function effectively. But making the brace too rigid will be more costly. In
this sub-section, the effect of R,, is studied. Since the equivalent stiffness of a
damper changes with the excitation frequency and the environmental
temperature, the value of the equivalent stiffness under excitation at the first
resonant frequency of the structure and at temperature of 25°C is applied to
determine the ratio R,; in the present study. When R,, is changed from (.0 to oo,
responses at the roof level of the building structure under different excitation
frequencies have been calculated. The maximum acceleration curves are shown

in Figure 6.11. And the maximum resonant accelerations are shown in Figure
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6.12. It is not difficult to find that the maximum resonant acceleration decreases

with the stiffness ratio. When R,; is small, the damper does not function

effectively and change of the stiffness ratio will affect the effectiveness greatly.
However, when the ratio is large enough, the effectiveness will gradually tend to
the maximum and any increase in the brace stiffness will no longer have much
effect on the effectiveness. It is also found that the resonant frequency of the
structure increases with the stiffness ratio, which can be seen in Figure 6.13.
Since equivalent stiffness of the dampers is much less than the stiffness of the

building structure, the change of resonant frequency caused by the change of R,

is very small.

Table 6.3 Damping ratios of the building structure with brace of
different stiffness

Stiffness ratio Damping ratio Stiffness ratio | Damping ratio
Rpq (%) Ry (%)
0.00 1.002 8 00 2.065
0.50 1.397 16.00 2.132
1.00 1.590 32.00 2.168
2.00 1.791 oo 2.208
4.00 1.960

The damping ratio of the structure can also demonstrate the influence of the
stiffness ratio on the effectiveness in vibration control. The damping ratios of the
building structure with brace of different stiffness ratio have been calculated and

are listed in Table 6.3. The trend of change of the damping ratio with R, is

shown in Figure 6.14. It can be seen that when the stiffness ratio is small, the

damping ratio increases rapidly with the stiffness ratio. When R,; is large
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enough, however, the damping ratio of the structure increases very slightly with

the stiffness ratio.

The stiffness ratios of the similar damping devices were set to values larger than
10.0 in the examples given in the papers written by some former researchers
(Kirekawa A. et al, 1992; Kasai Kazuhiko et al, 1995), for the present study, it
can be seen that they are large enough for the dampers to function effectively. In
practical design, when a certain kind of damper is chosen to be installed in a
structure, the structural properties of the brace should be chosen carefully to
make the stiffness suitable for the dampers to take effect. In the following

parametric studies, R,, is assumed to be large enough to facilitate the damping

device to function in its maximum capacity.

6.6.2 Variation of damper material

Different kinds of damper have different energy dissipation ability and equivalent
stiffness. In applying dampers to a structure, the objective is to increase the
damping ratio of the structure as much as possible while keeping the change of
the natural frequency as small as possible. Therefore, in this section, loss
modulus of a damper at a certain condition is varied from 0.25~2.0 of that of the

selected damper by changing the parameter G, of the IFDM.

Responses of the building with dampers of different parameter G, under cyclic
loading at different excitation frequencies have been calculated. Maximum
accelerations at the roof level of the building structure with dampers of different
kinds under dynamic loading at different excitation frequencies are shown in

Figure 6.15. The maximum resonant accelerations at the roof level of the building
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are shown in Figure 6.16. It is obvious that when the loss modulus of the dampers
increases, the maximum resonant acceleration decreases and the damping ratio
increaées. Damping ratios of the building structure with dampers of different
kinds have been calculated and listed in Table 6.4. It can be seen obviously from
Figure 6.17 that the damping ratio at the first natural frequency increases with the
loss modulus of the dampers.

Table 6.4 Damping ratios of the building with dampers of different parameter G,

G1/G1 (originany Damping ratio G/Gy (original) Damping ratio
(%) (%)
0.25 1.299 1.25 2.539
0.50 1.591 1.50 2.89
0.75 1.893 1.75 3.257
1.00 2.208 2.00 3.648

6.6.3 Variation of damper dimension
6.6.3.1 Variation of damper area

Damper area is a main factor for vibration control of a structure with viscoelastic

dampers. Dampers with area of 204,, 404,, 604,, 804, and1004, are assumed

to be incorporated in each story of the building respectively for the purpose of
investigating the effect of damper area on the dynamic response. With loading at
the roof level, responses of the building structure have been calculated. Curves
for maximum acceleration at the roof level of the building with dampers of
different areas and subject to cyclic loading of different excitation frequencies are
plotted in Figure 6.18. The maximum resonant accelerations are shown in Figure
6.19. 1t can be seen that when damper area increases, resonant acceleration of the

frame decreases greatly. The maximum resonant acceleration decreases

6-12



Chapter 6 Control of Horizontal Vibration for Framed Structures

nonlinearly with the damper area. The equivalent stiffness of dampers also
changes with the damper area, the resonant frequency of the structure would be
affected by the damper area. However, as the variation of equivalent stiffness of
the damper is much less than the stiffness of the main structure, the effect is
insignificant.

Damping ratios of the structure with dampers of different area have been
calculated and listed in Table 6.5. The damping ratio increases nonlinearly with
the damper area, which can be seen from Figure 6.20.

Table 6.5 Damping ratios of the building with dampers of different areas

Damper area Damping ratio | Damper area (xA¢) | Damping ratio
(XAp) (%) (%)
0 1.022 60 1.896
20 1.301 80 2.219
40 1.594 100 2.537

Actually, when damper area increases, storage stiffness and loss stiffness will
increase, thus stiffness and damping of the structure will increase as well.
Therefore the resonant frequency of the structure and the damping ratio will
increase, and the resonant response will decrease. The damping ratio of the
structure can be considered as the ratio of the loss stiffness to the storage stiffness
of the structure. When the loss stiffness changes, the storage stiffness including
the stiffness of the structure will change also. From Equation (4.45), it is clear
that the damping ratio of a structure will change with the damper area in a
nonlinear relation. As the restoring force is concerned with the damper area and
the damper deformation, it will also change nonlinearly with the damper area, and

the response will be in nonlinear relation with the damper area as well. When the
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damping ratio is very large, the forced structure will still vibrate (Long Y. Q. et

al, 1988), but the response will be close to zero.

6.6.3.2 Variation of damper thickness

Damper thickness is concerned with shear strain of the damper, it is also an
important factor for vibration control of a structure with viscoelastic dampers. In
the present study, the damper thickness is set to Smm, 10mm, 15mm, 20mm,
25mm and 30mm, respectively. The responses of the building structure with
dampers of different thickness have been calculated. The maximum accelerations
at the roof level of the building at different excitation frequencies are shown in
Figure 6.21. It can be seen that thinner dampers are more appropriate for
vibration control. The maximum resonant acceleration at the roof level increase
nonlinearly with the damper thickness as shown in Figure 6.22. The effect on the
resonant frequency of the structure by thé variation of the damper thickness is
also not noticeable obvious since the changing of the equivalent stiffness of the

damper is much less than the stiffness of the main structure.

Table 6.6 Damping ratios of the building with dampers of different thickness

Damper thickness Damping ratio Damper height Damping ratio
(mm) (%) (mm) (%)
5 7.777 70 2.209
10 3.835 25 1.961
15 2.653 30 1.791

Damping ratios of the building with dampers of different thickness have been
calculated and listed in Table 6.6. The damping ratio will decrease nonlinearly

when the damper thickness increases, which can be seen in Figure 6.23.
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In fact, when the damper thickness decreases, with the same shear displacement,.
the shear strain will become larger. The storage stiffness and loss stiffness of the
damper will increase, which will result in decreasing of the maximum resonant
response and increasing of the damping ratio. The nonlinearity embodied by the

curves has been explained in section 6.6.3.2, and is not to be repeated here.

6.6.4 Variation of damper location

For a building structure, dampers can be incorporated in different positions.
Dampers should be designed and installed in proper positions according to the
characteristics of the structure. The characteristics of the building are mainly
determined by the distribution of stiffness and mass. Mode shapes of the building
structure are plotted in Figure 6.24. Five schemes, which are listed in Table 6.7,

have been adopted for the damper installation. Dampers with total area of 80 A,

are used for each scheme. Responses of the building structure incorporated with
the same damper in different stories- have been calculated. Maximum
accelerations at the roof level of the structure at the four resonant frequency
regions are shown in Figure 6.25 (a), (b), (c), (d), respectively. It can be seen that
although the structure is incorporated with the same dampers, the effect is quite
different when dampers are installed in different stories. For the building
structure under consideration, it would be most effective if dampers are all
incorporated in the story with the largest story shift. The damping ratios of the
structure with dampers set in different storieé in the four resonant regions have
been calculated respectively. For example, the damping ratios of the building at
the first resonant frequency are listed in Table 6.7. With reference to Figure 6.24,
it can be found that difference in damping ratio between different schemes is
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mainly due to the difference of story shift. When the dampers are installed in the

story with larger story shift, the damping ratio of the structure will be larger also.

Table 6.7 . Damping ratios of the building with the same dampers
incorporated in different positions

Damper position Damping Damper postion Damping
ratio (%) ratio (%)

All dampers in the 1st story 1.804 All dampers in the 4th story 1.029

All dampers in the 2nd story 1.265 Dampers even distributed 1.301

All dampers in the 3rd story | 1.131

6.6.5 Variation of loading

Horizontal vibration of a building is mainly induced by wind or earthquake. For
wind effect, responses of the structure subject to sinusoidal loading acting at
different levels and loading with different amplitudes but acting at the roof level
only have been studied. For earthquake effect, two kinds of seismic wave have
been chosen to investigate the effectiveness in vibration control with the

proposed damping devices.

6.6.5.1 Variation of loading position

The sinusoidal loading is assumed to act at each floor level of the building with
and without dampers. Responses of the structure have been calculated. The
maximum accelerations at the roof level of the building without dampers subject
to cyclic loading with different excitation frequencies are shown in Figure 6.26
and those at the roof level of the building with dampers are shown in Figure 6.27.
The ratio of the maximum resonant acceleration of the building with dampers to

that without dampers is 0.49 for all cases. The damping ratios of the structure
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with dampers subject to sinusoidal loading acting at different floor levels have
been calculated and found to be the same for all cases also, which are equal to

2.208%.

6.6.5.2 Variation of loading amplitude

For this case study, sinusoidal loading with amplitudes of 1kN, 2kN, 3kN, 4kN,
SkN and 6kN are applied respectively on the structure. Maximum accelerations at
the roof level of the structure without damper under various loading at different
excitation frequencies are drawn in Figure 6.28 and those of the frame with
damper are presented in Figure 6.29. The maximum resonant accelerations at the
roof level of the building with and without damper are compared in Figure 6.30.
Although the amplitude of the response can be reduced greatly while the loading
amplitude is large, the response attenuation ratio is nearly the same, the
maximum resonant acceleration of the structure with dampers is about 49% of

that of the structure without dampers.

Damping ratios of the structure with dampers have been calculated and found to
be 2.208% for all cases. In practice, the damping ratio of a structure without
dampers increases with the loading amplitude. Since the damping ratio of the
structure is assumed to be proportional, which does not change with loading
amplitude in the analysis, and damping ratio of a damper does not change with
shear displacement, the damping ratio of a structure with viscoelastic dampers

does not change with loading amplitude.
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6.6.5.3 Effectiveness in vibration control under seismic loading

Ground motions are generated by seismic wave and then transferred to structures
through their basements, therefore vertical and horizontal vibration will occur in
building structures. Normally, structures are damaged by horizontal vibration
caused by ground motion. Thus only the horizontal effect is considered in design
except for structures in neighbouring district of the earthquake epicenter or those

in which serious consequence will be caused by vertical vibration.

Effect of earthquake is concerned with not only the characteristics of the ground
motion, but also the properties of the site and the building structure themselves.
Ground motion caused by earthquake is a kind of random vibration, the most
important characteristics are magnitude, frequency spectrum and duration time.
Whether a structure will be damaged or not is determined not only by the peak
value of acceleration or velocity, but also the seismic wave spectrum and the
duration time. Site properties have great effect on the ground motion. As the
seismic wave being absorbed and filtered by the soil of the site, the ground
motion will have different dominant periods for different kinds of soil (Weng
Yijun et al, 1990). For bard rock area, the dominant periods are short, normally
between 0.1s and 0.3s but for soft soil, the dominant periods can reach 1.5s~2.0s,
which is harmful for high-rise buildings with longer periods in vibration, for
example, earthquake in Mexico in 1985 which has long duration time with a
dominant period of about 2.0s, caused many buildings of 9~16 stories, which has
a natural period of around 2.0s damaged sefiously. (Bao Shihua et al, 1989).
Based on the above discussion, two typical seismic records are assumed to act on
the building structure to check the effectiveness in vibration control with

viscoelastic dampers under seismic loading.
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6.6.5.3.1 Seismic records

Taft Wave was recorded from the Taft Lincoln School Tunnel of Kern County in
California Earthquake with magnitude of 7.7 under the depth of 18km at 04:53 on
July 21, 1952. Duration of the record in N-21-E direction was 54.36s and the
peak acceleration was 152.70cm/s”. Figure 6.31 shows the acceleration record of

Taft Earthquake in N-21-E direction in time domain with 2719 data points.

El Centro earthquake record was obtained from the earthquake taken place at
8:37 of May 18, 1940 in El Centro site of Imperial Valley irrigation district with
magnitude of 6.7 at the depth of 11km. Duration of the record in N-S direction
was 53.73s and the peak acceleration was 341.70cm/s>. The acceleration record

in N-S direction with 2688 data points is presented in Figure 6.32.

6.6.5.3.2 Data processing of seismic records

To analyze a structure with viscoelastic dampers under seismic loading in
frequency domain, acceleration records of typical earthquakes are transferred by
FET method. As for the requirements of the FFT, total data points number should
be N=2", where N and M are integers and the value of first point and last
point should be equal. Therefore, the original seismic data should be pre-

processed first to satisfy the requirements.

Assuming that the total number of points of the seismic record is K, values of the
points are a{i),i=1,---, K and the time step of the original data ts ¢,. The
objective points number is N, values of which are b(i),i=1,---, N and the time
step of the pre-processed data is 7, . As the first data value and last data value of a

whole seismic record are very small, let b(1)=0, b(2)=a(l), b(N)=0,
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b(N -1)=a(K), values of other points should be interpolated according to the
original data. Value of a new point i, where i is equal to 3 to (N—2), is to be

determined by the values of the two neighbouring old points i, and i, +1. And

i, can be obtained by

iy, = Int((i— z)ﬁ—:;] (6.1)

Then value of the new point is

b(i) = a(i,, )+ {ali,, +1)-ali, )}{(i - 2)% -i, } ) (6.2)

It is obvious that the time step for new data series is,

t (K-1)
B i 6.3
f = (6.3)
And the total time is,
o LK -DWN-1) 64)

N-=-3

To avoid leakage of the original data, normally the new data number is larger
than that of the old one. After the seismic records being dealt with by the above
method, the new data series can be transferred to frequency domain by FFT and

the values obtained by FFT are corresponding to the frequencies as given by

ﬂz(i;l),izl,---,N. (6.5)

Acceleration components of the seismic waves have been calculated by the above
method. The dominant frequencies of the above two records were between

0~10Hz as shown in Figure 6.33 and Figure 6.34, respectively
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6.6.5.3.3 Analysis of the structure under seismic loading

Dynamic equilibrium equation of a multi-degree-of-freedom system under

ground motion can be written in frequency domain as

~o?MX(®) + joCX(0) + KX(0)+ R(®) = -MX, (®) (6.6)
Then displacement in frequency domain can be calculated by

X(@) = -T(@) "' [MX, (@)] 6.7)

The response of the building structure under seismic loading has been calculated
by the HTFDM. The accelerations at the roof level of the structure under Taft N-
21-E are shown in Figure 6.35, the maximum accelerations are 2.967m/s* and
4.121m/s* for the- structure with and without dampers respectively. The
accelerations at the roof level of the structure under El Centro-Ns are shown in
Figure 6.36. The maximum accelerations are 5.51m/s” and 5.97 m/s® for the
structure with and without dampers respectively. It can be seen that the
effectiveness in vibration control of the structure with the same dampers subject
to.different earthquakes is different. Although the accelerations of the structure
without dampers subject to El Centro-NS are larger than those of the structure
with dampers, the ratio of the largest acceleration at the roof level of the building
with dampers to that of the building without damper is 0.92, however the ratio is
0.72 for the building subject to Taft N-21-E. The difference is caused by the
properties of different seismic waves, such as the energy distribution of the

excitation in frequency domain.

If the effectiveness in vibration control can not satisfy the designer's requirement,

it can be improved by changing the damper material or the damper dimensions.
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For example, when the damper area in the building increases to 2404, the

maximum acceleration at the roof level of the building subject to the Taft N-21-E
will be 2.070m/s® and that at the roof level of the building subject to the El Centro
NS will be 4.431m/s*. The corresponding acceleration ratios are 0.50 and 0.74,
respectively. The effectiveness in vibration control increases significantly which
can be observed clearly from the acceleration curves at the roof level of the
building subject to these two seismic waves as presented in Figure 6.37 and

Figure 6.38, respectively.

6.6.6 Variation of temperature

At different temperature, energy dissipation ability of a damper is different.
Damping ratio and equivalent stiffness of a damper will decrease when

temperature increases. Assuming that the IFDM with consideration of

temperature for dampers is adopted t(z) = ¢ 936725 [0.6(:)+0.07D1'027(t)]. The

responses of the building at temperature of 20°C, 25°C, 30°C, 35°C and 40°C
have been calculated. The maximum accelerations at the roof level of the
structure at different excitation frequencies are shown in Figure 6.39. The
maximum resonant accelerations are shown in Figure 6.40. It can be seen that

when temperature increases, resonant acceleration will increase.

The damping ratios of the building at different temperature have been listed in
Table 6.8 and the changing trail is shown in Figure 6.41. It can be seen when the
temperature increases, the damping ratio will decrease. It is because when the
temperature increases, the loss modulus and storage modulus of a damper will

decrease, which leads to decreasing of the damping ratio and the equivalent
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stiffness of the damper. Therefore, for a structure incorporated with viscoelastic
dampers, when the temperature increases, the damping ratio and stiffness of the

structure will decrease.

Table 6.8 Damping ratios of the building with dampers at different

temperatures
Temperature Damping ratio Temperature | Damping ratio
C) (%) ') (%)
20 2.64 35 1.675
25 2.208 40 1.513
30 1.902

6.7 Discussions and Conclusions
o Proposed damping device for horizontal vibration control

A damping device has been designed for horizontal vibration control of framed
structures. Dynamic tests on a framed structure with such damping device made
of damper ZJD-1 has verified the effectiveness in vibration control of the
structure as the response suppressed significantly and the damping ratio increased
greatly. Since response is attenuated, internal forces of the structure would be
consequently reduced, which will result in a much better design. Therefore, to
design a structure with such damping devices, usually smaller section for

members can be chosen and the cost of the whole structure would be cut down.

Because the installation of such a damping device is simple and convenient, it
can be applied either to existing structures for enhancing its capability of energy
dissipation or to new structures for economical design. In practical design, with

some special treatments, such damping devices will not only act as an energy
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dissipation element, but caﬁ also take some of the dead loads. For example, steel
balls or bearings can be set in between steel plates in which the damper is
incorporated, thus forces can be transferred through the damping device in the
axial direction of the damper. Moreover, although diagonal brace damping device
can give the damper larger deformation than the proposed damping device, the
damper size installed in the device is limited and this type of device is usually not
in harmony with architectural requirements such as the setting for windows or
doors. These disadvantages may offset the advantages given by the diagonal

brace damping device system.

» Venfication of the analytical methods

Comparisons of the test results and analytical results have been made and it has
proved that both the analytical methods TDM and HTFDM are able to predict
accurately the response of a structure with such damping devices. It has also been
found that the analysis by the HTFDM is better than that by the TDM. The TDM
is an approximate method and the accumulated error would affect the accuracy of
the analytical results. Furthermore, the analysis by the HTFDM also costs less
time than that by the TDM.

* Guidelines for design with such damping devices

Vibration control of structures with viscoelastic dampers came about from the
need first to suppress wind induced vibration in tall buildings. For example,
10,000 viscoelastic dampers were employed in each tower of the World Trade
Centre to assist the tubular steel frame in limiting wind induced building
oscillation to levels below human perception. With dampers installed, critical

damping can be increased about 3 % at design wind. Subsequently, viscoelastic
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damping devices were utilized to deal with seismic motions. Unlike frictiona}
damping systems which do not operate below a threshold level of excitatioﬂ,
viscoelastic damping devices are effective all levels of seismic loading.

Although such damping devices are both effective for vibration control of
structures due to wind and seismic loading, considerations in design are different
for various loading conditions. Temperature increases in the viscoelastic material
of the dampers during earthquake shaking are small and are not looked as such a
significant factor as for wind loading. Dominant frequencies of wind loading is
always very low, which are less than 1.0 Hz, while that of seismic loading is
among the range of 1.0~8.0Hz. Since viscoelastic damping is concerned with
excitation frequencies, different kinds of material should be chosen for different
loading conditions. For a building structure, the deformation style due to wind
loading 1s different from that due to seismic loading. Therefore, dampers should
be placed at different positions for various excitations. Furthermore, strain levels
are different for different forms of excitation. In general, the strain level by wind
loading is less than that by seismic loading. To keep the dampers within working
range, dampers with large strain ability such as maximum of 200%~300% should
be applied for seismic resistance.

Based on the parametric studies on a full-scaled building structure, some useful
design guidelines for structures incorporated with the proposed damping devices

are listed as follows.

1. In order to allow the damper takes sufficient effect, ratio of the brace stiffness
to the equivalent stiffness of the damper under normal conditions should be

larger than a certain value, which is suggested to be larger than 8.0.
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2. Damper material type is the essential factor. Dampers with high damping and
small storage modulus, which are available in the market, should be chosen.,
Thus, when such dampers are incorporated in a structure, the damping ratio of
the structure would increase significantly and the stiffness of the structure

would be affected slightly by the dampers.

3. Dampers with larger area would normally provide more effective. Small
damper thickness is also beneficial for effectiveness, but if a damper is too
thin, it is easy to be destroyed by violent vibration. The maximum
displacement of the damper should be estimated before choosing the damper

thickness.

4. Damping device location is very important for the effectiveness, the location
should be determined by the dynamic characteristics of the structure and the
loading conditions. For building structures, the devices should be installed

between stories where large relative displacement may occur.

5. Dynamic behaviours of viscoelastic dampers are concerned with temperature.
.For structures in areas where temperature -variation in a year is significant,
dampers whose properties are less sensitive to temperature should be chosen.
And for structures in areas where temperature variation in a year is mild,
dampers with good loss modulus should be utilized. In addition, enough clear

space should be provided for heat dissipating.

6. Loading conditions such as loading amplitude and loading positions are the
factors to be considered in vibration control. For earthquake effect, the
effectiveness in vibration control for a structure with the proposed damping

devices is concerned with the characteristics of the seismic wave. For vibration
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control of a building under seismic loading, the properties of seismic waves

which may be occur and those of the structure should be considered together.

7. In practical design, all parameters as well as the additional cost of the damping
devices and installation requirements should be considered together. When the
required effectiveness can be achieved by different ways, the cost would be the

final determining factor.
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Figure 6.1 Damper installation methods in framed structures

Figure 6.2 Damper installed between two steel plates
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Photo 6.1 Appearance of the tested frame
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CHAPTER 7

CONTROL OF VERTICAL VIBRATION FOR LONG SPAN
STRUCTURES

7.1 Introduction

Vertical vibrations are always generated by a variety of human activities and
undefined office machinery in buildings that have large column-free areas for
general use. Wyatt T. A. (1985) studied the vibration problem of floor system
induced by rhythmic vertical jumping like dance of a crowd and developed the
design guide for floor systems subject to vibration (1989). Excessive floor
vibrations have become a major serviceability consideration in modern building
design with the increasing use of high-strength, light-weight structural materials.
Moreover, the demand for open-space areas in office and commercial rf;tail
buildings has led to the use of floor systems that have longer spans and are thus
more flexible than those used in the past. A lot of long span structures such as
gymnasiums, dance halls and concert halls etc. built in the last few decades have
eJ;perienced excessive vibrations due to human activity (Bachmann H., 1992,
Sarah E. Mouring, et al, 1994). Vibration tests and analysis of such a floor system
were accomplished by Osborne K. P. and Ellis B. R. (1990) and it was found that
considerable vibration which was over human perception occurred in such long
span structures under human activities. Unfavourable consequences will be
brought by vibration of such long span structures due to environmental excitation
of daily life. It is therefore important to find ways to control such vibration in
order to achieve satisfactory dynamic performance. Although sometimes

vibration of a structure can be reduced by adding supports or damping devices
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along the span of the structure, it is nonetheless not practical for structures with
special architectural requirements. Therefore, consideration of vibration control
of such structures in the present study is mainly concentrated on the design of a

special beam-column connection.

Applications of dampers at the ends of structural members to suppress vibration
have been found in the past years. In general, dampers can be installed in various
ways according to the deformation behaviour of the horizontal member. For
instance, viscoelastic dampers are located between the lower chords of the
horizontal trusses and the columns of the outside wall in the Twin Towers of the
World Trade Center in 1969 (Mahmoodi P. et al), which is shown in Figure 7.1.
Upon oscillation of the building there is a relative motion between the lower
chord of the truss and a column on the building perimeter. This motion generates
shear deformation in the viscoelastic part of the damper thereby dissipating a part
of the oscillation energy. An energy dissipating connection, in which the
elastometric pads are under compression, is shown in Figure 7.2. It was designed
and installed in braced and unbraced frames to resist earthquake excitation by
H;u Sheng-Yung et al (1992) and the result of the study showed that the
connection could well reduce the response of the structure. No matter what kind
of damping connection is used, relative rotation of the beam (truss) to the column

is the original source of generating displacement in the dampers.

In the present study, in order to reduce vertical vibration of long span structures
where relative rotation between the beam and its neighbouring column exists, a
special beam-column connection incorporated with viscoelastic dampers has been

designed and experimental study on this kind of beam-column connections
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incorporated with viscoelastic dampers has been carried out. The beam with and
without dampers incorporated in the beam-column connections have been
analyzed by the TDM and the HTFDM. Comparisons of the experimental and
analytical results have been made to verify the proposed analytical methods.
Thereby, a large amount of numerical simulation work has been done on a full-
scaled long span beam with the designed beam-column connections. Based on the
parametric studies, some useful guidelines have been obtained for the design of
long span structures with beam-column connections incorporated with

viscoelastic dampers.

7.2 Description of Beam-column Connection

A long-span beam with its two ends connected with two rigid columns has been
designed for dynamic tests. With span-to-depth ratio of 22.7, the length of the I-
section beam is 4.54m and the cross section of the beam is shown in Figure 7.3.
The beam is connected with columns by web angles bolted in the middle of the
beam web. The elevation of the beam-column connection without damper is
shown in Figure 7.4(a). Dampers HD91 are used in the beam-column
connections. Area of each damper is chosen as 12.5cmx12.5cm according to the
beam section. The dampers are set at the upper and lower flanges of the beam.
One side of each damper is stuck on the beam flange by Araldite Rapid glue. A
cleat angle that is bolted to the column is stuck on the other side of each damper.
Appearance of this kind of connection is showh in Figure 7.4(b). When the beam
vibrates, it will rotate slightly around the beam end, and the damper on the

flanges can be assumed to mainly undergo shear deformation.
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7.3 Experimental Test

When dynamic tests are performed on the beam, seven accelerometers are
deployed along the beam to measure responses at different positions. The
distance between neighbouring accelerometers is 1/8 span of the beam. Before
tests being performed on the beam, the accelerometers used for measuring
responses and forces have all been calibrated. When the beam is excited,
response signals can be picked up by the accelerometers and then transferred to
the DTAS (Research Institute of Nanjing Aeronautical Institute, 1992). After

that, the test data can be input to a computer operated by the software for DTAS.

In addition to hammer tests, a sinusoidal loading generated by an exciter is acting
at the middle point and other positions of the beam. Before the tests, the exciter
has been adjusted carefully to align the force acting on the beam vertically. The
exciter 1s controlled by the signal generator via the signal amplifier. The
amplitude of the force can be monitored with the support of a digital
osg:illoscope. The set-up of the dynamic test system is displayed in Figure 7.5 and
the elevation of the long span beam under dynamic loading is shown in Figure

7.6. And the appearance of the beam can be seen from Photo 7.1.

Dynamic tests have been done on the beam under three different situations: beam
without damper (case I), beam with dampers stuck between beam flanges and
angles (case 1I) and without dampers but cleat angles bolted on the flanges (case
IIT). For each case, firstly, hammer tests are performed on the beam. The first
three natural frequencies are captured. They are 35.16Hz, 147.0Hz and 281.5Hz
for case I, 42.3Hz, 153.5Hz and 288Hz for case Il and 58.5Hz, 169Hz and 310Hz
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for case III, respectively. Secondly, based on the natural frequencies obtained at
stage one, sinusoidal tests are performed on the beam with small frequency steps
near the resonant frequencies. In order to compare the results of different cases
conveniently, the force amplitude of each case is set to 10N. The frequency range
for measurement is set between 5SHz and 340Hz which contains all the first three

natural frequencies of the beam under different situations.

For loading acting at the mid-span of the beam, responses of the beam at the first
and the third resonant frequencies are large, the effectiveness in vibration control
are studied based on these responses. However, responses at the second resonant
frequency are very small, thus responses at point of 3/4 span of the beam while
applied loading is also at 3/4 span are collected for studying the effectiveness in

vibration control.

7.4 Effectiveness in Vertical Vibration Control

The maximum accelerations at different positions of the beam under case I
conditions and subject to sinusoidal loading acting at the mid-span with
excitation frequencies falling within the first resonant frequency region are
presented in Figure 7.7. Those of the beam under case II conditions are shown in
Figure 7.8 and those of the beam under case I conditions are shown in Figure
7.9. It is obvious from these figures that the responses at the middle point are
larger than those of other positions for all the cases. Resonant responses of case II
are less than those of case I and case III. It can be seen more clearly from Figure
7.10, in which maximum acceleration curves at the middle point of the beam for

the three cases are compared. The maximum resonant acceleration at the middle
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point of the beam for case I is 48.33m/sz, that for case II is 7.93m/s? and that for
case III is 36.26m/s>. It means that the maximum resonant acceleration at the
middle point for case IT is only 16.4% of that for case I and 21.9% of that for case
II1. Damping ratios are also calculated to illustrate the effectiveness in vibration
control. Those for case I, 1I and 11 are 0.224%, 1.11% and 0.245%, respectively.
The maximum resonant responses at different points of the beam for the three
cases are drawn in Figure 7.11 and the values in between are interpolated to
simulate the mode shapes. Effectiveness in vibration control at different positions

can be seen clearly from this figure.

The study of the effectiveness in vibration control with viscoelastic dampers for
the second resonant frequency has been carried out by collecting responses when
the sinusoidal loading is applied at the point of 3/4 span of the beam. The
maximum accelerations at the point of 3/4 span for case I, II and III with exciting
frequencies falling within the second resonant frequency region are shown in
Figure 7.12. The maximum resonant accelerations for the three cases are
8.05m/s®, 1.84 m/s* and 7.43 m/s’, respectively. The corresponding damping
raﬁos of the beam are 0.540%, 1.102% and 0.459%, respectively. The resonant
responses at different positions are drawn in Figure 7.13 and the values in
between are interpolated to simulate the second mode shape of the beam with
different beam-column connections. From the above comparisons, it can be seen
that the effectiveness in vibration control can still be achieved for the second
resonant frequency by the proposed beam-column connections incorporated with

viscoelastic dampers.
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The effectiveness in vibration control for the third resonant frequency is studied
based on the responses of the beam with applied loading at the mid-span. The
maximum accelerations at the middle point of the beam for case I, II and III at
different excitation frequencies within the third resonant frequency region are
shown tn Figure 7.14. The maximum resonant accelerations of these three cases
are 8.93m/s%, 4.06m/s* and 5.70m/s’, respectively. The corresponding damping
ratios of these three cases are 0.547%, 1.053% and 0.778%, respectively. The
maximum resonant accelerations at different positions are drawn in Figure 7.15
and the values in between are interpolated to simulate the third mode shape of the
beam for the three different cases. From these comparisons, it can be found that
the effectiveness in vibration control is also achieved for the beam with the

proposed damping connections.

7.5 Comparison of Experimental and Analytical Results

Although the bending stiffness of the beam-column connection for case I is very
small, it still has a certain value. Thus, during analysis, the beam ends for case I
are considered as being simply supported but with an additional rotational
stiffness. The rotational stiffness of the beam-column connection with and
without angleé has been determined according to the natural frequencies and
modal shapes of the beam. The simulation work has been done for case I, II and
ITI, to make the illustration forthright, the following presentation is concentrated

on the beam of case [ and case 11.
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The analytical study has been mainly concentrated on the first natural frequency
since the second and third resonant frequencies are beyond the tested frequency

range for the shear test of damper HD91.

The long span beam with and without dampers incorporated at the beam-column
connections have been analyzed by both the TDM and the HTFDM. Restoring
forces of the dampers are calculated by Equation (5.20). The discretization of the

beam for FEM is very simple as shown in Table 7.1.

Table 7.1 Discretization of the beam for FEM analysis

Nodes Elements
1 : Point A 6 : PointF l1: AB 6 : FG
2 : Point B 7 : Point G 2 : BC 7 . GH
3 : PointC 8 : PointH 3:CD 8 : HI
4 : PointD 9 : PointI 4 : DE
5 : PointE 5: EF

The responses of the beam at different positions along the beam which is
subjected to sinusoidal loading at different excitation frequencies have been
calculated and comparisons of experimental and analytical results have been
made. The maximum accelerations at the middle point of the beam for case I are
shown in Figure 7.16. And those at the middle point of the beam for case II are
shown in Figure 7.17. From both these two figures, it can be seen that both the
TDM and the HTFDM can well predict the responses of the beam with and
without dampers under dynamic loading. It has also been found from these
figures that the results obtained by the HTFDM are better than those by the TDM.
The maximum acceleration curve obtained by the HTFDM is much closer to the

test data points than those obtained by the TDM. The damping ratios of the beam
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with and without dampers calculated by the TDM are 0.245% and 1.16%,
respectively, while they are 0.245% and 1.13% obtained by the HTFDM. The
damping ratios also indicate that the HTFDM is better than the TDM. Computing
time of the TDM and the HTFDM for beam analysis has also been compared.
The computing time for calculating the response of the beam with dampers for
each excitation frequency with the HTFDM by Pentium 100MHz/16M is only
about 0.61s while it is nearly 22.52s if calculated by the TDM, which shows that

the HTFDM is better than the TDM in terms of saving computing time.

7.6 Parametric Studies on a Long Span Beam

Experimental and analytical studies have shown that the response of the tested
beam in vertical direction can be attenuated greatly by the proposed beam-column
connections incorporated with viscoelastic dampers HD91. The effectiveness in
vibration control should be concerned with factors such as damper material,
damper dimensions, damper location, damper number, characteristics of the beam
and loading conditions, etc. Parametric studies have been performed on the tested
beam. Comparing with the tested beam, the main beam used for large column-
free floor system is always much longer and the mass of the floor slab and other
additional elements should be considered in carrying out dynamic analysis. The
frequencies of human activities are normally less than 20Hz, which usually
covers the first natural frequency of the floor-beam system. The effectiveness in
vibration control with the proposed beam—coiumn connections for a long span
beam, which is similar to the main beam of the floor studied by Osborne K. P.
{1990), has been investigated by numerical simulation. The results show the same
trends as given by the tested beam. It is believed that the proposed analytical
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method is accurate enough to predict the dynamic response of the full-scaled
floor system. Parametric studies on the effectiveness in vertical vibration control
with the proposed beam-column connections based on the full-scaled long span
beam have been carried out by the HTFDM, the results of which is useful for

establishing some guidelines for practical design.

7.6.1 Response analysis of selected beam for parametric studies

The beam with section of 546x406x403kg/m is 16m long. The additional mass
added on the beam by the secondary beams and the floor is 1400kg/m. Referring
to the test results by K. P. Osborne, damping ratio of the beam without damper is
0.7%. To simulate the effect of the dynamic motion, a sinusoidal loading with
amplitude of 600N is assumed to act at the mid-span of the beam. Dampers HD91
with dimensions of 400x400x4 are incorporated in the beam-column

connections.

Responses of the beam with three types of beam-column connections as the tested
three cases have all been obtained by the proposed analytical method. Maximum
accelerations at the middle point of the beam at different excitation frequencies
have been presented in Figure 7.18. The maximum accelerations at the resonant
frequency are 2.9m/s’, 1.97m/s? and 3.62mv/s” for these three cases respectively. It
can be seen that the response of the beam can also be attenuated greatly with the
proposed beam-column connections. And when the dampers are incorporated in
the beam-column connections, the damping ratio of the beam will increase to

1.05%.
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In the following parametric studies, in order to illustrate the problem more
clearly, all the parameter values except the variable to be studied are the same as
those described in this sub-section. Responses such as acceleration, velocity and
displacement have all been calculated for the parametric studies. Although the
scales of them are different, their changing trends are similar, and for the beam-
floor systems, what we care about most are acceleration and displacement, in the
following sections, studies are concentrated on acceleration and associated with

displacement in some parts.

7.6.2 Variation of damper material

When viscoelastic dampers are to be incorporated in a structure, chooéing a
suitable damper material, which is available in the market, is very important. To
change the damper material, the loss modulus of a damper could be varied from
0.25~2.0 of that of the damper HD91 by changing the parameter G, of the IFDM. |
The responses at the middle point of the beam with dampers of different
parameter G subject to cyclic loading at different excitation frequencies have
been calculated. The curves of the maximum accelerations at the middle point of
the beam with respect to the parameter G, and the excitation frequency are
plotted in Figure 7.19. The maximum resonant accelerations at the middle point
of the beam with respect to the parameter G, are also plotted in Figure 7.20. It is
obvious that when the loss modulus of the damper increases, the resonant
acceleration decreases. The damping ratio of the structure with dampers of

different kind have been calculated and listed in Table 7.2. It can be seen
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apparently from Figure 7.21 that the damping ratio of the beam at the first natural

frequency increases with the loss modulus of the damper.

Table 7.2 Damping ratios of the beam with dampers of different parameter G,

G/G gmo1y Damping ratio G /Gy mper) Damping ratio
(%) (%)
0.25 0.808 1.25 1.127
0.50 0.886 1.50 1.204
0.75 0.967 1.75 1.285
1.00 1.051 2.00 1.368

From the above study, it can be seen that it would be more effective in vibration
control if the material used for the viscoelastic dampers is of higher damping
value. In order not to affect the stiffness of the beam too much, the material also

with small equivalent stiffness should be chosen.

7.6.3 Variation of damper dimension

Restoring force provided by the dampers are concerned with damper area and
shear strain of the damper. When the damper area increases, the restoring force
will increase as well. The shear strain of a damper is determined by the shear
displacement and the damper thickness. When the damper thickness increases
while the other conditions remain unchanged, the maximum shear strain will
decrease, the restoring force of the damper will decrease as well. Therefore, the
damper area and the damper thickness are the two important factors for vibration
control. In practical design, when the selected damper incorporated in the beam-
column connection can still not satisfy the requirement for vibration control,

damper dimensions can be changed to improve the effectiveness.
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7.6.3.1 Variation of damper thickness

Responses at the middle point of the beam with damper thickness changed from
Imm to 10mm under cyclic loading at different excitation frequencies have been
calculated, respectively. Maximum accelerations at the middle point of the beam
at different cxcitatiokﬁ;equencies are shown in Figure 7.22. The maximum
resonant accelerations at the middle point of the beam are shown in Figure 7.23.
It can be seen that when the damper thickness increases, the resonant acceleration
becomes larger. The maximum acceleration is not in linear relation with the

damper thickness.

Table 7.3 Damping ratios of the beam with dampers of different thickness

Thickness Damping ratio (%) Thickness (mm) Damping ratio
(mm) (%)
1 2.564 6 0.924
) 1.457 7 0.891
3 1.175 8 0.867
4 1.051 9 0.849
5 0.977 10 0.832

Damping ratios of the beam with dampers of different thickness have been
calculated and listed in Table 7.3. It can be seen obviously from Figure 7.24 that

the damping ratio of the beam will increase when damper thickness decreases.

7.6.3.2 Variation of damper area

Responses of the beam, with damper area changed from 0.25 to 2.00 of that of

the damper used in section 7.6.3.1 at different excitation frequencies have been

7-13



Chapter 7 Control of Vertical Vibration for Long Span Structures

calculated. The maximum accelerations at the middle point of beam with dampers
of different area are shown in Figure 7.25. And the maximum resonant
acceleration responses are shown in Figure 7.26. It can be seen that the resonant

acceleration increases nonlinearly with the damper area.

The damping ratios of the beam in different cases have been calculated and listed

in Table 7.4. The damping ratio of the beam increases with the damper area as

shown in Figure 7.27.
Table 7.4 Damp@lios of the beam with dampers of different areas

Damper area Damping ratio Damper area Damping ratio
(XAo) (%) (xAog) (%)
0.25 0.782 1.25 1.146
0.50 0.867 1.50 1.244
0.75 0.958 1.75 1.346
1.00 1.051 2.00 1.457

From the above studies, it can be seen that damper dimensions affect the
effectiveness in vibration control of long span structures with the proposed beam-
cc;lumn connections significantly. In practical design, the effectiveness can be
improved by selecting thinner dampers or increasing. the damper area referring to
the changing trends of the response or the damping ratio provided by the

presented figures.

7.6.4 Variation of damper number

For a beam with the developed beam-column connections, totally four dampers

can be incorporated in the two connections. In fact, limited by the circumstances,
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four dampers in total can not always be used for a beam. For instance, to the
utmost only two dampers can be stuck on the bottom flange of a beam on the roof
of a building. In some specia} areas, dampers are not permitted to be installed at
the beam-ends dué to archit:(itural requirements. The damper number should be
determined by the actual conditions. The effectiveness in vibration control of a
beam with different number dampers has been carried out as follows. Four cases
have been considered: 1, one damper at one end of the beam; 2, one damper at
one end and one damper at the other end; 3, two dampers at one end and one

damper at the other end; 4, two dampers at each end.

The maximum accelerations and displacements at the middle point of the beam
with different number of dampers at the first resonant frequency have been
calculated and are shown in Figure 7.28 and Figure 7.29, respectively. And the
maximum resonant accelerations and displacements of the beam with different
number of dampers are presented in Figure 7.30 and Figure 7.31. It is obvious
that the more the damper number is, the more the response of the beam can be
attenuated. The resonant frequency also increases with the damper number not
only due to the equivalent shear stiffness of the added dampers, but also the axial

stiffness of dampers.

The damping ratios of the beam incorporated with different number of dampers
have been calculated and listed in Table 7.5. The damping ratio of the beam
increases with the damper number and the increasing trend is shown in Figure

7.32.

7-15



Chapter 7 Control of Vertical Vibration for Long Span Structures

Fable 7.5 Damping ratios of the beam with different number of damper

Damiper number | Damping ratio (%) | Damper number | Damping ratio (%)
1 0.806 3 0.975
2 0.896 4 1.051

For a beam with the same damper number, influence of the damper arrangement
pattern is studied. If two dampers are incorporated in the beam, one way is to set
both dampers at one side/ (case A) and the other way _is to set one damper at each
side (case B). The responses of the beam with two kinds of damper setting
subject to sinusoidal loading acting at the mid-span and the 1/4 span of the beam
have both been calculated and the corresponding maximum accelerations at the
middle point of the beam at different excitation frequencies are shown in Figure
7.33(a) and Figure 7.33(b), respectively. When the loading ié acting at the 1/4
span, the loading position is near the beam-column connection if dampers are set
at one side. It can be seen that the maximum resonant acceleration at the middle
point of the beam for case A is larger than that of case B for different loading
pdsitions. The damping ratios of the beam are 0.881% and 0.896% for case A and
case B, respectively. It can be seen that to set dampers at both ends is better than
to set dampers at one side while leaving the other side without damper. It is
because that the structure is symmetric when the dampers are installed at both
two sides, while it i1s unsymmetrical when the dampers are installed at one side

only.
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7.6.5 Variation of loading
7.6.5.1 Variation of loading position

Loading can act at any place of a structure in practical use. For example,
sometimes, dynamic loading like human activities would move along the beam,
machines would be installed at different positions. The effectiveness in vibration
control of the structure with loading acting at different positions have been
carried out and are presented in this section. Four positions along the beam,
which are at 1/8, 1/4, 3/8 and 1/2 span of the beam, are chosen as the loading
positions. Maximum accelerations and displacements at the middle point of the
beam without damper at different excitation frequencies have been calculated and
are shown in Figure 7.34 and Figure 7.35, respectively. In order to distinguish the
curves clearly, Log-scale is applied for the y-axis. The maximum accelerations
and displacements at the middle point of the beam with dampers have also been
calculated and are shown in Figure 7.36 and Figure 7.37. It can be seen that the
maximum responses can be reduced greatly for all these four cases and the
resonant frequency does not change with loading position. The damping ratios of
the beam incorporated with dampers under loading at different positions have
been calculated and it is found that the damping ratio remains unchanged when
the loading position is changed. The damping ratio is equal to 1.051% for all
cases. The attenuation ratios of the response under loading at different positions
are compared in Figure 7.38, it can be seen that the effectiveness are nearly the
same for loading at different positions. Usually, in practical application, the

objective of vibration control of a structure is to keep the maximum response
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below a certain value, if the loading position is near the mid-span, more dampers,

dampers with larger area or thinner dampers should be adopted.

7.6.5.2 Variation of loading amplitude

Response of a structure is also determined for a variety of loading amplitudes.
When the amplitude of sinusoidal force acting on the beam is small, the vibration
is not obvious and even can not be perceived. While the amplitude increases, the
vibration will become violent. Loading of amplitudes of 100N, 200N, 300N,
400N, 500N, 600N, 700N, 800N, 900N and 1000ON are assumed to act on the
beam, respectively. Maximum accelerations and displacements at the middle
point of the beam without damper under loading of different amplitudes and at
different excitation frequencies are shown in Figure 7.39 and Figure 7.40,
respectively. The maximum accelerations and displacements at the middle point
of the beam with dampers under loading of different amplitude are shown in
Figure 7.41 and Figure 7.42. The maximum resonant accelerations and
displacements of the beam with and without dampers under loading of different
amplitudes are presented in Figure 7.43 and Figure 7.44. The maximum
responses of a structure either with or without dampers change with the loading
amplitude linearly. From these figures, it can be seen that no matter the force
amplitude is small or large, the response can be reduced significantly and the
resonant frequency remains unchanged. The damping ratios of the beam with
dampers under different loading conditions have been calculated and it has been
found that the values are all 1.051% for different loading amplitude. In another

word, the damping ratio of a structure incorporated with dampers does not change
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with loading amplitude. The reason is that the damping ratio of the structure
without damper is assumed to be proportional and the damping ratio of a damper

does not change with shear displacement amplitude.

Although the amplitude of response is reduced greatly when the loading force is
large, the effectiveness in vibration control is nearly the same, which can be seen
from Figure 7.45. Thus, in practical design, it is only required to work out the

solution by assuming one loading amplitude.

7.6.6 Variation of temperature

Since energy dissipation ability of a damper changes with the temperature, the
temperature of the environment should be an important factor for the
effectiveness in vibration control. When the dynamic tests were performed on the
damper HD91, the environmental temperature was about 25°C. According to the

study in Chapter Four, the IFDM for HD91 with consideration of temperature

can be expressed as T(f) = e"°'°56(7_25)[0.795'y(t) +O.0285D°'724-y(r)] . Responses of

the beam at temperature of 20°C, 25°C, 30°C, 35°C and 40°C have been
calculated. The maximum accelerations and displacements at the middle point of
the beam at different excitation frequencie-s are shown in Figure 7.46 and Figure
7.47, respectively. It can be seen that when the temperature increases, the
maximum responses increase greatly while the resonant frequency of the
structure decreases. The damping ratios of the beam at different temperatures

have been listed in Table 7.6 and the changing trail is shown in Figure 7.48. It

can be seen that when the temperature increases, the damping ratio of the beam

will decrease. It is because that when the temperature increases, the loss modulus
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and the storage modulus of a damper will decrease, which leads to decreasing of
the damping ratio and the equivalent stiffness of the damper. Therefore, for a
structure incorporated with viscoelastic dampers, when the temperature

increases, the damping ratio and the stiffness of the structure will decrease.

Table 7.6 Damping ratios of the beam with dampers at different temperatures

Temperature Damping ratio Temperature Damping ratio
(°C) (%) (°C) (%)
20 1.170 35 0.891
25 1.051 40 0.851
30 0.958

7.7 Discussions and Conclusions
¢ The proposed beam-column connection

A special beam-column connection incorporated with viscoelastic dampers has
been designed to control vertical vibration of long span beams, especially for
long span beam-floor system. Great effectiveness in vertical vibration control of
long span structures has been demonstrated by the experimental studies on a
beam with and without the proposed viscoelastic beam-column connections. This
kind of beam-column connection incorporated with viscoelastic dampers is an
entirely new damping device. Such connection can make the damper undergo
mainly shear deformation under dynamic loading. The thickness of the dampers
incorporated in the connection is always very small. The damper is stuck between
cleat angles and flanges of the beam. If possible, the damper can be stuck first

between two thin steel plates whose area is a little larger than that of the damper
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to make the damper incorporated more conveniently in the connections. This kind
of connection can be applied not only for beam-column connections, but also for
any connections of structural members, where relative rotation exists between
them. Comparing with the damping devices shown in Figure 7.2 and Figure 7.3,
this kind of beam-column connection can fabricated in a structure more

conveniently and can be used widely for various kinds of structures.

This kind of damping device can be used in fact not only to suppress vertical
vibration for long span structures, but also to control vibration of building
structures in horizontal direction. When a building is excited by wind or
earthquake, it will sway horizontally and relative rotation between the vertical
and horizontal structural members will occur. If the designed damping devices
are used between the horizontal members and the vertical members, energy will

be dissipated and horizontal vibration of the framed structures will be attenuated.

¢ Verification of the analytical methods

Comparison of the experimental and analytical results for a long span beam have
demonstrated that the developed HTFDM and TDM can well predict the response
and the damping ratio of a structure with such connections incorporated with or

without viscoelastic dampers.

Although this type of beam-column connection is also effective in attenuating
vibration in the second and the third natural frequency region of the beam, no
comparison of experimental and analytical reésults has been made since these two
higher natural frequency regions are out of the frequency range used for the

dynamic shear tests on the damper specimen.
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o Guidelines from the parametric study

To design a long span structure with the proposed beam-column connections,
both the deflection requirement under static loading and vibration requirement
under dynamic loading should be satisfied. If the stiffness of a beam is too small
due to the installation of dampers, a larger beam section may need to be used. In
order to obtain good effectiveness in vibration control, factors like damper
material, damper area, damper thickness, damper number and environment
temperature should be considered. The guidelines for practical design obtained

from the parametric studies are listed briefly as follows.

1. Better effectiveness in vibration control can be achieved by dampers with
larger loss modulus, it is important to choose a suitable kind of damper which

is available in the market.

2. The effectiveness can also be improved by increasing the damper area, but
damper area is constrained by the structural member sizes such as the width of
the beam flange. Since the largest damper width to be applied is limited by the
‘width of the beam flange, in order to improve the effectiveness in vibration
control, the length of the damper can be extended. However, if the damper
length is too long, the outer most tension at the edge of damper may exceed
the strength of the glue and make the damper separated from the beam or the
angle. Moreover, the increase in tension and compression of the damper will
further constrain the rotation of the beam, which will also increase the natural

frequency of the beam further.

3. Thinner dampers are more effective in vibration control and can also reduce

cost. Thicker dampers also occupy more space. However, if the thickness of a
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damper is too small, the damper is easier to be damaged when it is subject to
violent or large vibration. Therefore, in practical application, based on the
estimation of the vibration of the beam and the acceptable level of vibration,

the thickness of the damper should be designed as thin as possible.

4, Four dampers should be used at both ends of a long span structure as far as
practical. If constrained by the real situation, not all the four dampers can be
installed, 1t is better to spread the dampers at both two ends rather than to

place them at one end.

5. Temperature will affect the effectiveness in vibration control of long span
structures. In the design of the wviscoelastic beam-column connection, the
temperature effect should be taken into consideration. In other words, the right
parameter values should be chosen for the damper in accordance with the

temperature of the working environment,

6. Although loading condition does not affect the effectiveness in vibration
control, it is the main factor for designing the viscoelastic beam-column

connection for vibration control.

Since the properties of the beam such as beam sections and beam span are
determined by the ultimate limit state design, they are always not practical to
change to satisfy the requirements of the serviceability limit state such as the

vibration level. Therefore, they are not considered in the parametric studies.
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Figure 7.22  Maximum accelerations at the middle point of the beam
with dampers of different thickness
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Figure 7.24 Damping ratios of the beam with dampers of different thickness
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Figure 7.26 Maximum resonant accelerations at the middle point of the
beam with dampers of different areas
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Figure 7.27 Damping ratios of the beam with dampers of different areas
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Figure 7.32 Damping ratios of the beam with different number dampers
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Figure 7.41 Maximum accelerations at the middle point of the beam
with dampers under loading of different amplitudes

7-45



Chapter 7 Control of Vertical Vibration for Long Span Structures

10

=23 ~ ==} b=
T T T T T T

Displacement {mm)
(¥, ]

29 31 33 3.5
Frequency (Hz)
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Photo 7.1 Appearance of the beam test
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CHAPTER &
CONCLUDING REMARKS AND FUTURE WORK

8.1 Concluding Remarks

The experimental work, modelling, analysis and parametric studies presented in

the previous chapters can be summarized as follows.

Characteristics of viscoelastic dampers

1.

Dynamic behaviours of viscoelastic dampers have been studied based on the
experimental work carried out on two kinds of viscoelastic damper ZJD-1
and HD91. The area enclosed by the hysteresis loops of such dampers,
which embody energy dissipation ability, increases with the excitation
conditions such as the displacement amplitude and the excitation frequency.
Equivalent stiffness and damping ratio of the dampers do not change with
the shear displacement while they change with the excitation frequency. The
difference between the two kinds of damper has been found that the
equivalent stiffness of damper ZJD-1 changes slightly with the excitation
frequency, while that of damper HD91 changes significantly and the
damping ratio of damper ZJD-1 increase_s linearly with the excitation

frequency while that of damper HD91 increases nonlinearly.

Modelling and identification of mathematical model

2.

According to the experimental results of the viscoelastic dampers and the
characteristics of the commonly used mathematical models for such
dampers, the fractional derivative model has been chosen and improved to
describe the dynamic behaviours of the viscoelastic dampers. To cover the
properties of various viscoelastic dampers, the parameter o of the original

model has been redefined in the improved model (IFDM). Temperature



Chapter 8 Concluding Remarks and Future Work

factor has also been incorporated in the IFDM based on the experimental

results obtained by other researchers.

The dynamic properties of the viscoelastic dampers are embodied in the test
data collected under various conditions. To evaluate the parameters of the
improved model accurately, two kinds of method, LFIM and NFIM have
been developed for considering all the test data obtained in different test
conditions simultaneously in the identification process. The parameter
values of damper ZJD-1 and damper HD 91 have been identified by both
LFIM and NFIM.

By comparison between the hysteresis loops derived from the IFDM and
those of the test results for the two kinds of damper, it has been found that
the IFDM can well describe the dynamic behaviour of different viscoelastic
dampers. Furthermore, by comparison of the hysteresis loops derived from
the commonly used Kelvin-Voigt model with those of the experimental
results, it‘has been proved that the fractional derivative model is more
versatile and can be used more widely for various kinds of viscoelastic

damper than the Kelvin-Voigt model.

The properties such as storage modulus, loss modulus, phase-lag of stress to
strain, damping ratio and energy dissipation ability of the IFDM with
different parameters and under different loading and temperature conditions
have been studied in defail. It has been verified that the IFDM can well

describe the dynamic behaviours of various viscoelastic dampers.

Modelling and analytical methods for structures with viscoelastic dampers

6.

Two kinds of modelling scheme, namely viscoelastic elements and
viscoelastic supports, have been proposed for viscoelastic dampers
incorporated in structures in the dynamic analysis according to the location

of dampers with respect to the finite element model. An analytical method
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TDM in association with the modelling schemes has been developed and the
IFDM is adopted in the analysis to represent the viscoelastic dampers.
Because of the complexity of finding the solution for IFDM, analysis in
time domain is very time consuming. Since the IFDM has simple expression
in frequency domain, an analytical methodlfor structures with viscoelastic
damperé in hybrid time-frequency domain (HTFDM) has been developed.
With the FFT _t_cchnique, this method can be used for structures subject to
not only sinusoidal excitation, but also random excitation like seismic
loading. Moreover, the damping matrix of the structure incorporated with
viscoelastic dampers can be obtained by the analytical method, which is

useful for carrying out dynamic analysis with other software packages.

Horizontal vibration control of building structures with viscoelastic dampers

7.

Horizontal vibrations occur in building structures under dynamic loading. A
practical damping device (frame-damper-brace system) has been designed
for horizontal vibration control. It has been proved from the experimental
tests that such damping device is very effective in horizontal vibration
control. By comparisons of the experimental and analytical results, the
proposed analytical methods TDM and HTFDM for predicting the response
of structures incorporated with viscoelastic dampers under dynamic loading

have been verified.

A large amount of numerical simulation work has been performed on a
multi-story building structure for the parametric study of damper design.
Parameters such as the ratio of shear stiffness between brace and damper,
damper material, damper dimension, loading condition and temperature
condition have been studied. The effectiveness in vibration control with

respect to the change of parameters have been obtained, based on which
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some useful guidelines have been drawn for the design of horizontal

vibration control with the proposed damping device.

Vertical vibration control of building structures with viscoelastic dampers

9.

10.

11.

Vertical vibrations of long span structures caused by human activities or
machinery will bring unfavourable consequences for human's daily life. To
control such vibrations, a beam-column connection incorp'oratecl with
viscoelastic démpers has been designed. Experimental work has been
carried out on a long span beam with such beam-column connections. Great
effectiveness in vibration control with such damping device has been

demonstrated by the test resuits.

By comparisons of the analytical results given by TDM and HTFDM with
the experimental results, it has been found that these two methods can well
predict the responses of long span structures with the proposed viscoelastic
beam-column connections. The HTFDM is also found to be better than the

TDM.

Numerical simulation has been carried out on a real long span beam with
and without the proposed beam-column connections. Parameters such as
damper material, damper dimension, loading condition and temperature
condition have been studied. The effectiveness in vibration control with
respect to the change of parameters have been obtained, based on which
some useful guidelines have been drawn for the design of vertical vibration

control with the proposed damping device.
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8.2 Future Work

Vibration control of flexible structures with viscoelastic dampers is of great

significance in practical application. For practical design, the work carried out in

this thesis is not enough and a lot of work still need to be done in the future.

Further experimental study on viscoelastic dampers

1.

Temperature effect is an important factor which would affect the dynamic
characteristics of viscoelastic dampers. Limited by the test conditions,
temperature effect has not been considered in the experimental work carried
out on the two selected dampers in the present study. For further study,
testing equipment should be developed to facilitate the investigation of

viscoelastic dampers with respect to temperature.

In practical application, dampers are always under dead or dynamic pre-load
in their axial direction. The effect of the axial loading on the shear
properties of the dampers has not been studied in the experimental work. To
obtain the coupling relation of dynamic behaviour of viscoelastic dampers
between axial and shear directions, experimental work has to be carried out

by a specially designed dynamic test system.

Further development of mathematical model

3.

Based on the experimental work to be carried out at different temperatures
and those consideration of the coupling effect between axial and shear
direction, the mathematical model can be further developed to predict more
accurately the dynamic behaviours of viscoelastic dampers under various

conditions.

Experimental study on structures with dampers under stochastic loading

4,

It has been proved by numerical simulation that viscoelastic dampers are

effective for vibration control of structures under random excitation like
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seismic loading. In order to verify experimentally the effectiveness, it is
worthy to perform dynamic tests on such structures under stochastic loading

with a shaking table.

To build damping device gallery

5.

For practical application, design of viscoelastic damping devices varies with
the complex design requirements for different types of structures. To make
the design convenient, damping device gallery is worthwhile to be
established based on what have been developed so far by researchers. The
gallery should include different kinds of viscoelastic damping device with
introduction of their advantages and disadvantages and also practical notes

of application.

To link up with other structural analysis softwares

6.

Many commercial softwares for the analysis of structures such as ETABS
and SUB series have been developed and widely used by designers and
researchers. To develop an interface for linking up the current developed
analytical methods for structures incorporated with viscoelastic dampers

with such softwares is of much practical value for structure design.
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APPENDIX

Appendix 1 Experimental Results of Damper ZJD-1 in Shear Direction

Excitation Displacement Equivalent Energy Dissipated | Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) (mm) {(N/mm) {N.mm)
0.05 8§71.591 0.60281 0.04424
0.10 872.303 241132 (0.04437
.15 873.221 5.42559 (.04389
3Hz 0.20 872.892 9.64567 0.04444
0.25 871.442 15.0744 (0.04395
0.30 870.993 21.7328 0.04342
0.35 872.437 29.5299 0.04478
0.40 873.091 38.5227 0.04322
0.05 870.722 1.22353 0.08854
0.10 869.734 4.89353 0.08890
0.15 870.251 11.0182 0.08905
6Hz 0.20 869.925 : 19.5721 0.08873
0.25 870.228 30.5783 0.08924
0.30 870.064 44.0398 0.08877
0.35 869.739 59.9355 0.08927
0.40 869.596 78.2834 0.08949
0.05 868.438 1.84531 0.13453
0.10 867.994 7.38006 0.13721
0.15 868.513 16.6551 0.13845
9Hz 0.20 866.986 29.5205 0.13441
0.25 368.762 46.1242 0.13889
0.30 868.438 66.4283 0.13438
0.35 869.312 50.4054 0.13475
0.40 868.217 118.021 0.13736
0.05 865.933 2.47491 0.18227
0.10 866.279 9.89643 0.17922
0.15 364.854 22.2659 0.18348
12Hz 0.20 865.665 39.5873 0.18556
0.25 868.943 61.8582 0.18776
0.30 865.976 85.0704 0.18334
0.35 865.992 121.235 0.18212
0.40 866.927 158.369 0.18589
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Appendix 1 Experimental Results of Damper ZJD-1 in Shear Direction

{(Continued)
Excitation Displacement | Equivalent | Energy Dissipated Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) {mm) (N/mm) (N.mm)

0.05 863.937 3.10159 0.22934

0.10 862.834 12.4234 0.22934

0.15 863.355 27.9543 0.22934

15Hz 0.20 862.937 49.7085 0.22934
0.25 862.536 77.6648 0.22934

0.30 861.997 111.887 0.22934

0.35 862.685 152.203 (0.22934

0.40 863.383 198.822 (0.22934

0.05 860.829 3.74154 0.27702

0.10 860.833 14.9761 0.27702

0.15 859.997 33.6788 0.27835

18Hz 0.20 860.589 59.8695 0.27564
0.25 859.783 93.5342 0.27214

0.30 859.829 134.685 0.28012

0.35 860.059 183.355 0.27365

-0.40 859.179 ~239.478 0.27458

0.05 859.134 4.16622 0.30821

0.10 859.532 16.6621 0.30906

0.15 858.693 37.4932 0.30847

20Hz 0.20 858.884 66.6514 0.30695
0.25 858.238 104.161 0.30746

0.30 857.991 149.977 0.30823

0.35 858.438 204.185 0.30325

0.40 859.746 266.645 0.30458

0.05 855.287 5.23052 0.38819

0.10 854.593 20.9273 0.38998

0.15 853.952 47.0744 0.39045

25Hz 0.20 854.247 83.6982 0.39135
0.25 853.883 . 130.741 0.35012

0.30 853.774 188.331 0.38475

0.35 853.837 256.312 0.38542

0.40 854.373 334.773 0.38831
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Appendix 1 Experimental Results of Damper ZJD-1 in Shear Direction

(Continued)
Excitation Displacement Equivalent | Energy Dissipated | Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) (mm) (N/mm) (N.mm)
0.05 848.252 6.29992 0.47335
0.10 849.592 25.1997 0.47207
0.15 847.654 56.6993 0.47645
30Hz 0.20 848.671 100.799 0.47812
' 0.25 849.147 157.498 0.47245
0.30 849.632 226.797 0.47367
0.35 849.359 308.696 0.47549
0.40 849.571 403.195 0.47258
0.05 845.241 7.37264 0.55154
0.10 845.974 29.4904 0.55241
0.15 346.014 66.3534 0.55362
35Hz 0.20 847.034 117.962 0.55259
0.25 847.421 184.315 0.55574
0.30 846.154 265.414 0.55564
0.35 845.947 361.257 0.55127
0.40 845.347 471.846 0.55657
0.05 841.654 8.44836 0.63352
0.10 841.238 - 33.7934 0.63851
0.15 840.995 76.0352 0.63834
40Hz 0.20 841.035 135.174 0.63953
’ 0.25 840.224 211.209 0.63964
0.30 840.847 304.141 0.63977
0.35 840.694 413.972 0.64024
0.40 841.582 540.693 0.63873
0.05 837.346 9.52682 0.71965
0.10 837.218 38.1073 ().72488
0.15 837.164 85.7414 0.72349
45Hz 0.20 836.987 152.429 0.72367
0.25 836.680 238.144 0.72369
0.30 836.871 ' 342.925 0.72549
0.35 837.192 466.854 0.72214
0.40 836.882 609.776 0.72873
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Appendix 2 Experimental Results of Damper HD91 in Shear Direction

Excitation Displacement | Equivalent | Energy Dissipated Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) (mm) (N/mm) (N.mm)
0.05 1258.52 2.38561 0.12369
0.10 1257.79 9.54153 0.12547
0.15 1259.25 21.4627 0.12259
3Bz 0.20 1256.64 38.1641 0.12316
0.25 1258.24 59.6352 0.12468
0.30 1255.16 85.8787 0.12248
0.35 1259.12 116.845 0.12165
0.40 1256.57 152.626 0.12325
0.05 1351.32 3.93748 0.18964
0.10 1349.59 15.9495 0.18874
0.15 1350.98 35.4664 0.18542
6Hz 0.20 1349.67 62.9281 0.18561
0.25 1348.62 98.4845 0.18555
0.30 1347.61 141.646 0.18842
0.35 1349.09 192.945 (0.18339
0.40 1350.54 251.932 0.18566
0.05 1427.96 5.27863 0.23452
0.10 | 142897 21.1145 0.23825
0.15 1429.32 47.5047 0.23565
9Hz 0.20 1429.87 84.4521 0.23544
0.25 1427.64 131.936 0.23478
0.30 1428.46 190.011 0.23241
0.35 1429.09 258.653 0.23663
0.40 1423.65 337.882 0.23799
0.05 1502.31 6.49908 0.27518
0.10 1501.85 25.9963 0.27642
0.15 1502.31 58.4918 0.27872
12Hz 0.20 1504.09 103.985 0.27964
0.25 1503.49 162.477 0.27754
0.30 1502.44 . 233.967 0.27361
0.35 1504.75 318.455 0.27881
0.40 1505.13 415941 0.27254
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Appendix 2 Experimental Results of Damper HD91 in Shear Direction

(Continued)
Excitation Displacement Equivalent Energy Dissipated | Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) (mm) {N/mm) (N.mm)
0.05 1567.36 7.63692 0.30751
0.10 1566.54 30.5477 0.30885
0.15 1569.87 68.7322 0.30963
15Hz 0.20 1565.74 122.191 0.30994
0.25 1568.58 190.923 0.30745
0.30 1569.01 274.929 0.31057
0.35 1568.88 374.209 0.31247
0.40 1567.64 488.763 0.30875
0.05 1633.45 8.71297 0.33754
0.10 1632.78 34.8519 0.33986
0.15 1631.47 78.4167 0.34278
18Hz 0.20 1633.66 139.407 0.34167
0.25 1632.85 217.824 0.34062
0.30 1632.97 313.667 0.33831
0.35 1631.99 426.935 0.33904
0.40 1632.74 557.637 0.34273
0.05 1674.47 9.40262 0.36035
0.10 1673.64 37.6105 0.36147
0.15 1672.98 84.6236 0.35852
20Hz 0.20 1672.74 150.442 0.35914
’ 0.25 1673.75 235.065 0.35546
0.30 1673.09 338.494 0.35354
0.35 1673.64 460.728 0.35652
0.40 1672.71 601.768 0.35875
0.05 1771.78 11.0488 0.39694
0.10 1770.99 44.1952 0.39256
0.15 1770.57 99.4391 0.39782
25Hz 0.20 1772.04 176.786 0.40003
0.25 1769.54 276.225 0.39745
0.30 177046 397.766 0.39364
0.35 1769.38 541.371 0.39434
0.40 1771.75 707.142 0.39859
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Appendix 2 Experimental Results of Damper HD91 in Shear Direction

(Continued)
Excitation Displacement Equivalent | Energy Dissipated | Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) {(mm) (N/mm)} (N.mm)
0.05 1860.65 12.6056 0.42888
0.10 1861.74 50.4223 0.43147
0.15 1862.41 113.478 0.43154
30Hz 0.20 1863.54 201.689 0.43162
0.25 1862.66 315.139 0.43113
0.30 1861.74 453.801 0.43055
0.35 1862.09 617.673 0.43043
0.40 1860.98 806.757 0.43029
0.05 1951.74 14.0918 0.46242
0.10 1950.63 56.3671 0.45999
0.15 1951.09 126.826 0.45546
35Hz 0.20 1951.87 225.468 0.45824
0.25 1952.01 352.294 0.45614
0.30 1951.64 507.303 0.45329
0.35 1949.87 690.496 0.45754
0.40 1950.24 901.873 0.45668
0.05 2034.64 15.5201 0.4855
0.10 _ 2036.27 62.0803 0.48574
0.15 2036.74 139.681 0.48924
40Hz 0.20 2035.58 248.321 (.48234
’ 0.25 2036.34 388.002 0.48145
0.30 2035.22 558.722 0.48655
0.35 2034.98 760.483 0.48825
0.40 2036.47 993.284 0.48475
0.05 2116.12 16.8996 0.50864
0.10 2117.64 67.5984 0.50329
0.15 2117.49 152.097 0.50462
45Hz 0.20 2116.40 270.394 0.50146
0.25 2115.994 422.497 0.50754
0.30 2115.837 ' 608.386 - 0.51028
0.35 2117.045 828.081 0.50442
0.40 2114.698 1081.58 (.50952




Appendix 3 Experimental Results of Damper ZJD-1 in Axial Direction

Excitation Displacement | Equivalent | Energy Dissipated Damping
frequency Amplitude Stiffness -per cycle ratio

(HZ) (mm) {N/mm) (N.mm)

0.05 3010.32 1.20862 0.02557

0.10 3008.92 4.83448 0.02557

0.15 3009.54 10.8776 0.02557

3Hz ~0.20 3009.47 19.3379 0.02557

' 0.25 3010.14 30.2155 0.02557

0.30 3009.65 43.5103 0.02566

0.35 3009.57 59.2223 0.02574

0.40 3008.22 77.3516 0.02534

0.05 3005.77 243574 0.05195

0.10 3006.52 9.74296 0.05142

0.15 3007.65 21.9217 0.05155

6Hz 0.20 3007.62 38.9718 0.05149

0.25 3006.88 60.8935 0.05153

0.30 3007.25 87.6866 0.05164

0.35 3005.33 119.351 0.05177

0.40 3005.91 155.887 0.05180

0.05 3003.25 3.66994 0.07724

0.10 | 3002.48 14.6798 0.07794

0.15 3003.52 33.0295 0.07725

9Hz 0.20 3002.31 58.7747 0.07775

0.25 3002.99 91.7485 0.07764

0.30 3002.74 132.118 0.07734

0.35 3003.06 179.827 0.07751

0.40 3002.85 234.876 0.07727

0.05 3001.07 4.90876 0.10445

0.10 3000.77 19.6351 0.10422

0.15 3000.65 44.1789 0.10433

12Hz 0.20 3001.06 78.5402 0.10431

0.25 3000.97 122.719 0.10409

0.30 3000.74 . 176,715 0.10389

0.35 3000.86 240.529 0.10427

0.40 3001.17 314.161 0.10411




Appendix 3 Experimental Results of Damper ZJD-1 in Axial Direction

(Continued)
Excitation Displacement Equivalent Energy Dissipated | Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) (mm) (N/mm) (N.mm)
0.05 2998.65 6.15103 0.13102
0.10 2998.28 24.6041 0.13088
0.15 2998.47 55.3593 0.13074
15Hz 0.20 2998.57 08.4165 0.13034
0.25 2997.89 153.776 0.13069
0.30 2997.75 221.437 0.13072
0.35 - 2998.75 301.401 0.13047
0.40 2997.94 393.666 0.13088
0.05 2995.47 7.39606 0.15733
0.10 2995.24 29.5842 0.15847
0.15 2995.67 66.5645 0.15695
18Hz 0.20 2994.85 118.337 0.15778
0.25 2994.98 184.901 0.15902
0.30 2995.22 266.258 0.15886
0.35 2994.64 362.407 0.15798
0.40 2995.55 473.348 0.15695
0.05 2994.08 8.22737 0.17502
0.10 2993.65 32.9095 0.17564
0.15 2993.47 74.0464 0.17741
20Hz 0.20 2993.88 131.638 0.17556
’ 0.25 2993.34 205.684 0.17485
0.30 2992.89 296.185 0.17621
0.35 2993.47 403.141 0.17729
0.40 2993.66 526.552 0.17565
0.05 2987.74 10.3095 0.21888
0.10 2988.84 41.2787 0.21947
0.15 2987.64 §2.7854 0.21969
25Hz 0.20 2988.84 164.952 0.21957
0.25 2987.94 257.737 0.21889
0.30 2988.54 371.142 0.21946
0.35 2989.46 505.165 0.21979
0.40 2988.27 659.807 0.21966
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Appendix 3 Experimental Results of Damper ZJD-1 in Axial Direction

(Continued)
Excitation Displacement Equivalent | Energy Dissipated | Damping
frequency Amplitude Stiffness ~ per cycle ratio
(HZ) (mm) (N/mm) (N.mm)
0.05 2983.96 12.3962 0.26444
0.10 2084.22 49.5849 0.26444
0.15 2984.39 111.566 0.26444
30Hz 0.20 2985.01 198.34 0.26444
0.25 2984.65 309.906 0.26444
0.30 2984.22 446.264 0.26444
0.35 2983.97 607.415 0.26444
0.40 2984.16 793.358 0.26444
0.05 - 2980.22 14.4868 0.30951
0.10 2980.36 57.9472 0.30951
0.15 2979.77 130.381 0.30951
35Hz 0.20 2979.89 231.789 0.31014
0.25 2979.65 362.174 0.30957
0.30 2979.47 521.525 0.30999
0.35 2980.47 709.853 0.31024
0.40 2979.48 927.156 0.30887
0.05 2974.83 16.5807 0.35485
0.10 2974.94 66.3228 0.35356
0.15 2975.33 149.226 0.35284
40Hz 0.20 2975.44 265.291 0.35296
’ 0.25 2975.67 414.517 0.35364
0.30 2974.98 596.905 0.35454
0.35 2974.87 812.454 0.35267
0.40 2975.36 1061.16 0.35777
0.05 2971.08 18.6775 0.39947
0.10 297049 74.7098 0.40119
0.15 2970.66 168.097 0.40352
45Hz 0.20 2970.57 298.839 0.40164
0.25 2971.02 466.936 0.39856
030 2971.26 ‘ 672.388 0.40338
0.35 2970.34 915.195 0.40174
0.40 2970.47 1195.36 0.40669
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Appendix 4 Experimental Results of Damper HD91 in Axial Direction

- Excitation Displacement | Equivalent | Energy Dissipated Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) (mm) (N/mm) (N.mm)
0.05 4970.22 6.29684 0.08105
0.10 4969.84 25.1874 0.08088
0.15 4969.62 56.6716 0.08065
3Hz 0.20 4969.98 100.749 0.08087
0.25 4969.74 157.421 - (0.08034
0.30 4970.08 226.686 (.08029
0.35 4969.58 308.545 0.08064
0.40 4969.69 402.998 0.08021
0.05 5232.65 10.1164 0.12318
0.10 5232.89 40.4657 0.12346
0.15 5233.08 91.0479 0.12286
6Hz 0.20 5233.34 161.863 0.12297
0.25 5232.58 252.911 0.12338
0.30 5232.47 364.192 (0.12325
0.35 5232.56 495.705 0.12355
0.40 5232.77 647.452 0.12374
0.05 5456.05 13.3498 0.15621
0.10 5455.77 53.3991 0.15603
0.15 | 545545 120.148 (.15588
OHz 0.20 5454.98 213.596 0.15569
0.25 5455.75 333.744 0.15613
0.30 5455.63 480.592 (0.15549
0.35 5455.74 654.139 0.15551
0.40 5454.36 854.385 0.15533
0.05 5656.05 16.2529 0.18346
0.10 5655.99 65.0118 0.18352
0.15 5655.68 146.276 0.18285
12Hz 0.20 5655.43 260.047 0.1829%
0.25 5655.23 406.323 0.18316
0.30 5655.89 . 585.106 0.18307
0.35 5656.21 796.394 0.18354
0.40 5655.66 1040.19 0.18235

A-10




Appendix 4 Experimental Results of Damper HD91 in Axial Direction

(Continued)
Excitation Displacement Equivalent Energy Dissipated | Damping
frequency Amplitude Stiffness per cycle ratio
_(H7) (mm) (N/mm) (N.mm)
0.05 5841.24 18.9337 0.20647
0.10 5840.55 75.7318 0.20655
0.15 5840.27 170.397 0.20664
15Hz 0.20 5841.36 302.927 0.20628
0.25 5840.69 473.324 0.20685
0.30 5841.22 681.586 0.20622
0.35 5840.88 927.715 0.20639
0.40 5841.36 1211.71 0.20645
0.05 6015.04 21.4476 0.22736
0.10 6014.25 85.7903 0.22729
0.15 6014.37 193.028 0.22774
18Hz 0.20 6013.95 343.161 (0.22688
0.25 6014.33 536.189 (.22692
0.30 6013.84 772.113 0.22753
0.35 6014.67 1050.93 0.22734
0.40 6014.89 1372.65 0.22769
0.05 6125.02 23.0503 0.23978
0.10 6124.44 92.2012 0.23985
0.15 6124.65 207.453 0.24024
_ 20Hz 0.20 6125.03 368.805 0.23958
0.25 6125.24 576.257 0.24038
0.30 6124.67 829.811 0.23846
0.35 6124.88 1129.46 0.23726
0.40 6125.90 1475.22 0.23594
0.05 6386.36 26.8512 0.26666
0.10 6386.25 107.405 0.26586
0.15 6386.68 241.667 0.26495
25Hz 0.20 6386.99 429.618 0.26875
0.25 6386.87 671.279 0.26774
0.30 6386.37 | 966.641 0.26659
0.35 6387.22 1315.71 0.26513
0.40 6387.36 1718.47 0.26802
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Appendix 4 Experimental results of damper HD91 in axial direction

(Continued)
Excitation Displacement Equivalent | Energy Dissipated | Damping
frequency Amplitude Stiffness per cycle ratio
(HZ) (mm) (N/mm) {N.mm}
0.05 6632.57 30.4175 0.29288
0.10 6632.34 121.622 0.29315
0.15 6632.88 - 273.757 0.29089
30Hz 0.20 6631.99 486.679 0.29234
0.25 6632.25 760.436 0.29472
0.30 6632.65 1095.03 0.29264
0.35 6632.87 1490.46 0.29333
0.40 6633.01 1946.72 0.29258
0.05 6865.95 33.7998 (0.31478
0.10 6866.35 135.199 0.31562
0.15 6866.66 304:198 0.31661
35Hz 0.20 6865.88 540.797 0.31349
0.25 6865.74 844.996 (.31246
0.30 6865.69 1216.79 0.31754
0.35 6865.99 1656.19 0.31264
0.40 6866.07 2163.19 0.31440
0.05 7089.25 37.0323 0.33452
0.10 7089.14 148.129 0.33216
0.15 7088.96 333.291 0.33342
40Hz 0.20 7087.65 592.517 .33472
’ 0.25 7087.47 925.808 - 0.33122
0.30 7089.06 1333.16 0.33642
0.35 7088.87 1814.58 0.33432
0.40 7087.97 2370.07 (0.33209
0.05 7303.58 40.1393 0.34876
0.10 7303.24 160.557 0.35047
0.15 7303.63 361.253 0.35321
45Hz 0.20 7302.87 642.228 0.34882
0.25 7302.99 1003.48 0.34645
0.30 7303.38 ' 1445.01 0.35022
0.35 7303.16 1966.82 0.34769
0.40 7302.89 2568.91 0.34936
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Appendix 5 Some Sub-programs for the H-TFDM

This sub-program is for calculating the structural responses by the HTFDM
subroutine htfdm(omigaf,n)
implicit double precision (a-h,0-z)
parameter (m1=128 m2=7)
Fw(m]l,n) and Xw(m1,n) are the force and response in frequency domain
where n is the total node number
Mm,Cc and Kk are the matrices of mass, damping and stiffness of a structure.
VIv is the damper position matrix
ComHw is the transfer matrix of ComHw* Xw=Fw and is also
the transfer matrix of Xw=ComHw*Fw at last.
wj is the imaginary unit.
Ar and h are the area and height of the damper.
GO, G1 and Aifa2 are parameters of Fractional Derivative Model.
Omiga is frequency.
common /nnl/MM(65,65),KK(65,65), MMINV(65,65),KKINV(65,65)
common /nn2/CC(65,65),KD(65,65)
common /Dampp/VIv(65,65)
common /ZID/nvdamp
common /ZJDPOS/ZIv(65,65)
common /para/G0,G1,Aifa2,g0z,g1z,aifa2z
common /damsize/Ar,h
common /vsupportl/kvsinfo,jsup,njsup(30),nesup(30)
common /vsupport2/vl(30),vd(30),height(30)
common /time/Timet, Dtime
common /Timedomain/ftr(m1),ftiim1),xtr(m1),xti{m1)
common /Timed2/atr(m1),ati{(m1)
common /inout/nexcited,ndirec(5),nodep(5),ndireco,nodeo,nout
common /al 1/ampl(5),ww(5)
common /al2/np(5),loadinfo,loaddire
common fload/ftime(m1,5)
common /cmhw/ comhw(65,65)
dimension Omiga(m1),Fw(m1,65),Xw(m1,65)
dimension ftime(m1,65)
dimension AAr(65,65),AAi(65,65)
dimension Xxw(65),Ffw(65)
dimension is(65),js(65)
double precision Mm,Kk,Cc,Kd,MMinv,KKinv
double complex ComHw,Xw,Fw,wj, Xxw,Ffw
Xxw(nl) and Ffw(nl) if the internal variable for each frequency.
P2=8*datan(1.0d0) ‘
wj=(0.0d0,1.0d0)
Period=1.0d0/{omigaf)
dtime=period/(2.0d0**m?2)
do 19 i=1,nexcited
do 29 k=1,m1l
ftr(k)=ftime(k,np(i))
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fti(k)=0.0d0
29 continue
call FFT(ftr,fti,m2,m1,1)
do 15 k=1,m1
omiga(k)=(k-1)*omigaf
If(k.ne.1.or.k.ne.n/2) then
ftr(k)=2*ftr(k)
fti(k)=-2*fti(k)

end if
Fw(k,np(i))=cmplx(ftr(k),fti(k))
15 continue
19 continue
do 99 k=1,ml

omiga(k)=omiga(k)*p2
omig=omiga(k)
call cmhw(omig,n)
do 50 i=1,n
do 50 j=1,n
AAr(i,j)=real(ComHw(i,j))
AAI(i,j)=aimag(ComHw(i,}))

50 continue
call beinv(aar,aai,n,l,is,js}
if(1.ne.0) then

do 60i=1,n
do 60 j=1,n
ComHw(i,j)=cmplx(aar(i,j),aai(i,j})

60 continue

else
return

end 1f

do 70 i=1,n
Ffw(i)=Fw(k,1}

70 continue
call bemul{ComHw,Ffw,n,Xxw)
do 80 i=1,n

Xwik,i)=Xxw(i)

80 continue
xtr(k)=real(Xxw(nout))
xti(k)=aimag(Xxw(nout))

99 continue

call tran(xtr,xti,m1)

do 89 i=1,ml
atr(i)=-omiga(i)**2*xtr(i)
ati(i)=-omiga(i)**2*xti(i)

89 continue

c calculate the response displacement in time domain
call fft(xtr,xti,m2,m1,-1)

c calculate the acceleration in time domain
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call fft(atr,ati,m2,m1,-1)

call maxres(xtr,ml,xtrmax,xtrmin)

call maxres(atr,m1,atrmax,atrmin)
131 format(1x,f10.5,2x,£15.8,2x,£15.8)

return

end

c Sub-program to calculate the ComHw(i,j)
subroutine cmhw(omig,n)
common /nn1/MM(65,65),KK(65,65), MMINV(65,65),KKINV(65,65)
common /nn2/CC(635,65),KD(65,65)
common /Dampp/VIv(65,65)
common /ZID/nvdamp
common /ZJDPOS/ZIv(65,65)
C For KV model, aifa? or aifa2z=1.0
common /para/G0,G1,Aifa2,g0z,glz,aifa2z
common /cmhw/ comhw(65,65)
double precision Mm,Kk,Cc,Kd,MMinv,KKinv
double complex ComHw,wj
wj=(0.0d0,1.0d0)
do 10i=1,n
do 10 j=1,n
ComHw(i,j)=-Omig**2*Mm(i,j)
10 continue
do 20 i=1,n
do 20 j=1,n
ComHw(i,j)=ComHw(i,j)+wj*Omig*Cc(i,])
20 continue
do30i=1n
do30j=1n
ComHw(i,j}=ComHw(i,j)+Kk(i,j)
30 . continue
do40i=1,n
do 40 j=1,n
c Ar/h has been considered in VIv
ComHw(i,j)=ComHw(i,j)+VIv(i,j)*g0
if(nvdamp.ne.0) then
ComHw(i,j)=ComHw(i,j)}+ZIv(i,)* gOz
end if
40 continue
do45i=1,n
do 45 j=1,n
ComHw(i,j)=ComHw(i,j)+VIv(i,j)*G | *(omig*wj)**aifa2
if(nvdamp.ne.0) then
ComHw(i,j)=ComHw(i,j +ZIv(i,j)*G1z*(omig*wj)**aifa2z
end if
45 continue
end
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10

20

30

40

Sub-program to get the inverse matrix of a complex matrix (n x n)
ar is the real part of the matrix and ai is the imagine part of the matrix
subroutine beinv(ar,ai,n,l,is,js)
implicit double precision (a-h,0-z)
dimension ar(65,65),ai(65,65),is(n),js(n)
=1
do 100 k=1,n
d=0.0
do 10 i=k,n
do 10 j=k,n
p=ar(i,j)*ar(i,j)+ai(i,j)*ai(i,j}
if (p.gt.d) then
d=p '
is(k)=i
is)=]
end if
continue
if(d+1.0.eq.1.0) then
1=0
write(*,20)
return
end if
format(1x,'ERR * * NOT INV")
do30j=1,n
t=ar(k,j)
ar(k.j)=ar(is(k),))
ar(is(k),j)=t
t=ai(k,j)
ai(k,j)=ai(is(k).j)
ai(is(k),j)=t
continue
do 40 i=1,n
t=ar(i,k)
ar(i,k)=ar(i,js(k))
ar(i,js(k))=t
t=ai(i,k)
- ai(ik)=ai(i,js(k))
ai(i,js(k))=t
continue
ar(k,k)y=ar(k.k)/d
ai(k,k)=-ai(k,k)/d
do 50 j=1,n
if(j.ne k) then
p=ar(k.j)*ar(k,k)
q=ai(k,j)*ai(k k)
s=(ar(k,jHai(kj))*(ar(k k)+ai(k,k))
ar(k,j)=p-q
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50

60

70

80
100

110

120
130

ai(ksj)=5‘P‘q
end if
continue
do 70i=1,n
if(i.ne.k) then
do 60 j=1,n
if(j.ne.k) then
p=ar(k,j)*ar(i,k)
q=ai(k,j)*ai(i,k)
s=(ar(k,j+aik,j))*(ar(i,k)+ai(i, k))
t=p-q
b=s-p-q
El['(l,_])=a['(l ’j)_t
ai(i,j)=ai(i,j)-b
end if
continue
end if
continue
do 80i=1,n
if(i.ne.k) then
p=ar(i,k)*ar(k k)
g=ai(i,k)*ai(k,k)
s=(ar(i,k)+ai(i,k))*(ar(k,k)+ai(k k))
ar(i,k)=q-p
ai(i,k)=p+q-s
end if
continue

continue
do 130 k=n,1,-1

do 110 j=1,n
t=ar(k,})
ar(k,j)=ar(js(k),j)
ar(js(k).j)=t
t=ai(k,j)
ai(kj)=ai(js(k), )
ai(js(k),j)=t

continue

do 120 i=1,n
t=ar(i,k)
ar(i,k)=ar(i,is(k))
ar(i,is(k))=t
t=ai(i,k)
ai(i,k)=ai(i,is(k))
ai(i,is(k))=t

continue

continue
return
end
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