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Abstract 

To monitor traffic congestion and improve road network performance, various types 

of traffic sensors have become available and affordable with the rapid development of 

advanced sensing technologies. Smartly determining the locations of the multi-type 

sensors is crucial to collect multi-source data for the development of strategic transport 

models. In view of this, this thesis proposes a new modeling approach to optimize the 

number and locations of multi-type traffic sensors by taking into account the traffic 

demand variation and/or travel time uncertainty. The optimum deployment of multi-

type traffic sensors is proficient in the separate and simultaneous estimation of day-to-

day vehicular traffic demand by origin-destination (OD) pair and travel time on links 

with covariance effects on a daily scale. The novelty of the research presented in this 

thesis mainly resides in the incorporation of covariance of OD demands and/or link 

travel times when deploying single-type or multi-type traffic sensors onto a road 

network for updating strategic transport models.  

 

In literature, most of the existing methods estimate only the mean (average) OD 

demands using the observed data from a single-type sensor system. However, 

vehicular traffic demands between different OD pairs in a typical hourly period (e.g., 

morning peak hour) are statistically correlated from day to day because of daily 

variation in activity patterns. Traffic demands during different hourly periods within a 

day are also highly interrelated, owing to the hourly variation of travel patterns. 

Moreover, travel times on road links during the peak hour period are stochastic and 

correlated, especially the travel times of adjacent links under congested conditions.  

 

To overcome the limitation of the existing methods, both the mean and covariance of 

OD demand and of link/path travel time will be estimated separately and 

simultaneously with making use of the various data from different sensor systems. In 
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summary, the following key contributions of the thesis are highlighted.  

 

First, spatial covariance of peak-hour OD demand between different OD pairs is 

explicitly considered in traffic sensor (i.e., traffic count) location problems. The 

vehicular traffic demands between different OD pairs in a typical hourly period (e.g., 

the morning peak hour) can be statistically correlated from day to day because of joint 

travel behaviors and daily variation in activity patterns over a year. A new criterion 

based on the weighted maximum possible relative error is employed to measure the 

estimation accuracy of OD demand covariance (i.e., the maximum estimation error of 

the worst case) without the need for the ground truth of OD demand covariance. A new 

model is then developed to optimize traffic sensor (i.e., traffic count) locations and 

thereby minimize the new criterion. The conventional traffic sensor location model is 

therefore a special case of this new model.    

 

Second, this traffic sensor location model is extended to optimize the location of multi-

type traffic sensors by incorporating the spatiotemporal covariance of vehicular traffic 

demands between different OD pairs in multiple periods. Due to hourly variation of 

travel patterns by time of day and day of the year, the traffic demands of OD pairs are 

highly interrelated during different periods (e.g., morning peak and evening peak 

hours). Thus, a Kalman filter method based on principal component analysis is 

developed to estimate multi-period OD demands and their covariances. In addition, a 

novel model is devised for optimizing the locations of multi-type traffic sensors by 

minimizing the uncertainty of multi-period OD demand estimates. Overall, both the 

number and locations of multi-type traffic sensors, including point sensors and 

automatic vehicle identification (AVI) sensors, are optimized under a constraint on the 

total available budget. The mathematical properties of the new model are studied to 

determine the effect of multi-period OD flow covariance on the model results. 
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Thirdly, to develop consistent strategic transport models, an integrated traffic sensor 

location model is formulated for simultaneous estimation of OD demands and link 

travel times with consideration of two sources of spatial covariance. The two sources 

of spatial covariance include the traffic demand covariance between different OD pairs 

and the travel time covariance between different links during the peak hour period. 

Coherent estimations of these stochastic link travel times and OD demands are 

facilitated by multi-source data from multi-type sensors. With these simultaneous 

estimations, a multi-type sensor location model is developed to efficiently use or fuse 

these multi-source data. Based on the data observed from the installed multi-type 

traffic sensors such as link speed/flow and path travel time information, a novel 

Kullback–Leibler divergence-based model is proposed to achieve the simultaneous 

estimation. The proposed model can accommodate different probability distributions 

of OD demands and link travel times under different traffic conditions. 

 

An improved firefly algorithm is developed for efficiently searching for the near-to-

global solution, which enables the efficient solution of multi-type sensor location 

problems that belong to integer programming and are NP-hard. In this improved 

algorithm, the search strategy is enhanced by taking into account the mean and 

covariance of OD demand and link travel time. Numerical examples of synthetic and 

real-world road networks are conducted to illustrate the applications and merits of the 

proposed sensor location models for separate and simultaneous estimation of OD 

demands and link travel times with covariance effects. Consequently, the optimal 

multi-type sensor location schemes can be determined for estimation of day-to-day 

peak hour vehicular traffic demands by OD pair and/or link travel times. Based on 

these results, transportation planners and traffic engineers can easily deploy efficient 

sensor systems to monitor traffic conditions and assess the congestion levels in road 

networks with uncertainty.  
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estimates 

𝜔𝑧 Weighting parameter of OD demand estimation variation in sensor 

location model 

  

Sets 

�̃� Observed link set in which traffic flows and travel times can be 

observed by sensors on these links 

𝐃 Set of days of interest 

𝐆 = (𝐍, 𝐀) A road network, with N (𝑛 ∈ 𝐍) being the set of nodes and A (𝑎 ∈ 𝐀) 

being the set of links 

𝐇 Set of hourly periods of interest 

𝐖 Set of OD pairs in a road network (𝑤 ∈ 𝐖) 

𝐖𝑟 Set of node pairs (𝑤𝑟 ∈ 𝐖𝑟) 

�̃�𝑟 Set of observed node pairs where the AVI sensors are installed on 

both end nodes 

  

Vectors and matrices 

𝐜 Vector of estimated principal OD demand components in multiple 

periods 

𝐜0 Vector of prior principal OD demand components in multiple periods 

𝐂𝐂𝑡 Matrix of the coefficient of correlation for link travel time 

𝐂𝐂𝑤 Matrix of the coefficient of correlation for OD demand 

𝐂𝐕𝑡 Vector of coefficient of variation for link travel times, 𝐂𝐕𝑡 =
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[. . . , 𝑐𝑣𝑡𝑎

𝑙 , . . . ]𝑇 

𝐂𝐕𝑤 Vector of coefficient of variation for OD demand, 𝐂𝐕𝑤 =

[. . . , 𝑐𝑣𝑤, . . . ]𝑇 

𝐈𝒘, 𝐈𝒕  Row vectors with size 1 × |𝐖|  and size 1 × |𝐀| , respectively 

whose elements are all ones 

𝐏 Matrix of link choice proportion  

�̃� Sub-matrix of link choice proportion matrix whose links are equipped 

with traffic sensors 

𝐏0(ℎ) Matrix of prior link choice proportion in period h 

𝐏′0(ℎ) Matrix of prior path or path segment choice proportion in period h 

𝐏(ℎ) Matrix of updated link choice proportion in period h 

𝐏′(ℎ) Matrix of updated path or path segment choice proportion in period 

h 

𝐪 Vector of estimated mean OD demands 

𝐪 ∗ Vector of “true” mean OD demands 

𝐪−, 𝐪+ Vector of Lower bound and upper bound of mean OD demand 

estimates 

𝐪(ℎ) Vector of estimated OD demands in period h 

𝐪𝒑𝒓𝒊𝒐𝒓 Vector of prior mean OD demands 

�̃�𝑙 Vector of sample mean travel time on observed links, �̃�𝑙 =

(. . . , �̃�𝑎
𝑙 , . . . )𝑇 

𝐭𝑙 Vector of estimated mean travel time, 𝐭𝑙 = [𝐭𝑜
𝑙 ; 𝐭𝑢

𝑙 ] 

�̃�(𝑑)
𝑙  Vector of travel time on observed links on day d, �̃�(𝑑)

𝑙 =

(. . . , �̃�𝑎(𝑑)
𝑙 , . . . )𝑇 

𝐭𝑙−, 𝐭𝑙+ Vector of lower bound and upper bound of mean link travel time 

estimates 

𝐭𝑜
𝑙  Vector of estimated mean travel time on observed links 
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𝐭𝑜𝑝𝑟𝑖𝑜𝑟
𝑙  Vector of prior travel time on observed links 

𝐭𝑢
𝑙  Vector of estimated mean travel time on unobserved links  

𝐭𝑢𝑝𝑟𝑖𝑜𝑟
𝑙  Vector of prior travel time on unobserved links 

�̃�𝑤𝑟
 Vector of sample mean travel time between observed node pairs 

�̃�𝑤𝑟(𝑑) Vector of travel time between observed node pairs on day d 

𝐭𝑤𝑟
 Vector of estimated mean travel time between node pair 𝑤𝑟 

�̃�𝑙 Vector of sample mean link flow on observed links,  �̃�𝑙 =

(. . . , �̃�𝑎
𝑙 , . . . )𝑇 

𝐯𝑙 Vector of estimated mean link flow on links 

𝐯𝑎(ℎ) Vector of mean link flows observed by point sensors in period h 

𝐯𝑎(ℎ)
,

 Vector of mean partial link flows observed by AVI sensors in period 

h 

�̃�(𝑑)
𝑙  Vector of traffic flow on observed links on day d, �̃�(𝑑)

𝑙 =

(. . . , �̃�𝑎(𝑑)
𝑙 , . . . )𝑇 

𝐯𝑟(ℎ)
,

 Vector of mean partial path flow observed by AVI sensors in period 

h 

𝐳 Vector of point sensor location variables 

𝐳′ Vector of AVI sensor location variables 

𝚯0 Transformed prior link choice proportion matrix in multiple periods, 

that is, the transform of the original link choice proportions to the 

orthonormal basis matrix of eigenvectors 𝐄  for OD demand 

covariance matrix 

𝚯′0 Transformed prior path or path segment choice proportion matrix in 

multiple periods, that is, the transform of the original path or path 

segment choice proportions to the orthonormal basis matrix of 

eigenvectors 𝐄 for OD demand covariance matrix 
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𝚯(ℎ) Transformed updated link choice proportion matrix 

𝚯′(ℎ) Transformed updated path or path segment choice proportion matrix 

𝚺𝑐 Var-cov matrix of estimated principal OD demand components in 

multiple periods 

𝚺𝑐0 Var-cov matrix of prior principal OD demand components in 

multiple periods 

𝚺𝑒 Var-cov matrix of measurement error from point sensors 

𝚺′𝑒 Var-cov matrix of measurement error from AVI sensors 

𝚺𝒒 Var-cov matrix of estimated OD demands 

𝚺𝒒∗ Var-cov matrix of “true” OD demands 

�̃�𝒕
𝒍 Sample var-cov matrix of observed link travel times among different 

links 

𝚺𝐭
𝒍 Var-cov matrix of travel time among all links in the road network 

𝚺𝒕𝒖,𝒕𝒐

𝒍 ,𝚺𝒕𝒐,𝒕𝒖

𝒍  Matrix whose elements are the covariance of travel time between 

observed and unobserved links 

𝚺𝒕𝒖

𝒍 , 𝚺𝒕𝒐

𝒍  Var-cov matrix of travel time among unobserved links, and among 

observed links, respectively 

�̃�𝒕
𝑤𝑟  Sample var-cov matrix of observed travel time among different node 

pairs 

𝚺𝑡
𝑤𝑟  Var-cov matrix of estimated travel time among different node pairs 

�̃�𝒗
𝒍  Sample var-cov matrix of traffic flow among different observed links 

𝚺𝒗
𝒍  Var-cov matrix of estimated traffic flow among different links 

𝛌𝐜𝐨𝐯 Matix of relative deviations of the estimated covariance of OD 

demands 

𝛌mean Vector of relative deviations of the estimated mean OD demands  
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1. Introduction and objectives 

 Problem statement  

The sensor location problem (SLP) presents a fundamental issue that directly affects 

the development of strategic transport models. The solution of the SLP reveals the 

minimum number and optimal locations of traffic sensors that should be installed to 

enable the estimation of traffic flow or travel time on links or paths in the network 

without installed sensors. To monitor traffic congestion and improve road network 

performance, various types of sensors have become available and affordable with the 

rapid development of advanced sensing technologies. For instance, to 

comprehensively monitor traffic conditions in Hong Kong, Transport Department has 

recently installed about 1,210 traffic detectors along the strategic routes and major 

roads by the end of 2020 for intelligent transportation system (ITS) development 

(Transport Department, 2020). Smartly determining the number and locations of the 

multi-type sensors and efficiently using or fusing these multi-source data with different 

characteristics are significant.  

 

Different types of traffic sensors, such as point sensors and automatic vehicle 

identification (AVI) sensors, are deployed to provide multi-source data. The previous 

related studies on SLPs in road networks have focused mainly on the installation of 

point sensors, although some of these point sensors may provide only limited 

information on the observed links in practice.  

 

To obtain more reliable and comprehensive information, emerging technologies such 

as AVI sensors have recently been deployed in road networks. Different types of traffic 

sensors provide various traffic data of travel time and traffic flow by link and/or path. 
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For example, path travel time information provided by AVI sensor pairs could 

supplement the link-level information obtained from point sensors. The integration of 

data obtained from differently sited sensors has the potential to lay a solid foundation 

to enhance the effectiveness of data collection for the development of ITS and strategic 

transport models. 

 

Estimation of origin-destination (OD) demands by traffic sensors has been commonly 

used for transport planning and traffic management purposes in the past decades. The 

OD demand estimation problem focuses on the inference of vehicular traffic flows for 

OD pairs in a road network based on observational data (e.g., observed link flows or 

path flows) collected by installed traffic sensors. The vehicular traffic demand by OD 

pair is a fundamental input for traffic assignment or traffic simulation models to 

estimate the link flows onto the road networks (Caggiani et al., 2013; Antoniou et al., 

2016). Traditionally, the deployment of traffic sensors deserved serious consideration 

for accurate estimates of the mean (or expected value) of the OD demands. Attributed 

to the daily variations in travel activity patterns, OD demands for a typical hourly 

period are not deterministic but actually fluctuate from day to day (Clark and Watling, 

2005; Yin et al., 2009; Zhang et al., 2010; Fei et al., 2013). Shao et al. (2014) revealed 

that there are day-to-day variations in hourly OD demand and traffic flow on links, 

especially during morning peak hourly periods over the year.  

 

The day-to-day fluctuations in vehicular traffic demand, especially during the morning 

peak hour period, are remarkable (Tian et al., 2014; Bian et al., 2015). Apart from the 

promotion of daily variation of travel patterns and network topology, trip chaining is 

also one of the possible factors that can lead to the covariance between different OD 

pairs, especially in peak periods.  

 

Similarly, carpooling and ridesharing are two emerging contributors to the OD demand 
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covariance. For instance, the Uber ridesharing service was introduced in the United 

States in 2010 (“How Uber Works: Insights into the Business and Revenue Model,” 

2018). Uber is a burgeoning transport industry. In the United States, the user 

penetration of online ridesharing services was increased from 12.6% to 17.8%, while 

the number of ridesharing users was increased from 40.6 to 58.5 million respectively, 

in the two years from 2016 to 2018. As a result, the revenue in ridesharing has been 

increased by 87.8% within the period concerned (“Ride-Hailing - United States | 

Statista Market Forecast,” 2018). Indeed, ridesharing could generate considerable 

covariance between traffic demands by OD pairs. With the use of a ridesharing service, 

the user could even share the same car with a stranger.  

 

Knowledge of the travel times on the road network to be expected is a well-perceived 

priority of travelers. Estimated or predicted travel time enables travelers to make more 

accurate and appropriate decisions regarding their travel choices, thus avoiding 

unnecessary delays, particularly under non-recurrent conditions (Taylor, 2013). Travel 

time on a road link over the peak hour period is also stochastic as a result of network 

uncertainties due to recurrent and non-recurrent traffic congestions. In particular, there 

exist covariance effects on travel times, particularly between adjacent links, because 

of the propagation of traffic congestion.   

 

Estimations of both link travel time and OD demands are the most efficient when based 

on the observed data obtained from different types of advanced traffic sensors such as 

point sensors and AVI detectors. For instance, observed data from point sensors (e.g., 

loop detectors) enables OD demands to be estimated daily during a selected typical 

period. Additionally, the acquisition of data from AVI sensors (e.g., Bluetooth or Wi-

Fi) enables the estimation and prediction of travel time of a territory-wide road 

network. Thus, using different types of sensors based on a specific sensor location 

scheme can enable simultaneous estimation of link travel times and OD demands. The 
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economic potential of simultaneous estimation has excited significant interest recently.  

 Research objectives 

This thesis is devoted to proposing new models to optimize the number and locations 

of multi-type traffic sensors for separate and/or simultaneous estimation of day-to-day 

vehicular traffic demand by OD pair and travel time on links with covariance effects. 

 

In this research, the proposed modeling approach aims to optimize the locations of 

different types of traffic sensors, such as point sensors and AVI sensors in the road 

network. These optimally located sensors in the road network can offer sundry 

information that can be organized and used to estimate valuable traffic information 

such as OD demands and link travel times. However, link-level data collected by point 

sensors are inconsistent with path-level data collected by AVI sensors due to 

measurement errors and travel demand variation. This inconsistency between multi-

source data should be solved. The variations of the OD demands and link travel times 

are considered in this research to make the proposed model more robust under different 

traffic conditions.  

 

The following objectives of this research are described:  

1. To propose effective rules for determining the locations of traffic sensors and 

estimating both mean and covariance of day-to-day peak hour vehicular traffic 

demands by OD pairs in road networks with uncertainty.  

2. To formulate and solve the multi-type sensor location and OD demand estimation 

problems considering spatial covariance between different OD pairs and/or 

temporal covariance between multiple hourly periods.  

3. To develop an integrated model that optimizes multi-type sensor locations for 

simultaneously estimating day-to-day OD demands and link/path travel times with 
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uncertainty and solves the inconsistency of multi-source data from different types 

of sensors.  

 

Firstly, a traffic sensor (i.e., traffic count) location optimization model is developed for 

day-to-day OD demand estimation considering spatial covariance between different 

OD pairs during the peak hour period (objective 1). Secondly, the proposed model is 

then extended to a multi-type sensor location model for travel demand estimation 

incorporating spatial-temporal covariances of OD demand between different OD pairs 

during different time periods (objective 2). Thirdly, based on these models achieved 

by objectives 1 and 2, an integrated model is proposed to install multi-type traffic 

sensors for simultaneously estimating mean and covariance of OD demand and mean 

and covariance of link travel time with uncertainty (objective 3).  

 Structure of the thesis 

This thesis consists of six chapters. The relationships among these chapters are 

illustrated in Figure 1.1. Chapter 1 briefly introduces the research problems and the 

objectives of the thesis. In Chapter 2, the state-of-the-art on SLPs for estimation of OD 

demand estimation and link/path travel time is extensively reviewed. The core of this 

thesis is composed of the following three chapters. Chapters 3 and 4 focus on the 

covariance effects of OD demand between different OD pairs and/or between different 

time periods on the SLPs. Chapter 5 explores the covariance effects of OD demand 

and of link travel time for the multi-type SLPs. Chapter 6 summarizes the key findings 

of the research and suggests further studies.   
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Figure 1.1 Structure of the thesis 

 

In Chapter 3, to explicitly consider the covariance effects of vehicular traffic demand 

between different OD pairs, the traffic sensor (i.e., traffic count) locations are 

optimized for stochastic OD demand estimation. The research presented in Chapter 3 

proposes a new traffic sensor location model that considers the mean, variance, and 

covariance of OD demand. With an extension of the maximum possible relative error 

(MPRE) concept, the proposed model intends to minimizing the weighted sum of two 

MPRE related to the mean and covariance of OD demand estimates with a given 

budget constraint. 

 

For fully utilizing the information obtained from different types of sensors, some 

critical issues are explicitly considered in the research presented in Chapter 4. How to 

optimize the multi-type sensor locations is investigated in accounting for both spatial 
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and temporal covariance of stochastic OD demand during different time periods. The 

mathematical properties of the proposed model and empirical experiments are studied 

to examine the trade-off between point sensors and AVI sensors.  

 

Even though significant progress has been made in formulating and solving the traffic 

SLPs, the determination of traffic sensor locations for different objectives (e.g., traffic 

flow estimation, travel time estimation) is valuable to be studied. Constrained by the 

financial budget, a limited number of traffic sensors can be allocated in a road network. 

However, traffic planners and managers prefer to make comprehensive use of each 

traffic sensor for various traffic management and control purposes. Therefore, in 

Chapter 5, an integrated model is developed to deploy multi-type traffic sensors, 

importantly for simultaneously estimating OD demand and link travel time with 

covariance effects. Finally, Chapter 6 concludes this research with key findings and 

suggestions for further studies.   



8 

2. Literature review  

Traffic sensor technologies have been rapidly developed to provide abundant data in 

this new era. This research, as also mentioned in Chapter 1, aims to comprehensively 

study the traffic SLPs by explicitly considering covariance effects of OD demand 

and/or vehicular travel time for ITS applications.  

 

This chapter is structured as below. Section 2.1 introduces different types of traffic 

sensors that provide multi-source traffic data. Section 2.2 shows the OD demand 

estimation models with and without consideration of OD demand covariance. In 

addition, Section 2.3 focuses on the stochastic travel time estimation problems under 

uncertainty. By combining OD demand estimation and travel time estimation, the 

fundamental traffic sensor location models are reviewed in Section 2.4. Various criteria 

to determine sensor locations proposed in the literature are summarized.  

 Types of traffic sensors 

Sundry traffic sensors serve as productive data sources in ITS for providing sufficient 

observations to monitor traffic conditions. Based on the type of the collected data, 

traffic sensor systems can be categorized into two groups (Table 2.1): (i) point sensor 

system and (ii) AVI (also referred to as point to point) sensor system.  

 

Point sensors detect the vehicular traffic flows traversing the road links, together with 

the average vehicle speeds captured within the detection range of each point sensor. 

Taking the microwave radar sensor as an example, smart microwave sensors can count 

all the vehicles passing by these point sensors and detect their vehicular speeds within 

a road segment up to a 300-meter range (Smartmicro, 2020). Inductive-loop vehicle 

detectors can detect all vehicles passing a certain point using a moving magnet to 
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induce an electric current in a nearby wire. It is rational to assume that the link travel 

times can be approximated by the observations from point sensors, particularly for 

urban road links with a length less than 300 m (Li et al., 2006a; Xing et al., 2013; 

Gentili and Mirchandani, 2018).  

 

For the group of point sensors, the loop detector is one of the most commonly used 

sensors with low cost but high measurement errors (Coifman, 2004). On the contrary, 

microwave radar sensors can provide more reliable and accurate observations of travel 

time (or speed) information with 1% to 5% measurement errors (Schubert et al., 1995). 

 

In addition to point sensors, the AVI sensor system can record the locations and 

timestamp the vehicles equipped with AVI tags. By matching the records from AVI 

sensors installed at both ends of a selected path, the path travel time of tagged vehicles 

can be reported by the AVI sensor system. According to Antoniou et al. (2004), AVI 

sensors can be classified into three groups: (i) area-wide tracking sensors (e.g., Global 

Positioning Systems and cell phone tracking systems), (ii) location-based entire 

vehicle identification sensors (e.g., automatic license plate recognition (ALPR) 

detectors), and (iii) location-based partial vehicle identification sensors (e.g., radio-

frequency identification (RFID) readers, Bluetooth detectors, and Wi-Fi systems).  

 

Sensors in Group (i) can track vehicles throughout the entire road network. Sensors in 

Group (ii) can identify all vehicles in a short-range area, as all vehicles should, by law, 

have a license plate in a visible position. Sensors in Group (iii) can recognize only a 

portion of vehicles equipped with specific tags in a short-range area. The AVI sensors 

considered in this research belong to Group (iii), which are location-based partial 

vehicle identification sensors. These AVI sensors normally have two main functions: 

counting the number of tagged vehicles passing a specific sensor location and 

matching the tagged vehicles at different locations for recording partial path flows. 
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In practice, different types of AVI technology have various detection zones and 

matching accuracy. For instance, Bluetooth (or Wi-Fi) sensors can detect vehicles 

equipped with Bluetooth devices within a short-range area around the sensors. These 

sensors are capable of capturing traffic from different directions but with higher 

detection errors. On the other hand, the RFID reader and ALPR camera can only detect 

one-direction traffic with higher accuracy in matching the same vehicle. However, due 

to privacy issues, only commercial vehicle data captured by RFID and ALPR sensors 

are allowed to be used in Hong Kong. In this research, it is assumed that point sensors 

with lower costs can observe both the link flows and link travel times at the installed 

locations. AVI technologies such as ALPR can detect relatively accurate path travel 

time data between the locations installed with AVI sensors.  

 

Table 2.1 Different types of traffic sensors 

Type of 

sensors 
Example 

Traffic data 

collection 
Application 

Point 

sensor 

Loop detector, Video 

detector, Magnetic 

sensor 

Link flow/speed 
OD estimation; link travel 

time estimation 

AVI 

sensor  

Bluetooth sensor, 

Wi-Fi sensor, RFID 

reader, ALPR system 

Partial link/path 

flow; Path (segment) 

travel time 

OD estimation; Path travel 

time estimation; Link or path 

choice proportion estimation;  

 

It is believed that under the financial budget constraint, more point sensors than AVI 

sensors should be installed because AVI sensors are normally more expensive and can 

provide only the partial path flow/travel time information between node pairs with AVI 

sensors installed at both ends. Nevertheless, due to the limited budget and physical 

constraints, it is impossible to install point sensors on each link for the entire road 

network with over a thousand links. Furthermore, point sensors can only provide traffic 
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information on a point (e.g., flow, speed, and/or travel time on a link), while AVI 

sensors are able to cover a spatial area by matching the timestamp information between 

the node pair with AVI sensors (i.e., the path travel time between the node pair). In 

reality, AVI sensors are also valuable as a complementary data source, particularly for 

each path with many links but a limited number of point sensors.  

 

Different types of traffic sensors used in Hong Kong

Multiple sensor systems for online 

traffic data collection

Offline historical 

traffic databases

Point sensor system

AVI sensor system

Annual Traffic Census 

(ATC)

Journey Time Indication 

System (JTIS)

Speed Map Panels (SMP)

Video 

detector

Loop 

detector

Stochastic 

link flow 

and speed 

collection 

over year

Autotoll 

collection system

Automatic license 

plate recognition

Stochastic 

path 

segment 

travel 

time 

collection 

over year

 

Figure 2.1 Different types of traffic sensors with various traffic databases in Hong 

Kong 

 

As presented in Figure 2.1, in Hong Kong, video and loop detectors have been adopted 

for collecting traffic flow data by time of day and day of the year at about 180 selected 

locations for the establishment of the Annual Traffic Census (ATC) database. In 

addition, the ITS such as the Journey Time Indication System (JTIS) and the Speed 

Map Panels (SMP) system has been deployed in Hong Kong’s major routes 

(http://tis.td.gov.hk/rtis/ttis/index/main_partial.jsp). These ITS have adopted AVI 

http://tis.td.gov.hk/rtis/ttis/index/main_partial.jsp
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technologies (RFID tags and automatic license plate recognition cameras) and video-

based point sensors for the collection of different traffic data to facilitate the journey 

time and speed estimation on the selected paths and links.  

 

It should be noted that each type of sensor system has its unique advantages. Hence, 

there is great potential by integrating different traffic information from multi-type 

sensor systems to consistently estimate the spatial-temporal traffic states of the entire 

road network (Hu et al., 2015; Wu et al., 2018). Although some previous studies have 

proposed novel models to install multi-type traffic sensors, this research aims to further 

investigate the trade-off between multi-source data from different traffic sensors and 

their effects on various estimation purposes with synthetic and real network data. For 

example, Zhou and List (2010) proposed an information theory-based sensor location 

model for OD demand estimation. Point sensors or AVI sensors can be optimally 

installed to separately estimate OD demands based on observations from either point 

sensors or AVI sensors. Hu et al. (2015) proposed an integrated model for OD demands 

and heterogeneous sensor locations including AVI sensors (camera-based license plate 

recognition detectors) and point sensors (vehicle detectors). However, the priority of 

point sensor or AVI sensors considering their cost ratios has not been addressed. These 

previous studies for multi-type traffic sensor location problems proposed models to 

separately install point or AVI sensors mainly for estimation of only mean OD 

demands. To accurately estimate mean OD demands, the data collected from a single 

sensor type should be enough. In this study, with consideration of the OD demand 

covariance between different time periods, more information should be captured by 

multi-type sensors as more unknown variables are needed to be estimated. The 

observed link-level information (e.g., link flows and link speeds) from point sensors 

can be combined with the observed path-level information (e.g., path flows and path 

travel time) from AVI sensors. Furthermore, the trade-off between these different 

sensor types in terms of the allocation of total budget can be explicitly examined. 
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 OD demand estimation with uncertainty  

Estimation of OD demands by link flow observations has been commonly used for 

transport planning and traffic management purposes in the past decades. The OD 

demand is a fundamental input for traffic assignment or traffic simulation models in 

order to estimate the link flows in the road networks (Caggiani et al., 2013; Antoniou 

et al., 2016). Traditionally, the deployment of traffic sensors deserved serious 

consideration for accurate estimation of the mean (or expected value) of the OD 

demands, as shown in Table 2.2.  

 

Due to the daily variations in travel activity patterns, OD demands for a typical hourly 

period are not deterministic but actually fluctuate from day to day (Clark and Watling, 

2005; Yin et al., 2009; Zhang et al., 2010; Fei et al., 2013). Shao et al. (2014) revealed 

that there exist day-to-day variations in hourly OD demand and traffic flow on road 

links, especially during morning peak hourly periods over the year. 

 

Table 2.2 Categories of OD estimation and traffic sensor location problems 

 Mean and/or variance 

of OD demands 

Mean, variance, and 

covariance of OD 

demands 

OD estimation problem 
Yang et al. (2018);  

Ma et al. (2020) 

Shao et al. (2014);  

Shao et al. (2015) 

Traffic sensor location problem 

 

Yang (1995);  

Yang et al. (2001) 

-- 

Combination of traffic sensor 

location and OD estimation 

problems  

Owais et al. (2019); 

Zhu et al. (2016) 

Chapters 3 and 4 (OD 

demand in a single period 

and multiple periods, 

respectively) 

 

The covariance of stochastic OD demands is a nontrivial statistical characteristic in 

light of joint travel behaviors and network uncertainty (Clark and Watling, 2005; Yang 

et al., 2018; Z. Zhu et al., 2018). Many scholars have pointed out that joint travel 
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behaviors (including ridesharing and carpooling) can effectively increase vehicle 

occupancy and then decrease the vehicular traffic flow to potentially mitigate traffic 

congestion (Giuliano et al., 1990; Goel et al., 2016). Altshuler et al. (2019) and Fu et 

al. (2019) further demonstrated that joint travel behaviors would enlarge the 

covariance of vehicular traffic flow between different OD pairs.  

 

The effects of joint travel behaviors and network uncertainty on traffic flows and their 

covariances are evident, particularly under congested conditions in the morning peak 

hour (Yin et al., 2017; Li et al., 2020). The covariance effects among different OD 

pairs, apart from mean values of OD flows, can provide insightful information to infer 

travel patterns under uncertainties. The estimation of stochastic and correlated rather 

than deterministic OD demands reveals significant interest, especially in a congested 

network.  

 

For the deterministic OD demand estimation in the literature, the previous studies have 

proposed many functional methods, including maximum likelihood estimator (MLE) 

(Spiess, 1987), entropy maximization (EM) (Van Zuylen and Willumsen, 1980), 

generalized least square (GLS) (Cascetta, 1984; Yang et al., 1992), and Bayesian 

inference (Maher, 1983).  

 

Some studies have assumed that link choice proportions are fixed if congestion effects 

are not considered (Yang and Zhou, 1998; Simonelli et al., 2012). In contrast, other 

studies have assumed that link choice proportions are deterministic and determined 

exogenously by AVI data or explicitly by traffic assignment methods and have 

incorporated this assumption into various traffic count location models (Zhou and List, 

2010; Zhu et al., 2016; Owais et al., 2019). Updated stochastic link choice proportions 

should be used when considering the stochastic effects of congestion and updated OD 

demand estimates on traffic count location problems, because travelers select different 
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routes under different congestion conditions. 

 

Thus, to account for the effects of the stochasticity of OD demand and link flow and 

the effects of traffic congestion, the link choice proportions are regarded as stochastic 

variables and updated by a traffic flow simulator during the iteration process in the 

second stage of the model developed in this thesis.  

 

On the other hand, some scholars have examined the effects of variance and covariance 

relationship of OD demands on traffic assignment problems in a stochastic road 

network (Chen et al., 2002; Waller et al., 2006; Castillo et al., 2008a; Duthie et al., 

2011; Ma and Qian, 2017). Shao et al. (2014), Yang et al. (2017), and Ma and Qian 

(2018) extended the GLS model for stochastic OD demand estimation with explicit 

consideration of variance and covariance of OD demands. However, an implicit or 

explicit probabilistic assumption has commonly been adopted in these studies for 

stochastic OD demand estimation. To be less contingent on a specific probabilistic 

assumption, Yang et al. (2019a) and Z. Zhu et al. (2019) are pioneers for stochastic OD 

demand estimation by proposing a hierarchical framework based on a generalized 

method of moment or a Bayesian model. As a probabilistic assumption can potentially 

be relaxed by considering Kullback–Leibler (KL) divergence, Menon et al. (2015) and 

Ma (2016) demonstrated that KL divergence is capable of estimating sparse OD 

demands under uncertainty based on multi-source data.  

 

Furthermore, the traffic flows of different OD pairs in multiple periods are highly 

correlated with one another because of the phenomenon of joint travel behavior and 

the inter-relationships of travel patterns in different periods (Ballis and Dimitriou, 

2020). Elucidating these patterns of traffic flow for multiple periods can significantly 

benefit transportation planning and management.  
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The OD demands in multiple periods show spatial, temporal, and multi-period 

covariance in road networks. Specifically, as depicted in Shao et al. (2014), the 

covariance of OD flows in a spatial manner represents the statistical correlation of 

traffic flows within the same time period (e.g., morning peak period) among various 

OD pairs. Temporal covariance of OD flows represents the correlation of vehicular 

flow for the same OD pair but among different time periods (i.e., 8:00 –9:00 and 

17:00–18:00). In addition to spatial and temporal covariance, OD demands may also 

show multi-period covariance, i.e., correlation of OD demands for different OD pairs 

over different time periods. In fact, these three types of OD demand covariances 

simultaneously contribute to the stochasticity of multi-period OD demands.  

 

In stochastic transportation networks, the covariance of OD demands in multiple 

periods is often overlooked in the OD demand estimation problem. Using mean OD 

demand estimates without consideration of variance and covariance may lead to biased 

outputs as the variation of travel patterns over time cannot be adequately captured (Fu 

et al., 2019).  

 

In the last decade, a few studies have made important contributions in showing the 

importance of capturing OD trip chaining behavior and temporal interaction. For 

instance, to explicitly consider the trip chaining behavior, Cantelmo et al. (2020) 

developed a new state-space framework based on a Kalman filter for OD demand 

estimation. Djukic et al. (2012) and Krishnakumari et al. (2020) considered the 

variation of OD demand by time of day and day of the year using a principal 

component analysis (PCA) method to reduce the dimensionality of high-dimensional 

OD matrices. A quasi-dynamic extended Kalman filter was developed by Marzano et 

al. (2018) to estimate stochastic OD demand more efficiently. Recently, several studies 

have focused on estimating the covariance relationship of OD demand rather than the 

mean OD demand (Shao et al., 2014, 2015).  
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 Link/path travel time estimation with uncertainty 

In the literature, the travel time estimation methods have been developed depending 

on the available data obtained from different types of sensors. In a congested road 

network, travel times on different links or paths can be highly correlated. For instance, 

traffic congestion on an upstream link could also lead to congestion on downstream 

links due to spillback effects.  

 

Many studies have demonstrated that ignoring the correlation of travel time can result 

in an inaccurate evaluation of transport projects (Clark and Watling, 2005; Shao et al., 

2013). Guo et al. (2020) uncovered the spatial and temporal correlation of link travel 

speed between different links based on empirical datasets from different networks. 

This thesis also found that correlations increase at large with decreased distance in 

time and space. Zhang et al. (2019) devised a deep learning-based method to model 

the joint distribution of two successive links by considering the spatiotemporal 

correlation between travel times on different links. Tani et al. (2020) developed a novel 

method to structure stochastic link travel time and obtain the covariance information 

of link travel time by expanding the concept of risk premium. 

 

In literature, the covariance effects of travel time or speed are investigated based on 

the data provided by fixed traffic sensors. How the covariance of travel time between 

different links influences the deployment of traffic sensors is still an opening and 

exciting question to be explored.  

 

Therefore, the travel time covariance should also be considered in accounting for the 

variation of road traffic conditions, particularly in congested urban road networks. 

Estimating stochastic and correlated travel time in a territory-wide road network is 

more challenging due to the uncertainty of the traffic conditions and limited traffic 



18 

information from sensors (Zheng and Van Zuylen, 2013; Gentili and Mirchandani, 

2018). Multi-source traffic data from emerging sensor technologies can be leveraged 

in this big data arena to obtain more accurate estimates of stochastic link travel times, 

especially for the entire road network with thousands of road links but comparatively 

a few traffic sensors (Shao et al., 2018). There is a need to propose a robust method to 

estimate stochastic and correlated link travel times in congested road networks with 

the use of limited multi-source data from different traffic sensors.  

 Sensor location problem for estimation of OD demands and travel 

times 

To collect productive and effective information for estimation of OD demands and/or 

travel times in a large road network with many links, multi-type traffic sensors should 

be allocated systematically rather than arbitrarily. Nevertheless, the SLP has been 

examined in the literature to optimize the traffic sensor locations in road networks but 

mainly for one specific purpose or objective only, as summarized in Table 2.3.  

 

In this thesis, SLPs are categorized into two types:  

(i) SLP for Flow Measurement: to identify the optimum location of traffic sensors 

on the road network to improve the accuracy of traffic flow. They include OD 

flows, link flows, path flows observation, and/or estimation (Gentili and 

Mirchandani, 2012; Castillo et al., 2015). 

(ii) SLP for Travel Time Measurement: to identify the optimum location of traffic 

sensors that enable the accurate estimation of link/path travel times on a 

freeway or road network (Gentili and Mirchandani, 2018).  

 

An essential objective of SLP resides in the estimation of OD demands for strategic 

planning purposes (Zhou and List, 2010; Hu et al., 2015; Ye and Wen, 2017; Fu et al., 
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2019). For instance, Yang et al. (1991) proposed an MPRE to quantify the relative 

deviation of mean OD demand estimates from their actual values. On top of that, Yang 

and Zhou (1998) proposed four criteria: the OD covering rule, maximum flow fraction 

rule, maximal flow-intercepting rule, and link independence rule to determine the 

sensor locations. Yang et al. (2006) extended the MPRE criterion to study the screen-

line SLP. Other scholars have also proposed other criteria to measure the accuracy of 

OD demand estimates for SLP, such as the total demand scale (Bierlaire, 2002) and 

generalized demand scale (Chootinan and Chen, 2011).  

 

Previous studies that have examined flow observability via SLPs (Castillo et al., 2012, 

2015; Viti et al., 2014; Xu et al., 2016) have determined whether flows observed on 

links/paths in a road network by installed traffic sensors are sufficient for estimating 

the flows on other links/paths in the network without installed traffic sensors. Most of 

these studies have focused on determining optimal sensor locations by minimizing the 

total cost of sensor installation to enable network-wide link/path flow observation or 

estimation. Thus, to capture as much information as possible from installed sensors, 

these studies have typically modeled the flow conservation conditions—which 

describe the relationships between link, path, and OD flows— as constraints. For 

instance, Viti et al. (2014) devised a novel methodology to quantify the quality of a 

solution for partial observability of link flow, which occurs when traffic flow on some 

links of a road network cannot be observed or uniquely determined as a limited number 

of sensors are deployed on the network. By comparison, Xu et al. (2016) developed a 

robust SLP model for full observability of link flow that considers the propagation of 

measurement errors during the inference of link flow. More recently, Rinaldi and Viti 

(2017) developed a methodology to determine sensor locations on a road network by 

identifying optimal route sets, which enhances both full and partial observability of 

link flow over a road network.  
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Table 2.3 Categories of sensor location problems 

  

OD demand 

estimation 

Link travel time 

estimation 

Simultaneous estimation of 

OD demands and link travel 

times 

Single 

sensor type 

Simonelli et al. 

(2012), Fu et al. 

(2019) 

Mirchandani et al. 

(2009), N. Zhu et al. 

(2018) 

\ 

Multiple 

sensor 

types 

Zhou and List 

(2010), Hu et al. 

(2016) 

Xing et al. (2013), 

Shao et al. (2018) 

Chapter 5 (mean and 

covariance of OD 

demands/link travel times) 

 

From traffic planners’ aspects, traffic demands inferred from link flow observations 

are intrinsically fundamental traffic characteristics. However, OD demand estimation 

is usually an underdetermined problem because traffic sensors are often much less than 

the number of unknown OD pairs, especially in a large-scale road network.  

 

Many studies have proposed various models to deal with this underdetermined system 

and thus confine the search space around meaningful solutions. For example, utilizing 

prior OD demand information obtained from surveys or simulation models as part of 

the model formulation incorporates important structural information related to the 

temporal and spatial distribution of trip-making activities. Based on the observations 

from traffic sensors, an EM model was first developed by Van Zuylen and Willumsen 

(1980) to find the most likely OD demand matrix. Using Bayesian theory, Maher (1983) 

proposed analytical models to update the prior mean and variance of static OD demand.  

 

In fact, the number, type, and locations of sensors significantly affect the quality of the 

OD demand estimates. Most researchers have developed models to optimize traffic 

sensor locations concerning the accuracy of mean OD demand estimation (Bianco et 

al., 2001; Xiong et al., 2014). Several recent studies of the SLP have focused on the 

variances of OD flow to minimize the error of OD demand estimates considering the 

daily variation of travel patterns (Zhou and List, 2010; Simonelli et al., 2012). Fu et al. 
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(2019) further examined the significance of spatial covariance of OD demand during 

peak hour periods on SLP.  

 

However, only the OD demands in one specific period, e.g., the morning peak was 

considered in these studies such that only the spatial information can be incorporated. 

As both spatial and temporal information about OD demands can intrinsically facilitate 

routing policies, transportation management, and traffic control for various periods, 

estimation of multi-period OD demands has assumed growing importance in the 

context of intelligent transportation systems (Meng and Wang, 2011; Ohazulike et al., 

2013; Meng et al., 2015). Hence, there is an urgent need to generalize the traffic sensor 

location method for multi-period OD demand estimation, emphasizing spatial, 

temporal, and multi-period covariances.  

 

In the literature, there are many indexes to measure the model performance for sensor 

location and OD demand estimation problems. For instance, some prominent statistical 

measurements, including mean absolute error, mean absolute percentage error, mean 

square error, root mean square error, and so forth, have been widely used (Cascetta, 

2009; Hu et al., 2015). However, the true values of OD demand, which are necessary 

for these measurements, can hardly be obtained in practice. 

 

Apart from these statistical measurements, some scholars have proposed other criteria 

to evaluate the performance of estimated OD demand without the true values. Yang et 

al. (1991) proposed a maximum possible relative error to measure the maximum 

deviation of estimated OD demand from true values. Bierlaire (2002) proposed a total 

demand scale to calculate the difference between the maximum and minimum possible 

total OD demand estimates constrained by sensor measurements. Chootinan and Chen 

(2011) further developed a general demand scale to assess the accuracy of OD demand 

estimates from traffic sensors. Zhou and List (2010) and Xing et al. (2013) proposed 



22 

the percentage of reduction in variance to measure the quality of sensor locations for 

OD demand estimation and travel time estimation, respectively.  

 

In addition to algebraic methods, heuristic algorithms have been developed, such as 

the branch and bound algorithm and genetic algorithms (Castillo et al., 2012; Salari et 

al., 2019). For example, Cipriani et al. (2006) formulated two different heuristic 

algorithms for solving traffic sensor location problems by maximizing the OD demand 

fraction intercepted by installed sensors. Viti et al. (2008) devised a heuristic algorithm 

that considers the correlation between link flow and link travel time to optimize traffic 

count location for accurate travel time estimation. Owais et al. (2019) constructed a 

robust traffic sensor location model that minimizes the MPRE for OD demand 

estimates and the total cost of sensor installation. Thus, they devised a multi-criteria 

meta-heuristic algorithm based on a multi-objective method to examine the 

relationship between the accuracy of OD demand estimation and the cost of sensor 

installation. 

 

A few studies on SLPs have focused on estimating network-wide link/path travel time 

in a road network for various ITS development (Mirchandani et al., 2009; Ban et al., 

2011; Danczyk and Liu, 2011; Zhu et al., 2017). For example, Viti et al. (2008) 

extended the concept of MPRE for link travel time estimation to monitor the traffic 

states. Xing et al. (2013) further developed an information-theoretic model proposed 

by Zhou and List (2010) for heterogeneous sensor locations to estimate the link/path 

travel time with uncertainties. N. Zhu et al. (2018) proposed a data-driven link-based 

sensor location model to maximize the travel time information gain.  

 Summary 

As discussed in the above sections, although some previous studies have devised 
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models that locate different types of traffic sensors, they have focused on the trade-off 

between using multi-source data from different traffic sensors and the suitability of 

these data for various estimation tasks. Thus, there remains a need to determine how 

to integrate different traffic information from multi-type sensor systems, as this would 

enable consistent estimates of the spatial-temporal traffic states of an entire road 

network.  

 

Clearly, the above studies have demonstrated that the covariance of OD demands plays 

an essential role in stochastic OD demand estimation problems. However, less 

attention has been paid to estimating OD demand while simultaneously considering 

spatial, temporal, and multi-period covariances. Multi-period covariance is a statistical 

measurement that is essential for quantifying the interrelationship of vehicular traffic 

demand between different OD pairs and different time periods, considering the within-

day and day-to-day variation of travel patterns. In particular, the multi-period 

covariance of OD demand is a critical input for transportation planning and 

management. Therefore, a vital extension of previous studies is to formulate the 

stochastic OD demand estimation with consideration of different OD demand 

covariances. 

 

Previously reported models for SLPs deploy single-type or multi-type sensors 

primarily to obtain more accurate estimates of OD demands or link travel times than 

have been obtained by other methods; studies have not explicitly considered the 

covariance relationships of OD demands or link travel times. However, OD demands 

can be efficiently estimated from link flows that are highly interrelated with travel time 

on links, especially under congested conditions. Thus, when determining traffic sensor 

locations, it should be possible to simultaneously estimate OD demands and link travel 

times over a peak-hour period to provide coherent information for advanced traffic 

management and traveler information systems (Li and Ouyang, 2011; Fei et al., 2013).  
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In this research, multi-type sensor locations are optimized to allow simultaneous 

estimation of stochastic OD demands and network-wide link travel times with explicit 

consideration of covariance between OD demands and between link travel times. 

Moreover, targeted simultaneous estimates need not be limited to OD demand and/or 

link travel time, as heterogeneous data from multi-type sensors can be used to extend 

the developed sensor location model to estimate other traffic information, such as link 

flows, link speeds, and path travel times.  
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3. Optimization of traffic count locations for estimation of 

travel demands with covariance between Origin-

Destination flows 

As depicted in Chapters 1 and 2, vehicular traffic between different OD pairs for a 

typical hourly period may statistically correlate with each other. The OD demand 

covariance effect mainly generated from the daily variation of travel patterns, network 

topology, and trip chaining activities of household members can be particularly 

significant during the morning peak hour. Moreover, the hourly OD demands are not 

deterministic but indeed fluctuate on a daily scale. 

 

With the increasing attention on the OD demand variance and covariance in stochastic 

road networks, a new criterion is proposed in this chapter for measuring the estimation 

accuracy of covariance OD demands. The mathematical properties of this proposed 

criterion are analyzed to understand better the relationship between the estimation 

errors of mean and covariance of OD demands.  

 

As indicated in Table 2.2, this chapter is to investigate how to determine the traffic 

sensor (i.e., traffic count) locations for minimizing the weighted maximum deviation 

of the estimated mean and covariance of OD demands from the observed values. 

Different magnitudes of travel demands by OD pair are also taken into account because 

of the variation of travel purpose. More generally, both the weighted-sum approach 

and Pareto front approach are examined with the extension of the firefly algorithm (FA) 

to solve the single-objective and bi-objective problems. Numerical examples are 

presented to demonstrate the effects, with and without considering the covariance of 

the OD demands for the optimization of traffic sensor locations.  
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The rest of this chapter is organized as follows. The background and the illustration of 

the motivation and main contributions of the research in this chapter are presented in 

Section 3.1. It is followed by a problem statement in Section 3.2. A new criterion is 

proposed in Section 3.3 to measure the estimation accuracy of covariance of OD 

demands. Some properties of the new model are also investigated. In Section 3.4, 

model formulation for stochastic OD demand estimation and traffic sensor location 

optimization are introduced. A solution algorithm to solve these problems is discussed 

in Section 3.5. Some numerical examples are used to demonstrate the effects of the 

proposed models in Section 3.6. Finally, Section 3.7 summarizes the research in this 

chapter.  

 Background 

 Motivating example 

As mentioned in the preceding section, the demands of different OD pairs are not 

deterministic and independent. The variance and covariance of OD demands generated 

from multiple factors do exist in the road network. The relationship among different 

OD pairs should be considered when allocating the traffic sensors for stochastic OD 

demand estimation.  

 

It is noted that the stochastic OD demands, particularly for OD demand covariance, 

are affected by the trip chaining activities. An illustrative example related to the 

relevant trip chaining activities is used to demonstrate the existence of covariance 

between different OD pairs and the effects of stochastic OD demands on traffic sensor 

locations. Seven nodes and three OD pairs {(B,C),(C,F),(B,F)} are included in this 

illustrative network, given that Node C stands for a school, Node B stands for a home, 

and Node F stands for an office, respectively.  
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In this example, suppose that there are two travelers - a father (Traveler A) and his son 

(Traveler B), Traveler A would like to travel from home to office (B-F), and Traveler 

B would like to travel from home to school (B-C) respectively. Figure 3.1 illustrates 

the paths of the father, who has a car, in two different scenarios: (a) with no trip 

chaining and (b) with trip chaining, respectively. As shown in Figure 3.1(a), in the “no 

trip chaining” scenario, The father will travel from home (Node B) to the office (Node 

F) directly. In contrast, as shown in Figure 3.1(b), in the “trip chaining” scenario, he 

will first travel to school (Node C) together with his son and then travel to the office 

(Node F) alone. The father and his son will share the same car for the journey from 

home (Node B) to school (Node C). When trip chaining exists, a journey between (B-

F) will be split into two: (i) travel between (B-C) and (ii) travel between (C-F). The 

overall demands between (B-C) and (C-F) will therefore be correlated.  

 

 

(a) No trip chaining scenario           (b) Trip chaining scenario 

Figure 3.1 Travel paths in (a) no trip chaining and (b) trip chaining scenarios 

 

W1, W2, and W3 are denoted as the OD demands for (B-F), (B-C), and (C-F), 

respectively, given that W1, W2, and W3 are independent and follow normal 

distributions, where 𝑊1~𝑁(200,302) , 𝑊2~𝑁(150,362) , and 𝑊3~𝑁(100,252) , 

respectively. The proportion of trip chaining users is represented by x, and the standard 

deviation of OD demands W1, W2, and W3 as 𝜎1, 𝜎2, and 𝜎3, respectively. Therefore, 

the covariance between W2 and W3 could be deduced by the following equation.  

 2 2

2,3 1cov x = 
  (3.1) 
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Table 3.1 Relationship among the proportion of trip chaining users, covariance of 

OD demands, and average vehicle occupancy 

Proportion of travelers 

using trip chaining 
Covariance (W2, W3) 

Average vehicle 

occupancy a 

0.0% 0.0 1.00 

17.8% 28.5 1.19 

50.0% 225.0 1.80 

100.0% 900.0 2.25 

a average number of people in a vehicle, including the driver 

 

As shown in Table 3.1, when the proportion of travelers using trip chaining increases, 

both the covariance between W2 and W3 and average vehicle occupancy increase. For 

instance, when there is no trip chaining (proportion equal to zero), covariance will be 

zero, and vehicle occupancy will be 1, respectively. In contrast, when everyone uses 

trip chaining (proportion equal to 1), covariance and vehicle occupancy will increase 

to 900 and 2.25, respectively. This testifies the prevalence of covariance between OD 

demands when trip chaining becomes popular.  

 Contributions 

Different from the conventional traffic sensor location optimization models, the main 

contribution of this chapter is to optimize the traffic sensor locations so as to estimate 

both the mean and covariance OD demands with minimization of the overall 

estimation error ( in terms of the relative errors of both the mean and covariance of 

OD demands).  

 

In general, the main contributions of this chapter could be viewed from two aspects: 

theoretical and methodological developments.  

 

For the theoretical development, a new concept is introduced, together with a new 
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model formulation, to explicitly capture the effects of covariance between OD flows 

on the determination of traffic sensor (i.e., traffic count) locations for OD demand 

estimation from link flow observations. The mathematical properties of the new model 

are examined and discussed. As shown in the numerical results, the conventional 

model is indeed a special case of the newly proposed model. With the new model 

presented in this research, the traffic SLP can be generalized. Therefore, the effects of 

covariance between OD flows can be incorporated to optimize the traffic sensor 

locations for simultaneous estimation of mean and covariance of OD demands. 

Stochastic link choice proportions are updated using an adapted traffic flow simulator 

to consider the effects of traffic congestion and stochastic OD demands.  

 

As for the methodological development, the proposed model has been extended by 

considering covariance among OD pairs and different magnitudes of travel demands 

by OD pair. The metaheuristic solution algorithm has also been improved for solving 

the bi-objective optimization problem.  

 Problem statement  

In this chapter, there are mainly two stages for modeling the traffic SLP for stochastic 

OD demand estimation: (i) the traffic sensor location stage and (ii) the stochastic OD 

demand estimation stage, as shown in Figure 3.2. The connections between these two 

stages relate to the observed link flows and the values of the weighted maximum 

possible relative error for mean OD demand (WMPREM) and weighted maximum 

possible relative error for covariance of OD demand (WMPREC). The observed link 

flows based on traffic sensor locations from the first stage are the inputs of the second 

stage. Conversely, the outputs of the second stage, WMPREM and WMPREC, 

calculated from resultant OD demand estimates, are the inputs of the first stage.  
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The first stage model is to generate the traffic sensor locations based on prior OD 

demands, where some existing traffic sensor location rules are mathematically treated 

as constraints. However, these traffic sensor locations may not be the optimal ones 

concerning the accuracy of OD demand estimation (Larsson et al., 2010). Therefore, 

the criteria WMPREM and proposed WMPREC for measuring OD demand estimation 

accuracy are incorporated to optimize the traffic sensor locations.  

 

For validation purposes, it is assumed that the mean and covariance of observed link 

flows can be obtained from the “true” stochastic OD demands, which are acquired by 

the adapted traffic flow simulator (Lam and Xu, 1999). It should be noted that only 

those links equipped with traffic sensors can provide observed link flows.  

 

At the second stage, stochastic OD demands are estimated using the Bayes method 

based on the observed stochastic link flows obtained from the first stage, together with 

prior OD demands. With the resultant stochastic OD demand estimates, the proposed 

WMPREM and WMPREC for each traffic sensor location scheme can be calculated 

to examine the accuracy of estimated results on mean and covariance of OD demands. 

By comparing the values of resultant WMPREM and WMPREC among the traffic 

sensor location schemes using the genetic algorithm (GA), the optimal traffic sensor 

location scheme with the minimum OD demand estimation errors can be selected, 

which is the output of the proposed model. 
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Figure 3.2 The relationship between traffic sensor location and OD demand 

estimation problems 

 Criteria for measuring OD demand estimation accuracy 

 Model assumptions  

A1. It is assumed that all the observed link traffic flows are error-free (Yang et al., 

1991; Yang and Zhou, 1998).  

A2. The covariance of travel demands between any two arbitrary OD pairs is positive. 

Specifically, it is assumed that all the entries in the OD demand covariance matrix are 

positive.  

It should be pointed out that the covariance of travel demands between any two 

arbitrary OD pairs could be negative theoretically. However, it is probably hard to 

observe the negative OD covariance in reality. Taking the trip chaining in Figure 3.1 

for illustration, once traveler A chooses Destination F through Node C instead of 

selecting the path B-D-E-F, the covariance of travel demands between OD (B-C) and 
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OD (C-F) should then be positive. Nonetheless, this assumption deserves to be relaxed 

in further studies to propose a more generalized model. 

A3. It is assumed that there is only one sensor or detector allocated at each traffic 

sensor location.  

 Relationship between OD demands and link flows 

The traffic flows on a link are observed by a traffic sensor during the same peak hourly 

period (say 8:00 am - 9:00 am) for a typical weekday l over a given number of days h 

in the year concerned. The link with (without) traffic sensor is called “observed link” 

(“unobserved link”) throughout this chapter. Because of the daily fluctuation in travel 

demand over the year, the link flows should be stochastic instead of deterministic.  

 

The sample mean matrix of hourly traffic flows v on observed links over the year can 

be calculated as: 
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The sample covariance matrix of traffic flows on observed links can be calculated as: 
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Then, the mean of observed link flow can be obtained by the following Eq. (3.4): 
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According to A2, the covariance between 𝑉𝑎 and 𝑉𝑏 can be deduced as: 
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Then Eqs. (3.4) and (3.5) can be rewritten as the following matrix:  

 = v q  (3.6) 

and  

 
T =  v q

 (3.7) 

 Formulation of WMPREM and WMPREC 

Yang et al. (1991) proposed the MPRE to measure the reliability of the estimated OD 

demands. In this chapter, the MPRE is modified as WMPREM. According to 

assumptions A1 and A2, the true and estimated mean OD demand must satisfy the 

following relationships. 
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a    (3.8) 
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Subtracting (3.8) from (3.9), it follows that 
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Denote 𝜆𝑤
𝑚𝑒𝑎𝑛 = (𝑞𝑤

∗ − 𝑞𝑤) 𝑞𝑤⁄  as the relative deviation of the estimated mean OD 

demands from the “true” one for OD pair 𝑤 ∈ 𝐖. It follows from 𝑞𝑤
∗ ≥ 0 and 𝑞𝑤 ≥

0 that 𝜆𝑤
𝑚𝑒𝑎𝑛 ≥ −1. Substituting 𝜆𝑤

𝑚𝑒𝑎𝑛 into Eq. (3.10), it follows that 
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Denote 𝜌𝑤0
 as the weight of traffic flows in OD pair w0.  
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Define the average relative deviation of the mean OD demand as 
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𝐺(𝛌𝑚𝑒𝑎𝑛) is a measure of the estimation error of the mean OD demand. Obviously, 

the smaller 𝐺(𝛌𝑚𝑒𝑎𝑛) , the higher the accuracy of the estimation. Therefore, the 

WMPREM can be defined by the following maximization problem. 
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Similar to the definition of WMPREM, WMPREC can be defined as below. The 

covariance matrices of “true” and estimated OD demands must satisfy the following 

relationships. 
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Subtracting (3.18) from (3.19), it follows that  
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Similar to the definition of 𝜆𝑤
𝑚𝑒𝑎𝑛 , let 𝜆𝑤,𝑤′

𝑐𝑜𝑣 = (𝜎𝑤,𝑤′
𝑞∗ − 𝜎𝑤,𝑤′

𝑞 ) 𝜎𝑤,𝑤′
𝑞⁄   denote the 

relative deviation of the estimated covariance matrix of OD demands from the true one 

between OD pairs 𝑤  and 𝑤′ . According to assumption A4, 𝜎𝑤,𝑤′
𝑞∗

  and 𝜎𝑤,𝑤′
𝑞

  have 

the same sign, i.e. 𝜎𝑤,𝑤′
𝑞∗ 𝜎𝑤,𝑤′

𝑞⁄ ≥ 0, it follows that 
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Substituting 𝜆𝑤,𝑤′
𝑐𝑜𝑣 = (𝜎𝑤,𝑤′

𝑞∗ − 𝜎𝑤,𝑤′
𝑞 ) 𝜎𝑤,𝑤′

𝑞⁄  into Eq. (3.20), it follows that 
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Denote 𝜌𝑤0,𝑤′0
 as the weight of covariance between traffic flows in OD pair w0 and 

OD pair w0’.  
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Define the average relative deviation of the OD demand covariance matrix as 

 ( ) 2covcov )( nH λλ =   (3.24) 
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𝐻(𝛌𝑐𝑜𝑣) is a measure of the estimation error of the OD demand covariance matrix. 

Obviously, the smaller 𝐻(𝛌𝑐𝑜𝑣), the higher the accuracy of the estimation. Therefore, 

the WMPREC can be defined by the following maximization problem, which is very 

similar to the definition of WMPREM.  

 WMPREC( )z = )(max cov
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In Eqs. (3.17b) and (3.27b), both the mean OD demand 𝑞𝑤 (∀𝑤 ∈ 𝐖) and covariance 

variable of OD demand 𝜎𝑤,𝑤′
𝑞

  ( ∀𝑤, 𝑤′ ∈ 𝐖 ) can be estimated by traditional 

techniques, such as a weighted least squares method proposed by Shao et al. (2014) or 

the entropy maximizing method proposed by Van Zuylen and Willumsen (1980). In 
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this chapter, the entropy maximizing method is adapted to estimate the mean and 

covariance of OD demands.  

 Properties of WMPREM and WMPREC 

As known in the literature, if the number of traffic sensors is less than the number of 

OD pairs, the mean OD demand cannot be uniquely identified. This property indicates 

that if the number of traffic sensors is insufficient, the sensor location scheme needs to 

be optimized to improve the estimation error. Such a property needs to be extended for 

the case of OD demand covariance estimation. To address this issue, the following 

property explains the relationship between the number of traffic sensors and the 

uniqueness of the estimated OD demand covariance matrix. 

 

Property 3.1: If P̃ is a matrix with full column rank, i.e., 𝑟𝑎𝑛𝑘(�̃�) = the number of 

columns of P̃, Σ𝐪 must be uniquely identified according to Eq. (3.7). 

 

Remark: It should be noted that the number of columns in P̃ is equal to the number 

of traffic sensors. If the number of traffic sensors is less than the number of OD pairs, 

P̃ must not be a matrix with full column rank. In other words, only under the condition 

that the number of sensors is less than the number of OD pairs, the solution for the 

estimation of OD demand covariance matrix is not unique and should be optimized. 

Property 3.1 is consistent with the relationship between the number of traffic sensors 

and the uniqueness of estimated mean OD demand.  

 

In addition, the definition of WMPREC is different from that of WMPREM. The key 

difference is that WMPREC relates to a pair of traffic sensor locations (𝑎, 𝑏 ∈ �̃� in 

Eq. (3.27b)), while WMPREM only depends on a single traffic sensor location (𝑎 ∈ �̃� 

in Eq. (3.17b)). Even if the formulations are different, the mathematical properties are 

the same under some assumptions.  
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Before the investigation of the mathematical properties for WMPREC, the following 

definition of OD Covering Rule is introduced. 

 

OD Covering Rule: the traffic sensors on the road network must be located in order 

to ensure that the traffic flows (or vehicular trips) between each OD pair can be 

observed.  

The OD covering rule was proposed by Toi (1986). Its mathematical formulation with 

a clear explanation was presented by Yang et al. (1991). It is a common rule widely 

used for SLPs in the literature but is extended below in this chapter for consideration 

of the covariance between OD flows.  

 

Property 3.2: The WMPREM (𝐺(𝛌𝑚𝑒𝑎𝑛)) and WMPREC (𝐻(𝛌𝑐𝑜𝑣)) are both finite 

under the following two conditions: 

(i) the OD Covering Rule is satisfied (i.e., the traffic flows between any OD pair are 

observed by at least one traffic sensor location). 

(ii) 𝜎𝑤,𝑤′ = 𝑟𝑤,𝑤′𝜎𝑤𝜎𝑤′  and 𝜎𝑤 = 𝑐𝑤𝑞𝑤 , where 𝑟𝑤,𝑤′  is the coefficient of 

correlation between the travel demands of OD pairs w and w’ and 𝑐𝑤 is the coefficient 

of variation of OD pair w. In this condition, the covariance between the travel demands 

of any two OD pairs can be either positive or negative. 

 

Property 3.3: The WMPREM (𝐺(𝛌𝑚𝑒𝑎𝑛)) and WMPREC (𝐻(𝛌𝑐𝑜𝑣)) are both finite 

under the following two conditions:  

(i) the OD Covering Rule is satisfied (i.e., the traffic flows between any OD pair are 

observed by at least one traffic sensor location). 

(ii) the covariance of travel demands between any two arbitrary OD pairs is positive. 

Specifically, it is assumed that all the entries in the OD demand covariance matrix are 

positive. 
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As discussed above, either the condition (ii) in Property 3.2 or the one in Property 3.3 

is satisfied, the WMPREM and WMPREC are bounded. Both Properties 3.2 and 3.3 

seek to ensure finite WMPREM and WMPREC so that traffic sensor locations can be 

optimized in the following models. The proofs of the above three properties can refer 

to the Appendix A. 

 Traffic sensor location optimization and stochastic OD demand 

estimation  

This section firstly discusses the equivalent optimization model for optimizing the 

traffic sensor locations with consideration of both the WMPREM and WMPREC at 

the first stage. At the second stage, the extension of the formulation based on the Bayes 

method is presented to estimate both the mean and covariance matrix of OD demands 

from traffic sensors. Stochastic link choice proportions are also updated by an adapted 

traffic flow simulator. 

 Model formulation for traffic sensor location optimization 

The purpose of this chapter is to enhance the reliability of the estimated OD demands 

by locating traffic sensors in the road network. As the WMPREM  and WMPREC  

can be regarded as two measures of the estimation errors for the estimated mean and 

covariance OD demands, the smaller the WMPREM and WMPREC are, the higher the 

accuracy of the estimation is. Then, minimizing WMPREM and WMPREC can 

enhance the reliabilities of the estimated mean and covariance matrices of OD 

demands. Thus, a bi-objective model is proposed for improving the estimation 

reliability of the OD mean and covariance matrices. As discussed above, two objective 

functions can be used. The first objective function is expressed as 

 1min WMPREM( )O = z    (3.28a)  
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The second objective function is expressed as 

 2min WMPREC( )O = z   (3.28b) 

Subject to 

 0 or 1az =  a A  (3.28c) 

 

It is well known for the traffic SLP that the more traffic sensors are used in the road 

network, the smaller the estimation errors are. Thus, an obvious solution for 

programming (3.28a) is 𝑧𝑎 = 1 for all 𝑎 ∈ 𝐀. This solution may not be feasible in 

practice. In reality, there is usually a budget constraint for locating traffic sensors in 

the road network. Thus, the number of traffic sensors should be within a given 

threshold based on the budget constraint, which can be expressed as below:  

 
a a

a

c z B



A    (3.29) 

where 𝑐𝑎 is the cost for installing and maintaining one traffic sensor on link a, and B 

is the total budget.  

 

However, the number of possible traffic sensors under consideration could be very 

large if a traffic network contains a large number of road links. For example, in a 

network with 100 links, there are totally 2100 − 1 possible schemes. If the number of 

traffic sensors used for OD estimation is fixed, the number of schemes is still too large 

for any methodology to cope with in practice. One approach to solve this problem is 

to use some traffic sensor location constraints to remove the redundant schemes so as 

to reduce the size of possible schemes. 

 

Yang and Zhou (1998) have proposed four traffic sensor location rules: OD covering 

rule, maximal flow fraction rule, maximal flow intercepting rule and link 

independence rule. OD covering rule is considered as a fundamental rule, so in this 

chapter. Note that it should always be satisfied and be treated as a constraint. The link 
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independence rule should also be satisfied because it could exclude the redundant links. 

So, in this chapter, the link independence rule is transformed into an equivalent 

constraint for solving the optimization problem concerned. The following two 

equations are the mathematical expressions of OD covering rule and link independence 

rule, respectively. 

 
,

1

1    
m

w a a

a

z w
=

   W

 (3.30) 

 (P)rank m=  (3.31)  

 

For every moderate road network, the above two constraints could only remove a small 

portion of “not too good” schemes, and there still be a large number of possible 

schemes for consideration. According to the maximal flow intercepting rule proposed 

by Yang and Zhou (1998), traffic sensors should be located on links so that the 

observed flows are as many as possible. In this chapter, because of the considered 

fluctuation and covariance of link flows, a variant maximal flow intercepting rule is 

proposed as a maximal probability of flow intercepting rule. That is, traffic sensors 

should be located on road links so that the probability of the observed link flows larger 

than a given value (e.g., mean link flow) is as much as possible. The proposed 

probability-based rule could be mathematically expressed as a constraint as follow: 

 0Pr( )v p V  (the value of 𝑝0 varies with the number of traffic sensors)   

 (3.32) 

 

Finally, the mathematical model for optimization of traffic sensor locations can be 

formulated as the following constrained bi-objective problem: 

  1

2

WMPREM( )
min

WMPREC( )
O
O

=
=

z
z   (3.33a) 

Subject to  

 (3.28c), and (3.29) – (3.32)  (3.33b) 
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The optimization problem (3.33) is to find the traffic sensor locations that can 

minimize the estimation errors within a given budget constraint. To better understand 

the proposed model, a proposition should be noticed as follow:  

 

Proposition 3.1: the value of WMPREM (or WMPREC) will be positive if the number 

of traffic sensors is less than the number of OD pairs; the value of WMPREM (or 

WMPREC) will be zero if the number of traffic sensors is no less than the number of 

OD pairs.  

 

This could be proved directly from that when the number of traffic sensors is no less 

than the number of OD pairs, the number of equations is equal to the number of 

unknown variables according to the conservation law (Eq. (3.6)). Thus, q will be a 

matrix with a full column rank. The OD flows could then be calculated accurately.  

 Estimation of stochastic OD demands and update of stochastic link choice 

proportions 

In this chapter, statistical methods such as the maximum likelihood method and 

Bayesian inference may be more suitable for this problem than some optimization 

methods, like the GLS method and EM method. The statistical methods may perform 

better because these methods can explicitly consider the variation of OD demands in 

the considered case. As such, after determining the traffic sensor locations at the first 

stage of the proposed model in this research, the second-stage problem is to estimate 

the mean and covariance of OD demands using the Bayes method and then update 

stochastic link choice proportions using traffic flow simulator based on the estimated 

stochastic OD demands. 

 

Due to that the OD demands will change during the iteration, the stochastic link choice 

proportions and stochastic link flows are also updated during determining traffic 
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sensor locations, as shown in Figure 3.2. This information obtained from the adapted 

traffic flow simulator at the second stage should be consistent with the observed ones. 

Thus, the stochastic link flows and stochastic link choice proportions are updated 

iteratively until the difference between the estimated link flows from the adapted 

traffic flow simulator and observed link flows from traffic sensors is less than the 

predetermined tolerance. 

 

The “estimated link flows” including their mean and covariance are obtained from the 

adapted traffic flow simulator based on the estimated stochastic OD demands at the 

second stage. In this chapter, the “true” OD demands are assumed so that the mean and 

covariance of “observed link flows” can be obtained by assigning the “true” mean and 

covariance of OD demands using the adapted traffic flow simulator. The “true” OD 

demands only serve as a reference for validation in the numerical examples. 

 

Based on the stochastic link flows observed from traffic sensors which have been 

determined at the first stage, the Bayes method for estimating the stochastic OD 

demands is formulated as follows:  

 

Suppose that observed link flows follow a multivariate normal distribution, 

𝑉|𝑄~𝑀𝑉𝑁(𝑃𝑄, Σv) , where V is an 𝑚 × 1  vector of observed link flow, Q is an 

𝑛 × 1 parameter vector of estimated OD demands, P is an 𝑚 × 𝑛 given matrix of 

link choice proportion, and Σv is an 𝑚 × 𝑚 observed covariance matrix of link flow. 

In addition, suppose the prior distribution of OD demand is also multivariate normal, 

𝑄~𝑀𝑉𝑁(𝑄𝑝𝑟𝑖𝑜𝑟, Σq
prior

) , where 𝑄𝑝𝑟𝑖𝑜𝑟  is an 𝑛 × 1  parameter vector of prior OD 

demands, Σq
prior

 is an 𝑛 × 𝑛 covariance matrix of prior OD demands. Please note 

that both 𝑄𝑝𝑟𝑖𝑜𝑟 and Σq
prior

 are known. From the Bayes method (Carlin et al., 2000), 

the marginal distribution of observed link flows V can be deduced as:  
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 𝑉~𝑀𝑉𝑁(𝑃𝑄𝑝𝑟𝑖𝑜𝑟 , Σ𝑣 + 𝑃Σ𝑞
𝑝𝑟𝑖𝑜𝑟𝑃𝑇) (3.34) 

 

The posterior distribution of OD demands 𝑄 can then be obtained by:  

 𝑄|𝑉~𝑀𝑉𝑁(𝐷𝑑, 𝐷)  (3.35a) 

Where 

 𝐷−1 = 𝑃′(Σ𝑣)−1𝑃 + (Σ𝑞
𝑝𝑟𝑖𝑜𝑟)−1   (3.35b) 

 𝑑 = 𝑃′(Σ𝑣)−1𝑉 + (Σ𝑞
𝑝𝑟𝑖𝑜𝑟)−1𝑄𝑝𝑟𝑖𝑜𝑟  (3.35c) 

Therefore, the mean OD demands can be estimated.  

 𝐪 = 𝐸(𝑄|𝑉) = 𝐷𝑑   (3.36) 

The posterior covariance matrix of OD demand can be expressed as follows:  

 𝚺𝑞 = 𝐶𝑜𝑣(𝑄|𝑉) = 𝐷   (3.37) 

Based on the estimation of mean and covariance OD demands, stochastic link choice 

proportions together with the stochastic link flows are then updated by an adapted 

traffic flow simulator. The initial method can be referred to Lam and Xu (1999). In this 

chapter, based on the estimation of mean and covariance of OD demands from the 

Bayes method, it is assumed that OD demands follow a multivariate normal 

distribution. By sampling the OD demand from the overall population, stochastic user 

equilibrium (SUE) assignment is used to obtain mean and covariance of link flows and 

link choice proportions. Stochastic OD demands will be updated according to the 

proposed Bayes method. The procedure should be repeated until the difference 

between estimated link flows and observed link flows is less than the tolerance 

predetermined. 

 Solution algorithm 

In this section, the improved FA will be used to solve the proposed bi-objective 

optimization problem.  
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 Solution formulation 

For each sensor location scheme, the optimization problem can be solved to estimate 

the mean OD demands q and the covariance matrix of OD demands 𝚺𝒒. Similar to 

Eqs. (3.6) and (3.7), Eqs. (3.17b) and (3.27b) can be rewritten in the following matrix 

form: 

 0λq = meand~
   (3.38) 

 0λ
q = T~~ cov    (3.39) 

where 𝐪𝑑
 is a diagonal matrix whose diagonal elements are 𝑞𝑤. 

 

Then the matrix form of the optimization problem (3.17) for finding WMPREM is 

shown as below: 

 WMPREM( ) max ( )
mean

meanG=
λ

z λ    (3.40a) 

Subject to  

  0λq = meand~
    (3.40b) 

 1λ −mean    (3.40c) 

 

To facilitate efficient solutions, the matrix equation constraint (3.39) can be 

transformed into a linear equation constraint as follow. 

 0λ
covλ = )(vec     (3.41) 

Similar to matrix �̃� , the method to obtain matrix Μ𝛌  is shown in Appendix A. 

Subsequently, the optimization problem (3.27) should be rewritten as below: 

 cov
WMPREC( ) max (vec( ))H= cov

λ

z λ   (3.42a) 

Subject to  

 0λ
covλ = )(vec   (3.42b) 

 1λ
cov −)(vec  (3.42c) 
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Then, the bi-objective model could be formulated as below: 

 
1

2

WMPREM( )
min

WMPREC( )

O

O

=


=

z

z
  (3.43a) 

Subject to  

 0
λ

λq
covλ

=
















 )(vec

meand

  (3.43b) 

 1
λ

λ
cov

−








)(vec

mean

 (3.43c) 

To solve this constrained bi-objective optimization problem, two main approaches are 

used: the weighted-sum approach and the Pareto front approach.  

 

The weighted-sum approach converts the bi-objective problem into a single objective 

problem as Eq. (3.44) by varying the weights of the two objectives. However, this 

weighted-sum approach requires good background knowledge of the problem so as to 

determine the weighting parameter 𝛼  and then to obtain a reliable solution. The 

objective of the weighted-sum approach is defined as the weighted maximum possible 

relative error (WMPRE). 

 WMPRE( ) min{(1 ) WMPREM( ) WMPREC( )} = −  + 
z

z z z   (3.44) 

 

More generally, the Pareto front approach is adopted to acquire the Pareto front of this 

bi-objective problem without the need to determine the weighting parameter 𝛼. A set 

of non-dominated solutions called Pareto optimal solutions will be generated, which 

represents the relationship between the two objectives. Hence, no absolute unique 

solution could be obtained from the Pareto front approach.  

 

To better understand the pattern of solutions from these two approaches, the results 



46 

obtained from the weighted-sum approach and Pareto front approach will be compared 

below. The proposed traffic sensor location optimization is a non-convex problem with 

binary decision variables that represent the sensor locations. This problem is NP-hard 

such that no global optimization algorithm can be used to solve it. For the two 

approaches concerned, the main difference between the two solution algorithms is the 

fitness function described in the following sub-section.  

 Firefly algorithm 

FA is a novel and powerful nature-inspired algorithm inspired by the social behavior 

of fireflies (Yang, 2008). The original FA is to optimize continuous problems. Some 

scholars have further developed the algorithm to apply it for different areas such as 

mixed integer programming (Sayadi et al., 2010; Jati and Suyanto, 2011) and multi-

output support vector regression (Xiong et al., 2014). This chapter has adapted the FA 

to solve the traffic SLP that is regarded as mixed integer programming with binary 

decision variables and constraints. The numerical example, as will be shown in the 

following section, demonstrates its efficiency with comparison to the classical GA, 

which is widely used in literature (see Yin, 2000).  

3.5.2.1 Firefly representation  

It is very convenient to represent a sensor scheme by a firefly in the platform of FA. 𝐳 

is a vector with values 0 and 1 only. The purpose of the proposed FA is to determine 

the value of 𝐳 . Thus one firefly represents one sensor scheme 𝐳,  and each binary 

variable indicates the existence of a traffic sensor on link 𝑎, i.e., 1 if a traffic sensor is 

located on link 𝑎 and 0 otherwise. 

3.5.2.2 Fitness function  

Weighted-sum approach 

Define 𝐼(𝐳) = WMPRE(𝐳) as the light intensity of fireflies. 𝐼(𝐳) is selected as the 
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fitness function here. The smaller the 𝐼(𝐳) is, the more likely the scheme 𝐳 will be 

selected.  

Pareto front approach  

As for the bi-objective problem, the solution is non-dominated (Pareto optimal) if there 

were no other feasible solutions that could improve one objective without worsening 

another objective. In one iteration, the non-dominated solutions but not a unique 

optimal solution will be determined. The population in the next iteration will be 

generated based on the non-dominated solutions.  

3.5.2.3 Algorithm steps  

Step 1 (Initialization) 

After determining the number of sensors 𝑙  by considering the budget constraint, 

generate initial population of fireflies 𝐙0  randomly, the size of 𝐙0
  is 𝑘 , and the 

number of variables in each firefly equals to the number of links in the road network. 

Set the maximum iterations (or the maximum generations) to 𝑇, and set the iteration 

number 𝑡 to zero. (Bielli et al., 2002; Nayeem et al., 2014).   

Step 2 (Conditions for the termination judgment) 

If the number of iterations is larger than the threshold for maximum iteration (if 𝑡 >

𝑇), terminate. Otherwise, go to the next step. Two different approaches are considered 

in this chapter. If the weighted-sum approach is used, go to Step 3a. Otherwise, go to 

Step 3b.  

(Selection operation) 

Step 3a: For each firefly 𝐳(𝑖) (𝑖 = 1,2, 𝐼, 𝑘) of population pool 𝐙(t−1), estimation of 

the mean and covariance matrix of OD demands by using the Bayesian method and 

then solving the bi-objective optimization problem (3.43). After calculating the value 

of its light intensity 𝐼(𝐳(𝑖)) according to the fitness function, rank the fireflies based 

on light intensity and find the current best. Then go to step 4a.  

Step 3b: After estimation of the mean and covariance matrix of OD demands for each 
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individual of the population pool, calculate WMPREM and WMPREC according to 

the proposed criteria (formulation (3.40) and (3.42)). By comparing the values of 

WMPREM and WMPREC among all feasible solutions, the non-dominated solutions 

will be determined.  

(Variation operation) 

Step 4a: Vary attractiveness of fireflies 𝐙(𝑡)  according to the distance and light 

intensity, respectively, update 𝐙(𝑡)  that consists of 𝑘  individuals based on the 

roulette wheel. Set 𝑡 = 𝑡 + 1, go back to step 2.  

Step 4b: Based on the selected non-dominated solutions, update the population pool 

according to the distance and light intensity, respectively. Set 𝑡 = 𝑡 + 1, then go back 

to Step 2.  

 Numerical examples 

In this section, two numerical examples are used to illustrate the applicability of the 

proposed model and solution algorithm for estimating the mean and covariance of OD 

demands. Example 1 is a small transportation network to examine: (a) effects of the 

sensor number and location on WMPREM and WMPREC, respectively; (b) 

comparison of the results between WMPREC and WMPREM; (c) effects of traffic 

congestion on the estimation results; and (d) sensitivity of weighting parameter 𝛼 in 

the weighted-sum approach. Example 2 employed a medium-size transportation 

network to demonstrate the applicability of the proposed method and convergence of 

the solution.  

 A simplified road network  

As shown in Figure 3.3, a small transportation network that consists of 7 nodes, 16 

links, and 12 OD pairs is used. The mean and covariance of OD demand during 

morning peak hours for 300 days were estimated for this Example 1 network.  
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Figure 3.3 Example 1 network 

 

In this example, the prior mean and var-cov (variance-covariance) matrix of OD 

demands are set the following 𝐪𝑝𝑟𝑖𝑜𝑟 = 0.5𝐪∗, 𝚺𝒒𝑝𝑟𝑖𝑜𝑟 = 0. 52𝚺𝒒∗, which are given 

in Table 3.2 and Table 3.4, respectively. For example, the travel demand from origin C 

to destination F is numbered OD 2, in which the prior mean OD demands in OD 2 are 

assumed 240; the demand from origin B to destination C is numbered OD 4, in which 

the prior mean OD demands are assumed 208. The covariance between OD 2 and OD 

4, the maximum covariance among all OD pairs, is 1996.1.  

 

Table 3.2 Network parameters 

OD number 
Origin-

Destination 
Paths  

Prior mean OD 

demands 

1 C–B 4-2; 4-3-9 168 

2 C–F 4-3-10-13; 5-13 240 

3 C–G 4-3-10-14; 5-14 96 

4 B–C 6-1; 7-8-1; 7-10-11 208 

5 B–F 6-1-5-13; 6-3-10-13; 7-10-13 223 

6 B–G 6-1-5-14; 6-3-10-14; 7-10-14 240 

7 F–C 15-11; 15-12-8-1 144 

8 F–B 15-12-9; 15-12-8-2 168 

9 F–G 15-14 184 

10 G–C 16-11; 16-12-8-1 120 

11 G–B 16-12-8-2; 16-12-9 136 

12 G–F 16-13 208 
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Table 3.3 Prior link choice proportions by OD pair 

 

With respect to the “true” covariance matrix of OD demands, the following re-

sampling method is used (Lo et al., 1996). First, the “true” traffic flows for each OD 

pair during the morning peak hours during a sequence of days (e.g., 300 days) are 

generated from a normal distribution with mean q and variance  . The OD 

demands are re-sampled with a sampling fraction of ten %. From the enlarged samples, 

the covariance of different OD demands, which is considered as the “true” covariance 

OD demands, could then be calculated for the numerical examples in this chapter. 

However, with the recent advancement of AVI technologies such as Bluetooth, Wi-Fi, 

RFID, and ALPR technologies, the sample prior OD mean and covariance matrices 

can now be estimated based on these AVI data. In addition, the databases of online trip 

chaining platforms, e.g., Uber and DiDi, are also useful for generating the prior mean 

and covariance of OD demands. 

2(0.2 )q

   OD No. 

Link 
1 2 3 4 5 6 7 8 9 10 11 12 

Link 

Flow 

1    0.9 0.2 0.3 0.4   0.4   485.6 

2 0.8       0.4   0.5  350.0 

3 0.2 0.2 0.2 0.1 0.4 0.3       358.1 

4 1.0 0.2 0.2          284.0 

5  0.8 0.8  0.2 0.3       477.0 

6    0.9 0.6 0.6       565.9 

7    0.1 0.4 0.4       274.1 

8    0.1   0.4 0.4  0.4 0.5  343.9 

9 0.2       0.6   0.5  240.0 

10  0.2 0.2 0.1 0.8 0.75       560.1 

11    0.1   0.6   0.6   235.4 

12       0.4 1.0  0.4 1.0  511.8 

13  1.0   1.0       1.0 840.0 

14   1.0   1.0   1.0    650.0 

15       1.0 1.0 1.0    620.0 

16          1.0 1.0 1.0 580.0 
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The parameters of the adapted traffic flow simulator model are set to be the same as 

those in Lam and Xu (1999). A Monte Carlo-based algorithm is used for the adapted 

traffic flow simulator in this chapter. It should be noted that to save the computation 

time for searching the feasible paths by OD pair in numerical examples, the path choice 

set for each OD pair is assumed to be known and fixed.  

 

In addition, the prior mean link choice proportion matrix obtained from prior stochastic 

OD demands using the adapted traffic flow simulator is given in Table 3.2. Table 3.3 

shows the other network parameters for Example 1 network. 
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Table 3.4 Prior covariance matrix of OD demands 

OD No. 1 2 3 4 5 6 7 8 9 10 11 12 

1 1129.0            

2 1240.2 2304.0           

3 366.6 450.1 368.6          

4 820.6 1996.1 354.9 1730.6         

5 831.5 996.1 333.1 648.2 1989.0        

6 1526.3 1877.5 596.7 1461.7 1384.5 2304.0       

7 824.5 954.7 354.9 678.6 709.0 1089.7 829.4      

8 973.4 1151.3 429.8 841.6 960.2 1565.1 758.9 1129.0     

9 1049.1 1287.0 407.9 884.5 1282.3 1745.6 943.0 1077.9 1354.2    

10 490.6 514.0 123.2 325.3 471.1 756.6 274.6 447.7 544.4 576.0   

11 782.3 765.2 322.1 706.7 599.0 1205.9 570.2 769.1 780.8 279.2 739.8  

12 825.2 1047.5 295.6 819.0 726.2 1522.6 618.5 861.9 959.4 397.8 556.9 1730.6 
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3.6.1.1 Effects of OD demand covariance on the optimal traffic sensor locations  

In this subsection, the effects of OD demand covariance on the optimal traffic sensor 

locations are examined by considering different scenarios for using the WMPREC. 

Different values of weighting parameter 𝛼  reflect different levels of importance 

considered for estimating the mean OD demand and its covariance. Therefore, three 

scenarios are proposed by setting three values of the 𝛼 in the weighted-sum approach 

(e.g., Eq. (3.44)). The three scenarios are listed below:  

 𝛼 = 1 represents the scenario that only WMPREC is considered;  

 𝛼 = 0 represents the scenario that only WMPREM is considered;  

 𝛼 = 0.5  represents the scenario that both WMPREC and WMPREM are 

considered.  

 

In this example, the network, as shown in Figure 3.3, is adopted. The “real” relative 

errors of mean and covariance of OD demands are used to compare the estimated mean 

and covariance of OD demands with the assumed “true” OD demands. The “real” 

relative errors of mean and covariance OD demand are calculated by Eqs. (3.13) and 

(3.24), respectively, with the assumption that the “true” mean and covariance OD 

demands are known (Zhou and List, 2010). 

 

As shown in Table 3.5 – Table 3.7, links traversed by OD pairs with larger covariance 

values should be covered by traffic sensors if WMPREC is considered in the objective 

function. For instance, as depicted in Table 3.4, the covariance between OD 2 (C – F) 

and OD 4 (B – C) is the greatest. If WMPREC is considered in the objective function, 

more traffic sensors should be located on the set of links {6,1,5,13}. It could be seen 

from Table 3.5 – Table 3.7 that when the number of traffic sensors is 7, one link (link 

13) in the set {6,1,5,13} is covered by a traffic sensor if only WMPREM is considered 

(𝛼 = 0); three links (link 1, 5, and 13) in this set are covered by traffic sensors if both 
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WMPREM and WMPREC are considered (𝛼 = 0.5 ); and four links in this set are 

covered by traffic sensors if only WMPREC is considered (𝛼 = 1) respectively.  

 

In addition, if only WMPREM is considered (𝛼 = 0 ), WMPRE is 1.71 when the 

number of traffic sensors is 8. However, if estimation accuracy of both mean and 

covariance are considered, to achieve comparable estimation accuracy of WMPRE 

(1.79), only 7 traffic sensors are needed on the network. Furthermore, even only 5 

traffic sensors are needed when 𝛼 = 1. Therefore, it concludes that the number of 

traffic sensors required can be reduced when the estimation accuracy of covariance is 

considered in the objective function, given that the change in overall estimation 

accuracy is marginal. 

 

As shown in Table 3.7, when there are 7 traffic sensors, the “real” relative error of 

covariance of OD demands (0.07) is the least when 𝛼 = 1, as compared to that (e.g., 

0.39 and 0.21) using other weighting parameters. Hence, the estimation error of the 

covariance of OD demands can be reduced when WMPREC is adopted. In other words, 

WMPREC could be more applicable to the situation that both the mean and covariance 

of OD demands are needed to be estimated. 

 

Table 3.5 Results of the optimal traffic sensor location scheme selected in accordance 

to WMPREM (𝛼 = 0) 

Number 

of traffic 

sensors 

WMPRE 

“Real” relative 

error of mean 

OD demands 

“Real” relative 

error of 

covariance of 

OD demands 

The optimal traffic sensor 

location scheme selected by 

WMPREM 

5 3.84 0.31 0.55 3,10,13,15,16 

7 2.59 0.27 0.39 3,4,7,10,13,14,16 

8 1.71 0.20 0.31 1,4,7,10,12,13,14,15 

11 0.17 0.11 0.19 2,3,4,7,8,9,10,11,12,13,15,16 
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Table 3.6 Results of the optimal traffic sensor location scheme selected in accordance 

to WMPRE (𝛼 = 0.5) 

Number 

of traffic 

sensors 

WMPRE 

“Real” relative 

error of mean 

OD demands 

“Real” relative 

error of 

covariance of 

OD demands 

The optimal traffic sensor 

location scheme selected 

by WMPRE 

5 2.99 0.35 0.29 3,5,10,15,16 

7 1.79 0.31 0.21 1,2,4,5,7,13,16 

8 1.36 0.24 0.17 1,3,6,9,11,12,13,14 

11 0.15 0.12 0.09 1,2,3,4,5,7,9,11,12,13,15 

 

Table 3.7 Results of the optimal traffic sensor location scheme selected in accordance 

to WMPREC (𝛼 = 1) 

Number 

of traffic 

sensors 

WMPRE 

“Real” relative 

error of mean 

OD demands 

“Real” relative 

error of 

covariance of 

OD demands 

The optimal traffic sensor 

location scheme selected by 

WMPREC 

5 1.78 0.40 0.11 3,5,10,15,16 

7 0.84 0.39 0.07 1,5,6,9,12,13,14 

8 0.77 0.25 0.06 2,5,6,9,11,13,14,16 

11 0.05 0.15 0.02 1,5,6,9,10,11,12,13,14,15,16 

3.6.1.2 Effects of the number and location of traffic sensors on estimation 

reliability 

In this subsection, the weighted-sum approach is used to obtain a unique solution and 

to investigate the effects of the number and location of traffic sensors on estimation 

reliability. For this sensitivity test, the value of the weighting parameter 𝛼 is set to be 

0.5. 𝛼 = 0.5  implies that in optimizing the traffic sensor locations, the estimation 

reliability of the mean and covariance OD demands have equal importance.  

 

As shown in Figure 3.4, it can be observed that when the number of traffic sensors 

increases, both the Pareto optimal solutions for WMPREM and WMPREC decrease 

because more traffic sensors deployed contribute to more information acquired. The 
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estimation accuracy for both the mean and covariance of OD demands is enhanced.  

 

It is, however, noted in Figure 3.4 that the reduction range of WMPREM is more 

remarkable than that of WMPREC when the number of traffic sensors increases. In 

other words, WMPREM is more sensitive to the number of traffic sensors deployed 

compared to WMPREC. For instance, when five traffic sensors are deployed, 

WMPREM (1.85) is almost 50% greater than WMPREC (1.16). In contrast, when the 

number of traffic sensors increases to 11, WMPREM reduces to 0.08, while WMPREC 

only reduces to 0.21. 

 

 

Figure 3.4 Effects of number of traffic sensors on WMPREM and WMPREC 

 

Figure 3.5 illustrates the ranges of WMPREM and WMPREC for different traffic 

sensor locations, stratified into groups of 500 feasible schemes in the descending order 

of WMPRE for different numbers of traffic sensors (i.e., 7, 9, and 11, respectively).  

 

As shown in Figure 3.5, the ranges of both WMPREM and WMPREC vary with both 

the number and location of traffic sensors. When the number of traffic sensors is 7, the 

values of WMPREM are, in general, much greater than that of WMPREC. In addition, 

the ranges of both WMPREM and WMPREC are large. When the number of traffic 

sensors increases, values of WMPREC and WMPREM both reduce in general. Notably, 
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the reductions of WMPREM value are more remarkable than that of WMPREC. When 

the number of traffic sensors is 11, the values of WMPREM are even less than that of 

WMPREC in general.  

 

 

Figure 3.5 Effects of location of traffic sensors on WMPREM and WMPREC 

 

In addition, the newly proposed criteria (WMPREM and WMPREC) in this chapter 

are intended to weigh the conventional criteria by considering different magnitudes of 

travel demands by OD pair during the morning peak hours. The proposed model is 

validated by comparing with the previous non-weighted method, MPREM in Yang et 

al. (1991), as well as the MPREC in this chapter.  

 

As shown in Table 3.8, when the number of traffic sensors in the Example 1 network 

is greater than or equal to 12 (number of OD pairs), the estimates of both the mean and 

covariance of OD demands can be absolutely accurate (with zero MPREM and 

MPREC). Table 3.8 also indicates that the proposed weighted maximum possible 

relative errors are much smaller than that based on the non-weighted criterion with the 

same number of traffic sensors. For instance, the relative increase for WMPREM is -

91% when the number of traffic sensors is 11; the relative increase for WMPREC is -

82% with five traffic sensors. Thus, it could conclude that considering different 
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magnitudes of travel demands by OD pair effectively reduces the estimation errors for 

both mean and covariance of OD demands, compared to the original method (MPRE). 

 

Table 3.8 Comparison between the methods with and without weight on MPREM or 

MPREC 

Number of 

traffic sensors 
MPREM WMPREM 

Relative 

increase a 
MPREC WMPREC 

Relative 

increase 

5 3.38 1.85 -45% 6.50 1.16 -82% 

7 2.68 1.28 -52% 3.44 0.66 -81% 

8 2.02 1.04 -48% 1.92 0.52 -73% 

11 0.88 0.08 -91% 0.56 0.21 -62% 

12,13,14,15,16 0 0 -- 0 0 -- 

a Relative increase = (WMPRE-MPRE)/MPRE 

3.6.1.3 Effects of traffic congestion on the proposed model 

Intuitively, when the number of private cars grows faster than road capacity, the traffic 

network is more likely to be congested. Under such circumstances, different OD 

demands are more likely to be correlated. 

 

To illustrate the importance of considering WMPREC, two scenarios: (i) uncongested 

condition (Scenario A) and (ii) congested condition (Scenario B) are set out below. 

Under uncongested conditions, the mean and covariance of OD demands are set to be 

half of that, as given in Table 3.2 and Table 3.4. In contrast, under congested conditions, 

the mean and covariance of true OD demands are doubled. The weighted-sum 

approach is adopted again in this sub-section to have a unique Pareto optimal solution 

and then to compare different results conveniently. The weighting parameter 𝛼 is set 

to be 0, which implies that only WMPREM is considered in the objective function.  

 

It is noticed from Table 3.9 that the estimation error of covariance of OD demand could 

be enormous if only the WMPREM is used to determine the traffic sensor locations 
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for both uncongested and congested conditions. For instance, under congested 

conditions, when there are five traffic sensors in the Example 1 network, the value of 

WMPREM is 2.40, and the value of WMPREC is 6.62, much larger than that of 

WMPREM. This phenomenon is also observed when seven traffic sensors are 

deployed. Hence, even though the mean OD demands could be accurately estimated, 

it is difficult to estimate the covariance of OD demands accurately when only the 

WMPREM is chosen as the criterion. Such a phenomenon is much more apparent 

under congested conditions. Table 3.9 shows that when there are only five traffic 

sensors under congested conditions, the resultant WMPREC is 15.13, which is more 

than double the result (6.62) under uncongested conditions.  

 

Table 3.9 Results of the model under different traffic conditions 

Number 

of sensors  

Uncongested condition  

(half actual OD demands) 

Congested condition 

(double actual OD demands) 

WMPRE WMPREM WMPREC WMPRE WMPREM WMPREC 

5 2.40 2.40 6.62 2.28 2.28 15.13 

7 1.67 1.67 2.52 1.62 1.62 3.18 

8 1.38 1.38 1.66 1.32 1.32 2.52 

11 0.48 0.48 0.60 0.54 0.54 0.96 

 

Intuitively, the larger the value of WMPREC implies that the covariances between OD 

flows could not be adequately captured by the resultant sensor scheme. As for the 

illustrative example given in Section 3.2, it will be difficult to assess the effects of 

carpooling, ridesharing, and other trip chaining strategies in the traffic network based 

on OD estimation from traffic sensors. Therefore, WMPREC is essential for stochastic 

OD demand estimation, particularly under congested conditions.  

 

To testify the performance of the newly proposed index, WMPREC, especially under 

the congested condition, a sensitivity test has been carried out for both WMPREM and 

WMPREC in the following subsection. In this comparison, the weighting parameter 
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𝛼  is set to be 0.5. Scenario A and B stand for the uncongested and congested 

conditions, respectively. Table 3.10 shows the resultant relative increases in 

WMPREM and WMPREC, between congested and uncongested conditions (i.e., 

Relative increase = (WMPREB – WMPREA)/ WMPREA), for different numbers of 

traffic sensors.  

 

Table 3.10 Relative increase for WMPREM and WMPREC under congested 

conditions compared to that under uncongested conditions 

Number 

of 

sensors 

WMPREM WMPREC 

Scenario A Scenario B 

Relative  

increase of 

mean 

Scenario A Scenario B 

Relative  

increase of 

covariance 

 5 3.64 4.13 13.5% 4.01 6.88  71.5% 

 7 2.56 3.26 27.4% 2.72 2.97   9.1% 

 8 2.04 2.26 11.0% 1.99 1.77 -10.9% 

11 0.95 0.97  1.9% 0.87 0.88   1.0% 

 

A negative relative increase implies that estimation under congested conditions is more 

accurate than that under uncongested conditions. It can be found from Table 3.10 that 

estimation of mean OD demand is less accurate under congested conditions (using the 

Example 1 network), as compared to that under uncongested conditions. However, it 

is possible for the estimation of covariance OD demands to be more accurate when the 

traffic network becomes congested, as implied by the negative relative increase of 

WMPREC. For example, when there are eight sensors, the accuracy of OD covariance 

estimation under congested conditions improves by 10.9%. It could be concluded that 

WMPREC should be considered, especially when the traffic network is congested. 

Under congested conditions, the observed data might provide more information about 

the covariance of OD demands as more travelers may use the carpooling and trip 

chaining strategies. Therefore, the estimation error could be minimized with the 

proposed model.  
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3.6.1.4 Sensitivity of weighting parameter 𝜶 in the weighted-sum approach 

The proportion of joint travel activities (e.g., carpooling, ridesharing, and other trip 

chaining strategies) could affect the weighting parameter 𝛼, intuitively. In addition, as 

depicted in the illustrative example in Section 3.2, the covariance between OD 

demands increased with the proportion of joint travel activities during the typical 

period (e.g., peak hour) concerned. Therefore, the weighting parameter 𝛼  can be 

estimated given the covariance. Figure 3.6 illustrates the relationship between 

covariance and optimal values of weighting parameter 𝛼  that minimizes WMPRE 

with 8 sensors using the OD pair 2 and OD pair 4 as an example (with the maximum 

covariance among all OD pairs).  

 

 

Figure 3.6 Effects of covariance between OD pair 2 and OD pair 4 

on the value of weighting parameter 𝛼 

(The red line in the graph depicts the relationship between optimal weight parameter 

𝛼 and covariance when WMPRE is minimized) 

 

Figure 3.6 reveals that when the covariance between OD pair 2 and OD pair 4 is small, 

the optimal value of weighting parameter 𝛼 is also small, and vice versa. For instance, 

when the covariance between OD pair 2 and OD pair 4 is 220, WMPRE is minimum 
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at 1.28, and the corresponding weighting parameter is 0.1. When the covariance 

between OD pair 2 and OD pair 4 is 1998, WMPRE is minimum at 0.84, and the 

corresponding weighting parameter 𝛼  is 0.9. This finding can be intuitively 

interpreted as that when covariance increases, the covariance of OD demands should 

be more important than the mean OD demands when evaluating the estimation 

accuracy, and therefore weighting parameter 𝛼  also increases. Thus, a larger 

weighting parameter 𝛼 should be chosen to improve the estimation accuracy of the 

OD covariance under this circumstance. 

 

From the perspective of formulation, the weighting parameter 𝛼 just quantifies the 

trade-offs between mean and covariance. If the road is more congested, more emphasis 

should be placed on the covariance. Therefore the weighting parameter 𝛼 should be 

larger. As depicted in subsection 3.6.1.1, different values of weighting parameter 𝛼 

reflect different levels of importance for estimating the mean and covariance of OD 

demands. For instance, 𝛼 = 1  implies that only the estimation accuracy of OD 

demand covariance is taken into consideration for optimization of the traffic sensor 

locations. The larger the value of 𝛼, the more accurate the estimated covariance of 

traffic flows, and vice versa. The choice of the value of 𝛼 depends on the degree of 

covariance between OD flows. If one focuses on estimating the covariance matrix of 

OD demands, a larger value of 𝛼 should be used and vice versa.  

 

In view of the above discussion, assessing the Pareto efficiency (Tan et al., 2014) 

becomes another exciting research question. Another method with the use of the Pareto 

front approach is also adopted to investigate further this traffic SLP with consideration 

of the effects of both the mean and covariance OD demands. The FA has also been 

improved accordingly, as shown in Section 5 of this chapter. Using the Example 1 

network, the results from the weighted-sum and the Pareto front approaches are 

compared to examine their relationship, as depicted in Figure 3.7. 
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Figure 3.7 Pareto optimal solutions obtained from the Pareto front approach  

 

In Figure 3.7, if the value of WMPREM (or WMPREC) is equal to 1, it means that the 

relative error of the mean OD demand estimation (or covariance OD demand 

estimation) is 100%. 

 

As shown in Figure 3.7, for instance, the Pareto optimal solution when the weighting 

parameter 𝛼 is set to be 0.2 falls on the Pareto Front. Another example when 𝛼 is 

set to be 0.7 could also demonstrate this finding. It concludes that the solutions 

obtained from the weighted-sum approach are the sub-set of that from the Pareto front 

approach. A unique optimal solution could be acquired from the weighted-sum 

approach, given the specified value of weighting parameter 𝛼 . However, from the 

Pareto front approach, much more than one Pareto optimal solution would be acquired. 

As such, it is more challenging to make the final decision on the sensor location 

scheme by using the Pareto front approach. Thus, given the weighting parameter, the 

weighted-sum approach is more effective for finding the optimal sensor location 

scheme in practice.  
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 A medium-size road network  

In this subsection, the well-known medium-size Sioux Falls network, as shown in 

Figure 3.8(a), is used to examine the performance of the proposed model and solution 

algorithm. This Example 2 network consists of 24 nodes, 76 links, and 30 OD pairs. 

Based on the budget constraint, the maximum number of sensors is 12. The effects of 

OD covariance on the overall estimation accuracy are shown in Table 3.11.  

 

      

(a) Origin Sioux Falls network  (b) Optimal location scheme of Sioux Falls network 

Figure 3.8 The Sioux Falls network – Example 2 network 

 

Table 3.11 Effects of OD covariance on objective function in the Sioux Falls network 

Consider OD covariance in 

the objective or not 
WMPRE 

Relative 

increase a 
WMPREM WMPREC 

No ( 0 = ) 12.32 -- 12.32 7.72 

Yes ( 0.5 = ) 8.26 -33.0% 13.01 3.51 

Yes ( 1 = ) 2.17 -82.4% 13.98 2.17 
a Relative increase=(WMPRE(𝛼=0.5 or 𝛼=1)− WMPRE(𝛼=0))/WMPRE(𝛼=0) 

 

Table 3.11 shows that WMPREC is the largest (i.e., 12.32) when the OD covariance is 

not taken into consideration (𝛼 = 0). Compared with the relative increase in error in 

this case (𝛼 = 0), when the OD covariance is taken into consideration (𝛼 = 1 and 

𝛼 = 0.5), the relative increase in error decreases to -82.4% and 33.0%, respectively. 
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This is an additional demonstration that considering covariance in the objective 

function reduces error in the estimation of covariance between OD demands. It also 

shows that this novel model is particularly effective under the following circumstances: 

(i) there are relatively few traffic sensors; (ii) the covariance between different OD 

pairs is very large; and (iii) the prior OD demand is not particularly close to the actual 

OD demand.  

 

When using a desktop computer with the system of Intel Core i7-2600 CPU, 3.40GHz, 

and 8 GB RAM, the convergence time required for solving the traffic SLP is 807 

seconds by the weighted-sum approach given that the weighting parameter 𝛼 is 0.5. 

The Pareto optimal traffic sensor location scheme is shown in Figure 3.8(b). To 

demonstrate the efficiency of the proposed improved FA, the convergence with 12 

traffic sensors is shown in Figure 3.9(a) compared to that of the classical GA as shown 

in Figure 3.9(b). Figure 3.9 depicts that even though both of these two algorithms can 

obtain the same optimal target value, it converges at the 3rd iteration by the improved 

FA, while at the 48th iteration by the GA. In addition, the convergence time of the 

improved FA (807s) is much less than that of the conventional GA (18193s). The above 

descriptions have demonstrated the efficiency of the improved FA.  

 

 
a. Firefly algorithm 
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b. Genetic algorithm 

Figure 3.9 Convergence of the solution algorithm 

 Summary 

The covariance effects are increasingly crucial as vehicular traffic flows between 

different OD pairs in a typical period (such as morning peak hour) from day to day 

could be statistically correlated with each other in reality. The covariance is mainly 

generated from the daily variation of travel patterns, network topology, and trip 

chaining activities of household members. The trip chaining activities are evidenced 

by the vehicle occupancy of a private car that is larger than one (e.g., 1.4 

persons/vehicle on average reported by ATC 2020).  

 

As the covariance between different traffic demands by OD pairs is not considered in 

the conventional approach, the bias of OD demand estimation from traffic sensors will 

increase. When traffic sensor locations are determined without considering the 

covariance effect, the OD demand estimation accuracy will be reduced dramatically, 

and hence the traffic sensors may be located inefficiently.  
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In this chapter, the traffic SLP has been investigated for OD demand estimation by 

explicitly considering the covariance of traffic demand between different OD pairs 

during the morning peak hour period. A new criterion, WMPREC, is proposed and can 

measure the estimation accuracy of OD demand covariance without the need for its 

ground truth. Similarly, a WMPREM is used to qualify the mean OD demand estimates.  

 

Based on the proposed criteria measuring the quality of mean and covariance of OD 

demand estimates, a novel traffic sensor location model has been developed in this 

chapter. The peak-hour OD demands, including both mean and covariance between 

different OD pairs, can be estimated more accurately with the optimum traffic sensor 

locations. Two numerical examples have been conducted to demonstrate the efficiency 

of the proposed model by comparison with previous models. Numerical results in 

Section 3.6 indicate that the proposed traffic sensor location model outperforms the 

traditional models, especially on the estimation accuracy of OD demand covariance.  

 

 

Figure 3.10 Traffic flow variation by time of day and day of the year 

 

It should be noted that the covariance effects of OD demand modeled in this chapter 

indeed refer to the spatial covariance of traffic demand between different OD pairs 

during the same time period. However, due to the variation of travel patterns by time 

of day and day of the year, as depicted in Figure 3.10, the vehicular traffic demands 
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could correlate with one another during different time periods. In other words, the 

temporal covariance of OD demand between different time periods can also affect the 

OD demand estimation and traffic sensor locations. In the following Chapter 4, the 

traffic sensor (i.e., traffic count) location model will be extended to the allocation of 

multi-type traffic sensors with considering spatial and temporal covariance of 

vehicular traffic demands between different OD pairs during different hourly periods 

of the day.  

  



69 

4. Optimization of multi-type traffic sensor locations for 

estimation of multi-period origin-destination demands 

with covariance effects 

In Chapter 3, traffic sensor (i.e., traffic count) locations are optimized for estimation 

of stochastic OD demands with taking into account the spatial covariance of vehicular 

traffic demand between different OD pairs within the morning peak hour period on a 

daily scale. However, the travel patterns of OD demand could vary significantly during 

different hourly periods of the day. For instance, in the morning peak hour, travelers 

use their cars to commute from residential areas to city centers for work. These 

commuters would travel back home by car from their workplaces in the evening peak 

hour. As such, the vehicular traffic demands by OD pairs are indeed correlated in 

morning and afternoon peak hours.   

 

In this Chapter 4, the traffic sensor location model proposed in Chapter 3 is extended 

to the allocation of multi-type traffic sensors for multi-period OD demand estimation. 

The extended model considers the spatial and temporal covariances of OD demand for 

different OD pairs during different hourly periods of the day.    

 

This chapter is organized as below. A brief introduction, motivation, and contributions 

are given in Section 4.1. In Section 4.2, the model assumptions and problem statement 

are clarified. In Section 4.3, the relationship between observations and multi-period 

OD demand estimates is presented to give the basis of the proposed models in the 

following sections. The multi-period OD demand estimation model and multi-type 

sensor locations models are developed in Sections 4.4 and 4.5, respectively. In addition, 

numerical examples are conducted in Section 4.6 to demonstrate the merits of 

considering the multi-period covariance of OD demand on SLPs. The summary of this 



70 

chapter is given in Section 4.7.  

 Background 

 Motivating example  

As mentioned above, covariance effects of hourly OD demand in multiple periods can 

result from factors such as the hourly and daily variation of travel patterns, network 

topology, and joint travel behavior. For an intuitive explanation, the illustrative 

example related to joint travel behavior is presented to demonstrate the existence of 

OD demand covariance in multiple periods. 

 

Joint travel behavior refers to how people consider other household memb’rs' travel 

behaviors/choices or persons in their social networks when making their own travel 

choices (Bhat et al., 2013). Household members often need to decide how to share the 

jointly owned vehicle(s) to conduct their daily activities. In this chapter, joint travel 

behaviors include more than one trip with at least two household members (Cascetta, 

2009). In other words, if a joint travel behavior is conducted, there should be at least 

two different OD pairs. 

 

An example is presented in this subsection to intuitively illustrate the relationship 

between joint travel behavior and OD demand, and to manifest the significance of 

spatial, temporal, and multi-period covariance. As shown in Figure 4.1, the example 

network consists of six OD pairs {(B,C), (C,F), (B,F), (C,B), (F,C), (F,B)} with Node 

C, Node B, and Node F respectively representing the school, home, and office. The 

weekday morning peak hour and evening peak hour are represented by ℎ1 and ℎ2, 

respectively. For convenience, six OD pairs in the illustrative network are numbered 

from 1 to 6 with OD(1) = (B,C), OD(2) = (C,F), OD(3) = (B,F), OD(4) = (C,B), OD(5) 

= (F,C) and OD(6) = (F,B). 𝑞𝑤(ℎ𝑥)  (𝑤 = 1, … ,6 and 𝑥 = 1,2)  represents traffic 
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demand of OD pair w in time period ℎ𝑥 . 𝜎1(ℎ1),2(ℎ1)  stands for the OD demand 

covariance between OD pairs 1 and 2 in time period ℎ1. Similarly, 𝜎2(ℎ1),6(ℎ2) stands 

for the OD demand covariance between OD pair 2 in time period ℎ1 and OD pair 6 

in time period ℎ2.  

 

Consider a joint travel behavior conducted by a spouse and a child as an example. 

Specifically, in the weekday morning peak hour (ℎ1), a spouse will drive the child to 

school first (i.e., OD pair (B, C)) and then drive to the office alone to work (i.e., OD 

pair (C, F)). As such, two OD demands (i.e., one is from Node B to Node C, and 

another is from Node C to Node F) will be generated by such joint travel behavior in 

the weekday morning peak hour (ℎ1). In the weekday evening peak hour (ℎ2), the 

spouse has two options: (i) going back home directly (i.e., OD pair (F, B)) while his/her 

child could take public transit or school bus to go back home, or (ii) going to school to 

pick up his/her child (i.e., OD pair (F, C)), then back home together (i.e., OD pair (C, 

B)). Option (i) generates only one OD demand traveling from Node F to Node B 

directly, while option (ii), a joint travel behavior, splits the original demand into two 

OD demands (i.e., one is from Node F to Node C, and another is from Node C to Node 

B) and is similar to that in the morning peak hour.  

 

Under such circumstances, there exists a spatial covariance relationship between OD 

pairs (B,C) and (C,F) in the morning peak hour (i.e., 𝜎1(ℎ1),2(ℎ1)) due to the joint travel 

behavior by the spouse and the child. On the one hand, in the evening peak hour, if the 

spouse chooses option (i), the covariance relationship between OD pair (C,F) in the 

morning peak hour and OD pair (F,B) in the evening peak hour denoted as 𝜎2(ℎ1),6(ℎ2) 

will be outstanding. On the other hand, if the spouse chooses option (ii), the 

covariances among OD pair (C,F) in the morning peak hour, OD pair (F,C), and OD 

pair (C,B) in the evening peak hour will be significant.  
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Note that the joint travel behavior can be reflected by the vehicle occupancy data 

reported from ‘‘The Annual Traffic Census 2017’’ of Hong Kong (Transport 

Department, 2018). Vehicle occupancy is the number of persons in a vehicle, including 

both driver and passengers. It has been pointed out in the literature that joint travel 

behaviors (including both carpooling and ridesharing for travel with or without the 

same OD pair) would lead to a larger vehicle occupancy (Giuliano et al., 1990; Goel 

et al., 2016; Yin et al., 2017). For instance, Goel et al. (2016) mentioned that the vehicle 

occupancy could be approximately calculated by (1 + number of passengers / number 

of drivers). In other words, without joint travel behaviors, the vehicle occupancy for 

the private car is 1. However, with joint travel behaviors, the vehicle occupancy should 

be larger than 1. Under the assumption that a joint travel behavior only includes two 

persons, when the vehicle occupancy is 1.3 person/vehicle, the proportion of joint 

travel behavior of total demand should then be about 30%.  

 

Figure 4.1 Different activities and travel patterns in different periods 

 

In this chapter, the research models the effects of multi-period OD demand covariance 

on the installation of multi-type sensors, including both point and AVI sensors. Point 

sensors are assumed to be able to count the number of vehicles passing through the 

link. AVI sensors can only identify the tagged vehicles and match them with the 

records from other locations. The similarity between point and AVI sensors is that both 

types of sensors can count vehicles at a certain point installed with a sensor. However, 

they differ in that point sensors can count all the vehicles, while AVI sensors can detect 
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(or count) only the portion of vehicles equipped with AVI tags. Another difference is 

that AVI sensors are also able to cover a spatial area, namely count partial path flows 

by matching the tagged vehicles at different locations. 

 

In summary, AVI and point sensors provide complementary information. While the 

point sensors can detect complete link flow observation for all vehicles at the installed 

locations (i.e., point coverage), AVI sensors can detect (i) partial link flow (i.e., point 

coverage) and (ii) partial path flow for the tagged vehicles (i.e., spatial coverage). 

 Contributions 

With explicit consideration of covariance relationships of various traffic sensor data in 

multiple periods, this chapter proposes a novel model to locate multi-type traffic 

sensors (point sensors and AVI sensors) for estimation of multi-period OD demands. 

Generally, the major contributions of this chapter can be summarized as follows.  

 

(C1) The covariances of multi-period OD flows are explicitly incorporated into the 

SLP in response to the effects of joint travel behaviors, inter-relationships of the travel 

patterns in different periods, and significant changes in the network topology or land 

use. For example, as displayed in Figure 4.1, the covariance between OD demands 

during different time periods exists due to the joint travel behavior by the spouse and 

the child. This joint travel behavior can be evidenced by the average vehicle occupancy 

larger than 1.4 persons per private car from 7:00 am to 11:00 pm (Transport 

Department, 2018).  

 

(C2) Multi-period OD demands, particularly under congested conditions, should be 

estimated based on various but co-related traffic sensor data over time because of the 

time-to-time variation of hourly OD demands. Furthermore, the consequence of traffic 

congestions for hourly OD demand may carry over into the next hourly period. With 
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taking into account the spatial-temporal covariance of OD demands in multiple time 

periods, the research in this chapter proposes a new model to optimize the multi-type 

traffic sensor locations for multi-period OD demand estimation. 

 

(C3) In this chapter, both the number and locations of multi-type traffic sensors, 

including point sensors and AVI sensors, can be optimized simultaneously. The 

coordination of different traffic data provided by various sensor types can help to 

elucidate the inter-relationship of travel patterns over time. The trade-off between these 

two different sensor types is analyzed to provide more insights into the determination 

of sensor type priority as analytically demonstrated in Proposition 4.2 in the model 

formulation section.  

 

(C4) A more generalized criterion to allocate multi-type traffic sensors for OD demand 

estimation in multiple periods has been proposed in this chapter. By using the proposed 

model, as proved in Proposition 4.1, fewer sensors will be needed to achieve a similar 

quality of OD demand estimates for different time periods, as compared to the results 

of the previous models.  

 Model assumptions and problem statement 

To focus on the main ideas of this chapter, the following assumptions are adopted:  

(A1) The partial information of prior OD demands and their covariances by hourly 

period can be obtained and regarded as historical data (Parry and Hazelton, 2012).  

 

(A2) Point sensors and AVI sensors are installed on the selected links in a road network.  

 

(A3) The vehicles equipped with AVI tags are a representative subset of the total 

vehicles traveling in the road network (Zhou and List, 2010).  

Basically, it is assumed that the linear function of observed traffic flow of tagged 
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vehicles is unbiased and can be used to estimate total vehicular flow on this particular 

link. Two underlying assumptions are included: (i) the AVI sensors can correctly 

identify each tagged vehicle without matching errors. (ii) the average penetration rate 

of tagged vehicles over the road network is considered. Note that the penetration rate 

can vary by location of AVI sensors due to the uncertainties in travel behaviors and 

traffic demand. However, it is difficult to get the penetration rate for each location of 

AVI sensors. To clearly demonstrate the key contributions of this chapter, an average 

penetration rate is adopted for the entire network. 

 

For instance, in Hong Kong, there were approximately 785,000 registered vehicles, 

including 167,300 commercial vehicles, at the end of 2018. Approximately 350,000 

vehicles had been installed with Autotoll tags to enable automatic toll charge payments. 

Therefore, the overall penetration rate of all tagged vehicles is approximately 45% in 

Hong Kong.  

 

(A4) The amount of traffic in operation during the studied period is of interest. This 

means it is possible that OD demands starting before and/or ending after the studied 

period are taken into account.  

 

The traffic SLP for OD demand estimation contains two main inter-related stages as 

presented in Figure 4.2: (i) multi-type traffic sensor location generation and (ii) multi-

period OD demand estimation (Mirchandani et al., 2009; Fei et al., 2013; Hu et al., 

2015).  

 

Given the prior OD demand information for a network (represented by nodes, links, 

and paths), PCA is adopted in this chapter to extract the principal OD demand 

components from the prior OD demand. More specifically, these principal OD demand 

components can be pre-determined before starting the two-stage model. After 
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performing the PCA, the prior OD demand matrix is divided into principal OD demand 

components and a matrix of eigenvectors. The former represents the essential features 

in the original OD demand matrix. The latter stands for a transformation direction 

between the original OD demand matrix and the principal OD demand component.  

 

At the first stage, the inputs are the network topology and the prior principal OD 

demand components. Given the total budget, the focus of the first stage is to generate 

candidate point sensor and AVI sensor locations in the road network. Point sensors can 

provide counts of all vehicles passing the locations (or roads) installed with this type 

of sensor. AVI sensors, in addition to the partial link flow data of tagged vehicles, can 

provide partial path flows by matching records of identified vehicles at different 

locations. 

 

At the second stage, based on the observations from the traffic sensors planned by the 

first-stage model, multi-period stochastic OD demands can be estimated. On the basis 

of these estimates, the uncertainties of the estimations calculated from the total trace 

of the OD demand matrix and weighted by their covariance values can be evaluated. 

The calculated uncertainties of OD demand estimates serve as a feedback mechanism 

so that the candidate sensor location scheme will then be adjusted accordingly. By 

comparing the uncertainties of OD demand estimates among all of the candidate traffic 

sensor location schemes using the FA (Fu et al., 2019), the optimal scheme contributing 

to the minimum uncertainty of multi-period OD demand estimates can be selected.  

 

The problem studied at the second stage is to estimate the multi-period OD flows from 

measured link/path flows by using network and path choice models. Specifically, the 

second-stage problem for OD demand estimation is indeed a bi-level problem, as 

shown in Figure 4.2 (Bierlaire, 2002; Cascetta, 2009; Jones et al., 2018). The upper 

level, given that the link/path choice proportion matric is known, estimates OD 
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demand with observed link flows obtained from point sensors and partial path flows 

obtained from the AVI sensors. The lower level updates the link/path choice 

proportions by assigning the OD demand estimated in the upper level by using an 

adapted traffic flow simulator (which is developed based on SUE) (Lam and Xu, 1999). 

The link and path flow obtained from the adapted traffic flow simulator at the second 

Stage should be consistent with the observed ones from traffic sensors. Thus, the bi-

level OD estimation model iterates until the difference between the estimated link/path 

flow from the adapted traffic flow simulator and observed link/path flows from traffic 

sensors is less than the predetermined tolerance.  

 

 

Figure 4.2 The flowchart of the traffic sensor location model 

 

During iterations of the two-stage model, the proposed multi-period OD demand 
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estimation model at the second stage updates the values of principal OD demand 

components. Taken directly from these principal OD demand components, the OD 

demand matrix can then be inferred based on the eigenvectors extracted by the PCA 

procedure. Note that these eigenvectors do not change during the iterative process, and 

the PCA only needs to perform once. 

 Relationship between observations and multi-period OD demand 

estimation 

In this chapter, some typical hourly periods have been chosen to reflect the variation 

of travel patterns during multiple periods over the year. Consider a road network with 

a set of links 𝐀 , set of OD pairs 𝐖 , and set of paths or path segments 𝐑 . The 

determinant function |∙|  of the set represents the number of the corresponding 

network features. For instance, |𝐀| means the number of links in the road network. 

The typical periods denoted as a set 𝐇 in this chapter include the morning peak hour 

(i.e., 8:00–9:00) and the evening peak hour (i.e., 17:00–18:00) on weekdays together 

with a typical peak hour (i.e., 12:00–13:00) on weekends.  

 

The observations include those from both point and AVI sensors. Specifically, for 

point sensor observations, 𝑣𝑎(ℎ) represents the mean of observed hourly traffic flow 

on link a from point sensors in period h. 𝜎𝑣𝑎(ℎ),𝑣𝑎′(ℎ′)
 represents the covariance of 

observed hourly traffic flow between link flows 𝑣𝑎 during period ℎ and 𝑣𝑎′ during 

period ℎ′ by point sensors. For AVI sensor observations, 𝑣𝑎(ℎ)
,

 stands for the mean 

of observed partial hourly traffic flow on link a by an individual AVI sensor in period 

h. 𝑣𝑟(ℎ)
,

 stands for the mean of observed partial traffic flow on path or path segment 

r by a pair of AVI sensors in period h. 𝜎𝑣′𝑎(ℎ),𝑣′𝑎′(ℎ′)
  and 𝜎𝑣′𝑟(ℎ),𝑣′𝑟′(ℎ′)

  are the 



79 

covariance of observations corresponding to the partial link flows 𝑣𝑎(ℎ)
,

 and partial 

path flows 𝑣𝑟(ℎ)
,

, respectively. The corresponding vector or matrix of the observations 

(e.g., 𝐯𝑎(ℎ), 𝐯′𝑎(ℎ), 𝚺𝒗𝑎
, 𝚺𝐯′𝑎

) are boldfaced.  

 

The unknown variables needed to be estimated are the mean and covariance of OD 

demands. 𝑞𝑤(ℎ)  is denoted as the traffic demand of OD pair w during period h. 

𝜎𝑤(ℎ),𝑤′(ℎ′) is denoted as the covariance estimate of traffic demands between OD pairs 

w in period ℎ and OD pair 𝑤′ in period ℎ′. In addition, the decision variables also 

include the point and AVI sensor location indexes represented by 𝑧  and 𝑧′ , 

respectively. Both 𝑧 and 𝑧′ are binary variables. The boldface of these observations 

(e.g., 𝐪(ℎ), 𝚺𝑞) represents the corresponding vector or matrix.  

 

The sample mean of observed vehicular flow during the period h (ℎ ∈ 𝐇) within a 

studied year is calculated as  

 ( ) ( , )

1
h h d

d

= 
D

v v
D

,   (4.1) 

where 𝐯(ℎ) = [𝑣1(ℎ), 𝑣2(ℎ), . . . , 𝑣|𝐀|(ℎ)]
𝑇
  is the column vector of sample mean link 

flows on all links during time period h, in which 𝑣𝑎(ℎ) is the sample mean link flow 

on link a during time period h. 𝐯(ℎ,𝑑) = [𝑣1(ℎ,𝑑), 𝑣2(ℎ,𝑑), . . . , 𝑣|𝐀|(ℎ,𝑑)]
𝑇
 is a column 

vector of traffic flows on all links in period h on day d (𝑑 ∈ 𝐃) over the days of interest. 

𝐃 is the set of days considered, and |𝐃| is the number of days.  

 

The sample covariance of observed flows among different links during multiple 

periods within the year is calculated as  

 
'( ), ( ') ( ) ( )

1
( ) {( )( ) }
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T

v v h v h mr mr d d

d

 



 = = − −
−


D

v v v v
D

,   (4.2) 
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where 𝜎𝑣𝑎(ℎ),𝑣𝑎′(ℎ′) represents the sample covariance between vehicular flows on the 

links a in period h and 𝑎′ in period ℎ′, respectively. 𝐯 is a vector of mean hourly 

traffic flow during all periods obtained by vertically concatenating 𝐯(ℎ) , 𝐯 =

(. . . (𝐯(ℎ))
𝑇

. . . )𝑇. 𝐯(𝑑) is a vector of traffic flows on all links during all periods of 

interest on day d ( 𝑑 ∈ 𝐃 ) obtained by vertically concatenating 𝐯(ℎ,𝑑) , 𝐯(𝑑) =

(. . . (𝐯(ℎ,𝑑))
𝑇

. . . )𝑇.  

 Observation from point sensors  

As described in Section 2.3, point sensors supply entire traffic flows on selected links 

in a road network, including their mean and covariance. The observed traffic flows on 

link a during period h can be expressed by the OD demands and link choice proportions.  

 ( ) ( ) ( ) ,a h aw h w h

w

v p q a h


=   
W

A H ,   (4.3) 

where 𝑝𝑎𝑤(ℎ) is the link choice proportion of OD pair w passing through link a in 

period h. 𝑞𝑤(ℎ) is traffic demand in OD pair w during period h. For any link installed 

with a point sensor in any time period, the Eq. (4.3) means that the observed link flow 

by a point sensor (𝑣𝑎(ℎ)) equals the summation of OD demand passing through this 

link (∑ 𝑝𝑎𝑤(ℎ)𝑞𝑤(ℎ)𝑤∈𝐖
).  

 

The covariance between the observed link flows 𝑣𝑎 during period ℎ and 𝑣𝑎′ during 

period ℎ′ can be obtained as follows:   

 '( ), ( ') ( ) ' '( ') ( ), '( ')

'

, ' , , '
a av h v h aw h a w h w h w h

w w

p p a a h h 
 

=    
W W

A H ,  (4.4) 

where 𝜎𝑤(ℎ),𝑤′(ℎ′) is the covariance estimate of traffic demands between OD pairs w 

in period ℎ and 𝑤′ in period ℎ′. 

For simplicity, Eqs. (4.3) and (4.4) are expressed in the matrix form:  

 ( ) ( ) ( )h h h=v P q , and  (4.5) 
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 ( )T

v q = P P .   (4.6) 

 Observation from AVI sensors  

From the assumption (A3), the penetration rate of tagged vehicles can serve as a 

representative index of all vehicles, allowing one to estimate path flow and OD 

demand even though only those tagged vehicles can be matched by AVI sensors.  

 

To estimate the OD demands using observations from AVI sensors, two different cases 

can be summarized as follows, based on the information observed by (I) only one AVI 

sensor and (II) more than one AVI sensor.  

(I) Similar to point sensors, the information obtained from an individual AVI sensor in 

period ℎ can be used for OD estimation as follows:  

 ( ) ( ) ( )' ,a h aw h w h

w

v p q a h


=    
W

A H .  (4.7) 

𝑣𝑎(ℎ)
,

  is the observation from an individual AVI sensor on link a. 𝑞𝑤(ℎ)  is the 

unknown OD demand of OD pair w in time period h needed to Be estimated. 𝑝𝑎𝑤(ℎ) 

is the link choice proportion that represents the proportion of OD demand of OD pair 

w in time period h going through link a. The link choice proportion is assumed to be 

known in the upper level of the OD demand estimation problem, while this proportion 

will be updated by a traffic flow simulator (which is developed based on SUE) at the 

lower level with a given OD demand. 𝜋  is the average penetration rate of tagged 

vehicles. Specifically, for link a equipped with a point sensor and an AVI sensor, partial 

link flows passing through (𝑣𝑎) together with the number of tagged vehicles (𝑣′𝑎) 

can both be observed. The penetration rate for tagged vehicles on link a can then be 

estimated from 𝜋𝑎 = 𝑣′𝑎/𝑣𝑎 . Therefore, the average penetration rate for tagged 

vehicles for all links equipped with AVI sensors 𝜋 can be calculated.   

 

For any link installed with an AVI sensor in any time period, the Eq. (4.7) holds and is 
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used to describe the linear relationship between the observation from the individual 

AVI sensor (𝑣𝑎(ℎ)
,

) and estimated OD demand (𝑞𝑤(ℎ)). An intuitive explanation of Eq. 

(4.7) is that the observed partial link flow by an individual AVI sensor (𝑣𝑎(ℎ)
,

) equals 

the summation of OD demand passing through this link ( ∑ 𝑝𝑎𝑤(ℎ)𝑞𝑤(ℎ)𝑤∈𝐖
 ) 

multiplied by the penetration rate (𝜋) of tagged vehicles.  

 

(II) The tagged vehicles observed by more than one AVI sensor sequentially can also 

be used for OD demand estimation considering the penetration rate of tagged vehicles. 

To incorporate the information obtained from paired AVI sensors, i.e., AVI sensors that 

identify the same tagged vehicle on different links, the relationship between the 

observations from paired AVI sensors and OD demand in period ℎ can be described 

as follows:  

 ( ) ( ) ( )' ' ,r h rw h w h

w

v p q r h


=    
W

R H ,  (4.8) 

where 𝑝𝑟𝑤(ℎ)
,

  denotes the proportion of traffic demand in OD pair 𝑤  passing 

through path or path segment 𝑟 in period ℎ. The path or path segment 𝑟 is defined 

by the sequence of traversed AVI sensors. Eq. (4.8) means that for any path that can be 

observed by matching AVI sensors at different locations in any time period, the 

observed partial path flow (𝑣𝑟(ℎ)
,

 ) equals the summation of OD demand passing 

through this specific path (∑ 𝑝′𝑟𝑤(ℎ)𝑞𝑤(ℎ)𝑤∈𝐖
) multiplied by the penetration rate (𝜋) 

of tagged vehicles. Note that AVI sensors can also be installed at the entry and exit 

links before the origin and destination nodes, in which case the relationship between 

AVI observations and OD demand in period ℎ can be represented as following Eq. 

(4.9): 

 ( ) ( )' ,r h w hv q r h=    R H .  (4.9) 
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Furthermore, information including flow and travel time detected by AVI sensors can 

further improve the estimation of link or path segment choice proportions. Interested 

readers can refer to Zhou and List (2010) for the update of link choice proportion from 

observed flow information and Zhu et al. (2019) for the update of path choice 

proportion from observed travel time information.  

 Multi-period OD demand estimation  

 Principal component analysis for OD demand estimation  

The OD demands generated in multiple periods present significant variability in both 

spatial and temporal manners. For instance, at the morning peak hour on weekdays, 

most traffic demand is directed from residences to places of work, while the direction 

of demand is reversed during the evening peak hour. In contrast, on weekends and 

public holidays, people seldom travel to places of work. When considering multiple 

periods, the number of OD demand variables needed to be estimated increases 

dramatically. However, because only a subset of OD pairs is dominant in any specific 

period, these OD pairs of particular importance can be taken to represent the overall 

characteristics of all OD pairs.  

 

Using PCA, the dominant OD demands, i.e., those which exhibit the greatest dynamics 

can be extracted from the covariance of OD demand in multiple periods (Djukic et al., 

2012; Krishnakumari et al., 2020). Mathematically, assuming that there are 𝑛  OD 

pairs in a road network and 𝑘 periods of interest, the traffic demand of OD pair 𝑤 

during period ℎ  is denoted as 𝑞𝑤(ℎ) . A column vector is denoted as 𝐪𝐰 =

[𝑞𝑤(ℎ1), 𝑞𝑤(ℎ2), . . . , 𝑞𝑤(ℎ𝑘)]
𝑻
  representing the traffic demands in OD pair 𝑤  during 

the observation periods from ℎ1 to ℎ𝑘.  
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As proposed by Djukic et al. (2012), one can extract the essential features of the multi-

period OD demand matrix to improve the effectiveness of the method for OD demand 

estimation and sensor location optimization. The PCA method has been used in this 

chapter to extract the principal OD demand components in multiple periods.  

 

The multi-period OD demand matrix can be written as the following matrix 

considering the spatial and temporal information of OD demands.  

  

1 1 1

2 2 2

1( ) 2( ) ( )

1( ) 2( ) ( )
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, , ,

k k k

h h n h

h h n h
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=  =  
 
  

1 2 nq q q q .  (4.10) 

By reformulating the multi-period OD demand matrix to a column vector 

[𝐪𝟏
𝑇 , 𝐪𝟐

𝑇 , . . . , 𝐪𝐧
𝑇]𝑇, the covariance matrix of the multi-period OD demand with the 

size of (𝑛 × 𝑘) × (𝑛 × 𝑘), which is real and symmetric, can then be calculated and 

expressed as follows:  
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where 𝚺𝑞(ℎ1) and 𝚺𝑞(ℎ𝑘) are the 𝑛 × 𝑛 covariance matrices of OD demand within 

the period ℎ1 and ℎ𝑘, respectively, and 𝚺𝑞(ℎ1,ℎ𝑘) is the 𝑛 × 𝑛 covariance matrix of 

OD demand between periods ℎ1 and ℎ𝑘. The entry 𝜎𝑤(ℎ),𝑤′(ℎ′) represents the multi-

period covariance of traffic demand between OD pair 𝑤 in period ℎ and OD pair 

𝑤′ in period ℎ′. 𝜎𝑤(ℎ),𝑤′(ℎ) represents the spatial covariance between OD pairs 𝑤 

and 𝑤′ in the same period ℎ. 𝜎𝑤(ℎ),𝑤(ℎ′) represents the temporal covariance for the 

same OD pair 𝑤 between time periods ℎ and ℎ′.  
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Remark 1  

When different OD pairs are assumed to be independent at all times, the covariance 

matrix of OD demands in Eq. (4.11) can be simplified as a diagonal matrix, in which 

diagonal elements are the variances while all other elements are zero: 

 𝜎𝑤(ℎ),𝑤′(ℎ′) = 0  ∀𝑤, 𝑤′ ∈ 𝑾, 𝑤 ≠ 𝑤′, 𝑎𝑛𝑑 ∀ℎ, ℎ′ ∈ 𝑯.  (4.12) 

Alternatively, when different OD pairs are statistically correlated only within the same 

period, the covariance matrix of OD demands in Eq. (4.11) can be simplified as a block 

diagonal matrix:  

 𝜎𝑤(ℎ),𝑤′(ℎ′) = 0  ∀𝑤, 𝑤′ ∈ 𝑾,  𝑎𝑛𝑑 ∀ℎ, ℎ′ ∈ 𝑯, ℎ ≠ ℎ′.  (4.13) 

 

Remark 2 

The elements in the multi-period covariance matrix can be positive, zero, or negative. 

When the covariance is positive (i.e., 𝜎𝑤(ℎ),𝑤′(ℎ′) > 0), the traffic demand of OD pair 

w in period h has a positive relationship with that of OD pair 𝑤′ in period ℎ′, and 

vice versa.  

 

As illustrated in Figure 4.1, the statistical covariance relationship between OD pairs 

(B,C) and (C,F) at the morning peak hour is positive, whereas the covariance between 

OD pairs (F,C) and (F,B) in the evening peak hour is negative.  

 

However, the incorporation of multi-period statistical OD demands dramatically 

increases the number of OD demand variables that need to be estimated. Therefore, it 

is challenging to directly infer the mean and covariance of multi-period OD demand 

accurately with a limited number of traffic sensors. To take advantage of additional 

information provided by the spatial and temporal covariance of OD demand in multiple 

periods, PCA is adopted to extract the essential features of the multi-period OD flow 

matrix. For instance, if the covariance of traffic flows between OD pair 𝑤 in period 
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ℎ and OD pair 𝑤′ in period ℎ′ is relatively large, these two OD demands are highly 

correlated, as shown in Figure 4.3. With the negligible loss of information, a vector 𝑒𝑖, 

the eigenvector corresponding to the largest eigenvalue, can be used to represent the 

traffic demands of these two OD pairs, thereby reducing the dimensionality of the 

multi-period OD demands.  

 

 

Figure 4.3 PCA to extract the principal OD demand components 

 

The eigenvectors of the centered and scaled OD demand covariance matrix contain 

important information that can be obtained from the singular value decomposition of 

the covariance matrix. Based on linear algebra, because the (𝑛 × 𝑘) × (𝑛 × 𝑘) 

covariance matrix 𝚺𝒒 in multiple periods is real and symmetric, the matrix 𝚺𝒒 can 

be factorized as follows:  

 
1

q

−=Σ ΛYΛ  ,  (4.14) 

where 𝚲  is the square (𝑛 × 𝑘) × (𝑛 × 𝑘)  matrix whose column vector is the 

eigenvector 𝐞𝐢 of 𝚺𝒒, and Y is the diagonal matrix whose diagonal elements are the 

corresponding eigenvalues. The eigenvectors {𝐞𝟏, 𝐞𝟐, . . . , 𝐞𝐧𝐤}  of the multi-period 

OD demand matrix can be considered as an orthonormal basis because the covariance 

matrix is real and symmetric. Therefore, the centered traffic demands in any OD pair 

with column-wise zero empirical mean (𝐪𝐰(𝐡) − �̅�)  can be expressed by a linear 

combination of the set of orthonormal vectors as follows:  

 𝒒𝑤(ℎ) − �̄� = 𝒄𝟏𝒆𝟏 + 𝒄𝟐𝒆𝟐 + ⋯ 𝒄𝒌𝒏𝒆𝒌𝒏 = ∑ 𝒄𝒊𝒆𝒊
𝑘𝑛
𝑖=1  ,  (4.15) 
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where 𝑐𝑖 is the coefficient of the eigenvector representing the principal OD demand 

component in The coordinate system. �̅� is the mean OD demand for all OD pairs over 

all periods. Eq. (4.15) can be concerned as a simple rotation of the coordinate system 

from the original OD demands to a new set of coordinates represented by 𝑐𝑖  and 

eigenvectors. By sorting the corresponding eigenvalues in decreasing order, the 

original OD demand can be retained with 𝑀  (𝑀 < 𝑘𝑛)  eigenvectors with the 

maximum variance. Therefore, the information given by the OD demand can be 

maintained with the least possible information loss after dimensionality reduction by 

the PCA. A new representation of OD demand with a lower dimension can be 

expressed as follows:  

 �̃�w(h) − �̄� = 𝐜𝐢𝐄,  (4.16) 

where �̃�w(h)  is the approximate OD demand in period  ℎ  represented by 𝑀 

eigenvectors and the principal OD components {𝑐1, 𝑐2, . . . , 𝑐𝑀} . 𝐄  is the matrix 

containing all of the eigenvectors.  

 

The principal OD demand components with 𝑀 dimensions are extracted to capture 

the main contribution of the original OD demand matrix with 𝑛 × 𝑘 dimensions. The 

extraction by PCA can potentially make full use of the additional information arising 

from the consideration of multiple periods. Instead of directly estimating the original 

traffic demand in all OD pairs, the OD demand estimation problem first shifts the focus 

to estimating principal OD demand components from traffic sensors. The multi-period 

traffic SLP becomes that of locating point sensors and AVI sensors to estimate the 

principal OD demand components first, then to estimate the traffic demand in all of 

the OD pairs.  

 Multi-period OD demand estimation based on PCA  

The multi-period OD demand in a road network can be uniquely represented by the 

principal OD demand components 𝑐𝑖 in the M-dimensional space on the basis of the 
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PCA. By taking account of the measurement errors from point sensors, the relationship 

between OD demand and observed link flow from point sensors can be represented as 

follows:  

 ( ) ( ) ( ) ,a h aw h w h a

w

v p q a h


= +   
W

A H ,   (4.17) 

where 휀𝑎 denotes the measurement error of traffic flow on link 𝑎 from a point sensor.  

 

Substituting the principal OD demand components representing the approximate 

multi-period OD demands into Eq. (4.17), the following relationship can be obtained:  

 ( ) ( ) ( )

1

,
M

a h aw h i i a h i a

w i

v p c e v v a h 
 =

= + + =  + +   
W

c A H ,  (4.18) 

where Θ(ℎ) denotes the matrix of transformed link choice proportion in period ℎ, that 

is, the transformation of the original link choice proportions to the orthonormal basis 

matrix of eigenvectors 𝐄 . �̅�  is the mean link flow on all links observed by point 

sensors over all periods. 

 

Furthermore, AVI sensors represent an additional data source to provide path or path 

segment flows for multi-period OD demand estimation. Based on the principal OD 

demand components, the observations from AVI sensors in multiple periods can be 

formulated as follows:  
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W

c R H

,  (4.19) 

where Θ′(ℎ)  denotes the matrix of transformed path or path segment choice 

proportion in period ℎ, that is, the transformation of the original path or path segment 

choice proportions to the orthonormal basis matrix of eigenvectors 𝐄. 휀′𝑟 denotes the 

measurement error of traffic flow on path 𝑟  from an AVI sensor. 𝑣′̅  is the mean 

traffic flow observed by AVI sensors over all periods.  
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Given the prior information, including mean and covariance of OD demand (i.e., 𝐪0 

and 𝚺𝑞0 , respectively), the prior principal OD demand components 𝐜0  and their 

covariance matrix 𝚺𝑐0 can be estimated by PCA. Similarly, the transformed prior link 

or path choice proportions (i.e., Θ0 and Θ′0, respectively) can also be obtained. It is 

assumed that the measurement errors from point and AVI sensors belong to 

uncorrelated white noise processes. With the knowledge of the observations from point 

sensors 𝐯 and AVI sensors 𝐯′, as well as their variance and covariance matrices 𝚺𝑒 

and 𝚺′𝑒, the optimal principal OD demand component estimator can be derived using 

a Kalman filter. More comprehensive descriptions of the initial Kalman filter method 

can be found in Ashok and Ben-Akiva (1993). To combine the information observed 

from both point and AVI sensors, the following formulation of the Kalman filter is 

adopted:   

 𝐜 = 𝐜0 + 𝐊(𝐯 − Θ0𝐜0) + 𝐊′(𝐯′ − π ⋅ Θ′0𝐜0) and  (4.20a) 

 𝚺c = (𝐈 − 𝐊Θ0)(𝐈 − 𝐊′Θ′0)𝚺c0 ,  (4.20b) 

where  

 𝐊 = 𝚺c0Θ0
𝑇(Θ0𝚺c0Θ0

𝑇 + 𝚺e)−1 and  (4.20c) 

 𝐊′ = 𝚺c0Θ′0
𝑇(Θ′0𝚺c0Θ′0

𝑇 + 𝚺′e)−1.  (4.20d) 

The above equations are regarded as the update phase in a Kalman filter, where the 

observations from traffic sensors (i.e., 𝐯 and 𝐯′), regarded as measurements, are used 

to update the prior principal OD demand components and obtain their mean by Eq. 

(4.20a) and covariance by Eq. (4.20b). The terms 𝐊 and 𝐊′ are known as the optimal 

Kalman gain and yield the minimum mean square error of the estimates. 𝐯 − Θ0𝐜0 

and 𝐯′ − 𝜋Θ′0𝐜0 , called the measurement residual, are the errors of the estimate 

incorporating observed information from point and AVI sensors, respectively.  

 

To improve the efficiency of the solution algorithm, substitute Eqs. (4.20c) and (4.20d) 

into Eq. (4.20b). Recall the matrix inversion lemma: given the invertible matrices A, 



90 

D, and 𝐷 + 𝐶𝐴−1𝐵 , the following equation can be obtained: (𝐴 + 𝐵𝐷−1𝐶)−1 =

𝐴−1 − 𝐴−1𝐵(𝐷 + 𝐶𝐴−1𝐵)−1𝐶𝐴−1. A is an n-by-n, D is a k-by-k, B is an n-by-k, and 

C is a k-by-n matrix. Based on this lemma, it can be deduced as:  

 𝚺c
−1 = 𝚺c0

−1 + Θ0
𝑇𝚺e

−1Θ0 + Θ′0
𝑇𝚺′e

−1
Θ′0.  (4.21) 

 

The terms Θ0
𝑇𝚺𝑒

−1Θ0  and Θ′0
𝑇𝚺′𝑒

−1Θ′0  in Eq. (4.21) represent the value of the 

additional information from point sensors and AVI sensors, respectively. Note that the 

estimation of principal OD demand components and their covariance can be further 

used to obtain the OD demand in multiple periods by applying Eq. (4.16) (see Djukic 

et al. (2012)). Importantly, due to the variation of the multi-period OD demands at 

different iterations, the link choice proportions are also updated during the OD demand 

estimation process. This means a bilevel optimization framework is needed for multi-

period OD demand estimation, especially for congested networks (Zhou and List, 

2010). Detailed information on bilevel OD demand estimation can be found in Shao 

et al. (2014). An adapted traffic flow simulator has been used in this chapter to update 

the link choice proportions in multiple periods (Lam and Xu, 1999). 

 Multi-period traffic sensor locations 

To account for the hourly and daily variation of traffic flow, traffic sensor locations 

should be adapted to different situations in various time periods, rather than for one 

single period as typically considered in the literature. In this chapter, for multi-period 

OD demand estimation, the number, type, and locations of traffic sensors can be 

optimized simultaneously while considering the budget constraint.  

 

As stated in Section 4.4, if link flows are available after the installation of traffic 

sensors, the principal OD demand components, and the multi-period OD demand, can 

be estimated using the Kalman filter. However, for the traffic SLP, it is impossible to 
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observe the link flows from traffic sensors in the planning stage before the installation 

of the sensors. To deal with this, it is noticed from Eq. (4.21) that the covariance matrix 

of the principal OD demand components can be estimated based solely on the traffic 

sensor locations and without exact observations from the sensors (Zhou and List, 2010; 

Simonelli et al., 2012). In other words, the variation of the multi-period OD demand 

estimates can be obtained before installing any sensors.  

 

In addition to the variance information, the additional information provided by the 

covariance of OD demand in multiple periods can also help to optimize the traffic 

sensor locations and estimate the multi-period stochastic OD demands. For instance, 

given two OD pairs with relatively large demand covariance in multiple periods, it can 

be statistically inferred that these two OD pairs should have a strong linear relationship 

with each other (Castillo et al., 2008b). Therefore, the OD pairs with the greatest 

demand covariance values between one another should be assigned higher importance 

for multi-period OD demand estimates. Mathematically, to incorporate both the 

variance and covariance of OD demand in multiple periods, the summation of absolute 

values of OD demand covariances between OD pair 𝑤  and other OD pairs is 

considered as the weight on OD pair 𝑤. 

 

To present the model formulation more clearly, this research first defines two mapping 

functions 𝛤(𝐴)  and 𝐷(𝐴). The function 𝛤(𝐴) obtains a new matrix whose elements 

are the absolute values of all of the elements in matrix 𝐴. The function 𝐷(𝐴) obtains 

a column vector whose elements are the same as the corresponding diagonal elements 

in matrix 𝐴 . The mathematical explanations of these functions can be found in 

Appendix B. In addition, define a 1 × 𝑀 row vector 𝐈 whose elements are all ones. 

Therefore, the multi-period traffic sensor locations can be modeled by minimizing the 

uncertainty of the resultant multi-period OD demand estimates, considering the trace 
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of the covariance matrix1 to be the estimation uncertainty, as follows:  

 𝑚𝑖𝑛
𝑧,𝑧′

∑ (∑ |𝜎𝑤(ℎ),𝑤′(ℎ′)|𝑤′∈𝑾,ℎ′∈𝑯 )𝜎𝑤(ℎ)𝑤∈𝑾,ℎ∈𝑯   

 = 𝑚𝑖𝑛
𝑧,𝑧′

 [𝑰 ⋅ 𝛤(𝜮𝑐) ⋅ 𝐷(𝜮𝑐)],    (4.22a) 

subject to a budget constraint:  

 𝛽 ∑ 𝑧𝑎𝑎∈𝑨 + 𝛽′ ∑ 𝑧′𝑎𝑎∈𝑨 ≤ 𝐵,    (4.22b) 

where 𝑧𝑎 and 𝑧′𝑎 are binary variables representing point sensor locations and AVI 

sensor locations, respectively. 𝑧𝑎 = 1 means that a point sensor is installed on link 

𝑎 , 𝑧′𝑎 = 1  if an AVI sensor is installed on link 𝑎 , and both 𝑧𝑎  and 𝑧′𝑎  are 0 

otherwise. 𝛽 and 𝛽′ represent installation and maintenance costs for a point sensor 

and an AVI sensor, respectively. 𝐵 refers to the total budget for the sensor installation. 

The multiplication 𝐈 ∙ 𝛤(Σ𝑐) is to calculate the weights of all OD pairs 𝑤.  

 

The above traffic sensor location model is used to identify the locations of point 

sensors and AVI sensors by minimizing the expected uncertainty of the multi-period 

OD demand estimation. Spatial and temporal covariance are explicitly considered 

when estimating the uncertainty of the multi-period OD demands based on the traffic 

sensor locations. The uncertainty reduction is a measurement of reduction in OD 

demand variance achieved by considering the observations from point sensors and AVI 

sensors. It should be noted that estimation uncertainty can refer to the weekly, monthly, 

and annual changes of the OD demand if the time interval is set as a week, month, and 

year.  

 

To study the traffic SLP for multi-period OD demand estimation, the following two 

important propositions are analyzed.  

 

 

 

 
1 In linear algebra, the trace of a square matrix is the sum of elements on its main diagonal.  
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Proposition 4.1: Effects of multi-period OD demand covariance on the optimum 

number of sensors 

Under congested conditions, the covariances of OD demands among different time 

periods should be non-zero, as clarified in the introduction section. By taking account 

of the covariance of OD demand in multiple periods, it can then be achieved that the 

same uncertainty reduction with fewer sensors than considering the OD demand 

covariance in one period only or neglecting the covariance completely.  

 

Mathematically, for the purpose of illustration, only one type of sensor (i.e., point 

sensors) is considered in this proposition. Denote the optimal traffic sensor locations 

by considering OD demand covariance effects in multiple periods as zmcov
∗ . Likewise, 

the corresponding locations by taking into account the covariance of OD demand in 

single period only are denoted as zbcov
∗  , and that without consideration of any 

covariance effect as znocov
∗ . Proposition 4.1 can be expressed mathematically as below:  

Given tr(Σc − Σc0), ∑ zmcov
∗ ≤ ∑ zbcov

∗ ≤ ∑ znocov
∗ .  

 

Proposition 4.2: Trade-off between AVI and point sensors 

If the value of additional information from each AVI sensor (Θ′T𝚺′e
−1
Θ′) is smaller 

than that from the equivalent number of point sensors (ΘT𝚺e
−1Θ), only point sensors 

should be chosen for the multi-period OD demand estimation. Conversely, if the value 

of additional information from each AVI sensor is larger than that from the equivalent 

number of point sensors, only AVI sensors should be chosen. Otherwise, both AVI and 

point sensors are needed.  

 

The mathematical explanation and proof of Propositions 4.1 and 4.2 can be found in 

Appendix B.  
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 Solution algorithm 

The multi-period OD demands and the spatial and temporal covariance information 

have been explicitly considered in the proposed solution algorithm to solve the multi-

type SLP in this chapter. By taking advantage of this additional valuable information, 

the sensor locations can be optimized for the estimation of more accurate multi-period 

OD demands. It should be remarked that the proposed multi-period traffic sensor 

location model in formulation (4.22a) is an integer programming model in which 

binary decision variables stand for the point and AVI sensor locations. The proposed 

SLP is NP-hard so that no optimization algorithm can guarantee a global optimum 

solution, especially for a large-scale problem. Therefore, some meta-heuristic 

algorithms, such as a variable neighborhood search algorithm, GA, or Pareto front 

approach, should be adopted to efficiently solve the proposed SLP.  

 

As demonstrated in Chapter 3.5, there are three main reasons to support the use of FA 

to solve the proposed model: (i) high efficiency to solve complex problems; (ii) low 

time complexity; (iii) includes not only a self-improving process with the current space 

but also improvement among its own space from the previous stages. In this chapter, 

the FA described in Section 3.5.2 is further adapted to deal with the proposed multi-

type SLP, which is considered as an integer programming problem.  

 

In the FA framework, the point sensor and AVI sensor location schemes can be 

conveniently represented by a firefly analogy. Specifically, 𝐳  and 𝐳′  are vectors 

whose elements are binary variables having allowable values of 1 or 0 only. The 

improved FA is to decide the values of all elements in 𝐳 and 𝐳′.  

 

The objective of the traffic sensor location model is represented by the light intensity 

of the fireflies (i.e., 𝐼𝑛(𝐳, 𝐳′) = 𝐈 ∙ 𝛤(𝚺𝑐)𝐷(𝚺𝑐) ), which is regarded as the fitness 
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function. In the improved FA, light absorption coefficients αm  and αcov 

corresponding to the estimation accuracy of the mean and covariance of multi-period 

OD demand are defined. A more accurate OD demand estimate in the previous 

iteration will lead to a larger light absorption coefficient. These light absorption 

coefficients are considered as the weights on the attractiveness of fireflies. A smaller 

light intensity indicates a larger likelihood that the represented sensor location schemes 

will be selected. The attractiveness of a firefly is proportional to its brightness, which 

is determined by the fitness function. Attractiveness and distance are determined as in 

Chapter 3.5.  

 

Algorithm steps 

Step 0 (Preprocessing) 

Map the prior multi-period OD demand by utilizing the adapted traffic flow simulator 

to obtain prior link choice proportions 𝐏0(ℎ)  and path or path segment choice 

proportions 𝐏′0(ℎ)  in all periods. Perform the PCA for the prior multi-period OD 

demands to obtain 𝐜0 and 𝚺𝑐0. Calculate the relevant Θ0 and Θ′0 as shown in Eqs. 

(4.18) and (4.19).  

Step 1 (Initialization)  

Randomly generate the initial point sensor and AVI sensor locations (𝐳𝟎  and 𝐳′𝟎 , 

respectively) on the basis of the budget constraint. The maximum generation (or 

iteration) is set to 𝛵, and the current iteration is initialized as 𝑡 = 0 (Nayeem et al., 

2014). Define the light absorption coefficients αm  and αcov  corresponding to the 

estimation accuracy of mean OD demand and multi-period covariance of OD demand, 

respectively. Define the step size parameter β. 

Step 2 (Stopping criterion)  

The algorithm will terminate and output the optimal solutions under one of the 

following conditions:  

(a) the gap of objective values between two successive iterations is not larger than the 
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predetermined threshold.  

(b) the iteration number exceeds the maximum iteration (i.e., 𝑡 > 𝛵). 

Otherwise, move on to step 3.  

Step 3 (Selection operation)  

For each firefly 𝐳(𝐭)  and 𝐳′(𝐭) , calculate the uncertainty of estimation (using 

formulation (4.20)), transform the estimation of principle OD demand components to 

multi-period OD demand by applying Eq. (4.16) and update the link choice proportions 

by the adapted traffic flow simulator, then solve the problem (4.22). On the basis of 

the calculated light intensity 𝐼𝑛(𝐳(𝐭), 𝐳′(𝐭)), the local optimum (𝐳(𝑡)
∗ ) can be determined 

by ranking the fireflies.  

Step 4 (Variation operation)  

Vary the attractiveness of fireflies 𝐳(𝐭) and 𝐳′(𝐭) on the basis of light intensity, light 

absorption coefficients, and the distance between fireflies. The attractiveness is 

directly proportional to the light absorption coefficient and light intensity, but inversely 

proportional to the distance. Update 𝐳(𝐭)  and 𝐳′(𝐭)  consisting of 𝑚  individuals 

according to their attractiveness (i.e., 𝐳(𝐭+𝟏) = 𝐳(𝐭) + e−(αm+αcov)𝐫(𝐳(𝑡)
∗ − 𝐳(𝐭)) + 𝛽𝑖). 

Update the iteration indicator 𝑡 = 𝑡 + 1, then move back to step 2.  

 Numerical examples 

In this section, three example networks are examined to demonstrate the effectiveness 

and efficiency of the proposed methodology of the SLP for multi-period OD demand 

estimation. Efficiency reflects that the optimum sensor location scheme can be 

achieved by the proposed model with the most accurate multi-period OD demand 

estimates. Effectiveness defines the ability of the proposed model for solving the SLP 

for both small and medium-size road networks. Examples 1 and 2 are to numerically 

demonstrate the contributions of this chapter, as described in section 4.1.2, while 

example 3 is to further explore the effects of joint travel behavior through empirical 
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data collected in Hong Kong. The main experiments are listed as follows: 

 

Example 1  

(1) The effects of the covariance of multi-period OD demand on the SLP.  

The covariance of OD demand, especially in multiple periods, can significantly 

affect the results of OD estimation and traffic sensor locations because of the 

variation of joint travel behaviors over a period of time. 

(2) Benchmark comparison among different sensor location models.  

The results of sensor locations and OD demand estimation can vary significantly 

depending on different sensor location models in which whether one-period or 

multi-period OD demands in SLPs are considered particularly under congested 

conditions. 

(3) The effects of traffic congestion on multi-period OD demand estimation.  

Traffic congestion can last a long time and impact travel patterns and OD demands 

in different periods.  

 

Example 2  

(4) The efficiency of multi-type traffic sensors for OD demand estimation.  

Partial path and even OD flows observed by AVI sensors can be regarded as a 

supplement to entire link flows only on selected links provided by point sensors 

for OD demand estimation. These multi-source data from different sensor types 

can cooperate with each other to clarify the variation and correlation relationship 

of multi-period OD demand.  

(5) Sensitivity analysis of the cost ratio between point and AVI sensors.  

The cost ratio between point and AVI sensors also affects the determination of 

the budgetary allocation for these different sensor types. 

(6) Sensitivity analysis of the number of principal OD demand components.  



98 

The PCA method is used for stochastic OD demand estimation to take full 

advantage of the additional information obtained from the covariance of OD 

demand, especially in multiple periods. The number of principal OD demand 

components must be predetermined and can affect the estimation results. 

 

Example 3 

(7) Effects of joint travel behavior on the traffic SLP. 

Joint travel behavior is one of the key factors contributing to the covariance of OD 

demand in multiple periods. Based on empirical data in Hong Kong, the effects of 

travel behavior patterns on multi-type traffic sensor locations are explored.  

(8) Convergence test of the solution algorithm.  

The convergence of the solution algorithm is tested in this numerical example to 

demonstrate the effectiveness of the improved FA.  

 

 A small-size transportation network: Example 1  

A small-size road network, as exhibited in Figure 3.3, consists of 7 nodes, 16 links, 

and 12 OD pairs. The OD demands in three different periods, including the weekday 

morning peak hour (8:00–9:00), weekday evening peak hour (17:00–18:00), and peak 

hour on Sunday (12:00-13:00), are considered in this example. Note that it is not 

necessary to incorporate the afore-mentioned periods only, any period can be included 

in the proposed model; in this example, these three periods are adopted for illustration.  

 

For validation purposes, the “true” OD flows, including mean and var-cov matrix in 

multiple periods, shown in Table 4.1 and Table 4.2, are assumed to be known and are 

obtained using the re-sampling method (Cascetta and Nguyen, 1988; Lo et al., 1996). 

Specifically, the “true” hourly OD demands during three different periods over a 

sequence of days (e.g., 365 days) are simulated from a multivariate normal distribution 
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with the desired mean, coefficient of variation, and correlation coefficient. In this 

example, the desired mean and coefficient of variation correspond to the Hong Kong 

Annual Traffic Census data. The desired coefficients of correlation are assumed 

according to plausible travel behaviors in the road network. The OD demands are then 

re-sampled with a sampling fraction of 10% so that the mean, variance, and covariance 

of multi-period OD demands, considered the “true” OD demand information, can be 

obtained.  

 

On the basis of true multi-period OD demands, the observation of link flows from 

point or AVI sensors and partial path flows from AVI sensors can be simulated using 

an adapted traffic flow simulator. Note that to avoid the need to spend too much 

computation time searching for the feasible paths of the OD pairs, the path set in the 

road network is predetermined and fixed. The parameters in the traffic flow simulator 

are identical to those in Lam and Xu (1999). 

 

Table 4.1 Assumed true OD demands in multiple periods 

OD 

number 
OD pair 

True mean OD demands 

Weekday morning 

peak hour (ℎ1) 

Weekday evening 

peak hour (ℎ2) 

Peak hour on 

Sunday (ℎ3) 

1 C–B 168 121  90 

2 C–F 240 180  88 

3 C–G  96 142 110 

4 B–C 208 170 120 

5 B–F 223 173 115 

6 B–G 240 158 280 

7 F–C 144 180 105 

8 F–B 168 210 111 

9 F–G 184 151 124 

10 G–C 120 190 185 

11 G–B 136 155 171 

12 G–F 208 201 190 
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Table 4.2 Assumed true covariance between OD pairs (B,C) and (C,F) in multiple 

periods 

Covariance 

Weekday morning 

peak hour (ℎ1) 

Weekday evening 

peak hour (ℎ2) 

Peak hour on 

Sunday (ℎ3) 

(B,C) (C,F) (B,C) (C,F) (B,C) (C,F) 

Weekday morning 

peak hour (ℎ1) 

(B,C)  432.64 339.46 -123.76 37.44 29.95 87.86 

(C,F)  339.46 576.00 40.80 -95.04 34.56 25.34 

Weekday evening 

peak hour (ℎ2) 

(B,C) -123.76 40.80 289.00 116.28 85.68 17.95 

(C,F)  37.44 -95.04 116.28 324.00 38.88 66.53 

Peak hour on 

Sunday (ℎ3) 

(B,C) 29.95 34.56 85.68 38.88 207.36 121.65 

(C,F) 87.86 25.34 17.95 66.53 121.65 111.51 

 

In this example, the prior multi-period OD flows are set to have the following 

relationship with their true values: 𝑞𝑤(ℎ)0 = (1 − 𝜇 ∙ 𝑐𝑣𝑤(ℎ)) ∙ 𝑞𝑤(ℎ)
∗   and 

𝜎𝑤(ℎ),𝑤′(ℎ′)0 = (1 − 𝜇 ∙ 𝑐𝑣𝑤(ℎ))(1 − 𝜇 ∙ 𝑐𝑣𝑤′(ℎ′)) ∙ 𝜎𝑤(ℎ),𝑤′(ℎ′)
∗  , where  𝑞𝑤(ℎ)

∗   and 

𝜎𝑤(ℎ),𝑤′(ℎ′)
∗  are the simulated true mean OD demand for OD pair 𝑤 in period ℎ and 

the covariance of OD demand between OD pairs 𝑤 in period ℎ and 𝑤′ in period 

ℎ′, 𝜇 is an independent random variable following a normal distribution 𝑁(0,1), and 

𝑐𝑣𝑤(ℎ) represents the coefficient of variation of the true traffic flows for OD pair 𝑤 

during period ℎ (Yang et al., 1992).  

 

The initial link choice proportions for each OD pair are simulated using the stochastic 

user equilibrium traffic assignment model with the dispersion parameter set to be 𝜃 =

 0.2 . In practice, except for the covariance information, the prior OD demand 

information can be obtained from surveys or previous models. Furthermore, in a road 

network with existing traffic sensors or other data sources, prior information, including 

covariance information, can be inferred and updated directly from the available data 

for more accurate estimation, especially when considering multiple periods. 

 

As an extension to Zhou and List (2010) and Simonelli et al. (2012), the percentage of 

reduction in variance of the multi-period OD demand estimates is used as the model 

performance index in this chapter. This measurement is more suitable for the 
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considered case than the others because the objective of the proposed model is to 

determine the sensor locations by minimizing the uncertainty of multi-period OD 

demand. A smaller uncertainty of OD demand estimates will lead to a larger percentage 

of reduction in variance, given the prior OD demand information. Hence, the more 

accurate the multi-period OD demand estimates, the better the sensor location scheme.  

4.6.1.1 Effects of covariance of multi-period OD demand on SLP  

The covariances of OD demand in multiple periods play a significant role in the OD 

estimation problem. The effects of multi-period OD demand covariance on the SLP 

are examined by considering the following three scenarios:   

 Scenario A: No covariance among OD demands.  

 Scenario B: Covariance among OD demands only within the same period.  

 Scenario C: Covariance among OD demands in multiple periods.  

 

Different covariance relationships among OD pairs are considered in each scenario, 

but all of them include the same three peak hour periods for comparison. In this 

sensitivity test, the percentages of reduction in OD variance based on the resultant 

traffic sensor location schemes are compared to evaluate the performance of the 

proposed model under different scenarios. The reduction in OD variance is represented 

by the difference in uncertainty between the estimated and prior OD demands (Zhou 

and List, 2010). The uncertainty is evaluated by the square root of the total trace value 

for the OD demand covariance matrix. In addition, the mean absolute percentage error 

(MAPE) of the OD demand estimation is used to assess the acccuracy of the estimation 

results based on these three scenarios.  

 

The results of these three scenarios in Table 4.3 indicate that the “best” traffic sensor 

locations depend on the assumptions regarding the covariance relationship of OD 

demand. It can be seen that in scenario C, where the covariance information in multiple 
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periods is considered, the percentage of uncertainty reduction is 65.45%. Furthermore, 

the MAPE of OD demand estimation is improved by more than 20% compared with 

scenario A. Therefore, interestingly, this experiment shows that the consideration of 

OD demand covariance in multiple periods can efficiently reduce the uncertainty of 

OD estimates and increase the estimation accuracy.  

 

Table 4.3 Effects of OD demand covariance in multiple periods on SLPs 

Scenario Covariance consideration 
Optimum traffic 

sensor locations 

Percentage of reduction 

in variance (%) 

MAPE 

(%) 

A No covariance 
Point: [3,10] 

AVI: [4,9,16] 
35.66 31.01 

B 
Consideration of covariance 

only in the same period 

Point: [3,5] 

AVI: [2,9,16] 
57.71 17.58 

C 
Consideration of covariance 

in multiple periods 

Point: [3,5] 

AVI: [2,15,16] 
65.45  9.88 

 

To further gain insights on the performance of the optimum sensor configurations 

under different covariance scenarios, the OD estimation accuracy in terms of MAPE 

is tested based on these three sensor configurations for each covariance scenario. 

 

Table 4.4 Performance of different sensor locations under different covariance 

scenarios 

 MAPE (%) 

Optimum in A 

Point: [3,10] 

AVI: [4,9,16] 

Optimum in B 

Point: [3,5] 

AVI: [2,9,16] 

Optimum in C 

Point: [3,5] 

AVI: [2,15,16] 

A. No covariance 31.03 35.26 32.41 

B. One-period covariance 27.19 17.58 20.30 

C. Multi-period covariance 23.05 15.51 9.88 

 

It can be found in Table 4.4 that when multi-period covariance is taken into account, 

the MAPE decreases to 15.51% under the sensor configuration of the optimum in 

scenario B, and changes to 9.88% under the sensor configuration of the optimum in 

scenario C. The results in Table 4.4 testify again that even though different optimum 

sensor configurations are required at different covariance scenarios, multi-period 
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covariance of OD demands leads to efficient improvement of estimation accuracy. This 

highlights the need to systematically consider the multi-period covariance of OD 

demand in SLPs.  

4.6.1.2 Benchmark comparison among different sensor location models  

For benchmark comparison, the chosen models include model I proposed in Hu et al. 

(2016), model II proposed in Simonelli et al. (2012), and model III proposed in Fu et 

al. (2019). The reason why these three models are chosen is that these three models 

fully cover different types of sensor location models in the literature. Specifically, 

concerning the SLP for OD demand estimation, existing models can be categorized 

into three types:  

(i) SLP with consideration of the mean OD demand only (Yang and Zhou, 1998; 

Bianco et al., 2001; Hu et al., 2015),  

(ii) SLP with taking into account the mean and variance of OD demand (Zhou and List, 

2010; Simonelli et al., 2012), and 

(iii) SLP considering mean, variance, and covariance of OD demand in one time period 

(Fu et al., 2019).  

 

However, the covariance of OD demands in multiple time periods should also be 

incorporated in SLP to capture better the joint travel behaviors and variation of travel 

patterns in multiple periods. The proposed model in this chapter fills the gap and is 

categorized as the fourth type, (iv) SLP taking into account the mean, variance, and 

covariance of OD demand in multiple periods.   

 

These existing models (e.g., modes I, II, and III) focus on estimating one-period OD 

demand (e.g., morning peak hour). For comparison of OD demand estimation accuracy 

in different time periods, the optimum sensor locations for the morning peak hour ℎ1 

in these previous models will be used for OD demand estimation in other time periods. 

Notably, the models proposed in Simonelli et al. (2012) and Fu et al. (2019) would 
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optimize the locations of point sensors only. This experiment maintains the same 

settings (e.g., sensor type, time period of interest) consistent with these existing models. 

When multi-type sensors are deployed, the cost ratio between point and AVI sensors 

is set to 1:2 based on the cost data from the Speed Map Panel project in Hong Kong 

(Transport Department, 2021a).  

 

Table 4.5 displays that for the OD demand estimation accuracy, model IV proposed in 

this chapter contributes to the best sensor locations with the most significant average 

percentage of reduction in variance (65.45%) and smallest average MAPE (9.88%) 

for different time periods. This finding can be elucidated as that model IV explicitly 

takes into account the mean and covariance of OD demand in multiple periods when 

determining the multi-type sensor locations. As a result, more available data from 

multi-type traffic sensors, including mean and covariance of multi-period link flow 

observations, can be incorporated. The other three existing models, however, spotlight 

one of the most congested periods (e.g., morning period ℎ1 ). The observed 

information has not been fully utilized when allocating traffic sensors for the 

estimation of single-period OD demand. Only the proposed model IV can capture the 

OD demand uncertainty and correlation in different time periods.  

 

It is also found in Table 4.5 that the largest percentage of reduction in variance 

(79.31%) is achieved by model II in time period ℎ1 because the outstanding feature 

of model II is to reduce the uncertainty of OD demand in the period of interest. This 

model II puts effort into decreasing the variation of OD demand in a specific time 

period by installing additional sensors. Furthermore, the best MAPE of OD demand 

estimates in time period ℎ1 is 5.42% resulting from model III. Model III determines 

the sensor locations by directly minimizing the OD demand estimation error 

considering the covariance of vehicular demand among different OD pairs in the single 

period of interest. On the other hand, model I is particularly applicable to the situation 
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without prior traffic flow information, even though it is not accomplished in improving 

OD demand estimation accuracy.  

 

Table 4.5 Benchmark comparison for sensor location and OD estimation problems 

Consideration of 

OD demand 

Optimum traffic 

sensor locations 
Period 

Percentage of reduction 

in variance (%) 
MAPE (%) 

Model I (Hu et 

al., 2015) 

Point: [7,13]  

AVI: [5,6,14] 

ℎ1  5.01 20.85 

ℎ2  3.94 32.47 

ℎ3  3.26 29.34 

Average  4.07 27.55 

Model II 

(Simonelli et al., 

2012) 

Point: [3,5,6, 

7,10,12,13,14] 

ℎ1 79.31 16.59 

ℎ2 14.12 28.16 

ℎ3  9.86 24.23 

Average 34.43 22.99 

Model III (Fu et 

al., 2019) 

Point: [1,3,6, 

9,11,12,13,14] 

ℎ1 41.79  5.42 

ℎ2 12.43 26.78 

ℎ3 10.17 23.05 

Average 21.46 18.42 

Model IV (this 

chapter) 

Point: [3,5] 

AVI: [2,15,16] 

ℎ1 76.08 12.24 

ℎ2 71.15 11.12 

ℎ3 49.11  6.27 

Average 65.45  9.88 

 

In summary, when traffic managers intend to make sufficient use of the information 

observed from installed traffic sensors in different time periods, especially including 

congested peak hour periods, the proposed model with considering covariance of 

multi-period OD demand should be chosen with priority over the other existing sensor 

location models. 

4.6.1.3 Effects of traffic congestion on the multi-period OD demand estimation  

As explained in section 4.6.1.2, the proposed multi-period model outperforms the 

single-period model in its own period of ℎ1 because of the strong correlation among 

multi-period OD demands, especially during the congestion periods in the daytime. To 

numerically justify this explanation, a supplementary experiment for multi-period SLP 
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under uncongested conditions is conducted for comparison purposes. To imitate the 

uncongested conditions such as in the mid-night period denoted as ℎ′1, the mean and 

coefficient of correlation of original OD demand in the period of ℎ1 is reduced by 

five times to decrease the magnitude and correlation relationship of OD demand.  

 

Table 4.6 SLP for one period vs. SLP for multiple periods under uncongested 

conditions 

Consideration of OD demand Period MAPE (%) 

Existing model:  

One-period SLP 
ℎ′1 25.71 

Proposed model: Multi-period SLP 

ℎ′1 34.64 

ℎ2 13.17 

ℎ3 18.25 

Average 22.02 

 

Table 4.6 illustrates that under the specified set of traffic conditions, the MAPE of OD 

demand estimates during time period ℎ′1 in the proposed model is 34.64%, which is 

larger than that from the existing model (i.e., 25.71%). This result confirms the 

justifications in the preceding subsection 6.1.2, in which when the multi-period 

correlation relationship is very weak, the single-period model outperforms the multi-

period model in its own period of ℎ′1 . Furthermore, Table 4.6 proves again that 

regardless of traffic conditions, the proposed model considering multi-period OD 

demand outperforms the existing model by improving the average accuracy of the 

multi-period OD demand estimation regarding MAPE. 

 A medium-size transportation network: Example 2  

Due to the explicit consideration of multi-period OD demands, PCA is adopted to 

extract the essential features of the OD demands so as to improve the effectiveness of 

the solution algorithm. The proposed methods are particularly suitable for a road 

network with a large number of OD pairs.  
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As shown in Figure 3.8 of Chapter 3, the Sioux Falls network, including 76 links and 

24 nodes with consideration of 48 OD pairs, is adopted. The corresponding origin and 

destination nodes are marked with the same color. The periods of interest are the same 

as those in Example 1 of this chapter. The OD demands in these three periods for each 

OD pair are set to be 300 veh/hour, 200 veh/hour, and 120 veh/hour, respectively. Other 

parameters are assumed to be identical to those in Shao et al. (2014). The penetration 

rate of tagged vehicles detected by AVI sensors is supposed to be 45%. It is assumed 

that this road network is already equipped with four AVI sensors on links 1, 38, 43, 

and 70, and four point sensors on links 11, 20, 40, and 62.  

4.6.2.1 Efficiency of multi-type traffic sensors for OD demand estimation    

Recall Proposition 4.2, in which the decision to prioritize AVI sensors or point sensors 

is determined by the value of additional information obtained when installing these 

two traffic sensor types, given their relative costs. To provide insight into this 

proposition clearly and intuitively, the trade-off between AVI sensors and point sensors 

is examined in this experiment.  

 

In practice, given realistic sensor cost and physical environments, it is difficult to 

guarantee that an additional AVI sensor can consistently outperform the equivalent 

number of additional point sensors concerning OD demand estimation accuracy. 

Therefore, the efficiency of combining the observations from point sensors and AVI 

sensors should be further tested. This experiment assumes that the standard deviations 

of the measurement errors for point sensors and AVI sensors are 5% and 2.5%, 

respectively, of the corresponding true traffic flows (Zhou and List, 2010). The unit 

cost of an AVI sensor and a point sensor is assumed to be 𝛽' = United States dollars 

(US$)6,500 and 𝛽 = US$1,300, respectively. In other words, the unit cost of an AVI 

sensor is five times that of a point sensor. The optimal number and locations of AVI 
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sensors and point sensors are determined by different total budgets based on the 

proposed models. 

 

 

Figure 4.4 Efficiency of the combination of point sensors and AVI sensors 

 

From Figure 4.4, it can be seen that when the total budget is US$52,000, the optimal 

traffic sensor location scheme includes 10 point sensors and 6 AVI sensors. The MAPE 

of OD estimation is then 16.74%, which is the smallest among all location schemes 

with the same total budget. However, for schemes with only AVI or point sensors, OD 

estimation accuracy (e.g., 28.81% MAPE for AVI sensors and 20.04% for point 

sensors) is poorer than that for the combination of information from both types of 

sensors. The results imply that when measurement errors of AVI and point sensors do 

not substantially differ, a combination of information from both types leads to a more 

accurate OD estimation in multiple periods, with smaller MAPE.  

4.6.2.2 Sensitivity analysis of the cost ratio between point and AVI sensors  

It has been presented in section 4.6.2.1 that the optimum number and type of traffic 

sensors are highly dependent on their measurement errors. In addition, because the 

total budget is usually given and fixed, the cost ratio between AVI and point sensors 

can also affect the budget allocation for the number of each sensor type. Practically, 
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AVI sensors are normally more expensive than point sensors, as they provide more 

information and are more reliable. Therefore, the effects of the cost ratio between these 

two sensor types should be examined to rationalize the budget allocation for the 

number of each sensor type.  

 

In this experiment, the unit cost of a point sensor is assumed to be fixed (i.e., 𝛽 =

𝑈𝑆$1,300 ). The unit cost of an AVI sensor varies from 𝛽′ = 𝑈𝑆$1,300  to 𝛽′ =

𝑈𝑆$9,100  so that the cost ratio ranges from 1:1 to 1:7. The total budget is 𝐵 =

𝑈𝑆$31,200. The proposed model is used for different cost ratios between point and 

AVI sensors to optimize the number of multi-type traffic sensors and obtain the OD 

demand estimation results. The MAPEs of the resultant OD demand estimates based 

on different cost ratios are compared in Table 4.7.  

 

Table 4.7 Effects of cost ratio between point and AVI sensors 

Cost ratio 

(point/AVI) 

Optimal number of sensors MAPE 

(%) Number of point sensors Number of AVI sensors 

1:1  0 24 4.08 

1:3  6  6 9.17 

1:5  9  3 13.61 

1:7 24  0 17.93 

 

It is plausible to witness from Table 4.7 that when the AVI sensor is as cheap as the 

point sensor, only high accuracy AVI sensors need to be installed in the road network 

and contribute to the highest OD demand estimation accuracy with a MAPE of 4.08%. 

The estimation accuracy regarding MAPE decreases monotonically with the increment 

of AVI sensor cost. It is also interesting to discover that the cost ratio between point 

and AVI sensors smaller than 1/7 makes AVI sensors unattractive under the specified 

settings. These findings can generally help public agencies better understand the 

priority of different sensor types on the basis of their cost ratio, especially for multi-

period OD demand estimation.  
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4.6.2.3 Sensitivity analysis of the number of principal OD demand components  

The sections above have shown that consideration of covariance in multiple periods 

can provide additional information for OD demand estimation. To make full and proper 

use of this additional valuable information, the PCA method is adopted in this chapter 

to improve the effectiveness of the proposed model. However, the number of principal 

OD demand components must be predetermined. This predetermined variable can also 

affect the estimation results. Thus, a sensitivity test of the number of principal OD 

demand components is conducted to elucidate the effectiveness of the PCA method, as 

presented in Table 4.8.  

 

In this experiment, it is supposed that four additional point sensors and four additional 

AVI sensors are to be installed in the road network to cooperate with eight existing 

traffic sensors. The contribution of the principal OD demand components is calculated 

as total variances of the selected number of principal OD demand components divided 

by that of the original OD demands (Jolliffe, 2002). 

 

As can be found from Table 4.8 that with an increasing number of principal OD 

demand components, the contribution of those components, percentage of reduction in 

variance, and the computation time all increase, whereas the MAPE decreases 

monotonically. However, when the number of principal OD demand components 

increases from 82 to 144, the percentage of reduction in variance does not increase 

substantially (i.e., from 79.35% to 86.13%). The decrease of MAPE from 7.03% to 

only 6.10% is much smaller than in the other cases. This small change indicates that 

when the number of principal OD demand components is large enough, the PCA-based 

model can guarantee an optimum sensor location scheme and maintain a satisfying 

level of estimation accuracy.  
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Table 4.8 Effectiveness of PCA for the Sioux Falls network 

Number of 

principal OD 

demand 

components 

Contribution 

of principal 

OD demand 

components 

Optimum traffic 

sensor locations 

Percentage of 

reduction in 

variance (%) 

MAPE 

(%) 

Computation 

time 

(s) 

 25  36.11% 
Point: [3,14,45,51] 

AVI: [5,30,39,66] 
21.54 27.14  2,083 

 50  72.15% 
Point: [2,21,44,73] 

AVI: [10,17,29,60] 
53.09 17.66  2,608 

 82  96.20% Point: [2,7,44,51] 

AVI: [10,30,33,61] 

Point: [2,7,44,51] 

AVI: [10,30,33,61] 

79.35  7.03  3,705 

144 100.00% 86.13  6.10 12,611 

 

It is also worth noting that the optimum traffic sensor location scheme ceases to change 

when the number of OD demand components reaches 82. In this scheme, the point 

sensors and AVI sensors are located on links 2, 7, 44, and 51, and links 10, 30, 33, and 

61. However, computation time increases dramatically with the increasing number of 

OD demand components, significantly exceeding 82. This experiment reveals that 

even though the PCA-based OD estimation method may lead to partial information 

loss in multi-period OD demand, it can contribute to sufficiently accurate estimates 

and significantly reduce computation time while guaranteeing an optimal scheme of 

multi-type traffic sensors.   

 A transportation network in Hong Kong: Example 3  

This numerical example demonstrates the effects of travel behavior patterns on multi-

type traffic sensor locations and multi-period OD demand estimation results using 

empirical data in the real world. The Tuen Mun Road Corridor Network in Hong Kong 

(Figure 4.5) is used herein as the study network. The road network consists of 487 

links, 382 nodes, and 18 zones. These 18 zones include two external zones (S1 and S2) 

and 16 internal zones (S3-S18) and can be either origins or destinations. Tuen Mun 

Road (TMR) is an expressway with a higher speed limit than Castle Peak Road (CPR), 
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a rural road. The internal zones S3-S18 connect only to Castle Peak Road. In this road 

network, 19 Autoscope point sensors have been installed by the Transport Department 

in Hong Kong to detect traffic flow and travel speed by time of day and day of the year. 

The weekday morning peak hour and weekday evening peak hour are the two time 

periods considered in this experiment.  

 

 

(a) Tuen Mun Road Corridor Network 

 

 

(b) Hong Kong map © Google Maps 

Figure 4.5 Example 3 network: Tuen Mun Road Corridor Network in Hong Kong 

 

In this experiment, prior OD demand is obtained from the Base District Traffic Modal 

data issued by the Hong Kong Transport Department (Transport Department, 2004) 
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and updated using Autoscope point sensors (e.g., control total at external cordons). 

“True” OD demand is estimated from the data obtained from all available Autoscope 

point sensors. In the study road network, nine different link speed-flow curves by link 

type are calibrated using hourly flow rate and hourly average speed detected by 

Autoscope point sensors. For instance, Figure 4.6(a) and Figure 4.6(b) show two of 

these speed-flow curves on Tuen Mun Road and Castle Peak Road calibrated by the 

data from Autoscope point sensors TMR-19 and CPR-3, respectively. For the link 

installed with sensor TRM-19, it is found that the capacity is 1,408 veh/hour/lane, and 

the free flow speed is 70 km/hour. For the location installed with sensor CPR-3, the 

capacity and free flow speed are 943 veh/hour/lane and 50 km/hour, respectively.  

 

    

(a) Autoscope point sensor TMR-19     (b) Autoscope point sensor CPR-3 

Figure 4.6 Speed-flow curves calibrated by data observed from Autoscope point 

sensors 

 

In this road network, Tuen Mun New Town (S1) and Kowloon Urban Area (S2) 

primarily serve as residential and commercial areas, respectively. Some primary 

schools and kindergartens are located in internal zones S3-S18. Most traffic demand 

travels from zone S1 to zone S2 in the morning peak hour, while from zone S2 to zone 

S1 in the evening peak hour.  

4.6.3.1 Effects of joint travel behavior on traffic sensor location problem 

As illustrated in the motivating example, joint travel behaviors significantly impact 
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OD demand covariance in multiple periods. Consider the travel pattern of a spouse and 

child similar to the motivating example. Two scenarios (i.e., with and without joint 

travel behaviors) can be established in the morning peak hour. (i) Without joint travel 

behaviors, the spouse will drive alone from home to the office (S1-S2), and the child 

will go to school by public transport (only one OD demand from S1 to S2 is generated 

in this scenario). (ii) With joint travel behaviors, the spouse will drive the child to the 

school first (S1- an internal zone) and then go on to the office alone (an internal zone 

– S2) (two OD demands, i.e., one from S1 to the internal zone, the other from the 

internal zone to S2, will be generated by such joint travel behavior).  

 

The joint travel behaviors can be approximately measured using vehicle occupancy 

data. According to the report in ‘‘The Annual Traffic Census 2017’’ of Hong Kong 

(Transport Department, 2018), vehicle occupancy fluctuates from time to time. As only 

one sensor in the study area can provide the vehicle occupancy data, it is assumed that 

vehicle occupancy in the study area remains the same when illustrating the effects of 

joint travel behavior. In principle, if there is a need to obtain more precise vehicle 

occupancy data by time and location, a roadside survey can be conducted.  

 

As shown in Chapter 3.1, the relationship between the covariance of OD demand and 

the proportion of joint travel behavior of total demands can be theoretically calculated 

as in Eq. (3.1). It can be seen from Eq. (3.1) that the more joint travel behaviors, the 

larger the covariance of OD demand between the corresponding OD pairs. Due to the 

lack of empirical data on the covariance of OD demand, Eq. (3.1) is used to simulate 

the prior OD demand covariance based on the proportion of joint travel behaviors.  

 

To demonstrate the effects of travel behavior patterns, the proposed model is 

implemented under different proportions of joint travel behavior. In this experiment, 

given the target OD demand estimation accuracy (e.g., MAPE = 10%), the objective 
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is to determine the number and locations of traffic sensors under different proportions 

of joint travel behavior.   

 

Table 4.9 shows that to satisfy the target OD demand estimation accuracy, more traffic 

sensors are needed in view of the increasing number of joint travel behaviors 

conducted by travelers. It indicates that with more joint travel behaviors, more 

information is required for the estimation of both the mean and covariance of OD 

demand. Therefore, more traffic sensors should be installed to achieve similar accuracy 

in OD demand estimation.  

 

Table 4.9 Effects of joint travel behavior on optimal number and locations of traffic 

sensors 

Proportion of 

joint travel 

behavior 

Optimal number 

of sensors in 

total 

Optimal traffic sensor location 

scheme 

Number of 

sensors on CPR 

Number of 

sensors on TRM 

  0% 19  6 13 

 30% 24 12 12 

 50% 29 19 10 

100% 41 33  8 

 

Table 4.9 also indicates that when the proportion of joint travel behavior increases in 

this specific study network, more traffic sensors should be installed on Castle Peak 

Road. The topology of the study network could explain this finding. Note that the 

internal zones (S3-S18) are only connected to Castle Peak Road, a rural road. As joint 

travel behaviors will increase the traffic flow on Castle Peak Road (to the internal 

zones), the covariance between the OD demands of external zone S1 to internal zones 

(S3-S18) and internal zones to external zone S2 will be enlarged. Thus, more traffic 

sensors on Castle Peak Road are needed to reduce the uncertainty of the estimated OD 

demands.  
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 Summary 

The research in this chapter proposes a new model for optimizing multi-type traffic 

sensor locations with a particular emphasis on both spatial and temporal covariance 

relationships of OD demand. Due to the within-day and day-to-day variations of traffic 

demands, the multi-period OD demands are statistically correlated with one another. 

The effects of OD demand covariance, especially in multiple hourly periods, have 

become increasingly significant in multi-type SLPs with multi-source data under the 

big data arena.  

 

By leveraging sensor data from multiple sources, the uncertainty of multi-period OD 

demand estimates can be minimized. The dominant OD demands, i.e., those exhibit 

the greatest dynamics, can be extracted by an adapted PCA method from the 

covariance of OD demand in multiple periods. Relying on the dominant OD demands, 

a multi-type sensor location model is proposed by minimizing the estimation 

uncertainty of the resultant multi-period OD demand. The estimation uncertainty is 

measured by the trace of the OD demand covariance matrix. Two propositions of the 

proposed model have been extensively analyzed to show that: (i) the superiority by 

taking into account the covariance of OD demand in multiple periods, and (ii) the 

trade-off between AVI and point sensors.  

 

Several case studies using a synthetic road network and a real road network in Hong 

Kong with empirical data were presented in Section 4.6 to illustrate the merits and 

efficiency of the proposed model. The case studies suggest that traffic planners 

consider the multi-period covariance relationship of OD demand, particularly in 

congestion periods, when designing a multi-type traffic sensor network.  

 

The results presented in Chapters 3 and 4 reveal that the spatial and temporal 
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covariance of OD demand can be used to enhance the deployment of traffic sensors 

for strategic planning purposes. Apart from traffic demands, vehicular travel times also 

take a vital role to benefit travelers better understand the traffic condition and 

congestion levels. In addition, traffic sensors can normally provide not only traffic 

flow information but also travel time (or travel speed) information. To fully utilize 

observations from multi-type traffic sensors, it needs an integrated traffic sensor 

location model to benefit both OD demand and link travel time estimations. This 

integrated model will be studied in Chapter 5.  

 

Therefore, the following Chapter 5 is to investigate multi-type SLPs for simultaneous 

estimation of stochastic link travel times and OD demands. Based on these results, 

traffic planners can easily deploy efficient sensor systems to monitor traffic conditions 

and assess congestion levels in the road network with uncertainty. 
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5. Optimization of multi-type sensor locations for 

simultaneous estimation of origin-destination demands 

and link travel times with covariance effects 

It is demonstrated in Chapters 3 and 4 that the SLP for estimation of vehicular traffic 

demands by OD pairs has been widely used in strategic transport models and 

intelligent transportation systems. Initially installed for OD estimation, these traffic 

sensors can provide additional information for link travel time estimation to assess the 

road network performance. Such a link travel time estimator is traditionally based on 

single-source traffic data (e.g., point sensor data) at the selected location(s) only. 

However, multi-source data are now available and can be used for network-wide travel 

time estimation and OD estimation by installing different types of traffic sensors on 

the study road networks.  

 

Chapter 5 investigates the multi-type traffic SLP for estimating OD demands and link 

travel times simultaneously while considering two sources of spatial covariance effects 

with uncertainties, as highlighted in Table 2.3. The first source is the statistical 

correlation of the vehicular traffic demands for different OD pairs in a typical hourly 

period (e.g., morning peak hour) on a daily scale, as the travel activity patterns vary 

from day to day over the year. The second source is the stochastic nature of the link 

travel times on different road links during the peak hour period and their correlation 

with adjacent links in congested conditions. By considering these aspects, a novel 

model is formulated to optimize the number and locations of multi-type traffic sensors.   

 

Based on the integrated observations from multi-type traffic sensors, a KL divergence-

based model is developed to accommodate different probability distributions of OD 

demands and link travel times in various traffic conditions. Numerical examples of 
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synthetic and real-world road networks are used to illustrate the applications and merits 

of the developed multi-type sensor location model for simultaneously estimating the 

stochastic OD demands and link travel times.  

 

The remainder of this chapter is structured as below. Section 5.1 introduces the SLPs 

related to link travel time estimation and OD demand estimation. The problem 

statement and model assumptions are presented in section 5.2. Section 5.3 describes 

the novel model proposed for estimating stochastic OD demands and link travel times 

and solving multi-type SLPs. A solution algorithm that efficiently solves the SLP is 

developed in section 5.4. Section 5.5 displays numerical results for synthetic and real-

world road networks to demonstrate the advantages of the proposed model and solution 

algorithm. Section 5.6 summarizes the research in this chapter. 

 Background 

 Contributions  

The four key contributions (C1–C4) of the research described in this chapter are as 

follows:    

C1. A novel measurement method incorporating the covariances of OD demands and 

link travel times is developed to reflect the variability (uncertainty) in day-to-day OD 

flow and link travel time estimates in the same hourly period over a year. The 

relationship between the mean values of the link flow and link travel time and that 

between the covariances of link flow and link travel time are examined, which enables 

the integration of stochastic OD demand and link travel time estimates.  

 

C2. The multi-type sensor location model is extended by minimizing the variability 

(uncertainty) of OD demand and link travel time estimates, and considering the 

tradeoffs between various sensor types in the context of budget constraints. Numerical 
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examples are presented to demonstrate that the conventional models are a special case 

of the developed model. Thus, based on a generalized model, the accuracies of the 

stochastic OD demand and link travel time estimates can be increased.  

 

C3. A novel model is developed based on the KL divergence, as an extension of the 

traditional GLS and EM models, that simultaneously estimates the stochastic OD 

demands and link travel times for any probability distribution. Unlike the models 

described by Ma and Qian (2018) and Zhu et al. (2019), this KL divergence-based 

optimization model determines (i) OD demands and link travel times for various 

distributions in different traffic conditions, (ii) addresses the inconsistency between 

different dimensions, and (iii) reveals the connection between stochastic OD demand 

and link travel time.  

 

C4. An improved variant of the FA is developed as a metaheuristic algorithm to 

efficiently solve the considered optimization problem: a nonconvex integer-

programming problem. The search strategy of the improved FA algorithm is enhanced 

by using an adaptive parameter that can be iteratively updated, as this enables a near-

to-global optimum to be obtained and ensures rapid convergence. 

 

The three advantages of KL divergence-based methods are summarized.  

(i) The developed KL divergence-based model can be flexibly applied in various traffic 

conditions involving different probability distributions of traffic measures. In contrast, 

the commonly used GLS approach can only be applied when the approximation error 

is normally distributed, as its application may lead to biased results when other types 

of distributions exist (Olsson et al., 2000). In practice, the distribution of traffic 

parameters varies with traffic conditions, and travel times generally follow Gaussian 

and log-normal distributions in clear and congested conditions, respectively (Li et al., 

2006b). Therefore, the KL divergence can be used to consider various traffic 
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conditions.  

 

(ii) The dimensionless property of KL divergence can help to avoid inconsistency 

problems, especially when different traffic information (such as OD demands and link 

travel times) are considered in the objective function for solving the SLP. Furthermore, 

stochastic features, such as variance, skewness, and kurtosis can be incorporated into 

the KL divergence-based method.  

 

(iii) The novel model developed in this chapter can be used to simultaneously estimate 

stochastic OD demands and link travel times by examining the relationship between 

the mean and covariance values of link flows and link travel times. In addition, the 

model does not simply integrate the various features obtained using existing models. 

Rather, the model clarifies the relationship between the mean traffic flow and mean 

travel time and that between the covariance of the link flow and link travel time. This 

relationship is achieved by using a stochastic Bureau of Public Roads (BPR) link 

performance function as a constraint or condition for simultaneously estimating the 

stochastic OD demands and link travel times.  

 Problem statement and model assumptions  

 Problem statement 

The multi-type sensor location optimization problem is examined to estimate the 

stochastic OD demands and link travel times in a road network. As shown in Figure 

5.1, the framework consists of two stages: the first stage is the development of a multi-

type traffic sensor location model; and the second stage is the development of a model 

for simultaneously estimating stochastic OD demands and link travel times.  

 

The first stage involves the development of the multi-type traffic sensor-location 
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model, whose inputs are the network topology, the prior OD demands, and the prior 

link travel time information. The locations of multi-type sensors are selected based on 

the topology of the road network and updated in accordance with the estimations of 

the OD demands and link travel times obtained in the second stage. Based on the multi-

type traffic sensors, the travel times and traffic flows on the links with point sensors 

and the path travel times between any two installed AVI sensors are observed.  

 

 

Figure 5.1 Flowchart of the proposed models 

 

The second stage involves the development of a bi-level model to estimate stochastic 

OD demands and link travel times. The upper level of the model combines the 

observations from point and AVI sensors (i.e., the link flow/travel times and path travel 

times) to estimate the stochastic OD demands and link travel times for a fixed 

proportion of links/path choices. The upper-level model uses the KL divergence-based 

optimization to achieve this simultaneous estimation task while also considering 
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covariance effects and alleviating the inconsistency between the OD demands and link 

travel times due to their different dimensions. The lower level of the model—an 

adapted traffic flow simulator—uses the estimated OD demands to update the link/path 

choice proportions. The traffic flow simulator is adapted from the stochastic user 

equilibrium traffic assignment model developed by Lam and Xu (1999).  

 

The output of the bi-level model consists of the mean and covariance of estimated OD 

demands and link travel times. The uncertainties (variances) in the OD demand and 

link travel time estimates measured by the trace of the var–cov matrix serve as a 

feedback mechanism that updates the sensor location scheme determined in the first 

stage. The application of this feedback mechanism and iterative updates enables the 

determination of locations for multi-type sensors to afford data that minimizes the 

uncertainties in the stochastic OD demand and link travel-time estimates.  

 Model assumptions  

To facilitate the presentation of the core concepts of proposed models, the model 

formulation and numerical studies are based on the following six assumptions (A1–

A6), without loss of generality.  

 

A1. The covariance of OD demands refers to the spatial covariance relationship 

between different OD pairs within the same time period. In this chapter, the vehicular 

traffic in a single time period (i.e., the morning peak hour) on a daily scale over a year 

is considered. In general, for transport planning, traffic planners primarily focus on the 

most congested period in a day (e.g., the morning peak hour) (Shao et al., 2014; Ma 

and Qian, 2018).  

 

A2. The variations of link flow/link travel time result only from the variation of 

recurrent OD demands on a daily scale. Other factors such as network supply 
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uncertainties (e.g., traffic incidents, adverse weather conditions) are not considered in 

this chapter (Shao et al., 2014; Ma and Qian, 2018).  

 

A3. Point sensors, such as microwave radar detectors, are located on links (i.e., road 

segments) in a road network, and AVI sensors are located on nodes (i.e., junctions or 

intersections) in a road network (Park and Haghani, 2015).  

To ensure that the sensor location model can be applied to different types of point 

sensors and road networks, it is assumed that point sensors can detect the link flow and 

speed in one direction over a link equipped with a sensor (Li et al., 2006a). AVI sensors 

can observe the path travel time for tagged vehicles moving in different directions 

between each pair of AVI sensors installed at both ends of a path. The cost of an AVI 

sensor depends on the number of directions covered by a chosen node.  

 

A4. All of the observed data (i.e., link flows, link travel times, and partial path travel 

times) are error-free (Yang et al., 1991; Simonelli et al., 2012), and missing data is not 

considered in this chapter.  

A link travel time can be inferred from the vehicle speed detected by a point sensor (Li 

et al., 2006a; Xing et al., 2013; Gentili and Mirchandani, 2018). AVI sensors such as 

RFID readers and ALPR cameras can correctly identify tagged vehicles without 

generating matching errors (Zhou and List, 2010). Sufficient samples of AVI data are 

available to obtain travel time information for the peak-hour periods on a path with 

AVI sensors installed at both ends.  

 

A5. The link choice proportion is deterministic and varies with the OD demands on a 

daily scale (Shao et al., 2014; Yang et al., 2019). The link choice proportion is the ratio 

of the mean link flow to the mean OD demands associated with the considered link 

and can be updated by traffic assignment models. In practice, additional data sources 

such as probe vehicle data can be used to partially update the link choice proportions 
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on certain links with observed data (Guo et al., 2019).  

 

A6. The path set is known prior to the assignment process. To alleviate the problem of 

the independence of irrelevant alternatives in the logit-based model, paths for a 

specific OD pair are generated with as low a similarity (e.g., as few overlapped links) 

as possible (Akamatsu, 1996; Shao et al., 2014).  

 Model formulation 

A road network is defined as 𝐆 = (𝐍, 𝐀), where N, sized |𝐍|, and A, sized |𝐀|, are 

the sets of nodes and links, respectively. The observed link set is �̃� (�̃� ⊆ 𝐀), sized 

|�̃�| in which the link flow and travel time can be observed by point sensors. Let n be 

a specific node in the road network (𝑛 ∈ 𝐍). 𝐖𝑟 represents a set of node pairs in 

which 𝑤𝑟 is a node pair, and �̃�𝑟 is a set of observed node pairs with AVI sensors 

installed on both end nodes. If two nodes in 𝐖𝑟 are the origin and destination nodes, 

they can be considered an OD pair expressed as 𝐖 (𝐖 ⊆ 𝐖𝑟), sized |𝐖|. Moreover, 

the path set for the road network is 𝐊  (sized |𝐊| ). �̃�  (sized |�̃�| ) represents an 

observed path set, in which the travel times for vehicles equipped with AVI tags can 

be observed. In addition, the non-empty path set for node pair 𝑤𝑟 is 𝐊𝑟. All variables 

are defined when they first appear in the text.  

 Observed day-to-day link flow, link travel time, path travel time 

Using point sensors, link flows can be observed for the same peak-hour period on 

weekdays. In this chapter, the links with and without a point sensor are referred to as 

the “observed link” and “unobserved link”, respectively. Suppose that the link flow in 

the peak-hour period (e.g., between 8:00 a.m. and 9:00 a.m.) is observed on a sequence 

of (not necessarily consecutive) weekdays. Denote �̃�𝑎(𝑑)
𝑙  as a sample of observations 

corresponding to the average hourly traffic flow on link a (𝑎 ∈ �̃�) in the morning peak-
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hour on day d (𝑑 = 1,2,3, . . . , 𝐷). A superscript “l” represents the information on links. 

For convenience, a column vector �̃�(𝑑)
𝑙 = (. . . , �̃�𝑎(𝑑)

𝑙 , . . . )𝑇 represents the traffic flow 

for all 𝑎 ∈ �̃�. The day-to-day sample mean of link flows on the observed links in the 

morning peak-hour over a year ( �̃�𝑙) can be calculated by (3.2). The day-to-day sample 

var–cov matrix of the observed link flows between different links in the morning peak-

hour over a year can be calculated by Eq. (3.3).  

  

In addition to the link flow, the average hourly link travel times on the observed links 

in the peak-hour period can be determined based on assumption A4 (Xing et al., 2013; 

N. Zhu et al., 2018). �̃�𝑎(𝑑)
𝑙   represents a sample of the observed link travel time 

corresponding to the mean travel time on link a (𝑎 ∈ �̃�) in the peak-hour period on 

day d. The observational window is restricted to an hour, although it can be easily 

extended to other time intervals. For convenience, a column vector �̃�(𝑑)
𝑙 =

(. . . , �̃�𝑎(𝑑)
𝑙 , . . . )𝑇  is defined for all 𝑎 ∈ �̃� . The day-to-day sample mean of the link 

travel times on the observed links in the peak-hour period on a daily scale can be 

calculated by: 

 ( )
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1
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a d
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t
D =

= = t t ,   (5.1) 

where  �̃�𝑙 is a column vector of the sample mean travel time on all observed links, 

and �̃�𝑎
𝑙  represents the observed mean travel time on link a (𝑎 ∈ �̃�).  

 

Similarly, the day-to-day sample var–cov matrix of the observed travel time between 

different links in the peak-hour period over a year can be calculated by: 
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where �̃�𝑡𝑎,𝑡𝑎′

𝑙  is the sample covariance between travel times on observed links a and 

𝑎′ (𝑎, 𝑎′ ∈ �̃�). 
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Based on assumption A3, AVI sensors must be installed on the nodes of a road network 

to detect the path travel times by recognizing the vehicle information at the start and 

end points of paths. Consider a general case in which multiple paths may be used by 

different travelers between a node pair. The mean travel time between nodes with AVI 

sensors can be determined for all detected vehicles in the observational window. 

According to Eq. (5.1), the day-to-day sample mean of travel times between node pairs 

in the study period (�̃�𝑤𝑟
) can be calculated by:   

 ( )

1

1
r r

D

w w d

dD =

= t t ,   (5.3) 

where �̃�𝑤𝑟(𝑑) is the column vector of sample travel times between all observed node 

pairs on day d. 

 

Similar to Eq. (5.2), the day-to-day sample var–cov matrix of the observed travel times 

between different node pairs (�̃�𝑡
𝑤𝑟) can be obtained as: 

 ( ) ( )

1

1
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r r r r
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w T
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= − −
−
Σ t t t t .  (5.4) 

 

In summary, the mean and covariance of the link flows and link travel times on the 

observed links can be determined from point sensor observations. The mean and 

covariance of the travel times between node pairs with AVI sensors on both ends can 

be calculated from AVI sensor observations. These observations serve as the input 

measurements for the estimation of the mean and covariance of the OD demands and 

link travel times on the unobserved links in the study network. 

 Mean and covariance of link flows and OD demands 

In a road network, the relationship between the OD demand and path flows is given 

by:  
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w

k

w w

k

q f w


=  
K

W
,  (5.5) 

where 𝑞𝑤 is the mean value of the traffic demand for OD pair w, and 𝑓𝑤
𝑘 is the mean 

path flow through path k in OD pair w. The path choice proportion is 𝑝𝑘𝑤
𝑝 = 𝑓𝑤

𝑘/𝑞𝑤, 

which is the proportion of the traffic flow in OD pair 𝑤 choosing path k. 

The link flow on link a can be determined by summing the path flows through this link 

(Eq. (5.6)):  
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w k

v f a
 

=  
W K

A ,   (5.6) 

where 𝑣𝑎
𝑙  is the mean value of the traffic flow on link a (𝑎 ∈ 𝐀), and 𝛿𝑎𝑘 is the link-

path incidence; 𝛿𝑎𝑘 = 1 if path k traverses link a; otherwise, 𝛿𝑎𝑘 = 0.  

With 𝑓𝑤
𝑘 = 𝑝𝑘𝑤

𝑝 𝑞𝑤, the relationship between the mean link flow (𝑣𝑎
𝑙 ) and mean OD 

demand (qw) can be established based on Eq. (5.6):  

 
l k p

a ak w ak kw w

w k w k

v f p q a 
   

= =   
W K W K

A .   (5.7) 

For simplicity, define 𝑝𝑎𝑤
𝑙 = ∑ 𝛿𝑎𝑘𝑝𝑘𝑤

𝑝
𝑘∈𝐊   as the link choice proportion, which 

represents the proportion of traffic flow in OD pair w passing through link a. Therefore, 

the mean value of the link flow on link a is a function of link choice proportions and 

mean OD demands going through link a as shown in Eq. (3.4) in Chapter 3. The 

covariance between the link flows on links 𝑎 and 𝑎′ is a function of the link choice 

proportions and covariance between the OD demands associated with these links as 

shown in Eq. (3.5) in Chapter 3.   

 Mean and covariance of travel times between node pairs, path travel times, 

and link travel times 

The travel time observed by AVI sensor pairs may be for different paths between the 

nodes with AVI sensors. Considering the uncertainty in path choice, the mean travel 

time between nodes (𝑡𝑤𝑟
) in the peak hour (which is potentially captured by an AVI 

sensor pair) can be expressed in terms of the probability-based path travel times (𝑡𝑘
𝑝

) 

(Xing et al., 2013):   
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where 𝑝𝑘𝑤𝑟

𝑝
 is the path choice proportion, i.e., the proportion of vehicular traffic flow 

in node pair 𝑤𝑟 choosing path k, and 𝑡𝑘
𝑝

 is the path travel time. 𝑡𝑘
𝑝

 can be expressed 

as the sum of the link travel times (𝑡𝑎
𝑙 ) of the links along path k:  

 
p l

k ak a r

a

t t k


=  
A

K ,   (5.9) 

The covariance of the travel times between different node pairs over the peak-hour 

period (𝜎𝑡𝑤𝑟 ,𝑡𝑤𝑟′
 ) can be decomposed into the covariances of the path travel times 

(𝜎𝑡𝑘,𝑡𝑘′

𝑝
) and link travel times (𝜎𝑡𝑎,𝑡𝑎′

𝑙 ), as:  
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and 
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For convenience, the order of the links can be rearranged such that the observed links 

are placed first. The network-wide link travel times and corresponding var–cov matrix 

can be partitioned based on the links with and without point sensors:  

 [ , ]l l T l T T

o u=t t t ,   (5.12) 
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where 𝐭𝑙 is the vector of the travel times on all links in the road network; 𝐭𝑜
𝑙  and 𝐭𝑢

𝑙  

represent vectors of the travel times on observed and unobserved links, respectively; 

𝚺𝒕𝑜

𝒍  and 𝚺𝒕𝑢

𝒍  denote the var–cov matrices of the travel times between the observed 

links and between unobserved links, respectively; and 𝚺𝒕𝒖,𝒕𝑜

𝒍   and 𝚺𝒕𝑜,𝒕𝒖

𝒍   are the 

matrices (transpose of each other) whose elements are the covariances of the travel 

times between observed and unobserved links.   
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 Bi-level model for the estimation of stochastic OD demands and link travel 

times 

5.3.4.1 Upper-level model: simultaneous estimation of stochastic OD demands 

and link travel times 

To fully exploit the various types of traffic information available from multi-type 

sensors under different traffic conditions, as discussed in contribution C3, a KL 

divergence-based method is developed to estimate the stochastic OD demands and link 

travel times. The KL divergence indicates the difference between two distributions 

described by probability density functions (pdfs). The standard KL divergence 

between two pdfs, 𝐷𝐾𝐿(. ||. ), is defined as:  
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where 𝐗, 𝐘 ∈ ℝ𝑀 are two random vectors with pdfs 𝑓𝐗(𝐱) and 𝑔𝐘(𝐲), respectively, 

which have the same support.  

 

Eq. (5.14) can be rewritten in the following entropy form:  

 ( ( ) || ( )) ( ) log ( ) ( ) log ( )
M MKLD f g f f d f g d= − X Y X X X Yx y x x x x x x ,   (5.15) 

 

In information theory, the terms ∫ 𝑔𝐘(𝐲) log𝑔𝐘(𝐲) 𝑑𝐲
ℝ𝑀   and 

− ∫ 𝑔𝐘(𝐲) log𝑓𝐗(𝐲)𝑑𝐲
ℝ𝑀  in Eq. (5.15) represent the negative (Shannon) entropy and 

cross-entropy, respectively. A smaller KL divergence corresponds to a higher similarity 

between two pdfs. 

 

Property 5.1. The KL divergence is always non-negative because of Gibbs’ inequality, 

that is, 𝐷𝐾𝐿(𝑔(𝑦)||𝑓(𝑥)) ≥ 0. The KL divergence equals zero if and only if 𝑔(𝑦) =

𝑓(𝑥) (Kullback and Leibler, 1951).  
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Assume that 𝑔(𝑦) is the “true” distribution of data and that 𝑓(𝑥) is the approximate 

distribution of data. 𝐷𝐾𝐿(𝑔(𝑦)||𝑓(𝑥)) and 𝐷𝐾𝐿(𝑓(𝑥)||𝑔(𝑦)) are termed forward KL 

divergence and reverse KL divergence, respectively.  

 

Property 5.2. The KL divergence is not symmetric, which means that the forward KL 

divergence does not equal the reverse KL divergence, i.e., 𝐷𝐾𝐿(𝑔(𝑦)||𝑓(𝑥)) ≠

𝐷𝐾𝐿(𝑓(𝑥)||𝑔(𝑦)). Hence, the solutions differ with the direction of the KL divergence 

(Abbas et al., 2017).  

 

Forward KL divergence is commonly used in applications such as MLE, expectation 

propagation, and supervised learning (Wu and Zhang, 2021). Reverse KL divergence 

is useful in domains such as variational inference and reinforcement learning 

(Kobayashi, 2021). In this chapter, forward KL divergence is used to simultaneously 

estimate stochastic OD demands and link travel times.  

 

In the considered case, the difference in the minimized KL divergence values for two 

different directions is not expected to be large because the traffic flow and travel time 

usually follow unimodal distributions (Abbas et al., 2017). However, the results of 

optimizing the KL divergence values in different directions may differ significantly 

when the target distributions are multimodal. Specifically, minimization of the forward 

KL divergence yields the distribution pertaining to the overall mean of different modes, 

whereas minimization of the reverse KL divergence corresponds to results 

approaching a specific mode while ignoring the other modes (Olsson et al., 2000). Due 

to the novelty of the developed model, the difference between the minimized values is 

examined by using numerical examples. These afford insights into the determination 

of KL divergence values in different directions in related problems. 
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Without loss of generality, the pdfs of observations of link flow, link travel time, and 

path travel time can be determined through multi-variate kernel density estimation in 

a following non-parametric manner (Kharoufeh and Goulias, 2002):  

 ( ) ( )
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1
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l l l
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where �̃�𝑙  is a vector of the random link flow on observed links, and �̃�(𝑑)
𝑙   is the 

observed average hourly traffic flow on links during the morning peak hour on day d 

(𝑑 = 1,2,3, . . . , 𝐷). Similarly, �̃�𝑙 and �̃�𝑤𝑟
 are vectors of the random link travel time 

on the observed links and travel time between node pairs with AVI sensors, 

respectively. �̃�(𝑑)
𝑙   and �̃�𝑤𝑟(𝑑)  are samples of random vectors �̃�𝑙  and �̃�𝑤𝑟

 , 

respectively. 𝐾𝑯1
 , 𝐾𝑯2

 , and 𝐾𝑯3
  are kernel functions such as a standard multi-

variate normal kernel (i.e., 𝐾𝑯𝑖
(𝐗) = (2𝜋)−|𝐗|/2𝐇𝑖

−1/2
𝑒−

1

2
𝐗𝑇𝐇𝑖

−1𝐗
 for 𝑖 = 1, 2, 𝑜𝑟 3). 

𝐇1 , 𝐇2 , and 𝐇3  are the symmetric and positive definite bandwidth matrices that 

function as covariance matrices.  

 

The objective is to estimate the multi-variate density functions of OD demands and 

link travel times with a specific focus on their mean and covariance, based on the 

observations from point and AVI sensors. Because of the non-negative property of KL 

divergence (Property 5.1), the following objective function can be formulated to 

minimize the KL divergence between the estimated and observed pdfs of the link flow, 

link travel time, and path travel time: 
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(5.17a) 

subject to 

 Eqs. (3.4), (3.5), and (5.8) – (5.11),   (5.17b) 

where the decision variables (vectors or matrices) include the mean OD demands 𝐪, 

the covariance of OD demands 𝚺𝒒, the mean link travel times 𝐭𝑙, and the covariance 

of link travel times 𝚺𝑡
𝑙  . In addition, the multi-variate density function (i.e., 𝑓1(. ) , 

𝑓2(. ) , and 𝑓3(. ) ) will be estimated. 𝑓1(. ) , 𝑓2(. ) , and 𝑓3(. )  are the pdfs of the 

estimated link flow, link travel time, and node pair travel time, respectively. 𝑔1(. ), 

𝑔2(. ), and 𝑔3(. ) are the pdfs of the observed link flow, link travel time, and node pair 

travel time, respectively. These pdfs can be expressed through either parametric or 

nonparametric approaches. In a parametric approach, various distributions (such as 

multivariate normal or log-normal) can be assumed in accordance with the traffic 

conditions. In a nonparametric approach, the pdf of a variable can be estimated from 

historical knowledge by using (for example) kernel density estimation or the method 

of moments.  

 

The first term in Eq. (5.17a) is to minimize the difference between the distributions of 

the observed and estimated link flows for the OD demand estimation, whereas the 

second and third terms intend to estimate the stochastic link travel times. Specifically, 

the second term is incorporated to minimize the difference between the distributions 

of the observed and estimated link travel times from point sensors, and the third term 

is incorporated to minimize the difference between the distributions of the observed 

and estimated travel times from AVI sensors.  

 

In Eq. (5.17a), 𝜔𝑞  ( 0 ≤ 𝜔𝑞 ≤ 1 ) is a weighting parameter that indicates the 
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importance of the OD demand estimates; (1 − 𝜔𝑞)  is a weighting parameter that 

indicates the importance of the link travel time estimates; 𝜔𝑙  (0 ≤ 𝜔𝑙 ≤ 1 ) is a 

weighting parameter that indicates the significance of the point sensor observations; 

and (1 − 𝜔𝑙)  is a weighting parameter that indicates the significance of the AVI 

sensor observations. Practically, 𝜔𝑞  can be set by considering the purpose of 

installing traffic sensors: if traffic engineers wish to obtain more accurate OD demand 

estimates, 𝜔𝑞 can be assigned a large value; in contrast, if the focus is on travel time 

estimates, 𝜔𝑞 can be assigned a small value. In addition, the value of 𝜔𝑙 can be set 

based on the sample size of observations from point or AVI sensors (Shao et al., 2018).  

 

Property 5.3. A unique optimal value of the minimization problem displayed in Eqs. 

(5.17a) and (5.17b) always exists for fixed target pdfs 𝑔1(. ), 𝑔2(. ), and 𝑔3(. ).  

To prove the uniqueness of this minimization problem, its convexity and non-

negativity must be proved. The non-negative property is covered in the discussion of 

Property 1. By expanding Eq. (5.17a) based on Eq. (5.15), it can be observed that the 

former entropy term is a convex function, and the latter cross-entropy term is an affine 

function. Therefore, the convexity is preserved under sum.  

 

Remark 1. The covariance matrices 𝚺𝒒  and 𝚺𝑡
𝑙   must be symmetric and positive 

semi-definite. Therefore, only half of the elements, including the diagonal elements in 

𝚺𝒒 and 𝚺𝑡
𝑙 , must be estimated. Specifically, if |𝐖| OD pairs are considered in a road 

network, the number of elements in 𝚺𝒒  to be estimated is [|𝐖|(|𝐖| + 1)]/2 . To 

ensure that the estimated covariance matrices are positive semi-definite, the objective 

function must be subject to the following mathematical constraints:  

 0qΣ  and 0l

tΣ ,    (5.18) 

 

Remark 2. The OD demand estimation problem is underdetermined, despite 
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additional information (e.g., the second-order statistical property and information from 

AVI sensors) being used. This is because the number of estimates pertaining to 𝐪 and 

𝚺𝒒 in the model is much larger than the dimensionality of the observations, especially 

in the case of a large road network. In addition, owing to mobility constraints and 

budget limitations, AVI and/or point sensors may not cover several links or paths in a 

real network. Thus, to restrict the mean OD demand estimates to a reasonable interval, 

prior OD demands are considered in the following constraint (Shao et al., 2014):   

 
− + q q q ,   (5.19) 

where 𝐪− and 𝐪+ are the lower and upper bounds of the mean OD demand estimates, 

respectively, which are non-negative and can be determined from the prior mean OD 

demands. This constraint ensures that the estimated mean OD demands are non-

negative.  

 

Similarly, the mean link travel time estimates should be restricted by the prior 

information, as set in the following constraint:  

 l l l− + t t t ,   (5.20) 

where 𝐭𝑙−  and 𝐭𝑙+  are the lower and upper bounds of the mean link travel time 

estimates, respectively, which are non-negative and can be determined from the prior 

information. 

 

Remark 3. If the covariance of link travel times is known, the travel time on links 

without point sensors can be calculated by (Shao et al., 2018):  

 𝒕𝑢
𝑙 = 𝒕𝑢𝑝𝑟𝑖𝑜𝑟

𝑙 + 𝜮𝑡𝑢,𝑡𝑜

𝑙 (𝜮𝑡𝑜

𝑙 )−1(�̃�𝑙 − 𝒕𝑜𝑝𝑟𝑖𝑜𝑟
𝑙 ).   (5.21) 

where 𝐭𝑢𝑝𝑟𝑖𝑜𝑟
𝑙  and 𝐭𝑜𝑝𝑟𝑖𝑜𝑟

𝑙  are the prior link travel times on unobserved and observed 

links, respectively. This constraint means that the mean unobserved link travel times 

can be estimated based on the prior and observed link travel times, and the covariance 
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of link travel times. Eq. (5.21) is thus considered a constraint of the estimation problem.  

An estimated link travel time should correspond with the traffic flow on this link based 

on the BPR link performance function (which considers the speed–flow relationship). 

By considering the variability in travel time and traffic flow, a stochastic BPR link 

performance function can be developed as a constraint or condition for estimating OD 

demands and link travel times. If the link travel time and traffic flow are considered to 

be stochastic variables, their relationships with both the mean and covariance should 

be derived based on statistics. The mean link travel time can be expressed by the mean 

link flow as below:  

 ( )l l

mH=t v ,   (5.22) 

where 𝐻𝑚(. )  is a function used for deducing the mean link travel times from the 

mean and covariance of link flows. Additionally, the covariance relationship between 

the link travel times and link flows can be derived by (Ma and Qian, 2017):  

 cov ( , )l l l

t vH=Σ v Σ ,   (5.23) 

where 𝐻𝑐𝑜𝑣(. ) is a function used for deducing the covariance between the link travel 

times from the mean and covariance of link flows. The explanations and derivations 

of functions 𝐻𝑚(. ) and 𝐻𝑐𝑜𝑣(. ) are presented in Appendix D. The KL divergence 

of link travel times between their estimates from the proposed model and those inferred 

from the link performance functions in Eqs. (5.22) and (5.23) is used as an additional 

constraint to realize the simultaneous estimation and increase the estimation accuracy. 

This KL divergence is expressed as:  

 ( ) ( )( )cov, || ( ), ( , )l l l l l

KL t m vD H H t Σ v v Σ ,   (5.24) 

where 𝜓 is a predetermined upper bound of the KL divergence constraint. The travel 

times and traffic flows on several links with point sensors can be directly observed or 

approximated. To avoid the generation of inconsistencies between the observations 

and the BPR link performance function, the BPR link performance function is only 

used for the links that cannot be directly observed by traffic sensors in a road network 
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(i.e., ∀𝑎 ∈ {𝐀\�̃�}).  

 

Therefore, the objective of the upper-level problem (Eq. (5.17a)) is constrained by Eqs. 

(3.4), (3.5), (5.8)–(5.11), (5.18)–(5.21), and (5.24). To establish a more generalized 

model, other traffic information—such as path travel time—can be considered in the 

objective function for different applications. For instance, if traffic planners intend to 

install traffic sensors to provide information for route guidance, obtaining an accurate 

path travel time can be set as an alternative objective in the SLP.  

5.3.4.2 Lower-level model: an adapted traffic flow simulator 

To ensure consistency between the path choice patterns and estimated stochastic OD 

demands, an adapted traffic flow simulator (Lam and Xu, 1999; Fu et al., 2019) based 

on a logit-based SUE traffic assignment model is used in the lower-level model. In the 

logit-based SUE model, the classical BPR link performance function – which is 

continuous, differentiable, strictly monotone increasing, and separable (Yao et al., 

2014) – is adopted. The design capacity of each link is adopted and assumed to be 

fixed in this chapter for strategic planning purposes, as the sensor locations will not be 

changed frequently in practice. Thus, with the logit-based model and classical BPR 

link performance function, the uniqueness of the SUE model used in this chapter can 

be ensured (Cantarella, 1997; Yao et al., 2014).  

 

Although a physical capacity constraint can be easily incorporated into the adapted 

traffic flow simulator, it is not considered in this chapter in order to present the 

essential insights regarding the covariance effects on the model results.  

 

Property 5.4. The solutions obtained from the adapted traffic-flow simulator are 

unique with respect to the link flows, path flows, and link choice proportions.  

In the adapted traffic flow simulator, a set of OD demand matrices will be generated 
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based on the multi-variate density functions of peak-hour OD demand estimated in the 

upper level of the second-stage model. Each of these OD matrices will be assigned by 

a logit-based SUE model to get the link and path flows. Thus, for a fixed set of OD 

demand matrices, the uniqueness of the adapted traffic flow simulator could be ensured 

with the adopted logit-based SUE model. 

 Multi-type sensor location problem 

In strategic planning, traffic sensors play primary roles in providing updated and 

adequate observations. Therefore, in the planning stage of the SLP, the number, 

locations, and types of traffic sensors should be simultaneously optimized to estimate 

the stochastic OD demands and network-wide link travel times.  

 

As discussed in Section 5.1, in addition to the mean OD demands and link travel times, 

variance and covariance information can provide additional information that enhances 

the accuracy of estimation. For instance, the relationship between different travel 

behaviors can be inferred from the covariance of the OD demands. Moreover, the 

traffic condition propagation mechanism in a road network can be estimated from the 

covariance of the link travel times. Specifically, if two links exhibit a large travel time 

covariance, the travel times of these two links are expected to be strongly linearly 

correlated. Therefore, the links with larger travel time covariance values should be 

assigned greater importance when estimating link travel times. The covariance of the 

OD demands is controlled by a similar mechanism to that of the link travel time. 

 

Therefore, the covariance information must be considered in the SLP to obtain accurate 

estimations of the mean and covariance of traffic parameters. To assign higher 

mathematical importance to links with larger travel time covariances in the SLP, the 

sum of travel time covariances between link a and other links is used as the weight on 

link a. Similarly, the sum of the OD demand covariances between OD pair w and other 



139 

OD pairs is used as the weight on OD pair w.  

 

To incorporate the stochastic OD demand and link travel time information in the SLP, 

the values must be normalized by considering the coefficients of correlation and 

variation. The coefficients of correlation and variation for the OD demand estimates 

are 𝑐𝑐𝑤,𝑤′ = 𝜎𝑤,𝑤′/(𝜎𝑤 ∙ 𝜎𝑤′)  and 𝑐𝑣𝑤 = 𝜎𝑤/𝑞𝑤 , respectively, where 𝜎𝑤  is the 

standard deviation of the OD demand of OD pair w. The coefficients of correlation and 

variation for the link travel time estimates are 𝑐𝑐𝑡𝑎,𝑡𝑎′

𝑙 = 𝜎𝑡𝑎,𝑡𝑎′

𝑙 /(𝜎𝑡𝑎

𝑙 ∙ 𝜎𝑡𝑎′

𝑙 )  and 

𝑐𝑣𝑡𝑎

𝑙 = 𝜎𝑡𝑎

𝑙 /𝑡𝑎
𝑙 , respectively, where 𝜎𝑡𝑎

𝑙  is the standard deviation of the travel time on 

link a.  

 

Inspired by the researches that have been conducted by Zhou and List (2010), 

Simonelli et al. (2012), and Xing et al. (2013), the model in this chapter is to optimize 

the number and locations of point and AVI sensors by minimizing the normalized 

uncertainties of the stochastic OD demand and link travel time estimates. The 

uncertainties are weighted by the coefficients of correlation. The objective for the 

multi-type SLP is  
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subject to 

 ' 'a nz z B +   ,   (5.25b) 

where 0 ≤ 𝜔𝑧 ≤ 1 is the weighting parameter of the OD demand estimation; 𝛽 and 

𝛽′ denote the installation and maintenance costs of point and AVI sensors, respectively; 

and B is the total budget. According to assumption A3, the cost of an AVI sensor 

installed on a node (𝛽′) depends on the number of directions covered by this node. The 

decision variables of the SLP are 𝐳 = [. . . , 𝑧𝑎, . . . ]𝑇  and 𝐳′ = [. . . , 𝑧𝑛′, . . . ]𝑇 , which 

are vectors of binary variables. 𝑧𝑎 = 1 if a point sensor is installed on link a; 𝑧𝑎 = 0 
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otherwise. 𝑧𝑛′ = 1 if an AVI sensor is installed on node n; 𝑧𝑛′ = 0 otherwise.  

 Solution algorithm 

The multi-type SLP model developed for OD demand and link travel time estimation 

is a non-convex mixed-integer programming problem that is NP-hard, especially for a 

real-life road network. To efficiently solve the developed optimization problems, the 

search strategy of the FA is enhanced by considering the mean and covariance of both 

the OD demands and link travel times (as mentioned in contribution C4).  

 

To conveniently solve the traffic SLP, the abovementioned formulation is vectorized. 

First, define a mapping function 𝛤(𝐴), which outputs a new matrix whose elements 

are the absolute values of all of the elements in matrix 𝐴. In addition, define 1 × |𝐖| 

row vector 𝐈𝒘 and 1 × |𝐀| row vector 𝐈𝒕, the elements of which are all ones. Denote 

𝐂𝐕𝑤  and 𝐂𝐕𝑡  as column vectors (i.e., 𝐂𝐕𝑤 = [. . . , 𝑐𝑣𝑤, . . . ]𝑇 and  𝐂𝐕𝑡 =

[. . . , 𝑐𝑣𝑡𝑎

𝑙 , . . . ]𝑇) that represent the coefficients of variation for the OD demand and link 

travel time estimates, respectively, and 𝐂𝐂𝑤  and 𝐂𝐂𝑡  as symmetric matrices 

consisting of the coefficients of correlation for the OD demands and link travel times, 

respectively.  

 

Therefore, the multi-type traffic SLP formulated in Eq. (5.25a) can be expressed in a 

matrix form: 
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The multi-type SLP described in Eq. (5.26) is formulated as an integer programming 

model with binary decision variables to indicate the optimal locations of point and AVI 

sensors. This problem is NP-hard, and hence the global optimum cannot be ensured, 
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especially for large-scale road networks. Meta-heuristic algorithms, such as the GA 

(Chootinan and Chen, 2006), the sequential heuristic algorithm (SHA), or the FA can 

be used to solve this SLP. Referring to Section 3.5.2 and Section 4.5.1, the FA is further 

improved and/or extended to efficiently solve the multi-type SLP in this chapter. The 

numerical examples described in Section 5 demonstrate the efficiency of the improved 

FA in comparison with several commonly used algorithms.  

 

In the framework of the FA, point and AVI sensor location schemes ( 𝐳  and 𝐳′ , 

respectively) can be conveniently represented by analogy with fireflies. Thus, 𝐳 and 

𝐳′ are vectors with allowable values of 0 and 1, and the goal of the improved FA is to 

determine the values of 𝐳 and 𝐳′. One firefly represents one traffic sensor location 

scheme for point and AVI sensors, and each binary variable indicates the existence of 

a point sensor on a link or an AVI sensor on a node. Suppose that there exist m fireflies.  

 

The objective of the traffic sensor location model pertains to the light intensity of the 

fireflies (i.e., 𝐼𝑛(𝐳, 𝐳′) = (𝜔𝑧/|𝐖|)𝐈𝒘 ⋅ Γ(𝐂𝐂w) ⋅ 𝐂𝐕w + ((1 − 𝜔𝑧)/|𝐀|)𝐈t ⋅ Γ(𝐂𝐂t) ⋅

𝐂𝐕t). 𝐼𝑛(𝐳, 𝐳′) is thus a fitness function that determines the attractiveness of a firefly, 

which is proportional to its brightness. Both attractiveness and brightness decrease as 

the distance increases. As an extension of the original FA (Yang, 2008), the distance 

between two fireflies, 𝑟𝑥𝑦 , can be calculated to assess the difference between the 

represented sensor location schemes.  

 

To comprehensively consider the covariance effects of OD demands and link travel 

times, the search strategy of the original FA is enhanced by taking into account the 

light absorption coefficients 𝜶1
𝑞 , 𝜶2

𝑞 , 𝜶1
𝑡 , and 𝜶2

𝑡 . In the numerical examples of this 

chapter, the four light absorption coefficients are negative and with -1 as their initial 

value (Miguel et al., 2013). In general, the light absorption coefficients are 

recommended to be set in the range (-10, -0.1) (Pal et al., 2012). To ensure that the 
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improved FA can yield a solution as close to the global optimum as possible with rapid 

convergence, the light absorption coefficients 𝜶1
𝑞 , 𝜶2

𝑞 , 𝜶1
𝑡  , and 𝜶2

𝑡   are iteratively 

updated according to the estimation accuracy of the mean OD demand, the covariance 

of OD demand, the mean link travel time, and the covariance of link travel time, 

respectively. The updating process of these coefficients and their relationships can be 

explained as below:  

 

After each iteration 𝑖, the estimation accuracy of the mean OD demand, the covariance 

of OD demand, the mean link travel time, and the covariance of link travel time are 

evaluated by MPRE and defined as 𝑀𝑃𝑅𝐸1
𝑞(𝑖)

 , 𝑀𝑃𝑅𝐸2
𝑞(𝑖)

 , 𝑀𝑃𝑅𝐸1
𝑡(𝑖)

 , and 

𝑀𝑃𝑅𝐸2
𝑡(𝑖)

, respectively. The MPRE is defined in Section 3, and detailed formulation 

can be found in the studies of Yang et al. (1991) and Fu et al. (2019). For example, 

with the MRPEs in iteration i, the light absorption coefficient corresponding to the 

mean OD demand estimate (𝜶1
𝑞
) is updated by:  

 𝜶1
𝑞(𝑖+1)

= 𝜶1
𝑞(𝑖)

∙ 4𝑀𝑃𝑅𝐸1
𝑞(𝑖)

/(𝑀𝑃𝑅𝐸1
𝑞(𝑖)

+ 𝑀𝑃𝑅𝐸2
𝑞(𝑖)

+ 𝑀𝑃𝑅𝐸1
𝑡(𝑖)

+ 𝑀𝑃𝑅𝐸2
𝑡(𝑖)

).   

 (5.27) 

 

The coefficients corresponding to covariance of OD demand (𝜶2
𝑞
), mean link travel 

time (𝜶1
𝑡 ), and covariance of link travel time (𝜶2

𝑡 ) are updated in the same manner. It 

can be seen from Eq. (5.27) that a smaller 𝑀𝑃𝑅𝐸1
𝑞(𝑖)

 leads to a larger corresponding 

light absorption coefficient 𝜶1
𝑞
 in the next iteration. In contrast, a smaller 𝑀𝑃𝑅𝐸1

𝑞(𝑖)
, 

with fixed MAPEs for other characteristics (i.e., 𝑀𝑃𝑅𝐸2
𝑞(𝑖)

 , 𝑀𝑃𝑅𝐸1
𝑡(𝑖)

 , and 

𝑀𝑃𝑅𝐸2
𝑡(𝑖)

), will lead to smaller values of the other light absorption coefficients (i.e., 

𝜶2
𝑞
, 𝜶1

𝑡 , and 𝜶2
𝑡 ) in the next iteration. In general, smaller light absorption coefficients 

correspond to a higher probability of achieving the global optimum but slower 
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convergence, and vice versa (Miguel et al., 2013). The upper bound and a lower bound 

of these light absorption coefficients are set to be -0.1 and -10, respectively.   

 

In terms of the variation function of attractiveness (i.e., 𝑒𝑥𝑝[(𝜶1
𝑞 + 𝜶2

𝑞 + 𝜶1
𝑡 +

𝜶2
𝑡 )𝑟𝑥𝑦]), negative light absorption coefficients imply that a larger distance between 

two fireflies corresponds to a smaller attractiveness between them (Miguel et al., 2013). 

If the coefficients approach zero, the fireflies do not move, and their attractiveness 

becomes a constant. In contrast, if the coefficients approach negative infinity, the 

fireflies move randomly. Such random movement of fireflies helps to avoid solutions 

being trapped into local optimums.    

 

The stopping criterion of the two-stage model is based on the maximum number of 

iterations (i.e., i > MaxGeneration) and the stopping criterion of the second-stage bi-

level model based on the link travel time estimation (i.e., 휀 = 𝑚𝑎𝑥 [|
�̃�𝑎

𝑙  

𝑡𝑜,𝑎
𝑙  

− 1| , ∀𝑎 ∈

�̃�] ≤ 𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 ) (Lam and Xu, 1999). By modeling the attractiveness with 

consideration of the light absorption coefficients and distance, the algorithm can 

determine the sensor location scheme that results in more accurate estimations of the 

stochastic OD demands and link travel times than other schemes. The pseudo-code of 

the improved FA is presented in Figure 5.2.  
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Figure 5.2 Pseudo-code of the improved FA 

 

 Numerical examples 

Two numerical examples are used to illustrate the merits of the proposed model and 

solution algorithm for solving the multi-type SLP for simultaneously estimating the 

OD demands and link travel times while also considering covariance effects. 

Experiments are performed on two different road networks to examine the various 

aspects detailed below.  

 

Example 1: Synthetic small road network 

(1) Covariance effects of OD demands and link travel times on the SLP and estimation 

accuracy  

The effects of the OD demand and link travel time covariance on the optimal 

deployment of traffic sensors and estimation accuracy are examined in accordance 
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with contribution C1. Hypothetically, the estimation accuracy can be increased 

because the mean and covariance of the observations are incorporated into the problem, 

especially in congested conditions in peak-hour periods. 

 

(2) Comparison of the SLPs for simultaneously and separately estimating the OD 

demands and link travel times  

To achieve contribution C2, the estimation accuracies are investigated to demonstrate 

the superiority of simultaneous estimation over separate estimation (i.e., the estimation 

of either OD demands or link travel times) in the SLPs. Because both the traffic flow 

and travel time information are considered, the optimal sensor locations determined 

from simultaneous estimation are expected to yield more accurate results than those 

determined from separate estimation. 

 

(3) Comparison between the KL divergence-based model and the GLS model 

Variation in traffic conditions leads to different probability distributions of traffic flow 

and travel time. As mentioned in contribution C3, a KL divergence-based method is 

used to estimate the stochastic OD demands and link travel times to decrease the 

estimation bias related to variations in traffic conditions.  

 

(4) Sensitivity analysis of the weighting parameters used in the simultaneous 

estimation of the OD demands and link travel times  

The KL divergence-based method is used to integrate stochastic OD demands and link 

travel times. The weighing parameters must be adapted to various estimation schemes 

in the weighted-sum method.  

 

Owing to the limited number of links and nodes in the small road network, it is difficult 

to clarify the tradeoff using multi-source data from different traffic sensors. Thus, it is 

necessary to conduct realistic experiments in a larger road network to examine the 
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tradeoff related to using data from different types of traffic sensors (in terms of the 

type of data collected and the cost of sensors) and the effect of network topology on 

the optimal number and locations of multi-type sensors.  

 

Example 2: Real-life case study in Hong Kong 

(5) Effects of different estimation schemes on the optimal number and locations of 

sensors  

According to the data detected by different traffic sensors, the estimation of OD 

demands is primarily based on the flow data from point sensors, whereas the estimation 

of link travel times is based mainly on the path travel time information from AVI 

sensors, especially for paths that consist of many links with few point sensors.  

 

(6) Influence of different types of sensor data on simultaneous estimation results  

Each type of sensor data exhibits unique advantages. Because AVI sensors can provide 

only path travel time information, these sensors are used mainly to estimate link travel 

times. Data from point sensors, which are inexpensive, are the main type of data used 

to estimate OD demand and link travel times.  

 

(7) Effects of the cost ratio between different types of sensors on the optimal number 

of sensors 

In practice, the cost ratio between point and AVI sensors affects the budget allocation 

to purchase different types of sensors.  

 

(8) Convergence and stability of the solution 

The convergence and stability of the solution for the realistic road network are 

evaluated to demonstrate the superior efficiency of the improved FA compared to that 

of several commonly used algorithms, as indicated in contribution C4.  
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 Example 1 

This example is based on a small road network consisting of 7 nodes, 16 links, and 12 

OD pairs, as shown in Figure 3.3 in Chapter 3. Multi-type traffic sensors are to be 

installed for estimating the stochastic OD demands and network-wide link travel times 

in the morning peak-hour period (e.g., 8:00–9:00 a.m.). Table 5.1 lists the link free-

flow travel times, the design capacities, and the lengths for this network.  

 

Table 5.1 Link free-flow travel times, design capacities, and lengths for the network 

in Example 1  

Link 

nos.  

Free-flow 

travel time (h) 

Design capacity 

(veh/h) 

Length  

(km) 

1, 4 0.0031 425 0.22 

2, 6 0.0040 610 0.28 

3, 8 0.0043 380 0.30 

5, 11 0.0031 520 0.22 

7, 9 0.0040 300 0.28 

10, 12 0.0043 580 0.30 

13, 15 0.0050 850 0.25 

14, 16 0.0050 690 0.25 

 

For the sake of illustration, the “true” mean and var–cov of the hourly OD demands in 

the morning peak, obtained using the sampling method (Cascetta and Nguyen, 1988), 

are assumed to be known and are summarized in Table 5.2 and Table 5.3, respectively. 

The path set for each OD pair can be referred to Table 3.2 in Chapter 3. The true link 

flows and link and path travel times in the peak-hour period can be simulated based on 

the true OD demands by using an adapted traffic flow simulator (Lam and Xu, 1999), 

in which a Monte Carlo algorithm is implemented. To ensure that the feasible paths of 

the OD pairs in the numerical examples can be identified with non-excessive 

computational effort, the set of paths for each OD pair is assumed to be known and 

fixed. The other parameters in the BPR link performance function are the same as those 

set by Fu et al. (2019). It is assumed that the length of each link is less than the 
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detection zone of microwave radar point sensors (i.e., 0.3 km). Only one such point 

sensor is to be installed on each selected link. The influence of the link length and the 

number of point sensors installed on each link in the SLP should be examined in future 

work.  

 

It was reported that the travel times in a road network follow log-normal and normal 

distributions in congested and uncongested conditions, respectively (Li et al., 2006b). 

The exact form of the KL divergence is obtained for multivariate normal or 

multivariate log-normal distributions, as presented in Eq. (5.28) (Gil, 2011). Thus, the 

following KL divergence formulation can be used to represent both congested and 

uncongested conditions in the numerical examples:  

 ( )( ) ( ) ( ) ( )
1 11

( || ) log
2

obs
Txobs obs obs obs obs

KL x x x

x

D d tr
− −

 
 = − +   + −  −
 
 

X X x x x x ,  (5.28)     

where 𝐗  and 𝐗𝑜𝑏𝑠  are d-dimensional random vectors that follow multivariate 

normal or log-normal distributions with means 𝒙 and 𝒙𝑜𝑏𝑠 and covariance matrices 

Σ𝑥  and Σ𝑥
𝑜𝑏𝑠 , respectively. 𝐗𝑜𝑏𝑠  represents the link flows and link travel times 

observed at the point sensors or the travel times between a node pair observed at the 

AVI sensors, as indicated in Eq. (5.17a).  

 

With reference to the studies of Yang et al. (1992) and Fu et al. (2022), the prior OD 

demands are set to have the following relationship with true values (Table 5.2): 

𝑞𝑤
𝑝𝑟𝑖𝑜𝑟 = (1 − 𝜇 ∙ 𝑐𝑣𝑤

∗ ) ∙ 𝑞𝑤
∗   and 𝜎𝑤,𝑤′

𝑝𝑟𝑖𝑜𝑟 = (1 − 𝜇 ∙ 𝑐𝑣𝑤
∗ )(1 − 𝜇 ∙ 𝑐𝑣𝑤′

∗ ) ∙ 𝜎𝑤,𝑤′
∗  . 𝑞𝑤

∗  

and 𝜎𝑤,𝑤′
∗  are the simulated true mean OD demand of OD pair 𝑤 and covariance of 

the OD demand between OD pairs 𝑤  and 𝑤′ , respectively. 𝜇  is an independent 

random variable that follows a normal distribution 𝑁(0,1), and 𝑐𝑣𝑤
∗  represents the 

coefficient of variation of the true traffic flows for OD pair 𝑤. The prior mean OD 

demands are input to the logit-based SUE model (with dispersion parameter 𝜃 = 0.2) 
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to evaluate the mean link flows and path flows for the entire network. Therefore, 

referring to the definitions of the path choice proportion and the link-path incidence, 

the prior link choice proportions can be obtained based on the equilibrium results (i.e., 

𝑝𝑎𝑤
𝑙 = ∑ 𝛿𝑎𝑘𝑝𝑘𝑤

𝑝
𝑘∈𝐊 ).    

 

Table 5.2 Network parameters and true mean of OD demands 

OD number 1 2 3 4 5 6 7 8 9 10 11 12 

Origin-

Destination 
C-B C-F C-G B-C B-F B-G F-C F-B F-G G-C G-B G-F 

“True” mean 

OD demands 

(veh/h) 

262 370 135 307 358 384 251 272 286 185 214 308 
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Table 5.3 True var-cov matrix of OD demands 

OD 

No. 

Var-cov matrix (veh/h)2 

1 2 3 4 5 6 7 8 9 10 11 12 

1 4492.6            

2 826.1 13835.0           

3 -11.9 304.8 734.0          

4 -296.4 4545.7 459.2 4582.4         

5 -723.8 -2205.5 1479.6 716.2 13827.9        

6 3393.3 2138.7 -1347.6 -948.7 -3733.1 20811.0       

7 718.0 -1184.2 -707.3 -2458.7 -2400.2 2301.1 6337.7      

8 115.5 230.4 -588.0 -1557.6 971.8 159.7 947.8 5996.6     

9 2553.1 -2814.7 240.9 297.7 981.1 -1061.4 218.6 963.4 11383.4    

10 -80.8 -1488.1 180.0 133.7 1274.1 634.9 -163.6 517.7 235.1 2445.8   

11 1394.5 1018.8 103.4 898.5 -1434.9 1305.5 -1262.8 -729.2 1105.1 284.1 2884.0  

12 634.1 945.0 700.4 396.5 2214.9 -456.2 919.5 328.3 2756.3 417.2 317.6 5184.0 
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5.5.1.1 Covariance effects of OD demands and link travel times on the SLP and 

estimation accuracy 

To examine the effects of the covariance of the OD demands and link travel times on 

the optimal solution of the multi-type SLP, various combinations of the covariance 

values of the OD demand and link travel time are compared, as described in the 

following four scenarios:   

 Scenario I: The covariance of both the OD demands and link travel times is 

ignored.  

 Scenario II: The covariance of the OD demands is considered, but that of the link 

travel times is ignored.  

 Scenario III: The covariance of the link travel times is considered, but that of the 

OD demands is ignored.  

 Scenario IV: The covariance of both entities is considered.   

 

The mean absolute percentage errors (MAPEs) of the estimates of the OD demand and 

link travel time are used to evaluate the estimation accuracy in the four scenarios. Two 

AVI sensors and four point sensors are assumed to be installed in the network.  

 

Table 5.4 indicates that the MAPEs of the OD demand and link travel time and the 

average MAPE for Scenarios II and III are less than those of Scenario I. This finding 

implies that considering the effects of covariance of the OD demands or link travel 

times can increase the accuracy of estimates of OD demands and link travel times for 

a given number of sensors. When the covariances of both the OD demands and link 

travel times are considered (Scenario IV), the most accurate estimates for the two 

traffic characteristics have the lowest average MAPE (8.83%). This finding highlights 

the necessity of systematically considering the effects of covariance of both the OD 

demands and link travel times on the SLP.  
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Table 5.4 Effects of the OD demand and link travel time covariances on the SLP 

results 

Scenario  

Considering 

OD demand 

covariance  

Considering 

link travel time 

covariance  

Optimal sensor 

locations 

MAPE of 

OD demands  

MAPE of link 

travel times  

Average 

MAPE 

I   
Point: [1, 6, 7, 11] 

AVI: [C, D] 
28.36% 32.03% 30.20% 

II ✓  
Point: [1, 3, 7, 12] 

AVI: [B, F] 
13.92% 22.55% 18.24% 

III  ✓ 
Point: [2, 3, 8, 10] 

AVI: [B, G] 
20.37% 14.92% 17.65% 

IV ✓  ✓ 
Point: [1, 3, 5, 10] 

AVI: [B, F] 
 8.47%  9.19%  8.83% 

 

Moreover, Table 5.4 indicates that the optimal sensor location scheme varies according 

to the consideration of the covariances. The traffic sensors installed at different 

locations in the road network provide different types of valuable information that can 

be used for estimating the mean and covariance of the OD demands and link travel 

times. The strategies of sensor installation are examined in the real case study with 

empirical data.   

 

Owing to the budget constraint in practice, only a limited number of traffic sensors can 

be installed in the study network. In Scenario IV in which the covariances of the OD 

demand and link travel time are considered, the overall estimation results can be 

enhanced by using the optimal sensor location scheme. In this scenario, point sensors 

are installed on links 1, 3, 5, and 10, and AVI sensors are installed on nodes B, and F.  

 

The estimation results of the OD demands and link travel times in Scenario IV are 

presented in Figure 5.3(a) and (b), respectively. As shown in Figure 5.3(a), the largest 

MAPE (17.63%) of an estimated OD demand corresponds to OD pair G–F (i.e., OD 

pair ID 12). Moreover, the estimated OD demands are mainly based on the link flow 
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data observed from point sensors. In Scenario IV, the observations on links 1, 3, 5, and 

10 with point sensors do not significantly contribute to the estimation of vehicular 

demand for OD pair G–F (with one path passing through links 16 and 13). Figure 5.3(b) 

shows that the estimation accuracy of the link travel time on link 14 is the lowest 

(16.03%) of all links. In the optimal sensor location scheme for Scenario IV, link 14 

has not been observed, or covered, by either the installed point sensors or AVI sensors. 

Thus, the MAPE of link travel time estimates on this link is the largest, but the absolute 

estimation error is still less than 0.05 min.  

 

     

(a) OD demand estimates             (b) link travel time estimates 

Figure 5.3 Results of simultaneous estimation of the (a) OD demands and (b) link 

travel times in Scenario IV 

5.5.1.2 Comparison of the SLP with simultaneous and separate estimation of the 

OD demands and link travel times  

As described in Section 5.1, most previous studies have focused on installing traffic 

sensors in a road network for the estimation of either OD demands or link (or path) 

travel times. In contrast, in this research, various types of traffic sensors should be 

installed to estimate both the stochastic OD demands and link travel times in a peak-

hour period based on the yearly data collected from the sensors.  

 

Three models with different settings are compared to examine the effects of the 

simultaneous estimation of the OD demands and link travel times. In Model I, the 
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weighting parameter 𝜔𝑧 = 1  in Eq. (5.25a) is used, indicating that sensors are 

installed only to estimate OD demands. In Model II, the weighting parameter 𝜔𝑧 = 0, 

indicating that sensors are installed only to estimate link travel times. In Model III, the 

weighting parameter 𝜔𝑧 = 0.5, indicating that sensors are installed to estimate OD 

demands and link travel times. Table 5.5 presents the estimated OD demands and link 

travel times for the three models for the given numbers of installed point and AVI 

sensors. 

 

Table 5.5 indicates that the different models yield different optimal traffic sensor 

location schemes, corresponding to different estimation performances. For instance, 

when only OD demands are considered (Model I), it is preferable to install point 

sensors on links 1, 6, 9, and 10 and AVI sensors at nodes C and F. This difference in 

the schemes is attributable to the fact that traffic sensors installed at different sites 

exhibit different abilities for capturing the flows from different OD pairs. For example, 

for a link (e.g., link 6) traversed by more OD pairs and with highly correlated flows 

with other links, it is preferable to install a point sensor to estimate stochastic OD 

demand.  

 

Based on observations from the traffic sensors, the MAPE of the estimates of 

stochastic OD demand from Model I is considerably less than that associated with 

Model II, although the accuracy of the estimation of the link travel times from Model 

II is higher than that from Model I.  

 

A comparison of the results obtained using Model III with those obtained using Models 

I and II indicates that estimating the OD demands and link travel times in the SLPs 

leads to the smallest average MAPE (i.e., 10.31%). Moreover, Model III yields the 

most accurate estimates of the mean and covariance of both the OD demands and link 

travel times, as indicated by the MAPEs listed in Table 5.5. The accurate estimates 
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benefit from incorporating a stochastic link performance function that connects the 

link flow and link travel time information and can enhance the estimation of the mean 

and covariance. In summary, multi-type traffic sensor locations should be determined 

for simultaneously estimating the stochastic OD demands and link travel times, and 

these estimates are superior to those obtained by separately estimating each entity. 

 

Table 5.5 Comparison of simultaneous and separate estimations 

Model 
Estimation 

scheme 

Optimal traffic 

sensor locations 
𝑀𝐴𝑃𝐸q  𝑀𝐴𝑃𝐸t𝑙  𝑀𝐴𝑃𝐸Σ𝑞

 𝑀𝐴𝑃𝐸Σ𝑡
𝑙  Average 

I (𝜔𝑧=1) OD demand 
Point: [1, 6, 9, 10] 

AVI: [C, F] 
 8.52% 27.11% 14.17% 27.04% 19.21% 

II (𝜔𝑧=0) Link travel time 
Point: [2, 4, 5, 11] 

AVI: [C, G] 
30.56% 13.62% 25.88% 18.91% 22.24% 

III 

(𝝎𝒛=0.5) 

OD demand and 

link travel time 

Point: [1, 3, 5, 10] 

AVI: [B, F] 
 6.63%  8.76% 12.12% 13.71% 10.31% 

 

5.5.1.3 Comparison between KL divergence-based model and GLS model 

The KL divergence-based model is developed to estimate the stochastic OD demands 

and link travel times with covariance effects. This novel model extends the existing 

models and is particularly suitable for simultaneous estimation in the SLP. The 

traditional GLS model can be regarded as a special case of the developed model that 

occurs when the variables are normally distributed. A comparative analysis is 

performed between KL divergence-based model and the traditional GLS model 

reported by Shao et al. (2014) in different traffic conditions to demonstrate the 

superiority of the proposed model.  

 

To imitate congested and uncongested conditions, different distributions of the traffic 

flow and travel time are assumed. The multivariate normal and log-normal 

distributions represent the traffic information in uncongested and congested conditions, 

respectively. The true mean and variance of OD demands in congested conditions are 
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set to be 5 and 25 times those in uncongested conditions, respectively.  

 

Suppose that for a random vector 𝐗 ∈ ℝ𝑀, the values of distributional parameters such 

as 𝝁 and 𝚺 in the multivariate normal and log-normal distributions are different. For 

example, the mean value in the multivariate normal and log-normal distributions is 𝝁 

and 𝑒𝑥𝑝(𝝁 + 𝚺/2) , respectively. Then, based on the stochastic OD flows with 

different probability distributions, the parameters 𝝁𝑁 and 𝚺𝑁 in multivariate normal 

and 𝝁𝐿𝑁  and 𝚺𝐿𝑁  in multivariate log-normal distributions can be calculated. The 

results of the parameter estimation based on the KL divergence-based model and GLS 

model are compared. The MAPEs of 𝝁 and 𝚺 are calculated to evaluate the accuracy 

of the estimates for the two types of traffic conditions with associated distributions.  

 

Table 5.6 Comparison of model performances with different distributions of OD 

demands and link travel times 

  
Multivariate normal Multivariate log-normal 

𝑀𝐴𝑃𝐸𝝁𝑁
 𝑀𝐴𝑃𝐸𝚺𝑁

 𝑀𝐴𝑃𝐸𝝁𝐿𝑁
 𝑀𝐴𝑃𝐸𝚺𝐿𝑁

 

KL divergence-

based model 
8.27% 12.56% 10.11% 15.24% 

GLS model 8.27% 12.56% 22.39% 27.62% 

 

Table 5.6 exhibits that the accuracy of the estimates generated by the two models is 

identical when considering the multivariate normal distribution. However, for the 

multivariate log-normal distribution, the MAPEs of 𝝁𝐿𝑁  and 𝚺𝐿𝑁  from the KL 

divergence-based model are 10.11% and 15.24%, respectively, which are considerably 

less than those obtained from the GLS model. Thus, in congested conditions, the KL 

divergence-based model outperforms the GLS model in estimating the stochastic OD 

demands and link travel times. The accuracy of the estimates generated by the two 

models is comparable only in uncongested conditions, i.e., with a multivariate normal 

distribution.  
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Moreover, experiments are conducted to clarify the influence of the minimization of 

KL divergence in different directions (i.e., forward KL divergence and reverse KL 

divergence) on the accuracy of estimates. Another distance measurement—the Jensen–

Shannon (JS) divergence, a symmetrized version of the KL divergence—is considered 

for comparison. The JS divergence can be calculated as: 

 𝐽𝑆(𝑓(𝑥)||𝑔(𝑦)) =
1

2
𝐷𝐾𝐿 (𝑓(𝑥)||

1

2
(𝑓(𝑥) + 𝑔(𝑦))) +

1

2
𝐷𝐾𝐿 (𝑔(𝑦)||

1

2
(𝑓(𝑥) + 𝑔(𝑦))).   

 (5.29) 

 

 

Figure 5.4 Comparison of results obtained using models based on the forward KL 

divergence, the reverse KL divergence, and the JS divergence  

 

The results based on the forward KL divergence (𝐷𝐾𝐿(𝑔(𝑦)||𝑓(𝑥)) in Eq. (5.14), the 

reverse KL divergence (𝐷𝐾𝐿(𝑓(𝑥)||𝑔(𝑦))), and the JS divergence (𝐽𝑆(𝑓(𝑥)||𝑔(𝑦)) in 

Eq. (5.29) are compared under various total financial budgets. As shown in Figure 5.4, 

the maximum difference in the accuracy of estimates of any two of these divergences 

is 3.07%. This small difference is attributable to the OD demand and link travel time 

having unimodal distributions in general. Although this difference in the accuracy of 

estimates associated with the three divergences is not significant, the forward KL-

divergence-based model (i.e., 𝐷𝐾𝐿(𝑔(𝑦)||𝑓(𝑥)) ) yields more accurate estimates in 
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most cases. This finding supports the use of the forward KL divergence for developing 

the optimization model for the simultaneous estimation of stochastic OD demands and 

link travel times.   

5.5.1.4 Sensitivity analysis of the weighting parameter used in the simultaneous 

estimation of the OD demands and link travel times 

As discussed in Section 5.5.1.2, in the planning stage, the locations of multi-type traffic 

sensors should be optimized for estimating the OD demands and link travel times. 

Thus, the tradeoff in the significance of the estimated OD demands and link travel 

times in the SLP must be examined. To this end, a sensitivity analysis of the weighting 

parameters of the OD demand and link travel time estimates is performed. The changes 

in the estimates (in MAPE) of the OD demands and link travel times with the 

weighting parameters (𝜔𝑧 in Eq. (5.25a)) are shown in Figure 5.5.  

 

 

Figure 5.5 Sensitivity analysis of the weighting parameter for simultaneous 

estimation of OD demand and link travel time 

 

The results in Figure 5.5 indicate that when the estimations of the OD demands and 

link travel times are equally weighted (i.e., 𝜔𝑧 = 0.5 ), the average MAPE for the 

estimates of OD demand and link travel time is minimized. Moreover, the use of a 

larger weighting parameter for the OD demands corresponds to a lower MAPE for the 
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estimation of OD demand but a larger MAPE for the estimation of the link travel time. 

This converse is true if a smaller weighting parameter is used for the OD demands. 

Thus, traffic engineers who are determining sensor locations with an emphasis on the 

OD demands must assign a larger weighting parameter to the estimation of OD demand 

than to the estimation of link travel time.  

 

 Example 2 

To demonstrate the applicability of the proposed model for solving the multi-type SLP 

in the real world, the Tuen Mun Road Corridor Network in Hong Kong (Figure 4.5 in 

Chapter 4) is used with empirical data collected for this case study. In the numerical 

example, with the observed feature (i.e., link flows, link travel times, and partial path 

travel times), the corresponding multi-variate density functions can be inferred by 

kernel density estimation (i.e., Eqs. (5.16a), (5.16b), and (5.16c)) without knowing 

their shape. By minimizing the KL divergence between the multi-variate density 

functions of estimated and observed features, the pdfs of the OD demand and link 

travel time in the study network can be estimated. As mean and covariance are the two 

most important characteristics of a multi-variate density function, MAPEs of these 

quantities are used for validation in the numerical examples.  

 

Prior information is used to increase the estimation accuracy in this numerical example. 

First, historical data is collected to constrain the estimated mean OD demands and 

mean link travel times within a reasonable range based on the historical statistics. Apart 

from the means, the prior information of OD demand covariance can be inferred based 

on historical vehicle occupancy data (Fu et al., 2019, 2022). With the prior mean and 

covariance of OD demands and the assumption of a given and fixed path set 

(assumption A6), the prior stochastic travel time on each network link can be obtained 

using the adapted traffic flow simulator. 
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In this example, the design capacity of each road link will be adopted for strategic 

planning of sensor locations. As the design capacity of links is highly dependent on 

their attributes (e.g., road type, number of lanes, road width, etc.), link attributes are 

collected for each of all road links within the study network for defining their design 

capacities. True OD demands are estimated from the data obtained from all available 

point sensors (i.e., 18 point sensors) in the road network. The true link travel times are 

obtained by assigning the OD demands to the network in SUE conditions.  

 

It is assumed that eight point sensors (four on the TMR and four on the CPR) and two 

AVI sensors (at the nodes connecting external zones S1 and S2) have already been 

installed in the network. For a given financial budget, the additional numbers and 

locations of traffic sensors are determined using the developed models. According to 

assumption A3, the cost of an AVI sensor is the cost of the sensor on a node covering 

one direction of traffic. For nodes covering more than one direction, the cost of an AVI 

sensor must be multiplied by the number of covered directions.  

 

The traffic flow data obtained from the point sensors installed in Tuen Mun Road 

Corridor Network (Figure 3.10 in Chapter 3) show that the hourly traffic flows vary 

significantly and systematically by time of day and day of the year. For strategic 

planning, traffic planners should focus on the most congested period on typical 

weekdays (i.e., the morning peak hour) (Shao et al., 2014; Ma and Qian, 2018). Thus, 

the morning peak hour period (i.e., 7:00–8:00 a.m., as indicated in Figure 3.10 in 

Chapter 3) on normal weekdays over the year is chosen as the study period, and the 

data in this period will be used for simultaneous estimation in this chapter.  

 

Link choice proportions on several links can be obtained based on observations from 

AVI sensors (Zhou and List, 2010; Fu et al., 2022). For instance, if origin node B and 
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destination node F in Figure 3.3 in Chapter 3 are equipped with AVI sensors, the traffic 

flows (𝑣′𝐵𝐹) with AVI tags in this OD pair 𝑤 (i.e., from B to F) can be observed. It 

can be seen from Table 3.2 that some traffic flows of OD pair 𝑤 can pass through 

link a (i.e., link 10), whose end nodes (D and E) are also assumed to be installed with 

AVI sensors. The traffic flow observed by all these four AVI sensors is represented by 

𝑣′𝐵𝐷𝐸𝐹. Thus, the link choice proportion of link a traversed by flows in OD pair 𝑤 

(i.e., origin B to destination F) can be approximately estimated as 𝑝𝑎𝑤
𝑙 = 𝑣′𝐵𝐷𝐸𝐹/𝑣′𝐵𝐹 . 

Owing to the sparse distribution of AVI sensors, link choice proportions can only be 

inferred for a few links. It merits further studies to extend the proposed model by 

incorporating the additional information of link choice proportions observed from AVI 

sensors.  

 

In this numerical example (Example 2), after estimating the OD demand (in the upper 

level of the second-stage model), the link choice proportions are iteratively updated 

based on the equilibrium link and path flows (in the lower level of the second-stage 

model) for the fixed path set. The prior link choice proportion is acquired in a similar 

manner from the prior OD demand information extracted from the district transport 

model for this road network.  

 

5.5.2.1 Effects of different estimation schemes on the optimal numbers and 

locations of sensors  

Empirical data is adopted to clarify the influence of the estimation scheme on the 

optimum number and locations of traffic sensors. For a given budget (i.e., 𝐵 =

US$62,400), optimal solutions are obtained for estimating (i) only the OD demands, 

(ii) only the link travel times, (iii) the OD demands and link travel times. The unit costs 

of a point sensor and an AVI sensor installed on a node covering one direction are 𝛽 =

US$2,600 and 𝛽′ = US$5,200, respectively. According to assumption A3, the cost 
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of AVI sensors on nodes depends on the number of directions covered by the nodes.  

 

The results shown in Table 5.7 indicate that if traffic managers intend to install traffic 

sensors to estimate only OD demands, only additional point sensors are required. This 

is because the estimation of OD demands is based on the link flow observed by point 

sensors; the path travel time information provided by AVI sensors does not contribute 

significantly to the estimation of OD demands. Thus, it is not cost-effective to install 

AVI sensors.  

 

Both types of sensors must be installed in the other two estimation schemes. To 

estimate link travel times, there should be more AVI sensors than point sensors. In 

particular, given prior link travel times, the path travel time information provided by a 

pair of AVI sensors can help to estimate the travel time on all of the links along that 

path. In comparison, the data from point sensors can only be used to estimate the travel 

time on the links equipped with these point sensors. Thus, the installation of AVI 

sensors is more cost-effective than the installation of point sensors for estimating the 

link travel times on paths with numerous links (e.g., paths along the CPR in the study 

network).  

 

More point sensors should be installed on the CPR than on the TMR for all estimation 

schemes. Compared to the TMR (41 links), the CPR (164 links) involves more at-

grade junctions, including signalized intersections. Thus, it is more difficult to estimate 

the stochastic link travel times and OD demands for the CPR, and more information 

should be acquired from point sensors to accurately estimate the link travel times and 

OD demands in this road network. This is also why more AVI sensors are installed on 

the CPR than on the TMR. 
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Table 5.7 Effects of estimation schemes on optimal number and locations of 

additional sensors 

Estimation scheme 

Optimal number of additional sensors* 

Total number of additional 

point sensors (on TMR + 

on CPR) 

Total number of additional 

AVI sensors (on TMR + 

on CPR) 

(i) OD demand only 24 (8 + 16) 0 

(ii) Link travel time only  4 (1 + 3) 5 (1 + 4) 

(iii) Simultaneous estimation  8 (2 + 6) 4 (1 + 3) 

*The additional sensors for three purposes cost the same US$62,400 

 

For the simultaneous estimation scheme (iii), the accuracies of the OD demands and 

link travel times estimated simultaneously using data from eight additional point 

sensors and four additional AVI sensors are shown in Figure 5.6, for comparison with 

the results of the other two estimation schemes. The 50 percentile MAPEs of the 

estimated OD demands for 306 OD pairs and the estimated link travel times for 487 

links are 9.01% and 9.65%, respectively.  

 

Furthermore, the accuracies of the estimates from the scheme (iii) are mostly higher 

than those for the other two schemes (i.e., the schemes estimating only OD demands 

or link travel times). This higher accuracy of the scheme (iii) results from its more 

efficient use of data than the other schemes. Specifically, the link travel time estimated 

from AVI sensors data can be used to infer the link traffic on the unobserved links (i.e., 

the links not covered by point or AVI sensors) by using the link performance function, 

which can enhance the OD demand estimation. Similarly, the estimated link travel 

times of the unobserved links can be enhanced by considering the link flows obtained 

by assigning OD demand estimates to the study network. To clarify the contributions 

of different sensor types, a sensitivity test is performed to investigate the influence of 

multi-type sensors on the accuracy of estimated OD demands and link travel times.  

 



164 

      

(a) Accuracy of OD demand estimates  (b) Accuracy of link travel time estimates 

Figure 5.6 Accuracy of estimates from different estimation schemes 

 

5.5.2.2 Influence of different sensor data on the simultaneous estimation of OD 

demands and link travel times 

Point and AVI sensors provide different types of traffic information for different 

estimation schemes, and thus this information is used in different ways for the 

estimation of OD demands and link travel times. It is important to clarify the influence 

of data from different traffic sensors on such estimations in a realistic road network. 

As in the experiment described in Section 5.5.2.1 for a given total budget, additional 

point or AVI sensors are to be installed for the simultaneous estimation of OD demands 

and link travel times. The weighting parameters 𝜔𝑞, 𝜔𝑙, and 𝜔𝑧 are set as 0.5. 

 

As indicated in Table 5.8, the point sensors outperform the AVI sensors in terms of the 

average MAPEs of the estimates of OD demand and link travel time (10.57%). This is 

because point sensors can provide information on link travel times and flows, whereas 

AVI sensors can only provide information on path travel times.  

 

The accuracy of estimates of link travel times obtained from six additional AVI sensors 

(9.04%) is higher than that obtained with 24 additional point sensors. This is because 

the 24 additional point sensors can observe the travel time on only 24 links, whereas 
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the six additional AVI sensors in cooperation with the two existing AVI sensors can 

provide travel time information on up to 54 (i.e., (8
2
) − (2

2
)) (sub)paths. Therefore, 

AVI sensors can provide sufficient data of path travel times in a cost-effective manner 

for enhancing estimates of link travel time, particularly for paths with many links. This 

finding is also related to the cost ratio of point sensors to AVI sensors. As if AVI sensors 

are expensive, traffic managers can afford fewer AVI sensors than point sensors for the 

given budget. In this situation, the amount of path travel time information obtained by 

an AVI sensor system and its contribution to link travel times decrease.  

 

Table 5.8 Influence of different sensor data on the accuracy of simultaneous 

estimates of OD demands and link travel times 

Scenario  
MAPE of OD 

demand  

MAPE of link 

travel time  

Average 

MAPE 

(i) Existing sensor scheme 27.15% 29.79% 28.47% 

(ii) Existing sensor scheme with 

24 additional point sensors 
 8.31% 12.82% 10.57% 

(iii) Existing sensor scheme with 

six additional AVI sensors 
25.53%  9.04% 17.29% 

 

5.5.2.3 Influence of the cost ratio of different types of sensors on the optimal 

number of sensors 

The cost ratio of point sensors to AVI sensors significantly affects the budget allocation 

for each sensor type because of budget constraints. Therefore, a sensitivity analysis of 

the cost ratio of point sensors to AVI sensors is performed to rationalize the budget 

allocation for different sensor types. In general, AVI sensors are more expensive than 

point sensors. Suppose that the total budget is given (i.e., 𝐵 = US$62,400) and the 

unit cost of a point sensor is fixed (i.e., 𝛽 = US$2,600). In addition, the unit cost of 

an AVI sensor ( 𝛽′ ) on a node covering one direction varies from US$5,200  to 

US$20,800. The cost ratio of point sensors to AVI sensors ranges from 1/2 to 1/8. As 

mentioned, the cost of AVI sensors depends on the number of directions covered by 
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the nodes of interest. Based on the model for the simultaneous estimation of OD 

demands and link travel times (described in Section 5.5.2.1), the optimal number of 

sensors and cost allocation for different sensor types are determined by solving the 

model for different cost ratios (Table 5.9).  

 

As expected, Table 5.9 indicates that for a given total budget (𝐵 = US$62,400), more 

point sensors are needed to be installed in the study network if the cost of AVI sensors 

increases. When the increase in the cost of AVI sensors causes the cost ratio of point 

sensors to AVI sensors to decrease to less than 1/8, only 24 point sensors (and no AVI 

sensor) are required for simultaneously estimating the OD demands and link travel 

times. Overall, AVI sensors cannot provide traffic information comparable to that 

achieved using an equivalent number of point sensors due to their high cost.   

 

Table 5.9 Influence of cost ratio of point sensors to AVI sensors on the optimal 

number of sensors  

Cost ratio 

(point/AVI) 

Optimal number of sensors* 

Total number of point sensors 

(cost) 

Total number of AVI sensors 

(cost) 

½  8 (US$20,800)    4 (US$41,600)   

¼ 12 (US$31,200)    3 (US$31,200)   

1/6 16 (US$41,600)    2 (US$20,800)   

1/8 24 (US$62,400)    0 (US$0)   

*Total budget 𝐵 = US$62,400 

5.5.2.4 Convergence and stability of the solution 

Considering the non-convex two-stage model and meta-heuristic solution algorithm 

(Zhou and List, 2010; Hu et al., 2015; Fu et al., 2019), it is extremely challenging to 

guarantee global optimality and stability of the model solution. To demonstrate the 

superiority of the improved FA in searching for the near-to-global optimal solutions, 

this experiment compares the performance of the improved FA with those of three 

commonly used algorithms: original FA, the GA (Salari et al., 2021), and the SHA 
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(Zhou and List, 2010; Xing et al., 2013) for solving the non-convex SLPs. The brute 

force algorithm is used as the baseline method for benchmarking different meta-

heuristic algorithms, as it can enumerate candidate sensor location solutions and select 

the global optimum. However, it requires an extremely long computation time to do 

so. The OD demands are doubled to demonstrate the capability of the solution 

algorithms for solving the SLPs in a congested network. The maximum number of 

iterations (MaxGeneration in Figure 5.2) for each of these algorithms is set to 250. The 

stopping criterion parameter (MaxError in Figure 5.2) of the second-stage bi-level 

model is set to 0.005. The tests are performed on a laptop computer with an Intel Core 

i7-2600 CPU running at 3.40 GHz and 8 GB RAM.  

 

Figure 5.7 shows that the improved FA achieves the best result with the smallest 

objective function value compared to the other algorithms. Furthermore, the improved 

FA converges faster than the other algorithms. Specifically, the improved FA requires 

3.1 hours only to converge to the near-to-global optimum solution, while the original 

FA spends almost three times of that (i.e., 8.7 hours) to reach a similar solution. Using 

the brute-force method, it needs 51.8 hours to search the global optimum, which is 

only slightly better than the near-to-global optimum solution obtained from the 

improved FA. The smallest value of objective function achieved by improved FA 

(6.179) among meta-heuristic algorithms demonstrates its efficacy to search the near-

to-global optimal solution as compared to the global optimum (6.177). Specifically, 

the optimal solution obtained from improved FA has the value of objective function 

smaller than 99.9% of feasible solutions, while the other three algorithms could only 

obtain optimum solutions that are better than at most 98% of feasible solutions. 

Besides, the shortest computation time of improved FA shows the efficient 

convergence of the proposed solution algorithm. With such efficient convergence, the 

improved FA can yield a better solution (i.e., closer to the global optimum) if stringent 

convergence stopping criteria are adopted for the sensor location and simultaneous 
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estimation problems.  

 

Figure 5.7 Convergence of the solution algorithms 

 

Further to the convergence of solution, a numerical test, which takes into account 

different initial feasible solutions of the sensor locations, is performed to illustrate that 

the improved FA can yield a stable solution. Table 5.10 lists the nine scenarios with 

randomly selected initial feasible sensor locations that are used to evaluate the stability 

of the solution. Using the improved FA, it is found that all these scenarios converge to 

the same optimal solution (last column of Table 5.10). The above result indicates the 

improved FA is capable of yielding a stable optimal solution for the multi-type SLP 

considered in this chapter.  

 

Table 5.10 Scenarios with various initial feasible solutions used to test the stability of 

the solution for multi-type SLPs  

Scenario Initial feasible solution of multi-type sensor locations with total 

budget 𝐵 = 𝑈𝑆$62,400 

Optimal solution 

Number and locations of point 

sensors 

Number and locations of AVI 

sensors 

I four on TMR five on TMR two point sensors 

and one AVI sensor 

on the same links 

or nodes on TMR; 

six point sensors 

and three AVI 

sensors on the same 

links or nodes on 

CPR 

II four on CPR five on CPR 

III two on TMR and two on CPR two on TMR and three on CPR 

IV 24 on TMR 0 

V 24 on CPR 0 

VI 12 on TMR and 12 on CPR 0 

VII 0 six on TMR 

VIII 0 six on CPR 

IX 0 three on TMR and three on CPR 
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 Summary 

This chapter is to optimize the number and locations of multi-type sensors (point and 

AVI sensors) while also explicitly considering the spatial covariance relationships 

associated with OD demands and link travel times. The multi-type traffic sensors are 

deployed for simultaneously estimating the stochastic OD demands and network-wide 

link travel times over a typical hourly period on a daily scale.  

 

To overcome the inconsistency between different data sources, a new KL divergence-

based model is innovatively proposed to solve the simultaneous estimation problem in 

this chapter. Such a proposed model can flexibly deal with the skewed data for different 

probability distributions under various traffic conditions. Based on the estimation 

results of both link travel times and OD demands, the number and locations of point 

and AVI sensors can be determined by minimizing the normalized uncertainties of both 

stochastic OD demand and link travel time estimates. The corresponding coefficients 

of correlation weigh their uncertainties.  

 

In Section 5.5 of this chapter, it has been demonstrated that the optimal sensor locations 

for simultaneous estimation could lead to more accurate estimates compared with 

those for separate estimation (i.e., for estimation of OD demands or link travel times 

only) studied in previous Chapters 3 and 4. This finding mainly results from the 

utilization of more available data from multi-type sensors and the inherent 

interrelationship between vehicular link flow and link travel time.    
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6. Conclusions 

This research has addressed the timely and important SLPs for estimation of stochastic 

OD traffic demands and/or link travel time in a road network with uncertainty. With 

multi-type traffic sensing systems developed for smart transportation in smart cities, 

this research has proposed new models to efficiently and accurately estimate stochastic 

traffic states in terms of hourly OD demands and link/path travel times with taking into 

account the traffic demand variation and/or travel time uncertainty. In this chapter, the 

major contributions and key findings of this research are summarized in Section 6.1. 

Recommendations for further studies are given in Section 6.2. 

 Summary of research findings 

The research presented in this thesis contributes to current literature related to SLPs, 

by considering the variations of travel patterns by time of day and day of the year. 

Specifically, the covariance effects of vehicular traffic demands between various OD 

pairs and the inter-relationships of travel time between different links during multiple 

time periods have been explicitly modeled to determine the optimal traffic sensor 

locations. The three research objectives outlined in Section 1.2 of Chapter 1 have been 

achieved in this thesis.  

 

The first contribution of this research corresponds to Objective 1. A traffic sensor (i.e., 

traffic count) location model is proposed to estimate the mean and covariance of OD 

demand under uncertainty, as presented in Chapter 3. A new criterion named WMPRE 

is introduced to explicitly measure the stochasticity of OD demand estimates. The 

following research findings from Chapter 3 are summarized:   

 

 It is found in numerical examples of Chapter 3 that the weighted-sum approach, 
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WMPRE ((1 − 𝛼 )WMPREM + 𝛼 WMPREC) is a generalized criterion for 

optimizing traffic sensor location schemes in practice, in contrast to the use of 

the MPREM only as a criterion. For a given traffic sensor location scheme and 

weighting parameter 𝛼 , the values of WMPREM and WMPREC could not 

both reach the optimum at the same time. When the total number of traffic 

sensors increases, the variances of WMPREM and WMPREC would both 

change with different impacts on the SLP solutions.  

 

 To get the Pareto optimal solutions of sensor locations, a Pareto front approach 

may be used to solve the bi-objective problem concerned. However, no unique 

optimal solutions could be obtained from the Pareto front approach, as 

demonstrated in Section 3.6. In contrast, the weighted-sum approach is more 

practical to determine a unique sensor location scheme when the weighting 

parameter can be specified based on traffic planners’ preference in the mean or 

covariance of OD demand.  

 

 The estimation of mean OD demands is less accurate under congested 

conditions compared to that under uncongested conditions. However, the 

estimation of OD demand covariances would be more accurate when the traffic 

network becomes congested. The data observed under congested conditions 

could provide more information about the covariance of OD demands as more 

travelers may choose joint travel and trip chaining strategies for their daily trips. 

 

 The performance and convergence of the proposed model and solution 

algorithm have also been testified using the Sioux Falls network. To solve the 

bi-objective optimization problem, the FA has been adapted and improved for 

the weighted-sum approach and the Pareto front approach, respectively. To 

better understand the efficiency of the improved FA, the widely used classical 



172 

GA is also applied for comparison. It can be concluded from the numerical 

example in Section 6.2 that the improved FA can dramatically reduce the 

computation time for convergence.  

 

The second contribution of the research relates to Objective 2. Both the spatial and 

temporal covariance of traffic demand between different OD pairs during different 

hourly periods are incorporated in the multi-type traffic sensor location model 

proposed in Chapter 4. The following research findings from Chapter 4 are 

summarized:   

 

 The consideration of multi-period OD demand covariance can efficiently 

reduce the uncertainty of OD estimates and increase the average estimation 

accuracy regardless of traffic congestion conditions. During congestion periods 

in the daytime, the multi-period OD demands are highly correlated with one 

another. As such, the multi-period SLP model outperforms the single-period 

model even for the OD demand estimates in its own period under congested 

conditions. Therefore, it is recommended to design a multi-type traffic sensor 

network for multi-period OD demand estimation and to incorporate the multi-

period covariance relationship of OD demand, particularly in peak hour periods 

on weekdays and weekends.  

 

 For multi-period OD demand estimation, both the number and locations of 

multi-type traffic sensors, including point sensors and AVI sensors, can be 

optimized using the proposed model. It has been proved mathematically and 

numerically that a combination of information from both types outperforms the 

utilization of single-type sensors for multi-period OD demand estimation. This 

finding is true particularly when the measurement errors of AVI sensors and 

point sensors do not differ remarkably. Having established that additional data 
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can be provided by multi-period OD demands, a PCA-based Kalman filter 

method is adopted to extract the essential features of the OD demands and 

enhance the estimation efficiency. It has been demonstrated that the adoption 

of PCA can significantly reduce the computation time while guaranteeing the 

optimal location scheme of multi-type traffic sensors.  

 

The third contribution corresponding to Objective 3 is achieved in Chapter 5. An 

integrated sensor location model is proposed for simultaneous estimation of OD 

demands and link travel times in a road network under uncertainty. The following 

research findings from Chapter 5 are summarized:   

 

 The accuracy of stochastic OD demand and link travel time estimates can be 

increased by considering their spatial covariance effects. Numerical results 

highlight that the integration of link flow and travel time information can 

increase the accuracy of estimates of the stochastic OD demands and link travel 

times for the entire road network. The estimated OD demands can be used to 

determine the hourly link flows for the study road network, thereby facilitating 

automatic and large-scale traffic count surveys (e.g., the ATC in Hong Kong 

(Traffic and Transport Survey Division, 2018)). Moreover, the estimated link 

travel times and corresponding link speeds could be used to support various 

transport planning studies and traffic monitoring purposes. 

 

 To obtain more comprehensive information for the simultaneous estimation 

problem, different types of stationary sensor data should be used in a 

coordinated manner, especially in a big data environment for smart city 

development. According to the real-world case study shown in Chapter 5 with 

empirical data, under the budget constraint, more point sensors should be used 

for simultaneous estimation as they are less expensive than AVI sensors. AVI 
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sensors that provide path travel time information are normally more cost-

effective than point sensors for improving the accuracy of estimates of link 

travel time, especially for paths with many links but few point sensors. In 

practical scenarios, more point sensors should be installed on paths with many 

interruptions from traffic lights and at-grade junctions, as these traffic 

interruptions would make it difficult to estimate the stochastic link travel times 

and OD demands accurately.  

 Recommendations for further studies 

It should be acknowledged that even though the research presented in this thesis covers 

a broad horizon of SLPs for estimation of vehicular travel demand and link/path travel 

time with uncertainty, several interesting and pivotal extensions merit further studies. 

Some of these potential directions are outlined below:  

 

1. The efficiency of the improved firefly algorithm has been demonstrated in 

Chapters 3, 4, and 5 with numerical examples in a real-world road network in Hong 

Kong. A more advanced metaheuristic algorithm could be further investigated to 

improve the computational efficiency for larger-size realistic road networks (Zhu 

et al., 2014; Xiang et al., 2015; Yu et al., 2019).  

 

2. It would be worth exploring to extend the proposed models to consider the effects 

of multi-user classes and their covariances in SLPs for a multi-modal traffic 

network (Sumalee et al., 2011; Munizaga and Palma, 2012; Zangui et al., 2015; Fu 

and Lam, 2018). This extension can be supported by additional available 

information on vehicle composition and occupancy, such as from ATC data in 

Hong Kong (Transport Department, 2021b).   

 



175 

3. The use of the reliability-based stochastic user equilibrium model or AVI data can 

be further investigated for assessing the impacts of the updated stochastic link 

choice proportions on the SLP. 

 

4. It is important to assess the cost-effectiveness of various traffic-sensor locations. 

This could be achieved by measuring whether a given location leads to a reduction 

in the error of estimates of link speed and link flow per unit of additional budget 

(Matute and Chester, 2015). Such examinations of cost-effectiveness should be 

carried out in future studies. 

 

5. The quality and reliability of the information provided by sensors highly depend 

on various sources of uncertainties such as sensor measurement error and 

systematic error from sensor failure (Vanajakshi and Rilett, 2006, Turner et al., 

1999). Even though under normal conditions, the data obtained from traffic sensors 

can still be adulterated with measurement errors (Payne et al., 1976, Xu et al., 

2016). To establish a more reliable sensor network, heterogeneous SLPs should be 

studied considering multiple-source uncertainties of sensors (Hu et al., 2015; Gu 

et al., 2020). In addition to demand variation, supply variation caused by extreme 

weather conditions or traffic accidents should be considered when determining 

network vulnerability in sensor location problems. 

 

6. A limitation of the proposed models is that the link flow obtained by assigning OD 

demands onto the study road network may exceed the link capacity, especially 

under congested conditions. However, from empirical data collected from traffic 

sensors, the traffic flow under congestion will not be larger than the link capacity 

in accordance with the link-based fundamental diagrams. To address this issue, a 

novel reliability-based dynamic traffic assignment model merits further studies for 

solving SLPs in congested road networks (Li et al., 2015).  
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Appendix A Proofs of mathematical properties in Chapter 3 

The matrix 𝐌𝝀 in Eq. (3.41) in Chapter 3 could be obtained as follows: 

 λ covvec( ) =M λ 0  (A.1) 

 covP PT =q
λ 0  (A.2) 

Set 𝑨 = P̃Σ𝒒,   

 cov covP P PT T =q
λ Aλ  (A.3) 

 
λ

1 1 2 1 1 2 2 2[ ]T

m m m ma p a p a p a p a p a p=      M  (A.4) 

 

Proofs of mathematical properties in Chapter 3 are given below:  

 

Proof of property 3.1.  

Define 𝑌 = ΣqP̃T, the Eq. (3.7) can be rewritten as:  

 PY =v   (A.5) 

For convenience, matrices Σ𝒗 and Y is partitioned by column vectors as follows. 

 1 2[ , ,..., ]m   =v
  (A.6)

 1 2[ , ,... ]mY y y y=   (A.7) 

According to Eqs. (A.6) and (A.7), Eq. (A.5) can be rewritten as:  

 1 2 1 2[ , ,..., ] P[ , ,... ]m my y y   =   (A.8) 

If P̃  is a matrix with full column rank, the system of linear equations 𝜎𝑖 = �̃�𝑦𝑖 

( 1,2,...,i m= ) has a unique solution. In other words, the matrix 𝑌 = [𝑦1, 𝑦2, . . . 𝑦𝑚] 

would also have a unique solution.  

Transpose both sides of the equation 𝑌 = ΣqP̃T, it follows that  

 qPT TY =    (A.9) 

Using the similar matrix partition method, it can be proved that when P̃ is a matrix 

with full column rank, Σq𝑇
  can be uniquely identified according to Eq. (A.9) 
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provided Y is unique. Then, the OD demand covariance Σq can be uniquely identified 

if P̃ is a matrix with full column rank. This is the end of the proof.   

 

Proof of property 3.2.  

Yang et al. (1991) proved that the WMPREM (𝐺(𝝀𝑚𝑒𝑎𝑛)) is finite if and only if the 

traffic flows between any OD pair are observed by at least one traffic sensor location. 

Thus, it only needs to prove the case where finite WMPREC (𝐻(𝝀𝑐𝑜𝑣)) is the necessary 

condition of OD Covering Rule to complete the proof of Property 3.2. 

According to condition (ii) in the text, the relationship between covariance and mean 

OD demands can be obtained as follow 

 , ' , ' ' ' , ' ' '( )( ) ( )( )w w w w w w w w w w w w w wr c q c q r c c q q = =   (A.10) 

According to the definitions of 𝜆𝑤
𝑚𝑒𝑎𝑛 , 𝜆𝑤,𝑤′

𝑐𝑜𝑣   and Eq. (A.10), the following 

relationships can be obtained,  

 
* *( ) / / 1mean

w w w w w wq q q q q = − = −  (A.11) 

 
* *

' ' ' ' '( ) / / 1mean

w w w w w wq q q q q = − = −   (A.12) 

 
cov *

, ' , ' , ' , '( ) /w w w w w w w w   = −   

 
* *

, ' ' ' , ' ' ' , ' ' '( ) /w w w w w w w w w w w w w w w w w wr c c q q r c c q q r c c q q= −   

 
* *

' '/ 1w w w wq q q q= −  (A.13) 

For convenience, denote 𝑥 = 𝑞𝑤
∗ /𝑞𝑤 and 𝑦 = 𝑞𝑤′

∗ /𝑞𝑤′, then it follows 

1mean

w x = − , 
' 1mean

w y = − , and cov

, ' 1w w xy = −  

According to the identity relation 1 ( 1) ( 1) ( 1)( 1)xy x y x y− = − + − + − −  , it follows 

that 

 
cov

, ' ' '

mean mean mean mean

w w w w w w    = + +  (A.14) 

Thus, 𝜆𝑤,𝑤′
𝑐𝑜𝑣  is finite because 𝜆𝑤

𝑚𝑒𝑎𝑛 is finite. Then, it can be seen that WMPREM 

(𝐺(𝝀𝑚𝑒𝑎𝑛) ) and WMPREC (𝐻(𝝀𝑐𝑜𝑣) ) are both finite according to Eqs. (3.13) and 
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(3.24), This is the end of the proof. 

 

Proof of property 3.3.  

Similar to the proof of Property 3.2, it only needs to prove the WMPREC (𝐻(𝛌𝑐𝑜𝑣)) is 

finite if the OD Covering Rule is satisfied. The method of reduction to absurdity is 

used. It is assumed that WMPREC (𝐻(𝛌𝑐𝑜𝑣)) is infinite, and the OD Covering Rule is 

satisfied. On the one hand, it follows from the infinity 𝐻(𝛌𝑐𝑜𝑣) that there exists at 

least one 𝜆𝑤0,𝑤′0
𝑐𝑜𝑣  (𝑤0, 𝑤′0 ∈ 𝐖), which is infinite (say take any real value greater than 

-1). On the other hand, as the OD Covering Rule is satisfied, for OD pairs 𝑤0, 𝑤′0 ∈

𝐖, there exist at least two (not necessarily different) traffic sensor locations to collect 

the traffic flows of these two OD pairs. Mathematically, there exist 𝑎, 𝑏 ∈ �̃� such that 

𝑝𝑎,𝑤0
≠ 0  and 𝑝𝑏,𝑤′0

≠ 0 . It then follows that 𝑝𝑎,𝑤0
𝑝𝑏,𝑤′0

≠ 0 . According to Eq. 

(3.27b), it follows that 

 0 0

0 0

0 0 0 0

cov

, , ' , ' , '

, ' , ' 'cov

, '

, , ' , '

q

a w b w w w w w

w w w w w w

w w q

a w b w w w

p p

p p

 




   

−

=

 
W W  (A.15) 

  

 0 0

0 0

0 0 0 0

cov

, , ' , ' , '

, ' , ' 'cov

, '

, , ' , '

( )q

a w b w w w w w

w w w w w w

w w q

a w b w w w

p p

p p

 




   

−

=

 
W W

 (A.16) 

 cov

, ' 1w w  −  cov

, ' 1w w−   (A.17) 

According to condition (ii), it follows that  

 
, ' 0q

w w   , 'w w W  (A.18) 

Then, it follows from Ineqs. (A.17) and (A.18) that  

 cov

, ' , ' , '

q q

w w w w w w  −   , 'w w W  (A.19) 

It follows from Eq. (A.16) and Ineq. (A.19) that 

 0 0

0 0 0 0

0 0 0 0

, , ' , '

, ' , ' 'cov cov

, ' , '

, , ' , '

q

a w b w w w
define

w w w w w w

w w w wq

a w b w w w

p p

c
p p






   
 =

 
W W

 (A.20) 

where 𝑐𝑤0,𝑤′0
𝑐𝑜𝑣   is a positive constant, which is the upper bound of 𝜆𝑤0,𝑤′0

𝑐𝑜𝑣  . Thus, 
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𝜆𝑤0,𝑤′0
𝑐𝑜𝑣  is bounded, which contradicts the infinity assumption of 𝜆𝑤0,𝑤′0

𝑐𝑜𝑣 . Therefore, 

𝐻(𝛌𝑐𝑜𝑣)  is bounded if the OD Covering Rule is satisfied. The proof of necessary 

condition is completed.  
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Appendix B Proofs of mathematical properties in Chapter 4 

The matrix calculated from the equation Θ0𝚺𝑐0Θ0
𝑇 + 𝚺𝑒  in Eq. (4.20a) is always 

invertible, with the assumption that the measurement errors on different links are 

independent and their variances are not equal to zero.  

 

Proof: Note that Θ0𝚺𝑐0Θ0
𝑇 = 𝚺𝑣0 is the covariance of the prior link flows. According 

to linear algebra, the covariance matrix 𝚺𝑣0 is always positive semi-definite and thus 

invertible. In addition, the covariance matrix of measurement error 𝚺𝑒  is positive 

definite if the measurement errors of different links are independent and their variances 

are not equal to zero. Therefore, the summation of these two matrices is positive 

definite and thus invertible. The proof has been completed.  

 

Proofs of mathematical properties in Chapter 4 are given below:  

 

Proof of Proposition 4.1 

The mathematical expression of Proposition 4.1 is equivalent to the following.  

Given 𝑧∗ , then 𝑡𝑟(𝚺𝑐 − 𝚺𝑐0)𝑚cov ≥ 𝑡𝑟(𝚺𝑐 − 𝚺𝑐0)𝑏cov ≥ 𝑡𝑟(𝚺𝑐 − 𝚺𝑐0)𝑛𝑜cov , where 

𝑡𝑟(𝚺𝑐 − 𝚺𝑐0)𝑚cov , 𝑡𝑟(𝚺𝑐 − 𝚺𝑐0)𝑏cov , and 𝑡𝑟(𝚺𝑐 − 𝚺𝑐0)𝑛𝑜cov  are the uncertainty 

reductions considering the covariance of OD demand in multiple periods, the 

covariance in one period, and no covariance, respectively. 

 

First, let us define three mapping functions 𝛤(𝐴), 𝐷𝑖𝑎𝑔(𝐴), and 𝐵𝐷𝑖𝑎𝑔(𝐴, 𝑡)  for 

matrix 𝐴 as follows:  

 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a
A

a a a

 
 
 =
 
 
 

. (B.1) 

𝐴 is an 𝑛 × 𝑛 matrix.  
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21 22 2

1 2

| | | | | |

| | | | | |
( )

| | | | | |

n

n

n n nn

a a a

a a a
A

a a a

 
 
  =
 
 
 

  (B.2) 

The function 𝛤(𝐴) obtains the absolute values of all elements for matrix 𝐴.  

 

11

22
( )

nn

a

a
Diag A

a

 
 
 =
 
 
 

 (B.3) 

The function 𝐷𝑖𝑎𝑔(𝐴) extracts the diagonal elements for matrix 𝐴 and forms a 

new diagonal matrix.  

 

11 1

1

1, 1 1,

, 1

( , )

t

t tt

n t n t n t n

n n t nn

a a

a a

BDiag A t

a a

a a

− + − + − +

− +

 
 
 
 
 

=  
 
 
 
 
 

 (B.4) 

The function 𝐵𝐷𝑖𝑎𝑔(𝐴, 𝑡) extracts the block diagonal elements for matrix 𝐴 and 

forms a new block diagonal matrix. The size of each block is 𝑡 by 𝑡.  

 

To prove Proposition 4.1, recall the matrix inversion lemma, which states that 

(𝐴 − 𝐵)−1 = 𝐵−1(𝐵−1 − 𝐴−1)−1𝐴−1.  

The following equations are deduced:  

 
1 1 1 1 1 1

0 0 0( ) ( )c c c c c c

− − − − − −− = −Σ Σ Σ Σ Σ Σ   

 
1 1 1 1 1

0 0 0 0 0( ' ' ' )T T

c e e c

− − − − −= −   + Σ Σ Σ Σ   

 
1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0( ' ' ' ) ( ' ' ' )T T T T

c e e c e e

− − − − − − −= −   +  +  + Σ Σ Σ Σ Σ Σ   

 
1 1 1 1 1 1

0 0 0 0 0 0 0( ' ' ' )T T

c e e c c

− − − − − −= −   +  −Σ Σ Σ Σ Σ . (B.5) 

Performing the inversion operation on both sides of the above equation, then  

 ( )
1

1 1 1 1 1 1

0 0 0 0 0 0 0 0( ' ' ' )T T

c c c e e c c

−
− − − − − −− = −   +  +Σ Σ Σ Σ Σ Σ Σ .  (B.6) 

If the covariance of OD demand is not considered, it implies that all of the OD pairs 
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are considered as independent, thus 𝚺𝑐0 = 𝐷𝑖𝑎𝑔(𝚺𝑐0) and 𝚺𝑐 = 𝐷𝑖𝑎𝑔(𝚺𝑐).  

Then, 

 𝑡𝑟(𝚺𝑐 − 𝚺𝑐0) = − (𝐷𝑖𝑎𝑔(𝚺𝑐0
−1) (Θ0

𝑇𝚺𝑒
−1Θ0 + Θ′

0

𝑇
𝚺′

𝑒

−1
Θ′

0
)

−1

𝐷𝑖𝑎𝑔(𝚺𝑐0
−1) +

𝐷𝑖𝑎𝑔(𝚺𝑐0
−1))

−1

.  

If only the covariance of OD demand in a single period is incorporated, then the OD 

demands in period ℎ1 should be independent of those in period ℎ2. Given that there 

are k periods of interest, thus 𝚺𝑐0 = 𝐵𝐷𝑖𝑎𝑔(𝚺𝑐0, 𝑘) and 𝚺𝑐 = 𝐵𝐷𝑖𝑎𝑔(𝚺𝑐, 𝑘). Then, 

𝑡𝑟(𝚺𝑐 − 𝚺𝑐0) = − (𝐵𝐷𝑖𝑎𝑔(𝚺𝑐0
−1, 𝑘)(Θ0

𝑇𝚺𝑒
−1Θ0 +

Θ′0
𝑇𝚺′𝑒

−1Θ′0)−1𝐵𝐷𝑖𝑎𝑔(𝚺𝑐0
−1, 𝑘) + 𝐵𝐷𝑖𝑎𝑔(𝚺𝑐0

−1, 𝑘))
−1

.  

 

As 𝚺𝑒 and 𝚺′𝑒 are both positive definite, the inversion of these two matrices gives 

𝚺𝑒
−1 and 𝚺′𝑒

−1
, which are also positive definite, so that all of the elements in the 

matrix Θ0
𝑇𝚺𝑒

−1Θ0 + Θ′0
𝑇𝚺′𝑒

−1Θ′0 are positive.   

 

Therefore,  

 𝜮𝑐0
−1(Θ0

𝑇𝜮𝑒
−1Θ0 + Θ′0

𝑇𝜮′𝑒
−1

Θ′0)−1𝜮𝑐0
−1 

 ≥ 𝐵𝐷𝑖𝑎𝑔(𝚺𝑐0
−1, 𝑘)(Θ0

𝑇𝚺𝑒
−1Θ0 + Θ′0

𝑇𝚺′𝑒
−1Θ′0)−1𝐵𝐷𝑖𝑎𝑔(𝚺𝑐0

−1, 𝑘) 

 ≥ 𝐷𝑖𝑎𝑔(𝚺𝑐0
−1)(Θ0

𝑇𝚺𝑒
−1Θ0 + Θ′0

𝑇𝚺′𝑒
−1Θ′0)−1𝐷𝑖𝑎𝑔(𝚺𝑐0

−1).  (B.7) 

Thus, if the traffic sensor locations are given, then  

 0 cov 0 cov 0 cov( ) ( ) ( )c c m c c b c c notr tr tr−  −  −Σ Σ Σ Σ Σ Σ .  (B.8) 

The proof is completed.  

 

Proof of Proposition 4.2 

Mathematically, assume that the unit costs of AVI sensors and point sensors have the 

following relationship: 𝛽′ = 𝛼 ∙ 𝛽 . Denote [𝛼]  as a floor function that gives the 

greatest integer less than or equal to 𝛼.  
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Case 1: If (𝛩′𝑟𝑤(ℎ))
2

(휀′𝑟(ℎ))
−1

> max ∑ ((𝛩𝑎𝑤(ℎ))
2

(휀𝑎(ℎ))
−1

)
[𝛼]

𝑎=1
  for ∀𝑟 ∈

𝐑, 𝑎 ∈ 𝐀 , only AVI sensors should be chosen for the multi-period OD demand 

estimation.  

Case 2: Conversely, if (𝛩′𝑟𝑤(ℎ))
2

(휀′𝑟(ℎ))
−1

< min ∑ ((𝛩𝑎𝑤(ℎ))
2

(휀𝑎(ℎ))
−1

)
[𝛼]

𝑎=1
 for 

∀𝑟 ∈ 𝐑, 𝑎 ∈ 𝐀, only point sensors should be chosen.  

Case 3: However, if ∃𝑟 ∈ 𝐑, 𝑎 ∈ 𝐀  so that min ∑ ((𝛩𝑎𝑤(ℎ))
2

(휀𝑎(ℎ))
−1

)
[𝛼]

𝑎=1
≤

(𝛩′𝑟𝑤(ℎ))
2

(휀′𝑟(ℎ))
−1

≤ max ∑ ((𝛩𝑎𝑤(ℎ))
2

(휀𝑎(ℎ))
−1

)
[𝛼]

𝑎=1
 , both AVI and point 

sensors are needed.  

 

First, Case 1 is proved. As shown in Eq. (4.22a), the objective of the multi-type 

traffic SLP is restated as: 

  ( ), '( ') ( )
, '

, ' , '

min | |w h w h w h
z z

w h w h

 
   

 
 
 

 
W H W H

 . (B.9) 

For a clear presentation, denote ( ) ( ), '( ')

' , '

| |w h w h w h

w h

 
 

= 
W H

, so that the above equation 

then becomes 

 ( ) ( )
, '

,

min w h w h
z z

w h

 
 


W H

  

 
1

1 2 1 2 1

( ) ( )0 0( ) ( ) 0( ) ( )
, '

,

min ( ) ( ) ( ' ) ( ' )w h w h aw h a h rw h r h
z z

w h a r

   

−

− − −

   

 
 +  +  

 
  
W H A R

. (B.10) 

 

For Case 1, if  (𝛩′𝑟𝑤(ℎ))
2

(휀′𝑟(ℎ))
−1

> max ∑ ((𝛩𝑎𝑤0(ℎ))
2

(휀𝑎(ℎ))
−1

)
[𝛼]

𝑎=1
 for ∀𝑟 ∈

𝐑, 𝑎 ∈ 𝐀, given the fixed budget constraint 𝛽 ∑ 𝑧 + 𝛽′ ∑ 𝑧′ ≤ 𝐵 and 𝛽′ = 𝛼 ⋅ 𝛽, it is 

always satisfied that  

(𝛩′𝑟𝑤(ℎ))
2

(휀′𝑟(ℎ))
−1

< (max ∑ ((𝛩𝑎𝑤0(ℎ))
2

(휀𝑎0(ℎ))
−1

)
[𝛼]

𝑎=1
)

−1

for ∀𝑟 ∈ 𝐑, 𝑎 ∈ 𝐀.  

As 𝜅𝑤(ℎ) ≥ 0, the above equation implies that  

 
1

1 2 1

( ) ( )0 0( ) ( )
, '

,

min ( ' ) ( ' )w h w h rw h r h
z z

w h r

  

−

− −

  

 
+  

 
 
W H R
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1

1 2 1 2 1

( ) ( )0 0( ) ( ) 0( ) ( )
, '

,

min ( ) ( ) ( ' ) ( ' )w h w h aw h a h rw h r h
z z

w h a r

   

−

− − −

   

 
 +  +  

 
  
W H A R

,  (B.11) 

s. t.  

 ' 'z z B +    . (B.12) 

The proof of Case 1 is completed. Cases 2 and 3 can be easily proved in a similar way.  
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Appendix C KL divergence between two multivariate normal 

distributions 

In Chapter 5, to derive the KL divergence between two OD demand vectors following 

multivariate normal distributions, recall the pdf of an OD demand vector following a 

multivariate normal distribution 𝐗~𝑁𝑀(𝛍, 𝚺):  

 
1

1/2/2

1 1
( ) exp ( ) ( )

2(2 )

T

d
f



− 
= − − − 

 
X

X X μ Σ X μ
Σ

. (C.1) 

Let us focus on two M-dimensional OD demand vectors 𝐗~𝑁𝑀(𝛍𝒙, 𝚺𝑥)  and 

𝐘~𝑁𝑀(𝛍𝒚, 𝚺𝑦), the KL divergence between these two OD demand vectors is  

 
( )

( || ) ( ) log
( )

MKL

f
D f d

g
= 

X

X
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x
X Y x x

x
 (C.2) 

 ( ) log ( ) ( ) log ( )
M M

f f d f g d= − X X X Yx x x x x x  (C.3) 

 
1 11 1 1

( ) log ( ) ( ) ( ) ( )
2 2 2
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y T T
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x

f d− −
 
 = − − − + − −
  

 X

Σ
x X μ Σ X μ X μ Σ X μ x

Σ
 (C.4) 

 1 11 1 1
log ( ) ( ) ( ) ( ) ( ) ( )

2 2 2
M M

y T T

x x x y y y

x

f d f d− −   = − − − + − −    X X

Σ
x X μ Σ X μ x x X μ Σ X μ x

Σ
. 

(C.5) 

According to the Matrix Cookbook (Petersen and Pedersen, 2012), the second term 

can be rewritten as follow:  

 11
( ) ( ) ( )

2
M

T

x x xf d− − −  X
x X μ Σ X μ x   (C.6) 

  11
( ) ( )

2

T

x x xtr − =  − −
 

X μ Σ X μ  (C.7) 

  1
1

( )( )
2

T

x x xtr − =  − −
 

X μ X μ Σ  (C.8) 

  1
1

2
x xtr −= Σ Σ  (C.9) 

 
2

M
= . (C.10) 

The third term can also be simplified as:  

 11
( ) ( ) ( )

2
M

T

y y yf d− − −  X
x X μ Σ X μ x  (C.11) 
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  11
( ) ( )

2

T

y y ytr − =  − −
 

X μ Σ X μ  (C.12) 

  1 11 1
( ) ( )

2 2

T

x y y x y y xtr− −= − − +μ μ Σ μ μ Σ Σ . (C.13) 

Combining Eqs. (C.5), (C.10), and (C.13), the following equation can be obtained:   

 ( )( )1
11

( || ) log ( ) ( )
2

y T

KL y x x y y x y

x

D M tr
−

−
 
 = − + + − −
 
 

Σ
X Y Σ Σ μ μ Σ μ μ

Σ
. (C.14) 
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Appendix D Mean and covariance relationship between link 

flows and between link travel times 

To derive the mean and covariance relationship between link flows and between link 

travel times in Eqs. (5.22) and (5.23), respectively in Chapter 5, recall the standard 

BPR link travel time function:  

 0 (1 ( ) )a

a a

a

V
T T a

c

= +  A ,  (D.1) 

where 𝑉𝑎 represents the random variable of traffic flow on link 𝑎 with mean 𝑣𝑎 and 

variance 𝜎𝑎
2. By taking an example of 𝛼 = 0.15 and 𝛽 = 4, then  
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2 2
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4 4 4 4 8 4( ) ( ) ( ) ( ) ( )
m m m ma a a a a aE V V E V E V E V E V

 
 
 
 
 
 
 
 − −
 

. 

 (D.3) 

 

Based on probability theory and statistics (Isserlis, 1918), the moment generating 

function corresponding to the link flow 𝑁(𝑉𝑎; 𝑣𝑎, 𝜎𝑎
2) as an example can be expressed 

as  

 𝑀𝑉𝑎
(𝑡) = 𝑒𝑥𝑝( 𝑣𝑎𝑡 +

1

2
𝜎𝑎

2𝑡2).  (D.4) 

The nth moment can be calculated by the nth derivative of the moment generating 

function, evaluated at 𝑡 = 0:  

 
( )

0

( ) (0) a

a

n

Vn n

a V n

t

d M
E V M

dt
=

= = . (D.5) 
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Taking the 𝐸(𝑉𝑎
4) and 𝐸(𝑉𝑎

8) as an example, the 4th and 8th moments are deduced as 

follow:  

 

4

4 (4) 4 2 2 4

4

0

( ) (0) 6 3a

a

V

a V a a a a

t

d M
E V M v v

dt
 

=

= = = + + ,  (D.6) 

 

8

8 (8) 8 6 2 4 4 2 6 8

8

0

( ) (0) 28 210 420 105a

a

V

a V a a a a a a a a

t

d M
E V M v v v v

dt
   

=

= = = + + + + . (D.7) 

The functions 𝐻𝑚(. ) and 𝐻𝑐𝑜𝑣(. ) for all links in a road network can then be derived.  
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