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Abstract 

Microcavity based optical frequency combs with Kerr nonlinearity attract much 

attentions for their various applications and compact configurations for chip-scale 

integration. Kerr soliton combs are typically generated in nonlinear microcavities with 

anomalous dispersion pumped by red-detuned continuous wave lasers. Although 

soliton combs have been repeatedly demonstrated in the laboratories, there are several 

challenges limit the use of microcavity combs beyond the laboratories. 

The first challenge is that current soliton Kerr comb generation scheme requires 

tunable lasers for the access of the soliton states. Tunable lasers are usually large scale 

and high-power consumption making them unsuitable for chip-scale integration. The 

second challenge is that soliton Kerr combs can only be generated in ultralow loss 

microcavities. The low loss requirement limits the choice of cavity materials and size. 

The cost of fabricating low loss cavities also limits commercial applications of 

microcavity combs. 

In this thesis, we propose optical frequency comb generation by utilizing coupled 

nonlinear microcavities to overcome these challenges. By theoretical analysis, we find 

that the coupled microcavities support modulation instability generation in the blue-

detuned side of the nonlinear cavity’s resonance, whereas there is no blue-detuned 

modulation instability generation in a single nonlinear microcavity. The size and 

location of the blue-detuned modulation instability region can be varied by tuning the 
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coupling coefficient between the two cavities, the loss of the auxiliary cavity or 

detuning between the two cavities. By using the blue-detuned modulation instability, 

we propose a soliton comb generation scheme by tuning the coupling coefficient in a 

coupled microcavity system instead of tuning the wavelength of the pump laser. We 

find that the soliton generation region (bistability region) depends on the coupling 

coefficient between the coupled cavities. We showed that the auxiliary microcavity 

introduces a new optical path which makes “blue-detuned” soliton comb generation 

possible. We numerically demonstrate soliton comb generation by tuning the coupling 

coefficient and design a Sagnac loop like structure to show that the same phenomenon 

is applicable for the coupling between the clockwise and counterclockwise propagation 

modes in a single microcavity. We further show that if the auxiliary cavity provides 

gain, then it is possible to generate soliton combs in the main cavity with higher loss, 

which will reduce the difficulties in fabricating low loss microcavities and expand the 

choices of cavity materials. 

Our study in this thesis provides a theoretical understanding and experimental 

guidance for optical frequency comb generation in coupled nonlinear microcavities. 

The results will benefit the development of chip-scale comb sources.  
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1 Background 

1.1 Optical frequency combs 

1.1.1 Concept and principle of optical frequency combs 

Optical frequency combs (OFCs) are initially developed to count the cycles of optical 

atomic clocks [1]. Before the OFCs, it takes up to 10 scientists, 20 different oscillators 

and 50 feedback loops to carry out a single optical measurement [2]. The generation of 

OFCs in a phase-stabilized mode locked laser (MLL) in 2000 replaced such a complex 

system [1]. MLLs have a broadband spectrum over 100 nm and consist of hundreds of 

thousands to millions of coherent resonant longitudinal optical cavity modes. The pulse 

spectrum has two unique properties for high precision frequency metrology: all the 

optical cavity modes are perfectly equidistant in the frequency domain and all the 

optical modes are phase coherent. The properties lead to deterministic evolution of 

frequency and phase of every cavity mode in the OFC spectrum. As a result, the 

absolute frequencies of every mode in the OFC spectrum are determined once the 

absolute frequency of any one cavity mode is known.  

The equal frequency spacing of the modes in the spectrum is analogous to a comb. 

The optical fields of OFCs can be described by comb like periodic longitudinal cavity 

modes in the frequency domain. The frequencies of the cavity modes are equally 

separated by an identical mode spacing fr, which is equal to the repetition rate of the 
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temporal pulse train. However, the frequencies of the cavity modes are not necessarily 

exact multiples of fr. The exact frequencies of the N-th mode νN can be described by the 

summation of N times fr and a common offset frequency f0 (f0 < fr) as 

N r 0N f fν = × + .                          (1.1) 

Figure 1.1 depicts a frequency comb. From Eq. (1.1), even if there are millions of modes 

in an OFC spectrum, there are only two degrees of freedom: the repetition rate fr and 

offset frequency f0. 

 
Fig. 1.1 Visualization of the comb equation and offset frequency detection with self-referencing 

[1]. (f0: offset frequency; fr: repetition rate; νN: frequency of the N-th mode). 

The laser repetition rate fr is the inverse of the period TR of the pulse train with TR 

= L/vg, where L is the cavity length, vg is the group velocity of the light propagating in 

the cavity. Change of the cavity length would change fr and realize accordion-like 

expansion and contraction of the cavity modes. Since the absolute frequencies of the 

cavity modes are usually much larger than the offset frequency f0, the tuning of fr 

provides a coarse frequency control method of the OFC spectrum. Detection of fr is 

quite straightforward with the coherent and phase-locked properties of the cavity modes 

as the beating signal of two neighboring modes provides the information of fr. If fr is in 
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the conventional microwave domain, it is accessible with direct detection of the optical 

pulses with a signal analyzer. 

Steady periodic optical pulses require a fixed phase relationship between the cavity 

modes, which means that different modes should evolve with the same phase velocity. 

This strict condition is not possible in dispersion materials. The deleterious effect of 

dispersion can be countered by the Kerr nonlinearity with an avoidable offset frequency 

f0. The value of f0 depends on the dispersion induced phase of the carrier-envelope. It 

is found that the measurement and stabilization of f0 are crucial in the generation of 

OFCs. Fig. 1.1 shows a method proposed in 1999 to measure f0 with nonlinear self-

referencing [3]. A cavity mode with frequency νN at the lower end of the spectrum is 

frequency-doubled to 2νN. The frequency-doubled light will interfere with the mode at 

ν2N, which is the closest mode to the light at frequency 2νN. The beating signal has a 

frequency of f0 since 

N 2N r 0 r 0 02 2 ( ) (2 )N f f N f f fν ν− = × × + − × + = .             (1.2) 

Eq. (1.2) is mathematically simple, but it requires an octave spanning optical spectrum, 

which is challenging to realize. Supercontinuum generation is a key technique to 

generate octave-spanning spectrum [4]. 

1.1.2 The applications of optical frequency combs 

Because of the highly coherent cavity modes and ultrabroad spectrum, OFC sources are 

widely used in different areas that require high precision frequency measurement and 
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synthesis, especially for accurate optical frequency measurement and distance 

measurement. 

The most important application of OFCs is the measurement of the absolute 

frequency of an optical signal. Before OFCs, cesium atomic clocks are used as a 

frequency reference to increase the measurement precision. This method requires a 

series of phase-locked oscillators to connect the microwave domain to the optical 

domain [5]. The system is bulky, complex and very large scale [2]. It is not practical to 

use the system to perform a high-precision optical frequency measurement in most 

cases. A compact comb source can be applied instead of multiple oscillators to simplify 

the system for practical applications. The measurement of the optical frequency can be 

accomplished by interference between OFC and the optical signal.  

Distance measurement is another important application of OFCs. Fig. 1.2 illustrates 

two OFC based ranging techniques, direct time of flight (TOF) method with coarse 

resolution and dual-comb linear optical sampling (LOS) method with fine resolution 

[6,7]. In Fig. 1.2, single comb TOF method involves only comb 1 and the distance is 

determined by measuring the delay between the known reference (green pulse) and the 

target (red pulse). The resolution of this method is theoretically limited by the pulse 

train period of the comb source but in most cases, the practical limitation is the long 

response time of photodetectors. For a photodetector with a response time of 0.02 ns 

(very short for commercially available photodetectors), the TOF method resolution is 

about 6 mm. The dual comb LOS method increases the resolution from millimeter to 
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nanometer when compared with the TOF method. The major drawback of distance 

measurement by OFC is the high cost and high system complexity which could be 

overcome with the development of microcavity based OFCs. 

 
Fig. 1.2 Single comb time of flight method and dual-comb LOS method [1]. 

Besides the applications mentioned above, other applications including molecular 

fingerprinting, attosecond control of electronic processes, and methane detection have 

been demonstrated [8-11]. However, MLLs are complex, have large sizes and high-

power consumption. Microcavity based OFCs, which are also called microcombs, are 

attractive candidates with compact configuration when compared with MLLs. Besides, 

microcombs have the potential for miniaturization with high repetition rates > 10 GHz. 

Compatibility with on-chip integration can simplify large-scale manufacturing and 

eventually lead to widespread application of frequency comb technology. 
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1.2 Microcavity based optical frequency combs 

1.2.1 Development of microcombs 

Microcombs have been demonstrated in different micro- and nano-cavities that exhibit 

high Q factors, including microring [12], microdisk [13], and microtoroid [14] 

resonators. Fig. 1.3 shows the three kinds of microcavities. The first microcomb was 

demonstrated by Del’Haye et. al. in 2007 with a silicon microtoroid resonator [15]. The 

generated pulses are not mode-locked and the comb is in modulation instability (MI) 

state. The first mode-locked microcomb was demonstrated in a magnesium fluoride 

microcavity by T. Herr et. al. at 2014 [14]. A soliton state microcomb was achieved for 

the first time. However, crystal microcavity fabricated by mechanically polishing is not 

suitable for chip-scale integration. To realize chip-scale microcomb sources, different 

material platforms have been investigated and soliton state microcombs have been 

demonstrated in silicon nitride [16], lithium niobate [17], and aluminum nitride [18] 

microring resonators, etc. 

 
Fig. 1.3 Images of a microring [12], a microdisk [13], and a microtoroid [14] resonator. 



7 
 

1.2.2 Dielectric nonlinear microcavities 

Microcombs are generated in dielectric nonlinear microcavities. In this Subsection, we 

introduce some basic concepts of dielectric nonlinear microcavities. 

Free spectral range 

The resonance condition of a cavity can be expressed with resonance frequencies or 

resonance wave vectors. The resonance frequencies ωm of a cavity are determined by 

the light roundtrip time TR = nL/c, where n is the refractive index of the cavity, L is the 

roundtrip length of the light inside the cavity and c is the speed of light 

m Rm2 / .Tω π=                          (1.3) 

The mode number m represents the m-th mode of the mode family. The resonance wave 

vectors km are determined by the cavity length as  

m m Rm2 / / .k L T Lπ ω= =                     (1.4) 

Because of material and geometrical dispersion, different resonance modes have 

different refractive indices. The difference between adjacent resonance frequencies of 

a mode family is defined as the free spectral range (FSR) which equals to the inverse 

of cavity roundtrip time, 

R1/ .FSR T=                           (1.5) 

OFC generation in microcavities is excited by the injection of an external continuous 

wave (cw) laser. 
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Dispersion 

Microcomb generation is determined by the effects of material dispersion and 

geometric dispersion [19]. The material dispersion is due to the frequency dependence 

of the refractive index. The geometric dispersion is due to the geometric mode profile 

of light inside the cavity. In a microcavity pumped by a cw laser, it is convenient to use 

relative mode number μ instead of the absolute mode number m, where μ = 0 is the 

pumped mode. The resonance wave vectors kμ can be written as 

2 3
0 1 2 3

1 1 ...
2 6

k k D D Dµ µ µ µ= + + +                 (1.6) 

Here D1 is the mode wave vector spacing and 2π/D1 denotes the cavity length. D2 and 

D3 are the second and third order dispersion, respectively. It should be noted that the 

wave vector k is expanded about the mode number μ instead of the the frequency ω. 

The definition of dispersion coefficients here is different from the usual dispersion 

coefficients defined in optical fibers (see Appendix D). 

Q factor 

At present, microcombs are only observed in microcavities with a high Q factor. The Q 

factor of a cavity is defined as 2π times the ratio of energy stored in the cavity Ucav to 

energy dissipated per oscillation cycle Udiss. In a weakly damped oscillator, the quality 

factor can be expressed as 

cav

diss

2 ,UQ
U

ωπ
α

= =                       (1.7) 

where ω is the resonance frequency and α is the cavity loss rate [20]. 
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Coupling 

In this thesis, the coupling between microcavities and waveguides are assumed to be 

linear. Fig. 1.4 shows the schematic model of a typical coupling between two sections 

of waveguides. The coupling region is treated as a four-port device and the ports are 

marked with j = 1, 2, …, 4 as shown in Fig. 1.4. For simplicity, the transverse 

distribution of the field within the waveguides are omitted, and the field at each port is 

Ej(z) = Eje-ikz + c.c., with complex field amplitudes Ej, j = 1, 2, …, 4. Here k is the wave 

vector, c.c. is short for complex conjugate. The scattering matrix for this coupling 

region can be written as 

c c4 3

2 1c c

1
,

1

iE E
E Ei

θ θ

θ θ

 −   
=     

−     
                   (1.8) 

where θc is the power transmission coefficient. 

 
Fig. 1.4 Model of a typical coupling with a straight waveguide and a section of curve waveguide. 
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1.2.3 Modulation instability and Kerr frequency comb 

For a nonlinear microcavity pumped by a cw laser, when the intracavity power exceeds 

the parametric oscillation threshold, new frequencies are generated through nonlinear 

processes like MI and four wave mixing (FWM). The microcombs are generated 

through the cascaded nonlinear processes which are mainly due to the third-order 

nonlinearity, such combs are usually called Kerr frequency combs. 

The formation of Kerr frequency combs involves different stages with various 

spectral domain behaviors and complex dynamics. A typical method to generate Kerr 

comb is to fix the power of the pump laser and tune the pump laser frequency over the 

cavity resonance to achieve a strong intracavity power and initiate the nonlinear 

processes. The generation of new frequencies starts with the creation of a new signal 

and idler modes with different frequencies located symmetrically from the pump mode. 

The first pair of side modes are generated through MI. In Fig. 1.5, when the intracavity 

power of the pump mode exceeds the MI gain threshold, a pair of new sidebands are 

generated. The generated new fields are called primary sidebands. This three-mode 

model can provide insights into the initial dynamics of Kerr combs [21]. Once the 

primary sidebands are excited, their mixing with the pump through FWM leads to more 

sidebands with the same spacing. When the pump laser is tuned further into resonance, 

the intensities of the sidebands increase and mix with each other to produce sidebands 

far from the pump. The comb spaced by multiple of FSRs is called primary comb as 
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shown in Fig. 1.5. In the time domain, the formation of a primary comb breaks the cw 

state into pulses. 

 
Fig. 1.5 The formation of primary sidebands through MI and primary comb through FWM. 

When the intracavity light intensity increases further, the sidebands of the primary 

comb are strong enough to initiate MI and cascaded FWM around themselves and lead 

to the formation of secondary comb lines. The spacing of the secondary comb lines is 

much smaller than the spacing of the primary comb lines as shown in Fig. 1.6. The 

secondary comb lines around primary comb lines form subcombs in Fig. 1.6. 

 
Fig. 1.6 The formation of subcombs around primary comb lines. 

By further tuning the pump laser into the cavity resonance, the subcombs expand 

and merge with each other. All oscillating modes are filled as shown in Fig. 1.7. 

Because of dispersion, the spacing of the primary sidebands is in general not an integer 

multiple of the spacing of the the subcombs. When subcombs merge with each other, 

the mismatch between the spacing of the primary comb lines and subcombs leads to the 
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mutual incoherence of the resulting Kerr comb. In the time domain, the formation and 

merging of the subcombs break the stable pulse into chaotic intracavity waveform. This 

“noisy” comb state is usually called chaotic MI. 

 
Fig. 1.7 The subcombs merge with each other and form a “noisy” Kerr comb. 

1.2.4 Soliton microcombs 

The low coherence of Kerr frequency combs and their chaotic intracavity waveforms 

limit the number of applications which microcombs could be used. A low-noise Kerr 

comb state can be achieved in microcavities by phase synchronization of the comb lines 

(also known as mode-locking). This comb state is associated with the formation of 

intracavity optical solitons [22]. The solitons are called dissipative Kerr solitons (DKS) 

because they only exist in dissipative system and the governing nonlinearity is the Kerr 

nonlinearity. DKSs are also referred to as “Temporal solitons” or “solitons” in the area 

of Kerr combs. DKSs are localized pulses that circulate in the driven cavity and 

maintain their shape because of the balance between nonlinearity and dispersion as well 

as dissipation and gain [23]. DKSs formed in the cavities can be in single-soliton state 

or multiple-soliton state (also known as soliton molecule state) as shown in Fig. 1.8. 
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Fig. 1.8 Single-soliton and multiple-soliton states in the cavity. 

A soliton microcomb does not appear spontaneously from small perturbations of 

the cw pump. It needs an excitation mechanism. In experiments, one of the simplest 

and most employed techniques is excitation via laser tuning [14]. In Fig. 1.9, a cw pump 

laser is scanned from the blue-detuned to the red-detuned region of a cavity resonance 

to excite the chaotic MI state. With further tuning of the pump, only the most intense 

MI pulses converge to a soliton state. This soliton formation method does not require 

complex elements such as a modulator or a pulsed laser. However, a narrow linewidth 

tunable cw laser is still a big challenge to realize integrated microcombs. 
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Fig. 1.9 Evolution of the total intracavity energy (blue) upon sweeping the detuning (red) of a cw 
pump laser from the blue-detuned to red-detuned side of a cavity resonance. The initial cw state 
becomes unstable with the excitation of MI (eventually chaotic MI). With further tuning of the 

pump laser, the chaotic MI converges into soliton states and form the “soliton step” [14].  

The formation of soliton states in microcavities have revolutionized the area of 

Kerr combs and are the focus of the present study. Soliton microcombs have been 

demonstrated in chip-integrated compatible platforms with the advantages of mass-

producibility, chip scale footprint as well as the possibility for heterogeneous 

integration with laser sources and other electro-optic components [24]. Compared with 

traditional MLL combs, microcombs are distinguished by their inherent wider mode-

spacing. Limited by the gain medium, the FSRs of MLL combs are at most 10 GHz 

[25], while the repetition rates of microcombs can be up to 1 THz [26]. With the above 

advantages, soliton microcombs have been applied in various fields including coherent 

optical communication [27], LIDAR [28], astrocombs [29, 30], dual-comb 

spectroscopy [31], ultrafast optical ranging [32, 33], optical clock [34], microwave to 

optical link [35], and optical frequency synthesizer [26]. 
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1.2.5 Challenges for soliton microcomb generation 

Access to soliton state 

As discussed in Section 1.2.4, the transition from cw state to soliton state requires 

excitation. Using a tunable laser to trigger the soliton state is the most common method 

used in experiments [36-38]. However, a tunable cw laser suitable for soliton comb 

generation should be stable against temperature, with narrow linewidth (< 100 kHz), 

and mode-hop-free. Such lasers are large and require high power as shown in Fig. 1.10. 

These features make them unsuitable for chip-scale integration. 

 
Fig. 1.10 Two narrow linewidth tunable cw lasers for triggering soliton microcombs: Santec TSL-

770 [39] and Toptica DLC pro [40]. 

Another way to achieve fast optical frequency sweeping is using a single sideband 

suppressed-carrier frequency shifter [41,42]. As shown in Fig. 1.11, it is composed of 

a dual-parallel Mach-Zehnder intensity modulator driven by a wideband voltage-

controlled oscillator. This method enables fast frequency scanning, but the frequency 

sweeping range is limited to several GHz and the complex set-up is also unsuitable for 

integration. 
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Fig. 1.11 Schematic of fast optical frequency sweeping by using a single-sideband suppressed-

carrier frequency shifter [42]. 

The purpose of sweeping the pump laser frequency is to vary the detuning between 

the pump and the cavity resonance. Thus, equivalently, tuning the cavity resonances 

while the pump frequency stays fixed should also trigger the soliton microcombs. The 

sweeping of the cavity resonance can be achieved by using a microheater to thermally 

control the microcavity [43-45]. In Fig. 1.12, to achieve a large sweeping range, nearly 

the whole cavities are covered by the microheaters. The cavity resonances are tuned by 

the intensity of the current flowing inside the microheaters. When the size of the 

microcavity increase, the size of the microheater needs to increase accordingly. It is 

hard to keep the microheaters stable against temperature when their sizes are large. 

Although microheaters are available for integration, using microheaters to tune the 

cavity resonance and trigger soliton microcombs is only applicable to small 

microcavities which have large FSRs. Soliton comb generation triggered by 

microheaters in microcavities with FSRs below 100 GHz has not been experimentally 

reported. 100 GHz is beyond their detection range for commercial photodetectors. Thus, 

sweeping the detuning between the pump laser and the cavity resonances in an 
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integrated microcomb source with detectable microcavity size (FSR < 70 GHz) remains 

a challenge for soliton microcomb generation.     

 
Fig. 1.12 Coupled microcavities tuned by microheaters [44]. 

Low loss requirement for microcavities 

At present, microcombs have been experimentally demonstrated only in high Q 

microcavities (Q > 106) with low intrinsic loss. As discussed in Section 1.2.3, the 

initiation of microcombs requires the MI gain to surpass the cavity loss. In experiments, 

only high Q microcavities can satisfy this requirement. The total loss of a microcavity 

is due to the absorption of the cavity material and scattering losses induced by the rough 

sidewalls of the waveguides. The low loss requirement limits the microcavity 

fabrication in two aspects. 

Firstly, the cavity size is limited because the total loss is proportional to the length 

of the waveguide. Recall that the cavity size determines the bandwidth of the 

photodetector that can detect the microcombs generated in such cavities. Larger cavity 

size equals to lower cost (high bandwidth detection devices are extremely expensive. 

The price of an 80 GHz oscilloscope is more than 150 thousand US dollars). Besides 
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the expense of using ultrasmall microcavities, the lack of low repetition rate combs 

(FSR < 10 GHz) also limits the application of microcombs. 

Secondly, the low loss requirement also limits the choice of materials for 

microcomb generation [46]. Materials with high Kerr nonlinear coefficient and wide 

transparent range like silicon and chalcogenide cannot be used for soliton microcomb 

generation because of their relatively high propagation loss [47-50]. Even for materials 

with low intrinsic loss like silicon nitride and lithium niobate, they require complex and 

expensive processing to fabricate high Q microcavities [51-53]. The generation of 

soliton microcombs does not require broad spectral gain medium as in the case of MLLs. 

This provides opportunities for the generation of combs at new operating wavelengths 

not available so far. However, the limitation of materials with low intrinsic loss for 

soliton microcomb hinders the development of new wavelengths for comb generation. 

To overcome the challenges discussed above, we propose to couple an auxiliary 

cavity to the main cavity. In this thesis, we present for the first time a theoretical 

analysis of microcomb generation in such a coupled microcavity system. Both MI comb 

and soliton comb generations are studied analytically and numerically. 

1.3 Thesis outline 

Chapter 2 gives a brief introduction of coupled microcavity systems and numerical 

models used in this thesis. In recent years, the coupled microcavity system draw 

attention in the study of PT asymmetry and microcomb generation. We review the 

major results of these studies to show the originality of the work in this thesis. Coupled 
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mode equations and Ikeda map are used in this thesis to study MI and soliton generation 

in coupled microcavities. 

Chapter 3 discusses MI generation in coupled nonlinear microcavities. We found 

that a new blue-detuned MI generation region is induced by the coupling of an auxiliary 

cavity to the main cavity. The parameters of the auxiliary cavity that influence the new 

MI region are analyzed in detail. Numerical simulations of MI and MI comb generation 

are presented. 

Chapter 4 describes the investigation of soliton microcomb generation in coupled 

nonlinear microcavities. We propose a new soliton microcomb excitation method by 

tuning the coupling between the two cavities. We explain the soliton excitation 

mechanism with the additional figure-8 optical path introduced by the coupling of the 

auxiliary cavity. The same principle can be applied to a single microcavity with 

clockwise (CW) and counter-clockwise (CCW) mode coupling. We then study soliton 

microcomb generation in low Q microcavities by coupling with auxiliary gain cavity. 

Chapter 5 is a summary of the thesis and the future work plan. 
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2 Coupled microcavity system and 
theoretical models 

2.1 A brief review of recent research on coupled 

microcavity system 

2.1.1 Coupled linear microcavity 

In recent years, coupled microcavity systems have attracted interest especially in the 

study of parity-time symmetry and exceptional points in photonics [54-56]. These 

researches only consider linear microcavities which do not support microcomb 

generation. Thus, we only focus on the experimental techniques developed from such 

studies. 

The first important technique is the fabrication of different microcavities on the 

same chip. This technique makes it possible to fabricate the two microcavities in the 

coupled system with different sizes, losses, dispersion, nonlinearity and other 

parameters. A pair of gain-loss coupled micro-disk cavities are commonly used in the 

study of parity-time symmetry as shown in Fig. 2.1(a) and 2.1(b) [55]. The two 

microcavities are fabricated as one loss cavity and one gain cavity. Micro-disk cavities 

cannot be mass produced yet. Thus, currently they are used only in scientific research. 

With the development of hybrid integration technique [57], mass production of 

microcavities with different properties on the same chip will not be far away. 
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Fig. 2.1 (a) Top view and (b) side view of two coupled gain-loss micro-disk cavities [55]. (c) A 

chip-scale microcomb source with hybrid-integration technique [57]. 

Another important technique is tuning the coupling coefficient between two 

coupled microcavities. The coupling between two microcavities can be tuned by 

adjusting the gap between the microcavities. In micro-disk cavities, the gap adjustment 

can be achieved by mechanical movement of the microcavities [58]. This method is 

shown in Fig. 2.2(a) and 2.2(b). Two silica micro-disk cavities are fabricated on the 

edge of two silicon substrates. Thus, the gap between the two microcavities can be 

adjusted by moving the substrates. This method is obviously not suitable for integration. 

For microring cavities, the gap between the two cavities can be adjusted by integrating 

a microheater at the coupling region [59]. As shown in Fig. 2.2(c), the coupling 

coefficient at the coupling points G1 and G2 can be tuned by controlling the current 

through the microheaters.  

Microheaters are widely used in various applications including gas sensors [60], 

microcalorimeters [61], gas flow meters [62], infrared sources [63], and thermal 

management [64]. Many structure designs have been proposed to optimize the 
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performance of microheaters. The temperature of metal oxide heating films can be up 

to 700 ℃ [65]. By using an innovative layout of the heating wires, the temperature 

variation of the heated area can be lower than 1% at 135 ℃ and the microheater is stable 

after a stress test at 530 ℃ for 120 hours [66]. For a microheater with a size of 1 cm × 

1 cm, the heating efficiency can be up to 135 ℃/W [67]. Thus, there are well developed 

techniques for tuning the coupling between microcavities by microheaters with high 

efficiency and stability. As the fabrication of microheaters is compatible with CMOS 

fabrication process, the microheaters can be mass fabricated at low cost. 

 
Fig. 2.2 (a) Top view and (b) side view of the coupled silica micro-disk resonators [58]. (c) 

Microscope image of the controllable coupled microcavities controlled by microheaters [59]. 

2.1.2 Coupled nonlinear microcavity for microcomb generation 

Microcomb generation in coupled nonlinear microcavities has been investigated mainly 

in two aspects, namely microcomb generation in normal dispersion microcavities [68-

73] and improvement in pump power efficiency [74]. 

It is well known that MI occurs in Kerr nonlinear waveguide with anomalous 

dispersion [75]. Microcomb generation in normal dispersion microcavities has often 

been thought difficult because of the lack of MI. However, normal dispersion is easy to 

access in most nonlinear materials at the communication band. It has been reported that 
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MI occurs in normal dispersion resonators through coupling between different modes 

[76]. A coupled microcavity system was demonstrated to achieve soliton microcombs 

in normal dispersion microcavities in Fig. 2.3 [68]. The mode interaction in this coupled 

system induces equivalent “anomalous dispersion” in normal dispersion microcavities 

to achieve MI generation. 

 
Fig. 2.3 Coupled microcavity system for microcomb generation in normal dispersion cavities [68]. 

Coupled microcavity systems have also been used to achieve efficient temporal 

soliton generation. The mutually coupled cavities provide a pump recycling scheme to 

improve the pump to soliton energy conversion. The concept is shown in Fig. 2.4, one 

nonlinear cavity for soliton generation is coupled to one linear pump cavity for pump 

recycling [74]. The soliton microcomb propagates in the soliton cavity, while the pump 

cavity recycles the pump field to maximize energy transfer from the pump to the soliton. 
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Fig. 2.4 Scheme of soliton comb generation in coupled microcavity with pump recycling [74]. 

As discussed in Section 1.2.4, the trigger of DKSs in microcavities requires red-

detuned pump lasers. Experimentally generated soliton microcombs reported so far are 

with the frequencies of the cw pump lasers in the red-detuned region [14-18, 24]. The 

research of microcomb generation with a blue-detuned pump laser in this thesis is 

original. 

2.2 Theoretical models 

Microcomb generation involves the generation of a series of dissipative cavity modes 

in a microcavity with dispersion, Kerr nonlinearity and a cw pump [14]. The optical 

field propagation inside the microcavities can be described by models either in the 

temporal or the spectral domain. For models in the spectral domain, the motion of each 

cavity mode is described by a separate equation coupled through FWM. This set of 

coupled equations is referred to as the coupled mode equations (CMEs) [21]. CMEs are 

useful for calculating the threshold of parametric oscillation [77] and determining the 

primary comb lines in microcomb generation [78]. We use CMEs to study MI 
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generation in nonlinear microcavities. However, this model is computationally 

demanding for the simulation of wide band microcombs. The complexity of calculation 

increases exponentially with the number of modes simulated [79]. For wideband 

microcomb generation, a temporal model is more appropriate. In this thesis, we use the 

Ikeda map model [80] to investigate the soliton microcomb generation. Ikeda map treats 

the optical fields propagation and coupling separately. It can describe the rapid changes 

of the light in one roundtrip such as in a coupled microcavity system.  

2.2.1 Coupled mode equations 

CMEs consider a series of cavity modes in the same transverse mode family. The 

optical field of each mode can be described by  

( )
1 2 3

*
1 2 3 0 pump

, ,
exp ,

2
A

ik A A i A A A i F ik z
z
µ

µ µ µ µ µ µ µ
µ µ µ

α γ δ θ
∂

= − − + + −
∂ ∑       (2.1) 

where μ is the relative mode index, Aμ and kμ denote the amplitude and the resonance 

wave vector of the μ-th mode, respectively. z is the evolution variable in one roundtrip. 

α is the cavity loss rate, γ is the Kerr nonlinear coefficient and θ is the power coupling 

coefficient between the cavity and pump waveguide. F and kpump are the amplitude and 

wave vector of the pump laser, respectively. δμ0 is the Kronecker delta function, it 

equals 1 or 0 for μ = 0 and μ ≠ 0, respectively. Each mode is coupled with other modes 

through FWM as shown in the third term of the right-hand side of Eq. (2.1). We 

transform Eq. (2.1) to a relative wave vector frame where 

( )pump 1exp .A a i k D zµ µ µ = − +                     (2.2) 



26 
 

Here, aμ is the amplitude of the μ-th mode in the relative wave vector frame. Note that 

the pump laser is injected near the 0-th comb line, and kpump+D1μ is the wave vector of 

the μ-th comb line with D1 is the mode wave vector spacing. Substitution of Eq. (2,2) 

into Eq. (2.1), we have 
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1 pump 1 2 3 0
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.

2
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i k D k a a i a a a i F
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µ µ µ µ µ µ µ
µ µ µ
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= − − − − + +
∂ ∑     (2.3) 

We expand the wave vector kμ by Eq. (1.6) and neglect dispersion beyond the second 

order, we obtain 
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i k a a i a a a i F
z
µ
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αδ γ δ θ
∂
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where  

2 22 2
1 pump 0 pump 0 .

2 2
D Dk k D k k k kµ µδ µ µ δ µ= − − = − + = +         (2.5) 

For the investigation of coupled microcavity systems, we modify the CMEs by 

introducing the coupling between the microcavities. A coupled microcavity system is 

shown in Fig. 2.5. The main cavity is coupled to an auxiliary cavity and a waveguide. 

A cw pump laser signal is injected into the main cavity via the waveguide. In this thesis, 

we aim to investigate how the MI generation in the main cavity is affected by the 

auxiliary cavity.  Thus, for simplicity we first assume that the auxiliary cavity is linear 

when we study MI generation in coupled microcavity systems. In Chapter 3, we will 

show that the MI generation condition in the main cavity can be analytically determined 

if the auxiliary cavity is linear. 
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Fig. 2.5 Schematic of a coupled microcavity system for MI generation. 

The evolutions of the intracavity optical fields inside the coupled cavities are then 

modeled by 
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Symbols of the main cavity are defined as that for single cavity in Eq. (2.1). θc is the 

power coupling coefficient between the two microcavities. μ' denotes the mode index 

of the auxiliary cavity which couples with the μ-th mode of the main cavity. Since the 

sizes of the two microcavities can be different, μ' and μ can be different. A'μ' and k'μ' are 

the amplitude and wave vector of the μ'-th mode, respectively. α' is the loss rate of the 

auxiliary cavity. Similar to the single microcavity, we use relative wave vector frames 

and transform Eq. (2.6) and Eq. (2.7) to 
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where ( )1 pumpexp ,A a i D k zµ µ µ′ ′  ′ ′ ′ ′= − +   and D1' is the mode wave vector spacing of 

the auxiliary cavity. When the μ'-th mode of the auxiliary cavity is coupled to the μ-th 

mode of the main cavity, it requires D1'μ' = D1μ. Thus, we have 
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Here, 

2 22 2
1 pump 0 pump 0 .

2 2
D Dk k D k k k kµ µδ µ µ δ µ′ ′

′ ′′′ ′ ′ ′ ′ ′ ′= − − = − + = +        (2.12) 

 

2.2.2 Ikeda map 

We use Ikeda map to analyze and simulate soliton microcomb generation in 

microcavities. Ikeda map models the optical field propagation in a resonant cavity 

system [81]. Ikeda map combines the Generalized Nonlinear Schrödinger Equation 

(GNLSE) [82] describing the intracavity light propagation, together with the boundary 

conditions relevant to the fields between successive roundtrips and the input pump field 

[83, 84]. The field propagation of the s-th roundtrip in the microcavity is described by 

( ) ( ) ( ) ( ) ( ) ( )
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∂ ∂
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( ) ( )1 ,0 1 , ,s sE t E t L i Fθ θ+ = − +                   (2.14) 

where t is time, δk0 is the wave vector detuning from the cavity resonance closest to the 

pump frequency, β2 is the group velocity dispersion, and L is the cavity length. The 
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higher-order dispersion and the frequency dependence of the nonlinear coefficient is 

not the dominant effects of soliton microcomb generation. Thus, in this thesis, we 

neglect these terms for simplicity. Eq. (2.13) can be extended to include any higher-

order effects. Eq. (2.14) is the boundary condition that determines the intracavity field 

Es+1(t, z = 0) at the input of (s+1)-th roundtrip in terms of the field from the previous 

roundtrip Es(t, z = L) and the pump field F. 

In this thesis, we use a set of modified Ikeda map to model soliton comb generation 

in coupled microcavities. The coupled microcavity system under investigation is shown 

in Fig. 2.6. In Section 2.2.1, we assume the auxiliary cavity is linear such that analytical 

results for MI generation in the main cavity can be obtained using CMEs. The CMEs 

adopt a modal expansion approach for studying microcomb generation in nonlinear 

microcavities in the frequency domain. The CMEs are best to describe the evolution of 

each discrete resonance mode of the comb spectrum. The Kerr nonlinearity couples the 

modes through the FWM term in Eq. (2.10). When there are a large number of modes 

in the comb spectrum (e. g. in soliton microcombs), numerical simulations of comb 

generation with CMEs are computationally demanding. Ikeda map is used to 

numerically study soliton microcomb generation in coupled microcavities instead. The 

Ikeda map provides a description of the FWM process owing to the Kerr nonlinearity 

in the time domain. Numerical simulation with Ikeda map can be solved efficiently by 

using standard numerical tools developed for the simulation of GNLSE in optical fibers 

based on the split-step Fourier method [82]. Compared to numerical simulations with 



30 
 

CMEs, numerical simulations with Ikeda map allow significant improvement in 

computational time which permit simulations of broadband microcombs such as soliton 

combs consisting of hundreds or thousands of resonant modes.  

In Fig. 2.6, we consider the case where a nonlinear main cavity is coupled to a 

nonlinear auxiliary cavity and a bus waveguide. A cw pump is coupled to the main 

cavity through the waveguide. The coupling coefficient between the waveguide and the 

main cavity is θ and the coupling coefficient between the two cavities is θc. 

  
Fig. 2.6 Coupled microcavity system for soliton microcomb generation. 

The modified Ikeda map modeling the system is  
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Eqs. (2.15) and (2.16) describe the intracavity fields evolution inside the main cavity 

and the auxiliary cavity, respectively. The symbols used for the main cavity in Eq. (2.15) 

are the same as the single microcavity in Eq. (2.13). Es' denotes the optical field of s-th 

roundtrip inside the auxiliary cavity. In this thesis, we assume the main cavity and the 

auxiliary cavity are with identical size and dispersion. The number of roundtrips in the 

two cavities shown in Eqs. (2.15) and (2.16) are the same. δk0' is the wave vector 

detuning from the resonance of the auxiliary cavity closest to the pump frequency, α', 

β2' and γ' are the loss rate, group velocity and nonlinear coefficient of the auxiliary 

cavity, respectively. In this thesis, we use the propagation distance of an optical field to 

mark a position inside the cavity. The subscript + and – denote the points immediately 

after and before the particular position, respectively. For example, Es(t, z = L+/2) is the 

optical field inside the main cavity at the position immediately after the half point of 

the main cavity. The positions mentioned in this thesis are shown in Fig. 2.7. Eqs. (2.17) 

and (2.18) are the boundary conditions that describe the coupling between the two 

cavities. The intracavity field of the main cavity immediately after coupling Es(t, z = 

L+/2) and the field of the auxiliary cavity at the input of (s+1)-th roundtrip Es+1'(t, z = 

0) depend on the field of the auxiliary cavity at the end of the s-th roundtrip Es'(t, z = 

L') and the field of the main cavity immediately before the coupling Es(t, z = L-/2). The 

boundary condition that determines the intracavity field of the main cavity at the input 

of (s+1)-th roundtrip Es+1(t, z = 0) in terms of the pump field and the previous roundtrip 

Es(t, z = L) is shown in Eq. (2.19). 
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Fig. 2.7 Schematic diagram of coupling points in the coupled microcavities. 
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3 MI generation in coupled nonlinear 
microcavity system 

In the formation of microcombs, MI plays a crucial role for the initiation of the comb. 

In this Chapter, we present analytical analysis and numerical simulation of the first pair 

of MI sidebands generation in a coupled microcavity system. The MI generation marks 

the emergence of the first pair of sidebands. We start by analyzing MI generation in a 

single microcavity and then extend the results to the coupled microcavity system. 

3.1 MI generation in a single microcavity 

3.1.1 Derivation of the MI region 

In Fig. 3.1, the pump mode of the microcavity is populated by the external cw pump. 

Oscillations of the first pair of side modes are initiated by the pump mode through MI.  

 
Fig. 3.1 MI generation in a microcavity. 

To find the MI region leading to oscillation for a given pair of side modes a±l, we 

investigate the linear stability of the trivial solution a±l = 0. We perturb the solution 
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with small fluctuations δa±l and the boundary of MI region is defined by the set of the 

parameters for which the perturbations grow (onset of side modes oscillations). In the 

stability analysis, we assume only the pump mode a0 and the pair of side modes a±l are 

oscillating. From Eq. (2.4), the side mode perturbations obey 
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Eqs. (3.1) and (3.2) can be rewritten as 
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At steady state, the side modes are created when at least one of the eigenvalues λ of the 

secular equation 
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has a positive real part. Solving Eq. (3.4), we have 

( ) ( )22 42
0 04 4 .l l l li k i k k k a aλ δ δ α δ δ γ γ± + − − += − + − ± − + − +     (3.5) 

Thus, the MI generation requires 

( )22 42
0 04 4 ] 0.l lk k a aα δ δ γ γ− +− + − + − + >          (3.6) 

Since α is the cavity loss, the MI gain GMI is given by 

( ) ( ) 2 42 2
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From Eq. (3.6), the side modes are created when the MI gain is larger than the cavity 

loss. Substitution of Eq. (2.5) into Eq. (3.7), we have 

( ) ( )2 2 42 2 2
MI 0 2 0 2 0 02 8 2 12 .G k D l k D l a aδ δ γ γ= − + + + −     (3.8) 

From Eq. (3.8), the MI gain is a function of the pump mode wave vector detuning δk0 

and the pump mode power |a0|2. For a fixed δk0, the maximum MI gain is given by 

22
MI,max 0

2 3 ,
3 23

l lk k DG k lδ δ δ− ++  = = + 
 

         (3.9) 

and the corresponding pump mode power is 
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In the case of nearly zero dispersion, we plot the MI region where the MI gain exceeds 

the cavity loss rate as a function of δk0 and |a0|2 in Fig. 3.2, where |a0|2 is normalized to 

the threshold of pump laser power for MI generation. The cusp of the MI region 

represents the case where the maximum MI gain equals the cavity loss. 
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Fig. 3.2 MI region of a single microcavity with nearly zero dispersion. 

3.1.2 MI generation in red-detuned regime only 

From Fig. 3.2, the MI region in a single microcavity exists only in the red-detuned side 

(δk0 > 0). In this Subsection, we discuss the reason MI is triggered only in the red-

detuned region in a single microcavity.  

Below the MI generation threshold, only the pump mode propagates in the 

microcavity. The pump mode a0 obeys Eq. (2.4) as 

20
0 0 0 0 0 .

2
a i k a a i a a i F
z

αδ γ θ∂
= − − + +

∂
            (3.12) 

At steady state, the phase accumulation of the pump mode in one roundtrip is 

2
0 eff 0 ,k L L aφ δ γ= − +                     (3.13) 

where Leff = (1-e-αL)/α is the effective nonlinear length [85]. The resonance condition of 

the microcavity requires ϕ = 0. Thus, the pump mode wave vector detuning δk0 has to 

be red-detuned to fulfill the resonance condition. The inclusion of Kerr effect 

effectively red shifts the cavity resonance. If the pump laser is initially blue-detuned 

with respect to the cold cavity wave vector as shown in Fig. 3.3(a), when the 
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microcavity is pumped and the Kerr effect is included, the pump laser wave vector will 

move away from the cavity resonance as shown in Fig. 3.3(b). As a result, a blue-

detuned pump cannot couple enough light into the microcavity to trigger MI generation.  

 
Fig. 3.3 (a) The laser wave vector and cavity resonances for a blue-detuned pump in a linear 

cavity; (b) The cavity resonances when the microcavity is pumped and Kerr effect is included. 

3.2 MI region in coupled microcavity system 

In this Section, we study how the MI region of the main cavity is affected by the 

coupling with an auxiliary cavity. 

3.2.1 The MI region in the main cavity 

The MI region of the main cavity is determined as follows. We assume the energy of 

the cw pump laser is coupled to the nearest cavity mode of the main cavity (pump mode) 

with mode number μ = 0. We look for the condition that the 0-th mode of the main 

cavity acts as a pump to excite neighboring side modes in the main cavity through MI. 

We do so by investigating the linear stability of the side modes of the main cavity with 

μ = ±l, where l is the mode number of the first excited side mode. Note that in the 

auxiliary cavity, the mode μ' = 0 is excited by the coupling to the mode with μ = 0 in 

the main cavity. For simplicity we assume that the auxiliary cavity is linear, therefore 
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the 0-th mode of the auxiliary cavity will not excite the side modes of the mode μ' ≠ 0 

in the auxiliary cavity. The side modes in the auxiliary cavity however will be excited 

by the coupling to the corresponding side modes of the main cavity. 

We first determine the relation between the external cw pump laser power and the 

pump mode power. When the side modes are not excited in both the main and auxiliary 

cavities, the cw pump is only coupled to the 0-th modes, i.e., only the pump modes are 

oscillating in both the cavities. From Eqs. (2.10) and (2.11), we have 

20
0 0 0 0 0 c 0 ,

2
a i k a a i a a i a i F
z

αδ γ θ θ∂ ′= − − + + +
∂

        (3.14) 

0
0 0 0 c 0.

2
a i k a a i a
z

αδ θ
′ ′∂ ′ ′′= − − +

∂
               (3.15) 

In steady state, i. e., ∂a0/∂z = 0 and ∂a'0/∂z = 0, the relation between the pump mode 

power |a0|2 and the cw pump power |F|2 in the main cavity is given by 

2 2

c2 2 20 c
0 0 02 2

2 2
0 0

2 .
2

4 4

kF a k a
k k

α θ δ θαθ γ δ
α αδ δ

 ′   
    ′ = − − + − +   

′ ′    ′ ′+ +        

    (3.16) 

Eq. (3.16) is a cubic equation relating |a0|2 and |F|2.  

In the main cavity, we determine the stability of the trivial solutions of the ±l modes 

a±l = 0 by perturbing the mode with small fluctuations δa±l. The corresponding 

perturbations of the auxiliary cavity are δa'±l'. The boundary of the MI region is defined 

by the threshold parameters at which the perturbations grow. In the stability analysis, 

only the 0-th modes and the particular perturbated modes are oscillating in the main 
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and auxiliary cavities. From Eqs. (2.10) and (2.11), the side mode perturbations δa±l 

and δa'±l' obey 

( )2 * 2
0 0 c2 ,

2
l

l l l l l l
a i k a a i a a a a i a
z

δ αδ δ δ γ δ δ θ δ+
′+ + + − + +

∂ ′= − − + + +
∂

    (3.17) 

( )
*

* * *2 2 * *
0 0 c2 ,

2
l

l l l l l l
a i k a a i a a a a i a
z

δ αδ δ δ γ δ δ θ δ−
′− − − + − −

∂ ′= − − + −
∂

    (3.18) 

c ,
2

l
l l l l

a i k a a i a
z

δ αδ δ δ θ δ′+
′ ′ ′+ + + +

′ ′∂ ′ ′ ′= − − +
∂

            (3.19) 
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l l l l

a i k a a i a
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δ αδ δ δ θ δ′−
′ ′ ′− − − −

′ ′∂ ′ ′ ′= − −
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             (3.20) 

Eqs. (3.17)-(3.20) can be rewritten as 
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

(3.21) 

The MI is generated when at least one of the eigenvalues λ of the secular equation 

shown in Eq. (3.22) has a positive real part. The secular equation is a quartic equation 

with respect to the eigenvalue λ and the parameters are δk±l, δk'±l' and the pump mode 

power |a0|2. We numerically solve the quartic equation to determine the MI region, 

which is a function of the pump laser wave vector detuning δk0 and pump mode power 

|a0|2. 
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(3.22) 

3.2.2 The effect of coupling coefficient θc on the MI region 

To investigate the dependence of the MI region of the main cavity on the coupling 

coefficient, we assume the coupled microcavities are identical except for the Kerr 

nonlinearity, thus the two microcavities have the same parameters save the Kerr 

coefficient. In this Subsection, the loss of the main cavity is fixed and we neglect the 

cavity dispersion and detuning between the resonances of the two cavities. 

Coupling induced blue-detuned MI region 

The MI region obtained from Eq. (3.22) is mainly determined by the coupling 

coefficient between the cavities θc. Figs. 3.4(a) and 3.4(b) show the MI region with cθ

= 0.1α and cθ = 3.5α, respectively. When the coupling coefficient is small, MI occurs 

in the red-detuned region only (the same as in a single microcavity). When cθ  

increases, a new MI region emerges in the blue-detuned side as shown in Fig. 3.4(b). 

We define the smallest and largest detuning values of the blue-detuned MI region as 

the left detuning boundary (LB) and right detuning boundary (RB), respectively. The 

pump laser power is an important parameter in experiments. The relationship between 
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the pump mode power in the main cavity |a0|2 and the cw pump laser power |F|2 is given 

in Eq. (3.16). Fig. 3.4(c) shows the blue-detuned MI region as a function of the pump 

laser detuning and pump mode power with cθ = 3.5α and 3.8α. We note that when 

cθ  increases, the MI region expands both in the detuning range and pump power. In 

experiments, the detuning range and the minimum pump power for MI generation are 

important parameters. We define the separation between the LB and the RB as the 

detuning range and the lowest cw pump laser power we can get in MI region at the 

minimum cw pump laser power. Fig. 3.4(c) shows the LB’s, RB’s and the locations of 

the minimum pump powers.  
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Fig. 3.4 The MI region as a function of the pump detuning and the normalized intracavity pump 
mode power with (a) √θc = 0.1α and (b) √θc = 3.5α. The blue-detuned MI region as a function of 

the pump detuning and normalized pump laser power with (c) √θc = 3.5α (blue solid lines) and √θc 
= 3.8α (red dashed lines). Evolution of the normalized (d) MI detuning range, (e) left MI boundary 

(LB) and right MI boundary (RB), and (f) the minimum pump laser power as a function of √θc. 

Figs. 3.4(d), 3.4(e), and 3.4(f) show the evolution of the detuning range, LB and 

RB, and the lowest pump laser power, respectively, in the MI region as a function of 

cθ . From Fig. 3.4(d), the MI detuning range is zero when cθ  is below a threshold 

value (~3.05α) and increases quasi-linearly with cθ . Thus, the blue-detuned MI 

region requires sufficiently strong coupling between the two microcavities to exist. Fig. 

3.4(e) gives the locations of the LB (blue solid lines) and RB (red dashed lines) of the 

blue-detuned MI region as a function of cθ .  When cθ  increases, the LB of the MI 

region is blue-shifted while the RB of the MI region is red-shifted. The MI detuning 

range is therefore broadened. When cθ  increases from 3.05α to 6α, the LB moves 

about 7 times that of the RB. The broadening of the MI detuning range is therefore 

mainly contributed by the blue shift of the LB. Fig. 3.4(f) shows the evolution of the 

minimum pump laser power as a function of cθ . The minimum pump power first 

decreases rapidly and then more gradually. In summary, the new blue-detuned MI 

region is induced by the coupling between the two microcavities, which will emerge 
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only after a threshold cθ  is reached, and the stronger the coupling the larger the MI 

region. 

Qualitative explanation for the blue-detuned MI region 

The coupling of the auxiliary cavity creates a new blue-detuned MI region in the main 

cavity. We note that while light in the main cavity is coupled into the auxiliary cavity, 

light in the auxiliary cavity is also coupled back into the main cavity. Thus, the main 

cavity can be regarded as being pumped by both the external cw laser and the auxiliary 

cavity. 
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Fig. 3.5 (a) The optical path when light only propagates in the main cavity. (b) The figure-8 optical 
path when light propagates in both the main and auxiliary cavities. (c) The cavity resonances of a 
linear main cavity.  The external cw pump (blue dashed line) is blue-detuned with respect to the 
nearest resonance wave vector; (d) The resonance wave vectors of the blue-detuned pumped main 
cavity with Kerr effect. (e) The resonances of the figure-8 cavity with twice the cavity length of 
the main cavity, which align with that of the linear main cavity but the corresponding D1 is half. 

(f) The resonances of the figure-8 cavity including the coupling induced π phase shift. (g) The MI 
regions of the main cavity (Fig. 3.5(a)) is pumped by only the external cw light (blue solid lines) 
and a single figure-8 cavity (Fig. 3.5(b)) with the π phase shift pumped only by the light returning 

from the auxiliary cavity (red dashed lines). 

As shown in Fig. 3.5, the light coupled into the main cavity from the external cw 

pump may propagate through either the main cavity in a circular path (Fig. 3.5(a)) or 

both the main and auxiliary cavities in a figure-8 path (Fig. 3.5(b)). The length of the 

figure-8 cavity is twice that of the main cavity as the auxiliary cavity is assumed to be 

identical to the main cavity. For the additional figure-8 cavity, the mode wave vector 

spacing D1 is half of that of the main cavity because its length is doubled as shown in 

Fig. 3.5(e). Since the coupling between the two microcavities introduces an additional 

π phase shift to the optical path of the figure-8 cavity, the resonance wavevectors of the 

figure-8 cavity are blue-shifted by D1/4 as shown in Fig. 3.5(f). From Figs. 3.5(f) and 

3.5(c), the cw pump (blue dashed line) is blue-detuned with respect to the nearest 

resonance wave vector of the main cavity but red-detuned with respect to that of the 
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figure-8 cavity. As a result, it is possible to generate MI in the main cavity by the light 

returned from the auxiliary cavity while the external cw pump is still in the blue-

detuned region of the main cavity. Fig. 3.5(g) shows the numerically determined MI 

regions when only one of the optical paths is considered. First, we consider only the 

main cavity (Fig. 3.5(a)) is pumped by only the external cw light (blue solid lines in 

Fig. 3.5(g)). Then we consider a single figure-8 cavity (Fig. 3.5(b)) with the π phase 

shift pumped only by the light returning from the auxiliary cavity (red dashed lines in 

Fig. 3.5(g))). From Fig. 3.5(g), the external pump only supports MI generation in the 

red-detuned side of the main cavity but part of the MI region from light returning from 

the auxiliary cavity is in the blue-detuned side of the main cavity. The MI region of the 

coupled microcavities is related to, but not a linear combination the two MI regions 

shown in Fig 3.5(g), as MI is a nonlinear effect. 

3.2.3 Coupled microcavity system in steady state 

Steady state calculation 

Besides the qualitative explanation, in this Subsection, we determine the blue-detuned 

MI region of the coupled microcavity system in steady state. Here we assume the 

auxiliary cavity is in steady state first and study the dynamics of the main cavity. 

Although this assumption is not realistic, it allows us to analytically determine the MI 

region. The analytically determined MI region will be compared to that determined 

numerically in Section 3.2.1 
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In steady state, we have ∂a'μ'/∂z = 0. Substitution into Eq. (2.11) gives 

c .
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µ µ
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′

′

′ = ′′ +
                       (3.23) 

Substitution of Eq. (3.23) into Eq. (2.10), we have 
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If we introduce the effective wave vector detuning δkμ,eff and effective cavity loss rate 

αeff as 
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Eq. (3.24) can be rewritten as 
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∂ ∑       (3.27) 

Eq. (3.27) has the same form of the CMEs model for a single microcavity as shown in 

Eq. (2.4). That means, in steady state, we can consider the coupled microcavity system 

as a single microcavity where the wave vector detuning and cavity loss are modified by 

the inclusion of auxiliary cavity as shown in Eqs. (3.25) and (3.26). Thus, we can use 

the results in Section 3.1.1 to determine the MI region of a coupled microcavity system. 

From Eq. (3.7), the MI gain of the a±l modes in the main cavity are 

( ) ( )2 2 42
MI ,eff ,eff ,eff ,eff 0 08 12 .l l l lG k k k k a aδ δ δ δ γ γ− + − += − + + + −      (3.28) 
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For a fixed pump laser wave vector, the maximum MI gain is 

,eff ,eff
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l lk k
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δ δ− ++

=                    (3.29) 

The corresponding main cavity pump mode power is 
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If we defined the wave vector detuning between the 0-th modes of the main cavity and 

the auxiliary cavity as 

0 0 0 ,k k kδ δ ′∆ = −                       (3.31) 

we have 
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The maximum MI gain for a particular main cavity wave vector detuning value is 
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The boundaries of the MI region can be calculated by solving Eq. (3.34) where the 

maximum MI gain equals the effective cavity loss rate, 
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If we introduce the variables 
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3 and ,
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′= ∆ − = −             (3.35) 

Eq. (3.34) can be rewritten as 
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(3.36) 

We note that Sl' represents the detuning between mode a±l and a'±l' in the absence of 

main cavity dispersion, and rl is the detuning value of the cusp of the MI region in a 

single microcavity. 

Eq. (3.36) is a cubic equation of δk0 and it can have one, two or three different real 

roots. When there are three different real roots, the three roots correspond to the three 

extrema of the blue-detuned and red-detuned MI regions as shown in Fig. 3.6. 

 
Fig. 3.6 Three extrema of blue-detuned and red-detuned MI regions. 
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Thus, the blue-detuned MI region exists when the discriminant of Eq. (3.36) 

satisfies 

2 3
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2 3
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If the blue-detuned MI region exists, by solving Eq. (3.36), the boundaries of the blue-

detuned MI region are given by 
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Thus, the MI detuning range is given by the absolute values of the difference of the two 

boundaries as 
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The minimum main cavity pump mode power is 
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The effect of coupling coefficient 

Here we analyze the blue-detuned MI region with different coupling coefficients and 

compare the results with Section 3.2.2.  

In the case of two identical cavities except the Kerr nonlinearity, we have Sl' = 0, 

3 / 2lr α= , p = −θc, and 3
c2 3 / 3 3 / 9q αθ α= − − . From Eq. (3.37), the existence 

of blue-detuned MI region requires 

2 3
c c c

2 4 6

1 0.
108 9 3 27

θ θ θ
α α α

+ + − <                   (3.43) 

Solving the inequation (3.43), the requirement of the coupling coefficient for the 

existence of MI region is c / 3.0536θ α > . The threshold value calculated with the SSC 

method corresponds well with the numerical result shown in Fig. 3.4(d). 

Besides determining the threshold for the existence of blue-detuned MI region, we 

can also determine the MI regions analytically. Fig. 3.7 shows the numerically and 

analytically determined MI regions with different coupling coefficient θc. The 

parameters in Fig. 3.7(a) and 3.7(b) are the same as Fig. 3.4(a) and 3.4(b), respectively. 

In Fig. 3.7, the numerically and analytically determined MI region are denoted with 

blue solid line and red dashed line, respectively. The analytical and numerical results 

are in good agreement for determining the blue-detuned side MI region as shown in Fig. 

3.7(b). The numerically and analytically determined red-detuned MI regions are 

different as shown in Fig. 3.7(a) and 3.7(b). As discussed in Section 3.2.2, we attribute 

the red-detuned MI region to the optical path of the main cavity. The steady state 

auxiliary cavity assumption (analytical method) treats the auxiliary cavity as a linear 
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filter providing additional phase shift and loss to all optical paths in the coupled 

microcavity system. However, the light traveling only in the main cavity does not see 

the filter function of the auxiliary cavity. Moreover, the light returning from the 

auxiliary cavity contributes to dynamics in the main cavity through the Kerr 

nonlinearity. Thus, the numerically and analytically determined red-detuned MI regions 

are different. If we adjust the phase shift and loss of the analytically determined red-

detuned MI regions, they can cover a large part of the numerically determined red-

detuned MI region as shown in Fig. 3.7(c) and 3.7(d). 

  

 

Fig. 3.7. Comparison of numerically (blue solid lines) and analytically (red dashed lines) 
determined MI regions. The parameters in (a) and (b) are the same as Fig. 3.4(a) and 3.4(b), 

respectively. (c) and (d) Analytically determined red-detuned MI regions can cover a large part of 
the numerically determined red-detuned MI regions with the adjustment of phase and loss. The 

parameters in (c) and (d) correspond to (a) and (b) respectively. 
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Fig. 3.8 shows the comparison of numerically and analytically determined blue-

detuned MI regions. The parameters in Figs. 3.8(a), 3.8(d), 3.8(e), 3.8(f) correspond to 

the parameters in Fig. 3.4(c), 3.4(d), 3.4(e) and 3.4(f), respectively. Fig. 3.8(a) shows 

that the numerical and analytical results agree well for the blue-detuned MI region with 

different coupling coefficients. The numerical error of the numerically determined MI 

region depends on the step size chosen in the numerical simulations. We calculate the 

difference between the numerically and analytically determined |a0|2 in Fig. 3.8(a) with 

coupling coefficient cθ = 3.5α. The difference between the results of the two methods 

is always smaller than the numerical error, no matter when the step size is 0.01 or 0.001 

as shown in Figs. 3.8(b) and 3.8(c), respectively. As discussed in Section 3.2.2, the 

blue-detuned MI region originates from the figure-8 optical path. The numerically and 

analytically determined blue-detuned MI regions are in good agreement because in the 

figure-8 optical path, the auxiliary cavity functions as a linear filter providing phase 

shift and loss. 
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Fig. 3.8 Comparison between the numerically and analytically determined blue-detuned MI 
regions. The parameter in (a), (d), (e), (f) are the same as Fig. 3.4(c), 3.4(d), 3.4(e) and 3.4(f), 

respectively. Difference of numerically and analytically determined |a0|2 with step size of (b) 0.01 
and (c) 0.001. 

Fig. 3.8(d) presents the numerically and analytically determined the variation of 

the MI detuning range with coupling coefficient. The two results agree well when the 

coupling coefficient c / 5.02θ α < . When the coupling coefficient exceeds this 

threshold, the analytical results deviate from the numerical results. As discussed before, 

the analytical method assumes that the auxiliary cavity goes to steady state first. This 

assumption is reasonable when the optical power is mainly in the main cavity, i.e., the 

coupling coefficient between the two cavities is small. The assumption is not appliable 

when the optical power inside the auxiliary cavity becomes large. In such cases, the 

evolution of the two cavities should be considered together. Fig. 3.8(e) presents the 

numerical and analytical results of MI boundaries versus the coupling coefficient. The 
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two methods agree well for depicting the RB evolution while the analytically 

determined LB evolution deviates from the numerical results when the coupling 

coefficient c / 5.02θ α > . In Fig. 3.8(f), the numerical and analytical results 

correspond well for determining the dependence of the minimum pump power |F|2 

evolution on coupling coefficient θc. 

3.2.4 The effect of the auxiliary parameters on the blue-detuned 

MI region 

The blue-detuned MI region of the main cavity is mainly determined by the auxiliary 

cavity loss α' and the coupling modes detuning Sl'. In this Subsection, we discuss how 

these two parameters affect the blue-detuned MI region. 

Effect of auxiliary cavity loss α' 

In experiments, the loss rates of the two cavities of a coupled microcavity system can 

be different. Here we discuss how the blue-detuned MI region is affected by the loss in 

the auxiliary cavity. In the following discussion, we neglect the group velocity 

dispersion and assume the detuning between the resonances of the two cavities is zero. 

We first use the analytical method introduced in Section 3.2.3 to determine the 

blue-detuned MI region. In Figs. 3.9(a)-3.9(d), the coupling coefficient between the two 

cavities is c 3.5θ α= . Fig. 3.9(a) shows the blue-detuned MI regions with auxiliary 

cavity loss α' = 0.9α, 1.0α and 1.1α. We note that when the auxiliary cavity loss 

increases, the MI region shrinks. The detuning range narrows and the minimum pump 
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laser power increases. Fig. 3.9(b) plots the MI detuning range as a function of α'/α. The 

MI detuning range decreases when the auxiliary cavity loss increases and vanishes 

when α' > 1.18α. Fig. 3.9(c) shows the change of the LB (red dashed line) and RB (blue 

solid line). The decrease of the MI detuning range is due to the red-shift of LB and blue-

shift of the RB. When α' increases from 0.1α to 1.18α, the LB red-shifts from −3.04α 

to −1.72α and the RB blue-shifts from −0.1α to −1.72α. Thus, the shift of the RB is 

about 1.23 times that of the LB. The RB will approach the main cavity resonance as α' 

decreases, but it will not reach zero detuning even when α' = 0. Fig. 3.9(d) presents the 

evolution of the minimum pump laser power as a function of α'. The minimum pump 

power is nearly zero when the auxiliary cavity loss is small, and increases rapidly when 

the auxiliary cavity loss increases. The curve in Fig. 3.9(d) terminates at α' = 1.18α as 

the blue-detuned MI region vanishes when α' > 1.18α. 
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Fig. 3.9 The blue-detuned MI region as a function of the pump detuning and normalized pump 

mode power for (a) α' = 0.9α, 1.0α and 1.1α. Evolution of the (b) MI detuning range, (c) LB (red 
dashed line) and RB (blue solid line), and (d) normalized minimum pump laser power as a 

function of α'. 

We also use the numerical method to determine the MI region with Eq. (3.22). The 

numerically and analytically determined MI regions are shown in Fig. 3.10 with blue 

solid line and red dashed line, respectively. The parameters used in Fig. 3.10 are the 

same as the parameters in Fig. 3.9. The numerical results agree well with the analytical 

results for determining MI regions with different auxiliary cavity loss α'. 
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Fig. 3.10 Comparison between the numerically and analytically determined MI regions with 

different auxiliary cavity loss α'. The numerical and analytical results are denoted with blue solid 
and red dashed lines, respectively. The parameters of (a)-(d) are the same as Fig. 3.9(a)-3.9(d). 

We then study the dependence of the MI detuning range and the minimum pump 

laser power for different values of α' and cθ . Figs. 3.11(a) and 3.11(b) show the 

analytical results. In Fig. 3.11(a), the color bar represents the value of the MI detuning 

range. We note that the deep blue region in the lower right corner represents the 

parameter regime in which there is no MI. The edge of the deep blue region indicates 

the threshold value of cθ  for the existence of blue-detuned MI area as a function of 

α'. The threshold value of cθ  for the blue-detuned MI region decreases when α' 

decreases. From Fig. 3.11(a), for α' = 0.55α, the threshold value of cθ  for the 

existence of the blue-detuned MI region is ~2α. Fig. 3.11(b) shows the minimum pump 

laser power for different α' and cθ . The color bar represents minimum |F|2. Again, the 

deep blue region in the lower right corner represents parameter regime in which there 
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is no MI. We observe that the minimum |F|2 is small in the upper left corner. For a fixed 

cθ , when α' increases the minimum pump laser power increases until α' reaches the 

threshold value beyond which no blue-detuned MI region exists as discussed in Fig. 

3.9(d). For a fixed α', no blue-detuned MI region exists for small cθ . After reaching 

the threshold cθ  value, a high minimum pump laser power is required to achieve MI 

generation in the blue-detuned region. When cθ  increases further, the minimum 

pump laser power decreases as shown in Fig. 3.4(f). Figs. 3.11(c) and 3.11(d) show the 

numerical results corresponding to Figs. 3.11(a) and 3.11(b), respectively. The 

numerical results agree well with the analytical results. The boundaries between the MI 

region and no MI region in the analytical figures are smooth lines while the boundaries 

in the numerical figures are step-like lines because of numerical discretization. 

Compared to analytical method, the numerical method is much more computationally 

demanding. 
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Fig. 3.11 The color plots of the analytically determined (a) blue-detuned MI detuning range and 

(b) minimum pump laser power; and numerically determined (c) blue-detuned MI detuning range 
and (d) minimum pump laser power for different √θc and α'. 

Effects of detuning between the coupling modes in the auxiliary cavity 

Main and auxiliary cavity having different size and/or dispersion will lead to the 

detuning between the coupling modes of the two cavities Sl'. In this Subsection, we 

study the effect of the detuning between the coupling modes in the auxiliary cavity. In 

the following discussion, the two cavities are assumed to have the same loss and we 

neglect the group velocity dispersion in the main cavity. The coupling coefficient 

between the two cavities is assumed to be 3.5α. We first analytically determine the blue-

detuned MI region with the method introduced in Section 3.2.3. 

Fig. 3.12(a) shows the blue-detuned MI region with Sl' equals −0.5α, 0 and 0.5α. 

When Sl' increases, the MI detuning range broadens and the minimum pump laser power 

decreases. Fig. 3.12(b) shows the variation of the MI detuning range as a function of Sl'. 
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We note that the blue-detuned MI region does not exist for Sl' < −0.75α and the MI 

detuning range increases from 0 to 2α when Sl' increases from −0.75α to 0.95α. Fig. 

3.12(c) plots the variation of the LB and RB versus Sl'. Both boundaries are red-shifted 

when Sl' increases. The LB red-shifts from around −2.3α to −1.99α and the RB red-

shifts from around −2.3α to 0 when Sl' increases from −0.75α to 0.95α. Thus, the entire 

blue-detuned MI region is red-shifted when Sl' increases. The MI detuning range is 

broadened because of the stronger red shift of the RB than that of the LB. Fig. 3.12(d) 

shows that the minimum pump laser power decreases when Sl' increases. We note that 

the rate of decrease of the minimum pump laser power also decreases when Sl' increases.  
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Fig. 3.12 The analytically determined blue-detuned MI region as a function of the pump detuning 
and normalized pump power with (a) Sl' = −0.5α, 0 and 0.5α. The variation of the (b) MI detuning 

range, (c) left and right MI boundary, and (d) normalized minimum pump laser power as a 
function of Sl'. (e) The relative positions of the main cavity resonance (MCR) and auxiliary cavity 

resonance (ACR) with Sl' < 0 (black dotted lines) and Sl' > 0 (red dashed lines). (f) The initially 
blue-detuned MI region is shifted to the red-detuned side when Sl' increases from 0.65α to 1.25α. 

The observation in Figs. 3.12(a)-3.12(d) can be understood as follows. The 

detuning between the resonances of the two cavities Sl' is the detuning of the cold 

cavities, i.e., there is no pump laser injection. The sign of Sl' indicates the relative 

position of the two cavities’ resonances. Fig. 3.12(e) shows the position of auxiliary 

cavity resonance (ACR) relative to the main cavity resonance (MCR) for both Sl' < 0 

and Sl' > 0. With the injection of cw pump, the resonance of the main cavity is red 

shifted by the Kerr nonlinearity while the resonance of the auxiliary cavity is not 

affected. That adds an extra positive detuning between the main cavity and the auxiliary 

cavity. Note that the auxiliary cavity functions as a linear filter. When Sl' < 0, the red-

shift of the main cavity moves the MCR away from the ACR. The effective coupling 

loss is therefore increased. Thus, the blue-detuned MI region shrinks. When the 

magnitude of detuning is sufficiently large, i.e., −0.75α, very little light is coupled from 

the main cavity to the auxiliary cavity. The coupled structure is reverted to a single 
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cavity system, and no blue-detuned MI region exists. When Sl' > 0, the red-shift of the 

main cavity moves the MCR toward the ACR. The effective coupling loss is decreased. 

Thus, the blue-detuned MI region expands. For large Sl', part of the initially blue-

detuned MI region is red-shifted to the red-detuned side. It should be noted that the 

blue-detuned MI region to the main cavity is in fact red-detuned to the figure-8 optical 

path. The results in Fig. 3.12 indicate that the resonances of the figure-8 optical path 

are also affected by the detuning of the coupling modes Sl' between the two cavities. 

The shift of the figure-8 optical path resonances can be approximated from the MI 

region shifts. 

Fig. 3.12(f) shows that at Sl' = 0.65α, the blue-detuned MI region is entirely in the 

blue-detuned side. At Sl' = 0.95α, the right boundary of the blue-detuned MI region is 

at the resonance of the main cavity. At Sl' = 1.25α, the right boundary of the blue-

detuned MI region crosses the zero detuning line and enters to the red-detuned side. For 

comparison, the MI region of a single microcavity, which is in the red-detuned side, 

can never reach zero detuning. Thus, the detuning range around zero detuning can be 

accessed by the MI region by properly choosing Sl' in the coupled microcavity system. 

When Sl' increases further, the initially blue-detuned MI region can be completely 

shifted into the red-detuned side and there is no MI in the blue-detuned region. The 

blue-detuned MI region originates from the red-detuned region of the figure-8 optical 

path. That indicates the resonances of the figure-8 optical path also shift to the red-

detuned side of the main cavity resonances.  
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We compare the analytical results to the numerically determined MI regions in Fig. 

3.13, where the numerical results and analytical results are denoted with blue solid lines 

and red dashed lines, respectively. Figs. 3.13(a)-3.13(d) correspond to the results in 

Figs. 3.12(a)-3.12(d) respectively and Fig. 3.13(e) corresponds to Fig. 3.12(f). The 

analytical results agree well with the numerical results for determining the figure-8 

optical path induced blue-detuned MI regions. 

 

 

 
Fig. 3.13 Comparison between the numerically and analytically determined MI regions with 

different coupling modes detuning Sl'. The numerical results and analytical results are denoted 
with blue solid lines and red dashed lines, respectively. The parameters of (a)-(d) are the same as 

Fig. 3.12(a)-3.12(d) and the parameters of (e) correspond to Fig. 3.12(f). 
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Fig. 3.14(a) shows numerically determined the MI region with Sl' = 10α, the ‘blue-

detuned’ MI region almost entirely red-shifts to the red-detuned side and begins to 

merge with the initially red-detuned MI region. For larger detuning values, e.g., Sl' = 

11α shown in Fig. 3.14(b), the initially blue-detuned MI region red-shifts more and 

merges with the initially red-detuned MI region leaving only one MI region. The new 

MI region existed completely in the blue-detuned region only for −0.75α ≤ Sl' ≤ 

0.95α. The merging of the MI regions involves the initially red-detuned region induced 

by the main cavity optical path. Here we use the numerical results to discuss the 

merging of the blue-detuned and red-detuned MI regions because the analytical results 

can only be used to determine the blue-detuned MI region induced by the figure-8 

optical path. As discussed in Section 3.2.3, the red-detuned MI region induced by the 

main cavity optical path cannot be analytically determined. Thus, the merging of blue-

detuned and red-detuned MI regions can only be studied numerically. Figs. 3.14(c) and 

3.14(d) show the analytically determined MI regions with Sl' = 10α and Sl' = 11α, 

respectively. The analytical results agree with the numerical results for determining the 

blue-detuned MI region, while deviating from the numerical results for determining the 

red-detuned MI region.  
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Fig. 3.14 The numerically and analytically determined MI region as a function of the pump 

detuning and normalized pump laser power Sl' = 10α and Sl' = 11α. (a)(b) and (c)(d) are numerical 
results and analytical results respectively. 

The merging of the two MI regions means that we can use a single pump laser to 

achieve MI generation with optical fields in both the main cavity optical path and the 

figure-8 optical path. The generated MI side bands can be coherent or incoherent. MI 

generation in the merged region should improve the conversion efficiency of the pump 

to the MI side bands. In this thesis, we focus on the MI generation in blue-detuned MI 

region. MI generation with red-detuned pump laser in a coupled microcavity system 

will be studied in our future work. 

3.3 Numerical simulation of MI and MI comb generation 

in coupled microcavity 

In this Section, we numerically simulate the MI generation with blue-detuned pump 

laser. The simulation is based on the coupled mode equations as shown in Eqs. (2.10) 
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and (2.11). For microcavities with dispersion, the size and location of the blue-detuned 

MI region depend on the specific mode number under investigation. Here we arbitrarily 

choose one pair of modes with l = ±150 and carry out the simulations. In other words, 

we assume the 150-th modes are the first pair of modes that grow. Other choice of mode 

number will not affect the results as we have assumed a flat MI gain profile. When the 

MI gain profile is included, the pair of modes with the highest effect MI gain will grow 

first. Microcavities with both anomalous and normal dispersion are studied. 

We then consider more modes in the simulation with the same pumping parameters. 

We found that blue-detuned MI will lead to MI combs generation. For a single cavity, 

MI comb generation arises from cascaded MI processes in the red-detuned MI region 

with anomalous dispersion. Here we demonstrate that MI comb generation from the 

blue-detuned MI region in coupled microcavities is possible for both anomalous and 

normal dispersion. The simulation parameters are extracted from a calcium fluoride 

microcavity with FSR of 10 GHz, where α = α' = 402 kHz, γ = 0.0007 Hz, and θ = 402 

kHz2. The pump wavelength is 1560 nm and the corresponding Q factor of the cavities 

is 4.85×108. The coupling coefficient and detuning between the two microcavities are 

chosen as θc = 1.4 MHz and Sl' = 0 Hz, respectively. In our simulation, we consider 850 

modes for MI comb generation, the spectrum is sufficiently wide in most cases to 

prevent aliasing. 
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3.3.1 MI and MI comb generation in microcavities with 

anomalous dispersion 

We first simulate MI and MI comb generation in the coupled cavities both with 

anomalous dispersion, where D2 = D2’ = 15.7 Hz. The dispersion parameters are chosen 

from a practical calcium fluoride microcavity. Eq. (3.16) is a cubic equation and for a 

given pump power |F|2, there could be three solutions for the pump mode power |a0|2. 

It is well known that when there are three solutions, one of the solutions is always 

unstable leading to a forbidden region of |a0|2. In the above Sections, we focus on the 

generation of new MI sidebands and assume there is no limit for |a0|2. In numerical 

simulations, the bistability induced limit for |a0|2 should be considered. 

 
Fig. 3.15 Numerical simulations of MI generation inside (point A) and outside (point B) the blue-
detuned MI region. Both the main and auxiliary cavity are with anomalous dispersion. The blue 

solid lines depict the blue-detuned MI region and the red dashed lines present the forbidden region 
for |a0|2. The simulation time is 20 ms and pump parameters for point A are δk0 = −696 kHz and 

|F|2 = 30α/γ and that for point B are δk0 = −696 kHz and |F|2 = 25α/γ. 
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Fig. 3.15 presents the selected pumps with parameters inside and outside the blue-

detuned MI region and the corresponding simulation results of MI generation. In the 

simulations, we only consider three modes, the pump mode and the first pair of side 

modes as we discussed in the previous Sections. The blue solid lines in Fig. 3.15 depict 

the blue-detuned MI region and the red dashed lines present the forbidden region for 

|a0|2. Here we choose point A and point B inside and outside the blue-detuned MI region, 

respectively, with δk0 = −696 kHz, |F|2 = 30α/γ, δk0 = −696 kHz, and |F|2 = 25α/γ. The 

two points are chosen as representatives inside and outside MI regions, other points in 

the same parameter space will have similar results. After simulating light propagation 

for 20 ms in the microcavities, the sidemodes of the pump at point A are fully populated 

as shown in inset I and no sidemode is excited for point B as shown in inset Ⅱ of Fig. 

3.15. The simulation results show that the pump parameters for MI generation can be 

selected from the MI region determined with theoretical analysis. 

With the same pumping parameters at point A, we consider more modes in the 

simulations to investigate MI comb generation in microcavities with anomalous 

dispersion. Fig. 3.16(a) presents the spectrum evolution in the main cavity of the 

coupled cavity structure. Fig. 3.16(b) presents the spectrum evolution in a single cavity 

with the same cavity parameters as the main cavity of the coupled cavities. The 

pumping parameters in the two cases are the same as point A in Fig. 3.15. In Fig. 3.16(a), 

for the coupled microcavities, the modes around the pump mode begin to be excited at 

~0.05 ms. After 0.4 ms, nearly all the modes are populated and form a broadband MI 
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comb. In comparison, for a single cavity, the modes near the pump mode exist for a 

short period of time (~0.2 ms) but only the pump mode survives in the microcavity 

afterward. Thus, the coupled microcavity configuration enables MI comb generation in 

anomalous dispersion with blue-detuned pump. 

 
Fig. 3.16 MI comb generation when both microcavities have anomalous dispersion. (a) Spectrum 

evolution in the main microcavity of a coupled microcavities with the pump parameters of point A 
in Fig. 3.15. (b) Spectrum evolution in a single microcavity with the same parameters and pump as 

the main microcavity of the coupled microcavities of point A in Fig. 3.15. 

3.3.2 MI and MI comb generation in microcavities with normal 

dispersion 

The blue-detuned MI region induced by the coupled microcavity structure exists in both 

anomalous and normal dispersion. Here we present the numerical simulations of MI 

and MI comb generation when both microcavities are normally dispersive with D2 = 

D2′ = −15.7 Hz. Fig. 3.17 presents the numerical simulations of MI generation in 

coupled microcavities with normal dispersion. Only three modes are considered in the 

simulations. The blue solid lines in Fig. 3.17 show the blue-detuned MI region and the 

red dashed lines depict the forbidden region for |a0|2. We choose two pumps with 

parameters inside and outside the blue-detuned MI region at point A with δk0 = −426 

kHz and |F|2 = 165α/γ and point B with δk0 = −804 kHz and |F|2 = 14α/γ. After a 
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simulation time of 20 ms, the selected sidemodes with the pump at point A are excited 

but only the pump mode exists in the cavity with the pump at point B. In a single 

microcavity, MI generation in microcavities with normal dispersion is only available in 

a small region at the red-detuned side. The simulation results demonstrate that the 

coupled microcavity system provides a new blue-detuned region for MI generation in 

microcavities with normal dispersion.  

 

 
Fig. 3.17 Numerical simulations of MI generation inside (point A) and outside (point B) the blue-

detuned MI region when both microcavities are normally dispersive. The solid lines depict the 
blue-detuned MI region and the dashed lines depict the forbidden region for |a0|2. The simulation 
time is 20 ms and the pump parameters for point A are δk0 = −426 kHz and |F|2 = 165α/γ and for 

point B are δk0 = −804 kHz and |F|2 = 14α/γ. 

We consider more modes in the simulation and investigate MI comb generation in 

normal dispersion microcavities with blue-detuned pumps at point A in Fig. 3.17. Fig. 

3.18(a) presents the spectrum evolution in the main cavity of the coupled microcavities. 

Fig. 3.18(b) shows the spectrum evolution in a single cavity with the same parameters 
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as the main cavity of the coupled cavities. In Fig. 3.18(a), the first set of sidebands are 

excited at 0.8 ms and they are away from the pump mode. At around 1 ms, more modes 

are excited and form a broadband MI comb. Fig. 3.18(b) shows that in a single cavity 

no mode except the pump mode is excited with the blue-detuned pump. The coupled 

cavity configuration provides a new region for MI comb generation in normal 

dispersion microcavities.  

 
Fig. 3.18 MI comb generation when both microcavities have normal dispersion. (a) Spectrum 

evolution in the main cavity of a coupled microcavities with the pump parameters at point A of 
Fig. 3.17. (b) Spectrum evolution in a single cavity with the same parameters and pump as the 

main cavity of the coupled microcavities. 

3.4 Summary 

In this Chapter, we theoretically analyze MI generation in coupled microcavities with 

blue-detuned cw pump laser. MI and MI comb generations based on the blue-detuned 

pumping regime are numerically simulated in coupled microcavities with both 

anomalous and normal dispersion. We discovered the existence of a new MI region in 

the blue-detuned pumping regime when an auxiliary cavity with negligible Kerr 

nonlinearity is coupled to the main nonlinear cavity. We determine the conditions for 

the emergence of the blue-detuned MI region by carrying out a stability analysis of a 

set of modified coupled mode equations. We attribute the blue-detuned MI region to 
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the additional optical path introduce by the auxiliary cavity, i.e., the figure-8 path. The 

pump laser is red-detuned with respect to the figure-8 cavity while blue-detuned with 

respect to the main cavity. We analytically determine the blue-detuned MI region by 

assuming the auxiliary cavity is in steady state. The analytical results agree well with 

the numerical results except in some special cases. Firstly, the analytical method cannot 

be used to determine the initially red-detuned MI region induced by the main cavity 

optical path. The analytical method assumes the auxiliary cavity functions as a linear 

filter, while the light propagating in the main cavity only couples with the light 

returning from the auxiliary cavity through the Kerr nonlinearity. Secondly, the 

analytical method does not work when the coupling coefficient is too large. This is 

because when the optical power in the auxiliary cavity is strong, the assumption of the 

auxiliary cavity going to steady state first breaks down. In such cases, the evolution of 

the two cavities should be considered together. 

  



73 
 

4 Soliton microcomb generation in 
coupled nonlinear microcavities 

Compared to MI microcombs, soliton microcombs are more attractive for their low 

noise spectra. However, the triggering of soliton microcomb in a single microcavity 

faces several challenges as introduced in Chapter 1. Different techniques such as 

combined forward and backward cw pump laser [86], two-step “power kicking” by 

scanning the cw pump laser and decreasing the pump power with acousto-optic 

modulator [87], slow frequency tuning of the pump laser in conjunction with phase or 

amplitude modulation [88], and seeding the microcavity with a cw pump laser and a 

single shot pulse trigger [89], have been proposed to optimize soliton microcomb 

generation. These solutions all require additional devices that cannot be integrated with 

the microcavity. In this Chapter, we show that the challenges of soliton generation in a 

single microcavity can be overcome in a coupled microcavity system. To determine 

how microcomb solitons are triggered in a coupled microcavity system, we first 

introduce the soliton microcomb generation in a single microcavity. 

4.1 Soliton microcomb generation in a single microcavity 

4.1.1 Optical bistability in a single microcavity 

The single microcavity pumped by a cw laser is modeled by Eqs. (2.13) and (2.14). 

Optical bistability is a common phenomenon in nonlinear systems. Previous studies 

show that soliton microcomb generation is related to the bistability behavior [21]. In 
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this Subsection, we study the bistability in a single microcavity by considering the 

stationary cw solutions of the Ikeda map Eqs. (2.13) and (2.14), and determine their 

temporal stability. The cw solution of Eq. (2.13) is given by 

( ) ( ) ( ) 2
0 eff, ,0 exp ,0 ,

2s s s
LE t L E t i k L i L E tαδ γ = − − + 

 
        (4.1) 

where Leff = (1−e−αL)/α is the effective nonlinear length. In steady state，the periodic 

boundary condition requires Es+1(t,0) = Es(t,0). Take Eq. (4.1) into Eq. (2.14), we have 

( ) ( ) ( ) 2
0 eff,0 1 ,0 exp ,0 .

2s s s
LE t E t i k L i L E t i Fαθ δ γ θ = − − − + + 

 
   (4.2) 

Thus, the intracavity power |Es(t,0)|2 satisfies the following condition: 

( ) ( ) ( ) ( ) ( )( )
2

22
0 eff

,0
1 exp 2 1 exp / 2 cos ,0 1 .s

s

E t
F L L k L L E tθ α θ α δ γ

θ
 = − − − − − − + +  

(4.3) 

From Eq. (4.3), for a particular pump laser power F2, the corresponding intracavity 

power |Es(t,0)|2 can have multiple values depending on the parameters θ, α, L, δk0 and 

γ. Recall that in Section 3.1.2, effective power coupling from the pump laser to the 

cavity requires the detuning of the pump laser to balance the nonlinear effect induced 

phase accumulation, i.e., (−δk0L+γLeff|Es(t,0)|2) is a small value. Thus, we use the Taylor 

expansion of cos(−δk0L+γLeff|Es(t,0)|2) and ignore the higher-order terms as 1-

0.5(−δk0L+γLeff|Es(t,0)|2)2. Eq. (4.3) can be rewritten as 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

22 2 2
0

4 62 2
0 eff eff

1 1 exp 1 2 1 exp / 2 2 1 exp / 2 ,0

            4 1 exp / 2 ,0 2 1 exp / 2 ,0 .

s

s s

F L L L k L E t

L k LL E t L L E t

θ α θ α θ α δ
θ

θ α δ γ θ α γ

 = − − + − − − + − − 

− − − + − −

(4.4) 
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Eq. (4.4) is a cubic polynomial equation in |Es(t,0)|2, which can have one, two, or three 

real-valued solutions depending on the parameters F2, θ, α, L, δk0 and γ. In a polynomial 

equation, multiple solutions arise with local extrema. We determine the local extrema 

by finding the critical values of |Es(t,0)|2 that make the partial derivative 

( )
( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2

02

2 42 2
0 eff eff

1 1 exp 1 2 1 exp / 2 2 1 exp / 2
,0

                 8 1 exp / 2 ,0 6 1 exp / 2 ,0

s

s s

F
L L L k L

E t

L k LL E t L L E t

θ α θ α θ α δ
θ

θ α δ γ θ α γ

∂
= − − + − − − + − −∂

− − − + − −


(4.5) 

equal to zero. The righthand side of Eq. (4.5) is a quadratic equation in |Es(t,0)|2, and its 

discriminant Δ is 

( ) ( )

( ) ( ) ( )

2 2
eff 2 2

02

8 1 exp / 2
2 1 exp / 2

                                                   3 1 exp 6 1 exp / 2 3 .

L L
L k L

L L

θγ α
θ α δ

θ
θ α θ α

− − ∆ = − −

− − − + − − − 

 (4.6) 

Thus, as shown in Fig. 4.1(a), if ( ) ( ) ( )2 2
02 1 exp / 2 3 1 expL k L Lθ α δ θ α− − − − −

( )6 1 exp / 2 3 0Lθ α+ − − − < , there are no such critical values of |Es(t,0)|2 because there 

exists no local extrema whereas in Fig. 4.1(b), for  ( ) 2 2
02 1 exp / 2L k Lθ α δ− − −

( ) ( ) ( )3 1 exp 6 1 exp / 2 3 0L Lθ α θ α− − + − − − ≥ , these critical values are 

( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) }

( )

2 2 2
0 0

1/2

eff

( ,0) 4 1 exp / 2 4 1 exp

6 1 1 exp 3 / 2 12 1 exp 6 1 exp / 2

                                                                / 6 1 exp / 2 .

sE t L k L L k L

L L L

L L

θ α δ θ α δ

θ θ α θ α θ α

θ α γ

±
= − − ± − −

− − − − + − − − − − 

 − − 

 (4.7) 

The corresponding pumping terms F±2 can be calculated through Eq. (4.4). In this case, 

there is a range of pumping power F−
2 ≤ F2 ≤ F+

2, where there are three equilibria 

|Es(t,0)|2(1), |Es(t,0)|2(2) and |Es(t,0)|2(3) ordered as |Es(t,0)|2(1) ≤ |Es(t,0)|2− ≤ |Es(t,0)|2(2) ≤ 
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|Es(t,0)|2+ ≤ |Es(t,0)|2(3). If these solutions are perturbed in the temporal domain, the 

extremal solutions |Es(t,0)|2(1) and |Es(t,0)|2(3) are always stable while the intermediate 

solution |Es(t,0)|2(2) is always unstable. This is well-known bistability in dynamical 

systems with cubic nonlinearity. Outside the interval [F−
2, F+

2], there is always a 

solution as shown in Fig. 4.1(b). The solutions can be shown to be stable. 

 
Fig. 4.1 The relationship between the number of steady state solutions in the main cavity and the 
pump power F2. (a) For Δ < 0, there is only one solution, and (b) for Δ > 0, there is a range of F2 

in which three solutions exist. 

4.1.2 Comb states inside and outside the bistability region 

In a microcavity, the loss rate α, cavity length L, Kerr nonlinear coefficient γ, and pump 

laser coupling coefficient θ are fixed. Thus, the quadratic equation discriminant Δ 

shown in Eq. (4.6) is function of the wave vector detuning δk0. We plot a phase diagram 

in the parameter space of the pump laser power F2 and wave vector detuning δk0 to 

show the bistability region of the single microcavity. In Fig. 4.2, for δk0 < ρ =  

( ) ( ) ( ) ( )23 1 exp / 2 6 1 3exp / 2 / 2 1L L Lθ α θ α θ − − − − + −  , there is no bistability 

in the system as shown in Fig. 4.1(a). For δk0 > ρ, in the shaded area (between the two 

curves F±2) in Fig 4.2, the system has three equilibria and bistability (corresponds to 
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the case in Fig. 4.1(b)) whereas, there is only one stable equilibrium outside the shaded 

area. The shaded area is referred to as the bistability region. 

 
Fig. 4.2 Phase diagram in the parameter space of F2 and δk0 to show the bistability region. For δk0 

< ρ, there is no bistability. For δk0 > ρ, the bistability is in the shaded area which is between the 
two curves for F+

2 and F−
2. 

We investigate the pulse formation inside and outside the bistability region with 

numerical simulations. We seed a weak Gaussian pulse in a microcavity with 

anomalous dispersion and simulate the pulse evolution with different pump parameters 

inside and outside the bistability region. Fig. 4.3 presents how the pump parameters 

lead to various stationary states in a cw pumped microcavity. The initial pulse evolves 

to different states including the chaotic, Turing rolls, cw and soliton state depending on 

the pumping condition. Note that solitons can only be achieved in the bistability region. 

However, if we directly use a cw laser with parameters inside the bistability region to 

pump the microcavity, soliton combs cannot be generated from noise. As discussed in 

Section 1.2.4, the soliton microcombs cannot grow spontaneously from small 

perturbations of the cw pump. In Fig. 4.2, if we use a cw laser with parameters inside 
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the bistability region to pump a cold microcavity, the intracavity optical field will 

evolve to either of the two stable cw solutions on the boundaries of the bistability region 

[22]. To achieve the soliton states with cw pumping, the wavelength of the cw pump 

has to be tuned from outside to inside of the bistability region as discussed in Section 

1.2.5. The understanding and control of the bistability region is important for the 

generation of soliton comb in microcavities. In the following sections in this Chapter, 

we show that the bistability region of the main cavity can be controlled by the coupling 

of an auxiliary cavity to the main cavity. 

 
Fig. 4.3 The phase diagram in the (δk0, F2)-parameter space showing the different solution regions 
of a cw pump microcavity. Various solutions including chaotic, Turing rolls, cw and soliton state 

can be generated. The solitons can only be achieved in the bistability region. 
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4.2 Bistability region in coupled nonlinear microcavities 

Similar to the case of a single microcavity, we determine the bistability region of the 

coupled nonlinear microcavity system by considering the cw solution of the modified 

Ikeda map Eqs. (2.15) to (2.19). By setting the temporal derivative in Eq. (2.16) to zero, 

we have 

( ) ( ) ( )( )2

0 eff,A, ,0 exp / 2 ,0 ,s s sE t L E t i k L L i L E tδ α γ′ ′′ ′′ ′ ′ ′ ′= − − +       (4.8) 

where Leff,A = [1−exp(−α'L')]/α' is the effective nonlinear length of the auxiliary cavity 

because of the cavity loss. The periodic boundary condition requires Es+1'(t, 0) = Es'(t, 

0). Substitution of Eq. (4.8) into Eq. (2.18), we have 

( ) ( ) ( )( )2

0 eff,A c, / 2 ,0 1 1 exp / 2 ,0 / .s s c sE t L iE t i k L L i L E tθ δ α γ θ′ ′
−

 ′ ′ ′ ′ ′= − + − − − +  
        

(4.9) 

Here we use the propagation distance of the optical field to mark the half position of 

the main cavity. The subscript – and + denote right before and after the position, 

respectively. From Eqs. (4.8) and (4.9), we can express Es(t, L+/2) in Eq. (2.17) as 

( ) ( ) ( )( )2

0 eff,A c c, / 2 ,0 exp / 2 ,0 1 / .s s sE t L iE t i k L L i L E tδ α γ θ θ′ ′
+

 ′ ′ ′ ′ ′= − − + − −  
       

(4.10) 

The cw solution of the optical fields at the coupling point between the main cavity and 

the auxiliary cavity Es'(t, L'), Es(t, L+/2) and Es(t, L−/2) can be expressed as functions of 

Es'(t, 0). The intracavity power of the main cavity can be determined from the auxiliary 

cavity field power |Es'(t, 0)|2. We would like to connect the field Es'(t, 0) with the pump 

laser field F such that by using the intermediate variable Es'(t, 0), we can find the 
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dependence of the pump laser power F2 on the intracavity power of the main cavity |Es 

(t, 0)|2 and determine the bistability region of the main cavity. 

The cw solution of Eq. (2.15) is given by 

( ) ( ) ( )( )2
0 eff,M, / 2 ,0 exp / 2 / 4 ,0 ,s s sE t L E t i k L L i L E tδ α γ− = − − +     (4.11) 

( ) ( ) ( )( )2
0 eff,M, , / 2 exp / 2 / 4 , / 2 ,s s sE t L E t L i k L L i L E t Lδ α γ+ += − − +   (4.12) 

where Leff,M = [1−exp(−αL/2)]/α denotes the effective nonlinear length in the main 

cavity. Substitution of Eq. (4.11) into Eq. (4.9) we have 

( ) ( ) ( )

( )( )

2

0 eff,A

2
0 eff,M c

,0 ,0 1 1 exp ,0
2

                                                  exp / 2 / 4 ,0 / .

s s c s

s

LE t iE t i k L i L E t

i k L L i L E t

αθ δ γ

δ α γ θ

′ ′
′ ′  ′ ′ ′= − + − − − +    

+ −

 (4.13) 

Substitution of Eq. (4.10) into Eq. (4.12) we have 

( ) ( ) ( )( )
( )( )

2

0 eff,A c

2
0 eff,M c

, ,0 exp / 2 ,0 1

                                         exp / 2 / 4 , / 2 / .

s s s

s

E t L iE t i k L L i L E t

i k L L i L E t L

δ α γ θ

δ α γ θ

′ ′

+

 ′ ′ ′ ′ ′= − − + − −  

− − +
 (4.14) 

Note that in Eqs. (4.13) and (4.14), |Es (t, L+/2)|2 and |Es (t, 0)|2 can be expressed as a 

function of Es'(t, 0) by solving Eqs. (4.10) and (4.13), respectively. As the periodic 

boundary condition requires Es+1(t, 0) = Es(t, 0), substitution of Eqs. (4.13) and (4.14) 

into Eq. (2.19), we can get 

( ) ( ) ( )( )
( ) ( )( )

2
c Aux 0 eff,M

2
Aux c 0 eff,M c

,0 1 1 exp / 2 / 4 ,0

1 1 exp / 2 / 4 , / 2 / ,

s s

s

F E t X i k L L i L E t

X i k L L i L E t L

θ δ α γ

θ θ δ α γ θ θ+

′= − + − + −
− − − − − − + 

 (4.15) 

where ( )( )2

Aux 0 eff,Aexp / 2 ,0 .sX i k L L i L E tδ α γ′ ′′ ′ ′ ′= − − +  The pump laser amplitude F 

is expressed as a function of Es'(t, 0). Both the pump laser power F2 and the main cavity 

intracavity power |Es (t, 0)|2 can be determined from the auxiliary cavity power |Es' (t, 
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0)|2. We can therefore find the relationship between F2 and |Es (t, 0)|2 through |Es' (t, 

0)|2, and determine the bistability region of the main cavity. However, from Eq. (4.13) 

we have 

( ) ( ) ( ) ( ) ( )

( ) ( )

22
c

2

0 eff,A c

,0 ,0 exp / 2 1 1 exp

                    2 1 exp / 2 cos ,0 / ,

s s

c s

E t E t L L

L k L L E t

α θ α

θ α δ γ θ

′ ′ ′= + − −

 ′ ′′ ′ ′ ′− − − − +  

   (4.16) 

where for a particular |Es (t, 0)|2, the corresponding |Es' (t, 0)|2 can have multiple values 

depending on the parameters δk0', L', α', θc and γ'. Here we would use |Es' (t, 0)|2 as an 

intermediate variable and numerically determine its value from Eq. (4.16) to represent 

|Es' (t, 0)|2 as a function of |Es (t, 0)|2, which requires one |Es' (t, 0)|2 corresponds to one 

|Es (t, 0)|2, i.e., no bistability in the auxiliary cavity. Recall that we have studied the 

existence of the bistable steady state in Section 4.1.1. We expand 

cos(−k0'L'+γ'Leff,A|Es'(0,t)|2) in a Taylor series about the phase −k0'L'+γ'Leff,A|Es'(0,t)|2 = 

0 where the detuning between the pump laser frequency and the auxiliary cavity 

resonance is zero. We neglect terms beyond first order and approximate 

cos(−k0'L'+γ'Leff,A|Es'(0,t)|2) as 1−0.5(−k0'L'+γ'Leff,A|Es'(0,t)|2)2. With this assumption, 

Eq. (4.16) is a cubic polynomial equation of |Es'(0,t)|2. There will be no bistability in 

the auxiliary cavity for the detuning δk0' < ( ) ( )c c3 1 exp / 2 6 1Lρ θ α θ′ ′ ′= − − − − +

( ) ( )1/21/2 2
c3exp / 2 / 2 1L Lα θ′ ′ ′− , and one |Es'(0,t)|2 corresponds to one |Es(0,t)|2. Thus, 

we can numerically find the relationship between |Es(0,t)|2 and F2 through the 

intermediate variable |Es'(0,t)|2 with Eqs. (4.15) and (4.16). 
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4.3 Effect of coupling coefficient on the bistability region 

of coupled nonlinear microcavities 

We first investigate how the coupling coefficient between the two cavities affects the 

bistability region of the main cavity. In this Section, we assume the two cavities are 

identical. The parameters of the cavities are cavity length L = 628 μm, cavity loss α = 

19.1 /m, group velocity dispersion β2 = -59 ps2/km, Kerr nonlinear coefficient γ = 1 

/W/m, and the coupling coefficient between the main cavity and the waveguide is θ = 

0.0025. The parameters are extracted from a practical silicon nitride microring cavity. 

To obtain the bistability region in the main cavity, we consider a series of pump 

laser detuning values. For each detuning value, we numerically determine if there is 

bistability in the main cavity and calculate the corresponding local extrema F−
2(δk0) and 

F+
2(δk0). The bistability region of the main cavity with θc = θ is shown in Fig. 4.4 (a). 

Compared to the bistability region of a single microcavity in Fig. 4.2, the coupling of 

the auxiliary cavity creates the bistability region in the blue-detuned side (δk0 < 0), 

where the bistability region of a single cavity only exists in the red-detuned side (δk0 > 

0). In February 2022, the blue-detuned soliton microcomb generation in coupled 

nonlinear microcavities was experimentally observed in an arXiv preprint [90]. 

To investigate whether we can use the bistability region in Fig. 4.4(a) to predict 

soliton generation, we choose two different pumping parameters, one outside and the 

other inside the bistability region corresponding to points A and B respectively in Fig. 

4.4(a), to study the formation of different stationary solutions. We numerically simulate 
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Eqs. (2.15)-(2.19) to study the evolution of the optical fields inside the coupled 

microcavities. 
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Fig. 4.4 (a) The bistability region of the main cavity with θc = θ. The two blue solid curves 

correspond to F− (δk0) 2 and F+ (δk0) 2. The (b) temporal and (c) spectral profiles of the chaotic 
state generated in the main cavity with the pumping parameters at point A of Fig. 4.4(a). The 

corresponding (d) temporal and (e) spectral profiles in the auxiliary cavity. The (f) temporal and 
(g) spectral profiles of the soliton generation in the main cavity with pumping parameters at point 
B of Fig. 4.4(a). The corresponding (h) temporal and (i) spectral profiles in the auxiliary cavity. In 
the simulations, the initial condition in the main cavity is a Gaussian pulse and the initial condition 

in the auxiliary cavity is white noise. The spectra of the initial fields inside the corresponding 
cavities are shown with red dashed lines. 

As discussed in Section 4.1.2, noise cannot spontaneously evolve to soliton states. 

We set the initial field in the main cavity as a weak Gaussian pulse for soliton generation 

and white noise in the auxiliary cavity. The spectra of the initial optical fields inside the 

two cavities are shown in Figs. 4.4(c), 4.4(e), 4.4(g) and 4.4(i) with red dashed lines. 

The pumping parameters outside (point A) and inside (point B) the bistability region 

are δk0(A) = -3α, F2(A) = 5 W and δk0(A) = -2α, F2(A) = 5 W, respectively. Figs. 4.4(b) 

and 4.4(c) respectively show the temporal waveform and the spectrum in the main 
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cavity after a simulation time of 60 ns for the pumping parameters at point A in Fig. 

4.4(a). Both the temporal and spectral profiles of the initial Gaussian pulse evolve to 

the chaotic state. Figs. 4.4(d) and 4.4(e) respectively show the temporal waveform and 

spectrum in the auxiliary cavity after 60 ns. The temporal and spectral profiles are also 

the chaotic state with the similar intracavity power in the main cavity. The spectrum of 

optical field inside the auxiliary cavity shown in Fig. 4.4(e) is similar to the spectrum 

of field in the main cavity shown in Fig. 4.4(c). They both have five peaks above the 

spectrum envelope and the frequencies of the peaks agree well. Figs. 4.4(f)-4.4(i) show 

the evolution of the initial Gaussian pulse with the pump inside the soliton region at 

point B. After a simulation time of 60 ns, soliton states are generated in both the main 

and auxiliary cavities as shown in Figs. 4.4(f) and 4.4(h). The peak power of the solitons 

in the two cavities are nearly the same and the background cw power in the auxiliary 

cavity is somewhat higher. Figs. 4.4(g) and 4.4(i) show that the spectra of the pulses in 

the two cavities are both hyperbolic secant in shape. The spectrum of optical fields in 

the two cavities are nearly the same. The simulation results suggest that the conditions 

to generate soliton combs in coupled cavities are similar to that in the single cavity, i.e., 

we can use the bistability region in coupled microcavity system to predict the conditions 

for soliton microcomb generation. 

We further consider the effect on the bistability region when the coupling 

coefficient between the two cavities θc changes. Fig. 4.5(a) shows three different 

bistability regions for different coupling coefficients. We find that the bistability region 
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blue-shifts when the coupling coefficient increases. The soliton that can be generated 

in the bistability region with the largest blue shift is at the cusp of the bistability region. 

We define the detuning value and pump laser power at the cusp of the bistability region 

as δkp and Fp2, respectively. We investigate the evolutions of δkp and Fp2 at the cusp 

when the coupling coefficient increases from 0.5θ to 10θ. In Fig. 4.5(b), the detuning 

of cusp continues to shift deeper into the blue region when θc increases. When θc 

increase from 0.5θ to 10θ, δkp decreases from −1.97α to −12.21α. Fig. 4.5(c) shows the 

corresponding change of pump laser power at the cusp. We note that |Fp|2 remains 

almost unchanged, it only decreases slightly from 1.154 to 1.141 W. That is |δkp| 

increases by ~520% while |Fp|2 decreases by ~1.1% when θc increases from 0.5θ to 10θ. 

Thus, at the cusp, the variation of θc mainly affects the detuning but has nearly no effect 

on the pump laser power. 

 

 

 

 

 



87 
 

 

 
Fig. 4.5 (a) The soliton region of the coupled nonlinear microcavities with θc = 0.8θ (dotted lines), 

θ (solid lines), and 1.2θ (dashed lines). The (b) detuning and (c) power of the pump laser at the 
cusp versus θc. 

4.4 Resonances of different optical paths 

We numerically determine the bistability region of the main cavity with Ikeda map. 

However, it is hard to explain why the bistability region moves with the variation of 

coupling coefficient θc in Section 4.3. As discussed in Section 3.2.2, the blue-detuned 

MI region is induced by the figure-8 optical path with the coupling of an auxiliary cavity 

to the main cavity. It is likely that the blue-detuned bistability region is also related with 

the figure-8 optical path in the coupled microcavity system. To get a better sense of the 

physical distribution of the intracavity fields and explain observation in Section 4.3, we 

analyze the effective wave vector detuning and loss of the figure-8 optical path at steady 

state. 
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4.4.1 Figure-8 optical path at steady state 

We use the resonance condition to differentiate different optical paths. If the auxiliary 

cavity length is different from the main cavity, there exists three sets of resonances, i.e., 

three optical paths. As shown in Fig. 4.6, the three optical paths are the main cavity 

path, figure-8 cavity path and auxiliary cavity path. To get the effective wave vector 

detuning and loss of the figure-8 path, we need to study light propagation in the three 

optical paths. 

 
Fig. 4.6. Schematic of three optical paths in a coupled microcavity system: (a) Main cavity path, 

(b) figure-8 cavity path, and (c) auxiliary cavity path. 

The main cavity optical path is shown in Fig. 4.6(a). It starts from the main cavity 

and does not go through the auxiliary cavity. It is the same as a single microcavity. The 

optical field propagation of the main cavity path is described by 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
,M ,M2

0 ,M ,M 2

2 2
,M ,f8 ,M

, ,
, ,

2 2

                                               , , , ,

s s
s s

s s s

E t z E t z
i k E t z E t z i

z t

i E t z E t z E t z

βαδ

γ

∂ ∂
= − − −

∂ ∂

+ +

  (4.17) 

where Es,M and Es,f8 are the s-th roundtrip fields of the main cavity optical path and 

figure-8 optical path, respectively.  
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Fig. 4.6(b) shows the figure-8 optical path. It starts from the main cavity, and goes 

into the auxiliary cavity at the coupling point between the two cavities. After 

propagation in the auxiliary cavity, figure-8 optical path meets the coupling point again 

and goes back to the main cavity. The route of figure-8 path is a compound cavity 

combined of the main cavity and the auxiliary cavity. Note that at the coupling point, 

once the optical path goes into a different cavity, it adds π/2 phase to the field. Thus, 

figure-8 optical path gain π phase in one roundtrip. The light propagation of the figure-

8 optical path is divided into two parts. For the part in the main cavity, the field is 

described by 

  
( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
,f8 ,f82

0 ,f8 ,f8 2

2 2
,M ,f8 ,f8

, ,
, ,

2 2

                                               , , , .

s s
s s

s s s

E t z E t z
i k E t z E t z i

z t

i E t z E t z E t z

βαδ

γ

∂ ∂
= − − −

∂ ∂

+ +

  (4.18) 

For the part in the auxiliary cavity, the field propagation is given by 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
,f8 ,f82

0 ,f8 ,f8 2

2 2
,A ,f8 ,f8

, ,
, ,

2 2

                                               , , , .

s s
s s

s s s

E t z E t z
i k E t z E t z i
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i E t z E t z E t z

βαδ
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′∂ ∂′′= − − −
∂ ∂

′+ +

   (4.19) 

where Es,A is the s-th roundtrip field of auxiliary cavity optical path.  

Fig. 4.6(c) gives the auxiliary cavity optical path. It starts from the auxiliary cavity 

and only propagates in the auxiliary cavity. The equations describing field propagation 

of auxiliary cavity path is given by 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
,A ,A2

0 ,A ,A 2

2 2
,A ,f8 ,A

, ,
, ,

2 2

                                               , , , .

s s
s s

s s s

E t z E t z
i k E t z E t z i

z t

i E t z E t z E t z

βαδ

γ

′∂ ∂′′= − − −
∂ ∂

′+ +

  (4.20) 
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Since the main cavity path is the same as a single cavity, its bistability region 

locates in the red-detuned region with respect to the main cavity resonance. It is not the 

cause of the blue-detuned bistability region. The light propagating in the auxiliary path 

does not go into the main cavity. It bears no relation to the bistability region of the main 

cavity. Thus, we attribute the blue-detuned bistability region to the figure-8 optical path. 

It should be noted that while the pump cw frequency is blue-detuned with respect to the 

main cavity resonance, it is red-detuned with respect to the figure-8 cavity. For 

simplicity, we assume the size of the auxiliary cavity is identical to the main cavity. 

The FSR of the figure-8 cavity is half of the FSR of the main cavity and the coupling 

induced π phase blue shifts the resonances of the figure-8 cavity. The resulting 

resonances of the main cavity and the figure-8 cavity are shown in Fig. 4.7. The blue-

detuned bistability region with respect to the main cavity is in fact red-detuned with 

respect to the figure-8 cavity. 

 
Fig. 4.7 Cavity resonances of main cavity, figure-8 cavity without π phase shift and figure-8 cavity 

with π phase shift. Due to the coupling induced π phase, the pump cw frequency is blue-detuned 
with respect to the main cavity resonance while red-detuned with respect to the figure-8 cavity. 
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4.4.2 Effective detuning and loss of figure-8 cavity 

In this Subsection, we derive the expression of optical field in the figure-8 cavity at 

steady state. With the comparison of figure-8 cavity field to a single cavity field, we 

can determine the effective wave vector detuning and loss of the figure-8 cavity with a 

cw pump. The bistability region moving with the change of coupling coefficient 

discussed in Section 4.3 can be explained with the effective wave vector detuning of 

figure-8 cavity. 

At steady state, the periodic boundary conditions require that  

( ) ( ) ( )c ,A ,f8 ,A1 , , / 2 ,0 .s s sE t L E t L L E tθ − −′ ′ − + + =         (4.21) 

Here we use the field propagation distance to mark the positions of the cavities and the 

subscript – denotes the points right before the positions. From Eq. (4.20), we have 

( ) ( ) ( ) ( )( )2 2
,A ,A 0 eff,A ,f8 ,A, ,0 exp / 2 , / 2 ,0 .s s s sE t L E t i k L L i L E t L E tδ α γ− +

 ′′ ′ ′ ′ ′= − − + +  

(4.22) 

From Eqs. (4.18) and (4.19), we can get 

( ) ( )

( ) ( ) ( )( )
,f8 ,f8

2 2
,f8 0 eff,M ,f8 ,M

, / 2 , / 2

            ,0 exp / 2 / 4 ,0 ,0 ,

s s

s s s

E t L iE t L

iE t i k L L i L E t E tδ α γ

+ −=

 = − − + +  

(4.23) 

( )

( ) ( ) ( )( )
s,f8

2 2
,f8 0 eff,A ,f8 ,A

, / 2

       , / 2 exp / 2 , / 2 ,0 .s s s

E t L L

E t L i k L L i L E t L E tδ α γ

−

+ +

′+ =

 ′ ′ ′ ′ ′− − + +  

(4.24) 

Substitution of Eqs. (4.22), (4.23) and (4.24) into Eq. (4.21), we have 

( ) ( )
( ) ( )( )

c ,f8
,A 2 2

0 eff,A ,f8 ,A c

1 , / 2
,0 .

exp / 2 , / 2 ,0 1
s

s

s s

E t L
E t

i k L L i L E t L E t

θ

δ α γ θ
+

+

−
=

 ′ ′ ′ ′ ′+ − + − −  

  

(4.25) 

At steady state, the coupling condition requires that 
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( ) ( ),f8 c ,A c, / 2 ,0 / 1 .s sE t L L i E tθ θ+′+ = −         (4.26) 

From Eq. (4.18), we have 

( ) ( )

( ) ( )( )
,f8 ,f8

2 2
0 eff,M ,f8 ,M

, , / 2

            exp / 2 / 4 , / 2 , / 2 .

s s

s s

E t L L E t L L

i k L L i L E t L L E t Lδ α γ

+

+

′ ′+ = +

 ′− − + + +  

(4.27) 

Substitution of Eqs. (4.25) and (4.26) into Eq. (4.27), we can get 

( ) ( )
( ) ( )c 0 eff,M mix1

,f8 ,f8

0 eff,A mix2 c

exp / 2
, ,0 ,

exp / 2 1
s s

i k L L i L P
E t L L E t

i k L L i L P

θ δ α γ

δ α γ θ

− − − +
′+ =

′ ′ ′ ′ ′+ − − −
  (4.28) 

where ( ) ( ) ( ) ( )2 2 2 2
mix1 ,f8 ,M ,f8 ,M,0 ,0 , / 2 , / 2s s s sP E t E t E t L L E t L+′= + + + + , mix2P =

( ) ( )2 2
,f8 ,A, / 2 ,0s sE t L E t+ + . The effective wave vector detuning and loss of the figure-

8 cavity are independent of Kerr nonlinearity. For simplicity, we drop the nonlinear 

terms and rewrite Eq. (4.28) as 

( ) ( )
( ) ( )c 0

,f8 ,f8

0 c

exp / 2
, ,0 .

exp / 2 1
s s

i k L L
E t L L E t

i k L L

θ δ α

δ α θ

− − −
′+ =

′ ′ ′ ′+ − −
    (4.29) 

Eq. (4.29) can be rewritten as 

( ) ( ),f8 ,f8, exp( ) ,0 ,s sE t L L iV W E t′+ = +             (4.30) 

where 

( ) ( ) ( )

( ) ( ) ( )
0 0 c 0

0 0 c 0

exp / 2 sin 1 sin
arctan ,

exp / 2 cos 1 cos

L k L k L k L
V

L k L k L k L

α δ δ θ δ

α δ δ θ δ

 ′′ ′ ′+ − − = − ′′ ′ ′+ − −  

   (4.31) 

( ) ( )
( ) ( ) ( )

c 0

0 c

exp / 2 cos
ln .

exp / 2 cos 1 cos

L k L
W

L k L V V

θ α δ

α δ θ

− −
=

′′ ′ ′ + − −
         (4.32) 

In a single microcavity with a cavity length of L+L', the intracavity field after one round 

trip can be written as 
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( ) ( )0( , ) exp ( ,0).
2s sE t L L i k L L L L E tαδ ′ ′ ′+ = − + − +  

        (4.33) 

Compare Eq. (4.30) to Eq. (4.33), the effective wave vector detuning δk0,f8 and effective 

loss αf8 of the figure-8 cavity can be expressed as 

( )0,f8 / ,k V L Lδ ′= − +                        (4.34) 

( )f8 2 / .W L Lα ′= − +                         (4.35) 

We use Eq. (4.34) to determine the evolution of the effective wave vector detuning 

of the figure-8 cavity optical path with the change of coupling coefficient. The result is 

shown in Fig. 4.8. In Fig. 4.8, with the increase of θc from 0.5θ to 10θ, the effective 

wave vector detuning δk0,f8 blue-shifts from 128.5α to 118.0α. The shift of effective 

wave vector detuning of the figure-8 cavity optical path can explain the shift of the 

bistability region shown in Fig. 4.5. 

  
Fig. 4.8 The evolution of effective wave vector detuning of the figure-8 cavity optical path δk0,f8 

with the increase of coupling coefficient θc. 
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4.5 Soliton microcomb generation by tuning the coupling 

4.5.1 Trigger of soliton microcomb generation in coupled 

identical microcavities 

As discussed in Chapter 1, excitation of the soliton state is difficult for soliton 

microcomb generation because it requires to tune the pump laser frequency from 

outside to inside the bistability region. In this Section, we propose a new soliton comb 

generation scheme based on our results in Section 4.3. Instead of tuning the pump laser, 

we tune the bistability region by changing the coupling coefficient between the coupled 

microcavities. Compared to tuning the pump laser frequency, tuning the coupling 

coefficient has two major advantages. Firstly, this method avoids using a tunable cw 

laser making it possible to achieve chip-scale integration for soliton comb generation. 

Secondly, if we use a microheater to control the coupling coefficient between the 

cavities, the heating area will be very small. We only need to cover the small region 

where the two cavities meet with each other. Thus, the tuning efficiency and stability 

will not be affected by the cavity size, i.e., this method can be applied to microcavities 

with relatively large scales. 

We numerically simulated soliton comb generation by tuning the coupling 

coefficient of a pair of coupled Si3N4 microcavities. The simulation parameters are L = 

628 μm, δk0 = −40.1 /m, α = 19.1 /m, β2 = −59 ps2/km, γ = 1 /W/m, θ = 0.0025, and F2 

= 3 W. Fig. 4.9 shows the simulation results of light propagation inside the main cavity 

and the auxiliary cavity. Fig. 4.9(a) depicts the change of the coupling coefficient. In 
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the first 8000 roundtrips (around 35 ns), θc increases linearly from 0 to θ, and then stays 

constant at θ in the next 8000 roundtrips. Figs. 4.9(b) and 4.9(c) show the evolution of 

the temporal and spectral profiles of the optical field in the main cavity. The intracavity 

optical field experiences MI and chaotic states before a single soliton emerges. Figs. 

4.9(d) and 4.9(e) respectively show the temporal and spectral profiles of the field in the 

main cavity at the final roundtrip (16000-th). Figs. 4.9(f) and 4.9(g) show the 

corresponding temporal and spectral evolutions of the optical field in the auxiliary 

cavity. The field evolution in the auxiliary cavity is similar to that in the main cavity. 

MI grows at around the 6000-th roundtrip and after about another 2000 roundtrips, a 

single soliton emerges from the chaotic state. Figs. 4.9(h) and 4.9(i) show the temporal 

and spectral profiles of the field in the auxiliary cavity at the final roundtrip, which are 

similar to that in the main cavity. The simulation results demonstrate that soliton combs 

can be generated by tuning the coupling coefficient in coupled microcavities.  
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Fig. 4.9. (a) The change in the coupling coefficient in 16000 roundtrips. The (b) temporal and (c) 

spectral evolution of the intracavity optical field in the main cavity. The instantaneous (d) 
temporal and (e) spectral profiles of the optical field in the main cavity at the 16000-th roundtrip. 
The (f) temporal and (g) spectral evolution of the intracavity optical field in the auxiliary cavity. 
The instantaneous (h) temporal and (i) spectral profiles of optical field in the auxiliary cavity at 

the 16000-th roundtrip. 

4.5.2 Soliton microcomb generation in a CW-CCW coupled 

nonlinear microcavity by tuning the coupling 

In practice, it is difficult to fabricate two coupled microcavities with exactly the same 

parameters. Thus, it is advantageous if the two coupled light waves are generated in the 

same microcavity as in the case of a CW-CCW coupled microcavity.  

Schematic of a CW-CCW coupled microcavity 

The analysis in Section 4.3 is not limited to two physically separated microcavities, but 

can also describe the coupling of the CW and CCW modes in the same microcavity. 

We propose a Sagnac loop like structure to achieve soliton microcomb generation by 
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tuning the coupling between the CW and CCW modes. Fig. 4.10 shows the schematic 

of the proposed microcavity configuration. The coupling coefficient between the CW 

and CCW modes is tuned at the coupling region.  

 
Fig. 4.10 Schematic of a CW-CCW coupled microcavity. The CW and CCW modes are presented 

with red and blue solid lines. The coupling points are marked with black solid line, where the 
lengths of the lower half cavity and the upper half cavity are L1 and L2. 

The CW-CCW coupled microcavity is different from the two physically separated 

microcavities in two aspects. Firstly, since the CW and CCW modes propagate in the 

same waveguide, we need to include the effect of cross phase modulation (XPM) 

between the two modes. In addition to the linear coupling at the coupling region, CW 

and CCW modes are nonlinearly coupled through XPM. Secondly, in the CW-CCW 

coupled microcavity, the CW and CCW modes couple twice in one roundtrip, where in 

two physically separated microcavities, the main cavity mode and auxiliary mode 

couple only once in one roundtrip. Thus, the Ikeda map describing CW-CCW coupled 

microcavity should be modified as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
2 222

0 2

, ,
, , , 2 , , ,

2 2
s s

s s s s s

E t z E t z
i k E t z E t z i i E t z E t z E t z

z t
βαδ γ

∂ ∂  ′= − − − + + ∂ ∂  
 

(4.36) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 22

0 2

, ,
, , , 2 , , ,

2 2
s s

s s s s s

E t z E t z
i k E t z E t z i i E t z E t z E t z

z t
βαδ γ

′ ′∂ ∂  ′ ′ ′ ′= − − − + + ∂ ∂  

(4.37) 

( ) ( ) ( )1 c 1 c 1 2, / 2 1 , / 2 , / 2 ,s s sE t L E t L i E t L Lθ θ
+ − −

′     = − + +           (4.38) 

( ) ( ) ( )1 2 c 1 2 c 1, / 2 1 , / 2 , / 2 ,s s sE t L L E t L L i E t Lθ θ
+ − −

′     + = − + +           (4.39) 

( ) ( ) ( )1 2 c 1 2 c 1, / 2 1 , / 2 , / 2 ,s s sE t L L E t L L i E t Lθ θ
+ − −

′ ′     + = − + +           (4.40) 

( ) ( ) ( )1 c 1 c 1 2, / 2 1 , / 2 , / 2 ,s s sE t L E t L i E t L Lθ θ
+ − −

′ ′     = − + +           (4.41) 

     ( ) ( )c 1 2 c,0 1 , ,s sE t E t L L i Fθ θ= − + +         (4.42) 

( ) ( )1 2 c, 1 ,0 ,s sE t L L E tθ′ ′+ = −             (4.43) 

where Es and Es' denote the s-th roundtrip optical fields of the CCW mode and the CW 

mode. The coupling coefficient between the two modes at the coupling region is θc. We 

use the coupling point to divide the cavity into two parts. L1 and L2 are the lengths of 

the lower half cavity and upper half cavity, respectively. In Fig. 4.10, we mark the 

positions at the coupling points as z = 0, L1/2, L1/2+L2 and L1+L2. X− and X+, where X 

= L1/2, L1/2+L2, or L1+L2, denote the locations just before and just after the point X, 

respectively. 

Although there are differences between the CW-CCW coupled microcavities and 

the physically separated coupled microcavities, we expect that soliton microcomb can 

still be generated by tuning the coupling coefficient in a CW-CCW coupled 
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microcavities. The effect of XPM is to increase the nonlinear phase change, which 

effectively increases the Kerr nonlinear coefficient. The value of the Kerr nonlinear 

coefficient does not affect the soliton triggering scheme. As for the difference in the 

number of couplings in one roundtrip, here we show that the double coupling can be 

regarded as a single coupling with a different coupling strength if we ignore the 

nonlinear effects and assume cw solution in the CW-CCW coupled microcavity. 

In steady state, the stationary solution of Eqs. (4.36) and (4.37) give 

( ) ( ) ( )1 2 1 0 2 2, / 2 , / 2 exp / 2 ,s sE t L L E t L i k L Lδ α
− +

   + = − −            (4.44) 

( ) ( ) ( )1 1 2 0 2 2, / 2 , / 2 exp / 2 .s sE t L E t L L i k L Lδ α
− +

′ ′   = + − −            (4.45) 

Substitution of Eqs. (4.44), (4.45), (4.38) and (4.40) into Eqs. (4.39) and (4.41), we 

have 

( )

( ) ( ) ( ) ( ){ } ( )
1 2

c c 1 c c 1 2 0 2 2

, / 2

1 4 1 , / 2 4 1 , / 2 exp / 2 ,

s

s s

E t L L

E t L i E t L L i k L Lθ θ θ θ δ α

+

− −

 + = 

′   − − + − + − −   

 

(4.46) 
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′   − + − − + − −   

(4.47) 

Eqs. (4.46) and (4.47) can be rewritten as 
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θ θ θ θ
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  +   = 
′     

    − − −     − −  
′  +− − −     

      

(4.48) 
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Compare Eq. (4.48) to Eq. (1.8), the double coupling shown in Eqs. (4.38)-(4.41) can 

be considered as a single coupling, where the effective coupling coefficient is θc,eff = 

4(1-θc)θc. 

Numerical simulation of soliton microcomb generation in a CW-CCW coupled 

microcavity by tuning the coupling 

We use Eqs. (4.36) - (4.43) to simulate the soliton microcomb generation by tuning the 

coupling in a CW-CCW coupled microcavity. The simulation parameters are L1 = 251 

μm, L2 = 377 μm, δk0 = −40.1 /m, α = 19.1 /m, β2 = −59 ps2/km, γ = 1 /W/m, θ = 0.0025, 

and F2 = 0.5 W. Note that XPM effectively increases the Kerr nonlinear coefficient, the 

pump laser power required for soliton microcomb generation in a CW-CCW coupled 

microcavity is lower than the pump power requirement in two physically separated 

coupled cavities with same parameters. Fig. 4.11 shows the simulation results. The 

coupling coefficient is increased linearly from 0 to 0.25θ in the first 8000 roundtrips 

and kept constant in the next 8000 roundtrips as shown in Fig. 4.11(a). Figs. 4.11(b) 

and 4.11(c) respectively show that the optical field and spectrum in the CCW direction 

first experience MI and then a single soliton emerges from the chaotic state. Figs. 4.11(d) 

and 4.11(e) show the temporal and spectral profiles of the CCW mode at the 16000-th 

roundtrip. The corresponding optical field and spectrum evolution in the CW direction 

are shown in Figs. 4.11(f) and 4.11(g), respectively. The optical field propagation of 

the CW mode is similar to that of the CCW mode. The temporal and spectral profiles 

of the single soliton generated in the CW direction at the 16000-th round trip are shown 
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in Figs. 4.11(h) and 4.11(i), respectively. The simulation results demonstrate soliton 

microcomb generation by tuning the coupling in a CW-CCW coupled microcavity. The 

proposed scheme provides a simple and effective solution to realize on-chip integrated 

soliton microcomb sources. 

 

 

 

 

 

 

 

 

 



102 
 

 

 
Fig. 4.11 (a) The change in the coupling coefficient in 16000 roundtrips. The (b) temporal and (c) 

spectral evolution of the intracavity optical field of the CCW mode. The instantaneous (d) 
temporal and (e) spectral profiles of the optical field of the CCW mode at the 16000-th roundtrip. 
The (f) temporal and (g) spectral evolution of the intracavity optical field of the CW mode. The 

instantaneous (h) temporal and (i) spectral profiles of the optical field of the CW mode at the 
16000-th roundtrip. 
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4.6 Reducing the requirement of Q factor for soliton 

microcomb generation by coupling an auxiliary 

cavity with gain 

The requirement for high Q (low loss) microcavities is another challenge for soliton 

microcomb generation as discussed in Chapter 1. In an optical fiber cavity, it is easy to 

add a gain element in the cavity to decrease the total cavity loss [91]. However, it is 

hard to insert a gain element in a microcavity. Although an on-chip erbium-doped 

waveguide with gain has been reported recently [92], it is hard to fabricate a 

microcavity with different materials because of the mode matching between 

waveguides with different materials. Thus, it is still a challenge to fabricate an on-chip 

microcavity with partial gain element. In this Section, we propose to solve the problem 

by coupling an auxiliary cavity with gain to the main cavity. Compare to matching the 

modes in two on-chip waveguides, it is easier to achieve mode coupling between two 

microcavities with the various techniques discussed in Section 2.1.1. In the following, 

we demonstrate soliton microcomb generation in a low Q main cavity by coupling to 

an auxiliary cavity with gain. 

In a single microcavity, as shown in Fig. 4.2, the minimum pump laser power for 

soliton microcomb generation is at the cusp of the bistability region. The cusp power is 

proportional to the cavity loss. When the cavity loss increases, higher pump laser power 

is required to generate soliton microcombs. For a microcavity with a Q factor of 2.3×

106 (the corresponding cavity loss is 0.3 dB/cm), the pump laser power for soliton 
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microcomb generation should be larger than 1 W. However, the power of a typical on-

chip semiconductor laser is less than 100 mW. Thus, the power required for soliton 

microcomb generation must be lower than 100 mW to realize chip-scale comb sources. 

We first investigate the effect of an auxiliary gain cavity on the bistability region 

of the main cavity, where the Q factor of the main cavity is 7.6×106. The coupled 

microcavity system is shown in Fig. 2.6 and the bistability region is numerically 

determined with Eq. (4.15). The cavity parameters are the same as Section 4.5 and we 

assume L = L', δk0 = δk0', β2 = β2', γ = γ' and θc = θ. Fig. 4.12(a) presents the bistability 

region when the auxiliary cavity has different gain values. The sign of α' is negative 

because the auxiliary cavity has gain. When the auxiliary cavity gain increases, the cusp 

detuning δkp blue shifts and the cusp power Fp2 decreases. Fig. 4.12(b) provides a close-

up view of the bistability regions with α' = −0.05α, α' = −0.5α and α' = −α. Fig. 4.12(c) 

shows the evolution of δkp and Fp2 with α' varying from −0.01α to −0.5α. When the 

gain of the auxiliary cavity increases, δkp blue shifts from −3.55α to −3.75α and Fp2 

reduces from 0.3 W to 0.08 W. 
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Fig. 4.12 (a) Bistability regions of coupled microcavities with α' = α (black solid line), α' = −0.05α 
(red dotted lines), α' = −0.5α (red dashed lines), and α' = −α (red solid lines). (b) A close up view 

the of bistability regions of the coupled microcavities, the detuning at A, B and C are −3.2α, −3.6α 
and −3.8α, respectively, the corresponding pump power are 0.5 W, 0.139 W and 0.023 W, 

respectively. (c) Evolution of δkp and Fp
2 as a function of auxiliary cavity gain. 

We perform numerical simulations to see if solitons can be generated in the 

modified bistability region. We select two pumping conditions A and B in Fig. 4.12 (b), 

where A is inside the bistability region of α' = −0.05α and outside the bistability region 

of α' =α, B is inside the bistability region of α' = −0.5α and outside the bistability region 

of α' = −0.05α. The detuning value at A and B are −3.2α and −3.6α, respectively, and 

the corresponding pump powers are 0.5 W and 0.139 W, respectively. The initial 

condition is also a Gaussian pulse. Figs. 4.13(a) and 4.13(b) show the pulse evolutions 

with pump at point A. When α' = α, no pulse can survive and the initial Gaussian pulse 

turns into cw state as shown in Fig. 4.13(a). When α' = −0.05α in Fig. 4.13(b), the initial 

pulse first involves to a soliton molecule and then turns into a single soliton state. When 

α' = −0.05α, the pump at point B is outside the bistability region and no soliton can 

form with the initial Gaussian pulse as shown in Fig. 4.13(c). At a larger gain value, α' 

= −0.5α and pump at point B shown in Fig. 4.13(d), the initial pulse directly evolves 
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into a soliton molecule state. The simulation results demonstrate that the bistability 

region with an auxiliary gain cavity shown in Fig. 4.12(b) can support the soliton 

microcomb generation.  

 

 
Fig. 4.13 An initial Gaussian pulse evolution in coupled microcavities with pumping condition at 
(a) point A with α' = α, (b) point A with α' = −0.05α, (c) point B with α' = −0.05α, and (d) point B 

with α' = −0.5α. 

The theoretical analysis and the simulation results indicate that if the auxiliary 

cavity can provide gain, the pump power required for soliton microcomb generation in 

the main cavity will be reduced compared to a single microcavity. When the auxiliary 

cavity gain increases, the pump power at the cusp of the bistability region in coupled 

microcavities can be even lower than that in a single cavity with the same parameters 
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as the main cavity. Fig. 4.14(a) presents the bistability regions of coupled microcavities 

with an auxiliary gain cavity and a single microcavity. The cavity parameters of the 

single cavity are the same as the main cavity of the coupled microcavities. The 

minimum power at the cusp (i.e., minimum pump laser power for soliton generation) 

of the bistability region in the coupled cavities with α' = -0.5α is lower than that in a 

single cavity. Since the power at the cusp of the bistability region is proportional to the 

cavity loss, Fig. 4.14(a) confirms the idea of using an auxiliary gain cavity to reduce 

the effective loss of the main cavity. 

It should be pointed out that when the gain of the auxiliary cavity is too large, i.e., 

when the coupled cavity system becomes a gain cavity, DKSs cannot be generated. In 

Fig. 4.12(b), α' = −α gives a larger bistability region and much lower pump power at 

the cusp of the bistability region. In order to see if solitons can be generated under that 

condition, we choose a pump at the point C in the bistability region with α' = −α. The 

corresponding detuning value and pump power are −3.8α and 0.023 W, respectively. 

We do a numerical simulation of pulse evolution at the point C with α' = −α and the 

simulation result is shown in Fig. 4.14(b). The soliton comb cannot be generated with 

such a large gain. The generation of DKSs in microcavities requires a balance between 

the cavity loss and the MI gain, i.e., the cavities have to be dissipative. As discussed in 

Section 4.4, the effective loss of the coupled microcavities could be approximate the 

effective loss of the figure-8 cavity αf8 shown in Eq. (4.25). However, the threshold for 

the existence of DKSs is not αf8 = 0. When α' = −α, the figure-8 cavity is still a 
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dissipative cavity with αf8 = 0.065α, while solitons cannot survive in such coupled 

microcavities as shown in Fig. 4.14(b). The inconsistency between the figure-8 cavity 

loss and the threshold for DKSs is because the results in Section 4.4 are based on the 

assumption of cw states inside the microcavities. When the intracavity fields are pulses, 

the results are not applicable. 

 
Fig. 4.14 (a) Bistability region of coupled microcavities with α' = −0.5α (red dashed line) and a 

single microcavity (blue solid line). (b) An initial Gaussian pulse evolution in coupled 
microcavities with pumping condition at the point C with α' = −α. 

4.7 Summary 

In this Chapter, we demonstrated soliton frequency comb generation in coupled 

nonlinear microcavities. We theoretically analyze the bistable steady state condition in 

coupled microcavities by using a set of modified coupled Ikeda map and numerically 

determine the bistability region. Compared with a single microcavity, we find that the 

location of the soliton region depends on the coupling coefficient between the two 

cavities. The soliton region blue-shifts when the coupling coefficient increases and can 

locate within the blue-detuned region relative to the cold cavity resonance. Therefore, 

one can tune the soliton region to cover the pump laser wavelength to achieve frequency 

comb generation, instead of tuning the pump laser wavelength into the soliton region. 
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We find that the coupling of the auxiliary cavity introduces new optical paths in the 

coupled microcavity system. We attribute the blue-detuned bistability region to a 

compound figure-8 optical path. The pump laser frequency is in fact red-detuned with 

respect to the figure-8 cavity. We numerically demonstrate soliton frequency comb 

generation in coupled nonlinear microcavities by tuning coupling coefficient between 

the two microcavities. To overcome the difficulties in practice to fabricate two identical 

microcavities, we proposed a Sagnac loop like structure to achieve CW-CCW coupling 

in a single microcavity. The Sagnac loop like single cavity also supports soliton comb 

generation by tuning the coupling coefficient between the CW and CCW modes. The 

effect of XPM is included in the simulation.  

To overcome the stringent high Q requirement for soliton generation in a single 

microcavity, we couple a microcavity with gain to a low Q microcavity. We found that 

there is a threshold of the auxiliary cavity gain for soliton comb generation. When the 

gain of the auxiliary cavity is below the threshold, the loss of the main cavity can be 

compensated by the auxiliary cavity and makes it possible to generate soliton frequency 

combs in low Q microcavities. When the gain of the auxiliary cavity is beyond the 

threshold, no soliton is generated because the overall cavity is not dissipative. DKS is 

not a stable solution in such cavities. 
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5 Summary and future works 
In this thesis, we present theoretical analysis of MI and soliton microcomb generation 

in a coupled nonlinear microcavity system. By coupling an auxiliary cavity, new MI 

and bistability regions are created at the blue-detuned side with respect to the main 

cavity resonances where there are only red-detuned MI and bistability regions in a 

single microcavity. Based on the theoretical results, we proposed a new soliton 

microcomb excitation scheme by tuning the coupling in coupled microcavities. A 

method for soliton microcomb generation in low Q microcavities by coupling to an 

auxiliary cavity with gain is also demonstrated. 

For MI generation, we find a new MI generation region with blue-detuned pumping 

regime when the main nonlinear microcavity is coupled to an auxiliary cavity with 

negligible Kerr nonlinearity. The conditions for the emergence of the blue-detuned MI 

region are numerically determined by stability analysis of a set of modified CMEs. We 

determine how the size and location of this new MI region depend on three main 

parameters: the coupling coefficient between the two cavities, the loss of the auxiliary 

cavity, and the detuning between the coupling modes of the two cavities. We attribute 

the emergence of the new MI region to the additional figure-8 optical path induced by 

the auxiliary cavity. The blue-detuned MI region with respect to the main cavity is in 

fact red-detuned to the figure-8 cavity. By assuming the auxiliary cavity is in steady 

state, the blue-detuned MI region can be determined analytically. Numerical 

simulations are carried out to verify our theoretical analysis. 
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The soliton microcomb generation depends on the bistability condition. The 

variation of the bistability region is numerically demonstrated based on the stability 

analysis of a set of modified Ikeda map. We find that the location of the bistability 

region can be tuned by changing the coupling coefficient between the two coupled 

identical microcavities. The blue-detuned bistability region is due to the additional 

figure-8 optical path induced by the coupling of an auxiliary cavity. The blue-detuned 

bistability region with respect to the main cavity resonances is red-detuned to the figure-

8 cavity resonances. We determine the effective detuning and loss of the figure-8 cavity 

at steady state. The change in the bistability region is caused by the change in the 

effective detuning of the figure-8 cavity. We propose a novel soliton microcomb 

generation scheme based on tuning the coupling coefficient. The excitation of soliton 

microcomb by tuning coupling is demonstrated with numerical simulations. For ease 

of fabrication, we design a Sagnac-like microcavity which couples the CW and CCW 

propagating modes and numerically demonstrate soliton generation by tuning the 

coupling in this cavity. To achieve soliton microcomb generation in low Q 

microcavities, we use an auxiliary cavity with gain to compensate the loss in the main 

cavity. The gain of the auxiliary cavity should be lower than a threshold to maintain the 

overall cavity dissipative.  

Our findings in this thesis add to the understanding of microcomb generation in 

coupled nonlinear microcavities and make possible the realization of chip-scale 

integrated microcomb sources.  
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In this thesis, we focus on the investigation of MI region at the blue-detuned side 

with respect to the main cavity resonances. The coupling of the auxiliary cavity also 

affects the MI region at the red-detuned side.  

As discussed in Section 3.2.4, when the initially blue-detuned MI region shifts to 

the red-detuned side, it can merge with the initially red-detuned MI region. Recall that 

the blue-detuned MI region and the red-detuned MI region originate from the figure-8 

cavity optical path and the main cavity optical path, respectively. The merging means 

that we can use a single cw pump to excite MI generation with the optical fields in the 

main cavity optical path and the figure-8 cavity optical path. As shown in Fig. 5.1, a 

cw pump with parameters at point A can excite MI generations in both optical paths. In 

this case, there are a number of questions worth exploring. Firstly, are the two MI fields 

are generated in separate optical path coherent? Secondly, how is the intensity of the 

MI field generated at this point compared to that of a single microcavity with the same 

parameters? Thirdly, since a single pump cw laser is used to excite two MI generation, 

will this regime increase the pump to MI conversion efficiency? These questions are to 

be investigated in our future work.         
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Fig. 5.1 The merging of the blue-detuned MI region and red-detuned MI region with the coupled 

modes detuning Sl' = 12α. 

In this thesis, for the ease of numerical simulations, we assume the auxiliary cavity 

size is identical to the main cavity. The size of the auxiliary cavity determines the FSR 

of the figure-8 cavity optical path induced by the coupling. As shown in Fig. 5.2, if the 

length of the auxiliary cavity L' increases from L to 3L, where L is the cavity length of 

the main cavity, the FSR of the figure-8 optical path will be halved compared to that in 

the case L' = L. If L' further increased to 7L, the spacing between adjacent resonances 

of the figure-8 optical path will be a quarter of its value at L' = L. If the MI detuning 

range of the blue-detuned MI region is not affected by the auxiliary cavity length, with 

a large enough auxiliary cavity, it is possible to achieve the situation where the FSR of 

the figure-8 optical path is narrower than the MI detuning range. It will be unnecessary 

to carefully choose the pump laser frequency for MI generation in microcavities. The 

effect of auxiliary cavity length on the blue-detuned MI region will also be studied in 

our future work. 
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Fig. 5.2. FSR of figure-8 optical path in two coupled microcavities with auxiliary cavity length L' 

= L, 3L, and 7L, where L is the cavity length of the main cavity. 
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Appendix A: Acronyms 

OFC           optical frequency comb 

MLL           mode locked laser 

TOF            time of flight 

LOS            linear optical sampling 

cw             continuous wave 

MI             modulation instability 

FSR            free spectral range 

FWM           four wave mixing 

DKS            dissipative Kerr soliton 

CMEs           coupled mode equations 

GNLSE         Generalized Nonlinear Schrödinger Equation 

CW             clockwise 

CCW            counter-clockwise 

LB              left detuning boundary 

RB              right detuning boundary 

SSC             steady state calculation method 

ACR            auxiliary cavity resonance 

MCR            main cavity resonance 

XPM            cross phase modulation 
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Appendix B: A list of symbols used in this 
thesis 

fr ---- repetition rate of OFCs 

νN ---- exact frequency of the N-th mode 

f0 ---- common offset frequency 

TR ---- roundtrip time of a laser cavity or a microcavity 

L ---- cavity length 

vg ---- group velocity 

ωm ---- angular frequency of the m-th mode 

n ---- cavity refractive index 

c ---- speed of light 

m ---- absolute mode number 

km ---- wave vector of the m-th mode 

μ ---- relative mode number 

D1 ---- 2π/D1 denotes the cavity length 

D2 ---- second order dispersion 

D3 ---- third order dispersion 

Q ---- quality factor 

Ucav ---- energy stored in the cavity 

Udiss ---- energy dissipated per oscillation cycle 

α ---- cavity loss rate 
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E(t, z) ---- complex optical field  

θc ---- power transmission coefficient 

Aμ ---- amplitude of the μ-th mode 

aμ ---- amplitude of the μ-th mode in the frame of relative wave vector 

z ---- evolution variable 

θ ---- power coupling coefficient 

F ---- pump laser amplitude 

kpump ---- wave vector of the pump laser 

δμ0 ---- the Kronecker delta function 

t ---- ordinary time 

δk0 ---- wave vector detuning from the cavity resonance closest to the pump frequency 

β2 ---- group velocity dispersion 

γ ---- Kerr nonlinear coefficient 

δaμ ---- small fluctuation perturbating mode aμ 

λ ---- eigenvalue of a secular equation 

GMI ---- MI gain 

ϕ ---- phase accumulation in one roundtrip 

Leff ---- effective nonlinear length 

Leff ,A---- effective nonlinear length of the auxiliary cavity 

Leff,M ---- effective nonlinear length of the main cavity 

Δk0 ---- wave vector detuning between the pump modes of coupled cavities 
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Sl' ---- detuning of the l'-th coupling modes in the auxiliary cavity 
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Appendix C: Super-modes in a coupled 
microcavity system 

In a coupled microcavity system, the total field in both cavities can be expressed as a 

super-position of the modes of the compound structure. These modes are called super-

modes and we present a derivation of the super-modes in two linear microcavities with 

cw fields in the cavities. 

The fields in the main and auxiliary cavities obey the CMEs as 

0
0 0 0 0 ,

2 c
a Li k a a i a
z

αδ θ∂ ′= − − +
∂

                 (C-1) 

0
0 0 0 0 ,

2 c
a Li k a a i a
z

αδ θ
′ ′ ′∂ ′ ′′= − − +

∂
                (C-2) 

where a0 and a0' are field amplitudes of the main and auxiliary cavities, respectively. 

The other parameters are defined in Appendix B. Eqs. (C-1) and (C-2) can be rewritten 

as 

0
0 0

00
0

2 .
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L aa i i k
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            (C-3) 

The eigenvalues of Eq. (C-3) λ± can be determined by solving 

0

0

2 0,

2

c

c

Li k i

Li i k

αδ λ θ

αθ δ λ

 − − − 
= 

′ ′ ′− − −  

             (C-4) 

where 
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2

0 0 0 0 4
2 2 2 2 .

2

c
L L L Li k i k i k i kα α α αδ δ δ δ θ

λ±

′ ′ ′ ′   ′ ′− − − − ± − − + + −   
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Thus, the super-modes in the compound cavity are described by 

0
0 ,b b

z
λ+

∂
=

∂
                         (C-6) 

0
0 ,b b

z
λ−

′∂ ′=
∂

                        (C-7) 

where b0 and b0' are field amplitudes of the super-modes in the compound cavity. The 

imaginary parts of λ± are the wave vector detuning of the super-modes, and the real 

parts are the loss rates.  
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Appendix D: Definition of dispersion 
coefficients in optical fibers 

Dispersion describes the dependence of refractive index n(ω) on the optical angular 

frequency ω. Dispersion is important for pulse propagation in optical fibers because 

different spectral components of the pulse travel with different phase velocity given by 

c/n(ω), where c is the speed of light in vacuum. The dispersion coefficients in optical 

fibers are defined by expanding the mode-propagation constant β(ω) in a Taylor series 

about the central frequency of pulse spectrum ω0 [93]: 

( ) ( ) ( ) ( )2
0 1 0 2 0

1 ,
2

n
c
ωβ ω ω β β ω ω β ω ω= = + − + − + ⋅⋅⋅          (D-1) 

where 

( ) ( )
0

/     0,1, 2,... .m m
m d d m

ω ω
β β ω

=
= =               (D-2) 

The parameters β1 and β2 are related to the refractive index n(ω). β1 relates with the 

group velocity vg through 

1
1 1 ,g

g

n dnn
v c c d

β ω
ω

 = = = + 
 

                 (D-3) 

where ng is the group index. β2 is the group velocity dispersion coefficient. The 

relationship between β2 and the refractive index n(ω) is given by 

2

2 2

1 2 .dn d n
c d d

β ω
ω ω

 
= + 

 
                    (D-4) 

In optical communication community, another definition of the group velocity 

dispersion coefficient is often used, it is D = dβ1/dλ where λ is the wavelength. D relates 

to β2 and n(λ) as 
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2
1

22 2

2 .d c d nD
d c d
β π λβ
λ λ λ

= = − = −                (D-5) 

In microcavities, we use the expansion of resonance wave vector to define the 

dispersion coefficients as shown in Eq. (1.3). An equivalent expression of Eq. (1.3) 

with resonance frequencies is 

2 3
0 1 2 3

1 1 ...,
2 6

D c D c D cµω ω µ µ µ= + + +              (D-6) 

where μ is the mode number, D1 is the mode wave vector spacing, D2 and D3 are the 

second and third order dispersion coefficients as defined in Eq. (1.6). The frequency 

spacing of two neighboring resonance modes can be expressed as 

( )1
2 ,c

n Lµ µ
µ

πω ω
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where L is the cavity length. If we assume the dispersion coefficients beyond second 

order are small in Eq. (D-6), we can get 
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From Eqs. (D-8) and (D-9) we have 
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Substitute Eqs. (D-10) and (D-11) into Eq. (D-4), we have 
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