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Abstract 

Transportation networks are crucial for the development of society. The spatially 

distributed bridges are vulnerable components within transportation networks. 

Earthquakes can occur stochastically within the service life of the bridges, damage the 

bridges, disrupt the functionality of transportation networks, and cause social, 

economic, and environmental consequences. Performance-based earthquake 

engineering (PBEE) is a new-generation philosophy for the assessment and decision-

making of bridges. In this context, the bridges are expected to satisfy different 

performance objectives concerned by the stakeholders. 

Due to the existence of dependence and uncertainty from multiple sources within 

PBEE, improving the confidence of seismic performance analysis of bridges is an 

essential task to aid effective design and management. It is necessary to develop an 

integrated framework dealing with uncertainty and dependence to jointly improve the 

confidence of PBEE. Besides, the occurrence of earthquakes is associated with 

stochastic time and intensity, and deterioration can continuously affect the performance 

of structures over time. Carbon neutrality and resilience are emerging goals of society. 

To contribute to a sustainable and resilient city, an approach of life-cycle sustainability 

and resilience assessment is needed. Novel structures should be developed to mitigate 

the seismic hazards considering life-cycle performance. 

In this thesis, a surrogate-enabled performance analysis framework is developed 

for spatially distributed bridges against earthquakes. The confidence of seismic 
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performance assessment is jointly improved by appropriate IM selection, advanced 

demand surrogate model, multi-criteria global sensitivity analysis, and complex 

dependence capture. An approach for seismic intensity measure (IM) selection 

incorporating the trade-off among multiple criteria is proposed. An acceleration 

algorithm is formulated to develop the seismic demand surrogate model for 

performance assessment. A two-stage multi-criteria global sensitivity analysis 

approach coupling surrogate model and decision technique is developed to identify the 

holistic sensitive parameters to the system. A vine-copula-based approach is proposed 

to capture the complex dependence within the assessment. The historical data and 

artificially generated data from numerical models are used to develop the predictive 

models.  

Then, the performance assessment is extended to a life-cycle context. An approach 

for life-cycle sustainability and resilience assessment of bridges is introduced 

incorporating the compound effects of earthquakes and deterioration. The time-

dependent performance is computed based on the deterioration process. The stochastic 

renewal process is used to model the stochastic occurrence of the earthquake. The life-

cycle sustainability and resilience can be computed by accumulating the consequences 

arising from potential hazards within an investigated time horizon. Finally, the life-

cycle performance of a potential hazard mitigation solution (steel-shape memory alloy 

reinforced bridge) is assessed. New insights into the life-cycle cost and benefit of the 

novel bridge in terms of sustainability and resilience are provided. 
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Overall, the developed framework provides technical foundations of confident 

seismic performance analysis to aid the design and management of spatially distributed 

bridges against earthquakes. 
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CHAPTER 1   

INTRODUCTION 

1.1  Background 

In the context of regional seismic performance assessment, bridges with different 

geometry and material parameters are spatially distributed in a region. Different bridges 

can be associated with different behavior under seismic hazards. The uncertainties 

associated with the spatially distributed bridges should be taken into consideration to 

develop a unified model to facilitate regional performance assessment. The 

probabilistic bridge parameters can be determined from the inventory data in a region. 

The spatially distributed bridges within the transportation networks play an important 

role in the development of society and the economy. It facilitates access to human 

activities at both the normal operational stage and post-hazard stage (e.g., emergency 

response, rescue, and restoration). Over the past decades, bridges have experienced 

damage under earthquakes, leading to severe consequences. During the 2008 

Wenchuan earthquake in China, 46 bridges experienced severe damage, and 128 

bridges experienced moderate damage. The total loss of the transportation system in 

that event is over 10 billion dollars (Han et al., 2009; Xie, 2017). After the 1994 

Northridge earthquake, around 150 million dollars were spent on repairing 230 

damaged bridges, and 120 million dollars were spent on recovering 6 collapsed bridges 

(Kiremidjian & Basöz, 1997). During the 1989 Loma Prieta earthquake, 144 highway 

bridges were damaged (Gordon, 2002), and 42 people were killed due to the collapse 
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of the Cypress Street Viaduct of Interstate 880 in West Oakland (Tarakji, 1992). From 

the lessons of previous events, the earthquake can cause damage to the transportation 

network, resulting in consequences associated with social, environmental, and 

economic aspects. (Han et al., 2009; Stanford, 1998; Tierney, 1997; Wakabayashi & 

Kameda, 1992). 

At the early stage, bridges are designed to prevent different damage levels under 

different seismic severity levels. After the 1994 Northbridge and 1995 Kobe 

earthquakes, it is found that the indirect loss (e.g., downtime) and direct loss (e.g., repair 

cost) are tremendous, even though the bridges were designed to satisfy conventional 

safety requirements (Lee & Mosalam, 2006). Performance-based earthquake 

engineering (PBEE) was then developed to aid the design and decision-making of 

structures considering performance objectives (e.g., economic loss, fatality, and 

downtime) concerned by stakeholders (Anwar, Dong, & Li, 2020; Asadi et al., 2019; 

Mosalam et al., 2018). In this engineering philosophy, the structures are expected to 

satisfy different performance objectives. PBEE generally involves probabilistic hazard 

analysis, seismic demand prediction, damage analysis, and consequence evaluation 

(Baker & Cornell, 2008). There exist uncertainties associated with hazards, structures, 

and consequences. A probabilistic approach was developed by the Pacific Earthquake 

Research (PEER) center considering a wide range of uncertainties. In FEMA P-58, a 

general approach was introduced for seismic performance assessment of structures, and 

the performance can be assessed in terms of casualties, repair cost, repair time, and 

environmental impacts (FEMA). Sustainability is a multi-dimensional measure of 
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performance assessment including social, economic, and environmental metrics (Dong 

et al., 2013). Resilience measures the capability of a system for maintaining safety and 

recovering from extreme events. Improving confidence in performance assessment is 

an emerging task. 

Due to the existence of uncertainties, selecting an appropriate seismic intensity 

measure (IM) and developing an advanced demand prediction model can improve 

assessment confidence. An earthquake ground motion contains complex time-series 

information. A measure to describe the intensity of the hazard is required in PBEE. It 

can link the hazard to structural vulnerability and further connect to consequences. An 

appropriate seismic IM can reduce the uncertainty of the assessment (Padgett et al., 

2008). Bridges contain multiple components resulting in multiple failure modes. The 

optimal IMs may not be consistent for different components and failure modes (Wang 

et al., 2018). Another important concern in improving the confidence of assessment is 

seismic demand prediction. In traditional cloud analysis, a linear regression between 

the logarithmic space of seismic IM and demand is used to predict the probabilistic 

seismic demand. Some advanced surrogate models for seismic performance assessment 

were developed to improve the accuracy (Ghosh et al., 2013; Jeon et al., 2019; 

Mangalathu, Heo, et al., 2018; Mangalathu, Jeon, et al., 2018; Wang et al., 2022). There 

is a need to refine the seismic IM selection approach by incorporating multiple criteria 

and components. It is an essential trend to further explore the advanced surrogate 

models within PBEE for confident assessment.  
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As complex dependence exists within PBEE, modeling dependence is a key 

component to ensure a confident assessment. Dependence modeling can affect the 

results of performance analysis under natural hazards (Wang et al., 2020; Zeng, Zhang 

and Wang, 2020). Dependence can result from multiple IMs and multiple demands. The 

dependence should be modeled for multiple demands to formulate the joint 

probabilistic seismic demand models. The dependence should be modeled for 

probabilistic hazard analysis to identify the probabilistic vector IMs. The assumption 

of the joint lognormal distribution of IMs and demands is widely used in previous 

studies for dependence modeling (FEMA). The linear correlation coefficients among 

multiple IMs and demands are used to compute the joint distributions. Nonlinear and 

complex dependence characteristics (e.g., central-, lower-, and upper-tail dependence) 

can appear for multivariant variables. Neglecting the complex dependence can cause 

unrealistic joint probabilistic distributions and may lead to biased performance 

assessment. It is necessary to introduce a more flexible and general data-inferred 

approach to develop the model capturing complex dependence characteristics within 

PBEE. The effects of dependence modeling on seismic performance should be 

investigated. 

The uncertainties can be from multiple sources and understanding the influence of 

the probabilistic input on output is necessary to aid the treatment of uncertainty and 

refine the database. The global sensitivity analysis can be used to assess the effects of 

the whole variations of input variables on the output. The Monte Carlo method can be 

used to compute the global sensitivity index by running a large number of simulations 
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(Sobol, 2001). The high computational time hinders the application in complex physical 

models. Bridges are associated with multiple components and failure modes. Most of 

the existing sensitivity analysis approaches can only identify the sensitive parameters 

of the individual outcome. However, the critical parameters may be different 

considering different structural performance criteria (Jeon et al., 2019). There is a need 

to reduce the computational time of the global sensitivity analysis and advance the 

approach to identify the holistic sensitive parameters considering multiple performance 

criteria. 

Bridges can suffer multiple earthquakes and continuous deterioration within the 

service life, the performance assessment including sustainability and resilience should 

be extended to a life-cycle perspective. The occurrence of multiple earthquakes is 

stochastic in time, and it can be modeled using a stochastic process. Besides, in a marine 

environment, chloride can penetrate concrete cover, contact with reinforcing steel and 

initiate corrosion. The chloride-induced deterioration can cause the area loss of 

reinforcing steel and continuously affect the performance of bridges. The deterioration 

can increase the seismic vulnerability of bridges (Ghosh & Padgett, 2010). The 

compound effects on structural performance can be caused by earthquakes and 

deterioration. The consequences can be accumulated within the lifespan. The 

framework of life-cycle seismic sustainability and resilience assessment should be 

developed by incorporating stochastic earthquake and deterioration processes. 

Overall, the confidence of PBEE can be jointly improved by selecting an 

appropriate IM, developing an advanced demand prediction model, performing global 
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sensitivity analysis, and capturing complex dependence. To provide a holistic 

understanding of seismic performance within the entire lifespan, sustainability and 

resilience should be assessed in a life-cycle context incorporating stochastic earthquake 

and deterioration processes. 

1.2  Objectives 

The goal of this research work is to develop a confident probabilistic seismic 

performance analysis framework for spatially distributed bridges under seismic hazards. 

To achieve this goal, the specific objectives are summarized as follows: 

 To propose a seismic IM selection approach for structural systems considering 

the trade-off among multiple criteria and components. 

 To develop efficient surrogate models for confident seismic demand prediction 

and an efficient algorithm for global sensitivity analysis incorporating multiple 

criteria. 

 To propose a data-inferred approach to model the complex dependence from 

multiple sources within PBEE. 

 To propose an approach for assessing the life-cycle sustainability and resilience 

of bridges under compound earthquakes and deterioration, and then apply it to 

assess the seismic hazard mitigation measures. 

1.3  Thesis Organization 
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This thesis consists of 8 chapters. The framework of the thesis is illustrated in Figure 

1.1 

Chapter 1 introduces the background, objectives, and outline of the thesis.  

Chapter 2 presents the literature review and the identified research gap. 

Chapter 3 proposes a multi-criteria seismic intensity measure (IM) selection 

framework. The performance criteria of IM alternatives on different structural 

components are computed. A compromise decision-making process is involved in the 

seismic IM selection considering the trade-off among multiple components and criteria. 

The selected IM can aid the confident performance assessment. 

Chapter 4 introduces an approach for developing the seismic demand surrogate 

model. The sparse polynomial chaos expansion (SPCE) is used to develop the surrogate 

demand model of structures by using the simulated data from numerical models. The 

developed surrogate model can be used for performance assessment confidently and 

efficiently. 

Chapter 5 proposes a two-stage multi-criteria global sensitivity analysis approach 

to efficiently identify the holistic sensitive parameters of the bridge system. The SPCE 

is used to compute the global sensitivity indices with respect to different performance 

criteria efficiently. A decision model is employed to compute the holistic global 

sensitivity indices considering the trade-off among multiple performance criteria. 

Chapter 6 develops a vine copula-based approach for seismic performance 

assessment incorporating complex dependence. The historical data and simulated data 
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sets are used to infer the vine copula model for multiple dependence sources. The 

developed vine copula model capturing complex dependence can be used in seismic 

performance assessment. 

Chapter 7 proposes an approach to assess the life-cycle sustainability and 

resilience of bridges under compound earthquake and deterioration processes. The 

stochastic renewal process is used to model the stochastic occurrence of earthquakes. 

The deterioration process is used to compute the time-dependent performance. The life-

cycle sustainability and resilience are computed by accumulating the consequences 

within a life span. The life-cycle sustainability and resilience of a potential hazard 

mitigation alternative (steel-shape memory alloy (SMA) reinforced concrete bridge) 

under earthquakes and deterioration are investigated. The new insights into the life-

cycle cost and benefit of the steel-SMA reinforced concrete bridge in terms of 

sustainability and resilience are provided. 

Chapter 8 contains conclusions and future work. 

The PBEE framework includes hazard analysis, structural analysis, damage 

analysis, and performance analysis. The approaches in chapters 3-6 can jointly improve 

the confidence of seismic performance assessment from different aspects including the 

robust multi-criteria decision for IM selection, the surrogate model for uncertainty 

quantification, holistic multi-criteria global sensitivity analysis, and complex 

dependence modeling. Then, the PBEE framework is extended in a life-cycle context 

in chapter 7. 
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Figure 1.1 Proposed framework of the thesis 
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CHAPTER 2   

LITERATURE REVIEW 

2.1  Introduction 

Within the scope of this research, this chapter reviews the development of approaches 

toward a confident PBEE assessment. Specifically, the studies regarding seismic IM 

selection, surrogate demand model, dependence modeling, sensitivity analysis, life-

cycle performance, and performance of the hazard mitigation measure (steel-SMA 

reinforced concrete bridge) are summarized. Based on the literature, the research gaps 

are identified. 

2.2  Seismic Intensity Measure Selection for 

Structural Systems 

The probabilistic seismic demand model (PSDM), linking the structural demand with 

seismic intensity measure (IM), is a basic tool for PBEE. The PSDM is described as the 

probabilistic distribution of structural responses under the given seismic IM. The 

uncertainty reduction and efficiency improvement in PBEE are of great importance and 

can be accomplished by selecting an appropriate IM. 

Selecting an IM is a necessary task to facilitate engineering applications and 

system-level analysis. For instance, to assess the regional risk, a ground motion 

intensity map should be generated. The ground motion intensity map is generally 

described by an IM such as (Miller & Baker, 2015). For engineering applications, an 

IM, which is systematically optimal on all the components and failure modes, can be 
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used to connect the intensity map. In addition, the system-level performance assessment 

also requires an optimal IM. A single IM is used to connect the demands of different 

components so that the joint PSDM can be formulated. The seismic fragility is then 

computed at a system level to link the performance quantification. 

Studies have been conducted on the evaluations of different IMs for PSDM. For 

instance, Shome (Shome, 1999) assessed the performance of IMs on a building 

structure and found that spectral acceleration at the fundamental period is more efficient 

compared with peak ground acceleration (PGA). Hariri-Ardebili and Saouma (Hariri-

Ardebili & Saouma, 2016) studied the optimal IM for concrete dams and found that 

spectral-based IMs have higher efficiency and proficiency. In addition to the 

conventional IMs, some novel IMs were proposed. Du et al. (Du et al., 2019) 

investigated the performance of posterior optimal IMs based on hysteretic single-

degree-freedom systems in terms of efficiency and sufficiency. Baker and Cornell 

(Baker & Cornell, 2005) analyzed a vector-valued IM considering spectral acceleration 

and epsilon. Besides individual structure, Kazantzi and Vamvatsikos (Kazantzi & 

Vamvatsikos, 2015) conducted IM selection for building classes and concluded that the 

geometric mean of spectral accelerations is the optimal IM for the studied building 

classes. Some other studies further investigated the superiority of average spectral 

acceleration (Adam et al., 2017; Eads et al., 2015). Giovenale et al. (Giovenale et al., 

2004) indicated that the performance criteria of an IM are sufficiency, efficiency, and 

hazard computability. Moreover, the IM selection process needs to consider practicality 

javascript:;
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and proficiency (Padgett et al., 2008). To ensure the capacity and accuracy of the PSDM, 

the performance properties of an IM should meet the above requirements.  

In the bridge community, some studies assessed the performance of different IMs 

based on selected bridge component engineering demand parameters. For instance, 

Padgett et al. (Padgett et al., 2008) evaluated the performance of ten IMs over several 

components for highway bridge portfolios and pointed out that PGA was the optimal 

IM for the considered bridge inventory. Dong et al. (Dong et al., 2014) also used PGA 

as the IM to compute the sustainability of highway bridge networks at a regional scale. 

Some studies extended the IM performance assessment for bridges in a complex 

geotechnical context (Wang et al., 2018). The optimal IMs may not be consistent for 

different components and failure modes. For instance, Wang et al. (Wang et al., 2018) 

found the IM, which obtains the largest p-value (sufficiency), is not consistent for 

different structural demand parameters. Baker (Baker, 2011) pointed out that higher-

mode (or shorter-period) excitation could contribute to the seismic demand for some 

structural elements of upper-story shear forces.  

Triantaphyllou (Triantaphyllou, 2000) indicated that the problems are considered 

as multi-criteria decision problems when the following situations appear in the 

problems: a goal or multiple goals need to be achieved; the decision-makers are 

involved in the selection process; multiple alternatives act as the selection elements; 

multiple criteria are used to evaluate the performance of the alternatives; the 

preferences of the decision-makers are expressed as the weighting factors applied to the 

criteria; and the criterion with respect to each alternative can be quantitatively assessed. 
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According to the above definition, the IM selection process can be considered as a 

multi-criteria decision problem and the different IMs are considered as alternatives.  

Overall, most of the existing studies selected the optimal IM only based on some 

specific criteria without considering the systematic performance over all the criteria. 

The trade-off among all components and criteria for selecting an optimal IM has not 

been well considered. The multi-criteria decision-making framework of IM selection 

has not been well developed. 

2.3  Surrogate Demand Models 

Developing fragility models serves as the basic step in PBEE and directly affects the 

accuracy of performance assessment. The incremental dynamic analysis (Vamvatsikos 

& Cornell, 2002) and multi-stripe analysis (Jalayer & Cornell, 2009) can be standardly 

used for fragility computation. Within these methods, the nonlinear time history 

analyses are performed repeatedly for different levels of ground motion intensity, 

causing high computational expense. Cloud analysis is an efficient approach for 

fragility computation, as a set of ground motions can be used and relatively fewer time 

history analyses are performed (Jalayer et al., 2015; Nielson, 2005).  

In the context of cloud analysis, the surrogate model, representing the relationship 

between the input and output, can be used to emulate the output of a model efficiently. 

The uncertainty quantification can be conducted efficiently by using surrogate models. 

Using a surrogate model such as a power law model (linear regression in the logarithmic 

space) is the norm when employing cloud analysis (Cornell et al., 2002; Jalayer et al., 
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2015; Padgett & DesRoches, 2008). The advanced surrogate models representing the 

complex relationship between input and response can be adopted based on a training 

process. In this way, multiple predictors (e.g., IMs and structural parameters) can be 

incorporated into surrogate models to perform an accurate performance assessment. 

Advanced surrogate models have been applied to engineering problems and seismic 

vulnerability analysis with satisfying accuracy. For instance, Ebad Sichani and Padgett 

(Ebad Sichani & Padgett, 2019) assessed the collision between vertical concrete dry 

casks using surrogate models, and the polynomial response surface with stepwise 

regression was found to be suitable among the investigated surrogate models. 

Mangalathu et al. (Mangalathu et al., 2018) compared the performance of different 

regression techniques on bridge seismic demand modeling, and Lasso regression was 

found to be the most effective one in terms of mean square error and absolute error. 

Ghosh et al. (Ghosh et al., 2013) investigated four surrogate models, and the 

parameterized fragility models were developed by employing logistic regression. The 

artificial neural network and Bayesian approach were also considered as alternative 

surrogate models to facilitate structural performance assessment (Jeon et al., 2019; 

Mangalathu, Heo, et al., 2018). Deep learning was employed for seismic fragility 

analysis (Wang et al., 2022). 

The PCE is another type of surrogate model, which has been applied to several 

engineering problems for efficient uncertainty quantification (Guo et al., 2018; Hariri-

Ardebili & Sudret, 2020; Wu & Law, 2012). The other usage of PCE is global 

sensitivity analysis, once the PCE is developed, the global sensitivity index can be 
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computed efficiently by post-processing the coefficients. The PCE utilizes the spectral 

representation on an appropriately established basis of polynomial functions (Marelli 

& Sudret, 2015; Wiener, 1938). The number of significant terms of PCE is relatively 

small due to the negligible high-order interaction effects and different effects of input 

variables on output (Blatman & Sudret, 2010). Hence, the sparse PCE which only 

contains a small number of significant terms was introduced. Under the same accuracy 

level, the required number of model evaluations for establishing sparse PCE is found 

to be smaller than full PCE, thus computational burden can be saved significantly by 

using sparse PCE (Blatman & Sudret, 2010). Some greedy algorithms such as 

orthogonal matching pursuit (OMP) (Doostan & Owhadi, 2011) and least-angle 

regression (Blatman & Sudret, 2011) were proposed to establish the sparse PCE. 

Additionally, algorithms were developed to establish sparse approximations using the 

techniques of reweighting coefficients (Candès et al., 2008) and adapting the dictionary 

of basis functions (Jakeman et al., 2015). One challenging issue within conventional 

greedy algorithms is the high computational burden for high-dimension input problems. 

The number of candidate basis functions increases significantly with the input 

dimension, and the computational cost of developing sparse PCE can increase 

subsequently since a complete evaluation of the candidate set is needed to identify the 

appropriate basis functions at each iteration. The degree of the polynomial can have a 

significant influence on the system response, the computation cost is high for high-

degree cases, and an acceleration algorithm is needed in such cases (Sinou & Jacquelin, 

2015). Considering the advantages of sparse PCE in both uncertainty quantification and 
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global sensitivity analysis, there is a need to formulate efficient algorithms for sparse 

PCE to aid the efficient and confident assessment in PBEE. 

2.4  Dependence modeling within PBEE 

Within the PBEE, there exists dependence from multiple sources (e.g., the demand side 

and IM side). Different dependence models can directly affect the joint distribution of 

multivariant variables thus affecting confidence in performance assessment. Multiple 

components and failure modes are associated with bridge systems. The dependence 

associated with multiple structural components should be modeled effectively to 

compute the vulnerability at a system level. When vector IM is used, the dependence 

among multiple IMs should be modeled to perform the probabilistic hazard analysis. 

The assumption of the joint lognormal distribution of IMs and demands is widely 

used in FEMA P-58 and some other studies for dependence modeling (FEMA; Nielson, 

2005; Faouzi and Nasser, 2014; Kohrangi, Bazzurro and Vamvatsikos, 2016a). This 

assumption may not be the optimal dependence structure for IMs and demands if 

another dependence modeling approach is applicable. A copula is a flexible approach 

for modeling the dependence of variables. In this approach, the joint distribution is 

decomposed as marginal distributions and dependence models (Nelsen, 2006). 

Compared with the assumption of multivariate normality, the copula can incorporate 

more dependence characteristics (e.g., central-, lower-, and upper-tail dependence) and 

reflect more realistic dependence features (Goda & Tesfamariam, 2015; Wang et al., 

2018; Wang et al., 2020). However, for multivariate variables, the conventional copula 
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approach uses the same dependence structure for modeling all pairs of random variables. 

This constraint limits the modeling of multiple structures and characteristics of 

dependence among multivariate variables. Vine copula was then proposed to address 

this issue (Aas et al., 2009; Okhrin et al., 2017). In the vine copula approach, the joint 

distribution is decomposed into marginal distributions, and the multiple dependence 

structures among multivariate variables are captured using a system of pair copulas. 

The widely used assumption of multivariate normality of logarithmic IMs and demands 

can be considered as a specific case in the vine copula approach, where the pair copulas 

are all Gaussian copulas (Wang et al., 2020). To the authors’ best knowledge, the vine 

copula approach has not been adopted for the dependence modeling of both IMs and 

demand surrogate models within an integrated seismic performance assessment 

framework. 

There exists uncertainty within the seismic performance of structures (Dong & 

Frangopol, 2015, 2016a). The decisions obtained based on the expected performance 

values may not be optimal considering uncertainty (Goda & Hong, 2006). Using only 

expected seismic performance may not be appropriate when risk attitudes are 

considered within the decision-making of structures (Cha & Ellingwood, 2013). The 

decisions obtained based on expected seismic performance are only optimal for the risk-

neutral decision-maker (Goda & Hong, 2006). The higher-order moments of loss (e.g., 

variance, skewness, and kurtosis) reflecting the information of probabilistic distribution 

are essential for decision-makers to incorporate different decision attitudes (Goda & 

Hong, 2006; Li, Dong, & Qian, 2020). Different decision solutions can be obtained if 
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the higher-order moments of seismic performance are different (Li, Dong, & Qian, 

2020). Therefore, a confident assessment of higher-order moments of seismic 

performance is important to aid rational decisions. The effects of dependence modeling 

on higher-order moments of seismic performance should be investigated. 

2.5  Sensitivity Analysis 

Structural performance assessment is associated with uncertainties from different 

sources (Dong and Frangopol 2015; Anwar, Dong, and Zhai 2020; Li et al. 2020a). The 

sensitivity analysis could aid the rational treatment of uncertainties in the modeling 

process. The sensitivity analysis can be categorized as local sensitivity analysis and 

global sensitivity analysis. The local sensitivity analysis reveals the local impact of 

input on the model by computing the gradient of the response associated with its 

parameters around a nominal value (Sudret, 2008). The local sensitivity analysis can 

only provide the information at the point where local sensitivity is computed, the rest 

of the input space could not be explored (Saltelli et al., 2008).  

The global sensitivity analysis aims to quantify the effects of the whole variations 

of input variables on the output. Compared with local sensitivity analysis, the global 

sensitivity analysis could avoid the limited exploration of the input space and take the 

interaction of different factors into consideration (Saltelli et al., 2008). The global 

sensitivity analysis is preferred, when the model is associated with nonlinearity, a large 

level of uncertainty, and interactions among input parameters (Wan et al., 2020). It is 

worth noting that the global sensitivity index is based on the decomposition of variance. 
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It uses the information of output variance without the full information of the probability 

density function of the output. Additionally, it only reflects the amplitude of the global 

sensitivity without the direction of influence of the input variable. It may not be 

applicable when the sensitivity information from other aspects is concerned. Decision-

makers could choose different sensitivity analysis approaches based on the information 

of interest. This study focuses on global sensitivity analysis.  

The Monte Carlo methods were developed by Sobol (Sobol, 2001) to compute the 

global sensitivity index. In this approach, running a large number of physical models is 

needed, and the computational time is high especially for complex structural systems. 

Then, Sudret (Sudret, 2008) derived the sensitivity index using the coefficients of the 

PCE. Once the PCE model is established, the PCE-based global sensitivity index can 

be computed analytically by post-processing the PCE coefficients with negligible 

computational cost. For a structural system, the responses associated with multiple 

performance criteria are of interest, the developed sensitivity analysis can only identify 

the sensitive parameters on an individual structural performance criterion. The critical 

parameters could be different considering different structural performance criteria 

(Jeon et al., 2019). Based on traditional global sensitivity analysis, it is challenging to 

identify the sensitive parameters considering all performance objectives. There is a 

need to develop an efficient global sensitivity analysis incorporating multiple criteria 

in the context of PBEE. 

2.6  Life-cycle Seismic Performance Assessment 

To assess the life-cycle performance, the performance metrics should be defined. The 
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stochastic hazards occurring within the entire life span of the bridges should be 

identified. 

It is crucial to ensure that the infrastructural systems are environmental-friendly 

and sustainable. Carbon dioxide is a global greenhouse gas emitted from human 

activities (e.g., construction and traffic emissions) and it is the driver of climate change 

(Wang et al., 2021). The global warming of climate change has adverse effects on food 

security, resource, ecosystems, and among others, worsening the living condition of 

humans (Chu et al., 2021; Zhao et al., 2020). It can also increase the risk of natural 

hazards such as floods, droughts, storms, and sea-level rise (Zhao et al., 2022). 

Responding the climate change by achieving carbon neutrality has become an urgent 

need for society. On December 12, 2015, several countries reached the “Paris 

agreement” at Paris Climate Change Conference, to reduce greenhouse gas emissions, 

achieve carbon neutrality, and mitigate climate change (Anderson & Peters, 2016; 

Wang et al., 2021). For the structural performance assessment, attention should be paid 

to the consequences related to the environment (e.g., carbon dioxide emission). 

Sustainability is a comprehensive measure to understand the seismic performance of 

structures incorporating environmental, social, and economic metrics (Dong & 

Frangopol, 2016a). The methods for quantifying sustainability have been developed 

(Dong et al., 2014, 2015). The environmental metric is considered to be carbon dioxide 

emission. Since the social metric can be regarded as fatality, the safety of humans 

should be given a top priority. The economic metric can be quantified as the monetary 

values of direct loss (e.g., repair cost) and indirect loss (e.g., running cost and time loss) 



 
22 

(Dong et al., 2014, 2015). The approach to assessing time-variant sustainability has 

been developed considering multiple hazards (Dong et al., 2013). Sustainability has 

been used as the criterion for bridge network retrofit planning and building design under 

earthquakes (Asadi et al., 2019; Dong et al., 2015). Different structure systems may 

have different sustainability metrics. The social sustainability measures in schools 

include security, well-being, accessibility, income, service provision, and community 

organizations (Santa-Cruz et al., 2016). 

Resilience is defined as the ability of systems to absorb disruptions and recover to 

a satisfying functionality state (Timmerman, 1981). Frangopol and Bocchini (2011) 

defined the resilience index as the ratio of integration of time-variant functionality over 

investigated time horizon to the total investigated time. Decò, Bocchini and Frangopol, 

(2013) developed a probabilistic approach to quantify the time-variant functionality and 

resilience of bridges considering uncertainties within the recovery process. Dong and 

Frangopol (2016) developed a framework to assess the seismic resilience of bridges 

under flood effects. Minaie and Moon (2017) developed a multistage framework to 

assess the resilience of bridges by incorporating expert knowledge and lessons from 

previous experience. The effects of different seismic intensity measures (IM) on 

probabilistic resilience have been assessed to support IM selection (Qian & Dong, 

2020). Dong and Frangopol (2015) proposed a framework to quantify seismic resilience 

under mainshock and aftershock sequences. Kong and Simonovic (2019) developed an 

approach for assessing the resilience of infrastructure systems considering 

interdependence among infrastructure systems, multiple hazard interactions, and 
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restoration strategies. A framework was proposed to assess the resilience of a hospital 

system in terms of quality of service (Cimellaro et al., 2010). Argyroudis et al. (2020) 

proposed a framework to quantify the resilience of infrastructure under multiple hazards 

incorporating vulnerability, recovery rapidity, and temporal variability. 

Within the service life of structures, earthquakes can occur with stochastic 

occurrence time and intensity. The occurrence of earthquakes can be modeled using 

stochastic process models (Pandey & Van Der Weide, 2017). The homogeneous 

Poisson process (HPP) is widely adopted for computing long-term damage costs (Liu 

et al., 2004). In HPP, the mean occurrence rate is assumed to be constant, and the 

occurrence of hazards is considered as independent from time (Takahashi, Der 

Kiureghian and Ang, 2004). The simplicity of HPP may not well capture the stochastic 

characteristics of hazards (Pandey & Van Der Weide, 2017). Due to the mechanism of 

energy accumulation and release, the occurrence of earthquakes is associated with time-

dependent features (Matthews et al., 2002). For instance, an earthquake can occur when 

energy accumulation meets a critical state. The energy is released after the earthquake, 

and a new cycle of rupture failure starts. Considering time-dependent characteristics, 

the Brownian passage-time (BPT) renewal process can be used to model the long-term 

occurrence of earthquakes (Matthews, Ellsworth, and Reasenberg 2002; Li et al. 2020b).  

In addition to earthquakes, bridges can be exposed to chloride environments. 

Chloride can penetrate concrete cover and contact with reinforcing steel initiating 

corrosion (Stewart & Al-Harthy, 2008). The corrosion product from the deteriorated 

steel can expand the concrete, and cracks occur in the concrete, leading to the reduction 
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of concrete strength. The chloride-induced deterioration can affect the performance of 

structures time-dependently (Guo et al., 2021a; Guo et al., 2021b). The deterioration 

can affect the reliability and redundancy of concrete bridges at material, component, 

and system levels (Tu et al., 2019). The compound effects refer to the aggravated impact 

caused by two or more simultaneously or sequentially occurred mechanisms of hazards 

(Towhata, 2013). Compound events can be categorized into three types: two or more 

simultaneous or successive extreme events; extreme events combined with the 

conditions that amplify the influences; and the combinations of non-extreme events that 

cause extreme events or influences (Catto & Dowdy, 2021). As an example of 

compound effects, a flood after an earthquake can aggravate the damage to structures 

and lifelines (Gautam & Dong, 2018). Compared with sole earthquake hazard, the 

deterioration and earthquake coupled scenarios are associated with higher seismic 

vulnerability and severer consequences (Shekhar et al., 2018). The deterioration and 

earthquake can have compound effects on structures. Assessing and mitigating the 

tremendous consequences induced by compound earthquakes and functional 

deterioration are essential. The compound effects of earthquakes and corrosion should 

be incorporated into life-cycle performance assessment.  

From a long-term perspective, the consequences can be accumulated due to 

multiple disruptions. To ensure the safety and functionality of bridges within their 

prescribed service life, it is of vital importance to understand the long-term performance. 

Studies have been conducted on life-cycle performance. The performance assessment 

has been extended to a life-cycle context (Gencturk, Hossain, and Lahourpour 2016; 
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Padgett and Tapia 2013; Anwar, Dong, and Li 2020; Zheng, Dong, and Li 2018; Li, 

Dong, and Qian 2020). Yang and Frangopol (2019) introduced the concept of lifetime 

resilience. An integrated probabilistic framework to assess life-cycle sustainability and 

resilience under deterioration and earthquakes has not been well developed. 

2.7  Performance of Seismic Hazard Mitigation 

Measure Using SMA 

During the service life, reinforced concrete (RC) bridges may be subjected to extreme 

events (e.g., earthquakes) and environmental pollution (e.g., carbonization and 

corrosion), causing tremendous consequences to the economy and society. This study 

adopts shape memory alloy (SMA)-steel RC bridge as a promising solution to mitigate 

the consequences induced by earthquakes and functional deterioration. Thus, the gap 

between long-term sustainability and resilience assessment and novel steel-SMA RC 

bridges due to earthquake and functional deterioration needs to be filled. 

The smart material SMA can be an alternative to mitigate the consequences of 

compound earthquakes and functional deterioration. The SMA is associated with flag-

shaped hysteretic behavior, presenting self-centering and energy dissipation 

characteristics. The SMA can recover to its original shape after suffering large 

deformation (Fang et al., 2014, 2017; Fang, Wang, et al., 2022; Xiang et al., 2020). 

Additionally, SMA has satisfying corrosion resistance (Billah & Alam, 2012), and such 

property is vital for coastal structures which expose to a chloride environment yet to 

maintain their functionality over the lifespan. The pier is a critical component of the 
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bridge system, the failure of the pier caused the collapse of the whole bridge (Padgett, 

2007). Therefore, the SMA bar can be arranged in the plastic hinge of the pier to 

mitigate seismic damage (Billah & Alam, 2015). Experiments demonstrated that SMA 

reinforced concrete pier could recover to its original position after the shaking table test 

(Zheng & Dong, 2019).  

To understand the seismic performance of SMA-steel reinforced concrete piers, 

the seismic vulnerability was assessed (Billah & Alam, 2015; Shrestha & Hao, 2016). 

The seismic vulnerability of the SMA-steel reinforced concrete bridge and the bridge 

equipped with both SMA reinforced concrete pier and the SMA cable restrainer were 

compared (Li et al., 2021). The seismic loss of SMA-steel reinforced concrete bridges 

has been assessed under performance-based earthquake engineering, and the advantage 

of SMA in terms of mitigating economic loss was illustrated (Fang et al., 2021; Xiang 

et al., 2020; Zheng & Dong, 2019). Other applications of SMA in bridges include 

rocking foundation piers (Fang et al., 2020; Zheng et al., 2021) and isolation bearings 

(Fang, Liang, et al., 2022; Liang et al., 2020). A novel type of superelastic SMA angles 

was developed as self-centering device (Wang et al., 2020). The cyclic behavior and 

deformation mechanism of superelastic SMA U-shaped dampers (SMA-UDs) were 

investigated (Wang et al., 2021). The bridge can suffer multiple earthquakes and 

continuous deterioration within its lifetime, and the performance should be assessed 

from a long-term perspective. The long-term performance of SMA-steel reinforced 

concrete bridges incorporating broader metrics has not been well assessed under the 

compound earthquakes and functional deterioration. 
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Considering multiple sudden and continuous disruptions within the service life of 

structures, the sustainability and loss of resilience can be time-dependent and 

accumulated. The accumulated long-term sustainability and resilience loss of SMA-

steel reinforced bridges under compound earthquakes and functional deterioration has 

not been well assessed. 

2.8  Research Gaps 

This study focuses on confident seismic performance analysis of spatially distributed 

bridges. The relevant components including seismic IM selection, surrogate demand 

model, dependence modeling, sensitivity analysis, life-cycle performance, and 

performance of the hazard mitigation measure are reviewed. The research gaps are 

identified. 

• The trade-off of the IM performance on the components and criteria has not 

been well considered within the IM selection process. A robust multi-criteria 

decision-making process has not been involved in IM selection. 

• An efficient SPCE-based framework has not been developed to aid the 

uncertainty quantification of PBEE. The efficient global sensitivity analysis 

approach incorporating multiple criteria has not been developed within the 

PBEE framework. 

• The nonlinear complex dependence from multiple sources has not been well 

modeled and incorporated in PBEE. The advanced techniques (e.g., advanced 

surrogate model for demand prediction and vine copula for dependence 
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modeling) have not been well interconnected to formulate an integrated 

framework to jointly improve the confidence of PBEE. 

• An integrated framework of life-cycle sustainability and resilience assessment 

under compound earthquakes and deterioration has not been well developed. 

The life-cycle cost-benefit analysis in terms of sustainability and resilience of a 

hazard mitigation measure (steel-SMA reinforced bridge) under compound 

earthquakes and deterioration has not been investigated. 

The procedures of PBEE include hazard analysis, structural analysis, damage 

analysis, and performance analysis. Related to these procedures, the seismic IM 

selection, uncertainty quantification, global sensitivity analysis, complex dependence 

modelling, and life-cycle performance assessment under compound earthquakes and 

deterioration are challenging tasks. Each of these tasks can affect the confidence of 

PBEE. These challenges motivate the author to develop a confident PBEE framework 

by improving the components in different stages. 
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CHAPTER 3   

SEISMIC INTENSITY MEASURE SELECTION 

UNDER MULTIPLE CRITERIA AND 

UNCERTAINTY 

3.1  Introduction 

Earthquake ground motions contain complex time-series information. Within seismic 

performance assessment, PSDM is used to predict the probabilistic demand conditioned 

on seismic IM. Selecting an appropriate seismic IM can reduce uncertainty and serves 

as the basis of a confident performance assessment. Considering the multiple failure 

modes of the systems and IM performance objectives, seismic IM selection is 

associated with the consideration of multiple criteria. Besides, there are uncertainties 

within the selection process. 

According to the definition (Triantaphyllou, 2000) of decision-making, the IM 

selection process can be considered as a multi-criteria decision problem and the 

different IMs are considered as alternatives. However, few studies selected the IM 

incorporating the multi-criteria decision process. One of the most widely used multi-

criteria decision-making (MCDM) methods so-called TOPSIS, is adopted herein. The 

TOPSIS is a deterministic process, the rank computed by the TOPSIS model for each 

alternative is a single value. However, when uncertainties exist in criteria and weighting 

factors as limited information is available, the rank of each alternative provided by 

TOPSIS becomes random. It is impossible to make reliable decisions based on the 

TOPSIS technique only, as the presence of uncertain rank. Therefore, probabilistic 
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models should be incorporated into TOPSIS to support decision-making under 

uncertainties (Lahdelma & Salminen, 2001; Wu et al., 2019). The uncertainty and trade-

off among multiple criteria have not been well incorporated in seismic IM selection. 

The importance of different components has not been well incorporated in seismic IM 

selection. There is no existing MCDM framework that can be directly adopted to solve 

the IM selection by considering multiple criteria and uncertainties. 

In this chapter, an MCDM framework coupling SMAA-2 and TOPSIS is proposed 

to address the IM selection under uncertainty. The IM selection criterion values at 

structural components are first computed, and a decision matrix is formulated based on 

all the criterion values of each IM alternative. With the consideration of probabilistic 

seismic scenarios, the importance of the component to the system reliability is then 

quantified in a probabilistic manner and used as the input of weighting factors in the 

MCDM stage. After performing the MCDM process using the decision matrix and 

probabilistic weighting factors, the acceptability of each IM for each rank is computed, 

and the overall acceptability levels of the IM alternatives are presented based on the 

holistic acceptability indices. Additionally, the effects of IM selection on loss and 

resilience are investigated in this chapter. 

3.2  Seismic Intensity Measure Alternatives and 

Performance Criteria 

Based on previous studies (Bianchini et al., 2009; Padgett et al., 2008), ten IMs are 

considered in this chapter and are summarized in Table 3.1. The directionality of ground 

motions is also defined. In general, there exist several directionality definitions in the 
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literature (e.g., (Beyer & Bommer, 2006; Boore & Kishida, 2017)). Boore (Boore, 2010) 

introduced the seismic intensity using RotD50 values that is orientation-independent 

without calculating the geometric means. The RotD50 is defined as the 50-percentile 

(median) value of response spectra of the two horizontal components protected onto all 

nonredundant azimuths (Boore, 2010). The RotD50 is used in the Pacific Earthquake 

Engineering Research Center’s (PEER) Next Generation Attenuation (NGA)-West2 

project. Herein, the PGV, PGA, and spectral accelerations are computed using the 

RotD50 values. 

 

Table 3.1 Seismic intensity measure alternatives 

No. IM Definition Units 

1 PGV Peak ground velocity cm/s 

2 PGA Peak ground acceleration g 

3 Sa-0.2s Spectral acceleration at the period of 0.2 s g 

4 Sa-1s Spectral acceleration at the period of 1 s g 

5 Sa-T1 Spectral acceleration at the first mode period g 

6 Sa-gmTLT 

Spectral acceleration at the geometric mean of the 

fundamental periods of the longitudinal and transverse 

directions (calculated by Eq. 3-1) 

g 

7 Sa-gmT12 
Spectral acceleration at the geometric mean of the first 

and second mode periods (calculated by Eq. 3-1) 
g 

8 Sa,C Composite IM (calculated by Eq. 3-2) g 

9 Saavg Average spectral acceleration (defined in Eq. 3-3) g 

10 GeoSa-TLT 

Geometric mean of the spectral accelerations at the 

fundamental periods of the longitudinal and transverse 

directions (calculated by Eq. 3-4) 

g 
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The Sa-gmTLT and Sa-gmT12 are computed as 

( )L TSa gmTLT Sa T T=− ，
1 212 ( )SS gm aT Ta T=−             (3-1) 

where TL and TT are the fundamental periods associated with the longitudinal and 

transverse directions of the structure; T1 and T2 are the first and second mode periods 

of the structure respectively; and ( )L TSa T T  is the spectral acceleration at the period 

L TT T . 

The composite IM Sa,C is expressed as follows (Cordova et al., 2000) 

0.5

1
, 1 1 1

1

(2 )
( ) ( ) (2 )

( )
a C

Sa T
S Sa T Sa T Sa T

Sa T

 
= = 

 
                   (3-2) 

The average spectral acceleration is represented by the geometric mean of spectral 

accelerations at the periods between ζ1T1 and ζNpT1 (Bianchini et al., 2009) 

1/

1 1 1 1

1

( ,..., ) ( ( ))
Np

Np

avg Np i

i

Sa T T Sa T  
=

=                      (3-3) 

where Np is the number of periods used to compute Saavg and ζi is a non-negative value. 

In this study, ten equally spaced periods between 0.25T1 to 3T1 are used to compute the 

Saavg. 

The GeoSa-TLT is expressed as 

( ) ( )L TSaGeoSa T SaTLT T− =                       (3-4) 

To sum up, the GeoSa-TLT and Sa,C can be regarded as two variants of Saavg. 

Herein, the Saavg is computed as the geometric mean of spectral accelerations (using the 

RotD50 values) at ten periods, while GeoSa-TLT is computed as the geometric mean 

of spectral accelerations at TL and TT of the structure, and Sa,C is the geometric mean of 
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spectral accelerations at T1 and 2T1. The RotD50 value is used for all the spectral 

accelerations to compute these IMs. Given the structural information, the TL, TT, T1, and 

T2 can be obtained. 

The widely used power law PSDM is used to demonstrate the developed 

framework in this chapter. A power law is generally used in the PSDM to estimate the 

median value of the demand under a given IM (Cornell et al., 2002) 

ln( ) ln( ) ln( )DS a b IM= +                          (3-5) 

where SD is the median of the demand and the coefficients a and b are obtained from 

regression analysis. Then, the conditional probability of demand exceeding structural 

capacity under a given IM is computed as 
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(3-6) 

in which Ф(.) is the standard normal cumulative distribution function; Cap is the 

defined limit state; βD|IM and βC are the dispersions of the demand and capacity, 

respectively; di is the demand of ith analysis; and Na is the number of analysis. 

The six criteria namely, efficiency, practicality, sufficiency to magnitude, 

sufficiency to distance, proficiency, and correlation are assessed. The structural demand 

parameters considered in this study include column curvature ductility, bearing 

longitudinal and transverse displacement, abutment active displacement, passive 

displacement, and transverse displacement. Counting six performance criteria for each 
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structural demand parameter, thus a total of thirty-six criteria are assessed in this study. 

The criteria are explained as follows. 

Efficiency describes the variability of the peak demand computed under a certain 

level of seismic intensity. The efficiency is represented by βD|IM. The IM associated 

with lower βD|IM is considered to be more efficient, as an efficient IM can reduce the 

dispersion of the demand under a given IM. 

The practicality is examined by the slope of the linear regression between ln IM 

and ln demand. The practicality is represented by coefficient b, as indicated in Eq. 3-5. 

A high slope value indicates the engineering demand is strongly dependent on IM 

(Padgett et al., 2008), therefore, the IM is considered as practical. The IM cannot be 

used for demand estimation if the slope of the linear regression between ln IM and ln 

demand is close to zero indicating an impractical IM. 

An IM, which is highly independent on other ground motion characteristics such 

as earthquake magnitude (M) and distance (R), is considered as sufficient. When a 

sufficient IM is used, the results from PSDM are conditionally independent of M and 

R. Given an intensity level, the probability of exceeding a damage state produced by a 

sufficient IM is not affected by the M and R. To compute the sufficiency, the regression 

is first conducted between residuals from PSDM and other seismic parameters (e.g., M, 

R). The sufficiency is quantified by the p-value of the regression. A lower p-value 

indicates a higher statistical significance of the regression, resulting in a reasonable 

decision to reject the IM. 
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The correlation coefficient describes the level of interdependency between two 

variables. As the linear relationship is assumed between ln demand and ln IM, an 

appropriate IM should be highly correlated with demand. A higher correlation 

coefficient indicates less variable and more accurate demand estimation. The 

correlation coefficient Cor(ln IM, ln D) is expressed as follows 

(ln , ln )
(ln , ln )

[ln ] [ln ]

Cov IM D
Cor IM D

Var IM Var D
=                    (4-7) 

where Cov(ln IM, ln D) is the covariance of ln IM and ln demand D and Var[.] is the 

variance function. 

Proficiency refers to the composite performance of efficiency and practicality and 

is expressed as the modified dispersion. An IM with lower modified dispersion is 

considered as more proficient. The proficiency Pr is computed as 

|IM
Pr

D

b


=                             (3-8) 

3.3  Novel Multi-criteria Decision-making Model 

Considering Uncertainty 

This study proposes a novel MCDM method incorporating uncertainties within the 

decision process. When the input of the decision process is deterministic, the MCDM 

technique such as TOPSIS outputs the deterministic rank of the alternatives. It is visible 

for decision-makers to choose the best solution based on rank. However, when the 

decision matrix and weighting factors are associated with uncertainties, the rank of each 

alternative becomes probabilistic. Each alternative may rank at any place with a certain 
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acceptability level. This study combines TOPSIS and SMAA-2 to address decision-

making under uncertainties. 

 MCDM Technique: TOPSIS 

This study adopts one of the MCDM methods so-called TOPSIS. The basic idea of this 

method is to determine the optimal alternative with the shortest distance to the ideal 

solution (A+) and the longest distance to the negative ideal solution (A-) (Hwang & 

Yoon, 1981). In the TOPSIS procedure, the performance criteria for each alternative 

should be quantified first, thus, a decision matrix is formulated. The decision matrix D 

is expressed as follows 

1,1 1,

,1 ,

ncr

nal nal ncr

x x

x x

 
 

=  
 
 

D                          (3-9) 

where xij is the value of the jth criterion with respect to the ith alternative; ncr is the 

number of criteria; and nal is the number of alternatives. 

The normalization of the decision matrix is conducted as 
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x
r

x
=

=



                  (3-10) 

 

where R is the normalized decision matrix and xkj is the original value of the jth criterion 

with respect to the kth alternative. 
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The weighting factors for each criterion determined by the decision-makers are 

then applied to the normalized decision matrix, the normalized and weighted decision 

matrix is finally obtained as 

1,1 1,

,1 ,

ncr

nal nal ncr

v v

v v

 
 

=  
 
 

V , 
, ,i j j i jv w r=                  (3-11) 

where V donates the weighted and normalized decision matrix and wj represents the 

weighting factor for the jth criterion. 

The criteria, which are expected to maximize or minimize to achieve the satisfied 

objectives, are defined as “benefit” or “cost” criteria, respectively. The best 

performance values among all alternatives are determined by the maximum values of 

the “benefit” criterion and the minimum values of the “cost” criterion. The ideal 

solution and the negative-ideal solution are computed by extracting the best and worst 

performance values among all the alternatives respectively 
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,..., (min | ), (max | )

b c

ncr i j i j

b c

ncr i j i j

A v v v j J v j J

A v v v j J v j J
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−

− −

= =  

= =  

         (3-12) 

where Jb and Jc are the “benefit” and “cost” criteria, respectively; and vj+ and vj- are the 

jth criterion values of the ideal solution and negative ideal solution. 

The distance of each solution to the ideal solution and negative ideal solution can 

be calculated by Eq. 3-13. The final alternative rank is determined by the relative 

closeness defined in Eq. 3-14. The best alternative should have the highest value of 

relative closeness. 
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                       (3-14) 

where Di+ and Di- are the distances of alternative i to the ideal solution and negative 

solution respectively and Ci+ is the relative closeness to alternative i. 

 Incorporating Uncertainties in MCDM by SMAA 

SMAA is an MCDM method for assessing alternatives when the criterion values and 

criterion weightings are uncertain or inaccurate. Lahdelma and Salminen (Lahdelma & 

Salminen, 2001) proposed the SMAA-2 method to assess the overall acceptability of 

the alternatives based on the conventional SMAA methods. In SMAA, the weighting 

factors and the criterion values are described as probabilistic distributions, the 

acceptability indices are the outputs of SMAA. The acceptability index indicates the 

variety of different preferences that give an alternative a specific rank place. The 

holistic acceptability index representing the overall acceptability of an alternative can 

be calculated by assigning meta-weighs to the acceptability indices of that alternative 

associated with all passible rank places. In this study, the uncertainties within the 

MCDM problem are addressed by coupling the SMAA-2 with TOPSIS. 

The SMAA-2 procedure is presented as follows. The distributions of the random 

criterion values and weighting factors are described by the probability density functions 

(PDFs) fX(c) and fW(w), respectively. To ensure the sum of the weighting factors equals 

1, the distribution of the random weighting factors should be within the random variable 

space W defined as follows 
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where w is the weight vector. 

The random decision matrix realization X is expressed as 

1,1 1,
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nal nal ncr

c c

c c

 
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=  
 
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X                        (3-16) 

where the variable cij represents the random jth criterion value with respect to the ith 

alternative. 

The favorable rank weight )(cW r

i
 can be defined as the weights that ensure the 

alternative i ranking at r 

 ( ) : ( , )r

iW c W rank r=  =
i

w c w                (3-17) 

where ci is the random criterion vector of alternative i; and rank (ci, w) is the ranking 

function that returns the rank of alternative i, given the random criterion vector ci and 

random weight vector w. 

The rank acceptability index r

irar  represents the variety of preferences that 

yields the alternative i ranking at r and is computed as 

( )

( ) ( )
r

i

r

i X W

X W c

rai f c f d dc=   w w                   (3-18) 

The holistic acceptability index haii for alternative i combines the acceptability for 

each possible rank and represents the overall acceptability of this alternative. The 

holistic acceptability index haii for alternative i is expressed as 

1

rnal
i

i

r

rai
hai

r=

=                            (3-19) 
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The procedures of the novel MCDM model are indicated in Figure 3.1. In SMAA-

2, the uncertainties associated with the decision matrix and weighting factors are 

assessed and the probabilistic distributions are formulated. The TOPSIS model is then 

implemented with the input of a stochastic decision matrix and weighting factor 

samples generated from the predetermined distributions. The probabilistic closeness 

coefficients and rank are therefore computed. These probabilistic outputs serve as the 

input in SMAA-2 to compute acceptability indices. The holistic acceptability index of 

an alternative is calculated by applying the meta-weights to the acceptability indices of 

that alternative associated with all possible rank places. The overall rank of the 

alternatives considering uncertainties is determined based on the holistic acceptability 

indices. The proposed approach can be applied to a wide range of MCDM problems 

considering uncertainties. 

 

Figure 3.1 Computational process of the novel MCDM model 
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The IM selection process involves the consideration of the importance of single-

component performance to the system reliability, which means the performance criteria 

associated with a relatively more critical component should be weighted with a larger 

factor in the MCDM process. Kang et al. (Kang et al., 2008) indicated that the 

conditional failure probability of a component given the system failure can be 

considered as the importance of the component to the system reliability. The component 

importance measure (CIM) is computed as follows 

( | )
( ) ( | , )

( | )

j j

i systemj j j

i i system j

system

P F F IM
CIM IM P F F IM

P F IM
= =            (3-20) 

where ( )j

iCIM IM  is the importance measure of the ith component under the hazard 

intensity IM for the jth limit state; ( | , )j j

i systemP F F IM  is the conditional failure 

probability of ith component given the system failure considering jth limit state; 

P[Fj
system|IM] is the probability of the system exceeding the jth limit state under a given 

IM; and ( | )j j

i systemP F F IM  is the probability of both the ith component and system 

exceeding jth limit state under IM. 

The Monte Carlo simulation (MCS) can be used within bridge vulnerability 

analysis considering the joint PDFs of the demands of multiple components (Dueñas-

Osorio & Padgett, 2011; Nielson & DesRoches, 2007). The approach is adopted in this 

study to compute the system fragility and component importance measures considering 

multiple components. 
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3.4  Framework of Seismic Intensity Measure 

Selection Under Multiple Criteria and 

Uncertainty 

This study develops an integrated IM selection framework to assess the overall IM 

acceptability using the proposed MCDM method. A flowchart of the proposed 

framework is shown in Figure 3.2. As indicted, there are four computational modules 

within the framework: PSHA, vulnerability analysis, MCDM, and loss and resilience 

quantification. The PSHA is conducted for the bridge location, thus the probabilistic 

distributions of IMs are obtained. The vulnerability analysis is then performed to 

compute the IM performance criteria, CIMs, and system fragility. The CIMs are 

quantified in a probabilistic manner by incorporating the probabilistic IMs distributions 

from PSHA. The MCDM model is used to provide the rank of the alternatives under 

uncertainty. To formulate an MCDM problem, the decision matrix and weighting 

factors need to be obtained. Therefore, the decision matrix is formulated based on the 

criterion values quantified for the ten alternatives. The probabilistic weighting factors 

are calculated by normalizing the CIMs. Once the two main inputs (decision matrix and 

probabilistic weighting factors) of MCDM are obtained, following the procedures of 

MCDM, the overall acceptability levels of the alternatives are determined based on the 

holistic acceptability indices. Finally, the effects of IM selection on risk and resilience 

assessment are investigated by considering both the mean and standard deviation.  

In summary, several IMs are determined as alternatives for the IM selection. 

Multiple criteria are considered in the selection. Different structural components are 
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associated with different importance to system safety. Thus, a multi-criteria decision-

making model is implemented. This decision model incorporates the trade-off among 

multiple criteria and the different importance of structural components. Based on the 

holistic acceptability index, the ranking of the IM alternatives can be determined. The 

effects of IMs on probabilistic loss and resilience are investigated to further support IM 

selection. 

 

 

Figure 3.2 Proposed IM selection framework 
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The uncertainty associated with seismic hazards is considered in this study. The hazard 

analysis is performed in a probabilistic manner. A bounded cumulative distribution 

function (CDF) for the earthquake magnitudes can be derived as (Baker, 2013) 

min

max min

( )

( )

1 10
( )

1 10

h m m

M h m m
F m

− −

− −

−
=

−
, min maxm m m                (3-21) 

where FM(m) is the CDF for earthquake magnitudes; mmax is the maximum earthquake 

magnitude that a given source can produce; mmin is the minimum magnitude considered 

in the analysis; and h is the coefficient. 

The ground motion prediction models (GMPMs) can be used to predict the IM 

levels with the medians and standard deviations. The GMPMs are described as a 

function of some seismic characteristic parameters (e.g., earthquake magnitude, 

distance, rupture mechanism). The GMPM (Boore et al., 2014) is given by 

30 1 30ln ( , ) ( , , ) ( , , , , ) ( , , )E P JB S S JB JB SY F M mech F R M region F V R M region z M R V= + + + (3-22) 

where lnY is the natural logarithm of a ground-motion IM; FE, FP, and FS are functions 

of source, path, and site parameters respectively; M is magnitude; mech is the 

mechanism of the event; RJB is the Joyner-Boore distance; region represents the 

investigated region; VS30 is the shear wave velocity averaged over top 30 m; z1 is the 

basin depth; ε is the fractional number of standard deviations of a single value of lnY 

away from the mean; and σ is the total standard deviation of the model. 

The total standard deviation is the combination of between-event and within-event 

variability, given by 

2 2

30 30( , , ) ( , , ) ( )JB S JB SM R V M R V M  = +                 (3-23) 
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where τ is the M-dependent between-event standard deviation and ϕ is the M-, RJB-, and 

VS30- dependent within-event standard deviation. 

The lognormal distribution parameters of spectral acceleration-based IMs can be 

computed directly from the GMPMs, while distribution parameters of ln Saavg are 

estimated as follows (Baker & Jayaram, 2008) 

1 1 1 1
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=                  (3-24) 
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where lnSaavg(ζ1T1,..., ζNpT1) and lnSa(ζiT1) are the mean values of ln Saavg(ζ1T1,..., ζNpT1) and 

ln Sa(ζiTi) respectively; σlnSaavg(ζ1T1,..., ζNpT1) and σlnSa(ζiT1) are the standard deviations of 

ln Saavg(ζ1T1,..., ζNpT1) and ln Sa(ζiT1) respectively; and lnSa(ζiT1), lnSa(ζjT1) is the 

correlation coefficient of ln Sa(ζiT1) and ln Sa(ζjT1) (Baker & Bradley, 2017). As 

mentioned previously, the GeoSa-TLT and Sa,C can be regarded as two variants of Saavg. 

The distribution parameters of these two IMs can be calculated similarly with respect 

to Saavg as indicated in Eqs. 3-25 and 3-26, where Np equals 2 and the periods in the 

equations change accordingly. Based on the probabilistic distribution of magnitudes 

and GMPM, the probabilistic distributions of IMs can be computed. 

The proposed approach is illustrated on a highway bridge as indicated in Figure 

3.3. The investigated bridge is a 62 m length two-equal-span continuous RC bridge with 

two columns per bent. The height and width of the box girder are 2 and 10 m, 
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respectively. The height and the diameter of the circular columns are 10 and 1.5 m, 

respectively.  

The detailed finite element model of the bridge is established in OpenSees. The 

finite element model is developed based on previous studies (Nielson, 2005; Zheng et 

al., 2018). Elastic beam-column elements are used for superstructure modeling, as the 

superstructure is expected to behave elastically under seismic effects. The zero-length 

element is used for modeling the bearing. The Steel01 material can be used to model 

the elastomeric pad. The columns are expected to behave nonlinearly and can be 

developed using nonlinear beam-column elements with fiber sections representing the 

actual column section configuration. Three types of material models are utilized to 

describe the constitutive behavior of the column section namely unconfined concrete, 

confined concrete, and steel rebar. The concrete and steel are modeled using the 

materials Concrete01 and Steel01. The abutment actions are modeled using zero-length 

elements. In the longitudinal direction, the passive action includes the soil and pile 

contributions, and a parallel system consisting of quad-linear and tri-linear materials is 

used. The active action is related to the contribution of the pile. In the transverse 

direction, the action of the abutment is related to the pile contribution. The boundary 

condition is assigned to the foundation. Three types of springs are created along the 

foundation namely, p-y, t-z, and q-z springs to represent the soil-structure interactions 

in lateral and vertical directions. The detailed foundation modeling procedure is based 

on (Wang et al., 2014). For the mesh assignment, the deck is discretized into a number 

of elements with a length of 1 m. The displacement increment test can be used for the 
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convergence test. A set of 80 ground motion records identified by (Baker et al., 2011) 

is used in this study to conduct PSDM. 

 IM Selection 

The regression analysis is performed for each pair of natural logarithm IM and 

structural component responses. Six IM performance criteria (i.e., efficiency, 

practicality, proficiency, correlation, sufficiency to magnitude, and sufficiency to 

distance) over six engineering demand parameters, thus, a total of thirty-six criteria are 

assessed for each IM alternative. Some comparison results are presented in Figures 3.4 

– 3.6. As illustrated, Sa-T1 is more efficient than Sa-0.2s in bearing longitudinal 

displacement, Sa-gmTLT is more sufficient than Sa-0.2s related to magnitude in bearing 

transverse displacement, and PGA is more practical than Sa,C in column curvature 

ductility. The selected IMs performance criteria for different bridge components are 

visualized in Figure 3.7. The optimal criterion values are marked by cycle. For column 

curvature ductility, PGA is the optimal alternative by considering both efficiency and 

practicality. However, with respect to the bearing longitudinal displacement and 

abutment active displacement, there does not exist a sole alternative consistently 

optimal in both efficiency and practicality. Moreover, for a specific criterion (e.g., 

efficiency or practicality), there is not an alternative IM, which consistently yields 

optimal criterion values over all components. It is necessary to use a single IM to 

connect the demands of different components so that the joint PSDM can be formulated 

for system-level fragility, loss, and resilience assessment. These results further 
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demonstrate the necessity of implementing the proposed MCDM approach to address 

the trade-off of IM performance among the criteria and components. 

 

 

Figure 3.3 Comparison of efficiency in bearing longitudinal displacement for (a) Sa-

T1 and (b) Sa-0.2s. 

 

 

Figure 3.4 Comparison of sufficiency related to magnitude in bearing transverse 

displacement for (a) Sa-gmTLT and (b) Sa-0.2s. 

 

a b

a b
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Figure 3.5 Comparison of practicality in column curvature ductility for (a) PGA and 

(b) Sa,C. 

 

 

 

Figure 3.6 IMs performance for different bridge components in terms of (a) 

efficiency and (b) practicality (the order of the IMs is indicated in Table 3.1). 

 

Considering thirty-six criteria for ten alternatives, a ten-by-thirty-six transposed 

decision matrix is formulated. Selecting an optimal IM considering the trade-off among 

all criteria and components becomes a challenge when facing a large number of 

alternatives and criteria. This issue is addressed by using the proposed MCDM process 

to assess the integrated IM performance. To determine the weighting factors in MCDM, 

a b
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the system fragility of the bridge and CIMs are calculated, as presented in Figures 3.8 

– 3.9. As illustrated in Figure 3.9, the contributions of bridge components to the system 

reliability vary from the IM levels, which indicates the necessity of considering the 

uncertainties of seismic hazards to compute the weighting factors. For a slight damage 

state, the bearing longitudinal and transverse displacement and abutment transverse 

displacement seem to have similar importance to the system reliability under the high 

IM levels. The importance measure of the column increases with the IM levels. For the 

moderate damage state, the importance of abutment transverse displacement stands out 

at low IM levels, the importance measures of the bearing transverse displacement and 

the column increase significantly with the IM levels. The importance of the abutment 

passive and active displacement is relatively lower compared with other demands under 

all the investigated IM levels. 

 

 

Figure 3.7 System fragility curves for the four damage states 
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Figure 3.8 Component importance measures for (a) slight and (b) moderate damage 

states 

 

Considering the uncertainties associated with seismic hazards, the weighting 

factors are computed in a probabilistic context. Following the procedures of PSHA, the 

probabilistic IM distributions given the occurrence of the earthquake are computed. As 

the CIM is conditioned on IM levels, the probabilistic CIM samples can be generated 

based on the IM distributions. Each set of the CIM samples is first normalized to ensure 

the sum of them equals one. Considering six criteria are assessed for each engineering 

demand parameter, the probabilistic weighting factors are finally computed based on 

the normalized CIMs. The density of the component weighting factors (normalized 

CIMs to ensure the sum of the six component weighting factors is equal to 1) is 

presented in Figure 3.10. 

Once the decision matrix and probabilistic weighting factors are obtained, 

following the procedure of the proposed MCDM framework, the rank acceptability 

indices representing the acceptability levels of each alternative ranking at different 

a b
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places are computed and shown in Figure 3.11(a). The results illustrate that the 

alternative can obtain an arbitrary rank with certain acceptability when uncertainties are 

incorporated into the decision-making process. The rank acceptability indices provide 

a preliminary identification of satisfactory or unsatisfactory alternatives. Satisfactory 

alternatives are associated with high acceptability values for the best rank. In contrast, 

alternatives with high acceptability values for the worst rank are identified as 

unsatisfactory alternatives and should be eliminated in decision-making. From the 

preliminary identification, Saavg, PGV, and Sa-0.2s are determined as satisfactory 

alternatives, as they have high acceptability values for best ranks. The holistic 

acceptability indices aggregating all rank acceptability indices indicate the overall 

acceptability of alternatives and are presented in Figure 3.11(b). The overall ranking of 

the alternatives is determined based on holistic acceptability indices. The results show 

the Saavg is the most acceptable IM for the investigated bridge followed by PGV and 

Sa-0.2s. In previous studies, the IM, which is associated with the most optimal criterion 

values and maintains satisfactory performance on other criteria, was determined as the 

appropriate IM. Following this consideration, the PGA stands out among all the IMs. 

Based on the proposed method, the overall acceptability of PGA computed by the 

MCDM model is not ranked in the first place. The reason why the overall acceptability 

of Saavg stands out may be interpreted as follows. By taking the geometric mean of the 

spectral accelerations at multiple periods, Saavg contains more information associated 

with the ground motion than a single-period spectral acceleration-based IM. Besides 
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the determined single period, the response at other periods may be important to compute 

the nonlinear behavior of the structural system. 

 

 

Figure 3.9 Distributions of component weighting factors for (a) bearing longitudinal 

displacement; (b) abutment active displacement; and (c) abutment passive 

displacement 

 

 

Figure 3.10 (a) Rank acceptability indices and (b) holistic acceptability indices for 

the ten alternatives (the order of the IMs is indicated in Table 3.1) 
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This study further investigates the effects of selected IMs on probabilistic loss and 

resilience. The top three IM alternatives Saavg, PGV, and Sa-0.2s ranked from the 

MCDM model are chosen to perform the loss and resilience assessment. The repair cost 

of the bridge given a damage state is assumed proportional to the rebuilding cost of the 

bridge (Stein et al., 1999). To quantify the seismic loss associated with each damage 

state, the repair cost ratios representing the ratios of the repair cost to the rebuilding 

cost need to be defined. Werner et al. (Werner et al., 2006) proposed the repair cost 

ratios for different damage states, in which 0, 0.03, 0.25, 0.75, and 1 are associated with 

none, slight, moderate, major, and complete damage states, respectively. Given the 

above information, the seismic loss for the four damage states can be calculated. Based 

on the total probability theorem, the expected loss under a given seismic hazard is 

computed as the sum of the weighted loss for all damage states. The weighting factors 

are the probabilities of the bridge being in different damage states. The direct loss is 

considered within the assessment process and the indirect loss (e.g., downtime and 

fatality loss) could also be incorporated within the evaluation process (Dong et al., 

2013). 

The concept of resilience is used by decision-makers to assess the sustained 

function of infrastructure systems subjected to new challenges. The resilience can be 

quantified as follows (Frangopol & Bocchini, 2011) 
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where R is the resilience index; t0 is the time of occurrence of the extreme event; th is 

the investigated time interval; and Q(t) is the time-variant functionality of the structure. 

The expected time-variant functionality is expressed as the sum of the weighted 

functionalities for all damage states (Dong & Frangopol, 2015; Zheng et al., 2018). 

Given the IM distribution from the PSHA, the probabilistic seismic loss and resilience 

can be computed correspondingly. 

The density of repair loss is presented in Figure 3.12. The distribution parameters 

are listed in Table 3.3. The Saavg provides the lowest standard deviations for loss and 

resilience. There exists a large difference in the expected loss when using three different 

IMs, the expected loss computed using Sa-0.2s is near 3.5 times that using Saavg. The 

results of expected resilience using the three IMs are similar, the difference between 

the highest and lowest expected resilience is 0.07, Saavg provides the highest value of 

expected resilience followed by PGV and Sa-0.2s. Different types of structures can be 

associated with different optimal IMs. The developed framework can be generally 

applied to different types of structures to determine the appropriate IM. More studies 

are needed for the IM selection for different types of structures. 
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Figure 3.11 Distributions of loss using different IMs: (a) Sa-0.2s; (b) PGV; and (c) 

Saavg 

 

Table 3.2 Distribution parameters of loss and resilience 

IM RankMCDM L (104 USD) res σL (104) σres 

Sa-0.2s 3 34.19 0.91 23.06 0.08 

PGV 2 16.06 0.96 17.39 0.05 

Saavg 1 9.85 0.98 12.84 0.04 

 

3.6  Summary 

In this chapter, a novel multi-criteria decision-making (MCDM) approach by 

incorporating stochastic multi-criteria acceptability analysis (SMAA) with the 

technique for order preference by similarity to ideal solution (TOPSIS) is proposed to 

solve the stochastic decision-making problem. TOPSIS provides an alternative rank 

function and the SMAA is used to address the uncertainties within the IM selection. 

The performance criteria (e.g., efficiency, proficiency, practicality, sufficiency, and 

correlation) are evaluated for the investigated structural components, and the decision 

matrix is formulated based on the criteria of each IM alternative. Furthermore, the 

a b c



 
57 

importance of the component to system reliability is quantified in a probabilistic 

manner using nonlinear time history analysis and serves as the weighting factor in the 

MCDM stage. The holistic acceptability indices indicating the overall acceptability 

levels of IM alternatives are computed by the proposed approach. Additionally, the 

effects of different IMs (e.g., average spectral acceleration, peak ground velocity, 

spectral acceleration) on probabilistic seismic loss and resilience are investigated to 

further support the IM selection. The proposed approach is illustrated on a highway 

bridge and the results are presented. In addition to the bridge system, the IM selection 

framework can be applied to the IM selection problems on other types of infrastructural 

systems. Furthermore, the proposed decision-making framework can deal with a wide 

range of decision-making problems in multiple disciplines considering multiple criteria 

and uncertainty. The following conclusions are drawn. 

• For the investigated case, the optimal performance criterion values are 

separately distributed within the IM alternatives. Selecting an optimal IM 

considering the trade-off among all criteria and components becomes a 

challenge when facing a large number of alternatives and criteria. The proposed 

novel MCDM approach can be used to solve the issues and account for the 

uncertainties within the decision-making process. 

• The contributions of bridge components to the system reliability measured by 

the conditional failure probability vary from the IM levels, which indicates the 

necessity of considering the uncertainties of seismic hazards to compute the 

weighting factors. The results of the component importance measure show that 
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the bearing displacement, column curvature ductility, and abutment transverse 

displacement have major contributions to the system reliability, and other 

component engineering demand parameters have minor contributions. 

• The holistic acceptability indices indicate the Saavg is the most acceptable IM 

for the investigated bridge followed by PGV and Sa-0.2s. In general, Saavg 

contains more information on ground motion than a single-period spectral 

acceleration-based IM. Besides the determined single period, the response at 

other periods may be important to compute the nonlinear behavior of the 

investigated structural system. 

• Among the top three investigated IMs, Saavg provides the lowest standard 

deviations for loss and resilience. There exists a large difference in the expected 

loss when using three different IMs, the expected loss computed using Sa-0.2s 

is near 3.5 times that using Saavg. 



 
59 

CHAPTER 4   

SURROGATE-ASSISTED SEISMIC DEMAND 

PREDICTION 

4.1  Introduction 

There exists uncertainty within structural systems and the environment, resulting in a 

stochastic response. It is essential to perform uncertainty quantification accurately and 

efficiently for seismic performance analysis. The Monte Carlo simulation (MCS) can 

be used for uncertainty quantification. However, the computational time of MCS can 

become unaffordable if the computational time of the original model is high. The 

surrogate model can be obtained from a training process using a relatively small size of 

data. It represents the complex relationship between the input and output and can be 

used to emulate the output of a physical model efficiently. 

Sparse polynomial chaos expansion (SPCE) as one type of surrogate model can be 

used to emulate the stochastic model output where the original model is 

computationally expensive. Considering the advantages of both efficient uncertainty 

quantification and global sensitivity analysis, this study focuses on the implementation 

of SPCE. Structural systems are usually associated with high-dimensional and 

probabilistic input. The number of candidate basis functions increases significantly 

with input dimension, resulting in a high computational burden for establishing SPCE. 

Previous applications regarding sparse PCE mainly focus on relatively simple 

structures and loading scenarios. Few studies implement sparse PCE to assess the 
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seismic performance of bridges considering multiple components. There is a need to 

implement and investigate the acceleration algorithm and sparse PCE within seismic 

performance analysis of bridges. 

In this study, acceleration techniques are integrated to formulate an algorithm for 

the efficient computation of sparse PCE (ASPCE). The integrated algorithm can 

improve the efficiency of the computational process compared with conventional 

greedy algorithms while ensuring satisfying predictive performance. Once the sparse 

PCE model is obtained, the uncertainty quantification can be performed efficiently. The 

sparse PCE from the acceleration algorithm is implemented to assess the vulnerability 

of multi-responses highway bridges under earthquake hazards. The performance of 

sparse PCE and acceleration algorithm for this engineering problem is investigated. 

These applications and investigations can provide new implications for the uncertainty 

quantification of highway bridges subjected to natural hazards. 

A schematic diagram illustrating the ASPCE for uncertainty quantification is 

presented in Figure 4.1. The probabilistic distributions of the input variables are 

identified. Through the experimental design, a set of input samples can be generated, 

and the corresponding outputs are computed by physical models. Then, the acceleration 

algorithm is performed to establish the sparse PCE model using the training data. Based 

on the developed sparse PCE., the seismic vulnerability can be efficiently computed. 

The uncertainty propagation from the input to the output is accomplished through the 

ASPCE. 
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Figure 4.1 Illustration of uncertainty quantification and global sensitivity 

analysis using ASPCE 

4.2  Polynomial Chaos Expansion (PCE) 

Let 𝓜 represent a computational model. The random input vector 𝑿 ∈ ℝ𝑀 of 𝓜 

is described by a joint PDF fX. The response of the system 𝑌 = 𝓜(𝑿) has a finite 

variance, the PCE of 𝓜(𝑿) is expressed as follows (Marelli & Sudret, 2015) 

𝑌 = 𝓜(𝑿) = ∑ 𝑐𝛼Ψ𝛼(𝑿)𝛼∈ℕ𝑀                         (4-1) 

where Ψ𝛼(𝑿) are the multivariate polynomials orthonormal with respect to fX; 𝛼 ∈

ℕ𝑀  is a set of indices mapping to the components of the Ψ𝛼(𝑿); and 𝑐𝛼  are the 

coefficients. 

The multivariate polynomials are computed as 
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Ψ𝛼(𝐱) = ∏ 𝜙𝛼𝑖

(𝑖)(𝑥𝑖)
𝑀
𝑖=1                           (4-2) 

where 𝜙𝛼𝑖

(𝑖)
 is the univariate orthogonal polynomial with respect to the ith variable in 

degree 𝛼𝑖. 

For practical purposes, original PCE is truncated to a finite sum and the truncated 

PCE is  

𝓜𝑷𝑪(𝑿) = ∑ 𝑐𝛼Ψ𝛼(𝑿)𝛼∈𝒜                        (4-3) 

where 𝒜 is the truncated set of multi-indices of multivariate polynomials. The PCE is 

truncated by setting the total degree of all the polynomials associated with the input 

variables smaller than or equal to p as (Ni et al., 2019) 

𝒜𝑀,𝑝 = {𝛼 ∈ ℕ𝑀: |𝛼| ≤ 𝑝}, 𝑐𝑎𝑟𝑑𝒜𝑀,𝑝 ≡ 𝑃 =
(𝑝+𝑀)!

𝑝!𝑀!
            (4-4) 

After the truncation, the coefficients can be computed using the least square 

solution as follows (Blatman & Sudret, 2010; Wan et al., 2020) 

𝑪̂ = (𝚽𝑇𝚽)−1𝚽𝑇𝒀, 
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           (4-5) 

where 𝑪̂  is the computed vector of coefficients; 𝒀  is the vector of the model 

evaluations at N input vectors 𝐱(1), … , 𝐱(𝑁); and Ψ𝑖(. ), 𝑖 = 0, . . . , 𝑐𝑎𝑟𝑑𝒜𝑀,𝑃 − 1 are 

the basis functions. 

Once the PCE is obtained, it could be used to compute the uncertainty features 

(e.g., PDF and statistic moments) of the output efficiently (Georgiou et al., 2012). The 
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sparse PCE models which exclude the insignificant terms perform better in some 

studies (Blatman & Sudret, 2010) and are introduced in the following section. 

4.3  Orthogonal Matching Pursuit for Sparse PCE 

Doostan and Owhadi (Doostan & Owhadi, 2011) presented a greedy algorithm 

orthogonal matching pursuit (OMP) for establishing sparse PCE. The OMP 

sequentially selects the basis functions and adds them to the approximation from the 

candidate set. For each iteration, the OMP selects a basis function which is most 

correlated with the residual from a dictionary set by solving (Salehi et al., 2017) 

ℎ(𝑘) = argmax𝑖∈ℂ𝑘

|〈𝝍𝒊,𝐫𝑘−1 〉|

‖𝝍𝑖‖2
                      (4-6) 

where Ψℎ(𝑘) is the selected basis function at iteration k; ℂ𝑘 is the updated dictionary 

at iteration k by excluding the basis function selected at iteration k – 1; 𝝍𝑖 represent 

the evaluations using basis function i; and 𝐫𝑘−1 represents the residual from the PCE 

associated with iteration k – 1. 

At each iteration, the coefficients for currently selected basis functions are 

computed based on least square regression. The residual 𝐫𝑘−1 is given by 

𝐫𝑘−1 = 𝚽𝑘−1𝑪𝑘−1 − 𝒀                         (4-7) 

where 𝚽𝑘−1  is the matrix containing the evaluations using the basis functions at 

iteration k – 1 and 𝑪𝑘−1 are the coefficients obtained at iteration k – 1. 

The selection procedures are repeated and stopped until ‖𝐫‖2  is below the 

tolerance. This tolerance is predetermined through v-fold cross-validation technique. 
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4.4  Acceleration Algorithm for Computation of 

Sparse Polynomial Chaos Expansion (ASPCE) 

To avoid the high computational burden associated with the conventional greedy 

algorithms for computation of sparse PCE, three techniques can be utilized within the 

acceleration algorithm (Baptista et al., 2019). 

Technique 1: Probabilistic reduction of basis function candidates 

A lemma presented by Smola and Schölkopf (Smola & Schölkopf, 2000) is applied 

herein to reduce the computational burden. Instead of selecting the basis functions from 

the full dictionary, it is possible to select the basis functions from the subsets of 

dictionary with satisfying performance. Let 𝛿1, . . . , 𝛿𝑛𝑠  represent ns independent 

variables which follow identical distribution. The cumulative distribution function 

(CDF) of them is expressed as 

𝕡(𝛿𝑖 ≤ τ) = 𝐹(τ)                           (4-8) 

The CDF of 𝛿: = 𝑚𝑎𝑥𝑖∈[𝑛𝑠]𝛿𝑖 is expressed as 

𝕡(𝛿 ≤ τ) = (𝐹(𝜏))𝑛𝑠                        (4-9) 

Based on 𝛿𝑖 ∶= (𝝍𝑖
𝑇𝐫𝑘)2/‖𝝍𝑖‖2

2, by evaluating ns basis functions, the selection 

process at one iteration can guarantee a basis function within top (1 − 𝐹(𝜏)) × 100% 

of the full candidate set with probability 𝜗. The number of evaluated basis functions is 

computed as 

𝑛𝑠 =
𝑙𝑜𝑔(1−𝜗)

𝑙𝑜𝑔 𝐹(𝜏)
                           (4-10) 
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Technique 2: QR decomposition and efficient updating 

The QR factorization based approach for solving the coefficients could satisfy 

efficiency requirement and is more numerically stable. The 𝚽𝑘 ∈ 𝔻𝑁×𝑘  is 

decomposed as 

𝚽𝑘 = 𝐐𝐑, 𝐐 ∈ 𝔻𝑁×𝑘, 𝐑 ∈ 𝔻𝑘×𝑘                   (4-11) 

where 𝔻𝑁×𝑘 represents the dimension of the matrix is 𝑁 × 𝑘; and 𝔻𝑘×𝑘 represents 

the dimension of the matrix is 𝑘 × 𝑘. 

After performing a new iteration, a new basis function is selected and the Gram-

Schmidt process with re-orthogonalization (Daniel et al., 1976) is used to update the 

QR factorization. Then, the coefficients of the PCE associated with current iteration are 

computed by solving 

𝐑𝑘𝑪𝑘 = (𝐐𝑘)𝑇𝒀                         (4-12) 

The conventional method for computing the residual requires to solve the PCE 

coefficients. By using the QR factorization, the residual can be updated efficiently 

without computing the coefficients as (Baptista et al., 2019) 

𝐫𝑘 = 𝐫𝑘−1−(𝐐𝑘(: , 𝑘))𝑇𝒀𝐐𝑘(: , 𝑘)                  (4-13) 

Technique 3: Implementation of early stopping criterion 

The trade-off between the complexity of the surrogate model and the number of 

experimental design points should be considered (Hariri-Ardebili & Sudret, 2020). By 

training a small number of points to obtain a complex sparse PCE model (e.g., a large 
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number of basis functions), the error of sparse PCE model using these trained points 

could be small. However, it may have large errors for the unseen data (e.g., generated 

new input data points). In this way, the surrogate model is over-fitted. 

To avoid the over-fitting problem, the leave-one-out (LOO) cross-validation is 

used for model selection. The LOO error is computed as follows (Blatman & Sudret, 

2010) 

𝑒𝓧[𝓜𝓧,𝑆] =
1

𝑁
∑ (𝓜(𝐱(𝒊)) − 𝓜𝓧\𝒊,𝑆(𝐱(𝒊)))

𝟐
𝑁
𝑖=1             (4-14) 

where 𝑒𝓧[𝓜𝓧,𝑆] is the LOO error; 𝓧 = 𝐱(1), … , 𝐱(𝑁)  represent N realizations of 

input vectors; 𝓜𝓧,𝑆 is the surrogate model S established using data set 𝓧; 𝓜(𝐱(𝒊)) 

is the evaluation at the input vector 𝐱(𝑖); 𝓜𝓧\𝒊,𝑆 is the surrogate model S trained by 

leaving the ith data out of 𝓧; and N is the number of samples. 

For the PCE based methods, it is not necessary to train N PCE models to compute 

the LOO error, alternatively, the LOO can be computed with one analysis as (Blatman 

& Sudret, 2010) 

𝑒𝓧[𝓜𝓧,𝑆] =
1

𝑁
∑ (

𝓜(𝐱(𝒊))−𝓜𝓧,𝑆(𝐱(𝒊))

1−ℎ𝑖

𝑁
𝑖=1 )2              (4-15) 

where hi is the ith term of the 𝑑𝑖𝑎𝑔(𝚽(𝚽𝑇𝚽)−1𝚽𝑇). 

The LOO error can also be expressed as residual error as (Golub & Van Loan, 

1996) 

𝑒𝓧[𝓜𝓧,𝑆,𝑘] =
1

𝑁
∑ (

𝐫𝑘,𝑖

𝜕𝐫𝑘,𝑖/𝜕𝒀𝑖

𝑁
𝑖=1 )2                 (4-16) 
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Based on QR decomposition, the LOO error can be rewritten as (Baptista et al., 

2019) 

𝑒𝓧[𝓜𝓧,𝑆,𝑘] =
1

𝑁
∑ (

𝐫𝑘,𝑖

𝟏−𝐐𝑘(𝒊,∶)𝐐𝑘(𝒊,∶)𝑇
𝑁
𝑖=1 )2                  (4-17) 

As illustrated, the LOO error can be efficiently computed through the QR 

decomposition at each iteration. The LOO error can be adopted as a model selection 

criterion to overcome the over-fitting problem. Traditionally, a greedy algorithm can 

be used to perform all possible iterations and the LOO errors are recorded at each 

iteration. The sparse PCE model associated with the minimum LOO error is chosen as 

the final model. In this study, the evolution of LOO error from iterations is investigated 

in case study parts. To avoid unnecessary iterations, the LOO error-based criterion for 

early stopping the algorithm is proposed.  

Overall, this study focuses on reducing the computational time of developing 

sparse PCE within high-dimensional engineering problems, by combining the three 

acceleration techniques: probabilistic reduction of basis function candidates; efficient 

updating using QR decomposition; and implementation of early stopping criterion. The 

three techniques accelerate the algorithm from different aspects, and each technique 

interacts with others. For instance, the leave-one-out error-based early stopping 

criterion is used to speed up the algorithm by avoiding unnecessary iterations, and QR 

decomposition is used to reduce the burden of computing this early stopping criterion. 

Within basis function selection, reduction of basis function candidates is adopted to 

reduce the computational burden, the residual, which is used in basis function selection, 
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can be efficiently updated by QR decomposition. Each of the three techniques interacts 

with others to jointly reduce the computational burden. 

The computational process of the integrated ASPCE is illustrated in Table 4.1. The 

evolution of LOO error from iterations is investigated, and the LOO error-based 

criterion for stopping the algorithm is proposed. At each iteration, a subset of basis 

function candidates is sampled from the whole dictionary. From the subset candidates, 

the algorithm finds the basis function which is most correlated with the current model 

residual, and the identified basis function is then added to the active set. The residual 

and LOO error are updated using currently selected basis functions based on QR 

decomposition. These procedures are repeated, and the algorithm is stopped once 

meeting the stopping criterion. The coefficients of the sparse PCE are finally solved 

after stopping the iteration and the sparse PCE is established. 

 

Table 4.1 Procedures of ASPCE 

Acceleration algorithm for computation of sparse PCE 

1. Initialization: determine the number of basis candidates in a subset; ℂ1 = ℂ; 𝕊0 = ∅; r0 

= Y; k = 1. 

2. While: stopping criterion is not satisfied. 

3. Probabilistic sampling of subset basis candidates ℂ𝑠 ⊆ ℂ𝑘. 

4. Find basis function Ψℎ(𝑘), so that ℎ(𝑘) = argmax𝑖∈ℂ𝑠

|〈𝝍𝒊,𝐫𝑘−1 〉|

‖𝝍𝑖‖2
. 

5. Remove selected basis from candidate set ℂ𝑘+1 = ℂ𝑘\ℎ(𝑘). 

6. Add selected basis to active set 𝕊𝑘 = 𝕊𝑘−1 ⋃ ℎ(𝑘). 

7. Compute residual rk using QR decomposition. 

8. Update LOO error. 

9. k = k+1. 

10. End. 

11. Compute coefficients of PCE by solving 𝐑𝑚𝑪 = (𝐐𝑚)𝑻𝒀. 
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4.5  Illustrative Example 

The computational procedures consist of three parts: initiation of training data; 

establishment of sparse PCE model; and post-processing of sparse PCE model. In the 

first stage, probabilistic distributions of the input variables are identified. A set of input 

samples is generated based on the experimental design, and the output parameters are 

computed by running the physical models. The sparse PCE model is obtained after 

performing the ASPCE. The uncertainty quantification can be accomplished efficiently. 

In this section, the developed approach is applied to a frame structure firstly. Then, 

the presented framework is applied to spatially distributed bridges under seismic 

hazards. Within the investigated two examples, the performance of ASPCE is compared 

with OMP and other surrogate models: regression tree (RT), support vector machine 

(SVM), and Gaussian process regression (GPR). The basic ideas of these models are 

briefly introduced in this section. 

The RT divides the data space into small sub-spaces and trains the models using 

each sub-space data. Since several data sub-spaces are produced by this approach, the 

interactions can be captured by the nonlinear model with several layers (Morgan & 

Sonquist, 1963; Rokach & Maimon, 2008). The SVM uses the kernels to convert the 

parameters into a high dimension space. The SVM model is expressed as the sum of 

weighted nonlinear functions and a constant parameter. The selection of kernel and 

nonlinear functions are very important (Ebad Sichani & Padgett, 2019). The GPR 
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surrogate model is regarded as nonparametric kernel-based probabilistic models 

(Rasmussen & Williams, 2006). The GPR model describes the outputs by explicit basis 

functions and latent variables from a Gaussian process. The basis functions map the 

input parameters to high dimension space. 

 Case 1: Uncertainty Quantification of a Frame Structure 

A three-span three-story frame structure under lateral loads is selected as the example. 

The sketch of the structure is illustrated in Figure 4.2, and the uncertain parameters 

considered are listed in Table 4.2. Three different lateral loads are applied to the left 

part of the structure. The displacement at the top right corner is considered as the 

response of interest. 

 

Figure 4.2 Investigated frame structure subjected to lateral loads (unit: m, the 

numbers indicate different elements and are mapped to the parameters in Table 4.2) 
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Table 4.2 Parameters used within the frame structure 

Symbol Parameter Number Units 
Distribution 

type 
 σ 

L1 Load 1 1 N Lognormal 4.89 × 105 1.47× 105 

L2 Load 2 2 N Lognormal 4× 105 1.6× 105 

L3 Load 3 3 N Lognormal 2× 105 8× 104 

E13-21 

Young’s modulus 

(material property 

of elements 13-21) 

4 N/m2 Lognormal 1.98× 1011 1.74× 1010 

E1-12 

Young’s modulus 

(material property 

of elements 1-12) 

5 N/m2 Lognormal 1.99× 1011 1.75× 1010 

A1-3 

Cross-sectional 

area of elements 1-

3 

6 m2 Lognormal 0.0488 0.0087 

A4-9 

Cross-sectional 

area of elements 4-

9 

7 m2 Lognormal 0.0590 0.0105 

A10-12 

Cross-sectional 

area of elements 

10-12 

8 m2 Lognormal 0.0476 0.0085 

A13-18 

Cross-sectional 

area of elements 

13-18 

9 m2 Lognormal 0.0224 0.004 

A19-21 

Cross-sectional 

area of elements 

19-21 

10 m2 Lognormal 0.0130 0.0023 

I1-3 
Moment of inertia 

of elements 1-3 
11 m4 Lognormal 0.0014 1.86× 10-4 

I4-9 
Moment of inertia 

of elements 4-9 
12 m4 Lognormal 0.0018 2.40× 10-4 

I10-12 
Moment of inertia 

of elements 10-12 
13 m4 Lognormal 0.0015 2.00× 10-4 

I13-15 
Moment of inertia 

of elements 13-15 
14 m4 Lognormal 0.0025 3.33× 10-4 

I16-18 
Moment of inertia 

of elements 16-18 
15 m4 Lognormal 0.0021 2.80× 10-4 

I19-21 
Moment of inertia 

of elements 19-21 
16 m4 Lognormal 7.617× 10-4 1.01× 10-4 

Mf Mass factor 17 - Uniform 1 0.058 

Note: μ = mean value and σ = standard deviation. 
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The performance of surrogate models under different sample sizes is investigated. 

Based on the statistic parameters in Table 4.2, 8 sets of frame structure and load 

realizations (with sample sizes of 100, 200, 400, 600, 800, 1000, 1200, and 1400) are 

generated using Latin hypercube sampling technique (Ayyub & Lai, 1989). The 

displacement at the top right corner can be computed using finite element model in 

OpenSEES. The 8 sets of input and output training data are obtained. As discussed 

previously, the LOO error is considered as the stopping criterion in ASPCE. In this 

study, the evolution of LOO error is investigated and an appropriate occasion for 

stopping the algorithm is proposed. The LOO errors changing with iterations are 

presented in Figure 4.3 The results show that the evolution of LOO error is convex and 

smooth for the investigated case. To avoid the possible local minima of LOO error, the 

proposed early stopping criterion is to stop the algorithm when the LOO error 

continuously increases for ten iterations. 

 

Figure 4.3 The evolution of the LOO error 

The surrogate models are trained using ASPCE, OMP, SVM, RT, and GPR under 

the 8 sets of training data. The training time of OMP and ASPCE is presented in Figure 
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4.4. The training time of OMP increases significantly with the total degree of 

polynomials while the training time of ASPCE is independent with the total degree of 

polynomials. The ASPCE seems to be more efficient than OMP under high total degree 

of polynomials. The superiority of ASPCE in terms of efficiency is further 

demonstrated in the following example. 

 

Figure 4.4 Training time of OMP and ASPCE associated with the investigated frame 

structure 

The brute-force MCS is used to validate the results obtained from surrogate 

models (Yang et al., 2019). The statistic moments, PDF, and reliability indices 

computed from MCS serve as references to calculate the relative errors. Once the sparse 

PCE model is obtained, the statistic moments are computed efficiently. The relative 

errors in mean and standard deviation of the five surrogate models under different 

sample sizes are presented in Figure 4.5. With respect to predictive performance in 

mean, the ASPCE, OMP, and GPR are identified as suitable surrogate models. The 

relative errors in mean from these three models converge after the sample size of 400 

and maintain at relatively lower level after convergence. For the relative errors in 
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standard deviation, the sparse PCE based methods ASPCE and OMP outperform other 

models under all sample sizes, while the GPR produces higher relative errors. 

 

Figure 4.5 Relative errors in: (a) mean and (b) standard deviation under different 

sample sizes 

The relative errors in reliability indices for two different limit thresholds (e.g., 3 

cm and 5 cm) are illustrated in Figure 4.6. For the case of limit threshold 3 cm, the 

errors from ASPCE, OMP, and GPR converge after the sample size of 200 and these 

three models stand out among the five. With respect to the limit threshold of 5 cm, the 

convergence sample size for ASPCE and OMP is 400. These two models have 

relatively lower errors than others in this scenario. 
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Figure 4.6 Relative errors of reliability indices under the limit thresholds of (a) 3 cm 

and (b) 5 cm, respectively. 

The PDFs of the displacement obtained by ASPCE, GPR, and MCS are shown in 

Figure 4.7. The PDF from ASPCE matches perfectly with MCS. For the GPR, the errors 

can be observed around the peak and tail of PDF curve.  

 

Figure 4.7 Comparisons of the PDFs computed by MCS and surrogate models of (a) 

ASPCE and (b) GPR. 

The confidence interval provides information on the confidence of estimated 

statistical results in consideration of the uncertainties. The ASPCE derived 95% 
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confidence intervals for the mean of displacement and standard deviation of 

displacement are computed. The lower bound and upper bound for mean value are 

2.797×10-2 and 2.802×10-2, respectively. The lower bound and upper bound for 

standard deviation value are 7.346×10-3 and 7.413×10-3, respectively. The confidence 

intervals are narrow for the statistical moments and reliability indices, indicating the 

computational confidence and stability of ASPCE. 

The computational time of uncertainty quantification can be saved significantly by 

using the ASPCE. The data from running 400 finite element models (FEMs) is used in 

ASPCE, while the data from running 105 FEMs is used in MCS. The total 

computational time of MCS is 6 hours and computational time ASPCE is 2 minutes. 

To sum up, the sparse PCE based methods ASPCE and OMP have satisfying 

predictive performance compared with other investigated surrogate models. The 

training time of ASPCE is less compared with OMP under high degree cases. By using 

ASPCE, the total time of uncertainty quantification can be reduced significantly 

compared with conventional MCS, in the meanwhile, this method provides satisfying 

accuracy. 

 Case 2: Seismic Vulnerability Analysis of Spatially Distributed 

Bridges 

The spatially distributed RC bridges is selected for investigation. In regional risk 

assessment, the bridges distributed within a region could have different material and 

geometric parameters. Conventionally, it is impractical to develop the fragility curves 
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for each specific structure in a region, as the computational time is extensive. 

Developing bridge class level fragility, by incorporating material and geometric 

uncertainties within a class, can be one possible solution to address this challenge 

(Mangalathu et al., 2016). The bridge class level fragility is used to describe the damage 

probabilities for the bridges within a class under earthquakes. To facilitate the regional 

risk assessment, the bridge class level fragility should be developed and incorporate the 

uncertainties from hazards, material and geometric parameters (Mangalathu et al., 2016; 

Mangalathu, Jeon, et al., 2018). Thus, the uncertainties associated with material and 

geometric parameters should be considered in training of surrogate model (Jeon et al., 

2019). The probabilistic parameters of these bridges are summarized in Table 4.3. 

Based on the probabilistic distributions of the bridge parameters, the bridge realizations 

are sampled using Latin hypercube sampling technique (Ayyub & Lai, 1989). The finite 

element models of the bridge realizations are established using the software OpenSEES 

(Dong et al., 2013; Li, Dong, & Qian, 2020; Qian & Dong, 2020). For each bridge 

sample, one ground motion from (Baker et al., 2011) is randomly selected and coupled 

with this bridge sample. So that the input data including bridge samples and ground 

motions are obtained. The number of the ground motions and that of the Latin 

hypercube sampling structures are identical. The ground motions used for coupling with 

bridge samples are associated with different intensities and characteristics. Thus, these 

input samples incorporate the uncertainties associated with bridge geometry, material, 

and ground motions. A set of nonlinear time history analyses using the input samples 

is performed to obtain the training data. The seismic demands of different components 
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can be computed using the developed finite element model (Giouvanidis & Dong, 2020; 

Zheng & Dong, 2019). 

 

Table 4.3 Parameters used within the bridges 

Parameters Number Units 
Distribution 

type 
 σ Ref. 

Concrete 

compressive 

strength 

1 MPa Normal 29.03 3.59 

(Mangalathu, 

Jeon, et al., 

2018) 

Reinforcing 

steel yield 

strength 

2 MPa Lognormal 465.0 37.30 

(Mangalathu, 

Jeon, et al., 

2018) 

Span length 3 mm Lognormal 31775 8738 

(Mangalathu, 

Jeon, et al., 

2018) 

Deck width 4 mm Lognormal 11970 2418 

(Mangalathu, 

Jeon, et al., 

2018) 

Column height 5 mm Lognormal 6625 865 

(Mangalathu, 

Jeon, et al., 

2018) 

Abutment 

backwall height 
6 mm Lognormal 2186 441 

(Mangalathu, 

Jeon, et al., 

2018) 

Bearing 

coefficient of 

friction 

7 - Normal 0.3 0.1 

(Mangalathu, 

Jeon, et al., 

2018) 

Strength of a 

composite of 

two dowels 

8 kN Lognormal 116 9.28 
(Nielson, 

2005) 

Abutment-deck 

gap 
9 mm Lognormal 23.5 12.5 

(Mangalathu, 

Jeon, et al., 

2018) 

Backfill initial 

stiffness at the 

benchmark 

backwall height 

10 
N/m/

cm 
Lognormal 384 138 

(Xie et al., 

2019) 

Backfill ultimate 

capacity at the 
11 

kN/

m 
Lognormal 475 111 

(Xie et al., 

2019) 
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benchmark 

backwall height 

Damping 12  Normal 0.045 0.0125 

(Mangalathu, 

Jeon, et al., 

2018) 

Foundation 

translational 

spring 

stiffnesses 

13 
N/m

m 
normal 140101 105076 

(Mangalathu, 

Jeon, et al., 

2018) 

Shear modulus 

of elastomeric 

pad 

14 MPa Uniform 1.365 0.407 
(Nielson, 

2005) 

Mass factor 15 - Uniform 1 0.058 
(Nielson, 

2005) 

Longitudinal 

reinforcement 

ratio 

16 (%) Uniform 2.25 0.52 

(Mangalathu, 

Jeon, et al., 

2018) 

Note: μ = mean value and σ = standard deviation. 

The training for the surrogate model is carried out once using the data consisting 

of ground motions with different intensities, structure samples, and seismic demands 

from finite element models. The uncertainties associated with structures and ground 

motions are considered in uncertainty quantification. To further testify the applicability 

of the proposed LOO error-based stopping criterion, the evolution of LOO error is 

investigated in this case. To the authors’ best knowledge, the evolution of LOO error 

on bridge seismic demands has not been investigated in previous studies. The results 

show that the evolution of LOO error of ASPCE is convex and smooth, and proposed 

LOO error-based stopping criterion is still applicable. 

The predictive performance of surrogate model can be evaluated in terms of the 

mean squared error (MSE) on an independent test sample set (Mangalathu, Heo, et al., 

2018). The MSEs of the investigated models on a test sample set are computed and 
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listed in Figure 4.8. The effects of the training sample sizes on predictive performance 

are also investigated. As indicated, the sparse PCE based methods (e.g., ASPCE and 

OMP) have satisfying performance for all considered sample sizes. The ASPCE 

provides similar predictive performance with OMP. 

 

 

Figure 4.8 MSE of the seismic demands on a test sample set under different training 

sample sizes 

The training time for each model is calculated as the sum of the training time for 

all the structural components. The training time for two sparse PCE based methods with 

increasing total degree of polynomials is illustrated in Figure 4.9. The training time of 

OMP increases significantly with total degree of polynomials, while the training time 

of ASPCE is negligible and independent with total degree of polynomials. The 

improved efficiency of the ASPCE can be interpreted through the three speeding-up 

techniques. As illustrated in Figure 4.10, the number of candidate basis functions 

increases significantly with total degree of polynomials and input dimensions. With the 

implementation of probabilistic reduction of basis function candidates, the ASPCE 

would evaluate a subset of polynomial candidates, while the OMP uses the whole 
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dictionary. Additionally, the number of evaluated candidates is constant at all degrees 

and input dimensions in ASPCE. This consistency ensures the training time of ASPCE 

is independent with the total degree of polynomials and input dimensions. This 

speeding-up technique ensures that the ASPCE can be performed for high degree and 

high dimension problems with negligible computational cost. With the implementation 

of QR decomposition, the residual and LOO error can be efficiently updated at each 

iteration without solving the PCE coefficients, while the OMP relies on solving the 

coefficients at each iteration. The implementation of stopping criteria aids the ASPCE 

to avoid unnecessary iterations and early stop at an appropriate occasion. The stopping 

of OMP needs the determination of an optimal error tolerance which is computed by 

cross-validation, and this process induces additional computational time. 

 

Figure 4.9 Training time of OMP and ASPCE 
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Figure 4.10 Cardinality of the PCE dictionary 

To summarize the performance of the investigated surrogate models, the ASPCE 

has satisfying predictive ability and computational cost. The implemented three 

speeding-up techniques can effectively reduce the computational cost and ensure the 

satisfying predictive performance. 

The seismic vulnerability analysis is performed using the developed surrogate 

model. The probabilistic input vector is generated from corresponding distributions. 

The surrogate models are used to compute the probabilistic demands. The probabilistic 

demands can be computed in seconds using the surrogate models, while the 

computational cost is large using the original physical models. The probabilistic 

capacity of a component can be computed based on corresponding distribution. Then, 

the seismic vulnerability of the spatially distributed bridges can be computed as 

indicated in Figure 4.11. 
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Figure 4.11 Seismic vulnerability of the spatially distributed bridges 

4.6  Summary 

This study presents a framework for uncertainty quantification of structural systems 

using sparse PCE and acceleration algorithm. Three techniques including probabilistic 

reduction of basis function candidates, QR decomposition, and early stopping criterion 

are combined to formulate an integrated acceleration algorithm for the computation of 

sparse PCE (ASPCE), and the computational burden of developing sparse PCE within 

high-dimensional engineering problems can be reduced.  

Two case studies are conducted to illustrate the applicability, accuracy, and 

efficiency of the proposed approach. The approach is verified using MCS through a 

simple frame structure example. Then, the approach is applied to complex bridge 

structures. In general, the sparse PCE-based methods ASPCE and OMP have satisfying 

predictive performance compared with other investigated surrogate models. The 

implemented three speeding-up techniques in ASPCE can effectively reduce the 

computational burden compared with the greedy algorithm OMP. The training time of 

OMP increases significantly with the total degree of polynomials and input dimensions. 
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In contrast, the training time of ASPCE is independent with input dimension and the 

total degree of polynomials, it can be used for high-dimensional problems with reduced 

computational cost. The presented approaches can aid the uncertainty quantification 

and regional level performance assessment of spatially distributed bridges in an 

efficient manner. 

One type of bridge is considered in this study. The sparse PCE can be applied to 

other types of bridges. The general procedures are summarized as follows. Based on 

the bridge inventory data, the probabilistic distribution of bridge input can be 

determined. From experimental design, bridge realizations can be generated. After 

performing the physical model, the training data including input and output can be 

obtained. The sparse PCE can be developed by performing the algorithm. By post-

processing the sparse PCE model, uncertainty quantification can be achieved. 
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CHAPTER 5   

SURROGATE-ASSISTED TWO-STAGE MULTI-

CRITERIA GLOBAL SENSITIVITY ANALYSIS 

5.1  Introduction 

Due to the existence of uncertainty associated with the system and environment, 

decision-makers need to refine the database (e.g., data acquisition, investigation, and 

complexity reduction) for confident regional risk assessment. The global sensitivity 

analysis assessing the effects of the variations of input variables on the output can be 

used to facilitate uncertainty treatment. 

The Monte Carlo method (Sobol, 2001) is a traditionally used method for global 

sensitivity analysis. A large number of simulations are required resulting in high 

computational cost. Besides the advantage of sparse PCE in efficient uncertainty 

quantification as introduced in chapter 4, global sensitivity analysis can be performed 

efficiently using the developed sparse PCE model (Sudret, 2008). The global sensitivity 

indices associated with different input parameters can be computed efficiently by post-

processing the PCE coefficients with lower computational costs.  

Traditional PCE-based global sensitivity analysis only assesses the sensitivity to 

an individual structural performance criterion. Assessing the global sensitivity 

considering multiple criteria is challenging as the sensitive parameters may not be 

consistent for different performance criteria. Additionally, there is not a PCE-based 

sensitivity analysis approach that can be adopted directly for assessing the global 

javascript:;
javascript:;
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sensitivity incorporating multiple structural performance criteria. To address this issue, 

a two-stage multi-criteria global sensitivity analysis algorithm is proposed herein by 

coupling the ASPCE (developed in chapter 4) and TOPSIS. A holistic global sensitivity 

index is proposed to identify the sensitive parameters incorporating multiple 

performance criteria. To illustrate the efficiency, accuracy, and applicability of the 

proposed approach, two illustrative cases are presented. 

5.2  Global Sensitivity Analysis for the Individual 

Output Parameter 

The contribution of uncertain input variables to the output variance can be quantified 

using global sensitivity analysis (Sudret, 2008). Traditionally, the global sensitivity 

index is computed by MCS with high computational cost especially for some complex 

models. By post-processing the PCE coefficients, the global sensitivity index can be 

computed efficiently. Let ℋ𝑖1,...,𝑖𝑠
 represent the set from 𝛼 ∈ 𝒜  where only the 

indices {𝑖1, . . . , 𝑖𝑠} are non-zero, the ℋ𝑖1,...,𝑖𝑠
 is expressed as 

ℋ𝑖1,...,𝑖𝑠
= {𝛼 ∈ 𝒜: 𝛼𝑣 = 0 ⟺ 𝑣 ∉ (𝑖1, . . . , 𝑖𝑠), ∀ 𝑣 = 1, . . . , 𝑀}        (5-1) 

The PCE based sensitivity indices are derived as (Blatman & Sudret, 2010) 

𝑆𝑖1,...,𝑖𝑠

𝒜 =
∑ 𝑐𝛼

2
𝛼∈ℋ𝑖1,...,𝑖𝑠

𝐷𝒜
, 𝐷𝒜 = ∑ 𝑐𝛼

2
𝛼∈𝒜\{0}                (5-2) 

The total sensitivity indices are computed as 

𝑆𝑖
𝑇,𝒜 = 𝑆𝑖

𝒜 + ∑ 𝑆𝑗,𝑖
𝒜 + ∑ 𝑆𝑗,𝑘,𝑖

𝒜 + ⋯ + 𝑆1,...,𝑀
𝒜

𝑗<𝑘<𝑖𝑗<𝑖            (5-3) 

The Eq. 5-3 can be rewritten as 
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𝑆𝑖
𝑇,𝒜 =

∑ 𝑐𝛼
2

𝛼∈ℊ𝑖

𝐷𝒜
                           (5-4) 

ℊ𝑖 = {𝛼 ∈ ℕ𝑀: 0 ≤ |𝛼| ≤ 𝑝, 𝛼 𝑖 ≠ 0}                  (5-5) 

5.3  Holistic Global Sensitivity Analysis 

The conventional global sensitivity analysis reveals the effects of the input variable on 

one single output parameter. When multiple output parameters existing in a system are 

of interest, determining the overall sensitivity of the input with respect to multiple 

output parameters becomes a problem. In this study, the global sensitivity indices 

associated with different performance criteria are incorporated to compute the holistic 

global sensitivity index. The TOPSIS (Hwang & Yoon, 1981), a multi-criteria decision 

making technique, is extended herein to compute the holistic global sensitivity index. 

In this way, the overall sensitivity of input parameters considering multiple criteria 

could be assessed. The following part introduces the basic procedures of computing the 

holistic global sensitivity index. The global sensitivity indices associated with all the 

output parameters are formulated in a sensitivity index matrix S as 

1,1 1,

,1 ,

c

i i c

n

n n n

S S

S S

 
 

=  
 
 

S                          (5-6) 

where Si,j is the global sensitivity index of the ith input parameter with respect to the jth 

performance criterion; nc is the number of performance criteria; and ni is the number of 

input parameters. The global sensitivity index used in Eq. 5-6 could be first-order or 

total order. The total order global sensitivity index describes the contribution of an input 

parameter to output variance considering the effects of its interaction with other input 
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parameters (Blatman & Sudret, 2010; Palar et al., 2018). The choice of first-order or 

total order depends on the concerns and requirements of the decision makers. If the 

decision makers desire the information including the interaction among different 

variables, the total order global sensitivity index can be chosen. If the isolated impact 

of the input variable is of concern, the first-order global sensitivity index can be chosen. 

If total global sensitivity index is used in Eq. 5-6, the interaction effects among different 

variables are incorporated in the decision-making process. 

Then, the sensitivity index matrix is normalized as 

1,1 1,

,1 ,

c

i i c

n

n n n

S S

S S

 
 
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 
 

S , ,

,

2

,

1

i

i j

i j
n

k j
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S

S
=

=



                    (5-7) 

where 𝐒̅ is the normalized sensitivity index matrix. 

Different performance criteria could result in different importance to the system 

safety. The different preferences of performance criteria should be incorporated within 

the holistic global sensitivity index by implementing weighting factor. The weighting 

factor associated with different performance criteria determined by the decision maker 

is applied to the normalized sensitivity index matrix as 

1,1 1,

,1 ,

ˆ ˆ

ˆ

ˆ ˆ

c

i i c

n

n n n

S S

S S

 
 

=  
 
 
 

S , ˆ
ij j ijS w S=                     (5-8) 

where Ŝ  donates the weighted and normalized sensitivity index matrix and wj 

represents the weighting factor for the jth performance criterion. 
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The ideal sensitivity solution is obtained by extracting the maximum values of 

sensitivity indices associated with all input parameters. The negative-ideal solution is 

obtained conversely. These two sensitivity solutions are expressed as 

   1
ˆ ˆ ˆ,..., (max ), 1,..., ,

cn ij iS S S S i n j J+

+ += = =               (5-9) 

   1 ,
ˆ ˆ ˆ,..., (min ), 1,..., ,

cn i j iS S S S i n j J−

− −= = =              (5-10) 

The distance of the sensitivity associated with each input variable to the ideal 

solution and negative-ideal solution can be calculated. The holistic global sensitivity 

index is computed based on the relative closeness as 
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 
               (5-11) 

where hsi is the holistic global sensitivity index for the input valuable i. 

5.4  Framework of Two-stage Multi-criteria Global 

Sensitivity Analysis 

The problem can be formulated as a multi-criteria decision-making problem when there 

exist the following conditions: several alternatives serve as the comparable components; 

multiple criteria are used to describe the status of each alternative; and multiple 

objectives need to be satisfied. By considering multiple conflicting criteria, there may 

not exist a solution that is satisfying over all criteria. A compromise solution 

incorporating the trade-off consideration among multiple conflicting criteria can be 

obtained by using multi-criteria decision making techniques (Tzeng & Huang, 2011). 
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For an engineering system consisting of multiple outputs, different outputs may 

be associated with different sensitive parameters. There may not exist one input that is 

most sensitive to all outputs. The trade-off among multiple outputs should be 

considered. In this regard, sensitivity ranking of inputs considering multiple outputs can 

be formulated as a compromise multi-criteria decision-making problem. Each input is 

considered as an alternative. For each input, the global sensitivity indices with respect 

to multiple outputs can be quantified and they are considered as multiple ranking 

criteria. The objective is to determine the sensitivity raking of inputs considering the 

global sensitivity indices with respect to multiple outputs. TOPSIS, a robust 

compromise decision making approach, is extended herein to solve this multi-criteria 

decision-making problem. 

The basic idea of TOPSIS is to rank the alternatives based on distance, where the 

preferential alternative should have a long distance to the negative-ideal solution and a 

short distance to the ideal solution. Herein, the negative-ideal solution and ideal 

solution are represented as the ideal insensitive solution and ideal sensitive solution, 

respectively. The global sensitivity index matrix is used as a decision matrix in this 

study. Specifically, Eq. 5-11 is used to compute relative closeness as the last step in 

TOPSIS, and the ranking of alternatives is determined based on this index (Hwang & 

Yoon, 1981; Tzeng & Huang, 2011). The numerator in Eq. 5-11 represents the distance 

of an alternative to the negative-ideal solution, and the denominator in Eq. 5-11 

represents the sum of the distance of an alternative to the negative-ideal solution and 

ideal solution (Hwang & Yoon, 1981; Tzeng & Huang, 2011). A preferential alternative 
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should have a large value of relative closeness computed in Eq. 5-11. In the decision 

making of ranking inputs, a sensitive input considering multiple outputs should have a 

large value of relative closeness (long distance to the ideal insensitive solution and short 

distance to the ideal sensitive solution). Therefore, the holistic global sensitivity index 

is proposed based on Eq. 5-11 in this study. The sensitivity ranking of input parameters 

considering multiple outputs can be determined based on the proposed holistic global 

sensitivity index. The proposed holistic global sensitivity index can be regarded as a 

holistic measure and utilized to identify the sensitive input parameters considering 

multiple performance criteria. 

The value of holistic global sensitivity index depends on many factors such as the 

global sensitivity indices with respect to all outputs, the importance of different outputs, 

and the trade-off consideration. This expression shows one of the advantages of the 

proposed approach, the different importance of outputs and the trade-off can be flexibly 

considered within the sensitive parameter identification process in TOPSIS. In real 

engineering problems, different outputs could be associated with different 

considerations of importance, the importance of outputs represented by weighting 

factors in TOPSIS can be determined by judgement among experts.  

The holistic global sensitivity index can be used to aid the decision makers to 

refine the database (e.g., data acquisition, investigation, and complexity reduction) for 

confident regional risk assessment. For instance, more efforts and resources can be 

spent on collecting and investigating holistic sensitive parameters. This index can also 

be used for the screening of holistic sensitive parameters considering the trade-off 
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among multiple outputs. Based on the proposed holistic global sensitivity index, the 

sensitive and insensitive input parameters considering the trade-off among multiple 

outputs can be identified. By constraining the number of considered sensitive 

parameters, the top holistic sensitive parameters can be selected based on holistic global 

sensitivity index. In another way, decision makers could also determine the threshold 

of holistic global sensitivity index based on their requirement, and the parameters 

associated with global sensitivity indices exceeding the threshold can be identified as 

holistic sensitive parameters. 

Overall, the ASPCE and TOPSIS coupled two-stage multi-criteria global 

sensitivity analysis algorithm is proposed to incorporate multiple performance criteria. 

The global sensitivity is first assessed for individual performance criterion. The global 

sensitivity indices associated with different performance outputs are then considered as 

the sensitivity criteria and formulated as a sensitivity matrix. TOPSIS is used to 

incorporate these sensitivity criteria to compute the holistic global sensitivity indices. 

The detailed algorithm is illustrated in Table 5.1. Both the global sensitivity indices and 

holistic global sensitivity indices provide information for rational treatment of the 

uncertainty within input parameters. 
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Table 5.1 Procedures of two-stage multi-criteria global sensitivity analysis 

Two-stage multi-criteria global sensitivity analysis algorithm 

Stage 1: Global sensitivity analysis considering individual performance criterion 

1 Determine ni uncertain variables and corresponding probabilistic distributions. 

2 Conduct experimental design. 

3 for performance criterion number cn = 1:nc 

4 Formulate sparse PCE model for performance criterion cn using ASPCE. 

5 Computed global sensitivity indices of ni variables with respect to the performance criterion 

cn by post-processing the PCE coefficients. 

6 End 

Stage 2: Holistic global sensitivity analysis considering multiple performance criteria 

7 Formulate sensitivity index matrix S. 

8 Compote normalized sensitivity matrix NS. 

9 Determine the weighting factors of all performance criteria. 

10 Compote normalized and weighted sensitivity matrix VS. 

11 Extract ideal and negative-deal sensitivity solutions. 

12 Compute the holistic global sensitivity indices based on relative closeness 

 

5.5  Illustrative Example 

In connection with the approach in chapter 4, the proposed framework of uncertainty 

quantification and multi-criteria global sensitivity analysis using ASPCE is illustrated 

in Figure 5.1. The computational procedures consist of three parts: initiation of training 

data; establishment of sparse PCE model; and post-processing of sparse PCE model. In 

the first stage, probabilistic distributions of the input variables are identified. A set of 

input samples is generated based on the experimental design, and the output parameters 

are computed by running the physical models. The sparse PCE model is obtained after 

performing the ASPCE. The uncertainty quantification and multi-criteria global 

sensitivity analysis can be accomplished efficiently. The ASPCE enable uncertainty 
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quantification is introduced in chapter 4. By using the same cases in chapter 4, the 

ASPCE enabled global sensitivity analysis is illustrated in this section. 

 

 

Figure 5.1 Framework of uncertainty quantification and global sensitivity analysis 

 

 Case 1: Global Sensitivity Analysis of a Frame Structure 

The detailed description of this case is presented in chapter 4. In addition to the 

uncertainty quantification, PCE can also aid efficient global sensitivity analysis. Instead 

of conducting time-consuming MCS in the traditional method, the global sensitivity 

indices can be computed analytically by post-processing the PCE coefficients. The 
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results are compared with those from MCS in Figure 5-2. The results show that the 

ASPCE-derived sensitivity indices agree well with MCS-derived reference values. 

 

Figure 5.2 Sensitivity indices with respect to the frame displacement 

The computational time of sensitivity analysis can be saved significantly by using 

the ASPCE. The 400 finite element model evaluations are used in ASPCE, while a total 

of 𝑁𝑀𝐶𝑆(𝑀 + 2) = 105 × (17 + 2) = 1.9 × 106  finite element model evaluations 

are used in MCS for sensitivity analysis (Tarantola et al., 2012), where NMCS is the 

sample size of MCS. Within sensitivity analysis, the total computational time of MCS 

is 116 hours and the total computational time ASPCE 2 minutes. 

 Case 2: Multi-criteria Global Sensitivity Analysis of Spatially 

Distributed Bridges Under Earthquakes 

The detailed description of this case is presented in chapter 4. The seismic demand 

surrogate models are obtained after performing the training algorithm. The multi-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Input parameters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
S
e

n
si

ti
v

it
y

in
d
ex

MCS
ASPCE



 
96 

criteria global sensitivity analysis is performed for the bridges. The seismic fragility 

using the information from multi-criteria global sensitivity analysis is computed. 

The PCE based global sensitivity indices of the input parameters with respect to 

multiple demand parameters are presented in Figure 5.3. For all the structural demands, 

PGA is found to be the most sensitive parameter. Within the bridge parameters, the 

column height is the most sensitive parameter to column demand. With respect to 

bearing longitudinal demand, the shear modulus of elastomeric pad has the greatest 

influence. Apparently, the significant bridge parameters vary from component to 

component, and the similar observation was reported in (Jeon et al., 2019). The 

significant bridge parameters are not consistent for the seismic demands associated with 

all components. Based on sensitivity indices associated with individual seismic demand, 

determination of significant bridge parameters to the bridge system is challenging. 

Using the proposed multi-criteria global sensitivity analysis algorithm, the overall 

global sensitivity considering multiple structural performance criteria is assessed. 

Additionally, the different importance of structural performance criteria could be 

incorporated into the sensitivity analysis process by using weighting factor. Given 

different preferences of the structural performance criteria by the decision maker, the 

sensitivity results can be updated. The uncertainties associated with the weighting 

factor could also be incorporated in TOPSIS for multi-criteria global sensitivity 

analysis (Qian & Dong, 2020). The holistic global sensitivity indices of the bridge 

parameters are computed and presented in Figure 5.4. The top five most sensitive 

parameters of bridge input identified by multi-criteria global sensitivity analysis are 
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deck width, span length, shear modulus of elastomeric pad, column height, and concrete 

compressive strength. The proposed holistic global sensitivity indices aid decision 

maker to identify the sensitive parameters to the whole bridge system and the ranking 

of the sensitive parameters can be determined. 

 

Figure 5.3 Sensitivity indices of the input parameters (Column: column demand; 

Bearing lon.: bearing longitudinal demand; Bearing tran.: bearing transverse demand; 

Abutment act: abutment active demand; Abutment pas.: abutment passive demand; 

and Abutment tran.: abutment transverse demand) 
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Figure 5.4 Holistic global sensitivity indices 

To demonstrate the usage and decision making of the proposed holistic sensitivity 

index, the bridge system fragility curves computed by using different sensitive 

parameters are presented in Figure 5.5. By using the top five holistic sensitive input 

parameters identified by the proposed approach, the computed fragility is close to the 

one computed by using all inputs. While by using insensitive parameters identified by 

the proposed approach (the last five sensitive input parameters), the computed fragility 

deviates from the one computed by using all inputs. 
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Figure 5.5 Bridge system vulnerability computed using different sensitive parameters 

for slight, moderate, extensive, and complete damage states 

For MCS, a total of 𝑁𝑀𝐶𝑆(𝑀 + 2) = 105 × (17 + 2) = 1.9 × 106  FEM 

evaluations are required resulting in 6597 days of computational time. In this study, a 

total of 320 FEM evaluations are used for ASPCE to compute the global sensitivity, the 

time of running FEM is only 27 hours. The computational time of global sensitivity 

analysis for the spatially distributed bridges can be reduced significantly by using 

ASPCE. 

5.6  Summary 

A two-stage multi-criteria global sensitivity analysis algorithm is proposed in this 

chapter. The global sensitivity indices are first computed for the response associated 

with individual performance criteria. Then, holistic global sensitivity indices are 

computed by employing the TOPSIS. The proposed holistic global sensitivity index 

incorporates the trade-off among the multiple performance criteria and serves as a 

holistic measure. The ranking of the sensitive parameters considering multiple 
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structural performance criteria can be determined by the proposed holistic global 

sensitivity index. 

Two case studies are conducted to illustrate the applicability, accuracy, and 

efficiency of the proposed approach. The approach is verified using MCS through a 

simple frame structure example. The ASPCE provides an accurate estimation of the 

global sensitivity index. Then, the approach is applied to complex bridge structures. 

The holistic global sensitivity indices indicating the overall sensitive level to the system 

are effectively computed by incorporating multiple criteria. By using the top five 

holistic sensitive input parameters identified by the multi-criteria global sensitivity 

analysis, the computed fragility is close to the one computed by using all inputs. These 

results demonstrate the applicability and effectiveness of the proposed multi-criteria 

global sensitivity analysis approach. The presented approaches can aid the global 

sensitivity analysis efficiently and holistically. 
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CHAPTER 6   

VINE COPULA-BASED FRAMEWORK FOR 

SEISMIC PERFORMANCE ASSESSMENT 

INCORPORATING COMPLEX DEPENDENCE 

6.1  Introduction 

PBEE is a new generation philosophy for the assessment and decision-making of 

structures. In this engineering philosophy, the structures are expected to satisfy 

performance objectives (e.g., direct loss, indirect loss, fatality, etc.). The conventional 

procedures of the PBEE framework can be summarized as follows. Probabilistic 

seismic hazard analysis is performed to identify the potential IM levels and 

corresponding probabilities. A probabilistic seismic demand model can be used to 

predict the seismic demand under different IM levels. Vulnerability is computed based 

on PSDM. Then, the probabilistic performance can be computed. A general expression 

indicating the probability that a decision variable exceeding DV under a given IM can 

be written as (Zareian & Krawinkler, 2006) 

( | ) ( | ) ( | ) ( | )G DV IM G DV DM dG DM EDP dG EDP IM=            (6-1) 

where G function is the complementary cumulative distribution function; DM 

represents damage measure; and EDP is the engineering demand parameter. 

Improving the accuracy and efficiency of PBEE assessment is of great importance. 

In traditional cloud analysis, linear regression is performed in the logarithmic space of 

seismic IM and demand. The obtained relationship is used to predict the seismic 
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demand. Then, some advanced models for seismic demand prediction were developed 

to improve the accuracy. There exists dependence within PBEE, whereas multivariate 

normality of logarithmic values is widely assumed for modeling the dependence in 

previous studies. The linear correlation coefficients are used to compute the joint 

distributions. The copula model can capture complex dependence characteristics. 

However, in the standard copula-based approach, the same dependence structure is used 

for modeling all pairs of random variables for high-dimensional problems. The multiple 

structures and characteristics of dependence among multivariate variables in high-

dimensional problems cannot be well captured by using a standard copula. In the vine 

copula approach, the joint distribution associated with high-dimensional problems is 

decomposed into marginal distributions, and the multiple dependence structures among 

multivariate variables are captured using a system of pair copulas. 

By interconnecting the surrogate model and vine copula, this study proposes a 

hybrid and novel framework to improve the seismic performance assessment. The 

proposed framework can improve confidence while capturing more realistic 

dependence. The vector IM and surrogate models are coupled to predict the seismic 

demand. The vine copula can characterize complex nonlinear dependence structures, 

and it is adopted to model the dependence of demands and IMs. Then, seismic 

performance can be assessed. The proposed framework is illustrated on the spatially 

distributed bridges under seismic hazards. Additionally, the effect of dependence 

modeling on higher-order moments of seismic performance is investigated. The 
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generality and flexibility of the vine copula-based approach highlight the necessity of 

implementing the proposed framework. 

6.2  Vine Copula-based Dependence Modeling 

 Vine Copula Model 

A copula is a powerful tool in characterizing the complex dependence associated with 

multiple variables. Let d random variables X1, …, Xd have marginal distribution 

functions Fi(xi) and joint cumulative distribution function (CDF) F(x1, …, xd), i = 1, …, 

d, the joint CDF of these variables can be expressed as (Nelsen, 2006) 

1 1 1 1 1( ,..., ) [ ,..., ] ( ( ),..., ( ) | ) ( ,..., | )d d d d d dF x x P X x X x C F x F x C u u=   = =θ θ      (6-2) 

where P[.] is the corresponding probability; C(u1, …, ud|θ) is the copula function with 

copula parameters θ; and ui = F(xi). 

The joint probability density function (PDF) of X1, …, Xd is expressed as 
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where c(u1, …, ud|θ) represents the copula density function; and fi(xi) is the marginal 

PDF of xi. 

Many copula families can be used to characterize the dependence of random 

variables (Joe, 1997; Nelsen, 2006). In the conventional copula approach, the same 

dependence structure is used for all pairs of variables, which is inflexible for describing 
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the different dependence structures among multiple random variables. Vine copula 

(Aas et al., 2009) is used to address this issue. It is a more flexible approach to model 

the complex dependence structures of high-dimensional random variables. By using 

vine copula, the joint PDF is decomposed into the product of bivariant copula density 

functions, thus various copula families can be used for dependence modeling of high-

dimensional variables.  

The joint PDF of X1, …, Xd can be expressed as 

1 1 1 2|1 2 1 |1,..., 1 1 1( ,..., ) ( ) ( | )... ( | ,..., )d d d d df x x f x f x x f x x x− −=            (6-5) 

where f(x|v) is the conditional PDF and can be expressed as the product of pair copulas 

and conditional PDF as 

, | , |( | ) ( ( | ), ( | ); ) ( | )
j j j jx v j j j x v jf x c F x F v f x

− −− − −=
v v

v v v v            (6-6) 

where vj is one variable of v; v-j is the vector excluding vj; and cx,vj|v-j(.) is the copula 

density function. The conditional CDF can be expressed as 
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               (6-7) 

where Cx,vj|v-j(.) is the copula function. Eq. 6-4 can be decomposed as the product of 

copula density functions and marginal PDFs by using Eq. 6-5. The conditional CDF of 

x on univariant v can be expressed as 

, ,( ( ), ( ); )
( | )

( )

x v x v x v

v

C F x F v
F x v

F v


=


                     (6-8) 

The F(x|v) can be written as h-function 
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The drawable vine (D-vine) copula and canonical vine (C-vine) copula structures 

are considered in this study. A vine copula consists of a set of trees, each tree consists 

of several nodes and edges. Each edge is represented by a pair copula function. The 

structures of the six-dimensional D-vine and C-vine are presented in Figure 6.1 (Okhrin 

et al., 2017). In the first tree T1, the dependence of two variables is modeled based on 

pair copula models (e.g., c1,2, etc.). The conditional dependence of variable is modeled 

in the subsequent trees based on pair copula models (e.g., c1,3|2 and c2,3|1, etc.). By 

arranging different order of variables, several different structures of vine copula can be 

obtained. In D-vine, the variables are considered as equivalent, while the C-vine 

incorporates a primary variable governing the dependence modeling (Zhou & Li, 2019). 

Therefore, the D-vine is suitable for dependence modeling of seismic demand (Zhou & 

Li, 2019). For three-dimensional case (vector IM in this study), C-vine and D-vine are 

equivalent, as only one conditioning variable is considered (Wang et al., 2020). The 

copula functions and h-functions for various copula families are provided in the 

literature (Nelsen, 2006). Based on the considered vine copula structure, the joint PDF 

of variables can be computed. The PDF of a D-vine copula is expressed as 

1
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(6-10) 



 
106 

 

Figure 6.1 Structures of D-vine and C-vine 

 Inference of Vine Copula from Data 

Given the vine copula structure and a set of samples 𝐱(1), … , 𝐱(𝑁), 𝐱(𝑖) = (𝑥1
𝑖 , … , 𝑥𝑑

𝑖 ), 

the parameters of vine copula can be computed using joint maximum likelihood 

estimation (Aas et al., 2009). The joint maximum likelihood estimation simultaneously 

computes all the parameters of a vine copula by maximizing the log-likelihood. The 

parameters of a given vine copula structure under a set of samples can be estimated as 

ˆ arg max ( ; )kLL


=θ x θ                           (6-11) 

where 𝛉̂ is the estimated vector of vine copula parameters; Θ is the range of copula 

parameters; and 𝐿𝐿(𝐱𝑘; 𝛉) is the log-likelihood for a given sample set. 

The different conditioning order and copula families result in different structures 

of vine copulas. It is necessary to determine the optimal vine copula within the 

candidates. The Akaike Information Criterion (AIC) can be used to select the optimal 

copula (Akaike, 1974; Tang et al., 2015). For a given vine copula and sample set, the 

AIC is computed as 
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ˆ2 ( ; ) 2kAIC LL np= − +x θ                         (6-12) 

where 𝐿𝐿(𝐱𝑘; 𝛉̂) is the log-likelihood of the fitted vine copula; and np is the number 

of parameters in a vine copula. 

Bayesian Information Criterion (BIC) is the other criterion to determine the 

optimal vine copula, it can be expressed as 

ˆ2 ( ; ) lnk

vBIC LL np N= − +x θ                        (6-13) 

where Nv is the number of samples used for developing vine copula. The optimal vine 

copula is determined as the one associated with minimum AIC and BIC values. The 

criteria of AIC and BIC are considered in this study for vine copula selection. These 

two criteria incorporate penalty terms on the number of model parameters, thus, the 

overfitting problem can be prevented (Härdle et al., 2017; Torre et al., 2019a). Once 

the optimal vine copula is inferred, the joint distribution of multivariant variables 

considering dependence can be determined (Kurowicka & Cooke, 2007). 

6.3  Dependence Modeling within Performance-

based Earthquake Engineering 

There exists dependence associated with multiple sources within PBEE. For instance, 

a complex system usually consists of multivariant demands, the dependence among 

multiple demands can affect the system vulnerability. When vector IM is used, the 

dependence among multiple IMs can affect the joint exceeding frequency. In this study, 

the dependence from two sides (e.g., IMs and demands) is considered. The joint 

normality of logarithmic values is widely assumed in previous studies for dependence 
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modeling within PBEE. However, the multivariate normal distribution cannot reflect 

the complex nonlinear dependence characteristics. This simple assumption may lead to 

inaccurate assessment and mislead decision-making of structures. The vine copula 

captures complex nonlinear dependence characteristics, and it is adopted in this study 

to model more realistic dependence structures. 

 Probabilistic Seismic Hazard Analysis for Vector IM 

Considering Dependence 

Conventionally, scalar seismic IM is used in performance assessment (Padgett & 

DesRoches, 2008). Scalar IM can only reflect part of the information regarding 

amplitude, spectrum characteristics, and duration of ground motion. Due to the 

complexity of the ground motion, the demands predicted using a single seismic IM 

usually involve a relatively large amount of uncertainty. Compared with scalar IM, 

vector IM contains more information on ground motion, thus it can reduce the 

uncertainty of seismic demand prediction (Baker, 2007). To further improve the 

accuracy of seismic demand prediction, the vector IM is used in this study. 

To quantify the probabilistic performance, the joint probabilistic distribution of 

seismic intensities should be identified, and it is achieved by probabilistic seismic 

hazard analysis. For given magnitude and distance, the seismic intensity is uncertain. 

The ground motion prediction model (GMPM) is used to predict probabilistic seismic 

intensity (Boore & Atkinson, 2008). The GMPM can be generally expressed as 

ln lnln ( , , )IM IM IMIM R M  =  +                  (6-14) 
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where ln IM is the natural logarithm of an earthquake intensity; M is magnitude; R is 

the source to site distance; Ω are other parameters used to describe an earthquake 

scenario (e.g., region of the earthquake and shear wave velocity averaged over top 30 

m, etc.); μlnIM(R, M, Ω) is the mean of ln IM for given R, M, and Ω; σlnIM is the standard 

deviation of ln IM; and εIM is normalized residual term. 

There is dependence among IMs. The εIM represents the record-to-record aleatory 

variability (Baker & Cornell, 2005) and is considered to follow a standard normal 

distribution (Baker et al., 2007). By using εIM, the correlation models were developed 

to account for the dependence among IMs (Baker & Jayaram, 2008). The logarithmic 

IMs are assumed to follow a multivariate normal distribution in previous studies and 

the Pearson correlation coefficient is widely used (Faouzi & Nasser, 2014). As 

indicated previously, vine copula is a flexible approach and can capture complex 

dependence characteristics. This study utilizes the vine copula approach to model the 

dependence of IMs. By using the approach mentioned in section 3.2, the vine copula 

model can be inferred based on εIM and historical data. Once the vine copula model is 

established, the joint PDF of vector IM for given earthquake magnitude and distance 

f(IM1, IM2, IM3|m, r) can be computed based on GMPM and Eq. 6-9. The probability 

of IM1, IM2, IM3 exceeding im1, im2, and im3 for a given earthquake scenario can be 

expressed as 

1 1 2 2 3 3
1 2 3

( , , | , ) 1 2 3 1 2 3
, ,

( , , | , )IM im IM im IM im m r
im im im

P f IM IM IM m r dIM dIM dIM   =      (6-15) 
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Considering uncertain scenarios, the joint mean rate of the three IMs exceeding 

im1, im2, and im3 is computed based on the total probability theorem as (Faouzi & 

Nasser, 2014; Wang et al., 2020) 

min 1 1 2 2 3 31 2 3 ( , , | , )( , , ) ( ) ( )m IM im IM im IM im m r M Rim im im P f m f r dmdr    =         (6-16) 

where mmin is the annual rate of occurrence of earthquakes exceeding considered 

minimum magnitude; and fM(m) and fR(r) are the PDFs of the magnitude and distance, 

respectively. 

 Joint Probabilistic Seismic Demands Considering Dependence 

In this study, the relationship between the input vector 𝑋 ∈ ℝ𝑀 and multiple outputs 

[Y1, Y2, …, YW] is established using surrogate model. Generally, multivariate surrogate 

model can be expressed as (A. Du & Padgett, 2020a) 

ˆ ( ) ( )+
S

Y = Y X X                            (6-17) 

where 𝑌̂ ∈ ℝ𝑊 is the prediction from the model; 𝑌̅ ∈ ℝ𝑊 is the estimation from a 

trend model; and 𝜀𝑆 ∈ ℝ𝑊 is the correlated model error. 

For an engineering system, multiple seismic demands are usually of interest. It is 

necessary to compute the joint probabilistic demands considering dependence for 

system vulnerability analysis. The dependence among multiple structural demands can 

be described by the dependence of 𝜺𝑺 (Du & Padgett, 2020a). Modeling of 𝜺𝑺 plays 

an important role in uncertainty propagation and reliability analysis. It incorporates the 

consideration of the difference between finite element model evaluations and trend 

model predictions, as well as the uncertainty associated with ground motion. Normal 



 
111 

distribution with a mean of zero is a widely acceptable consideration for modeling the 

marginal distribution of 𝜺𝑺  (Du & Padgett, 2020a; Torre et al., 2019b). The 

multivariate normal distribution is widely assumed for the dependence modeling of 𝜺𝑺 

(Du & Padgett, 2020a). In this study, the vine copula is used to model the dependence 

of 𝜺𝑺, as it can capture more complex dependence characteristics. After establishing 

the SPCE, the residual of the structural demands can be computed. Then, the residual 

from multiple demands is used to infer the vine copula based on the method mentioned 

in section 6.2. The joint distribution of multivariant demands incorporating dependence 

can be generated from the established vine copula model. The process of dependence 

modeling within seismic performance assessment is presented in Figure 6.2. 

 

Figure 6.2 Process of dependence modeling within PBEE 

6.4  Updated Framework of Seismic Performance 

Assessment (UFSPA) 

By integrating the surrogate model and vine copula, this study proposes a framework 

for improved seismic performance assessment. The vector IM is adopted within the 

UFSPA as it reflects more information on the hazard characteristics compared with the 
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scalar IM. The probabilistic seismic hazard analysis is performed for vector IM. The 

vine copula is used to capture the complex dependence among multiple IMs. The 

seismic demand surrogate models incorporating vector IM are established using a 

learning algorithm. The vine copula is used for the second time to model the 

dependence among multiple demands. The system vulnerability considering 

dependence can be computed using the surrogate model and vine copula. Then, the 

seismic performance indicators can be computed. The illustration of the computational 

process is shown in Figure 6.3. 

In this study, two vine copula models can be developed for capturing the 

dependence of IMs and demands. Based on the historical ground motion data, the 

normalized residuals are computed using the ground motion prediction model. Then, a 

vine copula model capturing the dependence of IMs is established using IM residuals, 

as indicated in section 6.2. The residuals associated with different demands are 

computed from the surrogate models. Then, the second vine copula model capturing 

the dependence of demands can be established using the residual data. 

Compared with conventional PBEE, the proposed UFSPA framework has several 

advantages. The assumption of multivariate normality of logarithmic values can only 

capture one of many possible solutions and may produce severely biased results (Tang 

et al., 2013). In the proposed framework, two vine copula models are established for 

demands and IMs, respectively. More realistic dependence structures are captured by 

vine copula models. In addition, the uncertainty associated with seismic demand 

prediction is reduced by coupling SPCE and vector IM. The necessity and superiority 
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of the proposed approach are illustrated in the case study. The computational process 

of the proposed approach is illustrated in Table 6.1. A comparison of the conventional 

PBEE framework and the UFSPA is presented in Figure 6.4. 

The major contribution of this chapter is to develop an updated and integrated 

seismic performance assessment framework by interconnecting several novel 

techniques. Confident seismic performance assessment can be accomplished by using 

the developed UFSPA. 

Table 6.1 Computational procedures of the UFSPA 

Procedures of UFSPA 

Probabilistic hazard analysis for vector IM considering vine copula captured dependence 

1. Process historical earthquake data to obtain normalized residuals of considered IMs 

2. Determine copula families 

3. Pair copula selection 

4. Compute copula parameters by performing joint maximum likelihood estimation, 

subjected to residual data 

5. Compute AIC and BIC 

6. Obtain best-fit vine copula 

7. Identify seismic hazard source 

8. Sample dependent residuals using established vine copula 

9. Compute μlnIM (R, M, Ω) and σlnIM for the corresponding scenarios using the ground 

motion prediction model 

10. Obtain joint distribution of vector IM considering the dependence 

Surrogate-assisted vulnerability assessment considering vine copula captured dependence 

11. Determine probabilistic structural parameters from inventory 

12. Obtain a set of structure samples 

13. Perform nonlinear time history analysis for the sampled structures 

14. Record the demands of interest 

15. Perform leaning algorithm to establish surrogate models of all demands using structure 

samples, vector IMs, and recorded demands 

16. Compute residuals from surrogate models 

17. Establish vine copula for demands using the residuals (invoke line 2-6) 

18. Compute vulnerability using surrogate model and vine copula 

Performance assessment 

19. Compute the probabilities of structures being in each damage state 
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20. Determine consequences associated with each damage state 

21. Compute probabilistic performance 

 

 

Figure 6.3 Illustration of the computational process 

 

Figure 6.4 Conventional PBEE framework and updated framework of seismic 

performance assessment 
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This study aims to facilitate seismic performance assessment of spatially distributed 

bridges. In this context, the uncertainties associated with bridge geometry and material 

parameters should be considered in the assessment process (Jeon et al., 2019). The 

probabilistic distributions of bridge parameters can be determined based on the bridge 

inventory database. Based on the probabilistic distributions of bridge parameters, a set 

of bridge samples accounting for uncertainties is randomly generated to facilitate 

regional seismic performance assessment (Jeon et al., 2019; Mangalathu et al., 2016; 

Mangalathu, Jeon, et al., 2018). Nonlinear time history analysis of the bridges is 

performed in OpenSEES to obtain the training data. Seismic demand surrogate models 

are established, and vine copula is used to model the dependence among multiple 

demands. The probabilistic seismic hazard analysis for vector IM is performed and vine 

copula is used to capture the dependence. Finally, system vulnerability and probabilistic 

performance are computed. 

 Probabilistic Seismic Hazard for Vector IM Incorporating 

Vine Copula Captured Dependence 

The peak ground acceleration (PGA), spectral acceleration at the period of 0.2s (Sa0.2), 

and spectral acceleration at the period of 1.5s (Sa1.5) are used as vector IM in this 

example. There is dependence among multiple seismic IMs. Dependence modeling is 

necessary for probabilistic seismic hazard analysis for multiple IMs. Conventionally, 

the dependence is modeled based on the assumption of multivariate normality of 

logarithmic values. In this study, the dependence modeling of IMs is accomplished by 

using vine copula as it can capture nonlinear and complex dependence characteristics. 
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The historical ground motion data is needed to establish the vine copula model. The 

normalized residuals are computed using the ground motion prediction model (Boore 

& Atkinson, 2008). The marginal distribution of IM residual is considered to follow the 

standard normal distribution (Baker, 2007). Then, a vine copula model capturing the 

dependence of IMs is established using IM residuals, as indicated in section 6.2. The 

same set of IM residuals is used to derive the joint normal distribution and the vine 

copula joint distribution model to investigate the effects of dependence modeling. The 

Figure 6.5 shows the comparison of simulated data from vine copula and original data. 

The general overlapping of the simulated data and the original data is observed, which 

indicates the satisfying performance of the vine copula throughout the full range of data. 

The performance of the vine copula is quantitatively assessed by using the criterion 

values of AIC, BIC, and log-likelihood. These criteria indicate that the vine copula 

performs better than the conventionally used joint normal distribution. The detailed 

assessment of the performance of the vine copula is illustrated in the next section. 

 

Figure 6.5 Comparison of simulated data from vine copula and original data 

Given different seismic scenarios, the mean and standard deviation of ln IM can 

be computed using the ground motion prediction model. The ground motion prediction 
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model (Boore & Atkinson, 2008) used in this study was developed using a set of 

worldwide historical records. These historical records contain different earthquake 

characteristics (a wide range of distances and magnitudes etc.). This ground motion 

prediction model is a general model which is applicable for magnitude = 5-8, distance 

< 200 km. Other ground motion prediction models can be used in future implementation. 

The residual samples of IMs are generated from the established vine copula model, then 

the joint probabilistic distribution of the three IMs associated with a given scenario can 

be computed.  

Chopra and Chintanapakdee compared the structural response under near-field and 

far-field earthquakes, where the earthquakes with distance values more than 12 km are 

considered as far-field ground motions (Chopra & Chintanapakdee, 2001). The 

performance of the proposed approach under near-field and far-field earthquakes is also 

illustrated in this study. A single source case and a multiple sources case are considered. 

For the single source, the magnitudes considered are 5.5-8, the distance is considered 

as 6 km. The source model with single fault and certain distance can be used for 

illustration purposes in seismic performance assessment, as it is representative for many 

sites which are near a single large fault (e.g., near the San Andreas or Hayward faults 

in northern California) (Baker & Cornell, 2005). For the multiple sources case, the 

magnitudes considered are 5.5-8, the distance values associated with three sources are 

considered as 5 km, 10 km, and 20 km respectively. Two million vector IM samples 

considering dependence are generated using the ground motion prediction model and 

vine copula. For each vector IM sample, the return period can be calculated. For a 
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considered return period, the target vector IM samples can be determined (Du & Padgett, 

2020b). The return periods computed herein are based on a single source case 

(magnitudes: 5.5-8, distance: 6 km) and a multiple sources case (magnitudes: 5.5-8, the 

distance values associated with three sources: 5 km, 10 km, and 20 km), respectively. 

 Surrogate Models of Seismic Demands Incorporating 

Dependence 

To establish the surrogate model of seismic demand, a set of training data should be 

obtained. The 320 bridge samples are generated using the Latin hypercube sampling 

technique (Ayyub & Lai, 1989). Each bridge realization is paired with a selected ground 

motion (Baker et al., 2011), and nonlinear time history analysis is performed in software 

OpenSEES (Dong et al., 2013; Dong & Frangopol, 2015; Qian & Dong, 2020). The 

demands associated with the column, bearing, and abutment are recorded. Thus, the 

training data set including the probabilistic input parameters and demands is obtained. 

Given the training data set, the sparce PCE models of seismic demands are 

established using the approach indicated in chapter 4. Once the sparse PCE is 

established, it can be used for efficient seismic demand prediction. To illustrate the 

prediction performance of the proposed approach on a test sample set, the R2 values of 

demand from prediction and finite element modeling are presented in Table 6.2. By 

implementing SPCE only, multiple bridge parameters are incorporated within demand 

prediction. By using this approach (SPCE with multiple bridge parameters), the average 

relative improvement of R2 over all components (ARIR2) is 13%, compared with the 

conventional linear regression in the logarithmic space. The R2 values of the six 
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demands are further increased by incorporating vector IM in SPCE. By using vector IM 

in SPCE, the ARIR2 is 16%, compared with the method using scalar IM and SPCE. 

Compared with the conventional linear regression in the logarithmic space, the relative 

improvement of R2 of the proposed approach is shown in Figure 6.6, and the ARIR2 is 

32%. By using the developed approach, a significant improvement of R2 is observed, 

indicating a significant improvement in prediction performance. The improvement of 

R2 associated with the proposed approach can be interpreted from three aspects: (1) the 

implementation of SPCE for uncertainty propagation; (2) the incorporation of a more 

comprehensive description of hazard intensities by vector IM; and (3) the incorporation 

of multiple bridge parameters within demand prediction. 

Table 6.2 R2 of demand from prediction and finite element modeling on a test sample 

set 

Methods C1 C2 C3 C4 C5 C6 

Linear regression in the 

logarithmic space 
0.6443 0.3616 0.6372 0.4838 0.4845 0.6763 

SPCE 0.7382 0.4924 0.7321 0.4881 0.4901 0.7500 

SPCE and vector IM 0.7566 0.6616 0.7637 0.6222 0.6249 0.7706 

Note: C1 is the column curvature ductility; C2 is the bearing longitudinal displacement; 

C3 is the bearing transverse displacement; C4 is the abutment active displacement; C5 

is the abutment passive displacement; and C6 is the abutment transverse displacement. 
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Figure 6.6 The relative improvement of R2 comparing the proposed approach and 

conventional approach 

The model error is used to characterize the dependence among multiple demands. 

The marginal distribution of these residuals is considered as a normal distribution with 

a mean of zero (Du & Padgett, 2020a; Torre et al., 2019b). For dependence modeling, 

the multivariate normal distribution is widely assumed (Du & Padgett, 2020a). This 

study uses the vine copula approach to capture the complex nonlinear dependence 

characteristics of seismic demands. The residuals associated with six demands are 

computed from the surrogate models. Then, the vine copula model can be established 

using the residual data. To illustrate the performance of the best fit vine copula, the 

criterion values of AIC, BIC, and log-likelihood are shown in Figure 6.7. The best fit 

vine copula is associated with minimum AIC, BIC, and maximum log-likelihood, 

which indicates that the best fit vine copula performs best for the dependence modeling. 

The assumption of multivariate normality of logarithmic values is widely used in 

previous studies for both IMs and demands, it can be considered as a specific case in 

the copula approach, where the dependence is modeled using Gaussian copula. The 
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results show that multivariate normality is not the optimal dependence structure, while 

vine copula performs better due to its flexibility. To further testify the necessity of using 

vine copula approach, it is necessary to know how much the difference in seismic 

performance (e.g., repair loss ratio subjected to earthquakes, it is defined in section 2) 

of structures calculated by conventional multivariate normality assumption and vine 

copula approach would be. This aspect is investigated in next section. 

 

Figure 6.7 Performance of the best fit vine cupula, vine copula (1-2-3-4-5-6), and 

Gaussian copulas (1-2-3-4-5-6 indicates the order of variables in vine copula, the 

numbers correspond to the numbers of components as indicated in table 6.2: e.g., C1, 

C2, C3, C4, C5, and C6) 

 Probabilistic Seismic Performance 

The historical data and simulated data are used to develop the vine copula joint 

distribution model. The same data sets are used to develop the joint normal distribution 

model. The seismic performance is computed by using the vine copula and joint normal 

distribution, respectively. In this process, the only difference is the adopted dependence 
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model (vine copula and joint normal distribution). In this way, the results are 

comparable, and the effects of dependence modeling on the seismic performance (e.g., 

loss ratio) can be revealed. 

The surrogate model and vine copula are used to compute the seismic vulnerability 

of bridges. The probabilistic joint seismic demands are computed. The capacity samples 

are generated from corresponding distributions. Then, the bridge system vulnerability 

can be computed by comparing the demand and capacity samples. By repeating this 

process for a set of IM vectors, the vulnerability surfaces can be generated as shown in 

Figure 6.8. 

 

Figure 6.8 Fragility surfaces computed by SPCE and vine copula under PGA = 0.1g 

Given the probabilistic distribution of the IM vector for different scenarios as 

computed in section 6.5.1 and vulnerability, the probabilistic loss ratio can be computed. 

Herein, the repair loss ratio for none, slight, moderate, extensive, and complete damage 

states are considered as 0, 0.03, 0.25, 0.75, and 1, respectively (Qian & Dong, 2020; 

Werner et al., 2006). Statistical moments of loss ratio using joint normal distribution 
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(widely used in previous studies) and vine copula under different scenarios are listed in 

Table 6.3. For the investigated scenarios, the vine copula approach and joint normal 

distribution approach produce similar results in terms of the mean, standard deviation 

(STD), and kurtosis of the loss ratio, while the significant difference is observed in 

skewness. The relative difference of the skewness by using the joint normal distribution 

approach and vine copula-based approach is 19% to 51% for the investigated scenarios. 

This difference may be caused by the ignorance of nonlinear dependence characteristics 

in the joint normal distribution. 

Table 6.3 Statistical moments of loss ratio using joint normal distribution and vine 

copula under different scenarios 

Scenario Method Mean STD Skewness Kurtosis 

The relative 

difference of 

skewness (%) 

M=7.8, R=5 Vine copula 0.655 0.190 -0.393 2.452 

20 Joint 

normality 
0.668 0.185 -0.491 2.572 

M=7.8, R=10 Vine copula 0.544 0.201 -0.050 2.216 

51 Joint 

normality 
0.556 0.200 -0.103 2.234 

M=7.8, R=15 Vine copula 0.465 0.200 0.190 2.272 

42 Joint 

normality 
0.473 0.197 0.134 2.282 

M=7.8, R=20 

Vine copula 0.408 0.194 0.371 2.435 

19 Joint 

normality 
0.420 0.195 0.313 2.377 

 

Given the distribution of the IM vector for different return periods as presented in 

section 6.5.1, the probabilistic loss ratio can be computed. For the single source case, 

the density of loss ratios computed using vine copula subjected to different return 
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periods is presented in Figure 6.9. For the single source case and multiple sources case, 

the relative difference of statistical moments of loss ratio by using joint normal 

distribution and vine copula is visualized in Figure 6.10. A significant difference 

(caused by different dependence modeling approaches) is observed for STD, skewness, 

and kurtosis values in both cases. As mentioned previously, higher-order moments of 

seismic performance indicator are essential for decision-maker to incorporate different 

decision attitudes. The vine copula capturing more complex dependence facilitates a 

confident assessment of higher-order moments of seismic performance. Thus, a vine 

copula-based approach is necessary to aid the rational decisions of structures under 

uncertainty. 

The ratio of statistical moments of loss to the values associated with a return period 

of 75 years is presented in Figure 6.11. The density plots of loss ratios computed using 

joint normal distribution and vine copula subjected to return periods of 75 and 475 years 

are presented in Figure 6.12. The figures show that heavy and long tail behaviors are 

well captured by vine copula, while higher peaks of density are associated with the joint 

normal distribution.  
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Figure 6.9 The density of loss ratios computed using vine copula subjected to return 

periods of 75, 120, 475, 975, and 2475 years seismic scenario 

 

Figure 6.10 The relative difference of statistical moments of loss ratio by using joint 

normal distribution and vine copula for (a) single seismic source and (b) multiple 

seismic sources 

2475975

475

75

120

a b



 
126 

 

Figure 6.11 The ratio of statistical moments of loss to the values associated with a 

return period of 75 years 

 

Figure 6.12 The density of loss ratios computed using the joint normal distribution 

and vine copula subjected to return periods of (a) 75 years and (b) 475 years 

The uncertainties associated with structural parameters, earthquake magnitudes, 

and intensities are considered in the investigated cases. A single source case and a three-

source case with different distance values are incorporated in the analysis. Within the 

investigated cases, the vine copula is more appropriate to model the dependence 

compared with the joint normal distribution. In future practice, more cases 

incorporating uncertainties from different sources need to be investigated to assess the 
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effectiveness of vine copula and the dependence characteristics within PBEE. It is 

worth noting that the widely used multivariate normality can be considered as a specific 

case in the vine copula approach, where the pair copulas are all Gaussian copulas (Wang 

et al., 2020). Due to its generality, the developed vine copula-based approach can be 

applied in many problems to investigate and model the dependence characteristics, 

where the dependence structures are not well identified. 

The proposed vine copula-based approach needs more technical effort for 

implementation compared with the conventional method. The decision makers can 

consider the trade-off between technical effort and assessment confidence to choose the 

appropriate modeling approach. When only the mean values are of interest for risk-

neutral decision-makers, the multivariate normality assumption may be chosen. When 

higher-order moments of performance indicator are necessary for decision makers to 

incorporate different decision attitudes, the vine copula-based approach capturing more 

complex dependence is recommended. To facilitate the ease of implementation of the 

proposed vine copula-based approach within the PBEE framework, more studies should 

be conducted in the future to develop the vine copula models covering a wide range of 

seismic IMs and structure types. 

6.6  Summary 

This study proposes a hybrid framework for seismic performance assessment by 

interconnecting several advanced techniques. The sparse PCE is used as a surrogate 

model for seismic demand prediction. The vector IM, which contains more information 

on the hazard compared with scalar IM, is incorporated into the surrogate model to 
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further improve the accuracy of prediction. The dependence from both the IM side and 

demand side is modeled using a vine copula. The seismic performance can be computed 

using the proposed hybrid framework. The framework is applied to some illustrative 

examples. Several conclusions are drawn. 

• Compared with the conventional method, SPCE and vector IM coupled 

approach can improve the accuracy of seismic demand prediction significantly 

within the investigated cases. By using SPCE, a complex relationship of the 

input and demand can be captured, and multiple uncertain parameters can be 

incorporated into uncertainty propagation. The use of vector IM incorporates 

more hazard information in the analysis compared with scalar IM, and the 

prediction confidence can be further improved. 

• The multivariate normality of logarithmic values is a widely used assumption 

for dependence modeling within PBEE. Compared with the multivariate 

normality of logarithmic values, the performance criteria show that vine copula 

performs better to capture complex dependence associated with both IMs and 

demands within the investigated cases. More studies can be conducted in the 

future to investigate the effectiveness of the vine copula-based approach and 

dependence characteristics within PBEE. 

• From the observation of the investigated cases, the difference between the 

higher-order moments of loss derived from the widely used multivariate 

normality assumption and the proposed vine copula-based approach is large. 
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Due to the generality and flexibility, the vine copula-based approach can be 

applied in many problems where the dependence structures are not well 

identified. 

• The proposed approach updates the existing performance assessment 

framework from two aspects: improving confidence and capturing a more 

realistic dependence structure. It can contribute to the rational assessment and 

decision-making of engineering systems under seismic hazards. 
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CHAPTER 7   

LIFE-CYCLE SUSTAINABILITY AND 

RESILIENCE OF STEEL-SHAPE MEMORY 

ALLOY (SMA) REINFORCED BRIDGE UNDER 

COMPOUND EARTHQUAKES AND 

DETERIORATION 

7.1  Introduction 

Resilience describes the capability of systems to withstand, adapt and recover from 

extreme events (Timmerman, 1981). Sustainability covers the performance metrics 

including social, economic, and environmental aspects. Accurate long-term 

sustainability and resilience assessment of bridges are of paramount importance to aid 

rational decision-making under seismic hazards.  

Within the service life of structures, the deterioration can continuously affect the 

seismic performance of structures over time resulting in time-dependent performance, 

and multiple earthquakes can occur with stochastic occurrence time, stochastic number, 

and stochastic hazard intensity. Multiple earthquakes may lead to accumulated 

consequences in terms of sustainability and resilience. The previous corrosion-based 

sustainability analysis focused on time-dependent consequences, the sustainability was 

computed at a given time (e.g., at year 25, year 50, and year 75) under certain hazard 

scenarios. The two important performance criteria sustainability and resilience have not 

been coupled into an integrated life-cycle framework. To the authors’ best knowledge, 
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a simulation-based life-cycle multi-criteria (e.g., accumulated sustainability and 

resilience) assessment framework incorporating the uncertainties associated with the 

corrosion, the occurrence time of earthquakes, the number of earthquakes, and hazard 

intensity has not been well developed. 

Different strategies have been studied for seismic mitigation. Considering the 

ground born vibration attenuation, scholars pointed out that appropriate afforestation 

can effectively mitigate the earthquake hazards in a region (Muhammad, Wu and Lim, 

2020; Muhammad and Lim, 2021). The built-up steel sections can be used as barriers 

to mitigate seismic hazards (Muhammad, Lim, and Reddy, 2019). For seismic-resistant 

structures, the self-centering capability is an important feature (Zhu & Zhang, 2008). 

The shape memory alloy (SMA) is a promising material with self-centering and 

corrosion-resistant characteristics. This study considers the steel-SMA reinforced 

concrete bridge as a potential alternative to mitigate the consequences induced by 

earthquakes and functional deterioration within its service life. 

Despite the advantages of SMA-steel reinforced bridge in terms of self-centering 

and corrosion-resistant characteristics, the construction of an SMA-steel reinforced 

bridge is associated with higher cost and carbon dioxide emissions compared with a 

conventional bridge. The life-cycle cost-benefit analysis of SMA-steel reinforced 

bridges under earthquakes and deterioration remains a research gap. Previous studies 

regarding the performance of SMA-steel reinforced bridges focus on limited 

performance criteria (fragility or economic loss) under certain earthquake scenarios. 

The life-cycle sustainability (e.g., fatality and carbon dioxide emission), as well as 
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resilience, have not been well investigated for the SMA-steel reinforced bridge under 

stochastic earthquakes and deterioration. Under the background of achieving carbon 

neutrality and resilient city, the investigation of sustainability and resilience is an 

important aspect. Moreover, the deterioration has not been well incorporated to 

compare the life-cycle seismic performance of the SMA-steel reinforced bridge and the 

conventional bridge. 

In this chapter, a simulation-based probabilistic life-cycle sustainability and 

resilience assessment framework is developed. The earthquake process and 

deterioration process are coupled to compute the life-cycle accumulated sustainability 

and resilience. The earthquake process is used to model the stochastic occurrence time 

of the earthquakes. The deterioration process is used to model the time-dependent 

performance. Finally, the life-cycle sustainability and resilience of the bridges can be 

computed by accumulating the consequences arising from all hazards within an 

investigated time horizon. Additionally, a holistic investigation of SMA-steel 

reinforced bridge is provided using the developed framework. Compared with previous 

studies, this study incorporates multiple criteria including sustainability (e.g., social, 

economic, and environmental metrics) and resilience, involves the effects of 

deterioration, and extends to assess the accumulated consequences in a life-cycle 

context by coupling stochastic earthquake renewal process and corrosion process. The 

uncertainties associated with the corrosion, the occurrence time of earthquakes, the 

number of earthquakes, and hazard intensity are considered in the investigation. The 

new insights on the life-cycle cost and benefit of sustainability and resilience of SMA-
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steel reinforced bridges are provided, which can aid the decision-making of bridges 

considering multiple criteria under compound earthquakes and deterioration in a life-

cycle context. 

7.2  Deterioration Process 

To assess seismic sustainability and resilience from a long-term perspective, 

understanding the mechanism of deterioration is necessary. The deterioration is a 

continuous process occurring within the service life of structures. The corrosion 

induced by the chloride exposure environment can continuously affect the performance 

and resilience of structures (Akiyama et al., 2020). 

 Chloride Exposure Environment 

The practical chloride exposure conditions typically include marine atmospheric 

environment, marine splash environment, and deicing salt environment (Ghosh & 

Padgett, 2012). Corrosion initiation time and rate of corrosion under these three 

exposure conditions are introduced in this study. 

Coastal bridges are exposed to the marine environment. Due to the existence of 

capillary pores within concrete material, suction of chloride solution in concrete 

structural components can happen. Then, the concentration of chlorides can be 

increased from water evaporation and corrosion is initiated when these chlorides 

penetrate through cover concrete and contact with steel (Choe et al., 2008; Shekhar et 

al., 2018). A diffusion model can be adopted to compute corrosion initiation time 

Ti,marine with respect to marine exposure as (Engelund et al., 2000) 
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where x is the depth of cover concrete; Dcl,0 represents reference diffusion coefficient; 

kc is the curing factor; ke represents the environment factor; t0 is the concrete age at the 

time of conducting compliance test; ncl is the variable incorporating the densification 

of material; Cs represents the equilibrium chloride concentration at the concrete surface; 

Ccr is the critical chloride concentration; and the erf is the Gaussian error function. 

After the initiation of corrosion, the area of steel starts to reduce. The corrosion 

rate is associated with uncertainties and it depends on different environments 

(Frangopol et al., 1997). A time-variant corrosion rate model under marine exposure is 

expressed as (Vu & Stewart, 2000) 
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where icorr(0) is the initial corrosion rate in current density (in the unit of μA/cm2); w/c 

is the water-cement ratio of concrete material; rcorr(0) is the initial corrosion rate (in the 

unit of mm/year), and rcorr(tp) is the mean corrosion rate at the time tp after initiating 

corrosion. 

In addition to marine atmospheric and marine splash environment, structures can 

be exposed to deicing salt. For the transportation networks located in frozen regions, 

deicing salts are spread on road networks to eliminate snow to ensure operational safety. 

Compared with the marine environment, deicing salt can normally cause severer 
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corrosion of structures due to its higher content of chlorides (Ghosh & Padgett, 2010). 

The corrosion initiation time with respect to deicing salt environment can be expressed 

as (Enright & Frangopol, 1998) 
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where DC is the diffusion coefficient for the deicing salt environment. The corrosion 

rate for this environment can be obtained from experiments and observational 

measurements. The probabilistic distribution of corrosion rate under deicing salt 

environment can be found in Enright and Frangopol (1998). 

 Effects of Corrosion 

The effects of corrosion within reinforced concrete structures can be summarized as 

area reduction of steel and secondary effects. After the chlorides penetrate the concrete 

cover and contact with steel, area loss of steel commences. Uniform corrosion and 

pitting corrosion are two widely adopted models to characterize the area loss of steel. 

For uniform corrosion, area loss of reinforcing steel is considered as uniform around 

the circumference of reinforcing steel. Under this consideration, the residual area of 

rebar can be computed as (Enright & Frangopol, 1998; Shekhar et al., 2018) 
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where Di is the diameter of pristine reinforcing steel and Ti represents the time of 

corrosion initiation for a specific scenario. 

In addition to uniform corrosion, deep pits along the length of corroded reinforcing 

steel were reported in previous studies. The area loss due to pitting corrosion can be 

significantly larger than the area loss induced by uniform corrosion (Zandi Hanjari et 

al., 2011). Thus, pitting corrosion should be appropriately modelled within the 

corrosion process accompanied by uniform corrosion. The residual rebar area subjected 

to pitting corrosion can be computed using a hemispherical pit model as follows (Ghosh 

& Sood, 2016) 
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where wp(t) is the width of the pit excluding uniform corrosion; and ADP(t) is the 

residual area of pit excluding uniform corrosion. These two parameters can be 

calculated using pit depth based on geometric relationships. 

The pit depth is calculated as 
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where p(t) is the pit depth; and R is the pitting factor. The relationship between uniform 

corrosion (the depth of uniform corrosion) and pitting corrosion (the maximum pit 

depth) can be described using the pitting factor. The spatial variability of pitting 

corrosion can be modelled through the consideration of spatially variant pitting factors. 

The probabilistic distribution of pitting factors can be determined from experiments. 
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For instance, Extreme Value Type I Gumbel distribution was found to be appropriate 

to describe the probabilistic distribution of maximum pit depth within every 100 mm 

length rebar (Stewart & Al-Harthy, 2008).  

In addition to area loss of steel, there exist some secondary corrosion effects on 

reinforced concrete components (Shekhar et al., 2018). For instance, the production of 

rust lead to an increased volume of corroded steel, the crack of cover concrete appears 

due to expansion, and loss of cover concrete strength occurs. Similarly, loss of core 

concrete strength can occur as a result of the corrosion of transverse tie steel. Previous 

studies found that pitting corrosion can lead to the reduction of yield and ultimate 

strength of steel (Du et al., 2005; Kashani et al., 2013). The effects of corrosion on 

structures including loss of area of steel and other secondary effects can be modelled 

using finite element models. In addition to corrosion, the effects of multiple hazards on 

structures can also be modelled using finite element models (Li et al. 2020a; Argyroudis 

and Mitoulis 2021).  

7.3  Seismic Hazard Processes 

In addition to the corrosion process, the seismic hazard can also affect functionality and 

resilience within the service life of structures. For long-term performance assessment, 

earthquakes accruing during the service life of structures should be considered. Within 

the seismic hazard process, there exist uncertainties associated with both the arrival 

time of earthquakes and hazard intensities. Earthquake occurrence time can be 

described using a stochastic process based on historical events (e.g., the Poisson 

process). The probabilistic intensity of the hazard can be computed from ground motion 
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prediction models. In this section, two stochastic process models of earthquakes 

including both stationary and nonstationary arrival processes are introduced. 

The homogeneous Poisson process with stationarity is widely adopted to model 

the occurrence of earthquakes (Rackwitz, 2002). In this process, the mean occurrence 

rate is considered as a constant. The probability of n events occurring within the time 

horizon tint can be expressed as 
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= = =             (7-8) 

where λ is the occurrence rate of the event. The homogeneous Poisson process can be 

considered as a special case of the renewal process. A renewal process can be regarded 

as a homogeneous Poisson process if an exponential distribution is used to describe the 

stochastic inter-arrival time, namely the homogeneous Poisson renewal process. In this 

case, the probability density function (PDF) of waiting time between two successive 

events is 

( ) exp( )W w wf x x = −                         (7-9) 

The homogeneous Poisson renewal process adopts the assumption of a constant 

mean occurrence rate with the time-independent occurrence of hazards. However, there 

can exist time-dependent features within the occurrence of earthquakes. For instance, a 

rupture can occur when the stochastic load state process arrives at a certain failure state. 

The energy is released through the earthquake, and a new cycle of energy accumulation 

starts. Due to the energy accumulation and release process, the occurrence of 
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earthquakes is associated with time-dependent characteristics. In such a situation, the 

Brownian passage-time (BPT) renewal process with nonstationary features can be used 

to predict the long-term occurrence of earthquakes in a time-dependent manner (Li et 

al. 2020b; Matthews, Ellsworth, and Reasenberg 2002). The BPT distribution is used 

to represent probabilistic inter-arrival time, the PDF of BPT distribution is 
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where μ and α are the mean and coefficient of variation, respectively. 

In addition to the uncertainty associated with the arrival of earthquakes, the 

earthquake intensity can be uncertain for each event (Qian & Dong, 2020). For a given 

magnitude, the seismic intensities are considered to follow lognormal distribution 

(Boore et al., 2014). The ground motion prediction models (GMPMs) are widely 

adopted to predict the probabilistic hazard intensity levels. The GMPMs provide 

medians and standard deviations conditioned on earthquake scenario parameters, such 

as distance, magnitude, rupture mechanism, and others. 

7.4  Long-Term Sustainability and Resilience Under 

Compound Earthquake and Deterioration 

Processes 

In this study, two critical metrics sustainability and resilience are considered to assess 

performance of bridges. Analysis of damage conditions of the bridge under different 

hazard intensities is the basis of consequence evaluation. A probabilistic seismic 

demand model can be used to compute the exceeding probabilities associated with 
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different damage states. Seismic performance should be computed time-dependently as 

the corrosion can affect the performance of bridges over time. The quantification 

methods of sustainability and resilience are introduced. Then, the accumulated 

sustainability and resilience loss within the service life of the bridge can be assessed. 

 Time-dependent Sustainability 

A decision is regarded as sustainable if it can meet the present generation’s 

requirements without hindering future generations to meet their goals (Adams, 2006). 

Sustainability covers the consequences in terms of sociality, economy, and environment. 

The bridge is considered less sustainable if the relevant consequences are relatively 

severe after earthquakes. In this section, the metrics of sustainability in terms of social, 

economic, and environmental consequences are introduced. Considering the stochastic 

occurrence of earthquakes and time-dependent corrosion, sustainability should be 

updated over time. 

The social metric is considered to be the number of fatalities. The top priority 

should be given to the life safety of people for decision making. The time-dependent 

expected number of fatalities under earthquakes can be computed as (Dong et al., 2013) 
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where NF(t, IM) is the expected number of fatalities at time t given IM; PDSi(t, IM) is 

the probability of being damage state i; and NDSi is the number of fatalities for given 

damage state i. 
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The economic metric is considered to be the monetary loss. The repair cost of the 

damaged bridge is considered to be the direct economic loss. Due to the damage to the 

bridge, the traffic capacity can be reduced, the users may spend more time and running 

cost arrive at their destinations. The running cost and time loss are converted to 

monetary values and are considered as indirect economic loss. The total economic loss 

is the sum of direct and indirect loss. 

The time-dependent repair cost of the bridges can be computed as 
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where RCRi id the repair cost ratio associated with damage state i and RBC is the 

rebuilding cost of the bridge. 

Due to the closure of the damaged bridge, the traffic may follow the detour to the 

destination (Stein et al., 1999). The running cost of the traffic can be expressed as 

4

, ,

1

( , ) ( , ) (1 )
i i iRun DS Run car Run truck l DS DS

i

C t IM P t IM c T c T D ADTD d
=

 = − +     (7-14) 

where cRun,car is the unit cost for running cars; cRun,truck represents the unit cost for 

running trucks; T is the average daily truck traffic ratio; Dl is the detour length; ADTDDSi 

is the daily traffic following detour for damage state i; and dDSi represents the time of 

detour for damage state i. 
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Due to the damage to the bridge, the speed of the traffic remaining on the link can 

be reduced, and some users may follow the detour to destinations, leading to time loss 

(Stein et al., 1999). The time loss for the users is computed as monetary value as 
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where cAW is the wage per hour; cATC represents the compensation per hour; ADTEDSi is 

the daily traffic following damaged link for a damage state i; ocar and otruck are the 

vehicle occupancies for cars and trucks, respectively; S0 and Sd,DSi are the speed on the 

intact link and damaged link, respectively; l is the length of the link; and S is the detour 

speed. The total economic loss under an earthquake event is the sum of the direct (e.g., 

repair cost) and indirect loss (e.g., running cost and time loss). 

The environmental metric is considered as the carbon dioxide emission. The repair 

of the damaged bridge can emit carbon dioxide causing direct emissions. Due to the 

downtime of the damaged bridge, the traffic following the detour can emit additional 

carbon dioxide causing indirect emissions. The total carbon dioxide emission 

considered herein is the sum of emissions from repair and detour traffic. Carbon dioxide 

is a greenhouse gas and is the cause of global warming. Carbon neutrality is a 

worldwide mission to mitigate the relevant environmental issues. Compared with steel, 

alloy production can be associated with significantly higher carbon dioxide emissions. 

On the other hand, the accumulated carbon dioxide emissions from repair and detours 
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may be reduced within the service life of the bridge if the implementation of SMA can 

mitigate the damage to the bridge. In trade-off analysis, it is important to assess the 

long-term carbon dioxide emissions of the SMA-steel reinforced bridge under hazards. 

The carbon dioxide emitted from the detour traffic can be expressed as 
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where Enpcar and EnpTruck represent the carbon dioxide emitted per unit distance for 

cars and trucks, respectively. The carbon dioxide emitted from the reconstruction and 

repair of the damaged bridges is calculated as proportional to the damage ratios for 

different damage states. 

 Time-dependent Resilience 

Resilience assessment focuses on the residual functionality after the hazard and the 

recovery patterns over time (Timmerman, 1981). Considering the time-dependent 

corrosion and stochastic occurrence of earthquakes, the resilience should be updated 

over time. By using the definition of resilience loss (Bocchini et al., 2014; Yang & 

Frangopol, 2019), the time-dependent resilience loss index can be computed as (Qian 

et al., 2022) 
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where th represents the investigated recovery time horizon; Q(tr|t) represents the time-

dependent functionality of the bridge after the earthquake disruption. The time-
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dependent functionality is the basis of assessing resilience. The restoration functions 

developed by HAZUS (FEMA, 2020) can be adopted. A normal cumulative distribution 

function characterized by a mean and standard deviation can be used to model the post-

hazard functionality of bridges. In this restoration model, the post-hazard functionality 

is dependent on the damage states of the bridges. The bridge under a severer damage 

state is associated with less residual functionality and requires more time to recover to 

a certain level. For each damage state, the restoration function is developed by fitting 

the survey data from experts. By considering the effects of deterioration as indicated in 

section 7.2 (e.g., reduction of steel area and concrete strength), the time-dependent 

seismic vulnerability can be computed. The expected post-hazard functionality is 

computed as the sum of post-hazard functionalities for different damage states weighted 

by corresponding time-dependent damage state probabilities. Then, resilience loss can 

be quantified by Eq. 7-17. 

7.5  Framework of Life-cycle Sustainability and 

Resilience 

Within the service life of the bridge, corrosion and earthquakes induce compound 

effects on the sustainability and resilience of bridges in a time-dependent manner. By 

expanding the time horizon, this study assesses the accumulated sustainability and 

resilience from a long-term perspective.  

The computational framework of long-term sustainability and resilience loss under 

earthquake and deterioration processes is presented in Figure 7-1. The developed 

framework consists of three modules including the deterioration process module, 
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earthquake process module, and long-term sustainability and resilience module. In the 

deterioration process module, the exposure environment should be identified. Then, the 

structural parameters and environmental parameters associated with corrosion should 

be determined. The corrosion effects on structures (e.g., loss of steel area and reduction 

of the strength of concrete) can be modeled subsequently. In the earthquake process 

module, the earthquake source and investigated scenarios are identified. The earthquake 

process models describing the stochastic occurrence of earthquakes and corresponding 

parameters are determined. The ground motion perdition model is used to compute the 

uncertain hazard intensities. In the long-term sustainability and resilience module, the 

earthquake events with stochastic occurrence time and intensity are simulated based on 

the earthquake process module. The seismic sustainability and resilience loss under the 

simulated earthquake events are computed time-dependently based on the deterioration 

process module. Finally, the long-term sustainability and resilience loss are computed 

by accumulating the relevant induced consequences within the investigated time 

horizon. 

From a long-term perspective, the non-monetary sustainability and resilience loss 

can be computed as (Yang & Frangopol, 2019) 

( )

,

1

= ( )
h LN t

N N k k

k

L L t
=

                         (7-18) 

where LN is the long-term non-monetary sustainability or resilience loss; tL is the 

considered time horizon; Nh(tL) is the number of disruptions within tL; and LN,k(tk) is the 

non-monetary sustainability or resilience loss associated with event k at time tk . 
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The long-term monetary sustainability in terms of economic loss is computed as 

(Zheng et al., 2018) 
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where LM is the long-term monetary sustainability (e.g., economic loss); LM,k(tk) is the 

monetary sustainability induced by event k at time tk; and r is the monetary discount 

rate. 

Sustainability and resilience are considered in this chapter. As the climate change 

impacts on different areas may differ, it is necessary to extend the sustainability and 

resilience assessment to different areas. Different areas are associated with different 

weather and hazard conditions. For the earthquake hazard, the stochastic renewal 

process describing the occurrence of earthquakes can be updated using the historical 

earthquake events data in a specific area. For instance, the probabilistic distribution of 

the inter-arrival time of earthquakes can be updated given the regional observation data. 

The probabilistic seismic hazard analysis can be performed based on the local fault and 

site conditions using the ground motion attenuation relationship (Baker, 2013). For the 

deterioration process, the model can be updated based on the exposure conditions 

associated with different areas. In general, the deicing salt, marine atmosphere, and 

marine splash are three widely observed exposure conditions of structures. The 

deterioration process models of these three different conditions can be found in 

(Shekhar et al., 2018). The deterioration process parameters of a specific area under 

specific weather and hazard conditions can be further refined based on experiments and 
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field measurements. For the consequence assessment, the input parameters (e.g., repair 

cost, traffic demand, detour length, compensation, etc.) can be updated for different 

areas considering relevant recovery resources, traffic conditions, economic conditions, 

and network topology, among others. Overall, the developed framework can be updated 

for different areas/weather/hazard conditions by updating the earthquake process 

module, the deterioration process module, and the consequence module based on 

historical, observational, and experimental data.  

 

Figure 7.1 Computational framework of long-term sustainability and resilience loss 

under earthquakes and function deterioration 

7.6  Steel-shape Memory Alloy (SMA) Reinforced 

Bridges 

SMA material is characteristic of its shape memory effect (SME) and superelasticity 

(SE). SME is exhibited when the SMA is at a temperature below the martensite finish 

temperature Mf, where a residual strain takes place upon loading, but this residual strain 

can be fully recovered once the temperature later increases above the austenite finish 

temperature Af. SE occurs when the SMA is stressed at a temperature above Af, where 
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the induced strain can be recovered immediately upon unloading. SMA bars exhibit a 

flag-shaped stress-strain hysteretic behavior upon loading and unloading effects at 

room temperature. In other words, the SMA bar can almost recover to the pre-event 

position with appropriate energy dissipation feature after experiencing large nonlinear 

deformation (Xiang et al., 2020). The constitutive material model of the SMA bar 

includes two parts, i.e., tension and compression regions, as shown in Figure 7.2 (Zheng 

et al., 2018). In the tension region, the envelope curves associated with strain-stress (ε-

σ) relationships are composed of seven paths (i.e., OB, BC, CS, SC, CD, DA, AO), 

where E is the elastic modulus of the SMA bar; k1 and k2 are discount coefficients of 

the elastic modulus; εMs and σMs are the strain and stress of the SMA bar at martensite-

to-austenite transformation start; εMf  and σMf are the strain and stress of the SMA bar 

at martensite transformation finish; εAs and σAs are the strain and stress of the SMA bar 

at austenite-to-martensite transformation start; εAf and σAf are the strain and stress of the 

SMA bar at austenite transformation finish. Similar to the tension region, the envelope 

curves associated with strain-stress relationships in the compression zone also include 

seven paths (i.e., OB’, B’C’, C’S’, S’C’, C’D’, D’A’, A’O). 
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Figure 7.2 Flag-shaped constitutive model of SMA bars 

Additionally, environmental corrosion can remarkably increase the vulnerability 

of steel-reinforced structures (Shekhar et al., 2018), SMA bars, as a kind of corrosion-

resistant material, can be used to replace the conventional rebars in vulnerable regions 

(e.g., plastic hinge zones) for corrosion resistance (Billah & Alam, 2012). Due to the 

self-centering capacity, energy dissipation characteristics, and corrosion resistance, 

SMA bars are superior materials that can be incorporated into structures to mitigate 

damage under earthquakes and corrosion. 

Despite the abovementioned advantages, the production of the alloy is associated 

with significantly higher costs and carbon dioxide emissions compared with the 

production of steel. Carbon dioxide is the major greenhouse gas from human activities 

and can cause global warming. The cost and benefit analysis should be extended to a 

life-cycle context to give a holistic evaluation (Dong & Frangopol, 2017). To 

understand the trade-off between cost and benefits in such circumstances, this study 

investigates the long-term sustainability and resilience of the SMA-steel reinforced 
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concrete bridge under deterioration and earthquake processes. 

7.7  Illustrative Example 

In this study, long-term sustainability and resilience loss of the steel-SMA reinforced 

concrete bridge under earthquake and functional deterioration processes are assessed. 

By considering earthquake and functional deterioration processes, long-term 

sustainability and resilience loss are computed. The long-term direct and indirect 

consequences are compared and analyzed. The effects of SMA embodied carbon 

dioxide emission on long-term emissions are investigated. 

A conventional RC bridge and a novel SMA-steel reinforced concrete bridge are 

investigated, respectively. The two bridges are both two-span continuous bridges. The 

total length of each bridge is 40 m. The box girder is built using C40 concrete (i.e., 

compressive strength is 40 MPa at 28 days). The pier is composed of two columns, of 

which the height and diameter are 6 m and 1.2 m, respectively. C40 concrete is also 

used for the pier. For the SMA-steel reinforced concrete bridge, the SMA bars are 

employed as reinforcement in the plastic hinge of the column. The plastic hinge length 

can be calculated according to the experimental formula in the reference (Alam et al., 

2008). 

The finite element models of the conventional bridge and the SMA-steel 

reinforced bridge are both established in an open system for earthquake engineering 

simulation, namely OpenSEES (Mazzoni et al., 2006). The SMA bar is modeled using 

a flag-shaped self-centering material (Tremblay et al., 2008). The properties of the 
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SMA bar are tabulated in Table 7.1. The finite element model of the bridge is presented 

in Figure 7.3. Apart from the SMA bar, the parameters of other materials are also 

presented in Table 7.1. A set of ground motions (Baker et al., 2011) is selected to 

perform the nonlinear time history analysis.  

 

 

Figure 7.3 Finite element model of the bridge 

 

Table 7.1 Parameters of materials 

Material Parameter Value 

Concrete 
Compressive strength (MPa) at 28 days 40.0 

Strain at peak stress (%) 0.3 

SMA 

Elastic Modulus (GPa) 58.8 

Austenite-to-martensite start stress (MPa) 460.0 

Martensite finish stress (MPa) 523.7 

Martensite-to-austenite start stress (MPa) 366.8 

Austenite finish stress (MPa) 302.8 

Pitting corrosion

Column

Earthquake Chloride exposure
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Steel 

Elastic modulus (GPa) 200.0 

Yield stress (MPa) 330.0 

Ultimate stress (MPa) 455.0 

Ultimate strain (%) 9.0 

 

 Life-cycle Sustainability and Resilience Under Earthquakes 

and Deterioration 

The earthquakes and deterioration are considered in this study to assess the long-term 

sustainability and resilience of the SMA-steel reinforced concrete bridge and the 

conventional bridge. The earthquakes are associated with stochastic occurrence time 

and intensity. The BPT renewal process is used to model the occurrence of earthquakes. 

For the corresponding parameters of the BPT model are determined based on (Pandey 

& Van Der Weide, 2017). The corrosion process can continuously reduce the area of 

steel and the strength of concrete, thus affecting the performance of bridges. Based on 

the environmental exposure parameters (Shekhar et al., 2018), the time-dependent 

structural parameters including the residual area of steel and concrete strength can be 

computed. For a given year, deteriorated bridge realizations can be generated. The 

corresponding performance in the given year can be computed.  

Figure 7.4 illustrates the simulation process of long-term sustainability and 

resilience loss under earthquake and functional deterioration processes. As indicated, 

three planes, including deterioration, vulnerability, and sustainability or resilience are 

connected through the earthquake process. The upper plan is projected to the lower plan 

in terms of the occurrence time of the extreme events. The probabilistic inter-arrival 

time W1, W2, W3,…, and Wk are generated from the earthquake process model, the 
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probabilistic hazard intensity can be generated from the ground motion prediction 

model. The seismic vulnerability of the corroded bridge under simulated earthquake 

events is computed. Based on the simulated earthquake events and seismic vulnerability, 

the sustainability is computed in terms of the number of fatalities, economic loss, and 

carbon dioxide emission. The resilience loss is computed based on the approach 

introduced in section 7.4. The long-term sustainability and resilience loss are computed 

by accumulating the corresponding consequences induced within an investigated time 

horizon.  

 

Figure 7.4 Illustration of simulating long-term sustainability and resilience loss under 

earthquake and functional deterioration processes 

In this study, 5x105 simulations are performed, and the parameters for 

consequence assessment are listed in Table 7.2. The long-term sustainability and 

Vulnerability of aging bridge 
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resilience loss of the SMA-steel reinforced concrete bridge and the conventional bridge 

are presented in Figure 7.5. Compared with the conventional bridge, the SMA-steel 

reinforced concrete bridge is associated with a lower expected number of fatalities, 

economic loss, and carbon dioxide emission, which indicates the SMA-steel reinforced 

concrete bridge is more sustainable. Additionally, the long-term resilience loss for the 

SMA-steel reinforced concrete bridge is lower than that of the conventional bridge. 

With the increase of time, there is an increasing trend of the difference of sustainability 

and resilience loss, comparing the two bridges. The relative difference in long-term 

sustainability and resilience loss of the two bridges at the year 75 is presented in Figure 

7.6. The relative difference values for the number of fatalities, economic loss, carbon 

dioxide emissions, and resilience loss are 47%, 29%, 26%, and 35%, respectively. For 

the investigated case, the implementation of SMA can make the structure more 

sustainable and resilient in a long-term perspective.  
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Figure 7.5 Long-term sustainability and resilience loss under earthquake and 

deterioration processes 

 

Figure 7.6 The relative difference in long-term sustainability and resilience at the 

year 75 comparing conventional and SMA-steel reinforced bridges (NF: number of 

fatalities; EL: economic loss; CDE: carbon dioxide emissions; and RL: resilience 

loss) 
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 Life-cycle Direct and Indirect Consequences 

In sustainability assessment, the repair of the damaged bridge can induce carbon 

dioxide emissions and economic loss, which are known as direct consequences. Due to 

the reduced functionality of the damaged bridge, the speed of the vehicles remaining 

on the damaged link may be reduced, and some vehicles may follow the detour to their 

destinations. The traffic-induced time loss, operational cost, and carbon dioxide 

emissions are considered to be indirect consequences. 

The long-term direct and indirect consequences of the two bridges under 

earthquake and functional deterioration processes are illustrated in Figure 7.7. For the 

two bridges, the indirect consequences are significantly larger than the direct 

consequences. The direct consequences associated with the SMA-steel reinforced 

concrete bridge and the conventional bridge are closely spaced. There exists a relatively 

larger difference in the indirect consequences associated with the two bridges. For the 

investigated case, the implementation of SMA can especially reduce the long-term 

indirect consequences (indirect carbon dioxide emissions and economic loss). 

Compared with the conventional bridge, the cost and carbon dioxide emission of 

constructing the SMA-steel reinforced concrete bridge are increased by 0.25 million 

RMB and 2.6 tons, respectively, while the long-term economic loss and carbon dioxide 

emission associated with the SMA-steel reinforced concrete bridge are decreased by 

0.72 million RMB and 126.6 tones, respectively (for a time horizon of 75 years). The 

increased values of the cost and carbon dioxide emission associated with the 

construction of the SMA-steel reinforced concrete bridge are relatively small, while 



 
158 

significant benefits can be achieved in terms of long-term sustainability (e.g., the 

number of fatalities, economic loss, and carbon dioxide emission) and resilience. The 

amount of SMA used in the plastic hinge region is relatively small compared with other 

construction materials (e.g., steel and concrete). The use of SMA can mitigate the 

damage and maintain the functionality of the bridge after hazards, thus reducing the 

indirect economic loss and indirect carbon dioxide emission from traffic. As mentioned 

previously, the indirect consequences account for most of the total consequences. 

 

 

Figure 7.7 Long-term direct and indirect consequences under earthquake and 

functional deterioration processes 

The carbon dioxide emissions of producing one-ton nickel alloy, titanium, and 

steel are 14, 10, and 1.2 tons, respectively (Tapia et al., 2011; NINMR 2021; Wei et al., 

2020). To consider different materials and production processes of SMA, the effects of 

SMA embodied carbon dioxide emission on long-term emissions are assessed. As 

presented in Figure 7.8, the unit SMA embodied carbon dioxide emissions (SMAUCE) 

12, 15, and 20 t/t are considered to compute the long-term emissions. By increasing the 

Conventional bridge

SMA bridge

Indirect Indirect

Direct

Direct
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SMAUCE, the direct and total long-term carbon dioxide emissions are close. The 

influence of different SMAUCE on long-term carbon dioxide emissions is negligible 

due to the small amount of the SMA used in the plastic hinge regions and the relatively 

small direct consequence. 

 

 

Figure 7.8 Impact of unit SMA embodied carbon dioxide emission on long-term 

direct and total carbon dioxide emissions 

 

7.8  Summary 

This study develops a framework for life-cycle sustainability and resilience assessment 

of structures under seismic and deterioration processes. The time-variant performance 

can be computed considering the deterioration process. The stochastic earthquake 

renewal process models are introduced. The probabilistic occurrence time and intensity 

of earthquakes within the investigated time horizon can be simulated from the 

stochastic renewal process model and ground motion prediction model, respectively. 

Sustainability is quantified in terms of the number of fatalities, economic loss, and 
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carbon dioxide emissions. By accumulating the consequences within the investigated 

time horizon, the life-cycle sustainability and resilience loss of structures can be 

assessed. The obtained results can benefit decision-making and adaptation measures in 

real-life problems. In the design stage, structures can be optimized based on the 

considered long-term sustainability and resilience threshold. In the operational stage, 

the decision can be made to select the optimal adaptation measure (e.g., retrofit) based 

on quantified life-cycle sustainability and resilience. The developed approach 

contributes to the sustainability and resilience assessment from a life-cycle perspective. 

The uncertainties associated with the occurrence time of hazard, hazard intensity, 

deterioration, and structural damage are incorporated into the developed framework. 

The long-term sustainability and resilience loss of an SMA-steel reinforced 

concrete bridge and a conventional bridge are assessed and compared. The results can 

aid the sustainable and resilient design of bridges under compound hazards. Several 

conclusions are drawn as follows. 

• Compared with the conventional bridge, the cost and carbon dioxide emission 

associated with the construction of the SMA-steel reinforced concrete bridge 

increase slightly, while significant benefits can be achieved in terms of long-

term sustainability (e.g., the number of fatalities, economic loss, and carbon 

dioxide emission) and resilience. For the investigated conventional bridge and 

steel-SMA reinforced concrete bridge, the relative difference values for the 

number of fatalities, economic loss, carbon dioxide emissions, and resilience 

loss are 47%, 29%, 26%, and 35%, respectively. 
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• The corrosion resistance, self-centering capacity, and energy dissipation are 

superior characteristics of SMA, which can mitigate the damage thus reducing 

the consequences under compound earthquake and corrosion processes.  

• The implementation of SMA can enhance the post-hazard functionality of the 

bridge, and the traffic following detours can be reduced. The long-term indirect 

economic loss and carbon dioxide emissions from traffic can be reduced 

significantly. The indirect consequences account for most of the total 

consequences. 

• The reduction of enormous long-term carbon dioxide emissions by 

implementing an SMA-steel reinforced concrete bridge can contribute the 

carbon neutrality, which is an urgent need of society to mitigate the adverse 

global warming issues. 
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CHAPTER 8   

CONCLUSIONS AND FUTURE WORK 

8.1  Conclusions 

This thesis proposes a surrogate-enabled seismic performance analysis framework for 

spatially distributed bridges. An approach is developed to select the appropriate IM 

incorporating the trade-off among multiple criteria. The surrogate models with 

acceleration algorithms are developed. The surrogate models are used for uncertainty 

quantification and global sensitivity analysis, respectively. The surrogate models are 

used to compute the seismic vulnerability of bridges. A two-stage multi-criteria global 

sensitivity analysis algorithm coupling surrogate model and decision technique is 

developed for identifying the holistic sensitive parameters to the whole system. A vine 

copula-based approach is developed to model the complex dependence within the 

PBEE. The developed approaches including the multi-criteria IM selection, advanced 

surrogate model for uncertainty quantification, multi-criteria global sensitivity analysis, 

and vine copula-based dependence model can jointly improve the confidence of PBEE. 

Moreover, the sustainability and resilience assessment is extended to a life-cycle 

context considering earthquakes and deterioration. The life-cycle performance of a 

hazard mitigation measure is assessed. The developed framework can aid the confident 

design and management of spatially distributed bridges under earthquakes. The major 

conclusions of this thesis are summarized. 

1. An approach for seismic IM selection under multiple criteria and uncertainty is 
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developed. A multi-criteria decision-making (MCDM) approach by 

incorporating stochastic multi-criteria acceptability analysis (SMAA) with the 

technique for order preference by similarity to ideal solution (TOPSIS) is 

proposed to solve the stochastic decision-making problem. The multiple 

performance criteria are evaluated for the investigated structural components, 

and the decision matrix is formulated based on the criteria of each IM alternative. 

The importance of the component to system reliability is quantified and used as 

the weighting factors in MCDM. The holistic acceptability indices indicating 

the overall acceptability levels of IMs are computed. Additionally, the effects 

of different IMs on probabilistic performance are investigated to further support 

the IM selection. 

2. A surrogate-based performance analysis approach is developed. The sparse PCE 

is used as a surrogate model to emulate the response of the physical model. The 

acceleration techniques are integrated to formulate an algorithm for the efficient 

computation of sparse PCE (ASPCE). The integrated algorithm can improve the 

efficiency of the computational process compared with conventional greedy 

algorithms while ensuring satisfying predictive performance. Once the sparse 

PCE model is obtained, uncertainty quantification can be achieved efficiently. 

By using ASPCE, a complex relationship of the input and demand can be 

captured, and multiple uncertain parameters can be incorporated into 

uncertainty propagation. 
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3. A two-stage multi-criteria global sensitivity analysis algorithm is proposed by 

coupling ASPCE and the technique for order preference by similarity to the 

ideal solution (TOPSIS). A holistic global sensitivity index is proposed to 

identify the sensitive parameters incorporating multiple performance criteria. 

The sensitivity indices for individual output are computed based on the 

developed surrogate model in an efficient manner. The global sensitivity indices 

associated with different performance outputs are then considered as the 

sensitivity criteria and formulated as a sensitivity matrix. TOPSIS is used to 

incorporate these sensitivity criteria to compute the holistic global sensitivity 

indices. The holistic global sensitivity index can be used to aid the decision-

makers to refine the database (e.g., data acquisition, investigation, and 

complexity reduction) for confident regional risk assessment. 

4. A vine copula-based seismic performance assessment framework is developed. 

The vector IM and surrogate models are coupled to predict the seismic demand. 

The vine copula is used to model the dependence of demands and IMs. Then, 

seismic performance can be assessed. The proposed framework is illustrated on 

bridges under seismic hazards. For the investigated cases, the proposed 

framework can improve confidence significantly and better capture complex 

dependence. Within the investigated cases, the large difference in higher-order 

moments of seismic performance is observed by using conventional 

assumptions and vine copula. Due to its generality, the developed vine copula-

based approach can be applied to many problems to investigate and model the 

javascript:;
javascript:;
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dependence characteristics, where the dependence structures are not well 

identified. 

5. An approach for assessing the life-cycle sustainability and resilience of bridges 

under compound earthquakes and deterioration is proposed. The stochastic 

renewal process is used to model the occurrence of earthquakes. The effects of 

deterioration on bridges are modeled through the time-dependent reduction of 

steel area and strength of concrete. The bridge seismic performance can be 

computed in a time-variant manner considering deterioration. Subsequently, 

long-term bridge sustainability (e.g., fatality, economic loss, and carbon dioxide 

emission) and resilience are computed by considering earthquakes and 

deterioration occurring during the entire service life of bridges. The developed 

approach incorporates the uncertainties associated with deterioration, structural 

damage, earthquake occurrence, and hazard intensity. 

6. The life-cycle sustainability and resilience of the steel-SMA reinforced concrete 

bridge are assessed. The earthquake and deterioration processes are considered 

in the assessment. By accumulating the consequences within the investigated 

time horizon, the long-term sustainability and resilience loss of structures can 

be assessed. The results are compared with those of the conventional bridge. 

The comparison results confirm that the steel-SMA reinforced concrete bridge 

is more sustainable and resilient under earthquakes and functional deterioration 

in a long-term perspective. The corrosion resistance, self-centering capacity, 

and energy dissipation are superior characteristics of SMA, which can mitigate 
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the damage thus maintaining functionality and reducing the consequences under 

compound earthquakes and deterioration. 

8.2  Future Work 

Some future work can be conducted to further contribute to the relevant field. 

The life-cycle sustainability and resilience assessment can incorporate multiple 

hazards, fatigue, and climate change. The occurrence of hazards is complex. The 

prediction of long-term hazards can directly affect confidence in life-cycle assessment. 

There exist uncertainties associated with the occurrence time and intensity. The 

occurrence mechanisms of hazards should be further revealed. The hazards prediction 

models including the stochastic process models and intensity prediction models can be 

refined by incorporating the occurrence mechanisms of hazards. 

The life-cycle sustainability and resilience assessment can be conducted at a 

transportation network level considering urbanization and complex traffic conditions. 

Extreme events can affect the functionality of the transportation network resulting in 

complex traffic conditions. Besides, urbanization can affect traffic conditions in a life-

cycle context. The regional probabilistic hazard analysis considering spatial correlation 

should be performed to compute the hazard map for the investigated regions. Then, the 

vulnerability analysis of the components within the transportation network should be 

performed. The advanced method should be used to predict the time-dependent traffic 

conditions after the earthquakes considering urbanization in a life-cycle context. 

Historical traffic data can be used to develop and update traffic condition prediction 
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models. Based on traffic analysis, the post-hazard time-dependent functionality of the 

transportation network can be assessed. Finally, the long-term sustainability and 

resilience assessment can be achieved by considering the network-level indicators. 

The transportation network facilitates social and economic activities. The 

functionality of a community depends on the functionality of the transportation network. 

The performance assessment at the community scale can incorporate the post-hazard 

functionality of the transportation network. The interaction between the transportation 

network and the community can be considered in the performance assessment. 

The conventional resilience assessment in a structure community mainly focused 

on the physical damage and operational functionality, household well-being, a 

comprehensive and human-oriented measure, is seldom considered. In the future, the 

approaches for assessing the sustainability and resilience of the interdependent 

transportation network from a household well-being perspective should be developed 

through interdisciplinary research. Scholars from social science, economy, and 

engineering fields are encouraged to collaborate to develop a holistic assessment 

framework. 

There exist uncertainties within each step of PBEE. The occurrence of earthquakes, 

structural behavior, and consequence evaluation are complex problems. Efficient and 

confident uncertainty treatment and quantification are challenging for the real-world 

application of PBEE. The physical and social mechanisms should be further revealed 

through real events and simulation. Advanced techniques should be developed for 
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efficient and confident uncertainty quantification. The physical laws guided machine 

learning and artificial intelligence techniques should be developed to aid the assessment 

and management of structures under hazards. Specifically, data-driven machine 

learning and artificial intelligence techniques can be developed for seismic demand 

prediction, traffic flow analysis, and post-hazard functionality analysis. The data sets 

from simulation and real events are used to develop the artificial intelligence model, 

while the inferred physical laws should be used for guidance and constraint within the 

model development process. Machine learning and artificial intelligence techniques can 

be used for the assessment and management of structures efficiently and confidently.  

Due to the limited available data, the verification of PBEE using real data is still 

challenging. In the future, a comprehensive database regarding hazards, damage, and 

consequences should be developed. The PBEE can be verified and updated based on 

the multi-sources database. 

  



 
170 

 



 
171 

APPENDIX 

FINITE ELEMENT MODEL OF THE BRIDGE 

Table A Summary of the finite element model 

Component Element Material 

Superstructure Elastic beam-column element Elastic 

Bearing Zero-length element Steel01 

Column Nonlinear beam-column element Concrete01 and Steel01 

Abutment Zero-length element Quad-linear and tri-linear materials 
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