
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



ON BUILDING TRUSTWORTHY NETWORK

SYSTEMS WITH BLOCKCHAIN AND TEE

LI ZECHENG

PhD

The Hong Kong Polytechnic University

2022



The Hong Kong Polytechnic University

Department of Computing

On Building Trustworthy Network Systems with Blockchain

and TEE

Li Zecheng

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

July 2022



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Li Zecheng





On Building Trustworthy Network Systems with Blockchain

and TEE

by

Zecheng Li

Submitted to the Department of Computing
on June 2022, in partial fulfillment of the

requirements for the degrees of
Doctor of Philosophy

and
Master of Science

Abstract

The Internet consists of many network systems, such as Domain Name System (DNS)
and Public Key Infrastructure (PKI), that work together to provide network services
and connect the world. However, these network systems suffer from a number of
security issues, such as cache poisoning attacks on DNS and rogue certificates on PKI.
These security risks can in turn lead to the proliferation of phishing sites, man-in-
the-middle attacks on encrypted connections, and a host of other severe and complex
network attacks. Traditional solutions still have limitations, and as we delve into
blockchain and Trusted Execution Environment (TEE) technology, we find that their
benefits can be leveraged to enhance the security of these network systems.

Blockchain technology was born from the cryptocurrency Bitcoin, whose tamper-
proof nature catalyzes the secure exchange of assets. The decentralized architecture
and replicated storage of blockchain guarantee the integrity and consistency of the
stored data. They also provide a new way of building traditional network systems
with guaranteed data security. In addition, TEE ensures execution security. Its
model of attested execution allows users to verify the content returned by the enclave
inside TEE and decide whether to trust the execution result. The combination of
blockchain and TEE provides a new computing paradigm for building trustworthy
network systems.

Firstly, we note that DNS is vulnerable to many attacks such as the cache poi-
soning attack and DDoS attack. Records in recursive resolver are vulnerable to be
modified maliciously. Facing these problems, we propose B-DNS, a secure and effi-
cient blockchain-based domain name system. B-DNS leverages blockchain to store
resource records and provide name service. The tamper-proof feature of blockchain
prevents it from poisoning attacks. B-DNS also fills up two shortcomings in legacy
blockchain-based DNS: computation-heavy consensus protocol and inefficient query.
For the security of B-DNS, a novel way is proposed to quantitatively compare the
security of B-DNS and legacy DNS in terms of attack success rate, attack cost, and
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attack surface. Our experiments show that the probability of a successful attack on
B-DNS is 1% of a successful attack on legacy DNS. The attack cost goes up a million
times in B-DNS, and the attack surface of B-DNS is far smaller than that of legacy
DNS. The query performance evaluation of B-DNS shows that B-DNS can achieve
similar or even less query latency than state-of-the-art commercial DNS implementa-
tions.

Secondly, we find that current Certificate Authorities (CAs) are vulnerable to be
compromised to issue unauthorized certificates. Current countermeasures can only
detect unauthorized certificates rather than preventing them. Facing these problems,
we propose Pistis, a framework for issuing authorized and trusted certificates with
blockchain and TEE. In Pistis, TEE nodes validate whether the applicant in a
certificate request passes the domain ownership validation (i.e., the domain is under
the corresponding applicant’s control) and submit attested results to a smart contract
on the blockchain. The smart contract issues the certificate to the applicant when an
attested result shows a pass. Therefore, Pistis can ensure its issued certificates are
authorized because of the domain ownership validation mechanism. The security of
Pistis is formally proved in the Universally Composable (UC) framework. Compared
with state-of-the-art, Pistis avoids potential damages by preventing unauthorized
certificates from issuing.

Thirdly, we note that smart contracts cannot be modified once they are deployed
on the blockchain, so vulnerabilities in deployed smart contracts can have devastating
consequences. We emphasize that current countermeasures is to thoroughly test and
validate contracts prior to deployment. However, these testing methods suffer from
false-negative results and do not protect against unknown contract defects. Further-
more, Decentralised Finance (DeFi) based on smart contracts has gained significant
momentum and is now attractive target for attacks. Facing these problems, we pro-
pose SolSaviour to protect deployed smart contracts and DeFi. SolSaviour consists of
a voteDestruct mechanism and a TEE cluster. The voteDestruct mechanism allows
contract stakeholders to decide whether to destroy the defective contract and with-
draw inside assets. The TEE cluster is responsible for asset escrow, redeployment
of patched contracts, and state migration. Specifically, SolSaviour can destroy the
defective contract, redeploy a patched contract, and migrate the funds and state vari-
ables from the destroyed contract to the patched one. Our experiment results show
SolSaviour can protect smart contracts and complex DeFi protocols with feasible
overhead.
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Chapter 1

Introduction

The Internet is the cornerstone of the efficient functioning of modern society, where

different countries and people are connected through hundreds of submarine fiber

optic cables that span the oceans. Current Internet is filled with network systems

responsible for different functionalities. For example, the domain name system (DNS)

is responsible for locating the IP address based on the host name. The public key

infrastructure (PKI) is responsible for managing, distributing, renewing, and revoking

domain certificates. These network systems corporate to build the foundation for the

proper functioning of the Internet.

Both DNS and PKI are built in a hierarchical tree architecture, i.e., both network

systems rely on a root node. In DNS tree, the root node is the root domain . of

the entire domain name space. There are 13 root server clusters responsible for

maintaining the root domain, which are numbered in letters A-M. For example, root

domain A and J indicate the root domain server clusters maintained by Verisign. Root

name servers store the registration information of top-level domain (TLD) servers.

Typically, DNS lookup requests are first sent to the root name server for the IP

address of the TLD in the corresponding domain name. The queried root server

returns a list of the authoritative name servers for the appropriate TLD. In the client

side, service providers maintain recursive resolvers to store IP addresses of frequently

queried domains, which decreases the DNS service latency by eliminating redundant

queries. In PKI, a certificate authority (CA) is an entity that issues certificates to
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domain owners. In cryptographic terms, a certificate links the domain’s identity to

a public key. Certificates are not issued independently in PKI, but start with the

root certificate, which is authorized by chains of trust, making the end certificates

trusted. Root certificates are usually self-signed certificates, and they are pre-installed

in applications (e.g., operating system, browser). A CA often relies on the trust of

the root certificate to issue certificates for end users and sign them with their own

private keys. In the Internet, DNS enables us to use network resources with different

addresses, while PKI protects the security of information transmission.

There are still specific problems in the current network system. For example, the

cache poisoning attack against DNS can pollute the resource records stored inside the

recursive resolver through continuous injection, and then lead users to previously-

built phishing websites for further theft. The PKI is centralized due to its internal

CA. Attackers can issue rogue certificates by compromising the intermediate CA’s

private key. These unauthorized certificates can be authenticated through HTTPS

connections. With the information of the certificates in hand, attackers can conduct

man-in-the-middle (MitM) attack against the transmission flow between the user and

the website, stealing the user’s account password and other confidential information.

We point that the trust paradigm of current network systems are typically based

on the identity. Users trust service provided by DNS and PKI based on the identity of

service provider. However, this trust paradigm still has some limitations as it cannot

provide defence to the malicious behaviours of naming/certificate service providers.

A new trust paradigm is deemed to enhance the security of current network system.

1.1 The Emergence of Blockchain and TEE

A blockchain is essentially a growing transaction ledger maintained by distributed

consensus. The ledger is stored in the data structure of a linked block, with each

block storing a hash of the previous block’s contents to ensure that data growth is

tracked. The internal data load part of a block stores the transaction data on the

ledger, usually in the form of a Merkle tree. The blockchain periodically elects a node
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to publish new blocks. Since each block holds information about previous one, all

blocks form a unique chain and the blockchain is resistant to data tampering. As the

difficulty of being successfully selected as the node to publish a new block increases,

tampering with the data of the blockchain is gradually considered impossible. The

underlying blockchain is implemented by a peer-to-peer network, where each node

maintains a list of neighbors to exchange new blocks and transactions with each

other. The blockchain technology has provided a new trust paradigm for network

systems. Its decentralized and tamper-proof feature has led to the belief that the

data stored in the blockchain is trusted, which provides a new direction for building

trustworthy network systems.

Trusted execution environment (TEE) is another promising technology for build-

ing trustworthy network systems. In TEE, CPU divides a portion of the memory area

to ensure that internally loaded code and data are protected in terms of confidentiality

and integrity. Integrity means that software outside the TEE (e.g., operating system)

cannot tamper with the inside code and data without authorization. Confidentiality

indicates that entities outside the TEE cannot be aware of information inside the

TEE without permission. These two properties are achieved by implementing secure

and confidential architecture, such as Intel Software Guard Extensions (Intel SGX),

which provides new CPU instructions that implement hardware-level memory encryp-

tion that isolates application-specific code and data in memory, namely the enclave.

Even applications with higher privilege levels cannot compromise the integrity and

confidentiality of the enclave. TEE execution results can also be verified following the

method called remote attestation. The TEE technology has also provided a new trust

paradigm for network systems. Users can trust the results from TEE as it ensures the

integrity and confidentiality of loaded code and data, which provides a new direction

for building trustworthy network systems.

By combining blockchain and TEE, we build network systems that simultaneously

protect data integrity and enforce execution security, i.e., a more secure DNS and PKI.

During these two pieces of work, we have also identified some problems within the

blockchain itself, namely that the contracts deployed on the blockchain cannot be
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modified. On the one hand, we can only redeploy a smart contract when we want

to add new features, and on the other hand, it is difficult to fix a deployed smart

contract with a patch when it has bugs. Facing this problem, we also propose a

feasible solution based on TEE.

1.2 Thesis Contribution

In our thesis, we propose a series of security improvements for three network systems,

namely DNS, PKI, and blockchain, with respect to their specific problems. We sum-

marize our work in Figure. 1-1. From the perspective of domain, we propose a trusted

domain name system, B-DNS, based on blockchain technology to provide users with

trusted domain name services. Users do not have to worry about the domain name

service they use suffering from problems such as cache poisoning attacks. Further,

considering that a domain usually has a certificate to prove its identity and enables

encrypted transmission, we analyze the vulnerabilities in the current certificate is-

suance process and propose a trusted certificate issuance mechanism called Pistis.

We implement the certificate issuance logic using smart contracts. In the process, we

found that the blockchain itself, which is highly relied on in work 1 and work 2, also

has certain security issues. Specifically, i.e., the blockchain-based smart contract is

vulnerable to unknown bugs once deployed. We propose SolSaviour to protect the

deployed smart contracts and build the cornerstone for establishing a trusted network

system.

With the introduction of blockchain technology and TEE technology, we have

significantly improved the security of current DNS and PKI. We also change the trust

paradigm in traditional network systems, where users trust a service provider typically

because of that service provider’s identity, which has proven to be risky. Therefore,

we propose a trust paradigm based on blockchain and TEE, where users trust out of

knowledge of the operational logic. This allows us to build more trustworthy network

systems.
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Figure 1-1: The structure of our work.

1.2.1 Secure and Efficient Naming System

As one of the most important basic network systems of the Internet, the domain name

system has been disclosed to have flaws that make it vulnerable to cache poisoning

attacks. The resource records stored within the recursive resolver are likely to be

contaminated by attackers. Therefore, ensuring the data security of the domain name

system has become an important research topic.

We propose B-DNS, a secure and efficient domain name system based on blockchain

technology. We design an operation record data structure to store the registration,

renewal, and revocation of domain names in the blockchain to be compatible with

the resource records of the domain name system. To solve the problem of inefficient

querying within the pure blockchain, we propose the mechanism of a dual-bloom filter

to achieve efficient domain name querying. Based on our proposed B-DNS system,

users can trust that the queried domain name information is accurate. We verified

the security of B-DNS through quantitative security assessments. Specifically, we

compared the security of B-DNS and traditional DNS from three perspectives: at-

tack success rate, attack cost, and attack surface. From the perspective of attack
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success rate, we found that the success rate of attacking the B-DNS system, i.e., suc-

cessfully contaminating the domain name records stored within the B-DNS system,

is significantly lower than the success rate of attacking the recursive resolvers of the

traditional DNS. From an attack cost perspective, the cost required to attack B-DNS

is also much higher than the cost of attacking a traditional recursive resolver. For the

attack surface, traditional DNS also discloses more vulnerabilities and has a larger

attack surface. We can see from the above three points that B-DNS undoubtedly

provides a more secure domain name service for users.

1.2.2 Trusted and Authorized Certificate Management

With the widespread use of HTTPS, the PKI system for managing certificates has

gradually become one of the most fundamental network systems of the current In-

ternet. The security of its issued certificates directly affects the confidentiality of

encrypted transmission over the Internet. The rogue certificate incidents that occur

from time to time also make how to ensure the security of issued certificates a critical

research topic.

We refactor the logic of certificate issuance and propose a trusted and authorized

certificate issuance mechanism, Pistis, which requires that all issued certificates start

with the applicant’s application, i.e., the applicant requests to issue a certificate for

the domain it owns. In turn, Pistis verifies whether the applicant actually owns

the domain it applies for, and if ownership is confirmed, Pistis issues the required

certificate. Technically, the entire certificate issuance logic is implemented by a smart

contract. At the same time, the verification of the applicant’s ownership is initiated

by the smart contract and implemented via TEE with a challenge-proof protocol.

Successfully issued certificates are broadcast to the blockchain for confirmation. In

this way, Pistis can realize that all issued certificates are trusted and authorized,

and users can trust the certificates issued by Pistis.
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1.2.3 Trusted Smart Contract and DeFi Protection Mecha-

nism

With the development of blockchain technology and the advancement of general smart

contract technology, decentralized finance is widely used, which forms the cornerstone

of the next-generation Internet Web 3.0. The importance of smart contracts as a net-

work system is also growing day by day. Considering the frequent security problems

of smart contracts, The DAO hack, Parity multi-sig hack, and other attacks have

caused a large amount of asset loss, protecting the security of smart contracts will

become an important research topic.

Smart contracts have the property that they cannot be modified once deployed,

so a deployed smart contract that discloses a bug cannot be fixed by patching it.

The usual pre-deployment verification approach has the limitation that it can only

detect known vulnerabilities and problems with false negatives. To address the limita-

tions of the current solution, we propose SolSavior, a mechanism to protect deployed

smart contracts. SolSaviour combines the on-chain voteDestruct mechanism with the

off-chain TEE cluster, allowing users to vote on whether to destroy a buggy smart

contract and redeploy it through the TEE cluster a patched smart contract. Specifi-

cally, the voteDestruct mechanism allows contract stake holders to decide whether to

destroy the defective contract and withdraw inside assets. The TEE cluster is respon-

sible for asset escrow, redeployment of patched contracts, and state migration. The

experimental results show that SolSaviour significantly reduces the damage caused

by the attack, effectively protects the assets within the contract, and maintains the

normal operation of the contract.

1.3 Thesis Outline

The remainder of thesis is organized as follows. Chapter 2 introduces the background

knowledge of this thesis, including the introduction to DNS, PKI, smart contract,

and TEE. Chapter 3 presents our work on B-DNS. Chapter 4 proposes the design
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and implementation of Pistis and elaborates on how to issue trusted and authorized

certificates. Chapter 5 presents the principle and working logic of SolSaviour. We

conclude our work and talk about our future directions in Chapter 6.

The primary research outputs arise from the following items:

• Zecheng Li, Shang Gao, Zhe Peng, Songtao Guo, Yuanyuan Yang, and Bin

Xiao, “B-DNS: A Secure and Efficient DNS Based on the Blockchain Technol-

ogy”, IEEE Transactions on Network Science and Engineering (TNSE), vol. 8,

issue. 2, pp. 1674-1686, 2021.

• Zecheng Li, Haotian Wu, Lap Hou Lao, Songtao Guo, Yuanyuan Yang, Bin

Xiao, “Pistis: Issuing Trusted and Authorized Certificates With Distributed

Ledger and TEE”, IEEE Transactions on Parallel and Distributed Systems

(TPDS), vol. 33, issue. 7, pp. 1636-1649, 2021.

• Zecheng Li, Yu Zhou, Songtao Guo, Bin Xiao, “SolSaviour: A Defending

Framework for Deployed Defective Smart Contracts”, in Annual Computer Se-

curity Applications Conference (ACSAC), pp. 748-760, Virtual, 2021.

• Zecheng Li, Bin Xiao, Songtao Guo, and Yuanyuan Yang, “Securing Deployed

Smart Contracts and DeFi with Distributed TEE Cluster”, IEEE Transactions

on Parallel and Distributed Systems (TPDS) (Major Revision).
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Chapter 2

Preliminary

In this chapter, we give the precursor knowledge for this thesis and discuss related

work. This chapter is structured as follows: we first discuss DNS-related knowledge

and introduce existing work on securing DNS; secondly, we introduce PKI as well as

related work on securing certificates; and finally, we discuss work on smart contract

security.

2.1 Domain Name System

Each host has its unique IP address to designate its location on the Internet. However,

IP addresses in the numeric form are complicated to remember, and the domain

name system was created to solve this problem. DNS is a naming database where

Internet domain names are stored and translated into IP addresses. In this way,

we can access the corresponding server by simply remembering the domain name

like www.comp.polyu.edu.hk and www.google.com. DNS automatically maps the

domain name that people enter into their browser to the IP address of the website

server.

DNS nameservers are organized as a tree, and the namespace is separated into

layers. In each layer, the namespace is partitioned into non-overlapping regions called

domains. A domain owner formulates the domain policy and keeps track of its sub-

domains. The root node of the DNS tree is called the root zone, which stores the
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delegation information of domains in the leaf node. The leaf node domains of the

DNS root node are called the top-level domain (TLD). There exist different kinds

of TLDs, of which the most widely-used ones are country-code TLD (ccTLD) and

generic TLD (gTLD). The third level of the DNS tree is usually represented as the

second-level domain (SLD or 2LD), which is under the supervision of its parent node,

i.e., TLDs. The architecture of DNS is depicted in Fig. 2-1.
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Figure 2-1: The architecture of DNS.

Each domain owner operates several authoritative servers, which store DNS entries

using the extensible resource record. There are many types of resource record such as

A/AAAA, NS, and SOA. The A/AAAA resource record is responsible for IPv4 and IPv6

address resolution respectively. The NS record stores the name of an authoritative

server. Since DNS is hierarchical and each layer is only related to the previous layer,

a query packet should travel from the root zone to the target authoritative server

layer by layer, which is called recursive resolution.
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2.2 Public Key Infrastructure

A public key infrastructure is a network system responsible for registering, distribut-

ing, and revoking digital certificates in the Internet. PKI provides secure information

transfer for a range of network activities by issuing certificates containing crypto-

graphic information to bind domains to a public key. In some network applications

with high security requirements, simple passwords are insecure, and more stringent

proofs are needed to confirm the identity of the parties involved in the communi-

cation and to verify the transmitted information, and this is where we need PKI.

Through certificates issued by PKI, public keys and entities on the Internet can be

cryptographically linked. The architecture of PKI is depicted in Fig. 2-2.

Root
CA

Root CA
Certificate

Intermediate
CA

Intermediate
CA Certificate

Intermediate
CA Certificate

Issuing
CA

Figure 2-2: The architecture of PKI.

CA is the organization that issues digital certificates to prove that the entity and

the public key listed in a certificate are bound. CA signs and issues the certificates,

which prevents attackers from forging or tampering with these certificates. Users can

determine the authenticity of a certificate by verifying its issuer’s signature. In this

case, people trust a CA and use the certificates it issues. Based on the certificates
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provided by the PKI, the SSL/TLS protocol was designed to preserve the integrity

and confidentiality by encrypting data. This addresses the problem that the HTTP

protocol originally used on the Internet was plain text and transmission content would

be sniffed and tampered.

2.3 Blockchain

The blockchain technology is derived from Bitcoin, which was proposed in 2009 by

Satoshi Nakamoto [81], the first cryptocurrency around the world. Participants col-

laborate to maintain the system operation and periodically elect nodes to commit

new content into the blockchain through Byzantine fault-tolerant consensus proto-

col [17, 111]. A blockchain system is intrinsically a shared, immutable distributed

ledger.

2.3.1 Data Structure

Hash Chain Tamper-proof is one of the main features provided by the blockchain.

Specifically, all transactions are put in the leaf node of a Merkle Tree, and an iter-

ative calculation process will proceed until the MerkleRoot is calculated, which is

encapsulated in the block header so that the user can easily verify the integrity of the

transaction data. Moreover, blocks are chained sequentially by calculating the hash

value of the previous block’s header, which is called the prevHash. It is very tough

to calculate a valid PrevHash value since the target is pretty high, which requires the

attacker to try millions of times. Accordingly, the combination of MerkleRoot and

prevHash constitutes the cornerstone of the tamper-proof feature of the blockchain.

Merkle Tree Each block in a blockchain contains a summary of all transactions

in that block, using a Merkle tree, a binary hash tree. Merkle tree can provide

an efficient way to verify a large amount of data while summarizing it. When 𝑛

transactions are aggregated by hashing to compute the Merkle tree, the tree’s leaf

nodes will correspond to the hash value of each transaction. The root node of a

leaf node is obtained through performing cascading hash computation on the hash
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values of the leaf nodes. By such recursive computation, we can get the value of the

root node of the Merkle tree and use it as a summary of the entire block transaction

information.

2.3.2 Network Layer

Bootstrapping Bootstrapping is the process by which new nodes join the network.

Typically, a blockchain client stores the IP addresses of a number of “DNS seeds”,

namely a DNS service that provides a list of active blockchain nodes. A node that

knows nothing about the blockchain must be given the IP address of an active node in

the blockchain. Otherwise, this node will never be able to connect to the blockchain.

Once connected to an active node, the bootstrapping node is given a list of IP ad-

dresses. The bootstrapping node can ask the newly-connected nodes for new IP

addresses recursively. A blockchain node also updates its neighbor list following this

way.

Overlay Network Though the blockchain node is connected to the Internet

directly, the on-chain functionalities cannot be visited directly. Namely, they are

working on a blockchain overlay network. Specifically, the smart contract can only be

used by blockchain nodes. External users must install a blockchain client to invoke the

smart contracts. On the contrary, smart contracts cannot visit off-chain websites and

network resources directly. Considering a smart contract that acquires the NASDAQ

index periodically, it cannot visit any websites that display the number. The only

way it can get the value is to ask users to write it into the contract. In this case, we

can say that the on-chain network is separated from the off-chain network.

2.4 Smart Contract

Ethereum is recognized as the second-generation blockchain system. From the science

perspective, it is a globally accessible state machine with a built-in virtual machine

that allows users to change its global state. From the engineering perspective, it is

a distributed ledger with a built-in smart contract mechanism that enables users to
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develop applications atop it. In Ethereum, there are two kinds of accounts: Exter-

nally Owned Accounts (EOA) and contract accounts. End-users control EOAs with

a unique key pair and blockchain address. By contrast, contract accounts are em-

powered by contract programs, account balances, and persistent storage in the form

of key/value pairs. Ethereum has its built-in currency called ether.

The smart contract can be recognized as a constant program that runs determinis-

tically atop Ethereum. EOAs typically create smart contracts in the form of contract

creation transactions. An EOA can invoke a smart contract by sending a transaction

with specified function names and parameters to the contract’s address. Compared

with Bitcoin’s scripting system, Ethereum smart contract languages (i.e., Solidity) is

Turing-complete. Ethereum introduced gas to measure the computational overhead

of smart contract execution. The invoking entity should pay for the consumed gas

in ether, which is calculated by multiplying gasprice and the number of gas used.

Ethereum transactions set limit on gas with two parameters: gasprice and gaslimit.

The gasprice indicates how expensive the user is willing to pay for each gas. The

higher the gasprice, the faster the transaction is mined in a new block. The gaslimit

sets a limit on how many gases a transaction can use. Once a transaction consumes

more gases than gaslimit, all execution and state changes are reverted.

2.4.1 Defective Smart Contracts

Smart contracts are subject to a wide variety of defects. Defective smart contracts

can be divided into two categories: exploitable smart contracts and unexpected smart

contacts (i.e., may have unanticipated internal states)

For the first type, either some problems in the contract implementation create bugs

(e.g., reentrancy vulnerability), or an attacker can exploit the contract’s internal logic

to launch attacks (e.g., front running attack). Attackers can gain benefits that do

not belong to them by exploiting these bugs. For the second type, these bugs may

cause a smart contract to an unexpected state, such as a locked state. For example,

a jackpot may never succeed because of a strictly equal operation [26]. From this,

we can see that different contract defects can lead to different problems, they have

36



different causes and severity, but they all require practical protection work.

2.4.2 Contract Protection

Generally, we define the defending methods of smart contracts as repairing and recov-

ering techniques. The repairing technique can alleviate the bugs in a smart contract,

and recovering technique can save a contract from severe states.

Almost all contract repair techniques focus on repairing smart contracts before

deployment. Part of the work identifies vulnerabilities by statically analyzing the

contract code and generating the appropriate patches. Another aspect of the work,

runtime verification, determines whether a deployed contract is vulnerable by select-

ing its operational state and developing the appropriate patch. These two tasks are

then indistinguishable from contractual vulnerability detection techniques to protect

deployed contracts. That is, they cannot fix vulnerabilities that have not been de-

tected. Nor can they save the assets in deployed smart contracts.

One possible solution for fixing vulnerabilities in deployed contracts is the proxy

model, where the smart contract is separated into a logical contract and a data

contract. Message calls are made through the data contract, which is redirected to

the latest deployed logical contract. Once an error is exposed, a new logical contract

is deployed to replace the defective one. However, this approach is subject to the

requirements of the trusted contract owner. That is, the contract developer will set

its own address as the contract owner during the contract creation step, which results

in the contract user needing to trust the contract creator, which is not applicable to

multi-user contract scenarios.

2.4.3 Internal State

The concept of a contract’s internal state includes the values of contract variables and

the stake distribution inside the contract. When migrating and upgrading contracts,

the consistency of the contract’s internal state should be maintained. People could

recover the value of variables inside a smart contract. The getter function can be
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used to acquire values of contract variables. The stake distribution can be recovered

in a similar way as long as the contract explicitly defines variables to store stake

distribution. If not, people can go over the history to determine the stake distribution.

However, it is non-trivial to migrate the stake distribution from defective contracts

to patched contracts, which requires actual transactions of funds. In this case, assets

are transferred from defective contracts’ addresses to patched contracts’ addresses, in

accordance with the stake distribution of the defective contracts. This is one of the

main problems addressed by SolSaviour.

2.5 Decentralized Finance

The life cycle of a smart contract typically consists of four stages: contract creation,

contract freeze, contract execution and contract finalization. The contract creation

phase involves writing and deploying a smart contract. During the freeze phase,

the miner incorporates the contract creation transaction into a new block, making

it persistent. In execution phase, the execution of the contract is carried out via

message calls. Once executed, the transaction containing the message call and the

new state information are persisted with the new block on chain, which is recognized

as finalization.

By definition, Decentralized Finance (DeFi) is an emerging financial technology

based on a secure distributed ledger. DeFi removes the control of banks and institu-

tions over money, financial products, and services and eliminates the fees that banks

and other financial companies charge for using their services. People can keep their

money in a secure digital wallet rather than in a bank. Anyone with an internet con-

nection can use it and no approval is required. People can transfer funds in seconds

or minutes. Popular DeFi protocol Uniswap offers flash loan services. DAI and Fei

offer stable coin services. Though usually called protocols, the core of DeFi protocols

is still the smart contract. Further, as a DeFi protocol typically consists of multiple

contracts, the risk of smart contract bugs increases.
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2.6 Trusted Execution Environment

The Trusted Execution Environment (TEE) isolates a preserved memory and con-

ducts attested execution via dedicated CPU instructions. TEE guarantees the confi-

dentiality and integrity of stored code and data. Through remote attestation, TEE

ensures the authenticity of its execution. Current mainstream TEE implementations

include Intel Software Guard Extensions (SGX) [7,50], ARM TrustZone [8], and AMD

SEV [6]. There are also some open-source implementations such as Keystone [65].

Intel SGX. Intel SGX prevents stored code and data from disclosure and mod-

ification. Developers can divide an application into a CPU-enhanced enclave and a

host application that manages it, which can improve security even in attacked plat-

forms. Benefiting from TEE, developers can enable identity and record privacy, secure

browsing and digital rights management protection, or any high-security application

scenario that requires secure storage of confidential or protected data.

Attested Execution Model. TEE can generate attestation signatures to con-

vince a remote verifier that the execution result is outputted by a specific program

with specified inputs. The attestation requires to establish a secure communication

channel between the TEE and verifier, and a software measurement method to pro-

vide information concisely. The secure communication channel can be built based on

a key exchange protocol. Code and data inside TEE can be measured using the Intel

TEE instructions. Verifier can check whether the measurement matches its expecta-

tion and then determine the security of execution outputs transmitted via the secure

communication channel.

The attested execution model is proposed by Pass et al. in [89]. Subramanyan et

al. established the formal foundation for the secure remote execution of enclaves [102].

They formalize an ideal functionality 𝒢𝑎𝑡𝑡 to abstract the attested execution processor.

Different attested processors have chosen different design paradigms. Most of the

differences exist at the level of implementation details and are not reflected at the

level of abstraction. Therefore a generic abstraction is a good generalization of the

attested execution processor.
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2.7 Blockchain and TEE

We find some similarities between blockchain and TEE. Among other things, blockchain-

based smart contracts can be considered to a certain extent as trusted computing.

As the code (in bytecode form) and the input and output of the contract are publicly

available, the user can verify the execution result, and therefore the contract is exe-

cuted with trustworthy results. However, the trust mechanism of a smart contract is

fundamentally different from that of a TEE. The execution of a contract is based on

the distributed consensus of the blockchain, i.e., the user can trust the outcome of

contract execution due to the presence of incentive-based consensus mechanisms that

spike the cost of malicious node creation. The trustworthy mechanism of TEE, on

the other hand, is technical in the sense that users can determine whether the result

of that execution is the output of a specified input executed by a specified program

by verifying attestation.

There is some work on complementing blockchain with TEE. Specifically, TEE is

applied to one of the blockchain layers. Resource efficient mining (REM) is proposed

to eliminate the current computation-heavy Proof of Work (PoW) [123]. REM’s key

idea involves miners providing trustworthy reports on the CPU cycles they use for

inherently useful workloads.REM is flexible enough to allow any entity to create a

useful workload. Proof of Luck is another consensus layer work [77]. TeeChain is the

first layer-two payment network that executes off-chain transactions asynchronously

concerning the underlying blockchain [70]. TeeChain proposes treasuries, which is

a transaction processing entity protected by TEEs, to build layer-2 payment chan-

nels for off-chain transactions. Current lightweight clients typically outsource most

of the computation and storage workload to full blockchain nodes. However, such

verification leaks critical information about clients’ transactions. To address the pri-

vacy problem, Bite uses the trusted execution capability of SGX enclaves [75]. The

enclaves on full nodes serve privacy-preserving requests from light clients. However,

naive processing of client requests from within SGX enclaves still leaks clients’ ad-

dresses and transactions. Similarly, ZLiTE work on building a privacy wallet for
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Zcash with TEE is proposed in [116]. Tesseract is a secure cryptocurrency exchange

that provide real-time service. Existing centralized exchange designs are vulnerable

to theft of funds, while decentralized exchanges cannot offer real-time cross-chain

trades [13]. All currently deployed exchanges are also vulnerable to frontrunning at-

tacks. Tesseract overcomes these flaws and achieves a best-of-both-worlds design using

a trusted execution environment. Committing the recent trade data to independent

cryptocurrency systems presents an all-or-nothing fairness problem.

There is also some work on improving the security of TEE with blockchain.

Kaptchuk et al. focused on using ledgers to enhance the security of TEE [55]. Zhang

et al. proposed Paralysis proofs [122], which can alleviate the impasse of potential

loss of digital assets. TEE-KV [61]. TEE-KV, built on blockchain, is a secure, im-

mutable key-value store for TEE. Tran et al. proposed Obscuro [109], a Bitcoin mixer

to protect the relationship between payers and payees.
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Chapter 3

B-DNS: A Secure and Efficient

Domain Name System based on

Blockchain

3.1 Introduction

IP addresses are unique identifiers of Internet resource. Anyone who wants to visit

some specific resources must know its IP address. However, it is hard to remember

alphabetized domain names compared with numerical IP addresses. Accordingly,

the DNS is designed to provide a domain name to IP address mapping service so

that people could approach resources on Internet easily by only remembering their

domain names. Unfortunately, researchers have exposed several vulnerabilities in

current DNS such as the weak verification mechanism and single point failure of

name servers, which causes different attacks.

The weak verification mechanism of current DNS causes the cache poisoning attack

[60,101]. In cache poisoning attacks, attackers can send well-crafted response packets

when a recursive resolver updates cache. Once a forged DNS entry is injected into

the cache successfully, clients under the victim recursive resolver will be redirected to

a phishing website when they visit the affected domain. The biggest banks of Brazil,
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Bandesco was reported to be attacked in this way [32].

The single point failure makes legacy DNS vulnerable to DDoS attacks. Currently,

DNS domains are structured in a tree and each node stores a bunch of IP addresses

of its sub-domians. Once the name server of a critical domain is under the DDoS

attack, the service of its sub-domains will be disrupted. In this way, DDoS attacks

that targeting key servers can significantly collapse the availability of partial legacy

DNS [80]. The more essential the server, the more serious the consequence of the

DDoS attack. In 2016, a DNS service provider Dyn was attacked in this way [66].

Several methods have been proposed to address these attacks. Approaches against

the cache poisoning attack can be categorized into two types: employing the Domain

Name System Security Extensions (DNSSEC) [114] and increasing the entropy of

query packets [33, 91], which provides more information for recursive resolvers to

distinguish a valid response packet. Methods to mitigate the DDoS attack mainly

focus on storing more resource records in the cache [9,87], which makes domains can

still be resolved even its parent domain is under attack.

However, we observe that there are still some limitations in these countermeasures

as they aim to defend attacks rather than repair the vulnerabilities. A completely

DNSSEC-enabled DNS can prevent itself from the cache poisoning attack while cur-

rent DNSSEC deployment rate is still low. We launch a quick scan over the Alexa

top 1000 .com/.net/.org domains and find that only 3% domains support DNSSEC.

Merely increasing the entropy of query packets is not a long-term solution. It can

decrease the success rate of attack to some extent. However, as the development of

computation power and network bandwidth, this defense becomes weaker and weaker.

In DDoS defense, there exist the probability that queried domains are not cached. In

addition, these methods do not work when authoritative servers are under attack. As

to the T-DNS, its security depends on the TLS protocol, which employs certificates

issued by the certificate authority (CA). However, the centralized CA is not secure

since it suffers from the single point failure and maliciously issued certificates.

Facing these challenges and inspired by the good properties of blockchain, we

intend to build a secure domain name system based on the blockchain. The blockchain
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is a distributed ledger secured by hash functions [17]. Blocks are chained sequentially

by encapsulating the hash value of its previous block PrevHash into the header.

Transactions are stored in blocks, and each block calculates a MerkleRoot to provide

an easy way to verify the integrity of transaction records. In this way, blockchain can

ensure the integrity of stored data, which presents good authentication mechanism.

Additionally, blockchain employs the peer-to-peer network to transmit data and all

peers are equal, which provide great resilience to the single point failure and DDoS

attack.

However, building a blockchain-based DNS is quite tricky. It is not merely stor-

ing resource records in the distributed ledger. Many challenges exist in the way to

implement a secure and efficient blockchain-based DNS system.

• Stored Data are Immutable. Once a resource record is written into the

blockchain, it is hard to modify the content. However, there exists the need

to update DNS records because domain owners may change the IP addresses

of their domains. Accordingly, some new designs should be adopted to provide

flexible record updates.

• Performance is Poor. The primary search operation in the blockchain is

slow while the name service is time-sensitive. Therefore, some schemes should

be designed to speed up the search process in a blockchain.

• New Vulnerabilities May be Introduced. Though blockchain can provide

many good properties such as tamper-proof data and DDoS resilience, it may

introduce new vulnerabilities such as inconsistent data across nodes and 51%

attack, which are inherent problems of the blockchain. Accordingly, how to

build a blockchain-based DNS without introducing new security problems of

the blockchain is a big challenge.

In this chapter, we propose the Blockchain-based DNS (B-DNS), a secure and

efficient domain name system. In B-DNS, DNS records are stored as transactions in

the blockchain. B-DNS also equips with an index to accelerate the search speed in
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the blockchain to provide efficient name service. Moreover, B-DNS is compatible with

the legacy DNS. Recursive resolver and users can interact with B-DNS name servers

directly. Our contributions can be summarized as follows:

• We alleviate the computation-heavy PoW consensus protocol utilized in previ-

ous blockchain-based DNS. By proposing a biased-coin flipping protocol and a

distributed random-number generation (DRG) protocol, B-DNS builds a Proof-

of-Stake consensus protocol. The security of B-DNS PoS consensus protocol

will not be affected by the amount of computation power.

• We address the problem of inefficient query in previous blockchain-based DNS.

We build an index tree for B-DNS and propose a search algorithm to improve

the query speed. Our experiment results show that B-DNS can provide similar

query performance with current commercial DNS implementations.

• We propose a novel way to quantitatively compare the security of B-DNS and

the legacy DNS according to the attack success rate, attack cost, and attack

surface. To the best of our knowledge, this is the first time that researchers

quantitatively compare the security of blockchain-based systems with tradi-

tional systems. Experiments show that B-DNS is much securer than legacy

DNS.

3.2 Background

3.2.1 The Problems of Legacy DNS

A DNS query packet utilizes the transaction ID (TXID) to distinguish a valid response

packet from forged ones. Typically, a TXID value is random and takes attackers a

while to guess. But sometimes, the recursive resolver increments TXID from zero,

which makes it easier to come up with a correct value. Accordingly, an attacker can

first initiate a query to the recursive resolver and then forge response packets, which

try all possible TXIDs, to deceive the recursive resolver that it is the valid response

46



packet [101]. Once the recursive resolver accepts the forged packet, the attacker

succeeds in poisoning the cache. Dan Kaminsky proposed an improvement to the

cache poisoning attack and made it more effective [54]. Kaminsky’s attack adds a non-

existent sub-domain name to the victim domain. For example, it launches a query for

the ns1.example.com when it wants to poison the resource record for example.com.

Accordingly, if the first trial failed, a Kaminsky attacker can immediately launch

another attack, which queries for ns2.example.com. After evolving to the Kaminsky’s

attack, the danger of cache poisoning attack significantly increases.

Additionally, the DDoS attack that targets legacy DNS often happens. Once a

higher-level domain is under the DDoS attack, the availability of its sub-domains

could be significantly degraded. In history, the root server and some TLD authori-

tative servers have been attacked by DDoS attack several times [80]. Some attacks

did succeed in disabling the victim DNS servers and causing parts of the Internet

experiencing severe domain name resolution problems.

3.3 From Legacy DNS to B-DNS

In this section, we describe the changes from legacy DNS to B-DNS to provide a

smooth transition from legacy DNS to B-DNS. We also discuss some considerations

when designing the B-DNS and give a formal definition of the B-DNS blockchain.

3.3.1 What’s the Differences?

The difference between legacy DNS and B-DNS is mainly reflected in three aspects:

the management of DNS records, the architecture that name servers structured, and

the resolution path of domain names.

In legacy DNS, DNS records are managed by domain owners, who operate author-

itative name servers. In this case, domain owners can update, add, or delete DNS

records by changing the resource records in authoritative name servers. In B-DNS,

as DNS records are stored in the blockchain, the management of DNS records are

conducted by different types of transactions.
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In legacy DNS, name servers are structured in a tree. The name servers in each

layer store the IP addresses of their sub-domains. By contrast, B-DNS name servers

are structured in a peer-to-peer network. Each name server either stores a full copy

or metadata of the blockchain.

In legacy DNS, the query operations is conducted by the recursive resolver, who

maintains a cache to store frequently-queried DNS records. Once a queried domain

name is not cached, the resolver will conduct recursive resolution to acquire the

asked DNS record. In B-DNS, as DNS records are stored in blockchain, end-users can

directly query the name server with complete blockchain data.

3.3.2 Considerations of B-DNS Consensus Protocol

Current mainstream blockchain consensus protocols can be divided into: Proof-of-

Work(PoW), Proof-of-Stake(PoS), and Practical Byzantine Fault Tolerance(PBFT).

PoW consensus protocol, as the consensus protocol of the first blockchain system

Bitcoin, has been widely studied and verified for its security and performance. How-

ever, an empirical study on the Namecoin has exposed the vulnerability of using PoW

consensus protocol in blockchain-based naming system. A PoW system is always ex-

posed to 51% attack, which can only be prevented by enlarging the system’s overall

computation power. More computation power brings in extra resource consumption,

which introduces additional system maintenance cost. Bitcoin’s security is supported

by its huge computing power, whose annual electricity consumption is 61.4 TWh (the

same as Switzerland’s annual electricity consumption), making it difficult for people

to control 51% of it. But for those smaller or newer PoW blockchain systems, it may

only require 5% of Bitcoin’s computing power to reach 51% of its computing power,

which is easy and affordable. Though adopting merged mining with Bitcoin provides

a viable solution to the above problem, the high maintenance cost it introduces will

become the burden on system maintenance.

PBFT consensus protocol can enable high-throughput transaction processing, low-

latency confirmation, and good security properties (33% byzantine tolerance). How-

ever, its excessive use of network to transmit consensus packets makes it less scalable.
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Experiments have demonstrated that the throughput of PBFT consensus protocol

drops exponentially after the number of nodes exceeds 64.

The PoS consensus protocol assigns the blockchain generation right based on the

number of stake controlled by each node. The proportion of stake determines the

probability of being selected Stake, as an internal parameter of the system, makes

it impossible for an attacker to call stake as if it is computing power, which makes

the 51% attack on the PoS system difficult. In addition, compared with the PBFT

protocol, PoS is more scalable because once the node to generate blocks are selected,

consensus is reached. Based on the above considerations, we chose PoS as the B-DNS

consensus protocol.

3.3.3 Formal Definition of B-DNS Blockchain

We give the formal definition of B-DNS blockchain in this section. In B-DNS, the

leader election is conducted according to discrete-time units.

Definition 1. (Slot). In B-DNS, time is divided into discrete units called slot, which

is represented as 𝑠𝑙𝑗, 𝑗 ∈ Z+.

All registries are equipped with clocks to show the current slot and allow them

to synchronize with each other. Each slot owns a slot leader 𝐿𝑗, who is responsible

for issuing a new block. However, limited by the network latency, the leader election

process cannot be executed slot-by-slot. Accordingly, a larger time unit epoch is also

defined.

Definition 2. (Epoch). The epoch is defined as a sequence of continuous slots.

Each epoch consists of 𝑅 slots and is denoted as 𝑒𝑥, 𝑥 ∈ {1, 2, ...}. Specifically, 𝑒𝑥 =

{𝑠𝑙𝑥𝑅+1, 𝑠𝑙𝑥𝑅+2, ..., 𝑠𝑙(𝑥+1)𝑅}.

Definition 3. (Block). A block 𝐵𝑗 issued at slot 𝑠𝑙𝑗 contains the current state 𝑠𝑡𝑗 ∈
{0, 1}𝜆, data 𝑑 ∈ {0, 1}*, the slot number 𝑠𝑙𝑗 and a signature 𝜎 = 𝑆𝑖𝑔𝑛𝑠𝑘𝑖(𝑠𝑡𝑗, 𝑑, 𝑠𝑙𝑗)

signed using the private key 𝑠𝑘𝑖 of the slot leader 𝑅𝑖.
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Definition 4. (Genesis Block). The genesis block 𝐵0 contains the list of registries

identified by their public keys and stakes S0 = {(𝑣𝑘1, 𝑠01), ..., (𝑣𝑘𝑛, 𝑠0𝑛)} and initial

randomness 𝜌0, which is used to seed the leader election function.

Definition 5. (Blockchain). A blockchain relative to the genesis block 𝐵0 is a se-

quence of blocks 𝐵1, ..., 𝐵𝑛 associated with a strictly increasing sequence of slots. The

length of a chain 𝑙𝑒𝑛(𝐶) = 𝑛 is its number of blocks. The block 𝐵𝑛 is the head of the

chain, denoted ℎ𝑒𝑎𝑑(𝐶). The empty string 𝜀 is recognized as a legal chain.

Definition 6. (State). The state is defined as a string 𝑠𝑡 ∈ {0, 1}𝜆 that represents

the balance of each account. Specifically, the state 𝑠𝑡𝑗 of 𝐵𝑗 is equal to 𝐻(𝐵𝑗−1), where

𝐻 is a predefined collision-resistant hash function.
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Figure 3-1: The 4-layer architecture of B-DNS. The blockchain layer contains a
blockchain that stores the DNS records. The index layer maintains an index to
accelerate the query service. The consensus layer ensures the consistency of stored
data. The network layer provides legacy DNS-compatible query operation.

3.4 System Design

In this section, we introduce the detailed design information of B-DNS according to

the 4-layer architecture, which is depicted in Fig. 3-1.
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3.4.1 Blockchain Layer

In the blockchain layer, B-DNS stores DNS records as transactions in the blockchain.

Since traditional resource records cannot ensure data continuity, we propose a new

format called operation records. There are three types of operation records in B-DNS:

registration, update, and revocation.

Registration. In legacy DNS, the right of domain registration is controlled by

official registries (e.g., Verisign) and registrars (e.g., GoDaddy). In B-DNS, to be

compatible with current DNS, new domain names still should be registered with the

corresponding registries. After successfully registered, the new domain record with

its valid period are signed and encapsulated into a registration record by the registry.

Additionally, the address (i.e., hash of public key) that is controlled by the domain

owner is also added to the registration record. The registry signature enables the slot

leaders to verify whether the record is legitimate, while the address of the domain

owner is left for further update.

Update. Dynamic update is one of the major concerns when designing the B-

DNS. Considering a scenario where the IP address changes, the corresponding reg-

istration record needs to be updated to map to new address. The update operation

is defined to meet these requirements. Similar to the registration record, the update

record is signed and broadcasted by the registry. However, an update record needs

to redeem its corresponding registration record first, which can only be conducted by

its domain owner. Otherwise, it cannot pass the verification and will not be included

in the blockchain.

Revocation. As the name suggests, the revocation record is used to terminate

the ownership of a domain name. An expired domain will be revoked automatically.

The registry will issue a revocation record to terminate its ownership. Similar to the

update record, the revocation record should first redeem its registration or update

record.

The idea of operation record is inspired by the Bitcoin scripting system. Bitcoin

scripting system only allows the change of coins’ ownership in a transaction. Opera-
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tion record not only enables the change of domain ownership but also can change the

transaction content. B-DNS blockchain also stores the stake of each registry as well

as their public keys in the block header. The stake information updates every epoch,

which makes the PoS consensus protocol in accordance with the latest state.

3.4.2 Index Layer

In the index layer, B-DNS maintains an index to facilitate the search process. Search-

ing DNS records in the blockchain is time-consuming as data are structured in a linked

list. However, DNS service is time-sensitive. If the target record is located in the lat-

est block, a DNS query needs to take a long time. In this case, we build an index

tree to map domain names to their IP addresses, where keys are hashes of domains

and values are corresponding IP addresses. B-DNS also encapsulates a IndexHash

into the block header, which stores the hash value of the index of current block.

The IndexHash enables B-DNS name servers to verify the correctness of generated

indexes.

Algorithm 1: The update algorithm.
Data: domain name: key; IP address: val
Result: An updated index tree
initialization;
while receiving a new block do

validate the received block;
key = hash(domain name);
val = IP address;
if node.root = null then

return a new tree with node(key, val);
endif
if key < node.key then

return node = node.left;
else if key > node.key then

return node = node.right;
else

node.val = val;
endif

end
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Algorithm 2: The search algorithm.
Data: A DNS query
Result: Blockchain address
initialization;
key = domain name;
while receiving a new query do

parse the DNS query;
if node.root == null then

return null;
endif
if key < node.key then

return node.left.key;
else if key > node.key then

return node.right.key;
else

return node.val;
endif

end
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Figure 3-2: The revocation checking algorithm in B-DNS. The dual-bloom filter mode
can alleviate the false positive when checking one bloom filter.
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We design an update algorithm and a search algorithm for our constructed index,

which are presented in Algorithm 1 and Algorithm 2, respectively. The update al-

gorithm is used to insert new records into the tree, which works in a recursive way.

It first checks the root node. Whether the root node is equal or larger or smaller

than the target node affects the operation. In this way, the tree can route to the

target node so that we could insert new value. The search algorithm works on an

updated tree. It first checks the root node. If the root node is empty then returns

error. Otherwise, it goes down according to the node’s key. In this way, B-DNS can

promptly find the target value in the index.

We also establish two bloom filters, which consist of a revocation list and a valid

list, to provide fast domain revocation checking service. The flow chart of our revoca-

tion checking algorithm is given in Fig. 3-2. B-DNS first checks whether the domain

name is in the revocation list. If it is not in the revocation list, the domain name must

be valid. If it is in the revocation list, we cannot ensure that it is revoked because of

the hash collision. Therefore, we check whether the domain name is in the valid list.

If it is not in the valid list, the domain name must be revoked. If it is in the valid

list, we need to search the latest transaction of this domain in the blockchain.

3.4.3 Consensus Layer

In the consensus layer, B-DNS implements a Proof-of-Stake consensus protocol to

ensure the consistency of DNS records. A leader election function is executed every

epoch to select block generators. The B-DNS PoS consensus protocol ensures that a

registry 𝑅𝑖 holds the probability proportional to its stake 𝑠𝑖 to be elected as the block

generator:

𝑃 (𝑅𝑖) =
𝑠𝑖∑︀𝑛

𝑚=1 𝑠𝑚

In B-DNS, the stake of a registry is defined as the number of domains registered

with it. However, this number is zero before the system initialization. In this case, all

participants’ stakes are set as 𝑠𝑖 = 1
𝑛

in the genesis block so that all the registries have

equal probability to be elected as the slot leader in the first epoch. In B-DNS, the
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Table 3.1: Summary of notations.

Notation Description

𝑅𝑖 The 𝑖-th registry
𝑣𝑘𝑖 The verification key of registry 𝑅𝑖

𝑠𝑘𝑖 The secret key of registry 𝑅𝑖

𝑠𝑖 The stake held by registry 𝑅𝑖

𝑠𝑙𝑗 The basic time unit, called slot
𝐿𝑗 The slot leader in slot 𝑠𝑙𝑗
𝑒𝑥 A set of continuous time slots, called epoch

𝐵𝑖 The block issued in slot 𝑠𝑙𝑖
𝑠𝑡𝑖 The state of the blockchain in slot 𝑠𝑙𝑖
𝜎 The signature calculated by the slot leader

𝒞 The current blockchain, used in 𝜋𝑃𝑜𝑆

C A set of candidate blockchain, used in 𝜋𝑃𝑜𝑆

S𝑥 The stake distribution {(𝑣𝑘1, 𝑠𝑥1), ..., (𝑣𝑘𝑛, 𝑠𝑥𝑛)}
𝜌𝑥 The randomness used to select slot leaders

stake updates every epoch since the distribution of registered domains is continually

changing.

The key point is to construct a progressive protocol that can select leaders ac-

cording to the pre-defined probability. The B-DNS PoS consensus protocol flips a

𝑝𝑖-biased coin to achieve this goal where

𝑝𝑖 =
𝑠𝑖∑︀𝑛

𝑚=𝑖 𝑠𝑚

If the output of this biased coin is 1, then the 𝑖-th registry is selected as the slot

leader. Otherwise, the protocol proceeds and it flips a 𝑝𝑖+1-biased coin where

𝑝𝑖+1 =
𝑠𝑖+1∑︀𝑛

𝑚=𝑖+1 𝑠𝑚

Note that 𝑝𝑛 = 𝑠𝑛/𝑠𝑛 = 1 so that this protocol always outputs a deterministic slot

leader.

In B-DNS, the randomness seeds are generated distributionally. All the registries

follow a distributed random-number generation (DRG) protocol to generate a dis-
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tributed number, which acts as the seed in the 𝑝𝑖-biased coin flipping. The DRG

protocol contains three phases:

• Commitment Phase. When epoch 𝑒𝑥 starts, each registry 𝑅𝑖 samples a uni-

formly random string 𝑢𝑖 and randomness 𝑟𝑖 for the underlying commitment

scheme, generates shares {𝜎𝑖
1, 𝜎

𝑖
2, ..., 𝜎

𝑖
𝑁} ← 𝐷𝑒𝑎𝑙(𝑁, 𝑢𝑖) and encrypts these

shares under the public key of registry 𝑅1, 𝑅2, ..., 𝑅𝑁 . Finally, 𝑅𝑖 posts the

encrypted shares and commitments 𝐶𝑜𝑚(𝑟𝑖, 𝑢𝑖) onto the blockchain.

• Reveal Phase. In the reveal phase, the registry 𝑅𝑖 distributes the key to open

its commitment by posting 𝑂𝑝𝑒𝑛(𝑟𝑖, 𝑢𝑖) onto the blockchain.

• Recovery Phase. When all shares {𝜎𝑖
1, 𝜎

𝑖
2, ..., 𝜎

𝑖
𝑁} distributed by 𝑅𝑖 are avail-

able, the other registries can compute 𝑅𝑒𝑐(𝜎𝑖
1, 𝜎

𝑖
2, ..., 𝜎

𝑖
𝑁) to reconstruct 𝑢𝑖.

Then, the randomness for the next epoch is calculated by 𝑢1 ⊕ 𝑢2 ⊕ ...⊕ 𝑢𝑁 .

By proposing the DRG protocol and 𝑝𝑖-biased coin flipping protocol, the B-DNS

PoS consensus protocol can select leaders proportional to their stakes. Then, we

introduce the detailed PoS consensus protocol as below, which defines the operations

each registry should follow as well as the corresponding encryption mechanisms that

ensure the data consistency.

Protocol Π𝑃𝑜𝑆

Π𝑃𝑜𝑆 is operated by a set of registries {𝑅1, ..., 𝑅𝑛}. It proceeds as follows:

1.Initialization. At the very beginning, the registry 𝑅𝑖 receives its secret key

and verification key (𝑠𝑘𝑖, 𝑣𝑘𝑖) from the key registration interface of ℱ𝐷,𝐹
𝐷𝐿𝑆.

If the blockchain is not initialized, it sends (𝐺𝑒𝑛𝐵𝑙𝑐, 𝑅𝑖) to ℱ𝐷,𝐹
𝐷𝐿𝑆, receiving

(𝐺𝑒𝑛𝐵𝑙𝑐𝐺𝑒𝑡, S0, 𝜌0,F). Then, the registry 𝑅𝑖 sets the local blockchain 𝐶 = 𝐵0 =

(S0, 𝜌0) and the initial state 𝑠𝑡0 = 𝐻(𝐵0).

Otherwise, if the blockchain has been initialized, the registry 𝑅𝑖 receives a set

of valid chains C and set current chain 𝐶 = maxvalid(C) and the current state

𝑠𝑡𝑗 = 𝐻(𝐵𝑗).
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2.Chain Extension. In a typical slot 𝑠𝑙𝑗, each online registry 𝑅𝑖 performs

the following jobs:

1. Update Stake. In epoch 𝑒𝑥, the registry 𝑅𝑖 updates the stake distribu-

tion using the data drawn from latest block with slot number less that

𝑥𝑅 − 2𝑘, where 𝑘 is the security parameter that used to indicate that the

transaction is stable under 𝑘 blocks. The stake distribution is updated as

S𝑥+1 = {(𝑣𝑘1, 𝑠𝑥+1
1 ), (𝑣𝑘2, 𝑠

𝑥+1
2 ), ..., (𝑣𝑘𝑛, 𝑠

𝑥+1
𝑛 )}, which means that the stake

updated in the epoch 𝑒𝑥 is used to select leaders for epoch 𝑒𝑥+1.

2. Update Randomness. In epoch 𝑒𝑥, a registry 𝑅𝑖 needs to update the

randomness 𝜌𝑥 for the upcoming epoch. It sends a message (𝐸𝑝𝑐𝑅𝑛𝑑,𝑅𝑖, 𝑒𝑥)

to the functionality ℱ𝐷,𝐹
𝐷𝐿𝑆, receiving a message (𝐸𝑝𝑐𝑅𝑛𝑑𝑈𝑝𝑑, 𝜌𝑥+1), where

𝜌𝑥+1 is the updated randomness used to seed the leader election function for

epoch 𝑒𝑥+1.

3. Collecting Valid Chains. Once a registry 𝑅𝑖 is selected as the slot leader

in slot 𝑠𝑙𝑗, it needs to accept all valid chains via broadcast and put them

into a candidate chain set C. Then, the registry 𝑅𝑖 verify whether all the

candidate chains are valid. After verification, 𝑅𝑖 acquires the longest valid

chain by calculating 𝐶 ′ = maxvalid(𝐶,C). 𝐶 ′ is set as the current chain

𝐶 = 𝐶 ′ and the latest state is set as 𝑠𝑡 = 𝐻(𝐶 ′).

4. Issuing New Blocks. If 𝑅𝑖 is the slot leader determined by function

F(S𝑥, 𝜌𝑥, 𝑠𝑙𝑥𝑅+𝑗) in the slot 𝑠𝑙𝑥𝑅+𝑗 of epoch 𝑒𝑥, it generates a new block

𝐵𝑥𝑅+𝑗 = (𝑠𝑡, 𝑑, 𝑠𝑙, 𝜎), where 𝑠𝑡 is the state of the former block (i.e., 𝑠𝑡 =

𝐻(ℎ𝑒𝑎𝑑(𝐵𝑥𝑅+𝑗−1))), 𝑑 ∈ {0, 1}* is the stored operation records data and

𝜎 = 𝑆𝑖𝑔𝑛𝑠𝑘𝑖(𝑠𝑡, 𝑑, 𝑠𝑙) is a signature on (𝑠𝑡, 𝑑, 𝑠𝑙). 𝑅𝑖 appends the newly-

generated block to the current chain 𝐶 ′ = 𝐶|𝐵, broadcasts block 𝐵𝑥𝑅+𝑗,

sets 𝐶 ′ as the new current chain and sets state 𝑠𝑡 = 𝐻(𝐵𝑥𝑅+𝑗).
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3. Broadcasting Operation Records. Once a registrant registers a do-

main with registry 𝑅𝑖, the registry creates a operation record op according to

the template. Given that this operation record is consistent with the state of the

record chain, the registry 𝑅𝑖 returns 𝜎 = 𝑆𝑖𝑔𝑛𝑠𝑘𝑖(𝑜𝑝).

Then we describes how to construct a leader election function F using the PVSS

scheme. The main problem in implementing the functionality ℱ𝐷,𝐹
𝐷𝐿𝑆 is how to generate

uniform randomness for leader election function in a distributed way.

Protocol 𝜋𝐷𝐿𝑆

𝜋𝐷𝐿𝑆 is run by a set of elected leaders during an epoch 𝑒𝑥 that lasts 𝑁 slots,

without loss of generality denoted by 𝑅1, 𝑅2, ..., 𝑅𝑁 (Actually, these elected leader

are not necessarily different).

1.Commitment Phase. When epoch 𝑒𝑥 starts, each registry 𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑁

samples a uniformly random string 𝑢𝑖 and randomness 𝑟𝑖 for the underlying com-

mittment scheme, generates shares {𝜎𝑖
1, 𝜎

𝑖
2, ..., 𝜎

𝑖
𝑁} ← 𝐷𝑒𝑎𝑙(𝑁, 𝑢𝑖) and encrypts

these shares under the public key of registry 𝑅1, 𝑅2, ..., 𝑅𝑁 . Finally, 𝑈𝑖 posts the

encrypted shares and commitments 𝐶𝑜𝑚(𝑟𝑖, 𝑢𝑖) onto the record chain.

2.Reveal Phase. In the reveal phase, the registry 𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑛 distributes

the key to open its commitment by posting 𝑂𝑝𝑒𝑛(𝑟𝑖, 𝑢𝑖) onto the record chain.

3.Recovery Phase. When all shares {𝜎𝑖
1, 𝜎

𝑖
2, ..., 𝜎

𝑖
𝑁} distributed by the

registry 𝑅𝑖 are available, the other registries can compute 𝑅𝑒𝑐(𝜎𝑖
1, 𝜎

𝑖
2, ..., 𝜎

𝑖
𝑁)

to reconstruct 𝑢𝑖. Then, the randomness for the next epoch is calculated by

𝑢1 ⊕ 𝑢2 ⊕ ...⊕ 𝑢𝑁 .

3.4.4 Network Layer

In the network layer, B-DNS provides three interfaces to enable different types of

communication with different entities. In this case, B-DNS not only communicate

with peers, but also provides domain name service to resolvers and end-users.
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The interface between B-DNS name servers is similar to current blockchain sys-

tems. B-DNS supports transmission of transactions and blocks. The interface be-

tween B-DNS name servers and resolvers & end-users supports direct DNS query,

which makes B-DNS compatible with current DNS. A B-DNS name server can re-

spond the query directly by fetching the required DNS record from the blockchain.

B-DNS Name Servers to B-DNS Name Servers: The interactions between

B-DNS name servers are mainly responsible for data transmission.

inv. It allows a node to advertise its knowledge about the blockchain.

getblock. A name server sends this message with its highest block number to get

a list of unstored blocks from its peers.

getdata. This is used to respond to inv message. After receiving an inv message,

a B-DNS name server checks if there are any unstored DNS records. If so, it sends a

getdata message to require the lost records.

getmerklepath. When a light node wants to verify whether a record is valid, it

needs to query a random full node the corresponding Merkle path.

B-DNS Name Servers to Recursive Resolvers: In this interface, B-DNS acts as

an authoritative name server that reply DNS queries. On receiving a DNS query, a B-

DNS name server directly fetches the queried DNS record from the stored blockchain

and respond it. In addition, if a recursive resolver wants to use the B-DNS name

service, it simply sends a DNS query to a B-DNS name server directly.

B-DNS Name Servers to Users: B-DNS is designed to be compatible with the

legacy DNS. Accordingly, it could directly interact with the clients. A client wants

to use the B-DNS service can modify its resolv.conf with the IP address of a B-DNS

name server. If the queried B-DNS name server is a full node, it could easily fetch the

required DNS record from the blockchain. By contrast, if the queried B-DNS name

server is a light node, which only stores the headers of the blockchain, the query will

be redirected to a full node without delay.

We finally discuss the differences of query operation in B-DNS. Traditionally, the

recursive resolver conducts query operation with recursive resolution. The query pack-

ets need to traverse the DNS tree to obtain the IP address stored in the authoritative
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1. www.example.com ? 4. send me block 200

5. block #2006. 155.34.66.32

Client

Light Node
Full Node

NS Index2. #block of 

“www.example.com”?

3. block 200

Figure 3-3: The query operations in B-DNS. The light node will randomly choose a
full node to obtain the queried record and its merkle proof. For more security, the
light node can query several full nodes and compare their answers.

name server. However, in B-DNS, as name servers are structured in a peer-to-peer

way, the query process is different. As a full node, the B-DNS name server can re-

spond to the client directly by fetching the required DNS record from the blockchain.

By contrast, as a light node, the B-DNS name server needs to check whether the

queried DNS records in stored locally. If so, it responds directly. Otherwise, the light

node needs to query a full node to acquire the requested DNS record as shown in

Fig. 3-3. The light node can verify the correctness of the DNS record in the response

packet using the MerkleRoot and its corresponding Merkle path.

3.5 Experiment

We implement a prototype of B-DNS in Golang according to our 4-layer architecture.

We also establish a testbed for B-DNS on an i9-9900k server. We set up eight B-DNS

nodes and each acts as a registry that stores a full copy of the blockchain. Each node is

a 2 GB memory, 2 CPU, Ubuntu 18.04 virtual machine and the hypervisor is Vmware

Workstation 15.0.4. We also set up a commercial DNS implementation PowerDNS

Recursor 4.1.10 as a comparison. As to the DNS record dataset, we use publicly

accessible DNS traces provided by the CAIDA to generate transactions [22]. Our

blockchain consists of around 100,000 DNS entries. In our experimental blockchain,

all operation transactions are signed using ECDSA scheme and encapsulated in the

form of registration records. We also craft a query dataset, which consists of 20,000
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domain names, to test the lookup performance and resilience of B-DNS name servers.

We design two sets of experiments to evaluate the security and performance of

B-DNS, respectively. In the security evaluation, we compare the security properties

between legacy DNS and B-DNS from three dimensions: the probability of successful

attack, the attack cost, and the attack surface. In the performance evaluation, we

test whether B-DNS provides acceptable performance.

3.5.1 Security Evaluation

In security evaluation, we conduct three experiments to compare the security between

legacy DNS and B-DNS from the probability of successful attack, the attack cost, and

the attack surface.

The Probability of Successful Attacks

In this experiment, we compare the probability of successful attacks against legacy

DNS and B-DNS. In legacy DNS, a successful attack implies that an attacker has

generated a response packet with identical transaction ID and port number as the

query packet. Its probability can be calculated as:

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
𝑏 * 𝑡

𝛼 * (𝛽 − 𝛾) * 𝜃 * 𝑠

The meaning of these notations are listed in Table 3.2. As the attack time 𝑡

increases, more forged packets the attacker sends, higher the probability a attack

succeeds.

In B-DNS, the attack methods against B-DNS are different because of a different

architecture, where all records are stored in the blockchain. In this case, if an attacker

wants to tamper the stored data, it needs to rewrite all the blocks after the one that

stores the target record. In the experiment, we model a successful poisoning attack

against B-DNS as a catch-up problems, where attackers need to generate forge blocks

to replace blocks generated by honest users.

We introduce security parameter to restrict only data in 𝑘-depth block can be
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Table 3.2: The notations used to calculate the probability.

Notation Description

𝛼 The range of transaction IDs (universally 216, or 65536 values)
𝛽 The range of source ports (conceptually 216)
𝛾 The number of reserved ports (usually 210)
𝜃 The number of authority name servers. Many domain operate several

authority servers with independent public IP address. A recursive server
normally queries the closest one. Accordingly, 𝜃 is the product of all
public facing addresses used by recursive resolver and authority servers.

𝑏 the bandwidth between the attacker and the victim recursive resolver
𝑡 The time that the attacker is able to send forged response packets
𝑠 The size of a response packet

𝑝 The probability that an honest node finds the next block
𝑞 The probability that an attacker finds the next block
𝑝𝑧 The probability that an attacker will never catch up from 𝑧 blocks behind
𝑞𝑧 The probability that an attacker will catch up from 𝑧 blocks behind

recognized as trusted. Therefore, when the amount of stake controlled by attackers

is 𝑠𝑖 and there are 𝑛 nodes in B-DNS, the probability of a successful attack is:

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = (
𝑠𝑖∑︀𝑖−1

𝑚=1 𝑠𝑚 +
∑︀𝑛

𝑚=𝑖+1 𝑠𝑚
)
𝑧

In Fig. 3-4, we draw the probability of cache poisoning attacks against legacy

DNS and B-DNS, respectively. We can see that the probability of attacks against

current DNS increases linearly with the number of packets sent. We can also see

that the highest probability of attack against current DNS reaches 1, which means

an attacker will always succeed as long as it sends enough forged packets to poison

the cache.

On the contrary, the probability of attacks against B-DNS increases with the

amount of controlled stake and decreases with the security parameter, which can be

fine-tuned to modify the security of B-DNS. Usually, the attacker’s controlled stake is

a constant. Even a small increase in the stake is costly. In this case, the probability

of a successful attack against B-DNS can hardly exceed 3% in current setting.

We also conduct experiments to evaluate the attack success rate against B-DNS
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Figure 3-4: The theoretical success rates of cache poisoning attacks against DNS and
B-DNS. In legacy DNS, the number of authorities means how many authoritative
name servers the queried domain owns, typically 3. The success probability increases
as the number of attack packets increases and will finally succeed. In B-DNS, the
depth of target block means the gap between the attacker and honest nodes. The
larger the gap, the less the probability of succeeding. The stake controlled by the
attacker affects its probability of being selected to issue a new block.

in different scenarios. The results are shown in Fig. 3-5. We simulate an environment

with 100 B-DNS nodes, each with 1% stake. Then we adjust the portion of attackers

from 5% to 15%, which means the number of malicious nodes is from 5 to 15. We

also assume that the honest nodes’ chain is 4 blocks longer than attackers’, which

is the optimistic assumption for the attacker. Then we start the system to generate

100 blocks. If the attackers’ chain catches up with honest nodes’ chain, we record

that attackers succeed. Otherwise, honest nodes win. We conduct the experiment

10000 times to calculate the success rate of attack against B-DNS according to the

times that attackers win. We get 100 possible success rates for each stake distribution

scenario. As we can see, even with 15% stake, the success rate of cache poisoning

attack against B-DNS is at most 0.12%, which is tremendously small.

Attack Cost

In this experiment, we compare the attack cost for attackers to launch attacks against

legacy DNS and B-DNS. We think a fair way to compare the attack cost in different
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Figure 3-5: The experimental success rates of cache poisoning attacks against B-DNS.
In each scenario, the experiment was conducted 100 times. Though the success prob-
ability increases with the number of attackers’ stakes, it is still negligible compared
with the success probability in legacy DNS.

systems is when their success rates are equal. In this case, we consider the case that

the probability of successful attack is 1%. How much should an attacker pay to attack

legacy DNS and B-DNS.

For legacy DNS with 3 authority name server, an attacker needs to continuously

send 126,835,750 packets to reach the probability of 1%, which requires 12216.9 MB

traffic. For a network with 10 Mbps bandwidth, this attack lasts for 9780 seconds,

less than three hour. The cost to use 10 Mbps for 2.7 hours is just several dollars.

For B-DNS, if an attacker wants to succeed with 1% probability, the stake it should

own is shown in Table 3.3. If B-DNS possesses 1,000,000 domains, and registering

one domain requires 10 dollars, the attack cost against B-DNS ranges from 3,160,000

dollars to 4,320,000 dollars, which is far more than the cost of attacking legacy DNS.
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Table 3.3: The stake an attacker should own to launch an attack with 1% success
probability.

Stake Depth Stake Depth Stake Depth

31.6% 6 38.6% 10 41.8% 14
34.1% 7 39.6% 11 42.4% 15
35.9% 8 40.5% 12 42.8% 16
37.4% 9 41.2% 13 43.2% 17

Attack Surface

In this experiment, we compare the security of legacy DNS and B-DNS with respect

to their attack surfaces. We define the attack surface as the system’s actions that are

externally visible to its users and the system’s resources that each action accesses or

modifies. We first identify all resources of the system that are potential targets of

attacks. For current DNS and B-DNS, the stored records and provided name service

are vulnerable to different kinds of attacks. Then, we define attack class as a set of

attacks that employ similar attack methods. In our experiment, we categorize the

common attacks against DNS as spoofing, denial-of-service, hijacking, injection, and

poisoning. Finally, we counte the number of instances of each attack classes for DNS

and B-DNS, respectively. The results are concluded in Table. 3.4.

We can conclude that legacy DNS has more vulnerabilities in all types of attack

classes. In spoofing class, current DNS has exposed 48 vulnerabilities while B-DNS

only has one. The closest attack class between current DNS and B-DNS is the denial-

of-service attack, where current DNS has detected 24 vulnerabilities, double of B-

DNS’s vulnerabilities. As to the hijacking and poisoning classes, B-DNS does not have

such kind of vulnerabilities. Even the only one injection vulnerability, the affected

component of B-DNS is its debug log, which does not affect the core parts of B-DNS

such as the name service. In a word, we can see the attack of B-DNS is much smaller

than that of current DNS, which makes attackers more difficult to attack B-DNS.
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Table 3.5: The search performance of B-DNS with a constructed index tree.

Records Number Route Times Search Time (ms)

136780 17.9 63.7
1467032 19.7 74.9
1803284 20.3 80.3
23190410 21.9 89.6
160403846 23.4 91.3

3.5.2 Performance Evaluation

In performance evaluation, we conduct four experiments to evaluate the performance

of B-DNS.

Search Speed

In this experiment, we examine to what extent can index speed up searching in the

blockchain and whether adding an index affects the overall performance. Specifically,

we test the search time in the blockchain with and without an index, respectively.

We tested the search speed of our index with different record sets. The experiment

results is illustrated in Table 3.5. As we can see, the search time is very limited in

our constructed index. We also notice that the distribution of search speed without

an index is approximately linear, which is because the search in a single chain needs

to travel from the very beginning to the target block. Therefore, as the blockchain

grows, the search time increase linearly. However, in B-DNS, the search time grows

logarithmically.

Space Cost

In this experiment, we investigate the space cost of the B-DNS full node and light

node, respectively. We use 31,535,998 DNS entries provided by CAIDA. We first test

the volume of a full node. The result is 887.41GB, which is quite an affordable result.

Considering the price of disk nowadays, a registry can easily afford hundreds of drives.

Then, we test the space cost of a light node, which only keeps the block header of a

blockchain. The result shows that it only needs 4.12 GB. Apparently, it is feasible
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Figure 3-6: The performance of B-DNS. In figure 3-6a, almost all B-DNS query
latency is less than 20ms, while some PowerDNS’s latency exceeds 100ms. In figure
3-6b, we can see that B-DNS is not affected by the flash-crowd effect while PowerDNS
takes around thirty seconds to recover.

for most current DNS servers to operate a B-DNS name server.

Query Latency

In this experiment, we examine the query latency of B-DNS and compare it with

PowerDNS. Both of them are set up in the lab without any cache warming up. B-DNS

name server is equipped with a full blockchain and an empty cache. Correspondingly,

the PowerDNS server is initialized with an empty cache as well. We continuously

query two servers using pre-generated query packets and measur the corresponding

latency. The results are illustrated in Fig. 3-6a. Explicitly, we find that B-DNS could

achieve approaching or even better lookup performance than PowerDNS. We remark

that this is because the PowerDNS server obtains the queried IP address by recursive

resolution while B-DNS can fetch records from the locally-stored blockchain directly.

In recursive resolution, PowerDNS may suffer from the network congestion and packet

loss. By contrast, B-DNS can provide more stable and efficient name service as long

as the record has been stored in the blockchain.
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Flash-crowd Effect

In this experiment, we test the resilience of B-DNS when it faces the flash-crowd

effect. Specifically, the flash-crowd effect in DNS refers to sudden upheavals in the

frequency of queried domain names. The server setting in this experiment is the

same as the former one. We start by continuously sending DNS query packets to

B-DNS server and PowerDNS server for three hours. Then, we flipped the popularity

of queried domain names. Specifically, the most popular domain name becomes the

least popular and the second popular domain name becomes the second least popular,

and so on. We measure the corresponding query latency and use the median in each

minute to illustrate the trend as shown in Fig. 3-6b. We notice that the latency of

PowerDNS is much higher than that of B-DNS at the very beginning and between 180 -

th to 210 -th mins. This is because of the uncached query, which requires PowerDNS

to launch recursive resolution. Specifically, when facing flash-crowd effect, the query

latency of PowerDNS increases substantially while that of B-DNS remains stable.

3.6 Security Analysis

In this section, we discuss how B-DNS handles the DDoS attack and two other po-

tential attacks: the sybil attack, the index attack, and the hash collision attack.

3.6.1 DDoS Attack

B-DNS can provide great resistance against the DDoS attack. The underlying blockchain

distributes content to a large number of nodes. In addition, the peer-to-peer structure

of B-DNS makes it hard to attack all the B-DNS name servers. Though some name

servers may be compromised by the DDoS attack, it will not affect the overall name

service.
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3.6.2 Sybil Attack

Sybil Attack is a type of attack seen in peer-to-peer networks in which a node in

the network operates multiple identities actively at the same time and undermines

the authority/power in this system. In B-DNS, the sybil attack can be launched

by one registry mispresenting the number of domain names registered by it and so

pretending to control a huge amount of stake. We argue that in B-DNS the cost

to launch sybil attack is tremendously high. A registry cannot arbitrarily claim the

amount of its registered domains. The other nodes can easily check its real stake

by quickly traversing the whole blockchain. In this case, the only way to increase

your stake is to register as many domain as possible, which is costly and tardy.

Additionally, once a registry is caught to lie in its stake, B-DNS can eliminate its

domain registration power in a soft-fork, which in turn warn the other registries to

behave honestly.

3.6.3 Index Attack

The index attack is conducted by forging an incorrect attack and send it to honest

peers. This stems from the fact that an adversary may try to create a fork when

it generates a new block. However, the same as Bitcoin, B-DNS sets a security

parameter 6, which represents that a block is stable when it is 6-block deep in the

blockchain. B-DNS can ensure the correctness of the index by only converting the

stable portion of the blockchain. In addition, B-DNS encapsulates the parameter

IndexHash into the header. The parameter IndexHash is the hash value of the latest

index. It allows each node to verify whether their index has been updated to the

latest state of the blockchain.

3.6.4 Hash Collision Attack

The hash collision attack against DNS is that different domain names have identical

hash value. The B-DNS index is implemented using a hash map instead of a hash

table. A hash value corresponds to a bucket, which can accommodate eight operation
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records. As a result, if two domain names have identical hash value, they can be

stored in the bucket without causing a collision. Then, we calculate the possibility of

a hash collision. Given that there are 𝑁 possible hash values and 𝑘 (𝑘 < 𝑁) domain

names. The possibility of 𝑘 domain names have different hash value is

𝑁 − 1

𝑁
× 𝑁 − 2

𝑁
× ...× 𝑁 − (𝑘 − 2)

𝑁
× 𝑁 − (𝑘 − 1)

𝑁

Accordingly, the collision possibility of a hash table is

𝑃 = 1− 𝑒
−𝑘(𝑘−1)

2𝑁

We then investigate the hash collision rate of B-DNS. Assuming that tens of

millions domain names have been registered in B-DNS, the index utilizes a hash

function whose hash range is 252. The collision rate is illustrated in Fig. 3-7. When

the number of stored domain names is less than 60,000,000, the collision rate is almost

zero. The probability is less than 3% even when we store 100,000,000 records. If we

need to store more records, we can maintain a low collision rate by increasing the hash

range. Also, B-DNS index can be improved by using separate chaining with linked

lists to entirely resolve the collisions. Thus, B-DNS is resistant to hash collision

attack.

0 1 2 3 4 5 6 7 8 9 10

Number of Domain Names 10
7

0

0.5%

1%

1.5%

2%

2.5%

3%

C
o
ll
is

io
n
 R

a
te

B-DNS Index

Figure 3-7: The collision rate of the B-DNS index.
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3.7 Related Work

In this section, we introduce the related work on enhancing the security and perfor-

mance of legacy DNS, and efforts that have been devoted to implementing blockchain-

based domain name systems.

3.7.1 DNS Security and Performance

Several methods have been proposed to defend against the cache poisoning attack.

Dagon et al. proposed to mix the upper and lower case spelling of the domain name in

the query packet so that the adversary cannot succeed in poisoning unless he guesses

the right combination of upper and lower case letters [33]. Perdisci et al. utilized the

wildcard domain names [35], which are in the form of *.example.com where * can

be recognized as any combination of characters [91]. Accordingly, a recursive resolver

can prepend random strings to the queried domain name and still obtain the correct

answer. In this way, a recursive resolver can distinguish a valid response by checking

whether the combination of upper/lower cases or random strings matches its query

packet. In addition, the cache can also be used to track user behaviors [59]. Klein

et al. proposed a user tracking technique to track user behaviors even if they use

“privacy mode” browsing, or use multiple browsers.

DNSSEC creates a trust chain from the root server to the authoritative server,

in which way a recursive resolver can check the query route of the response packet

by verifying the signatures [47]. An attacker can hardly tamper with a DNSSEC-

deployed domain because they cannot forge signatures. However, though DNSSEC

has been proposed for decades, its deployment rate is still meager nowadays [69].

Recent survey reveals that only 1% of .com, .net, and .org domains have enabled

DNSSEC [12]. Several reasons account for this phenomenon: the sophisticated de-

ployment procedure of DNSSEC, additional cost [31], and political reason that some

countries may be hostile to the country where the root server is located [91]. For ex-

ample, Cuba may deny DNS packets originated from the USA. In addition, Shulman

et al. conducted an Internet study of the cryptographic security of DNSSEC-signed
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domains [99]. They collected 2.1 million DNSSEC keys and found that 35% are

singed with RSA keys that share their modulo with some other domain and 66% use

keys that are too short. They conclude that this problem arises from the poor key

generation practices.

Additionally, researchers proposed T-DNS [125], a TCP-based DNS, to enhance

the security of legacy DNS and defend against these former mentioned attacks. It

uses the TLS to establish secure communication channels from clients to resolvers

and from resolvers to authoritative servers.

Facing the DDoS attack, Pappas et al. noticed the importance of NS resource

record [87]. They mentioned that prolonging the TTL of NS record could ensure a

certain degree of availability of these domains when their father domain is under a

DDoS attack. Similarly, Ballani et al. proposed to build a separate “stale cache” in

the recursive resolver to store expired records [9]. In this way, if a recursive resolver

does not receive the response from the authoritative server, it could use stored records

in the stale cache to complete the query process. Besides, some efforts were devoted

to evaluating the performance of root servers under DDoS attacks [80]. Their work

demonstrated that massive attacks could overwhelm some letters (letters are used to

represent root servers, e.g., root server A-M) so that securer mechanisms should be

developed to improve the DNS security.

There are also some work on improving the performance of DNS. Park et al.

proposed CoDNS [88], a lightweight and cooperative DNS lookup service that can

be independently and incrementally deployed to existing nameservers. They demon-

strate that CoDNS can reduce the lookup latency by 28-82%, which greatly improves

the performance of legacy DNS. Gao et al. focused on the update performance of

managed DNS, which consumes dozens of seconds to complete, and proposed feasible

improvement techniques [46]. Alouf et al. introduced an analytical models to study

expiration-based caching systems based on renewal arguments and found that no dis-

tribution maximizes the hit probability anywhere in a network of caches. [4]. Liu

et al. proposed ContainerDNS [71], a scalable high-performance DNS for large-scale

container cloud platforms, which maximizes DNS’s performance and scalability by
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optimizing packet processing and using efficient memory and cache management.

3.7.2 Blockchain-based DNS

Namecoin was proposed to build a blockchain-based namespace [82]. It was forked

from the Bitcoin so that it shares lots of similarities with the Bitcoin, including the

block size, mining interval, and scripting system (with a few additions). Namecoin

adopts the merged mining to ensure its data consistency. A user could register un-

limited domains as long as it has enough coins. However, an empirical study on

Namecoin shows that most registered domains are inactive and squatted [52], which

is of great danger to a naming system [5]. Blockchain-DNS [15] provided a browser-

side name resolution service for Namecoin. However, as Namecoin has many intrinsic

problems, the usage of Blockchain-DNS is limited.

Ali et al. proposed Blockstack [3], a blockchain-based naming and storage system.

Blockstack separates its control plane and data plane. In this case, it can introduce

new functionalities without forking the underlying blockchain. Blockstack also has

some advantages such as the cross-chain migration ability and fast bootstrapping.

These properties make it easier to deploy the Blockstack system. Blockstack can also

provide good read/write performance with limited computation overhead.

3.8 Conclusion

In this chapter, we propose B-DNS, a secure and efficient blockchain-based DNS.

B-DNS is compatible with current DNS and can provide better defense against the

cache poisoning attack and the DDoS attack. The experiment demonstrated the

good security of B-DNS by comparing it with legacy DNS according to attack success

rate, attack cost, and attack surface. B-DNS can also provide efficient name service

compared with legacy DNS. Our work actively explored the construction of the next-

generation DNS infrastructure and provides a potential solution for building domain

name systems for wide area network, local area network, or intranet.
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Chapter 4

Pistis: Issuing Trusted and

Authorized Certificates With

Blockchain and TEE

4.1 Introduction

SSL/TLS certificates issued by Certificate Authorities (CAs) form the security foun-

dation of HTTPS connection. Clients establish HTTPS connections with a website

only when its server provides a valid certificate to prove its identity. However, cur-

rent CAs are vulnerable to be compromised to issue unauthorized certificates, which

arises from the fact that a compromised CA might issue certificates without domains’

permission. As an example, in 2011, attackers compromised the private key of Dig-

iNotar and maliciously issued unauthorized certificates for Google, which were used

to launched Man-in-the-Middle (MitM) attacks against Google services [115]. Similar

incidents happened dozens of times [48,57].

To mitigate this problem, some countermeasures such as HTTP Public Key Pin-

ning (HPKP) [39] and Certificate Transparency (CT) [64] have been proposed. HPKP

is a straightforward way through which a server provides a list of trusted public keys

to clients. CT builds a log system to monitor the operation of certificates, which
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enables clients to detect unauthorized certificates. In addition, researchers proposed

some other countermeasures, such as Accountable Key Infrastructure (AKI) [58] to

disperse centralized trust, Attack Resilient Public Key Infrastructure (ARPKI) [11] &

PoliCert [105] to log certificate operations, and Certificate Issuance and Revocation

Transparency (CIRT) [96] to provide an efficient certificate verification method.

However, these countermeasures have some common limitations. What they can

do is to detect the issuance of rogue certificates or reduce the probability of unautho-

rized certificate problems. In most cases, attacks have already caused damage before

unauthorized certificates are detected. In addition, when an unauthorized certificate

is reported, browser vendors typically add the corresponding CA to the blacklist.

However, some compromised CAs are too big to fail. For example, although Syman-

tec was reported to issue unauthorized certificates to Google.com in 2015 [100], it was

unrealistic to block Symantec immediately since it had controlled more than 10% of

active certificates by that time. Blacklisting Symantec will block millions of websites

at the same time.

We observe that three reasons account for the problem of unauthorized certificates:

1. traditional centralized CAs might be compromised by attackers; 2. traditional cen-

tralized CAs can issue certificates without domains’ permission (i.e., unauthorized);

3. operations of traditional centralized CAs are opaque. Furthermore, we find that

people typically trust a CA based on its identity. However, this trust relationship

is fragile especially when the trusted CA might be compromised. In this case, we

consider addressing this issue through a complete certificate issuance process design,

which restricts only the domain owner can apply for a certificate related to that do-

main. A certificate is issued only when its applicant passes domain validation. We

also ensure that CAs are hardly compromised. The advent of blockchain makes our

idea feasible.

Blockchain reproduced smart contract, whose execution is immutable, transpar-

ent, and deterministic. Considering building a CA based on smart contract, we find

that: 1. the immutable feature makes it difficult for an attacker to compromise a

CA based on smart contract, which eliminates the problem of traditional CAs being
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manipulated in the event of key breaches; 2. the transparent feature let people trust

a CA based on its logic rather than its identity, and the blockchain becomes the log

of certificates’ operation history naturally; 3. the deterministic feature allows CA

developers to implement autonomous and complete CA logic through sound contract

design. In Pistis, we hard coded that each certificate applicant should prove the own-

ership of the domain related to its requested certificate to the smart contract before

certificate issuance. This process is called domain (ownership) validation. However,

it is challenging to conduct domain validation in smart contracts solely.

Smart contracts work on overlay networks (i.e., blockchain P2P network), which

are only accessed by blockchain nodes, and cannot communicate with domain servers

directly. In this case, traditional domain validation methods via DNS or email cannot

work. It is also infeasible for external validators to pass validation results to a smart

contract directly. Due to the public nature of blockchain, anyone can pass information

to smart contracts so that a smart contract cannot tell the authenticity of provided

validation results. In this case, we need a mechanism that can conduct domain owner-

ship validation and transfer domain validation results to smart contracts in a trusted

way. Inspired by Town Crier [121], which employs TEE as smart contract’s trusted

information source, we intend to address this challenge with the TEE technology.

A TEE isolates a memory space to prevent other software applications from learn-

ing or tampering with the data inside enclaves. The attested execution model of TEE

enables others to check whether an attested result is outputted by an expected pro-

gram. We leverage TEE to validate whether a domain is under the control of its

corresponding certificate applicant. Once the domain related to a requested certifi-

cate passes ownership validation, TEE nodes pass validation results to the smart

contract. Then, after verifying the attested validation results, the smart contract can

issue a certificate as request to the applicant.

In this chapter, we present Pistis1, a framework for issuing authorized and trusted

certificates with blockchain and TEE. Pistis sets blockchain as the root of trust.

Clients can decide whether to trust a smart contract on the blockchain based on its

1 In Greek mythology, Pistis was the personification of trust and reliability.
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logic. Pistis employs two contracts: authority contract 𝒞AC and verification contract

𝒞VC. 𝒞AC is for certificate issuance and revocation, and 𝒞VC is for certificate validity

verification.

Pistis is designed to be TEE-agnostic (i.e., the underlying TEE implementation

is changeable and upgradeable). Pistis combines the security of blockchain system

with TEE-based execution. Pistis’s design supports rigorous analysis of its secu-

rity properties under cryptographic ideal functionality. The main challenges of this

solution, such as TEE failures and DNS failures are discussed in Section 4.2.1.

Our main contributions are summarized as follows:

• Authorized and trusted certificate issuance: Pistis can ensure all its

issued certificates are authorized and trusted. The issuance is authorized be-

cause Pistis leverages TEE nodes to validate the actual control of registrants

over domains related to requested certificates. The attested validation results

provided by TEE nodes allow the Pistis smart contract to issue certificates to

registrants who have passed the domain validation. As these Pistis-issued cer-

tificates are recorded on the blockchain, they are trusted. Details are discussed

in Section 4.3.3.

• Efficient certificate verification: Pistis maintains a Merkle Patricia Tree

(MPT), which stores latest certificates’ states, to enable efficient certificate ver-

ification. In this tree, the key is a Fully Qualified Domain Name (FQDN), and

the value field stores the state of the corresponding certificate. For the client,

Pistis provides web3.js scripts, which are executed in browsers and can verify

the validity of Pistis-issued certificates. Detailed information are discussed in

Section 4.3.3.

• Formal modeling and security analysis: We formally model the Pistis

protocol as ProtPistis in Section 4.3 and give its ideal functionality ℱPistis in

Section 4.4.1. We formally prove the security of Pistis in the universally com-

posable (UC) framework [23] in Section 4.4.2. By showing that ProtPistis UC-

realizes the ideal functionality ℱPistis, Pistis can be seamlessly integrated in
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more complex cryptographic protocols such as HTTPS.

• Implementation and evaluation: We implemented a prototype of Pistis

based on Ethereum and Intel SGX, which could issue X.509 certificates accord-

ing to the specification. We tested the gas consumption, storage overhead, and

verification latency of Pistis. The experiment results demonstrate that Pistis

can provide an efficient certificate verification service to end users.

4.2 System Design

4.2.1 Challenges

Before diving into the specifics of Pistis, we first describe and address the fundamen-

tal pitfalls that arise when hybridizing smart contracts and TEE. Note that designing

such a protocol that integrates smart contract with TEE to issue certificates is non-

trivial, which requires us to resolve the following challenges.

TEE Failures

Though ensuring the integrity and confidentiality of enclave execution, TEE is not a

panacea. We first consider the availability of TEE. In this chapter, we do not make

honest host assumptions. By contrast, hosts may be malicious. A malicious host

can drop messages, abort execution, or exhaust the hardware resource (e.g., conduct

computation-heavy work). Furthermore, even honest hosts may encounter power

loss, which makes the TEE unavailable. Pistis resolves this problem by employing

a cluster of TEE nodes, where a TEE is easily replaced. We also assume that the

adversary can compromise all but one TEE.

We then consider the breach of TEE confidentiality. Recent work has demon-

strated the feasibility of extracting secrets from TEE enclaves via side-channel at-

tacks [113]. Pistis addresses this problem in two ways. First, Pistis is designed

to be TEE-agnostic so that vulnerable TEE can be upgraded with patched version

promptly to resolve the discovered vulnerabilities. Second, Pistis leverages constant
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memory consumption and execution time enclaves to defend against side-channel at-

tacks.

We finally consider the replay attack that may be launched by malicious hosts.

Replay attack is to confuse the TEE states by re-sending previous messages. Pistis

is fault-tolerant to this problem since all states are stored on the blockchain. As long

as Pistis smart contract maintains a correct state, the stateless TEE will not confuse

smart contract execution.

DNS Failures

Before issuing certificates, the domain ownership should be validated via DNS, which,

however, has been demonstrated insecure [19]. In Pistis, we address this problem

by conducting ownership validation from multiple vantage points. Specifically, TEE

nodes are deployed in different ASes. Our approach is based on the assumption that

the adversary cannot control the majority of the Internet, which was also made in [19].

4.2.2 Blockchain as a Root of Trust

In traditional PKI, root CAs act as the root of trust. They issue intermediate cer-

tificates for commodity CAs to issue certificates. In Pistis, we adopt the blockchain

as a root of trust. We construct two contracts, an authorization contract 𝒞AC and

a verification contract 𝒞VC. 𝒞AC takes charge of validating the domain and issuing

certificates. Specifically, 𝒞AC is a stateful smart contract that allows concurrent state

transitions of different registrants. In the stateful contract, an execution either reaches

the next state or revert, which protects Pistis from malicious certificate squatting.

The state transition is depicted in the bottom left of Fig. 4-1. 𝒞VC provides two

interfaces: tree update and certificate verification. The tree update allows the au-

thorization contract 𝒞AC to update certificates’ states, and the certificate verification

enables clients to verify certificates.
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Figure 4-1: Architecture and workflow of Pistis. Pistis consists of three parts:
blockchain, smart contract and TEE nodes. A domain server can request a certificate
from Pistis. A client can verify a certificate provided by the domain server via the
blockchain in Pistis.
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4.2.3 Architecture and Workflow

Fig. 4-1 illustrates the architecture of Pistis. As it shows, Pistis consists of

blockchain, smart contract, and TEE nodes (some of them might be malicious).

A domain, or accurately its owner can request a certificate from Pistis via the

blockchain. A client can verify the authenticity of Pistis-issued certificates by query-

ing the blockchain when connecting to a domain. Then, we discuss the workflow:

Certificate Request. Similar to certificate signing request (CSR), an applicant

should first register an entry in Pistis smart contract (Step 1 ), which contains a

fully qualified domain name, an entity name, and a public key.

Domain Validity Validation. Pistis only issues certificates to domains with

Expiry Date longer than 𝑛 seconds, which is an adjustable parameter that equals

to the validity of Pistis-issued certificates. The smart contract invokes the TEE

to check the validity of requested domain by posting an invocation transaction onto

the blockchain. When a TEE node receives latest block and parses the invocation

transaction, it conducts the validation (Step 2 ). A TEE node typically queries

the whois database for the corresponding Expiry Date and converts it to a Unix

timestamp. By subtracting the timestamp of latest block from Expiry Date, the TEE

node can get the remaining validity of this domain. The smart contract processes the

certificate issuance request only when domain’s valid period is longer than a predefined

length (i.e., 3 months). The validation results will be put on the blockchain as a

transaction that calls Pistis smart contract to update the corresponding domain’s

state (Step 3 ).

Domain Ownership Validation. Pistis smart contract invokes TEE nodes

to validate whether an applicant controls the provided domain. Specifically, smart

contract posts an invocation transaction onto the blockchain until TEE nodes receive

it (Step 4 ). Pistis adopts a secure 2-party computation mechanism to conduct the

validation (Step 5 ). We require that the domain server should be equipped with a

TEE processor because the secure 2-party computation can only be achieved when

both parties are equipped with TEE, which has been proved in [89]. Once a registrant
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passes the domain ownership validation, TEE nodes can upload the validation result

onto the blockchain as transactions that calls the smart contract (Step 5 ). Then,

Pistis smart contract can confirm that this domain is valid and under the control

of the registrant. Following above steps, Pistis can ensure its issued certificates are

authorized.

Certificate Issuance and Revocation. Once a domain passes the validity and

ownership validation, Pistis smart contract can issue a certificate to it. The issuance

(Step 6 ) and revocation (Step 6 ) are two publicly available functions that can be

invoked by valid registrants. Pistis smart contract publishes issued certificates onto

the blockchain, which allows clients to verify their validity and therefore trust these

certificates (Step 6 ).

Certificate Verification. Pistis provides an efficient way to verify its certifi-

cates. When a client connects to a website that is protected by a Pisits-issued

certificate (Step 7 ), it can leverage the web3.js script to query the authenticity of

provided certificate via blockchain (Step 8 ).

4.2.4 Smart Contract Design

In this section, we present the implementation details of Pistis contracts, namely

the certificate authorization contract 𝐶𝐴𝐶 is illustrated in Fig. 4-2 and the certificate

verification contract 𝐶𝑉 𝐶 is presented in Fig. 4-3.

4.2.5 Threat Model

We assume applicants are semi-honest, namely they behave honestly only when reg-

istering certificates for their own domains. However, during other domain owners’

application, they may behave maliciously. We assume TEE hosts are malicious.

They may delay, abort, relay arbitrary messages, or replay previously transmitted

messages to enclaves. In addition, we assume that most active TEE enclaves are

trustworthy, but a small set of enclaves might suffer from integrity or confidentiality

problems. They may be compromised by other parties (i.e., malicious domain owners)
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The Program of Authorization Contract CAC

Functions
Account Registration:

On receiving Account_Request:
If pkacct, address 6∈ account list;
Insert {pkacct, address} into account list;

Identifier Authorization
On receiving Identifier_Authorization:

Parse {pkacct, address}:
If pkacct ∪ address 6∈ account list: revert;
If identifier 6∈ account list: revert;
Else:

Invoke R to generate a challenging token ρ
On receiving a response R:
If R = proof(ρ):

Add the identifier to {pkacct, address};
Else: revert;

Certificate Issuance
On receiving Certificate_Issuance:

Parse the {pkacct, address, identifier};
If pkacct ∪ address ∪ identifier 6∈ account list:

revert;
Else:

Generate a X.509 certificate cert;
Send the cert to the domain owner via R;
Broadcast certid on chain;
Invoke CV C with {cert,certid,valid};

Certificate Revocation
On receiving Certificate_Revocation or cert expires:

If {pkacct, address, identifier} ∈ account list:
Invoke CV C with {cert,certid,invalid};

Figure 4-2: The Implementation of Certificate Authorization Contract 𝐶𝐴𝐶 .
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The Program of Verification Contract CV C

Functions
Certificate Verification
On receiving Verification_Request:

Parse {certid, identifier}:
For MPT: search identifier;
If not found: return false;
If found: compare certid;

If not equal: return false;
Else: parse {status}:

If valid: return true;
Else: return false;

MPT Update
On receiving the MPT_update:
Parse the {certid, identifier, status};
For MPT: search identifier;
If not found:

Add a node {certid, identifier, valid};
Else: Compare the certid;
If equal: Update the {status};
Else: Revert;

Figure 4-3: The Implementation of Certificate Verification Contract 𝐶𝑉 𝐶 .

or external attackers who want to violate the certificate issuance security.

We assume the underlying blockchain satisfies three properties: liveness, con-

sistency, and immutability. Liveness means a transaction will be included in the

blockchain in a fixed time period. Consistency guarantees that all blockchain partic-

ipants have the same view on the state of the blockchain eventually. Immutability

implies that once a transaction is confirmed 𝑘 times, it cannot be reverted.

We consider two types of adversaries: internal byzantine adversary and external

adversary. For byzantine adversary, they may control the operating system and net-

work stacks of TEE nodes, which can reorder, replay, drop transmitted messages, and

schedule processes arbitrarily. For external adversary, they observe global network

traffic, and may reorder or delay messages arbitrarily.
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4.3 The Pistis Protocol

In this section, we specify ProtPistis, which aims to realize a Universal Compos-

able (UC) [23] ideal functionality ℱPistis. ProtPistis utilizes digital signature scheme

Σ(Gen,Sign,Verf), a symmetric encryption scheme 𝒮ℰ(Gen,Enc,Dec), and an asym-

metric encryption scheme 𝒜ℰ(Gen,Enc,Dec).

4.3.1 Blockchain Model

We define the underlying blockchain as a general-purpose append-only ledger ℱB

that maintained by common blockchain protocols. The blockchain is comprised as a

chain of blocks that store transactions. We let the overlay semantics of blockchain as

follows:

• ℱB.account: it is used to generate a new account with an address on the

blockchain.

• ℱB.latest(𝑛): it is used to download the latest 𝑛 blocks. By default, 𝑛 = 1.

• ℱB.post(tx): it is used to broadcast a transaction onto the blockchain. The

broadcasted transaction will be included in 𝛿 blocks.

4.3.2 TEE Model

We adopt the attested execution model formalized in [89] and define our TEE as an

ideal functionality 𝒢𝑎𝑡𝑡. Similar to the notation in [89], a party that loads en enclave

into TEE with an "install" message. A party that invokes the TEE with a "resume"

call.

4.3.3 Formal Specification of the Protocol

In this section, we give the formal protocol of Pistis, which is depicted in Fig. 4-4.

Pistis Registration: An applicant 𝒫𝑖 who wants to request a certificate from

Pistis should first create a blockchain account and register its domain in the 𝒞AC.
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       Initialization          and          Initialization         and          Initialization

       Domain Validation

       Certificate Issuance

       Certificate Revocation

         Domain Validation         Domain Validation

         Registration         Registration

         Validity

         Ownership

         Domain Revocation

         Certificate Revocation         Certificate Revocation

         Certificate Issuance         Certificate Issuance

         Certificate Issuance         Certificate Issuance

Figure 4-4: A formal specification of Pistis protocol. Gray arrows indicate read-
ing blockchain data. White arrows indicate broadcasting a transaction onto the
blockchain.
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In this phase, 𝒫𝑖 can invoke ℱB.post to broadcast a transaction to invoke 𝒞AC’s

registration function. 𝒞AC will mark 𝒫𝑖’s blockchain address as registered and store

its provided domain in the contract.

ApplicantApplicant TEE NodesTEE Nodes BlockchainBlockchain

{“register”, public key, FQDN}

Smart ContractSmart Contract

{public key, FQDN}

{“validity”, did, FQDN} {“validity”, did, FQDN}

{“validity”, eid, FQDN}

{did,  FQDN}

whois(FQDN).ExpiryDate

{validity.proof(FQDN)}

{“ownership”, did, FQDN}
{“validity”, did, FQDN, valid}
{“ownership”, did, FQDN}
{“ownership”, cid, FQDN}

{“ownership”, did, FQDN}Encapk(verf_code)

Decapk(verf_code)

Encspk(verf_code) TXT FQDN
Decspk(verf_code)

{validity.proof(FQDN)}
{“ownership”, did, FQDN, valid}

{“issue”, did, FQDN} {“issue”, did, FQDN}
{FQDN, Certdid, valid}

Figure 4-5: The challenge-proof protocol. Under TEE nodes, dashed line means the
communication does not involve the enclave while the thick solid line represents that
enclaves are involved.

Domain Validation: In this phase, the contract 𝒞AC needs to ensure that the

registered domain is valid (i.e., its validity is longer than 𝑛 seconds) and under the

control of applicant 𝒫𝑖.

For the validity validation, 𝒞AC triggers TEE nodes by invoking the ℱB.post

function to broadcast a transaction that contains domain name and validity validation

instructions.

For the ownership validation, we refer to the Automated Certificate Management

Environment (ACME) protocol [19] and propose a challenge-proof protocol, which is

illustrated in Fig. 4-5.

First, the applicant 𝒫𝑖 invokes the ownership validation function by posting a

transaction with a triple tuple {address, 𝑝𝑘𝑎𝑐𝑐𝑡, domain}. Contract 𝒞AC checks whether

the sender has registered an account. If so, 𝒞AC generates a verification code 𝜎𝒫𝑖
and

sends it to the applicant 𝒫𝑖 as a return value.

Then, the applicant 𝒫𝑖 puts the proof as a TXT resource record in its authoritative

88



DNS server in the form of challenge.<domain> IN TXT proof . 𝒫𝑖 can invoke the

Pistis to check whether the proof matches the challenge.

The 𝒞AC then invokes TEE nodes to generate DNS query packets to challenge.<domain>.

After receiving the TXT response, TEE nodes can extract the proof and respond to

the Pistis with a transaction. The Pistis checks whether the received proof matches

its corresponding challenge. If so, the domain passes the validation, and 𝒞AC mark

the domain as validated.

Certificate Issuance: After passing the domain validation, applicant 𝒫𝑖 can

invoke the 𝒞AC to issue a certificate. 𝒫𝑖 should generate a public key for its certificate

and post this public key onto the blockchain. Then, 𝒞AC generates a certificate for 𝒫𝑖

and broadcasts it to the blockchain.

𝒞VC maintains a MPT to store the states of its issued certificates. Specifically, we

set the domain name as the key of MPT. States of domain certificates (i.e., issued,

revoked) are stored as value.

We make some adjustments to traditional MPT by indexing from the top-level

domains (TLD). This is because domain names show similarity in their TLDs, and

it is better to group similar domain names in a sub-tree. For example, google.com

and gmail.com have identical TLD so that they can be categorized into one sub-tree.

For the value part, there are two types. A valid certificate is given a concatenation in

the form of CertID||valid. For a revoked certificate, the value part is in the form

of CertID||revoked.

Pistis 𝒞VC contract provides three operation functions Insert, Update, and Get.

The first two functions enable 𝒞AC to update certificates’ states, and the last function

allows clients to verify certificates.

Insert. The insert function is operated as follows. First, we should find the node

with the same top-level domain. Then, the TLD node’s pointer will lead us to its

branch node with 26 characters. After that, we check the first letter of the required

domain and find its sub-tree. If this sub-tree is empty, we could insert the left letter

as a leaf node after it. Otherwise, we go to the second letter and its sub-tree. We

follow the letters one by one recursively until we find an empty sub-tree or run out
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of all letters in the domain name.

Update. The update operation is similar to the insert operation. The difference

is when we update the state of a certificate, it has been inserted into the MPT.

Accordingly, we could search the corresponding node from TLD nodes until we find the

same longest prefix node of the domain name. We conduct this operation recursively

until we match all letters in the domain. Finally, we could update the state of the

found domain.

Certificate Revocation: In Pistis, certificate revocation can be triggered in

three ways:

1. A certificate expires once the latest block’s timestamp exceeds its validity. In

this case, 𝒞VC will update the state of this revoked certificate as invalid auto-

matically.

2. A domain owner who owns the private key can sign a revocation request to

Pistis to invalidate the certificate. In this case, the domain owner 𝒫𝑖 should

invoke the certificate revocation function directly by sending a transaction that

contains its address, public key, domain, and certificate id.

3. A new applicant 𝒫𝑗, who could prove its ownership of the domain related to

a valid certificate, can invalidate that certificate. We consider this scenario

because the ownership of a domain may change, while the previously-issued

certificate is still valid. In this case, the new domain owner should explicitly

invoke the Pistis certificate revocation function. Then, Pistis invokes the

domain authorization function, and once the new domain owner passes the

ownership validation, 𝒞AC issues a new certificate and invokes 𝒞VC to update

certificate state.

Certificate Verification: When a client connects to a website protected by a

Pistis-issued certificate, he/she could verify whether the certificate is valid before

establishing a HTTPS connection. Only when the certificate passes verification, the

client believes that the server is the authentic one. Otherwise, the browser should halt
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the connection. In Pistis, certificate verification is conducted by the Get operation

provided by contract 𝒞VC.

Get. The Get operation is a getter function provided by the underlying blockchain,

which enables clients to acquire data directly. Specifically, the underlying blockchain

implementation traverses the MPT to acquire the required state for users.

4.4 Security Analysis

In this section, we formally prove the security of Pistis in the Universally Composable

(UC) framework [23].

4.4.1 Ideal Functionality

The idea functionality of Pistis is specified in Fig. 4-6 as ℱPistis. ℱPistis allows

applicants (each applicant is denoted by a unique id 𝒫𝑖) to request for certificates.

Following the convention in [23], we set an information leakage function ℓ to cap-

ture the allowed information leakage from the encryption. We also use the standard

delayed output [23] to model the power of network adversary.

Applicants can send messages to ℱPistis to invoke Pistis registration, domain

validation, certificate issuance, and certificate revocation, which will update the cor-

responding domain’s state. Clients (i.e., environment 𝒵) can also query ℱPistis for

the state of a domain’s certificate.

4.4.2 Security Proof

Intuitively, a Pistis-issued certificate being authorized and trusted means that an

adversary cannot convince the Pistis to accept a response that differs from the

expected content obtained from the specified domain.

Theorem 1. (Security of ProtPistis). Assume Σ𝑇𝐸𝐸 is existentially unforgeable under

chosen message attacks (EU-CMA), and 𝒜ℰ is INC-CPA secure. Then ProtPistis

securely realizes ℱPistis in the (𝒢𝑎𝑡𝑡,ℱB)-hybrid model, for static adversaries.
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PISTIS: Forever God
Anonymous Authors

Abstract—Fuck

FPISTIS(`,Pi)
Parameter: leakage function ` : {0, 1}∗ → {0, 1}∗
On receive (“register”, FQDN) from Pi:

did← {0, 1}λ
notify A of (“register”, Pi, did, FQDN)
Storage[did] := (FQDN, ~0)
send a public delayed output (“receipt”, did) to Pi

On receive (“validity”, did, eid) from Pi:
notify A of (“validity”, Pi, did, eid)
(FQDN, st) := Storage[did]; abort if not found
(outp, st) := whois(FQDN, did)
notify A of (`(outp), did, eid)
update Storage[did] := (FQDN, st)
send a public delayed output (“receipt”, did) to Pi

On receive (“ownership”, FQDN, did, eid) from Pi:
notify A of (“ownership”, Pi, did, eid)
(FQDN, st) := Storage[did]; abort if not found
send a secret delayed message (challenge, did) to Pi
notify A of (`(challenge), did, eid)
update Storage[did] := (FQDN, st)
send a public delayed output (“receipt”, did) to Pi

On receive “issue”, FQDN) from Pi:
notify A of (“issue”, Pi, did, eid)
(FQDN, st) := Storage[did]; abort if not found
update Storage[did] := (FQDN, st)
send a public delayed output (“issued”, did) to Pi

On receive “revoke”, FQDN) from Pi:
notify A of (“revoke”, Pi, did, eid)
(FQDN, st) := Storage[did]; abort if not found
update Storage[did] := (FQDN, st)
send a public delayed output (“revoked”, did) to Pi

On receive (“read”, did) from Z:
(FQDN, st) := Storage[did]; abort if not found
send st to Z

Figure 4-6: The ideal functionality of Pistis.
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Proof. Let 𝒵 be an environment and 𝒜 be a "dummy adversary" (i.e., acts as a

"transparent channel" between the environment 𝒵 and protocol [23]). To prove that

ProtPistis UC-realizes ℱPistis, we define a simulator Sim. In this case, no environ-

ment 𝒵 can distinguish an interaction between ProtPistis and 𝒜 from an interaction

between ℱPistis and Sim. That is, Sim satisfies

∀𝒵, EXECProtPistis,𝒜,𝒵 ≈ EXECℱPistis,Sim,𝒵

Construction of Sim

Sim works as follows: if a message is sent by an honest applicant to ℱPistis, Sim

emulates appropriate real world "network traffic" for 𝒵 with information obtained

from ℱPistis. If a message is broadcasted by a corrupted party, Sim first extracts the

input. Then, Sim interacts with the corrupted party with ℱPistis.

Pistis Registration:

• If applicant 𝒫𝑖 is honest, Sim obtains (𝒫𝑖, FQDN, eid) from ℱPistis and emulates

an execution of the "create" call.

• If applicant 𝒫𝑖 is corrupted, Sim extracts FQDN from 𝒵. On behalf of 𝒫𝑖, Sim

sends {"register", FQDN} to ℱPistis and instructs ℱPistis to deliver the output.

• In both cases, Sim acts as the adversary and honest parties to interact between

ℱB and 𝒢att, respectively.

Domain Validity Validation:

• If applicant 𝒫𝑖 is honest, Sim obtains (𝒫𝑖, FQDN, did, eid) from ℱPistis and

emulates an execution of the "validity" call. Specifically, Sim extracts the whois

database and checks FQDN’s validity. Then, Sim updates ℱPistis with (FQDN,

eid, st).

• If applicant 𝒫𝑖 is corrupted, Sim extracts FQDN from 𝒵. On behalf of 𝒫𝑖, Sim

sends {"validity", FQDN} to ℱPistis and instructs ℱPistis to extract the whois

database.
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Domain Ownership Validation:

• If applicant 𝒫𝑖 is honest, Sim obtains (𝒫𝑖, FQDN, did, eid) from ℱPistis and

emulates an execution of the "validity" call.

• If applicant 𝒫𝑖 is corrupted, Sim extracts FQDN from 𝒵. On behalf of 𝒫𝑖,

Sim sends {"ownership", FQDN} to ℱPistis and instructs ℱPistis to deliver the

output.

Certificate Issuance:

• If applicant 𝒫𝑖 is honest, Sim obtains (𝒫𝑖, "issue", FQDN, eid) from ℱPistis and

emulates an execution of the "revoke" call.

• If applicant 𝒫𝑖 is corrupted, Sim extracts FQDN from 𝒵. On behalf of 𝒫𝑖, Sim

sends {"issue", FQDN} to ℱPistis and instructs ℱPistis to deliver the output.

Certificate Revocation:

• If applicant 𝒫𝑖 is honest, Sim obtains (𝒫𝑖, "revoke", FQDN, eid) from ℱPistis

and emulates an execution of the "revoke" call.

• If applicant 𝒫𝑖 is corrupted, Sim extracts FQDN from 𝒵. On behalf of 𝒫𝑖, Sim

sends {"revoke", FQDN} to ℱPistis and instructs ℱPistis to deliver the output.

Public Read: On receiving any call ("read", eid) from party 𝒫𝑖, Sim executes a

"read" message to ℱB. If 𝒫𝑖 is corrupted, Sim sends to ℱPistis a "read" message on

𝒫𝑖’s behalf and respond to 𝒜.

Corrupted Enclaves: When 𝒵 corrupts enclaves, Sim obtains the id of them. In

real world, 𝒵 could make corrupted enclaves unavailable at any time by terminating

it. Sim relays all messages between a corrupted enclave and 𝒵. Sim stops ℱPistis

once 𝒵 aborts the execution.

94



Validity of Sim

We show that, in hrbrid settings, no environment 𝒵 can distinguish an interaction

with ProtPistis and 𝒜 from an interaction with ℱPistis and Sim. We consider the

following sequence of hybrid settings, starting with the real protocol execution.

• Hybrid 𝐻1 lets Sim to emulate 𝒢att and ℱB.

• Hybrid 𝐻2 filters out the forgery attacks against ΣTEE.

• Hybrid 𝐻3 lets Sim emulate the issuance phase.

• Hybrid 𝐻4 replaces the encryption of challenge with encryption of 0⃗.

Hybrid 𝐻1 proceeds as real world. To emulate 𝒢att, a key pair (pkTEE is generated

by Sim, namely skTEE) for ΣTEE. On the occasion that 𝒜 communicates with 𝒢att,
Sim stores 𝒜’s information and emulates 𝒢att’s behavior. As to emulate ℱB, Sim

stores blockchain data internally.

From the perspective of 𝒜’, 𝐻1 is simulated the same as the real world. In this

case, 𝒵 cannot distinguish between 𝐻1 and the real world execution.

Hybrid 𝐻2 proceeds as in 𝐻1, except for the following differences. If 𝒢att is called

by 𝒜 with correct message, Sim receives state that is the output and 𝜎TEE that is the

attested result. Let Ω denote the set of all such tuples. Sim aborts on the occasion

that 𝒜 sends an attested result (st, 𝜎TEE) /∈ Ω to ℱB. The indistinguishability

between 𝐻1 and 𝐻2 can be reduced to the EU-CMA property of Σ.

Hybrid 𝐻3 is the same as 𝐻2 but has Sim to emulate the certificate issuance.

Sim emulates messages from 𝐺𝑎𝑡𝑡 to 𝐹𝐵 as described above. If 𝑃𝑖 is corrupted, Sim

sends ("issue", FQDN) to 𝐹Pistis as 𝑃𝑖. From the perspective of 𝒜, Sim emulates 𝐺𝑎𝑡𝑡

and 𝐹𝐵 successfully so that 𝒵 cannot distinguish between 𝐻3 and the real world.

Hybrid 𝐻4 is the same as 𝐻3 except that honest applicants also send messages

to ℱPistis. If 𝒫𝑖 is corrupted, Sim generates messages with ℱPistis as real-world. The

indistinguishability between 𝐻3 and 𝐻4 can be recognized as a reduction to IND-

CPA property of 𝒜ℰ . Adversary 𝒜 cannot distinguish the encryption of 0⃗ from the

encryption of other messages.
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4.5 Experiments and Evaluation

In this section, we conduct experiments to explore the feasibility of Pistis by evalu-

ating the performance of contracts and TEE nodes.

4.5.1 Contract Evaluation

We implement Pistis contracts in Solidity and deploy them on the Ropsten testnet.

We operate three nodes: a domain node, a TEE node, and a client node. All nodes

are equipped with a blockchain endpoint. For client node, we install a MetaMask

wallet, which is a web-based Ethereum wallet. The Geth wallet operates as the

endpoint for the TEE node. It exchanges data between Pistis contracts and the

TEE node. On the client side, we inject certificate verification script into the Pistis-

protected websites. Only when Pistis returns a valid answer, the browser recognizes

the certificate as valid and establishes a HTTPS connection.

We first evaluate the performance of Pistis contract. Three experiments are

conducted to test the gas consumption, storage cost, and verification latency.

Gas Consumption

In this experiment, we test the gas consumption of most operations provided by

Pistis. The gas consumption is closely related to the sustainability and feasibility of

Pistis. Specifically, we measure the approximate computational steps (in Ethereum

gas) and money cost (in USD) for each operation supported by the Pistis contract.

During the writing of this paper (i.e., December of 2020), an ether costs around 500

USD. For the gas price, we adopt 40 Gwei (1 Gwei = 10−9 ether), which is 0.00002

USD. For testing, we assume all strings are a maximum of 32 bytes, which is the

basic storage unit in Ethereum. We also assume that the public keys for certificate

verification are 2048-bit RSA keys. Table 4.1 shows the costs of various operations in

Pistis.
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Table 4.1: The consumption of Pistis operations.

Operation Gas Cost (Unit) Gas Cost (USD)

Account_Registration 38500 0.77
Domain_Registration 41800 0.836
Domain_Validation 52900 1.058
Challenge_Generation 65050 1.31
Challenge_Verification 3600 0.072
Certificate_Issuance 52500 1.05
Certificate_Revocation 4100 0.082
Certificate_Verification 0 0
CertID_Broadcast 1800 0.036

As we can see, the issuance of a certificate with Pistis may cost a domain owner

around 5 dollars, which is less than most commercial certificate authorities’ certificate

issuance service. For end clients, the certificate verification costs nothing so that they

do not need to pay to visit Pistis-protected websites.

Storage Overhead

In this experiment, we investigate the storage overhead of Pistis. Specifically, we

investigate the on-chain storage for MPT, the account list, and transactions required

for data transmission. For the MPT, we store the states of 11,239 certificates, which

costs about 104 MB. For the account list, we insert 11,239 account entries, whose

storage requirement is 8 MB. As the storage overhead increases linearly with the

number of certificates, we can infer that the required storage space is in the TB

level when there are hundreds of millions of certificates in the system. We think this

requirement can be reached easily on current consumer computers.

Verification Performance

In this experiment, we aim to test the performance of certificate verification in Pistis

and compare it with the latency of OCSP and CRL, two widely-used certificate ver-

ification methods. Typical certificate verification can be categorized into two parts.

First, we need to verify the signature provided by the certificate and check whether
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Figure 4-7: The comparison of verification latency between Pistis, traditional CA +
OCSP, and traditional CA + CRL.
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it is assigned by a trusted CA. Second, we need to verify whether this certificate is

revoked. A certificate will not pass the verification if either step fails.

The first step is conducted on the browser side. The main difference in verification

latency lies in the certificate state checking. For Pistis, we measure the latency

from the time that a client sends a state verification transaction to the time that

a response transaction is parsed, and the certificate’s state is confirmed. For the

OCSP and CRL, we use OpenSSL to send OCSP and CRL requests and record the

corresponding latency.

We conduct the measurement ten times on Pistis, OCSP, and CRL, respectively.

Results are summarized in Fig. 4-7. We use the circle dots to represent the delay

of Pistis, the vertical lines to represent the delay of OCSP, and the triangle dots to

represent the delay of CRL. As depicted in Fig. 4-7, the verification latency of Pistis

is the lowest, which fluctuates around 150 ms. The delay of OCSP ranks secondly

with 400 ms certificate verification service. The CRL has the longest delay, nearly

700 ms, which results from the biggest packet they transmit during verification. In

addition, we also measure the packet size during each operation and illustrate them in

Fig. 4-8. The CRL needs to transmit around 15 KB data for certificate verification,

while OCSP needs to transmit 2 KB. By contrast, Pistis only needs to transmit a

transaction for verification, whose size is around 0.1 KB.

4.5.2 TEE Evaluation

We evaluate the performance of Pistis TEE on a server with i9-9900k CPU and

32GB memory. Our experiment results prove that Pistis can easily meet the peak

throughput of Ethereum network and can be deployed on current commodity servers.

Throughput

We first evaluate the throughput of a TEE node. We aim to explore to what extent

can a TEE node processes transactions. The experiment results are illustrated in Fig.

4-9. We can see that a server with at most 30 enclave instances can handle up to 58
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transactions per second. We also notice that when the number of enclave instances

is less than 16, the throughput increases linearly.
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Figure 4-9: The throughput of TEE node on a single machine with different numbers
of enclave instances.

Response Time

We define the response time of a TEE node as the interval between the time that

a Pistis Contract/Domain Owner sends a request to the enclave and the time that

a Pistis Contract/Domain Owner receives a response from the TEE node. The

experiment results are presented in the Table 4.2. As we can see, the interaction

between a enclave and Pistis contracts are fast, which is because the TEE node

is equipped with a blockchain endpoint. In this case, the interaction between the

Pistis contract and the enclave omit the network latency. By contrast, the DNS

query operation has the longest response time, which is because the communication

latency between TEE nodes and domains.

4.6 Discussion

In this section, we discuss how to deploy, maintain, and upgrade Pistis contracts

and TEE nodes. We also discuss the limitations of the underlying infrastructure of
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Table 4.2: The response time of TEE node operations.

Operation 𝑡mean (ms) 𝑡max (ms) 𝑡min (ms)

Protocol Trigger 1.1 4.21 0.36
DNS Query 1.06 4.17 0.28
DNS Response 86.4 280.2 46.7
Protocol Response 1.13 4.25 0.41

Total 89.69 292.83 47.75

Pistis.

4.6.1 Deployment, Maintenance, and Upgrade

As Pistis adopts a new way to issue and revoke certificates, its deployment, mainte-

nance, and upgrade methods are different from traditional CAs. Pistis contracts are

written by its developers (e.g., a traditional CA company or open-source community

that wants to issue certificates using Pistis). These developers can deploy Pistis

contracts onto a chosen blockchain platform and operate TEE nodes to establish the

communication channels between Pistis and domains. Developers also monitor the

state transition of Pistis and check if there are any problems. If they want to add

new functions, they can use a new contract to upgrade the Pistis service. The older

contracts will be destructed by calling the selfdestruct function and the new con-

tract address will be advertised to target domain owners. We want to emphasize

that these upgrades will not increase the possibility that Pistis is manipulated by its

developers. Since Pistis is transparent, any deviation from its design principle will

cause people not to trust it, which conflicts with the interests of developers.

Once developers deploy the Pistis contract on the blockchain, domain owners can

interact with it to request a certificate. After getting a Pistis-issued certificate, a

domain owner can set up its HTTPS-protected service. Clients can verify whether a

certificate is valid by querying Pistis blockchain. Specifically, a client needs to inject

the verification script into the website to interact with the certificate verification

contract 𝒞VC. Once a certificate passes verification, the client can establish a HTTPS

connection with the Pistis-protected website.
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In this process, Pistis will not be affected by whether people trust its developers.

If developers leave a back door in the contract program, domain owners can discover

it and reject Pistis-issued certificates. Even developers are compromised during

Pistis’s execution, the hybrid architecture of blockchain and TEE prevents their

malicious behaviors as long as the Pistis contract has no loopholes.

4.6.2 Infrastructure Limitations

Pistis is constructed based on smart contract and TEE, which are both emerging

technologies and have some limitations.

Blockchain Limitations. Blockchain has demonstrated to be vulnerable in some

aspects. For example, the mining policy is not secure since attackers can withhold

a newly-mined block and broadcast it until another miner finds a new block in the

same height, which makes the computation power devoted by most honest miners

invalid. In addition, bribery attack [45] demonstrates the possibility that attackers

can manipulate the inclusion of transactions.

Blockchain platforms, especially those support smart contract, can only provide

limited-throughput transaction processing service. In this case, Pistis can only issue

certificates at a limited rate. In our future work, we aim to extend Pistis to some

performant blockchain systems such as Hyperledger, Libra, or some experimental

sharding systems.

Smart Contract Limitations. The smart contract also has some vulnerabil-

ities and some even lead to serious consequences such as the DAO attack. Since

the authorization of certificates constructs the foundation of secure web connections,

we should alleviate the exposed vulnerabilities and protect Pistis from the other

potential vulnerabilities.

TEE Limitations. The Intel SGX was proposed to provide trusted computation

by isolating some memory parts and encapsulating programs in enclaves securely.

However, some researchers have successfully launched side-channel attacks against

the Intel SGX platforms [113]. Moreover, enclaves can offload some computation

overhead from the Pistis contract, which might lead to new attack vectors such as
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SgxPectre [24]. In this case, mitigation should be located in the Pistis framework.

We also consider the case that some TEE hosts are malicious. They can delay or

drop correct DNS responses but cannot forge a valid proof of ownership validation.

In this case, malicious hosts can only cause a small DoS attack. As we have assumed

that at least one TEE is working, such attacks cannot affect the overall operation of

Pistis.

MitM Attack. We consider the possibility that MitM attacker may affect the

system. We discuss attacks launched by two kinds of attackers: passive attackers that

controls a large ISP, and active attackers that attempts to attract traffic from other

networks. We run simulations with different number of TEE nodes. If the attacker

is in the victim domain’s network, it can hijack requests from the domain owner and

spoof responses. Most domains may have multiple nameservers and these nameservers

are usually placed in different networks. This is following the best practice to avoid a

single point of failure for domains. Furthermore, as nameservers of the same domain

are hosted in different networks, an attacker can hardly hijack or spoof all responses.

We also quantify the ability of an on-path attacker to intercept majority of DNS

requests sent to a TEE node from the victim domain. The simulation evaluates all

possible scenarios for an on-path attacker to cover almost all routes between the

victim domain and the TEE node. Results show that it is impossible for a MitM

attacker to acquire challenge value during the validation process.

4.7 Related Work

In this section, we discuss the related work on protecting PKI, including traditional

countermeasures against unauthorized certificates, and blockchain-based PKI/CA.

4.7.1 Traditional Countermeasures

Traditional countermeasures that aim to address the unauthorized certificate problem

can be categorized into two types: client-side and server-side.

On the client-side, proposals such as HPKP [39] and Trust Assertions for Certifi-
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cate Keys (TACK) [74] aim to establish a solid connection between the public key

and the domain name. These solutions, however, require a domain to inform clients

which keys are valid so that clients can distinguish valid certificates from unautho-

rized ones. Researchers also proposed community of trust [85], which acts as the basis

of certificate verification. Syta et al. proposed CoSi [103], which employs a witness

cosigning protocol to ensure that every statement is verified and publicly logged by

a diverse group.

On the server-side, most countermeasures aim to establish log servers, which al-

lows domain owners to record operations on their certificates. This also provides

public accountability to clients. Sovereign Keys (SK) [37], Certificate Transparency

(CT) [64], AKI [58], ARPKI [11], DTKI [119], and PoliCert [105] fall in this cate-

gory. Researchers also focused on the notification of certificate revocation to prevent

attackers from further involvement [72].

4.7.2 Blockchain-based PKI/CA

There are some proposals aiming to address the unauthorized certificate problem

utilizing blockchain technology.

Fromknecht et al. proposed CertCoin [44], whose core idea is letting the public

ledger as a "bulletin boards" for domains and their associated public keys. Mustafa

proposed SCPKI [2], which is an alternative PKI system based on a decentralized

and transparent design using the web-of-trust model and smart contracts. Catena

[107] leverages Bitcoin as the log server and generates a transaction chain to prevent

CAs from issuing contradicting certificates. By contrast, Pistis not only preserves

transactions to trace certificate state transitions, but also maintains a MPT to store

latest states of certificates. IKP [76] aims to mitigate unauthorized certificates by

incentivizing the CA, domain owner, and clients to report unauthorized certificates.

IKP is designed to be compatible with current PKI so that certificate issuance and

revocation are both conducted by traditional CAs. Cecoin [92] employs a Bitcoin-like

blockchain to provide irreversible unforgeability and public verifiability in the CAs.

Specifically, certificates are treated as currency and are circulated on the blockchain.
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BlockPKI [36] uses blockchain as the log server to make CA operations publicly visible

and accountable.

Yakubov et al. introduced smart contracts to establish a blockchain-based PKI

[117]. Each smart contract acts as a CA that takes charge of issuing and revoking cer-

tificates. CertChain [28] aims to enhance the security of PKI by recording certificate

operations on the blockchain. However, it does not provide a feasible domain valida-

tion function, which leaves a door of unauthorized certificates. PBCert [118] explores

the way to enable privacy-preserving in querying the latest states of certificates, which

protects users from eavesdropping. CertLedger [63] utilizes the blockchain to imple-

ment certificate transparency and provides an efficient certificate verification method.

SmartCert [104] generates smart contracts for certificates to automate the certificate

validation.

4.7.3 Comparison

Differences between Pistis and state-of-the-art are summarized in Table 4.3. The

comparison is conducted in six dimensions: certificate authority’s construction and

type, certificate issuance, domain ownership validation, certificate validity verifica-

tion, certificate revocation request and checking, and security analysis of the proposed

system. The related work is sorted chronologically in the table, while we separate Pis-

tis, traditional solutions and blockchain-based solutions with dual horizontal lines.

For traditional solutions, all work relies on external trusted CA to issue certifi-

cates. As to the request initiation side, all systems can initiate registration request

from both domain and CA side. We have emphasized that requests initiated from CA

side enable attackers to compromise a CA and maliciously issue unauthorized certifi-

cates. By contrast, Pistis uses smart contracts to build CAs, which are essentially

source code that cannot initiate a certificate issuance request locally, namely from

CA side. For ownership validation, most work are left empty because they rely on

external trusted CA to conduct ownership validation except DV++, which proposes a

multiple vantage points domain validation mechanism. Allowing CA-side certificate

issuance means that malicious or compromised CAs may issue certificates without
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domain permission, i.e. unauthorized certificates. Pistis ensures that malicious or

compromised CAs cannot issue certificates by combining this certificate issuance lim-

itation. A certificate request can only be initiated from domain side and the domain

must pass the ownership validation. In addition, all systems except DV++ proposed

the corresponding certificate validity validation mechanism, that is, to detect whether

a certificate is valid, whether it has been revoked or beyond its valid period. As to

certificate revocation, DV++ and CoSi do not provide mechanism to revoke certifi-

cates and only Pistis and PoliCert provide revocation checking mechanism. For

security analysis, either formal or informal, most work provides security analysis. In

general, traditional approaches were based on a trusted CA, with enhanced protection

to avoid corruption caused by unauthorized certificates. However, as the CA might

still be compromised to issue rogue certificates, traditional methods cannot prevent

the issuance of unauthorized certificates as Pistis.

For blockchain-based solutions, we found that most of them rely on external

trusted CAs to issue certificates. This reflects their log server based ideas, which are

similar to traditional log server based solution. In these blockchain-based log server

solutions, blockchain is used as a data carrier similar to the traditional log server

to chain the history of certificate operations. By contrast, SCPKI relies on smart

contracts to issue certificates. SCPKI does not issue full certificates, but binding

relationships between public keys and identities. In addition, SCPKI cannot conduct

domain ownership validation on its applicants, which indicates that SCPKI is incom-

plete. CertCoin and Cecoin are based on Namecoin and therefore use blockchain as

their certificate authority. Furthermore, solutions that rely on external trusted CAs

still offload certificate issuance and ownership validation to them. Only BlockPKI

emphasizes that it carries out ownership validation through ACME method. In Cert-

Coin and Cecoin, as the registration of certificates is based on the validity of relevant

domains, it is only necessary for a domain owner to broadcast a certificate registra-

tion transaction based on its previous domain registration transaction. At this step,

ownership validation of domains is simply a matter of looking up the transaction his-

tory on blockchain. For certificate validity validation methods, all listed solutions are
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equipped with a proper one. As to certificate revocation, BlockPKI issues short-lived

certificates so that omits it while Cecoin does not provide revocation mechanism. In

addition, only CertChain and PBCert provide revocation checking mechanism. For

the security analysis, only CertLedger provides a formal analysis. The rest either

only provide an informal analysis or no analysis at all. Generally speaking, the idea

behind most blockchain-based work is similar to that of traditional work, namely log

server mode. They simply use the blockchain as a substitute of the log server to

record operations of certificates.

In summary, Pistis focuses on fundamental issues of certificate issuance, i.e.,

mandatory domain ownership validation for applicants and disallowing CA-side ini-

tiated requests. By contrast, most existing work still focus on monitoring issued

certificates and providing accountability in the form of log server, which cannot pre-

vent issuing unauthorized certificates and even further MitM attacks.

4.8 Conclusion

In this chapter, we propose Pistis to address the problem that traditional CAs are

vulnerable to be compromised to issue unauthorized certificates. Pistis leverages

TEE and smart contract to ensure that only the domain owner can request a certificate

for its domain, which guarantees all issued certificates are authorized. Previous work

either only detects unauthorized certificate or decreases its possibility. Pistis not only

ensures its issued certificates are authorized, but also provides a new trust paradigm.

Users can trust a CA based on its execution logic rather than its identity, and Pistis-

issued certificates are trusted as they are recorded on blockchain. To the best of our

knowledge, this is the first attempt to prevent issuing unauthorized certificates. Our

security analysis and experiment results prove the security and feasibility of Pistis.
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Chapter 5

SolSaviour: A Defending Framework

for Protecting Defective Deployed

Smart Contracts and DeFi

5.1 Introduction

As the global market size of smart contract grows year by year, the security of smart

contracts has raised huge concerns. Due to the fact that the logic of a smart contract

cannot be modified once deployed and vulnerabilities cannot be fixed by means of

updates like traditional applications, a great deal of work has been focused on fully

validating smart contracts before they are deployed. However, there is no good way

to protect smart contracts from vulnerabilities once they have been deployed.

Vulnerabilities in smart contracts as well as derived attacks have led to significant

losses in recent years due to the lack of relevant methods to protect smart contracts.

One of the most notorious incidents was the DAO hack [21], in which attackers ex-

ploited the reentrancy vulnerability in the DAO contract to withdraw ethers wantonly.

During the attack, honest contract users can do nothing but to withdraw ethers to

secure accounts as fast as possible. The DAO hack caused the loss of approximately

3.6 million ethers. The Ethereum community eventually decided to reduce the im-

109



pact of the DAO hack via a hard fork. Another infamous incident was the Parity

Multisig Wallet, which was hacked twice. In the first time, attackers exploited the

vulnerability of delegatecall in the fallback function to change the contract owner-

ship and stole 153,037 ethers [93]. In the second time, attackers managed to destroy

the Parity Wallet library contract. 587 related contracts were blocked and 513,774.16

ethers were locked [1]. Furthermore, with the increased popularity of decentralized

applications (DAPP) and decentralized finance (DeFi) applications (e.g., UniSwap

and flash loan), new types of attacks are appearing. For example, a DeFi application

Fei has experienced malicious trading attacks caused by price manipulation [78].

Motivated by these attacks, the community started to conduct research on de-

tecting vulnerabilities in smart contracts before deployment. Many software testing

techniques are utilized such as symbolic execution [73], formal verification [14], static

analysis [20, 40], dynamic analysis [110], and fuzzing testing [83]. However, these

detection methods still have certain limitations. They cover limited types of vulnera-

bilities, have restricted detection efficiency (i.e., sensitive to some vulnerabilities, but

insensitive to others), and suffer from possible false negative cases. There are also

some work on repairing smart contracts such as EVMPatch [95], SCRepair [120] and

sGUARD [41]. We point out that for high-net-worth smart contracts, pre-deployment

detection methods are not fully effective, and the possibility of post-deployment vul-

nerabilities still exists. Though detecting and fixing contract bugs has been exten-

sively studied, how to repair and recover defective deployed contracts remains an

unsolved problem. However, for current smart contracts, pre-deployment detection

approaches do not address the problem that a vulnerability is found in a smart con-

tract after deployment. This is partly due to limitations in the detection tool itself,

and partly due to the possibility of vulnerabilities that are not covered by the de-

tection tool, or even currently unknown vulnerabilities. Therefore, how to protect

deployed smart contracts remains a problem that requires urgent research.

The community has come up with a number of ways to safeguard deployed smart

contracts, such as the proxy pattern. A smart contract deployed in proxy pattern

is divided into a data contract and a logical contract. The data contract is used
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to store corresponding state variables, while the logical contract is used to store the

execution logic of the contract. The data contract can call the logical contract via the

delegatecall opcode. The delegatecall executes the code of the logical contract

in the context of the data contract. This allows the user to simply redeploy a new

patched logic contract to replace the defective contract once a bug is found in a

logic contract. The proxy pattern also has the drawback of fixing vulnerabilities and

not protecting the assets in the contract. And assets are to some extent the most

important thing to protect.

Our core idea is to replace a defective smart contract with a patched contract, and

maintain the consistency of contracts’ states at the same time. Specifically, the state

variables and contract stake distribution remain same in the newly deployed smart

contract. This inspires a decentralized control on a smart contract to multiple parties

through a secure and principled combination of blockchain and trusted hardware.

We first propose the voteDestruct mechanism to enable the decentralized control of

a smart contract. Contract participants (i.e., stakeholders) can vote on the future of

the contract. They can lock it, destroy it, or even unlock the locked contract and

continue the execution. The weight of their votes depends on the number of ethers

(i.e., stake) they have deposited. The more stake a stakeholder controls the weightier

its vote. We then establish a TEE cluster to take charge of temporary asset escrow

after destroying a defective smart contract and stake migration. Once a patched smart

contract is provided, the TEE cluster deploys it and conducts the state migration to

transfer all internal assets to the newly-deployed contract. Assuming the integrity of

the blockchain, users do not need to trust the validity, persistence, confidentiality, or

correctness of smart contract creators, miners, or TEE nodes. SolSaviour thus can

provide self-sustaining service even when some miners, contract creators, contract

participants, or TEE nodes are unavailable.

The main contributions of this work are summarized as follows:

• We propose the voteDestruct mechanism to allow the decentralized control over

a deployed smart contract.
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• We build a TEE cluster based on Intel SGX to take charge of asset escrow

and contract state migration. The TEE cluster can authenticate the identity of

caller, preserve trusted execution of contract invocation, patching, and deploy-

ment. We also provide complete APIs for clients to invoke the TEE cluster. We

provide identity authentication and patch tester in SolSaviour, which address

the problem in [68].

• We give a thorough security analysis of SolSaviour from three perspectives:

balance security, correctness, and fairness.

• We collect smart contracts and DeFi protocols that were attacked in the past

and use them to evaluate the effectiveness and performance of SolSaviour. Ex-

periment results show that SolSaviour can effectively mitigate the loss caused

by smart contract vulnerabilities with little overhead.

The remainder of this chapter is organized as follows. In Section 5.2, we present the

overview, workflow, and building blocks of SolSaviour. The detailed implementation

is presented in Section 5.3. We thoroughly analyze the security of SolSaviour in

Section 5.4. We discuss potential improvement of SolSaviour in 5.5. The effectiveness

and performance of SolSaviour are evaluated in Section 5.6. We discuss the related

work in Section 5.7 and conclude our work in Section 5.8.

5.2 SolSaviour

The architecture of SolSaviour is depicted in Fig. 5-1. SolSaviour consists of two

core components: voteDestruct and TEE cluster. The voteDestruct mechanism is

embedded in smart contracts before deployment. It allows smart contracts to be

destroyed in a voting manner. TEE cluster allows contract stakeholders to replace the

defective contract with a patched contract via invoking the voteDestruct mechanism.

Specifically, TEE cluster can deploy a patched contract onto the blockchain and

migrate all assets as well as the stake distribution to it. Since then, stakeholders can

continue to execute the contract without the vulnerability. In this case, even a bug is
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Figure 5-1: The architecture of SolSaviour. Contract stakeholders can invoke the
TEE cluster via SolSaviour APIs to generate message call transactions to instruct
the voteDestruct-enabled contract.

exposed during the contract execution, they can fix it without worrying about asset

loss.

5.2.1 Workflow

First of all, stakeholders should prepare a TEE cluster for protecting smart contracts.

Contract stakeholders collect a cluster of SGX-capable computers and launch enclaves

into them. The architecture of a TEE node is depicted in Fig. 5-1. Then, following the

bootstrapping process, these TEE nodes establish a TEE cluster. After constructing

the TEE cluster, users can invoke it to deploy a voteDestruct-enabled smart contract.

We emphasize here that the initial deployment of a contract should call the TEE

cluster. Otherwise, the deployed smart contract, even with voteDestruct mechanism,

cannot be protected by the SolSaviour. Once the contract passes the initial deploy-

ment phase, it can work under the protection of SolSaviour.

During the contract execution (i.e., blockchain growth), an unknown bug may be

disclosed. Then, contract stakeholders can check whether this exposed bug is a false

positive. If not, stakeholders can invoke APIs provided by SolSaviour to save the

contract. The detailed workflow is summarized below as shown in Fig. 5-2:
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Figure 5-2: The workflow of SolSaviour framework.

Phase 1: Destroying the Defective Contract.

1 In the destroying phase, stake holders first lock the defective smart contract

when identifying a bug. They can invoke the TEE cluster to lock the defective smart

contracts, which prevent deployed smart contracts from further attacks.

2 Then, stakeholders invoke the TEE cluster to extract the internal state of the

defective smart contract. In this step, the TEE cluster extracts the internal state of

the defective contract for future state migration. Specifically, it stores the values of

state variables and the stake distribution at the time that the contract is locked.

3 Thirdly, stakeholders who have assets inside a smart contract can decide

whether to destroy the defective smart contract via a cumulative voting way, where

people’s stake means how much they have in the contract. They simply invoke the

vote() function provided by the voteDestruct mechanism. After completing voting,

stakeholders can invoke the TEE cluster to destroy the defective contract.

Phase 2: Preparing a Patched Contract Offline.

In this phase, stakeholders generate and test patch for the defective contract

discovered in Phase 1. Stakeholders can prepare a patch for the located vulnerability
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and integrate it with the original contract. After that, stakeholders employ patch

tester to validate whether the vulnerability is resolved and whether the functionalities

of patched contract remain same. Then, contract stakeholders can upload a patched

contract into the TEE cluster.

Phase 3: Redeploying the Patched Contract.

1 In this phase, stakeholders first invoke the TEE cluster to deploy the patched

contract prepared in Phase 2. The TEE cluster generates a contract creation trans-

action for deploying the patched contract and records its address.

2 Then, stakeholders migrate the previously-extracted state as well as assets into

the patched contract. After destroying the defective smart contract, all inside assets

are temporarily held by the TEE cluster. The temporarily-held assets are transferred

into the deployed patched contract according to the stake distribution and previously-

extracted values are written into the state variables of the newly-deployed patched

contract.

5.2.2 Building Blocks

Exception Detector

We propose a policy-based contract exception detector. In this we design two excep-

tion policies first. One is to broadcast a warning message when a contract withdrawal

exceeds a certain percentage of the contract’s total assets, and the other is to warn

when a contract withdrawal is made to an address that does not belong to a contract

stakeholder. This is achieved by posting an event message on the blockchain. Con-

sidering that an attacker may have a large number of accounts which can circumvent

the above two exception detection rules through a large number of small withdrawal

transactions, we further propose that a warning event message is sent when a certain

percentage of assets are lost from an account within a specified period of time.

The design of the exception detection is based on the smart contract level and is

implemented through Solidity. The warning messages exist on the blockchain network

and are not actively communicated to the contract stakeholders, who therefore need to
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Figure 5-3: The state transition diagram of a voteDestruct-enabled smart contract.

implement an active crawler outside the contract that automatically and continuously

crawls for event information to monitor the contract. This way, when an exception

occurs in a monitored contract, stakeholders can be aware of it and take further action

as soon as possible.

voteDestruct Mechanism

Currently, the typical method of destroying a contract is to have a privileged con-

tract destruction function that only privileged accounts are eligible to invoke. This

approach is not applicable to multi-user smart contract scenarios. For example, the

assets stored in a DeFi contract may belong to different users. Furthermore, as an

autonomous community, stakeholders of a smart contract can reach a consensus on

whether to destroy the smart contract among themselves. Therefore, we propose the

voteDestruct mechanism, which enables decentralized control of smart contracts.

In voteDestruct-enabled contracts, stakeholders can vote on whether to destroy

the smart contract and withdraw all internal funds. The voteDestruct mechanism is

based on the contract stake distribution, which is recorded by state variables. The

more stake a stakeholder controls, the greater its vote weight. After completing

the vote, stakeholders can destroy the defective contract if the support rate exceeds

a predefined threshold. Specifically, The voteDestruct is processed in three steps.
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The contract first forms the stake distribution during its execution. Then, once a

vulnerability is exposed, stakeholders can invoke the contract via TEE cluster to

vote whether to destroy the contract. After completing the voting, the contract

stakeholders can invoke the TEE cluster to destroy the defective contract.

Stake Distribution: Each depositing transaction will be recorded. Specifically,

the address of depositor and the amount of deposited assets will be recorded.

Voting: During the voting process, the smart contract is locked so that no ex-

ternal users can deposit or withdraw assets. This ensures that the stake distribution

remains constant throughout the voting process. Once the vote is completed, the

contract stores the percentage of stake on supporting and opposing respectively via

state variables and in turn determines whether stakeholders are allowed to destroy

the contract.

Destroying: The contract can only be destroyed if the cumulative number of

votes in favour of destruction exceeds the threshold. Contract stakeholders can in-

struct the TEE cluster to invoke the destroy function once the voting process com-

pletes.

State Transition: The state transition of a voteDestruct-enabled smart contract

is depicted in Fig. 5-3. A smart contract is initially in an active state. Then, an

unknown bug is discovered and the contract enters a defective state. Stakeholders

can now lock the defective contract with the vote_initial() function. For false

positive cases, they could unlock the contract via vote_halt() function. For true

bugs, stakeholders could vote on whether to destroy the defective contract. When

the support rate exceeds the threshold, the user can call the destroy() function to

destroy it.

TEE Cluster

In the TEE architecture, the security container ensures that the party maintaining

the SGX will follow the enclave’s implementation of the execution procedure. attested

execution can help untrusting parties establish trust at a lower cost. The limitation

of enclave memory is a natural barrier that affects the scalability of solutions using
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SGX. In particular, it will result in a performance load that oversubscribes the secure

memory. To this end, multiple SGX nodes maintained by the consistent protocol can

be employed to improve the solutions. Availability failures are another factor that

could sway SGX-based schemes. These failures can result in the SGX-base nodes

becoming completely or partially disabled. To tolerate such failures, the scheme

may need to store the persistent state information in the trusted role, such as the

blockchain or a committee composed of SGX-based nodes.

To this end, the TEE cluster is established to mitigate the availability of single

TEE node. We present the working logic of TEE cluster in Phase 1 and 3 in Al-

gorithm 3 and Algorithm 4, respectively. Each enclave is denoted as 𝜎𝑖. We use 𝑐

to represent a potentially defective smart contract and 𝐶𝑝 to denote a patched con-

tract. To distinguish the difference between intra-TEE cluster communication and

TEE cluster-blockchain communication, we use “broadcast” to indicate broadcasting

messages inside TEE cluster and “upload” to represent broadcasting transactions onto

the blockchain.

Key Generation: Let G be an Elliptic curve group of order 𝑞 with generator

(base point) G. Each TEE node 𝑃𝑖 has the information of (G,G, 𝑞). A TEE node 𝑃𝑖

first chooses a random 𝑥𝑖 from Z*
𝑞 and computing 𝑄𝑖 = 𝑥𝑖 ·𝐺. Each TEE node stores

(G,G, 𝑞, 𝑥). Then, each TEE node 𝑃𝑖 broadcasts its generated 𝑥𝑖 to 𝑃𝑗 for every

𝑗 ∈ [𝑛]∖{𝑗}. After receiving 𝑥𝑗 (𝑗 ∈ [𝑛]∖{𝑗}) from other parties, 𝑃𝑖 locally computes

𝑥 =
∑︀𝑛

𝑙=1 𝑥𝑙 and 𝑄 = 𝑥 ·𝐺. Each party 𝑃𝑖 locally stores 𝑄 as the ECDSA public key.

Signing: A TEE node 𝑃𝑖 locally generates 𝑘𝑖 and 𝜌𝑖 randomly. Then, 𝑃𝑖 broad-

casts 𝑘𝑖 and 𝜌𝑖 to 𝑃𝑗 for every 𝑗 ∈ [𝑛]∖{𝑗}. After receiving 𝑘𝑗 and 𝜌𝑗 (𝑗 ∈ [𝑛]∖{𝑗}).
Each party can locally compute 𝑘 =

∑︀𝑛
𝑙=1 𝑘𝑙 and 𝜌 =

∑︀𝑛
𝑙=1 𝜌𝑙. Then, TEE node 𝑃𝑖

computes 𝜏 = 𝑘 · 𝜌 and 𝑅 = 𝑘 ·𝐺. The TEE node 𝑃𝑖 can now compute 𝑅 = (𝑟𝑥, 𝑟𝑦)

and 𝑟 = 𝑟𝑥 mod 𝑞. For a raw transaction 𝑚, node 𝑃𝑖 generates 𝛽 = 𝜌 · (𝑚 + 𝑥 · 𝑟)
mod 𝑞. Then, 𝑃𝑖 computes 𝑠′ = 𝜏−1 · 𝛽 mod 𝑞 and 𝑠 = 𝑚𝑖𝑛(𝑠, 𝑞 − 𝑠). Finally, TEE

node 𝑃𝑖 outputs (𝑟, 𝑠) as the ECDSA signature of the transaction.

Identity Authentication: After bootstrapping, we first discuss identity authen-

tication, which happens before each invocation from stakeholders. Identity authenti-
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cation allows only eligible stakeholders invoke the TEE cluster. The TEE cluster first

checks whether the invoking stakeholder is valid. Therefore, when a stakeholder in-

vokes the TEE cluster, SolSaviour needs to verify that the identity of the stakeholder

who initiated the invocation is reliable to eliminate the possibility that attackers can

invoke the TEE cluster to conduct dangerous operations. TEE Cluster uses member-

ship proof for identity authentication. It first extracts the address of the stakeholder

that initiated the call, which in turn polls the membership proof integrated with the

voteDestruct mechanism. If the membership proof is true, the TEE cluster deter-

mines that the invoking stakeholder is valid and proceeds with the corresponding

operations, while if it is false, all operations are simply interrupted.

Algorithm 3: The working logic of TEE cluster in Phase 1.
procedure bootstrapping(𝜎𝑖, 𝑖 ∈ [0, 𝑛− 1])

load 𝜎𝑖

broadcast {sgx_quote𝑖, 𝐾𝑖}
verify sgx_quote𝑗
generate {𝐾,addr}

end procedure
procedure identity authentication

on receiving a message call tx
require(st.map(msg.sender()).st_amount)
revert()

end procedure
procedure locking defective contract

goto line 8
on receiving address 𝑎𝑑𝑑𝑟
tx.payload(addr, vote_initial)
Sign𝐾(tx)
upload tx
broadcast(++nonce)

end procedure

Destroying: TEE cluster allows stakeholders to lock the defective contracts.

Once a bug is discovered, the stakeholder can call the TEE cluster to lock the contract.

The TEE cluster generates a message call transaction to invoke the vote_initial()

function and signs it using the key generated in the bootstrap step. Afterwards, the

signed transaction is uploaded to the blockchain for processing and the incremental
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nonce is broadcast inside the TEE cluster.

Before destroying the defective smart contract, the TEE cluster extract the inter-

nal states from defective contract. Internal states including values of state variables

and the stake distribution of stakeholders at the time of locking. As stake distribution

is stored as state variables in the voteDestruct mechanism, the TEE cluster obtains

internal states via getter functions and save them locally.

After completing the voting process in the blockchain level, contract stakeholders

can instruct the TEE cluster to invoke the destroy() function. The TEE cluster

generates a signed message call transaction destined to the address of the defective

smart contract onto the blockchain. TEE cluster also broadcasted an incremental

nonce. Provided the amount of stake in favour of destruction exceeds a specified

threshold, the contract is allowed to be destroyed.

Redeploying: Contract stakeholders first generate the patch offline. Then, they

could invoke the TEE cluster to redeploy a patched smart contract. After receiving

a patched contract from stakeholders, the TEE cluster generates a contract creation

transaction with compiled contract as payload. Then, the TEE cluster upload the

signed transaction onto the blockchain and broadcasted an incremental nonce.

For the previously-extracted internal states, stakeholders can call the TEE cluster

to migrate them to the patched contract. TEE cluster generates signed message call

transactions to invoke the patched contract for stake distribution as well as assets.

In this process, the TEE cluster ensures that the states are consistent. During the

state migration, the TEE cluster also guarantees the atomicity of execution, i.e. any

intermediate state resulting from the call, and the need to provide an effective rollback

mechanism in the event of a failed call operation, allowing the system to revert to the

state before the call, eliminating the impact of intermediate state resulting from the

call.

5.2.3 SolSaviour APIs

We summarize the APIs of SolSaviour in Table. 5.1. Contract stakeholders can invoke

the functionalities provided by SolSaviour via these APIs.
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Algorithm 4: The working logic of TEE cluster in Phase 3.
procedure extracting internal state

goto line 8
verify_tx(tx,𝑝𝑢𝑏1,𝑝𝑢𝑏2)
d ← create(tx)
mapping stake_dist(addr→stake_amount)
stake_dist ← addr.st_map_getter()

end procedure
procedure destroying defective contract

goto line 8
on receiving address 𝑎𝑑𝑑𝑟
tx.payload(addr, destroy)
Sign𝐾(tx)
upload tx
broadcast(++nonce)

end procedure
procedure redeploying patched contract

goto line 8
on receiving 𝐶𝑝

tx.payload(𝐶𝑝)
Sign𝐾(tx)
upload tx
broadcast(++nonce)

end procedure
procedure migrating to patched contract

goto line 8
tx.payload(addr_𝐶𝑝, stake_dist), go to line 15
values[]←stake_dist[]
balance[c_𝑖𝑑𝑛]←values[c_𝑖𝑑𝑛]

end procedure

SolSaviour APIs are categorized into 3 types: bootstrap, deployment, and message

call. In the bootstrap type, stakeholders can invoke the new_address function to

generate a new key pair for the agreed account address utilized in the TEE cluster. In

the deployment type, there are two functions: new_contract and patched_contract.

The former one is used to deploy a compiled new smart contract, and the later one is

used to deploy a bytecode-version smart contract. Both functions return the id of the

contract generation transaction that utilized to deploy the contract. stakeholders can

invoke the first function to deploy a new smart contract and the second function to

121



Table 5.1: SolSaviour APIs.

SolSaviour APIs Inputs Outputs Description

Bootstrapping
new_address N/A ⊤|⊥ Generate a public key as well as the

blockchain address for the TEE cluster

Deployment
new_contract 𝒞𝑏 tx_id Deploys a compiled smart contract and

returns a transaction id
patched_contract 𝒞𝑏 tx_id Receives the bytecode-version smart

contract, deploys it and returns a trans-
action id

Message Call
lock 𝒞𝑎𝑑𝑑𝑟 tx_id Receives the address of contract and re-

turns the id of transaction that invokes
vote_initial()

unlock 𝒞𝑎𝑑𝑑𝑟 tx_id Receives the address of contract and re-
turns the id of transaction that invokes
vote_halt()

destroy 𝒞𝑎𝑑𝑑𝑟 tx_id Receives the address of contract and re-
turns the id of transaction that invokes
destroy()

deploy a patched contract when aiming to recovering from a defective smart contract.

For message call APIs, stakeholders can invoke them to generate message call

transactions to instruct the voteDestruct mechanism. stakeholders should provide

the address of the defective contract as inputs so that TEE cluster know which con-

tract should call. SolSaviour provides 3 message call functions: lock, unlock, and

destroy. lock function can invoke the vote_initial function in voteDestruct mech-

anism to lock a defective smart contract, unlock can invoke vote_halt function to

unlock a falsely locked smart contract, destroy function can invoke the destroy

function in voteDestruct mechanism to destroy a defective smart contract and let

all assets transferred to TEE cluster. After receiving the invocation from contract

stakeholders, the TEE cluster transfer the parameters to the transaction generator

to generate a signed message call transaction. The transaction generator fetches the

locally stored nonce value as well as the parameter and generates a raw transaction.
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Listing 1 Example of voteDestruct Contract

contract sample {

struct st_holder { uint key_index; uint st_amount; bool voted; }

address TEE_addr;

uint contract_stake; uint support_stake;

mapping(address => st_holder) st_map;

enum State {Active, Locked};

State public state;

modifier inState(State _state) {

if (state != _state) revert InvalidState(); _;}

constructor { TEE_addr = msg.sender; }

function any_payable_function() inState(State.Active) public payable {

st_map[msg.sender].st_amount += msg.value;

contract_stake += msg.value;}

function vote_initial() inState(State.Active) public {

state = State.Locked;}

function vote_halt() inState(State.Locked) public {

require (msg.sender == TEE_addr);

if((2 * support_stake) < contract_stake) { state = State.Active; }}

function vote(bool choice) inState(State.Locked) public {

require(!st_map[msg.sender].voted);

st_map[msg.sender].voted = true;

if (choice) { support_stake += st_map[msg.sender].st_amount; }}

function destroy() public {

if ((2 * support_stake) > contract_stake) {

selfdestruct(TEE_addr); }}}

3

Figure 5-4: A sample of voteDestruct-enabled contract.

Then, the TEE cluster invoke the key manager to sign it. For generated signed mes-

sage call transaction, the enclave transmit it to the host, i.e., a blockchain client. The

blockchain client broadcast the transaction onto the blockchain for further operations.
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5.3 Implementation

5.3.1 Destroying

Destroying Defective Smart Contract

Once a contract stakeholder notices a potential vulnerability in the contract, it can

broadcast the vulnerability to attract other stakeholders’ attention. Then, all contract

stakeholders can vote whether to lock the contract. If the support rate exceeds 1/3

(i.e., lock threshold), the contract enters a locked state and no external calls can be

executed, except for calls that unlock or destroy the contract. During the locking

phase, the contract stakeholders can discuss the exposed vulnerability and develop

corresponding patches.

If most stakeholders think that this vulnerability is a false positive case, they can

vote to unlock the smart contract and continue to work with it. The voting threshold

for unlocking a locked smart contract is the same as the threshold for locking one.

Afterwards, the contract can continue to operate normally. If the discussion thinks the

vulnerability may lead to serious consequences, stakeholders need to develop a valid

patch and test it. Then, they could vote whether to destroy the defective contract.

When the support rate exceeds 2/3 (i.e., destroy threshold), the vote is passed and

the contract can be destroyed by TEE cluster. All internal assets are transferred to

the TEE cluster for temporary escrow.

Currently, we can use selfdestruct primitive to destroy deployed smart contracts

and refund all inside assets [25]. When writing a smart contract, there are usually

restrictions set to limit that only privileged owners can invoke the selfdestruct

primitive, otherwise this contract can be destroyed by anyone. However, this method

requires contract stakeholders to trust the privileged owner since he/she is able to

withdraw all inside assets. In this case, we introduce voteDestruct mechanism, which

allows contract stakeholders to destroy a deployed smart contract in a decentralized

way. Fig. 5-4 shows the sample of voteDestruct mechanism. We emphasize that its

implementation does not require new EVM instructions. It is constructed based on
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pure Solidity language. Moreover, the voteDestruct mechanism can be implemented

in different versions Solidity with minor modifications.

In the life cycle of a smart contract, contract participants may deposit ethers

before a bug is exposed. The voteDestruct mechanism records these participants as

stakeholders st_holder and the amount of their deposited ethers as st_amount. Once

a stakeholder found that this smart contract is vulnerable to some newly discovered

bugs, it can invoke the vote_initial function via the TEE cluster. The smart

contract then starts the cumulative vote in which each stakeholder chooses whether

to destroy this contract and return all funds.

Safe Exit

Through voteDestruct mechanism, SolSaviour enables contract stakeholders to safely

exit from a defective smart contract. SolSaviour utilizes a cumulative voting algo-

rithm, which calculates votes based on stake. Cumulative voting is the procedure

followed by electing whether to destroy the smart contract. Typically, each stake-

holder should choose to support or oppose the contract destruction. Once the vote

completes, different choice will be counted according to the amount of stake. If the

contract stakeholders vote not to destroy the contract to resolve the defect, they can

instruct TEE cluster to invoke vote_halt function to unlock contract. Otherwise,

the contract executes its selfdestruct operations and send all inside funds to an

account controlled by the TEE cluster. In this way, contract stakeholders can safely

exit from a contract that is exposed to some critical bugs or under attacks. Com-

pared with traditional selfdestruct operations, safe exit not only saves all preserved

funds, but also avoids the requirement to trust a privileged owner.

Once completing voting, the old vulnerable smart contract has been destroyed.

All assets inside the defective contract are transferred to an account controlled by

the TEE cluster. Before redeploying a patched smart contract, TEE cluster extracts

the internal state of the old defective smart contract, namely values of state variables

and stake distribution. By analyzing the internal state of defective contract, the TEE

cluster is able to migrate the state of defective contract to the patched one.
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5.3.2 Patching

In SolSaviour, patches for defective smart contracts are provided by the contract

stakeholders. This is because the main purpose of SolSaviour is to provide a frame-

work for repairing and recovering defective deployed smart contracts, rather than

providing a system that can automatically generate patches. Smart contract patches

can be generated manually or using existing tools such as sGuard [41] and SCRe-

pair [120]. Once a patched contract is prepared, contract stakeholders can pass it to

the TEE cluster for redeployment.

For known bugs such as reentrancy and integer overflow, stakeholders can leverage

existing tools to generate patched contracts. For unknown bugs, patched contracts

should be developed by experts, which are trusted by contract stakeholders. After

patching, the contract should be tested thoroughly before deploying by re-executing

all previous related transactions. This can test the whether the patched contract

functions functions well and has fixed all related bugs. The patch tester re-executes all

non-malicious historical transactions on the patched smart contract and verifies that

the execution results of the old contract and the patched contract are consistent. Any

execution discrepancies are scrutinised to determine whether the patch has caused

the patched smart contract to function inconsistently with the defective contract.

Detailed implementation on patching and testing is provided in Fig. 5-5.

5.3.3 Redeploying

Redeploy a Patched Contract

In this step, stakeholders can redeploy a patched contract and migrate the internal

state from the defective contract to the patched one.

During redeployment, the TEE cluster takes charge of injecting the initial state

of the patched contract and generating a contract creation transaction. The TEE

cluster injects a list of stakeholder addresses and the amount of their stakes to the

patched contract, which indicates the amount of assets they deposited before contract

destruction. Then, the TEE cluster generates a contract creation transaction for the
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Listing 2 Patching Tester

static bytes C_patched[];

void patchGeneration(bytes C_defective, bytes& C_patched){

C_patched[0] << sGuard(C_defective);

C_patched[1] << SCRepair(C_defective);

C_patched[3] << C_patched;}

bytes patchTest(bytes& C_patched[]){

string Tx[];

while(web3.eth.addr){ Tx += web3.eth.addr.transaction; }

uint length = Tx.length;

uint index;

uint success[] = 0;

for(int i =0; i<3; i++){

for(index=0, index<length; index++){

if(C_patched[i].exe(Tx[index])){

success[i]++;}}}

if(success[0]>success[1]){

if(success[0]>success[2]) return C_patched[0];

else return(C_patched[2]);}

else{

if(success[1]>success[2]) return(C_patched[1]);

else return(C_patched[2]);}}

4

Figure 5-5: The implementation on patching a defective contract.

patched contract and broadcast it onto the blockchain. For contract stakeholders, the

internal state of the redeployed contract remains the same as the previous defective

contract, but SolSaviour has already fixed the vulnerabilities.

State Migration

For migrating states to the newly-patched smart contract, the TEE cluster first ex-

tracts required variables from the blockchain. Then, the TEE cluster modifies the

patched smart contracts provided by the contract stakeholders. The purpose of this

modification is to migrate the internal state from the old, vulnerable contract to

the new, patched smart contract. TEE cluster ensures that variables in the patched

contract are the same with before by initializing these variables. Then, TEE cluster

directly transfers all the escrow assets to the newly deployed contract. Since the stake

distribution has been injected by TEE cluster, the ownership of these assets is certain

and consistent, as well as their corresponding voting rights. Detailed implementation
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Listing 3 State Migration

1 void stateVariableGetter(string addr){

2 struct stateVariable{ string name; bytes value; };

3 stateVariable states[];

4 uint length = addr.ABI.length;

5 uint index;

6

7 for (index=0, index<length; index++){

8 states[index].name = addr.ABI[index].name;

9 states[index].value = addr.ABI[index].value;}}

10

11 void stakeDistribution(string addr){

12 struct stakeDist{ string addr; uint amount;};

13 stakeDist stakes[];

14 uint length = addr.st_map.length;

15 uint index;

16

17 for (index=0; index<length; index++){

18 stakes[index].addr = addr.st_map[index].key;

19 stakes[index].amount = addr.st_map[index].st_amount;}}

20

21 void stateMigration(string addrFrom[], string addrTo[], uint256 values[]){

22 require(addrFrom.length == values.length);

23 uint256 length = values.length;

24 uint i;

25 for (i=0; i<length; i++){

26 balances[addrTo[i]] = values[i];

27 emit Transfer(0x0, addrTo[i], values[i]);}}

5

Figure 5-6: The implementation on recovering a patched contract.

is listed in Fig. 5-6.

5.4 Security Analysis

5.4.1 System Model

We assume that parties who do not trust each other use the blockchain to execute

smart contracts and mine new blocks. We assume most machines are equipped with

TEE, which is based on the observation that most computers have SGX-capable

Intel CPU. We assume that the TEE (i.e., programs inside enclaves) on a machine is

trusted, but some TEE nodes may suffer from integrity and confidentiality problem.

These TEE nodes might be compromised by external parties and attackers. All

parties are rational and potentially malicious. When there are benefits, they may
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try to steal funds that belong to others and force the TEE to modify the stake

distribution. All parties are connected via the network, and they can discard and

replay the information. Malicious hosts can delay or prevent others from accessing the

blockchain for an unlimited time, but we assume that this will not happen indefinitely.

We also assume that an adversary 𝒜 can corrupt up to 𝑡 of 𝑛 hosts in the TEE cluster.

We consider the adversary can cause corrupted hosts to deviate from the specified

protocol, namely drop or delay messages between enclaves. Our adversary 𝒜 is static,

namely chooses the corrupted hosts at the beginning of the protocol.

5.4.2 Trusted Execution as a Root-of-Trust

In SolSaviour, participants can monitor the blockchain to detect deviations from the

protocol and react appropriately. Here, we propose a new trust mechanism with a

TEE cluster as the root of trust. The TEE cluster is independent of the blockchain

and can ensure the faithful execution of SolSaviour. TEEs are encrypted memory

regions that can protect the security of internal execution. Contents in protected

memory are separated from other applications even higher-privilege system software.

By using the TEE cluster as an independent root of trust, SolSaviour can ensure

secure exit, redeployment, and effective state migration of defective smart contracts.

In addition, the cluster architecture improves the overall fault tolerance of the system.

Single point failures will not affect the overall availability of SolSaviour.

5.4.3 Threat Analysis

In this section, we analyse the security of SolSaviour from three perspectives: balance

security, correctness and fairness.

Balance Security

The first security property of SolSaviour is defined as balance security, which says

that honest stakeholders cannot lose money as long as they behave honestly.

Definition 7. (Balance Security) The SolSaviour protocol run by parties satisfies
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balance security if for a contract 𝒞 executed by (n,m) parties, for every adversary 𝒜
corrupting only parties from 𝒫, the resulting stake distribution of the protocol execu-

tion equals to the initial stake distribution.

For balance security, it is important that contracts repaired by SolSaviour do not

result in a loss of assets, except for the necessary gas consumption. If during the

setup phase, the participants do not agree on a patched contract 𝒞, then the defective

smart contract remains locked as well as all deposits and hence does not lose any

more coins. If the parties agree on a patched contract during the setup phase, the

TEE cluster proceeds to redeployment phase, then the enclave generates a contract

creation transaction.

In this case, the balance of patched contract and defective contract remains same.

First, assets are held by TEE cluster after destroying defective smart contracts. As

assumed before, attackers can only control no more than 𝑡 of 𝑛 TEE nodes and

cannot derive the account private key. Thus, attackers cannot perform asset transfer

directly. Since the execution logic of enclaves is fixed once encapsulated, there is no

way for attackers to tamper with the internal logic of the TEE cluster. In addition,

the history of defective smart contracts is stored on the blockchain and publicly

available. TEE cluster can crawl the contract history to determine the values of

defective contract’s internal variables. The stake distribution can also be calculated

by querying the transaction history of the contract and thus acquiring the internal

state of the defective contract. In this way, TEE cluster can ensure safe and successful

migration of contract internal state from the old vulnerable smart contract to the new

patched one. In summary, an attacker who cannot tamper with the logic inside the

TEE cannot prevent the TEE from transferring assets to a patched contract. at

the same time, due to the tamper-evident nature of the blockchain, once an asset is

identified in a new contract, it cannot be stolen.

Correctness

The second property is correctness. Intuitively, correctness states that in case all

parties behave honestly, every party outputs the correct result and successfully trans-
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mit the assets from defective smart contracts to the deployed patched contracts.

Definition 8. (Correctness) Protocol run by parties satisfies correctness property if

for a contract 𝒞 executed by (n,m) parties, the patched contract outputted by Sol-

Saviour functions identical to the original contract.

For the proof of correctness, we divide it into several phases: bootstrapping of the

TEE cluster and destruction of the contract.

Firstly, we prove that the bootstrapping process of TEE cluster satisfies correct-

ness with threshold 𝑡, which indicates that TEE nodes can reach an agreement on

a key when there are at most 𝑡 corrupted parties among 𝑛 TEE nodes. During the

bootstrapping process, once a node 𝑈𝑖 receives other node’s 𝐾𝑗, it can verify it. If

the check fails for an index 𝑖, 𝑈𝑖 can broadcast a complaint against node 𝑈𝑗. If more

than 𝑡 nodes complain about a node 𝑈𝑗, that node is recognized as disqualified. Each

node stores a node set 𝑄𝑈𝐴𝐿 for all qualified nodes. In this case, they generate the

key based on nodes inside 𝑄𝑈𝐴𝐿. As all honest nodes construct identical 𝑄𝑈𝐴𝐿,

they can generate the same key and derive the same blockchain address. Then, we

prove that TEE cluster can reach an agreement on an identical key as long as more

than 𝑡 out of 𝑛 nodes are honest. Thus, we can show that TEE cluster can correctly

complete the bootstrapping process for a given attacker threshold.

Secondly, we prove that the destruction of defective smart contracts satisfies cor-

rectness. When all parties are honest, the protocol starts with the setup phase, where

the parties from 𝒫 vote to decide whether to destroy the defective smart contract,

followed by a message call transaction generated by TEE cluster. The message call

transaction invokes the destroy() function in the voteDestruct mechanism to con-

duct the destruction of defective smart contract. Once the destroy() transaction is

confirmed on the blockchain, then the destruction completes and cannot be reverted.

Fairness

Finally, we define the fairness property of SolSaviour.

Definition 9. (Fairness) A protocol run by parties satisfies the fairness property if
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for every (n-m)-contract 𝒞, for every adversary 𝒜 corrupting parties such that at least

one party is honest, the output of protocol execution is true.

For the proof of fairness, we prove that the voteDestruct mechanism is fair. That

is, even if an attacker holds a certain stake in the defective contract and has the right

to vote, he cannot influence the final outcome of the vote and prevent the destruction

of the defective smart contract.

We first analyze the case where there are some malicious stakeholders. As ma-

licious stakeholders are profit oriented, what they want is to acquire the assets of

honest stakeholders. We prove the security of voteDestruct mechanism by showing

that honest stakeholders can always safely exit a smart contract as long as their cu-

mulative stake amount exceeds the specified destroy threshold. In SolSaviour, a smart

contract has three statuses, active but potentially defective, locked, and destroyed.

In locked status, a contract is protected by blockchain miners that reject all function

calls except those initiated from the TEE cluster. In this case, malicious stakeholders

cannot steal assets. In destroyed status, assets in a contract are held in custody by

the TEE cluster, so that malicious stakeholders cannot profit either. The only chance

for malicious stakeholders to profit is during the active but potentially defective sta-

tus. In SolSaviour, the threshold of required stake amount to lock a contract is 1/3.

Only when the amount of stake held by malicious stakeholders exceeds 2/3, they can

prevent the contract from entering the locked status.

During the active but potentially defective status, when a hidden vulnerability

is exposed, malicious stakeholders can prevent the contract from entering the locked

status and exploit the vulnerability. However, due to the unknown nature of the

vulnerability, it may simply causes the contract to an inexecutable state, which would

also be unprofitable for malicious stakeholders. Therefore, the only feasible way for

attackers to exploit a contract is to inject an exploitable vulnerability during the

initial contract deployment or redeployment of patched contract. However, as the

deployed contract needs to pass the checks of all stakeholders, honest stakeholders can

reject a potentially vulnerable contract. Even if an attacker possesses an unknown

vulnerability and successfully deploys a malicious contract with it, SolSaviour can
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increase the attack cost and reduce the losses of honest stakeholders by lowering the

threshold for entering the locked state. For example, if the threshold is lowered to

1/10, the attacker must have 9/10 of the stake to guarantee that this contract will

not enter the locked stake, which will also reduce the losses of honest stakeholders.

5.5 Discussion

5.5.1 Limitations and Security Risks

In this section, we discuss the limitations and security risks of SolSaviour. One of

the main limitations of SolSaviour is that it can only protect contracts that have

integrated the voteDestruct mechanism. Due to the tamper-proof feature of the

blockchain, SolSaviour cannot provide the defence mechanism for active smart con-

tracts that have already been deployed. As TEE is a technology still under devel-

opment, there may be unknown vulnerabilities. TEE is therefore at risk and newly

discovered TEE vulnerabilities could compromise the security of the entire system

and the in-contract assets.

5.5.2 Recovering Patched Contract without TEE Escrow

Implementation

Considering the risks to the security of assets temporarily held in the TEE cluster,

we introduce a new way to recover a defective smart contract to a patched contract

directly.

Setup Phase. In this way, SolSaviour first locks a potentially defective contract

to prevent it from further attacks. Then, stakeholders develop a patched smart con-

tract and provide it to the TEE cluster. The TEE cluster first deploys the patched

contract onto the blockchain. After deploying the patched smart contract, the vot-

eDestruct mechanism could set the parameter of the destroy function to the address

of the patched contract. In this way, the assets are directly transferred from the de-

fective smart contract to the patched contract without interaction of the TEE cluster.
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In this way, even the serious problem such as key leakage of the account controlled

by the TEE cluster, the assets are still under protection.

Recovering Phase. Unlike reverting to a TEE cluster, this approach eschews the

use of TEE and therefore its state transfer behaviour cannot be implemented through

TEE. We then need to implement complex state migration logic in the smart contract.

Specifically, we need to store the complete state variables of the smart contract and the

take distribution of the assets stored in the take holders, and we need to have transfer

logic that acts on top of these state variables. We consider using a bridging contract

to accomplish this step, i.e. deploying a smart contract dedicated to state migration,

in which the state variables and take distribution associated with the defective smart

contract are stored, and in the constructor of the patched contract, allowing it to

read and write the state variables in the contract. In this way, we can achieve state

transfer for smart contracts without the need for TEE intervention. In contrast, this

approach requires significant gas consumption to maintain the various operations and

data stores. The cost required to implement contract recovery on the public chain is

significantly higher due to the addition of bridging contracts and the corresponding

storage of state variables. However, the advantages of this approach are clear: by

avoiding temporary asset hosting of TEE clusters, this approach significantly reduces

the attack surface of the system and eliminates the risk of security issues that may

arise from the TEE itself.

Comparison

In summary, there are advantages and disadvantages to both recovering to the TEE

cluster and recovering to the patched contract, the former being more gas efficient

but less secure than the latter, and the latter being secure, but the cost of protecting

the smart contract is greatly increased by the high gas consumption it entails. The

latter is secure, but the high gas consumption associated with it can add significantly

to the cost of protecting smart contracts. Therefore, when faced with a specific smart

contract, the contract developer needs to make a trade-off between security and cost

and choose the best method to protect the smart contract.
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Table 5.2: The list of contracts that have been attacked or exposed to serious bugs.

Contract Address Vulnerability Type Caused Damage

King of Ether 0x2464d1d97f8D0180CFaD67BdB19bc30ccA69DdA0 Unchecked Return Values Ownership Loss

GovernMental 0xF45717552f12Ef7cb65e95476F217Ea008167Ae3 Timestamp Dependence DoS

Rubixi 0xe82719202e5965Cf5D9B6673B7503a3b92DE20be Bad Constructor Ownership Loss

ENS Name Wrapper 0x00000000000C2E074eC69A0dFb2997BA6C7d2e1e Access Control Domain Ownership Loss

1𝑠𝑡 Parity Multisig 0x863DF6BFa4469f3ead0bE8f9F2AAE51c91A907b4 Delegatecall 153,037 ETH Loss ($31M)

2𝑛𝑑 Parity Multisig 0x863DF6BFa4469f3ead0bE8f9F2AAE51c91A907b4 Denial of Service 513,774.16 ETH Locked ($300M)

The DAO 0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413 Reentrancy 3.6M ETH Loss ($150M)

PoWH Coin 0xA7CA36F7273D4d38fc2aEC5A454C497F86728a7A Integer Underflow 866 ETH Loss ($800k)

Bancor Exchange 0x1F573D6Fb3F13d689FF844B4cE37794d79a7FF1C Front Running Economic Earns ($150)

SushiSwap 0x6B3595068778DD592e39A122f4f5a5cF09C90fE2 Supply Chain Attack 864.8 ETH

Fei 0x956F47F50A910163D8BF957Cf5846D573E7f87CA Price Manipulation 60k ETH at risk

Uniswap Hack 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 ERC777 Reentrancy Exploit $320M

5.6 Experiment

In our prototype of SolSaviour, the voteDestruct mechanism is implemented in Solid-

ity and the TEE cluster is implemented based on Intel SGX with around 2000 LOC.

Four nodes are set up in the TEE cluster. The experiments are conducted in two

aspects: effectiveness and performance.

5.6.1 Dataset Preparation

To accurately evaluate the effectiveness and performance of SolSaviour, we have col-

lected a number of contracts that have emerged from real-world applications, in-

cluding some from early applications and some DeFi contracts that have emerged in

recent years. Some contracts have experienced real attacks that have caused asset

losses; others have not been attacked, but their vulnerability has been verified. Our

collected contracts are the DAO [21], PoWH Coin [10], 1st [93] and 2nd [1] Parity

Multisig Wallet, King of Ether [106], Bancor Exchange [16], GovernMental [112], and

Rubixi [56]. We also collected some DeFi contracts that were exposed to some severe

bugs such as SushiSwap [98], ENS Name Wrapper [97], Fei [78], and Uniswap [90].

We list these contracts in Table. 5.2, accompanying with contract vulnerability type

and caused damage as well as accurate loss (if so).

For our collected contracts, we also prepare corresponding voteDestruct-enabled

contracts and patched contracts. The voteDestruct mechanism is injected on the
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source code level. As collected contracts are written in different versions of Solidity,

we make minor modifications to make our voteDestruct mechanism compatible in all

versions of Solidity. For patched contract, our collected contracts are also patched

manually by modifying the code. We also ensure that the compiled voteDestruct-

enabled contracts and patched contracts following the same version of Solidity as

original contracts.

SolSaviour is then applied to these generated comparative smart contracts so that

we could verify the effectiveness and performance by validating the results. We can

verify whether the voteDestruct mechanism is effective and that the patched smart

contract redeployed by SolSaviour fixed vulnerability.

5.6.2 Effectiveness

The effectiveness of SolSaviour is evaluated from two perspectives: qualitative and

quantitative.

For qualitative part, we check whether we can leverage SolSaviour to safe exit

from all collected defective contracts, refund locked assets back to stakeholders, and

redeploy a patched contract. To test whether SolSaviour can recover a buggy smart

contract, we generate a large and representative evaluation dataset by collecting trans-

actions sent to the collected contracts from the Ethereum. Replaying those transac-

tions and observing outcomes can check the functionality and defence of patched

contracts. Specifically, we test whether SolSaviour can successfully destroy a defec-

tive smart contract with voteDestruct mechanism and redeploy a patched one with

TEE cluster. In addition, we test whether the TEE cluster can successfully migrate

the previous state to the new contract to ensure the state consistency.

For the quantitative part, we set up two contract instances for each collected

defective contract: an original contract instance and a SolSaviour-protected instance.

We compare the loss between the original one and SolSaviour-protected one. For the

original one, we also record the loss when taking traditional defence measures and

doing nothing. We test to what extent can SolSaviour save loss when facing different

vulnerabilities.
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Table 5.3: Comparison of losses/damages in the event of an attack against our col-
lected contracts. “Actual” indicates that no action is taken; “Traditional” indicates
that traditional defence methods are used; “SolSaviour” indicates that the contract is
protected by SolSaviour.

Contract Actual Traditional SolSaviour

King of Ether Lose Onwership No Mitigation Fix

GovernMental Lose Ownership No Mitigation Fix

Rubixi Lose Ownership No Mitigation Fix

ENS Name Wrapper Lose Ownership No Mitigation Fix

1𝑠𝑡 Parity Multisig 100 100 0

2𝑛𝑑 Parity Multisig 100 100 0

The DAO 100 48.6 6.5

PoWH Coin 100 100 0

Bancor Exchange 100 69.6 0

SushiSwap 100 100 3.3

Fei 100 61.2 2.3

Uniswap Hack 100 54.3 4.6

Qualitative

We evaluate the effectiveness of SolSaviour from a qualitative perspective in three

aspects: successful state migration, identical functionalities, and successful defence.

For each contract, we use Ganache to simulate 10 accounts, who play the role of

contract stakeholders and each has deposited 100 ethers. Then, a random stakeholder

initializes the vote_initial and provides a patched contract to the TEE cluster.

In qualitative experiments, we omit the security assumption of potential malicious

stakeholders and assume all of them vote to destroy the defective contract. Once

the voting completes, the TEE cluster destroys the defective contract, redeploys a

patched one, and conducts state migration.

By checking the patched contracts deployed by the TEE cluster, we can evaluate

whether state migration successes. A successful state migration means the internal

states of buggy contract and patched contract are identical. Not only the stake distri-

bution, but also the ownership. We check this by letting each stakeholder withdraw
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their previously-deposited ethers. We found that stakeholders can withdraw their

assets successfully from all contracts. Then, we check the functionality and defence

of patched contracts by replaying collected transactions. We compare the execution

results of patched contract with defective contract history state transition. Our ex-

periment results show that SolSaviour can successfully migrate the values of state

variables and stake distribution to the redeployed patched contracts. The contracts

redeployed by SolSaviour are functionally identical to the original contracts and have

fixed vulnerabilities of the original contracts.

Quantitative

We evaluate the effectiveness of SolSaviour from a quantitative perspective by attack-

ing and recovering defective contracts simultaneously. We evaluate to what extent

can SolSaviour reduce loss. Since different contracts are tested in different scenarios,

the amount of loss is different.

For the DAO contract, we simulate a scenario, where the defective deployed con-

tract contains 100 ethers. Then, we start to attack and recover it at the same time.

Attackers can arbitrarily withdraw ethers until honest stakeholders lock the contract.

Then, we follow the safe exit way to refund all locked ethers to stakeholders and

calculate the loss. Similar steps are conducted to evaluate the loss when using Sol-

Saviour. For the PoWH coin contract, since the real attack transactions are limited,

we simply replay these attack transactions and check the execution results. We also

test the loss when doing nothing and taking traditional defence. The results are listed

in Table. 5.3.

5.6.3 Performance

Contract Size Increase

In this section, we evaluate the additional code required to use SolSaviour. On

Ethereum, deploying smart contracts consumes gases, which are proportionally to

the size of the deployed contract. In SolSaviour, as the voteDestruct mechanism is
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Figure 5-7: Contract size increase in SolSaviour. The left three bars represent using
TEE cluster for asset escrow while the right three bars using patched contract. Blue
bar indicates original contract, orange bar indicates voteDestruct-enabled contract,
and green bar indicates patched contract.

Figure 5-8: Gas consumption of SolSaviour. The left three bars represent using TEE
cluster for asset escrow while the right three bars using patched contract. Blue bar
indicates original contract, orange bar indicates voteDestruct-enabled contract, and
green bar indicates patched contract.

implemented inside contracts, extra codes are introduced. Moreover, the method on

recovering patched contract without TEE escrow also introduces extra code in the

contract. Results are summarized in Fig. 5-7. The code size of the original collected

defective contracts are listed as the baselines. Each subplot has six bars. The left

three bars represent the size of contract when recovering with TEE, while the right

three bars represent the size of contract when recovering without TEE escrow. In

each subplot with three bars, from left to right are the size of the original contract,

the size of voteDestruct-enabled contract and the size of the patched contract.

However, since patches are generated manually, it is impossible to determine the
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performance of the system in terms of the number of lines of code added by the patch.

The only additional code introduced by the system is the voteDestruct framework that

makes defective contracts have the ability to iterative upgrades under SolSaviour. In

this case, we compare the size of compiled contract. We found that voteDestruct

mechanism introduces limited size to the original contract. These code size increases

are worth compared to the security enhancement that SolSaviour brings. For Parity

Miltisig contract, we note that injecting voteDestruct mechanism naturally resolves

the vulnerability so that the patched contract and voteDestruct-enabled contract have

the same size.

Gas Consumption

In this section, we evaluate the additional gas consumption incurred by SolSaviour,

which mainly arises from two aspects: the voteDestruct mechanism and the redeploy-

ment of the patched contract. We also evaluate the gas consumption on redeploying

a patched contract without TEE asset escrow. Results are summarized in Fig. 5-8.

The gas consumption to deploy the original version of collected defective contracts are

evaluated as the baselines. Each subplot has six bars. The left three bars represent

the gas consumption of original contract, voteDestruct-enabled contract, and patched

contract respectively when letting TEE conduct asset escrow. By contrast, the right

three bars represent the gas consumption when recovering without TEE asset escrow.

For voteDestruct mechanism, the evaluation is conducted by deploying our pre-

pared voteDestruct-enabled contracts. From the results, we can see the voteDestruct

mechanism introduced minimal gas overhead. The gas cost are mainly introduced

by additional storage of state variables and corresponding logic. Storing data on

Ethereum is expensive, which leads to a lot of gases to be consumed. For the rede-

ployment of patched contract, the extra gas consumption are mainly introduced by

the patch. As the gas consumption depends on the contract size, namely the size of

original contract plus the size of the patch as well as the voteDestruct mechanism for

future protection. As shown in the results, the overhead introduced by the patch is

not stable. This is because different contracts require different type of patches.
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Table 5.4: The overhead of TEE Cluster, which is counted in the number of blocks
mined by different combinations of TEE nodes.

Node A AB ABC ABCD

All 5780 5685(-1.6%) 5507(-4.7%) 5469(-5.3%) 5391(-6.7%)

A 1451 1368(-5.7%) 1312(-9.5%) 1340(-7.6%) 1341(-7.6%)
B 1446 1439 1325(-8.3%) 1339(-7.4%) 1335(-7.7%)
C 1438 1441 1439 1351(-6.1%) 1349(-6.2%)
D 1445 1437 1431 1439 1366(-5.5%)

TEE Cluster Overhead

In SolSaviour, state migration and asset escrow are conducted by TEE cluster. We

therefore evaluate the overhead introduced by TEE cluster. We build a Ethereum

private network with four nodes (i.e., node A, B, C, and D), each is installed with

an Ethereum endpoint. We record the number of blocks mined by them in one day.

Then, we initialize the enclave in one node and monitor the blocks mined by each

node. After that, we sequentially initialize enclaves in the other three nodes and add

them to the TEE cluster. During this time, we continuously monitor the number

of blocks mined by each node. The mining difficulty remains the same during this

experiment. We summarize the results in Table. 5.4. As we can see, for nodes

without TEE cluster, they can mine around 1440 blocks per day, which satisfies the

Ethereum blockchain generation speed, namely a block per 15 seconds. For nodes

with TEE cluster, the mining rate is slightly affected. The impact is greatest when

only half nodes participate the TEE cluster, and tends to become smaller when all

nodes initialize TEE.

5.7 Related Work

5.7.1 Smart Contract Vulnerability Detection

The infamous reentrancy bug in “TheDAO” contract [21] has spurred community to

work on detecting smart contract vulnerabilities. Luu et al. first proposed Oyente [73]
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based on symbolic execution, which automates the reentrancy bug detection. Then,

a lot of symbolic execution tools are proposed such as Osiris [108], teEther [62],

Maian [84], and Manticore [79]. Furthermore, Frank et al. proposed EthBMC

[43], a bounded model checker based on symbolic execution. Kalra et al. presented

Zeus [53], which leverages both abstract interpretation and symbolic model checking.

Chen et al. identified and defined 20 types of contract defects [26] and proposed the

corresponding defect detection tools to find them on the bytecode level [27].

There are also some work on developing smart contract static analysis tools. Feist

et al. proposed Slither [40] to analyze the contract on source code level, and Tsankov

et al. presented Security [110] to analyze the contract on bytecode level. Furthermore,

Brent et al. proposed Ethainter [20], which conducts the information flow analysis and

data sanitization to reveal composite vulnerabilities. There are also work on building

modular dynamic analysis frameworks for protecting smart contracts. Chen et al.

proposed SODA [29], which accepts user-defined vulnerability pattern. Furthermore,

method like formal verification has been introduced to smart contracts [53] and the

semantics of Solidity have been formalized [51]. Pan et al. proposed ReDefender [86],

which detects reentrancy vulnerabilities with fuzz testing.

However, these proposed detection tools still have limitations. For example,

teEther [62] and Maian [84] cannot locate integer overflow bugs since they mainly

focus on generating exploits for smart contracts. In addition, aforementioned detec-

tion tools cannot identify unknown vulnerabilities.Therefore, there exists a require-

ment to develop a framework for protecting deployed smart contract like SolSaviour.

5.7.2 Smart Contract Defence and Patch

For contract defence, Rodler et al. proposed Sereum [94] to defend against reentrancy

exploits through analyzing the specific sequence of transactions and the EVM execu-

tion traces. Ferreira et al. proposed ÆGIS [42] to defend deployed contracts against

known attacks. Specifically, it records a number of known contract attack execution

traces through a proposed domain-specific language and integrates within the EVM

to revert the execution of transactions that match the attack traces. Ellul et al. pro-
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posed a runtime verification mechanism [38] to ensure that violating party provides

insurance for correct behavior. Li et al. proposed Solythesis [67] to address the

high overhead in runtime validation. Grossman et al. proposed ECFChecker [49],

which defines the notion of Effectively Callback Free (ECF) objects and can detect

live reentrancy attacks on vulnerable contracts.

For contract patch, Yu et al. proposed SCRepair [120], which can automatically

detect and repair bugs in smart contracts before deployment. Similarly, Zhang et al.

proposed SMARTSHIELD [124], which leverages the bytecode rewriting technique

to fix contract vulnerabilities automatically. Bytecode rewriting technique was also

used in the EVMPatch [95] proposed by Rodler et al. which can automatically repair

vulnerable smart contracts.

5.7.3 TEE Related Work

In this section, we first present work related to the prevalent smart contract vulner-

ability detection tools. Then, we discuss some work on protecting deployed smart

contracts and generating patches for vulnerable smart contracts automatically. Fi-

nally, we present work on combining blockchain with TEE.

5.7.4 Smart Contract and TEE

Town Crier [121] was proposed by Zhang et al. to address the problem that smart

contracts running on the blockchain cannot access information in a trusted way. In

combination with TLS, smart contracts can trust information from HTTPS sites

passed by the Town Crier. Matetic et al. proposed Bite [75], which is a SGX-based

lightweight node, to address the privacy issue in lightweight nodes. In Bite, full

nodes load SGX enclaves to process requests from lightweight nodes. Thus, Bite can

ensure the privacy of lightweight nodes compared to traditional lightweight nodes

that have the risk for privacy breaches caused by Merkle proof requests.

There is a range of work focusing on offloading the execution of smart contracts to

TEE, which enables privacy-preserving smart contracts on the one hand and delivers
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some performance gains on the other. Bowman et al. proposed Private Data Objects

(PDOs) [18], in which contracts are deployed in the enclaves and mutually untrusted

participants can invoke the contracts in the enclave to execute on their own private

data. Cheng et al. proposed Ekiden [30], whose execution of smart contracts is also

deployed inside enclaves. With the enclave’s public key, users can encrypt the data

in their message call transactions and call the contract in the enclave in a method

called confidential transaction. In addition, consensus is decoupled from execution

in Ekiden, so miners do not need to verify private contract execution, preserving

confidentiality. Das et al. proposed FastKitten [34] to enable the execution of

complex, high-performance smart contracts on Bitcoin. FastKitten employs TEE

to execute arbitrarily complex smart contracts efficiently on cryptocurrencies, which

are originally designed without smart contract support. In FastKitten, enclaves

take charge of executing smart contracts and generating state transitions, which are

recorded by the Bitcoin. FastKitten can extend its work to execute smart contracts

on more cryptocurrencies which were designed to only support naive transactions.

In addition, the combination of blockchain and TEE shows promise in many other

areas. Zhang et al. proposed REM (Resource-Efficient Mining) [123], a blockchain

mining algorithm that work on useful computation. Considering the problem that

traditional PoW consensus protocols consume a lot of power, REM proposes to use

SGX to convert the traditional meaningless hash computation into meaningful com-

putation workload, accompanied by a trusted verification mechanism. Lind et al.

leveraged TEE as trusted nodes in payment network and proposed Teechain [70],

which is a layer-two network that can processes off-chain transactions asynchronously.

TeeChain leverages TEE as the entry and exit point for off-chain payment channels

and enables asynchronous execution of off-chain transactions. Teechain can prevent

parties from misbehaving by formalizing off-chain payment transactions with TEE.

The combination of blockchain and TEE shows great potential due to their superior

characteristics and complementary nature in areas such as privacy preserving and

attested execution. Kaptchuk et al. explores the computational properties of using

blockchain to store the state of stateless TEE [55].
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5.8 Conclusion

In this chapter, we present SolSaviour for protecting deployed smart contracts and

DeFi protocols. SolSaviour enables the offline patching of defective smart contracts

through the decentralized control provided by voteDestruct mechanism and the state

migration provided by TEE cluster. Compared with existing work that requires a

trusted third party to redeploy patched contract and can only migrate contract data,

SolSaviour can achieve effective migration of contract assets and does not require

the involvement of a trusted third party. For all collected contracts and DeFi, our

experiment results demonstrate that SolSaviour can effectively repair and recover all

of them with affordable overhead.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Blockchain technology guarantees data security through a distributed consensus mech-

anism, which ensures that the data on the chain cannot be tampered. In contrast,

TEE is a technology that guarantees the security of program execution. It secures the

correct execution of programs even under untrustworthy hosts by encrypting memory

and enables users to verify program execution results by attested execution.

In the work of securing DNS data, we propose B-DNS based on blockchain tech-

nology, which is a secure and efficient naming system. B-DNS transforms the resource

record in the traditional DNS into operation record and enables data management,

update, and revocation in the DNS under the blockchain data structure by register-

ing records, updating records, etc. The proposed dual bloom filter algorithm enables

efficient data querying under the blockchain. In the face of the shortcomings of tradi-

tional blockchain-based DNS, such as Namecoin being limited by the security of the

PoW consensus algorithm, B-DNS proposes a PoS consensus algorithm to improve

the security against mining attacks. In the subsequent experimental results, we found

that the attack cost of B-DNS is significantly improved compared to traditional DNS.

When facing cache poisoning attacks on B-DNS and traditional DNS measured with

the same probability of success, we found that the success rate of attacks on B-DNS

tends to decrease exponentially. At the same time, due to the efficient query mecha-
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nism, B-DNS avoids the problem of inefficient queries caused by the direct adoption

of blockchain technology and can achieve query speeds comparable to those achieved

by the current mainstream blockchain.

In the work of PKI security, we propose a trusted and authorized certificate is-

suance mechanism Pistis from the logic of certificate issuance. We found that the

essence of the traditional rogue certificate problem is that CA issues certificates with-

out the domain’s permission. If CA issues certificates when and only when the domain

applies, we can guarantee that the certificates issued by CA are trusted and autho-

rized. This way of thinking requires that we can ensure that the logic executed by

CA is fixed, autonomous, and non-manipulable. Smart contracts based on blockchain

technology naturally become the technology of choice. Smart contracts can implement

CA certificate issuance, renewal, revocation, and other operations, and the security

of smart contracts is guaranteed by the underlying blockchain. However, the pure

smart contract cannot verify whether the applicant controls the domain. In this case,

Pistis introduces TEE to link the smart contract and the domain applied by the

applicant to achieve ownership validation by a challenge-proof mechanism. The cer-

tificate issued by the smart contract will be uploaded to the chain to guarantee its

trustworthiness. In this way, Pistis implements a trusted and guaranteed certificate

issuance mechanism. Our security analysis demonstrates the security of the Pistis

mechanism. Our experiments verify the efficiency of Pistis in verifying the certificate

state, which has faster latency and smaller packet size compared to traditional CRL

and OCSP methods, i.e., higher efficiency.

In the work of securing smart contracts, we focus on the security of smart contracts

that have been deployed to the blockchain. Since smart contracts are stored in the

form of compiled bytecode, and the transactions are not tamperable once they are

included in the newly mined blocks on the blockchain, the deployed smart contracts

cannot be modified. This leads to the fact that if any vulnerability occurs in the

deployed smart contract, we cannot fix the vulnerability by patching it, and the smart

contract will become a live target. Traditional solutions can only perform static checks

before smart contract deployment, and this approach cannot cope with unknown
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bugs and has false negatives resulting in false positives. Therefore, we propose a

TEE-based, trusted protection mechanism for smart contracts and DeFi, SolSaviour.

SolSaviour consists of two parts, an on-chain Solidity-based voteDestruct mechanism

and an off-chain TEE cluster mechanism that can invoke the voteDestruct mechanism.

Once the defective deployed smart contracts are destroyed, the user can call the TEE

cluster to redeploy a smart contract through the TEE cluster. At the same time, the

TEE cluster automatically transfers assets and internal variables from the destroyed

defective smart contract to the new patched smart contract. The experimental results

show that SolSaviour can significantly reduce the potential damage caused by smart

contract attacks compared to traditional defence methods and inaction. At the same

time, the additional overhead is still very manageable.

6.2 Future Work

Our current work certainly has some limitations, as blockchain technology and TEE

technology still have some limitations, such as the throughput limitation of blockchain

technology. At the same time, TEE technology also has some security risks, such as

data leakage. In the future work, we focus on further improving the current work’s

security and guaranteeing the proposed method’s completeness through verification

and other means. At the same time, we also hope to improve further the effectiveness

of the current work, such as implementing high-capacity, high-throughput blockchain-

based DNS and PKI.

6.2.1 Building Network Systems based on High Throughput

Blockchain

The performance of traditional single-chain blockchain systems is still the bottleneck

to achieving large-scale DNS and PKI. Current blockchain throughput remains at

a few or a dozen transactions per second, which is difficult to scale due to security

constraints. The current high-performance blockchain system has several directions,
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such as sharding-based multi-chain structure, directed acyclic graph (DAG) based tree

graph structure, etc. We plan to build DNS and PKI based on these high-performance

blockchain systems in the future. We plan to develop DNS and PKI based on these

high-performance blockchain systems in the future to ensure global consistency and

high fault tolerance.

6.2.2 Integration of DNS and PKI

In the Internet, DNS and PKI provide different services independently but work

closely together. DNS is responsible for the conversion from domain names to IP

addresses, and is also responsible for the registration, renewal (i.e., updating the IP

address corresponding to the domain name), and revocation of domains. In PKI,

the subject of a certificate application is usually the domain. This is because the

domain needs a cryptographic certificate to prove its identity. Thus, DNS and PKI

are actually two systems that are closely linked. In the work of B-DNS and Pistis, we

propose blockchain-based solutions for some problems in DNS and PKI, respectively.

But our solutions are independent and not combinable. Therefore, in our future

work, we consider organically combining DNS and PKI to propose practical solutions

oriented to the combination of the two systems.

6.2.3 Automated Smart Contract Protection Mechanism

Our proposed smart contract protection mechanism, SolSaviour, still has some limi-

tations. It still requires a manual introduction, i.e., patches for smart contracts still

need to be generated and deployed manually. We consider implementing a stronger

automated mechanism to minimize human intervention and improve the security of

the system. This requires us to explore automated smart contract vulnerability de-

tection research, smart contract patch generation research, and research on rewriting

smart contracts from bytecode level and source code level. By exploring the above

related directions, we can further address the shortcoming that SolSaviour can only

provide a fix for deploying smart contracts.
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Among the three directions mentioned above, smart contract patch generation

and smart contract rewriting currently have a certain research base. A lot of work

has also been done on vulnerability detection for smart contracts, but the significant

problem is that current vulnerability detection for smart contracts focuses mainly

on detecting known vulnerabilities. Through symbolic execution, fuzzy testing, and

other methods, the contract is analyzed for known vulnerabilities from the source

code or bytecode perspective. None of the current vulnerability detection can ver-

ify the detection of unknown smart contract vulnerabilities. Therefore, we consider

exploring AI-based vulnerability detection. Specifically, we plan to explore pseudo-

anomaly-based vulnerability detection techniques. That is, we artificially generate

some anomalous data points to train the model so that the classifier only learns

the behavior patterns of normal contracts. This is used as a basis to discriminate

unknown vulnerabilities, i.e., abnormal behavior patterns of contract execution.

6.2.4 Securer TEE Support

We have directly applied TEE techniques to achieve the required functionality in our

current work, such as ownership validation for domains and message call transac-

tion generation for voteDestruct. Our work is based on Intel SGX implementation.

However, Intel SGX also has many security issues that affect the security of its im-

plementation and the confidentiality of data. Therefore, we are considering further

improving the system’s security by combining the latest security research about TEE.

We have shown this tendency in our current work, such as in the work [68], the keys

of blockchain accounts are stored in all TEE nodes. On the contrary, we have adopted

a new key management mechanism in the subsequent work, i.e., all TEE nodes do

not store the keys but only the partial verification key. In this way, we circumvent

the possible data privacy issues of TEE. In addition, we consider refactoring our

system architecture based only on the integrity and verifiability properties of TEE.

Specifically, we lower our security assumption that TEE is a black box that cannot

guarantee data security and only guarantees program integrity and verification of

program execution results. We explore feasible mechanisms for securing DNS, PKI,
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and smart contracts based on such a framework.
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