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Abstract

Production and transportation, which are two key processes in the supply chains, play crit-

ical roles in improving the competitiveness of a company in the global markets. Therefore,

integrated production and transportation scheduling becomes more necessary for companies

to be responsive to the demands of the customers and reduce the costs to the best of their

ability. In this thesis, we focus on two variants of the integrated production and transporta-

tion problem faced by manufacturing companies under a make-to-order business strategy

and a commit-to-delivery business mode. One variant is to consider the issue of order accep-

tance. It means that when receiving the orders, the manufacturing company needs to decide

which orders are to be accepted and which are to be rejected. The other variant is to incor-

porate the inventory holding costs incurred during the production and shipping processes of

the orders. The original integrated production and transportation problem with committed

delivery due dates is known to be strongly NP-hard and the computational hardness can also

be applied to these two variants. This thesis contributes to the development of new exact

algorithms and approximation algorithms for these two variants.

The first problem we studied in this thesis is the integrated production and transportation

scheduling problem with committed delivery due dates and order acceptance (IPTSDA). For

this problem, we develop two new exact algorithms that can solve the problem IPTSDA to

optimality, and we prove that they can achieve polynomial or pseudo-polynomial running

times for two practical cases of problem IPTSDA, respectively. In addition to the two

exact algorithms, and by extending the second exact algorithm, we also develop a pseudo-

polynomial time approximation scheme for the problem IPTSDA. It not only ensures a worst-

case performance ratio of (1 + ε) for any fixed ε > 0, but also achieves good computational

performance through the computational experiments.

The second problem we studied in this thesis is the integrated production and trans-
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ABSTRACT iii

portation scheduling problem with committed delivery due dates and inventory holding costs

(IPTSDI). The incorporation of inventory holding costs into the objective function makes the

problem more complex. To reduce possible inventory holding costs, the manufacturer wants

to postpone the production as late as possible. However, this would lead to an increase in

the shipping costs due to the decrease in transportation time. Therefore, the manufacturer

needs to determine a production plan and a shipping plan that could delicately balance the

shipping costs and inventory holding costs. For this problem, we innovatively propose a

backward-forward construction algorithm. Based on the backward-forward algorithm, and

utilizing our algorithms for problem IPTSDA in the first study, we develop several new exact

algorithms with pseudo-polynomial running times for two practical cases of problem IPTSDI.

The backward-forward algorithm also helps to develop the new approximation algorithms

that can guarantee a worst-case performance ratio of (1 + ε) for any positive constant ε.

Keywords: Scheduling; Integrated production and transportation; Commit-to-delivery; Or-

der acceptance; Inventory holding cost; Exact and approximation algorithms



Publications Arising From the Thesis

Chapter 2 and Chapter 3 are based on the following two research papers:

• New Exact and Approximation Algorithms for Integrated Production and Transporta-

tion Scheduling with Committed Delivery Due Dates and Order Acceptance, co-authored

with Feng Li and Zhou Xu, accepted in European Journal of Operational Research.

• Incorporating Inventory Holding Cost in Production and Transportation Integration:

New Exact and Approximation Algorithms, co-authored with Feng Li and Zhou Xu,

submitted.

iv



Acknowledgments

I would like to take this opportunity to thank all people for helping me in the journey to

pursue my PhD degree.

First, I would like to extend my sincere gratefulness to my supervisor, Prof. Zhou Xu for

his invaluable and continuous support, not only in academics but also in the other aspects

of my life. His instructive guidance, incisive analysis, rigorous academic standards and

proficiency in different areas helped me to go through different difficulties in academia and

will continue to benefit me in my future career.

Second, I would like to thank Prof. Feng Li for his constructive advice to improve the

quality of our research and for his contribution to the chapters of this thesis. Also, I would

like to express my gratitude to Prof. Pengfei Guo, Prof. Yulan Wang and Dr. Anran Li for

their expertise in their research fields and willingness to share with me their knowledge and

unique perspectives on the research problems.

Thirdly, I am also grateful to the committee members of my thesis including the external

examiners, Prof. Yanzhi Li and Prof. Feng Chen, as well as the BoE chair, Prof. Kai Pan.

Their constructive suggestions and insightful comments greatly improve the quality of my

thesis.

Special thanks also go to other faculties in PolyU, Prof. Li Jiang, Prof. Miao Song

and Prof. Eric Ngai and so on, who provide chances for me to systematically know and be

familiar with the necessary knowledge and skills for a qualified PhD student. In addition,

I would like also to dedicate my thanks to the administrative staff in the General Office

of LMS, RO, GS and in other organizational units of PolyU for providing assistance and

services to my study.

Moreover, I would like to thank my roommates and classmates in MN037 and MN038.

The activities with them help to enrich my life in PolyU and Hong Kong.

v



ACKNOWLEDGMENTS vi

Finally, I would like to express my appreciation to my parents, my brother and especially

my girlfriend Qiaoyu Wu, for their encouragement, support and love. They are indispensable

parts of my PhD study and my life.



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1:

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2:

Integrated Production and Transportation Scheduling with Committed

Delivery Due Dates and Order Acceptance . . . . . . . . . . . . . . . . . . . 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Problem Description and Formulation . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Optimality Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Two Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Exact Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



TABLE OF CONTENTS viii

2.4.2 Exact Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Approximation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Restricted Problem RP(K,Q): Formulation and Solution Algorithm . 36

2.5.2 Approximation Scheme: Algorithm and Analysis . . . . . . . . . . . . 46

2.5.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 3:

Integrated Production and Transportation Scheduling with Committed

Delivery Due Dates and Inventory Holding Cost . . . . . . . . . . . . . . . 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Problem Description and Formulation . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Optimality Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Exact Algorithm When the Number of Possible Order Quantities is

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.2 Exact Algorithm When the Planning Horizon is Fixed . . . . . . . . 91

3.5 Infinite Unit Inventory Holding Cost . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Approximate Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.1 Restricted problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.2 Approximation Scheme: Algorithm and Analysis . . . . . . . . . . . . 106

3.7 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Chapter 4:

Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



TABLE OF CONTENTS ix

4.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



List of Tables

2.1 Basic notation for problem IPTSDA. . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Computational results for the approximation scheme. . . . . . . . . . . . . . 63

3.1 Notations for problem IPTSDI. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Computational results for the approximation scheme. . . . . . . . . . . . . . 121

x



List of Figures

2.1 An example for the construction of a solution (λ(σ),x(σ), z(σ)) from an order

sequence σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 An example for Case 1 of the illustration of (2.12) with η = 2 types of order

quantities (e1 = 4 and e2 = 6) and with c = 7. . . . . . . . . . . . . . . . . . 27

2.3 An example for Case 1 of the illustration of (2.15) with m = 2 days. . . . . . 33

2.4 Examples for Case 1 and Case 2 considered in solving problem RP(K,Q) by

dynamic programming, where K ′ = 2 and order 6 is rejected in the optimal

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Illustrative examples for the proof of Theorem 2.6 where K = 2 and d1 ≤

d2 ≤ . . . ≤ d6: Defining σ∗, Q∗, I ′, σ′, and π′. Note that order 5 is rejected in

the optimal solutions shown here. . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Illustrative examples for the proof of Theorem 2.6 where K = 2 and d1 ≤

d2 ≤ . . . ≤ d6 where orders in I ′ = {1, 3, 6} are split into unit orders

(1, 1), (1, 2), (1, 3), (3, 1), · · · , (3, 6), (6, 1), · · · , (6, 5). . . . . . . . . . . . . . . 56

3.1 Examples of a solution (x̄(z), z) constructed by Algorithm 3.1 given a shipping

plan z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Examples for the forward construction of a solution (x(z), z) in Algorithm 3.2

given a daily production plan x̄(z) and x̄ is the daily production plan from

the backward construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 An example for Algorithm 3.4 with η = 2 types of quantities (e1 = 3 and

e2 = 5) and the planning horizon is m = 4. . . . . . . . . . . . . . . . . . . . 90

xi



LIST OF FIGURES xii

3.4 An example for Algorithm 3.5 with a 4-day planning horizon where the num-

bers in the rectangles are order quantities and numbers above with paren-

thesizes are order indices: For the subproblem of F (6; 4, 9, 4, 8), for orders in

{1, 2, · · · , 5}, since order 6 is delivered on day 4 in an optimal shipping plan

(i.e., τ6 = 4), F (6; 4, 9, 4, 8) equals F (5; 4, 9, 4, 5) + G(d6 − 4, 3) (since τ6 = 4

and q6 = 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Solution examples for problem IPTSDI when h is +∞. A rectangle represents

an order and the number with bracket above the rectangle is the order index.

There are inventories (shaded rectangles) in solution π1, which means the total

cost is +∞ and no inventory incurs in solution π2. . . . . . . . . . . . . . . . 95

3.6 Examples for two possible cases for restricted problem RP(K,Q) where K ′ = 2

and N(i) = {1, 2, · · · , 5} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.7 Illustrative examples for the proof of Theorem 3.7 where K = 2 and d1 ≤

d2 ≤ . . . ≤ d7: Defining z∗, σ∗, Q∗, I ′, z′, σ′, and π′. . . . . . . . . . . . . . . 108

3.8 Illustrative examples for the proof of Theorem 3.7 where K = 2 and d1 ≤

d2 ≤ . . . ≤ d7 where orders in I ′ = {4, 6, 7} are split into unit orders

(4, 1), · · · , (4, 4), (6, 1), · · · , (6, 3), (7, 1), · · · , (7, 5). . . . . . . . . . . . . . . . 113



Chapter 1

Introduction

1.1 Background

The increasingly competitive global market brings more challenges to the management of

the supply chains (Mangan and Lalwani (2016)). Production and transportation, which

are two key processes in the supply chains, will largely influence the efficiency and cost in

the management of the supply chain (see the detailed description in Sarmiento and Nagi

(1999); Erengüç et al. (1999); Goetschalckx et al. (2002); Chen (2004)). Therefore, to gain

advantages in the fierce competition, many manufacturers adopt make-to-order strategy,

which means that the production of products begins only after receiving orders (see examples

in Li et al. (2005); Chen and Vairaktarakis (2005); Pundoor and Chen (2005); Chen and

Pundoor (2006); etc.). Also, these manufacturers would deliver the completed products

to the customers before or on the committed delivery due dates and pay the associated

fees by themselves, which is referred to as commit-to-delivery strategy (Stecke and Zhao

(2007)). Normally, these manufacturers would use third-party logistics (3PL) companies

to accomplish the delivery tasks after the completion of production (Marasco (2008); Chen

(2010)). These 3PLs can provide multiple shipping modes with different shipping times and

shipping costs, for example, the one-day and two-day delivery services of UPS and FedEx

(Li et al. (2020); Yang et al. (2021)). Moreover, faster shipping modes will take more costs.

It brings several advantages for a manufacturer to operate under the make-to-order and

commit-to-delivery strategies (Stecke and Zhao (2007); Li et al. (2020)). The manufacturer
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INTRODUCTION 2

can produce customized products and deliver them to the customers in a short time, which

will reduce the inventory to a certain extent. Intuitively, the manufacturer can select a

shipping mode with shorter shipping times when a production complete day for an order is

close to the committed due date for delivery required by a customer; and if the production

is finished earlier than the committed delivery due date, the manufacturer can choose a

slower shipping mode. Therefore, the combination of these two strategies can decrease the

possibility of missing the delivery due dates and increases the flexibility to schedule the

production and transportation which can reduce the costs as much as possible.

However, there are still delayed delivery of products due to insufficient production capac-

ity (Korpela et al. (2002); Stecke and Zhao (2007)), inappropriate time schedules (Herrmann

(2006); Ghaleb et al. (2020)) and so on. Hence, it becomes more necessary for these compa-

nies to jointly schedule the production and transportation in the out so that to improve the

service levels and reduce costs (see examples in Ahmadi et al. (2005); Leung et al. (2005);

Stecke and Zhao (2007); Armstrong et al. (2008); Liu and Liu (2020); etc.). Therefore,

these manufacturing companies are faced with the Integrated Production and Transporta-

tion Scheduling Problems with Committed Delivery Due Dates (IPTSD) (Stecke and Zhao

(2007)).

In this thesis, we consider two variants of problem IPTSD. The first problem is Integrated

Production and Transportation Scheduling Problem with Committed Delivery Due Dates and

Order Acceptance (IPTSDA) where the manufacturer needs to determine whether to accept

or reject an order when receiving it. The issues of order acceptance are commonly studied

in the manufacturing fields (see examples in Kolisch (1998); Calosso et al. (2003); Roundy

et al. (2005); Ivănescu et al. (2006); Rom and Slotnick (2009); Tarhan and Oğuz (2022); etc.).

With order acceptance decisions being taken into account, the manufacturer needs to balance

the trade-off between the revenue earned by producing an order as well as its associated costs

and the penalty cost of rejecting it due to the limitation of the production capacity and lead

time. The second problem is Integrated Production and Transportation Scheduling Problem
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with Committed Delivery Due Dates and Inventory Holding Cost (IPTSDI). Although the

commit-to-delivery business mode is designed for reducing the inventory, the inventory costs

may still exist during the processes of production and shipping (see examples in Chan et al.

(2002); Hwang (2010); Li et al. (2017); etc.). Therefore, a manufacturer needs to subtly

settle the production plan and shipping plan, so as to minimize the total costs including the

inventory holding costs.

1.2 Literature Review

In this thesis, we mainly focus on the production and outbound logistics of a manufac-

turer. While outbound logistics concentrate on the distribution from the manufacturer to

customers, inbound logistics focus on the transportation of the material flow from suppliers

to the manufacturer (see Cohen and Lee (1988); Vidal and Goetschalckx (1997); Hall and

Potts (2003) for an overview). Although inbound logistics problems could have similar objec-

tive functions to outbound logistics studied in this thesis, such as minimizing total delivery

costs and inventory holding costs, etc., these two logistics processes have several differences.

A manufacturer could start production until all raw materials and parts from its suppliers

arrive. Therefore coordination of the manufacturer and supplier can be an issue in inbound

logistics (see Chen and Hall (2007); Sawik (2009) for an overview). In addition, since the

suppliers may be located in different places, distribution strategies (eg., direct, milk-run and

cross-dock) are intensively studied in inbound logistics (see Berman and Wang (2006) for

introduction and typical examples in the automobile industry in Wang and Chen (2019);

Baller et al. (2022)). However, the outbound logistics in this thesis mainly focus on the in-

teraction between a manufacturer and 3PLs that can provide delivery services with different

shipping modes. And the manufacturer needs to make a joint schedule of production plan

and shipping plan (see Stecke and Zhao (2007) for a industrial example in Dell Technologies).

The studies in this thesis focus on production planning and transportation scheduling,
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which belong to the planning level problems in supply chains. There are also plenty of

studies on the detailed scheduling level problems in supply chains, which examine the optimal

schedules of jobs and facilities to complete the production task (see Kreipl and Pinedo (2004)

as an overview of these two categories of problems in supply chains).

Due to its significant theoretical and practical importance, integrated production and

transportation scheduling has become an increasingly important research topic (see Chen,

2010, for a state-of-the-art survey). Existing studies take into account various production

configurations, order restrictions, delivery characteristics, and objective functions for opti-

mization. However, unlike problem IPTSDA and problem IPTSDI examined in this thesis,

the problems investigated by most of these studies consider only a single shipping mode for

order delivery (e.g., see recent studies by Ullrich (2013), Agnetis et al. (2014), Mensendiek

et al. (2015), Azadian et al. (2015), Li et al. (2015), Geismar and Murthy (2015), Sawik

(2016), Li et al. (2017), Zhang and Song (2018), Tang et al. (2019), and Bachtenkirch and

Bock (2022)). There are several studies on problems considering multiple shipping modes,

which differ from problem IPTSD, in production decisions and shipping cost functions (e.g.,

see Wang and Lee (2005), Chen and Lee (2008) and Agnetis et al. (2016)).

Zhong et al. (2010) study problem IPTSD, where all received orders must be accepted,

and the shipping cost function for multiple shipping modes is linearly non-decreasing in

shipping quantity and linearly non-increasing in shipping time. By a reduction to a special

case of the problem studied in Stecke and Zhao (2007), Zhong et al. (2010) show that

problem IPTSD is strongly NP-hard, and they also develop a polynomial time approximation

algorithm to solve the problem with a worst-case performance ratio of 2, which is later

improved to 5/3 by Zhong (2015).

Stecke and Zhao (2007) study a problem that is similar to problem IPTSD, in that it

has a more general form of the shipping cost function that is linearly non-decreasing in

shipping quantity and convexly non-increasing in shipping time. However, for this problem,

no polynomial time approximation algorithms with constant worst-case performance ratios
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are known. When partial deliveries are allowed, Stecke and Zhao (2007) show that a simple

non-preemptive production plan by an earliest-due-date-first-scheduling strategy is optimal.

For the problem studied in Stecke and Zhao (2007), Melo and Wolsey (2010) derive several

integer programming models. Different from the two variants of problem IPTSD studied in

this thesis, the problems in the above-mentioned literature do not consider the decision of

order acceptance and inventory holding costs in their objective function.

As shown in Zhong et al. (2010), problem IPTSD is strongly NP-hard. This implies that

unless NP=P, there exists no exact algorithm that can solve problem IPTSD to optimality

in polynomial time, and no FPTAS that has a fully polynomial running time and achieves

a worst-case performance ratio of (1 + ε) for any fixed ε > 0. Since problem IPTSDA and

problem IPTSDI are variants of problem IPTSD, these computational hardness results are

also applicable to problem IPTSDA and problem IPTSDI.

Problem IPTSDA studied in this thesis considers to incorporate the order acceptance

decisions. There are extensive studies on machine scheduling problems that also have taken

into account order acceptance decisions (see Slotnick (2011) for a survey). This thesis follows

the similar setting for order acceptance in these machine scheduling studies. That is to

denote the order acceptance decisions as decision variables that will influence the objective

functions and constraints of the problems. There are also several recent studies that integrate

machine scheduling with transportation (see more examples in Shams and Salmasi (2014);

Liou and Hsieh (2015); Jiang et al. (2017); Sarvestani et al. (2019); etc.). For example,

Aminzadegan et al. (2021) use two meta-heuristic solution approaches, namely, an adaptive

genetic algorithm and a tabu search, to solve a single machine scheduling problem with order

acceptance, delivery scheduling, and resource allocation. Zhong et al. (2022) develop two

approximation algorithms for a multiple machine scheduling problem with outbound delivery

taken into account, and with rejected orders being outsourced. However, to the best of our

knowledge, the literature rarely studies approximation algorithms with a constant worse case

performance ratio to solve problem IPTSDA.
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Similar to problem IPTSDI studied in this thesis, some studies also consider the inventory

holding costs in the integrated production and scheduling problem. For example, Sun et al.

(2015) consider job allocation and scheduling problem in multiple factories with minimized

total costs including production cost, shipping cost and storage cost (inventory holding cost).

Guo et al. (2017) study integrated production and transportation scheduling problem with

product batch-based delivery by modeling it as an order assign problem. And the objective

is to minimize the total costs of all product batches including the production cost, inventory

holding costs and so on. Li et al. (2017) consider production integration problems with

inventory and delivery where each order requires services within a delivery time window.

Similarly, Han et al. (2019) examine a problem of production and outbound scheduling

integration with inventory being taken into account in a three-stage supply chain. There are

also some studies considering inventory holding costs in the area of machine scheduling (Li

et al. (2008), Wang and Cheng (2009), Ma et al. (2013), Hajiaghaei-Keshteli et al. (2014),

Chevroton et al. (2021), Bachtenkirch and Bock (2022), etc.). However, our study on problem

IPTSDI considers both the inventory holding costs and committed delivery due dates for the

integration of production and scheduling problems and proposes an approximate scheme that

can yield close-to-optimal solutions to problem IPTSDI.

To the best of our knowledge, three studies on the variants of IPTSD are closely related

to our research on problem IPTSDI. The first study is from Li et al. (2020) and the second

is from Yang et al. (2021). Both studies incorporate inventory holding costs into problem

IPTSD. Li et al. (2020) consider a more general form of shipping cost that is no-linear in both

shipping quantity and shipping time. In addition, for the case when the planning horizon

is two days, they also propose a fully polynomial time approximation scheme (FPTAS) and

they develop a column generation-based heuristic algorithm for the general case. In Yang

et al. (2021), they develop exact and heuristics algorithms for problem IPTSD with order

dependent inventory holding costs for the case when the planning horizon is fixed. The major

differences between our research on problem IPTSDI and these two closely related studies
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are: i) we develop a pseudo-polynomial time exact algorithm for the case when the number

of possible order quantities are fixed; ii) we also develop a pseudo-polynomial time exact

algorithm for the case when the planning horizon is fixed; iii) based on the second exact

algorithm, we propose a pseudo-polynomial time approximation scheme which guarantees a

worst-case performance ratio of (1 + ε) with ε > 0.

The third study that is closely related to our research on problem IPTSDI is from Chap-

ter 2 of this thesis which focuses on problem IPTSDA. Although both studies develop exact

and approximation algorithms for the variants of problem IPTSD, the research on problem

IPTSDI has some obvious differences from that of problem IPTSDA. The objective function

of problem IPTSDI is to minimize the total shipping costs and inventory holding costs while

that of problem IPTSDA is to minimize the total shipping costs and rejection costs. The

consideration from rejection cost to inventory holding costs changes the structure of the algo-

rithms and increases the complexity of the problem. In the study on problem IPTSDA, since

there is no inventory holding cost, the manufacturer can produce to its production capacity

each day so as to ship the products as early as possible. This can decrease the shipping cost

due to a longer shipping time. This idea provides the basis for the development of the exact

algorithms and approximation scheme in the study problem IPTSDA. However, this idea

is inapplicable to problem IPTSDI due to the existence of possible inventory holding costs.

The manufacturer needs to balance the trade-off between the inventory holding costs and

shipping costs. We innovatively propose a backward-forward algorithm that can construct

an optimal solution by aggregating the production quantities of all orders in a day into a

daily production quantity given a shipping plan. The exact algorithms and approximation

scheme for problem IPTSDI are based on the backward-forward algorithm. Moreover, for

the case when the number of possible order quantities is fixed, different from the algorithm

of problem IPTSDA, we utilize the idea similar to the zero-inventory policy that constructs

a solution from several production subsequences, where each production subsequence has no

inventory at the end of its production completion day.
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1.3 Summary of Contributions

In this thesis, we mainly contribute to develop new polynomial time and pseudo-polynomial

time exact algorithms under the case where the number possible of order quantities is

bounded by a constant and the case where the planning horizon is bounded by a constant for

the two variants of problem IPTSD by considering order acceptance and inventory holding

cost, respectively. We also propose pseudo-polynomial time approximation algorithms with

constant worse case performance ratios for these two variants of problem IPTSD.

The first problem we considered in this thesis is problem IPTSDA. Except for a produc-

tion plan and a shipping plan, the manufacturer also needs to determine an order acceptance

plan. It means that when receiving the orders, the manufacturing company needs to decide

which orders are to be accepted and which are to be rejected with certain rejection costs

incurred by orders being rejected. Therefore, the manufacturer should balance the trade-

off between the revenue earned by an order with its associated costs (production cost and

shipping cost) and the penalty of directly rejecting it. For this problem, we develop two

new exact algorithms that are capable to yield optimal solutions to the problem IPTSDA.

We also prove that they can achieve polynomial or pseudo-polynomial running times for two

practical cases of problem IPTSDA, respectively. In addition to the two exact algorithms,

and by extending the second exact algorithm, we also develop a pseudo-polynomial time

approximation scheme for the problem IPTSDA. It not only ensures a worst-case perfor-

mance ratio of (1+ ε) for any fixed ε > 0, but also achieves good computational performance

through the computational experiments.

The second problem we considered is problem IPTSDI. The incorporation of inventory

holding costs into the objective function makes the problem more complex. The algorithms

proposed for problem IPTSD and its related problem that does not consider inventory holding

cost are not applicable to problem IPTSDI. To reduce possible inventory holding costs, the

manufacturer wants to postpone the production as late as possible. However, this would lead
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to an increase in the shipping costs due to the decrease in transportation time. Therefore,

the manufacturer needs to determine a production plan and a shipping plan that could

delicately balance the shipping costs and inventory holding costs. For this problem, we

innovatively propose a backward-forward construction algorithm. Based on the backward-

forward algorithm, and utilizing our algorithms for problem IPTSDA in the first study,

we develop new exact algorithms with pseudo-polynomial running times for two practical

cases of problem IPTSDI. The backward-forward algorithm also helps to develop the new

approximation algorithms that can guarantee a worst-case performance ratio of (1 + ε) for

any fixed ε > 0.

The remainder of this thesis proceeds as follows: Chapter 2 and Chapter 3 will sepa-

rately examine problem IPTSDA and problem IPTSDI as well as their associated solution

algorithms. And Chapter 4 concludes this thesis and discusses possible research directions

arising from these problems.



Chapter 2

Integrated Production and Transporta-

tion Scheduling with Committed De-

livery Due Dates and Order Acceptance

2.1 Introduction

We investigate an integrated production and transportation scheduling (IPTS) problem com-

monly faced by manufacturing companies under a make-to-order business strategy and a

commit-to-delivery business mode. Under the make-to-order business strategy, the manu-

facturing company starts to produce products only after receiving orders from customers.

Under the commit-to-delivery business mode, the manufacturing company is responsible for

shipping costs, and needs to guarantee a committed delivery due date for each order, mean-

ing that the customer of the order must receive the products on or before this date. To

ship the products to customers, the manufacturing company often uses third-party logistics

(3PL) providers, which usually offer multiple shipping modes with different shipping time

guarantees and different shipping costs. In general, the faster the shipping mode, the higher

the shipping cost. When the manufacturing company cannot satisfy all the orders received,

it needs to decide which orders are to be accepted and which are to be rejected, with certain

rejection costs incurred by orders being rejected. Accordingly, the manufacturing company

encounters an IPTS problem with committed delivery due dates and order acceptance (re-

10
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ferred to as problem IPTSDA). The problem needs to first accept a subset of orders, and

then determine a production plan and a shipping plan for the accepted orders that meet their

committed delivery due dates. The objective of the problem is to minimize the total cost,

including the operating cost of each accepted order and the rejection cost of each rejected

order.

This chapter contributes to the development and analysis of new exact and approximation

algorithms for problem IPTSDA. In particular, we develop two new exact algorithms that

can solve problem IPTSDA to optimality, and we prove that they achieve polynomial or

pseudo-polynomial running times for two practical cases of problem IPTSDA, respectively.

These two cases impose different restrictions on two problem parameters, namely, the total

number of possible order quantities η and the length of planning horizon m. In practice,

m and η are often bounded by certain constants. For example, when a manufacturer offers

only a limited number of order quantities for customers to choose from, such as either 10

or 20 units of their products, an upper bound on η is imposed. In Dell Technologies, a

global computer manufacturer, most of its individual customer orders require only one or

two computers (Stecke and Zhao (2007)), and as a result, η is often bounded by 2. Moreover,

when a manufacturer has a short planning horizon for production and transportation, such

as a planning horizon of two or three days, an upper bound on m is imposed. In BESTORE,

a leading snack manufacturer in China, orders for snack gift boxes placed by individual

customers must be delivered within one to two days, and the planning horizon for production

and transportation is set to be three days. In this situation, m is bounded by 3.

Accordingly, for the case where η is bounded by a constant, we develop an exact algorithm

that runs in polynomial time if the total number of orders is polynomially bounded by the

input size of the problem, and which runs in pseudo-polynomial time otherwise. Utilizing

this, we show that when orders are allowed to be split, problem IPTSDA can be solved

in pseudo-polynomial time. For the case where m is bounded by a constant, we develop

an exact algorithm that runs in pseudo-polynomial time. The efficiency of these two exact
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algorithms in computational experiments has also been examined.

In addition to the two exact algorithms, and by extending the second exact algorithm, we

also develop a pseudo-polynomial time approximation scheme for problem IPTSDA, which

ensures a worst-case performance ratio of (1 + ε) for any fixed ε > 0. As problem IPTSDA

is unlikely to have an FPTAS unless NP=P, one may expect to develop a polynomial time

approximation scheme (PTAS) at best. For this, our pseudo-polynomial time approximation

scheme makes positive progress. Moreover, computational results show that this approxima-

tion scheme also performs well in producing close-to-optimal solutions for problem instances

that are randomly generated.

Although our new exact and approximation algorithms are developed for problem IPTSDA,

they can also be applied to more general problems, such as those with shipping cost func-

tions that are linearly non-decreasing in shipping quantity and convexly non-increasing in

shipping time. The analytical results derived for our algorithms can accordingly also be

extended. Moreover, our newly developed algorithms and their performance guarantees are

also applicable to problem IPTSD, which is a special case of problem IPTSDA.

The remainder of this chapter is organized as follows: We describe the problem in Section

2.2, and analyze its optimality properties in Section 2.3. We then depict the two exact

algorithms in Section 2.4 and the pseudo-polynomial time approximation scheme in Section

2.5. Our computational results are presented in Section 2.6, and the chapter is summarized

in Section 2.7.

2.2 Problem Description and Formulation

Problem IPTSDA, studied in this chapter, extends the setting of problem IPTSD in Zhong

et al. (2010) by incorporating order acceptance decisions. Let us consider a planning horizon

of m days, denoted by T = {1, 2, . . . ,m}. At the beginning of the planning horizon, a

manufacturer receives a set of n orders, denoted by N = {1, 2, . . . , n}. Each order i requires
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a quantity of qi units of certain products and has a committed delivery due date di ∈ T with

di ≥ 1. After the orders are received, the manufacturer needs to determine which orders are

to be accepted and which are to be rejected. More specifically, if the manufacturer rejects

order i ∈ N , the products for order i do not need to be produced or shipped, but a rejection

cost ri is incurred. For those orders that are accepted, they need to be produced on a single

production line and then delivered to their respective customers. Accordingly, if order i is

accepted, its products must be received by its customer on or before day di. Let c denote

the production capacity of each day so that the total quantity of the products produced on

each day cannot exceed c. We herein follow the setting of problem IPTSD in Zhong et al.

(2010) to assume that all the products have the same unit weight and the same production

capacity requirement, and that each order quantity does not exceed the production capacity

(i.e., qi ≤ c for i ∈ N). These assumptions are consistent with common situations, such

as those in the computer industry. Let p denote the unit production cost. Without loss

of generality, we assume that ri > pqi for i ∈ N , that is, for each order its rejection cost

is always larger than its production cost, because otherwise such an order can be rejected

without increasing the total cost.

Consider that the manufacturer uses a 3PL provider for transportation who picks up

the finished products and ships them out at the end of each day. In this chapter, we also

assume that these 3PL providers do not offer partial delivery services. That is, products of

each order must be shipped out together on the same day after they complete production.

The 3PL provider offers multiple shipping modes, with different shipping times and different

shipping costs. Each shipping mode is associated with a shipping time of s days, where

s ∈ {0, 1, . . . ,m − 1}, as well as a shipping cost function G(s, y), where y is the shipping

quantity. We refer to the shipping mode with shipping time s as the s-day shipping mode.

In line with the setting of problem IPTSD in Zhong et al. (2010), we consider a shipping
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cost function G(s, y), which is linearly increasing with y and linearly decreasing with s:

G(s, y) = y(α− βs), (2.1)

where parameters α and β are positive. To ensure that the shipping cost is always positive,

even for the slowest shipping mode, that is, the (m− 1)-day shipping mode, α and β satisfy

that

α− β(m− 1) > 0. (2.2)

The shipping cost function G(s, y) applies to all orders, regardless of the customer loca-

tions, due to common practice in domestic shipping (see Stecke and Zhao (2007) for some

examples). For more general shipping cost functions that are linearly non-decreasing in y

and convexly non-increasing in s, we will show that the algorithms we present later are also

applicable, and that the analytical results derived for them can also be extended.

Accordingly, a solution to problem IPTSDA, which needs to be decided by the manu-

facturer, includes (i) an order acceptance plan about which orders to be accepted; (ii) a

production plan about the quantity of products for each accepted order that must be pro-

duced on each day; and (iii) a shipping plan about when to ship out the products for delivery

for each accepted order. Since the shipping cost function G(s, y) is decreasing in shipping

time s, it is always cost-efficient for the manufacturer to choose the slowest shipping mode

for each order whereby the customer receives the products exactly on the committed deliv-

ery due date. A solution is feasible if it satisfies that the customer of each accepted order

receives the products ordered on or before the order’s committed delivery due date, and that

the production capacity of each day cannot be exceeded. A trivial feasible solution is to

reject all the orders.

Problem IPTSDA aims to find an optimal solution that is feasible and minimizes the total

cost. The total cost includes the operating cost for each accepted order and the rejection cost
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of each rejected order. Although the operating cost includes the production cost, inventory

holding cost, and shipping cost, we follow the setting of problem IPTSD in Zhong et al.

(2010) to assume zero inventory holding cost, because due to the make-to-order strategy,

orders are delivered soon after completion of their production, and inventory holding costs

are thus negligible. Moreover, we can transform each problem instance to an instance with

zero production cost such that the optimal solution is unchanged. To see this, let decision

variables λi for i ∈ N represent the acceptance plan of a solution, with each λi ∈ {0, 1}

indicating whether or not order i is accepted, and being equal to 1 only if order i is accepted.

The total cost of production and rejection for a feasible solution equals
∑

i∈N(1− λi) · ri +

p
∑

i∈N λiqi =
∑

i∈N(1 − λi)(ri − pqi) + p
∑

i∈N qi. Since p
∑

i∈N qi is a constant, we can

exclude it in the total cost without changing the optimal solution. We now modify the

rejection cost for order i ∈ N to be r′i = ri − pqi, which implies that the total cost of

production and rejection for a feasible solution is
∑

i∈N(1− λi) · r′i. Therefore, we obtain a

new problem instance with zero production cost and with r′i for i ∈ N as the rejection costs,

such that the optimal solution is unchanged. Hence, we can assume zero production cost for

problem IPTSDA in the remainder of this chapter.

In addition to decision variables λi for i ∈ N defined above for the order acceptance

plan, other decision variables are introduced as follows. Let decision variables xit for i ∈ N

and t ∈ T represent the production plan of a solution, with each xit ∈ Z+ indicating the

number of units of the products produced for order i on day t, where Z+ denotes the set of

non-negative integers. Let decision variables zit represent the shipping plan of a solution,

with each zit ∈ {0, 1} indicating whether or not the products for order i are shipped out

on day t. If zit = 1, that is, the products for order i are shipped out on day t, then

since the slowest shipping mode must be chosen, by (2.1) the shipping cost for order i is

G(di − t, qi) = qi[α− β(di − t)].

Table 2.1 summarizes the notations introduced above. We can now formulate prob-

lem IPTSDA by the following integer linear programming model ILP.
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Table 2.1: Basic notation for problem IPTSDA.

m Number of days in the planning horizon

T = {1, 2, . . . ,m} Set of m days in the planning horizon

n Number of orders

N = {1, 2, . . . , n} Set of n orders

c Production capacity of each day

qi Quantity of the products for order i

ri Rejection cost for rejecting order i

di ∈ {1, 2, · · · ,m} Committed delivery due date for order i

G(s, y) = y(α− βs) Shipping cost function with shipping time of s days and shipping quantity y

λi ∈ {0, 1} 1, if order i is accepted, and 0, if order i is rejected

xit ∈ Z+ Production quantity for order i on day t

zit ∈ {0, 1} 1, if the products for order i are shipped out on day t, and 0, otherwise

(ILP) min
∑
i∈N

∑
t∈T

G(di − t, qi) · zit +
∑
i∈N

(1− λi)ri (2.3)

s.t.
∑
i∈N

xit ≤ c, for t ∈ T , (2.4)∑
t∈T

xit = qiλi, for i ∈ N, (2.5)

m∑
t=1

zit = λi, for i ∈ N, (2.6)

m∑
t=di+1

zit = 0, for i ∈ N, (2.7)

t∑
t′=1

qizit′ ≤
t∑

t′=1

xit′ , for i ∈ N, t ∈ T , (2.8)

λi ∈ {0, 1}, for i ∈ N , (2.9)

xit ∈ Z+, zit ∈ {0, 1}, for i ∈ N , t ∈ T . (2.10)

In model ILP, the objective function (2.3) is to minimize the total shipping and rejection
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cost. Constraint (2.4) ensures that the daily production quantity does not outreach the

production capacity c. Constraint (2.5) ensures that all the required units of the products

are produced for each accepted order. Constraints (2.6) and (2.7) ensure that the products

for each accepted order are shipped out and can be received by the customer on or before

the committed delivery date. Constraint (2.8) ensures that the products for each order are

shipped out only after production is finished. Constraints (2.9) and (2.10) are integral and

binary constraints on decision variables λi, xit, and zit.

We use (λ,x, z) to represent a solution to model ILP, where λ represents the vector of

variables λi for i ∈ N , x represents the vector of variables xit for i ∈ N and t ∈ T , and z

represents the vector of variables zit for i ∈ N and t ∈ T .

2.3 Optimality Properties

In this section, we derive several properties such that there always exists an optimal solution

to model ILP of problem IPTSDA that satisfies these properties. We will later utilize these

properties in our algorithm development. Consider a sequence σ = (σ1, σ2, · · · , σ|σ|) of some

orders in N , where |σ| is the length of the sequence, satisfying 0 ≤ |σ| ≤ n, and where each

σj ∈ N indicates the j-th order of σ. For each j, let Q̄j =
∑j

j′=1 qσj′ indicate the total

product quantity of the first j orders of sequence σ. Let tj = dQ̄j/ce indicate the minimum

number of days required to produce products for these first j orders. Define Q̄0 = 0 and

t0 = 0. Since qσj ≤ c, we have Q̄j−1 ≤ Q̄j ≤ Q̄j−1 + c and tj−1 ≤ tj ≤ tj−1 + 1. From σ, we

can construct a solution (λ,x, z) to model ILP by the following procedure:

Step 1. For each j = 1, 2, · · · , |σ|, follow the steps below to determine λσj as well as

xσj ,t and zσj ,t for t ∈ T :

Step 1.1. Accept order σj, i.e., set λσj = 1;
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Step 1.2. No products are produced for order σj before day tj−1 or after day tj, i.e., set

xσj ,t = 0 for t ∈ {1, 2, · · · , tj−1− 1, tj + 1, · · · ,m}, noting that tj−1 ≤ tj ≤ tj−1 + 1 as shown

above;

Step 1.3. Produce as many products as possible for order σj on day tj−1 if there is any

production capacity left for the first tj−1 days, i.e., set xσj ,tj−1
= min{qσj , (tj−1 · c)− Q̄j−1};

Step 1.4. If there are remaining products that have not been produced for order σj, i.e.,

qσj − xσj ,tj−1
> 0, implying that tj = tj−1 + 1 (due to Q̄j = Q̄j−1 + qσj > Q̄j−1 + xσj ,tj−1

=

Q̄j−1 + tj−1 · c − Q̄j−1 = tj−1 · c), then produce all the remaining products for order σj on

day tj, i.e., set xσj ,tj = qσj − xσj ,tj−1
;

Step 1.5. Ship out products for order σj on day tj, i.e., set zσj ,tj = 1 and zσj ,t = 0 for

t = {1, 2, · · · , tj − 1, tj + 1, · · · ,m}.

Step 2. For each j ∈ N \ {σ1, . . . , σ|σ|}, set λj = 0 and xjt = zjt = 0 for t ∈ {1, . . . ,m}.

Let (λ(σ),x(σ), z(σ)) indicate the solution constructed above from the sequence σ. Con-

sider the example shown in Figure 2.1 where the order sequence σ = (4, 2, 6, 1, 3) is selected

from N = {1, 2, · · · , 6}, and where the production capacity of each day c = 7. Accordingly,

t1 = dq4/ce = d4/7e = 1, t2 = d(q4 + q2)/ce = d(4 + 6)/7e = 2, t3 = d(q4 + q2 + q6)/ce =

d(4 + 6 + 5)/7e = 3, t4 = d(q4 + q2 + q6 + q1)/ce = d(4 + 6 + 5 + 3)/7e = 3, and

t5 = d(q4 + q2 + q6 + q1 + q3)/ce = d(4 + 6 + 5 + 3 + 6)/7e = 4. From the construction

procedure above, we obtain a solution (λ(σ),x(σ), z(σ)), where order 5 is rejected and the

other five orders are accepted. Among the five accepted orders, order 4 has four units pro-

duced and shipped out on day 1, order 2 has three units produced on day 1, three units

produced on day 2, and six units shipped out on day 2, order 6 has four units produced on

day 2, one unit produced on day 3, and five units produced on day 3, order 1 has three units

produced and shipped out on day 3, and order 3 has three units produced on day 3, three

units produced on day 4, and six units shipped out on day 4. For each of these five accepted

orders, its production completion day is the same as its shipped-out day, which is shown by
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the right side of each order’s rectangle in Figure 2.1.

Figure 2.1: An example for the construction of a solution (λ(σ),x(σ), z(σ)) from an order
sequence σ.

Day 1 Day 2 Day 3 Day 4

(4) (2)

4

σ

(λ(σ),x(σ), z(σ)) 56 3 6

(6) (1) (3)

The order sequence σ = (4, 2, 6, 1, 3) is indicated by a sequence of order indices in brackets selected
from N = {1, 2, · · · , 6}, the five orders in σ are indicated by rectangles with order quantities shown
inside and represented by the widths of the rectangles, a planning horizon of 4 days is indicated
by four consecutive segments on an arrow line, and the production capacity of each day c = 7 is
represented by the width of each segment.

From the construction procedure above, we can establish Lemma 2.1 below for solution

(λ(σ),x(σ), z(σ)) constructed from any order sequence σ. Let A(σ) = {σ1, . . . , σ|σ|} indicate

the set of the accepted orders in solution (λ(σ),x(σ), z(σ)).

Lemma 2.1. For any order sequence σ, solution (λ(σ),x(σ), z(σ)) satisfies that (i) there

is no production after day d∑i∈A(σ) qi/ce, (ii) the total production quantity of each day t ∈

{1, 2, · · · , d∑i∈A(σ) qi/ce−1} equals c, and (iii) the total production quantity of day d∑i∈A(σ) qi/ce

is less than or equal to c.

Proof. To simplify the notation in this proof, we use (λ,x, z) to denote (λ(σ),x(σ), z(σ))

and use A to denote A(σ). As we defined earlier, tj = dQ̄j/ce for each j ∈ {1, 2, · · · , |σ|}.

From Step 1.2 we know that there is no production after day t|σ| = d∑i∈A qi/ce, and thus

(i) of Lemma 2.1 is proved. We now prove (ii) by contradiction. Suppose that there exists

t′′ ∈ {1, 2, · · · , t|σ| − 1} such that the total production quantity of day t′′ is not equal to

c. Without loss of generality, we assume that the total production quantity of day t′ with

t′ ≤ t′′−1 is equal to c. Since qσ1 ≤ c we have t1 = 1, which, together with tj−1 ≤ tj ≤ tj−1+1

for each j, implies that {tj|1 ≤ j ≤ |σ|} = {1, 2, · · · , t|σ|}. From (i) and due to the production

capacity c, we know that the total production quantity of day t′ ∈ {1, 2, . . . , t|σ|} is larger

than 0. Thus, there exists an index j ∈ {1, 2, · · · , |σ|} such that tj = t′′ + 1 and tj−1 = t′′.
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Consider the moment right after the construction of (λ,x, z) determines xσj ,t and zσj ,t for

t ∈ T . At this moment, due to Step 1.3 of the construction, the total production quantity

of the first tj−1 = t′′ days should not exceed tj−1 · c. Since the total production quantity of

day t′ for each t′ ≤ tj−1 − 1 is equal to c, the total production quantity of day tj−1 cannot

exceed c, and thus it must be less than c. This implies that the total production quantity of

the first tj−1 days must be less than tj−1 ·c, i.e., Q̄j−1 +xσj ,tj−1
< tj−1 ·c. Thus, from Step 1.3

and Step 1.4 of the construction we know that xσj ,tj−1
= qσj , implying that all the products

for order σj must be produced on day tj−1. Therefore, all the products for the first j orders

of σ are produced before or on tj−1, which is earlier than tj, leading to a contradiction with

the definition of tj. Hence, (ii) of Lemma 2.1 is proved. From (i) and (ii) of Lemma 2.1 we

can then obtain that the total production quantity of day t|σ| equals
∑

i∈A qi − (t|σ| − 1) · c,

which is less than or equal to t|σ| · c − (t|σ| − 1) · c = c. Hence, (iii) of Lemma 2.1 is also

proved.

Based on Lemma 2.1, we can show in Lemma 2.2 below that solution (λ(σ),x(σ), z(σ))

ensures satisfying all the constraints of model ILP except constraint (2.7).

Lemma 2.2. For any order sequence σ, solution (λ(σ),x(σ), z(σ)) satisfies constraints (2.4),

(2.5), (2.6), (2.8), (2.9), and (2.10) of model ILP.

Proof. To simplify the notation in this proof, we use (λ,x, z) to denote (λ(σ),x(σ), z(σ))

and use A to denote A(σ). By Lemma 2.1, the total production quantity of each day does

not exceed c, and thus constraint (2.4) of model ILP is satisfied. From Steps 1.2–1.4 of the

above construction of (λ,x, z), we can see that for each j ∈ {1, 2, · · · , |σ|}, ∑t∈T xσj ,t =

xσj ,tj−1
+ qσj −xσj ,tj−1

= qσj , and from Step 2 of the above construction, we can also see that

for each j ∈ N \A, λj = 0 and
∑

t∈T xjt = 0. These imply that constraint (2.5) of model ILP

is satisfied.

From Step 1.5 of the construction, we know that for each j ∈ A, zσj ,t = 1 if and only if

t = tj. Since the daily production capacity is limited by c, which implies that tj = dQ̄j/ce ≤
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d∑i∈A qi/ce ≤ m for j ∈ A, we have that
∑

t∈T zσj ,t = 1 for each j ∈ A. From Step 2 of the

construction, we know that
∑

t∈T zjt = 0 for j ∈ N \A. Thus, we obtain that constraint (2.6)

of model ILP is satisfied. Moreover, from Step 1.3 and Step 1.4 of the construction, we know

that in (λ,x, z), products for each accepted order are shipped out on the same day as their

production is completed. Thus, constraint (2.8) of model ILP is satisfied.

From the construction, we can also see that xit for i ∈ N and t ∈ T are all integers.

For each j ∈ {1, 2, · · · , |σ|}, since (tj−1 · c) − Q̄j−1 = dQ̄j−1/ce · c − Q̄j−1 ≥ 0, by Step 1.3

of the construction we have that xσj ,tj−1
≥ 0. By Step 1.4 of the construction, we have

that xσj ,tj ≥ 0. Since we have shown earlier that tj−1 ≤ tj ≤ tj−1 + 1, by Step 1.2 of the

construction we also have that xσj ,t = 0 for all t ∈ {1, · · · ,m} \ {tj−1, tj}. From Step 2, we

have that xjt = 0 for each j ∈ N \A and t ∈ T . Thus, we obtain that xit ∈ Z+ for i ∈ N and

t ∈ T . Moreover, from Step 1.5 and Step 2 of the construction, we have that zσi,t ∈ {0, 1}

for i ∈ {1, 2, · · · , |σ|} and t ∈ T , and zit = 0 for i ∈ N \ {σ1, . . . , σ|σ|} and t ∈ T , implying

that constraint (2.10) of model ILP is satisfied. From Step 1.1 and Step 2, we have that

λi ∈ {0, 1} for i ∈ N , implying that constraint (2.9) of model ILP is also satisfied. This

completes the proof of Lemma 2.2.

Although (λ(σ),x(σ), z(σ)) may not always be a feasible solution to model ILP, we can

show that there always exists an order sequence σ such that (λ(σ),x(σ), z(σ)) forms an

optimal solution to model ILP. To show this, we observe that for any order acceptance plan

λ and any shipping plan z, one can obtain a sequence σ = (σ1, σ2, · · · , σ|σ|) of orders accepted

in λ in a non-decreasing order of their shipped-out days under z, breaking ties arbitrarily.

We refer to such an order sequence as an accepted order sequence with respect to λ and

z, which may not be unique, since products for different orders may be shipped out on the

same day. We can now establish Theorem 2.1 below.

Theorem 2.1. Consider any optimal solution (λ∗,x∗, z∗) to model ILP. Consider any ac-

cepted order sequence σ∗ with respect to λ∗ and z∗. Then, (λ(σ∗),x(σ∗), z(σ∗)) also forms

an optimal solution to model ILP.
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Proof. To simplify the notation in this proof, we use (λ,x, z) to denote (λ(σ∗),x(σ∗), z(σ∗)).

By Lemma 2.2, solution (λ,x, z) satisfies constraints (2.4), (2.5), (2.6) (2.8), (2.9), and (2.10)

of model ILP. Consider the optimal solution (λ∗,x∗, z∗) to model ILP, in which we know

that products for order σ∗j are not shipped out before any products for orders σ∗j′ with

j′ ∈ {1, 2, · · · , j − 1}. Thus, in (λ∗,x∗, z∗), products for order σ∗j are not shipped out before

the products for the first j orders of σ∗ have all been produced. Thus, products for order σ∗j

must be shipped out on or after day tj, implying that tj ≤ dσ∗j . From Step 1.4 and Step 1.5

of the construction, we know that in (λ,x, z), products for order σ∗j , j ∈ {1, . . . , σ∗|σ∗|}, are

shipped out on the same day as their production is completed. Thus, constraint (2.7) of

model ILP is satisfied.

Hence, (λ,x, z) is a feasible solution to model ILP. As shown above, for each j ∈

{1, 2, · · · , |σ|}, products for order σ∗j are shipped out on or after day tj in the optimal

solution (λ∗,x∗, z∗), whereas they are shipped out on day tj in the constructed solution

(λ,x, z). Thus, since the shipping cost function G(di − t, qi) is non-decreasing in t, the to-

tal shipping cost of (λ,x, z) cannot exceed that of (λ∗,x∗, z∗). From Step 1.1 and Step 2,

it can be seen that the order acceptance plans of the optimal solution (λ∗,x∗, z∗) and the

constructed solution (λ,x, z) are the same, i.e., λ(σ∗) = λ∗, which means the rejection costs

of the two solutions are the same. Hence, (λ,x, z) is also an optimal solution to model ILP.

Theorem 2.1 is proved.

Based on Theorem 2.1, we can further establish Theorem 2.2 below, which indicates that

there always exists an order sequence σ such that not only (λ(σ),x(σ), z(σ)) is an optimal

solution to model ILP, but also that orders of the same quantity in σ are sorted in a non-

decreasing order of their committed delivery due dates, breaking ties by preferring orders

with smaller indices.

Theorem 2.2. There exists an order sequence σ such that (i) (λ(σ),x(σ), z(σ)) is an optimal

solution to model ILP, and that (ii) dσj < dσh or (dσj = dσh and σj < σh), for each j and h

with 1 ≤ j < h ≤ |σ| and qσj = qσh.
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Proof. By Theorem 2.1, there exists an order sequence σ∗ such that (λ(σ∗),x(σ∗), z(σ∗))

is an optimal solution to model ILP, which satisfies condition (i) specified in Theorem 2.2.

Let (λ∗,x∗, z∗) indicate (λ(σ∗),x(σ∗), z(σ∗)). If σ∗ does not satisfy condition (ii) specified

in Theorem 2.2, then there exist j and h in {1, 2, · · · , |σ∗|} with j < h and qσ∗j = qσ∗h = q

for some q such that dσ∗j > dσ∗h or (dσ∗j = dσ∗h and σ∗j > σ∗h). In this situation, we can swap

positions of σ∗j and σ∗h in σ∗ to obtain a new order sequence σ, so that condition (ii) specified

in Theorem 2.2 is satisfied for j and h. Moreover, we can also swap values of x∗σ∗j ,t and x∗σ∗h,t

for t ∈ T , and swap values of z∗σ∗j ,t and z∗σ∗h,t for t ∈ T , to obtain a new solution (λ∗,x, z),

which, as shown below, is also an optimal solution to model ILP.

Let i = σ∗j and i′ = σ∗h. For each i′′ ∈ N , let τi′′ and τ ∗i′′ indicate the shipped-out days of or-

der i′′, under (λ∗,x, z) and (λ∗,x∗, z∗), respectively. Thus, we have that τi′ = τ ∗i and τi = τ ∗i′ .

According to the construction of the optimal solution (λ∗,x∗, z∗) = (λ(σ∗),x(σ∗), z(σ∗)),

since j < h, we know that τ ∗i ≤ τ ∗i′ . These, together with τ ∗i ≤ di, di′ ≤ di, and τ ∗i′ ≤ di′ ,

imply that τi = τ ∗i′ ≤ di′ ≤ di, and that τi′ = τ ∗i ≤ τ ∗i′ ≤ di′ . Thus, (λ∗,x, z) satisfies

constraints (2.6) and (2.7) of model ILP. From qi = qi′ we know that (λ∗,x, z) satisfies con-

straints (2.4), (2.5), (2.8), (2.9), and (2.10) of model ILP. Since λ∗ satisfies constraint (2.9),

we obtain that (λ∗,x, z) is a feasible solution to model ILP. By (2.11) below, we can also see

that the shipping costs of order i and order i′ are the same under (λ∗,x, z) and (λ∗,x∗, z∗):

G(di − τi, q) +G(di′ − τi′ , q) = q(α− β(di − τi)) + q(α− β(di′ − τi′))

= q(α− β(di − τi′)) + q(α− β(di′ − τi)) = q(α− β(di − τ ∗i )) + q(α− β(di′ − τ ∗i′))

= G(di − τ ∗i , q) +G(di′ − τ ∗i′ , q). (2.11)

Thus, owing to the same acceptance plans of the two solutions, the total shipping and

rejection cost of (λ∗,x, z) equals that of the optimal solution (λ∗,x∗, z∗). Therefore, (λ∗,x, z)

is also an optimal solution to model ILP. Noting that the order sequence σ can be obtained

from σ∗ by only swapping the positions of i and i′, we can see that (λ∗,x, z) is equal to
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(λ(σ),x(σ), z(σ)).

Hence, by replacing σ∗ with σ and repeating the process above iteratively, we can obtain

an order sequence σ that satisfies both conditions (i) and (ii) specified in Theorem 2.2. This

completes the proof of Theorem 2.2.

It can be seen that, except for the argument of (2.11), our proofs of Lemma 2.1, Lemma 2.2,

Theorem 2.1, and Theorem 2.2 above do not rely on the linearity of the cost function G(s, y)

in shipping time s. Thus, Lemma 2.1, Lemma 2.2, and Theorem 2.1 are still valid for a more

general problem where G(s, y) is linearly non-decreasing in y and convexly non-increasing in

s. To see that Theorem 2.2 is also valid for this more general problem, we only need to prove

that (2.11) is still valid. Specifically, consider the two orders i and i′ and their shipped-out

days τ ∗i , τ ∗i′ , τi, and τi′ under solutions (λ∗,x∗, z∗) and (λ∗,x, z), which are defined in the

proof of Theorem 2.2, and are shown to satisfy that di ≥ di′ and τ ∗i ≤ τ ∗i′ . Since G(s, y) is

convex in s, we have that

di − di′
di − di′ + τ ∗i′ − τ ∗i

G(di′ − τ ∗i′ , q) +
τ ∗i′ − τ ∗i

di − di′ + τ ∗i′ − τ ∗i
G(di − τ ∗i , q) ≥ G(di′ − τ ∗i , q) and

τ ∗i′ − τ ∗i
di − di′ + τ ∗i′ − τ ∗i

G(di′ − τ ∗i′ , q) +
di − di′

di − di′ + τ ∗i′ − τ ∗i
G(di − τ ∗i , q) ≥ G(di − τ ∗i′ , q)

implying that G(di′ − τi′ , q) +G(di − τi, q) = G(di′ − τ ∗i , q) +G(di − τ ∗i′ , q) ≤ G(di′ − τ ∗i′ , q) +

G(di − τ ∗i , q). Since (λ∗,x∗, z∗) is an optimal solution, the total shipping cost of the two

orders i and i′ under (λ∗,x, z) cannot be less than that under (λ∗,x∗, z∗), implying that

G(di′− τi′ , q) +G(di− τi, q) ≥ G(di′− τ ∗i′ , q) +G(di− τ ∗i , q). Thus, (2.11) is still valid. Hence,

Theorem 2.2 is still valid.

2.4 Two Exact Algorithms

In this section, we present two exact algorithms that solve problem IPTSDA to optimality.

They run in polynomial or pseudo-polynomial times for the two practical cases mentioned
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earlier in Section 2.1, respectively, where the total number of possible order quantities is

bounded by a constant, and where the length of the planning horizon is bounded by a

constant.

2.4.1 Exact Algorithm 1

Let E = {qi | i ∈ N} denote the set of all possible order quantities. We denote elements

in E by e1, e2, . . . , eη, where η = |E| indicates the total number of possible order quantities.

For example, consider a manufacturer who restricts customers to order only ten or twenty

units of the products, which implies that E = {10, 20} and η = 2. For each k ∈ {1, 2, . . . , η},

let Nk = {i | qi = ek, i ∈ N} be the set of orders with order quantities equal to ek, and

let nk = |Nk|. We have N1 ∪ N2 ∪ . . . ∪ Nη = N and n1 + n2 + . . . + nη = n, and thus

N1, N2, . . . , Nη form a partition of N .

Our development of the first exact algorithm for problem IPTSDA relies on the properties

described in Theorem 2.2 for the optimal solutions to model ILP. The algorithm is based on

a dynamic program described as follows. For each k ∈ {1, 2, . . . , η}, we denote the indices of

the orders in Nk by i(k, 1), i(k, 2), . . . , i(k, nk), and without loss of generality, we assume that

orders in each Nk are indexed in a non-decreasing order so that di(k,1) ≤ di(k,2) ≤ . . . ≤ di(k,nk).

For each (p1, p2, · · · , pη) with pk ∈ {0, 1, · · · , nk} for k ∈ {1, 2, · · · , η}, we define

N(p1, p2, . . . , pη) = {i(k, r) | 1 ≤ r ≤ pk, 1 ≤ k ≤ η}

as the set of the first pk orders i(k, 1), i(k, 2), . . . , i(k, pk) of each Nk for k ∈ {1, 2, · · · , η}. We

define a value function F ((p1, p̂1), . . . , (pη, p̂η)) as the minimum total shipping and rejection

cost of a subproblem of problem IPTSDA defined for only orders in N(p1, . . . , pη), where the

number of rejected orders in {i(k, 1), i(k, 2), . . . , i(k, pk)} equals p̂k for k ∈ {1, . . . , η}. Let

F ((p1, p̂1), . . . , (pη, p̂η)) to be +∞ if the subproblem has no feasible solution. Accordingly,

the minimum total shipping and rejection cost of problem IPTSDA, which is defined for
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all orders in N , can be represented by min
{
F ((n1, p̂1), . . . , (nη, p̂η)) | 0 ≤ p̂k ≤ nk for k ∈

{1, 2, . . . , η}
}

.

The value function F ((p1, p̂1), . . . , (pη, p̂η)) can be computed recursively as follows. First,

since the subproblem of F ((0, 0), (0, 0), . . . , (0, 0)) is defined for an empty order set, its min-

imum total shipping and rejection cost is zero. Thus, we obtain the boundary condition of

the dynamic program that F ((0, 0), (0, 0), . . . , (0, 0)) = 0.

Next, for each (p1, p2, · · · , pη) with pk ∈ {0, 1, · · · , nk} for k ∈ {1, . . . , η} and with∑η
r=1 pr ≥ 1, and for each (p̂1, p̂2, . . . , p̂η) with p̂k ∈ {0, 1, . . . , pk} for k ∈ {1, . . . , η}, we

can apply Theorem 2.2 to the subproblem of F ((p1, p̂1), . . . , (pη, p̂η)). This implies that

there exists an order sequence σ of some orders in N(p1, p2, . . . , pη) such that the solu-

tion (λ(σ),x(σ), z(σ)) forms an optimal solution to the subproblem, and that for each

k ∈ {1, 2, · · · , η}, orders in Nk ∩ {σ1, σ2, · · · , σ|σ|}, which are of the same order quantity,

are sorted in σ in a non-decreasing order of their committed delivery due dates, breaking

ties by preferring orders with smaller indices. Consider the following two cases for such an

optimal solution (λ(σ),x(σ), z(σ)) to the subproblem of F ((p1, p̂1), . . . , (pη, p̂η)):

Case 1. (See Figure 2.2 for an illustrative example) All the orders in {i(1, p1), i(2, p2), . . . , i(η, pη)}

are accepted in (λ(σ),x(σ), z(σ)), and thus, they are all contained in σ. Hence, the

last order in σ must be order i(k∗, pk∗) for some k∗ ∈ {1, 2, · · · , η}. Let

τ ′ =

⌈
η∑
r=1

(pr − p̂r)er/c
⌉
,

which indicates the minimum number of days required to produce products for accepted

orders in N(p1, p2, . . . , pη). According to the construction of (λ(σ),x(σ), z(σ)), the last

order i(k∗, pk∗) in σ both has its product production completed and has its products

shipped out on day τ ′. Therefore, k∗ satisfies that pk∗ ≥ 1 and di(k∗,pk∗ ) ≥ τ ′. If such

k∗ does not exist, then Case 1 is not possible. Otherwise, the shipping cost for order

i(k∗, pk∗) equals G(di(k∗,pk∗ ) − τ ′, ek∗), and for other orders in N(p1, . . . , pk∗−1, pk∗ −



CHAPTER 2: PROBLEM IPTSDA 27

1, pk∗+1, . . . , pη) (which equals N(p1, . . . , pk∗−1, pk∗ , pk∗+1, . . . , pη) \ {i(k∗, pk∗)}), we

know that their acceptance, production and shipping plans in (λ(σ),x(σ), z(σ)) must

form an optimal solution to the subproblem of F ((p1, p̂1), . . . , (pk∗−1, p̂k∗−1), (pk∗ −

1, p̂k∗), (pk∗+1, p̂k∗+1), . . . , (pη, p̂η));

Case 2. There exists an order in {i(1, p1), i(2, p2), . . . , i(η, pη)} that is rejected in (λ(σ),x(σ), z(σ)),

and we denote such rejected order by i(k∗, pk∗) for some k∗ ∈ {1, 2, · · · , η}, and accord-

ingly, the rejection cost incurred equals ri(k∗,pk∗ ). For other orders inN(p1, . . . , pk∗−1, pk∗−

1, pk∗+1, . . . , pη) (which equalsN(p1, . . . , pk∗−1, pk∗ , pk∗+1, . . . , pη)\{i(k∗, pk∗)}), we know

that their acceptance, production and shipping plans in (λ(σ),x(σ), z(σ)) must form

an optimal solution to the subproblem of F ((p1, p̂1), . . . , (pk∗−1, p̂k∗−1), (pk∗ − 1, p̂k∗ −

1), (pk∗+1, p̂k∗+1), . . . , (pη, p̂η)).

Figure 2.2: An example for Case 1 of the illustration of (2.12) with η = 2 types of order
quantities (e1 = 4 and e2 = 6) and with c = 7.

Day 1 Day 2 Day 3 Day 4

i(1, 1)

4

i(2, 1) i(1, 3) i(2, 2)

6 4 6

F ((p1, p̂1) , (p2 − 1, p̂2)) F ((3, 1), (1, 0))

F ((p1, p̂1) , (p2, p̂2)) F ((3, 1), (2, 0))

G(di(2,2) − 3, 6)

σ

(λ(σ),x(σ), z(σ))

k∗ = 2
pk∗ = 2

τ ′ = 3
e2 = 6

For the subproblem of F ((3, 1), (2, 0)) for orders {i(1, 1), i(1, 2), i(1, 3), i(2, 1), i(2, 2)}, if the last
order of the optimal order sequence σ is i(2, 2), and is accepted in the optimal solution, then
F ((3, 1), (2, 0)) equals F ((3, 1), (1, 0)) plus G(di(2,2) − 3, 6) (since τ ′ = 3 and e2 = 6). Order i(1, 2)
is rejected in the optimal solution.

Accordingly, we can enumerate k∗ for the two cases above to compute F ((p1, p̂1), . . . , (pη, p̂η))

by the following recursive equation:
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F ((p1, p̂1), . . . , (pη, p̂η))

= min



min

 F ((p1, p̂1), . . . , (pk∗−1, p̂k∗−1), (pk∗ − 1, p̂k∗), (pk∗+1, p̂k∗+1), . . . , (pη, p̂η))+

G(di(k∗,pk∗ ) − τ ′, ek∗) | ∀k∗ ∈ {1, . . . , η} with pk∗ ≥ 1 and di(k∗,pk∗ ) ≥ τ ′

 ,

min

 F ((p1, p̂1), . . . , (pk∗−1, p̂k∗−1), (pk∗ − 1, p̂k∗ − 1), (pk∗+1, p̂k∗+1), . . . , (pη, p̂η))+

ri(k∗,pk∗ ) | ∀k∗ ∈ {1, . . . , η} with p̂k∗ ≥ 1.

 .


,
(2.12)

where we assume that taking minimum value over an empty set equals +∞.

Finally, we can enumerate all (p̂1, p̂2, . . . , p̂η) for p̂k ∈ {0, 1, . . . , nk} and k ∈ {1, 2, . . . , η}

to minimize F ((n1, p̂1), . . . , (nη, p̂η)), and then return the minimum value, which, as explained

earlier, is the minimum total shipping and rejection cost for problem IPTSDA.

We summarize the exact algorithm in Algorithm 2.1 below, and its correctness and time

complexity are presented in Theorem 2.3.

Algorithm 2.1 (for problem IPTSDA)

1: F ((0, 0), . . . , (0, 0))← 0 and for (p̂1, p̂2, . . . , p̂η) with p̂k ∈ {0, 1 . . . , nk} for k ∈ {1, . . . , η}

and with
∑η

r=1 p̂r ≥ 1, F ((0, p̂1), . . . , (0, p̂η))←∞

2: for all (p1, p2, . . . , pη) with pk ∈ {0, 1 . . . , nk} for k ∈ {1, . . . , η} and with
∑η

r=1 pr ≥ 1

do

3: for all (p̂1, p̂2, . . . , p̂η) with p̂k ∈ {0, 1, . . . , pk} for k ∈ {1, . . . , η} do

4: Compute F ((p1, p̂1), . . . , (pη, p̂η)) by the recursive equation in (2.12)

5: end for

6: end for

7: return the minimum value of F ((n1, p̂1), . . . , (nη, p̂η)) over all p̂k ∈ {0, 1, . . . , nk} for

k ∈ {1, . . . , η}.

Theorem 2.3. Algorithm 2.1 solves problem IPTSDA to optimality in O(η · (1 + n/η)2η)

time.
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Proof. As we have shown above, the value function F ((p1, p̂1), . . . , (pη, p̂η)) can be com-

puted recursively, and the value of min{F ((n1, p̂1), . . . , (nη, p̂η))|p̂k = 0, 1, . . . , nk for k ∈

{1, 2, . . . , η}} returned by Algorithm 2.1 equals the minimum total shipping and rejec-

tion cost for problem IPTSDA. Thus, Algorithm 2.1 solves problem IPTSDA to optimal-

ity. Moreover, the recursive equation (2.12) is computed in Algorithm 2.1 for at most

((1 + n1)(1 + n2) · · · (1 + nη))
2 times. Noting that n1 + n2 + . . . + nη = n, we have

((1 + n1)(1 + n2) · · · (1 + nη))
2 ≤ [

∑η
k=1(1 + nk)/η]2η = (1 + n/η)2η. Since it takes O(η)

time to compute the recursive equation (2.12), we obtain that the total time complexity of

Algorithm 2.1 is O(η · (1 + n/η)2η).

When the number of possible order quantities η is a fixed constant, Theorem 2.3 implies

that Algorithm 2.1 solves problem IPTSDA to optimality in O(n2η), which is polynomial time

if n is polynomially bounded by the input size. This is the case in the representation of the

problem instance introduced in Section 2.2, in which the input size is linear in n. However,

for problem IPTSDA, there is an alternative representation of the problem instance, in which

input parameters qi for i ∈ N and di ∈ N are replaced by nk,t for t ∈ T and k ∈ {1, 2, · · · , η},

where each nk,t indicates the number of orders with quantities equal to ek and committed

delivery due date equals to t. In such a representation, when η is a fixed constant, the

input size is in O(m), and since n can be exponential in m, the running time O(n2η) is

pseudo-polynomial time.

Theorem 2.3 can also be applied to solve a variant of problem IPTSDA where orders

are allowed to be split so that parts of an order can be accepted and shipped once they

are produced. We refer to this variant as problem IPTSDA-S. It can be seen that problem

IPTSDA-S is a relaxation of problem IPTSDA, as any feasible solution to problem IPTSDA

is also a feasible solution to problem IPTADA-S. Moreover, for any instance of problem

IPTSDA-S, one can transform it equivalently to an instance of problem IPTSDA with equal

order quantities, by splitting each order i of quantity qi to qi orders of unit quantity. Thus,

the resulting instance of problem IPTSDA has
∑

i∈N qi orders and has η = 1. This, together
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with Theorem 2.3, implies that problem IPTSDA-S can be solved to optimality in a pseudo-

polynomial running time of O((
∑

i∈N qi)
2). Thus, the following corollary is established.

Corollary 2.1. Problem IPTSDA-S is a relaxation of problem IPTSDA and can be solved

to optimality in a pseudo-polynomial running time of O((
∑

i∈N qi)
2).

Moreover, consider the more general problem where G(s, y) is linearly non-decreasing in

y and convexly non-increasing in s. For this problem, since we have shown that Theorem 2.2

is still valid, our description and analysis of Algorithm 2.1 are still valid. Thus, Theorem 2.3

and Corollary 2.1 are still valid.

2.4.2 Exact Algorithm 2

Our second exact algorithm for problem IPTSDA, to be presented below, runs in pseudo-

polynomial time when the length of the planning horizon m is a fixed constant. To present

this algorithm, we will first prove that given any order acceptance plan λ and shipping plan

z that satisfies certain conditions, there always exists a production plan x such that (λ,x, z)

is a feasible solution to model ILP. This implies that to solve model ILP, we need to only

optimize the order acceptance plan λ and the shipping plan z, for which we can develop a

dynamic programming algorithm as follows.

First, consider any feasible solution (λ,x, z) to model ILP. For each t ∈ T , let Qt denote

the total quantity of products shipped out on day t, i.e., Qt =
∑

i∈N qizit. From constraint

(2.8) of model ILP we know that
∑t

t′=1 Qt′ , the total quantity of the products shipped on

or before day t, should not exceed the total quantity of the products produced on or before

day t, which, by constraint (2.4), should not exceed the total production capacity tc of the

first t days. Thus, (Q1, Q2, · · · , Qm) satisfies condition (2.13) below:

t∑
t′=1

Qt′ ≤ tc, for each t ∈ T . (2.13)

We can now establish Proposition 2.1 for any (Q1, Q2, · · · , Qm) ∈ Zm+ with (2.13) satisfied.
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Proposition 2.1. Consider any (Q1, Q2, · · · , Qm) ∈ Zm+ that satisfies condition (2.13).For

any order acceptance plan λ with λi ∈ {0, 1} for i ∈ N , and any shipping plan z with∑
i∈N qizit = Qt for t ∈ T ,

∑di
t=1 zit = λi and

∑m
t=di+1 zit = 0 for i ∈ N , and zit ∈ {0, 1} for

i ∈ N and t ∈ T , there exists a production plan x such that (λ,x, z) is a feasible solution to

model ILP.

Proof. Consider any order acceptance plan λ and any shipping plan z satisfying the con-

ditions in Proposition 2.1. As illustrated in Section 2.3, we can obtain an accepted order

sequence σ = (σ1, σ2, · · · , σ|σ|) with respect to λ and z by sorting the orders accepted in λ in

a non-decreasing order of their shipped-out days under z, breaking ties arbitrarily. From σ,

we can follow the procedure described in Section 2.3 to construct a solution (λ(σ),x(σ), z(σ))

for model ILP. Note that
∑m

t=1 zit = 1 and
∑m

t=di+1 zit = 0 for i ∈ {σ1, . . . , σ|σ|}. We use

τj ∈ {1, 2, · · · , di} to indicate the shipped-out day of each order σj of σ under the shipping

plan z. We know that orders before σj in sequence σ must all be shipped out on or before

day τj under z. This, together with (2.13), implies that
∑j

j′=1 qσj′ ≤
∑τj

t′=1 Qt′ ≤ τjc. Thus,

by (2.14) below, the earliest possible production completion day tj for the first j orders of σ

cannot exceed τj.

tj =

⌈
j∑

j′=1

qσj′/c

⌉
≤ τj. (2.14)

This, together with the fact that under solution (λ(σ),x(σ), z(σ)), both the production com-

pletion day and the shipped-out day of each order σj are equal to tj, implies that (λ,x(σ), z)

must be a feasible solution to model ILP. Proposition 2.1 is proved.

Next, for each (Q1, Q2, · · · , Qm) ∈ Zm+ with (2.13) satisfied, we define F (Q1, Q2, . . . , Qm)

as the minimum total shipping and rejection cost among all the order acceptance plans λ

and the shipping plans z that satisfy
∑

i∈N qizit = Qt for t ∈ T and satisfy
∑m

t=1 zit = λi and∑m
t=di+1 zit = 0 for i ∈ N . Proposition 2.1 implies that to solve model ILP, it is equivalent

to minimizing F (Q1, Q2, . . . , Qm) over all such (Q1, Q2, · · · , Qm), which can be achieved by



CHAPTER 2: PROBLEM IPTSDA 32

the following dynamic program.

For each i ∈ {0, 1, · · · , n}, let N(i) = {i′ ∈ N | i′ ≤ i} denote the set of orders

i′ ∈ N with i′ ≤ i. For each (Q1, Q2, · · · , Qm) ∈ Zm+ with (2.13) satisfied, we define a

value function F (i;Q1, Q2, . . . , Qm) as the minimum total shipping and rejection cost of

a subproblem that aims to find an order acceptance plan λ and a shipping plan z only

for orders in N(i), such that
∑

i′∈N(i) qi′zi′,t = Qt for t ∈ T and that
∑m

t=1 zi′,t = λi′ and∑m
t=di′+1 zi′,t = 0 for i′ ∈ N(i). If the corresponding subproblem has no such order acceptance

plan and shipping plan, the value of F (i;Q1, Q2, . . . , Qm) is +∞. Accordingly, we have

F (Q1, Q2, . . . , Qm) = F (n;Q1, Q2, · · · , Qm).

The value function F (i;Q1, Q2, · · · , Qm) can be computed recursively as follows. Since

the subproblem of F (0; 0, . . . , 0) is defined for an empty order set, we obtain the boundary

condition of the dynamic program that F (0; 0, . . . , 0) = 0, and that F (0;Q1, Q2, . . . , Qm) =

+∞ for each (Q1, Q2, · · · , Qm) ∈ Zm+ with (2.13) satisfied and with
∑m

t=1 Qt > 0.

For each i = 1, 2, . . . , n, and for each (Q1, Q2, · · · , Qm) ∈ Zm+ with (2.13) satisfied, con-

sider the following two possible cases of an order acceptance plan λ and a shipping plan z

that form an optimal solution to the subproblem of F (i;Q1, Q2, · · · , Qm):

Case 1. (See Figure 2.3 for an illustrative example) Order i is accepted under the order

acceptance plan λ. Let τi ∈ {1, 2, · · · ,m} indicate the shipped-out day of order i

under the shipping plan z. We know that τi satisfies that τi ≤ di and qi ≤ Qτi ,

and the shipping cost for order i equals G(di − τi, qi). For other orders, which are in

N(i− 1) = N(i) \ {i}, we know that their acceptance plan and shipping plan under λ

and z must form an optimal order acceptance and shipping plan for the subproblem of

F (i− 1;Q1, . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , Qm). Here, by definition, the subproblem of

F (i−1;Q1, . . . , Qτi−1, Qτi− qi, Qτi+1, . . . , Qm) is defined for orders in N(i−1), and for

the same total shipped-out quantity of each day except day τi, for which the quantity

Qτi is reduced by qi.

Case 2. Order i is rejected under the order acceptance plan λ, incurring a rejection cost ri.
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Figure 2.3: An example for Case 1 of the illustration of (2.15) with m = 2 days.

F (i− 1;Q1, Q2)F (6; 10, 17)

Q2 = 173 8 6
(1) (4) (6)

Day 2

4 6
(3) (2)

Day 1 6
(7)

Q1 = 16

G(d7 − 1, 6)

F (i;Q1, Q2)F (7; 16, 17)

G(di − τi, qi)

Inside rectangles, the numbers in brackets are orders’ indices, and the numbers without brackets
are order quantities: For the subproblem of F (7; 16, 17), for orders in {1, 2, · · · , 7}, if order 7 is
accepted and shipped out on day 1 in an optimal solution (i.e., τ7 = 1), then F (7; 16, 17) equals
F (6; 10, 17) plus G(d7− 1, 6) (since τ7 = 1 and q7 = 6). Order 5 is rejected in the optimal solution.

For other orders, which are in N(i − 1) = N(i) \ {i}, we know that their acceptance

plan and shipping plan under λ and z must form an optimal order acceptance and

shipping plan for the subproblem of F (i− 1;Q1, . . . , Qm).

Accordingly, we can obtain the following recursive equation to compute F (i;Q1, Q2, · · · , Qm):

F (i;Q1, . . . , Qm)

= min


min

{
F (i− 1;Q1, . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , Qm) +G(di − τi, qi) |

∀τi ∈ {1, 2, . . .m} with τi ≤ di and qi ≤ Qτi

}
,

F (i− 1;Q1, . . . , Qm) + ri.


,(2.15)

where we assume that the minimum over an empty set equals +∞.

Finally, noting that F (Q1, Q2, . . . , Qm) = F (n;Q1, Q2, · · · , Qm), we can enumerate all

(Q1, Q2, · · · , Qm) ∈ Zm+ with (2.13) satisfied to minimize F (n;Q1, Q2, · · · , Qm), and then

return the minimum value, which, as explained earlier, is the minimum total shipping and

rejection cost for problem IPTSDA.

We summarize this exact algorithm in Algorithm 2.2, and its correctness and time com-

plexity are presented in Theorem 2.4.
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Algorithm 2.2 (for problem IPTSDA)

1: F (0; 0, 0, . . . , 0) ← 0, and F (0;Q1, Q2, . . . , Qm) ← +∞ for all (Q1, Q2, · · · , Qm) ∈ Zm+

with (2.13) satisfied and with
∑m

t=1Qt > 0

2: for all i = 1, 2, · · · , n do

3: for all (Q1, Q2, · · · , Qm) ∈ Zm with (2.13) satisfied do

4: Compute F (i;Q1, Q2, . . . , Qm) by the recursive equation in (2.15)

5: end for

6: end for

7: return the minimum value of F (n;Q1, Q2, · · · , Qm) over all (Q1, Q2, · · · , Qm) ∈ Zm+

with (2.13) satisfied

Theorem 2.4. Algorithm 2.2 solves problem IPTSDA to optimality in O(ncm(m!)m) time.

Proof. As we have shown above, the value function F (i;Q1, Q2, . . . , Qm) can be computed re-

cursively by (2.15), and the minimum value of F (n;Q1, Q2, . . . , Qm) over all (Q1, Q2, · · · , Qm) ∈

Zm+ with (2.13) satisfied equals the minimum total shipping and rejection cost for prob-

lem IPTSDA. Thus, Algorithm 2.2 solves problem IPTSDA to optimality. Moreover, since

(2.13) implies that Qt ≤ tc for 1 ≤ t ≤ m, the recursive equation (2.15) is computed in

Algorithm 2.2 for at most n · (1 · c)(2 · c) · · · (m · c) = ncm(m!) times. Since it takes O(m)

time to compute the recursive equation (2.15), we obtain that the total time complexity of

Algorithm 2.2 is O(ncm(m!)m).

Theorem 2.4 implies that when the number of days m is a fixed constant, Algorithm 2.2

solves problem IPTSDA to optimality in O(ncm), which is pseudo-polynomial in the input

size. This is true no matter whether the input size is O(n) for the instance representation

introduced in Section 2.2, or O(m) for the alternative instance representation described in

Section 2.4.1.

Furthermore, our description and analysis of Algorithm 2.2 above do not rely on the

linearity of the cost function G(s, y) in shipping time s. Therefore, Algorithm 2.2 can also
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be used to solve more general problems, such as those where the shipping cost function

G(s, y) is linearly non-decreasing in y and convexly non-increasing in s, for which the time

complexity result in Theorem 2.4 is also valid, and the running time for the case with a fixed

m is still pseudo-polynomial time.

2.5 Approximation Scheme

In this section, we develop an approximation algorithm for problem IPTSDA that guarantees

a worst-case performance ratio of (1 + ε) and a pseudo-polynomial running time for any

fixed constant ε > 0. Our main idea is as follows: We first introduce two parameters,

K ∈ {1, · · · ,m} and Q ∈ {0, 1, . . . , Q̄}, where Q̄ =
∑

i∈N qi. For each pair of K and Q

satisfying that

dQ/ce ≤ K, (2.16)

we then define a restricted version of problem IPTSDA, denoted by RP(K,Q), which, as

we will show later, can be solved to optimality in pseudo-polynomial time by a dynamic

programming approach extended from Algorithm 2.2. Based on the optimal solution to the

restricted problem RP(K,Q), we can construct a feasible solution to problem IPTSDA. For

a selected value of K, our approximation algorithm solves RP(K,Q) for several different

values of Q, so as to obtain a set of feasible solutions to problem IPTSDA, among which the

one with the lowest total shipping and rejection cost is then returned as an approximation

solution to problem IPTSDA.

Given any constant ε > 0, we can prove that by choosing K = min{d1/εe,m}, which is

bounded by the constant d1/εe, the total shipping and rejection cost of our obtained approx-

imation solution is at most (1+ ε) times that of the optimal solution, and our approximation

algorithm runs in pseudo-polynomial time. Moreover, when K = m, implying that m is

bounded by the constant d1/εe, we can prove that the obtained approximation solution is,
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in fact, optimal.

In the following, we first formulate and solve the restricted problem RP(K,Q) in Sec-

tion 2.5.1, and then present and analyze the approximation scheme in Section 2.5.2, followed

by a discussion of an extension in Section 2.5.3. Without loss of generality, we assume in this

section that orders in N are indexed in a non-decreasing order of their committed delivery

due dates, so that

d1 ≤ d2 ≤ · · · ≤ dn. (2.17)

2.5.1 Restricted Problem RP(K,Q): Formulation and Solution Al-

gorithm

Given the two parameters K ∈ {1, 2, . . . ,m} and Q ∈ {0, 1, . . . , Q̄} with (2.16) satisfied, the

restricted version of problem IPTSDA, denoted by RP(K,Q), is defined so as to determine

both a feasible solution (λ,x, z) to model ILP and a subset I of orders in N such that the

order acceptance plan λ, the order subset I, and the shipping plan z satisfy the following

additional constraints:

(i) Orders in I are all accepted, i.e., λi = 1 for all i ∈ I. In other words, all the rejected

orders are in N \ I, i.e., i ∈ N \ I for all i ∈ N with λi = 0.

(ii) The total quantity of the accepted orders in N \ I equals Q, i.e.,
∑

i∈N\I:λi=1 qi = Q.

(iii) For each accepted order i ∈ I, its products are shipped out on day d(Q+
∑

i′∈I:i′≤i qi′)/ce,

i.e., zit = 1 for t = d(Q+
∑

i′∈I:i′≤i qi′)/ce. This is the earliest possible production com-

pletion day of all the accepted orders in N \ I (whose total quantity equals Q due to

constraint (ii) above), and all the accepted orders in I with indices not greater than i

(whose total quantity is
∑

i′∈I:i′≤i qi′).
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(iv) Products for each accepted order in N \ I are shipped out only on or before day K ′,

i.e.,
∑K′

t′=1 zit′ = 1 for i ∈ N \ I with λi = 1. Here, K ′ = dQ/ce indicates the earliest

possible production completion day of all the accepted orders in N \ I.

A feasible solution to problem RP(K,Q) can be represented by (λ,x, z, I). Similar to prob-

lem IPTSDA, problem RP(K,Q) aims to minimize the total shipping and rejection cost. If

problem RP(K,Q) has no feasible solution, its minimal total shipping and rejection cost is

+∞.

By Theorem 2.1 we know that there exists an order sequence σ∗ such that (λ(σ∗),x(σ∗), z(σ∗))

is an optimal solution to problem IPTSDA. Let Q̄′ denote the total quantity of accepted or-

ders under λ(σ∗), which satisfies Q̄′ ≤ Q̄. Consider the situation where K = m, Q = Q̄′,

and I = ∅. It can be verified that (λ(σ∗),x(σ∗), z(σ∗)) and I = ∅ satisfy the additional con-

straints (i), (ii), (iii), and (iv) above. Thus, (λ(σ∗),x(σ∗), z(σ∗)) and I = ∅ form a feasible

solution to the restricted problem RP(K,Q) with K = m and Q = Q̄′, implying that they

also form an optimal solution to the restricted problem RP(K,Q) with K = m and Q = Q̄′.

Therefore, problem IPTSDA is equivalent to problem RP(K,Q) with K = m and Q = Q̄′.

We know that problem IPTSDA can be solved by Algorithm 2.2 in pseudo-polynomial time

when m is bounded by a fixed constant. This motivates us to extend Algorithm 2.2 to develop

an exact algorithm for problem RP(K,Q) for any given K and Q, so that it runs in pseudo-

polynomial time when K is bounded by a fixed constant. When m is arbitrarily large, by

choosing a proper value of K, and by enumerating the values of Q, we can then utilize such

an algorithm of problem RP(K,Q) to obtain a close-to-optimal solution to problem IPTSDA

in pseudo-polynomial time.

To present our exact algorithm for problem RP(K,Q) for any given K ∈ {1, 2, . . . ,m}

and Q ∈ {0, 1, . . . , Q̄} with (2.16) satisfied, consider any feasible solution (λ,x, z, I). Due

to the additional constraint (iv) above, the accepted orders in N \ I must all be shipped out
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on or before day K ′ = dQ/ce. From (2.16), we know that

K ′ ≤ K. (2.18)

By extending the notation in Section 2.4.2, we define Qt =
∑

i∈N\I:λi=1 qizit for each

t ∈ {1, 2, . . . , K ′} to indicate the total product quantity of the accepted orders in N \ I that

are shipped out on day t, and define Q′ ∈ {0, 1, . . . , Q̄ − Q} to indicate the total product

quantity of the accepted orders in I. From the definition above, we also have
∑K′

t′=1 Qt′ = Q

and
∑

i∈I qi = Q′. Similar to (2.13), we can obtain that (Q1, · · · , QK′) satisfies the following

condition:

t∑
t′=1

Qt′ ≤ tc, for each t ∈ {1, 2, . . . , K ′}. (2.19)

Similar to Proposition 2.1, we can establish Proposition 2.2 below for any (Q1, Q2, . . . , QK′) ∈

ZK′+ that satisfies condition (2.19) and for any Q′ ∈ {0, 1, . . . , Q̄−Q}.

Proposition 2.2. Consider any (Q1, Q2, · · · , QK′) ∈ ZK′+ that satisfies condition (2.19) and

any Q′ ∈ {0, 1, . . . , Q̄ − Q}. For any order acceptance plan λ, for any subset I ⊆ N that

satisfies
∑

i∈I qi = Q′, and for any shipping plan z that satisfies
∑

i∈N\I:λi=1 qizit = Qt for

t ∈ {1, 2, · · · , K ′} and that satisfies
∑m

t=1 zit = λi and
∑m

t=di+1 zit = 0 for i ∈ N , if λ, z and

I satisfy the additional constraints (i)–(iv) of problem RP(K,Q), there exists a production

plan x such that (λ,x, z, I) is a feasible solution to problem RP(K,Q).

Proof. Consider any (Q1, Q2, · · · , QK′) ∈ ZK′+ , any Q′ ∈ {0, 1, . . . , Q̄−Q}, any order accep-

tance plan λ, subset I ⊆ N , and any shipping plan z that satisfy the conditions mentioned

in Proposition 2.2. Similar to the proof of Proposition 2.1, we can obtain an accepted or-

der sequence σ = (σ1, σ2, · · · , σ|σ|) with respect to λ and z by sorting accepted orders in

λ in a non-decreasing order of their shipped-out days under z, breaking ties by preferring

accepted orders in N \ I, and then arbitrarily. Let A(σ) indicate the set of orders in σ.
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Let j∗ indicate the largest index of order σj of σ such that σj ∈ A(σ) \ I. Thus, we have

A(σ) \ I = {σ1, σ2, · · · , σj∗} and I = {σj∗+1, σj∗+2, · · · , σ|σ|}.

Note that
∑m

t=1 zit = 1 and
∑m

t=di+1 zit = 0 for i ∈ A(σ). For each 1 ≤ j ≤ |σ|, we use

τj ≤ dσj to indicate the shipped-out day of order σj under the shipping plan z, and we use

tj = d∑j
j′=1 qσj′/ce to indicate the earliest possible production completion day of the first j

orders of σ. We can prove as follows that tj ≤ τj for each order σj of σ:

• For each order σj ∈ A(σ) \ I, we have 1 ≤ j ≤ j∗. By
∑m

t=1 zit = 1 and
∑m

t=di+1 zit = 0

for i ∈ N , the first j orders, σ1, σ2, · · · , σj, in sequence σ must all be shipped out on

or before day τj under z. Due to the additional condition (iv) of problem RP(K,Q),

we know that τj ≤ K ′. Thus, by (2.19), we have
∑j

j′=1 qσj′ ≤
∑τj

t′=1 Qt′ ≤ τjc, which

implies that tj = d∑j
j′=1 qσj′/ce ≤ τj.

• For each order σj ∈ I, we have j∗ + 1 ≤ j ≤ |σ|. By the additional constraint

(iii) of problem RP(K,Q), the products for order σj must be shipped out on day

tj = d∑j
j′=1 qσj′/ce under z, which implies that tj = τj.

From σ, we can follow the procedure in Section 2.3 to construct a solution (λ(σ),x(σ), z(σ))

for model ILP. Since, under solution (λ(σ),x(σ), z(σ)), both the production completion

day and the shipped-out day of each order σj are equal to tj, we know that under solu-

tion (λ,x(σ), z), products for each order are completed on or before their shipped-out day.

Moreover, according to its construction, and by an argument similar to that in the proof of

Lemma 2.1, the production plan x(σ) satisfies the capacity constraint. Thus, we can obtain

that (λ,x(σ), z) is a feasible solution to model ILP. Therefore, since λ, z and I also satisfy

the additional constraints (i)–(iv), (λ,x(σ), z, I) is a feasible solution to problem RP(K,Q).

Proposition 2.2 is proved.

Similar to Section 2.4.2, for each (Q1, Q2, · · · , QK′) ∈ ZK′+ with (2.19) satisfied and

for any Q′ ∈ {0, 1, . . . , Q̄ − Q}, we define F (Q′;Q1, Q2, . . . , QK′) as the minimum to-

tal shipping and rejection cost among all order acceptance plans λ, all order subsets I
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that satisfy
∑

i∈I qi = Q′, and all shipping plans z that satisfy
∑

i∈N\I:λi=1 qizit = Qt for

t ∈ {1, 2, · · · , K ′}, ∑m
t=1 zit = λi and

∑m
t=di+1 zit = 0 for i ∈ N , and the additional con-

straints (i)–(iv) of problem RP(K,Q). By Proposition 2.2, we know that to solve prob-

lem RP(K,Q), it is equivalent to minimizing F (Q′;Q1, Q2, . . . , QK′), which can be achieved

by dynamic programming, as shown below.

For each i ∈ {0, 1, · · · , n}, we still use N(i) = {i′ ∈ N | i′ ≤ i} to denote the set of orders

i′ ∈ N with i′ ≤ i. For each (Q1, Q2, · · · , QK′) ∈ ZK′+ with (2.19) satisfied, and for each

Q′ ∈ {0, 1, . . . , Q̄−Q}, we define a value function F (i;Q′;Q1, Q2, . . . , QK′) as the minimum

shipping and rejection cost of a subproblem of RP(K,Q). The value function aims to find an

order acceptance plan λ and a shipping plan z only for orders in N(i) and an order subset

I of N(i), such that the following constraints are satisfied:

∑
i′∈I

qi′ = Q′, (2.20)∑
i′∈N(i)\I:λi′=1

qi′zi′,t = Qt, for t ∈ {1, 2, · · · , K ′}, (2.21)

m∑
t=1

zi′,t = λi′ , for i′ ∈ N(i), (2.22)

m∑
t=di′+1

zi′,t = 0, for i′ ∈ N(i), (2.23)

K′∑
t′=1

zi′t′ = λi, for i′ ∈ N(i) \ I, (2.24)

zit = 1, for i ∈ I and for t = d(Q+
∑

i′∈I:i′≤i qi′)/ce, (2.25)

zi′t ∈ {0, 1}, for i′ ∈ N(i) and t ∈ T , (2.26)

λi′ ∈ {0, 1}, for i′ ∈ N(i). (2.27)

Among these constraints, (2.20) restricts the total product quantity of accepted orders in I,

(2.21) restricts the total shipped-out quantity of accepted orders in N(i) \ I on each day t,

(2.22) and (2.23) ensure that products for accepted orders in N(i) are shipped out not later
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than their committed delivery due dates, (2.24) and (2.25) are derived from the additional

constraints (iii) and (iv) of problem RP(K,Q) for accepted orders in N(i) \ I and accepted

orders in I, respectively, (2.26) are binary constraints on zi′t for i′ ∈ N(i), t ∈ T , and (2.27)

are binary constraints on λi′ for i′ ∈ N(i).

If the subproblem defined above has no such order acceptance plan λ, order subset I

and shipping plan z, the value of F (i;Q′;Q1, Q2, . . . , QK′) is +∞. By definition, we have

F (Q′;Q1, Q2, . . . , QK′) = F (n;Q′;Q1, Q2, · · · , QK′).

The value function F (i;Q′;Q1, Q2, · · · , QK′) can be computed recursively as follows.

Since the subproblem of F (0; 0; 0, . . . , 0) is defined for an empty order set, we obtain the

boundary condition of the dynamic program that F (0; 0; 0, . . . , 0) = 0, and that F (0;Q′;Q1, . . . , QK′) =

+∞ for each Q′ ∈ {0, 1, . . . , Q̄−Q} and (Q1, · · · , QK′) ∈ ZK′+ , with (2.19) and Q′+
∑K′

t=1Qt >

0 satisfied.

For each i ∈ {1, 2, . . . , n}, for eachQ′ ∈ {0, 1, · · · , Q̄−Q}, and for each (Q1, Q2, · · · , QK′) ∈

ZK′+ with (2.19) satisfied, consider the following three possible cases of an order acceptance

plan λ, set I, and a shipping plan z that form an optimal solution to the subproblem of

F (i;Q′;Q1, Q2, · · · , QK′):

Case 1. (see Figure 2.4(a) for an illustration example): Order i is accepted under the

order acceptance plan λ and i ∈ I. Due to constraints (2.20) and (2.25) of the sub-

problem, and due to I ⊆ N(i), the products for order i are shipped out on day

d(Q +
∑

i′∈I:i′≤i qi)/ce = d(Q +
∑

i′∈I qi)/ce = d(Q + Q′)/ce under the shipping plan

z, which cannot be later than the committed delivery due date di for order i. Thus,

order i satisfies the following condition:

d(Q+Q′)/ce ≤ di. (2.28)

Moreover, due to constraint (2.20) of the subproblem, we know that order i also satisfies

that qi ≤ Q′. Since the products for order i are shipped out on day d(Q + Q′)/ce,

the shipping cost of order i equals G(di − d(Q + Q′)/ce, qi). Moreover, the order
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Figure 2.4: Examples for Case 1 and Case 2 considered in solving problem RP(K,Q) by
dynamic programming, where K ′ = 2 and order 6 is rejected in the optimal solution.

F (i− 1;Q′ − qi;Q1, Q2)F (9; 14; 10, 17)

Q2 = 173 8 6
(1) (9) (8)

Day 2

4 6
(3) (7)

Day 1

6
(10)

Q1 = 10

F (i;Q′;Q1, Q2)F (10; 20; 10, 17)

4
(2)

6 4
(4) (5)

Q′ = 20Orders in I

G(d10 − d(Q+ 20)/ce, 6)G(di − d(Q+Q′)/ce, qi)

(a) Case 1: For the subproblem of F (10; 20; 10, 17) defined for orders in {1, 2, · · · , 10}, if order 10 is
accepted and is in I in an optimal solution (i.e., 10 ∈ I), then F (10, 20; 10, 17) equals the sum of
F (9; 14; 10, 17) and G(d10 − d(Q + 20)/ce, 6) (since products for order 10 must be shipped out on day
d(Q+ 20)/ce and since q10 = 6).

F (i− 1;Q′;Q1, Q2 − q2)F (9; 14; 10, 17)

Q2 = 173 8 6
(1) (9) (8)

Day 2

4 6
(3) (7)

Day 1 6
(10)

Q1 = 16

F (i;Q′;Q1, Q2)F (10; 14; 16, 17)

4
(2)

6 4
(4) (5)

Q′ = 14Orders in I

G(d10 − 1, 6) G(di − τi, qi)

(b) Case 2: For the subproblem of F (10; 14; 16, 17) defined for orders in {1, 2, · · · , 10}, if order 10 is
accepted and is not in I, and if order 10 is shipped out on day 1 in an optimal solution (i.e., τ10 = 1), then
F (10, 14; 16, 17) equals the sum of F (9; 14; 10, 17) and G(d10 − 1, 6) (since τ10 = 1 and q10 = 6).

acceptance plan and shipping plan for orders in N(i − 1) = N(i) \ {i} under λ and

z, together with the order subset (I \ {i}), must form an optimal solution to the

subproblem of F (i − 1;Q′ − qi;Q1, . . . , QK′). Here, by definition, the subproblem of

F (i − 1;Q′ − qi;Q1, . . . , QK′) is defined for orders in N(i − 1), for the total product

quantity Q′ for orders in I reduced by qi, and for the same total shipped-out quantities
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for accepted orders in N(i− 1) \ I on each day. Therefore, F (i;Q′;Q1, . . . , QK′) equals

F (i− 1;Q′ − qi;Q1, . . . , QK′) +G(di − d(Q+Q′)/ce, qi).

Case 2. (see Figure 2.4(b) for an illustration example): Order i is accepted under the

order acceptance plan λ and i ∈ N(i) \ I. Let τi ∈ {1, 2, · · · , K ′} indicate the

shipped-out day of order i under the shipping plan z. Due to constraints (2.23)

and (2.24) of the subproblem, τi satisfies that τi ≤ di and qi ≤ Qτi . Thus, the

shipping cost of order i equals G(di − τi, qi). Moreover, the order acceptance plan

and the shipping plan for orders in N(i − 1) = N(i) \ {i} under λ and z, together

with the order subset I, must form an optimal solution to the subproblem of F (i −

1;Q′;Q1 . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , QK′). Here, by definition, the subproblem of

F (i − 1;Q′;Q1 . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , QK′) is defined for orders in N(i − 1),

for the same total product quantity for accepted orders in I, and for the same total

shipped-out quantities for accepted orders in N(i) \ I on each day except day τi, of

which the quantity Qτi is reduced by qi. Therefore, F (i;Q′;Q1, . . . , QK′) is the mini-

mum value of F (i− 1;Q′;Q1 . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , QK′) +G(di− τi, qi) over all

τi ∈ {1, 2, . . . , K ′} with τi ≤ di and qi ≤ Qτi .

Case 3. Order i is rejected under the order acceptance plan λ, for which a rejection cost

ri is incurred. The order acceptance plan and shipping plan for orders in N(i − 1) =

N(i) \ {i} under λ and z, together with the order subset I, must form an optimal

solution to the subproblem of F (i− 1;Q′;Q1, . . . , QK′).
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Accordingly, we can obtain the following recursive equation to compute F (i;Q′;Q1, Q2, · · · , QK′):

F (i;Q′;Q1, . . . , QK′)

= min




F (i− 1;Q′ − qi;Q1, . . . , QK′) +G(di − d(Q+Q′)/ce, qi),

if (2.28) is satisfied and qi ≤ Q′;

+∞, otherwise.

min

{
F (i− 1;Q′;Q1 . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , QK′)

+G(di − τi, qi) | ∀τi ∈ {1, 2, . . . , K ′} with τi ≤ di and qi ≤ Qτi

}
F (i− 1;Q′;Q1, . . . , QK′) + ri.



,
(2.29)

where we assume that the minimum over an empty set equals +∞.

Finally, note that F (Q′;Q1, Q2, . . . , QK′) = F (n;Q′;Q1, Q2, · · · , QK′) with
∑K′

t=1Qt = Q.

If min{F (n;Q′;Q1, Q2, · · · , QK′)|Q′ = 0, 1, . . . , Q̄ − Q} = +∞ with
∑K′

t=1 Qt = Q, then

problem RP(K,Q) has no feasible solution and we return +∞. Otherwise, we can enu-

merate all (Q′;Q1, Q2, · · · , QK′) for Q′ ∈ {0, 1, . . . , Q̄ − Q} and (Q1, Q2, · · · , QK′) ∈ ZK′+

with
∑K′

t=1Qt = Q and (2.19) satisfied, so as to find (Q′′;Q′1, Q
′
2, · · · , Q′K′) that minimizes

F (n;Q′;Q1, Q2, · · · , QK′). By backtracking the computational process of F (n;Q′′;Q′1, Q
′
2, · · · , Q′K′)

with
∑K′

t=1Q
′
t = Q, we can obtain λ, z and I that minimize the total cost for the subproblem

of F (n;Q′′;Q′1, Q
′
2, · · · , Q′K′) with

∑K′

t=1 Q
′
t = Q. By following the proof of Proposition 2.2,

we can then construct x so that (λ,x, z, I) is a feasible solution to problem RP(K,Q), hav-

ing its total cost equal to F (n;Q′′;Q′1, Q
′
2, · · · , Q′K′). We summarize this exact algorithm for

problem RP(K,Q) in Algorithm 2.3.

Algorithm 2.3 (for problem RP(K,Q))

1: F (0; 0; 0, 0, . . . , 0)← 0, and F (0;Q′;Q1, Q2, . . . , QK′)← +∞ for each Q′ ∈ {0, 1, . . . , Q̄−

Q} and for each (Q1, Q2, · · · , QK′) ∈ ZK′+ with (2.19) and Q′ +
∑K′

t=1 Qt > 0 satisfied

2: for all i = 1, 2, · · · , n do

3: for all Q′ = 0, 1, · · · , Q̄−Q do
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4: for all (Q1, Q2, · · · , QK′) ∈ ZK′ with (2.19) satisfied do

5: Compute F (i;Q′;Q1, Q2, . . . , QK′) by the recursive equation in (2.29)

6: end for

7: end for

8: end for

9: if F (n;Q′;Q1, Q2, · · · , QK′) = +∞ for each (Q′;Q1, Q2, · · · , QK′) withQ′ ∈ {0, 1, . . . , Q̄−

Q}, (Q1, Q2, · · · , QK′) ∈ ZK′+ ,
∑K′

t=1Qt = Q, and (2.19) satisfied then

10: return +∞

11: else

12: Find (Q′′;Q′1, Q
′
2, · · · , Q′K′) that minimizes the value of F (n;Q′;Q1, Q2, · · · , QK′) among

all (Q′;Q1, Q2, · · · , QK′) for Q′ ∈ {0, 1, . . . , Q̄−Q} and (Q1, Q2, · · · , QK′) ∈ ZK′+ with∑K′

t=1 Qt = Q and (2.19) satisfied.

13: Reconstruct λ, z and I that minimize the total cost for the subproblem of F (n;Q′′;Q′1, · · · , Q′K)

by backtracking the computational process of F (n;Q′′;Q′1, · · · , Q′K′) with
∑K′

t=1Q
′
t =

Q

14: Construct x according to the proof of Proposition 2.2 so that (λ,x, z, I) is a feasible

solution to problem RP(K,Q)

15: return (λ,x, z, I)

16: end if

The correctness and time complexity of Algorithm 2.3 are presented in Theorem 2.5,

which also indicates that if problem RP(K,Q) has a feasible solution, then the optimal

solution obtained by Algorithm 2.3 for problem RP(K,Q) leads to a feasible solution to

problem IPTSDA with the same total shipping and rejection cost.

Theorem 2.5. For every Q ∈ {0, 1, . . . , Q̄} and K ∈ {1, 2, . . . ,m}, if problem RP(K,Q)

has no feasible solution, Algorithm 2.3 returns +∞. Otherwise, Algorithm 2.3 returns an

optimal solution (λ,x, z, I) to problem RP(K,Q) in O(nmcK+1K · K!) time, and (λ,x, z)

forms a feasible solution to model ILP of problem IPTSDA with the same total cost as that
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of (λ,x, z, I).

Proof. As we have shown above, the value function F (i;Q′;Q1, Q2, . . . , QK′) can be com-

puted recursively by (2.29), and F (Q′;Q1, Q2, . . . , QK′) = F (n;Q′;Q1, Q2, · · · , QK′) with∑K′

t=1 Qt = Q. Thus, if problem RP(K,Q) has no feasible solution, then F (n;Q′;Q1, Q2, · · · , QK′) =

+∞, and Algorithm 2.3 returns +∞. Otherwise, the minimum total cost for the input in-

stance of problem RP(K,Q) equals the minimum value of F (n;Q′;Q1, Q2, . . . , QK′) among

all Q′ ∈ {0, 1, . . . , Q̄ − Q} and all (Q1, Q2, · · · , QK′) ∈ ZK′+ with (2.19) and
∑K′

t=1Qt = Q

satisfied, which equals F (n;Q′′;Q′1, Q
′
2, · · · , Q′K′) for (Q′′;Q′1, Q

′
2, · · · , Q′K′) found by Step 12

of Algorithm 2.3. Therefore, (λ,x, z, I) obtained in Step 14 and returned by Step 15 of

Algorithm 2.3 is an optimal solution to problem RP(K,Q). By the definition of prob-

lem RP(K,Q), we know that (λ,x, z) must also be a feasible solution to model ILP of

problem IPTSDA. Since the total shipping cost depends only on z, it must be the same for

both (λ,x, z) and (λ,x, z, I).

Moreover, (2.19) implies that Qt ≤ tc for 1 ≤ t ≤ K ′. This, together with Q ≤∑i∈N qi ≤

mc, implies that the recursive equation (2.29) is computed in Algorithm 2.3 for at most

n ·mc · (1 · c)(2 · c) · · · (K ′ · c) = nmc · cK′ ·K ′! time. Since it takes O(K ′) time to compute

the recursive equation (2.29), and since K ′ ≤ K as shown in (2.18), we obtain that the

total time complexity of Algorithm 2.3 is O(nmcK+1K · K!). This completes the proof of

Theorem 2.5.

2.5.2 Approximation Scheme: Algorithm and Analysis

2.5.2.1 Algorithm

Based on Algorithm 2.3, we can follow the idea presented at the beginning of Section 2.5

to develop an approximation scheme for problem IPTSDA, which is illustrated in Algo-

rithm 2.4. For any given but fixed ε > 0, the algorithm first sets K = min
{
d1/εe,m

}
.

Then, for each Q ∈ {0, 1, . . . , Q̄} where Q̄ =
∑

i∈N qi such that K ≥ dQ/ce in (2.16) is sat-
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isfied, it applies Algorithm 2.3 to solve the restricted problem RP(K,Q). By Theorem 2.5,

if problem RP(K,Q) has a feasible solution, Algorithm 2.3 returns an optimal solution

(λ,x, z, I) to the restricted problem RP(K,Q), which yields a feasible solution (λ,x, z) to

model ILP of problem IPTSDA. Among all such feasible solutions (λ,x, z) obtained, the

algorithm finally selects and returns the one with the lowest total cost as an approximation

solution to problem IPTSDA.

Algorithm 2.4 (an approximation scheme for problem IPTSDA)

1: For given ε > 0, set K ← min
{
d1/εe,m

}
2: for all Q ∈ {0, 1, . . . , Q̄} with K ≥ dQ/ce do

3: Apply Algorithm 2.3 to solve the restricted problem RP(K,Q), which returns an

optimal solution (λ,x, z, I) to problem RP(K,Q), yielding a feasible solution (λ,x, z)

to model ILP, if problem RP(K,Q) has a feasible solution.

4: end for

5: return the feasible solution that has the lowest total cost among all (λ,x, z) obtained

for model ILP.

2.5.2.2 Analysis

Theorem 2.6 below can be established for Algorithm 2.4, indicating that Algorithm 2.4 is a

pseudo-polynomial time approximation scheme for problem IPTSDA.

Theorem 2.6. For any given but fixed ε > 0, Algorithm 2.4 is a pseudo-polynomial time

approximation scheme for problem IPTSDA with a worst-case performance ratio of (1 + ε).

To prove Theorem 2.6, we first need to prove that Algorithm 2.4 returns a feasible solution

in pseudo-polynomial time for any given ε > 0, which turns out to be straightforward, as

illustrated in the proof of Lemma 2.3 below.

Lemma 2.3. Algorithm 2.4 runs in O(nm2cd1/εe+2 · d1/εe! · d1/εe) time, which is a pseudo-

polynomial running time for any given ε > 0.
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Proof. Since Q̄ =
∑

i∈N qi ≤ mc, Algorithm 2.4 executes Algorithm 2.3 for at most mc times.

Thus, by Theorem 2.5 and K ≤ d1/εe, Algorithm 2.4 runs in O(nm2cd1/εe+2 · d1/εe! · d1/εe)

time, which is a pseudo-polynomial running time for any given ε > 0.

Due to Lemma 2.3, to prove Theorem 2.6, we now only need to prove that Algorithm 2.4

is an approximation scheme, i.e., Algorithm 2.4 always returns a feasible solution to problem

IPTSDA with a total cost not exceeding (1 + ε) times that of an optimal solution, for any

given ε > 0. The details of the proof is in Section 2.5.2.4.

2.5.2.3 Main idea to prove Theorem 2.6

To prove that Algorithm 2.4 has a worst-case performance ratio of (1 + ε), our main idea is

as follows, where ξi(·) and ξ̂i(·) represent certain total shipping and rejection costs of each

order i ∈ N under a certain solution, and their detailed definitions will be explained later.

• First, we can construct a restricted problem RP(K,Q∗) with K = min{d1/εe,m}

and with Q∗ determined from the optimal solution π∗ = (λ(σ∗),x(σ∗), z(σ∗)), where

π∗ is constructed from an order sequence σ∗ by Theorem 2.1 and the procedure in

Section 2.3. We can show that problem RP(K,Q∗) must have been solved in Steps 2–

4 of Algorithm 2.4. If problem RP(K,Q∗) has a feasible solution, then an optimal

solution (λ̃, x̃, z̃, Ĩ) to problem RP(K,Q∗) must have been obtained in Steps 2–4 of

Algorithm 2.4, leading to a feasible solution π̃ = (λ̃, x̃, z̃) to model ILP. Accordingly,

it can be shown that to prove that Algorithm 2.4 has a worst-case performance ratio

of (1 + ε), we only need to prove that problem RP(K,Q∗) has a feasible solution,

and that the total cost of orders in N under π̃ does not exceed (1 + ε) times the

total cost under π∗. This, as shown in Section 2.5.2.4, is equivalent to proving that∑
i∈N ξi(π̃) ≤ (1 + ε)

∑
i∈N ξi(π

∗).

• Second, we can construct an order subset I ′ from π∗ and a new order sequence σ′

from σ∗ and I ′, which yield a feasible solution π′ to model ILP such that π′ and
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I ′ also form a feasible solution to the restricted problem RP(K,Q∗), implying that

problem RP(K,Q∗) has a feasible solution. We can also prove that the total cost of

orders in N under π̃ does not exceed that of orders in N \ I ′ under π∗ plus that of

orders in I ′ under π′. This, as shown in Section 2.5.2.4, is equivalent to proving that∑
i∈N ξi(π̃) ≤∑i∈N\I′ ξi(π

∗) +
∑

i∈I′ ξi(π
′).

• Third, we can construct a new instance of problem IPTSDA by splitting each accepted

order i ∈ I ′ into qi unit orders, each having a unit product quantity. From σ∗ and

σ′, we can obtain order sequences σ̂∗ and σ̂′ for this new problem instance, which

yield two feasible solutions π̂∗ and π̂′ to the new problem instance, respectively. We

can prove that the total cost of the unit orders split from accepted orders in I ′ under

π̂′ does not exceed that under π̂∗, which does not exceed the total cost of accepted

orders in I ′ under π∗. This, as shown in Section 2.5.2.4, is equivalent to proving that∑
i∈I′ ξ̂i(π̂

′) ≤∑i∈I′ ξ̂i(π̂
∗) ≤∑i∈I′ ξi(π

∗).

• Fourth, we can prove that the difference between the total cost of orders in I ′ under

π′ and that of unit orders split from orders in I ′ under π̂′ does not exceed ε times the

total cost of the order in I ′ under π∗. This, as shown in Section 2.5.2.4, is equivalent

to proving that
∑

i∈I′ ξi(π
′) ≤∑i∈I′ ξ̂i(π̂

′) + ε
∑

i∈I′ ξi(π
∗).

From items 2–4 above we can obtain that
∑

i∈N ξi(π̃) ≤ (1 + ε)
∑

i∈N ξi(π
∗), as shown

below:

∑
i∈N

ξi(π̃) ≤
∑
i∈N\I′

ξi(π
∗) +

∑
i∈I′

ξi(π
′) ≤

∑
i∈N\I′

ξi(π
∗) +

∑
i∈I′

ξ̂i(π̂′) + ε
∑
i∈I′

ξi(π
∗)

≤
∑
i∈N\I′

ξi(π
∗) +

∑
i∈I′

ξi(π
∗) + ε

∑
i∈I′

ξi(π
∗) ≤ (1 + ε)

∑
i∈N

ξi(π
∗).

Thus, from item 1 above we obtain that Algorithm 2.4 has a worst-case performance ratio

of (1 + ε). Hence, by Lemma 2.3, Theorem 2.6 can be proved.
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2.5.2.4 Proof of Theorem 2.6

By following the main idea above, we are now going to prove that Algorithm 2.4 has a

worst-case performance ratio of (1 + ε). First, we construct a restricted problem RP(K,Q∗)

as follows. Recall that K = min{d1/εe,m}. By Theorem 2.1, there must exist an order

sequence σ∗ such that the solution π∗ = (λ(σ∗),x(σ∗), z(σ∗)), which is constructed from σ∗

by the procedure described in Section 2.3, forms an optimal solution to model ILP. We define

Q∗ as the total product quantity shipped out on or before day K under the optimal solution

π∗ (see Figure 2.5(a) for an illustrative example). Thus, dQ∗/ce also indicates the earliest

possible day on which the production is completed of all the products for accepted orders

that are shipped out on or before day K under π∗. Hence, K ≥ dQ∗/ce, implying that K

and Q∗ satisfy (2.16).

Consider the restricted problem RP(K,Q∗). Since 0 ≤ Q∗ ≤ ∑
i∈N qi = Q̄, during

the iteration in Steps 2–4, Algorithm 2.4 must have applied Algorithm 2.3 to solve the

restricted problem RP(K,Q∗). Thus, if problem RP(K,Q∗) has a feasible solution, then

Algorithm 2.3 must return an optimal solution (λ̃, x̃, z̃, Ĩ) to it, which yields a feasible

solution π̃ = (λ̃, x̃, z̃) to model ILP. For each i ∈ N , let ξi(π
∗) and ξi(π̃) indicate the costs of

order i under the solution π∗ and the solution π̃, respectively. Since the solution returned by

Step 5 of Algorithm 2.4 must have a total cost no greater than that of solution π̃, to prove

that Algorithm 2.4 has a worst-case performance ratio of (1 + ε), we only need to prove that

problem RP(K,Q∗) has a feasible solution, and that

∑
i∈N

ξi(π̃) ≤ (1 + ε)
∑
i∈N

ξi(π
∗). (2.30)

Second, we construct an order subset I ′ from π∗, and then construct a new order sequence

σ′ from σ∗ and I ′ as follows, which yield a feasible solution π′ to model ILP such that π′ and

I ′ also form a feasible solution to the restricted problem RP(K,Q∗). Let (λ,x, z) denote

(λ(σ∗),x(σ∗), z(σ∗)) of solution π∗. We define I ′ to be the set of accepted orders shipped after
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Figure 2.5: Illustrative examples for the proof of Theorem 2.6 where K = 2 and d1 ≤ d2 ≤
. . . ≤ d6: Defining σ∗, Q∗, I ′, σ′, and π′. Note that order 5 is rejected in the optimal solutions
shown here.

Day 1 Day 2 Day 3 Day 4

(4) (2)

4

σ∗

π∗

(K = 2)

56 3 6

(6) (1) (3)

Q∗ = 10 I ′ = {1, 3, 6}

(a) An optimal solution π∗ = (λ(σ∗),x(σ∗), z(σ∗)) is constructed from the order sequence σ∗ =
(4, 2, 6, 1, 3), and from π∗, Q∗ is defined to be the total product quantity of orders shipped out on or
before day K = 2 under π∗, and the orders whose products are shipped out after day K = 2 under π∗ form
set I ′ = {1, 3, 6}.

Day 1 Day 2 Day 3 Day 4

(4) (2)

4

σ′

π′

(K = 2)

6 563

(1) (3) (6)

(b) From σ∗ and I ′ = {1, 3, 6} shown in Figure 2.5(a), a new order sequence σ′ = (4, 2, 1, 3, 6) is constructed
by rearranging orders of I ′ in an increasing order of their indices, and from σ′ a new solution π′ =
(λ(σ′),x(σ′), z(σ′)) is constructed.

Q∗ units of products under π∗ (see Figure 2.5(a) for an illustrative example). Accordingly,

the first |{i|N \ I ′, λi = 1}| orders of sequence σ∗ are shipped out on or before day K,

forming set {i|N \ I ′, λi = 1}, and the last |I ′| orders of sequence σ∗ are shipped out on or

after day K, forming set I ′. From π∗ and I ′, we can construct a new order sequence σ′ by

changing only the subsequence of the orders in I ′, such that they are in an increasing order

of their indices. Following the procedure described in Section 2.3 we can construct from

σ′ a solution π′ = (λ(σ′),x(σ′), z(σ′)) for model ILP (see Figure 2.5(b) for an illustrative

example). Lemma 2.4 can then be established.

Lemma 2.4. π′ = (λ(σ′),x(σ′), z(σ′)) is a feasible solution to model ILP of problem IPTSDA,

and (λ(σ′),x(σ′), z(σ′), I ′) is a feasible solution to the restricted problem RP(K,Q∗).



CHAPTER 2: PROBLEM IPTSDA 52

Proof. Let n̄ = |σ′| denote the length of the order sequence σ′. Since σ′ is constructed from

σ∗ by changing only the subsequence of the last |I ′| orders, we have that |σ∗| = |σ′| = n̄.

Accordingly, we can represent the order sequences σ∗ and σ′ by σ∗ = (σ∗1, σ
∗
2, · · · , σ∗n̄) and

σ′ = (σ′1, σ
′
2, · · · , σ′n̄), respectively. Let j indicate the smallest index such that order σ∗j+1

appears ahead of order σ∗j in σ′. If such an index j does not exist, implying that σ∗ = σ′,

then since (λ(σ∗),x(σ∗), z(σ∗), I ′) is a feasible solution to RP(K,Q∗), which can be seen

from the definition of I ′ and Q∗, we can see that Lemma 2.4 holds true.

Otherwise, from the definition of σ′ we know that σ∗j+1 < σ∗j , which, together with (2.17),

implies that dσ∗j+1
≤ dσ∗j . We can construct a new sequence σ′′ from σ∗ by swapping the

positions of orders σ∗j and σ∗j+1. Consider the solution π′′ = (λ(σ′′),x(σ′′), z(σ′′)) constructed

from σ′′ by the procedure described in Section 2.3. We now show as follows that π′′ is a

feasible solution to model ILP. First, from the construction procedure we know that under

each solution π ∈ {π∗, π′′}, each order σj′′ with j ∈ {1, 2, · · · , n̄} is accepted, and products

for each order σj′′ with j ∈ {1, 2, · · · , n̄} both complete their productions and are shipped out

on day d∑j′′

j′=1 qσj′/ce, so that the production capacity of each day is not exceeded. Second,

since σ′′j′ = σ∗j′ for j′ ∈ {1, 2, · · · , j−1, j+2, · · · , n̄}, we have d∑j′′

j′=1 qσ′′j′/ce = d∑j′′

j′=1 qσ∗j′/ce

for j′′ ∈ {1, 2, · · · , j − 1, j + 1, · · · , n̄}. Thus, since the optimal solution π∗ is feasible to

model ILP, and since dσ∗
j′′

= dσ′′
j′′

, we obtain that for each j′′ ∈ {1, 2, · · · , j−1, j+ 1, · · · , n̄},

d
j′′∑
j′=1

qσ′′
j′
/ce = d

j′′∑
j′=1

qσ∗
j′
/ce ≤ dσ∗

j′′
= dσ′′

j′′
. (2.31)

Thus, the shipped-out day of each order σ′′j′′ with j′′ ∈ {1, 2, · · · , j − 1, j + 1, · · · , n̄} is not

later than its committed delivery due date. For the remaining two orders σ′′j and σ′′j+1, we

can also see that their shipped-out days are not later than their committed delivery due

dates. To see this, we first know from (2.31) that d∑j+1
j′=1 qσ′′j′/ce = d∑j+1

j′=1 qσ∗j′/ce. For order
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σ′′j , its shipped-out day is d∑j
j′=1 qσ′′j′/ce, which, due to σ∗j+1 = σ′′j and (2.31), satisfies that

d
j∑

j′=1

qσ′′
j′
/ce ≤ d

j+1∑
j′=1

qσ′′
j′
/ce = d

j+1∑
j′=1

qσ∗
j′
/ce ≤ dσ∗j+1

= dσ′′j ,

and thus is not later than its committed delivery due date. For order σ′′j+1, its shipped-out

day is d∑j+1
j′=1 qσ′′j′/ce, which, due to dσ∗j+1

≤ dσ∗j and (2.31), satisfies that

d
j+1∑
j′=1

qσ′′
j′
/ce = d

j+1∑
j′=1

qσ∗
j′
/ce ≤ dσ∗j+1

≤ dσ∗j = dσ′′j+1
,

and thus is not later than its committed delivery due date.

Hence, π′′ is a feasible solution to model ILP. Replacing σ∗ with σ′′ and repeating the

argument above until σ′′ = σ′, we can obtain that the resulting π′ is still a feasible solution

to model ILP.

Moreover, consider I ′ and the shipping plans z(σ′) and z(σ∗). LetA(σ∗) = {σ∗1, σ∗2, · · · , σ∗n̄}

and A(σ′) = {σ′1, σ′2, · · · , σ′n̄} denote the sets of orders in σ∗ and in σ′, respectively. By the

definition of Q′, the definition of I ′, and the construction of π∗, we know that there exists an

index n′ such that I ′ = {σ∗n′+1, σ
∗
n′+2, · · · , σ∗n̄} contains all the accepted orders shipped out

after day K under z(σ∗), and that A(σ∗) \ I ′ = {σ∗1, σ∗2, · · · , σ∗n′} containing all the accepted

orders shipped out on or before day K under z(σ∗). Since σ′ and σ∗ differ only in the sub-

sequence of orders in I ′, we know that A(σ∗) = A(σ′). Accordingly, we can show as follows

that the order acceptance plan λ(σ′), the order subset I ′, and the shipping plan z(σ′) satisfy

the additional conditions (i)–(iv) of problem RP(K,Q∗):

• By the definition of I ′ and A(σ∗) = A(σ′), we know that orders in I ′ are all accepted

in λ(σ′). The additional condition (i) is satisfied.

• By the definition of I ′ and A(σ′), the total quantity of the accepted orders inN\I ′ under

λ(σ′) equals
∑

i∈A(σ′)\I′ qi, which, together with the definition of Q∗ and A(σ′) = A(σ∗),

satisfies that
∑

i∈A(σ′)\I′ qi =
∑

i∈A(σ∗)\I′ qi = Q∗. The additional condition (ii) is
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satisfied.

• For each order σj′′ ∈ I ′ where j′′ ≥ n′ + 1, its shipped-out day under z(σ′) is

d∑j′′

j′=1 qσ′j′/ce. It can be seen that
∑j′′

j′=1 qσ′j′ =
∑n′

j′=1 qσ′j′ +
∑j′′

j′=n′+1 qσ′j′ = Q∗ +∑j′′

j′=n′+1 qσ′j′ . Since orders in I ′ are ordered in σ′ in an increasing order of their in-

dices, we have
∑j′′

j′=n′+1 qσ′j′ =
∑

i′∈I′:i′≤σ′
j′′
qi′ , implying that d∑j′′

j′=1 qσ′j′/ce = d(Q∗ +∑
i′∈I′:i′≤σ′

j′′
qi′)/ce. Thus, for each order i ∈ I ′, its shipped-out day under z(σ′) is

d(Q∗ +
∑

i′∈I′:i′≤i qi′)/ce. The additional condition (iii) is satisfied.

• For each order σ′j′′ ∈ A(σ′) \ I ′ where 1 ≤ j′′ ≤ n′, its shipped-out day under z(σ′)

is d∑j′′

j′=1 qσ′j′/ce. It can be seen that
∑j′′

j′=1 qσ′j′ ≤
∑n′

j′=1 qσ′j′ =
∑

i∈A(σ′)\I′ qi =∑
i∈A(σ∗)\I′ qi = Q∗, implying that d∑j′′

j′=1 qσ′j′/ce ≤ dQ
∗/ce = K ′. Thus, for each

order i ∈ A(σ′) \ I ′, its shipped-out day under z(σ′) must be on or before day K ′. The

additional condition (iv) is satisfied.

Therefore, (λ(σ′),x(σ′), z(σ′), I ′) is a feasible solution to RP(K,Q∗). Lemma 2.4 is proved.

By Lemma 2.4, we obtain that problem RP(K,Q∗) has a feasible solution (λ(σ′),x(σ′), z(σ′), I ′),

and that π′ = (λ(σ′),x(σ′), z(σ′)) is a feasible solution to model ILP. Thus, to show that

Algorithm 2.4 has a worst-case performance ratio of (1+ε), we only need to prove (2.30). To

prove this, for each i ∈ N , let ξi(π
′) indicate the cost of order i under π′. Since (λ̃, x̃, z̃, Ĩ)

is an optimal solution to problem RP(K,Q∗), by Lemma 2.4, the total cost of (λ̃, x̃, z̃, Ĩ)

should not be greater than that of (λ(σ′),x(σ′), z(σ′), I ′). Thus, the total cost of π̃ = (λ̃, x̃, z̃)

should not be greater than that of π′ = (λ(σ′),x(σ′), z(σ′)), implying that

∑
i∈N

ξi(π̃) ≤
∑
i∈N

ξi(π
′) =

∑
i∈N\I′

ξi(π
′) +

∑
i∈I′

ξi(π
′). (2.32)

Moreover, since the positions of accepted orders of N \ I ′ in σ′ are the same as that in σ∗,

the shipped-out days for accepted orders of N \ I ′ under π′ are the same as that under π∗.
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Also, we know that the acceptance plan λ(σ′) is the same as λ(σ∗). Thus, we have

∑
i∈N\I′

ξi(π
′) =

∑
i∈N\I′

ξi(π
∗). (2.33)

From (2.32) and (2.33) we obtain that

∑
i∈N

ξi(π̃) ≤
∑
i∈N\I′

ξi(π
′) +

∑
i∈I′

ξi(π
′) =

∑
i∈N\I′

ξi(π
∗) +

∑
i∈I′

ξi(π
′). (2.34)

Third, we construct a new instance of problem IPTSDA by splitting each accepted order

i ∈ I ′ into qi orders with each having a unit product quantity and the same committed

delivery due date as order i. We denote these unit orders by (i, 1), (i, 2), . . ., and (i, qi).

Thus, these unit orders split from order i do not need to be shipped out together.

Consider any sequence σ of orders such that π = (λ(σ),x(σ), z(σ)), which is constructed

from σ by the procedure described in Section 2.3, forms a feasible solution to the original

problem instance. From σ, we can construct an order sequence σ̂ of orders for the new

problem instance by replacing each order i ∈ I ′ in σ with a subsequence of the unit orders

(i, 1), (i, 2), . . ., and (i, qi). By the procedure described in Section 2.3 we can also construct

from σ̂ a solution π̂ = (λ̂(σ̂), x̂(σ̂), ẑ(σ̂)) for the new problem instance. For each i ∈ I ′,

let ξ̂i(π̂) indicate the total cost of all the unit orders (i, p) split from order i under π̂. See

Figure 2.6 for two illustrative examples for σ = σ∗ and σ = σ′, respectively. Lemma 2.5 can

then be established for π̂.

Lemma 2.5. π̂ is a feasible solution to the new instance of problem IPTSDA satisfying that

ξ̂i(π̂) ≤ ξi(π) for each i ∈ I ′.

Proof. It can be seen that solution π̂ of the new instance and the solution π of the original

instance satisfies the following properties:

(i) For each accepted order in N \ I ′, the production completion day and the shipped-out

day of order i under π̂ are the same as those under π;
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Figure 2.6: Illustrative examples for the proof of Theorem 2.6 where K = 2 and
d1 ≤ d2 ≤ . . . ≤ d6 where orders in I ′ = {1, 3, 6} are split into unit orders
(1, 1), (1, 2), (1, 3), (3, 1), · · · , (3, 6), (6, 1), · · · , (6, 5).

(6,1) ... (6,5) (1,1)...(1,3) (3,1) ... .... (3,6)

Day 1 Day 2 Day 3 Day 4

(4) (2)

4

σ̂∗

π̂∗

(K = 2)

1 16 1

(a) From σ∗, an order sequence σ̂∗ = {4, 2, (6, 1), (6, 2), · · · , (6, 5), (1, 1), (1, 2), (1, 3), (3, 1), (3, 2), · · · , (3, 6)}
is constructed for the new problem instance, and from σ̂∗ a solution π̂∗ = (λ̂(σ̂∗), x̂(σ̂∗), ẑ(σ̂∗)) is constructed,
in which four of the five unit orders split from order 6, and three of the six unit orders split from order 3 are
shipped out one day earlier than the production completion days of order 6 and order 3, respectively.

(6,1) ... (6,5)(1,1)...(1,3) (3,1) ... .... (3,6)

Day 1 Day 2 Day 3 Day 4

(4) (2)

4

σ̂′

π̂′

(K = 2)

6 11 1

(b) From σ′, an order sequence σ̂′ = {4, 2, (1, 1), (1, 2), (1, 3), (3, 1), (3, 2), · · · , (3, 6), (6, 1), (6, 2), · · · , (6, 5)}
is constructed for the new problem instance, and from σ̂′ a solution π̂′ = (λ̂(σ̂′), x̂(σ̂′), ẑ(σ̂′)) is constructed,
in which one of the six unit orders split from order 3, and two of the five unit orders split from order 6 are
shipped out one day earlier than the production completion days of orders 3 and 6, respectively.

(ii) For each i ∈ I ′ and each p ∈ {1, 2, · · · , qi}, the unit order (i, p) is accepted under π̂, and

both the production completion day and the shipped-out day of the unit order (i, p)

under π̂ are the same as the day when the first p product units of order i are produced

under π.

Due to (ii) above, for each unit order (i, p) split from order i ∈ I ′, its product is shipped out

as soon as it is produced, and the shipped-out day under π̂ is no later than that of order

i under π, which cannot be later than the committed delivery due date of order i. Thus,

the shipped out day of each unit order (i, p) is no later than its committed delivery due

date under π̂. This, together with (i) above, implies that the solution π̂ is feasible to the

new instance of problem IPTSDA, and that the total cost of all the unit orders (i, p) under

π̂ cannot be greater than the cost of order i under π, i.e., ξ̂i(π̂) ≤ ξi(π) for i ∈ I ′. Thus,
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Lemma 2.5 is proved.

Applying Lemma 2.5 to order sequences σ∗ and σ′, we can obtain sequences σ̂∗ and

σ̂′ for the new problem instance, respectively, as well as obtain feasible solutions π̂∗ =

(λ̂(σ̂∗), x̂(σ̂∗), ẑ(σ̂∗)) and π̂′ = (λ̂(σ̂′), x̂(σ̂′), ẑ(σ̂′)) to the new problem instance, respectively,

satisfying that

ξ̂i(π̂∗) ≤ ξi(π
∗) and ξ̂i(π̂′) ≤ ξi(π

′), for i ∈ I ′. (2.35)

Moreover, sequence σ̂′ can also be transformed from sequence σ̂∗ by repetitively interchanging

the positions of any two unit orders (i, p) and (i′, p′) with i > i′ and (i, p) produced earlier

than (i′, p′), or with i = i′, p > p′, and (i, p) produced earlier than (i′, p′), where i ∈ I ′,

p ∈ {1, 2, · · · , pi}, i′ ∈ I ′, and p′ ∈ {1, 2, · · · , pi′}. Note that such two unit orders (i, p) and

(i′, p′) have the same order quantity (which is one). By following an argument similar to that

in the proof of Theorem 2.2, we can obtain that the total shipping cost of orders in I ′, under

the solution constructed from the order sequence σ∗, is not increased after each interchange

of the positions of orders (i, p) and (i′, p′). Thus, we have
∑

i∈I′ ξ̂i(π̂
′) ≤∑i∈I′ ξ̂i(π̂

∗), which,

together with (2.35), implies that

∑
i∈I′

ξ̂i(π̂′) ≤
∑
i∈I′

ξ̂i(π̂∗) ≤
∑
i∈I′

ξi(π
∗). (2.36)

Fourth, we are now going to investigate the difference between
∑

i∈I′ ξi(π
′) and

∑
i∈I′ ξ̂i(π̂

′),

that is, the difference between the total shipping cost of orders in I ′ under π′ and that of

unit orders split from orders in I ′ under π̂′. For this, we establish Lemma 2.6 below.

Lemma 2.6.
∑

i∈I′ ξi(π
′) ≤∑i∈I′ ξ̂i(π̂

′) + ε
∑

i∈I′ ξi(π
∗).

Proof. If m ≤ d1/εe, i.e., m is bounded by a fixed constant d1/εe, then K = min{d1/εe,m} =

m. Thus, by definition, I ′ is empty, implying that
∑

i∈I′ ξi(π
′) =

∑
i∈I′ ξ̂i(π̂

′)+ε
∑

i∈I′ ξi(π
∗) =

0. Lemma 2.6 holds true.
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Otherwise, m > d1/εe, and thus K = min{d1/εe,m} = d1/εe. For each i ∈ I ′, let τi

indicate the shipped-out day of order i under solution π′. Since qi ≤ c, by the definitions

of solutions π′ and π̂′, we can see that under π̂′, each unit order (i, p) split from order i for

p ∈ {1, 2, · · · , qi} is accepted with its shipped-out day being equal to either (τi − 1) or τi.

Thus, by G(s, y) = y(α− βs) in (2.1), we have

ξi(π
′) ≤ ξ̂i(π̂′) + qiβ{[di − (τi − 1)]− (di − τi)]} = ξ̂i(π̂′) + βqi, for i ∈ I ′. (2.37)

Therefore, by (2.36) and (2.37) we obtain that

∑
i∈I′

ξi(π
′) ≤

∑
i∈I′

[ξ̂i(π̂′) + βqi] =
∑
i∈I′

ξ̂i(π̂′) + β
∑
i∈I′

qi. (2.38)

Since the orders in I ′ are all accepted and are shipped out after day K under π∗, the total

shipping cost
∑

i∈I′ ξi(π
∗) for these orders cannot be cheaper than [α−β(m−1−K)]

∑
i∈I′ qi.

Thus, since α − β(m − 1) ≥ 0 stated in (2.2) implies that β ≤ [α − β(m − 1 −K)]/K, we

can obtain that

β
∑
i∈I′

qi ≤ {[α− β(m− 1−K)]/K}
∑
i∈I′

qi ≤ [
∑
i∈I′

ξi(π
∗)]/K. (2.39)

Therefore, by (2.38), (2.39), and K = d1/εe ≥ 1/ε, we obtain that

∑
i∈I′

ξi(π
′) ≤

∑
i∈I′

ξ̂i(π̂′) + β
∑
i∈I′

qi ≤
∑

i∈I′ ξ̂i(π̂
′) +

∑
i∈I′ ξi(π

∗)/K

≤ ∑
i∈I′ ξ̂i(π̂

′) + ε
∑

i∈I′ ξi(π
∗), (2.40)

implying that Lemma 2.6 also holds true. This completes the proof of Lemma 2.6.

We can now complete the proof of Theorem 2.6 as follows: From (2.34), (2.36), and
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Lemma 2.6, we can prove that (2.30) holds true as follows:

∑
i∈N

ξi(π̃) ≤
∑
i∈N\I′

ξi(π
∗) +

∑
i∈I′

ξi(π
′) ≤

∑
i∈N\I′

ξi(π
∗) +

∑
i∈I′

ξ̂i(π̂′) + ε
∑
i∈I′

ξi(π
∗)

≤
∑
i∈N\I′

ξi(π
∗) +

∑
i∈I′

ξi(π
∗) + ε

∑
i∈I′

ξi(π
∗) ≤ (1 + ε)

∑
i∈N

ξi(π
∗) (2.41)

With (2.30) proved and Lemma 2.4 established, as we have explained earlier, Algorithm 2.4

must have a worst-case performance ratio of (1 + ε) for any given ε > 0. This, together with

Lemma 2.3, implies that Algorithm 2.4 is a pseudo-polynomial time approximation scheme

for problem IPTSDA with a worst-case performance ratio of (1 + ε) for any given ε > 0.

Hence, Theorem 2.6 is proved.

Moreover, consider the case where K = min{m, d1/εe} = m. We know that m ≤ d1/εe,

i.e., m is bounded by the constant d1/εe. Thus, by definition, in the restricted problem

R(K,Q), there exists a constant Q̄′ such that I ′ is empty when Q = Q̄′. This, together with

(2.34), (2.36), and Lemma 2.6, implies that
∑

i∈N ξi(π̃) ≤ ∑
i∈N\I′ ξi(π

∗) =
∑

i∈N ξi(π
∗).

Since π∗ is an optimal solution to problem IPTSDA, π̃, as well as the solution returned by

Algorithm 2.4, must also be so.

2.5.3 Extension

Algorithm 2.4 can be directly applied to solve more general problems, such as those with ship-

ping cost functions G(s, y) that are linearly non-decreasing in y and convexly non-increasing

in s. In the proof of the worst-case performance ratio of (1 + ε), we utilize the linearity of

G(s, y) in y only when proving (2.36), (2.37), (2.39), and (2.40) in Section 2.5.2.4. However,

this situation can be extended to a more general case where G(s, y) is linear in y and con-

vexly non-increasing in s, and G(s, y) can be represented by a piecewise linear function in

s. Without loss of generality, we assume that the first linear piece of G(s, y) is y(α − βs).

For this more general case, by an argument similar to that in Section 2.3 for extending the

proof of Theorem 2.2, we can obtain that (2.36) in Section 2.5.2.4 still holds. Since G(s, y)



CHAPTER 2: PROBLEM IPTSDA 60

is convexly non-increasing in s, which implies that G(s, y) is continuous in s, we can obtain

that G(s − 1, y) ≤ G(s, y) + βy. Thus, (2.37) of Section 2.5.2.4 still holds. Moreover, if

α − (m − 1)β ≥ −κβ is satisfied for some integer constant κ ≥ 0, then (2.39) of Section

2.5.2.4 can be extended to

β
∑
i∈I′

qi ≤ {[α− β(m− 1−K)]/(K − κ)}
∑
i∈I′

qi ≤ [
∑
i∈I′

zi(π
∗)]/(K − κ). (2.42)

We can modify Algorithm 2.4 by changing the value of K from d1/εe to d1/εe + κ, so that

(2.40) of Section 2.5.2.4 with K replaced by (K−κ) holds. Thus, under the condition that κ

is an integer constant, the modified Algorithm 2.4 with K = d1/εe+κ is a pseudo-polynomial

time approximation scheme with a worst-performance ratio of (1 + ε) for the more general

case where G(s, y) is linearly non-decreasing in y and convexly piecewise non-increasing in

s.

2.6 Computational Experiments

We report on the computational experiments carried out to test the performance of the three

newly proposed algorithms over randomly generated instances under two settings, with order

acceptance decisions not taken into account and with order acceptance decisions taken into

account, respectively. The experiments run on a PC with an Intel(R) Core(TM) i7-7700

3.60-GHz CPU and 32 GB of RAM, and the algorithms are in C++.

For each combination of the number of orders n and the length of planning horizon m,

given a set E of all possible order quantities, we generate ten instances randomly in the

following way.

(i) Order quantity: Each qi is an integer randomly drawn from E.

(ii) Committed delivery due date: Each di is an integer randomly drawn from {1, . . . ,m}.

(iii) In the instances without order acceptance decisions, production capacity, c is an integer
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randomly drawn from {cmin, cmin+1, . . . , cmax} where cmin = maxt∈{1,2,...,m}d
∑

i∈N :di≤t qi/te

and cmax = d1.1cmine, so as to ensure the existence of feasible solutions for problem

IPTSDA.

(iv) In the instances with order acceptance decisions, production capacity, c is an integer

randomly drawn from the interval [0.9cmin, 1.0cmin], so as to ensure that order rejections

occur in feasible solutions to problem IPTSDA.

(v) Values of α and β: β is an integer randomly drawn from {1, 2, . . . , 5} and α is an

integer randomly drawn from {(m− 1)β+ 1, . . . , 2(m− 1)β}, so as to satisfy condition

(2.2).

(vi) Rejection cost: Each ri = αiqi, where αi is an integer randomly drawn from the

interval [α, 2α], so that the order’s rejection cost increases in the order quantity, being

consistent with the observation in common practice.

For the first algorithm (Algorithm 2.1), by Theorem 2.3 it is an exact algorithm that

runs in polynomial or pseudo-polynomial time when η is a constant. Under the setting

where order acceptance decisions are not considered and the setting where order acceptance

decisions are considered, we conduct experiments for different values η chosen from {5, 6, 7}

and from {1, 2, 3}, respectively. or each value of η, we generate E by randomly selecting η

elements from {1, 2, · · · , 10}. In this way we generate ten random instances for each pair of

m ∈ {5, 10, 15} and n ∈ {40, 80, 120, 160, 200} and for each value of η. Under the setting

where order acceptance decisions are not taken into account, our computational results show

that Algorithm 2.1 with setting p̂k = 0 for each k ∈ {1, 2, . . . , η} in (2.12) can solve all

the instances with η = 5 in 5.0 seconds each. For instances with η = 6 and n = 200

and instances with η = 7 and n ≥ 160, our computer does not have sufficient memory

to execute Algorithm 2.1, since the space complexity of Algorithm 2.1 grows exponentially

with η. Under the setting where order acceptance decisions are taken into account, our

computational results show that Algorithm 2.1 can solve all the instances with η = 1 and
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η = 2 in 6.6 seconds each. For instances with η = 3 and n ≥ 120, our computer does not

have sufficient memory to execute Algorithm 2.1. These results indicate that Algorithm 2.1

is efficient only when η is small.

For the second algorithm (Algorithm 2.2), by Theorem 2.4 it is an exact algorithm that

runs in pseudo-polynomial time when m is a constant. We conduct experiments for differ-

ent values of m ∈ {2, 3, 4}. Given E = {1, . . . , 10}, we generate ten random instances for

each pair of m ∈ {2, 3, 4} and n ∈ {40, 80, 120, 160, 200}. Under the setting where order

acceptance decisions are not taken into account, our computational results show that Algo-

rithm 2.2 with Qm =
∑i

j=1 qi−
∑m−1

t=1 Qt in (2.15) can solve all the instances with m ∈ {2, 3}

in 0.6 second each. For instances with m = 4 and n ≥ 80, our computer does not have suffi-

cient memory to execute Algorithm 2.2, since the space complexity of Algorithm 2.2 grows

exponentially with m. Under the setting where order acceptance decisions are taken into

account, our computational results show that Algorithm 2.2 can solve all the instances with

m = 2 in 1.2 second each. For instances with m ≥ 3, our computer does not have sufficient

memory to execute Algorithm 2.2. These results indicate that Algorithm 2.2 is efficient only

when m is small.

For the third algorithm (Algorithm 2.4), which is an approximation scheme, by Theo-

rem 2.6 and Lemma 2.3 its worst-case performance ratio and running time depend on ε. In

our experiment, we let ε be 100%. Given E = {1, . . . , 10}, we generate ten instances for

each pair of m ∈ {5, 10, 15} and n ∈ {40, 80, 120, 160, 200}. For each instance, we obtain an

approximation solution by Algorithm 2.4, as well as obtain a lower bound on the total cost

of the optimal solution by solving its relaxation with orders allowed to be split (according

to Corollary 2.1).

The computational results for Algorithm 2.4 are shown in Table 2.2. For each instance,

we compute the optimality gap by (ub− lb)/lb× 100%, where lb denotes the obtained lower

bound value, and ub denotes the total cost of the obtained approximation solution. In

Table 2.2, for the ten instances of each pair m and n, columns “M G” and “A G” present
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Table 2.2: Computational results for the approximation scheme.

Without order acceptance decisions With order acceptance decisions

m n M G(%) A G(%) M T(s) A T(s) M G(%) A G(%) M T(s) A T(s)

5 40 0.48 0.19 0.0 0.0 0.08 0.01 0.4 0.2

80 0.76 0.14 0.0 0.0 0.00 0.00 3.8 2.3

120 0.11 0.01 0.0 0.0 0.00 0.00 11.8 10.0

160 0.24 0.02 0.0 0.0 0.00 0.00 39.7 31.3

200 0.06 0.02 0.0 0.0 0.00 0.00 130.2 80.5

10 40 0.72 0.35 0.0 0.0 0.14 0.08 0.1 0.1

80 0.44 0.13 0.0 0.0 0.04 0.01 2.8 1.0

120 0.20 0.08 0.0 0.0 0.01 0.00 4.2 3.3

160 0.19 0.06 0.0 0.0 0.02 0.00 18.7 10.7

200 0.07 0.03 0.0 0.0 0.01 0.00 39.2 26.3

15 40 0.82 0.52 0.0 0.0 0.41 0.22 0.0 0.0

80 0.35 0.15 0.0 0.0 0.07 0.03 0.7 0.4

120 0.30 0.13 0.0 0.0 0.03 0.01 2.4 1.6

160 0.10 0.06 0.0 0.0 0.01 0.01 9.3 5.2

200 0.14 0.08 0.0 0.0 0.03 0.01 23.6 12.7

average 0.33 0.13 0.0 0.0 0.06 0.03 19.1 12.4

the maximum and average optimality gaps, and columns “M T” and “A T” present the

maximum and average running times in seconds. The results in Table 2.2 demonstrate

that the approximation scheme in Algorithm 2.4 can produce close-to-optimal solutions for

problem IPTSDA in short running times. For the setting where order acceptance decisions

are not taken into account, the maximum (average) optimality gap is 0.33% (0.13%) and the

maximum (average) running time is 0.0 (0.0) second. For the setting where order acceptance

decisions are taken into account, the maximum (average) optimality gap is 0.06% (0.03%),

and the maximum (average) running time is 19.1 (12.4) seconds. For all the instances,

the maximum optimality gap is less than 1%. This indicates that for randomly generated
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instances, Algorithm 2.4 can produce solutions of significantly better quality than its worst-

case guarantee, and thus has practical value.

2.7 Summary

In this chapter, we have studied problem IPTSDA, which is an integrated production and

transportation scheduling problem with committed delivery due dates and with order ac-

ceptance decisions taken into account. This problem is commonly faced by make-to-order

manufacturing companies under a commit-to-delivery business mode. A special case of prob-

lem IPTSDA is known to be strongly NP-hard, and it is thus unlikely that problem IPTSDA

can be solved by any polynomial-time or pseudo-polynomial time exact algorithm, or any

FPTAS, unless NP=P. We develop three algorithms, two of which are exact algorithms that

can solve problem IPTSDA to optimality. We prove that these exact algorithms run in poly-

nomial and pseudo-polynomial times for two practical cases: the case with a fixed number

of possible order quantities, and the case with a fixed-length planning horizon. The other

algorithm that we develop is a pseudo-polynomial time approximation scheme for solving

problem IPTSDA, which guarantees a worst-case performance ratio of (1 + ε) for any fixed

ε > 0. According to our computational results, this approximation scheme also performs well

in producing close-to-optimal solutions for problem instances that are randomly generated.



Chapter 3

Integrated Production and Transporta-

tion Scheduling with Committed De-

livery Due Dates and Inventory Hold-

ing Cost

3.1 Introduction

In this chapter, we focus on a problem that integrates production and transportation schedul-

ing (IPTS) which is always faced by a make-to-order manufacturer under a commit-to-

delivery business mode. A make-to-order manufacturer would not produce products until

receiving orders from customers. And the manufacturer needs to ship the products to cus-

tomers before the committed delivery due date of an order and bear the shipping cost under

the commit-to-delivery business mode. Typically, a manufacturer will use third-party logis-

tics (3PL) to deliver the products to its customers. These 3PL companies can provide mul-

tiple shipping modes with different shipping times and shipping costs to the manufacturer.

And it will take more costs to choose faster shipping modes. Also, during the production

process of an order, some products that are completed for production but not shipped on

the same day will be temporarily stored in a warehouse which incurs inventory holding costs.

Hence, the manufacturer faces the problem of integrated production and transportation with

65
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committed delivery due dates and inventory holding costs, we refer to it as problem IPTSDI.

Accordingly, for problem IPTSDI, the manufacturer needs to determine a production plan

and a shipping plan while minimizing the total shipping costs and the total inventory holding

costs with the committed delivery due dates of all orders satisfied.

In fact, the problem IPTSDI becomes more complex with incorporating the inventory

holding costs into the objective function. Owing to the inventory holding costs incurred by

the completed products which are not shipped on the same day, the manufacturer wants to

postpone the production as late as possible. However, imposed by the committed delivery

due date of each order, this production and shipping policy would lead to an increase in

the shipping cost due to the decrease of transportation time. Therefore, the manufacturer

needs to subtly balance the shipping costs and inventory holding costs when determining a

production plan and a shipping plan.

The main contributions of the research in this chapter can be summarized as follow. First,

with a relaxed problem of IPTSDI that focuses on deciding the daily aggregate production

quantity and shipping quantity for each order, we develop a backward-forward algorithm that

constructs an optimal solution to problem IPTSDI given a shipping plan and we find several

properties held by the optimal solution. Second, for the case when the number of possible

order quantities is bounded by a constant and the case when the planning horizon is bounded

by a constant, we separately propose two pseudo-polynomial time exact algorithms. Third,

we analyze the complexity of the problem IPTSDI when the unit inventory holding cost goes

to infinity, i.e, no inventory is allowed during the production and shipping procedures. And

we prove that there is no finite ratio pseudo-polynomial time approximation algorithm in

this case. Fourth, by extending the second exact algorithm that solves the problem IPTSDI

for the case when the planning horizon is fixed, we also establish a pseudo-polynomial time

approximation algorithm that can solve problem IPTSDI with a worst-case performance

ratio of (1 + ε) where ε > 0.

The remainder of this chapter proceeds as follows: Section 3.2 describes the problem
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formally and Section 3.3 discusses the optimality properties of this problem. Section 3.4 ex-

amines the two exact algorithms and Section 3.5 shows the complexity of problem IPTSDI

when the unit inventory holding cost goes to infinity. Section 3.6 examines the approxima-

tion scheme. Finally, we report the results of the computational experiments for the three

algorithms in Section 3.7 and summarize this chapter in Section 3.8.

3.2 Problem Description and Formulation

We extend the settings described for problem IPTSD in Zhong et al. (2010) to formulate

problem IPTSDI studied in this paper. The planning horizon of the manufacturer is m days

and let T = {1, 2, . . . ,m} to be the set of days. Before the start of the planning horizon,

an order set N = {1, 2, . . . , n} arrives to the manufacturer from n different customers to

produce certain products. Each order i is associated with an order quantity qi representing

the number of products needed to be produced and a committed delivery due date di and di

is an integer with 1 ≤ di ≤ m. This means that the customer should receive the completed

products before or on the committed delivery due date. The manufacturer should produce

the products on a single production line with a daily production capacity to be c. In other

words, the total quantities of products produced in a day should not exceed c. Following

the assumptions in Zhong et al. (2010), all these products are identical in unit weight and

consumption of production capacity. And every order quantity is also less or equal to the

daily production capacity, i.e., qi ≤ c for i ∈ N . In fact, these assumptions are commonly

seen in industries, for example, the computer manufacturing industry.

We also assume that 3PL company is used to deliver the completed products to its

customers by the manufacturer. The 3PL company would pick up and ship these completed

products at the end of each day. We also assume that all products of an order should

be shipped out on the same day, that is, no partial deliveries are allowed for each order.

The 3PL also adopts multiple shipping modes that are associated with the shipping days
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(shipping times). To be consistent with Zhong et al. (2010), we also adopt a linear shipping

cost function G(s, y):

G(s, y) = y(α− βs), (3.1)

where α > 0, β > 0 and satisfy (3.2) to keep the G(s, y) positive even with the (m− 1)-day

shipping mode.

α− β(m− 1) > 0. (3.2)

Moreover, for each order i ∈ N , products that are processed completely but not shipped

on the same day incur inventory holding costs and h represents the inventory holding cost

per unit per day. Following the logic in Li et al. (2020), the inventory holding costs are

essentially the opportunity costs of the expense associated with inventories of the product,

which may often be included in the shipping costs. Hence, if the inventory holding time of

one unit of product in order i is at least 1/ρ day during its transportation where ρ ≥ 1, an

inventory holding cost h/ρ should be included in the shipping cost. Hence, for all products

in order i with order quantity qi and shipping time t, the total cost for processing it can be

written as: G(t, qi) + h
ρ
· qis = qi[α − (β − h

ρ
)t)]. Therefore, the term β − h

ρ
can be treated

as an updated parameter for β in the shipping cost function. Therefore, with β − h
ρ
≥ 0, we

can assume that h ≤ ρβ.

A solution to problem IPTSDI contains two elements: a production plan and a shipping

plan. A production plan is the daily production quantity of products that should be produced

for each order and a shipping plan is the time for the 3PL to ship the completed products

of each order to the customers. Accordingly, problem IPTSDI aims to decide a feasible

solution such that customers can receive all the products in their orders no later than their

committed delivery due dates. And problem IPTSDI aims to find a feasible solution with

minimal total operating cost. Such a feasible solution is referred to as an optimal solution
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to problem IPTSDI.

Although the total operating costs include the costs of production and shipping as well

as inventory holding costs, we do not consider the production cost in this study. The reason

is that the manufacturing would cost-efficient to produce
∑

i∈N qi units of the products in

total. Thus, the total production cost is always a constant that equals
∑

i∈N qi times a unit

production cost, and this does not need to be considered.

For each t ∈ T , define St = {i ∈ N : di ≤ t} as the subset of orders for which products

must be produced and shipped no later than t so as to meet their committed delivery

due dates. Following Zhong et al. (2010), we also assume that the production capacity is

sufficient enough for condition (3.3) below to be satisfied to ensure that a feasible solution

always exists:

∑
i∈St

qi ≤ c · t, for t ∈ T . (3.3)

Let Z+ denote a set of non-negative integers, we introduce a decision variable xit ∈ Z+

to represent the number of the products manufactured for order i on day t. Therefore, for

all i ∈ N and t ∈ T xit represent a production plan. We also introduce a binary decision

variable zit ∈ {0, 1} which is 1 when the 3PL ships order i on day t and is 0 otherwise.

And for all i ∈ N and t ∈ T zit represent a shipping plan. Since the shipping cost function

in (3.1) is decreasing in shipping time, it would be cost-efficient to ship the products of an

order such that the orders arrive to the customer on its delivery due date. In other words,

if order i is shipped out on day t, which means zit = 1, we can then denote incurred cost of

shipping for order i as G(di − t, qi) = qi[α− β(di − t)].

The notations for problem IPTSDI described above are shown in Table 3.1. Accordingly,
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Table 3.1: Notations for problem IPTSDI.

m Size of the planning horizon

T = {1, 2, . . . ,m} Set of days in the planning horizon

n Size of order set

N = {1, 2, . . . , n} Set of orders

c Daily production capacity

qi Order quantity for order i

di ∈ {1, 2, · · · ,m} Committed delivery due date for order i

St Subset of orders for which products must be shipped out on or before day t

G(s, y) = y(α− βs) Shipping cost function

h Unit inventory holding costs per day

xit ∈ Z+ Production quantity for order i on day t

zit ∈ {0, 1} 1, if the shipping day for order i is day t, and 0, otherwise

we can use an integer linear programming (ILP) model below to formulate problem IPTSDI.

(ILP) min
∑
i∈N

∑
t∈T

G(di − t, qi) · zit +
∑
i∈N

∑
t∈T

h

(
t∑

j=1

xij −
t∑

j=1

zijqi

)
(3.4)

s.t.
∑
i∈N

xit ≤ c, for t ∈ T , (3.5)∑
t∈T

xit = qi, for i ∈ N, (3.6)

m∑
t=1

zit = 1, for i ∈ N, (3.7)

m∑
t=di+1

zit = 0, for i ∈ N, (3.8)

t∑
t′=1

qizit′ ≤
t∑

t′=1

xit′ , for i ∈ N, t ∈ T , (3.9)

xit ∈ Z+, zit ∈ {0, 1}, for i ∈ N , t ∈ T . (3.10)

In model ILP, (3.4) is the objective function that minimizes the total shipping costs and

the inventory holding costs. Constraint (3.5) limits the daily production quantity to be



CHAPTER 3: PROBLEM IPTSDI 71

less or equal to the production capacity c. Constraint (3.6) means that the manufacturer

produces all the products in every order. Constraints (3.7) and (3.8) jointly secure that

all the orders are shipped out and can arrive to the customers on or before the committed

delivery date. Constraint (3.9) assure that the 3PL can only ship the products after they

are completed. Constraints (3.10) are integral and binary constraints on decision variables

xit and zit, respectively.

Moreover, for the ease of representation, let x denote the vector of variables xit for i ∈ N

and t ∈ T and let z denote the vector of variables zit for i ∈ N and t ∈ T . Then, we can use

π = (x, z) to denote a solution to model ILP.

3.3 Optimality Properties

In this section, we propose a backward-forward algorithm that constructs a solution to model

ILP given a shipping plan and show the properties held by the optimal solutions. This

algorithm and the properties aid us to develop the exact and approximation algorithms. We

first define a relaxed problem of IPTSDI by aggregating the production quantities of orders

in a day into a daily production quantity and then formulate its corresponding model ILP-

AG. Every feasible solution can be a lower bound of model ILP. We show that we can obtain

an optimal solution to model ILP-AG by a backward process given an optimal shipping plan

and convert it to a feasible solution to model ILP by a forward process. Accordingly, we

show that these two constructed solutions have the same objective value, which means the

solution obtained by the forward process is optimal to model ILP.

From the description above, we can define a relaxed problem of IPTSDI – problem

IPTSDI-R. Similar to problem IPTSDI, a solution to problem IPTSDI-R is consist of an

aggregate production plan and a shipping plan, where a shipping plan is the same as that of

problem IPTSDI. An aggregate production plan is about the quantity of products that must

be produced on each day. And an optimal solution to problem IPTSDI-R is the solution
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with minimal total shipping costs and inventory holding costs where customers can receive

their ordered products on or before their committed delivery due dates. Let decision variable

x̄t ∈ Z+ for t ∈ T represent the production quantity on day t. In other words, x̄t =
∑

i∈N xit

is an aggregate production quantity on day t. We can then formulate problem IPTSDI-R by

the following integer linear programming model ILP-AG.

(ILP-AG) min
∑
i∈N

∑
t∈T

G(di − t, qi) · zit +
∑
t∈T

h

(
t∑

t′=1

x̄t′ −
t∑

t′=1

∑
j∈N

zjt′qj

)
(3.11)

s.t. x̄t ≤ c, for t ∈ T , (3.12)∑
t∈T

x̄t =
∑
i∈N

qi, (3.13)

m∑
t=1

zit = 1, for i ∈ N, (3.14)

m∑
t=di+1

zit = 0, for i ∈ N, (3.15)

t∑
t′=1

∑
i∈N

qizit ≤
t∑

t′=1

x̄t′ , for t ∈ T , (3.16)

zit ∈ {0, 1}, for i ∈ N , t ∈ T , (3.17)

x̄t ∈ Z+, for t ∈ T . (3.18)

In model ILP-AG, (3.11) is the objective function that aims to minimize the total shipping

costs and the inventory holding costs which is similar to the objective function (3.4) of model

ILP. Constraint (3.12)-(3.15) are also the similar with the constraints (3.5)-(3.8) in model

ILP. Constraint (3.16) denotes that the accumulated shipping quantity before or on day t

is less or equal to the accumulated production quantity before on day t for each t ∈ T .

Constraints (3.17) and (3.18) ensure decision variables x̄t and zit to be and binary and

integral, respectively. Following the notations above, let x̄ be the vector of variables xt for

t ∈ T as the daily aggregated production plan. Together with the shipping plan represented

by the vector z, a solution to model ILP-AG can be denoted as (x̄, z).

We can obtain an order sequence σ = (σ1, σ2, · · · , σn) with each σj ∈ N for j ∈
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{1, 2, · · · , n} indicating the j-th order of σ given a shipping plan z by sorting the ship-

ping out days of these orders in a non-decreasing order, breaking ties arbitrarily. We can

also obtain the corresponding sequence of shipping day ω = (ωσ1 , ωσ2 , · · · , ωσn) for orders in

σ. From Yang et al. (2021), we know that in the optimal solution, the order is shipped out

on its production completion day. Thus, ωσj also denote the production completion day of

order σj. With ω obtained from a shipping plan z, we can construct the daily production

plan x̄ for model ILP-AG and the constructed solution is referred to as solution (x̄(z), z).

From Li et al. (2020), we know that to reduce the inventory holding cost, an order needs

to be processed as late as possible. Therefore, we construct the production plan in a reverse

order of ω, i.e., from ωσn to ωσ1 . In the following, we describe the construction process. We

divide the backward construction process into 3 cases for each order σj for j ∈ {1, 2, · · · , n}

and initialize x̄t′ ← 0 for all t′ ∈ {1, 2, · · · ,m} and t = m:

1. In the first case, the daily production quantity on day t is less or equal to production

capacity after producing all the products in order σj and the production completion

time of order σj is also on day t. We then increase the production quantity on day ωσj

(i.e., day t) with qσj ;

2. In the second case, the daily production quantity on day t exceeds the production

capacity after producing all the products in order σj and the production completion

time of order σj is on day t. It means that the production quantity of order σj needs to

be split into two days. And the split two production days are consecutive. The reason

is that if they are not consecutive, compared with the case for consecutive production

days, extra inventory holding costs in the split days will be incurred while the shipping

costs are the same. Then, we set the production quantity on day t − 1 to be the

exceeded quantity over the daily production capacity and set the production quantity

on day t as the production capacity c and update t accordingly;

3. In the third case, the production completion day is on the previous day. This means
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that there is an idle time between the production completion day of order σj−1 and

the production start day of order σj. We then set the production quantity on day ωσj

to be qσj and update t accordingly;

We summarize the process of backward construction described above in Algorithm 3.1.

Algorithm 3.1 (Backward construction)

1: Initialize t← m and x̄t′ ← 0 for all t′ ∈ {1, 2, · · · ,m}

2: for each j = n, n− 1, · · · , 1 do

3: if xωσj + qσj ≤ c and t = ωσj then

4: xωσj ← xωσj + qσj

5: else if xωσj + qσj > c and t = ωσj then

6: xωσj−1 ← xωσj + qσj − c, xωσj ← c

7: t← ωσj − 1

8: else if t > ωσj then

9: xωσj ← qσj

10: t← ωσj

11: end if

12: end for

13: return x̄t for all t ∈ {1, 2, · · · ,m}

Consider an example showing in Figure 3.1 for illustration of Algorithm 3.1. The manu-

facturer has a planning horizon of 4 days with a daily production capacity to be c = 7. From

the shipping plan z, we can obtain an order sequence σ = (4, 2, 5, 1, 3) and its corresponding

shipping day is ω = (1, 2, 3, 3, 4). With these, Algorithm 3.1 can construct a daily production

plan x̄(z) in a reverse order of ω. The construction process can be describe as follow: For

order 3, since the production quantity on day 4 is initialized to be 0 and t = ω3 = 4 which is

in accord with case 1, we set x4 = q3 = 6; next, for order 1, its production completion day

is day 3 < t = 4, which is in case 3, we set x3 = 3 and update t = 3; consequently, for order

5, the remaining production capacity on day 3 is not enough and the production completion
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is also day 3, which is in case 2, we set x2 = q5 + x3 − 7 = 2 and update x3 = c = 7 and

update t = 2. Accordingly, we can update x2 = 7, x1 = 5 following the same process.

Figure 3.1: Examples of a solution (x̄(z), z) constructed by Algorithm 3.1 given a shipping
plan z.
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From the construction process in Algorithm 3.1, we can establish Lemma 3.1 below,

showing that the constructed solution (x̄(z), z) satisfies all the constraints in model ILP-AG

except for constraints (3.14) and (3.15).

Lemma 3.1. For any shipping plan z, solution (x̄(z), z) satisfies constraints (3.12), (3.13),

and (3.16), (3.17) (3.18) of model ILP-AG.

Proof. By the construction process in Algorithm 3.1, the daily production quantity of is less

or equal to c, and thus constraint (3.12) of model ILP-AG is satisfied. From the divided 3

cases of the above construction of (x̄(z), z), we can see that for each j ∈ {1, 2, · · · , n}, qσj has

been allocated on certain day on certain consecutive two days, implying that constraint (3.13)

of model ILP-AG is satisfied.

Moreover, as a consequence that solution (x̄(z), z) constructed Algorithm 3.1 follows the

reverse order of a sequence of completion day ω and each order is delivered on day when

their production is completed. Thus, constraint (3.16) of model ILP-AG is satisfied.

From the construction, we can also see that for t ∈ T xt are all integers. And according to

the definition of a shipping plan, for i ∈ N and t ∈ T zit ∈ {0, 1}. Therefore, constraint (3.17)

and (3.18) of model ILP-AG is satisfied. This completes the proof of Lemma 3.1.
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Based on Lemma 3.1, we can further prove that a shipping plan z exists such that the

constructed solution (x(z), z) is optimal to model ILP.

Lemma 3.2. Consider any optimal solution to model ILP-AG denoted by (x̄∗, z∗). Given

the shipping plan z∗, solution (x̄(z∗), z∗) obtained by Algorithm 3.1 is also optimal to model

ILP-AG.

Proof. By Lemma 3.1, solution (x̄(z∗), z∗) satisfies constraints (3.12), (3.13), and (3.16),

(3.17) (3.18) of model ILP-AG. Consider the optimal solution (x̄∗, z∗) to model ILP-AG,

in which we know that all orders are shipped, i.e., constraint (3.14) is satisfied. Moreover,

from the definition above, σ∗ denotes the order sequence obtained from z∗. Thus, we also

know that products for order σ∗j are not shipped out before any products for orders σ∗j′ for

j′ ∈ {1, 2, · · · , j − 1}. Thus, in (x̄∗, z∗), products for order σ∗j are not shipped out before

the products for the first j orders of σ∗ are all produced. Thus, products for order σ∗j must

be shipped out on or after day ωσj , implying that ωσj ≤ dσ∗j . From the construction in

Algorithm 3.1, we know that in (x̄(z∗), z∗), products for each order are shipped out on the

same day as their production is completed. Thus, constraint (3.15) of model ILP-AG is

satisfied. Hence, (x̄(z∗), z∗) is a feasible solution to model ILP-AG.

As shown above, for each j ∈ {1, 2, · · · , n}, products for order σ∗j are shipped out on or

after day ωσj in the optimal solution (x̄∗, z∗), whereas they are shipped out on day ωσj in

the constructed solution (x̄(z∗), z∗). Thus, since the shipping cost function G(di − t, qi) is

non-decreasing in t, the total shipping costs of (x̄(z∗), z∗) cannot exceed that of (x̄∗, z∗).

Next, we prove that the inventory holding costs of solution (x̄(z∗), z∗) also cannot exceed

that of (x̄∗, z∗) by contradiction. Suppose the inventory holding costs of solution (x̄(z∗), z∗)

is larger than that of (x̄∗, z∗). Then, we can find two days τ and τ ′ such that on day τ

the production quantity of solution (x̄(z∗), z∗) is x̄τ and the production quantity of solution

(x̄∗, z∗) is x̄∗τ and c ≥ x̄τ > x̄∗τ ; and on day τ ′ the production quantity of solution (x̄(z∗), z∗)

is x̄τ ′ and the production quantity of solution (x̄∗, z∗) is x̄∗τ ′ and x̄τ ′ < x̄∗τ ′ ≤ c. We can also

find a day t with τ ≤ t < τ ′ such that the production quantity on day t + 1 is less than c
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(according to the construction process in Algorithm 3.1), which means that the inventory

on day t is 0. In other words, the following constraint should be satisfied, total production

quantity on day t equals total shipping quantity on this day, i.e.,

t∑
t′=1

x̄t′ =
t∑

t′=1

x̄∗t′ =
t∑

t′=1

∑
i∈N

qizi,t−1. (3.19)

However, the left hand side of Equation (3.19) is violated owing to the inequality x̄τ > x̄∗τ .

And this contradicts with the fact that solution (x̄(z∗), z∗) is a feasible solution.

Hence, (x̄(z∗), z∗) is also an optimal solution to model ILP-AG. Lemma 3.2 is proved.

Based on the constructed solution (x̄(z), z) to model ILP-AG by Algorithm 3.1, we can

further construct a solution (x(z), z) to model ILP.

The main idea is to construct the production plan for each order by allocating the daily

production quantity while following the order sequence σ from the given shipping plan z.

Then, we divide the forward construction process into 2 cases for each order σj for j ∈

{1, 2, · · · , n} and initialize t = 1 and xit′ = 0 for all i ∈ {1, 2, · · · , n} and t′ ∈ {1, 2, · · · ,m}:

1. In the first case, the daily production quantity on day t is enough to produce all

products in order σj. We set the production quantity for order σj on day t to be qσj

and update the daily production quantity on day t accordingly. Specifically, if the

remaining production quantity on day t drops to 0, we update t to be t+ 1;

2. In the second case, the daily production quantity on day t is not enough to produce all

products in order σj. We set the production quantity for order σj on day t to be the

remaining daily production quantity on day t and set the production quantity for order

σj on the next day to be the remaining unproduced quantity of products and update

the remaining production quantity on day t+ 1 and update t to be t+ 1 accordingly.

We can summarize the forward construction process in Algorithm 3.2.

Algorithm 3.2 (Forward construction)



CHAPTER 3: PROBLEM IPTSDI 78

1: Initialize t← 1 and xit′ ← 0 for all i ∈ {1, 2, · · · , n} and t′ ∈ {1, 2, · · · ,m}

2: for each j = 1, 2, · · · , n do

3: if xt ≥ qσj then

4: xσj ,t ← qσj

5: xt ← xt − xσj ,t
6: if xt = 0 then

7: t← t+ 1

8: end if

9: else

10: xσj ,t ← xt, xσj ,t+1 ← qσj − xσj ,t
11: xt+1 ← xt+1 − xσj ,t+1

12: t← t+ 1

13: end if

14: end for

15: return xit for all i ∈ {1, 2, · · · , n} and t ∈ {1, 2, · · · ,m}

Following the example in Figure 3.1, we can consider an extended example showing in

Figure 3.2 for illustration of Algorithm 3.2, where the order sequence σ = (4, 2, 5, 1, 3). Follow

Algorithm 3.2, we construct the production plan for each order with the order sequence σ.

For order 4, the daily production quantity is enough to produce all products in order 4, which

is for case 1. Thus, we set x4,1 = q4 = 4 and update the production on day 1 x1 from 5 to 1;

next, for order 2, the remaining production on day 1 is not enough to produce all products,

which is for case 2, we then set x2,1 = 1, which is the remaining production quantity on day

1 and x2,2 = 5, which is the remaining order quantity and update the production quantity

on day 2 to be x2 = 7 − 5 = 2 and update t = 2; consequently, for order 5, the remaining

production on day 2 is not enough to produce all products, which is for case 2, we then

set x5,2 = 2 and x5,3 = 4 and update the remaining production quantity on day 3 to be

x3 = 7 − 4 = 3 and update t = 3; next, for order 1, the remaining production quantity
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on day 3 is enough to produce all products of it, therefore, we set x1,3 = 3. Also, as the

production quantity on day 3 drops to 0, we update t = 4; next, for order 3, the production

quantity on day 4 is the same as the order quantity q3 = 6, we set x3,4 = 6.

Figure 3.2: Examples for the forward construction of a solution (x(z), z) in Algorithm 3.2
given a daily production plan x̄(z) and x̄ is the daily production plan from the backward
construction.
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Based on Algorithm 3.1 and Algorithm 3.2, we have Algorithm 3.3 that constructs a

solution (x(z), z) to model ILP given a shipping plan z.

Algorithm 3.3 (Construct a solution for problem IPTSDI)

1: Backward construction for x̄t for all t ∈ {1, 2, · · · ,m} by Algorithm 3.1

2: Forward construction for xi,t for all i ∈ {1, 2, · · · , n} and t ∈ {1, 2, · · · ,m} with x̄t for

all t ∈ {1, 2, · · · ,m} by Algorithm 3.2

3: return xi,t for all i ∈ {1, 2, · · · , n} and t ∈ {1, 2, · · · ,m}

And follow Lemma 3.1 and Lemma 3.2, we can establish Theorem 3.1 as follow, which

indicates that given an optimal shipping plan z∗ to model ILP, the constructed solution

(x(z∗), z∗) by Algorithm 3.3 is also optimal to model ILP.

Theorem 3.1. Consider any optimal solution to model ILP denoted by (x∗, z∗). Given

the shipping plan z∗, solution (x(z∗), z∗) obtained by Algorithm 3.3 also forms an optimal

solution to model ILP.
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Proof. By Lemma 3.2, we know that the constructed solution (x̄(z∗), z∗) is an optimal solu-

tion to model ILP-AG. Also, we know that model ILP-AG is a relaxed model of model ILP,

which indicates that the objective value of solution (x̄(z∗), z∗) is a lower bound to model

ILP.

From the forward construction process in Algorithm 3.3, we can see that the constructed

solution (x(z∗), z∗) is a feasible solution to model ILP. The optimality of solution (x̄(z∗), z∗)

to model ILP-AG ensures constraints (3.7) (3.8) and (3.10) to be satisfied. Moreover, as

solution (x̄(z∗), z∗) also satisfies constraints (3.12), (3.13) and (3.16), thus, the allocation of

the daily production quantity to production quantity for each order on each day in step 4–5

and step 10–11 in Algorithm 3.2 ensures constraints (3.5), (3.6) and (3.9) to be satisfied.

Thus, solution (x(z∗), z∗) is feasible to model ILP. Also, we can see that Algorithm 3.2

maintains the same inventory holding costs for solutions (x̄(z∗), z∗) and (x(z∗), z∗), which

is can be calculated in Algorithm 3.1. Therefore, the objective value from the solution

(x̄(z∗), z∗) is not changed in Algorithm 3.3. Therefore, solution (x(z∗), z∗) is an optimal

solution to model ILP. Theorem 3.1 is proved.

From Theorem 3.1, we know that Algorithm 3.3 can also find the minimized inventory

holding costs given a shipping plan with knowing the shipping quantity on each day. For

each t ∈ T , let Qt =
∑

i∈N qizit to be the total shipped out quantity of products on day t.

And the vector (Q1, Q2, · · · , Qm) is the combination of Qt from day 1 to day m. According

to constraint (3.9) of model ILP, the total shipped-out quantity of products on or before day

t is less or equal to the total produced quantity during this period. Moreover, limited by

constraint (3.5), the total produced quantity on or before day t should not be larger than

the maximum production quantity tc during the first t days. Therefore, (Q1, Q2, · · · , Qm)

satisfies condition (3.20) below:

t∑
t′=1

Qt′ ≤ tc, for each t ∈ T . (3.20)
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We can then establish Corollary 3.1 in the following,

Corollary 3.1. For any shipping plan z, consider any (Q1, Q2, · · · , Qm) ∈ Zm+ with
∑

i∈N qizit =

Qt for t ∈ T ,
∑di

t=1 zit = 1 and
∑m

t=di+1 zit = 0 for i ∈ N and satisfies (3.20), we can obtain

its corresponding minimal inventory holding costs H(Q1, Q2, · · · , Qm) by Algorithm 3.3.

Proof. From Theorem 3.1, we can infer that for any shipping plan z, solution (x(z), z)

constructed by Algorithm 3.3 is the solution with minimal shipping costs and inventory

holding costs. Also, in step 2 of Algorithm 3.3, i.e., Algorithm 3.2, we can iteratively

calculate the minimal inventory holding cost. From the description of Algorithm 3.2, we

know that inventory is only incurred in the second case of the Algorithm. And, for each

order xσj , for j ∈ {1, 2, · · · , n}, the productions (xσj , t) and (xσj , t + 1) of the order in step

10. Thus, the inventory holding costs incurred for order xσj can be calculated as hσj = h·xσj .

And we can obtain the total inventory holding costs at the end of Algorithm 3.2 by adding

this step after step 10, i.e., H(Q1, Q2, · · · , Qm) with the given shipping plan z. Therefore,

Corollary 3.1 is proved.

Based on the analysis in Theorem 3.1, we can have Theorem 3.2. It shows that a shipping

plan z always exists such that: i) the constructed solution (x(z), z) is optimal to model ILP;

ii) in the optimal solution, for orders with the same order quantity, they are sorted in a non-

decreasing order by the committed delivery due dates, breaking ties by preferring smaller

indices.

Theorem 3.2. There exists a shipping plan z with its order sequence σ = (σ1, σ2, · · · , σn)

such that (i) (x(z), z) is an optimal solution to model ILP, and that (ii) dσj < dσh or

(dσj = dσh and σj < σh), for each j and h with 1 ≤ j < h ≤ n and qj = qh.

Proof. We can show that condition (i) is satisfied by Theorem 3.1, which shows that a

shipping plan z∗ always exists such that solution (x(z∗), z∗) is optimal to model ILP. However,

if there is no σ∗ exists to satisfy condition (ii), which means that there exist j and h in

{1, 2, · · · , n} with j < h and qσ∗j = qσ∗h = q for some q such that dσ∗j > dσ∗h or (dσ∗j = dσ∗h and
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σ∗j > σ∗h). In this situation, we can swap positions of σ∗j and σ∗h in σ∗ to obtain a new order

sequence σ, so that condition (ii) specified in Theorem 3.2 is satisfied for j and h. Moreover,

we can also swap values of x∗σ∗j ,t and x∗σ∗h,t for t ∈ T , and swap values of z∗σ∗j ,t and z∗σ∗h,t for

t ∈ T , to obtain a new solution (x, z), which, as shown below, is also an optimal solution to

model ILP.

Let i = σ∗j and i′ = σ∗h. For each i′′ ∈ N , let τi′′ and τ ∗i′′ denote the shipping day of order

i′′, in the two solutions (x, z) and (x(z∗), z∗), respectively. Thus, we have that τi′ = τ ∗i and

τi = τ ∗i′ . From the procedure to construct the optimal solution (x(z∗), z∗) in Algorithm 3.3,

since j < h, we know that τ ∗i ≤ τ ∗i′ . These, together with τ ∗i ≤ di, di′ ≤ di, and τ ∗i′ ≤ di′ , imply

that τi = τ ∗i′ ≤ di′ ≤ di, and that τi′ = τ ∗i ≤ τ ∗i′ ≤ di′ . Thus, (x, z) satisfies constraints (3.7)

and (3.8) of model ILP. From qi = qi′ we know that (x, z) satisfies constraints (3.5), (3.6),

(3.9), and (3.10) of model ILP, implying that (x, z) is a feasible solution to model ILP. By

(3.21) below, we can also see that the shipping costs of order i and order i′ are the same

under (x, z) and (x(z∗), z∗):

G(di − τi, q) +G(di′ − τi′ , q) = q(α− β(di − τi)) + q(α− β(di′ − τi′))

= q(α− β(di − τi′)) + q(α− β(di′ − τi)) = q(α− β(di − τ ∗i )) + q(α− β(di′ − τ ∗i′))

= G(di − τ ∗i , q) +G(di′ − τ ∗i′ , q). (3.21)

Thus, the total shipping costs of (x, z) equal that of the optimal solution (x(z∗), z∗).

Moreover, as a consequence that qσ∗j = qσ∗h and changes in the order sequence only influence

the operations in Algorithm 3.2. Therefore, with similar argument in Theorem 3.1, inven-

tory holding costs of (x, z) is also the same as the optimal solution (x(z∗), z∗) according to

Algorithm 3.3. Therefore, (x, z) is also an optimal solution to model ILP. Since σ swaps

only the positions of i and i′ in σ∗, which means that (x, z) is equal to (x(z), z).

Hence, by replacing σ∗ with σ and repeating the process above iteratively, an order

sequence σ meeting (i) and (ii) stated in Theorem 3.2 can be constructed. This completes
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the proof of Theorem 3.2.

3.4 Exact Algorithms

In this section, we examine two exact algorithms for problem IPTSDI. They can obtain

optimal solutions and run in pseudo-polynomial times for the two practical cases for this

problem.

3.4.1 Exact Algorithm When the Number of Possible Order Quan-

tities is Fixed

We follow the settings in Li et al. (2022) in this case. Let set E = {qi|i ∈ N} represent

all distinct order quantities in the order set N and η denote the number of possible order

quantities in the order set N . According to the description, we have η = |E|. For the ease of

representation, we write E = {e1, · · · , eη}. Furthermore, we define subsets of order set N :

for every k ∈ {1, 2, . . . , η}, denote Nk = {i | qi = ek, i ∈ N} as the set of orders whose order

quantity is exactly ek, and denote the number of orders in Nk as nk. For instance, if the order

set received by the manufacturer is N = {1, 2, 3, 4, 5} where q1 = q2 = 20, q3 = q4 = q5 = 30.

Then E = {20, 30} with η = 2 and N1 = {1, 2} and N2 = {3, 4, 5}. From the example, we

can also see that set Nk for all k ∈ {1, 2, . . . , η} form a partition of N . For better description

of the algorithm, for each k ∈ {1, 2, . . . , η}, let i(k, 1), i(k, 2), . . . , i(k, nk) denote the indices

of nk orders in the subset Nk. Moreover, we also assume that di(k,1) ≤ di(k,2) ≤ . . . ≤ di(k,nk).

That is, these nk orders are indexed in a non-decreasing order of their committed delivery

due dates.

Following Li et al. (2022), for each (p1, p2, · · · , pη) with pk ∈ {0, 1, · · · , nk} for k ∈

{1, 2, · · · , η}, we define the order set N(p1, p2, . . . , pη) = {i(k, r) | 0 ≤ r ≤ pk, 1 ≤ k ≤ η}. It

combines first pk orders in each subset Nk for every k ∈ {1, 2, . . . , η}.

The first exact algorithm utilizes Theorem 3.2 to solve problem IPTSDI. We describe
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this dynamic programming algorithm as follows.

Let F (p1, p2, . . . , pη; t) represent the value function of the minimum total shipping costs

and inventory holding costs of a subproblem of problem IPTSDI defined for only orders

in N(p1, p2, . . . , pη), which equals +∞ if the subproblem has no feasible solution and the

shipping day of the last order in the order set N(p1, p2, . . . , pη) is day t. In other words, it

indicates that, for all orders in N(p1, p2, . . . , pη), their shipping days are on or before day t.

Accordingly, F (n1, n2, · · · , nη;m) indicates the minimum total shipping costs and inventory

holding costs of problem IPTSDI, which is defined for all orders in N .

Particularly, similar to the definition of N(p1, p2, . . . , pη), for each (p′1, p
′
2, · · · , p′η) with

p′k ∈ {0, 1, · · · , nk} and p′k + jk ∈ {1, · · · , nk} for k ∈ {1, 2, · · · , η}, we also define the set

N ′((p′1, j1), · · · , (p′η, jη)) = {i(k, r) | p′k < r ≤ p′k + jk, 1 ≤ j ≤ η}.

It combines jk orders, i.e., i(k, p′k + 1), . . . , i(k, p′k + jk), of each subset Nk for every k ∈

{1, 2, · · · , η}. Based on the description above, we refer to a order setN ′((p1, j1), (p2, j2), · · · , (pη, jη))

associated with the production start day of its first order and the production completion day

of its last order as a production subsequence. From Section 3.3, we know that it is optimal

to ship out the orders on the production completion day. Therefore, in each production

subsequence, no inventory exists at end of its production completion day. Following the de-

scription above, we can see that orders in N(p1, p2, . . . , pη) can be split into several distinct

production subsequences according to their production start day and production completion

day. Suppose N(p1, p2, . . . , pη) can be split into λ production subsequences, we then have

the equation,

N(p1, p2, . . . , pη) =N ′((0, j0,1), · · · , (0, j0,η)) ∪N ′((j0,1, j1,1), · · · , (j0,η, j1,η))

∪ . . . ∪N ′
((

λ−1∑
l=0

jl,1, jλ,1

)
, · · · ,

(
λ−1∑
l=0

jl,η, jλ,η

))
,

∀k ∈ {1, · · · , η}, ∑λ
l=0 jl,k = pk.

(3.22)
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Specifically, when pk = nk, for each k ∈ {1, · · · , η} and λ = λ′, it indicates that the total

order set can be split into λ′ distinct production subsequences according to their shipping

days, where the inventory is 0 at the end of shipping day of the last order in each production

production subsequence.

Based on the description above, we can define another value function I((p′1, j1), · · · , (p′η, jη); τ)

that defined in the calculation of the subproblem of F (p1, p2, . . . , pη; t) in its state transi-

tions. Consider the state transition that the value function transits from F (p1, p2, . . . , pη; t)

to F (p1+j1, p2+j2, . . . , pη+jη; t
′). In other words, when the order set of the subproblem tran-

sits from N(p1, p2, . . . , pη) to N(p1 + j1, p2 + j2, . . . , pη + jη), a production subsequence with

order set N ′((p1, j1), (p2, j2), · · · , (pη, jη)) is added into the original order set N(p1, p2, . . . , pη)

in the state transition. And the value function I((p1, j1), · · · , (pη, jη); t′) denotes the mini-

mum shipping costs and inventory holding costs in the added production subsequence given

order set N ′((p1, j1), (p2, j2), · · · , (pη, jη)), whose completion day of its last order is t′, which

is the same as the last order in N(p1, p2, . . . , pη).

Accordingly, we have the following Lemma 3.3 and Lemma 3.4 that aids the calculation

in the state transition of the value function F (p1, p2, . . . , pη; t) and I((p′1, j1), · · · , (p′η, jη); τ).

Lemma 3.3. Consider any production subsequence N ′((p1, j1), (p2, j2), · · · , (pη, jη)) with

production start day τs and production completion day τe, which is in the optimal solution.

It satisfies that production quantity on day τs is less than c and the production quantity on

each day t ∈ {τs + 1, τs + 2, · · · , τe} equals c.

Proof. Suppose there exists a day τ during which the production quantity is less than c. We

can divide the situation into two cases depending on whether there is inventory at the end

of day τ . For the first case, there is no inventory on day τ . According to the definition of

the production subsequence, we know that there is no inventory at the end of day τe. Then

the subsequence N ′((p1, j1), (p2, j2), · · · , (pη, jη)) with production start day τs and produc-

tion completion time τe can be further split on day τ , i.e., it can be split into production

subsequence N ′((p1, j
′
1), (p2, j

′
2), · · · , (pη, j′η)) with production start day τs and production
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completion time τ and production subsequence N ′((p1 +j′1, j
′′
1 ), (p2 +j′2, j

′′
2 ), · · · , (pη+j′η, j

′′
η ))

with production start day τ + 1 and production completion time τe. Therefore, Lemma 3.3

still holds by the split. For the second case, there are inventories on day τ . We can prove it

by contradiction. At this moment, we can use the idle time on day τ to produce the products

on day τ−1, i.e., producing the products as late as possible, so that the production quantity

on day τ reaches to c and the inventory holding costs incurred by the products of partially

completed order on day τ − 1 can be decreased while its shipping costs remain unchanged.

This violates that the production subsequence is in an optimal solution. Therefore, Lemma

3.3 is proved.

Lemma 3.4. Consider any two production subsequences N ′((p1, j1), (p2, j2), · · · , (pη, jη))

with production start day τs and production completion day τe and N ′((p1 + j1, j
′
1), (p2 +

j2, j
′
2), · · · , (pη+jη, j

′
η)) with production start day τ ′s and production completion day τ ′e, which

are in the optimal solution. Then, we have τe < τ ′s ≤ τe + 1 and τ ′e = τe +
⌈∑η

r=1 j
′
rer

c

⌉
.

Proof. Based on Lemma 3.3, for production subsequence N ′((p1, j1), (p2, j2), · · · , (pη, jη))

with production start day τs and production completion day τe, we know that the production

quantity on day τe is c. Therefore, since no remaining production capacity available on day

τe, the production start day for its consecutive production subsequence must be later than

τe, i.e., τe < τ ′s.

Consequently, we can prove τ ′s ≤ τe + 1 by contradiction. Suppose τ ′s > τe + 1, which

means the idle time between two production subsequences is larger than 1 day. Then we

make the production on day τ ′s and later time 1 day earlier. According to the definition of

the production subsequence, the shipping costs can be decreased while the inventory holding

costs keep the same. This violates the fact that the production subsequence is in an optimal

solution.

Therefore, based on the description above, we know that the production completion

day of production subsequence N ′((p1 + j1, j
′
1), (p2 + j2, j

′
2), · · · , (pη + jη, j

′
η)) is its earliest

production completion day, which can be calculated as τ ′e = τe +
⌈∑η

r=1 j
′
rer

c

⌉
. Therefore,
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Lemma 3.4 is proved.

In the following, we study the dynamic programs to recursively calculate the value func-

tion F (p1, p2, . . . , pη; t) as well as the value function I((p′1, j1), · · · , (p′η, jη); τ).

First, since the subproblem of F (0, 0, . . . , 0; 0) is defined for an empty order set, its mini-

mum total shipping costs and inventory holding costs are zero. Thus, we obtain the boundary

condition of the dynamic program that F (0, 0, . . . , 0; 0) = 0. Similarly, we can also obtain

the boundary condition for the dynamic program that I((p′1, 0), (p′2, 0), · · · , (p′η, 0); 0)) = 0

for each (p′1, p
′
2, · · · , p′η) with p′k ∈ {0, 1, · · · , nk} for k ∈ {1, 2, · · · , η} since its subproblem is

also defined for an empty order set according to the definition described above.

From Equation (3.22) and the definition of value function I((p′1, j1), · · · , (p′η, jη); τ) and

the value function F (p1, · · · , pη; t), we can find the optimal production subsequences that

can form the order set N(p1, · · · , pη). For each (p1, p2, · · · , pη) with pk ∈ {0, 1, · · · , nk} for

k ∈ {1, 2, · · · , η} and with
∑η

r=1 pr ≥ 1 and for each t ∈ T , we can apply Theorem 3.2

to the subproblem of F (p1, p2, . . . , pη; t). This indicates that there exists a shipping plan

z of orders in N(p1, p2, . . . , pη) such that (x(z), z) forms an optimal solution to the sub-

problem. Accordingly, the last production subsequence in the order set N(p1, p2, . . . , pη)

should be N ′ ((p1 − j1, j1), · · · , (pη − jη, jη)) with the production completion day of its last

order to be on day t for some l ∈ {1, · · · , η}, ∀jl ∈ {0, 1, . . . , pl − 1}. And according to

Lemma 3.3 and Lemma 3.4, we know that the production completion day of the last or-

der of its previous production subsequence is t −
⌈∑η

r=1 jrer
c

⌉
. Moreover, as no inventory

exist after the order completion day, the total shipping costs and inventory holding costs of

all orders in N(p1, p2, . . . , pη) equal all that of orders N(p1 − j1, p2 − p2, . . . , pη − jη), i.e.,

F
(
p1 − j1, · · · , pη − jη, t−

⌈∑η
r=1 jrer
c

⌉)
plus that of ordersN ′ ((p1 − j1, j1), · · · , (pη − jη, jη)),

i.e., I ((p1 − j1, j1), · · · , (pη − jη, jη); t). An example of this process is showing in Figure

3.3(a). Therefore, we can enumerate l, jl to calculate F (p1, · · · , pη; t) by the following recur-
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sive equation:

F (p1, · · · , pη; t)

= min


F
(
p1 − j1, · · · , pη − jη, t−

⌈∑η
r=1 jrer
c

⌉)
+ I ((p1 − j1, j1), · · · , (pη − jη, jη); t)

| ∀l ∈ {1, · · · , η},∀jl ∈ {0, 1, . . . , pl − 1} with
∑η

i=1 ji > 0, pl − jl ≥ 1

and di(l,pl) ≥ t−
⌈∑η

r=1 jrer
c

⌉


.(3.23)

Finally, the value of F (n1, . . . , nη;m) is returned which is the minimum total shipping

costs and inventory holding costs for problem IPTSDI.

Similarly, given the value of (p1 − j1, p2 − j2, · · · , pη − jη) and t, for each (j′1, j
′
2, · · · , j′η)

with j′k ∈ {0, 1, · · · , jk} for k ∈ {1, 2, · · · , η} and with
∑η

r=1 j
′
r ≥ 1, we can also apply Theo-

rem 3.2 to the subproblem of I ((p1 − j1, j1), · · · , (pη − jη, jη); t). To minimize the inventory

holding cost, we arrange the sequence of orders in N ′ ((p1 − j1, j1), · · · , (pη − jη, jη)) of the

subproblem from the last to the first. The first order in N ′ ((p1 − j1, j1), · · · , (pη − jη, jη))

must be order i(ω∗, pω∗) for some ω∗ ∈ {1, 2, · · · , η}. Moreover, order i(ω∗, pω∗) should

be shipped out on or before its committed delivery due date, which means that the ω∗

satisfies that pω∗ ≥ 1 and di(ω∗,pω∗ ) ≥ t −
⌈∑η

r=1 p
′
rer

c

⌉
. Thus, if no such ω∗ exists, the sub-

problem of I ((p1 − j1, j1), · · · , (pη − jη, jη); t) must have no feasible solution, implying that

F (p1, p2, . . . , pη; t) = +∞. Otherwise, the shipping costs and possible inventory holding

costs for order i(ω∗, pω∗) equals g, and for other orders in N ′((p1 − j1, j
′
1), · · · , (pw∗−1 −

jw∗−1, j
′
w∗−1), (pw∗ − jw∗ , j

′
w∗ − 1), (p′w∗+1, j

′
w∗+1), · · · , (pη − jη, j

′
η)) (which equals N ′((p1 −

j1, j
′
1), · · · , (pw∗−1−jw∗−1, j

′
w∗−1), (pw∗−jw∗ , j′w∗−1), (p′w∗+1, j

′
w∗+1), · · · , (pη−jη, j′η)\{i(ω∗, pω∗)}),

their production and shipping plans must form an optimal solution to the subproblem of

I
(
(p1 − j1, j

′
1), · · · , (pw∗−1 − jw∗−1, j

′
w∗−1), (pw∗ − jw∗ , j′w∗ − 1), (p′w∗+1, j

′
w∗+1), · · · , (pη − jη, j′η); t

)
.

(See Figure 3.3(b) for an illustrative example.) Accordingly, we can enumerate ω∗ to compute

I ((p1 − j1, j1), · · · , (pη − jη, jη); t) by the following recursive equation:
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I((p1 − j1, j′1), · · · , (pη − jη, j′η); t)

= min



min


I((p1 − j1, j′1), · · · , (pw∗−1 − jw∗−1, j′w∗−1), (pw∗ − jw∗ , j′w∗ − 1),

(p′w∗+1, j
′
w∗+1), · · · , (pη − jη, j′η); t) + g|∀ω∗ ∈ {1, · · · , η},

with p′w∗ ≥ 1 and di(ω∗,p′
w∗ )
≥ t−

⌈∑η
r=1 p

′
rer

c

⌉
 ,

if such w∗ and p′w∗ exist

+∞, otherwise;

(3.24)

where

g =


G(di(ω∗,pω∗ ) − (t+ d∑η

r=1 prer/ce), eω∗), if d(
∑η
r=1 prer − eω∗)/ce = d∑η

r=1 prer/ce

G(di(ω∗,pω∗ ) − (t+ d∑η
r=1 prer/ce), eω∗) + h(eω∗ − d(

∑η
r=1 prer − eω∗)/ce · c),

if d(∑η
r=1 prer − eω∗)/ce < d

∑η
r=1 prer/ce

. (3.25)

Finally, the value of I ((p1 − j1, j1), · · · , (pη − jη, jη); t) is returned.

Algorithm 3.4 (for problem IPTSDI)

1: F (0, 0, . . . , 0)← 0

2: for all (p1, p2, . . . , pη) with pk = 0, 1, . . . , nk for k ∈ {1, . . . , η} and with
∑η

r=1 pr ≥ 1 do

3: for all t = 0, 1, · · · ,m do

4: Compute F (p1, p2, . . . , pη, t) by the recursive equation in (3.23)

5: end for

6: end for

7: return F (n1, . . . , nη;m)

Theorem 3.3. Algorithm 3.4 solves problem IPTSDI to optimal with O(nmη2 · (1 + n/η)η)

running times.

Proof. Since Algorithm 3.4 calculate the value function F (p1, p2, . . . , pη; t) recursively in

equation (3.23) and the final value F (n1, . . . , nη;m), according to the definition of the value

function, is the minimum shipping cost and inventory holding cost for problem IPTSDI,

which indicates that Algorithm 3.4 returns an optimal solution to problem problem IPTSDI.
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Figure 3.3: An example for Algorithm 3.4 with η = 2 types of quantities (e1 = 3 and e2 = 5)
and the planning horizon is m = 4.

Day 1 Day 2 Day 3 Day 4

Day 1 Day 2 Day 3 Day 4

F (p1 − j1, p2 − j2; t
′) = F (2, 1; 2)

F (p1, p2; t) = F (3, 3; 4)

i(1, 1) i(1, 2) i(2, 1)

i(1, 1) i(1, 2) i(2, 1) i(2, 2) i(2, 3)i(1, 3)

3 3 5

3 3 5 553

(a) For the subproblem of F (3, 3; 4) with six orders in the order set
{i(1, 1), i(1, 2), i(1, 3), i(2, 1), i(2, 2), i(2, 3)} and order completion day of the
last order is 4. Since (i(1, 3), i(2, 2), i(2, 3)) is the last production subsequence
of in the optimal solution, F (3, 3; 4) equals F (2, 1; 2) + I((2, 1), (1, 2); 4)

Day 1 Day 2 Day 3 Day 4

Day 1 Day 2 Day 3 Day 4

I((p′1, j1), (p
′
2, j2); τ) = I((2, 1), (1, 2); 4)

I((p′1, j1 − 1), (p′2, j2); τ) = I((2, 0), (1, 2); 4)

i(1, 1) i(1, 2) i(2, 1) i(2, 2) i(2, 3)i(1, 3)

i(1, 1) i(1, 2) i(2, 1) i(2, 2) i(2, 3)

3 3

3 3

5

3

5 5

5 5 5

(b) For the subproblem of I((2, 1), (1, 2); 4) with 3 orders in the order set
{i(1, 3), i(2, 2), i(2, 3)} and order completion day of the last order is 4. Since
(i(1, 3)) is the first order of in the optimal solution, I((2, 1), (1, 2); 4)) equals
I((2, 0), (1, 2); 4) +G(di(1,3) − 3, 3).

Moreover, we can see that Algorithm 3.4 computes equation (3.23) for at most (1 +

n1)(1 +n2) · · · (1 +nη) ·m times. Since for all k ∈ {1, 2, · · · , η}, Nk form a partition of order

N , which means that n1 +n2 + . . .+nη = n, then the running time above can reduced to be

(1 + n1)(1 + n2) · · · (1 + nη) ≤ [
∑η

k=1(1 + nk)/η]η = (1 + n/η)η. And equation (3.23) itself

will run in O(nη) times while equation (3.24) will run in O(η) times. Therefore, the running

time of Algorithm 3.4 is O(nmη2 · (1 + n/η)η).



CHAPTER 3: PROBLEM IPTSDI 91

3.4.2 Exact Algorithm When the Planning Horizon is Fixed

In this section, we present the second exact algorithm for problem IPTSDI. It is a pseudo-

polynomial time algorithm when the planning horizon m is bounded by a constant. We first

show that we only need to focus on the optimization of the shipping plan z to solve this

problem to optimality. And then, based on this idea, we develop the exact algorithm with a

dynamic program.

First, let us to consider a feasible solution (x, z) to model ILP. Recall that for each

t ∈ T , Qt denotes the total shipping quantity out on day t, i.e., Qt =
∑

i∈N qizit. And

(Q1, Q2, · · · , Qm) satisfies condition (3.20). We can now establish Proposition 3.1 for any

(Q1, Q2, · · · , Qm) ∈ Zm+ with (3.20) satisfied.

Proposition 3.1. Consider any (Q1, Q2, · · · , Qm) ∈ Zm+ with (3.20) satisfied. For any

shipping plan z with
∑

i∈N qizit = Qt for t ∈ T ,
∑di

t=1 zit = 1 and
∑m

t=di+1 zit = 0 for i ∈ N ,

and zit ∈ {0, 1} for i ∈ N and t ∈ T , a production plan x always exists such that solution

(x, z) is a feasible to model ILP.

Proof. As illustrated in Section 3.3, Algorithm 3.1 can construct a solution (x̄(z), z) to

model ILP-AG given a shipping plan z. According to Lemma 3.1, we know that for any

shipping plan z, the constructed solution (x̄(z), z) satisfies constraints (3.12), (3.13), and

(3.16), (3.17) (3.18) of model ILP-AG. Since the shipping plan z satisfies
∑

i∈N qizit = Qt

for t ∈ T ,
∑di

t=1 zit = 1 and
∑m

t=di+1 zit = 0 for i ∈ N , and zit ∈ {0, 1} for i ∈ N and

t ∈ T , which is specified in Proposition 3.1, constraints (3.14) and (3.15) are also satisfied.

Therefore, the constructed solution (x̄(z), z) is feasible to model ILP-AG.

From Algorithm 3.2 and 3.3, we know that the feasibility of solution (x̄(z), z) to model

ILP-AG ensures constraints (3.7) (3.8) and (3.10) to be satisfied. Moreover, with condition

(3.20) is satisfied, and since solution (x̄(z), z) also satisfies constraints (3.12), (3.13) and

(3.16), the allocation of the daily production quantity to production quantity for each order

on each day in step 4–5 and step 10–11 in Algorithm 3.2 ensures constraints (3.5), (3.6) and
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(3.9) to be satisfied. Thus, solution (x(z), z) is feasible to model ILP. Therefore, Proposition

3.1 is proved.

Next, for every (Q1, Q2, · · · , Qm) ∈ Zm+ with (3.20) satisfied, we define F (Q1, Q2, . . . , Qm)

to be the minimum shipping cost among all the shipping plans z that satisfy
∑

i∈N qizit = Qt

for t ∈ T and satisfy
∑m

t=1 zit = 1 and
∑m

t=di+1 zit = 0 for i ∈ N . From the analysis in

Proposition 3.1, to solve model ILP is equivalent to minimize F (Q1, Q2, . . . , Qm) over all

such (Q1, Q2, · · · , Qm). In the following, we present a dynamic programming algorithm to

achieve this.

For each i ∈ {0, 1, · · · , n}, denote setN(i) = {i′ ∈ N | i′ ≤ i} as the subset of first i orders

in the order set N . For each (Q1, Q2, · · · , Qm) ∈ Zm+ with (3.20) satisfied and subset N(i),

denote value function F (i;Q1, Q2, . . . , Qm) to be the minimum total shipping cost of all orders

in N(i). This subproblem needs to determine a shipping plan z such that
∑

i′∈N(i) qi′zi′,t = Qt

for t ∈ T and that
∑m

t=1 zi′,t = 1 and
∑m

t=di′+1 zi′,t = 0 for i′ ∈ N(i). If no shipping plan

exist to satisfy these conditions for the subproblem, the value of F (i;Q1, Q2, . . . , Qm) is +∞.

Accordingly, we have F (Q1, Q2, . . . , Qm) = F (n;Q1, Q2, · · · , Qm).

The value function F (i;Q1, Q2, · · · , Qm) can be computed recursively as follows. Since

the subproblem of F (0; 0, . . . , 0) is defined for an empty order set, we obtain the boundary

condition of the dynamic program that F (0; 0, . . . , 0) = 0, and that F (0;Q1, Q2, . . . , Qm) =

+∞ for each (Q1, Q2, · · · , Qm) ∈ Zm+ with (3.20) satisfied and with
∑m

t=1 Qt > 0.

For each i ∈ {1, 2, . . . , n} and for each (Q1, Q2, · · · , Qm) ∈ Zm+ with (3.20) satisfied,

for a subproblem of F (i;Q1, Q2, · · · , Qm) with its optimal shipping plan to be z, denote

τi ∈ {1, 2, · · · ,m} to be the shipping day of the last order in N(i), i.e., order i. We know

that τi must satisfy that τi ≤ di and qi ≤ Qτi , G(di − τi, qi) is the shipping cost for order

i. The shipping days of orders in N(i − 1) = N(i) \ {i} which can be obtained from

the shipping plan z are also optimal for the subproblem of F (i − 1;Q1, . . . , Qτi−1, Qτi −

qi, Qτi+1, . . . , Qm). (See Figure 3.4 for illustration.) Accordingly, we can enumerate τi to

compute F (i;Q1, Q2, · · · , Qm) by the following recursive equation:
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Figure 3.4: An example for Algorithm 3.5 with a 4-day planning horizon where the numbers
in the rectangles are order quantities and numbers above with parenthesizes are order indices:
For the subproblem of F (6; 4, 9, 4, 8), for orders in {1, 2, · · · , 5}, since order 6 is delivered on
day 4 in an optimal shipping plan (i.e., τ6 = 4), F (6; 4, 9, 4, 8) equals F (5; 4, 9, 4, 5) +G(d6−
4, 3) (since τ6 = 4 and q6 = 3).

F (i;Q1, Q2, Q3, Q4) = F (6; 4, 9, 4, 8)

(1)

(3)

(2) (4) (5)

4 5

4

4 5

(6)

3

Q1 = 3 Q2 = 9 Q3 = 4 Q4 = 9

Day 1 Day 2 Day 3 Day 4

F (i− 1;Q1, Q2, Q3, Q4 − q6) = F (5; 4, 9, 4, 5)

F (i;Q1, Q2, . . . , Qm)

= min

 F (i− 1;Q1, . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , Qm) +G(di − τi, qi) |

∀τi ∈ {1, 2, . . .m} with τi ≤ di and qi ≤ Qτi


, (3.26)

where we assume that the value function equals +∞ if taking the minimum over an empty

set.

Finally, noting that F (Q1, Q2, . . . , Qm) = F (n;Q1, Q2, · · · , Qm), we can enumerate all

(Q1, Q2, · · · , Qm) ∈ Zm+ satisfying (3.20) to find the minimal value of F (n;Q1, Q2, · · · , Qm)+

H(Q1, Q2, · · · , Qm), whereH(Q1, Q2, · · · , Qm) is the minimized inventory holding costs given

(Q1, Q2, · · · , Qm) and can be computed by Algorithm 3.3 according to Corollary 3.1. The

found minimum value is the minimum total shipping cost and inventory holding cost for

problem IPTSDI.

Algorithm 3.5 (for problem IPTSDI)

1: F (0; 0, 0, . . . , 0) ← 0, and F (0;Q1, Q2, . . . , Qm) ← +∞ for all (Q1, Q2, · · · , Qm) ∈ Zm+

with (3.20) satisfied and with
∑m

t=1Qt > 0
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2: for all i = 1, 2, · · · , n do

3: for all (Q1, Q2, · · · , Qm) ∈ Zm with (3.20) satisfied do

4: Compute F (i;Q1, Q2, . . . , Qm) by the recursive equation in (3.26)

5: end for

6: end for

7: return the minimum value of F (n;Q1, Q2, · · · , Qm) +H(Q1, Q2, · · · , Qm) over all

(Q1, Q2, · · · , Qm) ∈ Zm+ with (3.20) satisfied

Theorem 3.4. Algorithm 3.5 can solve problem IPTSDI to optimality with O(ncm(m!)m)

running times.

Proof. Algorithm 3.5 computes the value function F (i;Q1, Q2, . . . , Qm) in (3.26) over all

(Q1, Q2, · · · , Qm) ∈ Zm+ with (3.20) satisfied. Denote the combination of shipping quan-

tities in the optimal solution to be (Q∗1, Q
∗
2, · · ·Q∗m). From step 7 in Algorithm 3.5, we

can know that for the obtain solution (Q1, Q2, · · · , Qm), we have F (n;Q1, Q2, . . . , Qm) ≤

F (n;Q∗1, Q
∗
2, · · · , Q∗m). And from Corollary 3.1, we also haveH(Q1, Q2, · · · , Qm) = H(Q∗1, Q

∗
2, · · · , Q∗m).

Therefore, the total shipping costs and inventory holding costs of the obtained solution in

Algorithm 3.5 are less or equal to the total shipping costs and inventory holding costs of

the optimal solution to problem IPTSDI. Therefore, Algorithm 3.5 can return an optimal

solution to problem IPTSDI.

Moreover, Algorithm 3.5 computes (3.26) for at most n · (1 · c)(2 · c) · · · (m · c) = ncm(m!)

times since Qt ≤ tc for 1 ≤ t ≤ m. And the recursive equation (3.26) itself will run in O(m)

time. These lead O(ncm(m!)m) to be running times of Algorithm 3.4.

3.5 Infinite Unit Inventory Holding Cost

In this section, we examine the problem IPTSDI when the unit inventory holding cost h is

+∞, i.e., no inventory is allowed during the production process. We can see two solution

examples in Figure 3.5. Under this setting, no inventory holding cost is incurred in a feasible
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Figure 3.5: Solution examples for problem IPTSDI when h is +∞. A rectangle represents
an order and the number with bracket above the rectangle is the order index. There are
inventories (shaded rectangles) in solution π1, which means the total cost is +∞ and no
inventory incurs in solution π2.

Day 1 Day 2 Day 3 Day 4

(1) (2) (3) (4) (5)

Day 1 Day 2 Day 3 Day 4

(1) (2) (3) (4) (5)

π1

π2

solution, otherwise, the total cost would be +∞. Next, we study the complexity of problem

IPTSDI when h is +∞.

Theorem 3.5. There is no finite ratio pseudo-polynomial time approximation algorithm for

problem IPTSDI when the unit inventory holding cost h = +∞ unless NP=P.

Proof. From Stecke and Zhao (2007) and Zhong et al. (2010), we know that the problem

IPTSD is strongly NP-hard and it can be reduced to 3-Partition Problem (3-PP) which is

also strongly NP-hard (Garey et al. (1978)). Therefore, we can prove this theorem using the

NP-hardness of 3-PP.

3-Partition Problem (3-PP). Given integersN andB and given a set of integers a1, · · · , a3N

such that B/4 < ai < B/2, for i = 1, · · · , 3N and
∑3N

i=1 ai = NB, the 3-PP is to determine

whether or not there exist n pairwise disjoint three-element subsets Aj ⊂ {1, · · · , 3N} such

that
∑

i∈Aj ai = B for j = 1, · · · , N .

Follow Stecke and Zhao (2007), we can construct an instance UI of problem IPTSDI

given an instance UP of 3-PP in the following way. The total number of orders n = 3N ,

the planning horizon m = N and the daily production capacity c = 3X + B where X is a

positive constant. For each order i = 1, · · · , N , qi = X + ai with
∑n

i=1 qi = 3NX +NB and

di = N . And h = +∞. Suppose the daily shipping cost is ci = ci−1 + 1 for i = 2, · · · , N and

c1 = 1. Then the total cost is Z =
∑N

i=1 ci(3X +B).
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From UI constructed above, we can see that objective value of an optimal solution to UI

is Z whenever a feasible solution to the instance UP exists. However, the objective value of

an optimal solution to instance UI would be at least Z + h when no feasible solution to UP

exists. In this case, it means that inventory costs are incurred due to the deliveries of some

products are on the next day after they are completed in the optimal solution.

Assuming that an approximation algorithm A can solve UI in pseudo-polynomial running

time with a worst-case ratio a (a <∞), i.e, ZA/Z∗ ≤ a, where ZA is the value of the objective

function from algorithm H and Z∗ is that from the optimal solution π. If ZA < Z+h, which

means that UP has a feasible solution. If ZA ≥ Z + h, then UP is infeasible. In other words,

algorithm A can also solve UP in pseudo-polynomial time, which contradicts the strongly

NP-hardness of problem 3-pp. Therefore, Theorem 3.5 is proved.

3.6 Approximate Scheme

In this section, we describe the approximation scheme with pseudo-polynomial running time

for problem IPTSDI. And we show that the worst-case performance ratio of the approxima-

tion scheme is (1 + ε) for any fixed and positive constant ε.

This section is arranged as follows: In Section 3.6.1, we formally define the restricted

problem of IPTSDI and propose the algorithms extended from Algorithm 3.5 to solve it.

In Section 3.6.2, we present the analytical results for the approximation scheme. In this

section, we also assume that all orders are sorted according to their committed due dates in

a non-decreasing order

3.6.1 Restricted problem

Denote Q̄ = mc as full production capacity for m days and Q̄′ =
∑

i∈N qi as the total

production quantities of all orders in N . Given K ∈ {1, 2, . . . ,m} and Q ∈ {0, 1, . . . , Q̄}
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with

K ≥ dQ/ce, (3.27)

satisfied, denote RP(K,Q) as the restricted problem of IPTSDI. To solve the restricted

problem RP(K,Q), we need to find a feasible solution (x, z) to model ILP and a subset

I ⊆ N such that z in the feasible solution and I satisfy the constraints listed as follow:

(i) the total order quantities in the subset N \ I, i.e.
∑

i∈N\I qi, together with the unused

production capacity during idle time equal Q;

(ii) For every i ∈ I, the shipping day for an order i is d(Q +
∑

i′∈I:i′≤i qi′)/ce, i.e., zit = 1

for t = d(Q+
∑

i′∈I:i′≤i qi′)/ce;

(iii) For every i ∈ N \ I, the shipping day for an order i is no later than day K ′ = dQ/ce,

i.e.,
∑K′

t′=1 zit′ = 1 for i ∈ N \ I.

From the description above, we can see that orders in N are split into two subsets N \ I

and I. And the shipping day of an order in the subset N \ I is no later than the earliest

possible completion day of all orders K ′, which satisfies

K ′ ≤ K. (3.28)

Also, the shipping days of an order in the subset I are arranged according to its earliest

possible completion day.

We can examine a case when K = m, Q̄′ ≤ Q ≤ Q̄ and I = ∅. According to Theorem 3.1,

there is a shipping plan z such that solution (x(z), z) is optimal to problem IPTSDI. Then,

for solution under this case, (i), (ii) and (iii) are satisfied. In other words, the restricted

problem RP(K,Q) is the same as problem IPTSDI when K = m and Q̄′ ≤ Q ≤ Q̄ and

I = ∅. Therefore, we can utilize Algorithm 3.5 to design a pseudo-polynomial running

time algorithm for the restricted problem RP(K,Q) when K is bounded. Moreover, when
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m is arbitrarily large, we can further develop an approximation scheme based on the exact

algorithm for restricted problem RP(K,Q) to get a high-quality solution to problem IPTSDI

with a properly chosen value of K and several values of Q.

Following Section 3.3, for each t ∈ {1, 2, . . . , K ′}, let Qt =
∑

i∈N\I qizit denote the total

shipping quantity of orders in subset N \ I on day t. Similar to (3.20), we can obtain that

(Q1, · · · , QK′) satisfies the following condition:

t∑
t′=1

Qt′ ≤ tc, for each t ∈ {1, 2, . . . , K ′}. (3.29)

Similarly, let Qt =
∑

i∈I qizit for each t ∈ {K ′ + 1, K ′ + 2, · · · ,m} denote the total shipping

quantity of orders in subset I on day t.

Denote (x, z, I) as a feasible solution to problem RP(K,Q) and Q′ as the total order

quantity of orders in I, i.e., Q′ =
∑

i∈I qi. We have Proposition 3.2 below.

Proposition 3.2. Consider any (Q1, Q2, · · · , QK′) ∈ ZK′+ that satisfies condition (3.29)

and any Q′ ∈ {1, 2, · · · , Q̄′} with
∑K′

t=1Qt + Q′ = Q̄′. For any subset I ⊆ N that sat-

isfies
∑

i∈I qizit = Q′ and for any shipping plan z that satisfies
∑

i∈N\I qizit = Qt for

t ∈ {1, 2, · · · , K ′} and
∑m

t=1 zit = 1 and
∑m

t=di+1 zit = 0 for i ∈ N , a production plan x

will always exist such that solution (x, z, I) is a feasible to problem RP(K,Q), if condition

(i)–(iii) of problem RP(K,Q) are satisfied by the subset I and the shipping plan z.

Proof. Consider a (Q1, Q2, · · · , QK′) ∈ ZK′+ , a subset I, and a shipping plan z satisfying

all the conditions specified in Proposition 3.2. We can first construct a solution (x̄(z), z) to

model ILP-AG using Algorithm 3.1. And we can prove the constructed solution is feasible

to model ILP-AG. According to Lemma 3.1, solution (x̄(z), z) satisfies constraints (3.12),

(3.13), and (3.16), (3.17) (3.18).

Then, from the shipping plan z, an order sequence σ = (σ1, σ2, · · · , σn) can be achieved by

sorting the shipping day of the orders in a non-decreasing order. More specifically, denote

j∗ as the largest index of order σj ∈ N \ I. Thus, then the order sequence can be split
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accordingly as N \ I = {σ1, σ2, · · · , σj∗} and I = {σj∗+1, σj∗+2, · · · , σn}.

Recall that, in Section 3.3, for j ∈ {1, 2, · · · , n}, ωσj is the shipping day of order σj

under the shipping plan z. And denote tj = d∑j
τ=1 qστ/ce as the earliest possible production

completion day of the first j orders in σ. In the following, we show that tj ≤ ωσj for each

order σj of σ:

• For each order σj ∈ N \ I, i.e., j ∈ {1, 2, · · · , j∗}. We know that in the shipping plan

z, the first j orders in sequence σ, would be shipped no later than the shipping day of

the last order ωσj where ωσj ≤ K ′ according to the definition of problem RP(K,Q).

Together with (3.29), we obtain
∑j

j′=1 qσj′ ≤
∑τj

t′=1Qt′ ≤ ωσjc. Therefore, combing

with the backward construction process in Algorithm 3.1, we can conclude that that

tj ≤ ωσj .

• For each order σj ∈ I, i.e., j ∈ {j∗ + 1, · · · , n}. From the definition of problem

RP(K,Q) for orders in subset I, tj = ωσj .

Thus, solution (x̄(z), z) also satisfies constraints (3.14) and (3.15), which means it is fea-

sible to model ILP-AG. Follow the arguments in Proposition 3.1, a feasible solution (x(z), z)

to model ILP can be also constructed from solution (x̄(z), z) by Algorithm 3.2. Therefore,

Proposition 3.2 is proved.

For each (Q1, Q2, · · · , QK′) ∈ ZK′+ with (3.29) satisfied and for any Q′ ∈ {1, 2, · · · , Q̄′}

with
∑K′

t=1 Qt+Q′ = Q̄′, let F (Q′;Q1, Q2, . . . , QK′) denote the minimum total shipping costs

and inventory holding costs among all the subsets I ⊆ N and shipping plans z that satisfy∑
i∈I qizit = Q′ and

∑
i∈N qizit = Qt for t ∈ {1, 2, · · · , K ′}, ∑m

t=1 zit = 1 and
∑m

t=di+1 zit = 0

for i ∈ N and the condition (i)–(iii) specified in problem RP(K,Q). From this defini-

tion and analysis in Proposition 3.2, solving problem RP(K,Q) is equivalent to minimize

F (Q′;Q1, Q2, . . . , QK′).

Follow Section 3.4.2, we still use N(i) = {i′ ∈ N | i′ ≤ i} to denote the first i or-

ders in the order set N , for each i ∈ {0, 1, · · · , n}. For each (Q1, Q2, · · · , QK′) ∈ ZK′+
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with (3.29) satisfied, and for each Q′ ∈ {0, 1, · · · , Q̄′} with
∑K′

t=1Qt + Q′ = Q̄′, denote

F (i;Q′;Q1, Q2, . . . , QK′) as a value function to minimize total shipping cost of a subprob-

lem of RP(K,Q) with an order subset I ⊆ N(i) and a shipping plan z in N(i) and with

constraints listed in the follow are all satisfied:

∑
i′∈I

qi′ = Q′, (3.30)∑
i′∈N(i)\I

qi′zi′,t = Qt, for t ∈ {1, 2, · · · , K ′}, (3.31)

m∑
t=1

zi′,t = 1, for i′ ∈ N(i), (3.32)

m∑
t=di′+1

zi′,t = 0, for i′ ∈ N(i), (3.33)

K′∑
t′=1

zi′t′ = 1, for i′ ∈ N(i) \ I, (3.34)

zit = 1, for i ∈ I and for t = d(Q+
∑

i′∈I:i′≤i qi′)/ce, (3.35)

zit ∈ {0, 1}, for i ∈ I and t ∈ T . (3.36)

Constraint (3.30) ensures that the total quantity in the subset I is Q′ and (3.31) ensures

that Qt is the total shipping quantity on day t. (3.32) and (3.33) limits the shipping day of

orders in N(i) to be no later than their committed delivery due dates. Moreover, condition

(ii) for orders in I and (iii) for orders in N(i)\I in restricted problem RP(K,Q) are reflected

in constraints (3.34) and (3.35). And (3.36) is binary constraints on variables zit.

The value of F (i;Q′;Q1, Q2, . . . , QK′) would be set to +∞ when no combination of I and

z can be found for this subproblem. And F (Q′;Q1, Q2, . . . , QK′) = F (n;Q′;Q1, . . . , QK′)

with
∑K′

t=1 Qt +Q′ = Q̄′ according to the definition.

The value function F (i;Q′;Q1, Q2, · · · , QK′) can be computed recursively as follows.

Since the subproblem of F (0; 0; 0, . . . , 0) is defined for an empty order set, we obtain the

boundary condition of the dynamic program that F (0; 0; 0, . . . , 0) = 0, and F (0;Q′;Q1, . . . , QK′) =

+∞ for each (Q1, · · · , QK′) ∈ ZK′+ with (3.29) satisfied, for each Q′ ∈ {0, 1, · · · , Q̄′} and with
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0 < Q′ +
∑K′

t=1Qt ≤ Q̄′.

For each i ∈ {1, 2, . . . , n}, for each (Q1, Q2, · · · , QK′) ∈ ZK′+ with (3.29) satisfied and for

each Q′ ∈ {0, 1, · · · , Q̄′} with
∑K′

t=1Qt + Q′ ≤ Q̄′, there are two possible cases when the

solution of subproblem F (i;Q′, Q1, Q2, · · · , QK′) is optimal for different order subset I and

shipping plan z respectively:

Case 1 (see Figure 3.6(a) for illustration): In this case, i ∈ I in the optimal solution

for the subproblem of F (i;Q′;Q1, Q2, · · · , QK′) with I and z. According the con-

straints (3.30) and (3.35) shown above, we can obtain that d(Q +
∑

i′∈I:i′≤i qi)/ce =

d(Q+
∑

i′∈I qi)/ce = d(Q+Q′)/ce is the shipping day of order i and it satisfies

d(Q+Q′)/ce ≤ di. (3.37)

Thus, the shipping cost for order i can be written as G(di − d(Q + Q′)/ce, qi). In

addition, in the subproblem F (i − 1;Q′ − qi;Q1, . . . , QK′) for orders in the subset

N(i − 1), we know that the order subset I \ {i} and the shipping plan for orders in

N(i − 1) = N(i) \ {i} under z are also optimal. That is, F (i;Q′;Q1, . . . , QK′) equals

F (i− 1;Q′ − qi;Q1, . . . , QK′) +G(di − d(Q+Q′)/ce, qi).

Case 2 (see Figure 3.6(b) for illustration): In this case i ∈ N(i) \ I in the optimal solution

for the subproblem of F (i;Q′;Q1, Q2, · · · , QK′) with I and z. Similar to Section 3.4.2,

denote τi ∈ {1, 2, · · · , K ′} to be the shipping day of the last order in N(i), i.e., order

i. We know that τi must satisfy that τi ≤ di and qi ≤ Qτi with constraints (3.33) and

(3.34) satisfied. Thus, we can write G(di − τi, qi) to be the shipping cost for order i.

Also, the order subset I and the shipping days of orders in N(i−1) = N(i)\{i} which

can be obtained from the shipping plan z are also optimal for the subproblem of F (i−

1;Q′;Q1 . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , QK′). Therefore, F (i;Q′;Q1, . . . , QK′) can be

obtained by minimizing the value of F (i−1;Q′;Q1 . . . , Qτi−1, Qτi−qi, Qτi+1, . . . , QK′)+

G(di − τi, qi) over all τi ∈ {1, 2, . . . , K ′} with τi ≤ di and qi ≤ Qτi .
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Figure 3.6: Examples for two possible cases for restricted problem RP(K,Q) where K ′ = 2
and N(i) = {1, 2, · · · , 5}
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(a) Case 1: F (5; 7; 2, 8) equals the sum of F (4; 4; 2, 8) and
G(d5 − d(Q+ 7)/ce, 3) when order 5 is in I in an optimal
solution (i.e., 5 ∈ I) (since the shipping day of order 5 is
d(Q+ 7)/ce and q5 = 3).
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F (i− 1;Q′;Q1 − q5, Q2) = F (4; 4; 2, 8)

(b) Case 2: F (5; 4; 5, 8) equals the sum of F (4; 4; 2, 8) and
G(d5−1, 3) when the shipping day of order 5 is day 1 in an
optimal solution (i.e., τ5 = 1) (since τ5 = 1 and q5 = 3).
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According to the two cases above, we can compute F (i;Q1, Q2, · · · , Qm) by the following

recursive equation:

F (i;Q′;Q1, . . . , QK′)

= min




F (i− 1;Q′ − qi;Q1, . . . , QK′) +G(di − d(Q+Q′)/ce, qi),

if d(Q+Q′)/ce ≤ di is satisfied and qi ≤ Q′,

+∞, otherwise.

min

 F (i− 1;Q1, . . . , Qτi−1, Qτi − qi, Qτi+1, . . . , QK′) +G(di − τi, qi) |

∀τi ∈ {1, 2, . . . K ′} with τi ≤ di and qi ≤ Qτi

 .

(3.38)

where we assume that the value function equals +∞ if it is taking the minimum over an

empty set.

Finally, note that F (Q′;Q1, Q2, . . . , QK′) = F (n;Q′;Q1, Q2, · · · , QK′) with
∑K′

t=1Qt +

Q′ = Q̄′. If F (n;Q;Q1, Q2, · · · , QK′) = +∞, which means no feasible solution can be found

for problem RP(K,Q), we return +∞. Otherwise, we can first find the daily shipping quan-

tity after day K ′ (QK′+1, QK′+2, · · · , Qm) by enumerating all (Q1, Q2, · · · , QK′) ∈ ZK′+ with

(3.29) and
∑K′

t=1Qt ≤ Q̄′ satisfied. And find (Q′′;Q′1, Q
′
2, · · · , Q′K′) that has the minimal val-

ues for F (n;Q′;Q1, Q2, · · · , QK′) + H(Q1, Q2, · · · , Qm) for all (Q′;Q1, Q2, · · · , QK′) ∈ ZK′+

with (3.29) and
∑K′

t=1Qt + Q′ = Q̄′ satisfied, where vector (Q1, Q2, · · · , Qm) can found in

the previous step and H(Q1, Q2, · · · , Qm) is the minimized inventory holding costs given

(Q1, Q2, · · · , Qm) and can be computed by Algorithm 3.3 according to Corollary 3.1. Fur-

thermore, during this process, the solution containing subset I and shipping plan z that has

the minimum value of total shipping costs and inventory holding costs for the subproblem of

F (n;Q′′;Q′1, Q
′
2, · · · , Q′K′) can also be obtained. Accordingly, from the analysis in Proposi-

tion 3.2, I and z can help to construct a feasible solution (x, z, I) to problem RP(K,Q) with

the total cost F (n;Q′′;Q′1, Q
′
2, · · · , Q′K′) + H(Q′1, Q

′
2, · · · , Q′m). The described procedure is

shown in Algorithm 3.6.

Algorithm 3.6 (for problem RP(K,Q))
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1: F (0; 0; 0, 0, . . . , 0)← 0, and F (0;Q′;Q1, Q2, . . . , QK′)← +∞ for each (Q1, Q2, · · · , QK′) ∈

ZK′+ with 0 < Q′ +
∑K′

t=1Qt ≤ Q̄′ and (3.29) satisfied and

2: for all i = 1, 2, · · · , n do

3: for all Q′ = 0, 1, · · · , Q̄′ do

4: for all (Q1, Q2, · · · , QK′) ∈ ZK′ with
∑K′

t=1Qt +Q′ ≤ Q̄′ and (3.29) satisfied do

5: Compute F (i;Q′;Q1, . . . , QK′) by the recursive equation in (3.38)

6: end for

7: end for

8: end for

9: if F (n;Q′;Q1, · · · , QK′) = +∞ for each (Q′;Q1, · · · , QK′) with Q′ ∈ {0, 1, . . . , Q̄′},

(Q1, · · · , QK′) ∈ ZK′+ and
∑K′

t=1 Qt +Q′ = Q̄′, and (3.29) satisfied then

10: return +∞

11: else

12: for all (Q1, Q2, · · · , QK′) ∈ ZK′ with
∑K′

t=1Qt ≤ Q̄′ and (3.29) satisfied do

13: Compute the shipping quantity vector after day K ′ (QK′+1, · · · , Qm) and obtain the

daily shipping quantity vector (Q1, Q2, · · · , Qm)

14: end for

15: Find (Q′′;Q′1, · · · , Q′K′) that minimizes the value of F (n;Q′;Q1, · · · , QK′)+H(Q1, · · · , Qm)

among all (Q′;Q1, · · · , QK′) for each (Q′;Q1, · · · , QK′) withQ′ ∈ {0, 1, . . . , Q̄′}, (Q1, · · · , QK′) ∈

ZK′+ and
∑K′

t=1Qt +Q′ = Q̄′, and (3.29) satisfied

16: Backtrack the computational process of F (n;Q′′;Q′1, · · · , Q′K) with
∑K′

t=1 Q
′
t + Q′′ =

Q̄′ and construct I and z with the minimal objective value for the subproblem of

F (n;Q′′;Q′1, · · · , Q′K)

17: Construct a feasible solution (x, z, I) to problem RP(K,Q) according to Proposi-

tion 3.2

18: return (x, z, I)

19: end if
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Theorem 3.6. For every Q ∈ {0, 1, . . . ,mc} and K ∈ {1, 2, . . . ,m}, (i) Algorithm 3.6 re-

turns +∞ when no feasible solution can be found for problem RP(K,Q); (ii) Algorithm 3.6

returns an optimal solution (x, z, I) to problem RP(K,Q) with running time to be O(nmcK+1K·

K!), and (x, z) is also a feasible solution to model ILP of problem IPTSDI with the same

total cost with problem RP(K,Q).

Proof. We can use similar logic in the proof of Theorem 3.4 to prove the optimality of Algo-

rithm 3.6 stated in this Theorem. In Algorithm 3.6, it calculates value function F (i;Q′;Q1, Q2, . . . , QK′)

recursively by (3.38), and F (Q1, Q2, . . . , QK′) = F (n;Q;Q1, Q2, · · · , QK′) with
∑K′

t=1Qt +

Q′ = Q̄′. Therefore, F (n;Q;Q1, Q2, · · · , QK′) = +∞ when there is no feasible solution to

problem RP(K,Q) and Algorithm 3.6 also returns +∞. Otherwise, the minimum total ship-

ping costs and inventory holding costs for problem RP(K,Q) equals F (n;Q′′;Q′1, Q
′
2, · · · , Q′K′)

for (Q′′;Q′1, Q
′
2, · · · , Q′K′) found by Step 15 of Algorithm 3.6. The reason is shown as fol-

lows. Suppose the shipping quantities of the optimal solution is (Q′∗;Q∗1, Q
∗
2, · · ·Q∗m). From

step 15 of Algorithm 3.6, we can know that for the obtain solution (Q1, Q2, · · · , Qm), we

have F (n;Q′′;Q′1, Q
′
2, . . . , Q

′
K′) ≤ F (n;Q′∗;Q∗1, Q

∗
2, · · · , Q∗K′). And from Corollary 3.1, we

also have H(Q1, Q2, · · · , Qm) = H(Q∗1, Q
∗
2, · · · , Q∗m). Therefore, the total shipping costs and

inventory holding costs of the obtained solution in Algorithm 3.6 is less or equal to the to-

tal shipping costs and inventory holding costs of the optimal solution to problem IPTSDI.

Therefore, the total shipping costs and inventory holding costs of the obtained solution in

Algorithm 3.6 is less or equal to the total shipping costs and inventory holding costs of the

optimal solution to problem IPTSDI. Therefore, the optimality of solution (x, z, I) holds for

problem RP(K,Q).

The feasibility of (x, z) also holds for problem IPTSDI due to the definition of prob-

lem RP(K,Q). In addition, the total costs of solutions (x, z) and (x, z, I) are the same since

z can determine both the shipping cost and inventory holding cost.

Moreover, Algorithm 3.6 computes (3.38) for at most n · mc · (1 · c)(2 · c) · · · (K ′ · c) =

nmc · cK′ ·K ′! times since Qt ≤ tc for 1 ≤ t ≤ K ′ and Q′ ≤ Q ≤ ∑i∈N qi ≤ mc. And the
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recursive equation (3.26) itself will run in O(K ′) time. That is, O(nmcK+1K · K!) is the

running times of Algorithm 3.6. And thus, Theorem 3.6 is proved.

3.6.2 Approximation Scheme: Algorithm and Analysis

Illustrated in Algorithm 3.7, we show the approximation scheme for problem IPTSDI based

on Algorithm 3.6. At first, For any fixed ε > 0, the algorithm selects K = min
{
d(1 +

ρ)/εe,m
}

. Next, it solves the restricted problem RP(K,Q) by utilizing Algorithm 3.6,

which iterates all values of Q ∈ {0, 1, . . . , Q̄} where Q̄ = mc with K ≥ dQ/ce and (3.27)

satisfied. According to Theorem 3.6, Algorithm 3.6 can construct a feasible solution to

problem IPTSDI if a feasible solution exists for problem RP(K,Q). Finally, the algorithm

returns the solution with the lowest total shipping costs and inventory holding costs among

all feasible solutions in the iteration process.

Algorithm 3.7 (an approximation scheme for problem IPTSDI)

1: For a fixed and positive ε, set K ← min
{
d(1 + ρ)/εe,m

}
2: for all Q ∈ {0, 1, . . . , Q̄} with K ≥ dQ/ce do

3: Use Algorithm 3.6 to solve the restricted problem RP(K,Q) and return an optimal

solution (x, z, I) to problem RP(K,Q) if it is feasible. Construct a feasible solution

(x, z) to model ILP with solution (x, z, I)

4: end for

5: return the feasible solution that has the lowest total shipping costs and inventory

holding costs among all (x, z) obtained to model ILP

3.6.2.1 Analysis

Lemma 3.5. Algorithm 3.7 returns in O(nm2cd1/εe+2 ·d1/εe! ·d1/εe) time, which is a pseudo-

polynomial running time for any given ε > 0.

Proof. By Theorem 3.6, every solution (x, z) obtained in Step 3 of Algorithm 3.7 is feasible

to model ILP. Thus, the one returned by Step 5 of Algorithm 3.7 is also a feasible solution
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to model ILP.

Moreover, Algorithm 3.6 will be invoked for at most mc times since (3.3) and Q̄ = mc.

Thus, from the complexity analysis in Theorem 3.6 and K ≤ d(1 + ρ)/εe, we can see that

Algorithm 3.7 runs pseudo-polynomial running time in O(nm2cd1/εe+2 · d1/εe! · d1/εe) time

for any given ε > 0.

Based on Lemma 3.5, we can then have Theorem 3.7.

Theorem 3.7. For any given but fixed ε > 0, Algorithm 3.7 is a pseudo-polynomial time

approximation scheme for problem IPTSDI with a worst-case performance ratio of (1 + ε).

In the proof of Theorem 3.7, we need to show that for any given ε > 0, Algorithm 3.7

can yield a feasible solution to problem IPTSDI whose total shipping and inventory holding

costs are less or equal to (1 + ε) times that of an optimal solution.

3.6.2.2 Proof of Theorem 3.7

First, we construct a restricted problem RP(K,Q∗) as follows. Recall that K = min{d(1 +

ρ)/εe,m}. By Theorem 3.1, there must exist an shipping plan z∗ such that the solution

π∗ = (x(z∗), z∗), which is constructed from z∗ by the Algorithm 3.3 described in Section 3.3,

forms an optimal solution to model ILP. We define Q∗ as the total product quantity shipped

out after day K under the optimal solution π∗ (see Figure 3.7(a) for an illustrative example).

Thus, dQ∗/ce also indicates the earliest possible day on which the productions are completed

for all the products for orders shipped out on or before day K under π∗. Hence, K ≥ dQ∗/ce,

implying that K and Q∗ satisfy (3.27).

Consider the restricted problem RP(K,Q∗). Since 0 ≤ Q∗ ≤ mc = Q̄, during the

iteration in Steps 2–4, Algorithm 3.7 must have applied Algorithm 3.6 to solve the restricted

problem RP(K,Q∗). Thus, if problem RP(K,Q∗) has a feasible solution, then Algorithm 3.6

must return an optimal solution (x̃, z̃, Ĩ) to it, which yields a feasible solution π̃ = (x̃, z̃) to

model ILP. For each i ∈ N , let ξi(π
∗) and ξi(π̃) indicate the shipping cost of order i under
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Figure 3.7: Illustrative examples for the proof of Theorem 3.7 where K = 2 and d1 ≤ d2 ≤
. . . ≤ d7: Defining z∗, σ∗, Q∗, I ′, z′, σ′, and π′.
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3 5π∗
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(a) An optimal solution π∗ = (x(z∗), z∗) is constructed from the order sequence σ∗ = (1, 5, 3, 2, 7, 4, 6),
and from π∗, Q∗ is defined to be the total product quantity of orders shipped out after day K = 2 under
π∗, and these orders form set I ′ = {4, 6, 7}.
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4
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(6)
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Day 3

Q = 14 I ′ = {4, 6, 7}

(K = 2)

Day 4
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3 5π′

z′

(b) From z∗ and I ′ = {4, 6, 7} shown in Figure 3.7(a), a new order sequence σ′ = (1, 5, 3, 2, 4, 6, 7) and
new shipping plan z′ is constructed by rearranging orders of I ′ in an increasing order of their indices, and
from z′ a new solution π′ = (x(z′), z′) is constructed.

the solution π∗ and the solution π̃, respectively. Similarly, let µi(π
∗) and µi(π̃) denote the

inventory holding costs of order i under the solution π∗ and the solution π̃. Since the solution

returned by Step 5 of Algorithm 3.7 must have a total cost no greater than that of solution

π̃, to prove that Algorithm 3.7 has a worst-case performance ratio of (1 + ε), we only need

to prove that problem RP(K,Q∗) has a feasible solution, and that

∑
i∈N

(ξi(π̃) + µi(π̃)) ≤ (1 + ε)
∑
i∈N

(ξi(π
∗) + µi(π

∗)). (3.39)

Second, we construct an order subset I ′ from π∗ and a shipping plan z′ from z∗ and I ′

as follows, which yields a feasible solution π′ to model ILP such that π′ and I ′ also form

a feasible solution to the restricted problem RP(K,Q∗). We define I ′ to be the subset of
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orders shipped after day K under solution π∗ (see Figure 3.7(a) for an illustrative example).

Accordingly, in sequence σ∗ of the shipping plan z∗, the first (n − |I ′|) orders are shipped

out on or before day K, forming set N \ I ′, and the last |I ′| orders are shipped out after day

K, forming set I ′. From π∗ and I ′, we can construct a new order sequence σ′ by changing

only the subsequence of the last |I ′| orders, such that they are in an increasing order of their

indices and form a new shipping plan z′. Following the Algorithm 3.3 described in Section 3.3

we can construct from z′ a solution π′ = (x(z′), z′) for model ILP (see Figure 3.7(b) for an

illustrative example). Lemma 3.6 can then be established.

Lemma 3.6. π′ = (x(z′), z′) is a feasible solution to model ILP of problem IPTSDI, and

(x(z′), z′, I ′) is a feasible solution to the restricted problem RP(K,Q∗).

Proof. Consider the order sequence of the shipping plan z∗ in the optimal solution π∗ is

σ∗ = (σ∗1, σ
∗
2, · · · , σ∗n) and the order sequence of the shipping plan z′ in the constructed

solution π′ is σ′ = (σ′1, σ
′
2, · · · , σ′n). Let j indicate the smallest index such that order σ∗j+1

appears ahead of order σ∗j in σ′. If such an index j does not exist, implying that σ∗ = σ′,

which means z∗ = z′ then since by the definition of I ′ and Q∗, (x(z∗), z∗, I ′) is a feasible

solution to RP(K,Q∗), we can see that Lemma 3.6 holds true.

Otherwise, from the definition of σ′ we know that σ∗j+1 < σ∗j , which, together with

d1 ≤ d2 ≤ · · · ≤ dn, implies that dσ∗j+1
≤ dσ∗j . We can construct a new sequence σ′′ from

σ∗ by swapping the positions of orders σ∗j and σ∗j+1, which leads to a new shipping plan z′′.

Consider the solution π′′ = (x(z′′), z′′) constructed from z′′ by the Algorithm 3.3 described

in Section 3.3. We now show as follows that π′′ is a feasible solution to model ILP.

First, from the backward construction of Algorithm 3.3, we know that under each solution

π ∈ {π∗, π′′}, the production capacity of each day is not exceeded. Second, suppose Ωi

denotes the total idle time before shipping out order i for each i ∈ N . Since σ′′j′ = σ∗j′ for j′ ∈

{1, 2, · · · , j−1, j+2, · · · , n}, from the backward and forward construction in Algorithm 3.3,

we have d(∑j′′

j′=1 qσ′′j′+Ωσ′′
j′′

)/ce = d(∑j′′

j′=1 qσ∗j′+Ωσ∗
j′′

)/ce for j′′ ∈ {1, 2, · · · , j−1, j+1, · · · , n}.

Thus, since the optimal solution π∗ is feasible to model ILP, and since dσ∗
j′′

= dσ′′
j′′

, we obtain
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that for each j′′ ∈ {1, 2, · · · , j − 1, j + 1, · · · , n},

d(
j′′∑
j′=1

qσ′′
j′

+ Ωσ′′
j′′

)/ce = d(
j′′∑
j′=1

qσ∗
j′

+ Ωσ∗
j′′

)/ce ≤ dσ∗
j′′

= dσ′′
j′′
. (3.40)

Thus, the shipped-out day of each order σ′′j′′ with j′′ ∈ {1, 2, · · · , j − 1, j + 1, · · · , n} is not

later than its committed delivery due date. For the remaining two orders σ′′j and σ′′j+1, we can

also see that their shipped-out days are not later than their committed delivery due dates.

To see this, we first know from (3.40) that d(∑j+1
j′=1 qσ′′j′+Ωσ′′j+1

)/ce = d(∑j+1
j′=1 qσ∗j′+Ωσ∗j+1

)/ce.

For order σ′′j , its shipped-out day is d(∑j
j′=1 qσ′′j′ + Ωσ′′j

)/ce, which, due to σ∗j+1 = σ′′j and

(3.40), satisfies that

d(
j∑

j′=1

qσ′′
j′

+ Ωσ′′j
)/ce ≤ d(

j+1∑
j′=1

qσ′′
j′

+ Ωσ′′j+1
)/ce = d(

j+1∑
j′=1

qσ∗
j′

+ Ωσ∗j+1
)/ce ≤ dσ∗j+1

= dσ′′j ,

and thus is not later than its committed delivery due date. For order σ′′j+1, its shipped-out

day is d(∑j+1
j′=1 qσ′′j′ + Ωσ′′j+1

)/ce, which, due to dσ∗j+1
≤ dσ∗j and (3.40), satisfies that

d(
j+1∑
j′=1

qσ′′
j′

+ Ωσ′′j+1
)/ce = d(

j+1∑
j′=1

qσ∗
j′

+ Ωσ∗j+1
)/ce ≤ dσ∗j+1

≤ dσ∗j = dσ′′j+1
,

and thus is not later than its committed delivery due date.

Hence, π′′ is a feasible solution to model ILP. Replacing σ∗ with σ′′ and repeating the

argument above until σ′′ = σ′, we can obtain that the resulting π′ is still a feasible solution

to model ILP.

Moreover, consider I ′ and the shipping plans z′ and z∗. By the definition of I ′ and the con-

struction of π∗, we know that there exists an index n′ such that I ′ = {σ∗n′+1, σ
∗
n′+2, · · · , σ∗n},

containing all the orders shipped out after dayK under z∗, and thatN\I ′ = {σ∗1, σ∗2, · · · , σ∗n′},

containing all the orders shipped out on or before day K under z∗. Since σ′ and σ∗ differ

only in the subsequence of orders in I ′, by the construction of π′, we know that I ′ still
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contains all the orders shipped out after day K under z′, and N \ I ′ still contains all the

orders shipped out on or before day K under z′. Accordingly, we can show as follows that

the shipped-out days of orders in σ′j′′ ∈ N \ I ′ under z′, together with the order subset I ′,

satisfy the additional conditions (i)–(iii) of problem RP(K,Q∗):

• By the definition of Q∗, we know that I ′ satisfies that the total shipping orders in the

set N \ I plus the total idle time equal Q∗, which means the additional condition (i) is

satisfied.

• For each order σj′′ ∈ I ′ where j′′ ≥ n′+1, its shipped-out day is d(Q∗+∑j′′

j′=n′+1 qσ′j′ )/ce.

Since orders in I ′ are ordered in σ′ in an increasing order of their indices, we have∑j′′

j′=n′+1 qσ′j′ =
∑

i′∈I′:i′≤σ′
j′′
qi′ . Thus, for each order i ∈ I ′, its shipped-out day is

d(Q∗ +
∑

i′∈I′:i′≤i qi′)/ce. The additional condition (ii) is satisfied.

• For each order σ′j′′ ∈ N \ I ′ where 1 ≤ j′′ ≤ n′, its shipped-out day is d(∑j′′

j′=1 qσ′j′ +

Ωσ′
j′′

)/ce, where Ωi denotes the total idle time before the shipped out day of order

i. It can be seen that
∑j′′

j′=1 qσ′j′ + Ωσ′
j′′
≤ ∑n′

j′=1 qσ′j′ + Ωn′ = Q∗, implying that

d(∑j′′

j′=1 qσ′j′ +Ωσ′
j′′

)/ce ≤ dQ∗/ce = K ′. Thus, for each order i ∈ N \I ′, its shipped-out

day must be on or before day K ′. The additional condition (iii) is satisfied.

Therefore, (x(z′), z′, I ′) is a feasible solution to RP(K,Q∗). Lemma 3.6 is proved.

By Lemma 3.6, we obtain that problem RP(K,Q∗) has a feasible solution (x(z′), z′, I ′),

and that π′ = (x(z′), z′) is a feasible solution to model ILP. Thus, to show that Algorithm 3.7

has a worst-case performance ratio of (1 + ε), we only need to prove (3.39). To prove this,

for each i ∈ N , let ξi(π
′) indicate the shipping cost of order i under π′. Since (x̃, z̃, Ĩ) is an

optimal solution to problem RP(K,Q∗), by Lemma 3.6, the total shipping costs and inventory

holding costs solution of (x̃, z̃, Ĩ) should not be greater than that of solution (x(z′), z′, I ′).

Thus, the total cost of π̃ = (x̃, z̃) should not be greater than that of π′ = (x(z′), z′), implying
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that

∑
i∈N

ξi(π̃) ≤
∑
i∈N

ξi(π
′) =

∑
i∈N\I′

ξi(π
′) +

∑
i∈I′

ξi(π
′), (3.41)

∑
i∈N

µi(π̃) ≤
∑
i∈N

µi(π
′) =

∑
i∈N\I′

µi(π
′) +

∑
i∈I′

µi(π
′). (3.42)

Moreover, since the positions of orders of N \ I ′ in σ′ are the same as that in σ∗, the

shipped-out days for orders of N \ I ′ under π′ are the same as that under π∗. Thus, we have

∑
i∈N\I′

ξi(π
′) =

∑
i∈N\I′

ξi(π
∗), (3.43)

∑
i∈N\I′

µi(π
′) =

∑
i∈N\I′

µi(π
∗). (3.44)

From (3.42) and (3.44) we obtain that

∑
i∈N

ξi(π̃) ≤
∑
i∈N\I′

ξi(π
′) +

∑
i∈I′

ξi(π
′) =

∑
i∈N\I′

ξi(π
∗) +

∑
i∈I′

ξi(π
′), (3.45)

∑
i∈N

µi(π̃) ≤
∑
i∈N\I′

µi(π
′) +

∑
i∈I′

µi(π
′) =

∑
i∈N\I′

µi(π
∗) +

∑
i∈I′

µi(π
′). (3.46)

Third, we construct a new instance of problem IPTSDI by splitting each order i ∈ I ′ into

qi orders with each having a unit product quantity and the same committed delivery due

date as order i. We denote these unit orders by (i, 1), (i, 2), . . ., and (i, qi). Thus, these unit

orders split from order i do not need to be shipped out together.

Consider any shipping plan z with order sequence σ of orders in N such that π = (x(z), z),

which is constructed from z by Algorithm 3.3 described in Section 3.3, forms a feasible

solution to the original problem instance. From σ, we can construct an order sequence σ̂ of

orders for the new problem instance by replacing each order i ∈ I ′ in σ with a subsequence

of the unit orders (i, 1), (i, 2), . . ., and (i, qi). By the Algorithm 3.3 described in Section 3.3

we can also construct from ẑ a solution π̂ = (x̂(ẑ), ẑ) for the new problem instance. For each



CHAPTER 3: PROBLEM IPTSDI 113

i ∈ I ′, let ξ̂i(π̂) indicate the total shipping cost of all the unit orders (i, p) split from order

i under π̂. See Figure 3.8 for two illustrative examples for σ = σ∗ and σ = σ′, respectively.

Lemma 3.7 can then be established for π̂.

Figure 3.8: Illustrative examples for the proof of Theorem 3.7 where K = 2 and
d1 ≤ d2 ≤ . . . ≤ d7 where orders in I ′ = {4, 6, 7} are split into unit orders
(4, 1), · · · , (4, 4), (6, 1), · · · , (6, 3), (7, 1), · · · , (7, 5).
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Day 3
(K = 2)

Day 4

(4.1)... (6.1) ...

π̂∗

ẑ∗
(7.5) (4.3) (6.5)

1 1 1

(a) From σ∗, an order sequence σ̂∗ = {1, 5, 3, 2, (7, 1), · · · , (7, 5), (4, 1), · · · , (4, 4), (6, 1), · · · , (6, 3)} is con-
structed for the new problem instance, and from σ̂∗ a shipping plan ẑ∗ and a solution π̂∗ = (x̂(ẑ∗), ẑ∗) is
constructed, in which two of the three unit orders split from order 4 are shipped out one day earlier than
the production completion days of order 6
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Day 1 Day 2

(6.1) ...

Day 3
(K = 2)

Day 4

(4.1).. (7.1) ...

π̂′

ẑ′ (6.5)(4.3) (7.5)

1 1 1

(b) From σ′, an order sequence σ̂′ = {1, 5, 3, 2, (4, 1), · · · , (4, 4), (6, 1), · · · , (6, 3), (7, 1), · · · , (7, 5)} is con-
structed for the new problem instance, and from σ̂′ a shipping plan ẑ′ and a solution π̂′ = (x̂(ẑ′), ẑ′) is
constructed, in which four of the five unit orders split from order 6 are shipped out one day earlier than the
production completion days of order 4.

Lemma 3.7. π̂ is a feasible solution to the new instance of problem IPTSDI, satisfying that

ξ̂i(π̂) ≤ ξi(π), 0 = µ̂i(π̂) ≤ µi(π), for each i ∈ I ′.

Proof. It can be seen that solution π̂ of the new instance and the solution π of the original

instance satisfies the following properties:

(i) For each i ∈ N \ I ′, the production completion day and the shipped-out day of order i

under π̂ are the same as those under π;
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(ii) For each i ∈ I ′ and each p ∈ {1, 2, · · · , qi}, both the production completion day and

the shipped-out day of the unit order (i, p) under π̂ are the same as the day when the

first p product units of order i are produced under π.

Due to (ii) above, for each unit order (i, p) split from order i ∈ I ′, its product is shipped out

as soon as it is produced, and the shipped-out day under π̂ is no later than that of order i

under π, which cannot be later than the committed delivery due date of order i and order

(i, p). Also, no inventory holding cost would be incurred when the products are shipped out

as soon as they produced, i.e., 0 = µ̂i(π̂) ≤ µi(π), for each i ∈ I ′. This, together with (i)

above, implies that the solution π̂ is feasible to the new instance of problem IPTSDI, and

that the total shipping costs and inventory holding costs of all the unit orders (i, p) under

π̂ cannot be greater than the shipping cost of order i under π, i.e., ξ̂i(π̂) ≤ ξi(π) for i ∈ I ′.

Thus, Lemma 3.7 is proved.

Applying Lemma 3.7 to sequences σ∗ and σ′ of orders in N , we can obtain sequences σ̂∗

and σ̂′ and shipping plans ẑ∗ and ẑ′ for the new problem instance, respectively, as well as

obtain feasible solutions π̂∗ = (x̂(ẑ∗), ẑ∗) and π̂′ = (x̂(ẑ′), ẑ′) to the new problem instance,

respectively, satisfying that

ξ̂i(π̂∗) ≤ ξi(π
∗) and ξ̂i(π̂′) ≤ ξi(π

′), for i ∈ I ′. (3.47)

Moreover, sequence σ̂′ can be transformed from sequence σ̂∗ by repetitively interchanging

the positions of any two unit orders (i, p) and (i′, p′) with i > i′ or with i = i′ and p > p′,

where i ∈ I ′, p ∈ {1, 2, · · · , pi}, i′ ∈ I ′, and p′ ∈ {1, 2, · · · , pi′}. Note that such two

unit orders (i, p) and (i′, p′) have the same order quantity (which is one). By following

an argument similar to that in the proof of Theorem 3.2, we can obtain that the total

shipping cost of orders in I ′, under the solution constructed from the order sequence, is not

increased after each interchange of the positions of orders (i, p) and (i′, p′). Thus, we have
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∑
i∈I′ ξ̂i(π̂

′) ≤∑i∈I′ ξ̂i(π̂
∗), which, together with (3.47), implies that

∑
i∈I′

ξ̂i(π̂′) ≤
∑
i∈I′

ξ̂i(π̂∗) ≤
∑
i∈I′

ξi(π
∗). (3.48)

Fourth, we are now going to investigate the difference between
∑

i∈I′ ξi(π
′) and

∑
i∈I′ ξ̂i(π̂

′),

that is, the difference between the total shipping costs of orders in I ′ under π′ and that of

unit orders split from orders in I ′ under π̂′. For this, we establish Lemma 3.8 below.

Lemma 3.8.
∑

i∈I′(ξi(π
′) + µi(π

′)) ≤∑i∈I′(ξ̂i(π̂
′) + µ̂i(π̂′)) + ε

∑
i∈I′ ξi(π

∗).

Proof. If m ≤ d(1 + ρ)/εe, i.e., m is bounded by a fixed constant d(1 + ρ)/εe, then K =

min{d(1 + ρ)/εe,m} = m. Thus, by definition, I ′ is empty, implying that
∑

i∈I′ ξi(π
′) +∑

i∈I′ µi(π
′) =

∑
i∈I′ ξ̂i(π̂

′) +
∑

i∈I′ µ̂i(π̂
′) + ε

∑
i∈I′ ξi(π

∗) = 0. Lemma 3.8 holds true.

Otherwise, m > d(1 + ρ)/εe, and thus K = min{d(1 + ρ)/εe,m} = d(1 + ρ)/εe. For each

i ∈ I ′, let τi indicate the shipped-out day of order i under solution π′. Since qi ≤ c, by the

definitions of solutions π′ and π̂′, we can see that under π̂′ the shipped-out day of each unit

order (i, p) split from order i for p ∈ {1, 2, · · · , qi} must be either (τi − 1) or τi. Thus, by

G(s, y) = y(α− βs) in (3.1), we have

ξi(π
′) ≤ ξ̂i(π̂′) + qiβ{[di − (τi − 1)]− (di − τi)]} = ξ̂i(π̂′) + βqi, for i ∈ I ′. (3.49)

Therefore, we can obtain that

∑
i∈I′

ξi(π
′) ≤

∑
i∈I′

[ξ̂i(π̂′) + βqi] =
∑
i∈I′

ξ̂i(π̂′) + β
∑
i∈I′

qi. (3.50)

Also, from Lemma 3.7, we know that there is no inventory holding cost for solution π̂′. Thus,

we also have the following,

∑
i∈I′

µi(π
′) ≤

∑
i∈I′

µ̂i(π̂′) + h
∑
i∈I′

qi. (3.51)
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Since the orders in I ′ are shipped out after dayK under π∗, the total shipping cost
∑

i∈I′ ξi(π
∗)

for these orders cannot be cheaper than [α−β(m−1−K)]
∑

i∈I′ qi. Thus, since α−β(m−1) ≥

0 stated in (3.2) implies that β ≤ α− β(m− 1−K)]/K, we can obtain that

β
∑
i∈I′

qi ≤ {[α− β(m− 1−K)]/K}
∑
i∈I′

qi ≤ [
∑
i∈I′

ξi(π
∗)]/K. (3.52)

Therefore, by the inequality above, and K = d(1 + ρ)/εe ≥ 1/ε, we obtain that

∑
i∈I′

(ξi(π
′) + µi(π

′)) ≤
∑
i∈I′

(ξ̂i(π̂′) + µ̂i(π̂′)) + β
∑
i∈I′

qi + h
∑
i∈I′

qi

=
∑
i∈I′

(ξ̂i(π̂′) + µ̂i(π̂′)) + (β + h)
∑
i∈I′

qi

≤
∑
i∈I′

(ξ̂i(π̂′) + µ̂i(π̂′)) + (1 + ρ)β
∑
i∈I′

qi

≤
∑
i∈I′

(ξ̂i(π̂′) + µ̂i(π̂′)) + (1 + ρ)
∑
i∈I′

ξi(π
∗)/K

≤
∑
i∈I′

(ξ̂i(π̂′) + µ̂i(π̂′)) + ε
∑
i∈I′

ξi(π
∗), (3.53)

This implies that Lemma 3.8 also holds true when m > d(1 + ρ)/εe. And This completes

the proof of Lemma 3.8.

We can now complete the proof of Theorem 3.7 as follows: From (3.46), (3.48), and

Lemma 3.8, we can prove that (3.39) holds true as follows:

∑
i∈N

(ξi(π̃) + µi(π̃)) ≤
∑
i∈N\I′

(ξi(π
∗) + µi(π

∗)) +
∑
i∈I′

(ξi(π
′) + µi(π

′))

≤
∑
i∈N\I′

(ξi(π
∗) + µi(π

∗)) +
∑
i∈I′

(ξ̂i(π̂′) + µ̂i(π̂′)) + ε
∑
i∈I′

ξi(π
∗)

≤
∑
i∈N\I′

(ξi(π
∗) + µi(π

∗)) +
∑
i∈I′

(ξi(π
∗) + µi(π

∗)) + ε
∑
i∈I′

ξi(π
∗)

=
∑
i∈N

(ξi(π
∗) + µi(π

∗)) + ε
∑
i∈I′

ξi(π
∗)

≤ (1 + ε)
∑
i∈N

(ξi(π
∗) + µi(π

∗)) . (3.54)
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With (3.39) proved and Lemma 3.6 established, as we have explained earlier, Algorithm 3.7

must have a worst-case performance ratio of (1 + ε) for any given ε > 0. This, together with

Lemma 3.5, implies that Algorithm 3.7 is a pseudo-polynomial time approximation scheme

for problem IPTSDI with a worst-case performance ratio of (1 + ε) for any given ε > 0.

Hence, Theorem 3.7 is proved.

In addition, let us consider the case where K = min{m, d(1+ρ)/εe} = m. In other words,

m is bounded by the constant d(1 + ρ)/εe. Thus, by definition, in the restricted problem

R(K,Q), there exists a constant Q̄′′ such that I ′ is an empty set when Q = Q̄′′. With this

we can show that π̃, as well as the solution returned by Algorithm 3.7, must an optimal

solution to problem IPTSDI.

3.7 Computational Experiments

In this section, we show the computational experiments for the three algorithms proposed

in Section 3.4 and Section 3.6, namely Algorithm 3.4 to deal with the case when the number

of possible order quantities η is bounded by a constant and Algorithm 3.5 for the case when

the planning horizon m is bounded by a constant and Algorithm 3.7 in the approximation

scheme. These algorithms are coded in C++ and all the experiments are carried out on a

PC in Windows 10 system with an Intel(R) Core(TM) i7-3770 CPU 3.40GHz CPU and 32

GB of RAM.

Each test instance contains (i) an order set N with the number of orders n = |N | and

each order is associated with an order quantity qi and a committed delivery due date di;

(ii) a set of possible order quantities E with η = |E|; (iii) parameters includes the planning

horizon m, production capacity c, values of α, β in the shipping cost functions and unit

inventory holding cost h and value of ρ. For each combination of n and m given the set E,

we follow Li et al. (2022) to randomly generate the test instances in the following way:

(i) Possible order quantity set E = {1, 2, · · · , 10};
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(ii) For every i ∈ {1, 2, · · · , n}, qi is randomly picked from the set E;

(iii) For every i ∈ {1, 2, · · · , n}, di is randomly picked from the set {1, . . . ,m};

(iv) c is randomly picked from the set {cmin, cmin+1, . . . , cmax} where cmin = maxt∈{1,2,...,m}d
∑

i∈N :di≤t qi/te

and cmax = d1.1cmine. Feasible solutions for problem IPTSDI will always exist by gen-

erating c in this way.

(v) β is randomly picked from the set {1, 2, . . . , 5}. To meet condition (3.2), α is randomly

picked from the set {(m− 1)β + 1, . . . , 2(m− 1)β}.

(vi) ρ is an continuous number randomly picked from the interval [1, 2] and h is randomly

picked from the set {d0.5 ∗ ρβe, d0.8 ∗ ρβe+ 1, · · · , dρβe}.

At first, we describe the computational results for Algorithm 3.4. It is a pseudo-polynomial

time algorithm for the case when η, the number of possible quantity, is a fixed constant from

the analysis of Theorem 3.3. Therefore, the test instances are associated with m,n and

η. Moreover, in step (ii) to generate order quantity, we use a subset of E ′ by randomly

picking η numbers from the original set E. And m is from the set {5, 10, 15}, n is from

the set {40, 80, 120, 160, 200} and η is from the set {3, 4, 5, 6}. For each combination of m,n

and η, we generate 10 instances. From the results of these test instances, we find that for

η ∈ {3, 4}, Algorithm 3.4 can find the optimal solution averagely in 6.7 seconds over all the

cases. However, for η ∈ {5, 6} with large value of n (n ≥ 160), Algorithm 3.4 cannot find the

optimal solution due to long running times and insufficient memory of the computer. From

these results, we can see that Algorithm 3.4 is efficient in solving problem IPTSDI only for

the cases with a small value of η.

Then, we present the results for Algorithm 3.5. It is a pseudo-polynomial time algorithm

for the case when m, the planning horizon is bounded by a constant from the analysis of

Theorem 3.4. Therefore, the test instances are associated with m and n. And m is from

the set {2, 3, 4}, n is from the set {40, 80, 120, 160, 200}. For each combination of m and
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n, we also generate 10 instances. From the results of these test instances, we find that for

m ∈ {2, 3}, Algorithm 3.5 can find the optimal solution averagely in 2.3 seconds over all the

cases. However, for m = 4 with a large value of n (n ≥ 120), Algorithm 3.5 cannot find the

optimal solution due to long running times and insufficient memory of the computer. From

these results, we can see that Algorithm 3.5 is efficient in solving problem IPTSDI only for

the cases with a small value of m.

Lastly, we present the results for Algorithm 3.7. It is a pseudo-polynomial time approxi-

mation scheme with a worst-case performance ratio to be (1 + ε) according to the results of

Theorem 3.7 and Lemma 3.5. Therefore, the test instances are associated with m,n and ε.

And m is from the set {5, 10, 15}, n is from the set {40, 80, 120, 160, 200} and ε = 100%. For

each instance, we also obtain a lower bound from an optimal solution to a relaxed problem

of IPTSDI. In this problem, deliveries of orders can be split such that products that are

completed on the current day can be shipped out. Therefore, there are no inventory holding

costs in these optimal solutions. We consider two settings in the experiments for Algorithm

3.7. The unit inventory holding cost is close to 0 in the first setting and that is not close to

0 in the second setting.

Table 3.2 summarizes the results for the approximation scheme. For every test instance,

it shows the percentage of the gap of the solution obtained by Algorithm 3.7 and the lower

bound described above. These gaps are shown in columns ‘Max G” and “Ave G” which

means maximum and average gaps respectively. Particularly, the gap is calculated by (ub−

lb)/lb×100%, where lb is the value of the lower bound, and ub is objective value obtained by

Algorithm 3.7. In addition, columns “Max T” and “Ave T” show the maximum and average

running time in seconds. From the results in Table 3.2, we can find that for all the instances

with ε = 100% and ρ = 1.0, Algorithm 3.7 can achieve a maximum gap to be 0.59% with

a maximum running time to be 57.89s, while the corresponding gap in average decreases to

0.29% with running time decreasing to 20.05s. And for all the instances with ε = 200% and

ρ = 1.0, Algorithm 3.7 can achieve a maximum gap to be 0.81% with a maximum running
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time to be 6.76 seconds while the corresponding gap in average decreases to 0.42% with

running time decreasing to 3.87s. By observing the data in Table 3.2, especially the last row

that reflects the average of the test instances for a setting, we can find that the gaps of the

solution change only in a small range where the running time decrease dramatically with ε

change from 100% to 200%. Moreover, among all these instances, the maximum value of the

maximum gap is 2.29% which is significantly smaller than the worst-case performance ratio

(1 + ε). Therefore, through the results of the experiment, we can see that Algorithm 3.7

is capable to generate solutions with high quality and has the potential to perform well in

practice.

3.8 Summary

In this chapter, we study problem IPTSDI which is a variant of problem IPTSD by incorpo-

rating inventory holding costs. The manufacturer needs to determine the daily production

quantity and shipping date for each order before or on its committed delivery due date. The

problem is known to be strongly NP-hard in past literature. In addition to the shipping

cost that is investigated in previous literature, we also consider the inventory holding costs

incurred in the production procedure. The objective of this problem is to minimize these two

costs. With the inventory holding costs being taken into account, the problem becomes more

complex. The manufacturer needs to balance the shipping costs and inventory holding costs

for these orders. Particularly, we prove that there is no finite ratio pseudo-polynomial time

approximation algorithm for the problem when the unit inventory holding cost is extremely

high. Furthermore, we propose three algorithms to solve the problem. Among them, the

first exact algorithm runs in pseudo-polynomial for the case where the number of possible

order quantities is fixed and the second exact algorithm runs in pseudo-polynomial for the

case where the planning horizon is fixed. The third algorithm is a pseudo-polynomial time

approximate scheme algorithm that can solve the problem with a worst-case performance
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Table 3.2: Computational results for the approximation scheme.

ε = 100% and ρ = 1.0 ε = 200% and ρ = 1.0

m n M G(%) A G(%) M T(s) A T(s) M G(%) A G(%) M T(s) A T(s)

5

40 0.60 0.18 1.86 0.43 2.29 0.84 0.43 0.29

80 0.77 0.28 7.00 4.15 0.90 0.52 2.80 1.89

120 0.39 0.17 69.91 23.03 0.56 0.32 9.96 5.57

160 0.23 0.08 306.59 77.92 0.40 0.23 16.14 12.31

200 0.30 0.15 206.25 108.22 0.43 0.26 34.99 17.34

10

40 1.25 0.53 0.29 0.09 1.40 0.65 0.19 0.10

80 0.73 0.36 3.66 1.36 0.95 0.50 0.86 0.55

120 0.36 0.24 23.87 5.75 0.49 0.30 4.14 2.29

160 0.39 0.25 32.73 14.66 0.44 0.32 6.34 3.56

200 0.29 0.17 150.77 45.60 0.39 0.21 13.75 7.64

15

40 1.23 0.60 0.22 0.07 1.47 0.71 0.22 0.09

80 1.04 0.56 2.11 0.46 1.06 0.58 0.55 0.30

120 0.52 0.35 3.47 1.85 0.59 0.39 1.34 0.81

160 0.30 0.20 22.76 8.53 0.33 0.23 3.17 1.99

200 0.38 0.20 36.92 8.70 0.40 0.23 6.52 3.30

Average 0.59 0.29 57.89 20.05 0.81 0.42 6.76 3.87

ratio of (1 + ε) for a fixed and positive constant ε. The results of computational experiments

show that the approximation scheme also has good performance to produce close-to-optimal

solutions.



Chapter 4

Conclusions and Future Research

4.1 Conclusions

In this thesis, we consider two variants of the integrated production and transportation

scheduling problems by incorporating order acceptance decisions and inventory holding costs,

respectively. For these two variants, we propose exact and approximation algorithms for them

separately.

In this thesis, the first problem we studied is problem IPTSDA, where the manufacturer

needs to determine a production plan, a shipping plan and an order acceptance plan. The

original IPTSD is known to be strongly NP-hard and the hardness of complexity can also

be applied to problem IPTSDA. For this problem, we develop two exact algorithms that can

yield optimal solutions to problem IPTSDA. We further prove that these exact algorithms

run in polynomial and pseudo-polynomial times for two practical cases: the case with a fixed

number of possible order quantities and the case with a fixed-length planning horizon. By

extending the second exact algorithm, we also develop a pseudo-polynomial time approxima-

tion scheme for solving problem IPTSDA, which guarantees a worst-case performance ratio

of (1 + ε) for any fixed ε > 0. According to our computational results, this approximation

scheme also performs well in producing close-to-optimal solutions.

The second problem we considered in this thesis is problem IPTSDI. The manufacturer

needs to determine the daily production quantity and the shipping date for each order. In

addition to the shipping cost, we also incorporate the inventory holding costs incurred in the

122
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production and shipping procedures. The objective of this problem is to jointly minimize

the shipping costs and inventory holding costs. With the inventory holding costs being

taken into account, the problem becomes more complex. Particularly, we prove that there is

no finite ratio pseudo-polynomial time approximation algorithm for problem IPTSDI when

the unit inventory holding cost is extremely high. To solve problem IPTSDI, we firstly

propose a backward-forward construction algorithm that can yield an optimal solution to

problem IPTSDI given an optimal shipping plan. Furthermore, based on the backward-

forward construction algorithm, we also develop two exact algorithms that run in pseudo-

polynomial times for two practical cases. Moreover, to make our algorithms more adaptive,

we develop a pseudo-polynomial time approximate scheme algorithm that can solve the

problem with a worst-case performance ratio of (1+ ε) for any constant ε > 0. The results of

computational experiments on randomly generated instances show that the approximation

scheme also has good performance to produce solutions with high qualities.

The analytical results and exact and approximation algorithms in this thesis also pro-

vide insights for practitioners in industries. The approximation schemes with worst-case

performance guarantees are applicable for real world problems. Furthermore, more efficient

algorithms (e.g., beam search) can be embedded into the approximation scheme to obtain

high quality solutions within less time.

4.2 Future Research Directions

One of the interesting topics for future research is to investigate whether there exists a

polynomial time approximation scheme for problem IPTSDA and problem IPTSDI. It is

also of interest to develop new polynomial time exact algorithms for some special cases of

the problem other than those studied in this thesis, such as the case where the total number

of possible combinations of order quantities and committed delivery due dates is bounded

by a fixed constant. It is also of interest to study more general variations of problem IPTSD,
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such as those with the committed delivery due dates taken into account as decisions.

Moreover, problem IPTSDA studied in this thesis, aims to minimize the total shipping

and rejection cost. With each order’s rejection cost replaced by its revenue, the minimization

of the total shipping and rejection cost is equivalent to the maximization of the total profit,

which equals the total revenue of the accepted orders subtracted by their total shipping cost.

Accordingly, the two exact algorithms developed in this paper are still valid. However, for

the pseudo-polynomial time approximation scheme developed in this paper, the proof of its

worst-case performance ratio for problem IPTSDA under cost minimization is not valid under

profit maximization. Therefore, it is worthy to investigate the development and analysis of

approximation algorithms for problem IPTSDA under profit maximization in future studies.

In addition, no partial delivery is allowed in the assumptions of problem IPTSDI. Hence,

it is also worthwhile to relax this assumption, i.e., the delivery of an order can be split

into different days, and study whether a polynomial approximation scheme with a constant

worst case performance ratio exists when the unit inventory holding cost is sufficiently small.

Furthermore, the shipping cost function considered in this thesis is linearly increasing or non-

decreasing in the shipping quantity. Future studies may also consider shipment consolidation,

which means shipments with larger quantities would have discounts, i.e., the shipping cost

function is no longer linear with the shipping quantity. Under this assumption, shipping

costs could be reduced by postponing the delivery of orders since they can be consolidated.

However, this would lead to extra inventory holding costs. Therefore, it is of great interest

to investigate possible exact algorithms and approximation algorithms with a constant worst

case performance ratio for the problem with shipment consolidation.

Furthermore, since some of inbound logistics problems are also involved multiple trans-

portation modes, delivery costs and inventory holding costs that are similar in outbound

logistics problems, it is also interesting to examine exact algorithms and approximation

schemes for these inbound logistics problems based on the analytical results and algorithms

of this thesis.
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Finally, future studies can also consider that orders can arrive to the manufacturer during

the execution of the production plan and shipping plan determined by previously arrived

orders. Although problems in this thesis are deterministic, one can also develop rolling-

horizon algorithms in dynamic settings by leveraging the exact and approximation algorithms

proposed in this thesis.
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